

Los.
BERNHARD FRANZ,
42 South, C Street,
Virginia, N. T.
Bookseller, stationer and Dealer in

-

THE

PRACTICAL

MODEL CALCULATOR,

FOR THE

ENGINEER, MECHANIC, MACHINIST,
MANUFACTURER OF ENGINE-WORK, NAVAL ARCHITECT,
MINER, AND MIILLWRIGHT.

BY

OLIVER BYRNE,

 " CIVIL, MILITARY, AND, MECHANICAL ENGINEER.Compiler and Editor of the "Dictionary of Machines, Mechanics, Engine-work, and Engineering;" Author of "The Companion for Machinists, Mechanics, and Engineers;" Author and Inventor of a New Science, termed "The Calculus of Form," a substitute for the differential and Integral Calculus; "The Elements of Euclid by Colours," and numerous
other Mathematical and Mechanical Works. Surveyor-General of the English Settlements in the Falkland Isles. Professor of Mathematics, College of Civil Engineers, London.

PHILADELPHIA:
HENRYCAREYBAIRD, 406 WALNUT STREET.

The Litre for liquid measure is a cubic decimetre $=1 \cdot 76077$ imperial pints English, at the temperature of melting ice; a litre of distilled water weighs 15434 grains troy.
The unit of weight is the gramme: it is the weight of a cubic centimetre of distilled water, or of a millilitre, and therefore equal to $15 \cdot 434$ grains troy.

The kilogramme is the weight of a cubic decimetre of distilled water, at the temperature of maximum density, 4° centigrade.

The pound troy contains 5760 grains.
The pound avoirdupois contains 7000 grains.
The English imperial gallon contains $277 \cdot 274$ cubic inches; and the English corn bushel contains eight such gallons, or $2218 \cdot 192$ cubic inches.

This is the same as troy weight, only having some different divisions. Apothecaries make use of this weight in compounding their medicines; but they buy and sell their drugs by avoirdupois weight. AVOIRDUPOIS WEIGHT.

$$
\begin{aligned}
\text { dr. } & \text { oz. } \\
16 & =1 \\
256 & =16=1 \\
7168 & =448=12=1 \\
28672 & =1792=112=4={ }^{\text {cwt. }}=1 \\
573440 & =35840=2240=80=20=1 .
\end{aligned}
$$

By this weight are weighed all things of a coarse or drossy nature, as Corn, Bread, Butter, Cheese, Flesh, Grocery Wares, and some Liquids; also all Metals except Silver and Gold.

Oz. Dwt. Gr.
Noté, that 1 lb . avoirdupois $=\begin{array}{lll}14 & 11 & 15 \frac{1}{2} \text { troy. }\end{array}$

$$
\begin{array}{llll}
1 \mathrm{oz} & - & 0 & 18 \\
1 \mathrm{dr} & 5 \frac{1}{2} & - \\
1 & = & 1 & 3 \frac{1}{2}
\end{array}
$$

troy weight.

LONG MEASURE.

3 Barley-corns............make 1 Inch...............marked In.
12 Inches.................... - 1 Foot............... - Ft.
3 Feet...................... - 1 Yard.............. - Yd.
6 Feet...................... - 1 Fathom.......... - Fth.
5 Yards and a half....... - 1 Pole or Rod..... - Pl.
40 Poles..................... - 1 Furlong.......... - Fur.
8 Furlongs................. - 1 Mile............... - Mile.
3 Miles..................... - 1 League........... - Lea.
$69 \frac{1}{6}$ Miles nearly............ - 1 Degree............ - Deg. or ${ }^{\circ}$.

2 Inches and a quarter....make 1 Nailmarked Nl.

4 Nails	Quarter of a Yard..
3 Quart	1 Ell Flemish..
4 Quarters	1 Yard
5 Quar	1 Ell English

$144 \begin{aligned} \text { Square Inches........make } 1 & \text { Sq. Foot..............marked Ft. } \\ 9 & \text { Square Feet......... - } 1 \text { Sq. Yard - Yd. }\end{aligned}$
$30 \frac{1}{4}$ Square Yards........ - 1 Sq. Pole - Pole.
40 Square Poles......... - 1 Rood................... - Rd.
4 Roods.................. - 1 Acre................... - Acr.
Sq. Inc. Sq. Ft.

$$
\begin{aligned}
& 144=\quad 1 \quad \text { Sq. Yd. } \\
& 1296 \doteq 9=1 \quad \text { Sq. Pl. } \\
& 39204=272 \frac{1}{4}=30 \frac{1}{4}=1 \quad \text { Rd: } \\
& 1568160=10890=1210=40=1 \quad \text { Acr. } \\
& 6272640=43560=4840=160=4=1
\end{aligned}
$$

When three dimensions are concerned; namely, length, breadth, and depth or thickness, it is called cubic or solid measure, which is used to measure Timber, Stone, \&c.
The cubic or solid Foot, which is 12 inches in length, and breadth, and thickness, contains 1728 cubic or solid inches, and 27 solid feet make one solid yard.
dry, or corn measure.

WINE MEASURE.
2 Pints...................make 1 Quart..............marked Qt.
2 Quarts................. - 1 Gallon............. - Gal.
42 Gallons................ - 1 Tierce............. - Tier.
63 Gallons or $1 \frac{1}{2}$ Tier.. - 1 Hogshead.......... - Hhd.
2 Tierces................ - 1 Puncheon......... - Pun.
2 Hogsheads............ - 1 Pipe or Butt..... - Pi.
2 Pipes.................. - 1 Tun............... - Tun.

$$
\begin{aligned}
\text { Pts. } & \text { Qts. } \\
2 & =1 \\
8 & =4=\text { Gal. } \\
336 & =168=42=1 \text { Tier. } \\
504 & =252=63=1 \frac{1}{2}=1 . \\
672 & =336=84=2=11=1 \\
1008 & =504=126=3=2=1 \frac{11}{2}=1 \\
2016 & =1008=252=6=4=3=2=1 .
\end{aligned}
$$

ALE AND BEER MEASURE.

$$
\begin{aligned}
& \text { Pts. } \quad \text { Qt. } \\
& 2=1 \\
& 8=4=\text { Gal. } \\
& 288=144=36=1 \quad \text { Bar. } \\
& 432=216=54=1 \frac{1}{2}=1 \quad \text { Butt. } \\
& 864=432=108=3=2=1
\end{aligned}
$$

OF TIME.

 But $365 \quad 5 \quad 48 \quad 48=1$ Solar Year.
The time of rotation of the earth on its axis is called a sidereal day, for the following reason: If a permanent object be placed on the surface of the earth, always retaining the same position, it may be so located as to be posited in the same plane with the observer and some selected fixed star at the same instant of time; although this coincidence may be but momentary, still this coincidence continually recurs, and the interval elapsed between two consecutive coincidences has always throughout all ages appeared the same.

It is this interval that is called a sidereal day.
The sidereal day increased in a certain ratio, and called the mean solar day, has been adopted as the standard of time.

Thus, $366 \cdot 256365160$ sidereal days $=366 \cdot 256365160-1$ or $365 \cdot 256365160$ mean solar days, whence sidereal day : mean solar day : : $365 \cdot 256365160: 366 \cdot 256365160:: 0 \cdot 997269672: 1$ or as $1: 1 \cdot 002737803$, when 23 hours, 56 minutes $4 \cdot 0996608$ sec. of mean solar time $=1$ sidereal day; and 24 hours, 3 minutes, 56.5461797 sec. of sidereal time $=1$ mean solar day.

The true solar day is the interval between two successive coincidences of the sun with a fixed object on the earth's surface, bringing the sun, the fixed object, and the observer in the same plane.

This interval is variable, but is susceptible of a maximum and minimum, and oscillates about that mean period which is called a mean solar day.

Apparent or true time is that which is denoted by the sun-dial, from the apparent motion of the sun in its diurnal revolution, and differs several minutes in certain parts of the ecliptic from the mean time, or that shown by the clock. The difference is called the equation of time, and is set down in the almanac, in order to ascertain the true time.

ARITHMETIC.

Arithmetic is the art or science of numbering; being that branch of Mathematics which treats of the nature and properties of numbers. When it treats of whole numbers, it is called Common Arithmetic ; but when of broken numbers, or parts of numbers, it is called Fractions.

Unity, or a Unit, is that by which every thing is called one; being the beginning of number; as one man, one ball, one gun.

Number is either simply one, or a compound of several units; as one man, three men, ten men.

An Integer or Whole Number, is some certain precise quantity of units; as one, three, ten. These are so called as distinguished from Fractions, which are broken numbers, or parts of numbers; as one-half, two-thirds, or three-fourths.

NOTATION AND NUMERATION.

Notation, or Numeration, teaches to denote or express any proposed number, either by words or characters; or to read and write down any sum or number.

The numbers in Arithmetic are expressed by the following ten digits, or Arabic numeral figures, which were introduced into Europe by the Moors about eight or nine hundred years since : viz. 1 one, 2 two, 3 three, 4 four, 5 five, 6 six, 7 seven, 8 eight, 9 nine, 0 cipher or nothing. These characters or figures were formerly all called by the general name of Ciphers; whence it came to pass that the art of Arithmetic was then often called Ciphering. Also, the first nine are called Significant Figures, as distinguished from the cipher, which is quite insignificant of itself.

Besides this value of those figures, they have also another, which depends upon the place they stand in when joined together; as in the following Table:

Here any figure in the first place, reckoning from right to left, denotes only its own simple value; but that in the second place denotes ten times its simple value; and that in the third place a hundred times its simple value; and so on; the value of any figure, in each successive place, being always ten times its former value.

Thus, in the number 1796, the 6 in the first place denotes only six units, or simply six; 9 in the second place signifies nine tens, or ninety; 7 in the third place, seven hundred; and the 1 in the fourth place, one thousand; so that the whole number is read thusone thousand seven hundred and ninety-six.

As to the cipher 0 , it stands for nothing of itself, but being joined on the right-hand side to other figures, it increases their value in the same tenfold proportion: thus, 5 signifies only five; but 50 denotes 5 tens, or fifty; and 500 is five hundred; and so on.

For the more easily reading of large numbers, they are divided into periods and half-periods, each half-period consisting of three figures; the name of the first period being units; of the second, millions; of the third, millions of millions, or bi-millions, contracted to billions; of the fourth, millions of millions of millions, or trimillions, contracted to trillions; and so on. Also, the first part of any period is so many units of it, and the latter part so many thousands.

The following Table contains a summary of the whole doctrine :

Periods.	$\overbrace{-}^{\text {Quadrill.; Trillions; }} \overbrace{}^{\text {Billions; }} \overbrace{}^{\text {Millions; }}$ Units.
Half-per.	th. un. th. un. th. un. th. un. th. un.
Figures.	$\overparen{123}, \overbrace{456} ; \widetilde{789}, \overbrace{098} ; ~ \overparen{765,432} ; \overbrace{101}, \overbrace{234} ; \overbrace{567}, \overbrace{890}$.

Numeration is the reading of any number in words that is proposed or set down in figures.

Notation is the setting down in figures any number proposed in words.

OF THE ROMAN NOTATION.

The Romans, like several other nations, expressed their numbers by certain letters of the alphabet. The Romans only used seven numeral letters, being the seven following capitals: viz. Ifor one; V for five; X for ten; L for fifty; C for a hundred; D for five hundred; M for a thousand. The other numbers they expressed by various repetitions and combinations of these, after the following manner :

```
            1= I.
            2=II. As often as any character is repeated,
            3 = III.
            4 = IIII. or IV.
            5 = V.
            6= VI.
            7 = VII.
            8 = VIII.
            9 = IX.
            10= X.
            50=L.
            100=C.
            500 = D or IO.
            1000 = M or CIO.
            2000 = MM.
            5000 = \overline{\textrm{V}}\mathrm{ or IDN.}
            6000 = \overline{VI.}
    10000 = \overline{X}}\mathrm{ or CCIOO.
    50000 = \overline{L}\mathrm{ or IDON.}
    60000 = \overline{LX}.
100000 = \overline{C}}\mathrm{ or CCCIODN.
1000000 = \overline{M}\mathrm{ or CCCCIDNOD.}
2000000 = \overline{MM.}
    &c. &c.
                        EXPLANATION OF CERTAIN CHARACTERS.
```

There are various characters or marks used in Arithmetic and Algebra, to denote several of the operations and propositions; the chief of which are as follow :

+ signifies plus, or addition.	. proportion.
- minus, or subtraction.	.. equality.
\times.......... multiplication.	\checkmark.......... square roo
....... division.	$\sqrt[3]{\text {.......... cube root, }}$

Thus,
$5+3$, denotes that 3 is to be added to $5=8$.
$6-2$, denotes that 2 is to be taken from $6=4$.
7×3, denotes that 7 is to be multiplied by $3=21$.
$8 \div 4$, denotes that 8 is to be divided by $4=2$.
$2: 3:: 4: 6$, shows that 2 is to 3 as 4 is to 6 , and thus, $2 \times 6=3 \times 4$.
$6+4=10$, shows that the sum of 6 and 4 is equal to 10 .
$\sqrt{ } 3$, or $3^{\frac{1}{2}}$, denotes the square root of the number $3=1.7320508$.
$\sqrt[3]{ } 5$, or $5^{\frac{7}{3}}$, denotes the cube root of the number $5=1 \cdot 709976$.
7^{2}, denotes that the number 7 is to be squared $=49$.
8^{3}, denotes that the number 8 is to be cubed $=512$. \&c.

RULE OF THREE.

The Rule of Three teaches how to find a fourth proportional to three numbers given. Whence it is also sometimes called the Rule of Proportion. It is called the Rule of Three, because three terms or numbers are given to find the fourth; and because of its great and extensive usefulness, it is often called the Golden Rule.

This Rule is usually considered as of two kinds, namely, Direct and Inverse.

The Rule of Three Direct is that in which more requires more, or less requires less. As in this: if 3 men dig 21 yards of trench in a certain time, how much will 6 men dig in the same time? Here more requires more, that is, 6 men, which are more than 3 men , will also perform more work in the same time. Or when it is thus: if 6 men dig 42 yards, how much will 3 men dig in the same time? Here, then, less requires less, or 3 men will perform proportionally less work than 6 men in the same time. In both these cases, then, the Rule, or the Proportion, is Direct; and the stating must be

$$
\begin{aligned}
& \text { thus, As } 3: 21:: 6: 42 \text {, } \\
& \text { or thus, As } 6: 42:: 3: 21 \text {. }
\end{aligned}
$$

But, the Rule of Three Inverse is when more requires less, or less requires more. As in this: if 3 men dig a certain quantity of trench in 14 hours, in how many hours will 6 men dig the like quantity? Here it is evident that 6 men, being more than 3 , will perform an equal quantity of work in less time, or fewer hours. Or thus: if 6 men perform a certain quantity of work in 7 hours, in how many hours will 3 men perform the same? Here less requires more, for 3 men will take more hours than 6 to perform the same work. In both these cases, then, the Rule, or the Proportion, is Inverse; and the stating must be

$$
\begin{aligned}
& \text { thus, As } 6: 14:: 3: \quad 7, \\
& \text { or thus, As } 3: 7: 0: 6: 14 .
\end{aligned}
$$

And in all these statings the fourth term is found, by multiplying the 2 d and 3 d terms together, and dividing the product by the 1 st term.

Of the three given numbers, two of them contain the supposition, and the third a demand. And for stating and working questions of these kinds observe the following general Rule:

Rule.-State the question by setting down in a straight line the three given numbers, in the following manner, viz. so that the 2 d term be that number of supposition which is of the same kind that the answer or 4th term is to be; making the other number of supposition the 1 st term, and the demanding number the 3 d term, when the question is in direct proportion; but contrariwise, the other number of supposition the third term, and the demanding number the 1st term, when the question has inverse proportion.

Then, in both cases, multiply the 2 d and 3 d terms together, and divide the product by the first, which will give the answer, or 4th term sought, of the same denomination as the second term.

Note, If the first and third terms consist of different denominations, reduce them both to the same; and if the second term be a compound number, it is mostly convenient to reduce it to the lowest denomination mentioned. If, after division, there be any remainder, reduce it to the next lower denomination, and divide by the same divisor as before, and the quotient will be of this last denomination. Proceed in the same manner with all the remainders, till they be reduced to the lowest denomination which the second term admits of, and the several quotients taken together will be the answer required.

Note also, The reason for the foregoing Rules will appear when we come to treat of the nature of Proportions. Sometimes also two or more statings are necessary, which may always be known from the nature of the question.

An engineer having raised 100 yards of a certain work in 24 days with 5 men, how many men must he employ to finish a like quantity of work in 15 days?
da. men. da. men.
As $15: 5:: 24: 8$ Ans.
5
15) $\overline{120}$ (8 Answer.

120

COMPOUND PROPORTION.

Compound Proportion teaches how to resolve such questions as require two or more statings by Simple Proportion; and that, whether they be Direct or Inverse.

In these questions, there is always given an odd number of terms, either five, or seven, or nine, \&c. These are distinguished into terms of supposition and terms of demand, there being always one term more of the former than of the latter, which is of the same kind with the answer sought.

Rule.-Set down in the middle place that term of supposition which is of the same kind with the answer sought. Take one of the other terms of supposition, and one of the demanding terms which is of the same kind with it; then place one of them for a first term, and the other for a third, according to the directions given in the Rule of Three. Do the same with another term of supposition, and its corresponding demanding term; and so on if there be more terms of each kind; setting the numbers under each other which fall all on the left-hand side of the middle term, and the same for the others on the right-hand side. Then to work.

By several Operations.-Take the two upper terms and the middle term, in the same order as they stand, for the first Rule of Three question to be worked, whence will be found a fourth term. Then take this fourth number, so found, for the middle term of a second Rule of Three question, and the next two under terms in the general stating, in the same order as they stand, finding a fourth
term from them; and so on, as far as there are any numbers in the general stating, making always the fourth number resulting from each simple stating to be the second term of the next following one. So shall the last resulting number be the answer to the question.

By one Operation.-Multiply together all the terms standing under each other, on the left-hand side of the middle term; and, in like manner, multiply together all those on the right-hand side of it. Then multiply the middle term by the latter product, and divide the result by the former product, so shall the quotient be the answer sought.

How many men can complete a trench of 135 yards long in 8 days, when 16 men can dig 54 yards in 6 days?

General stating.

The same by two operations.

1st.	2 d.
As $54: 16:: 135: 40$	As $8: 40:: 6: 30$
$\frac{16}{810}$	$8) \frac{6}{240}(30$ Ans.
$54) \frac{135}{2160}(40$	$\underline{24}$
$\frac{216}{0}$	

OF COMMON FRACTIONS.

A Fraction, or broken number, is an expression of a part, or some parts, of something considered as a whole.

It is denoted by two numbers, placed one below the other, with a line between them: thus, $\frac{3}{4}$ numerator denominator $\}$ which is named three-fourths.
The Denominator, or number placed below the line, shows how many equal parts the whole quantity is divided into; and represents the Divisor in Division. And the Numerator, or number set above the line, shows how many of those parts are expressed by the Fraction; being the remainder after division. Also, both these numbers are, in general, named the Terms of the Fractions.

Fractions are either Proper, Improper, Simple, Compound, or Mixed.

A Proper Fraction is when the numerator is less than the denominator; as $\frac{1}{2}$, or $\frac{2}{3}$, or $\frac{3}{4}$, \&c.

An Improper Fraction is when the numerator is equal to, or exceeds, the denominator; as $\frac{3}{3}$, or $\frac{5}{4}$, or $\frac{7}{5}$, \&c.

A Simple Fraction is a single expression denoting any number of parts of the integer; as $\frac{2}{3}$, or $\frac{3}{2}$.

A Compound Fraction is the fraction of a fraction, or several fractions connected with the word of between them; as $\frac{1}{2}$ of $\frac{2}{3}$, or ${ }_{5}^{3}$ of $\frac{5}{6}$ of $3, \& c$.

A Mixed Number is composed of a whole number and a fraction together; as $3 \frac{1}{4}$, or $12 \frac{4}{6}$, \&c.

A whole or integer number may be expressed like a fraction, by writing 1 below it, as a denominator; so 3 is $\frac{3}{1}$, or 4 is $\frac{4}{1}$, \&c.

A fraction denotes division; and its value is equal to the quotient obtained by dividing the numerator by the denominator; so $\frac{12}{4}$ is equal to 3 , and $\frac{20}{5}$ is equal to 4 .

Hence, then, if the numerator be less than the denominator, the value of the fraction is less than 1 . If the numerator be the same as the denominator, the fraction is just equal to 1 . And if the numerator be greater than the denominator, the fraction is greater than 1.

REDUCTION of fractions.

Reduction of Fractions is the bringing them out of one form or denomination into another, commonly to prepare them for the operations of Addition, Subtraction, \&c., of which there are several cases.

To find the greatest common measure of two or more numbers.

The Common Measure of two or more numbers is that number which will divide them both without a remainder: so 3 is a common measure of 18 and 24 ; the quotient of the former being 6 , and of the latter 8. And the greatest number that will do this, is the greatest common measure: so 6 is the greatest common measure of 18 and 24 ; the quotient of the former being 3 , and of the latter 4, which will not both divide farther.

Rule.-If there be two numbers only, divide the greater by the less; then divide the divisor by the remainder ; and so on, dividing always the last divisor by the last remainder, till nothing remains; then shall the last divisor of all be the greatest common measure sought.

When there are more than two numbers, find the greatest common measure of two of them, as before; then do the same for that common measure and another of the numbers; and so on, through all the numbers; then will the greatest common measure last found be the answer.

If it happen that the common measure thus found is 1 , then the numbers are said to be incommensurable, or to have no common measure.

To find the greatest common measure of 1998, 918, and 522.
918) 1998 (2 1836

So that 18 is the answer required.
To abbreviate or reduce fractions to their lowest terms.
Rule.-Divide the terms of the given fraction by any number that will divide them without a remainder; then divide these quotients again in the same manner; and so on, till it appears that there is no number greater than 1 which will divide them; then the fraction will be in its lowest terms.

Or, divide both the terms of the fraction by their greatest common measure, and the quotients will be the terms of the fraction required, of the same value as at first.

That dividing both the terms of the fraction by the same number, whatever it be, will give another fraction equal to the former, is evident. And when those divisions are performed as often as can be done, or when the common divisor is the greatest possible, the terms of the resulting fraction must be the least possible.

1. Any number ending with an even number, or a cipher, is divisible, or can be divided by 2 .
2. Any number ending with 5 , or 0 , is divisible by 5 .
3. If the right-hand place of any number be 0 , the whole is divisible by 10 ; if there be 2 ciphers, it is divisible by 100 ; if 3 ciphers, by 1000 ; and so on, which is only cutting off those ciphers.
4. If the two right-hand figures of any number be divisible by 4 , the whole is divisible by 4 . And if the three right-hand figures be divisible by 8 , the whole is divisible by 8 ; and so on.

5 . If the sum of the digits in any number be divisible by 3 , or by 9 , the whole is divisible by 3 , or by 9 .
6. If the right-hand digit be even, and the sum of all the digits be divisible by 6 , then the whole will be divisible by 6 .
7. A number is divisible by 11 when the sum of the 1 st, 3 d , 5 th, \&c., or of all the odd places, is equal to the sum of the $2 d$, 4 th, 6 th, \&c., or of all the even places of digits.
8. If a number cannot be divided by some quantity less than the square of the same, that number is a prime, or cannot be divided by any number whatever.
9. All prime numbers, except 2 and 5 , have either $1,3,7$, or 9 , in the place of units; and all other numbers are composite, or can be divided.
10. When numbers, with a sign of addition or subtraction between them, are to be divided by any number, then each of those numbers must be divided by it. Thus, $\frac{10+8-4}{2}=5+4-2=7$.
11. But if the numbers have the sign of multiplication between them, only one of them must be divided. Thus, $\frac{10 \times 8 \times 3}{6 \times 2}=$ $\frac{10 \times 4 \times 3}{6 \times 1}=\frac{10 \times 4 \times 1}{2 \times 1}=\frac{10 \times 2 \times 1}{1 \times 1}=\frac{20}{1}=20$.

Reduce $\frac{144}{240}$ to its least terms.

$$
\frac{144}{240}=\frac{72}{120}=\frac{36}{66}=\frac{18}{80}=\frac{9}{16}=\frac{3}{5} \text {, the answer. }
$$

Or thus:
144) 240 (1 Therefore 48 is the greatest common measure, and $144 \quad 48)_{\frac{144}{240}}=\frac{3}{5}$ the answer, the same as before. $\overline{96}) 144(1$ $\left.\frac{96}{48}\right) 96(2$ 96
To reduce a mixed number to its equivalent improper fraction.
Rule.-Multiply the whole number by the denominator of the fraction, and add the numerator to the product; then set that sum above the denominator for the fraction required.

Reduce $23 \frac{2}{5}$ to a fraction.

> Or,

$$
\begin{aligned}
23 \\
\frac{5}{115} \\
\frac{2}{117} \\
\frac{1}{5}
\end{aligned} \quad \begin{aligned}
& (23 \times 5)+2 \\
& 5
\end{aligned} \quad \frac{117}{5} .
$$

To reduce an improper fraction to its equivalent whole or mixed number.
Rule.-Divide the numerator by the denominator, and the quotient will be the whole or mixed number sought.

Reduce $\frac{12}{3}$ to its equivalent number.
Here $\frac{12}{3}$ or $12 \div 3=4$.
Reduce $\frac{15}{7}$ to its equivalent number.
Here $\frac{15}{7}$ or $15 \div 7=2 \frac{1}{1}$.
Reduce $\frac{{ }^{79}}{17}$ to its equivalent number.
Thus, 17) 749 (44_{17}^{17}

68
69
68
1

To reduce a whole number to an equivalent fraction, having a given denominator.

Rule.-Multiply the whole number by the given denominator, then set the product over the said denominator, and it will form the fraction required.

Reduce 9 to a fraction whose denominator shall be 7 .
Here $9 \times 7=63$, then $\frac{68}{7}$ is the answer.
For ${ }_{63}=63 \div 7=9$, the proof.
To reduce a compound fraction to an equivalent simple one.
Rule.-Multiply all the numerators together for a numerator, and all the denominators together for the denominator, and they will form the simple fraction sought.
When part of the compound fraction is a whole or mixed number, it must first be reduced to a fraction by one of the former cases.

And, when it can be done, any two terms of the fraction may be divided by the same number, and the quotients used instead of them. Or, when there are terms that are common, they may be omitted.

Reduce $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{3}{4}$ to a simple fraction.

$$
\text { Here } \frac{1 \times 2 \times 3}{2 \times 3 \times 4}=\frac{6}{24}=\frac{1}{4} .
$$

Or, $\frac{1 \times 2 \times 3}{2 \times 3 \times 4}=\frac{1}{4}$, by omitting the twos and threes.
Reduce $\frac{2}{3}$ of $\frac{8}{5}$ of $\frac{10}{11}$ to a simple fraction.

$$
\text { Here } \frac{2 \times 3 \times 10}{3 \times 5 \times 11}=\frac{60}{165}=\frac{12}{33}=\frac{4}{11} \text {. }
$$

Or, $\frac{2 \times 3 \times 10}{3 \times 5 \times 11}=\frac{4}{11}$, the same as before.
To reduce fractions of different denominators to equivalent fractions, having a common denominator.
Rule.-Multiply each numerator into all the denominators except its own for the new numerators; and multiply all the denominators together for a common denominator.

It is evident, that in this and several other operations, when any of the proposed quantities are integers, or mixed numbers, or compound fractions, they must be reduced, by their proper rules, to the form of simple fractions.

Reduce $\frac{1}{2}, \frac{2}{3}$, and $\frac{3}{4}$ to a common denominator.
$1 \times 3 \times 4=12$ the new numerator for $\frac{1}{2}$.
$2 \times 2 \times 4=16 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$............. $\frac{2}{2}$.
$3 \times 2 \times 3=18 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ for $\frac{3}{4}$.
$2 \times 3 \times 4=24$ the common denominator.

Therefore, the equivalent fractions are $\frac{12}{24} \frac{16}{24}$, and $\frac{18}{24}$.
Or, the whole operation of multiplying may be very well performed mentally, and only set down the results and given fractions thus: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}=\frac{12}{24}, \frac{16}{24}, \frac{18}{24}=\frac{6}{12}, \frac{8}{12}, \frac{9}{12}$, by abbreviation.

When the denominators of two given fractions have a common measure, let them be divided by it; then multiply the terms of each given fraction by the quotient arising from the other's denominator.

When the less denominator of two fractions exactly divides the greater, multiply the terms of that which hath the less denominator by the quotient.

When more than two fractions are proposed, it is sometimes convenient first to reduce two of them to a common denominator, then these and a third; and so on, till they be all reduced to their least common denominator.

To find the value of a fraction in parts of the integer.

Rule.-Multiply the integer by the numerator, and divide the product by the denominator, by Compound Multiplication and Division, if the integer be a compound quantity.

Or, if it be a single integer, multiply the numerator by the parts in the next inferior denomination, and divide the product by the denominator. Then, if any thing remains, multiply it by the parts in the next inferior denomination, and divide by the denominator as before; and so on, as far as necessary; so shall the quotients, placed in order, be the value of the fraction required.

What is the value of $\frac{3}{5}$ of a pound troy?
What is the value of $\frac{5}{16}$ of a cwt.?
What is the value of $\frac{5}{8}$ of an acre?
What is the value of $\frac{3}{10}$ of a day?

7 oz. 4 dwts. 1 qr .7 lb.
2 ro. 20 po.
7 hrs. 12 min .

To reduce a fraction from one denomination to another.

Rule.-Consider how many of the less denomination make one of the greater; then multiply the numerator by that number, if the reduction be to a less name, or the denominator, if to a greater.

Reduce $\frac{2}{7}$ of a cwt. to the fraction of a pound.

$$
\frac{2}{2} \times \frac{4}{1} \times \frac{28}{1}=\frac{3_{1}}{1} .
$$

ADDITION OF FRACTIONS.

To add fractions together that have a common denominator.
Rule.-Add all the numerators together, and place the sum over the common denominator, and that will be the sum of the fractions required.

If the fractions proposed have not a common denominator, they must be reduced to one. Also, compound fractions must be reduced to simple ones, and mixed numbers to improper fractions; also, fractions of different denominations to those of the same denomination.

$$
\begin{aligned}
& \text { To add } \frac{3}{5} \text { and } \frac{4}{5} \text { together. } \quad \text { Here } \frac{2}{5}+\frac{4}{5}=\frac{7}{5}=1 \frac{2}{5} \text {. } \\
& \text { To add } \frac{8}{5} \text { and } \frac{5}{6} \text { together. } \\
& \frac{5}{5}+\frac{5}{6}=\frac{18}{30}+\frac{25}{30}=\frac{43}{80}=1 \frac{13}{30} . \\
& \text { To add } \frac{5}{8} \text { and } 7 \frac{1}{2} \text { and } \frac{1}{3} \text { of } \frac{3}{4} \text { together. } \\
& \frac{5}{8}+7 \frac{1}{2}+\frac{1}{3} \text { of } \frac{3}{4}=\frac{5}{8}+\frac{15}{2}+\frac{1}{4}=\frac{5}{8}+\frac{60}{8}+\frac{2}{8}=\frac{67}{8}=8 \frac{3}{8} .
\end{aligned}
$$

SUBTRACTION OF FRACTIONS.

Rule.-Prepare the fractions the same as for Addition; then subtract the one numerator from the other, and set the remainder over the common denominator, for the difference of the fractions sought.

To find the difference between $\frac{5}{6}$ and $\frac{1}{6}$.

$$
\text { Here } \frac{5}{6}-\frac{1}{6}=\frac{4}{8}=\frac{2}{8} \text {. }
$$

To find the difference between $\frac{3}{4}$ and $\frac{5}{5}$.

$$
\frac{8}{4}-\frac{5}{7}=\frac{21}{28}-\frac{20}{28}=\frac{1}{28} .
$$

multiplication of fractions.

Multiplication of any thing by a fraction implies the taking some part or parts of the thing; it may therefore be truly expressed by a compound fraction; which is resolved by multiplying together the numerators and the denominators.

Rule.-Reduce mixed numbers, if there be any, to equivalent fractions; then multiply all the numerators together for a numerator, and all the denominators together for a denominator, which will give the product required.

Required the product of $\frac{3}{4}$ and $\frac{2}{5}$.

$$
\text { Here } \frac{3}{4} \times \frac{2}{9}=\frac{8}{36}=\frac{1}{6} \text {. }
$$

Or, $\frac{3}{4} \times \frac{2}{9}=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$.
Required the continued product of $\frac{2}{8}, 3 \frac{1}{4}, 5$, and $\frac{3}{4}$ of $\frac{3}{5}$.

$$
\text { Here } \frac{2}{3} \times \frac{13}{4} \times \frac{5}{1} \times \frac{3}{4} \times \frac{3}{5}=\frac{13 \times 3}{4 \times 2}=\frac{39}{8}=4 \frac{7}{8} \text {. }
$$

DIVISION OF FRACTIONS.

Rule.-Prepare the fractions as before in Multiplication; then divide the numerator by the numerator, and the denominator by the denominator, if they will exactly divide; but if not, then invert the terms of the divisor, and multiply the dividend by it, as in Multiplication.

Divide ${ }^{25}$ by $\frac{5}{3}$.
Here ${ }^{\frac{25}{9}} \div \frac{5}{3}=\frac{5}{3}=1 \frac{2}{3}$, by the first method.
Divide $\frac{5}{9}$ by $\frac{2}{15}$.

$$
\text { Here } \frac{5}{9} \div \frac{2}{15}=\frac{5}{9} \times \frac{15}{2}=\frac{5}{8} \times \frac{5}{2}=\frac{25}{6}=4 \frac{1}{6} \text {, by the latter. }
$$

rule of three in fractions.

Rule.-Make the necessary preparations as before directed; then multiply continually together the second and third terms, and the first with its terms inverted as in Division, for the answer. This is only multiplying the second and third terms together, and dividing the product by the first, as in the Rule of Three in whole numbers.

If $\frac{3}{8}$ of a yard of velvet cost $\frac{2}{6}$ of a dollar, what will $\frac{5}{16}$ of a yard cost?

$$
\text { Here } \frac{3}{8}: \frac{2}{5}:: \frac{5}{16}: \frac{8}{3} \times \frac{2}{5} \times \frac{5}{16}=\frac{1}{8} \text { of a dollar. }
$$

DECIMAL FRACTIONS.

A Decimal Fraction is that which has for its denominator a unit (1) with as many ciphers annexed as the numerator has places; and it is usually expressed by setting down the numerator only, with a point before it on the left hand. Thus, $\frac{5}{10}$ is 5 , and $\frac{25}{100}$ is $\cdot 25$, and $\frac{75}{1000}$ is $\cdot 075$, and $\frac{124}{100000}$ is $\cdot 00124$; where ciphers are prefixed to make up as many places as are in the numerator, when there is a deficiency of figures.

A mixed number is made up of a whole number with some decimal fraction, the one being separated from the other by a point. Thus, $3 \cdot 25$ is the same as $3 \frac{25}{100}$, of $\frac{325}{\frac{305}{0} .}$.

Ciphers on the right hand of decimals make no alteration in their value; for $\cdot 5$, or $\cdot 50$, or $\cdot 500$, are decimals having all the same value, being each $=\frac{5}{10}$ or $\frac{1}{2}$. But if they are placed on the left hand, they decrease the value in a tenfold proportion. Thus, $\cdot 5$ is $\frac{5}{10}$ or 5 tenths, but 05 is only $\frac{5}{100}$ or 5 hundreths, and $\cdot 005$ is but $\frac{5}{1000}$ or 5 thousandths.

The first place of decimals, counted from the left hand towards the right, is called the place of primes, or 10ths; the second is the place of seconds, or 100 ths; the third is the place of thirds, or 1000 ths; and so on. For, in decimals, as well as in whole numbers, the values of the places increase towards the left hand, and decrease towards the right, both in the same tenfold proportion; as in the following Scale or Table of Notation:

addition of decimals.

Rule.-Set the numbers under each other according to the value of their places, like as in whole numbers; in which state the decimal separating points will stand all exactly under each other. Then, beginning at the right hand, add up all the columns of number as in integers, and point off as many places for decimals as are in the greatest number of decimal places in any of the lines that are added; or, place the point directly below all the other points.

To add together $29 \cdot 0146$, and $3146 \cdot 5$,	$29 \cdot 0146$
and 2109 , and 62417 , and $14 \cdot 16$.	$3146 \cdot 5$
	2109.

- 62417
$14 \cdot 16$
5299.29877, the sum.

The sum of $376 \cdot 25+86 \cdot 125+637 \cdot 4725+6 \cdot 5+41 \cdot 02+$ $358 \cdot 865=1506.2325$.

The sum of $3 \cdot 5+47 \cdot 25+2.0073+927 \cdot 01+1 \cdot 5=981.2673$.
The sum of $276+54 \cdot 321+112+0.65+12 \cdot 5+\cdot 0463=$ $455 \cdot 5173$.

SUBTRACTION OF DECIMALS.

Rule.-Place the numbers under each other according to the value of their places, as in the last rule. Then, beginning at the right hand, subtract as in whole numbers, and point off the decimals as in Addition.

To find the difference between $\mid 91.73$ 91.73 and 2.138.
$2 \cdot 138$
$\overline{89 \cdot 592}$ the difference.

The difference between $1 \cdot 9185$ and $2 \cdot 73=0.8115$.
The difference between $214 \cdot 81$ and $4 \cdot 90142=209 \cdot 90858$.
The difference between 2714 and $\cdot 916=2713 \cdot 084$.

MULTIPLICATION OF DECIMALS.

Rule.-Place the factors, and multiply them together the same as if they were whole numbers. Then point off in the product just as many places of decimals as there are decimals in both the factors. But if there be not so many figures in the product, then supply the defect by prefixing ciphers.
Multiply ${ }_{\text {by }} \frac{321096}{} \frac{2465}{1605480}$
1926576
1284384
$\frac{642192}{.0791501640}$ the product.

Multiply $79 \cdot 347$ by $23 \cdot 15$, and we have $1836 \cdot 88305$.
Multiply 63478 by $\cdot 8204$, and we have $\cdot 520773512$.
Multiply 385746 by $\cdot 00464$, and we have $\cdot 00178986144$.
contraction I.
To multiply decimals by 1 with any number of ciphers, as 10 , or 100 , or 1000, \&c.
This is done by only removing the decimal point so many places farther to the right hand as there are ciphers in the multiplier; and subjoining ciphers if need be.

The product of $51 \cdot 3$ and 1000 is 51300 .
The product of 2.714 and 100 is $271 \cdot 4$.
The product of $\cdot 916$ and 1000 is 916 .
The product of 21.31 and 10000 is 213100 .

CONTRACTION II.

To contract the operation, so as to retain only as many decimals in the product as may be thought necessary, when the product would naturally contain several more places.
Set the units' place of the multiplier under that figure of the multiplicand whose place is the same as is to be retained for the
last in the product; and dispose of the rest of the figures in the inverted or contrary order to what they are usually placed in. Then, in multiplying, reject all the figures that are more to the right than each multiplying figure; and set down the products, so that their right hand figures may fall in a column straight below each other ; but observing to increase the first figure of every line with what would arise from the figures omitted, in this manner, namely, 1 from 5 to 14, 2 from 15 to 24,3 from 25 to 34 , \&c.; and the sum of all the lines will be the product as required, commonly to the nearest unit in the last figure.

To multiply $27 \cdot 14986$ by $92 \cdot 41035$, so as to retain only four places of decimals in the product.

Contracted way.	Common way.
27-14986	27-14986
$53014 \cdot 29$	$92 \cdot 41035$
24434874	$\overline{13574930}$
542997	8144958
108599	2714986
2715	10859944
81	$542997 / 2$
14	24434874
$\overline{2508 \cdot 9280}$	$\overline{2508 \cdot 9280} \overline{650510}$

DIVISION OF DECIMALS.

Rule.-Divide as in whole numbers; and point off in the quotient as many places for decimals, as the decimal places in the dividend exceed those in the divisor.

When the places of the quotient are not so many as the rule requires, let the defect be supplied by prefixing ciphers.

When there happens to be a remainder after the division; or when the decimal places in the divisor are more than those in the dividend; then ciphers may be annexed to the dividend, and the quotient carried on as far as required.

179) $\cdot 48624097(\cdot 00271643$	$\cdot 2685) 27 \cdot 00000(100 \cdot 55865$
1282	15000
294	15750
1150	23250
769	17700
537	15900
000	24750
Divide $234 \cdot 70525$ by $64 \cdot 25$.	$3 \cdot 653$.
Divide 14 by 7854.	$17 \cdot 825$.
Divide $2175 \cdot 68$ by 100.	$21 \cdot 7568$.
Divide 8727587 by $\cdot 162$.	5.38739.

CONTRACTION I.

When the divisor is an integer, with any number of ciphers annexed; cut off those ciphers, and remove the decimal point in the
dividend as many places farther to the left as there are ciphers cut off, prefixing ciphers if need be; then proceed as before.

Divide 45.5 by 2100 .

$$
\begin{gathered}
21 \cdot 00) \cdot 455(\cdot 0216, \& c . \\
35 \\
140 \\
\underline{14} \\
\text { Contraction if. }
\end{gathered}
$$

Hence, if the divisor be 1 with ciphers, as 10 , or 100 , or 1000 , \&c.; then the quotient will be found by merely moving the decimal point in the dividend so many places farther to the left as the divisor has ciphers; prefixing ciphers if need be.

$$
\begin{aligned}
\text { So, } 217 \cdot 3 \div 100= & 2 \cdot 173, \quad \text { and } 419 \div \quad 10=41 \cdot 9 . \\
\text { And } 5 \cdot 16 \div 100= & \cdot 0516, \quad \text { and } \cdot 21 \div 1000=\cdot 00021 . \\
& \quad \text { Contraction mir. }
\end{aligned}
$$

When there are many figures in the divisor; or only a certain number of decimals are necessary to be retained in the quotient, then take only as many figures of the divisor as will be equal to the number of figures, both integers and decimals, to be in the quotient, and find how many times they may be contained in the first figures of the dividend, as usual.

Let each remainder be a new dividend; and for every such dividend, leave out one figure more on the right hand side of the divisor ; remembering to carry for the increase of the figures cut off, as in the 2 d contraction in Multiplication.

When there are not so many figures in the divisor as are required to be in the quotient, begin the operation with all the figures, and continue it as usual till the number of figures in the divisor be equal to those remaining to be found in the quotient, after which begin the contraction.

Divide $2508 \cdot 92806$ by $92 \cdot 41035$, so as to have only four decimals in the quotient, in which case the quotient will contain six figures.

Contracted. Common way.

$92 \cdot 4103,5) 2508 \cdot 928,06(27 \cdot 1498$	$92 \cdot 4103,5) 2508 \cdot 928,06(27 \cdot 1498$
660721	66072106
13849	13848610
4608	46075750
912	9116100
80	79467850
6	5539570

REDUCTION OF DECIMALS.

To reduce a common fraction to its equivalent decimal.
Rule.-Divide the numerator by the denominator as in Division of Decimals, annexing ciphers to the numerator as far as necessary; so shall the quotient be the decimal required.

Reduce $\frac{7}{24}$ to a decimal.

$$
24=4 \times 6 . \quad \text { Then 4) } 7
$$

$\frac{3}{8}$ reduced to a decimal, is 375 . $\frac{1}{25}$ reduced to a decimal, $\frac{8}{192}$ reduced to a decimal, $\frac{275}{8872}$ reduced to a decimal,
6) $1 \cdot 750000$
-291666, \&c.
Then 4) 7 - is 04 . is $\cdot 015625$. is 071577 , \&c.
CASE II.
To find the value of a decimal in terms of the inferior denominations.
Rule.-Multiply the decimal by the number of parts in the next lower denomination; and cut off as many places for a remainder, to the right hand, as there are places in the given decimal.

Multiply that remainder by the parts in the next lower denomination again, cutting off for another remainder as before.

Proceed in the same manner through all the parts of the integer; then the several denominations, separated on the left hand, will make up the value required.

What is the value of 0125 lb . troy: 一 3 dwts .
What is the value of 4694 lb . troy:-5 oz. $12 \mathrm{dwt} .15 \cdot 744 \mathrm{gr}$.
What is the value of $625 \mathrm{cwt}:-\quad 2 \mathrm{qr} .14 \mathrm{lb}$.
What is the value of $\cdot 009943$ miles :- $17 \mathrm{yd} .1 \mathrm{ft} .5 \cdot 98848 \mathrm{in}$.
What is the value of 6875 yd .:-
2 qr. 3 nls.
What is the value of 3375 ac : :-
1 rd. 14 poles.
What is the value of 2083 hhd . of wine :-
$13 \cdot 1229$ gal.
CASE III.
To reduce integers or decimals to equivalent decimals of higher
Rule.-Divide by the number of parts in the next higher denomination ; continuing the operation to as many higher denominations as may be necessary, the same as in Reduction Ascending of whole numbers.

Reduce 1 dwt . to the decimal of a pound troy.

$$
\begin{array}{l|l}
20 & 1 \mathrm{dwt} . \\
12 & \begin{array}{l}
0.05 \mathrm{oz} . \\
0.004166, \& \mathrm{cc} . \mathrm{lb} .
\end{array}
\end{array}
$$

Reduce 7 dr . to the decimal of a pound avoird.:- $\cdot 02734375 \mathrm{lb}$. Reduce $2 \cdot 15 \mathrm{lb}$. to the decimal of a cwt.:- 019196 cwt .
Reduce 24 yards to the decimal of a mile:- $\cdot 013636$, \&c. miles.
Reduce $\cdot 056$ poles to the decimal of an acre:- .00035 ac .
Reduce 1.2 pints of wine to the decimal of a hhd. :- .00238 hhd .
Reduce 14 minutes to the decimal of a day:- 009722 , \&c. da.
Reduce 21 pints to the decimal of a peck:- $\quad 013125$ pec.
When there are several numbers, to be reduced all to the decimal of the highest.
Set the given numbers directly under each other, for dividends, proceeding orderly from the lowest denomination to the highest.

Opposite to each dividend, on the left hand, set such a number for a divisor as will bring it to the next higher name; drawing a perpendicular line between all the divisors and dividends.

Begin at the uppermost, and perform all the divisions; only observing to set the quotient of each division, as decimal parts, on the.right hand of the dividend next below it; so shall the last quotient be the decimal required.

Reduce 5 oz. 12 dwts. 16 gr. to lbs. :- $46944, \& c .1 b$.

RULE OF THREE IN DECIMALS.

Rule.-Prepare the terms by reducing the vulgar fractions to decimals, any compound numbers either to decimals of the higher denominations, or to integers of the lower, also the first and third terms to the same name: then multiply and divide as in whole numbers.

Any of the convenient examples in the Rule of Three or Rule of Five in Integers, or Common Fractions, may be taken as proper examples to the same rules in Decimals.-The following example, which is the first in Common Fractions, is wrought here to show the method.

If $\frac{3}{8}$ of a yard of velvet cost $\frac{2}{5}$ of a dollar, what will $\frac{5}{16} \mathrm{yd}$. cost?

$$
\frac{5}{16}=\cdot 3125
$$

DUODECIMALS.

Duodecimals, or Cross Multiplication, is a rule made use of by workmen and artificers, in computing the contents of their works.

Dimensions are usually taken in feet, inches, and quarters; any parts smaller than these being neglected as of no consequence. And the same in multiplying them together, or casting up the contents.

Rule.-Set down the two dimensions, to be multiplied together, one under the other, so that feet stand under feet, inches under inches, \&c.

Multiply each term in the multiplicand, beginning at the lowest, by the feet in the multiplier, and set the result of each straight under its corresponding term, observing to carry 1 for every 12 , from the inches to the feet.

In like manner, multiply all the multiplicand by the inches and parts of the multiplier, and set the result of each term one place removed to the right hand of those in the multiplicand ; omitting, however, what is below parts of inches, only carrying to these the proper number of units from the lowest denomination.

$$
\begin{aligned}
& \text { yd. \$ yd. \$ } \\
& \frac{3}{8}=\cdot 375 \quad \cdot 375: \cdot 4:: \cdot 3125: \cdot 333 \text {, \&c. } \\
& \left.\frac{2}{5}=\cdot 4 \quad \cdot 375\right) \cdot \overline{12500}\left(\cdot 333333,33 \frac{1}{3}\right. \text { cts. } \\
& 1250 \\
& 125
\end{aligned}
$$

Or, instead of multiplying by the inches, take such parts of the multiplicand as these are of a foot."

Then add the two lines together, after the manner of Compound Addition, carrying 1 to the feet for 12 inches, when these come to so many.

Multiply 4 f. 7 inc.

by 6	4
27	6
1	$6 \frac{1}{3}$
29	$0 \frac{1}{3}$

Multiply 14 f. 9 inc.

by | 4 | 6 |
| ---: | :--- |
| 59 | 0 |
| 7 | $4 \frac{1}{2}$ |
| 66 | $4 \frac{1}{2}$ |

INVOLUTION.

Involution is the raising of Powers from any given number, as a root.

A Power is a quantity produced by multiplying any given number, called the Root, a certain number of times continually by itself. Thus, $\quad 2=2$ is the root, or first power of 2.
$2 \times 2=4$ is the 2 d power, or square of 2 . $2 \times 2 \times 2=8$ is the 3 d power, or cube of 2 .
$2 \times 2 \times 2 \times 2=16$ is the 4 th power of $2, \&$ c.
And in this manner may be calculated the following Table of the first nine powers of the first nine numbers.
table of the first nine powers of numbers.

1 st	2d.	3d.	4th.	5th.	6 th.	7 th.	8th.	9th.
1	1	1	1	1	1	1	1	1
2	4	8	16	32	64	128	256	512
3	9	27	81	243	729	2187	6561	19683
4	16	64	256	1024	4096	16384	65536	262144
5	25	125	625	3125	15625	78125	390625	1953125
6	36	216	1296	7776	46656	279936	1679616	10077696
7	49	343	2401	16807	117649	823543	5764801	40353607
8	64	512	4096	32768	262144	2097152	16777216	134217728
9	81	729	6561	59049	531441	4782969	43046721	387420489

The Index or Exponent of a Power is the number denoting the height or degree of that power; and it is 1 more than the number of multiplications used in producing the same. So 1 is the index or exponent of the 1 st power or root, 2 of the 2 d power or square, 3 of the 3 d power or cube, 4 of the 4 th power, and so on.
Powers, that are to be raised, are usually denoted by placing the index above the root or first power.

So $2^{2}=4, \quad$ is the 2 d power of 2 .
$2^{3}=8$, is the 3 d power of 2.
$2^{4}=16, \quad$ is the 4 th power of 2.
540^{4}, is the 4 th power of $540=85030560000$.

When two or more powers are multiplied together, their product will be that power whose index is the sum of the exponents of the factors or powers multiplied. Or, the multiplication of the powers answers to the addition of the indices. Thus, in the following powers of 2 .

1st.	2 d.	3 d.	4 th.	5th.	6th.	7 th.	8 th.	9 th.	10th.
2	4	8	16	32	64	128	256	512	1024
or, 2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{3}	2^{9}	2^{10}

Here, $4 \times 4=16$, and $2+2=4$ its index; and $8 \times 16=128$, and $3+4=7$ its index; also $16 \times 64=1024$, and $4+6=10$ its index.
The 2 d power of 45 is 2025.
The square of $4 \cdot 16$ is $17 \cdot 3056$.
The 3 d power of 3.5 is 42.875 .
The 5 th power of $\cdot 029$ is $\cdot 000000020511149$.
The square of $\frac{2}{3}$ is $\frac{4}{9}$.
The 3 d power of $\frac{5}{5}$ is $\frac{125}{72}$.
The 4 th power of $\frac{3}{4}$ is $\frac{81}{256}$.

EVOLUTION.

Evolution, or the reverse of Involution, is the extracting or finding the roots of any given powers.

The root of any number, or power, is such a number as, being multiplied into itself a certain number of times, will produce that power. Thus, 2 is the square root or 2 d root of 4 , because $2^{2}=$ $2 \times 2=4$; and 3 is the cube root or 3 d root of 27 , because $3^{3}=$ $3 \times 3 \times 3=27$.

Any power of a given number or root may be found exactly, namely, by multiplying the number continually into itself. But there are many numbers of which a proposed root can never be exactly found. Yet, by means of decimals we may approximate or approach towards the root to any degree of exactness.

These roots, which only approximate, are called Surd roots ; but those which can be found quite exact, are called Rational roots. Thus, the square root of 3 is a surd root; but the square root of 4 is a rational root, being equal to 2 : also, the cube root of 8 is rational, being equal to 2 ; but the cube root of 9 is surd, or irrational.

Roots are sometimes denoted by writing the character \checkmark before the power, with the index of the root against it. Thus, the third root of 20 is expressed by $3 / 20$; and the square root or $2 d$ root of it is $\sqrt{ } 20$, the index 2 being always omitted when the square root is designed.

When the power is expressed by several numbers, with the sign + or - between them, a line is drawn from the top of the sign over all the parts of it; thus, the third root of $45-12$ is $\sqrt[3]{45-12}$, or thus, $3(45-12)$, enclosing the numbers in parentheses.

But all roots are now often designed like powers, with fractional indices: thus, the square root of 8 is $8^{\frac{1}{2}}$, the cube root of 25 is $25^{\frac{1}{3}}$, and the 4 th root of $45-18$ is $\overline{45-18)^{\frac{1}{4}}}$, or, $(45-18)^{\frac{1}{4}}$.

TO EXTRACT THE SQUARE ROOT.

Rule.-Divide the given number into periods of two figures each, by setting a point over the place of units, another over the place of hundreds, and so on, over every second figure, both to the left hand in integers, and to the right in decimals.

Find the greatest square in the first period on the left hand, and set its root on the right hand of the given number, after the manner of a quotient figure in Division.

Subtract the square thus found from the said period, and to the remainder annex the two figures of the next following period for a dividend.

Double the root above mentioned for a divisor, and find how often it is contained in the said dividend, exclusive of its right-hand figure; and set that quotient figure both in the quotient and divisor.
Multiply the whole augmented divisor by this last quotient figure, and subtract the product from the said dividend, bringing down to the next period of the given number, for a new dividend.

Repeat the same process over again, namely, find another new divisor, by doubling all the figures now found in the root; from which, and the last dividend, find the next figure of the root as before, and so on through all the periods to the last.
The best way of doubling the root to form the new divisor is by adding the last figure always to the last divisor, as appears in the following examples. Also, after the figures belonging to the given number are all exhausted, the operation may be continued into decimals at pleasure, by adding any number of periods of ciphers, two in each period.

To find the square root of 29506624.

When the root is to be extracted to many places of figures, the work may be considerably shortened, thus:
Having proceeded in the extraction after the common method till there be found half the required number of figures in the root, or one figure more; then, for the rest, divide the last remainder by
its corresponding divisor, after the manner of the third contraction in Division of Decimals; thus,

To find the root of 2 to nine places of figures.

$2(1 \cdot 4142$	
24	1
4	100
281	96
1	400
1	281
2824	11900
4	11296
28282	60400
2	56564
28284$)$	$3836(1356$

1008
160
19
$1 \cdot 41421 \overline{356}$ the root required.
The square root of $\cdot 000729$ is $\cdot 027$.
The square root of 3 is $1 \cdot 732050$.
The square root of 5 is $2 \cdot 236068$.
The square root of 6 is $2 \cdot 449489$.
rules for the square roots of common fractions and mixed NUMBERS.
First, prepare all common fractions by reducing them to their least terms, both for this and all other roots. Then,

1. Take the root of the numerator and of the denominator for the respective terms of the root required. And this is the best way if the denominator be a complete power; but if it be not, then,
2. Multiply the numerator and denominator together; take the root of the product: this root being made the numerator to the denominator of the given fraction, or made the denominator to the numerator of it, will form the fractional root required.

$$
\text { That is, } \sqrt{ } \frac{a}{b}=\frac{\sqrt{ } a}{\sqrt{ } b}=\frac{\sqrt{ } a b}{b}=\frac{a}{\sqrt{ } a b} \text {. }
$$

And this rule will serve whether the root be finite or infinite.
3. Or reduce the common fraction to a decimal, and extract its root.
4. Mixed numbers may be either reduced to improper fractions, and extracted by the first or second rule; or the common fraction may be reduced to a decimal, then joined to the integer, and the root of the whole extracted.

The root of $\frac{25}{85}$ is $\frac{5}{6}$.
The root of $\frac{9}{99}$ is $\frac{8}{\frac{3}{5}}$.
The root of $\frac{9}{12}$ is 0.866025 .
The root of $\frac{5}{12}$ is 0.645497 .
The root of $17 \frac{3}{8}$ is $4 \cdot 168333$.

By means of the square root, also, may readily be found the 4th root, or the 8th root, or the 16th root, \&c.; that is, the root of any power whose index is some power of the number 2 ; namely, by extracting so often the square root as is denoted by that power of 2 ; that is, two extractions for the 4th root, three for the 8th root, and so on.

So, to find the 4th root of the number $21035 \cdot 8$, extract the square root twice as follows:

TO EXTRACT THE CUBE ROOT.

1. Divide the page into three columns (I), (II), (III), in order, from left to right, so that the breadth of the columns may increase in the same order. In column (III) write the given number, and divide it into periods of three figures each, by putting a point over the place of units, and also over every third figure, from thence to the left in whole numbers, and to the right in decimals.
2. Find the nearest less cube number to the first or left-hand period; set its root in column (III), separating it from the right of the given number by a curve line, and also in column (I); then multiply the number in (I) by the root figure, thus giving the square of the first root figure, and write the result in (II); multiply the number in (II) by the root figure, thus giving the cube of the first root figure, and write the result below the first or left-hand period in (III); subtract it therefrom, and annex the next period to the remainder for a dividend.
3. In (I) write the root figure below the former, and multiply the sum of these by the root figure; place the product in (II), and add the two numbers together for a trial divisor. Again, write the root figure in (I), and add it to the former sum.
4. With the number in (II) as a trial divisor of the dividend, omitting the two figures to the right of it, find the next figure of the root, and annex it to the former, and also to the number in (I). Multiply the number now in (I) by the new figure of the root, and write the product as it arises in (II), but extended two places of figures more to the right, and the sum of these two numbers will be the corrected divisor ; then multiply the corrected divisor by the
last root figure, placing the product as it arises below the dividend; subtract it therefrom, annex another period, and proceed precisely as described in (3), for correcting the columns (I) and (II). Then with the new trial divisor in (II), and the new dividend in (III), proceed as before.

When the trial divisor is not contained in the dividend, after two figures are omitted on the right, the next root figure is 0 , and therefore one cipher must be annexed to the number in (I); two ciphers to the number in (II); and another period to the dividend in (III).

When the root is interminable, we may contract the work very considerably, after obtaining a few figures in the decimal part of the root, if we omit to annex another period to the remainder in (III) ; cut off one figure from the right of (II), and two figures from (I), which will evidently have the effect of cutting off three figures from each column; and then work with the numbers on the left, as in contracted multiplication and division of decimals.

Find the cube root of $21035 \cdot 8$ to ten places of decimals.

$2^{(\mathrm{I})}$
2
$\frac{2}{4}$
$\frac{2}{67}$
$\frac{7}{74}$
$\frac{7}{816}$
$\frac{6}{822}$
$\frac{6}{82804}$
828
808
$8\|28\| 12$

(II)	. . (III)
($21035 \cdot 8(27 \cdot 60491055944$
8	8
12.	$\overline{13035}$
469	11683
1669	1352800
518	1341576
2187 .	11224.
4896	9142444864
$\overline{223596}$	2081555136
4932	2057415281
228528.	24139855
331216	22860923
2285611216	1278932
331232	1143046
228594244\|8	135886
74531	114305
$\overline{2286016979}$	21581
745311	20575
228609151	1006
83	914
228609234	92
83	91
$\overline{2\|2\| 8\|6\| 0 \mid 9] 3 \mid 2 ~}$	1

Required the cube roots of the following numbers :-

48228544, 46656, and 15069223.
$64481 \cdot 201$, and 28991029248.
12821119155125 , and $\cdot 000076765625$. $\frac{18824}{4825}$, and 16. $91 \frac{1}{8}$, and $7 \frac{9}{7}$.

364, 36, and 247. $40 \cdot 1$, and 3072 . 23405 , and $\cdot 0425$.
$\frac{24}{25}$, and $2 \cdot 519842$.
$4 \cdot 5$, and $1 \cdot 98802366$.

TO EXTRACT ANY ROOT WHATEVER.

Let N be the given power or number, n the index of the power, A the assumed power, r its root, R the required root of N.

Then, as the sum of $n+1$ times A and $n-1$ times N , is to the sum of $n+1$ times N and $n-1$ times A , so is the assumed root r, to the required root R .

Or, as half the said sum of $n+1$ times A and $n-1$ times N , is to the difference between the given and assumed powers, so is the assumed root r, to the difference between the true and assumed roots; which difference, added or subtracted, as the case requires, gives the true root nearly. That is, $(n+1) \cdot \mathrm{A}+(n-1) \cdot \mathrm{N}:(n+1) \cdot \mathrm{N}+(n-1) \cdot \mathrm{A}:: r: \mathrm{R}$.

Or, $(n+1) \cdot \frac{1}{2} \mathrm{~A}+(n-1) \cdot \frac{1}{2} \mathrm{~N}: \mathrm{A} \varpi_{2} \mathrm{~N}:: r: \mathrm{R} \tau_{2} r$.
And the operation may be repeated as often as we please, by using always the last found root for the assumed root, and its nth power for the assumed power A.

To extract the 5th root of $21035 \cdot 8$.

Here it appears that the 5 th root is between $7 \cdot 3$ and $7 \cdot 4$. Taking $7 \cdot 3$, its 5 th power is $20730 \cdot 71593$. Hence then we have,

$$
\begin{aligned}
& \mathrm{N}=21035 \cdot 8 ; r=7 \cdot 3 ; n=5 ; \frac{1}{2} \cdot(n+1)=3 ; \frac{1}{2} \cdot(n-1)=2 \text {. } \\
& \mathrm{A}=20730 \cdot 716 \\
& \mathrm{~N}-\overline{\mathrm{A}=305.084} \\
& \mathrm{~A}=20730 \cdot 716 \mathrm{~N}=21035 \cdot 8 \\
& 3 \mathrm{~A}=\frac{3}{62192.148} \quad \frac{2}{42071 \cdot 6} \\
& 2 \mathrm{~N}=42071 \cdot 6 \\
& \text { As } \overline{104263 \cdot 7}: 305 \cdot 084:: 7 \cdot 3: \cdot 0213605 \\
& \text { 7•3 }
\end{aligned}
$$

The 6th root of 21035.8
The 6 th root of 2
The 7th root of $21035 \cdot 8$
The 7th root of 2
The 9 th root of 2
is $5 \cdot 254037$.
is $1 \cdot 122462$. is $4 \cdot 145392$. is $1 \cdot 104089$. is $1 \cdot 080059$.

OF RATIOS, PROPORTIONS, AND PROGRESSIONS.

Numbers are compared to each other in two different ways: the one comparison considers the difference of the two numbers, and is named Arithmetical Relation, and the difference sometimes Arithmetical Ratio: the other considers their quotient, and is called

Geometrical Relation, and the quotient the Geometrical Ratio. So, of these two numbers 6 and 3 , the difference or arithmetical ratio is $6-3$ or 3 ; but the geometrical ratio is $\frac{6}{3}$ or 2 .

There must be two numbers to form a comparison: the number which is compared, being placed first, is called the Antecedent; and that to which it is compared the Consequent. So, in the two numbers above, 6 is the antecedent, and 3 is the consequent.

If two or more couplets of numbers have equal ratios, or equal differences, the equality is named Proportion, and the terms of the ratios Proportionals. So, the two couplets, 4,2 and 8,6 are arithmetical proportionals, because $4-2=8-6=2$; and the two couplets 4, 2 and 6, 3 are geometrical proportionals, because $\frac{4}{2}=\frac{6}{3}=2$, the same ratio.

To denote numbers as being geometrically proportional, a colon is set between the terms of each couplet to denote their ratio; and a double colon, or else a mark of equality between the couplets or ratios. So, the four proportionals, $4,2,6,3$, are set thus, $4: 2:: 6: 3$, which means that 4 is to 2 as 6 is to 3 ; or thus, $4: 2=6: 3$; or thus, $\frac{4}{2}=\frac{6}{3}$, both which mean that the ratio of 4 to 2 is equal to the ratio of 6 to 3 .

Proportion is distinguished into Continued and Discontinued. When the difference or ratio of the consequent of one couplet and the antecedent of the next couplet is not the same as the common difference or ratio of the couplets, the proportion is discontinued. So, $4,2,8,6$ are in discontinued arithmetical proportion, because $4-2=8-6=2$, whereas, $2-8=-6$; and $4,2,6,3$ are in discontinued geometrical proportion, because $\frac{4}{2}=\frac{6}{3}=2$, but $\frac{2}{6}=\frac{1}{3}$, which is not the same.

But when the difference or ratio of every two succeeding terms is the same quantity, the proportion is said to be continued, and the numbers themselves a series of continued proportionals, or a progression. So, 2, 4, 6, 8 form an arithmetical progression, because 4-2=6-$4=8-6=2$, all the same common difference; and $2,4,8,16$, a geometrical progression, because $\frac{4}{2}=\frac{8}{4}=\frac{16}{8}=2$, all the same ratio.

When the following terms of a Progression exceed each other, it is called an Ascending Progression or Series; but if the terms decrease, it is a Descending one.

So, $0,1,2,3,4, \& c$. , is an ascending arithmetical progression,
but $9,7,5,3,1$, \&c., is a descending arithmetical progression:
Also, $1,2,4,8,16$, \&c., is an ascending geometrical progression, and $16,8,4,2,1, \& \mathrm{c}$., is a descending geometrical progression.

ARITHMETICAL PROPORTION AND PROGRESSION.

The first and last terms of a Progression are called the Extremes; and the other terms lying between them, the Means.

The most useful part of arithmetical proportions is contained in the following theorems:

Theorem 1.-If four quantities be in arithmetical proportion, the sum of the two extremes will be equal to the sum of the two means.

Thus, of the four $2,4,6,8$, here $2+8=4+6=10$.

Theorem 2.-In any continued arithmetical progression, the sum of the two extremes is equal to the sum of any two means that are equally distant from them, or equal to double the middle term when there is an uneven number of terms.

Thus, in the terms $1,3,5$, it is $1+5=3+3=6$.
And in the series $2,4,6,8,10,12,14$, it is $2+14=4+12=$ $6+10=8+8=16$.

Theorem 3.-The difference between the extreme terms of an arithmetical progression, is equal to the common difference of the series multiplied by one less than the number of the terms.

So, of the ten terms, $2,4,6,8,10,12,14,16,18,20$, the common difference is 2 , and one less than the number of terms 9 ; then the difference of the extremes is $20-2=18$, and $2 \times 9=18$ also.

Consequently, the greatest term is equal to the least term added to the product of the common difference multiplied by 1 less than the number of terms.

Theorem 4.-The sum of all the terms of any arithmetical progression is equal to the sum of the two extremes multiplied by the number of terms, and divided by 2 ; or the sum of the two extremes multiplied by the number of the terms gives double the sum of all the terms in the series.

This is made evident by setting the terms of the series in an inverted order under the same series in a direct order, and adding the corresponding terms together in that order. Thus,
in the series, $1,3,5,7,9,11,13,15$; inverted, $15,13,11,3,7,5,3,1$;
the sums are, $16+16+16+16+16+16+16+16$, which must be double the sum of the single series, and is equal to the sum of the extremes repeated so often as are the number of the terms.

From these theorems may readily be found any one of these five parts; the two extremes, the number of terms, the common difference, and the sum of all the terms, when any three of them are given, as in the following Problems:

PROBLEM I.

Given the extremes and the number of terms, to find the sum of all the terms.
Rule.-Add the extremes together, multiply the sum by the number of terms, and divide by 2.

The extremes being 3 and 19 , and the number of terms 9 ; required the sum of the terms?

19

$$
\begin{aligned}
& \frac{\frac{3}{22}}{9} \text { Or, } \frac{19+3}{2} \times 9=\frac{22}{2} \times 9=11 \times 9=99 . \\
& \text { 2) } \overline{198} \\
& \overline{99}=\text { the sum. }
\end{aligned}
$$

The strokes a clock strikes in one whole revolution of the index, or in 12 hours, is 78 .

PROBLEM II.
Given the extremes, and the number of terms; to find the common difference.
Rule.-Subtract the less extreme from the greater, and divide the remainder by 1 -less than the number of terms, for the common difference.

The extremes being 3 and 19, and the number of terms 9 ; required the common difference?

$$
19
$$

$$
\text { 8) } \frac{3}{\frac{16}{2}} \quad \text { Or, } \frac{19-3}{9-1}=\frac{16}{8}=2 \text {. }
$$

If the extremes be 10 and 70 , and the number of terms 21 ; what is the common difference, and the sum of the series?

The com. diff. is 3 , and the sum is 840 .

PROBLEM III.

Given one of the extremes, the common difference, and the number of terms; to find the other extreme, and the sum of the series.
Rule.-Multiply the common difference by 1 less than the number of terms, and the product will be the difference of the extremes: therefore add the product to the less extreme, to give the greater; or subtract it from the greater, to give the less.

Given the least term 3, the common difference 2 , of an arithmetical series of 9 terms; to find the greatest term, and the sum of the series?

$$
\begin{aligned}
& 2 \\
& 8 \\
& 16 \\
& 3 \\
& 19 \text { the greatest term. } \\
& 3 \text { the least. } \\
& \overline{22} \text { sum. } \\
& 9 \text { number of terms. } \\
& \text { 2) } 198 \\
& 99 \text { the sum of the series. }
\end{aligned}
$$

If the greatest term be 70 , the common difference 3 , and the number of terms 21 ; what is the least term and the sum of the series? \quad The least term is 10, and the sum is 840 .

PROBLEM IV.

To find an arithmetical mean proportional between two given terms.
Rule.-Add the two given extremes or terms together, and take half their sum for the arithmetical mean required. Or, subtract
the less extreme from the greater, and half the remainder will be the common difference; which, being added to the less extreme, or subtracted from the greater, will give the mean required.

To find an arithmetical mean between the two numbers 4 and 14.

Here, 14	Or, 14	Or, 14
$2) \frac{4}{18}$	$2) \frac{4}{10}$	$\frac{5}{9}$
-	$\frac{4}{9}$	the com. dif.
		$\frac{4}{9}$

So that 9 is the mean required by both methods.

PROBLEM V.

To find two arithmetical means between two given extremes.
Rule.-Subtract the less extreme from the greater, and divide the difference by 3 , so will the quotient be the common difference; which, being continually added to the less extreme, or taken from the greater, gives the means.

To find two arithmetical means between 2 and 8.
Here 8
$\frac{2}{3} \quad$ Then $2+2=4$ the one mean,
com. dif. $\underline{2}$

PROBLEM VI.
To find any number of arithmetical means between two given terms or extremes.
Rule.-Subtract the less extreme from the greater, and divide the difference by 1 more than the number of means required to be found, which will give the common difference; then this being added continually to the least term, or subtracted from the greatest, will give the mean terms required.

To find five arithmetical means between 2 and 14.
Here 14
$6) \frac{2}{12}$ Then, by adding this com. dif. continually,
the means are found, $4,6,8,10,12$.

geometrical proportion and progression.

The most useful part of Geometrical Proportion is contained in the following theorems:

Theorem 1.-If four quantities be in geometrical proportion, the product of the two extremes will be equal to the product of the two means.

Thus, in the four $2,4,3,6$ it is $2 \times 6=3 \times 4=12$.
And hence, if the product of the two means be divided by one of the extremes, the quotient will give the other extreme. So, of
the above numbers, the product of the means $12 \div 2=6$ the one extreme, and $12 \div 6=2$ the other extreme; and this is the foundation and reason of the practice in the Rule of Three.

Theorem 2.-In any continued geometrical progression, the product of the two extremes is equal to the product of any two means that are equally distant from them, or equal to the square of the middle term when there is an uneven number of terms.

Thus, in the terms $2,4,8$, it is $2 \times 8=4 \times 4=16$.
And in the series $2,4,8,16,32,64,128$,
it is $2 \times 128=4 \times 64=8 \times 32=16 \times 16=256$.
Theorem 3.-The quotient of the extreme terms of a geometrical progression is equal to the common ratio of the series raised to the power denoted by one less than the number of the terms.

So, of the ten terms $2,4,8,16,32,64,128,256,512,1024$, the common ratio is 2 , one less than the number of terms 9 ; then the quotient of the extremes is $\frac{1024}{2}=512$, and $2^{9}=512$ also.

Consequently, the greatest term is equal to the least term multiplied by the said power of the ratio whose index is one less than the number of terms.

Theorem 4.-The sum of all the terms of any geometrical progression is found by adding the greatest term to the difference of the extremes divided by one less than the ratio.

So, the sum $2,4,8,16,32,64,128,256,512,1024$, (whose ratio is 2,) is $1024+\frac{1024-2}{2-1}=1024+1022=2046$.

The foregoing, and several other properties of geometrical proportion, are demonstrated more at large in Byrne's Doctrine of Proportion. A few examples may here be added to the theorems just delivered, with some problems concerning mean proportionals.

The least of ten terms in geometrical progression being 1, and the ratio 2 , what is the greatest term, and the sum of all the terms?

The greatest term is 512 , and the sum 1023.

PROBLEM I.

To find one geometrical mean proportional between any two numbers.
Rule.-Multiply the two numbers together, and extract the square root of the product, which will give the mean proportional sought.

Or, divide the greater term by the less, and extract the square root of the quotient, which will give the common ratio of the three terms: then multiply the less term by the ratio, or divide the greater term by it, either of these will give the middle term required.

To find a geometrical mean between the two numbers 3 and 12.

First way.
$\overline{36}$ (6 the mean. \quad Then, $3 \times 2=6$ the mean.
36

Second way.
$3) 12$ (4 , its root, is 2 , the ratio.

Or, $12 \div 2=6$ also.

PROBLEM II

 To find two geometrical mean proportionals between any two numbers.Rule.-Divide the greater number by the less, and extract the cube root of the quotient, which will give the common ratio of the terms. Then multiply the least given term by the ratio for the first mean, and this mean again by the ratio for the second mean; or, divide the greater of the two given terms by the ratio for the greater mean, and divide this again by the ratio for the less mean.

To find two geometrical mean proportionals between 3 and 24 .
Here, 3) 24 (8 , its cube root, 2 is the ratio.
Then, $3 \times 2=6$, and $6 \times 2=12$, the two means.
Or, $\quad 24 \div 2=12$, and $12 \div 2=6$, the same.
That is, the two means between 3 and 24 , are 6 and 12.

PROBLEM III.

To find any number of geometrical mean proportionals between two numbers.
Rule.-Divide the greater number by the less, and extract such root of the quotient whose index is one more than the number of means required, that is, the 2 d root for 1 mean, the 3 d root for 2 means, the 4th root for 3 means, and so on; and that root will be the common ratio of all the terms. Then with the ratio multiply continually from the first term, or divide continually from the last or greatest term.

To find four geometrical mean proportionals between 3 and 96 . Here, 3) 96 (32 , the 5 th root of which is 2 , the ratio. Then, $3 \times 2=6$, and $6 \times 2=12$, and $12 \times 2=24$, and $24 \times 2=48$. Or, $\quad 96 \div 2=48$, and $48 \div 2=24$, and $24 \div 2=12$, and $12 \div 2=6$. That is, $6,12,24,48$ are the four means between 3 and 96.

OF MUSICAL PROPORTION.
There is also a third kind of proportion, called Musical, which, being but of little or no common use, a very short account of it may here suffice.

Musical proportion is when, of three numbers, the first has the same proportion to the third, as the difference between the first and second has to the difference between the second and third.

> As in these three, $6,8,12$; where, $6: 12:: 8-6: 12-8$, that is, $6: 12:: 2: 4$.

When four numbers are in Musical Proportion; then the first has the same proportion to the fourth, as the difference between the first and second has to the difference between the third and fourth.

$$
\begin{aligned}
& \text { As in these, } 6,8,12,18 ; \\
& \text { where, } 6: 18:: 8-6: 18-12 \text {, } \\
& \text { that is, } 6: 18:: 2: 6 .
\end{aligned}
$$

When numbers are in Musical Progression, their reciprocals are in Arithmetical Progression; and the converse, that is, when numbers are in Arithmetical Progression, their reciprocals are in Musical Progression.

So, in these Musicals 6, 8, 12, their reciprocals $\frac{1}{6}, \frac{1}{8}, \frac{1}{12}$, are in arithmetical progression; for $\frac{1}{8}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}$; and $\frac{1}{8}+\frac{1}{8}=\frac{2}{8}=\frac{1}{4}$; that is, the sum of the extremes is equal to double the mean, which is the property of arithmeticals.

FELLOWSHIP, OR PARTNERSHIP.

Fellowship is a rule by which any sum or quantity may be divided into any number of parts, which shall be in any given proportion to one another.

By this rule are adjusted the gains, or losses, or charges of partners in company; or the effects of bankrupts, or legacies in case of a deficiency of assets or effects; or the shares of prizes, or the numbers of men to form certain detachments; or the division of waste lands among a number of proprietors.

Fellowship is either Single or Double. It is Single, when the shares or portions are to be proportional each to one single given number only; as when the stocks of partners are all employed for the same time: and Double, when each portion is to be proportional to two or more numbers; as when the stocks of partners are employed for different times.

SINGLE FELLOWSHIP.

General Rule.-Add together the numbers that denote the proportion of the shares. Then,

As the sum of the said proportional numbers
Is to the whole sum to be parted or divided,
So is each several proportional number
To the corresponding share or part.
Or, As the whole stock is to the whole gain or loss,
So is each man's particular stock to his particular share of the gain or loss.
To prove the work.-Add all the shares or parts together, and the sum will be equal to the whole number to be shared, when the work is right.

To divide the number 240 into three such parts, as shall be in proportion to each other as the three numbers, 1,2 , and 3 .

Here $1+2+3=6$ the sum of the proportional numbers. Then, as $6: 240:: 1: 40$ the 1st part, and, as $6: 240:: 2: 80$ the $2 d$ part, also as $6: 240:: 3: 120$ the 3 d part.

Sum of all $\overline{240}$, the proof.
Three persons, A, B, C, freighted a ship with 340 tuns of wine; of which, A loaded 110 tuns, B 97, and C the rest: in a storm, the
seamen were obliged to throw overboard 85 tuns; how much must each person sustain of the loss?

$$
\begin{gathered}
\text { Here, } 110+97=207 \text { tuns, loaded by } \mathrm{A} \text { and } \mathrm{B} ; \\
\text { theref., } 340-207=133 \text { tuns, loaded by C. } \\
\text { hence, as } 340: 85:: 110 \\
\text { or, as } 4: 1:: 110: 27 \frac{1}{2} \text { tuns }=\mathrm{A} \text { 's loss; } \\
\text { and, as } 4: 1:: 97: 24 \frac{1}{4} \text { tuns }=\mathrm{B} \text { 's loss; } \\
\text { also, as } 4: 1:: 133: 33 \frac{1}{4} \text { tuns }=\mathrm{C} \text { 's loss. } \\
\text { Sum } \overline{85} \text { tuns, the proof. } \\
\text { DOUBLE FELLOWSHIP. }
\end{gathered}
$$

Double Fellowship, as has been said, is concerned in cases in which the stocks of partners are employed or continued for different times.

Rune.-Multiply each person's stock by the time of its continuance; then divide the quantity, as in Single Fellowship, into shares in proportion to these products, by saying:

> As the total sum of all the said products
> Is to the whole gain or loss, or quantity to be parted,
> So is each particular product
> To the corresponding share of the gain or loss.

SIMPLE INTEREST.

Interest is the premium or sum allowed for the loan, or forbearance of money.

The money lent, or forborne, is called the Principal.
The sum of the principal and its interest, added together, is called the Amount.

Interest is allowed at so much per cent. per annum, which premium per cent. per annum, or interest of a $\$ 100$ for a year, is called the Rate of Interest. So,

When interest is at 3 per cent. the rate is 3 ;
........................ 4 per cent. 4 ;
5 per cent. 5;
6 per cent. 6.
Interest is of two sorts: Simple and Compound.
Simple Interest is that which is allowed for the principal lent or forborne only, for the whole time of forbearance.

As the interest of any sum, for any time, is directly proportional to the principal sum, and also to the time of continuance; hence arises the following general rule of calculation.

General Rule.-As $\$ 100$ is to the rate of interest, so is any given principal to its interest for one year. And again,

As one year is to any given time, so is the interest for a year just found to the interest of the given sum for that time.

Otherwise.-Take the interest of one dollar for a year, which, multiply by the given principal, and this product again by the time
of loan or forbearance, in years and parts, for the interest of the proposed sum for that time.

When there are certain parts or years in the time, as quarters, or months, or days, they may be worked for either by taking the aliquot, or like parts of the interest of a year, or by the Rule of Three, in the usual way. Also, to divide by 100, is done by only pointing off two figures for decimals.

COMPOUND INTEREST.

Compound Interest, called also Interest upon Interest, is that which arises from the principal and interest, taken together, as it becomes due at the end of each stated time of payment.

Rules.-1. Find the amount of the given principal, for the time of the first payment, by Simple Interest. Then consider this amount as a new principal for the second payment, whose amount calculate as before; and so on, through all the payments to the last, always accounting the last amount as a new principal for the next payment. The reason of which is evident from the definition of Compound Interest. Or else,
2. Find the amount of one dollar for the time of the first payment, and raise or involve it to the power whose index is denoted by the number of payments. Then that power multiplied by the given principal will produce the whole amount. From which the said principal being subtracted, leaves the Compound Interest of the same; as is evident from the first rule.

POSITION.

Position is a method of performing certain questions which cannot be resolved by the common direct rules. It is sometimes called False Position, or False Supposition, because it makes a supposition of false numbers to work with, the same as if they were the true ones, and by their means discovers the true numbers sought. It is sometimes also called Trial and Error, because it proceeds by trials of false numbers, and thence finds out the true ones by a comparison of the errors.

Position is either Single or Double.

SINGLE POSITION.

Single Position is that by which a question is resolved by means of one supposition only.

Questions which have their results proportional to their suppositions belong to Single Position; such as those which require the multiplication or division of the number sought by any proposed number; or, when it is to be increased or diminished by itself, or any parts of itself, a certain proposed number of times.

Rule.-Take or assume any number for that required, and perform the same operations with it as are described or performed in the question.

Then say, as the result of the said operation is to the position
or number assumed, so is the result in the question to the number sought.

A person, after spending $\frac{1}{3}$ and $\frac{1}{4}$ of his money, has yet remaining $\$ 60$, what had he at first?

Suppose he had at first $\$ 120$
$\begin{array}{cc}\text { Now } \frac{1}{3} \text { of } 120 \text { is } & 40 \\ \frac{1}{4} \text { of it is } & 30\end{array}$
their sum is $\quad \overline{70}$
which taken from 120
leaves $\quad \overline{50} \quad$ leaves $\quad \overline{60}$ as per question. Then, $50: 120:: 60: 144$.
What number is that, which multiplied by 7 , and the product divided by 6 , the quotient may be 14 ?

PERMUTATIONS AND COMBINATIONS.

The Permutations of any number of quantities signify the changes which these quantities may undergo with respect to their order.
Thus, if we take the quantities a, b, c; then, $a b c, a c b, b a c$, $b c a, c a b, c b a$, are the permutations of these three quantities taken all together; $a b, a c, b a, b c, c a, c b$, are the permutations of these quantities taken two and two; a, b, c, are the permutation of these quantities taken singly, or one and one, \&c.

The number of the permutations of the eight letters, a, b, c, d, e, f, g, h, is 40320 ; becomes,

$$
\text { 1.2.3.4.5.6.7.8 } 8=40320
$$

double position.
Double Position is the method of resolving certain questions by means of two suppositions of false numbers.

To the Double Rule of Position belong such questions as have their results not proportional to their positions: such are those, in which the numbers sought, or their parts, or their multiples, are increased or diminished by some given absolute number, which is no known part of the number sought.

Take or assume any two convenient numbers, and proceed with each of them separately, according to the conditions of the question, as in Single Position; and find how much each result is different from the result mentioned in the question, noting also whether the results are too great or too little.

Then multiply each of the said errors by the contrary supposition, namely, the first position by the second error, and the second position by the first error.

If the errors are alike, divide the difference of the products by the difference of the errors, and the quotient will be the answer.

But if the errors are unlike, divide the sum of the products by the sum of the errors, for the answer.

The errors are said to be alike, when they are either both too great, or both too little; and unlike, when one is too great and the other too little.

What number is that, which, being multiplied by 6 , the product increased by 18, and the sum divided by 9 , the quotient shall be 20 .

Suppose the two numbers, 18 and 30. Then

First position.	Second position.	Proof.
18	30	27
$\frac{6}{108}$ mult.	$\frac{6}{180}$	$\underline{6}$
$\overline{108}$		
$\frac{18}{18}$ add.	$\frac{18}{198}$	$\underline{18}$
$\frac{126}{14}$	results.	$\underline{198}$
22	$\underline{180}$	
20		

20 true res.
+6 errors unlike.
2 d pos. 30 mult.
Errors $\left\{\begin{array}{rr}2 & \overline{180} \\ 6 & 36\end{array}\right.$
Sum $\overline{8)} \underline{216}$ sum of products. 27 answer sought.

Proof.27
$\overline{162}$
18
9) $\overline{\frac{180}{20}}$

Find, by trial, two numbers, as near the true number as possible, and operate with them as in the question; marking the errors which arise from each of them.

Multiply the difference of the two numbers, found by trial, by the least error, and divide the product by the difference of the errors, when they are alike, but by their sum when they are unlike.

Add the quotient, last found, to the number belonging to the least error, when that number is too little, but subtract it when too great, and the result will give the true quantity sought.

MENSURATION OF SUPERFICIES.

The area of any figure is the measure of its surface, or the space contained within the bounds of that surface, without any regard to thickness.

A square whose side is one inch, one foot, or one yard, \&c. is called the measuring unit, and the area or content of any figure is computed by the number of those squares contained in that figure.

To find the area of a parallelogram; whether it be a square, a rectangle, a rhombus, or a rhomboides.-Multiply the length by the perpendicular height, and the product will be the area.

The perpendicular height of the parallelogram is equal to the area divided by the base.

Required the area of the square ABCD whose side is 5 feet 9 inches.

Here 5 ft. 9 in. $=5.75:$ and $\overline{\left.5.75\right|^{2}}=5.75 \times$ $5 \cdot 75=33 \cdot 0625$ feet $=33$ fe. 0 in .9 pa. $=$ area required.

Required the area of the rectangle ABCD , whose length AB is 13.75 chains, and breadth BC 9.5 chains.

Here $13.75 \times 9.5=130.625$; and $\frac{130 \cdot 625}{10}=13.0625 \mathrm{ac} .=13 \mathrm{ac} .0 \mathrm{ro} .10$
 po. $=$ area required.
Required the area of the rhombus ABCD , whose length AB is 12 feet 6 inches, and its height DE 9 feet 3 inches.

Here $12 \mathrm{fe} .6 \mathrm{in} .=12 \cdot 5$, and 9 fe .3 in . $=9 \cdot 25$.

Whence, $12.5 \times 9.25=115 \cdot 625$ fe. $=$ 115 fe. 7 in. 6 pa. $=$ area required.

What is the area of the rhomboides $A B C D$, whose length $A B$ is 10.52 chains, and height DE $7 \cdot 63$ chains.

Here $10.52 \times 7.63=80.2676$; and $\frac{80 \cdot 2676}{10}=8.02676$ acres $=8 a c$. 0 ro. 4 po. area required.

To find the area of a triangle.-Multiply the base by the perpendicular height, and half the product will be the area.

The perpendicular height of the triangle is equal to twice the area divided by the base.

Required the area of the triangle ABC , whose base AB is 10 feet 9 inches, and height DC 7 feet 3 inches.

Here $10 \mathrm{fe} .9 \mathrm{in} .=10 \cdot 75$, and 7 fe .3 in . $=7 \cdot 25$.

Whence, $10.75 \times 7.25=77.9375$, and $\frac{77 \cdot 9375}{2}=38.96875$ feet $=38 \mathrm{fe} .11 \mathrm{in}$.

$7 \frac{1}{2}$ pa. $=$ area required.
To find the area of a triangle whose three sides only are given.From half the sum of the three sides subtract each side severally.

Multiply the half sum and the three remainders continually together, and the square root of the product will be the area required.

Required the area of the triangle ABC , whose three sides $B C, C A$, and $A B$ are 24,36 , and 48 chains respectively.

$$
\text { Here } \frac{24+36+48}{2}=\frac{108}{2}=54=
$$

$\frac{1}{2}$ sum of the sides.
Also, $54-24=30$ first diff: ; $54-36$

$=18$ second diff.; and $54-48=6$ third diff.

Whence, $\sqrt{54 \times 30 \times 18 \times 6}=\sqrt{174960}=418 \cdot 282=$ area required.

Any two sides of a right angled triangle being given to find the third side. When the two legs are given to find the hypothenuse, add the square of one of the legs to the square of the other, and the square root of the sum will be equal to the hypothenuse.

When the hypothenuse and one of the legs are given to find the other leg.-From the square of the hypothenuse take the square of the given leg, and the square root of the remainder will be equal to the other leg.

In the right angled triangle ABC , the base AB is 56 , and the perpendicular BC 33 , what is the hypothenuse?

Here $56^{2}+33^{2}=3136+1089=4225$, and $\sqrt{ } 4225=65=$ hypothenuse AC.

If the hypothenuse $A C$ be 53 , and the base AB 45 , what is the perpendicular BC ?

Here $53^{2}-45^{2}=2809-2025=784$, and $\sqrt{ } 784=28=$ perpendicular BC .

To find the area of a trapezium.-Multiply the diagonal by the sum of the two perpendiculars falling upon it from the opposite angles, and half the product will be the area.

Required the area of the trapezium BAED, whose diagonal BE is 84, the perpendicular AC 21, and DF 28.

Here $\overline{28+21} \times 84=49 \times 84=4116$, and $\frac{4116}{2}=2058$ the area required.

To find the area of a trapezoid, or a quadrangle, two of whose opposite sides are parallel.-Multiply the sum of the parallel sides by the perpendicular distance between them, and half the product will be the area.

Required the area of the trapezoid ABCD , whose sides AB and DC are $321 \cdot 51$ and $214 \cdot 24$, and perpendicular DE $171 \cdot 16$.

Here $321 \cdot 51+214 \cdot 24=535 \cdot 75=$ sum of the parallel sides AB, DC.

Whence, $535 \cdot 75 \times 171 \cdot 16($ the perp. DE$)=$
 $91698 \cdot 9700$, and $\frac{91698 \cdot 9700}{2}=45849 \cdot 485$ the area required.

To find the area of a regular polygon.-Multiply half the perimeter of the figure by the perpendicular falling from its centre upon one of the sides, and the product will be the area.

The perimeter of any figure is the sum of all its sides.

Required the area of the regular pentagon ABCDE , whose side AB , or BC , \&c., is 25 feet, and the perpendicular OP $17 \cdot 2$ feet.

Here $\frac{25 \times 5}{2}=62.5=$ half perimeter, and $62.5 \times 17 \cdot 2=1075$ square feet $=$ arca required.

To find the area of a regular polygon, when the side only is given.-Multiply the square of the side of the polygon by the number standing opposite to its name in the following table, and the product will be the area.

No. of sides.	Names.	Multipliers.	No. of sides.	Names.	Multipliers.
3	Trigon or equil. Δ	$0 \cdot 433013$	8	Octagon	$4 \cdot 828427$
4	Tetragon or square	$1 \cdot 000000$	9	Nonagon	$6 \cdot 181824$
5	Pentagon	$1 \cdot 720477$	10	Decagon	$7 \cdot 694209$
6	Hexagon	$2 \cdot 598076$	11	Undecagon	$9 \cdot 365640$
7	Heptagon	$3 \cdot 633912$	12	Duodecagon	$11 \cdot 196152$

The angle OBP, together with its tangent, for any polygon of not more than 12 sides, is shown in the following table:

No. of sides.	Names.	Angle OBP.	Tangents.
3	Trigon	30°	$\cdot 57735=\frac{1}{3} \sqrt{ } 3$
4	Tetragon	45°	$1 \cdot 00000=1 \times 1$
5	Pentagon	54°	$1.37638=\sqrt{1+\frac{2}{5} \sqrt{ } 5}$
6	Hexagon	60°	$1.73205=\sqrt{ } 3$
7	Heptagon	$64^{\circ} \frac{2}{7}$	$2 \cdot 07652$
8	Octagon	$67^{\circ} \frac{1}{2}$	$2 \cdot 41421=1+\sqrt{2}$
9	Nonagon	70°	$2 \cdot 74747$
10	Decagon	72°	$3.07768=\sqrt{5+2 \sqrt{5}}$
11	Undecagon	$73^{\circ}{ }^{7} 1$	3.40568
12	Duodecagon	75°	$3 \cdot 73205=2+\sqrt{ } 3$

Required the area of a pentagon whose side is 15 .
The number opposite pentagon in the table is 1.720477 .
Hence $1 \cdot 720477 \times 15^{2}=1 \cdot 720477 \times 225=387 \cdot 107325=$ area required.

The diameter of a circle being given to find the circumference, or the circumference being given to find the diameter.-Multiply the diameter by $3 \cdot 1416$, and the product will be the circumference, or

Divide the circumference by $3 \cdot 1416$, and the quotient will be the diameter.

As 7 is to 22 , so is the diameter to the circumference; or as 22 is to 7 , so is the circumference to the diameter.

As 113 is to 355 , so is the diameter to the circumference; or, as 352 is to 115 , so is the circumference to the diameter.

If the diameter of a circle be 17 , what is the circumference?
Here $3 \cdot 1416 \times 17=53 \cdot 4072=$ circumference.
If the circumference of a circle be 354, what is the diameter?

$$
\text { Here } \frac{354 \cdot 000}{3 \cdot 1416}=112 \cdot 681=\text { diameter } .
$$

To find the length of any arc of a circle. -When the chord of the arc and the versed sine of half the arc are given :

To 15 times the square of the chord, add 33 times the square of the versed sine, and reserve the number.

To the square of the chord, add 4 times the square of the versed sine, and the square root of the sum will be twice the chord of half the are.

Multiply twice the chord of half the arc by 10 times the square of the versed sine, divide the product by the reserved number, and add the quotient to twice the chord of half the are: the sum will be the length of the arc very nearly.

When the chord of the arc, and the chord of half the arc are given.-From the square of the chord of half the arc subtract the square of half the chord of the arc, the remainder will be the square of the versed sine: then proceed as above.

When the diameter and the versed sine of half the are are given :
From 60 times the diameter subtract 27 times the versed sine, and reserve the number.

Multiply the diameter by the versed sine, and the square root of the product will be the chord of half the arc.

Multiply twice the chord of half the are by 10 times the versed sine, divide the product by the reserved number, and add the quotient to twice the chord of half the arc ; the sum will be the length of the are very nearly.

When the diameter and chord of the arc are given, the versed sine may be found thus: From the square of the diameter subtract the square of the chord, and extract the square root of the remainder. Subtract this root from the diameter, and half the remainder will give the versed sine of half the arc.

The square of the chord of half the arc being divided by the diameter will give the versed sine, or being divided by the versed sine will give the diameter.

The length of the are may also be found by multiplying together the number of degrees it contains, the radius and the number 01745329.

Or, as 180 is to the number of degrees in the arc, so is $3 \cdot 1416$ times the radius, to the length of the arc.

Or, as 3 is to the number of degrees in the are, so is $\cdot 05236$ times the radius to the length of the arc.

If the chord DE be 48 , and the versed sine CB 18, what is the length of the are?
Here $48^{2} \times 15=34560$ $18^{2} \times 33=10692$

45252 reserved number.

$$
48^{2}=2304=\text { the square of the chord. }
$$

$18^{2} \times 4=1296=4$ times the square of the versed sine.
$\sqrt{3600}=60=$ twice the chord of half the arc.
Now $\frac{60 \times 18^{2} \times 10}{45252}=\frac{194400}{45252}=4 \cdot 2959$, which added to twice the chord of half the arc gives $64 \cdot 2959=$ the length of the arc.

$$
\begin{aligned}
& 50 \times 60=3000 \\
& 18 \times 27=\frac{486}{2514} \text { reserved number. }
\end{aligned}
$$

$$
\mathrm{AC}=\sqrt{50 \times 18}=30=\text { the chord of half the arc. }
$$

$\frac{30 \times 2 \times 18 \times 10}{2514}=\frac{10800}{2514}=4 \cdot 2959$, which added to twice the chord of half the arc gives $64 \cdot 2959=$ the length of the arc.

To find the area of a circle.-Multiply half the circumference by half the diameter, and the product will be the area.

Or take $\frac{1}{4}$ of the product of the whole circumference and diameter.
What is the area of a circle whose diameter is 42 , and circumference $131 \cdot 946$?

$$
\text { 2) } \begin{aligned}
& \frac{131 \cdot 946}{65 \cdot 973}=\frac{1}{2} \text { circumference. } \\
& \frac{21}{}=\frac{1}{2} \text { diameter. } \\
& \frac{65973}{131946} \\
& \frac{1385 \cdot 433}{}=\text { area required. }
\end{aligned}
$$

What is the area of a circle whose diameter is 10 feet 6 inches, and circumference 31 feet 6 inches?

Multiply the square of the diameter by $\cdot 7854$, and the product will be the area; or,

Multiply the square of the circumference by $\cdot 07958$, and the product will be the area.

The following table will also show most of the useful problems relating to the circle and its equal or inscribed square.

Diameter $\times 8862=$ side of an equal square.
Circumf. $\times \cdot 2821=$ side of an equal square.
Diameter $\times \cdot 7071=$ side of the inscribed square.

$$
\begin{aligned}
& \text { fe. in. } \\
& 15 \quad 9=15 \cdot 75=\frac{1}{2} \text { circumference. } \\
& 5 \quad 3=\frac{5 \cdot 25}{7875}=\frac{1}{2} \text { diameter. } \\
& 3150 \\
& 7875 \\
& \overline{82 \cdot 6875} \\
& 12 \\
& \overline{8 \cdot 2500} \\
& 82 \text { feet } 8 \text { inches. }
\end{aligned}
$$

Circumf. $\times 2251=$ side of the inscribed square.
Area $\times 6366=$ side of the inscribed square.
Side of a square $\times 1.4142=$ diam. of its circums. circle.
Side of a square $\times 4 \cdot 443=$ circumf. of its circums. circle.
Side of a square $\times 1 \cdot 128=$ diameter of an equal circle.
Side of a square $\times 3.545=$ circumf. of an equal circle.
What is the area of a circle whose diameter is 5 ?

$$
\begin{aligned}
\frac{7854}{25} & =\text { square of the diameter. } \\
\frac{1570270}{19 \cdot 6350} & =\text { the answer. }
\end{aligned}
$$

To find the area of a sector, or that part of a circle which is bounded by any two radii and their included arc.-Find the length. of the arc, then multiply the radius, or half the diameter, by the length of the arc of the sector, and half the product will be the area.

If the diameter or radius is not given, add the square of half the chord of the are, to the square of the versed sine of half the arc ; this sum being divided by the versed sine, will give the diameter.

The radius AB is 40 , and the chord BC of the whole arc 50 , required the area of the sector.
$\frac{80-\sqrt{80^{2}-50^{2}}}{2}=8 \cdot 7750=$ the versed
sine of half the arc.
$\overline{80 \times 60}-\overline{8 \cdot 7750 \times 27}=4563 \cdot 0750=$ the reserved number.

$2 \times \sqrt{8 \cdot 7750 \times 80}=52 \cdot 9906=$ twice the
chord of half the arc.
$\frac{52.9906 \times 8.7750 \times 10}{4563.0750}=1 \cdot 0190$, which added to twice the chord of half the arc gives $54 \cdot 0096$ the length of the arc.

And $\frac{54 \cdot 0096 \times 40}{2}=1080 \cdot 1920=$ area of the sector required.
As 360 is to the degrees in the are of a sector, so is the area of the whole circle, whose radius is equal to that of the sector, to the area of the sector required.

For a semicircle, a quadrant, \&c. take one half, one quarter, \&c. of the whole area.

The radius of a sector of a circle is 20 , and the degrees in its arc 22 ; what is the area of the sector?

Here the diameter is 40 .
Hence, the area of the circle $=40^{2} \times \cdot 7854=1600 \times \cdot 7854=$ $1256 \cdot 64$.

Now, $360^{\circ}: 22^{\circ}:$: $1256 \cdot 64: 76 \cdot 7947=$ area of the sector.

To find the area of a segment of a circle.-Find the area of the sector, having the same arc with the segment, by the last problem.

Find the area of the triangle formed by the chord of the segment, and the radii of the sector.

Then the sum, or difference, of these areas, according as the segment is greater or less than a semicircle, will be the area required.

The difference between the versed sine and radius, multiplied by half the chord of the arc, will give the area of the triangle.

The radius OB is 10 , and the chord AC 10 ; what is the area of the segment ABC ?

$$
\mathrm{CD}=\frac{\mathrm{AC}^{2}}{\mathrm{CE}}=\frac{100}{20}=5=\text { the versed sine }
$$

of half the arc.
$\overline{20 \times 60}-\overline{5 \times 27}=1065=$ the reserved number.

$$
\frac{\overline{10 \times 2} \times \overline{5 \times 10}}{1065}=\cdot 9390, \text { and this added }
$$

to twice the chord of half the arc gives $20.9390=$ the length of the arc.

$$
\frac{20 \cdot 9390 \times 10}{2}=104 \cdot 6950=\text { area of the sector } \mathrm{OACB} .
$$

$\mathrm{OD}=\mathrm{OC}=\mathrm{CD}=5$ the perpendicular height of the triangle.
$\mathrm{AD}=\sqrt{\mathrm{AO}^{2}-\mathrm{OD}^{2}}=\sqrt{ } 75=8 \cdot 6603=\frac{1}{2}$ the chord of the arc.
$8 \cdot 6603 \times 5=43 \cdot 3015=$ the area of the triangle AOB.
$104 \cdot 6950-43 \cdot 3015=61 \cdot 3935=$ area of the segment required; it being in this case less than a semicircle.

Divide the height, or versed sine, by the diameter, and find the quotient in the table of versed sines.

Multiply the number on the right hand of the versed sine by the square of the diameter, and the product will be the area.

When the quotient arising from the versed sine divided by the diameter, has a remainder or fraction after the third place of decimals; having taken the area answering to the first three figures, subtract it from the next following area, multiply the remainder by the said fraction, and add the product to the first area, then the sum will be the area for the whole quotient.

If the chord of a circular segment be 40 , its versed sine 10 , and the diameter of the circle 50 , what is the area?

$$
\begin{gathered}
5 \cdot 0) \frac{1 \cdot 0}{\cdot 2}=\text { tabular versed sine. } \\
\cdot 111823=\text { tabular segment. } \\
\frac{2500}{}=\text { square of } 50 . \\
\frac{225911500}{279 \cdot 557500}=\text { area required. }
\end{gathered}
$$

To find the area of a circular zone, or the space included between any two parallel chords and their intercepted arcs.-From the greater chord subtract half the difference between the two, multiply the remainder by the said half difference, divide the product by the breadth of the zone, and add the quotient to the breadth. To the square of this number add the square of the less chord, and the square root of the sum will be the diameter of the circle.

Now, having the diameter EG, and the two chords AB and DC , find the areas of the segments ABEA, and DCED, the difference of which will be the area of the zone required.

The difference of the tabular segments multiplied by the square of the circle's diameter will give the area of the zone.

When the larger segment AEB is greater than a semicircle, find the areas of the segments AGB, and DCE, and subtract their sum from the area of the whole circle: the remainder will be the area of the zone.

The greater chord AB is 20 , the less DC 15 , and their distance $\mathrm{D} r 17 \frac{1}{2}$: required the area of the zone ABCD.
$\frac{20-15}{2}=2 \cdot 5=\frac{1}{2}=$ the difference between the chords.
$17.5+\frac{(20-2.5) \times 2.5}{17.5}=17 \cdot 5+2.5=$

$20=\mathrm{DF}$.
And $\sqrt{20^{2}+15^{2}}=\sqrt{ } 625=25=$ the diameter of the circle.
The segment AEB being greater than a semicircle, we find the versed sine of $\mathrm{DCE}=2 \cdot 5$, and that of $\mathrm{AGB}=5$.

Hence $\frac{2 \cdot 5}{25}=\cdot 100=$ tabular versed sine of DEC.
And $\frac{5}{25}=\cdot 200=$ tabular versed sine of AGB.
Now $\cdot 040875 \times 25^{2}=$ area of seg. DEC $=25 \cdot 546875$
And $\cdot 111823 \times 25^{2}=$ area of seg. AGB $=69 \cdot 889375$ sum $95 \cdot 43625$
$\cdot 7854 \times 25^{2}=$ area of the whole circle,$=490 \cdot 87500$
Difference $=$ area of the zone $\mathrm{ABCD}=\overline{395 \cdot 43875}$
To find the area of a circular ring, or the space included between the circumference of two concentric circles.-The difference between the areas of the two circles will be the area of the ring.

Or, multiply the sum of diameters by their difference, and this product again by $\cdot 7854$,
 and it will give the area required.

The diameters AB and CD are 20 and 15: required the area of
the circular ring, or the space included between the circumferences of those circles.

Here $\overline{\mathrm{AB}+\mathrm{CD}} \times \overline{\mathrm{AB}-\mathrm{CD}}=35 \times 5=175$, and $175 \times \cdot 7854=$ $137 \cdot 4450=$ area of the ring required.

To find the areas of lunes, or the spaces between the intersecting arcs of two eccentric circles.-Find the areas of the two segments from which the lune is formed, and their difference will be the area required.

The following property is one of the most curious:
If ABC be a right angled triangle, and semicircles be described on the three sides as diameters, then will the said triangle be equal to the two lunes D and F taken together.

For the semicircles described on AC and $\mathrm{BC}=$ the one described on AB , from each
 take the segments cut of by AC and BC, then will the lunes AFCE and $\mathrm{BDCG}=$ the triangle ACB .

The length of the chord AB is 40 , the height DC 10, and DE 4: required the area of the lune ACBEA.

The diameter of the circle of which ACB is a part $=\frac{20^{2}+10^{2}}{10}=50$.

And the diameter of the circle of which AEB is a part $=\frac{20^{2}+4^{2}}{4}$ $=104$.

Now having the diameter and versed sines, we find,
The area of seg. $\mathrm{ACB}=\cdot 111823 \times 50^{2}=279.5575$
And area of seg. AEB $=\cdot 009955 \times 104^{2}=107 \cdot 6733$
$\left.\begin{array}{l}\text { Their difference is the area of the lune } \\ \text { AEBCA required, }\end{array}\right\}=\overline{171 \cdot 8842}$
To find the area of an irregular polygon, or a figure of any number of sides.-Divide the figure into triangles and trapeziums, and find the area of each separately.

Add these areas together, and the sum will be equal to the area of the whole polygon.

Required the area of the irregular figure ABCDEFGA, the following lines being given:

$$
\begin{aligned}
& \mathrm{GB}=30 \cdot 5 \quad \mathrm{~A} n=11 \cdot 2, \mathrm{C} 0=6 \\
& \mathrm{GD}=29 \quad \mathrm{~F} q=11 \quad \mathrm{C} s=6 \cdot 6 \\
& \mathrm{FD}=24 \cdot 8 \mathrm{E} p=4 \quad \ldots . . \\
& \text { Here } \frac{\mathrm{A} n+\mathrm{C} o}{2} \times \mathrm{GB}=\frac{11 \cdot 2+6}{2} \\
& \times 30 \cdot 5+8 \cdot 6 \times 30 \cdot 5=262 \cdot 3=
\end{aligned}
$$

$$
\text { And } \frac{\mathrm{F} q+\mathrm{C} s}{2} \times \mathrm{GD}=\frac{11+6 \cdot 6}{2} \times 29=8 \cdot 8 \times 29=255 \cdot 2=
$$ area of the trapezium GCDF.

$$
\text { Also, } \frac{\mathrm{FD} \times \mathrm{E} p}{2}=\frac{24 \cdot 8 \times 4}{2}=\frac{99 \cdot 2}{2}=49 \cdot 6=\text { area of the triangle }
$$ FDE.

Whence $262 \cdot 3+255 \cdot 2+49 \cdot 6=567 \cdot 1=$ area of the whole figure required.

Diameter of a sphere $\times 806=$ dimensions of equal cube．
Diameter of a sphere $\times 6667=$ length of equal cylinder．
Lineal inches $\times \cdot 0000158=$ miles．
A French cubic foot $=2093 \cdot 47$ cubic inches．
Imperial gallons $\times \cdot 7977=$ New York gallons．
The average quantity of water that falls in rain and snow at Philadelphia is 36 inches．

At West Point the variation of the magnetic needle，Nov．16th， 1839 ，was $7^{\circ} 58^{\prime} 27^{\prime \prime}$ West，and the dip $73^{\circ} 26^{\prime} 28^{\prime \prime}$ ．

DECIMAL EQUIVALENTS TO FRACTIONAL PARTS OF LINEAL MEASURES．

One inch，the integer or whole number．		
－96875	$\cdot 625 \quad \frac{5}{8}$	$\cdot 28125$
$\cdot 9375 \quad \frac{7}{8}+\frac{1}{16}$	$.59375 \quad \frac{1}{2}+\frac{3}{82}$	． 25
－90625 ${ }^{\frac{7}{8}+\frac{1}{32}}$	$\cdot 5625{ }^{-1}{ }^{\frac{1}{2}}+\frac{1}{16}$	$21875{ }^{\frac{1}{8}}+\frac{3}{82}$
	$\cdot 53125$ 욘 $\frac{1}{2}+\frac{1}{32}$	$\cdot 1875$ 요 $\frac{1}{8}+\frac{1}{10}$
		-15625 －${ }^{\frac{1}{8}} \frac{1}{8}+\frac{1}{82}$
		－ 125 ．09375 랑
		$\begin{gathered} \cdot 09375 \\ \cdot 0625 \\ \hline \text { む } \end{gathered}$
	－375 ${ }^{-1}$	． 03125
$\cdot 6875{ }^{-6} 5$	－34375 $\quad \frac{1}{4}$	
$\cdot 65625 \quad \frac{5}{8}+\frac{1}{82}$	$\cdot 3125 \quad \frac{1}{4}+\frac{1}{16}$	
One foot，or 12 inches，the integer．		
$\cdot 6338$ 욘 10 －	$\cdot 3333{ }^{+} 4$－	－05208 ${ }^{\text {＋}}$
． 75 ్ 9	$\cdot 25$ 玉． 3	－04166 ${ }^{\text {E }}$
－6666	－1666 Јّه＇2	－03125 家昆
－5833 7	－0833－ 1	$\cdot 02083$
－ 5	． 07291 ส $\frac{7}{8}$	$\cdot 01041$ డ
One yard，or 36 inches，the integer．		
$\cdot 972235$ inches．	$\cdot 638923$ inches．	$\cdot 305511$ inches．
－9444 34	－6111 22	－2778 10
－9167 33	－5833 21	－25
－8889－ 32	－5556－ 20	－2222
－8611 ${ }^{-}$	－5278 19	－1944
－8333 ${ }^{\text {n }} 30$	$\cdot 5$ 픚 18＇	－1667 ${ }^{\text {T }}$
－8056، ช̛ㅇ 29	－4722 ©＇ 17	－1389 엉 5
－7778－ 28	－4444 ${ }^{-16}$	－1111
$\cdot 75$ ศ 27	$\cdot 4167{ }^{\text {c }} 15$	$\cdot 0833$ ¢
－7222 26	－3889 14	－0555
－6944 25	－3611 13	－0278
$6667 \quad 24$	．3333 12	

Table containing the Circumferences, Squares, Cubes, and Areas of Circles, from 1 to 100, advancing by a tenth.

Diam	Circum	Square	Cube.	Area	Diam.	Circum.	Square.	Cube.	Area.
1.	$3 \cdot 1416$	1	1	$\cdot 7854$	9	28.2744	81	729	63.6174
$\cdot 1$	$3 \cdot 4557$	$1 \cdot 21$	$1 \cdot 331$	-9503	$\cdot 1$	$28 \cdot 5885$	82.81	$753 \cdot 571$	65.0389
$\cdot 2$	$3 \cdot 7699$	$1 \cdot 44$	1.728	1-1309	$\cdot 2$	$28 \cdot 9027$	84.64	778.688	$66 \cdot 4762$
$\cdot 3$	$4 \cdot 0840$	$1 \cdot 69$	2.197	1-3273	$\cdot 3$	29-2168	86.49	$804 \cdot 357$	67.9292
$\cdot 4$	4.3982	$1 \cdot 96$	2.744	$1 \cdot 5393$	$\cdot 4$	29.5310	$88 \cdot 36$	830.584	69:3979
$\cdot 5$	$4 \cdot 7124$	$2 \cdot 25$	$3 \cdot 375$	$1 \cdot 7671$	$\cdot 5$	$29 \cdot 8452$	$90 \cdot 25$	$857 \cdot 375$	$70 \cdot 8823$
$\cdot 6$	$5 \cdot 0265$	$2 \cdot 56$	$4 \cdot 096$	$2 \cdot 0106$	$\cdot 6$	30-1593	$92 \cdot 16$	884.736	72.3824
$\cdot 7$	53407	$2 \cdot 89$	$4 \cdot 913$	$2 \cdot 2698$	$\cdot 7$	30.4735	94.09	912.673	73.8982
$\cdot 8$	$5 \cdot 6548$	$3 \cdot 24$	$5 \cdot 832$	$2 \cdot 5446$	-8	$30 \cdot 7876$	96.04	$941 \cdot 192$	75.4298
$\cdot 9$	$5 \cdot 9690$	$3 \cdot 61$	6.859	$2 \cdot 8352$	$\cdot 9$	31-1018	$98 \cdot 01$	$970 \cdot 299$	$76 \cdot 9770$
2	$6 \cdot 2832$	4	8	3.1416	10	$31 \cdot 4160$	100	1000	78.5400
$\cdot 1$	6.5973	$4 \cdot 41$	9•261	3•4636	$\cdot 1$	31.7301	102.01	$1030 \cdot 301$	$80 \cdot 1186$
$\cdot 2$	6.9115	$4 \cdot 84$	$10 \cdot 648$	$3 \cdot 8013$	$\cdot 2$	32.0443	$104 \cdot 04$	1061-208	$81 \cdot 7130$
$\cdot 3$	$7 \cdot 2256$	$5 \cdot 29$	$12 \cdot 167$	$4 \cdot 1547$	$\cdot 3$	$32 \cdot 3580$	106.09	1092.727	$83 \cdot 3230$
$\cdot 4$	$7 \cdot 5398$	$5 \cdot 76$	$13 \cdot 824$	$4 \cdot 5239$	$\cdot 4$	$32 \cdot 6726$	$108 \cdot 16$	1124.864	84.9488
$\cdot 5$	$7 \cdot 8540$	$6 \cdot 25$	$15 \cdot 625$	$4 \cdot 9087$	$\cdot 5$	$32 \cdot 9868$	$110 \cdot 25$	$1157 \cdot 625$	86.5903
$\cdot 6$	$8 \cdot 1681$	6.76	$17 \cdot 576$	$5 \cdot 3093$	$\cdot 6$	$33 \cdot 3009$	$112 \cdot 36$	1191.016	$88 \cdot 2475$
7	$8 \cdot 4823$	$7 \cdot 29$	$19 \cdot 683$	$5 \cdot 7255$	$\cdot 7$	336151	$114 \cdot 49$	1225.043	89.9204
-8	$8 \cdot 7964$	$7 \cdot 84$	$21 \cdot 952$	$6 \cdot 1575$	-8	35.9292	116.64	$1259 \cdot 712$	$91 \cdot 6090$
$\cdot 9$	9-1106	$8 \cdot 41$	$24 \cdot 389$	$6 \cdot 6052$	$\cdot 9$	34-2434	118.81	1295.029	$93 \cdot 3133$
3	$9 \cdot 4248$	9	27	$7 \cdot 0686$	11	34.5576	121	1331	$95 \cdot 0334$
$\cdot 1$	$9 \cdot 7389$	$9 \cdot 61$	$29 \cdot 791$	$7 \cdot 5476$	$\cdot 1$	$34 \cdot 8717$	123.21	$1367 \cdot 631$	96.7691
$\cdot 2$	10.0531	$10 \cdot 24$	32:768	$8.0+24$	$\cdot 2$	$35 \cdot 1859$	$125 \cdot 44$	1404.928	98.5205
$\cdot 3$	$10 \cdot 3672$	10.89	$35 \cdot 937$	$8 \cdot 5530$	$\cdot 3$	35.5010	$127 \cdot 69$	1442.897	$100 \cdot 2877$
4	$10 \cdot 6814$	11.56	$39 \cdot 304$	$9 \cdot 0792$	$\cdot 4$	$35 \cdot 8142$	129.96	1481.544	$102 \cdot 0705$
$\cdot 5$	10.9956	$12 \cdot 25$	$42 \cdot 875$	$9 \cdot 6211$	$\cdot 5$	$36 \cdot 1284$	$132 \cdot 25$	1520.875	103.8691
$\cdot 6$	113097	12.96	$46 \cdot 656$	$10 \cdot 1787$	$\cdot 6$	$36 \cdot 44 \cdot 25$	134.56	1560.896	$105 \cdot 6834$
$\cdot 7$	11.6239	13.69	50.653	10.7521	$\cdot 7$	36.7567	136.89	$1601 \cdot 613$	$107 \cdot 5134$
$\cdot 8$	11.9380	14.44	54.872	$11 \cdot 3411$	$\cdot 8$	37.0708	$139 \cdot 24$	$1643 \cdot 032$	$109 \cdot 3590$
$\cdot 9$	$12 \cdot 2522$	$15 \cdot 21$	$59 \cdot 319$	$11 \cdot 9459$	$\cdot 9$	$37 \cdot 3840$	$141 \cdot 61$	$1685 \cdot 159$	111.2204
4	12.5664	16	64	12.5664	12	$37 \cdot 6992$	144	1728	113.0976
$\cdot 1$	$12 \cdot 8805$	16.81	68.921	13.2025	${ }^{12} 1$	38.0133	146.41	1771.561	$114 \cdot 9904$
$\cdot 2$	$13 \cdot 19+7$	$17 \cdot 64$	$74 \cdot 088$	$13 \cdot 8544$	$\cdot 2$	$38 \cdot 3275$	148.84	$1815 \cdot 848$	116.8989
$\cdot 3$	$13 \cdot 5088$	$18 \cdot 49$	79.507	14.5220	$\cdot 3$	$38 \cdot 6416$	$151 \cdot 29$	$1860 \cdot 867$	118.8231
$\cdot 4$	13.8230	$19 \cdot 36$	$85 \cdot 184$	15.2053	$\cdot 4$	38.9558	153.76	1906.624	120.7631
$\cdot 5$	$14 \cdot 1372$	$20 \cdot 25$	$91 \cdot 125$	15.9043	$\cdot 5$	$39 \cdot 2700$	$156 \cdot 25$	$1953 \cdot 125$	122.7187
$\cdot 6$	$14 \cdot 4513$	$21 \cdot 16$	$97 \cdot 336$	16.6190	$\cdot 6$	$39 \cdot 5841$	158.76	$2000 \cdot 376$	$124 \cdot 6901$
$\cdot 7$	14.7655	22.09	103.823	17.3494°	$\cdot 7$	$39 \cdot 8983$	161.29	2048.383	126.6771
-8	15.0796	23.04	110.592	18.0956	$\cdot 8$	$40 \cdot 2124$	$163 \cdot 84$	$2097 \cdot 152$	1286799
$\cdot 9$	15.3938	$24 \cdot 01$	117.649	18.8574	$\cdot 9$	40.5266	$166 \cdot 41$	2146.689	$130 \cdot 6984$
5	15.7080	25	125	19.6350	13	$40 \cdot 8408$	169	2197	$132 \cdot 7326$
$\cdot 1$	16.0221	26.01	132.651	$20 \cdot 4282$	${ }^{-1}$	$41 \cdot 1549$	171.61	2248.091	134.7824
$\cdot 2$	16.3363	$27 \cdot 04$	$140 \cdot 608$	21.2372	$\cdot 2$	41-4691	$174 \cdot 24$	2299.968	1368480
3	16.6504	28.09	148.877	22.0618	$\cdot 3$	$41 \cdot 7832$	$176 \cdot 89$	$2352 \cdot 637$	138.9294
4	16.9646	$29 \cdot 16$	$157 \cdot 464$	22.9022	$\cdot 4$	42.0974	179.56	2406104	$141 \cdot 0264$
$\cdot 5$	$17 \cdot 2788$	$30 \cdot 25$	166.375	23.7583	$\cdot 5$	$42 \cdot 4116$	$182 \cdot 25$	$2460 \cdot 375$	143•1391
$\cdot 6$	17.5929	31.36	$175 \cdot 616$	$24 \cdot 6301$	$\cdot 6$	42.7257	184.96	$2515 \cdot 456$	$145 \cdot 2675$
$\cdot 7$	$17 \cdot 9071$	$32 \cdot 49$	$185 \cdot 193$	25.5176	$\cdot 7$	43.0399	$187 \cdot 69$	$2571 \cdot 353$	$147 \cdot 4117$
$\cdot 8$	$18 \cdot 2212$	$33 \cdot 64$	195-112	26.4208	-8	$43 \cdot 3540$	$190 \cdot 44$	$2628 \cdot 072$	1495715
$\cdot 9$	18.5354	34.81	205.379	27.3397	$\cdot 9$	$43 \cdot 6682$	193.21	$2685 \cdot 619$	$151 \cdot 7+71$
6	18.8496	36	216	28.2744	14	$43 \cdot 9824$	196	2744	$153 \cdot 9884$
$\cdot 1$	$19 \cdot 1637$	$37 \cdot 21$	222.981	$29 \cdot 2247$	$\cdot 1$	44-2965	$198 \cdot 81$	2803.221	$156 \cdot 1453$
$\cdot 2$	$19 \cdot 4779$	$38 \cdot 44$	$238 \cdot 328$	$30 \cdot 1907$	$\cdot 2$	$44 \cdot 6107$	$201 \cdot 64$	$2863 \cdot 288$	$158 \cdot 3680$
$\cdot 3$	19.7920	$39 \cdot 69$	$250 \cdot 047$	$31 \cdot 1725$	$\cdot 3$	44.9248	$204 \cdot 49$	$2924 \cdot 207$	$160 \cdot 6064$
$\cdot 4$	$20 \cdot 1062$	40.96	$262 \cdot 144$	$32 \cdot 1699$	$\cdot 4$	$45 \cdot 2390$	$207 \cdot 36$	$2985 \cdot 984$	$162 \cdot 8605$
$\cdot 5$	20.4204	$42 \cdot 25$	$274 \cdot 625$	33.1831	$\cdot 5$	$45 \cdot 5532$	$210 \cdot 25$	$3048 \cdot 625$	165•1303
-6	20.7345	$43 \cdot 56$	$287 \cdot 496$	$34 \cdot 2120$	$\cdot 6$	$45 \cdot 8673$	$213 \cdot 16$	3112-136	$167 \cdot 4158$
$\cdot 7$	$21 \cdot 0487$	$44 \cdot 89$	300.763	$35 \cdot 2566$	$\cdot 7$	$46 \cdot 1815$	216.09	3176.523	169•7179
-8	21.3628	$46 \cdot 24$	314.432	36.3168	-8	$46 \cdot 4956$	219.04	3241.792	172.0340
$\cdot 9$	21.6770	$47 \cdot 61$	328.509	$37 \cdot 3928$	$\cdot 9$	$46 \cdot 8098$	222.01	$3307 \cdot 949$	$174 \cdot 3666$
7	21.9912	49	$3+3$	38.4846	15	$47 \cdot 1240$	225	3375	176.7150
$\cdot 1$	22:3053	$50 \cdot 41$	357.911	39.5920	${ }^{15} 1$	47-4381	228.01	$3442 \cdot 951$	179.0790
$\cdot 2$	22.6195	51.84	$373 \cdot 248$	$40 \cdot 7151$	- 2	$47 \cdot 7523$	231.04	$3511 \cdot 808$	181.4588
$\cdot 3$	22.9336	$53 \cdot 29$	$389 \cdot 017$	41.8539	$\cdot 3$	$48 \cdot 0664$	234.09	$3581 \cdot 577$	$183 \cdot 8542$
$\cdot 4$	$23 \cdot 2478$	54.76	$405 \cdot 224$	43.0085	$\cdot 4$	$48 \cdot 3806$	237-16	3652-264	$186 \cdot 2654$
$\cdot 5$	23.5620	56.25	421.875	$44 \cdot 1787$	$\cdot 5$	$48 \cdot 6948$	$240 \cdot 25$	3723875	$188 \cdot 6923$
$\cdot 6$	23.8761	57.76	$438 \cdot 976$	$45 \cdot 3647$	$\cdot 6$	$49 \cdot 0089$	$243 \cdot 36$	$3796 \cdot 416$	191-1349
$\cdot 7$	$24 \cdot 1903$	59.29	456.533	46.5663	$\cdot 7$	$49 \cdot 3231$	$246 \cdot 49$	$3869 \cdot 893$	193.5932
-8	$24 \cdot 5044$	$60 \cdot 84$	474.552	$47 \cdot 7837$	- 8	$49 \cdot 6372$	$249 \cdot 64$	$39+4 \cdot 312$	196.0672
$\cdot 9$	$24 \cdot 8186$	62.41	493.039	49.0168	$\cdot 9$	$49 \cdot 9514$	252.81	$4019 \cdot 679$	$198 \cdot 5569$
8	25.1328	64	512	$50 \cdot 2656$	16	$50 \cdot 2656$	256	4096	$201 \cdot 0624$
$\cdot 1$	25.4469	65.61	$531 \cdot 441$	51.5300	$\cdot 1$	50.5797	$259 \cdot 21$	$4173 \cdot 281$	203.5835
$\cdot 2$	25.7611	$67 \cdot 24$	$551 \cdot 368$	52.8102	$\cdot 2$	50.8939	$262 \cdot 44$	$4251 \cdot 528$	$206 \cdot 1209$
$\cdot 3$	26.0752	68.89	571.787	$54 \cdot 1062$	$\cdot 3$	$51 \cdot 2080$	$265 \cdot 69$	$4330 \cdot 747$	$208 \cdot 6723$
$\cdot 4$	26.3894	$70 \cdot 56$	592.704	55.4178	$\cdot 4$	$51 \cdot 5224$	$268 \cdot 96$	$4410 \cdot 944$	$211 \cdot 1411$
$\cdot 5$	26.7036	$72 \cdot 25$	$614 \cdot 125$	56.7451	$\cdot 5$	51.8364	$272 \cdot 25$	$4492 \cdot 125$	213.8251
$\cdot 6$	$27 \cdot 0177$	73.96	636.056	58.0881	$\cdot 6$	$52 \cdot 1505$	$275 \cdot 56$	$4574 \cdot 296$	216.4248
$\stackrel{.7}{.8}$	27.3319	75.69	658.503	$59 \cdot 4469$	$\cdot 7$	$52 \cdot 4647$	278.89	$4657 \cdot 463$	219.0402
-8	$27 \cdot 6460$	77.44	$681 \cdot 472$	$60 \cdot 8213$	$\cdot 8$	52.7788	$282 \cdot 24$	$4741 \cdot 632$	$221 \cdot 6712$
$\cdot 9$	$27 \cdot 9602$	$79 \cdot 21$	704.969	$62 \cdot 2115$	$\cdot 9$	53.0930	$285 \cdot 61$	4826.809	$224 \cdot 3180$

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
17	$53 \cdot 1072$	289	4913	226.9806	25	78.5400	625	15625	$490 \cdot 8750$
$\cdot 1$	53.7213	$292 \cdot 41$	$5000 \cdot 211$	229.6588	$\cdot 1$	$78 \cdot 8541$	630.01	$15818 \cdot 251$	4948098
$\cdot 2$	54.0355	$295 \cdot 84$	$5088 \cdot 448$	$232 \cdot 3527$	$\cdot 2$	$79 \cdot 1683$	635.04	16003.008	498.7604
$\bullet 3$	$54 \cdot 3496$	299-29	5177.717	$235 \cdot 0623$	$\cdot 3$	79.4824	$640 \cdot 09$	$16194 \cdot 277$	$502 \cdot 7266$
$\cdot 4$	$54 \cdot 6038$	$302 \cdot 76$	$5268 \cdot 024$	2377877	$\cdot 4$	79.7966	$645 \cdot 16$	16387.064	506.7086
$\cdot 5$	54.9780	$306 \cdot 25$	$5359 \cdot 375$	240.5287	$\cdot 5$	$80 \cdot 8108$	$650 \cdot 25$	16581-375	510.7063
$\cdot 6$	$55 \cdot 2921$	$309 \cdot 76$	$5451 \cdot 776$	$243 \cdot 2855$	$\cdot 6$	$80 \cdot 4249$	655.36	$16777 \cdot 216$	$514 \cdot 7196$
$\cdot 7$	$55 \cdot 6063$	$313 \cdot 29$	$5545 \cdot 233$	246.0579	$\cdot 7$	$80 \cdot 7391$	$660 \cdot 49$	16974.593	518.7488
-8	55.9204	316.84	$5639 \cdot 752$	248.8461	-8	81.0532	$665 \cdot 64$	$17173 \cdot 512$	522.7936
$\cdot 9$	$56 \cdot 2346$	$320 \cdot 41$	$5735 \cdot 339$	$251 \cdot 6500$	$\cdot 9$	$81 \cdot 3674$	670.81	17373.979	526.8541
18	56.5458	324	5832	$254 \cdot 4696$	26	$81 \cdot 6816$	676	17576	530.9304
$\cdot 1$	56.8629	$327 \cdot 61$	$5929 \cdot 741$	$257 \cdot 3048$	$\cdot 1$	81.9976	$681 \cdot 21$	17779.581	$535 \cdot 0223$
$\cdot 2$	$57 \cdot 1771$	$331 \cdot 24$	$6028 \cdot 568$	$260 \cdot 1558$	$\cdot 2$	82-3099	686.44	$17984 \cdot 728$	539.1299
$\cdot 3$	$57 \cdot 4912$	$334 \cdot 89$	$6128 \cdot 487$	263.0226	$\cdot 3$	$82 \cdot 6240$	691.69	18191-447	543.2533
$\cdot 4$	$57 \cdot 8054$	338.56	$6229 \cdot 504$	265.9050	$\cdot 4$	82.9382	696.96	$18399 \cdot 744$	547.3923
$\cdot 5$	$58 \cdot 1196$	$342 \cdot 25$	$6331 \cdot 625$	$268 \cdot 8031$	$\cdot 5$	$83 \cdot 2524$	$702 \cdot 25$	18609 625	$551 \cdot 5471$
$\cdot 6$	$58 \cdot 4337$	$345 \cdot 96$	6434.856	$271 \cdot 7169$	$\cdot 6$	$83 \cdot 5665$	707.56	18821.096	555.7176
7	58.7479	$349 \cdot 69$	$6539 \cdot 203$	$274 \cdot 6465$	$\cdot 7$	$83 \cdot 8807$	712.89	19034-163	559.9038
-8	59.0620	$353 \cdot 4 \pm$	$6644 \cdot 672$	$277 \cdot 5917$	-8	$84 \cdot 1948$	$718 \cdot 24$	$19248 \cdot 832$	$564 \cdot 1056$
9	$59 \cdot 3762$	$357 \cdot 21$	$6751 \cdot 269$	280.5527	$\cdot 9$	$84 \cdot 5090$	$723 \cdot 61$	19465-109	$568 \cdot 3232$
19	59.6904	361	6859	283.5294	27	84.8232	729	19683	$572 \cdot 5566$
$\cdot 1$	$60 \cdot 0045$	$364 \cdot 81$	6967.871	286.5217	$\cdot 1$	85•1373	$734 \cdot 41$	19902.511	$576 \cdot 8056$
$\cdot 2$	$60 \cdot 3187$	$368 \cdot 64$	7077•888	289.5298	$\cdot 2$	$85 \cdot 4515$	$739 \cdot 84$	$20123 \cdot 648$	581.0703
$\stackrel{3}{ }$	$60 \cdot 6328$	372.49	$7189 \cdot 057$	292.5536	$\cdot 3$	$85 \cdot 7656$	$745 \cdot 29$	20346.417	$585 \cdot 3507$
$\cdot 4$	$60 \cdot 9470$	376.36	$7301 \cdot 384$	295.5931	$\cdot 4$	$86 \cdot 0798$	$750 \cdot 76$	20570.824	$589 \cdot 6469$
- 5	$61 \cdot 2612$	$380 \cdot 25$	7414.875	$298 \cdot 6483$	$\cdot 5$	86.3940	$756 \cdot 25$	20796.875	593.9587
$\cdot 6$	$61 \cdot 5753$	$384 \cdot 16$	$7529 \cdot 536$	301.7192	$\cdot 6$	86.7081	$761 \cdot 76$	21024.576	598.2863
$\cdot 7$	61.8895	388.09	$7645 \cdot 373$	$30 \pm$-8060	$\cdot 7$	$87 \cdot 0223$	$767 \cdot 29$	21253.933	$602 \cdot 6295$
-8	$62 \cdot 2036$	$392 \cdot 04$	7762-392	$307 \cdot 9082$	$\cdot 8$	$87 \cdot 3364$	$772 \cdot 84$	21484.952	606.9885
$\cdot 9$	62.5178	396.01	7880.599	311.0252	$\cdot 9$	$87 \cdot 6506$	$778 \cdot 41$	$21717 \cdot 639$	$611 \cdot 3632$
20	$62 \cdot 8320$	400	8000	$314 \cdot 1600$	28	$87 \cdot 9648$	784	21952	615.7536
$\cdot 1$	$63 \cdot 1461$	404.01	$8120 \cdot 601$	317-3094	$\cdot 1$	88-2789	$789 \cdot 61$	22188.041	$620 \cdot 1596$
$\cdot 2$	$63 \cdot 4603$	408.04	$8242 \cdot 408$	$320 \cdot 4746$	$\cdot 2$	88.5931	$795 \cdot 24$	22425.768	624.5814
$\cdot 3$	$63 \cdot 7744$	$412 \cdot 09$	$8365 \cdot 427$	323.6554	$\cdot 3$	$88 \cdot 9072$	$800 \cdot 89$	$22665 \cdot 187$	629.0190
$\cdot 4$	$6 \pm \cdot 0886$	$416 \cdot 16$	$8489 \cdot 664$	326.8520	$\cdot 4$	89•2214	806.56	22906.304	$633 \cdot 4722$
4	$64 \cdot 4028$	$420 \cdot 25$	$8615 \cdot 125$	$330 \cdot 0643$	$\cdot 5$	89:5356	$812 \cdot 25$	$23149 \cdot 125$	$637 \cdot 9411$
$\cdot 6$	$64 \cdot 7161$	424*36	$8741 \cdot 816$	$333 \cdot 2923$	$\cdot 6$	$89 \cdot 8497$	817.96	23393.656	$642 \cdot 4257$
$\cdot 7$	65.0311	$428 \cdot 49$	$8869 \cdot 743$	336.5360	$\cdot 7$	90.1639	$823 \cdot 69$	$23639 \cdot 903$	616.9261
-8	$65 \cdot 3452$	$432 \cdot 64$	$8998 \cdot 912$	3397954	$\cdot 8$	$90 \cdot 4780$	829.44	$23887 \cdot 872$	$651 \cdot 4421$
$\cdot 9$	65.6594	436.81	$9129 \cdot 329$	343.0705	$\cdot 9$	90.7922	$835 \cdot 21$	$24137 \cdot 569$	655.9739
21	$65 \cdot 9736$	441	9261	346.3614	29	91-1064	841	24389	660.5214
$\cdot 1$	66.2870	$445 \cdot 21$	$9393 \cdot 931$	349.6679	-1	91.4205	846.81	$24642 \cdot 171$	665.0845
$\cdot 2$	66.6012	$449 \cdot 44$	$9528 \cdot 128$	352.9901	$\cdot 2$	91.7347	$852 \cdot 64$	$24897 \cdot 088$	$669 \cdot 6634$
$\cdot 3$	66.7916	$453 \cdot 69$	$9663 \cdot 597$	$356 \cdot 3281$	$\cdot 3$	92-0488	$858 \cdot 49$	$25153 \cdot 757$	674-2580
$\bullet 4$	$67 \cdot 2930$	$457 \cdot 96$	$9800 \cdot 344$	$359 \cdot 6817$	$\cdot 4$	$92 \cdot 3630$	$864 \cdot 36$	25412-184	$678 \cdot 8683$
$\cdot 5$	67.5444	$462 \cdot 25$	$9938 \cdot 375$	3630511	$\cdot 5$	$92 \cdot 6772$	$870 \cdot 25$	$25672 \cdot 375$	$683 \cdot 4943$
$\cdot 6$	$67 \cdot 8585$	$466 \cdot 56$	$10077 \cdot 696$	366.4362	$\cdot 6$	929913	876.16	$25934 \cdot 336$	$688 \cdot 1360$
$\cdot 7$	$68 \cdot 1727$	$470 \cdot 89$	10218:313	369.8370	$\cdot 7$	93-3055	882.09	$26198 \cdot 073$	692.7934
-8	$68 \cdot 4868$	$475 \cdot 24$	$10360 \cdot 232$	373.2534	$\cdot 8$	93.6196	888.04	26463.592	$697 \cdot 4666$
$\cdot 9$	68.8010	$479 \cdot 61$	10503.459	376.6856	$\cdot 9$	93.9338	$894 \cdot 01$	$26730 \cdot 899$	$702 \cdot 1554$
22	$6 \cdot 1152$	48.	10648	$380 \cdot 1336$	30	$9 \pm \cdot 2480$	900	27000	706.8600
$\cdot 1$	69.4293	488.41	10793.861	383.5972	$\cdot 1$	94.5621	906.01	$27270 \cdot 901$	711.5802
$\cdot 2$	69.7435	$492 \cdot 8$	10941.048	387.0765	$\cdot 2$	$94 \cdot 8763$	912.04	27543.608	716.3162
$\cdot 3$	70.0576	$497 \cdot 29$	11089.567	390.5751	$\cdot 3$	$95 \cdot 1904$	$918 \cdot 09$	$27818 \cdot 127$	$721 \cdot 0678$
$\cdot 4$	$70 \cdot 3: 18$	$501 \cdot 76$	11239.424	$39+\cdot 823$	$\cdot 4$	$95 \cdot 50+6$	924•16	$25094 \cdot 464$	725-8352
$\cdot 5$	70.6860	$506 \cdot 25$	$11390 \cdot 625$	$397 \cdot 6087$	$\cdot 5$	95.8188	$930 \cdot 25$	28372.625	$730 \cdot 6183$
$\cdot 6$	71.0001	$510 \cdot 76$	$11543 \cdot 176$	401'1509	$\cdot 6$	96.1329	936.36	$28652 \cdot 616$	735.4171
$\cdot 7$	$71 \cdot 3143$	$515 \cdot 29$	$11697 \cdot 083$	$404 \cdot 7087$	$\cdot 7$	$96 \cdot 4471$	$942 \cdot 49$	$2893+443$	$740 \cdot 2316$
$\cdot 8$	$71 \cdot 6284$	$519 \cdot 84$	11852-352	$408 \cdot 2823$	-8	96.7612	$948 \cdot 64$	$29218 \cdot 112$	745.0618
$\cdot 9$	71.9426	$524 \cdot 41$	$12008 \cdot 989$	$411 \cdot 8716$	$\cdot 9$	$97 \cdot 0754$	954.81	$29503 \cdot 629$	7499077
23	$72 \cdot 2568$	529	12167	$415 \cdot 4766$	31	$97 \cdot 3896$	961	29791	754.7694
$\cdot 1$	$72 \cdot 5709$	533.61	12326.391	$419 \cdot 0972$	$\cdot 1$	$97 \cdot 7037$	$967 \cdot 21$	$30080 \cdot 231$	$759 \cdot 6467$
$\cdot 2$	$72 \cdot 8851$	538.24	12487-168	422.7336	$\cdot 2$	98.0179	$973 \cdot 44$	$30371 \cdot 328$	$764 \cdot 5397$
$\cdot 3$	$73 \cdot 1992$	$542 \cdot 89$	$12649 \cdot 337$	$426 \cdot 3858$	$\cdot 3$	98-3320	$979 \cdot 69$	$30664 \cdot 297$	769.4485
$\cdot 4$	73.5134	547-56	12812.904	$430 \cdot 0536$	$\cdot 4$	98.6452	$985 \cdot 96$	$30959 \cdot 144$	7743729
$\cdot 5$	73.8276	$552 \cdot 25$	12976.875	433.7371	$\cdot 5$	$98 \cdot 9604$	99225	31255.875	$779 \cdot 3131$
-6	$74 \cdot 1417$	556.96	$13144 \cdot 256$	$437 \cdot 4363$	$\cdot 6$	$99 \cdot 2745$	998.56	$31554 \cdot 496$	$784 \cdot 2689$
$\cdot 7$	$74 \cdot 4559$	561.69	13312.053	$4+1 \cdot 1511$	$\cdot 7$	99.5887	$1004 \cdot 89$	31855.013	$789 \cdot 2406$
$\cdot 8$	74.7680	$566 \cdot 44$	13481-272	$444 \cdot 8819$	$\cdot 8$	$99 \cdot 9028$	1011.24	$32157 \cdot 432$	$794 \cdot 2278$
$\cdot 9$	75.0882	571.21	13651.919	448.6283	$\cdot 9$	$100 \cdot 2170$	1017.61	$32461 \cdot 759$	$799 \cdot 2308$
24	75.3984	576	13824	$452 \cdot 3904$	32	$100 \cdot 5312$	1024	32768	$804 \cdot 2496$
$\cdot 1$	75.7125	580.81	$13997 \cdot 541$	$456 \cdot 1681$	$\cdot 1$	$100 \cdot 8453$	$1030 \cdot 41$	$33076 \cdot 161$	$809 \cdot 2840$
$\cdot 2$	$76 \cdot 0 \cdot 267$	585.64	14172.488	$459 \cdot 9616$	$\cdot 2$	101-1595	1036-84	$38386 \cdot 248$	8143341
$\cdot 3$	76.3408	$590 \cdot 49$	$14348 \cdot 907$	463.7708	$\cdot 3$	$101 \cdot 4736$	$1043 \cdot 29$	$33698 \cdot 267$	819.3999
$\cdot 4$	76.6523	$595 \cdot 36$	14526.784	$467 \cdot 5957$	$\cdot 4$	$101 \cdot 7478$	1049.76	$34012 \cdot 224$	824.4815
$\cdot 5$	76.9692	$600 \cdot 25$	14706.125	471-4363	$\cdot 5$	102-1020	1056-25	$34328 \cdot 125$	829.5787
$\cdot 6$	$77 \cdot 2833$	$605 \cdot 16$	14886.936	475.2926	$\cdot 6$	102.4161	1062.76	$34645 \cdot 976$	$834 \cdot 6917$
$\cdot 7$	$77 \cdot 5975$	610.09	15069-223	$479 \cdot 1646$	$\cdot 7$	102.7303	1069.29	$34965 \cdot 783$	839.8203
-8	77.9116	615.04	1 ± 252.992	483.0524	-8	103.044t	$1075 \cdot 84$	$35287 \cdot 552$	$84 \pm .9647$
$\cdot 9$	$78 \cdot 2258$	620.01	15438.249	486.9558	$\cdot 9$	$103 \cdot 3586$	1082-41	$35611 \cdot 289$	$850 \cdot 1248$

Diam	Circ	Squa	Cube.	Area.		Circum.	Square.	Cube	Area
33	$103 \cdot$	1089	35937		41	128.8056	1681	仡	$1320 \cdot 2574$
$\cdot 1$	103.956	1095.61	$3626+691$	800.4920	$\cdot 1$	129-1197	$1689 \cdot 21$	9426.531	1326.7055
$\cdot 2$	104-3011	$1102 \cdot 24$	$36594 \cdot 368$	865.6992	2	129-4323	1697-44	$69934 \cdot 528$	$1333 \cdot 1693$
$\cdot 3$	104-6151	$1108 \cdot 89$	36926.037	$870 \cdot 9222$	$\cdot 3$	129.7480	$1705 \cdot 69$	$70444 \cdot 997$	1339-6489
$\cdot 4$	104.9294	$1115 \cdot 56$	37259•704	876.1608	4	130.0622	$1713 \cdot 96$	$70957 \cdot 944$	1346.1441
$\cdot 5$	$105 \cdot 2436$	1122-25	$37595 \cdot 375$	$881 \cdot 4151$	5	130-3764	$1722 \cdot 25$	$71473 \cdot 375$	1352.6551
$\cdot 6$	105.557	$1128 \cdot 96$	37933.056	$886 \cdot 6851$	$\cdot 6$	$130 \cdot 690$	1730:56	$71991 \cdot 296$	$1359 \cdot 1818$
-	$105 \cdot 8719$	$1135 \cdot 69$	38272.753	891.9709	7	131.00+7	1738.89	72511.713	1365•7242
-8	106.1850	$11+2 \cdot 44$	38614×472	$897 \cdot 2723$		131-3188	$1747 \cdot 24$	$73034 \cdot 632$	1372-2822
9	106.5002	$1149 \cdot 2$	$38958 \cdot 219$	902.5895	9	131.6320	$1755 \cdot 61$	$73560 \cdot 059$	$1378 \cdot 8560$
34	106.8144	1156	$3930 \pm$	$907 \cdot 9224$	42	131-9472	1764	74088	$1385 \cdot 4456$
$\cdot 1$	107-1285	1162.81	$39651 \cdot 821$	913.2709	$\cdot 1$	132.2613	1772.41	$74618 \cdot 461$	1392.0508
$\cdot 2$	$107 \cdot 4272$	$1169 \cdot 61$	40001•688	$918 \cdot 6352$	-2	132.5755	$1780 \cdot 84$	$75151 \cdot 448$	$1398 \cdot 6717$
$\cdot 3$	107.756	$1176 \cdot 49$	40353-607	$924 \cdot 0115$	$\cdot 3$	132.889	1789-29	75686.967	$1405 \cdot 3083$
4	108.0710	1183.36	40707.584	$929 \cdot 4109$	4	133-2038	1797.76	$76225 \cdot 024$	$1411 \cdot 9607$
5	105 -3852	$1190 \cdot 25$	$41063 \cdot 625$	$934 \cdot 8223$	5	133.5180	1806.25	76765.625	1418.6287
${ }^{6}$	$108 \cdot 6993$	$1197 \cdot 16$	41421.736	$940 \cdot 2494$	-6	$133 \cdot 8321$	1814.76°	77308776	1425.3125
7	109.035	1204.0	41781.923	$945 \cdot 6922$		134-1463	1823.29	77854.483	$1432 \cdot 0119$
-8	$109 \cdot 307$	1211.0	$4214+192$	$951 \cdot 1508$	8	134-4604	$1831 \cdot 84$	78402:752	$1438 \cdot 7271$
$\cdot 9$	$109 \cdot 641$	1218.0	$42508 \cdot 549$	956.6250	9	$13+7746$	$1840 \cdot 41$	78958.589	$1445 \cdot 4580$
35	$109 \cdot 956$	1225	42875	$962 \cdot 1150$	43	135.0888	1849	79507	$1452 \cdot 2046$
$\cdot 1$	$110 \cdot 27$	1232.01	43243.55	$967 \cdot 6206$	$\cdot 1$	135-4029	$1857 \cdot 61$	80062.991	1458.9668
$\cdot 2$	$110 \cdot 584$	1239.04	43614-208	973.1420		135\%7171	$1866 \cdot 24$	80621-568	1465\%\%448
$\bullet 3$	$110 \cdot 8984$	1246.09	43986.977	$978 \cdot 6790$	3	136-0332	$1874 \cdot 89$	81182.757	$1472 \cdot 5385$
$\cdot 4$	$111 \cdot 212$	1253.1	$44361 \cdot 864$	$984 \cdot 2318$	4	136.3454	$1883 \cdot 56$	81746.504	$1479 \cdot 3480$
. 5	111.526	$1260 \cdot 25$	'44738.875	989 -8003	5	136-6596	1892-25	82312 -875	$1486 \cdot 1731$
$\cdot 6$	111.840	1267.36	45118.016	995.3845	6	136.9737	$1900 \cdot 96$	82881.856	1493.0139
7	112-155	12T $4 \cdot 49$	45499-293	1000-9843	$\cdot 7$	137.2879	1909-69	$83453 \cdot 453$	1499.8705
-8	112-4692	1281.64	$45882 \cdot 712$	1006.6000	8	1376020	1918-44	$840 \cdot 27 \cdot 672$	1506.7427
$\cdot 9$	112.783	$1238 \cdot 81$	46268.279	1012-2313	9	$137 \cdot 9162$	1927.21	84604.519	1513.6287
36	113.0976	1236	46656	1017.8784	44	138-2304	1936	85184	1520-53.4
$\cdot 1$	$113 \cdot 4117$	1303.21	$47045 \cdot 8$	$1023 \cdot 5411$	$\cdot 1$	138.5445	1944•81	85766.121	$1527 \cdot 4537$
$\cdot 2$	113.7259	1310.44	$47437 \cdot 928$	1029.2195	2	138.8587	1953•64	86350	1534.3888
$\cdot 3$	114-0400	1317 •69	4783\% 147	1034.9131	-	139-1728	$1962 \cdot 49$	$86938 \cdot 30$	1541-3396
$\cdot 4$	114.3512	1321:96	482:28.544	1040.6235	$\cdot 4$	139-4870	1971-36	$87528 \cdot 3$	1548:3061
$\cdot 5$	$11+6684$	1332.25	$48627 \cdot 125$	1046.3191	5	139-8012	1980.25	$88121 \cdot 125$	$1555 \cdot 2883$
$\cdot 6$	11+9825	1339.56	$49027 \cdot 896$	1052.0904	$\cdot 6$	140-1153	1989•16	88716.536	1562.2862
7	115.2967	1346.89	$49430 \cdot 86$	1057 •874	7	$140 \cdot 4295$	1998.09	$89314 \cdot 623$	1569-2998
8	115.6108	1354.24	$49836 \cdot 032$	1063.6200	8	140.7436	$2007 \cdot 04$	89915.392	1576.3292
$\cdot 9$	115.4250	$1361 \cdot 61$	50243-409	1069-408t	9	141.057	2016.01	$90518 \cdot 849$	1583•742
37	116-2392	1369	50653	1075.2126	45	$141 \cdot 3720$	2025	91125	$1590 \cdot 4350$
$\cdot 1$	116.5533	$1376 \cdot 41$	$51064 \cdot 81$	1081.0324	$\cdot 1$	141.6861	$2034 \cdot 01$	91733.851	1597.5114
-2	116.867	1383.84	$51478 \cdot 8$	1086.8679	$\cdot 2$	142.0003	$2043 \cdot 04$	$923+5 \cdot 408$	1604.6036
$\cdot 3$	$117 \cdot 1816$	$1391 \cdot 29$	$51895 \cdot 117$	1092.7191	$\cdot 3$	1+2.3144	$2052 \cdot 09$	92959.674	1611•714
$\cdot 4$	117.4958	1398\%	$52313 \cdot 624$	1098.5862		142.6286	2061-16	93576.664	1618-8350
5	117.8100	$1406 \cdot 25$	52734.375	1104-4687	5	$142 \cdot 9428$	$2070 \cdot 25$	94196.375	$1625 \cdot 9743$
$\cdot 6$	$118 \cdot 12+1$	$1413 \cdot 76$	$53157 \cdot 376$	1110-3671	$\cdot 6$	$143 \cdot 2569$	$2079 \cdot 36$	$94818 \cdot 816$	$1633 \cdot 1293$
$\cdot 7$	$118 \cdot 4383$	1421-29	53582.63	1116.2811	7	$143 \cdot 5711$	$2088 \cdot 49$	5443	1640-3020
-8	118.7534	1428.84	$54010 \cdot 152$	1122-2109	8	$143 \cdot 8852$	$2097 \cdot 64$	$96071 \cdot 912$	1647-4864
	119.066	$1436 \cdot 4$	$54439 \cdot 939$	$1128 \cdot 1564$	9	141-1994	$2106 \cdot 81$	96702.579	1654.C885
38	119-3808	1444	54872	$1134 \cdot 1176$	46	144.5136	2116	97336	1661.9064
$\cdot 1$	$119 \cdot 6949$	1451.6	55306.341	1140.0946	- 1	$14+8277$	$2125 \cdot 21$	$97972 \cdot 181$	1669.1399
$\cdot 2$	$120 \cdot 0091$	1459.2	$55 \% 42 \cdot 96$	1146.0870	$\cdot 2$	145•1419	$2134 \cdot 44$	$8611 \cdot 128$	1676-3891
$\cdot 3$	$120 \cdot 3232$	1466-8	$56181 \cdot 887$	1152.0954	$\cdot 3$	$145 \cdot 4560$	$2143 \cdot 69$	$99252 \cdot 847$	1683-6541
$\cdot 4$	$120 \cdot 6374$	1474.56	56623-104	1158.1194	$\cdot 4$	145•7702	2152:96	99897-344	1690.9347
$\cdot 5$	120.9516	1482-25	57066.625	1164-1591	5	146.08	$2162 \cdot 25$	$100541 \cdot 625$	$1698 \cdot 2311$
$\cdot 6$	$121 \cdot 265$	$1489 \cdot 96$	$57512 \cdot 456$	1170-2145	$\cdot 6$	146.3985	$2171 \cdot 56$	$101194 \cdot 696$	1705:5432
f	121.5.99	1497.69	$57960 \cdot 603$	1176-2857		$146 \cdot 7127$	$2180 \cdot 89$	101847-563	17128710
8	121.8940	$1505 \cdot 44$	58411.072	1182:3725	8	147-0268	$2190 \cdot 24$	102503-232	1720-2144
	122-2082	1513.21	$58863 \cdot 86$	$1188 \cdot 4651$	$\cdot 9$	147.3410	$2199 \cdot 61$	$103161 \cdot 709$	1722.5736
39	122.5224	1521	59319	1294.5394	47	147.6552	2209	103823	$1734 \cdot 9486$
$\cdot 1$	1228365	1528.81	59776-471	$1200 \cdot 7273$	$\cdot 1$	147.9693	$2218 \cdot 41$	$104487 \cdot 111$	1742.3392
	123.1507	1536.64	60236.28	$1206 \cdot 8770$		148-2835	$2227 \cdot 84$	105154.048	$1749 \cdot 7455$
$\bullet 3$	123.4648	$1544 \cdot 49$	60698-457	1213.0424	$\cdot 3$	148-5976	$2237 \cdot 29$	105823.817	1757•1675
4	123.7790	1552-36	61162-984	1219-2243	4	148.9118	2246.76	106496-424	1764.6045
5	124.0932	$1560 \cdot 25$	61629.875	1225-4203	5	149-2260	$2256 \cdot 25$	107171-875	1772.0587
$\cdot 6$	124-4073	$1568 \cdot 16$	62099-136	1231.6328	$\cdot 6$	149.5361	$2265 \cdot 76$	107850-176	1779.5279
7	124.7215	1576.09	$62570 \cdot 773$	$1237 \cdot 8610$		149-8543	$2275 \cdot 29$	108531-333	1787.0127
8	125.0336	1584.04	$6304+792$	1244-1210	8	150.1684	$2284 \cdot 84$	109215•352	1794.5133
	125.3498	1592.01	$63521 \cdot 1$	1250.3646		150-4826	2294.41	109902-239	1802.0296
40	125.6610	1600	64000	$1256 \cdot 6400$	48	150.7968	2304	110592	1809.5616
$\cdot 1$	125.9781	1608.01	$64481 \cdot 201$	1262.9310	1	151-1109	$2313 \cdot 61$	111284.641	1817-1092
$\cdot{ }_{-}$	126-2923	1616.04	$64964 \cdot 808$	$1269 \cdot 2388$	2	$151 \cdot 4251$	$2323 \cdot 24$	$111980 \cdot 168$	$1824 \cdot 6726$
$\stackrel{3}{ }$	126.6064	162409	65450.827	1275.5602	3	151.7392	$2332 \cdot 89$	112678-587	1832-2518
$\cdot 4$	126.9206	1632.16	65939264	$1281 \cdot 8984$		152.0534	2342.56	113379.904	1839.8466
$\cdot 5$	$127 \cdot 2348$ 127.5489	1640.25	${ }_{66430 \cdot 125}^{6}$	$1258 \cdot 2523$	$\cdot 5$	152.3676	2352:25	$11408+125$	18.47-4571
$\cdot 6$	127.5489	1648-36	66922-416	1291.6219		$152 \cdot 6817$	$2361 \cdot 96$	114791.256	$1855 \cdot 0833$
$\cdot 7$	$127 \cdot 8631$	1656-49	67419.143	$1301 \cdot 0071$	$\cdot 7$	152.9959	$2371 \cdot 69$	$115501 \cdot 303$	$1862 \cdot 7253$
	128.1772	1664.64	$67917 \cdot 312$	$1307 \cdot 4082$	$\cdot 8$	153.3100	$2381 \cdot 44$	11621+272	1870.3829
$\cdot 9$	128	16	68417.929	131	$\cdot 9$	153.6242	$2391 \cdot 21$		1878.0563

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
49	153.9384	2401	117649	1885.7454	57	179.0712	3249	185193	$2551 \cdot 7646$
$\cdot 1$	154.2525	$2410 \cdot 81$	118370.771	1893.4501	$\cdot 1$	179.3853	$3260 \cdot 41$	$186169 \cdot 411$	25c0:72C0
$\cdot 2$	154.5667	$2120 \cdot 64$	119095-488	1901•1706	2	$179 \cdot 6995$	$3271 \cdot 84$	$187149 \cdot 248$	$25 \mathrm{C9} \cdot 7031$
$\cdot 3$	154.8808	$2430 \cdot 49$	$119823 \cdot 157$	1908.9068	3	180.0136	$3283 \cdot 29$	$188132 \cdot 517$	$2578 \cdot 6959$
$\cdot 4$	155-1950	$2440 \cdot 36$	120553.784	1916.6587	$\cdot 4$	$180 \cdot 3278$	3294.76	189119-224	2587.7045
$\cdot 5$	155.5092	$2450 \cdot 25$	121287.375	1924.4263	5	$180 \cdot 6420$	$3306 \cdot 25$	190109•375	2596.7287
$\cdot 6$	$155 \cdot 8233$	$2460 \cdot 16$	122023.936	1932-2096	$\cdot 6$	180.9561	$3317 \cdot 76$	191102.976	$2605 \cdot 7687$
$\cdot 7$	156-1375	$2470 \cdot 09$	122763-473	1940.0086	$\cdot 7$	181-2803	$3329 \cdot 29$	192100.033	$2614 \cdot 8243$
$\cdot 8$	$156 \cdot 4516$	2480.04	$123505 \cdot 992$	1947-8234	8	181.5844	$3340 \cdot 84$	$193100 \cdot 552$	2623.8957
$\cdot 9$	156.7558	2490.01	124251-499	1955.6538	$\cdot 9$	181.8986	$3352 \cdot 41$	194104.539	$2632 \cdot 9828$
50	157.0800	2500	125000	1963.5000	58	$182 \cdot 2128$	3364	195112	2642.0856
$\cdot 1$	157-3941	2510.01	125751-501	$1971 \cdot 3618$	$\cdot 1$	182.5269	$3375 \cdot 61$	196122-941	$2651 \cdot 2046$
$\cdot 2$	157.7083	2520.04	126506.008	1979.2394	$\cdot 2$	1828411	$3387 \cdot 24$	$197137 \cdot 368$	$2660 \cdot 3382$
$\cdot 3$	158.0224	2530.09	$127263 \cdot 527$	1987•1326	$\cdot 3$	$183 \cdot 1552$	3398.89	198155•287	$2669 \cdot 4882$
$\cdot 4$	158.3366	$2540 \cdot 16$	$128024 \cdot 064$	1995.0416	$\cdot 4$	183.4694	$3410 \cdot 56$	199176-704	$2678 \cdot 6538$
$\cdot 5$	158-6508	$2550 \cdot 25$	$128787 \cdot 625$	2002.9663	$\cdot 5$	183.7836	$3422 \cdot 25$	200201.625	$2687 \cdot 8351$
$\cdot 6$	158.9649	$2560 \cdot 36$	$129554 \cdot 216$	$2010 \cdot 9067$	$\cdot 6$	184.0977	$3433 \cdot 96$	201230056	$2697 \cdot 0321$
7	159•2791	$2570 \cdot 49$	$130323 \cdot 843$	2018.8628	$\cdot 7$	184.4119	$3445 \cdot 69$	$202262 \cdot 003$	2706.2449
. 8	159.5932	$2580 \cdot 64$	131096.512	2026.8346	8	$184 \cdot 7260$	$3457 \cdot 44$	203297-472	$2715 \cdot 4733$
$\cdot 9$	159.9074	$2590 \cdot 81$	$131872 \cdot 229$	$2034 \cdot 8770$	$\cdot 9$	185.0402	3469-21	204336-469	2724.7175
51	1602216	2601	132651	$2042 \cdot 8254$	59	$185 \cdot 3544$	3481	205379	$2733 \cdot 9774$
$\cdot 1$	160.5357	2611.21	133432.831	$2050 \cdot 8443$	$\cdot 1$	$185 \cdot 6685$	$3492 \cdot 81$	206425.07	$2743 \cdot 2529$
$\cdot 2$	160.8499	$2621 \cdot 44$	$134217 \cdot 728$	2058.8784	$\cdot 2$	$185 \cdot 9827$	$3504 \cdot 64$	207474.688	$2752 \cdot 5442$
$\cdot 3$	161-1640	$2631 \cdot 69$	135005•697	20669293	$\cdot 3$	$186 \cdot 2696$	3516.49	208527-857	2761.8512
$\cdot 4$	$161 \cdot 4782$	$2641 \cdot 96$	135796.744	2074.9953	$\cdot 4$	$186 \cdot 6110$	$3528 \cdot 36$	209584-584	2771-1739
$\cdot 5$	161.7924	$2652 \cdot 25$	136590.875	2083.0771	$\cdot 5$	186.9252	$3540 \cdot 25$	$210644 \cdot 875$	2780.5123
$\cdot 6$	162-1065	$2662 \cdot 56$	137388.096	2091-1746	$\cdot 6$	$187 \cdot 2393$	$3552 \cdot 16$	211708.736	$2789 \cdot 8664$
$\cdot 7$	162-4207	$2672 \cdot 89$	$138188 \cdot 413$	2099-2878	$\cdot 7$	$187 \cdot 5535$	$3564 \cdot 09$	212776.173	$2799 \cdot 2362$
$\cdot 8$	162.7348	2683.24	138991-832	$2107 \cdot 4166$	8	$187 \cdot 8676$	3576.04	$213847 \cdot 192$	2808.6218
$\cdot 9$	$163 \cdot 0490$	$2693 \cdot 61$	139798.359	2115.5612	9	188-1818	3588.01	$214921 \cdot 799$	$2818 \cdot 0230$
52	$163 \cdot 3632$	2704	140608	2123.7216	60	$188 \cdot 4960$	3600	216000	$2827 \cdot 4400$
$\cdot 1$	$163 \cdot 6773$	$2714 \cdot 41$	$141420 \cdot 761$	$2131 \cdot 8976$	$\cdot 1$	$188 \cdot 8101$	$3612 \cdot 01$	217081-801	2836.8726
$\cdot 2$	163.9935	2724•84	142236.648	$2140 \cdot 0893$	$\cdot 2$	189.1243	3624.04	218167-208	2846.3210
$\cdot 3$	164-3056	$2735 \cdot 29$	143055.667	$2148 \cdot 2967$	$\cdot 3$	$189 \cdot 4384$	3636.09	$219256 \cdot 227$	2855.7850
$\cdot 4$	$164 \cdot 6198$	2745.76	143877-824	2156.5199	4	189.7526	$3648 \cdot 16$	220348.864	$2865 \cdot 2648$
$\cdot 5$	164.9340	2756.25	144703.125	2164.7587	. 5	190.0668	$3660 \cdot 25$	$221445 \cdot 125$	$2874 \cdot 7603$
$\cdot 6$	165.2481	2766.76	145531.576	2173.0133	$\cdot 6$	190-3809	$3672 \cdot 36$	$222545 \cdot 016$	2884•2615
$\cdot 7$	165.5623	2777-29	$146363 \cdot 183$	2181-2835	$\cdot 7$	$190 \cdot 6951$	$3684 \cdot 49$	$223648 \cdot 543$	2893.7984
$\cdot 8$	$165 \cdot 8764$	$2787 \cdot 84$	147197.952	2189.5695	8	191.0092	$3696 \cdot 64$	$224755 \cdot 712$	$2903 \cdot 3410$
$\cdot 9$	166-1906	$2798 \cdot 41$	148035•889	2197-8712	$\cdot 9$	191.3234	3708.81	225866.529	2912.8993
53	166.5048	2809	148877	$2206 \cdot 1886$	61	191.6376	3721	226981	$2922 \cdot 4734$
$\cdot 1$	166.8189	$2819 \cdot 61$	149721-291	$2214 \cdot 5216$	$\cdot 1$	191.9517	$3733 \cdot 21$	228099.131	$2932 \cdot 0631$
$\cdot 2$	167-1331	$2830 \cdot 24$	150568.768	2222-8704	$\cdot 2$	192-2659	$3745 \cdot 44$	229220.928	$2941 \cdot 6685$
$\cdot 3$	$167 \cdot 4472$	$29 \pm 0 \cdot 89$	151419-437	$2231 \cdot 2350$	$\cdot 3$	192.5800	$3757 \cdot 6$	$230346 \cdot 397$	2951-2897
$\cdot 4$	167.7614	2851.56	152273 304	$2239 \cdot 6152$	$\cdot 4$	$192 \cdot 89 \pm 2$	3769.96	231475•544	$2960 \cdot 9265$
$\cdot 5$	168.0756	$2862 \cdot 25$	153130.375	2248.0111	$\cdot 5$	193.2084	$3782 \cdot 25$	232608.375	2970.5791
-6	$168 \cdot 3897$	2872.96	153990.656	2256.4227	$\cdot 6$	193:5225	3794.56	233744.896	29802474
$\cdot 7$	168.7049	2883.69	154854-153	2264.8701	$\cdot 7$	$193 \cdot 8367$	3806.89	$234885 \cdot 113$	2989.9314
-8	169-0180	2894.44	155\%20.872	2273.2931	-8	194-1508	$3819 \cdot 24$	236029032	2999.6360
$\cdot 9$	169-3322	2905-21	$156590 \cdot 819$	$2281 \cdot 7519$	$\cdot 9$	$194 \cdot 4650$	3831.61	$237176 \cdot 659$	3009•3464
54	$169 \cdot 6464$	2916	157464	$2290 \cdot 2264$	62	194.7792	3844	238328	3019.0776
$\cdot 1$	$169 \cdot 9605$	2926.81	$158340 \cdot 421$	2298.7165	$\cdot 1$	$195 \cdot 0933$	3856.41	239483.061	$3028 \cdot 8244$
$\cdot 2$	$170 \cdot 2747$	2337-64	$159220 \cdot 088$	$2307 \cdot 2224$	$\cdot 2$	$195 \cdot 4075$	$3868 \cdot 84$	$240641 \cdot 848$	$3038 \cdot 5809$
$\cdot 3$	170.5888	$2948 \cdot 49$	160103.007	2315.7440	$\cdot 3$	$195 \cdot 7216$	3881.29	$241804 \cdot 367$	$3048 \cdot 3651$
$\cdot 4$	170.9030	$2959 \cdot 36$	160989-184	$2324 \cdot 2813$	$\cdot 4$	196.0358	3893.76	$242970 \cdot 624$	3058-1591
$\cdot 5$	$171 \cdot 2172$	$2970 \cdot 25$	$161878 \cdot 625$	$2332 \cdot 8343$	$\cdot 5$	196.3500	3906.25	$244140 \cdot 625$	$3067 \cdot 9687$
$\cdot 6$	171-5313	2981-16	162771-336	$2341 \cdot 4030$	$\cdot 6$	196.6641	3918.76	$245314 \cdot 376$	$3077 \cdot 7941$
-7	171-8455	$2992 \cdot 09$	$163667 \cdot 323$	$2349 \cdot 9874$	$\cdot 7$	196.9783	3931'29	$246491 \cdot 883$	$3087 \cdot 6341$
-8	$172 \cdot 1596$	3003.04	164566.592	$2358 \cdot 5876$	$\cdot 8$	197-2924	3943.84	$247673 \cdot 152$	$3097 \cdot 4919$
$\cdot 9$	172.4738	$3014 \cdot 01$	$165469 \cdot 149$	$2367 \cdot 2034$	$\cdot 9$	197-6066	3956.41	248858-189	$3107 \cdot 3644$
55	172.7880	3025	166375	$2375 \cdot 8350$	63	197.9208	3969	250047	$3117 \cdot 2526$
$\cdot 1$	$173 \cdot 1021$	3036.01	167284-151	2384.4822	$\cdot 1$	198.2349	$3981 \cdot 61$	251239.591	$3127 \cdot 1564$
$\cdot 2$	173.4163	3047.04	168196.608	$2393 \cdot 1452$	$\cdot 2$	198-5491	$3994 \cdot 24$	252435.968	3137.0758
$\cdot 3$	173.7304	3058-09	$169112 \cdot 377$	$2401 \cdot 8238$	$\cdot 3$	198.8632	$4006 \cdot 89$	$253636 \cdot 137$	$3147 \cdot 0114$
$\cdot 4$	$174 \cdot 0446$	$3069 \cdot 16$	170031-464	2410.5182	$\cdot 4$	199.1774	4019.56	$254840 \cdot 104$	$3156 \cdot 966.1$
$\cdot 5$	$174 \cdot 3588$	$3080 \cdot 25$	$170953 \cdot 875$	$2419 \cdot 2283$	$\cdot 5$	199.4916	$4032 \cdot 25$	$256047 \cdot 875$	3166.9291
$\cdot 6$	$174 \cdot 6729$	3091.36	171879.616	2427-9541	$\cdot 6$	$199 \cdot 8057$	4044.96	$257259 \cdot 456$	3176.9115
$\cdot 7$	174.9771	$3102 \cdot 49$	172508.693	$2436 \cdot 6956$	$\cdot 7$	200.1199	$4057 \cdot 69$	$258474 \cdot 853$	3186.9097
$\cdot 8$	175•3092	$3113 \cdot 64$	$173741 \cdot 112$	$2445 \cdot 4528$	-8	$200 \cdot 4340$	$4070 \cdot 44$	$259694 \cdot 072$	$3196 \cdot 9235$
$\cdot 9$	$175 \cdot 6154$	3124.81	174676.879	$2454 \cdot 2257$	$\cdot 9$	$200 \cdot 7482$	$4083 \cdot 21$	$260917 \cdot 119$	3206.9531
56	175.9296	3136	175616	2463.0144	64	201.0624	4096	262144	3216.9584
$\cdot 1$	176.2437	$3147 \cdot 21$	$176558 \cdot 481$	$2471 \cdot 8187$	${ }^{-1}$	201.3765	4108.81	$263374 \cdot 721$	$3227 \cdot 0593$
$\cdot 2$	176.5579	$3158 \cdot 44$	177504.328	$2480 \cdot 6387$	$\cdot 2$	$201 \cdot 6907$	$4121 \cdot 64$	$26 \pm 609 \cdot 288$	$3237 \cdot 1360$
$\cdot 3$	176.8720	$3169 \cdot 69$	$178453 \cdot 547$	$2489 \cdot 4745$	$\cdot 3$	$202 \cdot 0048$	$4134 \cdot 49$	$265847 \cdot 707$	$3247 \cdot 2284$
$\cdot 4$	177-1862	3180.96	179406.144	2498.3259	$\cdot 4$	$202 \cdot 3190$	$4147 \cdot 36$	$267089 \cdot 984$	3257.3365
$\cdot 5$	$177 \cdot 5004$	$3192 \cdot 25$	$180362 \cdot 125$	$2507 \cdot 1931$	$\cdot 5$	$202 \cdot 6332$	$4160 \cdot 25$	$268336 \cdot 125$	$3267 \cdot 4 \mathrm{C03}$
$\cdot 6$	$177 \cdot 8145$	3203.56	$181321 \cdot 496$	2516.0760	$\cdot 6$	202.9473	$4173 \cdot 16$	$269586 \cdot 136$	32775998
$\cdot 7$	$178 \cdot 1287$	3214.89	$182284 \cdot 263$	2524.9736	$\cdot 7$	$203 \cdot 2615$	4186.09	$270840 \cdot 023$	$3287 \cdot 7550$
$\cdot 8$	178.4428	3226.24	$183250 \cdot 432$	$2533 \cdot 8888$	$\cdot 8$	$203 \cdot 5756$	4199.04	$27 \cdot 097 \cdot 792$	3.297 .9260
$\cdot 9$	178.7570	$3237 \cdot 61$	$184220 \cdot 009$	$2542 \cdot 8188$	$\cdot 9$	$203 \cdot 8898$	4212.01	$273359 \cdot 449$	$3308 \cdot 11 \pm 6$

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
65	$204 \cdot 2040$	4225	274625	3318.3150	73	229•3368	53	359017	$4185 \cdot 3966$
$\cdot 1$	234.5181	42:38.01	$27589+451$	$3328 \cdot 53 \pm 0$	$\cdot 1$	$229 \cdot 6509$	$5343 \cdot 61$	$390617 \cdot 891$	$4190 \cdot 8{ }^{-1 \cdot 2}$
$\cdot 2$	204.8323	4251.04	$277167 \cdot 808$	3338.7668	2	2:999651	$5358 \cdot 24$	392223.168	4208.3614
$\cdot 3$	2 $5 \cdot 1464$	4264.09	$278445 \cdot 077$	$3349 \cdot 0162$	$\cdot 3$	2:30.2792	5372.89	$393532 \cdot 837$	$4219 \cdot 8678$
$\cdot 4$	$205 \cdot 4606$	$4277 \cdot 16$	279726.264	$3359 \cdot 2814$	4	$230 \cdot 5934$	$5357 \cdot 56$	$395446 \cdot 90 \pm$	+231-3846
$\cdot 5$	205.7748	4290.25	281011-375	$3369 \cdot 5623$	5	230.9076	5402*25	$397065 \cdot 375$	4242-9271
$\cdot 6$	206.0889	+303-36	$282300 \cdot 416$	$3379 \cdot 8589$	$\cdot 6$	$231 \cdot 2217$	5416.96	$338688 \cdot 256$	4254.4803
$\cdot 7$	$206 \cdot 4031$	$4316 \cdot 49$	283593.393	3390-1712	7	$231 \cdot 5359$	5431.69	$400315 \cdot 553$	4266.0493
. 8	206.7172	4329.64	$284890 \cdot 312$	$3400 \cdot 4992$	8	$231 \cdot 8500$	$5446 \cdot 44$	$4019+7 \cdot 272$	+277.6839
$\cdot 9$	207-0314	$4342 \cdot 81$	286191-179	$3410 \cdot 8429$. 9	232-1642	$5461 \cdot 21$	$403583 \cdot 419$	4289 -2343
66	207.3455	+356	287496	$3421 \cdot 2024$	74	$232 \cdot 4784$	5476	405224	$4300 \cdot 8504$
$\cdot 1$	$207 \cdot 6597$	$4369 \cdot 21$	288804.781	$3431 \cdot 5775$	1	$232 \cdot 7925$	$5490 \cdot 81$	406869.021	4512.4821
$\cdot 2$	207.9739	$4382 \cdot 44$	290117-528	3441.9633	2	$233 \cdot 1067$	$5505 \cdot 64$	$408518 \cdot 488$	$4324 \cdot 1296$
$\cdot 3$	208.2880	$4395 \cdot 69$	$29143+\cdot 247$	$3452 \cdot 3749$	3	$233 \cdot 4208$	$5520 \cdot 49$	$41017 \cdot 2 \cdot 407$	4335.7928
$\cdot 4$	$208 \cdot 6022$	4408.96	292754.944	$3462 \cdot 7971$	4	233.7350	$5535 \cdot 36$	$411830 \cdot 784$	$43+7 \cdot 4717$
$\cdot 5$	$208 \cdot 916 t$	$4422 \cdot 25$	$294079 \cdot 625$	$3473 \cdot 2351$. 5	$234 \cdot 0492$	$5550 \cdot 25$	$413493 \cdot 625$	$4359 \cdot 16 ¢ 3$
$\cdot 6$	209-2305	4435.56	$295408 \cdot 296$	3483.6888	$\cdot 6$	$234 \cdot 3633$	$5565 \cdot 16$	$415160 \cdot 936$	$43 \overline{4} 0 \cdot 8766$
$\cdot 7$	$209 \cdot 5447$	4448.89	$296740 \cdot 963$	$3494 \cdot 1640$	$\cdot 7$	$23+6775$	5580.09	$416832 \cdot 723$	$4382 \cdot 6026$
8	203•8588	$4462 \cdot 24$	$298077 \cdot 632$	$3504 \cdot 6432$	$\cdot 8$	234.9916	5595.04	$418508 \cdot 992$	+394.3448
$\cdot 9$	$210 \cdot 1730$	$4 \pm 75 \cdot 61$	$299418 \cdot 309$	$3515 \cdot 1430$	$\cdot 9$	$235 \cdot 3058$	$5610 \cdot 01$	$420189 \cdot 749$	$4406 \cdot 1018$
67	$210 \cdot 4872$	4489	300763	3525.6606	75	235.6200	5625	421875	$4417 \cdot 8750$
- 1	$210 \cdot 8013$	$4502 \cdot 41$	302111.711	$3536 \cdot 1928$	$\cdot 1$	235.9341	$5640 \cdot 01$	$423564 \cdot 751$	$4429 \cdot 6638$
$\cdot 2$	$211 \cdot 1155$	$4515 \cdot 84$	$30346+448$	$3546 \cdot 7407$	$\cdot 2$	$236 \cdot 2483$	5655.04	$425259 \cdot 008$	$44+1 \cdot 4684$
$\cdot 3$	$211 \cdot 4296$	4529.29	$304821 \cdot 217$	$3557 \cdot 3043$	-3	$236 \cdot 5624$	$5670 \cdot 09$	426957 -777	$4453 \cdot 2886$
$\cdot 4$	211.7438	4542.76	306182.024	$3567 \cdot 8837$	$\cdot 4$	236.8766	$5685 \cdot 16$	$428661 \cdot 064$	$4465 \cdot 1246$
-5	212.0580	$4556 \cdot 25$	$307546 \cdot 875$	$3578 \cdot 4787$	$\cdot 5$	237-1908	$5700 \cdot 25$	430368.875	4476.9763
$\cdot 6$	212.3721	$4569 \cdot 76$	308915•776	3589.0895	$\cdot 6$	$237 \cdot 5049$	$5715 \cdot 36$	$432081 \cdot 216$	$4488 \cdot 8+37$
$\cdot 7$	212.6863	$4583 \cdot 29$	310288.733	$3599 \cdot 7159$	$\cdot 7$	237-8191	$5730 \cdot 49$	433798.093	$4000 \% 268$
-8	213.0004	$4596 \cdot 8 \pm$	$311665 \cdot 752$	$3610 \cdot 3581$	-8	$238 \cdot 1332$	5745.64	435519.512	$4512 \cdot 6256$
$\cdot 9$	$213 \cdot 3146$	$4610 \cdot 41$	$313046 \cdot 839$	$3621 \cdot 0160$. 9	$238 \cdot 1474$	5760.81	$437245 \cdot 479$	$4524 \cdot 5401$
68	213.6288	4624	314432	3631.6836	76	$238 \cdot 7616$	5776	438976	$4536 \cdot 4704$
$\cdot 1$	$213 \cdot 9429$	$4637 \cdot 61$	$315821 \cdot 241$	36	$\cdot 1$	$239 \cdot 0757$	$5791 \cdot 21$	440711.081	$4548 \cdot 4163$
$\cdot 2$	$21+\cdot 2571$	$4651 \cdot 24$	317.214 .568	3653.0838	$\cdot 2$	239-3899	5806.44	$4 \pm 2450 \cdot 728$	$4560 \cdot 3787$
$\cdot 3$	$21+5712$	$466 \pm$-89	$318611 \cdot 987$	$3663 \cdot 8040$	$\cdot 3$	$239 \cdot 7040$	$5821 \cdot 69$	$44419+947$	$4572 \cdot 3553$
$\cdot 4$	$214 \cdot 8854$	4678.56	$320013 \cdot 504$	3674.5410	$\cdot 4$	240.0182	5836.96	445943.744	$4584 \cdot 3583$
$\cdot 5$	$215 \cdot 1996$	4692-25	$321419 \cdot 125$	$3685 \cdot 2931$	-5	$240 \cdot 3324$	$5852 \cdot 25$	$447697 \cdot 125$	4596.3571
$\cdot 6$	215.5137	4705.96	$32: 2828 \cdot 856$	$3696 \cdot 0060$	$\cdot 6$	$240 \cdot 6465$	$5867 \cdot 56$	$449455 \cdot 096$	$4608 \cdot 3816$
$\cdot 7$	$215 \cdot 8279$	$4719 \cdot 69$	324242.703	$3706 \cdot 8445$	$\cdot 7$	$240 \cdot 9607$	$5882 \cdot 89$	$451217 \cdot 663$	$4620 \cdot 4218$
-8	$216 \cdot 1420$	4733.44	$325660 \cdot 672$	$3717 \cdot 6+37$	- 8	241'2748	$5898 \cdot 24$	$452 \cdot 88$ + 832	$4632 \cdot 4776$
$\cdot 9$	2164562	$47+7 \cdot 21$	327082.769	3728.4587	$\cdot 9$	$241 \cdot 5087$	$5913 \cdot 61$	454756.609	46445492
69	216.7704	4761	328509	$3739 \cdot 2894$	77	$241 \cdot 9032$	5929	456533	$4656 \cdot 6366$
$\cdot 1$	$217 \cdot 0845$	4774.81	323939-371	$3750 \cdot 1357$	$\cdot 1$	$242 \cdot 2173$	$5944 \cdot 41$	$458314 \cdot 011$	4668.7396
$\cdot 2$	$217 \cdot 3957$	$4788 \cdot 64$	$331373 \cdot 888$	3760.9978	$\cdot 2$	$2 \pm 2 \cdot 5315$	$5959 \cdot 84$	4¢0039.648	4680.8583
$\cdot 3$	217.7128	4802.49	$332812 \cdot 557$	3771.8756	$\cdot 3$	$2 \pm 2 \cdot 8456$	$5975 \cdot 29$	$461889 \cdot 917$	$4692 \cdot 9927$
$\cdot 4$	$218 \cdot 0270$	4816.36	$33+255 \cdot 384$	$3782 \cdot 7691$	4	$243 \cdot 1598$	5990.76	$463684 \cdot 824$	$4705 \cdot 1429$
$\cdot 5$	$218 \cdot 3412$	$4830 \cdot 25$	$335702 \cdot 375$	$3793 \cdot 6783$	$\cdot 5$	$243 \cdot 4740$	6006.25	$46548 \pm \cdot 375$	$4717 \cdot 3087$
$\cdot 6$	$218 \cdot 6553$	$484+16$	$337153 \cdot 536$	$3804 \cdot 6032$	$\cdot 6$	243.7881	$6021 \cdot 76$	467288.576	$4729 \cdot 4903$
$\cdot 7$	$218 \cdot 9695$	4858.09	$338608 \cdot 873$	3815.5438	$\cdot 7$	$244 \cdot 1023$	6037•29	469097-433	4741.6875
. 8	$219 \cdot 2836$	$4872 \cdot 04$	$340068 \cdot 392$	3826.5002	-8	$244 \cdot 4164$	6052-84	$470910 \cdot 952$	$4753 \cdot 9605$
$\cdot 9$	$219 \cdot 5978$	4886.01	$341532 \cdot 099$	$3837 \cdot 1722$	$\cdot 9$	24 ± 7306	$6068 \cdot 41$	472729.139	4766.1292
70	$219 \cdot 9120$	4900	343000	3848.4600	78	245.0448	C084	474552	4778.3736
$\cdot 1$	$220 \cdot 2261$	4914.01	$344472 \cdot 101$	3859-4952	$\cdot 1$	245.3589	¢099.61	476379.541	$4790 \cdot 6336$
$\cdot 2$	$220 \cdot 5403$	$4928 \cdot 04$	$345948 \cdot 408$	$3870 \cdot 4826$	$\cdot 2$	$245 \cdot 6731$	$6115 \cdot 24$	478211.768	4802.9094
$\cdot 3$	$220 \cdot 8544$	$4942 \cdot 09$	$347428 \cdot 927$	3881.5174	$\cdot 3$	$245 \cdot 9872$	$6130 \cdot 89$	480048-687	4815•2010
$\cdot 4$	221-1686	$4956 \cdot 16$	348913•664	$3892 \cdot 5680$	$\cdot 4$	$246 \cdot 3014$	6146.56	481890-304	4827.508.2
- 5	$221 \cdot 4828$	$4970 \cdot 25$	$350402 \cdot 625$	$3903 \cdot 6343$	$\cdot 5$	$246 \cdot 6156$	$6162 \cdot 25$	483736-625	$4839 \cdot 8311$
$\cdot 6$	221.7969	4984.36	351895•816	3914.7163	$\cdot 6$	246.9297	$6177 \cdot 96$	485587•656	4852-1697
$\cdot 7$	$222 \cdot 1111$	$4998 \cdot 49$	353393-243	$3925 \cdot 8140$	$\cdot 7$	$247 \cdot 2439$	$6193 \cdot 69$	$487443 \cdot 403$	4864.5241
-8	$222 \cdot 4252$	$5012 \cdot 64$	$354894 \cdot 912$	3936.9274	-8	217.5480	$6209 \cdot 44$	489303.872	$4876 \cdot 8973$
$\cdot 9$	22:2.7394	5026.81	$356400 \cdot 829$	3948.0565	$\cdot 9$	$247 \cdot 8722$	6225•21	491169.069	4889.2799
71	223.0536	5041	357911	3959-2014	79	$248 \cdot 1864$	6241	493039	4901.6814
$\cdot 1$	223.3677	$5055 \cdot 21$	$359+25 \cdot 431$	$3970 \cdot 3619$	$\cdot 1$	$248 \cdot 5005$	6256.81	$494913 \cdot 671$	4914.0985
$\cdot 2$	22.3 . 6819	5069•44	$36094+128$	3981.5381	$\cdot 2$	$248 \cdot 8147$	$6272 \cdot 64$	$496793 \cdot 088$	4926.5314
$\cdot 3$	223.9960	$5083 \cdot 69$	362467-097	3992.7301	$\cdot 3$	$249 \cdot 1288$	$6288 \cdot 49$	498677-257	$4938 \cdot 9820$
$\cdot 4$	$224 \cdot 3102$	5097.96	$363994 \cdot 344$	4003.9373	$\cdot 4$	$249 \cdot 4430$	6304-36	500566.184	$4951 \cdot 4443$
-5	$224 \cdot 6244$	5112.25	3535525•875	$4015 \cdot 1611$	-5	249.7572	$63 \cdot 20 \cdot 25$	$502459 \cdot 875$	4963.9243
- 6	224.9385	5126.56	$367061 \cdot 696$	4026.4002	- 6	$250 \cdot 0713$	$6336 \cdot 16$	$504358 \cdot 336$	$4976 \cdot 4840$
$\cdot 7$	$22.5 \cdot 2527$	$5140 \cdot 89$	368601•813	4037-6550	$\cdot 7$	$250 \cdot 3855$	6352.09	506261-573	$4988 \cdot 9314$
-8	225.5668	5155.24	$370146 \cdot 232$	4048.9254	$\cdot 8$	$250 \cdot 6996$	6368.04	$508169 \cdot 592$	$5001 \cdot 4586$
$\cdot 9$	$225 \cdot 8810$	$5169 \cdot 61$	371694.959	$4060 \cdot 2116$	$\cdot 9$	$251 \cdot 0138$	6384.01	510082 399	$5014 \cdot 0014$
72	226-1952	5184	373248	4071.5136	80	$251 \cdot 3280$	6400	512000	5026.5600
$\cdot 1$	226.5093	$5198 \cdot 41$	$374805 \cdot 361$	$4082 \cdot 8332$	$\cdot 1$	$251 \cdot 64 \cdot 21$	6416.01	$513922 \cdot 401$	$5039 \cdot 1342$
$\cdot 2$	226.8235	$5212 \cdot 84$	$376367 \cdot 048$	$4094 \cdot 1645$	$\cdot 2$	$251 \cdot 9563$	$6432 \cdot 04$	$515849 \cdot 608$	$5051 \cdot \tau 242$
$\cdot 3$	$227 \cdot 1376$	5227-29	$377933 \cdot 067$	4105.5125	$\cdot 3$	$252 \cdot 2704$	$6448 \cdot 09$	$517781 \cdot 627$	$5064 \cdot 3298$
$\cdot 4$	$227 \cdot 4518$	5241.76	$379503 \cdot 424$	4116.8793	$\cdot 4$	252-5846	$6464 \cdot 16$	$519718 \cdot 464$	5076.9552
$\cdot 5$	$227 \cdot 7660$	5256.25	$381078 \cdot 125$	4128.2587	$\cdot 5$	252.8988	$6480 \cdot 25$	$521660 \cdot 125$	$5089 \cdot 5883$
$\cdot 6$	$228 \cdot 0801$	5270.76	$382657 \cdot 176$	$4139 \cdot 6524$	$\cdot 6$	$253 \cdot 2129$	$6496 \cdot 36$	$523606 \cdot 616$	$5102 \cdot 2411$
$\cdot 7$	$228 \cdot 3943$	$5285 \cdot 29$	$384240 \cdot 583$	$4151 \cdot 0667$	$\cdot 7$	$253 \cdot 5271$	$6512 \cdot 49$	525557-943	5114.9096
-8	228.7084	$5299 \cdot 84$	$385828 \cdot 352$	$4162 \cdot 4943$	$\cdot 8$	$253 \cdot 8412$	$6528 \cdot 64$	$527514 \cdot 112$	512\%-5938
$\cdot 9$	$229 \cdot 0226$	$5314 \cdot 41$	387420-489	$4173 \cdot 9376$	$\cdot 9$	$254 \cdot 1554$	$6544 \cdot 81$	$529475 \cdot 129$	$5140 \cdot 2937$

Diam.	Circum.	Square	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
81	$254 \cdot 4696$	6561	531441	5153.0094	89	$279 \cdot 6024$	7921	704069	
$\cdot 1$	254.7837	$6557 \cdot 21$	533411.731	$5165 \cdot 7407$	$\cdot 1$	$279 \cdot 9165$	$7938 \cdot 81$	707347.971	6235-1413
$\cdot 2$	255.0979	6593-44	$535387 \cdot 328$	$5178 \cdot 4877$	$\cdot 2$	$280 \cdot 2307$	$7956 \cdot 64$	709732.288	$6249 \cdot 1450$
$\cdot 3$	255.4120	6609.69	$537367 \cdot 797$	$5191 \cdot 2505$	- 3	$280 \cdot 5448$	$7974 \cdot 49$	$712121 \cdot 957$	6263-1044
$\cdot 4$	$255 \cdot 7262$	$6625 \cdot 96$	$539353 \cdot 144$	$5204 \cdot 0285$	4	$230 \cdot 8590$	7992.36	714516.984	6277-1995
$\cdot 5$	256.0404	6612.25	$541343 \cdot 375$	5216.8231	5	$281 \cdot 1732$	$8010 \cdot 25$	716917-ET5	6291-2025
$\cdot 6$	$256 \cdot 3545$	$6658 \cdot 56$	$543338 \cdot 496$	$52.29 \cdot 6330$	6	$281 \cdot 4873$	$8028 \cdot 16$	719323-136	6305-3168
$\cdot 7$	2 25.6687	6674-89	545338-513	5242-4586	$\cdot 7$	$281 \cdot 8825$	8046.09	$721734 \cdot 273$	6319-3990
- 8	256.9828	6691-2t	$547343 \cdot 432$	5255.2998	8	282-1156	8064.04	$724150 \cdot 792$	6333-4970
$\cdot 9$	$257 \cdot 2970$	$6707 \cdot 61$	$549353 \cdot 259$	5268.1568	9	$282 \cdot 4298$	8082.01	726572-699	$6347 \cdot 6813$
82	$257 \cdot 6112$	6724	551368	5281.0296	90	282.7440	8100	729000	6361.7400
$\cdot 1$	$257 \cdot 9253$	$6740 \cdot 41$	$553387 \cdot 661$	5293.9180	1	$283 \cdot 0581$	8118.01	$731432 \cdot 701$	6375.8850
$\cdot 2$	$2.58 \cdot 2395$	$6756 \cdot 84$	$555412 \cdot 248$	$5306 \cdot 8221$	$\cdot 2$	$283 \cdot 3723$	8136.04	$733870 \cdot 808$	$6390 \cdot 0458$
$\cdot 3$	$258 \cdot 5536$	$6773 \cdot 29$	557441767	$5319 \cdot 7439$	-3	$283 \cdot 6864$	8154.09	$736314 \cdot 327$	6404:2222
$\cdot 4$	$258 \cdot 8646$	6789.76	$559476 \cdot 224$	$5332 \cdot 6775$	4	284.0006	$8172 \cdot 16$	$738763 \cdot 264$	$6418 \cdot 4144$
$\cdot 5$	2591820	$6806 \cdot 25$	$561515 \cdot 625$	5345.6287	5	584-3148	$8190 \cdot 25$	$741217 \cdot 625$	$6432 \cdot 6223$
- 6	259•4961	6822.76	$563559 \cdot 976$	5358.5957	$\cdot 6$	284.6289	8208.36	743677-416	$6446 \cdot 8474$
$\cdot 7$	$259 \cdot 8103$	$6839 \cdot 29$	565609*283	5371.5983	$\cdot 7$	284.9431	$8226 \cdot 49$	$746142 \cdot 643$	6461.0852
-8	260-1244	$6855 \cdot 84$	$567663 \cdot 552$	5384.5762	- 8	$285 \cdot 2572$	824.64	$748613 \cdot 312$	$6475 \cdot 3402$
$\cdot 9$	$260 \cdot 4336$	6872	$569722 \cdot 789$	5397-5908	$\cdot 9$	285.5714	8262.81	$751089 \cdot 429$	$6489 \cdot 6109$
83	$260 \cdot 7528$	6889	571787	$5410 \cdot 6206$	91	$285 \cdot 8856$	8281	753571	6503-8974
$\cdot 1$	$261 \cdot 0669$	$6905 \cdot 61$	573856-191	5423.6660	$\cdot 1$	$286 \cdot 1997$	$8299 \cdot 21$	756058.031	$6518 \cdot 1995$
$\cdot 2$	261-3811	6922.24	575930.368	5436.7272	$\cdot 2$	286.5139	$8317 \cdot 44$	758550.528	$6532 \cdot 5173$
$\cdot 3$	261-6952	$6938 \cdot 89$	$578009 \cdot 537$	5449•8042	$\cdot 3$	$286 \cdot 8290$	8335.69	$761048 \cdot 497$	6546.8909
$\cdot 4$	2620034	6955.56	580093•704	5462•8968	4	287-1422	8353.96	763551-944	$6561 \cdot 2081$
$\cdot 5$	262.3236	$6972 \cdot 25$	$582182 \cdot 875$	$5476 \cdot 0051$	5	$287 \cdot 4564$	$8372 \cdot 25$	7660 cos 875	$6575 \cdot 5651$
$\cdot 6$	$202 \cdot 6376$	$6988 \cdot 96$	$584277 \cdot 056$	5489-1291	$\cdot 6$	257.7705	8390.56	$768575 \cdot 296$	$6589 \cdot 9458$
$\cdot 7$	$262 \cdot 9519$	7005.69	586376.253	5502-2689	$\cdot 7$	$288 \cdot 0847$	$8408 \cdot 89$	771095.213	$6604 \cdot 3222$
-8	$263 \cdot 2440$	$7022 \cdot 44$	$588480 \cdot 472$	$5515 \cdot 4243$	$\cdot 8$	$288 \cdot 3988$	$8427 \cdot 24$	$773620 \cdot 632$	$6618 \cdot 7512$
$\cdot 9$	263.5802	7039-21	$590589 \cdot 719$	5528.5958	$\cdot 9$	$288 \cdot 7130$	$8445 \cdot 61$	776151-559	6633-1820
84	263.8944	7056	592704	5541.7824	92	$289 \cdot 0272$	8464	778688	$6647 \cdot 6256$
$\cdot 1$	264-2085	7072.81	594823.321	5554.9849	$\cdot 1$	$289 \cdot 3413$	$8482 \cdot 41$	$781229 \cdot 961$	6662.0848
$\cdot 2$	26 ± 5227	$7089 \cdot 64$	$596947 \cdot 688$	$5568 \cdot 2032$	$\cdot 2$	$289 \cdot 6555$	$8500 \cdot 84$	$783777 \cdot 448$	6676.5597
$\cdot 3$	264.8368	$7106 \cdot 49$	599077-107	$5581 \cdot 4372$	3	289.9696	$8519 \cdot 29$	$786330 \cdot 467$	6691-0161
$\cdot 4$	$265 \cdot 1510$	7123-36	601211-584	5594.6869	4	290.2838	8537.76	$788889 \cdot 024$	$6705 \cdot 5567$
$\cdot 5$	265-4652	7140.25	$603351 \cdot 125$	$5607 \cdot 9523$	5	$290 \cdot 5980$	8556.25	$791453 \cdot 125$	$6720 \cdot 0787$
$\cdot 6$	265•7793	$7157 \cdot 16$	$605495 \cdot 736$	5621.2334	$\cdot 6$	290.9121	$8574 \cdot 76$	$794022 \cdot 776$	$6734 \cdot 6165$
$\cdot 7$	266.0935	$7174 \cdot 09$	$607645 \cdot 423$	5634.5682	$\cdot 7$	$291 \cdot 2263$	$8593 \cdot 29$	$796597 \cdot 983$	6749-1699
$\cdot 8$	$266 \cdot 4076$	7191.04	609800-192	5647-8428	8	$291 \cdot 5404$	8611-84	799178-752	6763.7391
$\cdot 9$	266.7218	7208.01	$611960 \cdot 049$	$5661 \cdot 1710$	$\cdot 9$	$291 \cdot 8546$	$8630 \cdot 41$	$801765 \cdot 089$	$6778 \cdot 3240$
85	$267 \cdot 0360$	7225	614125	$5674 \cdot 5150$	93	$292 \cdot 1688$	8649	804357	6792.9246
$\cdot 1$	$267 \cdot 3501$	7242.01	$616295 \cdot 051$	$5687 \cdot 8746$	-1	292.4829	8667.61	806954*491	$6807 \cdot 5408$
$\cdot 2$	$267 \cdot 6643$	$7259 \cdot 04$	$618470 \cdot 208$	$5701 \cdot 2500$. 2	292.7971	$8686 \cdot 24$	$809557 \cdot 568$	$6822 \cdot 1730$
$\cdot 3$	$267 \cdot 9784$	7276.09	$620650 \cdot 477$	5714.6410	3	$293 \cdot 1112$	$8704 \cdot 89$	$812166 \cdot 237$	$6836 \cdot 8206$
$\cdot 4$	$268 \cdot 2926$	$7293 \cdot 16$	622835-864	5728.0478	4	$293 \cdot 4254$	$8723 \cdot 56$	$814780 \cdot 504$	$6851 \cdot 4840$
$\cdot 5$	268.6068	$7310 \cdot 25$	625026.375	$5741 \cdot 4703$	$\cdot 5$	$293 \cdot 7396$	8742.25	$817400 \cdot 375$	68c6-1631
- 6	268.9209	$7327 \cdot 36$	627222.016	5754.9085	$\cdot 6$	$294 \cdot 0537$	8760.96	$820025 \cdot 856$	6880.8579
$\cdot 7$	$263 \cdot 2351$	$7314 \cdot 49$	629422:793	$5768 \cdot 3624$	$\cdot 7$	$29 \pm$-3679	8779.69	822656.953	C895.5685
-8	$269 \cdot 5432$	$7361 \cdot 64$	631628.712	$5781 \cdot 8320$	-8	$294 \cdot 6820$	$8798 \cdot 44$	$825: 93 \cdot 672$	$6910 \cdot 2947$
$\cdot 9$	269-8634	7378.81	$633839 \cdot 779$	$5795 \cdot 3173$. 9	294.9962	8817.21	827936.019	$6925 \cdot 0267$
86	$270 \cdot 1776$	7396	636056	$5808 \cdot 8184$	94	295•3104	8836	830584	6939.7944
$\cdot 1$	$270 \cdot 4917$	7413.21	$638277 \cdot 381$	$5822 \cdot 3351$	-1	$295 \cdot 6245$	8854.81	$833237 \cdot 621$	6954.5677
$\cdot 2$	270.8059	$7430 \cdot 44$	$640503 \cdot 928$	$5835 \cdot 8675$	$\cdot 2$	$295 \cdot 9387$	$8873 \cdot 64$	835896.888	$6969 \cdot 3568$
$\cdot 3$	271-1200	7447.69	$642735 \cdot 647$	$5849 \cdot 4157$	3	296.2436	8892.49	$838561 \cdot 807$	$6954 \cdot 1614$
$\cdot 4$	$271 \cdot 4342$	7464.96	$644972 \cdot 544$	5862-9795	4	296.5670	$8911 \cdot 36$	841232-384	$6998 \cdot 9821$
$\cdot 5$	$271 \cdot 7484$	$7482 \cdot 25$	647214.625	5876.5591	$\cdot 5$	$296 \cdot 8812$	$8930 \cdot 25$	$843908 \cdot 625$	7013•8183
- 6	$272 \cdot 0665$	7499.56	$649461 \cdot 896$	$5890 \cdot 1541$	$\cdot 6$	297-1953	8949-16	$846590 \cdot 536$	7028.6702
$\cdot 7$	$272 \cdot 3767$	7516.89	651714.363	5903.7654	7	$297 \cdot 5095$	8968.09	$849278 \cdot 123$	7043.5025
$\cdot 8$	$272 \cdot 6908$	$7534 \cdot 24$	653972.032	$5917 \cdot 3920$	8	297-8236	8987.04	851971-392	7058-4180
$\cdot 9$	273.0050	$7551 \cdot 61$	656234.909	5931.0344	$\cdot 9$	$298 \cdot 1378$	9006.01	854670.349	7073-3202
87	$273 \cdot 3192$	7569	658503	$5944 \cdot 6926$	95	$298 \cdot 4520$	9025	857375	$7088 \cdot 2350$
$\cdot 1$	$273 \cdot 6333$	7586.41	$660776 \cdot 311$	5958.3644	-1	298.7661	9044.01	860085.351	$7103 \cdot 1654$
-2	273.9875	$7603 \cdot 84$	663054•848	5972.0559	2	299.0723	9063.04	862801.408	7118.1116
$\cdot 3$	$274 \cdot 2616$	$7621 \cdot 29$	665338-617	5985.7691	3	$293 \cdot 3944$	$9082 \cdot 09$	$865523 \cdot 177$	7133.0734
$\cdot 4$	274.5758	$7638 \cdot 76$	$667627 \cdot 624$	$5999 \cdot 4821$	$\cdot 4$	$239 \cdot 7086$	9101•16	$868250 \cdot 664$	$7148 \cdot 0510$
$\cdot 5$	$274 \cdot 8900$	7656.25	$669921 \cdot 875$	$6013 \cdot 2187$	$\cdot 5$	$300 \cdot 0228$	$9120 \cdot 25$	$870983 \cdot 875$	$7163 \cdot 0443$
$\cdot 6$	$275 \cdot 2041$	7673.76	$672221 \cdot 376$	$6026 \cdot 9711$	$\cdot 6$	$300 \cdot 3369$	$9139 \cdot 36$	$873722 \cdot 816$	7178.0533
$\cdot 7$	275.5183	$7691 \cdot 29$	$674526 \cdot 133$	6040.7391	7	$300 \cdot 6511$	9158.49	$876467 \cdot 493$	7193.0780
-8	275•8324	7708.84	676836.152	6054.5149	8	$300 \cdot 9652$	9177-64	$879217 \cdot 912$	7208.1184
$\cdot 9$	$276 \cdot 1466$	$7726 \cdot 41$	$679151 \cdot 439$	6068-3224	$\cdot 9$	301-2794	9196 -81	$881974 \cdot 079$	$7223 \cdot 1745$
88	$276 \cdot 4608$	7744	681472	$6082 \cdot 1376$	96	301-5936	9216	884736	$7238 \cdot 2464$
$\cdot 1$	276.7749	7761-61	$683797 \cdot 841$	6095.9684	-1	$301 \cdot 9077$	$9235 \cdot 21$	$887503 \cdot 681$	7253.3339
$\cdot 2$	$277 \cdot 0891$	7779.24	686128.968	6109.8150	$\cdot 2$	302.2219	9254.44	$890277 \cdot 128$	$7268 \cdot 4871$
3	$277 \cdot 4032$	7796.89	688465.387	6123.6774	3	302:5360	9273.69	$893056 \cdot 347$	7283.5561
$\cdot 4$	277.7174	7814.56	690807-104	6137.5554	4	302-8502	9292.96	895841-344	$7298 \cdot 6907$
. 5	$278 \cdot 0316$	7832.25	693154-122	$6151 \cdot 4491$	5	303-1644	9312-25	$898632 \cdot 125$	7813-8411
$\cdot 6$	$278 \cdot 3457$	7849.96	$695506 \cdot 456$	$6165 \cdot 3585$	$\cdot 6$	303-4785	9331.56	$901428 \cdot 696$	7329.0072
$\cdot 7$	$278 \cdot 6599$	$7867 \cdot 69$	$697864 \cdot 103$	6179-2837	7	303.7927	9350.89	$904231 \cdot 063$	$7344 \cdot 1890$
-8	$278 \cdot 9750$	$7885 \cdot 44$	$700227 \cdot 072$	6193.2245	8	304-1068	$9370 \cdot 24$	$907039 \cdot 232$	$7359 \cdot 3864$
$\cdot 9$	$279 \cdot 2882$	7903.21	$702595 \cdot 369$	$6207 \cdot 1811$	9	$304 \cdot 4210$	$9889 \cdot 61$	909853-209	$7374 \cdot 5996$

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
97	$30+7352$	9409	912673	7389.8286	$\cdot 6$	$309 \cdot 7617$	9721.96	958585.256	$7635 \cdot 6273$
$\cdot 1$	$305 \cdot 0493$	$9+28 \cdot 41$	$915498 \cdot 611$	$7405 \cdot 0732$	$\cdot 7$	$310 \cdot 0759$	$9741 \cdot 69$	961504-803	7651-1933
$\cdot 2$	$305 \cdot 3635$	9447-84	$918330 \cdot 048$	$7420 \cdot 3335$	$\cdot 8$	$310 \cdot 3960$	$9761 \cdot 44$	$964430 \cdot 272$	$7666 \cdot 6349$
$\cdot 3$	$305 \cdot 6776$	9467-29	921167-317	$7435 \cdot 6095$	$\cdot 9$	$310 \cdot 7042$	$9781 \cdot 21$	$967361 \cdot 669$	$7682 \cdot 1623$
-4	$305 \cdot 9918$	9486.76	924010-424	$7450 \cdot 9013$	99	311.0184	9801	970299	$7697 \cdot 7054$
$\cdot 5$	306.3060	9506.25	926859-375	7466-2087	$\cdot 1$	$311 \cdot 3325$	9820.81	$973242 \cdot 271$	$7713 \cdot 2641$
$\cdot 6$	$306 \cdot 6201$	$9525 \cdot 76$	929714-176	7481.5319	$\cdot 2$	$311 \cdot 6467$	$9840 \cdot 64$	$976191 \cdot 488$	7728.8386
$\cdot 7$	306.9363	9515-29	$932574 \cdot 833$	$7496 \cdot 8707$	$\cdot 3$	311.9608	$9860 \cdot 49$	$979146 \cdot 657$	$7741 \cdot 4288$
-8	$307 \cdot 2484$	9564.84	935441-352	$7512 \cdot 2253$	$\cdot 4$	$312 \cdot 2750$	$9880 \cdot 36$	982107.784	7760.0347
$\cdot 9$	$307 \cdot 5626$	9584-41	938313.739	7527.5956	$\cdot 5$	812.5892	$9900 \cdot 25$	$985074 \cdot 875$	$7775 \cdot 6563$
98	$307 \cdot 8768$	9604	941192	7542.9816	$\bullet 6$	312.9033	$9920 \cdot 16$	988047.936	7791-2936
$\cdot 1$	$308 \cdot 1909$	$9623 \cdot 61$	944076-141	$7558 \cdot 3832$	$\cdot 7$	$313 \cdot 2175$	$9940 \cdot 09$	991026.973	$7806 \cdot 9466$
$\cdot 2$	308.5051	9643-24	946966-168	7573.8006	-8	313.5116	$9960 \cdot 04$	994011.992	$7822 \cdot 6154$
$\cdot 3$	308.8192	9662 -89	$949862 \cdot 087$	$7589 \cdot 2338$	$\cdot 9$	313.8458	$9980 \cdot 01$	997002.999	7838.2998
$\cdot 4$	$309 \cdot 1334$	$9682 \cdot 56$	$952763 \cdot 904$	$7604 \cdot 6826$	100	314.1600	10000	1000000	$7854 \cdot 0000$
$\cdot 5$	$309 \cdot 4476$	9702-25	955671.625	7620-1471					

A Table of the Length of Circular Arcs, radius being unity.

Degree.	Length.	Degree.	Length.	Min.	Length.	Sec.	Length.
1	0.0174553	60	1.0471976	1	0.0002909	1	$0 \cdot 000048$
2	0.0349066	70	1-2217305	2	$0 \cdot 0005818$	2	$0 \cdot 000097$
3	0.0523599	80	$1 \cdot 3962634$	3	$0 \cdot 0008727$	3	$0 \cdot 0000145$
4	0.0698132	90	1-5707963	4	$0 \cdot 0011636$	4	$0 \cdot 0000194$
5	0.0872665	100	1.7453293	5	0.0014544	5	0.0000242
6	$0 \cdot 1047198$	120	$2 \cdot 0943951$	6	0.0017453	6	$0 \cdot 0000291$
7	$0 \cdot 1221730$	150	$2 \cdot 6179939$	7	0.0020362	7	0.0000339
8	$0 \cdot 1396263$	180	3-1415927	8	$0 \cdot 0023271$	8	0.0000388
9	$0 \cdot 1570796$	210	$3 \cdot 6651914$	9	$0 \cdot 0026180$	9	$0 \cdot 0000436$
10	$0 \cdot 1745329$	240	$4 \cdot 1887902$	10	$0 \cdot 0029089$	10	$0 \cdot 0000485$
20	$0 \cdot 3490659$	270	$4 \cdot 7123890$	20	$0 \cdot 0058178$	20	$0 \cdot 0000970$
30	0.5235988	300	$5 \cdot 2359878$	30	0.0087266	30	$0 \cdot 0001454$
40	0.6981817	330	5.7595865	40	0.0116355	40	0.0001939
50	0.8726646	360	6.2831853	50	0.0145444	50	$0 \cdot 0002424$

Required the length of a circular are of $37^{\circ} 42^{\prime} 58^{\prime \prime}$?

$$
\begin{aligned}
30^{\circ} & =0.5235988 \\
7^{\circ} & =0 \cdot 1221730 \\
40^{\prime} & =0.0116355 \\
2^{\prime} & =0.0020368 \\
50^{\prime \prime \prime} & =0.0002424 \\
8^{\prime \prime} & =0.0000388
\end{aligned}
$$

The length $0 \cdot 6582703$ required in terms of the radius.
1207° Fahrenheit $=1^{\circ}$ of Wedgewood's pyrometer. Iron melts at about 166° Wedgewood; 200362° Fahrenheit.

Sound passes in air at a velocity of 1142 feet a second, and in water at a velocity of 4700 feet.

Freezing water gives out 140° of heat, and may be cooled as low as 20°. All solids absorb heat when becoming a fluid, and the quantity of heat that renders a substance fluid is termed its caloric of fluidity, or latent heat. Fluids in vacuo boil with 124° less heat, than when under the pressure of the atmosphere.

Areas of the Segments and Zones of a Circle of which the Diameter is Unity, and supposed to be divided into 1000 equal parts.

Height.	Area of Segment.	A rea of Zone.	Height.	Area of Segment.	Area of Zone.	Height.	Area of Segment.	Area of Zone.
$\cdot 001$	$\cdot 000042$	-001000	$\cdot 051$	- 015119	-050912	-101	- 041476	-100309
-002	-000119	-002000	$\cdot 052$. 015561	-051906	$\cdot 102$	- 042080	-101288
$\cdot 003$	-000219	- 003000	$\cdot 053$	- 016007	-052901	$\cdot 103$	-052687	-102267
-004	-000337	- 004000	$\cdot 054$. 016457	-053895	-104	-043296	-103246
. 005	$\cdot 000470$	-005000	-055	. 016911	- 054890	$\cdot 105$	-043908	-104223
- 006	-000618	- 006000	-056	- 017369	- 055883	-106	-044522	-105201
. 007	-000779	. 007000	-057	. 017831	- 056877	-107	- 045139	-106178
- 008	$\cdot 000951$	- 008000	-058	-018296	- 057870	-108	-045759	-107155
-009	-001135	-009000	-059	- 018766	- 058863	-109	- 046381	-108131
$\cdot 010$	$\cdot 001329$	- 010000	$\cdot 060$	- 019239	-059856	$\cdot 110$	$\cdot 047005$	-109107
. 011	-001533	- 011000	- 061	. 019716	- 060849	- 111	-047632	-110082
. 012	-001746	- 011999	-062	-020196	- 061841	$\cdot 112$. 048262	-111057
. 013	-001968	- 012999	-063	. 020680	- 062833	$\cdot 113$	-048894	-112031
. 014	-002199	- 013998	-064	- 021168	- 063825	- 114	- 049528	-113004
. 015	-002438	- 014998	$\cdot 065$. 021659	- 064817	$\cdot 115$. 050165	-113978
- 016	-002685	- 015997	-066	. 022154	- 065807	$\cdot 116$. 050804	-114951
- 017	-002940	- 016997	-067	. 022652	-066799	-117	-051446	-115924
-018	-003202	- 017996	-068	-023154	- 067790	$\cdot 118$	-052090	- 116896
-019	-003471	- 018996	-069	- 023659	-068782	$\cdot 119$	- 052736	-117867
. 020	-003748	-019995	$\cdot 070$	-024168	-069771	$\cdot 120$	- 053385	-118838
. 021	-004031	-020994	- 071	. 024680	- 070761	$\cdot 121$	- 054036	-119809
- 022	-004322	-021993	$\cdot 072$	- 025195	- 071751	$\cdot 122$	- 054689	-120779
. 023	-004618	-022992	$\cdot 073$. 025714	- 072740	$\cdot 123$. 055345	-121748
. 024	-004921	023991	$\cdot 074$. 026236	. 073729	$\cdot 124$	-056003	-122717
. 025	-005230	-024990	$\cdot 075$. 026761	- 074718	$\cdot 125$	-056663	- 123686
. 026	-005546	- 025989	$\cdot 076$. 027289	. 075707	-126	. 057326	-124654
. 027	-005867	- 026987	. 077	. 027821	- 076695	$\cdot 127$	-057991	-125621
$\cdot 0 \div 8$	-006194	- 027986	. 078	. 028356	$\cdot 077683$	-128	-058658	-126588
-029	$\cdot 006527$	-028984	$\cdot 079$. 028894	$\cdot 078670$	-129	-059327	$\cdot 127555$
-030	-006865	$\cdot 029982$. 080	- 029435	. 079658	-130	-059999	-128521
-031	-007209	-030980	-081	-029979	- 080645	- 131	-060672	-129486
-032	-007558	-031978	-082	-030526	-081631	-132	-061348	-130451
. 033	-007913	-032976	. 083	- 031076	-082618	-133	- 062026	- 131415
. 034	- 008273	.033974	-084	-031629	-083604	-134	-062707	-132379
- 035	-008638	$\cdot 034972$	-085	-032186	$\cdot 084589$	$\cdot 135$	-063389	$\cdot 133342$
. 036	-009008	- 035969	. 086	-032745	-085574	$\cdot 136$	-064074	-134304
. 037	-009383	-036967	. 087	-033307	-086559	-137	-064760	$\cdot 135266$
. 038	-009763	-037965	. 088	-033872	- 087544	-138	- 065449	-136228
. 039	- 010148	-038962	- 089	-034441	-088528	-139	-066140	$\cdot 137189$
- 040	- 010537	-039958	-090	$\cdot 035011$	-089512	-140	-066833	$\cdot 138149$
- 041	. 010931	-040954	-091	-035585	-090496	$\cdot 141$	- 067528	-139109
-042	. 011330	-041951	-092	-036162	-091479	-142	-068225	$\cdot 140068$
. 043	-011734	-042947	-093	-036741	-092461	$\cdot 143$	-068924	$\cdot 141026$
-044	-012142	-043944	-094	-037323	-093444	$\cdot 144$	- 069625	$\cdot 141984$
- 045	- 012554	- 044940	-095	-037909	-094426	$\cdot 145$	- 070328	$\cdot 142942$
- 046	- 012971	-045935	-096	. 038496	-095407	$\cdot 146$	- 071033	$\cdot 143898$
-047	-013392	-046931	-097	. 039087	-096388	$\cdot 147$	- 071741	$\cdot 144854$
-048	-013818	-047927	-098	. 039680	-097369	$\cdot 148$	-072450	$\cdot 145810$
-049	-014247	-048922	-099	. 040276	-098350	-149	-073161	$\cdot 146765$
$\cdot 0.50$	$\cdot 014681$	-049917	-100	. 040875	. 099330	$\cdot 150$	- 073874	$\cdot 147719$

Height.	Area of Seg.	A rea of Zone.	Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.
$\cdot 151$	-074589	- 148674	-206	-116650	-200915	$\cdot 261$	-163140	-248608
. 152	. 075306	-149625	$\cdot 207$	- 117460	-200924	- 262	-164019	$\cdot 249461$
. 153	-076026	- 150578	-208	- 118271	-201835	$\cdot 263$	- 164899	$\cdot 250212$
-154	$\cdot 076747$	- 151530	- 209	- 119083	-202744	$\cdot 264$	-165780	$\cdot 251162$
-155	$\cdot 077469$	-152481	$\cdot 210$	-119897	- 203652	-265	- 166663	$\cdot 252011$
$\cdot 156$. 078194	-153431	-211	-120712	-204559	-266	- 167546	- 252851
- 157	-078921	- 154381	$\cdot 212$	-121529	-205465	$\cdot 267$	- 168430	$\cdot 253704$
-158	-079649	- 155330	$\cdot 213$	- 122347	-206370	-268	- 169315	- 254549
$\cdot 159$	-080380	-156278	-214	$\cdot 123167$	-207274	-269	- 170202	- 2555392
-160	. 081112	- 157226	$\cdot 215$	-123988	-208178	$\cdot 270$	$\cdot 171080$	$\cdot 256235$
$\cdot 161$.081846	- 158173	- 216	-124810	-209080	. 271	$\cdot 171978$	- 257075
$\cdot 162$	-082582	-159119	- 217	'125634	- 209981	$\cdot 272$	$\cdot 172867$	$\cdot 257915$
$\cdot 163$	-083320	-160065	- 218	-126459	- 210882	$\cdot 273$	- 173758	- 258754
$\cdot 164$	-084059	-161010	-219	- 127285	$\cdot 211782$	$\cdot 274$	- 174649	- 259591
$\cdot 165$	$\cdot 084801$	-161954	$\cdot 220$	$\cdot 128113$	$\cdot 212680$	$\cdot 275$	$\cdot 175542$	- 260427
$\cdot 166$	-085544	-162898	-221	-128942	- 213577	$\cdot 276$	- 176435	$\cdot 261261$
-167	-086289	-163841	-222	-129773	$\cdot 214474$	$\cdot 277$	- 177330	-262094
-168	-087036	-165784	$\cdot 223$	-130605	- 215369	$\cdot 278$	- 178225	-262926
-169	-087785	-165725	$\cdot 224$	-131438	- 216264	$\cdot 279$	$\cdot 179122$	- 263757
-170	- 088535	-166666	$\cdot 225$	-132272	$\cdot 217157$	-280	-180019	- 264586
-171	-089287	- 167606	- 226	- 133108	- 218050	- 281	- 180918	- 265414
-172	-090041	- 168549	$\cdot 227$	$\cdot 133945$	-218941	$\cdot 282$	- 181817	- 266240
$\cdot 173$	$\cdot 090797$	-160484	$\cdot 228$	-134784	-219832	$\cdot 283$	- 182718	- 267065
$\cdot 174$	-091554	- 170422	$\cdot 229$	$\cdot 135624$	-220721	-284	-183619	- 267889
-175	-092313	- 171359	$\cdot 230$	- 136465	-221610	-285	$\cdot 184521$	-268711
$\cdot 176$. 093074	- 172295	-231	- 137307	-222497	-286	- 185425	- 269532
$\cdot 177$	-093836	- 173231	$\cdot 232$	-138150	- 2233354	-287	-186329	$\cdot 270352$
-178	-094601	- 174166	$\cdot 233$	- 138995	-224269	-288	- 187234	$\cdot 271170$
$\cdot 179$	-095366	$\cdot 175100$	$\cdot 234$	-139841	-225153	-289	- 188140	$\cdot 271987$
-180	$\cdot 096134$	- 176033	-235	$\cdot 140688$	-226036	-290	- 189047	$\cdot 272802$
-181	-096903	$\cdot 176966$	-236	$\cdot 141537$	-226919	-291	- 189955	. 273616
-182	-097674	- 177897	$\cdot 237$	- 142387	- 227800	-292	-190864	- 274428
-183	-098447	-178828	-238	- 143238	-228680	$\cdot 293$	-191775	- 275239
-184	-099221	-179759	$\cdot 239$	- 144091	-229559	-294	-192684	- 276049
-185	-099997	-180688	$\cdot 240$	$\cdot 144944$	-230439	-295	-193596	$\cdot 276857$
-186	$\cdot 100774$	- 181617	$\cdot 241$	$\cdot 145799$	$\cdot 231313$	-296	-194509	. 277664
-187	$\cdot 101553$	-182545	$\cdot 242$	$\cdot 146655$	- 232189	-297	- 195422	. 278469
-188	-102334	-183472	$\cdot 243$	-147512	- 233063	-298	-196337	- 279273
-189	-103116	-184398	$\cdot 244$	-148371	- 233937	-299	-197252	$\cdot 280075$
-190	$\cdot 103900$	- 185323	$\cdot 245$	-149230	- 234809	$\cdot 300$	-198168	$\cdot 280876$
-191	-104685	- 186248	-246	-150091	- 235680	- 301	- 199085	-281675
-192	$\cdot 105472$	-187172	$\cdot 257$	$\cdot 150953$	- 236550	-302	$\cdot 200003$	-282473
-193	$\cdot 106261$	-188094	- 248	- 151816	- 237419	-303	-200922	$\cdot 283269$
-194	$\cdot 107051$	-189016	$\cdot 249$	- 152680	- 238287	- 304	- 201841	$\cdot 284063$
-195	-107842	-189938	$\cdot 250$	$\cdot 153546$	$\cdot 239153$	-305	-202761	-284857
-196	$\cdot 108636$	-190858	. 251	- 154412	- 240019	-306	- 203683	-285648
-197	-109430	-191777	- 252	- 155280	- 240883	- 307	- 204605	$\cdot 286438$
-198	-110226	-192696	$\cdot 253$	$\cdot 156149$	- 241746	-308	- 205527	$\cdot 287227$
-199	$\cdot 111024$	-193614	-254	-157019	-242608	-309	- 206451	-288014
$\cdot 200$	- 111823	-194531	$\cdot 255$	$\cdot 157890$	$\cdot 243469$	- 310	$\cdot 207376$	$\cdot 288799$
-201	-112624	-195447	- 256	-158762	- 244328	-311	-208301	. 289583
$\cdot 202$	$\cdot 113426$	-196362	$\cdot 257$	- 159636	$\cdot 245187$	- 312	-209227	-290365
$\cdot 203$	- 114230	-197277	-258	-160510	-246044	$\cdot 313$	- 210154	- 291146
$\cdot 204$	-115035	-198190	-259	- 161386	-246900	$\cdot 314$	- 211082	-291925
$\cdot 205$	$\cdot 115842$	-199103	-260	-162263	$\cdot 247755$	$\cdot 315$	$\cdot 212011$	$\cdot 292702$

He	Area of Seg.	.	Height.	ge.	Area of Zone.	Height.	Seg.	
-316	-212940	'293478	-371	-265144	-333372	$\cdot 426$	318	
-317	-213871	-29.4252	-372	-266111	-334041	-427	-319959	366985
-318	-214802	-295025	73	-267078	-334708	428	320948	367504
$\cdot 319$	$\cdot 215733$	-295796	-374	-268045	-335373	-429	2193	368019
-320	-216666	-296565	-375	269013	-336036	$\cdot 430$	2292	368531
321	- 217	2973	376	26	336696	431	323918	40
	-21853	-298098	-377	-270	37354	432	324909	69
$\cdot 323$	-219468	-298863	378	-271920	-338010	-433	325900	3700
-324	-220404	-299625	-379	272890	-338663	$\cdot 434$	-326892	370545
- 325	-221340	-300386	-380	273861	-339314	-435		-371040
-326	-222277	30	381	- 274832	-339963	-436	-328874	
-327	-223215	$\cdot 301902$	-382	-275803	-340609	-437	-329866	-372019
-328	-224154	-302658	383	-276775	-341253	-438	-330858	372503
-329	-225093	-303412	384	-277748	- 341895	$\cdot 439$	-331850	372983
$\cdot 33$	-226033	-3041	38.5	. 27	. 34	40	-330813	373460
-331	-226.974	-304914	386	-279694	-34317	441	-333836	373933
-332	-227915	-305663	387	-280668	-34380.5	442	-334829	374403
$\cdot 33$	-228858	-306410	88	-281642	- 344437	$\cdot 443$	-335822	374868
-334	-229801	-307155	389	$\cdot 282617$	-34506	$\cdot 444$	-336816	330
-335	-230745	-307898	390	-283592	56	$\cdot 445$	7810	788
-336	231	-308640		-284568	-346318	$\cdot 446$	-338804	42
-337	-232634	-309379	92	-285544	346940	447	-339798	76692
-338	-233580	-310117	393	-286521	347560	$\cdot 448$	$\cdot 340793$	7138
-339	$\cdot 234526$	-310853	-394	-287498	348177	$\cdot 449$	-341787	7580
-340	-235473	-31158	-395	$\cdot 288$	-348791	-450	-34278.	
$\cdot 341$	-236421	-312319	396	-289453	-349403	-451	34	378452
-342	-237369	-313050	-397	-290432	-350012	$\cdot 452$	$\cdot 344772$	378881
-343	-238318	-313778	- 398	-291411	-350619	$\cdot 453$	-345768	379307
$\cdot 34$	-239268	-314505	-399	-292390	- 35122	-454	-34676	-379728
-345	-240218	-315230	-400		51824	45	-3477	
-346	- 241169	-315952	-401	- 294349	-352	-456	-348755	. 380557
-347	- 242121	-316673	$\cdot 402$	$\cdot 295330$	-3530	$\cdot 457$	-349752	-380965
-348	-243074	-317393	-403	-296311	-35361	-458	-35074	381369
-349	-244026	. 318110	-404	-297292	354202	-459	-351745	381768
-350	-244980	-318825	-405	-2982		-460	-352742	162
. 35	- 2459	-319538		-2992		1		
-35	-246889	-320249	407	-300238	-35595	-462	-354736	936
-	-247845	-320958	408	-301220	-356537	-463	-355732	383316
-354	-248801	-321666	409	-302203	711	$\cdot 464$	-356730	3691
-355	-249757	-322371	410			$\cdot 465$	-357727	
-356	- 250	- 323075	411	-304171	-358258	-466	-358725	384426
-35	-251673	-323775	-412	-305155	-358827	-467	-359723	-384786
-358	$\cdot 252631$	$\cdot 324474$	-413	-306140	-35939	-468	-360721	$\cdot 385144$
-359	-253590	-325171	414	-307125	-359954	-469	-361719	
-	- 254	-325866				-470	-362717	
$\cdot 361$	- 255510	-326559	$\cdot 416$	-309095	- 361070	$\cdot 471$	-363715	88817
-362	-256471	$\cdot 327250$	417	-310081	-361623	-472	-364713	-386505
63	-257433	-327939	$\cdot 418$	-311068	-362173	-473	-365712	386832
-364	-258395	-328625	419	-312054	-362720	-474	-366710	87153
-36	-259357	-329310	420	-313041	-36326	-	67	
$\bullet 366$	-260320	-329992	-421	-314029	-363805	$\cdot 476$	-368708	88778
367	-261284	-330673	422	315016	-364343	-477	-369707	-388081
-368	-262248	-331351	423	-316004	-364878	-478	-370706	-388377
-369	-263213	-332027	-424	-316992	-365410	$\cdot 479$	-371704	-388669
$\cdot 370$	$\cdot 254178$	-332700	-425	-317981	:36593	-480	-37270	-388951

RULES FOR FINDING THE AREA OF A CIRCULAR ZONE, ETC. 67

Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.
-481	-373703	-389228	$\cdot 491$	-383699	-391564	-496	-388699	-392362
-482	-374702	-389497	$\cdot 492$	-384699	-391748	-497	-389699	-392480
-483	-375702	-389759	$\cdot 493$	-385699	-391920	-498	-390699	-392580
-484	-376702	-390014	-494	-386699	-392081	-499	-391699	-392657
-435	-377701	-390261	-495	-387699	-392229	- 500	-392699	-392699

-487 $\quad \cdot 379700$-390730
-488 \quad •380700 $\quad \cdot 390953$
-489

-490	-382699	-391370

To find the area of a segment of a circle.
Rule.-Divide the height, or versed sine, by the diameter of the circle, and find the quotient in the column of heights.
Then take out the corresponding area, in the column of areas, and multiply it by the square of the diameter; this will give the area of the segment.

Required the area of a segment of a circle, whose height is $3 \frac{1}{4}$ feet, and the diameter of the circle 50 feet.

$$
3 \frac{1}{4}=3 \cdot 25 ; \text { and } 3 \cdot 25 \div 50=-065
$$

$\cdot 065$, by the Table $=\cdot \cdot 021659$; and $\cdot 021659 \times 50^{2}=54 \cdot 147500$, the area required.

To find the area of a circular zone.

Rule 1.-When the zone is less than a semi-circle, divide the height by the longest chord, and seek the quotient in the column of heights. Take out the corresponding area, in the next column on the right hand, and multiply it by the square of the longest chord.

Required the area of a zone whose longest chord is 50 , and height 15.
$15 \div 50=\cdot 300$; and $\cdot 300$, by the Table, $=\cdot 280876$.
Hence $280876 \times 50^{2}=702 \cdot 19$, the area of the zone.
Rule 2.-When the zone is greater than a semi-circle, take the height on each side of the diameter of the circle.

Required the area of a zone, the diameter of the circle being 50 , and the height of the zone on each side of the line which passes through the diameter of the circle 20 and 15 respectively.
$20 \div 50=\cdot 400 ; \cdot 400$, by the Table,$=\cdot 351824$; and $\cdot 351824 \times$ $50^{2}=879 \cdot 56$.
$15 \div 50=\cdot 300 ; \cdot 300$, by the Table $=\cdot 280876$; and $\cdot 280876 \times$ $50^{2}=702 \cdot 19 . \quad$ Hence $879 \cdot 56+702 \cdot 19=1581 \cdot 75$.

Approximating rule to find the area of a segment of a circle.
Rule.-Multiply the chord of the segment by the versed sine, divide the product by 3 , and multiply the remainder by 2 .

Cube the height, or versed sine, find how often twice the length of the chord is contained in it, and add the quotient to the former product; this will give the area of the segment very nearly.

Required the area of the segment of a circle, the chord being 12, and the versed sine 2.

$$
\begin{gathered}
12 \times 2=24 ; \frac{24}{3}=8 ; \text { and } 8 \times 2=16 . \\
2^{3} \div 24=8333
\end{gathered}
$$

Hence $16+\cdot 3333=16 \cdot 3333$, the area of the segment very nearly.

Height of Arc.	Length of Arc.	Height of Arc.	Length Arc.	$\begin{gathered} \text { Height } \\ \text { of } \\ \text { Arc. } \end{gathered}$	Length of Arc.	Height of Arc.	Length of	Height of Arc.	Length Arc. Arc.
$\cdot 100$	1.02645	$\cdot 181$	1.08519	$\cdot 261$	1.17275	$\cdot 341$	1-28583	$\cdot 421$	$1 \cdot 42041$
-101	1.02698	-182	1.08611	$\cdot 262$	$1 \cdot 17401$	$\cdot 342$	$1 \cdot 28739$	$\cdot 422$	$1 \cdot 42222$
-102	1.02752	-183	1.08704	-263	1.17527	$\cdot 343$	$1 \cdot 28895$	$\cdot 423$	$1 \cdot 42402$
$\cdot 103$	1.02806	-184	1.08797	$\cdot 264$	$1 \cdot 17655$	-344	$1 \cdot 29052$	$\cdot 424$	$1 \cdot 42583$
-104	1.02860	-185	1.08890	-265	1-17784	-345	$1 \cdot 29209$	$\cdot 425$	1-42764
-105	1.02914	-186	1.08984	$\cdot 266$	$1 \cdot 17912$	$\cdot 346$	$1 \cdot 29366$	$\cdot 426$	$1 \cdot 429+5$
-106	$1 \cdot 02970$	$\cdot 187$	1.09079	$\cdot 267$	$1 \cdot 18040$	$\cdot 347$	$1 \cdot 29523$	$\cdot 427$	1.43127
-107	1.03026	-188	$1 \cdot 09174$	-268	$1 \cdot 18162$	-348	$1 \cdot 29681$	$\cdot 428$	1.43309
-108	1.03082	-189	1.09269	$\cdot 269$	$1 \cdot 18294$	-349	$1 \cdot 29839$	$\bullet 429$	$1 \cdot 43491$
-109	1.03139	-190	1.09365	270	$1 \cdot 18428$	-350	$1 \cdot 29997$	$\bullet 430$	$1 \cdot 43673$
$\cdot 110$	1.03196	-191	1.09461	$\cdot 271$	$1 \cdot 18557$	$\cdot 351$	$1 \cdot 30156$	$\cdot 431$	$1 \cdot 43856$
-111	1.03254	-192	1.09557	$\cdot 272$	1-18688	$\cdot 352$	$1 \cdot 30315$	$\cdot 432$	$1 \cdot 44039$
$\cdot 112$	$1 \cdot 03312$	-193	$1 \cdot 09654$	-273	$1 \cdot 18819$	$\cdot 353$	1-30474	-433	$1 \cdot 44222$
-113	1.03371	-194	$1 \cdot 09752$	$\cdot 274$	$1 \cdot 18969$	-354	$1 \cdot 30634$	$\bullet 434$	$1 \cdot 44405$
-114	1.03430	-195	$1 \cdot 09850$	$\cdot 275$	$1 \cdot 19082$	-355	$1 \cdot 30794$	$\bullet 435$	$1 \cdot 44589$
-115	1.03490	-196	1.09949	$\cdot 276$	$1 \cdot 19214$	-356	$1 \cdot 30954$	$\bullet 436$	$1 \cdot 44773$
-116	1.03551	-197	$1 \cdot 10048$	$\cdot 277$	1.19345	$\cdot 357$	$1 \cdot 31115$	$\cdot 437$	1.44957
-117	1.03611	-198	$1 \cdot 10147$	$\cdot 278$	1-19477	-358	$1 \cdot 31276$	$\bullet 438$	$1 \cdot 45142$
-118	1.03672	-199	1-10247	$\cdot 279$	1.19610	-359	$1 \cdot 31437$	$\bullet 439$	$1 \cdot 45327$
-119	1.03734	-200	1.10348	$\cdot 280$	$1 \cdot 19743$	$\cdot 360$	$1 \cdot 31599$	$\bullet 440$	$1 \cdot 45512$
-120	1.08797	-201	$1 \cdot 10447$	-281	1-19887	-361	$1 \cdot 31761$	$\cdot 441$	1.45697
-121	1.03860	-202	$1 \cdot 10548$	-282	1-20011	$\cdot 362$	$1 \cdot 31923$	$\cdot 442$	$1 \cdot 45883$
$\cdot 122$	1.03923	-203	1-10650	$\cdot 283$	1-20146	$\cdot 363$	$1 \cdot 32086$	$\cdot 443$	$1 \cdot 46069$
$\cdot 123$	1.03987	-204	$1 \cdot 10752$	$\cdot 284$	$1 \cdot 20282$	$\cdot 364$	$1 \cdot 32249$	$\cdot 444$	$1 \cdot 46255$
-124	1.04051	-205	$1 \cdot 10855$	$\cdot 285$	$1 \cdot 20419$	-365	$1 \cdot 32413$	$\cdot 445$	$1 \cdot 46441$
$\cdot 125$	1.04116	-206	1-10958	$\cdot 286$	$1 \cdot 20558$	-366	$1 \cdot 32577$	$\cdot 446$	1.46628
$\cdot 126$	$1 \cdot 04181$	-207	1-11062	-287	1-20696	$\cdot 367$	$1 \cdot 32741$	$\cdot 447$	$1 \cdot 46815$
$\cdot 127$	1.04247	-208	$1 \cdot 11165$	-288	1-20828	$\cdot 368$	$1 \cdot 32905$	$\cdot 448$	$1 \cdot 47002$
$\cdot 128$	1.04313	-209	1-11269	-289	$1 \cdot 20967$	-369	$1 \cdot 33069$	$\cdot 449$	$1 \cdot 47189$
-129	1.04380	-210	1.11374	-290	$1 \cdot 21202$	$\cdot 370$	$1 \cdot 33234$	$\cdot 450$	$1 \cdot 47377$
-130	1.04447	$\cdot 211$	1-11479	-291	1-21239	$\cdot 371$	1-33399	$\cdot 451$	$1 \cdot 47565$
-131	1.04515	-212	$1 \cdot 11584$	-292	1.21381	$\cdot 372$	$1 \cdot 33564$	$\cdot 452$	$1 \cdot 47753$
$\cdot 132$	1.04584	$\cdot 213$	$1 \cdot 11692$	-293	1.21520	$\cdot 373$	$1 \cdot 33730$	$\bullet 453$	$1 \cdot 47942$
-133	$1 \cdot 04652$	-214	$1 \cdot 11796$	-294	1-21658	$\cdot 374$	1-33896	$\cdot 454$	$1 \cdot 48131$
$\cdot 134$	$1 \cdot 04722$	-215	$1 \cdot 11904$	-295	1-21794	$\cdot 375$	$1 \cdot 34063$	$\cdot 455$	$1 \cdot 48320$
-135	$1 \cdot 04792$	$\cdot 216$	1-12011	-296	1.21926	-376	$1 \cdot 34229$	$\cdot 456$	1-48509
-136	$1 \cdot 04862$	$\cdot 217$	$1 \cdot 12118$	-297	1-22061	$\cdot 377$	$1 \cdot 34396$	$\cdot 457$	$1 \cdot 48699$
$\cdot 137$	$1 \cdot 04932$	$\cdot 218$	$1 \cdot 12225$	-298	1-22203	-378	$1 \cdot 34563$	-458	$1 \cdot 48889$
-138	$1 \cdot 05003$	-219	$1 \cdot 12334$	-299	$1 \cdot 22347$	$\cdot 379$	$1 \cdot 34731$	-459	$1 \cdot 49079$
-139	$1 \cdot 05075$	$\cdot 220$	$1 \cdot 12445$	-300	1.22495	$\cdot 380$	$1 \cdot 34899$	$\cdot 460$	1.49269
-140	1.05147	$\cdot 221$	$1 \cdot 12556$	-301	$1 \cdot 22635$	-381	1-35068	$\cdot 461$	1.49460
-141	1.05220	-222	1-12663	-302	1-22776	-382	$1 \cdot 35237$	$\cdot 462$	$1 \cdot 49651$
-142	$1 \cdot 05293$	$\cdot 223$	1-12774	-303	$1 \cdot 22918$	-383	$1 \cdot 35406$	$\cdot 463$	$1 \cdot 49842$
$\cdot 143$	$1 \cdot 05367$	$\cdot 224$	1.12885	-304	1-23061	-384	$1 \cdot 35575$	$\cdot 464$	$1 \cdot 50033$
-144	$1 \cdot 05441$	$\cdot 225$	$1 \cdot 12997$	-305	$1 \cdot 23205$	-385	$1 \cdot 35744$	${ }^{4} 46$	$1 \cdot 50224$
-145	1.05516	-226	$1 \cdot 13108$	-306	$1 \cdot 23349$	-386	$1 \cdot 35914$	$\bullet 466$	1.50416
-146	$1 \cdot 05591$	-227	1.13219	$\cdot 307$	$1 \cdot 23494$	-387	$1 \cdot 36084$	$\cdot 467$	1.50608
$\cdot 147$	$1 \cdot 05667$	$\cdot 228$	$1 \cdot 13331$	-308	$1 \cdot 23636$	-388	$1 \cdot 36254$	$\bullet 468$	$1 \cdot 50800$
-148	$1 \cdot 05743$	$\cdot 229$	$1 \cdot 13+44$	-309	$1 \cdot 23780$	$\cdot 389$	$1 \cdot 36425$	$\cdot 469$	$1 \cdot 50992$
-149	$1 \cdot 05819$	$\cdot 230$	$1 \cdot 13557$	$\cdot 310$	$1 \cdot 23925$	-390	$1 \cdot 36596$	$\cdot 470$	1-51185
-150	1.05896	-231	$1 \cdot 13671$	$\cdot 311$	$1 \cdot 24070$	-391	$1 \cdot 36767$	$\cdot 471$	1.51378
$\cdot 151$	1.05973	$\cdot 232$	$1 \cdot 13786$	-312	$1 \cdot 24216$	-392	1-36939	$\cdot 472$	1.51571
$\cdot 152$	1.06051	$\cdot 233$	$1 \cdot 13903$	-313	$1 \cdot 24360$	-393	$1 \cdot 3 \% 111$	$\cdot 473$	1.51764
$\cdot 153$	$1 \cdot 06130$	$\cdot 234$	$1 \cdot 14020$	$\cdot 314$	$1 \cdot 24506$	-394	$1 \cdot 37283$	$\bullet 474$	1.51958
$\cdot 154$	$1 \cdot 06209$	-225	$1 \cdot 14136$	$\cdot 315$	$1 \cdot 24654$	-395	$1 \cdot 37455$	$\bullet 475$	1.52152
$\cdot 155$	$1 \cdot 06288$	-236	$1 \cdot 14247$	-316	1-24801	-396	$1 \cdot 37628$	$\cdot 476$	$1 \cdot 52346$
$\cdot 156$	$1-06368$	-237	1 114363	$\cdot 317$	$1 \cdot 24946$	-397	1-37801	$\cdot 477$	1.52541
-157	1.06449	-238	$1 \cdot 14480$	$\cdot 318$	$1 \cdot 25095$	-398	$1 \cdot 37974$	$\cdot 478$	1.52736
-158	1.06530	-239	$1 \cdot 14597$	$\cdot 319$	$1 \cdot 25243$	-399	1.38148	$\bullet 479$	1.52931
-159	$1 \cdot 06611$	-240	1.14714	$\cdot 320$	1-25391	$\cdot 400$	1.38322	$\cdot 480$	1.53126
-160	$1 \cdot 06693$	-241	$1 \cdot 14831$	$\cdot 321$	1-25539	$\cdot 401$	$1 \cdot 38496$	-481	1.53322
-161	$1 \cdot 06775$	-242	$1 \cdot 14949$	$\cdot 322$	$1 \cdot 25686$	$\cdot 402$	1.38671	$\cdot 482$	1.53518
-162	$1 \cdot 06858$	-243	1-15067	-323	$1 \cdot 25836$	$\cdot 403$	$1 \cdot 38846$	$\cdot 483$	1.53714
$\cdot 163$	$1 \cdot 06941$	-244	$1 \cdot 15186$	-324	$1 \cdot 25987$	$\cdot 404$	1-39021	$\cdot 484$	1.53910
-164	$1 \cdot 07025$	-245	$1 \cdot 15308$	-325	$1 \cdot 26137$	$\cdot 405$	$1 \cdot 39196$	$\cdot 485$	$1 \cdot 54106$
-165	1.07109	-246	$1 \cdot 15429$	$\cdot 326$	1-26286	-406	$1 \cdot 39372$	$\cdot 486$	$1 \cdot 54302$
$\cdot 166$	1.07194	$\cdot 247$	$1 \cdot 15549$	$\cdot 327$	$1 \cdot 26437$	$\cdot 407$	1.39548	$\bullet 487$	1.54499
$\cdot 167$	1.07279	-248	$1 \cdot 15670$	$\cdot 328$	$1 \cdot 2658.3$	$\cdot 408$	1.39724	$\cdot 488$	1.54696
-168	1.07365	$\cdot 249$	$1 \cdot 15791$	-329	$1 \cdot 26740$	$\bullet 409$	1.39900	$\bullet 489$	$1 \cdot 54893$
$\cdot 169$	1.07451	-250	$1 \cdot 15912$	-330	$1 \cdot 26892$	$\cdot 410$	$1 \cdot 40077$	$\bullet 490$	1.55090
-170	$1 \cdot 07537$	-251	$1 \cdot 16033$	$\cdot 331$	$1 \cdot 27044$	$\cdot 411$	1-40254	$\cdot 491$	1-55288
-171	1.07624	-252	$1 \cdot 16157$	$\cdot 332$	$1 \cdot 27196$	-412	$1 \cdot 40432$	$\cdot 492$	1.55486
-172	1.0:711	-253	$1 \cdot 16279$	$\cdot 333$	$1 \cdot 27349$	$\cdot 413$	1.40610	$\cdot 493$	$1 \cdot 55685$
-173	1.07799	-254	$1 \cdot 16402$	$\cdot 334$	1-27502	$\cdot 414$	1.40788	$\cdot 494$	$1 \cdot 55854$
-174	$1 \cdot 07888$	-255	1-16526	-335	$1 \cdot 27656$	-415	1.40966	$\cdot 495$	$1 \cdot 56083$
-175	$1 \cdot 07977$	-256	$1 \cdot 16649$	-336	1-27810	-416	$1 \cdot 41145$	$\cdot 496$	$1 \cdot 56282$
$\cdot 176$	1.08066	-257	1.16774	$\cdot 337$	1.27864	$\cdot 417$	1.41324	$\cdot 497$	$1 \cdot 56481$
-177	1.08156	-258	$1 \cdot 16899$	- 338	1.28118	$\cdot 418$	1.41503	$\cdot 498$	1.56680
-178	1.08246	$\stackrel{-259}{ }$	1.17024	-339	1.28273	$\cdot 419$	1.41682	-499	1.56879
-179	1.08337	-260	$1 \cdot 17150$	-340	1-28428	$\cdot 420$	$1 \cdot 41861$	-500	1-57079
-180	1.08428								

PROPORTIONS OF THE LENGTHS OF SEMIELLIPTIC ARCS.

Height of Arc.	Length of Arc.	$\begin{aligned} & \text { Height } \\ & \text { of Are. } \end{aligned}$	Length of Arc.	Height of Are.	Length of Arc.	$\begin{aligned} & \text { Height } \\ & \text { of Arc. } \end{aligned}$	Length of Arc.	Height of Arc.	Length of Arc.
$\cdot 100$	1.04162	$\cdot 157$	$1 \cdot 10113$	$\cdot 214$	$1 \cdot 66678$	$\cdot 271$	1.23835	- 328	1.31472
-101	$1 \cdot 04262$	$\cdot 158$	1-10224	$\cdot 215$	1-16799	$\cdot 272$	$1 \cdot 23966$	-329	$1 \cdot 31610$
-102	$1 \cdot 04362$	$\cdot 159$	1-10335	$\cdot 216$	$1 \cdot 16920$	$\cdot 273$	$1 \cdot 24097$	$\cdot 330$	$1 \cdot 31748$
-103	1.04462	-160	1-10447	$\cdot 217$	$1 \cdot 17041$	$\cdot 274$	$1 \cdot 24228$	-331	$1 \cdot 31886$
-104	1.04562	-161	1-10560	$\cdot 218$	$1 \cdot 17163$	$\cdot 275$	$1 \cdot 24359$	- 332	$1 \cdot 32024$
-105	1.04662	$\cdot 162$	$1 \cdot 10672$	$\cdot 219$	$1 \cdot 17285$	$\cdot 276$	$1 \cdot 24480$	- 333	$1 \cdot 32162$
. 106	$1 \cdot 04762$	-163	$1 \cdot 10784$	-220	$1 \cdot 17407$	$\cdot 277$	$1 \cdot 24612$	- 334	$1 \cdot 32300$
. 107	1.04862	-164	1-10896	$\cdot 221$	$1 \cdot 17529$	$\cdot 278$	$1 \cdot 24744$. 335	$1 \cdot 32438$
. 108	$1 \cdot 04962$	-165	1-11008	-222	1-17651	-279	$1 \cdot 24876$	-336	$1 \cdot 32576$
- 109	1.05063	-166	$1 \cdot 11120$	$\cdot 223$	$1 \cdot 17774$	$\cdot 280$	$1 \cdot 25010$	$\cdot 337$	$1 \cdot 32715$
. 110	1.05164	-167	1-11232	$\cdot 224$	$1 \cdot 17897$	-281	$1 \cdot 25142$. 338	$1 \cdot 32854$
- 111	1.05265	-168	$1 \cdot 11344$	$\cdot 225$	1-18020	$\cdot 282$	$1 \cdot 25274$	$\cdot 339$	$1 \cdot 32993$
. 112	1.05366	-169	$1 \cdot 11456$	$\cdot 226$	$1 \cdot 18143$	$\cdot 283$	$1 \cdot 25406$. 340	$1 \cdot 33132$
-113	1.05467	$\cdot 170$	$1 \cdot 11569$	$\cdot 227$	1-18266	$\cdot 284$	$1 \cdot 25538$	$\cdot 341$	$1 \cdot 33272$
$\cdot 114$	$1 \cdot 05568$	$\cdot 171$	$1 \cdot 11682$	$\cdot 228$	$1 \cdot 18390$	$\cdot 285$	$1 \cdot 25670$. 342	$1 \cdot 33412$
. 115	$1 \cdot 05669$	$\cdot 172$	$1 \cdot 11795$	$\cdot 229$	$1 \cdot 18514$	$\cdot 286$	$1 \cdot 25803$. 343	$1 \cdot 33552$
$\cdot 116$	1.05770	$\cdot 173$	$1 \cdot 11908$	$\cdot 230$	$1 \cdot 18638$	$\cdot 287$	$1 \cdot 25936$. 344	$1 \cdot 33692$
- 117	1.05872	$\cdot 174$	$1 \cdot 12021$	$\cdot 231$	1-18762	$\cdot 288$	$1 \cdot 26069$	$\cdot 345$	$1 \cdot 33833$
. 118	1.05974	$\cdot 175$	$1 \cdot 12134$	$\cdot 232$	$1-18886$	-289	$1 \cdot 26202$	$\cdot 346$	$1 \cdot 33974$
-119	1.06076	$\cdot 176$	1-12247	$\cdot 233$	$1 \cdot 19010$	$\cdot 290$	$1 \cdot 26335$	$\cdot 347$	$1 \cdot 34115$
-120	1.06178	$\cdot 177$	$1 \cdot 12360$	-234	1-19134	-291	$1 \cdot 26468$	$\cdot 348$	$1 \cdot 34256$
-121	1.06280	$\cdot 178$	$1 \cdot 12473$	$\cdot 235$	1-19258	-292	$1 \cdot 26601$	- 349	$1 \cdot 34397$
-122	1.06382	$\cdot 179$	$1 \cdot 12586$	$\cdot 236$	1-19382	$\cdot 293$	$1 \cdot 26734$	$\cdot 350$	$1 \cdot 34539$
. 123	$1 \cdot 06484$	-180	1-12699	$\cdot 237$	$1 \cdot 19506$	$\cdot 294$	$1 \cdot 26867$. 851	$1 \cdot 34681$
-124	1.06586	$\cdot 181$	$1 \cdot 12813$	$\cdot 238$	$1 \cdot 19630$	-295	$1 \cdot 27000$	-352	$1 \cdot 34823$
-125	1.06689	$\cdot 182$	1-12927	$\cdot 239$	1-19755	$\cdot 296$	$1 \cdot 27133$	$\cdot 353$	$1 \cdot 34965$
- 126	1.06792	$\cdot 183$	$1 \cdot 13041$	-240	1-19880	$\cdot 297$	$1 \cdot 27267$	- 354	$1 \cdot 35108$
-127	1.06895	$\cdot 184$	$1 \cdot 13155$	$\cdot 241$	$1 \cdot 20005$	-298	$1 \cdot 27401$. 355	$1 \cdot 35251$
- 128	1.06998	-185	1-13269	$\cdot 242$	$1 \cdot 20130$	-299	$1 \cdot 27535$	$\cdot 356$	$1 \cdot 35394$
-129	1.07001	$\cdot 186$	$1 \cdot 13383$	$\cdot 243$	$1 \cdot 20255$	-300	$1 \cdot 27669$	$\cdot 357$	$1 \cdot 35537$
-130	1.07204	$\cdot 187$	1-13497	$\cdot 244$	$1 \cdot 20380$. 301	$1 \cdot 27803$	$\cdot 358$	$1 \cdot 35680$
-131	1.07308	-188	$1 \cdot 13611$	$\cdot 245$	$1 \cdot 20506$	-302	1-27937	-359	$1 \cdot 35823$
-132	1.07412	-189	$1 \cdot 13726$	$\cdot 246$	$1 \cdot 20632$	-303	$1 \cdot 28071$	$\cdot 360$	$1 \cdot 35967$
-133	1.07516	-190	1-13841	- 247	$1 \cdot 20758$	-304	$1 \cdot 28205$. 361	$1 \cdot 36111$
-134	1.07621	-191	$1 \cdot 13956$	$\cdot 248$	1-20884	- 305	$1 \cdot 28339$	- 362	$1 \cdot 36255$
-135	1.07726	-192	1-14071	$\cdot 249$	$1 \cdot 21010$	-306	$1 \cdot 28474$	-363	$1 \cdot 36399$
-136	1.07831	-193	1-14186	-250	$1 \cdot 21136$	$\cdot 307$	1-28609	-364	$1 \cdot 36543$
-137	1.07937	$\cdot 194$	$1 \cdot 14301$	- 251	$1 \cdot 21263$	-308	$1 \cdot 28744$. 365	$1 \cdot 36688$
-138	1.08043	$\cdot 195$	$1 \cdot 14416$	- 252	$1 \cdot 21390$	$\cdot 309$	$1 \cdot 28879$	- 366	$1 \cdot 36833$
-139	1.08149	-196	$1 \cdot 14531$. 253	$1 \cdot 21517$	$\cdot 310$	$1 \cdot 29014$	$\cdot 367$	$1 \cdot 36978$
$\cdot 140$	1.08255	$\cdot 197$	1-14646	. 254	1.21644	$\cdot 311$	$1 \cdot 29149$	- 368	$1 \cdot 37123$
-141	1.08362	-198	$1 \cdot 14762$	$\cdot 255$	1.21772	$\cdot 312$	$1 \cdot 29285$	$\cdot 369$	$1 \cdot 37268$
-142	1.08469	$\cdot 199$	$1 \cdot 14888$	-256	$1 \cdot 21900$	$\cdot 313$	$1 \cdot 29421$. 370	$1 \cdot 37414$
$\cdot 143$	1.08576	$\cdot 200$	$1 \cdot 15014$	$\cdot 257$	$1 \cdot 22028$	$\cdot 314$	$2 \cdot 29557$	-371	$1 \cdot 37662$
$\cdot 144$	1.08684	-201	$1 \cdot 15131$	-258	$1 \cdot 22156$	$\cdot 315$	1-29603	- 372	$1 \cdot 37708$
-145	1.08792	-202	$1 \cdot 15248$	$\cdot 259$	$1 \cdot 22284$	$\cdot 316$	1-29829	$\cdot 373$	$1 \cdot 37854$
-146	1.08901	-203	$1 \cdot 15366$	- 260	$1 \cdot 22412$	$\cdot 317$	$1 \cdot 29965$	$\cdot 374$	$1 \cdot 38000$
$\cdot 147$	1.09010	$\cdot 204$	$1 \cdot 15484$	- 261	$1 \cdot 22541$	$\cdot 318$	$1 \cdot 30102$. 375	$1 \cdot 38146$
-148	1.09119	- 205	$1 \cdot 15602$. 262	$1 \cdot 22670$	$\cdot 319$	$1 \cdot 30239$	$\cdot 376$	$1 \cdot 38292$
-149	1.09228	-206	$1 \cdot 15720$	$\cdot 263$	$1 \cdot 22799$	- 320	$1 \cdot 30376$	$\cdot 377$	$1 \cdot 38439$
-150	1.09330	$\cdot 207$	$1 \cdot 15838$	- 264	$1 \cdot 22928$	- 321	$1 \cdot 30513$. 378	$1 \cdot 38585$
$\cdot 151$	1.09448	-208	1-15957	$\cdot 265$	$1 \cdot 23057$	$\cdot 322$	$1 \cdot 30650$	- 379	$1 \cdot 38732$
-152	1.09558	-209	1-16076	- 266	$1 \cdot 23186$	$\cdot 323$	1-30787	$\cdot 380$	$1 \cdot 38879$
$\cdot 153$	1.09669	$\cdot 210$	1-16196	$\cdot 267$	$1 \cdot 23315$	- 324	1-30924	$\cdot 381$	$1 \cdot 39024$
$\cdot 154$	1.09780	$\cdot 211$	1-16316	- 268	1.23445	$\cdot 325$	$1 \cdot 31061$	- 382	$1-39169$
-155	1.09891	$\cdot 212$	1-16436	$\cdot 269$	$1 \cdot 23575$	-326	$1 \cdot 31198$. 383	$1 \cdot 39314$
-156	1-10002	$\cdot 213$	1-16557	$\cdot 270$	1.23705	$\cdot 327$	1.31335	-384	$1 \cdot 39459$

Height of arc.	Length of Arc.	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \substack{\text { of Are. }} \end{array}$	Length of	$\begin{aligned} & \text { Height } \\ & \text { of Aro. } \end{aligned}$	Length of Are.	$\left.\begin{array}{\|c\|c} \substack{\text { of } \mathrm{of} \mathrm{Ar} .} \end{array} \right\rvert\,$	Length of Arc.	$\begin{aligned} & \text { Height } \\ & \text { of Are. } \end{aligned}$	$\begin{aligned} & \text { Length of } \\ & \text { Arc. } \end{aligned}$
- 3	1-39605	-447	$1 \cdot 48850$	09	174	571	$1 \cdot 68195$	$\cdot 633$	72
. 386	1.39751	-448	$1 \cdot 49003$. 510	1.58629	-572	1.68354	-634	1.78335
-387	1.39897	$\cdot 449$	1-49157	-511	$1 \cdot 58784$	573	$1 \cdot 68513$	-635	1.78498
-388	1-40043	$\cdot 450$	$1 \cdot 49311$	- 512	1-58940	- 574	$1 \cdot 68672$	-636	$1 \cdot 78660$
-389	1-40189	$\cdot 451$	$1 \cdot 49465$. 513	1-59096	-575	1-68831	-637	$1 \cdot 78823$
-390	1-40335	-452	1-49618	$\cdot 514$	$1 \cdot 59252$	- 576	1.68990	-638	1.78986
-391	1-40481	-453	$1 \cdot 49771$. 515	1-59408	. 577	1-69149	-639	1.79149
-392	1-40627	-454	1-49924	- 516	1-59564	- 578	$1 \cdot 69308$	-640	$1 \cdot 79312$
-393	$1 \cdot 40773$	-455	1-50077	. 517	1-59720	-579	$1 \cdot 69467$	$\cdot 641$	1-79475
-394	1-40919	-456	$1 \cdot 50230$	- 518	$1 \cdot 59876$. 580	$1 \cdot 69626$	-642	1-79638
-395	1-41065	-457	$1 \cdot 50383$. 519	$1 \cdot 60032$	-581	1-69785	$\cdot 643$	$1 \cdot 79801$
-396	1-41211	-458	$1 \cdot 50536$. 520	$1 \cdot 60188$. 582	$1 \cdot 69945$	-644	1-79964
-397	1-41357	-459	1-50689	. 521	1-60344	-583	1.70105	$\cdot 645$	1-80127
-398	1-41504	-460	1 -50842	. 522	$1 \cdot 60500$. 584	1.70264	-646	1 180290
-399	1-41651	-461	$1 \cdot 50996$. 523	$1 \cdot 60656$	-585	$1 \cdot 70424$	-647	1.80454
-400	1-41798	-462	$1 \cdot 51150$. 524	1•60812	. 586	$1 \cdot 70584$	$\cdot 648$	1-80617
-401	1-41945	-463	$1 \cdot 51304$. 525	1•60968	-587	$1 \cdot 70745$	-649	1-80780
-402	1-42092	- 464	1.51458	-526	1.61124	-588	1.70903	-650	1-80943
-403	1-42239	-465	$1 \cdot 51612$. 527	$1 \cdot 61280$	-589	1.71065	$\cdot 651$	1.81107
-404	1-42386	- 466	1.51766	. 528	$1 \cdot 61436$	-590	$1 \cdot 71225$	-652	1.81271
$\cdot 405$	1-42533	. 467	$1 \cdot 51920$. 529	$1 \cdot 61592$	-591	$1 \cdot 71286$	-653	1.81435
-406	1-42681	. 468	$1 \cdot 52074$. 530	$1 \cdot 61748$	-592	1.71546	-654	1.81599
-407	1-42829	. 469	1 -52229	. 531	$1 \cdot 61904$	-593	$1 \cdot 71707$	$\cdot 655$	1.81763
-408	1-42977	. 470	$1 \cdot 52384$. 532	$1 \cdot 62060$	-594	$1 \cdot 71868$	-656	1.81928
-409	$1 \cdot 43125$. 471	$1 \cdot 52539$. 533	1•62216	. 595	$1 \cdot 72029$	-657	1 182091
-410	$1 \cdot 43273$. 472	1.52691	. 534	$1 \cdot 62372$	-596	$1 \cdot 72190$	-658	1-82255
-411	1-43421	. 473	$1 \cdot 52849$. 535	$1 \cdot 62528$	-597	$1 \cdot 72350$	-659	$1 \cdot 82419$
-412	1-43569	. 474	1.53004	. 536	1-62684	-598	$1 \cdot 72511$	$\cdot 660$	1-82583
$\cdot 413$	1-43718	. 475	$1 \cdot 53159$. 537	1-62840	-599	$1 \cdot 72672$	-661	$1 \cdot 82747$
-414	1-43867	. 476	$1-53314$. 538	$1 \cdot 62996$	-600	1.72833	-662	1-82911
$\cdot 415$	$1 \cdot 44016$. 477	1.53469	. 539	1-63152	-601	$1 \cdot 72994$	-663	1.83075
-416	1-44165	. 478	$1 \cdot 53625$. 540	$1 \cdot 63309$	-602	$1 \cdot 73155$	-664	$1 \cdot 83240$
-417	1-44314	. 479	1 -53781	. 541	1.63465	$\cdot 603$	$1 \cdot 73316$	$\cdot 665$	1 183404
-418	1-44463	. 480	$1-53937$. 542	$1 \cdot 63623$	$\cdot 604$	$1 \cdot 73477$	-666	1-83568
-419	$1 \cdot 44613$. 481	$1 \cdot 54093$. 543	$1 \cdot 63780$	$\cdot 605$	$1 \cdot 73638$	-667	1.83733
-420	$1 \cdot 44763$. 482	$1 \cdot 54249$. 544	$1 \cdot 63937$	$\cdot 606$	$1 \cdot 73799$	-668	1.83897
-421	$1 \cdot 44913$. 483	1.54405	-545	$1 \cdot 64094$	$\cdot 607$	$1 \cdot 73960$	-669	$1-84061$
$\cdot 422$	1-45064	. 484	$1 \cdot 54561$. 546	1.64251	-608	1•74121	$\cdot 670$	1-84226
$\cdot 423$	$1 \cdot 45214$. 485	1.54718	. 547	$1 \cdot 64408$	$\cdot 609$	$1 \cdot 74283$	-671	1.84391
-424	1-45364	. 486	$1 \cdot 54875$. 548	$1 \cdot 64565$	$\cdot 610$	$1 \cdot 74444$	-672	1.84556
$\cdot 425$	$1 \cdot 45515$. 487	1.55032	-549	$1 \cdot 64722$	$\cdot 611$	$1 \cdot 7460$	-673	1.84720
$\cdot 426$	1-45665	. 488	$1 \cdot 55189$. 550	1-64879	-612	1.74767	-674	$1 \cdot 84885$
$\cdot 427$	$1 \cdot 45815$. 489	1.55346	-551	$1 \cdot 65036$	$\cdot 613$	$1 \cdot 74929$	-675	$1 \cdot 85050$
$\cdot 428$	1-45966	. 490	$1 \cdot 55503$. 552	$1 \cdot 65193$	-614	175091	-676	$1 \cdot 85215$
-429	1-46167	. 491	1.55660	-553	$1 \cdot 65350$	$\cdot 615$	$1 \cdot 75252$	-677	1.85379
$\cdot 430$	1-46268	. 492	$1-55817$	- 554	$1 \cdot 65507$	-616	$1 \cdot 75414$	-678	1.85544
-431	$1 \cdot 46419$. 493	1.55974	-555	$1 \cdot 65665$	$\cdot 617$	1.75576	$\cdot 679$	1.85709
-432	1-46570	. 494	$1 \cdot 56131$. 556	$1 \cdot 65823$	$\cdot 618$	1.75738	-680	1.85874
-433	1-46721	. 495	1.56289	-557	1.65981	$\cdot 619$	$1 \cdot 75900$	$\cdot 681$	1.86039
-434	$1 \cdot 46872$. 496	$1-56447$. 558	$1 \cdot 66139$	$\cdot 620$	1.76062	-682	$1 \cdot 86205$
$\cdot 435$	$1 \cdot 47023$. 497	$1 \cdot 56605$	-559	$1 \cdot 66297$	-621	1.76224	-683	1.86370
-436	$1 \cdot 47174$. 498	1 -56763	. 560	1.66455	$\cdot 622$	$1 \cdot 76386$	$\cdot 684$	1.86535
-437	$1 \cdot 47326$. 499	$1 \cdot 56921$. 561	$1 \cdot 66613$	$\cdot 623$	$1 \cdot 76548$	-685	1.86700
-438	$1 \cdot 47478$. 500	$1 \cdot 57089$	-562	$1 \cdot 66771$	-624	$1 \cdot 76710$	-686	1-86866
-439	$1 \cdot 47630$. 501	1 1-57234	${ }^{5} 563$	1.66929	$\cdot 625$	1.76872	-687	$1-87031$
$\cdot 440$	$1 \cdot 47782$. 502	1-57389	-564	$1 \cdot 67087$	$\cdot 626$	$1 \cdot 77034$	-688	1-87196
$\cdot 441$	$1 \cdot 47934$. 503	1-57544	. 565	1.67245	$\cdot 627$	$1 \cdot 77197$	-689	1.87362
$\cdot 442$	$1 \cdot 48086$. 504	1-57699	$\cdot 566$	$1 \cdot 67403$	-628	1.77359	$\cdot 690$	1-87527
-443	$1 \cdot 48238$. 505	1-57854	- 567	1.67561	-629	$1 \cdot 77521$	-691	1.87693
-444	1.48391	. 506	$1 \cdot 58009$	-568	1-67719	-630	1-77684	-692	1.87859
$\cdot 445$	$1 \cdot 48544$	- 507	1-58164	$\cdot 569$	$1 \cdot 67877$	$\cdot 631$	1.77847	-693	1.88024
$\cdot 4$	1-48697	50	1.5831	. 570	$1 \cdot 6803$	$\cdot 632$	1.7800	. 69	1.88190

		$\cdot 758$		819				941	
－697	1.88688	59	1.99134	820		881		942	20
	1.888	60	05	821		，		43	
－699	1.89020	$\cdot 761$	9476	22		－ 8			24
	$1 \cdot 89186$			23		884		945	
． 701	1.89352	． 763	1.99818			885		46	98
	1051	4	89	25	$2 \cdot 1059$	86	$2 \cdot 21571$	47	785
3	1.89685	$\cdot 765$				887		948	
704	1.89851	． 766	0331	87	10950	88	1937	949	60
$\cdot 705$		$\cdot 767$	$2 \cdot 00502$	828	116	－889		950	
706	1.90184	－768	0673	829	$2 \cdot 11304$	－890	$2 \cdot 22303$	951	37
$\cdot 707$	1.90350	．	$2 \cdot 00844$	830		891	486	952	
． 708	1.90517	$\cdot 770$	0016	31		－892	270	953	915
$\cdot 709$	1.90684		2	32	837	893	，	954	
$\cdot 710$	$1 \cdot 90852$	$\cdot 772$	$2 \cdot 01359$	－833		94		955	293
$\cdot 711$	$1 \cdot 91019$	$\cdot 773$	$2 \cdot 01531$	－834	2193	－895	229	95	
－712	$1 \cdot 91187$		2	835		－896		957	
$\cdot 713$	$1 \cdot 91355$	$\cdot 775$	$2 \cdot 01874$	－836	12549	89	590	558	62
714	$1 \cdot 91523$	．	2，2015	83		－898		959	
$\cdot 715$	1.91691	$\cdot 777$	2：02217	－838	90	－899	958	960	41
$\cdot 716$	1	－				$\cdot 900$		961	
717	1－92027		$2 \cdot 02561$	840	－13261	－ 901	$2 \cdot 24325$	96	21
	1.92195		2	－841	$2 \cdot 13439$	$\cdot 902$		63	
． 719	1.92363	－781	$2 \cdot 02907$	$\cdot 842$	$2 \cdot 13618$	－ 903	仡	6	
	1.92531		$2 \cdot 03080$	$\cdot 843$	－	904	87	06	
	1.92700	$\cdot 7$	2.03252	$\cdot 844$	185	－905	5057	966	381
	1.92868		25	$\cdot 845$	－	$\cdot 906$	析	67	
	1.93036	$\cdot 785$	2．03598	84		$\cdot 907$	硅	968	62
	$1 \cdot 93204$			$\cdot 847$		－908		969	52
	1.93373	． 78	㖪	8		． 909		970	43
			17	－849	4871	$\cdot 910$		971	334
	1.93710		$2 \cdot 04290$	850	5050	$\cdot 911$	1－3	972	525
	1.93878				5229	． 912	333	$\cdot 973$	716
	$1 \cdot 94046$		$2 \cdot 04635$	5	$2 \cdot 15409$	－913	652	974	
	$1 \cdot 94215$		$2 \cdot 04809$		15589	－	70	．	
$\cdot 731$	$1 \cdot 94383$		$2 \cdot 0498$	－85	$2 \cdot 15770$	． 915	88	976	291
．732	$1 \cdot 94552$	$\cdot 7$	5157	85	－ 15950	－116	707	97	
	1.94721		$2 \cdot 05331$		仡	$\cdot 917$	仡	97	673
	$1 \cdot 94890$		$2 \cdot 05505$	．857	180	． 918	43	97	
	$1 \cdot 95059$				d	． 919		88	055
	$1 \cdot 95228$		$2 \cdot 05853$	$\cdot 859$	$2 \cdot 16668$	． 920	803	981	247
	1.95397		$2 \cdot 06027$			． 921		82	9439
	1.95566	－800	2.06202	－ 861	$2 \cdot 1702$	． 922	8170		
	1.95735	－801	$2 \cdot 06377$	－862	$2 \cdot 17209$	． 923	8354	984	
$\cdot 740$	1.95994	－802	$2 \cdot 06552$	－863	－17389	－924	8537	985	
	$1 \cdot 96074$	． 803	． 6727	－864	－17570	． 925	8720	986	208
$\cdot 742$	1.96244	$80 \pm$	6901	－865	5		，	987	400
$\cdot 743$	$1 \cdot 96414$	． 805	$2 \cdot 07076$	－866	1932	－927	9086	988	592
	$1 \cdot 96583$			－867		28	9270	89	0784
	1.96753	－807	2.07427	． 868	左	． 9229	9453	980	0976
	$1 \cdot 96923$	08	7602	－869	1847	0	析	991	169
	$1 \cdot 97093$	． 81	$2 \cdot 07777$	． 870	1865		9820	992	
	1.97262	－810	953	． 871	8818	932	000	93	1556
$\cdot 749$	1.97432	－811		．872	2018		188	994	1749
$\cdot 750$	1.97602	－812	804	－873	9200	建	037	995	41943
－	1.97772	－813	480	． 87	9382	J	0557	996	2136
$\cdot 752$	1.97943	$\cdot 814$	8656	$\cdot 875$	9564	936	0741	997	42329
． 753	1.98113	815	2.08832	$\cdot 876$	9746	937	0926	998	42522
－ 75	$1 \cdot 98283$	$\cdot 816$	$2 \cdot 09008$	． 877	$2 \cdot 19928$	－938	$2 \cdot 31111$	999	$2 \cdot 42715$
． 755	1.98453	$\cdot 817$	2.09198	． 878	$2 \cdot 20110$	－939	$2 \cdot 31295$	－1000	$2 \cdot 42908$
$\cdot 756$	1.98623								－

To find the length of an arc of a circle, or the curve of a right semi-ellipse.
Rule.-Divide the height by the base, and the quotient will be the height of an arc of which the base is unity. Seek, in the Table of Circular or of Semi-elliptical ares, as the case may be, for a number corresponding to this quotient, and take the length of the arc from the next right-hand column. Multiply the number thus taken out by the base of the arc, and the product will be the length of the arc or curve required.

In a Bridge, suppose the profiles of the arches are the arcs of circles; the span of the middle arch is 240 feet and the height 24 feet; required the length of the arc.

$$
24 \div 240=\cdot 100 \text {; and } \cdot 100 \text {, by the Table, is } 1 \cdot 02645
$$

Hence $1 \cdot 02645 \times 24=246 \cdot 34800$ feet, the length required.
The profiles of the arches of a Bridge are all equal and similar semi-ellipses; the span of each is 120 feet, and the rise 18 feet; required the length of the curve.
$28 \div 120=-233$; and $\cdot 233$ by the Table, is $1 \cdot 19010$.
Hence $1 \cdot 19010 \times 120=142 \cdot 81200$ feet, the length required.
In this example there is, in the division of 28 by 120 , a remainder of 40, or one-third part of the divisor ; consequently, the answer, 142.81200 , is rather less than the truth. But this difference, in even so large an arch, is little more than half an inch; therefore, except where extreme accuracy is required, it is not worth computing.

These Tables are equally useful in estimating works which may be carried into practice, and the quantity of work to be executed from drawings to a scale.

As the Tables do not afford the means of finding the lengths of the curves of elliptical arcs which are less than half of the entire figure, the following geometrical method is given to supply the defect.

Let the curve, of which the length is required to be found, be ABC .

Produce the height line $B d$ to meet the centre of the curve in g. Draw the right line $\mathrm{A} g$, and from the centre g, with the distance $g \mathrm{~B}$ describe an arc $\mathrm{B} h$, meeting $\mathrm{A} g$ in h. Bisect $\mathrm{A} h$ in i, and from the centre g with the radius $g i$ describe the arc $i k$, meeting $d \mathrm{~B}$ produced to k; then $i k$ is half the arc ABC .

A Table of the Reciprocals of Numbers; or the Decimal Fracmions corresponding to Vulgar Fractions of which the Numerator is unity or 1 .
[In the following Tables, the Decimal fractions are Reciprocals of the Denominators of those opposite to them ; and their product is = unity.

To find the Decimal corresponding to a fraction having a higher Numerator than 1, multiply the Decimal opposite to the given Denominator, by the given Numerator. Thus, the Decimal corresponding to $\frac{1}{64}$ being $\cdot 015625$, the Decimal to $\frac{15}{64}$ will be $\cdot 015625 \times$ $15=-234375$.

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/2	$\cdot 5$	1/47	-0212766	1/92	-010869565
1/3	$\cdot 333333333$	1/48	. 020833333	1/93	-010752688
1/4	- 25	1/49	-020408163	1/94	-010638298
1/5	$\cdot 2$	1/50	. 02	1/95	-010526316
1/6	-166666667	1/51	-019607843	1/96	-010416667
1/7	-142857143	1/52	-019230769	1/97	-010309278
1/8	-125	1/53	-018867925	1/98	-010204082
1/9	$\cdot 111111111$	1/54	$\cdot 018518519$	1/99	. 01010101
1/10	-1	1/55	$\cdot 018181818$	1/100	-01
1/11	-090909091	1/56	$\cdot 017857143$	1/101	-00990099
1/12	-083333333	1/57	-01754386	1/102	-009803922
1/13	-076923077	1/58	$\cdot 017241379$	1/103	-009708738
1/14	-071428571	1/59	$\cdot 016949153$	1/104	-009615385
1/15	-066666667	1/60	$\cdot 016666667$	1/105	-00952381
1/16	. 0625	1/61	$\cdot 016393443$	1/106	-009433962
1/17	-058823529	1/62	-016129032	1/107	-009345794
1/18	- 055555556	1/63	-015873016	1/108	-009259259
1/19	-052631579	1/64	. 015625	1/109	-009174312
1/20	. 05	1/65	. 015384615	1/110	-009090909
1/21	-047619048	1/66	-015151515	1/111	-009009009
1/22	-045454545	1/67	. 014925873	1/112	-008928571
1/23	$\cdot 043478261$	1/68	. 014705882	1/113	-008849558
1/24	$\cdot 041666667$	1/69	. 014492754	1/114	-00877193
1/25	. 04	1/70	. 014285714	1/115	-008695652
1/26	-038461538	1/71	-014084517	1/116	-00802069
1/27	$\cdot 037037037$	1/72	. 013888889	1/117	-008.547009
1/28	-035714286	1/73	. 01369863	1/118	-008474576
1/29	-034482759	1/74	-013513514	1/119	-008403361
1/30	$\cdot 033333333$	1/75	. 013333333	1/120	. 008333333
1/31	-032258065	1/76	. 013157895	1/121	-008264463
1/32	- 03125	1/77	- 012987013	1/122	-008196721
1/33	-030303030	1/78	- 012820513	1/123	-008130081
1/34	-029411765	1/79	-012658228	1/124	-008064516
1/35	-028571429	1/80	- 0125	1/125	. 008
1/36	-027777778	1/81	-012345679	1/126	-007936508
1/37	-027027027	1/82	-012195122	1/127	-007874016
1/38	. 026315789	1/83	. 012048193	1/128	. 0078125
1/39	-025641026	1/84	-011904762	1/129	-007751938
1/40	- 025	1/85	$\cdot 011764706$	1/130	-007632308
1/41	-024390244	1/86	-011627907	1/181	-007633588
1/42	-023809524	1/87	-011494253	1/132	-007575758
1/43	-023255814	1/88	-011363636	1/133	. 007518797
1/44	-022727273	1/89	. 011235955	1/134	-007462687
1/45	-022222222	1/90	-011111111	1/135	-007407407
1/46	-02173913	1/91	$\cdot 010989011$	1/136	-007352941

$\begin{aligned} & \text { Fraction or } \\ & \text { Numb. } \end{aligned}$	Decimal or Reciprocal.	$\begin{aligned} & \text { Fraction or } \\ & \text { Numb. } \end{aligned}$	Decimal or Reciprocal,	Fraction or Numb.	Decimal or Reciprocal.
1/137	-00729927	1/198	-005050505	1/259	-003861004
1/138	-007246377	1/199	-005025126	1/260	-003846154
1/139	-007194245	1/200	- 005	1/261	-003831418
1/140	-007142857	1/201	-004975124	1/262	-003816794
1/141	-007092199	1/202	-004950495	1/263	-003802281
1/142	-007042254	1/203	-004926108	1/264	-003787879
1/143	-006993007	1/204	-004901961	1/265	-003773585
1/144	-006944444	1/205	-004878049	1/266	-003759398
1/145	-006896552	1/206	-004854369	1/267	-003745318
1/146	-006849315	1/207	-004830918	1/268	-003731343
1/147	-006802721	1/208	-004807692	1/269	-003717472
1/148	-006756757	1/209	-004784689	1/270	-003703704
1/149	-006711409	1/210	-004761905	1/271	-003690037
1/150	-006666667	1/211	-004739336	1/272	-003676471
1/151	-006622517	1/212	$\cdot 004716981$	1/273	-003663004
1/152	-006578947	1/213	-004694836	1/274	-003649635
1/153	-006535948	1/214	-004672897	1/275	-003636364
1/154	-006493506	1/215	-004651163	1/276	-003623188
1/155	-006451613	1/216	-00462963	1/277	-003610108
1/156	-006410256	1/217	-004608295	1/278	. 003597122
1/157	-006369427	1/218	-604587156	1/279	-003584229
1/158	-006329114	1/219	-00456621	1/280	-003571429
1/159	-006289308	1/220	-004545455	1/281	-003558719
1/160	-00625	1/221	-004524887	1/282	-003546099
1/161	-00621118	1/222	-004504505	1/283	-003533569
1/162	-00617284	1/223	-004484305	1/284	-003522127
1/163	-006134969	1/224	$\cdot 004464286$	1/285	-003508772
1/164	.006097561	1/225	-004444444	1/286	-003496503
1/165	-006060606	1/226	$\cdot 004424779$	1/287	-003484321
1/166	-006024096	1/227	-004405286	1/288	-003472222
1/167	-005988024	1/228	$\cdot 004385965$	1/289	-003460208
1/168	-005952381	1/229	. 004366812	1/290	-003448276
1/169	-00591716	1/230	-004347826	1/291	-003436426
1/170	$\cdot 005882353$	1/231	-004329004	1/292	-003424658
1/171	-005847953	1/232	-004310345	1/293	-003412969
1/172	-005813953	1/283	-004291845	1/294	-003401361
1/173	$\cdot 005780347$	1/234	-004273504	1/295	-003389831
1/174	$\cdot 005747126$	1/235	. 004255319	1/296	-003378378
1/175	-005714286	1/236	-004237288	1/297	-003367003
1/176	$\cdot 005681818$	1/237	-004219409	1/298	-003355705
1/177	-005649718	1/238	.004201681	1/299	-003344482
1/178	-005617978	1/239	-0041841	1/300	-003333333
1/179	-005586592	1/240	$\cdot 004166667$	1/301	-003322259
1/180	-005555556	1/241	-004149378	1/302	-003311258
1/181	-005524862	1/242	.004132231	1/303	-00330133
1/182	-005494505	1/243	-004115226	1/304	-003289474
1/183	-005464481	1/244	$\cdot 004098361$	1/305	-003278689
1/184	-005434783	1/245	-004081633	1/306	$\cdot 003267974$
1/185	-005405405	1/246	-004065041	1/307	-003257329
1/186	$\cdot 005376344$	1/247	-004048583	1/308	-003246753
1/187	-005347594	1/248	-004032258	1/309	-003236246
1/188	-005319149	1/249	-004016064	1/310	-003225806
1/189	-005291005	1/250	. 004	1/311	-003215434
1/190	-005263158	1/251	$\cdot 003984064$	1/312	-003205128
1/191	-005235602	1/252	-003968254	1/313	-003194888
1/192	-005208333	1/253	-003952569	1/314	-003184713
1/193	-005181347	1/254	. 003937008	1/315	-003174603
1/194	-005154639	1/255	. 003921569	1/316	-003164557
1/195	-005128205	1/256	. 00390625	1/317	-003154574
1/196	-005102041	1/257	-003891051	1/318	-003144654
1/197	$\cdot 005076142$	1/258	-003875969	1/319	-003134796

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or	Decimal or Reeiprocal.
1/320	-003125	1/381	-002624672	1/442	-002262443
1/321	-003115265	1/382	-002617801	1/443	-002257336
1/322	. 00310559	1/383	-002610966	1/444	-002252252
1/323	-003095975	1/384	-002604167	1/445	-002247191
1/324	. 00308642	1/385	-002597403	1/446	-002242152
1/325	-003076923	1/386	-002590674	1/447	-0022?7136
1/326	. 003067485	1/387	-002583979	1/448	-002232143
1/327	. 003058104	1/388	-00257732	1/449	-002227171
1/328	. 00304878	1/389	-002570694	1/450	-002222222
1/329	. 003039514	1/390	-002564103	1/451	. 002217295
1/330	. 003030303	1/391	-002557545	1/452	-002212389
1/331	. 003021148	1/392	-00255102	1/453	-002207506
1/332	. 003012048	1/393	-002544529	1/454	-002202643
1/333	.003003003	1/394	-002538071	1/455	-002197802
1/334	. 002994012	1/395	-002531646	1/456	-002192982
1/335	. 002985075	1/396	-002525253	1/457	-002188184
1/336	. 00297619	1/397	-002518892	1/458	-002183406
1/337	. 002967359	1/398	-002512563	1/459	-002178649
1/338	. 00295858	1/399	-002506266	1/460	-002173913
1/339	. 002949853	1/400	. 0025	1/461	. 002169197
1/340	. 002941176	1/401	.002493766	1/462	-002164502
1/341	. 002932551	1/402	-002487562	1/463	-002159827
1/342	. 002923977	1/403	-00248139	1/464	-002155172
1/343	.002915452	1/404	.002475248	1/465	-002150538
1/344	-002906977	1/405	$\cdot 002469136$	1/466	-002145923
1/345	.002898551	1/406	-002463054	1/467	. 002141328
1/346	. 002890173	1/407	-002457002	1/468	-002136752
1/347	.002881844	1/408	-00245098	1/469	-002132196
1/348	. 002873563	1/409	-002444988	1/470	. 00212766
1/349	. 00286533	1/410	-002439024	1/471	-002123142
1/350	. 002857143	1/411	. 00243309	1/472	-002118644
1/351	. 002849003	1/412	-002427184	1/473	. 002114165
1/352	-002840909	1/413	. 002421308	1/474	-002109705
1/353	. 002832861	1/414	. 002415459	1/475	-002105263
1/354	. 002824859	1/415	-002409639	1/476	. 00210084
1/355	-002816901	1/416	-002406846	1/477	-002096486
1/356	. 002808989	1/417	-002398082	1/478	. 00209205
1/357	. 00280112	1/418	-002392344	1/479	-002087683
1/358	. 002793296	1/419	-002386635	1/480	-002083333
1/359	-002785515	1/420	-002380952	1/481	-002079002
1/360	.002777778	1/421	-002375297	1/482	-002074689
1/361	-002770083	1/422	-002369668	1/483	-002070393
1/362	-002762431	1/423	-002364066	1/484	-002066116
1/363	-002754821	1/424	-002358491	1/485	-002061856
1/364	-002747235	1/425	-002352941	1/486	-002057613
1/365	-002739726	1/426	-002347418	1/487	-002053388
1/366	.00273224	1/427	-00234192	1/488	. 00204918
1/367	-002724796	1/428	-002336449	1/489	. 00204499
1/368	-002717391	1/429	-002331002	1/490	-002040816
1/369	-002710027	1/430	-002325581	1/491	. 00203666
1/370	-002702703	1/431	-002320186	1/492	-00203252
1/371	-002695418	1/432	-002314815	1/493	-002028398
1/372	.002688172	1/433	-002309469	1/494	-002024291
1/373	-002680965	1/434	-002304147	1/495	-002020202
1/374	-002673797	1/435	-002298851	1/496	-002016129
1/375	-002666667	1/436	-002293578	1/497	-002012072
1/376	-002659574	1/437	-00228833	1/498	-002008032
1/377	-00265252	1/438	$\cdot 002283105$	1/499	-002004008
1/378	-002645503	1/439	-002277904	1/500	-002
1/379	-002638521	1/440	-002272727	1/501	-001996008
1/380	$\cdot 002631579$	1/441	-002267574	1/502	-001992032

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/503	-001988072	1/564	-00177305	1/625	-0016
1/504	. 001984127	1/565	-001769912	1/626	-001597444
1/505	-001980198	1/566	. 001766784	1/627	-001594896
1/506	-001976285	1/567	. 001763668	1/628	-001592357
1/507	. 001972387	1/568	-001760563	1/629	-001589825
1/508	. 001968504	1/569	-001757469	1/630	-001587302
1/509	-001964637	1/570	. 001754386	1/631	-001584786
1/510	-001960784	1/571	-001751313	1/632	-001582278
1/511	. 001956947	1/572	-001748252	1/633	-001579779
1/512	-001953125	1/573	.001745201	1/634	$\cdot 001577287$
1/513	-001949318	1/574	-00174216	1/635	-001574803
1/514	. 001945525	1/575	-00173913	1/636	-001572827
1/515	-001941748	1/576	-001736111	1/637	-001569859
1/516	-001937984	1/577	. 001733102	1/638	-001567398
1/517	-001934236	1/578	.001730104	1/639	-001564945
1/518	-001930502	1/579	.001727116	1/640	-0015625
1/519	-001926782	1/580	. 001724138	1/641	-001560062
1/520	-001923077	1/581	-00172117	1/642	-001557632
1/521	-001919386	1/582	. 001718213	1/643	-00155521
1/522	-001915709	1/583	-001715266	1/644	-001552795
1/523	-001912046	1/584	-001712329	1/645	-001550388
1/524	-001908397	1/585	-001709402	1/646	-001547988
1/525	-001904762	1/586	-001706485	1/647	-001545595
1/526	-001901141	1/587	-001703578	1/648	. 00154321
1/527	-001897533	1/588	-00170068	1/649	-001540832
1/528	-001893939	1/589	-001697793	1/650	. 001538462
1/529	-001890359	1/590	-001694915	1/651	-001536098
1/530	-001886792	1/591	.001692047	1/652	-001533742
1/531	-001883239	1/592	-001689189	1/653	-001531394
1/532	-001879699	1/593	-001686341	1/654	-001529052
1/533	-001876173	1/594	-001683502	1/655	-001526718
1/534	-001872659	1/595	-001680672	1/656	-00152439
1/535	-001869159	1/596	-001677852	1/657	-00152207
1/536	-001865672	1/597	-001675042	1/658	-001519751
1/537	-001862197	1/598	-001672241	1/659	-001517451
1/538	-001858736	1/599	-001669449	1/660	-001515152
1/539	-001855288	1/600	.001666667	1/661	-001512859
1/540	$\cdot 001851852$	1/601	$\cdot 001663894$	1/662	-001510574
1/541	-001848429	1/602	-00166113	1/663	-001508296
1/542	-001845018	1/603	-001658375	1/664	-001506024
1/543	.001841621	1/604	-001655629	1/665	-001503759
1/544	$\cdot 001838235$	1/605	-001652893	1/666	-001501502
1/545	-001834862	1/606	-001650165	1/667	-00149925
1/546	-001831502	1/607	. 001647446	1/668	-001497006
1/547	$\cdot 001828154$	1/608	-001644737	1/669	-001494768
1/548	-001824818	1/609	-001642036	1/670	-001492537
1/549	-001821494	1/610	-001639344	1/671	-001490313
1/550	-001818182	1/611	-001636661	1/672	-001488095
1/551	-001814882	1/612	.001633987	1/673	-001485884
1/552	. 001811594	1/613	-001631321	1/674	-00148368
1/553	-001808318	1/614	-001628664	1/675	-001481481
1/554	-001805054	1/615	-001626016	1/676	-00147929
1/555	-001801802	1/616	-001623377	1/677	-001477105
1/556	-001798561	1/617	. 001620746	1/678	-0014749-6
1/557	-001795332	1/618	-001618123	1/679	-001472754
1/558	-001792115	1/619	-001615509	1/680	-001470588
1/559	-001788909	1/620	-001612903	1/681	-001468429
1/560	$\cdot 001785714$	1/621	-001610306	1/682	-001466276
1/561	-001782531	1/622	.001607717	1/683	-001464129
1/562	$\cdot 001779359$	1/623	-001605136	1/684	-001461988
1/563	-001776199	1/624	-001602564	1/685	$\cdot 001459854$

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1,686	-001457726	1/747	-001338688	1/808	-001237624
1/687	-001455604	1/748	-001336898	1/809	-001236094
1/688	-001453488	1/749	-001335113	1/810	-001234568
1/689	-001451379	1/750	-001333333	1/811	-001233046
1/690	-001449275	1/751	-001331558	1/812	-001231527
1/691	-001447178	1/752	-001329787	1/813	-001230012
1/692	-001445087	1/753	-001328021	1/814	-001228501
1/693	-001443001	1/754	-00132626	1/815	-001226994
1,694	-001440922	1/755	-001324503	1/816	-001225499
1/695	-001438849	1/756	-001322751	1/817	-00122399
1/696	-001436782	1/757	-001321004	1/818	-001222494
1/697	-00143472	1/758	-001319261	1/819	-001221001
1/698	-001432665	1/759	-001317523	1/820	-001219512
1/699	$\cdot 001430615$	1/760	-001315789	1/821	$\cdot 001218027$
1/700	$\cdot 001428571$	1/761	-00131406	1/822	-001216545
1/701	-001426534	1/762	-001312336	1/823	$\cdot 001215067$
1/702	$\cdot 001424501$	1/763	-001310616	1/824	$\cdot 001213592$
1/703	$\cdot 001422475$	1/764	$\cdot 001308901$	1/825	-001212121
1/704	-001420455	1/765	-00130719	1/826	-001210654
1/705	-00141844	1/766	-001305483	1/827	-00120919
1/706	$\cdot 001416431$	1/767	-001303781	1/828	-001207729
1/707	-001414427	1/768	-001302083	1/829	-001206273
1/708	-001412429	1/769	.00130039	1/830	-001204819
1/709	-001410437	1/770	-001298701	1/831	-001203369
1/710	-001408451	1/771	-001297017	1/832	-001201923
1/711	-00140647	1/772	-001295337	1/833	-00120048
1/712	-001404494	1/773	-001293661	1/834	-001199041
1/713	. 001402525	1/774	. 00129199	1/835	-001197605
1/714	-00140056	1/775	-001290323	1/836	-001196173
1/715	.001398601	1/776	-00128866	1/837	-001194743
1/716	$\cdot 001396648$	1/777	-001287001	1/838	$\cdot 001193317$
1/717	-0013947	1/778	. 001285347	1/839	-001191895
1/718	-001392758	1/779	-001283697	1/840	-001190476
1/719	-001390821	1/780	$\cdot 001282051$	1/841	-001189061
1/720	-001388889	1/781	-00128041	1/842	-001187648
1/721	-001386963	1/782	-001278772	1/843	-00118624
1/722	-001385042	1/783	-001277139	1/844	-001184834
1/723	-001383126	1/784	. 00127551	1/845	-001183432
1/724	$\cdot 001381215$	1/785	. 001273885	1/846	-001182033
1/725	-00137931	1/786	. 001272265	1/847	-001180638
1/726	-00137741	1/787	-001270648	1/848	-001179245
1/727	$\cdot 001375516$	1/788	-001269036	1/849	$\cdot 001177856$
1/728	$\cdot 001373626$	1/789	-001267427	1/850	$\cdot 001176471$
1/729	$\cdot 001371742$	1/790	-001265823	1/851	$\cdot 001175088$
1/730	.001369863	1/791	-001264223	1/952	-001173709
1/731	.001367989	1/792	-001262626	1/853	-001172333
1/732	-00136612	1/793	-001261034	1/854	-00117096
1/733	$\cdot 001364256$	1/794	-001259446	1/855	-001169591
1/734	-001362398	1/795	$\cdot 001257862$	1/856	-001168224
1/735	-001360544	1/796	-001256281	1/857	-001166861
1/736	$\cdot 001358696$	1/797	$\cdot 001254705$	1/858	-001165501
1/737	$\cdot 001356852$	1/798	-001253133	1/859	-001164144
1/738	-001355014	1/799	$\cdot 001251364$	1/860	-001162791
1/739	-00135318	1/800	-00125	1/861	-00116144
1/740	-001351351	1/801	-001248439	1/862	-001160093
1/741	-001349528	1/802	-001246883	1/863	-001158749
1/742	$\cdot 001347709$	1/803	-00124533	1/864	-001157407
1/743	. 001345895	1/804	-001243781	1/865	-001156069
1/744	.001344086	1/805	-001242236	1/866	-001154734
1/745	-001342282	1/806	-001240695	1/867	-001153403
1/746	.001340483	1/807	$\cdot 001239157$	1/868	$\cdot 001152074$

$\begin{aligned} & \text { Fraction or } \\ & \text { Numb. } \end{aligned}$	Decimal or Reciprocal.	$\begin{aligned} & \text { Fraction or } \\ & \text { Numb. } \end{aligned}$	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/869	-001150748	1/913	-00109529	1/957	-001044932
1/870	. 001149425	1/914	-001094092	1/958	-001043841
1/871	. 001148106	1/915	-001092896	1/959	-001042753
1/872	-001146789	1/916	-001091703	1/960	$\cdot 001041667$
1/873	-001145475	1/917	-001090513	1/961	-001040583
1/874	-001144165	1/918	-001089325	1/962	-001039501
1/875	$\cdot 001142857$	1/919	-001088139	1/963	-001038422
1/876	. 001141553	1/920	-001086957	1/964	-001037344
1/877	$\cdot 001140251$	1/921	-001085776	1/965	-001036269
1/878	-001138952	1/922	-001084599	1/966	$\cdot 001035197$
1/879	-001137656	1/923	-001083423	1/967	-001034126
1/880	-001136364	1/924	-001082251	1/968	-001033058
1/881	-001135074	1/925	-001081081	1/969	-001031992
1/882	.001133787	1/926	-001079914	1/970	-001030928
1/883	-001132503	1/927	-001078749	1/971	-001029866
1/884	-001131222	1/928	-001077586	1/972	-001028807
1/885	-001129944	1/929	-001076426	1/973	-001027749
1/886	-001128668	1/930	-001075269	1/974	-001026694
1/887	. 001127396	1/931	-001074114	1/975	-001025641
1/888	-001126126	1/932	-001072961	1/976	-00102459
1/889	-001124859	1/933	-001071811	1/977	-001023541
1/890	-001123596	1/934	-001070664	1/978	-001022495
1/891	-001122334	1/935	-001069519	1/979	-00102145
1/892	$\cdot 001121076$	1/936	-001068376	1/980	.001020408
1/893	$\cdot 001119821$	1/937	-001067236	1/981	$\cdot 001019168$
1/894	. 001118568	1/938	-001066098	1/982	-00101833
1/895	$\cdot 001117818$	1/939	-001064963	1/983	-001017294
1/896	$\cdot 001116071$	1/940	-00106383	1/984	.00101626
1/897	-001114827	1/941	-001062699	1/985	-001015228
1/898	-001113586	1/942	$\cdot 001061571$	1/986	-001014199
1/899	$\cdot 001112347$	1/943	-001060445	1/987	$\cdot 001013171$
1/900	. 001111111	1/944	-001059322	1/988	. 001012146
1/901	$\cdot 001109878$	1/945	-001058201	1/989	-001011122
1/902	-001108647	1/946	-001057082	1/990	-001010101
1/903	. 00110742	1/947	$\cdot 001055966$	1/991	-001009082
1/904	. 001106195	1/948	$\cdot 001054852$	1/992	-001008065
1/905	-001104972	1/949	-001053741	1/993	-001007049
1/906	-001103753	1/950	-001052632	1/994	-001006036
1/907	-001102536	1/951	-001051525	1/995	-001005025
1/908	-001101322	1/952	-00105042	1/996	-001004016
1/909	$\cdot 00110011$	1/953	-001049318	1/997	-001003009
1/910	-001098901	1/954	-001048218	1/998	-001002004
1/911	-001091695	1/955	-00104712	1/999	-001001001
1/912	.001096491	1/956	$\cdot 001046025$	1/1000	- 001

Divide 80000 by 971 .

By the above Table we find that 1 divided by 971 gives $\cdot 001029866$, and $\cdot 001029866 \times 80000=82 \cdot 38928$.
What is the sum of $\frac{5}{883}$ and $\frac{2}{553}$?

$$
\begin{aligned}
5 \times \frac{1}{883}=\cdot 001132503 \times 5 & =\cdot 005662515 \\
2 \times \frac{1}{953}=\cdot 001049318 \times 2 & =.002098636 \\
\therefore \frac{5}{883}+\frac{2}{953} & =.007761141
\end{aligned}
$$

WEIGHTS AND VALUES IN DECIMAL PARTS.

TROY WEIGHT. Dec. parts of a lb.		AVOIRDUPOIS WEIGHT. Dec. parts of a cwt.		AVOIRDUPOIS WEIGHT. Dec. parts of alb .	
Ozs. 11	Decimals. -916666	$\begin{gathered} \text { Qrs. } \\ 3 \end{gathered}$	Decimals. $\cdot 75$	${ }_{\text {Ozs. }}{ }^{\text {Oze }}$	$\begin{gathered} \hline \text { Decimals. } \\ .9375 \end{gathered}$
10	. 833333	2	- 5	14	-875
9	. 75	1	$\cdot 25$	13	. 8125
8	-666666	1bs.	Decimals.	12	$\cdot 75$
7	$\cdot 583333$	27	- 241071	11	-6875
6	. 5	26	-232142	10	-625
5	$\cdot 416666$	25	-223214	9	-5625
4	- 333333	24	- 214286	8	-5
3	- 25	23	- 205357	7	$\cdot 4375$
2	- 166666	22	- 196428	6	$\cdot 375$
1	-083333	21	-187500	5	-3125
Dwts.	Decimals.	20	-178572	4	-25
19	. 079166	19	-169643	3	-1875
18	- 075	18	-160714	2	-125
17	. 070833	17	-151785	1	-0625
16	-066666	16	-142856	Drs.	Decimals.
15	. 0625	15	-133928	15	-058593
14	-058333	14	-125	14	-054686
13	.054166	13	-116071	13	- 050780
12	. 05	12	-107143	12	-046874
11	. 045833	11	-098214	11	- 042968
10	. 041666	10	-089286	10	-039062
9	. 0375	9	-080357	9	-035156
8	. 033333	8	-071428	8	. 03125
7	. 029166	7	. 0625	7	-027343
6	. 025	6	. 053571	6	. 023437
5	. 020833	5	-044643	5	. 019531
4	. 016666	4	-035714	4	. 015625
3	. 0125	3	-026786	3	. 011718
2	-008333	2	. 017857	2	. 007812
1	-004166	1	. 008928	1	. 003906
${ }_{\text {Grs }}{ }_{15}$	Decimals.	${ }^{\text {Ozs. }}$	Decimals.		
15	-002604	15	-008370		Asure.
14	-002430	14	-007812		
13	-002257	13	-007254	Dec.	rts of a foot.
12	-002083	12	-006696	Ins.	Decimals.
11	. 001910	11	-006138	11.	- 916666
10	-001736	10	-005580	10	- 833333
9	-001562	9	-005022	9	. 75
8	-001389	8	-004464	8	-666666
7	-001215	7	-003906	7	. 583333
6	-001042	6	-003348	6	. 5
5	- 000868	5	-002790	5	-416666
4	-000694	4	-002232	4	- 233333
3	-000521	3	-001674	3	- 25
2	-000347	2	. 001116	2	-166666
1	. 000173	1	$\cdot 000558$	1	. 083333

To find the solidity of a cube, the height of one of its sides being given.-Multiply the side of the cube by itself, and that product again by the side, and it will give the solidity required.

The side AB , or BC , of the cube ABCDFGHE , is 25.5 : what is the solidity?

Here $\mathrm{AB}^{3}=\left.(22.5)\right|^{3}=25.5 \times 25.5 \times 25.5=$
 $25 \cdot 5 \times 650 \cdot 25=16581 \cdot 375$, content of the cube.

To find the solidity of a parallelopipedon. -Multiply the length by the breadth, and that product again by the depth or altitude, and it will give the solidity required.

Required the solidity of a parallelopipedon ABCDFEHG, whose length AB is 8 feet, its breadth FD $4 \frac{1}{2}$ feet, and the depth or
 altitude AD $6 \frac{3}{4}$ feet ?

Here $\mathrm{AB} \times \mathrm{AD} \times \mathrm{FD}=8 \times 6.75 \times 4.5=54 \times 4.5=243$ solid feet, the contents of the parallelopipedon.

To find the solidity of a prism.-Multiply the area of the base into the perpendicular height of the prism, and the product will be the solidity.

What is the solidity of the triangular prism ABCF $E D$, whose length $A B$ is 10 feet, and either of the equal sides, BC, CD, or DB , of one of its equilateral ends BCD, $2 \frac{1}{2}$ feet?

Here $\frac{1}{4} \times 2.5^{2} \times \sqrt{ } 3=\frac{1}{4} \times 6.25 \times \sqrt{ } 3=1.5625$ $\times \sqrt{ } 3=1.5625 \times 1.732=2.70625=$ area of the base BCD.

$$
\text { Or, } \frac{2 \cdot 5+2 \cdot 5+2 \cdot 5}{2}=\frac{7 \cdot 5}{2}=3 \cdot 75=\frac{1}{2} \text { sum of }
$$ the sides, $\mathrm{BC}, \mathrm{CD}, \mathrm{DB}$, of the triangle CDB .

And $3 \cdot 75-2 \cdot 5=1 \cdot 25, \therefore 1 \cdot 25,1 \cdot 25$ and $1 \cdot 25=3$ differences.
Whence $\sqrt{ } 3.75 \times 1.25 \times 1.25 \times 1.25=\sqrt{ } 3.75 \times 1 \cdot 25^{3}=$ $\sqrt{ } 7 \cdot 32421875=2 \cdot 7063=$ area of the base as before,

And $2.7063 \times 10=27.063$ solid feet, the content of the prism required.

To find the convex surface of a cylinder.-Multiply the periphery or circumference of the base, by the height of the cylinder, and the product will be the convex surface.

What is the convex surface of the right cylinder $A B C D$, whose length $B C$ is 20 feet, and the diameter of its base AB 2 feet?

Here $3.1416 \times 2=6.2832=$ periphery of the base AB.

And $6 \cdot 2832 \times 20=125.6640$ square feet, the convexity required.

To find the solidity of a cylinder.-Multiply the area of the base by the perpendicular height of the cylinder, and the product will be the solidity.

What is the solidity of the cylinder ABCD , the diameter of whose base AB is 30 inches, and the height BC 50 inches.
Here $7854 \times 30^{2}=7854 \times 900=706 \cdot 86=$ area of the base AB. And $706.86 \times 50=35343$ cubic inches; or $\frac{35343}{1728}=20.4531$ solid feet.

The four following cases contain all the rules for finding the superficies and solidities of cylindrical ungulas.

When the section is parallel to the axis of the cylinder.
Rule.-Multiply the length of the arc line of the base by the height of the cylinder, and the product will be the curve surface.

Multiply the area of the base by the height of the cylinder, and the product will be the solidity.

When the section passes obliquely through the opposite sides of the cylinder.

Rule.-Multiply the circumference of the base of the cylinder by half the sum of the greatest and least lengths n of the ungula, and the product will be the curve surface.

Multiply the area of the base of the cylinder by half
 the sum of the greatest and least lengths of the ungula, and the product will be the solidity.

When the section passes through the base of the cylinder, and one of its sides.

Rule.- Multiply the sine of half the arc of the base by the diameter of the cylinder, and from this product subtract the product of the arc and cosine.

Multiply the difference thus found, by the quotient of в the height divided by the versed sine, and the product
 will be the curve surface.

From $\frac{2}{3}$ of the cube of the right sine of half the arc of the base, subtract the product of the area of the base and the cosine of the said half arc.

Multiply the difference, thus found, by the quotient arising from the height divided by the versed sine, and the product will be the solidity.

When the section passes obliquely through both ends of the cylinder.

Rule.-Conceive the section to be continued, till it meets the side of the cylinder produced; then say, as the difference of the versed sines of half the arcs of the two ends of the ungula is to the versed sine of half the arc of the less end, so is the height of the cylinder to
 the part of the side produced.

Find the surface of each of the ungulas, thus formed, and their difference will be the surface.

In like manner find the solidities of each of the ungulas, and their difference will be the solidity.

To find the convex surface of a right cone.-Multiply the circumference of the base by the slant height, or the length of the side of the cone, and half the product will be the surface required.

The diameter of the base AB is 3 feet, and the slant height AC or BC 15 feet; required the convex surface of the cone ACB.

Here $3 \cdot 1416 \times 3=9 \cdot 4248=$ circumference of the base AB .
And $\frac{9 \cdot 4248 \times 15}{2}=\frac{141 \cdot 3720}{2}=70.686$ square feet, the convex surface required.

To find the convex surface of the frustum of a right cone.-Multiply the sum of the perimeters of the two ends, by the slant height of the frustum, and half the product will be the surface required.

In the frustum ABDE , the circumferences of the two ends AB and DE are 22.5 and 15.75 respectively, and the slant height BD is 26 ; what is the convex surface?

Here $\frac{(22 \cdot 5+15 \cdot 75) \times 26}{2}=\overline{22 \cdot 5+15 \cdot 75}$
$\times 13=38 \cdot 25 \times 13=497 \cdot 25=$ convex surface.

To find the solidity of a cone or pyramid.-Multiply the area of the base by one-third of the perpendicular height of the cone or pyramid, and the product will be the solidity.

Required the solidity of the cone ACB , whose diameter AB is 20 , and its perpendicular height CS 24.

Here $\cdot 7854 \times 20^{2}=\cdot 7854 \times 400=314 \cdot 16$ $=$ area of the base AB .

And $314 \cdot 16 \times \frac{24}{3}=314 \cdot 16 \times 8=2513 \cdot 28$ $=$ solidity required.

To find the solidity of a frustum of a cone or pyramid.-For the frustum of a cone, the diameters or circumferences of the two ends, and the height being given.

Add together the square of the diameter of the greater end, the square of the diameter of the less end, and the product of the two
diameters; multiply the sum by $\cdot 7854$, and the product by the height; $\frac{1}{3}$ of the last product will be the solidity. Or,

Add together the square of the circumference of the greater end, the square of the circumference of the less end, and the product of the two circumferences; multiply the sum by 07958 , and the product by the height; $\frac{1}{3}$ of the last product will be the solidity.

F'or the frustum of a pyramid whose sides are regular polygons.Add together the square of a side of the greater end, the square of a side of the less end, and the product of these two sides; multiply the sum by the proper number in the Table of Superficies, and the product by the height ; $\frac{1}{3}$ of the last product will be the solidity.

When the ends of the pyramids are not regular polygons.-Add together the areas of the two ends and the square root of their product; multiply the sum by the height, and $\frac{1}{3}$ of the product will be the solidity.

What is the solidity of the frustum of the cone EABD, the diameter of whose greater end AB is 5 feet, that of the less end ED, 3 feet, and the perpendicular height $\mathrm{S} s, 9$ feet?

$$
\frac{\left(5^{2}+3^{2}+\overline{5 \times 3}\right) \times \cdot 7854 \times 9}{3}=\frac{346 \cdot 3614}{3}=
$$

$115 \cdot 4538$ solid feet, the content of the frustum.
What is the solidity of the frustum $e \mathrm{EDB} b$ of a hexagonal pyramid, the side ED of whose greater end is 4 feet, that $e b$ of the less end 3 feet, and the height $\mathrm{S}_{s}, 9$ feet?

$$
\frac{\left(4^{2}+3^{2}+4 \times 3\right) \times 2.598076 \times 9}{3}=\frac{865 \cdot 159308}{3}
$$

$=288 \cdot 386436$ solid feet, the solidity required.

The following cases contain all the rules for finding the superficies and solidities of conical ungulas.

When the section passes through the opposite extremities of the ends of the frustum.

Let $D=A B$ the diameter of the greater end; $d=\mathrm{CD}$, the diameter of the less end ; $h=$ perpendicular height of the frustum, and $n=\cdot 7854$.
Then $\frac{d^{2}-d \sqrt{ } \mathrm{D} d}{\mathrm{D}-d} \times \frac{n \mathrm{D} h}{3}=$ solidity of the greater
 elliptic ungula ADB.
$\frac{\mathrm{D} \sqrt{ } \mathrm{D} d-d^{2}}{\mathrm{D}-d} \times \frac{n d h}{3}=$ solidity of the less ungula ACD .
$\frac{\left(\mathrm{D}^{\frac{3}{2}}-d^{\frac{3}{2}}\right)^{2}}{\mathrm{D}-d} \times \frac{n h}{3}=$ difference of these hoofs.
And $\left.\frac{n}{\mathrm{D}-d} \sqrt{4 h^{2}+\left(\mathrm{D}-d^{2}\right.}\right) \times\left(\mathrm{D}^{2}-\frac{\mathrm{D}+d}{2} \sqrt{\mathrm{D} d}=\right.$ curve surface of ADB.

When the section cuts off parts of the base, and makes the angle $\mathrm{D} r$ Bess than the angle CAB .

Let $S=$ tabular segment, whose versed sine is $\mathrm{B} r \div \mathrm{D} ; s-$ tab. seg. whose versed sine is $\overline{\mathrm{B} r-(\mathrm{D}-d)}$ $\div d$, and the other letters as above.
The $\left(\mathrm{S} \times \mathrm{D}^{3}-s \times d^{3} \times \frac{\mathrm{B} r}{\mathrm{~B} r-\overline{\mathrm{D}-d}} \sqrt{ } \frac{\mathrm{~B} r}{\mathrm{~B} r-\overline{\mathrm{D}-d}}\right.$
 $\times \frac{\frac{1}{2} h}{\mathrm{D}-d}=$ solidity of the elliptic hoof EFBD.
And $\frac{1}{\mathrm{D}-d} \sqrt{4 h^{2}+(\mathrm{D}-d)^{2}} \times$ (seg. $\mathrm{FBE}-\frac{d^{2}}{\mathrm{D}^{2}} \times \frac{\frac{1}{2} \times(\mathrm{D}+d)-\mathrm{A} r}{d-\mathrm{A} r}$ $\times \sqrt{ } \frac{\mathrm{B} r}{d-\mathrm{A} r} \times$ seg. of the circle AB , whose height is $\left.\mathrm{D} \times \frac{d-\mathrm{A} r}{d}\right)$ $=$ convex surface of EFBD.

When the section is parallel to one of the sides of the frustum.
Let $\mathrm{A}=$ area of the base FBE, and the other letters as before.

Then $\left(\overline{\mathrm{A} \times \mathrm{D}}-\frac{4}{\mathrm{D}-d} d \sqrt{(\mathrm{~B}-d) \times d}\right) \times \frac{1}{3} h=$ solidity of the parabolic hoof EFBD.

And $\frac{1}{\mathrm{D}-d} \sqrt{4 h^{2} \times(\mathrm{D}-d)^{2}} \times$ (seg. FBE $-\frac{2}{3} \overline{\mathrm{D}-d}$

$\times \sqrt{d \times \overline{\mathrm{D}-d}}=$ convex surface of EFBD.
When the section cuts off part of the base, and makes the angle $\mathrm{D} r \mathrm{~B}$ greater than the angle CAB .

Let the area of the hyperbolic section $\mathrm{EDF}=\mathrm{A}$, and the area of the circular seg. $\mathrm{EBF}=a$.
Then $\frac{\frac{1}{3} h}{\mathrm{D}-h} \times\left(a \times \mathrm{D}-\mathrm{A} \times \frac{d \times \mathrm{E} r}{\mathrm{C} r}\right)=$ solidity of the hyperbolic ungula EFBD.

And $\left.\frac{1}{\mathrm{D}-d} \times \sqrt{4 h^{2}+(\mathrm{D}-d}\right)^{2} \times$ (cir. seg. EBF -
 $\frac{d^{2}}{\overline{D^{2}}} \times \frac{\mathrm{B} r-\frac{1}{2}(\mathrm{D}-d)}{\mathrm{B} r-\overline{\mathrm{D}-d}} \sqrt{ } \frac{\mathrm{~B} r}{\mathrm{~B} r-\overline{d-D}}=$ curve surface of EFBD.

The transverse diameter of the hyp. seg. $=\frac{d \times \mathrm{C} r}{\mathrm{D}-d-\mathrm{Br}}$ and the conjugate $=d \sqrt{ } \frac{\mathrm{~B} r}{\mathrm{D}-d-\mathrm{B} r}$, from which its area may be found by the former rules.

To find the solidity of a cuneus or wedge.-Add twice the length of the base to the length of the edge, and reserve the number.

Multiply the height of the wedge by the breadth of the base, and this product by the reserved number; $\frac{1}{6}$ of the last product will be the solidity.

How many solid feet are there in a wedge, whose base is 5 feet 4 inches long, and 9 inches broad, the length of the edge being 3 feet 6 inches, and the perpendicular height 2 feet 4 inches?

Here $\frac{(64 \times 2+42) \times 28 \times 9}{6}=\frac{(128+42) \times 28 \times 9}{6}=$ $\frac{170 \times 28 \times 9}{6}=\frac{170 \times 28 \times 3}{2}=170 \times 14 \times 3=7140$ solid inches.

And $7140 \div 1728=4 \cdot 1319$ solid feet, the content.
To find the solidity of a prismoid.-To the sum of the areas of the two ends add four times the area of a section parallel to and equally distant from both ends, and this last sum multiplied by $\frac{1}{6}$ of the height will give the solidity.

The length of the middle rectangle is equal to half the sum of the lengths of the rectangles of the two ends, and its breadth equal to half the sum of the breadths of those rectangles.

What is the solidity of a rectangle prismoid, the length and breadth of one end being 14 and 12 inches, and the corresponding sides of the other 6 and 4 inches, and the perpendicular $30 \frac{1}{2}$ feet.

Here $14 \times 12+\overline{6 \times 4}=168+24=192=\mathrm{D}$ sum of the area of the two ends.

Also $\frac{14+6}{2}=\frac{20}{2}=10=$ length of the middle rectangle.
And $\frac{12+4}{2}=\frac{16}{2}=8=$ breadth of the middle rectangle.
Whence $10 \times 8 \times 4=80 \times 4=320=4$ times the area of the middle rectangle.

Or $(320+192) \times \frac{366}{6}=512 \times 61=31232$ solid inches.
And $31232 \div 1728=18.074$ solid feet, the content.
To find the convex surface of a sphere.-Multiply the diameter of the sphere by its circumference, and the product will be the convex superficies required.

The curve surface of any zone or segment will also be found by multiplying its height by the whole circumference of the sphere.

What is the convex superficies of a globe BCG whose diameter BG is 17 inches?

Here $3.1416 \times 17 \times 17=53.4072 \times 17=$ $907 \cdot 9224$ square inches.

And 907:9224 $\div 144=6.305$ square feet.

To find the solidity of a sphere or globe.-Multiply the cube of the diameter by 5236 , and the product will be the solidity.

What is the solidity of the sphere AEBC, whose diameter AB is 17 inches?

Here $17^{3} \times \cdot 5236=17 \times 17 \times 17 \times 5236=$ $289 \times 17 \times 5236=4913 \times 5236=2572 \cdot 4468$ solid inches.

And $2572 \cdot 4468 \div 1728=1 \cdot 48868$ solid feet.

To find the solidity of the segment of a sphere.-To three times the square of the radius of its base add the square of its height, and this sum multiplied by the height, and the product again by 5236 , will give the solidity. Or,

From three times the diameter of the sphere subtract twice the height of the segment, multiply by the square of the height, and that product by 5236 ; the last product will be the solidity.

The radius $\mathrm{C} n$ of the base of the segment CAD is 7 inches, and the height $\mathrm{A} n 4$ inches; what is the solidity?

Here $\left(7^{2} \times 3+4^{2}\right) \times 4 \times 5236=\left(49 \times 3+4^{2}\right)$ $\times 4 \times 5236=\left(147+4^{2}\right) \times 4 \times 5236=(147+16)$ $\times 4 \times \cdot 5236=163 \times 4 \times \cdot 5236=652 \times \cdot 5236$ $=341 \cdot 3872$ solid inches.

To find the solidity of a frustum or zone of a sphere.-To the sum of the squares of the radii of the two ends, add one-third of the square of their distance, or of the breadth of the zone, and this sum multiplied by the said breadth, and the product again by $1 \cdot 5708$, will give the solidity.

What is the solid content of the zone ABCD , whose greater diameter AB is 20 inches, the less diameter CD 15 inches, and the distance $n m$ of the two ends 10 inches?

Here $\left(10^{2}+7 \cdot 5^{2}+\frac{10^{2}}{3}\right) \times 10 \times 1 \cdot 5708=$ $(100+56 \cdot 25+33 \cdot 33) \times 10 \times 1 \cdot 5708=189 \cdot 58$
 $\times 10 \times 1 \cdot 5708=1895 \cdot 8 \times 1 \cdot 5708=2977 \cdot 92264$ solid inches.

To find the solidity of a spheroid.-Multiply the square of the revolving axe by the fixed axe, and this product again by $\cdot 5236$, and it will give the solidity required.
$\cdot 5236$ is $=\frac{1}{6}$ of $3 \cdot 1416$.
In the prolate spheroid $A B C D$, the transverse, or fixed axe AC is 90 , and the conjugate or revolving axe DB is 70 ; what is the solidity?

Here $\mathrm{DB}^{2} \times \mathrm{AC} \times 5236=70^{2} \times 90$ $\times \cdot 5236=4900 \times 90 \times \cdot 5236=441000$
 $\times \cdot 5236=230907 \cdot 6=$ solidity required.

To find the content of the middle frustum of a spheroid, its length, the middle diameter, and that of either of the ends, being given, when the ends are circular or parallel to the revolving axis.To twice the square of the middle diameter add the square of the diameter of either of the ends, and this sum multiplied by the length of the frustum, and the product again by 2618 , will give the solidity.

Where $2618=\frac{1}{12}$ of $3 \cdot 1416$.
In the middle frustum of a spheroid EFGH, the middle diameter DB is 50 inches, and that of either of the ends EF or GH is 40 inches, and its length $n m 18$ inches; what is its solidity?

Here $\left(50^{2} \times 2+40^{2}\right) \times 18 \times \cdot 2618$
 $=(2500 \times 2+1600) \times 18 \times 2618=(5000+1600) \times 18 \times$ $\cdot 2618=6600 \times 18 \times \cdot 2618=118800 \times \cdot 2613=31101 \cdot 84$ cubic inches.

When the ends are elliptical or perpendicular to the revolving axis.-Multiply twice the transverse diameter of the middle section by its conjugate diameter, and to this product add the product of the transverse and conjugate diameters of either of the ends.

Multiply the sum thus found by the distance of the ends or the height of the frustum, and the product again by $\cdot 2618$, and it will give the solidity required.

In the middle frustum ABCD of an oblate spheroid, the diameters of the middle section EF are 50 and 30 , those of the end AD 40 and 24 , and its height ne 18 ; what is the solidity?

Here $(50 \times 2 \times 30+\overline{40 \times 24}) \times 18 \times 2618$
 $=(3000+960) \times 18 \times 2618=3960 \times 18 \times$ $\cdot 2618=71280 \times \cdot 2618=18661 \cdot 104=$ the solidity.

To find the solidity of the segment of a spheroid, when the base is parallel to the revolving axis.-Divide the square of the revolving axis by the square of the fixed axe, and multiply the quotient by the difference between three times the fixed axe and twice the height of the segment.

Multiply the product thus found by the square of the height of the segment, and this product again by $\cdot 5236$, and it will give the solidity required.

In the prolate spheroid DEFD, the transverse axis 2 DO is 100 , the conjugate AC 60, and the height $\mathrm{D} n$ of the segment EDF 10; what is the solidity?

Here $\left(\frac{60^{2}}{100^{2}} \times \overline{300-20)} \times 10^{2} \times \cdot 5236=\right.$ $\cdot 36 \times 280 \times 10^{2} \times \cdot 5236=100 \cdot 80 \times 100 \times \cdot 5236=10080 \times$ $\cdot 5236=5277 \cdot 888=$ the solidity.

When the base is perpendicular to the revolving axis.-Divide the fixed axe by the revolving axe, and multiply the quotient by the difference between three times the revolving axe and twice the height of the segment.

Multiply the product thus found by the square of the height of the segment, and this product again by 5236 , and it will give the solidity required.

In the prolate spheroid $a \mathrm{E} b \mathrm{~F}$, the transverse axe EF is 100, the conjugate $a b 60$, and the height an of the segment $a \mathrm{AD} 12$; what is the solidity?

Here 156 (= diff. of $3 a b$ and $2 a n) \times 1 \frac{2}{3}$ $(=\mathrm{EF} \div a b \times 144$ ($=$ square of $a n$) $\times 5236$
 $=\frac{156 \times 5}{3} \times 144 \times 5236=52 \times 5 \times 144 \times \cdot 5236=260 \times$ $144 \times \cdot 5236=37440 \times 5236=19603 \cdot 584=$ the solidity .

To find the solidity of a parabolic conoid.-Multiply the area of the base by half the altitude, and the product will be the content.

What is the solidity of the paraboloid ADB , whose height $\mathrm{D} m$ is 84 , and the diameter BA of its circular base 48 ?

Here $48^{2} \times 7854 \times 42\left(=\frac{1}{2} \mathrm{D} m\right)=2304 \times$ $\cdot 7854 \times 42=1809 \cdot 5616 \times 42=76001 \cdot 5872$ $=$ the solidity.

To find the solidity of the frustum of a paraboloid, when its ends are perpendicular to the axe of the solid.-Multiply the sum of the squares of the diameters of the two ends by the height of the frustum, and the product again by 3927 , and it will give the solidity.

Required the solidity of the parabolic frustum $\mathrm{ABC} d$, the diameter AB of the greater end being 58 , that of the less end $d c 30$, and the height no 18.

Here $\left(58^{2}+30^{2}\right) \times 18 \times 3927=(3364+$ $900) \times 18 \times 3927=4264 \times 18 \times 3927=$
 $76752 \times \cdot 3927=30140 \cdot 5104=$ the solidity.

To find the solidity of an hyperboloid.-To the square of the radius of the base add the square of the middle diameter between the base and the vertex, and this sum multiplied by the altitude, and the product again by $\cdot 5236$ will give the solidity.

In the hyperboloid ACB , the altitude Cr is 10 , the radius $\mathrm{A} r$ of the base 12 , and the middle diameter $n m 15.8745$; what is the solidity?
Here $\overline{15 \cdot 8745^{2}+12^{2}} \times 10 \times \cdot 5236=$ $\overline{251 \cdot 99975+144} \times 10 \times \cdot 5236=395 \cdot 99975 \times$ $10 \times \cdot 5236=3959 \cdot 9975 \times \cdot 5236=2073 \cdot 454691$
 $=$ the solidity.

To find the solidity of the frustum of an hyperbolic conoid.-Add together the squares of the greatest and least semi-diameters, and the square of the whole diameter in the middle; then this sum being multiplied by the altitude, and the product again by 5236 , will give the solidity.

In the hyperbolic frustum ADCB, the length $r s$ is 20 , the diameter AB of the greater end 32, that DC of the less end 24 , and the middle diameter $n m 28 \cdot 1708$; required the solidity.

Here $\left(16^{2}+12^{2}+28 \cdot 1708^{2}\right) \times 20 \times \cdot 52359$ $=(256+144+793 \cdot 5939) \times 20 \times \cdot 52359=$ $1193 \cdot 5939 \times 20 \times \cdot 52359=23871 \cdot 878 \times \cdot 52359$
 $=12499 \cdot 07660202=$ solidity.

T'o find the solidity of a tetraedron.-Multiply $\frac{1}{12}$ of the cube of the linear side by the square root of 2 , and the product will be the solidity.

The linear side of a tetraedron $\mathrm{ABC} n$ is 4 ; what is the solidity?
$\frac{4^{3}}{12} \times \sqrt{ } 2=\frac{4 \times 4 \times 4}{12} \times \sqrt{ } 2=\frac{4 \times 4}{3} \times \sqrt{ } 2=\frac{16}{3}$
 $\times \sqrt{ } 2=\frac{16}{3} \times 1 \cdot 414=\frac{22 \cdot 624}{3}=7 \cdot 5413=$ solidity.

To find the solidity of an octaedron.-Multiply $\frac{1}{3}$ of the cube of the linear side by the square root of 2 , and the product will be the solidity.

What is the solidity of the octaedron BGAD , whose linear side is 4 ?

To find the solidity of a dodecaedron.-To 21 times the square root of 5 add 47 , and divide the sum by 40 : then the square root of the quotient being multiplied by five times the cube of the linear side will give the solidity.

The linear side of the dodecaedron ABCDE is 3 ; what is the solidity?

$$
\begin{aligned}
& \sqrt{ } \frac{21 \sqrt{ } 5+47}{40} \times 27 \times 5=\sqrt{ } \frac{21 \times 2 \cdot 23606+47}{40} \\
& \times 27 \times 5=\sqrt{ } \frac{46.95726+47}{40} \times 135=206.901
\end{aligned}
$$

solidity.

To find the solidity of an icosaedron.-To three times the square root of 5 add 7 , and divide the sum by 2 ; then the square root of н 2
this quotient being multiplied by $\frac{5}{6}$ of the cube of the linear side will give the solidity.

That is $\frac{5}{6} S^{3} \times \sqrt{ }\left(\frac{7+3 \sqrt{ } 5}{2}\right)=$ solidity when S is $=$ to the linear side.

The linear side of the icosaedron ABCDEF is 3 ; what is the solidity?
$\sqrt{ } \frac{3 \sqrt{ } 5+7}{2} \times \frac{5 \times 3^{2}}{6}=\sqrt{ } \frac{3 \times 2 \cdot 23606+7}{2} \mathrm{c}$
$\times \frac{5 \times 27}{6}=\sqrt{ } \frac{6.70818+7}{2} \times \frac{5 \times 9}{2}={ }_{\mathrm{B}}$
$\sqrt{ } \frac{13 \cdot 70818}{2} \times \frac{45}{2}=\sqrt{6.85409} \times 22 \cdot 5=2 \cdot 61803$

$\times^{\prime} 22 \cdot 5=58 \cdot 9056=$ solidity .
The superficies and solidity of any of the five regular bodies may be found as follows:

Rule 1. Multiply the tabular area by the square of the linear edge, and the product will be the superficies.
2. Multiply the tabular solidity by the cube of the linear edge, and the product will be the solidity.

Surfaces and Solidities of the Regular Bodies.

So of.	Names.	Surfaes.	Solidities.
4	Tetraedron	1.73205	0.11785
6	Hexaedron	6.00000	1.00000
8	Octaedron	3.46410	0.47140
\$2	Dodecaedron	20.64578	7.66312
20	Icosaedron	8.66025	2.18169

To find the convex superficies of a cylindric ring. -To the thickness of the ring add the inner diameter, and this sum being multiplied by the thickness, and the product again by 9.8696 , will give the superficies.

The thickness of Ac of a cylindric ring is 3 inches, and the inner diameter cd 12 inches; what is the convex superficies?

$$
\begin{aligned}
& \overline{12}+3 \times 3 \times 9 \cdot 8696=15 \times 3 \times 9 \cdot 8696 \\
= & 45 \times 9 \cdot 8696=444 \cdot 132=\text { superficies } .
\end{aligned}
$$

To find the solidity of a cylindric ring.-To the thickness of the ring add the inner diameter, and this sum being multiplied by the square of half the thickness, and the product again by $9 \cdot 8696$, will give the solidity.

What is the solidity of an anchor ring, whose inner diameter is 8 inches, and thickness in metal 3 inches?
$\overline{8+3} \times \overline{\bar{p}_{2}^{2}} \times 9 \cdot 8696=11 \times 1.5^{2} \times 9 \cdot 8693=11 \times 2.25 \times$ $9 \cdot 8696=24 \cdot 75 \times 9 \cdot 8696=244 \cdot 2726=$ solidity .

The inner diameter AB of the cylindric ring cdef equals 18 feet, and the sectional diameter $c \mathrm{~A}$ or $\mathrm{B} e$ equals 9 inches; required the convex surface and solidity of the ring.

18 feet $\times 12=216$ inches, and $\overline{216+9}$ $\times 9 \times 9 \cdot 8696=19985 \cdot 94$ square inches.

$$
\overline{216+9} \times 9^{2} \times 2 \cdot 4674=44968 \cdot 365 \text { cubic }
$$ inches.

In the formation of a hoop or ring of wrought iron, it is found in practice that in bending the iron, the side or edge which forms the interior diameter of the hoop is upset or shortened, while at the same time the exterior diameter is drawn or lengthened; therefore, the proper diameter by which to determine the length of the iron in an unbent state, is the distance from centre to centre of the iron of which the hoop is composed: hence the rule to determine the length of the iron. If it is the interior diameter of the hoop that is given, add the thickness of the iron; but if the exterior diameter, subtract from the given diameter the thickness of the iron, multiply the sum or remainder by $3 \cdot 1416$, and the product is the length of the iron, in equal terms of unity.

Supposing the interior diameter of a hoop to be 32 inches, and the thickness of the iron $1 \frac{1}{4}$, what must be the proper length of the iron, independent of any allowance for shutting?

$$
32+1 \cdot 25=33 \cdot 25 \times 3 \cdot 1416=104 \cdot 458 \text { inches }
$$

But the same is obtained simply by inspection in the Table of Circumferences.
Thus, $33 \cdot 25=2$ feet $9 \frac{1}{4} \mathrm{in}$., opposite to which is 8 feet $8 \frac{1}{2}$ inches.
Again, let it be required to form a hoop of iron $\frac{7}{8}$ inch in thickness, and $16 \frac{1}{2}$ inches outside diameter.
$16.5-875=15 \cdot 625$, or 1 foot $3 \frac{5}{8}$ inches;
opposite to which, in the Table of Circumferences, is 4 feet 1 inch, independent of any allowance for shutting.

The length for angle iron, of which to form a ring of a given diameter, varies according to the strength of the iron at the root; and the rule is, for a ring with the flange outside, add to its required interior diameter, twice the extreme strength of the iron at the root; or, for a ring with the flange inside, subtract twice the extreme strength; and the sum or remainder is the diameter by which to determine the length of the angle iron. Thus, suppose two angle iron rings similar to the following be required, the exterior diameter AB , and interior diameter CD, each to be 1 foot $10 \frac{1}{2}$ inches, and
 the extreme strength of the iron at the root $c d, c d, \& c, \frac{7}{8}$ of an inch;
twice $\frac{7}{8}=1 \frac{3}{4}$, and $1 \mathrm{ft} .10 \frac{1}{2} \mathrm{in} .+1 \frac{3}{4}=2 \mathrm{ft}$. $\frac{1}{4} \mathrm{in}$., opposite to whjch, in the Table of Circumferences, is $6 \mathrm{ft} .4 \frac{1}{4} \mathrm{in}$., the length of the iron for CD; and $1 \mathrm{ft} .10 \frac{1}{2} \mathrm{in} .-1 \frac{3}{4}=1 \mathrm{ft} .8 \frac{3}{4} \mathrm{in}$., opposite to which is $5 \mathrm{ft} .5 \frac{1}{4} \mathrm{in}$., the length of the iron for AB .
But observe, as before, that the necessary allowance for shutting must be added to the length of the iron, in addition to the length as expressed by the Table.

Required the capacity in gallons of a locomotive engine tender tank, 2 feet 8 inches in depth, and its superficial dimensions the following, with reference to the annexed plan:

Length, or dist. between A and $\mathrm{B}=10 \mathrm{ft} .2 \frac{3}{4} \mathrm{in}$. or, 122.75 in .

Then, $122.75 \times 79.5=9758.525$ square inches, as a rectangle. And $18.5^{2} \times 7854=268.8 \quad$ " \quad " area of circle formed by the two ends.

Total 10027•325 " " from which deduct the area of the coke-space, and the difference of area between the semicircle formed by the two back corners, and that of a rectangle of equal length and breadth;

Then $46.75 \times 37 \cdot 25=1731 \cdot 4375$ area of r, n, s, t, in sq. ins. $\frac{32 \cdot 25^{2} \times \cdot 7854}{2}=408.4 \quad$ area of half the circle $r n$.
Radius of back corners $=4$ inches;
consequently $8^{2} \times \cdot 7854=25 \cdot 13$, the semicircle's area; and $8 \times 4=32-25.13=6.87$ inches taken off by rounding the corners.
Hence, $\overline{1731 \cdot 4375+408 \cdot 4+6 \cdot 87}=2146 \cdot 707$, and $10027 \cdot 235-2146 \cdot 707=7880 \cdot 618$ square inches, or whole area in plan, $7880 \cdot 618 \times 32$ the depth $=252179 \cdot 776$ cubic inches, and $252179 \cdot 776$ divided by 231 gives $1091 \cdot 6873$ the content in gallons.

Tables by which to facilitate the Mensuration of Timber.

1. Flat or Board Measure.

Breadth in inches.	Area of a lineal foot.	Breadth in inches.	Area of a lineal foot	Breadth in inches.	Area of a lineal foot.
$\frac{1}{4}$	-0208	4	-3334	8	-6667
$\frac{1}{2}$	$\cdot 0417$	41	-3542	$8 \frac{1}{4}$	-6875
$\frac{3}{4}$	-0625	$4 \frac{1}{2}$	$\cdot 375$	$8 \frac{1}{2}$	-7084
1	. 0834	$4 \frac{3}{4}$	-3958	$8 \frac{3}{4}$	-7292
$1 \frac{1}{4}$	$\cdot 1042$	5	$\cdot 4167$	9	$\cdot 75$
$1 \frac{1}{2}$	-125	$5 \frac{1}{4}$	-4375	91	-7708
$1 \frac{3}{4}$	-1459	$5 \frac{1}{2}$	$\cdot 4583$	$9 \frac{1}{2}$. 7917
2	-1667	$5 \frac{3}{4}$	$\cdot 4792$	$9 \frac{3}{4}$	-8125
21	-1875	-6	$\cdot 5$	10	-8334
$2 \frac{1}{2}$	-2084	61	-5208	$10 \frac{1}{1}$. 8542
23	-2292	$6 \frac{1}{2}$	- 5416	101	-875
3	-25	$6 \frac{3}{4}$	$\cdot 5625$	$10 \frac{3}{4}$	-8959
31	-2708	7	-5833	11	-9167
$3 \frac{1}{2}$	-2916	$7 \frac{1}{4}$	-6042	114	-9375
$3 \frac{3}{4}$	-3125	$7 \frac{1}{2}$	-625	111 $\frac{1}{2}$	-9583
		$7 \frac{3}{4}$	-6458	$11 \frac{3}{4}$	$\cdot 9792$

Application and Use of the Table.
Required the number of square feet in a board or plank $16 \frac{1}{2}$ feet in length and $9 \frac{3}{4}$ inches in breadth.

Opposite $9 \frac{3}{4}$ is $8125 \times 16.5=13.4$ square feet.
A board 1 foot 23_{4} inches in breadth, and 21 feet in length; what is its superficial content in square feet?

Opposite $2 \frac{3}{4}$ is $\cdot 2292$, to which add the 1 foot; then

$$
1 \cdot 2292 \times 21=25 \cdot 8 \text { square feet. }
$$

In a board $15 \frac{1}{2}$ inches at one end, 9 inches at the other, and $14 \frac{1}{2}$ feet in length, how many square feet?

$$
\frac{15.5+9}{2}=12 \frac{1}{4}, \text { or } 1.0208 ; \text { and } 1.0208 \times 14.5=14.8 \mathrm{sq} . \mathrm{ft} .
$$

The solidity of round or unsquared timber may be found with much more accuracy by the succeeding Rule:-Multiply the square of one-fifth of the mean girth by twice the length, and the product will be the solidity, very near the truth.

A piece of timber is 30 feet long, and the mean girth is 128 inches, what is the solidity?

$$
\begin{aligned}
\frac{128}{5} & =25 \cdot 6 . \\
\text { Then } \frac{25 \cdot 6^{2} \times 60}{144} & =273 \cdot 06 \text { cubic feet. }
\end{aligned}
$$

This is nearer the truth than if one-fourth the girth be employed.
2. Cubic or Solid Measure.

Mean 1/4 girt in	Cubic feet in each lineal foot.	Mean $1 / 4$ girt in inches.	Cubic feet in each lineal foot	Mean $1 / 4$ girt in inches.	Cubic feet in each lineal foot.	Mean $1 / 4$ girt in inches	Cubic feet in each lineal foot.
6	$\cdot 25$	12	1	18	$2 \cdot 25$	24	4
$6 \frac{1}{4}$	$\cdot 272$	$12 \frac{1}{4}$	1.042	$18 \frac{1}{4}$	$2 \cdot 313$	$24 \frac{1}{4}$	$4 \cdot 084$
$6 \frac{1}{2}$	$\cdot 294$	121	1.085	181	$2 \cdot 376$	$24 \frac{1}{2}$	$4 \cdot 168$
$6 \frac{3}{4}$	$\cdot 317$	$12 \frac{3}{4}$	$1 \cdot 129$	$18 \frac{3}{4}$	$2 \cdot 442$	$24 \frac{3}{4}$	$4 \cdot 254$
7	$\cdot 340$	13	1-174	19	$2 \cdot 506$	25	$4 \cdot 34$
71	-364	131	1.219	$19 \frac{1}{4}$	$2 \cdot 574$	251	$4 \cdot 428$
$7 \frac{1}{2}$	-39	$13 \frac{1}{2}$	$1 \cdot 265$	$19 \frac{1}{2}$	$2 \cdot 64$	$25 \frac{1}{2}$	$4 \cdot 516$
$7 \frac{3}{4}$	$\cdot 417$	$13 \frac{3}{4}$	$1 \cdot 313$	$19 \frac{3}{4}$	$2 \cdot 709$	$25 \frac{3}{4}$	$4 \cdot 605$
8	-444	14	$1 \cdot 361$	20	$2 \cdot 777$	26	$4 \cdot 694$
81	-472	$14 \frac{1}{4}$	$1 \cdot 41$	201	2.898	$26 \frac{1}{4}$	4.785
$8 \frac{1}{2}$	-501	$14 \frac{1}{2}$	$1 \cdot 46$	$20 \frac{1}{2}$	$2 \cdot 917$	$26 \frac{1}{2}$	$4 \cdot 876$
$8 \frac{3}{4}$	-531	$14 \frac{3}{4}$	1.511	$20 \frac{3}{4}$	$2 \cdot 99$	263	$4 \cdot 969$
9	-562	15	$1 \cdot 562$	21	$3 \cdot 062$	27	$5 \cdot 062$
91	-594	$15 \frac{1}{4}$	- 1.615	$21 \frac{1}{4}$	$3 \cdot 136$	274	$5 \cdot 158$
$9 \frac{1}{2}$	-626	$15 \frac{1}{2}$	1.668	$21 \frac{1}{2}$	$3 \cdot 209$	$27 \frac{1}{2}$	$5 \cdot 252$
$9 \frac{3}{4}$	-659	$15 \frac{3}{4}$	1.772	$21 \frac{3}{4}$	$3 \cdot 285$	$27 \frac{3}{4}$	$5 \cdot 348$
10	-694	16	1.777	22	$3 \cdot 362$	28	$5 \cdot 444$
$10 \frac{1}{4}$	$\cdot 73$	161	1.833	224	$3 \cdot 438$	$28 \frac{1}{4}$	$5 \cdot 542$
$10 \frac{1}{2}$	-766	$16 \frac{1}{2}$	1.89	$22 \frac{1}{2}$	$3 \cdot 516$	$28 \frac{1}{2}$	$5 \cdot 64$
$10 \frac{3}{4}$	-803	$16 \frac{3}{4}$	1.948	$22 \frac{3}{4}$	$3 \cdot 598$	$28 \frac{3}{4}$	$5 \cdot 74$
11	-84	17	$2 \cdot 006$	23	$3 \cdot 673$	29	$5 \cdot 84$
$11 \frac{1}{4}$	-878	$17 \frac{1}{4}$	2.066	231	$3 \cdot 754$	291	$5 \cdot 941$
112	-918	$17 \frac{1}{2}$	$2 \cdot 126$	$23 \frac{1}{2}$	$3 \cdot 835$	$29 \frac{1}{2}$	$6 \cdot 044$
113	$\cdot 959$	$17 \frac{3}{4}$	$2 \cdot 187$	$23 \frac{3}{4}$	$3 \cdot 917$	293	$6 \cdot 146$

In the cubic estimation of timber, custom has established the rule of $\frac{1}{4}$, the mean girt being the side of the square considered as the cross sectional dimensions; hence, multiply the number of cubic feet by lineal foot as in the Table of Cubic Measure opposite the $\frac{1}{4}$ girt, and the product is the solidity of the given dimensions in cubic feet.

Suppose the mean $\frac{1}{4}$ girt of a tree $21 \frac{1}{4}$ inches, and its length 16 feet, what are its contents in cubic feet?

$$
3 \cdot 136 \times 16=50 \cdot 176 \text { cubic feet }
$$

Battens, Deals, and Planks are each similar in their various lengths, but differing in their widths and thicknesses, and hence their principal distinction: thus, a batten is 7 inches by $2 \frac{1}{2}$, a deal 9 by 3, and a plank 11 by 3 , these being what are termed the standard dimensions, by which they are bought and sold, the length of each being taken at 12 feet; therefore, in estimating for the proper value of any quantity, nothing more is required than their lineal dimensions, by which to ascertain the number of times 12 fect, there are in the given whole.

Suppose I wish to purchase the following:

Table showing the number of Lineal Feet of Scantling of various dimensions，which are equal to a Cubic Foot．

	Inches．		Ft．In．		Inches．		Ft．In．		Inches．		Ft．In．
	2		360		4		90	$\stackrel{\rightharpoonup}{2}$	91		26
	$2 \frac{1}{2}$		$28 \quad 9$		$4 \frac{1}{2}$		80	20	10		25
	3		240		5		$7 \quad 2$	\％	$10 \frac{1}{2}$		23
	$3 \frac{1}{2}$		207		$5 \frac{1}{2}$		$6 \quad 6$	＇ల్口	11		$2 \quad 2$
	4		180		6		60	．．．	111 $\frac{1}{2}$		21
	$4 \frac{1}{2}$		160	to	$6 \frac{1}{2}$		$5 \quad 6$	\bigcirc	12		20
	5		145	0	7		$5 \quad 1$				
	$5 \frac{1}{2}$		131	－	$7 \frac{1}{2}$		$4 \quad 9$		7		211
	6		120	－	8		46		$7 \frac{1}{2}$		29
	$6 \frac{1}{2}$		11	$\stackrel{\square}{\text {－}}$	$8 \frac{1}{2}$		43		8		26
	7 ．		$10 \quad 3$		9		40	R	$8 \frac{1}{2}$		25
	$7 \frac{1}{2}$		$\begin{array}{ll}9 & 7\end{array}$		$9 \frac{1}{2}$		$3 \quad 9$	0	9		23
	8		90		10^{2}		37	－	$9 \frac{1}{2}$		$2 \quad 2$
	$8 \frac{1}{2}$		86		101 $\frac{1}{2}$		35	．	10^{2}		$2 \quad 1$
	9		80		11		$3 \quad 3$	$\stackrel{\sim}{\sim}$	1012		111
	91		7		111 $\frac{1}{2}$		$3 \quad 2$		11		110
	10		$\begin{array}{lr}7 & 3\end{array}$		12	$\stackrel{7}{5}$	30		111 $\frac{1}{2}$	현	$\begin{array}{ll}1 & 9\end{array}$
	1012		610						12	bo	18
	11		66		5		$5 \quad 9$			\pm	
	111 $\frac{1}{2}$		$6 \quad 4$		$5 \frac{1}{2}$	．	$5 \quad 3$		8	．	23
	12		60		6	O	410		$8 \frac{1}{2}$	0	21
$\begin{aligned} & \text { t. } \\ & \text { た } \\ & \text { d్ల } \\ & \text {. } \\ & \infty \end{aligned}$	3				$6 \frac{1}{2}$	菏	45	$\stackrel{\sim}{2}$	9	．	20
	$3 \frac{1}{2}$		138		7	－	41	$\overbrace{0}$	${ }^{9} 1$	O－1	110
	4		120	\cdots	${ }_{8} \frac{1}{2}$		$\begin{array}{ll}3 & 10 \\ 3\end{array}$	－	101	\sim	19
	$4 \frac{1}{2}$		108	$\stackrel{\square}{0}$	8		37	．	11^{2}		18
	5		97	${ }^{\text {J }}$	$8 \frac{1}{2}$		35	∞	111		17
	$5 \frac{1}{2}$		90	． 10	9		$\begin{array}{ll}3 & 2 \\ 3 & 0\end{array}$		12		16
	6		80		10^{9}		$\begin{array}{rrr}3 & 10\end{array}$				
	$6 \frac{1}{2}$		$\begin{array}{ll}7 & 4\end{array}$		101		$\begin{array}{rr}2 & 10 \\ 2 & 9\end{array}$		9		19
	7		610		11^{2}		28	$\stackrel{\rightharpoonup}{0}$	$9 \frac{1}{2}$		18
	$7 \frac{1}{2}$		6		111 $\frac{1}{2}$		$2{ }^{2} 6$	0	10		17
	8		6		$12{ }^{2}$		2	－	1012		16
	81		58					．	11		15
	9		54		6		40	$\stackrel{-1}{\circ}$	111 $\frac{1}{2}$		14
	$9 \frac{1}{2}$		5	A	$6 \frac{1}{2}$		38		12		14
	10		410	0	7		35				
	101 ${ }^{\frac{1}{2}}$		46	\％	$7 \frac{1}{2}$		$3 \quad 2$	$\stackrel{\rightharpoonup}{2}$	10		15
	11		44	－	8		30		101		14
	111 ${ }^{1}$		$4 \quad 2$	$\stackrel{\sim}{\bullet}$	$8 \frac{1}{2}$		210	．	11		14
	12		40		9		28	을	111		13

Hewn and sawed timber are measured by the cubic foot．The unit of board measure is a superficial foot one inch thick．

To measure round timber．－Multiply the length in feet by the square of $\frac{1}{4}$ of the mean girth in inches，and the product divided by 144 gives the content in cubic feet．

The $\frac{1}{4}$ girths of a piece of timber，taken at five points，equally distant from each other，are $24,28,33,35$ ，and 40 inches；the length 30 feet，what is the content？

$$
\frac{24+28+33+35+40}{5}=32
$$

Then $\frac{32^{2} \times 30}{144}=213 \frac{1}{3}$ cubic feet．

Table containing the Superficies and Solid Content of Spheres, from 1 to 12, and advancing by a tenth.

Diam.	Superficies.	Solidity.	Diam.	Superficies.	Solidity.	Diam.	Superficies.	Solidity.
1.0	$3 \cdot 1416$	-5236	$4 \cdot 7$	69•3979	$54 \cdot 3617$	$8 \cdot 4$	$221 \cdot 6712$	$310 \cdot 3398$
$\cdot 1$	$3 \cdot 8013$	-6969	$\cdot 8$	$72 \cdot 3824$	57-9059	$\cdot 5$	$226 \cdot 9806$	321-5558
$\cdot 2$	$4 \cdot 5239$. 9047	9	$75 \cdot 4298$	$61 \cdot 6010$	$\cdot 6$	$232 \cdot 3527$	$333 \cdot 0389$
$\cdot 3$	$5 \cdot 3093$	$1 \cdot 1503$	$5 \cdot 0$	$78 \cdot 5400$	$65 \cdot 4500$. 7	$237 \cdot 7877$	344•7921
$\cdot 4$	$6 \cdot 1575$	$1 \cdot 4367$	$\cdot 1$	81.7130	$69 \cdot 4560$	$\cdot 8$	$243 \cdot 2855$	356.8187
$\cdot 5$	$7 \cdot 0686$	$1 \cdot 7671$	2	84.9488	$73 \cdot 6223$	9	$248 \cdot 8461$	$369 \cdot 1217$
$\cdot 6$	8.0424	$2 \cdot 1446$	$\cdot 3$	$88 \cdot 2475$	$77 \cdot 9519$	$9 \cdot 0$	$254 \cdot 4696$	$381 \cdot 7044$
$\cdot 7$	$9 \cdot 0792$	$2 \cdot 5724$	$\cdot 4$	$91 \cdot 6090$	$82 \cdot 4481$	$\cdot 1$	$260 \cdot 1558$	$394 \cdot 5697$
$\cdot 8$	$10 \cdot 1787$	$3 \cdot 0536$	-5	$95 \cdot 0334$	$87 \cdot 1139$	$\cdot 2$	$265 \cdot 9130$	407•7210
$\cdot 9$	$11 \cdot 3411$	$3 \cdot 5913$	$\cdot 6$	98.5205	91.9525	$\cdot 3$	271-7169	$421 \cdot 1613$
$2 \cdot 0$	$12 \cdot 5664$	$4 \cdot 1888$	$\cdot 7$	$102 \cdot 0705$	$96 \cdot 9670$	$\cdot 4$	277-5917	$434 \cdot 8937$
$\cdot 1$	$13 \cdot 8544$	$4 \cdot 8490$	$\cdot 8$	105•6834	102 1606	-5	$283 \cdot 5294$	$448 \cdot 9215$
$\cdot 2$	$15 \cdot 2053$	$5 \cdot 5752$	$\cdot 9$	$109 \cdot 3590$	107.5364	$\cdot 6$	$289 \cdot 5298$	$463 \cdot 2477$
$\cdot 3$	$16 \cdot 6190$	63706	$6 \cdot 0$	$113 \cdot 0976$	$113 \cdot 0976$	$\cdot 7$	$295 \cdot 5931$	477-7755
$\cdot 4$	$18 \cdot 0956$	$7 \cdot 2382$	${ }^{3} \cdot 1$	116.8989	118.8472	- 8	$301 \cdot 7192$	492.8081
-5	$19 \cdot 6350$	$8 \cdot 1812$	$\cdot 2$	$120 \cdot 7631$	124-7885	$\cdot 9$	$307 \cdot 9082$	$508 \cdot 0485$
$\cdot 6$	$21 \cdot 2372$	9-2027	$\cdot 3$	$124 \cdot 6901$	$130 \cdot 9246$	10.0	$314 \cdot 1600$	$523 \cdot 6000$
$\cdot 7$	$22 \cdot 9022$	$10 \cdot 3060$	$\cdot 4$	$128 \cdot 6799$	137-2585	$\cdot 1$	$320 \cdot 4746$	$539 \cdot 4656$
$\cdot 8$	$24 \cdot 6300$	11.4940	-5	$132 \cdot 7326$	$143 \cdot 7936$	$\cdot 2$	$326 \cdot 8520$	$555 \cdot 6485$
$\cdot 9$	$26 \cdot 4208$	$12 \cdot 7700$	$\cdot 6$	136.8480	$150 \cdot 5329$	$\cdot 3$	$333 \cdot 2923$	$572 \cdot 1518$
3.0	$28 \cdot 2744$	14-1372	$\cdot 7$	$141 \cdot 0264$	$157 \cdot 4795$	$\cdot 4$	$339 \cdot 7954$	$588 \cdot 9784$
$\cdot 1$	30-1907	$15 \cdot 5985$	$\cdot 8$	$145 \cdot 2675$	$164 \cdot 6365$	-5	$346 \cdot 3614$	$606 \cdot 1324$
$\cdot 2$	$32 \cdot 1699$	$17 \cdot 1573$	9	$149 \cdot 5715$	$172 \cdot 0073$	$\cdot 6$	$352 \cdot 9901$	$623 \cdot 6159$
$\cdot 3$	$34 \cdot 2120$	18.8166	$7 \cdot 0$	$153 \cdot 9384$	$179 \cdot 5948$	$\cdot 7$	$359 \cdot 6817$	$641 \cdot 4325$
$\cdot 4$	$36 \cdot 3168$	20.5795	$\cdot 1$	$158 \cdot 3680$	$187 \cdot 4021$	-8	$366 \cdot 4362$	$659 \cdot 5852$
-5	$38 \cdot 4846$	$22 \cdot 4493$	$\cdot 2$	162-8605	$195 \cdot 4326$	$\cdot 9$	$373 \cdot 2534$	$678 \cdot 0771$
$\cdot 6$	$40 \cdot 7151$	24.4290	$\cdot 3$	167.4158	203•6893	11.0	$380 \cdot 1336$	696.9116
$\cdot 7$	$43 \cdot 0085$	26.5219	$\cdot 4$	172.0340	$212 \cdot 1752$	$\cdot 1$	387-0765	716.0915
$\cdot 8$	$45 \cdot 3647$	28.7309	$\cdot 5$	$176 \cdot 7150$	$220 \cdot 8937$	$\cdot 2$	$394 \cdot 0823$	$735 \cdot 6200$
$\cdot 9$	$47 \cdot 7837$	31.0594	$\cdot 6$	181.4588	$229 \cdot 8478$	$\cdot 3$	$401 \cdot 1509$	$755 \cdot 5008$
$4 \cdot 0$	$50 \cdot 2656$	$33 \cdot 5104$	$\cdot 7$	$186 \cdot 2654$	$239 \cdot 0511$	$\cdot 4$	$408 \cdot 2823$	$775 \cdot 7364$
$\cdot 1$	$52 \cdot 8102$	$36 \cdot 0870$	$\cdot 8$	191-1349	$248 \cdot 4754$	-5	$415 \cdot 4766$	796.3301
$\cdot 2$	55.4178	$38 \cdot 7924$. 9	$196 \cdot 0672$	$258 \cdot 1552$	$\cdot 6$	$422 \cdot 7336$	817-2851
$\cdot 3$	$58 \cdot 0881$	$41 \cdot 6298$	$8 \cdot 0$	$201 \cdot 0624$	$268 \cdot 0832$	$\cdot 7$	$430 \cdot 0536$	$838 \cdot 6045$
$\cdot 4$	$60 \cdot 8213$	$44 \cdot 6023$	$\cdot 1$	$206 \cdot 1203$	$278 \cdot 2625$	8	$437 \cdot 4363$	$860 \cdot 2915$
-5	$63 \cdot 6174$	47-7130	$\cdot 2$	$211 \cdot 2411$	$288 \cdot 6962$	$\cdot 9$	444-8819	$882 \cdot 3492$
$\cdot 6$	$66 \cdot 4782$	$50 \cdot 9651$	$\cdot 3$	$216 \cdot 4248$	299.3876	$12 \cdot 0$	$452 \cdot 3904$	904•7808

To reduce Solid Inches into Solid Feet.

1728 Solid Inches to one Solid Foot.					
Feet. Inches.					
$1=1728$	$18=31104$	$35=60480$	$52=88956$	$69=119232$	$85=146880$
$2 \quad 3456$	1932832	$36 \quad 62208$	53 9151584	$70 \quad 120960$	86148608
$3 \quad 5184$	$20 \quad 34560$	3763936	$54 \quad 93312$	$71 \quad 122688$	87150336
$4 \quad 6912$	2136288	$38 \quad 65664$	5595040	$72 \quad 124416$	88152064
58640	$22 \quad 38016$	3967392	5696768	73126144	89153792
610368	$23 \quad 39744$	$40 \quad 69120$	5798496	$74 \quad 127872$	90155520
712096	$24 \quad 41472$	4170848	58100224	$75 \quad 129600$	91157248
$8 \quad 13824$	2543200	$42 \quad 72576$	59101952	$76 \quad 131328$	92158976
915552	2644928	$43 \quad 74304$	60103680	$77 \quad 133056$	93160704
1017280	2746656	$44 \quad 76032$	61105408	$78 \quad 134784$	94162432
1119008	2848384	$45 \quad 77760$	62107136	$79 \quad 136512$	95164160
1220736	2950112	4679488	63108864	$80 \quad 138240$	96165888
1322464	$30 \quad 51840$	$47 \quad 81216$	64110592	81139968	97167616
1424192	3153568	$48 \quad 82944$	65112320	82141696	98169344
1525920	$32 \quad 55296$	$49 \quad 84672$	66114048	83143424	$99 \quad 171072$
1627648	$33 \quad 57024$	5086400	$67 \quad 115776$	$84 \quad 145152$	$100 \quad 172800$
1729376	$34 \quad 58752$	5188128	68117504		

CUTTINGS AND EMBANKMENTS.

The angle of repose upon railways, or that incline on which a carriage would rest in whatever situation it was placed, is said to be at 1 in 280 , or nearly 19 feet per mile; at any greater rise than this, the force of gravity overcomes the horizontal traction, and carriages will not rest, or remain quiescent upon the line, but will of themselves run down the line with accelerated velocity. The angle of practical effect is variously stated, ranging from 1 in 75 to 1 in 330.
The width of land required for a railway must vary with the depth of the cuttings and length of embankments, together with the slopes necessary to be given to suit the various materials of which the cuttings are composed: thus, rock will generally stand when the sides are vertical; chalk varies from $\frac{1}{6}$ to 1 , to 1 to 1 ; gravel $1 \frac{1}{2}$ to 1 ; coal $1 \frac{1}{2}$ to 1 ; clay 1 to 1 , \&c.; but where land can be obtained at a reasonable rate, it is always well to be on the safe side.

The following Table is calculated for the purpose of ascertaining the extent of any cutting in cubic yards, for 1 chain, 22 yards, or 66 feet in length, the slopes or angles of the sides being those which are most in general practice, and formation level equal 30 feet.

Slopes 1 to 1.

$\begin{gathered} \text { Depth } \\ \text { ont } \\ \text { ontin } \\ \text { ingin } \\ \text { feet. } \end{gathered}$	$\left\|\begin{array}{c} \text { Half } \\ \text { width } \\ \text { widt } \\ \text { top in } \\ \text { feet. } \end{array}\right\|$	$\begin{gathered} \text { Content } \\ \text { in cubic } \\ \text { yardsper per } \\ \text { chaina } \end{gathered}$			$\begin{aligned} & \text { content } \\ & \text { of } 6 \text { per- } \\ & \text { pendicu- } \\ & \text { lar ftin in } \\ & \text { breadth. } \end{aligned}$	$\left\|\begin{array}{c} \text { Depth } \\ \text { out } \\ \text { out } \\ \text { tininin } \\ \text { feet. } \end{array}\right\|$	$\begin{aligned} & \text { Half } \\ & \text { wialth } \\ & \text { with } \\ & \text { top in } \\ & \text { feet. } \end{aligned}$	$\begin{gathered} \text { Content } \\ \text { in cubbic } \\ \text { yards per } \\ \text { elainin. } \end{gathered}$	Content of ther ond part arf breadin	Content pendicu- 	
1	16	75.78	$2 \cdot 44$	7.33	14.67	26	41	3599•11	63.55	$190 \cdot 67$	
2	17	$156 \cdot 42$	$4 \cdot 89$	14.67	29	27	42	$3762 \cdot 00$	$65 \cdot 9$	1	
3	18	$242 \cdot 0$	$7 \cdot 33$	22.00	44.00	28	43	$3969 \cdot 78$	68.	205	$10 \cdot 67$
4	19	$332 \cdot 44$	9.78	29.33	$58 \cdot 67$	29	44	$4182 \cdot 44$	70	212	
5	20	$427 \cdot 78$	12.22	36.67	73 .	30	45	$4400 \cdot 00$	$73 \cdot 32$	220	00
6	21	528.00	14.67	44.00	88.00	31	46	$4622 \cdot 44$	75.77	2	4.67
7	22	$633 \cdot 11$	$17 \cdot 11$	51.33	102.67	32	47	4849.78	$78 \cdot$	234	
8	23	$743 \cdot 11$	19.56	58.67	$117 \cdot 3$	33	48	5082.00	$80 \cdot 67$	242	0
9	24	858.00	$22 \cdot 00$	66.0	132.00	34	49	$5319 \cdot 11$	$83 \cdot 11$	24	7
10	25	$977 \cdot 78$	$24 \cdot 44$	73	$146 \cdot 6$	35	50	$5561 \cdot 11$	85.	256	33
11	26	$1102 \cdot 44$	26.89	80.	16	36	51	$5808 \cdot 00$	88.	264	. 00
12	27	1232.00	$29 \cdot 33$	88.0	176.0	37	52	6059•78	90	271	.67
13	28	$1366 \cdot 44$	31.78	$95 \cdot 3$	190.6	38	53	6316.44	$92 \cdot 3$		
14	29	$1505 \cdot 78$	$34 \cdot 22$	$102 \cdot 6$,	39	54	6578			$2 \cdot 00$
15	30	$1650 \cdot 00$	36.66	110.	220	40	55	6844-4	$97 \cdot 77$		
16	31	1799-11	$39 \cdot 11$	117.3	234-6	41	56	$7115 \cdot 78$	$100 \cdot 2$. 33
17	32	1953.11	41.55	$124 \cdot 67$	$249 \cdot 3$	42	57	7392.00	102-66	308	
18	33	2112.00	43.99	132.0	$264 \cdot 0$	43	58	$7673 \cdot 11$	$105 \cdot 11$	d5	
19	34	$2275 \cdot 78$	46.44	139	$278 \cdot 6$	44	59	7959-11	107.		
20	35	$2444 \cdot 44$	$48 \cdot 89$	146.6	$293 \cdot 33$	45	60	8250.00	109.9		
21	36	$2618 \cdot 00$	$51 \cdot 33$	154.00	308.00	46	61	$8545 \cdot 78$	$112 \cdot$	337	67
22	37	2796.44	53.77	$161 \cdot 33$	$322 \cdot 67$	47	62	$8846 \cdot 44$	114.88	$344 \cdot 6$	$689 \cdot 33$
23	38	2979.78	56.21	$168 \cdot 67$	$337 \cdot 33$	48	63	9152.00	$117 \cdot 33$	352	704.00
24	39	3168.00	58.66	176.00	352.00	49	64	$9462 \cdot 44$	119.77	$359 \cdot 33$	$18 \cdot 67$
25	40	3361-11	$61 \cdot 10$	$183 \cdot 33$	$366 \cdot 67$	50	65	$9777 \cdot 78$	$122 \cdot 21$	$366 \cdot 6$	

Slopes $1 \frac{1}{2}$ to 1.

$\begin{gathered} \text { Depth } \\ \text { out } \\ \text { cut- } \\ \text { tingin } \\ \text { feet. } \end{gathered}$	$\left\|\begin{array}{c} \text { Half } \\ \text { widt } \\ \text { wit } \\ \text { top in } \\ \text { feet. } \end{array}\right\|$	$\begin{gathered} \text { Content } \\ \text { in cubic } \\ \text { yards per } \\ \text { chain. } \end{gathered}$	Content of 1 yer-pendicubreadth.	Content of 3 per-pendicubreadth.	Content of 6 per- pendicu- lar ft. in breadth.	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { cut- } \\ \text { ing in } \\ \text { feet. } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Half } \\ \text { width } \\ \text { at } \\ \text { top in } \\ \text { feet. } \end{array}\right\|$	Content yards per chain.	Content of 1 per-pendicubreadth.	Content of 3 per-pendicubreadth.	Content of 6 per-pendicubreadth.
1	$16 \frac{1}{2}$	$77 \cdot 00$	$2 \cdot 44$	$7 \cdot 33$	$14 \cdot 67$	26	54	$4385 \cdot 33$	63.55	$190 \cdot 67$	$381 \cdot 33$
2	18	161.33	$4 \cdot 89$	$14 \cdot 67$	$29 \cdot 33$	27	$55 \frac{1}{2}$	$4653 \cdot 00$	$65 \cdot 99$	$198 \cdot 00$	$396 \cdot 00$
3	1912	$253 \cdot 00$	$7 \cdot 33$	$22 \cdot 00$	$44 \cdot 00$	28	57	$4928 \cdot 00$	$68 \cdot 43$	205-33	$410 \cdot 67$
4	21	$352 \cdot 00$	$9 \cdot 78$	$29 \cdot 33$	$58 \cdot 67$	29	$58 \frac{1}{2}$	$5210 \cdot 33$	$70 \cdot 88$	212	$425 \cdot 33$
5	$22 \frac{1}{2}$	$453 \cdot 33$	12.22	$36 \cdot 67$	$73 \cdot 33$	30	60	$5500 \cdot 00$	$73 \cdot 32$	$220 \cdot 00$	$440 \cdot 00$
6	24	$572 \cdot 00$	$14 \cdot 67$	44.00	$88 \cdot 00$	31	$61_{2}{ }^{1}$	$5797 \cdot 00$	$75 \cdot 77$	227-33	$454 \cdot 67$
7	$25 \frac{1}{2}$	$693 \cdot 00$	17-11	51.33	$102 \cdot 67$	32	63	$6101 \cdot 33$	$78 \cdot 22$	$234 \cdot 67$	$469 \cdot 33$
8	27	821.33	$19 \cdot 56$	$58 \cdot 67$	$117 \cdot 33$	33	$64 \frac{1}{2}$	$6413 \cdot 00$	$80 \cdot 67$	$242 \cdot 00$	484-00
9	$28 \frac{1}{2}$	$957 \cdot 00$	22.00	$66 \cdot 00$	$132 \cdot 00$	34	66	$6732 \cdot 00$	$83 \cdot 11$	$249 \cdot 33$	$498 \cdot 67$
10	30	$1100 \cdot 00$	$24 \cdot 44$	$73 \cdot 33$	$146 \cdot 67$	35	$67 \frac{1}{2}$	$7058 \cdot 33$	$85 \cdot 55$		$513 \cdot 33$
11	$31 \frac{1}{2}$	$1250 \cdot 33$	26.89	$80 \cdot 67$	161 -33	36	69^{2}	$7392 \cdot 00$	88.00	$264 \cdot 00$	$528 \cdot 00$
12	33	$1408 \cdot 00$	$29 \cdot 33$	88.00	$176 \cdot 00$	37	701	$7733 \cdot 00$	90-44	$271 \cdot 33$	$542 \cdot 67$
13	$34 \frac{1}{2}$	1573.00	31.78	$95 \cdot 33$	190.67	38	72	$8081 \cdot 33$	$92 \cdot 39$	$278 \cdot 67$	557.33
14	36	$1745 \cdot 33$	$34 \cdot 22$	$102 \cdot 67$	205-33	39	$73 \frac{1}{2}$	8437.00	$95 \cdot 33$	$286 \cdot 00$	$572 \cdot 00$
15	$37 \frac{1}{2}$	$1925 \cdot 00$	$36 \cdot 66$	$110 \cdot 00$	$220 \cdot 00$	40	75	$8800 \cdot 00$	$97 \cdot 77$	$293 \cdot 33$	$586 \cdot 67$
16	39	$2112 \cdot 00$	$39 \cdot 11$	$117 \cdot 33$	$234 \cdot 67$	41	$76 \frac{1}{2}$	$9170 \cdot 33$	$100 \cdot 22$	$300 \cdot 67$	601.33
17	$40 \frac{1}{2}$	$2306 \cdot 33$	$41 \cdot 55$	$124 \cdot 67$	$249 \cdot 33$	42	78	$9548 \cdot 00$	$102 \cdot 66$	$308 \cdot 00$	$616 \cdot 00$
18	42	$2508 \cdot 00$	$43 \cdot 99$	$132 \cdot 00$	$264 \cdot 00$	43	$79 \frac{1}{2}$	9933-00	105-11	$315 \cdot 33$	$630 \cdot 67$
19	$43 \frac{1}{2}$	$2717 \cdot 00$	$46 \cdot 44$	$139 \cdot 33$	$278 \cdot 67$	44	81	10325-33	$107 \cdot 55$	$322 \cdot 67$	$645 \cdot 33$
20	45	$2933 \cdot 33$	$48 \cdot 89$	$146 \cdot 67$	$293 \cdot 33$	45	821	$10725 \cdot 00$	109.99	$330 \cdot 00$	$660 \cdot 00$
21	$46 \frac{1}{2}$	$3157 \cdot 00$	$51 \cdot 33$	$154 \cdot 00$	308.00	46	84	11132.00	$112 \cdot 44$	$337 \cdot 33$	$674 \cdot 67$
22	48	$3388 \cdot 00$	$53 \cdot 77$	161-33	$322 \cdot 67$	47	$85 \frac{1}{2}$	$11546 \cdot 33$	114.88	344-67	$689 \cdot 33$
23	491	$3626 \cdot 33$	$56 \cdot 21$	$168 \cdot 67$	337.33	48	87	11968.00	$117 \cdot 33$	$352 \cdot 00$	$704 \cdot 00$
24	51	$3872 \cdot 00$	$58 \cdot 66$	$176 \cdot 00$	$352 \cdot 00$	49	$88 \frac{1}{2}$	$12397 \cdot 00$	$119 \cdot 77$	$359 \cdot 33$	$718 \cdot 67$
25	521	$4125 \cdot 00$	$61 \cdot 10$	$183 \cdot 33$	$366 \cdot 67$	50	90	$12833 \cdot 33$	122-21	$366 \cdot 67$	$733 \cdot 33$

Slopes 2 to 1.

$\left\|\begin{array}{r} \text { Depth } \\ \text { of } \\ \text { out- } \\ \text { tingin } \\ \text { feet. } \end{array}\right\|$	$\begin{gathered} \text { Half } \\ \text { width } \\ \text { at } \\ \text { top in } \\ \text { feet. } \end{gathered}$	Content yards per chain.	Content of 1 per-pendicular ft. in breadth. breadth.	Content of 3 perlar ft. in breadth.	Content of 6 per-pendicalar ft. in breadth.	$\left(\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { out- } \\ \text { tinging } \\ \text { feet. } \end{array}\right.$	Half widt at top in feet.	Content in cubic yards per chain.	Content of 1 per-pendicular ft. in breadth. breadth.	Content of 3 per-pendieular ft. in breadth. breadth.	Content of 6 per-pendicu- lar ft. in breadth.
1	17	$78 \cdot 22$	$2 \cdot 44$	$7 \cdot 33$	$14 \cdot 67$	26	67	5211.55	63.55	\%	
2	19	$166 \cdot 22$	$4 \cdot 89$	14.67	$29 \cdot 33$	27	69	$5544 \cdot 00$	65.99	198.00	$396 \cdot 00$
3	21	264.00	$7 \cdot 33$	22.00	$44 \cdot 00$	28	71	$5886 \cdot 22$	68.43	$205 \cdot 33$	$410 \cdot 67$
4	23	371.55	$9 \cdot 78$	$29 \cdot 33$	$58 \cdot 67$	29	73	$6238 \cdot 22$	$70 \cdot 88$	$212 \cdot 67$	$425 \cdot 33$
5	25	$488 \cdot 89$	12.22	$36 \cdot 67$	$73 \cdot 33$	30	75	$6600 \cdot 00$	73-32	$220 \cdot 00$	$440 \cdot 00$
6	27	616.00	$14 \cdot 67$	44.00	88.00	31	77	$6971 \cdot 55$	75-77	$227 \cdot 33$	$454 \cdot 67$
7	29	$752 \cdot 89$	$17 \cdot 11$	51.33	102.67	32	79	7352.89	$78 \cdot 22$	$234 \cdot 67$	$469 \cdot 33$
8	31	899.55	19.56	$58 \cdot 67$	$117 \cdot 33$	33	81	7744.00	$80 \cdot 67$	$242 \cdot 00$	484.00
9	33	1056.00	22.00	$66 \cdot 00$	$132 \cdot 00$	34	83	8144.89	$83 \cdot 11$	$249 \cdot 33$	$498 \cdot 67$
10	35	$1222 \cdot 22$	$24 \cdot 44$	$73 \cdot 33$	$146 \cdot 67$	35	85	$8555 \cdot 55$	$85 \cdot 55$	$256 \cdot 67$	$513 \cdot 33$
11	37	1398.22	$26 \cdot 89$	$80 \cdot 67$	$161 \cdot 33$	36	87	$8976 \cdot 00$	88.00	$264 \cdot 00$	$528 \cdot 00$
12	39	1584.00	$29 \cdot 33$	88.00	$176 \cdot 00$	37	89	9406.22	$90 \cdot 44$	$271 \cdot 33$	$542 \cdot 67$
13	41	1779 -55	31.78	$95 \cdot 33$	19067	38	91	$9846 \cdot 22$	92-39	$278 \cdot 67$	$557 \cdot 33$
14	43	1984-89	$34 \cdot 22$	$102 \cdot 67$	205•33	39	93	$10296 \cdot 00$	95-33	$286 \cdot 00$	$572 \cdot 00$
15	45	$2200 \cdot 00$	$36 \cdot 66$	$110 \cdot 00$	$220 \cdot 00$	40	95	10755-55	$97 \cdot 77$	$293 \cdot 33$	$586 \cdot 67$
16	47	2424-89	$39 \cdot 11$	117.33	$234 \cdot 67$	41	97	11224-89	$100 \cdot 22$	$300 \cdot 67$	$601 \cdot 33$
17	49	$2659 \cdot 55$	$41 \cdot 55$	$124 \cdot 67$	$249 \cdot 33$	42	99	11704.00	$102 \cdot 66$	308.00	616.00
18	51	$2904 \cdot 00$	43.99	$132 \cdot 00$	264-00	43	101	$12192 \cdot 89$	$105 \cdot 11$	$315 \cdot 33$	$630 \cdot 67$
19	53	3158-22	$46 \cdot 44$	139 33	278.67	44	103	12691-55	$107 \cdot 55$	$322 \cdot 67$	$645 \cdot 33$
20	55	34-2222	$48 \cdot 89$	$146 \cdot 67$	$293 \cdot 33$	45	105	$13200 \cdot 00$	$109 \cdot 99$	$330 \cdot 00$	$660 \cdot 00$
21	57	3696.00	$51 \cdot 33$	$154 \cdot 00$	308.00	46	107	13718.22	$112 \cdot 44$	$337 \cdot 33$	$674 \cdot 67$
22	59	3979-55	$53 \cdot 77$	$161 \cdot 33$	$322 \cdot 67$	47	109	$14246 \cdot 22$	114.88	$344 \cdot 67$	$689 \cdot 33$
23	61	4272.89	$56 \cdot 21$	$168 \cdot 67$	$337 \cdot 33$	48	111	$14784 \cdot 00$	$117 \cdot 33$	$352 \cdot 0$	$704 \cdot 00$
24	63	$4576 \cdot 00$	$58 \cdot 66$	$176 \cdot 00$	$352 \cdot 00$	49	113	15331 -55	$119 \cdot 77$	359.33	$718 \cdot 67$
25	65	4888.89	$61 \cdot 10$	$183 \cdot 33$	$366 \cdot 67$	50	115	15888-89	122.21	$366 \cdot 67$	$733 \cdot 33$

By the fourth, fifth, and sixth columns in each table, the number of cubic yards is easily ascertained at any other width of formation level above or below 30 feet, having the same slopes as by the tables, thus:-

Suppose an excavation of 40 feet in depth, and 33 feet in width at formation level, whose slopes or sides are at an angle of 2 to 1 , required the extent of excavation in cubic yards:

$$
10755 \cdot 55+293 \cdot 33=11048 \cdot 88 \text { cubic yards }
$$

The number of cubic yards in any other excavation may be ascertained by the following simple rule:

To the width at formation level in feet, add the horizontal length of the side of the triangle formed by the slope, multiply the sum by the depth of the cutting, or excavation, and by the length, also in feet; divide the product by 27 , and the quotient is the content in cubic yards.

Suppose a cutting of any length, and of which take 1 chain, its depth being $14 \frac{1}{2}$ feet, width at the bottom 28 feet, and whose sides have a slope of $1 \frac{1}{4}$ to 1 , required the content in cubic yards:

$$
\begin{gathered}
14.5 \times 1 \cdot 25=\overline{18 \cdot 125+28} \times 14=645 \cdot 75 \times 66= \\
\frac{42619 \cdot 5}{27}=1578 \cdot 5 \text { cubic yards. } \\
\frac{l}{6}\left\{\left(b+r h^{\prime}\right) h^{\prime}+(b+r h) h+4\left[b+r \frac{h+h^{\prime}}{2}\right] \frac{h+h^{\prime}}{2}\right\}
\end{gathered}
$$

gives the content of any cutting. In words, this formula will be :To the area of each end, add four times the middle area; the sum multiplied by the length and divided by 6 gives the content. The breadth at the bottom of cutting $=b$; the perpendicular depth of cutting at the higher end $=h$; the perpendicular depths of cutting at the lower end $=h^{\prime} ; l$, the length of the solid; and $r h^{\prime}$ the ratio of the perpendicular height of the slope to the horizontal base, multiplied by the height h^{\prime}. rh, the ratio r, of the perpendicular height of the slope, to the horizontal base, multiplied by the height h.

Let $b=30 ; h=50 ; h^{\prime}=20 ; l=84$ feet; and 2 to 5 or $\frac{2}{5}$ the ratio of the perpendicular height of the slope to the horizontal base :
$\frac{84}{6}\left\{\left(30+\frac{2}{5} \times 20\right) 20+\left(30+\frac{2}{5} \times 50\right) 50+4\left[30+\frac{2}{5} \frac{50+20}{2}\right]\right.$ $\left.\frac{50+20}{2}\right\}=14\{38 \times 20+50 \times 50+4 \times 44 \times 35\}=131880$ cubic feet. $\frac{131880}{27}=4884 \cdot 44$ cubic yards.

This rule is one of the most useful in the mensuration of solids, it will give the content of any irregular solid very nearly, whether it be bounded by right lines or not.

Table of Squares, Cubes, Square and Cube Roots of Numbers.

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1	1	1	$1 \cdot 0000000$	$1 \cdot 0000000$	$\cdot 100000000$
2	4	8	$1 \cdot 4142136$	$1 \cdot 2599210$	-500000000
3	9	27	$1 \cdot 7320508$	$1 \cdot 4422496$	-333333333
4	16	64	$2 \cdot 0000000$	$1 \cdot 5874011$	-250000000
5	25	125	$2 \cdot 2360680$	$1 \cdot 7099759$	-200000000
6	36	216	$2 \cdot 4494897$	1-8171206	-166666667
7	49	343	$2 \cdot 6457513$	$1 \cdot 9129312$	-142857143
8	64	512	$2 \cdot 8284271$	$2 \cdot 0000000$	-125000000
9	81	729	$3 \cdot 0000000$	$2 \cdot 0800837$	-111111111
10	100	1000	$3 \cdot 1622777$.	$2 \cdot 1544347$	-100000000
11	121	1331	$3 \cdot 3166248$	$2 \cdot 2239801$	-090909091
12	144	1728	$3 \cdot 4641016$	$2 \cdot 2894286$	-083333333
13	169	2197	$3 \cdot 6055513$	$2 \cdot 3513347$	-076923077
14	196	2744	$3 \cdot 7416574$	$2 \cdot 4101422$	-071428571
15	225	3375	$3 \cdot 8729833$	$2 \cdot 4662121$	-066666667
16	256	4096	$4 \cdot 0000000$	$2 \cdot 5198421$	-062500000
17	289	4913	$4 \cdot 1231056$	$2 \cdot 5712816$	-058823529
18	324	5832	$4 \cdot 2426407$	$2 \cdot 6207414$	-055555556
19	361	6859	$4 \cdot 3588989$	$2 \cdot 6684016$	-052631579
20	400	8000	$4 \cdot 4721360$	$2 \cdot 7144177$	-050000000
21	441	9261	$4 \cdot 5825757$	$2 \cdot 7589243$	-047619048
22	484	10648	$4 \cdot 6904158$	$2 \cdot 8020393$	-045454545
23	529	12167	$4 \cdot 7958315$	$2 \cdot 8438670$	-043478261
24	576	13824	$4 \cdot 8989795$	$2 \cdot 8844991$	-041666667
25	625	15625	$5 \cdot 0000000$	$2 \cdot 9240177$	-040000000
26	676	17576	$5 \cdot 0990195$	$2 \cdot 9624960$	-038461538
27	729	19683	$5 \cdot 1961524$	$3 \cdot 0000000$	-037037037
28	784	21952	$5 \cdot 2915026$	$3 \cdot 0365889$	-035714286
29	841	24389	$5 \cdot 3851648$	$3 \cdot 0723168$	-034482759
30	900	27000	$5 \cdot 4772256$	3•1072325	-033333333
31	961	29791	$5 \cdot 5677644$	$3 \cdot 1413806$	-032258065
32	1024	32768	$5 \cdot 6568542$	$3 \cdot 1748021$	-031250000
33	1089	35937	$5 \cdot 7445626$	$3 \cdot 2075343$	-030303030
34	1156	39304	$5 \cdot 8309519$	3-2396118	-029411765
35	1225	42875	$5 \cdot 9160798$	$3 \cdot 2710663$	-028571429
36	1296	46656	$6 \cdot 0000000$	3-3019272	-027777778
37	1369	50653	$6 \cdot 0827625$	$3 \cdot 3322218$	-027027027
38	1444	54872	$6 \cdot 1644140$	3-3619754	-026315789
39	1521	59319	$6 \cdot 2449980$	3-3912114	-025641026
40	1600	64000	$6 \cdot 3245553$	$3 \cdot 4199519$	-025000000
41	1681	68921	$6 \cdot 4031242$	$3 \cdot 4482172$	-024390244
42	1764	74088	$6 \cdot 4807407$	$3 \cdot 4760266$	-023809524
43	1849	79507	$6 \cdot 5574385$	3-5033981	-023255814
44	1936	85184	$6 \cdot 6332496$	$3 \cdot 5303483$	-022727273
45	2025	91125	$6 \cdot 7082039$	3-5568933	-022222222
46	2116	97336	$6 \cdot 7823300$	$3 \cdot 5830479$	$\cdot 021739130$
47	2209	103823	$6 \cdot 8556546$	$3 \cdot 6088261$	-021276600
48	2304	110592	6.9282032	$3 \cdot 6342411$	-020833333
49	2401	117649	$7 \cdot 0000000$	$3 \cdot 6593057$	-020408163
50	2500	125000	$7 \cdot 0710678$	$3 \cdot 6840314$	-020000000
51	2601	132651	$7 \cdot 1414284$	3•7084298	-019607843
52	2704	140608	$7 \cdot 2111026$	$3 \cdot 7325111$	$\cdot 019230769$
53	2809	148877	$7 \cdot 2801099$	$3 \cdot 7562858$	-018867925
54	2916	157464	$7 \cdot 3484692$	3•7797631	-018518519
55	3025	166375	$7 \cdot 4161985$	$3 \cdot 8029525$	-018181818
56	3136	175616	$7 \cdot 4833148$	$3 \cdot 8258624$	$\cdot 017857143$
57	3249	185193	$7 \cdot 5498344$	$3 \cdot 8485011$	$\cdot 017543860$

table OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 101

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
58	3364	195112	$7 \cdot 6157731$	$3 \cdot 8708766$	-017241379
59	3481	205379	$7 \cdot 6811457$	$3 \cdot 8929965$	-016949153
60	3600	216000	$7 \cdot 7459667$	3.9148676	-016666667
61	3721	226981	7.8102497	3.9304972	-016393443
62	3844	238328	$7 \cdot 8740079$	3.9578915	. 016129032
63	3969	250047	$7 \cdot 9372539$	3.9790571	-015873016
64	4096	262144	$8 \cdot 0000000$	$4 \cdot 0000000$	$\cdot 015625000$
65	4225	274625	$8 \cdot 0622577$	4.0207256	$\cdot 015384615$
66	4356	287496	8-1240384	4.0412401	-015151515
67	4489	300763	$8 \cdot 1853528$	4.0615480	$\cdot 014925373$
68	4624	314432	$8 \cdot 2462113$	$4 \cdot 0816551$	-014705882
69	4761	328509	$8 \cdot 3066239$	$4 \cdot 1015661$	-014492754
70	4900	343000	$8 \cdot 3666003$	$4 \cdot 1212853$	$\cdot 014285714$
71	5041	357911	$8 \cdot 4261498$	$4 \cdot 1408178$	$\cdot 014084517$
72	5184	373248	$8 \cdot 4852814$	$4 \cdot 1601676$	-013888889
73	5329	389017	$8 \cdot 5440037$	$4 \cdot 1793390$	-013698630
74	5476	405224	$8 \cdot 6023253$	$4 \cdot 1983364$	$\cdot 013513514$
75	5625	421875	$8 \cdot 6602540$	$4 \cdot 2171633$	$\cdot 013333333$
76	5776	438976	$8 \cdot 7177979$	$4 \cdot 2358236$	$\cdot 013157895$
77	5929	456533	$8 \cdot 7749644$	$4 \cdot 2543210$	$\cdot 012987013$
78	6084	474552	$8 \cdot 8317609$	$4 \cdot 2726586$	$\cdot 012820513$
79	6241	493039	$8 \cdot 8881944$	4-2908404	$\cdot 012658228$
80	6400	512000	$8 \cdot 9442719$	$4 \cdot 3088695$	$\cdot 012500000$
81	6561	531441	$9 \cdot 0000000$	$4 \cdot 3267487$. 012345679
82	6724	551368	$9 \cdot 0553851$	$4 \cdot 3444815$	-012195122
83	6889	571787	$9 \cdot 1104336$	$4 \cdot 3620707$	-012048193
84	7056	592704	$9 \cdot 1651514$	$4 \cdot 3795191$	-011904762
85	7225	614125	$9 \cdot 2195445$	$4 \cdot 3968296$	$\cdot 011764706$
86	7396	636056	$9 \cdot 2736185$	$4 \cdot 4140049$	$\cdot 011627907$
87	7569	658503	$9 \cdot 3273791$	4.4310476	$\cdot 011494253$
88	7744	681472	$9 \cdot 3808315$	$4 \cdot 4470692$	-011363636
89	7921	704969	$9 \cdot 4339811$	4.4647451	$\cdot 011235955$
90	8100	729000	$9 \cdot 4868330$	4-4814047	$\cdot 011111111$
91	8281	753571	$9 \cdot 5393920$	4.4979414	-010989011
92	8464	778688	$9 \cdot 5916630$	$4 \cdot 5143574$	$\cdot 010869565$
93	8649	804357	$9 \cdot 6436508$	4.5306549	-010752688
94	8836	830584	9•6953597	4.5468359	$\cdot 010638298$
95	9025	857374	$9 \cdot 7467943$	4.5629026	$\cdot 010526316$
96	9216	884736	$9 \cdot 7979590$	$4 \cdot 5788570$	$\cdot 010416667$
97	9409	912673	$9 \cdot 8488578$	$4 \cdot 5947009$	$\cdot 010309278$
98	9604	941192	$9 \cdot 8994949$	$4 \cdot 6104363$	-010204082
99	9801	970299	$9 \cdot 9498744$	$4 \cdot 6260650$	-010101010
100	10000	1000000	10.0000000	$4 \cdot 6415888$	-010000000
101	10201	1030301	10.0498756	$4 \cdot 6570095$	-009900990
102	10404	1061208	10.0995049	$4 \cdot 6723287$	-009803922
103	10609	1092727	$10 \cdot 1488916$	4.6875482	-009708738
104	10816	1124864	10.1980390	4.7026694	-009615385
105	11025	1157625	10.2469508	$4 \cdot 7176940$	-009523810
106	11236	1191016	$10 \cdot 2956301$	4.7326235	-009433962
107	11449	1225043	$10 \cdot 3440804$	4.7474594	-009345794
108	11664	1259712	$10 \cdot 3923048$	4.7622032	-009259259
109	11881	1295029	10.4403065	4.7768562	$\cdot 009174312$
110	12100	1331000	$10 \cdot 4880885$	4.7914199	-009090909
111	12321	1367631	10.5356538	4.8058995	-009009009
112	12544	1404928	10.5830052	4.8202845	-008928571
113	12769	1442897	10.6301458	4.8345881	$\cdot 008849558$
114	12996	1481544	$10 \cdot 6770783$	4.8488076	-008771930
115	13225	1520875	10.7238053	4.8629442	$\cdot 008695652$
116	13456	1560896	$10 \cdot 7703296$	4.8769990	-008020690
117	13689	1601613	10.8166538	4.8909732	-008547009
118	13924	1643032	$10 \cdot 8627805$	4.9048681	$\cdot 008474576$
119	14161	1685159	$10 \cdot 9087121$	$4 \cdot 9186847$. 008403361

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
120	14400	1728000	$10 \cdot 9544512$	$4 \cdot 9324242$	-008333333
121	14641	1771561	$11 \cdot 0000000$	$4 \cdot 9460874$	-008264463
122	14834	1815848	11.0453610	$4 \cdot 9596757$	-008196721
123	15129	1860867	11.0905365	$4 \cdot 9731898$	-008130081
124	15376	1906624	11•1355287	$4 \cdot 9866310$	-008064516
125	15625	1953125	11-1803399	$5 \cdot 0000000$	-008000000
126	15876	2000376	$11 \cdot 2249722$	$5 \cdot 0132979$	-007936508
127	16129	2048383	$11 \cdot 2694277$	$5 \cdot 0265257$	-007874016
128	16384	2097152	$11 \cdot 3137085$	$5 \cdot 0396842$	-007812500
129	16641	2146689	11.3578167	$5 \cdot 0527743$	-007751938
130	16900	2197000	$11 \cdot 4017543$	$5 \cdot 0657970$	-007692308
131	17161	2248091	11.4455231	$5 \cdot 0787531$	$\cdot 007633588$
132	17424	2299968	$11 \cdot 4891253$	$5 \cdot 0916434$	-007575758
133	17689	2352637	11.5325626	$5 \cdot 1044687$	$\cdot 007518797$
134	17956	2406104	11.5758369	$5 \cdot 1172299$	-007462687
135	18225	2460375	$11 \cdot 6189500$	$5 \cdot 1299278$	$\cdot 007407407$
136	18496	2515456	11-6619038	$5 \cdot 1425632$	-007352941
137	18769	2571353	11•7046999	$5 \cdot 1551367$	-007299270
138	19044	2628072	$11 \cdot 7473444$	$5 \cdot 1676493$	$\cdot 007246377$
139	19321	2685619	11.7898261	$5 \cdot 1801015$	-007194245
140	19600	2744000	11.8321596	5-1924941	-007142857
141	19881	2803221	11.8743421	$5 \cdot 2048279$	-007092199
142	20164	2863288	11.9163753	$5 \cdot 2171034$	-007042254
143	20449	2924207	11.9582607	$5 \cdot 2293215$	$\cdot 006993007$
144	20736	2985984	$12 \cdot 0000000$	$5 \cdot 2414828$	-006944444
145	21025	3048625	$12 \cdot 0415946$	$5 \cdot 2535879$	-006896552
146	21316	3112136	12.0830460	5-2656374	-006849315
147	21609	3176523	12-1243557	$5 \cdot 2776321$	-006802721
148	21904	3241792	12-1655251	$5 \cdot 2895725$	$\cdot 006756757$
149	22201	3307949	12-2065556	$5 \cdot 3014592$	-006711409
150	22500	3375000	$12 \cdot 2474487$	5-3132928	$\cdot 006666667$
151	22801	3442951	12-2882057	$5 \cdot 3250740$	-006622517
152	23104	3511008	12-3288280	$5 \cdot 3368033$	-006578947
153	23409	3581577	12-3693169	$5 \cdot 3484812$	-006535948
154	23716	3652264	12-4096736	$5 \cdot 3601084$	-006493506
155	24025	3723875	$12 \cdot 4498996$	$5 \cdot 3716854$	-006451613
156	24336	3796416	$12 \cdot 4899960$	$5 \cdot 3832126$	-006410256
157	24649	3869893	12-5299641	$5 \cdot 3946907$	-006369427
158	24964	3944312	12.5698051	$5 \cdot 4061202$	-006329114
159	25281	4019679	$12 \cdot 6095202$	$5 \cdot 4175015$	-006289308
160	25600	4096000	$12 \cdot 6491106$	$5 \cdot 4288352$	-006250000
161	25921	4173281	12.6885775	$5 \cdot 4401218$	-006211180
162	26244	4251528	12.7279221	$5 \cdot 4513618$	-006172840
163	26569	4330747	12.7671453	$5 \cdot 4625556$	-006134969
164	26896	4410944	$12 \cdot 8062485$	$5 \cdot 4737037$	-006097561
165	27225	4492125	$12 \cdot 8452326$	$5 \cdot 4848066$	-006060606
166	27556	4574236	12.8840987	$5 \cdot 4958647$	-006024096
167	27889	4657463	$12 \cdot 9228480$	$5 \cdot 5068784$	-005988024
168	28224	4741632	$12 \cdot 9614814$	$5 \cdot 5178484$	-005952381
169	28561	4826809	$13 \cdot 0000000$	$5 \cdot 5287748$	-005917160
170	28900	4913000	13.0384048	$5 \cdot 5396583$	-005882353
171	29241	5000211	$13 \cdot 0766968$	$5 \cdot 5504991$	-005847953
172	29584	5088448	$13 \cdot 1148770$	5.5612978	-005813953
173	29929	5177717	13•1529464	$5 \cdot 5720546$	-005780347
174	30276	5268024	$13 \cdot 1909060$	5.5827702	-005747126
175	30625	5359375	$13 \cdot 2287566$	$5 \cdot 5934447$	-005714286
176	30976	5451776	$13 \cdot 2664992$	$5 \cdot 6040787$	-005681818
177	31329	5545233	$13 \cdot 3041347$	$5 \cdot 6146724$	-005649718
178	31684	5639752	$13 \cdot 3416641$	$5 \cdot 6252263$	-005617978
179	32041	5735339	$13 \cdot 3790882$	$5 \cdot 6357408$	-005586592
180	32400	5832000	$13 \cdot 4164079$	$5 \cdot 6462162$	-005555556
181	32761	5929741	$13 \cdot 4536240$	$5 \cdot 6566528$	$\cdot 005524862$

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 103

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
18.2	33124	6028568	$13 \cdot 4907376$	5•6670511	-005494505
183	33489	6128187	$13 \cdot 5277493$	5•6774114	-005464481
184	33856	6229504	$13 \cdot 5646600$	$5 \cdot 6877340$	-005434783
185	34225	6331625	$13 \cdot 6014705$	$5 \cdot 6980192$	-005405405
186	34596	6434856	$13 \cdot 6381817$	$5 \cdot 7082675$	-005376344
187	34969	6539203	$13 \cdot 6747943$	5-7184791	-005347594
188	35344	6644672	$13 \cdot 7113092$	$5 \cdot 7286543$	-005319149
189	35721	6751269	$13 \cdot 7477271$	$5 \cdot 7387936$	-005291005
190	36100	6859000	$13 \cdot 7840488$	$5 \cdot 7488971$	-005263158
191	36481	6967871	$13 \cdot 8202750$	$5 \cdot 7589652$	-005235602
192	36864	7077888	$13 \cdot 8564065$	5•7689982	-005208333
193	37249	7189517	$13 \cdot 8924400$	$5 \cdot 7789966$	-005181347
194	37636	7301384	$13 \cdot 9283883$	$5 \cdot 7889604$	-005154639
195	38025	7414875	$13 \cdot 9642400$	$5 \cdot 7988900$	-005128205
196	38416	7529536	$14 \cdot 0000000$	5.8087857	-005102041
197	38809	7645373	14.0356688	$5 \cdot 8186479$	$\cdot 005076142$
198	39204	7762392	$14 \cdot 0712473$	$5 \cdot 8284867$	-005050505
199	39601	7880599	$14 \cdot 1067360$	$5 \cdot 8382725$	-005025126
200	40000	8000000	14-1421356	5.8480355	-005000000
201	40401	8120601	14•1774469	$5 \cdot 8577660$	-004975124
202	40804	8242408	14.2126704	$5 \cdot 8674673$	-004950495
203	41209	8365427	$14 \cdot 2478068$	$5 \cdot 8771307$	-004926108
204	41616	8489664	14.2828569	$5 \cdot 8867653$	-004901961
205	42025	8615125	$14 \cdot 3178211$	$5 \cdot 8963685$	-004878049
206	42436	8741816	$14 \cdot 3527001$	5.9059406	-004854369
207	42849	8869743	14.3874946	5-9154817	-004830918
208	43264	8998912	$14 \cdot 4222051$	5.9249921	-004807692
209	43681	9129329	$14 \cdot 4568323$	5.9344721	-004784689
210	44100	9261000	$14 \cdot 4913767$	$5 \cdot 9439220$	-004761905
211	44521	9393931	14.5258390	$5 \cdot 9533418$	-004739336
212	44944	9528128	$14 \cdot 5602198$	$5 \cdot 9627320$	-004716981
213	45369	9663597	14.5945195	$5 \cdot 9720926$	-004694836
214	45796	9800344	$14 \cdot 6287388$	5.9814240	-004672897
215	46225	9938375	$14 \cdot 6628783$	$5 \cdot 9907264$	-004651163
216	46656	10077696	14-6969385	$6 \cdot 0000000$	-004629630
217	47089	10218313	14-7309199	$6 \cdot 0092450$	-004608295
218	47524	10360232	14-7648231	$6 \cdot 0184617$	-004587156
219	47961	10503459	14.7986486	6.0276502	-004566210
220	48400	10648000	14-8323970	$6 \cdot 0368107$	-004545455
221	48841	. 10793861	$14 \cdot 8660687$	$6 \cdot 0459435$	-004524887
222	$49: 84$	10941048	14.8996644	$6 \cdot 0550489$	-004504505
223	49729	11089567	14.9331845	$6 \cdot 0641270$	-004484305
224	50176	11239424	14.9666295	$6 \cdot 0731779$	-004464286
225	50625	11390625	$15 \cdot 0000000$	$6 \cdot 0824020$	-004444444
226	51076	11543176	15.0332964	$6 \cdot 0991994$	-004424779
227	51529	11697083	15.0665192	6-1001702	-004405286
228	51984	11852352	$15 \cdot 0996689$	$6 \cdot 1091147$	-004385965
229	52441	12008989	$15 \cdot 1327460$	$6 \cdot 1180332$	-004366812
230	52900	12167000	15-1657509	6-1269257	-004347826
231	53361	12326391	15•1986842	6-1357924	-004329004
232	53824	1248168	$15 \cdot 2315462$	$6 \cdot 1446337$	-004310345
233	54289	12649337	$15 \cdot 2643375$	$6 \cdot 1534495$	-004291845
234	54756	12812904	$15 \cdot 2970585$	$6 \cdot 1622401$	-004273504
235	55225	12977875	15-3297097	6•1710058	-004255319
236	55696	13144256	$15 \cdot 3622915$	6-1797466	-004237288
237	56169	13312053	$15 \cdot 3948043$	$6 \cdot 1884628$	-004219409
238	56644	13481272	$15 \cdot 4272486$	$6 \cdot 1971544$	-004201681
239	57121	13651919	$15 \cdot 4596248$	6-2058218	. 004184100
240	57600	13824000	$15 \cdot 4919334$	$6 \cdot 2144650$	-004166667
241	58081	13997521	$15 \cdot 5241747$	$6 \cdot 2230843$	-004149378
242	58564	14172488	$15 \cdot 5563492$	$6 \cdot 2316797$. 004132231
243	59049	14348907	$15 \cdot 5884573$	$6 \cdot 2402515$	-004115226

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
244	59536	14526784	$15 \cdot 6204994$	6.2487998	$\cdot 004098361$
245	60025	14706125	15.6524758	$6 \cdot 2573248$	$\cdot 004081633$
246	60516	14886936	15-6843871	$6 \cdot 2658266$	-004065041
247	61009	15069223	15•7162336	$6 \cdot 2743054$	-004048583
248	61504	15252992	15•7480157	$6 \cdot 2827613$	-004032258
249	62001	15438249	15•7797338	$6 \cdot 2911946$	-004016064
250	62500	15625000	$15 \cdot 8113883$	$6 \cdot 2996053$	-004000000
251	63001	15813251	15.8429795	$6 \cdot 3079935$	-003984064
252	63504	16003008	15-8745079	$6 \cdot 3163596$	-003968254
253	64009	16194277	$15 \cdot 9059737$	$6 \cdot 3247035$	-003952569
254	64516	16387064	15.9373775	$6 \cdot 3330256$	-003937008
255	65025	16581375	$15 \cdot 9687194$	$6 \cdot 3413257$	-003921569
256	65536	16777216	16.0000000	$6 \cdot 3496042$	-003906250
257	66049	16974593	16.0312195	$6 \cdot 3578611$	-003891051
258	66564	17173512	16.0623784	$6 \cdot 3660968$	-003875969
259	67081	17373979	16.0934769	$6 \cdot 3743111$	-003861004
260	67600	17576000	16.1245155	$6 \cdot 3825043$	-003846154
261	68121	17779581	16.1554944	$6 \cdot 3906765$	-003831418
262	68644	17984728	16.1864141	$6 \cdot 3988279$	-003816794
263	69169	18191447	16.2172747	$6 \cdot 4069585$	-003802281
264	69696	18399744	$16 \cdot 2480768$	$6 \cdot 4150687$	-003787879
265	70225	18609625	$16 \cdot 2788206$	$6 \cdot 4231583$	-003778585
266	70756	18821096	16.3095064	$6 \cdot 4312276$	-003759398
267	71289	19034163	16.3401346	$6 \cdot 4392767$	-003745318
268	71824	19248832	16.3707055	$6 \cdot 4473057$	-003731343
269	72361	19465109	$16 \cdot 4012195$	$6 \cdot 4553148$	-003717472
270	72900	19683000	16.4316767	$6 \cdot 4633041$	-003703704
271	73441	19902511	$16 \cdot 4620776$	$6 \cdot 4712736$	-003690037
272	73984	20123643	16.4924225	$6 \cdot 4792236$	-003676471
273	74529	20346417	16.5227116	$6 \cdot 4871541$	-003663004
274	75076	20570824	16.5529454	$6 \cdot 4950653$	-003649635
275	75625	20796875	16.5831240	6.5029572	-003636364
276	76176	21024576	16.6132477	$6 \cdot 5108300$	-003623188
277	76729	21253933	16.6433170	6.5186839	-003610108
278	77284	21484952	$16 \cdot 6783320$	6.5265189	-003597122
279	77841	21717639	16.7032931	$6 \cdot 5343351$	-003584229
280	78400	21952000	16.7332005	$6 \cdot 5421326$	$\cdot 003571429$
281	78961	22188041	16.7630546	$6 \cdot 5499116$	-003558719
282	79524	22425768	16.7928556	6.5576722	-003546099
283	80089	22665187	16.8226038	6.5654144	-003533569
284	80656	22906304	16.8522995	$6 \cdot 5731385$	-003522127
285	81225	23149125	16.8819430	$6 \cdot 5808443$	-003508772
286	81796	23393656	16.9115345	6.5885323	-003496503
287	82369	23639903	16.9410743	6.5962023	-003484321
288	82944	23887872	16.9705627	6.6038545	-003472222
289	83521	24137569	17.0000000	$6 \cdot 6114890$	-003460208
290	84100	24389000	17.0293864	6.6191060	-003448276
291	84681	24642171	$17 \cdot 0587221$	6.6267054	-003436426
292	85264	24897088	$17 \cdot 0880075$	6.6342874	-003424658
293	85849	25153757	17•1172428	$6 \cdot 6418522$	-003412969
294	86436	25412184	$17 \cdot 1464282$	6.6493998	-003401361
295	87025	25672375	17•1755640	$6 \cdot 6569302$	-003389831
296	87616	25934836	$17 \cdot 2046505$	$6 \cdot 6644437$	-003378378
297	88209	26198073	$17 \cdot 2336879$	6.6719403	-003367003
298	88804	26463592	$17 \cdot 2626765$	6.6794200	-003355705
299	89401	26730899	$17 \cdot 2916165$	6.6868831	-003344482
300	90000	27000000	17-3205081	6.6943295	-003333333
301	90601	27270901	$17 \cdot 3493516$	6.7017593	-003322259
302	91204	27543608	$17 \cdot 3781472$	6.7091729	-003311258
303	91809	27818127	17-4068952	$6 \cdot 7165700$	-003301330
304	92416	28094464	$17 \cdot 4355958$	$6 \cdot 7239508$	-003289474
305	93025	28372625	$17 \cdot 4642492$	$6 \cdot 7313155$	$\cdot 003278689$

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS.

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
306	93636	28652616	$17 \cdot 4928557$	$6 \cdot 7386641$	-003267974
307	94249	28934443	$17 \cdot 5214155$	$6 \cdot 7459967$.003257329
308	94864	29218112	17-5499288	6.7533134	-003246753
309	95481	29503609	$17 \cdot 5783958$	$6 \cdot 7606143$	-003236246
310	96100	29791000	$17 \cdot 6068169$	$6 \cdot 7678995$.003225806
311	96721	30080231	$17 \cdot 6351921$	$6 \cdot 7751690$.003215434
312	97344	30371328	$17 \cdot 6635217$	6•7824229	-003205128
313	97969	30664297	17•6918060	$6 \cdot 7896613$	-003194888
314	98596	30959144	17•7200451	$6 \cdot 7968844$	-003184713
315	99225	31255875	$17 \cdot 7482393$	$6 \cdot 8040921$. 003174603
316	99856	31554496	17.7763888	$6 \cdot 8112847$.003164557
317	100489	31855013	$17 \cdot 8044938$	$6 \cdot 8184620$	-003154574
318	101124	32157432	17.8325545	$6 \cdot 8256242$	-003144654
319	101761	32461759	$17 \cdot 8605711$	$6 \cdot 8327714$	-003134796
320	102400	32768000	$17 \cdot 8885438$	$6 \cdot 8399037$	-003125000
321	103041	33076161	$17 \cdot 9164729$	$6 \cdot 8470213$	-003115265
322	103684	33386248	$17 \cdot 9443584$	$6 \cdot 8541240$	-003105590
323	104329	33698267	17.9722008	$6 \cdot 8612120$	-003095975
324	104976	34012224	$18 \cdot 0000000$	$6 \cdot 8682855$	-003086420
325	105625	34328125	$18 \cdot 0277564$	$6 \cdot 8753433$	-003076923
326	106276	34645976	$18 \cdot 0554701$	6.8823888	-003067485
327	106929	34965783	18.0831413	$6 \cdot 8894188$	-003058104
328	107584	35287552	$18 \cdot 1107703$	$6 \cdot 8964345$. 003048780
329	108241	35611289	$18 \cdot 1383571$	6.9034359	. 003039514
330	108900	35937000	$18 \cdot 1659021$	6.9104232	. 003030303
331	109561	36264691	18-1934054	6.9173964	-003021148
332	110224	36594368	18.2208672	6.9243556	-003012048
333	110889	36926037	18-2482876	$6 \cdot 9313088$	-003003003
334	111556	37259704	$18 \cdot 2756669$	$6 \cdot 9382321$. 002994012
335	112225	37595375	18.3030052	$6 \cdot 9451496$. 002985075
336	112896	37933056	18-3303028	$6 \cdot 9520533$	-002976190
337	113569	38272753	18.3575598	$6 \cdot 9589434$	-002967359
338	114244	38614472	18.3847763	$6 \cdot 9658198$	-002958580
339	114921	38958219	$18 \cdot 4119526$	$6 \cdot 9726826$	-002949853
340	115600	39304000	18-4390889	$6 \cdot 9795321$. 002941176
341	116281	39651821	$18 \cdot 4661853$	$6 \cdot 9863681$	-002932551
342	116964	40001688	18.4932420	6.9931906	.002923977
343	117649	40353607	$18 \cdot 5202592$	$7 \cdot 0000000$.002915452
344	118336	40707584	18.5472370	$7 \cdot 0067962$. 002906977
345	119025	41063625	18.5741756	$7 \cdot 0135791$. 002898551
346	119716	41421736	$18 \cdot 6010752$	$7 \cdot 0203490$. 002890173
347	120409	41781923	$18 \cdot 6279360$	$7 \cdot 0271058$. 002881844
348	121104	42144192	$18 \cdot 6547581$	$7 \cdot 0338497$	-002873563
349	121801	42508549	$18 \cdot 6815417$	$7 \cdot 0405860$. 002865330
350	122500	42875000	$18 \cdot 7082869$	$7 \cdot 0472987$. 002857143
351	123201	43243551	$18 \cdot 7349940$	$7 \cdot 0540041$. 002849003
352	123904	43614208	$18 \cdot 7616630$	$7 \cdot 0606967$. 002840909
353	124609	43986977	18.7882942	$7 \cdot 0673767$. 002832861
354	125316	44361864	18.8148877	$7 \cdot 0740440$. 002824859
355	126025	44738875	$18 \cdot 8414437$	$7 \cdot 0806988$. 002816901
356	126736	45118016	18.8679623	$7 \cdot 0873411$. 002808989
357	127449	45499293	18.8944436	$7 \cdot 0939709$	-002801120
358	128164	45882712	18.9208879	$7 \cdot 1005885$	-002793296
359	128881	46268279	$18 \cdot 9472953$	$7 \cdot 1071937$. 002785515
360	129600	46656000	18.9736660	$7 \cdot 1137866$	-002777778
361	130321	47045831	$19 \cdot 0000000$	$7 \cdot 1203674$. 002770083
362	131044	47437928	19.0262976	$7 \cdot 1269360$	-002762431
363	131769	47832147	19.0525589	$7 \cdot 1334925$	-002754821
364	132496	48228544	19.0787840	$7 \cdot 1400370$	-002747253
365	133225	48627125	19•1049732	$7 \cdot 1465695$	-002739726
366	133956	49027896	19•1311265	7-1530901	-002732240
367	134689	49430863	$19 \cdot 1572441$	7-1595988	. 002724796

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
368	135424	49836032	$19 \cdot 1833261$	7-1660957	.002717391
369	136161	50243409	19•2093727	7-1725809	.002710027
370	136900	50653000	$19 \cdot 2353841$	$7 \cdot 1790544$	-002702703
371	137641	51064811	$19 \cdot 2613603$	7-1855162	-002695418
372	138384	51478818	$19 \cdot 2873015$	$7 \cdot 1919663$	-002688172
373	139129	51895117	$19 \cdot 3132079$	$7 \cdot 1984050$	-002680965
374	139876	52313624	$19 \cdot 3390796$	$7 \cdot 2048322$	-002673797
375	140625	52734375	$19 \cdot 3649167$	$7 \cdot 2112479$	-002666607
376	141376	53157376	$19 \cdot 3907194$	$7 \cdot 2176522$	-002659574
377	142129	53582633	$19 \cdot 4164878$	$7 \cdot 2240450$	-002652520
378	142884	54010152	$19 \cdot 4422221$	$7 \cdot 2304268$	-002645503
379	143641	54439939	$19 \cdot 4679223$	$7 \cdot 2367972$	-002638521
380	144400	54872000	$19 \cdot 4935887$	$7 \cdot 2431565$	-002631579
381	145161	55306341	19.5192213	$7 \cdot 2495045$	-002624672
382	145924	55742968	19.5448203	$7 \cdot 2558415$	-002617801
383	146689	56181887	$19 \cdot 5703858$	$7 \cdot 2621675$	-002610966
384	147456	56623104	$19 \cdot 5959179$	$7 \cdot 2684824$	-002604167
385	148225	57066625	$19 \cdot 6214169$	$7 \cdot 2747864$	-002597403
386	148996	57512456	$19 \cdot 6468827$	$7 \cdot 2810794$	-002590674
387	149769	57960603	$19 \cdot 6723156$	$7 \cdot 2873617$	-002583979
388	150544	58411072	$19 \cdot 6977156$	$7 \cdot 2936330$	-002577320
389	151321	58863869	19•7230829	$7 \cdot 2998936$	-002570694
390	152100	59319000	$19 \cdot 7484177$	$7 \cdot 3061436$	-002564103
391	152881	59776471	$19 \cdot 7737199$	$7 \cdot 3123828$	-002557545
392	153664	60236288	$19 \cdot 7989899$	$7 \cdot 3186114$	-002551020
393	154449	60698457	$19 \cdot 8242276$	$7 \cdot 3248295$	-002544529
394	155236	61162984	$19 \cdot 8494332$	$7 \cdot 3310369$	-002538071
395	156025	61629875	$19 \cdot 8746069$	$7 \cdot 3372339$	-002531646
396	156816	62099136	$19 \cdot 8997487$	$7 \cdot 3434205$	-002525253
397	157609	62570773	19.9248588	$7 \cdot 3495966$	-002518892
398	158404	63044792	$19 \cdot 9499373$	$7 \cdot 3557624$	-002512563
399	159201	63521199	19.9749844	$7 \cdot 3619178$	-002506266
400	160000	64000000	$20 \cdot 0000000$	$7 \cdot 3680630$	-002500000
401	160801	64481201	$20 \cdot 0249844$	$7 \cdot 3741979$	-002493766
402	161604	64964808	$20 \cdot 0499377$	$7 \cdot 3803227$	-002487562
403	162409	65450827	20.0748599	$7 \cdot 3864373$	-002481390
404	163216	65939264	$20 \cdot 0997512$	$7 \cdot 3925418$	-002475248
405	164025	66430125	$20 \cdot 1246118$	$7 \cdot 3986363$	-002469136
406	164836	66923416	$20 \cdot 1494417$	$7 \cdot 4047206$	-002463054
407	165649	67419143	$20 \cdot 1742410$	$7 \cdot 4107950$	-002457002
408	166464	67917312	20-1990099	$7 \cdot 4168595$	-002450980
409	167281	68417929	$20 \cdot 2237484$	$7 \cdot 4229142$	-002444988
410	168100	68921000	$20 \cdot 2484567$	$7 \cdot 4289589$	-002439024
411	168921	69426531	$20 \cdot 2731349$	$7 \cdot 4349938$	-002433090
412	169744	69934528	$20 \cdot 2977831$	$7 \cdot 4410189$	-002427184
413	170569	70444997	$20 \cdot 3224014$	7-4470343	-002421308
414	171896	70957944	$20 \cdot 3469899$	$7 \cdot 4530399$	-002415459
415	172225	71473375	$20 \cdot 3715488$	$7 \cdot 4590359$	-002409639
416	173056	71991296	$20 \cdot 3960781$	$7 \cdot 4650223$	-002405846
417	173889	72511713	$20 \cdot 4205779$	$7 \cdot 4709991$	-002398082
418	174724	73034632	$20 \cdot 4450483$	$7 \cdot 4769664$	-002392344
419	175561	73560059	$20 \cdot 4694895$	$7 \cdot 4829242$	-002386635
420	176400	74088000	$20 \cdot 4939015$	$7 \cdot 4888724$	-002380952
421	177241	74618461	$20 \cdot 5182845$	$7 \cdot 4948113$	-002375297
422	178084	75151448	$20 \cdot 5426386$	$7 \cdot 5007406$	-002369668
423	178929	75686967	$20 \cdot 5669638$	$7 \cdot 5066607$	-002364066
424	179776	76225024	$20 \cdot 5912603$	$7 \cdot 5125715$	-002358491
425	180625	76765625	$20 \cdot 6155281$	7-5184730	-002352941
426	181476	77308776	$20 \cdot 6397674$	$7 \cdot 5243652$	-002347418
427	182329	77854483	$20 \cdot 6639783$	$7 \cdot 5302482$	-002341920
428	183184	78402752	$20 \cdot 6881609$	7.5361221	-002336449
429	184041	78953589	$20 \cdot 7123152$	$7 \cdot 5419867$.002331002

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 107

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
430	184900	79507000	$20 \cdot 7364414$	$7 \cdot 5478423$	-002325581
431	185761	80062991	$20 \cdot 7605395$	$7 \cdot 5536888$	-002320186
432	186624	80621568	$20 \cdot 7846097$	$7 \cdot 5595263{ }^{\text {' }}$	-002314815
433	187489	81182737	$20 \cdot 8086520$	$7 \cdot 5653548$	-002309469
434	188356	81746504	$20 \cdot 8326667$	7-5711743	-002304147
435	189225	82312875	$20 \cdot 8566536$	$7 \cdot 5769849$	-002298851
436	190096	82881856	$20 \cdot 8806130$	$7 \cdot 5827865$	-002293578
437	190969	83453453	$20 \cdot 9045450$	$7 \cdot 5885793$	-002288330
438	191844	84027672	20.9284495	$7 \cdot 5943633$	-002283105
439	192721	84604519	$20 \cdot 9523268$	$7 \cdot 6001385$	-002277904
440	193600	85184000	$20 \cdot 9761770$	$7 \cdot 6059049$	$\cdot 002272727$
441	194481	85766121	$21 \cdot 0000000$	$7 \cdot 6116626$	$\cdot 002267574$
442	195364	86350888	$21 \cdot 0237960$	$7 \cdot 6174116$	-002262443
443	196249	86938307	$21 \cdot 0475652$	$7 \cdot 6231519$	$\cdot 002257336$
444	197136	87528384	$21 \cdot 0713075$	$7 \cdot 6288837$	-002252252
445	198025	88121125	21.0950231	$7 \cdot 6346067$	-002247191
446	*198916	88716536	21-1187121	$7 \cdot 6403213$	-002242152
447	199809	89314623	$21 \cdot 1423745$	$7 \cdot 6460272$	-002237136
448	200704	89915392	$21 \cdot 1660105$	$7 \cdot 6517247$	$\cdot 002232143$
449	201601	90518849	$21 \cdot 1896201$	$7 \cdot 6574138$	$\cdot 002227171$
450	202500	91125000	$21 \cdot 2132034$	$7 \cdot 6630943$	-002222222
451	203401	91733851	$21 \cdot 2367606$	$7 \cdot 6687665$	$\cdot 002217295$
452	204304	92345408	$21 \cdot 2602916$	$7 \cdot 6744303$	-002212389
453	205209	92959677	$21 \cdot 2837967$	$7 \cdot 6800857$	-002207506
454	206116	93576664	$21 \cdot 3072758$	$7 \cdot 6857328$	-002202643
455	207025	94196375	$21 \cdot 3307290$	$7 \cdot 6913717$	-002197802
4.56	207936	94818816	$21 \cdot 3541565$	$7 \cdot 6970023$	-002192982
457	208849	95443993	$21 \cdot 3775583$	$7 \cdot 7026246$	$\cdot 002188184$
458	209764	96071912	$21 \cdot 4009346$	$7 \cdot 7082388$	$\cdot 002183406$
459	210681	96702579	$21 \cdot 4242853$	$7 \cdot 7188448$	-002178649
460	211600	97336000	$21 \cdot 4476106$	$7 \cdot 7194426$	$\cdot 002173913$
461	212521	97972181	$21 \cdot 4709106$	$7 \cdot 7250325$	$\cdot 002169197$
462	213444	98611128	$21 \cdot 4941853$	$7 \cdot 7306141$.002164502
463	214369	99252847	$21 \cdot 5174348$	$7 \cdot 7361877$	$\cdot 002159827$
464	215896	99897344	$21 \cdot 5406592$	$7 \cdot 7417532$	-002155172
465	216225	100544625	$21 \cdot 5638587$	7•7473109	-002150538
466	217156	101194696	21.5870331	$7 \cdot 7528606$	-002145923
467	218089	101847563	$21 \cdot 6101828$	$7 \cdot 7584023$	-002141328
468	2190:4	102503232	$21 \cdot 6333077$	$7 \cdot 7639361$	$\cdot 002136752$
469	219961	103161709	$21 \cdot 6564078$	$7 \cdot 7694620$.002132196
470	$2 \div 0900$	103823000	$21 \cdot 6794834$	$7 \cdot 7749801$	-002127660
471	221841	104487111	21.7025344	$7 \cdot 7804904$	-002123142
472	222784	105154048	21.7255610	7.7859928	-002118644
473	223729	105828817	$21 \cdot 7485632$	$7 \cdot 7914875$	-002114165
474	224676	106496424	21.7715411	7-7969745	. 002109705
475	225625	107171875	21.7944947	$7 \cdot 8024538$	-002105263
476	226576	107850176	21.8174242	$7 \cdot 8079254$. 002100840
477	227529	108531333	$21 \cdot 8403297$	$7 \cdot 8133892$	-002096486
478	228484	109215352	21.8632111	$7 \cdot 8188456$	-002092050
479	229441	109902239	$21 \cdot 8860686$	$7 \cdot 8242942$	-002087683
480	230400	110592000	21.9089023	$7 \cdot 8297353$.002083333
481	231361	111284641	21.9317122	$7 \cdot 8351688$.002079002
482	232324	111980168	21.9544984	$7 \cdot 8405949$.002074689
483	233289	112678587	21.9772610	$7 \cdot 8460134$	-002070393
484	234256	113379904	$22 \cdot 0000000$	7.8514244	-002066116
485	235225	114084125	$22 \cdot 0227155$	$7 \cdot 8568281$	-002061856
486	236196	114791256	$22 \cdot 0454077$	$7 \cdot 8622242$	-002057613
487	237169	115501303	$22 \cdot 0680765$	$7 \cdot 8676130$	-002053388
488	238144	116214272	$22 \cdot 0907220$	$7 \cdot 8729944$	-002049180
489	239121	116930169	$22 \cdot 1133444$	$7 \cdot 8783684$	-002044990
490	240100	117649000	$22 \cdot 1359436$	$7 \cdot 8837352$	-002040816
491	241081	118370771	$22 \cdot 1585198$	$7 \cdot 8890946$	-002036660

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
492	242064	119095488	$22 \cdot 1810730$	7-8944468	-002032520
493	243049	119823157	$22 \cdot 2036033$	7-8997917	$\cdot 002028398$
494	244036	120553784	$22 \cdot 2261108$	$7 \cdot 9051294$	-002024291
495	245025	121287375	$22 \cdot 2485955$	7.9104599	-002020202
496	246016	122023936	$22 \cdot 2710575$	$7 \cdot 9157832$. 002016129
497	247009	122763473	22.2934968	7.9210994	-002012072
498	248004	123505992	$22 \cdot 3159136$	$7 \cdot 9264085$	-002008032
499	249001	124251499	$22 \cdot 3383079$	$7 \cdot 9317104$	-002004008
500	250000	125000000	$22 \cdot 3606798$	$7 \cdot 9370053$	-002000000
501	251001	125751501	$22 \cdot 3830293$	7.9422931	-001996008
502	252004	126506008	$22 \cdot 4053565$	$7 \cdot 9475739$	-001992032
503	253009	127263527	$22 \cdot 4276615$	7.9528477	-001988072
504	254016	128024064	$22 \cdot 4499443$	$7 \cdot 9581144$	-001984127
505	255025	128787625	$22 \cdot 4722051$	$7 \cdot 9633743$	-001980198
506	256036	129554216	$22 \cdot 4944438$	$7 \cdot 9686271$	-001976285
507	257049	130323843	22.5166605	$7 \cdot 9738731$	-001972387
508	258064	131096512	$22 \cdot 5388553$	$7 \cdot 9791122$	-001968504
509	259081	131872229	22.5610283	$7 \cdot 9843444$	-001964637
510	260100	132651000	22.5831796	$7 \cdot 9895697$	-001960784
511	261121	133432831	$22 \cdot 6053091$	7-9947883	$\cdot 001956947$
512	262144	134217728	22.6274170	$8 \cdot 0000000$	$\cdot 001953125$
513	263169	135005697	22.6495033	$8 \cdot 0052049$	-001949318
514	264196	135796744	22.6715681	$8 \cdot 0104032$	-001945525
515	265225	136590875	$22 \cdot 6936114$	8.0155946	-001941748
516	266256	137388096	22.7156334	$8 \cdot 0207794$	-001937984
517	267289	138188413	22.7376341	8.0259574	-001934236
518	268324	138991832	22.7596134	$8 \cdot 0311287$	-001930502
519	269361	139798359	22.7815715	$8 \cdot 0362935$	-001926782
520	270400	140608000	22.8035085	$8 \cdot 0414515$	-001923077
521	271411	141420761	22.8254244	8.0466030	$\cdot 001919386$
522	272484	142236648	22.8473193	$8 \cdot 0517479$	$\cdot 001915709$
523	273529	143055667	22.8691933	$8 \cdot 0568862$	$\cdot 001912046$
524	274576	143877824	22.8910463	$8 \cdot 0620180$	-001908397
525	275625	144703125	22.9128785	8.0671432	-001904762
526	276676	145531576	22.9346899	$8 \cdot 0722620$	$\cdot 001901141$
527	277729	146363183	22.9564806	$8 \cdot 0773743$	-001897533
528	278784	147197952	$22 \cdot 9782506$	8.0824800	-001893939
529	279841	148035889	23.0000000	8.0875794	$\cdot 001890359$
530	280900	148877001	23.0217289	$8 \cdot 0926723$	-001886792
531	281961	149721291	23.0434372	$8 \cdot 0977589$	-001883239
532	283024	150568768	23.0651252	$8 \cdot 1028390$	-001879699
533	284089	151419437	23.0867928	8-1079128	$\cdot 001876173$
534	285156	152273304	$23 \cdot 1084400$	8-1129803	-001872659
535	286225	153130375	$23 \cdot 1300670$	$8 \cdot 1180414$	-001869159
536	287296	153990656	$23 \cdot 1516738$	$8 \cdot 1230962$	-001865672
537	288369	154854153	$23 \cdot 1732605$	$8 \cdot 1281447$	-001862197
538	289444	155720872	$23 \cdot 1948270$	$8 \cdot 1331870$	$\cdot 001858736$
539	290521	156590819	23.2163735	$8 \cdot 1382230$	-001855988
540	291600	157464000	$23 \cdot 2379001$	8-1432529	$\cdot 001851852$
541	292681	158340421	$23 \cdot 2594067$	$8 \cdot 1482765$	-001848429
542	293764	159220088	23.2808935	$8 \cdot 1532939$	-001845018
543	294849	160103007	$23 \cdot 3023604$	$8 \cdot 1583051$	-001841621
544	295936	160989184	. $23 \cdot 3238076$	$8 \cdot 1633102$	-001838235
545	297025	161878625	$23 \cdot 3452351$	$8 \cdot 1683092$	$\cdot 001834862$
546	298116	162771336	$23 \cdot 3666429$	8-1733020	-001831502
547	299209	163667323	$23 \cdot 3880311$	$8 \cdot 1782888$	-001828154
548	300304	164566592	$23 \cdot 4093998$	$8 \cdot 1832695$	-001824818
549	301401	165469149	$23 \cdot 4307490$	$8 \cdot 1882441$	-001821494
550	302500	166375000	23-4520788	$8 \cdot 1932127$	-001818182
551	303601	167284151	$23 \cdot 4733892$	$8 \cdot 1981753$	$\cdot 001814882$
552	304704	168196608	$23 \cdot 4946802$	$8 \cdot 2031319$	$\cdot 001811594$
553	30580	169112377	$23 \cdot 5159520$	8-2080825	$\cdot 001808318$

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 109

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
554	306916	170031464	$23 \cdot 5372046$	8.2130271	-001805054
555	308025	170953875	$23 \cdot 5584380$	8.2179657	-001801802
556	309136	171879616	$23 \cdot 5796522$	8.2228985	-001798561
557	310249	172808693	$23 \cdot 6008474$	$8 \cdot 2278254$.001795332
558	311364	173741112	$23 \cdot 6220236$	$8 \cdot 2327463$	-001792115
559	312481	174676879	$23 \cdot 6431808$	$8 \cdot 2376614$	-001788909
560	313600	175616000	$23 \cdot 6643191$	$8 \cdot 2425706$.001785714
561	314721	176558481	$23 \cdot 6854386$	$8 \cdot 2474740$.001782531
562	315844	177504328	$23 \cdot 7065392$	$8 \cdot 2523715$	-001779359
563	316969	178453547	$23 \cdot 7276210$	$8 \cdot 2572635$	-001776199
564	318096	179406144	$23 \cdot 7486842$	$8 \cdot 2621492$	-001773050
565	319225	180362125	$23 \cdot 7697286$	$8 \cdot 2670294$	-001769912
566	320356	181321496	$23 \cdot 7907545$	8.2719039	-001766784
567	321489	182284263	$23 \cdot 8117618$	$8 \cdot 2767726$	-001763668
568	322624	183250432	$23 \cdot 8327506$	$8 \cdot 2816255$	-001760563
569	323761	184220009	$23 \cdot 8537209$	8.2864928	-001757469
570	324900	185193000	$23 \cdot 8746728$	$8 \cdot 2913444$	-001754386
571	326041	186169411	$23 \cdot 8956063$	$8 \cdot 2961903$	-001751313
572	327184	187149248	$23 \cdot 9165215$	$8 \cdot 3010304$	-001748252
573	328329	188132517	23.9374184	$8 \cdot 3058651$	-001745201
574	329476	189119224	$23 \cdot 9582971$	$8 \cdot 3106941$	-001742160
575	330625	190109375	$23 \cdot 9791576$	$8 \cdot 3155175$	-001739130
576	331776	191102976	$24 \cdot 0000000$	$8 \cdot 3203353$	-001736111
577	332927	192100033	$24 \cdot 0208243$	$8 \cdot 8251475$	-001733102
578	334084	193100552	$24 \cdot 0416306$	8.3299542	-001730104
579	335241	194104539	$24 \cdot 0624188$	$8 \cdot 3347553$	-001727116
580	336400	195112000	$24 \cdot 0831891$	8.3395509	-001724138
581	337561	196122941	$24 \cdot 1039416$	$8 \cdot 3443410$	-001721170
582	338724	197137368	$24 \cdot 1246762$	$8 \cdot 3491256$	-001718213
583	339889	198155287	24.1453929	$8 \cdot 3539047$	-001715266
584	341056	199176704	$24 \cdot 1660919$	8.3586784	-001712329
585	342225	200201625	$24 \cdot 1867732$	8-3634466	-001709402
586	343396	201230056	$24 \cdot 2074369$	8.3682095	-001706485
587	344569	202262003	$24 \cdot 2280829$	8.3729668	-001703578
588	345744	203297472	$24 \cdot 2487113$	8.3777188	-001700680
589	346921	204336469	$24 \cdot 2693222$	8-3824653	-001697793
590	348100	205379000	$24 \cdot 2899156$	$8 \cdot 3872065$	-001694915
591	349281	206425071	$24 \cdot 3104996$	$8 \cdot 3919428$	-001692047
592	350464	207474688	$24 \cdot 3310501$	$8 \cdot 3966729$	-001689189
593	351649	208527857	$24 \cdot 3515913$	$8 \cdot 4013981$	-001686341
594	352836	209584584	$24 \cdot 3721152$	$8 \cdot 4061180$	-001683502
595	354025	210644875	$24 \cdot 3926218$	$8 \cdot 4108326$	-001680672
596	355216	211708736	$24 \cdot 4131112$	$8 \cdot 4155419$	-001677852
597	356409	212776173	$24 \cdot 4335834$	$8 \cdot 4202460$	-001675042
598	357604	213847192	$24 \cdot 4540385$	$8 \cdot 4249448$	-001672241
599	358801	214921799	24.4744765	$8 \cdot 4296383$	-001669449
600	360000	216000000	24.4948974	$8 \cdot 4343267$	-001666667
601	361201	217081801	$24 \cdot 5153013$	$8 \cdot 4390098$	-001663894
602	362404	218167208	$24 \cdot 5356883$	$8 \cdot 4436877$	-001661130
603	363609	219256227	$24 \cdot 5560583$	$8 \cdot 4483605$	-001658375
604	364816	220348864	$24 \cdot 5764115$	$8 \cdot 4530281$	-001655629
605	366025	221445125	$24 \cdot 5967478$	$8 \cdot 4576906$	-001652893
606	367236	222545016	$24 \cdot 6170673$	$8 \cdot 4623479$	-001650165
607	368449	223648543	$24 \cdot 6373700$	$8 \cdot 4670001$	-001647446
608	369664	224755712	$24 \cdot 6576560$	$8 \cdot 4716471$	-001644737
609	370881	225866529	$24 \cdot 6779254$	$8 \cdot 4762892$	-001642036
610	372100	226981000	$24 \cdot 6981781$	$8 \cdot 4809261$	-001639344
611	373321	228099131	$24 \cdot 7184142$	$8 \cdot 4855579$	-001636661
612	374544	229220928	$24 \cdot 7386338$	$8 \cdot 4901848$	-001633987
613	375769	230346397	$24 \cdot 7588368$	$8 \cdot 4948065$	-001631321
614	376996	231475544	$24 \cdot 7790234$	$8 \cdot 4994233$	-001628664
615	378225	232608375	$24 \cdot 7991935$	$8 \cdot 5040350$	$\cdot 001626016$

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
616	379456	233744896	24.8193473	$8 \cdot 5086417$.001623377
617	380689	2348851,13	$24 \cdot 8394847$	8.5132435	.001620746
618	381924	- 236029032	$24 \cdot 8596058$	8.5178403	$\cdot 001618123$
619	383161	237176659	$24 \cdot 8797106$	8.5224331	-001615509
620	384400	238328000	$24 \cdot 8997992$	8.5270189	$\cdot 001612903$
621	385641	239483061	$24 \cdot 9198716$	8.5316009	$\cdot 001610306$
622	386884	240641848	24.9399278	8-5361780	$\cdot 001607717$
623	388129	241804367	$24 \cdot 9599679$	8.5407501	-001605136
624	389376	242970624	24.9799920	8.5453173	-001602564
625	390625	244140625	$25 \cdot 0000000$	$8 \cdot 5498797$	-001600000
626	391876	245134376	$25 \cdot 0199920$	8-5544372	-001597444
627	393129	246491883	25.0399681	8.5589899	-001594896
628	394384	247673152	$25 \cdot 0599282$	$8 \cdot 5635377$	-001592357
629	395641	248858189	25.0798724	8.5680807	-001589825
630	396900	250047000	25.0998008	$8 \cdot 5726189$	-001587302
631	398161	251239591	$25 \cdot 1197134$	$8 \cdot 5771523$	-001584786
632	399424	252435968	$25 \cdot 1396102$	$8 \cdot 5816809$	-001582278
633	400689	253636137	$25 \cdot 1594913$	$8 \cdot 5862247$	-001579779
634	401956	254840104	25-1793566	$8 \cdot 5907238$	-001577287
635	403225	256047875	25-1992063	$8 \cdot 5952380$	-001574803
636	404496	257259456	25-2190404	$8 \cdot 5997476$	-001572327
637	405769	258474853	$25 \cdot 2388589$	$8 \cdot 6042525$	-001569859
638	407044	259694072	$25 \cdot 2586619$	$8 \cdot 6087526$. 001567398
639	408321	260917119	$25 \cdot 2784493$	$8 \cdot 6132480$	-001564945
640	409600	262144000	$25 \cdot 2982213$	$8 \cdot 6177388$	-001562500
641	410881	263374721	25.3179778	$8 \cdot 6222248$	-001560062
642	412164	264609288	25.3377189	8-6267063	. 001557632
643	413449	265847707	23.3574447	$8 \cdot 6311830$	-001555210
644	414736	267089984.	25.3771551	$8 \cdot 6356551$	-001552795
645	416125	268336125	25.3968502	$8 \cdot 6401226$	-001550388
646	417316	269585136	25.4165302	$8 \cdot 6445855$	-001547988
647	418609	270840023	25.4361947	$8 \cdot 6490437$	-001545595
648	419904	272097792	25.4558441	$8 \cdot 6534974$	-001543210
649	421201	273359449	25.4754784	$8 \cdot 6579465$	-001540832
650	422500	274625000	25.4950976	$8 \cdot 6623911$	-001538462
651	423801	275894451	25.5147013	$8 \cdot 6668310$	-001536098
652	425104	277167808	25.5342907	$8 \cdot 6712665$	-001533742
653	426409	278445077	25.5538647	$8 \cdot 6756974$	-001531394
654	427716	279726264	25.5734237	$8 \cdot 6801237$	-001529052
655	429025	281011375	25.5929678	$8 \cdot 6845456$	-001526718
656	430336	282300416	25.6124969	8-6889630	-001524390
657	431639	283593393	25.6320112	8-6933759	.001522070
658	432964	284890312	25.6515107	8-6977843	-001519751
659	434281	286191179	25.6709953	$8 \cdot 7021882$	-001517451
660	435600	287496000	$25 \cdot 6904652$	$8 \cdot 7065877$	-001515152
661	436921	288804781	25.7099203	$8 \cdot 7109827$	-001512859
662	438244	290117528	25.7293607	$8 \cdot 7153734$	-001510574
663	439569	291434247	25.7487864	$8 \cdot 7197596$	-001508296
664	440896	292754944	25.7681975	$8 \cdot 7241414$	-001506024
665	442225	294079625	25.7875939	$8 \cdot 7285187$	-001503759
666	443556	295408296	25.8069758	$8 \cdot 7328918$	$\cdot 001501502$
667	444899	296740963	$25 \cdot 8263431$	$8 \cdot 7372604$	-001499250
668	446224	298077632	$25 \cdot 8456960$	$8 \cdot 7416246$	-001497006
669	447561	299418309	$25 \cdot 8650343$	$8 \cdot 7459846$	-001494768
670	448900	300763000	$25 \cdot 8843582$	$8 \cdot 7503401$	-001492537
671	450241	302111711	25.9036677	$8 \cdot 7546913$	-001490313
672	451584	303464448	$25 \cdot 9229628$	$8 \cdot 7590383$	-001488095
673	452929	304821217	25.9422435	$8 \cdot 7633809$	-001485884
674	454276	306182024	$25 \cdot 9615100$	$8 \cdot 7677192$	-001483680
675	455625	307546875	$25 \cdot 9807621$	$8 \cdot 7720532$	-001481481
676	456976	308915776	$26 \cdot 0000000$	$8 \cdot 7763830$	$\cdot 001479290$
677	458329	310288733	$26 \cdot 0192237$	$8 \cdot 7807084$	-001477105

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 111

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
678	459684	311665752	$26 \cdot 0384331$	$8 \cdot 7850296$	-001474926
679	461041	313046839	$26 \cdot 0576284$	$8 \cdot 7893466$	-001472754
680	462400	314432000	$26 \cdot 0768096$	$8 \cdot 7936593$	-001470588
681	463761	315821241	26.0959767	8.7979679	-001468429
682	465124	317214568	$26 \cdot 1151297$	8-8022721	-001466276
683	466489	318611987	$26 \cdot 1342687$	$8 \cdot 8065722$	-001464129
684	467856	320013504	$26 \cdot 1533937$	$8 \cdot 8108681$	-001461988
685	469225	321419125	$26 \cdot 1725047$	$8 \cdot 8151598$	-001459854
686	470596	322828856	$26 \cdot 1916017$	8.8194474	-001457726
687	471969	324242703	26.2106848	$8 \cdot 8237307$. 001455604
688	473344	325660672	$26 \cdot 2297541$	$8 \cdot 8280099$	-001453488
689	474721	327082769	$26 \cdot 2488095$	$8 \cdot 8322850$	-001451379
690	476100	328509000	$26 \cdot 2678511$	$8 \cdot 8365559$	-001449275
691	477481	329939371	$26 \cdot 2868789$	$8 \cdot 8408227$	-001447178
692	478864	331373888	$26 \cdot 3058929$	$8 \cdot 8450854$	-001445087
693	480249	332812557	$26 \cdot 3248932$	$8 \cdot 8493440$	-001443001
694	481636	334255384	$26 \cdot 3438797$	$8 \cdot 8535985$	-001440922
695	483025	335702375	$26 \cdot 3628527$	$8 \cdot 8578489$	-001438849
696	484416	337153536	$26 \cdot 3818119$	$8 \cdot 8620952$	-001436782
697	485809	338608873	$26 \cdot 4007576$	$8 \cdot 8663375$	-001434720
698	487204	340068392	$26 \cdot 4196896$	$8 \cdot 8705757$	-001432665
699	488601	341532099	$26 \cdot 4386081$	- 8.8748099	-001430615
700	490000	343000000	26.4575131	$8 \cdot 8790400$	-001428571
701	491401	344472101	$26 \cdot 4764046$	$8 \cdot 8832661$	-001426534
702	492804	345948408	$26 \cdot 4952826$	$8 \cdot 8874882$	-001424501
703	494209	347428927	26.5141472	$8 \cdot 8917063$	-001422475
704	495616	348913664	$26 \cdot 5329983$	$8 \cdot 8959204$. 001420455
705	497025	350402625	$26 \cdot 5518361$	$8 \cdot 9001304$	-001418440
706	498436	351895816	$26 \cdot 5706605$	$8 \cdot 9043366$. 001416431
707	499849	353393243	26.5894716	8.9085387	-001414427
708	501264	354894912	26.6082694	$8 \cdot 9127369$	-001412429
709	502681	356400829	$26 \cdot 6270539$	$8 \cdot 9169311$	-001410437
710	504100	357911000	$26 \cdot 6458252$	$8 \cdot 9211214$	-001408451
711	505521	359425431	$26 \cdot 6645833$	$8 \cdot 9253078$	-001406470
712	506944	360944128	$26 \cdot 6833281$	8-9294902	-001404494
713	508369	362467097	26.7020598	$8 \cdot 9336687$	- 001402525
714	509796	363994344	$26 \cdot 7207784$	$8 \cdot 9378433$	-001400560
715	511225	365525875	$26 \cdot 7394839$	$8 \cdot 9420140$	-001398601
716	512656	367061696	$26 \cdot 7581763$	$8 \cdot 9461809$	-001396648
717	514089	368601813	$26 \cdot 7768557$	$8 \cdot 9503438$	-001394700
718	515524	370146232	26.7955220	8.9545029	-001392758
719	516961	371694959	26.8141754	$8 \cdot 9586581$	-001390821
720	518400	373248000	26.8328157	$8 \cdot 9628095$	-001388889
721	519841	374805361	26.8514432	$8 \cdot 9669570$. 001386963
722	521284	376367048	26.8700577	$8 \cdot 9711007$. 001385042
723	522729	377933067	26.8886593	$8 \cdot 9752406$	-001383126
724	524176	379503424	26.9072481	$8 \cdot 9793766$	-001381215
725	525625	381078125	26.9258240	$8 \cdot 9835089$	-001379310
726	527076	382657176	26.9443872	$8 \cdot 9876373$	-001377410
727	528529	384240583	26.9629375	$8 \cdot 9917620$	-001375516
728	529984	385828352	26.9814751	$8 \cdot 9958899$	-001373626
729	531441	387420489	$27 \cdot 0000000$	$9 \cdot 0000000$	-001371742
730	532900	389017000	$27 \cdot 0185122$	$9 \cdot 0041134$	-001369863
731	534361	390617891	$27 \cdot 0370117$	$9 \cdot 0082229$	-001367989
732	535824	392223168	27.0554985	$9 \cdot 0123288$	-001366120
733	537289	393832837	$27 \cdot 0739727$	$9 \cdot 0164309$	-001364256
734	538756	395446904	27-0924344	$9 \cdot 0205293$	-001362398
735	540225	397065375	27•1108834	9.0246239	.001360544
736	541696	398688256	27-1293199	$9 \cdot 0287149$	-001358696
737	543169	400315553	$27 \cdot 1477149$	9.0328021	-001356852
738	544644	401947272	$27 \cdot 1661554$	9.0368857	.001355014
739	546121	403583419	$27 \cdot 1845544$	$9 \cdot 0409655$	$\cdot 001353180$

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
740	547600	405224000	$27 \cdot 2029140$	9.0450419	. 001351351
741	549801	406869021	$27 \cdot 2213152$	$9 \cdot 0491142$. 001349528
742	$550564 \cdot$	408518488	$27 \cdot 2396769$	$9 \cdot 0531831$. 001347709
743	552049	410172407	$27 \cdot 2580263$	$9 \cdot 0572482$. 001345895
744	553536	411830784	$27 \cdot 2763634$	$9 \cdot 0613098$	-001344086
745	555025	413493625	$27 \cdot 2946881$	$9 \cdot 0653677$	-001342282
746	556516	415160936	27.3130006	$9 \cdot 0694220$	-001340483
747	558009	416832723	$27 \cdot 3313007$	$9 \cdot 0734726$. 001338688
748	559504	418508992	27.3495887	9.0775197	-001336898
749	561001	420189749	$27 \cdot 3678644$	9.0815631	. 001335113
750	562500	421875000	27-3861279	$9 \cdot 0856030$	-001333333
751	564001	423564751	$27 \cdot 4043792$	9.0896352	. 001331558
752	565504	425259008	$27 \cdot 4226184$	$9 \cdot 0936719$	-001329787
753	567009	426957777	$27 \cdot 4408455$	$9 \cdot 0977010$. 001328021
754	568516	428661064	$27 \cdot 4590604$	$9 \cdot 1017265$	-001326260
755	570025	430368875	$27 \cdot 4772633$	$9 \cdot 1057485$. 001324503
756	571536	432081216	$27 \cdot 4954542$	9-1097669	-001322751
757	573049	433798093	27.5136330	$9 \cdot 1137818$. 001321004
758	574564	435519512	27.5317998	$9 \cdot 1177931$	-001319261
759	576081	437245479	27.5499546	$9 \cdot 1218010$. 001317523
760	577600	438976000	27.5680975	9-1258053	-001315789
761	579121	440711081	27.5862284	$9 \cdot 1298061$. 001314060
762	580644	442450728	$27 \cdot 6043475$	9-1338034	-001312336
763	582169	444194947	$27 \cdot 6224546$	$9 \cdot 1377971$	-001310616
764	583696	445943744	27.6405499	9-1417874	-001308901
765	585225	447697125	$27 \cdot 6586334$	9-1457742	.001307190
766	586756	449455096	$27 \cdot 6767050$	$9 \cdot 1497576$. 001305483
767	588289	451217663	$27 \cdot 6947648$	$9 \cdot 1537375$. 001303781
768	589824	452984832	27.7128129	$9 \cdot 1577139$	-001302083
769	591361	454756609	27.7308492	$9 \cdot 1616869$. 001300390
770	592900	456533000	27.7488739	$9 \cdot 1656565$	-001298701
771	594441	458314011	27.7668868	$9 \cdot 1696225$	-001297017
772	595984	460099648	27.7848880	$9 \cdot 1735852$	-001295337
773	597529	461889917	27.8028775	$9 \cdot 1775445$. 001293661
774	599076	463684824	27.8208555	$9 \cdot 1815003$. 001291990
775	600625	465484375	$27 \cdot 8388218$	9•1854527	. 001290323
776	602176	467288576	27.8567766	$9 \cdot 1894018$. 001288660
777	603729	469097433	27.8747197	9-1933474	. 001287001
778	605284	470910952	27.8926514	$9 \cdot 1972897$. 001285347
779	606841	472729139	27.9105715	$9 \cdot 2012286$.001283697
780	608400	474552000	27.9284801	$9 \cdot 2051641$. 001282051
781	609961	476379541	27.9463772	$9 \cdot 2090962$	-001280410
782	611524	478211768	27.9642629	$9 \cdot 2130250$. 001278772
783	613089	480048687	27.9821372	$9 \cdot 2169505$	-001277139
784	614656	481890304	28.0000000	$9 \cdot 2208726$	-001275510
785	616225	483736625	28.0178515	9-2247914	$\cdot 001273885$
786	617796	485587656	28.0356915	$9 \cdot 2287068$. 001272265
787	619369	487443403	28.0535203	$9 \cdot 2326189$.001270648
788	620944	489303872	28.0713377	$9 \cdot 2365277$. 001269036
789	622521	491169069	28.0891438	$9 \cdot 2404333$	-001267427
790	624100	493039000	28.1069386	$9 \cdot 2443355$. 001265823
791	625681	494913671	$28 \cdot 1247222$	$9 \cdot 2482344$	$\cdot 001264223$
792	627624	496793088	$28 \cdot 1424946$	$8 \cdot 2521300$. 001262626
793	628849	498677257	$28 \cdot 1602557$	$9 \cdot 2560224$	-001261034
794	630436	500566184	$28 \cdot 1780056$	9-2599114	-001259446
795	632025	502459875	$28 \cdot 1957444$	9-2637973	-001257862
796	633616	504358336	28.2134720	9-2676798	. 001256281
797	635209	506261573	28.2311884	$9 \cdot 2715592$	-001254705
798	636804	508169592	$28 \cdot 2488938$	$9 \cdot 2754352$. 001253133
799	638401	510082399	28.2665881	$9 \cdot 2793081$	-001251364
800	640000	512000000	$28 \cdot 2842712$	9.2831777	.001250000
801	641601	513922401	$28 \cdot 3019434$	9-2870444	. 001248439

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 113

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
802	643204	515849608	28.3196045	$9 \cdot 2909072$	-001246883
803	644809	517781627	$28 \cdot 3372546$	$9 \cdot 2947671$	-001245330
804	646416	519718464	$28 \cdot 3548938$	$9 \cdot 2986239$	-001243781
805	648025	521660125	$28 \cdot 3725219$	$9 \cdot 3024775$	-001242236
806	649636	523606616	$28 \cdot 3901391$	$9 \cdot 3063278$	-001240695
807	651249	525557943	$28 \cdot 4077454$	$9 \cdot 3101750$	$\cdot 001239157$
808	652864	527514112	$28 \cdot 4253408$	$9 \cdot 3140190$	-001237624
809	654481	529475129	$28 \cdot 4429253$	$9 \cdot 3178599$	-001236094
810	656100	531441000	$28 \cdot 4604989$	$9 \cdot 3216975$	-001234568
811	657721	533411731	$28 \cdot 4780617$	$9 \cdot 3255320$	-001233046
812	659344	535387328	$28 \cdot 4956137$	$9 \cdot 3293634$	-001231527
813	660969	537367797	$28 \cdot 5131549$	$9 \cdot 3331916$.001230012
814	662596	539353144	$28 \cdot 5306852$	$9 \cdot 3370167$	-001228501
815	664225	541343375	$28 \cdot 5482048$	$9 \cdot 3408386$	-001226994
816	665856	543338496	$28 \cdot 5657137$	$9 \cdot 3446575$	-001225499
817	667489	545338513	$28 \cdot 5832119$	$9 \cdot 3484731$	-.001223990
818	669124	547343432	$28 \cdot 6006993$	$9 \cdot 3522857$	-001222494
819	670761	549353259	$28 \cdot 6181760$	9.3560952	-001221001
820	672400	551368000	$28 \cdot 6356421$	$9 \cdot 3599016$	-001219512
821	674041	553387661	$28 \cdot 6530976$	$9 \cdot 3637049$	-001218027
822	675684	555412248	$28 \cdot 6705424$	$9 \cdot 3675051$	-001216545
823	677329	557441767	$28 \cdot 6879716$	$9 \cdot 3713022$	-001215067
824	678976	559476224	28.7054002	$9 \cdot 3750963$	-001213592
825	680625	561515625	$28 \cdot 7228132$	9-3788873	-001212121
826	682276	563559976	$28 \cdot 7402157$	$9 \cdot 3826752$	-001210654
827	683929	565609283	$28 \cdot 7576077$	9.3864600	-001209190
828	685584	567663552	28.7749891	$9 \cdot 3902419$	-001207729
829	687241	569722789	$28 \cdot 7923601$	9-3940206	-001206273
830	688900	571787000	28.8097206	9-3977964	-001204819
831	690561	573856191	28.8270706	$9 \cdot 4015691$	-001203369
832	692224	575930368	28.8444102	9-4053387	-001201923
833	693889	578009537	28.8617394	$9 \cdot 4091054$	-001200480
834	695556	580093704	28.8790582	$9 \cdot 4128690$	-001199041
835	697225	582182875	$28 \cdot 8963666$	$9 \cdot 4166297$	$\cdot 001197605$
836	698896	584277056	28.9136646	$9 \cdot 4203873$	$\cdot 001196172$
837	700569	586376253	$28 \cdot 9309523$	$9 \cdot 4241420$	$\cdot 001194743$
838	702244	588480472	$28 \cdot 9482297$	$9 \cdot 4278936$	$\cdot 001193317$
839	703921	590589719	28.9654967	$9 \cdot 4316423$	$\cdot 001191895$
840	705600	592704000	28.9827535	$9 \cdot 4353800$	$\cdot 001190476$
841	707281	594823321	29.0000000	$9 \cdot 4391307$	-001189061
842	708964	596947688	29.0172363	$9 \cdot 4428704$	-001187648
843	710649	599077107	29.0344623	$9 \cdot 4466072$	$\cdot 001186240$
844	712336	601211584	$29 \cdot 0516781$	$9 \cdot 4503410$	-001184834
845	714025	603351125	29.0688837	$9 \cdot 4540719$. 001183432
846	715716	605495736	$29 \cdot 0860791$	$9 \cdot 4577999$	$\cdot 001182033$
847	717409	607645423	$29 \cdot 1032644$	$9 \cdot 4615249$.001180638
848	719104	609800192	29-1204396	$9 \cdot 4652470$	-001179245
849	720801	611960049	29.1376046	$9 \cdot 4689661$	-001177856
850	722500	614125000	29-1547595	9-4726824	-001176471
851	724201	616295051	29-1719043	$9 \cdot 4763957$	$\cdot 001175088$
852	725904	618470208	29-1890390	$9 \cdot 4801061$	$\cdot 001173709$
853	727609	620650477	$29 \cdot 2061637$	$9 \cdot 4838136$	-001172333
854	729316	622835864	$29 \cdot 2232784$	$9 \cdot 4875182$	-001170960
855	731025	625026375	$29 \cdot 2403830$	$9 \cdot 4912200$	-001169591
856	732736	627222016	$29 \cdot 2574777$	$9 \cdot 4949188$	-001168224
857	734449	629422793	29-2745623	$9 \cdot 4986147$	-001166861
858	736164	631628712	$29 \cdot 2916370$	9.5023078	-001165501
859	737881	633839779	$29 \cdot 3087018$	$9 \cdot 5059980$	-001164144
860	739600	636056000	$29 \cdot 3257566$	9-5096854	-001162791
861	741321	638277381	$29 \cdot 3428015$	9.5133699	-001161440
862	743044	640503928	$29 \cdot 3598365$	9.5170515	-001160093
863	744769	642735647	$29 \cdot 3768616$	$9 \cdot 5207303$	-001158749

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
864	746496	644972544	29.3938769	9.5244063	$\cdot 001157407$
865	748225	647214625	$29 \cdot 4108823$	$9 \cdot 5280794$	$\cdot 001156069$
866	749956	649461896	29-4278779	$9 \cdot 5317497$	-001154734
867	751689	651714363	$29 \cdot 4448637$	9-5354172	$\cdot 001153403$
868	753424	653972032	$29 \cdot 4618397$	9-5390818	-001152074
869	755161	656234909	29-4788059	$9 \cdot 5427437$	$\cdot 001150748$
870	756900	658503000	$29 \cdot 4957624$	$9 \cdot 5464027$	-001149425
871	758641	660776311	29.5127091	$9 \cdot 5500589$	-001148106
872	760384	663054848	29.5296461	$9 \cdot 5537123$	$\cdot 001146789$
873	762129	665338617	29.5465734	$9 \cdot 5573630$	$\cdot 001145475$
874	763876	667627624	$29 \cdot 5634910$	$9 \cdot 5610108$	$\cdot 001144165$
875	765625	669921875	29.5803989	$9 \cdot 5646559$	$\cdot 001142857$
876	767376	672221376	29.5972972	$9 \cdot 5682782$	$\cdot 001141553$
877	769129	674526133	29.6141858	$9 \cdot 5719377$	$\cdot 001140251$
878	7.70884	676836152	$29 \cdot 6310648$	9-5755745	-001138952
879	772641	679151439	29.6479342	9.5792085	$\cdot 001137656$
880	774400	681472000	29.6647939	$9 \cdot 5828397$	-001136364
881	776161	683797841	29.6816442	9.5864682	-001135074
882	777924	686128968	29.6984848	9-5900937	-001133787
883	779689	688465387	29.7153159	9.5937169	-001132503
884	781456	690807104	29.7321375	9.5973373	-001131222
885	783225	693154125	29.7489496	$9 \cdot 6009548$	-001129944
886	784996	695506456	29.7657521	9•6045696	$\cdot 001128668$
887	786769	697864103	29.7825452	$9 \cdot 6081817$	-001127396
888	788544	700227072	29.7993289	$9 \cdot 6117911$	$\cdot 001126126$
889	790321	702595369	29.8161030	$9 \cdot 6153977$	-001124859
890	792100	704969000	29.8328678	$9 \cdot 6190017$	-001123596
891	793881	707347971	29.8496231	$9 \cdot 6226030$	-001122334
892	795664	707932288	29.8663690	$9 \cdot 6262016$	-001121076
893	797449	712121957	29.8831056	$9 \cdot 6297975$	-001119821
894	799236	714516984	29.8998328	$9 \cdot 6333907$	$\cdot 001118568$
895	801025	716917375	29.9165506	$9 \cdot 6369812$	-001117818
896	802816	719323136	$29 \cdot 9332591$	$9 \cdot 6405690$	-001116071
897	804609	721734273	29.9499583	$9 \cdot 6441542$	-001114827
898	806404	724150792	$29 \cdot 9666481$	$9 \cdot 6477367$	$\cdot 001113586$
899	808201	726572699	29.9833287	$9 \cdot 6513166$	$\cdot 001112347$
900	810000	729000000	30.0000000	$9 \cdot 6548938$	-001111111
901	811801	731432701	30.0166621	9•6584684	-001109878
902	813604	733870808	30.0333148	$9 \cdot 6620403$	-001108647
903	815409	736314327	30.0499584	9•6656096	-001107420
904	817216	738763264	30.0665928	$9 \cdot 6691762$	-001106195
905	819025	741217625	30.0832179	$9 \cdot 6727403$	-001104972
906	820836	743677416	30.0998339	$9 \cdot 6763017$	$\cdot 001103753$
907	822649	746142643	$30 \cdot 1164407$	9.6798604	$\cdot 001102536$
908	824464	748613312	30-1330383	$9 \cdot 6834166$	-001101322
909	826281	751089429	30-1496269	$9 \cdot 6869701$	-001100110
910	828100	753571000	30-1662063	$9 \cdot 6905211$	-001098901
911	829921	756058031	30.1827765	9.6940694	-001097695
912	831744	758550825	30-1993377	$9 \cdot 6976151$	-001096491
913	833569	761048497	30.2158899	9.7011583	-001095290
914	835396	763551944	30.2324329	9.7046989	-001094092
915	837225	766060875	30.2489669	9.7082369	-001092896
916	839056	768575296	$30 \cdot 2654919$	$9 \cdot 7117723$	-001091703
917	840889	771095213	$30 \cdot 2820079$	$9 \cdot 7153051$	-001090513
918	842724	773620632	30.2985148	$9 \cdot 7188354$	-001089325
919	844561	776151559	30.3150128	9.7223631	-001088139
920	846400	778688000	30-3315018	$9 \cdot 7258883$	-001086957
921	848241	781229961	30.3479818	$9 \cdot 7294109$	-001085776
922	850084	783777448	$30 \cdot 3644529$	$9 \cdot 7329309$	-001084599
923	851929	786330467	$30 \cdot 3809151$	9.7364484	-001083423
924	853776	788889024	30-3973683	9.7399634	-001082251
925	855625	791453125	30-4138127	9.7434758	. 001081081

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS.

Nui ber.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
926	857476	794022776	$30 \cdot 4302481$	9•7469857	-001079914
927	859329	796597983	$30 \cdot 4466747$	$9 \cdot 7504930$	-001078749
928	861184	799178752	$30 \cdot 4630924$	$9 \cdot 7539979$	-001077586
929	863041	801765089	$30 \cdot 4795013$	9•7575002	-001076426
930	864900	804357000	$30 \cdot 4959014$	$9 \cdot 7610001$	-001075269
931	866761	806954491	$30 \cdot 5122926$	9•7644974	-001074114
932	868624	809557568	$30 \cdot 5286750$	9•7679922	-001072961
933	870489	812166237	$30 \cdot 5450487$	9•7714845	. 001071811
934	872356	814780504	$30 \cdot 5614136$	9-7749743	-001070664
935	874225	817400375	$30 \cdot 5777697$	9•7784616	-001069519
936	876096	820025856	$30 \cdot 5941171$	9.7829466	-001068376
937	877969	822656953	$30 \cdot 6104557$	9-7854288	-001067236
938	879844	825293672	$30 \cdot 6267857$	$9 \cdot 7889087$	-001066098
939	881721	827936019	$30 \cdot 6431069$	9•7923861	-001064963
940	883600	830584000	$30 \cdot 6594194$	9-7958611	-001063830
941	885481	833237621	$30 \cdot 6757233$	9•7993336	-001062699
942	887364	835896888	30.6920185	$9 \cdot 8028036$	-001061571
943	889249	838561807	$30 \cdot 7083051$	$9 \cdot 8062711$	-001060445
944	891136	841232384	$30 \cdot 7245830$	$9 \cdot 8097362$	-001059322
945	893025	843908625	$30 \cdot 7408523$	9-8131989	-001058201
946	894916	846590536	$30 \cdot 7571130$	$9 \cdot 8166591$	-001057082
947	896808	849278123	30•7733651	$9 \cdot 8201169$	-001055966
948	898704	851971392	$30 \cdot 7896086$	$9 \cdot 8235723$	-001054852
949	900601	854670349	$30 \cdot 8058436$	$9 \cdot 8270252$	-001053741
950	902500	857375000	$30 \cdot 8220700$	$9 \cdot 8304757$	-001052632
951	904401	860085351	30.8382879	$9 \cdot 8339238$	-001051525
952	906304	862801408	$30 \cdot 8544972$	$9 \cdot 8373695$	-001050420
953	908209	865523177	$30 \cdot 8706981$	$9 \cdot 8408127$	-001049318
954	910116	868250664	$30 \cdot 8868904$	$9 \cdot 8442536$	-001048218
955	912025	870983875	$30 \cdot 9030743$	$9 \cdot 8476920$	-001047120
956	913936	873722816	$30 \cdot 9192477$	9.8511280	-001046025
957	915849	876467493	$30 \cdot 9354166$	$9 \cdot 8545617$	-001044932
958	917764	879217912	$30 \cdot 9515751$	$9 \cdot 8579929$	-001043841
959	919681	881974079	$30 \cdot 9677251$	$9 \cdot 8614218$	-001042753
960	921600	884736000	$30 \cdot 9838668$	9.8648483	-001041667
961	923521	887503681	$31 \cdot 0000000$	$9 \cdot 8682724$	-001040583
962	925444	890277128	$31 \cdot 0161248$	$9 \cdot 8716941$	-001039501
963	927369	893056347	$31 \cdot 0322413$	$9 \cdot 8751135$	-001038422
964	929296	895841344	$31 \cdot 0483494$	$9 \cdot 8785305$. 001037344
965	931225	898632125	$31 \cdot 0644491$	$9 \cdot 8819451$	-001036269
966	933156	901428696	$31 \cdot 0805405$	$9 \cdot 8853574$	-001035197
967	935089	904231063	$31 \cdot 0966236$	$9 \cdot 8887673$	-001034126
968	937024	907039232	$31 \cdot 1126984$	$9 \cdot 8921749$	-001033058
969	938961	909853209	$31 \cdot 1287648$	$9 \cdot 8955801$	-001031992
970	940900	912673000	$31 \cdot 1448230$	$9 \cdot 8989830$	-001030928
971	942841	915498611	$31 \cdot 1608729$	$9 \cdot 9023835$	-001029866
972	944784	918330048	$31 \cdot 1769145$	$9 \cdot 9057817$	-001028807
973	946729	921167317	$31 \cdot 1929479$	$9 \cdot 9091776$	-001027749
974	948676	924010424	$31 \cdot 2089731$	$9 \cdot 9125712$	$\cdot 001026694$
975	950625	926859375	$31 \cdot 2249900$	$9 \cdot 9159624$	-001025641
976	952576	929714176	$31 \cdot 2409987$	$9 \cdot 9193513$	-001024590
977	954529	932574833	$31 \cdot 2569992$	-9.9227379	-001023541
978	956484	935441352	$31 \cdot 2729915$	$9 \cdot 9261222$	-001022495
979	958441	938313739	$31 \cdot 2889757$	$9 \cdot 9295042$	-001021450
980	960400	941192000	$31 \cdot 3049517$	$9 \cdot 9328839$	-001020408
981	962361	944076141	$31 \cdot 3209195$	$9 \cdot 9362613$	$\cdot 001019168$
982	964324	946966168	31-3368792	$9 \cdot 9396363$	$\cdot 001018330$
983	966289	949862087	$31 \cdot 3528308$	$9 \cdot 9430092$	-001017294
984	968256	952763904	31-3687743	$9 \cdot 9463797$	-001016260
985	970225	955671625	31-3847097	9.9497479	.001015228
986	972196	958585256	31.4006369	9.9531138	.001014199
987	974169	961504803	$31 \cdot 4165561$	9.9564775	$\cdot 001013171$

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
988	976144	964430272	31.4324673	$9 \cdot 9598389$	$\cdot 001012146$
989	978121	967361669	31-4483704	$9 \cdot 9631981$	$\cdot 001011122$
990	980100	970299000	$31 \cdot 4642654$	$9 \cdot 9665549$	-001010101
991	982081	973242271	$31 \cdot 4801525$	9-9699055	-001009082
992	984064	976191488	31.4960315	$9 \cdot 9732619$	-001008065
993	986049	979146657	31.5119025	9-9766120	-001007049
994	988036	982107784	31.5277655	$9 \cdot 9799599$	-001006036
995	990025	985074875	31-5436206	9-9833055	-001005025
996	992016	988047936	31-5594677	$9 \cdot 9866488$	-001004016
997	994009	991026973	81-5753068	$9 \cdot 9899900$	-001003009
998	996004	994011992	31-5911380	$9 \cdot 9933289$	-001002004
999	998001	997002999	31-6069613	$9 \cdot 9966656$	-001001001
1000	1000000	1000000000	31-6227766	$10 \cdot 0000000$	-001000000
1001	1000201	1003003001	31-6385840	10.0033222	-0009990010
1002	1004004	1006012008	$31 \cdot 6543866$	10-0066622	-0009980040
1003	1006009	1009027027	31.6701752	$10 \cdot 0099899$	-0009970090
1004	1008016	1012048064	$31 \cdot 6859590$	10.0133155	-0009960159
1005	1010025	1015075125	31.7017349	$10 \cdot 0166389$	-0009950249
1006	1010036	1018108216	31.7175030	10.0199601	-0009940358
1007	1014049	1021147343	31.7332633	$10 \cdot 0232791$	$\cdot 0009930487$
1008	1016064	1024192512	$31 \cdot 7490157$	$10 \cdot 0265958$	-0009920635
1009	1018081	1027243729	$31 \cdot 7647603$	10.0299104	-0009910803
1010	1020100	1030301000	31-7804972	$10 \cdot 0332228$	-0009900990
1011	1020121	1033364331	31•7962262	10.0365330	. 0009891197
1012	1024144	1036433728	31-8119474	10.0398410	-0009881423
1013	1026169	1039509197	31.8276609	$10 \cdot 0431469$	-0009871668
1014	1028196	1042590744	$31 \cdot 8433666$	$10 \cdot 0464506$	-0009861933
1015	1030225	1045678375	31.8590646	$10 \cdot 0497521$	-0009852217
1016 ${ }^{-}$	1032256	1048772096	$31 \cdot 8747549$	10.0530514	-0009842520
1017	1034289	1051871913	$31 \cdot 8904374$	10.0563485	-0009832842
1018	1036324	1054977832	$31 \cdot 9061123$	10.0596435	-0009823183
1019	1038361	1058089859	31-9217794	10.0629364	-0009813543
1020	1040400	1061208000	31.9374388	$10 \cdot 0662271$	-0009803922
1021	1042441	1064332261	$31 \cdot 9530906$	10.0695156	-0009794319
1022	1044484	1067462648	31-9687347	10.0728020	-0009784736
1023	1046529	1070599167	31.9843712	10.0760863	-0009775171
1024	1048576	1073741824	$32 \cdot 0000000$	10.0793684	-0009765625
1025	1050625	1076890625	$32 \cdot 0156212$	10.0826484	-0009756098
1026	1052676	1080045576	$32 \cdot 0312348$	10.0859262	-0009746589
1027	1054729	1083206683	$32 \cdot 0468407$	10.0892019	-0009737098
1028	1056784	1086373952	$32 \cdot 0624391$	10.0924755	-0009727626
1029	1058841	1089547389	$32 \cdot 0780298$	10.0957469	-0009718173
1030	1060900	1092727000	$32 \cdot 0936131$	$10 \cdot 0990163$	-0009708738
1031	1062961	1095912791	$32 \cdot 1091887$	$10 \cdot 1022835$	-0009699321
1032	1065024	1099104768	$32 \cdot 1247568$	$10 \cdot 1055487$	-0009689922
1033	1067089	1102302937	$32 \cdot 1403173$	$10 \cdot 1088117$	-0009680542
1034	1069156	1105507304	$32 \cdot 1558704$	$10 \cdot 1120726$	-0009671180
1035	1071225	1108717875	32-1714159	$10 \cdot 1153314$	-0009661836
1036	1073296	1111934656	$32 \cdot 1869539$	$10 \cdot 1185882$	-0009652510
1037	1075369	1115157653	$32 \cdot 2024844$	10.1218428	-0009643202
1038	1077444	1118386872	$32 \cdot 2180074$	$10 \cdot 1250953$	-0009633911
1039	1079521	1121622319	$32 \cdot 2335229$	$10 \cdot 1283457$	-0009624639
1040	1081600	1124864000	$32 \cdot 2490310$	10-1315941	-0009615385
1041	1083681	1128111921	$32 \cdot 2645316$	10.1348403	-0009606148
1042	1085764	1131366088	$32-2800248$	10.1380845	-0009596929
1043	1087849	1134626507	$32 \cdot 2955105$	10•1413266	-0009587738
1044	1089936	1137893184	$32 \cdot 3109888$	$10 \cdot 1445667$	-0009578544
1045	1092025	1141166125	$32 \cdot 3264598$	$10 \cdot 1478047$	-0009569378
1046	1094116	1144445336	$32 \cdot 3419233$	$10 \cdot 1510406$	-0009560229
1047	1096209	1147730323	$32 \cdot 3573794$	10.1542744	-0009551098
1048	1098304	1151022592	$32 \cdot 3728281$	10•1575062	-0009541985
1049	1100401	1154320649	$32 \cdot 3882695$	10-1607359	$\cdot 0009532888$

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 117

r.	Squares.	bes.	Square Roots.	be Roots.	Reciproals.
1050	1102500	1157625000	$32 \cdot 4037035$	10-1639636	. 0009523810
1051	1104601	1160935651	$32 \cdot 4191301$	10-1671893	-0009514748
1052	1106704	1164252608	32.4345495	10.1704129	-0009505703
1053	1108809	1167575877	$32 \cdot 4499615$	10-1736344	-000949
1054	1110916	1170905464	32-4653662	10.1768539	-0009487666
1055	1113125	1174241375	$32 \cdot 4807635$	10-1800714	-0009478673
1056	1115136	1177583616	$32 \cdot 4961536$	10•1832868	-0009469697
1057	1117249	1180932193	$32 \cdot 5115364$	10•1865002	-00094
1058	1119364	1184287112	32-5269119	10.1897116	-0009451796
1059	1121481	1187648379	$32 \cdot 5422802$	10-1929209	-0009442871
1060	1123600	1191016000	32.5576412	10.1961283	-0009433962
1061	1125721	1194389981	$32 \cdot 5729949$	10-1993336	-0009425071
1062	1127844	1197770328	$32 \cdot 5883415$	10.2025369	. 0009416196
1063	1129969	1201157047	32.6035807	$10 \cdot 2057382$	-0009407338
1064	1132096	1204550144	$32 \cdot 6190129$	10.2089375	-0009398496
1065	1134225	1207949625	$32 \cdot 6343377$	$10 \cdot 2121347$	-0009389671
1066	1136356	1211355496	32•6496554	$10 \cdot 2153300$	-0009380863
1067	1138489	1214767763	32-6649659	10.2185233	. 0009372071
1068	1140624	1218186432	$32 \cdot 6802693$	10.2217146	. 00009363296
1069	1142761	1221611509	$32 \cdot 6955654$	$10 \cdot 2249039$	-0009354537
1070	1144900	1225043000	32.7108544	$10 \cdot 2280912$. 0009345794
1071	1147041	1228480911	$32 \cdot 7261363$	$10 \cdot 2312766$. 0009337068
1072	1149184	1231925248	32.7414111	$10 \cdot 2344599$	-0009328358
1073	1151329	1235376017	32.7566787	10.2376413	. 0009319664
1074	1153476	1238833224	32.7719392	$10 \cdot 2408207$	-0009310987
1075	1155625	1242296875	$32 \cdot 7871926$	10.2439981	. 0009302326
1076	1157776	1245766976	32.8024398	$10 \cdot 2471735$	-0009293680
1077	1159929	1249243533	32.8176782	10.2503470	. 00092885051
1078	1162084	1252726552	32.8329103	10-2535186	-0009276438
1079	1164241	1256216039	32.8481354	10-2566881	-009267841
1080	1166400	1259712000	32.8633535	$10 \cdot 2598557$.0009259259
1081	1168561	1263214441	$32 \cdot 8785644$	$10 \cdot 2630213$. 0009250694
1082	1170724	1266723368	$32 \cdot 8937684$	10.2661850	-0009242144
1083	1172889	1270238787	$32 \cdot 908965$	$10 \cdot 2693467$	0009233610
1084	1175056	1273760704	32.9241553	$10 \cdot 2725065$	-0009225092
1085	1177225	1277289125	$32 \cdot 9393382$	10.2756644	-0009216590
1086	1179396	1280824056	$32 \cdot 9545141$	10-2788203	-0009208103
1087	1181569	1284365503	$32 \cdot 9696830$	$10 \cdot 2819743$	0009199632
1088	1183744	1287913472	$32 \cdot 9848450$	10.2851264	-0009191176
1089	1185921	1291467969	33.0000000	$10 \cdot 2882765$.0009182736
1090	1188100	1295029000	33.0151480	$10 \cdot 2914247$	-0009174312
1091	1190281	1298596571	$33 \cdot 0302891$	10.2945709	-0009165903
1092	1192464	1302170688	$33 \cdot 0454233$	19.2977153	-0009157509
1093	1194649	1305751357	33.0605505	10-3008577	-0009149131
1094	1196836	1309338584	33.0756708	10-3039982	-0009140768
1095	1199025	1312932375	$33 \cdot 0907842$	10-3071368	-0009132420
1096	1201216	1316532736	$33 \cdot 1058907$	$10 \cdot 3102735$	-0009124008
1097	1203409	1320139673	$33 \cdot 1209903$	10-3134083	.0009115770
1098	1205604	1323753192	$33 \cdot 1360830$	$10 \cdot 3165411$	-0009107468
1099	1207801	1327373299	$33 \cdot 1511689$	$10 \cdot 3196721$	-0009099181
1100	1210000	1331000000	$33 \cdot 1662479$	10-3228012	-0009090909
1101	1212201	1334633301	$33 \cdot 1813200$	$10 \cdot 3259284$	-0009082652
1102	1214404	1338273208	$33 \cdot 1963853$	$10 \cdot 3290537$	-0009074410
1103	1216609	1341919727	$33 \cdot 2114438$	$10 \cdot 3321770$	-0009066183
1104	1218816	1345572864	$33 \cdot 2266955$	$10 \cdot 3352985$	-0009057971
1105	1221025	1349232625	$33 \cdot 2415403$	$10 \cdot 3384181$	-0009049774
1106	1223236	1352899016	33.2565783	10-3415358	-0009041591
1107	1225449	1356572043	33.2716095	$10 \cdot 3446517$	-0009033424
1108	1227664	1360251712	$33 \cdot 2866339$	$10 \cdot 3477657$	-0009025271
1109	1229881	1363938029	$33 \cdot 3016516$	$10 \cdot 3508778$	-0009017123
1110	1232100	1367631000	$33 \cdot 3166625$	$10 \cdot 3539880$	-0009009009
1111	1234321	1371330631	$33-3316666$	$10 \cdot 3570964$	-0009000900

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1112	1236544	1375036928	$33 \cdot 3466640$	10.3602029	-0008992806
1113	1238769	1378749897	$33 \cdot 3616546$	$10 \cdot 3633076$	-0008984726
1114	1240996	1382469544	$33 \cdot 3766385$	$10 \cdot 3664103$	-0008976661
1115	1243225	1386195875	$33 \cdot 3916157$	$10 \cdot 3695113$	-0008968610
1116	1245456	1389928896	$33 \cdot 4065862$	$10 \cdot 3726103$	-0008960753
1117	1247689	1393668613	$33 \cdot 4215499$	$10 \cdot 3757076$	-0008952551
1118	1249924	1397415032	$33 \cdot 4365070$	$10 \cdot 3788030$	-0008944544
1119	1252161	1401168159	$33 \cdot 4514573$	$10 \cdot 3818965$	-0008936550
1120	1254400	1404928000	$33 \cdot 4664011$	$10 \cdot 3849882$	-0008928571
1121	1256641	1408694561	$33 \cdot 4813381$	$10 \cdot 3880781$	-0008960607
1122	1258884	1412467848	$33 \cdot 4962684$	$10 \cdot 3911661$	-0008912656
1123	1261129	1416247867	$33 \cdot 5111921$	$10 \cdot 3942527$	-0008904720
1124	1263376	1420034624	$33 \cdot 5261092$	$10 \cdot 3973366$. 0008896797
1125	1265625	1423828125	$33 \cdot 5410196$	$10 \cdot 4004192$	-0008888889
1126	1267876	1427628376	$33 \cdot 5559234$	$10 \cdot 4034999$. 0008880995
1127	1270129	1431435383	$33 \cdot 5708206$	$10 \cdot 4065787$. 0008873114
1128	1272384	1435249152	$33 \cdot 5857112$	$10 \cdot 4096557$. 0008865248
1129	1274641	1439069689	$33 \cdot 6005952$	$10 \cdot 4127310$. 0008857396
1130	1276900	1442897000	$33 \cdot 6154726$	$10 \cdot 4158044$	-0008849558
1131	1279161	1446731091	$33 \cdot 6303434$	$10 \cdot 4188760$	-0008841733
1132	1281424	1450571968	$33 \cdot 6452077$	$10 \cdot 4219458$	-0008833922
1133	1283689	1454419637	$33 \cdot 6600653$	$10 \cdot 4250138$	-0008826125
1134	1285956	1458274104	$33 \cdot 6749165$	10•4280800	-0008818342
1135	1288225	1462135375	$33 \cdot 6897610$	10.4311443	-0008810573
1136	1290496	1466003456	$33 \cdot 7045991$	$10 \cdot 4342069$	-0008802817
1137	1292769	1469878353	$33 \cdot 7174306$	$10 \cdot 4372677$. 0008795075
1138	1295044	1473760072	$33 \cdot 7340556$	$10 \cdot 4403677$	-0008787346
1139	1297321	1477648619	$33 \cdot 7490741$	$10 \cdot 4433839$	-0008779631
1140	1299600	1481544000	$33 \cdot 7638860$	$10 \cdot 4464393$	-0008771930
1141	1301881	1485446221	$33 \cdot 7786915$	$10 \cdot 4494929$	-0008764242
1142	1304164	1489355288	$33 \cdot 7934905$	$10 \cdot 4525448$	-0008756567
1143	1306449	1493271207	$33 \cdot 8082830$	$10 \cdot 4555948$	-0008748906
1144	1308736	1497193984	$33 \cdot 8230691$	$10 \cdot 4586431$	-0008741259
1145	1311025	1501123625	$33 \cdot 8378486$	$10 \cdot 4616896$	-0008733624
1146	1313316	1505060136	$33 \cdot 8526218$	$10 \cdot 4647343$	-0008726003
1147	1315609	1509003523	$33 \cdot 8673884$	$10 \cdot 4677773$	-0008718396
1148	1317904	1512953792	33.8821487	$10 \cdot 4708158$	-0008710801
1149	1320201	1516910949	$33 \cdot 8969025$	$10 \cdot 4738579$	-0008703220
1150	1322500	1520875000	$33 \cdot 9116499$	$10 \cdot 4768955$	-0008695652
1151	1324801	1524845951	$33 \cdot 9263909$	$10 \cdot 4799314$	-0008688097
1152	1327104	1528823808	$33 \cdot 9411255$	$10 \cdot 4829656$	-0008680556
1153	1329409	1532808577	$33 \cdot 9558537$	$10 \cdot 4859980$	-0008673027
1154	1331716	1536800264	$33 \cdot 9705755$	$10 \cdot 4890286$	-0008665511
1155	1334025	1540798875	$33 \cdot 9852910$	$10 \cdot 4920575$	-0008658009
1156	1336336	1544804416	$34 \cdot 0000000$	$10 \cdot 4950847$	-0008650519
1157	1338649	1548816893	$34 \cdot 0147027$	$10 \cdot 4981101$	-0008643042
1158	1340964	1552836312	$34 \cdot 0293990$	10.5011337	-0008635579
1159	1343281	1556862679	$34 \cdot 0440890$	$10 \cdot 5041556$	-0008628128
1160	1345600	1560896000	$34 \cdot 0587727$	10.5071757	-0008620690
1161	1347921	1564936281	$34 \cdot 0734501$	10.5101942	-0008613244
1162	1350244	1568983528	$34 \cdot 0881211$	10.5132109	-0008605852
1163	1352569	1573037749	34-0127858	10.5162259	-0008598452
1164	1354896	1577098944	$34 \cdot 1174442$	10.5192391	-0008591065
1165	1357225	1581167125	$34 \cdot 1320963$	$10 \cdot 5222506$	-0008583691
1166	1359556	1585242296	$34 \cdot 1467422$	10.5252604	-0008576329
1167	1361889	1589324463	34-1613817	10.5282685	-0008568980
1168	1364224	1593413632	$34 \cdot 1760150$	$10 \cdot 5312749$	-0008561644
1169	1366561	1597509809	34-1906420	$10 \cdot 5342795$	-0008554320
1170	1368900	1601613000	$34 \cdot 2052627$	10-5372825	-0008547009
1171	1371241	1605723211	$34 \cdot 2198773$	$10 \cdot 5402837$. 0008539710
1172	1373584	1609840448	$34 \cdot 2344855$	10.5432832	-0008532423
1173	1375929	1613964717	$34 \cdot 2490875$	$10 \cdot 5462810$	-0008525149

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1174	1378276	1618096024	$34 \cdot 2636834$	10.5492771	-0008517888
1175	1380625	1622234375	34-2782730	$10 \cdot 5522715$	-0008510638
1176	1382976	1626379776	34-2928564	$10 \cdot 5552642$	-0008503401
1177	1385329	1630532233	34-3074336	$10 \cdot 5582552$	-0008496177
1178	1387684	1634691752	34-3220046	$10 \cdot 5612445$	-0008488964
1179	1390041	1638858339	34-3365694	10.5642322	-0008481764
1180	1392400	1643032000	34-3511281	$10 \cdot 5672181$	$\cdot 0008471576$
1181	1394761	1647212741	34-3656805	$10 \cdot 5702024$	-0008467401
1182	1397124	1651400568	34-3802268	$10 \cdot 5731849$	-0008460237
1183	1399489	1655595487	$34 \cdot 3947670$	$10 \cdot 5761658$	-0008453085
1184	1401856	1659797504	$34 \cdot 4093011$	$10 \cdot 5791449$	-0008445946
1185	1404225	1664006625	$34 \cdot 4238289$	$10 \cdot 5821225$	-0008438819
1186	1406596	1668222856	$34 \cdot 4383507$	$10 \cdot 5850983$	-0008431703
1187	1408969	1672446203	$34 \cdot 4528663$	10.5880725	-0008424600
1188	1411344	1676676672	$34 \cdot 4673759$	$10 \cdot 5910450$	-0008417508
1189	1413721	1680914629	$34 \cdot 4818793$	10.5940158	-0008410429
1190	1416100	1685159000	$34 \cdot 4963766$	$10 \cdot 5969850$	-0008403361
1191	1418481	1689410871	$34 \cdot 5108678$	$10 \cdot 5999525$	-0008396306
1192	1420864	1693669888	34-5253530	$10 \cdot 6029184$	-0008389262
1193	1423249	1697936057	34-5398321	$10 \cdot 6058826$	-0008382320
1194	1425636	1702209384	$34 \cdot 5543051$	$10 \cdot 6088451$	-0008375209
1195	1428025	1706489875	34.5687720	$10 \cdot 6118060$	-0008368201
1196	1430416	1710777536	34-5832329	$10 \cdot 6147652$	-0008361204
1197	1432809	1715072373	34-5976879	10.6177228	-0008354219
1198	1435204	1719374392	$34 \cdot 6121366$	$10 \cdot 6206788$	-0008347245
1199	1437601	1723683599	34-6265794	$10 \cdot 6236331$	-0008340284
1200	1440000	1728000000	34-6410162	$10 \cdot 6265857$	-0008333333
1201	1442401	1732323601	34.6554469	$10 \cdot 6295367$	-0008326395
1202	1444804	1736654408	$34 \cdot 6698716$	$10 \cdot 6324860$	-0008319468
1203	1447209	1740992427	$34 \cdot 6842904$	$10 \cdot 6354338$	-0008312552
1204	1449616	1745337664	$34 \cdot 6987031$	$10 \cdot 6383799$	-0008305648
1205	1452025	1749690125	34.7131099	10.6413244	-0008:98755
1206	1454436	1754049816	34-7275107	$10 \cdot 6442672$	-0008291874
1207	1456849	1758416743	34-7419055	$10 \cdot 6472085$	$\cdot 0008285004$
1208	1459264	1762790912	$34 \cdot 7562944$	$10 \cdot 6501480$	-0008278146
1209	1461681	1767172329	34.7706773	$10 \cdot 6530860$	-0008271299
1210	1464100	1771561000	$34 \cdot 7850543$	$10 \cdot 6560223$	-0008264463
1211	1466521	1775956931	$34 \cdot 7994253$	$10 \cdot 6589570$	-0008257638
1212	1468944	1780360128	34.8137904	$10 \cdot 6618902$	-0008250825
1213	1471369	1784770597	34.8281495	$10 \cdot 6648217$	-0008244023
1214	1473796	1789188344	34.8425028	10.6677516	-0008237232
1215	1476225	1793613375	$34 \cdot 8568501$	$10 \cdot 6706799$. 0008230453
1216	1478656	1798045696	34.8711915	$10 \cdot 6736066$	-0008223684
1217	1481089	1802485313	34-8855271	$10 \cdot 6765317$	-0008216927
1218	1483524	1806932232	34.8998567	$10 \cdot 6794552$	-0008210181
1219	1485961	1811386459	34.9141805	$10 \cdot 6823771$	-0008203445
1220	1488400	1815848000	34.9284984	$10 \cdot 6852973$	-0008196721
1221	1490841	1820316861	34.9428104	$10 \cdot 6882160$	-0008190008
1222	1493284	1824793048	34.9571166	$10 \cdot 6911331$	-0008183306
1223	1495729	1829276567	34.9714169	$10 \cdot 6940486$	-0008176615
1224	1498176	1833764247	34.9857114	$10 \cdot 6969625$	-0008169935
1225	1500625	1838265625	$35 \cdot 0000000$	$10 \cdot 6998748$	-0008163265
1226	1503276	1842771176	$35 \cdot 0142828$	$10 \cdot 7027855$	$\cdot 0008156607$
1227	1505529	1847284083	35.0285598	$10 \cdot 7056947$	-0008149959
1228	1507984	1851804352	35.0428309	$10 \cdot 7086023$	-0008143322
1229	1510441	1856331989	$35 \cdot 0570963$	$10 \cdot 7115083$	-0008136696
1230	1512900	1860867000	$35 \cdot 0713558$	$10 \cdot 7144127$	-0008130081
1231	1515361	1865409391	$35 \cdot 0856096$	10.7173155	-0008123477
1232	1517824	1869959168	35.0998575	10.7202168	-0008116883
1233	1520289	1874516337	$35 \cdot 1140997$	10.7231165	. 0008110300
1234	1522756	1879080904	$35 \cdot 1283361$	$10 \cdot 7260146$.0008103728
1235	1525225	1883652875	$35 \cdot 1425568$	$10 \cdot 7289112$	$\cdot 0008097166$

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1236	1527696	1888:32256	$35 \cdot 1567917$	10.7318062	$\cdot 0008090615$
1237	1530169	1892819053	35-1710108	10.7346997	$\cdot 0008084074$
1238	1532644	1897413272	$35 \cdot 1852242$	10.7375916	-0008077544
1239	1535121	1902014919	$35 \cdot 1994318$	10.7404819	$\cdot 0008071025$
1240	1537600	1906624000	$35 \cdot 2136337$	10.7433707	-0008064516
1241	1540081	1911240521	35-2278299	10.7462579	-0008058018
1242	1542564	1915864488	$35 \cdot 2420204$	$10 \cdot 7491436$	-0008051530
1243	1545049	1920495907	$35 \cdot 2562051$	10.7520277	-0008045052
1244	1547536	1925134784	$35 \cdot 2703842$	10.7549103	-0008038585
1245	1550025	1929781125	$35 \cdot 2845575$	$10 \cdot 7577913$	-0008032129
1246	1552521	1934434936	$35 \cdot 2987252$	10.7606708	-0008025682
1247 .	1555009	1939096223	$35 \cdot 3128872$	10.7635488	$\cdot 0008019246$
1248	1557504	1943764992	35-3270435	10.7664252	-0008012821
1249	1560001	1948441249	$35 \cdot 3411941$	10.7693001	-0008006405
1250	1562500	1953125000	35•3553391	10.7721735	-0008000000
1251	1565001	1957816251	35•3694784	10.7750453	. 0007993605
1252	1567504	1962515008	35-3836120	10.7779156	-0007987220
1253	1570009	1967221277	$35 \cdot 3977400$	10.7807843	-0007980846
1254	1572516	1971935064	$35 \cdot 4118624$	10.7836516	$\cdot 0007974482$
1255	1575025	1976656375	$35 \cdot 4259792$	10.7865173	.0007968127
1256	1577536	1981385216	$35 \cdot 4400903$	10.7893815	-0007961783
1257	1580049	1986121593	$35 \cdot 4541958$	10.7922441	-0007955449
1258	1582564	1990865512	$35 \cdot 4682957$	10.7951053	-0007949126
1259	1585081	1995616979	$35 \cdot 4823900$	10.7979649	-0007942812
1260	1587600	2000376000	$35 \cdot 4964787$	$10 \cdot 8008230$	-0007936508
1261	1590121	2005142581	$35 \cdot 5105618$	10.8036797	-0007930214
1262	1592644	2009916728	35-5246393	$10 \cdot 8065348$	-0007923930
1263	1595166	2014698447	$35 \cdot 5387113$	10.8093884	-0007917656
1264	1597696	2019487744	$35 \cdot 5527777$	10.8122404	-0007911392
1265	1600225	2024564625	35-5668385	10.8150909	-0007905138
1266	1602756	2029089096	$35 \cdot 5808937$	10.8179400	-0007898894
1267	1605289	2033901163	35-5949434	10.8207876	-0007892660
1268	1607824	2038720832	$35 \cdot 6089876$	10.8236336	-0007886435
1269	1610361	2043548109	$35 \cdot 6230262$	$10 \cdot 8264782$	-0007880221
1270	1612900	2048383000	$35 \cdot 6370593$	10.8293213	-0007874016
1271	1615441	2053225511	$35 \cdot 6510869$	10.8321629	-0007867821
1272	1617984	2058075648	35.6651090	10.8350030	-0007861635
1273	1620529	2062933417	35.6791255	10.8378416	-0007855460
1274	1623076	2067798824	$35 \cdot 6931366$	10.8406788	-0007849294
1275	1625625	2072671875	$35 \cdot 7071421$	10.8435144	-0007843137
1276	1628176	2077552576	$35 \cdot 7211422$	10.8463485	-0007836991
1277	1630729	2082440933	35.7351367	$10 \cdot 8491812$	-0007830854
1278	1633284	2087336952	35.7491258	$10 \cdot 8520125$	-0007824726
1279	1635841	2092240639	35.7631095	$10 \cdot 8548422$	-0007818608
1280	1638400	2097152000	35.7770876	10.8576704	$\cdot 0007812500$
1281	1640961	2102071841	35:7910603	$10 \cdot 8604972$	-0007806401
1282	1643524	2106997768	$35 \cdot 8050276$	$10 \cdot 8633225$	-0007800312
1283	1646089	2111932187	35.8189894	$10 \cdot 8661454$	-0007794232
1284	1648656	2116874304	35.8329457	10.8689687	$\cdot 0007788162$
1285	1651225	2121824125	$35 \cdot 8468966$	10.8717897	-0007782101
1286	1653796	2126781656	$35 \cdot 8608421$	10.8746091	-0007776050
1287	1656369	2131746903	35.8747822	10.8774271	-0007770008
1288	1658944	2136719872	35.8887169	$10 \cdot 8802436$	-0007763975
1289	1661521	2141700569	35.9026461	10.8830587	-0007757952
1290	1664100	2146689000	35.9165699	10.8858723	-0007751938
1291	1666681	2151685171	35.9304884	10.8886845	-0007745933
1292	1669264	2156689088	$35 \cdot 9444015$	10.8914952	-0007739938
1293	1671849	2161700757	$35 \cdot 9583092$	10.8943044	-0007733952
1294	1674436	2166720184	35.9722115	10.8971123	-0007727975
1295	1677025	2171747375	$35 \cdot 9861084$	10.8999186	-0007722008
1296	1679616	2176782336	36.0000000	10.9027235	-0007716049
1297	1682209	2181825073	36.01388	10.9055269	-0007710100

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 121

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1298	1684804	2186875592	36.0277671	10.9083290	-0007704160
1299	1687401	2191933899	$36 \cdot 0416426$	10.9111296	-0007698229
1300	1690000	2197000000	36.0555128	$10 \cdot 9139287$	-0007692308
1301	1692601	2202073901	$36 \cdot 0693776$	$10 \cdot 9167265$	$\cdot 0007686395$
1302	1695204	2207155608	$36 \cdot 0832371$	$10 \cdot 9195228$	-0007680492
1303	1697809	2212245127	$36 \cdot 0970913$	10.9223177	$\cdot 0007674579$
1304	1700416	2217342464	36•1109402	$10 \cdot 9251111$	$\cdot 0007668712$
1305	1703025	2222447625	$36 \cdot 1247837$	10.9279031	-0007662835
1306	1705636	2227560616	36-1386220	$10 \cdot 9306937$	$\cdot 0007656968$
1307	1708249	2232681443	3C•1524550	$10 \cdot 9334829$	$\cdot 0007651109$
1308	1710864	2237810112	$36 \cdot 1662826$	$10 \cdot 9362706$	-0007645260
1309	1718481	2242946629	36•1801050	$10 \cdot 9390569$	-0007639419
1310	1716100	2248091000	36•1939221	$10 \cdot 9418418$	-0007633588
1311	1718721	2253243231	$36 \cdot 2077340$	$10 \cdot 9446253$	$\cdot 0007627765$
1312	1721344	2258403328	$36 \cdot 2215406$	$10 \cdot 9475074$	$\cdot 0007621951$
1313	1723969	2263571297	$36 \cdot 2353419$	$10 \cdot 9501880$	-0007616446
1314	1726596	2268747144	36-2491379	10.9529673	-0007610350
1315	1729225	2273930875	$36 \cdot 2626287$	$10 \cdot 9557451$	-0007604563
1316	1731856	2279122496	$36 \cdot 2767143$	10.9585215	$\cdot 0007598784$
1317	1734489	2284322013	$36 \cdot 2904246$	$10 \cdot 9612965$	-0007593014
1318	1737124	2289529432	36.3042697	10.9640701	-0007587253
1319	1739761	2294744759	36.3180396	$10 \cdot 9668423$	-0007581501
1320	1742400	2299968000	36-3318042	$10 \cdot 9696131$	$\cdot 0007575758$
1321	1745041	2305199161	36.3455637	10:9723825	-0007570023
1322	1747684	2310438248	36.3593179	$10 \cdot 9751505$	-0007564297
1323	1750329	2315685267	$36 \cdot 3730670$	$10 \cdot 9779171$	-0007558579
1324	1752976	2320940224	$36 \cdot 3868108$	10.9806823	-0007552870
1325	1755625	2326203125	$36 \cdot 4005494$	10.9834462	$\cdot 0007547170$
1326	1758276	2331473976	$36 \cdot 4142829$	10.9862086	$\cdot 0007541478$
1327	1760929	2336752783	$36 \cdot 4280112$	10.9889696	-0007535795
1328	1763584	2342039552	$36 \cdot 4417343$	$10 \cdot 9917293$	-0007530120
1329	1766241	2347334289	$36 \cdot 4554523$	10.9944876	-0007524454
1330	1768900	2352637000	$36 \cdot 4691650$	$10 \cdot 9972445$	$\cdot 0007518797$
1331	1771561	2357947691	$36 \cdot 4828727$	$11 \cdot 0000000$	-0007513148
1332	1774224	2363266368	$36 \cdot 4965752$	$11 \cdot 0027541$	-0007507508
1333	1776889	2368593037	$36 \cdot 5102725$	$11 \cdot 0055069$	-0007501875
1334	1779556	2373927704	$36 \cdot 5239647$	11.0082583	-0007496252
1335	1782225	2379270375	$36 \cdot 5376518$	$11 \cdot 0110082$	$\cdot 0007490637$
1336	1784896	2384621056	$36 \cdot 5513388$	11.0137569	-0007485030
1337	1787569	2389979753	36.5650106	$11 \cdot 0165041$	-0007479432
1338	1790244	2395346472	36.5786823	11.0192500	-0007473842
1339	1792921	2400721219	36.5923489	11.0219945	-0007468260
1340	1795600	2406104000	36.6060104	11.0247377	$\cdot 0007462687$
1341	1798281	2411494821	$36 \cdot 6196668$	11.0274795	-0007457122
1342	1800964	2416893688	$36 \cdot 6333181$	11.0302199	-0007451565
1343	1803649	2422300607	$36 \cdot 6469144$	$11 \cdot 0329590$	-0007446016
1344	1806336	2427715584	$36 \cdot 6606056$	11.0356967	-0007440476
1345	1809025	2433138625	$36 \cdot 6742416$	$11 \cdot 0384330$	-0007434944
1346	1811716	2438569736	$36 \cdot 6878726$	$11 \cdot 0411680$	-0007429421
1347	1814409	2444008923	$36 \cdot 7014986$	11.0439017	-0007423905
1348	1817104	2449456192	$36 \cdot 7151195$	11.0466339	$\cdot 0007418398$
1349	1819801	2454911549	$36 \cdot 7287353$	11.0493649	-0007412898
1350	1822500	2460375000	36•7423461	11.0520945	$\cdot 0007407407$
1351	1825201	2465846551	$36 \cdot 7559519$	$11 \cdot 0548227$	-0007401924
1352	1827904	2471326208	36•7695526	11.0575497	-0007396450
1353	1830609	2476813977	36.7831483	$11 \cdot 0602752$	-0007390983
1354	1833316	2482309864	$36 \cdot 7967390$	$11 \cdot 0629994$	-0007385524
1355	1836025	2487813875	$36 \cdot 8103246$	$11 \cdot 0657222$	$\cdot .0007380074$
1356	1838736	2493326016	$36 \cdot 8239053$	11.0684437	-0007374631
1357	1841449	2498846293	36.8374809	11.0711639	$\cdot 0007369197$
1358	1844164	2504374712	$36 \cdot 8510515$	11.0738828	. 0007363770
1359	1846881	2509911279	$36 \cdot 8646172$	11.0766003	$\cdot 0007358352$

Number.	uares.	Cubes.	quare Root	Root	eciprocal
1360	1849600	2515456000	36.8781778	11.0793165	-0007352941
1361	1852321	2521008881	36.8917335	11.0820314	-0007347539
1362	1855044	2526569928	36.9052842	11.0847449	-0007342144
1363	1857769	2532139147	36.9188299	11.0874571	-0007336757
1364	1860496	2537716544	36.9323706	11.0901679	-0007331378
1365	1863225	2543302125	36.9459064	11.0928775	-0007326007
1366	1865956	2548895896	$36 \cdot 9594372$	$11 \cdot 0955857$	-0007320644
1367	1868689	2554497863	36.9729631	11.0982926	-0007315289
1368	1871424	2560108032	36.9864840	11-1009982	-0007309942
1369	1874161	2565726409	37.0000000	11-1037025	$\cdot 0007304602$
1370	1876900	2571353000	$37 \cdot 0135110$	11-1064054	-0007299270
1371	1879641	2576987811	37.0270172	11-1091070	-0007293946
1372	1882384	2582630848	37.0405184	11-1118073	-0007288630
1373	1885129	2588282117	37.0540146	11-1145064	-0007283321
1374	1887876	2593941624	37.0675060	11-1172041	-0007278020
1375	1890625	2599609375	$37 \cdot 0899924$	11-1199004	$\cdot 0007272727$
1376	1893376	2605285376	37.0944740	11-1225955	-0007267442
1377	1896129	2610969633	37-1079506	11-1252893	-0007262164
1378	1898884	2616662152	37-1214224	11-1279817	-0007256894
1379	1901641	2622362939	$37 \cdot 1348893$	11-1306729	-0007251632
1380	1904400	2628072000	37-1483512	11-1333628	-0007246377
1381	1907161	2633789341	37-1618084	11-1360514	-0007241130
1382	1909924	2639514968	$37 \cdot 1752606$	11-1387386	-0007235890
1383	1912689	2645248887	37-1887079	11-1414246	-0007230658
1384	1915456	2650991104	$37 \cdot 2021505$	11-1441093	-0007225434
1385	1918225	2656741625	37.2155881	11-1467926	-0007220217
1386	1920996	2662500456	$37 \cdot 2290209$	11-1494747	-0007215007
1387	1923769	2668267603	$37 \cdot 2424489$	$11 \cdot 1521555$	-0007209805
1388	1926544	2674043072	$37 \cdot 2558720$	11-1548350	-0007204611
1389	1929321	2679826869	37.2692903	11-1575133	-0007199424
1390	1932100	2685619000	$37 \cdot 2827037$	11-1601903	-0007194245
1391	1934881	2691419471	$37 \cdot 2961124$	11-1628659	-0007189073
1392	1937664	2697228288	$37 \cdot 3095162$	11.1655403	-0007183908
1393	1940449	2703045457	$37 \cdot 3229152$	11-1682134	.0007178751
1394	1943236	2708870984	$37 \cdot 3363094$	11-1708852	-0007173601
1395	1946025	2714704875	$37 \cdot 3496988$	11-1735558	-0007168459
1396	1948816	2720547136	$37 \cdot 3630834$	$11 \cdot 1762250$	-0007163324
1397	1951609	2726397773	$37 \cdot 3764632$	11-1788930	-0007158196
1398	1954404	2732256792	37.3898382	11-1815598	-0007153076
1399	1957201	2738124199	$37 \cdot 4032084$	11-1842252	-0007147963
1400	1960000	2744000000	$37 \cdot 4165738$	11-1868894	-0007142857
1401	1962801	2749884201	37-4299345	11.1895523	.0007137759
1402	1965604	2755776808	$37 \cdot 4432904$	11-1922139	-0007132668
1403	1968409	2761677827	$37 \cdot 4566416$	11-1948743	-0007127584
1404	1971216	2767587264	$37 \cdot 4699880$	11-1975334	-0007122507
1405	1974025	2773505123	$37 \cdot 4833296$	$11 \cdot 2001913$.0007117438
1406	1976836	2779431416	37-4966665	$11 \cdot 2028479$	-0007112376
1407	1979649	2785366143	37.5099987	11.2055032	-0007107321
1408	1982464	2791309312	37.5233261	$11 \cdot 2081573$	-0007102273
1409	1985281	2797260929	37.5366487	$11 \cdot 2108101$	-0007097232
1410	1988100	2803221000	$37 \cdot 5499667$	$11 \cdot 2134617$	-0007092199
1411	1990921	2809189531	$37 \cdot 5632799$	$11 \cdot 2161120$	-0007087172
1412	1993744	2815166528	37.5765885	$11 \cdot 2187611$	-0007082153
1413	1996569	2821151997	37.5898922	$11 \cdot 2214089$	-0007077141
1414	1999396	2827145944	$37 \cdot 6031913$	11.2240054	-0007072136
1415	2002225	2833148375	37.6164857	$11 \cdot 2267007$	-0007067138
1416	2005056	2839159296	$37 \cdot 6297754$	11.2293448	-0007062147
1417	2007889	2845178713	$37 \cdot 6430604$	11.2319876	-0007057163
1418	2010724	2851206632	$37 \cdot 6563407$	11.2346292	. 0007052186
1419	2013561	2857243059	$37 \cdot 6696164$	11.2372696	-0007047216
1420	2016400	2863288000	$37 \cdot 6828874$	11.2399087	. 0007042254
1421	2019241	2869341461	$37 \cdot 6961536$	$11 \cdot 2425465$	$\cdot 0007037298$

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1422	2022084	2875403448	37-7094153	$11 \cdot 2451831$	-0007032349
1423	2024929	2881473967	37-7226722	$11 \cdot 2478185$	-0007027407
1424	2027776	2887553024	37-7359245	$11 \cdot 2504527$	-0007022472
1425	2030625	2893640625	37-7491722	$11 \cdot 2530856$	-0007017544
1426	2033476	2899736776	$37 \cdot 7624152$	$11 \cdot 2557173$	-0007012623
1427	2036329	2905841483	37-7756535	$11 \cdot 2583478$	-0007007708
1428	2039184	2911954752	37.7888873	$11 \cdot 2609770$	-0007002801
1429	2042041	2918076589	$37 \cdot 8021163$	$11 \cdot 2636050$	-0006997901
1430	2044900	2924207000	37.8153408	$11 \cdot 2662318$	-0006993007
1431	2047761	2930345991	37-8285606	$11 \cdot 2688573$	-0006988120
1432	2050624	2936493568	$37 \cdot 8417759$	$11 \cdot 2714816$	-0006983240
1433	2053489	2942649737	37-8549864	$11 \cdot 2741047$	-0006978367
1434	2056356	2948814504	$37 \cdot 8681924$	$11 \cdot 2767266$	-0006973501
1435	2059225	2954987875	37-8813938	$11 \cdot 2793472$	-0006968641
1436	2062096	2961169856	37.8945906	$11 \cdot 2819666$	-0006963788
1437	2064969	2967360453	37-9077828	$11 \cdot 2845849$	-0006958942
1438	2067844	2973559672	37-9209704	$11 \cdot 2872019$	-0006954103
1439	2070721	2979767519	37.9341538	$11 \cdot 2898177$	-0006949270
1440	2073600	2985984000	37.9473319	$11 \cdot 2924323$	-0006944444
1441	2076481	2992209121	37-9605058	$11 \cdot 2950457$	-0006939625
1442	2079364	3098442888	37-9736751	$11 \cdot 2976579$	-0006934813
1443	2082249	3004685307	37-9868398	11•3002688	-0006930007
1444	2085136	3010936384	$38 \cdot 0000000$	$11 \cdot 3028786$	-0006925208
1445	2088025	3017196125	$38 \cdot 0131556$	$11 \cdot 3054871$	-0006920415
1446	2080916	3023464536	$38 \cdot 0263067$	$11 \cdot 3080945$	-0006915629
1447	2093809	3029741623	$38 \cdot 0394532$	$11 \cdot 3107006$	-0006910850
1448	2096704	3036027392	38.0525952	$11 \cdot 3183056$	-0006906078
1449	2099601	3042321849	$38 \cdot 0657326$	$11 \cdot 3159094$	-0006901312
1450	2102500	3048625000	$38 \cdot 0788655$	$11 \cdot 3185119$	-0006896552
1451	2105401	3054936851	38-0919939	$11 \cdot 3211132$	-0006891799
1452	2108304	3061257408	$38 \cdot 1051178$	$11 \cdot 3237134$	-0006887052
1453	2111209	3067586777	38-1182371	$11 \cdot 3263124$	-0006882312
1454	2114116	3073924664	$38 \cdot 1313519$	$11 \cdot 3289102$	-0006877579
1455	2117025	3080271375	$38 \cdot 1444622$	$11 \cdot 3315067$	-0006872852
1456	2119936	3086626816	$38 \cdot 1575681$	$11 \cdot 3341022$	$\cdot 0006868132$
1457	2122849	3092990993	$38 \cdot 1706693$	$11 \cdot 3366964$	-0006863412
1458	2125764	3099363912	38-1837662	$11 \cdot 3392894$	-0006858711
1459	2128681	3105745579	38-1968585	$11 \cdot 3418813$	-0006854010
1460	2131600	3112136000	38-2099463	$11 \cdot 3444719$	-0006849315
1461	2134521	3118535181	$38 \cdot 2230297$	$11 \cdot 3470614$	-0006844627
1462	2137444	3124943128	$38 \cdot 2361085$	$11 \cdot 3496497$	-0006839945
1463	2140369	3131359847	$38 \cdot 2491829$	$11 \cdot 3522368$	-0006835270
1464	2143296	3137785344	$38 \cdot 2622529$	$11 \cdot 3548227$	-0006830601
1465	2146225	3144219625	38-2753184	$11 \cdot 3574075$	-0006825939
1466	2149156	3150662696	$38 \cdot 2883794$	$11 \cdot 3599911$	-0006821282
1467	2152089	3157114563	$38 \cdot 3014360$	$11 \cdot 3625735$	-0006816633
1468	2155024	3163575232	$38 \cdot 3144881$	$11 \cdot 3651547$.0006811989
1469	2157961	3170044709	$38 \cdot 3275358$	$11 \cdot 3677347$. 00006807352
1470	2160900	3176523000	$38 \cdot 3405790$	$11 \cdot 3703136$	-0006802721
1471	2163841	3183010111	$38 \cdot 3536178$	$11 \cdot 3728914$	-0006798097
1472	2166784	3189506048	$38 \cdot 3666522$	$11 \cdot 3754679$	-0006793478
1473	2169729	3196010817	38-3796821	$11 \cdot 3780433$	-0006788866
1474	2172676	3202524424	$38 \cdot 3927076$	$11 \cdot 3806175$	-0006784261
1475	2175625	3209046875	$38 \cdot 4057287$	$11 \cdot 3831906$	-0006779661
1476	2178576	3215578176	$38 \cdot 4187454$	$11 \cdot 3857625$	-0006775068
1477	2181529	3222118333	$38 \cdot 4317577$	$11 \cdot 3883332$	$\cdot \cdot 0006770481$
1478	2184484	3228667352	$38 \cdot 4447656$	$11 \cdot 3909028$	-0006765900
1479	2187441	3235225239	$38 \cdot 4577691$	$11 \cdot 3984712$	$\cdot 0006761325$
1480	2190400	3241792000	$38 \cdot 4707681$	$11 \cdot 3960384$	-0006756757
1481	2193361	3248367641	$38 \cdot 4837627$	$11 \cdot 3986045$	-0006752194
1482	2196824	3254952168	$38 \cdot 4967530$	$11 \cdot 4011695$	-0006747638
1483	2199289	3261545587	$38 \cdot 5097390$	$11 \cdot 4037332$	$\cdot 0006743088$

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciproals.
1484	2202256	3268147904	38.5227206	$11 \cdot 4062959$	-0006738544
1485	2205225	3274759125	38.5356977	11-4088574	-0006734007
1486	2208196	3281379256	38.5486705	$11 \cdot 4114177$	-0006729474
1487	2211169	3288008303	38.5616389	11-4139769	-0006724950
1488	2214144	3294646272	38.5746030	11-4165349	-0006720430
1489	2217121	3301293169	38.5875627	11-4190918	$\cdot 0006715917$
1490	2220100	3307949000	$38 \cdot 6005181$	11-4206476	$\cdot 0006711409$
1491	2223081	3314613771	$38 \cdot 6134691$	11.4242022	-0006706908
1492	2226004	3321287488	$38 \cdot 6264158$	11-4267556	$\cdot 0006702413$
1493	2229049	3227970157	38.6393582	11.4293079	-0006697924
1494	2232036	3334661784	$38 \cdot 6522962$	$11 \cdot 4318591$	$\cdot 0006693440$
1495	2235025	3341362375	38.6652299	11-4344092	-0006688963
1496	2238016	3348071936	$38 \cdot 6781593$	11-4369581	-0006684492
1497	2241009	3354790473	$38 \cdot 6910843$	11-4395059	-0006680027
1498	2244004	3361517992	$38 \cdot 7040050$	$11 \cdot 4420525$	$\cdot 0006675567$
1499	2247001	3368254499	38.7169214	11.4445980	-0006671114
1500	2250000	3375000000	38.7298335	11-4471424	$\cdot 0006666667$
1501	2253001	3381754501	38.7427412	$11 \cdot 4496857$	-0006662225
1502	2256004	3388518008	38.7556447	$11 \cdot 4522278$	$\cdot 0006657790$
1503	2259009	3395290527	38.7685439	11-4547688	-0006553360
1504	2262016	3402072064	38.7814389	11-4573087	$\cdot 0006648936$
1505	2265025	3408862625	38.7943294	$11 \cdot 4598476$	-0006644518
1506	2268036	3415662216	$38 \cdot 8072158$	$11 \cdot 4623850$.0006640106
1507	2271049	3422470843	38.8200978	$11 \cdot 4649215$.0006635700
1508	2274064	3429288512	38.8329757	11-4674568	. 0006631300
1509	2277081	3436115229	38.8458491	$11 \cdot 4699911$	-0006626905
1510	2280100	3442951000	38.8587184	$11 \cdot 4725242$	$\cdot 0006622517$
1511	2283121	3449795831	38.8715834	$11 \cdot 4750562$	-0006618134
1512	2286144	3456649728	38.8844442	$11 \cdot 4775871$	$\cdot 0006613757$
1513	2289169	3463512697	38.8973006	$11 \cdot 4801169$	-0006609385
1514	2292196	3470384744	38.9101529	$11 \cdot 4826455$	-0006605020
1515	2295225	3477265875	38.9230009	11-4851731	.0006600660
1516	2298256	3484156096	$38 \cdot 9358447$	$11 \cdot 4876995$	-0006596306
1517	2301289	3491055413	38.9486841	$11 \cdot 4902249$.0006591958
1518	2304324	3597963832	$38 \cdot 9615194$	11-4927491	-0006587615
1519	2307361	3504881359	38.9743505	$11 \cdot 4952722$	-0006583278
1520	2310400	3511808000	38.9871774	11-4977942	-0006578947
1521	2313441	3518743761	$39 \cdot 0000000$	11.5003151	$\cdot 0006574622$
1522	2316484	3525688648	39.0128184	11.5028348	-0006570302
1523	2319529	3532642667	39.0256326	11.5053535	. 0006565988
1524	2322576	3539605824	39.0384426	11.5078711	-0006561680
1525	2325625	3546578125	39.0512483	11.5103876	.0006557377
1526	2328676	3553559576	39.0640499	11.5129030	.0006553080
1527	2331729	3567549552	39.0768473	11.5154173	-0006548788
1528	2334784	3560558183	39.0896406	11.5179305	-0006544503
1529	2337841	3574558889	$39 \cdot 1024296$	11.5204425	.0006510222
1530	2340900	3581577000	$39 \cdot 1152144$	11.5229535	.0006535948
1531	2343961	3588604291	$39 \cdot 1279951$	11-5254634	$\cdot 0006531679$
1532	2347024	3595640768	39.1407716	11-5279722	-0006527415
1533	2350089	3602686437	$39 \cdot 1535439$	11.5304799	-0006523157
1534	2353156	3609741304	$39 \cdot 1663120$	11-5329865	. 0006518905
1535	2356225	3616805375	$39 \cdot 1790760$	11.5354920	$\cdot 0000514658$
1536	2359256	3623878656	39-1918359	11-5379965	.0006510417
1537	2362369	3630961153	39.2045915	11.5404998	-0006506181
1538	2365444	3638052872	$39 \cdot 2173431$	11-5430021	$\cdot 0006501951$
1539	2368521	3645153819	39.2300905	11.5455033	-0006497726
1540	2371600	3652264000	$39 \cdot 2428337$	11.5480034	-0006493506
1541	2374681	3659383421	39-2555728	11.5505025	-0006489293
1542	2377764	3666512088	$39 \cdot 2683078$	11-5530004	-0006485084
1543	2380849	3673650007	$39 \cdot 2810387$	11.5554972	-0006480881
1544	2383936	3680797184	39.2937654	11.5579931	-0006476684
1545	2387025	3687953625	$39 \cdot 3064880$	11.5604878	-0006472492

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1546	2390116	3695119336	$39 \cdot 3192065$	$11 \cdot 5629815$	-0006468305
1547	2393209	3702294323	$39 \cdot 3319208$	$11 \cdot 5654740$	-0006464124
1548	2396304	3709478592	$39 \cdot 3446311$	$11 \cdot 5679655$	-0006459948
1549	2399401	3716672149	$39 \cdot 3573373$	11.5704559	-0006455778
1550	2402500	3723875000	$39 \cdot 3700394$	$11 \cdot 5729453$	-0006451613
1551	2405601	3731087151	39-3827373	11.5754336	-0006447453
1552	2408704	3738308608	39.3954312	11.5779208	-0006443299
1553	2411809	3745539377	$39 \cdot 4081210$	11-5804069	-0006439150
$155 \pm$	2414916	3752779464	$39 \cdot 4208067$	11-5828919	-0006435006
1555	2418025	3760028875	$39 \cdot 4334883$	11.5853759	-0006430868
1556	2421136	3767287616	$39 \cdot 4461658$	11.5878588	. 0006426735
1557	2424249	3774555693	$39 \cdot 4588393$	11.5903407	-0006422608
1558	2427364	3781833112	39•4715087	11-5928215	. 00006418485
1559	2430481	3789119879	$39 \cdot 4841740$	11.5953013	. 0006414368
1560	2433600	3796416000	$39 \cdot 4968353$	11.5977799	.0006410256
1561	2436721	3803721481	39-5094925	$11 \cdot 6002576$.0006406150
1562	2439844	3811036328	$39 \cdot 5221457$	$11 \cdot 6027342$	-0006402049
1563	2442969	3818360547	39.5347948	$11 \cdot 6052097$	-0006397953
1564	2446096	3825641444	$39 \cdot 5474399$	$11 \cdot 6076841$	-0006393862
1565	2449225	3833037125	39-5600809	$11 \cdot 6101575$	-0006389776
1566	2452356	3840389496	39.5727179	11-6126299	-0006385696
1567	2455489	3847751263	$39 \cdot 5853508$	$11 \cdot 6151012$.0006381621
1568	2458624	3855123432	39.5979797	$11 \cdot 6175715$. 0006377551
1569	2461761	3862503009	39.6106046	$11 \cdot 6200407$	-0006373486
1570	2464900	3869883000	$39 \cdot 6232255$	$11 \cdot 6225088$	-0006369427
1571	2468041	3877292411	$39 \cdot 6358424$	$11 \cdot 6249759$	-0006365372
1572	2471184	3884701248	$39 \cdot 6484552$	$11 \cdot 6274420$	-0006361323
1573	2474329	3892119157	$39 \cdot 6610640$	$11 \cdot 6299070$	-0006357279
1574	2477476	3899547224	$39 \cdot 6736688$	$11 \cdot 6323710$	-0006353240
1575	2480625	3906984375	$39 \cdot 6862696$	$11 \cdot 6348339$	-0006349206
1576	2483776	3914430976	$39 \cdot 6988665$	$11 \cdot 6372957$	-0006345178
1577	2486929	3921887033	$39 \cdot 7114593$	$11 \cdot 6397566$	-0006341154
1578	2490084	3929352552	39•7240481	$11 \cdot 6422164$. 0006337136
1579	2493241	3936827539	$39 \cdot 7366329$	$11 \cdot 6446751$	-0006333122
1580	2496400	3944312000	$39 \cdot 7492138$	$11 \cdot 6471329$	-0006329114
1581	2499561	3951805941	$39 \cdot 7617907$	$11 \cdot 6495895$	-0006325111
1582	2502724	3959309368	$39 \cdot 7743636$	$11 \cdot 6520452$	-0006321113
1583	2505889	3966822287	$39 \cdot 7869325$	$11 \cdot 6544998$	-0006317119
1584	2509056	3974344704	$39 \cdot 7994976$	$11 \cdot 6569534$	$\cdot 0006313131$
1585	2512225	3981876625	$39 \cdot 8120585$	11-6594059	-0006309148
1586	2515396	3989418056	$39 \cdot 8246155$	$11 \cdot 6618574$	-0006305170
1587	2518569	3996969003	$39 \cdot 8371686$	11-6643079	-0006301197
1588	2521744	4004529472	39.8497177	$11 \cdot 6667574$	-0006297229
1589	2524921	4012099469	39.8622628	$11 \cdot 6692058$	-0006293266
1590	2528100	4014679000	39.8748040	$11 \cdot 6716532$	-0006289308
1591	2531281	4027268071	$39 \cdot 8873413$	$11 \cdot 6740996$	-0006285355
1592	2534464	4034866688	$39 \cdot 8998747$	$11 \cdot 6765449$	-0006281407
1593	2537649	4042474857	$39 \cdot 9124041$	11.6789892	. 0006277464
1594	2540836	4050092584	$39 \cdot 9249295$	$11 \cdot 6814325$	-0006273526
1595	2544025	4057719875	$39 \cdot 9374511$	$11 \cdot 6838748$	-0006269592
1596	2547216	4065356736	$39 \cdot 9499687$	$11 \cdot 6863161$	-0006265664
1597	2550409	4073003178	$39 \cdot 9624824$	11-6887563	-0006261741
1598	2553604	4080659192	$39 \cdot 9749922$	11.6911955	-0006257822
1599	2556801	4088324799	$39 \cdot 9874980$	$11 \cdot 6936337$	-0006253909
1600	2560000	4096000000	$40 \cdot 0000000$	11•6960709	$\cdot 0006250000$

To find the square or cube root of a number consisting of integers and decimals.
Rule.-Multiply the difference between the root of the integer part of the given number, and the root of the next higher integer number, by the decimal part of the given number, and add the L 2
product to the root of the given integer number; the sum is the root required.

Required the square root of 20.321 .
Square root of $21=4 \cdot 5825$
Do. $\quad 20=4.4721$

$$
\cdot 1104 \times \cdot 321+4 \cdot 4721=4 \cdot 5075384, \text { the }
$$

square root required.
Required the cube root of 16.42 .
Cube root of $17=2.5712$
Do. $\quad 16=\underline{2.5198}$
$\cdot 0514 \times \cdot 42+2 \cdot 5198=2 \cdot 541388$, the cube
root required.
To find the squares of numbers in arithmetical progression; or, to extend the foregoing table of squares.
Rule.-Find, in the usual way, the squares of the first two numbers, and subtract the less from the greater. Set down the square of the larger number, in a separate column, and add to it the difference already found, with the addition of 2 , as a constant quantity; the product will be the square of the next following number.

The square of $1500 \ldots \ldots \ldots \ldots \ldots \ldots=2250000 \ldots \ldots \ldots . .2250000$

To find the square of a greater number than is contained in the table.
Rule 1.-If the number required to be squared exceed by $2,3,4$, or any other number of times, any number contained in the table, let the square affixed to the number in the table be multiplied by the square of 2,3 , or $4, \& c$., and the product will be the answer sought.

Required the square of 2595.
2595 is three times greater than 865 ; and the square of 865 , by the table, is 748225 .

Then, $748225 \times 3^{2}=6734025$.
Rule 2.-If the number required to be squared be an odd number, and do not exceed twice the amount of any number contained in the table, find the two numbers nearest to each other, which, added together, make that sum; then the sum of the squares of these two numbers, by the table, multiplied by 2 , will exceed the square required by 1.

Required the square of 1865.
The two nearest numbers $(932+933)=1865$.
Then, by table $\left(932^{2}=868624\right)+\left(933^{2}=870489\right)=1739113 \times$ $2=3478226-1=3478225$.

To find the cube of a greater number than is contained in the table.
Rule.-Proceed, as in squares, to find how many times the number required to be cubed exceeds the number contained in the table. Multiply the cube of that number by the cube of as many times as the number sought exceeds the number in the table, and the product will be the answer required.

Required the cube of 3984.
3984 is 4 times greater than 996 ; and the cube of 996 , by the table, is 988047936 .

Then, $988047936 \times 4^{3}=63235067904$.
To find the square or cube root of a higher number than is in the table.
Rule.-Refer to the table, and seek in the column of squares or cubes the number nearest to that number whose root is sought, and the number from which that square or cube is derived will be the answer required, when decimals are not of importance.

Required the square root of 542869.
In the Table of Squares, the nearest number is 543169 ; and the number from which that square has been obtained is 737.

Therefore, $\sqrt{ } 542869=737$ nearly.
To find more nearly the cube root of a higher number than is in the table.
Rule.-Ascertain, by the table, the nearest cube number to the number given, and call it the assumed cube.

Multiply the assumed cube, and the given number, respectively, by 2 ; to the product of the assumed cube add the given number, and to the product of the given number add the assumed cube.

Then, by proportion, as the sum of the assumed cube is to the sum of the given number, so is the root of the assumed cube to the root of the given number.

Required the cube root of 412568555 .
By the table, the nearest number is 411830784 , and its cube root is 744 .

Therefore, $411830784 \times 2+412568555=1236230123$. And, $412568555 \times 2+411830784=1236967894$. Hence, as 1236230123 : $1236967894:$: $744: 744 \cdot 369$, very nearly.
To find the square or cube root of a number containing decimals.
Rule.-Subtract the square root or cube root of the integer of the given number from the root of the next higher number, and multiply the difference by the decimal part. The product, added to the root of the integer of the given number will be the answer required.

Required the square root of $321 \cdot 62$.
$\sqrt{ } 321=17 \cdot 9164729$, and $\sqrt{ } 322=17 \cdot 9443584$; the difference $(\cdot 0278855) \times \cdot 62+17 \cdot 9164729=17 \cdot 9337619$.

To obtain the square root or cube root of a number containing decimals, by inspection.
Rule.-The square or cube root of a number containing decimals may be found at once by inspection of the tables, by taking the figures cut off in the number, by the decimal point, in pairs if for the square root, and in triads if for the cube root. The following example will show the results obtained, by simple inspection of the tables, from the figures 234, and from the numbers formed by the addition of the decimal point or of ciphers.
Number.
.00234
.0234
.2340
2.34
23.40
234
2340
23400
Square Root.
$.0483735465^{*}$
.152970585
.483735465
$1 \cdot 52970585$
$4 \cdot 83735465$
$15 \cdot 2970585$
$48 \cdot 3735465$
152.970585

Cube Root. $\cdot 132761439 \dagger$ - $284 \pm$ -61622401
$1 \cdot 32761439$
$2 \cdot 860$
6.1622401
$13 \cdot 2761439$
$28 \cdot 60$
To find the cubes of numbers in arithmetical progression, or to extend the preceding table of cubes.
Rule.-Find the cubes of the first two numbers, and subtract the less from the greater. Then, multiply the least of the two numbers cubed by 6 , add the product, with the addition of 6 as a constant quantity, to the difference; and thus, adding 6 each time to the sum last added, form a first series of differences.

To form a second series of differences, bring down, in a separate column, the cube of the highest of the above numbers, and add the difference to it. The amount will be the cube of the next general number.

Required the cubes of 1501,1502 , and 1503.

First series of differences.	Second series of differences.
By Tab. $1500=3375000000$	Then, 3375000000 Cube of 1500
$1499=3368254499$	Diff. for $1500=6754501$
$1499 \times 6+6=\begin{array}{r}6745501 \\ \\ 9000\end{array}$ difference.	$\text { Diff. for } 1501=\begin{array}{\|} 3381754501 \\ 6763507 \end{array} \text { Cube of } 1501$
6754501 diff. of 1500	3388518008 Cube of 1502
$9000+6=\quad 9006$	Diff. for $1502=6772519$
6763507 diff. of 1501	3395290527 Cube of 1503
$9006+6=\quad 9012$	\&c., \&c.
6772519 diff. of 1502	
\&c., \&c.	

[^0]TABLE OF THE FOURTH AND FIFTH POWERS OF NUMBERS. 129

Table of the Fourth and Fifth Powers of Numbers.

Number.	4th Power.	5th Power.	Number.	4th Power.	5th Power.
1	1	1	76	33362176	2535525376
2	16	32	77	35153041	2706784157
3	81	243	78	37015056	2887174368
4	256	1024	79	38950081	3077056399
5	625	3125	80	40960000	3276800000
6	1296	7776	81	43046721	3486784401
7	2401	16807	82	45212176	3707398432
8	4096	32768	83	47458321	3939040643
9	6561	59049	84	49787136	4182119424
10	10000	100000	85	52200625	4437053125
11	$146+1$	161051	86	54708016	4704270176
12	20736	248832	87	57289761	4984209207
13	28561	371293	88	59969536	5277319168
14	38416	537824	89	62742241	5584059449
15	50625	759375	90	65610000	5904900000
16	65536	1048576	91	68574961	6240321451
17	83521	1419857	92	71639296	6590815232
18	104976	1889568	93	74805201	6596883693
19	130321	2476099	94	78074896	7339040224
20	160000	3200000	95	81450625	7737809375
21	194481	4084101	96	84934656	8153726976
22	234256	5153632	97	88529281	8587340257
23	279841	6436343	98	92236816	9039207968
24	331776	7962624	99	96059601	9509900499
25	390625	9765625	100	100000000	10000000000
26	456976	11881376	101	104060401	10510100501
27	531411	14348907	102	108243216	11040808032
28	614656	17210368	103	112550881	11592740743
29	707281	20511149	104	116985856	12166529024
30	810000	24300000	105	121550625	12762815625
31	923521	28629151	106	126247696	13382255776
32	1048576	33554432	107	131079601	14025517307
33	1185921	39135393	108	136048896	14693280768
34	1336336	45435424	109	141158161	15386239549
35	1500625	52521875	110	146410000	16105100000
36	1679616	60466176	111	151807041	16850581551
37	1874161	69343957	112	157351936	17623416832
38	2085136	79235168	113	163047361	18424351793
39	2313441	90224199	114	168896016	19254145824
40	2560000	102400000	115	174900625	20113571875
41	2825761	115856201	116	181063936	21003416576
42	3111696	130691232	117	187388721	21924480357
43	3418801	147008443	118	193877776	22877577568
44	3748096	164916224	119	200533921	23863536599
45	4100625	184528125	120	207360000	24883200000
46	4477456	205962976	121	214358881	25937424601
47	4879681	229345007	122	221533456	27027081632
48	5308416	254803968	123	228886641	28153056843
49	5764801	282475249	124	236421376	29316250624
50	6250000	312500000	125	244140625	30517578125
51	6765201	345025251	126	252047376	31757969376
52	7311616	380204032	127	260144641	33038369407
53	7890481	418195493	128	268435456	34359738368
54	8503056	459165024	129	276922881	35723051649
55	9150625	503284375	130	285610000	37129300000
56	9834496	550731776	131	294499921	38579489651
57	10556001	601692057	132	303595776	40074642432
58	11316496	656356768	133	312900721	41615795893
59	12117361	714924299	134	322417936	43204003424
60	12960000	777600000	135	332150625	44840334375
61	13845841	844596301	136	342102016	46525874176
62	14776336	916132832	137	352275361	48261724457
63	15752961	992436543	138	362673936	50049003168
64	16777216	1073741824	139	373301041	51888844699
65	17850625	1160290625	140	384160000	53782400000
66	18974736	1252332576	141	395254161	55730836701
67	20151121	1350125107	142	406586896	57735339232
68	21381376	1453933568	143	418161601	59797108943
69	22667121	1564031349	144	429981696	61917364224
70	24010000	1680700000	145	442050625	64097340625
71	25411681	1804229351	146	454371856	66338290976
72	26873856	1934917632	147	466948881	68641485507
73	28398241	2073071593	148	479785216	71008211968
74	29986576	2219006624	$149{ }^{\circ}$	492884401	73439775749
75	31640625	2373046875	150	506250000	75937500000

Table of Hyperbolic Logarithms.

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
1.01	-0009503	1.58	-4574248	$2 \cdot 15$	$\cdot 7654678$	2.72	$1 \cdot 0006318$
1.02	. 0198026	$1 \cdot 59$	$\cdot 4637340$	$2 \cdot 16$	$\cdot 7701082$	2.73	$1 \cdot 0043015$
1.03	-0295588	$1 \cdot 60$	$\cdot 4700036$	$2 \cdot 17$	$\cdot 7747271$	2.74	1.0079579
1.04	-0392207	$1 \cdot 61$	$\cdot 4762341$	$2 \cdot 18$	-7993248	2.75	1.0116008
1.05	-0487902	$1 \cdot 62$	-4824261	$2 \cdot 19$. 7839015	2.76	1.0152306
1.06	-0582689	$1 \cdot 63$	-4885800	$2 \cdot 20$. 7884573	2.77	1.0188473
1.07	-0676586	$1 \cdot 64$	-4946962	2.21	-7929925	2.78	$1 \cdot 0224509$
1.08	-0769610	$1 \cdot 65$	- 5007752	$2 \cdot 22$	-7975071	2.79	$1 \cdot 0260415$
1.09	-0861777	$1 \cdot 66$	- 5068175	$2 \cdot 23$	-8020015	$2 \cdot 80$	$1 \cdot 0296194$
$1 \cdot 10$	-0953102	$1 \cdot 67$	- 5128236	$2 \cdot 24$	-8064758	2.81	$1 \cdot 0331844$
$1 \cdot 11$	-1043600	$1 \cdot 68$	-5187937	$2 \cdot 25$	-8109302	2.82	1.0367368
$1 \cdot 12$	-1133287	$1 \cdot 69$	-5247285	$2 \cdot 26$	-8153648	2.83	1.0402766
$1 \cdot 13$	-1222176	$1 \cdot 70$	-5306282	$2 \cdot 27$	-8197798	$2 \cdot 84$	$1 \cdot 0438040$
$1 \cdot 14$	-1310283	1.71	-5364933	$2 \cdot 28$	-8241754	2.85	1.0473189
$1 \cdot 15$	-1397619	$1 \cdot 72$	-5423242	$2 \cdot 29$	-8285518	2.86	1.0508216
1.16	-1484200	1.73	-5481214	$2 \cdot 30$	-8329091	2.87	1.0543120
1-17	-1570037	$1 \cdot 74$	$\cdot 5538851$	$2 \cdot 31$	-8372475	2.88	1.0577902
$1 \cdot 18$	-1655144	1.75	-5596157	$2 \cdot 32$	-8415671	$2 \cdot 89$	$1 \cdot 0612564$
$1 \cdot 19$	-1739533	$1 \cdot 76$	-5653138	$2 \cdot 33$	-8458682	2.90	1.0647107
$1 \cdot 20$	-1823215	1.77	. 5709795	$2 \cdot 34$. 8501509	$2 \cdot 91$	1.0681530
$1 \cdot 21$	-1906203	$1 \cdot 78$	- 5766133	$2 \cdot 35$	-8544153	2.92	1.0715836
$1 \cdot 22$	-1988508	1.79	- 5822156	$2 \cdot 36$	-8586616	$2 \cdot 93$	1.0750024
$1 \cdot 23$	- 2070141	1.80	-5877866	$2 \cdot 37$	-8628899	$2 \cdot 94$	1.0784095
1.24	-2151113	1.81	-5933268	$2 \cdot 38$	-8671004	$2 \cdot 95$	1.0818051
$1 \cdot 25$	-2231435	1.82	-5988365	$2 \cdot 39$	-8712933	$2 \cdot 96$	1.0851892
$1 \cdot 26$	-2311117	1.83	$\cdot 6043159$	$2 \cdot 40$	-8754687	$2 \cdot 97$	1.0885619
$1 \cdot 27$	-2390169	1.84	-6097655	$2 \cdot 41$	-8796267	2.98	1.0919233
$1 \cdot 28$	-2468600	1.85	$\cdot 6151856$	$2 \cdot 42$	-8837675	$2 \cdot 99$	1.0952733
1.29	- 2546422	1.86	$\cdot 6205764$	$2 \cdot 43$	-8878912	3.00	1.0986123
$1 \cdot 30$	- 2623642	1.87	$\cdot 6259384$	$2 \cdot 44$	-8919980	3.01	$1 \cdot 1019400$
1.31	. 2700271	1.88	-6312717	$2 \cdot 45$	-8960880	3.02	$1 \cdot 1052568$
$1 \cdot 32$	- 2776317	1.89	-6365768	$2 \cdot 46$. 9001613	3.03	1-1085626
$1 \cdot 33$	$\cdot 2851789$	$1 \cdot 90$	-6418538	$2 \cdot 47$. 9042181	3.04	$1 \cdot 1118575$
$1 \cdot 34$	-2926696	1.91	-6471032	$2 \cdot 48$. 9082585	3.05	$1 \cdot 1151415$
$1 \cdot 35$	-3001045	$1 \cdot 92$	-6523251	$2 \cdot 49$	-. 9122826	3.06	$1 \cdot 1184149$
$1 \cdot 36$	-3074846	1.93	-6575200	$2 \cdot 50$	-9162907	3.07	$1 \cdot 1216775$
$1 \cdot 37$	-3148107	$1 \cdot 94$	-6626879	$2 \cdot 51$	-9202827	3.08	$1 \cdot 1249295$
$1 \cdot 38$	-3220834	$1 \cdot 95$	-6678293	$2 \cdot 52$.9242589	3.09	$1 \cdot 1281710$
$1 \cdot 39$	-3293037	$1 \cdot 96$	-6729444	$2 \cdot 53$	-9282193	$3 \cdot 10$	$1 \cdot 1314021$
$1 \cdot 40$	-3364722	$1 \cdot 97$	-6780335	$2 \cdot 54$.9321640	$3 \cdot 11$	$1 \cdot 1346227$
$1 \cdot 41$	-3435897	$1 \cdot 98$	-6830968	$2 \cdot 55$	-9360933	$3 \cdot 12$	$1 \cdot 1878330$
$1 \cdot 42$	-3506568	$1 \cdot 99$	-6881346	$2 \cdot 56$. 9400072	$3 \cdot 13$	$1 \cdot 1410330$
$1 \cdot 43$	-3576744	2.00	-6931472	$2 \cdot 57$. 9439058	$3 \cdot 14$	$1 \cdot 1442227$
$1 \cdot 44$	-3646431	2.01	-6981347	$2 \cdot 58$	-9477893	$3 \cdot 15$	$1 \cdot 1474024$
$1 \cdot 45$	$\cdot 3715635$	2.02	. 7030974	2.59	. 9516578	$3 \cdot 16$	1-1505720
$1 \cdot 46$	-3784364	$2 \cdot 03$	-7080357	$2 \cdot 60$.9555114	$3 \cdot 17$	1-1537315
$1 \cdot 47$	-3852624	$2 \cdot 04$	-7129497	$2 \cdot 61$.9593502	$3 \cdot 18$	1-1568811
$1 \cdot 48$	-3920420	$2 \cdot 05$	-7178397	$2 \cdot 62$	-9631743	$3 \cdot 19$	$1 \cdot 1600209$
$1 \cdot 49$	-3987761	$2 \cdot 06$	-7227059	$2 \cdot 63$	-9669838	$3 \cdot 20$	1-1631508
1.50	-4054651	2.07	-7275485	$2 \cdot 64$. 9707789	$3 \cdot 21$	$1 \cdot 1662709$
1.51	$\cdot 4121096$	2.08	-7323678	$2 \cdot 65$	-9745596	$3 \cdot 22$	$1 \cdot 1693813$
1.52	$\cdot 4187103$	$2 \cdot 09$	-7371640	$2 \cdot 66$	-9783261	$3 \cdot 23$	1-1724821
1.53	-4252677	$2 \cdot 10$	-7419373	$2 \cdot 67$	-9820784	$3 \cdot 24$	$1 \cdot 1755738$
1.54	- 4317824	$2 \cdot 11$	-7466879	$2 \cdot 68$	-9858167	$3 \cdot 25$	1-1786549
1.55	-4382549	$2 \cdot 12$	-7514160	$2 \cdot 69$	-9895411	$3 \cdot 26$	$1 \cdot 1817271$
1.56	$\cdot 4446858$	$2 \cdot 13$	-7561219	$2 \cdot 70$	-9932517	$3 \cdot 27$	1-1847899
1.57	$\cdot 4510756$	$2 \cdot 14$	- 7608058	2.71	-9969486	$3 \cdot$	$1 \cdot 1878434$

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
$3 \cdot 29$	1-1908875	3.91	1.3635373	4.53	1.5107219	$5 \cdot 15$	1-6389967
$3 \cdot 30$	1-1939224	3.92	1.3660916	$4 \cdot 54$	$1 \cdot 5129269$	$5 \cdot 16$	$1 \cdot 6409365$
$3 \cdot 31$	1-1969481	$3 \cdot 93$	1-3686394	$4 \cdot 55$	$1 \cdot 5151272$	$5 \cdot 17$	$1 \cdot 6428726$
$3 \cdot 32$	1-1999647	3.94	1-3711807	$4 \cdot 56$	1-5173226	$5 \cdot 18$	$1 \cdot 6448050$
3.33	1-2029722	$3 \cdot 95$	$1 \cdot 3737156$	$4 \cdot 57$	1.5195132	$5 \cdot 19$	1.6467336
$3 \cdot 34$	1 -2059707	3.96	$1 \cdot 3762440$	$4 \cdot 58$	$1 \cdot 5216990$	$5 \cdot 20$	$1 \cdot 6486586$
$3 \cdot 35$	$1 \cdot 2089603$	3.97	$1 \cdot 3787661$	$4 \cdot 59$	$1 \cdot 5238800$	$5 \cdot 21$	1.6505798
$3 \cdot 36$	1-2119409	3.98	$1 \cdot 3812818$	$4 \cdot 60$	$1 \cdot 5260563$	$5 \cdot 22$	$1 \cdot 6524974$
$3 \cdot 37$	1.2149127	3.99	$1 \cdot 3837912$	$4 \cdot 61$	$1 \cdot 5282278$	$5 \cdot 23$	$1 \cdot 6544112$
$3 \cdot 38$	$1-2178757$	$4 \cdot 00$	$1 \cdot 3862943$	$4 \cdot 62$	$1 \cdot 5303947$	$5 \cdot 24$	1.6563214
$3 \cdot 39$	1-2208299	4.01	$1 \cdot 3887912$	$4 \cdot 63$	$1 \cdot 5325568$	5.25	$1 \cdot 6582280$
$3 \cdot 40$	1-2237754	4.02	1-3912818	$4 \cdot 64$	$1 \cdot 5347143$	$5 \cdot 26$	$1 \cdot 6601310$
$3 \cdot 41$	$1 \cdot 2267122$	$4 \cdot 03$	1-3937663	$4 \cdot 65$	1-5368672	$5 \cdot 27$	$1 \cdot 6620303$
$3 \cdot 42$	1-2296405	4.04	$1 \cdot 3962446$	$4 \cdot 66$	1-5390154	5.28	$1 \cdot 6639260$
$3 \cdot 43$	1-2325605	4.05	1-3987168	$4 \cdot 67$	$1 \cdot 5411590$	$5 \cdot 29$	$1 \cdot 6658182$
$3 \cdot 44$	1.2354714	$4 \cdot 06$	1-4011829	$4 \cdot 68$	1-5432981	$5 \cdot 30$	$1 \cdot 6677068$
$3 \cdot 45$	1-2383742	$4 \cdot 07$	1-4036429	$4 \cdot 69$	$1 \cdot 5454325$	5.31	$1 \cdot 6695918$
$3 \cdot 46$	1-2412685	$4 \cdot 08$	1-4060969	$4 \cdot 70$	1-5475625	$5 \cdot 32$	$1 \cdot 6714733$
$3 \cdot 47$	1.2441545	4.09	1-4085449	4.71	1-5496879	$5 \cdot 33$	$1 \cdot 6733512$
$3 \cdot 48$	1-2470322	$4 \cdot 10$	1-4109869	$4 \cdot 72$	1-5518087	$5 \cdot 34$	$1 \cdot 6752256$
$3 \cdot 49$	1.2499017	$4 \cdot 11$	1-4134230	4.73	1-5539252	$5 \cdot 35$	$1 \cdot 6770965$
$3 \cdot 50$	$1 \cdot 2527629$	4-12	1-4158531	4.74	1-5560371	$5 \cdot 36$	1-6789639
3.51	$1 \cdot 2556160$	$4 \cdot 13$	1-4182774	4.75	1-5581446	$5 \cdot 37$	$1 \cdot 6808278$
$3 \cdot 52$	1-2584609	$4 \cdot 14$	1-4206957	4.76	$1 \cdot 5602476$	$5 \cdot 38$	$1 \cdot 6826882$
$3 \cdot 53$	1-2612978	$4 \cdot 15$	$1 \cdot 4231083$	4.77	$1 \cdot 5623462$	$5 \cdot 39$	$1 \cdot 6845453$
$3 \cdot 54$	1 12641266	$4 \cdot 16$	$1 \cdot 4255150$	4.78	$1 \cdot 5644405$	$5 \cdot 40$	1-6863989
$3 \cdot 55$	$1 \cdot 2669475$	$4 \cdot 17$	1-4279160	$4 \cdot 79$	$1 \cdot 5665304$	$5 \cdot 41$	$1 \cdot 6882491$
$3 \cdot 56$	1.2697605	$4 \cdot 18$	1-4303112	4.80	1-5686159	$5 \cdot 42$	$1 \cdot 6900958$
$3 \cdot 57$	$1 \cdot 2725655$	$4 \cdot 19$	$1 \cdot 4327007$	4.81	1-5706971	$5 \cdot 43$	1-6919391
$3 \cdot 58$	1.2753627	$4 \cdot 20$	$1 \cdot 4350845$	4.82	$1 \cdot 5727739$	$5 \cdot 44$	$1 \cdot 6937790$
$3 \cdot 59$	1.2781521	$4 \cdot 21$	$1 \cdot 4374626$	4.83	$1 \cdot 5748464$	$5 \cdot 45$	1-6956155
$3 \cdot 60$	$1 \cdot 2809338$	$4 \cdot 22$	$1 \cdot 4398351$	$4 \cdot 84$	1-5769147	$5 \cdot 46$	$1 \cdot 6974487$
$3 \cdot 61$	$1 \cdot 2837077$	$4 \cdot 23$	$1 \cdot 4422020$	4.85	1-5789787	$5 \cdot 47$	$1 \cdot 6992786$
$3 \cdot 62$	$1 \cdot 2864740$	$4 \cdot 24$	1-4445632	$4 \cdot 86$	1-5810384	$5 \cdot 48$	1.7011051
$3 \cdot 63$	$1 \cdot 2892326$	$4 \cdot 25$	$1 \cdot 4469189$	$4 \cdot 87$	1-5830939	$5 \cdot 49$	$1 \cdot 7029282$
$3 \cdot 64$	$1 \cdot 2919836$	$4 \cdot 26$	$1 \cdot 4492691$	4.88	$1 \cdot 5851452$	$5 \cdot 50$	1•7047481
$3 \cdot 65$	$1 \cdot 2947271$	$4 \cdot 27$	$1 \cdot 4516138$	$4 \cdot 89$	1.5871923	$5 \cdot 51$	1•7065646
$3 \cdot 66$	1.2974631	4.28	$1 \cdot 4539530$	$4 \cdot 90$	$1 \cdot 5892352$	$5 \cdot 52$	$1 \cdot 7083778$
3.67	1-3001916	$4 \cdot 29$	$1 \cdot 4562867$	4.91	1.5912739	$5 \cdot 53$	1.7101878
$3 \cdot 68$	$1 \cdot 3029127$	$4 \cdot 30$	1-4586149	4.92	1-5933085	$5 \cdot 54$	1.7119944
$3 \cdot 69$	$1 \cdot 3056264$	$4 \cdot 31$	1-4609379	4.93	1-5953389	5.55	1.7137979
$3 \cdot 70$	$1 \cdot 3083328$	4.32	$1 \cdot 4632553$	$4 \cdot 94$	1-5973653	$5 \cdot 56$	$1 \cdot 7155981$
3.71	1.3110318	$4 \cdot 33$	$1 \cdot 4655675$	4.95	1.5993875	$5 \cdot 57$	1.7173950
$3 \cdot 72$	1.3137236	$4 \cdot 34$	$1 \cdot 4678743$	$4 \cdot 96$	$1 \cdot 6014057$	$5 \cdot 58$	1.7191887
$3 \cdot 73$	$1 \cdot 3164082$	$4 \cdot 35$	$1 \cdot 4701758$	4.97	1.6034198	5.59	$1 \cdot 7209792$
$3 \cdot 74$	1.3190856	$4 \cdot 36$	$1 \cdot 4724720$	4.98	$1 \cdot 6054298$	$5 \cdot 60$	$1 \cdot 7227666$
3.75	1-3217558	$4 \cdot 37$	$1 \cdot 4747630$	4.99	$1 \cdot 6074358$	$5 \cdot 61$	$1 \cdot 7245507$
$3 \cdot 76$	$1 \cdot 3244189$	$4 \cdot 38$	$1 \cdot 4770487$	$5 \cdot 00$	$1 \cdot 6094379$	$5 \cdot 62$	$1 \cdot 7263316$
3.77	1-3270749	$4 \cdot 39$	$1 \cdot 4793292$	$5 \cdot 01$	1-6114359	$5 \cdot 63$	$1 \cdot 7281094$
3.78	1-3297240	$4 \cdot 40$	$1 \cdot 4816045$	5.02	1.6134300	$5 \cdot 64$	1.7298840
3.79	$1 \cdot 3323660$	$4 \cdot 41$	$1 \cdot 4838746$	5.03	$1 \cdot 6154200$	$5 \cdot 65$	$1 \cdot 7316555$
$3 \cdot 80$	$1 \cdot 3350010$	$4 \cdot 42$	1.4861396	5.04	$1 \cdot 6174060$	$5 \cdot 66$	1.7334238
3.81	$1 \cdot 3376291$	$4 \cdot 43$	$1 \cdot 4883995$	5.05	1.6193882	$5 \cdot 67$	1.7351891
3.82	1-3402504	$4 \cdot 44$	$1 \cdot 4906543$	$5 \cdot 06$	$1 \cdot 6213664$	$5 \cdot 68$	$1 \cdot 7369512$
3.83	$1 \cdot 3428648$	$4 \cdot 45$	$1 \cdot 4929040$	5.07	$1 \cdot 6233408$	$5 \cdot 69$	1-7387102
$3 \cdot 84$	$1 \cdot 3454723$	$4 \cdot 46$	$1 \cdot 4951487$	5.08	$1 \cdot 6253112$	$5 \cdot 70$	$1 \cdot 7404661$
$3 \cdot 85$	1-3480731	$4 \cdot 47$	1-4973883	$5 \cdot 09$	$1 \cdot 6272778$	$5 \cdot 71$	1.7422189
$3 \cdot 86$	1-3506671	$4 \cdot 48$	1-4996230	$5 \cdot 10$	$1 \cdot 6292405$	$5 \cdot 72$	1-7439687
3.87	$1 \cdot 3532544$	$4 \cdot 49$	1.5018527	$5 \cdot 11$	$1 \cdot 6311994$	$5 \cdot 73$	1.7457155
3.88	$1 \cdot 3558351$	$4 \cdot 50$	1.5040774	$5 \cdot 12$	$1 \cdot 6331544$	$5 \cdot 74$	1.7474591
$3 \cdot 89$	$1 \cdot 3584091$	4.51	$1 \cdot 5062971$	$5 \cdot 13$	$1 \cdot 6351056$	5.75	1.7491998
$3 \cdot 90$	1-3609765	4.52	$1 \cdot 5085119$	$5 \cdot 14$	$1 \cdot 6370530$	$5 \cdot 76$	1.7509374

N.	Loga	N.	Logarithm.	N.	Logarithm.	N.	hm.
$5 \cdot 77$	1-75267	6.39	1-8547342	7.01	$1 \cdot 94733$	7•63	$2 \cdot 0320878$
$5 \cdot 7$	$1 \cdot 754403$	$6 \cdot 40$	1.856297	7.02	$1 \cdot 94876$	$7 \cdot 64$	$2 \cdot 0333976$
$5 \cdot 79$	1.7561323	$6 \cdot 41$	1-8578592	$7 \cdot 03$	1.9501866	$7 \cdot 65$	$2 \cdot 0347056$
$5 \cdot 80$	1.7578579	$6 \cdot 42$	1.8594181	$7 \cdot 04$	1.9516080	$7 \cdot 66$	$2 \cdot 0360119$
$5 \cdot 81$	1.7595805	$6 \cdot 43$	$1 \cdot 8609745$	7.05	$1 \cdot 9530275$	$7 \cdot 67$	$2 \cdot 0373166$
5.82	1.7613002	$6 \cdot 44$	1.8625285	7.06	1.954444	$7 \cdot 68$	2.0386195
$5 \cdot 83$	1.7630170	$6 \cdot 45$	1.8640801	7.07	1.955860	$7 \cdot 69$	$2 \cdot 0399207$
5.84	1.7647308	$6 \cdot 46$	1.8656293	7.08	1.9572739	7.70	$2 \cdot 0412203$
$5 \cdot 85$	$1 \cdot 7664416$	$6 \cdot 47$	1.8671761	7.09	$1 \cdot 958685$	7.71	$2 \cdot 0425181$
5.86	1.7681496	$6 \cdot 48$	1.8687205	7-10	1.960094	7.72	2.0438143
5.87	1.7698546	$6 \cdot 49$	$1 \cdot 8702625$	$7 \cdot 11$	$1 \cdot 961502$	7.73	$2 \cdot 0451088$
5.88	$1 \cdot 7715567$	6.50	1.8718021	$7 \cdot 12$	1.9629077	7.74	2.0464016
$5 \cdot 89$	1.7732559	6.51	1.8733394	$7 \cdot 13$	1.9643112	7.75	$2 \cdot 0476928$
5.90	1.7749523	$6 \cdot 52$	1.8748743	$7 \cdot 14$	$1 \cdot 965712$	$7 \cdot 76$	2.0489823
5.91	$1 \cdot 7766458$	6.53	1.8764069	$7 \cdot 15$	1.9671123	$7 \cdot 77$	$2 \cdot 0502701$
5.92	1.7783364	$6 \cdot 54$	1.8779371	$7 \cdot 16$	$1 \cdot 9685099$	$7 \cdot 78$	2.0515563
$5 \cdot 93$	$1 \cdot 7800242$	6.55	1.8794650	$7 \cdot 17$	$1 \cdot 9699056$	$7 \cdot 79$	$2 \cdot 0528408$
5.94	1.7817091	$6 \cdot 56$	1.8809906	$7 \cdot 18$	1.9712993	$7 \cdot 80$	2.0541237
5.95	$1 \cdot 7838912$	6.57	1.8825138	$7 \cdot 19$	1.9726911	$7 \cdot 81$	$2 \cdot 0554049$
5.96	1.7850704	6.58	1.8840347	$7 \cdot 20$	1.9740810	7.82	2.0566845
$5 \cdot 97$	1.7867469	6.59	1.8855533	$7 \cdot 21$	1.9754689	$7 \cdot 83$	$2 \cdot 0579624$
5.98	$1 \cdot 7884205$	6.60	1.8870696	$7 \cdot 22$	1.976854	$7 \cdot 84$	2.0592388
5.99	$1 \cdot 7900914$	6.61	1.8885837	$7 \cdot 23$	1.9782390	7.85	$2 \cdot 0605135$
6.00	$1 \cdot 7917594$	6.62	1.8900954	$7 \cdot 24$	1.9796212	7.86	2.0617866
6.01	1 17934247	6.63	$1 \cdot 8916048$	7.25	1.9810014	7.87	$2 \cdot 0630580$
6.02	$1 \cdot 7950872$	6.64	1.8931119	$7 \cdot 26$	1.982379	7.88	2.0643278
6.03	1-7967470	$6 \cdot 65$	$1 \cdot 8946168$	7.27	1.9837562	7.89	$2 \cdot 0655961$
6.04	1.7984040	$6 \cdot 66$	1.8961194	$7 \cdot 28$	1.9851308	$7 \cdot 90$	2.0668627
6.05	1-8000582	6.67	1.8976198	7.29	1.986503	$7 \cdot 91$	$2 \cdot 0681277$
6.06	1-8017098	$6 \cdot 68$	1.8991179	$7 \cdot 30$	1.987874	7.92	2.0693911
6.07	1.8033586	6.69	$1 \cdot 9006138$	$7 \cdot 31$	1.9892432	$7 \cdot 93$	$2 \cdot 0706530$
6.08	1.8050047	6.70	$1 \cdot 9021075$	$7 \cdot 32$	$1 \cdot 9906103$	$7 \cdot 94$	$2 \cdot 0719132$
6.09	1.8066481	6.71	$1 \cdot 9035989$	$7 \cdot 33$	1.991975	7.95	2.0731719
6.10	1.8082887	6.72	$1 \cdot 9050881$	$7 \cdot 34$	1.993338	$7 \cdot 96$	2.0744290
6.11	1.8099267	6.73	$1 \cdot 9065751$	$7 \cdot 35$	$1 \cdot 9947002$	$7 \cdot 97$	2.0756845
$6 \cdot 12$	1.8115621	6.74	$1 \cdot 9080600$	$7 \cdot 36$	1.9960599	7.98	2.0769384
$6 \cdot 13$	1.8131947	6.75	1.9095425	$7 \cdot 37$	1.9974177	$7 \cdot 99$	$2 \cdot 0781907$
$6 \cdot 14$	1.8148247	6.76	1.9110228	$7 \cdot 38$	1.998773	8.00	2.0794415
$6 \cdot 15$	1.8164520	6.77	1.9125011	$7 \cdot 39$	$2 \cdot 0001278$	8.01	2.0806907
$6 \cdot 16$	1.8180767	6.78	$1 \cdot 9139771$	$7 \cdot 40$	2.0014800	8.02	2.0819384
$6 \cdot 17$	1.8196988	6.79	$1 \cdot 9154509$	$7 \cdot 41$	$2 \cdot 0028305$	8.03	2.0831845
$6 \cdot 18$	1-8213182	6.80	1.9169226	$7 \cdot 42$	$2 \cdot 0041790$	8.04	2.0844290
$6 \cdot 19$	1-8229351	6.81	$1 \cdot 9183921$	$7 \cdot 43$	$2 \cdot 0055258$	8.05	2.0856720
$6 \cdot 20$	1-8245493	6.82	1.9198594	$7 \cdot 44$	$2 \cdot 0068708$	8.06	2.0869135
6.21	1-8261608	6.83	$1 \cdot 9213247$	$7 \cdot 45$	$2 \cdot 0082140$	8.07	2.0881534
$6 \cdot 22$	1-8277699	6.84	1.9227877	$7 \cdot 46$	$2 \cdot 0095553$	8.08	2.0893918
6.23	1-8293763	6.85	1.9242486	$7 \cdot 47$	2.0108949	8.09	2.0906287
6.24	1.8309801	6.86	1.9257074	$7 \cdot 48$	$2 \cdot 0122327$	$8 \cdot 10$	$2 \cdot 0918640$
6.25	1-8325814	6.87	$1 \cdot 9271641$	$7 \cdot 49$	$2 \cdot 0135687$	$8 \cdot 11$	2.0930984
6.26	1.8341801	6.88	1.9286186	$7 \cdot 50$	$2 \cdot 0149030$	$8 \cdot 12$	2.0943306
$6 \cdot 27$	1.8357763	6.89	$1 \cdot 9300710$	7.51	$2 \cdot 0162354$	$8 \cdot 13$	$2 \cdot 0955613$
$6 \cdot 28$	1.8373699	6.90	1.9315214	$7 \cdot 52$	$2 \cdot 0175661$	$8 \cdot 14$	2.0967905
$6 \cdot 29$	1-8389610	6.91	1.9329696	$7 \cdot 53$	2.0188950	$8 \cdot 15$	2.0980182
6.30	1.8405496	6.92	1.9344157	$7 \cdot 54$	$2 \cdot 0202221$	$8 \cdot 16$	$2 \cdot 0992444$
$6 \cdot 31$	1.8421356	6.93	1.9358598	7.55	$2 \cdot 0215475$	$8 \cdot 17$	2-1004691
6.32	1.8437191	6.94	$1 \cdot 9373017$	$7 \cdot 56$	$2 \cdot 0228711$	$8 \cdot 18$	$2 \cdot 1016923$
6.33	1.8453002	6.95	$1 \cdot 9887416$	$7 \cdot 57$	$2 \cdot 0241929$	$8 \cdot 19$	$2 \cdot 1029140$
6.34	1.8468787	6.96	1.9401794	$7 \cdot 58$	$2 \cdot 0255131$	8.20	$2 \cdot 1041341$
$6 \cdot 35$	1.8484547	6.97	1.9416152	$7 \cdot 59$	$2 \cdot 0268315$	8.21	$2 \cdot 1053529$
$6 \cdot 36$	$1 \cdot 8500283$	6.98	1-9430489	$7 \cdot 60$	2.0281482	8.22	$2 \cdot 1065702$
6.37	$1 \cdot 8515994$	6.99	$1 \cdot 9444805$	$7 \cdot 61$	$2 \cdot 0294631$	8.23	$2 \cdot 1077861$
6.38	1.85316	7.00	1.9459	$7 \cdot 6$	$2 \cdot 0307763$	8.24	$2 \cdot 1089998$

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
$8 \cdot 25$	$2 \cdot 1102128$	$8 \cdot 69$	$2 \cdot 1621729$	$9 \cdot 13$	$2 \cdot 2115656$	$9 \cdot 57$	$2 \cdot 2586332$
$8 \cdot 26$	$2 \cdot 1114243$	$8 \cdot 70$	$2 \cdot 1633230$	$9 \cdot 14$	$2 \cdot 2126603$	$9 \cdot 58$	$2 \cdot 2596776$
$8 \cdot 27$	2-1126343	$8 \cdot 71$	$2 \cdot 1644718$	$9 \cdot 15$	$2 \cdot 2137538$	$9 \cdot 59$	$2 \cdot 2607209$
$8 \cdot 28$	$2 \cdot 1138428$	$8 \cdot 72$	2-1656192	$9 \cdot 16$	$2 \cdot 2148461$	$9 \cdot 60$	$2 \cdot 2617631$
$8 \cdot 29$	2-1150499	$8 \cdot 73$	$2 \cdot 1667653$	$9 \cdot 17$	$2 \cdot 2159372$	$9 \cdot 61$	$2 \cdot 2628042$
$8 \cdot 30$	2-1162555	$8 \cdot 74$	$2 \cdot 1679101$	$9 \cdot 18$	$2 \cdot 2170272$	$9 \cdot 62$	$2 \cdot 2638442$
$8 \cdot 31$	2-1174596	8.75	$2 \cdot 1690536$	$9 \cdot 19$	$2 \cdot 2181160$	$9 \cdot 63$	$2 \cdot 2648832$
$8 \cdot 32$	2-1186622	$8 \cdot 76$	2-1701959	$9 \cdot 20$	$2 \cdot 2192034$	$9 \cdot 64$	$2 \cdot 2659211$
$8 \cdot 33$	$2 \cdot 1198634$	$8 \cdot 77$	$2 \cdot 1713367$	$9 \cdot 21$	2-2202898	$9 \cdot 65$	$2 \cdot 2669579$
$8 \cdot 34$	2-1210632	$8 \cdot 78$	$2 \cdot 1724763$	$9 \cdot 22$	$2 \cdot 2213750$	$9 \cdot 66$	$2 \cdot 2679936$
$8 \cdot 35$	2-1222615	$8 \cdot 79$	$2 \cdot 1736146$	$9 \cdot 23$	$2 \cdot 2224590$	$9 \cdot 67$	$2 \cdot 2690282$
$8 \cdot 36$	2-1234584	$8 \cdot 80$	$2 \cdot 1747517$	$9 \cdot 24$	$2 \cdot 2235418$	$9 \cdot 68$	$2 \cdot 2700618$
$8 \cdot 37$	2-1246539	$8 \cdot 81$	$2 \cdot 1758874$	$9 \cdot 25$	$2 \cdot 2246235$	$9 \cdot 69$	$2 \cdot 2710944$
$8 \cdot 38$	2-1258479	8.82	- $2 \cdot 1770218$	$9 \cdot 26$	$2 \cdot 2257040$	$9 \cdot 70$	$2 \cdot 2721258$
$8 \cdot 39$	2-1270405	8.83	$2 \cdot 1781550$	$9 \cdot 27$	$2 \cdot 2267833$	$9 \cdot 71$	$2 \cdot 2731562$
$8 \cdot 40$	2-1282317	8.84	$2 \cdot 1792868$	$9 \cdot 28$	$2 \cdot 2278615$	$9 \cdot 72$	$2 \cdot 2741856$
$8 \cdot 41$	$2 \cdot 1294214$	8.85	$2 \cdot 1804174$	$9 \cdot 29$	$2 \cdot 2289385$	9.73	$2 \cdot 2752138$
$8 \cdot 42$	2-1306098	$8 \cdot 86$	$2 \cdot 1815467$	$9 \cdot 30$	$2 \cdot 2300144$	$9 \cdot 74$	$2 \cdot 2762411$
$8 \cdot 43$	2-1317967	8.87	$2 \cdot 1826747$	$9 \cdot 31$	$2 \cdot 2310890$	$9 \cdot 75$	$2 \cdot 2772673$
$8 \cdot 44$	2-1329822	$8 \cdot 88$	$2 \cdot 1838015$	$9 \cdot 32$	$2 \cdot 2321626$	$9 \cdot 76$	$2 \cdot 2782924$
$8 \cdot 45$	2-1341664	$8 \cdot 89$	$2 \cdot 1849270$	$9 \cdot 33$	$2 \cdot 2332350$	$9 \cdot 77$	$2 \cdot 2793165$
$8 \cdot 46$	$2 \cdot 1353491$	8.90	$2 \cdot 1860512$	$9 \cdot 34$	$2 \cdot 2343062$	9.78	$2 \cdot 2803395$
$8 \cdot 47$	$2 \cdot 1365304$	8.91	$2 \cdot 1871742$	$9 \cdot 35$	$2 \cdot 2353763$	9.79	$2 \cdot 2813614$
$8 \cdot 48$	2-1377104	$8 \cdot 92$	2-1882959	$9 \cdot 36$	$2 \cdot 2364452$	$9 \cdot 80$	$2 \cdot 2823823$
$8 \cdot 49$	2-1388889	8.93	2-1894163	$9 \cdot 37$	$2 \cdot 2375130$	$9 \cdot 81$	$2 \cdot 2834022$
$8 \cdot 50$	$2 \cdot 1400661$	$8 \cdot 94$	$2 \cdot 1905355$	$9 \cdot 38$	$2 \cdot 2385797$	$9 \cdot 82$	$2 \cdot 2844211$
$8 \cdot 51$	$2 \cdot 1412419$	8.95	$2 \cdot 1916535$	$9 \cdot 39$	$2 \cdot 2396452$	$9 \cdot 83$	$2 \cdot 2854389$
$8 \cdot 52$	2-1424163	$8 \cdot 96$	$2 \cdot 1927702$	$9 \cdot 40$	2.2407096	$9 \cdot 84$	$2 \cdot 2864556$
$8 \cdot 53$	$2 \cdot 1435893$	8.97	$2 \cdot 1938856$	$9 \cdot 41$	$2 \cdot 2417729$	$9 \cdot 85$	$2 \cdot 2874714$
$8 \cdot 54$	$2 \cdot 1447609$	8.98	$2 \cdot 1949998$	$9 \cdot 42$	$2 \cdot 2428350$	$9 \cdot 86$	$2 \cdot 2884861$
$8 \cdot 55$	$2 \cdot 1459312$	8.99	$2 \cdot 1961128$	$9 \cdot 43$	$2 \cdot 2438960$	$9 \cdot 87$	$2 \cdot 2894998$
$8 \cdot 56$	$2 \cdot 1471001$	$9 \cdot 00$	$2 \cdot 1972245$	$9 \cdot 44$	2.2449559	$9 \cdot 88$	$2 \cdot 2905124$
$8 \cdot 57$	$2 \cdot 1482676$	9.01	$2 \cdot 1983350$	$9 \cdot 45$	$2 \cdot 2460147$	$9 \cdot 89$	$2 \cdot 2915241$
$8 \cdot 58$	$2 \cdot 1494339$	$9 \cdot 02$	$2 \cdot 1994443$	$9 \cdot 46$	$2 \cdot 2470723$	$9 \cdot 90$	$2 \cdot 2925347$
$8 \cdot 59$	$2 \cdot 1505987$	$9 \cdot 03$	$2 \cdot 2005523$	$9 \cdot 47$	$2 \cdot 2481288$	$9 \cdot 91$	$2 \cdot 2635443$
$8 \cdot 60$	$2 \cdot 1517622$	$9 \cdot 04$	$2 \cdot 2016591$	$9 \cdot 48$	$2 \cdot 2491843$	$9 \cdot 92$	$2 \cdot 2945529$
$8 \cdot 61$	$2 \cdot 1529243$	9.05	$2 \cdot 2027647$	$9 \cdot 49$	$2 \cdot 2502386$	$9 \cdot 93$	$2 \cdot 2955604$
$8 \cdot 62$	$2 \cdot 1540851$	9.06	$2 \cdot 2038691$	9•50	$2 \cdot 2512917$	$9 \cdot 94$	$2 \cdot 2965670$
$8 \cdot 63$	$2 \cdot 1552445$	9.07	$2 \cdot 2049722$	$9 \cdot 51$	$2 \cdot 2523438$	$9 \cdot 95$	$2 \cdot 2975725$
$8 \cdot 64$	$2 \cdot 1564026$	9.08	$2 \cdot 2060741$	$9 \cdot 52$	$2 \cdot 2533948$	$9 \cdot 96$	$2 \cdot 2985770$
$8 \cdot 65$	$2 \cdot 1575593$	$9 \cdot 09$	$2 \cdot 2071748$	$9 \cdot 53$	$2 \cdot 2544446$	$9 \cdot 97$	$2 \cdot 2995806$
. $8 \cdot 66$	$2 \cdot 1587147$	$9 \cdot 10$	2-2082744	$9 \cdot 54$	$2 \cdot 2554934$	9.98	$2 \cdot 3005831$
$8 \cdot 67$	$2 \cdot 1598687$	$9 \cdot 11$	$2 \cdot 2093727$	9.55	$2 \cdot 2565411$	$9 \cdot 99$	$2 \cdot 3015846$
$8 \cdot 68$	$2 \cdot 1610215$	$9 \cdot 12$	$2 \cdot 2104697$	$9 \cdot 56$	$2 \cdot 2575877$	$10 \cdot 00$	$2 \cdot 3025851$

Logarithms were invented by Juste Byrge, a Frenchman, and not by Napier. See "Biographie Universelle," "The Calculus of Form," article 822, and "The Practical, Short, and Direct Method of Calculating the Logarithm of any given Number and the Number corresponding to any given Logarithm," discovered by Oliver Byrne, the author of the present work. Juste Byrge also invented the proportional compasses, and was a profound astronomer and mathematician. The common Logarithm of a number multiplied by $2 \cdot 302585052994$ gives the hyperbolic Logarithm of that number. The common Logarithm of $2 \cdot 22$ is $\cdot 346353 \therefore 2 \cdot 302585 \times 346353$ $=\cdot 7975071$ the hyperbolic Logarithm. The application of Logarithms to the calculations of the Engineer will be treated of hereafter.

COMBINATIONS OF ALGEBRAIC QUANTITIES.

The following practical examples will serve to illustrate the method of combining or representing numbers or quantities algebraically; the chief object of which is, to help the memory with respect to the use of the signs and letters, or symbols.

$$
\text { Let } a=6, b=4, c=3, d=2, e=1, \text { and } f=0
$$

Then will, (1) $2 a+b=12+4=16$.
(2) $a b+2 c-d=24+6-2=28$.
(3) $a^{2}-b^{2}+e+f=36-16+1+0=21$.
(4) $b^{2} \times(a-b)=16 \times(6-4)=16 \times 2=32$.
(5) $3 a b c-7 d e=216-14=202$.
(6) $2(a-b)(5 c-2 d)=(12-8) \times(15-4)=44$.
(7) $\frac{c^{2}-e^{2}}{d+f} \times(a-c)=\frac{9-1}{2+0} \times(6-3)=4 \times 3=12$.
(8) $\checkmark\left(a^{2}-2 b^{2}\right)+d-f=\sqrt{ }(36-32)+2-0=4$.
(9) $3 a b-(a-b-c+d)=72-1=71$.
(10) $3 a b-(a-b-c-d)=72+3=75$.
(11) $\frac{\sqrt{ } 2 a b c}{\sqrt{ }(a b-4 d)} \times(c+d)=\frac{\sqrt{ } 144}{\sqrt{ }(24-8)} \times(3+2)=15$.

In solving the following questions, the letters $a, b, c, \& c$. are supposed to have the same values as before, namely, $6,4,3, \& c$.; but any other values might have been assigned to them; therefore, do not suppose that a must necessarily be 6 , nor that b must be 4 , for the letter a may be put for any known quantity, number, or magnitude whatever ; thus a may represent 10 miles, or 50 pounds, or any number or quantity, or it may represent 1 globe, or 2 cubic feet, \&c.; the same may be said of b, or any other letter.
(1) $a+b-c=7$.
(6) $4\left(a^{2}-b^{2}\right)(c-e)=160$.
(2) $3 b c-d+e=35$.
(7) $\frac{a^{2}-b^{2}}{c+d} \times\left(d^{2}+c^{2}\right)=52$.
(3) $2 a^{2}+c^{2}-d+f=79$.
(8) $\sqrt{ }\left(2 a^{2}+2 d^{2}\right)+b c-f=20$.
(4) $\frac{a^{2}}{b} \times(b-c+d)=27$.
(9) $4 a^{2} b-\left(c^{2}-d-e\right)=570$.
(5) $5 c^{2} d-a^{2}+4 d e=62$.
(10) $\frac{\sqrt{ } 4 a^{2}}{\sqrt{ }\left(10 d^{2}-4 c d\right)} \times \frac{a}{d}-c^{2}=0$.

In the use of algebraic symbols, $3 \sqrt[3]{4 a-b}$ signifies the same thing as $3(4 a-b)^{\frac{1}{3}}$.
$4(c+d)^{\frac{1}{2}}(a+b)^{\frac{1}{3}}$, or $4 \times \overline{c+d^{\frac{1}{2}}} \overline{\times a+b^{\frac{1}{3}}}$, signifies the same thing as $4 \sqrt{c+d} \cdot \sqrt[3]{a+b}$.

THE STEAM ENGINE.

The particular example which we shall select is that of an engine having 8 feet stroke and 64 inch cylinder.

The breadth of the web of the crank at the paddle centre is the breadth which the web would have if it were continued to the paddle centre. Suppose that we wished to know the breadth of the web of crank of an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper breadth of the web of crank at paddle centre would in this case be about 18 inches.

To find the breadth of crank at paddle centre.-Multiply the square of the length of the crank in inches by $1 \cdot 561$, and then multiply the square of the diameter of cylinder in inches by 1235 ; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide the product by 45 ; finally extract the cube root of the quotient. The result is the breadth of the web of crank at paddle centre.

Thus, to apply this rule to the particular example which we have selected, we have
$48=$ length of crank in inches.
48
2304
$1.561=$ constant multiplier.
3596.5
$505 \cdot 8$ found below.
$4102 \cdot 3$
$64=$ diameter of cylinder. 64
4096
$\cdot 1235=$ constant multiplier.
$505 \cdot 8$
and $\sqrt{4102 \cdot 3}=64 \cdot 05$ nearly. $4096=$ square of the diameter of the cylinder.
45) $\frac{262348 \cdot 5}{5829 \cdot 97}$ and $\sqrt[3]{\sqrt[5829 \cdot 97]{5}}=18$ nearly.
Suppose that we wished the proper thickness of the large eye of crank for an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper thickness for the large eye of crank is $5 \cdot 77$ inches.

Rule.-To find the thickness of large eye of crank.-Multiply the square of the length of the crank in inches by 1.561 , and then multiply the square of the diameter of the cylinder in inches by $\cdot 1235$; multiply the sum of these products by the square of the diameter of the cylinder in inches; afterwards, divide the product by $1828 \cdot 28$; divide this quotient by the length of the crank in inches; finally extract the cube root of the quotient. The result is the proper thickness of the large eye of crank in inches.

Thus, to apply this rule to the particular example which we have selected, we have
$48=$ length of crank in inches.
$\frac{48}{2304}$
$\frac{1 \cdot 561}{3596 \cdot 5}$ constant multiplier.
$\frac{505 \cdot 8}{4102 \cdot 3}$
$\frac{64}{\frac{64}{4096}}=$ diameter of cylinder in inches.
$\frac{1235}{505 \cdot 8}=$ constant multiplier.
$4102 \cdot 3$
$\frac{4096}{48)}=$ square of diameter.
$1828 \cdot 28) \frac{35006020 \cdot 8}{191 \cdot 47}$
and $\sqrt[3]{191 \cdot 47}=5 \cdot 77$ nearly.

The proper thickness of the web of crank at paddle shaft centre is the thickness which the web ought to have if continued to centre of the shaft. Suppose that it were required to find the proper thickness of web of crank at shaft centre for an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper thickness of the web at shaft centre in this case would be 8.97 inches.

Rule.-To find the thickness of the web of crank at paddle shaft centre.-Multiply the square of the length of crank in inches by 1.561, and then multiply the square of the diameter in inches by -1235; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide this quotient by 360 ; finally extract the cube root of the quotient. The result is the thickness of the web of crank at paddle shaft centre in inches.

Thus, to apply the rule to the particular example which we have selected, we have

48	$=$ length of crank in inches.
$\frac{48}{2304}$	
$\frac{1 \cdot 561}{3596 \cdot 5}$	$=$ constant multiplier.
$\frac{505 \cdot 8}{4102 \cdot 3}$	
64	$=$ diameter of cylinder.
$\frac{64}{4096}$	
$\frac{.1235}{505 \cdot 8}=$	constant multiplier.
And $\sqrt[4102 \cdot 3]{ }=64 \cdot 05$ nearly.	
$\quad 360) \frac{4096}{262348 \cdot 5}$	
$\frac{728 \cdot 75}{3 / 782 \cdot 75}=9$ nearly.	

Suppose that it were required to find the proper diameter for the paddle shaft journal of an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper diameter of the paddle shaft journal in this case is 14.06 inches.

Rule.-To find the diameter of the paddle shaft journal.-Multiply the square of the diameter of cylinder in inches by the length of the crank in inches; extract the cube root of the product; finally multiply the result by 242 . The final product is the diameter of the paddle shaft journal in inches.

Thus, to apply this rule to the particular example which we have before selected, we have
$64=$ diameter of cylinder in inches. 64
4096
48 = length of crank in inches.
196608

$$
\text { and } \sqrt[3]{196608}=58 \cdot 148
$$

but $58 \cdot 148 \times \cdot 242=14 \cdot 07$ inches.
Suppose it were required to find the proper length of the paddle shaft journal for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. The proper length of the paddle shaft journal would be, in this case, $17 \cdot 59$ inches.

The following rule serves for engines of all sizes:
Rule.-To find the length of the paddle shaft journal.-Multiply the square of the diameter of the cylinder in inches by the length of the crank in inches; extract the cube root of the quotient; multiply the result by $\cdot 303$. The product is the length of the
paddle shaft journal in inches. (The length of the paddle shaft journal is $1 \frac{1}{4}$ times the diameter.)

To apply this rule to the example which we have selected, we have

$$
\begin{aligned}
& \frac{64}{}=\text { diameter of cylinder in inches. } \\
& \frac{64}{4096} \\
& \frac{48}{196608}=\text { length of crank in inches. } \\
& \text { and } \sqrt[3]{196608}=58 \cdot 148
\end{aligned}
$$

\therefore length of journal $=58 \cdot 148 \times \cdot 303=17 \cdot 60$ inches.
We shall now calculate the proper dimensions of some of those parts which do not depend upon the length of the stroke. Suppose it were required to find the proper dimensions of the respective parts of a marine engine the diameter of whose cylinder is 64 inches.

Diameter of crank-pin journal $=90.9$ inches, or about 9 inches.
Length of crank-pin journal $=10 \cdot 18$ inches, or nearly $10 \frac{1}{5}$ inches.

Breadth of the eye of cross-head $=2.64$ inches, or between $2 \frac{1}{2}$ and $2 \frac{3}{4}$ inches.

Depth of the eye of cross-head $=18.37$ inches, or very nearly 181 inches.

Diameter of the journal of cross-head $=5.5$ inches, or $5 \frac{1}{2}$ inches.
Length of journal of cross-head $=6 \cdot 19$ inches, or very nearly $6 \frac{1}{3}$ inches.

Thickness of the web of cross-head at middle $=4 \cdot 6$ inches, or somewhat more than $4 \frac{1}{2}$ inches.

Breadth of web of cross-head at middle $=17 \cdot 15$ inches, or between 17_{10}^{10} and $17 \frac{1}{5}$ inches.

Thickness of web of cross-head at journal $=3.93$ inches, or very nearly 4 inches.

Breadth of web of cross-head at journal $=6 \cdot 46$ inches, or nearly $6 \frac{1}{2}$ inches.

Diameter of piston rod $=6.4$ inches, or $6 \frac{2}{5}$ inches.
Length of part of piston rod in piston $=12.8$ inches, or 124 inches.

Major diameter of part of piston rod in cross-head $=06.8$ inches, or nearly $6 \frac{1}{10}$ inches.

Minor diameter of part of piston rod in cross-head $=5 \cdot 76$ inches, or $5 \frac{3}{4}$ inches.

Major diameter of part of piston rod in piston $=8.96$ inches, or nearly 9 inches.

Minor diameter of part of piston rod in piston $=7 \cdot 36$ inches, or between $7 \frac{1}{4}$ and $7 \frac{1}{2}$ inches.

Depth of gibs and cutter through cross-head $=6.72$ inches, or very nearly 63 inches.

Thickness of gibs and cutter through cross-head $=1 \cdot 35$ inches, or between $1 \frac{1}{4}$ and $1 \frac{1}{2}$ inches.

Depth of cutter through piston $=5 \cdot 45$ inches, or nearly $5 \frac{1}{2}$ inches.
Thickness of cutter through piston $=2 \cdot 24$ inches, or nearly $2 \frac{1}{4}$ inches.

Diameter of connecting rod at ends $=6.08$ inches, or nearly $6{ }_{10}^{10}$ inches.

Major diameter of part of connecting rod in cross-tail $=6.27$ inches, or about $6 \frac{1}{4}$ inches.

Minor diameter of part of connecting rod in cross-tail $=5 \cdot 76$ inches, or nearly $5 \frac{3}{4}$ inches.

Breadth of butt $=9.98$ inches, or very nearly 10 inches.
Thickness of butt $=8$ inches.
Mean thickness of strap at cutter $=2 \cdot 75$ inches, or $2 \frac{3}{4}$ inches.
Mean thickness of strap above cutter $=2.06$ inches, or somewhat more than 2 inches.

Distance of cutter from end of strap $=3.08$ inches, or very nearly 3_{10} inches.

Breadth of gibs and cutter through cross-tail $=6.73$ inches, or very nearly $6 \frac{3}{4}$ inches.

Breadth of gibs and cutter through butt $=7.04$ inches, or somewhat more than 7 inches.

Thickness of gibs and cutter through butt $=1.84$ inches, or between $1 \frac{3}{4}$ and 2 inches.

These results are calculated from the following rules, which give correct results for all sizes of engines.

Rule 1. To find the diameter of crank-pin journal.-Multiply the diameter of the cylinder in inches by -142 . The result is the diameter of crank-pin journal in inches.

Rule 2. To find the length of crank-pin journal.-Multiply the diameter of the cylinder in inches by $\cdot 16$. The product is the length of the crank-pin journal in inches.

Rule 3. To find the breadth of the eye of cross-head.-Multiply the diameter of the cylinder in inches by 041 . The product is the breadth of the eye in inches.

Rule 4. To find the depth of the eye of cross-head.-Multiply the diameter of the cylinder in inches by 286 . The product is the depth of the eye of cross-head in inches.

Rule 5. To find the diameter of the journal of cross-head.Multiply the diameter of the cylinder in inches by 086 . The product is the diameter of the journal in inches.
Rule 6. To find the length of the journal of cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 097$. The product is the length of the journal in inches.

Rule 7. To find the thickness of the web of cross-head at middle. -Multiply the diameter of the cylinder in inches by $\cdot 072$. The product is the thickness of the web of cross-head at middle in inches.

Rule 8. To find the breadth of web of cross-head at middle.Multiply the diameter of the cylinder in inches by $\cdot 268$. The product is the breadth of the web of cross-head at middle in inches.

Rule 9. To find the thickness of the web of cross-head at journal. -Multiply the diameter of the cylinder in inches by $\cdot 061$. The product is the thickness of the web of cross-head at journal in inches.

Rule 10. To find the breadth of web of cross-head at journal.Multiply the diameter of the cylinder in inches by $\cdot 101$. The product is the breadth of the web of cross-head at journal in inches.

Rule 11. To find the diameter of the piston rod.-Divide the diameter of the cylinder in inches by 10 . The quotient is the diameter of the piston rod in inches.

Rule 12. To find the length of the part of the piston rod in the piston.-Divide the diameter of the cylinder in inches by 5 . The quotient is the length of the part of the piston rod in the piston in inches.

Rule 13. To find the major diameter of the part of piston rod in cross-head.-Multiply the diameter of the cylinder in inches by -095. The product is the major diameter of the part of piston rod in cross-head in inches.

Rule 14. To find the minor diameter of the part of-piston rod in cross-head.-Multiply the diameter of the cylinder in inches by 09 . The product is the minor diameter of the part of piston rod in cross-head in inches.

Rule 15. To find the major diameter of the part of piston rod in piston.-Multiply the diameter of the cylinder in inches by 14. The product is the major diameter of the part of piston rod in piston in inches.

Rule 16. To find the minor diameter of the part of piston rod in piston.-Multiply the diameter of the cylinder in inches by $\cdot 115$. The product is the minor diameter of the part of piston rod in piston.

Rule 17. To find the depth of gibs and cutter through cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 105$. The product is the depth of the gibs and cutter through crosshead.

Rule 18. To find the thickness of the gibs and cutter through cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 021$. The product is the thickness of the gibs and cutter through cross-head.

Rule 19. To find the depth of cutter through piston.-Multiply the diameter of the cylinder in inches by 085 . The product is the depth of the cutter through piston in inches.

Rule 20. To find the thickness of cutter through piston.-Multiply the diameter of the cylinder in inches by 035 . The product is the thickness of cutter through piston in inches.

Rule 21. To find the diameter of connecting rod at ends. - Multiply the diameter of the cylinder in inches by 095 . The product is the diameter of the connecting rod at ends in inches.

Rule 22. To find the major diameter of the part of connecting rod in cross-tail.-Multiply the diameter of the cylinder in inches
by $\cdot 098$. The product is the major diameter of the part of connecting rod in cross-tail.

Rule 23. To find the minor diameter of the part of connecting rod in cross-tail.-Multiply the diameter of the cylinder in inches by 09 . The product is the minor diameter of the part of connecting rod in cross-tail in inches.

Rule 24. To find the breadth of butt.-Multiply the diameter of the cylinder in inches by $\mathbf{1 5 6}$. The product is the breadth of the butt in inches.

Rule 25. To find the thickness of the butt.-Divide the diameter of the cylinder in inches by 8 . The quotient is the thickness of the butt in inches.

Rule 26. To find the mean thickness of the strap at cutter.Multiply the diameter of the cylinder in inches by 043 . The product is the mean thickness of the strap at cutter.

Rule 27. To find the mean thickness of the strap above cutter.Multiply the diameter of the cylinder in inches by 032 . The product is the mean thickness of the strap above cutter.

Rule 28. To find the distance of cutter from end of strap.Multiply the diameter of the cylinder in inches by 048 . The product is the distance of cutter from end of strap in inches.

Rule 29. To find the breadth of the gibs and cutter through cross-tail.-Multiply the diameter of the cylinder in inches by $\cdot 105$. The product is the breadth of the gibs and cutter through cross-tail.

Rule 30. To find the breadth of the gibs and cutter through butt.-Multiply the diameter of the cylinder in inches by 11 . The product is the breadth of the gibs and cutter through butt in inches.

Rule 31. To find the thickness of the gibs and cutter through butt.-Multiply the diameter of the cylinder in inches by 029 . The product is the thickness of the gibs and cutter through butt in inches.

To find other parts of the engine which do not depend upon the stroke. Suppose it were required to find the thickness of the small eye of crank for an engine the diameter of whose cylinder is 64 inches. According to the rule, the proper thickness of the small eye of crank is 4.04 inches. Again, suppose it were required to find the length of the small eye of crank. Hence, according to the rule, the proper length of the small eye of crank is 11.94 inches. Again, supposing it were required to find the proper thickness of the web of crank at pin centre ; that is to say, the thickness which it would have if continued to the pin centre. According to the rule, the proper thickness for the web of crank at pin centre is $7 \cdot 04$ inches. Again, suppose it were required to find the breadth of the web of crank at pin centre; that is to say, the breadth which it would have if it were continued to the pin centre. Hence, according to the rule, the proper breadth of the web of crank at pin centre is $10 \cdot 24$ inches.

These results are calculated from the following rules, which give the proper dimensions for engines of all sizes:

Rule 1. To find the breadth of the small eye of crank.-Multiply the diameter of the cylinder in inches by 063 . The product is the proper breadth of the small eye of crank in inches.

Rule 2. To find the length of the small eye of crank.-Multiply the diameter of the cylinder in inches by $\cdot 187$. The product is the proper length of the small eye of crank in inches.

Rule 3. To find the thickness of the web of crank at pin centre.Multiply the diameter of the cylinder in inches by $\cdot 11$. The product is the proper thickness of the web of crank at pin centre in inches.

Rule 4. To find the breadth of the web of crank at pin centre.Multiply the diameter of the cylinder in inches by 16 . The product is the proper breadth of crank at pin centre in inches.

To illustrate the use of the succeeding rules, let us take the particular example of an engine of 8 feet stroke and 64 -inch cylinder, and let us suppose that the length of the connecting rod is 12 feet, and the side rod 10 feet. We find by a previous rule that the diameter of the connecting rod at ends is $6 \cdot 08$, and the ratio between the diameters at middle and ends of a connecting rod, whose length is 12 feet, is 1.504 . Hence, the proper diameter at middle of the connecting rod $=6.08 \times 1.504$ inches $=9.144$ inches. And again, we find the diameter of cylinder side rods at ends, for the particular engine which we have selected, is $4 \cdot 10$, and the ratio between the diameters at middle and ends of cylinder side rods, whose lengths are 10 feet, is $1 \cdot 42$. Hence, according to the rules, the proper diameter of the cylinder side rods at middle is equal to $4 \cdot 1 \times 1.42$ inches $=5 \cdot 82$ inches.

To find some of those parts of the engine which do not depend upon the stroke. Suppose we take the particular example of an engine the diameter of whose cylinder is 64 inches. We find from the following rules that

Diameter of cylinder side rods at ends $=4 \cdot 1$ inches, or 4_{10}^{1} inches.

Breadth of butt $=4.93$ inches, or very nearly 5 inches.
Thickness of butt $=3.9$ inches, or $3{ }_{10}$ inches.
Mean thickness of strap at cutter $=2.06$ inches, or a little more than 2 inches.

Mean thickness of strap below cutter $=1.47$ inches, or very nearly $1 \frac{1}{2}$ inches.

Depths of gibs and cutter $=5 \cdot 12$ inches, or a little more than $5 \frac{1}{10}$ inches.

Thickness of gibs and cutter $=1.03$ inches, or a little more than 1 inch.

Diameter of main centre journal $=11.71$ inches, or very nearly $11 \frac{3}{4}$ incnes.
Length of main centre journal $=17.6$ inches, or $17 \frac{8}{5}$ inches.

Depth of eye round end studs of lever $=4 \cdot 75$ inches, or $4 \frac{3}{4}$ inches.
Thickness of eye round end studs of lever $=3.33$ inches, or $3 \frac{1}{3}$ inches.

Diameter of end studs of lever $=4 \cdot 48$ inches, or very nearly $4 \frac{1}{2}$ inches.

Length of end studs of lever $=4.86$ inches, or between $4 \frac{3}{4}$ and 5 inches.

Diameter of air-pump studs $=2.91$ inches, or nearly 3 inches.
Length of air-pump studs $=3 \cdot 16$ inches, or nearly $3 \frac{1}{\frac{1}{3}}$ inches.
These results were obtained from the following rules, which will be found to give the proper dimensions for all sizes of engines.

Rule 1. To find the diameter of cylinder side rods at ends.Multiply the diameter of the cylinder in inches by 065 . The product is the diameter of the cylinder side rods at ends in inches.

Rule 2. To find the breadth of butt in inches.-Multiply the diameter of the cylinder in inches by 077 . The product is the breadth of the butt in inches.

Rule 3. To find the thickness of the butt.-Multiply the diameter of the cylinder in inches by 061 . The product is the thickness of the butt in inches.

Rule 4. To find the mean thickness of strap at cutter.-Multiply the diameter of the cylinder in inches by 032 . The product is the mean thickness of the strap at cutter.

Rule 5. To find the mean thickness of strap below cutter.-Multiply the diameter of the cylinder in inches by $\cdot 023$. The product is the mean thickness of strap below cutter in inches.

Rule 6. To find the depth of gibs and cutter.-Multiply the diameter of the cylinder in inches by 08 . The product is the depth of the gibs and cutter in inches.

Rule 7. To find the thickness of gibs and cutter.-Multiply the diameter of the cylinder in inches by 016 . The product is the thickness of gibs and cutter in inches.

Rule 8. To find the diameter of the main centre journal.-Multiply the diameter of the cylinder in inches by 183 . The product is the diameter of the main centre journal in inches.

Rule 9. To find the length of the main centre journal.-Multiply the diameter of the cylinder in inches by -275 . The product is the diameter of the cylinder in inches.

Rule 10. To find the depth of eye round end studs of lever.Multiply the diameter of the cylinder in inches by 074 . The product is the depth of the eye round end studs of lever in inches.

Rule 11. To find the thickness of eye round end studs of lever. -Multiply the diameter of the cylinder in inches by 052 . The product is the thickness of eye round end studs of lever in inches.

Rule 12. To find the diameter of the end studs of lever.-Multiply the diameter of the cylinder in inches by 07 . The product is the diameter of the end studs of lever in inches.

Rule 13. To find the length of the end studs of lever.-Multiply
the diameter of the cylinder in inches by $\cdot 076$. The product is the length of the end studs of lever in inches.

Rule 14. To find the diameter of the air-pump studs.-Multiply the diameter of the cylinder in inches by 045 . The product is the diameter of the air-pump studs in inches.

Rule 15. To find the length of the air-pump studs.-Multiply the diameter of the cylinder in inches by 049 . The product is the length of the air-pump studs in inches.

The next rule gives the proper depth in inches across the centre of the side lever, when, as is generally the case, the side lever is of cast iron. It will be observed that the depth is made to depend upon the diameter of the cylinder and the length of the lever, and not at all upon the length of the stroke, except indeed in so far as the length of the lever may depend upon the length of the stroke. Suppose it were required to find the proper depth across the centre of a side lever whose length is 20 feet, and the diameter of the cylinder 64 inches. According to the rule, the proper depth across the centre would be $39 \cdot 26$ inches.

The following rule will give the proper dimensions for any size of engine:

Rule.-To find the depth across the centre of the side lever.Multiply the length of the side lever in feet by $\cdot 7423$; extract the cube root of the product, and reserve the result for a multiplier. Then square the diameter of the cylinder in inches; extract the cube root of the result. The product of the final result and the reserved multiplier is the depth of the side lever in inches across the centre.

Thus, to apply this rule to the particular example which we have selected, we have
$20=$ length of side lever in feet.
$\cdot 7423=$ constant multiplier.
$14 \cdot 846$
and $\sqrt[3]{14.846}=2 \cdot 458$ nearly. $64=$ diameter of cylinder in inches.

$$
64
$$

4096

$$
\text { and } \sqrt[3]{4096}=16
$$

Hence depth at centre $=16 \times 2.458$ inches $=39.33$ inches, or between $39 \frac{1}{4}$ and $39 \frac{1}{2}$ inches.

The next set of rules give the dimensions of several of the parts of the air-pump machinery which depend upon the diameter of the cylinder only. To illustrate the use of these rules, let us take the particular example of an engine the diameter of whose cylinder is 64 inches. We find from the succeeding rules successively,

Diameter of air-pump $=38.4$ inches, or $38 \frac{2}{5}$ inches.

Thickness of the eye of air-pump cross-head $=1.58$ inches, or a little more than $1 \frac{1}{2}$ inches.

Depth of eye of air-pump cross-head $=11 \cdot 01$, or about 11 inches.
Diameter of end journals of air-pump cross-head $=3.29$ inches, or somewhat more than $3 \frac{1}{4}$ inches.

Length of end journals of air-pump cross-head $=3.7$ inches, or $3 \frac{7}{10}$ inches.

Thickness of the web of air-pump cross-head at middle $=2.76$ inches, or a little more than $2 \frac{3}{4}$ inches.

Depth of web of air-pump cross-head at middle $=10 \cdot 29$ inches, or somewhat more than $10 \frac{1}{4}$ inches.

Thickness of web of air-pump cross-head at journal $=2.35$ inches, or about $2 \frac{3}{8}$ inches.

Depth of web of air-pump cross-head at journal $=3.89$ inches, or about $3 \frac{7}{8}$ inches.

Diameter of air-pump piston rod when made of copper $=4 \cdot 27$ inches, or about $4 \frac{1}{4}$ inches.

Depth of gibs and cutter through air-pump cross-head $=4.04$ inches, or a little more than 4 inches.

Thickness of gibs and cutter through air-pump cross-head $=\boldsymbol{\circ} 1$ inches, or about $\frac{7}{8}$ inch.

Depth of cutter through piston $=3.27$ inches, or somewhat more than $3 \frac{1}{4}$ inches.

Thickness of cutter through piston $=1.34$ inches, or about $1 \frac{3}{8}$ inches.

These results were obtained from the following rules, and give the proper dimensions for all sizes of engines:

Rule 1. To find the diameter of the air-pump.-Multiply the. diameter of the cylinder in inches by $\cdot 6$. The product is the diameter of air-pump in inches.

Rule 2. To find the thickness of the eye of air-pump cross-head. -Multiply the diameter of the cylinder in inches by $\cdot 025$. The product is the thickness of the eye of air-pump cross-head in inches.

Rule 3. To find the depth of eye of air-pump cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 171$. The product is the depth of the dye of air-pump cross-head in inches.

Rule 4. To find the diameter of the journals of air-pump cross-head.-Multiply the diameter of the cylinder in inches by 051. The product is the diameter of the end journals.

Rule 5. To find the length of the end journals for air-pump cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 058$. The product is the length of the air-pump cross-head journals in inches.

Rule 6. To find the thickness of the web of air-pump cross-head at middle.-Multiply the diameter of the cylinder in inches by $\cdot 043$. The product is the thickness at middle of the web of air-pump cross-head in inches.

Rule 7. To find the depth at middle of the web of air-pump cross-head.-Multiply the diameter of the cylinder in inches by 161.

The product is the depth at middle of air-pump cross-head in inches.

Rule 8. To find the thickness of the web of air-pump crosshead at journals.-Multiply the diameter of the cylinder in inches by 037 . The product is the thickness of the web of air-pump cross-head at journals in inches.

Rule 9. To find the depth of the air-pump cross-head web at journals.-Multiply the diameter of the cylinder in inches by 061. The product is the depth at journals of the web of air-pump crosshead.

Rule 10. To find the diameter of the air-pump piston rod when of copper.-Multiply the diameter of the cylinder in inches by -067. The product is the diameter of the air-pump piston rod, when of copper, in inches.

Rule 11. To find the depth of gibs and cutter through air-pump cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 063$. The product is the depth of the gibs and cutter through airpump cross-head in inches.

Rule 12. To find the thickness of the gibs and cutter through air-pump cross-head.-Multiply the diameter of the cylinder in inches by $\cdot 013$. The product is the thickness of the gibs and cutter in inches.

Rule 13. To find the depth of cutter through piston.-Multiply the diameter of the cylinder in inches by 051 . The product is the depth of the cutter through piston in inches.

Rule 14. To find the thickness of cutter through air-pump piston.-Multiply the diameter of the cylinder in inches by 021 . The product is the thickness of the cutter through air-pump piston.

The next seven rules give the dimensions of the remaining parts of the engine which do not depend upon the stroke. To exemplify their use, suppose it were required to find the corresponding dimensions for an engine the diameter of whose cylinder is 64 inches. According to the rule, the proper diameter of the air-pump side rod would be 2.48 inches. Hence, according to the rule, the proper breadth of butt is 2.95 inches. According to the rule, the proper thickness of butt is 2.35 inches. According to the rule, the mean thickness of strap at cutter ought to be 1.24 inches. Hence, according to the rule, the mean thickness of strap below cutter is 91 inch. According to the rule, the proper depth for the gibs and cutter is 2.94 inches. According to the rule, the proper thickness of the gibs and cutter is 63 inches.

The following rules give the correct dimensions for all sizes of engines:

Rule 1. To find the diameter of air-pump side rod at ends.Multiply the diameter of the cylinder in inches by 039 . The product is the diameter of the air-pump side rod at ends in inches.

Rule 2. To find the breadth of butt for air-pump. -Multiply the
diameter of the cylinder in inches by $\cdot 046$. The product is the breadth of butt in inches.

Rule 3. To find the thickness of butt for air-pump.-Multiply the diameter of the cylinder in inches by 037 . The product is the thickness of butt for air-pump in inches.

Rule 4. T'o find the mean thickness of strap at cutter.-Multiply the diameter of the cylinder in inches by $\cdot 019$. The product is the mean thickness of strap at cutter for air-pump in inches.

Rule 5. To find the mean thickness of strap below cutter.-Multiply the diameter of the cylinder in inches by $0 \cdot 14$. The product is the mean thickness of strap below cutter in inches.

Rule 6. To find the depth of gibs and cutter for air-pump.Multiply the diameter of the cylinder in inches by $0 \cdot 48$. The product is the depth of gibs and cutter for air-pump in inches.

Rule 7. To find the thickness of gibs and cutter for air-pump.Divide the diameter of the cylinder in inches by 100 . The quotient is the proper thickness of the gibs and cutter for air-pump in inches.

With regard to other dimensions made to depend upon the nominal horse power of the engine:-Suppose that we take the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. We find that the nominal horse power of this engine is nearly 175 . Hence we have successively,

Diameter of valve shaft at journal in inches $=4 \cdot 85$, or between $4 \frac{3}{4}$ and 5 inches.

Diameter of parallel motion shaft at journal in inches $=3 \cdot 91$, or very nearly 4 inches.

Diameter of valve rod in inches $=2 \cdot \dot{4} 4$, or about $2 \frac{3}{8}$ inches.
Diameter of radius rod at smallest part in inches $=1.97$, or very nearly 2 inches.

Area of eccentric rod, at smallest part, in square inches $=8.37$, or about $8 \frac{3}{8}$ square inches.

Sectional area of eccentric hoop in square inches $=8.75$, or $8 \frac{3}{4}$ square inches.

Diameter of eccentric pin in inches $=2 \cdot 24$, or $2 \frac{1}{4}$ inches.
Breadth of valve lever for eccentric pin at eye in inches $=5 \cdot 7$, or very nearly $5 \frac{3}{4}$ inches.

Thickness of valve lever for eccentric pin at eye in inches $=3$.
Breadth of parallel motion crank at eye $=4.2$ inches, or very nearly $4 \frac{1}{4}$ inches.

Thickness of parallel motion crank at eye $=1.76$ inches, or about $1 \frac{3}{4}$ inches.

To find the area in square inches of each steam port. Suppose it were required to find the area of each steam port for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the area of each steam port would be $202 \cdot 26$ square inches.

With regard to the rule, we may remark that the area of the
steam port ought to depend principally upon the cubical content of the cylinder, which again depends entirely upon the product of the square of the diameter of the cylinder and the length of the stroke of the engine. It is well known, however, that the quantity of steam admitted by a small hole does not bear so great a proportion to the quantity admitted by a larger one, as the area of the one does to the area of the other; and a certain allowance ought to be made for this. In the absence of correct theoretical information on this point, we have attempted to make a proper allowance by supplying a constant; but of course this plan ought only to be regarded as an approximation. Our rule is as follows:

Rule.-To find the area of each steam port.-Multiply the square of the diameter of the cylinder in inches by the length of the stroke in feet; multiply this product by 11; divide the last product by 1800 ; and, finally, to the quotient add 8. The result is the area of each steam port in square inches.

To show the use of this rule, we shall apply it to a particular example. We shall apply it to an engine whose stroke is 6 feet, and diameter of cylinder 30 inches. Then, according to the rule, we have

30	$=$ diameter of the cylinder in inches.
$\frac{30}{900}$	$=$ square of diameter.
$\frac{6}{5400}$	$=$ length of stroke in feet.
$\frac{11}{59400} \div 1800=33$	
$-\overline{41}$	$=$ area of steam port in square inches.

When the length of the opening of steam port is from any circumstance found, the corresponding depth in inches may be found, by dividing the number corresponding to the particular engine, by the given length in inches: conversely, the length may be found, when for some reason or other the depth is fixed, by dividing the number corresponding to the particular engine, by the given depth in inches: the quotient is the length in inches.

The next rule is useful for determining the diameter of the steam pipe branching off to any particular engine. Suppose it were required to find the diameter of the branch steam pipe for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the proper diameter of the steam pipe would be $13 \cdot 16$ inches.

The following rule will be found to give the proper diameter of steam pipe for all sizes of engines.

Rule.-To find the diameter of branch steam pipe.-Multiply together the square of the diameter of the cylinder in inches, the
length of the stroke in feet, and $\cdot 00498$; to the product add $10 \cdot 2$, and extract the square root of the sum. The result is the diameter of the steam pipe in inches.

To exemplify the use of this rule we shall take an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. In this case we have as follows:-

$$
64=\text { diameter of cylinder in inches. }
$$

$$
64
$$

$4096=$ square of diameter.
$8=$ length of stroke in feet.
32768

$$
\cdot 00498=\text { constant multiplier. }
$$

$\frac{163 \cdot 18}{\frac{10 \cdot 2}{173 \cdot 38}}=$ constant to be added.
and $\sqrt{ } 173 \cdot 38=13 \cdot 16$.

To find the diameter of the pipes connected with the engine. They are made to depend upon the nominal horse power of the engine. Suppose it were required to apply this rule to determine the size of the pipes for two marine engines, whose strokes are each 8 feet, and diameters of cylinder each 64 inches. We find the nominal horse power of each of these engines to be $174 \cdot 3$. Hence, according to the rules, we have in succession,

Diameter of waste water pipe $=15 \cdot 87$ inches, or between $15 \frac{3}{4}$ and 16 inches.
Area of foot-valve passage $=323$ square inches.
Area of injection pipe $=14.88$ square inches.
If the injection pipe be cylindrical, then by referring to the table of areas of circles, we see that its diameter would be about $4 \frac{3}{8}$ inches.

Diameter of feed pipe $=4 \cdot 12$ inches, or between 4 and $4 \frac{1}{4}$ inches.
Diameter of waste steam pipe $=12 \cdot 17$ inches; or nearly $12 \frac{1}{4}$ inches.
Diameter of safety valve,
When one is used $=14.05$ inches.
When two are used $=9.94$ inches.
When three are used $=8.12$ inches.
When four are used $=7.04$ inches.
These results were obtained from the following rules, which will give the correct dimensions for all sizes of engines.

Rule 1. To find the diameter of waste water pipe.-Multiply the square root of the nominal horse power of the engine by $1 \cdot 2$. The product is the diameter of the waste water pipe in inches.

Rule 2. To find the area of foot-valve passage.-Multiply the $\times 2$
nominal horse power of the engine by 9 ; divide the product by 5 ; add 8 to the quotient. The sum is the area of foot-valve passage in square inches.

Rule 3. To find the area of injection pipe.-Multiply the nominal horse power of the engine by 069 ; to the product add $2 \cdot 81$. The sum is the area of the injection pipe in square inches.

Rule 4. To find the diameter of feed pipe.-Multiply the nominal horse power of the engine by $\cdot 04$; to the product add 3 ; extract the square root of the sum. The result is the diameter of the feed pipe in inches.

Rule 5. To find the diameter of waste steam pipe.-Multiply the collective nominal horse power of the engines by 375 ; to the product add 16.875 ; extract the square root of the sum. The final result is the diameter of the waste steam pipe in inches.

Rule 6. To find the diameter of the safety valve when only one is used.-To one-half the collective nominal horse power of the engines add 22.5 ; extract the square root of the sum. The result is the diameter of the safety valve when only one is used.

Rule 7. To find the diameter of the safety valve when two are used.-Multiply the collective nominal horse power of the engines by 25 ; to the product add $11 \cdot 25$; extract the square root of the sum. The result is the diameter of the safety valve when two are used.

Rule 8. To find the diameter of the safety valve when three are used.-To one-sixth of the collective nominal horse power of the engines add $7 \cdot 5$; extract the square root of the sum. The result is the diameter of the safety valve where three are used.

Rule 9. To find the diameter of the safety valve when four are used.-Multiply the collective nominal horse power of the engines by $\cdot 125$; to the product add $5 \cdot 625$; extract the square root of the sum. The result is the diameter of the safety valve when four are used.

Another rule for safety valves, and a preferable one for low pressures, is to allow 8 of a circular inch of area per nominal horse power.

The next rule is for determining the depth across the web of the main beam of a land engine. Suppose we wished to find the proper depth at the centre of the main beam of a land engine whose main beam is 16 feet long, and diameter of cylinder 64 inches. According to the rule, the proper depth of the web across the centre is $46 \cdot 17$ inches. This rule gives correct dimensions for all sizes of engines.

Rule.-To find the depth of the web at the centre of the main beam of a land engine. - Multiply together the square of the diameter of the cylinder in inches, half the length of the main beam in feet, and the number 3 ; extract the cube root of the product. The result is the proper depth of the web of the main beam across the centre in inches, when the main beam is constructed of cast iron.

To illustrate this rule we shall take the particular example of an engine whose main beam is 20 feet long, and the diameter of the cylinder 64 inches. In this case we have
$64=$ diameter of cylinder in inches.
64
$4096=$ square of the diameter.
$10=\frac{1}{2}$ length of main beam in feet.

$$
\overline{40960}
$$

$3=$ constant multiplier.
122880

0	0	$122880(49 \cdot 714=\sqrt[3]{122880}$
$\frac{4}{4}$	$\frac{16}{16}$	$\frac{64}{58880}$
$\frac{4}{8}$	$\frac{32}{4800}$	$\frac{53649}{5231}$
$\frac{4}{120}$	$\underline{1161}$	$\frac{5112}{5961}$
$\frac{9}{129}$	$\frac{1242}{7203}$	$\frac{74}{35}$
$\frac{9}{138}$	$\frac{10}{730}$	
$\frac{9}{147}$	$\frac{10}{741}$	

To find the depth of the main beam across the ends. Suppose it were required to find the depth at ends of a cast-iron main beam whose length is 20 feet, when the diameter of the cylinder is 64 inches. The proper depth will be 19.89 inches.

The following rule gives the proper dimensions for all sizes of engines.

Rule.-To find the depth of main beam at ends.-Multiply together the square of the diameter of the cylinder in inches, half the length of the main beam in feet, and the number -192; extract the cube root of the product. The result is the depth in inches of the main beam at ends, when of cast iron.

To illustrate this rule, let us apply it to the particular example of an engine whose main beam is 20 feet long, and the diameter of the cylinder 64 inches. In this case we have as follows:
$64=$ diameter of cylinder in inches.

$$
64
$$

$$
\begin{aligned}
\overline{4096} & =\text { square of diameter of cylinder. } \\
\frac{10}{40960} & =\frac{1}{2} \text { length of main beam in feet. } \\
\frac{192}{7864 \cdot 32} & =\text { constant multiplier. }
\end{aligned}
$$

0	0	$7864 \cdot 32(19 \cdot 89=\sqrt[3]{7864 \cdot 32}$
$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{6864}$
$\frac{1}{2}$	$\underline{2}$	$\frac{5859}{1005}$
$\frac{1}{30}$	$\frac{351}{651}$	$\frac{898}{107}$
$\frac{9}{39}$	$\frac{432}{1083}$	
$\frac{9}{48}$	$\frac{4}{112}$	
$\frac{9}{57}$	$\frac{4}{116}$	

so that, according to the rule, the depth at ends is nearly 20 inches.
To find the dimensions of the feed-pump in cubic inches. Suppose we take the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. The proper content of the feed-pump would be 1093.36 cubic inches. Suppose, now, that the cold-water pump was suspended from the main beam at a fourth of the distance between the centre and the end, so that its stroke would be 2 feet, or 24 inches. In this case the area of the pump would be equal to $1093 \cdot 36 \div 24=45 \cdot 556$ square inches; so that we conclude that the diameter is between $7 \frac{1}{2}$ and $7 \frac{3}{4}$ inches. Conversely, suppose that it was wished to find the stroke of the pump when the diameter was 5 inches. We find the area of the pump to be 19.635 square inches; so that the stroke of the feedpump must be equal to $1093 \cdot 36 \div 19 \cdot 635=55 \cdot 69$ inches, or very nearly $55 \frac{3}{4}$ inches.

This rule will be found to give correct dimensions for all sizes of engines:

Rule.-To find the content of the feed-pump.-Multiply the square of the diameter of the cylinder in inches by the length of the stroke in feet; divide the product by 30 . The quotient is the content of the feed-pump in cubic inches.

Thus, for an engine whose stroke is 6 feet, and diameter of cylinder 50 inches, we have, $50=$ diameter of cylinder. 50
$2500=$ square of the diameter of the cylinder. $6=$ length of stroke in feet.
$30 \lcm{15000}$
$500=$ content of feed-pump in cubic inches.
To determine the content of the cold-water pump in cubic feet. To illustrate this, suppose we take the particular example of an en-
gine whose stroke is 8 feet, and diameter of cylinder 64 inches. Suppose, now, the stroke of the pump to be 5 feet, then the area equal to $7 \cdot 45 \div 5=1 \cdot 49$ square feet $=214.56$ square inches; we see that the diameter of the pump is about $16 \frac{1}{2}$ inches. Again, suppose that the diameter of the cold-water pump was 20 inches, and that it was required to find the length of its stroke. The area of the pump is $314 \cdot 16$ square inches, or $314 \cdot 16 \div 144=2 \cdot 18$ square feet; so that the stroke of the pump is equal to $7 \cdot 45 \div$ $2 \cdot 18=3 \cdot 42$ feet.

The content is calculated from the following rule, which will be found to give correct dimensions for all sizes of engines:

Rule.-To find the content of the cold-water pump.-Multiply the square of the diameter of the cylinder in inches by the length of the stroke in feet; divide the product by 4400 . The quotient is the content of the cold-water pump in cubic feet.

To explain this rule, we shall take the particular example of an engine whose stroke is $5 \frac{1}{2}$ feet, and diameter of cylinder 60 inches. In this case we have in succession,
$60=$ diameter of cylinder in inches. 60
$3600=$ square of the diameter of cylinder.
$5 \frac{1}{2}=$ length of stroke in feet.
$4.5=$ content of cold water pump in cubic feet.
To determine the proper thickness of the large eye of crank for fly-wheel shaft when the crank is of cast iron. The crank is sometimes cast on the shaft, and of course the thickness of the large eye is not then so great as when the crank is only keyed on the shaft, or rather there is then no large eye at all. To illustrate the use of this rule, we shall apply it to the particular example of an engine whose stroke is 8 feet , and diameter of cylinder 64 inches. Hence, according to the rule, the proper thickness of the large eye of crank when of cast iron is 8.07 inches. For a marine engine of 8 feet stroke and 64 inch cylinder, the thickness of the large eye of crank is about $5 \frac{3}{4}$ inches. The difference is thus about $2 \frac{1}{4}$ inches, which is an allowance for the inferiority of cast iron to malleable iron.

The following rule will be found to give correct dimensions for all sizes of engines:

Rule.-To find the thickness of the large eye of crank for flywheel shaft when of cast iron.-Multiply the square of the length of the crank in inches by 1.561 , and then multiply the square of the diameter of the cylinder in inches by $\mathbf{1 2 3 5}$; multiply the sum of these products by the square of the diameter of cylinder in inches; divide this product by $666 \cdot 283$; divide this quotient by the length of the crank in inches; finally extract the cube root of the quotient.

The result is the proper thickness of the large eye of crank for fly-wheel shaft in inches, when of cast iron.

As this rule is rather complicated, we shall show its application to the particular example already selected.

$$
\begin{aligned}
& 48=\text { length of crank in inches. } \\
& 48
\end{aligned}
$$

$\overline{2304}=$ square of length of crank in inches. $1 \cdot 561 \Rightarrow$ constant multiplier. $3596 \cdot 5$
$64=$ diameter of cylinder in inches.
64
$\overline{4096}=$ square of the diameter of cylinder. $\cdot 1235=$ constant multiplier.

$505 \cdot 8$ $3596 \cdot 5$	
$4102 \cdot 3$	sum of products.
4096	$=$ square of the diameter of cylinder.

$$
\begin{gathered}
666 \cdot 283) \frac{16803020 \cdot 8}{\text { length of crank }=48 \lcm{25219 \cdot 045}} \\
\text { and } \sqrt[3]{525 \cdot 397} \\
\text { an97.37 nearly. }
\end{gathered}
$$

To find the breadth of the web of crank at the centre of the flywheel shaft, that is to say, the breadth which it would have if it. were continued to the centre of the fly-wheel shaft. Suppose it were required to find the breadth of the crank at the centre of the fly-wheel shaft for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the proper breadth is $22 \cdot 49$ inches. According to a former rule, the breadth of the web of a cast iron crank of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches, is about 18 inches. The difference between these two is about $4 \frac{1}{2}$ inches; which is not too great an allowance for the inferiority of the cast iron.

The following rule will be found to give correct dimensions for all sizes of engines:

Rule.-To find the breadth of the web of crank at fly-wheel shaft, when of cast iron.-Multiply the square of the length of the crank in inches by 1.561 , and then multiply the square of the diameter of the cylinder in inches by -1235 ; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide the product by 23.04 , and finally extract the cube root of the quotient. The final result is the breadth of the crank at the centre of the fly-wheel shaft, when the crank is of cast iron.

As this rule is rather complicated, we shall illustrate it by show-
ing its application to the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches.

64	$=$ diameter of cylinder in inches.
$\frac{64}{4096}$	$=$ square of the diameter of cylinder.
$\frac{1235}{505 \cdot 8}$	$=$ constant multiplier.
48	$=$ length of crank in inches.
$\frac{48}{2304}$	$=$ square of the length of crank.
$\frac{1 \cdot 561}{3596 \cdot 5}$	$=$ constant multiplier.
$\frac{505 \cdot 8}{4102 \cdot 3}$	$=$ sum of products.
$\sqrt{4102 \cdot 3}$	$=64 \cdot 05$ nearly.
constant divisor $=23 \cdot 04) \frac{4096}{262348 \cdot 5}$	$=$ square of the diameter of
[cylinder.	
and	

To determine the thickness of the web of crank at the centre of the fly-wheel shaft; that is to say, the thickness which it would have if it were continued so far. Suppose it were required to find the thickness of web of crank at the centre of fly-wheel shaft of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the proper thickness would be 11.26 inches. The proper thickness of web at centre of paddle shaft for a marine engine whose stroke is 8 feet, and diameter of cylinder 64 inches, is nearly 9 inches. The difference between the two thicknesses is about $2 \frac{1}{4}$ inches, which is not too great an allowance for the inferiority of cast iron to malleable iron.

The following rule will be found to give correct dimensions for all sizes of engines:

Rule.-To find the thickness of the web of crank at centre of fly-wheel shaft, when of cast iron.-Multiply the square of the length of the crank in inches by 1.561 , and then multiply the square of the diameter of the cylinder in inches by 1235 ; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide this product by $184 \cdot 32$; finally extract the cube root of the quotient. The result is the thickness of the web of crank at the centre of the fly-wheel shaft when of cast iron, in inches.

As this rule is rather complicated, we shall illustrate it by apply. ing it to the particular engine which we have already selected.

$$
48=\text { length of crank in inches. }
$$

$$
48
$$

$$
\begin{aligned}
2304 & =\text { square of length of crank. } \\
\frac{1 \cdot 561}{3596 \cdot 5} & =\text { constant multiplier. }
\end{aligned}
$$

$64=$ diameter of cylinder in inches. 64
$4096=$ square of the diameter of cylinder.
$-1235=$ constant multiplier.
$505 \cdot 8$
3596.5
$\overline{4102 \cdot 3}=$ sum of products.
and $\sqrt{4102 \cdot 3}=64 \cdot 05$ nearly. $4096=$ square of diameter.
Constant divisor $= 1 8 4 \cdot 3 2 \longdiv { 2 6 2 3 4 8 \cdot 5 }$
$1423 \cdot 33$

$$
\text { and } \sqrt[3]{1423 \cdot 33}=11 \cdot 24
$$

To find the proper diameter of the fly-wheel shaft at its smallest part, when, as is usually the case, it is of cast iron. Suppose it were required to find the diameter of the fly-wheel shaft for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the diameter would be 17.59 inches. It is obvious enough that the fly-wheel shaft stands in much the same relation to the land engine, as the paddle shaft does to the marine engine. According to a former rule, the diameter of the paddle shaft journal of a marine engine whose stroke is 8 feet, and diameter of cylinder 64 inches, is about 14 inches. The difference betwixt the diameter of the paddle shaft for the marine engine, and the diameter of the fly-wheel shaft for the corresponding land engine is about $3 \frac{1}{2}$ inches. This will be found to be a very proper allowance for the different circumstances connected with the land engine.

The following rule will be found to give correct dimensions for all sizes of engines.

Rule.-To find the diameter of the fly-wheel shaft at smallest part, when it is of cast iron.-Multiply the square of the diameter of the cylinder in inches by the length of the crank in inches; extract the cube root of the product; finally multiply the result by $\cdot 3025$. The result is the diameter of the fly-wheel shaft at smallest part in inches.

We shall illustrate this rule by applying it to the particular engine which we have already selected.
$64=$ diameter of cylinder in inches. 64
$\overline{4096}=$ square of the diameter. $48=$ length of crank in inches.
196608

0	0	196608
$\frac{5}{5}$	$\frac{25}{25}$	$\frac{125}{71608}$
$\frac{5}{10}$	$\frac{50}{7500}$	$\frac{70112}{1496}$
$\frac{5}{150}$	$\frac{1264}{8764}$	$\frac{1011}{485}$
$\frac{8}{158}$	$\frac{1328}{10092}$	
$\frac{8}{166}$	$\frac{2}{1011}$	
$\frac{8}{174}$	$\frac{2}{1013}$	

and $58.15 \times 3025=1759$
which agrees with the number given by a former rule.
To determine the sectional area of the fly-wheel rim when of cast iron. Suppose it were required to find the sectional area of the rim of a fly-wheel for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches, the diameter of the fly-wheel itself being 30 feet. According to the rule, the sectional area of the rim in square inches $=146.4 \times 813=119 \cdot 02$. We may remark that this calculation has been made on the supposition that the flywheel is so connected with the engine, as to make exactly one revolution for each double stroke of the piston. If the fly-wheel is so connected with the engine as to make more than one revolution for each double 'stroke, then the rim does not need to be so heavy as we make it. If, on the contrary, the fly-wheel does not make a complete revolution for each double stroke of the engine, then it ought to be heavier than this rule makes it.

Rule.-To find the sectional area of the rim of the fly-wheel when of cast iron. -Multiply together the square of the diameter of the cylinder in inches, the square of the length of the stroke in feet, the cube root of the length of the stroke in feet, and $6 \cdot 125$; divide the final product by the cube of the diameter of the fly-wheel in feet. The quotient is the sectional area of the rim of fly-wheel in square inches, provided it is of cast iron.

As this rule is rather complicated, we shall endeavour to illustrate it by showing its application to a particular engine. We shall apply the rule to determine the sectional area of the rim of fly-
wheel for an engine whose stroke is 8 feet, diameter of cylinder 50 inches; the diameter of the fly-wheel being 20 feet. For this engine we have as follows:
$2500=$ square of diameter of cylinder.
$64=$ square of the length of stroke.

$$
\overline{160000}
$$

$2=$ cube root of the length of stroke.
320000
$6 \cdot 125=$ constant multiplier.
1960000
therefore sectional area in square inches $=1960000 \div 20^{3}=$ $1960000 \div 8000=1960 \div 8=245$.

In the following formulas we denote the diameter of the cylinder in inches by D , the length of the crank in inches by R , the length of the stroke in feet, and the nominal horse power of the engine by H.P.

MARINE ENGINES.-DIMENSIONS OF SEVERAL OF THE PARTS OF THE SIDE LEVER.
Depth of eye round end studs of lever $=.074 \times \mathrm{D}$.
Thickness of eye round end studs of lever $=\cdot 052 \times \mathrm{D}$.
Diameter of end studs, in inches $=.07 \times D$.
Length of end studs, in inches $=\cdot 076 \times \mathrm{D}$.
Diameter of air-pump studs, in inches $=.045 \times \mathrm{D}$.
Length of air-pump studs, in inches $=-049 \times$ D.
Depth of cast iron side lever across centre, in inches $=D^{\frac{2}{3}} \times$ $\{\cdot 7423 \times \text { length of lever in feet }\}^{\frac{1}{3}}$.

MARINE ENGINE.-DIMENSIONS OF SEVERAL PARTS OF AIR-PUMP CROSS-HEAD.
Diameter of air-pump, in inches $=-6 \times \mathrm{D}$.
Thickness of eye for air-pump rod, in inches $=.025 \times \mathrm{D}$.
Depth of eye for air-pump rod, in inches $=\cdot 171 \times \mathrm{D}$.
Diameter of end journals, in inches $=.051 \times \mathrm{D}$.
Length of end journals, in inches $=.058 \times \mathrm{D}$.
Thickness of web at middle, in inches $=\cdot 043 \times$ D.
Depth of web at middle, in inches $=\cdot 161 \times \mathrm{D}$.
Thickness of web at journal $=\cdot 037 \times$ D.
Depth of web at journal $=\cdot 061 \times \mathrm{D}$.

$$
\begin{aligned}
& \text { MARINE ENGINE.-DIMENSIONS OF THE PARTS OF AIR-PUMP } \\
& \text { PISTON-ROD. }
\end{aligned}
$$

Diameter of air-pump piston-rod, when of copper, in inches $=$ $.967 \times$ D.

Depth of gibs and cutter through cross-head, in inches $=$ $\cdot 063 \times$ D.

Thickness of gibs and cutter through cross-head, in inches $=$ $\cdot 013 \times$ D.

Depth of cutter through piston, in inches $=.051 \times \mathrm{D}$.
Thickness of cutter through piston, in inches $=\cdot 021 \times \mathrm{D}$.
MARINE ENGINE.-DIMENSIONS OF THE REMAINING PARTS OF THE AIR-PUMP MACHINERY.
Diameter of air-pump side rods at ends, in inches $=.039 \times \mathrm{D}$.
Breadth of butt, in inches $=\cdot 046 \times$ D.
Thickness of butt, in inches $=.037 \times$ D.
Mean thickness of strap at cutter, in inches $=.019 \times \mathrm{D}$.
Mean thickness of strap below cutter, in inches $=\cdot 014 \times \mathrm{D}$.
Depth of gibs and cutter, in inches $=.048 \times \mathrm{D}$.
Thickness of gibs and cutter in inches $=\mathrm{D} \div 100$.
MARINE AND LAND ENGINES.-AREA OF STEAM PORTS.
Area of each steam port, in square inches $=11 \times l \times \mathrm{D}^{2} \div$ $1800+8$.

MARINE AND LAND ENGINES. - DIMENSIONS OF BRANCH STEAM PIPES.
Diameter of each branch steam pipe $=\sqrt{\cdot 00498 \times l \times \mathrm{D}^{2} \times 10 \cdot 2}$.
MARINE ENGINE.-DIMENSIONS OF SEVERAL OF THE PIPES CONNECTED WITH THE ENGINE.
Diameter of waste water pipe, in inches $=1.2 \times \sqrt{\mathrm{H} . \mathrm{P}}$.
Area of foot-valve passage, in square inches $=1.8 \times \mathrm{H} . \mathrm{P} .+8$.
Area of injection pipe, in square inches $=.069 \times$ H.P. $+2 \cdot 81$.
Diameter of feed pipe, in inches $=\sqrt{\cdot 04 \times \text { H.P. }+3}$.
Diameter of waste steam pipe in inches $=\sqrt{ } \cdot 375 \times$ H.P. $+16 \cdot 875$.
MARINE AND LAAND ENGINES.-DIMENSIONS OF SAFETY-VALVES.
Diam. of safety-valve, when one only is used $=\sqrt{.5 \times \text { H.P. }+22.5}$. Diam. of safety-valve, when two are used $=\sqrt{\cdot 25 \times \text { H.P. }+11 \cdot 25}$.
Diam. of safety-valve, when three are used $=\sqrt{\cdot 167 \times \text { H.P. }+7 \cdot 5}$.
Diam. of safety-valve, when four are used $=\sqrt{\cdot 125 \times \text { H.P. }+5 \cdot 625}$.

> LAND ENGINE.-DIMENSIONS OF MAIN beam.

Depth of web of main beam across centre $=$
$\sqrt[3]{3 \times \mathrm{D}^{2} \times \text { half length of main beam in feet. }}$
Depth of main beam at ends $=$.
$\sqrt[3]{ } \cdot 192 \times \mathrm{D}^{2} \times$ half length of main beam, in feet.
LAND AND MARINE ENGINES.-CONTENT OF FEED-PUMP.
Content of feed-pump, in cubic inches $=\mathrm{D}^{2} \times l \div 30$.
LAND ENGINES.-CONTENT OF COLD WATER PUMP.
Content of cold water pump, in cubic feet $=D^{2} \times l \div 4400$

LAND ENGINES.-DIMENSIONS OF CRANK.
Thickness of large eye of crank, in inches $=$

$$
\sqrt[3]{\mathrm{D}^{2} \times\left(1 \cdot 561 \times \mathrm{R}^{2}+\cdot 1235 \mathrm{D}^{2}\right) \div(\mathrm{R} \times 666 \cdot 283)}
$$

Breadth of web of crank at fly-wheel shaft centre, in inches $=$

$$
\sqrt[3]{\mathrm{D}^{2} \times \sqrt{ }\left(1.561 \times \mathrm{R}^{2}+1235 \times \mathrm{D}^{2}\right) \div 23 \cdot 04}
$$

Thickness of web of crank at fly-wheel shaft centre, in inches $=$ $\sqrt[3]{\mathrm{D}^{2} \times \sqrt{ }\left(1.561 \times \mathrm{R}^{2}+\cdot 1235 \times \mathrm{D}^{2}\right) \div 184 \cdot 32}$.

LAND, ENGINES. -DIMENSIONS OF FLY-WHEEL SHAFT.
Diameter of fly-wheel shaft, when of cast iron $=3025 \times \sqrt[3]{\mathrm{R} \times \mathrm{D}^{2}}$.

dimensions of parts ôf locomotives.

DIAMETER OF CYLINDER.

In locomotive engines, the diameter of the cylinder varies less than either the land or the marine engine. In few of the locomotive engines at present in use is the diameter of the cylinder greater than 16 inches, or less than 12 inches. The length of the stroke of nearly all the locomotive engines at present in use is 18 inches, and there are always two cylinders, which are generally connected to cranks upon the axle, standing at right angles with one another.

AREA OF INDUCTION PORTS.

Rule.-To find the size of the steam ports for the locomotive engine.-Multiply the square of the diameter of the cylinder by $\cdot 068$. The product is the proper size of the steam ports in square inches.

Required the proper size of the steam ports of a locomotive engine whose diameter is 15 inches. Here, according to the rule, size of steam ports $=.068 \times 15 \times 15=\cdot 068 \times 225=15.3$ square inches, or between $15 \frac{1}{4}$ and $15 \frac{1}{2}$ square inches.

After having determined the area of the ports, we may easily find the depth when the length is given, or, conversely, the length when the depth is given. Thus, suppose we knew that the length was 8 inches, then we find that the depth should be $15 \cdot 3 \div 8=$ 1.9125 inches, or nearly 2 inches; or suppose we knew the depth was 2 inches, then we would'find that the length was $15 \cdot 3 \div 2=$ $7 \cdot 65$ inches, or nearly $7 \frac{3}{4}$ inches.

AREA OF EDUCTION PORTS.

The proper area for the eduction ports may be found from the following rule.

Rule.-To find the area of the eduction ports.-Multiply the square of the diameter of the cylinder in inches by $\cdot 128$. The product is the area of the eduction ports in square inches.

Required the area of the eduction ports of a locomotive engine,
when the diameter of the cylinders is 13 inches. In this example we have, according to the rule,

Area of eduction port $=\cdot 128 \times 13^{2}=\cdot 128 \times 169=21.632$ inches, or between $21 \frac{1}{2}$ and $21 \frac{3}{4}$ square inches.

BREADTH OF BRIDGE BETWEEN PORTS.

The breadth of the bridges between the eduction port and the induction ports is usually between $\frac{3}{4}$ inch and 1 inch.

DIAMETER OF BOILER.

It is obvious that the diameter of the boiler may vary very considerably; but it is limited chiefly by considerations of strength; and 3 feet are found a convenient diameter. Rules for the strength of boilers will be given hereafter.

Rule.-To find the inside diameter of the boiler.-Multiply the diameter of the cylinder in inches by $3 \cdot 11$. The product is the inside diameter of the boiler in inches.

Required the inside diameter of the boiler for a locomotive engine, the diameter of the cylinders being 15 inches.

In this example we have, according to the rule, Inside diameter of boiler $=15 \times 3 \cdot 11=46 \cdot 65$ inches, or about 3 feet $10 \frac{5}{8}$ inches.

LENGTH OF BOILER.

The length of the boiler is usually in practice between 8 feet and $8 \frac{1}{2}$ feet.

DIAMETER OF STEAM DOME, INSIDE.

It is obvious that the diameter of the steam dome may be varied considerably, according to circumstances; but the first-indication is to make it large enough. It is usual, however, in practice, to proportion the diameter of the steam dome to the diameter of the cylinder; and there appears to be no great objection to this. The following rule will be found to give the diameter of the dome usually adopted in practice.

Rule.-To find the diameter of the steam dome.-Multiply the diameter of the cylinder in inches by $1 \cdot 43$. The product is the diameter of the dome in inches.

Required the diameter of the steam dome for a locomotive engine whose diameter of cylinders is 13 inches. In this example we have, according to the rule,

Diameter of steam dome $=1.43 \times 13=18.59$ inches, or about $18 \frac{1}{2}$ inches.

HEIGHT OF STEAM DOME.

The height of the steam dome may vary. Judging from practice, it appears that a uniform height of $2 \frac{1}{2}$ feet would answer very well.

DIAMETER OF SAFETY-VALVE.

In practice the diameter of the safety-valve varies considerably. The following rule gives the diameter of the safety-valve usually adopted in practice.

Rule.-To find the diameter of the safety-valve.-Divide the diameter of the cylinder in inches by 4 . The quotient is the diameter of the safety-valve in inches.

Required the diameter of the safety-valves for the boiler of a locomotive engine, the diameter of the cylinder being 13 inches. Here, according to the rule, diameter of safety-valve $=13 \div 4=3 \frac{1}{4}$ inches. A larger size, however, is preferable, as being less likely to stick.

DIAMETER OF VALVE SPINDLE.

The following rule will be found to give the correct diameter of the valve spindle. It is entirely founded on practice.

Rule.-To find the diameter of the valve spindle.-Multiply the diameter of the cylinder in inches by 076 . The product is the proper diameter of the valve spindle.

Required the diameter of the valve spindle for a locomotive engine whose cylinders' diameters are 13 inches.

In this example we have, according to the rule, diameter of valve spindle $=13 \times \cdot 076=\cdot 988$ inches, or very nearly 1 inch .

DIAMETER OF CHIMNEY.

It is usual in practice to make the diameter of the chimney equal to the diameter of the cylinder. Thus a locomotive engine whose cylinders' diameters are 15 inches would have the inside diameter of the chimney also 15 inches, or thereabouts. This rule has, at least, the merit of simplicity.

AREA OF FIRE-GRATE.

The following rule determines the area of the fire-grate usually given in practice. We may remark, that the area of the fire-grate in practice follows a more certain rule than any other part of the engine appears to do; but it is in all cases much too small, and occasions a great loss of power by the urging of the blast it renders necessary, and a rapid deterioration of the furnace plates from excessive heat. There is no good reason why the furnace should not be nearly as long as the boiler: it would then resemble the furnace of a marine boiler, and be as manageable.

Rule.-To find the area of the fire-grate.-Multiply the diameter of the cylinder in inches by $\cdot 77$. The product is the area of the firegrate in superficial feet.

Required the area of the fire-grate of a locomotive engine, the diameters of the cylinders being 15 inches.

In this example we have, according to the rule,

$$
\text { Area of fire-grate }=.77 \times 15=11.55 \text { square feet, }
$$ or about $11 \frac{1}{2}$ square feet. Though this rule, however, represents

the usual practice, the area of the fire-grate should not be contingent upon the size of the cylinder, but upon the quantity of steam to be raised.

AREA OF HEATING SURFACE.

In the construction of a locomotive engine, one great object is to obtain a boiler which will produce a sufficient quantity of steam with as little bulk and weight as possible. This object is admirably accomplished in the construction of the boiler of the locomotive engine. This little barrel of tubes generates more steam in an hour than was formerly raised from a boiler and fire occupying a considerable house. This favourable result is obtained simply by exposing the water to a greater amount of heating surface.

In the usual construction of the locomotive boiler, it is obvious that we can only consider four of the six faces of the inside fire-box as effective heating surface; viz. the crown of the box, and the three perpendicular sides. The circumferences of the tubes are also effective heating surface; so that the whole effective heating surface of a locomotive boiler may be considered to be the four faces of the inside fire-box, plus the sum of the surfaces of the tubes. Understanding this to be the effective heating surface, the following rule determines the average amount of heating surface usually given in practice.

Rule.-To find the effective heating surface.-Multiply the square of the diameter of the cylinder in inches by 5 ; divide the product by 2 . The quotient is the area of the effective heating surface in square feet.

Required the effective heating surface of the boiler of a locomotive engine, the diameters of the cylinders being 15 inches.

In this example we have, according to the rule,
Effective heating surface $=15^{2} \times 5 \div 2=225 \times 5 \div 2=1125 \div$ $2=562 \frac{1}{2}$ square feet.

According to the rule which we have given for the fire-grate, the area of the fire-grate for this boiler would be about $11 \frac{1}{2}$ square feet. We may suppose, therefore, the area of the crown of the box to be 12 square feet. The area of the three perpendicular sides of the inside fire-box is usually three times the area of the crown; so that the effective heating surface of the fire-box is 48 square feet. Hence the heating surface of the tubes $=526 \cdot 5-48=478.5$ square feet. The inside diameters of the tubes are generally about $1 \frac{3}{4}$ inches; and therefore the circumference of a section of these tubes, according to the table, is 5.4978 inches. Hence, supposing the tube to be $8 \frac{1}{2}$ feet long, the surface of one $=5 \cdot 4978 \times 8 \frac{1}{2} \div 12=$ $\cdot 45815 \times 8 \frac{1}{2}=3.8943$ square feet; and, therefore, the number of tubes $=478 \cdot 5 \div 3 \cdot 8943=123$ nearly. The amount of heating surface, however, like that of grate surface, is properly a function of the quantity of steam to be raised, and the proportions of both, given hereafter, will be found to answer well for boilers of every description.

AREA OF WATER-LEVEL.

This, of course, varies with the different circumstances of the boiler. The average area may be found from the following rule.

Rule.-To find the area of the water-level.-Multiply the diameter of the cylinder in inches by $2 \cdot 08$. The product is the area of the water-level in square feet.

Required the area of the water-level for a locomotive engine, whose cylinders' diameters are 14 inches.

In this case we have, according to the rule,
Area of water-level $=14 \times 2.08=29 \cdot 12$ square feet.
cubical content of water in boiler.
This, of course, varies not only in different boilers, but also in the same boiler at different times. The following rule is supposed to give the average quantity of water in the boiler.

Rule.-To find the cubical content of the water in the boiler.Multiply the square of the diameter of the cylinder in inches by 9 : divide the product by 40 . The quotient is the cubical content of the water in the boiler in cubic feet.

Required the average cubical content of the water in the boiler of a locomotive engine, the diameters of the cylinders being 14 inches. In this example we have, according to the rule,

Cubical content of water $=9 \times 14^{2} \div 40=44 \cdot 1$ cubic, feet.
CONTENT OF FEED-PUMP.
In the locomotive engine, the feed-pump is generally attached to the cross-head, and consequently it has the same stroke as the piston. As we have mentioned before, the stroke of the locomotive engine is generally in practice 18 inches. Hence, assuming the stroke of the feed-pump to be constantly 18 inches, it only remains for us to determine the diameter of the ram. It may be found from the following rule.

Rule.-To find the diameter of the feed-pump ram.-Multiply the square of the diameter of the cylinder in inches by $\cdot 011$. The product is the diameter of the ram in inches.

Required the diameter of the ram for the feed-pump for a locomotive engine whose diameter of cylinder is 14 inches. In this example we have, according to the rule,

Diameter of $\mathrm{ram}=\cdot 011 \times 14^{2}=\cdot 011 \times 196=2 \cdot 156$ inches, or between 2 and $2 \frac{1}{4}$ inches.

CUBICAL CONTENT OF STEAM ROOM.

The quantity of steam in the boiler varies not only for different boilers, but even for the same boiler in different circumstances. But when the locomotive is in motion, there is usually a certain proportion of the boiler filled with the steam. Including the dome and the steam pipe, the content of the steam room will be found usually to be somewhat less than the cubical content of the water.

But as it is desirable that it should be increased, we give the following rule.

Rule.-To find the cubical content of the steam room.-Multiply the square of the diameter of the cylinder in inches by 9 ; divide the product by 40 . The quotient is the cubical content of the steam room in cubic feet.

Required the cubical content of the steam room in a locomotive boiler, the diameters of the cylinders being 12 inches.

In this example we have, according to the rule,
Cubical content of steam room $=9 \times 12^{2} \div 40=9 \times 144 \div 40=$ $32 \cdot 4$ cubic feet.

CUBICAL CONTENT OF INSIDE FIRE-BOX ABOVE FIRE-BARS.

The following rule determines the cubical content of fire-box usually given in practice.

Rule.-To find the cubical content of inside fire-box above fire-bars.-Divide the square of the diameter of the cylinder in inches by 4 . The quotient is the content of the inside fire-box above firebars in cubic feet.

Required the content of inside fire-box above fire-bars in a locomotive engine, when the diameters of the cylinders are each 15 inches.

In this example we have, according to the rule,
Content of inside fire-box above fire-bars $=15^{2} \div 4=225 \div 4=$ $56 \frac{1}{4}$ cubic feet.

THICKNESS OF THE PLATES OF BOILER.

In general, the thickness of the plates of the locomotive boiler is $\frac{3}{8}$ inch. In some cases, however, the thickness is only $\frac{5}{16}$ inch.

INSIDE DIAMETER OF STEAM PIPE.
The diameter usually given to the steam pipe of the locomotive engine may be found from the following rule.

Rule.-To find the diameter of the steam pipe of the locomotive engine.-Multiply the square of the diameter of the cylinder in inches by $\cdot 03$. The product is the diameter of the steam pipe in inches.

Required the diameter of the steam pipe of a locomotive engine, the diameter of the cylinder being 13 inches. Here, according to the rule, diameter of steam pipe $=03 \times 13^{2}=.03 \times 169=5.07$ inches; or a very little more than 5 inches. The steam pipe is usually made too small in engines intended for high speeds.

DIAMETER OF BRANCH STEAM PIPES.
The following rule gives the usual diameter of the branch steam pipe for locomotive engines.

Rule.-To find the diameter of the branch steam pipe for the locomotive engine.-Multiply the square of the diameter of the cylinder in inches by $\cdot 021$. The product is the diameter of the branch steam pipe for the locomotive engine in inches.

Required the diameter of the branch steam pipes for a locomotive engine, when the cylinder's diameter is 15 inches. Here, acsording to the rule, diameter of branch pipe $=\cdot 021 \times 15^{2}=\cdot 021 \times$ $225=4 \cdot 725$ inches, or about $4 \frac{3}{4}$ inches.

DIAMETER OF TOP OF BLAST PIPE.

The diameter of the top of the blast pipe may be found from the following rule.

Rule.-To find the diameter of the top of the blast pipe.-Multiply the square of the diameter of the cylinder in inches by $0 \cdot 17$. The product is the diameter of the top of the blast pipe in inches.

The diameter of a locomotive engine is 13 inches; required the diameter of the blast pipe at top. Here, according to the rule, diameter of blast pipe at top $=017 \times 13^{2}=\cdot 017 \times 169=2.873$ inches, or between $2 \frac{3}{4}$ and 3 inches; but the orifice of the blast pipe should always be made as large as the demands of the blast will permit.

DIAMETER OF FEED PIPES.

There appear to be no theoretical considerations which would lead us to determine exactly the proper size of the feed pipes. Judging from practice, however, the following rule will be found to give the proper dimensions.

Rule.-To find the diameter of the feed pipes.-Multiply the diameter of the cylinder in inches by $\cdot 141$. The product is the proper diameter of the feed pipes.
Required the diameter of the feed pipes for a locomotive engine, the diameter of the cylinder being 15 inches.

In this example we have, according to the rule,
Diameter of feed-pipe $=15 \times \cdot 141=2 \cdot 115$ inches, or between 2 and $2 \frac{1}{4}$ inches.

DIAMETER OF PISTON ROD.

The diameter of the piston rod for the locomotive engine is usually about one-seventh the diameter of the cylinder. Making practice our guide, therefore, we have the following rule.

Rule.-To find the diameter of the piston rod for the locomotive engine.-Divide the diameter of the cylinder in inches by 7. The quotient is the diameter of the piston rod in inches.

The diameter of the cylinder of a locomotive engine is 15 inches; required the diameter of the piston rod. Here, according to the rule, diameter of piston rod $=15 \div 7=2 \frac{1}{4}$ inches.

THICKNESS OF PISTON.

The thickness of the piston in locomotive engines is usually about two-sevenths of the diameter of the cylinder. Making practice our guide, therefore, we have the following rule.

Rule.-To find the thickness of the piston in the locomotive en-gine.-Multiply the diameter of the cylinder in inches by 2 ; divide
the product by 7 . The quotient is the thickness of the piston in inches.

The diameter of the cylinder of a locomotive engine is 14 inches; required the thickness of the piston. Here, according to the rule, thickness of piston $=2 \times 14 \div 7=4$ inches.

DIAMETER OF CONNECTING RODS AT MIDDLE.

The following rule gives the diameter of the connecting rod at middle. The rule, we may remark, is entirely founded on practice.

Rule.-To find the diameter of the connecting rod at middle of the locomotive engine.-Multiply the diameter of the cylinder in inches by $\cdot 21$. The product is the diameter of the connecting rod at middle in inches.

Required the diameter of the connecting rods at middle for a locomotive engine, the diameter of the cylinders being twelve inches.

For this example we have, according to the rule,
Diameter of connecting rods at middle $=12 \times \cdot 21=2.52$ inches, or $2 \frac{1}{2}$ inches.

DIAMETER OF BALL ON CROSS-HEAD SPINDLE.

The diameter of the ball on the cross-head spindle may be found from the following rule.

Rule.-To find the diameter of the ball on cross-head spindle of a locomotive engine.-Multiply the diameter of the cylinder in inches by $\cdot 23$. The product is the diameter of the ball on the cross-head spindle.

Required the diameter of the ball on the cross-head spindle of a locomotive engine, when the diameter of the cylinder is 15 inches. Here, according to the rule,

Diameter of ball $=\cdot 23 \times 15=3.45$ inches, or nearly $3 \frac{1}{2}$ inches.

DIAMETER OF THE INSIDE BEARINGS OF THE CRANK AXLE.

It is obvious that the inside bearings of the crank axle of the locomotive engine correspond to the paddle-shaft journal of the marine engine, and to the fly-wheel shaft journal of the land-engine. We may conclude, therefore, that the proper diameter of these bearings ought to depend jointly upon the length of the stroke and the diameter of the cylinder. In the locomotive engine the stroke is usually 18 inches, so that we may consider that the diameter of the bearing depends solely upon the diameter of the cylinder. The following rule will give the diameter of the inside bearing.

Rule.-To find the diameter of the inside bearing for the locomotive engine.-Extract the cube root of the square of the diameter of the cylinder in inches; multiply the result by 96 . The product is the proper diameter of the inside bearing of the crank axle for the locomotive engine.

Required the diameter of the inside bearing of the crank axle
for a locomotive engine whose cylinders are of 13 -inch diameters. In this example we have, according to the rule,
$13=$ diameter of cylinder in inches.
13
$169=$ square of the diameter of cylinder.

0	0	$169(5 \cdot 5289=\sqrt[3]{169}$
$\frac{5}{5}$	$\frac{25}{25}$	$\frac{125}{44000}$
$\frac{5}{10}$	$\frac{50}{7500}$	$\frac{41375}{2625}$
$\frac{5}{150}$	$\frac{775}{8275}$	$\underline{1820}$
$\frac{5}{155}$	$\frac{800}{9075}$	$\frac{726}{79}$
$\frac{5}{160}$	$\frac{3}{910}$	
$\frac{5}{165}$	$\frac{3}{913}$	

and diameter of bearing $=5.5289 \times 96=5.31$ inches nearly; or between $5 \frac{1}{4}$ and $5 \frac{1}{2}$ inches.

DIAMETER OF THE OUTSIDE BEARINGS OF THE CRANK AXLE.

The crank axle, in addition to resting upon the inside bearings, is sometimes also made to rest partly upon outside bearings. These outside bearings are added only for the sake of steadiness, and they do not need to be so strong as the inside bearings. The proper size of the diameter of these bearings may be found from the following rule.

Rule.-To find the diameter of outside bearings for the locomotive engine.-Multiply the square of the diameters of the cylinders in inches by 396 ; extract the cube root of the product. The result is the diameter of the outside bearings in inches.

Required the proper diameter of the outside bearings for a locomotive engine, the diameter of its cylinders being 15 inches.

In this example we have, according to the rule,

$$
\begin{aligned}
\frac{15}{15} & =\text { diameter of cylinders in inches. } \\
\frac{225}{225} & =\text { square of diameter of cylinder. } \\
\frac{396}{89 \cdot 1} & =\text { constant multiplier. }
\end{aligned}
$$

0	0	$89 \cdot 1(4 \cdot 466=\sqrt[3]{89 \cdot 1}$
4	16	64 -
$\overline{4}$	$\overline{16}$	$\overline{25100}$
4	32	21184
$\overline{8}$	4800	3916
4	496	3528
$\overline{120}$	$\overline{5296}$	388
4	512	358
$\overline{124}$	$\overline{5808}$	
4	8	.
$\overline{12}$	$\overline{588}$	
4	8	
$\overline{132}$	$\overline{596}$	

Hence diameter of outside bearing $=4.466$ inches, or very nearly $4 \frac{1}{2}$ inches.

DIAMETER OF PLAIN PART OF CRANK AXLE.

It is usual to make the plain part of crank axle of the same sectional area as the inside bearings. Hence, to determine the sectional area of the plain part when it is cylindrical, we have the following rule.

RULE.-To determine the diameter of the plain part of crank axle for the locomotive engine.-Extract the cube root of the square of the diameter of the cylinder in inches; multiply the result by 96 . The product is the proper diameter of the plain part of the crank axle of the locomotive engine in inches.

Required the diameter of the plain part of the crank axle for the locomotive engine, whose cylinders' diameters are 14 inches. Ir this example we have, according to the rule,
$14=$ diameter of cylinder in inches.
14
$\overline{196}=$ square of the diameter of cylinder.

0	$\cdot 0$	$196(5 \cdot 808=\sqrt[3]{196}$
$\frac{5}{5}$	$\overline{25}$	$\frac{125}{71 \cdot 000}$
$\frac{5}{10}$	50	$\frac{70 \cdot 112}{\cdot 888}$
$\frac{5}{150}$	$\overline{7500}$	
$\frac{8}{8}$	$\underline{8764}$	
$\overline{158}$	$\overline{1328}$	
$\frac{8}{166}$		
$\frac{8}{174}$		

Hence the plain part of crank axle $=5.808 \times 96=5.58$ nearly, or a little more than $5 \frac{1}{2}$ inches.

DIAMETER OF CRANK PIN.

The following rule gives the proper diameter of the crank pin. It is obvious that the crank pin of the locomotive engine is not altogether analogous to the crank pin of the marine or land engine, and, like them, ought to depend upon the diameter of the cylinder, as it is usually formed out of the solid axle.

Rule.-To find the diameter of the crank pin for the locomotive engine.-Multiply the diameter of the cylinder in inches by 404 . The product is the diametor of the crank pin in inches.

Required the diameter of the crank pin of a locomotive engine whose cylinders' diameters are 15 inches.

In this example we have, according to the rule,
Diameter of crank pin $=15 \times 404=6.06$ inches, or about 6 inches.

LENGTH OF CRANK PIN.

The length of the crank pin usually given in practice may be found from the following rule.

Rule.-To find the length of the crank pin.-Multiply the diameter of the cylinder in inches by 233 . The product is the length of the crank pins in inches.

Required the length of the crank pins for a locomotive engine with a diameter of cylinder of 13 inches.

In this example we have, according to the rule,
Length of crank pin $=13 \times 233=3.029$ inches,
or about 3 inches. The part of the crank axle answering to the crank pin is usually rounded very much at the corners, both to give additional strength, and to prevent side play.

These then are the chief dimensions of locomotive engines according to the practice most generally followed. The establishment of express trains and the general exigencies of steam locomotion are daily introducing innovations, the effect of which is to make the engines of greater size and power: but it cannot be said that a plan of locomotive engine has yet been contrived that is free from grave objections. The most material of these defects is the necessity that yet exists of expending a large proportion of the power in the production of a draft; and this evil is traceable to the inadequate area of the fire-grate, which makes an enormous rush of air through the fire necessary to accomplish the combustion of the fuel requisite for the production of the steam. To gain a sufficient area of fire-grate, an entirely new arrangement of engine must be adopted: the furnace must be greatly lengthened, and perhaps it may be found that short upright tubes, or the very ingenious arrangement of Mr. Dimpfell, of Philadelphia, may be introduced with advantage. Upright tubes have been found to be more effectual in raising steam than horizontal tubes; but the tube plate in the case of upright tubes would be more liable to burn.

We here give the preceding rules in formulas, in the belief that those well acquainted with algebraic symbols prefer to have a rule expressed as a formula, as they can thus see at once the different operations to be performed. In the following formulas we denote the diameter of the cylinder in inches by D .

LOCOMOTIVE ENGINE.-PARTS OF THE CYLINDER.

Area of induction ports, in square inches $=\cdot 068 \times \mathrm{D}^{2}$. Area of eduction ports, in square inches $=\cdot 128 \times \mathrm{D}^{2}$. Breadth of bridge between ports between $\frac{3}{4}$ inch and 1 inch.

LOCOMOTIVE ENGINE.-PARTS OF BOILER.

Diameter of boiler, in inches $=3.11 \times \mathrm{D}$.
Length of boiler between 8 feet and 12 feet.
Diameter of steam dome, inside, in inches $=1.43 \times \mathrm{D}$.
Height of steam dome $=2 \frac{1}{2}$ feet.
Diameter of safety valve, in inches $=\mathrm{D} \div 4$.
Diameter of valve spindle, in inches $=076 \times \mathrm{D}$.
Diameter of chimney, in inches $=\mathrm{D}$.
Area of fire-grate, in square feet $=\cdot 77 \times \mathrm{D}$.
Area of heating surface, in square feet $=5 \times \mathrm{D}^{2} \div 2$.
Area of water level, in square feet $=2.08 \times \mathrm{D}$.
Cubical content of water in boiler, in cubic feet $=9 \times \mathrm{D}^{2} \div 40$.
Diameter of feed-pump ram, in inches $=\cdot 011 \times \mathrm{D}^{2}$.
Cubical content of steam room, in cubic feet $=9 \times \mathrm{D}^{2} \div 40$.
Cubical content of inside fire-box above fire bars, in cubic feet $=$ $D^{2} \div 4$.

Thickness of the plates of boiler $=\frac{3}{8}$ inch.
LOCOMOTIVE ENGINE.-DIMENSIONS OF SEVERAL PIPES.
Inside diameter of steam pipe, in inches $=.03 \times \mathrm{D}^{2}$.
Inside diameter of branch steam pipe, in inches $=\cdot 021 \times \mathrm{D}^{2}$.
Inside diameter of the top of blast pipe $=\cdot 017 \times \mathrm{D}^{2}$.
Inside diameter of the feed pipes $=\cdot 141 \times$ D. ${ }^{\prime}$
LOCOMOTIVE ENGINE.-DIMENSIONS OF SEVERAL MOVING PARTS.
Diameter of piston rod, in inches $=\mathrm{D} \div 7$.
Thickness of piston, in inches $=2 \mathrm{D} \div 7$.
Diameter of connecting rods at middle, in inches $=21 \times \mathrm{D}$.
Diameter of the ball on cross-head spindle, in inches $=23 \times \mathrm{D}$.
Diameter of the inside bearings of the crank axle, in inches $=$ $\cdot 96 \times \sqrt[3]{ } \mathrm{D}^{2}$.

Diameter of the plain part of crank axle, in inches $=96 \times \sqrt[3]{\mathrm{D}^{2}}$.
Diameter of the outside bearings of the crank axle, in inches $=$ $\sqrt[3]{ } \cdot 396 \times \mathrm{D}^{2}$.

Diameter of crank pin, in inches $=.404 \times \mathrm{D}$.
Length of crank pin, in inches $=\cdot 233 \times \mathrm{D}$.

Table of the Pressure of Steam, in Inches of Mercury, at different Temperatures.

$\begin{aligned} & \text { Tempe- } \\ & \text { rature, } \\ & \text { Fahren- } \\ & \text { heit. } \end{aligned}$	Dalton.	Ure.	Young.	Ivory.	Tredgold.	Soathern.	Robison.	Watt.
0°	$0 \cdot 08$	-••	-..
10	$0 \cdot 12$...	\cdots
20	$0 \cdot 17$...	$0 \cdot 11$
32	0.26	$0 \cdot 20$	$0 \cdot 18$...	$0 \cdot 17$	$0 \cdot 16$	$0 \cdot 00$	
40	$0 \cdot 34$	$0 \cdot 25$	$0 \cdot 20$...	$0 \cdot 24$	$0 \cdot 22$	$0 \cdot 10$	
50	$0 \cdot 49$	$0 \cdot 36$	$0 \cdot 36$	$0 \cdot 36$	$0 \cdot 37$	$0 \cdot 33$	$0 \cdot 20$...
60	$0 \cdot 65$	$0 \cdot 52$	$0 \cdot 53$	-...	0.55	$0 \cdot 48$	$0 \cdot 35$	
70	0.87	$0 \cdot 73$	$0 \cdot 75$	$0 \cdot 73$	0.78	$0 \cdot 68$	$0 \cdot 55$	$0 \cdot 77$
80	1-16	1.01	1.05	\cdots	$1 \cdot 11$	0.95	$0 \cdot 82$...
90	1.59	1.36	$1 \cdot 44$	$1 \cdot 36$	$1 \cdot 53$	$1 \cdot 34$	1.18	
100	$2 \cdot 12$	$1 \cdot 86$	1.95	\cdots	$2 \cdot 08$	$1 \cdot 84$	$1 \cdot 60$	$1 \cdot 55$
110	$2 \cdot 79$	$2 \cdot 45$	$2 \cdot 62$	$2 \cdot 46$	2.79	$2 \cdot 56$	$2 \cdot 25$...
120	$3 \cdot 63$	$3 \cdot 30$	$3 \cdot 46$	-..	$3 \cdot 68$	$3 \cdot 46$	$3 \cdot 00$...
130	$4 \cdot 71$	$4 \cdot 37$	$4 \cdot 54$	$4 \cdot 41$	$4 \cdot 81$	$4 \cdot 43$	$3 \cdot 95$	\cdots
140	$6 \cdot 05$	$5 \cdot 78$	$5 \cdot 88$		$6 \cdot 21$	$5 \cdot 75$	$5 \cdot 15$	$5 \cdot 14$
150	$7 \cdot 73$	$7 \cdot 53$	$7 \cdot 55$	$7 \cdot 42$	$7 \cdot 94$	$7 \cdot 46$	$6 \cdot 72$	
160	$9 \cdot 79$	$9 \cdot 60$	$9 \cdot 62$	\cdots	10.05	$9 \cdot 52$	$8 \cdot 65$	$8 \cdot 92$
170	$12 \cdot 31$	12.05	$12 \cdot 14$	12.05	$12 \cdot 60$	$12 \cdot 14$	11.05	11.37
180	$15 \cdot 38$	$15 \cdot 16$	$15 \cdot 23$		$15 \cdot 67$	$15 \cdot 20$	14.05	12.73
190	$18 \cdot 98$	$19 \cdot 00$	$18 \cdot 96$	18.93	$19 \cdot 00$...	17.85	19.00
200	$23 \cdot 51$	$23 \cdot 60$	23.44		$23 \cdot 71$...	$22 \cdot 65$...
210	28.82	28.88	${ }^{-} 28.81$	28.81	$28 \cdot 86$		$28 \cdot 62$	
212	$30 \cdot 00$	30.00	$30 \cdot 00$	$29 \cdot 40$				
220	$35 \cdot 18$	$35 \cdot 54$	$35 \cdot 19$		$34 \cdot 92$...	$35 \cdot 8$	$33 \cdot 65$
230	$44 \cdot 60$	$43 \cdot 10$	$42 \cdot 47$	-42-63	$42 \cdot 00$...	$44 \cdot 5$	40
240	$53 \cdot 45$	$51 \cdot 70$	$51 \cdot 66$...	$50 \cdot 24$...	$54 \cdot 9$	$49 \cdot 0$

Table of the Temperature of Steam at different Pressures in Atmospheres.

Pressure in Atmospheres.	Freneh Academy.	Dr. Ure.	Young.	Ivory.	Tredgold.	Southern.	Robison.	Watt.	Franklin Institute.
1st At.	$212 \cdot 0^{\circ}$	212°	212°	212°	212°		\ldots	212°	212°
2d At.	$250 \cdot 5$	$250 \cdot 0$	$240 \cdot 3$	249	250	$250 \cdot 3$	\ldots	$252 \cdot 5$	$250 \cdot 0$
3d At.	$275 \cdot 2$	$275 \cdot 0$	271	\ldots	274	\ldots	267	\ldots	$275 \cdot 2$
4th At.	$293 \cdot 7$	$291 \cdot 5$	288	290	294	$293 \cdot 4$	\ldots	\ldots	$291 \cdot 5$
5 th At.	$308 \cdot 8$	$304 \cdot 5$	302	\ldots	309	\ldots	\ldots	\ldots	$304 \cdot 5$
6 th At.	$320 \cdot 4$	$315 \cdot 5$	\ldots	\ldots	322	\ldots	\ldots	\ldots	$315 \cdot 5$
7 th At.	$331 \cdot 7$	$325 \cdot 5$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$326 \cdot 5$
8th At.	$342 \cdot 0$	$336 \cdot 0$	\ldots	337	342	$343 \cdot 6$	\ldots	\ldots	$336 \cdot 0$
9 th At.	$350 \cdot 0$	$345 \cdot 0$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$345 \cdot 0$
10 th At.	$358 \cdot 9$	\ldots	$352 \cdot 5$						
11th At.	$366 \cdot 8$	\ldots							
19th At.	$374 \cdot 0$	\ldots	\ldots	\ldots	372	\ldots	\ldots	\ldots	\ldots
13th At.	$380 \cdot 6$	\ldots							
14th At.	$386 \cdot 9$	\ldots							
15th At.	$392 \cdot 8$	\ldots	$383 \cdot 8$						
16th At.	$398 \cdot 5$	\ldots							
17th At.	$403 \cdot 8$	\ldots							
18th At.	$408 \cdot 9$	\ldots							
19th At.	$413 \cdot 9$	\ldots							
20th At.	$418 \cdot 5$	\ldots	\ldots	\ldots	414	\ldots	\ldots	\ldots	405
30th At.	$457 \cdot 2$	\ldots							
40th At.	$466 \cdot 6$	\ldots							
50th At.	$510 \cdot 6$	\ldots							

Table of the Expansion of Air by Heat.

Fahren. 32	Fahren. 61 1069	Fahren. 90 1132
33 1002	62 1071	. 91 1134
34 1004	63 1073	92 1136
35 1007	64 1075	93 1138
36 1009	65 1077	94 1140
37 1012	66 1030	95 1142
38 1015	67 1080	96 1144
39 1018	68 1034	97 1146
40 1021	69 1087	98 1148
41 1023	70 1089	99 1150
42 1025	71 1091	100 1152
43 1027	72 1093	110 1173
44 1030	73 1095	120 1194
45 1032	74 1097	130 1215
46 1034	75 1099	140 1235
47 1036	76 1101	150 1255
48 1038	77 1104	160 1275
49 1040	78 1106	170 1295
50 1043	79 1108	180 1315
51 1045	80 1110	190 1334
52 1047	81 1112	200 1364
53 1050	82 1114	210 1372
54 1052	83 1116	212 1376
55 1055	84 1118	302 1558
56 1057	85 1121	392 1739
57 1059	86 1123	482 1919
58 1062	87 1125	572 2098
59 1064	88 1128	680 2312
60 1066	89 1130	

Strengit of materials.
The chief materials, of which it is necessary to record the strength in this place, are cast and malleable iron; and many experiments have been made at different times upon each of these substances, though not with any very close correspondence. The following is a summary of them :-

Materials.	c	s	E	M
$\text { Iron, cast }\left\{\begin{array}{l} \text { from................. } \\ \text { to } \end{array}\right.$	$\left.\begin{array}{l}16300 \\ 36000\end{array}\right\}$	8100	69120000	5530000
—— Malleable.......................	$\begin{aligned} & 60000 \\ & 80000 \end{aligned}$	9000	91440000	6770000

The first column of figures, marked C, contains the mean strength of cohesion on an inch section of the material; the second, marked S , the constant for transverse strains; the third, marked E, the constant for deflections; and the fourth, marked M, the modulus of elasticity. The introduction of the hot blast iron brought with it the impression that it was less strong than that previously in use, and the experiments which had previously been confided in as giving results near enough the truth, for all practical purposes, were no longer considered to be applicable to the new state of things. New experiments were therefore made. The following Table gives, we have no doubt, results as nearly correct as can be required or attained :-

RESULTS OF EXPERIMENTS ON THE STRENGTH AND OTHER PRO－ PER＇TIES OF CAST IRON．

In the following．Table each bar is reduced to exactly one inch square；and the transverse strength，which may be taken as a criterion of the value of each Iron，is obtained from a mean between the experiments upon it；－first on bars 4 ft .6 in ．between the supports；and next on those of half the length，or 2 ft .3 in ．be－ tween the supports．All the other results are deduced from the 4 ft .6 in ．bars．In all cases the weights were laid on the middle of the bar．

Name or Iron．		 产感 으을 $\stackrel{\circ}{\circ}$ 总。 㲅害总			$\begin{aligned} & \hline \text { Mean breaking weight in } \\ & \text { ibs. } \\ & \text { (S.) } \\ & \hline \end{aligned}$	ㅅㅕㅕㄹ 훙名菭 認苟号品		Colour．
Dickerson＇s，Newark	7－030	18470000	510	532	600	1.530	991	Gray
Ponkey，No．3．Cold B	F－122	17211000	567	595	581	1.747	992	Whitish gray
Devon，No．3．Hot Blast＊	$7 \cdot 251$	22473650	537		537	1.09	589	White
Oldberry，No．3．Hot Blast	$7 \cdot 300$	22733400	543	517	530	1.005	549	White
Pattison，N．J．Hot Blast＊	$7 \cdot 056$	17873100	520	534	527	$1 \cdot 365$	710	Whitish gray
Beaufort，No．3．Hot Bla	$7 \cdot 069$	16802000	505	529	517	1.599	807	Dullish gray
Pennsylvanian	$7 \cdot 8$	15379500	500	515	502	1.815	889	Dark gray
Bute，No．1．Cold Blast	$7 \cdot 066$	15163000	495	487	491	1.764	872	Bluish gray
Wind Mill End，No．2．Cold Blast	$7 \cdot 071$	16490000	483	495	489	1.581	765	Dark gray
Old Park，No．2．Cold Blast ．．．	$7 \cdot 049$	－ 14607000	441	529	485	1.621	718	Gray
Beaufort，No．2．Hot Blast．	$7 \cdot 108$	16301000	478	470	474	1.512	729	Dull gray
Low Moor，No．2．Cold Blas	$7 \cdot 055$	14509500	462	483	47.2	$1 \cdot 852$	855	Dark gray
Buffery，No．1．Cold Blast＊	$7 \cdot 079$	15381200	463		463	$1 \cdot 55$	721	Gray
Brimbo，No．2．Cold Blast－	$7 \cdot 017$	14911666	466	453	459	$1 \cdot 748$	815	Light gray
Apedale，No．2．Hot Blast	$7 \cdot 017$	14852000	457	455	456	1.730	791	Light gray
Oldberry，No．2．Cold Blast	$7 \cdot 059$	14307500	453	457	455	$1 \cdot 811$	822	Dark gray
Pentwyn，No．2．	$7 \cdot 038$	15193000	438	473	455	1.484	650	Bluish gray
Maesteg，No． 2	7.038	13959500	453	455	454	1.957	886	Dark gray
Muirkirk，No．1．Cold Blas	7－113	14003550	443	464	453	1.734	770	Bright gray
Adelphi，No．2．Cold Blast	$7 \cdot 080$	13815500	441	457	449	1.759	777	Llght gray
Blania，No．3．Cold Blast	7－159	14281466	433	464	448	1.726	747	Bright gray
Devon，No．3．Cold Blast＊	$7 \cdot 285$	22907700	448		448	$\cdot 790$	353	Light gray
Gartsherrie，No．3．Hot Blast－	7.017	13894000	427	467	417	$1 \cdot 557$	998	Light gray
Frood，No．2．Cold Blast．．．．．．	$7 \cdot 031$	13112666	460	434	447	$1 \cdot 825$	841	Light gray
Lane End，No．2．．．．．	$7 \cdot 028$	15787666	444		444	$1 \cdot 414$	629	Dark gray
Carron，No．3．Cold Blas	7.094	16246966	444	443	443	$1 \cdot 336$	593	Gray
Dundyvan，No．3．Cold	$7 \cdot 087$	16534000	456	430	443	$1 \cdot 169$	674	Dull gray
Maesteg（Marked Red）－	7.038	13971500	440	444	4 ± 2	1.887	830	Bluish gray
Corbyns Hall，No． 2	7.007	13845866	430	454	442	1.687	727	Gray
Pontypool，No． 2	$7 \cdot 080$	13136500	439	441	440	1.857	816	Dull blue
Wallbrook，No． 3	6.979	15394766	432	449	440	$1 \cdot 443$	625	Light gray
Milton，No．3．Hot Bla	7.051	15852500	427	449	438	$1 \cdot 368$	585	Gray
Buffery，No．1．Hot Bla	6.998	13730500	436		436	$1 \cdot 64$	721	Dull gray
Level，No．1．Hot Bla	$7 \cdot 080$	15452500	461	403	432	$1 \cdot 516$	699	Light gray
Pant，No． 2.	6.975	15280900	408	455	431	$1 \cdot 251$	511	Light gray
Level，No．	$7 \cdot 031$	15241000	419	439	429	$1 \cdot 358$	570	Dull gray
W．S．S．，No． 2	$7 \cdot 041$	14953333	413	446	429	$1 \cdot 339$	554	Light gray
Eagle Foundry，No．2．Hot Blast	7.038	14211000	408	446	427	$1 \cdot 512$	618	Bluish gray
Elsicar，No．2．Cold Blast．．．．．．．．	6.928	12586500	446	408	427	$2 \cdot 224$	992	Gray
Varteg，No．2．Hot Blast	$7 \cdot 007$	15012000	422	430	426	$1 \cdot 450$	621	Gray
Coltham，No．1．Hot Blas	$7 \cdot 128$	15510066	464	385	424	1.532	716	Whitish gray
Carroll，No．2．Cold Blast	$7 \cdot 069$	17036000	430	408	419	$1 \cdot 231$	530	Gray
Muirkirk，No．1．Hot Blas	6.953	13294400	417	419	418	$1 \cdot 570$	656	Bluish gray
Bierley，No．2．．．．．．．．．	7－185	16156133	404	432	418	$1 \cdot 222$	494	Dark gray
Coed－Talon，No．2．Hot Blast	6.9 c9	14322500	409	424	416	1.882	771	Bright gray
Coed－Talon，No．2．Cold Blast＊．．	6.955	14304000	408	418	413	$1 \cdot 470$	600	Gray
Monkland，No．2．Hot Blast	$6 \cdot 916$	12259500	402	404	403	1.762	709	Bluish gray
Ley＇s Works，No．1．Hot Blast．．	6.957	11539333	392		392	1.890	742	Bluish gray
Milton，No．1．Hot Blast ．．．．．．	6.976	11974500	353	386	369	1.525	538	Gray
Plaskynaston，No．2．Hot Blast．	6.916	13341633	378	387	357	1－366	517	Light gray

The irons with asterisks are taken from Experiments on Hot and Cold Blast Iron．

Rule.-To find from the above Table the breaking weight in rectangular bars, generally. Calling b and d the breadth and depth in inches, and l the distance between the supports, in feet, and putting 4.5 for 4 ft .6 in., we have $\frac{4.5 \times b d^{2} S}{l}=$ breaking weight in lbs.,-the value of S being taken from the above Table.

For example:-What weight would be necessary to break a bar of Low Moor Iron, 2 inches broad, 3 inches deep, and 6 feet between the supports? According to the rule given above, we have $b=2$ inches, $d=3$ inches, $l=6$ feet, $S=472$ from the Table. Then $\frac{4.5 \times b d^{2} S}{l}=\frac{4.5 \times 2 \times 3^{2} \times 472}{6}=6372 \mathrm{lbs}$., the breaking weight.

Table of the Cohesive Power of Bodies whose Cross Sectional Areas equal one Square Inch.

Merals.	Cohesive Power in lbs.
Swedish bar iron	65,000
Russian do.	59,470
English do	56,000
Cast steel.	134,256
Blistered do	133,152
Shear do.	127,632
Wrought copper	33,892
Hard gun-metal..	36,368
Cast copper...................................	19,072
Yellow brass, cast	17,968
Cast iron	17,628
Tin, cast.	4,736
Bismuth, cast ..	3,250
Lead, cast...	1,824
Elastic power or direct tension of wrought iron, medium quality \qquad	22,400

Note.-A bar of iron is extended 000096 , or nearly one tenthousandth part of its length, for every ton of direct strain per square inch of sectional area.

CENTRE OF GRAVITY.

The centre of gravity of a body is that point within it which continually endeavours to gain the lowest possible situation ; or it is that point on which the body, being freely suspended, will remain at rest in all positions. The centre of gravity of a body does not always exist within the matter of which the body is composed, there being bodies of such forms as to preclude the possibility of this being the case, but it must either be surrounded by the constituent matter, or so placed that the particles shall be symmetrically situated, with respect to a vertical line in which the position of the centre occurs. Thus, the centre of gravity of a ring is not in the substance of the ring itself, but, if the ring be uniform, it will be in the axis of its circumscribing cylinder; and if the ring varies:
in form or density, it will be situated nearest to those parts where the weight or density is greatest. Varying the position of a body will not cause any change in the situation of the centre of gravity; for any change of position the body undergoes will only have the effect of altering the directions of the sustaining forces, which will still preserve their parallelism. When a body is suspended by any other point than its centre of gravity, it will not rest unless that centre be in the same vertical line with the point of suspension; for, in every other position, the force which is intended to insure the equilibrium will not directly oppose the resultant of gravity upon the particles of the body, and of course the equilibrium will not obtain; the directions of the forces of gravity upon the constituent particles are all parallel to one another and perpendicular to the horizon. If a heavy body be sustained by two or more forces, their lines of direction must meet either at the centre of gravity, or in the vertical line in which it occurs.

A body cannot descend or fall downwards, unless it be in such - a position that by its motion the centre of gravity descends. If a body stands on a plane, and a line be drawn perpendicular to the horizon, and if this perpendicular line fall within the base of the body, it will be supported without falling; but if the perpendicular falls without the base of the body, it will overset. For when the perpendicular falls within the base, the body cannot be moved at all without raising the centre of gravity; but when the perpendicular falls without the base towards any side, if the body be moved towards that side, the centre of gravity will descend, and consequently the body will overset in that direction. If a perpendicular to the horizon from the centre of gravity fall upon the extremity of the base, the body may continue to stand, but the least force that can be applied will cause it to overset in that direction; and the nearer the perpendicular is to any side the easier the body will be made to fall on that side, but the nearer the perpendicular is to the middle of the base the firmer the body will stand. If the centre of gravity of a body be supported, the whole body is supported, and the place of the centre of gravity must be considered as the place of the body, and it is always in a line which is perpendicular to the horizon.

In any two bodies, the common centre of gravity divides the line that joins their individual centres into two parts that are to one another reciprocally as the magnitudes of the bodies. The products of the bodies multiplied by their respective distances from the common centre of gravity are equal. If a weight be laid upon any point of an inflexible lever which is supported at the ends, the pressure on each point of the support will be inversely as the respective distances from the point where the weight is applied. In a system of three bodies, if a line be drawn from the centre of gravity of any one of them to the common centre of the other two, then the common centre of all the three bodies divides the line into two parts that are to each other reciprocally as the
magnitude of the body from which the line is drawn to the sum of the magnitudes of the other two ; and, consequently, the single body multiplied by its distance from the common centre of gravity is equal to the sum of the other bodies multiplied by the distance of their common centre from the common centre of the system.

If there be taken any point in the straight line or lever joining the centres of gravity of two bodies, the sum of the two products of each body multiplied by its distance from that point is equal to the product of the sum of the bodies multiplied by the distance of their common centre of gravity from the same point. The two bodies have, therefore, the same tendency to turn the lever about the assumed point, as if they were both placed in their common centre of gravity. Or, if the line with the bodies moves about the assumed point, the sum of the momenta is equal to the momentum of the sum of the bodies placed at their common centre of gravity. The same property holds with respect to any number of bodies whatever, and also when the bodies are not placed in the line, but in perpendiculars to it passing through the bodies. If any plane pass through the assumed point, perpendicular to the line in which it subsists, then the distance of the common centre of gravity of all the bodies from that plain is equal to the sum of all the momenta divided by the sum of all the bodies. We may here specify the positions of the centre of gravity in several figures of very frequent occurrence.

In a straight line, or in a straight bar or rod of uniform figure and density, the position of the centre of gravity is at the middle of its length. In the plane of a triangle the centre of gravity is situated in the straight line drawn from any one of the angles to the middle of the opposite side, and at two-thirds of this line distant from the angle where it originates, or one-third distant from the base. In the surface of a trapezium the centre of gravity is in the intersections of the straight lines that join the centres of the opposite triangles made by the two diagonals. The centre of gravity of the surface of a parallelogram is at the intersection of the diagonals, or at the intersection of the two lines which bisect the figure from its opposite sides. In any regular polygon the centre of gravity is at the same point as the centre of magnitude. In a circular are the position of the centre of gravity is distant from the centre of the circle by the measure of a fourth proportional to the arc, radius, and chord. In a semicircular arc the position of the centre of gravity is distant from the centre by the measure of a third proportional to the arc of the quadrant and the radius. In the sector of a circle the position of the centre of gravity is distant from the centre of the circle by a fourth proportional to three times the arc of the sector, the chord of the arc, and the diameter of the circle. In a circular segment, the position of the centre of gravity is distant from the centre of the circle by a space which is equal to the cube or third power of the chord divided by twelve times the area of the segment. In a semicircle
the position of the centre of gravity is distant from the centre of the circle by a space which is equal to four times the radius divided by the constant number $3 \cdot 1416 \times 3=9 \cdot 4248$. In a parabola the position of the centre of gravity is distant from the vertex by three-fifths of the axis. In a semi-parabola the position of the centre of gravity is at the intersection of the co-ordinates, one of which is parallel to the base, and distant from it by two-fifths of the axis, and the other parallel to the axis, but distant from it by three-eighths of the semi-base.

The centres of gravity of the surface of a cylinder, a cone, and conic frustum, are respectively at the same distances from the origin as are the centres of gravity of the parallelogram, the triangle, and the trapezoid, which are sections passing along the axes of the respective solids. The centre of gravity of the surface of a spheric segment is at the middle of the versed sine or height. The centre of gravity of the convex surface of a spherical zone is at the middle of that portion of the axis of the sphere intercepted by its two bases. In prisms and cylinders the position of the centre of gravity is at the middle of the straight line that joins the centres of gravity of their opposite ends. In pyramids and cones the centre of gravity is in the straight line that joins the vertex with the centre of gravity of the base, and at three-fourths of its length from the vertex, and one-fourth from the base. In a semisphere, or semispheroid, the position of the centre of gravity is distant from the centre by threeeighths of the radius. In a parabolic conoid the position of the centre of gravity is distant from the base by one-third of the axis, or two-thirds of the axis distant from the vertex. There are several other bodies and figures of which the position of the centre of gravity is known; but as the position in those cases cannot be defined without algebra, we omit them.

CENTRIPETAL AND CENTRIFUGAL FORCES.

Central forces are of two kinds, centripetal and centrifugal. Centripetal force is that force by which a body is attracted or impelled towards a certain fixed point as a centre, and that point towards which the body is urged is called the centre of attraction or the centre of force. Centrifugal force is that force by which a body endeavours to recede from the centre of attraction, and from which it would actually fly off in the direction of a tangent if it were not prevented by the action of the centripetal force. These two forces are therefore antagonistic ; the action of the one being directly opposed to that of the other. It is on the joint action of these two forces that all curvilinear motion depends. Circular motion is that affection of curvilinear motion where the body is constrained to move in the circumference of a circle: if it continues to move so as to describe the entire circle, it is denominated rotatory motion, and the body is said to revolve in a circular orbit, the centre of which is called the centre of motion. In all circular motions the deflection or deviation from the rectilinear course is constantly the same at
every point of the orbit, in which case the centripetal and centrifugal forces are equal to one another. In circular orbits the centripetal forces, by which equal bodies placed at equal distances from the centres of force are attracted or drawn towards those centres, are proportional to the quantities of matter in the central bodies. This is manifest, for since all attraction takes place towards some particular body, every particle in the attracting body must produce its individual effect ; consequently, a body containing twice the quantity of matter will exert twice the attractive energy, and a body containing thrice the quantity of matter will operate with thrice the attractive force, and so on according to the quantity of matter in the attracting body.

Any body, whether large or small, when placed at the same distance from the centre of force, is attracted or drawn through equal spaces in the same time by the action of the central body. This is obvious from the consideration that although a body two or three times greater is urged with two or three times greater an attractive force, yet there is two or three times the quantity of matter to be moved; and, as we have shown elsewhere, the velocity generated in a given time is directly proportional to the force by which it is generated, and inversely as the quantity of matter in the moving or attracted body. But the force which in the present instance is the weight of the body is proportional to the quantity of matter which it contains ; consequently, the velocity generated is directly and inversely proportional to the quantity of matter in the attracted body, and is, therefore, a given or a constant quantity. Hence, the centripetal force, or force towards the centre of the circular orbit, is not measured by the magnitude of the revolving body, but only by the space which it describes or passes over in a given time. When a body revolves in a circular orbit, and is retained in it by means of a centripetal force directed to the centre, the actual velocity of the revolving body at every point of its revolution is equal to that which it would acquire by falling perpendicularly with the same uniform force through one-fourth of the diameter, or one-half the radius of its orbit; and this velocity is the same as would be acquired by a second body in falling through half the radius, whilst the first body, in revolving in its orbit, describes a portion of the circumference which is equal in length to half the diameter of the circle. Consequently, if a body revolves uniformly in the circumference of a circle by means of ai_{i} given centripetal force, the portion of the circumference which it describes in any time is a mean proportional between the diameter of the circle and the space which the body would descend perpendicularly in the same time, and with the same given force continued uniformly.

The periodic time, in the doctrine of central forces, is the time occupied by a body in performing a complete revolution round the centre, when that body is constrained to move in the circumference by means of a centripetal force directed to that point; and when
the body revolves in a circular orbit, the periodic time, or the time of performing a complete revolution, is expressed by the term $\pi t \sqrt{\frac{d}{s}}$, and the velocity or space passed over in the time t will be
$\sqrt{d s}$; in which expressions d denotes the diameter of the circular orbit described by the revolving body, s the space descended in any time by a body falling perpendicularly downwards with the same uniform force, t the time of descending through the space, s and π the circumference of a circle whose diameter is unity. If several bodies revolving in circles round the same or different centres be retained in their orbits by the action of centripetal forces directed to those points, the periodic times will be directly as the square roots of the radii or distances of the revolving bodies, and inversely as the square roots of the centripetal forces, or, what is the same thing, the squares of the periodic times are directly as the radii, and inversely as the centripetal forces.

CENTRE OF GYRATION.

The centre of gyration is that point in which, if all the constituent particles, or all the matter contained in a revolving body, or system of bodies, were concentrated, the same angular velocity would be generated in the same time by a given force acting at any place as would be generated by the same force acting similarly on the body or system itself according to its formation.

The angular motion of a body, or system of bodies, is the motion of a line connecting any point with the centre or axis of motion, and is the same in all parts of the same revolving system.

In different unconnected bodies, each revolving about a centre, the angular velocity is directly proportional to the absolute velocity, and inversely as the distance from the centre of motion; so that, if the absolute velocities of the revolving bodies be proportional to their radii or distances, the angular velocities will be equal. If the axis of motion passes through the centre of gravity, then is this centre called the principal centre of gyration.

The distance of the centre of gyration from the point of suspension, or the axis of motion in any body or system of bodies, is a geometrical mean between the centres of gravity and oscillation from the same point or axis; consequently, having found the distances of these centres in any proposed case, the square root of their product will give the distance of the centre of gyration. If any part of a system be conceived to be collected in the centre of gyration of that particular part, the centre of gyration of the whole system will continue the same as before; for the same force that moved this part of the system before along with the rest will move it now without any change ; and consequently, if each part of the system be collected into its own particular centre, the common centre of the whole system will continue the same. If a circle be described about the centre of gravity of any system, and the axis of rotation be made to pass through any point of the circumference,
the distance of the centre of gyration from that point will always be the same.

If the periphery of a circle revolve about an axis passing through the centre, and at right angles to its plane, it is the same thing as if all the matter were collected into any one point in the periphery. And moreover, the plane of a circle or a disk containing twice the quantity of matter as the said periphery, and having the same diameter, will in an equal time acquire the same angular velocity. If the matter of a revolving body were actually to be placed in the centre of gyration, it ought either to be arranged in the circumference, or in two points of the circumference diametrically opposite to each other, and equally distant from the centre of motion, for by this means the centre of motion will coincide with the centre of gravity, and the body will revolve without any lateral force on any side. These are the chief properties connected with the centre of gyration, and the following are a few of the cases in which its position has been ascertained.

In a right line, or a cylinder of very small diameter revolving about one of its extremities, the distance of the centre of gyration from the centre of motion is equal to the length of the revolving line or cylinder multiplied by the square root of $\frac{1}{3}$. In the plane of a circle, or a cylinder revolving about the axis, it is equal to the radius multiplied by the square root of $\frac{1}{2}$. In the circumference of a circle revolving about the diameter it is equal to the radius multiplied by the square root of $\frac{1}{2}$. In the plane of a circle revolving about the diameter it is equal to one-half the radius. In a thin circular ring revolving about one of its diameters as an axis it is equal to the radius multiplied by the square root of $\frac{1}{2}$. In a solid globe revolving about the diameter it is equal to the radius multiplied by the square root of $\frac{2}{5}$. In the surface of a sphere revolving about the diameter it is equal to the radius multiplied by the square root of $\frac{2}{3}$. In a right cone revolving about the axis it is equal to the radius of the base multiplied by the square root of $\frac{3}{10}$. In all these cases the distance is estimated from the centre of the axis of motion. We shall have occasion to illustrate these principles when we come to treat of fly-wheels in the construction of the different parts of steam engines.

When bodies revolving in the circumferences of different circles are retained in their orbits by centripetal forces directed to the centres, the periodic times of revolution are directly proportional to the distances or radii of the circles, and inversely as the velocities of motion; and the periodic times, under like circumstances, are directly as the velocities of motion, and inversely as the centripetal forces. If the times of revolution are equal, the velocities and centripetal forces are directly as the distances or radii of the circles. If the centripetal forces are equal, the squares of the times of revolution and the squares of the velocities are as the dis. tances or radii of the circles. If the times of revolution are as
the radii of the circles, the velocities will be equal, and the centripetal forces reciprocally as the radii.

If several bodies revolve in circular orbits round the same or different centres, the velocities are directly as the distances or radii, and inversely as the times of revolution. The velocities are directly as the centripetal forces and the times of revolution. The squares of the velocities are proportional to the centripetal forces, and the distances or radii of the circles. When the velocities are equal, the times of revolution are proportional to the radii of the circles in which the bodies revolve, and the radii of the circles are inversely as the centripetal forces. If the velocities be proportional to the distances or radii of the circles, the centripetal forces will be in the same ratio, and the times of revolution will be equal.

If several bodies revolve in circular orbits about the same or different centres, the centripetal forces are proportional to the distances or radii of the circles directly, and inversely as the squares of the times of revolution. The centripetal forces are directly proportional to the velocities, and inversely as the times of revolution. The centripetal forces are directly as the squares of the velocities, and inversely as the distances or radii of the circles. When the centripetal forces are equal, the velocities are proportional to the times of revolution, and the distances as the squares of the times or as the squares of the velocities. When the central forces are proportional to the distances or radii of the circles, the times of revolution are equal. If several bodies revolve in circular orbits about the same or different centres, the radii of the circles are directly proportional to the centripetal forces, and the squares of the periodic times. The distances or radii of the circles are directly as the velocities and periodic times. The distances or radii of the circles are directly as the squares of the velocities, and reciprocally as the centripetal forces. If the distances are equal, the centripetal forces are directly as the squares of the velocities, and reciprocally as the squares of the times of revolution; the velocities also are reciprocally as the times of revolution. The converse of these principles and properties are equally true; and all that has been here stated in regard to centripetal forces is similarly true of centrifugal forces, they being equal and contrary to each other.

The quantities of matter in all attracting bodies, having other bodies revolving about them in circular orbits, are proportional to the cubes of the distances directly, and to the squares of the times of revolution reciprocally. The attractive force of a body is directly proportional to the quantity of matter, and inversely as the square of the distance. If the centripetal force of a body revolving in a circular orbit be proportional to the distance from the centre, a body let fall from the upper extremity of the vertical diameter will reach the centre in the same time that the revolving body describes one-fourth part of the orbit. The velocity of the descending body at any point of the diameter is proportional to
the ordinate of the circle at that point; and the time of falling through any portion of the dianeter is proportional to the arc of the circumference whose versed sine is the space fallen through. All the times of falling from any altitudes whatever to the centre of the orbit will be equal; for these times are equal to one-fourth of the periodic times, and these times, under the specified conditions, are equal. The velocity of the descending body at the centre of the circular orbit is equal to the velocity of the revolving body.

These are the chief principles that we need consider regarding the motion of bodies in circular orbits; and from them we are led to the consideration of bodies suspended on a centre, and made to revolve in a circle beneath the suspending point, so that when the body describes the circumference of a circle, the string or wire by which it is suspended describes the surface of a cone. A body thus revolving is called a conical pendulum, and this species of pendulum, or, as it is usually termed, the governor, is of great importance in mechanical arrangements, being employed to regulate the movements of steam engines, water-wheels, and other mechanism. As we shall have occasion to show the construction and use of this instrument when treating of the parts and proportions of engines, we need not do more at present than state the principles on which its action depends. We must, however, previously say a few words on the properties of the simple pendulum, or that which, being suspended from a centre, is made to vibrate from side to side in the same vertical plane.

PENDULUMS.

If a pendulum vibrates in a small circular arc, the time of performing one vibration is to the time occupied by a heavy body in falling perpendicularly through half the length of the pendulum as the circumference of a circle is to its diameter. All vibrations of the same pendulum made in very small circular ares, are made in very nearly the same time. The space described by a falling body in the time of one vibration is to half the length of the pendulum as the square of the circumference of a circle is to the square of the diameter. The lengths of two pendulums which by vibrating describe similar circular arcs are to each other as the squares of the times of vibration. The times of pendulums vibrating in small circular arcs are as the square roots of the lengths of the pendulums. The velocity of a pendulum at the lowest point of its path is proportional to the chord of the arc through which it descends to acquire that velocity. Pendulums of the same length vibrate in the same time, whatever the weights may be. From which we infer, that all bodies near the earth's surface, whether they be heavy or light, will fall through equal spaces in equal times, the resistance of the air not being considered.

The lengths of pendulums vibrating in the same time in different positions of the earth's surface are as the forces of gravity in those positions. The times wherein pendulums of the same length will vibrate by different forces of gravity are inversely as the square
roots of the forces. The lengths of pendulums vibrating in different places are as the forces of gravity at those places and the squares of the times of vibration. The times in which pendulums of any length perform their vibrations are directly as the square roots of their lengths, and inversely as the square roots of the gravitating forces. The forces of gravity at different places on the earth's surface are directly as the lengths of the pendulums, and inversely as the squares of the times of vibration. These are the chief properties of a simple pendulum vibrating in a vertical plane, and the principal problems that arise in connection with it are the following, viz. :

To find the length of a pendulum that shall make any number of vibrations in a given time; and secondly, having given the length of a pendulum, to find the number of vibrations it will make in any time given. -These are problems of very easy solution, and the rules for resolving them are simply as follow :-For the first, the rule is, multiply the square of the number of seconds in the given time by the constant number $39 \cdot 1015$, and divide the product by the square of the number of vibrations, for the length of the pendulum in inches. For the second, it is, multiply the square of the number of seconds in the given time by the constant number $39 \cdot 1393$, divide the product by the given length of the pendulum in inches, and extract the square root of the quotient for the number of vibrations sought. The number $39 \cdot 1015$ is the length of a pendulum in inches, that vibrates seconds, or sixty times in a minute, in the latitude of Philadelphia.

Suppose a pendulum is found to make 35 vibrations in a minute; what is the distance from the centre of suspension to the centre of oscillation?

Here, by the rule, the number of seconds in the given time is 60 ; hence we get $60 \times 60 \times 39 \cdot 1015=140765 \cdot 4$, which, being divided by $35 \times 35=1225$, gives $140765 \cdot 4 \div 1225=114.9105$ inches for the length required.

The length of a pendulum between the centre of suspension and the centre of oscillation is 64 inches; what number of vibrations will it make in 60 seconds?

By the rule we have $60 \times 60 \times 39 \cdot 1015=140765 \cdot 4$, which, being divided by 64 , gives $140765 \cdot 4 \div 64=2199 \cdot 46$, and the square root of this is $2199 \cdot 46=46 \cdot 9$, number of vibrations sought. When the given time is a minute, or 60 seconds, as in the two examples proposed above, the product of the constant number $39 \cdot 1015$ by the square of the time, or $140765 \cdot 4$, is itself a constant quantity, which, being kept in mind, will in some measure facilitate the process of calculation in all similar cases. We now return to the consideration of the conical pendulum, or that in which the ball revolves about a vertical axis in the circumference of a circular plane which is parallel to the horizon.

CONICAL PENDULUM.

If a pendulum be suspended from the upper extremity of a vertical axis, and be made to revolve about that axis by a conical mo-
tion, which constrains the revolving body to move in the circumference of a circle whose plane is parallel to the horizon, then the time in which the pendulum performs a revolution about the axis can easily be found.

Let $C D$ be the pendulum in question, suspended from C, the upper extremity of the vertical axis CD, and let the ball or body B, by revolving about the said axis, describe the circle BE AH , the plane of which is parallel to the horizon; it is proposed to assign the time of description, or the time in which the body B performs a revolution about the axis CD, at the' distance BD.

Conceive the axis CD to denote the weight of the revolving body, or its force in the di-
 rection of gravity; then, by the Composition and Resolution of Forces, CB will denote the force or tension of the string or wire that retains the revolving body in the direction CB , and BD the force tending to the centre of the plane of revolution at D. But, by the general laws of motion and forces previously laid down, if the time be given, the space described will be directly proportional to the force; but, by the laws of gravity, the space fallen perpendicularly from rest, in one second of time, is $g=16_{1 \frac{1}{12}}$ feet; consequently we have $\mathrm{CD}: \mathrm{BD}:$: $16 \frac{1}{12}: \frac{16_{12} \cdot \mathrm{BD}}{\mathrm{CD}}$, the space described towards D by the force in BD in one second. Consequently, by the laws of centripetal forces, the periodic time, or the time of the body revolving in the circle BEAH, is expressed by the term $\pi \sqrt{\frac{2 \cdot \mathrm{CD}}{16_{12}^{12}}}$, where $\pi=3 \cdot 1416$, the circumference of a circle whose diameter is unity ; or putting t to denote the time, and expressing the height CD in feet, we get $t=6.2832$ $\sqrt{\frac{\mathrm{CD}}{12 \times 32 \frac{1}{6}}}$, or, by reducing the expression to its simplest form, it becomes $t=0.31986 \sqrt{ } \overline{\mathrm{CD}}$, where CD must be estimated in inches, and t in seconds. Here we have obtained an expression of great simplicity, and the practical rule for reducing it may be expressed in words as follows:

Rule.-Multiply the square root of the height, or the distance between the point of suspension and the centre of the plane of revolution, in inches, by the constant fraction $0 \cdot 31986$, and the product will be the time of revolution in seconds.

In what time will a conical pendulum revolve about its vertical axis, supposing the distance between the point of suspension and the centre of the plane of revolution to be $39 \cdot 1393$ inches, which is the length of a simple pendulum that vibrates seconds in latitude $51^{\circ} 30^{\prime}$?

The square root of $39 \cdot 1393$ is $6 \cdot 2561$; consequently, by the rule,
we have, $6.2561 \times 0.31986=2.0011$ seconds for the time of revolution sought. It consequently revolves 30 times in a minute, as it ought to do by the theory of the simple pendulum.

By reversing the process, the height of the cone, or the distance between the point of suspension and the centre of the plane of revolution, corresponding to any given time, can easily be ascertained; for we have only to divide the number of seconds in the given time by the constant decimal $0 \cdot 31986$, and the square of the quotient will be the required height in inches. Thus, suppose it were required to find the height of a conical pendulum that would revolve 30 times in a minute. Here the time of revolution is 2 seconds for $60 \div 30=2$; therefore, by division, it is $2 \div 0 \cdot 31986=6 \cdot 2527$, which, being squared, gives $6 \cdot 2527=39 \cdot 0961$ inches, or the length of a simple pendulum that vibrates seconds very nearly. In all conical pendulums the times of revolution, or the periodic times, are proportional to the square roots of the heights of the cones. This is manifest, for in the foregoing equation of the periodic time the numbers 6.2832 and 386 , or $12 \times 32 \frac{1}{6}$, are constant quantities, consequently t varies as $\sqrt{\mathrm{CD}}$.

If the heights of the cones, or the distances between the points of suspension and the centres of the planes of revolution, be the same, the periodic times, or the times of revolution, will be the same, whatever may be the radii of the circles described by the re-

volving bodies. This will be clearly understood by contemplating the subjoined diagram, where all the pendulums $\mathrm{C} a, \mathrm{C} b, \mathrm{C} c, \mathrm{C} d$, and $\mathrm{C} e$, having the common axis CD , will revolve in the same time; and
if they are all in the same vertical plane when first put in motion, they will continue to revolve in that plane, whatever be the velocity, so long as the common axis or height of the cone remains the same. This will become manifest, if we conceive an inflexible bar or rod of iron to pass through the centres of all the balls as well as the common axis, for then the bar and the several balls must all revolve in the same time; but if any one of them should be allowed to rise higher, its velocity would be increased ; and if it descends, the velocity will be decreased.

Half the periodic time of a conical pendulum is equal to the time of vibration of a simple pendulum, the length of which is equal to the axis or height of the cone; that is, the simple pendulum makes two oscillations or vibrations from side to side, or it arrives at the same point from which it departed, in the same time that the conical pendulum revolves about its axis. The space descended by a falling body in the time of one revolution of the conical pendulum is equal to $3 \cdot 1416^{2}$ multiplied by twice the height or axis of the cone. The periodic time, or the time of one revolution is equal to the product of $3 \cdot 1416 \sqrt{2}$ multiplied by the time of falling through the height of the cone. The weight of a conical pendulum, when revolving in the circumference of a circle, bears the same proportion to the centrifugal force, or its tendency to fly off in a straight line, as the axis or height of the cone bears to the radius of the plane of revolution; consequently, when the height of the cone is equal to the radius of its base, the centripetal or centrifugal force is equal to the power of gravity.

These are the principles on which the action of the conical pendulum depends; but as we shall hereafter have occasion to consider it more at large, we need not say more respecting it in this place. Before dismissing the subject, however, it may be proper to put the reader in possession of the rules for calculating the position of the centre of oscillation in vibrating bodies, in a few cases where it has been determined, these being the cases that are of the most frequent occurrence in practice.

The centre of oscillation in a vibrating body is that point in the line of suspension, in which, if all the matter of the system were collected, any force applied there would generate the same angular motion in a given time as the same force applied at the centre of gravity. The centres of oscillation for several figures of very frequent use, suspended from their vertices and vibrating flatwise, are as follow:-

In a right line, or parallelogram, or a cylinder of very small diameter, the centre of oscillation is at two-thirds of the length from the point of suspension. In an isosceles triangle the centre of oscillation is at three-fourths of the altitude. In a circle it is five-fourths of the radius. In the common parabola it is five-sevenths of its altitude. In a parabola of any order it is $\left(\frac{2 n+1}{3 n+1}\right) \times$ altitude, where n denotes the order of the figure.

In bodies vibrating laterally, or in their own plane, the centres - of oscillation are situated as follows; namely, in a circle the centre of oscillation is at three-fourths of the diameter; in a rectangle, suspended at one of its angles, it is at two-thirds of the diagonal ; in a parabola, suspended by the vertex, it is five-sevenths of the axis, increased by one-third of the parameter; in a parabola, suspended by the middle of its base, it is four-sevenths of the axis, increased by half the parameter; in the sector of a circle it is three times the arc of the sector multiplied by the radius, and divided by four times the chord ; in a right cone it is four-fifths of the axis or height, increased by the quotient that arises when the square of the radius of the base is divided by five times the height; in a globe or sphere it is the radius of the sphere, plus the length of the thread by which it is suspended, plus the quotient that arises when twice the square of the radius is divided by five times the sum of the radius and the length of the suspending thread. In all these cases the distance is estimated from the point of suspension, and since the centres of oscillation and percussion are in one and the same point, whatever has been said of the one is equally true of the other.

THE TEMPERATURE AND ELASTIC FORCE OF STEAM.

In estimating the mechanical action of steam, the intensity of its elastic force must be referred to some known standard measure, such as the pressure which it exerts against a square inch of the surface that contains it, usually reckoned by so many pounds avoirdupois upon the square inch. The intensity of the elastic force is also estimated by the inches in height of a vertical column of mercury, whose weight is equal to the pressure exerted by the steam on a surface equal to the base of the mercurial column. It may also be estimated by the height of a vertical column of water measured in feet; or generally, the elastic force of any fluid may be compared with that of atmospheric air when in its usual state of temperature and density; this is equal to a column of mercury 30 inches or $2 \frac{1}{2}$ feet in height.

When the temperature of steam is increased, respect being had to its density, the elastic force, or the effort to separate the parts of the containing vessel and occupy a larger space, is also increased; and when the temperature is diminished, a corresponding and proportionate diminution takes place in the intensity of the emancipating effort or elastic power. It consequently follows that there must be some law or principle connecting the temperature of steam with its elastic force; and an intimate acquaintance with this law, in so far as it is known, must be of the greatest importance in all our researches respecting the theory and the mechanical operations of the steam engine.

To find a theorem, by means of which it may be ascertained when a general law exists, and to determine what that law is, in cases where it is known to obtain.-Suppose, for example, that it is required to assign the nature of the law that subsists between the
temperature of steam and its elastic force, on the supposition that the elasticity is proportional to some power of the temperature, and unaffected by any other constant or co-efficient, except the exponent by which the law is indicated. Let E and e be any two values of the elasticity, and T, t, the corresponding temperatures deducted from observation. It is proposed to ascertain the powers of T and t; to which E and e are respectively proportional. Let n denote the index or exponent of the required power; then by the conditions of the problem admitting that. a law exists, we get, $\mathrm{T}^{n}: t^{n}:: \mathrm{E}: e ;$ but by the principles of proportion, it is $\frac{t^{n}}{\mathrm{~T}^{n}}=\frac{e}{\mathrm{E}}$; and if this be expressed logarithmically, it is $n \times \log \cdot \frac{t}{\mathrm{~T}}=\log \cdot \frac{e}{\mathrm{E}}$, and by reducing the equation in respect of n, it finally becomes

$$
n=\frac{\log \cdot e-\log \cdot \mathrm{E}}{\log \cdot t-\log \cdot \mathrm{T}}
$$

The theorem that we have here obtained is in its form sufficiently simple for practical application; it is of frequent occurrence in physical science, but especially so in inquiries respecting the motion of bodies moving in air and other resisting media; and it is even applicable to the determination of the planetary motions themselves. The process indicated by it in the case that we have chosen, is simply, To divide the difference of the logarithms of the elasticities by the difference of the logarithms of the corresponding temperatures, and the quotient will express that power of the temperature to which the elasticity is proportional.

Take as an example the following data:-In two experiments it was found that when the temperature of steam was $250 \cdot 3$ and $343 \cdot 6$ degrees of Fahrenheit's scale, the corresponding elastic forces were 59.6 and 238.4 inches of the mercurial column respectively. From these data it is required to determine the law which connects the temperature with the elastic force on the supposition that a law does actually exist under the specified conditions. The process by the rule is as follows:

Let the second of these remainders be divided by the first, as directed in the rule, and we get $n=6020600 \div 1368333=4 \cdot 3998$, the exponent sought. Consequently, by taking the nearest unit, for the sake of simplicity, we shall have, according to this result, the following analogy, viz. :

$$
\mathrm{T}^{4 \cdot 4}: t^{4 \cdot 4}:: \mathrm{E}: e
$$

that is, the elasticities are proportional to the 4.4 power of the temperatures very nearly.

Now this law is rigorously correct, as applied to the particular cases that furnished it; for if the two temperatures and one elasticity be given, the other elasticity will be found as indicated by the above analogy; or if the two elasticities and one temperature be given, the other temperature will be found by a similar process. It by no means follows, however, that the principle is general, nor could we venture to affirm that the exponent here obtained will accurately represent the result of any other experiments than those from which it is deduced, whether the temperature be higher or lower than that of boiling water; but this we learn from it, that the index which represents the law of elasticity is of a very high order, and that the general equation, whatever its form may be, must involve other conditions than those which we have assumed in the foregoing investigation. The theorem, however, is valuable to practical men, not only as being applicable to numerous other branches of mechanical inquiry, but as leading directly to the methods by which some of the best rules have been obtained for calculating the elasticity of steam, when in contact with the liquid from which it is generated.

We now proceed to apply our formula to the determination of a general law, or such as will nearly represent the class of experiments on which it rests ; and for this purpose we must first assign the limits, and then inquire under what conditions the limitations take place, for by these limitations we must in a great measure be guided in determining the ultimate form of the equation which represents the law of elasticity.

The limits of elasticity will be readily assigned from the following considerations, viz. : In the first place, it is obvious that steam cannot exist when the cohesive attraction of the particles is of greater intensity than the repulsive energy of the caloric or matter of heat interposed between them; for in this case, the change from an elastic fluid to a solid may take place without passing through the intermediate stage of liquidity : hence we infer that there must be a temperature at which the elastic force is nothing, and this temperature, whatever may be its value, corresponds to the lower limit of elasticity. The higher limit will be discovered by similar considerations, for it must take place when the density of steam is the same as that of water, which therefore depends on the modulus of elasticity of water. The modulus of elasticity of any substance is the measure of its elastic force; that of water at 60° of temperature is 22,100 atmospheres. Thus, for instance, suppose a given quantity of water to be confined in a close vessel which it exactly fills, and let it be exposed to a high degree of temperature, then it is obvious that in this state no steam would be produced, and the force which is exerted to separate the parts of the vessel is simply the expansive force of compressed water; we therefore have the following proportion. As the expanded volume of water is to the
quantity of expansion, so is the modulus of elasticity of water to the elastic force of steam of the same density as water.

Having therefore assigned the limits beyond which the elastic force of steam cannot reach, we shall now proceed to apply the principle of our formula to the determination of the general law which connects the temperature with the elastic force; and for this purpose, in addition to the notation which we have already laid down, let c denote some constant quantity that affects the elasticity, and d the temperature at which the elasticity vanishes; then since this temperature must be applied subtractively, we have from the foregoing principle, $c \mathrm{E}=(\mathrm{T}-\delta)^{n}$, and $c e=(t-\delta)^{n}$. From either of these equations, therefore, the constant quantity c can be determined in terms of the rest when they are known; thus we have $c=\frac{(\mathrm{T}-\delta)^{n}}{\mathrm{E}}$, and $c=\frac{(t-\delta)^{n}}{e}$, and by comparing these two independent values of c, the value of n becomes known; for $\frac{(\mathrm{T}-\delta)^{n}}{\mathrm{E}}=\frac{(t-\delta)^{n}}{e}$, and consequently

$$
n=\frac{\log \cdot e-\log \cdot \mathrm{E}}{\log \cdot(t-\delta)-\log \cdot(\mathrm{T}-\delta) .} \ldots(\mathrm{A}) .
$$

In this equation the value of the symbol δ is unknown; in order therefore to determine it, we must have another independent expression for the value of n; and in order to this, let the elasticities \mathbf{E} and e become \mathbf{E}^{\prime} and e^{\prime} respectively; while the corresponding temperatures T and t assume the values T^{\prime} and t^{\prime}; then by a similar process to the above, we get $\frac{\left(\mathrm{T}^{\prime}-\delta\right)^{n}}{\mathbf{E}^{\prime}}=\frac{\left(t^{\prime}-\delta\right)}{e^{\prime}}$, and

$$
n=\frac{\log \cdot e^{\prime}-\log \cdot \mathrm{E}^{\prime}}{\log \cdot\left(t^{\prime}-\delta\right)-\log \cdot\left(\mathrm{T}^{\prime}-\delta\right)} \cdots(\mathrm{B}) .
$$

Let the equations (A) and (B) be compared with each other, and we shall then have an expression involving only the unknown quantity δ, for it must be understood that the several temperatures with their corresponding elasticities are to be deduced from experiment; and in consequence, the law that we derive from them must be strictly empirical; thus we have

$$
\frac{\log \cdot e-\log \cdot \mathbf{E} .}{\log \cdot(t-\delta)-\log \cdot(\mathrm{T}-\delta)}=\frac{\log \cdot e^{\prime}-\log \cdot \mathbf{E}}{\log \cdot\left(t^{\prime}-\delta\right)-\log \cdot\left(\mathrm{T}^{\prime}-\delta\right)} \cdots(\mathrm{C}) .
$$

We have no direct method of reducing expressions of this sort, and the usual process is therefore by approximation, or by the rule of trial and error, and it is in this way that the value of the quantity δ must be found; and for the purpose of performing the reduction, we shall select experiments performed with great care, and may consequently be considered as representing the law of elas. ticity with very great nicety.

$$
\begin{array}{rlrl}
\mathrm{T} & =212 \cdot 0 \text { Fahrenheit } \mathrm{E} & =29 \cdot 8 \text { inches of mercury. } \\
t & =250 \cdot 3 & e & =59 \cdot 6 \\
\mathrm{~T}^{\prime} & =293 \cdot 4 & \mathrm{E}^{\prime} & =119 \cdot 2 \\
t^{\prime} & =343 \cdot 6 & e^{\prime} & =238 \cdot 4
\end{array}
$$

Therefore, by substituting these numbers in equation (C), and making a few trials, we find that $\delta=-50^{\circ}$, and substituting this in either of the equations (A) or (B), we get $n=5.08$; and finally, by substituting these values of δ and n in either of the expressions for the constant quantity c, we get $c=64674730000$, the $5 \cdot 08$ root of which is $134 \cdot 27$ very nearly; hence we have

$$
\mathrm{F}=\left\{\frac{t+50}{134 \cdot 27}\right\}^{5.08} \cdot \cdot \cdot(\mathrm{D})
$$

Wnere the symbol F denotes generally the elastic force of the steam in inches of mercury, and t the corresponding temperature in degrees of Fahrenheit's thermometer, the logarithm of the denominator of the fraction is $2 \cdot 1279717$, which may be used as a constant in calculating the elastic force corresponding to any given temperature. We have thus discovered a rule of a very simple form; it errs in defect; but this might have been remedied by assuming two points near one extremity of the range of experiment, and two points near the other extremity; and by substituting the observed numbers in equation (C), different constants and a more correct exponent would accordingly have been obtained. Mr. Southern has, by pursuing a method somewhat analogous to that which is here described, found his experiments to be very nearly represented by

$$
\mathrm{F}=\left\{\frac{t+51 \cdot 3}{135 \cdot 767}\right\}^{5 \cdot 13}
$$

But even here the formula errs in defect, for he has found it necessary to correct it by adding the arbitrary decimal $0 \cdot 1$; and thus modified, it becomes

$$
\mathrm{F}=\left\{\frac{t+51.3}{135 \cdot 767}\right\}^{5 \cdot 13}+0 \cdot 1(\mathrm{E})
$$

Our own formula may also be corrected by the application of some arbitrary constant of greater magnitude; but as our motive for tracing the steps of investigation in the foregoing case was to exemplify the method of determining the law of elasticity, our end is answered; for we consider it a very unsatisfactory thing merely to be put in possession of a formula purporting to be applicable to some particular purpose, without at the same time being put in possession of the method by which that formula was obtained, and the principles on which it rests. Having thus exhibited the principles and the method of reduction, the reader will have greater confidence as regards the consistency of the processes that he may be called upon to perform. The operation implied by equation (E) may be expressed in words as follows:-

Rule.-To the given temperature in degrees of Fahrenheit's thermometer add 51.3 degrees and divide the sum by $135 \cdot 767$; to the $5 \cdot 13$ power of the quotient add the constant fraction $\frac{1}{10}$, and the sum will be the elastic force in inches of mercury.

The process here described is that which is performed by the rules of common arithmetic; but since the index is affected by a fraction, it is difficult to perform in that way: we must therefore have recourse to logarithms as the only means of avoiding the difficulty. The rule adapted to these numbers is as follows :-

Rule for Logarithms. - To the given temperature in degrees of Fahrenheit's thermometer add $51 \cdot 3$ degrees; then, from the logarithm of the sum subtract $2 \cdot 1327940$ or the logarithm of $135 \cdot 767$, the denominator of the fraction; multiply the remainder by the index $5 \cdot 13$, and to the natural number answering to the sum add the constant fraction $\frac{1}{10}$; the sum will be the elastic force in inches of mercury.

If the temperature of steam be 250.3 degrees as indicated by Fahrenheit's thermometer, what is the corresponding elastic force in inches of mercury?
By the rule it is $250 \cdot 3+51 \cdot 3=301 \cdot 6$ log. $2 \cdot 4794313$
constant den. $=135 \cdot 767$ log. $2 \cdot 1327940$ subtract
remainder $=0.3466373$
$31 \cdot 5$ inverted

103991
natural number $60 \cdot 013 \log .17782493$
If this be increased by $\frac{1}{10}$, we get $60 \cdot 113$ inches of mercury for the elastic force of steam at 250.3 degrees of Fahrenheit.

By simply reversing the process or transposing equation (E), the temperature corresponding to any given elastic force can easily be found ; the transformed expression is as follows, viz.:

$$
t=135 \cdot 767(\mathrm{~F}-0 \cdot 1)^{\frac{1}{5.13}}-51 \cdot 3(\mathrm{F})
$$

Since, in consequence of the complicated index, the process of calculation cannot easily be performed by common arithmetic, it is needless to give a rule for reducing the equation in that way; we shall therefore at once give the rule for performing the process by logarithms.

Rule.-From the given elastic force in inches of mercury, subtract the constant fraction $0 \cdot 1$; divide the logarithm of the remainder by $5 \cdot 13$, and to the quotient add the logarithm $2 \cdot 1327940$; find the natural number answering to the sum of the logarithms, and from the number thus found subtract the constant 51%, and the remainder will be the temperature sought.

Supposing the elastic force of steam or the vapour of water to be equivalent to the weight of a vertical column of mercury, the height of which is 238.4 inches; what is the corresponding temperature in degrees of Fahrenheit's thermometer?

Here, by proceeding as directed in the rule, we have $238 \cdot 4-0 \cdot 1=$
$238 \cdot 3$, and dividing the logarithm of this remainder by the constant exponent $5 \cdot 13$, we get
log. $238 \cdot 3 \div 5 \cdot 13=2 \cdot 3771240 \div 5 \cdot 13=0 \cdot 4633770$
constant co-efficient $=135 \cdot 767 \quad-\quad \log .2 \cdot 1327940 \mathrm{add}$
natural number $\quad=394 \cdot 61-$ - log. $2 \cdot 5961710$ sum
constant temperature $=51 \cdot 3$ subtract
required temperature $=343.31$ degrees of Fahrenheit's thermometer.

The temperature by observation is $343 \cdot 6$ degrees, giving a difference of only 0.29 of a degree in defect. For low temperature or low pressure steam, that is, steam not exceeding the simple pressure of the atmosphere, M. Pambour gives

$$
p=0 \cdot 04948+\left(\frac{t+51 \cdot 3}{155 \cdot 7256}\right)^{s \cdot 13}
$$

In which equation the symbol p denotes the pressure in pounds avoirdupois per square inch, and t the temperature in degrees of Fahrenheit's thermometer. When this expression is reduced in reference to temperature, it is

$$
t=155 \cdot 7256(p-0.04948)^{\frac{1}{5 \cdot 13}}-51 \cdot 3 . . . \quad .(\mathrm{H}) .
$$

The formula of Tredgold is well known. The equation, in its original form, is

$$
177 f^{\frac{1}{6}}=t+100 . . . \cdot(\mathrm{I}):
$$

where f denotes the elastic force of steam in inches of mercury, and t the temperature in degrees of Fahrenheit's thermometer. The same formula, as modified and corrected by M. Millet, becomes

$$
179 \cdot 0773 f^{\frac{1}{6}}=t+103(\mathrm{K})
$$

Dr. Young of Dublin constructed a formula which was adapted to the experiments of his countryman Dr. Dalton: it assumed a form sufficiently simple and elegant; it is thus expressed-

$$
f=(1+0.0029 t)^{7} \cdot \cdots \cdot(\mathrm{~L}):
$$

where the symbol f denotes the elastic force of steam expressed in atmospheres of 30 inches of mercury, and t the temperature in degrees estimated above 212 of Fahrenheit. This formula is not applicable in practice, especially in high temperatures, as it deviates very widely and rapidly from the results of observation: it is chiefly remarkable as being made the basis of a numerous class of theorems somewhat varied, but of a more correct and satisfactory character. The Commission of the French Academy represented their experiments by means of a formula constructed on the same principles: it is thus expressed-

$$
f=(1+0.7153 t)^{5} . . . \cdot(\mathrm{M}):
$$

where f denotes the elastic force of the steam expressed in atmospheres of 0.76 metres or 29.922 inches of mercury, and t the tem-
perature estimated above 100 degrees of the centigrade thermometer; but when the same formula is so transformed as to be expressed in the usual terms adopted in practice, it is

$$
p=(0.2679+0.0067585 t)^{5} \cdot \cdot \cdot \cdot(\mathrm{~N}):
$$

where p is the pressure in pounds per square inch, and t the temperature in degrees of Fahrenheit's scale, estimated above 212 or simple atmospheric pressure.

The committee of the Franklin Institute adopted the exponent δ, and found it necessary to change the constant 0.0029 into 0.00333 ; thus modified, they represented their experiments by the equation

$$
p=(\sigma \cdot 460467+0 \cdot 00521478 t)^{6} \cdot . \quad .(0)
$$

By combining Dr. Dalton's experiments with the mean between those of the French Academy and the Franklin Institute, we obtain the following equations, the one being applicable for temperatures below 212 degrees, and the other for temperatures above that point as far as 50 atmospheres. Thus, for low pressure steam, that is, for steam of less temperature than 212, it is

$$
f=\left(\frac{t+175}{387}\right)^{7 \cdot 71307} \cdot \cdot \cdot \cdot(\mathrm{P}):
$$

and for steam above the temperature of 212 , it is

$$
f=\left(\frac{t+121}{333}\right)^{6 \cdot 42} \cdot . \cdot \cdot(Q) .
$$

In consequence therefore of the high and imposing authority from which these formulas are deduced, we shall adopt them in all our subsequent calculations relative to the steam engine; and in order to render their application easy and familiar, we shall translate them into rules in words at length, and illustrate them by the resolution of appropriate numerical examples; and for the sake of a systematic arrangement, we think proper to branch the subject into a series of problems, as follows:

The temperature of steam being given in degrees of Fahrenheit's thermometer, to find the corresponding elastic force in inches of mercury.-The problem, as here propounded, is resolved by one or other of the last two equations, and the process indicated by the arrangement is thus expressed:-

Rule.-To the given temperature expressed in degrees of Fahrenheit's thermometer, add the constant temperature 175; find the logarithm answering to the sum, from which subtract the constant 2.587711 ; multiply the remainder by the index $7 \cdot 71307$, and the product will be the logarithm of the elastic force in atmospheres of 30 inches of mercury when the given temperature is less than 212 degrees. But when the temperature is greater than 212, increase it by 121; then, from the logarithm of the temperature thus increased, subtract the constant logarithm 2.522444 , multiply the remainder by the exponent $6 \cdot 42$, and the product will be the
logarithm of the elastic force in atmospheres of 30 inches of mercury; which being multiplied by 30 will give the force in inches, or if multiplied by $14 \cdot 76$ the result will be expressed in pounds a voirdupois per square inch.

When steam is generated under a temperature of 187 degrees of Fahrenheit's thermometer, what is its corresponding elastic force in atmospheres of 30 inches of mercury?

In this example, the given temperature is less than 212 degrees: it will therefore be resolved by the first clause of the preceding rule, in which the additive constant is 175 ; hence we get

$$
187+175=362 \ldots \log \cdot 2 \cdot 558709
$$

Constant divisor $=387 \ldots$ log. $2 \cdot 587711$ subtract

$$
\overline{9 \cdot 970998} \times 7 \cdot 71307=9 \cdot 773393
$$

And the corresponding natural number is 0.5934 atmospheres, or $17 \cdot 802$ inches of mercury, the elastic force required, or if expressed in pounds per square inch, it is $0.5934 \times 14 \cdot 76=8 \cdot 76 \mathrm{lbs}$. very nearly. If the temperature be 250 degrees of Fahrenheit, the process is as follows:

$$
250+121=371 \ldots \log .2 \cdot 569374
$$

Constant divisor $=333 \ldots \log .2 \cdot 522444$ subtract

$$
\overline{0.046930} \times 6.42=0.301291
$$

And the corresponding natural number is 2.0012 atmospheres, or 60.036 inches of mercury, and in pounds per square inch it is $2 \cdot 0012 \times 14 \cdot 76=29 \cdot 54$ lbs. very nearly.

It is sometimes convenient to express the results in inches of mercury, without a previous determination in atmospheres, and for this purpose the rule is simply as follows:

Rule.-Multiply the given temperature in degrees of Fahrenheit's thermometer by the constant coefficient 1.5542, and to the product add the constant number 271.985 ; then from the logarithm of the sum subtract the constant logarithm 2.587711, and multiply the remainder by the exponent $7 \cdot 71307$; the natural number answering to the product, considered as a logarithm, will give the elastic force in inches of mercury. This answers to the case when the temperature is less than 212 degrees; but when it is above that point proceed as follows:

Multiply the given temperature in degrees of Fahrenheit's thermometer by the constant coefficient $1 \cdot 69856$, and to the product add the constant number 205.526 ; then from the logarithm of the sum subtract the constant logarithm 2.522444 , and multiply the remainder by the exponent 6.42 ; the natural number answering to the product considered as a logarithm, will give the elastic force in inches of mercury. Take, for example, the temperatures as assumed above, and the process, according to the rule, is as follows:
$187 \times 1 \cdot 5542=290 \cdot 6354$

$$
\begin{aligned}
\text { Constant } & =\frac{271 \cdot 985 \text { add }}{562 \cdot 6204 \ldots \log .2 \cdot 750216} \\
\text { Sum } & =3 \times \ldots \cdot \log \cdot \frac{2 \cdot 587711}{0 \cdot 162505} \times 7 \cdot 71307=1 \cdot 253408
\end{aligned}
$$

And the natural number answering to this logarithm is 17.923 inches of mercury. By the preceding calculation the result is 17.802 ; the slight difference arises from the introduction of the decimal constants, which in consequence of not terminating at the proper place are taken to the nearest unit in the last figure, but the process is equally true notwithstanding. For the higher temperature, we get $250 \times 1 \cdot 69856=424 \cdot 640$

$$
\text { Constant }=205.526 \mathrm{add}
$$

$$
\text { Sum }=\overline{630.166} \ldots \ldots \log \cdot 2 \cdot 799456
$$

Constant $=333 . \ldots \ldots \ldots \ldots . \log .2 \cdot 522444$ subtract

$$
\overline{0.277011} \times 6.42=1.778410
$$

And the natural number answering to this logarithm is 60.036 inches of mercury, agreeing exactly with the result obtained as above.

It is moreover sometimes convenient to express the force of the steam in pounds per square inch, without a previous determination in atmospheres or inches of mercury; and when the equations are modified for that purpose, they supply us with the following process, viz. :

Multiply the given temperature by the constant coefficient $1 \cdot 41666$, and to the product add the constant number 247.9155 ; then, from the logarithm of the sum subtract the constant logarithm 2.587711 , and multiply the remainder by the index 7.71307 ; the natural number answering to the product will give the pressure in pounds per square inch, when the temperature is less than 212 degrees; but for all greater temperatures the process is as follows:

Multiply the given temperature by the constant coefficient 1.5209 , and to the product add the constant number 184.0289 ; then, from the logarithm of the sum subtract the constant logarithm 2.522444 , and multiply the remainder by the exponent 6.42 ; the natural or common number answering to the product, will express the force of the steam in pounds per square inch. If any of these results be multiplied by the decimal 0.7854 , the product will be the corresponding pressure in pounds per circular inch. Taking, therefore, the temperatures previously employed, the operation is as follows:

$$
\begin{aligned}
187 \times 1 \cdot 41666 & =264 \cdot 9155 \\
\text { Constant } & =\underline{247 \cdot 9155} \text { add } \\
\text { Sum } & =512.8310 \cdot \log .2 \cdot 709974 \\
\text { Constant } & =387 \ldots \ldots . \log \cdot \frac{2 \cdot 587711}{0 \cdot 122263} \times 7 \cdot 71307=0.942656
\end{aligned}
$$

And the number answering to this logarithm is 8.763 lbs . per square inch, and $8.763 \times 0.7854=6.8824$ lbs. per circular inch, the proportion in the two cases being as 1 to 0.7554 . Again, for the higher temperature, it is

$$
\begin{aligned}
250 \times 1 \cdot 5209 & =380 \cdot 2250 \\
\text { Constant } & =184 \cdot 0289 \\
\text { Sum } & =\overline{564 \cdot 2539 \ldots \ldots . \log .2 \cdot 751475} \\
\text { Constant } & =333 \ldots \ldots \ldots \ldots \cdot \log \cdot \frac{2 \cdot 522444}{0 \cdot 229031} \times 6 \cdot 42=1 \cdot 470279
\end{aligned}
$$

And the number answering to this logarithm is 29.568 lbs. per square inch, or $29568 \times 0.7854=23.2226 \mathrm{lbs}$. per circular inch.

We have now to reverse the process, and determine the temperature corresponding to any given power of the steam, and for this purpose we must so transpose the formulas (P) and (Q), as to express the temperature in terms of the elastic force, combined with given constant numbers; but as it is probable that many of our readers would prefer to see the theorems from which the rules are deduced, we here subjoin them.

For the lower temperature, or that which does not exceed the temperature of boiling water, we get

$$
t=249 f^{\frac{1}{7.71307}}-175 \ldots(\mathrm{R})
$$

Where t denotes the temperature in degrees of Fahrenheit's thermometer, and f the elastic force in inches of mercury, less than 30 inches, or one atmosphere; but when the elastic force is greater than one atmosphere, the formula for the corresponding temperature is as follows:

$$
\dot{t}=196 f^{\frac{1}{6+22}}-121 \ldots(\mathrm{~S})
$$

In the construction of these formulas, we have, for the sake of simplicity, omitted the fractions that obtain in the coefficient of f; for since they are very small, the omission will not produce an error of any consequence ; indeed, no error will arise on this account, as we retain the correct logarithms, a circumstance that enables the computer to ascertain the true value of the coefficients whenever it is necessary so to do; but in all cases of actual practice, the results derived from the integral coefficients will be quite sufficient. The rule supplied by the equations (R) and (S) is thus expressed :

When the elastic force is less than the pressure of the atmosphere, that is, less than 30 inches of the mercurial column, -

Rule.-Divide the logarithm of the given elastic force in inches of mercury, by the constant index $7 \cdot 71307$, and to the quotient add the constant logarithm $2 \cdot 396204$; then from the common of natural number answering to the sum, subtract the constant temperature 175 degrees, and the remainder will be the temperature sought in degrees of Fahrenheit's thermometer. But when the elastic force exceeds 30 inches, or one atmosphere, the following rule applies:

Divide the logarithm of the given elastic force in inches of mercury by the constant index $6 \cdot 42$, and to the quotient add the constant logarithm 2.292363: then, from the natural number answering to the sum subtract the constant temperature 121 degrees, and the remainder will be the temperature sought. Similar rules might be constructed for determining the temperature, when the pressure in pounds per square inch is given; but since this is a less useful case of the problem, we have thought proper to omit it. We therefore proceed to exemplify the above rules, and for this purpose we shall suppose the pressure in the two cases to be equivalent to the weight of 19 and 60 inches of mercury respectively. The operations will therefore be as follows:

$$
\begin{aligned}
\text { Log. } 19 \div 7 \cdot 71307 & =1 \cdot 278754 \div 7 \cdot 71307=0 \cdot 165791 \\
\text { Constant coefficient } & =249 \ldots \ldots \ldots \ldots \ldots \ldots . \log \cdot 2 \cdot 396204 \text { add } \\
\text { Natural number } & =364 \cdot 75 \ldots \ldots \ldots \ldots \ldots \log .2 \cdot 561994 \\
\text { Constant temperature } & =175 \text { subtract }
\end{aligned}
$$

Required temperature $=189.75$ degrees of Fahrenheit's scale.
For the higher elastic force the operation is as follows:

$$
\begin{aligned}
\text { Log. } 60 \div 6 \cdot 42 & =1 \cdot 778151 \div 6 \cdot 42=0 \cdot 276969 \\
\text { Constant coefficient } & =196 \ldots \ldots \ldots \ldots . \log \cdot \frac{2 \cdot 292363}{} \text { add } \\
\text { Natural number } & =370 \cdot 97 \ldots \ldots \ldots . \log \cdot 2 \cdot 569332 \\
\text { Constant temperature } & =121 \text { subtract }
\end{aligned}
$$

Required temperature $=249.97$ degrees of Fahrenheit's scale.
All the preceding results, as computed by our rules, agree as nearly with observation as can be desired : but they have all been obtained on the supposition that the steam is in contact with the liquid from which it is generated; and in this case it is evident that the steam must always attain an elastic force corresponding to the temperature; and in accordance to any increase of pressure, supposing the temperature to remain the same, a quantity of it corresponding to the degree of compression must simply be condensed into water, and in consequence will leave the diminished space occupied by steam of the original degree of tension; or otherwise to express it, if the temperature and pressure invariably correspond with each other, it is impossible to increase the density and elasticity of the steam except by increasing the temperature at the same time ; and, contrariwise, the temperature cannot be increased without at the same time increasing the elasticity and density. This being admitted, it is obvious that under these circumstances the steam must always maintain its maximum of pressure and density: but if it be separated from the liquid that produces it, and if its temperature in this case be increased, it will be found not to possess a higher degree of elasticity than a volume of atmospheric air similarly confined, and heated to the same temperature. Under this new condition, the state of maximum density and elasticity ceases; for it is obvious that since no water is present, there cannot be any
more steam generated by an increase of temperature ; and consequently the force of the steam is only that which confines it to its original bulk, and is measured by the effort which it exerts to expand itself. Our next object, therefore, is to inquire what is the law of elasticity of steam under the conditions that we have here specified.

The specific gravity of steam, its density, and the volume which it occupies at different temperatures, have been determined by experiment with very great precision; and it has also been ascertained that the expansion of vapour by means of heat is regulated by the same laws as the expansion of the other gases, viz. that all gases expand from unity to 1.375 in bulk by 180 degrees of temperature; and again, that steam obeys the law discovered by Boyle and Mariotte, contracting in volume in proportion to the degree of pressure which it sustains. We have therefore to inquire what space a given quantity of water converted into steam will occupy at a given pressure; and from thence we can ascertain the specific gravity, density, and volume at all other pressures.

When a gas or vapour is submitted to a constant pressure, the quantity which it expands by a given rise of temperature is calculated by the following theorem,

$$
\begin{equation*}
v^{\prime}=v\left(\frac{t^{\prime}+459}{t+459}\right) . \tag{T}
\end{equation*}
$$

where t and t^{\prime} are the temperatures, and v, v^{\prime} the corresponding volumes before and after expansion; hence this rule.

Rule.-To each of the temperatures before and after expansion, add the constant experimental number 459 ; divide the greater sum by the lesser, and multiply the quotient by the volume at the lower temperature, and the product will give the expanded volume.

If the volume of steam at the temperature of 212 degrees of Fahrenheit be 1711 times the bulk of the water that produces it, what will be its volume at the temperature of 250.3 degrees, supposing the pressure to be the same in both cases?

Here, by the rule, we have $212+459=671$, and $250 \cdot 3+459$ $=709 \cdot 3$; consequently, by dividing the greater by the lesser, and multiplying by the given volume, we get $\frac{709 \cdot 3}{671} \times 1711=1808 \cdot 66$ for the volume at the temperature of $250 \cdot 3$ degrees.

Again, if the elastic force at the lower temperature and the corresponding volume be given, the elastic force at the higher temperature can readily be found; for it is simply as the volume the vapour occupies at the lower temperature is to the volume at the higher temperature, or what it would become by expansion, so is the elastic force given to that required.

If the volume which steam occupies under any given pressure and temperature be given, the volume which it will occupy under any proposed pressure can readily be found by reversing the preceding process, or by referring to chemical tables containing the
specific gravity of the gases compared with air as unity at the same pressure and temperature. Now, air at the mean state of the atmosphere has a specific gravity of $1 \frac{2}{9}$ as compared with water at 1000 ; and the bulks are inversely as the specific gravities, according to the general laws of the properties of matter previously announced; hence it follows that air is 818 times the bulk of an equal weight of water, for $1000 \div 1 \frac{2}{9}=818 \cdot 18$. But, by the experiments of Dr. Dalton, it has been found that steam of the same pressure and temperature has a specific gravity of 625 compared with air as unity; consequently, we have only to divide the number $818 \cdot 18$ by $\cdot 625$, and the quotient will give the proportion of volume of the vapour to one of the liquid from which it is generated; thus we get $818 \cdot 18 \div \cdot 625=1309$; that is, the volume of steam at 60 degrees of Fahrenheit, its force being 30 inches of mercury, is 1309 times the volume of an equal weight of water; hence it follows, from equation (T), that when the temperature increases to t^{\prime}, the volume becomes

$$
v^{\prime}=1309 \times\left(\frac{459+t^{\prime}}{459+60}\right)=2 \cdot 524\left(459+t^{\prime}\right)
$$

and from this expression, the volume corresponding to any specified elastic force f, and temperature t^{\prime}, may easily be found; for it is inversely as the compressing force: that is,

$$
f: 30:: 2 \cdot 525\left(459+t^{\prime}\right): v^{\prime} \text {; }
$$

consequently, by working out the analogy, we get

$$
v=\frac{75 \cdot 67\left(459+t^{\prime}\right)}{f} \ldots(\mathrm{U})
$$

By this theorem is found the volume of steam as compared with that of the water producing it, when under a pressure corresponding to the temperature. The rule in words is as follows:

Rule.-Calculate the elastic force in inches of mercury by the rule already given for that purpose, and reserve it for a divisor. To the given temperature add the constant number 459, and multiply the sum by $75 \cdot 67$; then divide the product by the reserved divisor, and the quotient will give the volume sought.

When the temperature of steam is $250 \cdot 3$ degrees of Fahrenheit's thermometer, what is the volume, compared with that of water?

The temperature being greater than 212 degrees, the force is calculated by the rule to equation (Q), and the process is as follows:

$$
250 \cdot 3+121=371 \cdot 3 \log \cdot 2 \cdot 5697249
$$

Constant divisor $=333 \quad$ log. $2 \cdot 5224442$ subtract

$$
0.0472807 \times 6.42=0.3035421
$$

Atmosphere $=30$ inches of mercury $\quad \log .1 \cdot 4771213$ add

Again it is,$\left.\left.\begin{array}{rl} 459+250 \cdot 3 & =709 \cdot 3 \log .2 \cdot 8508300 \\ \text { Constant coefficient } & =75 \cdot 67 \log .1 \cdot 8789237 \end{array}\right\} \text { add } 4 \cdot 7297537\right\}$	
Volume $=889 \cdot 39$ ti	

Thus we have given the method of calculating the elastic force of steam when the temperature is given either in atmospheres or inches of mercury, and also in pounds or the square or circular inch: we have also reversed the process, and determined the temperature corresponding to any given elastic force. We have, moreover, shown how to find the volume corresponding to different temperatures, when the pressure is constant; and, finally, we have calculated the volume, when under a pressure due to the elastic force. These are the chief subjects of calculation as regards the properties of steam; and we earnestly advise our readers to render themselves familiar with the several operations. The calculations as regards the motion of steam in the parts of an engine to produce power, will be considered in another part of the present treatise.

The equation (U), we may add, can be exhibited in a different form involving only the temperature and known quantities; for since the expressions (P) and (Q) represent the elastic force in terms of the temperature, according as it is under or above 212 degrees of Fahrenheit, we have only to substitute those values of the elastic force when reduced to inches of mercury, instead of the symbol f in equation (U), and we obtain, when the temperature is less than 212 degrees,

$$
\text { Vol. }=75 \cdot 67(\text { tem } .+459) \div(\cdot 004016 \times \text { tem } .+702807)^{7 \cdot 71307} \cdot(\mathrm{~V})
$$

and when the temperature exceeds 212 degrees, the expression becomes

$$
\text { Vol. }=75 \cdot 67(\text { tem. }+459) \div \cdot 005101 \times \text { tem. }+\cdot 617195)^{6 \cdot 42} \text {. (W.) }
$$

These expressions are simple in their form, and easily reduced; but, in pursuance of the plan we have adopted, it becomes necessary to express the manner of their reduction in words at length, as follows:

Rule.-When the given temperature is under 212 degrees, multiply the temperature in degrees of Fahrenheit's thermometer by the constant fraction $\cdot 004016$, and to the product add the constant increment 702807 ; multiply the logarithm of the sum by the index 7.71307, and find the natural or common number answering to the product, which reserve for a divisor. To the temperature add the constant number 459, and multiply the sum by the coefficient 75.67 for a dividend; divide the latter result by the former, and the quotient will express the volume of steam when that of water is unity.

Again, when the given temperature is greater than 212 degrees, multiply it by the fraction 005101 , and to the product add the constant increment 617195 ; multiply the logarithm of the sum by the index 6.42 , and reserve the natural number answering to the product for a divisor; find the dividend as directed above, which, being divided by the divisor, will give the volume of steam when that of the water is unity.

How many cubic feet of steam will be supplied by one cubic foot
of water, under the respective temperatures of 187 and $293 \cdot 4$ degrees of Fahrenheit's thermometer?

Here, by the rule, we have

$$
187 \times 0.004016=0.750992
$$

Constantincrement $=0 \cdot 702807$

$$
\text { Sum }=1 \cdot 453799 \log \cdot 1625043 \times 7 \cdot 71307=1 \cdot 2534069
$$

and the number answering to this logarithm is 17.92284 , the divisor. But $187+459=646$, and $646 \times 75 \cdot 67=48882 \cdot 82$, the dividend; hence, by division, we get $48882.82 \div 17.92284=$ $2727 \cdot 4$ cubic feet of steam from one cubic foot of water.

Again, for the higher temperature, it is
$293.4 \times 0.005101=1.496633$
Constant increment $=0.617195$

$$
\text { Sum }=\overline{2 \cdot 113828} \log \cdot 0 \cdot 3250696 \times 642=2 \cdot 0869468 ;
$$

and the number answering to this logarithm is $122 \cdot 165$, the divisor. But $293 \cdot 4+459=752 \cdot 4$, and $752 \cdot 4 \times 75 \cdot 67=56934 \cdot 108$, the dividend ; therefore, by division, we get $56934 \cdot 108 \div 122 \cdot 165=$ $466 \cdot 04$ cubic feet of steam from one cubic foot of water.

The preceding is a very simple process for calculating the volume which the steam of a cubic foot of water will occupy when under a pressure due to a given temperature and elastic force; and since a knowledge of this particular is of the utmost importance in calculations connected with the steam engine, it is presumed that our readers will find it to their advantage to render themselves familiar with the method of obtaining it. The above example includes both cases of the problem, a circumstance which gives to the operation, considered as a whole, a somewhat formidable appearance: but it would be difficult to conceive a case in actual practice where the application of both the formulas will be required at one and the same time; the entire process must therefore be considered as embracing only one of the cases above exemplified; and consequently it can be performed with the greatest facility by every person who is acquainted with the use of logarithms; and those unacquainted with the application of logarithms ought to make themselves masters of that very simple mode of computation.

Another thing which it is necessary sometimes to discover in reasoning on the properties of steam as referred to its action in a steam engine, is the weight of a cubic foot, or any other quantity of it, expressed in grains, corresponding to a given temperature and pressure. Now, it has been ascertained by experiment, that when the temperature of steam is 60 degrees of Fahrenheit, and the presssure equal to 30 inches of mercury, the weight of a cubic foot in grains is $329 \cdot 4$; but the weight is directly proportional to the elastic force, for the elastic force is proportional to the density: consequently, if f denote any other elastic force, and w the weight in grains corresponding thereto, then we have

$$
30: f:: 329 \cdot 4: w=10 \cdot 98 f
$$

the weight of a cubie foot of vapour at the force f, and temperature 60 degrees of Fahrenheit. Let t denote the temperature at the force f; then by equation (T$)$, we have $v=\frac{459+t}{459+60}=\frac{459+t}{519}$, the volume at the temperature t, supposing the volume at 60 degrees to be unity; that is, one cubic foot. Now, since the densities are inversely proportional to the spaces which the vapour occupies, we have $\frac{(459+t)}{519}: 1:: w: w^{\prime}=\frac{519 w}{459+t}$; but by the preceding analogy, the value of w is $10.98 f$; therefore, by substitution, we get

$$
w^{\prime}=\frac{5698 \cdot 62 f}{459+t} \cdot . \quad .(\mathrm{X})
$$

This equation expresses the weight in grains of a cubic foot of steam at the temperature t and force f; and if we substitute the value of f, from equations (P) and (Q), reduced to inches of mercury, and modified for the two cases of temperature below and above 212 degrees of Fahrenheit, we shall obtain, in the first case, $w^{\prime}=(0.012324 \times \text { temp. }+2 \cdot 155611)^{7 \cdot 7307} \div($ temp. +459$) \ldots(\mathrm{Y})$ and for the second case, where the temperature exceeds 212 , it is $w^{\prime}=(0.01962 \times \text { temp. }+2.37374)^{6 \cdot 42} \div($ temp. +459$) \ldots(\mathrm{Z})$

These two equations, like those marked (V) and (W) are sufficiently simple in their form, and offer but little difficulty in their application. The rule for their reduction when expressed in words at length, is as follows:

Rule.-When the temperature is less than 212 degrees, multiply the given temperature, in degrees of Fahrenheit's thermometer, by the fraction 0.012324 , and to the product add the constant increment $2 \cdot 155611$; then multiply the logarithm of the sum by the index $7 \cdot 71307$, and from the product subtract the logarithm of the temperature, increased by 459 ; the natural number answering to the remainder will be the weight of a cubic foot in grains.

Again, when the temperature exceeds 212, multiply it by the fraction 0.01962 , and to the product add the constant increment $2 \cdot 37374$; then multiply the logarithm of the sum by the index $6 \cdot 42$, and from the product subtract the logarithm of the temperature increased by 459 ; the natural number answering to the remainder will be the weight of a cubic foot in grains.

Supposing the temperatures to be as in the preceding example, what will be the weight of a cubic foot in grains for the two cases?

Here, by the rule, we have

$$
\begin{aligned}
& 187 \times 0.012324=2.304588 \\
& \text { Constant increment }=2 \cdot 155611
\end{aligned}
$$

For the higher temperature, it is
$293.4 \times 0.01962=5.756508$
Constant increment $=2.373740$

$$
\text { Sum }=8.130248 \quad \text { log. } 0.9101038 \times 6.42=5.8428664
$$

$$
293 \cdot 4+459=752 \cdot 4 \quad . \quad . \quad \text { log. } 2 \cdot 8764488 \text {, subtract }
$$

Natural number $=925 \cdot 59$ grains per cubic foot . log. $2 \cdot 9664176$
Here again the operation resolves both cases of the problem; but in practice only one of them can be required.

THE MOTION OF ELASTIC FLUIDS.

The next subject that claims our attention is the velocity with which elastic fluids or vapours move in pipes or confined passages. It is a well-known fact in the doctrine of pneumatics, that the motion of free elastic fluids depends upon the temperature and pressure of the atmosphere; and, consequently, when an elastic fluid is confined in a close vessel, it must be similarly circumstanced with regard to temperature and pressure as it would be in an atmosphere competent to exert the same pressure upon it. The simplest and most convenient way of estimating the motion of an elastic fluid is to assign the height of a column of uniform density, capable of producing the same pressure as that which the fluid sustains in its state of confinement; for under the pressure of such a column, the velocity into a perfect vacuum will be the same as that acquired by a heavy body in falling through the height of the homogeneous column, a proper allowance being made for the contraction at the aperture or orifice through which the fluid flows.

When a passage is opened between two vessels containing fluids of different densities, the fluid of greatest density rushes out of the vessel that contains it, into the one containing the rarer fluid, and the velocity of influx at the first instant of the motion is equal to that which a heavy body acquires in falling through a certain height, and that héight is equal to the difference of two uniform columns of the fluid of greatest density, competent to produce the pressures under which the fluids are originally confined; and the velocity of motion at any other instant is proportional to the square root of the difference between the heights of the uniform columns producing the pressures at that instant. Hence we infer that the velocity of motion continually decreases, - the density of the fluids in the two vessels approaching nearer and nearer to an equality, and after a certain time an equilibrium obtains, and the velocity of motion ceases.

It is abundantly confirmed by observation and experiment, that oblique action produces very nearly the same effect in the motion of elastic fluids through apertures as it does in the case of water; and it has moreover been ascertained that eddies take place under similar circumstances, and these eddies must of course have a tendency to retard the motion: it therefore becomes necessary, in all the calculations of practice, to make some allowance for the retardation that takes place in passing the orifice; and this end is most
conveniently answered by modifying the constant coefficient according to the nature of the aperture through which the motion is made. Numerous experiments have been made to ascertain the effect of contraction in orifices of different forms and under different conditions, and amongst those which have proved the most successful in this respect, we may mention the experiments of Du Buat and Eytelwein, the latter of whom has supplied us with a series of coefficients, which, although not exclusively applicable to the case of the steam engine, yet, on account of their extensive utility, we take the liberty to transcribe. They are as follow :-

1. For the velocity of motion that would re-
sult from the direct unretarded action of
the column of the fluid that produces it, we
have .. $3 \mathrm{~V}=\sqrt{579 h}$
2. For an orifice or tube in the form of the contracted vein $10 \mathrm{~V}=\sqrt{6084 h}$
3. For wide openings having the sill on a level with the bottom of the reservoir ...
4. For sluices with walls in a line with the orifice
$10 \mathrm{~V}=\sqrt{5} \overline{9} \overline{29 h}$
5. For bridges with pointed piers
6. For narrow openings having the sill on a level with the bottom of the reservoir ...
7. For small openings in a sluice with side walls.
$10 \mathrm{~V}=\sqrt{4761 h}$
8. For abrupt projections
9. For bridges with square piers
10. For openings in sluices without side walls $10 \mathrm{~V}=\sqrt{2601 h}$
11. For openings or orifices in a thin plate $\quad \mathrm{V}=\sqrt{25 h}$
12. For a straight tube from 2 to 3 diameters
in length projecting outwards
$10 \mathrm{~V}=\sqrt{4225}$
13. For a tube from 2 to 3 diameters in length
projecting inwards.......................... $10 \mathrm{~V}=\sqrt{2976 \cdot 25 h}$

It is necessary to observe, that in all these equations V is the velocity of motion in feet per second, and h the height of the column producing it, estimated also in feet. Nos. 1, 2, 11, 12, and 13 are those which more particularly apply to the usual passages for the steam in a steam engine; but since all the others meet their application in the every-day practice of the civil engineer, we have thought it useful to supply them.

MOTION OF STEAM IN AN ENGINE.

We have already stated that the best method of estimating the motion of an elastic fluid, such as steam or the vapour of water, is to assign the height of a uniform column of that fluid capable of producing the pressure: the determination of this column is therefore the leading step of the inquiry; and since the elastic force of steam is usually reckoned in inches of mercury, 30 inches being
equal to the pressure of the atmosphere, the subject presents but little difficulty; for we have already seen that the height of a column of water of the temperature of 60 degrees, balancing a column of 30 inches of mercury, is $34 \cdot 023$ feet; the corresponding column of steam must therefore be as its relative bulk and elastic force; hence we have $30: 34 \cdot 023: f v: h=1 \cdot 1341 f v$, where f is the elastic force of the steam in inches of mercury, v the corresponding volume or bulk when that of water is unity, and h the height of a uniform column of the fluid capable of producing the pressure due to the elastic force; consequently, in the case of a direct unretarded action, the velocity into a perfect vacuum, according to No. 1 of the preceding class of formulas, is $\mathrm{V}=8.542 \sqrt{\overline{f v}}$; but for the best form of pipes, or a conical tube in form of the contracted vein, the velocity into a vacuum, according to No. 2, becomes $\mathrm{V}=8.307 \sqrt{\overline{f v}}$; and for pipes of the usual construction, No. 12 gives $\mathrm{V}=6.922 \sqrt{ } \overline{f v}$; No. 13 gives $\mathrm{V}=5.804 \sqrt{\sqrt{v v}}$; and in the case of a simple orifice in a thin plate, we get from No. $11 \mathrm{~V}=5.322 \overline{\sqrt{f v}}$. The consideration of all these equations may occasionally be required, but our researches will at present be limited to that arising from No. 12, as being the best adapted for general practice; and for the purpose of shortening the investigation, we shall take no further notice of the case in which the temperature of the steam is below 212 degrees of Fahrenheit; for the expression which indicates the velocity into a vacuum being independent of the elastic force, a separate consideration for the two cases is here unnecessary.

It has been shown in the equation marked (U), that the volume of steam which is generated from an unit of water, is $v=$ 75.67 (temp. +459) ; let this value of v be substituted for it in the equation $\mathrm{V}=6.922 \sqrt{f v}$, and we obtain for the velocity into a vacuum for the usual form of steam passages, as follows, viz. :

$$
\mathrm{V}=60 \cdot 2143 \sqrt{(\text { temp. }+459)}
$$

This is a very neat and simple expression, and the object determined by it is a very important one: it therefore merits the reader's utmost attention, especially if he is desirous of becoming familiar with the calculations in reference to the motion of steam. The rule which the equation supplies, when expressed in words at length, is as follows:-

Rule.-To the temperature of the steam, in degrees of Fahrenheit's thermometer, add the constant number or increment 459, and multiply the square root of the sum by 60.2143 ; the product will be the velocity with which the steam rushes into a vacuum in feet per second.

With what velocity will steam of $293 \cdot 4$ degrees of Fahrenheit's thermometer rush into a vacuum when under a pressure due to the elastic force corresponding to the given temperature.

This is the velocity into a perfect vacuum, when the motion is made through a straight pipe of uniform diameter; but when the pipe is alternately enlarged and contracted, the velocity must necessarily be reduced in proportion to the nature of the contraction; and it is further manifest, that every bend and angle in a pipe will be attended with a correspondent diminution in the velocity of motion: it therefore behoves us, in the actual construction of steam passages, to avoid these causes of loss as much as possible; and where they cannot be avoided altogether, such forms should be adopted as will produce the smallest possible retarding effect. In cases where the forms are limited by the situation and conditions of construction, such corrections should be applied as the circumstances of the case demand; and the amount of these corrections must be estimated according to the nature of the obstructions themselves. For each right-angled bend, the diminution of velocity is usually set down as being about one-tenth of its unobstructed value; but whether this conclusion be correct or not, it is at least certain that the obstruction.in the case of a right-angled bend is much greater than in that of a gradually curved one. It is a very common thing, especially in steam vessels, for the main steam pipe to send off branches at right angles to each cylinder, and it is easy to see that a great diminution in the velocity of the steam must take place here. In the expansion valve chest a further obstruction must be met with, probably to the extent of reducing the velocity of the steam two-tenths of its whole amount.

These proportional corrections are not to be taken as the results of experiments that have been performed for the purpose of determining the effect of the above causes of retardation: we have no experiments of this sort on which reliance can be placed; and, in consequence, such elements can only be inferred from a comparison of the principles that regulate the motion of other fluids under similar circumstances : they will, however, greatly assist the engineer in arriving at an approximate estimate of the diminution that takes place in the velocity in passing any number of obstructions, when the precise nature of those obstructions can be ascertained. In the generality of practical cases, if the constant coefficient $60 \cdot 2143$ be reduced in the ratio of 650 to 450 , the resulting constant $41 \cdot 6868$ may be employed without introducing an error of any consequence.

of the ascent of smoke and heated air in chimneys.

The subject of chimney flues, with the ascent of smoke and heated arr, is another case of the motion of elastic fluids, in which, by a change of temperature, an atmospheric column assumes a different density from another, where no such alteration of temperature occurs. The proper construction of chimneys is a matter of very great importance to the practical engineer, for in a close fireplace,
designed for the generation of steam, there must be a considerable draught to accomplish the intended purpose, and this depends upon the three following particulars, viz. :

1. The height of the chimney from the throat to the top.
2. The area of the transverse section.
3. The temperature at which the smoke and heated air are allowed to enter it.

The formula for determining the power of the chimney may be investigated in the following manner :

Put $h=$ the height in feet from the place where the flue enters to the top of the chimney,
$b=$ the number of cubic feet of air of atmospheric density that the chimney must discharge per hour,
$a=$ the area of the aperture in square inches through which b cubic feet of air must pass when expanded by a change of temperature,
$v=$ the velocity of ascent in feet per second,
$t^{\prime}=$ the temperature of the external air, and
$t=$ the temperature of the air to be discharged by the chimney.
Now the force producing the motion in this case is manifestly the difference between the weight of a column of the atmospheric air and another of the air discharged by the chimney: and when the temperature of the atmospheric air is at 52 degrees of Fahrenheit's thermometer, this difference will be indicated by the term $h\left(\frac{t^{\prime}-t}{t^{\prime}+459}\right)$; the velocity of ascent will therefore be $v=\sqrt{64_{5}^{2} h\left\{\frac{t^{\prime}-t}{t^{\prime}+459}\right\}}$ feet per second, and the quantity of air discharged per second will therefore be, a $\int 64 \frac{2}{5}\left\{\frac{t^{\prime}-t}{t^{\prime}+459}\right\}$, supposing that there is no contraction in the stream of air; but it is found by experiment, that in all cases the contraction that takes place diminishes the quantity discharged, by about three-eighths of the whole; consequently, the quantity discharged per hour in cubic feet becomes

$$
b=125.69 a \sqrt{\frac{h\left(t^{\prime}-t\right)}{t^{\prime}+459}} .
$$

This would be the quantity discharged, provided there were no increase of volume in consequence of the change of temperature; but air expands from b to $\frac{b\left(t^{\prime}+459\right)}{t+459}$ for $t^{\prime}-t$ degrees of temperature, as has been shown elsewhere ; consequently, by comparison, we have

$$
\frac{b\left(t^{\prime}+459\right)}{t+459}=125.69 a \sqrt{\frac{h\left(t^{\prime}-t\right)}{t+459}}
$$

From this equation, therefore, any one of the quantities which it involves can be found, when the others are given : it however supposes that there is no other cause of diminution but the contraction at the aperture; but this can seldom if ever be the case; for eddies, loss of heat, obstructions, and change of direction in the chimney, will diminish the velocity, and consequently a larger area will be required to suffer the heated air to pass. A sufficient allowance for these causes of retardation will be made, if we change the coefficient $125 \cdot 69$ to 100 ; and in this case the equation for the area of section becomes

$$
a=b \sqrt{\left(t^{\prime}+459\right)^{3}} \div 100(t+459) \sqrt{h\left(t^{\prime}-t\right)}
$$

And if we take the mean temperature of the air of the atmosphere at 52 degrees of Fahrenheit, and make an allowance of 16 degrees for the difference of density between atmospheric air and coal smoke, our equation will ultimately assume the form

$$
a=b \sqrt{\left(t^{\prime}+459\right)^{3}} \div 51100 \sqrt{h\left(t^{\prime}-t-16\right)} .
$$

It has been found by experiment that 200 cubic feet of air of atmospheric density are required for the complete combustion of one pound of coal, and the consumption of ten pounds of coal per hour is usually reckoned equivalent to one horse power : it therefore appears that 2000 cubic feet of air per hour must pass through the fire for each horse power of the engine. This is a large allowance, but it is the safest plan to calculate in excess in the first instance; for the chimney may afterwards be convenient, even if considerably larger than is necessary. The rule for reducing the equation is as follows:-

Rule.-Multiply the number of horse power of the engine by the $\frac{3}{2}$ pow.er of the temperature at which the air enters the chimney, increased by 459 ; then divide the product by 25.55 times the square root of the height of the chimney in feet, multiplied by the difference of temperature, less 16 degrees, and the quotient will be the area of the chimney in square inches.

Suppose the height of the chimney for a 40 -horse engine to be 70 feet, what should be its area when the difference between the temperature at which the air enters the flue, and that of the atmosphere is 250 degrees?

Here, by the rule, we have,
$250+52=302$, the temperature at which the air enters Constant increment $=459 \quad$ [the flue.

$$
\text { Sum }=\overline{761} . \ldots \ldots \ldots \ldots \log .2 \cdot 8813847
$$

$$
\text { Number of horse power }=40 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \log \frac{1 \cdot 6020600}{5 \cdot 9241370}
$$

		5.9241370
$\begin{aligned} 250-16 & =234 . \\ \text { height } & =70 \text { feet } \end{aligned}$	log. $2 \cdot 3692159$ log. $1 \cdot 8450980$	
	2)4-2143139	
	$2 \cdot 1071569$	
Constant $=25.55$	log. 1.4073909	$3 \cdot 514547$

Hence the area of the chimney in square inches is $256 \cdot 79$, log. $2 \cdot 4095892$; and in this way may the area be calculated for any other case ; but particular care must be taken to have the data accurately determined before the calculation is begun. In the above example the partiçulars are merely assumed ; but even that is sufficient to show the process of calculation, which is more immediately the object of the present inquiry. It is right, however, to add, that recent experiments have greatly shaken the doctrine that it is beneficial to make chimneys small at the top, though such is the way in which they are, nevertheless, still constructed, and our rules must have reference to the present practice. It appears, however, that it would be the best way to make chimneys expand as they ascend, after the manner of a trumpet, with its mouth turned downwards: but these experiments require further confirmation.

The method of calculation adopted above is founded on the principle of correcting the temperature for the difference between the specific gravity of atmospheric air and that of coal-smoke, the one being unity and the other 1.05 ; there is, however, another method, somewhat more elegant and legitimate, by employing the specific gravity of coal-smoke itself: the investigation is rather tedious and prolix, but the resulting formula is by no means difficult; and since both methods give the same result when properly calculated, we make no further apology for presenting our readers with another rule for obtaining the same object. The formula is as follows:

$$
a=\frac{b\left(t^{\prime}+459\right)}{2757 \cdot 5} \sqrt{\frac{1}{h\left(t^{\prime}-77 \cdot 55\right)}}
$$

where a is the area of the transverse section of the chimney in square inches, b the quantity of atmospheric air required for combustion of the coal in cubic feet per hour, h the height of the chimney in feet, and t^{\prime} the temperature at which the air enters the flue after passing through the fire. The rule for performing this process is thus expressed:

Rule.-From the temperature at which the air enters the chimney, subtract the constant decrement 77.55 ; multiply the remainder by the height of the chimney in feet, divide unity by the product, and extract the square root of the quotient. To the temperature of the heated air, add the constant number 459 ; multiply the sum by the number of cubic feet required for combustion per hour, and divide the product by the number 2757.5 ; then multiply the quotient by the square root found as above, and the product will be the number of square inches in the transverse section of the chimney.

Suppose a mass of fuel in a state of combustion to require 5000 cubic feet of air per hour, what.must be the size of the chimney when its height is 100 feet, the temperature at which the heated air enters the chimney being 200 degrees of Fahrenheit's thermometer?

By the rule we have $200-77 \cdot 55=122 \cdot 45$. . log. $2 \cdot 0879588$
Height of the chimney $=100$. . . . log. $2 \cdot 0000000$ $4 \cdot 0879588$
2) $\lcm{5 \cdot 9120412}$
$7 \cdot 9560206$
$\left.\begin{array}{rl}200+459 & =659 \ldots \log .2 \cdot 8188854 \\ 5000 \ldots \log .3 \cdot 6989700 \\ 2757 \cdot 5 \text { ar. co. log. } 6 \cdot 5594845\end{array}\right\}$ add $\frac{8 \cdot 0773399}{1 \cdot 0333605} \quad 10 \cdot 798 \mathrm{in}$.
This appears to be a very small flue for the quantity of air that passes through it per hour; but it must be observed that we have assumed a great height for the shaft, which has the effect of creating a very powerful draught, thereby drawing off the heated air with great rapidity.

The advantage of a high flue is so very great, that the reader may be desirous of knowing to what height a chimney of a given base may be carried with safety, in cases where it is inconvenient to secure it with lateral stays; and, as an approximate rule for this purpose is not difficult of investigation, we think proper to supply it here.

When the chimney is equally wide throughout its whole height, the formula is

$$
s=h \sqrt{\frac{156}{12000-\frac{1}{3} h w}} ;
$$

but when the side of the base is double the size of the top, the equation becomes

$$
s=h \sqrt{\frac{104}{12000-0.42 h w}}
$$

where s is the side of the base in feet, h the height, and m the weight of one cubic foot of the material. When the chimney stalk is not square, but longer on the one side than the other, s must be the least dimension. The proportion of solid wall to a given base, as sanctioned by experience, is about two-thirds of its area, consequently w ought to be two-thirds of the weight of a cubic foot of brickwork. Now, a cubic foot of dried brickwork is, on an average, 114 lbs . ; consequently $w=76 \mathrm{lbs}$. ; and if this be substituted in the foregoing equations, we get for a chimney of equal size throughout,

$$
s=h \sqrt{\frac{156}{1200-25 h}} ;
$$

and when the chimney tapers to one-half the size at top, it is

$$
s-h \sqrt{\frac{104}{12000-32 h} ;}
$$

where it may be remarked that 12000 lbs . is the cohesive force of one square foot of mortar; and in the investigation of the formulas we have assumed the greatest force of the wind on a square foot of surface at 52 lbs . These equations are too simple in their form to require elucidation from us; we therefore leave the reduction as an exercise to the reader, who it is presumed will find no difficulty in resolving the several cases that may arise in the course of his practice.

$$
v=\sqrt{\frac{2 g \mathrm{H} a t \mathrm{D}}{\mathrm{D}+2 g \mathrm{~K}(\mathrm{~L}+\mathrm{H}}},
$$

is the expression given by M. Peclet for the velocity of smoke in a chimney. v, the velocity; t, the temperature, whose maximum value is about 300° centigrade; $g=32 \frac{1}{6}$ feet; D , the diameter of the chimney; H, the height; L, the length of horizontal flues, supposing them formed into a cylinder of the same diameter as that of the chimney. $\mathrm{K}=\cdot 0127$ for brick, $=\cdot 005$ for sheetiron, and $=\cdot 0025$ for cast-iron chimneys. $a=\cdot 00365$.
Let $\mathrm{L}=60 ; \mathrm{H}=150 ; \mathrm{D}=5 ; \mathrm{K}=\cdot 005 ; 2 g=64 \frac{1}{3} ; t=300^{\circ}$; $a=\cdot 00365$. Then $v=\sqrt{\frac{2 g \mathrm{HatD}}{\mathrm{D}+2 g \mathrm{~K}(\mathrm{H}+\mathrm{L})}}=26.986$ feet.

A cubic foot of water raised into steam is reckoned equivalent to a horse power, and to generate the steam with sufficient rapidity, an allowance of one square foot of fire-bars, and one square yard of effective heating surface, are very commonly made in practice, at least in land engines. These proportions, however, greatly vary in different cases; and in some of the best marine engine boilers, where the area of fire-grate is restricted by the breadth of the vessel, and the impossibility of firing long furnaces effectually at sea, half a square foot of fire-grate per horse power is a very common proportion. Ten cubic feet of water in the boiler per horse power, and ten cubic feet of steam room per horse power, have been assigned as the average proportion of these elements; but the fact is, no general rule can be formed upon the subject, for the proportions which would be suitable for a wagon boiler would be inapplicable to a tubular boiler, whether marine or locomotive; and good examples will in such cases be found a safer guide than rules which must often give a false result. A capacity of three cubic feet per horse power is a common enough proportion of furnace-room, and it is a good plan to make the furnaces of a considerable width, as they can then be fired more effectually, and do not produce so much smoke as if they are made narrow. As regards the question of draft, there is a great difference of opinion among engineers upon the subject, some preferring a very slow draft and others a rapid one. It is obvious that the question of draft is virtually that of
the area of fire-grate, or of the quantity of fuel consumed upon a given area of grate surface, and the weight of fuel burned on a foot of fire-grate per hour varies in different cases in practice from $3 \frac{1}{2}$ to 80 lbs. Upon the quickness of the draft again hinges the question of the proper thickness of the stratum of incandescent fuel upon the grate; for if the draft be very strong, and the fire at the same time be thin, a great deal of uncombined oxygen will escape up through the fire, and a needless refrigeration of the contents of the flues will be thereby occasioned; whereas, if the fire be thick, and the draft be sluggish, much of the useful effect of the coal will be lost by the formation of carbonic oxide. The length of the circuit made by the smoke varies in almost every boiler, and the same may be said of the area of the flue in its cross section, through which the smoke has to pass. As an average, about one-fifth of the area of fire-grate for the area of the flue behind the bridge, diminished to half that amount for the area of the chimney, has been given as a good proportion, but the examples which we have given, and the average flue area of the boilers which we shall describe, may be taken as a safer guide than any such loose statements. When the flue is too long, or its sectional area is insufficient, the draft becomes insufficient to furnish the requisite quantity of steam; whereas if the flue be too short or too large in its area, a large quantity of the heat escapes up the chimney, and a deposition of soot in the flues also takes place. This last fault is one of material consequence in the case of tubular boilers consuming bituminous coal, though indeed the evil might be remedied by blocking some of the tubes up. The area of water-level is about 5 feet per horse power in land boilers. In many cases, however, it is much less; but it is always desirable to make the area of the waterlevel as large as possible, as, when it is contracted, not only is the water-level subject to sudden and dangerous fluctuations, but water is almost sure to be carried into the cylinder with the steam, in consequence of the violent agitation of the water, caused by the ascent of a large volume of steam through a small superficies. It would be an improvement in boilers, we think, to place over each furnace an inverted vessel immerged in the water, which might catch the steam in its ascent, and deliver it quietly by a pipe rising above the water-level. The water-level would thus be preserved from any inconvenient agitation, and the weight of water within the boiler would be diminished at the same time that the original depth of water over the furnaces was preserved. It would also be an improvement to make the sides of the furnaces of marine boilers sloping, instead of vertical, as is the common practice, for the steam could then ascend freely at the instant of its formation, instead of being entangled among the rivets and landings of the plates, and superinducing an overheating of the plates by preventing a free access of the water to the metal.

We have, in the following table, collected a few of the principal results of experiments made on steam boilers.

Table I.

nature of the boilers used.					$\begin{aligned} & \text { Mean of } 11 \text { of M. de Pambour's } \\ & \text { experiments. } \end{aligned}$		
	Cylindrica with inter nal flue.	Wayon.	Wagon.	Circular or Hay-stack.	$\begin{aligned} & \text { Locomo. } \\ & \text { tive. } \end{aligned}$	Cylindrical with inter- nal flue.	Wagon with inter nal flue.
Total area of heated surface in square feet......	962	152	342:8	459	$334 \cdot 6$	798	588
Length of circuit made by the heat in feet \qquad	155	50.66	72.5	$52 \cdot 8$	$7 \cdot 0$	$83 \cdot 1$	78
Area of fire grates in square $\}$ feet	$23 \cdot 66$	23.33	26.09	$35 \cdot 10$	7.03	14.25	$37 \cdot 26$
$\left.\begin{array}{r}\text { Weight of fuel burned on } \\ \text { each square foot of grate, } \\ \text { per hour, in lbs.......... }\end{array}\right\}$	3 46	$4 \cdot 00$	10.75	$20 \cdot 34$	79:33	46.82	$13 \cdot 31$
$\left.\begin{array}{c}\left.\begin{array}{c}\text { Cub. ft. of water evaporated } \\ \text { from initial temperature } \\ \text { by } 112 \text { lbs. of fuel }\end{array}\right\}\end{array}\right\}$	18.87	16.44	13.91	14•11	11.14		
$\left.\begin{array}{r} \text { Cubie feet of water eva- } \\ \text { porated per hour from } \\ \text { initial temperature.... } \end{array}\right\}$	13.81	13•79	$34 \cdot 40$	$90 \cdot 7$	$55 \cdot 18$		
Square feet of heated sur- face for each cubic foot of water evaporated per hour \qquad	69.58	11.00	9.96	5•06	6.06	17•17	
$\left.\begin{array}{c}\text { Square feet of heated sur- } \\ \text { face for each square foot } \\ \text { of grate........................... }\end{array}\right\}$	$40 \cdot 65$	6.51	13/13	13.08	$47 \cdot 59$	$56^{\circ} 0$	15.78
$\left.\begin{array}{c}\text { Pressure of steam above } \\ \text { the atmosphere in libs.. }\end{array}\right\}$	$42 \cdot 2$	$2 \cdot 5$	$3 \cdot 68$	15	50.	$15 \cdot 45$	

The economical effects of expansion will be found to be very clearly exhibited in the next table. The duties are recorded in the fifth line from the top, and the degree of expansion in the bottom line. It will be observed, that the order in which the different engines stand in respect of superiority of duty is the same as in respect of amount of expansion. The Holmbush engine has a duty of $140,484,848 \mathrm{lbs}$. raised 1 foot by 1 cwt . of coals, and the steam acts expansively over 83 of the whole stroke; while the waterworks' Cornish engine has only a duty of $105,664,118 \mathrm{lbs}$. , and expands the steam over only 687 of the whole stroke. Again, comparing the second and last engines together, the Albion Mills engine has a duty of $25,756,752 \mathrm{lbs}$., and no expansive action. The water-works' engine, again, acts expansively over one-half of its stroke, and has an increased duty of $46,602,333 \mathrm{lbs}$. Other causes, of course, may influence these comparisons, especially the last, where one engine is a double-acting rotative engine, and the other a single-acting pumping one; but there can be no doubt that the expansive action in the latter is the principal cause of its more economical performance.

- The heating surface per horse power allowed by some engineers is about 9 square feet in wagon boilers, reckoning the total surface as effective surface, if the boilers be of a considerable size; but in the case of small boilers, the proportion is larger. The total
Table II.

	Atmospheric Engine, Long Benberland, date 1772.	Non-expansive rotative ${ }^{\text {tngine }}$, ${ }^{\text {condensing }}$ Miils ${ }^{\text {ITs }}$. London, date	Holmbush, Cornish, condensing En for pumping water sivelyafter the first sixth of the stroke 1836 .		$\underset{\substack{\text { Cornish } \\ \text { E.ast } \\ \text { Water }}}{\substack{\text { Engine, } \\ \text { Works. }}}$	$\left\|\begin{array}{c} \text { Pumping Engine } \\ \text { at East Londo } \\ \text { Water Works. } \end{array}\right\|$
Diameter of cylinder in inche	52	34	50	13	793	595
Length of stroke in feet..	7	8	$9 \cdot 1$	4	10	$7 \cdot 91$
Number of strokes per minute................................	12	16	$4 \cdot 63$	$27 \cdot 5$	7	11.5
Pressure on the piston, above or below the atmosphere $\}$ in lbs., per square inch..	. . . \{	Estimated at $-2 \cdot 5$	\} +30	+20	$+5 \cdot 17$	+2.15
Weight in lbs. raised one foot by 112 lbs of coals......... do. by one pound of water, as steam Do.	$12,600,000$ 14,280	$25,756,752$ 28,489	$140,484,848$ 119,097	$12,418,560$ 15,840	$\begin{array}{r} 105,664,118 \\ 110,716 \end{array}$	$\begin{array}{r} 46,602,333 \\ 53,369 \end{array}$
Effective power of the engine at time of experiment in $\}$ horse power	$40 \cdot 5$	$50 \cdot 0$	$26 \cdot 48$	12.0	10,16	
Efficiency of the steam, its efficiency in the Albion? Mills being unity	$\cdot 501$	1.000	$4 \cdot 180$	-556	3.89	1•87
Efficiency of the fuel, its efficiency in the Albion Mills $\}$ being unity.	$\cdot 480$	1.000	5.454	-482	$4 \cdot 1$	1.81
Distance of the piston from the end of its stroke when $\}$ the steam is cut off in parts of the length of stroke. $\}$	0	0	-833	0	$\cdot 687$	$\cdot 5$

heating surface of a two horse power wagon boiler is, according to Fitzgerald's proportions, 30 square feet, or 15 ft . per horse power ; whereas, in the case of a 45 horse power boiler the total heating surface is 438 square feet, or $9 \cdot 6 \mathrm{ft}$. per horse power. The capacity of steam room is $8 \frac{3}{4}$ cubic feet per horse power, in the two horse power boiler, and $5 \frac{3}{4}$ cubic feet in the 20 horse power boiler; and in the larger class of boilers, such as those suitable for 30 and 45 horse power engines, the capacity of the steam room does not fall below this amount, and indeed is nearer 6 than $5 \frac{3}{4} \mathrm{cu}$ bic feet per horse power. The content of water is $18 \frac{1}{2}$ cubic feet per horse power in the two horse power boiler, and 15 cubic feet per horse power in the 20 horse power boiler. In marine boilers about the same proportions obtain in most particulars. The original boilers of one or two large steamers were proportioned with about half a square foot of fire grate per horse power, and 10 square feet of flue and furnace surface, reckoning the total amount as effective; but in the boilers of other vessels a somewhat smaller proportion of heating surface was adopted. In some cases we have found that, in their marine flue boilers, 9 square feet of flue and furnace surface are requisite to boil off a cubic foot of water per hour, which is the proportion that obtains in some land boilers; but inasmuch as in modern engines the nominal considerably exceeds the actual power, they allow 11 square feet of heating surface per nominal horse power in their marine boilers, and they reckon, as effective heating surface, the tops of the flues, and the whole of the sides of the flues, but not the bottoms. They have been in the habit of allowing for the capacity of the steam space in marine boilers 16 times the content of the cylinder; but as there are two cylinders, this is equivalent to 8 times the content of both cylinders, which is the proportion commonly followed in land engines, and which agrees very nearly with the proportion of between 5 and 6 cubic feet of steam room per horse power. Taking, for example, an engine with 23 inches diameter of cylinder and 4 feet stroke, which will be 18.4 horse power-the area of the cylinder will be 415.476 square inches, which, multiplied by 48 , the number of inches in the stroke, will give 19942.848 for the capacity of the cylinder in cubic inches; 8 times this is 159542.784 cubic inches, or 92.3 cubic feet; $92 \cdot 3$ divided by 18.4 is rather more than 5 cubic feet per horse power. There is less necessity, however, that the steam space should be large when the flow of steam from the boiler is very uniform, as it will be where there are two engines attached to the boiler at right angles with one another, or where the engines work at a great speed, as in the case of locomotive engines. A high steam chest too, by rendering boiling over into the steam pipes, or priming as it is called, more difficult, obviates the necessity for so large a steam space; and the use of steam of a high pressure, worked expansively, has the same operation; so that in modern marine boilers, of the tubular construction, where the whole of these modifying circumstances exist, there is no necessity for so
large a proportion of steam room as 5 or 6 cubic feet per horse power, and about half that amount more nearly represents the general practice. Many allow 0.64 of a square foot per nominal horse power of grate bars in their marine boilers, and a good effect arises from this proportion; but sometimes so large an area of fire grate cannot be conveniently got, and the proportion of half a square foot per horse power seems to answer very well in engines working with some expansion, and is now very widely adopted. With this allowance, there will be about 22 square feet of heating surface per square foot of fire grate ; and if the consumption of fuel be taken at 6 lbs . per nominal horse power per hour, there will be 12 lbs. of coal consumed per hour on each square foot of grate. The flues of all flue boilers diminish in their calorimeter as they approach the chimney; some very satisfactory boilers have been made by allowing a proportion of 0.6 of a square foot of fire grate per nominal horse power, and making the sectional area of the flue at the largest part $\frac{1}{4}$ th of the area of fire grate, and \cdot the smallest part, where it enters the chimney, $\frac{1}{11}$ th of the area of the fire grate; but in some of the boilers proportioned on this plan the maximum sectional area is only $\frac{1}{7 \cdot 5}$ or $\frac{1}{8 \cdot 5}$, according to the purposes of the boiler. These proportions are retained whether the boiler is flue or tubular, and from 14 to 16 square feet of tube surface is allowed per nominal horse power ; but such boilers, although they may give abundance of steam, are generally, perhaps needlessly, bulky.

We shall therefore conclude our remarks upon the subject by introducing a table of the comparative evaporative power of different kinds of coal, which will prove useful, by affording data for the comparison of experiments upon different boilers when different kinds of coal are used.

Table of the Comparative Evaporative Power of different kinds of Coal.

No.	Daseription of Coals.	Water evapo rated per po of Coals.
1	The best Welsh.	
2.	Anthracite American.	$9 \cdot 14$
3	The best small Pittsburgh	8.526
4	Average small Newcastle.	8.074
5	Pennsylvanian...............................	10.45
6	Coke from Gas-works	7.908
7	Coke and Newcastle, small, $\frac{1}{2}$ and $\frac{1}{2}$....	7.897
8	Welsh and Newcastle, mixed $\frac{1}{2}$ and $\frac{1}{2} \ldots$	7.865
9	Derbyshire and small Newcastle, $\frac{1}{2}$ and $\frac{1}{2}$	7.710
10	Average large Newcastle.	7.658
11	Derbyshire	6.772
12	Blythe Main, Northumberland	$6 \cdot 600$

Strength of boilers.-The extension of the expansive method of employing steam to boilers of every denomination, and the gradual introduction in connection therewith of a higher pressure than for-
merly, makes the question of the strength of boilers one of great and increasing importance. This topic was very successfully elucidated, a few years ago, by a committee of the Franklin Institute, Philadelphia, and we shall here recapitulate a few of the more important of the conclusions at which they arrived. Iron boiler plate was found to increase in tenacity as its temperature was raised, until it reached a temperature of 550° above the freezing point, at which point its tenacity began to diminish. The following table exhibits the cohesive strength at different temperatures.

The difference in strength between strips of iron cut in the direction of the fibre, and strips cut across the grain, was found to be about 6 per cent. in favour of the former. Repeated piling and welding was found to increase the tenacity and closeness of the iron, but welding together different kinds of iron was found to give an unfavourable result; riveting plates was found to occasion a diminution in their strength, to the extent of about one-third. The accidental overheating of a boiler was found to reduce its strength from $65,000 \mathrm{lbs}$. to $45,000 \mathrm{lbs}$. per square inch. Taking into account all these contingencies, it appears expedient to limit the tensile force upon boilers in actual use to about 3000 lbs. per square inch of iron.

Copper follows a different law, and appears to diminish in strength by every addition of heat, reckoning from the freezing point. The square of the diminution of strength seems to keep pace with the cube of the temperature, as appears by the following table:-

Table showing the Diminution of Strength of Copper Boiler Plates by additions to the Temperature, the Cohesion at 32° being 32,800 lbs. per Square Inch.

No.	Temperature above 320.	Dimingtion of Strength.	No.	Temperature above 320.	Diminution of Strength.
$\mathbf{1}$	90°	0.0175	9	660°	0.3425
$\mathbf{2}$	180	0.0540	10	769	0.4398
3	270	0.0926	11	812	0.4944
4	360	0.1513	1.2	880	0.5581
5	450	0.2046	13	984	0.6691
6	460	0.2133	14	1000	0.6741
7	513	0.2446	15	1200	0.8861
8	529	0.2558	16	1300	1.0000

In the case of iron, the following are the results when tabulated after a similar fashion.

Table of Experiments on Iron Boiler Plate at High Temperature; the Mean Maximum Tenacity being at $550^{\circ}=65,000$ lbs. per Square Inch.

Temperature observed.	Diminution of Tenacity observed.	Temperature observed.	Diminution of Tenacity observed.
550°	0.0000	824°	0.2010
570	0.0869	932	0.3324
596	0.0899	947	0.3593
600	0.0964	1030	0.4478
630	0.1047	1111	0.5514
562	0.1155	1155	0.6000
722	0.1436	1159	0.6011
732	0.1491	1187	0.6352
734	0.1535	1237	0.6622
766	0.1559	1245	0.6715
770	0.1627	1317	0.7001

The application of stays to marine boilers, especially in those parts of the water spaces which lie in the wake of the furnace bars, has given engineers much trouble; the $\frac{3}{8}$ plate, of which ordinary boilers are composed, is hardly thick enough to retain a stay with security by merely tapping the plate, whereas, if the stay be riveted, the head of the rivet will in all probability be soon burnt away. The best practice appears to be to run the stays used for the water spaces in this situation, in a line somewhat beneath the level of the bars, so that they may be shielded as much as possible from the fire, while those which are required above the level of the bars should be kept as nearly as possible towards the crown of the furnace, so as to be removed from the immediate contact of the fire. Screw bolts with a fine thread tapped into the plate, and with a thin head upon the one side, and a thin nut made of a piece of boiler plate on the other, appear to be the best description of stay that has yet been contrived. The stays between the sides of the boiler shell, or the bottom of the boiler and the top, present little difficulty in their application, and the chief thing that is to be attended to is to take care that there be plenty of them ; but we may here remark that we think it an indispensable thing, when there is any high pressure of steam to be employed, that the furnace crown be stayed to the top of the boiler. This, it will be observed, is done in the boilers of the Tagus and Infernal ; and we know of no better specimen of staying than is afforded by those boilers.

AREA OF STEAM PASSAGES.

Rule.-To the temperature of steam in the boiler add the constant increment 459; multiply the sum by 11025; and extract the square root of the product. Multiply the length of stroke by the number of strokes per minute; divide the product by the square root just found; and multiply the square root of the quotient by the diameter of the cylinder; the product will be the diameter of the steam passages.

Let it be required to determine the diameter of the steam passages in an engine of which the diameter of the cylinder is 48 inches, the length of stroke $4 \frac{1}{2}$ feet, and the number of strokes per minute 26 , supposing the temperature under which the steam is generated to be 250 degrees of Fahrenheit's thermometer.

Here by the rule we get $\sqrt{11025(250+459})=2795 \cdot 84$; the number of strokes is 26 , and the length of stroke $4 \frac{1}{2}$ feet; hence it is $\delta=d \sqrt{\frac{117}{2795 \cdot 84}}=0.20456 d=0.20456 \times 48=9.819$ inches; so that the diameter of the steam passages is a little more than onefifth of the diameter of the cylinder. The same rule will answer for high and low pressure engines, and also for the passages into the condenser.

LOSS OF FORCE BY THE DECREASE OF TEMPERATURE IN THE STEAM PIPES.
Rule.-From the temperature of the surface of the steam pipes subtract the temperature of the external air ; multiply the remainder by the length of the pipes in feet, and again by the constant number or coefficient $1 \cdot 68$; then divide the product by the diameter of the pipe in inches drawn into the velocity of the steam in feet per second, and the quotient will express the diminution of temperature in degrees of Fahrenheit's thermometer.

Let the length of the steam pipe be 16 feet and its diameter 5 inches, and suppose the velocity of the steam to be about 95 feet per second, what will be the diminution of temperature, on the supposition that the steam is at 250° and the external air at 60° of Fahrenheit?

Here, by the note to the above rule, the temperature of the surface of the steam pipe is $250-250 \times 0.05=237.5$; hence we get $t^{\prime \prime}=\frac{1.68 \times 16(237.5-60)}{5 \times 95}=10.044$ degrees.

If we examine the manner of the composition of the above equation, it will be perceived that, since the diameter of the pipe and the velocity of motion enter as divisors, the loss of heat will be less as these factors are greater; but, on the other hand, the loss of heat will be greater in proportion to the length of pipe and the temperature of the steam. Since the steam is reduced from a higher to a lower temperature during its passage through the steam pipes, it must be attended with a corresponding diminution in the elastic force; it therefore becomes necessary to ascertain to what extent the force is reduced, in consequence of the loss of heat that takes place in passing along the pipes. This is an inquiry of some importance to the manufacturers of steam engines, as it serves to guard them against a very common mistake into which they are liable to fall, especially in reference to steamboat engines, where it is usual to cause the pipe to pass round the cylinder, instead of carrying it in the shortest direction from the boiler, in order to decrease the quantity of surface exposed to the cooling effect of the atmosphere.

Rule.-From the temperature of the surface of the steam pipe subtract the temperature of the external air ; multiply the remainler by the length of the pipe in feet, and again by the constant fractional coefficient 0.00168 ; divide the product by the diameter of the pipe in inches drawn into the velocity of steam in feet per second, and subtract the quotient from unity; then multiply the difference thus obtained by the elastic force corresponding to the temperature of steam in the boiler, and the product will be the elastic force of the steam as reduced by cooling in passing through the pipes.

Let the dimensions of the pipe, the temperature of the steam, and its velocity through the passages, be the same as in the preceding example, what will be the quantity of reduction in the elastic force occasioned by the effect of cooling in traversing the steam pipe?

Since the elastic force of the steam in the boiler enters the equation from which the above rule is deduced, it becomes necessary in the first place to calculate its value; and this is to be done by a rule already given, which answers to the case in which the temperature is greater than 212°; thus we have

$$
\begin{aligned}
250 \times 1 \cdot 69856= & =424 \cdot 640 \\
\text { Constant number }= & 205 \cdot 526 \text { add } \\
\cdot \text { Sum }= & 630 \cdot 166 \ldots \ldots . \log .2 \cdot 79945 \\
\text { Constant divisor }= & 333 \ldots \ldots \ldots . \log \cdot 2 \cdot 522444 \text { subtract } \\
& 0 \cdot 277011 \times 6 \cdot 42=1 \cdot 778410,
\end{aligned}
$$

which is the logarithm of 60.036 inches of mercury.
Again, we have $250-0.05 \times 250=237.5$; consequently, by multiplying as directed in the rule, we get $237.5 \times 0.00168 \times 16$ $=6.384$, which being divided by $95 \times 5=475$, gives 0.01344 ; and by taking this from unity and multiplying the remainder by the elastic force as calculated above, the value of the reduced elastic force becomes

$$
f^{\prime}=60.036(1-0.01344)=59.229 \text { inches of mercury }
$$

The loss of force is therefore $60.036-59 \cdot 229=0.807$ inches of mercury, which amounts to $\frac{1}{75}$ th part of the entire elastic force of the steam in the boiler as generated under the given temperature, being a quantity of sufficient importance to claim the attention of our engineers.

FEED WATER.

The quantity of water required to supply the waste occasioned by evaporation from a boiler, or, as it is technically termed, the "feed water" required by a boiler working with any given pressure, is easily determinable. For, since the relative volumes of water and steam at any given pressure are known, it becomes necessary merely to restore the quantity of water by the feed pump equiva-
lent to that abstracted in the form of steam, which the known relation of the density to the pressure of the steam renders of easy accomplishment. In practice, however, it is necessary that the feed pump should be able to supply a much larger quantity of water than what theory prescribes, as a great waste of water sometimes occurs from leakage or priming, and it is necessary to provide against such contingencies. The feed pump is usually made of such dimensions as to be capable of supplying $3 \frac{1}{2}$ times the water that the boiler will evaporate, and in low pressure engines, where the cylinder is double acting and the feed pump single acting, this proportion will be maintained by making the pump a 240 th of the capacity of the cylinder. In low pressure engines the pressure in the boiler may be taken at 5 lbs. above the pressure of the atmosphere, or 20 lbs . in all; and as high pressure steam is merely low pressure steam compressed into a smaller compass, the size of the feed pump relatively to the size of the cylinder must obviously vary in the direct proportion of the pressure. If, then, the feed pump be 1-240th of the capacity of the cylinder when the total pressure of the steam is 20 lbs ., it must be 1-120th of the capacity of the cylinder when the total pressure of the steam is 40 lbs. , or 25 lbs . above the atmosphere. This law of variation is expressed by the following rule, which gives the capacity of feed pump proper for all pressures :-Multiply the capacity of the cylinder in cubic inches by the total pressure of the steam in libs. per square inch, or the pressure in lts. per square inch on the safety valve, plus 15 , and divide the product by 4800 ; the quotient is the capacity of the feed pump in cubic inches, when the feed pump is single acting and the engine double acting. If the feed pump be double acting, or the engine single acting, the capacity of the pump must be just one-half what is given by this rule.

CONDENSING WATER.

It was found that the most beneficial temperature of the hot well was 100 degrees. If, therefore, the temperature of the steam be 212°, and the latent heat 1000°, then 1212° may be taken to represent the heat contained in the steam, or 1112° if we deduct the temperature of the hot well. If the temperature of the injection water be 50°, then 50 degrees of cold are available for the abstraction of heat, and as the total quantity of heat to be abstracted is that requisite to raise the quantity of water in the steam 1112 degrees, or 1112 times that quantity, one degree, it would raise one-fiftieth of this, or 22.24 times the quantity of water in the steam, 50 degrees. A cubic inch of water, therefore, raised into steam, will require 22.24 cubic inches of water at 50 degrees for its condensation, and will form therewith $23 \cdot 24$ cubic inches of hot water at 100 degrees. It has been a practice to allow about a wine pint ($28 \cdot 9$ cubic inches) of injection water for every cubic inch of water evaporated from the boiler. The usual capacity for the cold water pump is $\frac{1}{48}$ th of the capacity of the cylinder, which allows some water to run to waste. As a maximum
effect is obtained when the temperature of the hot well is about 100°, it will not be advisable to reduce it below that temperature in practice. With the superior vacuum due to a temperature of 70° or 80° the admission of so much cold water into the condenser becomes necessary,-and which has afterwards to be pumped out in opposition to the pressure of the atmosphere, -so that the gain in the vacuum does not equal the loss of power occasioned by the additional load upon the pump, and there is, therefore, a clear loss by the reduction of the temperature below 100°, if such reduction be caused by the admission of an additional quantity of water. If the reduction of temperature, however, be caused by the use of colder water, there is a gain produced by it, though the gain will within certain limits be greater, if advantage be taken of the lowness of the temperature to diminish the quantity of injection.

SAFETY VALVES.

Rule.-Add 459 to the temperature of the steam in degrees of Fahrenheit ; divide the sum by the product of the elastic force of the steam in inches of mercury, into its excess above the weight of the atmosphere in inches of mercury; multiply the square root of the quotient by 0653 ; multiply this product by the number of cubic feet per hour of water evaporated, and this last product is the theoretical area of the orifice of the safety valve in square inches.

To apply this to an example-which, however, it must be remembered, will give a result much too small for practice.

Required the least area of a safety valve of a boiler suited for a 250 horse power engine, working with steam 6 lbs . more than the atmosphere on the square inch.

In this case the total pressure is equal to 21 lbs . per square inch ; and as in round numbers one pound of pressure is equal to about two inches of mercury, it follows that $f=42$ inches of mercury.

It will be necessary to calculate t from formula (S) already given. The operation is as follows:-

$$
\begin{aligned}
& \log .42 \div 6.42=1.623249 \div 6.42=0.252842 \\
& \text { constant co-efficient }=196 \quad 2 \cdot 292363 \\
& 2 \cdot 545205 \\
& \text { natural number }=350.92 \\
& \text { constant temperature }=121 \\
& t=\overline{229 \cdot 92} \\
& \text { therefore } \sqrt{\frac{459+t}{f(f-30)}}=\sqrt{\frac{459+229.92}{42 \times 12}} \\
& =\sqrt{\frac{688 \cdot 92}{50 \cdot 4}}=\sqrt{1 \cdot 3669}=1 \cdot 168 ; \\
& \text { therefore } x=\cdot 0653 \times 1 \cdot 168 \times \mathrm{N}=\cdot 0757 \mathrm{~N} \text {. }
\end{aligned}
$$

We have stated in a former part of this work that a cubic foot of water evaporated per hour is equivalent to one horse power; therefore in this case $\mathrm{N}=250$ and $x=18.925$ sq. in.

As another example. Required the proper area of the safety valve of a boiler suited to an engine of 500 horse power, when it is wished that the steam should never acquire an elastic force greater than 60 lbs . on the square inch above the atmosphere.

In this case the whole elastic force of the steam is 75 lbs .; and as 1 pound corresponds in round numbers to 2 inches of mercury, it follows that $f=150$. It will be necessary to calculate the temperature corresponding to this force. The operation is as follows :-

$$
\begin{array}{rlrl}
\text { Log. } 150 \div 6 \cdot 42 & =2 \cdot 176091 \div 6 \cdot 42= & \cdot 338955 \\
\text { constant co-efficient } & =196 & \text { log. } & 2 \cdot 292363 \text { add } \\
\text { natural number } & =427 \cdot 876 & \frac{}{2 \cdot 631318} \\
\text { constant temperature } & =121 & 121 \\
\text { required temperature } & & 306 \cdot 876 \text { degrees of Fahrenheit's scale }
\end{array}
$$

$$
\text { therefore } \frac{459+t}{f(f-30)}=\frac{459+306.876}{150(150-30)}=\frac{765.876}{150 \times 120}=\frac{765.896}{18000}
$$

$$
=\cdot 043549 ; \text { therefore } \sqrt{\frac{459+t}{f(f-30)}}=\sqrt{\cdot 042549}=\cdot 20628
$$

Hence the required area $=\cdot 0653 \times \cdot 20628 \times 500=\cdot 01347 \times$ $500=6 \cdot 735$ square inches.

If the area of the safety valve of a boiler suited for an engine of 500 horse power be required, when it is wished the steam should never acquire a greater temperature than 300°, it will be necessary to calculate the elastic force corresponding to this temperature; and by formula for this purpose, the required area $=\cdot 0653 \times \cdot 231 \times$ $500=\cdot 0151 \times 500=7.55$ square inches. It will be perceived from these examples that the greater the elasticity and the higher the corresponding temperature the less is the area of the safety valve. This is just as might have been expected, for then the steam can escape with increased velocity. We may repeat that the results we have arrived at are much less than those used in practice. For the sake of safety, the orifices of the safety valve are intentionally made much larger than what theory requires; usually $\frac{8}{10}$ of a square inch per horse power is the ordinary proportion allowed in the case of low pressure engines.

the slide valve.

The four following practical rules are applicable alike to short slide and long D valves.

Rule I.-To find how much cover must be given on the steam side in order to cut the steam off at any given part of the stroke.From the length of the stroke of the piston, subtract the length of that part of the stroke that is to be made before the steam is cut off. Divide the remainder by the length of the stroke of the
piston, and extract the square root of the quotient. Multiply the square root thus found by half the length of the stroke of the valve, and from the product take half the lead, and the remainder will be the cover required.

Rule II.-To find at what part of the stroke any given amount of cover on the steam side will cut off the steam.-Add the cover on the steam side to the lead; divide the sum by half the length of stroke of the valve. In a table of natural sines find the are whose sine is equal to the quotient thus obtained. To this are add 90°, and from the sum of these two arcs subtract the arc whose cosine is equal to the cover on the steam side divided by half the stroke of the valve. Find the cosine of the remaining arc, add 1 to it, and multiply the sum by half the stroke of the piston, and the product is the length of that part of the stroke that will be made by the piston before the steam is cut off.

Rule III.-To find how much before the end of the stroke, the exhaustion of the steam in front of the piston will be cut off.-To the cover on the steam side add the lead, and divide the sum by half the length of the stroke of the valve. Find the arc whose sine is equal to the quotient, and add 90° to it. Divide the cover on the exhausting side by half the stroke of the valve, and find the arc whose cosine is equal to the quotient. Subtract this arc from the one last obtained, and find the cosine of the remainder. Subtract this cosine from 2, and multiply the remainder by half the stroke of the piston. The product is the distance of the piston from the end of its stroke when the exhaustion is cut off.

Rule IV.-To find how far the piston is from the end of its stroke, when the steam that is propelling it by expansion is allowed to escape to the condenser. - To the cover on the steam side add the lead, divide the sum by half the stroke of the valve, and find the arc whose sine is equal to the quotient. Find the arc whose cosine is equal to the cover on the exhausting side, divided by half the stroke of the valve. Add these two arcs together, and subtract 90°. Find the cosine of the residue, subtract it from 1, and multiply the remainder by half the stroke of the piston. The product is the distance of the piston from the end of its stroke, when the steam that is propelling it is allowed to escape to the condenser. In using these rules, all the dimensions are to be taken in inches, and the answers will be found in inches also.

From an examination of the formulas we have given on this subject, it will be perceived (supposing that there is no lead) that the part of the stroke where the steam is cut off, is determined by the proportion which the cover on the steam side bears to the length of the stroke of the valve: so that in all cases where the cover bears the same proportion to the length of the stroke of the valve, the steam will be cut off at the same part of the stroke of the piston.

In the first line, accordingly, of Table \cdot I., will be found eight lifferent parts of the stroke of the piston designated; and directly
below each, in the second line, is given the quantity of cover requisite to cause the steam to be cut off at that particular part of the stroke. The different sizes of the cover are given in the second line, in decimal parts of the length of the stroke of the valve; so that, to get the quantity of cover corresponding to any of the given degrees of expansion, it is only necessary to take the decimal in the second line, which stands under the fraction in the first, that marks the degree of expansion, and multiply that decimal by the length you intend to make the stroke of the valve. Thus, suppose you have an engine in which you wish to have the steam cut off when the piston is a quarter of the length of its stroke from the end of it, look in the table, and you will find in the third column from the left, $\frac{1}{4}$. Directly under that, in the second line, you have the decimal -250 . Suppose that you think 18 inches will be a convenient length for the stroke of the valve, multiply the decimal $\cdot 250$ by 18, which gives $4 \frac{1}{2}$. Hence we learn that with an 18 inch stroke for the valve, $4 \frac{1}{2}$ inches of cover on the steam side will cause the steam to be cut off when the piston has still a quarter of its stroke to perform.

Half the stroke of the valve must always be at least equal to the cover on the steam side added to the breadth of the port. By the "breadth" of the port, we mean its dimension in the direction of the valve's motion; in short, its perpendicular depth when the cylinder is upright. The words "cover" and " lap" are synonymous. Consequently, as the cover, in this case, must be $4 \frac{1}{2}$ inches, and as half the stroke of the valve is 9 inches, the breadth of the port cannot be more than $\left(9-4 \frac{1}{2}=4 \frac{1}{2}\right) 4 \frac{1}{2}$ inches. If this breadth of port is not enough, we must increase the stroke of the valve; by which means we shall get both the cover and the breadth of the port proportionally increased. Thus, if we make the length of valve stroke 20 inches, we shall have for the cover $250 \times 20=5$ inches, and for the breadth of the port $10-5=5$ inches.

Table I.
$\left.\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Distance of the piston from } \\ \text { the termination of its } \\ \text { stroke, when the steam } \\ \text { is cut off, in parts of the }\end{array} \\ \text { length of its stroke. }\end{array}\right\}$

This table, as we have already intimated, is computed on the supposition that the valve is to have no lead; but, if it is to have lead, all that is necessary is to subtract half the proposed lead from the cover found from the table, and the remainder will be the
proper quantity of cover to give to the valve. Suppose that, in the last example, the valve was to have $\frac{3}{4}$ inch of lead, we would subtract $\frac{1}{8}$ inch from the 5 inches found for the cover by the table: that would leave $4 \frac{7}{8}$ inches for the quantity of cover that the valve ought to have.

Table II.

Length of the strokeof the valve. Inches.	Cover required on the steam side of the ralve to cut the steam off at any of theunder-noted parts of the stroke.							
	$\frac{1}{8}$	$\frac{7}{24}$	$\frac{1}{4}$	$\frac{5}{24}$	$\frac{1}{6}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{24}$
24	6.94	$6 \cdot 48$	6.00	$5 \cdot 47$	$4 \cdot 90$	4.25	$3 \cdot 47$	$2 \cdot 45$
231 ${ }^{2}$	6.79	$6 \cdot 34$	$5 \cdot 88$	$5 \cdot 36$	$4 \cdot 79$	$4 \cdot 16$	$3 \cdot 39$	$2 \cdot 39$
23	$6 \cdot 65$	6.21	$5 \cdot 75$	$5 \cdot 24$	$4 \cdot 69$	4.07	$3 \cdot 32$	$2 \cdot 34$
22즌	6.50	6.07	$5 \cdot 62$	$5 \cdot 13$	$4 \cdot 59$	3.98	$3 \cdot 25$	2.29
22	$6 \cdot 36$	$5 \cdot 94$	$5 \cdot 50$	$5 \cdot 02$	$4 \cdot 49$	$3 \cdot 89$	$3 \cdot 13$	$2 \cdot 24$
$21 \frac{1}{2}$	$6 \cdot 21$	$5 \cdot 80$	$5 \cdot 38$	4.90	4.39	$3 \cdot 80$	$3 \cdot 10$	$2 \cdot 19$
21	6.07	$5 \cdot 67$	$5 \cdot 25$	$4 \cdot 79$	$4 \cdot 28$	$3 \cdot 72$	$3 \cdot 03$	$2 \cdot 14$
$20 \frac{1}{2}$	$5 \cdot 92$	$5 \cdot 53$	$5 \cdot 12$	$4 \cdot 67$	$4 \cdot 18$	$3 \cdot 63$	$2 \cdot 96$	2.09
20	$5 \cdot 78$	$5 \cdot 40$	$5 \cdot 00$	$4 \cdot 56$	4.08	$3 \cdot 54$	$2 \cdot 89$	2.04
191 ${ }^{1}$	$5 \cdot 64$	$5 \cdot 26$	$4 \cdot 87$	$4 \cdot 45$	3.98	$3 \cdot 45$	$2 \cdot 82$	1.99
19	$5 \cdot 49$	$5 \cdot 13$	$4 \cdot 75$	$4 \cdot 33$	$3 \cdot 88$	$3 \cdot 36$	$2 \cdot 74$	1.94
181 ${ }^{1}$	$5 \cdot 34$	$4 \cdot 99$	$4 \cdot 62$	$4 \cdot 22$	$3 \cdot 77$	$3 \cdot 27$	$2 \cdot 67$	1.88
18	$5 \cdot 20$	$4 \cdot 86$	4.50	$4 \cdot 10$	$3 \cdot 67$	$3 \cdot 19$	$2 \cdot 60$	1.83
171 ${ }^{\frac{1}{2}}$	$5 \cdot 06$	$4 \cdot 72$	$4 \cdot 37$	$3 \cdot 99$	$3 \cdot 57$	$3 \cdot 10$	$2 \cdot 53$	1.78
17	$4 \cdot 91$	$4 \cdot 59$	$4 \cdot 25$	$3 \cdot 88$	$3 \cdot 47$	3.01	$2 \cdot 45$	1.73
$16 \frac{1}{2}$	$4 \cdot 77$	$4 \cdot 45$	$4 \cdot 12$	$3 \cdot 76$	$3 \cdot 36$	$2 \cdot 92$	$2 \cdot 38$	1.68
16	4.62	$4 \cdot 32$	$4 \cdot 00$	$3 \cdot 65$	$3 \cdot 26$	$2 \cdot 83$	$2 \cdot 31$	1.63
$15 \frac{1}{2}$	$4 \cdot 48$	$4 \cdot 18$	$3 \cdot 87$	$3 \cdot 53$	$3 \cdot 16$	$2 \cdot 74$	$2 \cdot 24$	1.58
15	$4 \cdot 33$	$4 \cdot 05$	3.75	$3 \cdot 42$	$3 \cdot 06$	$2 \cdot 65$	$2 \cdot 16$	1.53
1412	$4 \cdot 19$	$3 \cdot 91$	$3 \cdot 62$	$3 \cdot 31$	$2 \cdot 96$	$2 \cdot 57$	$2 \cdot 09$	$1 \cdot 48$
14	$4 \cdot 05$	$3 \cdot 78$	$3 \cdot 50$	$3 \cdot 19$	$2 \cdot 86$	$2 \cdot 48$	2.02	$1 \cdot 43$
1312	$3 \cdot 90$	$3 \cdot 64$	$3 \cdot 37$	3.08	$2 \cdot 75$	$2 \cdot 39$	1.95	1.37
13	$3 \cdot 76$	$3 \cdot 51$	$3 \cdot 25$	$2 \cdot 96$	$2 \cdot 65$	$2 \cdot 30$	1.88	$1 \cdot 32$
121	$3 \cdot 61$	$3 \cdot 37$	$3 \cdot 12$	$2 \cdot 85$	$2 \cdot 55$	$2 \cdot 21$	1.80	1.27
12	$3 \cdot 47$	$3 \cdot 24$	$3 \cdot 00$	$2 \cdot 74$	$2 \cdot 45$	$2 \cdot 12$	1.73	1.22
111	$3 \cdot 32$	$3 \cdot 10$	$2 \cdot 87$	$2 \cdot 62$	$2 \cdot 35$	2.03	1.66	$1 \cdot 17$
11	$3 \cdot 18$	$2 \cdot 97$	2.75	2.51	$2 \cdot 24$	1.95	1.58	$1 \cdot 12$
10늘	3.03	$2 \cdot 83$	$2 \cdot 62$	$2 \cdot 39$	$2 \cdot 14$	$1 \cdot 86$	1.51	1.07
10	$2 \cdot 89$	$2 \cdot 70$	$2 \cdot 50$	$2 \cdot 28$	$2 \cdot 04$	1.77	1.44	1.02
$9 \frac{1}{2}$	$2 \cdot 65$	$2 \cdot 56$	$2 \cdot 37$	$2 \cdot 17$	1.93	1.68	1.32	. 96
9	$2 \cdot 60$	$2 \cdot 43$	$2 \cdot 25$	2.05	$1 \cdot 84$	1.59	1.30	. 92
$8 \frac{1}{2}$	$2 \cdot 46$	$2 \cdot 29$	$2 \cdot 12$	$1 \cdot 94$	1.73	1.50	$1 \cdot 23$. 86
8	$2 \cdot 31$	$2 \cdot 16$	2.00	$1 \cdot 82$	$1 \cdot 63$	$1 \cdot 42$	$1 \cdot 15$. 81
$7 \frac{1}{2}$	$2 \cdot 16$	$2 \cdot 02$	1.87	1.71	1.53	$1 \cdot 33$	1.08	.76
7	2.02	$1 \cdot 89$	1.75	1.60	$1 \cdot 43$	$1 \cdot 24$	1.01	. 71
$6 \frac{1}{2}$	1.88	1.75	1.62	1.48	$1 \cdot 32$	$1 \cdot 15$	$\cdot 94$	-66
6	1.73	1.62	1.50	1.37	$1 \cdot 22$	1.06	. 86	$\cdot 61$
$5 \frac{1}{2}$	1.58	1.48	1.37	1.25	$1 \cdot 12$	$\cdot 97$. 79	. 56
5	$1 \cdot 44$	$1 \cdot 35$	1.25	$1 \cdot 14$	$1 \cdot 02$. 88	$\cdot 72$	-51
$4 \frac{1}{2}$	$1 \cdot 30$	1.21	$1 \cdot 12$	1.03	$\cdot 92$. 80	-65	$\cdot 46$
4	$1 \cdot 16$	1.08	1.00	. 91	$\cdot 82$. 71	-58	-41
${ }^{3 \frac{1}{2}}$	1.01	$\cdot 94$. 87	. 80	. 71	. 62	. 50	.35
3	$\cdot 86$. 81	. 75	$\cdot 68$	$\cdot 61$. 53	$\cdot 44$	$\cdot 30$

Table II. is an extension of Table I. for the purpose of obviating, in most cases, the necessity of even the very small degree of trouble required in multiplying the stroke of the valve by one of the decimals in Table I. The first line of Table II. consists, as in Table I., of eight fractions, indicating the various parts of the stroke
at which the steam may be cut off. The first column on the left hand consists of various numbers that represent the different lengths that may be given to the stroke of the valve, diminishing, by half-inches, from 24 inches to 3 inches. Suppose that you wish the steam cut off at any of the eight parts of the stroke indicated in the first line of the table, (say at $\frac{1}{6}$ from the end of the stroke,) you find $\frac{1}{6}$ at the top of the sixth column from the left. Look for the proposed length of stroke of the valve (say 17 inches) in the first column on the left. From 17, in that column, run along the line towards the right, and in the sixth column, and directly under the $\frac{1}{6}$ at the top, you will find $3 \cdot 47$, which is the cover required to cause the steam to be cut off at $\frac{1}{6}$ from the end of the stroke, if the valve has no lead. If you wish to give it lead, (say $\frac{1}{4}$ inch,) subtract the half of that, or $\frac{1}{8}=\cdot 125$ inch from $3 \cdot 47$, and you will have $3 \cdot 47-\cdot 125=3 \cdot 345$ inches, the quantity of cover that the valve should have.

To find the greatest breadth that we can give to the port in this case, we have, as before, half the length of stroke, $8 \frac{1}{2}-3 \cdot 345=5 \cdot 155$ inches, which is the greatest breadth we can give to the port with this length of stroke. It is scarcely necessary to observe that it is not at all essential that the port should be so broad as this; indeed, where great length of stroke in the valve is not inconvenient, it is always an advantage to make it travel farther than is just necessary to make the port full open; because, when it travels farther, both the exhausting and steam ports are more quickly opened, so as to allow greater freedom of motion to the steam.

The manner of using this table is so simple, that we need not trouble the reader with more examples. We pass on, therefore, to explain the use of Table III.

Suppose that the piston of a steam engine is making its downward stroke, that the steam is entering the upper part of the cylinder by the upper steam-port, and escaping from below the piston by the lower exhausting-port; then, if (as is generally the case) the slide valve has some cover on the steam side, the upper port will be closed before the piston gets to the bottom of the stroke, and the steam above then acts expansively, while the communication between the bottom of the cylinder and the condenser still continues open, to allow any vapour from the condensed water in the cylinder, or any leakage past the piston, to escape into the condenser; but, before the piston gets to the bottom of the cylinder, this passage to the condenser will also be cut off by the valve closing the lower port. Soon after the lower por't is thus closed, the upper port will be opened towards the condenser, so as to allow the steam that has been acting expansively to escape. Thus, before the piston has completed its stroke, the propelling power is removed from behind it, and a resisting power is opposed before it, arising from the vapour in the cylinder, which has no longer any passage open to the condenser. It is evident, that if there is no cover on the exhausting side of the valve, the exhausting port before
the piston will be closed, and the one behind it opened, at the same time; but, if there is any cover on the exhausting side, the port before the piston will be closed before that behind it is opened; and the interval between the closing of the one and the opening of the other will depend on the quantity of cover on the exhausting side of the valve. Again, the position of the piston in the cylinder, when these ports are closed and opened respectively, will depend on the quantity of cover that the valve has on the steam side. If the cover is large enough to cut the steam off when the piston is yet a considerable distance from the end of its stroke, these ports will be closed and opened at a proportionably early part of the stroke; and when it is attempted to obtain great expansion by the slide-valve alone, without an expansion-valve, considerable loss of power is incurred from this cause.

Table III. is intended to show the parts of the stroke where, under any given arrangement of slide valve, these ports close and open respectively, so that thereby the engineer may be able to estimate how much of the efficiency of the engine he loses, while he is trying to add to the power of the steam by increasing the expansion in this manner. In the table, there are eight double columns, and at the heads of these columns are eight fractions, as before, representing so many different parts of the stroke at which the steam may be supposed to be cut off.

In the left-hand single column in each double one, are four decimals, which represent the distance of the piston (in terms of the length of its stroke) from the end of its stroke when the exhaustingport before it is opened, corresponding with the degree of expansion indicated by the fraction at the top of the double column and the cover on the exhausting side opposite to these decimals respectively in the left-hand column. The right-hand single column in each double one contains also each four decimals, which show in the same way at what part of the stroke the exhausting-port behind the piston is opened. A few examples will, perhaps, explain this best.

Suppose we have an engine in which the slide valve is made to cut the steam off when the piston is 1-3d from the end of its stroke, and that the cover on the exhausting side of the valve is $1-8$ th of the whole length of its stroke. Let the stroke of the piston be 6 feet, or 72 inches. We wish to know when the exhausting-port before the piston will be closed, and when the one behind it will be opened. At the top of the left-hand double column, the given degree of expansion (1-3d) is marked, and in the extreme left column we have at the top the given amount of cover ($1-8 \mathrm{th}$). Opposite the $1-8$ th, in the first double column, we have -178 and $\cdot 033$, which decimals, multiplied respectively by 72 , the length of the stroke, will give the required positions of the piston : thus $72 \times \cdot 178=12 \cdot 8$ inches $=$ distance of the piston from the end of the stroke when the exhausting-port before the piston is shut; and $72 \times \cdot 033=2.38$ inches $=$ distance of the piston from the end of its stroke when the exhausting-port behind it is opened.

\bigcirc	C0	$\underset{\underset{E}{\circ}}{\square}$	$\stackrel{\rightharpoonup}{\infty}$	Cover on the exhausting side of the valve in parts of the length of its stroke．	
¢	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}$	$\stackrel{\dot{\circ}}{0}$	－	Distanee of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
$\begin{aligned} & \dot{8} \\ & \text { ig } \end{aligned}$	¢	¢8\％	¢	Distance of the piston from the end of its stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	
$\dot{\sim}$	\bigcirc	$\underset{\infty}{\dot{\sim}}$	$\dot{\omega}$	Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
$\dot{\underset{\sim}{\circ}}$	¢¢	¢	¢	Distance of the piston from the end of its stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	
$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\dot{\infty}$	8	出	Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
$\underset{\sim}{\underset{\sim}{-1}}$	式	\bigcirc	$\stackrel{\text { ¢ }}{\substack{\text { O }}}$	Distanee of the piston from the end of its stroke，when the exhausting－portbehind it is opened（in parts of the stroke）．	
\dot{C}	¢	－	剌	Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
倇	灾	$\dot{8}$	N	Distance of the piston from the end of its stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	
$\dot{\infty}$	${ }_{\text {c }}^{\text {¢ }}$	－	\bigcirc	Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
$\dot{\oplus}$	$\dot{\mathscr{C}}$	No	$\dot{\infty}$	Distance of the piston from the end of its stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	
ஷ்.	$\dot{\oplus}$	¢		Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
ذ்	ஸ்	¢	${ }_{4}$	Distance of the piston from the end of its stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	
\dot{N}	$\dot{\mathscr{G}}$	¢	中	Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke．）	
\dot{N}	$\underset{\omega}{\dot{\omega}}$	¢	응	stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	
$\underset{\bullet}{\dot{\ominus}}$	ப்	S	${ }_{6}$	Distance of the piston from the end of its stroke，when the exhausting－port before it is shut（in parts of the stroke）．	
官	¢		－	Distance of the piston from the end of its stroke，when the exhausting－port behind it is opened（in parts of the stroke）．	

－III अ＇TGVT，

To take another example. Let the stroke of the valve be 16 inches, the cover on the exhausting side $\frac{1}{2}$ inch, the cover on the steam side $3 \frac{1}{4}$ inches, the length of the stroke of the piston 60 inches. It is required to ascertain all the particulars of the working of this valve. The cover on the exhausting side is evidently $\frac{1}{82}$ of the length of the valve stroke. Again, looking at 16 in the left-hand column of T'able II., we find in the same horizontal line $3 \cdot 26$, or very nearly $3 \frac{1}{4}$ under $\frac{1}{6}$ at the head of the column, thus showing that the steam will be cut off at $\frac{1}{6}$ from the end of the stroke. Again, under $\frac{1}{6}$ at the head of the fifth double column from the left in Table III., and in a horizontal line with $\frac{1}{32}$ in the left-hand column, we have $\cdot 053$ ant $\cdot 033$. Hence, $\cdot 053 \times 60=3 \cdot 18$ inches $=$ distance of the piston from the end of its stroke when the exhausting-port before it is shut, and $033 \times 60=1 \cdot 98$ inches $=$ distance of the piston from the end of its stroke when the exhausting-port behind it is opened. If in this valve the cover on the exhausting side were increased (say to 2 inches, or $\frac{1}{8}$ of the stroke,) the effect would be to make the port before the valve be shut sooner in the proportion of $\cdot 109$ to $\cdot 053$, and the port behind it later in the proportion of $\cdot 008$ to 033 (see Table III.) Whereas, if the cover on the exhausting side were removed entirely, the port before the piston would be shut and that behind it opened at the same time, and (see bottom of fifth double column, Table III.) the distance of the piston from the end of its stroke at that time would be $\cdot 043 \times 60=2 \cdot 58$ inches.

An inspection of Table III. shows us the effect of increasing the expansion by the slide-valve in augmenting the loss of power occasioned by the imperfect action of the eduction passages. Referring to the bottom line of the table, we see that the eduction passage before the piston is closed, and that behind it opened, (thus destroying the whole moving power of the engine,) when the piston is $\cdot 092$ from the end of its stroke, the steam being cut off at $\frac{1}{3}$ from the end. Whereas, if the steam is only cut off at $\frac{1}{24}$ from the end of the stroke, the moving power is not withdrawn till only 011 of the stroke remains uncompleted. It will also be observed that increasing the cover on the exhausting side has the effect of retaining the action of the steam longer behind the piston, but it at the same time causes the eduction-port before it to be closed sooner.

A very cursory examination of the action of the slide valve is sufficient to show that the cover on the steam side should always be greater than on the exhausting side. If they are equal, the steam would be admitted on one side of the piston at the same time that it was allowed to escape from the other; but universal experience has shown that when this is the case, a very considerable part of the power of the engine is destroyed by the resistance opposed to the piston, by the exhausting steam not getting away to the condenser with sufficient rapidity. Hence we see the necessity of the cover on the exhausting side being always less than the cover on the steam side; and the difference should be the greater the higher the velocity of the piston is intended to be, because the quicker the
piston moves the passage for the waste steam requires to be the larger, so as to admit of its getting away to the condenser with as great rapidity as possible. In locomotive or other engines, where it is not wished to expand the steam in the cylinder at all, the slide valve is sometimes made with very little cover on the steam side: and in these circumstances, in order to get a sufficient difference between the cover on the steam and exhausting sides of the valve, it may be necessary not only to take away all the cover on the exhausting side, but to take off still more, so as to make both exhausting passages be in some degree open, when the valve is at the middle of its stroke. This, accordingly, is sometimes done in such circumstances as we have described; but, when there is even a small degree of cover on the steam side, this plan of taking more than all the cover off the exhausting side ought never to be resorted to, as it can serve no good purpose, and will materially increase an evil we have already explained, viz. the opening of the exhausting-port behind the piston before the stroke is nearly completed. The tables apply equally to the common short slide three-ported valves and to the long D valves.

In fig. 1 is exhibited a common arrangement of the valves in la

comotive engines, and in figs. 2 and 3 is shown an arrangement for working valves by a shifting cam, by which the amount of expansion may be varied. This particular arrangement, however, is antiquated, and is now but little used.

The extent to which expansion can be carried beneficially by means of lap upon the valve is about one-third of the stroke; that is, the valve may be made with so much lap, that the steam will be cut off when one-third of the stroke has been performed, leaving the residue to be accomplished by the agency of the expanding steam; but if more lap be put on than answers to this amount of expansion, a very distorted action of the valve will be produced, which will impair the efficiency of the engine. If a further amount of expansion than this is wanted, it may be accomplished by wiredrawing the steam, or by so contracting the steam passage, that the pressure within the cylinder must decline when the speed of the piston is accelerated, as it is about the middle of the stroke. Thus, for example, if the valve be so made as to shut off the steam by the time two-thirds of the stroke have been performed, and the steam be at the same time throttled in the steam pipe, the full pressure of the steam within the cylinder cannot be maintained except near the beginning of the stroke where the piston travels slowly; for as the speed of the piston increases, the pressure necessarily subsides, until the piston approaches the other end of the cylinder, where the pressure would rise again but that the operation of the lap on the valve by this time has had the effect of closing the communication between the cylinder and steam pipe, so as to prevent more steam from entering. By throttling the steam, therefore, in the manner here indicated, the amount of expansion due to the lap may be doubled, so that an engine with lap enough upon the valve to cut off the steam at two-thirds of the stroke, may, by the aid of wire-drawing, be virtually rendered capable of cutting off the steam at one-third of the stroke. The usual manner of cutting off the steam, however, is by means of a separate valve, termed an expansion valve; but such a device appears to be hardly necessary in many engines. In the Cornish engines, where the steam is cut off in some cases at one-twelfth of the stroke, a separate valve for the admission of steam, other than that which permits its escape, is of course indispensable; but in common rotative engines, which may realize expansive efficacy by throttling, a separate expansive valve does not appear to be required. In all engines there is a point beyond which expansion cannot be carried with advantage, as the resistance to be surmounted by the engine will then become equal to the impelling power; but in engines working with a high pressure of steam that point is not so speedily attained.

In high pressure, as contrasted with condensing engines, there is always the loss of the vacuum, which will generally amount to 12 or 13 lbs . on the square inch, and in high pressure engines there is a benefit arising from the use of a very high pressure over a pressure of a moderate account. In all high pressure engines, there is
a diminution in the power caused by the counteracting pressure of the atmosphere on the educting side of the piston; for the force of the piston in its descent would obviously be greater, if there was a vacuum beneath it; and the counteracting pressure of the atmosphere is relatively less when the steam used is of a very high pressure. It is clear, that if we bring down the pressure of the steam in a high pressure engine to the pressure of the atmosphere, it will not exert any power at all, whatever quantity of steam may be expended, and if the pressure be brought nearly as low as that of the atmosphere, the engine will exert only a very small amount of power ; whereas, if a very high pressure be employed, the pressure of the atmosphere will become relatively as small in counteracting the impelling pressure, as the attenuated vapour in the condenser of a condensing engine is in resisting the lower pressure which is there employed. Setting aside loss from friction, and supposing the vacuum to be a perfect one, there would be no benefit arising from the use of steam of a high pressure in condensing engines, for the same weight of steam used without expansion, or with the same measure of expansion, would produce at every pressure the same amount of mechanical power. A piston with a square foot of area, and a stroke of three feet with a pressure of one atmosphere, would obviously lift the same weight through the same distance, as a cylinder with half a square foot of area, a stroke of three feet, and a pressure of two atmospheres. In the one case, we have three cubic feet of steam of the pressure of one atmosphere, and in the other case $1 \frac{1}{2}$ cubic feet of the pressure of two atmospheres. But there is the same weight of steam, or the same quantity of heat and water in it, in both cases; so that it appears a given weight of steam would, under such circumstances, produce a definite amount of power, without reference to the pressure. In the case of ordinary engines, however, these conditions do not exactly apply; the vacuum is not a perfect one, and the pressure of the resisting vapour becomes relatively greater as the pressure of the steam is diminished; the friction also becomes greater from the necessity of employing larger cylinders, so that even in the case of condensing engines, there is a benefit arising from the use of steam of a considerable pressure. Expansion cannot be carried beneficially to any great extent, unless the initial pressure be considerable; for if steam of a low pressure were used, the ultimate tension would be reduced to a point so nearly approaching that of the vapour in the condenser, that the difference would not suffice to overcome the friction of the piston; and a loss of power would be occasioned by carrying expansion to such an extent. In some of the Cornish engines, the steam is cut off at one-twelfth of the stroke; but there would be a loss arising from carrying the expansion so far, instead of a gain, unless the pressure of the steam were considerable. It is clear, that in the case of engines which carry expansion very far, a very perfect vacuum in the condenser is more important than it is in other cases. Nothing can be easier than to compute the ultimate
pressure of expanded steam, so as to see at what point expansion ceases to be productive of benefit; for as the pressure of expanded steam is inversely as the space occupied, the terminal pressure when the expansion is twelve times is just one-twelfth of what it was at first, and so on, in all other projections. The total pressure should be taken as the initial pressure-not the pressure on the safety valve, but that pressure plus the pressure of the atmosphere.

In high pressure engines, working at from 70 to 90 lbs on the square inch, as in the case of locomotives, the efficiency of a given quantity of water raised into steam may be considered to be about the same as in condensing engines. If the pressure of steam in a high pressure engine be 120 lbs., or 125 lbs. above the atmosphere, then the resistance occasioned by the atmosphere will cause a loss of $\frac{1}{8}$ th of the power. If the pressure of the steam in a low pressure engine be 16 lbs . on the square inch, or 11 lbs . above the atmosphere, and the tension of the vapour in the condenser be equivalent to 4 inches of mercury, or 2 lbs . of pressure on the square inch, then the resistance occasioned by this rare vapour will also cause a loss of $\frac{1}{8}$ th of the power. A high pressure engine, therefore, with a pressure of 105 lbs . above the atmosphere, works with only the same loss from resistance to the piston, as a low pressure engine with a pressure of 1 lb . above the atmosphere, and with these proportions the power produced by a given weight of steam will be the same, whether the engine be high pressure or condensing.

SPHEROIDAL CONDITION OF WATER IN BOILERS.
Some of the more prominent causes of boiler explosions have been already enumerated; but explosions have in some cases been attributed to the spheroidal condition of the water in the boiler, consequent upon the flues becoming red-hot from a deficiency of water, the accumulation of scale, or otherwise. The attachment of scale, from its imperfect conducting power, will cause the iron to be unduly heated; and if the scale be accidentally detached, a partial explosion may occur in consequence. It is found, that a sudden disengagement of steam does not immediately follow the contact of water with the hot metal, for water thrown upon redhot iron is not immediately converted into steam, but assumes the spheroidal form and rolls about in globules over the surface. These globules, however high the temperature of the metal may be on which they are placed, never rise above the temperature of 205°, and give off but very little steam; but if the temperature of the metal be lowered, the water ceases to retain the spheroidal form, and comes into intimate contact with the metal, whereby a rapid disengagement of steam takes place. If water be poured into a very hot copper flask, the flask may be corked up, as there will be scarce any steam produced so long as the high temperature is maintained; but so soon as the temperature is suffered to fall below 350° or 400°, the spheroidal condition being no longer maintainable, steam is generated with rapidity, and the cork will be projected from the
mouth of the flask with great force. In a boiler, no doubt, where there is a considerable head of water, the repellant action of the spheroidal globules will be more effectually counteracted than in the small vessels employed in experimental researches. But it is doubtful whether in all boilers there may not be something of the spheroidal action perpetually in operation, and leading to effects at present mysterious or inexplicable.

One of the most singular phenomena attending the spheroidal condition is, that the vapour arising from a spheroid is of a far higher temperature than the spheroid itself. Thus, if a thermometer be held in the atmosphere of vapour which surrounds a spheroid of water, the mercury, instead of standing at 205°, as would be the case if it had been immersed in the spheroid, will rise to a point determinable by the temperature of the vessel in which the spheroid exists. In the case of a spheroid, for example, existing within a crucible raised to a temperature of 400°, the thermometer, if held in the vapour, will rise to that point; and if the crucible be made red-hot, the thermometer will be burst, from the boiling point of mercury having been exceeded. A part of this effect may, indeed, be traced to direct radiation, yet it appears indisputable, from the experiments which have been made, that the vapour of a liquid spheroid is much hotter than the spheroid itself.

EXPANSION.

At page 131 we have given a table of hyperbolic or Byrgean logarithms, for the purpose of facilitating computations upon this subject.

Let the pressure of the steam in the boiler be expressed by unity, and let x represent the space through which the piston has moved whilst urged by the expanding steam. The density will then be $\frac{1}{1+x}$, and, assuming that the densities and elasticities are proportionate, $\frac{d x}{1+x}$ will be the differential of the efficiency, and the efficiency itself will be the integral of this, or, in other words, the hyperbolic logarithm of the denominator; wherefore the efficiency of the whole stroke will be $1+\log$. $(1+x)$.

Supposing the pressure of the atmosphere to be 15 lbs., $15+35$ $=50 \mathrm{lbs}$. , and if the steam be cut off at $\frac{1}{4}$ th of the stroke, it will be expanded into four times its original volume; so that at the termination of the stroke, its pressure will be $50 \div 4=12 \cdot 2 \mathrm{lbs}$., or $2 \cdot 8$ lbs. less than the atmospheric pressure.

When the steam is cut off at one-fourth, it is evident that $x=3$. In such case the efficiency is

$$
1+\log \cdot(1+3) \text {, or } 1+\log .4
$$

The hyperbolic logarithm of 4 is $1 \cdot 386294$, so that the efficiency of the steam becomes $2 \cdot 386294$; that is, by cutting off the steam at $\frac{1}{4}$, more than twice the effect is produced with the same consumption of fuel; in other words, one-half of the fuel is saved.

This result may thus be expressed in words :-Divide the length of the stroke through which the steam expands by the length of stroke performed with the full pressure, which last portion call 1; the hyperbolic logarithm of the quotient is the increase of efficiency due to expansion. We introduce on the following page more detailed tables, to facilitate the computation of the power of an engine working expansively, or rather to supersede the necessity of entering into a computation at all in each particular case.

The first column in each of the following tables contains the initial pressure of the steam in pounds, and the remaining columns contain the mean pressure of steam throughout the stroke, with the different degrees of expansion indicated at the top of the columns, and which express the portion of the stroke during which the steam acts expansively. Thus, for example, if steam be admitted to the cylinder at a pressure of 3 pounds per square inch, and be cut off within $\frac{1}{8}$ th of the end of the stroke, the mean pressure during the whole stroke will be 2.96 pounds per square inch. In like manner, if steam at the pressure of 3 pounds per square inch were cut off after the piston had gone through $\frac{1}{8}$ th of the stroke, leaving the steam to expand through the remaining $\frac{7}{8}$ th, the mean pressure during the whole stroke would be $1 \cdot 164$ pounds per square inch.

FRICTION.

The friction of iron sliding upon brass, which has been oiled and then wiped dry, so that no film of oil is interposed, is about $\frac{1}{11}$ of the pressure; but in machines in actual operation, where there is a film of oil between the rubbing surfaces, the fraction is only about one-third of this amount, or $\frac{1}{83} d$ of the weight. The tractive resistance of locomotives at low speeds, which is entirely made up of friction, is in some cases $\frac{1}{500}$ th of the weight; but on the average about $\frac{1}{80}$ th of the load, which nearly agrees with my former statement. If the total friction be $\frac{1}{300}$ th of the load, and the rolling friction be $\frac{1}{1000}$ th of the load, then the friction of attrition must be $\frac{1}{429}$ th of the load; and if the diameter of the wheels be $36 \mathrm{in} .$, and the diameter of the axles be 3 in ., which are common proportions, the friction of attrition must be increased in the proportion of 36 to 3 , or 12 times, to represent the friction of the rubbing surface when moving with the velocity of the carriage. $\frac{12}{420}$ ths are about $\frac{1}{85}$ th of the load, which does not differ much from the proportion of $\frac{1}{3_{3}^{3}} d$, as previously stated. While this, however, is the average result, the friction is a good deal less in some cases. Engineers, in some experiments upon the friction, found the friction to amount to less than $\frac{1}{40}$ th of the weight; and in some experiments upon the friction of locomotive axles, it was found that by ample lubrication the friction might be made as little as $\frac{1}{6}$ th of the weight, and the traction, with the ordinary size of wheels, would in such a case be about $\frac{1}{500}$ th of the weight. The function of lubricating substances is to prevent the rubbing surfaces from coming into contact, whereby abrasion would be produced, and unguents are effectual in this

EXPANDED STEAM.-MEAN PRESSURE AT DIFFERENT DENSITIES AND RATE OF EXPANSION.

The column headed 0 contains the initial pressure in lbs., and the remaining columns
contain the mean pressure in lbs., with different grades of expansion.

0	$\frac{1}{8}$	$\frac{2}{8}$	8	$\frac{4}{8}$	$\frac{5}{8}$	$\frac{6}{8}$	$\frac{7}{8}$
3	$2 \cdot 96$	$2 \cdot 89$	$2 \cdot 75$	$2 \cdot 53$	$2 \cdot 22$	$1 \cdot 789$	$1 \cdot 154$
4	$3 \cdot 95$	$3 \cdot 85$	$3 \cdot 67$	$3 \cdot 38$	$2 \cdot 96$	$2 \cdot 386$	1.539
5	$4 \cdot 948$	$4 \cdot 818$	$4 \cdot 593$	$4 \cdot 232$	$3 \cdot 708$	$2 \cdot 982$	$1 \cdot 924$
6	$5 \cdot 937$	$5 \cdot 782$	$5 \cdot 512$	$5 \cdot 079$	$4 \cdot 450$	$3 \cdot 579$	$2 \cdot 309$
7	$6 \cdot 927$	$6 \cdot 746$	$6 \cdot 431$	$5 \cdot 925$	$5 \cdot 241$	4-175	$2 \cdot 694$
8	$7 \cdot 917$	$7 \cdot 710$	$7 \cdot 350$	$6 \cdot 772$	$5 \cdot 934$	$4 \cdot 772$	$3 \cdot 079$
9	$8 \cdot 906$	$8 \cdot 673$	8:268	$7 \cdot 618$	$6 \cdot 675$	$5 \cdot 368$	$3 \cdot 463$
10	$9 \cdot 896$	$9 \cdot 637$	$9 \cdot 187$	$8 \cdot 465$	$7 \cdot 417$	$5 \cdot 965$	$3 \cdot 848$
11	10.885	$10 \cdot 601$	$10 \cdot 106$	$9 \cdot 311$	$8 \cdot 159$	$6 \cdot 561$	$4 \cdot 233$
12	11.875	$11 \cdot 565$	10.925	$10 \cdot 158$	$8 \cdot 901$	$7 \cdot 158$	$4 \cdot 618$
13	12.865	$12 \cdot 528$	11.943	11.004	$9 \cdot 642$	$7 \cdot 754$	$5 \cdot 003$
14	$13 \cdot 854$	$13 \cdot 492$	12.862	11.851	$10 \cdot 384$	$8 \cdot 531$	$5 \cdot 388$
15	14.844	$14 \cdot 456$	$13 \cdot 781$	$12 \cdot 697$	11.126	$8 \cdot 947$	$5 \cdot 773$
16	$15 \cdot 834$	$15 \cdot 420$	$14 \cdot 700$	$13 \cdot 544$	11.868	$9 \cdot 544$	$6 \cdot 158$
17	16.823	$16 \cdot 383$	$15 \cdot 618$	$14 \cdot 390$	$12 \cdot 609$	$10 \cdot 140$	$6 \cdot 542$
18	$17 \cdot 813$	$17 \cdot 347$	16.537	$15 \cdot 237$	$13 \cdot 351$	$10 \cdot 737$	$6 \cdot 927$
19	$18 \cdot 702$	$18 \cdot 311$	$17 \cdot 448$	16.803	14.093	$11 \cdot 333$	$7 \cdot 312$
20	$19 \cdot 792$	19.275	$18 \cdot 375$	16.930	14.835	11.930	$7 \cdot 697$
25	$24 \cdot 740$	$24 \cdot 093$	22.968	$21 \cdot 162$	18.543	14.912	$9 \cdot 621$
30	29.688	28.912	$27 \cdot 562$	$25 \cdot 395$	$22 \cdot 252$	17.895	11.546
35	34.636	$33 \cdot 731$	$33 \cdot 156$	$29 \cdot 627$	$25 \cdot 961$	$20 \cdot 877$	$13 \cdot 470$
40	39.585	$38 \cdot 550$	$36 \cdot 750$	$33 \cdot 860$	$29 \cdot 670$	$23 \cdot 860$	$15 \cdot 395$
45	$44 \cdot 533$	$43 \cdot 368$	$41 \cdot 343$	38.092	$33 \cdot 378$	26.842	$17 \cdot 319$
50	$49 \cdot 481$	$48 \cdot 187$	45.937	$42 \cdot 325$	$37 \cdot 067$	29.825	$19 \cdot 243$

Expansion by Tentes.									
0	10	$\frac{2}{10}$	$\stackrel{8}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$
3	$2 \cdot 980$	$2 \cdot 930$	$2 \cdot 830$	$2 \cdot 710$	$2 \cdot 539$	$2 \cdot 299$	1.981	$1 \cdot 668$	$0 \cdot 990$
4	$3 \cdot 974$	$3 \cdot 913$	$3 \cdot 780$	$3 \cdot 614$	$3 \cdot 386$	$3 \cdot 065$	$2 \cdot 642$	2.087	$1 \cdot 320$
5	$4 \cdot 968$	$4 \cdot 892$	$4 \cdot 725$	$4 \cdot 518$	$4 \cdot 232$	$3 \cdot 832$	$3 \cdot 303$	$2 \cdot 609$	$1 \cdot 651$
6	$5 \cdot 961$	$5 \cdot 870$	$5 \cdot 670$	$5 \cdot 421$	$5 \cdot 079$	$4 \cdot 598$	$3 \cdot 963$	$3 \cdot 130$	1.981
7	$6 \cdot 955$	$6 \cdot 848$	$6 \cdot 615$	$6 \cdot 325$	$5 \cdot 925$	5-364	$4 \cdot 624$	$3 \cdot 652$	$2 \cdot 311$
8	$7 \cdot 948$	$7 \cdot 827$	$7 \cdot 560$	$7 \cdot 228$	$6 \cdot 772$	6•131	$5 \cdot 284$	$4 \cdot 174$	$2 \cdot 641$
9	$8 \cdot 942$	$8 \cdot 805$	$8 \cdot 505$	$8 \cdot 132$	$7 \cdot 618$	$6 \cdot 897$	$5 \cdot 945$	$4 \cdot 696$	$2 \cdot 971$
10	9.936	$9 \cdot 784$	$9 \cdot 450$	$9 \cdot 036$	$8 \cdot 465$	$7 \cdot 664$	$6 \cdot 606$	$5 \cdot 218$	$3 \cdot 302$
11	10.929	$10 \cdot 762$	$10 \cdot 395$	9.939	$9 \cdot 311$	$8 \cdot 430$	$7 \cdot 266$	$5 \cdot 739$	$3 \cdot 632$
12	11.923	$11 \cdot 740$	$11 \cdot 340$	$10 \cdot 843$	$10 \cdot 158$	$9 \cdot 196$	$7 \cdot 927$	$6 \cdot 261$	$3 \cdot 962$
13	$12 \cdot 856$	$12 \cdot 719$	$12 \cdot 285$	$11 \cdot 746$	10.994	$9 \cdot 963$	$8 \cdot 587$	$6 \cdot 783$	$4 \cdot 292$
14	$13 \cdot 910$	13.967	$13 \cdot 230$	$12 \cdot 650$	11.851	$10 \cdot 729$	$9 \cdot 248$	$7 \cdot 305$	$4 \cdot 622$
15	14.904	$14 \cdot 676$	$14 \cdot 175$	13.554	$12 \cdot 697$	11.496	9.909	$7 \cdot 827$	$4 \cdot 953$
16	$15 \cdot 897$	$15 \cdot 654$	$15 \cdot 120$	$14 \cdot 457$	$13 \cdot 544$	$12 \cdot 262$	$10 \cdot 569$	$8 \cdot 348$	$5 \cdot 283$
17	16.891	$16 \cdot 632$	16.065	$15 \cdot 361$	$14 \cdot 051$	13.028	11.230	$8 \cdot 870$	$5 \cdot 613$
18	17.884	$17 \cdot 611$	$17 \cdot 010$	$16 \cdot 264$	$15 \cdot 237$	13.795	11.890	$9 \cdot 392$	$5 \cdot 944$
19	18.878	$18 \cdot 589$	$17 \cdot 955$	$17 \cdot 168$	16.083	$14 \cdot 561$	$12 \cdot 551$	$9 \cdot 914$	$6 \cdot 273$
20	19.872	$19 \cdot 568$	$18 \cdot 900$	$18 \cdot 072$	16.930	$15 \cdot 328$	$13 \cdot 212$	$10 \cdot 436$	$6 \cdot 600$
25	$24 \cdot 840$	24-460	$23 \cdot 625$	$22 \cdot 590$	$21 \cdot 162$	$19 \cdot 160$	$16 \cdot 515$	13.040	$8 \cdot 255$
30	29.808	$29 \cdot 352$	$28 \cdot 350$	$27 \cdot 108$	$25 \cdot 395$	$22 \cdot 992$	$19 \cdot 818$	$15 \cdot 654$	$9 \cdot 906$
35	$34 \cdot 776$	34-244	$33 \cdot 075$	$31 \cdot 626$	$29 \cdot 627$	$26 \cdot 824$	$23 \cdot 121$	18.263	11.557
40	$39 \cdot 744$	$39 \cdot 136$	$37 \cdot 800$	36-144	$33 \cdot 860$	$30 \cdot 656$	$26 \cdot 224$	$20 \cdot 872$	$13 \cdot 208$
45	44.912	$44 \cdot 028$	42.525	$40 \cdot 662$	$38 \cdot 092$	$34 \cdot 888$	29.727	$23 \cdot 481$	$14 \cdot 859$
50	$49 \cdot 680$	$48 \cdot 920$	$47 \cdot 250$	$45 \cdot 180$	$42 \cdot 325$	$38 \cdot 320$	33.030	26.090	16.510

respect in the proportion of their viscidity; but if the viscidity of the unguent be greater than what suffices to keep the surfaces asunder, an additional resistance will be occasioned; and the nature of the unguent selected should always have reference, therefore, to the size of the rubbing surfaces, or to the pressure per square inch upon them. With oil, the friction appears to be a minimum when the pressure on the surface of a bearing is about 90 lbs . per square inch: the friction from too small a surface increases twice as rapidly as the friction from too large a surface; added to which, the bearing, when the surface is too small, wears rapidly away. For all sorts of machinery, the oil of Patrick.Sarsfield Devlan, of Reading, Pa., is the best.

HORSE POWER.

A horse power is an amount of mechanical force capable of raising $33,000 \mathrm{lbs}$. one foot high in a minute. The average force exerted by the strongest horses, amounting to $33,000 \mathrm{lbs}$., raised one foot high in the minute, was adopted, and has since been retained. The efficacy of engines of a given size, however, has been so much increased, that the dimensions answerable to a horse power then, will raise much more than $33,000 \mathrm{lbs}$. one foot high in the minute now; so that an actual horse power, and a nominal horse power are no longer convertible terms. In some engines every nominal horse power will raise $52,000 \mathrm{lbs}$. one foot high in the minute, in others $60,000 \mathrm{lbs}$. , and in others $66,000 \mathrm{lbs}$; so that an actual and nominal horse power are no longer comparable quantities,-the one being a unit of dimension, and the other a unit of force. The actual horse power of an engine is ascertained by an instrument called an indicator; but the nominal power is ascertained by a reference to the dimensions of the cylinder, and may be computed by the following rule:-Multiply the square of the diameter of the cylinder in inches by the velocity of the piston in feet per minute, and divide the product by 6,000 ; the quotient is the number of nominal horses power. In using this rule, however, it is necessary to adopt the speed of piston which varies with the length of the stroke. The speed of piston with a two feet stroke is, according to this system, 160 per minute; with a 2 ft .6 in. stroke, $170 ; 3 \mathrm{ft} ., 180 ; 3 \mathrm{ft} ., 6$ in., $189 ; 4 \mathrm{ft} ., 200 ; 5 \mathrm{ft}$., $215 ; 6 \mathrm{ft}$., 828 ; 7 ft., $245 ; 8 \mathrm{ft}$., 256 ft .

By ascertaining the ratio in which the velocity of the piston increases with the length of the stroke, the element of velocity may be cast out altogether; and this for most purposes is the most convenient method of procedure. To ascertain the nominal power by this method, multiply the square of the diameter of the cylinder in inches by the cube root of the stroke in feet, and divide the product by 47 ; the quotient is the number of nominal horses power of the engine. This rule supposes a uniform effective pressure upon 'the .piston of 7 lbs . per square inch; the effective pressure upon the piston of 4 horse power engines of some of the best makers has been estimated at 6.8 lbs . per square inch, and the pressure
increased slightly with the power, and became 6.94 lbs. per square inch in engines of 100 horse power; but it appears to be more convenient to take a uniform pressure of 7 lbs . for all powers. Small engines, indeed, are somewhat less effective in proportion than large ones; but the difference can be made up by slightly increasing the pressure in the boiler; and small boilers will bear such an increase without inconvenience.

Nominal power, it is clear, cannot be transformed into actual power, for the nominal horse power expresses the size of an engine, and the actual horse power the number of times $33,000 \mathrm{lbs}$. it will lift one foot high in a minute. To find the number of times 33,000 lbs. or 528 cubic feet of water, an engine will raise one foot high in a minute,-or, in other words, the actual power,-we first find the pressure in the cylinder by means of the indicator, from which we deduct a pound and a half of pressure for friction, the loss of power in working the air pump, \&c.; multiply the area of the piston in square inches by this residual pressure, and by the motion of the piston, in feet per minute, and divide by 33,000 ; the quotient is the actual number of horse power. The same result is attained by squaring the diameter of the cylinder, multiplying by the pressure per square inch, as shown by the indicator, less a pound and a half, and by the motion of the piston in feet, and dividing by 42,017 . The quantity thus arrived at, will, in the case of nearly all modern engines, be very different from that obtained by multiplying the square of the diameter of the cylinder by the cube root of the stroke, and dividing by 47 , which expresses the nominal power ; and the actual and nominal power must by no means be confounded, as they are totally different things. The duty of an engine is the work done in relation to the fuel consumed, and in ordinary mill or marine engines it can only be ascertained by the indicator, as the load upon such engines is variable, and cannot readily be determined: but in the case of engines for pumping water, where the load is constant, the number of strokes performed by the engine represents the duty; and a mechanism to register the number of strokes made by the engine in a given time, is a sufficient test of the engine's performance.

In high pressure engines the actual power is readily ascertained by the indicator, by the same process by which the actual power of low pressure engines is ascertained. The friction of a locomotive engine when unloaded, is found by experiment to be about 1 lb . per square inch on the surface of the pistons, and the additional friction caused by any additional resistance is estimated at about 14 of that resistance; but it will be a sufficiently near approximation to the power consumed by friction in high pressure engines, if we make a deduction of a pound and a half from the pressure on that account, as in the case of low pressure engines. High pressure engines, it is true, have no air pump to work; but the deduction of a pound and a half of pressure is relatively a much smaller one where the pressure is high than where it does not much exceed the
pressure of the atmosphere. The rule, therefore, for the actual horse power of a high pressure engine will stand thus:-Square the diameter of the cylinder in inches, multiply by the pressure of the steam in the cylinder per square inch, less $1 \frac{1}{2}$ lbs., and by the speed of the piston in feet per minute, and divide by 42,017 ; the quotient is the actual horse power. The nominal horse power of a high pressure engine has never .been defined; but it should obviously hold the same relation to the actual power as that which obtains in the case of condensing engines, so that an engine of a given nominal horse power may be capable of performing the same work, whether high pressure or condensing. This relation is maintained in the following rule, which expresses the nominal horse power of high pressure engines:-Multiply the square of the diameter of the cylinder in inches by the pressure on the piston in pounds per square inch, and by the speed of the piston in feet per minute, and divide the product by 120,000 ; the quotient is the power of the engine in nominal horses power. If the pressure upon the piston be 80 lbs . per square inch, the operation may be abbreviated by multiplying the square of the diameter of the cylinder by the speed of the piston, and dividing by 1,500 , which will give the same result. This rule for nominal horse power, however, is not representative of the dimensions of the cylinder; but a rule for the nominal horse power of high pressure engines which shall discard altogether the element of velocity, is easily constructed; and, as different pressures are used in different engines, the pressure must become an element in the computation. The rule for the nominal power will therefore stand thus:-Multiply the square of the diameter of the cylinder in inches by the pressure on the piston in pounds per square inch, and the cube root of the stroke in feet, and divide the product by 940 ; the quotient is the power of the engine in nominal horse power, the engine working at the ordinary speed of 128 times the cube root of the stroke.

A summary of the results arrived at by these rules is given in the following tables, which, for the convenience of reference, we introduce.

PARALLEL MOTION.

Rule I.-In such a combination of two levers as is represented in Figs. 1 and 2, page 245, to find the length of radius bar required for any given length of lever $C \mathcal{G}$, and proportion of parts of the link, $G E$ and $F E$, so as to make the point E move in a perpendicular line.-Multiply the length of G C by the length of the segment G E, and divide the product by the length of the segment FE. The quotient is the length of the radius bar.

Rule II.-(Fig. 2, page 245.) The length of the radius bar and of $C G$ being given, to find the length of the segment $(F E)$ of the link next the radius bar.-Multiply the length of C G by the

Table of Nominal Horse Power of Low Pressure Engines.

	enati of Strokr in Fret.											
	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	$4 \frac{1}{2}$	5	$5 \frac{1}{2}$	6	7
	.53	$\cdot 69$	$\begin{array}{r} -43 \\ -67 \end{array}$	$\cdot 46$	${ }^{49}$	${ }_{81} 81$	$\begin{array}{r} \cdot 54 \\ \cdot 84 \end{array}$	$.56$	$\begin{array}{r} .58 \\ .91 \end{array}$	60 94 9	-62 .96	1.02
5 6	$\begin{gathered} 53 \\ .76 \end{gathered}$	$\begin{gathered} \cdot 61 \\ -87 \end{gathered}$	$\begin{array}{r} 67 \\ .96 \\ \hline . \end{array}$	- 1.04	1.10	1.16		-88 1.26 18	1.91 1.81	1.95	1.96 1.39 1	1.47
7	1.04	$1 \cdot 19$	1.31	$1 \cdot 41$	1.50	1.58	1.65	1.72	1.78	1.84	1.89	$1 \cdot 99$
8	1.36	1.56	1.72	$\xrightarrow{1} 1.85$	1.96 $\mathbf{1} \cdot 49$	${ }_{2.62}^{2.07}$	2.16 2.74	2.25	${ }_{2}^{2: 33}$	${ }_{3}^{2 \cdot 40}$	2.47 3.13	2.60 3.30
10	${ }_{2.13}$	${ }_{2.44}^{1.96}$	2.68	${ }_{2.89}$	3.07	${ }_{3}^{2.23}$	${ }_{3}^{2} 38$	${ }_{3} \cdot 51$	${ }_{3} \cdot 64$	${ }_{3} \cdot 76$	${ }_{3} \cdot 87$	4.07
11	2.57	$2 \cdot 95$	$3 \cdot 24$	$3 \cdot 49$	3.77	$3 \cdot 91$	$4 \cdot 15$	$4 \cdot 25$	4.40	$4 \cdot 54$	$4 \cdot 68$	$4 \cdot 92$
12	$3 \cdot 06$	3.51	3:86	${ }^{4.16}$	$4 \cdot 4$	$4 \cdot 65$	4.86	$5 \cdot 06$	$5 \cdot 24$	${ }_{5} \cdot 41$	${ }^{5 \cdot 57}$	$5 \cdot 86$
13	$3 \cdot 60$	4.12	4.53	$4 \cdot 88$	$5 \cdot 19$	$5 \cdot 46$	$5 \cdot 64$	$5 \cdot 94$	$6 \cdot 15$	${ }^{6 \cdot 3}$	${ }^{6 \cdot 53}$	6.88
14	$4 \cdot 17$ 4.75	${ }_{5}^{4 \cdot 48}$	5.25	5.66	${ }_{6 \cdot 90}^{6.01}$	6.33 7.27	${ }_{7}^{6.62}$	6.88 7	7.13 8.19	7.36 8.45	${ }_{8.70}$	${ }_{9}^{7.98}$
16	5.45	${ }_{6} \cdot 23$	6.86	$7 \cdot 39$	7.86	8.27	$8 \cdot 65$	909	81	${ }_{9} \cdot 61$		1.42
17	$6 \cdot 15$	7.04	7.75	8 835	8.86	$9 \cdot 34$	9.76	$10 \cdot 15$	10.52	$10 \cdot 85$	11.17	${ }^{11} 76$
18	6.89	7.89	8.68	$9 \cdot 36$	9.94	$10 \cdot 47$	$10 \cdot 94$	11:38	11.79	12.17	12.53	13.19
19	${ }^{7} \cdot 68$		${ }^{9} 968$	$10 \cdot 42$	11.17	11.66	$12 \cdot 19$	$12 \cdot 6$	$13 \cdot 13$	13.56	${ }^{13} \cdot 96$	$14 \cdot 69$
20		9.74	10.72	11.55	12.27	12.92	13.51	14.05	14.55	15.02	${ }^{15 \cdot 46}$	${ }^{16 \cdot 28}$
${ }_{2}^{22}$	10.30	${ }^{11.79}$	12.97	13.98	14.85	15	${ }^{16.62}$	17.30	${ }_{27}^{17.65}$	${ }_{\text {181 }}^{18}$	${ }_{29}^{18.71}$	
24	${ }_{14}^{12.26}$	14.03	15	${ }^{16 \cdot 63}$	${ }_{20}^{17}$	${ }_{21}^{18.61}$	${ }_{22 \cdot 56}^{19.45}$	23.75	${ }_{24}^{20 \cdot 9}$	${ }_{25}^{31.63}$	${ }_{26}^{22} \cdot 14$	
${ }_{28}^{26}$	16.08	19.09	${ }_{21} 102$	${ }_{22 \cdot 64}^{19.62}$	$24 \cdot 06$	${ }_{25} 2183$	${ }_{26 \cdot 48}^{26.56}$	${ }_{27.54}^{23.7}$	${ }_{28 \cdot 52}^{24.6}$	${ }_{29}{ }^{20} 44$	30:31	${ }_{31} \cdot 90$
3	19.15	$21 \cdot 92$	24.13	25.99	27	29.07	$30 \cdot 40$	16	${ }^{32} 74$	${ }^{33} 8$	34	${ }^{36} 63$
32	${ }_{24}^{21.69}$	${ }_{28}^{24.16}$	30	${ }_{33}^{29} 39$	${ }_{35} 1$	${ }_{37} 33.08$	3904	${ }_{40}^{35 \cdot 60}$	${ }^{37} 2.26$	41	$44 \cdot 69$	47.05
36	27.57	${ }_{31} \cdot 56$	$34 \cdot 74$	${ }_{37} \cdot 42$	39.77	41.87	43.77	$45 \cdot 52$	$47 \cdot 15$	$48 \cdot 67$	50-11	52.75
38	$30 \cdot 72$	$35 \cdot 17$	38.71	41.69	44.66	$46 \cdot 64$	48.77	$50 \cdot 72$	52.54	$5+23$	55.83	58.78
40		38.	4289	46.20	$49 \cdot 10$	51.69	54.04	56.20	58.21	$60 \cdot 09$	${ }^{61} \cdot 86$	65.12
4	- ${ }_{41}^{37.53}$	${ }_{4}^{42} \cdot 15$. 29	- $50 \cdot 94$	54.13	${ }_{62 \cdot 54}^{56 \cdot 98}$		61.96	${ }_{70 \cdot 44}^{6418}$	${ }_{72 \cdot 71}^{66 \cdot 25}$	${ }_{7}^{68 \cdot 21}$	
46	45.02	51.54	56.72	${ }_{61} \cdot 10$	64.88	68.19	71.43	${ }_{74} \cdot 33$	76.69	$79 \cdot 47$	81.81	86.12
48	${ }_{53}^{49}$	${ }_{60}^{56.11}$	${ }_{67}^{6176}$			6	77.82	87,	${ }^{83} 83$	${ }^{86} 53$	89.08	3.78
50	53	60.	72	$72 \cdot 19$	76.71	${ }^{8076}$	84:44	87-82	90.96	${ }^{93 \cdot 89}$	${ }^{96 \cdot 65}$	17
5	57.55	$65 \cdot 8$	72.48	78	83.00 89.48	- 87.35	${ }_{98}^{90 \cdot 25}$	9498	${ }^{98 \cdot 40}$	$101 \cdot 5$	104.5 112.7	110.0
5	${ }_{66} 62.72$	20	84	${ }_{90}$		101:30	1059	$110 \cdot 1$	${ }^{1064} 1$	117.8	121.2	
58	71.58	81		134	$103 \cdot 2$	$108 \cdot 6$	$113 \cdot 6$	118.2	$122 \cdot 4$	126.3	129.2	$136 \cdot 7$
6	76.60	8		$103 \cdot 9$	$110 \cdot 4$	116.3	$121 \cdot 6$	$126 \cdot 4$	131.0	135.2	139.2	$146 \cdot 5$
62	${ }^{81} 79$	${ }^{93} \cdot{ }^{9}$	103.04	111.0	117.96	123.18	129.81	$135 \cdot 03$	$139 \cdot 86$	14437	$148 \cdot 6$	156.7
	87.15	99.84	110.0	118.3	${ }^{125 \cdot 7}$	132.3	188.3	$143 \cdot 9$	$149 \cdot 0$	15382	$158 \cdot 4$	${ }^{166.7}$
$\begin{aligned} & 66 \\ & 68 \end{aligned}$		${ }_{1126}^{106 \cdot 1}$			$133 \cdot 6$ 141	${ }_{149}^{140}$		15			${ }_{178 \cdot 8}^{168}$	188
70	104	119	131	1415	15	158.3	165.5	$172 \cdot 1$	178.2	184.0	1394	199.4
72	${ }^{110 \cdot 30}$	$126 \cdot 2$	$139 \cdot 0$	149.7	${ }^{159.1}$	167.4	$175 \cdot 1$	$182 \cdot 1$	188.6	${ }^{194.7}$	${ }^{2014}$	${ }_{223}^{211.0}$
78	$116 \cdot 5$ $122 \cdot 9$	${ }_{140 \cdot 7}^{133 \cdot 4}$	156.8	156.1	${ }_{178.6}^{167}$	${ }_{186}^{176 \cdot 6}$	${ }_{195.0}^{185.4}$	${ }_{2029}^{192 \cdot 4}$	199.2	${ }_{246 \cdot 9}^{205}$	${ }_{223.3}^{211.6}$	${ }_{235 \cdot 1}^{223 \cdot 4}$
78	12	148.2	$163 \cdot 1$	$175 \cdot 6$	${ }^{186 \cdot 7}$	196	${ }^{205}$	${ }^{212.1}$	221.4	228.5	${ }^{235 \cdot 2}$	${ }^{247}$ 24
80	136	15		18	${ }_{206.2}^{196.4}$	${ }_{21}^{206 \cdot 7}$	21	${ }_{237}^{224}$	${ }_{24}^{232.8}$	- 4	$247 \cdot 4$	-5
	14	16	${ }_{189}$	19	21	${ }_{22}^{21}$	${ }_{238}^{226.9}$	${ }^{2}$	${ }_{256}^{244}$	5	80	. 1
86	1574	$180 \cdot 1$	198.2	${ }_{213} \cdot 6$	${ }_{227} 2$	$237 \cdot 8$	$247 \cdot 4$	258.2	${ }_{2691}^{269}$	${ }_{27 \%}^{26 \cdot 8}$	${ }_{280.0}^{2728}$	${ }^{281}$
88	164.8	$188 \cdot 6$	2076	$223 \cdot 6$	237.5	$250 \cdot 2$	$261 \cdot 6$	$272 \cdot 0$	2817	$290 \cdot 8$	$299 \cdot 4$	$315 \cdot 2$
90	172:3	197.3	$217 \cdot 1$	$233 \cdot 9$	$248 \cdot 6$	261.7	$273 \cdot 6$	28	291.7	304.2	313.2	32

length of the link G F, and divide the product by the sum of the lengths of the radius bar and of CG. The quotient is the length required.

Rule III.-(Figs. 3 and 4, pages 246 and 247.) To find the length of the radius bar $\left(F^{\prime} H\right)$, the length of $C G$ being given. -Square the length of C G, and divide it by the length of D G. The quotient is the length required.

Rule IV.-(Figs. 3 and 4, pages 246 and 247.) To find the length of the radius bar, the horizontal distance of its centre (H) from the main centre being given.-To this given horizontal distance, add half the versed sine ($\mathrm{D} N$) of the arc described by the end of beam (D). Square this sum. Take the same sum, and add to it the length of

Table of Nominal Horse Power of High Pressure Engines.

ㅎ.․․	Length of Stroke in Feet.											
商憂	1	112	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	$4 \frac{1}{2}$	5	$5 \frac{1}{2}$	6	7
2	$\cdot 25$	$\cdot 29$	$\cdot 32$	$\cdot 35$	$\cdot 37$	-38	$\cdot 40$	$\cdot 42$	-44	$\bullet 45$	$\bullet 46$	$\bullet 49$
21 $\frac{1}{2}$	-39	-45	$\cdot 50$	-54	$\cdot 57$	-60	$\cdot 63$	-66	-68	$\cdot 70$	$\cdot 72$	$\cdot 76$
3	$\cdot 57$	$\cdot 65$	$\cdot 72$	$\cdot 78$	-83	-87	$\cdot 91$	$\cdot 95$	-98	1.01	1.04	$1 \cdot 10$
$3 \frac{1}{2}$	$\cdot 78$	-89	-98	1.06	$1 \cdot 13$	$1 \cdot 19$	1.24	$1 \cdot 29$	$1 \cdot 34$	$1 \cdot 38$	$1 \cdot 42$	$1 \cdot 49$
4	1.02	$1 \cdot 17$	$1 \cdot 29$	1.38	$1 \cdot 47$	1.56	$1 \cdot 62$	$1 \cdot 68$	1.74	$1 \cdot 80$	1.86	$1 \cdot 95$
4 $\frac{1}{2}$	$1 \cdot 29$	$1 \cdot 48$	$1 \cdot 63$	$1 \cdot 75$	$1 \cdot 86$	$1 \cdot 96$	2.05	$2 \cdot 13$	$2 \cdot 21$	$2 \cdot 28$	$2 \cdot 35$	$2 \cdot 47$
5	$1 \cdot 59$	1.83	2.01	$2 \cdot 16$	$2 \cdot 28$	$2 \cdot 43$	$2 \cdot 52$	$2 \cdot 64$	$2 \cdot 73$	$2 \cdot 82$	$2 \cdot 88$	$3 \cdot 06$
$5 \frac{1}{2}$	1.93	$2 \cdot 21$	$2 \cdot 43$	$2 \cdot 62$	$2 \cdot 78$	$2 \cdot 93$	$3 \cdot 12$	$3 \cdot 18$	$3 \cdot 50$	$3 \cdot 42$	$3 \cdot 51$	$3 \cdot 69$
6	$2 \cdot 28$	$2 \cdot 61$	$2 \cdot 88$	$3 \cdot 12$	$3 \cdot 30$	$3 \cdot 48$	$3 \cdot 66$	$3 \cdot 78$	$3 \cdot 93$	$4 \cdot 05$	$4 \cdot 17$	$4 \cdot 41$
$6 \frac{1}{2}$	$2 \cdot 69$	$3 \cdot 09$	$3 \cdot 39$	$3 \cdot 66$	$3 \cdot 90$	$4 \cdot 08$	$4 \cdot 23$	$4 \cdot 44$	$4 \cdot 62$	$4 \cdot 77$	$4 \cdot 89$	$5 \cdot 16$
7	$3 \cdot 12$	$3 \cdot 57$	$3 \cdot 93$	$4 \cdot 23$	$4 \cdot 50$	$4 \cdot 74$	4.95	$5 \cdot 16$	$5 \cdot 34$	$5 \cdot 52$	$5 \cdot 67$	5.97
$7 \frac{1}{2}$	$3 \cdot 60$	$4 \cdot 11$	$4 \cdot 53$	$4 \cdot 86$	$5 \cdot 19$	$5 \cdot 46$	$5 \cdot 70$	$5 \cdot 94$	$6 \cdot 15$	$6 \cdot 33$	6.51	6.87
8	$4 \cdot 08$	$4 \cdot 68$	$5 \cdot 16$	$5 \cdot 55$	$5 \cdot 88$	$6 \cdot 21$	$6 \cdot 48$	$6 \cdot 75$	6.99	$7 \cdot 20$	$7 \cdot 41$	$7 \cdot 80$
$8 \frac{1}{2}$	$4 \cdot 62$	$5 \cdot 28$	$5 \cdot 82$	$6 \cdot 27$	$6 \cdot 63$	6.99	$7 \cdot 32$	$7 \cdot 62$	$7 \cdot 89$	$8 \cdot 13$	$8 \cdot 37$	$8 \cdot 82$
9	$5 \cdot 16$	$5 \cdot 91$	6.51	$7 \cdot 02$	$7 \cdot 47$	$7 \cdot 86$	$8 \cdot 22$	$8 \cdot 52$	$8 \cdot 85$	$9 \cdot 12$	$9 \cdot 39$	$9 \cdot 90$
912	$5 \cdot 76$	$6 \cdot 60$	$7 \cdot 26$	$7 \cdot 80$	$8 \cdot 37$	$8 \cdot 76$	$9 \cdot 15$	9.51	$9 \cdot 84$	$10 \cdot 17$	$10 \cdot 47$	10.01
10	$6 \cdot 39$	$7 \cdot 32$	- 8.04	$8 \cdot 67$	$9 \cdot 21$	$9 \cdot 69$	$10 \cdot 14$	10.53	10.92	11.28	11.61	$12 \cdot 21$
101 $\frac{1}{2}$	$7 \cdot 05$	$8 \cdot 04$	$8 \cdot 88$	9.54	10.14	10.68	$11 \cdot 16$	$11 \cdot 61$	12.03	$12 \cdot 42$	12.78	$13 \cdot 47$
11	$7 \cdot 71$	$8 \cdot 85$	$9 \cdot 72$	$10 \cdot 47$	11.31	11.73	$12 \cdot 45$	$12 \cdot 75$	$13 \cdot 20$	$13 \cdot 62$	14.04	14.76
111 $\frac{1}{2}$	$8 \cdot 43$	$9 \cdot 66$	10.62	$11 \cdot 46$	12.15	12.78	$13 \cdot 80$	13.92	14.61	14.91	$15 \cdot 33$	$16 \cdot 14$
12	$9 \cdot 18$	10.53	$11 \cdot 58$	$12 \cdot 41$	$13 \cdot 26$	13.95	$14 \cdot 58$	$15 \cdot 18$	15.72	16.23	16.71	$17 \cdot 58$
121 $\frac{1}{2}$.	9.96	$11 \cdot 40$	12.57	$13 \cdot 53$	14.37	$15 \cdot 15$	$15 \cdot 84$	$16 \cdot 47$	$17 \cdot 04$	$17 \cdot 58$	$18 \cdot 12$	19.08
13	10.80	$12 \cdot 36$	13.59	$14 \cdot 64$	$15 \cdot 57$	16.38	16.92	$17 \cdot 82$	18.45	19.05	19.59	21.64
131 $\frac{1}{2}$	11.64	13.32	14.64	15.78	16.77	$17 \cdot 67$	$18 \cdot 48$	$19 \cdot 20$	19.89	20.52	$21 \cdot 15$	$22 \cdot 26$
14	12.51	14.31	15.75	16.98	18.03	18.99	$19 \cdot 86$	$20 \cdot 64$	21.39	22.08	22.74	23.94
14, $\frac{1}{2}$	$13 \cdot 41$	$15 \cdot 36$	16.92	$18 \cdot 21$	$19 \cdot 35$	20.37	$21 \cdot 30$	$22 \cdot 14$	22.95	23.70	$24 \cdot 39$	$25 \cdot 62$
15	14.31	16.44	18.09	$19 \cdot 50$	$20 \cdot 70$	21.81	$22 \cdot 80$	23.70	$24 \cdot 57$	$25 \cdot 35$	$26 \cdot 10$	$27 \cdot 48$
16	16.35	18.69	20.58	$22 \cdot 17$	23.58	24.81	25.95	26.97	$27 \cdot 93$	28.83	29.70	$31 \cdot 26$
17	18.45	$21 \cdot 12$	$23 \cdot 25$	25.05	26.58	28.02	$29 \cdot 28$	$30 \cdot 45$	31.56	32.55	33.57	35-28
18	20.67	$23 \cdot 67$	26.04	28.08	29.82	31.41	$32 \cdot 82$	34-14	$35 \cdot 37$	36.51	37.59	$39 \cdot 57$
19	23.04	$26 \cdot 37$	29.04	31.26	33.51	34.98	36.57	38.04	39.39	$40 \cdot 68$	41.88	$44 \cdot 07$
20	$25 \cdot 53$	$29 \cdot 22$	$32 \cdot 16$	$34 \cdot 65$	36.81	38.76	40.53	$42 \cdot 15$	$43 \cdot 65$	45.06	$46 \cdot 38$	$48 \cdot 84$
22	30.90	$35 \cdot 37$	38.91	$41 \cdot 94$	$44 \cdot 55$	46.89	$49 \cdot 86$	$51 \cdot 90$	$52 \cdot 95$	54.54	56.13	$59 \cdot 10$
24	36.78	$42 \cdot 09$	46.32	$49 \cdot 89$	53.01	55.83	58.35	$60 \cdot 69$	$62 \cdot 85$	$64 \cdot 89$	66.81	70.32
26	43.17	$49 \cdot 38$	54.36	58.56	$62 \cdot 25$	65.52	$67 \cdot 68$	71.25	$73 \cdot 80$	$76 \cdot 17$	$78 \cdot 42$	82:53
28	.50.04	57.27	63.06	$67 \cdot 92$	$72 \cdot 18$	75.99	79.44	82.62	85.56	88.32	90.93	$95 \cdot 70$
30	$57 \cdot 45$	$65 \cdot 76$	72.39	$77 \cdot 97$	82.86	$87 \cdot 21$	$91 \cdot 20$	94.83	$98 \cdot 22$	$101 \cdot 40$	$104 \cdot 4$	$109 \cdot 9$
32	$65 \cdot 37$	$74 \cdot 88$	82.53	88.71	$94 \cdot 26$	$99 \cdot 24$	$103 \cdot 7$	107.9	$111 \cdot 8$	$115 \cdot 4$	$118 \cdot 7$	125.0
34	$73 \cdot 80$	$84 \cdot 48$	92.9	$100 \cdot 22$	$106 \cdot 3$	112.0	117.1	$121 \cdot 8$	126.2	$130 \cdot 2$	134.0	$141 \cdot 1$
36	82.71	94.68	$104 \cdot 2$	112.2	$119 \cdot 3$	$125 \cdot 6$	$131 \cdot 3$	136.5	$141 \cdot 4$	$146 \cdot 0$	$150 \cdot 3$	158.2
38	92-16	$105 \cdot 5$	$116 \cdot 1$	$125 \cdot 0$	$134 \cdot 0$	136.9	146.3	$152 \cdot 1$	$157 \cdot 6$	162.7	$167 \cdot 5$	1763
40	102.1	116.9	$129 \cdot 6$	$128 \cdot 6$	$147 \cdot 3$	155•1	162-1	168.6	$174 \cdot 6$	$180 \cdot 2$	$185 \cdot 6$	$195 \cdot 3$
42	112.6	$128 \cdot 9$	141.8	$152 \cdot 8$	$162 \cdot 4$	$170 \cdot 9$	$178 \cdot 7$	185.9	192.5	198.7	$204 \cdot 6$	$215 \cdot 3$
44	123.5	$141 \cdot 4$	$155 \cdot 7$	$167 \cdot 7$	$178 \cdot 1$	$187 \cdot 6$	$199 \cdot 4$	$204 \cdot 0$	$211 \cdot 3$	$218 \cdot 1$	224.5	236.3
46	$135 \cdot 0$	$154 \cdot 6$	$170 \cdot 1$	$183 \cdot 3$	194.6	$204 \cdot 6$	214.3	223.0	$230 \cdot 0$	$238 \cdot 4$	$245 \cdot 4$	258.3
48	$147 \cdot 0$	$168 \cdot 3$	$185 \cdot 3$	$199 \cdot 6$	$212 \cdot 1$	223.2	$233 \cdot 4$	242.8	$251 \cdot 5$	$259 \cdot 6$	$267 \cdot 2$	2813
50	$159 \cdot 6$	182.6	201.0	$216 \cdot 5$	$230 \cdot 1$	$242 \cdot 3$	$253 \cdot 3$	$263 \cdot 4$	$272 \cdot 9$	$281 \cdot 6$.	259.9	$305 \cdot 1$
52	$172 \cdot 6$	$197 \cdot 6$	$217 \cdot 4$	$234 \cdot 2$	249.0	$262 \cdot 0$	$270 \cdot 7$	284.9	295.2	304.6	$313 \cdot 5$	$330 \cdot 0$
54	186.1	$213 \cdot 0$	$234 \cdot 5$	$252 \cdot 6$	$268 \cdot 4$	$282 \cdot 6$	295.4	$307 \cdot 2$	$318 \cdot 3$	328.5	$338 \cdot 1$	$356 \cdot 1$
56	$200 \cdot 1$	$229 \cdot 1$	$252 \cdot 2$	$271 \cdot 6$	288.7	$303 \cdot 9$	317.7	330.3	$342 \cdot 3$	$353 \cdot 4$	$363 \cdot 6$	$382 \cdot 8$
58	$214 \cdot 7$	$245 \cdot 8$	$270 \cdot 5$	$291 \cdot 4$	$309 \cdot 6$	$325 \cdot 8$	$340 \cdot 8$	$354 \cdot 6$	$367 \cdot 2$	$378 \cdot 9$	$389 \cdot 7$	$410 \cdot 1$
60	229.8	263.0	289.5	311.7	$331 \cdot 2$	348.9	$364 \cdot 8$	$379 \cdot 2$	393.0	$405 \cdot 6$	$417 \cdot 6$	$439 \cdot 5$

the beam (C D). Divide the square previously found by this last sum, and the quotient is the length sought.

Rule V.-(Figs. 5 and 6, pages 247, 248.)-To find the length of the radius bar, C G and $P Q$ being given.-Square C G, and multiply the square by the length of the side $\operatorname{rod}(\mathrm{PD})$: call this product A. Multiply Q D by the length of the side lever (CD). From this product subtract the product of D P into C G, and divide A by the remainder. The quotient is the length required.

Rule VI.-(Figs. 5 and 6, pages 247, 248.) To find the length of the radius bar; PQ, and the horizontal distance of the centre H of the radius bar from the main centre being given.-To the given horizontal distance add half the versed sine (D N) of the are described

Fig. 1.

Fig. 2.

by the extremity (D) of the side lever. Square this sum and multiply the square by the length of the side rod (PD). Call this product A. Take the same horizontal distance as before added to the same half versed sine (DN), and multiply the sum by the length of the side $\operatorname{rod}(\mathrm{PD})$: to the product add the product of the length of

Fig. 3.

the side lever $C D$ into the length of $Q D$, and divide A by the sum. The quotient will be the length required.

When the centre H of the radius has its position determined, rules 4 and 6 will always give the length of the radius bar FH . To get the length of $\mathrm{C} G$, it will only be necessary to draw through the point F a line parallel to the side rod D P, and the point where that line cuts $D C$ will be the position of the pin G.

In using these formulas and rules, the dimensions must all be taken in the same measure; that is, either all in feet, or all in inches; and when great accuracy is required, the corrections given in Table (A) must be added to or subtracted from the calculated length of the radius bar, according as it is less or greater than the length of C G , the part of the beam that works it.

1. Rule 4.-Let the horizontal distance (M C) of the centre (H)

Fig. 4.

Fig. 5.

of the radius bar from the main centre be equal to 51 inches; the half versed sine $\mathrm{DN}=3$ inches, and $\mathrm{DC}=126$ inches; then by the rule we will have

$$
\frac{(51+3)^{2}}{51+3+126}=\frac{(54)^{2}}{180}=\frac{2916}{180}=16 \cdot 2 \text { inches }
$$

which is the required length of the radius bar (FH).

Fig. 6.

2. Rule 5.-The following dimensions are those of the Red Rover steamer: $\mathrm{CG}=32 \mathrm{DP}=94 \mathrm{QD}=74 \mathrm{CD}=65 \mathrm{PQ}=20$.

By the rule we have, $\mathrm{A}=(32)^{2} \times 94=96256$ and

$$
\frac{96256}{74 \times 65-94 \times 32}=\frac{96256}{1802}=53 \cdot 4
$$

which is the required length of the radius bar.
3. Rule 6.-Take the same data as in the last example, only supposing that $\mathrm{C} G$ is not given, and that the centre H is fixed at a horizontal distance from the main centre, equal to 83.5 inches. Then the half versed sine of the arc $\mathrm{D}^{\prime} \mathrm{D} \mathrm{D}^{\prime \prime}$ will be about 2 inches, and we will have by the rule

$$
\begin{gathered}
\mathrm{A}=(83.5+2)^{2} \times 94=705963.5 \text { and } \\
\frac{\mathrm{A}}{85 \cdot 5 \times 94+65 \times 74}=\frac{705963.5}{1284 \cdot 7}=54.8 \text { inches }
\end{gathered}
$$

the required length of the radius bar in this case.
Table (A).

This column gives $\frac{\mathbf{F H}}{\mathbf{C G}}$ when $C G$ is the greater, and $\frac{C G}{F H}$ when FH is the greater.	Correction to be added to or subtracted from the calculated length of the radius bar, in decimal parts of its calculated length.
$\begin{array}{r} 1 \cdot 0 \\ .9 \\ .8 \\ .7 \\ .6 \\ .5 \\ .4 \end{array}$	$\begin{gathered} 0 \\ .0034 \\ .0075 \\ .0163 \\ .0270 \\ .0452 \\ .0817 \end{gathered}$

In both of the last two examples $\frac{\mathrm{CG}}{\mathrm{HF}}=6$ nearly. The correction found by Table (A), therefore, would be $54 \times \cdot 027=1 \cdot 458$ inches, which must be subtracted from the lengths already found for the radius bar, because it is longer than CG. The corrected lengths will therefore be

$$
\begin{aligned}
& \text { In example } 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{F} \mathrm{H}=51 \cdot 94 \text { inches. } \\
& \text { In example } 3 \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{F} \mathrm{H}=53 \cdot 34 \text { inches. }
\end{aligned}
$$

Rule.-To find the depth of the main beam at the centre.-Divide the length in inches from the centre of motion to the point where the piston rod is attached, by the diameter of the cylinder in inches; multiply the quotient by the maximum pressure in pounds per square inch of the steam in the boiler; divide the product by 202 for cast iron, and 236 for malleable iron: in either case, the cube root of the quotient multiplied by the diameter of the cylinder in inches gives the depth in inches of the beam at the centre of motion. To find the breadth at the centre.-Divide the depth in inches by 16 ; the quotient is the breadth in inches.

An engine beam is three times the diameter of the cylinder, from the centre to the point where the piston rod acts on it ; the force of the steam in the boiler when about to force open the safety valve is 10 lbs . per square inch. Required the depth and breadth when the beam is of cast iron.

In this case $n=3$, and $\mathrm{P}=10$, and therefore

$$
\begin{gathered}
d=\mathrm{D}\left\{\frac{30}{202}\right\}^{\frac{1}{3}}=.53 \mathrm{D} \\
\text { The breadth }=\frac{.53}{16} \mathrm{D}=.03 \mathrm{D}
\end{gathered}
$$

It will be observed that our rule gives the least value to the depth. In actual practice, however, it is necessary to make allowance for accidents, or for faultiness in the materials. This may be done by making the depth greater than that determined by the rule; or, perhaps more properly, by taking the pressure of the steam much greater than it can ever possibly be. As for the dimensions of the other parts of the beam, it is obvious that they ought to diminish towards the extremities; for the power of a beam to resist a cross strain varies inversely as its length. The dimensions may be determined from the formula $f b d^{2}=6 \mathrm{~W} l$.

To apply the formula to cranks, we may assume the depth at the shaft to be equal to n times the diameter of the shaft; hence, if $m \times \mathrm{D}$ be the diameter of the shaft, the depth of the crank will be $n \times m \times \mathrm{D}$. Substituting this in the formula $f b d^{2}=6 \mathrm{~W} l$, and it becomes $f b \times n^{2} \times m^{2} \times \mathrm{D}^{2}=6 \mathrm{~W} l$. Now, as before, $\mathrm{W}=.7854 \times \mathrm{P} \times \mathrm{D}^{2}$, so that the formula becomes $f \times b \times n^{2} \times$ $m^{2}=4.7124 \times \mathrm{P} \times l$. The value of n is arbitrary. In practice it may be made equal to $1 \frac{1}{2}$ or 1.5 . Taking this value, then, for
cast iron, the formula becomes $15300 \times b \times \frac{9}{4} \times m^{2}=4.7124 \times$ $\mathrm{P} \times l$, or $7305 \mathrm{~m}^{2} b=\mathrm{P} l$; but if L denote the length of the crank in feet, the formula becomes $609 m^{2} b=\mathrm{PL}$, and $\therefore b=\mathrm{P} \times$ $\mathrm{L} \div 609 \mathrm{~m}^{2}$. This formula may be put into the form of a rule, thus:-

Rule.-To find the breadth at the shaft when the depth is equal to $1 \frac{1}{2}$ times the diameter of the shaft.-Divide the square of the diameter of the shaft in inches by the square of the diameter of the cylinder; multiply the quotient by 609 , and reserve the product for a divisor; multiply the greatest elastic force of the steam in lbs. per square inch by the length of the crank in feet, and divide the product by the reserved divisor: the quotient is the breadth of the crank at the shaft.

A crank shaft is $\frac{1}{4}$ the diameter of the cylinder; the greatest possible force of the steam in the boiler is 20 lbs . per square inch; and the length of the shaft is 3 feet. Required the breadth of the crank at the shaft when its depth is equal to $1 \frac{1}{2}$ times the diameter of the shaft.

In this case $m=\frac{1}{4}$, so that the reserved divisor $-\frac{609}{16}=38$: again, elastic force of steam in lbs. per square inch $=20 \mathrm{lbs}$; hence width of crank $=\frac{3 \times 20}{38}=1 \cdot 6$ inches nearly.

Rule.-To find the diameter of a revolving shaft.-Form a reserved divisor thus: multiply the number of revolutions which the shaft makes for each double stroke of the piston by the number 1222 for cast iron, and the number 1376 for malleable iron. Then divide the radius of the crank, or the radius of the wheel, by the diameter of the cylinder; multiply the quotient by the greatest pressure of the steam in the boiler expressed in lbs. per square inch; divide the product by the reserved divisor ; extract the cube root of the quotient, and multiply the result by the diameter of the cylinder in inches. The product is the diameter of the shaft in inches.
strength of rods when the strain is wholly tensile; such as
the piston rod of single acting engines, pump rods, etc.
Rule.-To find the diameter of a rod exposed to a tensile force only.-Multiply the diameter of the piston in inches by the square root of the greatest elastic force of the steam in the boiler esti mated in lbs. per square inch; the product, divided by 95 , is the diameter of the rod in inches.

Required the diameter of the transverse section of a piston rod in a single acting engine, when the diameter of the cylinder is 50 inches, and the greatest possible force of the steam in the boiler is 16 lbs . per square inch. Here, according to the formula,

$$
d=\frac{50}{95} \sqrt{16}=\frac{200}{95}=2 \cdot 1 \text { inches }
$$

Rule.-To find the strength of rods alternately extended and compressed, such as the piston rods of double acting engines.-Multiply the diameter of the piston in inches by the square root of the maximum pressure of the steam in lbs. per square inch; divide the product by

> 47 for cast iron,
> 50 for malleable iron.

This rule applies to the piston rods of double acting engines, parallel motion rods, air-pump and force-pump rods, and the like. The rule may also be applied to determine the strength of connecting rods, by taking, instead of P , a number P^{\prime}, such that $\mathrm{P}^{\prime} \times$ sine of the greatest angle which the connecting rod makes with the direction $=P$.

Supposing the greatest force of the steam in the boiler to be 16 lbs. per square inch, and the diameter of the cylinder 50 inches; required the diameter of the piston rod, supposing the engine to be double acting. In this case

$$
\text { for cast iron } d=\frac{\mathrm{D}}{47} \sqrt{\mathrm{P}}=\frac{50 \times 4}{47}=5 \text { inches nearly; }
$$

for malleable iron $d=\frac{D}{50} \sqrt{\mathrm{P}}=4$ inches.
The pressure, however, is always taken in practice at more than 16 lbs . If the pressure be taken at $25^{\circ} \mathrm{lbs}$., the diameter of a malleable iron piston rod will be 5 inches, which is the usual proportion. Piston rods are never made of cast iron, but air-pump rods are sometimes made of brass, and the connecting rods of land engines are cast iron in most cases.
formulas for the strength of various parts of marine engines.
The following general rules give the dimensions proper for the parts of marine engines, and we shall recapitulate, with all possible brevity, the data upon which the denominations rest.

Let pressure of the steam in boiler $=p$ lbs. per square inch,
Diameter of cylinder $=\mathrm{D}$ inches,
Length of stroke $=2 R$ inches.
The vacuum below the piston is never complete, so that there always remains a vapour of steam possessing a certain elasticity. We may suppose this vapour to be able to balance the weight of the piston. Hence the entire pressure on the square inch of piston in lbs. $=p+$ pressure of atmosphere $=15+p$. We shall substitute P for $15+p$. Hence

Entire pressure on piston in lbs. $=7854 \times(15+p) \times \mathrm{D}^{2}$

$$
=7854 \times \mathrm{P} \times \mathrm{D}^{2}
$$

The dimensions of the paddle-shaft journal may be found from the following formulas, which are calculated so that the strain in ordinary working $=\frac{5}{6}$ elastic force.

Diameter of paddle-shaft journal $=\cdot 08264\left\{\mathrm{R} \times \mathrm{P} \times \mathrm{D}^{2}\right\}^{\frac{1}{3}}$ Length of ditto $=1_{4}^{\frac{1}{4}} \times$ diameter.

The dimensions of the several parts of the crank may be found from the following formulas, which are calculated so that the strain in ordinary working $=$ one-half the elastic force; and when one paddle is suddenly brought up, the strain at shaft end of crank $=\frac{2}{3}$ elastic force, the strain at pin end of crank $=$ elastic force.

Exterior diameter of large eye $=$ diameter of paddle-shaft +

$$
\left\{\frac{\mathrm{D}\left[\mathrm{P} \times 1.561 \times \mathrm{R}^{2}+\cdot 00494 \times \mathrm{D}^{2} \times \mathrm{P}^{2}\right]^{\frac{1}{2}}}{75.59 \times \sqrt{\mathrm{R}}}\right\}^{\frac{2}{3}}
$$

Length of ditto $=$ diameter of paddle shaft.
Exterior diameter of small eye $=$ diameter of crank pin + $\cdot 02521 \times \sqrt{\mathbf{P}} \times$ D.

Length of ditto $=\cdot 0375 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Thickness of web at paddle centre $=$

$$
\left\{\frac{\mathrm{D}^{2} \times \mathrm{P} \times \sqrt{\left\{1.561 \times \mathrm{R}^{2}+\cdot 00494 \times \mathrm{D}^{2} \times \mathrm{P}\right\}}}{9000}\right\}^{\frac{1}{3}}
$$

Breadth of ditto $=2 \times$ thickness.
Thickness of web at pin centre $-.022 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Breadth of ditto $=\frac{3}{2} \times$ thickness.
As these formulas are rather complicated, we may show what they become when $p=10$ or $\mathrm{P}=25$.

Exterior diameter of large eye $=$ diameter of paddle shaft +

$$
\left\{\frac{\mathrm{D} \sqrt{\left(1.561 \times \mathrm{R}^{2}+\cdot 1235 \times \mathrm{D}^{2}\right)}}{15 \cdot 12 \times \sqrt{\mathrm{R}}}\right\}^{\frac{2}{3}}
$$

Length of ditto $=$ diameter of paddle shaft.
Exterior diameter of small eye $=$ equal diameter of crank pin + $\cdot 126 \times$ D.

Length of ditto $=\cdot 1875 \times$ D.
Thickness of web at pin centre $=\cdot \mathbf{1 1} \times \mathrm{D}$.
Breadth of ditto $=\frac{8}{2} \times$ thickness of web.
The dimensions of the crank pin journal may be found from the following formulas, which are calculated so that strain when bearing at outer end $=$ elastic force, and in ordinary working strain $=$ one-third of elastic force.

Diameter of crank-pin journal $=\cdot 02836 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Length of ditto $=\frac{9}{8} \times$ diameter.
The dimensions of the several parts of the cross head may be found from the following formulas, in which we have assumed, for the purpose of calculation, the length $=1.4 \times \mathrm{D}$. The formulas have been calculated so as to give the strain of web $=\frac{1}{2 \cdot 225} \times$ elastic force ; strain of journal in ordinary working $=\frac{1}{2 \cdot 33} \times$ elastic force, and when bearing at outer end $=\frac{1}{1 \cdot 165} \times$ elastic force.

Exterior diameter of eye $=$ diameter of hole $+\cdot 02827 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Depth of ditto $=.0979 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Diameter of journal $=\cdot 01716 \times \overline{\sqrt{P}} \times \mathrm{D}$.
Length of ditto $=\frac{9}{8}$ diameter of journal.
Thickness of web at middle $=.0245 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Breadth of ditto $=: 09178 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Thickness of web at journal $=\cdot 0122 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Breadth of ditto $=.0203 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
The dimensions of the several parts of the piston rod may be found from the following formulas, which are calculated so that the strain of piston rod $=\frac{1}{7}$ elastic force.

Diameter of the piston rod $=\frac{\sqrt{\mathrm{P}} \times \mathrm{D}}{50}$.
Length of part in piston $=\cdot 04 \times \mathrm{D} \times \mathrm{P}$.
Major diameter of part in crosshead $=\cdot 019 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Minor diameter of ditto $=\cdot 018 \times \sqrt{ } \overline{\mathrm{P}} \times \mathrm{D}$.
Major diameter of part in piston $=\cdot 028 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Minor diameter of ditto $=\cdot 023 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Depth of gibs and cutter through crosshead $=\cdot 0358 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Thickness of ditto $=.007 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Depth of cutter through piston $=\cdot 017 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Thickness of ditto $=\cdot 007 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
The dimensions of the several parts of the connecting rod may be found from the following formulas, which are calculated so that the strain of the connecting rod and the strain of the strap are both equal to one-sixth of the elastic force.

Diameter of connecting rod at ends $=.019 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Diameter of ditto at middle $=\{1+\cdot 0035 \times$ length in inches $\}$ $\times \cdot 019 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.

Major diameter of part in crosstail $=.0196 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Minor ditto $=.018 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Breadth of butt $=\cdot 0313 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Thickness of ditto $=.025 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Mean thickness of strap at cutter $=00854 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Ditto above cutter $=\cdot 00634 \times \sqrt{\mathrm{P}} \times \mathrm{D}$.
Distance of cutter from end of strap $=\cdot 0097 \times \sqrt{\bar{P}} \times \mathrm{D}$.
Breadth of gibs and cutter through crosstail $=0358 \times \mathrm{P}^{\frac{1}{3}} \times \mathrm{D}$.
Breadth of gibs and cutter through butt $=.022 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Thickness of ditto $=.00564 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.

The dimensions of the several parts of the side rods may be found from the following formulas, which are calculated so as to make the strain of the side rod $=$ one-sixth of elastic force, and the strains of strap and cutter = one-fifth of elastic force.

Diameter of cylinder side rods at ends $=.0129 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Diameter of ditto at middle $=(1+\cdot 0035 \times$ length in inches $)$.

$$
\times \cdot 0129 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}
$$

Breadth of butt $=.0154 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Thickness of ditto $=.0122 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Diameter of journal at top end of side rod $=\cdot 01716 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Length of journal at top end $=\frac{9}{8}$ diameter.
Diameter of journal at bottom end $=.014 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Length of ditto $=\cdot 0152 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Mean thickness of strap at cutter $=\cdot 00643 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Ditto below cutter $=\cdot 0047 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Breadth of gibs and cutter $=\cdot 016 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
Thickness of ditto $=.0033 \times \mathrm{P}^{\frac{1}{2}} \times \mathrm{D}$.
The dimensions of the main centre journal may be found from the following formulas, which are calculated so as to make the strain in ordinary working $=$ one half elastic force.

Diameter of main centre journal $=\cdot 0367 \times \mathrm{P}^{2} \times \mathrm{D}$.
Length of ditto $=\frac{3}{2} \times$ diameter.
The dimensions of the several parts of the air-pump may be found from the corresponding formulas given above, by taking for D another number d the diameter of air-pump.

DIMENSIONS OF THE SEVERAL PARTS OF FURNACES AND BOILERS.

Perhaps in none of the parts of a steam engine does the practice of engineers vary more than in those connected with furnaces and boilers. There are, no doubt, certain proportions for these, as well as for the others, which produce the maximum amount of useful effect for particular given purposes; but the determination of these proportions, from theoretical considerations, has hitherto been attended with insuperable difficulties, arising principally from our imperfect knowledge of the laws of combustion of fuel, and of the laws according to which caloric is imparted to the water in the boiler. In giving, therefore, the following proportions for the different parts, we desire to have it understood that we do not affirm them to be the best, absolutely considered; we give them only as the average practice of the best modern constructors. In most of the cases we have given the average value per nominal horse power. It is well known that the term horse power is a' conventional unit for measuring the size of steam engines, just as a foot or a mile is
a unit for the measurement of extension. There is this difference, however, in the two cases, that whereas the length of a foot is fixed definitively, and is known to every one, the dimensions proper to an engine horse power differ in the practice of every different maker : and the same kind of confusion is thereby introduced into engineering as if one person were to make his foot-rule eleven inches long, and another thirteen inches. It signifies very little what a horse power is defined to be; but when once defined, the measurement should be kept inviolable. The question now arises, what standard ought to be the accepted one. For our present purpose, it is necessary to connect by a formula the three quantities, nominal horses power, length of stroke, and diameter of cylinder. With this intention,

Let $S=$ length of stroke in feet, $d=$ diameter of cylinder in inches;
Then the nominal horse power $=\frac{d^{2} \times \sqrt[3]{ } \overline{\mathrm{S}}}{47}$ nearly.
I. Area of Fire Grate.-The average practice is to give $\cdot 55$ square feet for each nominal horse power. Hence the following rule:

Rule 1.-To find the area of the fire grate.-Multiply the number of horses power by $\cdot 55$; the product is the area of the fire grate in square feet.

Required the total area of the fire grate for an engine of 400 horse power. Here total area of fire grate in square feet $=400 \times$ $\cdot 55=220$.

A rule may also be found for expressing the area of the fire grate in terms of the length of stroke and the diameter of the cylinder. For this purpose we have,
total area of fire grate $=\frac{.55 \times d^{2} \times \sqrt[3]{ } \overline{\mathrm{S}}}{47}$ feet $=\frac{d^{2} \times \sqrt[3]{ } \overline{\mathrm{S}}}{86}$ feet.
This formula expressed in words gives the following rule.
Rule 2.-To find the area of fire grate.-Multiply the cube root of the length of stroke in feet by the square of the diameter in inches; divide the product by $8 \dot{6}$; the quotient is the area of fire grate in square feet.

Required the total area of the fire grate for an engine whose stroke $=8$ feet, and diameter of cylinder $=50$ inches.

Here, according to the rule,
total area of fire grate in square feet $=\frac{50^{2} \times \sqrt[3]{8}}{86}=\frac{2500 \times 2}{86}=$ 5000 $\frac{5000}{86}=59$ nearly.
In order to work this example by the first rule, we find the nominal horse power of the engine whose dimensions we have specified is $104 \cdot 3$; hence,
total area of fire grate in square feet $=106.4 \times \cdot 55=58.5$.

With regard to these rules we may remark, not only that they are founded on practice, and therefore empyrical, but they are only applicable to large engines. When an engine is very small, it requires a much larger area of fire grate in proportion to its size than a larger one. This depends upon the necessity of having a certain amount of fire grate for the proper combustion of the coal.
II. Length of Furnace. -The length of the furnace differs considerably, even in the practice of the same engineer. Indeed, all the dimensions of the furnace depend to a certain extent upon the peculiarity of its position. From the difficulty of firing long furnaces efficiently, it has been found more beneficial to restrict the length of the furnace to about six feet than to employ furnaces of greater length.
III. Height of Furnace above Bars.-This dimension is variable, but it is a common practice to make the height about two feet.
IV. Capacity of Furnace Chamber above Bars.-The average per horse power may be taken at 1.17 feet. Hence the following rule:

Rule.-To find the capacity of furnace chamber above bars.Multiply the number of nominal horses power by $1 \cdot 17$; the product is the capacity of furnace chambers above bars in cubic feet.
V. Areas of Flues or Tubes in smallest part.-The average value of the area per horse power is 11.2 sq . in. Hence we have the following rule:

Rule.-To find the total area of the flues or tubes in smallest part.-Multiply the number of horse power by $11 \cdot 2$; the product is the total area in square inches of flues or tubes in smallest part.

Required total area of flues or tubes for the boiler of a steam engine when the horse power $=400$.

For this example we have, according to the rule, Total area in square inches $=400 \times 11 \cdot 2=4480$.
We may also find a very convenient rule expressed in terms of the stroke and the diameter of cylinder. Thus,

Total area of tubes or flues in square inches $=\frac{11.2 \times d^{2} \times \sqrt[3]{ } \overline{\mathrm{S}}}{47}$ $=\frac{d^{2} \times \sqrt[3]{ } \overline{\mathrm{S}}}{4}$.
VI. Effective Heating Surface.-The effective heating surface of flue boilers is the whole of furnace surface above bars, the whole of tops of flues, half the sides of flues, and none of the bottoms; hence the effective flue surface is about half the total flue surface. In tubular boilers, however, the whole of the tube surface is reckoned effective surface.

EFFECTIVE HEATING SUREACE OF FLUE BOILERS.

Rule 1.-To find the effective heating surface of marine flue boilers of large size.-Multiply the number of nominal horse power by 5 ; the product is the area of effective heating surface in square feet.

Required the effective heating surface of an engine of 400 nominal horse power.

In this case, according to the rule, effective heating surface in square feet $=400 \times 5=2000$.

The effective heating surface may be expressed in terms of the length of stroke and the diameter of the cylinder.

Rule 2.-To find the total effective heating surface of marine flue boilers.-Multiply the square of the diameter of cylinder in inches by the cube root of the length of stroke in feet; divide the product by 10 : the quotient expresses the number of square feet of effective heating surface.

Required the amount of effective heating surface for an engine whose stroke $=8 \mathrm{ft}$., and diameter of cylinder $=50$ inches.

Here, according to Rule 2, effective heating surface in square feet

$$
=\frac{50^{2} \times \overline{3} / 8}{10}=\frac{2500 \times 2}{10}=\frac{5000}{10}=500 .
$$

To solve this example according to the first rule, we have the nominal horse power of the engine equal to $106 \cdot 4$. Hence, according to Rule 2 , total effective heating surface in square feet $=$ $106.4 \times 4.92=523 \frac{1}{2}$.

Effective heating surface of tubular bollers.

The effective heating surface of tubular boilers is about equal to the total heating surface of flue boilers, or is double the effective surface; but then the total tube surface is reckoned effective surface.

It appears that the total heating surface of flue and tubular marine boilers is about the same, namely, about 10 square feet per horse power.
VII. Area of Chimney.-Rule 1.-To find the area of chimney. -Multiply the number of nominal horse power by 10.23 ; the product is the area of chimney in square inches.

Required the area of the chimney for an engine of 400 nominal horse power.

In this example we have, according to the rule, area of chimney in square inches $=400 \times 10 \cdot 23=4092$.
We may also find a rule for connecting together the area of the chimney, the length of the stroke, and the diameter of the cylinder.

Rule 2.-To find the area of the chimney.-Multiply the square of the diameter expressed in inches by the cube root of the stroke expressed in feet; divide the product by the number 5; the quo-tient- expresses the number of square inches in the area of chimney.

Required the area of the chimney for an engine whose stroke $=$ 8 feet, and diameter of cylinder $=50$ inches.

We have in this example from the rule,
area of chimney in square inches $=\frac{50^{2} \times \sqrt[s]{8}}{5}=\frac{2500 \times 2}{5}=$ 1000.

To work this example according to the first rule, we find, that the nominal horse power of this engine is $104 \cdot 6$: hence,
area of chimney in square inches $=104.6 \times 10.23=1070$.
The latter value is greater than the former one by 70 inches. This difference arises from our taking too great a divisor in Rule 2. Either of the values, however, is near enough for all practical purposes.
VIII. Water in Boiler.-The quantity of water in the boiler differs not only for different boilers, but differs even for the same boiler at different times. It may be useful, however, to know the average quantity of water in the boiler for an engine of a given horse power.

Rule 1.-To determine the average quantity of water in the boiler.-Multiply the number of horse power by 5 ; the product expresses the cubic feet of water usually in the boiler.

This rule may be so modified as to make it depend upon the stroke and diameter of the cylinder of engine.

Rule 2.-To determine the cubic feet of water usually in the boiler.-Multiply together the cube root of the stroke in feet, the square of the diameter of the cylinder in inches, and the number 5 ; divide the continual product by 47 ; the quotient expresses the cubic feet of water usually in the boiler.

Required the usual quantity of water in the boilers of an engine whose stroke $=8$ feet, and diameter of cylinder 50 inches.

Here we have from the rule,

$$
\begin{aligned}
& \text { cubic feet of water in boiler }=\frac{5 \times 50^{2} \times \sqrt[3]{8}}{47}=\frac{5 \times 2500 \times 2}{47} \\
= & \frac{25000}{47}=532 \text { nearly. }
\end{aligned}
$$

The engine, with the dimensions we have specified, is of 106.4 nominal horse power. Hence, according to Rule 1,
cubic feet of water in boiler $=106.4 \times 5=532$.
IX. Area of Water Level.-Rule 1.-To find the area of water level. -The area of water level contains the same number of square feet as there are units in the number expressing the nominal horse power of the engine.

Required the area of water level for an engine of 200 nominal horse power. According to the rule, the answer is 200 square feet.

We add a rule for finding the area of water level when the diameter of cylinder and the length of stroke is given.

Rule 2.-To find the area of water level.-Multiply the square of the diameter in inches by the cube root of the stroke in feet; divide the product by 47 ; the quotient expresses the number of square feet in the area of water level.

Required the area of the water level for an engine whose stroke is 8 feet, and diameter of cylinder 50 inches.

In this case, according to the rule,
area of water level in square feet $=\frac{50^{2} \times \sqrt[3]{\overline{8}}}{47}=106$.
X. Steam Room.-It is obvious that the steam room, like the quantity of water, is an extremely variable quantity, differing, not only for different boilers, but even in the same boiler at different times. It is desirable, however, to know the content of that part of the boiler usually filled with steam.

Rule 1.-To determine the average quantity of steam room.Multiply the number expressing the nominal horse power by 3 ; the product expresses the average number of cubic feet of steam room.

Required the average capacity of steam room for an engine of 460 nominal horse power.

According to the rule,
Average capacity of steam room $=460 \times 3$ cubic feet $=1380$ cubic feet.

This rule may be so modified as to apply when the length of stroke and diameter of cylinder are-given.

Rule 2.-Multiply the square of the diameter of the cylinder in inches by the cube root of the stroke in feet; divide the product by 15 ; the quotient expresses the number of cubic feet of steam room.

Required the average capacity of steam room for an engine whose stroke is 8 feet, and diameter of cylinder 5 inches.

In this case, according to the rule,
Steam room in cubic feet $=\frac{50^{2} \times \sqrt[3]{ } \overline{8}}{15}=\frac{2500 \times 2}{15}=\frac{5000}{15}=$ $333 \frac{1}{3}$.

We find that the nominal horse power of this engine is $\mathbf{1 0 6 . 4}$; hence, according to Rule 1 ,
average steam room in cubic feet $=106.4 \times 3=320$ nearly.
Before leaving these rules, we would again repeat that they ought not to be considered as rules founded upon considerations for giving the maximum effect from the combustion of a given amount of fuel; and consequently the engineer ought not to consider them as invariable, but merely to be followed as far as circumstances will permit. We give them, indeed, as the medium value of the very variable practice of several well-known constructors; consequently, although the proportions given by the rules may not be the best possible for producing the most useful effect, still the engineer who is guided by them is sure not to be very far from the common practice of most of our best engineers. It has often been lamented that the methods used by different engine makers for estimating the nominal powers of their engines have been so various that we can form no real estimate of the dimensions of the engine, from its reputed nominal horse power, unless we know its maker; but the
same confusion exists, also, to some extent, in the construction of boilers. Indeed, many things may be mentioned, which have hitherto operated as a barrier to the practical application of any standard of engine power for proportioning the different parts of the boiler and furnace. The magnitude of furnace and the extent of heating surface necessary to produce any required rate of evaporation in the boiler are indeed known, yet each engine-maker has his own rule in these matters, and which he seems to think preferable to all others, and there are various circumstances influencing the result which render facts incomparable unless those circumstances are the same. Thus the circumstances that govern the rate of evaporation, as influenced by different degrees of draught, may be regarded as but imperfectly known. And, supposing the difficulty of ascertaining this rate of evaporation were surmounted, there would still remain some difficulty in ascertaining the amount of power absorbed by the condensation of the steam on its passage to the cylinder-the imperfect condensation of the same steam after it has worked the piston-the friction of the various moving parts of the machinery-and, especially, the difference of effect of these losses of power in engines constructed on different scales of magnitude. Practice must often vary, to a certain extent, in the construction of the different parts of the boiler and furnace of an engine; for, independently of the difficulty of solving the general problem in engineering, the determination of the maximum effect with the minimum of means, practice would still require to vary according as in any particular case the desired minimum of means was that of weight, or bulk, or expense of material. Again, in estimating the proper proportions for a boiler and its appendages, reference ought to be made to the distinction between the "power" or "effect" of the boiler, and its "duty." This is a distinction to be considered also in the engine itself. The power of an engine has reference to the time it takes to produce a certain mechanical effect without reference to the amount of fuel consumed; and, on the other hand, the duty of an engine has reference to the amount of mechanical effect produced by a certain consumption of fuel, and is independent of the time it takes to produce that effect. In expressing the duty of engines, it would have prevented much needless confusion if the duty of the boiler had been entirely separated from that of the engine, as, indeed, they are two very distinct things. The duty performed by ordinary land rotative steam engines is-

One horse power exerted by 10 lbs . of fuel an hour ; or,
Quarter of a million of lbs. raised 1 foot high by 1 lb . of coal ; or,
Twenty millions of lbs. raised one foot by each bushel of coals.
Though in the best class of rotative engines the consumption is not above half of this amount.

The constant aim of different engine makers is to increase the amount of the duty; that is, to make 10 lbs . of fuel exert a greater effect than one horse power; or, in other words, to make 1 lb . of
coal raise more than a quarter of a million of lbs. one foot high. To a great extent they have been successful in this. They have caused 5 lbs . of coal to exert the force of one horse power, and even in some cases as little as $3 \frac{1}{2}$ lbs.; but in these latter cases the economy is due chiefly to expansive action. In some of the engines, however, working with a consumption of 10 lbs . of coal per nominal horse hower per hour, the power really exerted amounts to much more than that represented by $33,000 \mathrm{lbs}$. lifted one foot high in the minute for each horse power. Some engines lift $56,000 \mathrm{lbs}$. one foot high in the minute by each horse power, with a consumption of 10 lbs . of coal per horse power per hour ; and even this performance has been somewhat exceeded without a recourse to expansive action. In all modern engines the actual performance much exceeds the nominal power; and reference must be had to this circumstance in contrasting the duty of different engines.

MECHANICAL POWER OF STEAM.

We may here give a table of some of the properties of steam, and of its mechanical effects at different pressures. This table may help to solve many problems respecting the mechanical effect of steam, usually requiring much laborious calculation.

Pressures.		Tempersturein de in deFahren.	Weight of a Cubio Foot Steam.	Velocity Exit.	Mechanical Effect in Horse Power of 1 Lb. of Steam.								
		Without Condensation. Expansion.			Condensation. Expansion.								
Atmo- sphere.	Lbag. per Sq. Jnch.				0	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	0	$\frac{1}{2}$	$\frac{1}{3}$	1	
1.00	14.70		212.00	$0 \cdot 0364$	-	0	32.4	95.2	$170 \cdot 5$	913	$150 \cdot 1$	$178 \cdot 6$	$194 \cdot 6$
1.25	$18 \cdot 38$	$223 \cdot 88$	$0 \cdot 0440$	873	21.5	$10 \cdot 1$	$32 \cdot 3$	$87 \cdot 4$	$95 \cdot 9$	$158 \cdot 7$	$190 \cdot 6$	$209 \cdot 9$	
$1 \cdot 50$	22.05	$234 \cdot 32$	$0 \cdot 0529$	1135	36.4	$39 \cdot 3$	$10 \cdot 8$	$30 \cdot 6$	$99 \cdot 3$	$165 \cdot 2$	$199 \cdot 6$	$221 \cdot 1$	
$1 \cdot 75$	25.72	$242 \cdot 78$	0.0609	1295	$47 \cdot 4$	$60 \cdot 8$	42.5	$11 \cdot 1$	102.0	$170 \cdot 0$	$206 \cdot 2$	229.5	
$2 \cdot 00$	29.40	250.79	0.0688	1407	55.9	77.5	67.0	$43 \cdot 2$	104.3	174.2	212.0	236.5	
$2 \cdot 25$	33.08	257.90	$0 \cdot 0766$	1491	$62 \cdot 8$	$90 \cdot 9$	86.5	68.8	106.2	$177 \cdot 7$	216.7	$242 \cdot 4$	
$2 \cdot 50$	36.75	263.93	$0 \cdot 0344$	1556	$68 \cdot 4$	$101 \cdot 8$	$102 \cdot 4$	$89 \cdot 6$	107.7	180.5	220.5	$247 \cdot 1$	
$2 \cdot 75$	$40 \cdot 42$	$269 \cdot 87$	$0 \cdot 0921$	1608	$73 \cdot 1$	111.0	115.8	107-1	109•3	$183 \cdot 2$	$224 \cdot 2$	$251 \cdot 6$	
$3 \cdot 00$	$44 \cdot 10$	$275 \cdot 00$	$0 \cdot 0998$	1652	$71 \cdot 1$	118.8	127•1	$121 \cdot 9$	$110 \cdot 6$	185.4	$227 \cdot 7$	$255 \cdot 2$	
$3 \cdot 35$	47.78	$279 \cdot 86$	$0 \cdot 1073$	1690	80.7	$125 \cdot 6$	$137 \cdot 1$	136.7	111.7	$187 \cdot 6$	230.0	258.7	
$3 \cdot 50$	$51 \cdot 45$	284-63	$0 \cdot 1148$	1722	$83 \cdot 8$	131.5	$145 \cdot 6$	$145 \cdot 8$	112.7	$189 \cdot 4$	232.4	$261 \cdot 6$	
$3 \cdot 75$	55.12	288.66	$0 \cdot 1225$	1750	86.5	136.8	$153 \cdot 2$	155.6	113.7	$190 \cdot 1$	$234 \cdot 7$	$264 \cdot 4$	
4.00	58.18	292-91	$0 \cdot 1298$	1774	89.0	141.5	160	164.5	$114 \cdot 6$	$192 \cdot 8$	236.9	$267 \cdot 0$	
4.50	$66 \cdot 15$	$300 \cdot 27$	$0 \cdot 1445$	1816	$93 \cdot 2$	$149 \cdot 8$	171.5	179.4	116.2	$195 \cdot 6$	$240 \cdot 5$	$271 \cdot 4$	
$5 \cdot 00$	73.50	$307 \cdot 94$	$0 \cdot 1590$	1850	96.8	156.5	181.6	192.0	117.7	$198 \cdot 3$	$244 \cdot 1$	$275 \cdot 6$	
6.00	88.20	320.00	$0 \cdot 1878$	1904	102.5	$167 \cdot 2$	196.5	$211 \cdot 4$	$120 \cdot 2$	$202 \cdot 6$	$2+9 \cdot 7$	$282 \cdot 2$	
$7 \cdot 00$	102.90	331.56	0.2159	1945	$107 \cdot 0$	$175 \cdot 6$	208.4	226.5	122.4	206.4	$254 \cdot 6$	$288 \cdot 1$	
$8 \cdot 00$	117•60	340.83	$0 \cdot 2436$	1978	$110 \cdot 6$	$182 \cdot 4$	$217 \cdot 9$	$238 \cdot 4$	$124 \cdot 3$	209	258.8	$292 \cdot 1$	
9.00	$132 \cdot 30$	351.32	$0 \cdot 2708$	2006	$113 \cdot 7$	188.2	225.9	248.5	126.0	212	262.7	$293 \cdot 6$	
10.00	147.00	359.60	$0 \cdot 2977$	2029	116.3	193.0	232.5	256.7	127.5	215	266.0	$301 \cdot 4$	
12.50	183.75	$377 \cdot 42$	$0 \cdot 3642$	2074	$121 \cdot 5$	202.5	$245 \cdot 5$	273.0	130.7	220	$272 \cdot 9$	$309 \cdot 5$	
15.00	220.50	392.90	$0 \cdot 4288$	2109	$125 \cdot 7$	210.0	$255 \cdot 6$	$285 \cdot 4$	$133 \cdot 4$	225	278.9	$316 \cdot 4$	
17.50	$257 \cdot 25$	$406 \cdot 40$	$0 \cdot 4924$	2136	129.0	216.0	263.6	$295 \cdot 2$	$135 \cdot 7$	229	$283 \cdot 9$	$322 \cdot 2$	
20	294.00	$418 \cdot 56$	$0 \cdot 5549$	2159	131.8	221.0	$270 \cdot 3$	$305 \cdot 3$	$137 \cdot 8$	233	$288 \cdot 3$	$327 \cdot 2$	
25	367.50	429.34	0.6775	2196	136.3	$229 \cdot 1$	281.0	316.2	$141 \cdot 2$	238	$295 \cdot 7$	$335 \cdot 8$	
30	441.00	$457 \cdot 16$	0.7970	2226	$140 \cdot 0$	$235 \cdot 6$	289.5	326.4	144.2	244	302.0	$343 \cdot 1$	

It is quite clear that although there is no theoretical limit to the benefit derivable from expansion, there must be a limit in practice, arising from the friction incidental to the use of very large cylinders, the magnitude of the deduction due to uncondensed vapour when the steam is of a very low pressure, and other circumstances which it is needless to relate. It is clear, too, that while the effi-
ciency of the steam is increased by expansive action, the efficiency of the engine is diminished, unless the pressure of the steam or the speed of the piston be increased correspondingly; and that an engine of any given size will not exert the same power if made to operate expansively without any other alteration that would have been realized if the engine had been worked with the full pressure of the steam. In the Cornish engines, which work with steam of 40 lbs. on the inch, the steam is cut off at one-twelfth of the stroke; but if the steam were cut off at one-twelfth of the stroke in engines employing a very low pressure, it would probably be found that there would be a loss rather than a gain from carrying the expansion so far, as the benefit might be more than neutralized by the friction incidental to the use of so large a cylinder as would be necessary to accomplish this expansion; and unless the vacuum were a very good one, there would be but little difference between the pressure of the steam at the end of the stroke and the pressure of the vapour in the condenser, so that the urging force might not at that point be sufficient to overcome the friction. In practice, therefore, in particular cases, expansion may be carried too far, though theoretically the amount of the benefit increases with the amount of the expansion.

We must here introduce a simple practical rule to enable those who may not be familiar with mathematical symbols to determine the amount of benefit due to any particular measure of expansion. When expansion is performed by an expansion valve, it is an easy thing to ascertain at what point of the stroke the valve is shut by the cam, and where expansion is performed by the slide valve the amount of expansion is easily determinable when the lap and stroke of the valve are known.

Rule.-To find the Increase of Efficiency arising from working Steam expansively.-Divide the total length of the stroke by the distance (which call 1) through which the piston moves before the steam is cut off. The hyperbolic logarithm of the whole stroke expressed in terms of the part of the stroke performed with the full pressure of steam, represents the increase of efficiency due to expansion.

Suppose that the pressure of the steam working an engine is 45 lbs. on the square inch above the atmosphere, and that the steam is cut off at one-fourth of the stroke'; what is the increase of efflciency due to this measure of expansion?

If one-fourth be reckoned as 1 , then four-fourths must be taken as 4 , and the hyperbolic logarithm of 4 will be found to be $1 \cdot 386$, which is the increase of efficiency. The total efficiency of the quantity of steam expended during a stroke, therefore, which without expansion would have been 1, becomes 2.386 when expanded into 4 times its bulk, or, in round numbers, $2 \cdot 4$.

Let the pressure of the steam be the same as in the last example, and let the steam be cut off at half-stroke: what, then, is the increase of efficiency?

Here half the stroke is to be reckoned as 1, and the whole stroke has therefore to be reckoned as 2 . The hyperbolic logarithm of 2 is $\cdot 693$, which is the increase of efficiency, and the total efficiency of the stroke is $1 \cdot 693$, or $1 \cdot 7$.

We may here give a table to illustrate the mechanical effect of steam under varying circumstances. The table shows the me-

$\left\lvert\, \begin{gathered} \text { Total } \\ \text { pressure } \\ \text { in llbs. } \\ \text { pquare } \\ \text { square } \\ \text { 1nch. } \end{gathered}\right.$	Corresponding Temperatare	Velume of Steam compared with ater.	Mechanical effect of Cubie Inch of Water.	$\begin{aligned} & \text { Total } \\ & \text { pressure } \\ & \text { in lls. } \\ & \text { per } \\ & \text { Square } \\ & \text { luch. } \end{aligned}$	Corresponding Tem-		Mechanical effeet inf Cabic Iich of Water.
1	103	20.868	1739	51	284	544	2312
2	126	$10 \cdot 874$	1812	52	286	534	2316
3	141	7437	1859	53	287	525	2320
4	152	5685	1895	54	288	516	2324
5	161	4617	1924	55	289	508	2327
6	169	3897	1948	56	$290 \frac{1}{2}$	500	2331
7	176	3376	1969	57	292	492	2335
8	182	2983	1989	58	293	484	2339
9	187	2674	2006	59	294	477	2343
10	192	2426	2022	60	296	470	2347
11	197	2221	2036	61	297	463	2351
12	201	2050	2050	62	298	456	2355
13	205	1904	2063	63	299	449	2359
14	209	1778	2074	64	300	443	2362
15	218	1669	2086	65	301	437	2365
16	216	1573	2097	66	302	431	2369
17	220	1488	2107	67	303	425	2372
18	223	1411	2117	68	304	419	2375
19	226	1343	2126	69	305	414	2378
20	228	1281	2135	70	306	408	2382
21	231	1225	2144	71	307	403	2385
22	234	1174	2152	72	308	398	2388
23	236	1127	2160	73	309	393	2391
24	239	1084	2168	74	310	388	2394
25	241	1044	2175	75	311	383	2397
26	243	1007	2182	76	312	379	2400
27	245	973	2189	77	313	374	2403
28	248	941	2196	78	314	370	2405
29	250	911	2202	79	315	366	2408
30	252	883	2209	80	316	362	2411
31	254	857	2215	81	317	358	2414
32	255	833	2221	82	318	354	2417
33	257	810	2226	83	318	350	2419
34	259	788	2232	84	319	346	2422
35	261	767	2238	85	320	342	2425
36	263	748	2243	86	321	339	2427
37	264	729	2248	87	322	335	2430
38	266	712	2253	88	323	332	2432
39	267	695	2259	89	323	328	2435
40	269	679	2264	90	324	325	2438
41	271	664	2268	91	325	322	2440
42	272	649	2273	92	326	319	2443
43	274	635	2278	93	327	316	2445
44	275	622	2282	94	327	313	2448
45	276	610	2287	95	328	310	2450
46	278	598	2291	96	329	307	2453
47	279	586	2296	97	330	304	2455
48	280	575	2300	98	330	301	2457
49	282	564	2304	99	331	298	2460
50	283	554	2308	100	332	295	2462

chanical effect of the steam generated from a cubic inch of water. Our formula gives the effect of a cubic foot of water; but it can be modified to give the effect of the steam of a cubic inch by dividing, by 1728 . In this manner we find, for the mechanical effect of the steam of a cubic inch of water, about $3(459+t)$ lbs. raised one foot high. The table shows that the mechanical effect increases with the temperature. The increase is very rapid for temperatures below 212°; but for temperatures above this the increase is less; and for the temperatures used in practice we may consider, without any material error, the mechanical effect as constant.

INDICATOR.

An instrument for ascertaining the amount of the pressure of steam and the state of the vacuum throughout the stroke of a steam engine. Fitzgerald and Neucumn long employed an instrument of this kind, the nature of which was for a long time not generally known. Boulton and Watt used an instrument acting upon the same principle and equally accurate; but much more portable. In peculiarity of construction it is simply a small cylinder truly bored, and into which a piston is inserted and loaded by a spring of suitable elasticity to the graduated scale thereon attached.

The action of an indicator is that of describing, on a piece of paper attached, a diagram or figure approximating more or less to that of a rectangle, varying of course with the merits or demerits of the engine's productive effect. The breadth or height of the diagram is the sum of the force of the steam and extent of the vacuum ; the length being the amount of revolution given to the paper during the piston's performance of its stroke.

To render the indicator applicable, it is commonly screwed into the cylinder cover, and the motion to the paper obtained by means of a sufficient length of small twine attached to one of the radius bars; but such application cannot always be conveniently effected, more especially in engines on the marine principle; hence, other parts of such engines, and other means whereby to effect a proper degree of motion, must unavoidably be resorted to. In those of direct action the crosshead is the only convenient place of attachment; but because the length of the engine's stroke is considerably more than the movement required for the paper on the indicator, it is necessary to introduce a pulley and axle, by which means the various movements are qualified to suit each other.

When the indicator is fixed and the movement for the paper properly adjusted, allow the engine to make a few revolutions previous to opening the cock; by which means a horizontal line will be described upon the paper by the pencil attached, and denominated the atmospheric line, because it distinguishes between the effect of the steam and that of the vacuum. Open the cock, and if the engine be upon the descending stroke, the steam will instantly raise the piston of the indicator, and, by the motion of the paper with the pencil pressing thereon, the top side of the diagram will be formed.

At the termination of the stroke and immediately previous to its return, the piston of the indicator is pressed down by the surrounding atmosphere, consequently the bottom side of the diagram is described, and by the time the engine is about to make another descending stroke, the piston of the indicator is where it first started from, the diagram being completed; hence is delineated the mean elastic action of the steam above that of the atmospheric line, and also the mean extent of the vacuum underneath it.

But in order to elucidate more clearly by example, take the following diagram, taken from a marine engine, the steam being cut off after the piston had passed through twothirds of its stroke, the graduated scale on the indicator, tenths of an inch, as shown at each end of the diagram annexed.

Previous to the cock being opened, the atmospheric line $A B$ was formed, and, when opened, the pencil was instantly raised by the action of the steam on the piston to C , or what is generally termed the starting corner; by the movement of the paper and at the termination of the stroke the line CD was formed, showing the force of the steam and extent of expansion ; from D to E show the moments of
 eduction; from E to F the quality of the vacuum; and from F to A the lead or advance of the valve; thus every change in the engine is exhibited, and every deviation from a rectangle, except that of expansion and lead of the valve show the extent of proportionate defect. Expansion produces apparently a defective diagram, but in reality such is not the case, because the diminished power of the engine is more than compensated by the saving in steam. Also the lead of the valve produces an apparent defect, but a certain amount must be given, as being found advantageous to the working of the engine, but the steam and eduction corners ought to be as square as possible; any rounding on the steam corner shows a defect from want of lead; and rounding on the eduction corner that of the passages or apertures being too small.

Rule.-To compute the power of an Engine from the Indicator Diagram.-Divide the diagram in the direction of its length into any convenient number of equal parts, through which draw lines at right angles to the atmospheric line, add together the lengths of all the spaces taken in measurements corresponding with the scale on the indicator, divide the sum by the number of spaces, and the
quotient is the mean effective pressure on the piston in lbs. per square inch.

Let the result of the preceding diagram be taken as an example. Then, the whole sum of vacuum spaces $=1220 \div 10=12 \cdot 2 \mathrm{lbs}$. mean effect obtained by the vacuum; and in a similar manner the mean effective pressure of steam is found to be 6.28 lbs ., hence the total effective force $=18.48 \mathrm{lbs}$. per square inch. And supposing 2.5 lbs . per square inch be absorbed by friction, What is the actual power of the engine, the cylinder's diameter being 32 inches, and the velocity of the piston 226 feet per minute?
$18.48-2.5=15.98 \mathrm{lbs}$. per square inch of net available force. Then $\frac{32^{2} \times 7854 \times 15.98 \times 226}{33000}=88$ horses power.
The line under the diagram and parallel to the atmospheric line is $\frac{15}{10}$ ths distant, and represents the perfect vacuum line, the space between showing the amount of force with which the uncondensed steam or vapour resists the ascent or descent of the piston at every part of the stroke.

As the mean pressure of the atmosphere is 15 lbs . per square inch, and the mean specific gravity of mercury 13560 , or 2.037 cubic inches equal 1 lb ., it will of course rise in the barometer attached to the condenser about 2 inches for every lb. effect of vacuum, and as a pure vacuum would be indicated by 30 inches of mercury, the distance between the two lines shows whether there is or is not any amount of defect, as sometimes there is a considerable difference in extent of vacuum in the cylinder to that in the condenser.

To estimate by means of an indicator the amount of effective power produced by a steam engine.-Multiply.the area of the piston in square inches by the average force of the steam in lbs. and by the velocity of the piston in feet per minute; divide the product by 33,000 , and $\frac{7}{10}$ ths of the quotient equal the effective power.

Suppose an engine with a cylinder of $37 \frac{1}{2}$ inches diameter, a stroke of 7 feet, and making 17 revolutions per minute, or 238 feet velocity, and the average indicated pressure of the steam 16.73 lbs . per square inch; required the effective power.

$$
\begin{aligned}
\text { Area } & =1104.4687 \text { inches } \times 16.73 \text { lbs. } \times 238 \text { feet } \\
& =\frac{133.26 \times 7}{10}=93.282 \text { horse power. }
\end{aligned}
$$

To determine the proper velocity for the piston of a steam engine.Multiply the logarithm of the nth part of the stroke at which the steam is cut off by $2 \cdot 3$, and to the product of which add 7 . Multiply the sum by the distance in feet the piston has travelled when the steam is cut off, and 120 times the square root of the product equal the proper velocity for the piston in feet per minute.

WEIGHT COMBINED WITH MASS, VELOCITY, FORCE, AND WORK DONE.

CALCULATIONS ON THE PRINCIPLE OF VIS VIVA.-MATERIALS EMPLOYED IN THE CONSTRUCTION OF MACHINES.-STRENGTH OF MATERIALS, THEIR PROPERTIES.-TORSION, DEFLEXION, ELASTICITY, TENACITIES, COMPRESSIONS, ETC.-FRICTION OF REST AND OF MOTION, COEFFICIEN'TS OF ALL SORTS OF MOTION.-BANDS.-ROPES.-WHEELS.-HYDRAULICS. - NEW TABLES FOR THE MOTION AND FRICTION OF WATER.-WATER-WHEELS.-WINDMILLS, ETC.

1. Suppose a body resting on a perfectly smooth table, and, when in motion, to present no impediment to the body in its course, but merely to counteract the force of gravity upon it; if this body weighing 800 lbs . be pressed by the force of 30 lbs . acting horizontally and continuously, the motion under such circumstances will be uniformly accelerated: what is the acceleration?

$$
\frac{30}{800} \times 32 \cdot 2=1 \cdot 2075 \text { feet the second. }
$$

2. What force is necessary to move the above-mentioned heavy body, with a 23 feet acceleration, under the same circumstances?

$$
\frac{23}{32 \cdot 2} \times 800=57 \cdot 14285 \mathrm{lbs}
$$

The second of these examples illustrates the principle that the force which impels a body with a certain acceleration is equal to the weight of the body multiplied by the ratio of its acceleration to that of gravity. The first illustrates the reverse, namely, the acceleration with which a body is moved forward with a given force, is equal to the acceleration of gravity multiplied by the ratio of the force to the weight.
3. A railway car, weighing 1120 lbs., moves with a 5 feet velocity upon horizontal rails, which, let us suppose, offer no impediment to the motion, and is constantly pushed by an invariable force of 50 lbs . during 20 seconds : with what velocity is it moving at the end of the 20 th second, or at the beginning of the 21 st second?

$$
5+32 \cdot 2 \times \frac{50}{1120} \times 20=33 \cdot 75, \text { the velocity }
$$

4. A carriage, circumstanced as in the last question, weighs 4000 lbs.; its initial velocity is 30 feet the second, and its terminal velocity is 70 feet : with which force is the body impelled, supposing it to be in motion 20 seconds?

$$
\frac{(70-30) \times 4000}{32.2 \times 20}=242 \cdot 17 \mathrm{lbs}
$$

We have before noticed that the weight (W), divided by $32 \cdot 2$, or (g), gives the mass; that is,

$$
\frac{\text { Weight }}{g}=\text { mass, }
$$

$$
\text { And, force }=\text { mass } \times \text { acceleration }
$$

5. Suppose a railway carriage, weighing 6440 lbs., moves on a horizontal plane offering no impediment, and is uniformly accelerated 4 feet the second, what continuous force is applied ?

$$
3440=200 \mathrm{lbs} . \text { mass }
$$

$$
200 \times 4=800 \text { lbs., the force applied. }
$$

By the four succeeding formulas, all questions may be answered that may be proposed relative to the rectilinear motions of bodies by a constant force.

For uniformly accelerated motions:

$$
\begin{aligned}
& v=a+32 \cdot 2 \frac{\mathrm{~F}}{\mathrm{~W}} \times t \\
& s=a t+16 \cdot 1 \frac{\mathrm{~F}}{\mathrm{~W}} \times t^{2}
\end{aligned}
$$

For uniformly retarded motions:

$$
\begin{aligned}
& v=a-32 \cdot 2 \frac{\mathrm{~F}}{\mathrm{~W}} \times t \\
& s=a t-16 \cdot 1 \times \frac{\mathrm{F}}{\mathrm{~W}} \times t^{2}
\end{aligned}
$$

$t=$ the time in seconds, $\mathrm{W}=$ the weight in lbs., $\mathrm{F}=$ the force in lbs., $a=$ the initial velocity, and $v=$ the terminal velocity.
6. A sleigh, weighing 2000 lbs ., going at the rate of 20 feet a second, has to overcome by its motion a friction of 30 lbs : what velocity has it after 10 seconds, and what distance has it described?

$$
\begin{gathered}
\because 20-32.2 \times \frac{30}{2000} \times 10=15 \cdot 17 \text { feet velocity. } \\
20 \times 10-16 \cdot 1 \times \frac{30}{2000} \times(10)^{2}=175.85 \text { feet, distance de- }
\end{gathered}
$$ scribed.

7. In order to find the mechanical work which a draught-horse performs in drawing a carriage, an instrument called a dynamometer, or measure of force, is thus used: it is put into communication on one side of the carriage, and on the other with the traces of the horse, and the force is observed from time to time. Let 126 lbs. be the initial force; after 40 feet is described, let 130 lbs . be the force given by the dynamometer; after 40 feet more is described, let 129 lbs . be the force; after 40 feet more is passed over, let 140 lbs. be the force; and let the next two spaces of 40 feet give forces of 130 and 120 lbs . respectively. What is the mechanical work done?

126 initial force.
120 terminal force.
2) 246

123 mean.

$$
\frac{123+130+129+140+130}{5}=130 \cdot 4
$$

$$
130.4 \times 40 \times 5=26080 \text { units of work. }
$$

The following rule, usually given to find the areas of irregular figures, may be applied where great accuracy is required.

Rule.-To the sum of the first and last, or extreme ordinates, add four times the sum of the $2 \mathrm{~d}, 4$ th, 6 th, or even ordinates, and twice the sum of the 3d, 5th, 7th, \&c., or odd ordinates, not including the extreme ones; the result multiplied by $\frac{1}{3}$ the ordinates' equidistance will be the sum.

$$
126
$$

120
246 sum of first and last.
$246+4 \times 130+2 \times 129+4 \times 140+2 \times 130=1844$. $\frac{1844 \times 40}{3}=24586.66$ units of work or pounds raised one foot high. This rule of equidistant ordinates is of great use in the art of ship-building. This application we shall introduce in the proper place.
8. How many units of work are necessary to impart to a carriage of 3000 lbs . weight, resting on a perfectly smooth railroad, a velocity of 100 feet?

$$
\frac{(100)^{2}}{2 \times 32 \cdot 2} \times 3000=465838 \cdot 2 \text { units. }
$$

A unit of work is that labour which is equal to the raising of a pound through the space of ${ }^{\prime}$ one foot. A unit of work is done when one pound pressure is exerted through a space of one foot, no matter in what direction that space may lie.

Kane Fitzgerald, the first that made steam turn a crank, and patented it, and the fly-wheel to regulate its motion, estimated that a horse could perform 33000 units of work in a minute, that is, raise 33000 lbs . one foot high in a minute. To perform $465838 \cdot 2$ units of work in 10 minutes would require the application $1 \cdot 4116$ horse power.
9. What work is done by a force, acting upon another carriage, under the same circumstances, weighing 5000 lbs., which transforms the velocity from 30 to 50 feet?
$\frac{(30)^{2}}{64 \cdot 4}=13 \cdot 9907$, the height due to 30 feet velocity.
$\frac{(50)^{2}}{64 \cdot 4}=38 \cdot 8043$, the height due to 50 feet velocity

From Take	38.8043
	$13 \cdot 9907$
	$\begin{aligned} & 24 \cdot 8136 \\ & 5000 \end{aligned}$
	$124068 \cdot 0000$

$\therefore 124068$ are the units of work, and just so much work will the carriage perform if a resistance be opposed to it, and it be gradually brought from a 50 feet velocity to a 30 feet velocity.

The following is without doubt a very simple formula, but the most useful one in mechanics; by it we have solved the last two questions:

$$
\mathrm{F} s=(\mathrm{H}-h) \mathrm{W}
$$

This simple formula involves the principle technically termed the principle of vis viva, or living forces. H is the height due to one velocity, say v or $\mathrm{H}=\frac{v^{2}}{2 g}$ and h, the height due to another a, or $h=\frac{a^{2}}{2 g}$. The weight of the mass $=\mathrm{W}$; the force F , and the space 8.

To express this principle in words, we may say, that the working power (F s) which a mass either acquires when it passes from a lesser velocity (a) to a greater velocity (v), or produces when it is compelled to pass from a greater velocity (v) into a less (a), is always equal to the product of the weight of the mass and the difference of the heights due to the velocities.

When we know the units of work, and the distance in which the change of velocity goes on, the force is easily found; and when the force is known, the distance is readily determined. Suppose, in the last example, that the change of velocity from 30 to 50 feet took place in a distance of 300 feet, then
$\frac{124068}{300}=413.56 \mathrm{lbs} .=\mathrm{F}$, the force constantly applied during 300 feet.
10. If a sleigh, weighing 2000 lbs ., after describing a distance of 250 feet, has completely lost a velocity of 100 feet, what constant resistance does the friction offer?

Since the terminal velocity $=0$, the height due to it $=0$, hence

$$
\frac{(100)^{2}}{64 \cdot 4} \times \frac{2000}{250}=1242 \cdot 2352 \mathrm{lbs}
$$

We have been calculating upon the principle of vis viva; but the product of the mass and the square of the velocity, without attaching to it any definite idea, is termed the vis viva, or living force.
11. A body weighing 2300 lbs . moves with a velocity of 20 feet the second, required the vis viva?

$$
\frac{2300}{32 \cdot 2}=71 \cdot 42857 \mathrm{lbs} ., \text { mass. }
$$

$71 \cdot 42857 \times(20)^{2}=28571 \cdot 428$, the amount of vis viva.
Hence, if a mass enters from a velocity a, into another v, the unit of work done is equal to half the difference of the vis viva, at the commencement and end of the change of velocity.

For if the mass be put $=M$, and W the weight,

Then $\mathrm{M}=\frac{\mathrm{W}}{g}$, and the vis viva to velocity $a=\mathrm{M} a^{2}=\frac{\mathrm{W} a^{2}}{g}$; and the vis viva to velocity $v=\mathrm{M} v^{2}=\frac{\mathrm{W} v^{2}}{g}$.

Then $\frac{1}{2}\left\{\frac{\mathrm{~W} v^{2}}{g}-\frac{\mathrm{W} a^{2}}{g}\right\}=\left(\frac{v^{2}}{2 g}-\frac{a^{2}}{2 g}\right) \times \mathrm{W}=(\mathrm{H}-h) \mathrm{W}$, for $\frac{v^{2}}{2 g}$ and $\frac{a^{2}}{2 g}$, give the heights due to the velocities v and a, respectively. The useful formula

$$
\mathrm{Fs}=(\mathrm{H}-h) \mathrm{W},
$$

before given, page 270 , may be applied to variable as well as to constant forces, if, instead of the constant force F, the mean value of the force be applied.

STRENGTH OF MATERIALS.

ON MATERIAL EMPLOYED IN THE CONSTRUCTION OF MACHINES.
IN theoretical mechanics, we deal with imaginary quantities, which are perfect in all their properties; they are perfectly hard, and perfectly elastic ; devoid of weight in statics and of friction in dynamics. In practical mechanics, we deal with real material objects, among which we find none which are perfectly hard, and none, except gaseous bodies, which are perfectly elastic; all have weight, and experience resistance in dynamical action. Practical mechanics is the science of automatic labour, and its objects are machines and their applications to the transmission, modification, and regulation of motive power. In this it takes as a basis the theoretical deductions of pure mechanics, but superadds to the formulæ of the mathematician a multitude of facts deduced from observation, and experimentally elaborates a new code of laws suited to the varied conditions to be fulfilled in the economy of the industrial arts.

In reference to the structure of machines, it is to be observed that however simple or complex the machine may be, it is of importance that its parts combine lightness with strength, and rigidity with uniformity of action; and that it communicates the power without shocks and sudden changes of motion, by which the passive resistances may be increased and the effect of the engine diminished.

To adjust properly the disposition and arrangement of the individual members of a machine, implies an exact knowledge and estimate of the amount of strain to which they are respectively subject in the working of the machine; and this skill, when exercised in conjunction with an intimate acquaintance with the nature of the materials of which the parts are themselves composed, must contribute to the production of a machine possessing the highest amount of capability attainable with the given conditions.

Materials.-The material most commonly employed in the con-
struction of machinery is iron, in the two states of cast and wrought or forged iron; and of these, there are several varieties of quality. It becomes therefore a problem of much practical importance to determine, at least approximately, the capabilities of the particular material employed, to resist permanent alteration in the directions in which they are subjected to strain in the reception and transmission of the motive power.

To indicate briefly the fundamental conditions which determine the capability of a given weight and form of material to resist a given force, it must, in the first place, be observed, that rupture may take place either by tension or by compression in the direction of the length. To the former condition of strain is opposed the tenacity of the material ; to the other is opposed the resistance to the crushing of its substance. Rupture, by transverse strain, is opposed both by the tenacity of the material and its capability to withstand compression together of its particles. Lastly, the bar may be ruptured by torsion. Mr. Oliver Byrne, the author of the present work, in his New Theory of the Strength of Materials has pointed out new elements of much importance.

The capabilities of a material to resist extension and compression are often different. Thus, the soft gray variety of cast iron offers a greater resistance to a force of extension than the white variety in a ratio of nearly eight to five; but the last offers the greatest resistance to a compressing force.

The resistance of cast iron to rupture by extension varies from 6 to 9 tons upon the square inch; and that to rupture by compression, from 36 to 65 tons. The resistance to extension of the best forged iron may be reckoned at 25 tons per inch; but the corresponding resistance to compression, although not satisfactorily ascertained, is generally considered to be greatly less than that of cast iron. Roudelet makes it $31 \frac{1}{2}$ tons on the square inch. Cast iron (and even wood) is therefore to be preferred for vertical supports.

The forces resisting rupture are as the areas of the sections of rupture, the material being the same; this principle holds not only in respect of iron, but also of wood. Many inquiries have been instituted to determine the commonly received principle, that the strength of rectangular beams of the same width to resist rupture by transverse strain is as the squares of the depths of the beams.

In these respects the experiments, although valuable on account of their extent and the care with which they were conducted, possess little novelty; but in directing attention to the elastic properties of the materials experimented upon, it was found that the received doctrine of relation between the limit of elasticity and weight requires modification. The common assumption is, that the destruction of the elastic properties of a material, that is, the displacement beyond the elastic limit, does not manifest itself until the load exceeds one-third of the breaking weight. It was found, however, on the contrary, that its effect was produced and manifested in a permanent set of the material when the load did not ex-
ceed one-sixteenth of that necessary to produce rupture. Thus a bar of one inch square, supported between props $4 \frac{1}{2}$ feet apart, did not break till loaded with 496 lbs . but showed a permanent deflection or set when loaded with 16 lbs . In other cases, loads of 7 lbs . and 14 lbs . were found to produce permanent sets when the breaking weights were respectively 364 lbs. and 1120 lbs . These sets were therefore given by $\frac{1}{52}$ d and $\frac{1}{80}$ th of the breaking weights.

Since these results were obtained, it has been found that time and the weight of the material itself are sufficient to effect a permanent deflection in a beam supported between props, so that there would seem to be no such limits in respect to transverse strain as those known by the name of elastic limits, and consequently the principle of loading a beam within the elastic limit has no foundation in practice. The beam yields continually to the load, but with an exceedingly slow progression, until the load approximates to the breaking weight, when rupture speedily succeeds to a rapid deflection.

As respects the effect of tension and compression by transverse strain, it was ascertained by a very ingenious experiment that equal loads produced equal deflections in both cases.

Another most important principle developed by experiments, is that respecting the compression of supporting columns of different heights. When the height of the column exceeded a certain limit, it was found that the crushing force became constant, and did not increase as the height of the column increased, until it reached another limit at which it began to yield, not strictly by crushing, but by the bending of the material. The first limit was found to be a height of little less than three times the radius of the column; and the second double that height, or about six times the radius of the column. In columns of different heights between these limits, having equal diameters, the force producing rupture by compression was nearly constant. When the column was less than the lower limit, the crushing force became greater, and when it was greater than the higher limit, the crushing force became less. It was further found that in all cases, where the height of the column was exactly above the limits of three times the radius, the section of rupture was a plane inclined at nearly the same constant angle of 55 degrees to the axis of the column. These facts mutually explain each other; for in every height of column above the limit, the section of rupture being a plane at the same angle to the axis of the column, must of necessity be a plane of the same size, and therefore in each case the cohesion of the same number of particles must be overcome in producing rupture. And further, the same number of particles being to be overcome under the same circumstances for every different height, the same force will be required to overcome that amount of cohesion, until at double the height (three diameters) the column begins to bend under its load. This height being surpassed, it follows that a pressure which becomes continually less as the length of the column is increased, will be sufficient to break it.

This property, moreover, is not confined to cast iron; the experiments of M. Rondelet show that with columns of wrought iron, wood, and stone, similar results are obtained.

From these facts then, it appears that if supporting columns be taken of different diameters, and of heights so great as not to allow of their bending, yet sufficiently high to allow of a complete separation of the planes of fracture, that is, of heights intermediate to three times and six times their radius, then will their strengths be as the number of particles in their planes of fracture; and the planes of fracture being inclined at equal angles to the axes of the columns, their areas will be as the transverse sections of the columns, and consequently the strengths of the columns will be as their transverse sections respectively. Taking the mean of three experiments upon a column $\frac{1}{4}$ inch diameter, the crushing force was 6426 lbs.; whilst the mean of four experiments, conducted in exactly the same manner, upon a column of $\frac{3}{8}$ of an inch diameter, gave 14542 lbs . The diameters of the columns being 2 to 3 , the areas of transverse section were therefore 4 to 9 , which is very nearly the ratio of the crushing weights.

When the length of the column is so great that its fracture is produced wholly by bending of its material, the limit has been fixed for columns of cast iron, at 30 times the diameter when the ends are flat, and 15 times the diameter when the ends are rounded. In shorter columns, fracture takes place partly by crushing and partly by bending of the material. When the column is enlarged in the middle of its length from one and a half to two times the diameter of the ends, the strength was found by the same experimenter to be greater by one-seventh than in solid columns containing the same quantity of iron, in the same length, with their extremities rounded; and stronger by an eighth or a ninth when the extremities were flat and rendered immovable by disks.

The following formulas give the absolute strength of cylindrical columns to sustain pressure in the direction of their length. In these formulas
$D=$ the external diameter of the column in inches.
$d=$ the internal diameter of hollow columns in inches.
$\mathrm{L}=$ the length of the column in feet.
$\mathrm{W}=$ the breaking weight in tons.

Character of the column.	tir	Length of
lumn of cast iron,	$\mathrm{W}=14.9$	$\mathrm{L}^{\text {1 }}$
Hollow cylindrical column of cast iron,	13	$44.34 \frac{\mathrm{D}^{353}-d^{3}}{\mathrm{~L}^{1.7}}$
Solid cylindrical column of wroaght iron,	$\mathrm{W}=42.8 \frac{\mathrm{~L}^{2}}{}$	$\mathrm{W}=133.75 \mathrm{~L}^{\text {a }}$

For shorter columns, if W^{\prime} represent the weight in tons which would break the column by bending alone, as given by the preced-
ing formulas, and $\mathrm{W}^{\prime \prime}$ the weight in tons which would crush the column without bending it, as determined from the subjoined table, then the absolute breaking weight of the column W , is represented in tons by the formula,

$$
\mathrm{W}=\frac{\mathrm{W}^{\prime} \times \mathrm{W}^{\prime \prime}}{\mathrm{W}^{\prime}+\mathrm{W}^{\prime \prime}}
$$

These rules require the use of logarithms in their applications.
When a beam is deflected by transverse strain, the material on that side of it on which it sustains the strain is compressed, and the material on the opposite side is extended. The imaginary surface at which the compression terminates and the extension begins-at which there is supposed to be neither extension nor compressionis termed the neutral axis of the beam. What constitutes the strength of a beam is its resistance to compression on the one side and to extension on the other side of that axis-the forces acting about the line of axis like antagonist force at the two extremities of a lever, so that if either of them yield, the beam will be broken. It becomes, however, a question of importance to determine the relation of these forces; in other words, to determine whether the beam of given form and material will yield first to compression or to extension. This point is settled by reference to the columns of the subsequent table, page 280 , in which it will be observed that the metals require a much greater force to crush them than to tear them asunder, and that the woods require a much smaller force.

There is also another consideration which must not be overlooked. Bearing in mind the condition of antagonism of the forces, it is obvious, that the further these forces are placed from the neutral axis, that is, from the fulcrum of their leverage, the greater must be their effect. In other words, all the material resisting compression will produce its greatest effect when collected the farthest possible from the neutral axis at the top of the beam; and, in like manner, all the material resisting extension will produce its greatest effect when similarly disposed at the bottom of the beam. We are thus directed to the first general principle of the distribution of the material into two flanges-one forming the top and the other the bottom of the beam-joined by a comparatively slender rib. Associating with this principle the relation of the forces of extension and compression of the material employed, we arrive at a form of beam in which the material is so distributed, that at the instant it is about to break by extension on the one side, it is about to break by compression on the other, and consequently is of the strongest form. Thus, supposing that it is required to determine that form in a girder of cast iron: the ratio of the crushing force of that metal to the force of extension may be
 taken generally as $6 \frac{1}{2}$ to 1 , which is therefore also the ratio of the lower to the upper flange, as in the annexed sectional diagram.

A series of nine castings were made, gradually increasing the lower flange at the expense of the upper one, and in the first eight
experiments the beam broke by the tearing asunder of the lower flange; and in the last experiment the beam yielded by the crushing of the upper flange. In the eight experiments the upper flange was therefore the weakest, and in the ninth the strongest, so that the form of maximum strength was intermediate, and very closely allied to that form of beam employed in the last experiment, which was greatly the strongest. The circumstances of these experiments are contained in the following table.

${ }_{\substack{\text { No. of experi } \\ \text { ments. }}}$	Ratio of surfaes of com-	Area of fress gections	Strenth per gq, inoh
1	1 to 1	$2 \cdot 82$	2368
2	1 to 2	$2 \cdot 87$	2567
3	1 to 4	$3 \cdot 02$	2737
4	1 to $4 \frac{1}{2}$	$3 \cdot 37$	3183
5	1 to 4	$4 \cdot 50$	3214
6	1 to $5 \frac{1}{2}$	$5 \cdot 00$	3346
7	1 to $3 \frac{1}{5}$	$4 \cdot 628$	3246
8	1 to $4 \cdot 3$	$5 \cdot 86$	3317
9	1 to $6 \cdot 1$	$6 \cdot 4$	4075

- To determine the weight necessary to break beams cast according to the form described:

Multiply the area of the section of the lower flange by the depth of the beam, and divide the product by the distance between the two points on which the beam is supported: this quotient multiplied by 536 when the beams are cast erect, and by 514 when they are cast horizontally, will give the breaking weight in cwts.

From this it is not to be inferred that the beam ought to have the same transverse section throughout its length. On the contrary, it is clear that the section ought to have a definite relation to the leverage at which the load acts. From a mathematical consideration of the conditions, it indeed appears that the effect of a given load to break the beam varies when it is placed over different points of it, as the products
 of the distances of these points from the points of support of the beam. Thus the effect of a weight porced at the point W_{1} is to the effect of the same weight acting upon the point W_{2}, as the product $A W_{1} \times W_{1} B$ is to the product $A W_{2} \times W_{2} B$; the points of support being at A and B. Since then the effect of a weight increases as it approaches the middle of the length of the beam, at which it is a maximum, it is plain that the beam does not require to have the same transverse section near to its extremities as in the middle; and, guided by the principle stated, it is easy to perceive that its strength at different points should in strictness vary as the products of the distances of these points from the points of support. - By
taking this law as a fundamental condition in the distribution of the strength of a beam, whose load we may conceive to be accumulated at the middle of its length, we arrive at the strongest form which can be attained under given circumstances, with a given amount of material; we arrive at that form which renders the beam equally liable to rupture at every point. Now this form of maximum strength may be attained in two ways; either by varying the depth of the beam according to the law stated, or by preserving the depth everywhere the same, and varying the dimensions of the upper and lower flanges according to the same law. The conditions are manifestly identical. We may therefore assume generally the condition that the section is rectangular, and that the thickness of the flanges is constant; then the outline determined by the law in question, in the one case of the elevation of the beam and in the other of the plan of the flanges, is the geometrical curve called a parabola-rather, two parabolas joined base to base at the middle between the points of support. The annexed diagram represents the plan of a cast-iron girder according to this form, the depth

being uniform throughout. Both flanges are of the same form, but the dimensions of the upper one are such as to give it only a sixth of the strength of the other.

This, it will be observed, is also the form, considered as an elevation, of the beam of a steam engine, which good taste and regard to economy of material have rendered common.

It must, however, be borne in mind, that in the actual practice of construction, materials cannot with safety be subjected to forces approaching to those which produce rupture. In machinery especially, they are liable to various and accidental pressures, besides those of a permanent kind, for which allowance must be made. The engineer must therefore in his practice depend much on experience and consideration of the species of work which the engine is designed to perform. If the engine be intended for spinning, pumping, blowing, or other regular work, the material may be subjected to pressures approaching two-thirds of that which would actually produce rupture; but in engines employed to drive bonemills, stampers, breaking-down rollers, and the like, double that strength will often be found insufficient. In cases of that nature, experience is a better guide than theory.

It is also to be remarked that we are often obliged to depart from the form of strength which the calculation gives, on account of the partial strains which would be put upon some of the parts of a casting, in consequence of unequal cooling of the metal when the thicknesses are unequal. An expert founder can often reduce the irregular contractions which thus result; but, even under the best management, fracture is not unfrequently produced by irregu-
larity of cooling, and it is at all times better to avoid the danger entirely, than to endeavour to obviate it by artifice. For this reason, the parts of a casting ought to be as nearly as possible of such thickness as to cool and contract regularly, and by that means all partial strain of the parts will be avoided.

With respect to design, it is also to be remarked, that mere theoretical properties of parts will not, under all the varieties of circumstances which arise in the working of a machine, insure that exact adjustment of material and propriety of form so much desired in constructive mechanics. Every design ought to take for its basis the mathematical conditions involved, and it would, perhaps, be impossible to arrive at the best forms and proportions by any more direct mode of calculation; but it is necessary to superadd to the mathematical demonstration, the exercise of a well-matured judgment, to secure that degree of adjustment and arrangement of parts in which the merits of a good design mainly consist. A purely theoretical engine would look strangely deficient to the practised eye of the engineer; and the merely theoretical contriver would speedily find himself lost, should he venture beyond his construction on paper. His nice calculations of the "work to be performed," of the vis viva of the mechanical organs of his machine, and of the modulus of elasticity of his material, would, in practice, alike deceive him.

The first consideration in the design of a machine is the quantity of work which each part has to perform-in other words, the forces, active and inactive, which it has to resist; the direction of the forces in relation to the cross-section and points of support; the velocity, and the changes of velocity to which the moving parts are subject. The calculations necessary to obtain these must not be confined to theory alone; neither should they be entirely deduced by "rule of thumb;" by the first mode the strength would, in all probability, be deficient from deficiency of material, and by the second rule the material would be injudiciously disposed; weight would be added often where least needed, merely from the determination to avoid fracture, and in consequence of a want of knowledge respecting the true forms best adapted to give strength.

T'o the following general principles, in practice, there are but few real exceptions:
I. Direct Strain.-To this a straight line must be opposed, and if the part be of considerable length, vibration ought to be counteracted by intersection of planes, (technically feathers,) as represented in the annexed diagrams,
 or some such form, consistent with the purpose for which the part is intended.
II. Transverse Strain.-To this a parabolic form of section must be opposed, or some simple figure including the parabolic form. For economy of material, the vertex of the curve ought to be at the point where the force is applied; and when the strain passes
alternately from one side of the part to the other, the curve ought to be on both sides, as in the beam of a steam engine.

When a loaded piece is supported at one end only, if the breadth be everywhere the same, the form of equal strength is a triangle; but, if the section be a circle, then the solid will be that generated by the revolution of a semi-parabola about its longer axis. In practice, it will, however, be sufficient to employ the frustum of a cone, of which, in the case of cast iron, the diameter at the unsupported end is one-third of the diameter at the fixed end.
III. Torsion.-The section most commonly opposed to torsion is a circle; and, if the strain be applied to a cylinder, it is obvious the rupture must first take place at the surface, where the torsion is greatest, and that the further the material is placed from the neutral axis, the greater must be its power of resistance; and hence, the amount of materials being the same, a shaft is stronger when made hollow than if it were made solid.

It ought not, however, to be supposed that the circle is the only figure which gives an axis the property of offering, in every direction, the same resistance to flexure. On the contrary, a square section gives the same resistance in the direction of its sides, and of its diagonals; and, indeed, in every direction the resistance is equal. This is, moreover, the case with a great number of other figures, which may be formed by combining the circle and the square in a symmetrical manner ; and hence, if the axis, strengthened by salient sides, as in feathered shafts, do not answer as well as cylindrical ones, it must arise from their not being so well disposed to resist torsion, and not from any irregularities of flexure about the axis inherent in the particular form of section.

This subject has been investigated with much care, and, according to M. Cauchy, the modulus of rupture by torsion, T, is connected with the modulus of rupture by transverse strain S , by the simple analogy $\mathrm{T}=\frac{4}{5} \mathrm{~S}$.

The forms of all the parts of a machine, in whatever situation and under every variety of circumstances, may be deduced from these simple figures; and, if the calculations of their dimensions be correctly determined, the parts will not only possess the requisite degree of strength, but they will also accord with the general principles of good taste.

In arranging the details of a machine, two circumstances ought to be taken into consideration. The first is, that the parts subject to wear and influenced by strain, should be capable of adjustment; the second is, that every part should, in relation to the work it has to perform, be equally strong, and present to the eye a figure that is consistent with its degree of action. Theory, practice, and taste must all combine to produce such a combination. No formal law can be expressed, either by words or figures, by which a certain contour should be preferred to another ; both may be equally strong and equally correct in reference to theory; custom, then, must be appealed to as the guide.

TABLES OF THE MECHANICAL PROPERTIES OF THE MATERIALS MOST COMMONLY EMPLOYED IN THE CONSTRUCTION OF MACHINES AND FRAMINGS.

Names.	Specifio Gravity.	Weight of 1 cubic ft. in ibs.	Tenacity per square inch in lbs.	Crushing force per sq . in. in lbs.	Modulus of elasticity in ibs.	Mod. of rupture in lbs.	Crushing force to tenacity.
Table I.-Mechanical Properties of the Connmon Metuls.							
Brass (cast)	$8 \cdot 399$	525.00	17968	10304	8930000		0.573:1
Copper (cast)	$8 \cdot 607$	537.93.	19072				
ditto ditto (wheet) wire-drawn) ${ }^{\text {- . }}$	8.785 8.878	$\begin{aligned} & 549^{\circ} \cdot 06^{\circ} \\ & 560.00 \end{aligned}$	61228				
ditto (in bolts) ${ }^{\text {dita }}$.	8.878		48000				
Iron (English wrought).	7.700	481.20	251/2 tons		24920000		
ditto (in bars) -	$\left\{\begin{array}{l}7.760 \\ 7.800\end{array}\right.$	$\begin{aligned} & 475 \cdot 50 \\ & 487 \cdot 00 \end{aligned}$	251/2 tons				
ditto (hammered)			30 tons				
ditto (Russian) in bars			27 tons				
ditto (Swedish) in bars ditto (English) in wire, ioth inch diam.			32 tons 36 to 43 tons				
ditto (English) in wire, 10th inch diam. ditto (Russian) in wire, 1-20th to 1-30th			36 to 43 tons				
ditto (Russian) in wire, 1-20th to 1-30th			60 to 91 tons				
ditto (rolled in sheets and cut lengthwise)			14 tons				
ditto cut crosswise . .			18 tons				
ditto in ehains, oval links, 6 inches clea			211/2 tons				
iron $1 / 2$ inch diameter .			25 tons				
Cast-iron (Old Park) . . .					18014400	48240	
ditto (Adelphi).					18353600	45360	
ditto (Alfreton) -					17686400	44046	
ditto (scrap) $\dot{\text { a }}$					18032000	45828	
ditto Carron, No. 2) hot blast .	7.046	$440 \cdot 37$	13505	108540	16085000	37503	8.037: 1
ditto do. do. cold blast	$7 \cdot 066$	$441 \cdot 62$	16683	106375	17270500	38556	6-376:1
ditto do. No. 3) .	$7 \cdot 094$	$443 \cdot 37$	14200	115442	16246966	33980	8-129:1
ditto do. do. d hot blast	$7 \cdot 056$	441.00	17755	133440	17873100	42120	7-515:1
ditto (Devon, No. 3) cold blast	$7 \cdot 295$	455.93			22907700	36288	
ditto (do. do. hot blast	$7 \cdot 229$	451.81	21907	145435	22473650	43497	
ditto (Buffirey, No, 1 cold blast	$7 \cdot 079$	$442 \cdot 43$	17466	93366	15381200	37503	$5 \cdot 346: 1$
ditto do. do. hot blast .	6.998	$437 \cdot 37$	13434	86397	13730500	35316	$6 \cdot 431: 1$
ditto (Coed-Talon, No. 2) cold blast	6.955	$434 \cdot 06$	18855	81770	14313500	33104	$4 \cdot 337$: 1
ditto do. do. hot blast.	6.968	435.50	16676	82739	14322500	33145	$4 \cdot 961: 1$
ditto $\}$ do. No. 3) cold blast	$7 \cdot 104$	$449 \cdot 62$			17102000	43541	
ditto do. do.) hot blast.	6.970	435.62			14707900	40159	
ditto (Milton, No. 1) hot blast . -	6.976	436.00			11974500	28552	
ditto (Muirkirk, No. 1) cold blast .	7-113	$444 \cdot 56$			14003550	35023	
ditto do. do.) hot blast .	6.953	434.56			13294400	33850	
ditto (Elsicar, No. 1) cold blast .	7.030	$439 \cdot 37$			13981000	34862	
Lead (English cast)	$11 \cdot 446$	$717 \cdot 45$	1824		720000		
ditto (milled-sheet)	$11 \cdot 407$	712.93	3328				
ditto (wire-drawn .	$11 \cdot 317$	$705 \cdot 12$	2581				
Silver (standard)	$10 \cdot 312$	$644 \cdot 50$	40902				
$\mathrm{Mercury}_{\text {ditto (at }}$ (at 600)	$13 \cdot 619$ 13	$\begin{aligned} & 851 \cdot 18 \\ & 848.75 \end{aligned}$					
Steel (soft) . .	7.780	486.25	120000				
ditto (razor-tempered)	$7 \cdot 840$	490.00	150000		29000000		
Tin (cast) . .	$7 \cdot 291$	455.68	5322		4608000		
Zinc (cast) .	$7 \cdot 028$	$439 \cdot 25$			13680000		
ditto (rolled . .	$7 \cdot 215$	$450 \cdot 9$			-		
Table II.-Principal Woods.							
Acacia (English)	0.71	$44 \cdot 37$	16000	T7733	1152000	11202	
Beech \{ New .	0.854	$53 \cdot 37$	15784	7733 \{	13536000	93363	
Been $\begin{aligned} & \text { Dry } \\ & \text { Common }\end{aligned}$	$0 \cdot 690$	$43 \cdot 12$	17850	9363 (13		50:1
Birch $\left\{\begin{array}{l}\text { Common } \\ \text { American }\end{array}\right.$.	0.792	$49 \cdot 50$	15000	6402	1562400	10920	0.43:1
Bric $\begin{aligned} & \text { Amerioan } \\ & \text { Christiania middle }\end{aligned}$	0.648	40.50 43.62		11633	1257600	9624	
Deal Memel middle .	0.590	36.87	1240		1672000 1535200	10385	
Deal Norway spruce	0.340	21.25	17600				
(English -	$0 \cdot 470$	$29 \cdot 37$	7000				
Elm (seasoned) .	0.588	36.75	13489	10331	699840	6078	0.79:1
Fir \quad New England	0.553	$34 \cdot 56$			2191200	6612	
Larch (seasoned)	0.753	$47 \cdot 06$ $32 \cdot 62$	12000 10220	6000 5568	1052800	6894	0.50) 0.1
Lignum-vitæ .	${ }^{0} \cdot 220$	36.25 76.25	11800	5508	1052800	6891	0.55: 1
Mahogany (Spanish) .	0.800	50.00	16500	8198			0.50:1
English	0.934		17300	46884 wet	1451200	10032	$\{0.28: 1$
- ${ }^{\text {angra }}$	0.934	58.37	17300	$9504 \mathrm{dry}\}$	1451200	10032	$\{0.57$: 1
Oak \{ Canadian	0.872	54.50	10253	$\left.\begin{array}{l} \text { 42309 wet } \\ 9509 \end{array}\right\}$	2148800	10596	$\left\{\begin{array}{l} 0 \cdot 42: 1 \\ 0 \cdot 95: 1 \end{array}\right.$
Dantzic	0.756	$47 \cdot 24$	12780		1191200	8748	
Pine Pitoh .	0.660	41.25	7818	-	122.5600	9792	
Pine $\left\{\begin{array}{l}\text { Red } \\ \text { Yellow }\end{array}\right.$	0.657 0.461	$41 \cdot 06$ 28.81		$\begin{aligned} & 5375 \\ & 5445 \end{aligned}$	1840000 1600000	8946	-
Plane-tree -	0.64	40.00	11700	545			
Poplar	0.383	23.93	7200	310			0.43: 1
				5124 dry			20.74:1
Teak (dry) ${ }_{\text {Willow (}}$ (${ }^{\text {ary) }}$	0.657	41.06	15000	12101	2414400	14772	0.81:1
Willow (dry) Yew (Spanish).	0.390 0.807	$24 \cdot 37$	14000				
Yew (Spanish) • - •	$0 \cdot 807$	$50 \cdot 43$	8000			-	

the Cohesive strength of bodies.

The following Table contains the result of experiments on the cohesive strength of various bodies in avoirdupois pounds; also, one-third of the ultimate strength of each body, this being considered sufficient, in most cases, for a permanent load:

Names of Bodies.	Square Bar.	. One-third.	Round Bar.	One-third.
woons.	$l \mathrm{lbs}$.	$l \mathrm{lb}$.	$l_{\text {b }}$.	lbs.
Boxwood.	20000	6667	15708	5236
Ash	17000	5667	13357	4452
Teak	15000	5000	11781	3927
Fir..	12000	4000	9424	3141
Beach	11500	3866	9032	3011
Oak \qquad metals.	11000	3667	8639	2880
Cast iron....................	18656	6219	14652	4884
English wrought iron.....:	55872	18624	43881	14627
Swedish do. do.......	72064	24021	56599	18866
Blistered steel..............	133152	44384	104577	34859
Shear do.	124400	41366	97703	32568
Cast do.	134256	44752	105454	35151
Cast copper..	19072	6357	14979	4993
Wrought do.	33792	11264	26540	8827
Yellow brass................	17968	5989	14112	4704
Cast tin...	4736	1579	3719	1239
Cast lead.	1824	608	1432	477

PROBLEM I.

Rule.-To find the ultimate cohesive strength of square, round, and rectangular bars, of any of the various bodies, as specified in the table.-Multiply the strength of an inch bar, (as in the table,) of the body required, by the cross sectional area of square and rectangular bars, or by the square of the diameter of round bars; and the product will be the ultimate cohesive strength.

A bar of cast iron being $1 \frac{1}{2}$ inches square, required its cohesive power.

$$
1 \cdot 5 \times 1 \cdot 5 \times 18656=41976 \mathrm{lbs}
$$

Required the cohesive force of a bar of English wrought iron, 2 inches broad, and $\frac{3}{8}$ of an inch in thickness.

$$
2 \times \cdot 375 \times 55872=41904 \mathrm{lbs}
$$

Required the ultimate cohesive strength of a round bar of wrought copper $\frac{3}{4}$ of an inch in diameter.

$$
\cdot 75^{2} \times 26540=14928 \cdot 75 \mathrm{lbs}
$$

PROBLEM II.

Rule.-The weight of a body being given, to find the cross sectional dimensions of a bar or rod capable of sustaining that weight.For square and round bars, divide the weight given by one-third of the cohesive strength of an inch bar, (as specified in the table,) and the square root of the quotient will be the side of the square, or diameter of the bar in inches.

And if rectangular, divide the quotient by the breadth, and the result will be the thickness.

What must be the side of a square bar of Swedish iron to sustain a permanent weight of 18000 lbs ?

$$
\sqrt{\frac{18000}{24021}}=\cdot 86, \text { or nearly } \frac{7}{8} \text { of an inch square. }
$$

Required the diameter of a round rod of cast copper to carry a weight of 6800 lbs .

$$
\sqrt{\frac{6800}{4993}}=1.16 \text { inches diameter. }
$$

A bar of English wrought iron is to be applied to carry a weight of 2760 lbs . ; required the thickness, the breadth being two inches.

$$
\frac{2760}{18624}=\cdot 142 \div 2=\cdot 071 \text { of an inch in thickness. }
$$

A Table showing the circumference of a rope equal to a chain made of iron of a given diameter, and the weight in tons that each is proved to carry; also, the weight of a foot of chain made from iron of that dimension.

Crinos.	${ }_{\text {Diam. }}^{\text {Chains. }}$ In Inches.	${ }_{\text {Premed }}^{\text {Proved to carry }}$ in tons.	
3	$\frac{1}{4}$ and $\frac{1}{16}$	1	1.08
4		2	$1 \cdot 5$
43	$\frac{3}{8}$ and $\frac{1}{16}$	3	2
51		4	$2 \cdot 7$
6	$\frac{1}{2}$ and $\frac{1}{16}$	5	$3 \cdot 3$
$6 \frac{1}{2}$		6	4
7	$\frac{5}{8}$ and $\frac{1}{16}$	8	$4 \cdot 6$
$7 \frac{1}{2}$		93	$5 \cdot 5$
8	$\frac{3}{4}$ and $\frac{1}{16}$	$11 \frac{1}{4}$	$6 \cdot 1$
9		13	$7 \cdot 2$
$9 \frac{1}{2}$	$\frac{7}{8}$ and $\frac{1}{16}$	15	$8 \cdot 4$
101	1 inch .	18	$9 \cdot 4$

ON THE TRANSVERSE STRENGTH OF BODIES.
The tranverse strength of a body is that power which it exerts in opposing any force acting in a perpendicular direction to its length, as in the case of beams, levers, \&c., for the fundamental principles of which observe the following:-

That the transverse strength of beams, \&c. is inversely as their lengths, and directly as their breadths, and square of their depths, and, if cylindrical, as the cubes of their diameters; that is, if a beam 6 feet long, 2 inches broad, and 4 inches deep, can carry 2000 lbs., another beam of the same material, 12 feet long, 2 inches broad, and 4 inches deep, will only carry 1000, being inversely as their lengths. Again, if a beam 6 feet long, 2 inches broad, and 4 inches deep, can support a weight of 2000 lbs., another beam of
the same material, 6 feet long, 4 inches broad, and 4 inches deep, will support double that weight, being directly as their breadths; -but a beam of that material, 6 feet long, 2 inches broad, and 8 inches deep, will sustain a weight of 8000 lbs ; being as the square of their depths.

From a mean of experiments made, to ascertain the transverse strength of various bodies, it appears that the ultimate strength of an inch square, and an inch round bar of each, 1 foot long, loaded in the middle, and lying loose at both ends, is nearly as follows, in lbs. avoirdupois.

Names of Bodies.	Square Bar.	One-third.	Round Bar.	One-third.
Oak..........................	800	267	628	209
Ash...........................	1137	379	893	298
Elm	569	139	447	149
Pitch pine...................	916	305	719	239
Deal..........................	566	188	444	148
Cast iron....................	2580	860	2026	675
Wrought iron...............	4013	1338	3152	1050

PROBLEM I.
Rule.-To find the ultimate transverse strength of any rectangular beam, supported at both ends, and loaded in the middle; or supported in the middle, and loaded at both ends; also, when the weight is between the middle and the end; likewise when fixed at one end and loaded at the other.-Multiply the strength of an inch square bar, 1 foot long, (as in the table,) by the breadth, and square of the depth in inches, and divide the product by the length in feet; the quotient will be the weight in lbs. avoirdupois.

What weight will break a beam of oak 4 inches broad, 8 inches deep, and 20 feet between the supports?

$$
\frac{800 \times 4 \times 8^{2}}{20}=10240 \mathrm{lbs} .
$$

When a beam is supported in the middle, and loaded at each end, it will bear the same weight as when supported at both ends and loaded in the middle; that is, each end will bear half the weight.

When the weight is not situated in the middle of the beam, but placed somewhere between the middle and the end, multiply twice the length of the long end by twice the length of the short end, and divide the product by the whole length of the beam; the quotient will be the effectual length.

Required the ultimate transverse strength of a pitch pine plank 24 feet long, 3 inches broad, 7 inches deep, and the weight placed 8 feet from one end.

$$
\begin{aligned}
& \frac{32 \times 16}{24}=21 \cdot 3 \text { effective length. } \\
& \text { and } \frac{916 \times 3 \times 7^{2}}{21 \cdot 3}=6321 \mathrm{lbs} .
\end{aligned}
$$

Again, when a beam is fixed at one end and loaded at the other, it will only bear $\frac{1}{4}$ of the weight as when supported at both ends and loaded in the middle.

What is the weight requisite to break a deal beam 6 inches broad, 9 inches deep, and projecting 12 feet from the wall?

$$
\frac{566 \times 6 \times 9^{2}}{12}=22923 \div 4=5730 \cdot 7 \mathrm{lbs}
$$

The same rules apply as well to beams of a cylindrical form, with this exception, that the strength of a round bar (as in the table) is multiplied by the cube of the diameter, in place of the breadth, and square of the depth.

Required the ultimate transverse strength of a solid cylinder of cast iron 12 feet long and 5 inches diameter.

$$
\frac{2026 \times 5^{3}}{12}=21104 \mathrm{lbs}
$$

What is the ultimate transverse strength of a hollow shaft of cast iron 12 feet long, 8 inches diameter outside, and containing the same cross sectional area as a solid cylinder 5 inches diameter?

$$
\begin{aligned}
& \sqrt{8^{2}-5^{2}}=6.24, \text { and } 8^{3}-6.24^{3}=269 \\
& \text { Then, } \frac{2026 \times 269}{12}=45416 \mathrm{lbs}
\end{aligned}
$$

When a beam is fixed at both ends, and loaded in the middle, it will bear one-half more than it will when loose at both ends.

And if a beam is loose at both ends, and the weight laid uniformly along its length, it will bear double; but if fixed at both ends, and the weight laid uniformly along its length, it will bear triple the weight.

PROBLEM II.

Rule.-To find the breadth or depth of beams intended to support a permanent weight. - Multiply the length between the supports, in feet, by the weight to be supported in lbs., and divide the product by one-third of the ultimate strength of an inch bar, (as in the table,) multiplied by the square of the depth; the quotient will be the breadth, or, multiplied by the breadth, the quotient will be the square of the depth, both in inches.

Required the breadth of a cast iron beam 16 feet long, 7 inches deep, and to support a weight of 4 tons in the middle.

$$
4 \text { tons }=8960 \text { lbs. and } \frac{8960 \times 16}{860 \times 7^{2}}=3.4 \text { inches. }
$$

What must be the depth of a cast iron beam $3 \cdot 4$ inches broad, 16 feet long, and to bear a permanent weight of four tons in the middle?

$$
\sqrt{\frac{8960 \times 16}{860 \times 3 \cdot 4}}=7 \text { inches. }
$$

When a beam is fixed at both ends, the divisor must be multiplied by $1 \cdot 5$, on account of it being capable of bearing one-half more.

When a beam is loaded uniformly throughout, and loose at both ends, the divisor must be multiplied by 2 , because it will bear double the weight.

If a beam is fast at both ends, and loaded uniformly throughout, the divisor must be multipled by 3 , on account that it will bear triple the weight.

Required the breadth of an oak beam 20 feet long, 12 inches deep, made fast at both ends, and to be capable of supporting a weight of 12 tons in the middle.

12 tons $=26880 \mathrm{lbs}$., and $\frac{26880 \times 20}{266 \times 12^{2} \times 1 \cdot 5}=9 \cdot 7$ inches.
Again, when a beam is fixed at one end, and loaded at the other, the divisor must be multiplied by $\cdot 25$; because it will only bear one-fourth of the weight.

Required the depth of a beam of ash 6 inches broad, 9 feet projecting from the wall, and to carry a weight of 47 cwt .
$47 \mathrm{cwt} .=5264 \mathrm{lbs}$., and $\sqrt{\frac{5264 \times 9}{379 \times 6 \times 25}}=9 \cdot 12$ inches deep.
And when the weight is not placed in the middle of a beam, the effective length must be found as in Problem I.

Required the depth of a deal beam 20 feet long, and to support a weight of 63 cwt. 6 feet from one end.

$$
\begin{aligned}
& \frac{28 \times 12}{20}=16.8 \text { effective length of beam, and } \\
& \frac{63 \mathrm{cwt.}=7056 \mathrm{lbs} ; \text {; hence }}{\sqrt{ } \frac{7056 \times 16.8}{188 \times 6}=10.24 \text { inches deep. }}
\end{aligned}
$$

Beams or shafts exposed to lateral pressure are subject to all the foregoing rules, but in the case of water-wheel shafts, \&c., some allowances must be made for wear; then the divisor may be changed from 675 to 600 for cast iron.

Required the diameter of bearings for a water-wheel shaft 12 feet long, to carry a weight of 10 tons in the middle.

$$
\begin{aligned}
& 10 \text { tons }=22400 \mathrm{lbs} ., \text { and } \\
& \frac{22400}{600}=\sqrt[3]{448}=7 \cdot 65 \text { inches diameter }
\end{aligned}
$$

And when the weight is equally distributed along its length, the cube root of half the quotient will be the diameter, thus:

$$
\frac{448}{2}=\sqrt[3]{224}=6.07 \text { inches diameter. }
$$

Required the diameter of a solid cylinder of cast iron, for the shaft of a crane, to be capable of sustaining a weight of 10 tons;
one end of the shaft to be made fast in the ground, the other to project $6 \frac{1}{2}$ feet; and the effective leverage of the jib as $1 \frac{3}{4}$ to 1 .

$$
\begin{aligned}
& 10 \text { tons }=22400 \text { lbs., and } \\
& \frac{22400 \times 6.5 \times 1.75}{675 \times \cdot 25}=1509
\end{aligned}
$$

And $\sqrt[3]{1509}=11.47$ inches diameter.
The strength of cast iron to wrought iron, in this direction, is as 9 is to 14 nearly; hence, if wrought iron is taken in place of cast iron in the last example, what must be its diameter?

$$
\sqrt[3]{\frac{1509 \times 9}{14}}=9.89 \text { inches diameter. }
$$

ON TORSION OR TWISTING.
The strength of bodies to resist torsion, or wrenching asunder, is directly as the cubes of their diameters; or, if square, as the cube of one side $;{ }^{*}$ and inversely as the force applied multiplied into the length of the lever.

Hence the rule.-1. Multiply the strength of an inch bar, by experiment, (as in the following table,) by the cube of the diameter, or of one side in inches; and divide by the radius of the wheel, or length of the lever also in inches; and the quotient will be the ultimate strength of the shaft or bar, in lbs. avoirdupois.
2.-Multiply the force applied in pounds by the length of the lever in inches, and divide the product by one-third of the ultimate strength of an inch bar, (as in the table,) and the cube root of the quotient will be the diameter, or side of a square bar in inches; that is, capable of resisting that force permanently.
The following Table contains the result of experiments on inch bars, of various metals, in lbs. avoirdupois.

Names of Bodies.	Round Bar.	One-third.	Square Bar.	One-third.
Cast iron.	11943	3981	15206	5069
English wrought iron	12063	4021	15360	5120
Swedish do. do.	11400	3800	14592	4864
Blistered steel......	20025	6675	25497	8499
Sheardo.........	20508	6836	26112	8704
Cast..........do...........	21111	7037	26880	8960
Yellow brass	5549	1850	7065	2355
Cast copper............	4825	1608	6144	2048
Tin......................	1688	563	2150	717
Lead....................	1206	402	1536	512

What weight, applied on the end of a 5 feet lever, will wrench asunder a 3 inch round bar of cast iron?

$$
\frac{11943 \times 3^{3}}{60}=5374 \text { lbs. avoirdupois. }
$$

Required the side of a square bar of wrought iron, capable of resisting the twist of 600 lbs . on the end of a lever 8 feet long.

$$
\sqrt[3]{\frac{600 \times 96}{5120}}=2 \frac{1}{4} \text { inches. }
$$

In the case of revolving shafts for machinery, \&c., the strength is directly as the cubes of their diameters, and revolutions, and inversely as the resistance they have to overcome; hence,

From practice, we find that a 40 horse power steam engine, making 25 revolutions per minute, requires a shaft (if made of wrought-iron) to be 8 inches diameter: now, the cube of 8 , multiplied by 25 , and divided by $40=320$; which serves as a constant multiplier for all others in the same proportion.

What must be the diameter of a wrought iron shaft for an engine of 65 horse power, making 23 revolutions per minute?

$$
\sqrt[3]{\frac{65 \times 320}{23}}=9.67 \text { inches diameter. }
$$

James Glenie, the mathematician, gives 400 as a constant multiplier for cast iron shafts that are intended for first movers in machinery;

200 for second movers; and

100 for shafts connecting smaller machinery, \&c.
The velocity of a 30 horse power steam engine is intended to be 19 revolutions per minute. Required the diameter of bearings for the fly-wheel shaft.

$$
\sqrt[3]{\frac{400 \times 30}{19}}=8.579 \text { inches diameter. }
$$

Required the diameter of the bearings of shafts, as second movers from a 30 horse engine; their velocity being 36 revolutions per minute.

$$
\sqrt[3]{\frac{200 \times 30}{36}}=5.5 \text { inches diameter. }
$$

When shafting is intended to be of wrought iron, use 160 as the multiplier for second movers; and 80 for shafts connecting smaller machinery.
Table of the Proportionate Length of Bearings, or Journals for Shafts of various diameters.

Di.inin Inotes.	Len in In ineses.	Dia in Incoses.	Len. in In metes.
1	13	$6 \frac{1}{2}$	8
$1 \frac{1}{2}$	21	7	$9 \frac{3}{8}$
2	3	$7 \frac{1}{2}$	10°
24	3	8	103
$2 \frac{1}{2}$	$3 \frac{1}{2}$	$8 \frac{1}{2}$	11 \%
3	4	9	12
$3 \frac{1}{2}$	$4 \frac{7}{8}$ -	$9 \frac{1}{2}$	123
4	$5 \frac{1}{2}$	10	$13{ }^{4}$
41 ${ }^{\frac{1}{2}}$	$6 \frac{1}{8}$	$10 \frac{1}{2}$	14
$\stackrel{5}{51}$	${ }^{63}$		${ }^{141}{ }^{1}$
${ }_{6}{ }^{\frac{1}{2}}$	$8{ }^{2}$	12^{2}	${ }_{16}{ }_{15}{ }^{4}$

Tenacities, Resistances to Compression, and other Properties of the common Materials of Construction.

Names of Bodies.	Absolute.		Compared with Cast Iron.		
	Tenacity in lbs per sq. inch.	Resistance to compression in lbs. per sq. in.	Its strength is	Its extensi- bility is	Its stiffness is
Ash..	14130	-	0.23	$2 \cdot 6$	0.089
Beech.	12225	8548	$0 \cdot 15$	$2 \cdot 1$	0.073
Brass.	17268	10304	$0 \cdot 435$	0.9	0.49
Brick	275	562	-	-	-
Cast iron	13434	86397	1.000	$1 \cdot 0$	1.000
Copper (wrought).......	33000	-	.	-	-
Elm........................	9720	1033	$0 \cdot 21$	$2 \cdot 9$	$0 \cdot 073$
Fir, or Pine, white	12346	2028	$0 \cdot 23$	$2 \cdot 4$	$0 \cdot 1$
- - red........	11800	5375	$0 \cdot 3$	$2 \cdot 4$	$0 \cdot 1$
- - yellow...	11835	5445	$0 \cdot 25$	$2 \cdot 9$	$0 \cdot 087$
Granite, Aberdeen......	-	10910	-	-	-
Gun-metal (copper 8, and tin 1).	35838	-	$0 \cdot 68$	$1 \cdot 25$	$0 \cdot 535$
Malleable iron	56000	-	$1 \cdot 12$	0.86	$1 \cdot 3$
Larch......................	12240	5568	$0 \cdot 136$	$2 \cdot 3$	0.058
Lead	1824	-	$0 \cdot 096$	$2 \cdot 5$	0.0385
Mahogany, Honduras..	11475	8000	$0 \cdot 24$	$2 \cdot 9$	0.487
Marble.........	551	6060	-	-	-
Oak	11880	9504	$0 \cdot 25$	$2 \cdot 8$	$0 \cdot 093$
Rope (1 in. in circum.)	200	-	-	-	-
Steel	128000	-	-	-	-
Stone, Bath..............	478	-	-	-	-
- Craigleith........	772	5490	-	-	-
- Dundee..........	2661	6630	-	-	--
- Portland.........	857	3729	-	-	-
Tin (cast)...............	4736	-	$0 \cdot 182$	$0 \cdot 75$	$0 \cdot 25$
Zinc (sheet)..............	9120	.	$0 \cdot 365$	$0 \cdot 5$	$0 \cdot 76$

Comparative Strength and Weight of Ropes and Chains.

$3 \frac{1}{2}$	$2 \frac{3}{4}$	$\frac{5}{16}$	$5 \frac{1}{2}$	$1{ }^{1} 51$	10	23	$\frac{7}{8}$	43	100
$4 \frac{1}{4}$	$4 \frac{3}{4}$	${ }^{\frac{3}{8}}$	8	$116 \frac{3}{4}$	103	28	$\frac{15}{16}$	49	1111
5	$5{ }^{\frac{3}{4}}$	$\frac{7}{16}$	1012	210	112	. $30 \frac{1}{2}$	1in.	56	138
$5 \frac{3}{4}$	7	${ }^{\frac{1}{2}}$	14	3 51	121	36	$1{ }_{16}^{1 / 6}$	63	1418
$6 \frac{1}{2}$	$9 \frac{3}{4}$	${ }^{9} 9$	18	431	13	39	$1 \frac{1}{8}$	71	1614
7	114.	${ }^{5}$	22	$5 \quad 2$	133	45	$1_{18}{ }^{\frac{8}{16}}$	79	1811
8	15	$\frac{11}{16}$	27	$6 \quad 4 \frac{1}{2}$	141 ${ }^{1}$	$48 \frac{1}{2}$	$1 \frac{1}{4}$	87	208
$8{ }^{3}$	19	${ }_{4}^{8}$	32	$7{ }^{7} \quad 7$	151 ${ }^{\frac{1}{4}}$	56	$1{ }_{1} \frac{5}{18}$	96	2213
$9 \frac{1}{2}$	21	${ }_{1}^{12}$	37	$813 \frac{1}{2}$	16	60	$1 \frac{8}{8}$	106	2418

It must be understood and also borne in mind, that in estimating the amount of tensile strain to which a body is subjected, the weight of the body itself must also be taken into account; for according to its position so may it approximate to its whole weight, in tend-
ing to produce tension within itself; as in the almost constant application of ropes and chains to great depths, considerable heights, \&c.
Alloys that are of greater Tenacity than the sum of their Constituents, as determined by the Experiments of Muschenbroek.

Table of Data, containing the Results of Experiments on the Elasticity and Strength of various Species of Timber.

Species of Timber.	Value of E .	Value of S .	Species of Timber.	Value of \mathbf{E}.	Value of S .
Teak	$174 \cdot 7$	2462	Elm.	$50 \cdot 64$	1013
Poona	$122 \cdot 26$	2221	Pitch pine.........	$88 \cdot 68$	1632
English oak.......	105	1672	Red pine..........	133	1341
Canadian do.	155.5	1766	New England fir	158.5	1102
Dantzic do.	$86 \cdot 2$	1457	Riga fir...........	90	1100
Adriatic do.	$70 \cdot 5$	1383	Mar Forest do.	63	1200
Ash .	119	2026	Larch	76	900
Beech	98	1556	Norway spruce...	105•47	1474

Rule.-To find the dimensions of a beam capable of sustaining a given weight, with a given degree of deflection, when supported at both ends.- Multiply the weight to be supported in lbs. by the cube of the length in feet; divide the product by 32 times the tabular value of \mathbf{E}, multiplied into the given deflection in inches, and the quotient is the breadth multiplied by the cube of the depth in inches.

When the beam is intended to be square, then the fourth root of the quotient is the breadth and depth required.

If the beam is to be cylindrical, multiply the quotient by $1 \cdot 7$, and the fourth root of the product is the diameter.

The distance between the supports of a beam of Riga fir is 16 feet, and the weight it must be capable of sustaining in the middle of its length is $8000 \mathrm{lbs} .$, with a deflection of not more than $\frac{3}{4}$ of an inch; what must be the depth of the beam, supposing the breadth 8 inches?

$$
\frac{16 \times 8000}{90 \times 32 \times \cdot 75}=15175 \div 8=\sqrt[3]{1897}=12.35 \text { in. the depth. }
$$

Rule.-To determine the absolute strength of a rectangular beam of timber when supported at both ends, and loaded in the middle of its length, as beams in general ought to be calculated to, so that they may be rendered capable of withstanding all accidental cases of emergency.-Multiply the tabular value of S by four times the depth of the beam in inches, and by the area of the cross section in inches; divide the product.by the distance between the supports
in inches, and the quotient will be the absolute strength of the beam in lbs.

If the beam be not laid horizontally, the distance between the supports, for calculation, must be the horizontal distance.

One-fourth of the weight obtained by the rule is the greatest weight that ought to be applied in practice as permanent load.

If the load is to be applied at any other point than the middle, then the strength will be, as the product of the two distances is to the square of half the length of the beam between the supports; or, twice the distance from one end, multiplied by twice from the other, and divided by the whole length, equal the effective length of the beam.

In a building 18 feet in width, an engine boiler of $5 \frac{1}{2}$ tons is to be fixed, the centre of which to be 7 feet from the wall; and having two pieces of red pine 10 inches by 6 , which I can lay across the two walls for the purpose of slinging it at each end,-may I with sufficient confidence apply them, so as to effect this object?

$$
\frac{2240 \times 5.5}{2}=6160 \text { lbs. to carry at each end. }
$$

And 18 feet $-7=11$, double each, or 14 and 22 , then $\frac{14 \times 22}{18}$ $=17$ feet, or 204 inches, effective length of beam.

Tabular value of S , red pine $=\frac{1341 \times 4 \times 10 \times 60}{204}=15776$ lbs., the absolute strength of each piece of timber at that point.

Rule.-To determine the dimensions of a rectangular beam capable of supporting a required weight, with a given degree of deflection, when fixed at one end. - Divide the weight to be supported, in lbs., by the tabular value of \mathbf{E}, multiplied by the breadth and deflection, both in inches; and the cube root of the quotient, multiplied by the length in feet, equal the depth required in inches.

A beam of ash is intended to bear a load of 700 lbs . at its extremity; its length being 5 feet, its breadth 4 inches, and the deflection not to exceed $\frac{1}{2}$ an inch.

Tabular value of $\mathrm{E}=119 \times 4 \times \cdot 5=238$, the divisor; then $700 \div 238=\sqrt[3]{2 \cdot 94} \times 5=7 \cdot 25$ inches, depth of the beam.

Rule.-To find the absolute strength of a rectangular beam, when fixed at one end, and loaded at the other.-Multiply the value of S by the depth of the beam, and by the area of its section, both in inches; divide the product by the leverage in inches, and the quotient equal the absolute strength of the beam in lbs.

A beam of Riga fir, 12 inches by $4 \frac{1}{2}$, and projecting $6 \frac{1}{2}$ feet from the wall; what is the greatest weight it will support at the extremity of its length?

$$
\text { Tabular value of } S=1100
$$

$$
12 \times 4.5=54 \text { sectional area }
$$

Then, $\frac{1100 \times 12 \times 54}{78}=9138.4 \mathrm{lbs}$.

When fracture of a beam is produced by vertical pressure, the fibres of the lower section of fracture are separated by extension, whilst at the same time those of the upper portion are destroyed by compression; hence exists a point in section where neither the one nor the other takes place, and which is distinguished as the point of neutral axis. Therefore, by the law of fracture thus established, and proper data of tenacity and compression given, as in the Table (p. 281), we are enabled to form metal beams of strongest section with the least possible material: thus, in cast iron the resistance to compression is nearly as $6 \frac{1}{2}$ to 1 of tenacity; consequently a beam of cast iron, to be of strongest section, must be of the form TB, and a parabola in the direction of its length, the quantity of material in the bottom flange being about $6 \frac{1}{2}$ times that of the upper: but such is not the case with beams of timber; for although the tenacity of timber be on an average twice that of its resistance to compression, its flexibility is so great, that any considerable length of beam, where columns cannot be situated to its support, requires to be strengthened or trussed by iron rods, as in the following manner :

And these applications of principle not only tend to diminish deflection, but the required purpose is also more effectively attained, and that by lighter pieces of timber.

Rule.-To ascertain the absolute strength of a cast iron beam of the preceding form, or that of strongest section.-Multiply the sectional area of the bottom flange in inches by the depth of the beam in inches, and divide the product by the distance between the supports also in inches; and 514 times the quotient equal the absolute strength of the beam in cwts.

The strongest form in which any given quantity of matter can be disposed is that of a hollow cylinder; and it has been demonstrated that the maximum of strength is obtained in cast iron, when the thickness of the annulus or ring amounts to $\frac{1}{5}$ th of the cylinder's external diameter; the relative strength of a solid to that of a hollow cylinder being as the diameters of their sections.

The following table shows the greatest weight that ever ought to be laid upon a beam for permanent load, and if there be any liability to jerks, \&c., ample allowance must be made; also, the weight of the beam itself must be included.

Rule.-T' find the weight of a cast iron beam of given dimen-sions.-Multiply the sectional area in inches by the length in feet, and by $3 \cdot 2$, the product equal the weight in lbs.

Required the weight of a uniform rectangular beam of cast iron, 16 feet in length, 11 inches in breadth, and $1 \frac{1}{2}$ inch in thickness.

$$
11 \times 1.5 \times 16 \times 3.2=844.8 \mathrm{lbs} .
$$

A Table showing the Weight or Pressure a Beam of Cast Iron, 1 inch in breadth, will sustain without destroying its elastic force, when it is supported at each end, and loaded in the middle of its length, and also the deflection in the middle which that weight will produce.

Length.	6 feet.		7 feet.		8 feet.		9 feet.		10 feet.	
$\begin{aligned} & \text { Depth } \\ & \text { in in. } \end{aligned}$	${ }_{\text {Wt. in }}^{\text {libs. }}$	${ }^{\substack{\text { Deff. in } \\ \text { in. }}}$	$\underset{\substack{\text { Wt.in } \\ \text { lbs. }}}{ }$	$\left\|\begin{array}{c} \text { Def.e. in } \\ \text { in. } \end{array}\right\|$	$\mathrm{W}_{\text {libs. in }}$	Defl. in in.	$\begin{gathered} \mathrm{w}_{\substack{\text { t. in } \\ \text { lbs. }}} \end{gathered}$	${ }^{\text {Deff. in }}$ in.	Wt. in ${ }_{\text {libs. }}$	${ }^{\text {Defl. in }}$ in.
3	1278	- 24	1089	$\cdot 33$	954	$\cdot 426$	855	- 54	765	$\cdot 66$
$3 \frac{1}{2}$	1739	- 205	1482	$\cdot 28$	1298	$\cdot 365$	1164	$\cdot 46$	1041	$\cdot 57$
4	2272	-18	1936	-245	1700	$\cdot 32$	1520	-405	1860	-5
412	2875	-16	2450	- 217	2146	- 284	1924	$\cdot 36$	1721	$\cdot 443$
5	3560	$\cdot 144$	3050	-196	2650	-256	2375	$\cdot 32$	2125	$\cdot 4$
6	5112	-12	4356	- 163	3816	-213	3420	$\cdot 27$	3060	- 33
7	6958	-103	5929	-14	5194	$\cdot 183$	4655	$\cdot 23$	4165	$\cdot 29$
8	9088	. 09	7744	-123	6784	-16	6080	$\cdot 203$	5440	$\cdot 25$
9	-		9801	-109	8586	- 142	7695	$\cdot 18$	6885	22
10	-	-	12100	-098	10600	-128	9500	$\cdot 162$	8500	$\cdot 2$
11	-	-	-		12826	$\cdot 117$	11495	$\cdot 15$	10285	$\cdot 18$
12		-	-	-	15264	$\cdot 107$	13680	$\cdot 135$	12240	$\cdot 17$
13	-	-		-	-		16100	$\cdot 125$	14400	$\cdot 154$
14			-			-	18600	$\cdot 115$	16700	$\cdot 143$
	12 feet.		14 feet.		16 feet.		18 feet.		20 feet	
	2548	$\cdot 48$	2184	$\cdot 65$	1912	. 85	1699	1.08	1530	$1 \cdot 34$
7	3471	$\cdot 41$	2975	. 58	2603	. 73	2314	. 93	2082	$1 \cdot 14$
8	4532	$\cdot 36$	3884	* 49^{*}	3396	$\cdot 64$	3020	-81	2720	1.00
9	5733	-32	4914	$\cdot 44$	4302	$\cdot 57$	3825	$\cdot 72$	3438	$\cdot 89$
10	7083	$\cdot 28$	6071	$\cdot 39$	5312	.51	4722	$\cdot 64$	4250	$\cdot 8$
11	8570	$\cdot 26$	7346	$\cdot 36$	6428	$\cdot 47$	5714	-59	5142	$\cdot 73$
12	10192	$\cdot 24$	8736	$\cdot 33$	7648	$\cdot 43$	6796	-54	6120	$\cdot 67$
13	11971	$\cdot 22$	10260	$\cdot 31$	8978	-39	7980	$\cdot 49$	7182	$\cdot 61$
14	13883	$\cdot 21$	11900	$\cdot 28$	10412	- 36	9255	$\cdot 46$	8330	$\cdot 57$
15	15937	$\cdot 19$	13660	- 26	11952	$\cdot 34$	10624	-43	9562	$\cdot 53$
16	18128	-18	15536	$\cdot 24$	13584	-32	12080	-40	10880	-5
17	20500	$\cdot 17$	17500	$\cdot 23$	15353	$\cdot 3$	13647	-38	12282	$\cdot 47$
18	22932	$\cdot 16$	19656	$\cdot 21$	17208	$\cdot 28$	15700	$\cdot 36$	13752	$\cdot 44$

Resistance of Bodies to Flexure by Vertical Pressure.-When a piece of timber is employed as a column or support, its tendency to yielding by compression is different according to the proportion between its length and area of its cross section; and supposing the form that of a cylinder whose length is less than seven or eight times its diameter, it is impossible to bend it by any force applied longitudinally, as it will be destroyed by splitting before that bending can take place; but when the length exceeds this, the column will bend under a certain load, and be ultimately destroyed by a similar kind of action to that which has place in the transverse strain.

Columns of cast iron and of other bodies are also similarly circumstanced.

When the length of a cast iron column with flat ends equals about thirty times its diameter, fracture will be produced wholly by bending of the material ;-when of less length, fracture takes place partly by crushing and partly by bending: but, when the column
is enlarged in the middle of its length from one and a half to twice its diameter at the ends, by being cast hollow, the strength is greater by $\frac{1}{7}$ th than in a solid column containing the same quantity of material.

Rule.-To determine the dimensions of a support or column to bear without sensible curvature a given pressure in the direction of its axis.-Multiply the pressure to be supported in lbs. by the square of the column's length in feet, and divide the product by twenty times the tabular value of E ; and the quotient will be equal to the breadth multiplied by the cube of the least thickness, both being expressed in inches.

When the pillar or support is a square, its side will be the fourth root of the quotient.

If the pillar or column be a cylinder, multiply the tabular value of E by 12 , and the fourth root of the quotient equal the diameter.

What should be the least dimensions of an oak support, to bear a weight of 2240 lbs . without sensible flexure, its breadth being 3 inches, and its length 5 feet?

Tabular value of $\mathbf{E}=105$, and $\frac{2240 \times 5^{2}}{20 \times 105 \times 3}=\sqrt[3]{\overline{8} \cdot 888}=$ 2.05 inches.

Required the side of a square piece of Riga fir, 9 feet in length, to bear a permanent weight of 6000 lbs .

Tabular value of $\mathrm{E}=96$, and $\frac{6000 \times 9^{2}}{20 \times 96}=\sqrt[4]{ } \overline{253}=4$ inches nearly.

Dimensions of Cylindrical Columns of Cast Iron to sustain a given load or pressure with safety.

	Length or beight in feet.										
	4	6	8	10	12	14	16	18	20	22	24
	Weight or load in ewts.										
2	72	60	49	40	32	26	22.	18	15	13	11
$2 \frac{1}{2}$	119	105	91	77	65	55	47	40	34	29	25
3	178	163	145	128	111	97	84	73	64	56	49
$3 \frac{1}{2}$	247	232	214	191	172	156	135	119	106	94	83
4	326	310	288	266	242	220	198	178	160	144	130
$4 \frac{1}{2}$	418	400	379	354	327	301	275	251	229	208	189
5	522	501	479	452	427	394	365	337	310	285	262
6	607	592	573	550	525	497	469	440	413	386	360
7	1032	1013	989	959	924	887	848	808	765	725	686
8	1333	1315	1289	1259	1224	1185	1142	1097	1052	1005	959
9	1716	1697	1672	1640	1603	1561	1515	1467	1416	1364	1311
10	2119	2100	2077	2045	2007	1964	1916	1865	1811	1755	1697
11	2570	2550	2520	2490	2450	2410	2358	2305	2248	2189	2127
12	3050	3040	3020	2970	2930	2900	2830	2780	2730	2670	2600

Practical utility of the preceding Table.-Wanting to support the front of a building with cast iron columns 18 feet in length, 8 inches in diameter, and the metal 1 inch in thickness; what weight may

I confidently expect each column capable of supporting without tendency to deflection?

Opposite 8 inches diameter and under 18 feet $=1097$
$\begin{aligned} \text { Also opposite } 6 \text { in. diameter and under } 18 \text { feet } & =\frac{440}{657} \mathrm{cwts} .\end{aligned}$
The strength of cast iron as a column being $=1.0000$

$$
\begin{array}{llll}
\text { - } & \text { steel } & = & =2 \cdot 518 \\
- & \text { wrought iron } & \text { - } & =1 \cdot 745 \\
\text { oak (Dantzic) } & = & =\cdot 1088 \\
\text { red deal } & & =.0785
\end{array}
$$

Elasticity of torsion, or resistance of bodies to twisting.-The angle of flexure by torsion is as the length and extensibility of the body directly, and inversely as the diameter; hence, the length of a bar or shaft being given, the power, and the leverage the power acts with, being known, and also the number of degrees of torsion that will not affect the action of the machine, to determine the diameter in cast iron with a given angle of flexure.

Rule.-Multiply the power in lbs. by the length of the shaft in feet, and by the leverage in feet; divide the product by fifty-five times the number of degrees in the angle of torsion, and the fourth root of the quotient equal the shaft's diameter in inches.

Required the diameters for a series of shafts 35 feet in length, and to transmit a power equal to 1245 lbs ., acting at the circumference of a wheel $2 \frac{1}{2}$ feet radius, so that the twist of the shafts on the application of the power may not exceed one degree.
$\frac{1245 \times 35 \times 2.5}{55 \times 1}=\sqrt[4]{ } \overline{1981}=6.67$ inches in diameter.
Relative strength of metals to resist torsion.

Cast iron........... $=1$	Sv
Copper...............	. 48 English do. $=1 \cdot 12$
Yellow brass........ $=$	$\cdot 511$ Shear steel.......... $=1.96$
Gun-metal...	. 55 Cast do........... $=2$

Deflexion of Rectangular Beams.

Rule.-To ascertain the amount of deflexion of a uniform beam of cast iron, supported at both ends, and loaded in the middle to the extent of its elastic force.-Multiply the square of the length in feet by $\cdot 02$, and the product divided by the depth in inches equal the deflexion.

Required the deflection of a cast iron beam 18 feet long between the supports, 12.8 inches deep, 2.56 inches in breadth, and bearing a weight of $20,000 \mathrm{lbs}$. in the middle of its length.
$\frac{18^{2} \times \cdot 02}{12 \cdot 8}=506$ inches from a straight line in the middle.
For beams of a similar description, loaded uniformly, the rule is the same, only multiply by $\cdot 025$ in place of $\cdot 02$.

Rule.-To find the deflection of a beam when fixed at one end
and loaded at the other．－Divide the length in feet of the fixed part of the beam by the length in feet of the part which yields to the force，and add 1 to the quotient；then multiply the square of the length in feet by the quotient so increased，and also by $\cdot 13$ ；divide this product by the middle depth in inches，and the quotient will be the deflection，in inches also．

Multiply the deflection so obtained for cast iron by 86 ，the pro－ duct equal the deflection for wrought iron；for oak，multiply by $2 \cdot 8$ ；and for fir， $2 \cdot 4$ ．
A Table of the Depths of Square Beams or Bars of Cast Iron， calculated to support from 1 Cwt．to 14 Tons in the Middle，the Deflection not to exceed $\frac{1}{40}$ th of an Inch for each Foot in Length．

Lengths in Feet		4	6	8	10	12	14	16	18	20	22	24	26	28	30
Weight ia cwt．	Weight in lbs．		$\begin{aligned} & \text { 咅 } \\ & \text { in } \end{aligned}$	䓂	言	$\begin{aligned} & \text { Hì } \\ & \text { à } \end{aligned}$	咅	$\begin{aligned} & \dot{\#} \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 訁゙̈ } \\ & \text { ® } \end{aligned}$	㐔	मे A． A．	妾	荅	$\begin{aligned} & \text { ㄹ̈ㅁ } \\ & \text { A } \\ & \hline \end{aligned}$	莒
		In．	1 n.	In．	1 n.	In．	In．								
1 cwt ．	112	1.2	$1 \cdot 4$	$1 \cdot 7$	$1 \cdot 9$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 5$	$2 \cdot 6$	2.7	2.9	$3 \cdot 0$	$3 \cdot 1$	$3 \cdot 2$
2	124	$1 \cdot 4$	1.7	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 6$	2.8	$3 \cdot 0$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 6$	$3 \cdot 7$	$3 \cdot 8$
3	336	$1 \cdot 6$	$1 \cdot 9$	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 7$	$2 \cdot 9$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 6$	$3 \cdot 8$	$3 \cdot 9$	$4 \cdot 1$	$4 \cdot 2$
4	448	1.7	$2 \cdot 0$	$2 \cdot 4$	$2 \cdot 6$	$2 \cdot 9$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 5$	$3 \cdot 7$	$3 \cdot 9$	$4 \cdot 0$	$4 \cdot 2$	$4 \cdot 3$	$4 \cdot 5$
5	560	1.8	$2 \cdot 2$	2.5	2.8	$3 \cdot 0$	$3 \cdot 3$	$3 \cdot 5$	$3 \cdot 7$	$3 \cdot 9$	$4 \cdot 1$	$4 \cdot 3$	$4 \cdot 4$	$4 \cdot 6$	$4 \cdot 8$
6	672	$1 \cdot 8$	$2 \cdot 2$	$2 \cdot 6$	$2 \cdot 9$	$3 \cdot 2$	$3 \cdot 4$	3.7	3.9	$4 \cdot 1$	$4 \cdot 3$	$4 \cdot 5$	$4 \cdot 6$	$4 \cdot 8$	$5 \cdot 0$
7	784	$1 \cdot 9$	$2 \cdot 3$	2.7	$3 \cdot 0$	$3 \cdot 3$	$3 \cdot 6$	3.8	$4 \cdot 1$	$4 \cdot 2$	$4 \cdot 4$	$4 \cdot 6$	$4 \cdot 8$	$5 \cdot 0$	$5 \cdot 2$
8	896	$2 \cdot 0$	$2 \cdot 4$	2.8	$3 \cdot 1$	$3 \cdot 4$	$3 \cdot 7$	$3 \cdot 9$	$4 \cdot 2$	$4 \cdot 4$	$4 \cdot 6$	$4 \cdot 8$	$5 \cdot 0$	$5 \cdot 2$	$5 \cdot 4$
9	1，008	2.0	$2 \cdot 5$	2.9	$3 \cdot 2$	$3 \cdot 5$	$3 \cdot 8$	4.0	$4 \cdot 3$	$4 \cdot 5$	$4 \cdot 7$	4.9	$5 \cdot 1$	$5 \cdot 3$	$5 \cdot 5$
10	1，120	$2 \cdot 1$	2.6	$3 \cdot 0$	$3 \cdot 3$	$3 \cdot 6$	$3 \cdot 9$	$4 \cdot 2$	$4 \cdot 4$	$4 \cdot 7$	$4 \cdot 9$	$5 \cdot 2$	$5 \cdot 3$	$5 \cdot 4$	$5 \cdot 7$
11	1，232	$2 \cdot 1$	2.6	$3 \cdot 0$	3.4	$3 \cdot 7$	$4 \cdot 0$	$4 \cdot 3$	$4 \cdot 5$	4.8	$5 \cdot 0$	$5 \cdot 3$	$5 \cdot 4$	$5 \cdot 6$	$5 \cdot 8$
12	1，344	$2 \cdot 2$	$2 \cdot 7$	$3 \cdot 1$	$3 \cdot 5$	$3 \cdot 8$	$4 \cdot 1$	$4 \cdot 4$	$4 \cdot 7$	$4 \cdot 9$	$5 \cdot 1$	$5 \cdot 3$	$5 \cdot 5$	$5 \cdot 7$	$5 \cdot 9$
13	1，456	$2 \cdot 2$	$2 \cdot 7$	$3 \cdot 1$	$3 \cdot 5$	$3 \cdot 8$	$4 \cdot 2$	$4 \cdot 4$	$4 \cdot 7$	$4 \cdot 9$	$5 \cdot 2$	$5 \cdot 4$	$5 \cdot 6$	$5 \cdot 9$	6.0
14	1，568	$2 \cdot 3$	$2 \cdot 8$	$3 \cdot 2$	$3 \cdot 6$	$3 \cdot 9$	$4 \cdot 2$	$4 \cdot 5$	$4 \cdot 8$	$5 \cdot 0$	$5 \cdot 3$	$5 \cdot 5$	$5 \cdot 7$	$6 \cdot 0$	$6 \cdot 1$
15	1，680	$2 \cdot 3$	$2 \cdot 8$	$3 \cdot 2$	$3 \cdot 6$	$4 \cdot 0$	$4 \cdot 3$	$4 \cdot 6$	$4 \cdot 9$	$5 \cdot 2$	$5 \cdot 4$	$5 \cdot 6$	$5 \cdot 8$	$6 \cdot 1$	$6 \cdot 2$
16	1，792	$2 \cdot 4$	$2 \cdot 9$	$3 \cdot 3$	$3 \cdot 7$	4.0	$4 \cdot 4$	4.7	5.0	$5 \cdot 2$	$5 \cdot 5$	$5 \cdot 7$	$5 \cdot 9$	$6 \cdot 2$	6.4
17	1，904	$2 \cdot 4$	$2 \cdot 9$	$3 \cdot 4$	$3 \cdot 8$	$4 \cdot 1$	$4 \cdot 4$	$4 \cdot 7$	$5 \cdot 0$	$5 \cdot 3$	$5 \cdot 5$	$5 \cdot 8$	6.0	$6 \cdot 2$	6.5
18	2，016	$2 \cdot 4$	$3 \cdot 0$	$3 \cdot 4$	$3 \cdot 8$	$4 \cdot 2$	4.5	4.8	$5 \cdot 1$	$5 \cdot 4$	$5 \cdot 6$	$5 \cdot 9$	$6 \cdot 1$	$6 \cdot 4$	$6 \cdot 6$
19	2，128	$2 \cdot 5$	$3 \cdot 0$	$3 \cdot 5$	3.9	$4 \cdot 2$	$4 \cdot 6$	$4 \cdot 9$	$5 \cdot 2$	$5 \cdot 4$	$5 \cdot 7$	6.0	6.2	6.5	$6 \cdot 7$
1 ton．	2，240	2.5	$3 \cdot 0$	$3 \cdot 5$	$3 \cdot 9$	$4 \cdot 3$	$4 \cdot 6$	$4 \cdot 9$	$5 \cdot 2$	$5 \cdot 5$	$5 \cdot 8$	6.0	$6 \cdot 3$	6.5	$6 \cdot 8$
114	2，800	$2 \cdot 6$	$3 \cdot 2$	$3 \cdot 7$	$4 \cdot 1$	$4 \cdot 5$	$4 \cdot 9$	$5 \cdot 2$	$5 \cdot 5$	$5 \cdot 8$	$6 \cdot 1$	$6 \cdot 4$	$6 \cdot 6$	$6 \cdot 9$	$7 \cdot 2$
$1{ }^{\frac{1}{2}}$	3，360	$2 \cdot 8$	$3 \cdot 4$	$3 \cdot 9$	$4 \cdot 3$	$4 \cdot 7$	$5 \cdot 1$	$5 \cdot 5$	$5 \cdot 8$	$6 \cdot 1$	$6 \cdot 4$	$6 \cdot 7$	$7 \cdot 0$	$7 \cdot 2$	$7 \cdot 5$
$1{ }^{\text {a }}$	3，920	$2 \cdot 9$	$3 \cdot 5$	$4 \cdot 0$	$4 \cdot 5$	$4 \cdot 9$	$5 \cdot 3$	$5 \cdot 6$	6.0	6.3	$6 \cdot 7$	6.9	$7 \cdot 2$	$7 \cdot 5$	$7 \cdot 7$
2	4，480	$2 \cdot 9$	$3 \cdot 5$	$4 \cdot 1$	$4 \cdot 7$	$5 \cdot 1$	$5 \cdot 5$	$5 \cdot 9$	6.2	6.5	$6 \cdot 8$	$7 \cdot 2$	$7 \cdot 6$	$7 \cdot 7$	$8 \cdot 0$
$2 \frac{1}{2}$	5，600	$3 \cdot 1$	$3 \cdot 8$	$4 \cdot 4$	$4 \cdot 9$	$5 \cdot 5$	$5 \cdot 8$	6.2	6.6	6.9	$7 \cdot 3$	$7 \cdot 6$	$7 \cdot 9$	$8 \cdot 2$	$8 \cdot 5$
3	6，720	$3 \cdot 3$	$4 \cdot 0$	$4 \cdot 6$	$5 \cdot 1$	$5 \cdot 7$	$6 \cdot 1$	6.5	$6 \cdot 9$	$7 \cdot 3$	$7 \cdot 6$	$7 \cdot 9$	$8 \cdot 3$	$8 \cdot 6$	$8 \cdot 9$
$3{ }^{\frac{1}{2}}$	7，840	$3 \cdot 4$	4.1	$4 \cdot 8$	$5 \cdot 3$	$5 \cdot 8$	$6 \cdot 3$	6.7	$7 \cdot 1$	$7 \cdot 5$	7.9	8.2	$8 \cdot 6$	$8 \cdot 9$	$9 \cdot 2$
4	8，960	$3 \cdot 5$	$4 \cdot 3$	$4 \cdot 9$	$5 \cdot 5$	6.0	6.5	$7 \cdot 0$	$7 \cdot 4$	$7 \cdot 8$	$8 \cdot 2$	$8 \cdot 5$	$8 \cdot 9$	$9 \cdot 2$	$9 \cdot 5$
4 ${ }^{\frac{1}{2}}$	10，080	－	$4 \cdot 4$	$5 \cdot 1$	$5 \cdot 7$	$6 \cdot 2$	6.7	$7 \cdot 2$	$7 \cdot 6$	$8 \cdot 0$	$8 \cdot 4$	$8 \cdot 8$	$9 \cdot 1$	$9 \cdot 5$	$9 \cdot 8$
5	11，200	－	4.5	$5 \cdot 2$	$5 \cdot 8$	$6 \cdot 4$	6.9	$7 \cdot 4$	$7 \cdot 8$	$8 \cdot 2$	$8 \cdot 6$	$9 \cdot 0$	$9 \cdot 4$	$9 \cdot 7$	$10 \cdot 1$
6	13，440	－	－	$5 \cdot 5$	6.1	6.7	$7 \cdot 2$	$7 \cdot 7$	$8 \cdot 2$	$8 \cdot 6$	$9 \cdot 0$	$9 \cdot 4$	9.8	$10 \cdot 2$	$10 \cdot 5$
7	15，680	－	－	$5 \cdot 7$	$6 \cdot 3$	$6 \cdot 9$	$7 \cdot 5$	8.0	8.5	$\cdot 8.9$	$9 \cdot 4$	$9 \cdot 8$	10.2	$10 \cdot 6$	$11 \cdot 0$
8	17，920	－	－	$5 \cdot 9$	6.6	$7 \cdot 2$	$7 \cdot 8$	$8 \cdot 3$	8.8	$9 \cdot 3$	9.7	10－1	$10 \cdot 6$	$10 \cdot 9$	$11 \cdot 3$
9	20，160	－	－	$6 \cdot 0$	6.8	$7 \cdot 4$	$8 \cdot 0$	$8 \cdot 5$	$9 \cdot 0$	$9 \cdot 5$	10.0	$10 \cdot 4$	$10 \cdot 9$	$11 \cdot 3$	$11 \cdot 7$
10	22，400	－	－	－	6.9	$7 \cdot 6$	$8 \cdot 2$	8.8	$9 \cdot 3$	$9 \cdot 8$	$10 \cdot 3$	$10 \cdot 7$	$11 \cdot 2$	$11 \cdot 6$	$12 \cdot 0$
11	24，640	－	－	－	$7 \cdot 1$	$7 \cdot 8$	$8 \cdot 4$	$9 \cdot 0$	9.5	$10 \cdot 0$	10.5	11.0	$11 \cdot 5$	$11 \cdot 9$	$12 \cdot 3$
12	26，880	－	－	－	$7 \cdot 2$	$7 \cdot 9$	$8 \cdot 6$	$9 \cdot 2$	$9 \cdot 7$	$10 \cdot 2$	$10 \cdot 8$	11.2	$11 \cdot 7$	$12 \cdot 1$	12.5
13	29，120	－	－	－	$7 \cdot 4$	$8 \cdot 1$	$8 \cdot 8$	$9 \cdot 4$	$9 \cdot 9$	$10 \cdot 4$	$11 \cdot 0$	11.5	$11 \cdot 9$	$12 \cdot 4$	12.8
14	31，360				$7 \cdot 5$	$8 \cdot 3$	$8 \cdot 9$	9.5	$10 \cdot 1$	$10 \cdot 6$	$11 \cdot 1$	11.7	$12 \cdot 1$	12.6	$13 \cdot 0$
Deflection in inches		$\cdot 1$	$\cdot 15$	$\cdot 2$	$\cdot 25$	$\cdot 3$	$\cdot 35$	$\cdot 4$	$\cdot 45$	5	$\cdot 55$	$\cdot 6$	$\cdot 65$	7	$\cdot 75$
Lengths in Feet		10	12	14	16	18	20	22	24	26	28	30	32	34	36
15	33，600	$7 \cdot 7$	8.4	$9 \cdot 1$	$9 \cdot 7$	$10 \cdot 3$	10.8	$11 \cdot 4$	$11 \cdot 9$	$12 \cdot 3$	12．8	$13 \cdot 2$	13.7	$14 \cdot 1$	14.5
16	35，840	$7 \cdot 8$	$8 \cdot 5$	$9 \cdot 2$	$9 \cdot 8$	$10 \cdot 4$	11.0	$11 \cdot 5$	$12 \cdot 0$	12.5	$13 \cdot 0$	$13 \cdot 5$	$13 \cdot 9$	$14 \cdot 3$	$14 \cdot 7$
17	38，080	$7 \cdot 9$	$8 \cdot 7$	． $9 \cdot 4$	$10 \cdot 0$	$10 \cdot 6$	$11 \cdot 2$	11.7	$12 \cdot 2$	12.7	$13 \cdot 2$	$13 \cdot 7$	$14 \cdot 1$	14.5	$14 \cdot 9$
18	40，320	$8 \cdot 0$	$8 \cdot 8$	$9 \cdot 5$	$10 \cdot 1$	$10 \cdot 8$	$11 \cdot 3$	11.9	$12 \cdot 4$	$12 \cdot 9$	$13 \cdot 4$	$13 \cdot 9$	$14 \cdot 3$	14.7	$15 \cdot 1$
19	42，560	$8 \cdot 1$	$8 \cdot 9$	$9 \cdot 6$	$10 \cdot 3$	$10 \cdot 9$	11.5	$12 \cdot 2$	$12 \cdot 6$	$13 \cdot 1$	$13 \cdot 6$	$14 \cdot 1$	14.5	15.0	$15 \cdot 4$
20	44，800	－	$9 \cdot 0$	9.7	$10 \cdot 4$	$11 \cdot 0$	11.6	12.5	12.7	$13 \cdot 2$	$13 \cdot 8$	$14 \cdot 2$	14.7	$15 \cdot 1$	$15 \cdot 6$
22	49，280	－	$9 \cdot 2$	$10 \cdot 0$	$10 \cdot 7$	$11 \cdot 3$	$11 \cdot 9$	$12 \cdot 8$	$13 \cdot 0$	$13 \cdot 6$	$14 \cdot 1$	$14 \cdot 6$	$15 \cdot 1$	15.5	$15 \cdot 9$
21	53，760	－	$9 \cdot 4$	$10 \cdot 2$	10.9	$11 \cdot 5$	$12 \cdot 2$	$13 \cdot 0$	$13 \cdot 4$	$13 \cdot 9$	$14 \cdot 4$	14.9	$15 \cdot 4$	15.9	$16 \cdot 3$
26	58，240	－	$9 \cdot 6$	$10 \cdot 4$	$11 \cdot 1$	11.8	12.4	$13 \cdot 3$	$13 \cdot 6$	14.2	14.7	$15 \cdot 2$	$15 \cdot 7$	16.2	16.7
28	62，720	－	$9 \cdot 8$	$10 \cdot 6$	$11 \cdot 4$	$12 \cdot 0$	$12 \cdot 7$	13.5	13.9	$14 \cdot 4$	$15 \cdot 0$	15.5	16.0	16.5	$17 \cdot 0$
Defleetion in inches		$\cdot 25$	$\cdot 3$	$\cdot 35$	$\cdot 4$	$\cdot 45$	$\cdot 5$	－55	6	$\cdot 66$	7	$\cdot 75$	$\cdot 8$	－ 85	$\cdot 9$

Lengths in Peet		14	16	18	20	22	2	26	28	30	32	34	36	38	40
Weight in tons．	Weight in lbs．	$\begin{aligned} & \text { 형 } \\ & \text { à } \end{aligned}$	$\begin{aligned} & \text { 亗 } \\ & \text { 日 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 亗 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 亗 } \\ & \text { à } \end{aligned}$		$\begin{gathered} \text { む̈̀ } \\ \text { A. } \end{gathered}$	$\begin{aligned} & \text { 펴̃ } \\ & \text {. } \end{aligned}$		$\begin{aligned} & \text { 華 } \\ & \text { ロ月 } \end{aligned}$	$\begin{aligned} & \stackrel{H}{4} \\ & \text { A } \end{aligned}$		这	咅
		In	In．	In．	In	In	In．	In．	In	In．	In．	1.	In	n．	In．
30	67，200	10.8	$11 \cdot 5$	12.2	$12 \cdot 9$	$13 \cdot 5$	$14 \cdot 1$	14.7	15．2	$15 \cdot 7$	$16 \cdot 3$	16.8	17.3	7	$18 \cdot 2$
32	71，680	$11 \cdot 0$	$11 \cdot 7$	$12 \cdot 4$	$13 \cdot 1$	13.7	$14 \cdot 3$	$14 \cdot 9$	15.5	16．0	16.5	$17 \cdot 0$	$17 \cdot 5$	18.0	18.5
34	76，160	$11 \cdot 1$	$11 \cdot 9$	$12 \cdot 6$	$13 \cdot 3$	$13 \cdot 9$	14.5	15	$15 \cdot 7$	$16 \cdot 2$	16.8	$17 \cdot 3$	$17 \cdot 8$	18.3	$18 \cdot 8$
36	80，640	$11 \cdot 3$	$12 \cdot 0$	12．8	$13 \cdot 4$	$14 \cdot 1$	$14 \cdot 7$	$15 \cdot 3$	15.9	16.5	$17 \cdot 0$	$17 \cdot 5$	18.0	18.5	$19 \cdot 0$
38	85，120	$11 \cdot 4$	$12 \cdot 2$	13.0	$13 \cdot 6$	$14 \cdot 3$	$14 \cdot 9$	$15 \cdot 5$	$16 \cdot 1$	16.7	17.2	17.8	$18 \cdot 3$	18	$19 \cdot 3$
40	89，600		$12 \cdot 4$	$13 \cdot 1$	$13 \cdot 8$	14.5	15－1	$15 \cdot 7$	$16 \cdot 4$	16.9	17.5	$18 \cdot 0$	$18 \cdot 5$	$19 \cdot 1$	19＊5
42	94，080	－	12.5	$13 \cdot 3$	$14 \cdot 0$	14.7	$15 \cdot 3$	$15 \cdot 9$	16.5	$17 \cdot 1$	$17 \cdot 7$	$18 \cdot 2$	18.7	$19 \cdot 3$	$19 \cdot 8$
44	98，560	－	12.7	13.5	$1 \pm$ 2	14.9	15.5	16.1	$16 \cdot 8$	$17 \cdot 4$	$17 \cdot 9$	18.5	$19 \cdot 0$	19．0．	$20 \cdot 0$
46	103，040	－	12.8	$13 \cdot 6$	$14 \cdot 3$	15.0	15.7	$16 \cdot 3$	$17 \cdot 0$	$17 \cdot 6$	$18 \cdot 1$	$18 \cdot 7$	$19 \cdot 2$	$19 \cdot 8$	$20 \cdot 3$
48	107，520	－	13.0	13.7	14.5	$15 \cdot 2$	15.9	16.5	$17 \cdot 1$	$17 \cdot 7$	$18 \cdot 3$	$18 \cdot 8$	$19 \cdot \frac{1}{1}$	$20 \cdot 0$	20.5
50	112，000	－	－	13.8	$14 \cdot 6$	$15 \cdot 3$	16.0	$16 \cdot 6$	$17 \cdot 3$	$17 \cdot 9$	$18 \cdot 5$	19.0	$19 \cdot 6$	$20 \cdot 1$	20.7
52	116，480	－	－	14.0	$14 \cdot 7$	15.5	16.2	$16 \cdot 8$	$17 \cdot 5$	$18 \cdot 1$	18.7	$19 \cdot 2$	$19 \cdot 8$	$20 \cdot 3$	21.0
54	120，960	－	－	$14 \cdot 1$	$14 \cdot 9$	15.7	16.3	$17 \cdot 0$	$17 \cdot 6$	$18 \cdot 2$	18.8	$19 \cdot 4$	$19 \cdot 9$	20.5	$21 \cdot 1$
56	125，440	－	－	$14 \cdot 3$	15.0	15.8	16.5	$17 \cdot 1$	$17 \cdot 8$	$18 \cdot 4$	19.0	$19 \cdot 6$	$20 \cdot 1$	20.7	$21 \cdot 3$
58	129，920	－	－	$14 \cdot 4$	$15 \cdot 1$	15.9	16.6	$17 \cdot 3$	$17 \cdot 9$	$18 \cdot 5$	$19 \cdot 2$	$19 \cdot 7$	$20 \cdot 3$	20.9	$21 \cdot \frac{1}{4}$
60	134，400	－	－	14.5	$15 \cdot 3$	16.0	16.7	$17 \cdot 4$	$18 \cdot 1$	18.7	$19 \cdot 3$	$19 \cdot 9$	$20 \cdot 5$	21.1	$21 \cdot 6$
Deflection in inches		$\cdot 35$	$\bullet 4$	$\bullet 45$	$\cdot 5$	－55	$\cdot 6$	－65	$\cdot 7$	$\cdot 75$	－8	－8	$\cdot 9$	－95	$1 \cdot 0$

Examples illustrative of the Table．－1．To find the depth of a rectangular bar of cast iron to support a weight of 10 tons in the middle of its length，the deflection not to exceed $\frac{1}{40}$ of an inch per foot in length，and its length 20 feet，also let the depth be 6 times the breadth．

Opposite 6 times the weight and under 20 feet in length is $15 \cdot 3$ inches，the depth，and $\frac{1}{6}$ of $15 \cdot 3=2.6$ inches，the breadth．

2．To find the diameter for a cast iron shaft or solid cylinder that will bear a given pressure，the flexure in the middle not to ex－ ceed $\frac{1}{40}$ th of an inch for each foot of its length，the distance of the bearings being 20 feet，and the pressure on the middle equals 10 tons．

Constant multiplier 1.7 for round shafts，then $10 \times 1.7=17$ ． And opposite 17 tons and under 20 feet is $11 \cdot 2$ inches for the di－ ameter．

But half that flexure is quite enough for revolving shafts：hence $17 \times 2=34$ tons，and opposite 34 tons is $13 \cdot 3$ inches for the di－ ameter．

3．A body 256 lbs．weight，presses against its horizontal sup－ port，so that it requires the force of 52 lbs ．to overcome its friction； if the body be increased to 8750 lbs．，what force will cause it to pass from a state of rest to one of motion？

$$
\frac{52}{256}=\cdot 203125=, \text { in this case, the coefficient of friction } ;
$$

$\therefore 8750 \times 203125=1777 \cdot 34375 \mathrm{lbs}$ ．，the force required．
This calculation is based upon the law，that friction is propor－ tional to the normal pressure between the rubbing surfaces．Twice the pressure gives twice the friction；three times the pressure gives three times the friction；and so on．With light pressures，this law may not hold，but then it is to be attributed to the proportionately greater effect of adhesion．

4．If a sleigh，weighing 250 lbs ，requires a force of 28 lbs ．to draw it along；when 1120 lbs．are placed in it，required the units of work expended to move the whole 350 feet？

$$
\frac{28}{250}=\cdot 112, \text { the coefficient of friction. }
$$

Then $(1120+250) \times \cdot 112=153 \cdot 44 \mathrm{lbs}$., the force required to move the whole.
$\therefore 153.44 \times 350=53704$, the units of work required.
A unit of work is the labour which is equal to that of raising one pound a foot high. It is supposed that a horse can perform 33000 units of work in a minute.

It may also be remarked that friction is independent of the extent of the surfaces in contact, except with trifling pressures and large surfaces, which is on account of the effect of adhesion. The friction of motion is independent of velocity, and is generally less than that of quiescence.
5. Required the coefficient of friction, for a sliding motion, of castiron upon wrought, lubricated with Devlin's oil, and under the following circumstances: the load A, and sledge $n m$, weighs 8420 lbs., and requires
 a weight W , of 1200 lbs . to cause it to pass from a state of rest into one of motion: the sledge and load pass over 22 feet on the horizontal way $r s$, in 8 seconds.

In this case the coefficient of sliding motion will be

$$
\frac{1200}{8420}-\frac{1200+8420}{8420} \times \frac{2 \times 22}{g \times 8^{2}}
$$

in which $g=32.2$ feet; the acceleration of the free descent of bodies brought about by gravity. The above expression becomes

$$
\cdot 142515-1 \cdot 142515 \times \frac{44}{2060 \cdot 8}=\cdot 118121
$$

Hence the coefficient of the friction of motion is $\cdot \mathbf{1 1 8 1 2 1}$, and the coefficient of the friction of quiescence is $\cdot 142515$.

OF FRICTION, OR RESISTANCE TO MOTION IN BODIES ROLLING OR RUBBING ON EACH OTHER.
In the years 1831, 1832, and 1833, a very extensive set of experiments were made at Metz, by M. Morin, under the sanction of the French government, to determine as nearly as possible the laws of friction; and by which the following were fully established:

1. When no unguent is interposed, the friction of any two surfaces (whether of quiescence or of motion) is directly proportional to the force with which they are pressed perpendicularly together; so that for any two given surfaces of contact there is a constant ratio of the friction to the perpendicular pressure of the one surface upon the other. Whilst this ratio is thus the same for the same
surfaces of contact, it is different for different surfaces of contact. The particular value of it in respect to any two given surfaces of contact is called the coefficient of friction in respect to those surfaces.
2. When no unguent is interposed, the amount of the friction is, in every case, wholly independent of the extent of the surfaces of contact; so that, the force with which two surfaces are pressed together being the same, their friction is the same, whatever may be the extent of their surfaces of contact.
3. That the friction of motion is wholly independent of the velocity of the motion.
4. That where unguents are interposed, the coefficient of friction depends upon the nature of the unguent, and upon the greater or less abundance of the supply. In respect to the supply of the unguent, there are two extreme cases, that in which the surfaces of contact are but slightly rubbed with the unctuous matter, as, for instance, with an oiled or greasy cloth, and that in which a continuous stratum of unguent remains continually interposed between the moving surfaces; and in this state the amount of friction is found to be dependent rather upon the nature of the unguent than upon that of the surfaces of contact. M. Morin found that with unguents (hog's lard and olive oil) interposed in a continuous stratum between surfaces of wood on metal, wood on wood, metal on wood, and metal on metal, when in motion, have all of them very near the same coefficient of friction, being in all cases included between $\cdot 07$ and 08 .

The coefficient for the unguent tallow is the same, except in that of metals upon metals. This unguent appears to be less suited for metallic substances than the others, and gives for the mean value of its coefficient, under the same circumstances, $\cdot 10$. Hence, it is evident, that where the extent of the surface sustaining a given pressure is so great as to make the pressure less than that which corresponds to a state of perfect separation, this greater extent of surface tends to increase the friction by reason of that adhesiveness of the unguent, dependent upon its greater or less viscosity, whose effect is proportional to the extent of the surfaces between which it is interposed.

It was found, from a mean of experiments with different unguents on axles, in motion and under different pressures, that, with the unguent tallow, under a pressure of from 1 to 5 cwt., the friction did not exceed $\frac{1}{89}$ th of the whole pressure; when soft soap was applied, it became $\frac{1}{34}$ th; and with the softer unguents applied, such as oil, hog's lard, \&c., the ratio of the friction to the pressure increased; but with the harder unguents, as soft soap, tallow, and anti-attrition composition, the friction considerably diminished; consequently, to render an unguent of proper efficiency, the nature of the unguent must be measured by the pressure or weight tending to force the surfaces together.

Table of the Results of Experiments on the Friction of Unctuous Surfaces. By M. Morin.

Surfaces of Contact.	Coefficients of Friction.	
	Friction of Motion.	Friction of Qnieseence.
Oak upon oak, the fibres being parallel to the motion	0.018	0.390
Ditto, the fibres of the moving body being perpendicular to the motion.	$0 \cdot 143$	0.314
Oak upon elm, fibres parallel.................................	$0 \cdot 136$	
Elm upon oak, do.....................................	$0 \cdot 119$	$0 \cdot 420$
Beech upon oak, do.....................................	0.330	
Elm upon elm, do.....................................	$0 \cdot 140$	
Wrought iron upon elm, do...............................	0.138	
Ditto upon wrought iron, do..............................	$0 \cdot 177$	
Ditto upon cast iron, do...................................		$0 \cdot 118$
Cast iron upon wrought iron, do	$0 \cdot 143$	
Wrought iron upon brass, do.............................	$0 \cdot 160$	
Brass upon wrought iron, do.............................	$0 \cdot 166$	
Cast iron upon oak, do....................................	$0 \cdot 107$	$0 \cdot 100$
Ditto upon elm, do., the unguent being tallow.........	$0 \cdot 125$	
Ditto, do., the unguent being hog's lard and black lead.	0.187	
Elm upon cast iron ..	$0 \cdot 135$	0.098
Cast iron upon cast iron....................................	$0 \cdot 144$	
Ditto upon brass...	$0 \cdot 132$	
Brass upon cast iron.	$0 \cdot 107$	
Ditto upon brass..	$0 \cdot 134$	$0 \cdot 164$
Copper upon oak ...	$0 \cdot 100$	
Yellow copper upon cast iron.	$0 \cdot 115$	
Leather (ox-hide), well tanned, upon cast iron, wetted	0.229	$0 \cdot 267$
Ditto upon brass, wetted..................................	$0 \cdot 244$	

In these experiments, the surfaces, after having been smeared with an unguent, were wiped, so that no interposing layer of the unguent prevented intimate contact.
Table of the Results of Experiments on Friction, with Unguents interposed. By M. Morin.

Surfaces of Contact.	Coefficients of Friction.		Unguents.
	Friction of Motion.	Friction of Quiescence.	
Oak upon oak, fibres parallel....	$0 \cdot 164$	$0 \cdot 440$	Dry soap.
Do. do..................	0.075	$0 \cdot 164$	Tallow.
Do. do	0.067	...	Hog's lard.
Do., fibres perpendicular..........	0.083	$0 \cdot 254$	Tallow.
Do. do.................	0.072	...	Hóg's lard.
Do. do	$0 \cdot 250$...	Water.
Do. upon elm, fibres parallel.....	$0 \cdot 136$		Dry soap.
Do. do.................	0.073	$0 \cdot 178$	Tallow.
Do. do.................	0.066	...	Hog's lard.
Do. upon cast iron	$0 \cdot 080$	\ldots	Tallow.
Do. upon wrought iron............	0.098	...	Tallow.
Beech upon oak, fibres parallel..	0.055	...11	Tallow.
Elm upon oak, do	$0 \cdot 137$	0.411	Dry soap.
Do. do.................	$0 \cdot 170$	$0 \cdot 142$	Tallow.
Do. . ${ }^{\text {d }}$ do.................	$0 \cdot 060$		Hog's lard.
Elm upon elm, do	$0 \cdot 139$	$0 \cdot 217$	Dry soap.
Do. upon cast iron	$0 \cdot 066$...	Tallow.
Wrought iron upon oak, fibres parallel	$0 \cdot 256$	$0 \cdot 649$	$\left\{\begin{array}{l} \text { Greased and satu- } \\ \text { rated with water. } \end{array}\right.$
Do. do	$0 \cdot 214$...	Dry soap.

Surfaces of Contact.	Cocfficients of Friction.		Unguents.
	Friction of Motion.	Friction of Quiescence.	
$\left.\begin{array}{c}\text { Wrought iron upon oak, fibres } \\ \text { parallel.................................... }\end{array}\right\}$	0.085	0-108	Tallow.
Do. upon elm, do	0.078	...	Tallow.
Do. do	0.076	...	Hog's lard.
Do. do.................	0.055	...	Olive oil.
Do. upon cast iron, do.............	$0 \cdot 103$...	Tallow.
Do. . do..................	0.076		Hog's lard.
Do. do	0.066	$0 \cdot 100$	Olive oil.
Do. upon wrought iron, do........	$0 \cdot 082$...	Tallow.
Do. do :.................	0.081		Hog's lard.
Do. do	$0 \cdot 070$	$0 \cdot 115$	Olive oil.
-Wrought iron upon brass, do.....	$0 \cdot 103$...	Tallow.
Do. do.................	0.075	...	Hog's lard.
Do. do	$0 \cdot 078$...	Olive oil.
Cast iron upon oak, do............	$0 \cdot 189$...	Dry soap.
Do. . do.................	0.218	$0 \cdot 646$	$\left\{\begin{array}{l} \text { Greased and satu- } \\ \text { rated with water. } \end{array}\right.$
Do. . do.................	0.078	$0 \cdot 100$	Tallow.
Do. . ${ }^{\text {d }}$ do.................	0.075		Hog's lard.
Do. do.................	0.075	$0 \cdot 100$	Olive oil.
Do. upon elm, do..................	0.077	...	Tallow.
Do. . do	0.061	...	Olive oil.
Do. do	0.091	\cdots	$\left\{\begin{array}{l} \text { Hog's lard and } \\ \text { plumbago. } \end{array}\right.$
Do. upon wrought iron............	11	$0 \cdot 100$	Tallow.
Do. upon cast iron	$0 \cdot 314$...	Water.
Do. do.....................	$0 \cdot 197$	\cdots	Soap.
Do. do....................	$0 \cdot 100$	$0 \cdot 100$	Tallow.
Do. do.....................	0.070	$0 \cdot 100$	Hog's lard.
Do. do.....................	0.064	...	Olive oil.
Do. do.....................	$0 \cdot 055$...	$\left\{\begin{array}{l} \text { Hog's lard and } \\ \text { plumbago. } \end{array}\right.$
Do. upon brass	$0 \cdot 103$...	Tallow.
Do. do.................	0.075	...	Hog's lard.
Do. do.....................	0.078		Olive oil.
Copper upon oak, fibres parallel	0.069	$0 \cdot 100$	Tallow.
Yellow copper upon cast iron....	0.072	0.103	Tallow.
Do. do.......	0.068	...	Hog's lard.
Do. do..	0.066		Olive oil.
Brass upon cast iron	0.086	$0 \cdot 106$	Tallow.
Do. do....................	0.077	...	Olive oil.
Do. upon wrought iron............	0.081	...	Tallow.
Do. do...................	0.089	...	$\left\{\begin{array}{l} \text { Lard and plum- } \\ \text { bago. } \end{array}\right.$
Do. do...................	0.072	...	Olive oil.
Brass upon brass....................	0.058	\ldots	Olive oil.
Steel upon cast iron..	$0 \cdot 105$	$0 \cdot 108$	Tallow.
Do. do.....................	0.081	...	Hog's lard.
Do. do....................	0.079	...	Olive oil.
Do. upon wrought iron............	0.093	...	Tallow.
Do. do	0.076	...	Hog's lard.
Do. upon brass	0.056	..	Tallow.
Do. do.........................	0.053	...	Olive oil.
Do. do..........................	$0 \cdot 067$...	$\left\{\begin{array}{l} \text { Lard and plum. } \\ \text { bago. } \end{array}\right.$
Tanned ox-hide upon cast iron...	$0 \cdot 365$...	$\left\{\begin{array}{l} \text { Greased and satu- } \\ \text { rated with water. } \end{array}\right.$

The extent of the surfaces in these experiments bore such a relation to the pressure as to cause them to be separated from one another throughout by an interposed stratum of the unguent.

Table of the Results of Experiments on the Friction of Gudgeons or Axle-ends, in motion upon their bearings. By M. Morin.

Surfaces in Contact.	State of the Surfaces.	Coeffioient of Fric
Cast iron axles in cast iron bearings.	$\left\{\begin{array}{c} \text { Coated with oil of olives, } \\ \text { with hog's lard, tallow, } \\ \text { and soft gome.......... } \end{array}\right\}$	0.07 to 0.08 0.08
	$\left\{\begin{array}{l}\text { With the same and water... } \\ \text { Coated with asphaltam.... }\end{array}\right.$	$\begin{aligned} & 0.08 \\ & 0.054 \end{aligned}$
	Greasy........................	$0 \cdot 14$
	Greasy and wetted..........	$0 \cdot 14$
Cast iron axles in cast iron bearings.	$\left.\begin{array}{l}\text { Coated with oil of olives, } \\ \text { with hog's lard, tallow, }\end{array}\right\}$	0.07 to 0.08
	Greasy	$0 \cdot 16$
	Greasy and damped.........	$0 \cdot 16$
	Scarcely greasy..............	$0 \cdot 19$
Wrought iron axles in cast iron bearings.	$\left\{\begin{array}{c}\text { Coated with oil of olives, } \\ \text { tallow, hog's lard, or } \\ \text { soft gome........... }\end{array}\right\}$	0.07 to 0.08
Wrought iron axles in brass bearings.	$\left\{\begin{array}{l}\text { Coated with oil of olives, } \\ \text { hog's lard, or tallow, }\end{array}\right\}$	0.07 to 0.08
	Coated with hard gome.....	0.09
	Greasy and wetted........... Scarcely greasy...........	$0 \cdot 19$
Iron axles in lignum vitæ bearings.	\{Coated with oil or hog's	$0 \cdot 25$
	lard \}	
Brass axles in brass bearings.	$\left\{\begin{array}{l}\text { Greasy } \cdot \text {....... } \\ \text { Coated with oil }\end{array}\right.$	$0 \cdot 10$
	\{ With hog's lard...............	0.09

Table of Coefficients of Friction under Pressures increased continually up to limits of Abrasion.

Pressure per Square Inch.	Coefficients of Friction.			
	Wrought Iron upon Wrought Iron.	Wrought Iron upon Cast Iron.	Steel upon Cast Iron.	$\begin{gathered} \text { Brass upon Cast } \\ \text { Iron. } \end{gathered}$
$32 \cdot 5 \mathrm{lbs}$.	-140	$\cdot 174$	$\cdot 166$	$\cdot 157$
$1 \cdot 66$ cwts.	-250	-275	-300	-225
$2 \cdot 00$	$\cdot 271$	-292	$\cdot 333$	-219
$2 \cdot 33$	-285	$\cdot 321$	-340	-214
$2 \cdot 66$	$\cdot 297$	-329	- 344	$\cdot 211$
$3 \cdot 00$	-312	-333	$\cdot 347$	$\cdot 215$
$3 \cdot 33$	$\cdot 350$	$\cdot 351$	$\cdot 351$	-206
$3 \cdot 66$	-376	$\cdot 353$	$\cdot 353$	-205
$4 \cdot 00$	$\cdot 395$	$\cdot 365$	$\cdot 354$	-208
$4 \cdot 33$	-403	-366	$\cdot 356$	-221
$4 \cdot 66$	-409	$\cdot 366$	$\cdot 357$	$\cdot 223$
$5 \cdot 00$	$\cdot 367$	-358	$\cdot 233$
$5 \cdot 33$	$\cdot 367$	$\cdot 359$	$\cdot 234$
$5 \cdot 66$...	$\cdot 367$	-367	-235
$6 \cdot 00$	-376	$\cdot 403$	$\cdot 233$
$6 \cdot 33$ \|2и	...	-434	...	-234
$6 \cdot 66$	-235
$7 \cdot 00$	-232
$7 \cdot 33$	$\cdot 273$

Comparative friction of steam engines of different modifications, if the beam engine be taken as the standard of comparison :-

The vibrating engine...................has a gain of $1 \cdot 1$ per cent.
The direct-action engine, with slides - loss of 1.8 -
Ditto, with rollers...................... - gain of 0.8 -
Ditto, with a parallel motion......... - gain of $1 \cdot 3$ -
Excessive allowance for friction has hitherto been made in calculating the effective power of engines in general; as it is found practically, by experiments, that, where the pressure upon the piston is about 12 lbs. per square inch, the friction does not amount to more than $1 \frac{1}{2} \mathrm{lbs}$. ; and also that, by experiments with an indicator on an engine of 50 horse power, the whole amount of friction did not exceed 5 horse power, or one-tenth of the whole power of the engine.
recent experiments made by m. morin on the stiffness of ropes, or the resistance of ropes to bending upon a circular arc.
The experiments upon which the rules and table following are founded were made by Coulomb, with an apparatus the invention of Amonton, and Coulomb himself deduced from them the following results:-

1. That the resistance to bending could be represented by an expression consisting of two terms, the one constant for each rope and each roller, which we shall designate by the letter A, and which this philosopher named the natural stiffness, because it depends on the mode of fabrication of the rope, and the degree of tension of its yarns and strands; the other, proportional to the tension, T, of the end of the rope which is being bent, and which is expressed by the product, BT, in which B is also a number constant for each rope and each roller.
2. That the resistance to bending varied inversely as the diameter of the roller.

Thus the complete resistance is represented by the expression

$$
\frac{\mathrm{A}+\mathrm{BT}}{\mathrm{D}}
$$

where D represents the diameter of the roller.
Coulomb supposed that for tarred ropes the stiffness was proportional to the number of yarns, and M. Navier inferred, from examination of Coulomb's experiments, that the coefficients A and B were proportional to a certain power of the diameter, which depended on the extent to which the cords were worn. M. Morin, however, deems this hypothesis inadmissible, and the following is an extract from his new work, "Leçons de Mécanique Pratique," December, 1846 :-
"To extend the results of the experiments of Coulomb to ropes of different diameters from those which had been experimented upon, M. Navier has allowed, very explicitly, what Coulomb had but surmised: that the coefficients, A, were proportional to a cer-
tain power of the diameter, which depended on the state of wear of the ropes; but this supposition appears to us neither borne out, nor even admissible, for it would lead to this consequence, that a worn rope of a metre diameter would have the same stiffness as a new rope, which is evidently wrong; and, besides, the comparison alone of the values of A and B shows that the power to which the diameter should be raised would not be the same for the two terms of the resistance."

Since, then, the form proposed by M. Navier for the expression of the resistance of ropes to bending cannot be admitted, it is necessary to search for another, and it appears natural to try if the factors A and B cannot be expressed for white ropes, simply according to the number of yarns in the ropes, as Coulomb has inferred for tarred ropes.

Now, dividing the values of A , obtained for each rope by M . Navier, by the number of yarns, we find for

$$
\begin{aligned}
& n=30 d=0^{\mathrm{m}} .200 \mathrm{~A}=0.222460 \frac{\mathrm{~A}}{n}=0.0074153 \\
& n=15 d=0^{\mathrm{m}} \cdot 144 \mathrm{~A}=0.063514 \frac{\mathrm{~A}}{n}=0.0042343 \\
& n=6 d=0^{\mathrm{m} .0088 ~ A}=0.010604 \frac{\mathrm{~A}}{n}=0.0017673
\end{aligned}
$$

It is seen from this that the number A is not simply proportional to the number of yarns.

Comparing, then, the values of the ratio $\frac{A}{n}$ corresponding to the three ropes, we find the following results:-

Number of yarns.	Values of $\frac{\mathrm{A}}{n}$.	Differences of the numbers of yarns.	Differences of the values of $\frac{\mathrm{A}}{\mathrm{n}}$.	Differences of the values of $\begin{aligned} & \frac{\mathbf{A}}{n} \text { for each } \\ & \text { yarn of } \\ & \text { difference. } \end{aligned}$
30	$0 \cdot 0074153$	From 30 to 15. 15 yarns	0.0031810	$0 \cdot 000212$
15	$0 \cdot 0042343$	- 15 to 6. 9 -	$0 \cdot 0024770$	$0 \cdot 000272$
6	$0 \cdot 0017673$	- 30 to 6. 24	$0 \cdot 0056400$	$0 \cdot 000252$

Mean difference per yarn, 0.000245
It follows, from the above, that the values of A , given by the experiments, will be represented with sufficient exactness for all practical purposes by the formula

$$
\begin{aligned}
\mathrm{A} & =n[0.0017673+0.000245(n-6)] . \\
& =n[0.0002973+0.000245 n] .
\end{aligned}
$$

An expression relating only to dry white ropes, such as were used by Coulomb in his experiments.

With regard to the number B, it appears to be proportional to the number of yarns, for we find for

$$
\begin{array}{r}
n=30 d=0^{\mathrm{m} .0200} \quad \mathrm{~B}=0.009738 \frac{\mathrm{~B}}{n}=0.0003246 \\
n=15 d=0^{\mathrm{m} .0144} \quad \mathrm{~B}=0.005518 \frac{\mathrm{~B}}{n}=0.0003678 \\
n=6 d=0^{\mathrm{m} .0088} \quad \mathrm{~B}=0.002380 \frac{\mathrm{~B}}{n}=0.0003967 \\
\text { Mean................0.0003630 }
\end{array}
$$

Whence

$$
\mathrm{B}=0.000363 n
$$

Consequently, the results of the experiments of Coulomb on dry white ropes will be represented with sufficient exactness for practical purposes by the formula

$$
\mathrm{K}=n[0.000297+0.000245 n+0.000363 \mathrm{~T}] \text { kil. }
$$

which will give the resistance to bending upon a drum of a metre in diameter, or by the formula

$$
\mathrm{R}=\frac{n}{\mathrm{D}}[0.000297+0.000245 n+0.000363 \mathrm{~T}] \text { kil. }
$$

for a drum of diameter D metres.
These formulas, transformed into the American scale of weights and measures, become

$$
\mathrm{R}=n[0.0021508+0.0017724 n+0.00119096 \mathrm{~T}] \mathrm{lbs} .
$$

for a drum of a foot in diameter, and

$$
\mathrm{R}=\frac{n}{\mathrm{D}}[0.0021508+0.0017724 n+0.00119096 \mathrm{~T}] \mathrm{lbs}
$$

for a drum of diameter D feet.
With respect to worn ropes, the rule given by M. Navier cannot be admitted, as we have shown above, because it would give for the stiffness of a rope of a diameter equal to unity the same stiffness as for a new rope.

The experiments of Coulomb on worn ropes not being sufficiently complete, and not furnishing any precise data, it is not possible, without new researches, to give a rule for calculating the stiffness of these ropes.

TARRED ROPES.

In reducing the results of the experiments of Coulomb on tarred ropes, as we have done for white ropes, we find the following values:-

$$
\begin{array}{ll}
n=30 \text { yarns } A=0.34982 & \mathbf{B}=0.0125605 \\
n=15-A=0.106003 & \mathbf{B}=0.006037 \\
n=6-\mathrm{A}=0.0212012 & \mathrm{~B}=0.0025997
\end{array}
$$

which differ very slightly from those which M. Navier has given. But, if we look for the resistance corresponding to each yarn, we find

$$
\begin{array}{lrl}
n=30 \text { yarns } & \frac{\mathrm{A}}{n}=0.0116603 & \frac{\mathrm{~B}}{n}=0.000418683 \\
n=15- & \frac{\mathrm{A}}{n}=0.0070662 & \frac{\mathrm{~B}}{n}=0.000402466 \\
n=6 & -\frac{\mathrm{A}}{n}=0.0035335 & \frac{\mathrm{~B}}{n}=0.000433283 \\
& \text { Mean........... } 0.000418144
\end{array}
$$

We see by this that the value of B is for tarred ropes, as for arhite ropes, sensibly proportional to the number of yarns, but it is not so for that of A, as M. Navier has supposed.

Comparing, as we have done for white ropes, the values of $\frac{\mathrm{A}}{n}$ corresponding to the three ropes of 30,15 , and 6 yarns, we obtain the following results :-

Number of yarns.	$\begin{gathered} \text { Values of } \\ \frac{\Lambda}{n} . \end{gathered}$	Differences of the numbet of yarns.	Differences of the values of $\frac{\mathrm{A}}{n}$	Differences of the values of $\frac{A}{n}$ for each Yarn of difference.
30	0.0116603	From 30 to 15. 15 yarns	0.0045941	0.000306
15	0.0070662	- 15 to 6. \rightarrow -	0.0035327	0.000392
6	0.0035335	60 to 6. $25-$	$0 \cdot 0081268$	0.000339

It follows from this that the value of A can be represented by the formula

$$
\begin{aligned}
\mathrm{A} & =n[0.0035335+0.000346(n-6)] \\
& =n[0.0014575+0.00346 n]
\end{aligned}
$$

and the whole resistance on a roller of diameter D metres, by

$$
\mathrm{R}=\frac{n}{\mathrm{D}}[0.0014575+0.000346 n+0.000418144 \mathrm{~T}] \text { kil. }
$$

Transforming this expression to the American scale of weights and measures, we have

$$
\mathrm{R}=\frac{n}{\mathrm{D}}[0.01054412+0.00250309 n+0.001371889 \mathrm{~T}] \mathrm{lbs} .
$$

for the resistance on a roller of diameter D feet.
This expression is exactly of the same form as that which relates to white ropes, and shows that the stiffness of tarred ropes is a little greater than that of new white ropes.

In the following table, the diameters corresponding to the different numbers of yarns are calculated from the data of Coulomb, by the formulas,
d cent. $=\sqrt{0 \cdot 1338} n$ for dry white ropes, and d cent. $=\sqrt{0.186 n}$ for tarred ropes,
which, reduced to the American scale, become
d inches $=\sqrt{0.020739 n}$ for dry white ropes, and
d inches $=\sqrt{ } 0.02883$ for tarred ropes.

Note.-The diameter of the rope is to be included in D ; thus, with an inch rope passing round a pulley, 8 inches in diameter in the groove, the diameter of the roller is to be considered as 9 inches.

邑	Dry White Roper			Tarred Ropes.		
	Diameter.	Value of the natural stiffness, A.	Value of the stiffness proportional to the teasion, B .	Diameter.	Value of the natural stiffiness, A.	Value of the stiffness proportional to the tension, B.
6	$\xrightarrow{\text { ft. }}$	$\begin{aligned} & \text { lbs. } \\ & 0.0767120 \end{aligned}$	$0 \cdot 0071457$	$\stackrel{\mathrm{ft}}{0} \mathrm{C}$	$\begin{gathered} \text { 1bs. } \\ 0.153376 \end{gathered}$	0.00823133
9	0.0360	$0 \cdot 1629234$	0.0107186	0.0425	$0 \cdot 297647$	0.01284700
12	0.0416	$0 \cdot 2810384$	0.0142915	$0 \cdot 0490$	$0 \cdot 486976$	0.01646267
15	0.0465	$0.43105 \% 1$	0.0178644	$0 \cdot 0548$	0.721357	0.02057834
18	$0 \cdot 0509$	0.6129795	$0 \cdot 0214373$	$0 \cdot 0600$	0.000795	$0 \cdot 02469400$
21	0.0550	0.8268054	0.0250102	$0 \cdot 0648$	$1 \cdot 325089$	$0 \cdot 02880967$
24	$0 \cdot 0588$	1.0725350	0.0285831	0.0693	$1 \cdot 694839$	0.03292534
27	0.0622	$1 \cdot 3501682$	0.0321559	0.0735	2-109444	0.03704100
30	0.0657	$1 \cdot 6597051$	$0 \cdot 035 \% 288$	$0 \cdot 0775$	$2 \cdot 569105$	$0 \cdot 04115667$
33	0.0689	$2 \cdot 0011455$	0.0393017	0.0813	$3 \cdot 073821$	0.04527234
36	0.0720	$2 \cdot 3744897$	0.0428746	$0 \cdot 0849$	$3 \cdot 623593$	0.04938800
39	0.0749	$2 \cdot 7797375$	$0 \cdot 0464475$	6.0584	$4 \cdot 218416$	0.05350367
42	$0 \cdot 0778$	3-2168858	$0 \cdot 0500203$	$0 \cdot 0917$	$4 \cdot 858304$	$0 \cdot 05761934$
45	$0 \cdot 0805$	$3 \cdot 6859438$	0.0535932	$0 \cdot 0949$	5.543242	0.06173501
48	$0 \cdot 0831$	$4 \cdot 1869024$	0.0571661	$0 \cdot 0980$	$6 \cdot 273237$	$0 \cdot 06585067$
51	0.0857	$4 \cdot 7197647$	$0 \cdot 0607390$	$0 \cdot 1010$	$7 \cdot 048287$	0.06996634
54	0.0882	5•2845306	$0 \cdot 0643119$	- 0.1040	$7 \cdot 868393$	0.07408201
57	0.0908	$5 \cdot 8812001$	$0 \cdot 0678847$	$0 \cdot 1070$	$8 \cdot 733554$	$0 \cdot 07819767$
60	0.0926	6.5097733 $0.0021508 n$	$0 \cdot 0714576$	$0 \cdot 1099$	$9 \cdot 643771$ $\text { (} 0.01054412 n$	0.08231334
\boldsymbol{n}	$V{ }^{\prime} \cdot 000144 n$	$\left\{\begin{array}{l}+0.0017724 n \frac{2}{n}\end{array}\right.$	$0 \cdot 00110096 n$	$1 / 0 \cdot 00020 n$	$\left\{\begin{array}{r} 0.01004412 n \\ +0.00250309 n \frac{2}{n} \end{array}\right.$	$0.001371889 n$

Application of the preceding Tables or Formulas.
To find the stiffness of a rope of a given diameter or number of yarns, we must first obtain from the table, or by the formulas, the values of the quantities A and B corresponding to these given quantities, and knowing the tension, T, of the end to be wound up, we shall have its resistance to bending on a drum of a foot in diameter, by the formula

$$
\mathrm{R}=\mathrm{A}+\mathrm{BT}
$$

Then, dividing this quantity by the diameter of the roller or pulley round which the rope is actually to be bent, we shall have the resistance to bending on this roller.

What is the stiffness of a dry white rope, in good condition, of 60 yarns, or 0928 diameter, which passes over a pulley of 6 inches diameter in the groove, under a tension of 1000 lbs .? The table gives for a dry white rope of 60 yarns, in good condition, bent upon a drum of a foot in diameter,

$$
A=0.50977 \quad B=0.0714576
$$

and we have $D=0.5+0.0928$; and consequently,

$$
R=\frac{6.50977+0.0714576 \times 1000}{0.5928}=128 \mathrm{lbs}
$$

The whole resistance to be overcome, not including the friction on the axis, is then

$$
Q+R=1000+128=1128 \mathrm{lbs}
$$

The stiffness in this case augments the resistance by more than one-eighth of its value.

Further recent experiments made by m. morin, on the traction of carriages, and the destructive effects which they PRODUCE UPON THE ROADS.
The study of the effects which are produced when a carriage is set in motion can be divided into two distinct parts: the traction of carriages, properly so called, and their action upon the roads.

The researches relative to the traction of carriages have for their object to determine the magnitude of the effort that the motive power ought to exercise according to the weight of the load, to the diameter and breadth of the wheels, to the velocity of the carriage, and to the state of repair and nature of the roads.

The first experiments on the resistance that cylindrical bodies offer to being rolled on a level surface are due to Coulomb, who determined the resistance offered by rollers of lignum vitæ and elm, on plane oak surfaces placed horizontally.

His experiments showed that the resistance was directly proportional to the pressure, and inversely proportional to the diameter of the rollers.

If, then, P represent the pressure, and r the radius of the roller, the resistance to rolling, R, could, according to the laws of Coulomb, be expressed by the formula

$$
\mathrm{R}=\mathrm{A} \frac{\mathrm{P}}{r}
$$

in which A would be a number, constant for each kind of ground, but varying with different kinds, and with the state of their surfaces.

The results of experiments made at Vincennes show that the law of Coulomb is approximately correct, but that the resistance increases as the width of the parts in contact diminishes.

Other experiments of the same nature have confirmed these conclusions; and we may allow, at least, as a law sufficiently exact for practical purposes, that for woods, plasters, leather, and generally for hard bodies, the resistance to rolling is nearly-
-1st. Proportional to the pressure.
2 d . Inversely proportional to the diameter of the wheels.
3 d . Greater as the breadth of the zone in contact is smaller.

EXPERIMENTS UPON CARRIAGES TRAVELLING ON ORDINARY ROADS.

These experiments were not considered sufficient to authorize the extension of the foregoing conclusions to the motion of carriages on ordinary roads. It was necessary to operate directly on the carriages themselves, and in the usual circumstances in which they are placed. Experiments on this subject were therefore undertaken, first at Metz, in 1837 and 1838, and afterwards at Courbevoie, in 1839 and 1841, with carriages of every species; and attention was directed separately to the influence upon the magnitude of the traction, of the pressure, of the diameter of the wheels, of their breadth, of the speed, and of the state of the ground.

In heavily laden carriages, which it is most important to take
into consideration, the weight of the wheels may be neglected in comparison with the total load; and the relation between the load and the traction, upon a level road, is approximately given by the equation-

$$
\frac{F_{1}}{\mathrm{P}_{1}}=\frac{2\left(\mathrm{~A} \times f r_{1}\right)}{r^{\prime} \times r^{\prime \prime}} \text { for carriages with four wheels, }
$$

and $\quad \frac{\mathrm{F}_{1}}{\mathrm{P}_{1}}=\frac{\mathrm{A} \times f r_{1}}{r}$ for carriages with two wheels,
in which F_{1} represents the horizontal component of the traction;
P_{1} the total pressure on the ground;
r^{\prime} and $r^{\prime \prime}$ the radii of the fore and hind wheels ;
r_{1} the mean radius of the boxes;
f the coefficient of friction;
and A the constant multiplier in Coulomb's formula for the resistance to rolling.

These expressions will serve us hereafter to determine, by aid of experiment, the ratio of the traction to the load for the most usual cases.

Influence of the Pressure.

To observe the influence of the pressure upon the resistance to rolling, the same carriages were made to pass with different loads over the same road in the same state.

The results of some of these experiments, made at a walking pace, are given in the following table:-

Carriages employed.	Road traversed.	Pressure.	Traction.	Ratio of the traction to the load
Chariotportecorps d'artillerie.	Road from Courbevoie to Colomber, dry, in good repair, dusty.	${ }_{6992}^{\text {kil. }}$	${ }_{180.71}^{\text {kil. }}$	1/38.6
		6140 -	159.9	1/39.2
		4580	113.7	1/40.2
Chariotderoulage, without springs.	Road from Courbevoie to Bezous, solid, *hard gravel, very dry.	7126	138.9	1/51.3
		5458	$115 \cdot 5$	1/48.9
		4450	93.2	1/47.7
		3430	$68 \cdot 4$	1/50.2
Chariotderoulage, with springs.	Road from Colomber to Courbevoie, pitched, in ordinary repair, \dagger muddy	1600	$39 \cdot 3$	1/40.8
		3292	$89 \cdot 2$	1/36.9
		4996	136.0	1/36.8
Carriages with six equal wheels.	Road from Courbevoie to Colomber, deep ruts, with muddy detritus.	3000	138.9	1/21.6
		4692	$224 \cdot 0$	1/21.0
Two carriages with		6000	$285 \cdot 8$	1/21.0
six equal wheels, hooked on, one behind the other.		6000	286.7	1/21.0

From the examination of this table, it appears that on \ddagger solid gravel and on pitched roads the resistance of carriages to traction is sensibly proportional to the pressure.

[^1]We remark that the experiments made upon one and upon two six-wheeled carriages have given the same traction for a load of 6000 kilogrammes, including the vehicle, whether it was borne upon one carriage or upon two. It follows thence that the traction is, cæteris paribus and between certain limits, independent of the number of wheels.

Influence of the Diameter of the Wheels.

To observe the influence of the diameter of the wheels on the traction, carriages loaded with the same weights, having wheels with tires of the same width, and of which the diameters only were varied between very extended limits, were made to traverse the same parts of roads in the same state. Some of the results obtained are given in the following table.

These examples show that on solid roads it may be admitted as a practical law that the traction is inversely proportional to the diameters of the wheels.

Carriages emplosed.	Roads traversed.					$\dot{\text { an }}$					$\begin{gathered} \text { Valne } \\ \text { 雉 fone } \\ \text { Frone } \\ \text { soale. } \end{gathered}$	
			$\left\|\begin{array}{l} \text { Hind } \\ \text { Whacers } \\ r_{r}^{\prime \prime} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Fore } \\ \begin{array}{l} \text { Fonels } \\ 2 r^{\prime} \end{array} \\ \hline \end{gathered}\right.$	$\begin{gathered} \substack{\text { mind } \\ \text { mocels } \\ \hline r^{\prime \prime}} \\ \hline \end{gathered}$							
Chariot porte	Road from Cour-	2. ${ }^{\text {m }}$	2.029	6.657	6.657	\% kil	kile	$1 / 60$.		${ }^{\text {kill }}$	0.0148	0.04856
Chariot porte	bevoie to Colom-	1.453	1453	${ }^{4} 7767$	${ }^{4} 7867$	4930	108.6	$11 / 45 \cdot 5$			${ }^{0} 0.0139$	-0.04560
lerie. .	ber, *solid gravel, dusty.	0.872	0.872	28	2.861	4924	179.0	1/27.4		1537	$0 \cdot 0137$	$0 \cdot 04494$
Porte corps d'ar-		$2 \cdot 29$	$2 \cdot 29$	6.657	6.857	4692	5145	1/90-45	$9 \cdot 0$	$42 \cdot 45$	$0 \cdot 0092$	0.030
tillerie.		1-453	1.453	4.767	4.767	4594		1/643	$13 \cdot 2$	58.25	$0 \cdot 0092$	
Chariot comtois.	\dagger Pitched pave	$1 \cdot 110$		$3 \cdot 642$	4455	1871	32	1/58* 4	4.7	27	0.0089	$0 \cdot 02920$
A six-wheeled	ment of Fontainebleau.	0.860	0.860		2.822	3270	81.	1/40.4	$9 \cdot 7$	71	0.0094	-03084
The same with four wheels.		0.860		2.822	2.822	3270	78.80		9.7		.0091	0.0298
Camion.		$0 \cdot 592$		1-942	$2 \cdot 165$	1500			8.8	43.50	$0 \cdot 0091$	0.02986
Camion.		$0 \cdot 420$	$0 \cdot 597$	1.378	1.959	1600	68.20	1/22	$1 \cdot 6$	56.60	0.0	-02

Influence of the Width of the Felloes.

Experiments made upon wheels of different breadths, having the same diameter, show, 1st, that on soft ground the resistance to rolling increases as the width of the felloe; 2dly, on solid gravel and pitched roads, the resistance is very nearly independent of the width of the felloe.

Influence of the Velocity.

To investigate the influence of the velocity on the traction of carriages, the same carriages were made to traverse different roads in various conditions; and in each series of experiments the velocities, while all other circumstances remained the same, underwent successive changes from a walk to a canter.

Some of the results of these experiments are given in the following table:-

Carriage employed.	Ground passed over.	Load.	Pace.	$\left\|\begin{array}{c} \text { Rate of } \\ \text { speed, } \\ \text { in miles, } \\ \text { per } \\ \text { hour. } \end{array}\right\|$	Trac-	Ratio of the traction to the load.
Apparatus upon a brass shaft.	Ground of the polygon at Metz, wet and soft.	$\begin{gathered} \text { kil. } \\ 1042 \end{gathered}$	Walk	miles. $3 \cdot 13$	- ${ }^{\text {kil. }} 6$	1/6.32
			Trot	$6 \cdot 26$	$168 \cdot 0$	1/6.2
		1335	Walk	$2 \cdot 860$	$215 \cdot 0$	1/6.21
			Trot.	$7 \cdot 560$	$197 \cdot 0$	1/6.78
A sixteen-pounder carriage and piece.	Road from Metz to Montigny, solid gravel, very even and very dry.	3750	Walk........	$2 \cdot 820$	92.	1/40.8
			*Brisk walk	$3 \cdot 400$	92.	$1 / 40 \cdot 8$
			Trot........	$5 \cdot 480$	102.	1/36.8
			\dagger Canter.....	$8 \cdot 450$	121.	1/31.
Chariot des Messageries, suspended upon six springs.	Pitched road of Fontainebleau.	3288	Walk........	$2 \cdot 770$	144.	1/22-8
		3353	*Brisk walk	$3 \cdot 82$	153.	1/21.9
			Trot........	$5 \cdot 28$	161.	1/20.8
			\ddagger Brisk trot.	$8 \cdot 05$	$183 \cdot 5$	1/18.3

We see, by these examples, that the traction undergoes no sensible augmentation with the increase of velocity on soft grounds; but that on solid and uneven roads it increases with an increase of velocity, and in a greater degree as the ground is more uneven, and the carriage has less spring.

To find the relation between the resistance to rolling and the velocity, the velocities were set off as abscissas, and the values of A furnished by the experiments, as ordinates; and the points thus determined were, for each series of experiments, situated very nearly upon a straight line. The value of A, then, can be represented by the expression,

$$
\mathrm{A}=a+d(\mathrm{~V}-2)
$$

in which a is a number constant for each particular state of each kind of ground, and which expresses the value of the number A for the velocity, $\mathrm{V}=2$ miles, (per hour,) which is that of a very slow walk.
d, a factor constant for each kind of ground and each sort of carriage.

The results of experiments made with a carriage of a siege train, with its piece, gave, on the Montigny road, §very good solid gravel,-

$$
\mathrm{A}=0.03215 \times 0.00295(\mathrm{~V}-2)
$$

On the $\|$ pitched road of Metz, $\mathrm{A}=0.01936 \times 0.08200(\mathrm{~V}-2)$.
These examples are sufficient to show-
1st. That, at a walk, the resistance on a good pitched road is less than that on very good solid gravel, very dry.

2 d . That, at high speeds, the resistance on the pitched road increases very rapidly with the velocity.

On rough roads the resistance increases with the velocity much more slowly, however, for carriages with springs.

[^2]Thus, for a chariot des Messageries Générales, on a pitched road, the experiments gave $\mathrm{A}=0.0117 \times 0.00361(\mathrm{~V}-2)$; while, with the springs wedged so as to prevent their action, the experiments gave, for the same carriage, on a similar road, $\mathrm{A}=0.02723 \times$ $0.01312(\mathrm{~V}-2)$. At a speed of nine miles per hour, the springs diminish the resistance by one-half.

The experiments further showed that, while the pitched road was inferior to a *solid gravel road when dry and in good repair, the latter lost its superiority when muddy or out of repair.

INFLUENCE OF THE INCLINATION OF THE TRACES.

The inclination of the traces, to produce the maximum effect, is given by the expression-

$$
h f=\frac{\mathrm{A} \times 0.96 f r^{\prime}}{r-0.4 f r^{\prime}}
$$

in which $h=$ the height of the fore extremity of the trace above the point where it is attached to the carriage; $b=$ the horizontal distance between these two points. r^{\prime} is the radius of interior of the boxes, and r the radius of the wheel.

The inclination given by this expression for ordinary carriages is very small; and for trucks with wheels of small diameter it is much less than the construction generally permits.

It follows, from the preceding remarks, that it is advantageous to employ, for all carriages, wheels of as large a diameter as can be used, without interfering with the other essentials to the purposes to which they are to be adapted. Carts have, in this respect, the advantage over wagons; but, on the other hand, on rough roads, the thill horse, jerked about by the shafts, is soon fatigued. Now, by bringing the hind wheels as far forward as possible, and placing the load nearly. over them, the wagon is, in effect, transformed into a cart; only care must be taken to place the centre of gravity of the load so far in front of the hind wheels that the wagon may not turn over in going up hill.
on the destructive effects produced by carriages on the roads.
If we take stones of mean diameter from $2 \frac{3}{4}$ to $3 \frac{1}{4}$ inches, and, on a road slightly moist and soft, place them first under the small wheels of a diligence, and then under the large wheels, we find that, in the former case, the stones, pushed forward by the small wheels, penetrate the surface, ploughing and tearing it up; while in the latter, being merely pressed and leant upon by the large wheels, they undergo no displacement. ©

From this simple experiment we are enabled to conclude that the wear of the roads by the wheels of carriages is greater the smaller the diameter of the wheels.

Experiments having proved that on hard grounds the traction was but slightly increased when the breadths of the wheels was

[^3]diminished, we might also conclude that the wear of the road would be but slightly increased by diminishing the width of the felloes.

Lastly, the resistance to rolling increasing with the velocity, it was natural to think that carriages going at a trot would do more injury to the roads than those going at a walk. But springs, by diminishing the intensity of the impacts, are able to compensate, in certain proportions, for the effects of the velocity.

Experiments, made upon a grand scale, and having for their object to observe directly the destructive effects of carriages upon the roads, have confirmed these conclusions.

These experiments showed that with equal loads, on a solid gravel road, wheels of two inches breadth produced considerably more wear than those of $4 \frac{1}{2}$ inches, but that beyond the latter width there was scarcely any advantage, so far as the preservation of the road was concerned, in increasing the size of the tire of the wheel.

Experiments made with wheels of the same breadth, and of diameters of 2.86 ft ., 4.77 ft ., and 6.69 ft ., showed that after the carriage of $10018 \cdot 2$ tons, over tracks $218 \cdot 72$ yards long, the track passed over by the carriage with the smallest wheels was by far the most worn; while, on that passed over by the carriage with the wheels of 6.69 ft . diameter, the wear was scarcely perceptible.

Experiments made upon two wagons exactly similar in all other respects, but one with and one without springs, showed that the wear of the roads, as well as the increase of traction, after the passage of $4577 \cdot 36$ tons over the same track, was sensibly the same for the carriage without springs, going at a walk of from $2 \cdot 237$ to 2.684 miles per hour, and for that.with springs, going at a trot of from $7 \cdot 158$ to 8.053 miles per hour.

HYDRAULICS.

THE DISCHARGE OF WATER BY SIMPLE ORIFICES AND TUBES.
The formulas for finding the quantities of water discharged in a given time are of an extensive and complicated nature. The more important and practical results are given in the following Deductions.

When an aperture is made in the bottom or side of a vessel containing water or other homogeneous fluid, the whole of the particles of fluid in the vessel will descend in lines nearly vertical, until they arrive within three or four inches of the place of discharge, when they will acquire a direction more or less oblique, and flow directly towards the orifice.

The particles, however, that are inmediately over the orifice, descend vertically through the whole distance, while those nearer to the sides of the vessel, diverted into a direction more or less oblique as they approach the orifice, move with a less velocity than the former ; and thus it is that there is produced a contraction in the size of the stream immediately beyond the opening, designated the vena contracta, and bearing a proportion to that of the orifice of
about 5 to 8 , if it pass through a thin plate, or of 6 to 8 , if through a short cylindrical tube. But if the tube be conical to a length equal to half its larger diameter, having the issuing diameter less than the entering diameter in the proportion of 26 to 33 , the stream does not become contracted.

If the vessel be kept constantly full, there will flow from the aperture twice the quantity that the vessel is capable of containing, in the same time in which it would have emptied itself if not kept supplied.

1. How many horse-power (H. P.) is required to raise 6000 cubic feet of water the hour from a depth of 300 feet?

A cubic foot of water weighs 62.5 lbs . avoirdupois.
$\frac{6000 \times 62.5}{60}=6250$, the weight of water raised a minute.
$6250 \times 300=1875000$, the units of work each minute.
Then $\frac{1875000}{33000}=56 \cdot 818=$ the horse-power required.
2. What quantity of water may be discharged through a cylindrical mouth-piece 2 inches in diameter, under a head of 25 feet?
$\frac{2}{12}=\frac{1}{6}$ of a foot; \therefore the area of the cross section of the mouth-piece, in feet, is $\frac{1}{6} \times \frac{1}{6} \times \cdot 7854=\cdot 021816$.

Theory gives $021816 \sqrt{2 g \times 25}$ the cubic feet discharged each second; but experiments show that the effective discharge is 97 per cent. of this theoretical quantity : $g=32 \cdot 2$.

Hence, $.97 \times \cdot 021816 \sqrt{64 \cdot 4 \times 25}=84912$, the cubic feet discharged each second.
$\cdot 84912 \times 62 \cdot 5=53.0688 \mathrm{lbs}$. of water discharged each second.
Effluent water produces, by its vis viva, about 6 per cent. less mechanical effect than does its weight by falling from the height of the head.
3. What quantity of water flows through a circular orifice in a thin horizontal plate, 3 inches in diameter, under a head of 49 feet?

Taking the contraction of the fluid vein into account, the velocity of the discharge is about 97 per cent. of that given by theory.

The theoretic velocity is $\sqrt{2 g \times 49}=7 \sqrt{6 \cdot 44}=56 \cdot 21$.
$\cdot 97 \times 56 \cdot 21=54.523=$ the velocity of the discharge.
The area of the transverse section of the contracted vein is $\cdot 64$ of the transverse section of the orifice.

$$
\frac{3}{12}=\frac{1}{4}=\cdot 25, \text { and }(\cdot 25)^{2} \times \cdot 7854=\cdot 0490875=\text { area of orifice. }
$$

$\therefore \cdot 64 \times \cdot 0490875=\cdot 031416$, the area of the transverse section of the contracted vein.

Hence, $54.523 \times \cdot 031416=1 \cdot 7129$, the cubic feet of water discharged each second. The later experiments of Poncelet, Bidone, and Lesbros give 563 for the coefficient of contraction. Water issuing through lesser orifices give greater coefficients of contraction, and become greater for elongated rectangles, than for those which approach the form of a square.

Observations show that the result above obtained is too great; $\frac{8}{13}$ of this result are found to be very near the truth.

$$
\frac{8}{13} \text { of } 1 \cdot 7129=1 \cdot 0541
$$

4. What quantity of water flows through a rectangular aperture $7 \cdot 87$ inches broad, and 3.94 inches deep, the surface of the water being 5 feet above the upper edge; the plate through which the water flows being 125 of an inch thick.

$$
\begin{aligned}
& \frac{7 \cdot 87}{12}=\cdot 65583, \text { decimal of a foot. } \\
& \frac{3 \cdot 94}{12}=-32833, \text { decimal of a foot. }
\end{aligned}
$$

$5 \cdot$ and 5.32833 are the heads of water above the uppermost and lowest horizontal surfaces.

The theoretical discharge will be

$$
\frac{2}{3} \times \cdot 65583 \sqrt{2 g}\left((5 \cdot 328)^{\frac{3}{2}}-(5)^{\frac{3}{2}}\right)=3.9268 \text { cubic feet }
$$

Table I. gives the coefficient of efflux in this case, $\cdot 615$, which is found opposite 5 feet and under 4 inches; for 3.94 is nearly equal 4.
$3.9268 \times \cdot 615=2.415$ cubic feet, the effective discharge.
5. What water is discharged through a rectangular orifice in a thin plate 6 inches broad, 3 inches deep, under a head of 9 feet measured directly over the orifice?

$$
\begin{aligned}
& \frac{6}{12}=\cdot 5, \text { decimal of a foot. } \\
& \frac{3}{12}=\cdot 25, \text { decimal of a foot. }
\end{aligned}
$$

The theoretical discharge will be

$$
\frac{2}{3} \times \cdot 5 \sqrt{2 g}\left\{(9 \cdot 25)^{\frac{3}{2}}-(9)^{\frac{3}{2}}\right\}=3.033 \text { cubic feet. }
$$

Table II. gives the coefficient of efflux between $\cdot 604$ and $\cdot 606$; we shall take it at 605 , then
$3.033 \times 605=1.833$ cubic feet, the effective discharge.
6. A weir 82 feet broad, and 4.92 feet head of water, how many cubic feet are discharged each second ?

The quantity will be

$$
c \times \cdot 82 \sqrt{2 g(4 \cdot 92)^{3}} ; g=32 \cdot 2 ;
$$

Table I.-The Coefficients for the Efflux through rectangular orifices in a thin vertical plate. The heads are measured where the water may be considered still.

Head of water, or distance of the surface of the water from the upper side of the orifice in feet.	Height of Orifice.					
	In.	In.	In.	In.	In.	In.
$\cdot 1$	$\cdot 579$	- 599	-619	-634	-656	-686
$\cdot 2$	-582	-601	-620	-638	-654	-681
$\cdot 3$	-585	-603	-621	-640	-653	-676
$\cdot 4$	-588	-605	-622	-639	$\cdot 652$	-671
. 5	-591	-607	$\cdot 623$	$\cdot 637$	-650	-666
- 6	- 594	-609	-624	$\cdot 635$	-649	-662
$\cdot 7$	-596	-611	-625	-634	-648	$\cdot 659$
-8	-597	-613	$\cdot 623$	-632	-647	-656
. 9	-598	-615	$\cdot 627$	$\cdot 631$	$\cdot 645$	-653
$1 \cdot 0$	-599	-616	-628	-630	-644	-650
$2 \cdot 0$	-600	-617	-628	-628	-641	-647
$3 \cdot 0$	$\cdot 601$	-617	-626	-626	-638	-644
$4 \cdot 0$	-602	-616	-624	-623	-634	-640
$5 \cdot 0$	-604	-615	-621	-621	-630	-635
$6 \cdot 0$	-603	-613	-618	-618	-625	-630
$7 \cdot 0$	-602	-611	-615	-615	-621	-625
$8 \cdot 0$	-601	-609	-612	-613	-617	-619
$9 \cdot 0$	-600	-606	-609	-610	-614	-613
$10 \cdot 0$	$\cdot 600$	-604	-606	-608	-611	-609

Table II.-The Coefficients for the Effux through rectangular orifices in a thin vertical plate, the heads of water being measured directly over the orifice.

Head of water, or distance of the surface of the water from the upper side ofthe orifice in feet.	eight of Orifice.					
	In.	In.	In.	In.	In.	In. 4
$\cdot 1$. 593	- 613	-637	. 659	-685	. 708
$\cdot 2$	-593	-612	-636	-656	-680	$\cdot 701$
$\cdot 3$	- 593	$\cdot 613$	- 635	-653	. 676	-694
$\cdot 4$	-594	. 614	-634	-650	-672	-687
-5	-595	$\cdot 614$	-633	$\cdot 647$	-668	$\cdot 681$
- 6	. 597	-615	-632	$\cdot 644$	-664	-675
$\cdot 7$	-598	$\cdot 615$	-631	$\cdot 641$	-660	-669
-8	-599	-616	-630	$\cdot 638$	-655	-663
. 9	. 601	-616	-629	$\cdot 635$	-650	-657
1.0	-603	-617	-629	-632	-644	-651
$2 \cdot 0$	-604	-617	-626	-628	-640	-646
$3 \cdot 0$	-605	-616	-622	-627	-636	-641
$4 \cdot 0$	-604	-614	-618	-624	-632	-636
$5 \cdot 0$	-604	. 613	-616	-621	-628	-631
$6 \cdot 0$	-603	-612	-613	-618	. 624	- 626
$7 \cdot 0$	$\cdot 603$. 610	$\cdot 611$	-616	-620	- 621
$8 \cdot 0$. 602	-608	-609	$\cdot 614$	- 616	. 617
$9 \cdot 0$	-601	$\cdot 607$	-607	-612	-613	-613
$10 \cdot 0$	-601	-603	-606	$\cdot 610$	-610	-609

c is termed the coefficient of efflux, and on an average may be taken at $\cdot 4$. It is found to vary from 385 to $\cdot 444$.

Then $4 \times 82 \sqrt{(64 \cdot 4)(4 \cdot 92)^{3}}=2 \cdot 670033$, the cubic feet discharged each second.
7. What breadth must be given to a notch, in a thin plate, with a head of water of 9 inches, to allow 10 cubic feet to flow each second !

The breadth will be represented by

$$
\frac{10}{c \sqrt{2 g \times(\cdot 75)^{3}}}=\frac{10}{.4 \times \sqrt{64 \cdot 4 \times(\cdot 75)^{3}}}=4.7963 \text { feet. }
$$

Changes in the coefficients of efflux through convergent sides often present themselves in practice: they occur in dams which are inclined to the horizon.

Poncelet found the coefficient $\cdot 8$, when the board was inclined 45°, and the coefficient 74 for an inclination of $63^{\circ} 34^{\prime}$, that is for a slope of 1 for a base, and 2 for a perpendicular.
8. If a sluice board, inclined at an angle of 50°, which goes across a channel $2 \cdot 25$ feet broad, is drawn out $\cdot 5$ feet, what quantity of water will be discharged, the surface of the water standing 4 - feet above the surface of the channel, and the coefficient of efflux taken at 78 ?

The height of the aperture $=\cdot 5 \sin .50^{\circ}=\cdot 3830222 ; 4 \cdot$ and $4 \cdot-3830222=3 \cdot 6169778$, are the heads of water.

$$
\therefore \frac{2}{3} \times 2.25 \times 78 \times \sqrt{2 g}\left\{(4)^{\frac{3}{2}}-(3.617)^{\frac{3}{2}}\right\}=10.5257 \mathrm{cu}-
$$ bic feet, the quantity discharged.

The calculations just made appertain to those cases where the water flows from all sides towards the aperture, and forms a contracted vein on every side. We shall next calculate in cases where the water flows from one or more sides to the aperture, and hence produces a stream only a partially contracted. m, n, o, p, are four orifices in the bottom ABCD of a vessel ; the contraction by efflux through the orifice o, in the middle of the bottom, is general, as the water can flow to it from all sides; the contraction o
 from the efflux through m, n, p, is partial, as the water can only flow to them from one, two, or three sides. Partial contraction gives an oblique direction to the stream, and increases the quantity discharged.
9. What quantity of water is delivered through a flow 4 feet broad, and 1 foot deep, vertical aperture, at a pressure of 2 feet above the upper edge, supposing the lower edge to coincide with
the lower side of the channel, so that there is no contraction at the bottom?

The theoretical discharge will be

$$
\frac{2}{3} \times \frac{4}{1} \times \sqrt{2 g}\left\{(3)^{\frac{3}{2}}-(2)^{\frac{8}{2}}\right\}=50.668 \text { cubic feet. }
$$

The coefficient of contraction given in the table page 315, may be taken at $\cdot 603$.

I.-Comparison of the Theoretical with the Real Discharges from an Orifice.

Constant height of the water in the reservoir above the centre of the orifice.	Theoretical discharge through a eircular orifice one inch in diameter.	Real discharge in the same time orifice.	Ratio of the theoretical to the real discharge.
Paris Feet.	Cubic Inehes. 4381	Cubic Inches. 2722	1 to 0.62133
2	6196	3846	1 to $0 \cdot 62073$
3	7589	4710	1 to $0 \cdot 62064$
4	8763	5436	1 to $0 \cdot 62034$
5	9797	6075	1 to 0.62010
6	10732	6654	1 to 0.62000
7	11592	7183	1 to 0.61965
8	12392	7672	1 to 0.61911
9	13144	8135	1 to $0 \cdot 61892$
10	13855	8574	1 to 0.61883
11	14530	8990	1 to 0.61873
12	15180	9384	1 to $0 \cdot 61819$
13	15797	9764	1 to 0.61810
14	16393	10130	1 to $0 \cdot 61795$
15	16968	10472	1 to 0.61716

II.-Comparison of the Theoretical with the Real Discharges from a Tube.

Constant height of the water in the reservoir above the centre of the orifice.	Theoretical discharge through a circular orifice one inch in di ameter.	Real discharge in the same time by a cylindrical tube one inch in diameter and two inches long.	Ratio of the theoretical to the real discharge.
Paris Feet. 1	Cubic Inches. 4381	Cubic Inches. 3539	1 to 0.81781
2	6196	5002	1 to 0.80729
3	7589	6126	1 to 0.80724
4	8763	7070	1 to $0 \cdot 80681$
5	9797	7900	1 to 0.80638
6	10732	8654	1 to 0.80638
7	11592	9340	1 to 0.80577
8	12392	9975	1 to 0.80496
9	13144	10579	1 to 0.80485
10	13855	11151	1 to 0.80483
11	14530	11693	1 to 0.80477
12	15180	12205	1 to 0.80403
13	15797	12699	1 to $0 \cdot 80390$
14	16393	13177	1 to 0.80382
15	16968	13620	1 to $0 \cdot 80270$

2 в 2

THE DISCHARGE BY DIFFERENT APERTURES AND TUBES, UNDER DIFFERENT HEADS OF WATER.
The velocity of water flowing out of a horizontal aperture, is as the square root of the height of the head of the water.-That is, the pressure, and consequently the height, is as the square of the velocity; for, the quantity flowing out in any short time is as the velocity; and the force required to produce a velocity in a certain quantity of matter in a given time is also as that velocity; therefore, the force must be as the square of the velocity.

Or, supposing a very small cylindrical plate of water, immediately over the orifice, to be put in motion at each instant, by the pressure of the whole cylinder upon it, employed only in generating its velocity; this plate would be urged by a force as much greater than its own weight as the column is higher than itself, through a space shorter in the same proportion than that height. But where the forces are inversely as the spaces described, the final velocities are equal. Therefore, the velocity of the water flowing out must be equal to that of a heavy body falling from the height of the head of water; which is found, very nearly, by multiplying the square root of that height in feet by 8 , for the number of feet described in a second. Thus, a head of 1 foot gives 8 ; a head of 9 feet, 24 . This is the theoretical velocity; but, in consequence of the contraction of the stream, we must, in order to obtain the actual velocity, multiply the square root of the height, in feet, by 5 instead of 8 .

The velocity of a fluid issuing from an aperture is not affected by its density being greater or less. Mercury and water issue with equal velocities at equal altitudes.

The proportion of the theoretical to the actual velocity of a fluid issuing through an opening in a thin substance, according to M. Eytelwein, is as 1 to $\cdot 619$; but more recent experiments make it as 1 to $\cdot 621$ up to $\cdot 645$.
application of the tables in the preceding page.
Table I.-To find the quantities of water discharged by orifices of different sizes under different altitudes of the fluid in the reservoir.

To find the quantity of fluid discharged by a circular aperture 3 inches in diameter, the constant altitude being 30 feet.

As the real discharges are in the compound ratio of the area of the apertures and the square roots of the altitudes of the water, and as the theoretical quantity of water discharged by an orifice one inch in diameter from a height of 15 feet is, by the second column of the table, 16968 cubic inches in a minute, we have this proportion: $1 \sqrt{ } 15: 9 \sqrt{ } 30:: 16968: 215961$ cubic inches; the theoretical quantity required. This quantity being diminished in the ratio of 1 to 62 , being the ratio of the theoretical to the actual discharge, according to the fourth column of the table, gives 133896 cubic inches for the actual quantity of water discharged by
the given aperture. Hence, the quantity should be rather greater, because large orifices discharge more in proportion than small ones; while it should be rather less, because the altitude of the fluid being greater than that in the table with which it is compared, the flowing vein of water becomes rather more contracted. The quantity thus found, therefore, is nearly accurate as an average.

When the orifice and altitude are less than those in the table, a few cubic inches should be deducted from the result thus derived.

The altitude of the fluid being multiplied by the coefficient 8.016 will give its theoretical velocity; and as the velocities are as the quantities discharged, the real velocity may be deducted from the theoretical by means of the foregoing results.

Table II.-To find the quantities of water discharged by tubes of different diameter, and under different heights of water.

To find the quantity of water discharged by a cylindrical tube, 4 inches in diameter, and 8 inches long, the constant altitude of the water in the reservoir being 25 feet.

Find, in the same manner as by the example to Table I., the theoretical quantity discharged, which is furnished by this analogy. $1 \sqrt{ } 15: 16 \sqrt{ } 25:: 16968: 350490$ cubic inches, the theoretical discharge. This, diminished in the ratio of 1 to 81 by the 4th column, will give 28473 cubic inches for the actual quantity discharged. If the tube be shorter than twice its diameter, the quantity discharged will be diminished, and approximate to that from a simple orifice, as shown by the production of the vena contracta already described.

According to Eytelwein, the proportion of the theoretical to the real discharge through tubes, is as follows:

Through the shortest tube that will cause the stream to adhere everywhere to its sides, as 1 to 0.8125 .

Through short tubes, having their lengths from two to four times their diameters, as 1 to 0.82 .

Through a tube projecting within the reservoir, as 1 to 0.50 .
It should, however, be stated, that in the contraction of the stream the ratio is not constant. It undergoes perceptible variations by altering the form and position of the orifice, the thickness of the plate, the form of the vessel, and the velocity of the issuing fluid.

Deductions from experiments made by Bossut, Michelloti.

1. That the quantities of fluid discharged in equal times from different-sized apertures, the altitude of the fluid in the reservoir being the same, are to each other nearly as the area of the apertures.
2. That the quantities of water discharged in equal times by the same orifice under different heads of water, are nearly as the square roots of the corresponding heights of water in the reservoir above the centre of the apertures.
3. That, in general, the quantities of water discharged, in the same time, by different apertures under different heights of water in the reservoir, are to one another in the compound ratio of the areas of the apertures, and the square roots of the altitudes of the water in the reservoirs.
4. That on account of the friction, the smallest orifice discharges proportionally less water than those which are larger and of a similar figure, under the same heads of water.
5. That, from the same cause, of several orifices whose areas are equal, that which has the smallest' perimeter will discharge more water than the other, under the same altitudes of water in the reservoir. Hence, circular apertures are most advantageous, as they have less rubbing surface under the same area.
6. That, in consequence of a slight augmentation which the contraction of the fluid vein undergoes, in proportion as the height of the fluid in the reservoir increases, the expenditure ought to be a little diminished.
7. That the discharge of a fluid through a cylindrical horizontal tube, the diameter and length of which are equal to one another, is the same as through a simple orifice.
8. That if the cylindrical horizontal tube be of greater length than the extent of the diameter, the discharge of water is much increased.
9. That the length of the cylindrical horizontal tube may be increased with advantage to four times the diameter of the orifice.
10. That the diameters of the apertures and altitudes of water in the reservoir being the same, the theoretic discharge through a thin aperture, which is supposed to have no contraction in the vein, the discharge through an additional cylindrical tube of greater length than the extent of its diameter, and the actual discharge through an aperture pierced in a thin substance, are to each other as the numbers $16,13,10$.
11. That the discharges by different additional cylindrical tubes, under the same head of water, are nearly proportional to the areas of the orifices, or to the squares of the diameters of the orifices.
12. That the discharges by additional cylindrical tubes of the same diameter, under different heads of water, are nearly proportional to the square roots of the head of water.
13. That from the two preceding corollaries it follows, in general, that the discharge during the same time, by different additional tubes, and under different heads of water in the reservoir, are to one another nearly in the compound ratio of the squares of the diameters of the tubes, and the square roots of the heads of water.

The discharge of fluids by additional tubes of a conical figure, when the inner to the outer diameter of the orifice is as 33 to 26 , is augmented very nearly one-seventeenth and seven-tenths more than by cylindrical tubes, if the enlargement be not carried too far.

DISCHARGE BY COMPOUND TUBES.

Deductions from the experiments of M. Venturi.

In the discharge by compound tubes, if the part of the additional tube nearest the reservoir have the form of the contracted vein, the expenditure will be the same as if the fluid were not contracted at all; and if to the smallest diameter of this cone a cylindrical pipe be attached, of the same diameter as the least section of the contracted vein, the discharge of the fluid will, in a horizontal direction, be lessened by the friction of the water against the side of the pipe; but if the same tube be applied in a vertical direction, the expenditure will be augmented, on the principle of the gravitation of falling bodies; consequently, the greater the length of pipe, the more abundant is the discharge of fluid.

If the additional compound tube have a cone applied to the opposite extremity of the pipe, the expenditure will, under the same head of water, be increased, in comparison with that through a simple orifice, in the ratio of 24 to 10 .

In order to produce this singular effect, the cone nearest to the reservoir must be of the form of the contracted vein, which will increase the expenditure in the ratio of $12 \cdot 1$ to 10 . At the other extremity of the pipe, a truncated conical tube must be applied, of which the length must be nearly nine times the smaller diameter, and its outward diameter must be $1 \cdot 8$ times the smaller one. This additional cone will increase the discharge in the proportion of 24 to 10. But if a great length of pipe intervene, this additional tube has little or no effect on the quantity discharged.

According to M. Venturi's experiments on the discharge of water by bent tubes, it appears that while, with a height of water in the reservoir of 32.5 inches, 4 Paris cubic feet were discharged through a cylindrical horizontal tube in the space of 45 seconds, the discharge of the same quantity through a tube of the same diameter, with a curved end, occupied 50 seconds, and through a like tube bent at right angles, 70 seconds. Therefore, in making cocks or pipes for the discharge or conveyance of water, great attention should be paid to the nature and angle of the bendings; right angles should be studiously avoided.

The interruption of the discharge by various enlargements of the diameter of the tubes having been investigated by M. Venturi, by means of a tube with a diameter of 9 lines, enlarged in several parts to a diameter of 24 lines, the retardation was found to increase nearly in proportion to the number of enlargements; the motion of the fluid, in passing into the enlarged parts, being diverted from its direct course into eddies against the sides of the enlargements. From which it may be deduced, that if the internal roughness of a pipe diminish the expenditure, the friction of the water against these asperities does not form any considerable part of the cause. A right-lined tube may have its internal surface highly polished throughout its whole length, and it may every-
where possess a diameter greater than the orifice to which it is applied; but, nevertheless, the expenditure will be greatly retarded if the pipe should have enlarged parts or swellings. It is not enough that elbows and contractions be avoided; for it may happen, by an intermediate enlargement, that the whole of the other advantage may be lost. This will be obvious from the results in the following table, deduced from experiments with tubes having various enlargements of diameter.

Head of water in inches.	Number of en larged parts.	Seconds in which (abic feet were discharged.
32.5	0	109
32.5	1	147
32.5	3	192
32.5	5	240

DISCHARGE BY CONDUIT PIPES.
On account of the friction against the sides, the less the diameter of the pipe, the less proportionally is the discharge of fluid. And, from the same cause, the greater the length of conduit pipe, the greater the diminution of the discharge. Hence, the discharges made in equal times by horizontal pipes of different lengths, but of the same diameter, and under the same altitude of water, are to one another in the inverse ratio of the square roots of the lengths. In order to have a perceptible and continuous discharge of fluid, the altitude of the water in the reservoir, above the axis of the conduit pipe, must not be less than $1 \frac{2}{3}$ inch for every 180 feet of the length of the pipe.

The ratio of the difference of discharge in pipes, 16 and 24 lines diameter respectively, may be known by comparing the ratios of Table I. with the ratios of Table II., in the following page.

The greater the angle of inclination of a conduit pipe, the greater will be the discharge in a given time; but when the angle of the conduit pipe is $6^{\circ} 31^{\prime}$, or the depression of the lower extremity of the pipe is one-eighth or one-ninth of its length, the relative gravity of the fluid will be counterbalanced by the resistance or friction against the sides; and the discharge is then the same as by an additional horizontal tube of the same diameter.

A curvilinear pipe, the altitude of the water in the reservoir being the same, discharges less water when the flexures lie horizontally, than a rectilinear pipe of the same diameter and length.

The discharge by a curvilinear pipe of the same diameter and length, and under the same head of water, is still further diminished when the flexures lie in a vertical instead of a horizontal plane.

When there is a number of contrary flexures in a large pipe, the air sometimes lorges in the highest parts of the flexures, and greatly retards the motion of the water, unless prevented by air-holes, or stopeocks.

Table I.-Comparison of the discharge by conduit pipes of different lengths, 16 lines in diameter, with the discharge by additional tubes inserted in the same reservoir.-By M. Bossuf.

Constant allitude of theWater above centre of the aperture.	Length ofthe conduit pipe.	Quantity of Water discharged in a minute.		Ratio between the quantities furnished by to and pipe.
		$\begin{gathered} \text { by additional } \\ \text { tube, } 16 \text { lines in } \\ \text { diameter. } \end{gathered}$	$\begin{gathered} \text { by conduit } \\ \text { pipe, } \\ \text { diameteres. } \end{gathered}$	
Feet.	Feet.	Cubic Inches.	Cubic Inches,	
1	30	6330	2778	100 to $43 \cdot 39$
1	60	6330	1957	100 to $30 \cdot 91$
1	90	6330	1587	100 to 25.07
1	120	6330	1351	100 to $21 \cdot 34$
1	150	6330	1178	100 to $18 \cdot 61$
1	180	6330	1052	100 to 16.62
2	30	8939	4066	100 to $45 \cdot 48$
2	60	8939	2888	100 to $32 \cdot 31$
2	90	8939	2352	100 to 26.31
2	120	8939	2011	100 to $22 \cdot 50$
2	150	8939	1762	100 to 19.71
2	180	8939	1583	100 to $17 \cdot 70$

Table II.-Comparison of the discharge by conduit pipes of different lengths, 24 lines in diameter, with the discharge by additional tubes inserted in the same reservoir.-By M. Bossut.

Constant altitude of the centre of the aperture.	Length ofthe conduit pipe.	Quantity of Water discharged ${ }^{\text {in }}$ minute.		Ratio between the quantities furnishedby tube and pipe.
		$\begin{aligned} & \text { by additional } \\ & \text { tube, e4 linesin } \\ & \text { diameter. } \end{aligned}$	by conduit pipe, 24 lines diameter	
Feet.	Feet.	Cubio Inches.	Cubic Inches.	
1	30	14243	7680	100 to 58.92
1	60	14243	5564	100 to $39 \cdot 06$
1	90	14243	4534	100 to $31 \cdot 83$
1	120	14243	3944	100 to $27 \cdot 69$
1	150	14243	3486	100 to 24-48
1	180	14243	3119	100 to $21 \cdot 90$
2	30	20112	11219	100 to $55 \cdot 78$
2	60	20112	8190	100 to $40 \cdot 72$
2	90	20112	6812	100 to 33.87
2	120	20112	5885	100 to 29-26
2	150	20112	5232	100 to 26.01
2	180	20112	4710	100 to $23 \cdot 41$

discharge by weirs and rectangular apertures.
Rectangular orifices in the side of a reservoir, extending to the surface.
The velocity varying nearly as the square root of the height, may here be represented by the ordinates of a parabola, and the quantity of water discharged by the area of the parabola, or two-thirds of that of the circumscribing rectangle. So that the quantity discharged may be found by taking two-thirds of the velocity due to the mean height, and allowing for the contraction of the stream, according to the form of the opening.

In a lake, for example, in the side of which a rectangular opening is made without any oblique lateral walls, three feet wide, and
extending two feet below the surface of the water, the coefficient of the velocity, corrected for contraction, is $5 \cdot 1$, and the corrected mean velocity $\frac{3}{8} \sqrt{2} \times 5 \cdot 1=4 \cdot 8$; therefore the area being 6 , the discharge of water in a second is 28.8 cubic feet, or nearly four hogsheads.

The same coefficient serves for determining the discharge over a weir of considerable breadth; and, hence, to deduce the depth or breadth requisite for the discharge of a given quantity of water. For example, a lake has a weir three feet in breadth, and the surface of the water stands at the height of five feet above it: it is required how much the weir must be widened, in order that the water may be a foot lower. Here the velocity is $\frac{2}{3} \sqrt{5} \times 5 \cdot 1$, and the quantity of water $\frac{2}{3} \sqrt{5} \times 5.1 \times 3 \times 5$; but the velocity must be reduced to $\frac{2}{3} \sqrt{4} \times 5 \cdot 1$, and then the section will be $\frac{\frac{2}{3} \sqrt{5} \times 5 \cdot 1 \times 3 \times 5}{\frac{2}{3} \sqrt{4} \times 5 \cdot 1}$ $=\frac{\sqrt{5} \times 3 \times 5}{\sqrt{4}}=7.5 \times \sqrt{5}$; and the height being 4 , the breadth must be $\frac{7 \cdot 5}{4} \sqrt{5}=4 \cdot 19$ feet.

The discharge from reservoirs, with lateral orifices of considerable magnitude, and a constant head of water, may be found by determining the difference in the discharge by two open orifices of different heights; or, in most cases, with nearly equal accuracy, by considering the velocity due to the distance, below the surface, of the centre of gravity of the orifice.

Under the same height of water in the reservoir, the same quantity always flows in a canal, of whatever length and declivity; but in a tube, a difference in length and declivity has a great effect on the quantity of water discharged.

The velocity of water flowing in a river or stream varies at different parts of the same transverse section. It is found to be greatest where the water is deepest, at somewhat less than onehalf the depth from the surface; diminishing towards the sides and shallow parts.

Resistance to bodies moving in fluids.-The deductions from the experiments of C. Colles, (who first planned the Croton Aqueduct, New York,) and others, on this intricate subject, are, as stated, thus:

1. The confirmation of the theory, that the resistance of fluids to passing bodies is as the squares of the velocities.
2. That, contrary to the received opinion, a cone will move through the water with much less resistance with its apex foremost, than with its base forward.
3. That the increasing the length of a solid, of almost any form, by the addition of a cylinder in the middle, diminishes the resistance with which it moves, provided the weight in the water remains the same.
4. That the greatest breadth of the moving body should be placed at the distance of two-fifths of the whole length from the bow, when applied to the ordinary forms in naval architecture.
5. That the bottom of a floating solid should be made triangular; as in that case it will meet with the least resistance when moving in the direction of its longest axis, and with the greatest resistance when moving with its broadside foremost.

Friction of fluids.-Some experiments have been made on this subject, with reference to the motion of bodies in water, upon a cylindrical model, 30 inches in length, 26 inches in diameter, and weighing 255 lbs . avoirdupois. The cylinder was placed in a cistern of salt water, and made to vibrate on knife-edges passing through its axis, and was deflected over to various angles by means of a weight attached to the arm of a lever. The experiments were then repeated without the water, and the following are the angles of deflection and vibration in the two cases.

In the salt water.		In the atmosphere.	
Angle of	${ }_{\substack{\text { Angle to mhich } \\ \text { it } \\ \text { viratated }}}^{\text {a }}$	Angle of Defection.	Angle to mhich $\begin{gathered}\text { it } \mathrm{vibratad.} \text {. }\end{gathered}$
$22^{\circ} 30^{\prime}$	$22^{\circ} 24^{\prime}$	$22^{\circ} 30^{\prime}$	$20^{\circ} 0^{\prime}$
2210	226	2136	213
2154	2148	2048	2016
2136	2130	$\& \mathrm{c}$.	\&c.
\&c.	\&c.		

Showing that the amplitude of vibration when oscillating in water is considerably less than when oscillating without water. In the experiments there is a falling off in the angle of 24^{\prime}, or nearly half a degree. The amount of force acting on the surface of the cylinder necessary to cause the above difference was calculated; and the author thinks that it is not equally distributed on the surface of the cylinder, but that the amount on any particular part might vary as the depth. On this supposition, a constant pressure at a unit of depth is assumed, and this, multiplied by the depth of any other point of the cylinder immersed in the water, will give the pressure at that point. These forces or moments being summed by integration and equated with the sum of the moments given by the experiments, we have the value of the constant pressure at a unit of depth $=\cdot 0000469$. This constant, in another experiment, the weight of the model being 197 lbs . avoirdupois, and consequently the part immersed in the water being different from that in the other experiment, was 0000452 , which differs very little from the former,-indicating the probability of the correctness of the assumption.

The drainage of water through pipes.-The experiments made under the direction of the Metropolitan Commissioners of Sewers, on the capacities of pipes for the drainage of towns, have presented some useful results for the guidance of those who have to make
calculations for a similar purpose. The pipes, of various diameters, from 3 to 12 inches, were laid on a platform of 100 feet in length, the declivity of which could be varied from a horizontal level to a fall of 1 in 10 . The water was admitted at the head of the pipe, and at five junctions, or tributary pipes on each side, so regulated as to keep the main pipe full.

The results were as follow :-
It was found-to mention only one result-that a line of 6 -inch pipes, 100 feet long, at an inclination of 1 in 60, discharged 75 cubic feet per minute. The same experiment, repeated with the line of pipes reduced to 50 feet in length, gave very nearly the same result. Without the addition of junctions, the transverse sectional area of the stream of water near the discharging end was reduced to onefifth of the corresponding area of the pipe, and it required a simple head of water of about 22 inches to give the same result as that accruing under the circumstances of the junctions. With regard to varying sizes and inclinations, it appears, sufficiently for practical purposes, that the squares of the discharges are as the fifth powers of the diameters; and again, that in steeper declivities than 1 in 70 , the discharges are as the square roots of the inclinations; but at less declivities than 1 in 70 , the ratios of the discharges diminish very rapidly, and are governed by no constant law. At a certain small declivity, the relative discharge is as the fifth root of the inclination; at a smaller declivity, it is found as the seventh root of the inclination; and so on, as it approaches the horizontal plane. This may be exemplified by the following results found by actual experiment :

Discharges of a 6-inch pipe at several inclinations.

Inclination.	Discharges in 100 feet per minute	Inclination.	Discharges in 100 feet per minute.
1 in 60	75	1 in 320	49
1 in 80	68	1 in 400	$48 \cdot 5$
1 in 100	63	1 in 480	48
1 in 120	59	1 in 640	$47 \cdot 5$
1 in 160	54	1 in 800	$47 \cdot 2$
1 in 200	52	1 in 1200	$46 \cdot 7$
1 in 240	50	Level	46

The conclusion arrived at is, that the requisite sizes of drains and sewers can be determined (near enough for practical purposes, as an important circumstance has to be considered in providing for the deposition of solid matter, which disadvantageously alters the form of the aqueduct, and contracts the water-way) by taking the result of the 6 -inch pipe, under the circumstances before mentioned as a datum, and assuming that the squares of the discharges are as the fifth powers of the diameters.

That at greater declivities than 1 in 70 , the discharges are as the square roots of the inclinations.

That at less declivities than 1 in 70 , the usual law will not obtain; but near approximations to the truth may be obtained by observing the relative discharges of a pipe laid at various small inclinations.

That increasing the number of junctions, at intervals, accelerates the velocity of the main stream in a ratio which increases as the square root of the inclination, and which is greater than the ratio of resistance due to a proportionable increase in the length of the aqueduct. The velocity at which the lateral streams enter the main line, is a most important circumstance governing the flow of water. In practice, these velocities are constantly variable, considered individually, and always different considered collectively, so that their united effect it is difficult to estimate. Again, the same sewer at different periods may be quite filled, but discharges in a given time very different quantities of water. It should be mentioned that in the case of the 6 -inch pipe, which discharged 75 cubic feet per minute, the lateral streams had a velocity of a few feet per second, and the junctions were placed at'an angle of about 35° with the main line. It is needless to say that all junctions should be made as nearly parallel with the main line as possible, otherwise the forces of the lateral currents may impede rather than maintain or accelerate the main streams.

WATER WHEELS.

THE UNDERSHOT WHEEL.

The ratio between the power and effect of an undershot wheel is as 10 to $3 \cdot 18$; consequently $31 \cdot 43 \mathrm{lbs}$. of water must be expended per second to produce a mechanical effect equal to that of the estimated labour of an active man.

The velocity of the periphery of the undershot wheel should be equal to half the velocity of the stream; the float-boards should be so constructed as to rise perpendicularly from the water; not more than one-half should ever be below the surface; and from 3 to 5 should be immersed at once, according to the magnitude of the wheel.

The following maxims have been deduced from experiments:-

1. The virtual or effective head of water being the same, the effect will be nearly as the quantity expended; that is, if a mill, driven by a fall of water, whose virtual head is 10 feet, and which discharges 30 cubic feet of water in a second, grind four bolls of corn in an hour; another mill having the same virtual head, but which discharges 60 cubic feet of water, will grind eight bolls of corn in an hour.
2. The expense of water being the same, the effect will be nearly as the height of the virtual or effective head.
3. The quantity of water expended being the same, the effect is nearly as the square of its velocity; that is, if a mill, driven by a
certain quantity of water, moving with the velocity of four feet per second, grind three bolls of corn in an hour; another mill, driven by the same quantity of water, moving with the velocity of five feet per second, will grind nearly $4 \frac{7}{10}$ bolls in the hour, because $3: 4_{10}^{\frac{7}{10}}:: 4^{2}: 5^{2}$ nearly.
4. The aperture being the same, the effect will be nearly as the cube of the velocity of the water; that is, if a mill driven by water, moving through a certain aperture, with the velocity of four feet per second, grind three bolls of corn in an hour; another mill, driven by water, moving through the same aperture with the velocity of five feet per second, will grind $5 \frac{43}{50}$ bolls nearly in an hour ; for as $3: 5_{50}^{45}:: 4^{3}: 5^{3}$ nearly.

The height of the virtual head of water may be easily determined from the velocity of the water, for the heights are as the squares of the velocities, and, consequently, the velocities are as the square roots of the height.

To calculate the proportions of undershot wheels.-Find the perpendicular height of the fall of water above the bottom of the millcourse, and having diminished this number by one-half the depth of the water where it meets the wheel, call that the height of the fall,

Multiply the height of the fall, so found, by $64 \cdot 348$, and take the square root of the product, which will be the velocity of the water.

Take one-half of the velocity of the water, and it will be the velocity to be given to the float-boards, or the number of feet they must move through in a second, to produce a maximum effect. Divide the circumference of the wheel by the velocity of its floatboards per second, and the quotient will be the number of seconds in which the wheel revolves. Divide 60 by the quotient thus found, and the new quotient will be the number of revolutions made by the wheel in a minute.

Divide 90 , the number of revolutions which a millstone, 5 feet in diameter, should make in a minute, by the number of revolutions made by the wheel in a minute, the quotient will be the number of turns the millstone ought to make for one turn of the wheel. Then, as the number of revolutions of the wheel in a minute is to the number of revolutions of the millstone in a minute, so must the number of staves in the trundle be to the number of teeth in the wheel, (the nearest in whole numbers.) Multiply the number of. revolutions made by the wheel in a minute, by the number of revolutions made by the millstone for one turn of the wheel, and the product will be the number of revolutions made by the millstone in a minute.

The effect of the water wheel is a maximum, when its circumference moves with one-half, or, more accurately, with threesevenths of the velocity of the stream.

THE BREAST WHEEL.

The effect of a breast wheel is equal to the effect of an under shot wheel, whose head of water is equal to the difference of level
between the surface of water in the reservoir, and the part where it strikes the wheel, added to that of an overshot, whose height is equal to the difference of level between the part where it strikes the wheel and the level of the tail water.

When the fall of water is between 4 and 10 feet, a breast wheel should be erected, provided there be enough of water; an undershot should be used when the fall is below 4 feet, and an overshot wheel when the fall exceeds 10 feet. Also, when the fall exceeds 10 feet, it should be divided into two, and two breast wheels be erected upon it.

Table for breast wheels.

					¥\% 			
	Feet.	Feet.	Feet.	Feet.	Sec.	1bs. avr.	Cubic ft.
1	$0 \cdot 17$	198.6	0.75	$2 \cdot 18$	1.92	$4 \cdot 80$	1536	$74 \cdot 30$
2	0.34	$35 \cdot 1$	1.50	$3 \cdot 09$	2.72	$6 \cdot 80$	1084	$37 \cdot 15$
3	0.51	$12 \cdot 7$	$2 \cdot 26$	3.78	$3 \cdot 33$	$8 \cdot 32$	886	$24 \cdot 77$
4	0.69	$6 \cdot 2$	3.01	$4 \cdot 36$	$3 \cdot 84$	$9 \cdot 60$	762	18.57
5	0.86	3.57	$3 \cdot 76$	4.88	$4 \cdot 28$	10.70	680	$14 \cdot 86$
6	1.03	$2 \cdot 25$	4.51	$5 \cdot 35$	$4 \cdot 70$	11.76	626	$12 \cdot 38$
7	1.20	$1 \cdot 53$	$5 \cdot 26$	$5 \cdot 77$	$5 \cdot 08$	12.70	581	$10 \cdot 61$
8	$1 \cdot 37$	$1 \cdot 10$	$6 \cdot 02$	$6 \cdot 17$	$5 \cdot 43$	13.58	543	$9 \cdot 29$
9	1.54	$0 \cdot 81$	6.77	6.55	$5 \cdot 76$	14.40	512	$8 \cdot 26$
10	1.71	0.77	$7 \cdot 52$	6.90	6.07	$15 \cdot 18$	486	$7 \cdot 43$

It is evident, from the preceding table, that when the height of the fall is less than 3 feet, the depth of the float-boards is so great, and their breadth so small, that the breast wheel cannot well be employed; and, on the contrary, when the height of the fall approaches to 10 feet, the depth of the float-boards is too small in proportion to their breadth; these two extremes, therefore, must be avoided in practice. The ninth column contains the quantity of water necessary for impelling the wheel; but the total cxpense of water should always exceed this by the quantity, at least, which escapes between the mill-course and the sides and extremities of the float-boards.

THE OVERSHOT WHEEL.

The ratio between the power and effect of an overshot wheel, is as 10 to $6 \cdot 6$, when the water is delivered above the apex of the wheel, and is computed from the whole height of the fall; and as 10 to 8 when computed from the height of the wheel only; consequently, the quantity of water expended per second, to produce a mechanical effect equal to that of the aforesaid estimated labour of an active man, is, in the first instance, $\mathbf{1 5 . 1 5} \mathrm{lbs}$., and in the second instance, 12.5 lbs .

Hence, the effect of the overshot wheel, under the same circum-
stances of quantity and fall, is, at a medium, double that of the undershot.

The velocity of the periphery of an overshot wheel should be from $6 \frac{1}{2}$ to $8 \frac{1}{2}$ feet per second.

The higher the wheel is, in proportion to the whole descent, the greater will be the effect.

And from the equality of the ratio between the power and effect, subsisting where the constructions are similar, we must infer that the effects, as well as the powers, are as the quantities of water and perpendicular heights multiplied together respectively.

Working machinery by hydraulic pressure.-The vertical pressure of water, acting on a piston, for raising weights and driving machinery, is coming into use in many places where it can be advantageously applied. At Liverpool, Newcastle, Glasgow, and other places, it is applied to the working of cranes, drawing coal-wagons, and other purposes requiring continuous power. The presence of a natural fall, like that of Golway, Ireland, which can be conducted to the engine through pipes, is, of course, the most economical situation for the application of such power ; in other situations, artificial power must be used to raise the water, which, even under this disadvantage, may, from its readiness and simplicity of action, be often serviceably employed. Wherever the contiguity of a steam engine would be dangerous, or otherwise objectionable, a water engine would afford the means of receiving and applying the power from any required distance, precautions being taken against the action of frost on the fluid.

Required the horse power of a centre discharging Turbine water wheel, the head of water being 25 feet, and the area of the opening 400 inches.

The following table shows the working horse power of both the inward and outward discharging Turbine water wheels; they are calculated to the square inch of opening.

Centre Discharging ${ }_{\text {Turbine. }}$		Outward Discharging Turbine.	Centre Discharging Turbine.		Outward Discharg- ing Turbine.
Head.	Horse Power.	Horse Power.	Head.	Horse Power.	Horse Power.
3	. 00821	-012611	22	-19523	-339972
4	. 01483	$\cdot 025145$	23	- 20787	-364182
5	- 02137	-038124	24	-22315	-384615
6	- 02685	-045618	25	-23667	-412013
7	. 03414	$\cdot 058314$	26	-25125	-437519
8	- 04198	$\cdot 074413$	27	-26482	-455698
9	. 05206	-089025	28	-28135	-484427
10	. 05883	-106215	29	-29563	-510833
11	. 06921	-118127	30	-30817	-537721
12	. 07851	-135610	31	. 32316	-561425
13	-08882	-150638	32	- 33617	-587148
14	-10054	-173158	33	- 34823	-611013
15	-11002	-192234	34	- 36154	-638174
16	-12093	-211592	35	- 37123	-665164
17	-13196	- 231161	36	-69874	-692156
18	-14275	-257145	37	-40118	. 726148
19	- 15613	. 273325	38	-41762	-764115
20	-16927	-296618	39	-42156	-804479
21	-18109	$\cdot 317167$	40	$\cdot 43718$	-849814

Opposite 25 in the column marked "Head," the working horse power to the square inch is found to be 25667 , which, multiplied by 400 , gives $94 \cdot 668$, the horse power required.

What is the working horse power of an outward discharging Turbine, under the effective head of 20 feet; the area of all the openings being 325 square inches. In the table, opposite 20, we find $\cdot 296618$, then $296618 \times 325=96 \cdot 4$, the required horse power.

What is the number of revolutions a minute of an outward discharging Turbine wheel, the head being 19 feet and the diameter of the wheel 60 inches?

In the table for the outward discharging wheel, opposite 19, and under 60 inches, we find 97 , the number of revolutions required.

What is the number of revolutions a minute of an inward discharging Turbine, under a head of 21 feet, the diameter being 72 inches?

In the table for the inward discharging wheel, opposite 21 feet, and under 72 inches, we find 95 , the number of revolutions a minute.

These Turbine tables were calculated by the author's brother, the late John O'Byrne, C. E., who died in New York, on the 6th of A pril, 1851.

Outward discharging Turbine.

気萢	Diameter in Inches.												
	24	30	36	42	48	54	60	66	72	78	84	90	96
3	100	80	70	60	52	42	37	35	32	30	28	27	21
4	111	89	73	63	57	49	44	41	37	34	32	30	28
5	123	100	82	71	62	55	51	45	42	38	37	33	31
6	135	109	91	78	68	62	55	50	45	42	38	37	36
7	146	118	96	84	73	65	59	53	49	47	42	40	38
8	156	125	105	90	79	71	63	57	52	49	43	42	39
9	166	133	111	95	83	75	67	61	57	50	49	45	41
10	175	140	117	100	87	79	70	64	59	55	51	47	46
11	183	147	122	105	92	81	74	67	62	57	54	49	48
12	191	156	127	110	96	85	79	70	64	59	55	53	51
13	200	159	133	115	100	89	81	73	67	62	57	55	53
14	206	166	138	118	104	92	83	75	69	64	59	57	55
15	213	171	142	122	107	95.	86	78	72	66	61	58	56
16	222	177	148	126	111	98	89	82	74	69	64	59	57
17	227	182	152	131	115	101	91	83	77	71	66	62	59
18	234	187	156	134	117	105	94	85	78	73	67	63	61
19	238	193	161	138	120	107	97	88	81	74	69	64	63
20	247	197	164	141	124	110	99	90	84	76	71	66	64
21	252	202	168	145	126	114	101	92	85	78	73	68	65
22	259	208	172	149	129	115	105	94	87	80	74	'69	67
23	263	212	176	151	133	119	106	96	89	84	77	72	70
24	270	216	180	155	135	120	109	98	92	85	78	74	72
25	277	222	184	158	138	123	111	101	93	86	80	76	74
26	282	226	189	161	141	125	113	103	95	87	81	78	76
27	286	229	191	165	143	129	116	105	97	88	83	79	77
28	291	233	195.	167	146	130	118	107	99	91	85	80	78
29	297	237	199	170	149	132	119	109	100	92	86	81	80
30	303	241	202	174	152	135	122	111	102	94	88	82	81

Inward discharging Turbine.

	Diameter in inches.												
氙苞	24	30	36	42	48	54	60	66	72	78	Ot	90	96
3	111	86	74	62	54	48	47	40	36	32	31	30	27
4	125	96	83	70	62	55	51	45	41	37	36	34	31
5	141	112	94	78	69	61	55	50	46	43	40	37	36
6	152	122	101	86	76	67	62	55	51	47	43	42	38
7	166	131	108	93	82	72	65	60	54	51	47	44	42
- 8	175	139	116	99	87	76	71	63	57	54	49	47	45
9	186	149	123	06	93	81	74	68	63	57	53	51	47
10	195	156	129	111	99	86	78	71	66	61	56	52	49
11	208	167	136	117	102	91	82	74	68	63	58	56	52
12	217	169	142	122	107	97	85	78	71	66	61	57	54
13	221	178	148	127	112	99	89	82	74	69	64	61	56
14	231	184	153	133	116	104	92	85	76	71	66	62	58
15	238	191	159	136	119	107	95	87	80	73	68	64	61
16	245	198	165	144	123	111	99	90	83	76	71	66	63
17.	252	203	168	148	127	114	102	92	85	78	73	68	64
18	269	209	173	150	132	116	104	95	87	82	75	69	66
19	267	215	176	153	134	120	108	98	89	83	77	72	67
20	276	222	183	157	138	122	111	101	93	85	79	74	69
21	288	226	186	162	141	125	113	103	95	86	80	75	71
22	290	230	192	164	145	129	116	107	96	89	83	77	73
23	299	235	196	167	146	133	118	109	97	91	84	79	74
24	303	240	201	171	151	135	122	111	101	93	86	80	75
25	310	247	206	176	155	138	123	112	104	96	88	82	76
26	314	248	210	180	157	139	126	115	106	97	90	84	79
27	319	254	213	183	162	142	128	117	108	99	92	85	80
28	327	261	218	186	164	146	129	119	109	102	93	87	82
29	333	265	221	189	166	148	133	121	111	103	95	89	83
30	336	271	224	193	168.	151	136	124	114	105	97	90	85

WINDMILLS.

1. The velocity of windmill sails, whether unloaded or loaded, so as to produce a maximum effect, is nearly as the velocity of the wind, their shape and position being the same.
2. The load at the maximum is nearly, but somewhat less than, as the square of the velocity of the wind, the shape and position of the sails being the same.
3. The effects of the same sails, at a maximum, are nearly, but somewhat less than, as the cubes of the velocity of the wind.
4. The load of the same sails, at the maximum, is nearly as the squares, and their effect as the cubes of their number of turns in a given time.
5. When sails are loaded so as to produce a maximum at a given velocity, and the velocity of the wind increases, the load continuing the same,-1st, the increase of effect, when the increase of the velocity of the wind is small, will be nearly as the squares of those velocities; 2dly, when the velocity of the wind is double, the effects will be nearly as 10 to $27 \frac{1}{2}$; but, 3 dly , when the velocities compared are more than double of that when the given load produces a maximum, the effects increase nearly in the simple ratio of the velocity of the wind.
6. In sails where the figure and position are similar, and the velocity of the wind the same, the number of turns, in a given time, will be reciprocally as the radius or length of the sail.
7. The load, at a maximum, which sails of a similar figure and position will overcome, at a given distance from the centre of motion, will be as the cube of the radius.
8. The effects of sails of similar figure and position are as the square of the radius.
9. The velocity of the extremities of Dutch sails, as well as of the enlarged sails, in all their usual positions when unloaded, or even loaded to a maximum, is considerably greater than that of the wind.

The results in Table 1 are for Dutch sails, in their common position, when the radius was 30 feet. Table 2 contains the most efficient angles.

				Angle with	Anglo of weather.
3	2 miles	$0 \cdot 666$	1	72°	18°
	2 miles	0.66	2	71	19
5	4 miles	$0 \cdot 800$	3	72	18 middle
	4 miles		4	74	
6	5 miles	0.833	5	771 83	12 ${ }^{\frac{1}{2}}$

Supposing the radius of the sail to be 30 feet, then the sail will commence at $\frac{1}{6}$, or 5 feet from the axis, where the angle of inclination will be 72 degrees; at $\frac{2}{6}$, or 10 feet from the axis, the angle will be 71 degrees, and so on.

Results of Experiments on the effect of Windmill Sails in grind-
ing corn.- Вy М. Сошомв. ing corn.-By M. Coulomb.
A windmill, with four sails, measuring 72 feet from the extremity of one sail to that of the opposite one, and 6 feet 7 inches wide, or a little more, was found capable of raising 1100 lbs. avoirdupois 238 feet in a minute, and of working, on an average, eight hours in a day. This is equivalent to the work of 34 men, 30 square feet of canvas performing about the daily work of a man.

When a vertical windmill is employed to grind corn, the millstone makes 5 revolutions in the same time that the sails and the arbor make 1.

The mill does not begin to turn till the velocity of the wind is about 13 feet per second.

When the velocity of the wind is 19 feet per second, the sails make from 11 to 12 turns in a minute, and the mill will grind from 880 to 990 lbs. avoirdupois in an hour, or about 22,000 lbs. in 24 hours.

THE APPLICATION OF LOGARITHMS.

The practice of performing calculations by Logarithms is an exercise so useful to computers, that it requires a more particular explanation than could have been properly given in that part of the work allotted to Arithmetic.

A few of the various applications of logarithms, best suited to the calculations of the engineer and mechanic, have therefore been collected, and are, with other matter, given, in hopes that they will come into general use, as the certainty and accuracy of their results can be more safely relied upon and more easily obtained than with common arithmetic.

By a slight examination, the student will perceive, in some degree, the nature and effect of these calculations; and, by frequent exercise, will obtain a dexterity of operation in every case admitting of their use. He will also more readily penetrate the plans of the different devices employed in instrumental calculations, which are rendered obscure and perplexing to most practical men by their ignorance of the proper application of logarithms.

Logarithms are artificial numbers which stand for natural numbers, and are so contrived, that if the logarithm of one number be added to the logarithm of another, the sum will be the logarithm of the product of these numbers; and if the logarithm of one number be taken from the logarithm of another, the remainder is the logarithm of the latter divided by the former; and also, if the logarithm of a number be multiplied by $2,3,4$, or 5 , \&c., we shall have the logarithm of the square, cube, \&c., of that number; and, on the other hand, if divided by $2,3,4$, or 5 , \&c., we have the logarithm of the square root, cube root, fourth root, \&c., of the proposed number ; so that with the aid of logarithms, multiplication and division are performed by addition and subtraction; and the raising of powers and extracting of roots are effected by multiplying or dividing by the indices of the powers and roots.

In the table at the end of this work, are given the logarithms of the natural numbers, from $1 \cdot$ to 1000000 by the help of differences; in large tables, only the decimal part of the logarithm is given, as the index is readily determined; for the index of the logarithm of any number greater than unity, is equal to one less than the number of figures on the left hand of the decimal point; thus,

$$
\begin{array}{r}
\text { The index of } 12345 \cdot \text { is } 4 \cdot \\
\hline \quad 1234 \cdot 5-3 \cdot \\
\hline-123 \cdot 45-2 \\
\hline-12 \cdot 345-1 \\
\hline \\
\hline
\end{array}
$$

The index of any decimal fraction is a negative number equal to one and the number of zeros immediately following the decimal point; thus,

The index of $\cdot 00012345$ is $-4 \cdot$ or $\overline{4}$.
.0012345
is $-3 \cdot$ or $\overline{3} \cdot$
.012345
:---

Because the decimal part of the logarithm is always positive, it is better to place the negative sign of the index above, instead of before it; thus; $\overline{3} \cdot$ instead of -3 . For the log. of $\cdot 00012345$ is better expressed by $\overline{4} \cdot 0914911$, than by $-4 \cdot 0914911$, because only the index is negative-i. e., 4 is negative and 0914911 is positive, and may stand thus, $-4 \cdot+\cdot 0914911$.

Sometimes, instead of employing negative indices, their complements to 10 are used:

$$
\begin{gathered}
\text { for } \overline{4} \cdot 0914911 \text { is substituted } 6 \cdot 0914911 \\
-\overline{3} \cdot 0914911 \\
-\overline{2} \cdot 0914911 \\
\& c .0914911 \\
8.0914911
\end{gathered}
$$

When this is done, it is necessary to allow, at some subsequent stage, for the tens by which the indices have thus been increased.

It is so easy to take logarithms and their corresponding numbers out of tables of logarithms, that we need not dwell on the method of doing so, but proceed to their application.

MULTIPLICATION BY LOGARITHMS.

Take the logarithms of the factors from the table, and add them together; then the natural number answering to the sum is the product required: observing, in the addition, that what is to be carried from the decimal parts of the logarithms is always positive, and must therefore be added to the positive indices; the difference between this sum and the sum of the negative indices is the index of the logarithm of the product, to which prefix the sign of the greater.

This method will be found more convenient to those who have only a slight knowledge of logarithms, than that of using the arithmetical complements of the negative indices.

1. Multiply $37 \cdot 153$ by $4 \cdot 086$, by logarithms.

Nos.	Logs.
$37 \cdot 153$.	5699939
$4 \cdot 086$.	. $0 \cdot 6112984$
Prod. 151.8071	. $2 \cdot 1812923$

2. Multiply $112 \cdot 246$ by $13 \cdot 958$, by logarithms.

3. Multiply $46 \cdot 7512$ by $\cdot 3275$, by logarithms.

Nos.	Logs.
46-7512..	.1-6697928
- 3275	. $\overline{1} \cdot 5152113$
Prod. 15.31102.	.1-1850041

Here the +1 that is to be carried from the decimals, cancels the -1 , and consequently there remains 1 in the upper line to be set down.
4. Multiply 37816 by $\cdot 04782$, by logarithms.

Nos.	Logs.
-37816	. $\overline{1} \cdot 5776756$
-04782.	. $\stackrel{\rightharpoonup}{ } \cdot 6796096$
Prod. 0	. $\overline{2} \cdot 2572852$

Here the +1 that is to be carried from the decimals, destroys the -1 in the upper line, as before, and there remains the -2 to be set down.

5 . Multiply $3 \cdot 768,2 \cdot 053$, and $\cdot 007693$, together.

N	Logs.
3.768.	$0 \cdot 5761109$
$2 \cdot 053$..)•3123889
-007693.	. $\overline{3} 8860957$
Prod. 0	. $\overline{2} \cdot 7745955$

Here the +1 that is to be carried from the decimals, when added to -3 , makes -2 to be set down.
6. Multiply $3 \cdot 586,2 \cdot 1046, \cdot 8372$, and $\cdot 0294$, together.

Nos.	Logs.
$3 \cdot 586$.	$0 \cdot 5546103$
$2 \cdot 1046$	0.3231696
-8372	. $\overline{1} \cdot 9228292$
-0294	. $\overline{2} 4683473$
Prod.	. $\overline{1} 2689564$

Here the +2 that is to be carried, cancels the -2, and there remains the -1 to be set down.

division by logarithms.

From the logarithm of the dividend; subtract the logarithm of the divisor; the natural number answering to the remainder will be the quotient required.

Observing, that if the index of the logarithm to be subtracted is positive, it is to be counted as negative, and if negative, to be considered as positive; and if one has to be carried from the decimals, it is always negative: so that the index of the logarithm of the quotient is equal to the sum of the index of the dividend, the index
of the divisor with its sign changed, and -1 when 1 is to be carried from the decimal part of the logarithms.

1. Divide $4768 \cdot 2$ by $36 \cdot 954$, by logarithms.

Nos.	Logs.
$4768 \cdot 2$.	$3 \cdot 6783545$
36.954	$1 \cdot 5676615$
Quot. 129.03	$2 \cdot 1106930$

2. Divide $21 \cdot 754$ by $2 \cdot 4678$, by logarithms.

3. Divide $4 \cdot 6257$ by $\cdot 17608$, by logarithms.

Here the -1 in the lower index, is changed into +1 , which is then taken for the index of the result.
4. Divide $\cdot 27684$ by $5 \cdot 1576$, by logarithms.

Nos	Logs.
- 27684	$\overline{1} \cdot 4422288$
$5 \cdot 1576$	$0 \cdot 7124477$

Here the 1 that is to be carried from the decimals, is taken as -1 , and then added to -1 in the upper index, which gives -2 for the index of the result.

5 . Divide 6.9875 by $\cdot 075789$, by logarithms.

Here the 1 that is to be carried from the decimals, is added to -2 , which makes -1 , and this put down, with its sign changed, is +1 .
6. Divide $\cdot 19876$ by $\cdot 0012345$, by logarithms.

Nos.	Logs.
-19876..	-1-2983290
-0012345.	. ${ }^{-0914911}$
Quot. 161.0043	2-2068379

Here -3 in the lower index, is changed into +3 , and this added to 1 , the other index, gives $+3-1$, or 2 .

PROPORTION; OR, THE RULE OF THREE, BY LOGARITHMS.

From the sum of the logarithms of the numbers to be multiplied together, take the sum of the logarithms of the divisors: the remainder is the logarithm of the term sought.

Or the same may be performed more conveniently, for any single proportion, thus:-Find the complement of the logarithm of the first term, or what it wants of 10 , by beginning at the left hand and taking each of the figures from 9 , except the last figure on the right, which must be taken from 10 ; then add this result and the logarithms of the other two figures together: the sum, abating 10 in the index, will be the logarithm of the fourth term.

1. Find a fourth proportional to $37 \cdot 125,14 \cdot 768$, and $135 \cdot 279$, by logarithms.

> Log. of $37 \cdot 125 .1 \cdot 5696665$
> Complement8-4303335
> Log. of $14 \cdot 768 .1 \cdot 1693217$
> Log. of $135 \cdot 279$..........................2•1312304
> Ans. 53•8128..............................1•7308856
2. Find a fourth proportional to $\cdot 05764, \cdot 7186$, and $\cdot 34721$, by logarithms.

$$
\begin{aligned}
& \text { Log. of } 05764 \text {.......................... } \overline{2} \cdot 7607240 \\
& \text { Complement..............................11-2392760 } \\
& \text { Log. of } 7186 . \overline{1} \cdot 8564872 \\
& \text { Log. of } 34721 . \text { 1. } 5405922 \\
& \text { Ans. } 4 \cdot 32868 \text {............................ } 0 \cdot 6363554
\end{aligned}
$$

3. Find a third proportional to $12 \cdot 796$ and $3 \cdot 24718$, by logarithms,

Lo	1-1070742
Complement	$8 \cdot 8929258$
Log. of $3 \cdot 24718$	0.5115064
Log. of $3 \cdot 24718$. $0 \cdot 5115064$

Ans. 8240216 $\cdot 9159386$
INVOLUTION; OR, THE RAISING OF POWERS, BY LOGARITHMS.
Multiply the logarithm of the given number by the index of the proposed power; then the natural number answering to the result will be the power required. Observing, if the index be negative, the index of the product will be negative; but as what is to be carried from the decimal part will be affirmative, therefore the difference is the index of the result.

1. Find the square of $2 \cdot 7568$, by logarithms.

Log. of $2 \cdot 7568 \ldots .0 \cdot 4404053$
Square 7•5999470•8808106
2. Find the cube of $7 \cdot 0851$, by logarithms.

$$
\text { Log. of } 7 \cdot 0851 .0 \cdot 8503460 ~
$$

Cube 355•6625.............................2•5510380
Therefore $355 \cdot 6625$ is the answer.
3. Find the fifth power of $\cdot 87451$, by logarithms.
\qquad
Fifth power 5114695
.17088240
Where 5 times the negative index $\overline{1}$, being -5 , and +4 to carry, the index of the power is $\overline{1}$.
4. Find the 365 th power of $1 \cdot 0045$, by logarithms.

Log. of 1.0045
.0 .0019499
365

evolution; or, the extraction of roots, by logarithms.
Divide the logarithm of the given number by 2 for the square root, 3 for the cube root, \&c., and the natural number answering to the result will be the root required.

But if it be a compound root, or one that consists both of a root and a power, multiply the logarithm of the given number by the numerator of the index, and divide the product by the denominator, for the logarithm of the root sought.

Observing, in either case, when the index of the logarithm is negative, and cannot be divided without a remainder, to increase it by such a number as will render it exactly divisible; and then carry the units borrowed, as so many tens, to the first figure of the decimal part, and divide the whole accordingly.

1. Find the square root of $27 \cdot 465$, by logarithms.
Log. of $27 \cdot 465$
2) $1 \cdot 4387796$

Root 5•2407 $\cdot 7193898$
2. Find the cube root of $35 \cdot 6415$, by logarithms.
Log. of $35 \cdot 6415$.
3) $1 \cdot 5519560$
Root 3•29093 $\cdot 5173186$
3. Find the fifth root of $7 \cdot 0825$, by logarithms.

Log. of 7.0825....................... 5$) \underline{0.8501866}$
Root 1•479235............................... 1700373

4 . Find the 365 th root of $1 \cdot 045$, by logarithms.
Log. of $1 \cdot 045$.
365) $0 \cdot 0191163$
Root $1 \cdot 000121$
$.0 \cdot 0000524$
5. Find the value of $(\cdot 001234)^{\frac{2}{3}}$, by logarithms.

$$
\begin{array}{r}
\text { Log. of } \cdot 001234 . \overline{3} \cdot 0913152 \\
3 \longdiv { 2 } \begin{array} { r }
{ \frac { 2 } { 6 \cdot 1 8 2 6 3 0 4 } }
\end{array}
\end{array}
$$

Ans. 00115047 $\overline{2} \cdot 0608768$
Here the divisor 3 being contained exactly twice in the negative index -6 , the index of the quotient, to be put down, will be -2 .
6. Find the value of $(\cdot 024554)^{\frac{3}{2}}$, by logarithms.

> Log. of 024554 $\cdot 3901223$ 3
> Ans. $00384754 . \overline{3} \cdot 5851834$

Here, 2 not being contained exactly in $-5,1$ is added to it, which gives -3 for the quotient; and the 1 that is borrowed being carried to the next figure makes 11, which, divided by 2, gives - 5851834 for the decimal part of the logarithm.

METHOD OF CALCULATING JHE LOGARITHM OF ANY GIVEN NUMBER, AND THE NUMBER CORRESPONDING TO ANY GIVEN LOGARITHM. DISCOVERED BY OLIVER BYRNE, THE AUTHOR OF THE PRESENT WORK.
The succeeding numbers possess a particular property, which is worth being remembered.

$$
\begin{aligned}
& \log .1 \cdot 371288574238542=0 \cdot 1371288574238542 \\
& \log .10 \cdot 00000000000000=1 \cdot 000000000000000 \\
& \text { log. } 237 \cdot 5812087593221=2 \cdot 375812087593221 \\
& \log .3550 \cdot 260181586591=3 \cdot 550260181586591 \\
& \text { log. } 46692 \cdot 46832877758=4 \cdot 669246832877758 \\
& \text { log. } 576045 \cdot 6934135527=5 \cdot 760456934135527 \\
& \text { log. } 6834720 \cdot 776754357=6.834720776754357 \\
& \text { log. } 78974890 \cdot 31398144=7 \cdot 897489031398144 \\
& \text { log. } 895191599 \cdot 8267852=8 \cdot 951915998267839 \\
& \text { log. } 9999999999 \cdot 999999=9 \cdot 999999999999999
\end{aligned}
$$

In these numbers, if the decimal points be changed, it is evident the logarithms corresponding can also be set down without any calculation whatever.
Thus, the log. of $137 \cdot 1288574238542=2 \cdot 1371288574238542$;
the log. of $35 \cdot 50260181586591=1 \cdot 550260181586591$;
$\log .002375812087593221=\overline{3} \cdot 375812087593221$;
log. $\cdot 0008951915998267852=\overline{4} \cdot 951915998267852$;
and so on in similar cases, since the change of the decimal point in a number can only affect the whole number of its logarithm.
These numbers whose logarithms are made up of the same digits will be found extremely useful hereafter. We shall next give a simple method of multiplying any number by any power of 11, 101, 1001, 10001, 100001, \&c.
This multiplication is performed by the aid of coefficients of a binomial raised to the proposed power.
$(x+y)^{1}=x+y$, the coefficients are 1,1 .
$(x+y)^{2}=x^{2}+2 x y+y^{2}$, the coefficients are $1,2,1$.
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$, the coefficients are $1,3,31$.
The coefficients of $(x+y)^{4}$ are 1, 4, 6, 4, 1 .

-	-	$(x+y)^{5}-1,5,10,10,5,1$.
-	-	$(x+y)^{6}-1,6,15,20,15,6,1$.
-	-	$(x+y)^{7}-1,7,21,35,35,21,7,1$.
-	-	$(x+y)^{8}-1,8,28,56,70,56,28,8,1$.
$x+1,9,36,84,126,126,84,36,9,1$.		

Let it be required to multiply 54247 by (101) ${ }^{6}$.
The number must be divided into periods of two figures when the nultiplier is 101 ; into periods of three figures when the multiplier s 1001; into periods of four figures when the multiplier is 10001 ; and so on.

$$
\begin{aligned}
& e \left\lvert\, \begin{array}{r|r|r|l|l|l}
a & c & b & a & \\
54 & 24 & 70 & 00 & 00 & \\
3 & 25 & 48 & 20 & 00 & a
\end{array}\right. \\
& 8137050 b 15 \\
& 108494 \text { c } 20 \\
& 814 d 15 \\
& 3 \text { e } 6
\end{aligned}
$$

$54247) \times(101)^{6}=\overline{5758428361}$, true to 10 places of figures.
This operation is readily understood, since the multipliers for the ith power are $1,6,15,20,15,6,1$; we begin at a, a period in adrance, and multiply by 6 ; then we commence at b, two periods in advance, and multiply by 15 ; at c, three periods in advance, and nultiply by 20 ; at d, four periods in advance (counting from the ight to the left), and multiply by 15 ; the period, e, should be nultiplied by 6 , but, as it is blank, we only set down the 3 carried rom multiplying d, or its first figure by 6 .
As it is extremely easy to operate with $1,5,10,10,5,1$, the nultipliers for the 5 th power, it may be more convenient first to nultiply the given number by $(101)^{5}$, and then by $(101)^{1}$; because, o multiply any number by 5, we have only to affix a cipher (or uppose it affixed) and to take the half of the result.
The above example, if worked in the manner just described, will stand as follows:

The truth of this is readily shown by common multiplication, but the process is cumbersome. However, for the sake of comparison, we shall in this instance multiply 54247 by (101) raised to the 6th power.

$$
\begin{gathered}
\frac{101}{\frac{101}{101}} \\
\frac{1010}{10201} \\
\frac{101}{10201} \\
\frac{102010}{1030301} \\
\frac{101}{1030301} \\
\frac{10303010}{104060301} \\
\frac{101}{104060401} \\
\frac{1040604010}{10510100501} \\
\frac{101}{10510100501} \\
\frac{105101005010}{2} \\
\frac{1061520150601}{54247}
\end{gathered}=(101)^{3} .
$$

which shows that the former process gives the result true to 10 places of figures, of which we shall add another example.

Multiply 34567812 by $(1001)^{8}$, so that the result may be true to 12 places of figures.

	 b a		
	345678120000	 1
	27654	24968.. a
		6790	...28.. b
		19	...56..c

345954759305 the required product.
The remaining multipliers, $70,56,28,8,1$, are not necessary in obtaining the first 12 figures of the product of 34567812 by 10001 in the 8th power.

As 28 and 56 are large multipliers, the work may stand thus

Result, $\stackrel{=}{=} 345954759305$ the same as before.
Perhaps this product might be obtained with greater ease by first multiplying 34567812 by (10001) ${ }^{5}$, and the product by (10001$)^{3}$; the operation will stand thus:

$345678120000 \ldots \ldots .1$
$172839060 \ldots \ldots .5$
$34568 \ldots \ldots 10$
$3 \ldots \ldots 10$
$345850093631=34567812 \times(10001)^{5}$.
$103755298 \ldots \ldots .3$
$10376 \ldots \ldots .3$

$345954759305=$ twelve places of the product of 34567812 by $(10001)^{5} \times(10001)^{3}=(34567812) \times(10001)^{8}$.

Although these methods are extremely simple, yet cases will occur, when one of them will have the preference.

Our next object is to determine the logarithms $1 \cdot 1 ; 1.01 ; 1.001$; $1 \cdot 0001 ; 1 \cdot 00001$; \&c.

It is well known that
log. $(1+n)=\mathrm{M}\left(n-\frac{1}{2} n^{2}+\frac{1}{3} n^{3}-\frac{1}{4} n^{4}+\frac{1}{5} n^{5}-\frac{1}{8} n^{6}+\& c.\right)$ M being the modulus, $=\cdot 432944819032618276511289$, \&c.

It is evident that when n is $\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000}$, \&c., the calculation becomes yery simple.

$$
\begin{aligned}
& \mathrm{M}=\cdot 4342944819032518 \\
& { }^{\frac{1}{2}} \mathrm{M}=-2171472409516259 \\
& { }_{\frac{1}{3}} \mathrm{M}=\cdot 1447648273010839 \\
& \frac{1}{4} \mathrm{M}=\cdot 1085736204758130 \\
& \mathrm{M}=\cdot 0868588963806504 \\
& M=\cdot 0723824136505420 \\
& \mathrm{M}=\cdot 0720420788433217 \\
& { }_{8}^{1} \mathrm{M}=\cdot 0542868102379065 \\
& { }_{\frac{1}{8}} \mathrm{M}=\cdot 0482549424336946 \\
& { }_{10}^{10} \mathrm{M}=\cdot 0434294481903252
\end{aligned}
$$

\&c. \&c., are constants employed to determine the logarithms of $11,101,1001,100001$, \&c.

To compute the log. of $1 \cdot 001$. In this case $n=\frac{1}{1000}$.

$$
\begin{aligned}
& +\frac{M}{1000}=\cdot 0004342944819033 \text { positive } \\
& -\frac{\frac{1}{2} \mathrm{M}}{(1000)^{2}}=\frac{.0000002171472410}{\cdot 0004340773346623} \text { negative } \\
& +\frac{\frac{1}{3} \mathrm{M}}{(1000)^{3}}=\frac{.0000000001447648}{.0004340774794271} \text { positive } \\
& -\frac{\frac{3}{4} \mathrm{M}}{(1000)^{4}}=\frac{.0000000000001086}{\cdot 0004340774793185} \text { negative } \\
& +\frac{\frac{1}{5} \mathrm{M}}{(1000)^{5}}=\frac{\cdot 0000000000000001}{\cdot 0004340774793186} \text { positive the } \mathrm{l}
\end{aligned}
$$

true to sixteen places.
It is almost unnecessary to remark, that, instead of adding and subtracting alternately, as above, the positive and negative terms may be summed separately, which will render the operation more concise.

Positive Terms. .0004342944819033	Negative Terms. -0000002171472410
1447648	1086
1	. 00000002171473496
$\begin{array}{r} +\quad 0004342945266682 \\ -\quad 000000217473496 \end{array}$	
-0004340774793186	001.

In a similar manner the succeeding logarithms may be obtained to almost any degree of accuracy.

Without further formality or paraphernalia, for it is presumed that such is not necessary, we shall commence operating, as the method can be acquired with ease, and put in a clearer point of view by proper examples.

Required the logarithm of 542470 , to seven places of decimals.

$57584284=6$ B $=\cdot 02592824$
1|7275
3
Take $57601562=3 \mathrm{D}=\cdot 00013028$.
From 57604569

$$
\begin{aligned}
& \text { 576) •••3|007 } \\
& \underline{2 \mid 880}=5 \mathrm{E}=\cdot 00002171 \\
& 1 / 27 \\
& \underline{1 \mid 5}=2 \mathrm{~F}=\cdot 00000087 \\
& \left.{ }^{1} 1\right|_{2} ^{2} \\
& 1 \mid 2=2 G=\cdot 00000009 \\
& \text {. } 02608119 \text { Take } \\
& \text { 5•76045693 From }
\end{aligned}
$$

Hence we have log. $542470=5 \cdot 73437574$, which is correct to seven decimal places.

6 B is written to represent 6 times the log. of $1 \cdot 01$.
The nearest number to 542470 , whose log. is composed of the same digits as itself, being $576045 \cdot 6934$, \&c., our object was to raise $542470 \cdot$ to $576045 \cdot 69$ by multiplying $542470 \cdot$ by some power $0:$ powers of $1 \cdot 1,1 \cdot 01,1 \cdot 001,1 \cdot 0001$, \&c.

It is here necessary to remark, that A is not employed, because the given number multiplied by $1 \cdot 1$, would exceed $576045 \cdot 69$; for a like reason C is omitted.

Again, when half the figures coincide, the process may be performed (as above) by common division; the part which coincides becoming the divisor; thus, in finding $5 \mathrm{E}, 576$ is divided into 3007, it goes 5 times, the E showing that there are five figures in each period at this step. For A, there is but one figure in each period; for B, there are two figures; for C, there are three figures in each period, and so on.

Let it be required to calculate the logarithm of $2785 \cdot 9$, true to seven places of decimals.

It will be found more convenient, in this instance, to bring the given number to $3550 \cdot 26018$, the log. of which is $3 \cdot 55026908$.

$$
\begin{aligned}
& 354289 \mid 08=5 \mathrm{~B}=\cdot 02160687 \\
& 170858
\end{aligned}
$$

Take $3549 \mid 9801=2 \mathrm{C}=\cdot 00086815$
From 35502602

355) ${ }^{\text {- }}$	$\left.\cdot \begin{aligned} & 2 \mid \\ & 2 \mid 485 \end{aligned} \right\rvert\,=7 \mathrm{E}=\cdot 00003040$
	$\begin{aligned} & \overline{316} \\ & 284 \end{aligned}=8 \mathrm{~F}=\cdot 00000347$
	$\begin{aligned} & 3 \mid 2 \\ & 3 \mid 2 \end{aligned}=9 \mathrm{G}=\cdot 00000039$
	Take -10529465
	From 3.55026018
	log. $2785 \cdot 9=3 \cdot 4449655$

At the Observatory at Paris, $g=9.80896$ metres, the second being the unit of time, what is the logarithm of $9 \cdot 80896$?

In this example, we shall bring $9 \cdot 80896$ to $9 \cdot 99999$, \&c.

	$98 \left\lvert\, \begin{array}{llllll} 0 & 8 & 9 & 6 & 0 & 0 \\ 9 & 8 & 0 & 0 & 0 \\ 0 & 9 & 6 & 6 & 0 & 0 \end{array}\right.$
	$99070496000=1 \mathrm{~B}=\cdot 0043213738$
	8,9163446
	356654
	832
	$99965705 / 32=9 \mathrm{C}=\cdot 0039066973$
	2998972
	300

$\overline{9999569804}=3 \mathrm{D}=\cdot 0001302818$ 399983

6
Take $\overline{9999969793}=4 \mathrm{E}=\cdot 0000173717$
From 1000000000
-•••30207
From which we have......... $3 \mathrm{~F}=\cdot 0000013029$
$2 \mathrm{H}=\cdot 0000000087$
$7 \mathrm{~J}=\cdot 0000000003$
Take $\cdot 0083770365$
From 1.0000000000
Log. $9 \cdot 80896=\cdot 9916229635$
As before observed, 9 C might have been obtained in the following manner :

A French metre is equal to $3 \cdot 2808992$ English feet, required the log. of $3 \cdot 2808992$.

The manner in which B 7 is obtained is worthy of remark: the multipliers being $1,7,21,35,35,21,7,1$, when 7 times the first line (commencing with the period marked a) is obtained, 21 times the same line (commencing with the period marked b) is determined by multiplying the 2 d line by 3 . If the 2 d line be again multiplied by 5 , we have the 4th line of the multiplier 35 ; but to multiply by 5 , we have only to take the half the product produced by multiplying by 7 , advancing the result one figure to the right. Hence, to find the result for 35 is almost as easy as to find the result for 5 .

But the object in this case being to bring the proposed number to 35502601815 , the process must be continued.

The 2 d (or 9) line is produced by beginning at a, but the multiplication may be performed by subtracting 3517568 from 35175680 ; the 36 line is produced by beginning at b, observing to carry from the preceding figure, making the usual allowance when the number is followed by $5,6,7,8$, or 9 . The 36 line may be produced by multiplying the 9 line by 4 , beginning one period more to the left. To multiply by 84 is not apparently so convenient, for $84 \times 352=$ $29 \mid 568$; and as only one figure of the period 568 is required, when the proper allowance is made, the result becomes $29!6$.

But, since 84 is equal to $36 \times 2 \frac{1}{3}$, we have only to multiply the 36 line by 2 , and add $\frac{1}{3}$ of it; with such management, the work will stand thus:-

$$
\begin{aligned}
& 351756|801| 8=\mathrm{B} \mathrm{7} \text {, as before } \\
& 31658112=9 \text { times } \\
& \text { 12|663 } 2=36 \text { times } \\
& \left.\begin{array}{r}
243=72 \text { times } \\
42=12 \text { times }
\end{array}\right\}=84 \text { times } \\
& \overline{3549353058}=\mathbf{C} 9
\end{aligned}
$$

This amounts to very little more than adding the above numbers together.

Many other contractions will suggest themselves, when the mulpliers are large: thus, to multiply any number 57837 by 9 , as alluded to above, is easily effected, by the following well-known process:-Subtract the first figure to the right from 10, the second from the first, the third from the second, and so on.

Thus, $57837 \times 9=\left\{\begin{array}{l}578370 \ldots \text { ten times } \\ \frac{57837 \ldots \text { once }}{520533 \ldots \text { nine times }}\end{array}\right.$

Such simple observations are to be found in every book on mental arithmetic, and therefore require but little attention here.

The whole work of the previous example will stand thus:-

$$
32|80| 8992 \mid 00
$$

$$
\begin{aligned}
& 229662944 \\
& 6889888 \\
& 11 \mid 4831 \\
& 1148+7
\end{aligned}
$$

$\mathrm{C} 9=3549 \left\lvert\, \begin{array}{llllll}3 & 5 & 3 & 0 & 5 & 8 \\ 7 & 0 & 9 & 8 & 7 \\ 7 & 1 \\ 3 & 5\end{array}=\cdot 0039066973=9 \mathrm{C}\right.$
D $2=3550062964=\cdot 0000868546=2 \mathrm{D}$
177503
4
Take E $5=3550240471=\cdot 0000217146=5 \mathrm{E}$
From 3550260182

3550	19711
F 5	$17750=\cdot 0000021715=5 \mathrm{~F}$
	1961
G 5	$1775=\cdot 0000002172=5 \mathrm{G}$
	186
H 5	$178=\cdot 0000000217=5 \mathrm{H}$

I 2

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
8 \\
7
\end{array}=\cdot 0000000009=I 2\right. \\
& \left.\begin{array}{l}
1 \\
1
\end{array} \right\rvert\,=\cdot 0000000001=\mathrm{J} 3 \\
& \text { Take -0342672944 } \\
& \text { From 3•5502601816 } \\
& \text { Log. } 3280 \cdot 8992=3 \cdot 5159928972 \\
& \therefore \text { log. } 3 \cdot 2808992=0.5159928972 \text {. }
\end{aligned}
$$

J 3

The constant sidereal year consists of $365 \cdot 25636516$ days; what is the \log. of this number?

In this case it is better to bring the constant 35502601816 to 36525636516 , instead of bringing the given number to the constant, as in the former examples.
$35|50| 26 \mid 0$

$$
\begin{aligned}
& \text { В } 2=362|162| 041 \mid 12=\cdot 0086427476=2 \mathrm{~B} \\
& 289729633 \\
& 1014054 \\
& 20 \mid 28
\end{aligned}
$$

$\mathrm{C} 8=3650[6949827=\cdot 0034726298=8 \mathrm{C}$ 18253475 3651
Take D $5=\overline{36525206953}=\cdot 0002171364=5 \mathrm{D}$
From 36525636516

$36525 \cdot 2)$	429563
E1 $=$	$365252=\cdot 0000043429=1 \mathrm{E}$
	64311
F1 =	$36525=\cdot 0000004343=1 \mathrm{~F}$
	27786
G7 7 =	$25568=\cdot 0000003040=7 \mathrm{G}$
	2218
H $6=$	$2191={ }^{\circ} 0000000261=6 \mathrm{H}$
I 0	27
J $7=$	$25=\cdot 0000000003=7 \mathrm{~J}$
	.0123376214

Hence, log. $3652 \cdot 5636516=3 \cdot 5625978030$

$$
\therefore \quad \log .365 \cdot 25636516=2 \cdot 562597803 .
$$

M. Regnault determined with the greatest care the density of mercury to be 13.59593 at the temperature 0°, centigrade. It is required to calculate the log. of 13.59593, to eight places of decimals.

In this case it is better to bring the given number to the constant 1371288574. $135959 \mid 300$

$$
\begin{aligned}
& \begin{array}{r}
1087674 \\
3807 \\
1 \\
8
\end{array} \\
& \mathrm{C} 8=1370 \begin{array}{llll}
50788 \\
685 & 5 & 2 \\
6 & 5
\end{array}=-003472630=8 \mathrm{C}
\end{aligned}
$$

14
Subtract D $5=\overline{137119328}=\cdot 000217136=5 \mathrm{D}$
From

$$
\begin{aligned}
& \frac{137128857}{9529}=\cdot 000026058=\mathrm{E} 6 \\
& \mathrm{E} 6=\frac{8227}{1302} \\
& \mathrm{~F} 9=12 \frac{34}{68}=\cdot 000003909=\mathrm{F} 9 \\
& \mathrm{H} 5=\quad \underline{69}=\frac{000000022}{0.003719755}=\mathrm{H} 5
\end{aligned}
$$

Take - 003719755
From $\cdot 137128857$

$$
\begin{aligned}
\log .1 \cdot 359593 & =. \cdot 133409102 \\
\therefore \log \cdot 13 \cdot 59593 & =1 \cdot 133409102 .
\end{aligned}
$$

TO DETERMINE THE NUMBER CORRESPONDING TO A GIVEN LOGARITHM.
This problem has been very much neglected-so much so, that none of our elementary books ever allude to a method of computing the number answering to a given logarithm. When an operation is performed by the use of logarithms, it is very seldom that the resulting logarithm can be found in the table; we have, therefore, to find the nearest less logarithm, and the next greater, and correct them by proportion, so that there may be found an intermediate number that will agree with the given logarithm, or nearly so. But although the proportional parts of the difference abridge this process, we can only find a number appertaining to any logarithm to seven places of figures when using our best modern tables. As, however, the tabular logarithms extend only to a degree of approximation, fixed generally at seven decimal places, all of which, except those answering to the number 10 and its powers, err, either in excess or defect, the maximum limit of which is $\frac{1}{2}$ in the last decimal, and since both errors may conspire, the 7th figure cannot be depended on as strictly true, unless the proposed logarithm falls between the limits of log. 10000 and $\log .22200$.

Indubitably we are now speaking of extreme cases, but since it is not an unfrequent occurrence that some calculations require the most rigid accuracy, and many resulting logarithms may be extended beyond the limits of the table, this subject ought to have a place in a work like the present. It is not part of the present design to enter into a strict or formal demonstration of the following mode of finding the number corresponding to a given logarithm, as the operation will be fully explained by suitable examples.

What number corresponds to the logarithm $3 \cdot 4449555$?
The next less constant log. to the one proposed is $2 \cdot 37581209$, or rather, $3 \cdot 37581209$, when the characteristic or index is increased by a unit.

First from take	$\begin{aligned} & 3 \cdot 44496555 \\ & 3 \cdot 37581209 \end{aligned}$
	$\cdot 06915346$
	-04139269
	-02776077
	$\cdot 02592824$
	. . 183253
	173631
	. . 9622
	8685
 937

Secondly.
$2 \mid 37581209$ constant
23758121 = A 1
261339330

When the index of this \log. is reduced by a unit, the nearest next less constant is $4 \cdot 66924683$.

From 4.73437574
Take $4 \cdot 66924683$

6512891	
	4139269......... 1
	. 2373622
	2160687........ 5
	- 212035
	173631.
	39304
	39085......... 9

219 There is neither the equal of 217......... 5 F this number, nor a .${ }^{2}$......... 0 G less, obtainable from $\underline{2} \ldots \ldots \ldots 4 \mathrm{H} \underset{\text { omitted. }}{\mathrm{E}, \therefore \mathrm{E} 0 \text {, or } \mathrm{E} \text {, is }}$
Then, 466924683

$\overline{542470006}$
$\therefore 542470 \cdot 006$ is the number whose logarithm is $5 \cdot 73437574$.

Had the given logarithm represented a decimal with a positive index, the required number would be $0: 000054247$, \&c.; or if written with a negative index, as $\overline{5} \cdot 73437574$, the result would be the same, for the characteristic $\overline{5}$, shows how many places the first significant figure is below unity.

Required the number corresponding to log. $2 \cdot 3727451$.
The constant 100000000 is the one to be employed in this case. 1.3727451 the given log. minus 1 in the index. $1 \cdot 0000000$

- 3727451
3725342......... 9 A
.. 2109
1737......... 4 D

372
3478 E
.... 25

22........ 5 F
3
3........ 7

1000000000 Constant. 9000000 3600000 840000 126000 12600 840
36
93579485
9432
94

$\therefore 235 \cdot 90949$ is the required number, and the seconds in the diurnal apparent motion of the stars.

$$
235 \cdot 90949^{\prime \prime}=3^{\prime} 55 \cdot 90949^{\prime \prime} .
$$

Let it be required to find the hyperbolic logarithm of any number, as $3 \cdot 1415926536$. The common log. of this number is $\cdot 49714987269$ (33), and the common log. of this log. is $\overline{1} \cdot 6964873$.

The modulus of the common system of logarithms is $\mathbf{4 3 4 2 9 4 4 8 1 9 , ~}$ \&c.
$\therefore 1: 4342944819:: \underset{2}{\text { e }}: \underset{23}{\text { hyperbolic }} \log \mathrm{N}:$ common $\log . \mathrm{N}$.

To distinguish the hyperbolic logarithm of the number N from its common logarithm, it is necessary to write the hyp. log. Log. N, and the common logarithm log. N.

Hence, $4342944819 \times$ Log. $\mathrm{N}=\log . \mathrm{N}$; or log. (•4342944819) $+\log .(\log . N)=\log .(\log . N)$.
$\therefore \log .(\log . N)=\log .(\log . N)-\overline{1} \cdot 6377843 ;$ for $\overline{1} \cdot 6377843=$ log. 4342944819.

Now, to work the above example, from $\overline{1} \cdot 6964873$
take $\frac{\overline{1} \cdot 6377843}{\cdot 0587030}$, the number corresponding to this com. log. will be the hyp. log. of $3 \cdot 1415927$. $\cdot 0587030$ must be reduced to $\cdot 0000000$ which is known to be the \log. of 1.

$\cdot 0587030$		$1 \mathrm{~A}=1100000000$
0413927	1 A	4400000
173103		66000
172855	4 B	440
. 248		
217	5 E	$\left.11446\left\|\begin{array}{l} 6 \\ 5 \end{array}\right\| \begin{aligned} & 4 \\ & 7 \\ & 2 \end{aligned} \right\rvert\, \begin{aligned} & 1 \\ & 3 \end{aligned}=\text { B } 4$
. 31		$801=\mathrm{F} 7$
30	7 F	$23=\mathrm{G} 2$
1	2 G	14472988

$\therefore 1 \cdot 14472988$ is the hyperbolic log. of $3 \cdot 1415927$, true to the last figure; for the hyp. log. $3 \cdot 1415926535898=1 \cdot 1447298858494$.

The reason of this operation is very clear, because
$1 \times 1 \cdot 1 \times(1 \cdot 01)^{4} \times(1 \cdot 00001)^{5} \times(1 \cdot 000001)^{7} \times(1 \cdot 0000001)^{2}=$ $1 \cdot 14472988$.

This example answers the purpose of illustration, but the hyp. \log. of 3.1415927 can be more readily found by dividing its com. log. $\cdot 49714987269$ by the constant $\cdot 4342944819$, which is termed the modulus of the common system of logarithms.

Suppose it is known that 1.3426139 is the log. of the decimal which a French litre is of an English gallon. Required the decimal.

The index, $\overline{1}$, may be changed to any other characteristic, so as to suit any of the constants, as the alteration is easily allowed for when the work is completed. In this instance, it is best to put +1 instead of $\overline{1}$.

From 1•3426139
Take 1.0000000

$$
\begin{aligned}
& \frac{\cdot 3426139}{3311415} \\
& \cdot \frac{33114724}{0114} \\
& \frac{. .86427}{28297}
\end{aligned}=2 \mathrm{~B}
$$

$$
\begin{aligned}
& 100000000000 \text { Constant } \\
& 80000000 \\
& 28000000 \\
& 5600000 \\
& 700000 \\
& \text { 5. } 6000 \\
& 28.00 \\
& 80 \\
& 1 \\
& 21|43| 58|88| 1=A 8
\end{aligned}
$$

2252	$21435818811=A 8$
$\underline{2171}=5 \mathrm{D}$	4287178
81	21436
$43=1 \mathrm{E}$	$218667495=$ B 2
$\overline{38}$	1312005
$35=8 \mathrm{~F}$	3280
$\frac{3}{3}$	4
$3=7 \mathrm{G}$	$2 \overline{19982784}=\mathrm{C} 6$
	109991
	22
	$220092797=$ D 5
	$2201=\mathrm{E} 1$
	$1761=\mathrm{F} 8$
	$754=\mathrm{G} 7$
	220096913
French litre $=$	9 English gallons.

\therefore The French litre $=-2200969$ English gallons.
In measuring heights by the barometer, it is necessary to know the ratio of the density of the mercury to that of the air.

At Paris, a litre of air at 0° centigrade, under a pressure of 760 millimetres, weighs $1 \cdot 293187$ grammes. At the level of the sea, in latitude 45°, it weighs 1.292697 grammes. A litre of water, at its maximum density, weighs 1000 grammes, and a litre of mercury, at the temperature of 0° cent., weighs 13595.93 grammes :

$$
\therefore \frac{13595 \cdot 93}{1 \cdot 292697}=\text { the ratio at } 45^{\circ}
$$

Now, log. $13595 \cdot 93=4 \cdot 133409102$

$$
\text { and log. } 1 \cdot 292697=0.111496744
$$

$\overline{4} \cdot 021912358=$ the log. of the ratio at 45°.
To find the number corresponding to this log., it is necessary to reject the index for the present, and reduce the decimal part to zero. By this means the necessity of using any of the constants is superseded.

\therefore by logarithms, $\frac{13595 \cdot 93}{1 \cdot 292697}=10517 \cdot 49$, \&cc., which is easily verified by common division.
M. Regnault found that, at Paris, the litre of atmospheric air weighs 1.293187 grammes; the litre of nitrogen $1 \cdot 256167$ grammes; a litre of oxygen, 1.429802 grammes; of hydrogen, 0.089578 grammes; and of carbonic acid, 1.977414 grammes. But, strictly considered, these numbers are only correct for the locality in which the experiments were made; that is for the latitude of $48^{\circ} 50^{\prime} 14^{\prime \prime}$ and a height about 60 metres above the level of the sea; M. Regnault finds the weight of the litre of air under the parallel of 45° latitude, and at the same distance from the centre of the earth as that which the experiments were tried, to be $12 \cdot 926697$.

Assuming this as the standard, he deduces for any other latitude, any other distance from the centre of the earth, the formula,

$$
w=\frac{1.292697(1.00001885)(1-0.002837) \cos .2 \lambda}{1+\frac{2 h}{\mathrm{R}}}
$$

Here, w is the weight of the litre of air, R the mean radius of the earth $=6366198$ metres, h the height of the place of observation above the mean radius, and λ the latitude of the place.

At Philadelphia, lat. $39^{\circ} 56^{\prime} 51 \cdot 5^{\prime \prime}$, suppose the radius of the earth to be 6367653 metres, the weight of the litre of air will be $1 \cdot 2914892$ grammes. The ratio of the density of mercury to that of air at the level of the sea at Philadelphia is $10527 \cdot 735$ to 1 ; required the number of degrees in an arc whose length is equal to that of the radius.

As $3 \cdot 1415926535898: 1:: \frac{360}{2}:$ the required degrees.

$$
\begin{aligned}
\text { Log. } 360 & =2 \cdot 556302500767 \\
\log .3 \cdot 14159265359 & =\frac{0 \cdot 497149872694}{2 \cdot 059452623073} \\
\log .2 & =\frac{0 \cdot 301029995664}{1 \cdot 758122632409}=\text { the log. of the }
\end{aligned}
$$

number required.
When the index of this log. is changed into 4 , the nearest next less constant is $4 \cdot 669246832878$.

From 4•758122632409	$4\|6669\| 2\|4\| 6\|8\| 32\|87\| 8=$ Constant
Take 4.669246832878	9333849366576
-088875799531	
$2 \mathrm{~A}=\frac{.82785370316}{}$	$\overline{56 \mid 49788667783}=$ A 2
. . 6090429215	$564978 \mid 86678$
$1 \mathrm{~B}=4321373783$	$\overline{57062865544611}=$ B 1
. 1769055432	$2 \mid 2825146218$
$4 \mathrm{C}=1736309917$	34237719
32745515	22825
$7 \mathrm{E}=30400462$.	6
. 2345053	$\overline{57291\|45961\| 229 *}=$ C 4

	2345053	961229 = C 4
$5 \mathrm{~F}=$	2171471	401040217
	173582	12031
$3 \mathrm{G}=$	130288	$\overline{5729547013477}=\mathrm{E} 7$
	43294	28647735
$9 \mathrm{H}=$	39087	$5 / 7$
	4207	$\overline{5729575 \mid 6611269}=\mathrm{F} 5$
$9 \mathrm{I}=$	3909	$1718873=\mathrm{G} 3$
	298	$515662=\mathrm{H} 9$
$6 \mathrm{~J}=$	261	$\begin{array}{rl\|l} 51 & 5 & 6 \\ 3 & 6 & =19 \\ 38 & =\mathrm{J} 6 \\ \hline \end{array}$
	37	$458=\mathrm{K} 8$
$8 \mathrm{~K}=$	35	$29=$ L 5
	2	$5729577951295=$ the num-
$5 \mathrm{~L}=$	2	ber required.

But the original index is $1 ; \therefore 57 \cdot 29577951295^{\circ}$ are the number of degrees in an arc the length of which is equal to that of the radius.

The above result may be easily verified by common division, a method, no doubt, which would be preferred by many, for logarithms are seldom used when the ordinary rules of arithmetic can be applied with any reasonable facility. However, this example, like many others, is introduced to show with what ease and correctness the number corresponding to a given log. can be obtained. The extent, also, by far exceeds that obtainable by any tables extant.

Other computations give,

$$
r^{\circ}=57 \cdot 2957795130^{\circ}=57^{\circ} 17^{\prime} 44^{\prime \prime} \cdot 80624
$$

the degrees in an arc $=$ radius.

$$
r^{\prime}=3437 \cdot 7467707849^{\prime}=3437^{\prime} 44^{\prime \prime} \cdot 80624
$$

the minutes in an arc $=$ radius .

$$
r^{\prime \prime}=206264 \cdot 8062470963
$$

the number of seconds in an arc $=$ radius.
The relative mean motion of the moon from the sun in a Julian or fictitious year, of $365 \frac{1}{4}$ days, is 12 cir. 4 signs, $12^{\circ} 40^{\prime} 15 \cdot 977315^{\prime}=$ $16029615 \cdot 977315^{\prime \prime}$.

$$
\begin{aligned}
& \therefore 16029615 \cdot 977315^{\prime \prime}: 1 \text { circumference }\left(=129600^{\prime \prime}\right) \\
&:: 365 \cdot 25 \text { days } \\
&: 29 \cdot 5305889216 \text { days }=\text { the mean synodic month. }
\end{aligned}
$$

This proportion may, for the sake of example, be found by logarithms.

Log. $365 \cdot 252 \cdot 56259022460634$
log. 1296000.........6•11260500153457
$8 \cdot 67519522614091$
log. $16029615 \cdot 977315=7 \cdot 20492311805406$
$1 \cdot 47027210808685$

If the index of this log. be made 2 instead of 1 , the nearest next less constant will be $2 \cdot 375812087593221$.

$4 \mathrm{~F}=\ldots \quad \begin{array}{r}173717706 \\ \ldots .11168232\end{array}$
$\begin{array}{rr}2 \mathrm{G}= & \begin{array}{r}8685889 \\ 5 \mathrm{H}\end{array}=\begin{array}{r}\frac{2482343}{2171473} \\ \ldots \ldots .0310870\end{array}\end{array}$

$29501538|8669| 635=\mathrm{C} 6$
$2 \mid 65513849803$
$10 \mid 6205540$
$24 \mid 781$
4

$\begin{array}{r} 29528\|10087\| 49763 \\ 2\|36224\| 80700 \end{array}$
826787.
17
$295304632057 \mid 267=\mathrm{E} 8$
1181218528
1772

$\overline{2953058113277567}=\mathrm{F} 4$ 5906116|3

$2067141=$ I 7
$29531=\mathrm{J} 1$
$14765=\mathrm{K} 5$
$2362=\mathrm{L} 8$
$6=\mathrm{N} 2$

295305889217832
$\therefore 29 \cdot 5305889218$ is the number required.
To perform, by logarithms, the ordinary operations of multiplication, division, proportion, or even the extraction of the square root, except in the way of illustration, is not the design of these pages; for such an application of logarithms, in a particular manner only, diminish the labour of the operator. It is not necessary, however, to examine minutely here the instances in which common arithmetic is preferable to artificial numbers; besides, much wili depend on the skill and facility of the operator.

TRIGONOMETRY.

ANGULAR MAGNITUDES.-TRIGONOMETRY.-HEIGHT AND DISTANCES. SPHERICAL TRIGONOMETRY. THE APPLICATION OF LOGARITHMS TO ANGULAR MAGNITUDES.

Plane trigonometry treats of the relations and calculations of the sides and angles of plane triangles.

The circumference of every circle is supposed to be divided into 360 equal parts, called degrees; also each degree into 60 minutes, each minute into 60 seconds, and so on.

Hence a semicircle contains 180 degrees, and a quadrant 90 degrees.

The measure of any angle is an arc of any circle contained between the two lines which form that angle, the angular point being the centre; and it is estimated by the number of degrees contained in that arc.

Hence, a right angle being measured by a quadrant, or quarter of the circle, is an angle of 90 degrees; and the sum of the three angles of every triangle, or two right angles, is equal to 180 degrees. Therefore, in a right-angled triangle, taking one of the acute angles from 90 degrees, leaves the other acute angle; and the sum of two angles, in any triangle, taken from 180 degrees, leaves the third angle; or one angle being taken from 180 degrees, leaves the sum of the other two angles.

Degrees are marked at the top of the figure with a small ${ }^{\circ}$, minutes with ', seconds with ", and so on. Thus, $57^{\circ} 30^{\prime} 12^{\prime \prime}$ denote 57 degrees 30 minutes and 12 seconds.

The complement of an arc, is what it wants of a quadrant or 90°. Thus, if AD be a quadrant, then BD is the complement of the arc AB ; and, reciprocally, AB is the complement of BD . So that, if AB be an arc of 50°, then its complement BD will be 40°.

The supplement of an arc, is what it wants of
 a semicircle, or 180°. Thus, if ADE be a semicircle, then BDE is the supplement of the arc AB ; and, reciprocally, AB is the supplement of the arc BDE. So that, if AB be an arc of 50°, then its supplement BDE will be 130°.

The sine, or right sine, of an arc, is the line drawn from one extremity of the are, perpendicular to the diameter passing through the other extremity. Thus, BF is the sine of the are AB, or of the are BDE.

Hence the sine ($B F)$ is half the chord $(B G)$ of the double are (BAG).

The versed sine of an arc, is the part of the diameter intercepted between the arc and its sine. So, AF is the versed sine of the arc AB , and EF the versed sine of the arc EDB.

The tangent of an are is a line touching the circle in one extremity of that arc, continued from thence to meet a line drawn from the centre through the other extremity: which last line is called the secant of the same arc. Thus, AH is the tangent, and CH the secant, of the arc AB. Also, EI is the tangent, and CI the secant, of the supplemental are BDE. And this latter tangent and secant are equal to the former, but are accounted negative, as being drawn in an opposite or contrary direction to the former.

The cosine, cotangent, and cosecant, of an arc, are the sine, tangent, and secant of the complement of that arc, the co being only a contraction of the word complement. Thus, the arcs AB , BD being the complements of each other, the sine, tangent or secant of the one of these, is the cosine, cotangent or cosecant of the other. So, BF , the sine of AB , is the cosine of BD ; and BK , the sine of BD , is the cosine of AB : in like manner, AH , the tangent of AB , is the cotangent of BD ; and DL , the tangent of DB , is the cotangent of AB : also, CH , the secant of AB , is the cosecant of BD ; and CL , the secant of BD , is the cosecant of AB .

Hence several remarkable properties easily follow from these definitions; as,

That an arc and its supplement have the same sine, tangent, and secant; but the two latter, the tangent and secant, are accounted negative when the arc is greater than a quadrant or 90 degrees.

When the arc is 0 , or nothing, the sine and tangent are nothing, but the secant is then the radius CA. But when the are is a quadrant AD , then the sine is the greatest it can be, being the radius CD of the circle; and both the tangent and secant are infinite.

Of any arc AB , the versed sine AF , and cosine BK , or CF, together make up the radius CA of the circle. The radius CA , tangent AH , and secant CH , form a right-angled triangle CAH. So also do the radius, sine, and cosine, form another right-angled triangle CBF or CBK. As also the radius, cotangent, and cosecant, another rightangled triangle CDL. And all these right-angled triangles are similar to each other.

The sine, tangent, or secant of an angle, is the sine, tangent, or secant of the are by which the angle is measured, or of the degrees, \&c. in the same are or angle.

The method of constructing the scales of chords, sines, tangents, and secants, usually engraven on instruments, for practice, is exhibited in the annexed figure.

A trigonometrical canon, is a table exhibiting the length of the sine, tangent, and secant, to every degree and minute of the quadrant, with respect to the radius, which is expressed by unity, or 1 , and conceived to be divided into 10000000 or more decimal parts. And further, the logarithms of these sines, tangents, and secants are also ranged in the tables; which are most commonly used, as they perform the calculations by only addition and subtraction, instead of the multiplication and division by the natural sines, \&c., according to the nature of logarithms.

Upon this table depends the numeral solution of the several cases in trigonometry. It will therefore be proper to begin with the mode of constructing it, which may be done in the following manner:-

To find the sine and cosine of a given arc.

This problem is resolved after various ways. One of these is as follows, viz. by means of the ratio between the diameter and circumference of a circle, together with the known series for the sine and cosine, hereafter demonstrated. Thus, the semi-circumference of the circle, whose radius is 1 , being $3 \cdot 141592653589793$, \&c., the 'proportion will therefore be,

As the number of degrees or minutes in the semicircle,
Is to the degrees or minutes in the proposed arc, So is $3 \cdot 14159265$, \&c., to the length of the said arc.
This length of the arc being denoted by the letter a; also its sine and cosine by s and c; then will these two be expressed by the two following series, viz.: 一

$$
\begin{aligned}
s & =a-\frac{a^{3}}{2.3}+\frac{a^{5}}{2.3 .4 .5}-\frac{a^{7}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6.7}+\& c . \\
& =a-\frac{a^{3}}{6}+\frac{a^{3}}{120}-\frac{a^{7}}{5040}+\& c . \\
c & =1-\frac{a^{2}}{2}+\frac{a^{4}}{2.3 .4}-\frac{a^{6}}{2 \cdot 3.4 \cdot 5.6}+\& c . \\
& =1-\frac{a^{2}}{2}+\frac{a^{4}}{24}-\frac{a^{6}}{720}+\& c .
\end{aligned}
$$

If it be required to find the sine and cosine of one minute. Then, the number of minutes in 180° being 10800 , it will be first, as $10800: 1:: 3 \cdot 14159265$, \&c. $: \cdot 000290888208665=$ the length of an arc of one minute. Therefore, in this case,

$$
\begin{aligned}
a & =\cdot 0002908882 \\
\text { and } \frac{1}{6} a^{3} & =\cdot 000000000004, \text { \&c. }
\end{aligned}
$$

the difference is $s=\cdot 0002908882$ the sine of 1 minute.
Also, from 1 .
take $\frac{1}{2} a^{2}=0 \cdot 0000000423079$, \&c.
leaves $c=.9999999577$ the cosine of 1 minute.

For the sine and cosine of 5 degrees.
Here, as $180^{\circ}: 5^{\circ}:: 3 \cdot 14159265$, \&c., $: \cdot 08726646=a$ the length of 5 degrees.

$$
\begin{array}{rr}
\text { Hence, } & \quad \alpha=\cdot 08726646 \\
& -\frac{1}{6} a^{3}==00011076 \\
+\quad \frac{1}{120} a^{5}=00000004
\end{array}
$$

these collected give $s=\cdot 08715574$ the sine of 5°.
And, for the cosine,

$$
\begin{aligned}
& 1=1 \cdot \\
&-\frac{1}{2} a^{2}=-\cdot 00380771 \\
&+\frac{1}{24} a^{4}=r \\
& \hline 00000241
\end{aligned}
$$

these collected, give $c=.99619470$ the consine of 5°.
After the same manner, the sine and cosine of any other are may be computed. But the greater the arc is, the slower the series will converge, in which case a greater number of terms must be taken to bring out the conclusion to the same degree of exactness.

Or, having found the sine, the cosine will be found from it, by the property of the right-angled triangle CBF, viz. the cosine $\mathrm{CF}=\sqrt{\mathrm{CB}^{2}-\mathrm{BF}^{2}}$, or $c=\sqrt{1-s^{2}}$.

There are also other methods of constructing the canon of sines and cosines, which, for brevity's sake, are here omitted.

To compute the tangents and secants.

The sines and cosines being known, or found, by the foregoing problem; the tangents and secants will be easily found, from the principle of similar triangles, in the following manner:-

In the first figure, where, of the arc AB, BF is the sine, CF or BK the cosine, AH the tangent, CH the secant, DL the cotangent, and CL the cosecant, the radius being CA , or CB , or CD ; the three similar triangles CFB, CAH, CDL, give the following proportions:

1. CF : FB :: CA : AH; whence the tangent is known, being a fourth proportional to the cosine, sine, and radius.
2. $\mathrm{CF}: \mathrm{CB}:: \mathrm{CA}: \mathrm{CH}$; whence the secant is known, being a third proportional to the cosine and radius.
3. $\mathrm{BF}: \mathrm{FC}:: \mathrm{CD}: \mathrm{DL}$; whence the cotangent is known, being a fourth proportional to the sine, cosine, and radius.
4. $\mathrm{BF}: \mathrm{BC}:: \mathrm{CD}: \mathrm{CL}$; whence the cosecant is known, being a third proportional to the sine and radius.

Having given an idea of the calculations of sines, tangents, and secants, we may now proceed to resolve the several cases of trigonometry; previous to which, however, it may be proper to add a few preparatory notes and observations, as below.

There are usually three methods of resolving triangles, or the cases of trigonometry-namely, geometrical construction, arithe metical computation, and instrumental operation.

In the first method.-The triangle is constructed by making the parts of the given magnitudes, namely, the sides from a scale of
equal parts, and the angles from a scale of chords, or by some other instrument. Then, measuring the unknown parts by the same scales or instruments, the solution will be obtained near the truth.

In the second method.-Having stated the terms of the proportion according to the proper rule or theorem, resolve it like any other proportion, in which a fourth term is to be found from three given terms, by multiplying the second and third together, and dividing the product by the first, in working with the natural numbers; or, in working with the logarithms, add the logs. of the second and third terms together, and from the sum take the log. of the first term; then the natural number answering to the remainder is the fourth term sought.

In the third method.-Or instrumentally, as suppose by the log. lines on one side of the common two-foot scales; extend the compasses from the first term to the second or third, which happens to be of the same kind with it; then that extent will reach from the other term to the fourth term, as required, taking both extents towards the same end of the scale.

In every triangle, or case in trigonometry, there must be given three parts, to find the other three. And, of the three parts that are given, one of them at least must be a side; because the same angles are common to an infinite number of triangles.

All the cases in trigonometry may be comprised in three varieties only; viz.

1. When a side and its opposite angle are given.
2. When two sides and the contained angle are given.
3. When the three sides are given.

For there cannot possibly be more than these three varieties of cases; for each of which it will therefore be proper to give a separate theorem, as follows:

When a side and its opposite angle are two of the given parts.
Then the sides of the triangle have the same proportion to each other, as the sines of their opposite angles have.

That is,

> As any one side,
> Is to the sine of its opposite angle; So is any other side, To the sine of its opposite angle.

For, let ABC be the proposed triangle, having AB the greatest side, and BC the least. Take $\mathrm{AD}=\mathrm{BC}$, considering it as a radius; and let fall the perpendiculars DE, CF, which will evi-
 dently be the sines of the angles A and B , to the radius AD or $B C$. But the triangles $\mathrm{ADE}, \mathrm{ACF}$, are equiangular, and therefore $A C$: $C F:: A D$ or $B C: D E$; that is, $A C$ is to the sine of its opposite angle B, as $B C$ to the sine of its opposite angle A.

In practice, to find an angle, begin the proportion with a side
opposite a given angle. And to find a side, begin with an angle opposite a given side.

An angle found by this rule is ambiguous, or uncertain whether it be acute or obtuse, unless it be a right angle, or unless its magnitude be such as to prevent the ambiguity; because the sine answers to two angles, which are supplements to each other; and accordingly the geometrical construction forms two triangles with the same parts that are given, as in the example below; and when there is no restriction or limitation included in the question, either of them may be taken. The degrees in the table, answering to the sine, are the acute angle; but if the angle be obtuse, subtract those degrees from 180°, and the remainder will be the obtuse angle. When a given angle is obtuse, or a right one, there can be no ambiguity; for then neither of the other angles can be obtuse, and the geometrical construction will form only one triangle.

In the plane triangle ABC ,

$$
\text { Given, }\left\{\begin{array}{l}
\text { AB } 345 \text { yards } \\
\text { BC } 232 \text { yards } \\
\text { angle A } 37^{\circ} 20^{\prime}
\end{array}\right.
$$

Required the other parts.

Geometrically.-Draw an indefinite line, upon which set off AB $=345$, from some convenient scale of equal parts. Make the angle $\mathrm{A}=37 \frac{1}{3}^{\circ}$. With a radius of 232 , taken from the same scale of equal parts, and centre B , cross AC in the two points C, C. Lastly, join BC, BC, and the figure is constructed, which gives two triangles, showing that the case is ambiguous.

Then, the sides AC measured by the scale of equal parts, and the angles B and C measured by the line of chords, or other instrument, will be found to be nearly as below; viz.

AC 174	angle $B 27^{\circ}$	angle C $115 \frac{1}{1^{\circ}}$	
or	$374 \frac{1}{2}$	or	$78 \frac{1}{4}$

Arithmetically.-First, to find the angles at C:
As side BC 232log. $2 \cdot 3654880$
To sin. opp. angle A $37^{\circ} 20^{\prime} \ldots \ldots \quad 9.7827958$
So side AB 345 $2 \cdot 5378191$
To sin. opp. angle C $115^{\circ} 36^{\prime}$ or $64^{\circ} 24 \ldots .$. . $9 \cdot 9551269$

| Add angle A | 37 | 20 | 37 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| The sum | $152 \quad 56$ | or | $101 \quad 44$ | |

Taken from $\begin{array}{lllll}180 \quad 00 & 180 \quad 00\end{array}$
Leaves angle B $27 \quad 04$ or $\begin{array}{llll}78 & 16\end{array}$
Then, to find the side AC:
As sine angle A $37^{\circ} 20^{\prime}=$......................log. $9 \cdot 7827958$
To opposite side BC 232 _..................... $2 \cdot 365488$

	$27^{\circ} 04^{\prime}$.	$9 \cdot 6580371$
So sine angle B	78 16.......................	$9 \cdot 9908291$
To opposite side AC	$174 \cdot 07$	$2 \cdot 2407293$
or,	374-56 ..	$2 \cdot 5735213$

In the plane triangle ABC ,
Given, $\left\{\begin{array}{lll} & \text { AB } & 365 \\ \text { angle A } & \text { poles } \\ \text { angle B } & 57^{\circ} & 12^{\prime} \\ \text { and } & 24 & 45\end{array}\right.$
Required the other parts.
Ans. $\left\{\begin{array}{r}\text { angle } \\ \text { C } \quad 98^{\circ} 3^{\prime} \\ \text { AC } \\ 154 \cdot 33 \\ \text { BC } \\ 309.86\end{array}\right.$
In the plane triangle ABC , Given, $\left\{\begin{array}{r}\text { AC } 120 \text { feet } \\ \text { BC } \\ \text { angle } \\ \text { A }\end{array} \quad 57^{\circ} 27^{\prime}\right.$ feet

$$
\text { Ans. }\left\{\begin{array}{ccccc}
\text { angle } & 64^{\circ} & 34^{\prime} & 21^{\prime \prime} \\
\text { or, } & 115 & 25 & 39 \\
\text { angle C C } & 57 & 58 & 39 \\
\text { or, } & 7 & 7 & 21 \\
\text { AB } & 112.65 \text { feet } \\
\text { or, } & 16.47 & & \text { feet }
\end{array}\right.
$$

When two sides and their contained angle are given.

Then it will be,
As the sum of those two sides,
Is to the difference of the same sides;
So is the tang. of half the sum of their opposite angles,
To the tang. of half the difference of the same angles.
Hence, because it is known that the half sum of any two quantities increased by their half difference, gives the greater, and diminished by it gives the less, if the half difference of the angles, so found, be added to their half sum, it will give the greater angle, and subtracting it will leave the less angle.

Then, all the angles being now known, the unknown side will be found by the former theorem.

Let ABC be the proposed triangle, having the two given sides AC, BC, including the given angle C. With the centre C, and radius CA, the less of these two sides, describe a semicircle, meeting the other side BC produced in D and E . Join AE, AD, and draw DF parallel to AE.

Then, BE is the sum, and BD the difference of the two given sides CB, CA. Also, the sum of the two angles CAB, CBA, is equal to the sum of the two CAD, CDA, these sums being each the supplement of the vertical angle C to two right angles: but the two latter CAD, CDA, are equal to each other, being opposite to the two equal sides $C A, C D:$ hence, either of them, as $C D A$, is equal to half the sum of the two unknown angles CAB, CBA. Again, the exterior angle CDA is equal to the two interior angles \mathbf{B} and DAB; therefore, the angle DAB is equal to the difference between CDA and B, or between CAD and B; consequently, the same angle DAB is equal to half the difference of the unknown angles B and CAB; of which it has been shown that CDA is the half sum.

Now the angle DAE, in a semicircle, is a right angle, or AE is perpendicular to AD ; and DF , parallel to AE , is also perpendicular
to AD : consequently, AE is the tangent of CDA the half sum, and DF the tangent of DAB the half difference of the angles, to the same radius $A D$, by the definition of a tangent. But, the tangents AE, DF, being parallel, it will be as $\mathrm{BE}: \mathrm{BD}:: \mathrm{AE}: \mathrm{DF}$; that is, as the sum of the sides is to the difference of the sides, so is the tangent of half the sum of the opposite angles, to the tangent of half their difference.

The sum of the unknown angles is found, by taking the given angle from 180°.

In the plane triangle $A B C$, Given, $\left\{\begin{array}{c}\text { AB } 345 \text { yards } \\ \text { AC } 174^{\cdot} \cdot 07 \text { yards } \\ \text { angle A } 37^{\circ} \quad 20^{\prime}\end{array}\right.$

Required the other parts.
Geometrically.-Draw $\mathrm{AB}=345$ from a scale of equal parts. Make the angle $\mathrm{A}=37^{\circ} 20^{\prime}$. Set off $\mathrm{AC}=174$ by the scale of equal parts. Join BC, and it is done.

Then the other parts being measured, they are found to be nearly as follows, viz. the side BC 232 yards, the angle B 27°, and the angle C 1151 ${ }^{\circ}$.

Arithmetically.

As sum of sides AB, AC................... $519 \cdot 07$ log. 2.7152259
To difference of sides AB, AC............. 170.93 2.2328183
So tangent half sum angles C and B..... $71^{\circ} 20^{\prime} \quad 10 \cdot 4712979$
To tangent half difference angles C and B $\quad \begin{array}{llll}44 & 16 & 9 \cdot 9888903\end{array}$
$\begin{array}{llll}\text { Their sum gives angle C } & 115 & 36\end{array}$
$\begin{array}{lll}\text { Their diff. gives angle B } & 27 & 4\end{array}$
Then, by the former theorem,
As sine angle C $115^{\circ} 36^{\prime}$, or $64^{\circ} 24^{\prime} \ldots . . . \log$. $9 \cdot 0551259$
To its opposite side AB 345.................. $2 \cdot 5378191$
So sine angle A $37^{\circ} 20^{\prime} \ldots \ldots \quad 9.7827958$
To its opposite side BC 232................. $2 \cdot 3654890$
In the plane triangle ABC ,
Given, $\left\{\begin{array}{r}\text { AB } 365 \text { poles } \\ \text { AC } 154 \cdot 33 \\ \text { angle A } \\ \text { 57 }\end{array}\right.$
Required the other parts.

$$
\left\{\begin{array}{rr}
\text { BC } & 309 \cdot 86 \\
\text { angle B } & 24^{\circ} \\
\text { angle C } & 98^{\circ} \\
\hline 5^{\prime}
\end{array}\right.
$$

In the plane triangle ABC ,

$$
\text { Given, }\left\{\begin{array}{r}
\text { AC } 120 \text { yards } \\
\text { BC } 112 \text { yards } \\
\text { angle C } 57^{\circ} 58^{\prime} 39^{\prime \prime}
\end{array}\right.
$$

Required the other parts.

When the three sides of the triangle are given.
Then, having let fall a perpendicular from the greatest angle upon the opposite side, or base, dividing it into two segments, and the whole triangle into two right-angled triangles; it will be,

As the base, or sum of the segments,
Is to the sum of the other two sides;
So is the difference of those sides,
To the difference of the segments of the base.
Then, half the difference of the segments being added to the half sum, or the half base, gives the greater segment; and the same subtracted gives the less segment.

Hence, in each of the two right-angled triangles, there will be known two sides, and the angle opposite to one of them ; consequently, the other angles will be found by the first problem.

The rectangle under the sum and difference of the two sides, is equal to the rectangle under the sum and difference of the two segments. Therefore, by forming the sides of these rectangles into a proportion, it will appear that the sums and differences are proportional, as in this theorem.

In the plane triangle ABC , Given, the sides $\left\{\begin{array}{l}\text { AB } 345 \text { yards } \\ \text { AC 232 } \\ \text { BC } 174 \cdot 07\end{array}\right.$

To find the angles.
Geometrically.-Draw the base $\mathrm{AB}=345$ by a scale of equal parts. With radius 232 , and centre A, describe an arc ; and with radius 174 , and centre B, describe another arc, cutting the former in C. Join AC, BC, and it is done.

Then, by measuring the angles, they will be found to be nearly as follows, viz. angle A 27°, angle B $37 \frac{1}{3}^{\circ}$, and angle C $115 \frac{1}{2}^{\circ}$.

Then, in the triangle APC, right-angled at P ,

As the side AC...................... 232
To sine opposite angle............ 90°
So is side AP........................206.59
........log. 2•3654880
Th
To sine opposite angle ACP..... $62^{\circ} 56^{\prime} \ldots$. 9.9496213
Which taken from............ 9000
Leaves the angle A......... $27 \quad 04$

Again, in the triangle BPC, right-angled at P ,
As the side of BC........... 174•07log. 2•2407239
To sine opposite angle P... 90°......... $10 \cdot 0000000$
So is side BP................. 138.41 $2 \cdot 1411675$
To sin. opposite angle BCP $52^{\circ} 40^{\prime} \ldots$. ... $9 \cdot 9004436$
Which taken from..... $90 \quad 00$
Leaves the angle B... $37 \quad 20$
Also, the angle ACP... $62^{\circ} 56^{\circ}$
Added to angle BCP... 5240
Gives the whole angle ACB... 11536
So that all the three angles are as follow, viz.
the angle A $27^{\circ} 4^{\prime}$; the angle B $37^{\circ} 20^{\prime}$; the angle C $115^{\circ} 36^{\prime}$.
In the plane triangle ABC ,
Given the sides, $\left\{\begin{array}{l}\text { AB } 365 \text { poles } \\ \text { AC } 154 \cdot 33 \\ \text { BC } 309 \cdot 86\end{array}\right.$
To find the angles.
In the plane triangle ABC ,
Given the sides, $\left\{\begin{array}{l}\text { AB 120 } \\ \text { AC 112.65 } \\ \text { BC 112 }\end{array}\right.$
To find the angles.

$$
\left\{\begin{array}{lllll}
\text { angle A } & 57^{\circ} & 27^{\prime} & 00^{\prime \prime} \\
\text { angle B } & 57 & 58 & 39 \\
\text { angle C } 64 & 34 & 21
\end{array}\right.
$$

The three foregoing theorems include all the cases of plane triangles, both right-angled and oblique; besides which, there are other theorems suited to some particular forms of triangles, which are sometimes more expeditious in their use than the general ones; one of which, as the case for which it serves so frequently occurs, may be here taken, as follows:-
When, in a right-angled triangle, there are given one leg and the angles; to find the other leg or the hypothenuse; it will be,

As radius, i.e. sine of 90° or tangent of 45° Is to the given leg,
So is the tangent of its adjacent angle
To the other leg;
And so is the secant of the same angle To the hypothenuse.
AB being the given leg, in the right-angled triangle $A B C$; with the centre A, and any assumed radius, AD, describe an are DE, and draw DF perpendicular to AB , or parallel to BC. Now it is evident, from the definitions, that DF is the tangent, and AF the secant, of the are DE, or of the angle A which
 is measured by that are, to the radius AD. Then, because of the parallels BC, DF, it will be as $\mathrm{AD}: \mathrm{AB}:: \mathrm{DF}: \mathrm{BC}:: \mathrm{AF}: \mathrm{AC}$, which is the same as the theorem is in words.

In the right-angled triangle ABC , Given $\left\{\begin{array}{c}\text { the } \operatorname{leg} A B 162 \\ \text { angle A } 53^{\circ} \\ 7^{\prime}\end{array} 48^{\prime \prime}\right\}$ to find AC and BC.
Geometrically.-Make $\mathrm{AB}=162$ equal parts, and the angle $\mathrm{A}=$ $53^{\circ} 7^{\prime} 48^{\prime \prime}$; then raise the perpendicular BC , meeting AC in C . So shall AC measure 270, and BC 216.

Arithmetically:

In the right-angled triangle ABC , Given $\left\{\begin{array}{c}\text { the leg AB } 180 \\ \text { the angle A } 62^{\circ} 40^{\prime}\end{array}\right.$
To find the other two sides.

$$
\left\{\begin{array}{l}
\text { AC } 392 \cdot 0147 \\
\text { BC } 348 \cdot 2464
\end{array}\right.
$$

There is sometimes given another method for right-angled triangles, which is this:

ABC being such a triangle, make one leg AB ra-dius, that is, with centre A, and distance $A B$, describe an are BF. Then it is evident that the other $\operatorname{leg} B C$ represents the tangent, and the hypothenuse A_{A} AC the secant, of the arc BF, or of the angle A.

In like manner, if the leg BC be made radius;
 then the other leg AB will represent the tangent, and the hypothenuse AC the secant, of the are BG or angle C .

But if the hypothenuse be made radius; then each leg will represent the sine of its opposite angle; namely, the leg AB the sine of the arc AE or angle C , and the leg BC the sine of the arc CD . or angle A .

And then the general rule for all these cases is this, namely, that the sides of the triangle bear to each other the same proportion as the parts which they vepresent.

And this is called, Making every side radius.

OF HEIGHTS AND DISTANCES.

By the mensuration and protraction of lines and angles, are determined the lengths, heights, depths, and distances of bodies or objects.

Accessible lines are measured by applying to them some certain measure a number of times, as an inch, or foot, or yard. But inaccessible lines must be measured by taking angles, or by some such method, drawn from the principles of geometry.

When instruments are used for taking the magnitude of the
angles in degrees, the lines are then calculated by trigonometry: in the other methods, the lines are calculated from the principle of similar triangles, without regard to the measure of the angles.

Angles of elevation, or of depression, are usually taken either with a theodolite, or with a quadrant, divided into degrees and minutes, and furnished with a plummet suspended from the centre, and two sides fixed on one of the radii, or else with telescopic sights.

To take an angle of altitude and depression with the quadrant.

Let A be any object, as the sun, moon, or a star, or the top of a tower, or hill, or other eminence; and let it be required to find the measure of the angle $A B C$, which a line drawn from the object makes with the horizontal line BC.

Fix the centre of the quadrant in the angular point, and move it round there as a centre, till with one eye at
 D , the other being shut, you perceive the object A through the sights : then will the arc GH of the quadrant, cut off by the plumb line BH , be the measure of the angle ABC , as required.

The angle $A B C$ of depression of any object A, is taken in the same manner; except that here the eye is applied to the centre, and the measure of the angle is the arc GH, on the other side of the plumb line.

The following examples are to be constructed and calculated by the foregoing methods, treated of in trigonometry.

Having measured a distance of 200 feet, in a direct horizontal line, from the bottom of a steeple, the angle of elevation of its top, taken at that distance, was found to be $47^{\circ} 30^{\prime}$; from hence it is required to find the height of the steeple.

Construction.-Draw an indefinite line, upon which set off AC = 200 equal parts, for the measured distance. Erect the indefinite perpendicular AB ; and draw CB so as to make the angle $\mathrm{C}=$ $47^{\circ} 30^{\prime}$, the angle of elevation; and it is done. Then AB, measured on the scale of equal parts, is nearly $218 \frac{1}{4}$.

Calculation.
As radius................................ $10 \cdot 0000000$
To AC $200 . \ldots .2 \cdot 3010300$
So tang. angle $470^{3} 30^{\prime}10 \cdot 0379475$
To AB $218 \cdot 26$ required........... $2 \cdot 3389775$

What was the perpendicular height of a cloud, or of a balloon, when its angles of elevation were 35° and 64°, as taken by two observers, at the same time, both on the same side of it, and in the same vertical plane; their distance, as under, being half a mile, or 880 yards. And what was its distance from the said two observers?

Construction.-Draw an indefinite ground line, upon which set off the given distance $\mathrm{AB}=880$; then A and B are the places of the observers. Make the angle $\mathrm{A}=35^{\circ}$, and the angle $\mathrm{B}=$ 64°; and the intersection of the lines at C will be the place of the balloon; from whence the perpendicular CD, being let fall, will be its perpendicular height. Then, by measurement, are found the distances and height nearly, as follows, viz. AC 1631, BC 1041, DC 936.

First, from angle B 64° Take angle A 35 Leaves angle ACB 29

Then, in the triangle ABC ,
As sine angle ACB $29^{\circ} \quad9 .6855712$
To opposite side AB 880 $2 \cdot 9444827$
So sine angle A 35°................... $9 \cdot 7585913$
To opposite side BC 1041•125.................... $3 \cdot 0175028$
As sine angle ACB 29°.................... 9.6855712
To opposite side AB 880 $2 \cdot 9444827$
So sine angle B 116° or $64^{\circ} \ldots \ldots$. $9 \cdot 9536602$
To opposite side AC 1631•442 3•2125717
And, in the triangle BCD ,
As sine angle D 90°................... $10 \cdot 0000000$
To opposite side BC 1041•125.................... 3•0175028
So sine angle B 64°.................... 9.9536602
To opposite side CD 935•757.................... 2.9711630
Having to find the height of an obelisk standing on the top of a declivity, I first measured from its bottom, a distance of 40 feet, and there found the angle, formed by the oblique plane and a line imagined to go to top of the obelisk 41°; but, after measuring on in the same direction 60 feet farther, the like angle was only $23^{\circ} 45^{\prime}$. What then was the height of the obelisk?

Construction.-Draw an indefinite line for the sloping plane or declivity, in which assume any point A for the bottom of the obelisk, from whence set off the distance $A C=40$, and again $\mathrm{CD}=60$ equal parts. Then make the angle $\mathrm{C}=41^{\circ}$, and the angle $\mathrm{D}=23^{\circ} 45^{\prime}$; and the point B , where the two lines meet, will be the top of the obelisk. Therefore AB , joined, will be its height.

Wanting to know the distance between two inaccessible trees, or other objects, from the top of a tower, 120 feet high, which lay in the same right line with the two objects, I took the angles formed by the perpendicular wall and lines conceived to be drawn from the top of the tower to the bottom of each tree, and found them to be 33° and $64 \frac{1}{2}^{\circ}$. What then may be the distance between the two objects?

Construction.-Draw the indefinite ground line BD , and perpendicular to it $\mathrm{BA}=120$ equal parts. Then draw the two lines AC, AD, making the two angles $\mathrm{BAC}, \mathrm{BAD}$, equal to the given
 angles 33° and $64 \frac{1}{2}^{\circ}$. So shall C and D be the places of the two objects.

> Calculation.-First, In the right-angled triangle ABC,
> As radius. $.10 \cdot 0000000$
> To AB.. 120 2.0791812
> So tang. angle BAC..... 33°..................... $9 \cdot 8125174$
> To BC...................77•929 1•8916986

And, in the right-angled triangle ABD,
As radius.. $10 \cdot 0000000$
To AB..................... 120 2•0791812
So tang. angle BAD.... 6412${ }^{\circ}$.....................10•3215039
To BD................251•585 2•4006851
From which take BC 77.929
Leaves the dist. CD $173 \cdot 656$ as required.

Being on the side of a river, and wanting to know the distance to a house which was seen on the other side, I measured 200 yards in a straight line by the side of the river; and then at each end of this line of distance, took the horizontal angle formed between the house and the other end of the line; which angles were, the one of them $68^{\circ} 2^{\prime}$, and the other $73^{\circ} 15^{\prime}$. What then were the distances from each end to the house?

Construction.-Draw the line $\mathrm{AB}=200$ equal parts. Then draw AC so as to make the angle $\mathrm{A}=68^{\circ} 2^{\prime}$, and BC to make the angle $\mathrm{B}=73^{\circ} 15^{\prime}$. So shall the point C be the place of the house required.

Calculation.
$\begin{array}{lrrr}\text { To the given angle A } & 68^{\circ} & 2^{\prime} \\ \text { Add the given angle B } & 73 & 15 \\ \text { Then their sum } & 141 & 17 \\ \text { Being taken from } & 180 & 0 \\ \text { Leaves the third angle C } & 38 & 43\end{array}$
Hence, As sin. angle C $38^{\circ} 43^{\prime} \ldots \ldots \ldots \ldots{ }^{\text {A }} \cdot 7962062$
To op. side AB 2002•3010300
So sin. angle A $68^{\circ} 2^{\prime}9 \cdot 9672679$
To op. side BC $296 \cdot 54$................... $2 \cdot 4720917$
And, As sin. angle C $38^{\circ} 43^{\prime}9 \cdot 7962062$
To op. side AB 2002•3010300
So sin. angle B 73 15^{\prime}...................9-9811711
To op. side AC 306•192•4859949

SPHERICAL TRIGONOMETRY.

This Article is taken from a short Practical Treatise on Spherical Trigonometry, by Oliwer Byrne, the author of the present work. Published by J. A. Valpy. London, 1835.

As the sides and angles of spherical triangles are measured by circular arcs, and as these arcs are often greater than 90°, it may be necessary to mention one or two particulars respecting them.

The arc CB, which when added to $A B$ makes up a quadrant or 90°, is called the complement of the arc AB ; every arc will have a complement, even those which are themselves greater than 90°, provided we consider the arcs measured in the direction ABCD, \&c., as positive, and consequently those measured in the opposite direction as negative. The complement BC of the arc AB commences at B, where $A B$ terminates,
 and may be considered as generated by the motion of B , the ex-
tremity of the radius OB , in the direction BC. But the complement of the arc AD or DC , commencing in like manner at the extremity D , must be generated by the motion of D in the opposite direction, and the angular magnitude AOD will here be diminished by the motion of OD, in generating the complement; therefore the complement of AOD or of AD may with propriety be considered negative.

Calling the arc AB or AD, θ, the complement will be $90^{\circ}-\theta$; the complement of $36^{\circ} 44^{\prime} 33^{\prime \prime}$ is $53^{\circ} 15^{\prime} 27^{\prime \prime}$; and the complement of $136^{\circ} 27^{\prime} 39^{\prime \prime}$ is negative $46^{\circ} 27^{\prime} 39^{\prime \prime}$.

The are BE, which must be added to AB to make up a semicircle or 180°, is called the supplement of the arc AB. If the arc is greater than 180°, as the are ADF its supplement, FE measured in the reverse direction is negative. The expression for the supplement of any are θ is therefore $180^{\circ}-\theta$; thus the supplement of $112^{\circ} 29^{\prime} 35^{\prime \prime}$ is $67^{\circ} 30^{\prime} 25^{\prime \prime}$, and the supplement of 205° 42^{\prime} is negative $25^{\circ} 42^{\prime}$.

In the same manner as the complementary and supplementary arcs are considered as positive or negative, according to the direction in which they are measured, so are the ares themselves positive or negative; thus, still taking A for the commencement, or origin, of the arcs, as AB is positive, AH will be negative. In the doctrine of triangles, we consider only positive angles or ares, and the magnitudes of these are comprised between $\theta=0$ and $\theta=$ 180°; but in the general theory of angular quantity, we consider both positive and negative angles, according as they are situated above or below the fixed line A0, from which they are measured, that is, according as the arcs by which they are estimated are positive or negative. Thus the angle BOA is positive, and the angle AOH negative. Moreover, in this more extended theory of angular magnitude, an angle may consist of any number of degrees whatever; thus, if the revolving line OB set out from the fixed line OA, and make n revolutions and a part, the angular magnitude generated is measured by n times 360°, plus the degrees in the additional part.

In a right-angled spherical triangle we are to recognise but five

parts, namely, the three sides a, b, c, and the two angles $A, B ;$ so that the right angle C is omitted.

Let $\mathrm{A}^{\prime}, c^{\prime}, \mathrm{B},{ }^{\prime}$ be the complements of $\mathrm{A}, c, \mathrm{~B}$, respectively, and suppose $b, a, \mathrm{~B}^{\prime}, c^{\prime}, \mathrm{A}^{\prime}$, to be placed on the hand, as in the annexed figure, and that the fingers stand in a circular order, the parts represented by the fingers thus placed are called circular parts.

If we take any one of these as a middle part, the two which lie next to it, one on each side, will be adjacent parts. The two parts immediately beyond the adjacent parts, one on each side, are called the opposite parts.

Thus, taking A^{\prime} for a middle part, b and c^{\prime} will be adjacent parts, and a and B^{\prime} are opposite parts.

If we take c^{\prime} as a middle part, A^{\prime} and B^{\prime} are adjacent parts, and b, a opposite parts.

When B^{\prime} is a middle part, c^{\prime}, a, become adjacent parts, and A^{\prime}, b, opposite parts.

Again, if we take a as a middle part, then B^{\prime}, b, will be adjacent parts, and $\epsilon^{\prime}, \mathrm{A}^{\prime}$, opposite parts.

Lastly, taking b as a middle part, A^{\prime}, a, are adjacent parts, and $c^{\prime}, \mathrm{B}^{\prime}$, opposite parts.

This being understood, Napier's two rules may be expressed as follows:-
I. Rad. \times sin. middle part $=$ product of tan. adjacent parts.
II. Rad. \times sin. middle part $=$ product of cos. opposite parts.

Both these rules may be comprehended in a single expression, thus,

$$
\text { Rad. sin. mid. = prod. tan. adja. }=\text { prod. cos. opp. }
$$

and to retain this in the memory we have only to remember, that the vowels in the contractions sin., tan., cos., are the same as those in the contractions mid., adja., opp., to which they are joined.

These rules comprehend all the succeeding equations, reading from the centre, $R=$ radius.

In the solution of right-angled spherical triangles, two parts are given to find a third, therefore it is necessary, in the application of this formula, to choose for the middle part that which causes the other two to become either adjacent parts or opposite parts.

In a right-angled spherical triangle, the hypothenuse

$$
\begin{aligned}
& c=61^{\circ} 4^{\prime} 56^{\prime \prime} \text {; and the angle } \\
& \mathrm{A}=61^{\circ} 50^{\prime} 29^{\prime \prime} . \text { Required the adjacent leg? }
\end{aligned}
$$

In this example, A^{\prime} is selected for the middle part, because then b and c^{\prime} become adjacent parts, as in the annexed figure.
$\operatorname{Rad} \times \sin . \mathrm{A}^{\prime}=\tan . b \times \tan . c^{\prime}$.
$\therefore \tan . b=\frac{\mathrm{rad} . \times \sin . \mathrm{A}^{\prime}}{\tan c^{\prime}}$.
By Logarithms.
Rad. -- $10 \cdot 0000000$
$\operatorname{Sin} . \mathrm{A}^{\prime}-28^{\circ} 9^{\prime} 21^{\prime \prime}-9 \cdot 6738628$
$19 \cdot 6738628$
Tan. $c^{\prime}-28^{\circ} 55^{\prime} 4^{\prime \prime}-9 \cdot 7422808$
Tan. $b^{\prime}-40^{\circ} 30^{\prime} 16^{\prime \prime}-9 \cdot 9315820$
The side adjacent to the given angle is acute or obtuse, according as the hypothenuse is of the
 same, or of different species with the given angle.

$$
\therefore \text { the } \operatorname{leg} b=40^{\circ} 30^{\prime} 16^{\prime \prime} \text {, acute. }
$$

Supposing the hypothenuse $c=113^{\circ} 55^{\prime}$, and the angle $\mathrm{A}=31^{\circ} 51^{\prime}$, then the adjacent leg b would be $117^{\circ} 34^{\prime}$, obtuse.

In the right-angled spherical triangle ABC , are given the hypothenuse $c=113^{\circ} 55^{\prime}$, and the angle $\mathrm{A}=104^{\circ} 08^{\prime}$; to find the opposite leg a.

$$
\begin{aligned}
& c=\begin{array}{l}
113^{\circ} 55^{\prime} \\
\\
\frac{900}{23 \quad 55}=c^{\prime} \\
\mathrm{A}= \\
\\
\quad \frac{104^{\circ} 08^{\prime}}{90 \quad 0} \\
\\
\hline 1408
\end{array}=\mathrm{A}^{\prime} .
\end{aligned}
$$

In this example, a is taken for the middle part, then A^{\prime} and c^{\prime} are opposite parts. (See the subjoined figure.)

From the general formula, we have,
Rad. $\times \sin . a=\cos . \mathrm{A}^{\prime} \times \cos . c^{\prime}$.
$\therefore \sin . a=\frac{\cos . \mathrm{A}^{\prime} \times \cos . c^{\prime}}{\text { Rad. }}$.
By Logarithms.

The obtuse side $117^{\circ} 34^{\prime}$ is the leg required, for the side opposite to the given angle is always of the same species with the given angle.

If in a right-angled spherical triangle, the hypothenuse were $78^{\circ} 20^{\prime}$, and the angle $\mathrm{A}=$ $37^{\circ} 25^{\prime}$, then the opposite leg $a=36^{\circ} 31^{\prime}$, and not $143^{\circ} 29^{\prime}$, because the given angle is acute.

In a right-angled spherical triangle, are given $c=78^{\circ} 20^{\prime}$, and $A=37^{\circ} 25^{\prime}$, to find the angle B.

$$
\begin{aligned}
& c=\frac{90^{\circ} 0^{\prime}}{1120} \\
& \mathrm{~A}=\frac{90^{\circ} 0^{\prime}}{3725} \\
& \frac{3235}{52}=\mathrm{c}^{\prime}
\end{aligned}
$$

Here the complement of the hypothenuse ${ }^{\circ}\left(c^{\prime}\right)$ is the middle part; and the complement of the angle opposite the perpendicular (A^{\prime}), and the complement of the angle opposite the base (B^{\prime}) are the adjacent parts. This will readily be perceived by reference to the usual figure in the margin.

Rad. $\times \sin . c^{\prime}=\tan . \mathrm{A}^{\prime}$ $\times \tan . \mathrm{B}^{\prime}$;
$\therefore \tan . \mathrm{B}^{\prime}=\frac{\mathrm{Rad} . \times \sin . c^{\prime}}{\tan . \mathrm{A}^{\prime}}$.

By Logarithms.

Rad...................10•0000000
\sin. $c^{\prime}-11^{\circ} 40^{\prime}$. $9 \cdot 3058189$
$\overline{19 \cdot 3058189}$
$\tan . \mathrm{A}^{\prime}-52^{\circ} 35^{\prime} 10 \cdot 1163279$
$\therefore \tan . \mathrm{B}^{\prime}-8^{\circ} 48^{\prime} 9 \cdot 1894910$

$$
\begin{gathered}
\text { But } 90-\mathbf{B}=\mathbf{B}^{\prime} \\
\text { hence } 90-\mathbf{B}^{\prime}=\mathbf{B} . \\
90^{\circ} \\
\mathrm{B}=\frac{848}{81^{\circ} 12^{\prime}} .
\end{gathered}
$$

When the hypothenuse and an angle are given, the other angle is acute or obtuse, according as the given parts are of the same or of different species.

In the above example, both the given parts are acute, therefore the required angle is acute; but if one be acute and the other obtuse, then the angle found would be obtuse :-Thus, if the hypothenuse be $113^{\circ} 55^{\prime}$, and the angle $\mathrm{A}=31^{\circ} 51^{\prime}$; then will $\mathrm{B}^{\prime}=$ $14^{\circ} 08^{\prime}$, and the angle $\mathrm{B}=104^{\circ} 08^{\prime}$.

Given the hypothenuse $c=61^{\circ} 04^{\prime} 56^{\prime \prime}$, and the side or leg, $a=40^{\circ} 30^{\prime} 20^{\prime \prime}$, to find the angle adjacent to a.

$$
c=\begin{array}{ccc}
90^{\circ} & 0^{\prime} & 0^{\prime \prime} \\
\begin{array}{llll}
21 & 04 & 56 \\
28 & 55 & 04^{\prime \prime}
\end{array}=c^{\prime \prime} .
\end{array}
$$

The three parts are here connected; therefore the complement of \mathbf{B} is the middle part, a and the complement of c are the adjacent parts.

Hence we have,
Rad. $\times \sin . \mathrm{B}^{\prime}=\tan . a \times \tan . c^{\prime}$.
$\therefore \sin . \mathrm{B}^{\prime}=\frac{\tan . a \times \tan . c^{\prime}}{\text { Rad. }}$

By Logarithms.

$$
\begin{aligned}
& \tan . a-40^{\circ} 30^{\prime} 20^{\prime \prime}=9 \cdot 9315841 \\
& \tan . c^{\prime}-285504=9 \cdot 7422801 \\
& 19 \cdot 6738642 \\
& \text { Rad............................10.0000000 } \\
& \sin . \mathrm{B}^{\prime} . . .28^{\circ} 09^{\prime} 31^{\prime \prime} \text {...... } 9 \cdot 6738642
\end{aligned}
$$

$$
\mathbf{B}^{\prime}=\frac{\begin{array}{ccc}
90^{\circ} & 0^{\prime} & 0^{\prime \prime} \\
28 & 09 & 31
\end{array}}{\begin{array}{llll}
61 & 50 & 29
\end{array}}=\mathrm{B} .
$$

The angle adjacent to the given side is acute or obtuse according as the hypothenuse is of the same or of different species with the given side.

Before working the above example, it was easy to foresee that the angle \mathbf{B} would be acute; but suppose the hypothenuse $=70^{\circ}$ 20^{\prime}, and the side $a=117^{\circ} 34^{\prime}$, then the angle B would be obtuse, because a and c are of different species.

Rule V.-In a spherical triangle, right-angled at c, are given $c=78^{\circ} 20^{\prime}$ and $b=117^{\circ} 34^{\prime}$, to find the angle B; opposite the given leg, (see the next diagram.)

In this example, b becomes the middle part, and c^{\prime} and B^{\prime} opposite parts; and therefore, by the rule,
Rad. $\times \sin . b=\cos . \mathrm{B}^{\prime} \times \cos . c^{\prime}$; that is, $\cos . \mathrm{B}^{\prime}=\frac{\text { Rad. } \times \sin . b}{\cos . c^{\prime}}$.

$$
90^{\circ}-78^{\circ} 20^{\prime}=11^{\circ} 40^{\prime}=c^{\prime}
$$

Hence, by Logarithms.
Rad
$10 \cdot 0000000$

But since the angle opposite the given side is of the same species with the given side, 90° must be added to B^{\prime}, to produce B:-viz. $90^{\circ}+$ $25^{\circ} 09^{\prime}=115^{\circ} 09^{\prime}$.

Given $c=61^{\circ} 04^{\prime}$ $56^{\prime \prime}$, and $b=40^{\circ} 30^{\prime}$ $20^{\prime \prime}$, to find the other side a.

Here c^{\prime} is the middle part, a and b the opposite parts; hence
 by position $4, a=50^{\circ} 30^{\prime} 30^{\prime \prime}$.

Given the side $b=48^{\circ} 24^{\prime} 16^{\prime \prime}$, and the adjacent angle $\mathrm{A}=$ $66^{\circ} 20^{\prime} 40^{\prime \prime}$, to find the side a.

In this instance, b is the middle part, the complement of A and a are adjacent parts. Consequently, $a=59^{\circ} 38^{\prime} 27^{\prime \prime}$.

In the right-angled spherical triangle ABC ,
Given $\left\{\begin{array}{l}\text { The side } a=59^{\circ} 38^{\prime} 27^{\prime \prime} \\ \text { Its adjacent angle } \mathrm{B}=52^{\circ} 32^{\prime} 55^{\prime \prime}\end{array}\right\}$ to find the angle A . Answer, $66^{\circ} 20^{\prime} 40^{\prime \prime}$.

The required angle is of the same species as the given side, and vice versa.

Given the side $b=49^{\circ} 17^{\prime}$, and its adjacent angle $\mathrm{A}=23^{\circ} 28^{\prime}$, to find the hypothenuse.

Making A^{\prime} the middle part, the others will be adjacent parts, and, therefore, by the first rule we have $c=51^{\circ} 42^{\prime} 37^{\prime \prime}$.

In a spherical triangle, right-angled at C, are given. $b=29^{\circ} 12^{\prime}$ $50^{\prime \prime}$, and $\mathrm{B}=37^{\circ} 26^{\prime} 21^{\prime \prime}$, to find the side a.

Taking a for the middle part, the other two will be adjacent parts; hence by the rule,

$$
\begin{aligned}
\text { Rad. } \times \sin . a & =\tan . b \times \tan . \mathrm{B}^{\prime} \\
\text { that is, rad. } \times \sin . a & =\tan . b \times \cot . \mathrm{B} \\
\therefore \sin . a & =\frac{\tan . b \times \cot . \mathrm{B}}{\mathrm{rad} .}
\end{aligned}
$$

In this case, there are two solutions, i. e. a and the supplement of a, because both of them have the same sine. As $\sin . a$ is necessarily positive, b and \mathbf{B} must necessarily be always of the same species, so that, as observed before, the sides including the right angle are always of the same species as the opposite angles.

In working this example, we find the log. $\sin . a=$ $9 \cdot 8635411$, which corresponds to $46^{\circ} 55^{\prime} 02^{\prime \prime}$, or, $133^{\circ} 04^{\prime} 58^{\prime \prime}$.
It appears, therefore, that a is ambiguous, for there exist two right-angled triangles, having an oblique angle, and the opposite side in the one equal to an oblique angle and an opposite side in the other, but the remaining oblique angle in the one the supplement of the remaining oblique
 angle in the other. These triangles are situated with respect to each other, on the sphere, as the triangles $\mathrm{ABC}, \mathrm{ADC}$, in the annexed diagram, in which, with the exception of the common side AC , and the equal angles B, D, the parts of the one triangle are supplements of the corresponding parts of the other.

In a right-angled spherical triangle are

$$
\text { Given }\left\{\begin{array}{l}
\text { the side } a \ldots \ldots \ldots \ldots . .=42^{\circ} 12^{\prime}, \\
\text { its opposite angle } \mathrm{A}=48^{\circ}
\end{array}\right\} \begin{gathered}
\text { to find the adjacent } \\
\text { angle } \mathrm{B} .
\end{gathered}
$$

The complement of the given angle is the middle part; and neither a nor B^{\prime} being joined to A^{\prime}, they are consequently opposite parts; hence, the angle $\mathrm{B}=64^{\circ} 35^{\prime}$, or $115^{\circ} 25^{\prime}$; this case, like the last, being ambiguous, or doubtful.

Given $a=11^{\circ} 30^{\prime}$, and $\mathrm{A}=23^{\circ} 30^{\prime}$, to find the hypothenuse c.

$$
c=30^{\circ}, \text { or } 150^{\circ}, \text { being ambiguous. }
$$

In a right-angled triangle, there are given the two perpendicular sides, viz. $a=48^{\circ} 24^{\prime} 16^{\prime \prime}, b=59^{\circ} 38^{\prime} 27^{\prime \prime}$, to find the angle A.

$$
\mathrm{A}=66^{\circ} 20^{\prime} 40^{\prime \prime}
$$

Given $a=142^{\circ} 31^{\prime}, b=54^{\circ} 22^{\prime}$, to find c.

$$
c=117^{\circ} 33^{\prime}
$$

$$
a=36^{\circ} 31^{\prime}
$$

$$
\text { Given }\left\{\begin{array}{l}
A=66^{\circ} 20^{\prime} 40^{\prime \prime} \\
B=52 \quad 3255
\end{array}\right\} \text { to find the hypothenuse } c .
$$

MEASUREMENT OF ANGLES.

From the "Civil Engineer and Architect's Journal," for Oct. and Nov. 1847.
a new method of measuring the degrees, minutes, etc., in any rectilinear angle by compasses only, without using scale or PROTRACTOR.
Apply $\mathrm{AB}=x$, from B to 1 ; from 1 to 2 ; from 2 to 3 ; from 3 to 4 ; from 4 to 5 . Then take B 5 , in the compasses, and apply it from B to 6 ; from 6 to 7 ; from 7 to 8 ; from 8 to 9 ; and from 9 to 10, near the middle of the arc AB. With the same opening,

B 5 or A 4, or y, which we shall term it, lay off $4,11,11,12$, and 12,13 . Then the arc between 13 and 10 is found to be contained 23 times in the arc AB.

Hence, we have,

$$
\begin{aligned}
& 5 x-y=360^{\circ} \text {; } \\
& 9 y+z=x \text {; } \\
& \begin{array}{l}
+z=x ; \\
23 z=x ; \text { or, } z=\frac{x}{23} .
\end{array} \\
& \therefore 9 y+\frac{x}{23}=x, \quad \therefore y=\frac{22 x}{207} \text {. }
\end{aligned}
$$

By substituting this value in the first equation, we obtain,

$$
\begin{gathered}
5 x-\frac{22 x}{207}=360 \\
\frac{1013 x}{207}=360, \text { and } x=\frac{360 \times 207}{1013}=73^{\circ} 33^{\prime} 82
\end{gathered}
$$

Apply $\mathrm{AB}={ }^{\prime} x$, from B to 1 ; from 1 to 2 ; from 2 to 3 ; from 3 to 4. Then take B4, in the compasses, and apply it on the arc, from B to 4 ; from 4 to 5 ; from 5 to 6 ; from 6 to 7 ; and from 7 to 8 , near the middle of the arc AB. With the same opening, B $4=y$, lay off A $9,9,10,10,11,11,12,12,13$, and 13,14 . The arc between 14 and 8 is found to be contained nearly 24 times in the arc AB. Therefore, we have,

$$
\begin{aligned}
& 4 x+y=360 ; \\
& 11 y-z=x ; \\
& 24 z=x ; \text { or, } z=\frac{x}{24} \\
& \therefore 11 y-\frac{x}{24}=x ; \quad \therefore y=\frac{25 x}{264}
\end{aligned}
$$

Substituting this value of y in the first equation,

$$
\begin{gathered}
4 x+\frac{25 x}{264}=360 \\
x=\frac{360 \times 264}{1071}=88^{\circ} 44^{\prime} \cdot 333
\end{gathered}
$$

How to lay off an angle of any number of degrees, minutes, \&c., with compasses only, without the use of scale or protractor.
Let it be required to lay off an angle of $36^{\circ} 40^{\prime}=\beta$. Take any small opening of the compasses less than one-tenth of the radius, and lay off any number of equal small arcs, from A to 1 ; from 1 to 2 ; from 2 to 3 , \&c., until we have laid off an arc, AB , greater than the one required. Draw Bb through the centre o, then will the arc $a b=$ arc AB, which we shall

put $=20 \phi$ in this example, and proceed to measure $a b$ as in the first example. Lay off $a b$ from b to c; from c to d; from d to e; from e to f; from f to g. Putting $g a=\triangle_{1}$, then,

$$
\begin{gathered}
6 \times 20 \phi+\triangle_{1}=360^{\circ}=\frac{108}{11} \beta ; \text { because, } \\
\frac{360^{\circ}}{36^{\circ} 40^{\prime}}=\frac{21600}{2200}=\frac{108}{11}
\end{gathered}
$$

Lay off, as before directed, $g a,=\triangle_{1}$, from a to h, from h to s, and b to t; then calling $s t, \triangle_{2}$, we have

$$
3 \triangle_{1}+\triangle_{3}=20 \phi
$$

and we find that $s t$ is contained 28 times in the arc $a b$;
$\therefore 120 \phi+\triangle_{1}=\frac{108}{11} \beta ; 3 \triangle_{1}+\triangle_{2}=20 \phi ;$ and $28 \triangle_{2}=20 \phi$.
Eliminating \triangle_{1} and \triangle_{2}, we find

$$
\beta=\frac{29205}{2268}_{\phi}=12 \cdot 9 \text { times } \phi \text { nearly }
$$

$\therefore 36^{\circ} 40^{\prime}=\angle \mathrm{A} o \mathrm{~N}$ is laid off with as much ease and certainty as by a protractor.

As a second example, let it be required to lay off an angle of $132^{\circ} 27^{\prime}$. From $180^{\circ} 0^{\prime}$ take $132^{\circ} 27^{\prime}=47^{\circ} 33^{\prime}$, which put $=\beta$ $\frac{360^{\circ}}{47^{\circ} 33^{\prime}}=\frac{2490}{317}$ when put $=\frac{\nu}{\delta}$, then $\frac{\nu}{\delta} \beta=360^{\circ}=\pi$.

We have laid off 29 small arcs from \mathbf{A} to $\mathbf{B} ; 29=\varepsilon . \quad \mathrm{AB}=$ $a b=b c=c d=d e=c f$. And $a g=b h=a f=\triangle_{1} ; h g=\triangle_{2}$.

$$
\begin{array}{r}
\therefore 5 \times 29 \phi+\triangle_{1}=360^{\circ}=\frac{v}{\delta} \beta=m e \phi \pm \triangle_{1} \\
2 \triangle_{1}-\triangle_{2}=29 \phi, \text { or } n \triangle_{1} \pm \triangle_{2}=\varepsilon \phi \\
13 \triangle_{2}=29 \phi, \quad \text { or } \quad q \triangle_{8}=\varepsilon \phi \tag{3}
\end{array}
$$

Eliminating \triangle_{1} and \triangle_{2}, we have
$\beta=\frac{\{m n q \pm(q \mp 1)\} \in \delta}{\nu n q} \phi=\frac{\{5 \cdot 2 \cdot 13+(13+1)\} 29 \cdot 317}{2400 \cdot 2 \cdot 13} \phi=$
$\frac{1323729}{62400} \phi=21_{4}$ times ϕ very nearly. Hence the line $o N$ determines the angle a o $\mathrm{N}=132^{\circ} 27^{\prime}$.

In the expression

$$
\begin{equation*}
\beta=\frac{\{m n q \pm(q \mp 1)\} \varepsilon \delta}{\nu n q} \phi \tag{R}
\end{equation*}
$$

substituting the numerals of the first example, then
$\beta=\frac{\{6 \cdot 3 \cdot 28+(28-1)\} 20 \cdot 11}{108 \cdot 3 \cdot 28} \phi=\frac{29205}{22 \overline{68}} \phi=12 \cdot 9$ times ϕ nearly, the result before obtained.

The ambiguous signs of (R) cannot be mistaken or lead to error, if the manner in which it is deduced from (1), (2), (3), be attended to. From (3)

$$
\triangle_{\mathfrak{g}}=\frac{\varepsilon \phi}{q} ; \text { substituting this value of } \triangle_{\mathfrak{g}}, \text { in (2), }
$$

$n \triangle_{1}=\varepsilon \phi \mp \triangle_{9}=\varepsilon \phi \mp \frac{\varepsilon \phi}{q}$; which, when substituted for \triangle_{1} in (1), gives

$$
\frac{\nu}{\delta} \beta=m \varepsilon \Phi \pm \frac{1}{n}\left(\varepsilon \phi \mp \frac{\varepsilon \phi}{q}\right) ; \text { from which }(\mathrm{R}) \text { is found. }
$$

This method of measuring angles is more exact than it may appear; for if, in the first example, we take

$$
\begin{gathered}
5 x-y=360 ; 9 y+z=x ; \text { and } 20 z=x, \\
\text { then } x=\frac{64800}{881}=73^{\circ} 33^{\prime} 85 .
\end{gathered}
$$

The first equations gave $73^{\circ} 33^{\prime} 82$ when $23 z=x$, so it does not matter much whether $20,21,22,23,24$, or 25 times z make x. This fact is particularly worth attention.

Given the three angles to find the three sides.
The following formulas give any side a of any spherical triangle.

$$
\begin{aligned}
& \sin . \frac{1}{2} a=\sqrt{ } \frac{-\cos \cdot \frac{1}{2} S \cos \cdot\left(\frac{1}{2} S-A\right)}{\sin . B \sin . C}, \text { and } \\
& \cos \cdot \frac{1}{2} a=\sqrt{ } \frac{\cos \cdot\left(\frac{1}{2} S-B\right) \cos \cdot\left(\frac{1}{2} S-C\right)}{\sin . B \sin . C .}
\end{aligned}
$$

Given the three sides to find the three angles.

$$
\begin{aligned}
\sin . \frac{1}{2} A & =\sqrt{ } \frac{\sin \cdot\left(\frac{1}{2} \mathrm{~S}-b\right) \sin \cdot\left(\frac{1}{2} \mathrm{~S}-c\right)}{\sin . b \sin . c .} \\
\quad \cos \cdot \frac{1}{2} \mathrm{~A} & =\sqrt{ } \frac{\sin \cdot \frac{1}{2} \mathrm{~S} \sin \cdot\left(\frac{1}{2} \mathrm{~S}-a\right)}{\sin . b \sin \cdot c}
\end{aligned}
$$

GRAVITY-WEIGHT-MASS.

SPECIFIC GRAVITY, CENTRE OF GRAVITY, AND OTHER CENTRES OF BODIES. -WEIGHTS OF ENGINEERING AND MECHANICAL MATERIALS.-BRASS, COPPER, STEEL, IRON, WATER, STONE, LEAD, TIN, ROUND, SQUARE, FLAT, ANGULAR, ETC.

1. In a second, the acceleration of a body falling freely in vacuo is 32.2 feet; what velocity has it acquired at the end of 5 seconds?

$$
32.2 \times 5=161 \text { feet, the velocity }
$$

2. A cylinder rolling down an inclined plane with an initial velocity of 24 feet a second, and suppose it to acquire each second $5 \mathrm{ad}-$ ditional feet velocity; what is its velocity at the end of 3.7 seconds?

$$
24+3 \cdot 7 \times 5=42.5 \text { feet }
$$

3. Suppose a locomotive, moving at the rate of 30 feet a second, (as it is usually termed, with a 30 feet velocity,) and suppose it to lose 5 feet velocity every second; what is its velocity at the end of 3.33 seconds?

The acceleration is $-3 \cdot 33$, negative.

$$
\therefore 30-5 \times 3.33=13.35 \text { feet. }
$$

4. If a body has acquired a velocity of 36 feet in 11 seconds, by uniformly accelerated motion; what is the space described?

$$
\frac{36 \times 11}{2}=198 \text { feet }
$$

5. A carriage at rest moves with an accelerated motion over a space of 200 feet in 45 seconds; at what velocity does it proceed at the beginning of the 46 th second ?
$\frac{200 \times 2}{45}=8.8889$ feet, the velocity at the end of the 45 th second.
The four fundamental formulas of uniformly accelerated motion are

$$
v=p t ; \quad s=\frac{v t}{2} ; \quad s=\frac{p t^{2}}{2} ; \quad s=\frac{v^{2}}{2 p} .
$$

v the velocity, p the acceleration, t the time, and s the space.
6. What space will a body describe that moves with an acceleration of 11.5 feet for 10 seconds.

$$
\frac{11.5 \times(10)^{2}}{2}=575 \text { feet. }
$$

7. A body commences to move with an acceleration of 5.5 feet, and moves on until it is moving at the rate of 100 feet a second; what space has it described?

$$
\frac{(100)^{2}}{2 \times 5 \cdot 5}=909.09 \text { feet. }
$$

8. A body is propelled with an initial velocity of 3 feet, and with an acceleration of 8 feet a second; what space is described in 13 seconds?

$$
3 \times 13+\frac{8 \times(13)^{2}}{2}=715 \text { feet. }
$$

9. What distance will a body perform in 35 seconds, commencing with a velocity of 10 feet, and being accelerated to move with a velocity of 40 feet at the beginning of the 36 th second?

$$
\frac{10+40}{2} \times 35=875 \text { feet, the distance. }
$$

The formulas for a uniformly accelerated motion, commencing with a velocity c, are as follow:-

$$
v=c+p t ; \quad s=c t+\frac{p t^{2}}{2} ; \quad s=\frac{c+v}{2} t ; \quad s=\frac{v^{2}-c^{2}}{2 p} .
$$

The succeeding formulas are applicable for a uniformly retarded motion with an initial velocity c.

$$
v=c-p t ; \quad s=c t-\frac{p t^{2}}{2} ; \quad s=\frac{c+v}{2} t ; \quad s=\frac{c^{2}-v^{2}}{2 p}
$$

10. A body rolls up an inclined plane, with an initial velocity of 50 feet, and suffers a retardation of 10 feet the second; to what height will it ascend?

$$
\begin{aligned}
& \frac{50}{10}=5 \text { seconds, the time. } \\
& \frac{(50)^{2}}{2 \times 10}=125 \text { feet, the height required. }
\end{aligned}
$$

The free vertical descent of bodies in vacuo offers an important example of uniformly accelerated motion. The acceleration in the previous examples was designated by p, but in the particular motion, brought about by the force of gravity, the acceleration is designated by the letter g, and has the mean value of $32 \cdot 2$ feet.

If this value of g be substituted for p, in the preceding formula, we have,

$$
\begin{aligned}
& v=32.2 \times t ; v=8.024964 \times \sqrt{ } s ; s \\
&=16.1 \times t^{2} ; s=\cdot 015528 \times v^{2} ; \\
& t=031056 \times v ; \text { and } t=\cdot 2492224 \times \sqrt{s} .
\end{aligned}
$$

11. What velocity will a body acquire at the end of 5 seconds, in its free descent?

$$
32.2 \times 5=161 \text { feet }
$$

12. What velocity will a body acquire, after a free descent through a space of 400 feet?

$$
8.024964 \times \sqrt{400}=160.49928 \text { feet. }
$$

13. What space will a body pass over in its free descent during 10 seconds?

$$
16 \cdot 1 \times(10)^{2}=1610 \text { feet. }
$$

14. A body falling freely in vacuo, has in its free descent acquired a velocity of 112 feet; what space is passed over?

$$
.015528 \times(112)^{2}=194 \cdot 783232 \text { feet }
$$

15. In what time will a body falling freely acquire the velocity of 30 feet?

$$
\cdot 031056 \times 30=\cdot 93168 \text { seconds }
$$

16. In what time will a body pass over a space of 16 feet, falling freely in vacuo?

$$
.2492224 \times \sqrt{16}=\cdot 9968896 \text { seconds }
$$

If the free descent of bodies go on, with an initial velocity, which we may call c, the formulas are,

$$
\begin{gathered}
v=c+g t ; v=c+32 \cdot 2 \times t ; v=\sqrt{c^{2}+2 g s} ; v=\sqrt{c^{2}+64 \cdot 4 \times s} ; \\
s=c t+g \frac{t^{2}}{2}=c t+16 \cdot 1 \times t^{2} ; s=\frac{v^{2}-c^{2}}{2 g}=\cdot 015528\left(v^{2}-c^{2}\right) .
\end{gathered}
$$

If a body be projected vertically to height, with a velocity which we shall term c, then the formulas become,

$$
\begin{gathered}
v=c-32.2 \times t ; v=\overline{\sqrt{c^{2}-64 \cdot 4 \times s} ; s=c t-g \frac{t^{2}}{2}=} \\
c t-16 \cdot 1 \times t^{2} ; s=\frac{c^{2}-v^{2}}{2 g}=\cdot 015528\left(c^{2}-v^{2}\right) .
\end{gathered}
$$

17. What space is described by a body passing from 18 feet velocity to 30 feet velocity during its free descent in vacuo.

From the annexed table, we find that the height due to 30 feet velocity.

The height due to $18 .=\frac{5 \cdot 03106}{8 \cdot 94410}$
Space described..................................
Since this problem and table are often required in practical mechanics, we shall enter into more particulars respecting it.'

$$
\text { As } s=\frac{v^{2}-c^{2}}{2 g}=\frac{v^{2}}{2 g}-\frac{c^{2}}{2 g}
$$

if we put $h=$ height due to the initial velocity c; that is, $h=\frac{c^{2}}{2 g}$; and $h_{1}=$ the height due to the terminal velocity v; that is, $h_{1}=\frac{v^{2}}{2 g}$; then,
$s=h_{1}-h$, for falling bodies, as in the last example ; and $s=h-h_{1}$, for ascending bodies.
Although these formulas are only strictly true for a free descent in vacuo, they may be used in air, when the velocity is not great. The table will be found useful in hydraulics, and for other heights and velocities besides those set down, for by inspection it is seen that the height 201242 answers to the velocity $3 \cdot 6$; and the height $20 \cdot 12423$ to 36 ; and the height $2012 \cdot 423$ to 360 ; and so on.

Table of the Heights corresponding to different Velocities, in feet the second.

	Corresponding Height in Feet.									
	0	1	2	3	4	5	6	7	8	9
0	-000000	-000155	$\cdot 000621$	-001398	-002484	-003882	-005590	$\cdot 007609$	-009938	$\cdot 0125$
1	-015528	$\cdot 018789$	-020652	-026242	-0304348	-0349379	-039752	-044876	-050311	$\cdot 056056$
2	-062112	-068478	-075155	-082143	-089441	-097050	-104969	-113199	-121739	-130590
3	-139752	-149224	-159006	-169099	-187888	-190217	-201242	-212577	-224224	-236180
4	- 248447	-261025	$\cdot 273913$	-285714	-300621	-314441	-328572	-343013	-357764	.372826
5	-388199	-403882	-419877	-436180	$\cdot 452795$	-469720	-486956	- 504503	$\cdot 522360$	-550578
6	-559006	${ }^{577795}$	-696394	-616304	-636025	-656060	-676397	-697050	$\cdot 718013$	-739286
7 8	-760870	$\cdot 782764$ 1.018790	-804970	.827484 1.069720	- 1.09503652	$\xrightarrow{-873477}$		$\stackrel{-920652}{1-175311}$	$\xrightarrow{9} 944721$	-969099
9	1-257764	$1 \cdot 285869$	$1 \cdot 314285$	$1 \cdot 343012$	$1 \cdot 372050$	1-401400	$1 \cdot 431055$	1-461025	1-491304	1.521894

The following extension is obtained from the foregoing table, by mere inspection, and moving the decimal point as before directed.

	Corresponding Height in Feet.						
10	$1 \cdot 552795$	19	$5 \cdot 60559$	28	12-17392	37	21.25777
11	1.878882	20	$6 \cdot 21118$	29	13.05901	38	$22 \cdot 42236$
12	$2 \cdot 065218$	21	$6 \cdot 84783$	30	13.97516	39	$23 \cdot 61802$
13	$2 \cdot 624224$	22	$7 \cdot 51553$	31	$14 \cdot 92237$	40	$24 \cdot 84472$
14	$3 \cdot 043478$	23	$8 \cdot 21429$	32	$15 \cdot 90062$	41	$26 \cdot 10249$
15	$3 \cdot 49379$	24	$8 \cdot 94410$	33	16.90994	42	$27 \cdot 39131$
16	$3 \cdot 97516$	25	$9 \cdot 70497$	34	$18 \cdot 78883$	43	28.57143
17	$4 \cdot 48758$	26	$10 \cdot 49690$	35	- 19.02174	44	$30 \cdot 06212$
18	$5 \cdot 03106$	27	11.31988	36	20.12423	45	31.4441

18. What mass does a body weighing 30268 lbs . contain ?

$$
\frac{30268}{32 \cdot 2}=\frac{302680}{322}=940 \mathrm{lbs}
$$

For the mass is equal to the weight divided by g. And g is taken equal to $32 \cdot 2$; but the acceleration of gravity is somewhat variable; it becomes greater the nearer we approach the poles of the earth. It is greatest at the poles and least at the equator, and also diminishes the more a body is above or below the level of the sea. The mass, so long as nothing is added to or taken from it, is invariable, whether at the centre of the earth or at any distance from it. If M be the mass and W the weight of a body,

$$
\text { Then } \mathrm{M}=\frac{\mathrm{W}}{g}=\frac{\mathrm{W}}{32 \cdot 2}=.0310559 \mathrm{~W}
$$

19. What is the mass of a body whose weight is 200 lbs ?

$$
\cdot 031055 \times 200=6 \cdot 21118 \mathrm{lbs}
$$

The weight of a body whose mass is 200 lbs . is $32.2 \times 200=$ 6440.0 lbs . It may be remarked, that one and the same steel spring is differently bent by one and the same weight at different places.

The force which accelerates the motion of a heavy body on an inclined plane, is to the force of gravity as the sine of the inclina-
tion of the plane to the radius, or as the height of the plane to its length.

The velocity acquired by a body in falling from rest through a given height, is the same, whether it fall freely, or descend on a plane at whatever inclination.

The space through which a body will descend on an inclined plane, is to the space through which it would fall freely in the same time, as the sine of the inclination of the plane to the radius.

The velocities which bodies acquire by descending along chords of the same circle, are as the lengths of those chords.

If the body descend in a curve, it suffers no loss of velocity.
The centre of gravity of a body is a point about which all its parts are in equilibrio.

Hence, if a body be suspended or supported by this point, the body will rest in any position into which it is put. We may, therefore, consider the whole weight of a body as centred in this point.

The common centre of gravity of two or more bodies, is the point about which they would equiponderate or rest in any position. If the centres of gravity of two bodies be connected by a right line, the distances from the common centre of gravity are reciprocally as the weights of the bodies.

If a line be drawn from the centre of gravity of a body, perpendicular to the horizon, it is called the line of direction, being the line that the centre of gravity would describe if the body fell freely.

The centre of gyration is that part of a body revolving about an axis, into which if the whole quantity of matter were collected, the same moving force would generate the same angular velocity.

To find the centre of Gyration.-Multiply the weight of the several particles by the squares of their distances from the centre of motion, and divide the sum of the products by the weight of the whole mass; the square root of the quotient will be the distance of the centre of gyration from the centre of motion.

The distances of the centre of gyration from the centre of motion, in different revolving bodies, are as follow :-

In a straight rod revolving about one end, the length $\times \cdot 5773$.
In a circular plate, revolving on its centre, the radius $\times \cdot 7071$.
In a circular plate, revolving about one diameter, the radius $\times \cdot 5$.
In a thin circular ring, revolving about one diameter, radius \times $\cdot 7071$.

In a solid sphere, revolving about one diameter, the radius \times -6325.
In a thin hollow sphere, revolving about one diameter, radius \times -8164.
In a cone, revolving about its axis, the radius of the base \times - 5477.

In a right-angled cone, revolving about its vertex, the height \times :866.

In a paraboloid, revolving about its axis, the radius of the base $\times 5773$.

The centre of percussion is that point in a body revolving about a fixed axis, into which the whole of the force or motion is collected.

It is, therefore, that point of a revolving body which would strike any obstacle with the greatest effect; and, from this property, it has received the name of the centre of percussion.

The centres of oscillation and percussion are in the same point.
If a heavy straight bar, of uniform density, be suspended at one extremity, the distance of its centre of percussion is two-thirds of its length.

In a long slender rod of a cylindrical or prismatic shape, the centre of percussion is nearly two-thirds of the length from the axis of suspension.

In an isosceles triangle, suspended by its apex, the distance of the centre of percussion is three-fourths of its altitude. In a line or rod whose density varies as the distance from the point of suspension, also in a fly-wheel, and in wheels in general, the centre of percussion is distant from the centre of suspension three-fourths of the length.

In a very slender cone or pyramid, vibrating about its apex, the distance of its centre of percussion is nearly four-fifths of its length.

Pendulums of the same length vibrate slower, the nearer they are brought to the equator. A pendulum, therefore, to vibrate seconds at the equator, must be somewhat shorter than at the poles.

When we consider a simple pendulum as a ball, which is suspended by a rod or line, supposed to be inflexible, and without weight, we suppose the whole weight to be collected in the centre of gravity of the ball. But when a pendulum consists of a ball, or any other figure, suspended by a metallic or wooden rod, the length of the pendulum is the distance from the point of suspension to a point in the pendulum, called the centre of oscillation, which does not exactly coincide with the centre of gravity of the ball.

If a rod of iron were suspended, and made to vibrate, that point in which all its force would be collected is called its centre of oscillation, and is situated at two-thirds the length of the rod from the point of suspension.

SPECIFIC GRAVITY.

The comparative density of various substances, expressed by the term specific gravity, affords the means of readily determining the bulk from the known weight, or the weight from the known bulk; and this will be found more especially useful, in cases where the substance is too large to admit of being weighed, or too irregular in shape to allow of correct measurement. The standard with which all solids and liquids are thus compared, is that of distilled water, one cubic foot of which weighs 1000 ounces avoirdupois;
and the specific gravity of a solid body is determined by the difference between its weight in the air, and in water. Thus,

If the body be heavier than water, it will displace a quantity of fluid equal to it in bulk, and will lose as much weight on immersion as that of an equal bulk of the fluid. Let it be weighed first, therefore, in the air, and then in water, and its weight in the air be divided by the difference between the two weights, and the quotient will be its specific gravity, that of water being unity.

A piece of copper ore weighs $56 \frac{1}{4}$ ounces in the air, and $43 \frac{3}{4}$ ounces in water ; required its specific gravity.
$56.25-43.75=12.5$ and $56.25 \div 12.5=4.5$, the specific gravity.
If the body be lighlter than water, it will float, and displace a quantity of fluid equal to it in weight, the bulk of which will be equal to that only of the part immersed. A heavier substance must, therefore, be attached to it, so that the two may sink in the fluid. Then, the weight of the lighter substance in the air, must be added to that of the heavier substance in water, and the weight of both united, in water, be subtracted from the sum; the weight of the lighter body in the air must then be divided by the difference, and the quotient will be the specific gravity of the lighter substance required.

A piece of fir weighs 40 ounces in the air, and, being immersed in water attached to a piece of iron weighing 30 ounces, the two together are found to weigh $3 \cdot 3$ ounces in water, and the iron alone, $25 \cdot 8$ ounces in the water; required the specific gravity of the wood.
$40+25 \cdot 8=65 \cdot 8-3 \cdot 3=62 \cdot 5$; and $40 \div 62 \cdot 5=0 \cdot 64$, the specific gravity of the fir.

The specific gravity of a fluid may be determined by taking a solid body, heavy enough to sink in the fluid, and of known specific gravity, and weighing it both in the air and in the fluid. The difference between the two weights must be multiplied by the specific gravity of the solid body, and the product divided by the weight of the solid in the air: the quotient will be the specific gravity of the fluid, that of water being unity.

Required the specific gravity of a given mixture of muriatic acid and water; a piece of glass, the specific gravity of which is 3 , weighing $3 \frac{3}{4}$ ounces when immersed in it, and 6 ounces in the air.
$6-3.75=2.25 \times 3=6.75 \div 6=1.125$, the specific gravity.
Since the weight of a cubic foot of distilled water, at the temperature of 60 degrees, (Fahrenheit,) has been ascertained to be 1000 avoirdupois ounces, it follows that the specific gravities of all bodies compared with it, may be made to express the weight, in ounces, of a cubic foot of each, by multiplying these specific gravities (compared with that of water as unity) by 1000 . Thus, that of water being 1, and that of silver, as compared with it, being $10 \cdot 474$, the multiplication of each by 1000 will give 1000 ounces for the cubic foot of water, and 10474 ounces for the cubic foot of silver.

In the following tables of specific gravities, the numbers in the first column, if taken as whole numbers, represent the weight of a cubic foot in ounces; but if the last three figures are taken as decimals, they indicate the specific gravity of the body, water being considered as unity, or 1 .

To ascertain the number of cubic feet in a substance, from its weight, the whole weight in pounds avoirdupois must be divided by the figures against the name, in the second column of the table, taken as whole numbers and decimals, and the quotient will be the contents in cubic feet.

Required the cubic content of a mass of cast-iron, weighing 7 cwt . 1 qr. $=812 \mathrm{lbs}$.
$812 \mathrm{lbs} . \div 450.5$ (the tabular weight) $=1.803$ cubic feet.
To find the weight from the measurement or cubic content of a substance, this operation must be reversed, and the number of cubic feet, found by the rules given under "Mensuration of Solids," multiplied by the figures in the second column, to obtain the weight in pounds avoirdupois.

Required the weight of a log of oak, 3 feet by 2 feet 6 inches, and 9 feet long.

$$
9 \times 3 \times 2 \cdot 5=67 \cdot 5 \text { cubic feet }
$$

And 67.5×58.2 (the tabular weight) $=3928.5 \mathrm{lbs}$., or 35 cwt . $0 \mathrm{qr} .8 \frac{1}{2} \mathrm{lbs}$.

The velocity g, which is the measure of the force of gravity, varies with the latitude of the place, and with its altitude above the level of the sea.

The force of gravity at the latitude of $45^{\circ}=32 \cdot 1803$ feet; at any other latitude $L, g=32.1803$ feet $-0.0821 \mathrm{cos} .2 L$. If g^{\prime} represents the force of gravity at the height h above the sea, and r the radius of the earth, the force of gravity at the level of the sea will be $g=g^{\prime}\left(1+\frac{5 h}{4 r}\right)$.

In the latitude of London, at the level of the sea, $g=32 \cdot 191$ feet.
Do. Washington, do. do., $g=32.155$ feet.
The length of a pendulum vibrating seconds is in a constant ratio to the force of gravity.

$$
\frac{g}{l}=9 \cdot 8696044 .
$$

Length of a pendulum vibrating seconds at the level of the sea, in various latitudes.

Specific Gravity of various Substances.

metals.	Weight of a cubic foot in ounces.	Weight of.a cubic foot in pounds.	Stones.-Continued.	Weight of a oubic foot in ounces.	Weight of a eubic foot in pounds.
Antimony, fused.	6,624	414.0	Grindstone	2,143	134.0
${ }^{\text {Bismuth, }}$ Brass, common, cast ${ }^{\circ}$		$614 \cdot 0$ 489.0	Gypsum, opaque	$\xrightarrow{2,168}$	135.5
$\underset{\text { cast }}{\text { Brass, common, cast }}$.	8,396	439.0 54.8	Jet, bituminous	2,306 1,259	144.1 78.8
wire-drawn	8,514	534.0	Lime-stone	3,182	199.0
Copper, cast	8,788	$5{ }_{551.2}$	Marble	2,700	168.8
wire-drawn	-8,878		Mill-stone	$\stackrel{2,484}{ }$	155.2
Gold, pure, east	19,258 17,436	1203.6 1093.0	Porcelain, China .	2,385	$1149 \cdot 1$
${ }_{20}^{22}$ caratsats, trink	15,709	${ }_{982}$	Portland-stone	2,570	$160 \cdot 6$ 57.2
Iron, cast .	7,207	$450 \cdot 5$	Paving-stone .	2,416	151.0
bars	7,788	$486 \cdot 8$	Purbeck-stone	2,601	${ }^{162} 6$
Lead, east	11,352 6,300	$709 \cdot 5$ 393	Rotten-stone ${ }^{\text {a }}$	1,981	124.0 167.0
litharge Manganese	6,300 7,000	393.8 437.5	Slate, ${ }_{\text {new }}$ common	2,672 2884	167.0 178.4
Nanganese Mercury, solid,		4375	Stone, common ${ }^{\text {new }}$	2,820	${ }^{178 \cdot 4}$
400 below 00	15,632	9770	Stone, common	2,470	$154 \cdot 4$
at 32 deg. Fahr.	13,619	851.2	Sulphur, native	2,033	$127 \cdot 1$
at ${ }^{\text {at }} \mathbf{2 0 1 2}$ deg. deg .	13,580 13,375	$843 \cdot 8$ 836	melted	1,991	1245
Nickel, cast	7,807	488.0			
Platina, crude, grains.	15,602	9751	Liquids.		
puritied ${ }^{\text {hammered }}$	19,500	1218.8	Acetie acid	1,007	63.0
hammered	22,069	1279.1 1379	Alceohol, commereial	1,025 837	$64 \cdot 1$ 52.3
wire-drawn	21,042	1315.1	Aloohol, commercial highly rectified.	889	51.8
Silver, cast, pure	10,474	654.6	Ammonia, liquid ${ }^{\text {- }}$	897	56.1
Parisian standard	10,175	6330	Beer	1,023	68.0
French coin shilling, Geo. III.	10,043	628.0 658.4	Ether, sulphurie	739	46.2
Steel, soft. ${ }_{\text {shing }}$.	$\begin{array}{r}10,334 \\ 7 \\ \hline\end{array}$	658.4 489.6	Milk of cows	1,032	${ }_{74}^{64 \cdot 5}$
hardened	7,840	$490 \cdot 0$	Muriatic acid	1,194	79.5
tempered	7,816	488.5	highly concentrated	1,583	99.0
tempered and hard	7,818	488.6	Oil of almonds, sweet .	917	$57 \cdot 4$
Tin, pure Cornish -	7,291	${ }_{3}^{457} 5$	hemp-seed .	926	588.0
Tungstcn	6,440 6,406	${ }_{402 \cdot 5}^{379 \cdot 1}$	linseed	940	58.8
Wolfram	7,119	445.0	${ }_{\text {poppies }}$ olives	924	57.8 57
Zinc, usnal state	6,862	$429 \cdot 0$	rape-seed	919	57.5
pure - .	7,191	$449 \cdot 5$	turpentine, essence	870	54.4
			whales	923	$57 \cdot 8$
woods.			Spirits of wine	837	$52 \cdot 4$
Ash	845	52.9	highly rectified	829	51.9
Beech	852	53.2	Sulphuric acid	1,841	$115 \cdot 1$
Box, Dutch	912	$57 \cdot 0$	highly concentrated	2,125	133.0
French	1,328	83.0	Turpentine, liquid	1991	${ }_{63}^{62 \cdot 0}$
Brazilian	1,031	64.5	${ }_{\text {Vineger, }}{ }^{\text {Vain, distilled }}$ or distilled ${ }^{\circ}$	1,010	$63 \cdot 1$ 62.5
Cedar, American.	-561	83.1	Water, rain, or distilled sea	1,000 1,026	$62 \cdot 5$ 64.1
$\xrightarrow[\text { Cherry-tree }]{\text { Indian }}$	1,315	$82 \cdot 2$ 44.8	sea.	1,026	64.1
Cocoa	1,040	65.0			
Cork	240	15.0		\backslash	
Ebony, Indian	1,209	$75 \cdot 6$	stances.		
American	1,331	83.2	Beeswax .	965	$60 \cdot 4$
Fir, yellow	657	${ }_{41} \cdot 1$	Butter	942	59.0 62.0
white	569	$35 \cdot 6$	${ }_{\text {Cat, beef }}$ or mutton ${ }^{\text {a }}$	${ }_{923}^{989}$	57.8
Lignum-vitæ	1,333	83.4	hogs'	${ }_{937}$	58.6
${ }_{\text {Liogwood }}^{\text {Lime-tree }}$	${ }_{913}^{604}$	37.8 57.1	Honey .	1,450	90.6
Mahogany	1,063	66.5	Indigo	769	$48 \cdot 1$
Maple	-750	47.0	Ivory	1,826	${ }_{59} 1$
Oak, heart of, old	1,170	731	Opium	1,336	${ }_{83} 5$
dry -	, 932	58.2	Spermaceti	1,943	59.0
Vine ${ }_{\text {Walnut }}$	1,327	83.0 42.0	Sugar, white.	1,606	$100 \cdot 4$ 59.0
Wllow	585	$36^{\circ} 6$	Tallow -	942	59.0
Yew -	807	50.5			
			gases.		
STONES, EARTHS, E			mospheric air being	timated	
Alabaster, yellow	2,699	168.8	as 1.		
white	2,730	170.6			
Brax	1,714	$107 \cdot 1$	Atmospherie, or		1.000
Brick earth	2,000	125.0	Ammoniacal gas		. 5969
Coal, Cannel	2,784 1,270	174.0 79.4	${ }_{\text {Carbonic acid }}^{\text {Azote }}$		1.520
Neweastle	1,270	79.4	Carbonic oxide		. 960
Staffordshire	1,240	77.5	Carburetted hydrog		${ }^{-491}$
${ }_{\text {Smeotch }}$	1,300	81.2	Chlorine.		-470
Emery Flint, black	4,000 2858	$250 \cdot 0$	Hydrogen		-.074
Flint, black . Glass, flint	${ }_{2}^{2,582}$	162.0 170.9			$\xrightarrow[1.278]{1.094}$
Glass, flint white	2,933 2,892	$170 \cdot 9$ $168 \cdot 2$	Nitrous gas Nitrous acld gas.		$\xrightarrow{1.094}$
Granite, Aberd. blue	2,625	$164 \cdot 1$	Oxygen -		$1 \cdot 104$
Cornish	2,662	166.4	Steam.		- 690
Egyptian, red	2,654	1765.9	Sulphuretted hydrogen Sulphurous acid.	- - .	$1 / 777$ $2 \cdot 193$
边 gray	2,728	170:5	Sulphurous acid .		2-193

Table of the Weight of a Foot in length of Flat and Rolled Iron．

	breadth in inches and parts of an inch．															
	4	$3 \frac{3}{4}$	$3 \frac{1}{2}$	$3 \frac{1}{4}$	3	$2 \frac{3}{4}$	$2 \frac{1}{2}$	$2 \frac{1}{4}$	2	$1 \frac{3}{4}$	11 $\frac{1}{2}$	$1 \frac{3}{8}$	$1 \frac{1}{4}$	1	$\frac{3}{4}$	$\frac{1}{2}$
$\frac{2}{3}$	$1 \cdot 68$	1.57	$1 \cdot 47$	$1 \cdot 36$	1.26	$1 \cdot 15$	1.05	0.94	0.84	0.73	$0 \cdot 63$	0.57	0.52	$0 \cdot 42$	$0 \cdot 31$	$0 \cdot 21$
${ }_{1}^{3}$	$2 \cdot 52$	$2 \cdot 36$	$2 \cdot 20$	$2 \cdot 04$	1.89	173	1.57	1.41	1.26	$1 \cdot 10$	0.94	$0 \cdot 86$	0.78	0.63	$0 \cdot 47$	0.31
$\frac{1}{4}$	$3 \cdot 36$	$3 \cdot 15$	$2 \cdot 94$	2.73	2.52	$2 \cdot 31$	$2 \cdot 10$	1.89	$1 \cdot 68$	$1 \cdot 47$	$1 \cdot 26$	$1 \cdot 18$	1.05	0.84	$0 \cdot 63$	$0 \cdot 42$
量	5.04	$4 \cdot 72$	$4 \cdot 41$	$4 \cdot 09$	3.78	$3 \cdot 46$	$3 \cdot 15$	2.83	2.52	$2 \cdot 20$	$1 \cdot 89$	1.73	$1 \cdot 57$	$1 \cdot 26$	0.94	$0 \cdot 63$
$\frac{1}{8}$	6.72	6.30	$5 \cdot 88$	$5 \cdot 46$	5.04	$4 \cdot 62$	$4 \cdot 20$	$3 \cdot 78$	$3 \cdot 36$	2.94	$2 \cdot 52$	$2 \cdot 31$	$2 \cdot 10$	$1 \cdot 68$	$1 \cdot 26$	
$\frac{8}{8}$	$8 \cdot 40$	$7 \cdot 87$	$7 \cdot 35$	$6 \cdot 82$	6.30	5.77	$5 \cdot 25$	4.72	$4 \cdot 20$	$3 \cdot 67$	$3 \cdot 15$	$2 \cdot 88$	$2 \cdot 62$	$2 \cdot 10$	$1 \cdot 57$	
$\frac{3}{4}$	10.08	$9 \cdot 45$	$8 \cdot 82$	$8 \cdot 19$	$7 \cdot 56$	6.93	$6 \cdot 30$	$5 \cdot 66$	5.04	$4 \cdot 41$	$3 \cdot 78$	$3 \cdot 46$	$3 \cdot 15$	$2 \cdot 52$		
$\frac{7}{4}$	11.76	11.02	$10 \cdot 29$	$9 \cdot 45$	$8 \cdot 82$	$8 \cdot 08$	$7 \cdot 35$	$6 \cdot 61$	$5 \cdot 88$	$5 \cdot 14$	$4 \cdot 41$	$4 \cdot 04$	$3 \cdot 67$	$2 \cdot 94$		
1	$13 \cdot 44$	12.60	$11 \cdot 76$	10.92	10.08	$9 \cdot 24$	$8 \cdot 40$	$7 \cdot 56$	6.72	5.87	$5 \cdot 04$	$4 \cdot 62$	$4 \cdot 20$			
$1 \frac{1}{8}$	$15 \cdot 12$	$14 \cdot 16$	$13 \cdot 20$	$12 \cdot 28$	$11 \cdot 34$	10.39	$9 \cdot 45$	$8 \cdot 50$	$7 \cdot 56$	$6 \cdot 60$	$5 \cdot 67$	$5 \cdot 19$	$4 \cdot 72$			
$1 \frac{1}{4}$	16.80	15.75	14．70	13.65	$12 \cdot 60$	11.55	10.50	$9 \cdot 45$	$8 \cdot 40$	$7 \cdot 35$	$6 \cdot 30$	$5 \cdot 77$				
$1{ }^{13}$	18.48	17．32	$16 \cdot 16$	15.01	$13 \cdot 86$	12.70	11.55	$10 \cdot 39$	$9 \cdot 24$	$8 \cdot 07$						
$1 \frac{1}{2}$	$20 \cdot 18$	$18 \cdot 90$	$17 \cdot 64$	$16 \cdot 38$	$15 \cdot 12$	13.86	$12 \cdot 60$	$11 \cdot 34$	10.08	$8 \cdot 80$						
13	23.54	22：05	20.58	$19 \cdot 11$	$17 \cdot 64$	$16 \cdot 17$	14.70	$13 \cdot 22$								
2	26.88	$25 \cdot 20$	23.52	21.84	$20 \cdot 16$	$18 \cdot 48$	$16 \cdot 80$	$15 \cdot 12$								
21 ${ }^{2}$	$33 \cdot 65$	$31 \cdot 50$	$29 \cdot 40$	$27 \cdot 39$	25.20	23－10										
3 $3 \frac{1}{2}$	40.32 47	37－80	35．28	32．76												

Table of the Weight of Cast－iron Pipes，in lengths．

	$\begin{aligned} & \text { id } \\ & \text { 花 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \dot{\circ} \mathrm{C} \\ & \stackrel{1}{\circ} \end{aligned}$	Weight．	蓇	$\begin{aligned} & \dot{d} \\ & \text { 寻 } \end{aligned}$		Weight．	⿷匚⿳山⿴囗㐅㐅:	$\begin{aligned} & \text { :it } \\ & \text { Hig } \end{aligned}$	咎	Weight．
Inch．	Inch．	Feet．	C．qr． lb ．	Inch．	Inch．	Feet．	C．qr． lb ．	Inch．	Inch．	Feet．	C． qr ． lb ．
1	$\frac{1}{4}$	$3 \frac{1}{2}$	12	$6 \frac{1}{2}$	$\frac{3}{8}$	9	2016	11 $\frac{1}{2}$	$\frac{1}{2}$	9	$\begin{array}{lll}5 & 0 & 7\end{array}$
	$\frac{3}{8}$	$3 \frac{1}{2}$	21		$\frac{1}{2}$	9	2320		\％	9	61112
112	$\frac{1}{4}$	$4 \frac{1}{2}$	21		8	9	3221		8	9	728
	震	42	14		$\frac{8}{4}$	9	4121		1	9	101
2	$\frac{1}{4}$	6	18		1	9	$\begin{array}{llll}6 & 0 & 14\end{array}$	12	$\frac{1}{2}$	9	$\begin{array}{rrr}5 & 0 & 24\end{array}$
	$\frac{3}{8}$	6	20	7	$\frac{1}{2}$	9	$\begin{array}{lll}3 & 0 & 7\end{array}$		$\frac{5}{8}$	9	628
$2 \frac{1}{2}$	$\frac{1}{4}$	6	116		$\frac{5}{8}$	9	$\begin{array}{llll}3 & 3 & 20\end{array}$		$\frac{3}{4}$	9	$\begin{array}{llll}7 & 3 & 20\end{array}$
	$\frac{3}{8}$	6	210		$\frac{3}{4}$	9	435		1	9	1030
	$\frac{1}{2}$	6	310		1	9	624	121	$\frac{1}{2}$	9	$\begin{array}{rrrr}5 & 1 & 1.6\end{array}$
3	年	$\begin{aligned} & 9 \\ & 9 \end{aligned}$		$7 \frac{1}{2}$	$\begin{aligned} & \frac{7}{2} \\ & \frac{8}{8} \end{aligned}$	9	$\begin{array}{rrrr}3 & 1 & 6 \\ 4 & 0 & 22\end{array}$		雨	9	6339
	$\begin{aligned} & \frac{3}{8} \\ & \frac{1}{8} \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{rrr}1 & 0 & 6 \\ 1 & 1 & 12\end{array}$		$\frac{5}{8}$	9	$\begin{array}{lll}4 & 0 & 22 \\ 5 & 0 & 10\end{array}$		$\frac{3}{4}$	9	8110
	$\frac{8}{5}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{lll}1 & 1 & 12 \\ 1 & 3 & 6\end{array}$		$\frac{3}{4}$	9	$\begin{array}{lll}5 & 0 & 10 \\ 7 & 0\end{array}$		1	9	11021
	$\begin{aligned} & \frac{5}{8} \\ & \frac{5}{8} \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{array}{lll}1 & 3 & 6 \\ 2 & 1 & 0\end{array}$		1	9	$\begin{array}{lll}7 & 0 & 0\end{array}$	13	$\frac{1}{2}$	9	$\begin{array}{rrrr}5 & 2 & 20\end{array}$
	$\frac{3}{4}$	9	210	8	$\frac{1}{2}$	9	$\begin{array}{llll}3 & 2 & 4\end{array}$		8	9	7014
$3 \frac{1}{2}$	$\frac{4}{\frac{4}{3}}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{rrr}3 & 0 \\ 100\end{array}$		宕	9	41225		年	9	827
	$\frac{3}{8}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{llll}1 & 0 & 21 \\ 1 & 2 & 14\end{array}$		$\frac{3}{4}$	9	$\begin{array}{llll}5 & 1 & 18\end{array}$		1	9	11212
	$\frac{5}{2}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{llll}1 & 2 & 14 \\ 2\end{array}$		1	9		$13 \frac{1}{2}$	$\frac{1}{2}$	9	$\begin{array}{rrr}5 & 3 & 7\end{array}$
	$\begin{aligned} & \frac{5}{8} \\ & \frac{3}{4} \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{lll}2 & 0 & 8 \\ 2 & 2 & 0\end{array}$	$8 \frac{1}{2}$	－	9 9	$\begin{array}{rrr}3 & 3 & 2 \\ 4 & 2\end{array}$		$\frac{5}{8}$	9	$\begin{array}{lll}7 & 112\end{array}$
	$\frac{3}{4}$	9	$\begin{array}{rrrr}2 & 2 & 0 \\ 1 & 1 & 10\end{array}$		－	9 9	$\begin{array}{lll}4 & 2 & 26 \\ 5 & 2\end{array}$		$\frac{3}{4}$	9	8316
4	$\frac{\frac{3}{8}}{\frac{1}{2}}$	9	$\begin{array}{llll}1 & 1 & 10 \\ 1 & 3 & 12\end{array}$		$\stackrel{3}{4}$	9 9	$\begin{array}{rrr}5 & 2 & 22 \\ 7 & 3 & 8\end{array}$			9	11．314
	告	9	$\begin{array}{llll}1 & 3 & 12 \\ 2 & 1 & 12\end{array}$	9	1	9	$\begin{array}{llll}7 & 3 & 8 \\ 4 & 0 & 0\end{array}$			9	$\begin{array}{rrrr}6 & 0 & 4 \\ 7 & 2 & 16\end{array}$
	$\frac{8}{4}$	9	2221		$\frac{5}{8}$	9	50		8	9	9 1 16
$4 \frac{1}{2}$	$\frac{4}{3}$	9	$\begin{array}{lll}1 & 2 & 2\end{array}$			9	$\begin{array}{lll}6 & 0 & 2\end{array}$		1	9	121.14
	$\begin{aligned} & \frac{1}{2} \\ & \frac{2}{4} \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{array}{rrrr}2 & 0 & 4 \\ 2 & 2\end{array}$		1		8 8 026	$14 \frac{1}{2}$	$\frac{1}{2}$	9	$\begin{array}{lll}6 & 0 & 24\end{array}$
	$\frac{5}{8}$	9	$\begin{array}{llll}2 & 2 & 14\end{array}$	$9 \frac{1}{2}$	$\frac{1}{2}$	9	4018		害	9	$\begin{array}{llll}7 & 3 & 14\end{array}$
	$\frac{3}{4}$	9	$\begin{array}{lll}3 & 0 & 21\end{array}$		${ }_{8}$	9	510		4	9	922
5	$\begin{aligned} & \frac{4}{2} \\ & \frac{3}{8} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{lll}1 & 2 & 22 \\ 2 & 1 & 10\end{array}$			9	$\begin{array}{llll}6 & 1 & 6\end{array}$		1	9	1236
	$\begin{aligned} & \frac{5}{2} \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{llll}2 & 1 & 10 \\ 2 & 3\end{array}$		1	9	8220	15	$\frac{1}{2}$	9	6121
	$\frac{8}{4}$	9		10	$\frac{1}{2}$	9	4110		$\frac{3}{4}$	9	931
	$\frac{3}{3}$	9 9	$\begin{array}{llll}3 & 1 & 24 \\ 1 & 3 & 10\end{array}$				5 1 26 4		1	9	
512	$\begin{aligned} & \frac{5}{8} \\ & \frac{5}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{rrrr}1 & 3 & 10 \\ 2 & 2 & 0\end{array}$		＋	9	$\begin{array}{llll}4 & 2 & 14 \\ 9 & 0 & 14\end{array}$		14	9	$\begin{array}{lll}16 & 3 & 5\end{array}$
	$\frac{1}{2}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{rrrr}2 & 2 & 0 \\ 3 & 0 & 18\end{array}$		1	9	908	151 $\frac{1}{2}$	$\frac{1}{2}$	9	6214
	$\begin{aligned} & \frac{8}{8} \\ & \frac{3}{4} \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{rrrr}3 & 0 & 18 \\ 3 & 3 & 7\end{array}$	102	$\frac{1}{2}$	9	$\begin{array}{llll}4 & 2 & 14 \\ 5 & 3 & 14\end{array}$		㟺	9	10910
	$\begin{aligned} & \frac{3}{4} \\ & 1 \end{aligned}$	9 9	$\begin{array}{rrrr}3 & 3 & 7 \\ 5 & 0 & 12\end{array}$		$\begin{aligned} & \frac{5}{8} \\ & \hline \end{aligned}$	9	$\begin{array}{lll}5 & 3 & 7 \\ 7 & 0 & \end{array}$		1	9	13217
6	電	9 9	$\begin{array}{rrrr}5 & 0 & 12 \\ 2 & 0 & 0\end{array}$		$\frac{3}{4}$		$\begin{array}{lll}7 & 0 & 0 \\ 9 & 2 & 0\end{array}$			9	$\begin{array}{rrrr}17 & 1 & 6 \\ 7 & 0 & 22\end{array}$
	$\frac{1}{2}$	9	2221	11	$\frac{1}{2}$	9	$\begin{array}{rrrr}9 & 2 & 0 \\ 4 & 3 & 14\end{array}$		－	9	$\begin{array}{rr}7 & 0 \\ 10 & 1 \\ 14 & 20\end{array}$
	$\frac{5}{8}$	9	$\begin{array}{lll}3 & 1 & 17\end{array}$		$\frac{5}{8}$	9	$\begin{array}{llll}6 & 0 & 11\end{array}$		1	9	1408
		9	4016		$\frac{3}{4}$	9	717		11	9	17314
	1	9	5220		1	9	9320		$1 \frac{1}{2}$	9.	$\begin{array}{llll}21 & 3 & 4\end{array}$

Table of the Weight of one Foot Length of Malleable Iron.

square iron.		round iron.			
Soantling.	Weight.	Diameter.	Weight.	Circumference.	Weight.
Inohes.	Pounds.	Inches.	${ }^{\text {Pounds. }}$	Inches.	Pounds.
$\frac{1}{4}$	$0 \cdot 21$	4	$0 \cdot 16$	1	$0 \cdot 26$
$\frac{5}{8}$	$0 \cdot 47$	喜	$0 \cdot 37$	11	$0 \cdot 41$
$\frac{1}{2}$	$0 \cdot 84$	$\frac{1}{2}$	$0 \cdot 66$	11	0.59
	$1 \cdot 34$		1.03	$1 \frac{3}{4}$	$0 \cdot 82$
$\frac{3}{4}$	1.89	$\frac{3}{4}$	$1 \cdot 48$	2	1.05
$\frac{7}{8}$	$2 \cdot 57$	年	$2 \cdot 02$	21	$1 \cdot 34$
1	$3 \cdot 36$	1	$2 \cdot 63$	$2 \frac{1}{2}$	$1 \cdot 65$
118	$4 \cdot 25$	118	$3 \cdot 33$	$2 \frac{3}{4}$	$2 \cdot 01$
$1 \frac{1}{4}$	$5 \cdot 25$	$1 \frac{1}{4}$	$4 \cdot 12$	3	$2 \cdot 37$
1 19	6.35	$1 \frac{3}{8}$	$4 \cdot 98$	31	$2 \cdot 79$
$1 \frac{1}{2}$	$7 \cdot 56$	$1 \frac{1}{2}$	5.93	$3 \frac{1}{2}$	$3 \cdot 24$
15	8.87	$1 \frac{5}{8}$	6.96	$3 \frac{3}{4}$	$3 \cdot 69$
$1 \frac{3}{4}$	$10 \cdot 29$	$1 \frac{3}{4}$	8.08	4	$4 \cdot 23$
$1 \frac{17}{8}$	11.81	$1 \frac{7}{8}$	$9 \cdot 27$	$4 \frac{1}{2}$	$5 \cdot 35$
2	13.44	2	10.55	5	$6 \cdot 61$
24	17.01	21	$13 \cdot 35$	$5 \frac{1}{2}$	$7 \cdot 99$
$2 \frac{1}{2}$	21.00	$2 \frac{1}{2}$	16.48	6	9.51
$2 \frac{3}{4}$	$25 \cdot 41$	$2{ }^{4}$	19.95	$6 \frac{1}{2}$	11.18
3	$30 \cdot 24$	3	23.73	7	12.96
$3 \frac{1}{2}$	$41 \cdot 16$	34	27.85	$7 \frac{1}{2}$	14.78
4	53.76	$3 \frac{1}{2}$	$32 \cdot 32$	8	16.92
$4 \frac{1}{2}$	68.04	$3{ }^{3}$	37.09	$8 \frac{1}{2}$	19.21
5	84.00	4	42.21	9	21.53
6	120.96	412	53.41	10	26.43
7	$164 \cdot 64$	5	$65 \cdot 93$	12	31.99

The following tables are rendered of great utility by means of this table:-

Suppose it be required to ascertain the weight of a cast iron pipe $26 \frac{1}{4}$ inches outside and $23 \frac{3}{4}$ inside, the length being $6 \frac{1}{2}$ feet.

Opposite $26 \frac{1}{4}$ in the table is

$$
234 \cdot 8576 \times 7 \cdot 2 \times 6.5=10991 \cdot 135
$$

And opposite $23 \frac{3}{4}$ in the table is

$$
192.2856 \times 7.2 \times 6.5=\frac{8998.966}{1992.169} \text { subtract } \mathrm{lbs} . \text { avr. }
$$

The succeeding table contains the surface and solidity of spheres, together with the edge or dimensions of equal cubes, the length of equal cylinders, and the weight of water in avoirdupois pounds:-

Surface and Solidity of Spheres.

Diameter.	Surface.	Solidity.	Cube.	Cylinder:	Water in lbs.
1 in .	$3 \cdot 1416$. 5236	-8060	-6666	$\cdot 0190$
${ }_{1}^{1 / 6}$	$3 \cdot 5465$	-6280	-8563	-7082	-0227
$\frac{1}{8}$	$3 \cdot 9760$	$\cdot 7455$	$\cdot 9067$	-7500	-0270
${ }^{3}$	$4 \cdot 4301$	-8767	-9571	$\cdot 7917$	-0317
$\frac{1}{4}$	$4 \cdot 9087$	$1 \cdot 0226$	1.0075	-8333	-0370
${ }^{5}$	$5 \cdot 4117$	$1 \cdot 1838$	$1 \cdot 0578$	-8750	-0428
$\frac{3}{8}$	$5 \cdot 9395$	$1 \cdot 3611$	$1 \cdot 1082$	-9166	-0500
$1{ }^{7}$	$6 \cdot 4918$	1-5553	1-1586	-9583	-0563
$\frac{1}{2}$	$7 \cdot 0686$	1.7671	1.2090	1.0000	-0640
${ }^{9} 6$	$7 \cdot 6699$	2.0000	$1 \cdot 2593$	1.0416	-0723
${ }^{5}$	$8 \cdot 2957$	$2 \cdot 2467$	1-3097	1.0833	$\cdot 0813$,
$1 \frac{1}{6}$	$8 \cdot 9461$	$2 \cdot 5161$	$1 \cdot 3601$	$1 \cdot 1349$	-0910
${ }^{\frac{3}{4}}$	$9 \cdot 6211$	$2 \cdot 8061$	$1 \cdot 4105$	$1 \cdot 1666$	-1015
$1{ }^{13}$	$10 \cdot 3206$	$3 \cdot 1176$	$1 \cdot 4608$	$1 \cdot 2083$	-1128
${ }^{7}$	11.0446	$3 \cdot 4514$	1.5112	1.2500	-1250
15	11.7932	$3 \cdot 8081$	1.5616	$1 \cdot 2916$	-1377
2 in .	12.5664	$4 \cdot 1888$	1.6020	1.3333	-1516
${ }_{1}^{16}$	$13 \cdot 3640$	$4 \cdot 5938$	$1 \cdot 6633$	1.3750	-1662
$\frac{1}{8}$	14.1862	$5 \cdot 0243$	1.7127	1.4166	-1818
$\frac{3}{16}$	15.0330	$5 \cdot 4807$	1.7631	1.4582	-1982
1	15.9043	6.9640	1.8135	1.5000	-2160
${ }^{5} 6$	16.8000	$6 \cdot 4749$	1.8638	1.5516	-2342
${ }^{3}$	17.7205	$7 \cdot 0143$	1.9142	1.5832	-2540
${ }^{7} 16$	$18 \cdot 6655$	$7 \cdot 5828$	1.9646	1.6250	$\cdot 2743$
$\frac{1}{2}$	19.6350	$8 \cdot 1812$	2.0150	1.6666	-2960
$\frac{9}{16}$	$20 \cdot 6290$	$8 \cdot 8103$	$2 \cdot 0653$	1.7082	-3187
${ }^{5}$	21.6475	$9 \cdot 4708$	$2 \cdot 1157$	1.7500	-3426
118	22.6907	$10 \cdot 1634$	$2 \cdot 1661$	1.7915	-3676
$\frac{3}{4}$	23.7583	$10 \cdot 8892$	$2 \cdot 2165$	1.8332	-3939
$1{ }^{19}$	24.8505	11.6485	$2 \cdot 2668$	1.8750	-4213
${ }^{7}$	25.9672	12.4426	$2 \cdot 3172$	1.9165	-4501
${ }^{15}$	$27 \cdot 1084$	13.2718	$2 \cdot 3676$	1.9582	-4800
3 in .	28.2744	14.1372	2.4180	2.0000	-5114
$\frac{1}{16}$	$29 \cdot 4647$	15.0392	$2 \cdot 4683$	2.0415	$\cdot 5440$
$\frac{1}{8}$	$30 \cdot 6796$	$15 \cdot 9790$	2.5187	2.0832	-5780
$\frac{3}{16}$	31.9191	16.9570	2.5691	$2 \cdot 1250$	-6133
$\frac{1}{4}$	$33 \cdot 1831$	$17 \cdot 9742$	$2 \cdot 6195$	$2 \cdot 1665$	-6401
${ }^{5}$	$35 \cdot 3715$	19.0311	$2 \cdot 6698$	$2 \cdot 2082$	-6884
$\frac{3}{8}$	$35 \cdot 7847$	$20 \cdot 1289$	2.7202	$2 \cdot 2500$	$\cdot 7281$
${ }^{7}{ }^{7}$	$37 \cdot 1224$	$21 \cdot 2680$	$2 \cdot 7706$	2.2915	$\cdot 7693$
$\frac{1}{2}$	$38 \cdot 4846$	22.4493	2.8210	2.3332	-8120
${ }_{1}{ }^{9} 6$	$39 \cdot 8713$	$23 \cdot 6735$	2.8713	$2 \cdot 3750$	-8561
$\frac{5}{8}$	41.2825	24.9415	2.9217	$2 \cdot 4166$	-9021
$\frac{1}{1} \frac{1}{6}$	42.7183	26.2539	$2 \cdot 9712$	$2 \cdot 4582$	-9496
$\frac{3}{4}$	$44 \cdot 1787$	$27 \cdot 6117$	3.0225	2.5000	-9987
$1{ }^{13}$	45.6636	29.0102	$3 \cdot 0728$	2.5415	$1 \cdot 0493$
${ }^{7}$	$47 \cdot 1730$	$30 \cdot 4659$	$3 \cdot 1232$	2.5832	$1 \cdot 1020$
$1{ }^{\frac{5}{6}}$	48.7070	31.9640	$3 \cdot 1730$	2.6250	$1 \cdot 1561$
4 in .	50.2656	$33 \cdot 5104$	$3 \cdot 2240$	2.6665	1-1974
$\frac{1}{16}$	51.8486	$35 \cdot 1058$	$3 \cdot 2743$	2.7082	$1 \cdot 2698$
$\frac{1}{8}$	$53 \cdot 4562$	$36 \cdot 7511$	$3 \cdot 3247$	2.7500	$1 \cdot 3293$
${ }^{3} 6$	55.0884	$38 \cdot 4471$	$3 \cdot 3751$	2.7915	1.3906
$\frac{1}{4}$	56.7451	$40 \cdot 1944$	$3 \cdot 4255$	2.8332	$1 \cdot 4538$
${ }_{1}^{5}$	58.4262	$42 \cdot 0461$	$3 \cdot 4758$	2.8750	1.5208
- ${ }^{\frac{3}{8}}$	$60 \cdot 1321$ 61.8625	43.8463	$3 \cdot 5262$ 3.5766	$2 \cdot 9165$	$1 \cdot 5860$
${ }_{1} 76$	61.8625	$45 \cdot 7524$	$3 \cdot 5766$	$2 \cdot 9582$	$1 \cdot 6550$

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in 1 bs .
$\frac{1}{2}$	$63 \cdot 6174$	$47 \cdot 7127$	$3 \cdot 6270$	$3 \cdot 0000$	1•7258
${ }_{1} 96$	$65 \cdot 3968$	$49 \cdot 7290$	$3 \cdot 6773$	$3 \cdot 0415$	$1 \cdot 7987$
$\frac{5}{8}$	$67 \cdot 2007$	$51 \cdot 8006$	$3 \cdot 7277$	$3 \cdot 0832$	$1 \cdot 8736$
$1 \frac{1}{6}$	$69 \cdot 0352$	$53 \cdot 9290$	$3 \cdot 7781$	$3 \cdot 1250$	$1 \cdot 9506$
3	$70 \cdot 8823$	$56 \cdot 1151$	3-8285	$3 \cdot 1665$	$2 \cdot 0297$
$\frac{13}{16}$	72.7599	$58 \cdot 3595$	$3 \cdot 8788$	$3 \cdot 2080$	$2 \cdot 1109$
${ }^{7}$	$74 \cdot 6620$	$60 \cdot 6629$	3.9292	$3 \cdot 2500$	2-1942
$5^{\frac{1}{1} .5}$	$76 \cdot 5887$	$62 \cdot 9261$	$3 \cdot 9796$	$3 \cdot 2913$	$2 \cdot 2760$
5 in .	$78 \cdot 5400$	$65 \cdot 4500$	$4 \cdot 0300$	$3 \cdot 3332$	$2 \cdot 3673$
$\frac{1}{16}$	80.5157	$67 \cdot 9351$	$4 \cdot 0803$	$3 \cdot 3750$	$2 \cdot 4572$
$\frac{1}{8}$	82.5160	$70 \cdot 4824$	$4 \cdot 1307$	$3 \cdot 4155$	$2 \cdot 5453$
$\stackrel{3}{16}$	$84 \cdot 5409$	$73 \cdot 0926$	$4 \cdot 1811$	$3 \cdot 4582$	$2 \cdot 6438$
$\frac{1}{4}$	$86 \cdot 5903$	$75 \cdot 7664$	$4 \cdot 2315$	$3 \cdot 5000$	$2 \cdot 7605$
${ }_{1}^{5}$	$88 \cdot 6641$	$78 \cdot 5077$	$4 \cdot 2818$	$3 \cdot 5414$	2.8396
${ }^{6}$	$90 \cdot 7627$	$81 \cdot 3083$	$4 \cdot 3322$	$3 \cdot 5832$	$2 \cdot 9407$
16	92.8858	$84 \cdot 1777$	$4 \cdot 3820$	$3 \cdot 6250$	$3 \cdot 0447$
$\frac{1}{2}$	$95 \cdot 0334$	$87 \cdot 1139$	$4 \cdot 4330$	$3 \cdot 6665$	$3 \cdot 1509$
$\frac{9}{16}$	$97 \cdot 2053$	$90 \cdot 1175$	$4 \cdot 4633$	$3 \cdot 7080$	$3 \cdot 2595$
$\frac{5}{8}$	$99 \cdot 4021$	$93 \cdot 1875$	$4 \cdot 5337$	$3 \cdot 7500$	$3 \cdot 3706$
$\frac{1}{1} \frac{1}{6}$	$101 \cdot 6233$	$96 \cdot 3304$	$4 \cdot 5841$	$3 \cdot 7913$	$3 \cdot 4843$
$\frac{3}{4}$	$103 \cdot 8691$	99.5412	$4 \cdot 6345$	3.8330	$3 \cdot 6004$
$\frac{13}{1.6}$	106•1394	$102 \cdot 8225$	$4 \cdot 6848$	$3 \cdot 8750$	$3 \cdot 7191$
${ }^{8}$	$108 \cdot 4342$	$106 \cdot 1754$	$4 \cdot 7352$	$3 \cdot 9163$	3-8404
$\frac{15}{1.6}$	$110 \cdot 7536$	$109 \cdot 5973$	$4 \cdot 7856$	$3 \cdot 9580$	$3 \cdot 9641$
6 in.	113.0976	$113 \cdot 0976$	$4 \cdot 8360$	$4 \cdot 0000$	$4 \cdot 0907$
$\frac{1}{16}$	$115 \cdot 4660$	$116 \cdot 6688$	$4 \cdot 8863$	$4 \cdot 0417$	$4 \cdot 2200$
$\frac{1}{8}$	$117 \cdot 8590$	$120 \cdot 3139$	$4 \cdot 9367$	$4 \cdot 0833$	$4 \cdot 3517$
16	$120 \cdot 2771$	$124 \cdot 0374$	$4 \cdot 9871$	$4 \cdot 1250$	$4 \cdot 4874$
$\frac{1}{4}$	$122 \cdot 7187$	$127 \cdot 8320$	$5 \cdot 0375$	$4 \cdot 1666$	$4 \cdot 6236$
${ }_{1}^{5}$	$125 \cdot 1852$	$131 \cdot 7053$	$5 \cdot 0878$	$4 \cdot 2083$	$4 \cdot 7638$
$\frac{8}{8}$	$127 \cdot 6765$	$135 \cdot 6563$	5-1382	$4 \cdot 2500$	$4 \cdot 9067$
${ }_{1}^{7}$	$130 \cdot 1923$	$139 \cdot 6854$	5•1886	$4 \cdot 2917$	$5 \cdot 0524$
$\frac{1}{2}$	$132 \cdot 7326$	$143 \cdot 7936$	$5 \cdot 2390$	$4 \cdot 3332$	$5 \cdot 2010$
$\frac{9}{16}$	$135 \cdot 2974$	$147 \cdot 9815$	5-2893	$4 \cdot 3750$	$5 \cdot 3525$
$\frac{5}{8}$	$137 \cdot 8867$	$152 \cdot 2499$	$5 \cdot 3377$	$4 \cdot 4165$	$5 \cdot 5069$
116	$140 \cdot 5006$	156.5997	$5 \cdot 3901$	$4 \cdot 4583$	$5 \cdot 6786$
$\frac{3}{4}$	$143 \cdot 1391$	$161 \cdot 0315$	$5 \cdot 4405$	$4 \cdot 5000$	$5 \cdot 8245$
$\frac{13}{16}$	$145 \cdot 8021$	$167 \cdot 5461$	5 ${ }^{\text {d }} 4908$	$4 \cdot 5416$	$6 \cdot 0601$
$\frac{7}{8}$	$148 \cdot 4896$	$170 \cdot 1682$	$5 \cdot 5412$	4.5832	$6 \cdot 1550$
$\frac{15}{15}$	$151 \cdot 2017$	$174 \cdot 8270$	5.5916	$4 \cdot 6250$	$6 \cdot 3235$
7 in .	$153 \cdot 9384$	$179 \cdot 5948$	$5 \cdot 6420$	$4 \cdot 6665$	$6 \cdot 4960$
$\frac{1}{16}$	$156 \cdot 6995$	$184 \cdot 4484$	5•6923	$4 \cdot 7082$	$6 \cdot 6725$
$\frac{1}{8}$	$159 \cdot 4852$	$189 \cdot 3882$	$5 \cdot 7427$	$4 \cdot 7500$	$6 \cdot 8502$
$\stackrel{3}{16}$	$162 \cdot 2955$	$194 \cdot 1165$	$5 \cdot 7931$	$4 \cdot 7915$	$7 \cdot 0212$
$\frac{1}{4}$	$165 \cdot 1303$	199.5325	$5 \cdot 8435$	4.8332	$7 \cdot 2171$
$\frac{5}{16}$	$167 \cdot 9895$	$204 \cdot 7371$	$5 \cdot 8938$	$4 \cdot 8750$	$7 \cdot 4053$
${ }^{18} 8$	$170 \cdot 8735$	210.0331	$5 \cdot 9442$	4.9166	$7 \cdot 5970$
18 16	$173 \cdot 7520$	$215 \cdot 4172$	$5 \cdot 9946$	4.9582	$7 \cdot 7916$
$\frac{1}{2}$	$176 \cdot 7150$	$220 \cdot 8937$	$6 \cdot 0450$	$5 \cdot 0000$	$7 \cdot 9897$
$\stackrel{9}{16}$	$179 \cdot 6725$	$226 \cdot 7240$	$6 \cdot 0953$	$5 \cdot 0415$	$8 \cdot 2006$
$\frac{5}{88}$	$182 \cdot 6545$	$232 \cdot 1235$	$6 \cdot 1457$	$5 \cdot 0832$	$8 \cdot 3960$
$1 \frac{1}{6}$	$185 \cdot 6611$	$237 \cdot 8883$	$6 \cdot 1961$	$5 \cdot 1250$	$8 \cdot 6044$
${ }^{3} 4$	$188 \cdot 6923$	$243 \cdot 7276$	$6 \cdot 2465$	$5 \cdot 1665$	$8 \cdot 8157$
4. 18	191.7480	$249.472{ }^{\circ}$	$6 \cdot 2968$	$5 \cdot 2082$	$9 \cdot 0234$
$\frac{7}{8}$	194.8282	$255 \cdot 7121$	$6 \cdot 3472$	$5 \cdot 2500$	9•2491
1.6	197.9330	$261 \cdot 9673$	$6 \cdot 3976$	$5 \cdot 2913$	$9 \cdot 4753$
8 in.	$201 \cdot 0624$	$268 \cdot 0832$	$6 \cdot 4480$	$5 \cdot 3330$	9•6965
${ }^{16}$	$204 \cdot 2162$	$274 \cdot 4156$	$6 \cdot 4983$	$5 \cdot 3750$	$9 \cdot 9260$

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in lbs.
$\frac{1}{8}$	$207 \cdot 3946$	$280 \cdot 8469$	$6 \cdot 5487$	$5 \cdot 4164$	10•1583
$\frac{3}{16}$	$210 \cdot 5976$	$287 \cdot 3780$	$6 \cdot 5991$	$5 \cdot 4581$	$10 \cdot 3944$
$\frac{1}{4}$	$213 \cdot 8251$	$294 \cdot 0095$	$6 \cdot 6495$	$5 \cdot 5000$	10.6343
${ }_{1}^{5}$	217-0770	$300 \cdot 7422$	$6 \cdot 6998$	$5 \cdot 5414$	10.8778
$\frac{3}{8}$	$220 \cdot 3537$	$307 \cdot 5771$	$6 \cdot 7502$	5.5831	$11 \cdot 1250$
${ }^{7} 6$	$223 \cdot 6549$	314.5147	$6 \cdot 8006$	$5 \cdot 6250$	$11 \cdot 3760$
$\frac{1}{2}$	226.9806	$321 \cdot 5553$	$6 \cdot 8510$	$5 \cdot 6664$	$11 \cdot 6306$
${ }_{15}{ }^{9}$	$230 \cdot 3308$	$328 \cdot 7012$	$6 \cdot 9013$	$5 \cdot 7080$	11.8891
$\frac{5}{88}$	$233 \cdot 7055$	$335 \cdot 9517$	$6 \cdot 9517$	$5 \cdot 7500$	$12 \cdot 1514$
118	$237 \cdot 1048$	$343 \cdot 3079$	$7 \cdot 0021$	$5 \cdot 7913$	12.4170
$\frac{3}{4}$	$240 \cdot 5287$	$350 \cdot 7710$	$7 \cdot 0525$	$5 \cdot 8330$	$12 \cdot 6874$
1.6	$243 \cdot 9771$	$358 \cdot 3412$	$7 \cdot 1028$	$5 \cdot 8750$	$12 \cdot 9612$
${ }^{7}$	$247 \cdot 4500$	$366 \cdot 0199$	$7 \cdot 1532$	$5 \cdot 9163$	$13 \cdot 2390$
$1 \frac{5}{6}$	$250 \cdot 9475$	$373 \cdot 8073$	$7 \cdot 2036$	$5 \cdot 9580$	$13 \cdot 5206$
9 in .	$254 \cdot 4696$	$381 \cdot 7017$	$7 \cdot 2540$	$6 \cdot 0000$	$13 \cdot 8062$
${ }_{1}^{16}$	$258 \cdot 0261$	$389 \cdot 7118$	$7 \cdot 3043$	6.0417	14.0959
$\frac{1}{8}$	261.5872	$397 \cdot 8306$	$7 \cdot 3547$	$6 \cdot 0833$	$14 \cdot 3895$
${ }_{1}{ }^{3}$	$265 \cdot 1829$	$406 \cdot 0613$. $7 \cdot 4051$	$6 \cdot 1250$	$14 \cdot 6872$
$\frac{1}{4}$	$268 \cdot 8031$	414.4048	-7.4555	$6 \cdot 1667$	$14 \cdot 9890$
${ }_{1}^{5}$	$272 \cdot 4477$	$421 \cdot 2907$	$7 \cdot 5058$	$6 \cdot 2083$	$15 \cdot 2381$
$\frac{3}{8}$	$276 \cdot 1171$	431.4361	$7 \cdot 5562$	$6 \cdot 2500$	$15 \cdot 6050$
- ${ }^{76}$	$279 \cdot 8110$	$440 \cdot 1294$	$7 \cdot 6066$	$6 \cdot 2916$	$15 \cdot 9195$
$\frac{1}{2}$	283.5294	$448 \cdot 9215$	$7 \cdot 6570$	$6 \cdot 3333$	$16 \cdot 2375$
${ }_{16}^{9}$	$287 \cdot 2723$	$457 \cdot 8500$	$7 \cdot 7073$	$6 \cdot 3750$	$16 \cdot 5604$
$\frac{5}{8}$	$291 \cdot 0397$	$466 \cdot 8763$	$7 \cdot 7557$	$6 \cdot 4166$	$16 \cdot 6869$
$1 \frac{1}{6}$	$294 \cdot 8310$	$476 \cdot 0304$	$7 \cdot 8081$	$6 \cdot 4582$	$17 \cdot 2180$
$\frac{3}{4}$	$298 \cdot 4483$	$485 \cdot 3035$	$7 \cdot 8585$	$6 \cdot 5000$	$17 \cdot 5534$
$1 \frac{13}{6}$	$302 \cdot 4894$	$494 \cdot 6952$	$7 \cdot 9088$	$6 \cdot 5415$	$17 \cdot 8931$
- $\frac{7}{8}$	$306 \cdot 3550$	$504 \cdot 2094$	$7 \cdot 9592$	6.5832	$18 \cdot 2373$
$0^{\frac{15}{1} 6}$	$310 \cdot 9452$	$513 \cdot 8436$	$8 \cdot 0096$	$6 \cdot 6250$	18:5857
10 in .	$314 \cdot 1600$	$523 \cdot 6000$	$8 \cdot 0600$	$6 \cdot 6666$	$18 \cdot 6786$
${ }_{1}^{16}$	$318 \cdot 0992$	$533 \cdot 4789$	$8 \cdot 1103$	$6 \cdot 7083$	$19 \cdot 2960$
$\frac{1}{8}$	$322 \cdot 0630$	$543 \cdot 4814$	$8 \cdot 1607$	$6 \cdot 7500$	$19 \cdot 6577$
$\frac{3}{16}$	326.0514	$553 \cdot 6081$	$8 \cdot 2111$	6.7916	$20 \cdot 0240$
1	$330 \cdot 0643$	$563 \cdot 8603$	$8 \cdot 2615$	6.8333	$20 \cdot 3948$
${ }^{5}$	$334 \cdot 1016$	$574 \cdot 2371$	$8 \cdot 3118$	6.8750	$20 \cdot 6682$
$\frac{8}{8}$	$338 \cdot 1637$	$584 \cdot 7415$	$8 \cdot 3622$	6.9166	$21 \cdot 1501$
$\begin{array}{r}16 \\ \hline 7 \\ \hline 16\end{array}$	$342 \cdot 2503$	$595 \cdot 3677$	$8 \cdot 4126$	6.9582	21.5344
$\frac{1}{2}$	$346 \cdot 3614$	$606 \cdot 1318$	$8 \cdot 4630$	$7 \cdot 0000$	21.9238
${ }_{15}^{9}$	$350 \cdot 4970$	$617 \cdot 0207$	$8 \cdot 5133$	$7 \cdot 0416$	$22 \cdot 3176$
$\frac{5}{8}$	$354 \cdot 6571$	$628 \cdot 0387$	$8 \cdot 5637$	7.0833	$22 \cdot 7162$
$\frac{1}{1} \frac{1}{6}$	$358 \cdot 8418$	$639 \cdot 1871$	$8 \cdot 6141$	$7 \cdot 1250$	$23 \cdot 1194$
$\frac{3}{4}$	$363 \cdot 0511$	$650 \cdot 4666$	$8 \cdot 6645$	7•1666	$23 \cdot 5274$
$1{ }_{1}^{6}$	$367 \cdot 2849$	661.8580 .	$8 \cdot 7148$	$7 \cdot 2082$	$23 \cdot 9394$
$\frac{7}{8}$	$371 \cdot 5432$	673.4222^{*}	$8 \cdot 7652$	$7 \cdot 2500$	$24 \cdot 3577$
${ }^{1.5}$	$375 \cdot 8261$	$685 \cdot 0997$	$8 \cdot 8156$	$7 \cdot 2915$	$24 \cdot 7801$
11 in.	$380 \cdot 1336$	$696 \cdot 9116$	$8 \cdot 8660$	$7 \cdot 3330$	$25 \cdot 2073$
$\frac{1}{16}$	$384 \cdot 4655$	$708 \cdot 9106$	$8 \cdot 9163$	$7 \cdot 3750$	$25 \cdot 6414$
$\frac{1}{8}$	$388 \cdot 8220$	$720 \cdot 9409$	$8 \cdot 9667$	$7 \cdot 4165$	$26 \cdot 0764$
${ }_{1} \frac{3}{6}$	$393 \cdot 2031$	$733 \cdot 1599$	9.0171	$7 \cdot 4582$	26.5184
$\frac{1}{4}$	$397 \cdot 6087$	$745 \cdot 5004$	$9 \cdot 0675$	$7 \cdot 5000$	26.5657
$\frac{5}{16}$	$402 \cdot 0387$	$758 \cdot 0104$	$9 \cdot 1178$	$7 \cdot 5414$	$27 \cdot 4162$
3	$406 \cdot 4935$ $410 \cdot 7708$	$770 \cdot 6440$ 783.5787	$9 \cdot 1682$ $9 \cdot 2186$	$7 \cdot 5832$	$27 \cdot 8742$ $28 \cdot 3420$
${ }^{1}{ }^{6}$	$410 \cdot 7728$ $415 \cdot 4766$	783.5787 $796 \cdot 3301$	$9 \cdot 2186$ $9 \cdot 2690$	$7 \cdot 6250$	$28 \cdot 3420$ 28.8033
2 9 16	$420 \cdot 0049$	$809 \cdot 3844$	$9 \cdot 3193$	7.6664 7.7080	29-2754
$\frac{8}{8}$	$424 \cdot 5576$	822.5807	$9 \cdot 3697$	$7 \cdot 7500$	$29 \cdot 7527$
$1 \frac{1}{6}$	$429 \cdot 1351$	$835 \cdot 9695$	$9 \cdot 4201$	7•7913	$30 \cdot 2370$

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in lbs.
$\frac{3}{4}$	$433 \cdot 7371$	$849 \cdot 4035$	$9 \cdot 4705$	$7 \cdot 8330$	$30 \cdot 7229$
$1{ }^{13}$	$438 \cdot 3636$	$863 \cdot 0283$	$9 \cdot 5208$	$7 \cdot 8750$	$31 \cdot 2157$
$\frac{7}{8}$	$443 \cdot 0146$	$876 \cdot 7999$	$9 \cdot 5772$	$7 \cdot 9163$	31-3883
$\frac{1}{5}$	$447 \cdot 6902$	$890 \cdot 7070$	$9 \cdot 6216$	$7 \cdot 9580$	$32 \cdot 2169$
12 in .	$452 \cdot 3904$	904•7808	$9 \cdot 6720$	$8 \cdot 0000$	$32 \cdot 7259$
$\frac{1}{4}$	$471 \cdot 4363$	- $962 \cdot 5158$	$9 \cdot 8735$	8-1666	$34 \cdot 8142$
$\frac{1}{2}$	$490 \cdot 8750$	1022.656	$10 \cdot 0750$	$8 \cdot 3332$	36.9886
$\frac{3}{4}$	$506 \cdot 7064$	$1085 \cdot 251$	$10 \cdot 2765$	$8 \cdot 5000$	$39 \cdot 2535$
13 in .	$530 \cdot 9304$	$1150 \cdot 337$	10.4780	$8 \cdot 6666$	$41 \cdot 6077$
$\frac{1}{4}$	$551 \cdot 5471$	$1218 \cdot 000$	10.6790	$8 \cdot 8332$	$44 \cdot 0551$
$\frac{1}{2}$	$572 \cdot 5566$	$1288 \cdot 252$	$10 \cdot 8810$	$9 \cdot 0000$	$46 \cdot 5961$
$\frac{3}{4}$	$593 \cdot 9587$	$1361 \cdot 346$	11.0825	$9 \cdot 1665$	$49 \cdot 2399$
14 in.	$615 \cdot 7536$	$1436 \cdot 758$	11.2840	$9 \cdot 3332$	$51 \cdot 9675$
$\frac{1}{4}$	$637 \cdot 9411$	$1515 \cdot 106$	11.4855	$9 \cdot 5000$	$54 \cdot 8014$
$\frac{1}{2}$	660.5214	$1596 \cdot 260$	11.6870	$9 \cdot 6665$	$57 \cdot 7367$
$\frac{3}{4}$	$683 \cdot 4943$	$1680 \cdot 265$	11.8885	$9 \cdot 8332$	$60 \cdot 7751$
15 in.	$706 \cdot 8600$	$1767 \cdot 150$	12.0900	$10 \cdot 0000$	$64 \cdot 0178$
$\frac{1}{4}$	$730 \cdot 6183$	1856.988 .	$12 \cdot 2915$	$10 \cdot 1666$	$67 \cdot 1672$
$\frac{1}{2}$	$754 \cdot 7694$	$1949 \cdot 821$	12.4930	10.3332	$70 \cdot 5250$
$\frac{3}{4}$	$779 \cdot 3131$	$2045 \cdot 697$	$12 \cdot 6940$	$10 \cdot 5000$	$73 \cdot 9929$
16 in .	$804 \cdot 2496$	$2144 \cdot 665$	$12 \cdot 8960$	$10 \cdot 6666$	$77 \cdot 5725$

Table containing the Weight of Flat Bar Iron, 1 foot in length, of various breadths and thicknesses.

	thigeness in parts of an inch.									
	$\frac{1}{4}$	${ }_{1}^{5}$	$\frac{3}{8}$	${ }^{7} 6$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1 inch.
	Lbs.									
1 in.	0.83	1.04	1.25	1.45	1.66	1.87	$2 \cdot 08$	$2 \cdot 50$	$2 \cdot 91$	$3 \cdot 33$
$1 \frac{1}{8}$	0.93	$1 \cdot 17$	$1 \cdot 40$	$1 \cdot 64$	1.87	$2 \cdot 00$	$2 \cdot 34$	$2 \cdot 81$	$3 \cdot 28$	$3 \cdot 75$
$1 \frac{1}{4}$	$1 \cdot 04$	$1 \cdot 30$	1.56	1.82	$2 \cdot 08$	$2 \cdot 34$	$2 \cdot 60$	$3 \cdot 12$	$3 \cdot 74$	$4 \cdot 16$
$1 \frac{3}{8}$	$1 \cdot 14$	$1 \cdot 43$	1.71	$2 \cdot 00$	$2 \cdot 29$	$2 \cdot 57$	$2 \cdot 86$	$3 \cdot 43$	4.01	$4 \cdot 58$
$1 \frac{1}{2}$	1.25	1.56	1.87	$2 \cdot 18$	$2 \cdot 50$	$2 \cdot 81$	$3 \cdot 12$	$3 \cdot 75$	$4 \cdot 37$	$5 \cdot 00$
15	$1 \cdot 35$	$1 \cdot 69$	2.03	$2 \cdot 36$	$2 \cdot 70$	$3 \cdot 04$	$3 \cdot 38$	$4 \cdot 06$	$4 \cdot 73$	$5 \cdot 41$
$1 \frac{3}{4}$	$1 \cdot 45$	1.82	$2 \cdot 18$	$2 \cdot 55$	$2 \cdot 91$	$3 \cdot 28$	$3 \cdot 64$	$4 \cdot 37$	$5 \cdot 10$	$5 \cdot 83$
$1 \frac{4}{8}$	$1 \cdot 56$	1.95	$2 \cdot 34$	$2 \cdot 73$	$3 \cdot 12$	$3 \cdot 51$	$3 \cdot 90$	$4 \cdot 68$	$5 \cdot 46$	$6 \cdot 25$
2 in .	$1 \cdot 66$	$2 \cdot 08$	$2 \cdot 50$	2.91	$3 \cdot 33$	$3 \cdot 75$	$4 \cdot 16$	$5 \cdot 00$	$5 \cdot 83$	$6 \cdot 66$
$2 \frac{1}{8}$	1.77	$2 \cdot 21$	$2 \cdot 65$	$3 \cdot 09$	$3 \cdot 54$	$3 \cdot 98$	$4 \cdot 42$	$5 \cdot 31$	$6 \cdot 19$	$7 \cdot 08$
21	1.87	$2 \cdot 34$	$2 \cdot 81$	$3 \cdot 28$	$3 \cdot 75$	$4 \cdot 21$	$4 \cdot 68$	$5 \cdot 62$	$6 \cdot 56$	$7 \cdot 50$
$2 \frac{3}{8}$	1.97	$2 \cdot 47$	$2 \cdot 96$	$3 \cdot 46$	$3 \cdot 95$	$4 \cdot 45$	$4 \cdot 94$	$5 \cdot 93$	6.92	$7 \cdot 91$
$2 \frac{1}{2}$	2.08	$2 \cdot 60$	$3 \cdot 12$	$3 \cdot 64$	$4 \cdot 16$	$4 \cdot 68$	$5 \cdot 20$	$6 \cdot 25$	7.29	$8 \cdot 33$
$2{ }^{5}$	$2 \cdot 18$	$2 \cdot 73$	$3 \cdot 28$	$3 \cdot 82$	$4 \cdot 37$	$4 \cdot 92$	$5 \cdot 46$	$6 \cdot 56$	$7 \cdot 65$	$8 \cdot 75$
$2{ }^{8}$	$2 \cdot 29$	$2 \cdot 86$	$3 \cdot 43$	$4 \cdot 01$	$4 \cdot 58$	$5 \cdot 15$	$5 \cdot 72$	$6 \cdot 87$	$8 \cdot 02$	$9 \cdot 16$
$2 \frac{4}{8}$	$2 \cdot 39$	$2 \cdot 99$	$3 \cdot 59$	$4 \cdot 19$	$4 \cdot 79$	$5 \cdot 39$	$5 \cdot 98$	$7 \cdot 18$	$8 \cdot 38$	$9 \cdot 58$
3 in .	$2 \cdot 50$	$3 \cdot 12$	$3 \cdot 75$	$4 \cdot 37$	$5 \cdot 00$	$5 \cdot 62$	$6 \cdot 25$	$7 \cdot 50$	$8 \cdot 75$	$10 \cdot 00$
31.	$2 \cdot 70$	$3 \cdot 38$	$4 \cdot 06$	$4 \cdot 73$	$5 \cdot 41$	$6 \cdot 09$	$6 \cdot 77$	$8 \cdot 12$	$9 \cdot 47$	10.83
$3 \frac{1}{2}$	$2 \cdot 91$	$3 \cdot 64$	$4 \cdot 37$	$5 \cdot 10$	$5 \cdot 83$	$6 \cdot 56$	$7 \cdot 29$	$8 \cdot 75$	$10 \cdot 20$	11.66
$3 \frac{3}{4}$	$3 \cdot 12$	$3 \cdot 90$	$4 \cdot 68$	$5 \cdot 46$	$6 \cdot 25$	$7 \cdot 03$	$7 \cdot 81$	$9 \cdot 37$	10.93	$12 \cdot 50$
4 in.	$3 \cdot 33$	$4 \cdot 16$	$5 \cdot 00$	$5 \cdot 83$	$6 \cdot 66$	$7 \cdot 50$	$8 \cdot 33$	$10 \cdot 00$	11.66	$13 \cdot 33$
$4 \frac{1}{4}$	$3 \cdot 54$	$4 \cdot 42$	$5 \cdot 31$	$6 \cdot 19$	$7 \cdot 08$	$7 \cdot 96$	$8 \cdot 85$	10.62	$12 \cdot 39$	$14 \cdot 16$
$4 \frac{1}{2}$	$3 \cdot 75$	$4 \cdot 68$	$5 \cdot 62$	$6 \cdot 56$	$7 \cdot 50$	$8 \cdot 43$	$9 \cdot 37$	11.25	$13 \cdot 12$	15.00
$4 \frac{3}{4}$	$3 \cdot 95$	$4 \cdot 94$	$5 \cdot 93$	6.92	$7 \cdot 91$	$8 \cdot 90$	$9 \cdot 89$	11.87	13.85	$15 \cdot 33$
5 in .	$4 \cdot 17$	$5 \cdot 20$	$6 \cdot 25$	$7 \cdot 29$	$8 \cdot 33$	$9 \cdot 37$	$10 \cdot 41$	$12 \cdot 50$	14.58	$16 \cdot 66$
$5 \frac{1}{4}$	$4 \cdot 37$	$5 \cdot 46$	6.56	$7 \cdot 65$	$8 \cdot 75$	9.84	10.93	$13 \cdot 12$	$15 \cdot 31$	17.50
$5 \frac{1}{2}$	4.58	$5 \cdot 72$	$6 \cdot 87$	$8 \cdot 02$	$9 \cdot 16$	$10 \cdot 31$	11.45	$13 \cdot 75$	16.04	$18 \cdot 33$
$5{ }^{3}$	4.79	$5 \cdot 98$	$7 \cdot 18$	$8 \cdot 38$	9.58	10.78	11.97	14.37	16.77	$19 \cdot 16$
6 in .	$5 \cdot 00$	$6 \cdot 26$	$7 \cdot 50$	$8 \cdot 75$	10.00	$11 \cdot 25$	$12 \cdot 50$	$15 \cdot 00$	17.50	$20 \cdot 00$

Table combining the Specific Gravities and other Properties of Bodies. Water the standard of comparison, or 1000.

Names.		metals.								Names.	STONES, EARTHS, ETC.			
							Ratio of hardness.						品	\%
Platinum.	19500	3230	.,	\cdots	3	5			3.8	Marble, average	2730	170.00	13	9-25
Pure Gold.	19258	2016	.	.	1	1	1.8	3	$10 \cdot 0$	Granite, ditto.	2651	$165 \cdot 68$	131/2	
Mercury . .	13500				\cdots					Purbeck stone.	2601	162-56	$133 / 4$	$9 \cdot 0$
Lead.. . .	11352	612	$\cdot 319$	$\cdot 81$	8	7	1.0	6	1.8	Portland ditto .	2570	$160 \cdot 62$	14	$4 \cdot 5$
Pure Silver .	10474	1873			2	2	$2 \cdot 4$	2	$9 \cdot 7$	Bristol ditto . .	2554	159.62	14	
Bismuth . .	8923	476	-156	1.45	.	\cdots	20	.	.	Millstone . .	2484	$155 \cdot 25$	141/2	
Copper, cast.	8788	1996	-193	8.51 15.08						Paving stone. ${ }^{\text {Crain }}$	2415	150.93	$14^{3} / 4$	$5 \cdot 7$
" wronght	8910		-.	15.08	5	3	$\underset{\text { to any }}{2 \cdot 8}$	1	8.9	Craigleith ditto	2362	$147 \cdot 62$		5.0
Brass, cast .	7824	1900	210	$8 \cdot 01$	\cdots		$\left\{\begin{array}{l}\text { to any } \\ \text { degree }\end{array}\right.$			Grindstone Chalk, Brit.	${ }_{2781}^{2143}$	133.93 173.81	163/4	6.6 0.5
" sheet	8396			$12 \cdot 23$	6	6	degree		$8 \cdot 6$	Chalk, Brit.	2000	173.81	17	
Iron, cast .	7264	2786	-125	$7 \cdot 87$			\{to any			Coal, Scotch . . ${ }^{\text {a }}$	1300	$81 \cdot 15$	$271 / 2$	0
" bar.		278	-137	25.00	4	8	$\underbrace{\text { degree }}_{4.7}$	4	3.7	" Newcastle	1270	$79 \cdot 37$ 77	$271 / 4$	
Steel, soft .	7833		-133	58.91	.				3	" Cannel . .	1238	77.37	29 *	
" hard	7816						$\left\{\begin{array}{l}\text { to any } \\ \text { degree }\end{array}\right.$							
Tin, east. .	7291	442	-278	$2 \cdot 11$	7	4	${ }_{1}^{1.2}$	5	3.0					
Zinc, cast. -	7190	773	-329	$5 \cdot 06$	7	8	$1 \cdot 6$	7	$3 \cdot 6$					

Table containing the Weight of Columns of Water, each one foot in length, and of Various Diameters, in lbs. avoirdupois.

Dism	Weight.	Diam.	Weight.								
3 in.	3.0672	9 in .	27.6120	15 in.	76.7004	21 in.	150.2376	27 in .	$248 \cdot 5116$	33 in.	$371 \cdot 2344$
1/8	$3 \cdot 3288$	$1 / 8$	28.3848	1/8	77.9844	1/8	$152 \cdot 1288$	1/8	$250 \cdot 8180$	1/8	374.0520
14	3.6000	$1 / 4$	29.1672	$1 / 4$	$79 \cdot 2792$	1/4	153.9348	14	$253 \cdot 1352$	1/2	$376 \cdot 8104$
\%	$3 \cdot 8320$	3/8	29.9604	1/8	$80 \cdot 5836$	3/8	$155 \cdot 7396$	3/8	$255 \cdot 4032$	18	379•4592
3	$4 \cdot 1748$	1/2	30.7657	3/2	81.9000	3/2	$157 \cdot 5780$	$3 / 2$	257.800	$1 / 2$	$382 \cdot 5684$
58	$4 \cdot 4784$	3	31.6524	8	$83 \cdot 2260$	3/8	159.4152	88	$260 \cdot 1504$	5/8	$385 \cdot 4292$
$3 / 4$	4.7928 5.1180	$3 / 4$	$32 \cdot 4050$	$3 / 4$	84.5628	3/4	161.2644	3/4	${ }_{2} 262 \cdot 5096$	3	$388 \cdot 2996$
7/8	$5 \cdot 1180$	10 in	$33 \cdot 2424$ 34	168	85.9104		163.1220		264.8796		$391 \cdot 1820$
4 in .	$5 \cdot 4540$	10 in .	34.0884	16 in .	$87 \cdot 2688$	22 in .	164.9928	28 in.	$267 \cdot 2616$	34 in .	$394 \cdot 0740$
$1 / 8$	5.7996 6.1572	$1 / 8$	34.9464 35.8152	$1 / 8$	88.6368	$1 / 8$	166.8732	$1 / 8$	269.6532	1/8	396.9768
14	6.1572	$1 / 4$	35.8152	1/4	90.0168	\%	168.7632	3	$272 \cdot 0544$	1/4	399.8928
3/3,	6.5244	18	$35 \cdot 6935$	3/8	91.4176	88	170.6652	$3 / 8$	$275 \cdot 602^{2}$	$3 / 8$	$402 \cdot 8088$
5	6.9024 7.2912	5	$37 \cdot 5828$ $38 \cdot 4528$	5	$92 \cdot 8030$	1/2	172.5780	${ }^{3}$	276.8915	1/2	405.7500
3	$7 \cdot 6903$	3/8	38.3936	38	${ }_{95}^{94.6412}$	38	$174 \cdot 5004$ $176 \cdot 4336$	$3 /$	279.3252	8	408.6948
7/8	$8 \cdot 1012$	$7 / 8$	$40 \cdot 3152$	7/8	$97 \cdot 0740$	7/8	178-3776	7/8	284.2264		411.4116 414.6180
5 in .	$8 \cdot 5212$	11 in .	$41 \cdot 2476$	17 in .	95.5176	23 in .	180.3324	29 in.	2868920	$35^{\prime 3} \mathrm{in}$.	417.5952
1/8	8.9532	1/8	$42 \cdot 190{ }^{\circ}$	1/8	99.9720	$1 / 8$	182.2980	$1 / 8$	$289 \cdot 1688$	1/8	$420 \cdot 5844$
18	$9 \cdot 3948$	14	43.1436	$1 / 4$	$101 \cdot 4372$	14	184.2744	$1 / 4$	291.6564	\%	423:5832
3/3	$9 \cdot 8484$	38	44.1084	38	102.9120	$3 / 8$	186.2616	3/8.	$294 \cdot 1548$	$3 / 2$	426:5928
$1 / 2$	$10 \cdot 3126$	12	45.0828	1/2	104.3938	1/2	188-2584	12	296.5548	2	$429 \cdot 6120$
5/8	10.7856	3/8	46.0680	5/8	$105 \cdot 8952$	3/8	$190 \cdot 2672$	58	$299 \cdot 1828$	\%	$432 \cdot 6432$
$3 / 4$	11.2704	34	$47 \cdot 0640$	$3 / 4$	$107 \cdot 4024$	$3 / 4$	192.2856	3/4	301.7124	$3 / 2$	435.6840
7/8	11.7660	,	$48 \cdot 0708$		$108 \cdot 9204$	i	194:3184	\%	304-2540	8	438.7368
6 in.	12:2712	12 in .	49.0834	18 in.	$110 \cdot 4492$	24 in.	196-3548	30 in .	$306 \cdot 8052$	36 in .	441.7992
$1 / 8$	12.7834	$1 / 18$	50.1168	1/8	111.9388	$1 / 8$	$198 \cdot 4056$	$1 / 8$	309.3672	34	447-9573
$1 / 4$	13.3152	$1 / 4$	51.1548	1/4	113.5392	/4	$200 \cdot 4672$	1/4	311.9400	1	454-1678
318	13.8540	3/8	52.2048	18	115.0992	$3 / 8$	203.5384	3/8	314.5224		$460 \cdot 4105$
${ }^{1 / 2}$	14.4024	\% ${ }^{2}$	53.2644	5	116.6712	52	204.6216	3/2	$317 \cdot 1168$	37 in .	$466 \cdot 6960$
$\frac{3}{3}$	14.9616	3	54.3348	38	118.2528	38	206.7144	3/8	$319 \cdot 7220$ 392	1	473.0240
$3 / 4$	15.0316 16.1124	$3 / 4$	$55 \cdot 4780$ 56.4804	3/4	119.8452	3	${ }_{210}^{208.8336}$	$3 / 4$	322.3368	1/2	$479 \cdot 3946$
7 in .	16.7028	13 in .	57.6108°	$19^{\text {in }}$.	123.0624	$25^{8} \mathrm{in}$.	213.0588	31 in .	$324 \cdot 9624$ 3276000	38.	$485 \cdot 8078$
$1 / 8$	17.3052	$1 / 8$	58.7244	1/8	$124 \cdot 6872$	1/8	$215 \cdot 1948$	1	$330 \cdot 2472$	314.	498.7621
$1 / 4$	17.9172	$1 / 4$	59.8476	14	126.3228	$3 / 4$	$217 \cdot 3416$	14	$332 \cdot 9052$	1/2	$505 \cdot 3032$
$3 / 8$	18.5412	$3 / 8$	60.9828	38	$127 \cdot 9680$	$3 / 8$	$219 \cdot 4980$	$3 / 8$	335:5728		511.9979
, 12	$19 \cdot 1748$	3/2	62.1276	12	129.6252	1/2	$221 \cdot 6664$	3/2	338-2524	39 n .	$518 \cdot 4132$
5	19.8192	8/8	63.2832	5/8,	$131 \cdot 5320$	8	223.8444	5/8	340.9428	$1 / 4$	$525 \cdot 1821$
$3 / 4$	20.4744	3/4	64.4496	$3 / 4$	$132 \cdot 9696$	7/4	226.0344	$3 / 4$	$343 \cdot 6428$	1/2	531.8936
818	21.1404	14 in	$65 \cdot 6268$	${ }^{7 / 8}$	134.6580	26 in	$228 \cdot 2340$		346.3536		538.6478
8 in .	21.8172	14 in.	66.8148	20 in.	136.3562	26 in.	$230 \cdot 444$	32 in .	$349 \cdot 0764$	40 in .	$545 \cdot 4445$
1/8,	$22 \cdot 5036$ 23.2020	1/1,	63.0136	1/8,	138.0672	$1 / 8$	$232 \cdot 6644$	1/3	351.8088	1/4	552-2839
4	23.2	1/4	69.2220	$1 / 4$	139.7880	$1 / 4$	234.8576	$1 / 4$	$354 \cdot 5520$,	559.1659
3/8	${ }_{24}{ }^{23.5288}$	3	70.4424 71.6724	1/3	141.5184	18	$237 \cdot 1404$	18	357.3048		566.0904
5\%	25.3524	52	71.6724 729120	5	$143 \cdot 2608$ $145 \cdot 0128$	5	239.3928	5	$360 \cdot 0696$	41 in.	573.0577
$3 / 4$	26.0988		74-1643	8	146.7756	$3 / 4$	243.9312	3	$365 \cdot 6304$	42 in .	${ }_{601.3596}$
7/8	268500	78	$75 \cdot 4272$	3	1485492	7/8	246.2160	78	$365 \cdot 4276$	50 in .	799-2426

Table containing the Weight of Square Bar Iron, from 1 to 10 feet in length, and from $\frac{1}{4}$ of an inch to 6 inches square.

	length of the bars in									
	foo	2 feet.	3 feet.	4 feet.	5 feet.	6 feet.	7 feet.	8 fee	9 feet.	10 feet.
	Lbs,	Lbs.								
1	$0 \cdot 2$	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 8$	$\cdot 1$	$1 \cdot 3$	1.5	1.	1.9	
$\frac{3^{\text {B }}}{}$	0.5	$1 \cdot 0$	$1 \cdot 4$	1.9	$2 \cdot 4$	$2 \cdot 9$	$3 \cdot 3$	3.8	$4 \cdot 3$	$4 \cdot 8$
$\stackrel{8}{4}$	0.8	1.7	$2 \cdot 5$	$3 \cdot 4$	$4 \cdot 2$	$5 \cdot 1$	$5 \cdot 9$	$6 \cdot 8$	$7 \cdot 6$	$8 \cdot 5$
$\frac{5}{8}$	$1 \cdot 3$	$2 \cdot 6$	$4 \cdot 0$	$5 \cdot 3$	$6 \cdot 6$	7.9	$9 \cdot 2$	$10 \cdot 6$	11.0	13.2
量	1.9	$3 \cdot 8$	$5 \cdot 7$	$7 \cdot 6$	9.5	11.4	$13 \cdot 3$	15.2	$17 \cdot 1$	$19 \cdot 0$
$\frac{8}{8}$	$2 \cdot 6$	$5 \cdot 2$	$7 \cdot 8$	$10 \cdot 4$	$12 \cdot 9$	15.5	$18 \cdot 1$	$20 \cdot 7$	$23 \cdot 3$	$25 \cdot 9$
1 in	$3 \cdot 4$	$6 \cdot 8$	$10 \cdot 1$	13.5	16.9	$20 \cdot 3$	$23 \cdot 7$	$27 \cdot 0$	$30 \cdot 4$	$33 \cdot 8$
$1 \frac{1}{8}$	$4 \cdot 3$	$8 \cdot 6$	$12 \cdot 8$	$17 \cdot 1$	$21 \cdot 4$	$25 \cdot 7$	29.9	$34 \cdot 2$	38.5	42.8
$1{ }^{1}$	$5 \cdot 3$	$10 \cdot 6$	$15 \cdot 8$	$21 \cdot 1$	26.4	31.7	$37 \cdot 0$	$42 \cdot 2$	47.5	$52 \cdot 8$
$1{ }^{1}$	6.4	12.8	$19 \cdot 2$	$25 \cdot 6$	$32 \cdot 0$	38.3	44.7	$51 \cdot 1$	57.5	63.9
$1 \frac{1}{2}$	$7 \cdot 6$	$15 \cdot 2$	22.8	$30 \cdot 4$	38.0	$45 \cdot 6$	53.2	60.8	$68 \cdot 4$	76.0
$1{ }^{\text {¢ }}$	$8 \cdot 9$	$17 \cdot 9$	26.8	35.7	$44 \cdot 6$	$53 \cdot 6$	$62 \cdot 5$	$71 \cdot 4$	$80 \cdot 3$	$89 \cdot 3$
13	$10 \cdot 4$	$20 \cdot 7$	${ }^{31 \cdot 1}$	$41 \cdot 4$	51.8	$62 \cdot 1$	72.5	$82 \cdot 8$	93.2 106.9	103.5
$1 \frac{1}{8}$	$11 \cdot 9$	23.8	$35 \cdot 6$	47.5	$59 \cdot 4$	$71 \cdot 3$	$83 \cdot 2$	$95 \cdot 1$	106.9	$118 \cdot 8$
2 in	13.5	$27 \cdot 0$	$40 \cdot 6$	$54 \cdot 1$	$67 \cdot 6$	$81 \cdot 1$	$94 \cdot 6$	108.2	121.7	135.2
$2 \frac{1}{8}$	$15 \cdot 3$	30.5	45.8	$61 \cdot 1$	$76 \cdot 3$	$91 \cdot 6$	$106 \cdot 8$	$122 \cdot 1$	$137 \cdot 4$	$152 \cdot 6$
21	$17 \cdot 1$	$34 \cdot 2$	$51 \cdot 3$	$68 \cdot 4$	$85 \cdot 6$	102.7	$119 \cdot 8$	$136 \cdot 9$	154.0	$171 \cdot 1$
2 8	$19 \cdot 1$	$38 \cdot 1$	57.2	$76 \cdot 3$	$95 \cdot 3$	114.4	133.5	152.5	$171 \cdot 6$	190.7
$2 \frac{1}{2}$	$21 \cdot 1$	42.8	$63 \cdot 4$	84.5	$105 \cdot 6$	126.7	147.8	169.0	$190 \cdot 1$	211.2
2 E	23.3	$46 \cdot 6$	$69 \cdot 9$	$93 \cdot 2$	116.5	139.8	163.0	186.3	$209 \cdot 6$	232.9
$2{ }^{3}$	$25 \cdot 6$	$51 \cdot 1$	76.7	$102 \cdot 2$	127.8	$153 \cdot 4$	178.9	$204 \cdot 5$	$230 \cdot 0$	$255 \cdot 6$
2\%	$27 \cdot 9$	55.9	83.8	111.8	139.7	$167 \cdot 6$	195.7	$223 \cdot 5$	251.5	$279 \cdot 4$
3 i	$30 \cdot 4$	$60 \cdot 8$	91.2	121.7	$152 \cdot 1$	182.5	212.9	$243 \cdot 3$	273.7	304-2
$3 \frac{1}{8}$	33.0	66.0	99.0	132.0	$165 \cdot 1$	198.1	$231 \cdot 1$	264.1	$297 \cdot 1$	$330 \cdot 1$
$3 \frac{1}{4}$	35.7	$71 \cdot 4$	$107 \cdot 1$	142.8	178.5	214.2	$249 \cdot 9$	$285 \cdot 6$	321.3	357.0
$3{ }^{3}$	38.5	77.0	$115 \cdot 5$	154.0	192.5	231.0	$269 \cdot 5$	$308 \cdot 0$	346.5	$385 \cdot 0$
$3 \frac{1}{2}$	$41 \cdot 4$	82.8	$124 \cdot 2$	$165 \cdot 6$	207.0	$248 \cdot 4$	$289 \cdot 8$	$331 \cdot 3$	372.7	$414 \cdot 1$
3雱	$44 \cdot 4$	88.8	$133 \cdot 3$	177.7	$222 \cdot 1$	266.5	$310 \cdot 9$	$355 \cdot 3$	399.8	$444 \cdot 2$
$3 \frac{3}{4}$	47.5	$95 \cdot 1$	$142 \cdot 6$	$190 \cdot 1$	237.7	$285 \cdot 2$	332.7	$380 \cdot 3$	$427 \cdot 8$	$475 \cdot 3$
$3 \frac{7}{8}$	50.8	101.5	$152 \cdot 3$	$203 \cdot 0$	$253 \cdot 8$	$304 \cdot 5$	$355 \cdot 3$	$406 \cdot 0$	456.8	$507 \cdot 6$
4 in	$54 \cdot 1$	108.2	$162 \cdot 3$	$216 \cdot 3$	$270 \cdot 4$	324-5	$378 \cdot 6$	$432 \cdot 7$	486.8	$540 \cdot 8$
41	57.5	$115 \cdot 0$	$172 \cdot 6$	$230 \cdot 1$	287.6	$345 \cdot 1$	$402 \cdot 6$	$460 \cdot 1$	517.7	$575 \cdot 2$
$4 \frac{1}{4}$	$61 \cdot 1$	$122 \cdot 1$	183.2	$244 \cdot 2$	$305 \cdot 3$	$366 \cdot 3$	$427 \cdot 4$	$488 \cdot 4$	$549 \cdot 5$	$610 \cdot 6$
$4 \frac{3}{8}$	64.7	$129 \cdot 4$	194-1	258.8	$323 \cdot 5$	388.2	$452 \cdot 9$	$517 \cdot 6$	$582 \cdot 3$	647.0
$4 \frac{1}{2}$	$68 \cdot 4$	136.9	$205 \cdot 3$	$273 \cdot 8$	$342 \cdot 2$	$410 \cdot 7$	$479 \cdot 1$	$547 \cdot 6$	616.0	$684 \cdot 5$
$4{ }^{\text {4 }}$	$72 \cdot 3$	$144 \cdot 6$	$216 \cdot 9$	$289 \cdot 2$	$361 \cdot 5$	433.8	$506 \cdot 1$	$578 \cdot 4$	$650 \cdot 7$	$723 \cdot 1$
$4{ }_{4}$	76.3	$152 \cdot 5$	228.8	$305 \cdot 1$	$381 \cdot 3$	$457 \cdot 6$	$533 \cdot 8$	$610 \cdot 1$	$686 \cdot 4$	$762 \cdot 6$
$4 \frac{7}{8}$	$80 \cdot 3$	160.7	$241 \cdot 0$	$321 \cdot 3$	401.7	$482 \cdot 0$	$562 \cdot 3$	$642 \cdot 7$	$723 \cdot 0$	$803 \cdot 3$
5 in	$84 \cdot 5$	169.0	$253 \cdot 4$	$337 \cdot 9$	$422 \cdot 4$	506.9	591.4	675.8	$760 \cdot 3$	$844 \cdot 8$
54	$93 \cdot 2$	$186 \cdot 3$	$279 \cdot 5$	$372 \cdot 7$	$465 \cdot 8$	$559 \cdot 0$	$652 \cdot 2$	$745 \cdot 3$	$838 \cdot 5$	931.7
$5 \frac{1}{2}$	102.2	$204 \cdot 5$	306.7	409.0	511.2	$613 \cdot 4$	$715 \cdot 7$	817.9	$920 \cdot 2$	$1022 \cdot 4$
$5 \frac{3}{4}$	111.8	223.5	$335 \cdot 3$	447.0	558.8	$670 \cdot 5$	$782 \cdot 3$	$894 \cdot 0$	$1005 \cdot 8$	$1117 \cdot 6$
6 in .	121.7	$243 \cdot 3$	365.0	486.7	$608 \cdot 3$	$730 \cdot 0$	$841 \cdot 6$	973.3	$1009 \cdot 5$	$1216 \cdot 6$

Table of the Weight of a Square Foot of Sheet Iron in lbs. avoirdupois, the thickness being the number on the wire-gauge. No. 1 is $\frac{5}{16}$ of an inch; No. 4, $\frac{1}{4}$; No. 11, $\frac{1}{8}$, \&c.

No. on wire-gauge	1	2	3	4	5	6	7	8	9	10	11
Pounds avoir......	12.5	12	11	10	9	8	7.5	7	6	$5 \cdot 68$	5
No. on wire-gauge	12	13	14	15	16	17	18	19	20	21	22
Pounds avoir.......	4.62	4.31	4	3.95	3	2.5	$2 \cdot 18$	1.93	1.62	1.5	1.37

Table of the Weight of a Square Foot of Boiler Plate Iron, from $\frac{1}{8}$ to 1 inch thick, in lbs. avoirdupois.

	寿\| ${ }^{\frac{3}{16}}$	4	${ }_{15}^{5}$	8	${ }_{1}^{7}$	$\frac{1}{2}$	${ }_{1} 9$	5	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{18}$	$\frac{7}{8}$	15	1 in.
5	517.5	10	$12 \cdot 5$	15	17.5	20	$22 \cdot 5$	25	27.5	30	32-5	35	37.5	40

Table containing the Weight of Round Bar Iron, from 1 to 10 feet in length, and from $\frac{1}{4}$ of an inch to 6 inches diameter.

	length of the bars in feet.									
	1 foot.	2 feet.	3 feet.	4 feet.	5 feet.	6 feet.	7 feet.	8 feet.	9 feet.	10 feet.
	Lbs.									
$\frac{1}{4}$	0.2	$0 \cdot 3$	$0 \cdot 5$	0.7	$0 \cdot 8$	$1 \cdot 0$	1.2	$1 \cdot 3$	1.5	$1 \cdot 7$
8	$0 \cdot 4$	0.7	$1 \cdot 1$	1.5	1.9	$2 \cdot 2$	$2 \cdot 6$	$3 \cdot 0$	$3 \cdot 4$	$3 \cdot 7$
$\frac{1}{2}$	0.7	$1 \cdot 3$	$2 \cdot 0$	$2 \cdot 7$	$3 \cdot 3$	$4 \cdot 0$	$4 \cdot 6$	$5 \cdot 3$	6.0	$6 \cdot 6$
$\frac{5}{8}$	1.0	$2 \cdot 1$	$3 \cdot 1$	$4 \cdot 2$	$5 \cdot 2$	$6 \cdot 3$	$7 \cdot 3$	$8 \cdot 3$	$9 \cdot 4$	$10 \cdot 4$
$\frac{3}{4}$	$1 \cdot 5$	$3 \cdot 0$	$4 \cdot 5$	$6 \cdot 0$	$7 \cdot 5$	$9 \cdot 0$	10.5	$11 \cdot 9$	$13 \cdot 4$	14.9
$\frac{7}{8}$	2.0	$4 \cdot 1$	$6 \cdot 1$	$8 \cdot 1$	$10 \cdot 2$	$12 \cdot 2$	14.2	16.3	$18 \cdot 3$	$20 \cdot 3$
1 in.	$2 \cdot 7$	$5 \cdot 3$	$8 \cdot 0$	$10 \cdot 6$	13.3	$15 \cdot 9$	$18 \cdot 6$	21.2	23.9	26.5
$1 \frac{1}{8}$	$3 \cdot 4$	6.7	$10 \cdot 1$	$13 \cdot 4$	16.8	$20 \cdot 2$	23.5	26.9	$30 \cdot 2$	$33 \cdot 6$
$1 \frac{1}{4}$	$4 \cdot 2$	$8 \cdot 3$	$12 \cdot 5$	16.7	$20 \cdot 9$	$25 \cdot 0$	$29 \cdot 2$	$33 \cdot 4$	37.5	41.7
$1{ }^{3}$	$5 \cdot 0$	10.0	$15 \cdot 1$	$20 \cdot 1$	$25 \cdot 1$	$30 \cdot 1$	$35 \cdot 1$	$40 \cdot 2$	$45 \cdot 2$	$50 \cdot 2$
$1{ }^{\frac{1}{2}}$	6.0	11.9	17.9	$23 \cdot 9$	$29 \cdot 9$	$35 \cdot 8$	$41 \cdot 8$	47.8	$53 \cdot 7$	$59 \cdot 7$
$1{ }^{5}$	$7 \cdot 0$	14.0	21.0	28.0	$35 \cdot 1$	$42 \cdot 1$	$49 \cdot 1$	$56 \cdot 1$	$63 \cdot 1$	$70 \cdot 1$
$1 \frac{3}{4}$	$8 \cdot 1$	16.3	$24 \cdot 4$	$32 \cdot 5$	$40 \cdot 6$	48.8	56.9	$65 \cdot 0$	$73 \cdot 2$	$81 \cdot 3$
$1 \frac{7}{8}$	$9 \cdot 3$	18.7	28.0	37.3	$46 \cdot 7$	$56 \cdot 0$	$65 \cdot 3$	$74 \cdot 7$	$84 \cdot 0$	$93 \cdot 3$
2 in .	$10 \cdot 6$	21.2	31.8	42.5	$53 \cdot 1$	63.7	$74 \cdot 3$	84.9	95.5	106.2
21	12.0	24.0	36.0	48.0	$59 \cdot 9$	71.9	$83 \cdot 9$	95.9	107.9	119.9
21	$13 \cdot 4$	26.9	$40 \cdot 3$	$53 \cdot 8$	67.2	$80 \cdot 6$	$94 \cdot 1$	107.5	121.0	$134 \cdot 4$
$2 \frac{3}{8}$	$15 \cdot 0$	$30 \cdot 0$	$44 \cdot 9$	$60 \cdot 0$	$74 \cdot 9$	$89 \cdot 9$	$104 \cdot 8$	119.8	134.8	$149 \cdot 8$
$2 \frac{1}{2}$	16.7	$33 \cdot 4$	$50 \cdot 1$	$66 \cdot 8$	83.5	$100 \cdot 1$	116.8	$133 \cdot 6$	$150 \cdot 2$	166.9
$2{ }^{\text {\% }}$	18.3	$36 \cdot 6$	54.9	$73 \cdot 2$	91.5	$109 \cdot 8$	$128 \cdot 1$	146.3	$164 \cdot 6$	$182 \cdot 9$
23	$20 \cdot 1$	$40 \cdot 2$	$60 \cdot 2$	$80 \cdot 3$	$100 \cdot 4$	$120 \cdot 5$	$140 \cdot 5$	$160 \cdot 6$	180.7	$200 \cdot 8$
$2 \frac{7}{8}$	$21 \cdot 9$	43.9	$65 \cdot 8$	87.8	109.7	131.7	$153 \cdot 6$	$175 \cdot 6$	197.5	$219 \cdot 4$
3 in .	23.9	$47 \cdot 8$	71.7	$95 \cdot 6$	119.4	$143 \cdot 3$	167.2	191-1	215.0	238.9
31	25.9	$51 \cdot 9$	77.8	103.7	129.6	$155 \cdot 6$	181.5	$207 \cdot 4$	$233 \cdot 3$	$259 \cdot 3$
$3{ }^{3}$	28.0	$56 \cdot 1$	$84 \cdot 1$	112.2	$140 \cdot 2$	168.2	196.3	$224 \cdot 3$	$253 \cdot 4$	$280 \cdot 4$
$3{ }^{3}$	$30 \cdot 2$	60.5	90.7	121.0	151.2	$181 \cdot 4$	211.7	$241 \cdot 9$	$272 \cdot 2$	$302 \cdot 4$
$3 \frac{1}{2}$	$32 \cdot 5$	$65 \cdot 0$	97.5	$130 \cdot 0$	$162 \cdot 6$	$195 \cdot 1$	$227 \cdot 6$	$260 \cdot 1$	$292 \cdot 6$	$325 \cdot 1$
$3{ }^{3}$	$34 \cdot 9$	$69 \cdot 8$	104.7	$139 \cdot 5$	$174 \cdot 4$	209.3	$244 \cdot 2$	$279 \cdot 1$	314.0	$348 \cdot 9$
$3 \frac{3}{4}$	$37 \cdot 3$	74.7	112.0	149.3	186.7	224.0	$261 \cdot 3$	$298 \cdot 7$	336.0	$373 \cdot 3$
$3{ }^{\frac{7}{8}}$	$39 \cdot 9$	79.7	119.6	159.5	$199 \cdot 3$	239.2	279.0	318.9	358.8	$398 \cdot 6$
4 in .	$42 \cdot 5$	$84 \cdot 9$	127.4	$169 \cdot 9$	$212 \cdot 3$	$254 \cdot 8$	297.2	339.7	382.2	$424 \cdot 6$
$4{ }^{1}$	$45 \cdot 2$	$90 \cdot 3$	$135 \cdot 5$	180.7	$225 \cdot 9$	271.0	316.2	$361 \cdot 4$	$406 \cdot 6$	451.7
$4{ }_{4}$	48.0	$95 \cdot 9$	143.9	191.8	$239 \cdot 8$	$287 \cdot 7$	335.7	$383 \cdot 6$	$431 \cdot 6$	479.5
$4 \frac{3}{8}$	50.8	$101 \cdot 6$	$152 \cdot 4$	$203 \cdot 3$	$254 \cdot 1$	$304 \cdot 9$	$355 \cdot 7$	406.5	457.3	5082
$4 \frac{1}{2}$	53.8	107.5	$161 \cdot 3$	$215 \cdot 0$	268.8	$322 \cdot 6$	$376 \cdot 3$	$430 \cdot 1$	483.8	$537 \cdot 6$
$4{ }^{4}$	56.8	$113 \cdot 6$	$170 \cdot 4$	227.2	283.9	$340 \cdot 7$	397.5	$454 \cdot 3$	$511 \cdot 1$	$567 \cdot 9$
43	60.0	119.8	179.7.	239.6	299.5	$359 \cdot 4$	419.3	479.2	$539 \cdot 1$	$599 \cdot 0$
$\stackrel{4}{5}_{5}^{8}$	$63 \cdot 1$	$126 \cdot 2$	$189 \cdot 3$	$252 \cdot 4$	$315 \cdot 5$	$378 \cdot 6$	441.7	$504 \cdot 8$	$567 \cdot 8$	$630 \cdot 9$
5 fin .	66.8	$133 \cdot 5$	$200 \cdot 3$	$267 \cdot 0$	$333 \cdot 8$	$400 \cdot 5$	$467 \cdot 3$	534.0	$600 \cdot 8$	$667 \cdot 5$
51 54 51	$73 \cdot 2$	146.3	$219 \cdot 5$	292.7	$365 \cdot 9$	439.0	$512 \cdot 2$	$585 \cdot 4$	658.5	731.7
$5 \frac{1}{2}$ 5 5	$80 \cdot 3$	$160 \cdot 6$	$240 \cdot 9$	321.2	401.5	481.8	$562 \cdot 1$	$642 \cdot 4$	722.7	803.0
${ }_{6}^{53} \mathrm{in}$.	87.8 95.6	$175 \cdot 6$ $191 \cdot 1$	$263 \cdot 3$	$351 \cdot 1$ 382.2	$438 \cdot 9$	526.7	$614 \cdot 4$	$702 \cdot 2$	790.0	$877 \cdot 8$
		$151 \cdot 1$	286.7	$382 \cdot 2$	$477 \cdot 8$	573.3	668.9	$764 \cdot 4$	860.0	955.5

Table of the Weight of Cast Iron Plates, per Superficial Foot, from one-eighth of an inch to one inch thick.

1/3 inch.	1/4 inch.	3/8 inch.	1/2 inch.	5/8inch.	3/4inch.	7/8 inch.	1 ineh.
lbs. oz. $413 \frac{3}{8}$	$\begin{aligned} & \text { lbs. oz. } \\ & 9 \quad 10 \frac{5}{8} \\ & \hline \end{aligned}$	lbs. oz. 148	$\begin{aligned} & \text { lbs. oz. } \\ & 19 \quad 5 \frac{3}{8} \\ & \hline \end{aligned}$	lbs. oz. $242 \frac{3}{4}$	$\begin{gathered} \text { lbs. oz. } \\ 290 \end{gathered}$	lbs, oz. $33 \quad 13 \frac{3}{8}$	lbs. oz. $3810 \frac{3}{4}$

Table containing the Weight of Cast Iron Pipes, 1 foot in length.

	thiceness in inches.							
	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1 inch.	$1 \frac{1}{8}$	$1{ }_{4}^{11}$
	Lbs.							
$1 \frac{1}{2}$	$6 \cdot 9$	- 9.9						
${ }_{2}$	8.8	$12 \cdot 3$	$\ldots 16.1$	20.3
$2 \frac{1}{2}$	$10 \cdot 6$	$14 \cdot 7$	19.2	$23 \cdot 9$	
3	$12 \cdot 4$	17.2	$22 \cdot 2$	$27 \cdot 6$	33.3	$39 \cdot 3$	\ldots	
$3 \frac{1}{2}$	$14 \cdot 2$	$19 \cdot 6$	$25 \cdot 3$	$31 \cdot 3$	$37 \cdot 6$	$44 \cdot 2$	$51 \cdot 1$	
4	16.8	$22 \cdot 1$	$28 \cdot 4$	$35 \cdot 0$	$41 \cdot 9$	$49 \cdot 1$	56.6	$64 \cdot 4$
$4 \frac{1}{2}$	18.0	24.5	$31 \cdot 4$	38.7	$46 \cdot 2$	$54 \cdot 0$	$62 \cdot 1$	$70 \cdot 6$
5	$19 \cdot 8$	$27 \cdot 0$	$34 \cdot 5$	$42 \cdot 3$	$50 \cdot 5$	$58 \cdot 9$	$67 \cdot 6$	76.7
$5 \frac{1}{2}$	$21 \cdot 6$	29.5	$37 \cdot 6$	$46 \cdot 0$	$54 \cdot 8$	63.8	$73 \cdot 2$	$82 \cdot 8$
6	23.5	$31 \cdot 9$	$40 \cdot 7$	$49 \cdot 7$	$59 \cdot 1$	68.7	78.7	88.8
$6 \frac{1}{2}$	$25 \cdot 3$	$34 \cdot 4$	$43 \cdot 7$	$53 \cdot 4$	$63 \cdot 4$	$73 \cdot 4$	$84 \cdot 2$	$95 \cdot 1$
7	$27 \cdot 2$	36.8	46.8	$56 \cdot 8$	$67 \cdot 7$	$78 \cdot 5$	89.7	101.2
$7 \frac{1}{2}$	$29 \cdot 0$	$39 \cdot 1$	$49 \cdot 9$	$60 \cdot 7$	$72 \cdot 0$	$83 \cdot 5$	$95 \cdot 3$	$107 \cdot 4$
8	$30 \cdot 8$	41.7	$52 \cdot 9$	$64 \cdot 4$	$76 \cdot 2$	$88 \cdot 4$	$100 \cdot 8$	113.5
$8 \frac{1}{2}$	$32 \cdot 9$	$44 \cdot 4$	$56 \cdot 2$	$68 \cdot 3$	$80 \cdot 8$	$93 \cdot 5$	106.5	119.9
9	34.5	$46 \cdot 6$	$59 \cdot 1$	71.8	$84 \cdot 8$	$98 \cdot 2$	111.8	125.8
$9 \frac{1}{2}$	36.3	$49 \cdot 1$	$62 \cdot 1$	75.5	$89 \cdot 1$	$103 \cdot 1$	117.4	131.9
10^{2}	$38 \cdot 2$	51.5	$65 \cdot 2$	$79 \cdot 2$	$93 \cdot 4$	108.0	122.8	$138 \cdot 1$
$10 \frac{1}{2}$	$54 \cdot 0$	$68 \cdot 2$	82.8	$97 \cdot 7$	$112 \cdot 9$	128.4	144.2
11	$56 \cdot 4$	$71 \cdot 3$	86.5	$102 \cdot 0$	$117 \cdot 8$	$133 \cdot 9$	$150 \cdot 3$
$11 \frac{1}{2}$	58.9	$74 \cdot 3$	$90 \cdot 1$	$106 \cdot 3$	122.7	$139 \cdot 4$	156.4
12	.	$61 \cdot 3$	$77 \cdot 4$	$93 \cdot 6$	$110 \cdot 6$	$127 \cdot 6$	$145 \cdot 0$	$162 \cdot 6$
13	$82 \cdot 7$	101.2	118.2	$137 \cdot 4$	$154 \cdot 1$	173.5
14	..	.	89.5	108.2	126.5	$146 \cdot 2$	$165 \cdot 3$	$185 \cdot 2$
15			$95 \cdot 2$	$115 \cdot 7$	$135 \cdot 3$	$156 \cdot 2$	$176 \cdot 2$	198.1
16	123.3	$143 \cdot 1$	$166 \cdot 1$	$187 \cdot 5$	$211 \cdot 3$
17	$130 \cdot 2$	152.5	$178 \cdot 5$	198.2	$223 \cdot 4$
18	137.0	161.2	$185 \cdot 3$	$209 \cdot 1$	235.6
19	$169 \cdot 2$	$195 \cdot 7$	$222 \cdot 3$	$247 \cdot 1$
20	$178 \cdot 1$	$205 \cdot 2$	$233 \cdot 2$	$259 \cdot 0$
21	$214 \cdot 1$	$243 \cdot 5$	$273 \cdot 2$
22	a	$223 \cdot 0$	$254 \cdot 8$	$285 \cdot 4$
23			$233 \cdot 4$	$265 \cdot 5$	$298 \cdot 3$
24				$245 \cdot 2$	$277 \cdot 5$	$310 \cdot 6$

Table containing the Weight of Solid Cylinders of Cast Iron, one
foot in length, and from $\frac{3}{4}$ of an inch to 14 inches diameter.

Diameterin Inches.	Weight in Lbs.	Diameter in Inches.	Weight in Lbs.	Diameter in Inches.	Weight in Lbs.	Diameter in Inches.	Weight in Lbs.
$\frac{3}{4}$	1.39	$2 \frac{7}{8}$	$20 \cdot 48$	47	$58 \cdot 72$	$7 \frac{3}{4}$	148.87
$\frac{7}{8}$	1.88	3 in .	$22 \cdot 35$	5 in.	61.96	8 in .	$158 \cdot 63$
1 in.	$2 \cdot 47$	$3 \frac{1}{8}$	$24 \cdot 20$	$5 \frac{1}{8}$	$64 \cdot 66$	81	$168 \cdot 15$
$1 \frac{1}{8}$	$3 \cdot 13$	$3 \frac{1}{4}$	$26 \cdot 18$	$5 \frac{1}{4}$	68.31	$8 \frac{1}{2}$	179.08
$1 \frac{1}{4}$	$3 \cdot 87$	$3 \frac{3}{8}$	$28 \cdot 23$	$5 \frac{3}{8}$	71.00	$8 \frac{3}{4}$	$189 \cdot 00$
$1 \frac{3}{8}$	$4 \cdot 68$	$3 \frac{1}{2}$	$30 \cdot 36$	$5 \frac{1}{2}$	74.98	9 in .	$200 \cdot 77$
$1 \frac{1}{2}$	$5 \cdot 57$	$3 \frac{5}{8}$	$32 \cdot 57$	$5 \frac{5}{8}$	$78 \cdot 65$	91	$211 \cdot 12$
$1 \frac{5}{8}$	$6 \cdot 54$	$3 \frac{3}{4}$	34.85	$5 \frac{3}{4}$	$81 \cdot 95$	$9 \frac{1}{2}$	$223 \cdot 70$
$1 \frac{3}{4}$	$7 \cdot 59$	$3 \frac{7}{8}$	$37 \cdot 21$	$5 \frac{7}{8}$	$85 \cdot 81$	93	$235 \cdot 31$
$1 \frac{7}{8}$	$8 \cdot 71$	4 in.	$39 \cdot 66$	6 in.	$89 \cdot 23$	10 in.	$247 \cdot 87$
2 in.	$9 \cdot 91$	41	$41 \cdot 80$	$6 \frac{1}{4}$	$96 \cdot 82$	$10 \frac{1}{2}$	$273 \cdot 27$
$2 \frac{1}{8}$	$11 \cdot 19$	$4 \frac{1}{4}$	$44 \cdot 77$	$6 \frac{1}{2}$	104.72.	11 in.	299.92
$2 \frac{1}{4}$	$12 \cdot 54$	$4 \frac{3}{8}$	$47 \cdot 00$	$6{ }^{3}$	$112 \cdot 93$	111	$327 \cdot 81$
$2 \frac{3}{8}$	$13 \cdot 98$	$4 \frac{1}{2}$	$50 \cdot 19$	7 in .	$121 \cdot 45$	12 in .	356.93
$2 \frac{1}{2}$	$15 \cdot 49$	$4{ }^{8}$	$52 \cdot 71$	$7 \frac{1}{4}$.	$130 \cdot 28$	13	418.90
25	$17 \cdot 08$	$4 \frac{8}{4}$	55.92	$7 \frac{1}{2}$	$139 \cdot 42$	14	485.83
$2 \frac{3}{4}$	$18 \cdot 74$						

Table containing the Weight of a Square Foot of Copper and Lead, in lbs. avoirdupois, from $\frac{1}{32}$ to $\frac{1}{2}$ an inch in thickness, advancing by $\frac{1}{32}$.

Thickness.	Copper.	Lead.
$\frac{1}{82}$	$1 \cdot 45$	$1 \cdot 85$
$\frac{1}{16}$	$2 \cdot 90$	$3 \cdot 70$
${ }_{8}^{8}$	$4 \cdot 35$	$5 \cdot 54$
$\frac{1}{8}$	$5 \cdot 80$	$7 \cdot 39$
$\frac{1}{8}+\frac{1}{82}$	$7 \cdot 26$	$9 \cdot 24$
$\frac{1}{8}+\frac{1}{18}$	8.71	11.08
$\frac{1}{8}+\frac{8}{32}$	$10 \cdot 16$	12.93
	11.61	14.77
$\frac{1}{4}+\frac{1}{82}$	$13 \cdot 07$	16.62
$\frac{1}{4}+\frac{1}{16}$	14.52	$18 \cdot 47$
$\frac{1}{4}+\frac{8}{32}$	15.97	$20 \cdot 31$
	$17 \cdot 41$	$22 \cdot 16$
$\frac{3}{8}+\frac{1}{82}$	18.87	$24 \cdot 00$
$\frac{8}{8}+\frac{1}{16}$	$20 \cdot 32$	$25 \cdot 85$
$\frac{3}{8}+\frac{8}{82}$	$21 \cdot 77$	$27 \cdot 70$
$\frac{1}{2}$	$23 \cdot 22$	$29 \cdot 55$

Table for finding the Weight of Malleable Iron, Copper, and Lead Pipes, 12 inches long, of various thicknesses, and any diameter required.

Thickness.	Malleable Iron.	Copper.	Load.
$\frac{1}{32}$ of an inch.	-104	-121	-1539
	-208	- 2419	-3078
$\frac{3}{32}$	-3108	-3628	-4616
$\frac{1}{8}$	-414	-4838	-6155
$\frac{1}{8}+\frac{1}{32}$	-518	-6047	-7694
$\frac{1}{8}+\frac{1}{16}$	-621	$\cdot 7258$	-9232
$\frac{1}{8}+\frac{8}{82}$	$\cdot 725$	-8466	1.0771
$\frac{1}{4}$	-828	. 9678	$1 \cdot 231$

Rule.-Multiply the circumference of the pipe in inches by the numbers opposite the thickness required, and by the length in feet; the product will be the weight in avoirdupois lbs. nearly.

Required the weight of a copper pipe 12 feet long, 15 inches in circumference, $\frac{1}{8}+\frac{1}{16}$ of an inch in thickness.
$\cdot 7258 \times 15=10.817 \times 12=130.644$ lbs. nearly.
Table of the Weight of a Square Foot of Millboard in lbs. avoirdupois

Thickness in inches......	$\frac{1}{8}$	$\frac{8}{18}$	$\frac{1}{4}$	$\frac{5}{18}$	$\frac{3}{8}$
Weight in lbs	$\cdot 688$	1.032	1.376	1.72	$2 \cdot 064$

Table containing the Weight of Wrought Iron Bars 12 inches long in lbs. avoirdupois.

Inch.	Round.	Square.	Inch.	Round.	Square.
$\frac{1}{4}$	-163	-208	$2 \frac{1}{2}$	16.32	20.80
$\frac{3}{8}$	-367	-467	$2 \frac{5}{8}$	$18 \cdot 00$	$22 \cdot 89$
$\frac{1}{2}$	-653	- 830	$2 \frac{3}{4}$	$19 \cdot 76$	$25 \cdot 12$
5	1.02	$1 \cdot 30$	$2 \frac{7}{8}$	21.59	$27 \cdot 46$
$\frac{3}{4}$	$1 \cdot 47$	1.87	3	$23 \cdot 52$	29.92
$\frac{7}{8}$	$2 \cdot 00$	$2 \cdot 55$	$3 \frac{1}{4}$	$27 \cdot 60$	$35 \cdot 12$
1	$2 \cdot 61$	$3 \cdot 32$	$3 \frac{1}{2}$	$32 \cdot 00$	$40 \cdot 80$
$1 \frac{1}{8}$	$3 \cdot 31$	$4 \cdot 21$	$3 \frac{3}{4}$	36.72	$46 \cdot 72$
$1 \frac{1}{4}$	$4 \cdot 08$	$5 \cdot 20$	4	41.76	$53 \cdot 12$
$1 \frac{3}{8}$	4.94	$6 \cdot 28$	$4 \frac{1}{4}$	$47 \cdot 25$	$60 \cdot 00$
$1 \frac{1}{2}$	$5 \cdot 88$	$7 \cdot 48$	$4 \frac{1}{2}$	$52 \cdot 93$	$67 \cdot 24$
1喜	6.90	$8 \cdot 78$	$4 \frac{3}{4}$	58.92	74.95
$1 \frac{1}{4}$	$8 \cdot 00$	$10 \cdot 20$	5	$65 \cdot 28$	$83 \cdot 20$
$1 \frac{4}{8}$	$9 \cdot 18$	11.68	$5 \frac{1}{4}$	$72 \cdot 00$	91.56
2	$10 \cdot 44$	$13 \cdot 28$	$5 \frac{1}{2}$	79.04	$100 \cdot 48$
$2 \frac{1}{8}$	11.80	15.00	$5 \frac{3}{4}$	86.36	$109 \cdot 82$
21	$13 \cdot 23$	16.81	6	94.08	$119 \cdot 68$
$2 \frac{3}{8}$	14.73	$18 \cdot 74$	7	128.00	$163 \cdot 20$

Table of the Proportional Dimensions of 6-sided Nuts for Bolts from $\frac{1}{4}$ to $2 \frac{1}{2}$ inches diameter.

Diameter of bolts........	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	4	$\frac{7}{8}$	1	17	$1{ }^{1}$
Breadth of nuts..........	$\frac{11}{16}$	$\frac{18}{18}$	1	$1{ }_{1} \frac{8}{16}$	13	$1{ }_{16}$	$1 \frac{8}{4}$	$1_{115} \mid$	$2 \frac{1}{8}$
Breadth over the angles	$\frac{8}{4}$	15	118	13 ${ }_{8}$	$1{ }_{18}{ }^{8}$	$1 \frac{13}{16}$	2	21	$2 \frac{1}{1}$
Thickness.................	$\frac{5}{16}$	$\frac{7}{16}$	$\frac{9}{16}$	$\frac{3}{4}$	$\frac{7}{8}$	1	$1 \frac{1}{8}$	14	1
Diameter of bolts	18	$1 \frac{1}{2}$	$1 \frac{5}{8}$	$1{ }^{3}$	17	2	$2 \frac{1}{4}$	$2 \frac{1}{2}$	
Breadth of nuts.........	$2 \frac{5}{16}$	$2 \frac{1}{2}$	211	27	31	$3 \frac{1}{4}$	35	4	
Breadth over the angles	2118	$2 \frac{7}{8}$	$3 \frac{1}{8}$	$3^{\frac{5}{16}}$	$3 \frac{1}{2}$	$3 \frac{8}{4}$	$4{ }^{\frac{3}{6}}$	$4 \frac{5}{8}$	
Thickness...	$1{ }_{19}$	$1 \frac{11}{16}$	$1{ }_{18}{ }^{16}$	2	$2 \frac{1}{8}$	2	$2 \frac{1}{2}$	$2 \frac{3}{4}$	

Table of the Specific Gravity of Water at different temperatures, that at 62° being taken as unity.

$70^{\circ} \mathrm{F}$.	.99913	$52^{\circ} \mathrm{F}$.	1.00076
68	.99936	50	1.00087
66	.99958	48	1.00095
64	.99980	46	1.00102
62	1.	44	1.00107
58	1.00035	42	1.00111
56	1.00050	40	1.00113
54	1.00064	38	1.00115

The difference of temperatures between 62° and $39^{\circ} \cdot 2$, where water attains its greatest density, will vary the bulk of a gallon rather less than the third of a cubic inch.

Table of the Weight of Cast Iron Balls in pounds avoirdupois, from 1 to 12 inches diameter, advancing by an eighth.

Inches.	Lbs.	Inches.	Lbs.	Inches.	Lbs.
1	$\cdot 14$	43	$14 \cdot 76$	$8 \frac{1}{2}$	- 84.56
$1 \frac{1}{8}$	-20	$4 \frac{7}{8}$	$15 \cdot 95$	$8 \frac{5}{8}$	88.34
$1 \frac{1}{4}$	-27	5	$17 \cdot 12$	$8 \frac{3}{4}$	- 92.24
$1 \frac{3}{8}$	$\cdot 37$	$5 \frac{1}{8}$	18.54	$8 \frac{4}{8}$	$96 \cdot 26$
$1 \frac{1}{2}$	$\cdot 47$	51	$19 \cdot 93$	9	$100 \cdot 39$
$1 \frac{5}{8}$	-59	$5 \frac{3}{8}$	21.39	$9 \frac{1}{8}$	$104 \cdot 62$
$1 \frac{3}{4}$	-74	$5 \frac{1}{2}$	22.91	91	108.98
$1 \frac{7}{8}$. 91	$5 \frac{5}{8}$	$24 \cdot 51$	$9 \frac{3}{8}$	$113 \cdot 46$
2	1-10	$5 \frac{3}{4}$	$26 \cdot 18$	$9 \frac{1}{2}$	118.06
$2 \frac{1}{8}$	1-32	$5 \frac{7}{8}$	27.91	95.	122.77
21	1.57	6	29.72	$9 \frac{3}{4}$	$127 \cdot 63$
$2 \frac{3}{8}$	$1 \cdot 84$	$6 \frac{1}{8}$	31.64	$9 \frac{7}{8}$	$132 \cdot 60$
$2 \frac{1}{2}$	$2 \cdot 15$	61	$33 \cdot 62$	10	$137 \cdot 71$
$2{ }^{5}$	$2 \cdot 49$	$6 \frac{3}{8}$	$35 \cdot 67$	101 $\frac{1}{8}$	$142 \cdot 91$
$2 \frac{3}{4}$	$2 \cdot 86$	$6 \frac{1}{2}$	$37 \cdot 80$	101	$148 \cdot 28$
$2 \frac{7}{8}$	$3 \cdot 27$	65	$40 \cdot 10$	1038	$153 \cdot 78$
3	$3 \cdot 72$	$6 \frac{3}{4}$	$42 \cdot 35$	101	$159 \cdot 40$
31	$4 \cdot 20$	$6 \frac{7}{8}$	$44 \cdot 74$	105	$165 \cdot 16$
$3 \frac{1}{4}$	$4 \cdot 78$	7	$47 \cdot 21$	$10 \frac{3}{4}$	171.05
$3 \frac{3}{8}$	$5 \cdot 29$	$7 \frac{1}{8}$	$49 \cdot 79$	$10 \frac{7}{8}$	$177 \cdot 10$
$3 \frac{1}{2}$	$5 \cdot 80$	$7 \frac{1}{4}$	$52 \cdot 47$	11	$183 \cdot 29$
$3 \frac{5}{8}$	$6 \cdot 56$	$7 \frac{8}{8}$	$55 \cdot 23$	111 1	$189 \cdot 60$
$3 \frac{3}{4}$	$7 \cdot 26$	$7 \frac{1}{2}$	58.06	111	$196 \cdot 10$
$3 \frac{7}{8}$	$8 \cdot 01$	$7 \frac{5}{8}$	60.04	1138	$202 \cdot 67$
4	$8 \cdot 81$	$7 \frac{8}{4}$	64.09	113	$209 \cdot 43$
$4 \frac{1}{8}$	$9 \cdot 67$	$7 \frac{7}{8}$	$67 \cdot 25$	11冎	$216 \cdot 32$
$4 \frac{1}{4}$	10.57	8	$70 \cdot 49$	113	$223 \cdot 40$
$4 \frac{3}{8}$	11.53	$8 \frac{1}{8}$	73.85	117	$230 \cdot 57$
$4 \frac{1}{2}$	$12 \cdot 55$	$8 \frac{1}{4}$	77.32	12	$237 \cdot 94$
$4 \frac{5}{8}$	$13 \cdot 62$	$8 \frac{3}{8}$	$80 \cdot 88$		

Table of the Weight of Flat Bar Iron, 12 inches long, in lbs. avoirdupois.

Thickness.		$\frac{1}{8}$	${ }_{1}{ }^{3}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$.	$\frac{7}{8}$	1 inch.
䔍	$\frac{1}{2}$	$\cdot 21$	$\cdot 31$	$\cdot 42$. 63					
	$\frac{3}{4}$	$\cdot 31$	$\cdot 47$	$\cdot 63$. 94	$1 \cdot 26$	1.57			
	r^{4}	-42	$\cdot 63$	-84	$1 \cdot 26$	$1 \cdot 68$	$2 \cdot 10$	$2 \cdot 52$	$2 \cdot 94$	
	$1 \frac{1}{4}$	$\cdot 52$	$\cdot 78$	1.05	1.57	$2 \cdot 10$	$2 \cdot 62$	$3 \cdot 15$	$3 \cdot 67$	$4 \cdot 20$
	13	-57	$\cdot 86$	$1 \cdot 18$	$1 \cdot 73$	$2 \cdot 31$	$2 \cdot 88$	$3 \cdot 46$	$4 \cdot 04$	$4 \cdot 62$
	$1 \frac{1}{2}$	-63	.94	1.26	1.89	$2 \cdot 52$	$3 \cdot 15$	$3 \cdot 78$	$4 \cdot 41$	$5 \cdot 04$
	$1 \frac{3}{4}$	$\cdot 73$	$1 \cdot 10$	$1 \cdot 47$	$2 \cdot 20$	$2 \cdot 94$	$3 \cdot 67$	$4 \cdot 41$	$5 \cdot 14$	$5 \cdot 87$
	2	-84	1.26	$1 \cdot 68$	$2 \cdot 52$	$3 \cdot 36$	$4 \cdot 20$	$5 \cdot 06$	$5 \cdot 88$	$6 \cdot 72$
	21	.96	$1 \cdot 41$	$1 \cdot 89$	$2 \cdot 83$	$3 \cdot 78$	$4 \cdot 72$	$5 \cdot 66$	$6 \cdot 61$	$7 \cdot 56$
	$2 \frac{1}{2}$	1.05	1.57	$2 \cdot 10$	$3 \cdot 15$	$4 \cdot 20$	$5 \cdot 25$	$6 \cdot 30$	$7 \cdot 35$	$8 \cdot 40$
	$2 \frac{3}{4}$	$1 \cdot 15$	1.73	$2 \cdot 31$	$3 \cdot 46$	$4 \cdot 62$	$5 \cdot 77$	$6 \cdot 93$	$8 \cdot 08$	$9 \cdot 24$
	3	$1 \cdot 26$	1.89	$2 \cdot 52$	$3 \cdot 78$	$5 \cdot 04$	$6 \cdot 30$	$7 \cdot 56$	$8 \cdot 82$	$10 \cdot 08$
	31	$1 \cdot 36$	$2 \cdot 04$	$2 \cdot 73$	$4 \cdot 09$	$5 \cdot 46$	$6 \cdot 82$	$8 \cdot 19$	$9 \cdot 55$	10.92
	$3 \frac{1}{2}$	1.47	$2 \cdot 20$	$2 \cdot 94$	$4 \cdot 41$	$5 \cdot 88$	$7 \cdot 35$	8.82	$10 \cdot 29$	$11 \cdot 76$
	$3 \frac{3}{4}$	1.57	$2 \cdot 36$	$3 \cdot 15$	$4 \cdot 72$	$6 \cdot 30$	$7 \cdot 87$	$9 \cdot 45$	11.02	$12 \cdot 60$
	4	$1 \cdot 68$	$2 \cdot 52$	$3 \cdot 36$	$5 \cdot 04$	$6 \cdot 72$	$8 \cdot 40$	$10 \cdot 08$	1176	$13 \cdot 44$
	$4 \frac{1}{2}$	1.89	$2 \cdot 83$	$3 \cdot 73$	$5 \cdot 67$	$7 \cdot 56$	$9 \cdot 45$	$11 \cdot 34$	$13 \cdot 23$	$15 \cdot 12$
	5	$2 \cdot 10$	$3 \cdot 15$	$4 \cdot 12$	$6 \cdot 30$	$8 \cdot 40$	$10 \cdot 50$	$12 \cdot 60$	$16 \cdot 70$	17.80
	6	$2 \cdot 52$	$3 \cdot 78$	$5 \cdot 04$	$7 \cdot 56$	$10 \cdot 08$	$12 \cdot 60$	$15 \cdot 12$	$17 \cdot 64$	$20 \cdot 16$

Weight of a copper rod 12 inches long and 1 inch diameter $=3.039 \mathrm{lbs}$.
Weight of a brass rod 12 inches long and 1 inch diameter $=2.86 \mathrm{lbs}$.

Brass.-Weight of a Lineal Foot of Round and Square.

Diameter.	Weight of round.	Weight of square.	Diameter.	Weight of round.	Weight of square.
Inches.	Lbs.	Lbs.	Inches.	Lbs.	Lbs.
$\frac{1}{4}$	$\cdot 17$	$\cdot 22$	$1 \frac{3}{4}$	$8 \cdot 66$	11.03
$\frac{3}{8}$	- 39	-50	$1 \frac{7}{8}$	$9 \cdot 95$	$12 \cdot 66$
$\frac{1}{2}$	$\cdot 70$. 90	2	$11 \cdot 32$	$14 \cdot 41$
$\frac{5}{8}$	$1 \cdot 10$	$1 \cdot 40$	$2 \frac{1}{8}$	$12 \cdot 78$	$16 \cdot 27$
$\frac{3}{4}$	1.59	$2 \cdot 02$	$2 \frac{1}{4}$	$14 \cdot 32$	$18 \cdot 24$
${ }^{\frac{7}{8}}$	$2 \cdot 16$	- 2.75	$2 \frac{3}{8}$	$15 \cdot 96$	20.32
1	$2 \cdot 83$	$3 \cdot 60$	$2 \frac{1}{2}$	$17 \cdot 68$	$22 \cdot 53$
$1 \frac{1}{8}$	$3 \cdot 58$	$4 \cdot 56$	$2 \frac{5}{8}$	$19 \cdot 50$	$24 \cdot 83$
$1 \frac{1}{4}$	$4 \cdot 42$	$5 \cdot 63$	$2 \frac{3}{4}$	$21 \cdot 40$	$27 \cdot 25$
$1 \frac{3}{8}$	$5 \cdot 35$	$6 \cdot 81$	$2 \frac{7}{8}$	$23 \cdot 39$	$29 \cdot 78$
$1 \frac{1}{2}$	$6 \cdot 36$ $7 \cdot 47$	8.00 9.51	3	$25 \cdot 47$	$32 \cdot 43$
15	$7 \cdot 47$	$9 \cdot 51$			

Steel.-Weight of One Foot of Round Steel.

Diameter in inches and parts.	$\frac{1}{4}$	$\frac{8}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$1 \frac{3}{8}$	$1 \frac{1}{2}$	$1 \frac{5}{8}$	$1 \frac{3}{4}$	$1 \frac{7}{8}$	2
Weight in liss. and deci- mal parts.	$\cdot 167$	$\cdot 376$	$\cdot 669$	$1 \cdot 04$	$1 \cdot 5$	$2 \cdot 05$	$2 \cdot 67$	$3 \cdot 38$	$4 \cdot 18$	$5 \cdot 06$	$6 \cdot 02$	$7 \cdot 07$	$8 \cdot 2$	$.4 \cdot 41$	$11 \cdot 71$

Tables of the Weights of Rolled Iron,
Per lineal foot, of various sections, illustrated in the accompanying cuts, viz.
Parallel Angle Iron, equal and unequal sides; Taper Angle Iron; Parallel \mathbf{T} Iron, equal and unequal depth and width; Taper T Iron; Sash Iron; and Permanent and Temporary Rails.

Table I.—Parallel Angle Iron,oof equal sides. (Fig. 1.)

Table II.-Parallel Angle Iron, of unequal sides. (Fig. 2.)

Length of side A, in inches.	Length of side B, in inches.	Uniform thickness throughout.	Weight of one lineal foot in lhs.
Inches.	Inches.	Inches.	
$3 \frac{1}{2}$	5	$\frac{3}{8}$	$9 \cdot 75$
3	5	$\frac{8}{8}$	$8 \cdot 75$
3	4	$5-16$ ths	$7 \cdot 5$
$2 \frac{1}{4}$	4	$5-16$ ths	$6 \cdot 75$
$2 \frac{1}{4}$	4	$\frac{1}{4}$	$5 \cdot 75$
2	4	$\frac{1}{4}$	$5 \cdot 5$
$2 \frac{1}{2}$	3	$\frac{1}{4}$	$4 \cdot 75$
2	$2 \frac{1}{4}$	3	$3 \cdot 375$
$1 \frac{1}{2}$	2	$\frac{1}{4}$	$2 \cdot 875$
$1 \frac{1}{2}$	2	$3-16 t h s$	$2 \cdot 25$

Fig. 2.

Table III.—Taper Angle Iron, of equal sides. (Fig. 3.)

Length of sides, $\mathbf{A A}$, in inches.	Thickness of edges at $\mathbf{B .}$	Thickness of root at C.	Weight of one lineal foot in lbs.
Inches.	Inches.	Inches.	
4	$-\frac{1}{2}$	$\frac{5}{8}$	$14 \cdot 0$
3	$\frac{1}{2}$	$\frac{5}{8}$	$10 \cdot 375$
$2 \frac{3}{4}$	$7-16$ ths	$9-16$ ths	$8 \cdot 25$
$2 \frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{2}$	$6 \cdot 5$
$2 \frac{1}{4}$	$5-16$ ths, full	$7-16$ ths	$5 \cdot 0$
2	$\frac{1}{4}$ full	$5-16$ ths, full	$3 \cdot 875$
$1 \frac{3}{4}$	$\frac{1}{4}$	$5-16$ ths	$3 \cdot 25$
$1 \frac{1}{2}$	$\frac{1}{4}$ bare	$5-16$ ths, bare	$2 \cdot 625$

Fig. 3.

Table IV.—Parallel \uparrow Iron, of unequal width and depth. (Fig. 4.)

Width of top table $\underset{\text { inches. }}{\text { A, in }}$	Total depth inches.	Uniform thick- ness of top table \mathbf{C}.	Uniform thickness of rib D.	Weight of one lineal foot in lbs.	
Inches.	Iuches.	Inches.	Inches.		-----
5	6	$\frac{1}{2}$	$\frac{1}{2}$	$15 \cdot 75$	
$4 \frac{1}{2}$	$3 \frac{1}{4}$	$\frac{1}{2}$	9.16 ths	$13 \cdot 25$	-
4	3	$\frac{3}{8}$	$\frac{3}{8}$	8.875	-
$3 \frac{1}{2}$	3	$\frac{3}{8}$		$8 \cdot 25$	-
$3 \frac{1}{2}$	4	$\frac{1}{2}$	$\frac{1}{2}$	$12 \cdot 5$	${ }_{4}$
$2 \frac{1}{2}$	3	$\frac{3}{8}$	$\frac{3}{8}$	$7 \cdot 0$	
21	2	5-16ths	$\frac{3}{8}$ full	$4 \cdot 5$	
2	112	5-16ths	5-16ths	$4 \cdot 0$	*
$1 \frac{3}{4}$	2	$\frac{1}{4}$	$\frac{1}{4}$	$3 \cdot 125$	N
$1 \frac{1}{2}$	2	$\frac{1}{4}$	1	$2 \cdot 875$	V..N
11	$11 \frac{1}{2}$	4	1	$2 \cdot 375$	
1	$1 \frac{1}{4}$	3-16ths	3-16ths	$1 \cdot 5$	
$\frac{3}{4}$	1	$3-16$ ths	$3-16$ ths	$1 \cdot 125$	

Table V.-Parallel T Iron, of equal depth and width. (Fig. 5.)

Width of top table, and total depth A A.	Uniform thickness thronghout.	Weight of one lineal foot in lbs.
Inches.	Inches.	
6	$\frac{1}{2}$	
5	$7-16$ ths	$13 \cdot 75$
4	$\frac{8}{8}$	$9 \cdot 75$
$3 \frac{1}{2}$	$\frac{8}{8}$	$8 \cdot 5$
3	$\frac{3}{8}$	$7 \cdot 5$
$2 \frac{1}{2}$	$5-16$ ths	$4 \cdot 625$
$2 \frac{1}{4}$	$5-16$ ths	$4 \cdot 5$
2	$5-16$ ths	$3 \cdot 75$
$1 \frac{3}{4}$	$\frac{1}{4}$	$3 \cdot 0$
$1 \frac{1}{2}$	$\frac{1}{4}$,	$2 \cdot 25$
$1 \frac{1}{4}$	$\frac{1}{4}$	$1 \cdot 75$
1	$3-16$ ths	$1 \cdot 0$
$\frac{7}{8}$	$\frac{1}{8}$	$\cdot 725$
$\frac{3}{4}$	$\frac{1}{8}$	$\cdot 625$

Fig. 5.

Table VI.—Taper T Iron. (Fig. 6.)

Width of top table A, in inches.	Totala depth B, in inches.	Thickness of top table at root C.	Thickness of top table at edges D.	Uniform thickness of rib E.	Weight oi one lineal foot in lbs.
Inches.	Inches.	Inches.	Inches.	Inches.	
3	$3 \frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{8}$	$7-16$ ths	$8 \cdot 0$
3	$2 \frac{5}{8}$	$7-16$ ths	$\frac{3}{8}$	$\frac{1}{2}$	$8 \cdot 0$
$2 \frac{1}{2}$	3	$7-16$ ths	$5-16$ ths	$5-16$ ths	$5 \cdot 25$
2	$2 \frac{1}{2}$	$\frac{5}{8}$	$\frac{1}{2}$	$\frac{1}{2}$	$6 \cdot 5$
2	$1 \frac{1}{2}$	$\frac{3}{8}$ full	$5-16$ ths	$\frac{3}{8}$	$3 \cdot 5$
2	$1 \frac{1}{2}$	$5-16$ ths	$\frac{1}{4}$	$\frac{1}{4}$	$2 \cdot 875$

Fig. 6.

Table VII.—Sash Iron. (Fig. 7.)

$\underset{\text { depth } A .}{\text { Total }}$	Depth of rebate B.	Width at edge C.	Greatest width D.	Weight of one lineal foot in lbs.
In-hes.	Inches.		Inches.	
2	1	No. 9 wire-gauge	5-8ths	1.75
$1 \frac{3}{4}$	$\frac{3}{4}$	7	9-16ths	$1 \cdot 625$
$1 \frac{1}{2}$	$\frac{3}{4}$	6	9-16ths	$1 \cdot 25$
$1 \frac{3}{8}$	$\frac{5}{8}$	10	$9-16 \mathrm{ths}$	$1 \cdot 125$
11	$\frac{5}{8}$	10	$9-16$ ths	1.0
1	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{2}$	$\cdot 75$

Table VIII.-Rails equal top and bottom Tables. (Fig. 8.)

Depth A, in inehes.	Width across top and bottom B B, in inches.	Thickness of rib C.	Weight of one lineal foot in lbs.
Inches.	Inches.	Inches.	
5	$2 \frac{5}{8}$	$\frac{3}{4}$	$25 \cdot 0$
$4 \frac{1}{2}$	1	$\frac{1}{4}$	$23 \cdot 33$
$4 \frac{1}{2}$	$2 \frac{1}{2}$	$\frac{5}{8}$	$21 \cdot 66$

Fig. 7.

Fig. 8.

Table IX.—Temporary Rails. (Fig. 9.)

Top width A, in inches.	Rib width B, in inches.	Bed width C, in inches.	Total depth D, in inches.	Thickness of bed E.	Weight of one lineal foot in lbs.
Inches.	Inches.	Inches.	Inches.	Inches.	
$1 \frac{1}{2}$	$\frac{5}{8}$	3	2	$7-16$ ths	$9 \cdot 0$
$1 \frac{3}{4}$	$\frac{5}{8}$	3	$2 \frac{1}{2}$	$\frac{1}{2}$	$12 \cdot 0$
$1 \frac{7}{8}$	$\frac{5}{8}$	4	3	$\frac{1}{2}$	$16 \cdot 0$
2	$\frac{5}{8}$	4	3	$\frac{1}{2}$	$17 \cdot 33$

Fig. 9.

Table of Natural Sines, Co-sines, Tangents, Co-tangents, Secants, and Co-secants, to every degree of the Quadrant.

Deg.	Sines.	Co-sines.	Tangents.	Co-tangents.	Secants.	Co-secants.	Degree.
0	-00000	1.00000	. 00000	Infinite.	$1 \cdot 00000$	Infinite.	90
1	-01745	- 99985	-01746	57.2900	$1 \cdot 00015$	$57 \cdot 2987$	89
2	-03490	-99939	-03492	28.6363	$1 \cdot 00061$	$28 \cdot 6537$	88
3	-05234	-99863	-05241	$19 \cdot 0811$	1.00137	19•1073	87
4	-06976	-99756	-06993	$14 \cdot 3007$	$1 \cdot 00244$	$14 \cdot 3356$	86
5	- 08716	-99619	-08749	$11 \cdot 4301$	$1 \cdot 00382$	$11 \cdot 4737$	85
6	-10453	-99452	-10510	$9 \cdot 51236$	$1 \cdot 00551$	$9 \cdot 56677$	84
7	-12187	-99255	-12278	$8 \cdot 14435$	$1 \cdot 00751$	$8 \cdot 20551$	83
8	-13917	-99027	-14054	$7 \cdot 11537$	$1 \cdot 00983$	$7 \cdot 18530$	82
9	-15643	- 98769	-15838	$6 \cdot 31375$	$1 \cdot 01246$	$6 \cdot 39245$	81
10	-17365	-98481	-17633	$5 \cdot 67128$	$1 \cdot 01543$	$5 \cdot 75877$	80
11	-19081	. 98163	-19438	$5 \cdot 14455$	$1 \cdot 01872$	$5 \cdot 24084$	79
12	$\cdot 20791$. 97815	- 21256	$4 \cdot 70463$	$1 \cdot 02234$	$4 \cdot 80973$	78
13	-22495	-97437	-23087	$4 \cdot 33148$	$1 \cdot 02630$	$4 \cdot 44541$	77
14	-24192	-97030	-24933	$4 \cdot 01078$	$1 \cdot 03061$	$4 \cdot 13356$	76
15	$\cdot 25882$	-96593	-26795	$3 \cdot 73205$	$1 \cdot 03528$	$3 \cdot 86370$	75
16	$\cdot 27564$	-96126	-28675	$3 \cdot 48741$	$1 \cdot 04030$	$3 \cdot 62796$	74
17	-29237	-95630	-30573	$3 \cdot 27085$	$1 \cdot 04569$	$3 \cdot 42030$	73
18	-30902	-95106	-32492	$3 \cdot 07768$	1.05146	$3 \cdot 23607$	72
19	-32557	-94552	-34433	$2 \cdot 90421$	$1 \cdot 05762$	$3 \cdot 07155$	71
20	-34202	-93969	-36397	$2 \cdot 74748$	1.06418	$2 \cdot 92380$	70
21	-35837	- 93358	-38386	$2 \cdot 60509$	1.07114	$2 \cdot 79043$	69
22	$\cdot 37461$	-92718	$\cdot 40403$	$2 \cdot 47509$	$1 \cdot 07853$	$2 \cdot 66947$	68
23	- 39073	-92050	-42447	$2 \cdot 35585$	1.08636	$2 \cdot 55930$	67
24	-40674	-91355	-44523	$2 \cdot 24004$	$1 \cdot 09464$	$2 \cdot 45859$	66
25	$\cdot 42262$	-90631	-46631	$2 \cdot 14451$	1-10338	$2 \cdot 36620$	65
26	$\cdot 43837$	-89879	-48773	$2 \cdot 05030$	1-11260	$2 \cdot 28117$	64
27	-45399	-89101	-50952	1.96261	1-12233	$2 \cdot 20869$	63
28	-46947	-88295	-53171	1.88073	1-13257	$2 \cdot 13005$	62
29	-48481	-87462	-55431	$1 \cdot 80405$	$1 \cdot 14335$	$2 \cdot 06266$	61
30	-50000	-86603	-57735	1.73205	$1 \cdot 15470$	$2 \cdot 00000$	60
31	-51504	-85717	-60086	$1 \cdot 66428$	$1 \cdot 16663$	$1 \cdot 94160$	59
32	-52992	-84805	-62487	$1 \cdot 60033$	$1 \cdot 17918$	1.88708	58
33	-54464	-83867	-64941	1.53986	1-19236	$1 \cdot 83608$	57
34	-55919	-82904	-67451	1.48256	$1 \cdot 20622$	$1 \cdot 78829$	56
35	-57358	-81915	-70021	$1 \cdot 42815$	$1 \cdot 22077$	1.74345	55
36	-58778	-80902	-72654	$1 \cdot 37638$	$1 \cdot 23607$	$1 \cdot 70130$	54
37	-60181	$\cdot 79863$	-75355	$1 \cdot 32704$	$1 \cdot 25214$	$1 \cdot 66164$	53
38	-61566	-78801	-78129	$1 \cdot 27994$	$1 \cdot 26902$	$1 \cdot 62427$	52
39	-62932	$\cdot 77715$	- 80978	$1 \cdot 23490$	$1 \cdot 28676$	$1 \cdot 58902$	51
40	-64279	-76604	-83910	$1 \cdot 19175$	$1 \cdot 30541$	1.55572	50
41	-65606	-75471	-86929	$1 \cdot 15037$	$1 \cdot 32511$	1-52425	49
42	-66913	$\cdot 74314$	-90040	$1 \cdot 11061$	$1 \cdot 34561$	1.49448	48
43	-68200	. 73135	. 93251	1.07237	$1 \cdot 36706$	1.46628	47
44	-69466	. 71934	. 96569	$1 \cdot 03553$	$1 \cdot 39012$	1.43956	46
45	. 70711	$\cdot 70711$	1.00000	1.00000	$1 \cdot 41421$	1:41421	45
Deg.	Co-sines.	Sines.	Co-tangents.	Tangents.	Co-secants. ${ }^{\text {b }}$	Seoants.	Degree.

MOMENT OF INERTIA.

CORDS, KNOTS, NODES, CHAIN-BRIDGE.-ANGULAR VELOCITY.-RADIUS OF GYRATION.

1. If the cord $q \mathrm{NB}$, be fixed at the extremity B , and stretched by a weight of 500 lbs . at the extremity q, and the middle knot or node N , by a force of 255 lbs . pulling upwards, under an angle $a \mathrm{~N} b$ of 54°; what is the tension and position of NB.

Angle $q \mathrm{~N} r=180^{\circ}-$ angle $q \mathrm{NP}$; and $90^{\circ}-a \mathrm{~N} b=b \mathrm{~N} c=$ $q \mathrm{~N} r=36^{\circ}$; cos. $36^{\circ}=80902$.
$\sqrt{ } 500^{2}+255^{2}-2 \times 255 \times 500 \times$ cos. $36^{\circ}=329.7 \mathrm{lbs}$., the magnitude of the tension.
$\frac{500 \sin .36^{\circ}}{329 \cdot 7}=891386=$ sine of angles $b \mathrm{~N} s$, or angle $\mathrm{BN} r=$ $63^{\circ} 2^{\prime}$.
2. Between the points A and B, a cord 10 feet in length is stretched by a weight W of 500 lbs . suspended to it by a ring; the horizontal distance $\mathrm{AE}=6.6$ feet, and the vertical distance $\mathrm{BE}=3.2$ feet; required the position of the ring C , the tensions, and directions of the rope.

The tensions of the cords AC, CB are equal, and angle $\mathrm{AC} b=$ angle b CB.

$$
\mathrm{AD}=\mathrm{AC}+\mathrm{CB}=10 \text { feet }
$$

$$
\sqrt{ }\left(10^{2}-6 \cdot 6^{2}\right)=7 \cdot 5126=\mathrm{ED} ; \mathrm{BD}=7 \cdot 5126-3 \cdot 2=4 \cdot 3126
$$

$$
\mathrm{D} n=\frac{4 \cdot 3126}{2}=2 \cdot 1563 ; 7 \cdot 5126: 2 \cdot 1563:: 10: \frac{21 \cdot 563}{7 \cdot 5126}=
$$

$$
2 \cdot 87=\mathrm{CD}=\mathrm{CB} ; \text { and } \mathrm{CA}=10-2 \cdot 87=7 \cdot 13
$$

$$
\frac{\mathrm{B} n}{\overline{\mathrm{~B}} c}=\operatorname{cosine} b \mathrm{CB}=\frac{2 \cdot 1563}{2 \cdot 87}=\cdot 75132 .
$$

$\therefore \angle b \mathrm{CB}=41^{\circ} 18^{\prime} ; \frac{\mathrm{W}}{2 \cos .41^{\circ} 18^{\prime}}=\frac{500}{1.50264}=332.7 \mathrm{lbs}$, the tension on the cord CB , which is equal to the tension on AC.
3. Let $500,000 \mathrm{lbs}$. be the whole weight on a chain-bridge whose span $\mathrm{AB}=400$ feet, and height of the are $\mathrm{CD}=40$ feet; required the tensions and other circumstances respecting the chains.

The tangent of the angles of inclination of the ends of the chain is equal
$\frac{40 \times 2}{200}=\cdot 40000$, the angle answering to this natural tangent is $21^{\circ} 48^{\prime}$.

The vertical tension at each point of suspension is $=$ half the weight $=$ 250000 ; the horizontal tension at the points of suspension $=250000 \times \mathrm{cot}$. $21^{\circ} 48^{\prime}=\frac{250000}{\cdot 4}=625000 \mathrm{lbs}$.

The whole tension at one end will be $\sqrt{625000^{2}+250000^{2}}=673146 \mathrm{lbs}$.
4. Suppose the piston of a steam engine, with its rod, weighs 1000 lbs.; it has no velocity at its highest and lowest positions, but in the middle the velocity is a maximum and equal 10 ft .; what effect will it accumulate by virtue of its inertia in the first half of its path, and give out again in the second half; and what is the mean force which would be requisite to accelerate the motion of the piston in the first half of its path, which is the same as that which it would exert in the second half by its retardation, the length of stroke being 8 feet.

According to the principle of vis viva, the effect which the piston will accumulate by virtue of its inertia in the first half of its path, and give out àgain in the second half $=$ $\frac{10^{2}}{2 \times 32 \cdot 2} \times 1000=1552 \cdot 794$ units of work. Half the path of the piston $=4$ feet; hence,

$$
\frac{1552 \cdot 794}{4}=388 \cdot 1985 \mathrm{lbs} ., \text { the mean force. }
$$

Moment of Inertia, or the Moment of Rotation, or the Moment of the Mass, is the sum of the products of the particles
of the mass and the squares of their distances from the axis of rotation.
5. If a body at rest, but capable of turning round a fixed axis A, possesses a moment of inertia of 121 units of work, the measures taken in feet and pounds, made to turn by means of a cord and weight of 36 lbs ., lying over a pulley in a path of 10 feet; what are the circumstances of the motion.

$$
\sqrt{\frac{2 \times 36 \times 10}{121}}=2.439347 \text { feet, the angular velocity of the }
$$

body, which call v; so that each point at the distance of one foot from the axis of revolution will describe, after the accumulatior of 121 units of work, $2 \cdot 44$ feet in a second.
$6.2832=$ circumference of a circle 2 feet in diameter, $\frac{6 \cdot 2832}{2 \cdot 44}=2 \cdot 6$ seconds, the time of one revolution.
6. If an angular velocity of 3 feet passes into a velocity of 7 feet; what mechanical effect will a mass produce so moving, supposing the moment of inertia to be 200 , the measures taken in feet and pounds.

According to the principles of vis viva,

$$
\left(7^{2}-3^{2}\right) \frac{200}{2}=4000 \text { units of work, which may be } 40 \mathrm{lbs} .
$$

raised 100 feet, 80 lbs . raised 50 feet, 400 lbs . raised 10 feet; and so on.
7. The weight of a rotating mass B is $500 \mathrm{lbs} .$, its distance OB from the axis of rotation 3 feet, the weight W , constituting the moving force, 90 lbs., its arm A0. $=O C=4$ feet ; required the circumstances of the motion that ensues.
$\left\{90+\frac{3^{2}}{4^{2}} 500\right\} \div$ $32 \cdot 2=11.53 \mathrm{lbs}$, the inert mass accelerated by the force of W. And it is well known that the force divided by the mass gives the acceleration.

$\therefore \frac{90}{11.53}=7 \cdot 806$, the acceleration of the motion of W. The angular acceleration in a circle 1 foot from the axis $=\frac{7 \cdot 806}{4}=$
1.9515 .

After 10 seconds the acquired angular velocity will be

$$
1.9515 \times 10=19.515
$$

And the corresponding distance $=\frac{1 \cdot 9515 \times 10^{2}}{2}=97.575$ feet, measured on a circle one foot from 0 .

The space described by the weight W is $\frac{7.806 \times 10^{2}}{2}=390.3$ feet, which is the same as the space described by C. The circumference of a circle one foot from $\mathrm{C}=3 \cdot 1416$.

$$
\therefore \frac{97 \cdot 575}{3 \cdot 1416}=31 \cdot 059 \text { revolutions. }
$$

In the rotation of a body AB about a fixed axis 0 , all its points describe equal angles in equal times. . If the body rotate in a certain time through the angle θ°, or arc $\phi=\frac{\theta^{\circ}}{180^{\circ}} \pi$, radius $=1$; and hence, $\pi=3 \cdot 141592$, \&c.; the elements of the body, a, b, c, \&c., at the distances $o a=x_{1}, o b=$ x_{2}, \&c. from the axis, will describe the arcs or spaces $a a_{1}={ }_{\phi} x_{1}, b b_{1}=$ $\phi x_{2}, c c_{1}=\phi x_{3}$, \&c. If the angular velocity, that is, the velocity of those points of the body which are distant a unit of length, a foot, from the axis of revolution, be put $=z$, then the simultaneous velocities of the ele-
 ments of the mass at the distances $x_{1}, x_{2}, x_{3}, \& c$. , will be,

$$
z x_{1}, z x_{2}, z x_{3}, \& c
$$

And if a be the mass of the element at $a ; b$ the mass of the element at $b ; c$ the mass of the element at c, \&c., their vis viva will be,

$$
\left(z x_{1}\right)^{2} a,\left(z x_{2}\right)^{2} b,\left(z x_{3}\right)^{2} c, \& c .
$$

And the sum of the vis viva of the whole body $=$

$$
z^{2}\left(x_{1}^{2} a+x_{8}{ }^{2} b+x_{3}{ }^{2} c, \& c .\right)
$$

According to our definition, $x_{1}{ }^{2} a+x_{2}{ }^{2} b+x_{3}{ }^{2} c$, \&c. is the moment of inertia, which may be represented by R ; then $z^{2} \mathrm{R}$ is the vis viva of a body revolving with the angular velocity z. Therefore, to communicate to a body in a state of rest an angular velocity z, a mechanical effect F s, or force \times space $=\frac{1}{2}$ the vis viva, must be expended; that is, $\mathrm{Fs}=\frac{1}{2} z^{2} \mathrm{R}$, or, which is the same thing, a body performing the units of work Fs, passes from the angular velocity z to a state of rest. In general, if the initial angular velocity $=v$, and the terminal angular velocity $=z$, the units of work will be,

$$
\mathrm{Fs}=\frac{z^{2}-v^{2}}{2} \times \mathrm{R} .
$$

The moment of inertia of a body about an axis not passing through the centre of gravity is equivalent to its moment of inertia about an axis running parallel to it through the centre of gravity, increased by the product of the mass of the body and the square of the distance of the two centres.

It is necessary to know the moments of inertia of the principal geometrical bodies, because they very often come into application in mechanical investigations. If these bodies be homogeneous, as in the following we will always suppose to be the case, the particles of the mass $\mathrm{M}_{1}, \mathrm{M}_{2}$, \&c. are proportional to the corresponding particles of the volume $\mathrm{V}_{1}, \mathrm{~V}_{2}, \& c$. ; and hence the measure of the moment of inertia may be replaced by the sum of the particles of the volume, and the squares of their distances from the axis of revolution. In this sense, the moments of inertia of lines and surfaces may also be found.

If the whole mass of a body be supposed to be collected into one point, its distance from the axis may be determined on the supposition that the mass so concentrated possesses the same moment of inertia as if distributed over its space. This distance is called the radius of gyration, or of inertia. If R be the moment of inertia, M the mass, and r the radius of gyration, we then have $\mathrm{M} r^{2}=$ R , and hence $r=\sqrt{\frac{\bar{R}}{M}}$. We must bear in mind that this radius by no means gives a determinate point, but a circle only, within whose circumference the mass may be considered as arbitrarily distributed.

If into the formula $\mathrm{R}_{1}=\mathrm{R}+\mathrm{Me} e^{2}$, expressed in the words above printed in italics, we introduce $\mathrm{R}=\mathrm{M} r^{2}$ and $\mathrm{R}_{1}=\mathrm{M} r_{1}{ }^{2}$, we obtain $\boldsymbol{r}_{1}{ }^{2}=r^{2}+e^{2}$; that is, the square of the radius of gyration referred to a given axis $=$ the square of the radius' of gyration referred to a parallel line of gravity, plus the square of the distance between the two axes.

Wheel and axle.-The theory of the moment of inertia finds its most frequent application in machines and instruments, because in these rotary motions about a fixed axis are those which generally present themselves.

If two weights, P and Q, act on a wheel and axle ACDB, with the arms $\mathrm{CA}=a$ and $\mathrm{DB}=b$ through the medium of perfectly flexible strings, and if the radius of the gudgeons be so small that their friction may be neglected, it will remain in equilibrium if the statical moments P. CA and Q.DB are equal, and therefore $\mathrm{P} a=\mathrm{Q} b$. But if the moment of the weight P is greater than that of Q , therefore $\mathrm{P} a>\mathrm{Q} b, \mathrm{P}$ will descend and Q ascend; if $\mathrm{P} a<\mathrm{Q} b, \mathrm{P}$ will ascend and Q descend. Let us now examine the

conditions of motion in the case that $\mathrm{P} a>\mathrm{Q} b$. The force corresponding to the weight Q and acting at the arm b generates at the $\operatorname{arm} a$ a force $\frac{\mathrm{Q} b}{a}$, which acts opposite to the force corresponding to the weight P , and hence there is a residuary moving force $\mathrm{P}-\frac{\mathrm{Q} b}{a}$ acting at A . The mass $\frac{\mathrm{Q}}{g}$ is reduced by its transference from the distance b to that of a to $\frac{\mathrm{Q} b^{2}}{g a^{2}}$; hence the mass moved by $\mathrm{P}-\frac{\mathrm{Q} b}{a}$ is $\mathrm{M}=\left(\mathrm{P}+\frac{\mathrm{Q} b^{2}}{a^{2}}\right) \div g$, or, if the moment of inertia of
the wheel and axle without the weights P and $Q=\frac{G y^{2}}{g}$, and, therefore, its inert mass reduced to $\mathrm{A}=\frac{\mathrm{G} y^{2}}{g a^{2}}$, we have, more exactly,

$$
\mathrm{M}=\left(\mathrm{P}+\frac{\mathrm{Q} b^{2}}{a^{2}}+\frac{\mathrm{G} y^{2}}{a^{2}}\right) \div g=\left(\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}\right) \div g a^{2}
$$

From thence it follows that the accelerated motion of the weight P, together with that of the circumference of the wheel, namely,
$p=\frac{\text { moving force }}{\text { mass }}=\frac{\mathrm{P}-\frac{\mathrm{Q} b}{a}}{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}} g a^{2}=\frac{\mathrm{P} a-\mathrm{Q} b}{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}} g a ;$ on the other hand, the accelerated motion of the ascending weight Q, or of the circumference of the axle, is,

$$
q=\frac{b}{a} p=\frac{\mathrm{P} a-\mathrm{Q} b}{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}} g b
$$

The tension of the string by P is $\mathrm{S}=\mathrm{P}-\frac{\mathrm{P} p}{g}=\mathrm{P}\left(1-\frac{p}{g}\right)$, that of the string by Q is $\mathrm{T}=\mathrm{Q}+\frac{\mathrm{Q} q}{g}=\mathrm{Q}\left(1+\frac{q}{g}\right)$; hence the pressure on the gudgeon is,

$$
\mathrm{S}+\mathrm{T}=\mathrm{P}+\mathrm{Q}-\frac{\mathrm{P} p}{g}+\frac{\mathrm{Q} q}{g}=\mathrm{P}+\mathrm{Q}-\frac{(\mathrm{P} a-\mathrm{Q} b)^{2}}{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}}
$$

the pressure, therefore, on the gudgeons for a revolving wheel and axle is less than for one in a state of equilibrium. Lastly, from the accelerating forces p and q, the rest of the relations of motion may be found; after t seconds, the velocity of P is $v=p t$, of Q is $v_{1}=q t$, and the space described by P is $s=\frac{1}{2} p t^{2}$, by Q is $s_{1}=\frac{1}{2} q t^{2}$.

Let the weight \mathbf{P} at the wheel be $=60 \mathrm{lbs}$., that at the axle $\mathrm{Q}=160 \mathrm{lbs}$. , the arm of the first $\mathrm{CA}=a=20$ inches, that of the second $\mathrm{DB}=b=6$ inches; further, let the axle consist of a solid cylinder of 10 lbs . weight, and the wheel of two iron rings and four arms, the rings of 40 and 12 lbs ., the arms together of 15 lbs. weight; lastly, let the radii of the greater ring $\mathrm{AE}=$ 20 and 19 inches, that of the less $\mathrm{FG}=8$ and 6 inches; required the conditions of motion of this machine. The moving force at the circumference of the wheel is,

$$
\mathrm{P}-\frac{b}{a} \mathrm{Q}=60-\frac{6}{20} 160=60-48=12 \mathrm{lbs}
$$

the moment of inertia of the machine, neglecting the masses of the gudgeons and the strings, is equivalent to the moment of inertia of the axle $=\frac{\mathrm{W} b^{2}}{2}=\frac{10 \cdot 6^{2}}{2}=180$, plus the moment of the smaller ring $=\frac{\mathrm{R}_{1}\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)}{2}=\frac{12\left(8^{2}+6^{2}\right)}{2}=600$, plus the moment of
the larger ring $=\frac{40\left(20^{2}+19^{2}\right)}{2}=15220$, plus the moment of the arms, approximately $=\frac{\mathbf{A}\left(\rho_{1}{ }^{3}-\rho_{3}{ }^{3}\right)}{3\left(\rho_{1}-\rho_{2}\right)}=\frac{\left.\mathbf{A} \rho_{1}{ }^{2}+\rho_{1} \rho_{3}+\rho_{2}{ }^{2}\right)}{3}=$ $\frac{15\left(19^{2}+19 \times 8+8^{2}\right)}{3}=2885$; hence, collectively, G $y^{2}=180+$ $600+15220+2885=18885$, or for foot measure $=\frac{18885}{144}=$ $131 \cdot 14$. The collective mass, reduced to the circumference of the wheel is,
$=\left(\mathrm{P}+\frac{\mathrm{Q} b^{2}+\mathrm{G} y^{2}}{a^{2}}\right) \div g=\left[60+160\left(\frac{6}{20}\right)^{2}+\frac{18885}{20^{2}}\right] \div g=$ $\left(60+160 \times 0.09+\frac{18885}{400}\right) 0.031=121.61 \times 0.031=337 \mathrm{lbs}$.

Accordingly, the accelerated motion of the weight P, together with that of the circumference of the wheel, is,
$p=\frac{\mathrm{P}-\frac{b}{a} \mathrm{Q}}{\frac{\mathrm{P}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}}{a^{2}}} g=\frac{12}{3 \cdot 77}=3.183$ feet; on the other hand, that of Q is $q=\frac{b}{a} p=\frac{6}{20} 3 \cdot 183=0.954$ feet ; further, the tension of the string by P is $=\left(1-\frac{p}{g}\right) \mathrm{P}=\left(1-\frac{3 \cdot 133}{32 \cdot 2}\right) 60=$ 54.07 lbs . ; that by Q , on the other hand, $\mathrm{Q}=\left(1+\frac{q}{g}\right) \mathrm{Q}=$ $(1+0.925 \times 0.032) 160=1.030160=164.8 \mathrm{lbs}$. ; and consequently the pressure on the gudgeons $S+T=54 \cdot 06+164 \cdot 80=$ 218.86 lbs., or inclusive of the weight of the machine $=218.86+$ $77=295.86 \mathrm{lbs}$. After 10 seconds, P has acquired the velocity $p t=3.084 \times 10=30.84$ feet, and described the space $s=$ $\frac{v t}{2}=30.84 \times 5=154.2$ feet, and Q has ascended a height $\frac{b}{a} s=$ $0.3 \times 154 \cdot 2=46.26$ feet.

The weight P which communicates to the weight Q the accele$\mathrm{P} a b-Q b^{2}$ rated motion $q=\frac{\mathrm{P} a b-\mathrm{Q} b^{2}}{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}} g$, may also be replaced by another weight P_{1}, without changing the acceleration of the motion Q , if it act at the arm a_{1}, for which,

$$
\frac{\mathrm{P}_{1} a_{1}-\mathrm{Q} b}{\mathrm{P}_{1} a_{1}^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}}=\frac{\mathrm{P} a-\mathrm{Q} b}{\mathrm{P} a^{2}+\mathrm{Q} b+\mathrm{G} y^{2}} .
$$

The magnitude $\frac{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}}{\mathrm{P} a-\mathrm{Q} b}$, represented by k, and we ob$\operatorname{tain} a_{1}^{2},-k a_{1}=-\frac{\mathrm{Q} b(b+k)+\mathrm{G} y^{2}}{\mathrm{P}_{1}}$, and the arm in question,

$$
a_{1}=\frac{1}{2} k \pm \sqrt{\left(\frac{k}{2}\right)^{2}-\frac{\mathrm{Q} b(b+k)+\mathrm{G} y^{2}}{\mathrm{P}^{2}}}
$$

We may also find by help of the differential calculus, that the motion of Q is most accelerated by the weight P, when the arm of the latter corresponds to the equation $\mathrm{P} a^{2}-2 \mathrm{Q} a b=\mathrm{Q} b^{2}+\mathrm{G} y^{2}$, therefore,

$$
a=\frac{b \mathrm{Q}}{\mathrm{P}}+\sqrt{\left(\frac{b \mathrm{Q}}{\mathrm{P}}\right)^{2} \frac{\mathrm{Q} b^{2}+\mathrm{G} y^{2}}{\mathrm{P}}}
$$

The formula found above assumes a complicated form if the friction of the gudgeons and the rigidity of the cord are taken into account. If we represent the statical moments of both resistances by $\mathrm{F} r$, we must then substitute for the moving force $\mathrm{P}-\frac{b}{a} \mathrm{Q}$, the value $\mathrm{P}-\frac{\mathrm{Q} b+\mathrm{Fr}}{a}$, whence the acceleration of Q comes out, $q=\frac{(\mathrm{P} a-\mathrm{F} r) b-\mathrm{Q} b^{2}}{\mathrm{P} a^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}} g$ and $a=\frac{\mathrm{Q} b+\mathrm{F} r}{\mathrm{P}}+\sqrt{\left(\frac{\mathrm{Q} b+\mathrm{F} r}{\mathrm{P}}\right)^{2}+\mathrm{Q} b^{2}+\mathrm{G} y^{2}} \frac{\mathrm{P}}{}$.

The weights $\mathrm{P}=30 \mathrm{lbs} . \mathrm{Q}=80 \mathrm{lbs}$. act at the arms $a=2$ feet, and $b=\frac{1}{2}$ foot of a wheel and axle, and their moments of inertia $\mathrm{G} y^{2}$ amount to 60 lbs . ; then the accelerated motion of the ascending weight Q is,
$q=\frac{30 \times 2 \times \frac{1}{2}-80 \times\left(\frac{1}{2}\right)^{2}}{30 \times 2^{2}+80 \times\left(\frac{1}{2}\right)^{2}+60} g=\frac{30-20}{120+20+60} \cdot 32 \cdot 2=\frac{322}{200}=$ 1.61 feet. But if a weight $\mathrm{P}_{1}=45 \mathrm{lbs}$. generates the same acceleration in the motion of Q, the arm of P_{1} is then,
$a_{1}=\frac{k}{2} \pm \sqrt{\left(\frac{k}{2}\right)^{2}-\frac{80 \times \frac{1}{2}\left(\frac{1}{2}+k\right)+60}{45}}$, or as $k=\frac{200}{60-40}=$ $10, a_{1}$ is $=5 \pm \sqrt{25-\frac{32}{3}}=5 \pm \frac{1}{3} 11 \cdot 358=5 \pm 3 \cdot 786=8 \cdot 786$ feet, or 1.214 feet.

The accelerated motion of Q comes out greatest if the arm of the force or radius of the wheel amount to,
$a=\frac{\frac{1}{2} \times 80}{30}+\sqrt{\left(\frac{40}{30}\right)^{2}+\frac{20+60}{30}}=\frac{4}{3}+\sqrt{\frac{16}{9}+\frac{24}{9}}=\frac{4+\sqrt{40}}{3}=$ 3.4415 feet, and q is $=\binom{30 \times 1.7207-20}{30 \times(3.4415)^{2}+80} g=\frac{31 \cdot 621}{435 \cdot 32} g=$ 2.339 feet.

The statical moment of the friction, together with the rigidity of the string, is $\mathrm{F} r=8$; then, instead of $Q b$, we must put $Q b+$ $\mathrm{Fr}=40+8=48$; whence it follows that,
$a=\frac{48}{30}+\sqrt{\left(\frac{40}{30}\right)^{2}+\frac{8}{3}}=1 \cdot 6+\sqrt{5 \cdot 227}=3 \cdot 886$, and the correspondent maximum accelerating force
$q=\frac{30 \times 1.943-8 \times \frac{1}{2}-20}{30 \times(3.886)^{2}+80} g=\frac{34.29}{533} \times 32.2=2.071$ feet.

WEIGHT, ACCELERATION, AND MASS.

PARALLELOGRAM OF FORCES.-THE PRINCIPLE OF VIRTUAL VELOCITIES.
-MECHANICAL POWERS: CONTINUOUS CIRCULAR MOTION, GEARING, TEETH OF WHEELS, DRUMS, PULLEYS, PUMPING ENGINES, ETC.

1. If a weight of 10 lbs ., moved by the hand, ascends with a 3 feet acceleration, what is the pressure on the hand?

$$
10\left(1+\frac{3}{32 \cdot 2}\right)=10 \cdot 93168 \mathrm{lbs}
$$

If a weight of 10 lbs ., moved by the hand, descends with a 3 feet acceleration, the pressure on the hand will be $9 \cdot 06832 \mathrm{lbs}$., for then

$$
10\left(1-\frac{3}{32 \cdot 2}\right)=9 \cdot 06832
$$

If w be the weight of the mass acted upon by the force of the hand, and also by the force of gravity, as $g=32 \cdot 2$, the mass moved by the sum or difference of these forces will be $=\frac{w}{g}$. If P be the pressure on the hand, and p its acceleration, the body falls with the force $\frac{w}{g} p$; it also falls with the force $w-\mathrm{P}$; hence,

$$
w-\mathrm{P}=\frac{w}{g} p \quad \therefore \mathrm{P}=\left(1-\frac{p}{g}\right) w
$$

When the body is ascending, then p is negative,

$$
\text { and } w+\mathrm{P}=\frac{w}{g}(-p) \quad \therefore \mathrm{P}=\left(1+\frac{p}{g}\right) w
$$

2. If a body of 200 lbs . be moved on a smooth horizontal track, by the joint action of two forces, and describes a space of 10 feet in the first second, what is the amount of each of these forces; the first makes an angle of 35° with the track upon which the body moves, and the other an angle of 50° ?

In solving this question, the natural sines of the angles $35^{\circ}, 50^{\circ}$, and of their sum 85°, will be required. We shall first take these from the table:

$$
\begin{aligned}
& \sin .35^{\circ}=57358 \\
& \sin .50^{\circ}=76604 \\
& \sin .85^{\circ}=99619 .
\end{aligned}
$$

The acceleration is $=20$ feet, that is, twice the space passed over in the first second,

$$
\frac{200}{32 \cdot 2}=\text { the mass, and } \frac{200}{32 \cdot 2} \times 20=124 \cdot 224 \text { lbs., the force of }
$$

the resultant, in the direction of the track upon which the body moves.

One of the components $=\frac{124 \cdot 224 \sin .35^{\circ}}{\sin .\left(35^{\circ}+50^{\circ}\right)}=71.52 \mathrm{lbs}$.
The other component $=\frac{124 \cdot 224 \sin .50^{\circ}}{\sin .\left(35^{\circ}+50^{\circ}\right)}=95 \cdot 52 \mathrm{lbs}$.
These, and the like results, may be obtained with greater ease by logarithms.

24	2.0942055
Log. $\sin .35^{\circ}$	$9 \cdot 7$
	$11 \cdot 8527968$
Log. $\sin .85^{\circ}$	
Log. of 71.52	$1 \cdot 8544526$
Log. 124.224	$2 \cdot 0942055$
Log. sin. 50°	$9 \cdot 8842540$
	11.9784595
. $\sin .\left(85^{\circ}\right)$	9.9983
Log. of 95.5247	$=1.9801153$

3. A carriage weighing 8000 lbs . is moved forward by a force f_{1} of 500 lbs . upon a horizontal surface AB ; during the motion, two resistances have to be overcome, one horizontal of 100 lbs ., the amount of friction, represented in the figure by f_{3}, the other f_{2} of

200 lbs . acting downwards; the angles $f_{3} n f_{2}$ and $f_{1} n m$, which the directions of these forces make with the horizon, are 61° and 21° respectively: it is required to know what work the force f_{1} will perform by converting a 5 feet initial velocity of the carriage into a 20 feet velocity.

If we put $x=n m$, the distance the carriage moves in passing from a 5 to a 20 feet velocity,

The work of the force $f_{1}=f_{1} \times n q=500 \times \cos .21^{\circ} \times x$.
The work of the force $f_{3}=\left(-f_{3}\right) \times n m=-100 \times x$.
The work of the force $f_{2}=\left(-f_{2}\right) \times n p=-200 \times \cos .61^{\circ} \times x$.

Consequently, the work of the effective force will be $269 \cdot 828 \times$ $x=\{500 \times 94358-100-200 \times 48481\} x$, since the natural cosine of $21^{\circ}=93358$, and the natural cosine of $61^{\circ}=\cdot 48481$.

But according to the principle of vis viva, the work done is equal to

$$
\frac{20^{2}-5^{2}}{64 \cdot 4} \times 8000=46589 \cdot 82
$$

$$
\therefore 269.828 \times x=46589.82 \text { and } x=\frac{46589 \cdot 82}{269 \cdot 828}=
$$

$772 \cdot 665$ feet, the space passed over by the carriage.
This question is solved on the principle of virtual velocities, which we shall explain, as it is of essential service in practical mechanics.

This explanation depends on what is technically termed the "Parallelogram of Forces."

When a material point 0 , is acted upon by two forces f_{1}, f_{2}, whose directions $0 f_{1}, 0 f_{2}$, make with each other an angle, if $0 f_{1}, 0 f_{2}$ represent the magnitudes and directions of the forces, the diagonal of the parallelogram $0 f_{1} f_{3} f_{3}$ represents the resultant in magnitude and direction; that is, the diagonal represents a single force equal to the combined actions of the forces represented by the sides. And if the sides of the parallelogram represent the accelerations of the forces, the diagonal represents the resultant acceleration. Draw through 0 , two axes 0 X and 0 Y , at right angles to each other, and resolve the forces f_{1} and f_{2}, as well as their resultant f_{3}, into components in the directions of these axes; namely, f_{1} into n_{1} and $m_{4} ; f_{3}$ into n_{3} and m_{2}; and f_{3} into n_{3} and m_{3}. The forces in one axis are n_{1}, n_{2}, and n_{3}; and those in the other m_{1}, m_{2}, and m_{3}. And by the parallelogram of forces it is well known that

$$
n_{\mathrm{B}}=n_{1}+n_{\mathrm{g}} \text { and } m_{3}=m_{1}+m_{\mathrm{g}} . \quad \text { (E). }
$$

Now if we take in the axis $O X$ any point P, and let fall from it
the perpendiculars $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$, on the directions of the forces f_{1}, f_{3}, f_{2}, we obtain the following similar right-angled triangles, namely, OAP and $0 n_{1} f_{1}$ are similar ; OBP and $O n_{3} f_{3}$ \qquad
$O C P$ and $O n_{9} f_{9}$ ———;
$\therefore \frac{\mathrm{O} n_{1}}{\mathrm{Of} f_{1}}=\frac{\mathrm{OA}}{\mathrm{OP}}=\frac{n_{1}}{f_{1}}$ and $n_{1}=\frac{\mathrm{AO}}{\mathrm{OP}} f_{1}$. It is easily seen also that $n_{\mathrm{s}}=\frac{\mathrm{CO}}{\mathrm{OP}} f_{\mathrm{s}} ;$ and $n_{3}=\frac{\mathrm{BO}}{\mathrm{OP}} f_{3}$.

If the values be substituted in (E), we obtain

$$
\mathrm{BO} \times f_{3}=\mathrm{CO} \times f_{2}+\mathrm{AO} \times f_{1}
$$

From the similarity of these triangles, and the remaining equation of (E), we can readily find that

$$
\mathrm{PB} \times f_{3}=\mathrm{PA} \times f_{1}+\mathrm{PC} \times f_{2} .
$$

The equation becomes more compact by putting

$$
\mathrm{OA}, \mathrm{OC}, \mathrm{OB}, \text { respectively equal } s_{1}, s_{3} s_{3} ; \text { and }
$$

$\mathrm{PA}, \mathrm{PC}, \mathrm{PB},-$ - q_{1}, q_{2}, q_{3}.

$$
\text { Then } f_{3} s_{3}=f_{2} s_{2}+f_{1} s_{1} \text { and } f_{3} q_{2}=f_{2} q_{3}+f_{1} q_{1} \text {. }
$$

The same holds good with any number of forces $f_{1}, f_{2}, f_{3}, \& c$., and their resultant f_{n}, that is

$$
\begin{aligned}
& f_{n} s_{n}=f_{1} s_{1}+f_{2} s_{2}+f_{3} s_{3}+\& \mathrm{c} . \\
& \text { and } \\
& f_{n}^{n} q_{n}=f_{1} q_{1}+f_{2} q_{3}+f_{3} q_{3}+\& c .
\end{aligned}
$$

If the point of application 0 , move in a straight line to P, then $\mathrm{OA}=s_{1}$ is called the space of the force f_{1}, and $f_{1} s_{1}$ the work done by the force f_{1}, in moving the body from 0 to P . OB is the space of the resultant, and the product $f_{3} s_{3}$, the work done by it. $f_{3} s_{2}$ is the work done by f_{8} in moving the material point 0 from 0 to P. Hence the work done by the resultant is equal to all the work done by the component forces, as we have shown,

$$
f_{n} s_{n}=f_{1} s_{1}+f_{2} s_{2}+f_{3} s_{3}+\& c .
$$

PRINCIPLES AND PRACTICAL APPLICATIONS OF MECHANICAL POWERS.

Mechanical Powers, or the Elements of Machinery, are certain simple mechanical arrangements whereby weights may be raised or resistances overcome with the exertion of less power or strength than is necessary without them.

They are usually accounted six in number, viz. the lever, the wheel and axle, the pulley, the inclined plane, the wedge, and the screw; but properly two of these comprise the whole, namely, the lever and inclined plane,-the wheel and axle being only a lever of the first kind, and the pulley a lever of the second,-the wedge and the screw being also similarly allied to that of the inclined plane: however, although such seems to be the case in these re-
spects, yet they each require, on account of their various modifications, a peculiar rule of estimation adapted expressly to the different circumstances in which they are individually required to act.

THE LEVER.
Levers, according to mode of application, as the following, are distinguished as being of the first, second, or third kind; and although levers of equallengthsproduce different effects, the general principles of estimation in all are the same; namely, the power is to the
 weight or resistance, as the distance of the one end to the fulcrum is to the distance of the other end to the same point.

In the first kind, the power is to the resistance, as the distance AB is to the distance BC .

In the second, the power is to the resistance, as the distance AB is to that of AC ; and,

In the third, the resistance is to the power, as the distance AB is to that of AC.

Rule, first kind.-Divide the longer by the shorter end of the lever from the fulcrum, and the quotient is the effective force that the power applied is equal to.

Let the handle of a pump equal 65 inches in length, and 10 inches from the shortest end to centre of motion; what is the amount of effective leverage thereby obtained?

$$
65-10=55, \text { and } \frac{55}{10}=5 \frac{1}{2} \text { to } 1
$$

Required the situation of the fulcrum on which to rest a lever of 15 feet, so that $2 \frac{1}{2} \mathrm{cwt}$. placed at one end may equipoise 30 cwt . at the other, the weight of the lever not being taken into account.

$$
\frac{15 \times 2.5}{2.5+30}=1.154 \text { feet from the end on which the } 30 \text { cwrt. is to }
$$ be placed.

It is by the second kind of lever that the greatest effect is obtained from any given amount of power; hence the propriety of the application of this principle to the working of force pumps, and shearing of iron, as by the lever of a punching-press, \&c.

Rule, second kind.-Divide the whole length of lever, or distance from power to fulcrum, by the distance from fulcrum to weight, and the quotient is the proportion of effect that the power is to the weight or resistance to be overcome.

Required the amount of effect or force produced by a power of

50 lbs . on the ram of a Bramah's pump, the length of the lever being 3 feet, and distance from ram to fulcrum $4 \frac{1}{2}$ inches.

3 feet $=36$ inches, and $\frac{36}{4 \cdot 5}=8$, or the power and resistance are to each other as 8 to 1 ; hence $50 \times 8=400 \mathrm{lbs}$. force upon the ram.

The lever on the safety valve of a steam boiler is of the third kind, the action of the steam being the power, and the weight or spring-balance attached the resistance; but in such application the action of the lever's weight must also be taken into account.

THE WHEEL AND PINION, OR CRANE.

The mechanical advantage of the wheel and axle, or crane, is as the velocity of the weight to the velocity of the power; and being only a modification of the first kind of lever, it of course partakes of the same principles.

Rule.-T'o determine the amount of effective power produced from a given power by means of a crane with known peculiarities.Multiply together the diameter of the circle described by the winch, or handle, and the number of revolutions of the pinion to 1 of the wheel ; divide the product by the barrel's diameter in equal terms of dimensions, and the quotient is the effective power to 1 of exertive force.

Let there be a crane the winch of which describes a circle of 30 inches in diameter; the pinion makes 8 revolutions for 1 . of the wheel, and the barrel is 11 inches in diameter; required the effective power in principle, also the weight that 36 lbs. would raise, friction not being taken into account.
$\frac{30 \times 8}{11}=21.8$ to 1 of exertive force; and $21.8 \times 36=784.8 \mathrm{lbs}$.
Rule.-Given any two parts of a crane, to find the third, that shall produce any required proportion of mechanical effect.-Multiply the two given parts together, and divide the product by the required proportion of effect; the quotient is the dimensions of the other parts in equal terms of unity.

Suppose that a crane is required, the ratio of power to effect being as 40 to 1 , and that a wheel and pinion 11 to 1 is unavoidably compelled to be employed, also the throw of each handle to be 16 inches; what must be the barrel's diameter on which the rope or chain must coil?
$16 \times 2=32$ inches diameter described by the handle.
And $\frac{32 \times 11}{40}=8.8$ inches, the barrel's diameter.

the pulley.

The principle of the pulley, or, more practically, the block and tackle, is the distribution of weight on various points of support; the mechanical advantage derived depending entirely upon the
flexibility and tension of the rope, and the number of pulleys or sheives in the lower or rising block: hence, by blocks and tackle of the usual kind, the power is to the weight as the number of cords attached to the lower block; whence the following rules.

Divide the weight to be raised by the number of cords leading to, from, or attached to the lower block; and the quotient is the power required to produce an equilibrium, provided friction did not exist.

Divide the weight to be raised by the power to be applied; the quotient is the number of sheives in, or cords attached to the rising block.

Required the power necessary to raise a weight of 3000 lbs . by a four and five-sheived block and tackle, the four being the movable or rising block.

Necessarily there are nine cords leading to and from the rising block.

$$
\text { Consequently } \frac{3000}{9}=333 \mathrm{lbs} . \text {, the power required. }
$$

I require to raise a weight of 1 ton $18{ }^{\circ} \mathrm{cwt}$., or 4256 lbs ; the amount of my power to effect this object being 500 lbs ., what kind of block and tackle must I of necessity employ ?
$\frac{4256}{500}=8.51$ cords; of necessity there must be 4 sheives or 9 cords in the rising block.

As the effective power of the crane may, by additional wheels and pinions, be increased to any required extent, so may the pulley and tackle be similarly augmented by purchase upon purchase.

the inclined plane.

The inclined plane is properly the second elementary power, and may be defined the lifting of a load by regular instalments. In principle it consists of any right line not coinciding with, but lying in a sloping direction to, that of the horizon; the standard of comparison of which commonly consists in referring the rise to so many parts in a certain length or distance, as 1 in 100, 1 in 200, \&c.,-the first number representing the perpendicular height, and the latter the horizontal length in attaining such height, both numbers being of the same denomination, unless otherwise expressed; but it may be necessary to remark, that the inclination of a plane, the sine of inclination, the height per mile, or the height for any length, the ratio, \&c., are all synonymous terms.

The advantage gained by the inclined plane, when the power acts in a parallel direction to the plane, is as the length to the height or angle of inclination: hence the rule. Divide the weight by the ratio of inclination, and the quotient equal the power that will just support that weight upon the plane. Or, multiply the weight by the height of the plane, and divide by the length,- the quotient is the power.

Required the power or equivalent weight capable of supporting a load of 350 lbs . upon a plane of 1 in 12, or 3 feet in height and 36 feet in length.
$\frac{350}{12}=29 \cdot 16 \mathrm{lbs}$., or $\frac{350 \times 3}{36}=29 \cdot 16 \mathrm{lbs}$. power, as before.
The weight multiplied by the length of the base, and the product divided by the length of the incline, the quotient equal the pressure or downward weight upon the incline.
Table showing the Resistance opposed to the Motion of C'arriages on different Inclinations of Ascending or Descending Planes, whatever part of the insistent weight they are drawn by.

\%	Hunderds.									
		100	200	300	400	500	600	700	800	90
		- 01	. 005	. 00333	. 0025	. 002	. 00167	. 00143	. 00125	- 00111
10	$\cdot 1$	-00909	- 00476	. 00322	. 00244	. 00196	-00164	. 00141	- 00123	. 0011
20	. 05	-00833	-00454	-00312	. 00238	-00192	-00161	-00139	-00122	. 00109
30	. 0333	- 00769	-00435	-00303	-00232	. 00189	. 00159	- 00137	. 0012	. 00107
40	- 025	-00714	-00417	-00294	-00227	-00185	-00156	- 00135	-00119	. 00106
50	. 02	- 00667	. 004	- 00286	-00222	-00182	-00154	-00133	-00118	. 00105
60	. 0166	. 00625	. 00385	-00278	- 00217	. 00178	- 00151	. 00131	- 00116	. 00104
70	- 0143	-00588	. 0037	-0027	-00213	. 00175	. 00149	. 0013	-00115	. 00103
80	. 0125	-00555	-00357	-00263	-00208	. 00172	-00147	. 00128	-00114	. 00102
90	. 0111	-00526	-00345	. 00256	. 00204	. 00169	-00145	. 00126	. 00112	$\cdot 00101$

Although this table has been calculated particularly for carriages on railway inclines, it may with equal propriety be applied to any other incline, the amount of traction on a level being known.

Application of the preceding Table.

What weight will a tractive power of 150 lbs. draw up an incline of 1 in 340 , the resistance on the level being estimated at $\frac{1}{240}$ th part of the insistent weight?
In a line with 40 in the left-hand column and under 200 is $\cdot 00417$ Also in the same line and under 390 is. .00294

$$
\text { Added together }=\overline{00711}
$$

Then $\frac{150}{.00711}=21097$ lbs. weight drawn up the plane.
What weight would a force of 150 lbs . draw down the same plane, the fraction on the level being the same as before?

$$
\begin{aligned}
\text { Friction on the level } & =\cdot 00417 \\
\text { Gravity of the plane } & =\frac{.00294}{} \text { subtract } \\
& =.00123
\end{aligned}
$$

And $\frac{150}{00123}=121915$ lbs. weight drawn down the plane.
Example of incline when velocity is taken into account.-A power of 230 lbs ., at a velocity of 75 feet per minute, is to be employed for moving weights up an inclined plane 12 feet in height and 163
feet in length, the least velocity of the weight to be 8 feet per minute; required the greatest weight that the power is equal to.

$$
\frac{230 \times 75 \times 163}{12 \times 8}=\frac{2811750}{96}=29288 \mathrm{lbs} ., \text { or } 13 \cdot 25 \text { tons. }
$$

Table of Inclined Planes, showing the ascent or descent per yard, and the corresponding ascent or descent per chain, per mile; and also the ratio.

Per yard.		Per chain.	Per mile.	Ratio.	Per yard.		Per chain.	Per mile.	Ratio
In parts	In dec'ls.	Inches.	Feet.	1 inch.	In parts of an in.	$\left\lvert\, \begin{aligned} & \text { In decimals } \\ & \text { of an inch. } \end{aligned}\right.$	Inches.	Feet.	1 inc
$\frac{1}{64}$	$\cdot 0156$	$\cdot 344$	$2 \cdot 29$	2304	${ }^{76}$	$\cdot 4375$	$9 \cdot 625$	$64 \cdot 17$	82
$\frac{1}{48}$	-0208	$\cdot 458$	3.06	1728	$\frac{1}{2}$	$\cdot 5$	11	73.33	72
$\frac{1}{32}$	-0312	$\cdot 687$	4.58	1152	${ }_{16}{ }^{9}$	$\cdot 5625$	12.375	82.5	64
$\frac{1}{24}$	- 0417	$\cdot 917$	$6 \cdot 11$	864	${ }^{1}{ }^{5}$	-5833	12.833	85.56	62
${ }_{1}^{16}$	-0625	1.375	$9 \cdot 17$	576	${ }_{3}$	-6	$13 \cdot 2$	88	60
$\frac{1}{12}$	-0833	1.833	12.22	432	喜	-625	13.75	91.67	58
${ }_{1}^{10}$	$\cdot 1$	$2 \cdot 2$	14.67	360	$\frac{2}{3}$	-6667	14.667	97.78	54
$\frac{1}{8}$	-125	$2 \cdot 75$	$18 \cdot 33$	288	$\frac{11}{16}$	-6875	$15 \cdot 125$	$100 \cdot 83$	52
$\frac{1}{8}$	-1667	$3 \cdot 667$	$24 \cdot 44$	216	${ }^{7} 7$	$\cdot 7$	$15 \cdot 4$	$102 \cdot 67$	51
${ }_{1}{ }^{3}$	-1875	$4 \cdot 125$	$27 \cdot 50$	192	${ }_{3}$	-7.5	16.5	110	48
$\frac{1}{5}$	$\cdot 2$	$4 \cdot 4$	$29 \cdot 33$	180	${ }_{5}^{4}$	-8.	$17 \cdot 6$	$117 \cdot 33$	45
$\frac{1}{4}$	$\cdot 25$	$5 \cdot 5$	$36 \cdot 67$	144	${ }^{\frac{3}{8}}$	-8125	17.875	$119 \cdot 17$	44
	$\cdot 3$	6.6	44	120	1	-8333	18.333	122.22	43
${ }_{5}^{5}$	-3125	$6 \cdot 875$	45.83	115		-875	$19 \cdot 25$	$128 \cdot 33$	41
$1{ }^{\circ}$	-3333	$7 \cdot 333$	$48 \cdot 89$	108	96	$\cdot 9$	$19 \cdot 8$	132	40
$\frac{8}{8}$	-375	$8 \cdot 25$	55	96	$\frac{1}{1}$	-9167	$20 \cdot 167$	134.44	39
${ }^{2}$	$\cdot 4$	$8 \cdot 8$	$58 \cdot 67$	20		. 9375	$20 \cdot 625$	$137 \cdot 5$	38
$\frac{5}{12}$	$\cdot 4167$	$9 \cdot 167$	61-11	86	$1{ }^{16}$	1	22	$146 \cdot 67$	36

the wedge.
The wedge is a double inclined plane; consequently its principles are the same: hence, when two bodies are forced asunder by means of the wedge in a direction parallel to its head,-Multiply the resisting power by half the thickness of the head or back of the wedge, and divide the product by the length of one of its inclined sides; the quotient is the force equal to the resistance.

The breadth of the back or head of a wedge being 3 inches, and its inclined sides each 10 inches, required the power necessary to act upon the wedge so as to separate two substances whose resisting force is equal to 150 lbs .

$$
\frac{150 \times 1.5}{10}=22.5 \mathrm{lbs}
$$

When only one of the bodies is movable, the whole breadth of the wedge is taken for the multiplier.

the screw.

The screw, in principle, is that of an inclined plane wound around a cylinder, which generates a spiral of uniform inclination, each revolution producing a rise or traverse motion equal to the pitch of the screw, or distance between two consecutive threads,--the pitch being the height or angle of inclination, and the circumference
the length of the plane when a lever is not applied; but the lever being a necessary qualification of the screw, the circle which it describes is taken, instead of the screw's circumference, as the length of the plane : hence the mechanical advantage is, as the circumference of the circle described by the lever where the power acts, is to the pitch of the screw, so is the force to the resistance in principle.

Required the effective power obtained by a screw of $\frac{7}{8}$ inch pitch, and moved by a force equal to 50 lbs . at the extremity of a lever 30 inches in length.

$$
\frac{30 \times 2 \times 3 \cdot 1416 \times 50}{\cdot 875}=10760 \mathrm{lbs}
$$

Required the power necessary to overcome a resistance equal to 7000 lbs. by a screw of $1 \frac{1}{4}$ inch pitch, and moved by a lever 25 inches in length.

$$
\frac{7000 \times 1.25}{25 \times 2 \times 3.1416}=55.73 \mathrm{lbs} . \text { power }
$$

In the case of a screw acting on the periphery of a toothed wheel, the power is to the resistance, as the product of the circle's circumference described by the winch or lever, and radius of the wheel, to the product of the screw's pitch, and radius of the axle, or point whence the power is transmitted; but observe, that if the screw consist of more than one helix or thread, the apparent pitch must be increased so many times as there are threads in the screw. Hence, to find what weight a given power will equipoise:

Rule.-Multiply together the radius of the wheel, the length of the lever at which the power acts, the magnitude of the power, and the constant number 6.2832; divide the product by the radius of the axle into the pitch of the screw, and the quotient is the weight that the power is equal to.

What weight will be sustained in equilibrio by a power of 100 lbs. acting at the end of a lever 24 inches in length, the radius of the axle, or point whence the power is transmitted, being 8 inches, the radius of the wheel 14 inches, the screw consisting of a double thread, and the apparent pitch equal $\frac{5}{8}$ of an inch?

$$
\frac{14 \times 24 \times 100 \times 6.2832}{625 \times 2 \times 8}=21111.55 \text { lbs., or } 9.4 \text { tons, the }
$$ power sustained.

If an endless screw be turned by a handle of 20 inches, the threads of the screw being distant half an inch; the screw turns a toothed wheel, the pinion of which turns another wheel, and the pinion of this another wheel, to the barrel of which a weight W is attached; it is required to tind the weight a man will be able to sustain, who acts at the handle with a force of 150 lbs ., the diameters of the wheels being 18 inches, and those of the pinions and barrel 2 inches.

$$
\begin{gathered}
150 \times 20 \times 3 \cdot 1416 \times 2 \times 18^{3}=W \times 2^{3} \times \frac{1}{2} \\
\therefore W=12269 \text { tons. }
\end{gathered}
$$

CONTINUOUS CIRCULAR MOTION.

In mechanics, circular motion is transmitted by means of wheels, drums, or pulleys; and accordingly as the driving and driven are of equal or unequal diameters, so are equal or unequal velocities produced: hence the principle on which the following rules are founded.

Rule.-When time is not taken into account.-Divide the greater diameter, or number of teeth, by the lesser diameter, or number of teeth, and the quotient is the number of revolutions the lesser will make for 1 of the greater.

How many revolutions will a pinion of 20 teeth make for 1 of a wheel with 125 ?

$$
125 \div 20=6 \cdot 25, \text { or } 6 \frac{1}{4} \text { revolutions. }
$$

Intermediate wheels, of whatever diameters, so as to connect communication at any required distance apart, cause no variation of velocity more than otherwise would result were the first and last in immediate contact.

Rule.-To find the number of revolutions of the last, to 1 of the first, in a train of wheels and pinions.-Divide the product of all the teeth in the driving, by the product of all the teeth in the driven, and the quotient equal the ratio of velocity required.

Required the ratio of velocity of the last, to 1 of the first, in the following train of wheels and pinions; viz., pinions driving,-the first of which contains 10 teeth, the second 15, and third 18 ;wheels driven,-first 15 teeth, second 25 , and third 32.
$\frac{10 \times 15 \times 18}{15 \times 25 \times 32}=\cdot 225$ of a revolution the wheel will make to 1 of the pinion.

A wheel of 42 teeth giving motion to one of 12 , on which shaft is a pulley of 21 inches diameter, driving one of 6 ; required the number of revolutions of the last pulley to 1 of the first wheel.

$$
\frac{42 \times 21}{12 \times 6}=12 \cdot 25, \text { or } 12 \frac{1}{4} \text { revolutions. }
$$

Where increase or decrease of velocity is required to be communicated by wheel-work, it has been demonstrated that the number of teeth on each pinion should not be less than 1 to 6 of its wheel, unless there be some other important reason for a higher ratio.

Rule.-When time must be regarded.-Multiply the diameter, or number of teeth in the driver, by its velocity in any given time, and divide the product by the required velocity of the driven; the quotient equal the number of teeth, or diameter of the driven, to produce the velocity required.

If a wheel containing 84 teeth makes 20 revolutions per minute, how many must another contain to work in contact, and make 60 revolutions in the same time?

$$
\frac{84 \times 20}{60}=28 \text { teeth. }
$$

From a shaft making 45 revolutions per minute, and with a pinion 9 inches diameter at the pitch line, I wish to transmit motion at 15 revolutions per minute; what at the pitch line must be the diameter of the wheel?

$$
\frac{45 \times 9}{15}=27 \text { inches } .
$$

Required the diameter of a pulley to make 16 revolutions in the same time as one of 24 inches making 36 .

$$
\frac{24 \times 36}{16}=54 \cdot \text { inches } .
$$

Rule.-The distance between the centres and velocities of two wheels being given, to find their proper diameters.-Divide the greatest velocity by the least; the quotient is the ratio of diameter the wheels must bear to each other. Hence, divide the distance between the centres by the ratio plus 1 ; the quotient equal the radius of the smaller wheel; and subtract the radius thus obtained from the distance between the centres; the remainder equal the radius of the other.

The distance of two shafts from centre to centre is 50 inches, and the velocity of the one 25 revolutions per minute, the other is to make 80 in the same time; the proper diameters of the wheels at the pitch lines are required.
$80 \div 25=3 \cdot 2$, ratio of velocity, and $\frac{50}{3 \cdot 2+1}=11 \cdot 9$, the radius of the smaller wheel ; then $50-11 \cdot 9=38 \cdot 1$, radius of larger ; their diameters are $11.9 \times 2=23.8$, and $38.1 \times 2=76.2$ inches.

To obtain or diminish an accumulated velocity by means of wheels and pinions, or wheels, pinions, and pulleys, it is necessary that a proportional ratio of velocity should exist, and which is simply thus attained :-Multiply the given and required velocities together, and the square root of the product is the mean or proportionate velocity.

Let the given velocity of a wheel containing 54 teeth equal 16 revolutions per minute, and the given diameter of an intermediate pulley equal 25 inches, to obtain a velocity of 81 revolutions in a machine; required the number of teeth in the intermediate wheel, and diameter of the last pulley.

$$
\sqrt{81 \times 16}=36 \text { mean velocity }
$$

$$
\frac{54 \times 16}{36}=24 \text { teeth, and } \frac{25 \times 36}{81}=11 \cdot 1 \text { inches, diameter of }
$$ pulley.

To determine the proportion of wheels for screw cutting by a lathe.-In a lathe properly adapted, screws to any degree of pitch, or number of threads in a given length, may be cut by means of a
leading screw of any given pitch, accompanied with change wheels and pinions; course pitches being effected generally by means of one wheel and one pinion with a carrier, or intermediate wheel, which cause no variation or change of motion to take place: hence the following

Rule.-Divide the number of threads in a given length of the screw which is to be cut, by the number of threads in the same length of the leading screw attached to the lathe; and the quotient is the ratio that the wheel on the end of the screw must bear to that on the end of the lathe spindle.

Let it be required to cut a screw with 5 threads in an inch, the leading screw being of $\frac{1}{2}$ inch pitch, or containing 2 threads in an inch; what must be the ratio of wheels applied ?

$$
5 \div 2=2 \cdot 5 \text {, the ratio they must bear to each other. }
$$

Then suppose a pinion of 40 teeth be fixed upon for the spindle, -

$$
40 \times 2.5=100 \text { teeth for the wheel on the end of the screw. }
$$

But screws of a greater degree of fineness than about 8 threads in an inch are more conveniently cut by an additional wheel and pinion, because of the proper degree of velocity being more effectively attained; and these, on account of revolving upon a stud, are commonly designated the stud-wheels, or stud-wheel and pinion; but the mode of calculation and ratio of screw are the same as in the preceding rule;-hence, all that is further necessary is to fix upon any 3 wheels at pleasure, as those for the spindle and stud-wheels,-then multiply the number of teeth in the spindle-wheel by the ratio of the screw, and by the number of teeth in that wheel or pinion which is in contact with the wheel on the end of the screw; divide the product by the stud-wheel in contact with the spindlewheel, and the quotient is the number of teeth required in the wheel on the end of the leading screw.

Suppose a screw is required to be cut containing 25 threads in an inch, the leading screw as before having 2 threads in an inch, and that a wheel of 60 teeth is fixed upon for the end of the spindle, 20 for the pinion in contact with the screw-wheel, and 100 for that in contact with the wheel on the end of the spindle ;-required the number of teeth in the wheel for the end of the leading screw.

$$
25 \div 2=12 \cdot 5, \text { and } \frac{60 \times 12.5 \times 20}{100}=150 \text { teeth. }
$$

Or, suppose the spindle and screw-wheels to be those fixed upon, also any one of the stud-wheels, to find the number of teeth in the other.

$$
\frac{60 \times 12.5}{150 \times 100}=20 \text { teeth }, \text { or } \frac{60 \times 12.5 \times 20}{150}=100 \text { teeth. }
$$

Table of Change Wheels for Screw Cutting, the leading screw being of $\frac{1}{2}$ inch pitch, or containing two threads in an inch.

	Number of teeth in			Number of teeth in					Number of teeth in			
1	80	40	$8 \frac{1}{4}$	40	55	20	60	19	50	95	20	100
$1 \frac{1}{4}$	80	50	$8 \frac{1}{2}$	90	85	20	90	191 $\frac{1}{2}$	80	120	20	130
$1 \frac{1}{2}$	80	60	$8 \frac{3}{4}$	$60 \cdot$	70	20	75	20	60	100	20	120
123	80	70	$9 \frac{1}{2}$	90	90	20	95	$20 \frac{1}{4}$	40	90	20	90
2	80	90	$9 \frac{3}{4}$	40	60	20	65	21	80	120	20	140
$2 \frac{1}{4}$	80	90	-10	60	75	20	80	22	60	110	20	120
$2 \frac{1}{2}$	80	100	101 ${ }^{1}$	50	70	20	75	221 ${ }^{1}$	80	120	20	150
$2 \frac{3}{4}$	80	110	11	60	55	20	120	$22 \frac{3}{4}$	80	130	20	140
3	80	120	12	90	90	20	120	$23 \frac{3}{4}$	40	95	20	100
$3 \frac{1}{4}$	80	130	123	60	85	20	90	24	65	120	20	130
$3 \frac{1}{2}$	80	140	13	90	90	20	130	25	60	100	20	150
$3 \frac{3}{4}$	80	150	$13 \frac{1}{2}$	60	90	20	90	$25 \frac{1}{2}$	30	85	20	90
4	40	80	$13 \frac{3}{4}$	80	100	20	110	26	70	130	20	140
$4 \frac{1}{4}$	40	85	14	90	90	20	140	27	40	90	20	120
$4 \frac{1}{2}$	40	90	$14 \frac{1}{4}$	60	90	20	95	$27 \frac{1}{2}$	40	100	20	110
43	40	95	15	90	90	20	150	28	75	140	20	150
5	40	100	16	60	80	20	120	$28 \frac{1}{2}$	30	90	20	95
$5 \frac{1}{2}$	40	110	$16 \frac{1}{4}$	80	100	20	130	30	70	140	20	150
6	40	120	161	80	110	20	120	32	30	80	20	120
$6 \frac{1}{2}$	40	130	17	45	85	20	90	33	40	110	20	120
7	40	140	$17 \frac{1}{2}$	80	100	20	140	34	30	85	20	120
$7 \frac{1}{2}$	40	150	18	40	60	20	120	35	60	140	20	150
8	30	120	$18 \frac{3}{4}$	80	100	20	150	36	30	90	20	120

Table by which to determine the Number of Teeth, or Pitch of Small Wheels.

Diametral pitch.	Circular piteh.	Diametral pitch.	Circular pitch.
3	1.047	9	.349
4	.785	10	.314
5	.628	12	.262
6	.524	14	.224
7	.449	16	.196
8	.393	20	.157

Required the number of teeth that a wheel of 16 inches diameter will contain of a 10 pitch.
$16 \times 10=160$ teeth, and the circular pitch $=-314$ inch.
What must be the diameter of a wheel for a 9 pitch of 126 teeth?

$$
\frac{126}{9}=14 \text { inches diameter, circular pitch } 349 \text { inch. }
$$

The pitch is reckoned on the diameter of the wheel instead of the circumference, and designated wheels of 8 pitch, 12 pitch, \&c.

Table of the Diameters of Wheels at their pitch circle, to contain a required number of teeth at a given pitch.

热淢	pitch of the teeth in inches.													
	ter at the pitce circle in feet and inches.													
$72110 \frac{7}{81}$														
$111{ }_{4}^{1}$														
		221									4			
		$2{ }^{1}$	273	$210 \frac{1}{2}$				$3111 \frac{1}{8}$						
	221	2 53												
			211							$411 \frac{1}{2}$		510	65	

Table of the Strength of the Teeth of Cast Iron Wheels at a given velocity.

Pitch of teethin inches.	Thickness of teeth in inches.	Breadth of teeth in inches.	Strength of teeth in horse power, at			
			3 feet per second.	4 feet per second.	6 feet per second.	8 feet per seeond.
3.99	1.9	$7 \cdot 6$	$20 \cdot 57$	27.43	$41 \cdot 14$	54.85
$3 \cdot 78$	1.8	$7 \cdot 2$	$17 \cdot 49$	$23 \cdot 32$	34.98	$46 \cdot 64$
$3 \cdot 57$	1.7	$6 \cdot 8$	14.73	19.65	$29 \cdot 46$	$39 \cdot 28$
$3 \cdot 36$	$1 \cdot 6$	$6 \cdot 4$	$12 \cdot 28$	$16 \cdot 38$	$24 \cdot 56$	$32 \cdot 74$
$3 \cdot 15$	1.5	6	$10 \cdot 12$	13.50	$20 \cdot 24$	26.98
$2 \cdot 94$	$1 \cdot 4$	$5 \cdot 6$	$8 \cdot 22$	$10 \cdot 97$	$16 \cdot 44$	21.92
$2 \cdot 73$	$1 \cdot 3$	$5 \cdot 2$	$6 \cdot 58$	$8 \cdot 78$	$13 \cdot 16$	$17 \cdot 54$
$2 \cdot 52$	1.2	$4 \cdot 8$	$5 \cdot 18$	6.91	$10 \cdot 36$	13.81
$2 \cdot 31$	$1 \cdot 1$	$4 \cdot 4$	$3 \cdot 99$	$5 \cdot 32$	$7 \cdot 98$	$10 \cdot 64$
$2 \cdot 1$	2.0	4	$3 \cdot 00$	+ 4.00	6.00	8.00
1.89		$3 \cdot 6$	$2 \cdot 18$	- 2.91	$4 \cdot 36$	$5 \cdot 81$
$1 \cdot 68$. 8	$3 \cdot 2$	$1 \cdot 53$	$2 \cdot 04$	$3 \cdot 06$	$3 \cdot 08$
$1 \cdot 47$	1-7	$2 \cdot 8$	1.027	$1 \cdot 37$	2.04	$2 \cdot 72$
1.26	:-6	$2 \cdot 4$	$\cdot 64$. 86	1.38	1.84
1.05	$\cdot 5$	2	$\cdot 375$	-50	. 75	1.00

ADDITIONAL EXAMPLES ON THE VELOCITY OF WHEELS, DRUMS, PULLEYS, ETC.

If a wheel that contains 75 teeth makes 16 revolutions per minute, required the number of teeth in another to work in it, and make 24 revolutions in the same time.

$$
\frac{75 \times 16}{24}=50 \text { teeth. }
$$

A wheel, 64 inches diameter, and making 42 revolutions per minute, is to give motion to a shaft at the rate of 77 revolutions in the same time: required the diameter of a wheel suitable for that purpose.

$$
\frac{64 \times 42}{77}=34 \cdot 9 \text { inches }
$$

Required the number of revolutions per minute made by a wheel or pulley 20 inches!diameter, when driven by another of 4 feet diameter, and making 46 revolutions per minute.

$$
\frac{48 \times 46}{20}=110 \cdot 4 \text { revolutions }
$$

A shaft, at the rate of 22 revolutions per minute, is to give motion, by a pair of wheels, to another shaft at the rate of $15 \frac{1}{2}$; the distance of the shafts from centre to centre is $45 \frac{1}{2}$ inches; the diameters of the wheels at the pitch lines are required.

$$
\begin{aligned}
\frac{45.5 \times 15.5}{22+15.5} & =18.81 \text { radius of the driving wheel. } \\
\text { And } \frac{45.5 \times 22}{22+15.5} & =26.69 \text { radius of the driven wheel. }
\end{aligned}
$$

Suppose a drum to make 20 revolutions per minute, required the diameter of another to make 58 revolutions in the same time.
$58 \div 20=2 \cdot 9$, that is, their diameters must be as $2 \cdot 9$ to 1 ; thus, if the one making 20 revolutions be called 30 inches, the other will be $30 \div 2.9=10 \cdot 345$ inches diameter.

Required the diameter of a pulley, to make $12 \frac{1}{2}$ revolutions in the same time as one of 32 inches making 26 .

$$
\frac{32 \times 26}{12.5}=66.56 \text { inches diameter. }
$$

A shaft, at the rate of 16 revolutions per minute, is to give motion to a piece of machinery at the rate of 81 revolutions in the same time; the motion is to be communicated by means of two wheels and two pulleys with an intermediate shaft; the driving wheel contains 54 feet, and the driving pulley is 25 inches diameter; required the number of teeth in the other wheel, and the diameter of the other pulley.
$\sqrt{81 \times 16}=36$, the mean velocity between 16 and 81 ; then, 16×54
$\frac{36}{36}=24$ teeth; and $\frac{81}{81}=11 \cdot 11$ inches, diameter of pulley.

Suppose in the last example the revolutions of one of the wheels to be given, the number of teeth in both, and likewise the diameter of each pulley, to find the revolutions of the last pulley.

$$
\begin{aligned}
& \frac{16 \times 54}{24}=36, \text { velocity of the intermediate shaft } \\
& \text { and } \frac{36 \times 25}{11 \cdot 11}=81, \text { the velocity of the machine. }
\end{aligned}
$$

Table for finding the radius of a wheel when the pitch is given, or the pitch of a wheel when the radius is given, that shall contain from 10 to 150 teeth, and any pitch required.

Number of Teeth.	Radius.						
10	$1 \cdot 618$	46	$7 \cdot 327$	81	$12 \cdot 895$	116	$18 \cdot 464$
11	$1 \cdot 774$	47	$7 \cdot 486$	82	$13 \cdot 054$	117	$18 \cdot 623$
12	$1 \cdot 932$	48	$7 \cdot 645$	83	$13 \cdot 213$	118	$18 \cdot 782$
13	$2 \cdot 089$	49	$7 \cdot 804$	84	$13 \cdot 370$	119	$18 \cdot 941$
14	$2 \cdot 247$	50	$7 \cdot 963$	85	$13 \cdot 531$	120	$19 \cdot 101$
15	$2 \cdot 405$	51	$8 \cdot 122$	86	$13 \cdot 690$	121	$19 \cdot 260$
16	$2 \cdot 563$	52	$8 \cdot 281$	87	$13 \cdot 849$	122	$19 \cdot 419$
17	$2 \cdot 721$	53	$8 \cdot 440$	88	$14 \cdot 008$	123	$19 \cdot 578$
18	$2 \cdot 879$	54	$8 \cdot 599$	89	$14 \cdot 168$	124	$19 \cdot 737$
19	$3 \cdot 038$	55	$8 \cdot 758$	90	$14 \cdot 327$	125	$19 \cdot 896$
20	$3 \cdot 196$	56	$8 \cdot 917$	91	$14 \cdot 486$	126	$20 \cdot 055$
21	$3 \cdot 355$	57	$9 \cdot 076$	92	$14 \cdot 645$	127	$20 \cdot 214$
22	$3 \cdot 513$	58	$9 \cdot 235$	93	$14 \cdot 804$	128	$20 \cdot 374$
23	$3 \cdot 672$	59	$9 \cdot 394$	94	$14 \cdot 963$	129	$20 \cdot 533$
24	$3 \cdot 830$	60	$9 \cdot 553$	95	$15 \cdot 122$	130	$20 \cdot 692$
25	$3 \cdot 989$	61	$9 \cdot 712$	96	$15 \cdot 281$	131	$20 \cdot 851$
26	$4 \cdot 148$	62	$9 \cdot 872$	97	$15 \cdot 440$	132	$21 \cdot 010$
27	$4 \cdot 307$	63	$10 \cdot 031$	98	$15 \cdot 600$	133	$21 \cdot 169$
28	$4 \cdot 465$	64	$10 \cdot 190$	99	$15 \cdot 759$	134	$21 \cdot 328$
29	$4 \cdot 624$	65	$10 \cdot 349$	100	$15 \cdot 918$	135	$21 \cdot 488$
30	$4 \cdot 788$	66	$10 \cdot 508$	101	$16 \cdot 077$	136	$21 \cdot 647$
31	$4 \cdot 942$	67	$10 \cdot 667$	102	$16 \cdot 236$	137	$21 \cdot 806$
32	$5 \cdot 101$	68	$10 \cdot 826$	103	$16 \cdot 395$	138	$21 \cdot 965$
33	$5 \cdot 260$	69	$10 \cdot 985$	104	$16 \cdot 554$	139	$22 \cdot 124$
34	$5 \cdot 419$	70	$11 \cdot 144$	105	$16 \cdot 713$	140	$22 \cdot 283$
35	$5 \cdot 578$	71	$11 \cdot 303$	106	$16 \cdot 873$	141	$22 \cdot 442$
36	$5 \cdot 737$	72	$11 \cdot 463$	107	$17 \cdot 032$	142	$22 \cdot 602$
37	$5 \cdot 896$	73	$11 \cdot 622$	108	$17 \cdot 191$	143	$22 \cdot 761$
38	$6 \cdot 055$	74	$11 \cdot 781$	109	$17 \cdot 350$	144	$22 \cdot 920$
39	$6 \cdot 214$	75	$11 \cdot 940$	110	$17 \cdot 509$	145	$23 \cdot 079$
40	$6 \cdot 373$	76	$12 \cdot 099$	111	$17 \cdot 668$	146	$23 \cdot 238$
41	$6 \cdot 532$	77	$12 \cdot 258$	112	$17 \cdot 827$	147	$23 \cdot 397$
42	$6 \cdot 691$	78	$12 \cdot 417$	113	$17 \cdot 987$	148	$23 \cdot 556$
43	$6 \cdot 850$	79	$12 \cdot 576$	114	$18 \cdot 146$	149	$23 \cdot 716$
44	$7 \cdot 009$	80	$12 \cdot 735$	115	$18 \cdot 305$	150	$23 \cdot 875$
45	$7 \cdot 168$						

Rule.-Multiply the radius in the table by the pitch given, and the product will be the radius of the wheel required.

Or, divide the radius of the wheel by the radius in the table, and the quotient will be the pitch of the wheel required.

Required the radius of a wheel to contain 64 teeth, of 3 inch pitch.

$$
10 \cdot 19 \times 3 \xlongequal{=} 30 \cdot 57 \text { inches }
$$

What is the pitch of a wheel to contain 80 teeth, when the radius is $25 \cdot 47$ inches?

$$
25 \cdot 47 \div 12.735=2 \text { inch pitch }
$$

Or. set off upon a straight line $A B$ seven times the pitch $A C$ given; divide that, or another exactly the same length, into eleven equal parts; call each of those divisions four, or each of those divisions will be equal to four teeth upon the radius. If a circle be made with any number (20) of these equal parts as radius, AC the pitch will go that number (20) of times round the circle.

Were it required to find the diameter of a wheel to contain 17 teeth, the construction would be as follows:-

Thus, 4 divisions and $\frac{1}{4}$ of another equal the radius of the wheel, that is $a_{1} b_{1}=a b$, and $\mathrm{A}_{1} \mathrm{C}_{1}=\mathrm{AC}$.

Regular approved proportions for wheels with flat arms in the middle of the ring, and ribs or feathers on each side. -The length of the teeth $=\frac{6}{9}$ the pitch, besides clearance, or $\frac{5}{7}$ the pitch, clearance included.

Breadth of the arms at the points $=2$ teeth and $\frac{1}{4}$ the pitch, getting broader towards the centre of the wheel in the proportion of $\frac{1}{2}$ inch to every foot in length.

Thickness of the ribs, or feathers, $\frac{1}{4}$ the pitch.
Thickness of metal round the eye, or centre, $\frac{7}{9}$ the pitch.
Wheels made with plain arms, the teeth are in the same proportion as above; the ring and the arms are each equal to one cog or tooth in thickness, and the metal round the eye same as above, in feathered wheels.

These proportions differ, though slightly, in different works and in different localities; but they are the most commonly employed, and are besides the most consistent with good and accurate workmanship. For the sake of more easy reference, we collect them into a ${ }^{P}$ table, which the annexed diagram will serve fully to explain. They stand thus:-

$a b=$ Pitch of teeth $=1$ pitch.
$m n=$ Depth to pitch line, $\mathrm{PP},=\frac{3}{10}-$
$n s+n m=$ Working depth of tooth, $=\frac{6}{10}-$
$\mathrm{C} b-n s=$ Bottom clearance,
$f h=$ Whole depth to root,
$p q=$ Thickness of tooth, $\quad=\frac{5}{10}-$.
$r p=$ Width of space, $\quad=\frac{6}{11}$-.
The use of the following table is very evident, and the manner of applying it may be rendered still more obvious by the following examples:-

$$
\pi=3 \cdot 1416
$$

1. Given a wheel of 88 teeth, $2 \frac{1}{2}$ inch pitch, to find the diameter of the pitch circle. Here the tabular number in the second column answering to the given pitch is 7958 , which multiplied by 88 gives 70.03 for the diameter required.
2. Given a wheel of 5 feet (60 inches) diameter, $2 \frac{3}{4}$ inch pitch, to find the number of teeth. Here the factor in the third column
corresponding to the given pitch is $1 \cdot 1333$, which multiplied by 60 gives 68 for the number of teeth.

It may, however, so happen that the answer found in this manner contains a fraction-which being inadmissible by the nature of the question, it becomes necessary to alter slightly the diameter of the pitch circle. This is readily accomplished by taking the nearest whole number to the answer found, and finding the modified diameter by means of the second column. The following case will fully explain what is meant:
3. Given a wheel 33 inches diameter, $1 \frac{3}{4}$ inch pitch, to find the number of teeth. The corresponding factor is $1 \cdot 7952$, which multiplied by 33 gives $59 \cdot 242$ for the number of teeth, that is, $59 \frac{1}{4}$ teeth nearly. Now, 59 would here be the nearest whole number; but as a wheel of 60 teeth may be preferred for convenience of calculation of speeds, we may adopt that number and find the diameter corresponding. The factor in the second column answering to $1 \frac{3}{4}$ pitch is $\cdot 557$, and this multiplied by 60 gives $33 \cdot 4$ inches as the diameter which the

$\left\lvert\, \begin{gathered} \text { Pitch in } \\ \text { inches and } \\ \text { parts of an } \\ \text { inch. } \end{gathered}\right.$		
Values of P	Values of $\frac{\mathrm{P}}{\pi}$	Values of $\frac{\pi}{\frac{\pi}{1}}$
6	1.9095	. 5236
5	$1 \cdot 5915$	-6283
$4 \frac{1}{2}$	$1 \cdot 4270$	$\cdot 6981$
4	1.2732	$\cdot 7854$
$-3 \frac{1}{2}$	$1 \cdot 1141$	-8976
3	$\cdot 9547$	$1 \cdot 0472$
23	-8754	1-1333
$2 \frac{1}{2}$	-7958	$1 \cdot 2566$
21	$\cdot 7135$	$1 \cdot 3963$
2	-6366	$1 \cdot 5708$
$1 \frac{7}{8}$	-5937	$1 \cdot 6755$
$1 \frac{3}{4}$	-5570	$1 \cdot 7952$
15	-5141	1.9264
$1 \frac{1}{2}$	$\cdot 4774$	2.0944
138	$\cdot 4377$	$2 \cdot 2848$
$1{ }^{1}$	-3979	2.5132
$1 \frac{1}{8}$	$\cdot 3568$	$2 \cdot 7926$
1	-3183	$3 \cdot 1416$
$\frac{7}{8}$	-2785	3.5904
$\frac{3}{4}$	-2387	4-1888
$\frac{5}{8}$	-1989	$5 \cdot 0266$
$\frac{1}{2}$	-1592	$6 \cdot 2832$
$\frac{3}{8}$	-1194	$8 \cdot 3776$
1	. 0796	12.5664

Rule.--To find the power that a cast iron wheel is capable of transmitting at any given velocity.-Multiply the breadth of the teeth, or face of the wheel, in inches, by the square of the thickness of one tooth, and divide the product by the length of the teeth, the quotient is the strength in horse power at a velocity of 136 feet per minute.

Required the power that a wheel of the following dimensions ought to transmit with safety, namely,

> Breadth of teeth............... $7 \frac{1}{2}$ inches,
> Thickness................... 1.4
> And length................
> $1 \cdot 4^{2}=1.96$, and $\frac{7 \cdot 5 \times 1.96}{2}=7 \cdot 35$ horse power.

The strength at any other velocity is found by multiplying the power so obtained by any other required velocity, and by $\cdot 0044$, the quotient is the power at that velocity.

Suppose the wheel as above, at a velocity of 320 feet per minute. $7.35 \times 320 \times \cdot 0044=10.3488$ horse power.

ON THE MAXIMUM VELOCITY AND POWER OF WATER WHEELS.

OF UNDERSHOT WHEELS.

The term "undershot" is applied to a wheel when the water strikes at, or below, the centre; and the greatest effect is produced when the periphery of the wheels moves with a velocity of 57 that of the water; hence, to find the velocity of the water, multiply the square root or the perpendicular height of the fall in feet by 8 , and the product is the velocity in feet per second.

Required the maximum velocity of an undershot wheel, when propelled by a fall of water 6 feet in height.

$$
\sqrt{ } 6=2.45 \times 8=19.6 \text { feet, velocity of water. }
$$

And $19.6 \times \cdot 57=11 \cdot 17$ feet per second for the wheel.

OF BREAST AND OVERSHOT WHEELS.

Wheels that have the water applied between the centre and the vertex are styled breast wheels, and overshot when the water is brought over the wheel and laid on the opposite side; however, in either case the maximum velocity is $\frac{2}{3}$ that of the water; hence, to find the head of water proper for a wheel at any velocity, say:

As the square of 16.083 , or 258.67 , is to 4 , so is the square of the velocity of the wheel in feet per second to the head of water required. By head is understood the distance between the aperture of the sluice and where the water strikes upon the wheel.

Required the head of water necessary for a wheel of 24 feet diameter, moving with a velocity of 5 feet per second.

$$
\frac{5 \times 3}{2}=7.5 \text { feet, velocity of the water. }
$$

And $258 \cdot 67: 4:: 7 \cdot 5^{2}: 87$ feet, head of water required.
But one-tenth of a foot of head must be added for every; foot of increase in the diameter of the wheel, from 15 to 20 feet, and $\cdot 05$ more for every foot of increase from 20 to 30 feet, commencing with five-tenths for a 15 feet wheel.

This additional head is intended to compensate for the friction of water in the aperture of the sluice to keep the velocity as 3 to 2 of the wheel ; thus, in place of 87 feet head for a 24 feet wheel, it will be $87+1 \cdot 2=2 \cdot 07$ feet head of water.

If the water flow from under the sluice, multiply the square root of the depth in feet by $5 \cdot 4$, and by the area of the orifice also in feet, and the product is the quantity discharged in cubic feet per second.

Again, if the water flow over the sluice, multiply the square root of the depth in feet by $5 \cdot 4$, and $\frac{2}{3}$ of the product multiplied
by the length and depth, also in feet, gives the number of cubic feet discharged per second nearly.

Requised the number of cubic feet per second that will issue from the orifice of a sluice 5 feet long, 9 inches wide, and 4 feet from the surface of the water.

$$
\begin{aligned}
& \sqrt{ } 4=2 \times 5 \cdot 4=10 \cdot 8 \text { feet velocity. } \\
& \text { And } 5 \times \cdot 75 \times 10.8=40.5 \text { cubic feet per second. }
\end{aligned}
$$

What quantity of water per second will be expended over a wear, dam, or sluice, whose length is 10 feet, and depth 6 inches?

$$
\sqrt{ } \cdot 5=\cdot 2236 \times 5 \cdot 4=\frac{1 \cdot 20744 \times 2}{3}=\cdot 80496 \text { feet velocity }
$$

Then $10 \times \cdot 5=5$ feet, and $80496 \times 5=4 \cdot 0248$ cubic feet per second nearly.

In estimating the power of water wheels, half the head must be added to the whole fall, because 1 foot of fall is equal to 2 feet of head; call this the effective perpendicular descent; multiply the weight of the water per second by the effective perpendicular descent and by 60 ; divide the product by 33,000 , and the quotient is the effect expressed in horse power.

Given 16 cubic feet of water per second, to be applied to an undershot wheel, the head being 12 feet; required the power produced. $12 \div 2=6$ and $\frac{6 \times 16 \times 62.5 \times 60}{33000}=10.9$ horse power nearly.

Given 16 cubic feet of water per second, to be applied to a high breast or an overshot wheel, with 2 feet head and 10 feet fall; required the power.

$$
2 \div 2=1 \text { and } \frac{\overline{1+10} \times 16 \times 62.5 \times 60}{33000}=20 \text { horse power. }
$$

Only about two-thirds of the above results can be taken as real communicative power to machinery.

> of the circle of gyration in water wheels.

The centre or circle of gyration is that point in a revolving body into which, if the whole quantity of matter were collected, the same moving force would generate the same angular velocity, which renders it of the utmost importance in the erection of water wheels, and the motion ought always to be communicated from that point when it is possible.

Rule.-To find the circle of gyration.-Add into one sum twice the weight of the shrouding, buckets, \&c., multiplied by the square of the radius, $\frac{2}{3}$ of the weight of the arms, multiplied by the square of the radius, and the weight of the water multiplied by the square of the radius also; divide the sum by twice the weight of the shrouding, arms, \&c., added to the weight of the water, and the square root of the quotient is the distance of the circle of gyration from the centre of suspension nearly.

Required the distance of the centre of gyration from the centre of suspension in a water wheel 22 feet diameter, shrouding, buckets, $\& c .=18$ tons, arms $=12$ tons, and water $=10$ tons.

$$
\begin{aligned}
22 \div 2 & =11 \text { and } 11^{2}=121 \\
\text { Then, } 18 \times 2 & =36 \times 121=4356 \\
\frac{2}{3} \text { of } 12 & =8 \times 121=968 \\
\text { water } & =10 \times 121=\underline{1210}
\end{aligned}
$$

And $\overline{18+12} \times 2=60+10=70$; hence, $\sqrt{ } \frac{6534}{70}=9.6$ feet from the centre of suspension nearly.

Table of Angles for Windmill Sails.

Number.	Angle with the Plane of Motion.	
1	18°	24°
2	19	21
3	18	18
4	16	14
5	$12 \frac{1}{2}$	9
6	7°	3 extremity.

The radius is supposed to be divided into six equal parts, and $\frac{1}{6}$ from the centre is called 1, the extremity being denoted by 6.

The first column contains the angles according to an old custom; but experience has taught us that the angles in the second column are preferable.

THE VELOCITY OF THRESHING MACHINES, MILLSTONES, BORING IRON, ETC.

The drum or beaters of a threshing machine ought to move with a velocity of about 3000 feet per minute; hence, divide 11460 by the diameter of the drum in inches; or 955 by the diameter of the drum in feet; and the quotient is the number of revolutions required per minute. And the feeding rollers must make half the revolutions of the drum, when their diameters are about $3 \frac{1}{2}$ inches.

If the machine is driven by horses, their velocity ought to be from $2 \frac{1}{2}$ to 3 times round a 24 feet ring per minute.

Divide 500 by the diameter of a millstone, in feet, or 6000 by the diameter in inches, and the quotient is the number of revolutions required per minute.

In boring cast iron the cutters ought to have a velocity of about 108 inches per minute, or divide 36 by the diameter in inches, the quotient is the number of revolutions of the boring head per minute. And divide 100 by the diameter in inches, the quotient is the number of revolutions per minute, for turning wrought iron in general, and about half that velocity for cast iron.

OF PUMPS AND PUMPING ENGINES.

Pumps are chiefly designated by the names of lifting and force pumps; lifting pumps are applied to wells, \&c., where the height of the bucket, from the surface of the water, must not exceed 33 feet; this being nearly equal to the pressure of the atmosphere, or the height to which water would be forced up into a vacuum by the pressure of the atmosphere. Force pumps are applicable on all other occasions, as raising water to any required height, supplying boilers against the force of the steam, hydrostatic presses, \&c.

The power required to raise water to any height is as the weight and velocity of the water with an addition of about $\frac{1}{5}$ of the whole power for friction; hence the

Rule.-Multiply the perpendicular height of the water, in feet, by the velocity, also in feet, and by the square of the pump's diameter in inches, and again by 341 ; (this being the weight of a column of water 1 inch diameter, and 12 inches high, in lbs. avoirdupois;) divide the product by 33,000 , and $\frac{1}{5}$ of the quotient added to the whole quotient will be the number of horse power required.

Required the power necessary to overcome the resistance and friction of a column of water 4 inches diameter, 60 feet high, and flowing with a velocity of 130 feet per minute.
$\frac{60 \times 130 \times 4^{2} \times \cdot 341}{33000}=\frac{1 \cdot 3}{5}=\cdot 26+1 \cdot 3=156$ horse power nearly.
Hot liquor pumps, or pumps to be employed in raising any fluid where steam is generated, require to be placed in the fluid, or as low as the bottom of it, on account of the steam filling the pipes, and acting as a counterpoise to the atmosphere; and the diameter of the pipes to and from a pump ought not to be less than $\frac{2}{3}$ of the pump's diameter.

Rule.-The diameter of a pump and velocity of the water given, to find the quantity discharged in gallons, or cubic feet, in any given time.-Multiply the velocity of the water, in feet per minute, by the square of the pump's diameter in inches, and by 041 for gallons, or $\cdot 0005454$ for cubic feet, and the product will be the number of gallons, or cubic feet, discharged in the given time nearly.

What is the number of gallons of water discharged per hour by a pump 4 inches diameter, the water flowing at the rate of 130 feet per minute?

$$
130 \times 60=7800 \text { feet per hour }
$$

And, $7800 \times 4^{2} \times \cdot 041=5116.8$ gallons.
Rule 1.-The length of stroke and number of strokes given, to find the diameter of a pump, and number of horse power that will discharge a given quantity of water in a given time.-Multiply the
number of cubic feet by 2201, and divide the product by the velocity of the water, in inches, and the square root of the quotient will be the pump's diameter, in inches.
2. Multiply the number of cubic feet by 62.5 , and by the perpendicular height of the water in feet, divide the product by 33,000 , then will $\frac{1}{5}$ of the quotient, added to the whole quotient, be the number of horse power required.

Required the diameter of a pump, and number of horse power, capable of filling a cistern 20 feet long, 12 feet wide, and $6 \frac{1}{2}$ feet deep, in 45 minutes, whose perpendicular height is 53 feet; the pump to have an effective stroke of 26 inches, and make 30 strokes per minute.

$$
\begin{aligned}
& 20 \times 12 \times 6.5=1560 \text { cubic feet, and } \\
& \frac{1560}{45}=34.66 \text { cubic feet per minute } .
\end{aligned}
$$

Then, $\frac{34.66 \times 2201}{\sqrt{ } 26 \times 30}=9.89$ inches diameter of pump.
And $\frac{34 \cdot 66 \times 62.5 \times 53}{33000}=\frac{3 \cdot 48}{5}=\cdot 69+3 \cdot 48=4 \cdot 17$ horse power.

Rule.-To find the time a cistern will take in filling, when a known quantity of water is going in, and a known portion of that water is going out, in a given time. -Divide the content of the cistern, in gallons, by the difference of the quantity going in, and the quantity going out, and the quotient is the time in hours and parts that the cistern will take in filling.

If 30 gallons per hour run in and $22 \frac{1}{2}$ gallons per hour run out of a cistern capable of containing 200 gallons, in what time will the cistern be filled?
$30-22 \cdot 5=7 \cdot 5$, and $200 \div 7 \cdot 5=26 \cdot 666$, or 26 hours and 40 minutes.

To find the time a vessel will take in emptying itself of water.Mr. O'Neill ascertained, from very accurate experiments, that a vessel, $3 \cdot 166$ feet long and $2 \cdot 705$ inches diameter, would empty itself in 3 minutes and 16 seconds, through an orifice in the bottom, whose area is 0141 inches; and another 6.458 feet long, the diameter and orifice, as before, would do the same in 4 minutes and 40 seconds; hence, from these experiments, a rule is obtained, namely,

Multiply the square root of the depth in feet by the area of the falling surface in inches, divide the product by the area of the orifice, multiplied by $3 \cdot 7$, and the quotient is the time required in seconds, nearly.

How long will it require to empty a vessel of water, 9 feet high, and 20 inches diameter, through a hole $\frac{3}{4}$ inch in diameter?

$$
\begin{aligned}
& \sqrt{9}=3, \text { the square root of the depth, } \\
& 314 \cdot 16 \text { inches, area of the falling surface, } \\
& 4417 \text { inches, area of the orifice; }
\end{aligned}
$$

Then, $\frac{314.16 \times 3}{4417 \times 3.7}=576.7$ seconds, or 9 minutes and 36 seconds.
On the pressure of fluids.-The side of any vessel containing a fluid sustains a pressure equal to the area of the side, multiplied by half the depth; thus,

Suppose each side of a vessel to be 12 feet long and 5 feet deep, when filled with water, what pressure is upon each side?

$$
\begin{aligned}
12 \times 5 & =60 \text { feet, the area of the side, } \\
2.5 \text { feet } & =\text { half the depth, and } \\
62.5 \mathrm{lbs} & =\text { the weight of a cubic foot of water. }
\end{aligned}
$$

Rule.-To find the weight that a given power can raise by a hydrostatic press.-Multiply the square of the diameter of the ram in inches by the power applied in lbs., and by the effective leverage of the pump-handle; divide the product by the square of the pump's diameter, also in inches, and the quotient is the weight that the power is equal to.

What weight will a power of 50 lbs . raise by means of a hydrostatic press, whose ram is 7 inches diameter, pump $\frac{7}{8}$, and the effective leverage of the pump-handle being as 6 to 1 ?

$$
\frac{7^{2} \times 50 \times 6}{875^{2}}=19200 \mathrm{lbs} ., \text { or } 8 \text { tons } 11 \mathrm{cwt} .
$$

In the following rules for pumping engines the boiler is supposed to be loaded with about $2 \frac{1}{2}$ lbs. per square inch, and the barometer attached to the condenser indicating 26 inches on an average, or $13 \mathrm{lbs} .,=15 \frac{1}{2}$ lbs., from which deduct $\frac{1}{3}$ for friction, leaves a pressure of 10 lbs . nearly upon each square inch of the piston.

Rule.-To find the diameter of a cylinder to work a pump of a given, diameter for a given depth.-Multiply the square of the pump's diameter in inches by $\frac{1}{3}$ of the depth of the pit in fathoms, and the square root of the product will be the cylinder's diameter in inches.

Required the diameter of a cylinder to work a pump 12 inches diameter and 27 fathoms deep.

$$
\sqrt{ }\left(12^{2} \times 9\right)=36 \text { inches diameter }
$$

Rule.-To find the diameter of a pump, that a cylinder of a given diameter can work at a given depth. -Divide three times the square of the cylinder's diameter in inches by the depth of the pit in fathoms, and the square root of the quotient will be the pump's diameter in inches.

What diameter of a pump will a 36 -inch cylinder be capable of working 27 fathoms deep?

$$
\sqrt{\frac{36^{2} \times 3}{27}}=12 \text { inches diameter. }
$$

Rule.-To find the depth from which a pump of a given diameter will work by means of a cylinder of a given diameter.-Divide three
times the square of the cylinder's diameter in inches by the square of the pump's diameter also in inches, and the quotient will be the deppth of the pit in fathoms.

Required the depth that a cylinder of 36 inches diameter will work a pump of 12 inches diameter.

$$
\sqrt{\frac{36^{2} \times 3}{144}}=27 \text { fathoms. }
$$

An inelastic body of 30 lbs . weight, moves with a 3 feet velo city, and is struck by another inelastic body having a 7 feet velo. city, the two will then proceed, after the blow, with the velocity

$$
v=\frac{50 \times 7+30 \times 3}{50+30}=\frac{350+90}{80}=\frac{44}{8}=\frac{11}{2}=5 \frac{1}{2} \text { feet. }
$$

To cause a body of 120 lbs . weight to pass from a velocity $c_{2}=$ $1 \frac{1}{2}$ feet into a 2 feet velocity v, it is struck by a heavy body of 50 lbs., what velocity will the body acquire? Here
$c_{1}=v+\frac{\left(v-c_{2}\right) \mathrm{M}_{2}}{\mathrm{M}_{1}}=2+\frac{(2-1 \cdot 5) \times 120}{50}=2+\frac{6}{5}=3 \cdot 2$ feet.

Two perfectly elastic spheres, the one of 10 lbs . the other of 16 lbs. weight, impinge with the velocities 12 and 6 feet against each other, what will be their velocities after impact? Here $M_{1}=10$ and $c_{1}=12$ feet, but $\mathrm{M}_{2}=16$ and $c_{2}=-6$ feet, hence the loss of velocity of the first body will be

$$
c_{1}-v_{1}=\frac{2 \times 16(12+6)}{10+16}=\frac{2 \times 16 \times 18}{26}=22 \cdot 154 \text { feet } ; \text { and }
$$

the gain in velocity of the other, $v_{2}-c_{2}=\frac{2 \times 10 \times 18}{26}=13.846$ feet. From this the first body after impact will recoil with the velocity $v_{1}=12-22 \cdot 154=-10 \cdot 154$ feet ; and the other with that of $-6+13.846=7,846$ feet. Moreover, the measure of vis viva of the two bodies after impact $=M_{1} v_{1}^{2}+M_{2} v_{9}^{2}=10 \times$ $10 \cdot 154^{2}+16 \times 7 \cdot 846^{2}=1031+985=2016$, as likewise of that before impact, namely: $\mathrm{M}_{1} c_{1}^{2}+\mathrm{M}_{2} c_{2}^{2}=10 \times 12^{2}+16 \times 6^{2}=$ $1440+576=2016$. Were these bodies inelastic, the first would only lose in velocity $\frac{c_{1}-v_{1}}{2}=11.077$ feet, and the other gain $\frac{v_{2}-c_{3}}{2}=6.923$ feet; the first would still retain, after impact, the velocity $12-11.077=0.923$ feet, and the second take up the velocity $-6+6.923=0.923$, and the loss of mechanical effect would be $\left(2016-(10+16) 0.923^{2}\right) \div 2 g=(2016-2.22) \times$ $0 \cdot 0155=29 \cdot 35 \mathrm{ft}$. lbs.

CENTRIPETAL AND CENTRIFUGAL FORCE.

1. What is the centrifugal force of a body weighing 20 lbs . that describes a circle of 10 feet radius 200 times in a minute?
$\cdot 000331 \times 200^{2} \times 20 \times 10=2648 \mathrm{lbs}$., the centrifugal force. $\cdot 00331$ is a constant number.

It is a well established fact that the centrifugal force is to the weight of the body as double the height due to the velocity is to the radius of revolution. Hence, this question may be thus solved:
$20 \times 3 \cdot 1416=62 \cdot 832$, the circumference of the circle of 10 feet radius.
$62.832 \times 200=12566.4$ feet, the space passed over by the weight in one minute.
$\frac{12566 \cdot 4}{60}=209 \cdot 44$ feet, the space described in a second, which is called the velocity.

$$
\frac{(209 \cdot 44)^{2}}{64 \cdot 4}=681 \cdot 136 \text { feet, the height due to the velocity. }
$$

If F be the centrifugal force-

$$
F: 20:: 1362 \cdot 272: 10 .
$$

$\therefore \mathrm{F}=\frac{1362 \cdot 272 \times 20}{10}=2724.544 \mathrm{lbs}$. The former rule gives 2648 lbs.
2. What is the centrifugal force at the equator on a body weighing 300 lbs ., supposing the radius of the earth $=21000000$ feet, and the time of rotation $=86400^{\prime \prime}=24$ hours?

$$
\mathrm{F}=1.224 \times \frac{21000000 \times 300}{86400^{2}}=1.03298 \mathrm{lbs} . \text {, or one pound }
$$ very nearly. $1 \cdot 224$ is a constant multiplier.

$3 \cdot 1416 \times 21000000=65973600$ feet, $\frac{1}{2}$ the circumference of the earth at the equator.
$\frac{2 \times 65973600}{86400}=1527 \cdot 16$ feet, the velocity of the weight each second.

$$
\frac{(1527 \cdot 16)^{2}}{64 \cdot 4}=36214 \cdot 56, \text { the height due to the velocity. }
$$

$$
\text { F : } 300:: 72429 \cdot 12: 21000000 .
$$

$F=\frac{72429 \cdot 12 \times 300}{21000000}=1.0347$ nearly, as by the former approximate method.
3. If a body weighing 100 lbs . describe a circle of 10 feet radius 300 times a minute, what is the diameter of a cast iron cylindrical
rod, connecting the body with the axis, that will safely support this weight? The centrifugal force will be,

$$
.000331 \times 300^{2} \times 100 \times 10=29790 \mathrm{lbs} .
$$

From the strength of materials, page 281, we find that the ultimate cohesive strength for each circular inch of cross sectional area is 14652 lbs. ; but one-third of this weight, or 4884 lbs ., can only be applied with safety.
$\therefore \sqrt{\frac{29790}{4884}}=2 \cdot 46982$ inches, the diameter of the cylindrical rod.
4. The dimensions, the density, and strength of a millstone ABDE are given; it is required to find the angular velocity v, in consequence of which rupture will take place on account of the centrifugal force.

If we put the radius of the millstone $=r_{1}=24$ inches $=$ CG; the radius $=\mathrm{CK}$ of its eye $=r_{3}=4$ inches; the height $\mathrm{PQ}=\mathrm{GH}=l=12$ inches; the density $=t=2500=$ specific gravity of the millstone; and the modulus of strength $=K=$ $750 \mathrm{lbs} .=$ the ultimate cohesive strength of each square inch of cross sectional area in the section PH , supposing the centrifugal forces -F and +F to cause the separation in this section.

$$
\left(r_{1}-r_{2}\right) l=\text { area of parallelogram GR. }
$$

Hence, the force in lbs. required to cause rupture will be,
$2\left(r_{1}-r_{2}\right) l \times \mathrm{K}$; the weight of the stone $\mathrm{G}=\pi\left(r_{2}{ }^{2}-r_{3}{ }^{2}\right) l_{\gamma}$, and the radius of gyration of each half of the stone, i. e. the distance of its centre of gravity from the axis of rotation $r=\frac{4}{3 \pi} \times \frac{r_{1}{ }^{3}-r_{3}{ }^{3}}{r_{1}{ }^{2}-r_{1}{ }^{2}}$. At the moment of rupture, the centrifugal force of half the stone is equivalent to the strength; we hence obtain the equation of con-
dition $\omega \times \frac{1}{2} \frac{G r}{g}=2\left(r_{1}-r_{2}\right) l \mathrm{~K}$, i. e. $\omega^{2} \times \frac{2}{3}\left(r_{1}{ }^{3}-r_{3}{ }^{3}\right) \frac{l \gamma}{g}=$ $2\left(r_{1}-r_{3}\right) l \mathrm{~K}$; or leaving out $2 l$ on both sides, it follows that

$$
\omega=\sqrt{\frac{3 g\left(r_{1}-r_{2}\right) \mathrm{K}}{\left(r_{1}{ }^{3}-r_{3}{ }^{3}\right) \gamma}}=\sqrt{\frac{3 g \mathrm{~K}}{\left(r_{1}{ }^{2}+r_{1} r_{3}+r_{2}{ }^{2}\right) \gamma}} .
$$

If $r_{1}=2$ feet $=24$ inches, $r_{2}=4$ inches, $K=750 \mathrm{lbs}$., and the specific gravity of the millstone $=2.5$; therefore the weight of a cubic inch of its mass $=\frac{-62.5 \times 2.5}{1728}=0.0903 \mathrm{lbs}$. ; it follows that the angular velocity at the moment of rupture is,

$$
\omega=\sqrt{\frac{3 \times 12 \times 32.2 \times 750}{688 \times 0.9903}}=\sqrt{\frac{869400}{62.1264}}=112.1 \text { inches. }
$$

If the number of rotations per minute $=n$, we have then $\omega=$ $\frac{2 \pi n}{60}$; hence, inversely, $n=\frac{30 \omega}{\pi}$, but here $=\frac{30 \times 112 \cdot 1}{\pi}=1070$.
The average number of rotations of such a millstone is only 120 , therefore 9 times less.

With what velocity must a body of 8 lbs . impinge against another at rest of 25 lbs., in order that the last may have a velocity of 2 feet? Were the bodies inelastic, we should then have to put: $v=\frac{\mathrm{M}_{1} c_{1}}{\mathrm{M}_{1}+\mathrm{M}_{2}}$, i. e. $2=\frac{8 \times c_{1}}{8+25}$, hence $c_{1}=\frac{33}{4}=8 \frac{1}{4}$ feet, the required velocity; but were they elastic, we should have $v_{2}=\frac{2 \mathrm{M}_{1} c_{1}}{\mathrm{M}_{1}+\mathrm{M}_{2}}$; hence, $c_{1}=\frac{33}{8}=4 \frac{1}{8}$ feet.

If in a machine, 16 blows per minute take place between two inelastic bodies $\mathrm{M}_{1}=\frac{1000}{g} \mathrm{lbs}$. and $\mathrm{M}_{\mathrm{s}}=\frac{1200}{g} \mathrm{lbs}$., with the velocities $c_{1}=5$ feet, and $c_{2}=2$ feet, then the loss in mechanical effect from these blows will be : $\mathrm{L}=\frac{16}{60} \times \frac{(5-2)^{2}}{2 g} \times \frac{1000 \cdot 1200}{2200}=$ $\frac{4}{15} \times 9 \times \frac{1}{64 \cdot 4} \times \frac{6000}{11}=0.576 \times \frac{400}{11}=20.94$ units of work per second.

If two trains upon a railroad of 120000 lbs . and 160000 lbs . weight, come into collision with the velocities $c_{1}=20$, and $c_{2}=$ 15 feet, there will ensue a loss of mechanical effect expended upon the destruction of the locomotives and carriages, which in the case of perfect inelasticity of the impinging parts, will amount to
$=\frac{(20+15)^{2}}{2 g} \times \frac{120000 \times 160000}{280000}=35^{2} \times \frac{1}{64 \cdot 4} \times \frac{1920000}{28}=$ 1344000 ft . lbs., or units of work.

SHIP-BUILDING AND NAVAL ARCHITECTURE.

Two rules, by which the principal calculations in the art of shipbuilding are made, may be employed to measure the arè or superficial space enclosed by a curve, and a straight line taken as a base.

Rule I.-If the area bounded by the curve line ABC and the straight line AC is required to be estimated, by the rule, the base AC is divided into an even number of equal parts, to give an odd number of points of division.

Where the base AC is divided into twenty equal parts, giving twenty-one points of division, and the lines $1 \cdot 1,2 \cdot 2,3 \cdot 3$, \&c., are drawn from these points at right angles or square to AC , to meet the curve ABC, these lines, $1 \cdot 1,2 \cdot 2,3 \cdot 3$, \&c., are denominated ordinates, and the linear measurement of them, on a scale of parts, is taken and used in the following general expression of the rule.

$$
\text { Area }=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \frac{r}{3}
$$

Where $\mathrm{A}=$ sum of the first and last.ordinates, or $1 \cdot 1$ and $21 \cdot 21$.
$4 \mathrm{P}=$ sum of the even ordinates multiplied by 4.
Or, $\{2 \mathrm{~d}+4$ th +6 th +8 th +10 th +12 th +14 th +16 th + 18 th +20 th $\} \times 4$.
$2 \mathrm{Q}=$ sum of the remaining ordinates; or,
$\{3 \mathrm{~d}+5$ th +7 th +9 th +11 th +13 th +15 th +17 th + 19 th $\} \times 2$.

And r is equal to the linear measurement of the common interval between the ordinates, or one of the equal divisions of the base AC. This rule, for determining the area contained under the curve and the base, may be put under another form; for as the

Area $=\{\mathbf{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}$; it may be transferred into

$$
\text { Area }=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3}
$$

The practical advantages to be derived from this modification of the general rule will appear when the methods of calculation are further developed.

Rule II.-If the base AC be so divided that the equal intervals are in number a multiple of the numeral 3 , then the total number of the points of division, and consequently the ordinates to the curve, will be a multiple of the numeral 3 with one added, and the area under the curve ABC , and the base AC , can be determined by the following general expression:

$$
\text { Area }=\{\mathrm{A}+2 \mathrm{P}+3 \mathrm{Q}\} \times \frac{3 r}{8}
$$

Where $\mathrm{A}=$ sum of the first and last ordinates, or 1 and 16.
$2 \mathrm{P}=$ sum of the 4 th, 7 th, 10 th, 13 th, multiplied by 2 , or ordinates bearing the distinction of being in position as multiples of the numeral 3 , with one added.

3 Q , the sum of the remaining ordinates, multiplied by 3 , or of the $2 \mathrm{~d}, 3 \mathrm{~d}, 5 \mathrm{th}, 6 \mathrm{th}, 7 \mathrm{th}, 8 \mathrm{th}, 9 \mathrm{th}, 11 \mathrm{th}, 12 \mathrm{th}, 14 \mathrm{th}$, and 15 th , multiplied by 3 .

The number of equal divisions for this rule must be either 3,6 , 9,12 , or 15 , \&c., being multiples of the numeral 3 , whence the ordinates will be in number under such divisions, multiples of the numeral 3 , with one added.

This rule admits also of a modification in form, to make it more convenient of application.

$$
\text { For area }=\{\mathrm{A}+2 \mathrm{P}+3 \mathrm{Q}\} \times \frac{3}{8} r
$$

As before advanced for the change adopted in the general expression for the first rule, the utility of this modification of the second rule will be observable when the calculations on the immersed body are proceeded with.

The rules are formed under the supposition that in the first rule the curve ABC , which passes through the extremities of the ordinates, is a portion of a common parabola, while in the second rule the curve is assumed to be a cubic parabola; the results to be obtained from an indiscriminate use of either of these rules, differ from each other in so trifling a degree, (considered practically and not mathematically,) as not to sensibly affect the deductions derived by them.

William O'Neill, or, as English writers term him, William Neal, was the first to rectify a curve of any sort ; this curve was the semi-cubical parabola; these rules, of such use in the art of shipbuilding, were first given by him, but as is usual, claimed by English pretenders.

The foregoing rules, when applied to the measurement of the
immersed portion of a floating body, as the displacement of a ship, are used as follows.

The ship is considered as being divided longitudinally by equidistant athwartship or transverse vertical planes, the boundaries of which planes give the external form of the vessel at the respective stations, and therefore the comparative forms of any intermediate portion of it.

If the ship be immersed to the line AB , considered as the line of the proposed deepest immersion or lading, the curves HLO and KMF would give the external form of the ship at the positions G and I in that line; and the areas GHLO, IKMF contained under the curves HLO, KMF, the right lines GH, IK, (the half-breadths of the plane of proposed flotation $A B$ at the points G and I,) and the right lines GO, IF, the immersed depths of the body at those points are the areas to be measured; and if the areas obtained be represented by linear measurements, and are set off on lines drawn at right angles to the line AB at their respective stations, a curve bounding the representative areas would be formed, and the measurement by the rules of the area contained under this curve, and the right line, AB , or length of the ship on the load-water line, would give the sum of the areas thus represented, and thence the solid contents of the immersed portion of the ship in cubic feet of space. In accordance with this application of those rules to measure the displacement of the ship, the usual practice is to divide the ship into equidistant vertical and longitudinal planes, the longitudinal planes being parallel to the load-water section or horizontal section formed by the proposed deepest immersion.

To measure the areas of these planes after they have been delineated by the draughtsman, the constructor divides the depth of each of the vertical sections, or the length of each horizontal section, into such a number of equal divisions as will make either one or the other of the rules 1 or 2 applicable. If the first rule be preferred, the equal divisions must be of an even number, so that there may be an odd number of ordinates; while the use of the second rule, to measure the area, will require the equal divisions of the base to be in number a multiple of the numeral 3 , which will make the ordinates to be in number a multiple of the numeral 3, with one added. From the points of equal divisions in the respective sections thus determined, perpendicular ordinates are drawn to meet the curve, or the external form of the transverse planes of the body; and a table for the ordinates thus obtained, having been made, as shown page 467 , the measures by scale of the respective ordinates are therein inserted.

For the area IKMF, the linear measurements of IK, $1 \cdot 1,2 \cdot 2$, $3 \cdot 3,4 \cdot 4$, are taken by a scale of parts, and inserted in the column marked 5, page 467, the whole length AB of the load-water line being divided into 10 equal divisions, and the area IKMF being supposed as the fifth from B, the fore extreme of the load-water line. To apply the first rule to the measurement of the area of No. 5 section, the ordinates are extracted from the table, page 467, and operated upon as directed by the rule; viz.

$$
\text { Area }=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}
$$

IK, or first, $4 \cdot 4$, or last,
added together $=A$.

$$
1 \cdot 1, \text { or } 2 \mathrm{~d}
$$

$$
3 \cdot 3 \text {, or } 4 \mathrm{th} \text {, }
$$ added together and $\times 4=4 \mathrm{P}$.

$$
\text { By rule, area }=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3} .
$$

Whence area $=\{(\mathrm{IK}+4 \cdot 4)+(1 \cdot 1+3 \cdot 3) 4+2 \cdot 2 \times 2\} \times \frac{r}{3}=$ area IKMF; and, in a similar manner, may the several areas of the other transverse sections be determined.

When these areas have all been thus measured, they are to be summed by the same rules; the areas themselves being considered as lines, and the result will give the solid for displacement in cubic feet. To shorten this tedious application of the formula, the arrangement of having double-columned tables of ordinates was introduced, as shown on page 484, and for the more ready use of this enlarged table, the modifications in the formula 467 , before alluded to, were adopted, that of

$$
\text { Area }=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3}
$$

and that of

$$
\text { Area }=\{A+2 P+3 Q\} \times \frac{3 r}{8}=\left\{\frac{A}{2}+P+1 \cdot 5 Q\right\} \times \frac{3}{4} r
$$

as rendering the required number of figures much less, whereby accuracy of calculation is insured and time is saved.

In using a table of ordinates constructed for this method of calculation, the linear measurement of the several ordinates of vertical section 5 and the corresponding ones of all the others would be inserted in the double columns prepared for them, in the following order :-

In the first and last lines of the enlarged table for the ordinates, distinguishable by $\frac{A}{2}$, in the left-hand column of each pair, the measurements of the first and last ordinates of the respective areas are placed, and in the right-hand column of each pair one-half of such measurements, as being one-half of the first and last ordinates of each vertical section or area. In the lines distinguished by 2 P , in the left-hand column, the measurements of the even ordinates
of each respective area are placed, which having been multiplied by two, the result is placed in the respective right-hand columns prepared for each vertical section; while in those lines of the table distinguished by Q, the measurements of the ordinates themselves are placed in the right-hand columns, as not requiring by the modification of the rules any operation to be used on them, before being taken into the sum forming the sub-multiple of the respective areas.

It may here with propriety be suggested, that in practice the insertion of the linear measurements of the ordinates in the table in red ink will be found useful, and that after such has been done, by the upper line of figures in the table of ordinates thus arranged, being divided by two, the second line of figures being multipled by two, and so on with the others as shown by the table, and the results thus obtained being inserted in their respective right-hand columns as before described, great facility and despatch of calculation are afforded to the constructor.

That this method will yield a correct measurement of the areas will be evident by an inspection of the terms of the gencral expression of area $=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3}$, which are placed against the several lines of the table of ordinates. And it will be equally apparent, that the sum total of the figures inserted in the righthand columns appropriated to each section is a sub-multiple of the area of each section, and that these results arising from the use of the form for area of $\left\{\frac{A}{2}+2 P+Q\right\}$ will be one-half of those that would be obtained by abstracting the ordinates from the table, page 467 , and using them in the expression $A+4 P+2 Q$; and therefore to complete the calculation for the areas by the rule, the first results for the areas must be multiplied by $\frac{2 r}{3}$, and the last by $\frac{r}{3}$, where r is equal to the common interval or equal division of the base in linear feet; or the part of the expression for areas of $\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\}$ must be multiplied by $\frac{2 r}{3}$, to make it equivalent to $\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}$.

The sub-multiples of the areas of the vertical sections thus determined, require to be summed together for the solid of displacement, and by considering the sub-multiples of the areas to be, as before stated, represented by lines or proportionate ordinates, O'Neill's rules, by the same table of ordinates with an additional column, may be made available to the development of the solid of displacement. For the sectional areas being represented by lines, by the first rule, one-half the first and last areas, added to the sum of the products arising from multiplying the even ordinates or representative areas by two, together with the odd ordinates or the areas as given by
the tables, and these being placed in the additional column of the table prepared for them, the sub-multiple of the solid of displacement will be given.

The operation will stand thus: Sub-multiple of each of the areas $=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\}$, or each area will be $\frac{2 r}{3}$ less than the full result, and the representative lines for the areas will be diminished in that proportion; and having used these sub-multiples of the areas thus diminished in the second operation for obtaining the sub-multiple of the solid of displacement under the same rule, the results will again be $\frac{2 r^{\prime}}{3}$ less than the true result ; therefore the sum thus determined will have to be multiplied by the quantity $\frac{2 r}{3} \times \frac{2 r^{\prime}}{3}$, to give the solid required. In this expression, of $\frac{2 r}{3} \times \frac{2 r^{\prime}}{3}, r=$ the equal distances taken in the vertical planes to obtain the respective vertical areas; $r^{\prime}=$ the equal distances at which the vertical areas are apart on the longitudinal plane of the ship.

The displacement being thus determined, by an arrangement of an enlarged table of ordinates, the functions arising from the submultiples of the areas of the vertical sections being placed in O'Neill's rules to ascertain the displacement, may be used in the table of ordinates to find the distance of the centre of gravity of the immersed body from any assumed vertical plane; and also the distance that the same point-" the centre of gravity of displacement" -is in depth from the load-water or line of deepest immersion, and that from the considerations which follow:-

In a system of bodies, the centre of gravity of it is found by multiplying the magnitude or density of each body by its respective distance from the beginning of the system, and dividing the sum of such products by the sum of the magnitudes or densities. The displacement of a ship may be considered as made up of a succession of vertical immersed areas; and if it be assumed that the moments arising from multiplying the area of each section by its relative distance from an initial plane may be represented by successive lineal measurements, the general rules will furnish the summation of such moments; and the displacement or sum of the areas has been obtained by a similar process, from whence, by the rule for finding the centre of gravity of a system as before given, the distance of the common centre of gravity from the assumed initial plane would be ascertained, by dividing the sum of the moments of the areas by the sum of the areas or the solid of displacement.

To extend this reasoning to the enlarged table of ordinates used for the second method of calculation: The sub-multiples of the respective areas, when put into the formulas to obtain the proportionate solid of displacement, are relatively changed in value to give that solid, and consequently the moments of such functions of
the vertical areas will be to each other in the same ratio; and the sum of these proportionate moments, if considered as lines, can be ascertained by multiplying the functions of the areas by their relative distances from the assumed initial plane, or by the number of the equal intervals of division they are respectively from it, and afterwards, by the rules, summing these results, forming the sum of the moments of the sub-multiples of the functions of the vertical areas: and the proportionate sub-multiple for the displacement is shown on the table; the division therefore of the former, or the sum of the proportional moments of the functions of the areas, by the proportionate sub-multiple for the displacement, will give the distance (in intervals of equal division) that the centre of gravity of the displacement is from the initial plane, which being multiplied by the value in feet of the equal intervals between the areas, will give the distance in feet from the assumed initial plane, or from the extremity of the base line of the proportional sectional areas for displacement. This reasoning will apply equally to finding the position of the centre of gravity of the body immersed, both as respects length and depth, and on the enlarged tables for construction given, (pages 484 and 485 ,) the constructor, by adopting this arrangement, will at once have under his observation the calculations on, and the results of, the most important elements of a naval construction.

The foregoing tabular system, for the application of O'Neill's rules to the calculations required on the immersed volume of a ship's bottom, led to a lineal delineation of the numerical results of the tables, and thence the development of a curve of sectional areas, on a base equivalent to the length of the immersed portion of the body, or of the length at the load-water line. To effect this, the sub-multiples of the sectional areas, taken from the tables for calculation, are severally divided by such a constant number as to make their delineation convenient; then these thus further reduced sub-multiples of the areas, being set off at their respective positions on the base, formed by the length of the load-water line, a curve passed through the extreme points of these measurements, will bound an area, that to the depth used for the common divisor would form a zone, representative of the solid of displacement: The accuracy of such a representation will be easily admitted, if the former reasoning is referred to.

To obtain the solid of displacement from this representative area, the load-water line or plane of deepest immersion is considered as being divided lengthwise into two equal parts, which assumption divides the base of the curve of sectional areas also into two equal portions: the line of representative area to that medial point is then drawn to the curve, and triangles are formed on each side of it by joining the point where it-meets the curve with the extremities of the base line; this arrangement divides the representative area into four parts, two triangles which are equal, viz. 1 and 2, and two other areas which are contained under the hypothenuse of
these triangles and the curves of sections, or 3 and 4 of the annexed diagram.

> Diagram of a Curve of Sectional Areas.

ABCDA equal sectional area, representative of the half displacement as a zone of a given common depth.

AC equal the length of the load-water section from the fore-side of the rabbet of the stem to the aft-side of the rabbet of the post, and D the point of equal division.

BD, the representative area of half the immersed vertical section at the medial point D, joining B with the points A and C, will complete the division of the representative area ABCDA.

ABD and CBD , under such considerations, are equal triangles.
BECB, BFAB, areas, bounded respectively by the hypothenuse $A B$ or $B C$ of the triangles and the curve of sectional areas; and, suppoosing the curves AFB and BEC to be portions of common parabolas, the solid of displacement will be in the following terms:

The area of each of the triangles is equal to $\frac{1}{4}$ of $\mathrm{AC} \times \mathrm{BD}$; hence the sum of the two $=\frac{1}{2}$ of $\mathrm{AC} \times \mathrm{BD}$: the hypothenuse AB or $\mathrm{BC}=\int\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{BD}^{2}\right]$, and the area of BECB if considered as approximating to a common parabola $=\int\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{BD}^{2}\right]$ $\times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse BC.

Area of BFAB under the same assumption $=\int\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{BD}^{2}\right]$ $\times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse $A B$; whence the whole displacement will be expressed by $\frac{1}{2} \mathrm{AC} \times \mathrm{BD} \times$ $\int\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{BD}^{2}\right] \times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse $\left.B C+\sqrt{C}\left(\frac{A C}{2}\right)^{2}+\mathrm{BD}^{2}\right] \times \frac{2}{3}$ of the greatest perpendi-- cular on the hypothenuse AB.

By a similar method, from the light draught of water, or the depth of immersion on launching the ship, the light displacement, or the weight of the hull or fabric, may be delineated and estimated; and the representative curve for it being placed relatively on the same base as that used for the representative curve for the load displacement, the area contained between the curve bounding the representative area for the load displacement, and the curve bounding the representative area for the light displacement, will be a representative area of the sum of the weights to be received on board, and point out their position to bring the ship from the light line
of flotation, or the line of immersion due to the weight of the hull when completed in every respect, to that of the deepest immersion, or the proposed load-water line of the constructor-a representation that would enable the constructor to apportion the weights to be placed on board to the upward pressure of the water, and thence approximate to the stowage that would insure the easiest movements of a ship in a sea.

By an inspection of the diagram of the curve of sectional areas, it will clearly be seen that the representative area for displacement under the division of it, into the triangles 1 and 2, and parabolic portions of the area 3 and 4 , will point out the relative capacities of the displacement, under the fore and after half-lengths of the base or load-water line; for, by construction, the triangles ABD and CBD are equal, and therefore the comparative values of the areas BECB and BFAB, or of $\int\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{BD}^{2}\right] \times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse BC , compared with $\int\left[\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{BD}^{2}\right] \times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse AB , or of the relative values of the greatest perpendiculars on the hypothenuses BC and AB , will give the relative capacities of the fore and after portions of the immersed body or the displacement.

The representative area ABCDA admits also of a measurement by the second rule.

Let BD , as before, be the representative area at the middle point.

Divide AD or DC into three equal portions, then the equal divisions being a multiple of 3 , the second rule is applicable to measure the areas ABDA or BCDB; for the area $\mathrm{ABDA}=$

$$
\begin{aligned}
& \left\{6,6+\mathrm{BD}+2 \times 0+3\{\overline{4,4+5,5\}}\} \frac{3 r}{8} ; 6,6=0 ;\right. \\
& =\{\mathrm{BD}+3\{4,4+5,5\}\} \frac{\mathrm{DC}}{8} ; \text { and area } \mathrm{BCDB}= \\
& \{\overline{1,1+\mathrm{BD}}+2 \times 0+3 \times\{2,2+3,3\}\} \frac{3 r}{8}, \text { where } 1,1=0 \\
& \left\{\mathrm{BD}+3 \times\{\overline{2,2+3,3\}}\} \frac{\mathrm{AD}}{8}=\mathrm{BCDB},\right. \text { and the displace- } \\
& \text { ment }=\{\mathrm{BD}+3 \times\{4,4+5,5\}\} \frac{\mathrm{DC}}{8}+\{\mathrm{BD}+3 \times\{2,2+3,3\}\} \\
& \mathrm{AD}
\end{aligned}
$$

$\times \frac{A D}{8} \times$ by the constant divisor of the areas, or the depth of the zone in feet.

The rules given by 0 'Neill for the measurement of the immersed portion of the body of a ship, having been theoretically stated, the practical application of them will be given on the construction.

The immersed part of a ship, being a portion of the parallelopipedon formed by the three dimensions; -length on the load-water line, from the foreside of the rabbet of the stem to the aftside of the rabbet of the stern-post; extreme breadth in midships of the load-water section; and depth of immersion in midships from the lower edge of the rabbet of the keel;-it would seem that the first step towards the reduction of the parallelopipedon, or oblong, into the required form, would be to find what portion of it would be of the same contents as the proposed displacement of the ship-a knowledge of which would enable the constructor, by a comparison of the result with a similar element of an approved ship, to determine whether the principal dimensions assumed would (under the form intended) give an immersed body equal to carrying the proposed weights or lading.

The relative capacities of the immersed bodies contained under the fore and after lengths of the load-water line must next be fixed, and the constructor in this very important element of a construction will find little to guide him from the results of past experience and practice. From deductions on approved ships of rival constructors it will be developed, that in this essential element, "the relative difference between the two bodies," they vary from 1 to 13 per cent. on the whole displacement.

The relative capacities of the fore and after bodies of immersion under the proposed load-water line would seem at the first glance of the subject to be a fixed and determinate quantity, as being a conclusion easily arrived at from a knowledge of the proportions due to the superincumbent weights-under such a consideration, the weight of the anchors, bowsprit, and foremast would necessarily be supposed to require an excess in the body immersed under the fore half-length of the load-water line over that immersed under the after half-length of the same element.

In a ship, the necessary arrangement of the weights, to preserve the proposed relative immersion of the extremes or the intended dratght of water, would be pointed out by a delineated curve of sectional areas, described as before directed; but a want of that system, or of some other, has often caused an error in the actual draught of water, and that under a great relative excess of the volumes of displacement in the fore and after portions of the immersed body.

The men-of-war brigs built to a construction-draught of water 12 ft .9 in . forward, 14 ft .4 in . abaft, giving 1 ft .7 in . difference, had under such a construction a difference of displacement between the immersed bodies under the fore and after half-lengths of the load-water line that was equivalent to $10 \cdot 4$ tons for every 100 tons of the vessel's total displacement or weight; but these ships, when
stowed and equipped for sea, came to the load-draught of water of 14 ft .2 in . forward, 14 ft .3 in . aft;-difference 1 inch , or an immersion of the fore extreme of 18 inches more than was intended by the constructor. The reason of this practical departure from the proposed line of flotation of the constructor was, that the internal space or hold of the ship necessarily followed the external form, giving a hold proportionate to the displacement contained under the several portions of the body; but an injudicious disposal of the stores (in placing the weights too far forward) made them more than equivalent to the upward pressure of the water at the respective portions of the proposed immersion of the body, and thence arose the error or excess in the fore immersion by giving a greater draught of water than was designed. The stowage of a ship's hold, under a reference to the representative area for the displacement, contained between the curves of sectional areas developed for the light and load displacements, would prevent similar errors under any extent to which the relative capacity of the two bodies might be carried. This relative capacity of the two bodies will affect the form of the vessel's extremes, giving a short or long bow, a clear or full run to the rudder; for the whole displacement being a fixed quantity, if the portion of it under the fore half-length of the loadwater line be increased, it must be followed by a proportionate diminution of the portion of the displacement under the after half-length of the load-water line, so that the total volume of the displacement may remain the same, which arrangement will give a proportionately full bow and clean run, and vice versâ.

The curve of sectional areas under the foregoing considerations is also applicable to a comparison of the relative qualities of ships of the same rate, by showing at one view the distribution of the volume of displacement in each ship, under the draught of water which has been found on trial to give the greatest velocity ; based on which, deductions may be made from the relative capacities of the bodies pointed out by the sectional curves, that will serve to guide the naval constructor in future constructions.

The curve of sectional areas is also available for forming a scale to measure the amount of displacement of a ship to any assumed or given draught of water. To effect this, on the sheer draught or longitudinal plan of the ship between the load-water line, or that of deepest immersion, and the line denoting the upper edge of the rabbet of the keel, draw intermediate lines parallel to the loadwater line as denoting lines of intermediate immersion between the keel and load-water line; these lines may be placed equidistant from each other, but they are not necessarily required to be so. Find the curve of sectional areas, due to each immersion of the ship denoted by these lines, and measure the areas bounded respectively by these curves, in the manner as before directed for the load displacement: these results will give the magnitudes of the immersed portions of the body in cubic feet, which being divided by 35 , the mean of the number of cubic feet of salt or fresh water that
are equivalent to a ton in weight, will give their respective weights in tons.

Assume a line of scale for depth, or mean draught of water, the lower part of which is to be considered the underside of the false keel of the ship, and set off on this line, by means of a scale of parts, the depths of the immersions at the middle section of the longitudinal plan; draw lines (at the points thus obtained) perpendicular to this assumed line for depth or draught of water, and having determined a scale to denote the tons, set off on each line by this scale the tons ascertained by the curves of sectional areas to be due to the respective immersions of the body; then a curve passed through these points will be one on which the weights in tons due to the intermediate immersions of the body may be ascertained; or, the displacement of a ship to the mean of a given draught may be found by setting up the mean depth on the scale, showing the draught of water-transferring that depth to the curve for tonnage, and then carrying the point thus obtained on the curve for tonnage to the scale of tons, which will give the number of tons of displacement to that depth of immersion or draught of water.
Description of the several plans to be delineated by the draughtsman, previous to the commencement of the calculations.
Sheer Plan.-A projection of the form of the vessel on a longitudinal and vertical plane, assumed to pass through the middle of the ship, and on which the position of any point in her may be fixed with respect to height and length.

Half-breadth Plan.-The form of the vessel projected on to a longitudinal and horizontal plane, assumed to pass through the extreme length of ship, and on which the position of any point in the ship may be fixed for length and breadth.

Body Plan.-The forms of the vertical and athwartship sections of the ship, projected on to a vertical and athwartship plane, assumed to pass through the largest athwartship and vertical section of her, and on which plan the position of any point in the ship may be fixed for height and breadth.

These plans conjointly will determine every possible point required; for, by inspection, it will be found-

> That the sheer and half-breadth plans have one dimension common to both, viz.:..........Length.
> Half-breadth and body plane........................Breadth.
> Sheer and body plane..................................Height.
> $\left.\begin{array}{l}\text { For sheer plan gives length and height...... } \\ \text { Half-breadth plan gives length and breadth } \\ \text { Body plan gives breadth and height......... }\end{array}\right\} \begin{gathered}\text { of the same } \\ \text { point. }\end{gathered}$

Which dimensions form the co-ordinates for any point in the solid, and must determine the position of it.

The point C in the load-water section AB , has for its co-ordinates to fix its position,

The length, 1.5 of the half-breadth plan.
 Height, $5 \cdot \mathrm{C}$ of the sheer plan,

 And the breadth, $1 \cdot \mathrm{C}$ of the body plan of section.And the same for any other point of the solid or of the ship.
In the sheer plan, AB represents the line of deepest immersion, $a a, b b, c c, d d$, lines drawn parallel to that line at a distance of $\cdot 9$ feet, making with AB an odd number of ordinates for the use of the first general rule for the area, where area $=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}$, and $\mathrm{A}=$ the sum of the first and last ordinates.
$\mathrm{P}=$ the sum of the even ordinates, as $2,4$.
$\mathrm{Q}=$ the sum of the odd ordinates, as 3 , \&c.
The line AB , or length of the load-water line, is bisected at C , and AC, CB are thence equal; C being the middle point of the load-water line, the spaces BC, AC are again divided into four equal divisions, giving five ordinates for each space, at a distance apart of 5.5 feet.

This arrangement will give the immersed body of the vessel, as being divided into two parts under an equal division of the loadwater line, and an odd number of ordinates in each section of the body for the application of the first general rule given for finding the areas of the vertical sections and thence the displacement.

The half-breadth plan delineates the form of the body immersed for length and breadth, the line AB of the sheer plan being represented in the half-breadth plan by the line marked AB, and $a a, b b, c c, d d$, of the sheer plan by the lines similarly distinguished in the half-breadth plan.

The body plan gives the form of the body in the depth, the lines distinguished 5.5 in the sheer and half-breadth plans being in the body plan developed by the curve $5 \cdot 5 \cdot 5$, giving the external form of the ship at the section $5 \cdot 5$; the same reasoning applies to the other divisions of the load-water line AB .

A pile of 400 lbs . weight is driven by the last round of 20 blows of a 500 lbs . heavy ram, falling from a height of 5 feet; 6 inches deeper, what resistance will the ground offer, or what load will the pile sustain without penetrating deeper?

Here $\mathrm{G}=400, \mathrm{G}_{1}=700 \mathrm{lbs} ., \mathrm{H}=5$, and $s=\frac{0.5}{20}=0.025$ feet, whereby it is supposed that the pile penetrates equally far for each blow.

$$
\mathrm{P}=\left(\frac{700}{700+400}\right)^{2} \frac{400 \times 5}{0.025}=\left(\frac{7}{11}\right)^{2} \times 80000=32400 \mathrm{lbs}
$$

the ram, not during penetration, remaining upon the pile.

$$
P=\frac{700^{2} \times 5}{1100 \times 0.025}=\frac{4900}{11} \times 200=89100 \mathrm{lbs} ., \text { the ram remain }-
$$

ing upon the pile during penetration.
For duration, with security, such piles are only loaded from $\frac{1}{100}$ to $\frac{1}{10}$ of their strength.
CONStruction draught of a yachi of 36 tons measurement by old rule for tonnage.

Principal Dimensions.
Ft. In.
Length for Tonnage
450
Keel for Tonnage $.3610 \frac{3}{4}$
Breadth for do.
136
Burthen in Tons.

Section at 5.

Scale, $\frac{1}{8}$ of an Inch to a Foot.

AB, Load-water Line.

From this Table the following application of 0 'Neill's rule, No. 1 , is usually made to obtain the volume of displacement to the draught of water shown on the drawing as the load-water line, or line of proposed deepest immersion, designated by AB.

General terms of the rule :-

$$
\text { Area }=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}
$$

To find $\frac{1}{2}$ the area of vertical section 1 , fore body :-
$\left.\left.\begin{array}{r}\mathrm{A}=\text { sum of } \\ \text { the first } \\ \text { and last }\end{array}\right\} \begin{array}{l}\cdot 4 \\ \cdot 2=\mathrm{A}\end{array} \begin{array}{l}4 \mathrm{P}=\text { four times the sum } \\ \text { of the even ordinates } \\ \text { or of }(2) \text { and }(4) \ldots \ldots \cdot\end{array}\right\} \begin{aligned} & \cdot \frac{25}{60}=\mathrm{P} \\ & \frac{4 \cdot}{2 \cdot 4}=4 \mathrm{P}\end{aligned}$
$2 \mathrm{Q}=\mathrm{t}$ wice the sum of the odd $\} \quad 3=\mathrm{Q}$ ordinates, or of (3) $\} \times \frac{2}{\cdot 60}$

$$
\overline{\cdot 60}=2 \mathrm{Q}
$$

Whence the area, which is equal to

$$
\begin{aligned}
& \{A+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}=\{\cdot 6+2 \cdot 4+6\} \times \frac{92}{3} \\
& 3 \cdot 6 \times \frac{.92}{3}=1.2 \times \cdot 92=1 \cdot 104=\frac{1}{2} \text { area of } \\
& \text { section 1. }
\end{aligned}
$$

Which sum is half the area of the section 1, and is kept in that form of the half-measurement for the convenience of calculation.

Fore Body.
Vertical Section 2.

$3 \cdot 0$	$2 \cdot 4$	$1 \cdot 7$
$\cdot 4$	$1 \cdot 0$	2
$\overline{3 \cdot 4}=\mathrm{A}$	$\overline{3 \cdot 4}=\mathrm{P}$	
	4	
	$\overline{13 \cdot 6}=4 \mathrm{P}$	
	- $3 \cdot 4=\mathrm{A}$	
	$3 \cdot 4=2 \mathrm{Q}$	
	$\overline{20 \cdot 4}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}$	
	$.92=r$	
	408	
	1836	
	3) $\overline{18 \cdot 768}$	
	$6 \cdot 256=\frac{1}{2}$ area of Section	
	V ertical Section 3.	

Vertical Section 4.

6.0	$5 \cdot 6$	$4 \cdot 4$
2.0	$3 \cdot 2$	2
$\overline{8 \cdot 0}=\mathrm{A}$	$\overline{8 \cdot 8}=$	$\overline{8 \cdot 8}$
	4	
	$\overline{35 \cdot 2}=$	
	$8 \cdot 0$	
	$8 \cdot 8$	
	$\overline{52 \cdot 0}$	
	. 92	
	1040	
	4680 .	
	840	
	$5 \cdot 946=$	ea of

Displacement of the body under the fore half-length of the loadwater line by the vertical sections, or the summation of the vertical areas $1,2,3,4$, and 5 , by the formula for the solid, as being equal to
$\left\{A^{\prime}+4 \mathrm{P}^{\prime}+2 \mathrm{Q}^{\prime}\right\} \times \frac{r^{\prime}}{3}$ where $\mathrm{A}^{\prime}=$ sum of 1 st and 5 th areas. $\mathrm{P}^{\prime}=\quad$ " 2 d and 4th areas. $\mathrm{Q}^{\prime}=\quad$ " 3 d area.
And $r^{\prime}=$ distance between the vertical sections, or $5 \cdot 5$ feet.

$$
479 \cdot 112=\text { cubic feet of space in fore-body. }
$$

$$
\begin{aligned}
& 4 \\
& \overline{88 \cdot 808}=4 \mathrm{P}^{\prime} \\
& 18 \cdot 369=\mathrm{A}^{\prime} \\
& 23 \cdot 490=2 Q^{\prime} \\
& \overline{130 \cdot 667}=\mathrm{A}^{\prime}+4 \mathrm{P}^{\prime}+2 \mathrm{Q}^{\prime} \\
& 5 \cdot 5=r^{\prime} \\
& 653335 \\
& 653335 \\
& \text { 3) } \overline{718 \cdot 6685} \\
& \begin{array}{r}
\frac{18 \cdot 6085}{239 \cdot 556}=\overline{\mathrm{A}^{\prime}+4} \overline{\mathrm{P}^{\prime}+2 \mathrm{Q}^{\prime}} \times \frac{r^{\prime}}{=}=\text { cubic ft. of } \\
2=
\end{array} \\
& 2 \text { space in } \frac{1}{2} \text { fore-body. }
\end{aligned}
$$

Displacement of the body immersed under the after half-length of the load-water line by the vertical areas $5,6,7,8$, and 9 of the Table of ordinates.

$$
\begin{aligned}
& \text { Vertical Section } 9 . \\
& \begin{array}{l}
\cdot 4 \\
\cdot \frac{2}{6} \\
\hline 6
\end{array} \\
& \cdot 35 \\
& \begin{aligned}
\cdot 3 & =\mathrm{Q} \\
\frac{2}{\cdot 6} & =2 \mathrm{Q}
\end{aligned} \\
& 4 \\
& 2 \cdot \overline{4}=4 \mathrm{P} \\
& \cdot 6=\mathrm{A} \\
& \therefore 6=2 Q \\
& \overline{3 \cdot 6}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q} \\
& \frac{\cdot 92}{72}=r \\
& 324 \\
& \text { 3) } \\
& \overline{\overline{3 \cdot 312}} \overline{\overline{1} 104}=\overline{\mathrm{A}+4 \mathrm{Q}} \times \frac{r}{3}=\frac{1}{2} \text { area of Section } 9 .
\end{aligned}
$$

Half areas of the vertical sections $5,6,7,8$, and 9 .

Sections.	Arens.
	-
6	.16.22
7.	.12-512
8	$6 \cdot 9$
9	1-104

Displacement of the after-body under the after half-length of the load-water line by the vertical sections, or the summation of the immersed areas of the vertical sections 5, 6, 7, 8, and 9 by the formula for the solid as being equal to

$$
\overline{\mathrm{A}^{\prime}+4 \mathrm{P}^{\prime}+2 \mathrm{Q}^{\prime}} \times \frac{r^{\prime}}{3}
$$

where $A^{\prime}=$ sum of the 5 th and 9 th areas.

$$
\begin{array}{lll}
\mathrm{P}^{\prime}= & " & \text { 6th and 8th areas. } \\
\mathrm{Q}^{\prime}= & " & 7 \text { th area. }
\end{array}
$$

and $r^{\prime}=$ the distance between the vertical sections, or 5.5 ft .

$$
\begin{aligned}
& \text { 5...17.265 } \\
& \text { 9... 1•104 } \\
& \overline{18 \cdot 369}=\mathrm{A}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{498 \cdot 2010} \text { After-body in cubic ft. of space. }
\end{aligned}
$$

Displacement of Fore-body by Horizontal Sections.
Horizontal Section 1'.

$0 \cdot 4$	$6 \cdot 0$	$5 \cdot 0=\mathrm{Q}$
$6 \cdot 3$	$3 \cdot 0$	
$\overline{6 \cdot 7}=\mathrm{A}^{\prime}$	$\overline{9 \cdot 0}=P$	$\overline{10 \cdot 0}=\mathrm{Q}$
	4	
	$\overline{36 \cdot 00}=4 \mathrm{P}$	
	$10 \cdot 00=2 \mathrm{Q}$	
	$6 \cdot 70=\mathrm{A}$	
	$\overline{52 \cdot 70}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}$	
	$5 \cdot 5=r$	
	2635	
	2635	
) $\overline{289 \cdot 85}$	
	$96 \cdot 61=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r}{3}$	$\frac{1}{2}$ area of Sec

Horizontal Section 2^{\prime}.

| $\cdot 35$ | $5 \cdot 7$
 $5 \cdot 60$
 $5 \cdot 95$ | A |
| :--- | :--- | :--- |$\quad \frac{2 \cdot 4}{8 \cdot 1}=\mathrm{P} \quad$| $4 \cdot 2$ | $=\mathrm{Q}$ |
| ---: | :--- |
| $8 \cdot 4$ | $=2 \mathrm{Q}$ |

4
$\overline{32 \cdot 4}=4 \mathrm{P}$
$8 \cdot 4=2$ Q
$5 \cdot 95=\mathrm{A}$
$\overline{46 \cdot 75}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}$
$5 \cdot 5=r$
23375
3) $\frac{23375}{257 \cdot 125}$
$85 \cdot 708=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r}{3}=\frac{1}{2}$ area of Section 2^{\prime}.
Horizontal Section 3^{\prime}.

$\cdot 3$	$4 \cdot 4$	$3 \cdot 2=\mathrm{Q}$
$5 \cdot 0$	1.7	2
$\overline{5 \cdot 3}=\mathrm{A}$	$\overline{6 \cdot 1}=P$	$\overline{6 \cdot 4}=2 \mathrm{Q}$
	4	
	$\overline{24 \cdot 4}=4 \mathrm{P}$	
	$5 \cdot 3=\mathrm{A}$	
	$6 \cdot 4=2 \mathrm{Q}$	
	$\overline{3} \overline{6} \cdot 1=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}$	
-	$5 \cdot 5=r$	
	1805	
	1805	
- $3 \longdiv { \overline { 1 9 8 . 5 5 } }$		
	$\overline{66 \cdot 18}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r}{3}$	$\frac{1}{2}$ area of Sec

Horizontal Section 4'.

$$
\begin{aligned}
& \cdot 25 \\
& \frac{3 \cdot 8}{4 \cdot 05}=A \\
& 3.2 \\
& \frac{1 \cdot 0}{4 \cdot 2}=P \\
& \begin{array}{l}
2 \cdot 2=Q \\
\frac{2}{4 \cdot 4}=2 Q
\end{array} \\
& \frac{4}{16 \cdot 8}=4 \mathrm{P} \\
& 4 \cdot 05=\mathrm{A} \\
& 4 \cdot 40=2 \text { Q } \\
& 25 \cdot 25=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q} \\
& 5 \cdot 5=r \\
& 12625 \\
& 12625 \\
& \text { 3) } \\
& \frac{138 \cdot 875}{46 \cdot 291}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r}{3}=\left\{\begin{array}{l}
\frac{1}{2} \text { area of } \\
\text { Section } 4^{\prime} .
\end{array}\right.
\end{aligned}
$$

Horizontal Section 5^{\prime}.

$\frac{\stackrel{\cdot 2}{2 \cdot 4}}{2 \cdot 6}=\mathrm{A}$

$2 \cdot 0$	
$\cdot 4$	
$2 \cdot 4$	$=\mathrm{P}$
$\underline{4}$	
$9 \cdot 6$	$=4 \mathrm{P}$
$2 \cdot 6$	$=\mathrm{A}$
$2 \cdot 6$	$=2 \mathrm{Q}$
$\overline{14 \cdot 8}$	$=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}$
$5 \cdot 5$	$=r$

$$
\begin{aligned}
& 1 \cdot 3=\mathrm{Q} \\
& \frac{2}{2 \cdot 6}=2 \mathrm{Q}
\end{aligned}
$$

740

$$
740
$$

3) $\overline{81 \cdot 40}$ $\overline{27: 13}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r}{3}=\left\{\begin{array}{l}\frac{1}{2} \text { area of } \\ \text { Section } 5^{\prime}\end{array}\right.$
Displacement of the fore-body under the fore half-length of the load-water line by horizontal sections, or the summation of the horizontal sections of the fore-body $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, and 5^{\prime}, by the formula for the solid, as being equal to

$$
\overline{\mathrm{A}^{\prime}+4 \mathrm{P}^{\prime}+2 \mathrm{Q}^{\prime}} \times \frac{r}{3} ;
$$

where

$$
\begin{aligned}
& \mathrm{A}^{\prime}=\text { sum of the } 1^{\prime} \text { st and } 5^{\prime} \text { th areas; } \\
& \mathrm{P}^{\prime}= \\
& \mathrm{Q}^{\prime}= \\
& \mathrm{Q}^{\prime} \mathrm{d} \text { and } 4^{\prime} \text { th areas } ; \\
& 3^{\prime} \mathrm{d} \text { area; }
\end{aligned}
$$

and $r=$ the distance between the horizontal sections, or $\cdot 92$ feet.
Half areas of the Horizontal Sections $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, and 5^{\prime}.

$$
\begin{array}{l|l}
1^{\prime}=96 \cdot 61 . & 4^{\prime}=46 \cdot 29 \\
2^{\prime}=85 \cdot 708 . & 5^{\prime}=27 \cdot 13 .
\end{array}
$$

Displacement, by horizontal sections of the body immersed under the after half-length of the load-water line, or by the horizontal areas $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, and 5^{\prime}, of the table of ordinates.

Calculated areas of $1^{\prime}, 2,3^{\prime}, 4^{\prime}$, and 5^{\prime}.
Section 1' After-body.

$$
\begin{aligned}
& 39 \cdot 2=4 \mathrm{P} \\
& 10 \cdot 8=2 \mathrm{Q} \\
& 6 \cdot 7=\mathrm{A} \\
& \overline{56 \cdot 7}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q} \\
& 5 \cdot 5=r \text {. } \\
& 2835 \\
& 2835 \\
& \text { 3) } 311 \cdot 85 \\
& \overline{103 \cdot 95}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r^{\prime}}{3}=\left\{\begin{array}{l}
\frac{1}{2} \text { area of } \\
\text { Section } 1^{\prime} .
\end{array}\right.
\end{aligned}
$$

Section 2' After-body.

$$
\begin{aligned}
& \begin{array}{ll}
5 \cdot 6 \\
\cdot 35 \\
\hline 5 \cdot 95 \\
\mathrm{~A} & \begin{array}{l}
5 \cdot 5 \\
\frac{2 \cdot 6}{8 \cdot 1}
\end{array}=\mathrm{P}
\end{array} \quad \begin{array}{l}
4 \cdot 4 \\
\frac{2}{8 \cdot 8}=2 \mathrm{Q}
\end{array} \\
& \frac{4}{32 \cdot 40}=4 \mathrm{P} \\
& 5 \cdot 95=\mathrm{A} \\
& 8 \cdot 80=2 \mathrm{Q} \\
& \overline{47 \cdot 15}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q} \text {. } \\
& 5 \cdot 5=r \\
& \overline{23575} \\
& 23575 \\
& \text { 3) } \frac{\frac{23575}{259 \cdot 325}}{86 \cdot 441}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r^{\prime}}{3}=\frac{1}{2} \text { area of Section } 2^{\prime} \text {. } \\
& \text { Section 3' After-body. } \\
& \begin{array}{lll}
5 \cdot 0 \\
\cdot 3 \\
\hline 5 \cdot 3 & =\mathrm{A} & \begin{array}{l}
4 \cdot 6 \\
1 \cdot 7 \\
6 \cdot 3
\end{array}=\mathrm{P}
\end{array} \\
& \overline{25 \cdot 2}=4 \mathrm{P} \\
& 5 \cdot 3=\mathrm{A} \\
& 6 \cdot 8=2 \mathrm{Q} \\
& \overline{37 \cdot 3}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q} \\
& \frac{5 \cdot 5}{1865}=r \text {. } \\
& 1865 \\
& \text { 3) } \frac{\overline{205 \cdot 15}}{68 \cdot 38}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r^{\prime}}{3}=\frac{1}{2} \text { area of Section } 3^{\prime} \text {. } \\
& \text { Section } 4^{\prime} \text { After-body. }
\end{aligned}
$$

Section $5^{\prime \prime}$ After-body.

$$
\begin{aligned}
& \begin{array}{cc}
2 \cdot 4 \\
\frac{\cdot 2}{2 \cdot 6}=\mathrm{A} & \begin{array}{c}
2 \cdot 0 \\
\\
\end{array} \begin{array}{c}
2 \cdot 6 \\
2 \cdot 6 \\
4
\end{array}=\mathrm{P}
\end{array} \\
& \frac{4}{10 \cdot 4}=4 \mathrm{P} \\
& 2 \cdot 8=2 \mathrm{Q} \\
& 2 \cdot 6=\mathrm{A} \\
& \overline{15 \cdot 8}=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q} \\
& 5 \cdot 5=r^{\prime} \\
& 790 \\
& 790 \\
& \text { 3) } \\
& \overline{\frac{86 \cdot 90}{28 \cdot 96}}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r^{\prime}}{3}=\frac{1}{2} \text { area of Section } 5^{\prime} .
\end{aligned}
$$

Displacement by horizontal sections of the after-body under the after half-length of the load-water line, or the summation of the horizontal sections of the after-body, $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, and 5^{\prime}, by the formula of the solid, as being equal to

$$
\overline{\mathrm{A}^{\prime}+4 \mathrm{P}^{\prime}+2 \mathrm{Q}^{\prime}} \times \frac{r^{\prime}}{3}
$$

Half areas of the After Horizontal Sections, $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, and 5^{\prime}.

DISPLACEMENT.

By Vertical Sections.

Cubic Feet.
Fore-body (p. 469) 479•11
After-body (p. 471) $498 \cdot 20$
Sum $977 \cdot 30$
Half $\overline{488 \cdot 65}$

By Horizontal Sections.

Cubic Feet.
By Horizontal Sections979•116
By Vertical Sections
$977 \cdot 300$
Difference................... $1 \cdot 816$ cubic feet.

Cubic Feet.

$979 \cdot 49=$ capacity or displacement in cubic feet of space.
The mean weight of salt and fresh water gives 35 cubic feet of space, when filled with water, to be equivalent to a ton avoirdupois; thence the displacement in cubic feet of space being divided by 35 will give the weight of the volume displaced in tons avoirdupois; or 979.49 being divided by 35 gives
5) $979 \cdot 49$
7) $\underline{195 \cdot 898}$
$27 \cdot 985$ tons, the weight of the calculated immersed body in tons.
area of the midship section, or of the greatest transverse SECTION.
Section at 5.

LOAD-WATER LINE.

Area of the load-water line, or area of the assumed deepest plane of immersion, delineated on the half-breadth plan, and marked by the curve AB. From the table of ordinates, p. 467, we have-

$\cdot 4$	$3 \cdot 0$	$5 \cdot 0$
$\cdot 4$	$6 \cdot 0$	$6 \cdot 3$
$\overline{8}=\mathrm{A}$	$6 \cdot 1$	$5 \cdot 4$
	$3 \cdot 7$	$\overline{16 \cdot 7}=\mathrm{Q}$
	$18 \cdot 8=P$	2
	4	$33 \cdot 4=2 Q$
	$75 \cdot 2=4 \mathrm{P}$	
	$\cdot 8=\mathrm{A}$	
	$33 \cdot 4=2 \mathrm{Q}$	
	$109 \cdot 4=\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}$	
	$5 \cdot 5=r^{\prime}$	

3) $\frac{5470}{201 \cdot 70}=\overline{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}} \times \frac{r^{\prime}}{3}=\left\{\begin{array}{l}\frac{1}{2} \text { area of load- } \\ \text { water line. }\end{array}\right.$ $200 \cdot 56=\frac{1}{2}$ area of load-water section in superficial feet. 2
$\overline{401 \cdot 12}=$ area of load-water section, which amount of area being divided by 12 , will give the number of cubic feet of space that would be contained in a zone of that area of an inch in depth, and that result being again divided by 35 , as the number of cubic feet of water equivalent to a ton in weight, will give the number of tons that will immerse the vessel one inch at that line of immersion.
4) $401 \cdot 12=$ area of load-water section in superficial feet.
$5 \longdiv { 3 3 \cdot 4 2 } =$ cubic feet in zone of one inch in depth.
5) $6 \cdot 684$
$\cdot 955=$ tons to the inch of immersion at load-water line.
centre of gravity of the displacement.
Estimated from Section 1, considered as the Initial Plane.

Moments placed in the Rule.

sum of the moments of half the displacement from section 1 , in intervals of space of 5.5 ft . ; and the half displacement in cubic feet by vertical sections is 488.650 (p. 477) cubic ft. ; whence it is found, by dividing the moment $1979 \cdot 208$ by $488 \cdot 650$, that the distance of the centre of gravity of displacement from the section 1 is as follows:-
$488 \cdot 65) 1979 \cdot 208(4.05$ intervals from 1.
$\frac{195460}{246080}$
interval $=5 \cdot 5 \mathrm{ft}$.
$\underline{244325}$

1755 therefore $4.05 \times 5.5=22.27 \mathrm{ft} .=$ distance of the centre of gravity of the calculated immersed body from 1.

DEPTH OF THE CENTRE OF GRAVITY OF THE DISPLACEMENT BELOW THE LOAD-WATER SECTION.

Fore-body. After-body.

Section.	Areas.		Areas	Sum of the Are		мome
$1{ }^{\prime}$	(96.61		(103.95	.200.56 \times		$000 \cdot 000$
2^{\prime}	¢ ¢ 85.708	\%	$86 \cdot 44$. $172 \cdot 148 \times$	$1=$	$172 \cdot 148$
$3 '$	- $66 \cdot 18$	$\dot{\square}$	$68 \cdot 38$.134.56 \times	2	$269 \cdot 12$
$4{ }^{\prime}$	发 46.29	8	$49 \cdot 22$.	$95.51 \times$	+	286.53
$5{ }^{\prime}$	- $27 \cdot 13$		$28 \cdot 96$	$56.09 \times$		$224 \cdot 36$

sum of the moments of the half displacement calculated from the load-water line: the half displacement by horizontal sections is 489.588 (p. 477) cubic feet; the sum of the moments of the half displacement 796.509 ft ., being divided by that quantity, will give the distance in intervals of 92 ft . ; the centre of gravity of displacement is below the load-water line.

DISTANCE OF THE CENTRE OF GRAVITY OF THE AREA OF THE LOADWATER SECTION FROM SECTION 1.

No. of Section.	Ordinates of Seetion 1 from the Table, p. 467.	Distances of them in intervals of 5.5 ft . from Section 1 .	Moments; being the Product of the Areas by the respective Distances.
1	$\cdot 4$	0	000.00
2	3.0	1	- 3.0
3	$5 \cdot 0$	2	$10 \cdot 0$
4	6.0	3	$18 \cdot 0$
5	6.3	4	$25 \cdot 2$
6	$6 \cdot 1$	5	30.5
7	$5 \cdot 4$	6	$32 \cdot 4$
8	3.7	7	25.9
9	$\cdot 4$	8	$3 \cdot 2$

The moments, for summation, put into the rule.

sum of the moments of the half area of the load-water section reckoned from 1 ; the half area of the load-water section is 200.56 feet (p. 478); the distance, therefore, of the centre of gravity of the load-water section from 1 will be found in intervals of space of 5.5 feet, by dividing the sum of these moments by the half area, thas: -

$$
\begin{aligned}
& \frac{80224}{190933} \quad 5.5 \mathrm{ft} \text {. in length. } \\
& 180504 \\
& 10429
\end{aligned}
$$

and $4.09 \times 5.5=22.5 \mathrm{ft}$. gives the distance of the centre of gravity of the load-water section from section 1 of the drawing.

Relative capacities of the bodies immersed under the fore and after lengths of equal division of the load-water line-

By former calculations.
After-body immersed contains........497•79 cubic ft. of space,
Fore-body " " $481 \cdot 70$ cubic ft. of space.

$$
\text { Difference........ } \overline{16 \cdot 09}=
$$

the excess in cubic feet of space of the body displaced under the after half-length of the load-water line over that under the forehalf of the same line-
$\left.\begin{array}{l}\text { Sum of the bodies (by former calculation) or whole } \\ \text { displacement in cubic feet of space (p. 477)...... }\end{array}\right\} 979 \cdot 49$
equal to 9.7949 hundreds of cubic feet of space, whence 16.09 , or the difference between the two bodies in cubic feet, being divided by $9 \cdot 7949$, or the displacement expressed in terms of the hundreds
of cubic feet of space, will give the excess for every hundred cubic feet of the whole displacement.

A measure of the comparative stability of a ship, or the height of the metacentre above the centre of gravity of displacement estimated, from the expression $\frac{2}{3} \int \frac{y^{3} \mathrm{dx}}{\mathrm{D}}$, in which f is the sign of integration and signifies, sum :-
$y=$ the ordinates of the half-breadth load-water section.
$d x=$ the differential increment of the length of load-water section.
$\mathrm{D}=$ displacement of the immersed portion of the body in cubic feet of space.

Cubes placed in 0'Neill's rule for summation of

summation of the cubes of the ordinates of the load-water section; and the height of the metacentre above the centre of gravity of displacement is expressed by $\frac{2}{3} \int \frac{y^{3} \mathrm{dx}}{\mathrm{D}}$, in which expression $y^{3} \mathrm{dx}=$ 5770.75 and $\mathrm{D}=979 \cdot 1$ (p. 477) whence $\frac{2}{3} \times \frac{5770 \cdot 75}{979 \cdot 1}=3.98$ feet is the height of the metacentre above the centre of gravity of the displacement.
resulits of the calculations.
1st Method.
Displacement in cubic feet of space $=979 \cdot 149$.
$\left.\begin{array}{c}\text { Displacement in tons of } 35 \text { cubic } \\ \text { feet of water to a ton............... }\end{array}\right\}=27.974$.
Area of midship section.............. $=41.08$ superficial feet.
$\left.\begin{array}{c}\text { Area of load-water line or plane at } \\ \text { the proposed deepest immersion.. }\end{array}\right\}=401 \cdot 12$ superficial feet.
Tons to one inch of immersion at that flotation
$\}=-955$ tons.
Longitudinal distance of the centre of gravity of displacement from section 1.
Depth of the centre of gravity of displacement below the load-water $\}=1.4904$ feet. section
Distance of the centre of gravity of
the load-water section from verti- $\}=22.5$ feet. cal section 1
...........................

$$
\}=22 \cdot 22 \text { feet }
$$

Relative capacity of the after-body in excess of the fore-body in cubic
$=16.09$
feet of space.
Per-centage on the whole displacement

$$
\}=1 \cdot 06
$$

Height of the metacentre above the centre of gravity of displacement, estimated from the expression $\}=3.98$ feet. $\frac{2}{3} f \frac{y^{3} \mathrm{dx}}{\mathrm{D}}$.
The young naval architect has thus been led through the essential calculations on the immersed portion of a ship considered as a floating body. The term essential has here been used under a knowledge that the table of results might have been swollen to a small volume by a lengthened comparison of the elements of the naval construction, such as the ratio of the area of the midship section to the area of the load-water section, and that of the area of the midship section to the circumscribing parallelogram; data that will always suggest themselves to the mind, and furnish salutary exercise for his judgment, while the introduction of such comparisons into these rudiments might deter the novice from entering

AFTER－BODY．

	$\stackrel{\text { ¢ }}{-}$		\％${ }_{\text {\％}}^{4}$		－연		骨		$\stackrel{\square}{0}$
$\overline{2}$	2.4 1.20	2.0	1.00	$1 \cdot 4$	70	$\cdot 6$	． 30	$\cdot 2$	
Functions of Vertical Areas．									
B	23.15		$20 \cdot 45$		$20 \cdot 40$		11.25		1.80
	Multipliers Ne^{N} for Solid．－-		\cdots		\cdots		\cdots		－
C			¢		¢ֻ1				$\stackrel{¢}{9}$
	＊		15		\bullet				∞
			荡 药		洓		$\stackrel{8}{\square}$		－

8.86
$\left.r=\begin{array}{c}\text { Function } \\ \text { of the } \\ \text { Solid．}\end{array}\right\} \stackrel{110.77}{=}$ feet．
$r^{\prime}=5.5$ feet．
on a task that would thence seem to be involved in such voluminous results. For the second method of calculation, the table of ordinates is in two portions, viz. the fore and after-bodies under the division of the load-water section into two equal parts, the length of such section being restricted to the distance from the fore-edge of the rabbet of the stem to the after-edge of the rabbet of the post. The enlarged tables are shown at pages 484 and 485 , and the directions for the working of these tables have been given at page 459, observing only that the ordinates have not been herein inserted in red, as it was there suggested, to insure perspicuity and accuracy.

Results from the tables.

By modified rule. Area $=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \frac{2 r}{3}$
$\left.\begin{array}{l}\text { And solid }=\text { areas for ordinates } \\ \text { summed by rule }\end{array}\right\}=\left\{\begin{array}{c}\mathrm{A}^{\prime} \\ 2\end{array}+2 \mathrm{P}^{\prime}+\mathrm{Q}^{\prime}\right\}+\frac{2 r^{\prime}}{3}$
Functions of the areas marked $B=\left\{\frac{A}{2}+2 P+Q\right\}$
Function of the solid equal to B, placed in O'Neill's rules $=$ $\mathrm{A}^{\prime}+2 \mathrm{P}^{\prime}+\mathrm{Q}^{\prime}=\mathbf{E}$
Whence displacement $=\mathrm{E} \times \frac{2 r}{3} \times \frac{2 r^{\prime}}{3}$, in the example $r=.92$ $r^{\prime}=5 \cdot 5$.

Therefore $\frac{1}{2}$ displacement $=\mathrm{E} \times \frac{2 r}{3} \times \frac{2 r^{\prime}}{3}=\mathrm{E} \times \frac{1.84}{3} \times \frac{11}{3}=$ $\mathrm{E} \times \frac{20 \cdot 24}{9}$.
value of E from the tables by vertical sections. Table $1 . . .106 \cdot 50=$ submultiple of the fore-body by vertical sections. Table $2 . . .110 \cdot 77=\quad$ " after-body

$$
\overline{217 \cdot 27}=\text { sum of the submultiples }=\mathbf{E}
$$

$\frac{1}{2}$ displacement $=\mathrm{E} \times \frac{20 \cdot 24}{9}=\frac{217 \cdot 27 \times 20 \cdot 24}{9}=24 \cdot 14 \times 20 \cdot 24=$
$488 \cdot 5936=\frac{1}{2}$ solid of displacement by the summation of the 2 vertical areas given in cubic feet of space.
$5) \overline{977 \cdot 1872}$
7) $\overline{\frac{195 \cdot 4374}{27 \cdot 92}}=$ Displacement by vertical sections in tons of 35 cubic feet of space.
value of \mathbf{E} from the tables by horizontal sections.
Table 1...106.50 $=$ submultiple of the fore-body by horizontal sections.
Table $2 \ldots .110 \cdot 75=$ submultiple of the after-body by horizontal sections.
From whence the same results will be obtained.

AREA OF MIDSHIP SECTION.

From table $1 . . .28 \cdot 15=$ submultiple of the area of Section 5. $1 \cdot 84=2 r$

11260
22520
2015
3) $51 \cdot 7960$
$17 \cdot 265=\frac{1}{2}$ area of upper space of midship section.
$3 \cdot 275=\frac{1}{2}$ area of the lower " " below $d d$,
$20.540=\frac{1}{2}$ area of midship section.
2
$41.08=$ area of midship section.
area of the load-water line.
From table $1 \ldots 26 \cdot 35=$ submultiple of the area of the fore-body.
From table $2 \ldots 28 \cdot 35=$ " \quad. after-body.
$54 \cdot 70=$ submultiple for $\frac{1}{2}$ area of load-water line. $11=2 r^{\prime}$
3) $601 \cdot 7$

$$
\overline{200 \cdot 56}=\frac{1}{2} \text { area }=\bar{A}+2 \mathrm{P}+\mathrm{Q} \times \frac{2 r^{\prime}}{3}
$$

12) $401 \cdot 12=$ area of load-water line.
13) $33 \cdot 42$
14) $6 \cdot 684$
$\cdot 955=$ tons per inch of immersion at the loadwater line.
position of the centre of gravity of displacement.
By table $2 . . .878 \cdot 86=$ moments from Section 1.
and $\mathrm{E}217 \cdot 27=$ corresponding function of the displacement.
$217 \cdot 27) 878 \cdot 86(\cdot 404$ intervals of 5.5 feet, giving $4.04 \times$ $869.08 \quad 5 \cdot 5=22 \cdot 22$ feet as the distance of the centre of gravity of the displacement from Section 1.
86908
10892

DEPTH OF THE CENTRE OF GRAVITY OF THE DISPLACEMENT BELOW THE LOAD-WATER. SECTION.
By table $2 . . .353 \cdot 72=$ moments from load-water line.
and $\mathrm{E} \cdot217 \cdot 25=$ corresponding function of the displacement. $217 \cdot 25) 353.72(1.62$ intervals of 92 feet, giving $1.62 \times$ $217 \cdot 25 \quad .92=1 \cdot 4904$ as the distance that $\overline{136 \cdot 470}$ the centre of gravity of displace$130 \cdot 350$ ment is below the load-water line.

61200
43450
17750
POSITION OF THE CENTRE OF GRAVITY OF THE LOAD-WATER LINE OF DEEPEST IMMERSION.
From table 1....... $26 \cdot 35 \mathrm{ft}$. From table 2...224.000 $=$ moments " $228 \cdot 35 \quad$ from 1st section.
Function for area.. $\overline{54 \cdot 7}$) $224 \cdot 0$ ($4 \cdot 09$ intervals of 5.5 feet, giving $218.8 \quad 4.09 \times 5.5=22.495$ feet 5200 as the distance that the 4923 centre of gravity of the . 277 load-water section is from vertical section 1.

[^4]> From table $1 \ldots$ Function for the fore-solid...... $106 \cdot 50$ From table $2 \ldots$ Function for the after-solid.....110.75 $4 \cdot 25$

Sum of the functions...... $217 \cdot 25$
The difference, $4 \cdot 25$ feet, expresses the excess in cubie feet of space of the body, displaced under the after half-length of the load-water line, over that under the fore half-length of the same line, and the sum of the functions, $217 \cdot 25$, is equal to $2 \cdot 1725$ hundreds of cubic feet of space; whence, 4.25 feet, or the difference between the functions for the two bodies, being divided by the function $2 \cdot 1725$, or the function for the displacement of the calculated body expressed in terms of hundreds of cubic feet of space, will give the excess for every hundred cubic feet of that displacement:

Function of DisplaceDisplace ment.		
$2 \cdot 1725) 4 \cdot 25000$ (1.9 ratio of the excess of the after-		
	2•1725	body of calculation over the
	207750	fore-body of the same, de-
	195525	noted by a per-centage of the
	$\cdot 12225$	

height of the metacentre above the centre of gravity of DISPLACEMENT.
From table 2...The summation of the functions?
of the cubes of the ordinates for the value of $\}=1573 \cdot 843$. the $\int y^{3} \mathrm{dx}$.
The corresponding function for the solid.......... $=217 \cdot 25$.
from whence the height of the metacentre above the centre of gravity of displacement, expressed by $\frac{2}{3} f \frac{y^{3} \mathrm{dx}}{\mathrm{D}}$ is as follows :

$$
\begin{aligned}
& f y^{3} \mathrm{dx}=1573.843 \times \frac{2 r^{\prime}}{3} \text { where } r^{\prime}=5.5 \text { feet }= \\
& \frac{1573 \cdot 843 \times 11}{3}=\frac{17312.273}{3}=5770.75 \text { feet. }
\end{aligned}
$$

(Pa.ge 485) $217.27 \times \frac{2 r}{3} \times \frac{2 r^{\prime}}{3}=\frac{1}{2}$ displacement $=488.5936$ feet, whence displacement or $\mathrm{D}=977 \cdot 1872$; and thence $\frac{2}{3} f \frac{y^{3} \mathrm{dx}}{\mathrm{D}}=\frac{2}{3} \times \frac{5770 \cdot 75}{977 \cdot 1872}=\frac{11541.53}{2931.5616}=3.98$ feet.

RESULTS OBTAINED UNDER THE TWO METHODS OF CALCULATION
CONTRASTED.

	Old Method. $979 \cdot 139$	Second Method. $977 \cdot 187$
Displacement in tons of 35 cubic feet		
of water to a ton......................	$27 \cdot 985$	27.92
	Superficial ft .	Superficial it.
Area of midship section	41.08	41.08
Area of load-water line or plane at		$401 \cdot 12$
Tons to one inch of immersion at line of flotation.	-9526 tons.	-955 tons.
Longitudinal distance of the centre of gravity of the displacement from section 1 \qquad	$22 \cdot 22 \mathrm{f}$	$22 \cdot 22 \mathrm{ft}$.
Depth of the centre of gravity of displacement below the load-water sec-		
tion......	$1 \cdot 4812 \mathrm{ft}$.	1.4904 ft .
Relative capacities of the bodies.	$1 \cdot 6$ per cent.	$1 \cdot 9$ per ct.
Height of the metacentre above the centre of gravity of displacement...	$3 \cdot 98 \mathrm{ft}$.	3.98

THIRD METHOD OF CALCULATION.
CALCULATIONS ON THE DRAUGHT OF THE YACHT OF 36 TONS USING THE CURVE OF SECTIONAL AREAS.
The load-water line $A B$, in the sheer plan, is divided into two equal parts at the point C, and those equal parts are again subdivided at the points D and E; at the points C, D, and E,
SHEER PLAN.

Ordinates.

$$
\begin{aligned}
& \mathrm{RH}=\mathbf{2} \cdot \mathbf{4} \text { feet. } \\
& \mathrm{QI}=4 \cdot 1 \text { " } \\
& \mathrm{PK}=2 \cdot 45 \text { " } \\
& \mathrm{DN}=5.8 \text { feet. } \\
& \\
& I G=22 \text { feet. } \\
& \begin{array}{ll|l}
\mathrm{CM}=5 \cdot 0 & \text { " } & \mathrm{FG}=44 \\
\mathrm{EO}=4 \cdot 2 & \text { " } & \mathrm{FI}=22
\end{array} \\
& \begin{array}{l}
\mathrm{QQ}=22 \cdot 37 " \\
\mathrm{FQ}=22.37
\end{array}
\end{aligned}
$$

thus obtained, the transverse vertical sections of the vessel ${ }^{\prime}$ are delineated.

The length of the load-water line from the fore edge of the rabbet of the stem B, to the after edge of the rabbet of the post A, is next drawn below and parallel to the base line SF of the sheer plan; this line, FG, becomes the base line of the curve of the sectional areas. The common sections of the transverse vertical sections of C, D, and E , (which will be straight lines, with this horizontal and longitudinal plan, are drawn from their respective points of division, H, I, and K, in half-breadth plan. The areas of these transverse vertical sections at D, C, and E , are then calculated, as before, thus :-

$$
\begin{aligned}
& \text { Area }=\{\mathrm{A}+4 \mathrm{P}+2 \mathrm{Q}\} \times \frac{r}{3}=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3} ; \text { or }, \\
& \text { Area }=\{\mathrm{A}+2 \mathrm{P}+3 \mathrm{Q}\} \times \frac{3}{8} r=\left\{\frac{\mathrm{A}}{2}+\mathrm{P}+1 \cdot 5 \mathrm{Q}\right\} \times \frac{3}{4} r
\end{aligned}
$$

Half Area of Transverse Vertical Section, at C, by Rule 1,

$$
\text { or, } \frac{1}{2} \text { Area }=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3}
$$

1st. ...6.3
Last... 2
2) $6 \cdot 5$

$$
\overline{3 \cdot 25}=\frac{A}{2}
$$

2d ... $6 \cdot 0$
4th...2•3
$\frac{8 \cdot 3}{2}=P$

$$
\overline{16 \cdot 60}=2 P
$$

$$
3.25=\frac{\mathrm{A}}{2}
$$

$$
4 \cdot 80=Q
$$

$$
24 \cdot 65=\overline{\frac{A}{2}+2 P+Q}
$$

$$
\cdot 83=\frac{2 r}{3}
$$

7395
19720

$$
\begin{array}{r}
\overline{20 \cdot 4595}=\overline{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}} \times \frac{2 r}{3}=\frac{1}{2} \text { area } \\
\text { of section } \mathrm{C} \text { in feet. }
\end{array}
$$

CM , or depth $=5 \cdot 0$ feet, whence $\frac{\mathrm{CM}}{4}$, or $\frac{5 \cdot 0}{4}=1 \cdot 25=r=$ distance between the ordinates, and $\frac{2 r}{3}=\frac{2 \times 1 \cdot 25}{3}=\frac{2 \cdot 5}{3}=.83$ feet.

Half Area of Section C, by Rule 2,

1st. ...6.3

$$
\text { or, } \frac{1}{2} \text { area }=\left\{\frac{\mathrm{A}}{2}+\mathrm{P}+1.5 \mathrm{Q}\right\} \times \frac{3}{4} r .
$$

Last... •2
$\frac{2 \overline{6 \cdot 5}}{3 \cdot 25}=\frac{A}{2}$

$$
P=0
$$

$$
5 \cdot 6 \quad 2 \mathrm{~d}
$$

$$
3 \cdot 053 \mathrm{~d} .
$$

$$
8 \cdot 65=Q
$$

$$
4 \cdot 32=\frac{1}{2} \mathrm{Q} .
$$

$$
12 \cdot 97=1.5 \mathrm{Q}
$$

$$
\begin{aligned}
&\left.\begin{array}{r}
3 \cdot 25 \\
12 \cdot 97 \\
16 \cdot 22
\end{array}\right\}=\frac{\mathrm{A}}{2}+\mathrm{P}+1.5 \mathrm{Q} \\
&4) \frac{5}{\frac{51}{1 \cdot 10}} \\
& \frac{20 \cdot 275}{20}=3 r=\mathrm{CM}=5 \cdot 0 \text { feet. } \\
& \text { area }=\frac{\mathrm{A}}{2}+\mathrm{P}+1.5 \mathrm{Q}
\end{aligned} \times \frac{3}{4} r .
$$

Half Area of the Transverse Vertical Section at E.

$$
\begin{aligned}
\begin{array}{l}
\text { 1st. } \ldots .5 \cdot 0 \\
\text { Last... } 2
\end{array} & \begin{aligned}
& 2 \mathrm{~d} . \ldots 4 \cdot 2 \\
& 4 \text { th. } \frac{.1 \cdot 7}{5 \cdot 9}=\mathrm{P} \\
&2) \\
& \frac{5 \cdot 2}{2 \cdot 6}
\end{aligned}=\frac{\mathrm{A}}{2}
\end{aligned} \quad 3 \mathrm{~d} . . .2 \cdot 9=\mathrm{Q}
$$

EO, or depth $=4.2$ feet, whence $\frac{\mathrm{EO}}{4}=\frac{4 \cdot 2}{4}=1.05=r=$ distance between the ordinates, and $\frac{2 r}{3}=\frac{1 \cdot 05 \times 2}{3}=\frac{2 \cdot 1}{3}=\cdot 7$ feet; therefore,

$$
\text { Area }=\left\{\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3}=17 \cdot 3 \times 7=12 \cdot 11=\text { half }
$$ area of transverse vertical section at E.

Half Area of the Transverse Vertical Section at D.

$$
\begin{aligned}
& \text { 1st. ...5•40 } \\
& \text { 2d. ... } 3 \cdot 5 \\
& \text { Last...9•2 } \\
& \text { 2) } \overline{5 \cdot 6} \\
& \frac{5 \cdot 6}{2 \cdot 8}=\frac{A}{2} \\
& \text { 4th. } \ldots .0 \cdot 7 \\
& \text { - } \frac{2}{8 \cdot 4}=2 \mathrm{P} \\
& 2.8=\frac{A}{2} \\
& \begin{aligned}
1 \cdot 46 & =\mathrm{Q} \\
12 \cdot 66 & =\frac{\mathrm{A}}{2}+2 \mathrm{P}+\mathrm{Q}
\end{aligned}
\end{aligned}
$$

DN, or depth $=5.8$ feet, whence $\frac{\text { DN }}{4}=\frac{5.8}{4}=1.45$ feet $=$ $r=$ distance between the ordinates, and $\frac{2 r}{3}=\frac{2 \times 1.45}{3}=\frac{2.9}{3}=$ -97 feet; therefore,

$$
\text { Area }=\left\{\frac{\mathrm{A}}{2} 2+\mathrm{P}+\mathrm{Q}\right\} \times \frac{2 r}{3}=12.66 \times \cdot 97=12.28 \text { feet }=
$$ half area of transverse vertical section at D .

Half Areas of the Transverse Vertical Sections.

At $\left\{\begin{array}{l}\mathrm{E}=12 \cdot 11 \\ \mathrm{C}=20 \cdot 20 \\ \mathrm{D}=12 \cdot 28\end{array}\right\} \begin{gathered}\text { Divided by } 5 \text { as the depth assumed for }\end{gathered}\left\{\begin{array}{l}2 \cdot 42 \\ \text { of sene, give the ordinates for the curve }\end{array}\left\{\begin{array}{l}4 \cdot 04 \\ 2 \cdot 45\end{array}\right.\right.$ of which 2.42 is set off from H as $\mathrm{HR}, 4.04$ feet from I as IQ, and 2.45 feet from K as KP; the curve IRQPG, passing through the extremities P, Q, and R of the ordinates $P K, Q I$, and $R H$, is the curve bounding the area of a zone, which, to the depth of 5 feet for a solid, will give in cubic feet of space the half displacement of the immersed body, or the displacement of the yacht to the line AB of proposed deepest immersion.

To measure this representative area, and from thence the solid, join the points Q, G, and I by the straight lines $Q G, Q F$, dividing the curvilinear area FRQPGF into the two triangles QGI, QFI, and the two areas GPQG, FRQF. The triangles by construction are equal, and the area of each one of them is equivalent to $\frac{\mathrm{GI} \times \mathrm{QI}}{2}$, or the whole area GQFIG $=\frac{\mathrm{GI} \times \mathrm{QI}}{2} \times 2=\mathrm{GI} \times \mathrm{QI}$ or $\mathrm{FI} \times \mathrm{IQ}$, . FI being equal to IG , each being the half-length of the same element, the load-water line or line of deepest immersion. The areas QPGQ, QRFQ, are bounded by the curve lines QPG, QRF, which are assumed as portions of common parabolas, and under such an assumption their respective areas are equal to $\frac{2}{3}$ of the circumscribing parallelograms, or the area QPGQ $=\frac{2}{3}$ of GQ $\times x$, and the area FRQF $=\frac{2}{3}$ of $\mathrm{FQ} \times x^{\prime}$, where x and x^{\prime} are the greatest perpendiculars that can be drawn from the bases $Q G$ and $Q F$ to meet the curves $Q P G, Q R F$.

DISPLACEMENT.

AB by a scale of parts $=44$ feet, whence FI or IG equal $\frac{\mathrm{AB}}{2}=\frac{44}{2}$ feet $=22$ feet; ordinate QI of the medial section $=$ 4.04 feet; and $Q G=F Q$, being the respective hypothenuses of the equal triangles QGI, QFI, are each equal to $\sqrt{\mathrm{IG}^{2}+\mathrm{QI}^{2}}=$ $\sqrt{22^{2}}+\overline{4 \cdot 04^{2}}=\sqrt{484+16 \cdot 32}=\sqrt{500 \cdot 32}=22 \cdot 37$ feet; and x, by measurement with a scale of parts, $=6$ foot, and x^{\prime} also $\cdot 6$ foot, from which the half displacement in cubic feet of space will be obtained as follows:-

Area $\mathrm{FQGIF}=\mathrm{GI} \times \mathrm{IQ}$.
$\left.\begin{array}{r}\text { Solid under the } \\ \text { area FQGIF }\end{array}\right\}=\mathrm{GI} \times \mathrm{IQ} \times 5=22 \times 4 \cdot 1 \times 5=451.00$
Area QPGQ $=\frac{\pi}{3}$ of $\mathrm{GQ} \times x$
$\left.\begin{array}{r}\text { Solid under the } \\ \text { area QPGQ }\end{array}\right\}=\frac{2}{8}$ of $G Q \times x \times 5=\frac{2}{3} \times 22 \cdot 37 \times 6 \times 5=44.74$
Area FRQF $=\frac{2}{3}$ of $\mathrm{FQ} \times x^{\prime}$
$\left.\begin{array}{r}\text { Solid under the } \\ \text { area } \mathrm{FRQF}\end{array}\right\}=\frac{2}{3}$ of $\mathrm{FQ} \times x^{\prime} \times 5=\frac{2}{3} \times=22 \cdot 37 \times \cdot 6 \times 5=\frac{44 \cdot 74}{540 \cdot 48}$
or area of the triangle $\mathrm{QGI}+$ area of the triangle $\mathrm{QFI}+$ area of the space $Q P G Q$ + area of the space $\mathrm{FRQF}=$ to the representative area FRQPG, which being multiplied by the assumed depth of 5 feet for the zone of half displacement gives $540 \cdot 48$ cubic feet of space, which divided by 35 , as the number of such cubic feet that are equivalent to one ton of medium water, gives
3) $540 \cdot 48$
7) $108 \cdot 09$

$$
15 \cdot 44 \text { tons for half displacement }
$$

and that the whole weight of the body is equal to $15.54 \times 2=$ 30.88 tons $=$ displacement to the line of proposed deepest immersion AB .

RELATIVE CAPACITIES OF THE BODIES IMMERSED UNDER THE FORE AND AFTER HALE-LENGTHS OF THE LOAD-WATER LINE, AS GIVEN BY THE DELINEATED CURVE OF SECTIONAL AREAS.
The triangles QGI and QFI being equal, the relative capacities of the fore and after-bodies will be determined by the proportion that the area QPGI bears to the area QRFI; and as these areas involve two equal terms, or that the base $F Q=$ the base $Q G$, it follows, that the relation of these areas to each other will be expressed by the proportion that the perpendiculars x and x^{\prime} bear to each other. In the example given, the fore and after-bodies, or the displacements under the fore and after half-lengths of the loadwater $\AA \mathrm{B}$, are equal; as the perpendiculars x and x^{\prime} taken from the diagram, on a scale of equal parts, are each 6 of a foot.

The area of the midship section is denoted relatively by the medial ordinate of the curve of sections QI, and the full amount of it is obtained by multiplying the function QI by the depth of the zone M. In the example:
$\mathrm{M}=5 ; \mathrm{QI}=4.04$; then half area of medial section $=4.04 \times 5$

TABLES OF LOGARITHMS.

No.	Log.	$\begin{aligned} & \text { Prup. } \\ & \text { Part. } \end{aligned}$	No.	Log.	$\begin{array}{\|l\|} \hline \text { Prop. } \\ \text { Part. } \end{array}$	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	Prop. 1'art.
1000	000000		1060	025306		1120	049218		1180	071882	
1	000434	43	1	025715	41	1	049606	39	1	072250	37
2	000868	86	2	026124	82	2	049993	77	2	072617	73
3	001301	130	3	026533	122	3	050380	116	3	072985	110
4	001734	173	4	026942	163	4	050766	154	4	073352	147
5	002166	216	5	027350	204	5	051152	193	5	073718	183
6	002598	259	6	027757	245	6	051538	232	6	074085	220
7	003029	303	7	028164	286	7	051924	270	7	074451	256
8	003460	346	8	028571	326	8	052309	309	8	074816	293
9	003891	389	9	028978	367	9	052694	347	9	075182	330
1010	004321		1070	029384		1130	053078		1190	075547	
1	004751	43	1	029789	40	1	053463	38	1	675912	36
2	005180	86	2	030195	81	2	053846	77	2	076276	73
3	005609	128	3	030600	121	3	054230	115	3	076640	109
4	006038	171	4	031004	162	4	054613	153	4	077004	145
5	006466	214	5	031408	202	5	054996	191	5	077368	181
6	006894	257	6	031812	242	6	055378	230	6	077731	218
7	007321	300	7	032216	283	7	055760	268	7	078094	254
8	007748	343	8	032619	323	8	056142	306	8	078457	290
9	008174	385	9	033021	364	9	056524	345	9	078819	327
1020	008600		1080	033424		1140	056905		1200	079181	
1	009026	4:	1	033826	40	1	057286	38	1	079543	36
2	009451	85	2	0342:27	80.	2	057666	76	2	079904	72
3	009876	127	3	034628	120	3	058046	114	3	080266	108
4	010300	170	4	035029	160	4	058426	152	4	080626	144
5	010724	212	5	035430	200	5	058805	190	5	080987	180
6	011147	254	6	035830	240	6	059185	228	6	081347	216
7	011570	297	7	036229	280	7	059563	266	7	081707	252
8	011993	339	8	036629	321	8	059942	304	8	082067	288
9	012415	382	9	037028	361	9	060320	342	9	082426	324
1030	012837		1090	037426		1150	060698		1210	082785	
1	013259	42	1	037825	40	1	061075	38	1	083144	36
2	013680	84	2	038223	79	2	061452	75	2	083503	71
3	014100	126	3	038620	119	3	061829	113	3	083861	107
4	014520	168	4	039017	159	4	062206	160	4	084219	143
5	014940	210	5	039414	198	5	062582	188	5	084576	179
6	015360	252	6	039811	238	6	062958	226	6	084934	214
7	015779	294	7	040207	278	7	063333	263	7	085291	250
8	016197	336	8	040602	318	8	063709	301	8	085647	286
9	016615	378	9	040998	357	9	064083	338	9	086004	322
1040	017033		1100	041393		1160	064458		1220	086360	
1	017451	42	1	041787	39	1	064832	37	1	086716	35
2	017868	83	2	042182	79	2	065206	75	2	087071	71
3	018284	125	3	042575	118	3	065580	112	3	087426	106
4	018700	166	4	042969	157		065953	149	4	087781	142
5	019116	208	5	043362	196	5	066326	186	5	088136	177
6	019532	250	6	043755	236	6	066699	224	6	088490	213
7	019947	291	7	044148	275	7	067071	261	7	088845	248
8	020361	333	8	044540	314	8	067443	298	8	089198	284
9	020775	374	9	044931	354	9	067814	336	9	089552	319
1050	021189		1110	045323		1170	068186		1230	089905	
1	021603	41	1	045714	39	1	068557	37	1	090258	35
	022016	82	2	046105	78	2	068928	74	2	090611	70
3	022428	124	3	046495	117	3	069298	111	3	090963	106
4	022841	165	4	046885	156	4	069668	148	4	091315	141
5	023252	206	5	047270	195	5	070038	185	5	091667	176
6	023664	247	6	047664	234	6	070407	222	6	092018	211
7	024075	288	7	018038	273	7	070776	259	7	092370	246
8	024486	330	8	048442	312	8	071145	296	8	092721	282
9	024896	371		048830	351	9	071514	333	9	093071	317

No.	Log.	${ }_{\text {Prop. }}^{\text {Part: }}$	\%.	Log.	$\left\lvert\, \begin{aligned} & \text { Prop. } \\ & \text { Part. }\end{aligned}\right.$	No.	Log.	Prop.	No.	Log.	Prop. Part.
1240	093422		1300	113943		1360	133539		1420	152288	
	093772	35		114277	33		133858	32		152594	30
2	094122	70	2	114611	67	2	134177	64	2	152900	61
3	094471	105	3	114944	100	3	134496	96	3	153205	91
4	094820	140	4	115278	133	4	134814	127	4	153510	122
5	095169	175	5	115610	167	5	135133	159	5	153815	152
6	095518	210	6	115943	200	6	135451	191	6	154119	183
7	095866	245	7	116276	233	7	135768	223	7	154424	213
8	096215	280	8	116608	267	8	136086	255	8	154728	244
9	096562	315	9	116940	300	9	186403	287	9	155032	274
1250	096910		1310	117271		1370	136721		1430	155336	
	097257	35	1	117603	33		137037	32		155640	30
2	097604	69	2	117934	66	2	137354	63	2	155943	60
3	097951	104	3	118265	99	3	137670	94	3	156246	91
4	098297	138	4	118595	132	4	137987	126	4	156549	121
5	098644	173	5	118926	165	5	138303	158	5	156852	151
6	098990	208	6	119256	198	6	138618	189	6	157154	181
7	099335	242	7	119586	231	7	138934	221	7	157457	211
8	099681	277	8	119915	264	8	139249	252	8	157759	242
9	100026	311	9	120245	297	9	139564	284	9	158061	272
1260	100370		1320	120574		1380	139879		1440	158362	
	100715	34		120903	33		140194	31		158664	30
2	101059	69	2	121231	66	2	140508	63	2	158965	60
3	101403	103	3	121560	98	3	140822	94	3	159266	90
4	101747	137	4	121888	131	4	141136	125	4	159567	120
5	102090	172	5	122216	164	5	141450	157	5	159868	150
6	102434	206	6	122543	197	6	141763	188	6	160168	180
7	102777	240	7	122871	230	7	142076	219	7	160468	210
8	103119	275	8	123198	262	8	142389	251	8	160769	240
9	103462	309	9	123525	295	9	142702	282	9	161068	270
1270	10380		1330	123852		1390	143015		1450	161368	
1	10414	34	1	124178	33	1	143327	1	1	161667	30
2	104487	68	2	124504	65	2	143639	62	2	16196	60
3	104828	102	3	124830	98	3	143951	93	3	162266	89
4	105169	136	4	125156	130	4	144263	125	4	162564	119
5	105510	170	5	125481	163	5	144574	156	5	162863	149
6	105851	204	6	125806	195	6	144885	187	6	163161	179
7	106191	238	7	126131	228	7	145196	218	7	163460	209
	106531	272	8	126456	260	8	145507	249	8	163757	239
9	106870	306	9	126781	293	9	145818	280	9	164055	269
1280	107210		1340	127105		1400	146128		1460	164353	
1	107549	34	1	127429	32	1	146438	31		164650	30
2	107888	67	2	127752	65	2	146748	62	2	164947	59
3	108227	101	3	128076	97	3	147058	93	3	165244	89
4	108565	135	4	128399	129	4	147367	124	4	165541	119
5	108903	169	5	128722	161	5	147676	155	5	165838	148
6	109241	203	6	129045	194	6	147985	186	6	166134	178
7	109578	237	7	129368	226	7	148294	217	7	166430	207
8	109916	270	8	129690	258	8	148603	248	8	166726	237
9	11025	304	9	130012	291	9	148911	279	9	167022	267
1290	110590		1350	130334		1410	149219		1470	167317	
. 1	110926	34	1	130655	32	1	149527	31	1	167613	29
2	111262	67	2	130977	64	2	149835	61	2	167908	59
8	111598	101	3	131298	96	3	150142	92	3	168203	88
	111934	134	4	131619	128	4	150449	123	4	168497	118
5	112270	168	5	131939	160	5	150756	154	5	168792	147
	112605	201	6	132260	192	6	151063	184	6	169086	177
	112940	235	7	132580	224	7	151370	215	7	169380	206
8	113275	268	8	132900	256	8	151676	246	8	169674	236
9	11360	302		13	28	9	151982	277	9	169968	26

No.	Log.	Prop.	No.	Log.	Prop. Part.	No.	Log.	$\left\lvert\, \begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}\right.$	No.	Log.	Prop. Part.
1480	170262		1540	187521		1600	204120		1660	220108	
1	170555	29	1	187803	28	1	204391	27	1	220370	26
2	170848	58	2	188084	56	2	204662	54	2	220631	52
3	171141	88	3	188366	84	3	204933	81	3	220892	78
4	171434	117	4	188647	113	4	205204	108	4	221153	104
5	171726	146	5	188928	141	5	205475	135	5	221414	130
6	172019	175	6	189209	169	6	205745	162	6	221675	157
7	172311	204	7	189490	197	7	206016	189	7	221936	183
8	172608	234	8	189771	225	8	206286	216	8	222196	209
9	172895	263	9	190051	253	9	206556	243	9	222456	235
1490	173186		1550	190332		1610	206826		1670	222716	
1	173478	29	1	190612	28	1	207095	27	1	222976	26
2	173769	58	2	190892	56	2	207365	54	2	223236	52
3	174060	87	3	191171	84	3	207634	81	3	223496	78
4	174351	116	4	191451	112	4	207983	108	4	223755	104
5	174641	145	5	191730	140	5	208172	135	5	224015	130
6	174932	175	6	192010	168	6	208441	162	6	224274	156
7	175222	204	7	192289	196	7	208710	188	7	224533	182
8	175512	233	8	192567	224	8	208978	215	8	224792	208
9	175802	261	9	192846	252	9	209247	241	9	225051	234
1500	176091		1560	193125		1620	209515		1680	225309	
1	176381	29	1	193403	28	1	209783	27	1	225568	26
2	176670	58	2	193681	56	2	210051	54	2	225826	52
3	176959	86	3	193959	83	3	210318	80	3	226084	77
4	177248	115	4	194237	111	4	210586	107	4	226342	103
5	177536	144	5	194514	139	5	210853	134	5	226600	129
6	177825	173	6	194792	166	6	211120	161	6	226858	155
. 7	178113	202	7	195069	194	7	211388	187	7	227115	181
8	178401	231	8	195346	222	8	211654	214	8	227372	206
9	178689	259	9	195623	250	9	211921	240	9	227630	232
1510	178977		1570	195900		1630	212188		1690	227887	
1	179264	29	1	196176	27	1	212454	27	1	228144	26
2	179552	57	2	196452	55	2	212720	53	2	228400	51
3	179839	86	3	196729	83	3	212986	80	3	228657	77
4	180126	115	4	197005	110	4	213252	106	4	228918	102
5	180413	144	5	197281	138	5	213518	133	5	229170	128
6	180699	172	6	197556	166	6	213783	159	6	229426	154
7	180986	201	7	197832	193	7	214049	186	7	229682	179
8	181272	230	8	198107	221	8	214314	212	8	229938	205
9	181558	258	9	198382	248	9	214579	239	9	230193	231
1520	181844		1580	198657		1640	214844		1700	230449	
1	182129	28	1	198932	27	1	215109	26	1	230704	25
2	182415	57	2	199206	55	2	215373	53	2	230960	51
3	182700	86	3	199481	82	3	215638	79	3	231215	76
4	182985	114	4	199755	110	4	215902	106	4	231470	102
5	183270	143	5	200029	137	5	216166	132	5	231724	127
6	183554	171	6	200303	164	6	216430	158	6	231979	153
7	183839	200	7	200577	192	7	216694	185	7	232233	178
8	184123	228	8	200850	219	8	216957	211	8	232488	204
9	184407	256	9	201124	247	9	217221	238	9	232742	229
1530	184691		1590	201397		1650	217484		1710	232996	
1.	184975	28	1	201670	27	1	217747	26	1	233250	25
2	185259	57	2	201943	54	2	218010	52	2	233504	51
3	185542	85	3	202216	82	3	218273	79	3	233757	76
4	185825	113	4	202488	109	4	218535	105	4	234011	101
5	186108	142	5	202761	136	5	218798	131	5	234264	127
6	186391	170	6	203033	163	6	219060	157	6	234517	152
7	186674	198	7	203305	191	7	219322	183	7	234770	177
8	186956	227	8	203577	218	8	219584	210	8	235023	202
9	187239	255	9	203848	245	9	219846	236	9	235276	228

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{array}{\|l} \text { Prop. } \\ \text { Part. } \end{array}$	No.	Log.	Prop.
1720	235528		1780	250420		1840	264818		1900	278754	
	235781	25	1	250664	24	1	265054	23	1	278982	23
2	236033	50	2	250908	49	2	265290	47	2	279210	5
3	236285	76	3	251151	73	3	265525	70	3	279439	68
4	236537	101	4	251395	97	4	265761	94	4	279667	91
5	236789	126	5	251638	121	5	265996	117	5	279895	114
6	237041	151	6	251881	146	6	266232	141	6	280123	137
7	237292	176	7	252125	171	7	266467	164	7	280351	160
8	237544	202	8	252367	195	8	266702	188	8	280578	182
9	237795	227	9	252610	219	9	266937	211	9	280806	205
1730	238046		1790	252853		1850	267172		1910	281033	
1	238297	25	1	253096	24	1	267406	23	1	281261	23
2	238548	50	2	253338	48	2	267641	47	2	281488	45
3	238799	75	3	253580	73	3	267875	70	3	281715	8
	239049	100		253822	97	4	268110	94	4	281942	91
5	239299	125	5	254064	121	5	268344	117	5	282169	113
6	239550	150	6	254306	145	6	268578	141	6	282395	136
7	239800	175		254548	170		268812	164	7	282622	159
8	240050	200	8	254790	194	8	269046	188	3	282849	181
9	240300	225	9	255031	218	9	269279	211	9	283075	204
1740	240549		1800	255273		1860	269513		1920	283301	
1	240799	25	1	255514	24	1	269746	23	1	283527	23
2	241048	50	2	255755	48	2	269980	47	2	283753	5
3	241297	75	3	255996	72	3	270213	70	3	283979	68
4	241546	100	4	256236	96	4	270446	93	4	284205	90
5	241795	124	5	256477	120	5	270679	116	5	284431	118
6	242044	149	6	256718	144	6	270912	140	6	284656	135
7	242293	174	7	256958	168	7	271144	163	7	284882	158
8	242541	199	8	257198	192	8	271377	186	8	285107	180
9	242790	223	9	257439	216	9	271609	210	9	285332	203
1750	243038		1810	257679		1870	271842		1930	285557	
	243286	25	1	257918	24	1	272074	23	1	285782	22
2	243534	50	2	258158	48	2	272306	46	2	286007	45
3	243782	74	3	258398	72	3	272538	70	3	286232	67
4	244030	99	4	258637	96	4	272776	93	4	286456	89
5	244277	124	5	258877	120	5	273001	116	5	286681	112
6	244524	149	6	259116	144	6	273233	139	6	286905	134
7	244772	174	7	259355	167	7	273464	162	7	287130	157
8	245019	198	8	259594	192	8	273696	186	8	287354	179
9	245266	222	9	259833	215	9	273927	209	9	287578	202
1760	245513		1820	260071		1880	274158		1940	287802	
1	245759	25	1	260310	24	1	274389	23	1	288025	22
2	246006	49	2	260548	48	2	274620	46	2	288249	45
3	246252	74	3	260787	71	3	274850	69	3	288473	67
4	246499	98	4	261025	95	4	275081	92	4	288696	89
5	246745	123	5	261263	119	5	275311	115	5	288920	112
6	246991	148	6	261501	143	6	275542	138	6	289143	134
	247236	173	7	261738	167	7	275772	161	7	289366	156
8	247482	197	8	261976	191	8	276002	184	8	289589	178
9	247728	221	9	262214	214	9	276232	207	9	289812	201
1770	247973		1830	262451		1890	276462		1950	290035	
	248219	25	1	262688	24	1	276691	23	1	290257	22
2	248464	49	2	262925	47	2	276921	46	2	290480	44
3	248709	74	3	263162	71	3	277151	69		290702	67
4	248954	98	4	263399	95	4	277380	92	4	290925	89
5	249198	123	5	263636	118	5	277609	115	5	291147	111
6	249443	147	6	263873	142	6	277838	138	6	291369	133
7	249687	172	7	264109	166	7	278067	161	7	291591	156
8	249932	196	8	264345	190	8	278296	183	8	291813	178
9	250176	220	9	264582	213	9	278525	206	9	292034	200

No.	Log.	${ }_{\text {Prop. }}^{\text {Part: }}$	No.	Log.	Prop.	No.	Log.	Prop.	No.	Log.	Prop. Part.
1960	292256		2020	305351		2080	318063		2140	330414	
	292478	22	1	305566	21		318272	21		330617	20
2	292699	44	2	305781	43	2	318481	42	2	330819	40
3	292920	66		305996	64	3	318689	63	3	331022	61
4	293141	88	4	306211	86	4	318898	83	4	331225	81
5	293363	110	5	306425	107	5	319106	104	5	331427	101
6	293583	133	6	306639	129	6	319314	125	6	331630	121
7	293804	155	7	306854	150	7	319522	146	7	331832	141
8	294025	177	8	307068	172	8	319730	167	8	332034	162
9	294246	199	9	307282	193	9	319938	188	9	332236	182
1970	294466		2030	307496		2090	320146		2150	332438	
	294687	22	1	307710	21		320354	21	1	332640	20
2	294907	44	2	307924	43	2	320562	41	2	332842	40
3	295127	66	3	308137	64	3	320769	62	3	333044	60
4	295347	88	4	308351	85	4	320977	83	4	333246	81
5	295567	110	5	308564	107	5	321184	104	5	333447	101
6	295787	132	6	308778	128	6	321391	125	6	333649	121
7	296007	154	7	308991	149	7	321598	145	7	333850	141
8	296226	176	8	309204	171	8	321805	166	8	334051	161
9	296446	198	9	309417	192	9	322012	187	9	334253	181
1980	296665		2040	309630		2100	322219		2160	384454	
1	296884	22	1	309843	21	1	322426	21	1	334655	20
2	297104	44	2	310056	43	2	322633	41	2	334856	40
3	297323	66	3	310268	64	3	$32: 2839$	62	3	335056	60
4	297542	88	4	310481	85	4	323046	82	4	335257	80
5	297761	109	5	310693	106	5	323252	103	5	335458	100
6	297979	181	6	310906	127	6	323458	124	6	335658	120
7	298198	153	7	311118	148	7	323665	144	7	335859	140
8	298416	175	8	311330	170	8	323871	165	8	336059	160
9	298635	197	9	311542	191	9	324077	186	9	336260	180
1990	298853		2050	311754		2110	324282		2170	336460	
1	299071	22	1	311966	21	1	324488	21		336660	20
2	299289	44	2	312177	42	2	324694	41	2	336860	40
3	299507	65	3	312389	63	3	324899	62	3	337060	60
4	299725	87	4	312600	84	4	325105	82	4	337260	80
5	299943	109	5	312812	106	5	325310	103	5	337459	100
6	300160	131	6	313023	127	6	325516	123	6	337659	120
7	300378	153	7	313234	148	7	325721	144	7	337858	140
8	300595	174	8	313445	160	8	325926	164	8	338058	160
9	300813	196	9	313656	190	9	326131	185	9	338257	180
2000	301030		2060	313867		2120	326336		2180	338456	
	301247	22	1	314078	21		326541	20	1	338656	20
	301464	43	2	314289	42	2	326745	41	2	338855	40
3	301681	65	3	314499	63	3	326950	61	3	339054	60
4	301898	87	4	314710	84	4	327155	82	4	339253	80
5	302114	108	5	314920	105	5	327359	102	5	339451	100
6	302331	130	6	315130	126	6	327563	123	6	339650	119
7	302547	152	7	315340	147	7	327767	143	8	339849	139
8	302764	173	8	315550	168	8	327972	164	8	340047	159
9	302980	195	9	315760	189	9	328176	184	9	340246	179
2010	303196		2070	315970		2130	328380		2190	340444	
1	303412	22	1	316180	21	1	328583	20	1	340642	20
2	303628	43	2	316390	42	2	328787	41	2	340841	40
3	303844	65	3	316599	63	3	328991	61	3	341039	59
4	304059	86	4	316809	84	4	329194	81	4	341237	79
5	304275	108	5	317018	105	5	329398	102	5	341435	99
6	304490	129	6	317227	126	6	329601	122	6	341632	119
7	304706	151	7	317436	147	7	329805	142	7	341830	139
8	304921	172	8	317645	168	8	330008	163	8	342028	158
9	305136	194	9	317854	189	9	330211	183	9	342225	178

No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
2200	342423		2260	354108		2320	365488		2380	376577	
1	342620	20	1	354301	19	1	365675	19	1	376759	18
2	342817	39	2	354493	38	2	365862	37	2	376942	36
3	343014	59	3	354685	58	3	366049	56	3	377124	55
4	343212	79	4	354876	77	4	366236	75	4	377306	73
5	343409	99	5	355068	96	5	366423	93	5	377488	91
6	343606	118	6	355260	115	6	366610	112	6	377670	109
7	343802	138	7	355452	134	7	366796	131	7	377852	127
8	343999	158	8	355643	154	8	366983	150	8	378034	146
9	344196	178	9	355834	173	9	367169	168	9	378216	164
2210	344392		2270	356026		2330	367356		2390	378398	
1	344589	20	1	356217	19	1	367542	19	1	378580	18
2	344785	39	2	356408	38	2	367729	37	2	378761	36
3	344981	59	3	356599	57	3	367915	56	3	378943	55
4	345178	78	4	356790	76	4	368101	75	4	379124	73
5	345374	98	5	356981	95	5	368287	93	5	379306	91
6	345570	118	6	357172	115	6	368473	112	6	379487	109
7	345766	137	7	357363	134	7	368659	130	7	379668	127
8	345962	157	8	357554	153	8	368844	149	8	379849	146
9	346157	176	9	357744	172	9	369030	167	9	380030	164
2220	346353		2280	357935		2340	369216		2400	380211	
1	346549	19	1	358125	19	1	369401	19	1	380392	18
2	346744	39	2	358316	38	2	369587	37	2	380573	36
3	346939	58	3	358506	57	3	369772	56	3	380754	55
4	347135	78	4	358696	76	4	369958	74	4	380934	73
5	347330	97	5	358886	95	5	370143	93	5	381115	91
6	347525	117	6	359076	114	6	370328	111	6	381296	109
7	347720	137	7	359266	133	7	370513	130	7	381476	127
8	347915	156	8	359456	152	8	370698	148	8	381656	145
9	348110	175	9	359646	171	9	370883	167	9	381837	163
2230	848305		2290	359835		2350	371068		2410	382017	
1	848500	19	1	360025	19	1	371253	18	1	382197	18
2	848694	39	2	360215	38	2	371437	37	2	382377	36
3	348889	58	3	360404	57	3	371624	55	3	382557	54
4	349083	78	4	360593	76	4	371806	74	4	382737	72
5	349278	97	5	360783	95	5	371991	92	5	382917	90
6	349472	117	6	360972	114	6	372175	111	6	383097	108
7	349666	137	7	361161	133	7	372360	129	7	383277	126
8	349860	156	8	361350	152	8	372544	148	8	383456	144
9	350054	175	9	361539	171	9	372728	166	9	383636	162
2240	350248		2300	361728		2360	372912		2420	383815	
1	350442	19	1	361917	19	1	373096	18	1	383995	18
2	350636	39	2	362105	38	2	373280	37	2	384174	36
3	350829	58	3	362294	56	3	373464	55	3	384353	54
4	351023	77	4	362482	75	4	373647	74	4	384533	72
5	351216	97	5	362671	94	5	373831	92	5	384712	90
6	351410	116	6	362859	113	6	374015	110	6	384891	108
7	351603	135	7	363048	132	7	374198	129	7	385070	126
8	351796	155	8	363236	151	8	374382	147	8	385249	144
9	351989	174	9	363424	170	9	374565	166	9	385428	162
2250	352182		2310	363612		2370	374748		2430	385606	
1	352375	19	1	363800	19	1	374932	18	1	385785	18
2	352568	38	2	363988	37	2	375115	37	2	385964	35
3	352761	58	3	364176	56	3	375298	55	3	386142	53
4	352954	77	4	364363	75	4	375481	73	4	386321	71
5	353147	96	5	364551	94	5	375664	92	5	386499	89
6	353339	115	6	364739	112	6	375846	110	6	386677	107
7	353532	134	7	364926	131	7	376029	128	7	386856	125
8	353724	154	8	365113	150	8	376212	147	8	387034	143
9	353916	173		365301	169	9	376394	165	9	387212	161

No.	Log.	$\begin{array}{\|l\|} \hline \text { Prop. } \\ \text { Part. } \end{array}$	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$
2440	387390		2500	397940		2560	408240		2620	418301	
1	387568	18	1	398114	17	1	408410	17	1	418467	17
2	387746	36	2	398287	35	2	408579	34	2	418633	33
3	387923	53	3	398461	53	3	408749	51	3	418798	50
4	388101	71	4	398634	69	4	408918	68	4	418964	66
5	388279	89	5	398808	87	5	409087	85	5	419129	83
6	388456	107		398981	104	6	409257	102	6	419295	99
7	388634	125	7	399154	121	7	409426	119	7	419460	116
8	388811	142	8	399327	138	8	409595	136	8	419625	132
9	388989	160	9	399501	156	9	409764	153	9	419791	149
2450	389166		2510	399674		2570	409933		2630	419956	
1	389343	18	1	39984%	17	1	410102	17	1	420121	16
2	389520	36	2	400020	35	2	410271	34	2	420286	33
3	38.9697	53	3	400192	53	3	410440	50	3	420451	49
4	389875	71	4	400365	69	4	410608	67	4	420616	66
5	390051	89		400538	87	5	410777	84	5	420781	82
6	390228	107	6	400711	104	6	410946	101	-	420945	99
7	390405	125	7	400883	121	7	411114	118	7	421110	115
8	390582	142	8	401056	138	8	411283	135	8	421275	132
9	390759	160	9	401228	156	9	411451	152	9	421439	148
2460	390935		2520	401400		2580	411620		2640	421604	
1	391112	18	1	401573	17	1	411788	17	1	421768	16
2	391288	35	2	401745	- 34	2	411956	34	2	421933	33
3	391464	53	3	401917	52	3	412124	50	3	422097	49
4	391641	70	4	402089	69	4	412292	67	4	422261	66
5	391817	88	5	402261	86	5	412460	84	5	422426	82
6	391993	106	6	402433	103	-6	412628	101	6	422590	99
7	392169	123	7	402605	120	7	412796	118	7	422754	115
8	392345	141	8	402777	138	8	412964	135	8	422918	132
9	392521	158	9	402949	155	9	413132	152	9	423082	148
2470	392697		2530	403120		2590	413300		2650	423246	
1	392873	18	1	403292	17	1	413467	17	1	423410	16
2	393048	35	2	403464	34	2	413635	33	2	423573	33
3	393224	53	3	403635	52	3	413802	50	3	423737	49
4	393400	70	4	403807	69	4	413970	67	4	423001	65
5	393575	88	5	403978	86	5	414137	84	5	424064	81
6	393751	106	6	404149	103	6	414305	101	6	424228	98
7	393926	123	7	404320	120	7	414472	117	7	424392	114
8	394101	141	8	404432	137	8	414639	134	8	424555	131
9	394276	158	9	404663	154	9	414806	151	9	424718	147
2480	394452		2540	404834		2600	414973		2660	424882	
1	394627	17	1	405005	17	1	415140	17	1	425045	16
2	394802	35	2	405175	34	2	415307	33	2	425208	33
3	394977	53	3	405346	51	3	415474	50	3	425371	49
4	395152	70	4	405517	68	4	415641	67	4	425534	65
5	395326	87	5	405688	85	5	415808	84	5	425697	81
6	395501	104		405858	102	6	415974	101	6	425860	98
7	395676	122	7	406029	119	7	416141	117	7	426023	114
8	395850	139	8	406199	136	8	416308	134	8	426186	130
9	396025	157	9	406370	153	9	416474	150	9	426349	147
2490	396199		2550	406540		2610	416640		2670	426511	
	396374	17	,	406710	17	1	416807	17	1	426674	16
2	396548	35		406881	34	2	416973	33	2	426836	33
3	396722	53	3	407051	51	3	417139	50	3	426999	49
4	396896	70	4	407221	68	4	417306	66	4	427161	65
5	397070	87	5	407391	85	5	417472	83	5	427324	81
6	397245	104	6	407561	102	6	417638	100	6	427486	98
7	397418	122	8	407731	119	8	417804	116	7	427648	114
8	397592	139	8	407900	136	8	417970	133	8	427811	130
9	297766	157	9	408070	153		418135	149	9	427973	147

No.	Log.	${ }_{\text {Prop. }}{ }_{\text {Part: }}$	No.	Log.	Prop. Yart.	No.	Log.	Prop.	No.	Log.	${ }_{\text {Proper }}$
2680	42813		2740	437751		2800	447158		2860	456366	
	428297	16		437909	16		447313	15		456518	15
2	428459	32	2	438067	32	2	447468	31	2	456670	30
3	428621	48	3	4382:26	47	3	447623	46	3	456821	46
4	428782	- 05	4	438384	63	4	447778	62	4	456973	61
5	428944	81	5	438542	79	5	447933	77	5	457125	76
6	429106	97		438700	95	6	448088	93	6	457276	91
7	429268	113	7	438859	111	7	448242	108	7	457428	106
8	429429	129	8	439017	127	8	448397	124	8	457579	122
9	429591	145	9	439175	143	9	448552	139	9	457730	137
2690	429752		2750	439333		2810	448706		2870	457882	
	429914	16		439491	16		448861	15		458033	15
2	430075	32		439648	32	2	449015	31	2	458184	30
3	430236	48		439806	47	3	449170	46	3	458336	45
4	430398	65		439964	63	4	449324	62		458487	61
5	430559	81		440122	79	5	449478	77	5	458638	76
6	430720	97		440279	95	6	449633	92		458789	91
7	430881	113		440437	111	7	449787	108	\%	458940	106
8	431042	129	8	440594	126	8	449941	123	8	459091	121
9	431203	145	9	440752	142	9	450095	139	9	459242	136
2700	431364		2760	440909		2820	450249		2880	459392	
	431525	16		441066	16		450403	15	1	459543	15
2	43168	32	2	441224	31	2	450557	31	2	459694	30
3	431846	48		441381	47	3	450711	46	3	459845	45
4	432007	64		441538	63	4	450865	62	4	459995	61
5	432167	80	5	441695	78	5	451018	77	5	460146	76
6	432328	96	6	441852	94	6	$\overline{4} 51172$	92		460296	91
7	432488	112	7	442009	110	7	451326	108	7	460447	106
8	432649	128	8	442166	126	8	451479	123	8	460597	121
9	432809	144	9	442323	141	9	451633	139	9	460747	136
2710	432969		2770	442480		2830	451786		2890	460898	
	433129	16	- 1	442636	16	1	451940	15		461048	15
2	433290	32	2	442793	31	2	452093	31	2	461198	30
3	433450	48	3	442950	47	3	452247	46	3	461348	45
4	433610	64	4	443106	63	4	452400	61	4	461498	60
5	433770	80	5	443263	78	5	452553	77		461649	75
6	433930	96	6	443419	94	6	452706	92		461799	90
7	434090	112	7	443576	110	7	452859	107		461948	105
8	434249	128	8	443732	126	8	453012	123	8	462098	120
9	434409	144	9	4438	141	9	453165	138	9	462248	135
2720	434569		2780	444045		2840	453818		2900	462398	
1	434728	16	1	444201	16	1	453471	15		462548	1
2	434888	32	2	444357	31	2	453624	31		462697	30
3	435048	48	3	444513	47	3	453777	46	3	462847	45
4	435207	64	4	444669	62	4	453930	61	4	462997	60
5	43536	80	5	444825	78	5	454082	77	5	463146	75
6	435526	96	6	444981	94	6	454235	92	6	463296	90
7	435685	112	7	445137	109	7	454387	107		463445	105
8	435844	128	8	445293	125	8	454540	123	8	463594	120
9	436003	144	9	445448	140	9	454692	138	9	463744	135
2730	436163		2790	445604		2850	454845		2910	463893	
1	436322	16	- 1	445760	16	1	454997	15	1	464042	15
2	436481	32	2	445915	31	2	455149	30	2	464191	30
3	436640	47	3	446071	47	3	455302	46	3	464340	45
4	436798	63	4	446226	62	4	455454	61	4	464489	60
5	436957	79	5	446382	78	5	455606	76	5	464639	75
6	437116	95	6	446537	94	6	455758	91	6	464787	90
7	437275	111	7	446692	109	7	455910	106	7	464936	105
8	437433	127	8	446848	125	8	456062	122	8	465085	120
9	437592	143		447003	14		456214	187	9	4	5

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	l. Og .	Prop. Part.	No.	Log.	Prop. Part.
2920	465383		2980	474216		3040	482874		3100	491362	
1	465532	15	1	474362	15	1	483016	14	1	491502	14
2	465680	30	2	474508	29	2	483159	28	2	491642	28
3	465829	44	3	474653	44	3	483302	43	3	491782	42
4	465977	59	4	474799	58	4	483445	57	4	491922	56
5	466126	74	5	474944	73	5	483587	71	5	492062	70
6	466274	89	6	475090	88	6	483730	85	6	492201	84
7	466423	104	7	475235	102	7	483872	99	7	492341	98
8	466571	118	8	475381	117	8	484015	114	8	492481	112
9	466719	133	9	475526	131	9	484157	128	9	492621	126
2930	466868		2990	475671		3050	484300		3110	492760	
1	467016	15	1	475816	15	- 1	484442	14	1	492900	14
2	467164	30	2	475962	29	2	484584	28	2	493040	28
3	467312	44	3	476107	43	3	484727	43	3	498179	42
4	467460	59	4	476252	58	4	484869	57	4	493319	56
5	467608	74	5	476397	72	5	485011	71	5	493458	70
6	467756	89	6	476542	87	6	485153	85	6	443597	84
7	467904	104	7	476687	101	7	485295	99	7	443737	98
8	468052	118	8	476832	116	8	485437	114	8	493876	142
9	468200	133	9	476976	130	9	485579	128	9	494015	126
2940	468347		3000	477121		3060	485721		3120	494155	
1	468495	15	1	477266	14	1	485863	14	1	494294	14
2	468643	30	2	477411	29	2	486005	28	2	494433	28
3	468790	44	3	477555	43	3	486147	43	3	494572	41
4	868938	59	4	477700	58	4	486289	57	4	494711	56
5	469085	74	5	477844	72	5	486430	71	5	494850	69
6	469233	89	6	477989	87	6	486572	85	6	494989	83
7	469380	104	7	478133	101	7	486714	99	7	495128	97
8	469527	118	8	478278	116	8	486855	114	8	495267	111
9	469675	133	9	478422	130	9	486997	128	9	$\cdot 495406$	125
2950	469822		3010	478566		3070	487138		3130	495544	
1	469969	15	1	478711	14	1	487280	14		495683	14
2	470116	29	2	478855	29	2	487421	28	2	495822	28
3	470263	44	3	478999	43	3	487563	42	3	495960	41
4	470410	59	4	479143	58	4	487704	57	4	496099	56
5	470557	74	5	479287	72	5	487845	71	5	496237	69
6	470704	88	6	479431	86	6	487986	85	6	496376	83
7	470851	103	7	479575	101	7	488127	99	7	496514	97
8	470998	118	8	479719	115	8	488269	113	8	496653	111
9	471145	132	9	479863	130	9	488410	127	9	496791	125
2960	471292		3020	480007		3080	488551		3140	496930	
1	471438	15	1	480151	14	1	488692	14	1	497068	14
2	471585	29	2	480294	29	2	488833	28	2	497206	28
3	471732	44	3	480438	43	3	488973	42	3	497344	41
4	471878	59	4	480582	58	4	489114	56	4	497482	55
5	472025	73	5	480725	72	5	489255	70	5	497621	69
6	472171	88	6	480869	86	6	489396	84	6	497759	83
7	472317	102	7	481012	101	7	489537	98	7	497897	97
8	472464	117	8	481156	115	8	489677	112	8	498035	110
9	472610	132	9	481299	130	9	489818	126	9	498173	124
2970	472756		3030	481443		3090	489958		3150	498311	
1	472903	15	1	481586	14	1	490099	14	1	498448	14
2	473049	29	2	481729	29	2	490239	28	2	498586	28
3	473195	44	3	481872	43	3	490380	42	3	498724	41
4	473341	59	4	482016	57	4	490520	56	4	498862	55
5	473487	73	5	482159	71	5	490661	70	5	498999	69
6	473633	88	6	482302	86	6	490801	84	6	499137	83
7	473779	102	7	48.445	100	7	490941	98	7	499275	97
8	473925	117	8	482588	114	8	491081	112	8	499412	110
9	474070	132	9	482731	129	9	491222	126	9	49950	124

No.	Log.	Prop.	No.	Log.	${ }_{\text {Prop. }}$	No.	Log.	${ }_{\text {Prop. }}^{\text {Part. }}$	No.	Log.	Prop.
3160	499687		3220	507856		3280	515874		3340	523746	
-1	499824	14		507991	13		516006	13		523876	13
2	499962	27	2	508125	27	2	516139	26	2	524006	26
3	500099	41	3	508260	40	3	516271	40	3	524136	39
4	500236	55	4	508395	54	4	516403	53	4	524266	52
5	500374	68	5	508530	67	5	516535	66	5	524396	65
6	500511	82	6	508664	81	6	516668	79	6	524526	78
7	500648	96	7	508799	94	7	516800	92	7	524656	91
8	500785	110	8	508933	108	8	516932	106	8	524785	104
9	500922	123	9	509068	121	9	517064	119	9	524915	117
3170	501059		3230	509202		3290	517196		3350	525045	
1	501196	14		509337	13		517328	13		525174	13
2	501333	27	2	509471	27	2	517460	26	2	525304	26
3	501470	41	3	509606	40	3	517592	40	3	525434	39
4	501607	55	4	509740	54	4	517724	53	4	525563	52
5	501744	68	5	509874	67	5	517855	66	5	525693	65
6	501880	82		510008	81	6	517987	79	6	525822	78
7	502017	96	7	510143	94	7	518119	92	7	525951	91
8	502154	110	8	510277	108	8	518251	106	8	526081	104
9	502290	123	9	510411	121	9	518382	119	9	526210	117
3180	502427		3240	510545		3300	518514		3360	526339	
- 1	502564	14		510679	13		518645	13		526468	13
2	502700	27	2	510813	27	2	518777	26	2	526598	26
3	502837	41	3	510947	40	3	518909	39	3	526727	39
4	502973	54	4	511081	54	4	519040	52	4	526856	52
5	503109	68	5	511215	67	5	519171	66	5	526985	65
6	503246	82	6	511348	80	6	519303	79	6	527114	78
7	503382	95	7	511482	94	7	519434	92	7	527243	91
8	503518	109	8	511616	107	8	519565	105	8	527372	104
9	503654	123	9	511750	121	9	519697	118	9	527501	117
3190	503791		3250	511883		3310	519828		3370	527630	
	503927	14		512017	13	1	519959	13		527759	13
2	504063	27	2	512150	27	2	520090	26	2	527888	26
3	504199	41	3	512284	40	3	520221	39	3	528016	38
4	504335	54	4	512417	53	4	520352	52	4	528145	51
5	504471	68	5	512551	67	5	520483	66	5	528274	64
6	504607	82	6	512684	80	6	520614	79	6	528402	77
7	504743	95	7	512818	93	7	520745	92	7	528531	90
8	504878	109	8	512951	107	8	520876	105	8	528660	103
9	505014	122	9	51	120	9	521007	118	9	528788	116
3200.	505150		3260	513218		3320	521138		3380	528917	
	505286	14	1	513351	13		521269	13	1	529045	13
2	505421	27	2	513484	27	2	521400	26	2	529174	26
3	505557	41	3	513617	40	3	521530	39		529302	38
4	505692	54	4	513750	53	4	521661	52	4	529430	51
5	505828	68	5	513883	66	5	521792	65	5	529559	64
6	505963	82	6	514016	80	6	521922	78	6	529687	77
7	506099	95	7	514149	93	7	522053	97	7	529815	90
8	506234	109	8	514282	106	8	522183	104	8	529943	103
9	506370	122	9	514415	120	9	522314	117	9	530072	116
3210	506505		3270	514548		3330	522444		3390	530200	
	506640	13		514680	13	1	522575	13	1	530328	13
2	506775	27	2	514813	27	2	522705	26	2	530456	26
3	506911	40	3	514946	40	3	522835	39	3	530584	38
4	507046	54	4	515079	53	4	522966	52	4	530712	51
5	507181	67	5	515211	66	5	523096	65	5	530840	64
6	507316	81	6	515344	80	6	523226	78	6	530968	77
7	507451	94	7	515476	93	7	523356	97	7	531095	90
8	507586	108	8	515609	106	8	523486	104	8	531223	102
9	507721	121	9	515741	12	9	523616	117	9	531351	115

No.		$\xrightarrow{\text { Prop. }}$ Part:	No.		$\xrightarrow{\text { Prop. }}$ Part.	No.		${ }_{\text {Propp }}^{\text {Part: }}$	No.	Log.	${ }_{\text {Prope }}^{\text {Propt. }}$
3400	531		3460	539076		3520			80	553883	
	5316	13			13			12		554004	12
	531734	25		539327	25		546789	25		554126	24
	531862	38		539452	38		546913	37		554247	36 49 4
	53199	${ }_{63}^{51}$		53957	50		547036	49		554368	49 61
	532245	76		539829	75		547282	74		554610	73
	532372	89		539954	88		547405	86		554731	85
	532500	102		540079	100		547	99		548	97
	532627	114		540204	113		547652	111		554973	09
3410	532754		3470	540329		3530	547775		35	555094	
	532882	13		540455	12		547898	12		555215	12
				54	25		5480	5		555	24
3	533136	38		5407	37		5481	37		555457	36
44		51						49			48
5							548	61			60
6	518	76		541080	${ }_{85}^{75}$		5485	74		555	72
	533772	102		${ }_{541330}^{541205}$	100		548758	86			84
9	533899	114		541454	112		548881	111		${ }_{556182}$	108
20	5340		3480	541579		3540	549003		3600	556302	
	53415	13		541704	12		549126	12		556423	12
	534280	25		541829	25		549249	25		556544	24
	534407	38		5419:3	37		549371	37		556	36
	534	51		542078	50		549494	49		556785	48
				542203	62		5496	61		556905	60
		76		5423	75		549739	74		557026	72
$\begin{aligned} & 7 \\ & \hline \end{aligned}$	534914	89		5424	87		549861	86		557146	
				${ }_{5} 542576$	112		549984			557	
		14			12			111		87	
	535421	13		542950	2		550351	12		¢5,	12
	5355	25		543074	25		55047	24		5577	24
	535674			543199	37		550595				
	535800			543323	50		550717	49		557	48
	5359	63		54344	62		5508	61		558	60
	536053	${ }^{76}$		543571	${ }^{75}$		550962	73		558228	2
	536179	88		543696	87		551084	86		558348	84
		101		5438	100		551206	98		558469	
	53643	114		5439	112		551328	110		9	108
3440	536		3500	544068		3560	551450		3620	558709	
	53	${ }_{25}^{13}$		544192			${ }^{551572}$	2		558829	
	53	25		5443	25		551694	4		558	24
	53	38		544	37		5518	37		559	36
	5370	50			50		51	49		55918	48
	5371	63		5446	62		5520	61		559308	
		${ }_{88}^{76}$			74			73			${ }_{84}$
	537567	101		545060	99		552425	98		5596	${ }_{96}$
	53769	114	9	545183	112	9	552546	110		5597	88
50	5		3510	545307		3570	552		3630	559	
								12		56	
	538071	25		545554	25		552911	24		5601	2
$\begin{gathered} 3 \\ 4 \end{gathered}$	53	38		545678	37		55301	36		5602	8
	53	50		5458	49		5531			5603	
		${ }^{63}$		545925	62		553276	61		560504	60
				546049	84			73		560624	-
	53	101			99		553640	85 97			84
	538951	11		546419	111	9	553762	109	9	560982	

No.	Log.	Prop.	No.	Log.	Prop.	No.	Log.	Prop.	No.	Log.	Propl:
3640	561101		3700	568202		3760	575188		3820	582063	
	561221	12		568319	12		575303	12		582177	11
2	561340	24	2	568436	23	2	575419	23	2	582291	23
3	561459	36	3	568554	35	3	575534	35	3	582404	34
4	561578	48	4	568671	47	4	575650	46	4	582518	45
5	561698	60	5	568788	58	5	575765	58	5	582631	56
6	561817	72	6	568905	70	6	575880	69	6	582745	68
7	561936	84	7	569023	82	7	575996	80	7	582858	79
8	562055	96	8	569140	94	8	576111	92	8	582972	90
9	562174	108	9	569257	106	9	576226	104	9	583085	102
3650	562293		3710	569374		3770	576341		3830	583199	
1	562412	12		569491	12		576457	12		583312	11
2	อ62531	24	2	569608	23	2	576572	23	2	583426	23
3	562650	36	3	569725	35	3	576687	35	3	583539	34
4	562768	48	4	569842	47	4	576802	46	4	583652	45
5	562887	60	5	569959	58	5	576917	58	5	583765	56
6	563006	71	6	570076	70	6	577032	69	6	583879	68
7	563125	83	7	570193	82	7	577147	80	7	583992	79
8	563244	95	8	570309	94	8	577262	92	8	584105	90
9	-63362	107	9	570426	105	9	577377	104	9	584218	102
3660	563481		3720	570543		3780	577492		3840	584331	
1	563600	12	1	570660	12	1	577607	11	1	584444	11
2	563718	24	2	570776	23	2	577721	23	2	584557	23
3	563837	36	3	570893	35	3	577836	34	3	584670	34
4	563955	48	4	571010	47	4	577951	46	4	584783	45
5	564074	60	5	571126	58		578066	57	5	584896	56
6	564192	71	6	571243	70		578181	68		585009	68
7	564311	83	7	571359	81	7	578295	80	7	585122	79
8	564429	95	8	571476	93	8	578410	91	8	585235	90
9	564548	107	9	571592	105	9	578525	103	9	585348	102
3670	564666		3730	571709		3790	578639		3850	585461	
	564784	12	1	571825	12		578754	11	1	585574	11
	564903	24	2	571942	23	2	578868	23	$\stackrel{4}{2}$	585688	22
3	565021	36	3	572058	35	3	578983	34	3	585799	34
4	565139	47	4	572174	47	4	579097	46	4	585912	45
5	565257	59	5	572291	58	5	579212	57	5	586024	56
6	565376	71	6	572407	70	6	579326	68	6	586137	67
7	565494	83	7	572523	81	7	579441	80	7	586250	78
8	565612	95	8	572639	93	8	579555	91	8	586362	90
9	565730	107	9	572755	105	9	579669	103	9	586475	101
3680	565848		3740	572872		3800	579784		3860	586587	
1	565966	12		572988	12	1	579898	11	1	586700	11
2	566084	24	2	573104	23	2	580012	23	2	586812	22
3	566202	35	3	573220	35	3	580126	34	3	586925	34
4	566320	47	4	573336	46	4	580240	46	4	587037	45
5	566437	59	5	573452	58	5	580355	57	5	587149	56
6	566555	71	6	573568	70	6	580469	68	6	587262	67
7	566673	83	7	573684	81	7	080583	80	7	587374	78
8	566791	94	8	573800	93	8	580697	91	8	587486	90
9	566909	106	9	573915	104	9	580811	103	9	587599	101
3690	567026		3750	574031		3810	580925		3870	587711	
1	567144	12		574147	12	- 1	581039	11	1	587823	11
2	567262	24	2	574263	23	2	581153	23	,	587935	22
3	567379	35	3	574379	35	3	581267	34	3	588047	34
4	567497	47	4	574494	46	4	581381	46	4	588160	-45
5	567614	59	5	574610	58	5	581495	57	5	588272	56
6	567732	71	6	574726	70	6	581608	68		588384	67
7	567849	83	7	574841	81		${ }_{581722} 5$	80	7	588496	78 90
8	567967 568084	94 106	8	574957 575072	93 104	8	581836 581950	91 103	8	588608	90 101

No.	Log.	Prop.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	${ }_{\text {Prop. }}$
3880	588832		3940	595496		4000	602060		4060	608526	
	588944	11		595606	11		602169	11		608633	11
2	589056	22	2	595717	22	2	602277	22	2	608740	21
3	589167	33	3	595827	33	3	602386	33	3	608847	32
4	589279	44	4	595937	44	4	602494	43	4	608954	43
5	589391	56	5	596047	55	5	602603	54	5	609061	53
6	589503	67	6	596157	66	6	602711	65	6	609167	64
7	589615	78	7	596267	77	7	602819	76	7	609274	75
8	589726	89	8	596377	88	8	602928	87	8	609381	86
9	589838	100	9	596487	99	9	603036	98	9	609488	96
3890	589950		3950	596597		4010	603144		4070	609594	
1	590061	11	1	596707	11		603253	11		609701	11
2	590173	22	2	596817	22	2	603361	22	2	609808	21
	590284	33		596927	33	3	603469	33	3	609914	32
4	590396	44	4	597037	44	4	603577	43	4	610021	43
5	590507	56	5	597146	55	5	603686	54	5	610128	53
6	590619	67	6	597256	66	6	603794	65	6	610234	64
7	590730	78	7	597366	77	7	603902	76	7	610341	75
8	590842	89	8	597476	88	8	604010	87	8	610447	86
9	590953	100	9	597585	99	9	604118	98	9	610554	96
3900	591065		3960	597695		4020	604226		4080	610660	
1	591176	11	1	597805	11		604334	11		610767	11
2	591287	22	2	597914	22	2	604442	22	2	610873	21
3	591399	33	3	598024	33	3	604550	32	3	610979	32
	591510	44	4	598134	44	4	604658	43	4	611086	42
5	591621	56	5	598243	55	5	604766	54	5	611192	53
6	591732	67	6	598353	66	6	604874	65	6	611298	64
7	591843	78	7	598462	77	7	604982	76	7	611405	74
8	591955	89	8	598572	88	8	605089	86	8	611511	85
9	592066	100	9	598681	99	9	605197	97	9	611617	95
3910	592177		3970	598790		4030	605305		4090	611723	
1	592288	11		598900	11		605413	11		611829	11
2	592399	22	2	599009	22	2	605521	22	2	611936	21
3	592510	33	3	599119.	33	3	605628	32	3	612042	32
4	592621	44	4	599228	44	4	605736	43	4	612148	42
5	592732	55	5	599337	55	5	605844	54	5	612254	53
6	592843	67	6	599446	66	6	605951	65	6	612360	64
7	592954	78	7	599556	77	7	606059	76	7	612466	74
8	593064	89	8	599665	88	8.	606166	86	8	612572	85
9	593175	100	9	599774	99	9	606274	97	9	612678	95
3920	593286		3980	599883		4040	606381		4100	612784	
1	593397	11	1	599992	11	1	606489	11		612890	11
2	593508	22	2	600101	22		606596	21	2	612996	21
	593618	33	3	600210	33	3	606704	32	3	613101	32
4	593729	44	4	600319	44	4	606811	43	4	613207	42
5	593840	55	5	600428	54	5	606919	54	5	613313	53
6	593950	66	6	600537	65	6	607026	64	6	613419	64
7	594061	77	7	600646	76	7	607133	75	7	613525	74
8	594171	88		600755	87	8	607241	86	8	613630	85
9	594282	99	9	600864	95	9	607348	96	9	613736	95
3930	594393		3990	600973		4050	607455		4110	613842	
1	594503	11	1	601082	11	1	607562	11		613947	11
2	594613	22	2	601190	22	2	607669	21 32	2	614053 614159	21
3	[594724	33 44	3	601299 601408	33	- 4	607777 607884	32 43 4	3	614159 614264	32 42
5	594945	55	5	601517	54	5	607991	54	5	614370	53
6	595055	66	6	601625	65	6	608098	64	6	614475	63
7	595165	77	7	601734	76	7	608205	75		614581	74
8	595276	88	8	601843	87	8	608312	86	8	614686	84
9	595386	99	9	601951	98	9	608419	96	9	614792	95

No.	Log.	Prop. Part.									
4120	614897		4180	621176		4240	627366		4300	633468	
1	615003	11	- 1	621280	10	1	627468	10	1	633569	10
2	615108	21	2	621384	21	2	627571	20	2	633670	20
3	615213	31	3	621488	31	3	627673	31	3	633771	30
4	615319	42	4	621592	42	4	627775	41	4	633872	40
5	615424	52	5	621695	52	5	627878	51	5	633973	50
6	615529	63	6	621799	62	6	627980	61	6	634074	61
7	615634	73	7	621903	73	7	628082	72	7	634175	71
8	615740	84	8	622007	83	8	628184	82	8	634276	81
9	615845	95	9	622110	94	9	628287	92	9	634376	91
4130	615950		4190	622214		4250	628389		4310	634477	
1	616055	11	1	622318	10	1	628491	10	1	634578	10
2	616160	21	2	622421	21	2	628593	20	2	634679	20
3	616265	31	3	622525	31	3	628695	31	3	634779	30
4	616370	42	- 4	622628	41	4	628797	41	4	634880	40
5	616475	52	5	622732	52	5	628900	51	5	634981	50
6	616580	63	6	622835	62	6	629002	61	6	635081	61
7	616685	73	7	622939	72	7	629104	72	7	635182	71
8	616790	84	8	623042	83	8	629206	82	8	635283	81
9	616895	95	9	623146	93	9	629308	92	9	635383	91
4140	617000		4200	623249		4260	629410		4320	635484	
1	617105	10	1	623353	10	1	629511	10	1	635584	10
2	617210	21	2	623456	21	2	629613	20	2	635685	20
3	617315	31	3	623559	31	3	629715	30	3	635785	30
4	617420	42	4	623663	41	4	629817	41	4	635886	40
5	617524	52	5	623766	52	5	629919	51	5	635986	50
6	617629	63	6	623869	62	6	630021	61	6	636086	60
7	617734	73	7	623972	72	7	630123	71	7	636187	70
8	617839	84	8	624076	83	8	630224	81	8	636287	80
9	617943	94		624179	93	9	630326	91	9	636388	90
4150	618048		4210	624282		4270	630428		4330	636488	
1	618153	10	1	624385	10	1	630530	10	1	636588	10
2	618257	21	2	624488	21	2	630681	20	2	636688	20
3	618362	31	,	624591	31	3	630733	30	3	636789	30
4	618466	42	4	624694	41	4	630834	41	4	636889	40
5	618571	52	5	624798	51	5	630936	51	5	636989	50
6	618675	62		624901	62	6	631038	61	6	637089	60
7	618780	73	7	625004	72	7	631139	71	7	637189	70
8	618884	83	8	625107	82	8	631241	81	8	637289	80
9	618989	94	9	625209	93	9	631342	91	9	637390	90
4160	619093		4220	625312		4280	631444		4340	637490	
1	619198	10	1	625415	10	1	631545	10	1	637590	10
2	619302	21	2	625518	21	2	631647	20	2	637690	20
3	619406	31		625621	31		631748	30	3	637790	30
	619511	42	4	625724	41	4	631849	41	4	637890	40
5	619615	52	5	625827	51	5	631951	51	5	637990	50
6	619719	62	6	625929	62	6	632052	61	6	638090	60
	619823	73	7	626032	72	7	632153	71	7	638190	70
8	619928	83	8	626135	82	8	632255	81	8	638289	80
9	620032	94	9	626238	93	9	632356	91	9	638389	90
4170	620136		4230	626340		4290	632457		4350	638489	
1	620240	10	1	626443	10	1	632558	10	1	638589	10
	620344	21	2	626546	21	2	632660	20	2	638689	20
3	620448	31	3	626648	31	3	632761	30	3	638789	30
	620552	42	4	626751	41	4	632862	41	4	638888	40
5	620656	52	5	626853	51	5	632963	51	5	638988	50
6	620760	62	6	626956	62	6	633064	61	6	639088	60
7	620864	73	7	627058	72	7	633165	71	7	639188	70
8	620968	83	8	627161	82	8	633266	81	8	639287	80
9	621072	94	9	627263	93	9	633367	91	9	639387	90

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$
4360	639486		4420	645422		4480	651278		4540	657056	
1	639586	10	1	645520	10	1	651375	10	1	657151	10
2	639686	20	2	645619	20	2	651472	19	2	657247	19
3	639785	30	3	645717	30	3	651569	29	3	657343	28
4	639885	40	4	645815	39	4	651666	38	4	657438	38
5	639984	50	5	645913	49	5	651762	48	5	657534	47
6	640084	60	6	646011	59	6	651859	58	6	657629	57
7	640183	70	7	646109	69	7	651956	67	7	657725	67
8	640283	80	8	646208	79	8	652053	77	8	657820	76
9	640382	90	9	646306	89	9	652150	87	9	657916	86
4370	640481		4430	646404		4490	652246		4550	658011	. 1
1	940581	10	1	646502	10	1	652343	10	1	658107	10
2	640680	20	2	646600	20	2	652440	19	2	658202	19
3	640779	30	3	646698	29	3	652536	29	3	658298	28
4	640879	40	4	646796	39	4	652633	38	4	658393	38
5	640978	50	5	646894	49	5	652730	48	5	658488	47
6	641077	60	6	646991	59	6	652826	58	6	658584	57
7	641176	70	7	647089	69	7	652923	67	7	658679	67
8	641276	80	8	647187	78	8	653019	77	8	658774	76
9	641375	90	9	647285	88	9	653116	87	9	658870	86
4380	641474		4440	647383		4500	653213	-	4560	658965	
1	641573	10	1	647481	10	1	653309	10	1	659060	10
2	641672	20	2	647579	20	2	653405	19	2	659155	19
3	641771	30	3	647676	29	3	653502	29	3	659250	28
4	641870	40	4	647774	39	4	653598	38	4	659346	38
5	641970	50	5	647872	49	5	653695	48	5	659441	47
46	642069	59	6	647969	59	6	653791	58	6	659536	57
\$ 7	642168	69	7	648067	69	7	653888	67	7	659631	67
8	642267	79	8	648165	78	8	653984	77	8	659726	76
9	642366	89	9	648262	88	9	654080	87	9	659821	86
4390	642464		4450	648360		4510	654176		4570	659916	
1	642563	10	1	648458	10	1	654273	10	1	660011	10
2	642662	20	2	648555	19	2	654369	19	2	660106	19
3	642761	30	3	648653	29	3	654465	29	3	660201	28
4	642860	40	4	648750	39	4	654562	38	4	660296	38
5	642959	49	5	648848	49	5	654558	48	5	660391	47
6	643058	59	6	648945	58	6	654754	58	6	660486	57
7	643156	69	7	649043	68	7	654850	-67	7	660581	67
8	643255	79	8	649140	78	8	654946	77	8	660676	76
9	643354	89	9	649237	88	9	655042	86	9	660771	86
4400	643453		4460	649335		4520	655138		4580	660865	
1	643551	10	1	649432	10	1	655234	10	1	660960	9
2	643650	20	2	649530	19	2	655331	19	2	661055	19
3	643749	30	3	649627	29	3	655427	29	3	661150	28
4	643847	39	4	649724	39	4	655523	38	4	661245	38
5	643946	49	5	649821	49	5	655619	48	5	661339	47
6	644044	59	6	649919	58	6	655714	58	6	661434	57
, 7	644143	69	7	650016	68	7	655810	67	7	661529	. 66
8	644242	79	8	650113	78	- 8	655906	77	8	661623	76
9	644340	89	9	650210	88	9	656002	86	9	661718	85
4410	644439		4470	650307	+	4530	656098		4590	661813	
1	644537	10	1	650405	10	1	656194	10	1	661907	9
2	644635	20	2	650502	19	2	656290	19	2	662002	19
3	644734	30	3	650599	29	3	656386	29	3	662096	28
4	644832	39	4	650696	39	4	656481	38	4	662191	38
5	644931	49	5	650793	49	5	656577	48	5	662285	47
6	645029	59	6	650890	58	6	656673	58	6	662380	57
7	645127	69	7	650987	68	7	656769	67	7	662474	66
8	645226	79	8	651084	78	8	656864	77	8	662569°	76
9	645324	89	9	651181	88	9	656960	86.	9	662663	85

No.	Log.	${ }_{\text {Propp }}$ Prat:	No.	Log	Prop.	No.	Log.	Prop.	No.	Log.	Prop. Part.
4600	66275		4660	66		4720	673942		4780	679428	
	662852	9	1	668479	9	1	674034	9		679519	9
2	662947	19	2	668572	19	2	674126	18	2	679610	18
3	663041	28	3	668665	28	3	674218	28	3	679700	27
4	663135	38	4	668758	37		674310	37	4	679791	36
5	663230	47	5	668852	47	5	674402	46	5	679882	45
6	663324	57	6	668945	56	6	674494	55	6	679973	55
7	663418	66	7	669038	65	7	674586	64	7	680063	64
8	663512	76	8	669131	74	8	674677	74	8	680154	73
9	663607	85	9	669224	84	9	674769	83	9	680245	82
4610	663701		4670	669317		4730	674861		4790	680335	
1	663795	9		669410	9		674953	9		680426	9
2	663889	19	2	669503	19	2	675045	18	2	680517	18
3	663983	28	3	669596	28	3	675136	28	3	68060	27
4	664078	38	4	669689	37	4	675228	37		680698	36
5	664172	47	5	669782	47	5	675320	46	5	680789	45
6	664266	56		669875	56	6	675412	55	6	680879	55
7	664360	66		669967	65	7	675503	64		680970	64
8	664454	75	8	670060	74	8	675595	74	8	681060	73
9	664548	85	9	670153	84	9	675687	83	9	681151	82
4620	664642		4680	670246		4740	675778		4800	681241	
1	664736	9		670339	9		675870	9		681332	9
2	664830	19	2	670431	18	2	675962	18	2	681422	18
3	664924	28	3	670524	28	3	676053	27	3	681513	27
4	665018	38	4	670617	37	4	676145	36	4	681603	36
5	665112	47	5	670710	46	5	676236	46	5	68169	4.5
6	66520	56	6	670802	55	6	676328	55		681784	54
7	665299	66	7	670895	64	7	676419	64	7	681874	63
8	665393	75	8.	670988	74	8	676511	73	8	681964	72
9	665487	85	9	671080	83	9	676602	82	9	682055	81
4630	665581		4690	671173		4750	676694		4810	682145	
	665675	9		671265	9		676785	9		682235	9
2	665769	19	2	671358	18	2	676876	18	2	682326	18
3	665862	28		671451	28	3	676968	27	3	682416	27
4	665956	38		671543	37	4	677059	36	4	682506	36
5	666050	47	5	671636	46	5	677151	46	5	682596	45
6	666143	56	6	671728	55	6	677242	55	6	682686	54
7	666237	66	7	671821	64	7	677333	64		682777	63
8	666331	75	8	671913	74	8	677424	73	8	682867	72
9	666424	85	9	672005	83	9	677516	82	9	682957	81
4640	666518		4700	672098		4760	677607		4820	683047	
1	666612	9		672190	9	1	677698	8		683137	9
2	666705	19	2	672283	18	2	677789	18	2	683227	18
3	666799	28	3	672375	28	3	677881	27	3	683317	27
4	666892	37	4	67.467	37	4	677972	36	4	683407	36
5	666986	47	5	672560	46	5	678063	45	5	683497	45
6	667079	56	6	672652	55	6	678154	55	6	683587	54
- 7	667173	65	7	672744	64	7	678245	64	7	683677	63
8	667266	74	8	672836	74	8	678336	73	8	683767	72
9	667359	84	9	672929	83	9	678427	82	9	683857	81
4650	667453		4710	673021		4770	678518		4830	683947	
1	667546	9	1	673113	9	1	678609	9	1	684037	9
2	667640	19		673205	18	2	678700	18	2	684127	18
3	667733	28	3	673297	28	3	678791	27	3	684217	27
4	667826	37	4	673390	37	4	678882	36	4	684307	36
5	667920	47	5	673482	46	5	678973	45	5	684396	45
	668013	56	6	673574	55	6	679064	55	6	684486	54
7	668106	65	7	673666	64	7	679155	64	7	684576	63
8	668199	74	8	673758	74	8	679246	73	8	684666	72
	66829	84	9	673850	83		679337	82	9	6847	81

No.	Log.	Prov. Part.	No.	Ls	Prop. Parc.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Pari. } \end{aligned}$	No.	Log.	Prop.
4840	684845		4900	690196		4960	695482		5020	700704	
1	684935	9	1	640285	9	1	695569	9	1	700790	9
2	68.5025	18	2	640873	18	2	695657	17	2	700877	17
3	685114	27	3	690462	27	3	695744	26	3	700963	26
4	685204	36	4	690550	35	4	695832	35	4	701050	35
5	685294	45	5	690639	44	5	695919	44	5	701136	43
6	685383	54	6	690727	53	6	696007	52	6	701222	52
7	685473	63	7	690816	62	7	696094	61	7	701309	61
8	685563	72	8	690905	71	8	696182	70	8	701395	70
9	685652	81	9	690993	80	9	696269	79	9	70148:	78
4850	685742		4910	691081		4970	696356		5030	701568	
1	685831	9	1	691170	9		696444	コ	1	701654	9
2	685921	18	2	691258	18	2	696531	17	2	701741	17
3	686010	27	3	691347	27	3	696618	26	3	701827	26
4	686100	36	4	691435	35	4	696706	35	4	701913	35
5	686189	45	5	691524	44	5	696793	44	5	701999	43
6	686279	54	6	691612	53	6	696880	52	6	702086	$5:$
7	686368	63	7	691700	62	7	696968	61	7	702172	61
8	686457	72	8	691789	71	8	697055	70	8	702:58	70
9	686547	81	9	691877	80	9	697142	79	9	702344	78
4860	686636		4920	691965		4980	697229		5040	702430	
1	686726	9	,	692053	9	1	697317	9	1	702517	9
2	686815	18	2	692142	18	2	697404	17	2	702603	17
3	686904	27	3	692230	27	3	697491	26	3	702689	26
4	686994	36	4	692318	35	4	697578	35	4	702775	34
5	687083	45	5	692406	44	5	697665	44	5	702861	43
6	687172	54	b	692494	53	6	697752	52	6	702947	52
7	687261	63	7	692583	62	7	697839	61	7	703033	60
8	687351	72	8	692671	71	8	697926	70	8	703119	69
9	687440	81	9	692759	80	9	698013	79	9	703205	77
4870	687529		4930	692847		4990	698100		5050	703291	
1	687618	9	1	692935	9	1	698188	9	1	703377	,
2	687707	18	2	693023	18	2	698275	17	2	703463	17
3	687796	27	3	693111	26	3	698362	26	3	703549	26
4	687886	36	4	693199	35	4	698448	35	4	703635	34
5	687975	45	5	693287	44	5	698535	44	5	703721	43
6	688064	54	6	693375	53	6	698622	52	6	703807	52
7	688153	62	7	693463	62	7	698709	61	7	703893	60
8	688242	72	8	693551	70	8	698796	70	8	703979	69
9	688331	80	9	693639	79	9	698883	79	9	704065	77
4880	688420		4940	693727		5000	698970		5060	704150	
1	688509	8	1	693815	5	1	699057	\bigcirc		704236	9
2	688598	18	2	693903	18	2	699144	17	2	704322	17
3	688687	27	3	693991	26	,	699231	26	,	704408	26
4	688776	36	4	694078	35	4	699317	35	4	704494	34
5	688865	45	5	694166	44	5	699404	43	5	704579	43
6	688953	54	6	694254	53	6	699491	52	6	704665	52
7	689042	62	7	694342	62	7	699578	61	7	704751	60
- 8	689131	72	8	694430	70	8	699664	70	8	704837	69
9	689220	80	9	694517	79	9	699751	78		704922	77
4890	689309		4950	694605		5010	699838		5070	705008	
1	689398	9	1	694693	9	1	699924	9		705094	9
2	689486	18	2	694781	18	2	700011	17		705179	17
3	689575	27	,	694868	26	a	700098	26	3	705265	26
4	689664	36	4	694956	35	4	700184	35	4	705350	34
5	689753	45	0	695044	44	5	700271	43	5	705436	43
6	689841	54	6	695131	53		700358	52	-	705522	52
7	689930	62	7	695219	62	7	700444	61	7	705607	60
8	690019	72	8	695307	70	8	700531	70	8	705693	69
9	690107	80	9	6495394	79	9	700617	78	9	705778	77

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$
5080	705864		5140	710963		5200	716003		5260	720986	
1	705949	9	1	711048	8	1	716087	8	1	721068	8
2	706035	17	2	711132	17	2	716170	17	2	721151	16
3	706120	26	3	711216	25	3	716254	25	3	721233	25
4	706206	34	4	711301	34	4	716337	34	4	721316	33
5	706291	43	5	711385	42	5	716421	42	5	721398	41
6	706376	51	6	711470	51	6	716504	50	6	721481	49
7	706462	60	7	711554	59	7	716588	59		721563	58
8	706547	68	8	711638	68	8	716671	. 67	8	721646	66
9	706632	77	9	711723	76	9	716754	76	9	721728	74
5090	706718		5150	711807		5210	716838		5270	721811	
1	706803	9	1	711892	8	1	716921	8	1	721893	8
2	706888	17	2	711976	17	2	717004	17	2	721975	16
3	706974	26	3	712060	25	3	717088	25	3	722058	25
4	707059	34	4	712144	34	4	717171	33	4	722140	33
5	707144	43	5	712229	42	5	717254	42		722222	41
6	707229	51	6	712313	51	6	717338	50	6	722305	49
7	707315	60	7	712397	59	7	717421	58	7	722387	58
8	707400	68	8	712481	68	8	717504	66	8	722469	66
9	707485	77	9	712566	76	9	717587	75	9	722552	74
5100	707570		5160	712650		5220	717671		5280	722634	
1	707655	9	1	712734	8	1	717754	8	1	722716	8
2	707740	17	2	712818	17	2	717837	17	2	722798	16
3	707826	26	3	712902	25	3	717920	25		722881	25
4	707911	34	4	712986	34	4	718003	33	4	722963	33
5	707996	43	5	713070	42	5	718086	42	5	723045	41
6	708081	51	6	713154	50	6	718169	50	6	723127	49
7	708166	60	7	713238	59	7	718253	58	7	723209	58
8	708251	68	8	713322	67	8	718336	66	8	723291	66
9	708336	77	9	713406	76	9	718419	75		723374	74
5110	708421		5170	713490		5230	718502		5290	723456	
1	708506	9	1	713574	8	1	718585	8	1	723538	8
2	708591	17	2	713658	17	2	718668	17	2	723620	16
3	708676	26	3	713742	25	3	718751	25	3	723702	25
4	708761	34	4	713826	34	4	718834	33	4	723784	33
5	708846	43	5	713910	42	5	718917	42	5	723866	41
6	708931	51	6	713994	50	6	719000	50	6	723948	49
7	703015	60	7	714078	59	7	719083	58	7	724030	57
8	709100	68	8	714162	67	8	719165	66	8	724112	66
9	709185	77	9	714246	76	9	719248	75	9	724194	74
5120	709270		5180	714330		5240	719331		5300	724276	
1	709355	8	1	714414	8	1	719414	8	1	724358	8
2	709440	17	2	714497	17	2	719497	17	2	724440	16
3	709524	25	3	714581	25	3	719580	25	3	724522	25
4	709609	34	4	714665	34	4	719663	33	4	724603	33
5	709694	42	5	714749	42	5	719745	41	5	724685	41
6	709779	51	6	714832	50	6	719828	50	6	724767	49
7	709863	59	7	714916	59	7	719911	58	7	724849	57
8	709948	68	8	715000	67	8	719994	66	8	724931	06
9	710033	76	9	715084	76	9	720077	75	9	725013	74
5130	710117		5190	715167		5250	720159		5310	725095	
1	710202	8	1	715251	8	1	720242	8	1	725176	8
2	710287	17	2	715335	17	2	720325	17	2	725258	16
3	710371	25	3	715418	25	3	720407	25	3	725340	25
	710456	34	4	715502	34	4	720490	33		7254:2	33
	710540	42	5	715586	42		720573	41	5	725503	41
6	710625	51	6	715669	50	6	720655	50	6	725585	49
	710710	59		715753	59	7	720738	58	7	725667	57
8	710794	67	8	715836	67	8 '	720821	66	8	725748	56
9	710879	76	9	715920	76	9	720903	75	9	725830	74

No.	Log.	Prop. Part.									
5320	725912		5380	730782		5440	735599		5500	740363	
1	725993	8	1	730863	8	1	735679	8	1	740442	8
2	726075	16	2	730944	16	2	735759	16	2	740521	16
3	726156	24	3	731024	24	3	735838	24	3	740599	24
4	726238	33	4	731105	32	4	735918	32	4	740678	32
5	726320	41	5	731186	40	5	735998	40	5	740757	40
6	726401	49	6	731266	49	6	736078	48	6	740836	47
7	726483	57	7	731347	57	7	736157	56	7	740915	55
8	726564	65	8	731428	65	8	736237	64	8	740994	63
9	726646	73	9	731508	73	9	736317	72	9	741073	71
5330	726727		5390	731589		5450	736396		5510	741152	
1	726809	8		731669	8	1	736476	8	1	741230	8
2	726890	16	2	731750	16	2	736556	16	2	741309	16
3	726972	24	3	731830	24	3	736635	24	3	741388	24
4	727053	33	4	731911	32	4	736715	32	4	741467	32
5	727134	41	- 5	731991	40	5	736795	40	5	741546	40
6	727216	49	6	732072	48	6	736874	48	6	741624	47
7	727297	57	7	732152	56	7	736954	56	7	741703	55
8	727379	65	8	732233	64	8	787034	64	8	741782	63
9	727460	73	9	732313	72	9	737113	72	9	741860	71
5340	727541		5400	732394		5460	737193		5520	741939	
1	727623	8	1.	732474	8	1	737272	8	1	742018	8
2	727704	16	2	732555	16	2	737352	16	2	742096	16
3	727785	24	3	732635	24	3	737431	24	3	742175	23
4	727866	33	4	732715	32	4	737511	32	4	742254	31
5	727948	41	5	732796	40	-5	737590	40	5	742332	39
6	728029	49	6	732876	48	6	737670	48	6	742411	47
7	728110	57	7	732956	56	7	737749	56	7	742489	55
8	728191	65	8	733037	64	8	737829	64	8	742568	63
9	728273	73	9	733117	72	9	737908	72	9	742647	71
5350	728354		5410	733197		5470	737987		5530	742725	
1	728435	8	1	733278	8	1	738067	8	1	742804	8
2	728516	16	2	733358	16	2	738146	16	2	742882	16
3	728597	24	3	733438	24	3	738225	24	3	742961	23
4	728678	33	4	733518	32	4	738305	32	4	743039	31
5	728759	41	5	733598	40	5	738384	40	5	743118	39
6	728841	49	6	733679	48	6	738463	48	6	743196	47
7	728922	57	7	733759	56	7	738543	56	7	743275	55
8	729003	65	8	733839	64	8	738622	64	8	743353	63
9	729084	73	9	733919	72	9	738701	72	9	743431	71
5360	729165		5420	733999		5480	738781		5540	743510	
1	729246	8	1	734079	8	1	738860	8	1	743588	8
2	729327	16	2	734159	16	2	738939	16	2	743667	16
3	729408	24	3	734240	24	3	739018	24	3	743745	23
4	729489	32	4	734320	32	4	739097	32	4	743823	31
5	729570	41	5	734400	40	5	739177	40	5	743902	39
6	729651	49	6	734480	48	6	739256	47	6	743980	47
7	729732	57	7	734560	56	7	739335	55	7	744058	55
8	729813	65	8	734640	64	8	739414	63	8	744136	63
9	729893	73	9	734720	72	9	739493	71	9	744215	71
5370	729974		5430	734800		5490	739572		5550	744293	
1	730055	8	1	734880	8	1	739651	8	1	744371	8
2	730136	16	2	734960	16	2	739730	16	2	744449	16
3	730217	24	3	735040	24	8	739810	24	3	744528	23
4	730298	32	4	735120	32	4	739889	32	4	744606	31
5	730378	40	5	735200	40	5	739968	40	5	744684	39
6	730459	49	6	735279	48	6	740047	47	6	744762	47
7	730540	57	7	735359	56	7	740126	55	7	744840	55
8	730621	65	8	735439	64	8	740205	63	8	744919	63
9	730702	73	9	735519	72	9	740284	71	9	744997	71

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	${ }_{\text {Prop. }}$ Part.	No.	Log.	Prop.
5560	745075		5620	749736		5680	754348		5740	758912	
	745153	8		749814	8		754425	8		758988	8
2	745231	16	2	749891	16	2	754501	15	2	759063	15
3	745309	23	3	749968	23	3	754578	23	3	759139	23
4	745387	31	4	750045	31	4	754654	30	4	759214	30
5	745465	39	5	750123	39	5	754730	38	5	759290	38
6	745543	47	6	750200	47	6	754807	46	6	759366	45
7	745621	55		750277	54	7	754883	53	7	759441	53
8	745699	62	8	750354	62	8	754960	61	8	759517	60
9	745777	70	9	750431	70	9	755036	69	9	759592	68
5570	745855		5630	750508		5690	755112		5750	759668	
	745933	8		750586	8	1	755189	8		759743	8
2	746011	16	2	750663	16	2	755265	15	2	759819	15
3	746089	23	3	750740	23	3	755341	23	3	759894	23
4	746167	31		750817	31	4	755417	30	4	759970	30
5	746245	39	5	750894	39	5	755494	38	5	760045	38
6	746323	47	6	750971	47	6	755570	46	6	760121	45
	746401	55	7	751048	54	7	755646	53	7	760196	53
8	746479	62	8	751125	62	8	755722	61	8	760272	60
9	746556	70	9	751202	70	9	755799	69	9	760347	68
5580	746634		5640	751279		5700	755875		5760	760422	
1	746712	8	1	751356	8	1	755951	8	1	760498	
2	746790	16	2	751433	15	2	756027	15	2	760573	15
3	746868	23	3	751510	23	3	756103	23	3	760649	23
4	746945	31		751587	30	4	756180.	30	4	760724	30
5	747023	39	5	751664	38	5	756256	38	5	760799	38
6	747101	47	6	751741	46	6	756332	46	6	760875	45
7	747179	55	7	751818	54	7	756408	53	7	760950	53
8	747256	62	8	751895	62	8	756484	61	8	761025	60
9	747334	70	9	751972	70	9	756560	69	9	761100	68
5590	747412		5650	752048		5710	756636		5770	761176	
1	747489	8		752125	8		756712	8		761251	8
2	747567	16	2	752202	15	2	756788	15	2	761326	15
3	747645	23	3	752279	23	3	756864	23	3	761402	23
4	747722	31		752356	30	4	756940	30	4	761477	30
5	747800	39		752433	38	5	757016	38	5	761552	38
6	747878	47		752509	46	6	757092	46	6	761627	45
7	747955	54		752586	54	7	757168	53	7	761702	53
8	748033	62	8	752663	62	8	757244	61	8	761778	60
9	748110	70	9	752740	70	9	757320	69	9	761853	68
5600	748188		5660	752816		5720	757396		5780	761928	
	748266	8	1	752893	8	1	757472	8	1	762003	8
2	748343	16	2	752970	15	2	757548	15	2	763078	15
3	748421	23	3	753047	23	3	757624	23		762153	22
4	748498	31	4	753123	30	4	757700	30	4	762228	30
5	748576	39	5	753200	38	5	757775	38	5	762303	38
6	748653	47	6	753277	46	6	757851	46	6	762378	45
7	748731	54	7	753353	54	7	757927	53	7	762453	52
8	748808	62	8	753430	62	8	758003	61	8	762529	60
9	748885	70	9	75350	70	9	758079	68	9	762604	68
5610	748963		5670	753583		5730	758155	\%	5790	762679	
	749040	8	1	753660	8	1	758230	8	1	762754	8
2	749118	16	2	753736	15	2	758306	15	2	762829	15
	749195	23	3	753813	23	3	758382	23	3	762904	22
4	749272	31	4	753889	30	4	758458	30	4	762978	30
5	749350	39	5	753966	38	5	758533	38	5	763053	38
6	749427	47	6	754042	46	6	758609	46	6	763128	45
7	749504	54	7	754119	54	7	758685	53	7	763203	52
8	749582	62	8	754195	62	8	758760	61	8	763278	60
9	749659	70	9	754272	70	9	758836	68	9	763353	68

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
5800	763428		5860	767898		5920	772322		5980	776701	
1	763503	7	1	767972	7	1	772395			776774	7
2	763578	15	2	768046	15	2	772468	15	2	776846	14
3	763653	22	3	768120	22	3	772542	22	3	776919	22
4	763727	30	4	768194	30	4	772615	29	4	776992	29
5	763802	37	5	768268	37	5	772688	37	5	777064	36
6	763877	45	6	768342	45	6	772762	44	6	777137	43
7	763952	52	7	768416	52	7	772835	51	7	777209	51
8	764027	60	8	768490	59	8	772908	59	8	777282	58
9	764101	67	9	768564	67	9	772981	66	9	777354	65
5810	764176		5870	768638		5930	773055		5990	777427	
1	764251	7	1	768712	7	1	773128	7	1	777499	7
2	764326	15	,	768786	15	2	773201	15	2	777572	14
3	764400	22	3	768860	22	3	773274	22	3	777644	22
4	764475	30	4	768934	30	4	773348	29	4	777717	29
5	764550	37	5	769008	37	5	773421	37	5	777789	36
6	764624	45	6	769082	45	6	773494	44	6	777862	43
7	764699	52	7	769156	52	7	773567	51	7	777934	51
8	764774	60	8	769230	59	8	773640	59	8	778006	58
9	764848	67	9	769303	67	9	773713	66	9	778079	65
5820	764923		5880	769377		5940	773786		6000	778151	
1	764998	7	1	769451		1	773860	5	1	778224	7
2	765072	15	2	769525	15	2	773933	15	2	778296	14
3	765147	22	3	769599	22	3	774006	22	3	778368	22
4	765221	30	4	769673	30	4	774079	29	4	778441	29
5	765296	37	5	769746	37	5	774152	37	5	778513	36
6	765370	45	6	769820	45	6	774225	44	6	778585	43
7	765445	52	7	769894	52	7	774298	51	7	778658	51
8	765520	60	8	769968	59	8	774371	59	8	778730	58
9	765594	67	9	770042	67	9	774444	66	9	778802	65
5830	765669		5890	770115		5950	774517		6010	778874	
1	765743	7	1	770189	7	1	774590		1	778947	7
2	765818	15	2	770263	15	2	774663	15	2	779019	14
3	765892	22	3	770336	$2 \cdot$	3	774736	22	3	779091	22
4	765966	30	4	770410	30	4	774809	29	4	779163	29
5	766041	37	5	770484	37	5	774882	37	5	779236	36
6	766115	45	6	770557	45	6	774955	44	6	779308	43
7	766190	52	7	770631	52	7	775028	51	7	779380	51
8	766264	60	8	770705	59	8	775100	59	8	779452	58
9	766338	67	9	770778	67	9	775173	66	9	779524	65
5840	766413		5900	770852		5960	775246		6020	779596	
1	766487	7	1	770926	7	1	775319	7	1	779669	7
2	766562	15		770999	15	2	775392	15	2	779741	14
3	766636	22	3	771073	22	3	775465	22	3	779813	22
4	766710	30	4	771146	30	4	775538	29	4	779885	29
5	766785	37	5	771220	37	5	775610	37	5	779957	36
6	766859	45	6	771293	45	6	775683	44	6	780029	43
7	766933	52	7	771367	52	7	775756	51	7	780101	50
8	767007	60	8	771440	59	8	775829	-59	8	780173	58
9	767082	67	9	771514	67	9	775902	66	9	780245	65
5850	767156		5910	771587		5970	775974		6030	780317	
1	767230	7	1	771661	7	1	776047	7	1	780389	7
2	767304	15		771734	15	2	776120	15	2	780461	14
3	767379	22	3	771808	22	3	776193	22	3	780533	22
	767453	30		771881	30	4	77626.5	29	4	780605	29
5	767527	37	5	771955	37	5	776338	37	5	780677	36
c	767601	45	6	772028	44	6	776411	44	6	780749	43
7	767675	52	7	772102	52	7	776483	51	7	780821	50.
8	767749	59	8	772175	59	8	776556	59	8	780893	58
9	767823	67	9	772248	67	9	776629	66	9	780965	65

No.	Log.	Prop. Part.	No.	, Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop.
6040	781037		6100	785330		6160	789581	-	6220	793790	
1	781109	7	1	785401	7	1	789651	7	1	793860	7
2	781181	14	2	785472	14	2	789722	14	2	793930	14
3	781253	22	3	785543	21	3	789792	21	3	794000	21
4	781324	29	4	785615	28	4	789863	28	4	794070	28
5	781396	36	5	785686	36	5	789933	35	5	794139	35
6	781468	43	6	785757	43	6	790004	42	6	794209	42
7	781540	50	7	785828	50	7	790074	49	7	794279	49
8	781612	58	8	785899	57	8	790144	56	8	794349	56
9	781684	65	9	785970	64	9	790215	63	9	794418	63
6050	781755		6110	786041		6170	790285		6230	794488	
1	781827	7	1	786112	7	1	790356	7	. 1	794558	7
2	781899	14	2	786183	14	2	790426	14	2	794627	14
3	781971	22	3	786254	21	3	790496	21	3	794697	21
4	782042	29	4	786325	28	4	790567	28	4	794767	28
5	782114	36	5	786396	36	5	790637	35	5	794836	35
6	782186	43	6	786467	43	6	790707	42	6	794906	42
7	782258	50	7	786538	50	7	790778	49	7	794976	49
8	782329	58	8	786609	57	8	790848	56	8	795045	56
9	782401	65	9	786680	64	9	790918	63	9	795115	63
6060	782473		6120	786751		6180	790988		6240	795185	
1	782544	7	1	786822	7	1	791059	7	1	795254	7
2	782616	14	2	786893	14	2	791129	14	2	795324	14
3	782688	21	3	786964	21	3	791199	21	3	795393	21
4	782759	29	4	787035	28	4	791269	28	4	795463	28
5	782831	36	5	787106	36	5	791340	35	5	795532	35
6	782902	43	6	787177	43	6	791410	42	6	795602	42
7	782974	50	7	787248	50	7	791480	49	7	795671	49
8	783046	57	8	787319	57	8	791550	56	8	795741	56
9	783117	64	9	787390	64	-9	791620	63	9	795810	63
6070	783189		6130	787460		6190	791691		6250	795880	
1	783260	7	1	787531	7	1	791761	7	1.	795949	7
2	783332	14	2	787602	14	2	791831	14	2	796019	14
3	783403	21	3	787673	21	3	791901	21	3	796088	21
4	783475	29	4	787744	28	4	791971	28	4	796158	28
5	783546	36	0	787815	35	5	792041	35	5	796227	35
6	783618	43	6	787885	42	6	792111	42	6	796297	42
7	783689	50	7	787956	49	7	792181	49	- 7	796366	49
8	783761	57	8	788027	56	8	792252	56	8	796436	56
9	783832	64	9	788098	63	9	792322	63	9	796505	63
6080	783904		6140	788168	,	6200	792392		6260	796574	
1	783975		1	788239	7	1	792462	7	1	796644	7
2	784046	14	,	788310	14	2	792532	14	2	796713	14
3	784118	21	3	788381	21	3	792602	21	3	796782	21
4	784189	29	4	788451	28	4	792672	28	4	796852	27
5	784261	36	5	788522	35	5	792742	35	5	796921	35
6	784332	43	6	788593	42	6	792812	42	6	796990	42
7	784403	50	7	788663	49	7	792882	49	7	797060	49
8	784475	57	8	788734	56	8	792952	56	8	797129	56
9	784546	64	9	788804	63	9	793022	63	9	797198	62
6090	784617		6150	788875		6210	793092		6270	797268	
1	784689	7	1	788946	7	1	793162	7	1	797337	7
2	784760	14	2	789016	14	2	793231	14	2	797406	14
3	784831	21	3	789087	21	3	793301	21	3	797475	21
4	784902	29	4	789157	28	4	793371	28	4	797545	27
5	784974	36	5	789228	35	5	793441	35	5	797614	35
6	785045	43	6	789299	42	6	793511	42	6	797683	42
7	785116	50	7	789369	49	7	793581	49	7	797752	49
8	785187	57	8	789440	56	8	793651	56	8	797821	56
9	785259	64	9	789510	63	9	793721	63	9	797890	62

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	iroi Part
6280	797960		6340	802089		6400	806180		6460	810233	
1	798029	7	1	802158	7	1	806248	7	1	810300	7
2	798098	14	2	802226	14	2	806316	14	2	810367	13
3	798167	21	3	802295	21	3	806384	20	3	810434	20
4	798236	28	4	802363	27	4	806451	27	4	810501	27
5	798305	34	5	802432	34	5	806519	34	5	810569	33
6	798374	41	6	802500	41	6	806587	41	6	810636	40
7	798443	48		802568	48	7	806655	48	7	810703	47
8	798512	55	8	802637	55	8	806723	54	8	810770	54
9	798582	62	9	802705	62	9	806790	61	9	810837	60
6290	798651		6350	802774		6410	806858		6470	810904	
1	798720	7	-1	802842	7	1	806926	7	1	810971	7
2	798789	14	2	802910	14	2	806994	14	2	811038	13
3	798858	21	3	802979	21	3	807061	20	3	811106	20
4	798927	28	4	803047	27	4	807129	27	4	811173	27.
5	798996	34	5	803116	34	5	807197	34	5	811240	33
6	799065	41	6	803184	41	6	807264	41	6	811307	40
7	799134	48	7	803252	48	7	807332	48	7	811374	47
8	799203	55	8	803320	55	8	807400	54	8	811441	54
9	799272	62	9	803389	62	9	807467	61	9	811508	60
6300	799341		6360	803457		6420	807535		6480	811575	
1	799409	7	1	803525	7	,	807603	7	1	811642	
2	799478	14	2	803594	14	2	807670	14	2.	811709	13
3	799547	21	3	803662	21	,	807738	20	3	811776	20
4	799616	28		803730	27	4	807806	27	4	811843	27
5	799685	34	5	803798	34	5	807873	34	5	811910	33
6	799754	41	6	803867	41	6	807941	41	6	811977	40
7	799823	48	7	803935	48	7	808008	48	7	812044	47
8	799892	55	8	804003	55	8	808076	54	8	812111	54
9	799961	62	9	804071	62	9	808143	61	9	812178	60
6310	800029		6370	804139		6430	808211		6490	812245	
1	800098	7	1	804208	7	1	808279	7	1	812312	7
2	800167	14	,	804276	14	2	808346	14	2	812378	13
3	800236	21	3	804844	21	3	808414	20	3	812445	20
4	800305	28		804412	27	4	808481	27	4	812512	27
5	800373	34		804480°	34	5	808549	34	5	812579	33
6	800442	41	6	804548	41	6	808616	41	6	812646	40
7	800511	48	7	804616	48	7	808684	48	7	812713	47
8	800580	55	8	804685	55	8	808751	54	8	812780	54
9	800648	62	9	804753	62	9	808818	61	9	812847	60
6320	800717		6380	804821		6440	808886		6500	812913	
1	800786	7	1	804889	7	1	808953	7	1	812980	1
2	800854	14	,	804957	14	,	809021	13	2	813047	13
3	800923	21	3	805025	20	3	809088	20	3	813114	20
4	800992	28		805093	27	4	809156	27	4	813181	27
5	801060	34.	5	805161	34	5	809223	34	5	813247	33
6	801129	41	6	805229	41	6	809290	40	6	813314	40
7	801198	48	7	805297	48	7	809358	47	7	813381	47
8	801266	55	8	805365	54	8	809425	54	8	813448	54
9	801335	62	9	805433	61	9	809492	61	9	813514	60
6330	801404		6390	805501		6450	809560		6510	813581	
1	801472	7	1	805569	7	1	809627	7	1	813648	7
2	801541	14	2	805637	14	2	809694	13	2	813714	13
3	801609	21	3	805705	20	3	809762	20	3	813781	20
4	801678	27	4	805773	27	4	809829	27	4	813848	27
5	801747	34	5	805841	34	5	809896	34	5	813914	33
6	801815	41	6	805908	41	6	809964	40	6	813981	40
7	801884	48	7	805976	48	7	810031	47	7	814048	47
8	801952	55	8	806044	54	8	810098	54	8	814114	54
9	802021	62	9	806112	61	9	810165	61		814181	60

No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
6520	814248	-	6580	818226		6640	822168		6700	826075	
1	814314	7	1	818292	7	1	822233	7	1	826140	6
2	814381	13	2	818358	13	2	822299	13	2	826204	13
3	814447	20	3	8184\%:	20	3	822364	20	3	826269	19
4	814514	26	4	818490	26	4	822430	26	4	826334	26
5	814581	33	5	818556	33	5	822495	33	5	826399	32
6	814647	40	6	818622	40	6	822560	39	6	826464	39
7	814714	46	7	818688	46	7	822626	46	7	826528	45
8	814780	53	8	818754	53	8	822691	52	8	826593	52
9	814847	60	9	818819	59	9	822756	59	9	826658	58
6530	814913		6590	818885		6650	822823		6710	826722	
1	814980	7	1	818951	7	1	822887	7	1	826787	6
2	815046	13	2	819017	-13	2	822952	13	2	826852	13
3	815113	20	0	819083	20	3	823018	20	3	826917	19
4	815179	26		819149	26	4	823083	26	4	826981	26
5	815246	33	5	819215	33	5	823148	33	5	827046	3.)
6	815312	40	6	819281	40	6	823213	39	6	827111	39
7	815378	46	7	819346	46	7	823279	46	7	827175	45
8	815445	53	8	819412	53	8	823344	52	8	827240	52
9	815511	60	9	819478	59	9	823409	59	9	827305	58
6540	815578		6600	819544		6660	823474		6720	827369	
1	815644	7	1	819610	7	1	823539	7	1	827434	6
2	815711	13	2	819675	13	2	823605	13	2	827498	13
3	815777	20	3	819741	$\because 0$	3	823670	20	3	827563	19
4	815843	26	4	819807	26	4	823735	26	4	827628	26
5	815910	33	5	819873	33	5	823800	33	5	827692	32
6	815976	40	6	819939	40	6	823865	39	6	827757	39
7	816042	46	7	820004	46	7	823930	46	7	827821	45
8	816109	53	8	820070	53	8	823996	52	8	827886	52
9	816175	60	9	820136	59	9	824061	59	9	827951	58
6550	816241		6610	820201		6670	824126		6730	828015	
1	816308	7	1	820267	7	1	824191	6	1	828080	6
2	816374	13	2	820333	13	2	824256	13	2	828144	13
3	816440	20	3	820399	20	3	824321	19	3	828209	19
4	816506	26	4	8 0464	26	4.	824386	26	4	828273	26
5	816573	33	5	820530	33	5	824451	32	5	828338	32
6	816639	40	6	820595	40	6	824516	39	6	828402	39
7	816705	46	7	820661	46	7	824581	45	7	828467	45
8	816771	53	8	820727	53	8	824646	52	8	828531	52
9	816838	60	9	820792	59	9	824711	58	9	828595	58
6560	816904		6620	820858		6680	824776		6740	828660	
1	816970	7	1	820924	7	1	824841	6	1	828724	6
2	817036	13	2	820989	13	2	824906	13	2	828789	13
3	817102	20	3	821055	20	3	824971	19	3	828853	19
4	817169	26	4	821120	26	4	825036	26	4	828918	26
5	817235	33	5	821186	33	5	825101	32	5	828982	32
6	817301	40	6	821251	40	6	825166	39	6	829046	39
7	817367	46	7	821317	46	7	825231	45	7	829111	45
8	817433	53	8	821382	53	8	825296	52	8	829175	52
9	817499	59	9	821448	59	9	825361	58	9	829239	58
6570	817565		6630	821514		6690	825426		6750	829304	
1	817631	7	1	821579	7	1	825491	6	1	829368	6
2	817698	13	2	821644	13	2	825556	13	2	829432	13
3	817764	20	3	821710	20	3	825621	19	3	829497	19
4	817830	26	4	821775	26	4	825686	26	4	829561	26
5	817896	33	5	821841	33	5	825751	32	5	829625	32
6	817962	40	6	821906	39	6	825815	39	6	829690	39
7	818028	46	7	821972	46	7	825880	45	7	829754	45
8	818094	53	8	822037	52	8	825945	52	8	829818	52
9	818160	59	9	822103	59	9	826010	58	9	829882	58

No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$
ji 60	829947		6820	833784		6880	837588		6940	841359	
1	830011	6	1	833848	6	1	837652	6	1	841422	6
2	830075	13	2	833912	13	2	837715	13	2	841485	13
3	830139	19	3	833975	19	3	837778	19	3	841547	19
4	830204	26	4	834039	26	4	837841	25	4	841610	25
5	830268	32	5	834103	32	5	837904	32	5	841672	31
6	830332	38	6	834166	38	6	837967	38	6	841735	38
7	830396	45	7	834230	45	7	838030	44	7	841797	44
8	830460	51	8	834293	51	8	838093	50	8	841860	50
9	830525	58	9	834357	58	9	838156	57	9	841922	56
6770	830589		6830	834421		6890	838219		6950	841985	
1	830653	6	1	834484	6	1	838282	6	1	842047	6
2	830717	13	2	834548	13	2	838345	13	2	842110	12
3	830781	19	3	834611	19	3	838408	19	3	842172	19
4	830845	26	4	834675	26	4	838471	25	4	842235	25
5	830909	32	5	834739	32	5	838534	32	5	842297	31
6	830973	38	6	834802	38	6	838597	38	6	842360	37
7	831037	45	7	834866	45	7	838660	44	7	842422	44
8	831102	51	8	834929	51	8	838723	50	8	842484	50
9	831166	58	9	834993	58	9	838786	57	9	842547	56
6780	831230		6840	835056		6900	838849		6960	842609	
1	831294	6	1	835120	6	1	838912	6	1	842672	6
2	831358	13	2	835183	13	2	838975	13	2	842734	12
3	831422	19	3	835247	19	3	839038	19	3	842796	19
4	831486	26	4	835310	26	4	839101	25	4	842859	25
5	831550	32	5	835373	32	5	839164	31	5	842921	31
6	831614	38	6	835437	38	6	839227	38	6	842983	37
7	831678	45	7	835500	45	7	839289	44	7	843046	44
8	831742	51	8	835564	51	8	839352	50	8	843108	50
9	831806	58	9	835627	58	9	839415	57	9	843170	56
6790	831870		6850	835691		6910	839478		6970	843233	
1	831934	6	1	835754	6	1	839541	6	1	843295	6
2	831998	13	2	835817	13	2	839604	13	2	843357	12
3	832062	19	3	835881	19	3	839667	19	3	843420	19
4	832126	26	4	835944	26	4	839729	25	4	843482	25
5	832189	32	5	836007	32	5	839792	31	5	843544	31
6	832253	38	6	836071	38	6	839855	38	6	843606	37
7	832317	45	7	836134	45.	7	839918	44	7	843669	43
8	832381	51	8	836197	51	8	839981	50	8	843731	50
9	832445	58	9	836261	58	9	840043	57	9	843793	56
6800	832509		6860	836324		6920	840106		6980	843855	
1	832573	6	1	836387	6	1	840169	6	1	843918	6
2	832637	13	2	836451	13	2	840232	13	2	843980	12
3	832700	19	3	836514	19	3	840294	19	3	844042	19
4	832764	26	4	836577	26	4	840357	25	4	844104	25
5	832828	32	5	836641	32	5	840420	31	5	844166	31
6	832892	38	6	836704	38	6	840482	38	6	844229	37
7	832956	45	7	836767	45	7	840545	44	7	844291	43
8	833020	51	8	836880	51	8	840608	50	8	844353	50
9	833083	58	9	836894	58	9	840671	57	9	844415	56
6810	833147		6870	836957		6930	840733		6990	844477	
1.	833211	6	1	837020	6	1	840796	6	1	844539	6
2	833275	13	2	837083	13	2	840859	13	2	844601	12
3	833338	19	- 3	837146	19	3	840921	-19	3	844664	19
4	833402	26	4	837210	25	4	840984	25	4	844726	25
5	833466	32	5	837273	32	5	841046	31	5	844788	31
6	833530	38	6	837336	38	6	841109	38	6	844850	37
7	833593	45	7	837399	44	7	841172	44	7	844912	43
8	833657	51	8	837462	51	8	841234	50	8	844974	50
9	833721	58	9	837525	57	9	841297	56	9	845036	56

No.	Log.	${ }_{\text {Prop. }}^{\text {Part. }}$	No.	Log.	$\left\lvert\, \begin{aligned} & \text { Prop. } \\ & \text { Part. }\end{aligned}\right.$	No.	Log.	$\left\lvert\, \begin{aligned} & \text { Prop. } \\ & \text { Part. }\end{aligned}\right.$	No.	Log.	$\xrightarrow{\text { Prop. }}$ Part:
7000	845098		7060	848805		7120	852480		7180	856124	
	845160	6	1	848866	6	1	852541	6		856185	6
2	845222	12	2	848928	12	2	852602	12	2	856245	12
3	845284	19	3	848989	18	3	852663	18	3	856306	18
4	845346	25	4	849051	25	4	852724	24	4	856366	24
5	845408	31	5	849112	31	5	852785	30	5	856427	30
6	845470	37	6	849174	37	6	852846	37	6	856487	36
7	845532	43	7	849235	43	7	852907	43	7	856548	42
8	845594	50	8	849296	49	8	852968	49	8	856608	48
9	845656	56	9	849358	55	9	853029	55	9	856668	54
7010	845718		7070	849419		7130	853090		7190	856729	
1	845780	6	1	849481	6	1	853150	6		856789	6
2	845842	12	2	849542	12	2	853211	12	2	856850	12
3	845904	19	3	849604	18	3	853272	18	3	856910	18
4	845966	25	4	849665	25	4	853333	24	4	856970	24
5	846028	31	5	849726	31	5	853394	30	5	857031	30
6	846090	37	6	849788	37	6	853455	37	6	857091	36
7	846151	43	7	849849	43	7	853516	43	7	857151	42
8	846213	50	8	849911	49	8	853576	49	8	857212	48
9	846275	56	9	849972	55	9	853637	55	9	857272	54
7020	846337		7080	850033		7140	853698		7200	857332	
	846399	6	1	850095	6		853759	6		857393	6
2	846461	12	2	850156	12	2	853820	12	2	857453	12
3	846523	19	3	850217	18	3	853881	18	3	857513	18
4	846584	25	4	850279	25	4	853941	24	4	857574	24
5	846646	31	5	850340	31	5	854002	30	5	857634	30
6	846708	37	6	850401	37	6	854063	37	6	857694	36
7	846770	43		850462	43	7	854124	43	7	857754	42
8	846832	50		850524	49	8	854185	49	8	857815	48
9	846894	56	9	850585	55	9	854245	55	9	857875	54
7030	846955		7090	850646		7150	854306		7210	857935	
	847017	6		850707	6		854367	6		857995	6
2	847079	12	2	850769	12	2	854427	12	2	858056	12
3	847141	19	3	850830	18	3	854488	18	3	858116	18
4	847202	25	4	850891	25	4	854549	24	4	858176	24
5	847264	31	5	850952	31	5	854610	30	5	858236	30
6	847326	37	6	851014.	37	6	854670	36	6	858297	36
7	847388	43	7	851075	43	7	854731	42	7	858357	42
8	847449	50	8	851136	49	8	854792	48	8	858417	48
9	84751	56	9	851197	55	9	854852	54	9	858477	54
7040	847573		7100	851258		7160	854913		7220	858537	
1	847634	6		851320	-		854974	6	1	858597	
2	847696	12	2	851381	12.	2	855034	12	2	858657	12
3	847758	18		851442	18	3	855095	18	3	858718	18
4	847819	25		851503	25	4	855156	24	4	858778	24
5	847881	31	5	851564	31	5	855216	30	5	858838	30
6	847943	37	6	851625	37	6	855277	36	6	858898	36
7	848004	43	7	851686	43	7	855337	42	7	858958	42
8	848066	49	8	851747	49	8	855398	48	8	859018	48
9	848127	55	9	851808	55	9	855459	54	9	859078	54
7050	848189		7110	851870		7170	855519		7230	859138	
	848251	6		851931	-		855580	6		859198	
2	848312	12	2	851992	12	2	855640	12	2	859258	12
3	848374	18	3	852053	18	3	855701	18	3	859318	18
4	848435	25	4	852114	25	4	855761	24	4	859378	24
5	848497	31	5	852175	31	5	855822	30	5	859438	30
6	848559	37	6	852236	37	6	855882	36	6	859499	36
7	848620	43	7	852297	43	7	855943	42	7	859559	42
	848682	49	8	852358	49	8	856003	48	8	859619	48
9	848743	55	9	852419	55	9	856064	54	9	859679	54

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{array}{\|l} \text { Prop. } \\ \text { Part. } \end{array}$	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$
7240	859739		7300	863323		7360	866878		7420	870404	
1	859799	6	1	863382	6	1	866937	6	1	870462	6
2	859858	12	2	863442	12	2	866996	12	2	870521	12
3	859918	18	3	863501	18	3	867055	18	3	870579	18
4	859978	24	4	863561	24	4	867114	24	4	870638	24
5	860038	30	5	863620	30	5	867173	29	5	870696	29
6	860098	36	6	863680	36	6	867232	35	6	870755	35
7	860158	42	7	863739	42	7	867291	41	- 7	870813	41
8	860218	48	8	863798	48	8	867350	47	8	870872	47
9	860278	54	9	863858	54	9	867409	53	9	870930	53
7250	860338		7310	863917		7370	867467		7430	870989	
1	860398	6	1	863977	6	1	867526	6	1	871047	6
2	860458	12	2	864036	12	2	867585	12	2	871106	12
3	860518	18	3	864096	18	3	867644	18	3	871164	18
4	860578	24	4	864155	24	4	867703	24	4	871223	24
5	860637	30	5	864214	30	5	867762	29	5	871281	29
6	860697	36	6	864274	36	6	867821	35	6	871339	35
7	860757	42	7	864333	42	7	867880	41	7	871398	41
8	860817	48	8	864392	48	8	867939	47	8	871456	47
9	860877	54	9	864452	54	9	867998	53	9	871515	53
7260	860937		7320	864511		7380	868056		7440	871573	
1	860996	6	1	864570	6	1	868115	6	1	871631	6
2	861056	12	2	864630	12	2	868174	12	2	871690	12
3	861116	18	3	864689	18	3	868233	18	3	871748	18
4	861176	24	4	864748	24	4	868292	24	4	871806	23
5	861236	30	5	864808	30	5	868350	29	5	871865	29
6	861295	36	6	864867	36	6	868409	35	6	871923	35
7	861355	42	7	864926	42	7	868468	41	7	871981	41
8	861415	48	8	864985	48	8	868527	47	8	872040	47
9	861475	54	9	865045	54	9	868586	53	9	872098	53
7270	861534		7330	865104		7390	868644		7450	872156	
1	861594	6	1	865163	6	1	868703	6	1	872215	6
2	861654	12	2	865222	12	2	868762	12	2	872273	12
3	861714	18	3	865282	18	3	868821	18	3	872331	18
4	861773	24	4	865341	24	4	868879	24	4	872389	23
5	861833	30	5	865400	30	5	868938	29	5	872448	29
6	861893	36	6	865459	36	6	868997	35	6	872506	35
7	861952	42	7	865518	42	7	869056	41	7	872564	41
8	862012	48	8	865578	48	8	869114	47	8	872622	47
9	862072	54	9	865637	54	9	869173	53	9	872681	53
7280	862131		7340	865696		7400	869232		7460	872739	
1	862191	6	1	865755	6	1	869290	6	1	872797	6
2	862251	12	2	865814	12	2	869349	12	2	872855	12
3	862310	18	3	865874	18	3	869408	18	3	872913	18
4	862370	24	4	865933	24	4	869466	24	4	872972	23
5	862430	30	5	865992	30	5	869525	29	5	873030	29
6	862489	36	6	866051	36	6	869584	35	6	873088	35
7	862549	42	7	866110	42	7	869642	41	7	873146	41
8	862608	48	8	866169	48	8	869701	47	8	873204	47
9	862668	54	9	866228	54	9	869760	53	9	873262	53
7290	862728		7350	866287		7410	869818		7470	873321	
1	862787	6	1	866346	6	1	869877	6	1	873379	6
2	862847	12	2	866405	12	2	869935	12	2	873437	12
3	862906	18	3	866465	18	3	869994	18	3	873495	18
4	862966	24	4	866524	24	4	870053	24	4	873553	23
5	863025	30	5	866583	30	5	870111	29	5	873611	29
6	863085	36	6	866642	35	6	870170	35	6	873669	35
7	863144	42	7	866701	41	7	870228	41	7	873727	41
8	863204	48	8	866760	47	8	870287	47	8	873785	47
9	863263	54	9	866819	53	9	870345	53	9	873844	53

No.	Log.	Prop.	No,	Log.	${ }_{\text {Prop. }}^{\text {Part. }}$	No.	Log.	Prop. Part.	No.	Log.	${ }_{\text {Proper }}$
7480	873902		7540	877371		7600	880814		7660	884229	
	873960	6		877429	6		880871	6	1	884285	6
2	874018	12	2	877486	12	2	880928	11	2	884342	11
3	874076	17	3	877544	17	3	880985	17	3	884399	17
4	874134	23	4	877602	23	4	881042	23	4	884455	23
5	874192	29	5	877659	29	5	881099	28	5	884512	28
6	874250	35	6	877717	34	6	881156	34	6	884569	34
7	874308	41	7	877774	40	7	881213	40	7	884625	40
8	874366	46	8	877832	46	8	881270	46	8	884682	46
9	874424	52	9	877889	52	9	881328	51	9	884739	51
7490	874482		7550	877947		7610	881385		7670	884795	
	874540	6	1	878004			881442		1	884852	6
2	874598	12	2	878062	12	2	881499	11	2	884909	11
3	874656	17	3	878119	17	3	881556	17	3	884965	17
4	874714	23	4	878177	23	4	881613	23	4	885022	23
5	874772	29	5	878234	29	5	881670	28	5	885078	28
6	874830	35	6	878:292	34	6	881727	34	6	885185	34
7	874887	41	7	878349	40	7	881784	40	7	885192	40
8	874945	46	8	878407	46	8	881841	46	8	885248	46
9	875003	52	9	878464	52	9	881898	51	9	885305	51
7500	875061		7560	878522		7620	881955		7680	885361	
1	875119	6	1	878579	6	1	882012	6	1	885418	6
2	875177	12	2	878637	12	2	882069	11	2	885474	11
3	875235	17	3	878694	17	3	882126	17	3	885531	17
4	875293	23	4	878751	23	4	882183	23	4	885587	23
5	875351	29	5	878809	29	5	882240	28	5	885644	28
6	875409	35	6	878866	34	6	882297	34	6	885700	34
7	875466	41	7	878924	40	7	882354	40	7	885757	39
8	875524	46	8	878981	46	8	882411	46	8	885813	45
9	875582	52	9	879038	52	- 9	882468	51	9	885870	51
7510	875640		7570	879096		7630	882524		7690	885926	
1	875698	6	1	879153	6		882581	6	1	885983	6
2	875756	12	2	879211	12	2	882638	11	2	886039	11
3	875813	17	3	879268	17	3	882695	17	3	886096	17
4	875871	23	4	879325	23	4	882752	23	4	886152	23
	875929	29	5	879383	29	5	882809	28	5	886209	28
	875987	35	6	879440	34	6	882866	34	6	886265	34
7	876045	41	7	879497	40	7	882923	40	7	886321	39
8	876102	46	8	879555	46	8	882980	46	8	886378	45
9	876160	52	9	879612	52	9	883037	51	9	886434	51
7520	876218		7580	879669		7640	883093		7700	886491	
1	876276	6	1	879726	6	1	883150	6		886547	6
2	876333	12	2	879784	11	2	883207	11	2	886604	11
3	876391	17	3	879841	17	3	883264	17	3	886660	17
4	876449	23	4	879898	23	4	883321	23	4	886716	23
5	876507	29	5	879956	28	5	883377	28	5	886773	28
6	876564	34	6	880013	34	6	883434	34	6	886829	34
7	876622	40	7	880070	40	7	883491	40	7	886885	39
8	876680	46	8	880127	46	8	883548	46	8	886942	45
9	876737	52	9	880185	51	9	883605	51	9	886998	51
7530	876795		7590	880242		7650	883661		7710	887054	
1	876853	6	1	880299	6		883718	6	1	887111	6
2	876910	12	2	880356	11	2	883775	11	2	887167	11
3	876968	17	3	880413	17	3	883832	17	3	887223	17
4	877026	23	4	880471	23	4	883888	23	4	887280	23
5	877083	29	5	880528	28	5	883945	28	5	887336	28
6	877141	34	6	880585	34	6	884002	34	6	887392	34
7	877198	40	7	880642	40	7	884059	40	7	887449	39
8	877256	46	8	880699	46	8	884115	46	8	887505	45
9	877314	52	9	880756	51	9	884172	51	9	887561	51

N	Log.	Prop. Part.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	Prop. Part.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$
7720	887617		7780	890980		7840	894316		7900	897627	
1	887674	6	1	891035	6	1	894371	6	1	897682	6
2	887730	11	2	891091	11	2	894427	11	2	897737	11
3	887786	17	3	891147	17	3	894482	17	3	897792	17
4	887842	23	4	891203	22	4	894538	22	4	897847	22
5	887898	28	5	891259	28	5	894593	27	5	897902	27
6	887955	34	6	891314	34	6	894648	33	6	897957	33
7	888011	39	7	891370	39	7	894704	39	7	898012	39
8	888067	45	8	891426	45	8	894759	44	8	898067	44
9	888123	51	9	891482	50	9	894814	50	9	898122	50
7730	888179		7790	891537		7850	894870		7910	898176	
1	888236	6	1	891593	6	1	894925	6	1	898231	6
2	888292	11	2	891649	11	2	894980	11	2	898286	11
3	888348	17	3	891705	17	3	895036	17	3	898341	17
4	888404	22	4	891760	22	4	895091	22	4	898396	22
5	888460	28	5	891816	28	5	895146	27	5	898451	27
6	888516	34		891872	33	6	895201	33	6	898506	33
7	888573	39	7	891928	39	7	895257	39	7	898561	39
8	888629	45	8	891983	44	8	895312	44	8	898615	44
9	888685	50	9	892039	50	9	895367	50	9	898670	50
7740	888741		7800	892095		7860	895423		7920	898725	
1	888797	6	1	892150	6	1	895478	6	1	898780	5
2	888853	11	2	892206	11	2	895533	11	2	898835	11
3	888909	17	3	892262	17	3	895588	17	3	898890	17
4	888965	22	4	892317	22	4	895643	22	4	898944	22
5	889021	28	5	892373	28	5	895699	27	5	898999	27
6	889077	34	6	892429	33	6	895754	33	6	899054	33
7	889134	39	7	892484	39	7	895809	39	7	899109	38
8	889190	45	8	892540	44	8	895864	44	8	899164	44
9	889246	50	9	892595	50	9	895920	50	9	899218	50
7750	889302		7810	892651		7870	895975		7930	899273	
1	889358	6	1	892707	6	1	896030	6	1	899328	5
2	889414	11	2	892762	11	2	896085	11	2	899383	11
3	889470	17		892818	17	3	896140	17	3	899437	17
4	889526	22	4	892873	22	4	896195	22	4	899492	22
5	889582	28	5	892929	28	5	896251	27	5	899547	27
6	889638	34	6	892985	33	6	896306	33	6	899602	33
7	889694	39	7	893040	39	7	896361	39	7	899656	38
8	889750	45	8	893096	44	8	896416	44	8	899711	44
9	889806	50	9	893151	50	9	896471	50	9	899766	50
7760	889862		7820	893207		7880	896526		7940	899820	
1	889918	6	1	893262	6	1	896581	6	1	899875	5
2	889974	11	2	893318	11	2	896636	11	2	899930	11
3	890030	17	,	893373	17	3	896692	17	3	894985	17
4	890086	22	4	893429	22	4	896747	22	4	900039	22
5	890141	28	5	893484	28	5	896802	27	5	900094	27
6	890197	34		893540	33	6	896857	33	6	900149	33
7	890253	39	7	893595	39	7	896912	39	7	900203	38
8	890309	45	8	893651	44	8	896967	44	8	900258	44
9	890365	50	9	893706	50	9	897022	50	9	900312	50
7770	890421		7830	893762		7890	897077		7950	900367	
1	890477	6	1	893817	6	1	897132	6	1	900422	5
2	890533	11	2	893873	11	2	897187	11	2	900476	11
3	890589	17	3	893928	17	3	897242	17	3	900531	17
4	890644	22		893984	22	4	897297	22	4	900586	22
5	890700	28	5	894039	28	5	897352	27	5	900640	27
	890756	34	6	894094	33	6	897407	33	6	900695	33
7	890812	39	7	894150	39	7	897462	39	7	900749	38
8	890868	45	8	894205	44	8	897517	44	8	900804	44
9	890924	50	8	894261	50	9	897572	50	9	900858	50

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Pari.	No.	Log.	Prop. Part.
7960	900913		8020	904174		8080	907411		8140	910624	
1	900968	5	1	904228	5	1	907465	5	1	910678	5
2	901022	11	2	904283	11	2	907519	11	2	910731	11
3	901077	16	3	904337	16	3	907573	16	3	910784	16
4	901131	22	4	904391	22	4	907626	22	4	910838	21
5	901186	27	5	904445	27	5	907680	27	5	910891	27
6	901240	33	6	904499	32	6	907734	32	6	910944	32
7	901295	38	7	904553	38	7	907787	38	7	910998	37
8	901349	44	8	904607	43	8	907841	43	8	911051	43
9	901404	49	9	904661	49	9	907895	49	9	911104	48
7970	901458		8030	904715		8090	907948		8150	911158	
1	901513	5	1	904770	5	1	908002	5	1	911211	5
2	901567	11	2	904824	11	2	908056	11	2	911264	11
3	901622	16	3	904878	16	3	908109	16	3	911317	16
4	901676	22	4	904932	22	4	908163	22	4	911371	21
5	901731	27	5	904986	27	5	908217	27	5	911424	27
6	901785	33	6	905040	32	6	908270	32	6	911477	32
7	901840	38	7	905094	38	7	908324	38	7	911530	37
8	901894	44	8	905148	43	8	908378	43	8	911584	42
9	901948	49	9	905202	49	9	908431	49	9	911637	48
7980	902003		8040	905256		8100	908485		8160	911690	
1	902057	5	1	905310	5	1	908539	5	1	911743	5
2	902112	11	2	905364	11	2	908592	11	2	911797	11
3	902166	16	3	905418	16	3	908646	16	3	911850	16
4	902221	22		905472	22	4	908699	21	4	911903	21
5	902275	27	5	905526	27	5	908753	27	5	911956	27
6	902329	33	6	905580	32	6	908807	32	6	912009	32
7	902384	38	7	905634	38	7	908860	37	7	912063	37
8	902438	44	8	905688	43	8	908914	43	8	912116	42
9	902492	49	9	905742	49	9	908967	48	9	912169	48
7990	902547		8050	905796		8110	909021		8170	912222	
1	902601	5	1	905850	5	1	909074	5	1	912275	5
2	902655	11	2	905904	11	2	909128	11	2	912328	11
3	902710	16	3	005958	16	3	909181	16	3	912381	16
4	902764	22	4	906012	22	4	909235	21	4	912435	21
5	902818	27	5	906065	27	5	909288	27	5	912488	27
6	902873	33	6	906119	32	6	909342	32	6	912541	32
7	902927	38	7	906173	38	7	909395	37	7	912594	37
8	902981	44	8	906227	43	8	909449	43	8	912647	42
9	903036	49	9	906281	49	9	909502	48	9	912700	48
8000	903090		8060	906335		8120	909556		8180	912753	
1	903144	5	1	906389	5	1	909609	5	1	912806	5
2	903198	11	2	906443	11	2	909663	11	2	912859	11
3	903253	16	3	906497	16	3	909716	16	3	912913	16
4	903307	22	4	906550	22	4	909770	21	4	912966	21
5	903361	27		906604	27	5	909823	27	5	913019	27
6	903416	32	-	906658	32	6	909877	32	6	913072	32
7	903470	38	7	906712	38	7	909930	37	7	913125	37
8	903524	43	8	906766	43	8	909984	43	8	913178	42
9	903578	49	9	906820	49	9	910037	48	9	913231	48
8010	903632		8070	906873		8130	910090		8190	913284	
1	903687	5	1	906927	5	1	910144	5	1	913337	5
2	903741	11	,	906981	11	2	910197	11	2	913390	11
3	903795	16	3	907035	16	3	910251	16	3	913443	16
4	903849	22	4	907089	22	4	910304	21	4	913496	21
5	903903	27	5	907142	27	5	910358	27	5	913549	27
6	903958	32	6	907196	32	6	910411	32	6	913602	32
7	904012	38	7	907250	38	7	910464	37	7	913655	37
	904066	43	8	907304	43	8	910518	43	8	913708	42
9	904120	49	9	907358	49	9	910571	48	9	913761	48

N	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
8200	913814		8260	916980		8320	920123		8380	923244	
1	91386	5	1	917033	5	1	920175	5	1	923296	5
2	913920	11	2	917085	11	2	920228	10	2	923348	10
3	913973	16	3	917138	16	3	920280	16	3	923399	16
4	914026	21	4	917190	21	4	920332	21	4	923451	21
5	914079	27	5	917243	26	5	920384	26	5	923503	26
6	914131	32	6	917295	31	6	920436	31	6	923555	31
7	914184	37	7	917348	37	7	920489	36	7	923607	36
8	914237	42	8	917400	42	8	920541	42	8	923658	42
9	914290	48	9	917453	47	9	920593	47	9	923710	47
8210	914343		8270	917505		8330	920645		8390	923762	
1	914396	5	1	917558	5	1	920697	5	1	923814	5
2	914449	11	2	917610	11	2	920749	10	2	923865	10
3	914502	16	3	917663	16	3	920801	16	3	923917	16
4	914555	21	4	917715	21	4	920853	21	4	923969	21
5	914608	27	5	917768	26	5	920906	26	5	924021	26
6	914660	32	6	917820	31	6	920958	31	6	924072	31
7	914713	37	7	917873	37	7	921010	36	7	924124	36
8	914766	42	8	917925	42	8	921062	42	8	924176	42
9	914819	48	9	917978	47	9	921114	47	9	924228	47
8220	914872		8280	918030		8340	921166		8400	924279	
1	914925	5	1	918083	5	1	921218	5	1	924331	5
2	914977	11	2	918135	11.	2	921270	10	2	924383	10
3	915030	16	3	918188	16	3	921322	16	3	924434	15
4	915083	21	4	918240	21	4	921374	21	4	924486	21
5	915136	27	5	918292	26	5	921426	26	5	924538	26
6	915189	32	6	918345	31	6	921478	31	6	924589	31
7	915241	37	7	918397	37	7	921530	36	7	924641	36
8	915294	42	8	918450	42	8	921582	42	8	924693	41
9	915347	48		918502	47	9	921634	47	9	924744	46
8230	915400		8290	918555		8350	921686		8410	924796	
1	915453	5	1	918607	5	1	921738	5	,	924848	5
2	915505	11	,	918659	11	2	921790	10	2	924899	10
3	915558	16	3	918712	16	3	921842	16	3	924951	15
4	915611	21	4	918764	21	4	921894	21	4	925002	21
5	915664	27	5	918816	26	5	921946	26	5	925054	26
6	915716	32	6	918869	31	6	921998	31	6	925106	31
7	915769	37	7	918921	37	7	922050	36	7	925157	36
8	915822	42	8	918973	42	8	922102	42	8	925209	41
9	915874	48	9	919026	47	9	922154	47	9	925260	46
8240	915927		8300	919078		8360	922206		8420	925312	
1	915980	5	1	919130	5	1	922258	5	1	925364	5
2	916033	11	2	919183	11	1	922310	10	2	925415	10
3	916085	16	3	919235	16	,	922362	16	3	925467	15
4	916138	21	4	919287	21	,	922414	21	4	925518	21
5	916191	27	5	919340	26	5	922466	26	5	925570	26
6	916243	32	6	919392	31	6	922518	31	6	925621	31
7	916296	37	7	919444	37		922570	36	7	925673	36
8	916349	42	8	919496	42	8	922622	42	8	925724	41
9	916401	48		919549	47	9	922674	47	9	925776	46
8250	916454		8310	919601		8370	922725		8430	925828	
1	916507	5	1	919653	5	1	922777	5	'1	925879	5
2	916559	11		919705	11.	2	922829	10	2	925931	10
3	916612	16		919758	16	3	922881	16	3	925982	15
4	916664	21	4	919810	21	4	922933	21	4	926034	21
5	916717	26	5	919862	26	5	922985	26	5	926085	26
6	916770	31	d	919914	31	6	923037	31	6	926137	31
7	916822	37	7	919967	37	7	923088	36	\%	926188	36
8	916875	42		920019	42	8	923140	42	8	926239	41
9	916927	47		920071	47	9	923192	47	9	926291	46

No.	Log.	${ }_{\text {Propp }}^{\text {Prapt. }}$	No.	Log.	${ }_{\text {Prop. }}^{\text {Propt. }}$	No.	Log.	Prar.	No.	Log.	${ }_{\substack{\text { Prop. } \\ \text { Part: }}}$
8440	926342		8500	929419		8560	9324		862	935	
		5		10	5		93	5			5
	926445	10	2	929521	10		932575	10		935608	10
	926497	15		929572	15		932626	15		935658	15
	926548	21		929623	20		932677	20		935709	20
	926600	26		929674	26		${ }_{932727}^{9327}$	25		${ }^{935759}$	25
	926651	31		929725	31		932778	30		935809	30
	926702	36		929776	36		932829	35		935860	35
8	926754	41		929827	41	8	932879	40		935910	40
	9:6805	46		929878	46	9	932930	45		935960	45
8450	926857		8510	929930		8570	932981		8630	936011	
	926908	5		929981	5		933031	5		936061	5
	926959	10		930032	10		933082	10		936111	10
	927011	15		9300	15		933133	15	3	936162	15
	927062	21		${ }^{930134}$	20		933183	20		${ }^{936212}$	20
	927114	26		930185	26		933234	25		936262	25
6	927165	31		930236	31		933285	30		936313	30
7	927216	${ }^{36}$		${ }_{930338}^{93028}$	${ }^{36}$		933335	35		${ }^{936363}$	35.
	927268	41		930338	41		933386	40		936413	40
9	927319	46		930389	46		933437	45	9	936463	45
8460	927370		8520	930440		8580	933487		8640	936514	
	927422			930491	5		933538	5		936564	5
	927473	10	2	${ }^{930541}$	10		933588	10		936614	10
	927524	15		${ }_{930643}^{930592}$	15		933639	15		${ }^{936664}$	12
	927576	21		${ }_{930694}^{930643}$	20		${ }_{933740}^{933690}$	20			25
	927678	31		930745	31		933791	30		936815	30
7	927730	36	7	${ }^{930796}$	36		933841	35		936865	35
	927781	41			41		933892	40		936916	40
9	927832	46		930898	46	9	933943	45		936966	45
8470	927883		8530	930949		8590	933993		8650	937016	
	927935	10		931000	10		934044	10		${ }_{9}^{937066}$	10
2	927	10		931051	10		934094	10		937116	10
3		15		${ }_{931153} 93102$			${ }_{934145}^{9345}$	15		937167	
	928888	${ }_{26}^{21}$		${ }_{931203}^{931153}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$		934195	$\stackrel{20}{25}$		${ }_{937267}^{937217}$	20 25
6	928191	31		931254	31		934296	30		937317	30
7	928242	36		931305	36		934347	35		937367	35
	928293	41		931356	41		934397	40		937418	40
9	928345	46	9	931407	46	9	934448	45	9	937468	45
80	928396		8540	931458		8600	934498		8660	937518	
	928447	5		${ }^{931509}$			934549			937568	5
2	928	10		${ }_{931615} 9310$	10		${ }_{934650}^{93459}$	10		18	15
4	${ }_{928601}$	${ }_{21}^{15}$	4	${ }_{931661} 91$	${ }_{20}$		934700	20		937718	20
	928652	26		931712	25		934751	25		937769	25
	928	31		931763	31		934881	30		937819	30
7			8	${ }_{9318184}^{93184}$	${ }_{41}^{36}$		${ }_{934902}^{934852}$	35		${ }_{937919}^{93789}$	3.5 40
9	928856	46	9	931915	46	9	934953	45		937969	45
8490	928908		8550	931966		8610	935003		8670	938019	
	928959	${ }^{5} 5$		${ }_{932017} 93$			${ }^{935054}$			${ }_{938119}^{938069}$	5
	${ }_{929061}^{929010}$	10 15	${ }_{3}$	${ }_{932118}^{932068}$	15		${ }_{935154}^{935104}$	15	3	938169	15
4	929112	20		932169	20		935205	20		938219	20
5	92916	${ }^{26}$		932220	25	5	935255	25		99	25
6	929214	31		932271	30	6	935306	30		${ }_{9383870}^{9383}$	30 35
8	922	36		${ }_{932372}^{9321}$	35 40			35 40	8	${ }_{938420}^{938370}$	35 40 4
9	929368	46	9	932423	45		935457	45	9	938470	45

No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	Prop.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No.	Log.	Prop. Part.
8680	938520		8740	941511		8800	944483		8860	947434	
1	938570	5	1	941561	5	1	944532	5	1	947483	5
2	938620	10	2	941611	10	2	944581	10	2	947532	10
3	938670	15	3	941660	15	3	944631	15	3	947581	15
4	938720	20	4	941710	20	4	944680	20	4	947630	20
5	938770	25	5	941760	25	5	944729	25	5	947679	25
6	938820	30	6	941809	30	6	944779	30	6	947728	29
7	938870	35	7	941859	35	7	944828	35	7	947777	34
8	938920	40	8	941909	40	8	944877	40	8	947826	39
9	938970	45	9	941958	45	9	944927	45	9	947875	44
8690	939020		8750	942008		8810	944976		8870	947924	
1	939070	5	1	942058	5	1	945025	5	1	947973	5
2	939120	10	2	942107	10	2	945074	10	2	948021	10
3	939170	15	3	942157	15	3	945124	15	3	948070	15
4	939220	20	4	942206	20	4	945173	20	4	948119	20
5	939270	25	5	942256	25	5	945222	25	5	948168	25
6	939319	30	6	942306	30	6	945272	30	6	948217	29
7	939369	35	7	942355	35	7	945321	35	7	948266	34
8	939419	40	8	942405	40	8	945370	40	8	948315	39
9	939469	45	9	942454	45	9	945419	45	9	948364	44
8700	939519		8760	942504		8820	945469		8880	948413	
1	939569	5	1	942554	5	1	945518	5	1	'948462	5
2	939619	10	2	942603	10	2	945567	10	2	948511	10
3	939669	15	3	942653	15	3	945616	15	3	948560.	15
4	939719	20	4	942702	20	4	945665	20	4	948608	20
5	939769	25	5	942752	25	5	945715	25	5	948657	25
6	939819	30	6	942801	30	6	945764	29	6	948706	29
7	939868	35	7	942851	35	7	945813	34	7	948755	34
8	939918	40	8	942900	40	8	945862	39	8	948804	39
9	939968	45	9	942950	45	9	945911	44	9	948853	44
8710	940018		8770	943000		8830	945961		8890	948902	
1	940068	5	1	943049	5	1	946010	5	1	948951	5
2	940118	10	2	943099	10	2	946059	10	2	948999	10.
3	940168	15	3	943148	15	3	946108	15	3	949048	15
4	940218	20	4	943198	20	4	946157	20	4	949097	20
5	940267	25	5	943247	25	5	946207	25	5	949146	25
6	940317	30	6	943297	30	6	946256	29	6	949195	29
7	940367.	35	7	943346	35	7	946305	34	7	949244	34
8	940417	40	8	943396	40	8	946354	39	8	949292	39
9	940467	45	9	943445	45	9	946403	44	9	949341	44
8720	940516		8780	943494		8840	946452		8900	949390	
1	940566	5	1	943544	5	1	946501	5	1	949439	5
2	940616	10	2	943593	10	2	946550	10	2	949488	10
3	940666	15	3	943643	15	3	946600	15	3	949536	15
4	940716	20	4	943692	20	4	946649	20	4	949585	20
5	940765	25	5	943742	25	5	946698	25	5	949634	25
6	940815	30	6	943791	30	6	946747	29	6	949683	29
7	940865	35	7	943841	35	7	946796	34	7	949731	34
8	940915	40	8	943890	40	8	946845	39	8	949780	39
9	940964	45	9	943939	45	9	946894	44	9	949829	44
8730	941014		8790	943989		8850	946943		8910	949878	
1	941064	5	1	944038	5	1	946992	5	1	949926	5
2	941114	10	2	944088	10	2	947041	10	2	949975	10
3	941163	15	3	944137	15	3	947090	15	- 3	950024	15
4	941213	20	4	944186	20	4	947139	20	4	950073	20
5	941263	25	5	944236	25	5	947189	25	5	950121	25
6	941313	30	6	944285	30	6	947238	29	6	950170	29
7	941362	35	7	944335	35	7	947287	34	7	950219	34
8	941412	40	8	944384	40	8	947336	39	8	950267	39
9	941462	45	.	944433	45	9	947385	44	9	950316	44

No.	Log.	${ }_{\text {Prop. }}$	No.	Log.	$\left\lvert\, \begin{aligned} & \text { Prop. } \\ & \text { Part. }\end{aligned}\right.$	No.	Log.	Prop.	No.	Log.	${ }_{\text {Prop. }}$
8920	950365		8980	953276		9040	956168		9100	959041	
	950413	5	1	953325	5	1	956216	5		959089	5
2	950462	10	2	953373	10	2	956264	10	2	959137	10
3	950511	15	3	953421	15	3	956312	14	3	959184	14
4	950560	19	4	953470	19		956361	19	4	959232	19
5	950608	24	5	953518	24	5	956409	24	5	959280	24
6	950657	29	6	953566	29		. 956457	29	6	959328	29
7	950705	34	7	953615	34	7	956505	34	7	959375	34
8	950754	39	8	953663	39	8	956553	38	8	959423	38
9	950803	44	9	953711	44	9	956601	43	9	959471	43
8930	950851		8990	953760		9050	956649		9110	959518	
	950900	5	1	953808	5	1	956697	5		959566	5
2	950949	10	2	953856	10	2	956745	10	2	959614	10
3	950997	15	3	953905	15	3	956792	14	3	959661	14
4	951046	19	4	953953	19	4	956840	19	4	959709	19
5	951095	24	5	954001	24	5	956888	24	5	959757	24
6	951143	29	6	954049	29	6	956936	29	6	959804	29
7	951192	34	7	954098	34	7	956984	34	7	959852	34
8	951240	39	8	954146	39	8	957032	38	8	959900	38
9	951289	44	9	954194	44	9	957080	43	9	959947	43
8940	951337		9000	954242		9060	957128		9120	959995	
1	951386	5	1	954291	5	1	957176	5	1	960042	5
2	951435	10	2	954339	10	2	957224	10	2	960090	10
3	951483	15	3	954387	14	3	957272	14	3	960138	14
4	951532	19	4	954435	19	4	957320	19	4	960185	19
5	951580	24	5	954484	24	5	957368	24	5	960233	24
6	951629	29	6	954532	29	6	957416	29	6	960280	28
	951677	34	7	954580	34	7	957464	34	7	960328	33
8	951726	39	8	954628	38	8	957511	38	8	960376	38
9	951774	44	9	954677	43	9	957559	43	9	960423	43
8950	951823		9010	954725		9070	957607		9130	960471	
1	951872	5	1	954773	5	1	957655	5		960518	5
2	951920	10	2	954821	10	2	957703	10	2	960566	10
3	951969	15	3	954869	14	3	957751	14	3	960613	14
4	952017	19	4	954918	19	4	957799	19	4	960661	19
5	952066	24	5	954966	24	5	957847	24	5	960709	24
6	952114	29	6	955014	29	6	957894	29	6	960756	28
7	952163	34	7	955062	34	7	957942	34	7	960804	33
8	952211	39	8	955110	38	8	957990	38	8	960851	38
9	952259	44	9	955158	43	9	958038	43	9	960899	43
8960	952308		9020	955206		9080	958086		9140	960946	
1	952356.	5	1	955255	5	1	958134	5		960994	5
2	952405	10	2	955303	10	2	958181	10	2	961041	10
3	952453	15	3	955351	14	3	958229	14	3	961089	14
4	952502	19	4	9553.99	19	4	958277	19	4	961136	19
5	952550	24	5	955447	24	5	958325	24	5	961184	24
6	952599	29	6	955495	29	6	958373	29	6	961231	28
7	952647	34	7	955543	34	7	958420	34	7	961279	33
8	952696	39	8	955592	38	8	958468	38	8	961326	38
9	952744	44	9	955640	43	9	958516	43	9	961374	43
8970	952792		9030	955688		9090	958564		9150	961421	
1	952841	5	1	955736	5	1	958612	5	1	961469	5
2	952889	10		955784	10	2	958659	10	2	961516	10
3	952938	15	3	955832	14	3	958707	14	3	961563	14
4	952986	r9	4	955880	19	4	958755	19	4	961611	19
5	953034	24	5	955928	24	5	958803	24	5	961658	24
6	953083	29	6	955976	29	6	958850	29	6	961706	28
7	953131	34	7	956024	34	7	958898	34	7	961753	33
8	953180	39	8	956072	38	8	958946	38	8	961801	38
9	953228	44	9	956120	43	- 9	958994	43	9	961848	43

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{array}{\|l} \text { Prop. } \\ \text { Part. } \end{array}$
9160	961895		9220	964731		9280	967548		9340	970347	
1	961943	5	1	964778	5	1	967595	5	1	970393	5
2	961990	10	2	964825	9	2	967642	9	2	970440	9
3	962038	14	3	964872	14	3	967688	14	3	970486	14
4	962085	19	4	964919	19	4	967735	19	4	970533	19
5	962132	24	5	964966	24	5	967782	23	5	970579	23
6	962180	28	6	965013	28	6	967829	28	6	970626	28
7	962227	33	7	965060	33	7	967875	33	7	970672	33
8	962275	38	8	965108	38	8	967922	38	8	970719	37
9	962322	43	9	965155	42	9	967969	42	9	970765	42
9170	962369		9230	965202		9290	968016		9350	970812	
1	962417	5	1	965249	5	1	968062	5	1	970858	5
2	962464	9	2	965296	9	2	968109	9	2	970904	9
3	962511	14	3	965343	14	3	968156	14	3	970951	14
4	962559	19	4	965390	19	4	968203	19	4	970997	19
5	962606	24	5	965437	24	5	968249	23	5	971044	23
6	962653	28	6	965484	28	6	968296	28	6	971090	28
7	962701	33	7	965531	33	7	968343	33	7	971137.	33
8	962748	38	8	965578	38	8	968389	38	8	971183	37
9	962795	42	9	965625	42	9	968436	42	9	971229	42
9180	962843		9240	965672		9300	968483		9360	971276	
1	962890	5	1	965719	5	1	968530	5	1	971322	5
2	962937	9	2	965766	9.	2	968576	9	2	971369	9
3	962985	14	3	965813	14	3	968623	14	3	971415	14
4	963032.	19	4	965860	19	4	968670	19	4	971461	19
5	963079	24	5	965907	24	5	968716	23	5	971508	23
6	963126	28	6	965954	28	6	968763	28	6	971554	28
7	963174	33	7	966001	33	7	968810	33	7	971600	33
8	963221	38	8	966048	38	8	968856	37	8	971647	37
9	963268	42	9	966095	42	9	968903	42	9	971693	42
9190	963315		9250	966142		9310	968950		9370	971740	
1	963363	5	1	966189	5	1.	968996	5	1	971786	5
2	963410	9	2	966236	9	2	969043	9	2	971832	9
3	963457	14	3	966283	14	3	969090	14	3	971879	14
4	963504	19	4	966329	19	4	969136	19	4	971925	19
5	963552	24	5	966376	24	5	969183	23	5	971971	23
6	963599	28	6	966423	28.	6	969229	28	6	972018	28
7	963646	33	7	966470	33	7	969276	33	7	972064	33
8	963693	38	8	966517	38	8	969323	37	8	972110	37
9	963741	42	9	966564	42	9	969369	42	9	972156	42
9200	963788		9260	966611		9320	969416		9380	972203	
1	963835	5	1	966658	5	1	969462	5		972249	5
2	963882	9	2	966705	9	2	969509	9	2	972295	9
3	963929	14	3	966752	14	3	969556	14		972342	14
4	963977	19	4	966798	19	4	969602	19		972388	18
5	964024	24	5	966845	24	5	969649	23	5	972484	23
6	964071	28	6	966892	28	6	969695	28	6	972480	28
7	964118	33	7	966939	33	7	969742	33	7	972527	32
8	964165	38	8	966986	38	8	969788	37	8	972573	37
9	964212	42	9.	967033	42	9	969835	42	9	972619	41
ษ210	964260		9270	967080		9330	969882		9390	972666	
. 1	964307	5	1	967127	5	1	969928	5		972712	5
2	964354	9	2	967173	9	2	969975	9	2	972758	9
3	964401	14	3	967220	14	3	970021	14	3	972804	14
4	964448	19	4	967267	19	4	970068	19	4	972851	18
5	964495	24	5	967314	24	5	970114	23	5	972897	23
6	964542	28		967361	28	6	970161	28	6	972943	28
7	964590	33	7	967408	33	7	970207	33	7	972989	32
8	964637	38	8	967454	38	8	970254	37	8	973035	37
9	964684	42	9	967501	42	9	970300	42	9	973082	41

No.	Log.	${ }_{\text {Prop. }}$ Part:	No.	Log.	Prop.	No.	Log.	Prop.	No.	Log.	Prop.
9400	973128		9460	975891		9520	978637		9580	981365	
	973174	5		975937	5		978683	5		981411	5
2	973220	9	2	975983	9	2	978728	9	2	981456	9
3	973266	14	3	976029	14	3	978774	14	3	981501	14
4	973313	18		976075	18	4	978819	18	4	981547	18
5	973359	23	5	976121	23	5	978865	23	5	981592	23
6	973405	28	6	976166	28	6	978911	27	6	981637	27
7	973451	32	7	976212	32	7	978956	32	7	981683	32
8	973497	37		976258	37	8	979002	36	8	981728	36
9	973543	41	9	976304	41	9	979047	41	9	981773	41
9410	973590		9470	976350		9530	979093		9590	981819	
1	973636	5		976396	5		979138	5	1	981864	5
2	973682	9	2	976442	9	2	979184	9	2	981909	9
3	973728	14	3	976487	14	3	979230	14	3	981954	14
4	973774	18	4	976533	18	4	979275	18	4	982000	18
5	973820	23	5	976579	23	5	979321	23	5	982045	23
6	973866	28	6	976625	28	6	979366	27	6	982090	27
7	973913	32	7	976671	32	7	979412	32	7	982135	32
8	973959	37	8	976717	37	8	979457	36	8	982181	36
9	974005	41	9	976762	41	9	97950	41	9	982226	41
9420	974051		9480	976808		9540	979548		9600	982271	
1	974097	5	1	976854	5	1	979594	5	1	982316	5
2	974143	9	2	976900	9.	2	979639	9	2	982362	9
3	974189	14	3	976946	14	3	979685	14	3	982407	14
4	974235	18	4	976991	18	4	979730	18	4	982452	18
5	974281	23	5	977037	23	5	979776	23	5	982497	23
6	974327	28	6	977083	27	6	979821	27	6	982543	27
7	974373	32	7	977129	32	7	979867	32	7	982588	32
8	974420	37	8	977175	37	8	979912	36	8	982633	36
9	974466	41	9	977220	41	9	979958	41	9	982678	41
9430	974512		9490	977266		9550	980003		9610	982723	
1	974558	5	1	977312	5	1	980049		1	982769	5
2	974604	9	2	977358	9	2	980094	9	2	982814	9
3	974650	14	3	977403	14	3	980140	14	3	982859	14
4	974696	18	4	977449	18	4	980185	18	4	982904	18
5	974742	23	5	977495	23	5	980231	23	5	982949	23
6	974788	28	6	977541	27°	6	980276	27	6	982994	27
7	974834	32	7	977586	32	7	980322	32	7	983040	32
8	974880	37	8	977632	37	8	980367	36	8	983085	36
9	974926	41	9	977678	41	9	980412	41	9	983130	41
9440	974972		9500	977724		9560	980458		9620	983175	
	975018	5	1	977769	5	1	980503	5	1	983220	5
2	975064		2	977815	9	2	980549	9	2	983265	9
3	975110	14	3	977861	14	3	980594	14	3	983310	14
4	975156	18	4	977906	18	4	980640	18	4	983356	18
5	975202	23	5	977952	23	5	980685	23	5	983401	23
	975248	28	6	977998	27	6	980730	27	6	983446	27
7	975294	32	7	978043	32	7	980776	32	7	983491	32
8	975340	37	8	978089	37	8	980821	36	8	983536	36
9	97538	41	9	97813	41	9	980867	41	9	81	41
9450	975432		9510	978180		9570	980912		9630	983626	
	975478	5	1	978226	5	1	980957	5		983671	5
	975524	9	2	978272	9	2	981003	9	2	983716	9
3	975570	14	3	978317	14	3	981048	14	3	983762	14
4	975616	18	4	978363	18	4	981093	18	4	983807	18
5	975661	23	5	978409	23	5	981139	23	5	983852	23
6	975707	28	6	978454	27	6	981184	27	6	983897	27
7	975753	32	7	978500	32	7	981229	32	7	983942	32
8	975799	37	8	978546	37	8	981275	36	8	983987	36
9	975845	41	9	978591	41	9	981320	41	9	984032	41

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	$\begin{aligned} & \text { Prop. } \\ & \text { Part. } \end{aligned}$	No. ${ }^{\text {- }}$	Log.	$\underset{\substack{\text { Propp. } \\ \text { Part. }}}{ }$
9640	984077		9700	986772		9760	989450		9820	992111	
	984122	5	1	986816	4	1	989494	4	1	992156	4
2	984167	9	2	986861	9	2	989539	9	2	992200	9
3	984212	14	3	986906	13	3	989583	13	3	992244	13
4	984257	18	4	986951	18	4	989628	18	4	99:288	18
5	984302	23	5	986995	22	5	989672	22	5	992383	22
6	984347	27	6	987040	27	6	989717	27	6	992377	26
7	984392	32	8	987085	31	7	989761	31	7	992421	31
8	984437	36	8	987130	36	8	989806	36	8	992465	35
9	984482	41	9	987174	40	9	989850	40	9	992509	40
9650	984527		9710	987219		9770	989895		9830	992553	
1	984572	5	1	987264	4	1	989939	4	1	992548	4
2	984617	9	2	987309	9	2	989983	9	2	992642	9
3	984662	14	3	987353	13	3	990028	13	3	49:686	13
4	984707	18	4	987398	18	4	990072	18	4	992730	18
5	984752	23	5	987443	22	5	990117	$2:$	5	992774	22
6	984797	27	6	987487	27	6	990161	27	6	992818	26
7	984842	32	7	987532	31	7	990206	31	7	992863	31
8	984887	36	8	987577	36	8	990250	36	8	992907	35
9	984932	41	9	987622	40	9	990294	40	9	992951	40
9660	984977		9720	987666		9780	990339		9840	992995	
1	985022	5	1	987711	4	1	990383	4	1	993039	4
2	985067	9	2	987756	9	2	990428	9	2	993083	9
3	985112	14	3	987800	13	3	990472	13	3	993127	13
4	985157	18	4	987845	18	4	990516	18	4	993172	18
5	985202	23	5	987890	22	5	990561	22	5	993216	22
6	985247	27	6	987934	27	6	990605	27	6	993260	26
7	985292	32	7	987979	31	7	990650	31	7	993304	31
8	985337	36	8	988024	36	8	990694	36	8	993348	35
9	985382	41	9	988068	40	9	990738	40	9	998392	40
9670	985426		9730	988113		9790	990783		9850	993436	
1	985471	4	1	988157	4	1	990827	4	1	993480	4
2	985516	9	2	988202	9	2	990871	9	2	993524	9
3	985561	13	3	988247	13	13	990916	13	3	993568	13
4	985606	18	4	988291	18	4	990960	18	4	993613	18
5	985651	22	5	988336	22	5	991004	22	5	993657	22
6	985696	27	6	988381	27	6	991049	27	6	993701	26
7	985741	31	7	988425	31	7	991093	31	7	993745	31
8	985786	36	8	988470	36	8	991137	36	8	993789	35
9	985830	40	9	988514	40	9	991182	40	9	993833	40
9680	985875		9740	988559		9800	991226		9860	993877	
1	985920	4	1	988603	4	1	991270	4	1	993921	4
2	985965	9	2	988648	9	2	991315	9	2	993965	9
3	986010	13	3	988693	13	3	991359	13	3	994009	13
4	986055	18	4	988737	18	4	991403	18	4	994053	18
5	986100	22	5	988782	22	5	991448	22	5	994097	22
6	986144	27	6	988826	27	6	991492	27	6	994141	26
7	986189	31	7	988871	31	7	991536	31	7	994185	31
8	986234	36	8	988915	36	8	991580	36	8	994229	35
9	986279	40	9	988960	40	9	991625	40	9	994273	40
9690	986324		9750	989005		9810	991669		9870	994317	
1	986369	4	1	989049	4	1	991713	4	1	994361	4
2	986413	9	2	989094	9	2	991757	9	2	994405	9
3	986458	13	3	989138	13	3	991802	13	3	994449	13
4	986503	18	4	989183	18	4	991846	18	4	994493	18
5	986548	22	5	989227	22	5	991890	$2 \cdot$	5	994537	22
6	986593	27	6	989272	27	6	991934	27	6	994581	26
7	986637	31	7	989316	31	7	991979	31	7	994625	31
8	986682	36	8	989361	36	8	992023	36	8	994669	35
9	986727	40	8	989405	40	9	992067	40	9	994713	40

No.	Log.	${ }_{\text {Propr }}$ Prop.	No.	Log.	Prop.	No.	Log.	Prop.	No.	Log.	Prop.
9880	994757		9910	996074		9940	997386		9970	998695	
	994801	4		996117	4		997430	4		998739	4
2	994845	9	2	996161	9	2	997474	9	2	998782	9
3	994889	13		996205	13	3	997517	13	3	998826	13
4	994933	18	4	996249	18	4	997561	17	4	998869	17
5	994977	22	5	996293	22	5	997605	22	5	998913	22
6	995021	26	6	996336	26	6	997648	26	6	998956	26
7	995064	31	7	996380	31	7	997692	30	7	999000	30
8	995108	35	8	996424	35	8	997736	35	8	999043	35
9	995152	40	9	996468	40	9	997779	39	9	999087	39
9890	995196		9920	996512		9950	997823		9980	999130	
	995240	4	1	996555	4	1	997867	4		999174	4
2	995284	9	2	996599	9	2	997910	9	2	999218	9
3	995328	13	3	996643	13	3	997954	13	3	999261	13
4	995372	18	4	996687	18	4	997998	17	4	999305	17
5	995416	22	5	996730	22	5	998041	22	5	999348	22
6	995460	26	6	996774	26	6	998085	26	6	999392	26
7	995504	31	7	996818	31	7	998128	30	7	999435	30
8	995547	35	8	996862	35	8	998172	35.	8	999478	35
9	995591	40	9	9969	40	9	998216	39	9	999522	39
9900	995635		9930	996949		9960	998259		9990	999565	
	995679	4	1	996993	4	1	998303	4	1	999609	4
2	995723	9	2	997037	9	2	998346	9	2	999652	9
3	995767	13	3	997080	13	3	998390	13	3	999696	13
4	995811	18	4	997124	18	4	998434	17	4	999739	17
5	995854	22	5	997168	22	5	998477	22	5	999783	22
6	995898	26	6	997212	26	6	998521	26	6	${ }_{999870}^{9996}$	26
7	995942	31	7	997255	31	7	998564	30		${ }_{999913}^{99970}$	30 35
8	995986	35	8	997299	35 39	8	998608	35	8	${ }_{999957}^{99913}$	35 39
9	996030	40	9	997343	39	9	998652	39	9	999957	39

No.	Logarithms to 50 decimal Plages.
1	0.00
2	$0 \cdot 30102999566398119521373889472449302676818988146211$
	$0 \cdot 47712125471966243729502790325511530920012886419069$
4	$0 \cdot 60205999132796239042747778944898605353637976292422$
5	$0 \cdot 69897000433601880478626110527550697323181011853789$
	$0 \cdot 778151250383643632508766797979608335968318745652$
	$0 \cdot 84509804001425683071221625859263619348357239632397$
	$0 \cdot 90308998699194358564121668417347908030456964438633$
	95424250943932487459005580651023061840025772838139
10	$1 \cdot 00$
	$1 \cdot 04139268515822504075019997124302424170670219046645$
12	$1 \cdot 07918124604762482772250569270410136273650862711491$
13	$1 \cdot 11394335230683676920650515794232843082972918838707$
14	$1 \cdot 14612803567823802592595515331712922025176227778607$
15	$1 \cdot 17609125905568124208128900853062228243193898272859$
	$1 \cdot 20411998265592478085495557889797210707275952584843$
17	$1 \cdot 23044892137827392854016989432833703000756737842505$
18	$1 \cdot 25527250510330606980379470123472364516844760984350$
19	$1 \cdot 27875360095282896153633347575692931795112933739450$
20	$1 \cdot 30102999566398119521373889472449302676818988146211$
	32221929473391926800724416184775150268370126051866
22	1-34242268082220623596393886596751726847489207192856
23	$1 \cdot 36172783601759287886777711225118954969751103483610$
24	$1 \cdot 38021124171160602293624458742859438950469850857702$
25	$1 \cdot 39794000867203760957252221055101394646362023707578$

LOGARITHMIC SINES, ETC.
0 deg.

'	Sine.	${ }_{\text {Diff }}{ }^{\text {D }}$	Cosecant.	Tangent.	Dity;	Cotangent.	Secant.	Cosine.	,
0						Infini	. 000000	10.000000	60
1			3-536274	$6 \cdot 463726$		13.536274	-000000 1	$10 \cdot 000000$	59
2	6-764756	501717	$3 \cdot 235244$	6-764756 5	501717	$13 \cdot 235244$	- 000000	$10 \cdot 000000$	58
3	6.940847	293485	$3 \cdot 059153$	6.940847	293485	$13 \cdot 059153$. 000000	$10 \cdot 000000$	57
4	$7 \cdot 065786$	2082312	$2 \cdot 934214$	7-065786	208231	12.934214	. 0000001	$10 \cdot 000000$	56
5	7-162696	1615172	$2 \cdot 837304$	7-162696	161517	12.837304	-000000 1	$10 \cdot 000000$	55
6	$7 \cdot 241877$	131968	$2 \cdot 758123$	$7 \cdot 241878$	131969	$12 \cdot 758122$. 000001	$9 \cdot 999999$	54
7	$7 \cdot 308824$	111578	$2 \cdot 691176$	7-308825	111578	$12 \cdot 691175$. 000001	$9 \cdot 999999$	53
8	$7 \cdot 366816$	96653	$2 \cdot 633184$	$7 \cdot 366817$	96653	$12 \cdot 633183$. 000001	$9 \cdot 999999$	52
9	$7 \cdot 417968$	85254	$2 \cdot 582032$	7-417970	85254	$12 \cdot 582030$. 000001	$9 \cdot 999999$	51
10	7-463726	76262	$2 \cdot 536274$	7-463727	76263	12-536273	-000002	$9 \cdot 999998$	50
11	$7 \cdot 505118$	68988	$2 \cdot 494882$	$7 \cdot 505120$	68988	$12 \cdot 494880$. 000002	9-999998	49
12	7-542906	62981	$2 \cdot 457094$	$7 \cdot 542909$	62981	$12 \cdot 457091$	-000003	$9 \cdot 999997$	48
13	$7 \cdot 577668$	57936	$2 \cdot 422332$	$7 \cdot 577672$	57937	$12 \cdot 422328$	-000003	9-999997	47
14	$7 \cdot 609853$	53641	$2 \cdot 390147$	7-609857	53642	$12 \cdot 390143$	- 000004	9-999996	46
15	$7 \cdot 639816$	49938	$2 \cdot 360184$	$7 \cdot 639820$	49939	$12 \cdot 360180$. 000004	9.999996	45
16	7-667845	46714	$2 \cdot 332155$	7-667849	46715	$12 \cdot 332151$. 000005	9-999995	44
17	$7 \cdot 694173$	43881	$2 \cdot 305827$	$7 \cdot 694179$	43882	$12 \cdot 305821$	-000005	$9 \cdot 999995$	43
18	7-718997	41372	$2 \cdot 281003$	7-719003	41373	$12 \cdot 280997$	-000006	$9 \cdot 999994$	42
19	$7 \cdot 742478$	39135	$2 \cdot 257522$	7-742484	39136	$12 \cdot 257516$. 000007	9-999993	41
20	$7 \cdot 764754$	37127	$2 \cdot 235246$	$7 \cdot 764761$	37128	$12 \cdot 235239$. 000007	$9 \cdot 999993$	40
21	$7 \cdot 785943$	35315	$2 \cdot 214057$	7-785951	35315	$12 \cdot 214049$. 000008	9.999992	39
22	7-806146	33672	$2 \cdot 193854$	7-806155	33673	$12 \cdot 193845$. 000009	9-999991	38
23	7-825451	32175	$2 \cdot 174549$	$7 \cdot 825460$	32176	$12 \cdot 174540$	- 000010	9-999990	37
24	7-843934	30805	$2 \cdot 156066$	$7 \cdot 843944$	30807	$12 \cdot 156056$	-000011	9-999989	36
25	-861662	29547	$2 \cdot 138338$	7-861674	29549	$12 \cdot 128326$. 000011	9-999989	35
26	$7 \cdot 878695$	28388	$2 \cdot 121305$	$7 \cdot 878708$	28390	$12 \cdot 121292$. 000012	$9 \cdot 999988$	34
27	7.895085	27317	$2 \cdot 104915$	$7 \cdot 895099$	27318	$12 \cdot 104901$	-000013	$9 \cdot 999987$	33
28	7.910879	26323	2.089121	$7 \cdot 910894$	26325	$12 \cdot 089106$. 000014	9-999986	32
29	7-926119	25399	$2 \cdot 073881$	7-926134	25401	12.073866	-000015	$9 \cdot 999985$	31
30	$7 \cdot 940842$	24538	2-059158	$7 \cdot 940858$	24540	$12 \cdot 059142$	-000017	9.999983	30
31	7.955082	23733	$2 \cdot 044918$	$7 \cdot 955100$	23735	$12 \cdot 044900$	-000018	$9 \cdot 999982$	29
32	7-968870	22980	$2 \cdot 031130$	- 968889	22982	$12 \cdot 031111$	-000019	9.999981	28
33	7.982233	22273	$2 \cdot 017767$	7.982253	22275	$12 \cdot 017747$	-000020	9.999980	27
34	$7 \cdot 995198$	21608	$2 \cdot 004802$	7.995219	21610	12.004781	-000021	9-999979	26
35	$8 \cdot 007787$	20981	$1 \cdot 992213$	$8 \cdot 007809$	20983	$11 \cdot 992191$	$\cdot 000023$	9-999977	25
36	$8 \cdot 020021$	20390	$1 \cdot 979979$	$8 \cdot 020045$	20392	$11 \cdot 979955$. 000024	9.999976	24
37	$8 \cdot 031919$	19831	$1 \cdot 968081$	$8 \cdot 031945$	19833	11.968055	- 000025	9-999975	23
38	$8 \cdot 043501$	19302	$1 \cdot 956499$	$8 \cdot 043527$	19305	11-956473	. 000027	9-999973	22
39	$8 \cdot 054781$	18801	$1 \cdot 945219$	$8 \cdot 054809$	18803	11-945191	- 000028	9-999972	21
40	$8 \cdot 065776$	18325	$1 \cdot 934224$	$8 \cdot 065806$	18327	11.934194	-000029	9.999971	20
41	$8 \cdot 076500$	17872	$1 \cdot 923500$	$8 \cdot 076531$	17875	11.923469	-000031	9-999969	19
42	$8 \cdot 086965$	17441	$1 \cdot 913035$	$8 \cdot 086997$	17444	$11 \cdot 913003$	-000032	9.999968	18
43	$8 \cdot 097183$	17031	$1 \cdot 902817$	$8 \cdot 097217$	17034	11.902783	-000034	9-999966	17
44	$8 \cdot 107167$	16639	$1 \cdot 892833$	8-107202	16642	11.892798	-000036	$9 \cdot 999964$	16
45	$8 \cdot 116926$	16265	$1 \cdot 883074$	$8 \cdot 116963$	16268	11-883037	$\cdot 000037$	9-999963	15
46	8-126471	15908	$1 \cdot 873529$	8-126510	15911	11.873490	-000039	9-999961	14
47	$8 \cdot 135810$	15566	$1 \cdot 864190$	$8 \cdot 135851$	15568	11.864149	- 000041	9-999959	13
48	$8 \cdot 144953$	15238	$1 \cdot 855047$	8-144996	15241	11.855004	. 000042	9-999958	12
49	$8 \cdot 153907$	14924	1-846093	8-153952	14927	11.846048	. 000044	9-999956	11
50	$8 \cdot 162681$	14622	1.837319	8-162727	14625	11.837273	- 000046	$9 \cdot 999954$	10
51	$8 \cdot 171280$	14333	$1 \cdot 828720$	8-171328	14336	11.828672	- 000048	9-999952	9
52	8-179713	14054	$1 \cdot 820287$	8-179763	14057	11-820237	- 000050	$9 \cdot 999950$	8
53	8-187985	13786	$1 \cdot 812015$	8-188036	13790	11.811964	-000052	$9 \cdot 999948$	7
54	$8 \cdot 196102$	13529	$1 \cdot 803898$	$8 \cdot 196156$	13532	11.803844	-000054	9-999946	6
55	$8 \cdot 204070$	13280	$1 \cdot 795930$	8-204126	13284	11-795874	- 000056	$9 \cdot 999944$	5
56	8-211895	13041	$1 \cdot 788105$	$8 \cdot 211953$	13044	11-788047	- 000058	9-999942	4
57	$8 \cdot 219581$	1 12810	1-780419	$8 \cdot 219641$	12814	11-780359	-000060	$9 \cdot 999940$	3
58	$8 \cdot 227134$	12587	1-762866	8-227195	12591	$11 \cdot 772805$	- 000062	9.999938	2
59	$8 \cdot 234557$	12372	$1 \cdot 765443$	$8 \cdot 234621$	12376	11.765379	- 000064	9.999936	1
60	$8 \cdot 241855$	- 12164	1 -758145	$8 \cdot 241922$	12168	11.758078	-000066	9-999934	0
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.	sine.	

No.	Log.	${ }_{\text {Prop. }}^{\text {Part: }}$	No.	Log.	${ }_{\text {Prop. }}^{\text {Prop. }}$	No.	Log.	Prop. Part.	No.	Log.	${ }_{\text {Proper }}^{\text {Prop. }}$
9880	994757		9910	996074		9940	997386		9970	998695	
	994801	4		996117	4	1	997430	4		998739	4
2	994845	9	2	996161	-	2	997474	9	2	998782	9
3	994889	13	3	996205	13	3	997517	13	3	998826	13
4	994933	18	4	996249	18	4	997561	17	4	998869	17
5	994977	22	5	996293	22	5	997605	22	5	998913	22
6	995021	26	6	996336	26	6	997648	26	6	998956	26
7	995064	31	7	996380	31	7	997692	30	7	999000	30
8	995108	35	8	996424	35	8	997736	35	8	999043	35
9	995152	40	9	996468	40	9	997779	39	9	999087	39
9890	995196		9920	996512		9950	997823		9980	999130	
	995240	4	1	996555	4	1	997867	4	1	999174	4
2	995284	9	2	996599	9	2	997910	9	2	999218	9
3	995328	13	3	996643	13	3	997954	13	3	999261	13
4	995372	18	4	996687	18	4	997998	17	4	999305	17
5	995416	22	5	996730	22	5	998041	22	5	999348	22
6	995460	26	6	996774	26	6	998085	26		999392	26
7	995504	31	7	996818	31	7	998128	30	7	999435	30
8	995547	35	8	996862	35	8	998172	35.	8	999478	35
9	995591	40	9	996905	40	9	998216	39	9	999522	39
9900	995635		9930	996949		9960	998259		9990	999565	
1	995679	4		096993	4	1	998303	4		999609	4
2	995723	9	2	997037	9	2	998346	9	2	999652	9
3	995767	13	3	997080	13	3	998390	13	3	999696	13
4	995811	18	4	997124	18	4	998434	17	4	999739	17
5	995854	22	5	997168	22	5	998477	22	5	999783	22
6	995898	26	6	997212	26	6	998521	26	6	999826	26
7	995942	31		997255	31	7	998564	30	7	999870	30
8	995986	35	8	997299	35	8	998608	35	8	999913	35
9	996030	40		997343	39	9	998652	39	9	999957	39

No.	Logarithms to 50 Decimal Places.
1	0.0000000000000000
2	$0 \cdot 30102999566398119521373889472449302676818988146211$
3	$0 \cdot 47712125471966243729502790325511530920012886419069$
4	$0 \cdot 60205999132796239042747778944898605353637976292422$
5	$0 \cdot 69897000433601880478626110527550697323181011853789$
	$0 \cdot 77815125038364363250876679797960833596831874565280$
	$0 \cdot 84509804001425683071221625859263619348357239632397$
8	$0 \cdot 90308998699194358564121668417347908030456964438633$
	$0 \cdot 95424250943932487459005580651023061840025772838139$
10	$1 \cdot 00$
	$1 \cdot 04139268515822504075019997124302424170670219046645$
12	$1 \cdot 07918124604762482772250569270410136273650862711491$
13	$1 \cdot 11394335230683676920650515794232843082972918838707$
14	$1 \cdot 14612803567823802592595515331712922025176227778607$
15	$1 \cdot 17609125905568124208128900853062228243193898272859$
16	$1 \cdot 20411998265592478085495557889797210707275952584843$
17	$1 \cdot 23044892137827392854016989432833703000756737842505$
18	$1 \cdot 25527250510330606980379470123472364516844760984350$
19	$1 \cdot 27875360095282896153633347575692931795112933739450$
20	$1 \cdot 30102999566398119521373889472449302676818988146211$
	$1 \cdot 32221929473391926800724416184775150268370126051866$
22	$1 \cdot 34242268082220623596393886596751726847489207192856$
23	$1 \cdot 36172783601759287886777711225118954969751103433610$
24	$1 \cdot 38021124171160602293624458742859438950469850857702$
	$1 \cdot 39794000867203760957252221055101394646362023707578$

LOGARITHMIC SINES, ETC.
0 deg.

,	Sine.	${ }_{\text {Diff }} 100^{\prime \prime}$	Cosecant.	Tangent.	Dift;	Cotangent.	Secant.	Cosine.	,
0			Infinite.			Infinite.	-000000	$10 \cdot 000000$	60
1	$6 \cdot 463726$		3-53627	$6 \cdot 463726$		13.536274	- 000000	$10 \cdot 000000$	59
2	6.764756	501717	$3 \cdot 235244$	6.764756 5	501717	$13 \cdot 235244$	- 000000	$10 \cdot 000000$	58
3	6.940847	293485	$3 \cdot 059153$	$6 \cdot 940847$	293485	13.059153	- 000000	0.000000	57
4	7-065786	2082312	$2 \cdot 934214$	$7 \cdot 065786$	208231	$12 \cdot 934214$	- 000000	$0 \cdot 000000$	56
5	7-162696	1615172	$2 \cdot 837304$	7-162696	161517	$12 \cdot 837304$	- 000000	$10 \cdot 000000$	55
6	$7 \cdot 241877$	131968	$2 \cdot 758123$	$7 \cdot 241878$	131969	$12 \cdot 758122$	- 000001	9.999999	54
7	7-308824	111578	$2 \cdot 691176$	$7 \cdot 308825$	111578	$12 \cdot 691175$. 000001	9-999999	53
8	$7 \cdot 366816$	96653	$2 \cdot 633184$	$7 \cdot 366817$	96653	$12 \cdot 633183$. 000001	$9 \cdot 999999$	52
9	$7 \cdot 417968$	85254	$2 \cdot 582032$	$7 \cdot 417970$	85254	$12 \cdot 582030$. 000001	9-999999	51
10	$7 \cdot 463726$	76262	$2 \cdot 536274$	7-463727	76263	$12 \cdot 536273$. 000002	9-999998	50
11	$7 \cdot 505118$	68988	$2 \cdot 494882$	7-505120	68988	$12 \cdot 494880$. 000002	9-999998	49
12	7-542906	62981	$2 \cdot 457094$	$7 \cdot 542909$	62981	$12 \cdot 457091$	-000003	9-999997	48
13	$7 \cdot 577668$	57936	$2 \cdot 422332$	$7 \cdot 577672$	57937	$12 \cdot 422328$	- 000003	9.999997	47
14	7-609853	53641	$2 \cdot 390147$	7-609857	53642	12-390143	. 000004	9.999996	46
15	$7 \cdot 639816$	49938	$2 \cdot 360184$	$7 \cdot 639820$	49939	$12 \cdot 360180$	-000004	9.999996	45
16	$7 \cdot 667845$	46714	$2 \cdot 332155$	7-667849	46715	$12 \cdot 332151$. 000005	9-999995	44
17	$7 \cdot 694173$	43881	$2 \cdot 305827$	7-694179	43882	$12 \cdot 305821$	-000005	$9 \cdot 999995$	43
18	7-718997	41372	$2 \cdot 281003$	7-719003	41373	$12 \cdot 280997$	- 000006	9-999994	42
19	7.742478	39135	$2 \cdot 257522$	7-742484	39136	12-257516	. 000007	9-999993	41
20	7.764754	37127	$2 \cdot 235246$	$7 \cdot 764761$	37128	$12 \cdot 235239$	-000007	$9 \cdot 999993$	40
21	$7 \cdot 785943$	35315	$2 \cdot 214057$	7-785951	35315	$12 \cdot 214049$	- 000008	9-999992	39
22	$7 \cdot 806146$	33672	$2 \cdot 193854$	7-806155	33673	$12 \cdot 193845$	-000009	9-999991	38
23	$7 \cdot 825451$	32175	$2 \cdot 174549$	7-825460	32176	$12 \cdot 174540$	- 000010	9-999990	37
24	$7 \cdot 843934$	30805	$2 \cdot 156066$	7-843944	30807	$12 \cdot 156056$	$\cdot 000011$	$9 \cdot 999989$	36
25	$7 \cdot 861662$	29547	$2 \cdot 138338$	$7 \cdot 861674$	29549	$12 \cdot 128326$	$\cdot 000011$	9-999989	35
26	$7 \cdot 878695$	28388	$2 \cdot 121305$	$7 \cdot 878708$	28390	$12 \cdot 121292$	-000012	9-999988	34
27	$7 \cdot 895085$	27317	$2 \cdot 104915$	$7 \cdot 895099$	27318	12-104901	$\cdot 000013$	9-999987	33
28	$7 \cdot 910879$	26323	$2 \cdot 089121$	$7 \cdot 910894$	26325	$12 \cdot 089106$	- 000014	9.999986	32
29	$7 \cdot 926119$	25399	$2 \cdot 073881$	$7 \cdot 926134$	25401	$12 \cdot 073866$	$\cdot 000015$	9-999985	31
30	$7 \cdot 940842$	24538	$2 \cdot 059158$	7-940858	24540	$12 \cdot 059142$. 000017	$9 \cdot 999983$	30
31	7.955082	23733	$2 \cdot 044918$	$7 \cdot 955100$	23735	$12 \cdot 044900$. 000018	$9 \cdot 999982$	29
32	7.968870	22980	$2 \cdot 031130$	- 9688889	22982	$12 \cdot 031111$	- 000019	$9 \cdot 999981$	28
33	7.982233	22273	2.017767	7.982253	22275	$12 \cdot 017747$	- 000020	$9 \cdot 999980$	27
34	$7 \cdot 995198$	21608	$2 \cdot 004802$	$7 \cdot 995219$	21610	$12 \cdot 004781$. 000021	9-999979	26
35	$8 \cdot 007787$	20981	$1 \cdot 992213$	$8 \cdot 007809$	20983	11.992191	-000023	$9 \cdot 999977$	25
36	$8 \cdot 020021$	20390	1-979979	$8 \cdot 020045$	20392	11-979955	-000024	9.999976	24
37	$8 \cdot 031919$	19831	$1 \cdot 968081$	$8 \cdot 031945$	19833	11-968055	- 000025	9•999975	23
38	8.043501	19302	$1 \cdot 956499$	$8 \cdot 043527$	19305	$11 \cdot 956473$. 000027	$9 \cdot 999973$	22
39	$8 \cdot 054781$	18801	$1 \cdot 945219$	$8 \cdot 054809$	18803	$11 \cdot 945191$	- 000028	9-999972	21
40	$8 \cdot 065776$	18325	$1 \cdot 934224$	$8 \cdot 065806$	18327	11.934194	-000029	9-999971	20
41	$8 \cdot 076500$	17872	$1 \cdot 923500$	$8 \cdot 076531$	17875	11.923469	- 000031	9-999969	19
42	$8 \cdot 086965$	17441	$1 \cdot 913035$	$8 \cdot 086997$	17444	$11 \cdot 913003$	-000032	$9 \cdot 999968$	18
43	$8 \cdot 097183$	17031	$1 \cdot 902817$	$8 \cdot 097217$	17034	11.902783	-000034	$9 \cdot 999966$	17
44	$8 \cdot 107167$	16639	$1 \cdot 892833$	$8 \cdot 107202$	16642	11-892798	-000036	9.999964	16
45	8-116926	16265	$1 \cdot 883074$	$8 \cdot 116963$	16268	11.883037	-000037	$9 \cdot 999963$	15
46	8-126471	15908	$1 \cdot 873529$	$8 \cdot 126510$	15911	11.873490	. 000039	$9 \cdot 999961$	14
47	$8 \cdot 135810$	15566	$1 \cdot 864190$	8-135851	15568	11.864149	-000041	$9 \cdot 999959$	13
48	8-144953	15238	$1 \cdot 855047$	8-144996	15241	11.855004	. 000042	9-999958	12
49	8-153907	14924	1-846093	8-153952	14927	11.846048	. 000044	9•999956	11
50	8-162681	14622	$1 \cdot 837319$	8-162727	14625	11.837273	. 000046	9-999954	10
51	8-171280	14333	$1 \cdot 828720$	$8 \cdot 171328$	14336	11.828672	. 000048	9-999952	9
52	$8 \cdot 179713$	14054	$1 \cdot 820287$	8-179763	14057	11-820237	. 000050	9.999950	8
53	8-187985	13786	1-812015	8-188036	13790	11.811964	-000052	9-999948	7
54	8-196102	13529	1-803898	8-196156	13532	11-803844	-000054	9-999946	6
55	$8 \cdot 204070$	13280	$1 \cdot 795930$	8-204126	13284	11-795874	. 000056	9-999944	5
56	8-211895	13041	$1 \cdot 788105$	$8 \cdot 211953$	13044	11.788047	. 000058	9.999942	4
57	$8 \cdot 219581$	\| 12810	$1 \cdot 780419$	$8 \cdot 219641$	12814	11-780359	-000060	$9 \cdot 999940$	3
58	$8 \cdot 227134$	12587	1-772866	8-227195	12591	11.772805	. 000062	$9 \cdot 999938$	2
59	$8 \cdot 234557$	12372	$1 \cdot 765443$	8-234621	12376	$11 \cdot 765379$. 000064	$9 \cdot 999936$	1
60	$8 \cdot 241855$	12164	1.758145	$8 \cdot 241922$	12168	11-758078	-000066	9•999934	0
,	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		

89 DEG.

1 deg.

,	Sine.	${ }_{\text {Diffi }} 100^{\prime \prime}$	Cos	Ta	${ }_{\text {Difff }}{ }^{\prime \prime}$	C	Secant.	Cosine.	
	8-241855		$1 \cdot 758145$	8-241921		11.758079	. 000066	9.999934	60
1	$8 \cdot 249033$	11963	$1 \cdot 750967$	$8 \cdot 249102$	11967	11.750898	-000068	9.999932	59
2	8-256094	11768	1.74	-256165	11772	11-743835	-000071	9-999929	8
	$8 \cdot 263042$	11580	1.736958	$8 \cdot 263115$	11584	$11 \cdot 736885$	-000073	9-999927	57
	8-269881	11397	1.73	-269956	11402	11.730044	- 000075	$9 \cdot 999925$	56
5	$8 \cdot 276614$	11221	$1.723:$	$\cdot 276691$	11225	$11 \cdot 723309$	-000078	$9 \cdot 999922$	55
6	8•283243	'11050	$1 \cdot 716$	-283323	11054	$11 \cdot 716677$	- 000080	9.999920	54
7	$8 \cdot 289773$	10883	$1 \cdot 7102$	$\cdot 289856$	10887	11-710144	-000082	9.999918	53
8	$8 \cdot 296207$	10722	$1 \cdot 70379$	8-296292	10726	11.703708	-000085	9.999915	2
	8-302546	10565	$1 \cdot 69745$	8-302634	10570	11.697366	-000087	9.999913	51
10	8-308794	10413	1-691206	8-308884	10418	$11 \cdot 691116$	-000090	$9 \cdot 999910$	0
11	$8 \cdot 314954$	10266	$1 \cdot 685046$	$8 \cdot 315046$	10270	11-684954	-000093	$9 \cdot 999907$	49
12	$8 \cdot 321027$	10122	$1 \cdot 678973$	$8 \cdot 321122$	10126	$11 \cdot 678878$	-000095	$9 \cdot 999905$	48
13	$8 \cdot 327016$	9982	$1 \cdot 672984$	8-327114	9987	11-672886	-000098,	9.999902	47
14	8-332924	9847	$1 \cdot 667076$	$8 \cdot 333025$	9851	$11 \cdot 666975$	-000101	$9 \cdot 999899$	46
15	$8 \cdot 338753$	9714		8-338856	9719	$11 \cdot 661144$. 000103	9.999897	45
16	$8 \cdot 344504$	9586	$1 \cdot 655496$	$8 \cdot 344610$	9590	$11 \cdot 655390$. 000106	$9 \cdot 999894$	4
17	$8 \cdot 350181$	9460	$1 \cdot 649819$	$8 \cdot 350289$	9465	$11 \cdot 649711$	- 000109	9.999891	43
18	8.355783	$9338{ }^{\circ}$	$1 \cdot 6442$	355895	9343	$11 \cdot 644105$	-000112	$9 \cdot 999888$	42
19	8-361315	9219	$1 \cdot 638$	8. 661430	9224	$11 \cdot 638570$	-000115	$9 \cdot 999885$	41
20	$8 \cdot 866777$	9103	$1 \cdot 63$	-366895	9108	$11 \cdot 633105$	-000118	9.999882	40
21	8.372171	8990	$1 \cdot 627829$	$8 \cdot 372292$	8995	11.627708	-000121	$9 \cdot 999879$	39
22	$8 \cdot 377499$	8880	$1 \cdot 62250$	$8 \cdot 377622$	8885	$11 \cdot 622378$	-000124	9-999876	38
23	8-382762	8772	$1 \cdot 617238$	8-382889	8777	$11 \cdot 617111$	-000127	$9 \cdot 999873$	37
24	8-387962	8667	$1 \cdot 612038$	$8 \cdot 388092$	8672	$11 \cdot 611908$	-000130	$9 \cdot 999870$	36
25	$8 \cdot 393101$	8564	1-606899	-393234	8570	$11 \cdot 606766$	-000133	$9 \cdot 999867$	35
26	$8 \cdot 398179$	8464	$1 \cdot 601821$	$8 \cdot 398315$	8470	$11 \cdot 601685$	-000136	$9 \cdot 999864$	34
27	$8 \cdot 403199$	8366	$1 \cdot 596801$	$8 \cdot 403338$	8371	11.596662	-000139	9-999861	33
28	$8 \cdot 408161$	8271	$1 \cdot 591839$	$8 \cdot 408304$	8276	11.591696	-000142	$9 \cdot 999858$	32
29	$8 \cdot 413068$	8177	1-586932	$8 \cdot 413213$	8182	$11 \cdot 586787$	-000146	9.999854	31
30	$8 \cdot 417919$	8086	1-582081	$8 \cdot 418068$	8091	11.581932	-000149	$9 \cdot 999851$	30
31	$8 \cdot 422717$	7996	1-577283	$8 \cdot 422869$	8002	$11 \cdot 577131$	-000152	$9 \cdot 999848$	29
32	$8 \cdot 427462$	7909	$1 \cdot 572538$	$8 \cdot 427618$	7914	11.572382	-000156	$9 \cdot 999844$	28
33	$8 \cdot 432156$	7823	1-567844	$8 \cdot 432315$	7829	11.567685	-000159	$9 \cdot 999841$	27
34	$8 \cdot 436800$	7740	1-563200	$8 \cdot 436962$	7745	11.563038	-000162	$9 \cdot 999838$	26
35	$8 \cdot 441394$	7657	$1 \cdot 558606$	$8 \cdot 441560$	7663	11.558440	-000166	$9 \cdot 999834$	5
36	$8 \cdot 445941$	7577	1-554059	$8 \cdot 446110$	7583	11.553890	- 000169	9.999831	24
37	$8 \cdot 450440$	7499	$1 \cdot 549560$	$8 \cdot 450613$	7505	11.549387	-000173	. $9 \cdot 999827$	23
38	$8 \cdot 454893$	7422	$1 \cdot 545107$	$8 \cdot 455070$	7428	$11 \cdot 544930$	-000176	$9 \cdot 999824$	22
39	$8 \cdot 459301$	7346	1-540699	$8 \cdot 459481$	7352	11-540519	-000180	9.999820	21
40	$8 \cdot 463665$	7273	1-536335	$8 \cdot 463849$	7279	11.536151	-000184	$9 \cdot 999816$	20
41	$8 \cdot 467985$	7200	$1 \cdot 532015$	$8 \cdot 468172$	7206	11.531828	-000187	9.999813	19
42	$8 \cdot 472263$	7129	1-527737	$8 \cdot 472454$	7135	11.527546	-000191	$9 \cdot 999809$	18
43	$8 \cdot 476498$	7060	$1 \cdot 523502$	$8 \cdot 476693$	7066	11.523307	-000195	9.999805	17
44	$8 \cdot 480693$	6991	$1 \cdot 519307$	$8 \cdot 480892$	6998	11.519108	- 000199	$9 \cdot 999801$	16
45	$8 \cdot 484848$	6924	1-515152	$8 \cdot 485050$	6931	11.514950	-000203	$9 \cdot 999797$	15
46	$8 \cdot 488963$	6859	$1 \cdot 511037$	$8 \cdot 489170$	6865	11.510830	-000206	$9 \cdot 999794$	14
47	$8 \cdot 493040$	6794	$1 \cdot 506960$	$8 \cdot 493250$	6801	$11 \cdot 506750$	-000210	$9 \cdot 999790$	13
48	$8 \cdot 497078$	6731	1-502922	$8 \cdot 497293$	6738	11.502707	-000214	9-999786	
49	$8 \cdot 501080$	6669	$1 \cdot 498920$	8-501298	6676	11.498702	. 000218	$9 \cdot 999782$	11
50	$8 \cdot 505045$	6608	$1 \cdot 494955$	8-505267	6615	$11 \cdot 494733$	-000222	$9 \cdot 999778$	10
51	8.508974	6548	$1 \cdot 491026$	$8 \cdot 509200$	6555	11.490800	-000226	$9 \cdot 999774$,
52	$8 \cdot 512867$	6489	$\mid 1 \cdot 487133$	$8 \cdot 513098$	6496	$11 \cdot 486902$	-000231	$9 \cdot 999769$	8
53	$8 \cdot 516726$	6432	$1 \cdot 483274$	$8 \cdot 516961$	6439	11.483039	-000235	9.999765	7
54	$8 \cdot 5205.51$	6375	$1 \cdot 479449$	$8 \cdot 520790$	6382	11.479210	-000239	9.999761	5
55	8.524343	6319	$1 \cdot 47565 \%$	$8 \cdot 524586$	6326	11-475414	-000243	$9 \cdot 999757$	5
56	$8 \cdot 528102$	6264	$1 \cdot 471898$	$8 \cdot 528: 349$	6272	11.471651	-000247	$9 \cdot 999753$	
57	8.5318:8	6211	$1 \cdot 468172$	$8 \cdot 53 \div 080$	6218	11-4679:0	. 000252	$9 \cdot 999748$	3
58	$8 \cdot 5355 \div 3$	6158	$1 \cdot 464477$	8.53.5759	6165	11.464221	. 000256	$9 \cdot 999744$	2
	$8 \cdot 539186$	6106	$1 \cdot 460814$	$8 \cdot 539447$	6113	$11 \cdot 460353$	-000260	$9 \cdot 999740$	1
60	$8 \cdot 512819$	60.55	$1 \cdot 457181$	$8 \cdot 543084$	6062	$11 \cdot 456916$. 000265	$9 \cdot 999735$	0

LOGARITHMIC SINES，ETC．
2 DEG．

					ffi			${ }^{\text {Difi }}$		
0										
1	$8 \cdot 5$		$1 \cdot 453578$		601	04	－00	07	9－99	59
2	8．54999	59	－ 450005		5962	732	－000274	07	9．999	58
3	$8 \cdot 55353$		－446461	$8 \cdot 55381$	5914	$11 \cdot 446183$	－000278	08		5
4	8．55705	585	－442946	$8 \cdot 55733$		$11 \cdot 4426$	－0002	08	－99	56
5	8．560		43946	8．56		11－439172		07		5
6	8．563		－	8．56			－00	08		
7	8．567		432569	8						
8							－ 000301	08		5
	$8 \cdot 574$		5－8	$8 \cdot 57$	5638		． 000	08		51
10	$8 \cdot 5775$	558	－422434	$8 \cdot 57$		$11 \cdot 422123$	－0003	08	9－99	50
11	$8 \cdot 58089$		－419108	$8 \cdot 5$		－418792	－000315	07	9．99	49
12	8.584		1580			15	－0003	08		48
13	$8 \cdot 5$		1253			12	－00	08		4
14	$8 \cdot 590$		4092	$8 \cdot 591$		－	． 00	08		46
15			－0	$8 \cdot 5$			000	08		5
16	$8 \cdot 5971$		0284				0003			
17	$8 \cdot 600$	5300	－399668	$8 \cdot 60$		39932	000	08		
18	$8 \cdot 603$	5261	－396511	$8 \cdot 60$		$11 \cdot 396161$	000	08		2
19	8－606	22	－393377	$8 \cdot 60$		39302	00	08	9－99	
20	$8 \cdot 6$		－39026	8		$1 \cdot 3899$	00	08		40
21	$8 \cdot$		38717			$1 \cdot 3868$	－0003			39
2.			咗			83	－000			
23	$8 \cdot 618$		180	8		3806	00			
24	$8 \cdot 6219$		硣			析	－			
25	$8 \cdot 6249$	00	375035	$8 \cdot 625$		374	000	08		
26	$8 \cdot 62794$	4972	372052	$8 \cdot 628$		11.371660	000	10		34
27	$8 \cdot 6309$		369089	$8 \cdot 631$		$11 \cdot 36869$	000	08		33
28	$8 \cdot 6$		66146			3657	－000	10		32
29	8		6322			362	－00			
30	8		360320			11－3599	－000			
31	8，		55743	－642		35	000			
32	$8 \cdot 6454$	77	354572	$8 \cdot 6458$		$1 \cdot 3541$	0004			
33	$8 \cdot 6482$		351726	$8 \cdot 64870$		$1 \cdot 3512$	－0004	08		
34	$8 \cdot 6511$		348898	$8 \cdot 6515$		－3484	－000	10		
35			34608	$8 \cdot 654352$		$11 \cdot 34564$		10	$9 \cdot 99$	25
	8.6567		34329							24
37	8 ．		34052	659		340				
	662		37770	－626		－3373	－000			
39	66			66	457	． 33	00			
40	$8 \cdot 667$	453	332311	$8 \cdot 668$	454	－318	－000	10		
41	$8 \cdot 670$		32960	¢70		$11 \cdot 32913$	－000	08		
42	$8 \cdot 67$	4479	32692	$8 \cdot 6735$		$11 \cdot 3264$	－0004	10	－	
	$8 \cdot$					3237	－000	10	9－999	
	81		180			$11 \cdot 32110$	－000494	10		
	810		1895							
	8．683		31633	． 6841						
47	$8 \cdot 6862$		13728	$8 \cdot 6867$		31	－0005	12		
	$8 \cdot 688$		11137	$8 \cdot 68$.		310619	－00051	10	－	
	$8 \cdot 6914$	429	30856	．6919		$11 \cdot 308037$	－00052	10	9－999	
	$8 \cdot 6939$		06	$8 \cdot 694529$		$1 \cdot 3054$	－0005	10	9－999	
	$8 \cdot 696$		迷	69		3029	－0005	12		
52	$8 \cdot 6$		30092	8．69961		，	000	10		
			9841	－			，	10		
	$8 \cdot 7040$		295910	$8 \cdot 7046$				10		
	$8 \cdot 70657$	121	293423	． 7071		－292860	－000563	12	9－99943	
	8.709 8.711	121	． 290951	．709		$11 \cdot 29038$	－000569	10	－	
57	8.7115 8.713		－ 288493	712		11.28791	－00057	12	999	
	8		88	$8 \cdot 7145$			－00058	10	99	
5			． 28361	169		仡		12	$9 \cdot 99$	
60			1－281200	$8 \cdot 719396$		11		12		

3 DEG.

	Sine.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cosecant.		$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$			$\left\lvert\, \begin{aligned} & \text { Diffi } \\ & 100^{\prime} \end{aligned}\right.$	Cosi	
0	$8 \cdot 718800$									60
1	$8 \cdot 721204$	400	$1 \cdot 278796$	8-721806	4017	$11 \cdot 278194$	-000602	10	9-999398	59
2	$8 \cdot 723595$	398	$1 \cdot 276405$	8•724204	3995	$11 \cdot 275796$	- 000609	12	-999391	58
3	$8 \cdot 7$	39	$1 \cdot 274028$	8-726588	3974	$11 \cdot 273412$	- 000616	12	9-999384	7
	$8 \cdot 72833$		- 271663	8-728959	3952	$1 \cdot 271041$	-000622	10	9-999378	56
5	$8 \cdot 730688$		269312	$8 \cdot 731317$	3931	$11 \cdot 268683$	-000629	12		55
6	$8 \cdot 733027$	38	- 266973	8-733663	3909	11-266337	-000636	12	64	4
7	$8 \cdot 73535$	38	64646	8-735996	3889	$11 \cdot 264004$	-000643	12	999357	53
8	8-737667		-262333	8-738317	3868	$11 \cdot 261683$	-000650	12	. 999350	52
9	$8 \cdot 739969$		31	8-740626	384	$11 \cdot 259374$	-000657	12	. 999343	1
10	8-742259	381	- 257741	8-742922	3827	$11 \cdot 257078$	-000664	12	. 999336	0
11	$8 \cdot 744536$		- 255464	$8 \cdot 745207$	3807	$11 \cdot 254793$	-000671	12	9	49
12	8-746802	37	1-253198	8,747479	3787	11-252521	-000678	12	2	48
13	8•749055	37	- 250945	$8 \cdot 749740$	3768	11-250260	-000685	12	$\cdot 999315$	47
14	8•751297	37	$1 \cdot 248703$	$8 \cdot 751989$	3749	$11 \cdot 248011$	-000692	12		46
15	8-753528	3717	$1 \cdot 246472$	$8 \cdot 754227$	3729	11.245773	-000699	12	$\cdot 999301$	45
16	$8 \cdot 755747$	36	- 244253	$8 \cdot 756453$	3710	$11 \cdot 243547$	-000706	12		44
17	8-757955	367	$1 \cdot 242045$	8-758668	3692	11-241332	$\cdot 000713$	13	-999287	43
18	8-760151	3661	- 239849	8-760872			-000721	12	. 999279	42
19	8.762337	3642	$1 \cdot 237663$	$8 \cdot 763065$	3655	$11 \cdot 236935$	-000728	12	. 999272	41
20	$8 \cdot 764511$	3624	- 235489	$8 \cdot 765246$	3636	11-234754	-000735	12	-	0
21	8-766675	3606	$1 \cdot 233325$	$8 \cdot 767417$	3618	11-232583	-000743	13	7	39
22	$8 \cdot 768828$	3588	$1 \cdot 231172$	8-769578	3600	11-230422	-000750	12	999250	38
23	$8 \cdot 770970$	3570	1-229030	$8 \cdot 771727$	3583	11-228273	-000758	13	. 999242	37
$\dot{2}$	$8 \cdot 773101$	3553	$1 \cdot 226899$	$8 \cdot 773866$	3565	11-226134	-000765	12	$\cdot 999235$	6
25	8-775223	3535	$1 \cdot 224777$	$8 \cdot 775995$	3548	11-224005	- 00077	13	-	5
26	8-777333	3518	1-222667	8.778114	3531	11-221886	-000780	12	999220	34
27	8-779434	3501	$1 \cdot 220566$	$8 \cdot 780222$	3514	$11 \cdot 219778$	-00078	13	. 999212	33
28	8-781524	3484	$1 \cdot 218476$	$8 \cdot 782320$	3497	11-217680	-000795	13	- 999205	32
29	8-783605		16395	$8 \cdot 784408$	3480	11-215592	-000803	13	$9 \cdot 999197$	31
30				8-78648	3464	$11 \cdot 213514$	-000811	13		30
.31	$8 \cdot 78773$	3434	1-212264	8-788554	3447	11-211446	-000819	13		29
32		3418	$1 \cdot 210213$	8•790613		$11 \cdot 209387$		12		28
33	8-791828	3402	$1 \cdot 208172$	8-792662		$11 \cdot 207338$	-000834	13	66	27
34	8-793859	3386		$8 \cdot 794701$	339	05299	-000842	13	8	26
35	8•795881	3370	$1 \cdot 204119$	8•796731	3383	203269	-000850	13	$9 \cdot 999150$	25
36	8-797894	3354	$1 \cdot 202106$	8-798752	3368	01248	-000858	13	999142	4
37	8-799897	3339	$1 \cdot 200103$	$8 \cdot 800763$	3352	199237	-000866	13	999134	23
38	8-801892	3323	1-198108	8-80276	3337	197235	-000874	13	9•999126	22
39	8-803876	3308	1-196124	8-804758	3322	195242	-000882	13	$9 \cdot 999118$	21
40	8-805852	3293	$1 \cdot 194148$	$8 \cdot 806742$	3306	11-193258	-000890	13	$9 \cdot 999110$	20
41	$8 \cdot 807819$	3278	$1 \cdot 192181$	$8 \cdot 808717$	3292	11-191283	-000898	13	$9 \cdot 999102$	19
42	$8 \cdot 809777$	3263	1-190223	8-810683	3277	11-189317	- 000906	13	$9 \cdot 999094$	18
43	$8 \cdot 811726$	3249	$1 \cdot 188274$	8.812641	3262	11-187359	-000914	13	6	17
44	$8 \cdot 813667$	3234	1-186333	$8 \cdot 814589$	3248	11-185411	-000923	15	$9 \cdot 999077$	16
45	$8 \cdot 815599$	3219	$1 \cdot 184401$	$8 \cdot 816529$	3233	11-183471	-000931	13		15
46	8.817522	3205	1-182478	$8 \cdot 818461$	3219	$11 \cdot 181539$	-000939	13	999061	14
47	$8 \cdot 819436$	3191	1-180564	$8 \cdot 820384$	3205	$11 \cdot 179616$	-000947	15	999053	13
48	$8 \cdot 821343$	3177	-178657	$8 \cdot 822298$	3191	11-177702	-000956	13		2
49	$8 \cdot 823240$	3163	1-176760	$8 \cdot 824205$	3177	11-175795	-000964	13	999036	11
50	$8 \cdot 825130$	3149	$1 \cdot 174870$	$8 \cdot 826103$	3163	11-173897	-000973	15		10
51	$8 \cdot 827011$	3135	$1 \cdot 172989$	$8 \cdot 827992$	3150	11-172008	-000981	13	$9 \cdot 999019$	9
52	$8 \cdot 82888$	3122	1-171116	8-829874	3136	$11 \cdot 170126$	-000990	15	- 9090	7
53	8-830749	3108	1-169251	$8 \cdot 831748$	3123	$11 \cdot 168252$	-000998	13	$9 \cdot 999002$	7
54	$8 \cdot 832607$	3095	167393	$8 \cdot 833613$	3109	11-166387	-001007	15	99893	-
55	8-834456	3082	1-165544	$8 \cdot 835471$	3096	11-164529	-001016	15	9.99898	5
56	8.836297	3069	1-163703	$8 \cdot 837321$	3083	11-162679	-001024	13	9.998976	
57	8-838130	3056	1-161870	$8 \cdot 839163$	3070	11-160837	-001033	15	9-998967	,
58	$8 \cdot 839956$	3043	1-160044	$8 \cdot 840998$	3057	$11 \cdot 159002$	- 001042	15	9-998958	2
59	8-841774	3030	1-158226	$8 \cdot 842825$	3045	$11 \cdot 157175$	-001050	13	$9 \cdot 998950$	1
60	$8 \cdot 843585$	3017	1-156415	$8 \cdot 844644$	3032	11-155356	- 001059	15	9-99894	0
,			Secant.			Tangent.	cosecant.		Sin	

4 deg.

	Sine.		Cosecant.	angent.		Cotangent.	Secant.	${ }_{\text {Diff }}$	Cosi	
0	8.843585		-156415	$8 \cdot 844644$		11-155356	-001059		,	-
1	$8 \cdot 845387$	3005	-154613	8.846455	3019	11-153545	-001068	15	9-9989	59
2	$8 \cdot 8471832$	2992	-152817	$8 \cdot 848260$	007	11-151740	-001077	15		8
3	$8 \cdot 848971$	298	-151029	$8 \cdot 850057$	2995	11-149943	-001086	15	9.998914	7
4	$8 \cdot 8507512$	2967	-149249	$8 \cdot 851846$	2982	11-148154	-001095	15	$9 \cdot 998905$	6
5	8.852525	2955	$1 \cdot 147475$	$8 \cdot 853628$	2970	$11 \cdot 146372$	-001104	15	9.998896	5
6	$8 \cdot 8542912$	2943	1-145709	$8 \cdot 855403$	2958	11-144597	-001113	15	9.998887	4
7	$8 \cdot 856049$	2931	$1 \cdot 143951$	$8 \cdot 8571712$	2946	11-142829	-001122	15	9.998878	3
8	$8 \cdot 8578012$	2919	1-142199	$8 \cdot 858932$	29351	11-141068	-001131	15	9.9988	2
9	$8 \cdot 859546$	2908	140454	8-860686	2923	11-139314	-001140	15	9.9988	51
10	8-861283 2	2896	-138717	8.862433	2911	11-137567	-001149	15	9.9988	0
11	8.863014	2884	-136986	8.864173	2900	11-135827	-001159	17	9-9988	49
12	8.864738	2873	-135262	8.865906	288	11-134094	-001168	15	9•998832	8
13	8-866455	2861	$1 \cdot 133545$	8.867632	2877	11-132368	-001177	15	9-998823	47
14	8.868165	2850	-131835	8.869351	2866	11-130649	-001187	17	9•998813	46
15	8.869868	2839	$1 \cdot 130132$	8.871064	2854	11-128936	001196	15	9•998804	5
16	$8 \cdot 871565$	2828	1-128435	8.872770	843	$11 \cdot 127230$. 00120	15	9-998795	4
17	$8 \cdot 873255$	2817	$1 \cdot 126745$	8.874469	2832	$11 \cdot 125531$	-001215	1	9•998785	3
18	$8 \cdot 8749382$	2806	1-125062	8.876162	2821	11-123838	-001224	15	9-9987	42
19	8.876615	279	-123385	8-877849	811	11-122151	. 001234	17	9-99876	41
20	$8 \cdot 878285$	2784	$\cdot 121715$	$8 \cdot 879529$	2800	11-120471	. 001243	15	9-998757	40
21	$8 \cdot 879949$	2773	-120051	8.881202	2789	11-118798	. 001253	17	9-998747	39
22	$8 \cdot 8816072$	2763	-118393	8.882869	2779	11-117131	001262	17	9-998738	8
23	$8 \cdot 883258$	2752	-116742	8.884530	2768	11-115470	. 001272	15	9-998728	7
24	$8 \cdot 884903$	2742	-115097	8.886185	2758	11-113815	. 001282	17	9-998718	6
25	$8 \cdot 886542$	2731	-113458	8.887833	2747	11-112167	001	17	$9 \cdot 99$	5
26	$8 \cdot 888174$	2721	1-111826	$8 \cdot 88947$	2737	$11 \cdot 110524$. 00130	15	9•998	4
27	$8 \cdot 8898012$	2711	-110199	8.89111	2727	$11 \cdot 108888$	-001311	17	$9 \cdot 998$	3
28	$8 \cdot 8914212$	27001	1-108579	8.89274	2717	$11 \cdot 107258$	-001321	17	9-998679	32
29	$8 \cdot 893035$	2690	1-106965	8-89436	2707	$11 \cdot 105634$	001332	17	9-998669	31
30	8.894643	2680	-105357	8.89598	2697	11-104016	001341	17	9.998659	
31	8.896246	2670	-103754	$8 \cdot 89759$	2687	11-102404	001351	17	$9 \cdot 998649$	4
32	8.897842	2660	1-102158	8.89920	2677	11-100797	001361	17	-9986	28
33	8-899432	2651	$1 \cdot 100568$	$8 \cdot 90080$	2667	11.099197	-001371	17	9.998629	27
34	$8 \cdot 901017$	26411	1-098983	$8 \cdot 902398$	2658	11.097602	001381	17	9.998619	26
35	$8 \cdot 902596$	2631	1.097404	$8 \cdot 903987$	2648	11.096013	001391	17	9-998609	25
36	$8 \cdot 904169$	2622	1.095831	$8 \cdot 905570$	2638	$11 \cdot 094430$. 001401		9-99859	24
37	$8 \cdot 905736$	2612	-094264	$8 \cdot 907147$	2629	11.092853	-001411	17	$9 \cdot 998589$	23
38	8.907297	2603	1-092703	$8 \cdot 908719$	2620	11-091281	- 001422	18	$9 \cdot 998578$	22
39	$8 \cdot 908853$	259	-091147	$8 \cdot 910285$	2610	$11 \cdot 089715$	001432	17	9-9985	21
40	$8 \cdot 91040$	25	-089596	$8 \cdot 911846$	2601	11.088154	-001442	17	9.998	20
41	8.911949	2.75	$1 \cdot 088051$	8.913401	2592	11.086599	-00145	17	$9 \cdot 9985$	18
42	8.913488	2566	$1 \cdot 086512$	$8 \cdot 914951$	5283	11.085049	-001463	18	9-998537	18
43	$8 \cdot 915022$	2556	$1 \cdot 084978$	$8 \cdot 916495$	2574	11.083505	-001473	17	9-998527	17
44	8.916550	2547	1.083450	$8 \cdot 918034$	2565	11.081966	. 001484	18	9.998516	16
45	$8 \cdot 91807$	2538	$1 \cdot 081927$	$8 \cdot 919568$	2556	11.080432	. 001494	17	9.998506	15
46	8.91959	2529	1 1.080409	$8 \cdot 921096$	2547	11.078904	- 001505	18	9-998495	14
47	$8 \cdot 92110$	2520	1.078897	$8 \cdot 922619$	2538	11-077381	. 001515	17	9.99848	13
48	8.922610	2512	21.077390	$8 \cdot 924136$	2530	11.075864	. 00152	18	9.998474	1
49	$8 \cdot 924112$	2503	$1 \cdot 075888$	$8 \cdot 925649$	2521	11.074351	. 001536	17	9.99846	1
50	$8 \cdot 92560$	2494	1.074391	$8 \cdot 927156$	2512	11.072844	. 001547	18	9.99845	10
51	$8 \cdot 92710$	248	1.072900	$8 \cdot 928658$	2503	11.071342	. 001558	18	9.998442	9
52	8.928587	2477	1.071413	$8 \cdot 930155$	2495	11.069845	. 001569	18	9.998431	8
53	$8 \cdot 930068$	2469	91.069932	$8 \cdot 931647$	2486	11.068353	. 001579	17	9.998421	7
54	8.931544	2460	1 1.068456	$8 \cdot 933134$	2478	11.066866	. 001590	18	9.998410	6
55	8.933015	2452	1.066985	$8 \cdot 934616$	2470	11.065384	. 001601	18	9-99839	5
56	8.934481	2443	1.065519	8.936093	2461	11.063907	-001612	18	9.99838	4
57	8.935942	2435	1.064058	$8 \cdot 937565$	2453	11.062435	. 001623	18	9-99837	3
58	$8 \cdot 93739$	242	$1 \cdot 062602$	8.939032	2445	11.060968	. 001634	18	9.99836	2
59	$8 \cdot 938850$	2419	1 1.061150	8.940494	2437	11.059506	. 001645	18	9.998355	1
60	8.940296	241	1.059704	8.941952	2429	11.058048	. 001656	18	9.998344	0
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

5 dEG.

	ne.	Diffi	Cosecan		${ }_{\text {Diff }}$ Dif		Secant.		Cosi	
0	8.940296		1.05	8.941952		11.058	001656		4	60
1	$8 \cdot 941738$	2403	1.058262	8.943404	,	11.056	.001667	18	9.998333	59
2	$8 \cdot 94317$	2394	-0568	$8 \cdot 94485$	2413	11.055148	-001678	18		58
3	$8 \cdot 944$		-055394	$8 \cdot 94629$			-00	18	-998311	
4	$8 \cdot 94603$	237	- 053966	8.94773	2397	11.052266	-001700	18	-	56
5	$8 \cdot 94745$	2371	-052544	$8 \cdot 949168$	2390	11.050832	. 001711	18	$9 \cdot 9$	
6	8.948874	236	-051126	$8 \cdot 950597$	2382	11.049403	-001723	20	9-998277	
7	$8 \cdot 950287$	235	-049713	$8 \cdot 952021$	2374	11.047979	-001734	18	9-9982	
8	$8 \cdot 95169$. 048304	$8 \cdot 953441$	2366	11.046559	-001745	18	9-998	52
9	$8 \cdot 953$. 046900	8.95485	2359	11.045144	-00175	20	99	51
10	$8 \cdot 95448$		045501	$8 \cdot 95626$	2351	1	-001768	18	9-9	50
11	$8 \cdot 95589$	232	. 044106	8•95767	2344	11.042326	-00178	20		49
12	8.957284	2317	-042716	$8 \cdot 95907$	233	11.040925	-001791	18	9-998209	48
13	$8 \cdot 958670$	2310	. 041330	$8 \cdot 96047$	23.29	11.039527	-00180	20	9-998197	47
14	$8 \cdot 96005$		-039948	$8 \cdot 96186$	2322	11.038134	-00181	18	9-9981	46
15	$8 \cdot 96142$. 038571	$8 \cdot 96325$		11.03674	-00182	20	9-9981	45
16	$8 \cdot 96280$	228	-037199	8-96463	230	11.035361	-00183	18	9-99	44
17	$8 \cdot 96417$		-035830	8.96601	2300	11.033981	-0018	20	9-99	
18	$8 \cdot 9655$	2273	- 034466	$8 \cdot 96739$	2293	11.032606	-00186	20	-9981	42
19	$8 \cdot 96689$	226	$\cdot 033107$	8.9687	2286	$11 \cdot 031234$	-00187	18	9-998128	41
20	8-96824	2259	- 031751	8.97013	2279	$11 \cdot 029867$	-00188	20	9.9981	40
21	8.96960	225	-030400	8.9714	2271	$11 \cdot 028504$	-00189	20	9.9981	
22	$8 \cdot 97094$		-029053	$8 \cdot 9728$	2265	$11 \cdot 027145$	-0019	20	9-998092	
23	$8 \cdot 97228$	2238	$1 \cdot 027711$	8.9742		$11 \cdot 025791$	-0019	20	9•998080	37
24	8-97362	2231	- 026372	$8 \cdot 97556$	2251	$11 \cdot 024440$	01	20	9.998	6
25	$8 \cdot 97496$	22	-025038	$8 \cdot 97690$	2244	$11 \cdot 023094$	-00194	20	9.99	
26	8.976293	2217	. 023707	8.97824	2237	11.021752	. 0019	20	9.9980	
27	8.977619	2210	- 022381	$8 \cdot 97958$	223	$11 \cdot 020414$	-00196	20	$9 \cdot 99$	
28	8.97894	$2 \cdot 03$	-021059	$8 \cdot 980921$	$22 \cdot 23$	$11 \cdot 019079$	-0019		-980	
29	$8 \cdot 98025$		-019741	8.982251		11.017749	-00199		$9 \cdot$	
30	$8 \cdot 98157$		1-018427	8-98357	2910	11.016	-0020	20	9.997!	
31	$8 \cdot 98288$	183	$1 \cdot 017117$	8.98489	220	11.015101	-002	20	9-997	
32	8-98418	2177	1.015811	$8 \cdot 986217$	2197	11.013783	-00202	20	9•997	28
33	8.98549	2170	-014509	8.987532	2191	11.012468	-002041	22	9.997	
34	$8 \cdot 98678$	2163	1.013211	8.988842	2184	11.011158	-00205	0	9-99	
35	$8 \cdot 98808$		1-011917	$8 \cdot 990149$		$11 \cdot 009851$	-00206		-	
36	$8 \cdot 98937$		1.010626	$8 \cdot 991451$	210	11.008549	-0020		9.99792	
37	8.99066	2144	-009340	$8 \cdot 99275$	2165	$11 \cdot 007250$	-00209	20	9-9979	23
38	8.99194	2138	-008057	8.99404	2158	$11 \cdot 005955$	-00210		99	
39	8.99322	2131	1.006778	8-995337	2152	$11 \cdot 004663$	-00211	20	9-99788	21
40	8.99449	2125	1.005503	8-996624	2146	$11 \cdot 003376$	-00212	22	9-99787	20
41	$8 \cdot 99576$	2119	-004232	$8 \cdot 99790$	2140	$11 \cdot 002092$. 00214	20	9-99786	
42	8.9970	212	1.002964	$8 \cdot 99918$	2134	$11 \cdot 000812$	-00215	22	9-99784	18
43	$8 \cdot 99829$	2106	1.001701	$9 \cdot 0004$	2127	10.999535	-00216	20	9•99783	
44	8.99956	2100	1-000440	$9 \cdot 00173$	2121	$10 \cdot 998262$	-002178	22	9-997822	16
45	9.00081	209	- 9999184	$9 \cdot 00300$	2115	$10 \cdot 996993$. 002191	22	9-997809	
46	$9 \cdot 002069$	2088	997931	$9 \cdot 00427$	2109	$10 \cdot 995728$	-00220	20	9-997797	14
47	9.00331	2082	-996682	$9 \cdot 00553$	2103	$10 \cdot 994466$	-00221	22	9-997784	13
48	9.0045	207	- 995437	$9 \cdot 00679$	2097	10.993208	-00222	22	$9 \cdot 997771$	12
49	9.0058	20	-9941	9-00804	2091	$10 \cdot 99195$	-0022	22	9-99775	11
50	9.00704	206	- 9992956	9•00929	2085	10.990702	. 0022		9-997745	10
51	9.008278	2058	- 991722	9.010546	2079	10.989454	-00226	22	9-997732	9
52	9.009510	2052	. 990490	9.011790	2074	$10 \cdot 988210$	- 002281	22	9-997719	8
53	9.010737	2046	0.989263	9.013031	2068	$10 \cdot 986969$	-002294	22	9-99770	7
54	9.011962	2040	$0 \cdot 988038$	9.014268	2062	$10 \cdot 985732$	-002307	22	9-99769	6
55	9.01318	2034	0.986818	$9 \cdot 01550$	205	$10 \cdot 984498$	-0023	22	$9 \cdot 9976$	5
56	9.01440	2029	$0 \cdot 985600$	$9 \cdot 0167$	2051	$10 \cdot 983268$	-0023	22	9-9976	4
57	9.015613	2023	$0 \cdot 984387$	$9 \cdot 017959$	2045	$10 \cdot 982041$	00234	2	-997654	3
58	9.016824	2017	$0 \cdot 983176$		2039	10.980817	-002359	22	9•99764	2
59	9.018031	2012	$0 \cdot 981969$	9-020403	2034	$10 \cdot 979597$	-002372	22	9-9976	1
60	9.019235	200	$0 \cdot 980$	9.021620	202	10.97838	-002386	23	-9976	0
	Cosine.					Tangent				

84 DEG.

6 deg.

	Sine.	Diff;	Cosecant.	Tangent.	Diff	Cotangent.	t.	$\left\|\begin{array}{l} \text { Diff } \\ 1000^{\prime \prime} \end{array}\right\|$	Cosine.	,
0	9.019235		$\cdot 980765$	$9 \cdot 021620$		10.978380	. 002386		$9 \cdot 997614$	60
1	$9 \cdot 020435$	2000	. 979565	$9 \cdot 022834$	2023	10.977166	-002399	22	$9 \cdot 997601$	59
2	$9 \cdot 021632$	1995	-978368	9-024044	2017	$10 \cdot 975956$	-002412	22	$9 \cdot 997588$	58
3	$9 \cdot 022825$	1989	- 977175	9-025251	2011	$10 \cdot 974749$	-002426	23	$9 \cdot 997574$	57
4	$9 \cdot 024016$	1984	-975984	$9 \cdot 026455$	2006	10.973545	-002439	22	$9 \cdot 997561$	56
5	$9 \cdot 025203$	1978	- 974797	$9 \cdot 027655$	2001	10.972345	-002453	23	9-997547	55
6	$9 \cdot 026386$	1973	. 973614	$9 \cdot 028852$	1995	10.971148	-002466	22	9.997534	54
7	$9 \cdot 027567$	1967	- 972433	$9 \cdot 030046$	1990	10.969954	-002480	23	$9 \cdot 997520$	53
8	$9 \cdot 028744$	1962	- 971256	9-031237	1985	$10 \cdot 968763$	-002493	22	9-997507	52
9	$9 \cdot 029918$	1957	-970082	$9 \cdot 032425$	1979	$10 \cdot 967575$	-002507	23	$9 \cdot 997493$	51
10	$9 \cdot 031089$	1951	. 968911	$9 \cdot 033609$	1974	$10 \cdot 966391$	-002520	22	$9 \cdot 997480$	50
11	$9 \cdot 032257$	1946	- 967743	$9 \cdot 034791$	1969	$10 \cdot 965209$	-002534	23	9-997466	49
12	$9 \cdot 033421$	1941	-966579	$9 \cdot 035969$	1964	10.964031	-002548	23	$9 \cdot 997452$	48
13	9.034582	1936	. 965418	$9 \cdot 037144$	1958	10.962856	. 002561	22	9.997439	47
14	9.035741	1930	. 964259	$9 \cdot 038316$	1953	$10 \cdot 961684$	- 002575	23	9-997425	46
15	9.036896	1925	-963104	$9 \cdot 039485$	1948	$10 \cdot 960515$	-002589	23	9.997411	45
16	9.038048	1920	- 961952	$9 \cdot 040651$	1943	10.959349	-002603	23	9.997397	44
17	9.039197	1915	- 960803	$9 \cdot 041813$	1938	10.958187	-002617	23	9.997383	43
18	$9 \cdot 040342$	1910	. 959658	$9 \cdot 042973$	1933	10.957027	-002631	23	9.997369	42
19	9.041485	1905	- 958515	$9 \cdot 044130$	1928	10.955870	-002645	23	9.997355	41
20	9.042625	1899	- 957375	$9 \cdot 045284$	1923	10.954716	-002659	23	9.997341	40
21	$9 \cdot 043762$	1895	- 956238	$9 \cdot 046434$	1918	10.953566	-002673	23	9.997327	39
22	$9 \cdot 044895$	1889	. 955105	$9 \cdot 047582$	1913	10.952418	-002687	23	$9 \cdot 99$	38
23	$9 \cdot 046026$	1884	. 953974	$9 \cdot 048727$	1908	$10 \cdot 951273$. 002701	23	9-99749	37
24	$9 \cdot 047154$	1879	- 952846	$9 \cdot 049869$	1903	10.950131	-002715	23	9.997285	36
25	9.04827	1875	- 951721	$9 \cdot 051008$	1898	$10 \cdot 948992$	-002729	23	9.9972	35
26	9.049400	1870	-950600	$9 \cdot 052144$	1893	10.947856	. 002743	23	9.997257	34
27	$9 \cdot 050519$	1865	. 949481	$9 \cdot 053277$	1889	10.946723	-002758	25	9-997242	33
28	9.051635	1860	. 948365	$9 \cdot 054407$	1884	$10 \cdot 945593$. 002772	23	$9 \cdot 997228$	32
29	9.052749	1855	$\cdot 947251$	$9 \cdot 055535$	1879	10.944465	- 002786	23	$9 \cdot 997214$	31
30	$9 \cdot 053859$	1850	. 946141	$9 \cdot 056659$	1874	10.943341	. 002801	25	9-997199	30
31	9.054966	1845	- 945034	9.057781	1870	10.942219	. 002815	23	$9 \cdot 997185$	29
32	$9 \cdot 056071$	1841	-943929	$9 \cdot 058900$	1865	$10 \cdot 941100$	-002830	25	$9 \cdot 997170$	28
33	9.057172	1836	-942828	$9 \cdot 060016$	1860	10.939984	- 002844	23	$9 \cdot 997156$	27
34	9.058271	1831	- 941729	$9 \cdot 061130$	1855	10.938870	-002859	25	$9 \cdot 997141$	26
35	$9 \cdot 059367$	1827	$\cdot 940633$	$9 \cdot 062240$	1851	$10 \cdot 937760$	-002873	23	9.997127	25
36	9.060460	1822	-939540	$9 \cdot 063348$	1846	10.936652	- 002888	25	$9 \cdot 997112$	24
37	$9 \cdot 061551$	1817	-938449	$9 \cdot 064453$	1842	10.935547	. 002902	23	9-997098	23
38	9.062639	1813	. 937361	$9 \cdot 065556$	1837	10.934444	- 002917	25	9.997083	22
39	9.063724	1808	. 936276	$9 \cdot 066655$	1833	10.933345	. 002932	25	$9 \cdot 997068$	21
40	$9 \cdot 064806$	1804	-935194	$9 \cdot 067752$	1828	$10 \cdot 932248$. 002947	25	$9 \cdot 997053$	20
41	9.065885	1799	-934115	$9 \cdot 068846$	1824	$10 \cdot 931154$. 002961	23	9.997039	19
42	$9 \cdot 066962$	1794	-933038	$9 \cdot 069938$	1819	$10 \cdot 930062$	-002976	25	$9 \cdot 997024$	18
43	$9 \cdot 068036$	1790	-931964	$9 \cdot 071027$	1815	$10 \cdot 928973$	-002991	25	9.997009	17
44	$9 \cdot 069107$	1786	-930893	$9 \cdot 072113$	1810	$10 \cdot 927887$. 003006	25	$9 \cdot 996994$	16
45	9.070176	1781	- 929824	9.073197	1806	10.926803	-003021	25	9.996979	15
46	$9 \cdot 071242$	1777	- 928758	$9 \cdot 074278$	1802	10.925722	. 003036	25	$9 \cdot 996964$	14
47	$9 \cdot 072306$	1772	. 927694	$9 \cdot 075356$	1797	$10 \cdot 024644$	-003051	25	9.996949	16
48	$9 \cdot 078366$	1768	. 926634	$9 \cdot 076432$	1793	10.923568	- 003066	25	$9 \cdot 996934$	12
49	$9 \cdot 074424$	1763	. 925576	9-077505	1789	$10 \cdot 922495$	-003081	25	9-996919	11
50	$9 \cdot 075480$	1759	. 924520	9.078576	1784	10.921424	- 003096	25	9-996904	10
51	$9 \cdot 076533$	1755	. 923467	$9 \cdot 079644$	1780	$10 \cdot 920356$	- 003111	25	9-996889	9
52	$9 \cdot 077583$	1750	. 922417	$9 \cdot 080710$	1776	10.919290	- 003126	25	$9 \cdot 996874$	8
53	$9 \cdot 078631$	1746	. 921369	$9 \cdot 081773$	1772	$10 \cdot 918227$	-003142	27	$9 \cdot 996858$	7
54	$9 \cdot 079676$	1742	. 920324	$9 \cdot 082833$	1767	$10 \cdot 917167$	- 003157	25	$9 \cdot 996843$	6
55	9.080719	1738	. 919281	$9 \cdot 083891$	1763	10.916109	-003172	25	$9 \cdot 996828$	5
56	$9 \cdot 081759$	1733	$\cdot 918241$	$9 \cdot 084947$	1759	10.915053	-003188	27	$9 \cdot 996812$	4
57	9.082797	1729	.917203	9.086000	1755	$10 \cdot 914000$	- 003203	25	$9 \cdot 996797$	3
58	9.083232	1725	. 916168	9.087050	1751	10.91.2950	-003218	25	$9 \cdot 996782$	2
59	$9 \cdot 084864$	1721	. 915136	$9 \cdot 088098$	1747	$10 \cdot 911902$	-003234	27	$9 \cdot 996766$	1
60	$9 \cdot 085894$	1717	. 914106	9.089144	1743	10.910856	-(003249	25	$9 \cdot 996751$	0
,	Cosine.		Secant.	gent.		Tangent.	Cosecant.		Sine.	

7 DEG.

	Sine.	${ }_{\text {Diff }}$			Diff ${ }_{\text {dit }}$			$\left\lvert\, \begin{array}{l\|l\|} \hline \text { pifif } \\ 100^{\prime} \end{array}\right.$	Cosine.	
0	9.0		. 914106	9.089144		10.910856				60
	9.086922	171	- 913078	$9 \cdot 090187$	1738	$10 \cdot 909813$	-003265	27	9.996735	59
2	9.0879	170	. 91205	9-091228	1735	10.908772	-003280	25	9-996	58
3	9.08897	170	-911030	$9 \cdot 092266$	1731	10.907734	003	27	9.996704	57
4	9.08999		-910010	$9 \cdot 09$	1727	10.906698	003	27		56
5	9.091008		-908992	$9 \cdot 09433$	1			25		55
6	9.092024	1692	-907976	9-095367	1719	10.904633	-003343	27	9.996	
7	9.093037	168	-906963	9-09639	1715	$10 \cdot 903605$	-003359	27	9-9966	53
8	$9 \cdot 09404$	168	-905953	9.097422	1711	10.902578	-003375	27	9.9966	5
9	$9 \cdot 095056$		- 904944	9-09844		0155	-003390	25	9-996610	51
10	9.0960		-903938	$9 \cdot 09946$	1703	$10 \cdot 900532$	003	27	-	50
11			. 902935	9-10048	1699	$10 \cdot 899513$	00			49
12	$9 \cdot 09806$	668	-901934	$9 \cdot 10150$		$10 \cdot 898$	003	27	-	48
13	9•09906	1665	-900935	.9-102519	1691	$10 \cdot 897481$	0034	27	9.996	7
14	$9 \cdot 10006$	661	-899938	9-103532	1687	$10 \cdot 896468$	00347	27	$9 \cdot 996$	46
15	$9 \cdot 10105$		-898944	9•104542	1684	$10 \cdot 895458$	-00348	27	9-996514	45
16	9•102048	1653	-897952	9•105		10.894450	-0035	27	9.996498	4
17	$9 \cdot 103037$		-896963	9•10655	167	10.89344	-003	27	-996482	3
18	$9 \cdot 10402$		-895975	$9 \cdot 10755$	672	-89244	-003			42
19	9-10501	642	-894990	9•10856	66	0.891	003	27		41
20.	9-105992	638	-894008	$9 \cdot 10955$	665	$10 \cdot 890441$	-0035	27	9-996	40
21	9•106973	1634	-893027	9•110556	1661	$10 \cdot 889444$	003	27	9-996	
22	9•10795	1630	-892049	$9 \cdot 111551$	1658	888449	-00360	28	9•996400	
23	9-10892	1627	-891073	9-112543	165	887457	-0036	27	9.99	
24	9•109901		-890099	$9 \cdot 11353$		10-886467	-00363	27	9.996	6
25	9•11087	1619	-889127	$9 \cdot 11452$	16	885	003	28	9-996	5
26	$9 \cdot 111842$	1616	-888158	$9 \cdot 11550$	64	49	-0036			34
27	$9 \cdot 112809$	612	-887191	$9 \cdot 11649$	63	0.883503	-00368	28	99	33
28	$9 \cdot 11377$	608	-886226	$9 \cdot 117472$	1636	10.882528	-00369	27	9.996302	32
29	9-11473		-885263	- 11845	1632	881	-0037	8	962	31
30	9•11569		$\cdot 884302$	9-11942	162	10.8	-0037	27	9.9962	
31	9-11665	97	-883344	$9 \cdot 12040$	1	0.879	-003	28	-9962	9
32	9-11761	594	-882387	9-12137		$10 \cdot 8786$	037	8	9.9962	8
33	9•11856	590	$\cdot 881433$	9-12234	1618	$10 \cdot 8776$	-0037	27	9962	27
34	$9 \cdot 11951$	1587	-880481	9-123317	16	876683	-00379	28	962	26
35	$9 \cdot 12046$	58	-879531	$9 \cdot 124284$		875716	-0038	28		5
36	$9 \cdot 12141$	1580	- 878583	$9 \cdot 125249$		87475	-00383	28		2
37	$9 \cdot 12236$		- 877638	9-126211		87	-003	28	9961	33
38	$9 \cdot 12330$		-876694	9•12717		872828	0038	28	. 9961	2
39	9-124248	1569	-875752	9-128130	硅	10.871870	0038	28	9-99611	21
40	$9 \cdot 12518$	1566	$\cdot 874813$	$9 \cdot 129087$	159	10.870913	0039	28	$9 \cdot 99610$	2
41	9-1261	1562	$\cdot 873875$	9-130041	159	$10 \cdot 869959$	-00391	28	$9 \cdot 99608$	19
42	9-1270	1559	$\cdot 872940$	9-130994	15	$10 \cdot 869006$. 00393	28	9-996066	8
43	$9 \cdot 127$	155	$\cdot 872007$	$9 \cdot 1319$		$10 \cdot 868056$. 00395	8	9•996049	
44	9-128	1552	$\cdot 871075$	9-1328		. 86710	-0039	28	9960	
45	$9 \cdot 12985$	5	-870146	$9 \cdot 1338$		-866161	-00398	8	-996	5
46	$9 \cdot 13078$	545	-869219	$9 \cdot 1347$		$10 \cdot 865216$. 00400	28		14
47	$9 \cdot 13170$	542	-868294	$9 \cdot 135$		$10 \cdot 8642$	-0040	30	9.995980	13
48	$9 \cdot 13263$	1539	-867370	9-13666		10.863333	-00403	28	9•99596	12
49	9-13355	1535	-866449	9-137605	15	$10 \cdot 862395$	-00405	28	9959	11
50	9-13447	532	$\cdot 865530$	$9 \cdot 13854$		$10 \cdot 861458$. 00407	30	95	10
51	9-1353	1529	- 864613	$9 \cdot 13947$		$10 \cdot 86052$	-0040	2	9.995911	
52	9-13630	22	-863697	$9 \cdot 14040$		10.859591	. 00410	28	9.995894	8
53	9-13721	1522	-862784	$9 \cdot 14134$	5	0.858660	00412	30	9.995876	7
54	9-138128	1519	-861872	$9 \cdot 142269$		$10 \cdot 857731$. 004141	28	995859	6
55	$9 \cdot 13903$	1516	-860963	$9 \cdot 143196$	154	$10 \cdot 856804$	-004159	30	9.99584	5
56	9-13994	12	-860056	$9 \cdot 144121$	15	0.855879	-004177	30	9958	4
57	$9 \cdot 140$	509	-859150	$9 \cdot 14504$		$10 \cdot 854956$	-00419	28	995	3
58	9-1417	50	-858246	$9 \cdot 1459$		$10 \cdot 85403$	-00421	30		2
50	$9 \cdot 14265$	-	. 857345	$9 \cdot 146885$		0.85311	0022	20	9.995771	1
60	$9 \cdot 143$	150	. 856445	9-147803	1		-004247	30	$9 \cdot 99575$	0
	Cosine.					Tang				

82 DEG.

8 deg.

	Sine.	If;	Cosecant	Tangent.	Dift.	Cotangent.		"		
0										0
1	$9 \cdot 14445$						-00	30		9
2						68	-00	30	$9 \cdot 995717$	8
3			. 853757	$9 \cdot 15054$			-004301	30		
4				$9 \cdot 1514$			- 004	30		
5			-851974	9	1514	$10 \cdot 847637$		28		
	$9 \cdot 1489$		- 851085	$9 \cdot 15326$		6731	-00	30		4
7			-850198	$9 \cdot 154$	1508	$10 \cdot 845826$	-004372	30	$9 \cdot 9$	5
8	$9 \cdot 1506$	475	$\cdot 849314$	9-155077		$10 \cdot 844923$	-00439	30	9.995610	52
9	$9 \cdot 1515$	1472	-848	$9 \cdot 155$	1502	22	-004409	32	$9 \cdot 995591$	1
10	$9 \cdot 15245$	1469	$\cdot 847549$	$9 \cdot 156$	1499		-004427	30		0
11	$9 \cdot 153$	1466	-846670	-15	1496	29		30	9.995555	9
12	$9 \cdot 154208$	1462	$\cdot 845792$		149	1329	- 0	30		8
13	$9 \cdot 1550$			9		-	-004481	30		7
14	$9 \cdot 155957$	1457	-844043	9-1604	48	10	-004499	30		6
15	$9 \cdot 15683$		-843170	6134				32		5
16	$9 \cdot 157$	151	- 842300	$9 \cdot 16223$	148	10.837764	- 00453	30	9.995464	44
17	9-1585	,	- 841431	$9 \cdot 163123$	1478			30		3
18	$9 \cdot 1594$		-84	$9 \cdot 164008$	147		-00457	32		42
19	$9 \cdot 1603$	1442	-839699	9-1648	147	88	. 00	30	9-995409	41
20	$9 \cdot 16116$	1439	-838836			10.83		32		0
21	$9 \cdot 162025$	1436	-837975			10.833346	-004628	30		9
22	9-162885	143	-837115	9-167532		10.832468	-004647	32	$9 \cdot 995353$	8
23		1430			,	$10 \cdot 831591$	-004	32		7
2	9-1646	427	-835400		145	30716	-004684	30	995316	6
2			- 8345		145			32		5
26	$9 \cdot 1663$	22	. 833693	$9 \cdot 17$			-004722	32	395278	4
2	9•167	1419	. 832841	-1718				30		3
28			. 831992			$10 \cdot 827233$	-004759	32		2
29	$9 \cdot 168856$	1413	. 831144	17363	1444	(-004778	32	$9 \cdot 995222$	1
30	9-169702	0	. 830298		4	21	-004797	32		0
31	$9 \cdot 170$		-829453	$\cdot 17536$	143	24638	-004816	32	995184	9
32	$9 \cdot 17138$	1405	-828611	9-17622		23776	-00483	32		8
33	$9 \cdot 1722$		-827770	9-17708	1433	22916	-00485	32	995146	27
34	$9 \cdot 178070$	1399	. 826930	9-1779	1431	22058	- 004873	32		26
35	$9 \cdot 173908$	1396	-826092				-004892	32		5
36	$9 \cdot 174744$	1.394	- 825256	$9 \cdot 17965$		10.81948	-004911	32		4
37	$9 \cdot 175578$	1391	-824422	$9 \cdot 18050$				32		,
38	$9 \cdot 176411$	1388	-823589	$9 \cdot 18136$	142			32	9-9950	22
39	$9 \cdot 177242$	1385	82758	9-18221		$0 \cdot 817789$	-004968	32	-	21
40	$9 \cdot 178072$		21928	$9 \cdot 18305$			-004987	32		20
41	9-178900	1380	. 821100	$9 \cdot 18390$	1412	-	-005007	33	994993	19
42		1377	-820274	9-18475			-005026	32		8
43	$9 \cdot 18055$	1374	- 819449	$9 \cdot 18559$		$10 \cdot 814403$	- 005045	32		7
44		1372		9-186439	140		- 005065	33		
45	9-18219	1369	. 817804	9-187280	1402	812180	- 005084	32		15
46	$9 \cdot 183016$	1367	- 816984	$9 \cdot 188120$	1399	. 811880	-005104	33	仡	14
47	$9 \cdot 18383$	1364	- 816166	18895		811042	- 005123	32		13
48		1361	- 815349	9-18979		206	- 005	33	$9 \cdot 994857$	12
49	$9 \cdot 185$	1359	-814534	19062	139	1	-005162	32		
50	$9 \cdot 186280$	1356	-813720	$9 \cdot 19146$		$10 \cdot 80853$	-005182	33	$9 \cdot 994818$	0
51	$9 \cdot 187092$	1353	- 812908	9229		7706	-005202	33	7	9
52	$9 \cdot 187903$	1351	-812097	$9 \cdot 193124$	1384		-005221	32		
53	$9 \cdot 188712$	1348	- 811288	$9 \cdot 19395$	1381	06047	-005241	33	994759	7
54	$9 \cdot 18951$	1346	- 810481	9-194780	137	$10 \cdot 805220$	-0052	33	994739	6
55	$9 \cdot 1903$	43	-809675	9-19560	137	$10 \cdot 804394$	-005	32		5
56	$9 \cdot 191$	1341	- 808870	9-196430	137	03570	- 005300	33	994700	
57	$9 \cdot 1919$	1338	- 808067	9-197253	13	$10 \cdot 802747$	- 005320	33	,	3
58		1336	-807266	9•198074	136	1926	- 005340	33	994660	2
59	9-193534	1333	- 806466	9•198894		$10 \cdot 801106$	-005360	33	9.994640	1
60	$9 \cdot 194332$	1230	- 805668	9-199713	136	$10 \cdot 800287$	- 005380	33	9.994620	0

S1 DEG.

9 DEG.

	Sine.	Diff, $100 \prime$	Coseca	Tangent.	$\begin{aligned} & \text { Diffi } \\ & 100^{\prime} \end{aligned}$	Cotangent.	Secant.	$\begin{aligned} & \text { Diff, } \\ & 100^{\prime \prime} \end{aligned}$	Cosine.	
0	9•194332		- 805668				- 005380			0
1	9-195129		- 804	$9 \cdot 200529$	1361		- 005400	33		59
2	9-19592	1326	-804075	$9 \cdot 201345$	1359	10.798655	- 005420	33		5
	$9 \cdot 19671$	1323	- 803281	$9 \cdot 202159$	135	10•797841	- 005440	33	$9 \cdot 994560$	7
4	$9 \cdot 1975$	1321	- 802489	$9 \cdot 20$	1354	0-797029	- 005460	33		56
5	$9 \cdot 198302$	1318	- 801698	$9 \cdot 203782$	352	$10 \cdot 796218$	-005481	35	9-99	5)
6	9	1316	- 800909	$9 \cdot 204592$	1349		- 005501	33		54
7	$9 \cdot 19987$	1313	- 800121	$9 \cdot 205400$	47	$10 \cdot 794600$	-005521	33	9-994479	3
8		1311	$\cdot 799334$				-00554	33	$9 \cdot 994459$	52
9	$9 \cdot 201451$	1308	- 798549	$9 \cdot 207013$	342		-005562	35	$9 \cdot 994438$	1
10		1306	$\cdot 797766$	$9 \cdot 20781$	340	1-792183	-005582	33	9.994418	5
11	9-203017	1304	- 796983	9-208619	1338	$10 \cdot 791381$	-005602	33	9.994398	49
12	$9 \cdot 203797$	1301	- 796203	$9 \cdot 209420$	1335	10.790580	- 005623	35	$9 \cdot 994377$	48
13	$9 \cdot 204577$	1299	- 795423	$9 \cdot 21022$	1333	10.789780	- 005643	33		47
14		1296	- 794646	$9 \cdot 21101$	1331	$10 \cdot 788982$	-005664	35	$9 \cdot 994336$	46
15	$9 \cdot 20613$	1294	$\cdot 793869$	9-211815	1328	$10 \cdot 788185$	-00568	33	$9 \cdot 99$	45
16	9-206906	1292	- 793094	9-212611	1326	$10 \cdot 787389$	-005705	35	5	4
17	$9 \cdot 207679$	1289	. 792321		1324		-005726	35		43
18	9-208452	1287	- 791548	$9 \cdot 214198$	1321	$10 \cdot 785802$	$\cdot 005746$	33	-	2
19	$9 \cdot 209222$	1285	$\cdot 790778$	$9 \cdot 214989$	131	10.785011	$\cdot 005767$	35	9.994233	
20	$9 \cdot 209992$	1282	$\cdot 790008$	$9 \cdot 21578$		$10 \cdot 784220$	-005788	35	$9 \cdot 994212$	0
21	$9 \cdot 210760$	1280	$\cdot 789240$	$9 \cdot 216$	1315	$10 \cdot 783432$	-005809	35	$9 \cdot 994191$	9
22		1278	$\cdot 788474$	9-21735	1312	$10 \cdot 782644$	-005829	33	-	8
23	$9 \cdot 212291$	1275	$\cdot 787709$	$9 \cdot 218142$	1310	$10 \cdot 781858$	-005850	35	$9 \cdot 994150$	7
24	$9 \cdot 213055$	1273	$\cdot 786945$	9•218926	13	$10 \cdot 781074$	-005871	35	$9 \cdot 994129$	36
25	$9 \cdot 213818$	1271	. 786182	$9 \cdot 219710$	1305	$10 \cdot 780290$	-005892	35		5
26	$9 \cdot 214579$	1268	. 785421	9-220492	1303	$10 \cdot 779508$	-005913	35	7	4
27	$9 \cdot 215338$	1266	$\cdot 784662$	$9 \cdot 221272$	301	$10 \cdot 778728$	-005934	35		3
28	$9 \cdot 216$	1264	$\cdot 783903$	$9 \cdot 222052$	99	$10 \cdot 777948$	-005955	35	$9 \cdot 994045$	2
29		1261	$\cdot 783146$	$9 \cdot 222830$		$10 \cdot 777170$	-005976	35		1
30	$9 \cdot 217609$	1259	$\cdot 782391$	$9 \cdot 22360$		$10 \cdot 776393$	-005997	35	$9 \cdot 994003$	0
31	$9 \cdot 218363$	1257	$\cdot 781637$	$9 \cdot 22438$		$10 \cdot 775$	-006018	35	$9 \cdot 993982$	9
32	$9 \cdot 219116$	1255	$\cdot 780884$	$9 \cdot 22515$	290	$10 \cdot 774844$	-006040	37	-	28
33	$9 \cdot 219868$	1253	$\cdot 780132$	9-225929	1288	$10 \cdot 774071$	-006061	35	9-993939	7
34	$9 \cdot 220618$	1250	$\cdot 779382$	9-226700	1286	$10 \cdot 773300$	-006082	35	9.993918	26
35	$9 \cdot 221367$	1248	$\cdot 778633$	$9 \cdot 22 ; 471$	1284	$10 \cdot 772529$	-006103	35	9-993897	25
36	$9 \cdot 222115$	246	$\cdot 777885$	9-228239	1281	$10 \cdot 771761$	- 006125	37		2
37	$9 \cdot 222861$	1244	$\cdot 777139$	9-229007	1279	$10 \cdot 770993$	-006146	35	- 9.993854	3
38	$9 \cdot 223606$	1242	$\cdot 776394$	$9 \cdot 229773$	1277	10.770227	-006168	37	$9 \cdot 993832$	2
39	$9 \cdot 224349$	1239	$\cdot 775651$	$9 \cdot 230539$	1275	$10 \cdot 769461$	-006189	35	-	,
40	$9 \cdot 225092$	1237	$\cdot 774908$	$9 \cdot 231302$	1273	$10 \cdot 768698$	- 006211	37	$9 \cdot 99378$	20
41	$9 \cdot 225833$	1235	$\cdot 774167$	$9 \cdot 232065$		$10 \cdot 767935$	-006232	35		19
42	9-226573	1233	$\cdot 773427$	9-23282		$10 \cdot 767174$	-006254	37	9•99	8
43	$9 \cdot 22731$	1231	$\cdot 772689$	$9 \cdot 233586$		$10 \cdot 766414$	-006275	35	$9 \cdot 99$	7
44	$9 \cdot 228048$	1228	$\cdot 771952$	$9 \cdot 234345$	1265	$10 \cdot 765655$	-006297	37	$9 \cdot 99$	6
45	$9 \cdot 228784$	226	$\cdot 771216$	$\cdot 235103$	1262	. 764897	-006319	37	9.99368	5
46	$9 \cdot 229518$	1224	$\cdot 770482$	$9 \cdot 23585$	1260	$0 \cdot 764141$	- 006340	35	$9 \cdot 993660$	4
47	$9 \cdot 230252$	1222	$\cdot 769748$	-23661	1258	0.763386	-006362	37	$9 \cdot 993638$	13
48	$9 \cdot 230984$	1220	$\cdot 769016$	$9 \cdot 237368$	1256	10.762632	-006384	37	9.99	2
49	$9 \cdot 231715$	1218	$\cdot 768285$	$9 \cdot 238120$	1254	-761880	-006406	37	9-993594	11
50	$9 \cdot 232444$	1216	$\cdot 767556$	9-238872	1252	. 761128	-006428	37	9-993572	0
51	$9 \cdot 233172$	1214	$\cdot 766828$	$9 \cdot 239622$	1250	-760378	-006450	37	9.993550	9
52	$9 \cdot 233899$	1212	$\cdot 766101$	$9 \cdot 240371$	1248	-759629	-006472	37	993528	8
53	9-23462.	1209	$\cdot 765375$	$9 \cdot 241118$		758882	-006494	37	993506	
54	9-235349	1207	-764651	241865	1244	-758135	-006516	37	93484	6
55	$9 \cdot 236073$	1205	$\cdot 763927$	$9 \cdot 242610$	1242	.757390	-006538	37	993462	5
56	$9 \cdot 236795$	203	$\cdot 763205$	9-243354	1240	-756646	- 006560	37		4
57	$9 \cdot 237515$	1201	- 762485	$9 \cdot 244097$	1238	10•755903	-006582	37	993418	3
58	$9 \cdot 238235$	1199	$\cdot 761765$	4483	1236	10.755161	-006604	37	993396	2
59	$9 \cdot 238953$	1197	- 761047	-24557	1234	0.754421	-006626	37	993374	1
60	$9 \cdot 239670$	1195	$\cdot 760330$	9-246319	1232	10.753681	-006649	38	993351	0
	Cosine.		ant.	angent.		Tangent.	secant.		Sine	

10 DEG.

	Sine.	Difti; l(0)	Cose	Tangent.	Diff;	Cotangent.	Secant.	Difit Luti	Cusine.	,
0	$9 \cdot 239670$. 760330	$9 \cdot \because 46319$		10.753681	-006649		$9 \cdot 993351$	0
1	$9 \cdot 240386$	1193	. 759614	9-247057	1230	10.752943	-0066i1	37	$9 \cdot 993329$	9
2	$9 \cdot 241101$	1191	. 758899	9-247794 1	1228	10.752206	-006693	379	$9 \cdot 993307$	8
3	9•241814	1189	$\cdot 758181$	$9 \cdot 248530$	1226	$10 \cdot 751470$,006715	38		
4	$9 \cdot 242526$	1187	-757474	9-249264 1	1224	$10 \cdot 750736$	-006738	37	9-9932	6
5	$9 \cdot 243237$	1185	$\cdot 756763$	9-249998 1	1222	$10 \cdot 750002$	-006760	37	$9 \cdot 993240$	5
6	9-243947	1183	$\cdot 756053$	$9 \cdot 2507301$	1220	$10 \cdot 749270$	-006783	38	9.993217	4
7	$9 \cdot 244656$	1181	$\cdot 755344$	$9 \cdot 251461$	1218	$10 \cdot 748539$	-006805	379	9.993195	3
8	$9 \cdot 245363$	1179	$\cdot 754637$	9-252191 1	1217	$10 \cdot 747809$	-006828	38	$9 \cdot 9$	2
9	$9 \cdot 246069$	1177	$\cdot 753931$	$9 \cdot 252920$	1215	$10 \cdot 747080$	-006851	38	99	
10	$9 \cdot 246775$	1175	$\cdot 753225$	9-253648 1	1213	$10 \cdot 746352$	-006873	37	$9 \cdot 993127$	0
11	9•247478	1173	$\cdot 752522$	$9 \cdot 254374$	1211	$10 \cdot 745626$	-006896	38	9.993104	9
12	$9 \cdot 248181$	1171	-751819	$9 \cdot 255100$	1209	10•744900	-006919	38	$9 \cdot 993081$	8
13	$9 \cdot 248883$	1169	$\cdot 751117$	9-255824	1207	10.744176	-006941	37	$9 \cdot 993059$	7
14	$9 \cdot 249583$	1167	$\cdot 750417$	9-256547	1205	$10 \cdot 743453$	-006964	38	$9 \cdot 993036$	46
15	9-250:282	1165	$\cdot 749718$	9-257269	1203	$10 \cdot 742731$	-006987	38	$9 \cdot 9930$	45
16	$9 \cdot 250980$	1163	$\cdot 749020$	$9 \cdot 257990$	1201	10.742010	-007010	38	$9 \cdot 99 \cdot 2990$	44
17	$9 \cdot 251677$	1161	$\cdot 748323$	$9 \cdot 258710$	1200	$11 \cdot 741290$	-007033	38	9-992967	43
18	$9 \cdot 252373$	1159	$\cdot 747627$	9-259429	1198	$10 \cdot 740571$	-007056	38	$9 \cdot 992944$	42
19	$9 \cdot 253067$	1158	$\cdot 746933$	9•260146	1196	$10 \cdot 739854$	-007079	38	$9 \cdot 992921$	41
20	$9 \cdot 253761$	1156	$\cdot 746239$	$9 \cdot 2608631$	1194	10.739137	-007102	38	9.99289	40
21	$9 \cdot 254453$	1154	$\cdot 745547$	$9 \cdot 261578$	1192	$10 \cdot 738422$	-007125	38	9.99	
22	$9 \cdot 255144$	1152	$\cdot 744856$	9-262292	1190	10.737708	-007148	38	9-992852	38
23	$9 \cdot 255834$	1150	. 744166	$9 \cdot 263005$	1189	$10 \cdot 736995$	-007171	38	$9 \cdot 992$	7
24	$9 \cdot 256523$	1148	$\cdot 743477$	$9 \cdot 263717$	1187	$10 \cdot 736283$	-007194	38	$9 \cdot 9928$	36
25	$9 \cdot 257211$	1146	$\cdot 742789$	$9 \cdot 264428$	1185	10.735572	-007217	38	$9 \cdot 9927$	35
26	$9 \cdot \underline{5} 7898$	1144	$\cdot 742102$	9-265138	1183	$10 \cdot 734862$	-007241	40	9-9927	
27	$9 \cdot 258583$	1142	$\cdot 741417$	$9 \cdot 265847$	1181	10.734153	-007264	38	9.992736	33
28	$9 \cdot 259268$	1141	$\cdot 740732$	$9 \cdot 266555$	1179	$10 \cdot 733445$	-007287	38	9.992713	32
29	$9 \cdot 259951$	1139	$\cdot 740049$	$9 \cdot 267261$	1178	10.732739	-007311	38	$9 \cdot 992690$	31
30	$9 \cdot 260633$	1137	. 739367	$9 \cdot 26796$	1176	10.732033	$\cdot 007334$	40	9.992666	30
31	$9 \cdot 261314$	1135	$\cdot 738686$	$9 \cdot 268671$	1174	10.731329	$\cdot 007357$	38	9-992643	29
32	$9 \cdot 261994$	1133	$\cdot 738006$	$9 \cdot 269375$	1172	10.730625	- 007381	40	$9 \cdot 992619$	28
33	$9 \cdot 262673$	1131	. 737327	$9 \cdot 270077$	1170	$10 \cdot 729923$	-007404	38	$9 \cdot 992596$	27
34	$9 \cdot 263351$	1130	. 736649	$9 \cdot 270779$	1169	10.729221	- 007428	40	9.992572	26
35	9.264027	1128	$\cdot 735973$	$9 \cdot 271479$	1167	$10 \cdot 728521$	-007451	38	$9 \cdot 9.92549$	25
36	$9 \cdot 264703$	1126	-735297	$9 \cdot 272178$	1165	$10 \cdot 727822$	-007475	40	9.992525	24
37	$9 \cdot 265377$	1124	-734623	$9 \cdot 272876$	1164	10.727124	-007499	40	$9 \cdot 992501$	23
38	$9 \cdot 266051$	1122	$\cdot 733949$	$9 \cdot 273573$	1162	$10 \cdot 726427$	-007522	38	9.992478	22
39	$9 \cdot 266723$	1120	$\cdot 733277$	9-274269	1160	10.725731	-007546	40	9-992454	21
40	$9 \cdot 267395$	1119	-732605	$9 \cdot 274964$	1158	$10 \cdot 725036$	-007570	40	$9 \cdot 992430$	20
41	$9 \cdot 268065$	1117	$\cdot 731935$	$9 \cdot 275658$	1157	10-724342	-007594	40	9.992406	19
42	$9 \cdot 268734$	1115	$\cdot 731266$	$9 \cdot 276351$	1155	$10 \cdot 723649$	- 007618	40	9-992382	18
43	$9 \cdot 269402$	1113	$\cdot 730598$	$9 \cdot 277043$	1153	$10 \cdot 722957$	-007642	38	$9 \cdot 992358$	17
44	9.270069	1111	$\cdot 729931$	$9 \cdot 277734$	1151	$10 \cdot 722266$	-007665	40	9.992335	16
45	$9 \cdot 270735$	1110	$\cdot 729265$	$9 \cdot 278424$	1150	10.721576	-007689	40	9.992311	15
46	$9 \cdot 271400$	1108	$\cdot 728600$	$9 \cdot 279113$	1148	$10 \cdot 720887$	-007713	40	9.992287	14
47	$9 \cdot 272064$	1106	$\cdot 727936$	9•279801	1146	$10 \cdot 720199$	-007737	40	$9 \cdot 992263$	13
48	$9 \cdot 272726$	1105	-727274	9-280488	1145	$10 \cdot 719512$. 007761	40	$9 \cdot 992239$	12
49	$9 \cdot 273388$	1103	-726612	$9 \cdot 281174$	1143	$10 \cdot 718826$	-007786	42	9.992214	11
50	$9 \cdot 274049$	1101	$\cdot 725951$	9-281858	1141	$10 \cdot 718142$	-007810	40	$9 \cdot 992190$	10
51	$9 \cdot 274708$	1099	$\cdot 725292$	$9 \cdot 282542$	1140	$10 \cdot 717458$	- 007834	40	$9 \cdot 992166$	9
52	$9 \cdot 275367$	1098	$\cdot 724633$	9-283225	1138	$10 \cdot 716775$	- 007858	40	9.992142	8
53	$9 \cdot 276025$	1096	$\cdot 723975$	$9 \cdot 283907$	1136	$10 \cdot 716093$	- 007882	40	$9 \cdot 992118$	7
54	$9 \cdot 276681$	1094	$\cdot 723319$	$9 \cdot 284588$	1135	$10 \cdot 715412$	- 007907	42	$9 \cdot 992093$	6
55	$9 \cdot 277337$	1092	- 722663	$9 \cdot 285268$	1133	$10 \cdot 714732$	-007931	40	$9 \cdot 992069$	5
56	$9 \cdot 277991$	1091	-722009	$9 \cdot 285947$	1131	$10 \cdot 714053$	-007956	42	$9 \cdot 992044$	4
57	$9 \cdot 278645$	1089	- 721355	$9 \cdot 286624$	1130	$10 \cdot 713376$. 007980	40	$9 \cdot 992020$	3
58	$9 \cdot 279297$	1087	-720703	$9 \cdot 287301$	1128	$10 \cdot 712699$	- 008004	40	9-991996	2
59	$9 \cdot 279948$	1086	$\cdot 720052$	$9 \cdot 287977$	1126	$10 \cdot 712023$. 008029	42	9.991971	1
60	$9 \cdot 280599$	1084	. 719401	$9 \cdot 288652$	1125	$10 \cdot 711348$	- 008053	40	9.991947	0
,	Cosine.		Souant.	Cotangent.		Tangent.	Cosecant.		Sine.	

	Sine.	${ }^{\text {fi }}$	Cosecant.	Tangent.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime} \end{aligned}$	Cotangent.	Secant.	$\begin{aligned} & \text { Diff. } \\ & 100^{\prime \prime} \end{aligned}$	Cosine.	
0	9-280			9 2886.5					$9 \cdot 99$	
1	9-281248	10	-718752	$9 \cdot 289326$	123	10.710674	-008078	42	9-991922	59
2		1081	. 71810		1122		-008103	42		58
3	9	1079	. 717456	$9 \cdot 290671$	1120	$10 \cdot 709329$	-008127	40	$9 \cdot 991873$	57
	$9 \cdot 2$	1077	. 716810				-00815	42	9-991848	56
5	$9 \cdot 2838$	1076	. 716164	$9 \cdot 292$	1117	987	-008177	42	$9 \cdot 991823$	5
6		1074	. 715520	9-29268	115	-707318	-008201	40	$9 \cdot 991799$	54
	$9 \cdot 285124$	1072	-714876		1114	$10 \cdot 706650$	-008226	42	9-991774	53
8	9-2857	1071	$\cdot 714234$	9-294017	1112	$10 \cdot 705983$	- 00825	42	$9 \cdot 991749$	5
9	$9 \cdot 286$	1069	$\cdot 713592$	$9 \cdot 294$	1111	$10 \cdot 705316$	-008	42	$9 \cdot 991724$	51
10	$9 \cdot 287$	1067	$\cdot 712952$	$9 \cdot 295$	1109	$10 \cdot 704651$	-00830	42	$9 \cdot 991699$	50
11	9-287688		$\cdot 712312$	9	11		-00	42		49
12	$9 \cdot 288326$	1064	$\cdot 711674$	9-29667	1106	10.703323	-00835	42	$9 \cdot 991649$	48
13	$9 \cdot 2889$	1063	$\cdot 711036$	9•297339	110	$0 \cdot 702661$	-00837	42		47
14	$9 \cdot 289600$	1061	-710400	$9 \cdot 29800$	1103	$10 \cdot 701999$	-00840	42	9.991599	46
15				9-29866			-008426	42		45
16		1058	$\cdot 709130$	$9 \cdot 299322$	11		-00845	42	$9 \cdot 991549$	4
17		1056	. 708496	$9 \cdot 29998$	1098	$10 \cdot 700020$	-008476	42		3
18	$9 \cdot 292137$	1054	. 707863	$9 \cdot 30063$	109	$10 \cdot 699362$	-008502	43		2
19	$9 \cdot 292768$	1053	-707こ32	$9 \cdot 3012$	10	$10 \cdot 698705$	-008527	42	$9 \cdot 991473$	41
20		1051		$9 \cdot 30195$	109	$10 \cdot 698049$	-008552	42		40
21	$9 \cdot 294029$	1050	. 705971	$9 \cdot 30260$	1092	$10 \cdot 697393$	-008578	43	$9 \cdot 991422$	39
22	9-294658	1048	$\cdot 705342$	$9 \cdot 303$		$10 \cdot 696739$		42		38
23	9-295286	1046	. 704714	9-303914	1089	$10 \cdot 696086$	-00862	42	372	37
24	$9 \cdot 295913$	1045	. 704087	$9 \cdot 30456$	1087	$10 \cdot 695433$	-008654	43	$9 \cdot 991346$	36
25	9•996539	1043	. 703461	9-30521	1086	$10 \cdot 694782$	-00867	42		35
26	$9 \cdot 297164$	1042	-702836	$9 \cdot 30586$	108	$10 \cdot 694131$	- 008	43	$9 \cdot 991295$	34
27		1040	. 702212	$9 \cdot 306$	1083	$10 \cdot 693481$	- 008	42		33
28	$9 \cdot 298412$	1039	. 701588	9-30716	108	$10 \cdot 692832$	- 00875	43		32
29		1037	. 700966	9-3078	108	$10 \cdot 692185$	-008782	43	9	31
30	$9 \cdot$	1036	. 700345	$9 \cdot 3084$	1078	$10 \cdot 691537$	- 008807	42	9.991193	30
31		1034	$\cdot 699724$	9-30910	107	$10 \cdot 690891$	-008	43		29
32	9-3008	1032	-699105	$9 \cdot 309$			-008859	43		28
33	$9 \cdot 30151$	1031	. 698486	$9 \cdot 310$		89602	-008885	43		7
34	$9 \cdot 302$	029	$\cdot 697868$	$9 \cdot 311$		-	. 008910	42		26
35	$9 \cdot 30274$	1028	-697252	$9 \cdot 311$		8315	-008936	43		5
36	$9 \cdot 303$	026	-696636	$9 \cdot 31232$		$10 \cdot 687673$	-008962	43	$9 \cdot 991038$	24
37	9-3039	1025	$\cdot 696021$					43		3
38	$9 \cdot 304$		$\cdot 695407$	$9 \cdot 31360$		86392	-00901	43	9-990986	22
39	$9 \cdot 305$		-694793	$9 \cdot 31424$			-00904	43	9.990	
40	$9 \cdot 3058$	1020	. 694181	$9 \cdot 31488$	106	$10 \cdot 685115$	-00906	43	9•990934	20
41	9-306	019	693570	$9 \cdot 31552$		$10 \cdot 684477$	-009092	43	- 90908	9
42	$9 \cdot 30704$	017	-692959	$9 \cdot 31615$		$10 \cdot 683841$	-009118	43	$9 \cdot 9$	18
43	$9 \cdot 30765$	16	. 692350	$9 \cdot 3167$		$10 \cdot 683205$	-009145	45	9-9085	7
44	9-3082	1014	991741	$9 \cdot 3174$	105	$10 \cdot 682570$	-009171	43	9-3082	16
45		13	91183	$9 \cdot 31806$	1057	$10 \cdot 681936$. 009197	43	9.990803	5
46	$9 \cdot 309$	1011	$\cdot 690526$	$9 \cdot 318697$		$10 \cdot 681303$	-00922	43	-	4
47		010	889920	$9 \cdot 319329$	105	$10 \cdot 680671$	-00925	45	$9 \cdot 990750$	3
48	$9 \cdot 310$	008	-689315	$9 \cdot 319961$	1053	$10 \cdot 680039$	-00927	43	$9 \cdot 990724$	12
49	9-311	1007	$\cdot 688711$	9-320592	1051	$10 \cdot 679408$	-00930	45	9.990697	11
50	$9 \cdot 311$	1006	$\cdot 688107$	$9 \cdot 321222$	1050	.678778	-00932	43		10
51	9-312	1004	. 687505	$9 \cdot 32185$	1048	$\cdot 678149$	-00935	43	9906	9
52	$9 \cdot 313$	1003	-686903	$9 \cdot 322479$	1047	$\cdot 677521$	- 009382	45	$9 \cdot 990618$	
53	$9 \cdot 313698$	1001	-686302	9-323106	1045	$10 \cdot 676894$	- 009409	45		7
54	9-31429	1000	$\cdot 685703$	$9 \cdot 323733$	1044	$10 \cdot 676267$	- 009435	43	$9 \cdot 9905$	-
55	$9 \cdot 314897$	998	$\cdot 685103$	$9 \cdot 324358$	104	$10 \cdot 675642$	-009462	45		5
56	$9 \cdot 315495$	997	-684505	9-324983		$10 \cdot 675017$	-009489	45	9	4
57	$9 \cdot 316092$	996	.683908	$9 \cdot 325607$		$10 \cdot 674393$	- 009515	43	9.9904	3
. 58	$9 \cdot 316689$	994	-683311	9-326231		$10 \cdot 673769$	-009542	45	99045	2
59	$9 \cdot 317284$	933	-682716	9-32585	103	$10 \cdot 673147$	-009569	45	$9 \cdot 990431$	1
60	$9 \cdot 317879$	441	-(882121	9-32747		$10 \cdot 67 \times 525$	-009596	45	9.990404	0
	Cusiue.			ge		rangent	secant.		sine.	

12 DEG.

		,	Cosecant		${ }^{\text {Diffi }}$			${ }^{\text {Diffi }}$ 10\%		
0	$9 \cdot 3$		$\cdot 682121$	9.32		10				0
1	$9 \cdot 318$	990	-681527	$9 \cdot 328095$	10	10.67	-009622	43		9
2	$9 \cdot 3190$	988	-680934	9.3287			-009	45		8
3	9.3	987		9				45		7
4	9-320		-67975	$9 \cdot 32$			-009	45		56
5	9.3208		-679160	$9 \cdot 330$		$0 \cdot 66943$	-009730	45	-	55
6	$9 \cdot 321430$	983	- 678570	$9 \cdot 33118$	02	10•668813	-009757	45	9.99	
7	9-322019	982	$\cdot 677981$	$9 \cdot 331803$	102	$10 \cdot 668197$	-009785	47	$9 \cdot 99021$	3
8	9-322607	980	- 677393	$9 \cdot 33241$	102	0.667582	-009812	45	9.990	2
9	9-323194	979	- 6768	9-3330		0-666967	-0098	5	$9 \cdot 990161$	1
10	$9 \cdot 3237$	977	-67622	$9 \cdot 333$	1023	66	-009	45		0
11	$9 \cdot 324$	97	-67563	$9 \cdot 334$		-651	-009	45		49
12	9-32495		-675050	$9 \cdot 3348$	1020	$0 \cdot 66512$	-009921	47	$9 \cdot 990$	48
13	9-325534	973	-674466	$9 \cdot 33548$	01	$10 \cdot 664518$	00994	45	$9 \cdot 990$	47
14	9-326117	972	$\cdot 673883$	$9 \cdot 336093$	01	0-663907	0099	45	9.990025	46
15	9-32670	970	-673300	$9 \cdot 3367$,	$10 \cdot 663298$	0100	47	-98	5
16	9.32728	969	$\cdot 672719$	9-337		$10 \cdot 66268$	- 0100	45	9.98	4
17	$9 \cdot 32786$		-672138	9•337		66	0100	47	9.989	43
18	$9 \cdot 328442$		-67155	$9 \cdot 338$		66147		45		42
19	$9 \cdot 329021$		$\cdot 670979$	9•3391		. 66086	01011			41
20	9-32959	964	$\cdot 670401$	9-339739	010	$10 \cdot 660261$	0101	45		40
21	9-33017	962	-669824	9-34034	00	$10 \cdot 659656$	- 010168	47	- 9898	9
22	9-33075	961	-669247	$9 \cdot 34094$	00	10•659052	- 010196	47	-9898	38
23	9-33132	960	$\cdot 668671$	$9 \cdot 3415$		$10 \cdot 658448$	-0102		.989777	37
24	9-33190	958	-668097	$9 \cdot 3421$	00	$10 \cdot 657845$	01		989749	36
25	9-3324	957	-66752	$9 \cdot 342$		55	01		9-989721	
26	$9 \cdot 33305$	956	6694	$9 \cdot 343$	00	656642	103			34
27	9-33362	4	-66637	$9 \cdot 343958$	00	0.65604	. 0103	47	9-98	3
28	9-33419	953	$\cdot 665805$	$9 \cdot 34455$	999	$10 \cdot 655442$	- 010363	47	9.989	32
29	$9 \cdot 33476$	952	$\cdot 665233$	$9 \cdot 34515$	998	$10 \cdot 654843$	-010390	45	9.989	1
30	$9 \cdot 33533$	950	-664663	3457	99	$10 \cdot 6542$	-010418	47		0
31	$9 \cdot 335$	949	-664	3463		6536	-0104		9.989	9
2.	$9 \cdot 33647$	948	-6635	. 3469		-65305	0104			
33	$9 \cdot 33704$	946	62957	$9 \cdot 347545$		$\cdot 652455$	0105	47		
34	9-337610	945	$\cdot 662390$	$9 \cdot 348141$	992	$0 \cdot 651859$	0105	47	9.989	26
35	$9 \cdot 838176$	944	$\cdot 661824$	9•348735	99	$10 \cdot 651265$	-01055	47	9.989	25
36	9•338742	943	-66125	9•349329	99	$10 \cdot 650671$	010587	47	$9 \cdot 989$	24
37	$9 \cdot 33930$	94	-66069	34992	98	-650078	-010615	47	. 98	3
38	$9 \cdot 33987$	940	-66012	9-3505	98	6494	-0106		9.9893	
39	$9 \cdot 3404$	939	595	35110		648894	-0106	47	893	
40	$9 \cdot 34099$	937	-65900	9•35169		648303	-0107	47		2
41	9•341558	936	-65844	$9 \cdot 35228$	98	0.647713	01072	8	9.9892	
42	9-342119	935	$\cdot 657881$	$9 \cdot 95287$	98	10.647124	-010757	47	$9 \cdot 989243$	18
43	$9 \cdot 34267$	934	$\cdot 657321$	$9 \cdot 35346$	981	$10 \cdot 646535$	-010786	48	-9892	,
44	9-34323	93	$\cdot 656761$	$9 \cdot 3540$	98	645947	-010814	47	89	-
45	-34379	931	-65620	3546	97	6453	- 0108	48	9-9891	
46	$9 \cdot 34435$	930	-65564	9•35522	97	6447	- 01087	48		4
47	$9 \cdot 344912$	92	-655088	$9 \cdot 35581$	97	644187	$\cdot 010900$		989	3
48	$9 \cdot 34546$	927	-654531	35639	97	-643602	- 01092	48	$9 \cdot 989071$	
49	$9 \cdot 346024$	926	$\cdot 653976$	9•356982	97	$10 \cdot 643018$	-01095	48	$9 \cdot 9890$	11
50	9-34657	925	-653421	$9 \cdot 857566$	973	$10 \cdot 642434$	-01098	47	$9 \cdot 9890$	10
51	$9 \cdot 34713$	924	-65286	$9 \cdot 35814$	97	0.641851	- 01101	48		9
52	$9 \cdot 34768$	92	-652313	9-3587	97	$\cdot 64126$	-01104	48	$9 \cdot 988$	8
53	9-34824	921	-65176	9-3593	969	- 64068	-011073	48		7
54	9-34879	920	-651208	- 35989	968	$0 \cdot 64010$. 011102			6
5	349343	919	-650657	360474		-639526	- 011131			5
56	349893	917	-650107	361053	966	$10 \cdot 638947$	-011160	48	㖪	4
57	9-350443	916	-649557	$9 \cdot 361632$	96	$10 \cdot 638368$	-011189	48	98881	3
58	$9 \cdot 350992$	915	-649008	9-36221	96	$10 \cdot 637790$. 011218	48	9887	2
59	$9 \cdot 351$	914	-648460	$9 \cdot 3627$	962	$10 \cdot 637213$	- 011247	48	9-988	1
60	9•35208	918	$\cdot 64791$	633		$10 \cdot 636$. 0112	48	9.98	0
	Cosine					Tangent.	,		Sinc	

13 DEG．

，	Sine．	$\overline{0^{\prime \prime}}$			$\begin{aligned} & \text { Diff, } \\ & 100^{\prime \prime} \end{aligned}$			$\left.\right\|_{100^{\prime}} ^{\text {Diff }}$		
0										0
	9．352							48		9
2	$9 \cdot 35318$		－646819	9－364515	959			48		8
3	$9 \cdot 3537$		－ 646274	－3609	958	$10 \cdot 634910$	－ 011364	50		7
4	$9 \cdot 35427$	808	－645729	$9 \cdot 365664$	957	$10 \cdot 634336$	－011393	48	$9 \cdot 988607$	5
5	9 35		645		955			48		
	$9 \cdot 355$	90	42	6681	954	0	011452	50	$9 \cdot 98854$	4
7	$9 \cdot 355$	904	－644099	－36782	953	10.632618	011481	48		3
8	$9 \cdot 3$	903	$\cdot 64$	$9 \cdot 367953$	952	$10 \cdot 632047$	01	50	$9 \cdot 988489$	52
9	9－356984	902			951			48		
10	$9 \cdot 3$	901	－	9－369094	950	1	01157	50	$9 \cdot 988430$	50
11	$9 \cdot 358064$	899	－641936	仡	949	$10 \cdot 63033$	－ 011599	48	$9 \cdot 988401$	49
12	$9 \cdot 358603$	898		－37023	，	$10 \cdot 629768$	－ 011629	50		8
13	9•359141	897	－640859	$\cdot 37079$	946	$10 \cdot 629201$	－ 011658	48	9.988342	4
14	$9 \cdot 359678$	896	－640322				－ 011688	50		46
15	$9 \cdot 360215$	895	－ 639785	－37193	944	$10 \cdot 62806$	011718	50	9－988282	45
16		893	－639248	72499			－ 011748	50		4
17	$9 \cdot 361287$	892	－638713	773064	942	$10 \cdot 626936$	$\cdot 011777$	48	$9 \cdot 988223$	43
18	$9 \cdot 361822$	891	－63817		1	，	－ 011807	50	$9 \cdot 988193$	42
19	$9 \cdot 362356$	890	－63764	－	940	$10 \cdot 62580$	－011837	50	$9 \cdot 988163$	41
20	$9 \cdot 362$	889	． 6371	$9 \cdot 374756$	939	10．625244	$\cdot 011867$	50	$9 \cdot 988133$	40
21	9－363422	888	－636578	$9 \cdot 375319$	938		－ 011897	50		39
22	$9 \cdot 36395$	887	－63604	$9 \cdot 3758$	937	$10 \cdot 624119$	－ 011927	50		8
23	$9 \cdot 364485$	885	－635515	9－376442	935	－	－011957	50		37
24	$9 \cdot 365016$	884	－634984	9.37700	934	62299	－011987	50		36
25	$9 \cdot 365546$	883	－63445	$9 \cdot 377563$	933	$10 \cdot 62243$	－ 012017	50		5
26	9－3660	882	－633925		932	10	－012047	50		34
27	$9 \cdot 366$	881	－63339	808	931	319	－ 012078	52		33
28	$9 \cdot 367$	880	． 632869	9－379239	930			50		32
29	7	879	－632341	仡	929	20203	－ 012138	50		
30	$9 \cdot 36818$	878	． 631815		928		$1{ }^{1}$	50		0
31	9－368711	876	－631289	8091	927	1909	－ 012199	52		29
32	9－3t923	875	－630764	9－38	926			50		28
	$9 \cdot 3697$	874	－630239	82020	925	17980	－01226	52		
3	9－370285	873	－ 629715	$9 \cdot 382575$	924	$10 \cdot 617425$	－012290	50	$9 \cdot 987710$	26
－35	$9 \cdot 3708$	872	－629192	$9 \cdot 383129$	923	1687	－012321	52		25
－ 36	$9 \cdot 371330$	871	－628670	$9 \cdot 3836$	922	，	－ 012351	50		24
37	$9 \cdot 371852$	870	－628148		921		－012382	52		23
－ 38	$9 \cdot 372373$	869	． 627627	－	920		－012412	50		22
39	9	867	－ 62710		919	10.61463	－ 012443	52		
40	9－373414	866	－ 626586	885888	918	$10 \cdot 614112$	－ 012474	52		20
	$9 \cdot 3739$	865	－62606	9－38643	917	$10 \cdot 613562$	－012504	50		19
42	$9 \cdot 374452$	864	－ 625548	9－386987	916	1301	－012535	52		
－43	$9 \cdot 37497$	863	－ 625030	9－38753	914	仡	－01256	52		17
44	$9 \cdot 375487$	862	－6245	88084	13	11916	． 012597	52		
45	$9 \cdot 376003$	861	－62399	$9 \cdot 388631$	912	$10 \cdot 611369$	． 01262	52		15
46		860	－ 623481	$9 \cdot 389178$	911	$10 \cdot 610822$	． 012659	52		
47	$9 \cdot 37703$	859	－622965	$9 \cdot 389724$	910	$10 \cdot 610276$	－ 01269	52		
48	$9 \cdot 37754$	858	－622451	390270	909	$10 \cdot 609730$	－012721	52		
49	$9 \cdot 378063$	857	－621937	$9 \cdot 390815$	908	$10 \cdot 609185$	－012752	52		
50	9378577	856	． 621423	391360	907	$10 \cdot 608640$	－012783	52		10
51	$9 \cdot 379089$	854	－620911	－391303	906	$10 \cdot 608097$	－ 012814	52		9
52	$9 \cdot 379601$	853	－620399	$9 \cdot 392447$	905	$10 \cdot 607553$	． 012845	52	$9 \cdot 987155$	8
5	$9 \cdot 380113$	852	－ 619887	$9 \cdot 392989$	904	$10 \cdot 607011$	－ 012876	52		7
54	$9 \cdot 3806$	851	－619376	9－393531	903	$10 \cdot 606469$	－012908	53	9．98709	6
55	9－381134	850	－618866	9－394073	902	05927	． 012939	52	87061	5
56	$9 \cdot 38164$	849	－618357	9－394614	901	$10 \cdot 605386$	－012970	52		4
57	$9 \cdot 382152$	848	－617848	395154	900	604846	． 013002	53		3
58	9－382661	847	$\cdot 617339$	－395694	899	$10 \cdot 604306$	－013033	52	硣	2
59	$9 \cdot 383168$	846	－616832	$9 \cdot 396233$	898	10：603767	－013064	52	88936	1
60	$9 \cdot 383675$	845	－616325	$9 \cdot 39677$	897	10．6032＊9	－013096	53	986904	$1)$
	Cusine．									

14．DEG．

	Sinc．	Diff	Cosecant．		保			${ }_{1010}{ }^{\text {Dinit }}$		
						$10 \cdot 603229$				
	$9 \cdot 384$		－615818	$9 \cdot 39$	896	$10 \cdot 602691$	013127	52		59
	$9 \cdot 384687$	843	－615313	9•397846	896	$10 \cdot 602154$	－013154	53		
	$9 \cdot 38519$	842	－614808	9•398383	895	$10 \cdot 601617$	－013191	53	9．986809	
	9－385697	841	－614303	9•398919	89	10．601081	0132：2	52		
5	$9 \cdot 38620$	840	$\cdot 613799$	－39	89	10.60054	01	53		
	9.386					仡		5		
	$9 \cdot 387$		－6127		89		－013	20		3
	8878	8	－122	10	890	10－598942	－013349	53	9.9866	2
	$9 \cdot 388210$	836	－611790	9－40159	88	10－598409	． 01338	53	9．986619	
10	$9 \cdot 388711$	835	－611289	9•402124	88	10－597876	－01341	53		50
11	9－389211	834	－610789	9－40265	88	10．597344	－013445	53		9
12	389711	8	．61028	－40318	886	10.5968	－01347	53	86523	8
13	9021	832	－6097		88	$10 \cdot 596282$	－013509	53	9．98	
14		831			88	10．595751	－0135			6
	3912	83			8	10－595222	－0135	53	986	
16	9－39170	828	－608297	40530	882	10－594692	－01360	53	98	44
17	9．392199	827	$\cdot 607801$	－40583	881	10－594164	－ 013637	53	9.986	3
18	9．392	826	－607305	－40636	88	$10 \cdot 5936$	－013669	53	$9 \cdot 986331$	42
19	9－39319	825	． 60681	－40689	87	10.593	－0137	53	86299	
20	393	824	－606	074	878	10.59258	－ 01	55		
21	9．3941	8	5582	$9 \cdot 4079$	87	10－5920	0137			
22	$9 \cdot 39467$	822	－60532	4084	876	10－59152	－0137	5		
23	3951	821	－60483	40899	87	$10 \cdot 59100$	－0138	55		
24	9．39565	820	－604342	－40952	874	10－590479	－01386	5	4.986137	36
25	9•396150	819	－60385	－41004	87	$10 \cdot 58995$	－01389	55		
26	9－396641	818	－60335	41056	87	10－5894	－01392			
27	9.397132	817	－6028	41109	8	$10 \cdot 5889$	0139			
28	9.3	817	－6023	11	87	10.58838	－013993			
29	9－398	816	－601889	4121		$10 \cdot 58786$	1402			
30	－398	815	－60140	41265	869	．58734	D1405	53		
31	9•39908	814	－600912	－41317	868	10－586821	014091	55		9
32	39957	813	－60042	413699	867	10．586301	014124	55		
33	40006	81	－59993	$9 \cdot 414219$		$10 \cdot 5857$	0141			
34	4005		－59945	1147		852	0141			
35	010	810	896	152		847	－ 0142	55		
	40152	809	－59848	4157		10.58422	0142	55		
37	40200	808	－59799	41629		10.58370	0142	55		
38	9－40：	807	－ 597511	41681	862	10.583190	01432	55		
39	9－40：297	806	－597028	－4173：	861	10.58267	01435			1
40	$9 \cdot 4034$	80	－59654	4178		$10 \cdot 5821$	014	55		
	0	804	－5960	41835		10－5816	0144			
			955	41887		10.5811	014			
	$9 \cdot 40490$	802	－59509	41938	85	． 58061	0144			
44	$9 \cdot 40538$	801	－ 594618	41990		10．58009	01452	57		
45	$9 \cdot 40586$	800	－594138	42041	855	$10 \cdot 57958$	01455	50		5
，	$9 \cdot 40634$	799	－593659	－42092	855	$10 \cdot 57907$	01458	55		
	$9 \cdot 406820$	798	－593180	－42144	85	10.57856	－01461	5.5		3
48	$9 \cdot 40729$	797	－59270	42195	853	$10 \cdot 5780$	－ 0146	57		12
49	77	796	－59222	－4224	852	－57753	0146	55	9－985814	
50	咗	7	59174	－42297	851	10．57702	01472	57		10
51		794	－591269	42348	5		01475	55		
52	40920	794	－590793	9－42399	849	10.576007	01478	57	9.985213	
	$9 \cdot 409682$	793	－ 590318	$9 \cdot 424503$	848	10．575497	－014820	55	－	
54	$9 \cdot 410157$	792	－58984	$9 \cdot 425011$	848	10.57498	－014854	5		
55	$9 \cdot 410632$	79	－58936	$9 \cdot 42551$	847	10－57448	－01488	55	885	
56	$9 \cdot 41110$	790	－58889	2602	846	57397	－0149	57	9．985079	
57	$9 \cdot 41157$	789	． 58842	426534	84	5734	． 01495	57	85	
58	$9 \cdot 412052$	788	－58794	－427041	844		－014989	5		
	$9 \cdot 41252$	787	－ 587476	$9 \cdot 427547$	843		－015022	55		
60	9•41299	786	． 587004	$9 \cdot 428052$	84	$10 \cdot 5719$	0150	57	9．984944	

Cosine．

15 DEG.

	Sine.	Dift,			${ }^{\text {Diffi }}$			${ }_{\text {dien }}^{\text {Diff }}$			
0	$9 \cdot 4129$		$\cdot 587004$	428052		10				60	
	$9 \cdot 413$			-428557	842					9	
2	413	78	- 586062	9•429062	41	10.570938	-015124	57	9-984876	58	
3	$9 \cdot 414$	783	-585592	$9 \cdot 4295$	840	$10 \cdot 570434$	015158	57		3	
4	9-414878	783	-585122	$9 \cdot 430070$	839	$10 \cdot 569930$	-015192	57	9-98	56	
5	$9 \cdot 415347$	782	- 584653	9-430573	838	10-569427	-015226	57	$9 \cdot 98$	55	
6	$9 \cdot 415815$	781	- 584185	$9 \cdot 431075$	83	$10 \cdot 568925$	-015260	57	9.98		
7	$9 \cdot 41628$	780	- 583717	$9 \cdot 431577$	837	$10 \cdot 568423$	-015294	57	9-98	3	
8	$9 \cdot 41675$	779	- 583249	$9 \cdot 4320$	8	10-567921	-015328	57		2	
	$9 \cdot 417217$		- 5827	$9 \cdot 432$		$10 \cdot 567420$	015			1	
10	$9 \cdot 417684$	777	-582316	$9 \cdot 43308$	84	$10 \cdot 566920$	-015397	58		50	
11	$9 \cdot 418150$	776	-581850	9-433580	833	$10 \cdot 566420$	015431	57	$9 \cdot 98$	49	
12	$9 \cdot 418615$	775	-581385	9-434080	832	$10 \cdot 565920$	0154	57	9.98	48	
13	419079	774	-580921	$9 \cdot 434579$	832	10.565421	-015500		845	47	
14	$9 \cdot 41954$	77	- 580456	$9 \cdot 43507$	831	$10 \cdot 564922$	015534	57	84	46	
15	$9 \cdot 42000$	773	- 579993	$9 \cdot 435576$	830	$10 \cdot 564424$	0155	57	9.984432	45	
16	$9 \cdot 42047$	772	- 579530	9-436073	829	$10 \cdot 56392$	0156			4	
17	9-42093	771	- 579067	$\cdot 436570$	828	10.563430	-015637	57		3	
18	$9 \cdot 42139$	770	- 578605	$9 \cdot 437067$	828	10-562933	-015672	58	8	42	
19	$9 \cdot 42185$	769	- 578143	9-437563	827	10-562437	015706	58	98	41	
20	42231		-577682	9-438059	826	10.56194	015741	5	9.984259	40	
21	422	767	-577222	$9 \cdot 43855$	825	$10 \cdot 5614$	0157		9-984224		
22	$9 \cdot 4232$	767	-576762	$9 \cdot 439$	824	$10 \cdot 5609$	0158	57	9.984190	38	
23	$9 \cdot 42369$	766	. 57630	435	823	10-56045	0158	58		37	
24	$9 \cdot 42415$	765	- 575844	4400	23	10-55996	01588				
25	$9 \cdot 42461$	764	$\cdot 575385$	$9 \cdot 4405$	822	$10 \cdot 55947$	0159	58	9.98	35	
26	$9 \cdot 42507$	763	- 574927	9-4410 2	821	10-55897	015950	58	9.984050	34	
27	$9 \cdot 42553$	762	- 574470	$9 \cdot 44151$	820	$10 \cdot 5584$	0159	58	984	33	
28	425	761	$\cdot 574013$	$9 \cdot 44200$	819	$10 \cdot 55$	-0160				
29	9-426	760	$\cdot 573557$	9-4424	819	$10 \cdot 5575$	01			31	
30	$9 \cdot 4268$	760	-573101	44298	18	$10 \cdot 55701$	0160		9.9839		
31	$9 \cdot 42735$	759	-572646	$\cdot 4434$	817	$10 \cdot 55652$	-01612	60		29	
32	$9 \cdot 42780$	758	-572191\|		9-443968	816	$10 \cdot 556032$	-01616	58	9838	28
33	$9 \cdot 42826$	757	. 571737	$9 \cdot 4444$	816	$10 \cdot 55554$	01619	58		7	
34	$9 \cdot 42871$		$\cdot 571283$	$9 \cdot 4449$	815	$10 \cdot 5550$	01623				
35	$9 \cdot 429170$	755	-570830	$9 \cdot 4454$	814	$10 \cdot 5545$	-0162				
36	$9 \cdot 42962$	754	- 570377	9-4459	813	$10 \cdot 5540$	163			4	
37	$9 \cdot 4300 \overline{7}$	753	-569925	$9 \cdot 4464$	812	$10 \cdot 55358$	0163				
38	$9 \cdot 43052$	752	-569473	9-446898	812	$10 \cdot 55310$	0163	58	9.98	22	
39	$9 \cdot 43097$	752	-569022	$9 \cdot 44738$	811	$10 \cdot 55261$. 01640	58		21	
40	9-43142	751	-568571	$9 \cdot 44787$	810	$10 \cdot 552130$	01644	60		2	
41	$9 \cdot 43187$	750	-568121	$9 \cdot 44835$	809	$10 \cdot 55164$	01647	58		19	
	$9 \cdot 43232$	749	-567671	$9 \cdot 44884$	8	$10 \cdot 55115$	165	60		18	
43	$9 \cdot 43277$	749	-567222	$9 \cdot 4493$	808	$10 \cdot 55067$	165			7	
44	$9 \cdot 43322$	748	$\cdot 566774$	9-449810	8	$10 \cdot 550190$	01658				
45	$9 \cdot 43367$	747	-566325	9-450294	8	$10 \cdot 54970$	01661		888	15	
46	$9 \cdot 43412$	746	-565878	$9 \cdot 45077$	806	$10 \cdot 549223$	0166	60		14	
47	$9 \cdot 43456$	745	$\cdot 565431$	9•451260	805	10.548740	01669	60			
48	$9 \cdot 43501$	744	-564984	$9 \cdot 4517$	804	10.54825	-01672		9832	12	
4	9-43546	744	-564538	9-4522	803	$10 \cdot 54777$	167			11	
5	$9 \cdot 43590$	743	-564092	$9 \cdot 4527$	802	10 -547294	167			10	
51	$9 \cdot 43635$	742	-563647	9-45318	82	$10 \cdot 546813$	01683				
52	$9 \cdot 43679$	741	-563202	$9 \cdot 4536$	801	$10 \cdot 54633$	0168		9.983130	8	
53	$9 \cdot 437242$	740	-562758	$9 \cdot 45414$	800	$10 \cdot 545852$	01690			7	
54	$9 \cdot 43768$	740	-562314	$9 \cdot 45462$	799	10.545372	01694	0	9.98	6	
55	$9 \cdot 43812$	739	- 561871	$9 \cdot 4551$	799	$10 \cdot 5448$	0169	60		5	
56	9-43857	738	- 561428	$9 \cdot 4555$	798	$10 \cdot 544414$	- 0170	60	9-98298	4	
5	$9 \cdot 439014$	737	- 560986	$9 \cdot 456064$	797	10.54393	01705	-		3	
5	$9 \cdot 4394$	736	-560544	$9 \cdot 456542$	96	$10 \cdot 543$		-	9-98291	2	
59	$9 \cdot 439897$	736	- 560103	9-457019	796	$10 \cdot 542981$	017122	-			
60	$9 \cdot 44033$	735	-559662	$9 \cdot 4574$	795	$10 \cdot 542504$	- 01715	60	9-982842	0	
	Cosine.					兂					

16 DEG．

，	Sine．		Coseca					$\frac{\mathrm{itf}}{\mathbf{i t y}^{\prime \prime}}$		
0	$9 \cdot 440$									3）
								，		59
					7		－017231	60		8
3		732		$9 \cdot 458925$	7	10^{-75}	－017．2	60	9－982733	
	9	731			792			62		
5	$9 \cdot 4425$	73	－ 557	$9 \cdot 459875$	79	硅	017340	60		
6		7			79			60		
7	$9 \cdot 443$	729	－ 556590	08	790	$10 \cdot 53917$		62		3
8	$9 \cdot 4438$	728	－ 556153	$9 \cdot 461297$				60		2
		727	－ 555	$9 \cdot 461770$	78	10.538230		62		1
10		727	－555280	62242	788	77	－ 01	62		0
1		726	－55484	71	787	$10 \cdot 537286$	－0175	60		9
12		725			786			62		48
1				$9 \cdot 463658$	785	242	01	62		4
14	$9 \cdot 44645$	723	－553541	$9 \cdot 464128$	78			60		6
15								62		5
16	$9 \cdot 44732$	722	－ 55267	6506	783	3	－ 0177	62		4
17	$9 \cdot 447$	721	－552241					62		43
18		720	－ 551809	66008	782	98	． 01	62		42
19	9	720		$9 \cdot 466476$	781	2		62		1
20	9	719	－ 55094	$9 \cdot 466945$	780	205	． 01	62		10
21	$9 \cdot 44948$	718	－550515		78	10．532587	． 01	62		39
2	$9 \cdot 44991$	717			77			62		38
23	$9 \cdot 450345$	716	－ 549655	$9 \cdot 468347$	778	53	－ 018002	62		7
24	$9 \cdot 4507$	716	－ 54922		778		－0180	62		36
25		715			777	$10 \cdot 530720$	－018	62		5
26	$9 \cdot 4516$	71	－548368	研	776		－ 01811	63		4
27	9	713	$\cdot 547940$		775			62		33
28	$9 \cdot 452$	13	$\cdot 547512$	7067	775	324	－01818	62	9.981812	32
29	9	712	$\cdot 54$	$9 \cdot 471141$	774	8	－0182			31
30	－	711		71605	773	95	－018	62		0
31	9	710			773	79	－ 018	62		9
32		710		9－472532	772	$10 \cdot 527468$	－ 018338	63		28
33	$9 \cdot 454$	709	－ 545381	47299	771		－018	62		7
3		708			771			63		6
35	$9 \cdot 45546$	707	44531	7391	770		－018	63		5
36	$9 \cdot 4558$	707			769		－01848	62		4
37	56	706	3684	74842	769		－01852	63		3
38	$9 \cdot 456$	705	4326	7530	768	$10 \cdot 524697$	－0185	63		2
39	仡	，	54283	57	767		－ 0186	62		
40	$9 \cdot 457$	704	42416	7622	767	$10 \cdot 52377$	． 018639	63	9－9813	0
11	9.45800	703	541994	768	766	$10 \cdot 523317$	－0186	63		
42	$9 \cdot 45842$	702	－541573	7714	765	$10 \cdot 522858$	－ 01871	63		8
43	$9 \cdot 45884$	701		170	76	$10 \cdot 522399$	． 01875	63		7
44	$9 \cdot 45926$	701	－ 540732	48059	764	10.521941		63		，
45	$9 \cdot 45968$	700	－ 540312	47851	763	$10 \cdot 52148$	－ 018829	63		5
	$9 \cdot 46010$	699	－ 539892	78975	763	1	－ 018867	63		
47	$9 \cdot 46052$	698	－539	仡	762	0568		63		3
48	$9 \cdot 46094$	65	－539054	479889	761		18943	63		2
49	$9 \cdot 46136$	697	－53863	480345	761	$10 \cdot 519655$	－ 018981	63		11
5	9－46178	696	－ 538218	48080	760	150	19019	63		10
51	9－46219	69	－ 537		759	18743	－0190	65		
2	$9 \cdot 462$	695	37384	込	759	18288	1909	63		
53	$9 \cdot 463032$	694	－536968	$9 \cdot 482167$	758	－ 51783	01913	63		
	9－463448	693	－ 536552	482621	757	17379	1917	65	827	
5	$9 \cdot 46386$	693	－ 536136	－48307	757	$10 \cdot 5169$	01921	63	， 98078	
5	$9 \cdot 46427$	692	－ 535721	8352	756	516471	19250	65		
5	$9 \cdot 46469$	691	－ 535306	483982	755	，	019288	63	－980712	
58	$9 \cdot 465$	690	－ 534892	8443	75	$10 \cdot 515065$	－019327	65	$9 \cdot 980673$	
59	$9 \cdot 465522$	690	－ 534478	484887	754	$10 \cdot 515113$	－01936	63	980635	
60	$9 \cdot 4659$	689	－ 534065	4853	753	$10 \cdot 514661$	． 01940	65	9805	0
	sine．		ecant．			Tangent	cose		sine．	

73 DEG．

17 neg．

		＂			$\begin{aligned} & \text { Diffif, } \\ & \text { low } \end{aligned}$		Secant．	Difit	Cosine．	
0										0
1	9						019442	63		9
2	$9 \cdot 466$	688	－533239	9－486242	752		－019481	65		58
3	$9 \cdot 467173$	687	－532827	$9 \cdot 486693$	751	10．513307	－019520	65		57
4	$9 \cdot 467585$	686	－532415	$9 \cdot 487143$	751	10.512857	0195.58	63		56
5	$9 \cdot 467996$	685	－532004	9－487593	750	$10 \cdot 512407$	019597			
6	$9 \cdot 468407$	68	－53159	9－48804	749	10.511957	019636	65		4
7	9－46881	684	－531	$9 \cdot 4$	749	10				
8	$9 \cdot 469227$	683	－53077	$9 \cdot 488$	748	，	0197			
	$9 \cdot 469637$	683	－53036	$9 \cdot 4893$	747	10．510610	019			
10	9－47004	682	－ 529954	$9 \cdot 489838$	747	10.51016	－019792	65		5
11	9－47045	681	－529545	$9 \cdot 49028$	746	10．509714	－019831			49
12	$9 \cdot 470863$	680	－52913	$9 \cdot 49073$	74	10－509267				
13	$9 \cdot 471271$	680	$\cdot 528729$	9－49118	745	10－508820	－019909	65		
14	$9 \cdot 471679$	67	－52832	$9 \cdot 491$	74	10.5083	0199			
15	$9 \cdot 472086$	678	－527914	－	44	10.50792	． 19			
16	$9 \cdot 472492$	678	－ 527508	9－49251		$10 \cdot 50748$	02002	65		
17	$9 \cdot 47289$	677	－527102	$9 \cdot 49296$	743	11.50703	－ 02006	65	9．97993	43
18	$9 \cdot 47330$	676	－526696	9－493410	742	10．50659	－0201	65	9．9798	42
19	$9 \cdot 47371$	676	－ 526290	$9 \cdot 49$	741	10－506	－0201			
20	$9 \cdot 47411$		． 52588	9－f9429	740	10．50570	－0201	65		
21	$9 \cdot 4745$	674	2548	9－4947	740	10.5052	－02022		$9 \cdot 97$	
22	$9 \cdot 474923$	寿	－ 525077	4951	739	10.50481	－20	65		
23	$9 \cdot 475327$	673	－ 524673	4956	789	$10 \cdot 50437$	． 0203	67		
24	9．475730	672	－524270	$9 \cdot 49607$	738	10－50392	－020342	65		仡
25	$9 \cdot 47613$	672	－ 523867	9－49651	737	10.50348	－020382	67	9.9	
26	$9 \cdot 47653$	671	－ 523464	9－49695	73	$10 \cdot 5030$	0204	65		
27	$9 \cdot 47693$	0	－52306	$9 \cdot 4973$	73	$10 \cdot 5026$	0：204		9－979539	
28	$9 \cdot 477340$		．52266	978	736	$10 \cdot 5021$	0205		9.97	
29	$9 \cdot 477741$	669	－52225	9－4982	35	$10 \cdot 501718$	0205	67	$9 \cdot 97$	
30	$9 \cdot 478142$	668	． 521858	$9 \cdot 4987$	34	$10 \cdot 50127$	－020580	65	$9 \cdot 97$	30
31	$9 \cdot 478542$	667	－521458	$9 \cdot 49916$	73	10－500837	－020620	67	9－979	
32	$9 \cdot 47894$		．52105	－49960	－	$10 \cdot 5003$				
33	$9 \cdot 47934$		． 52065	50004		$10 \cdot 4999$				
34	9.479741	665	$\cdot 52025$	5004		$10 \cdot 4995$	－0207			
35	$9 \cdot 48014$	665	． 51986	5009	731	$10 \cdot 49908$	－0207	67		
36	$9 \cdot 480533$	664	． 519461	50135	731	$10 \cdot 49864$	－020820	67		
37	$9 \cdot 480937$	663	－ 519063	－0179	730	$10 \cdot 49820$	－020860	67	$9 \cdot 97$	
38	$9 \cdot 481334$	663	． 51866	． 5022	730	$10 \cdot 4977$	－020900	67		
39	$9 \cdot 48173$	66	． 51826	－5026	729	$10 \cdot 4973$	－ 0209	68		
40	9.482128	661	－517872	． 50310	7	$10 \cdot 4968$	－ 0200			
41	9．4882525	1	$\cdot 517475$	5035	728	$10 \cdot 49645$	021021	6		
42	$9 \cdot 482921$	660	－ 517079	－5039	727	$10 \cdot 49601$	021061	67		
43	$9 \cdot 483316$	659	－ 516684	． 5044	727	$10 \cdot 495582$	－02110	68		
44	9.483712	65	． 516288	$9 \cdot 50485$	726	$10 \cdot 495146$	－021142	67	－97	
45	9.48410	658	－515893	$9 \cdot 50528$	72	$10 \cdot 494711$	－021183	68	9.97	
46	9.4845	65	． 515499	$9 \cdot 5057$	725	$10 \cdot 49427$	． 0212	67	978	
47	9.48489	657	－ 515105	9•5061		$10 \cdot 4938$	0212	67		
4	48528	656	－ 514711	9－5065	r	$10 \cdot 49340$	021304	咗	9.9786	
49	9.485682	655	－ 514318	$9 \cdot 50702$	723	$10 \cdot 492973$	－ 02134	68		
50	9.486075	655	－ 513925	$9 \cdot 50746$	722	10－492540	－021385	67	9.97	10
51	9.486467	654	－ 513533	9－50789	722	$10 \cdot 492107$	－ 021426	68	$9 \cdot 97$	
5.	9.48686	65	－ 513140	9－50832	721	$10 \cdot 491674$	－ 021467	68	$9 \cdot 97$	
53	9．48725	653	－ 51274	． 5087	72	$10 \cdot 4912$	－02150	67	－	
54	9.48764	652	－ 512357	$9 \cdot 50919$	72	$10 \cdot 49080$	0215	68	$9 \cdot 97845$	
55	488034	651	－ 511966	－50962	¢19	$10 \cdot 490378$	02158	68		
56 57 58	9．488424	651	${ }^{-} 511576$	$9 \cdot 51005$	719	10.489946	． 021630	88	97	
57	$9 \cdot 488814$	650	． 511186	9.510485	718	$10 \cdot 489515$	021671	68	－9	
58	9.489204	650	． 510796	9.51091	718	$10 \cdot 48908$	． 021712	68	9．97	
59	948959	649	． 510407	9.51134	717	$10 \cdot 488654$	－021753	68	9．97	
60	－ 489982	648	． 510018	$9 \cdot 51177$	717	$10 \cdot 48822$	－021794	68	9．9782	0
	Cosine		Seeant．			angen．				

18 deg．

					$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$			$\left\|\begin{array}{c} \text { Diff } \\ 100^{\prime \prime} \end{array}\right\|$	Cosine．	
0										60
1	$9 \cdot 490$							68		59
	$9 \cdot 4907$		50924	9．512	716	10	－ 021876			8
		647	－ 508853	$9 \cdot 5$	715		． 021917	68		5
4		646			714	500	． 021958	69	9780	6
5					714	$10 \cdot 486079$	－021999	69	$9 \cdot 978001$	5
6		645	． 507692		713			69		5
								69		3
8	$9 \cdot 4930$	4	19		712		－ 0221	69		2
9										
10		64	． 506149		71			69		0
1		642			710			69		49
12	析	6	05	1691	710	$10 \cdot 483090$	89	69		8
13								69		
14		6	． 50461	$9 \cdot 517761$		$10 \cdot 482239$	－02	69		6
15	－	639	． 504228		708	$10 \cdot 481815$	－ 022414	69		5
1			． 503846	$9 \cdot 518610$		0	－022456	69		
17		638	0346	$9 \cdot 519034$	707		7	70		43
18		637	退		706		－022539	70		42
19	$9 \cdot 4973$	63	0208	9－51988	706	－ 480118	－ 022581	70	$9 \cdot 977419$	1
20	$9 \cdot 4976$	63	1018		．		－022623	70		－
21			1020		705	479272	－022665	70		9
22	9		． 50155	$9 \cdot 521151$	704	849		70		8
23		634						70		
24			． 500796	$9 \cdot 52199$	703			70		36
25	$9 \cdot 49958$		通	－	，		－022833	70		5
26	$9 \cdot 49996$	632	迷		702	$10 \cdot 477162$		70		
2	$9 \cdot 50034$	632	仡		702	析		70		33
28		681	． 49927		701			70		32
29			． 49890	，	r01	0	1	70		31
30					700			70		0
31	－		． 498146					70		9
32		629	析					70		28
33	9－5026	628	． 49739		698	2		70		27
34	$9 \cdot 50298$	628	． 497016					71		26
35					697			71		5
36	$9 \cdot 503$		．		697			71		24
37		626	． 495890	$9 \cdot 527451$	696			71		23
38	9		． 495515	$9 \cdot 527868$		2		71		2
39	9－5048	625	． 495140	2828				71	$9 \cdot 9$	21
40	$9 \cdot 505234$		9476							
41	$9 \cdot 5056$	62			694			71	$9 \cdot 976489$	
42	9．505981		促					71		
43	$9 \cdot 5063$	62	． 493646		683			71		
44			． 493273	5308	693			71		
45	9－50709	621	． 492901		692			71		
46	9.50	620	． 492529	$9 \cdot 531196$	691	10.48804		71	$9 \cdot 976275$	
47	$9 \cdot 50784$	620	． 492157		691					
48		619	． 491786		690	67975		72		
49	$9 \cdot 50858$	618	1415	－	680	1				
50	9.508	61			68		－023897	72		10
51	$9 \cdot 5093$		． 49067		689	6734	－ 023940	7		
52	$9 \cdot 509$			586				72		
53	1006		993		88			72		
54	$9 \cdot 61043$	616	． 489566	5	68	咗	020	72	－	
0	9－51080	61	． 489197	1	687	508	1	72		
56	$9 \cdot 51117$	615	． 488828	535328	686	$10 \cdot 464672$	－2156	72	析	
57	$9 \cdot 511540$	614	． 488460		686	－ 464261	－024200	72	9758	
58	9 91190	，	． 488093	536150	685	$10 \cdot 463850$	－024243	72	－	
59	$9 \cdot 512275$	613	.487725	－ 536561	685	$10 \cdot 463439$	－024286	72	757	
60	$9 \cdot 512642$	612	.487858	$\cdot 536972$	684	$10 \cdot 463028$	． 024330	72	$9 \cdot 975670$	0
	Cosime．								in	

71 DEG．

19 deg.

	Sine.	$\begin{aligned} & \text { Diffi } \\ & 100^{\prime \prime} \end{aligned}$			$\begin{aligned} & \overline{\text { Diffi }} \\ & 100^{\prime \prime} \end{aligned}$	Cotangent.	Secant.	$\left.\begin{array}{\|c\|} \text { Diff. } \\ 100^{\prime \prime} \end{array} \right\rvert\,$	Cosine.	
	$9 \cdot 512642$			$9 \cdot 536972$						60
	$9 \cdot 5$	612				$10 \cdot 462618$	- 024373	72		59
2	$9 \cdot 513375$	611	-486625	$9 \cdot 537792$	683	$10 \cdot 462208$	- 024417	73	$9 \cdot 97$	58
	$9 \cdot 5137$		-486259	$9 \cdot 538202$	683	$10 \cdot 461798$	-024461	73		7
4	$9 \cdot 514107$	610	- 485893	9-538611	682	$10 \cdot 461389$	- 024504	73	9	56
5	$9 \cdot 514472$	609	- 485528	$9 \cdot 539020$	682	$10 \cdot 460980$	- 024548	73	9-97545	5
6	$9 \cdot 5148$	609	- 485163	9-539429	681	$10 \cdot 4605$	- 024592	73	$9 \cdot 975408$	4
7	$9 \cdot 515202$	608	$\cdot 484798$	$9 \cdot 539837$	681	$10 \cdot 460163$	- 024635	73	$9 \cdot 9753$	3
8	$9 \cdot 515566$	608	- 484	$9 \cdot 54$	680	10	- 024679	73		2
9	$9 \cdot 515930$	607	- 484070	9-540653	680	$10 \cdot 459347$	- 024723	73	9.97527	1
10	$9 \cdot 516294$	607	$\cdot 483706$	-	679	$0 \cdot 458939$		73		50
11	$9 \cdot 516657$	606	- 483343	$9 \cdot 541468$	679	$10 \cdot 458532$	-02481	73	$9 \cdot 975189$	4
12	$9 \cdot 517020$	605	$\cdot 482980$	- 5				73		8
13	$9 \cdot 517382$	605	- 482618	$9 \cdot 542281$	678	719	-02	73	$9 \cdot 975101$	7
1	$9 \cdot 517745$	604	. 482255	$9 \cdot 542688$	677	12	- 024943	73		6
15	$9 \cdot 518107$	604	- 481893	9-543094	677	906	- 024987	73	$9 \cdot 975013$	5
16	$9 \cdot 518468$	603	$\cdot 481532$	$9 \cdot 543499$	676	$10 \cdot 456501$	- 025031	73		4
17	$9 \cdot 518829$	603	-4811	$9 \cdot 543905$	676	-	- 025075	74		-
18	$9 \cdot 519190$	602	$\cdot 480810$	$9 \cdot 544310$	675	$10 \cdot 455690$	-025120	74	9.974880	42
19	$9 \cdot 519551$	601	$\cdot 480449$	$9 \cdot 544715$	675	$10 \cdot 455285$		74		2
20	$9 \cdot 519911$	601	-480089	$9 \cdot 545119$	674	$10 \cdot 454881$	- 025208	74		40
21	9-520271	600	$\cdot 479729$		674	454476	- 025252	74		9
22	$9 \cdot 520631$	600	$\cdot 479369$	9-54592	673	454072	-025297	74		8
23	$9 \cdot 520990$	599	$\cdot 479010$	$9 \cdot 546331$	673	$10 \cdot 453669$:025341	74		37
24	$9 \cdot 521349$	599	-478651	$9 \cdot 54673$	672		-025	7		36
25	$9 \cdot 521707$	598	- 478293	$9 \cdot 547138$	672	452862	-025430	74		5
26	$9 \cdot 5220$	598	$\cdot 477934$		671	$10 \cdot 452460$	-025475	74		3
27	9-522424	597	$\cdot 477576$	9-547943	671			74		33
28	$9 \cdot 522781$	596	-477219	$9 \cdot 548345$	670			74		32
29	$9 \cdot 523138$	596	$\cdot 47$		670			74		31
30	$9 \cdot 523$	595	-476505	$9 \cdot 549149$	669	$10 \cdot 450851$		74		0
31	$9 \cdot 523852$	595			669		- 025698	75		29
32	$9 \cdot 524208$	594	-475792		668		- 025743	75	. 974257	28
33	$9 \cdot 524564$	594			668		-025788	75	$9 \cdot 974212$	27
34	$9 \cdot 524920$	593	$\cdot 475080$	$9 \cdot 550752$	667	449248	- 025833	75	67	26
35		593	$\cdot 474725$	$9 \cdot 551152$	667	$10 \cdot 448848$	- 025878	75	974122	5
36	$9 \cdot 5256$	592	$\cdot 474370$	$9 \cdot 551552$	666	$10 \cdot 448448$	-025923	75	974077	24
37	$9 \cdot 525984$	591	$\cdot 474016$	$9 \cdot 551952$	666	$10 \cdot 448048$	- 025968	75	74032	3
38	$9 \cdot 526339$	591	- 473661	$9 \cdot 552351$	665	$10 \cdot 447649$	- 026013	75		2
39	9-526693	590	$\cdot 473307$	$9 \cdot 552750$	665	$\cdot 447250$	-02605	75	97	1
40	$9 \cdot 527046$	590	$\cdot 472954$	$9 \cdot 553149$	665	$10 \cdot 446851$	- 026103	75		20
41	$9 \cdot 527400$	589	$\cdot 472600$	9-553548	664	$10 \cdot 446452$	- 026148	75	9-973852	19
42	9-527753	589	$\cdot 472247$		664	$10 \cdot 446054$	-026193	75		18
43	$9 \cdot 528105$	588	- 471895	$9 \cdot 554344$	663	$10 \cdot 445656$	- 026239	75		7
44	9-528458	588	$\cdot 471542$	$9 \cdot 554741$	663	$10 \cdot 445259$	-026284	75	9.97371	6
45	$9 \cdot 528810$	587	. 471190	$9 \cdot 555139$	662	$10 \cdot 444861$	-026329	76	9.97367	5
46	$9 \cdot 529161$	587	$\cdot 470839$	$9 \cdot 555536$	662	$10 \cdot 444464$. 026375	76	$9 \cdot 97362$	4
47	9-529513	586	-470487	$9 \cdot 555933$	661	$10 \cdot 444067$. 026420	76		3
48	9-529864	586	-470136	9-556329	661	$10 \cdot 443671$. 026465	76	$9 \cdot 97353$	2
49	$9 \cdot 530215$	585	- 469785	9-556725	660	$10 \cdot 443275$	- 02651	76	9.973489	
50	9-530565	585	- 469435	$9 \cdot 557121$	660	$10 \cdot 442879$	-026556	76	973444	10
51	$9 \cdot 530915$	584	- 469085	$9 \cdot 557517$	659	$10 \cdot 442483$	-026602	76		9
52	$9 \cdot 531265$	584	- 468735	$9 \cdot 557913$	659	$10 \cdot 442087$	- 026648	76	773352	8
53	$9 \cdot 531614$	583	- 468386	9-558308	659	$10 \cdot 441692$	-026693	76	307	-
54	$9 \cdot 531963$	582	$\cdot 468037$	$9 \cdot 558702$	658	10.441298	-026739	76	-	6
55	$9 \cdot 532312$	582	- 467688	9-559097	658	$10 \cdot 440903$	-026785	76	973215	5
56	$9 \cdot 532661$	581	$\cdot 467339$	9-559491	657	$10 \cdot 440509$. 026831	76	$9 \cdot 973169$	4
57	9-533009	581	- 466991	9-559885	657	$10 \cdot 440115$	- 026876	76	9.973124	3
58	$9 \cdot 533357$	580	. 466643	9-560279	656	10.439721	-026922	76	$9 \cdot 973078$	2
59	$9 \cdot 533704$	580	- 466296	$9 \cdot 560673$	656	$10 \cdot 439327$	-026968	769	9.973032	1
60	$9 \cdot 534052$	579	. 465948	9-561066	655	10.438934	. 027014	769	$9 \cdot 972986$	0
	Cosin		Secant.	Cotangent.		ge	Cosecant.		Sine.	

70 deg.

20 deg．

								$\left\|\begin{array}{l} \text { Diff: } \\ 100^{\prime} \end{array}\right\|$		
0										
								77		59
2	$9 \cdot 534$	57	－465255	，	654	咗1	－027106	77		8
3	9－53509	57		5c2			27152	77		7
4	9－535	57	－464562	． 56	653		－027198	77		6
5	$9 \cdot 535$	576	－ 464217		65		－02724	78		5
6	9	57		－ 60419	653	$10 \cdot 436581$	－	77		4
7	$9 \cdot 536$	575	． 46	－56381	65		－ 027337	77		3
8		57	－ 463182		65	57	－ 027	77		2
9	9－537	574	－4628	9－5645	－		27430	78		
10	9．537	5			651	，		77		0
11	$9 \cdot 53785$	573	－462149	－	650	27	－027522	77		49
12		572			650			78		48
13	9－53853	572	－ 461462	9－56615	649	938	－ 02761	77		47
14	$9 \cdot 538880$	571		－	帾		兂	78		6
15	$9 \cdot 539223$	571	－460777	－ 566932	649	030	－ 02770	78		45
16	9	570	－460		648	2680	2775	77		4
17		570	． 4600		64	201		78		43
18	$9 \cdot 540$	56	－405	$9 \cdot 56809$		1902	． 0278	78		4
19	$9 \cdot 540$	56	． 45				27895	77		1
20	$9 \cdot 540931$	568	－ 459069	6887	646		－ 02794	78		0
21	$9 \cdot 541272$	568	－458728	69261	646	73	－02798	78		
22	$9 \cdot 541613$	567			645			78		8
23	$9 \cdot 54195$	567	迷	9－570035	5	埕	28083	78		37
24	$9 \cdot 54229$	566	－457707	9－570422	645	90578		78		36
25	9－54263	566	－457368		644	2919	177	78		35
26	9－54297	565		．	644		224	78		34
27		565	－ 456690		643			78		33
28	$9 \cdot 543649$	564		析			－ 02831	78		32
29		564			642			78		1
30	954432	563	－ 45556	7273	642	2	28412	78		30
31		563		9	642		－028460	80		29
32	000	562	－ 455000	$9 \cdot 57350$	11		28507	88		8
33	$9 \cdot 545338$	562	－ 45	9－57389	641		－ 028	78		27
34	仡	56	－45432		640		－ 028602	80		6
35	$9 \cdot 54601$	561	－ 45398		40		－ 028649	78	7135	25
36	46	560	45365		639		20897	80		24
37		560	． 453317	9．			－ 028744	78		3
		559	． 45298	$9 \cdot 575810$		4190	28792	80		
39	－	559	． 452646	7619			－ 028839	78		
40	$9 \cdot 54768$	558	． 452311	$9 \cdot 57657$	38	23424	－028887	80	711	20
41	－	558	． 451976	7695			－ 028934	8		19
42	$9 \cdot 548$	557	． 451641	$9 \cdot 57734$	637	422659	． 028982	80		8
43	析	557				析	－029030	80	70970	17
44	9－54902	556		$9 \cdot 578$		2189	007	80		
45		556	． 450640	9．578486	36	1514	． 029126	80		5
46	$9 \cdot 5496$	555	． 450307	9－57886		21133	． 029173	78		
47	$9 \cdot 55002$	555	． 449974	9．579248	635	20752	－ 029221	80		3
48	$9 \cdot 550359$	554	49641	迷		20371	－ 02926	80		
49	9－55069	554	－ 44		63	$10 \cdot 419991$		80		
5	1024	553	48976	80389	4	9611	－	80		0
51	$9 \cdot 55135$	553	促	析	633	1	2941	82		
	$9 \cdot 55168$	552	8313	81149	633	咗	29462	80		
5	9－552018	552	447982	－	2	边	－ 029510	80		
5	$9 \cdot 552349$	552	7651	9.58190	632	18093	－ 02955	80	70442	
5	$9 \cdot 552680$	551	－ 447320	$9 \cdot 582286$	632	417714	－0296	80		
56	$9 \cdot 553$	551	－ 446990	$9 \cdot 582665$	631	7335	－ 029655	82		
57	$9 \cdot 553341$	550	6659	3043	631	6957	029703	80	$9 \cdot 970297$	
58	9	55	$\cdot 446330$	9－583422	630	16578	－029751	80	过	
59	$9 \cdot 554000$	549	446000	883800	630	$\cdot 416200$	． 029800	82	0200	
60	9.5543	549	$\cdot 445671$	$9 \cdot 584177$	629	10.415823	． 029848	80	0152	0
			eoant．			Tan	secan		Sine	

21 deg.

			Cosecant.					$\left\lvert\, \begin{gathered} \text { Diff. } \\ 100^{\prime \prime} \end{gathered}\right.$		
0										
1	9:5546	54	-44534	$9 \cdot 584555$,		-029897	81		59
2	$9 \cdot 5549$	548	- 44501	$9 \cdot 58493$	629	$10 \cdot 415068$	- 029945	81	-	8
3	$9 \cdot 555315$	547	-444685	$9 \cdot 585309$	628	$10 \cdot 414691$	4	81		5
4	$9 \cdot 555643$	547	$\cdot 444357$	$9 \cdot 585686$	628	$10 \cdot 414314$	-030043	81	$9 \cdot 969957$	6
5	$9 \cdot 5$	546	-4440	$9 \cdot 586062$	627	10.413938	-030091	81		5
6	$9 \cdot 55629$	546	- 443701	9-586439	627	$10 \cdot 413561$	-030140	81		4
7	$9 \cdot 5566$	545	- 443	$9 \cdot 586815$	627	$10 \cdot 413185$	- 030189	81		3
8	$9 \cdot 55695$	545	-443047	$9 \cdot 587190$	626	12810	- 030238	81	$9 \cdot 9697$	5
,	$9 \cdot 557280$	544	- 44272					81		
10	9.557606	544	- 442394	9.58794	625	059	. 0303	81		50
11	$9 \cdot 557932$	543	- 442068	$9 \cdot 588316$				81	968	49
12	$9 \cdot 558258$	543	-441742	$9 \cdot 58869$	625	$10 \cdot 411309$	-030433	82	9-9695	8
13	9.558583	543	-441417	$9 \cdot 589066$	624	0934	-030482	82	$9 \cdot 969518$	47
14	$9 \cdot 558909$	542	$\cdot 441091$	$9 \cdot 589440$	624	0560	20531	82	9.96946	46
15	$9 \cdot 559234$	542	- 440766	$9 \cdot 589814$	23	10186	30580	82		45
16	9.559558	541	. 440442	9-59018	23	81	-030630	82		4
17	9.55	541	-44011	$9 \cdot 590562$	3	$10 \cdot 409438$	-030679	82	9-969321	43
18	$9 \cdot 560207$	540	$\cdot 439793$	9	622	10	-03072	82		42
19	9.560531	540	. 43946	$9 \cdot 591308$	622	10-408692	-030777	82		41
20	$9 \cdot 560855$	539	. 439145	$9 \cdot 591681$	622	$10 \cdot 40831$	-030827	82		40
21	9.561178	539	. 438822	9-592054	621	$10 \cdot 40794$	308	82		39
22	$9 \cdot 561501$	538	-438499	9-592426	621	5	.030925	82		8
23	$9 \cdot 561824$	538	-438176	$9 \cdot 592798$	620	$10 \cdot 407202$	-03097	82		7
24	$9 \cdot 562146$	537	. 43785	$9 \cdot 593171$	620	-406829	-031024	$8:$		36
2	$9 \cdot 562468$	537	. 437532	$9 \cdot 593542$	620	108	-03	82		35
26	9.562790	536	. 437210	$9 \cdot 593914$	619	$10 \cdot 406086$	-031123	83	9.968877	4
27	$9 \cdot 563112$	536	$\cdot 436888$	9-594285	618	$10 \cdot 405715$	- 031173	83	$9 \cdot 968827$	33
28	9.563433	536		$9 \cdot 594656$	618		-031223	83		2
29	$9 \cdot 563755$	535	. 436245	$9 \cdot 595027$. 031272	83		1
30		535	. 435925		618		-03132.	83		0
1	$9 \cdot 564396$	534	. 435604	$9 \cdot 595768$	617	$10 \cdot 404232$	-031372	83	$9 \cdot 968628$	29
32	$9 \cdot 564716$	534			617		-031429	83		28
33	$9 \cdot 565036$	533	. 434964	9.596508	616	$\cdot 403492$.031472	83	9.968528	27
34	$9 \cdot 565356$	533	. 434644	$9 \cdot 596878$	616		. 031521	83		6
35	$9 \cdot 565676$	532	- 43432	9.597247	616	4027	. 031571	83	9.968429	25
36	$9 \cdot 565995$	532	. 434005	$9 \cdot 597616$	615		-03162	83		24
	$9 \cdot 566314$	531	. 433686	-50708	615	$10 \cdot 402015$	-031671	83	-	3
38	$9 \cdot 566632$	531	. 433368	$9 \cdot 598354$	615	401646	-031722	83		2
39		531			614		-031772	83		
40	9.567269	530	. 432731	-	614		-031822	84		0
41	$9 \cdot 567587$	530	. 432413	9-599459	613	$10 \cdot 400541$	-031872	84		19
42	$9 \cdot 567904$	529	. 432096	. 599827	613	$10 \cdot 400173$. 031922	84		8
43	$9 \cdot 568222$	529	. 431778		613	$10 \cdot 399806$	-031973	84	9.968027	7
44	$9 \cdot 568539$	528	. 431461	$9 \cdot 600562$	612	$10 \cdot 399438$	- 032023	84		
45	$9 \cdot 568856$	528	- 431144		612		-03207	84	仡	15
46	9.569172	528	$\cdot 430828$	$9 \cdot 601296$	611	$10 \cdot 398704$	-032124	84		
47	$9 \cdot 569488$	527	. 430512		611	$10 \cdot 398338$	-032174	84	仡	3
48	9-569804	527	- 43019	-	611	$10 \cdot 397971$	-032225	84		
49	$9 \cdot 570120$	526	. 429880	9.602395	610	$10 \cdot 397605$	- 032275	84	$9 \cdot 967725$	
50	$9 \cdot 570435$	526	. 429565	9.60276	610	$10 \cdot 397239$	- 032326	84		
51	$9 \cdot 570751$	525	. 429249	$9 \cdot 603127$	610	$10 \cdot 396873$. 032376	84	$9 \cdot 967624$	9
52	$9 \cdot 571066$	525	. 428934	$9 \cdot 603493$	609	$10 \cdot 396507$	- 032427	84		8
53	9.571380	524	. 428620	603858	609	$10 \cdot 396142$	-032478	84	9.967522	7
54	9-571695	524	. 428305	9-604223	609	$10 \cdot 395777$	-032529	85	96747	6
55	$9 \cdot 572009$	523	427991	$9 \cdot 604588$	608	$10 \cdot 395412$. 032579	85	901721	5
56	$9 \cdot 572323$	523	$\cdot 427677$	$9 \cdot 60495$	608	$10 \cdot 395047$	- 032630	85		4
57	$9 \cdot 572636$	523	427364	$9 \cdot 605317$	607	$10 \cdot 394683$	-032681	85	96731	3
58	$9 \cdot 572950$	522	- 427050	9•605682	607	$10 \cdot 394318$	-032732	85	$9 \cdot 967268$	2
59	$9 \cdot 573263$	522	. 426737	$9 \cdot 606046$	607	$10 \cdot 393954$	-032783	85	- 9671	1
60	$9 \cdot 573575$	521	. 426425	$9 \cdot 606410$	606	$10 \cdot 393590$	- 032834	85	9.967166	0
	ine.		ecant.	angent.		Tangent.	sec		Sine.	

22 deg．

			Cosecan			Cotangent．	ecant．	$\mathrm{xaf}^{\prime \prime \prime}$	Cosine．	
0										
								85		59
	$9 \cdot 5742$				606		32936	85		
	$9 \cdot 574$							85		57
	$9 \cdot 5$	5	－425176		05	37		85		56
					604		－033090	85		55
6							． 033141	85		54
7	$9 \cdot 575$		4242	$9 \cdot 60895$	604			85		53
8								8		
9		5			603	$10 \cdot 390326$	5	86		
－								86		0
11		516		9－610397	602			86		49
12	9				602			86		48
13		516		$9 \cdot 611120$	602	880	501	86		47
14	－	5	析		601	885		86		46
15						81	． 033605	86	6635	5
16	$9 \cdot 57854$	51	145	－	01	$10 \cdot 387799$		86		
17					600			86		
18		13	退	研	600		－ 033760	86		42
19	$9 \cdot 579470$			$9 \cdot 613281$	600			86		
20		513		$9 \cdot 613641$	599	$10 \cdot 386359$	－033864	86		40
21	$9 \cdot 580085$	－12	－419915	$9 \cdot 614000$	599		－033915	86		39
22		512						87		38
23	9	511	93		598		4019	87		
	9		迷	$9 \cdot 615077$	598		1	8		36
25					97			87		35
	－	510	83	$9 \cdot 615793$	597	$10 \cdot 384207$	－034176	87		34
		10						87		33
28	9－5862				596					32
29	9	509					． 034332	87		31
30	9－58284	509	17160		－					30
31	$9 \cdot 583145$	508						87		29
32		508		$9 \cdot 617939$	59			87		28
33			16246	229			2	87		27
		07	15942		594			87		26
			15		594					25
36		06		936	59			88		
			15032		593			88		
	$9 \cdot 58$	505	28	9	59			88		22
				－	593			88		2
	$9 \cdot 58587$	5	－41412		502			88		20
		504	－41382	$9 \cdot 621142$	592			88		
	$9 \cdot 58648$		1351	2149	592			88		
	$9 \cdot 58678$	503	321	22185	591			88		
			1291	－	591			88		
45	9.58	502		$9 \cdot 622561$	590			88		15
				$9 \cdot 622915$	590			88		
	$9 \cdot 587$	501	－412011	9	59		． 035280	88		3
		501	11711	－	589	，	－35334	88		12
	$9 \cdot 58859$		11410	－ 223	589		35387	89		
	9	500	110		589	$10 \cdot 375670$	354	89		0
	$9 \cdot 58919$	，	0810	2468	888		－	89		
	9	4		$9 \cdot 625036$	58		－035546	89		
	－			2538	58		35600	89		
	9.590	49		$9 \cdot 625741$	58	仿	－ 035653	89	，	
	9－59038	498	9613	2609	887	（	3570	89		
56	9.590	498	03314	$9 \cdot 626440$	587	373555	3576	89		
		497	09016	2679	58	仡	． 035813	89		
58	9－5912	497	08718	27149	58	72851	－ 035867	89		2
59	9．591580	497	． 408420	$9 \cdot 62750$	586	$10 \cdot 372499$	－ 03592	89		
60	$9 \cdot 591878$	496	． 408122	$9 \cdot 627852$	585	$10 \cdot 372148$	． 035974	89	64026	0
	Cosine．					Tan				

67 deg．

23 deg．

	Sine．	${ }_{\text {Diff }}$ Dify	Cosec		${ }_{\text {Difi }}{ }^{\text {Difi }}$				Cosine．	
0										
1	$9 \cdot 59$		－407824	$9 \cdot 628203$	585	$10 \cdot 371797$	－036028	89		59
2	$9 \cdot 592473$	495	－407527	$9 \cdot 628554$	585	$10 \cdot 371446$	－036081	89	． 96	58
3	9•592770	495	－407230	$9 \cdot 628905$	585	$10 \cdot 371095$	． 036135	89	9．063	57
4	9－593067	495	－406933	9•62925	584	$10 \cdot 370745$	－03618	90	9－963811	56
5	9－59336	494	－4066	$9 \cdot 62$	584	$10 \cdot 370394$	． 0362	90	－963	5
6	9.593	494	－4063	$9 \cdot 6$	583		－036	0		54
7	9•5939		－4060		583			90		5
	$9 \cdot 59425$	493	－405749	6306	583	10：369344	－036	90		
9	$9 \cdot 59454$	493	． 405453	6310	583	10．368995	0364	90	9－9635	51
10	$9 \cdot 59484$	492	－405158	$9 \cdot 63135$	582	$10 \cdot 368645$	－036512	90	－	50
11	$9 \cdot 59513$	49	－4048	9－63170	582	$10 \cdot 368296$	． 036	90		49
12	$9 \cdot 59543$	491	－ 404	$9 \cdot 63205$	58	$10 \cdot 36794$	－036			48
13	$9 \cdot 595$		－4042	$9 \cdot 63$	581	$10 \cdot 367599$		90		47
14	9•59602	491	－4039	寿	581		－036			
15	9•5963	490	． 40368	633	5	－				
16	$9 \cdot 59660$	490	－403391	$9 \cdot 633447$	580	$10 \cdot 366553$	－0368	90	． 96	44
17	9•59690	489	． 403097	$9 \cdot 63379$	580	10866205	－0368	90	－	43
18	9－5971	489	－402804	$9 \cdot 6341$	580	10－365857	－0369	91	9．96	42
19	$9 \cdot 597$	48	－402510	9.6344	57	10	－0370	91		41
20	9－597		－402	48	579	10－365162	037			40
21	$9 \cdot 5$		－40192	$9 \cdot 6351$	579	$10 \cdot 364815$	0371			
2	9.598	887	－401632	－		0．36446				
23	$9 \cdot 59866$	487	． 401340	－63587	578	0．364121	－372			
24	9－598952	487	． 401048	9－636226	578	$10 \cdot 363774$	0372	91	－9627	－
25	9－599244	486	． 400756	$9 \cdot 636572$	577	$10 \cdot 363428$	0373	91	$9 \cdot 9626$	
26	9－59953	48	． 40046	9•63691	577	$10 \cdot 36308$	037	91		
27	9．599	48	． 40017	9－6372	577	3627	037			
28	$9 \cdot 6001$	485	9988	9	577	623	－0374			2
29	$9 \cdot 600$	485	． 39959	$9 \cdot 6379$	576	－36204	－0375			
30	$9 \cdot 6007$	484	． 399300	9•63830	576	10－36169	－0376	91		30
31	$9 \cdot 60099$	484	． 399010	9•63864	576	10－36135	－0376	92	9．962	29
32	$9 \cdot 60128$	484	． 398720	33899	575	10．3610	－03771	92		28
33	$9 \cdot 60157$	48	． 39843	$9 \cdot 63933$	57	$10 \cdot 360663$	－0377			27
34	$9 \cdot 601$		． 3981	396	57	60	－0378			26
35	$9 \cdot 60215$	48	． 39785	9．64002	57	$10 \cdot 35997$	－037877			
36	$9 \cdot 60243$	482	． 39756	40371	574	． 35962	－0379			
37	$9 \cdot 60272$	482	． 397272	640716	74	－35928	37			
38	$9 \cdot 60301$	481	． 396983	$9 \cdot 641060$	573	$10 \cdot 358940$	－0380	92		2
39	$9 \cdot 60330$	481	． 396695	$9 \cdot 64140$	573	$10 \cdot 3585$	． 0380	9		
40	$9 \cdot 60359$	48	． 39640	$9 \cdot 6417$	57	$10 \cdot 3582$	－0381			
41	$9 \cdot 60381$	480	星	$9 \cdot 642091$	57	35790	－0382			
4	$9 \cdot 60417$	880	． 3958	$9 \cdot 64243$	5	$10 \cdot 3575$				
43	$9 \cdot 60445$	479	． 3955	642777	572	－ 3572	38			
44	$9 \cdot 60474$	479	． 395255	64312	572	0．35688	038			
45	9.605032	479	． 394968	9.643463	571	10．356537	－0384	93	9．961	
46	$9 \cdot 605319$	478	． 394681	$9 \cdot 64380$	571	$10 \cdot 356194$	－03848	93	9．961	
47	9.60560	478	． 394394	9.64414	571	10．355852	－03854	93	96	
48	$9 \cdot 6058$	478		444	570	35551	－0385		．	12
49	$9 \cdot 6061$	478			570	$10 \cdot 3551$	－0386		－	
50	$9 \cdot 60646$	477	㖪	6451	570	$10 \cdot 35482$	－0387	93		10
5	$9 \cdot 606751$	476	93249	45	570	0．354484				
52	$9 \cdot 60703$	476	． 392964	64585	56	$10 \cdot 354143$	－038821	93	96112	
53	$9 \cdot 607322$	476	－ 392678	9.646199	569	$10 \cdot 353801$	03887	93	$9 \cdot 96112$	
54	$9 \cdot 607607$	475	－ 39239	$9 \cdot 64654$	56	$10 \cdot 353460$	－0389	93	96	
55	$9 \cdot 60789$	47	． 39210	9.64688	56	$10 \cdot 35311$	－0389	93	9－961	
56	$9 \cdot 608$	47	918	472	568	－3527	0390		$9 \cdot 96095$	
57	$9 \cdot 608461$	474	－39153		568	10．552438	03910			
58		位	－		6	$10 \cdot 35209$	3915			
60	9－609029	473	－390971	48243	567	$10 \cdot 35175$	－039214	94	${ }^{9.96078}$	1
60	$9 \cdot 609313$	47	－390687	48	567	10.3514	－0392	94	9－960730	0

24 DEG.

	sine.	Diff,			fif			\mid		
0	$9 \cdot 609313$			9-64858		10				60
	$9 \cdot 60959$	473	- 39040	$9 \cdot 64892$	56	$10 \cdot 351077$	039326	94		59
2	9•60988	472	-390120	9.6492	566	10.35073	039382	94		58
3	9-61016	472	-389836	$\cdot 6496$		10-3503		94	9-960561	7
4	析	472	-			10	039	94		5
5	$9 \cdot 610729$	471	- 3892	$9 \cdot 6502$	565	$10 \cdot 3497$		94		5
	61101	471	-388		565	10-349380	03960	4	9.9603	54
	9-611294	470	$\cdot 388706$	$9 \cdot 65095$	565	$10 \cdot 349$	03966	94	-960335	53
8	$9 \cdot 611576$	470	$\cdot 388424$	$9 \cdot 65129$	564	$10 \cdot 348703$	039721	94	-960279	52
9	61	470	-388142	d	56	$10 \cdot 348$	039778	94		1
10	612	469	$\cdot 387860$	-	564	10	039835	94		0
11	$9 \cdot 612421$		$\cdot 38757$		56	$10 \cdot 347$	03989			9
12	$9 \cdot 61270$	469	-3872			10-3473	03994			8
13	298		-387017				0400			47
14	61326	468	-386736	-65332	56	10-346674	04006	95		46
15	$9 \cdot 6135$	467	$\cdot 386455$.65360	562	$10 \cdot 34633$	04011	95		45
16	$9 \cdot 61382$	467	-386175	. 65400	562	$10 \cdot 3460$	04017	95	-959825	44
17	$9 \cdot 61410$	467	-385895	-65433		$10 \cdot 3456$	04023	95	-	43
18	9.6		- 38	$9 \cdot 65467$	561	10	04	95	9711	42
19	$9 \cdot 6146$			-655	561	$10 \cdot 34498$	0403			41
20	61494	466	$\cdot 38505$,	56	$10 \cdot 34465$	04040	95		40
21	9•615223	465	$\cdot 384777$	-	561	$10 \cdot 34431$	04046	95		39
22	$9 \cdot 615502$	465	$\cdot 384498$	65602	560	$10 \cdot 343980$	0405	95		38
23	9.615781	465	-384219	-6563	560	$10 \cdot 34364$	405	95		37
24	9•616060	464	-383940	6566		10-34330	04063	95		6
25	9-616338	46	-383662	9-65702		10	. 0406	95		
26	9		-	9-657		$10 \cdot 34263$	040747	96		4
27	-61689		8310	576	559	$10 \cdot 34230$	040			3
28	9.617172	463	-382828	5803	55	10-34196	0408			2
29	$9 \cdot 617450$	462	$\cdot 382550$	65836	508	$10 \cdot 34163$	0409	96		1
30	9•617727	462	$\cdot 382273$	65870	558	$10 \cdot 341296$	0409	96		30
31	$9 \cdot 618004$	462	$\cdot 381996$	9•65903		$10 \cdot 340961$		96		29
32	$9 \cdot 61828$	461	-381719	$9 \cdot 6593$		$10 \cdot 34062$	041			28
33	$9 \cdot 61855$	461	-381442	.6597		34029	41			7
34	9-61883		-38116	6600		$10 \cdot 33995$	0412			6
35	$9 \cdot 619110$	60	-380890	6603	557	$10 \cdot 33962$, 41			5
36	61938	460	-380614	6607	556	$10 \cdot 33929$	0413	96		4
37	$9 \cdot 61966$	460	-380338	66104	556	$10 \cdot 3389$ Б	0413	96		23
38	$9 \cdot 61993$	459	- 380062	66137	5	10.33862	041439	96		22
39	$9 \cdot 6202$		- 37978	66171		3382	041497	96		21
4	-		-37951	-6620		-3379		97		20
41	62076		-37923	-6623	555	33762	04161	97		19
42	$9 \cdot 621038$	458	-378962	-66270		-33729	- 04167			8
43	22131	457	- 378687	. 6630	554	$10 \cdot 336958$. 0417	97		
44	62158	457	-378413	66337	554	$10 \cdot 336$	041	97		
45	$9 \cdot 62186$	457	-378139	6637	554	$10 \cdot 336293$	0418	97		15
46	$9 \cdot 62213$	456	-377865	-66403	55	$10 \cdot 33596$	04190	97		
47	$9 \cdot 62240$	456	- 377591	. 66437	55	$10 \cdot 33562$	04196	97	$9 \cdot 95$	3
	d268		- 377318	9•66470	5	3352	0420	97	-957979	12
49	$9 \cdot 62295$	5	- 377044	650	553	-3349	0420			11
50	62322	5	. 376771	6536	5	3346	04213			10
51	623502	455	$\cdot 376498$	656	552		04219			
52	62377	454	-376226	-6602	552	$10 \cdot 333971$	04225	97		8
53	9.624047	454	$\cdot 375953$	-66636	552	$10 \cdot 333640$	-042313	98		7
54	9•624319	454	- 375681	-66669	551	$10 \cdot 333309$. 042372	98		6
55	$9 \cdot 62459$		-37540	66702	55	$10 \cdot 332979$	-042430	98	575	5
56	$9 \cdot 62486$		-37513	673	55	$10 \cdot 33264$	-0424	98		4
57	$9 \cdot 62513$	5	$\cdot 374865$	66768	551	$10 \cdot 33231$	- 0425	98	$9 \cdot 95745$	3
58	$9 \cdot 625406$	452	-374594	68013	550	$10 \cdot 331987$	-04260	98		2
	$9 \cdot 62567$	452	$\cdot 374323$		5	0.3316		98		
60	9.62594	452	$\cdot 37405$	67	550	10	-	98		0

65 dEG.

25 deg.

,	Sine		Cosecant.	Tang		Cotangent.	Secant.	$\boldsymbol{l}_{100^{\prime \prime}}$	Cosine.	
0	9									0
1	$9 \cdot 626$			$9 \cdot 669002$				98		5
2	$9 \cdot 626$	451	$\cdot 373510$	$9 \cdot 669332$	549			98		58
3	$9 \cdot 626$	451	$\cdot 373240$	9.669661	549	$10 \cdot 330339$		98		7
4	$9 \cdot 6270$	450	-372970	9-669991	549	$10 \cdot 330009$		98		6
5	$9 \cdot 627300$	450	- 372700	$9 \cdot 670320$	548	10-329680		98		55
6	9:627	450	$\cdot 372430$	0649	548			98		
7	$9 \cdot 627840$	449	- 372160	9-670977	548	10-329023	-043138	99		53
8	$9 \cdot 628109$	449	-371891	$9 \cdot 6713$	548			99		52
9	$9 \cdot 628348$	449	-371622	$9 \cdot 671634$	547		-043256	99		1
10		448	- 37130	$9 \cdot 671963$	547	$10 \cdot 328037$		99		0
11	$9 \cdot 62891$	448	-37108	$9 \cdot 67 \cdot 29$	547	$10 \cdot 327709$	- 043375	99		9
12	$9 \cdot 62$	447	- 370815	$9 \cdot 672619$	547	$10 \cdot 327381$	-043434	99		8
13	$9 \cdot 62945$	447	- 370547	9.672947	546	$10 \cdot 327053$	-043494	99		7
14	$9 \cdot 629721$	447	-370279	$9 \cdot 673274$	54	$10 \cdot 326726$	-043553	99		46
15	$9 \cdot 62998$	446	-37001	$9 \cdot 673602$	546	$10 \cdot 326398$	- 043613	99		45
16	$9 \cdot 6302$	446	-369743	9.67392	546	$10 \cdot 3 \cdot 607$	- 043673	99		44
17	$9 \cdot 6305$	446	-36		54		-043732	99		43
18	$9 \cdot 630792$	446	- 369208	$9 \cdot 674584$	545		-043792	99		42
19	$9 \cdot 631059$	445	-368941	9.674910	545	090	- 043852	100		
20	$9 \cdot 63132$	445	-368674	9.675237	544					-
21	$9 \cdot 631593$	445	-36840 ${ }^{\text {c }}$	$9 \cdot 675564$	544	24406	- 0	100		3
$2 \cdot$	$9 \cdot 631859$	444	-368141	9.675890	544	24110		100		
23	$9 \cdot 632125$	444	$\cdot 367875$	$9 \cdot 676217$	544	$10 \cdot 323783$	- 04			37
24	$9 \cdot 632$	444	-367608	9.67654	543					36
25	9	443	-36734	9.676	543	$10 \cdot 323131$				5
26	$9 \cdot 63$	443	-367	9	543					34
27	$9 \cdot 63318$	443	-36681	9.677520	543		-044331			33
28	9•633454	442	-366546	$9 \cdot 677846$	542	322154	- 04			32
29		442	-366281	70	542	321829	. 04			1
30	$9 \cdot 633984$	442	- 366016	9.678496	542		- 044			0
31		441			542					9
32	$9 \cdot 63451$	441	-365486	-679146	541	20854	-044632			8
33		440	-365222	9-67947	541	9		101		7
34	$9 \cdot 63504$	440	-364958	6797	541			01		
35	$9 \cdot 6353$	440	-364694		541	$10 \cdot 319880$. 044814	01		5
36	$9 \cdot 6355$	439	$\cdot 364430$	444	540	$10 \cdot 319556$. 04	01		
37	$9 \cdot 63583$	439	-364166	0768	540	-319232	- 0	,		3
38	$9 \cdot 63609$	439	-363903	$9 \cdot 681092$	540					2
39	$9 \cdot 63636$	438	-363640		540	10.318884				1
40		438	-363377	$9 \cdot 681740$	539	$10 \cdot 318260$		01		-
41	9.636886	438	-363114	9-68206	539	$10 \cdot 317937$	-04	01		
42	9.637148	437	-362852	$9 \cdot 68238$	539	$10 \cdot 317613$		01		8
43	$9 \cdot 63741$	437	- 362589	-682710	539	$10 \cdot 317290$		01		
44	$9 \cdot 63767$	437	-362327	$9 \cdot 683033$	538	$10 \cdot 316967$			9-9546	6
45	$9 \cdot 6379$	437	-362065	$\cdot 683356$	538	316644	-	01		
46	$9 \cdot 6381$	436	- 361803		538	10-316321				4
1	$9 \cdot 63845$	436	-361542	$9 \cdot 684001$	538	10-315999	-015513	02		
48	$9 \cdot 63872$	436	-361280	9-684324	537	$10 \cdot 315676$	-04			2
49		435	-361019	9.684646	537	$10 \cdot 315354$	-	02		
50	$9 \cdot 63924$	435	-360758	㖪	537	$10 \cdot 315032$	-0457	2		0
51	9.63950	435	-360497	88290	537	$10 \cdot 314710$	-04578	02		
52	$9 \cdot 63976$	434	-360236	885612	536	$10 \cdot 314388$	- 045848	22		
53	$9 \cdot 640$	434	-35997	59	536	$10 \cdot 314066$	-045910	02	$9 \cdot 954090$	
	$9 \cdot 64028$	434	-359716	86255	536	$10 \cdot 313745$	- 04597	12		
55	$9 \cdot 64054$	433	$\cdot 359456$	686577	536	$10 \cdot 313423$	-046032	22		5
56	$9 \cdot 64080$	433	- 359196	686898	535	13102		02		
0	$9 \cdot 64106$	433	- 35893	$9 \cdot 68721$	535	$10 \cdot 312781$	-046	02		3
58	$9 \cdot 641324$	432	-358676	687540	535	$10 \cdot 312460$	-04621	02		2
59	$9 \cdot 641583$	432	- 358417	$9 \cdot 687861$	535	$10 \cdot 312139$,		
60	$9 \cdot 641842$	432	-358158	$9 \cdot 688182$	534	$10 \cdot 311818$	- 0		$9 \cdot 953660$	0
						Tangent	secant.		Sine.	

64 dEg.

26 deg.

	Sine.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cosecant.	Tangent.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cotangent.	Secant.	$\left\lvert\, \begin{aligned} & \text { Diff } \\ & 100^{\prime \prime}\end{aligned}\right.$	Cosine.	
0	$9 \cdot 641842$. 358158	$9 \cdot 688182$		$10 \cdot 311818$	- 046340		-953660	60
1	$9 \cdot 642101$	431	-357899	$9 \cdot 688502$	534	$10 \cdot 311498$	-046401		953599	59
2	$9 \cdot 642360$	431	- 357640	$9 \cdot 688823$	534	$10 \cdot 311177$	-046463		$\cdot 953537$	58
3	$9 \cdot 642618$	431	-357382	$9 \cdot 689143$	534	$10 \cdot 310857$	-046525		. 953475	57
4	$9 \cdot 642877$	430	- 357123	9-689463	533	$10 \cdot 310537$	-046587		.953413	56
5	$9 \cdot 643135$	430	- 356865	9-689783	533	10-310217	-046648		953352	55
6	$9 \cdot 643393$	430	-356607	$9 \cdot 690103$	533	$10 \cdot 309897$	-046710	103	-953290	54
7	$9 \cdot 643650$	430	- 356350	$9 \cdot 690423$	533	$10 \cdot 309577$	-046772	103	$\cdot 953228$	53
8	9•643908	429	- 356092	$9 \cdot 690742$	533	$10 \cdot 309258$	-046834		-953166	52
9	$9 \cdot 644165$	429	-355835	$9 \cdot 691062$	532	$10 \cdot 308938$	-046896		953104	51
10	$9 \cdot 644423$	429	- 355577	9-691381	532	$10 \cdot 308619$	-046958		953042	50
11	$9 \cdot 644680$	428	- 355320	$9 \cdot 691700$	532	$10 \cdot 308300$	- 047020		-952980	49
12	$9 \cdot 644936$	428	-355064	$9 \cdot 692019$	531	$10 \cdot 307981$	-047082		$9 \cdot 952918$	48
13	$9 \cdot 645193$	428	- 354807	$9 \cdot 692338$	531	10-307662	- 047145	10	952855	47
14	$9 \cdot 645450$	427	- 354550	9-692656	531	$10 \cdot 307344$	-047207	10	9552793	46
15	$9 \cdot 645706$	427	- 354294	$9 \cdot 692975$	531	10-307025	-047269	10	952731	45
16	$9 \cdot 645962$	427	- 254038	$9 \cdot 693293$	531	$10 \cdot 306707$	-047331	104	952669	44
17	$9 \cdot 646218$	426	- 353782	$9 \cdot 693612$	530	10.306388	- 047394	104		43
18	$9 \cdot 646474$	426	-353526	$9 \cdot 693930$	530	$10 \cdot 306070$	-047456	104	$9 \cdot 952544$	42
19	9-646729	426	-353271	9-694248	530	$10 \cdot 305752$	-047519	104	- ${ }^{\text {d }}$	41
20	$9 \cdot 646984$	425	-353016	9-694566	530	$10 \cdot 305434$	-047581	1049	952419	40
21	$9 \cdot 647240$	425	- 352760	$9 \cdot 694883$	529	$10 \cdot 305117$	- 047644	104	$9 \cdot 952356$	39
22	$9 \cdot 647494$	425	-352506	$9 \cdot 695201$	529	$10 \cdot 304799$	-047706	1049	$9 \cdot 952294$	38
23	$9 \cdot 647749$	424	-352251	$9 \cdot 695518$	529	10-304482	- 047769	1049	$9 \cdot 952231$	37
$2 \pm$	$9 \cdot 648004$	424	- 351996	$9 \cdot 695836$	529	$10 \cdot 304164$	- 047832	104		36
25	$9 \cdot 648258$	424	-351742	$9 \cdot 696153$	529	$10 \cdot 303847$	-047894	105		35
26	$9 \cdot 648512$	424	- 351488	$9 \cdot 696470$	528	$10 \cdot 303530$	-047957	1059	$9 \cdot 952043$	34
27	$9 \cdot 648766$	423	- 351234	$9 \cdot 696787$	528	10-303213	- 048020	1059		33
28	$9 \cdot 649020$	423	- 350980	$9 \cdot 697103$	528	10-302897	-048083	105	$9 \cdot 951917$	32
29	$9 \cdot 649274$	423	- 350726	$9 \cdot 697420$	528	$10 \cdot 302580$	- 048146	1059		
30	$9 \cdot 649527$	422	- 350473	$9 \cdot 697736$	527	10-302264	-048209	1051		30
31	$9 \cdot 649781$	422	- 350219	$9 \cdot 698053$	527	$10 \cdot 301947$	-048272	105	9.951728	29
32	$9 \cdot 650034$	422	- 349966	$9 \cdot 698369$	527	$10 \cdot 301531$	- 048335	105	9.951665	28
33	$9 \cdot 650287$	422	- 349713	$9 \cdot 698685$	527	10-301315	- 048398	1059	$9 \cdot 951602$	27
34	$9 \cdot 650539$	421	- 349461	$9 \cdot 699001$	526	10-300999	. 048461	1059	$9 \cdot 951539$	26
35	$9 \cdot 650792$	421	- 343208	$9 \cdot 699316$	526	$10 \cdot 300684$	-048524	105	9.951476	25
36	$9 \cdot 651044$	421	-348956	$9 \cdot 699632$	526	10-300368	- 048588	105	9-951412	24
37	$9 \cdot 651297$	420	- 348703	$9 \cdot 699947$	526	$10 \cdot 300053$	- 048651	1059	$9 \cdot 951349$	23
38	$9 \cdot 651549$	420	- 348451	$9 \cdot 700263$	526	$10 \cdot 299737$	-048714	106	9-951286	22
39	$9 \cdot 651800$	420	-348200	$9 \cdot 700578$	525	10-299422	- 048778	106	$9 \cdot 951222$	21
40	$9 \cdot 652052$	419	- 347948	9•700893	525	$10 \cdot 299107$. 048841	106	$9 \cdot 951159$	20
41	$9 \cdot 652304$	419	-347696	9•701208	525	10-298792	-048904	106	9-951096	19
42	$9 \cdot 652555$	419	- 347445	$9 \cdot 701523$	525	$10 \cdot 298477$	- 048968	106	$9 \cdot 951032$	18
43	$9 \cdot 652806$	418	- 347194	$9 \cdot 701837$	524	$10 \cdot 298163$	- 049032	1069	9-950968	17
44	$9 \cdot 653057$	418	- 346943	$9 \cdot 702152$	524	10-297848	- 049095	1069	9-950905	16
45	$9 \cdot 653308$	418	-346692	$9 \cdot 702466$	524	$10 \cdot 297534$	-049159	106	9-950841	15
46	9.653558	418	-346442	$9 \cdot 702780$	524	10-297220	-049222	106	9.950778	14
47	9.653808	417	- 346192	$9 \cdot 703095$	523	10-296905	-049286	106	$9 \cdot 950714$	13
48	$9 \cdot 654059$	417	- 345941	9-703409	523	10-296591	-049350	106	9.950650	12
49	$9 \cdot 654309$	417	- 345691	$9 \cdot 703723$	523	10-296277	- 049414	106	9-950586	11
50	9.654558	416	- 345442	$9 \cdot 704036$	523	$10 \cdot 295964$	-049478	106	9-950522	10
51	$9 \cdot 654808$	416	-345192	$9 \cdot 704350$	523	$10 \cdot 295650$	-049542	107	9-950458	9
52	9-655058	416	-344942'	$9 \cdot 704663$	522	$10 \cdot 295337$	-049606	107	9-950394	8
53	9.655307	415	-344693	$9 \cdot 704977$	522	$10 \cdot 295023$	- 049670	107	$9 \cdot 950330$	7
54	9-655556	415	-344444	$9 \cdot 705290$	522	10-294710	- 049734	1079	9-950266	6
55	$9 \cdot 655805$	415	- 344195	$9 \cdot 705603$	522	$10 \cdot 294397$	- 049798	107	$9 \cdot 950202$	5
56	$9 \cdot 656054$	415	- 343946	9•705916	521	10-294084	-049862	1079	9-950138	4
57	$9 \cdot 656302$	414	- 343698	9•706228	521	$10 \cdot 293772$	-049926	107	9.950074	3
58	$9 \cdot 656551$	414	- 343449	9•706541	521	$10 \cdot 293459$. 049990	107	$9 \cdot 950010$	2
59	$9 \cdot 656799$	414	-343201	$9 \cdot 706854$	521	10-293146	. 050055	107	$9 \cdot 949945$	1
60	$9 \cdot 657047$	413	$\cdot 342953$	$9 \cdot 707166$	521	10-292834	. 050119	107	$9 \cdot 949881$	0
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

27 DEG.

	Sine.	${ }^{\text {Diff }}$ 100			${ }^{\text {Diffi }}$ 100			$\left\|\begin{array}{c} \text { Difi } \\ 1001 \end{array}\right\|$	Cosine.	
0	$9 \cdot 657047$			$9 \cdot 7$						60
	$9 \cdot 657295$	413	-342705	$9 \cdot 707478$	520	10-292522	050184	107		59
2	9-65754:	413	$\cdot 342458$	9.707790	520	$10 \cdot 292210$	050248	07	9-949752	58
3	9-65779	412	-312:10	9•708102	520	10-291898	050312	107	9-949688	7
4	$9 \cdot 658037$	412	-3419ь3	9.70841	520	$10 \cdot 291586$	050377		9-949623	6
5	9.658	12	-341716	9.708	519	10-291274	-050442			5
6	$9 \cdot 65853$	412	-341469	9•70903	519	10-290963	0505			4
7	$9 \cdot 65877$	411	-341222	$9 \cdot 709349$	519	$10 \cdot 290651$	05057			5
8	9•659025	411	-340975	9.709660	519	10•290340	0506			2
9	$9 \cdot 659271$	411	-340729	9.709971	519	10-290029	050			
10	9.659517	410	-340483	9.710282	518	$10 \cdot 289718$	-0507			5
11	9-6597	410	-340237	9.710593	518	$10 \cdot 289407$	-050			9
12	$9 \cdot 66000$	410	-339991	9.71	518	$10 \cdot 28909$	-0508			48
13	9-66025	409	-339745	$9 \cdot 711215$	518	$10 \cdot 288$	-0509			47
14	$9 \cdot 660501$	409	-339499	$9 \cdot 711525$	518	$10 \cdot 288475$	-05102		9.948975	6
15	9-66074	409	-339:54	9.711836	517	$10 \cdot 288164$	-051090			5
16	$9 \cdot 66099$	409	-339009	$9 \cdot 712146$	517	$10 \cdot 287854$	-0511	108		44
17	9-661236	408	-338764	9.712456	517	$10 \cdot 287544$	-0512			3
18	9-66148	808	-338519	$9 \cdot 7127$	517	$10 \cdot 287234$	-051	109	48715	42
19	9.66172	408	-338274	$9 \cdot 7130$	516	$10 \cdot 286924$	-05135			41
20	9.661970	407	-338030	9.71338	516	$10 \cdot 286614$	-05141			0
21	9.662214	407	- 337786	. 71369	516	$10 \cdot 286304$	-05148			
22	9.662459	407	-337541	$9 \cdot 71400$	516	$10 \cdot 285995$	-051546	109		
23	9.66270	407	-337297	$9 \cdot 714314$	516	$10 \cdot 28568$	-051612	109	9.948388	7
24	9.66294	406	-337054	9-714624	515	$10 \cdot 2853$. 051677	109	9.948323	
25	9.663	406	-33681	$9 \cdot 714933$	515	$10 \cdot 285$. 051743	109	9.948257	
26	. 663	406	-336567	9.7152	515	10-28475	-051808		$9 \cdot 948192$	
27	9.663673	405	- 336323	.7155	515	$10 \cdot 28444$	- 05187			
28	9.663920	405	-386080	$9 \cdot 71586$	514	10-284140	-051940			
29	9.66416	405	-335837	9•716168	514	$10 \cdot 283832$	-052005			
30	9-6̄¢140	405	-335594	9.716477	514	10.283523	.052071			
31	9.66464	4	-335352	$9 \cdot 716785$	514	$10 \cdot 283215$. 052137			
32	9.66489	404	-335i0 ${ }^{\text {a }}$	$9 \cdot 717093$	514	$10 \cdot 28290$. 052203			
33	9.6651	404	-334867	9.71740	513	10-28259	-05226			
34	66537	403	-334625	$9 \cdot 717709$	513	$10 \cdot 282291$	-05233			
35	9.665617	403	-334383	$9 \cdot 718017$	513	$10 \cdot 281983$	-05240			5
36	$9 \cdot 665859$	403	- 334141	9-718325	513	$10 \cdot 281675$	-052467			24
37	$9 \cdot 666100$	402	-333900	$9 \cdot 71863$	513	$10 \cdot 28136$	-05253	110		23
38	$9 \cdot 66634$	402	-333658	$9 \cdot 71894$	512	$10 \cdot 281060$	-05259			22
39	$9 \cdot 66658$	402	-333417	9-71924	512	$10 \cdot 28075$	-0526			21
40	9.666824	402	-333176	$9 \cdot 71955$	512	$10 \cdot 28044$	-05273			2
41	$9 \cdot 667065$	401	-332935	9.719862	512	$10 \cdot 280138$	-05279			
42	9.66730	401	-332695	9.720169	512	$10 \cdot 279831$	-05286		$9 \cdot 947$	8
43	9•66754	401	- 332454	$9 \cdot 720476$	511	10-279524	-052930	111	9.947070	17
44	$9 \cdot 667786$	401	-332214	9.72078	511	10-279217	-05299	11	47004	
45	9.66802	400	-331973	$9 \cdot 72108$	511	10.27891	-053063		946937	
46	$9 \cdot 66826$	40	-331733	$9 \cdot 72139$	511	10.27860	-05312			
48	$9 \cdot 66850$	400	-331494	9-72170	511	$10 \cdot 278298$	-05319	111	9.946804	
48	9-66874	399	-331254	$9 \cdot 72200$	510	10-277991	-053262	111	仡	
49	9.66898	399	-331014	9.722315	510	10-277685	. 053329	111	46671	
50	9.669225	399	-330775	$9 \cdot 722621$	510	10.277379	-053396	111	946604	10
51	9.669464	399	-330536	9.722927	510	10-277073	-05346		46	9
52	$9 \cdot 66970$	398	-330297	9•72323	510	$10 \cdot 27676$	-0535		464	
53	9.669942	398	-330058	9.72353	509	$10 \cdot 27646$	-0535			7
54	9.670181	398	-329819	9.723844	509	$10 \cdot 276156$	-053663	111	$9 \cdot 946337$	
55	$9 \cdot 670419$	397	-329581	9.724149	509	$10 \cdot 275851$	-053730	11	462	5
56	9.670658	397	-329342	9.724454	509	$10 \cdot 275546$	-053797			4
57	9.670896	397	-329104	$9 \cdot 724759$	509	10.275241	-053864	11		3
58	$9 \cdot 671134$	397	-328866	9•725065	508	$10 \cdot 27493$	-0539			2
59	9.671372	396	-328628	$9 \cdot 72536$	508	10-27463	-05399	112	9.94600	1
60	9-671609	396	$\cdot 328391$	$9 \cdot 725674$	508	$10 \cdot 274326$	-054065	112		0
	Cosine.		eant.			angent				

28 deg．

		${ }^{\text {Diffi }}$			ifi			${ }^{19} 0^{\prime \prime}$		
0	9•671609									50
1	$9 \cdot 671847$	，	－328153	9•725979	508	10．27402	－054132 1	112		59
2	－672	295	－327916	$9 \cdot 72$	508	10－273	． 0542001	112		8
3	672321		－327679	9．726588	507	2				
4				9•726892	07		05			
5			－ 327	－	507					
6			－326968	9.72750	507		054	12		54
7	9－67326	394	－326732	$9 \cdot 727805$	507	10－272195	0545	112		5
8	$9 \cdot 67350$	394	－326495	9•728109	506	10．271891	05460			2
9	9.6737		－326259	$9 \cdot 728412$		715	05			
10	9 －67397		－326023	9•72871	506	10	－054739			0
11	$9 \cdot 67$		－32578		506	，	－0548			
12			－32555	－		10－27067				
13			－325316	9•72962	505		5			
14	9－67491	392	－ 325081	9．729929	505	10．270071	0550			
15	9.67515	392	． 324845	$9 \cdot 73023$	505	10．269767		11	＋	
16	9.6753	392	－ 324610	$9 \cdot 7305$	505	$10 \cdot 2694$	－0551		4	
17	$9 \cdot 6756$	391	． 324376	9．7308		$10 \cdot 269162$	－0552			
18	9.6758	391	－ 324141	$9 \cdot 731$	504	10．268859				
19	$9 \cdot 6760$		－32390	析	504	2685				
20	－		－323672	dr	504	－26825				
21	－ 6765	3	． 323438	$9 \cdot 7320$	504	－				
22	9•67679	390	－323204	$9 \cdot 732351$	504	$10 \cdot 267649$	0555			
23	$9 \cdot 677030$	390	． 322970	$9 \cdot 7326$	503	10－267347	． 0556	114		
24	9.677264		． 322736	9．7329	503	10－267045	0556			
25	9－67749		． 322502	$9 \cdot 7332$		10－2667	． 055			
26	7		． 32226	9．733		10－266442				
27	$9 \cdot 6$	389	． 32203	9.7338	503	2661				
28	$9 \cdot 67819$	888	． 321803	7341	503	． 265	055			
29	$9 \cdot 6784$	388	． 321570	73446	502	10.26553	056			
30	$9 \cdot 67866$	388	． 321337	$9 \cdot 73476$	502	$10 \cdot 26523$	－056			
31	$9 \cdot 67889$	388	． 321105	$9 \cdot 73506$	502	10－2649				
32	9－67912	888	． 32087	9.7353	502	2646				
33	9．67		． 320	73		264				
34	$9 \cdot 679$	387	． 32040	9．7359	501	． 26403				
35	9－679824	387	． 32017	$9 \cdot 736269$	501	$10 \cdot 263731$	－			
36	$9 \cdot 68005$	386	． 31994	7365	501	$10 \cdot 263430$	0565			
37	9．68028	386	． 319712	－73687	501	$10 \cdot 263129$	． 0565			
38	$9 \cdot 68051$	386	． 31948	． 737171	501	$10 \cdot 262829$	－ 0566			
，	$9 \cdot 68075$	38	． 3192	－73771	500	$10 \cdot 26252$				
40	$9 \cdot 680$	38	．	7377	500	2622				
1	－68121		． 31878	7380	50	10－26192				
2	68144	88	． 31855	$9 \cdot 7383$		10－26162	－0569			
5	$9 \cdot 681674$	384	． 318326	$9 \cdot 73867$	500	$10 \cdot 261329$	056			
	681905	384	． 31809	9.73897	500	10－261029	0570			
45	9－6821	384	． 31786	$9 \cdot 739271$	499	$10 \cdot 260729$	－ 0571			
46	9.68236	38	． 31763	$9 \cdot 73957$	499	$10 \cdot 260430$				
47	$9 \cdot 6825$	38	17	－	49	10．26013				
48	88	38	． 31717	过	499	$10 \cdot 2598$				
49	－	383	－ 1671	9.7404	499	10.2595	－057			
50	83	383	． 316716	9.7407	析	$10 \cdot 25923$	－			
51		82	－ 316486		498	－25893	． 57			
52	68374	382	． 316257	$9 \cdot 74136$	498	$10 \cdot 258635$	05762			
53	$9 \cdot 683972$	382	－ 316028	$9 \cdot 74166$	498	$10 \cdot 25833$	－05769			
54	$9 \cdot 68420$	382	． 31579	9.7419	49	$10 \cdot 25803$	． 0577		42	
55	9.684	38	155	$9 \cdot 7422$	498	－25773	－0578		942	
56	$9 \cdot 68465$	38	． 3153		49	－2574	－			
57	$9 \cdot 6$	381	－ 31511	7428	97	0．25714	． 05797			
58	$9 \cdot 685$	380	． 31488		97		05804			
60		880	1429	9．7437	497	10.25654	－ 0581			
60	$9 \cdot 685571$	88	14429	$9 \cdot 74375$	497	10－2562	－0581	117		0

61 deg．

29 deg.

					ffi			if		
0	9•685571		$\cdot 31$							
1	$9 \cdot 68579$	380	-314	$9 \cdot 744050$	496	10.255950	058251	117		59
2	-6860	379	- 313	9.74	49	$10 \cdot$	058321	117		
3	686	379	-3137			10	1			7
	$9 \cdot 686$	379	-313							
5	9.686709	379	-313291	-	96	1				
6	$9 \cdot 68693$	378	-313064	7455	496					
7	9.68716	378	-312837	$9 \cdot 74583$	495	10.254165	05867	11		
8	$9 \cdot 68738$	378	-312611	9.746132	49	10-25386	058			
9	$9 \cdot 68761$	378	$\cdot 312384$. 74642	495	$10 \cdot 253571$		117		
10	$9 \cdot 687$	377	-312	$9 \cdot 74672$	495	$10 \cdot 25327$				0
11		377			495	,				9
12	$9 \cdot 68$	377	31170		494					
13	$9 \cdot 688521$	377	-311479	-	494	,				
14	$9 \cdot 688747$	376	- 311253	. 74791	494	$10 \cdot 252087$	-0591			
15	$9 \cdot 68897$	376	-311028	74820	494	$10 \cdot 251791$	0592			
16	9.68	376	-310802	7485	49	$10 \cdot 25149$	0593	18		44
17	9.6	376	. 3105	7488	49	$10 \cdot 25119$	059			43
18	9.689	375	$\cdot 3$	0	493	$10 \cdot 2509$	059			42
19	$9 \cdot 68$	375	1012	9.7493	493	$10 \cdot 25060$	059			
20	$9 \cdot 69009$	375	-309902		493	10-25031	0595			
21	$9 \cdot 69032$	375	-309677		493	$10 \cdot 250015$	059			
22	$9 \cdot 69054$	374	-309452	-	493	$10 \cdot 249719$	0597			
23	9-69077	374	-309228	75057	493	$10 \cdot 249424$	0598			37
24	$9 \cdot 69$	374	-309004	508	492	$10 \cdot 249128$	0598		40	
25	$9 \cdot$	374	-308	9.75116	492	$10 \cdot 24883$	059			
26	$9 \cdot 691$	373	- 3	14	49	248	060			34
27	. 6916	373	0833	$9 \cdot 75175$	492	482	价			
28	9-691	373	-30810	9.75205	92	24	0601			
29	$9 \cdot 69211$	373	-30788	5234	491	10.2476	0602			1
30	$9 \cdot 69233$	372	-30766	52642	491	$10 \cdot 247358$	0603			30
31	$9 \cdot 6925$	372	-30743	$9 \cdot 752937$	491	$10 \cdot 247$	0603			29
32	$9 \cdot 692$	372	-307		491	$10 \cdot 2467$				8
33	$9 \cdot 693$	371	-306992			0.24647				27
34	- 693231	1	676		491	2461	0605			2
35	$9 \cdot 69345$	371	0654	41	490	2458	606			
36	$9 \cdot 6936$	371	-306324	$9 \cdot 75440$	490	24559	0607	11		24
37	$9 \cdot 6938$	370	-306102	75470	490	0-245297	0608			2
38	$9 \cdot 6941$	370	-30588	4997	490	24500	0608			2
39	$9 \cdot 694$	370	- 305	$9 \cdot 75921$	4	4470	0			21
1	9-6945	370	-30543	,	490	24415				20
41	$9 \cdot 69478$		0521	5	489	24412	0611			19
42	$9 \cdot 69500$	369	. 30499	56172	489	24828	0611			8
43	$9 \cdot 69522$	369	- 304771	56465	489	$0 \cdot 243535$	0612			17
44	$9 \cdot 69545$	369	- 304550	567	489	243241	0613			16
45	9-695671	368	-304329	. 757052	489	$10 \cdot 242948$	0613			15
46	$9 \cdot 69589$	368	-304108	-75734	48	$10 \cdot 242655$	0614			
4	9.696	368	- 30388	$9 \cdot 757638$	488	24236	1015			3
4	-69633	368	-30366		488	24206				12
49	$9 \cdot 69655$	-	-303446	5822	888	$0 \cdot 24177$		121		
50	69677	367	-303225	58517	488	迷	0617	21		10
51	$9 \cdot 69699$	367	-303005	58810	488	24	0618	121		
52	$9 \cdot 69721$	367	-302785	$9 \cdot 759102$	488	$10 \cdot 240898$	06188	121		
53	$9 \cdot 69743$	366	-302565	$9 \cdot 759395$	487	10-240605	0619	21		
54	97	366	. 30234	9•75968	48	24031	0620	21		
5	9.69787	366	120	-	487	24002		1219		5
5	$9 \cdot 698094$		0190	60272	887	-239728	0621	1	9-93782	4
57	8813	365	01687	9.760564	887	-239436	06225	21		3
58	$9 \cdot 698532$	365	- 301468		487	0.23914		121		
50	$9 \cdot 698751$	365	- 301249	61148	486	10.238852		121		
60	$9 \cdot 69897$	365	. 30103	9-761439	48	$10 \cdot 2$		12	9.937531	0
	cosine.									

30 deg.

	ne.	ffi	Cosecan		ff;	Cotangent.	Secant.	$\left\|\begin{array}{c} \text { Diffí } \\ 100^{\prime \prime} \end{array}\right\|$	Cosine.	
0										60
1	9•699189									59
2			- 3		486					8
	$9 \cdot 6996$	364	-30037		486	$10 \cdot 237686$	-062	122		7
			-30015	-	486					
5	$9 \cdot 70$	63	$\cdot 29$		485	03				5
6	$9 \cdot 70028$		- 299520	9.763188	485	36812	-062908			
7	9•70049	363	-299	$9 \cdot 763479$	485	21	-06			53
8	9•70071		-299284		485					52
9		363			485	$10 \cdot 235939$				
0	$9 \cdot 701$	362	- 298849		485		-06320			0
11		362			4					49
12	9•70158	362	- 298415		484	67				48
		362	- 298	9•765224	484		-0634			47
14	9.70201	361	- 29798	9-75	484	$\cdot 234486$	-0634			46
15	9•702236	361			484					45
16		361	-29		484	905	-06			44
17	$9 \cdot$	361	$\cdot 297331$		484	3615	-0637			3
18		360								42
19	$9 \cdot 703101$	360	-296899	9.766965	483	3035	- 06			41
	9•70331	360	$\cdot 2966$		48	32745				0
21	$9 \cdot 70353$	360			483	2455				39
22	9•7037	359	-296251	仡	48	2166	-0			38
23		359			48					37
24	9.	359			482	1586				
25		359			48					35
26	$9 \cdot 704$	359	- 295390	9•768992	482	008				34
	9•70482	358	-295175		482	719				33
28	$9 \cdot 705040$	358	$\cdot 294960$		482					32
	$9 \cdot 70525$	358	$\cdot 294746$		482	140				1
		358	$\cdot 294531$		481					30
31	-	357	- 294317	9-77043	481					29
32	$9 \cdot 705$	357	-294102	9:7707	481					28
33	9•70611	357	. 293888		481					27
	9	357	- 29367	9	48					26
	9.7065	356			481					2
36	9•7067	356			481		-065127			24
37	9•70696	356	- 293033	9•772168	480	-227832				23
38	$9 \cdot 70718$	356	-292820	$9 \cdot 77245$	480	(1)	-05			22
39	9	355	$\cdot 292607$	$9 \cdot 772$	480	-227255				21
40		355	$\cdot 292394$		480					0
	$9 \cdot 7078$	355	-29218	9	480	67				
	9•70803	355	,		480	$10 \cdot 226392$	- 06557			18
43	$9 \cdot 708245$	354	- 291755	$9 \cdot 773896$	480	-226104				17
	9.708458	354	- 291542	$9 \cdot 774184$	479	$\cdot 225816$				16
15	$9 \cdot 708670$	354	- 291330	$9 \cdot 774471$	479					15
46	9.70888	354	- 291118	9.77475	479	22541	- 06			14
	9•70909	353	- 290906	$9 \cdot 775046$	479	-224954				13
48	9•70930	353	- 290694		479	-224667				2
	9-709518	353	200482	9•775621	479	$\cdot 224379$	- 06102			11
5	$9 \cdot 709730$	353	- 290270	-	478	$10 \cdot 224092$				0
51	9•709941	353	-290059	$9 \cdot 776195$	478	-223805				
5	9-710153	352	-289847	$9 \cdot 776482$	478	$10 \cdot 223518$				8
	9-710364	352	- 289636	$9 \cdot 776769$	478	-223231	- 06		3596	7
54	9.710575	352	- 289425	$9 \cdot 777055$	478	$10 \cdot 222945$				6
5	$9 \cdot 71078$	352	- 28921	9-777342	478	$10 \cdot 2 \cdot 22658$				5
56	$9 \cdot 710997$	351	- 289003	77628	478	-222372				4
	$9 \cdot 71120$	351	-288792	$9 \cdot 777915$	477	$10 \cdot 222085$				3
58	$9 \cdot 71141$	351	- 28858	8201	477					2
5	$9 \cdot 711629$	351	$\cdot 288371$	$9 \cdot 778187$	477	$10 \cdot 221513$	-068			1
60	$9 \cdot 711839$	350	- 288161	$9 \cdot 778774$	477	$10 \cdot 2 \cdot 212: 26$	-066.:		10	0
	sine.									

31 deg.

,	Sine.	$\begin{aligned} & \overline{\text { Diff; }} \\ & 100^{\prime} \end{aligned}$	Cosecant.	Tangent.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cotangent.	Secant.	$\left\|\begin{array}{c} \text { Diff: } \\ 100^{\prime \prime} \end{array}\right\|$	Cosine.	,
0	$9 \cdot 711839$		$\cdot 288161$	9-778774		$10 \cdot 221226$. 066934		$9 \cdot 933066$	60
1	$9 \cdot 712050$	350	- 287950	9•779060	477	$10 \cdot 220940$	-067010	126	9.932990	59
2	$9 \cdot 712260$	350	$\cdot 287740$	9•779346	477	$10 \cdot 220654$	-067086	127	$9 \cdot 932914$	58
3	$9 \cdot 712469$	350	$\cdot 287531$	9•779632	477	10-220368	-067162	127	$9 \cdot 932838$	57
4	$9 \cdot 712679$	349	- 287321	$9 \cdot 779918$	476	$10 \cdot 220082$	-067238	127	9.932762	56
5	9.712889	349	- 287111	9•780203	476	10-219797	-067315	127	9-932685	55
6	9•713098	349	-286902	9-780489	476	10-219511	-067391	127	9-932609	54
7	9.713308	349	-286692	9.780775	476	$10 \cdot 219225$	-067467	127	$9 \cdot 932533$	53
8	$9 \cdot 713517$	349	- 286483	9-781060	476	$10 \cdot 218940$	-067543	127	9.932457	52
9	9•713726	348	-286274	$9 \cdot 781346$	476	10-218654	-067620	127	$9 \cdot 932380$	51
10	9-713935	348	-286065	$9 \cdot 781631$	476	$10 \cdot 218369$	-067696	127	$9 \cdot 932304$	50
11	$9 \cdot 714144$	348	$\cdot 285856$	$9 \cdot 781916$	475	$10 \cdot 218084$	-067772	127	9.932228	49
12	$9 \cdot 714352$	348	$\cdot 285648$	$9 \cdot 782201$	475	$10 \cdot 217799$	- 067849	127	9.932151	48
13	$9 \cdot 714561$	347	$\cdot 285439$	$9 \cdot 782486$	475	$10 \cdot 217514$	-067925	127	$9 \cdot 932075$	47
14	$9 \cdot 714769$	347	- 285231	$9 \cdot 782771$	475	$10 \cdot 217229$	-068002	128	$9 \cdot 931998$	46
15	9•714978	347	$\cdot 285022$	9-783056	475	$10 \cdot 216944$	- 068079	128	$9 \cdot 931921$	45
16	9•715186	347	:284814	$9 \cdot 783341$	475	$10 \cdot 216659$	- 068155	128	$9 \cdot 931845$	44
17	$9 \cdot 715394$	347	$\cdot 284606$	9.783626	475	10-216374	- 068232	128	9.931768	43
18	$9 \cdot 715602$	346	-284398	$9 \cdot 783910$	474	$10 \cdot 216090$	-068309	128	$9 \cdot 931691$	42
19	$9 \cdot 715809$	346	. 284191	9.784195	474	$10 \cdot 215805$	- 068386	128	9.931614	41
20	$9 \cdot 716017$	346	$\cdot 283983$	$9 \cdot 784479$	474	$10 \cdot 215521$	-068463	128	9-931537	40
21	$9 \cdot 716224$	346	$\cdot 283776$	9•784764	474	$10 \cdot 215236$	-068540	128	9.931460	39
22	$9 \cdot 716432$	345	- 283568	$9 \cdot 785048$	474	$10 \cdot 214952$	- 068617	128	$9 \cdot 931383$	38
23	$9 \cdot 716639$	345	$\cdot 283361$	$9 \cdot 785332$	474	10-214668	-068694	128	9.931306	37
24	$9 \cdot 716846$	345	-283154	9.785616	474	$10 \cdot 214384$	-068771	128	9.931229	36
25	$9 \cdot 717053$	345	-28:2947	$9 \cdot 785900$	473	$10 \cdot 214100$	-068848	129	$9 \cdot 931152$	35
26	9-717259	345	- 282741	9.786184	473	$10 \cdot 213816$	- 068925	12	9.931075	34
27	$9 \cdot 717466$	344	$\cdot 282534$	9.786468	473	$10 \cdot 213532$	- 069002	129	$9 \cdot 930998$	33
28	$9 \cdot 717673$	344	- 282327	9.786752	473	10-213248	-069079	129	9.930921	32
29	$9 \cdot 717879$	344	-282121	$9 \cdot 787036$	473	$10 \cdot 212964$	-069157	129	$9 \cdot 930843$	31
30	$9 \cdot 718085$	344	- 281915	$9 \cdot 787319$	473	$10 \cdot 212681$	-069234		$9 \cdot 930766$	30
31	$9 \cdot 718291$	343	-281709	9•787603	473	$10 \cdot 212397$	-069312	129	$9 \cdot 930688$	29
32	$9 \cdot 718497$	343	- 281503	$9 \cdot 787886$	472	$10 \cdot 21.2114$	-069389	129	$9 \cdot 930611$	28
33	$9 \cdot 718703$	343	- 281297	$9 \cdot 788170$	472	$10 \cdot 211830$. 069467	129	9.930533	27
34	$9 \cdot 718909$	343	- 281091	9.788453	472	$10 \cdot 211547$	-069544	129	9.930456	26
35	9-719114	343	-280886	y. 788736	472	$10 \cdot 211264$	-069622	129	$9 \cdot 930378$	25
36	$9 \cdot 719320$	342	- 280680	$9 \cdot 789019$	472	$10 \cdot 210981$	-069700	129	$9 \cdot 930300$	24
37	$9 \cdot 719525$	342	- 280475	9•789302	472	$10 \cdot 210698$	-069777	130	9.930223	23
38	$9 \cdot 719730$	342	- 280270	9.789585	472	$10 \cdot 210415$	-069855	130	$9 \cdot 930145$	22
39	9.719935	342	-280065	$9 \cdot 789868$	471	$10 \cdot 210132$	-069933	130	9-930067	21
40	$9 \cdot 720140$	341	$\cdot 279860$	9•790151	471	$10 \cdot 209849$	-070011	130	9-929989	20
41	$9 \cdot 720345$	341	-279655	$9 \cdot 790433$	471	$10 \cdot 209567$. 070089	130	9-929911	19
42	$9 \cdot 720549$	341	- 279451	$9 \cdot 790716$	471	$10 \cdot 209284$	- 070167	130	9-929833	18
43	9.720754	341	-279246	$9 \cdot 790999$	471	$10 \cdot 209001$	-070245	130	9-929755	17
44	$9 \cdot 720958$	340	$\cdot 279042$	9.791281	471	$10 \cdot 208719$	-070323	130	9-929677	16
45	9.721162	340	$\cdot 278838$	9-791563	471	$10 \cdot 208437$	-070401	130	9.929599	15
46	$9 \cdot 721366$	340	$\cdot 278634$	9-791846	470	$10 \cdot 208154$	- 070479	130	$9 \cdot 929521$	14
47	9.721570	340	$\cdot 278430$	9•792128	470	10-207872	-070558	130	9.929442	13
48	9.721774	340	-278226	$9 \cdot 792410$	470	$10 \cdot 207590$. 070636	130	9-929364	12
49	$9 \cdot 721978$	339	$\cdot 278022$	9•792692	470	$10 \cdot 207308$	-070714	131	9-929286	11
50	$9 \cdot 722181$	339	$\cdot 277819$	9•792974	470	$10 \cdot 207026$	-070793	131	9-929207	10
51	9.722385	339	$\cdot 277615$	9-793256	470	$10 \cdot 206744$	-070871	131	9-929129	9
52	9.722588	339	-277412	9-793538	470	$10 \cdot 206462$	- 070950	131	9-929050	8
53	$9 \cdot 722791$	339	$\cdot 277209$	9.793819	469	$10 \cdot 206181$	- 071028	131	$9 \cdot 928972$	7
54	$9 \cdot 722994$	338	-277006	9-794101	469	$10 \cdot 205899$. 071107	131	9-928893	6
55	9:723197	338	-276803	9•794383	469	$10 \cdot 205617$	- 071185	131	$9 \cdot 928815$	5
56	9.723400	338	-276600	9-794664	469	$10 \cdot 205336$	- 071264	131	$9 \cdot 928736$	4
57	9.723603	338	-276397	9-794945	469	$10 \cdot 205055$. 071343	131	9-928657	3
อ 8	9-723805	337	- 276195	9•795227	469	10-204773	. 071422	131	$9 \cdot 928578$	2
59	9.724007	337	$\cdot 275993$	9•795508	469	$10 \cdot 204492$	- 071501	131	$9 \cdot 928499$	1
60	$9 \cdot 724210$	337	$\cdot 275790$	$9 \cdot 795789$	468	$10 \cdot 204211$	- 071580	13	$9 \cdot 928420$	0
,	Cosine.		Secant.	Cotangent.		Tangent.	$\overline{\text { cosecant. }}$		Sine.	

32 deg.

	Sine.		Cosecant.	Tancent	${ }^{\text {Diffi }}$ 10,	Cotangent.	Secant.	\| ${ }_{\text {Difif }} 1$	Cosine.	
0										60
			275	9.796070	468	10-20	071658			59
2	9•724614	337	-275386	9.796351	468	$10 \cdot 203649$				58
3	9•724816	336	-275184	$9 \cdot 796632$	468	$10 \cdot 203368$	071817			57
	$9 \cdot 725017$	336	$\cdot 274983$	$9 \cdot 796913$	468	10-203087				-
5	$9 \cdot 725219$	336	-274781	9.797194	468	10-202806	07197			
6	9.72542	336	$\cdot 274580$	9•797475	46	$10 \cdot 20252$	072054		㐌	
7	9.72562		$\cdot 274378$	9.7977	468	$10 \cdot 202$				53
	9.72582	335	-274177	-	467	$10 \cdot 201$				52
	$9 \cdot 72602$,	-273976	$9 \cdot 7983$	467	$10 \cdot 20168$	072			
10	9-72622	335	$\cdot 273775$	$9 \cdot 798596$	467	10-201404	07237			50
11	9-72642	335	$\cdot 273574$	$9 \cdot 798877$	467	10-201123	072451			49
12	$9 \cdot 72662$	334	-273374	9•799157	467	10-200843	072			48
13	$9 \cdot 72682$	334	-273173	9.79943	467	10-20056	072610			47
14	9.72702	334	-272973	9.79971	467	$10 \cdot 20028$	072690			46
15	9.7272	334	-272772	999	467	$10 \cdot 200$	0727		27231	45
16	9.72742	334	$\cdot 272572$	9-800277	466	10-19972	072			44
17	9.727628	333	:272372	- 800557	466	10-199443	07292			3
18	9-72782	333	-272172	$9 \cdot 80083$	466	10-19916	073009			2
19	9.72802	333	-271973	9.801116	46	10-19888	07308		26911	41
20	9.72822		$\cdot 271773$	$9 \cdot 80139$	466	10-19860	0731		26831	0
21	9.72842	333	- 27157	9	466	10-1983	-07		26751	
22	9.72862	332	-271374	8019	46	$10 \cdot 19804$	-0733		2667	
23	9.72882	332	-271175	80223	466	10-19776	-0734			
24	9.72902	332	. 270976	-802513	465	10-19748	-07348			
25	9-72922	332	$\cdot 270777$	9.802792	465	10-197208	-073569			
26	9.729422	331	-270578	$9 \cdot 803072$	465	10-196928	-073649			
27	9.729621	331	-270379	9.80335	465	10-196649	-073730			
28	9.72982	331	- 270	$9 \cdot 80363$	465	10-19637	- 073810			32
29	9.73001	331	-26998	$9 \cdot 8039$	465	10-19609	-073890			
30	9•73021	330	- 269783	8041	465	10-19581	-073971			0
31	$9 \cdot 73041$	330	-269585	80446	465	10-19553	- 07405			
32	$9 \cdot 730613$	330	-269387	-804745	464	10-19525	-07413			
33	9.730811	330	-269189	$9 \cdot 805023$	464	10-194977	074212			
34	9.73100	330	-268991	9.805302	464	10-19469	-074293			
35	9.73120	329	-268794	$9 \cdot 805580$	464	10-19442	-0743			25
36	9.73140	329	- 26859	9.8058	464	10-19414				
37	9.73160		- 268398	80613	464	10-19386	- 0745			
38	9•73179	329	- 268201	806415	464	10-19358	-0746			
39	$9 \cdot 73199$	329	-268004	$9 \cdot 80669$	464	10-193307	0746			
40	$9 \cdot 73219$	328	-267807	9-806971	463	10-193029	-0747			0
41	9.73239	328	-267610	$9 \cdot 8072$	463	10:192751	-0748			19
42	9.73258	328	-267413	9.807527	463	10-19247	-0749			8
4	$9 \cdot 73278$	328	- 267216	$9 \cdot 8078$	46	10-19219	-0750			
44	9.732980	328	-267020	$9 \cdot 80808$	463	10-191917	-0751			
45	9.73317	327	266823	80836	463	10-19163				
46	$9 \cdot 733373$	327	-266627	80863	463	10-191362	07526			14
47	$9 \cdot 733569$	327	-266431	- 808916	463	10-19108	07534			3
48	9.73376	327	-266235	9.80919	462	10-19080	-07542		2457	,
49	$9 \cdot 73396$	32	-266039	9-80947	462	10-19052	-07550		2449	11
5	9.73415	326	-26584	$9 \cdot 8097$	462	10-19025	- 07559			10
51	9-734353	326	-265647	9.81002	462	10-18997	. 07567			9
52	9.734549	22	-265451	. 8103	462	1890	. 07575			8
53	9.734744	326	$\cdot 265256$. 810580	462	10-189420	-07583			
54	$9 \cdot 734939$	325	- 265061	9.810857	462	10-189143	07591			6
55	$9 \cdot 73513$	325	-264865	9.811134	462	10-18886	-075999		2400	
56	$9 \cdot 735$	325	-264670	9.811410	461	10-18859	$\cdot 076081$	13	2391	4
57	9-73552	325	- 26447	81168	461	10-1883	- 07616	136	2383	3
58	$9 \cdot 73571$	325	-264281	9.81196	461	$10 \cdot 1880$	0762	13		2
59	9.735914	324	-264086	$9 \cdot 812241$	461	10-187759	076327	,	$9 \cdot 92367$	1
60	$9 \cdot 736109$	324	263891	$9 \cdot 812517$	46	10		1	$9 \cdot 92359$	0
	sine.									

57 DEG.

33 deg.

	Sine.	${ }_{\text {Diff }}$	Cosecant.		${ }_{\text {dif }}$	Cotangent.	Secant.	${ }_{100}^{\text {Diff }}$	Cosine.	
0	$9 \cdot 7$		$\cdot 263891$	9•812517		$\overline{10 \cdot 187483}$				60
	9.736303	324	-263697	9.812794	461	10-187206	. 076491	137	$9 \cdot 923509$	59
2	9.736498	324	-263502	9.813070	461	10-186930	.076573	13	9.923427	58
3	9.73669	324	-263308	9.813347	461	10-186653	- 076	37	. 923	57
4	9.73688	323	-263114	$9 \cdot 8136$	460	10-186377				56
5	9.737080	323	-262920	9.8138	460	10-186101				55
6	9.737274	323	-262726	9.814175	460	10-185825	. 0769			54
7	9.737467	323	-262533	9.814452	460	10-185548	. 0769	37	23016	5
8	9.737661	323	-262339	9.814728	460	10-185272	-077		22933	52
9	9.737855	322	-262145	$9 \cdot 815004$	460	10-184996	- 077		22	51
10	9.7380	322	$\cdot 261952$	9.815279	460	10-184721	-077		922768	5
11	9.738241	322	-261759	9.815555	460	10-184445	-0773	138		49
12	9.738434	322	-261566	9.815831	460	10-184169	-0778			48
13	$9 \cdot 738627$	322	- 261373	$9 \cdot 816107$	459	10-183893	-07748	138	9225:0	77
14	$9 \cdot 738820$	321	-261180	9-816382	459	10-183618	077562	188	- 9222438	46
15	9-739013	321	-260987	$9 \cdot 816658$	459	10-183342	-0776	138	-922355	45
16	3.739206	321	-260794	9.816933	459	10-183067	. 0777	138	$9 \cdot 922272$	44
17	9.73939	321	-260602	9.81720	459	$10 \cdot 182791$	0778	1	. 922189	43
18	9.739590	321	-260410	$9 \cdot 81748$	459	10-182516	-07789	138	922106	42
19	9-739783	320	-260217	9.81775	459	10-182:41	07	38		41
20	9.739975	320	-260025	9.818035	459	10-181965	. 0780	38	921	40
21	9.740167	320	-259833	$9 \cdot 818310$	459	10-181690	078143	138	9-921857	39
22	9.740359	$3: 0$	$\cdot 259641$	$9 \cdot 81858$	458	10-181415	07822	139	$9 \cdot 921774$	38
23	9.740550	320	.259450	9.818860	458	10-181140	0783	139	21	37
24	9.740742	319	$\cdot 259258$	9.81913	45	10-180865	-0783	139	9.921607	36
25	9.740934	319	-259066	819410	458	10•180590	0784	139	.921524	5
26	9.741125	319	- 258875	81968	458	10-180316	07855	139	2	4
27	9.741316	319	- 258684	9.819959	458	10-180041	0786	139	$9 \cdot 921$	33
28	9.741508	319	- 258492	9.820234	458	10-179766	07872		-	32
29	9.741699	318	$\cdot 258301$	$9 \cdot 820508$	458	10-179492	-0788		2el	31
30	9.741889	318	- 258111	9-820783	458	$10 \cdot 179217$	0788		d	30
31	9.742080	318	-257920	82105	457	10-178943	-07897	139	9.9210	29
32	9.742271	318	$\cdot 257729$	821332	457	10-178668	-07906	139	-920	28
33	9.742462	318	$\cdot 257538$. 821	457	10-178394	- 0791	13	9.9208	27
34	9.742652	317	$\cdot 257348$	9.821880	457	10-178120	-0\%9228	140	20	26
35	9.742842	317	-257158	9.822154	457	10-177846	. 079312	140	20	5
36	$9 \cdot 743033$	317	-256967	9.822429	457	$10 \cdot 177571$	-0793	140	. 9206	-
37	9.743223	317	-256777	$9 \cdot 822703$	457	10-177297	. 0794		9205	3
38	9.743413	317	-256587	$9 \cdot 822977$	457	10-177023	- 7956		-	2
39	9.743602	316	- 256398	$9 \cdot 823250$	457	10-176750	-0796			21
40	9.743792	316	-256208	9.823524	456	10-176476	-07973		-920268	2
41	9.743982	316	- 256018	9.823798	456	10-176202	07981	140	9.920184	19
42	9.744171	316	. 255829	$9 \cdot 824072$	456	10-175928	-07990	140	22009	8
43	9.744361	316	. 255639	9.824345	456	$10 \cdot 175655$. 0799	140	92001	7
44	9.744550	315	-255450	9.824619	456	$10 \cdot 175381$.0800	140	199	16
45	9.744739	315	-255261	9-824893	456	10-175107	-0801	1		5
46	9.744928	315	-255072	9.825166	456	10-174834				4
47	9.745117	315	- 254883	$9 \cdot 825439$	456	$10 \cdot 174561$	-08032	141	91	13
48	$9 \cdot 745306$	315	-254694	$9 \cdot 825713$	456	$10 \cdot 174287$	-08040	141	919	12
49	9•74549	314	- 254506	9-825986	45	$10 \cdot 174014$	08049	41	919	
50	$9 \cdot 745683$	31	-254317	$9 \cdot 826259$	455	$10 \cdot 173741$	-0805		19	
51	9.745871	314	- 254129	9.826532	455	10-173468	-0806		193	9
52	$9 \cdot 746060$	314	-253940	$9 \cdot 826805$	455	$10 \cdot 173195$	-0807	1	919254	8
53	9.746248	314	-253752	9.827078	455	$10 \cdot 172922$	-0808	41		7
54	9.746436	313	- 253564	$9 \cdot 827351$	455	10-172649	08091	41	19085	6
55	9.746624	313	-253376	9.827624	455	10-172376	-08100	141	919000	5
56	9.746812	313	- 253188	9.827897	455	10-172103	. 08108		41891	4
57	9.746999	313	-253001	9-828170	455	10-171830	8117		-918830	3
58	9.747187	313	-252813	$9 \cdot 828442$	454	10.171558	081255		$9 \cdot 918745$	2
60	9.747374	312	-252626	${ }^{9} 82888715$	454	10.171285	-081341	14		1
60	9.747562	312	$\cdot 252438$	9.828987	454	10171013	081426	142	9.918574	0
	Cusiue.		Secant.			Tangent.			sine.	

56 DEG.

34 DEG.

	Sine.	Diff			${ }_{\text {Diff }}{ }_{\text {Dif }}$			Diff ${ }^{\text {Dif }}$	Cosine.	
0	9.7		$\cdot 25$	9.		$\overline{10 \cdot 171013}$. 08		9-918574	60
1	$9 \cdot 747749$	312	- 252251	$9 \cdot 829260$	454	$10 \cdot 170740$. 081511	142	9.91	59
2	9.74793	312	-252064	9.829532	454	10-170468	-081596	142	- 91	58
3	9.748123	312	-251877	829	454	10-170195		142		57
4	9.748310	311	-251690	83007	454	10-169023	-081767	14		6
5		311	-251503		454	10-169651	081	142		5
6	$9 \cdot 74868$	311	- 251317	$9 \cdot 830621$	454	10-169379	081938	142	$9 \cdot 918062$	54
7	9•748870	311	$\cdot 251130$	9•830893	453	10-169107	-082024	143	11	53
8	9.749056	311	-250944	9.831165	458	10-168835	-082109	143	91	52
9	9•749243	310	-250757	. 8314	45	10.168563	-082195	143	$9 \cdot 917805$	1
10	9.749429	31	-250571	-8317	453	10-16829	-08228	143		0
11	9.74961	310	-25038	8319	453	10-168019	-0823	14		9
12	9.749801	310	. 250199	832	453	10-167747	-082	14		8
13	9.749987	310	. 250013	-8325	453	10.167475	-0825	14		7
14	9•750172	309	- 249828	9-83279	453	10-167204	-082624	143	9.917376	46
15	9.750358	309	- 249642	9.8330	453	10-166932	-082710	143	1	45
16	9.750543	309	- 249457	$9 \cdot 8333$	45	10.166661	. 082796	14	9172	44
17	$9 \cdot 750729$	30	- 24927	$9 \cdot 8336$	452	10-16638	-0828	14	9.917118	43
18	9•750914		. 249086	9.8338	452	10-166118	-082968		$9 \cdot 917032$	2
19	9.751039	308	- 248901	-83415	452	10•165846	-0830			
20	9.751284	308	-248716	$9 \cdot 8344$	452	10-165575	. 0831			0
21	9.751469	308	$\cdot 248531$	$9 \cdot 8346$	452	10-165304	-083227			9
22	9.751654	308	- 248346	9.8349	452	$10 \cdot 165033$	-08331			38
23	9•751839	308	- 248161	$9 \cdot 83523$	45	10.164762	. 08340		9-916600	37
24	$9 \cdot 752023$	30	$\cdot 247977$	$9 \cdot 8$	45	10-164	-083		9-916514	
25	$9 \cdot 752208$	307	- 24779	8357	452	- 16422	-083		9-916427	
26	9.752392	7	. 247608	. 836051	452	10-163949	-0836			
27	9.752576	307	- 247424	9.836322	451	10-163678	083			
28	9.752760	307	. 247240	$9 \cdot 836593$	451	$10 \cdot 163407$	-0838			
29	9.752944	307	$\cdot 247056$	$9 \cdot 83686$	451	10.163136	-0839		$9 \cdot 91$	
30	9.753128	306	- 246872	9•83713	451	10-1628	-0840			
31	$9 \cdot 753312$. 246688	9.8374	451	10-1625	-0840			
32	9.753		. 246505	837	451	$10 \cdot 162325$				
33	$9 \cdot 753679$	306	- 246321	837	451	10-162054	0842			
34	9.753862	306	-246138	$9 \cdot 83821$	451	10-161784	0843			
35	9.754046	305	- 245954	$9 \cdot 83848$	451	10-161513	-084441		$9 \cdot 9155$	5
36	9.75422	30	$\cdot 245771$	$9 \cdot 83875$	451	10-161243	-084528	145	9.9154	
${ }^{3}$	$9 \cdot 75441$	30	. 245588	$9 \cdot 839027$	45	10-160973	. 08461	145	9-91538	23
38	9•75459	305	- 245405	$9 \cdot 8392$	450	10-1607	-084			22
39	$9 \cdot 754778$	05	- 245222	9.8395	450	10-160432	-0847			21
40	9.754960	304	- 245040	. 83983	450	10-160162	-0848			
41	9.755143	304	- 244857	9•84010	450	10-159892	-0849			
42	$9 \cdot 755326$	304	-244674	9•84037	450	10-159622	-08505			
43	9.75550	30	- 244492	$9 \cdot 84064$	450	10-159353	. 085140			
44	9.75568	30	- 244310	$9 \cdot 84091$	450	10-15908	-085227	146	9.9147	6
45	9.755872	304	- 244128	$9 \cdot 84118$	45	10-15881	-0853		1	
46	9.756054	303	- 243946	$9 \cdot 84145$	45	10-158543	-0854			
47	9.756236	303	. 243764	9•84172	449	10-158274	0854			
48	9-756418	303	243582	. 84199	449	10-158004	-			
49	$9 \cdot 756600$	303	- 243400	$9 \cdot 84226$	449	10-157734	-0856			
50	9.75678	303	- 243218	$9 \cdot 8425$	449	10-157465	-08575		9-914246	10
51	9.75696	30	$\cdot 243037$	$9 \cdot 84280$	449	10-157195	-085842	47	9-914158	9
52	9.75714	302	- 242856	9.8430	449	10-15692	.085930	147	91407	
5	9.75732	302	$\cdot 242674$	$9 \cdot 84334$	449	10-15665	-0860	14	13	
54	9•757507	302	- 242493	9.843612	4	10-156388	-08610	147		
55	9.757688	302	- 242312	. 843882	449	10-156118	-086194	147		
56	$9 \cdot 757869$	301	$\cdot 242131$	$9 \cdot 844151$	449	10-155849	-086282	147	$9 \cdot 91371$	
5	9•758050	301	- 241950	$9 \cdot 84442$	448	10-155580	-086370	47	. 91363	
58	9•75823	301	$\cdot 241770$	9.84468	448	10-155311	-086459	147	1-354	2
59	9•758411	301	- 241589	$9 \cdot 844958$	448	10-155042	-086547	147	9134	1
60	$9 \cdot 75859$	301	24140	$9 \cdot 845227$	448	10-154773	-086635	147	-	0
	Cosine.		Seeant.	-		Tangent.				

55 DEG.

35 deg.

		$100^{\prime \prime}$						$\left\|\begin{array}{l\|} \hline D_{i f f} \\ 100^{\prime \prime} \end{array}\right\|$	Cosine.	
0										6
1	9				,					59
2	9-758952	300		$9 \cdot 84576$	448	$10 \cdot 154236$	-086813	7		8
3	$9 \cdot 75913$	30	- 240	-84603	448		-086901	148		7
4	9•7593	300	- 240688	$9 \cdot 846302$	448		- 086990	148		6
5	$9 \cdot 759$	300		$9 \cdot 846$	448					5
6	$9 \cdot 759$	300	- 240328	$9 \cdot 8468$	448	10-153161	-087		$9 \cdot 91283$	4
7	$9 \cdot 759852$	299	- 24014	$9 \cdot 847107$	448		- 087256			3
8	$9 \cdot 7600$	299	$\cdot 239$	9-84737	447	10-152624	- 087			2
9	$9 \cdot 760211$	299	- 239789		447		-087			1
10	9•760390	299	- 239610	-	447	10	-08752			0
11	$9 \cdot 760569$	299	- 239431	$9 \cdot 84818$	447		-087612			9
12	$9 \cdot$	298	- 239252			10-151551	. 087701			8
13	$9 \cdot 760927$	298	- 239073	$9 \cdot 848717$	447	10-151283	-08	149		4
14	$9 \cdot 761106$	298	-238894	$9 \cdot 848986$	447	10-151014				46
15	$9 \cdot 761285$	298	- 238715	$9 \cdot 84925$	447	746				
16	$9 \cdot 761464$	298	- 238536	$9 \cdot 849522$	447	50478	-088058			4
17	9.761642	298	- 238358	$9 \cdot 849790$	447	50.10	- 088147			43
18	9•761821	297	- 238179	$9 \cdot 850058$	446	$10 \cdot 149942$	-088237	149		42
19	9•761999	297	- 238001	$9 \cdot 85032$	446	49675				41
20	$9 \cdot 762177$	297	$\cdot 237823$	$9 \cdot 85059$	446	$10 \cdot 149407$				40
21	9•762356	297	$\cdot 237$	$9 \cdot 8$	44					39
22	$9 \cdot 76253$	297	- 237466	$9 \cdot 85112$	446	$10 \cdot 148871$				8
23	9.762712	296	- 237288	$9 \cdot 85139$	446	604	- 08			37
24	9-762889	296	- 237111		446	8336				36
25	9•763067	296	$\cdot 236933$	仡	446	069	-088			35
26	$9 \cdot 763245$	296	-236	$9 \cdot 85$	446					4
27	9•763422	296	- 236578	-	446	7534				33
28	$9 \cdot 763600$	296	- 236400	$9 \cdot 85$	446	$10 \cdot 147267$				32
29	9•763777	295	- 236223	$9 \cdot 853001$	445	10-146999				31
30	$9 \cdot 763954$	295	-236046	$9 \cdot 853$	445	$10 \cdot 14678$				0
31	$9 \cdot 764131$	295	35869		445	465				9
32	$9 \cdot 764$	295	- 235692	$9 \cdot 853802$	445	$10 \cdot 146198$				28
33	9•764485	295	$\cdot 235515$		445			50		7
34	$9 \cdot 76466$	294	- 235338		445	$10 \cdot 145664$				6
35		294	- 235162		445	$10 \cdot 145397$		15		25
36	$9 \cdot 765015$	294	-234985	$9 \cdot 854870$	445	$10 \cdot 145130$				24
37	9•765191	294	- 234809	$9 \cdot 855137$	445	$10 \cdot 144863$		151		3
38	9•765367	294	-23463		445	4596	- 09003			2
39	$9 \cdot 76554$	294	- 234456	$9 \cdot 85567$	445	10-144329	-09012	151	9-909873	21
40	9.765720	293	-234280	-85181	444	10-144062	-090			20
41	9.765896	293	- 234104	$9 \cdot 85620$	444	$10 \cdot 143796$	- 09			
42	$9 \cdot 766072$	293	233928	9.85647	444	10-143529				18
43	9•766247	293	33753	$9 \cdot 856737$	444	$10 \cdot 143263$. 09			7
44		293		$9 \cdot 857004$	444	10-142996			9-909419	16
45	9•76659	293	- 233402	$9 \cdot 857270$	444	$10 \cdot 142730$	- 09067			
46	9•766774	292	- 233226	$9 \cdot 857537$	444	$10 \cdot 142463$	-09076	152	$9 \cdot 909237$	4
47	$9 \cdot 766949$	292	- 233051	857803	444	$10 \cdot 142197$	- 09085	152		3
48	$9 \cdot 767124$	292	- 2328	$9 \cdot 85806$	444	41931	-09094	152	$9 \cdot 909055$	2
49	$9 \cdot 767300$	292	-232700	$9 \cdot 858336$	444	141664	- 09103	152		-
50	9•767475	292	$\cdot 232525$	$9 \cdot 858602$	444	10-141398	- 09112	15	$9 \cdot 908873$	10
51	9•767649	291	$\cdot 232351$	58868	444	- 141132	- 09121	152	08181	9
52	9•767824	291	- 232176	9.8513	440	10-140866	- 09131			8
53	9•767999	291	$\cdot 232001$	9.859400	443	- 140600	- 091401	152		7
54	9•768173	291	- 231827	9.859666	443	$10 \cdot 140334$	- 09149			6
55	9•768348	291	31652	$9 \cdot 859932$	443	- 140068	- 09158	52	8416	5
56	$9 \cdot 768522$	290	-231478	$9 \cdot 860198$	443	$10 \cdot 139802$	-09167	-		4
57	9•768697	290	$\cdot 231303$	$9 \cdot 860464$	443	-139536	-09176	153	8233	3
58	$9 \cdot 768871$	290	-231129	$9 \cdot 860730$	443	10-139270	-09185	153	08141	2
59	9-769045	290	- 230955	$9 \cdot 860995$	443	10-139005	- 091951	153	908049	1
60	$9 \cdot 769219$	290	-230781	$9 \cdot 86126$	443	10.138739	. 092042	153	9-9079	0
	$n \mathrm{n}$.			Cotangent.		Tangent.	seca		Sine	

36 deg.

	Sine.	$\begin{array}{\|l\|} \text { Diff; } \\ 100^{\prime \prime} \end{array}$	Cosecant.	nt.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cotangent.	Secant.	$\left.\begin{array}{\|l\|} \hline \text { Diff. } \\ 100^{\prime} \end{array} \right\rvert\,$	Cosine.	,
0	9.769219		:230781	$9 \cdot 861261$		10.138739	- 092042			60
1	$9 \cdot 769393$	290	- 230607	$9 \cdot 861527$	443	10-138473	-092134	15	$9 \cdot 907866$	59
2	9•769566	289	- 230434	$9 \cdot 861792$	443	$10 \cdot 138208$	-092226	15	907774	58
3	9•769740	289	- 230260	$9 \cdot 862058$	443	10-137942	-092318	15	907682	57
4	9•769913	289	- 230087	$9 \cdot 862323$	442	10-137677	-092410	15	907590	56
5	9•770087	289	$\cdot 229913$	$9 \cdot 862589$	442	10-137411	-092502	153	907498	55
6	9•770260	289	$\cdot 229740$	$9 \cdot 862854$	442	10-137146	-092594	153	06	54
7	$9 \cdot 770433$	288	- 229567	$9 \cdot 863119$	442	10-136881	-092686	153	907314	53
8	9•770606	288	$\cdot 229394$	$9 \cdot 863385$	442	10-136615	-092778	154	907222	52
9	$9 \cdot 770779$	288	- 229221	$9 \cdot 863650$	442	$10 \cdot 136350$	-092871	15	907129	51
10	9•770952	288	-229048	$9 \cdot 863915$	442	10-136085	-092963	15	907037	5
11	$9 \cdot 771125$	288	- 228875	$9 \cdot 864180$	442	$10 \cdot 135820$	-093055	15	906945	49
12	$9 \cdot 771298$	288	-2288702	$9 \cdot 864445$	442	10-135555	- 093148	15	906852	48
13	$9 \cdot 771470$	287	- 228530	$9 \cdot 864710$	442	$10 \cdot 135290$	-093240	15	906760	47
14	$9 \cdot 771643$	287	. 228357	$9 \cdot 864975$	442	10-135025	-093333	154	906667	46
15	$9 \cdot 771815$	287	- 228185	$9 \cdot 865240$	442	$10 \cdot 134760$	- 093425	15		45
16	9•771987	287	$\cdot 228013$	$9 \cdot 865505$	441	$10 \cdot 134495$	-093518	15	906482	44
17	$9 \cdot 772159$	287	$\cdot 227841$	9-865770	441	$10 \cdot 134230$	- 093611	154	906389	43
18	$9 \cdot 772331$	287	- 227669	$9 \cdot 866035$	441	10-133965	-093704	155	906296	42
19	$9 \cdot 772503$	286	$\cdot 227497$	$9 \cdot 866300$	441	10-133700	-093796	155	006204	41
20	$9 \cdot 772675$	286	- 227325	$9 \cdot 866564$	441	10-133436	-093889	155	6111	40
21	9•772847	286	$\cdot 227153$	$9 \cdot 866829$	441	10-133171	-093982	155	906018	39
22	$9 \cdot 773018$	286	$\cdot 226982$	$9 \cdot 867094$	441	10-132906	-094075	155	905925	38
23	$9 \cdot 773190$	286	- 226810	$9 \cdot 867358$	441	$10 \cdot 132642$	-094168	155	905832	37
24	$9 \cdot 773361$	286	-226639	$9 \cdot 867623$	441	$10 \cdot 132377$	- 094261	155	-905739	36
25	9•773533	285	$\cdot 2 \cdot 26467$	$9 \cdot 867887$	441	$10 \cdot 132113$	-094355	155	905645	35
26	9•773704	285	- 226296	$9 \cdot 868152$	441	$10 \cdot 131848$	-094448	155	905552	34
27	9•773875	285	- 226125	$9 \cdot 868416$	441	$10 \cdot 131584$	-094541	155	459	33
28	$9 \cdot 774046$	285	- 225954	$9 \cdot 868630$	441	$10 \cdot 131320$	-094634	155	905366	32
29	$9 \cdot 774217$	285	. 225783	$9 \cdot 868945$	440	10-131055	-094728	15	05272	1
30	$9 \cdot 774388$	285	- 225612	9-869209	440	$10 \cdot 130791$	-094821	156	005	0
31	9.774558	284	- 225442	9-869473	440	$10 \cdot 130527$	-094915	156	905085	29
32	9•774729	284	- 225271	$9 \cdot 869737$	440	10-130263	-095008	156	9-904992	28
33	$9 \cdot 774899$	284	- 225101	$9 \cdot 870001$	440	10-129999	-095102	156	$9 \cdot 904898$	27
34	$9 \cdot 775070$	284	$\cdot 224930$	$9 \cdot 870265$	440	$10 \cdot 129735$	-095196	156	$9 \cdot 904804$	26
35	$9 \cdot 775240$	284	$\cdot 224760$	9.870529	440	10-129471	-095289	156	$9 \cdot 904711$	25
36	$9 \cdot 775410$	284	$\cdot 224590$	$9 \cdot 870793$	440	$10 \cdot 129207$	-095383	156	9-904617	24
37	$9 \cdot 775580$	283	$\cdot 224420$	$9 \cdot 871057$	440	10-128943	-095477	156	$9 \cdot 904523$	23
38	$9 \cdot 775750$	283	-224250	9.871321	440	10-128679	-095571	156	9-904429	22
39	$9 \cdot 775920$	283	-224080	$9 \cdot 871585$	440	10-128415	-095665	157	$9 \cdot 904335$	21
40	$9 \cdot 776090$	283	-223910	9.871849	440	$10 \cdot 128151$	-095759	157	9•904241	20
41	$9 \cdot 776259$	283	$\cdot 223741$	$9 \cdot 872112$	440	10-127888	-095853	157	$9 \cdot 904147$	19
42	$9 \cdot 776429$	283	$\cdot 223571$	9.872376	439	10-127624	-095947	157	9-904053	18
43	9.776598	282	$\cdot 223402$	$9 \cdot 872640$	439	$10 \cdot 127360$	- 096041	157	9-903959	17
44	9.776768	282	- 223232	$9 \cdot 872903$	439	10-127097	- 096136	157	$9 \cdot 903864$	16
45	9.776937	282	$\cdot 223063$	$9 \cdot 873167$	439	10-126833	- 096230	157	$9 \cdot 903770$	15
46	9.777106	282	-222894	$9 \cdot 873430$	439	$10 \cdot 126570$	-096324	157	$9 \cdot 903676$	14
47	9.777275	282	$\cdot 222725$	9.873694	439	10-126306	-096419	157	$9 \cdot 903581$	13
48	9.777444	281	-222556	$9 \cdot 873957$	439	$10 \cdot 126043$	- 096513	157	$9 \cdot 903487$	12
49	9.777613	281	$\cdot 222387$	$9 \cdot 874220$	439	$10 \cdot 125780$	-096608	157	$9 \cdot 903392$	1
50	9.777781	281	$\cdot 222219$	$9 \cdot 874484$	439	10-125516	-096702	158	9-903298	10
51	9.777950	281	$\cdot 222050$	$9 \cdot 874747$	439	$10 \cdot 125253$	-096797	158	$9 \cdot 903203$	9
52	9.778119	281	$\cdot 221881$	$9 \cdot 875010$	439	$10 \cdot 124990$	-096892	158	$9 \cdot 903108$	8
53	9.778287	281	$\cdot 221713$	$9 \cdot 875273$	439	$10 \cdot 124727$	-096986	158	$9 \cdot 903014$	7
54	$9 \cdot 778455$	280	$\cdot 221545$	$9 \cdot 875536$	439	10-124464	-097081	158	$9 \cdot 902919$	6
55	9.778624	280	$\cdot 221376$	$9 \cdot 875800$	439	$10 \cdot 124200$	-097176	158	$9 \cdot 902824$	5
56	9.778792	280	-221208	$9 \cdot 876063$	438	10-123937	-097271	158	$9 \cdot 902729$	4
57	9.778960	280	-221040	9•876326	438	10-123674	-097366	158	$9 \cdot 902634$	3
58	$9 \cdot 779128$	280	-220872	9.876589	438	10-123411	-097461	158	$9 \cdot 902539$	2
59	$9 \cdot 779295$	280	-220705	9.876851	438	10-123149	$\cdot 097556$	159	$9 \cdot 902444$,
6 C	$9 \cdot 779463$	279	-220537	$9 \cdot 877114$	438	10-122886	-097651	159	$9 \cdot 902349$	0
	Cosine.		Secant.	Cotangent						

53 deg.

37 deg.

		$\overline{0^{\prime \prime}}$			$\begin{aligned} & \text { ifff } \\ & .00^{\prime \prime} \end{aligned}$			$\left.\begin{aligned} & \text { Diff. } \\ & 100^{\prime \prime} \end{aligned} \right\rvert\,$	Cosine.	
0	$9 \cdot 779463$									60
1	9.779		- 22		438		-097747			59
2	$9 \cdot 7797$	279	-220202	$9 \cdot 877640$	438	10-122360	-097842	15		58
3	$9 \cdot 7799$	279	$\cdot 220034$	$9 \cdot 877903$	438	$10 \cdot 122097$	-Q97937		63	5
4	9.78013	279	$\cdot 219867$	9.878165	438	10-121835	-098033	159	$9 \cdot 901967$	56
5	$9 \cdot 780300$	279	- 219700	$9 \cdot 878428$	438	10-121572	-098128	5	9-901872	5
	$9 \cdot 780467$	278	-219533	$9 \cdot 87869$	438	10-121309	-098224	159		54
7	$9 \cdot 780634$	278	-219366	$9 \cdot 878953$	438	10-121047	-098319	159	9.901681	53
8	$9 \cdot 78080$	278	-219199	9.87921	437	10-120784	-09841			52
9	9.780968	278	-219032	$9 \cdot 879478$	437	$10 \cdot 120522$		59		1
10	9.781134	278	- 218866		437	10-120259	-09860	9	- 0181	50
11	$9 \cdot 781301$	278	- 218699	$9 \cdot 880003$	437	10-119997	-098702	160	8	49
12	9.781468	277	-218532		437	10-119735	-098798			48
13	9.781634	277	$\cdot 218366$	$9 \cdot 880528$	437	10-119472	-098894	160	$9 \cdot 901106$	47
14	9.781800	277	-218200	9-880790	437	10-119210	-098990		01010	46
15	9.781966	277	$\cdot 218034$	$9 \cdot 88105$	437	10-118948	-099086	160	-900914	45
16	9.782132	277	$\cdot 217868$	$9 \cdot 88131$	437	118686	-099182			4
17	9.782298	277	- 217702	$9 \cdot 88157$	437	10-118424	-099278	160		43
18	$9 \cdot 782464$	276	- 217536	$9 \cdot 88183$	437	-118161	-09937	0	6	42
19	$9 \cdot 782630$	276	- 217370	$9 \cdot 882101$	437	10-117899	-099			11
20	$9 \cdot 782796$	276	- 217204	$9 \cdot 882363$	437	10-117637	-099567	60	$9 \cdot 900433$	40
21	$9 \cdot 782961$	276	$\cdot 217039$	-88262	437	10-117375	-09966			39
22	9.783127	276	- 216873	y.882887	436	10-117113	-09976		0	38
23	$9 \cdot 783292$	276	- 216708	9.883148	436	$10 \cdot 116852$	-09985			37
24	9.783458	275	- 216542	$9 \cdot 883410$	436	$10 \cdot 116590$	- 09995			36
25	9.783623	275	$\cdot 216377$	$9 \cdot 883672$	436	10-116328	-10004			35
26	9.783788	275	- 216212	9.883	436	116066	-10014			4
27	$9 \cdot 783953$	275	$\cdot 216047$	9.88419	436	15804	-1002			33
28	9.784118	275	- 215882	$9 \cdot 88445$	436	$10 \cdot 115543$	-100			3:
29.	9•784282	275	- 215718	$9 \cdot 88471$	436	115281	10043			31
30	9.784447	274	$\cdot 215553$	$9 \cdot 88498$	436	15020	- 1005			30
31	$9 \cdot 784612$	274	- 215388	$9 \cdot 885242$	436	114758	-100630			9
32	9.784776	274	-215224	9.885503	436	10-114497	-10072	162	1	28
33	9.784941	274	- 215059	9.88576	436	10-114235	-10082	162		27
34	9.785105	274	$\cdot 214895$	9-886026	436	10-113974	-10092			26
35	9.785269	274	- 214731		436	$10 \cdot 113712$	-101019			25
36	$9 \cdot 785433$	273	- 214567	$9 \cdot 886549$	436	10-113451	- 10111			24
37		273	$\cdot 214403$	$9 \cdot 886810$	436	$10 \cdot 113190$	$\cdot 101213$	16	787	23
38	$9 \cdot 785761$	273	$\cdot 214239$	$9 \cdot 887072$	435	- 112928	-101.	162		22
39	$9 \cdot 785925$	273	- 214075	9.88733	435	10-112667	-10140	162	898592	21
40	$9 \cdot 786089$	273	$\cdot 213911$	9.887594	435	112406	- 10150			0
41	9.786252	273	$\cdot 213748$	$9 \cdot 887855$	435	$\cdot 112145$	- 10160	16	$9 \cdot 898397$	19
42	$9 \cdot 786416$	272	- 213584	$9 \cdot 888116$	435	-111884	-10170			8
43	$9 \cdot 786579$	272	- 213421	9-88837	435	111623	- 10179	163	202	7
44	$9 \cdot 786742$	272	$\cdot 213258$. 88863	435	111361	-10189	1		,
45	$9 \cdot 786906$	272	-213094	$9 \cdot 88890$	435	111100	- 10199		00	5
46	9•787069	272	- 212931	9.889160	435	110840	-102092	163		4
47	$9 \cdot 787232$	272	- 212768	$9 \cdot 889421$	435	$10 \cdot 110579$	- 102190		8910	3
48	9.787395	271	- 212605	$9 \cdot 889682$	435	$\cdot 110318$	-102288	163	897712	,
49	9.787557	271	- 212443	-883043	435	10-110057	-10238		1	11
50	$9 \cdot 787720$	271	- 212280	$9 \cdot 890204$	435	109796	- 102484			10
51	9.787883	271	- 212117	-890465	435	-109535	- 102582			9
52	$9 \cdot 788045$	271	- 211955	-890725	435	09275	-102680		32	8
53	9.788208	271	- 211792	-890986	434	100014	-102778			7
54	$9 \cdot 7883$	271	- 211630	$9 \cdot 891247$	434	8753	-102877		$9 \cdot 897123$	6
55	9.788532	270	- 211468	-891507	434	108493	-10297			5
56	$9 \cdot 7886$	270	- 211306	9•891768	434	10-108232	- 10307		$9 \cdot 896926$	4
57	9.788856	270	- 211144	9-892028	434	- 107972	-103172		828	3
58	$9 \cdot 789018$	270	$\cdot 210982$	$9 \cdot 892289$	434	10-107711	- 10327	164	$9 \cdot 896729$	2
59	$9 \cdot 789180$	270	- 210820	$9 \cdot 892549$	434	$10 \cdot 107451$	-103369	164	8065	1
60	$9 \cdot 789342$	270	-210658	$9 \cdot 892810$	434	10-107190	-103468	164	8965	0
,	Cosine.		ecant.	angen		Tangent.	Cosecant.		Sine.	

52 dEG.

38 deg.

	Sine.	Diff,	Cosecant.	Tangent.	${ }_{\text {Diff }}$	Cotangent.	Secant.	Diff:	Cosine.	
0	$\overline{9.789342}$		-210658	$\overline{9 \cdot 892810}$		10•107190	-103468		$\overline{9 \cdot 896532}$	-
1	9.789504	269	-210496	$9 \cdot 893070$	434	10•106930	-103567	164	9•896433	59
2	9•789665	269	$\cdot 210335$	9.893331	434	10-106669	103665	165	9•896335	58
3	9.789827	269	$\cdot 210173$	$9 \cdot 893591$	434	10-106409	-103764	165	9•896236	7
4	9.789988	269	-210012	9•893851	484	10-106149	-103863	165	$9 \cdot 896137$	56
5	9•790149	269	-209851	$9 \cdot 894111$	434	10-105889	-103962	165	9-896038	55
6	9•790310	269	-209690	9.894371	434	10•105629	-104061	165	9-895939	54
7	9•790471	268	- 209529	9.894632	434	10-105368	-104160	165	$9 \cdot 895$	53
	9•790632	268	-209368	$9 \cdot 894892$	434	10-105108	-104259	65	-8957	52
9	9•790793	268	-209207	9.895152	433	10-104848	104359	165	9•89564	51
10	9•790954	268	-209046	$9 \cdot 895412$	433	10-104588	-104458	165	9-895542	50
11	9-791115	268	- 208885	$9 \cdot 895672$	433	10:104328	-104557	165	9.895443	49
12	9.791275	268	- 208725	$9 \cdot 895932$	433	10-104068	-104657	166	$9 \cdot 895343$	48
13	9.791436	267	-208564	9-896192	433	10•103808	-104756	166	9.895244	47
14	9•791596	267	- 208404	9-896452	433	10.103548	-104855	166	9•895	46
15	9.791757	267	- 208243	$9 \cdot 896712$	433	10-103288	-104955	166	$9 \cdot 895$	45
16	9.791917	267	-208083	$9 \cdot 896971$	433	10-103029	-105055	166	9-8949	44
17	9•792077	267	$\cdot 207923$	$9 \cdot 897231$	483	10-102769	-105154	166	9-89484	43
18	9.792237	267	- 207763	$9 \cdot 897491$	433	10-102509	-105254	166	9-8947	42
19	9.792397	266	. 207603	$9 \cdot 897751$	433	10-102249	-105354	166	9.8946	41
20	9.792557	266	- 207443	$9 \cdot 898010$	433	10-101990	-105454	166	9.894	40
21	9.792716	266	. 207284	$9 \cdot 898270$	433	10-101730	-105554	166	$9 \cdot 8$	
22	9.792876	266	-207124	9.898530	433	10-101470	-105654	167	9-8943	8
23	9•793035	266	. 206965	$9 \cdot 898789$	433	10-101211	-105754	167	$9 \cdot 89$	37
24	9•793195	266	. 206805	9-899049	433	10-100951	-105854	167	9.8941	
25	9-793354	265	. 206646	$9 \cdot 899308$	432	10-100692	-105954	167	9.8940	35
26	9•793514	265	-206486	9.899568	432	10-100432	-106054	167	9.8939	34
27	9.793673	265	. 206327	9.899827	432	10-100173	-106154	167	9.8938	
28	9•793832	265	- 206168	9.900086	432	10.099914	-106255	167	9-8937	32
29	9•793991	265	-206009	9-900346	432	10.099654	-10635	167	9•8936	31
30	9.794150	265	. 205850	9-900605	432	10.099395	106456	167	9.8935	30
31	9•794308	264	. 205692	9.900864	432	10.099136	-106556	167	9.8934	
32	9.794467	264	. 205533	9-901124	432	10.098876	-106657	168	9•89334	28
33	9.794626	264	- 205374	$9 \cdot 901383$	432	10.098617	106757	168	9-89324	27
34	9-794784	264	- 205216	9-901642	432	10.098358	- 106858	168	9•89314	26
35	9.794942	264	. 205058	9-901901	432	10.098099	-106959	18	9•893041	25
36	9.795101	264	. 204899	$9 \cdot 902160$	432	10.097840	-107060	168	9•892940	24
37	9.795259	264	-204741	9-902419	432	10.097581	-107161	168	9.8928	23
38	9.795417	263	. 204588	$9 \cdot 902679$	432	10.097321	-107261	168	9-89273	22
39	9.795575	263	. 204425	9-902938	432	10.097062	-107362	168	9:89263	21
40	9.795733	263	- 204267	9-903197	432	10.096803	-107464	168	9•89253	20
41	9.795891	263	-204109	$9 \cdot 903455$	432	10.096545	-107565	168	9.8924	19
42	9.796049	263	-203951	9-903714	431	10.096286	-107666	169	9.89233	18
43	9.796206	263	-203794	$9 \cdot 903973$	431	10.096027	-107767	169	9-8922	17
44	9.796364	263	-203636	$9 \cdot 904232$	431	10.095768	-107868	169	9-892132	16
45	9.796521	262	-203479	$9 \cdot 904491$	431	10.095509	-107970	169	$9 \cdot 89203$	1
46	9.796679	262	- 203321	9.904750	431	10.095250	-108071	169	$9 \cdot 891929$	14
47	9.796836	262	- 203164	$9 \cdot 905008$	431	10.094992	-108173	169	9.891827	13
48	$9 \cdot 796993$	262	- 203007	$9 \cdot 905267$	431	10.094733	-108274	169	$9 \cdot 89172$	12
49	9.797150	262	-202850	9.905526	431	10.094474	-108376	169	9.891624	11
50	9.797307	262	-202693	9.905784	431	10.094216	-108477	16	$9 \cdot 89152$	10
51	9-797464	261	- 202536	9.906043	431	10.093957	-108579	169	9.891421	9
52	9.797621	261	-202379	$9 \cdot 906302$	431	10.093698	108681	170	$9 \cdot 891319$	8
53	$9 \cdot 797777$	261	-202223	$9 \cdot 906560$	431	10.093440	-108783	170	$9 \cdot 891217$	7
54	9.797934	261	-202066	9.906819	431	10.093181	-108885	170	9•891115	6
55	9.798091	261	-201909	9.907077	431	10.092923	-108987	170	$9 \cdot 891013$	5
56	9.798247	261	$\cdot 201753$	9.907336	431	10.092664	-109089	170	9.890911	4
57	9.798403	261	-201597	9.907594	431	10.092406	-109191	170	9.890809	3
58	9.798560	260	- 201440	9•907852	431	$10 \cdot 092148$	-109293	170	$9 \cdot 89070$	2
59	9•798716	260	-201284	$9 \cdot 908111$	431	10.091889	-109395	170	$9 \cdot 89060$	1
60	9.798872	260	- 201128	$9 \cdot 90836$	431	10.091631	-109497	170	9.8905	0
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine	

51 deg.

39 deg.

	Sine.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cosecant.	Tangent.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cotangent.	Secant.	$\left\|\begin{array}{\|l\|} \hline \text { Diff. } \\ 100 \end{array}\right\|$	Cosine.	,
0	9•798872		201128	9-908369		$10 \cdot 091631$	-109457		$9 \cdot 890503$	0
1	9•799028	26	-200972	9-908628	430	$10 \cdot 091372$	-109600	170	$9 \cdot 890400$	59
2	9-7991	260	-200816	9-908886	430	$10 \cdot 091114$	-109702	171	-89029	58
3	$9 \cdot 799339$	260	$\cdot 200661$	9-909144	430	$10 \cdot 090856$	-109805	171	-890195	57
4	9•79949	259	$\cdot 200505$	$9 \cdot 909402$	430	$10 \cdot 090598$	- 10990	171		56
5	9.79965	259	$\cdot 200349$	$9 \cdot 909660$	430	$10 \cdot 090340$	- 110010	171	-889990	55
6	9•79980	259	-20019	9-90991	430	10.090082	- 110112	171	9.889888	54
7	$9 \cdot 799962$	259	- 200038	$9 \cdot 910177$	430	$10 \cdot 089823$	- 110215	17	9-889785	3
8	$9 \cdot 800117$	259	-199883	$9 \cdot 910435$	430	$10 \cdot 089565$	- 110318	171	82	52
9	$9 \cdot 800272$	259	-199728	$9 \cdot 910693$	430	$10 \cdot 089307$	-110421	17	9-889579	1
10	$9 \cdot 800427$	258	-199573	$9 \cdot 910951$	430	$10 \cdot 089049$	-110523	17	崖77	50
11	$9 \cdot 800582$	258	-199418	$9 \cdot 911209$	430	10.088	- 110626	1		49
12	$9 \cdot 800737$	258	-199263	$9 \cdot 911467$	430	10.088533	-110729	17	88971	48
13	$9 \cdot 800892$	258	-199108	$9 \cdot 9117$	430	10.088276	-110832	172		47
14	$9 \cdot 801047$	258	-198953	9:911982	430	$10 \cdot 088018$	- 110936	172	889064	46
15	$9 \cdot 801201$	258	- 198799	. 912240	430			172		45
16	$9 \cdot 801356$	258	-198644	$9 \cdot 912498$	430	10.087502	- 111142	172		4
17	$9 \cdot 801511$	257	-198489	-912756	430	7244	-111245			43
18	$9 \cdot 801665$	257	-198335	$9 \cdot 913014$	430	10.086986	-111349	172		12
19	$9 \cdot 801819$	257	-198181	$9 \cdot 913271$	430	$10 \cdot 086729$	- 111452	7		41
20	$9 \cdot 801973$	257	-198027	$9 \cdot 913529$	429	$10 \cdot 086471$	- 11155	172		40
21	$9 \cdot 802128$	257	-197872	$9 \cdot 913787$	429	10.086213	-111659	173	9-888341	39
22	$9 \cdot 802282$	257	-197718	9-91	429	10.085956	- 11176	173	23	88
23	$9 \cdot 802436$	256	-197564	$9 \cdot 914302$	429	$10 \cdot 085698$	- 111866	173	888134	37
24	$9 \cdot 802$	256	-197411	. 914560	429	$10 \cdot 085440$	- 111970	173	30	6
25	$9 \cdot 802743$	256	-197257	. 914817	429	$10 \cdot 085183$	- 112074	173	$9 \cdot 887926$	5
26	$9 \cdot 802897$	256	-197103	$\cdot 915075$	429	10.084925	-1121	173	887822	4
27	$9 \cdot 803050$	256	-196950	$9 \cdot 915332$	429	10.084668	-11228	173	$9 \cdot 887718$	33
28	$9 \cdot 803204$	256	-196796	. 915590	429	$10 \cdot 084410$	- 1123	173		2
29	$9 \cdot 803357$	256	-196643	$9 \cdot 915847$	429	$10 \cdot 084153$				1
30	$9 \cdot 80351$	255	-196489	-916104	429	10.083896	-112594	173		0
31	$9 \cdot 803664$	255	-196336	$9 \cdot 916362$	429	10.083638	-11269	17	9-887302	29
32	$9 \cdot 803817$	255	-196183	$9 \cdot 916619$	429	10.083381	- 11280	174	887198	8
33	$9 \cdot 803$	255	-196030	9.916877	429	10.083123	- 11	174	9	7
34	$9 \cdot 804123$	255	-195877	$9 \cdot 917134$	429	10.082866		174	$9 \cdot 886989$	6
35	$9 \cdot 804276$	255	-195724	$9 \cdot 917391$	429	10.082609	- 11311	174	$9 \cdot 886885$	5
36	$9 \cdot 804428$	254	-195572	. 917648	429	$10 \cdot 082352$	-113220	174	仡	4
37	$9 \cdot 804581$	254	-195419	$9 \cdot 917905$	429	$10 \cdot 082095$	- 11332			3
38	$9 \cdot 804734$	254	-195266	$\cdot 918163$	429	$10 \cdot 081837$	- 113429	174	8865	22
39	$9 \cdot 804886$	254	-195114	$\cdot 918420$	429	$10 \cdot 081580$	- 11353	1		21
40	$9 \cdot 805039$	254	-194961	$9 \cdot 918677$	429	$10 \cdot 081323$	- 11363		62	0
41	$9 \cdot 805191$	254	-194809	. 918934	429	$10 \cdot 081066$	- 113743			9
42	$9 \cdot 80534{ }^{\text {a }}$	254	-194657	$9 \cdot 919191$	428	$10 \cdot 080809$	- 113848	175	886152	8
43	$9 \cdot 805495$	253	-194505	$9 \cdot 919448$	428	10.080552	- 113953			7
44	$9 \cdot 805647$	253	- 194353	$9 \cdot 919705$	428	10.080295	- 114058		885942	6
45	$9 \cdot 805799$	253	-194201	$9 \cdot 919962$	428	$10 \cdot 080038$	-114163		88583	5
46	$9 \cdot 805951$	253	-194049	$9 \cdot 920219$	428	10.079781	- 114268		857	4
47	$9 \cdot 806103$	253	-193897	$9 \cdot 920476$	428	$10 \cdot 079524$	-114373		885627	13
48	9•806254	253	-193746	$9 \cdot 920733$	428	$10 \cdot 079267$	- 11447		885522	12
49	$9 \cdot 806406$	253	-193594	$9 \cdot 920990$	428	$10 \cdot 079010$	- 11458		885416	1
50	$9 \cdot 806557$	252	- 193443	$9 \cdot 921247$	428	$10 \cdot 078753$	- 114689	17	,	10
51	$9 \cdot 806709$	252	-193291	$9 \cdot 921503$	428	$10 \cdot 078497$	- 114795	176	885205	9
52	$9 \cdot 806860$	252	- 193140	$\cdot 921760$	428	$10 \cdot 078240$	- 114900	,	885100	8
53	$9 \cdot 807011$	252	-192989	$9 \cdot 922017$	428	$10 \cdot 077983$	- 115006	176	884994	7
54	$9 \cdot 807163$	252	- 192837	$9 \cdot 922274$	428	10.077726	- 11511		884889	-
55	$9 \cdot 807314$	252	- 192686	$9 \cdot 922530$	428	$10 \cdot 077470$	- 115217	17	884783	5
56	$9 \cdot 807465$	252	- 192535	$9 \cdot 922787$	428	10.077213	-115323	17	884677	4
57	$9 \cdot 807615$	251	-192385	$9 \cdot 923044$	428	$10 \cdot 076956$	- 115428	176	884572	3
58	$9 \cdot 807766$	251	-192234	$9 \cdot 923300$	428	10.076700	- 115534		884466	2
59	$9 \cdot 807917$	251	-192083	$9 \cdot 923557$	428	10.076443	- 115640	176	884360	1
60	$9 \cdot 808067$	251	- 191933	$9 \cdot 923813$	428	10.076187	-115746	176	884254	0
,	Cosine.		Secant.			angent	can		Sine.	

50 deg.

40 DEG.

	Sine.	Diff ${ }^{\text {Dif }}$			${ }_{\text {Diff, }}$			${ }^{\text {Difi }}$ 10\%		
0										
1						10.075930	-115852	177		59
2	9.808368	251	-191632	9.924327	428	10.075673	115958	77		
3	$9 \cdot 808519$	251	-191481	$9 \cdot 92458$	428	10.075417	-116064	177		7
4	9.808669	250	-191331	$9 \cdot 924840$	427	10.075160	116171			56
5	9.808819	250	-191181	$9 \cdot 925096$	427	10.074904	-116277			
6	$9 \cdot 808$	250	-191031		427					
7	$9 \cdot 809$	250	,	9.9256		10.074				
8	809	250	-190731		427	10.074135				2
9	$9 \cdot 80941$	250	-190581	9-92612	427	10.073878				
10	9•80956	249	-190431	9.92637	427	$10 \cdot 073622$	116			0
11	$9 \cdot 80971$	249	-190282	$9 \cdot 92663$	427	10.073366				
12	$9 \cdot 80986$	249	-190132	9.92689	427	10.0731	117			48
13	9•810017	249	保	227	427	10.0728	-11712			
14	9.810167	249	898	$9 \cdot 927$	427	10.0725				
15	9.810316	249	-18968			10	11			
16	9.810465	248	-189535	9.927915	427	10.072085	-1174	178		
17	9•810614	248	-18938	9.92817	427	10.071829	-1175	178		
18	9.8107	248	-18923	$9 \cdot 92842$	427	10.071573	1176			
19	9•81091	248	-18908	9.92868	427	10	117			
20	9•811061	24	-18893	9-928	427	10.07106	-1178			
21	9.811210	248	88790	291	27	10.07080				
22	$9 \cdot 81135$	248	-188642	9294	,		118			
23	9.811507	247	-188493	9-92970	427	10.070292	-11820			
24	$9 \cdot 81165$	247	-188345	$9 \cdot 9299$	427	10.070036	-1183			
25	9.811804	247	-188196	9.93022	427	10.06978	-1184			
26	9.811952	247	-188048	. 93047	427	10.	118			
27	9.812	247	79	$9 \cdot 930731$	4.7	10.06926	- 118631			
28	9.8122	247	8775	9.93098		10.0690	1187			
29	9.812396	247	-18760	. 93124	426	10.068757	-1188			
30	9•812544	246	-18745	9.93149	426	10.068501	-1189			
31	9.812692	246	-18730	9.93175	426	10.068245	-1190			
32	9.81284	24	-187160	9.932010	426	10.06799	-1191			
32	$9 \cdot 81298$	246	-187012	9.9322	426	10.06773				
34	9.8131	246	-18686	9325	426	10.067	938			
35	9.81328	246	-186717	9.93277	426	10.06722	-11			
36	9.81343	246	$\cdot 186570$.9330	426	10.06696	-11960			
37	$9 \cdot 81357$	245	-186422	9.93328	426	10.066711	-11971			
38	9.81372	245	-186275	$9 \cdot 9335$	426	10.066455	-11982	181		
39	81387		-186128	9.9338	426	10.066	1199	181		
40	$9 \cdot 81401$	245	-18598	9.9340	426	10.065944	-1200	181		
4	9.81416	245	-185834	$9 \cdot 9343$	4.	10.06568	-1201		87	
42	$9 \cdot 81431$	245	-185687	9345	426	10.06543	-12025			
43	9.81446	245	-185540	9.9348	426	$10 \cdot 065177$	-12036			
44	9.81460	244	-185393	$9 \cdot 9350$	426	10.064922	-12047	18		
45	9.8147	244	-185247	$9 \cdot 93533$	426	$10 \cdot 064667$	-12058	181		
46	9.81490	244	-185100	9.935589	426	10.06441	-12068	81	$9 \cdot 87$	
47	815	244	-18495	$9 \cdot 93584$	426	$10 \cdot 0641$	1207	181	-87	
48	9.8151	24	-18480	$9 \cdot 93610$	426	10.0639	1209	182	87	
4	9.81533	244	-184661	$9 \cdot 93635$		10.063645	-12101	182	878	
51	81548	244	-184515	9.9366	426	10.063390	- 121125			
51	9.815632	243	-184368	$9 \cdot 9368$	426	10.063134	-121234	182		
52	9.81577	243	-184222	9.937121	426	$10 \cdot 062879$	-121344			
53	9.81592	243	-184076	9.937376	426	$10 \cdot 062624$	121453	82	8785	
5	$9 \cdot 8160$	243	-183931	9-937632	425	$10 \cdot 062368$	121562	82	9.87843	
55	9.8162	243	-18378	9.93788	425	10.06211	121672	18	87832	
56	9.81636	43	. 18363	$9 \cdot 93814$	425	10.06185	121781	182		
5	9.8165	13	-183493	9.938398	42	10.06160:	121891	18		
58	9.81665	242	-183348	. 93865	425	10.061347	122001	183		
59	9.816798	242	$\cdot 183: 02$	$9 \cdot 938908$	425	10.061092	122110	183		
60	$9 \cdot 816943$	242	$\cdot 183057$	0.9391	425	10	122220	183		

49 deg.

41 deg.

1	Sine.	$\begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}$	Cosecant.	Tangent.	$\begin{array}{\|l\|} \hline \text { Diff; } \\ 1000^{\prime} \end{array}$	Cotangent.	Secant.	$\left\lvert\, \begin{aligned} & \text { Diffi } \\ & 100^{\prime \prime} \end{aligned}\right.$	Cosine.	,
0	$\overline{9.816943}$		-183057	$\overline{9 \cdot 939163}$		10.060837	-122220		$\overline{9 \cdot 877780}$	60
1	$9 \cdot 817088$	242	-182912	9.939418	425	$10 \cdot 060582$	-122330	183	$9 \cdot 877670$	59
2	$9 \cdot 817233$	242	-182767	$9 \cdot 939673$	425	10.060327	-122440	183	$9 \cdot 877560$	58
3	9.817379	242	-182621	$9 \cdot 939928$	425	10.060072	-122550	183	$9 \cdot 877450$	57
4	$9 \cdot 817524$	242	- 182476	$9 \cdot 940183$	425	10.059817	-122660	183	$9 \cdot 877340$	56
5	$9 \cdot 817668$	241	-182332	9-940438	425	$10 \cdot 059562$	-122770	183	9.877230	55
6	$9 \cdot 817813$	241	-182187	$9 \cdot 940694$	425	10.059306	-122880	184	$9 \cdot 877120$	54
7	$9 \cdot 817958$	241	-182042	$9 \cdot 940949$	425	10.059051	-122990 1	184	$9 \cdot 877010$	53
8	$9 \cdot 818103$	241	-181897	$9 \cdot 941204$	425	10.058796	-123101, 1	184	$9 \cdot 876899$	52
9	$9 \cdot 818247$	241	-181753	$9 \cdot 941458$	425	10.058542	-123211 1	184	$9 \cdot 876789$	51
10	$9 \cdot 818392$	241	-181608	9-941714	425	10.058286	-123322	184	$9 \cdot 876678$	50
11	$9 \cdot 818536$	241	-181464	$9 \cdot 941968$	425	10.058032	-123432	184	$9 \cdot 876568$	49
12	$9 \cdot 818681$	240	-181319	$9 \cdot 942223$	425	10.057777	- 123543	184	$9 \cdot 876457$	48
13	$9 \cdot 818825$	240	-181175	9.942478	425	10.057522	-123653	184	$9 \cdot 876347$	47
14	9.818969	240	- 181031	$9 \cdot 942733$	425	10.057267	-123764	184	$9 \cdot 876236$	46
15	$9 \cdot 819113$	240	- 180887	9.942988	425	$10 \cdot 057012$	-123875	185	$9 \cdot 876125$	45
16	$9 \cdot 819257$	240	-180743	9.943243	425	10.056757	-123986	185	9•876014	44
17	$9 \cdot 819401$	240	-180599	9.943498	425	$10 \cdot 056502$	-124096	185	9.875904	43
18	9•819545	240	-180455	$9 \cdot 943752$	425	$10 \cdot 056248$	-124207	185	9.875793	42
19	$9 \cdot 819689$	239	-180311	$9 \cdot 944007$	425	10.055993	-124318	185	$9 \cdot 875682$	41
20	$9 \cdot 819832$	239	- 180168	$9 \cdot 944262$	425	10.055738	-124429	185	$9 \cdot 875571$	40
21	9-819976	239	-180024	$9 \cdot 944517$	425	10.055483	-124541	185	$9 \cdot 875459$	39
22	$9 \cdot 820120$	239	-179880	9.944771	425	$10 \cdot 055229$	-124652	185	-875348	38
23	$9 \cdot 820263$	239	- 179737	$9 \cdot 945026$	425	$10 \cdot 054974$	-124763	185	$9 \cdot 875237$	37
24	$9 \cdot 820406$	239	- 179594	9.945281	425	10.054719	-124874	185	$9 \cdot 875126$	36
25	$9 \cdot 820550$	239	-179450	$9 \cdot 945535$	425	$10 \cdot 054465$	-124986	186	$9 \cdot 875014$	35
26	$9 \cdot 820693$	238	- 179307	9.945790	425	$10 \cdot 054210$	-125097	186	$9 \cdot 874903$	34
27	$9 \cdot 820836$	238	- 179164	9.946045	425	$10 \cdot 053955$	-125209	186	$9 \cdot 874791$	33
28	$9 \cdot 820979$	238	-179021	9.946299	425	10.053701	-125320	186	$9 \cdot 874680$	32
29	$9 \cdot 821122$	238	- 178878	$9 \cdot 946554$	425	$10 \cdot 053446$	-125432	186	$9 \cdot 874568$	31
30	$9 \cdot 821265$	238	- 178735	$9 \cdot 946808$	425	10.053192	- 125544	186	$9 \cdot 874456$	30
31	$9 \cdot 821407$	238	- 178593	$9 \cdot 947063$	425	10.052937	-125656	186	$9 \cdot 874344$	29
32	$9 \cdot 821550$	238	$\cdot 178450$	9.947318	424	$10 \cdot 052682$	-125768	186	9.874232	28
33	$9 \cdot 821693$	238	- 178307	9-947572	424	10.052428	-125879	186	9.874121	27
34	9.821835	237	- 178165	$9 \cdot 947826$	424	$10 \cdot 052174$	-125991	187	9.874009	26
35	$9 \cdot 821977$	237	- 178023	$9 \cdot 948081$	424	10.051919	-126104	187	9.873896	25
36	$9 \cdot 822120$	237	- 177880	$9 \cdot 948336$	424	$10 \cdot 051664$	-126216	187	9.873784	24
37	$9 \cdot 822262$	237	$\cdot 177738$	9.948590	424	10.051410	- 126328	187	$9 \cdot 873672$	23
38	$9 \cdot 822404$	237	$\cdot 177596$	$9 \cdot 948844$	424	$10 \cdot 051156$	-126440	187	9.873560	22
39	$9 \cdot 822546$	237	$\cdot 177454$	$9 \cdot 949099$	424	10.050901	-126552	187	9.873448	21
40	$9 \cdot 822688$	237	-177312	$9 \cdot 949353$	424	10.050647	-126665	187	9.873335	20
41	$9 \cdot 822830$	236	$\cdot 177170$	9-949607	424	10.050393	-126777	187	9.873223	19
42	$9 \cdot 822972$	236	$\cdot 177028$	9.949862	424	10.050138	- 126890	187	$9 \cdot 873110$	18
43	$9 \cdot 823114$	236	$\cdot 176886$	$9 \cdot 950116$	424	$10 \cdot 049884$	-127002	188	$9 \cdot 872998$	17
44	$9 \cdot 823255$	236	$\cdot 176745$	$9 \cdot 950370$	424	10.049630	-127115	188	9.872885	16
45	9-823397	236	$\cdot 176603$	$9 \cdot 950625$	424	10.049375	-127228	188	9.872772	15
46	9.823539	236	$\cdot 176461$	$9 \cdot 950879$	424	10.049121	-127341	188	$9 \cdot 872659$	14
47	$9 \cdot 823680$	236	$\cdot 176320$	9.951133	424	$10 \cdot 048867$	-127453	188	9.872547	13
48	9.823821	235	$\cdot 176179$	9.951388	424	$10 \cdot 048612$	-127566	188	$9 \cdot 872434$	12
49	$9 \cdot 823963$	235	$\cdot 176037$	9.951642	424	10.048358	-127679	188	$9 \cdot 872321$	11
50	9•824104	235	$\cdot 175896$	$9 \cdot 951896$	424	$10 \cdot 048104$	-127792	188	$9 \cdot 872208$	10
51	$9 \cdot 824245$	235	$\cdot 175755$	$9 \cdot 952150$	424	$10 \cdot 047850$	- 127905	188	9.872095	9
52	$9 \cdot 824386$	235	$\cdot 175614$	9.952405	424	$10 \cdot 047595$	- 128019	189	9.871981	8
53	$9 \cdot 824527$	235	$\cdot 175473$	$9 \cdot 952659$	424	10.047341	-128132	189	$9 \cdot 871868$	7
54	9.824668	235	$\cdot 175332$	9.952913	424	10.047087	- 128245	189	$9 \cdot 871755$	6
55	9.824808	234	-175192	$9 \cdot 953167$	424	$10 \cdot 046833$	- 128359	189	9•871641	5
56	9.824949	234	$\cdot 175051$	$9 \cdot 953421$	423	$10 \cdot 046579$	- 128472	189	9.871528	3
57	$9 \cdot 825090$	234	$\cdot 174910$	9.953675	423	10.046325	- 128586	189	$9 \cdot 871414$	3
58	$9 \cdot 825230$	234	- 174770	9.953929	423	$10 \cdot 046071$	-128699	189	9.871301	2
59	$9 \cdot 825371$	234	-174629	$9 \cdot 954183$	423	10.045817	-128813	189	9-871187	1
60	$9 \cdot 825511$	234	$\cdot 174489$	9.954437	423	$10 \cdot 045563$	-128927	189	$9 \cdot 871073$	0
,	Cosine.		Secaut.	Cotangent.		Tangent.	Cosecant.		Sine.	,

42 DEG.

43 DEG.

,	Sine.	$\begin{aligned} & \text { Difff } \\ & \text { low } \end{aligned}$	Cosecant.	Tangent.	$\begin{aligned} & \text { Diff: } \\ & 100^{\prime \prime} \end{aligned}$	Cotangent.	Secant.	$\left\lvert\, \begin{aligned} & \text { Diff; } \\ & 100^{\prime \prime} \end{aligned}\right.$	Cosine.	,
0	$\overline{9.833783}$		-166217	9-969656		10.030344	-135873		9•864127	$\overline{60}$
1	$9 \cdot 833919$	226	-166081	9.969909	422	10.030091	- 135990	196	$9 \cdot 864010$	59
2	9•834054	225	- 165946	$9 \cdot 970162$	422	10.029838	-136108	196	$9 \cdot 863892$	58
3	9-834189	225	-165811	$9 \cdot 970416$	422	$10 \cdot 029584$	-136226	197	9-863774	57
4.	$9 \cdot 834325$	225	- 165675	9.970669	422	10.029331	- 136344	197	$9 \cdot 863656$	56
5	$9 \cdot 834460$	225	-165540	$9 \cdot 970922$	422	10.029078	- 136462	197	9-863538	55
6	9-834595	225	- 165405	$9 \cdot 971175$	422	$10 \cdot 028825$	-136581	197	$9 \cdot 863419$	54
7	9.834730	225	- 165270	$9 \cdot 971429$	422	10.028571	-136699	197	$9 \cdot 863301$	53
8	$9 \cdot 834865$	225	- 165135	$9 \cdot 971682$	422	10.028318	-136817	197	$9 \cdot 863183$	52
9	$9 \cdot 834999$	225	- 165001	$9 \cdot 971935$	422	$10 \cdot 028065$	-136936	197	$9 \cdot 863064$	51
10	9.835134	224	- 164866	9-972188	422	$10 \cdot 027812$	-137054	197	9-862946	0
11	9-835269	224	$\cdot 164731$	$9 \cdot 972441$	422	10.027559	-137173	198	$9 \cdot 862827$	49
12	$9 \cdot 835403$	224	- 164597	9.972694	422	10.027306	-137291	198	$9 \cdot 862709$	48
13	$9 \cdot 835538$	224	- 164462	9-972948	422	$10 \cdot 027052$	-137410	198	9-862590	47
14	9.835672	224	- 164328	$9 \cdot 973201$	422	10.026799	-137529	198	$9 \cdot 862471$	46
15	$9 \cdot 835807$	224	- 164193	$9 \cdot 973454$	422	$10 \cdot 026546$	- 137647	198	$9 \cdot 862353$	45
16	$9 \cdot 835941$	224	. 164059	$9 \cdot 973707$	422	10.026293	-137766	198	$9 \cdot 862234$	44
17	9-836075	224	- 163925	9.973960	422	10.026040	- 137885	198	$9 \cdot 862115$	43
18	$9 \cdot 836209$	223	- 163791	9.974213	422	10.025787	-138004	198	$9 \cdot 861996$	42
19	$9 \cdot 836343$	223	- 163657	9.974466	422	10.025534	-138123	198	$9 \cdot 861877$	41
20	$9 \cdot 836477$	223	- 163523	9.974719	422	10.025281	-138242	198	$9 \cdot 861758$	40
21	$9 \cdot 836611$	223	- 163389	9.974973	422	$10 \cdot 025027$	-138362	199	9-861638	39
22	9-836745	223	- 163255	$9 \cdot 975226$	422	10.024774	-138481	199	$9 \cdot 861519$	38
23	9-836878	223	- 163122	9.975479	422	10.024521	-138600	199	$9 \cdot 861400$	37
24	$9 \cdot 837012$	223	- 162988	9-975732	422	$10 \cdot 024268$	-138720	199	$9 \cdot 861280$	36
25	9.837146	222	- 162854	$9 \cdot 975985$	422	10.024015	-138839	199	9-861161	55
26	9.837279	222	. 162721	9.976238	422	$10 \cdot 023762$	-138959	199	9-861041	34
27	$9 \cdot 837412$	222	. 162588	9.976491	422	10.023509	- 139078	199	$9 \cdot 860922$	33
28	9-837546	222	- 162454	9.976744	422	10.023.256	- 139198	199	$9 \cdot 860802$	32
29	9.837679	222	- 162321	9.976997	422	$10 \cdot 023003$	- 139318	199	9-860682	1
30	$9 \cdot 837812$	222	. 162188	$9 \cdot 977250$	422	$10 \cdot 022750$	-139438	200	$9 \cdot 860562$	0
31	9•837945	222	. 162055	9.977503	422	10.022497	-139558	200	9-860442	29
32	$9 \cdot 838078$	222	- 161922	9.977756	422	$10 \cdot 022244$	- 139678	200	$9 \cdot 860322$	88
33	9.838211	221	. 161789	9.978009	422	10.021991	-139798	200	9-860202	27
34	$9 \cdot 838344$	221	. 161656	9-978262	422	10.021738	- 139918	200	9-860082	26
35	9.838477	221	. 161523	$9 \cdot 978515$	422	10.021485	- 140038	200	9-859962	25
36	9.838610	221	. 161390	9.978768	422	10.021232	- 140158	200	9•859842	24
37	$9 \cdot 838742$	221	. 161258	$9 \cdot 979021$	422	10.020979	- 140279	200	$9 \cdot 859721$	23
38	9.838875	221	. 161125	9.979274	422	$10 \cdot 020726$	-140399	201	$9 \cdot 859601$	22
39	$9 \cdot 839007$	221	. 160993	$9 \cdot 979527$	422	10.020473	- 140520	201	9-859480	21
40	$9 \cdot 839140$	221	. 160860	9.979780	422	10.020220	- 140640	201	9-859360	20
41	9.839272	220	. 160728	$9 \cdot 980033$	422	10.019967	- 140761	201	9-859239	19
42	9-839404	220	. 160596	9.980286	422	10.019714	- 140881	201	9•859119	18
43	9.839536	220	. 160464	$9 \cdot 980538$	422	$10 \cdot 019462$	- 141002	201	9-858998	17
44	$9 \cdot 839668$	220	. 160332	$9 \cdot 980791$	422	10.019209	- 141123	201	9-858877	16
45	$9 \cdot 839800$	220	. 160200	$9 \cdot 981044$	422	10.018956	- 141244	201	9•858756	15
46	$9 \cdot 839932$	220	. 160068	9.981297	422	10.018703	- 141365	202	$9 \cdot 858635$	4
47	$9 \cdot 840064$	220	. 159936	9.981550	422	10.018450	- 141486	202	9-858514	13
48	$9 \cdot 840196$	219	. 159804	9.981803	422	10.018197	-141607	202	9-858393	12
49	$9 \cdot 840328$	219	. 159672	9.982056	422	$10 \cdot 017944$	- 141728	202	9-858272	11
50	$9 \cdot 840459$	219	. 159541	9.982309	422	$10 \cdot 017691$	- 141849	202	$9 \cdot 858151$	10
51	$9 \cdot 840591$	219	- 159409	9.982562	421	$10 \cdot 017438$	-141971	202	$9 \cdot 858029$	9
52	$9 \cdot 840722$	219	. 159278	$9 \cdot 982814$	421	10.017186	- 142092	202	9.857908	8
53	$9 \cdot 840854$	219	. 159146	9.983067	421	10.016933	- 142214	202	9-857786	7
54	$9 \cdot 840985$	219	. 159015	9.983320	421	10.016680	- 142335	202	9-857665	6
55	$9 \cdot 841116$	219	. 158884	9.983573	421	$10 \cdot 016427$	- 142457	203	$9 \cdot 857543$	5
56	$9 \cdot 841247$	218	- 158753	9.983826	421	$10 \cdot 016174$	- 142578	203	$9 \cdot 857422$	4
57	9-841378	218	- 158622	9.984079	421	10.015921	- 142700	203	$9 \cdot 857300$	3
58	$9 \cdot 841509$	218	- 158491	9.984331	421	$10 \cdot 015669$	- 142822	203	$9 \cdot 857178$	2
59	$9 \cdot 841640$	218	- 158360	$9 \cdot 984584$	421	$10 \cdot 015416$	- 142944	203	$9 \cdot 857056$	1
60	$9 \cdot 841771$	218	. 158229	9.984837	421	10.015163	- 143066	203	9.856934	0
,	Cusine.		Secant.	Cotangent.		Tangent.	$\overline{\text { Cosecant. }}$		sine.	

46 DEG.

44 DEG.

	Sine.	${ }_{\text {Diff, }}^{\text {Dif }}$	Cosecant.	angent.	\%	Cotangent.		Diff		
0										60
	9.841	218	-158098	9.985090	421	10.014910	143188	203	$9 \cdot 85$	59
	9•84203	218	$\cdot 157967$	9.985343	421	10.014657	14331	203		58
3	$9 \cdot 84216$	218	$\cdot 157837$	9.985596	421	10.014404	1434			7
4	9.842294	217	$\cdot 157706$	9.985848	421	10.014152	1435			56
5	9.8424	217	$\cdot 157576$. 98610	421	10.013899	14			5
6	$9 \cdot 842$	21	-1574	$9 \cdot 986354$	421		143			4
	842	217	-157315		421	10.013				53
	8428	217	-157185	9.986860	421	10.013140	1440			52
9	9.84294	217	$\cdot 157054$	987112	421	10	1441			51
10	$9 \cdot 84307$	217	- 156924	. 987365	421	10.0126	1442			5
11	$9 \cdot 84320$	217	$\cdot 156794$. 987618	421	10.012382	1444			9
12	$9 \cdot 84333$	216	-156664	. 987871	421	10.01212	14			48
13	8434	216	-156534	88123	421	10.01187	144			47
14	8435	216	-156405	9883	421	10				6
15	84372	216	- 156275		421	10.0113				5
16	$9 \cdot 843855$	216	$\cdot 156145$	988	421	10.011118	145			4
17	9.843984	216	- 156016	. 989134	421	10.010866	145			
18	9-844114	216	- 155886	98938	421	10.010613	145			2
19	$9 \cdot 84424$	216	$\cdot 1557$	989640	421	10.01036	145			1
20	9.84437	215	-155628	98989	421	10	145			0
21	$9 \cdot 84450$	215	- 155498	析	421	10.0098	145			9
22	. 84463	215	-155369	9903	421	1000662				8
23	$9 \cdot 84476$	215	$\cdot 155240$	99065	421	$10 \cdot 00934$	145			37
24	9•84488	215	$\cdot 155111$	990903	421	$10 \cdot 009097$	1460			36
25	9.845018	215	$\cdot 154982$	99115	421	$10 \cdot 008844$	1461			5
26	9.845	215	- 154853	991409	421	10.008591	146			4
27	9.84527	215	-15472	99166	421	$10 \cdot 0083$				3
28	9.	14	459	9.991914	421	10	-146510			2
29	45	214	$\cdot 154467$	99216	421	078				
30	$9 \cdot 845662$	214	- 154338	99242	421	10.0075	146			30
31	9•845790	214	-154210	-992672	421	10.007328	-1468			
32	9.845919	214	-154081	9.992925	421	$10 \cdot 007075$	-1470		-852	8
33	$9 \cdot 84604$	214	-153953	993178	421	$10 \cdot 006822$	- 147			-
34	9.846	214	-153825	.9934	421	10.006570				
35	9.84630	214	- 153696	99368	421	0631				5
36	9.84643	214	-153568	9939	421	10.00606				4
37	$9 \cdot 84656$	213	-153440	99418	421	$10 \cdot 005811$	147			
38	9.84668	213	$\cdot 153312$	$9 \cdot 994441$	421	10.005559	-1477			22
39	9-84681	213	$\cdot 153184$	9.99469	421	10.005306	-1478			21
40	9.84694	213	-153056	9949	421	10.00505	1480			0
41	$9 \cdot 84707$	213	-152929	9519	421	10.0048				19
42	$9 \cdot 84719$		- 152801	954	,	. 0045	-148253			8
43	9.84732	213	-152673	9570	421	$10 \cdot 004295$	-148378			7
44	$9 \cdot 84745$	213	-152546	995957	421	10.004043				16
45	9.847582	212	-152418	996210	421	10.003790	148			15
46	$9 \cdot 84770$	212	-152291	. 996463	421	10.003537	-1487			4
47	$9 \cdot 84783$	212	-152164	$9 \cdot 99671$	421	10.003285	1488		5112	3
48	9.84796	2	-15203	99696	421	10.003032	-1490			12
49	9.848091	212	- 151909	99722	421	-00277				11
50	$9 \cdot 818218$	212	-151782	9974	421	10.002527	仡			10
5	$9 \cdot 848345$	212	- 151655	997726	421	10.002274				
5	9.848472	212	-151528	997979	421	10.002021	14			8
53	9.848599	211	- 151401	$9 \cdot 998231$	421	10.001769	1496			7
54	$9 \cdot 84872$	211	-151274	9.998484	421	10.001516	149			6
55	9.8488	211	-151148	987	421	$10 \cdot 001263$				
56	$9 \cdot 84897$	211	-151021	9898	421	$10 \cdot 001011$				4
58	9.849	211	-150894	99924	421	10.000758	150			3
-	$9 \cdot 84923$	211	150768		21					2
-	9.84935	211	-150641	999747	421	10.000253	150		$9 \cdot 849611$	1
60	$9 \cdot 849485$	211	-150515	$10 \cdot 00000$	421	10.000000				0

45 DEG.

INDEX.

Abbreviation of the reduction of decimals, 17. Abrasion, limits of, 301.
Absolute resistances, 288.
Absolute strength of cylindrical columns, 274.
Accelerated motion, 386.
Accelerated mntion of wheel and axle, 419.
Acceleration, 415.
Acceleration and mass, 422.
Actual and nominal horse power, 240.
Addition of decimals, 22.
Addition of fractions, 20.
Adhesion, 297.
Air, expansion of, by heat, 173.
Air that passes through the fire for each horse power of the engine, 210.
Air, water, and mercury, 355.
Air-pump, 254.
Air-pump, diameter of, eye of air-pump cross head, 145.
Air-pump machinery, dimensions of several parts of, 144.
Air-pump strap at and below cutter, 147.
Air-pump studs, 144.
Ale and beer measure, 8.
Algebra and arithmetic, characters usedin, 12.
Algebraic quantities, 134.
Alloys, strength of, 287.
Ambiguous cases in spherical trigonometry, 381.

Amount of effective power produced by steam, 266.

Anchor rings, 90.
Angle iron, 91, 408, 409, 410.
Angles of windmill sails, 445.
Angles, measurement of, by compasses only, 382.

Angular magnitudes, 359.
Angular magnitudes, how measured, 373.
Angular velocity, 412.
Apothecaries' weight, 6.
Apparent motion of the stars, 353.
Application of logarithms, 334.
Approximating rule to find the area of a segment of a circle, 67.
Approximations for facilitating calculations, 55.

Are of a circle, to find, 49.
Arc of one minute, to find the length of, 361.
Are, the length of which is equal to the radius, 357.
Architecture, naval, 453.
Ares, circular, to find the lengths of, 68.
Area of segment and sector of a circle, 51.
Area of steam passages, 220.
Areas of circles, 57.
Areas of segments and zones of circles, 64, $65,66,67$.
Arithmetic, 10.
Arithmetical progression, to find the square root of numbers in, 126.
Arithmetical solution of plane triangles, 366.

Arithmetical proportion and progression, 35 to 38.
Ascent of smoke and heated air in chimneys, 208.

Atmospheres, elastic force of steam in, 195, 196.

Atmospheric air, weight of, 356.
Average specific gravity of timber, 396.
Avoirdupois weight, 6.
Axle and wheel, 417.
Axle of locomotive engine, 168, 169.
Axle-ends or gudgeons, 301.
Axles, friction of, 298, 300.
Balls of cast iron, 407.
Bands, ropes, \&c., 267.
Bar iron, 400.
Beam, 151.
Beam, the strongest, 276.
Bearings of water wheels, 285.
Bearings or journals for shafts of various diameters, 287.
Beaters of threshing machine, 445.
Before and behind the piston, 232.
Blast pipe, 171.
Blistered steel, 281.
Blocks, cords, ropes, sheives, 428.
Bodies, cohesive power of, 175.
Bodies moving in fluids, 324.
Boiler, 171.
Boiler plate, experiments on, at high temperatures, 220.
Boiler plates, 403.
Boilers, 256 and 257.
Boilers of copper and iron, diminution of the strength of, 219.
Boilers, properties of, 215.
Boilers, strength of, 218.
Bolts and nuts, 406.
Bolts, screw and rivet, 220.
Boring iron, 445.
Bossut and Michelloti, experiments on the discharge of water, 319.
Boyle of Cork, 200.
Bramah's press, 427.
Branch steam-pipe, 148.
Brass, copper, iron, properties of, 280.
Brass, round and square, 408.
Breast wheels, 328.
Breast and overshot wheels, maximum velocity of, 443.
Buckets and shrouding of water wheels, 446.
Building, to support with cast iron columns, 293.

Bushel, 5.

Butt for air-pump, 146.
Butt, thickness and breadth of, 14.3.
Butt, to find the breadth of, 141.
Byrne's logarithmic discovery, 340.
Byrne's theory of the strength of materials, 272.

Calculation in the art of ship-building, 453 to 494.
Calculation of Friction, 267.
Carriages, motion of, on inclined planes, 429.
Carriages travelling on ordinary roads, 307.
Carrier or intermediate wheels, 434.
Carts on ordinary roads, 311.
Cases in plane trigonometry, 363.
Cast iron, 174.
Cast iron pipes, 404.
Centre of effort, 483.
Centre of gravity, 175.
Centre of gravity of displacement of a ship, 456, 457, 458.
Centre of gyration, 180.
Centre of oscillation, 187.
Centres of bodies, 386.
Centres of gravity, gyration, percussion oscillation, 391.
Centripetal and centrifugal forces, 178, 450.
Chain bridge, 412.
Chimney, 171, 208, 257.
Chimney, size of, 212.
Chimney, to what height it may be carried with safety, 212.
Circle, calculations respecting, 48, 49, 50, 53.
Circle of gyration in water wheels, 444.
Circles, 57 to 61.
Circles, areas of, 57 to 63 .
Circular ares, 68.
Circular motion, 422.
Circular parts of spherical triangles, 375.
Circumference of a circle to radius 1,361 .
Circumferences of circles, 57.
Cloth measure, 7.
Coefficient of efflux, 314.
Coefficients of friction, 299.
Cohesive strength of bodies, how to find, 281.
Collision of railway trains, 452 .
Columns, comparative strength of, 294.
Combinations of algebraic quantities, 134.
Common fractions, 15.
Common materials, 280.
Complementary and supplementary arcs, 374.
Compound proportion, 14.
Condenser, 226.
Condensing water, 223.
Conduit pipes, discharge by, 322.
Cone, 82.
Conical pendulum, 185 to 187.
Connecting rod, 140, 141, 253.
Continuous circular motion, 432.
Contraction by efflux, 316.
Contraction of the fluid vein, 313.
Contractions in the calculation of logarithms, 348.
Copper boilers, 219.
Copper, iron, and lead, 405.
Cosine, to find, 361.
Cosines, contangents, \&c., for every degree and minute in the quadrant, 540 to 576.
Cosines, natural, 411.
Cover on the exhausting side of the valve,
in parts of the length of stroke, 231.
Cover on the steam side, 226.
Crane, 427.
Crane, sustaining weight of, 285.
Crank at paddle centre, 135.
Crank axle, diameter of the outside bearings of, 168.

Crank axle of locomotive, 169.
Crank pin, 170, 252.
Crank pin journal, 252.
Crank pin journal, to find the diameter of, 139
Crank pin journal, to find the length of, 139.
Cross head, 252.
Cross head, to find the breadth of eye of, 139
Cross head, to find the depth of eye of, 139
Cross multiplication, 27.
Cross tail, 253.
Cube, 79.
Cube and cube roots of numbers, 100 to 116.
Cube root of numbers containing decimals, 128.

Cube root, to extract, 32.
Cubes, 397 to 400.
Cubes, to extend the table of, 128.
Curve, to find the length of, by construction, 72 .
Curves, to find the areas of, 453.
Cuttings and embankments, 97 .
Cylinder side rods at ends, to find the diameter of, 143.
Cylinders, 80, 397 to 400.
Cylinders of cast iron, 404.
Dams inclined to the horizon, 316.
Decimal approximations for facilitating calculations, 55 .
Decimal equivalents, 56.
Decimal fractions, 22.
Decimal fractions, table of, 73.
Decimals, addition of, 22.
Decimals, division of, 24.
Decimals, multiplication of, 23.
Decimals, reduction of, 25, 26.
Decimals, rule of three in, 27.
Decimals, subtraction of, 23.
Deflection of beams, 295.
Deflection of rectangular beams, 294.
Depth of web at the centre of main beam, 150.
Destructive effects produced by carriages on roads, 311.
Devlin's oil, 297.
Diagram of a curve of sectional areas, 460.
Diagram of indicator, 265 .
Diameter of cylinder, 251.
Diameter of main centre journal, 143.
Diameter of plain part of crank axle, 169.
Diameter of the outside bearings of the crank axle, 168.
Diameters of wheels at their pitch circle to contain a required number of teeth, 436.
Dimensions of the several parts of furnaces and boilers, 254.
Direct method to calculate the logarithm of any number, 346.
Direct strain, 278.
Discharge by compound tubes, 321.
Discharge by different apertures from different heads of water, 318.
Discharge of water, 446.
Discharges from orifices, 426.
Displacement of a ship when treated as a floating body, 455 .
Displacement of ships, by vertical and horizontal sections, 460, 494.
Distance of the piston from the end of its stroke, when the exhausting port is shut and when it is open, 231.
Distances, how to measure, 369.

Division by logarithms, 336 .
Dodecaedron, 89.
Double acting engines, rods of, 250.
Double position, 44.
Double table of ordinates, 457.
Drainage of water through pipes, 325.
Dr. Dalton, and his countryman, Dr. Young, of Dublin,
Drums, 422.
Drums in continuous circular motion, 432.
Dry or corn measure, 8.
Duodecimals, 27.
Dutch sails of windmills, 333.
D. valves, 233.

Dynamometer, used to measure force, 269.
Eduction ports, 171.
Effective discharge of water, 314.
Effective heating surface of flue boilers, 256.
Effects of carriages on ordinary roads, 311.
Elastic force of steam, 188.
Elastic fluids, 205.
Elliptic arcs, 69, 70, 71, 72.
Embankments and cuttings, 97.
Endless screw, 431.
Engineering and mechanical materials, 386.
Engine, motion of steam in, 206.
Engine tender tank, 92.
Enlargements of pipes, interruption of discharge by, 321.
Evolution, 29.
Evolution by logarithms, 339.
Eye, diameter of, 251.
Eye of crank, 136.
Eye of crank, to find the length and breadth of large and small, 142.
Eye of round end of studs of lever, 143.
Examples on the velocity of wheels, drums, and pulleys, 438.
Exhaust port, 230.
Expanded steam, 236.
Expansion, 237.
Expansion, economical effect of, 216.
Experiments on the strength and other properties of cast iron, 174.
Explanation of characters, 12.
Extended theory of angular magnitude, 374.
Exterior diameter of large eye, 252.
Extraction of roots by logarithms, 339.
Fall of water, 444.
Feed pipe, 150.
Feed water, 222.
Fellocs of wheels, 309.
Fellowship, or partnership, 41.
Fire-grate, 171, 214.
Fitzgerald, 264, 269.
Flange, 91.
Flat bar iron, 407.
Flat iron, 400.
Flexure by, vertical pressure, 292.
Flexure of revolving shafts, pillars, \&c., 296.
Flues, 256.
Flues, fires, and boilers, 217.
Fluids, the motion of elastic, 205.
Fluids, to find the specific gravity of, 392.
Fluids, the pressure of, 448.
Fiuid vein, contraction of, 313.
Foot-valve passage, 149.
Force, 267.
Furce, loss of, in steam pipes, 221.

Force of steam, 188.
Forces, centrifugal and centripetal, $17 \mathrm{~S}, 450$.
Fore and after boties of immersion, 456,460 .
Form, the strongest, 275.
Formulas for the strength of various parts of marine engines, 251.
Formulas to find the three angles of a spherical triangle when the three sides are given, 385.
Formula, very useful, 271.
Fourth and fifth power of numbers, 129.
Fractions, common, 15.
Fractions, reduction of, 16, 17, 18, 19.
Fractions, addition of, 20.
Fractions, subtraction of, 21.
Fractions, multiplication of, 21.
Fractions, division of, 21.
Fractions, the rule of three in, 21.
Fractions, decimal, 22.
Fractions, table of, 73.
Fractions, addition contracted, 78.
Fracture, 292.
Franklin Institute, 172, 219.
French litre, 355.
French measures, 5, 6.
French metre, 347.
Friction, 238.
Friction, coefficents of, 300 .
Friction of fluids, 325.
Friction of rest and of motion, 267.
Friction of steam engines of different modifications, 302.
Friction of water against the sides of pipes,321.
Friction of water-wheels, windmills, \&c., 267.
Friction, or resistance to motion, in bodies rolling or rubbing on each other, 297.
Friction, laws of, 298.
Frustums, 83.
Frustum of spheroid, 87.
Furnace, 256.
Furnace room, 213.
Gallon, 5.
Gases, 394.
Geering, 422.
General and universal expression, 376.
General observations on the steam engine,259.
General trigonometrical solutions, 365, 369.
Geometrical construction, $\beta 62$.
Geometrical construction of the proportion of the radius of a wheel to its pitch, 440.
Geometrical proportion and progression, 38.
Gibs and cutter, $140,253$.
Gibs and cutter through air pump cross-head, 146, 147.
Gibs and cutter through cross-tail and through butt, 141.
Gibs and cutter, to find the thickness and breadth of, 143.
Girder, 275.
Girth, the mean in measuring, 94.
Glenie, the mathematician, 257.
Globe, 85.
Grate surface, 255.
Gravity, centre of, 175, 386.
Gravity, specific, 391.
Gravity, weight, mass, 386.
Gudgeons, 420.
Gyration, centre of, 180, 390.
Gyration, the centre of different figures and bodies, 181.

Heads of water, 318.
Heating surface, 256.
Heating surface of boilers, 215.
Heights and discharges of water, 319.
Heights and distances, 359.
Height of chimneys, 210.
Height of metacentre, 489, 483.
Hewn and sawed timber, 95.
Hexagon, heptagon, 48.
High pressure and condensing engines, 234.
Hollow shafts, to find the strength of, 284.
Horizontal distance of centre of radius bar, 246, 247.
Horse power, 240.
Horse power of an engine, dimensions made to depend upon the nominal horse power of an engine, 147.
Horse power of pumping engines, 447.
Horse power, tables of, 243, 244.
Hot blast, 174.
Hot liquor pumps, 446.
Hydraulic pressure working machinery, 330.
Hydraulics, 267, 312.
Hydrogen, weight of, 356.
Hydrostatic press, 448.
Hyperboloid, 88.
Hyperbolic logarithms, 130 to 133.
Hyperbolic logarithms, how to calculate, 353.
Hypothenuse of a spherical triangle, to find, 378.

Hypothenuse, 47.
Icosaedron, 89.
Immersed portions of a ship, to calculate, 456.

Immersion and emersion, 453 to 467.
Impact, 449.
Impinging of elastic and inelastic bodies, 452.

Inaccessible distances, 372.
Inches in a solid foot, 96 .
Inclined plane, 428, 429, 430.
Inclination of the traces of ordinary carriages, 311.
Inclinations, discharge of a 6 -inch pipe at several, 326.
Increase of efficiency arising from working steam expansively, 262.
Index of logarithms, 334.
Indicator, 264, 265.
Indicator, the amount of the effective power of steam by, 266.
Induction ports, 171.
Inelastic bodies, 449.
Influence of pressure, velocity, width of fellocs, and diameter of wheels, 309.
Initial plane, 456, 480, 500.
Initial velocity with a free descent, 388.
Injection pipe, 150.
Inside discharging turbine, 330 .
Integer, 10.
Integers, to find the square root of, 125.
Interest, simple, 42.
Interest, compound, 43.
Involution, 28.
Involution, or the raising of powers by logarithms, 338.
Irregular polygons, 54.
Iron, forged and wrought, 272.
Iron plates, 403.
lion, properties of, 175.

Iron, strength of, 173.
Iron, taper and parallel, angle and T, railway and sash, 408, 411.

Jet, specific gravity of, 394.
Journal of cross-head, to find diameter of, 139.
Journal of cross-head, to find the length of, 139.
Journal, the mean centre, to find the diameter of, 143.
Journal, strain of, 252.
Journals for air-pump cross-head, 145.
Journals for shafts of various diameters, 287. Julian year, 357.
Juste Byrge, the inventor of logarithms, 133.
Kane, Fitzgerald, 269. .
Keel and keelson, 433 to 500 .
Kilometre, 5.
Kilogramme, 6.
Knots, nodes, \&c., 412.
Lathe spindle wheel, 435.
Laying off of angles by compasses only, 384.
Leg of a spherical triangle, to find, 377.
Length of crank pin of locomotive, 170.
Length of paddle-shaft journal, 138.
Length of stroke, 227, 251.
Lengths that may be given to stroke of the valve, 229.
Lengths of circular ares, 68.
Lever, 426.
Light displacement, 459.
Line of direction, 390.
Link next the radius bar, 242.
Living forces, or the principle of vis viva, 270.
Load immersion, 456, 457.
Load-water line, 456, 478.
Locomotive engine, parts of the cylinder, 171.
Locomotive engine, diameter of the outside bearings for, 163.
Locomotive engine, dimensions of several moving parts, 171.
Locomotive engine, dimensions of several pipes, 171.
Locomotive engine, parts of the boiler, 171.
Locomotive engine, tender tank, 92.
Locomotive and other engines, 233.
Logarithmic calculations, 376.
Logarithmic calculations of the force of steam, 190 to 193.
Logarithmic sines, tangents, and secants for every minute in the quadrant, $540,576$.
Logarithms applied to angular magnitudes, 359.

Logarithms, hyperbolic, 130.
Logarithms of the natural numbers from 1 to 100000 by the help of differences, 503 to 540 .
Logarithms, the application of, 334.
Long measure, 7.
Longitudinal distance of the centre of gravity of displacement, 470,500 .
Loss of force by the decrease of temperature in the steam pipes, 221.
Low pressure engines, 243.
Lunes, 54.
Machinery, elements of, 425.
Machinery worked by hydraulic pressure, 330.

Major and minor diameters of cross-head, 253.

Main beam at centre, 240.
Malleable iron, 396.
Marble, 288.
Marine boilers, 217.
Mass, 267.
Mass, gravity, and weight, 386.
Mass of a body, to find, when the weight is given, 389.
Materials employed in the construction of machines, 267.
Materials, their properties, torsion, deflexion, \&c., 267.
Maximum accelerating force, 421.
Maximum velocity and power of water wheels, 443.
Measures and weights, 5.
Measurement of angular magnitudes, 374.
Measurement of angles by compasses only, 382.

Mechanical effect, 417.
Mechanical powers, 422.
Mechanical power of steam, 261.
Mensuration of solids, 79.
Mensuration of timber, 93.
Mensuration of superficies, 45.
Mercury, density of, 350.
Mercury, to calculate the force of steam in inches of, 201.
Method to calculate the logarithm of any given number, 340.
Metacentre, 482.
Metre, 5.
Midship, or greatest transverse section, 460, 487.

Millboard, 405.
Millstones, 445.
Millstones, strength of, 451.
Modulus of elasticity, 278.
Modulus of logarithms, 343.
Modulus of torsion and of rupture, 279.
Moment of inertia, 412.
Motion of elastic fluids, 205.
Motion of steam in an engine, 206.
Multiplication of decimals, 23.
Multiplication of fractions, 21.
Multiplication by logarithms, 335.
Musical proportion, 40.
Natural sines, cosines, tangents, cotangents, secants, and cosecants, to every degree of the quadrant, 411.
Naval architecture, 453.
New method of multiplication, 342.
Nitrogen, weight of, 356 .
Nominal horse power, tables of, for high and
low pressure engines, 243, 244.
Notation and numeration, 10.
Notation, trigonometrical, 359.
Number corresponding to a given logarithm, 351.

Number of teeth, or the pitch of small wheels, 435.
Numbers, fourth and fifth powers of, 129.
Numbers, logarithms of, 540, 495.
Numbers, reciprocals of, 73 to 78.
Numbers, squares, cubes, \&c., of, 100 to 116.
Numeral solution of the several cases of trigonometry, 361.
Nuts and bolts, 406.

OAK, Dantzic, 280.
Obelisk, to find the height of, 371.
Oblique triangles, 368.
Observatory at Paris $g=9 \cdot 80896$ metres,346.
O'Byrne's turbine tables, 331.
Octagon, 48.
Octaedron, 89.
O'Neill's experiments, 447.
0'Neill's rules employed in the art of shipbuilding, 454.
Opium, specific gravity of, 394.
Orders of lever, 426.
Ordinates employed in the art of ship-building, 455, 456, 458.
Orifices and tubes, discharge of water by, 312.
Orifices, rectangular, 314.
Oscillation, centre of, 187, 391.
Outside bearings of crank axle, 168.
Outside discharging turbines, 331.
Overshot wheels, 329.
0 vershót wheels, maximum velocity of, 443.
Ox-hide, 299.
Oxygen, 214, 356.
Paddle-shaft journal, 137, 251.
Paraboloid, 88.
Parabolic conoid, 88.
Parallel angle iron, 409.
Parallel motion, 242 to 246.
Parallelogram of forces, 422.
Parallelopipedon, 80.
Partnership, 41.
Partial contraction of the fluid vein, 316.
Passages, area of steam, 220.
Péclet's expression for the velocity of smoke in chimneys, 213.
Pendulums, 183, 391.
Pendulum, conical, 184.
Pendulums, vibrating seconds at the level of the sea in various latitudes, 393.
Percussion, centre of, 391.
Periodic time, 179.
Permanent weight supported by beams, 284.
Permutations and combinations, 44.
Pillars, strength of, 293.
Pinions and wheels in continuous circular motion, 432.
Pipes, discharge and drainage of water through, 321, 322, 325.
Pipes of cast iron, 395.
Pipes for marine engines, 149.
Piston, 251.
Piston of steam engine, 414.
Piston rod, 140, 171, 253.
Piston rod of air-pump, 146.
Pitch circle, 436.
Pitch of teeth, 441.
Pitch of wheels, 435, 439.
Plane triangles, solution of, 364, 365 .
Plane trigonometry, 359.
Planks, deals, 94.
Polygons, 47, 48.
Polygons, irregular, 54.
Port, upper and lower, 229.
Position, double, 44.
Position, single, 43.
Pound, 5.
Power, actual and nominal, 241.
Power and properties of steam, 261.
Power that a cast-iron wheel is capable of transmitting. 442.

Power of shafts, 294.
Practical application of the mechanical powers, 425.
Practical limit to expansion, 261.
Practical observations on steam engines, 260.
Principle of virtual velocities, 423.
Prism, 80.
Prismoid, 85.
Properties of bodies, 401.
Proportional dimensions of nuts and bolts, 406.

Proportion, 14.
Proportion, musical, 40.
Proportion and progression, arithmetical, 35 to 38.
Proportion and progression, geometrical, 38 to 40.
Proportion, or the rule of three by logarithms, 338.
Proportion of wheels for screw-cutting, 433.
Proportions of boilers, grates, \&c., 213.
Proportions of the lengths of circular arcs, 68.
Proportions of undershot wheels, 328.
Pulleys, 422, 427.
Pump and pumping engines, 446.
Pumping engines, 422.
Pyramid, 82.
Pyrometer, 63.
Quadrant, 359.
Quadrant, log. sines, cosines, \&c., for every minute in, 540, 576.
Quadrant, natural sines and cosines for every degree of, 411.
Quadrant, to take angles with, 370.
Quantities, known and unknown, 134.
Quantity of water that flows through a circular orifice, 313, 319.
Quiescence, friction of, 299.
$\stackrel{R}{R}^{\text {Radios }}$ bar, 242.
Radius bar, length of, corrected, 248.
Radius of the earth at Philadelphia, 356.
Radius of gyration, 412.
Radius, length of, in degrees, 357.
Rails, temporary, 411.
Railway carriage, 268.
Railway iron, 410.
Raising of powers by logarithms, 33 S .
Reciprocals of numbers, 73 to 78.
Recoil, 449.
Rectangle, rhombus, rhomboides, to find the areas of, 45,46 .
Reduction of fractions, 16, 17, to 19, 20.
Regnault's experiments on oxygen, \&ic., 356 .
Regular bodies, 90.
Relative capacities of the two bodies under the same displacement, 456, 470.
Relative strength of materials to resist torsion, 294.
Revolving shaft, 250.
Riga fir, 290.
Right-angled spherical triangles, 374.
Ring, circular, to find the area of, 53.
Ring, cylindrical, 90.
Roads, traction of carriages on, 307.
Rolled iron, 395.
Roman notation, 11.
Rope, strength of, 282.
Ropes, bands, \&c., 267.
Ropes, blocks, pulleys, 428.

Ropes, stiffness of, resistance of, to bendin 302.

Ropes, tarred and dry, 304, 306.
Rotative engines, 260.
Rotation, moment of, 414.
Rotation of a body about a fixed axis, 416.
Rotations of millstones, 452.
Round and rectangular bars, strength of, $2 S 1$.
Round bar-iron, 403.
Round steel and brass, 408.
Rules for pumping engines, 448.
Rule of three, 13.
Rule of three by logarithms, 338.
Rule of three in fractions, 21.
Rupture, 272.
Safety valves, $149,150,224$.
Sails of windmills, 332 .
Sash iron, 410.
Scales of chords, how to construct, 360.
Scale of displacement, 490.
Scantling, 95.
Screw cutting by lathe, 433.
Screw, power of, 430 .
Screw, to cut, 434.
Sectional area measured, 456 to 468.
Segments of circles, 64 to 67.
Sheives, cords, blocks, 428.
Ship-building and naval architecture, 453.
Sidereal day, 9.
Side lever, to find the depth across the centre of, 144.
Side rod, 246, 254.
Side rod of air-pump, 146.
Sines, cosines, \&c., 411.
Sines, tangents and secants, 359.
Singular phenomena, 237.
Sleigh, 268.
Slide valve, 225.
Slide valve, a cursory examination of, 232.
Slopes $1 \frac{1}{2}$ to 1, 2 to 1 , and 1 to $1,97$.
Sluice board, 316.
Smoke and heated air in chimneys, 202.
Solid inches in a solid foot, 96 .
Solids, mensuration of, 79.
Space described by a body during a free descent in vacuo, 388.
Specific gravity, 386, 391.
Sphere, 85.
Spheres, 397 to 400 .
Spheroid, 86, 87, 88.
Spherical trigonometry, 373.
Spheroidal condition of water in boilers, 236.
Spindle and screw wheels, 434.
Square, to find the area of, 45.
Square and sheet iron, 402.
Squares and square roots of numbers, 100 to 116.
Square root, 30.
Square root of fractions and mixed numbers, 31.

Square measure, 6.
Stability, 459.
Stars, apparent motion of, 353.
Statical moment, 417.
Steam engine, 135.
Steam dome, 171.
Steam passages, 220.
Steam pipes, loss of force in, 222.
Steam port, 147, 148.
Steam room, 259.

Steam, elastic force of, 188 to 202.
Steam, temperature of, pressure of, 172.
Steam, volume of, 202 to 206.
Steam, weight of, 204.
Steel, 408.
Steel, cast, 409.
Stiffness of ropes, 302, 306.
Stowage, 503.
Stowing the hold of a vessel, $453,456$.
Strap at cutter, 141.
Strap, mean thickness of, at and before cutter, 143.
Strength of bodies, 282.
Strength of boilers, 218.
Strength of materials, 173, 271.
Strength of rods when the strain is wholly tensile, 250.
Strength of the teeth of castiron wheels, 437.
C'r.ids of lever, 143.
l-wheel and pinion, 434.
suntraction of decimals, 23.
Subtraction of fractions, 21.
Table by which to determine the number of teeth or pitch of small wheels, 435.
Table containing the circumferences, squares, cubes, and areas of circles, from 1 to 100, advancing by a tenth, $57,58,59,60$ to 63.

Table containing the weight of columns of water, each one foot in length, in pounds avoirdupois, 401.
Table containing the weight of square bar iron, 402.
Table containing the surface and solidity of spheres, together with the edge of equal cubes, the length of equat cylinders, and weight of water in avoirdupois pounds, 397.

Table containing the weight of flat bar iron, 400.

Table containing the specific gravities and other properties of bodies; water the standard of comparison, 401.
Table containing the weight of round bar iron, 403.
Table containing the weights of cast iron pipes, 404.
Table containing the weight of solid cylinders of cast iron, 404.
Table containing the weight of a square foot of copper and lead, 405.
Table for finding the weight of malleable iron, copper, and lead, 405.
Table for finding the radius of a wheel when the pitch is given, or the pitch when the radius is given, for any number of teeth, 439.
Table for the general construction of tooth wheels, 442.
Iable for breast wheels, 329.
Table of polygons, 48.
Table of decimal approximations for facilitating calculations, 55.
Table of decimal equivalents, 56 .
Table of the areas of the segments and zones of a circle of which the diameter is unity, 64, 65, 66, 67.
Table of the proportions of the lengths of semi-elliptic arcs, 69, 70, 72.
Table of flat or board measure, 93.
Table of solid timber measure, 94 .

Table of reciprocals of numbers, or of the decimal fractions corresponding to common fractions, 71 to 77, 78.
Table of weights and values in decimal parts, 79.
Table of regular bodies, 90.
Table of the cohesive power of bodies, 175.
Table of hyperbolic logarithms, 130 to 133.
Table of the pressure of steam, in inches of mercury at different temperatures, 172.
Table of the temperature of steam at different pressures, in atmospheres, 172.
Table of the expansion of air by heat, 173.
Table of the strength of iron, 173.
Table of the superficial and solid content of spheres, 96.
Table of solid inches in a solid foot, 96.
Table of squares, cubes, square and cube roots, of numbers, $100,101,116,125$.
Table of cover on the exhausting side of the valve in parts of the stroke and distance of piston from the end of its stroke, 231.
Table of the proportions of the lengths of circular ares, 68.
Table of the fourth and fifth power of numbers, 129.
Table of the properties of different boilers, 215.
Table of the economical effects of expansion, 216.
Table of the comparative evaporative power of different kinds of coal, 218.
Table of the cohesive strength of iron boiler plate at different temperatures, 219.
Table of diminution of strength of copper boilers, 219.
Table of expanded steam, 239.
Table of the proportionate length of bearings, or journals for shafts of various diameters, 287.

Table of tenacities, resistances to compression and other properties of materials, 288.

Table of the strength of ropes and chains, 288.

Table of the strength of alloys, 289.
Table of data of timber, 289.
Table of the properties of steam, 261.
Table of the mechanical properties of steam, 263.

Table of the cohesive strength of bodies, 281.
Table of the strength of common bodies, 283.
Table of torsion and twisting of common materials, 286.
Table of the length of circular arcs, radius being unity, 63 .
Table of experiments on iron boiler plate at high temperature, 220.
Table of the absolute weight of cylindrical columns, 274.
Table of flanges of girders, 276.
Table of mean pressure of steam at different densities and rates of expansion, 239.
Table of nominal horse power of high pressure engines, 244.
Table of nominal horse power of low pressure engines, 243.
Table of dimensions of cylindrical columns of cast iron to sustain a given load with safety, 293.
Table of strength of columns, 294.

Table of comparative torsion, 294.
Table of the depths of square beams to support from 1 cwt. to 14 tons, 295, 296.
Table of the results of experiments on frictions, with unguents interposed, 299, 300.
Table of the results of experiments on the gudgeons or axle-ends in motion upon their bearings, 301.
Table of friction, continued to abrasion, 301.
Table of friction of steam engines of different modifications, 302.
Table of tarred ropes, 303.
Table of white ropes, 305.
Table of dry and tarred ropes, 306.
Table of the pressure and traction of carriages, 308.
Table of traction of wheels, 309.
Table of the ratio of traction to the load, 310.

Table of the coefficients of the efflux through rectangular orifices in a thin vertical plate, 315.

Table of the coefficients of efflux, 315.
Tablo of comparison of the theoretical with the real discharges from an orifice, 317.
Table of discharge of tubes of different enlargements, 322.
Table of the comparison of discharge by pipes of different lengths, 323.
Table of the comparison of discharge by additional tubes, 323.
Table of the friction of fluids, 325.
Table of discharges of a 6 -inch pipe at several inclinations, 326.
Table of the velocity of windmill sails, 333.
Table of outside discharging turbine, 331.
Table of inward discharging turbines, 332.
Table of peculiar logarithms, 340.
Table of useful logarithms, 345.
Table of the specific gravity of various substances, 394.
Table of the weight of a foot in length of flat and rolled iron, 395.
Table of the weight of cast iron pipes, 395.
Table of the weight of one foot in length of malleable iron, 396.
Table of comparison, 396.
Table of the weight of a square foot of sheet iron, 402.
Table of the weight of a square foot of boiler plate from $\frac{1}{8}$ of an inch to 1 inch thick, 403.
Table of the weights of cast iron plates, 403.
Table of the weight of mill-board, 405.
Table of the weight of wrought iron bars, 406.
Table of the proportional dimensions of nuts and bolts, 406.
Table of the specific gravity of water at different temperatures, 406.
Table of the weight of cast iron balls, 407.
Table of the weight of flat bar iron, 407.
Table of the weight of square and round brass, 408.
Table of taper T iron, 410.
Table of sash iron, 410.
Table of rails of equal top and bottom, 410.
Table of temporary rails, 4411.
Table of natural sines, cosines, tangents, cotangents, secants, and cosecants, to every degree of the quadrant, 411.
Table of inclined planes, showing the ascent or descent the yard, 430.

Table of the weight of round steel, 408.
Table of parallel angle iron of equal sides, 408.
Table of parallel angle iron of unequal sides, 409.

Table of taper angle iron of equal sides, 409.
Table of parallel T iron of unequal width and depth, 409.
Table of change wheels for screw-cutting, 435.

Table of the diameters of wheels at their pitch circle, to contain a required number of teeth, 436.
Table of the angle of windmill sails, 445.
Table of the logarithms of the natural numbers, from 1 to 100000, by the help of differences, 495 to 540 .
Table of log. sines, cosines, tangents, cotangents, secants and cosecants, for every degree and minute in the quadrant, 540 to 576.

Table of the strength of the teeth of castiron wheels at a given velocity, 437.
Table of approved proportions for wheels with flat arms, 441.
Table showing the cover required on the steam side of the valve to cut the steam off at any part of the stroke, 228.
Table showing the cover required, 227.
Table showing the resistance opposed to the motion of carriages on different inclinations of ascending or descending, planes, 429.

Table showing the number of linear feet of scantling of various dimensions which are equal to a cubic foot, 95.
Table showing the weight or pressure a beam of cast iron will sustain without destroying its elastic force, 292.
Table showing the circumference of rope equal to a chain, 282.
Table to correct parallel motion links, 248.
Table of parallel T iron of equal depth and width, 410.
Tables of cuttings and embankments, slopes, 1 to $1 ; 1 \frac{1}{2}$ to 1 ; and 2 to 1,97 .
Tables of the heights corresponding to different velocitics, 389.
Tables of the mechanical properties of the materials inost commonly employed in the construction of machines and framings, 280.

Tangents, 360.
Tangents and secants, to compute, 362.
Taper angle iron, 410.
Teeth of wheels in continuous circular motion, 432.

Teeth of wheels, 422, 436.
Temperature of steam, 172.
Temperature and elastic force of steam, 188.
Tension of chain-bridge, 414.
Tetraedron, 89.
Threshing machines, 445.
Throttling the steam, 234.
Timber measure, 93.
Timber, to measure round, 95.
Time, 7.
Tonnage of ships, 461 to 494.
Torsion, 279.
Torsion and twisting, 286.
Traction of carriages, 307.
Transverse strength of bodies, 282.

Transverse strain, 278.
Transverse strain, time weight, 273.
Trapezium, 47.
Trapezoid, 47.
Triangle, to find the area of, 46, 47.
Trigonometry, 359.
Trigonometry, spherical, 373.
Troy weight, 7.
Trussed beams, 291.
Tubes, discharge of water through, 312.
Tubular boilers, 257.
Turbine water-wheels, 330.
Ulimate pressure of expanded steam, 236.
Undecagon, 47.
Undershot wheels, 327, 443.
Unguents, 299.
Ungulas, cylindrical, 81.
Ungulas, conical, 83, 84.
Unit of length, 5.
Unit of weight, 5.
Unit of dry capacity, 5.
Units of liquids, 5 .
Units of work, 269, 297, 414, 410.
Universal pitch table, 442.
Upper steam port, 229.
Useful formula, 271.
Use of the table of squares, cubes, \&c., 127.
Vacuum, perfect one, 235.
Vacuum below the piston, 251.
Vacuo, bodies falling freely in, 388.
Valves, different arrangements of, 233.
Valve, length of stroke of, in inches, 228.
Valve shaft, 147.
Valve, safety, 224.
Valve, slide, 225.
Valve spindle, 171.
Vapour in the cylinder, 229.
Vein, contraction of fluid, 330.
Velocity, force, and work done, 267.
Velocity of steam rushing into a vacuum, 207.
Velocity of smoke in chimneys, 209, 213.
Velocity of piston of steam engine, 266.
Velocity of threshing machines, millstones, boring, \&c., 445.
Velocity of wheels on ordinary roads, 307.
Venturi, experiments of, on the discharge of fluids, 421.
Versed sine, tabular, 52.
Versed sine of parallel motion 94 .
Fersed sine, 359.

Vertical sectional areas, 454.
Virtual velocities, 424.
Vis viva, principle of, calculations on, 276, 388.

Volume of a ship immersed, 456.
Volume of steam in a cubic foot of water, 202, 205.

Water, modulus of elasticity of, 190.
Water level, 214.
Water, feed and condensing, 223.
Water, spheroidal condition of, in boilers,236.
Water in boiler, and water level, 358.
Water, discharge of, through different orifices, 312, 318.
Water wheels, 327.
Water wheels, maximum velocity of, 443.
Web of crank at paddle shaft centre, 136.
Web of cross-head at middle, 139.
Web of crank at pin centre, 142.
Web at paddle centre, 252.
Web of cross-head at journal, 140.
Web of air-pump cross-head, 145.
Wedge, 85.
Wedge and screw, 430.
Weights and measures, 5.
Weights, values of, in decimal parts, 79.
Weight, mass, gravity, 386 .
Weirs, and rectangular apertures, 314, 323.
Wheel and axle, 417.
Wheel and pinion, 427.
Wheels, drums, pulleys, 438.
Windmills, 332.
Wine measure, 8.
Woods, 280.
Woods, specific gravity, 394.
Work done, weight, 267.
Wrought iron bars, 406.
Yard, 5.
Yacht, admeasurement of, 466, 470.
Yarns of ropes, 303.
Yellow brass, 281.
Yew, 280.
Zinc, 280.
Zinc, sheet, 283.
Zone, spherical, 86.
Zone, to find the area of a circular, 53.
Zones of circles, to find the areas of, 64,65 , 66.

THE END.

this book is due on the last date STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN this book on the date due. the penalty WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $\$ 1.00$ ON THE SEVENTH DAY overdue.
NOV 1540
rne In

[^0]: * Derived from $\cdot 002340$ by means of 2340 .
 \dagger Derived from 002340 by means of 2340 .
 \ddagger The nearest result by simple inspection is obtained for 023 by 23. But four places correct can always be obtained by looking in the table of cubes for the nearest triad or triads, in this instance for 23400 ; the cube beginning with the figures 23393 is that of 2860 , whence $\cdot 2860$ is true to the last place, and is afterwards substituted.

[^1]: * En gravier dur. \dagger Pavé en état ordinaire. \ddagger En empierrement solide.

[^2]: * Pas allongé.
 \dagger Grand trot.
 \ddagger Trot allonge.
 $\%$ En très bon empierrement.
 $\|$ Pavé en grès de Sieack.

[^3]: * En empierrement.

[^4]: RELATIVE CAPACITIES OF THE CALCUEATED IMMERSED BODIES CONtained under the fore and after-Lengths of equal division of the load-water line.

