

LIBRARY OF THE UNIVERSITY OF CALIFORNIA. Mors Beatrice Parke Received Feb. , 185 1900 Accession No. 78224. Class No. -

finen litang l

THE

PRACTICAL

MODEL CALCULATOR,

FOR THE

ENGINEER, MECHANIC, MACHINIST, MANUFACTURER OF ENGINE-WORK, NAVAL ARCHITECT, MINER, AND MILLWRIGHT.

BY

·芒,

OLIVER BYRNE,

CIVIL, MILITARY, AND MECHANICAL ENGINEER.

Compiler and Editor of the "Dictionary of Machines, Mechanics, Engine-work, and Engineering;" Author of "The Companion for Machinists, Mechanics, and Engineers;" Author and Inventor of a New Science, termed "The Calculus of Form," a substitute for the differential and Integral Calculus; "The Elements of Euclid by Colours," and numerous other Mathematical and Mechanical Works. Surveyor-General of the English Settlements in the Fukkland Isles. Professor of Mathematics, College of Civil Engineers, London.

PHILADELPHIA: HENRY CAREY BAIRD, 406 WALNUT STREET. 1863. The Litre for liquid measure is a cubic decimetre = 1.76077imperial pints English, at the temperature of melting ice; a litre of distilled water weighs 15434 grains troy.

The unit of weight is the gramme: it is the weight of a cubic centimetre of distilled water, or of a millilitre, and therefore equal to 15.434 grains troy.

The kilogramme is the weight of a cubic decimetre of distilled water, at the temperature of maximum density, 4° centigrade.

The pound troy contains 5760 grains.

The pound avoirdupois contains 7000 grains.

The English imperial gallon contains 277.274 cubic inches; and the English corn bushel contains eight such gallons, or 2218.192 cubic inches.

APOTHECARIES' WEIGHT.

Grains	marked	gr	
20 Grains make 1 Scrup	ole —	sc.	or J
3 Scruples — 1 Dram		dr.	. or 3
8 Drams — 1 Ounc	e —	OZ.	. or Z
12 Ounces — 1 Poun	d —	lb.	or th.
$\begin{array}{rrrr} gr. & sc. \\ 20 &= & 1 \\ 60 &= & 3 &= \\ 480 &= & 24 &= \\ 5760 &= & 288 &= \end{array}$	dr. 1 oz. 8 = 1 96 = 12	= 1	

This is the same as troy weight, only having some different divisions. Apothecaries make use of this weight in compounding their medicines; but they buy and sell their drugs by avoirdupois weight.

AVOIRDUPOIS WEIGHT.

	Dramsmarked	dr.
16	Drams make 1 Ounce	oz.
16	Ounces 1 Pound	lb.
28	Pounds — 1 Quarter —	qr.
4	Quarters 1 Hundred Weight	cwt.
20	Hundred Weight 1 Ton	ton.
	dr. oz.	
	16 = 1 lb.	
	256 = 16 = 1 ar.	
	7168 = 448 = 28 = 1 cwt.	
	28672 = 1792 = 112 = 4 = 1 ton.	
	573440 = 35840 = 2240 = 80 = 20 = 1	

By this weight are weighed all things of a coarse or drossy nature, as Corn, Bread, Butter, Cheese, Flesh, Grocery Wares, and some Liquids; also all Metals except Silver and Gold.

		Oz.	Dwt.	Gr.	
Note, that 1 lb. av	oirdupois =	= 14	11	151	troy.
1 oz.		= 0	18	51	
1 dr.		= 0	1	31	

TROY WEIGHT.

Grainsmarked Gr. Gr. Dwt.
24 Grains make 1 Pennyweight Dwt. $24 = 1$ Oz.
20 Pennyweights 1 Ounce $Oz.$ $480 = 20 = 1$ Lb.
12 Ounces 1 Pound Lb. $5760 = 240 = 12 = 1$
By this weight are weighed Gold, Silver, and Jewels.
LONG MEASURE.
3 Barley-cornsmake 1 Inchmarked In.
12 Inches — 1 Foot — Ft.
3 Feet — 1 Yard — Yd.
6 Feet — 1 Fathom — Fth.
5 Yards and a half 1 Pole or Rod — Pl.
40 Poles — 1 Furlong — Fur.
8 Furlongs — 1 Mile — Mile.
3 Miles — 1 League — Lea.
$69\frac{1}{6}$ Miles nearly
In. Ft.
12 = 1 Yd.
36 = 3 = 1 Pl.
$198 = 10\frac{1}{2} = 0\frac{1}{2} = 1$ Fur.
7920 = 600 = 220 = 40 = 1 Mile.
63300 = 5280 = 1760 = 320 = 8 = 1
CLOTH MEASURE.
2 Inches and a quartermake 1 Nailmarked Nl.
4 Nails — 1 Quarter of a Yard — Qr.
3 Quarters — 1 Ell Flemish — E F.
4 Quarters — 1 Yard — Yd.
5 Quarters — 1 Ell English — E E.
4 Qrs. 1 ^{$\frac{1}{5}$} Inch
SQUARE MEASURE.
144 Square Inchesmake 1 Sq. Footmarked Ft.
9 Square Feet — 1 Sq. Yard — Yd.
30 ¹ / ₄ Square Yards — 1 Sq. Pole — Pole.
40 Square Poles — 1 Rood — Rd.
4 Roods -1 Acre $-$ Acr.
Sq. Inc. Sq. Ft.
144 = 1 Sq. Yd.
$1296 \doteq 9 = 1$ Sq. Pl.
$39204 = 272\frac{1}{4} = 30\frac{1}{4} = 1$ Rd.
1568160 = 10890 = 1210 = 40 = 1 Acr.
6272640 = 43560 = 4840 = 160 = 4 = 1

When three dimensions are concerned, namely, length, breadth, and depth or thickness, it is called cubic or solid measure, which is used to measure Timber, Stone, &c. The cubic or solid Foot, which is 12 inches in length, and breadth, and thickness, contains 1728 cubic or solid inches, and 27 solid

feet make one solid yard.

THE PRACTICAL MODEL CALCULATOR.

DRY, OR CORN MEASURE.

,	
2 Pintsmake 2 Quarts	1 Quartmarked Qt. 1 Pottle — Pot. 1 Gallon — Gal. 1 Peck — Pec. 1 Bushel — Bu.
8 Bushels —	1 Quarter — Qr.
5 Quarters —	1 Weigh or Load — Wey.
2 Weys —	1 Last — Last.
Pts. Gal.	
8 = 1 Pec.	
16 = 2 = 1	Bu.
64 = 8 = 4 =	1 Qr.
512 = 64 = 32 =	8 = 1 Wey.
2560 = 320 = 160 =	40 = 5 = 1 Last.
5120 = 640 = 320 =	80 = 10 = 2 = 1
WINE	MEASURE.
2 Pintsmake 2 Quarts	1 Quartmarked Qt. 1 Gallon — Gal. 1 Tierce — Tier. 1 Hogshead — Hhd. 1 Puncheon — Pun. 1 Pipe or Butt — Pi.
2 Pipes —	1 Tun — Tun.
Pts. Qts.	
2 = 1 Gal. 8 = 4 = 1 ?	Fier.
2 = 1 Gal. 8 = 4 = 1 ' 336 = 168 = 42 = 22	Fier. 1 Hhd.
$2 = 1 \text{Gal.} \\ 8 = 4 = 1 2 = 1 \\ 336 = 168 = 42 = 252 = 63 = 252 = 63 = 252 = 63 = 252 = 64 = 252 = 252 = 64 = 252 = 252 = 64 = 252 = 64 = 252 = 64 = 252 = 64 = 252 = 252 = 64 = 252 = 252 = 64 = 252 = 25$	I Hhd. $1^{\frac{1}{2}} = 1$ Pun.
$2 = 1 \text{Gal.} \\ 8 = 4 = 1 2 = 1 \\ 336 = 168 = 42 = 504 = 252 = 63 = 672 = 336 = 84 = 1002 $	Fier. 1 Hhd. $1\frac{1}{2} = 1$ Pun. 2 $1\frac{1}{2} = 1$ Pi. 2 $1\frac{1}{2} = 1$ Pi.

ALE AND BEER MEASURE.

2	Pintsmake 1 Quartmarked	Qt.
4	Quarts — 1 Gallon —	Gal.
36	Gallons — 1 Barrel —	Bar.
1	Barrel and a half 1 Hogshead	Hhd.
2	Barrels — 1 Puncheon —	Pun.
2	Hogsheads — 1 Butt —	Butt.
2	Butts — 1 Tun —	Tun.
	Pts. Qt.	
	2 = 1 Gal.	
	8 = 4 = 1 Bar.	
	288 = 144 = 36 = 1 Hhd.	
	$432 = 216 = 54 = 1\frac{1}{2} = 1$ Butt.	
	$864 = 432 = 108 = 3^{2} = 2 = 1$	

OF TIME.

60 Secondsmake 1 Minutemarked	M. or
60 Minutes — 1 Hour —	Hr.
24 Hours — 1 Day —	Day.
7 Days — 1 Week —	Wĸ.
4 Weeks — 1 Month —	Mo.
13 Months, 1 Day, 6 Hours, 1 Julian Vean	$\mathbf{v}_{\mathbf{n}}$
or 365 Days, 6 Hours.	ır.
Sec. Min.	
60 = 1 Hr.	
3600 = 60 = 1 Day.	
86400 = 1440 = 24 = 1 Wk.	
604800 = 10080 = 168 = 7 = 1 Mo.	
2419200 = 40320 = 672 = 28 = 4 = 1	
$31557600 = 525960 = 8766 = 365_{4} = 1$ Year.	
Wk. Da. Hr. Mo. Da. Hr.	
Or 52 1 $6 = 13$ 1 $6 = 1$ Julian Year.	
Da. Hr. M. Sec.	
But $365 \ 5 \ 48 \ 48 = 1$ Solar Year.	

The time of rotation of the earth on its axis is called a *sidereal* day, for the following reason: If a permanent object be placed on the surface of the earth, always retaining the same position, it may be so located as to be posited in the same plane with the observer and some selected fixed star at the same instant of time; although this coincidence may be but momentary, still this coincidence continually recurs, and the interval elapsed between two consecutive coincidences has always throughout all ages appeared the same.

It is this interval that is called a sidereal day.

The sidereal day increased in a certain ratio, and called the *mean solar day*, has been adopted as the standard of time.

Thus, $366\cdot256365160$ sidereal days = $366\cdot256365160 - 1$ or $365\cdot256365160$ mean solar days, whence sidereal day : mean solar day :: $365\cdot256365160$:: $366\cdot256365160$:: $0\cdot997269672$: 1 or as 1 : $1\cdot002737803$, when 23 hours, 56 minutes $4\cdot0996608$ sec. of mean solar time = 1 sidereal day; and 24 hours, 3 minutes, $56\cdot5461797$ sec. of sidereal time = 1 mean solar day.

The *true solar day* is the interval between two successive coincidences of the sun with a fixed object on the earth's surface, bringing the sun, the fixed object, and the observer in the same plane.

This interval is variable, but is susceptible of a maximum and minimum, and oscillates about that mean period which is called a mean solar day.

Apparent or true time is that which is denoted by the sun-dial, from the apparent motion of the sun in its diurnal revolution, and differs several minutes in certain parts of the ecliptic from the mean time, or that shown by the clock. The difference is called the equation of time, and is set down in the almanac, in order to ascertain the true time.

A BITHMETIC.

ARITHMETIC is the art or science of numbering; being that branch of Mathematics which treats of the nature and properties of numbers. When it treats of whole numbers, it is called Common Arithmetic; but when of broken numbers, or parts of numbers, it is called Fractions.

Unity, or a Unit, is that by which every thing is called one; being the beginning of number; as one man, one ball, one gun.

Number is either simply one, or a compound of several units; as one man, three men, ten men.

An Integer or Whole Number, is some certain precise quantity of units; as one, three, ten. These are so called as distinguished from Fractions, which are broken numbers, or parts of numbers; as one-half, two-thirds, or three-fourths.

NOTATION AND NUMERATION.

NOTATION, or NUMERATION, teaches to denote or express any proposed number, either by words or characters; or to read and write down any sum or number.

The numbers in Arithmetic are expressed by the following ten digits, or Arabic numeral figures, which were introduced into Europe by the Moors about eight or nine hundred years since: viz. 1 one, 2 two, 3 three, 4 four, 5 five, 6 six, 7 seven, 8 eight, 9 nine, 0 cipher or nothing. These characters or figures were formerly all called by the general name of Ciphers; whence it came to pass that the art of Arithmetic was then often called Ciphering. Also, the first nine are called Significant Figures, as distinguished from the cipher, which is quite insignificant of itself.

Besides this value of those figures, they have also another, which depends upon the place they stand in when joined together; as in the following Table:

ંગ્ર &c.	O Hundreds of Millions.	co or Tens of Millions.	6 8 4 Millions.	O O - O Hundreds of Thousands	6 8 4 9 C Tens of Thousands.	spussnoy, 4 15 6 7 8 9			1 2 3 4 5 6 Units.
							9	8	7

8 9

10

Here any figure in the first place, reckoning from right to left, denotes only its own simple value; but that in the second place denotes ten times its simple value; and that in the third place a hundred times its simple value; and so on; the value of any figure, in each successive place, being always ten times its former value.

Thus, in the number 1796, the 6 in the first place denotes only six units, or simply six; 9 in the second place signifies nine tens, or ninety; 7 in the third place, seven hundred; and the 1 in the fourth place, one thousand; so that the whole number is read thus one thousand seven hundred and ninety-six.

As to the cipher 0, it stands for nothing of itself, but being joined on the right-hand side to other figures, it increases their value in the same tenfold proportion: thus, 5 signifies only five; but 50 denotes 5 tens, or fifty; and 500 is five hundred; and so on.

For the more easily reading of large numbers, they are divided into periods and half-periods, each half-period consisting of three figures; the name of the first period being units; of the second, millions; of the third, millions of millions, or bi-millions, contracted to billions; of the fourth, millions of millions of millions, or trimillions, contracted to trillions; and so on. Also, the first part of any period is so many units of it, and the latter part so many thousands.

The following Table contains a summary of the whole doctrine:

Periods.	Quadrill.;	Trillions;	Billions;	Millions;	Units.
		\sim	\sim	\sim	\sim
Half-per.	th. un.	th. un.	th. un.	th. un.	th. un.
Figures.	123,456;	789,098;	$\overrightarrow{765}, \overrightarrow{432};$; 101,234;	567,890.

NUMERATION is the reading of any number in words that is proposed or set down in figures.

NOTATION is the setting down in figures any number proposed in words.

OF THE ROMAN NOTATION.

The Romans, like several other nations, expressed their numbers by certain letters of the alphabet. The Romans only used seven numeral letters, being the seven following capitals: viz. I for one; V for five; X for ten; L for fifty; C for a hundred; D for five hundred; M for a thousand. The other numbers they expressed by various repetitions and combinations of these, after the following manner: 1 = I.2 = II.3 = III.4 = IIII. or IV.5 = V.6 = VI.7 = VII.8 = VIII.9 = IX.10 = X.50 = L.100 = C.500 = D or IO.

$$1000 = M \text{ or CID.}$$

$$\overline{1000} = \overline{1111}$$

5000 = V or IOO. $6000 = \overline{VI}$

$$0000 = VI$$

10000 = X or CCIDD.

 $50000 = \overline{L}$ or IDDD.

 $60000 = \overline{LX}.$

 $100000 = \overline{C}$ or CCCIDDD.

 $1000000 = \overline{M}$ or CCCCIDDDD.

&c.

 $2000000 = \overline{\mathrm{MM}}.$

&c.

A less character after a greater increases its value.

diminishes its value.

For every O annexed, this becomes ten times as many.

As often as any character is repeated,

A less character before a greater

so many times is its value repeated.

- For every C and O, placed one at each end, it becomes ten times as much.
- A bar over any number increases it 1000 fold.

EXPLANATION OF CERTAIN CHARACTERS.

There are various characters or marks used in Arithmetic and Algebra, to denote several of the operations and propositions; the chief of which are as follow:

+ signifies <i>plus</i> , or addition.	: :: : proportion.
minus, or subtraction.	= equality.
\times multiplication.	✓ square root.
÷ division.	- ∛ cube root, &c.

Thus,

5 + 3, denotes that 3 is to be added to 5 = 8.

6-2, denotes that 2 is to be taken from 6=4.

 7×3 , denotes that 7 is to be multiplied by 3 = 21.

 $8 \div 4$, denotes that 8 is to be divided by 4 = 2.

2:3::4:6, shows that 2 is to 3 as 4 is to 6, and thus, $2 \times 6 = 3 \times 4$.

6 + 4 = 10, shows that the sum of 6 and 4 is equal to 10.

 $\sqrt{3}$, or $3^{\frac{1}{2}}$, denotes the square root of the number 3 = 1.7320508.

35, or 5^3 , denotes the cube root of the number 5 = 1.709976.

 7^2 , denotes that the number 7 is to be squared = 49.

 8^3 , denotes that the number 8 is to be cubed = 512.

RULE OF THREE.

THE RULE OF THREE teaches how to find a fourth proportional to three numbers given. Whence it is also sometimes called the Rule of Proportion. It is called the Rule of Three, because three terms or numbers are given to find the fourth; and because of its great and extensive usefulness, it is often called the Golden Rule.

This Rule is usually considered as of two kinds, namely, Direct and Inverse.

The Rule of Three Direct is that in which more requires more, or less requires less. As in this: if 3 men dig 21 yards of trench in a certain time, how much will 6 men dig in the same time? Here more requires more, that is, 6 men, which are more than 3 men, will also perform more work in the same time. Or when it is thus: if 6 men dig 42 yards, how much will 3 men dig in the same time? Here, then, less requires less, or 3 men will perform proportionally less work than 6 men in the same time. In both these cases, then, the Rule, or the Proportion, is Direct; and the stating must be

> thus, As 3:21::6:42, or thus, As 6:42::3:21.

But, the Rule of Three Inverse is when more requires less, or less requires more. As in this: if 3 men dig a certain quantity of trench in 14 hours, in how many hours will 6 men dig the like quantity? Here it is evident that 6 men, being more than 3, will perform an equal quantity of work in less time, or fewer hours. Or thus: if 6 men perform a certain quantity of work in 7 hours, in how many hours will 3 men perform the same? Here less requires more, for 3 men will take more hours than 6 to perform the same work. In both these cases, then, the Rule, or the Proportion, is Inverse; and the stating must be

thus, As
$$6: 14:: 3: 7$$
,
or thus, As $3: 7:: 6: 14$.

And in all these statings the fourth term is found, by multiplying the 2d and 3d terms together, and dividing the product by the 1st term.

Of the three given numbers, two of them contain the supposition, and the third a demand. And for stating and working questions of these kinds observe the following general Rule:

RULE.—State the question by setting down in a straight line the three given numbers, in the following manner, viz. so that the 2d term be that number of supposition which is of the same kind that the answer or 4th term is to be; making the other number of supposition the 1st term, and the demanding number the 3d term, when the question is in direct proportion; but contrariwise, the other number of supposition the third term, and the demanding number the 1st term, when the question has inverse proportion.

Then, in both cases, multiply the 2d and 3d terms together, and divide the product by the first, which will give the answer, or 4th term sought, of the same denomination as the second term. Note, If the first and third terms consist of different denominations, reduce them both to the same; and if the second term be a compound number, it is mostly convenient to reduce it to the lowest denomination mentioned. If, after division, there be any remainder, reduce it to the next lower denomination, and divide by the same divisor as before, and the quotient will be of this last denomination. Proceed in the same manner with all the remainders, till they be reduced to the lowest denomination which the second term admits of, and the several quotients taken together will be the answer required.

Note also, The reason for the foregoing Rules will appear when we come to treat of the nature of Proportions. Sometimes also two or more statings are necessary, which may always be known from the nature of the question.

An engineer having raised 100 yards of a certain work in 24 days with 5 men, how many men must he employ to finish a like quantity of work in 15 days?

	da.	mer	1.	da.	men.	
As :	15	: 5	::	24	: 8 An	s.
	٤.			5		
		1	5)	120	8 Ans	wer.
			1	190	•	

COMPOUND PROPORTION.

COMPOUND PROPORTION teaches how to resolve such questions as require two or more statings by Simple Proportion; and that, whether they be Direct or Inverse.

In these questions, there is always given an odd number of terms, either five, or seven, or nine, &c. These are distinguished into terms of supposition and terms of demand, there being always one term more of the former than of the latter, which is of the same kind with the answer sought.

RULE.—Set down in the middle place that term of supposition which is of the same kind with the answer sought. Take one of the other terms of supposition, and one of the demanding terms which is of the same kind with it; then place one of them for a first term, and the other for a third, according to the directions given in the Rule of Three. Do the same with another term of supposition, and its corresponding demanding term; and so on if there be more terms of each kind; setting the numbers under each other which fall all on the left-hand side of the middle term, and the same for the others on the right-hand side. Then to work.

By several Operations.—Take the two upper terms and the middle term, in the same order as they stand, for the first Rule of Three question to be worked, whence will be found a fourth term. Then take this fourth number, so found, for the middle term of a second Rule of Three question, and the next two under terms in the general stating, in the same order as they stand, finding a fourth term from them; and so on, as far as there are any numbers in the general stating, making always the fourth number resulting from each simple stating to be the second term of the next following one. So shall the last resulting number be the answer to the question.

By one Operation.—Multiply together all the terms standing under each other, on the left-hand side of the middle term; and, in like manner, multiply together all those on the right-hand side of it. Then multiply the middle term by the latter product, and divide the result by the former product, so shall the quotient be the answer sought.

How many men can complete a trench of 135 yards long in 8 days, when 16 men can dig 54 yards in 6 days?

As $54:16::135:40$	As 8 : 40 :: 6 : 30
16	6
810	$8)\overline{240}$ (30 Ans.
135	24
$54)\overline{2160}(40)$	0
216	
0	

OF COMMON FRACTIONS.

A FRACTION, or broken number, is an expression of a part, or some parts, of something considered as a whole.

It is denoted by two numbers, placed one below the other, with a line between them:

thus, $\frac{3}{4}$ denominator $\left. \right\}$ which is named three-fourths.

The Denominator, or number placed below the line, shows how many equal parts the whole quantity is divided into; and represents the Divisor in Division. And the Numerator, or number set above the line, shows how many of those parts are expressed by the Fraction; being the remainder after division. Also, both these numbers are, in general, named the Terms of the Fractions. Fractions are either Proper, Improper, Simple, Compound, or Mixed.

A Proper Fraction is when the numerator is less than the denominator; as $\frac{1}{2}$, or $\frac{2}{3}$, or $\frac{2}{3}$, &c.

An Improper Fraction is when the numerator is equal to, or exceeds, the denominator; as $\frac{3}{3}$, or $\frac{5}{4}$, or $\frac{7}{5}$, &c.

A Simple Fraction is a single expression denoting any number of parts of the integer; as $\frac{2}{3}$, or $\frac{3}{2}$.

A Compound Fraction is the fraction of a fraction, or several fractions connected with the word of between them; as $\frac{1}{2}$ of $\frac{2}{3}$, or $\frac{3}{5}$ of $\frac{5}{6}$ of 3, &c.

A Mixed Number is composed of a whole number and a fraction together; as $3\frac{1}{4}$, or $12\frac{4}{6}$, &c.

A whole or integer number may be expressed like a fraction, by writing 1 below it, as a denominator; so 3 is $\frac{3}{1}$, or 4 is $\frac{4}{1}$, &c.

A fraction denotes division; and its value is equal to the quotient obtained by dividing the numerator by the denominator; so $\frac{14}{2}$ is equal to 3, and $\frac{20}{5}$ is equal to 4.

Hence, then, if the numerator be less than the denominator, the value of the fraction is less than 1. If the numerator be the same as the denominator, the fraction is just equal to 1. And if the numerator be greater than the denominator, the fraction is greater than 1.

REDUCTION OF FRACTIONS.

REDUCTION OF FRACTIONS is the bringing them out of one form or denomination into another, commonly to prepare them for the operations of Addition, Subtraction, &c., of which there are several cases.

To find the greatest common measure of two or more numbers.

The Common Measure of two or more numbers is that number which will divide them both without a remainder: so 3 is a common measure of 18 and 24; the quotient of the former being 6, and of the latter 8. And the greatest number that will do this, is the greatest common measure: so 6 is the greatest common measure of 18 and 24; the quotient of the former being 3, and of the latter 4, which will not both divide farther.

RULE.—If there be two numbers only, divide the greater by the less; then divide the divisor by the remainder; and so on, dividing always the last divisor by the last remainder, till nothing remains; then shall the last divisor of all be the greatest common measure sought.

When there are more than two numbers, find the greatest common measure of two of them, as before; then do the same for that common measure and another of the numbers; and so on, through all the numbers; then will the greatest common measure last found be the answer.

If it happen that the common measure thus found is 1, then the numbers are said to be incommensurable, or to have no common measure. To find the greatest common measure of 1998, 918, and 522. So 54 is the greatest common measure 918) 1998 (2 of 1998 and 918. 1836Hence 54) 522 (9 $\overline{162}$)918(5 486 810 $\overline{108}$)162(1 $\overline{36}$) 54 (1 36 10818)36(2 $\overline{54}$) 108 (210836

So that 18 is the answer required.

To abbreviate or reduce fractions to their lowest terms.

RULE.—Divide the terms of the given fraction by any number that will divide them without a remainder; then divide these quotients again in the same manner; and so on, till it appears that there is no number greater than 1 which will divide them; then the fraction will be in its lowest terms.

Or, divide both the terms of the fraction by their greatest common measure, and the quotients will be the terms of the fraction required, of the same value as at first.

That dividing both the terms of the fraction by the same number, whatever it be, will give another fraction equal to the former, is evident. And when those divisions are performed as often as can be done, or when the common divisor is the greatest possible, the terms of the resulting fraction must be the least possible.

1. Any number ending with an even number, or a cipher, is divisible, or can be divided by 2.

 Any number ending with 5, or 0, is divisible by 5.
 If the right-hand place of any number be 0, the whole is divisible by 10; if there be 2 ciphers, it is divisible by 100; if 3 ciphers, by 1000; and so on, which is only cutting off those ciphers.

4. If the two right-hand figures of any number be divisible by 4, the whole is divisible by 4. And if the three right-hand figures be divisible by 8, the whole is divisible by 8; and so on.

5. If the sum of the digits in any number be divisible by 3, or by 9, the whole is divisible by 3, or by 9.

6. If the right-hand digit be even, and the sum of all the digits be divisible by 6, then the whole will be divisible by 6.

7. A number is divisible by 11 when the sum of the 1st, 3d, 5th, &c., or of all the odd places, is equal to the sum of the 2d, 4th, 6th, &c., or of all the even places of digits.

8. If a number cannot be divided by some quantity less than the square of the same, that number is a prime, or cannot be divided by any number whatever.

9. All prime numbers, except 2 and 5, have either 1, 3, 7, or 9, in the place of units; and all other numbers are composite, or can be divided.

в2

10. When numbers, with a sign of addition or subtraction between them, are to be divided by any number, then each of those numbers must be divided by it. Thus, $\frac{10+8-4}{2} = 5+4-2=7$. 11. But if the numbers have the sign of multiplication between them, only one of them must be divided. Thus, $\frac{10 \times 8 \times 3}{6 \times 2} =$ $\frac{10 \times 4 \times 3}{6 \times 1} = \frac{10 \times 4 \times 1}{2 \times 1} = \frac{10 \times 2 \times 1}{1 \times 1} = \frac{20}{1} = 20$. Reduce $\frac{144}{240}$ to its least terms. $\frac{1444}{240} = \frac{72}{120} = \frac{86}{60} = \frac{18}{20} = \frac{9}{15} = \frac{8}{5}$, the answer. Or thus:

144) 240 (1 Therefore 48 is the greatest common measure, and 144 48) $\frac{144}{240} = \frac{3}{5}$ the answer, the same as before. $\overline{96}$) 144 (1 $\frac{96}{48}$) 96 (2 96

To reduce a mixed number to its equivalent improper fraction.

RULE.—Multiply the whole number by the denominator of the fraction, and add the numerator to the product; then set that sum above the denominator for the fraction required.

Reduce $23\frac{2}{5}$ to a fraction.

	Or,	
23	$(23 \times 5) + 2$	117
5	5	$= -\frac{1}{5}$.
115		
2		
117		
5		

To reduce an improper fraction to its equivalent whole or mixed number.

RULE.—Divide the numerator by the denominator, and the quotient will be the whole or mixed number sought.

Reduce $\frac{12}{3}$ to its equivalent number. Reduce $\frac{12}{5}$ to its equivalent number. Here $\frac{12}{3}$ or $12 \div 3 = 4$. Reduce $\frac{149}{17}$ to its equivalent number. Thus, 17) 749 (44 $\frac{1}{17}$ $\frac{68}{69}$ So that $\frac{749}{17} = 44\frac{1}{17}$ $\frac{68}{1}$

To reduce a whole number to an equivalent fraction, having a given denominator.

RULE.—Multiply the whole number by the given denominator, then set the product over the said denominator, and it will form the fraction required.

Reduce 9 to a fraction whose denominator shall be 7.

Here $9 \times 7 = 63$, then $\frac{6}{7}$ is the answer. For $\frac{6}{7} = 63 \div 7 = 9$, the proof.

To reduce a compound fraction to an equivalent simple one.

RULE.—Multiply all the numerators together for a numerator, and all the denominators together for the denominator, and they will form the simple fraction sought.

When part of the compound fraction is a whole or mixed number, it must first be reduced to a fraction by one of the former cases.

And, when it can be done, any two terms of the fraction may be divided by the same number, and the quotients used instead of them. Or, when there are terms that are common, they may be omitted.

Reduce $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{3}{4}$ to a simple fraction.

Here	1	х	2	х	3		6	1
	$\overline{2}$	X	3	X	4	=	$\overline{24}$	 4 .

Or, $\frac{1 \times 2 \times 3}{2 \times 3 \times 4} = \frac{1}{4}$, by omitting the twos and threes. Reduce $\frac{2}{3}$ of $\frac{3}{5}$ of $\frac{10}{11}$ to a simple fraction. Here $\frac{2 \times 3 \times 10}{3 \times 5 \times 11} = \frac{60}{165} = \frac{12}{33} = \frac{4}{11}$.

Or, $\frac{2 \times 3 \times 10}{3 \times 5 \times 11} = \frac{4}{11}$, the same as before.

To reduce fractions of different denominators to equivalent fractions, having a common denominator.

RULE.—Multiply each numerator into all the denominators except its own for the new numerators; and multiply all the denominators together for a common denominator.

It is evident, that in this and several other operations, when any of the proposed quantities are integers, or mixed numbers, or compound fractions, they must be reduced, by their proper rules, to the form of simple fractions.

Reduce $\frac{1}{2}$, $\frac{2}{3}$, and $\frac{3}{4}$ to a common denominator.

 $\begin{array}{l} 1 \times 3 \times 4 = 12 \text{ the new numerator for } \frac{1}{2}.\\ 2 \times 2 \times 4 = 16.... \text{ for } \frac{2}{3}.\\ 3 \times 2 \times 3 = 18.... \text{ for } \frac{3}{4}.\\ 2 \times 3 \times 4 = 24 \text{ the common denominator.} \end{array}$

Therefore, the equivalent fractions are $\frac{12}{24}$, $\frac{16}{24}$, and $\frac{18}{24}$.

Or, the whole operation of multiplying may be very well performed mentally, and only set down the results and given fractions thus: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4} = \frac{12}{24}$, $\frac{16}{24}$, $\frac{16}{24} = \frac{6}{12}$, $\frac{5}{12}$, $\frac{6}{12}$, $\frac{19}{12}$ When the denominators of two given fractions have a common measure, let them be divided by it; then multiply the terms of each given fraction by the quotient arising from the other's denominator.

When the less denominator of two fractions exactly divides the greater, multiply the terms of that which hath the less denominator by the quotient.

When more than two fractions are proposed, it is sometimes convenient first to reduce two of them to a common denominator, then these and a third; and so on, till they be all reduced to their least common denominator.

To find the value of a fraction in parts of the integer.

RULE.—Multiply the integer by the numerator, and divide the product by the denominator, by Compound Multiplication and Division, if the integer be a compound quantity.

Or, if it be a single integer, multiply the numerator by the parts in the next inferior denomination, and divide the product by the denominator. Then, if any thing remains, multiply it by the parts in the next inferior denomination, and divide by the denominator as before; and so on, as far as necessary; so shall the quotients, placed in order, be the value of the fraction required.

What is the value of $\frac{2}{5}$ of a pound troy?	7 oz. 4 dwts.
What is the value of $\frac{5}{16}$ of a cwt.?	1 gr. 7 lb.
What is the value of § of an acre?	2 ro. 20 po.
What is the value of $\frac{3}{10}$ of a day?	7 hrs. 12 min.

To reduce a fraction from one denomination to another.

RULE.—Consider how many of the less denomination make one of the greater; then multiply the numerator by that number, if the reduction be to a less name, or the denominator, if to a greater.

Reduce 2 of a cwt. to the fraction of a pound.

 $\frac{2}{4} \times \frac{4}{4} \times \frac{28}{4} = \frac{82}{4}$

ADDITION OF FRACTIONS.

To add fractions together that have a common denominator.

RULE.—Add all the numerators together, and place the sum over the common denominator, and that will be the sum of the fractions required.

If the fractions proposed have not a common denominator, they must be reduced to one. Also, compound fractions must be reduced to simple ones, and mixed numbers to improper fractions; also, fractions of different denominations to those of the same denomination.

 To add $\frac{3}{5}$ and $\frac{4}{5}$ together.
 Here $\frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5}$.

 To add $\frac{3}{5}$ and $\frac{5}{5}$ together.
 $\frac{5}{5} + \frac{5}{5} = \frac{18}{5} + \frac{25}{5} = \frac{43}{5} = 1\frac{13}{5}$.

 To add $\frac{5}{5}$ and $7\frac{1}{2}$ and $\frac{1}{5}$ of $\frac{3}{4}$ together.
 $\frac{5}{5} + 7\frac{1}{2} + \frac{1}{3}$ of $\frac{3}{4} = \frac{5}{5} + \frac{15}{5} + \frac{1}{4} = \frac{5}{5} + \frac{69}{5} + \frac{2}{5} = \frac{67}{5} = 8\frac{3}{5}$.

SUBTRACTION OF FRACTIONS.

RULE.—Prepare the fractions the same as for Addition; then subtract the one numerator from the other, and set the remainder over • the common denominator, for the difference of the fractions sought.

To find the difference between § and §.

To find the difference between $\frac{3}{4}$ and $\frac{5}{7}$. $\frac{3}{4} - \frac{5}{7} = \frac{21}{28} - \frac{20}{28} = \frac{1}{28}$.

MULTIPLICATION OF FRACTIONS.

MULTIPLICATION of any thing by a fraction implies the taking some part or parts of the thing; it may therefore be truly expressed by a compound fraction; which is resolved by multiplying together the numerators and the denominators.

RULE.—Reduce mixed numbers, if there be any, to equivalent fractions; then multiply all the numerators together for a numerator, and all the denominators together for a denominator, which will give the product required.

Required the product of $\frac{3}{4}$ and $\frac{2}{5}$.

Here
$$\frac{3}{4} \times \frac{2}{9} = \frac{6}{36} = \frac{1}{6}$$
.

$$\text{Or, } \tfrac{3}{4} \times \tfrac{2}{3} = \tfrac{1}{2} \times \tfrac{1}{3} = \tfrac{1}{6}.$$

Required the continued product of $\frac{2}{3}$, $3\frac{1}{4}$, 5, and $\frac{2}{4}$ of $\frac{2}{5}$.

Here
$$\frac{2}{3} \times \frac{13}{4} \times \frac{5}{1} \times \frac{3}{4} \times \frac{3}{5} = \frac{13 \times 3}{4 \times 2} = \frac{39}{8} = 4\frac{7}{8}$$

DIVISION OF FRACTIONS.

RULE.—Prepare the fractions as before in Multiplication; then divide the numerator by the numerator, and the denominator by the denominator, if they will exactly divide; but if not, then invert the terms of the divisor, and multiply the dividend by it, as in Multiplication.

Divide 25 by 5.

Here $\frac{25}{5} \div \frac{5}{3} = \frac{5}{3} = \frac{12}{3}$, by the first method.

Divide § by 2.

Here $\frac{5}{9} \div \frac{2}{15} = \frac{5}{9} \times \frac{15}{2} = \frac{5}{9} \times \frac{5}{2} = \frac{25}{6} = 4\frac{1}{6}$, by the latter.

RULE OF THREE IN FRACTIONS.

RULE.—Make the necessary preparations as before directed; then multiply continually together the second and third terms, and the first with its terms inverted as in Division, for the answer. This is only multiplying the second and third terms together, and dividing the product by the first, as in the Rule of Three in whole numbers.

If $\frac{3}{5}$ of a yard of velvet cost $\frac{2}{5}$ of a dollar, what will $\frac{5}{16}$ of a yard cost?

Here $\frac{3}{8}:\frac{2}{5}::\frac{5}{16}:\frac{3}{8}\times\frac{2}{5}\times\frac{5}{16}=\frac{1}{8}$ of a dollar.

DECIMAL FRACTIONS.

A DECIMAL FRACTION is that which has for its denominator a unit (1) with as many ciphers annexed as the numerator has places; and it is usually expressed by setting down the numerator only, with a point before it on the left hand. Thus, $\frac{5}{10}$ is $\cdot 5$, and $\frac{25}{100}$ is $\cdot 25$, and $\frac{75}{1000}$ is $\cdot 075$, and $\frac{1024}{10000}$ is $\cdot 00124$; where ciphers are prefixed to make up as many places as are in the numerator, when there is a deficiency of figures.

A mixed number is made up of a whole number with some decimal fraction, the one being separated from the other by a point. Thus, 3.25 is the same as $3\frac{25}{100}$, or $\frac{225}{600}$.

Ciphers on the right hand of decimals make no alteration in their value; for $\cdot 5$, or $\cdot 50$, or $\cdot 500$, are decimals having all the same value, being each = $\frac{5}{10}$ or $\frac{1}{2}$. But if they are placed on the left hand, they decrease the value in a tenfold proportion. Thus, $\cdot 5$ is $\frac{5}{10}$ or 5 tenths, but $\cdot 05$ is only $\frac{5}{100}$ or 5 hundreths, and $\cdot 005$ is but $\frac{5}{1000}$ or 5 thousandths.

The first place of decimals, counted from the left hand towards the right, is called the place of primes, or 10ths; the second is the place of seconds, or 100ths; the third is the place of thirds, or 1000ths; and so on. For, in decimals, as well as in whole numbers, the values of the places increase towards the left hand, and decrease towards the right, both in the same tenfold proportion; as in the following Scale or Table of Notation:

o millions.	o hundred thousands.	o ten thousands.	o thousands.	o hundreds.	b tens.	o units.	o tenth parts.	o hundredth parts.	o thousandths parts.	o ten thousandths parts.	o hundred thousandth parts.	o millionth parts.
3	3	3	3	3	3	3	3	3	3	3	3	3

ADDITION OF DECIMALS.

RULE.—Set the numbers under each other according to the value of their places, like as in whole numbers; in which state the decimal separating points will stand all exactly under each other. Then, beginning at the right hand, add up all the columns of number as in integers, and point off as many places for decimals as are in the greatest number of decimal places in any of the lines that are added; or, place the point directly below all the other points.

To add together 29.0146, and 3146.5,	
and 2109, and 62417, and 14.16.	3
	~

29.0146 3146.5 2109. .62417 14.16 5299.29877, the sum.

MULTIPLICATION OF DECIMALS,

The sum of $376 \cdot 25 + 86 \cdot 125 + 637 \cdot 4725 + 6 \cdot 5 + 41 \cdot 02 + 358 \cdot 865 = 1506 \cdot 2325$.

The sum of $3 \cdot 5 + 47 \cdot 25 + 2.0073 + 927 \cdot 01 + 1 \cdot 5 = 981.2673$. The sum of $276 + 54 \cdot 321 + 112 + 0.65 + 12 \cdot 5 + 0.0463 = 455 \cdot 5173$.

SUBTRACTION OF DECIMALS.

RULE.—Place the numbers under each other according to the value of their places, as in the last rule. Then, beginning at the right hand, subtract as in whole numbers, and point off the decimals as in Addition.

To find the difference between 91.73 and 2.138.

91.73 2.138 $\overline{89.592}$ the difference.

The difference between 1.9185 and 2.73 = 0.8115. The difference between 214.81 and 4.90142 = 209.90858. The difference between 2714 and .916 = 2713.084.

MULTIPLICATION OF DECIMALS.

RULE.—Place the factors, and multiply them together the same as if they were whole numbers. Then point off in the product just as many places of decimals as there are decimals in both the factors. But if there be not so many figures in the product, then supply the defect by prefixing ciphers.

 $\begin{array}{r} \text{Multiply \cdot321096$} \\ \text{by \cdot2465$} \\ \hline 1605480$ \\ 1926576$ \\ 1284384$ \\ 642192$ \\ \hline 0791501640$ \text{th} \end{array}$

•0791501640 the product.

Multiply 79·347 by 23·15, and we have 1836·88305. Multiply ·63478 by ·8204, and we have ·520773512. Multiply ·385746 by ·00464, and we have ·00178986144.

CONTRACTION I.

To multiply decimals by 1 with any number of ciphers, as 10, or 100, or 1000, §c.

This is done by only removing the decimal point so many places farther to the right hand as there are ciphers in the multiplier; and subjoining ciphers if need be.

The product of 51.3 and 1000 is 51300. The product of 2.714 and 100 is 271.4. The product of .916 and 1000 is 916. The product of 21.31 and 10000 is 213100.

CONTRACTION II.

To contract the operation, so as to retain only as many decimals in the product as may be thought necessary, when the product would naturally contain several more places.

Set the units' place of the multiplier under that figure of the multiplicand whose place is the same as is to be retained for the

last in the product; and dispose of the rest of the figures in the inverted or contrary order to what they are usually placed in. Then, in multiplying, reject all the figures that are more to the right than each multiplying figure; and set down the products, so that their right hand figures may fall in a column straight below each other; but observing to increase the first figure of every line with what would arise from the figures omitted, in this manner, namely, 1 from 5 to 14, 2 from 15 to 24, 3 from 25 to 34, &c.; and the sum of all the lines will be the product as required, commonly to the nearest unit in the last figure.

To multiply 27.14986 by 92.41035, so as to retain only four places of decimals in the product.

Contracted way.	Common way.
27.14986	27.14986
53014.29	92.41035
$\overline{24434874}$	13 574930
542997	81 44958
108599	2714 986
2715	10859944
81	542997]2
14	24434874
$\overline{2508.9280}$	$\overline{2508 \cdot 9280} \overline{650510}$

DIVISION OF DECIMALS.

RULE.—Divide as in whole numbers; and point off in the quotient as many places for decimals, as the decimal places in the dividend exceed those in the divisor.

When the places of the quotient are not so many as the rule requires, let the defect be supplied by prefixing ciphers.

When there happens to be a remainder after the division; or when the decimal places in the divisor are more than those in the dividend; then ciphers may be annexed to the dividend, and the quotient carried on as far as required.

179) $\cdot 48624097$ ($\cdot 00271643$		$\cdot 2685$) 27 $\cdot 00000$ (100 $\cdot 55865$
1282	•	15000
294		15750
1150		23250
769		17700
537		15900
000		24750
Divide 234.70525 by 64.25.		3.653.
Divide 14 by .7854.		17.825.
Divide 2175.68 by 100.		21.7568.
Divide .8727587 by .162.		5.38739.

CONTRACTION I.

When the divisor is an integer, with any number of ciphers annexed; cut off those ciphers, and remove the decimal point in the dividend as many places farther to the left as there are ciphers cut off, prefixing ciphers if need be; then proceed as before.

Divide 45.5 by 2100.

CONTRACTION II.

Hence, if the divisor be 1 with ciphers, as 10, or 100, or 1000, &c.; then the quotient will be found by merely moving the decimal point in the dividend so many places farther to the left as the divisor has ciphers; prefixing ciphers if need be.

So, $217\cdot3 \div 100 = 2\cdot173$, and $419 \div 10 = 41\cdot9$. And $5\cdot16 \div 100 = \cdot0516$, and $\cdot21 \div 1000 = \cdot00021$.

CONTRACTION III.

When there are many figures in the divisor; or only a certain number of decimals are necessary to be retained in the quotient, then take only as many figures of the divisor as will be equal to the number of figures, both integers and decimals, to be in the quotient, and find how many times they may be contained in the first figures of the dividend, as usual.

Let each remainder be a new dividend; and for every such dividend, leave out one figure more on the right hand side of the divisor; remembering to carry for the increase of the figures cut off, as in the 2d contraction in Multiplication.

When there are not so many figures in the divisor as are required to be in the quotient, begin the operation with all the figures, and continue it as usual till the number of figures in the divisor be equal to those remaining to be found in the quotient, after which begin the contraction.

Divide 2508.92806 by 92.41035, so as to have only four decimals in the quotient, in which case the quotient will contain six figures.

Contracted.	Common way.
$92 \cdot 4103,5) 2508 \cdot 928,06 (27 \cdot 1498)$	$92 \cdot 4103, 5) 2508 \cdot 928, 06 (27 \cdot 1498)$
660721	66072106
13849	13848610
4608	46075750
912	91116100
80	79467850
6	5539570

REDUCTION OF DECIMALS.

To reduce a common fraction to its equivalent decimal.

RULE.—Divide the numerator by the denominator as in Division of Decimals, annexing ciphers to the numerator as far as necessary; so shall the quotient be the decimal required.

С

Reduce $\frac{7}{24}$ to a decimal.

 $24 = 4 \times 6.$

Then 4)7. 6)1.750000 $\cdot 291666$, &c. is .

 $\frac{1}{25}$ reduced to a decimal, $\frac{3}{192}$ reduced to a decimal, $\frac{975}{3842}$ reduced to a decimal,

§ reduced to a decimal,

is ·375. is ·04. is ·015625. is ·071577, &c.

CASE II.

To find the value of a decimal in terms of the inferior denominations.

RULE.—Multiply the decimal by the number of parts in the next lower denomination; and cut off as many places for a remainder, to the right hand, as there are places in the given decimal.

Multiply that remainder by the parts in the next lower denomination again, cutting off for another remainder as before.

Proceed in the same manner through all the parts of the integer; then the several denominations, separated on the left hand, will make up the value required.

What is the value of .0125 lb. troy :	3 dwts.
What is the value of $\cdot 4694$ lb. troy :- 5 oz. 12	dwt. 15.744 gr.
What is the value of .625 cwt. :	2 gr. 14 lb.
What is the value of $\cdot 009943$ miles :- 17 yd.	1 ft. 5.98848 in.
What is the value of .6875 yd. :	2 gr. 3 nls.
What is the value of .3375 ac. :	1 rd. 14 poles.
What is the value of .2083 hhd. of wine :	13·1229 gal.

CASE III.

To reduce integers or decimals to equivalent decimals of higher denominations.

RULE.—Divide by the number of parts in the next higher denomination; continuing the operation to as many higher denominations as may be necessary, the same as in Reduction Ascending of whole numbers.

Reduce 1 dwt. to the decimal of a pound troy.

20 | 1 dwt. 12 | 0.05 oz. 0.004166, &c. lb.

Reduce 7 dr. to the decimal of a pound avoird.:— ·02734375 lb. Reduce 2·15 lb. to the decimal of a cwt. :— ·019196 cwt. Reduce 24 yards to the decimal of a mile:— ·013636, &c. miles. Reduce ·056 poles to the decimal of an acre :— ·00035 ac. Reduce 1·2 pints of wine to the decimal of a hhd. :— ·00238 hhd. Reduce 14 minutes to the decimal of a day :— ·009722, &c. da. Reduce ·21 pints to the decimal of a peck:— ·013125 pec. When there are several numbers, to be reduced all to the decimal of the highest.

Set the given numbers directly under each other, for dividends, proceeding orderly from the lowest denomination to the highest.

DUODECIMALS.

Opposite to each dividend, on the left hand, set such a number for a divisor as will bring it to the next higher name; drawing a perpendicular line between all the divisors and dividends.

Begin at the uppermost, and perform all the divisions; only observing to set the quotient of each division, as decimal parts, on the right hand of the dividend next below it; so shall the last quotient be the decimal required.

Reduce 5 oz. 12 dwts. 16 gr. to lbs. :- •46944, &c. lb.

RULE OF THREE IN DECIMALS.

RULE.—Prepare the terms by reducing the vulgar fractions to decimals, any compound numbers either to decimals of the higher denominations, or to integers of the lower, also the first and third terms to the same name: then multiply and divide as in whole numbers.

Any of the convenient examples in the Rule of Three or Rule of Five in Integers, or Common Fractions, may be taken as proper examples to the same rules in Decimals.—The following example, which is the first in Common Fractions, is wrought here to show the method.

If $\frac{3}{8}$ of a yard of velvet cost $\frac{2}{5}$ of a dollar, what will $\frac{5}{16}$ yd. cost?

 $\begin{array}{cccccc} & & & & & & & & \\ \frac{3}{8} = & \cdot 375 & & \cdot 375 : \cdot 4 :: \cdot 3125 : \cdot 333, & & \\ \frac{3}{6} = & \cdot 4 & & & \cdot 375 \end{array}) \underbrace{\overline{\cdot 12500}}_{12500} (\cdot 3333333, 33\frac{1}{3} \text{ cts.} \\ & & & & & \\ 1250 & & & & \\ 125 & & & & \\ \end{array}$

 $\frac{5}{16} = \cdot 3125.$

DUODECIMALS.

DUODECIMALS, or CROSS MULTIPLICATION, is a rule made use of by workmen and artificers, in computing the contents of their works.

Dimensions are usually taken in feet, inches, and quarters; any parts smaller than these being neglected as of no consequence. And the same in multiplying them together, or casting up the contents.

RULE.—Set down the two dimensions, to be multiplied together, one under the other, so that feet stand under feet, inches under inches, &c.

Multiply each term in the multiplicand, beginning at the lowest, by the feet in the multiplier, and set the result of each straight under its corresponding term, observing to carry 1 for every 12, from the inches to the feet.

In like manner, multiply all the multiplicand by the inches and parts of the multiplier, and set the result of each term one place removed to the right hand of those in the multiplicand; omitting, however, what is below parts of inches, only carrying to these the proper number of units from the lowest denomination.

Or, instead of multiplying by the inches, take such parts of the multiplicand as these are of a foot.

Then add the two lines together, after the manner of Compound Addition, carrying 1 to the feet for 12 inches, when these come to so many.

Multiply 4 f. 7 inc.	Multiply 14 f. 9 inc
by 6 4	by 4 6
$\overline{27 \ 6}$	59 0
$1 6\frac{1}{3}$	$7 4\frac{1}{2}$
$29 \cdot 0\frac{1}{3}$	$\overline{66}$ $4\frac{1}{2}$

INVOLUTION.

INVOLUTION is the raising of Powers from any given number, as a root.

A Power is a quantity produced by multiplying any given number, called the Root, a certain number of times continually by 2 = 2 is the root, or first power of 2. itself. Thus,

 $2 \times 2 = 4$ is the 2d power, or square of 2.

- $2 \times 2 \times 2 = 8$ is the 3d power, or cube of 2.
- $2 \times 2 \times 2 \times 2 = 16$ is the 4th power of 2, &c.

And in this manner may be calculated the following Table of the first nine powers of the first nine numbers.

TABLE	OF	THE	FIRST	NINE	POWERS	OF	NUMBERS.
-------	----	-----	-------	------	--------	----	----------

1st	·2d.	3d.	4th.	5th.	6th.	7th.	8th.	9th.
1	1	1	1	1	1	1	1	1
2	4	8	16	32	64	128	256	512
3	9	27	81	243	729	2187	6561	19683
4	16	64	256	1024	4096	16384	65536	262144
5	25	125	625	3125	15625	78125	390625	1953125
6	36	216	1296	7776	46656	279936	1679616	10077696
7	49	343	2401	16807	117649	823543	5764801	40353607
8	64	512	4096	32768	262144	2097152	16777216	134217728
9	81	729	6561	59049	531441	4782969	43046721	387420489

The Index or Exponent of a Power is the number denoting the height or degree of that power; and it is 1 more than the number of multiplications used in producing the same. So 1 is the index or exponent of the 1st power or root, 2 of the 2d power or square, 3 of the 3d power or cube, 4 of the 4th power, and so on.

Powers, that are to be raised, are usually denoted by placing the index above the root or first power.

So $2^2 = 4$, is the 2d power of 2.

 $2^3 = 8$, is the 3d power of 2. $2^4 = 16$, is the 4th power of 2.

540⁴, is the 4th power of 540 = 85030560000.

When two or more powers are multiplied together, their product will be that power whose index is the sum of the exponents of the factors or powers multiplied. Or, the multiplication of the powers answers to the addition of the indices. Thus, in the following powers of 2.

1st. 2d. 3d. 4th. 5th. 6th. 7th. 8th. 9th. 10th. 51210244 8 1632 6412825627 or, 2^{1} $2^2 2^3$ 2^6 010 2^4 25 2^{8} 2^9 Here, $4 \times 4 = 16$, and 2 + 2 = 4 its index; and $8 \times 16 = 128$, and 3 + 4 = 7 its index; also $16 \times 64 = 1024$, and 4 + 6 = 10 its index.

The 2d power of 45 is 2025.

The square of 4.16 is 17.3056.

The 3d power of 3.5 is 42.875.

The 5th power of .029 is .000000020511149.

The square of $\frac{2}{3}$ is $\frac{4}{3}$.

The 3d power of $\frac{5}{5}$ is $\frac{125}{736}$.

The 4th power of $\frac{3}{4}$ is $\frac{81}{256}$.

EVOLUTION.

EVOLUTION, or the reverse of Involution, is the extracting or finding the roots of any given powers.

The root of any number, or power, is such a number as, being multiplied into itself a certain number of times, will produce that power. Thus, 2 is the square root or 2d root of 4, because $2^2 = 2 \times 2 = 4$; and 3 is the cube root or 3d root of 27, because $3^3 = 3 \times 3 \times 3 = 27$.

Any power of a given number or root may be found exactly, namely, by multiplying the number continually into itself. But there are many numbers of which a proposed root can never be exactly found. Yet, by means of decimals we may approximate or approach towards the root to any degree of exactness.

These roots, which only approximate, are called Surd roots; but those which can be found quite exact, are called Rational roots. Thus, the square root of 3 is a surd root; but the square root of 4 is a rational root, being equal to 2: also, the cube root of 8 is rational, being equal to 2; but the cube root of 9 is surd, or irrational.

Roots are sometimes denoted by writing the character \checkmark before the power, with the index of the root against it. Thus, the third root of 20 is expressed by $\checkmark 20$; and the square root or 2d root of it is $\checkmark 20$, the index 2 being always omitted when the square root is designed.

When the power is expressed by several numbers, with the sign + or - between them, a line is drawn from the top of the sign over all the parts of it; thus, the third root of 45 - 12 is $\sqrt[3]{45} - 12$, or thus, $\sqrt[3]{(45 - 12)}$, enclosing the numbers in parentheses.

But all roots are now often designed like powers, with fractional indices: thus, the square root of 8 is $8^{\frac{1}{2}}$, the cube root of 25 is $25^{\frac{1}{3}}$, and the 4th root of 45 - 18 is $\overline{45 - 18}^{\frac{1}{4}}$, or, $(45 - 18)^{\frac{1}{4}}$.

TO EXTRACT THE SQUARE ROOT.

RULE.—Divide the given number into periods of two figures each, by setting a point over the place of units, another over the place of hundreds, and so on, over every second figure, both to the left hand in integers, and to the right in decimals.

Find the greatest square in the first period on the left hand, and set its root on the right hand of the given number, after the manner of a quotient figure in Division.

Subtract the square thus found from the said period, and to the remainder annex the two figures of the next following period for a dividend.

Double the root above mentioned for a divisor, and find how often it is contained in the said dividend, exclusive of its right-hand figure; and set that quotient figure both in the quotient and divisor.

Multiply the whole augmented divisor by this last quotient figure, and subtract the product from the said dividend, bringing down to the next period of the given number, for a new dividend.

Repeat the same process over again, namely, find another new divisor, by doubling all the figures now found in the root; from which, and the last dividend, find the next figure of the root as before, and so on through all the periods to the last.

The best way of doubling the root to form the new divisor is by adding the last figure always to the last divisor, as appears in the following examples. Also, after the figures belonging to the given number are all exhausted, the operation may be continued into decimals at pleasure, by adding any number of periods of ciphers, two in each period.

To find the square root of 29506624.

 $\begin{array}{c|c} 29506624 \ (\ 5432 \ \text{the root.} \\ 25 \\\hline 104 & 450 \\ 4 & 416 \\\hline 1083 & 3466 \\ 8 & 3249 \\\hline 10862 & 21724 \\ 2 & 21724 \\\hline \end{array}$

When the root is to be extracted to many places of figures, the work may be considerably shortened, thus:

Having proceeded in the extraction after the common method till there be found half the required number of figures in the root, or one figure more; then, for the rest, divide the last remainder by

its corresponding divisor, after the manner of the third contraction in Division of Decimals; thus,

To find the root of 2 to nine places of figures.

2(1.4142)	
1	
$\overline{24 \mid 100}$	
4 96	
281 400	
1 281	
$\overline{2824 11900}$	
4 11296	
28282 60400	
$2 \mid 56564$	
$\overline{28284}$ 3836 (135	66
1008	
160	
19	
2	

1.41421356 the root required.

The square root of $\cdot 000729$ is $\cdot 027$. The square root of 3 is 1.732050. The square root of 5 is 2.236068. The square root of 6 is 2.449489.

RULES FOR THE SQUARE ROOTS OF COMMON FRACTIONS AND MIXED NUMBERS.

First, prepare all common fractions by reducing them to their least terms, both for this and all other roots. Then,

1. Take the root of the numerator and of the denominator for the respective terms of the root required. And this is the best way if the denominator be a complete power; but if it be not, then,

2. Multiply the numerator and denominator together; take the root of the product: this root being made the numerator to the denominator of the given fraction, or made the denominator to the numerator of it, will form the fractional root required.

That is,
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{ab}}{b} = \frac{a}{\sqrt{ab'}}$$

And this rule will serve whether the root be finite or infinite.

3. Or reduce the common fraction to a decimal, and extract its root.

4. Mixed numbers may be either reduced to improper fractions, and extracted by the first or second rule; or the common fraction may be reduced to a decimal, then joined to the integer, and the root of the whole extracted.

The root of $\frac{25}{56}$ is $\frac{5}{56}$. The root of $\frac{9}{49}$ is $\frac{3}{4}$. The root of $\frac{9}{12}$ is 0.866025. The root of $\frac{5}{12}$ is 0.645497. The root of $17\frac{3}{5}$ is 4.168333. By means of the square root, also, may readily be found the 4th root, or the 8th root, or the 16th root, &c.; that is, the root of any power whose index is some power of the number 2; namely, by extracting so often the square root as is denoted by that power of 2; that is, two extractions for the 4th root, three for the 8th root, and so on.

So, to find the 4th root of the number 21035.8, extract the square root twice as follows:

	• • • •
$21035 \cdot 8000$	(145.037237 (12.0431407, the 4th root.
1	1
$24 \mid \overline{110}$	22 45
4 96	$2 \mid 44$
285 1435	2404 10372
5 1425	4 9616
$29003 \mid 108000$	24083 75637
6 87009	6 72249
20991 (1237 3388 (1407
687	980
107	17
20	

TO EXTRACT THE CUBE ROOT.

1. DIVIDE the page into three columns (I), (II), (III), in order, from left to right, so that the breadth of the columns may increase in the same order. In column (III) write the given number, and divide it into periods of three figures each, by putting a point over the place of units, and also over every third figure, from thence to the left in whole numbers, and to the right in decimals.

2. Find the nearest less cube number to the first or left-hand period; set its root in column (III), separating it from the right of the given number by a curve line, and also in column (I); then multiply the number in (I) by the root figure, thus giving the square of the first root figure, and write the result in (II); multiply the number in (II) by the root figure, thus giving the cube of the first root figure, and write the result in (II); multiply the number in (II) by the root figure, thus giving the cube of the first root figure, and write the result below the first or left-hand period in (III); subtract it therefrom, and annex the next period to the remainder for a dividend.

3. In (I) write the root figure below the former, and multiply the sum of these by the root figure; place the product in (II), and add the two numbers together for a trial divisor. Again, write the root figure in (I), and add it to the former sum.

4. With the number in (II) as a trial divisor of the dividend, omitting the two figures to the right of it, find the next figure of the root, and annex it to the former, and also to the number in (I). Multiply the number now in (I) by the new figure of the root, and write the product as it arises in (II), but extended two places of figures more to the right, and the sum of these two numbers will be the corrected divisor; then multiply the corrected divisor by the last root figure, placing the product as it arises below the dividend; subtract it therefrom, annex another period, and proceed precisely as described in (3), for correcting the columns (1) and (11). Then with the new trial divisor in (11), and the new dividend in (111), proceed as before.

When the trial divisor is not contained in the dividend, after two figures are omitted on the right, the next root figure is 0, and therefore one cipher must be annexed to the number in (I); two ciphers to the number in (II); and another period to the dividend in (III).

When the root is interminable, we may contract the work very considerably, after obtaining a few figures in the decimal part of the root, if we omit to annex another period to the remainder in (III); cut off one figure from the right of (II), and two figures from (I), which will evidently have the effect of cutting off *three* figures from each column; and then work with the numbers on the left, as in contracted multiplication and division of decimals.

Find the cube root of 21035.8 to ten places of decimals.

(T)	(11)	- (111)
2(1)	4	21035.8 (27.60491055944
2	8	8
4	12	13035
$\overline{2}$	$\frac{1}{469}$	11683
$\overline{\overline{67}}$	$\overline{1669}$	1352800
7	518	1341576
$\overline{74}$	$\overline{2187}$.	11224
$\overline{7}$	4896	9142444864
816	$\overline{223596}$	2081555136
6	4932 ,	2057415281
$\overline{822}$	228528	24139855
$\overline{6}$	331216	22860923
$\overline{82804}$	2285611216	1278932
4	$3\overline{3}\overline{1}\overline{2}\overline{3}\overline{2}$	1143046
8 28 08	$\overline{228594244 8}$	135886
4	74531	114305
$ \cdot 8 28 12$	2286016979	21581
	74531	20575
	$\overline{22860915 1}$	1006
	83	914
	$\overline{22860923 4}$	92
	83	91
	2 2 8 6 0 9 3 2	1
Required a	the cube roots of the fo	ollowing numbers :
48228544.	46656, and 15069223	3. 364. 36. and 247.
64481.201, and 28991029248.		40.1, and 3072.
12821119155125, and .000076765625.		65625. 23405, and .0425.
18824 42875, and	16.	$\frac{24}{25}$, and 2.519842.
911, and 79.		4.5. and 1.98802366.

THE PRACTICAL MODEL CALCULATOR.

TO EXTRACT ANY BOOT WHATEVER.

LET N be the given power or number, n the index of the power, A the assumed power, r its root, R the required root of N.

Then, as the sum of n + 1 times A and n - 1 times N, is to the sum of n + 1 times N and n - 1 times A, so is the assumed root r, to the required root R.

Or, as half the said sum of n + 1 times A and n - 1 times N, is to the difference between the given and assumed powers, so is the assumed root r, to the difference between the true and assumed roots; which difference, added or subtracted, as the case requires, gives the true root nearly.

gives the true root nearly. That is, $(n + 1) \cdot A + (n - 1) \cdot N : (n + 1) \cdot N + (n - 1) \cdot A :: r : R$. Or, $(n + 1) \cdot \frac{1}{2}A + (n - 1) \cdot \frac{1}{2}N : A \oslash N :: r : R \oslash r$.

And the operation may be repeated as often as we please, by using always the last found root for the assumed root, and its nth power for the assumed power A.

To extract the 5th root of 21035.8.

Here it appears that the 5th root is between $7\cdot3$ and $7\cdot4$. Taking $7\cdot3$, its 5th power is 20730.71593. Hence then we have,

 $N = 21035 \cdot 8; r = 7 \cdot 3; n = 5; \frac{1}{2} \cdot (n+1) = 3; \frac{1}{2} \cdot (n-1) = 2.$ A = 20730.716 $N - \overline{A} = 305 \cdot 084$ A = 20730.716 N = 21035.83 $\mathbf{2}$ 42071.6 3 A = 62192.1482 N = 42071.6As 104263.7: 305.084:: 7.3: 02136057.39152522135588 104263.7) 2227.1132 (.0213605, the difference. 14184 $7 \cdot 3 = r \operatorname{add}$ 3758630 7.321360 = R, the root, true to $\mathbf{5}$ the last figure. The 6th root of 21035.8 is 5.254037. is 1.122462. The 6th root of 2 The 7th root of 21035.8 is 4.145392. The 7th root of 2 is 1.104089. The 9th root of 2 is 1.080059.

OF RATIOS, PROPORTIONS, AND PROGRESSIONS.

NUMBERS are compared to each other in two different ways: the one comparison considers the difference of the two numbers, and is named Arithmetical Relation, and the difference sometimes Arithmetical Ratio: the other considers their quotient, and is called
Geometrical Relation, and the quotient the Geometrical Ratio. So, of these two numbers 6 and 3, the difference or arithmetical ratio is 6-3 or 3; but the geometrical ratio is $\frac{6}{3}$ or 2.

There must be two numbers to form a comparison: the number which is compared, being placed first, is called the Antecedent; and that to which it is compared the Consequent. So, in the two numbers above, 6 is the antecedent, and 3 is the consequent.

If two or more couplets of numbers have equal ratios, or equal differences, the equality is named Proportion, and the terms of the ratios Proportionals. So, the two couplets, 4, 2 and 8, 6 are arithmetical proportionals, because 4-2=8-6=2; and the two couplets 4, 2 and 6, 3 are geometrical proportionals, because $\frac{4}{2}=\frac{6}{3}=2$, the same ratio.

To denote numbers as being geometrically proportional, a colon is set between the terms of each couplet to denote their ratio; and a double colon, or else a mark of equality between the couplets or ratios. So, the four proportionals, 4, 2, 6, 3, are set thus, 4:2::6:3, which means that 4 is to 2 as 6 is to 3; or thus, 4:2=6:3; or thus, $\frac{4}{2} = \frac{6}{3}$, both which mean that the ratio of 4 to 2 is equal to the ratio of 6 to 3.

Proportion is distinguished into Continued and Discontinued. When the difference or ratio of the consequent of one couplet and the antecedent of the next couplet is not the same as the common difference or ratio of the couplets, the proportion is discontinued. So, 4, 2, 8, 6 are in discontinued arithmetical proportion, because 4-2=8-6=2, whereas, 2-8=-6; and 4, 2, 6, 3 are in discontinued geometrical proportion, because $\frac{4}{2}=\frac{6}{3}=2$, but $\frac{2}{6}=\frac{1}{3}$, which is not the same.

But when the difference or ratio of every two succeeding terms is the same quantity, the proportion is said to be continued, and the numbers themselves a series of continued proportionals, or a progression. So, 2, 4, 6, 8 form an arithmetical progression, because 4 - 2 = 6 - 4 = 8 - 6 = 2, all the same common difference; and 2, 4, 8, 16, a geometrical progression, because $\frac{4}{2} = \frac{8}{4} = \frac{16}{2} = 2$, all the same ratio.

When the following terms of a Progression exceed each other, it is called an Ascending Progression or Series; but if the terms decrease, it is a Descending one.

So, 0, 1, 2, 3, 4, &c., is an ascending arithmetical progression, but 9, 7, 5, 3, 1, &c., is a descending arithmetical progression: Also, 1, 2, 4, 8, 16, &c., is an ascending geometrical progression, and 16, 8, 4, 2, 1, &c., is a descending geometrical progression.

ARITHMETICAL PROPORTION AND PROGRESSION.

THE first and last terms of a Progression are called the Extremes; and the other terms lying between them, the Means.

The most useful part of arithmetical proportions is contained in the following theorems:

THEOREM 1.—If four quantities be in arithmetical proportion, the sum of the two extremes will be equal to the sum of the two means. Thus, of the four 2, 4, 6, 8, here 2 + 8 = 4 + 6 = 10. THEOREM 2.—In any continued arithmetical progression, the sum of the two extremes is equal to the sum of any two means that are equally distant from them, or equal to double the middle term when there is an uneven number of terms.

Thus, in the terms 1, 3, 5, it is 1 + 5 = 3 + 3 = 6.

And in the series 2, 4, 6, 8, 10, 12, 14, it is 2 + 14 = 4 + 12 = 6 + 10 = 8 + 8 = 16.

THEOREM 3.—The difference between the extreme terms of an arithmetical progression, is equal to the common difference of the series multiplied by one less than the number of the terms.

So, of the ten terms, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, the common difference is 2, and one less than the number of terms 9; then the difference of the extremes is 20 - 2 = 18, and $2 \times 9 = 18$ also.

Consequently, the greatest term is equal to the least term added to the product of the common difference multiplied by 1 less than the number of terms.

THEOREM 4.—The sum of all the terms of any arithmetical progression is equal to the sum of the two extremes multiplied by the number of terms, and divided by 2; or the sum of the two extremes multiplied by the number of the terms gives double the sum of all the terms in the series.

This is made evident by setting the terms of the series in an inverted order under the same series in a direct order, and adding the corresponding terms together in that order. Thus,

in the series,	1,	3,	5,	7,	9,	11,	13,	15;
inverted,	15,	13,	11,	9,	7,	5,	3,	1;
the sums are,	16 +	16 +	16 +	16 +	16 +	16 +	16 +	16,

which must be double the sum of the single series, and is equal to the sum of the extremes repeated so often as are the number of the terms.

From these theorems may readily be found any one of these five parts; the two extremes, the number of terms, the common difference, and the sum of all the terms, when any three of them are given, as in the following Problems:

PROBLEM I.

Given the extremes and the number of terms, to find the sum of all the terms.

RULE.—Add the extremes together, multiply the sum by the number of terms, and divide by 2.

The extremes being 3 and 19, and the number of terms 9; required the sum of the terms?

$$\begin{array}{c}
19\\
3\\
22\\
9\\
9\\
198\\
99\\
198\\
99\\
10
\end{array} \times 9 = \frac{22}{2} \times 9 = 11 \times 9 = 99.
\end{array}$$

The strokes a clock strikes in one whole revolution of the index, or in 12 hours, is 78.

PROBLEM II.

Given the extremes, and the number of terms; to find the common difference.

RULE.—Subtract the less extreme from the greater, and divide the remainder by 1 less than the number of terms, for the common difference.

The extremes being 3 and 19, and the number of terms 9; required the common difference?

$$\begin{array}{c} 19 \\ 8 \\ \frac{3}{16} \\ 2 \end{array} \quad \text{Or, } \frac{19-3}{9-1} = \frac{16}{8} = 2. \end{array}$$

If the extremes be 10 and 70, and the number of terms 21; what is the common difference, and the sum of the series?

The com. diff. is 3, and the sum is 840.

PROBLEM III.

Given one of the extremes, the common difference, and the number of terms; to find the other extreme, and the sum of the series.

RULE.—Multiply the common difference by 1 less than the number of terms, and the product will be the difference of the extremes : therefore add the product to the less extreme, to give the greater; or subtract it from the greater, to give the less.

Given the least term 3, the common difference 2, of an arithmetical series of 9 terms; to find the greatest term, and the sum of the series?

2 8 16 3 19 the greatest term. 3 the least. 22 sum. 9 number of terms. $2)\overline{198}$ 99 the sum of the series.

If the greatest term be 70, the common difference 3, and the number of terms 21; what is the least term and the sum of the series? The least term is 10, and the sum is 840.

PROBLEM IV.

To find an arithmetical mean proportional between two given terms.

RULE.—Add the two given extremes or terms together, and take half their sum for the arithmetical mean required. Or, subtract the less extreme from the greater, and half the remainder will be the common difference; which, being added to the less extreme, or subtracted from the greater, will give the mean required.

To find an arithmetical mean between the two numbers 4 and 14.

Here, 14	Or, 14	Or, 14
4	4	5
$2)\overline{18}$	$2)\overline{10}$	9
9	5 the com. dif.	
	4 the less extreme.	
	9	

So that 9 is the mean required by both methods.

PROBLEM V.

To find two arithmetical means between two given extremes.

RULE.—Subtract the less extreme from the greater, and divide the difference by 3, so will the quotient be the common difference; which, being continually added to the less extreme, or taken from the greater, gives the means.

To find two arithmetical means between 2 and 8.

Here 8 2 3)6com. dif. 2 Then 2 + 2 = 4 the one mean, and 4 + 2 = 6 the other mean.

PROBLEM VI.

To find any number of arithmetical means between two given terms or extremes.

RULE.—Subtract the less extreme from the greater, and divide the difference by 1 more than the number of means required to be found, which will give the common difference; then this being added continually to the least term, or subtracted from the greatest, will give the mean terms required.

To find five arithmetical means between 2 and 14.

Here 14

	2	Then.	by add	ling t	his c	om.	dif. c	onti	nually.
6)	$\overline{12}$	the	means	are f	ound	, 4,	6, 8,	10,	12.
com. dif.	$\overline{2}$						• •	í	

GEOMETRICAL PROPORTION AND PROGRESSION.

THE most useful part of Geometrical Proportion is contained in the following theorems:

THEOREM 1.—If four quantities be in geometrical proportion, the product of the two extremes will be equal to the product of the two means.

Thus, in the four 2, 4, 3, 6 it is $2 \times 6 = 3 \times 4 = 12$.

And hence, if the product of the two means be divided by one of the extremes, the quotient will give the other extreme. So, of the above numbers, the product of the means $12 \div 2 = 6$ the one extreme, and $12 \div 6 = 2$ the other extreme; and this is the foundation and reason of the practice in the Rule of Three.

THEOREM 2.—In any continued geometrical progression, the product of the two extremes is equal to the product of any two means that are equally distant from them, or equal to the square of the middle term when there is an uneven number of terms.

Thus, in the terms 2, 4, 8, it is $2 \times 8 = 4 \times 4 = 16$.

And in the series 2, 4, 8, 16, 32, 64, 128,

it is $2 \times 128 = 4 \times 64 = 8 \times 32 = 16 \times 16 = 256$. THEOREM 3.—The quotient of the extreme terms of a geometrical progression is equal to the common ratio of the series raised to the power denoted by one less than the number of the terms.

So, of the ten terms 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, the common ratio is 2, one less than the number of terms 9; then 1024

the quotient of the extremes is
$$\frac{1021}{2} = 512$$
, and $2^9 = 512$ also.

Consequently, the greatest term is equal to the least term multiplied by the said power of the ratio whose index is one less than the number of terms.

THEOREM 4.—The sum of all the terms of any geometrical progression is found by adding the greatest term to the difference of the extremes divided by one less than the ratio.

So, the sum 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (whose ratio is 2,) is $1024 + \frac{1024 - 2}{2 - 1} = 1024 + 1022 = 2046$.

The foregoing, and several other properties of geometrical proportion, are demonstrated more at large in Byrne's Doctrine of Proportion. A few examples may here be added to the theorems just delivered, with some problems concerning mean proportionals.

The least of ten terms in geometrical progression being 1, and the ratio 2, what is the greatest term, and the sum of all the terms? The greatest term is 512, and the sum 1023.

PROBLEM I.

To find one geometrical mean proportional between any two numbers.

RULE.—Multiply the two numbers together, and extract the square root of the product, which will give the mean proportional sought.

Or, divide the greater term by the less, and extract the square root of the quotient, which will give the common ratio of the three terms: then multiply the less term by the ratio, or divide the greater term by it, either of these will give the middle term required.

To find a geometrical mean between the two numbers 3 and 12. First way. Second way.

 $\frac{12}{36} \frac{3}{6} (6 \text{ the mean.})$

3) 12 (4, its root, is 2, the ratio.

Then, $3 \times 2 = 6$ the mean. Or, $12 \div 2 = 6$ also.

LIBHARY OF THE UNIVERSITY

PROBLEM II.

To find two geometrical mean proportionals between any two numbers.

RULE.—Divide the greater number by the less, and extract the cube root of the quotient, which will give the common ratio of the terms. Then multiply the least given term by the ratio for the first mean, and this mean again by the ratio for the second mean; or, divide the greater of the two given terms by the ratio for the greater mean, and divide this again by the ratio for the less mean.

To find two geometrical mean proportionals between 3 and 24.

Here, 3) 24 (8, its cube root, 2 is the ratio. Then, $3 \times 2 = 6$, and $6 \times 2 = 12$, the two means. Or, $24 \div 2 = 12$, and $12 \div 2 = 6$, the same. That is, the two means between 3 and 24, are 6 and 12.

PROBLEM III.

To find any number of geometrical mean proportionals between two numbers.

RULE.—Divide the greater number by the less, and extract such root of the quotient whose index is one more than the number of means required, that is, the 2d root for 1 mean, the 3d root for 2 means, the 4th root for 3 means, and so on; and that root will be the common ratio of all the terms. Then with the ratio multiply continually from the first term, or divide continually from the last or greatest term.

To find four geometrical mean proportionals between 3 and 96. Here, 3)96 (32, the 5th root of which is 2, the ratio. Then, $3 \times 2 = 6$, and $6 \times 2 = 12$, and $12 \times 2 = 24$, and $24 \times 2 = 48$. Or, $96 \div 2 = 48$, and $48 \div 2 = 24$, and $24 \div 2 = 12$, and $12 \div 2 = 6$. That is, 6, 12, 24, 48 are the four means between 3 and 96.

OF MUSICAL PROPORTION.

THERE is also a third kind of proportion, called Musical, which, being but of little or no common use, a very short account of it may here suffice.

Musical proportion is when, of three numbers, the first has the same proportion to the third, as the difference between the first and second has to the difference between the second and third.

> As in these three, 6, 8, 12; where, 6:12::8-6:12-8, that is, 6:12::2:4.

When four numbers are in Musical Proportion; then the first has the same proportion to the fourth, as the difference between the first and second has to the difference between the third and fourth.

> As in these, 6, 8, 12, 18; where, 6:18::8-6:18-12, that is, 6:18::2:6.

FELLOWSHIP.

When numbers are in Musical Progression, their reciprocals are in Arithmetical Progression; and the converse, that is, when numbers are in Arithmetical Progression, their reciprocals are in Musical Progression.

So, in these Musicals 6, 8, 12, their reciprocals $\frac{1}{6}$, $\frac{1}{8}$, $\frac{1}{12}$, are in arithmetical progression; for $\frac{1}{6} + \frac{1}{12} = \frac{3}{12} = \frac{1}{4}$; and $\frac{1}{8} + \frac{1}{8} = \frac{2}{8} = \frac{1}{4}$; that is, the sum of the extremes is equal to double the mean, which is the property of arithmeticals.

FELLOWSHIP, OR PARTNERSHIP.

FELLOWSHIP is a rule by which any sum or quantity may be divided into any number of parts, which shall be in any given proportion to one another.

By this rule are adjusted the gains, or losses, or charges of partners in company; or the effects of bankrupts, or legacies in case of a deficiency of assets or effects; or the shares of prizes, or the numbers of men to form certain detachments; or the division of waste lands among a number of proprietors.

Fellowship is either Single or Double. It is Single, when the shares or portions are to be proportional each to one single given number only; as when the stocks of partners are all employed for the same time: and Double, when each portion is to be proportional to two or more numbers; as when the stocks of partners are employed for different times.

SINGLE FELLOWSHIP.

GENERAL RULE.—Add together the numbers that denote the proportion of the shares. Then,

As the sum of the said proportional numbers

Is to the whole sum to be parted or divided,

So is each several proportional number

To the corresponding share or part.

Or, As the whole stock is to the whole gain or loss,

So is each man's particular stock to his particular share of the gain or loss.

To prove the work.—Add all the shares or parts together, and the sum will be equal to the whole number to be shared, when the work is right.

To divide the number 240 into three such parts, as shall be in proportion to each other as the three numbers, 1, 2, and 3.

Here 1 + 2 + 3 = 6 the sum of the proportional numbers. Then, as 6:240::1:40 the 1st part, and, as 6:240::2:80 the 2d part, also as 6:240::3:120 the 3d part.

Sum of all 240, the proof.

Three persons, A, B, C, freighted a ship with 340 tuns of wine; of which, A loaded 110 tuns, B 97, and C the rest: in a storm, the seamen were obliged to throw overboard 85 tuns; how much must each person sustain of the loss?

Here, 110 + 97 = 207 tuns, loaded by A and B; theref., 340 - 207 = 133 tuns, loaded by C. hence, as 340: 85::110or, as $4: 1::110:27\frac{1}{2}$ tuns = A's loss; and, as $4: 1::97:24\frac{1}{4}$ tuns = B's loss; also, as $4: 1::133:33\frac{1}{4}$ tuns = C's loss. Sum $\overline{85}$ tuns, the proof.

DOUBLE FELLOWSHIP.

DOUBLE FELLOWSHIP, as has been said, is concerned in cases in which the stocks of partners are employed or continued for different times.

RULE.—Multiply each person's stock by the time of its continuance; then divide the quantity, as in Single Fellowship, into shares in proportion to these products, by saying:

As the total sum of all the said products

Is to the whole gain or loss, or quantity to be parted,

So is each particular product

To the corresponding share of the gain or loss.

SIMPLE INTEREST.

INTEREST is the premium or sum allowed for the loan, or forbearance of money.

The money lent, or forborne, is called the Principal.

The sum of the principal and its interest, added together, is called the Amount.

Interest is allowed at so much per cent. per annum, which premium per cent. per annum, or interest of a \$100 for a year, is called the Rate of Interest. So,

When	interest	is at	3	per	cent.	the	rate i	is 3;
		•••••	4	per	cent.	• • • • •	•••••	4;
		• • • • • •	5	per	cent.	• • • • •		5;
			6	per	cent.			6.

Interest is of two sorts: Simple and Compound.

Simple Interest is that which is allowed for the principal lent or forborne only, for the whole time of forbearance.

As the interest of any sum, for any time, is directly proportional to the principal sum, and also to the time of continuance; hence arises the following general rule of calculation.

GENERAL RULE.—As \$100 is to the rate of interest, so is any given principal to its interest for one year. And again,

As one year is to any given time, so is the interest for a year just found to the interest of the given sum for that time.

Otherwise.—Take the interest of one dollar for a year, which, multiply by the given principal, and this product again by the time

POSITION.

of loan or forbearance, in years and parts, for the interest of the proposed sum for that time.

When there are certain parts or years in the time, as quarters, or months, or days, they may be worked for either by taking the aliquot, or like parts of the interest of a year, or by the Rule of Three, in the usual way. Also, to divide by 100, is done by only pointing off two figures for decimals.

COMPOUND INTEREST.

COMPOUND INTEREST, called also Interest upon Interest, is that which arises from the principal and interest, taken together, as it becomes due at the end of each stated time of payment.

RULES.—1. Find the amount of the given principal, for the time of the first payment, by Simple Interest. Then consider this amount as a new principal for the second payment, whose amount calculate as before; and so on, through all the payments to the last, always accounting the last amount as a new principal for the next payment. The reason of which is evident from the definition of Compound Interest. Or else,

2. Find the amount of one dollar for the time of the first payment, and raise or involve it to the power whose index is denoted by the number of payments. Then that power multiplied by the given principal will produce the whole amount. From which the said principal being subtracted, leaves the Compound Interest of the same; as is evident from the first rule.

POSITION.

POSITION is a method of performing certain questions which cannot be resolved by the common direct rules. It is sometimes called False Position, or False Supposition, because it makes a supposition of false numbers to work with, the same as if they were the true ones, and by their means discovers the true numbers sought. It is sometimes also called Trial and Error, because it proceeds by *trials* of false numbers, and thence finds out the true ones by a comparison of the *errors*.

Position is either Single or Double.

SINGLE POSITION.

SINGLE POSITION is that by which a question is resolved by means of one supposition only.

Questions which have their results proportional to their suppositions belong to Single Position; such as those which require the multiplication or division of the number sought by any proposed number; or, when it is to be increased or diminished by itself, or any parts of itself, a certain proposed number of times.

RULE.—Take or assume any number for that required, and perform the same operations with it as are described or performed in the question.

Then say, as the result of the said operation is to the position

or number assumed, so is the result in the question to the number sought.

A person, after spending $\frac{1}{3}$ and $\frac{1}{4}$ of his money, has yet remaining \$60, what had he at first?

Suppose he had a	t first \$120	Proof.	
Now $\frac{1}{3}$ of 120 is	40	1 of 144 is	48
$\frac{1}{4}$ of it is	30	$\frac{1}{4}$ of 144 is	36
their sum is	70	their sum	84
which taken from	120	taken from	144 .
leaves	50	leaves	$\overline{60}$ as per question.

Then, 50: 120:: 60: 144.

What number is that, which multiplied by 7, and the product divided by 6, the quotient may be 14? 12.

PERMUTATIONS AND COMBINATIONS.

THE *Permutations* of any number of quantities signify the changes which these quantities may undergo with respect to their order.

Thus, if we take the quantities a, b, c; then, a b c, a c b, b a c, b c a, c a b, c b a, are the permutations of these three quantities taken all together; a b, a c, b a, b c, c a, c b, are the permutations of these quantities taken two and two; a, b, c, are the permutation of these quantities taken singly, or one and one, &c.

The number of the permutations of the eight letters, a, b, c, d, e, f, g, h, is 40320; becomes,

 $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 = 40320.$

DOUBLE POSITION.

DOUBLE POSITION is the method of resolving certain questions by means of two suppositions of false numbers.

To the Double Rule of Position belong such questions as have their results not proportional to their positions: such are those, in which the numbers sought, or their parts, or their multiples, are increased or diminished by some given absolute number, which is no known part of the number sought.

Take or assume any two convenient numbers, and proceed with each of them separately, according to the conditions of the question, as in Single Position; and find how much each result is different from the result mentioned in the question, noting also whether the results are too great or too little.

Then multiply each of the said errors by the contrary supposition, namely, the first position by the second error, and the second position by the first error.

If the errors are alike, divide the difference of the products by the difference of the errors, and the quotient will be the answer.

But if the errors are unlike, divide the sum of the products by the sum of the errors, for the answer.

The errors are said to be alike, when they are either both too great, or both too little; and unlike, when one is too great and the other too little. What number is that, which, being multiplied by 6, the product increased by 18, and the sum divided by 9, the quotient shall be 20. Suppose the two numbers, 18 and 30. Then

11 /		
First position.	Second position.	Proof.
18	30	27
6 mult.	6	6
$\overline{108}$	$\overline{180}$	$\overline{162}$
18 add.	18	18
$9)\overline{126}$	$9)\overline{198}$	$9)\overline{180}$
14 results.	22	$\frac{1}{20}$
20 true res.	20	
+6 errors unlike.	-2	
2d pos. 30 mult.	18 1st pos.	
Errors $\begin{cases} 2 & \overline{180} \\ 6 & 36 \end{cases}$	36	
Sum $8)216$ sum of module	a	
Sum 0/210 sum of product	ð.	

27 answer sought.

Find, by trial, two numbers, as near the true number as possible, and operate with them as in the question; marking the errors which arise from each of them.

Multiply the difference of the two numbers, found by trial, by the least error, and divide the product by the difference of the errors, when they are alike, but by their sum when they are unlike.

Add the quotient, last found, to the number belonging to the least error, when that number is too little, but subtract it when too great, and the result will give the true quantity sought.

MENSURATION OF SUPERFICIES.

THE area of any figure is the measure of its surface, or the space contained within the bounds of that surface, without any regard to thickness.

A square whose side is one inch, one foot, or one yard, &c. is called the *measuring unit*, and the area or content of any figure is computed by the number of those squares contained in that figure.

To find the area of a parallelogram; whether it be a square, a rectangle, a rhombus, or a rhomboides.—Multiply the length by the perpendicular height, and the product will be the area.

The perpendicular height of the parallelogram is equal to the area divided by the base.

Required the area of the square ABCD whose side is 5 feet 9 inches.

Here 5 ft. 9 in. = 5.75: and $\overline{5.75}|^2 = 5.75 \times 5.75 = 33.0625$ feet = 33 fe. 0 in. 9 pa. = area required.

Required the area of the rectangle ABCD, whose length AB is 13.75 chains, and breadth BC 9.5 chains.

Here $13.75 \times 9.5 = 130.625$; and 130.625

 $\frac{1000000}{10} = 13.0625 \text{ ac.} = 13 \text{ ac. } 0 \text{ ro. } 10$ po. = area required.

Required the area of the rhombus ABCD, whose length AB is 12 feet 6 inches, and its height DE 9 feet 3 inches.

Here 12 fe. 6 in. = 12.5, and 9 fe. 3 in. = 9.25.

Whence, $12.5 \times 9.25 = 115.625$ fe. = 115 fe. 7 in. 6 pa. = area required.

What is the area of the rhomboides ABCD, whose length AB is 10.52 chains, and height DE 7.63 chains.

Here $10.52 \times 7.63 = 80.2676$; and $\frac{80.2676}{10} = 8.02676$ acres = 8 ac.

 $ana \frac{10}{10} = 8.02010 acres = 8 ac.$ 0 ro. 4 po. area required.

To find the area of a triangle.—Multiply the base by the perpendicular height, and half the product will be the area.

The perpendicular height of the triangle is equal to twice the area divided by the base.

Required the area of the triangle ABC, whose base AB is 10 feet 9 inches, and height DC 7 feet 3 inches.

Here 10 fe. 9 in. = 10.75, and 7 fe. 3 in. = 7.25.

Whence, $10.75 \times 7.25 = 77.9375$, and $\frac{77.9375}{2} = 38.96875$ feet = 38 fe. 11 in.

 $\frac{1}{2} = 3850815 \text{ feet} = 7\frac{1}{2} \text{ pa.} = \text{area required.}$

To find the area of a triangle whose three sides only are given.— From half the sum of the three sides subtract each side severally.

Multiply the half sum and the three remainders continually together, and the square root of the product will be the area required.

Required the area of the triangle ABC, whose three sides BC, CA, and AB are 24, 36, and 48 chains respectively.

Here $\frac{24+36+48}{2} = \frac{108}{2} = 54 =$

 $\frac{1}{2}$ sum of the sides. Also, 54 - 24 = 30 first diff.; 54 - 36

= 18 second diff.; and 54 - 48 = 6 third diff.

Whence, $\sqrt{54 \times 30 \times 18 \times 6} = \sqrt{174960} = 418.282 = area$ required.

Any two sides of a right angled triangle being given to find the third side .- When the two legs are given to find the hypothenuse, add the square of one of the legs to the square of the other, and the square root of the sum will be equal to the hypothenuse.

When the hypothenuse and one of the legs are given to find the other leg.-From the square of the hypothenuse take the square of the given leg, and the square root of the remainder will be equal to the other leg.

In the right angled triangle ABC, the base AB is 56, and the perpendicular BC 33, what is the hypothenuse?

Here $56^2 + \bar{3}3^2 = 3136 + 1089 = 4225$, and $\sqrt{4225} = 65 = hypothenuse$ AC.

If the hypothenuse AC be 53, and the base AB 45, what is the perpendicular BC ?

Here $53^2 - 45^2 = 2809 - 2025 = 784$, and $\sqrt{784} = 28 =$ perpendicular BC.

To find the area of a trapezium .- Multiply the diagonal by the sum of the two perpendiculars falling upon it from the opposite angles, and half the product will be the area.

Required the area of the trapezium BAED, whose diagonal BE is 84, the perpendicular AC 21, and DF 28.

Here $\overline{28 + 21} \times 84 = 49 \times 84 = 4116$, and $\frac{4116}{2} = 2058$ the area required.

To find the area of a trapezoid, or a quadrangle, two of whose opposite sides are parallel.-Multiply the sum of the parallel sides by the perpendicular distance between them, and half the product will be the area.

Required the area of the trapezoid ABCD, whose sides AB and DC are 321.51 and $214 \cdot 24$, and perpendicular DE 171.16.

Here 321.51 + 214.24 = 535.75 = sumof the parallel sides AB, DC.

Whence, 535.75×171.16 (the perp. DE) =

To find the area of a regular polygon .- Multiply half the perimeter of the figure by the perpendicular falling from its centre upon one of the sides, and the product will be the area.

The perimeter of any figure is the sum of all its sides.

47

Required the area of the regular pentagon ABCDE, whose side AB, or BC, &c., is 25 feet, and the perpendicular OP 17.2 feet.

Here $\frac{25 \times 5}{2} = 62.5 = half$ perimeter, and $62.5 \times 17.2 = 1075$ square feet = arca required.

To find the area of a regular polygon, when the side only is given.—Multiply the square of the side of the polygon by the number standing opposite to its name in the following table, and the product will be the area.

No. of sides.	Names.	Multipliers.	No. of sides.	Names.	Multipliers.
3 * 4 5 6 7	Trigon or equil. ∆ Tetragon or square Pentagon Hexagon Heptagon	$\begin{array}{c} 0.433013\\ 1.000000\\ 1.720477\\ 2.598076\\ 3.633912 \end{array}$	8 9 10 11 12	Octagon Nonagon Decagon Undecagon Duodecagon	$\begin{array}{r} 4 \cdot 828427 \\ 6 \cdot 181824 \\ 7 \cdot 694209 \\ 9 \cdot 365640 \\ 11 \cdot 196152 \end{array}$

The angle OBP, together with its tangent, for any polygon of not more than 12 sides, is shown in the following table:

No sic). of les.	Names.	Angle OBP.	Tangents.
	3	Trigon	30°	$57735 = \frac{1}{3}\sqrt{3}$
	4	Tetragon	45°	1.00000 = 1 × 1
	5	Pentagon	54°	$1 \cdot 37638 = \sqrt{1 + \frac{2}{5}} \sqrt{5}$
	6	Hexagon	60°	$1 \cdot 73205 = \sqrt{3}$
	7	Heptagon	64° ?	$2 \cdot 07652$
	8	Octagon	67° <u>1</u>	$2 \cdot 41421 = 1 + \sqrt{2}$
	9	Nonagon	70°	$2 \cdot 74747$
1	0	Decagon	72°	$3.07768 = \sqrt{5 + 2} \sqrt{5} 3.40568 3.73205 = 2 + \sqrt{3}$
1	1	Undecagon	73° 7	
1	2	Duodecagon	75°	

Required the area of a pentagon whose side is 15.

The number opposite pentagon in the table is 1.720477. Hence $1.720477 \times 15^2 = 1.720477 \times 225 = 387.107325 = area required.$

The diameter of a circle being given to find the circumference, or the circumference being given to find the diameter.—Multiply the diameter by 3.1416, and the product will be the circumference, or

Divide the circumference by 3.1416, and the quotient will be the diameter.

As 7 is to 22, so is the diameter to the circumference; or as 22 is to 7, so is the circumference to the diameter.

As 113 is to 355, so is the diameter to the circumference; or, as 352 is to 115, so is the circumference to the diameter.

If the diameter of a circle be 17, what is the circumference? Here $3.1416 \times 17 = 53.4072 = circumference$.

If the circumference of a circle be 354, what is the diameter? 354.000

Here
$$\frac{1}{3.1416} = 112.681 = diameter.$$

To find the length of any arc of a circle.—When the chord of the arc and the versed sine of half the arc are given :

To 15 times the square of the chord, add 33 times the square of the versed sine, and reserve the number.

To the square of the chord, add 4 times the square of the versed sine, and the square root of the sum will be *twice the chord of half the arc*.

Multiply twice the chord of half the arc by 10 times the square of the versed sine, divide the product by the reserved number, and add the quotient to twice the chord of half the arc: the sum will be the length of the arc very nearly.

When the chord of the arc, and the chord of half the arc are given.—From the square of the chord of half the arc subtract the square of half the chord of the arc, the remainder will be the square of the versed sine: then proceed as above.

When the diameter and the versed sine of half the arc are given:

From 60 times the diameter subtract 27 times the versed sine, and reserve the number.

Multiply the diameter by the versed sine, and the square root of the product will be the *chord of half the arc*.

Multiply twice the chord of half the arc by 10 times the versed sine, divide the product by the reserved number, and add the quotient to twice the chord of half the arc; the sum will be the length of the arc very nearly.

When the diameter and chord of the arc are given, the versed sine may be found thus: From the square of the diameter subtract the square of the chord, and extract the square root of the remainder. Subtract this root from the diameter, and half the remainder will give the versed sine of half the arc.

The square of the chord of half the arc being divided by the diameter will give the versed sine, or being divided by the versed sine will give the diameter.

The length of the arc may also be found by multiplying together the number of degrees it contains, the radius and the number $\cdot 01745329$.

Or, as 180 is to the number of degrees in the arc, so is 3.1416 times the radius, to the length of the arc.

Or, as 3 is to the number of degrees in the arc, so is $\cdot 05236$ times the radius to the length of the arc.

If the chord DE be 48, and the versed sine CB 18, what is the length of the arc?

Here $48^2 \times 15 = 34560$ $18^2 \times 33 = 10692$

45252 reserved number.

D B E

 \mathbf{E}

THE PRACTICAL MODEL CALCULATOR.

 $48^{2} = 2304 = the square of the chord.$ $18^{2} \times 4 = 1296 = 4 times the square of the versed sine.$ $\sqrt{3600} = 60 = twice the chord of half the arc.$ $Now \frac{60 \times 18^{2} \times 10}{45252} = \frac{194400}{45252} = 4.2959, which added to twice$ the chord of half the arc gives 64.2959 = the length of the arc.

 $50 \times 60 = 3000$ $18 \times 27 = \frac{486}{2514}$ reserved number. AC = $\sqrt{50 \times 18} = 30 =$ the chord of half the arc. $\frac{30 \times 2 \times 18 \times 10}{2514} = \frac{10800}{2514} = 4.2959$, which added to twice the

chord of half the arc gives $64 \cdot 2959 =$ the length of the arc.

To find the area of a circle.—Multiply half the circumference by half the diameter, and the product will be the area.

Or take $\frac{1}{4}$ of the product of the whole circumference and diameter. What is the area of a circle whose diameter is 42, and circumference 131.946?

 $\begin{array}{r} 2) \underbrace{131 \cdot 946}_{65 \cdot 973} = \frac{1}{2} \ circumference.\\ \underbrace{21}_{65973} = \frac{1}{2} \ diameter.\\ \hline 131946\\ \hline 1385 \cdot 433 = area \ required. \end{array}$

What is the area of a circle whose diameter is 10 feet 6 inches, and circumference 31 feet 6 inches?

fe.	in.
15	$9 = 15.75 = \frac{1}{2}$ circumference.
5	$3 = 5 \cdot 25 = \frac{1}{2}$ diameter.
	7875
	3150
	7875
	82.6875
	12
	8.2500

82 feet 8 inches.

Multiply the square of the diameter by .7854, and the product will be the area; or,

Multiply the square of the circumference by .07958, and the product will be the area.

The following table will also show most of the useful problems relating to the circle and its equal or inscribed square.

Diameter $\times \cdot 8862 =$ side of an equal square.

Circumf. \times 2821 = side of an equal square.

Diameter \times .7071 = side of the inscribed square.

50

Circumf. $\times \cdot 2251 =$ side of the inscribed square. Area $\times \cdot 6366 =$ side of the inscribed square. Side of a square $\times 1.4142 = \text{diam. of its circums. circle.}$ Side of a square $\times 4.443 = \text{circumf.}$ of its circums. circle. Side of a square $\times 1.128$ = diameter of an equal circle. Side of a square $\times 3.545 = \text{circumf.}$ of an equal circle. What is the area of a circle whose diameter is 5?

$$\frac{25}{39270} = square of the diameter.$$
$$\frac{15708}{19.6350} = the answer.$$

To find the area of a sector, or that part of a circle which is bounded by any two radii and their included arc.-Find the length of the arc, then multiply the radius, or half the diameter, by the length of the arc of the sector, and half the product will be the area.

If the diameter or radius is not given, add the square of half the chord of the arc, to the square of the versed sine of half the arc; this sum being divided by the versed sine, will give the diameter.

The radius AB is 40, and the chord BC of the whole arc 50, required the area of the sector.

$$\frac{80 - \sqrt{80^2 - 50^2}}{2} = 8.7750 = the versed$$

sine of half the arc.

 $\overline{80 \times 60} - \overline{8.7750 \times 27} = 4563.0750 =$ the reserved number.

 $2 \times \sqrt{8.7750 \times 80} = 52.9906 = twice the$ chord of half the arc.

 $52.9906 \times 8.7750 \times 10$ $\frac{10}{2} = 1.0190$, which added to twice the chord 4563.0750of half the arc gives 54.0096 the length of the arc.

And $\frac{54\cdot0096 \times 40}{2} = 1080\cdot1920 = area of the sector required.$

As 360 is to the degrees in the arc of a sector, so is the area of the whole circle, whose radius is equal to that of the sector, to the area of the sector required.

For a semicircle, a quadrant, &c. take one half, one quarter, &c. of the whole area.

The radius of a sector of a circle is 20, and the degrees in its arc 22; what is the area of the sector?

Here the diameter is 40.

Hence, the area of the circle = $40^2 \times .7854 = 1600 \times .7854 =$ 1256·64.

Now, $360^{\circ}: 22^{\circ}:: 1256.64: 76.7947 = area of the sector.$

To find the area of a segment of a circle.—Find the area of the sector, having the same arc with the segment, by the last problem.

Find the area of the triangle formed by the chord of the segment, and the radii of the sector.

Then the sum, or difference, of these areas, according as the segment is greater or less than a semicircle, will be the area required.

The difference between the versed sine and radius, multiplied by half the chord of the arc, will give the area of the triangle.

The radius OB is 10, and the chord AC 10; what is the area of the segment ABC?

 $CD = \frac{AC^2}{CE} = \frac{100}{20} = 5 = the versed sine$

of half the arc.

 $\overline{20 \times 60} - \overline{5 \times 27} = 1065 = the reserved$ number.

 $10 \times 2 \times 5 \times 10$

n

С

 $\frac{10 \times 2 \times 6 \times 10}{1065} = .9390$, and this added

to twice the chord of half the arc gives 20.9390 = the length of the arc. 20.9390×10

 $\frac{20.9530 \times 10}{2} = 104.6950 = area of the sector OACB.$

OD = OC = CD = 5 the perpendicular height of the triangle. $AD = \sqrt{AO^2 - OD^2} = \sqrt{75} = 8.6603 = \frac{1}{2}$ the chord of the arc. $8.6603 \times 5 = 43.3015 =$ the area of the triangle AOB.

104.6950 - 43.3015 = 61.3935 = area of the segment required;it being in this case less than a semicircle.

Divide the height, or versed sine, by the diameter, and find the quotient in the table of versed sines.

Multiply the number on the right hand of the versed sine by the square of the diameter, and the product will be the area.

When the quotient arising from the versed sine divided by the diameter, has a remainder or fraction after the third place of decimals; having taken the area answering to the first three figures, subtract it from the next following area, multiply the remainder by the said fraction, and add the product to the first area, then the sum will be the area for the whole quotient.

If the chord of a circular segment be 40, its versed sine 10, and the diameter of the circle 50, what is the area?

 $5 \cdot 0) \frac{1 \cdot 0}{2} = tabular versed sine.$ $\cdot 111823 = tabular segment.$ 2500 = square of 50. $\overline{55911500}$ 223646 $\overline{279 \cdot 557500} = area required.$

52

MENSURATION OF SUPERFICIES.

To find the area of a circular zone, or the space included between any two parallel chords and their intercepted arcs.—From the greater chord subtract half the difference between the two, multiply the remainder by the said half difference, divide the product by the breadth of the zone, and add the quotient to the breadth. To the square of this number add the square of the less chord, and the square root of the sum will be the diameter of the circle.

Now, having the diameter EG, and the two chords AB and DC, find the areas of the segments ABEA, and DCED, the difference of which will be the area of the zone required.

The difference of the tabular segments multiplied by the square of the circle's diameter will give the area of the zone.

When the larger segment AEB is greater than a semicircle, find the areas of the segments AGB, and DCE, and subtract their sum from the area of the whole circle: the remainder will be the area of the zone.

The greater chord AB is 20, the less DC 15, and their distance $Dr \ 17\frac{1}{2}$: required the area of the zone ABCD.

 $\frac{20 - 15}{2} = 2.5 = \frac{1}{2} = the \ difference \ between \ the \ chords.$ $17.5 + \frac{(20 - 2.5) \times 2.5}{17.5} = 17.5 + 2.5 = 0.5$

 $20 = \mathrm{DF}.$

And $\sqrt{20^2 + 15^2} = \sqrt{625} = 25 =$ the diameter of the circle.

The segment AEB being greater than a semicircle, we find the versed sine of DCE = 2.5, and that of AGB = 5.

Hence $\frac{2\cdot 5}{25} = \cdot 100 = tabular$ versed sine of DEC. And $\frac{5}{25} = \cdot 200 = tabular$ versed sine of AGB. Now $\cdot 040875 \times 25^2 = area$ of seg. DEC = $25 \cdot 546875$ And $\cdot 111823 \times 25^2 = area$ of seg. AGB = $69 \cdot 889375$ $sum 95 \cdot 43625$ $\cdot 7854 \times 25^2 = area$ of the whole circle, = $490 \cdot 87500$ Difference = area of the zone ABCD = $395 \cdot 43875$

To find the area of a circular ring, or the space included between the circumference of two concentric circles.—The difference between the areas of the two circles will be the area of the ring.

Or, multiply the sum of diameters by their difference, and this product again by .7854, and it will give the area required.

The diameters AB and CD are 20 and 15: required the area of E^2

the circular ring, or the space included between the circumferences of those circles.

Here $\overline{AB + CD} \times \overline{AB - CD} = 35 \times 5 = 175$, and $175 \times \cdot 7854 = 137 \cdot 4450 =$ area of the ring required.

To find the areas of lunes, or the spaces between the intersecting arcs of two eccentric circles.—Find the areas of the two segments from which the lune is formed, and their difference will be the area required.

The following property is one of the most curious :

If ABC be a right angled triangle, and semicircles be described on the three sides as diameters, then will the said triangle be equal to the two lunes D and F taken together.

For the semicircles described on AC and BC = the one described on AB, from each

take the segments cut off by AC and BC, then will the lunes AFCE and BDCG = the triangle ACB.

The length of the chord AB is 40, the height DC 10, and DE 4: required the area of the lune ACBEA.

The diameter of the circle of which ACB is a part $= \frac{20^2 + 10^2}{10} = 50.$

And the diameter of the circle of which AEB is a part $=\frac{20^2 + 4^2}{4}$ = 104.

Now having the diameter and versed sines, we find, The area of seg. $ACB = \cdot 111823 \times 50^2 = 279 \cdot 5575$ And area of seg. $AEB = \cdot 009955 \times 104^2 = 107 \cdot 6733$ Their difference is the area of the lune AEBCA required, $\left. \right\} = \overline{171 \cdot 8842}$

To find the area of an irregular polygon, or a figure of any number of sides.—Divide the figure into triangles and trapeziums, and find the area of each separately.

Add these areas together, and the sum will be equal to the area of the whole polygon. E

Required the area of the irregular figure ABCDEFGA, the following lines being given:

 $\begin{array}{l} {\rm GB}=30{\cdot}5 \ {\rm A}n=11{\cdot}2, \ {\rm CO}=6\\ {\rm GD}=29 \ {\rm F}q=11 \ {\rm C}s=6{\cdot}6\\ {\rm FD}=24{\cdot}8 \ {\rm E}p=4 \ {\rm \dots}. \end{array}$

 $Here \frac{An + Co}{2} \times GB = \frac{11 \cdot 2 + 6}{2}$ $\times 30 \cdot 5 + 8 \cdot 6 \times 30 \cdot 5 = 262 \cdot 3 =$ area of the trapezium ABCG.

.

	And $\frac{Fq + Cs}{2} \times GI$	$0 = \frac{11}{2}$	$\frac{1+6\cdot 6}{2}$ × 2	29 =	= 8.8	$\times 29 = 255 \cdot 2 =$
a	rea of the trapezium	GCDF				
	Also, $\frac{\text{FD} \times \text{E}p}{p} = \frac{2}{3}$	$\frac{24\cdot8}{2}$	$\frac{4}{-} = \frac{99 \cdot 2}{2}$	=4	9.6 =	area of the triangle
F	DE	2	Д			
Ľ		55.0	1 40.0	5 0 1	.1	
fi	whence $202^{\circ}3 + 2$ gure required.	iəə•z -	+49.0 =	901	.1 =	area of the whole
I	DECIMAL APPROXIMA	FIONS ME	FOR FACIL INSURATION	ATA' N.	TING	CALCULATIONS IN
	Lineal feet multipli	ed by	$\cdot 00019$	=	miles.	
	— yards	—	$\cdot 000568$	=		
	Square inches		•007	=	squar	e feet.
	— yards	_	•0002067	_	acres.	
	Circular inches	—	•00546	=	squar	e feet.
	Cylindrical inches	—	•0004546		cubic	feet.
	teet		•02909	_	cubic	yards.
	Cubic inches		•00058		cubic	ieet.
	— ieet		·03704		cubic	yaras.
			.002607	_	imper	iai ganons.
	Culindrical fact		1.805	_		—
	inchog		•009889	_		
	Cubic inches		·002052	_	the o	ra of east iron
	Ouble menes		·205		105. a	wrought do
			•283			stool
			·3225	_		conner
			•3037			brass.
			·26			zinc.
			$\cdot 4103$			lead.
	_		$\cdot 2636$			tin.
			·4908	_		mercury.
	Cylindrical inches		$\cdot 2065$	===		cast iron.
		—	$\cdot 2168$	=		wrought iron.
			$\cdot 2223$	=		steel.
			$\cdot 2533$	=		copper.
	_		$\cdot 2385$	=		brass.
	—		$\cdot 2042$	=		zinc.
			·3223			lead.
			·207		—	tin.
			•3854	=		mercury.
	Avoirdupois Ibs.		•009	=	cwts.	
	100.040 . 1 .	. —	·00045		tons.	···· C····
	183.346 circular inc	nes		-	I squ	are 100t.
	Z200 cylindrical inc	nes		=	I CUD	IC 100E.
	$r rench metres \times 3$	281	005	_	ieet.	lunoia lh
	- kilogrammes	3 X 212	400)5	=	avoire	lupois 10.
	— grammes ×	.00733	10		avoire	upois ibs.

Diameter of a sphere $\times \cdot 806$	= dimensions of equal cube.	
Diameter of a sphere \times .6667	= length of equal cylinder.	
Lineal inches $\times \cdot 0000158$	= miles.	
A French cubic foot	= 2093.47 cubic inches.	
Imperial gallons \times .7977	= New York gallons.	

The average quantity of water that falls in rain and snow at Philadelphia is 36 inches. At West Point the variation of the magnetic needle, Nov. 16th, 1839, was 7° 58' 27" West, and the dip 73° 26' 28".

DECIMAL EQUIVALENTS TO FRACTIONAL PARTS OF LINEAL MEASURES.

<u> </u>		
One inch,	, the integer or whole	e number.
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
One foo	t, or 12 inches, the i	integer.
·9166 11 inches. ·6338 10 — ·75 m 9 — ·6666 9 8 — ·5833 9 7 — ·5 m 6 —	$\begin{array}{c} \cdot 4166 & 5 \text{ inches.} \\ \cdot 3333 & 0 & 4 & \\ \cdot 25 & \text{ inb} & 3 & \\ \cdot 1666 & 5 & 2 & \\ \cdot 0833 & 2 & \\ \cdot 07291 & \frac{7}{8} & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
One yar	d, or 36 inches, the i	integer.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table containing the Circumferences, Squares, Cubes, and Areas of Circles, from 1 to 100, advancing by a tenth.

	Diam	Circum	Square.	Cube.	Area	Diam.	Circum.	Square.	Cube.	Area.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	3.1416	1	1	·7854	9	28.2744	81	729	63.6174
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3.4557	1.21	1.331	·9503	•1	28.5885	82.81	753-571	65-0389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•2	3.7699	1.44	1.728	1.1309	•2	28.9027	84.64	778.688	66.4762
4 4 213 2143 1 1 3 2943 537-5 70 70 6 5025 256 4006 20106 6 501335 9216 584756 70 738952 7 53407 293 4013 22008 77 50475 90 6004 9112473 738952 9 54600 361 6802 28352 9 311018 9601 70229 760770 2 62832 4 8 31146 10 1000-00 1002712 831230 3 6116 676 17576 65003 6 333001 11236 110106 852175 70 842421 11449 12250 86503 336151 113444 12250 852475 70 144443 12250 85033 92104 114449 122504 884925 3316151 11324561 869024 852475 70 842424 1144111 1102499 <t< td=""><td>.3</td><td>4.0840</td><td>1.69</td><td>2.197</td><td>1.5273</td><td>•3</td><td>29.2168</td><td>80.49</td><td>804-307</td><td>60.2070</td></t<>	.3	4.0840	1.69	2.197	1.5273	•3	29.2168	80.49	804-307	60.2070
$\begin{array}{c} \mathbf{e} & 50235 \\ \mathbf{r} & 504735 \\ \mathbf{r} & 50400 \\ \mathbf{r} & 5041 \\ \mathbf{r} & 50375 \\ \mathbf{r} & 50400 \\ \mathbf{r} & 5041 \\ \mathbf{r} & 5035 \\ \mathbf{r} & 5754 \\ \mathbf{r} & 5350 \\ \mathbf{r} & 57554 \\ \mathbf{r} & 5350 \\ \mathbf{r} & 5765 \\ \mathbf{r} & 5350 \\ \mathbf{r} & 5550 \\ \mathbf{r} & 5350 \\ \mathbf{r} & 5550 \\ \mathbf{r} & 5$	•4	4-3982	2.95	2.744	1.2223	.4	29.9310	90-25	857-375	70.8823
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•6	5.0265	2.20	4.096	2.0106	.6	30.1593	92.16	884 736	72.3824
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.7	5 3407	2.89	4.913	2.2698	.7	30.4735	94.09	912.673	73.8982
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•8	5.6548	3.24	5.832	2.5446	•8	30.7876	96·04	941.192	75.4298
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•9	5.9690	3.61	6.859	2.8352	•9	31.1018	98.01	970-299	76.9770
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6.2832	4	8	3.1416	10	31.4160	100	1000	78.5400
$ \begin{array}{c} 5 & 7.2256 & 5.23 & 12.167 & 4.16.17 & 3 & 22.3836 & 100.50 & 100.2727 & 38.3220 \\ 4 & 7.5540 & 6.25 & 15.625 & 4.9087 & 6 & 32.6360 & 110.25 & 115.7625 & 86.4903 \\ 6 & 8.161 & 6.76 & 117.576 & 5.2093 & 6 & 33.300 & 112.36 & 110.46 & 12.25.043 & 89.9204 \\ 8 & 8.7064 & 7.84 & 21.452 & 19.683 & 5.7255 & 7 & 33.6151 & 114.49 & 12.25.043 & 89.9204 \\ 8 & 8.7064 & 7.84 & 21.452 & 6.6155 & 18 & 33.9292 & 116.64 & 12.250.13 & 99.03133 \\ 3 & 94.248 & 9 & 27 & 7.0656 & 11 & 34.557 & 121 & 3311 & 95.0334 \\ 1 & 97389 & 9.61 & 29.701 & 7.5476 & 1.1 & 34.6571 & 12.524 & 114.04.928 & 98.5205 \\ 3 & 10.3672 & 10.89 & 35.637 & 8.5330 & 33.55010 & 127.60 & 144.2807 & 10.2877 \\ 4 & 10.681 & 10.24 & 32.768 & 9.0792 & 4.358412 & 132.25 & 152.44 & 140.428 & 98.5205 \\ 3 & 10.3672 & 10.89 & 35.6357 & 8.5530 & 33.55010 & 127.60 & 144.2807 & 10.2877 \\ 4 & 10.6814 & 11.66 & 39.304 & 9.0792 & 4.358412 & 132.25 & 152.0875 & 10.07818 \\ 4 & 10.6956 & 12.25 & 42.8775 & 9.6211 & 53.81284 & 132.25 & 152.0875 & 10.07818 \\ 9 & 11.3500 & 11.444 & 54.872 & 1.748 & 157.677 & 130.689 & 10.07613 & 10.75134 \\ 9 & 11.3630 & 11.444 & 54.872 & 1.748 & 17.661 & 11.0924 & 11.664.0360 & 10.3784 \\ 1 & 12.8805 & 16.81 & 9.408 & 50.925 & 1.2 & 38.0431 & 11.411 & 1728 & 11.32946 \\ 1 & 12.8805 & 16.81 & 9.908 & 12.9026 & 1.3 & 38.0451 & 11.629 & 186.0861 & 10.7834 \\ 1 & 12.8805 & 16.81 & 9.908 & 12.9026 & 1.3 & 38.0451 & 11.629 & 186.0867 & 118.8291 \\ 1 & 12.8805 & 16.81 & 79.607 & 13.8424 & 1.4484 & 20.82767 & 130.683 & 120.9244 & 120.66487 & 11.82946 \\ 1 & 12.8805 & 16.814 & 79.607 & 13.8424 & 11.4468 & 13.87661 & 10.066481 & 11.292 & 186.0866 & 15.927 & 10.6642 & 120.7162 & 122.7163 & 11.4901 & 11.24866 & 13.9242 & 14.6448 & 19.2768 & 11.9266 & 13.9242 & 14.6448 & 19.2768 & 11.9248 & 11.1441 & 128 & 11.1411 & 12846 & 11.2284664 & 13.92667 & 13.84244 & 12.9668 & 13.8766 & 13.9242 & 14.6448 & 12.9268 & 12.94601 & 13.72824 & 22.146001 & 13.72824 & 22.146001 & 13.72824 & 22.146001 & 13.72824 & 22.146001 & 13.72824 & 22.146001 & 13.72824 & 22.146001 & 13.728$.1	0.9973	4.41	10.648	3.8013	.2	32.0113	101-01	1061-208	81.7130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3	7.2256	5.29	12.167	4.1547	•3	32.3580	106.09	1092.727	83.3230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•4	7.5398	5.76	13.824	4.5239	•4	32.6726	108.16	1124.864	84.9488
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•5	7.8540	6.25	15.625	4.9087	•5	$32 \cdot 9868$	110.25	$1157 \cdot 625$	86 5903
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•6	8.1681	6.76	17.576	5.3093	•6	33.3009	112.36	1191.016	88-2475
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.4823	7.94	19.083	0.7200 6.1575		33.0202	116.61	1220.040	01.6000
	.9	9.1106	8.41	21.332	6.6052	.9	34.2434	118.81	1295-029	93.3133
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	9.4248	9	27	7.0686	11	34.5576	121	1331	95.0334
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•1	9.7389	9.61	29.791	7.5476		34.8717	123.21	$1367 \cdot 631$	96.7691
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•2	10.0531	10.24	32.768	8 0424	•2	$35 \cdot 1859$	125.44	1404.928	98.5205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•3	10.3672	10.89	35.937	8.5530	•3	35.010	127.69	1442.897	100.2877
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	10.0014	12.25	39.301	9.0792	.4	36.1284	132.25	1520.875	102.0705
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6	11 3097	12.96	46.656	10.1787	-6	36.4425	134.26	1560.896	105.6834
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•7	11.6239	13.69	50.653	10.7521	.7	36.7567	136.89	1601.613	107.5134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•8	11.9380	14.44	54.872	11.3411	.8	37 0708	139.24	1643·032	109.3590
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•9	$12 \cdot 2522$	15.21	59.319	11.9459	•9	37.3840	141.61	1685.159	111.2204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	12.5664	16	64	12.5664	12	37.6992	144	1728	113.0976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	12.8605	17.64	71.089	13.2020	1.0	38.3975	148.84	1815-818	116-8080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3	13.5088	18.49	79.507	14.5220	3	38.6416	151.29	1860-867	118-8231
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•4	13.8230	19.36	85.184	15.2053	.4	38.9558	153.76	1906-624	120.7631
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•5	14.1372	20.25	91.125	15.9043	•5	39.2700	156.25	$1953 \cdot 125$	122.7187
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•6	14.4513	21.16	97.336	16·61 90	•6	$39 \cdot 5841$	158.76	2000.376	124.6901
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14.7655	22.09	103.823	17.3494	.7	39.8983	161.29	2048.383	126.6771
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-9	15.3938	24.01	110.592	18.0990	.0	40.5266	166.41	2146.689	130.6084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	15.7080	25	125	19.6350	13	40.8408	169	2197	132.7326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•1	16.0221	26.01	132.651	20.4282	~·1	41.1549	171.61	2248.091	1347824
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•2	16.3363	27.04	140.608	21.2372	•2	$41 \cdot 4691$	174.24	2299.968	136 8480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•3	16.6504	28.09	148.877	22.0618	.3	41.7832	176.89	2352.637	138.9294
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	17.9788	29.10	157.404	22.9022	•4	42.0974	182.05	2400 104 2460 375	141.0204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•6	17.5929	31.36	175-616	24-6301	6.	42.7957	184.96	2515.456	145.2675
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•7	17.9071	32.49	185.193	25.5176	.7	43.0399	187.69	2571.353	147.4117
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•8	$18 \cdot 2212$	33.64	195.112	26.4208	-8	$43 \cdot 3540$	190.44	2628.072	149 5715
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.9	18.5354	34.81	205.379	$27 \cdot 3397$	•9	43.6682	193.21	2685.619	151.7471
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	°.1	18.8490	30 37-91	216	28.2744	14	43.9824	196	2744	153.9384
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•2	19.4779	38.44	220.981	29.2247	1.0	44.6107	201.61	2863-282	158-3680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•3	19.7920	39.69	250.047	31.17.25	-3	44.9248	204.49	2924.207	160.6064
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•4	20.1062	40.96	$262 \cdot 144$	32.1699	•4	45.2390	207.36	$2985 \cdot 984$	162.8605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•5	20.4204	42.25	274.625	33.1831	•5	45.5532	210.25	3048.625	165.1303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6	20.7345	43.26	287.496	34.2120	•6	45.8673	213.16	3112.136	167.4158
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8	21.3628	46.21	314-439	30.2000	.7	40.1819	210.09	3241.799	172.0310
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•9	21.6770	47.61	328.509	37.3928	-0	46.8098	222.01	3307.949	174.3666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	21.9912	49	343	38.4846	15	47.1240	225	3375	176.7150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$22 \cdot 3053$	50.41	357.911	39.5920	1	47.4381	228.01	3442.951	179.0790
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	22.6195	51.84	373.248	40.7151	•2	47.7523	231.04	3511.808	181-4588
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3	22.9330	54.76	389.017	41.8539	•3	48.0664	234.09	3581.577	183.8542
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•5	23.5620	56.25	403 224	40.0085	-4	48-6048	240.25	3723 875	188-6923
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•6	23.8761	57.76	438.976	45.3647	-6	49.0089	243.36	3796.416	191.1349
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	•7	$24 \cdot 1903$	59.29	456.533	46 5663	.7	49.3231	246.49	3869-893	193.5932
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•8	24.5044	60.84	474.552	47.7837	•8	49.6372	249.64	3944.312	196.0672
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.9	24.8186	62.41	493·039	49.0168	.9	49.9514	252.81	4019-679	198.5569
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1	25.4469	65.61	531-441	51-5300	10	50.5707	259.21	4090	201.0624
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•2	25.7611	67.24	551.368	52.8102	.2	50.8939	262.44	4251.528	206.1209
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•3	26.0752	68.89	571.787	54.1062	.3	51.2080	265.69	4330.747	208.6723
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•4	26.3894	70.56	592.704	55.4178	•4	51.5224	268.96	4410.944	211.1411
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.	26.7036	72.25	614.125	56.7451	•5	51.8364	272.25	4492.125	213.8251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7	27.3319	13.90	658-503	50.1100	•6	52.1647	278.80	4574-296	216.4248
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-8	27.6460	77.44	681.472	60.8213	-8	52.7788	282.24	4741.632	221.6712
	•9	27.9602	79.21	704.969	62.2115	•9	53.0930	285.61	4826.809	224.3180

57

THE PRACTICAL MODEL CALCULATOR.

Diam.	Circum	Square.	Cube,	Area.	Diam,	Circum.	Square.	Cube.	Area,
17	53.4072	289	4913	226.9806	25	78.5400	625	15625	490.8750
•1	53.7213	292.41	5000.211	229.6588	•1	$78 \cdot 8541$	630.01	$15813 \cdot 251$	494-8098
•2	54.0355	295.84	5088.448	232.3527	.2	79.1683	635.04	16003·008	498.7604
•3	54.3490	299-29	5968-094	235.0623	-3	79.4824	645.16	16194-277	502.7266
•5	51.9780	306-25	5359-375	240.5287	-5	80.8108	650.25	16581-375	510 7086
•6	55.2921	309.76	5451.776	243.2855	·6	80.4249	655-36	16777-216	514.7196
•7	55.6063	313-29	5545.233	246.0579	-7	80.7391	660.49	16974 593	518.7488
•8	55.9204	316.84	5639.752	$248 \cdot 8461$	•8	81.0532	665.64	$17173 \cdot 512$	522.7936
.9	56.2346	320.41	5735-339	251.6500	.9	81.3674	670.81	17373.979	$526 \cdot 8541$
18	56-8620	324	5020-741	204-1690	26	81.0076	681-91	17576	530.9304
2	57.1771	331.24	6028.568	260-1558	.2	82.3099	686.44	17984-728	539-1200
•3	57.4912	334.89	6128.487	263.0226	.3	82.6240	691.69	18191.447	543-2533
•4	57.8054	338.56	6229.504	265.9050	•4	82.9382	696.96	$18399 \cdot 744$	547.3923
•5	58·1196	342.25	6331.625	268.8031	•5	83.2524	702.25	18609.625	$551 \cdot 5471$
•0	58.4337	345.96	6520.002	271.7169	•6	83.5665	707.56	· 18821.096	555.7176
.8	59.0620	349'09	6611.672	277.5017	.8	\$1.1018	718-91	19218-832	561-1056
9	59.3762	357.21	6751.269	280.5527	-9	84.5090	723.61	19465.109	568.3232
19	59.6904	361	6859	283.5294	27	84.8232	729	19683	$572 \cdot 5566$
•1	60.0045	364.81	6967·871	286-5217	•1	85.1373	734.41	$19902 \cdot 511$	576-8056
•2	60-3187	368.64	7077-888	289.5298	*2	85.4515	739.84	20123.648	581.0703
.4	60.0170	376.36	* 7301-384	292.9999	-3	86-0708	740.29	20570.821	589-6469
-5	61.2612	380.25	7414.875	298.6483	-5	86.3940	756.25	20796-875	593.9587
•6	61.5753	384.16	7529.536	301.7192	•6	86.7081	761.76	21024.576	$598 \cdot 2863$
•7	61.8895	388-09	7645.373	304.8060	•7	87.0223	767.29	$21253 \cdot 933$	$602 \cdot 6295$
•8	$62 \cdot 2036$	392.04	7762.392	307.9082	•8	87.3364	772.84	21484.952	606.9885
20.9	62.5178	396.01	7880-599	311.1600	.9	87.0649	781	21717.639	611.3632
-1	63-1461	400	8120-601	317.3001	28,1	88.9780	789.61	22188-041	620.1596
.2	63.4603	408.04	8242.408	320.4746	•2	88.5931	795.24	22425.768	624.5814
•3	63.7744	412.09	8365.427	323.6554	•3	88.9072	800.89	22665.187	629.0190
•4	64.0886	416.16	8489.664	326.8520	•4	89.2214	806.56	$22906 \cdot 304$	$633 \cdot 4722$
*5 .e	64.4028	420.25	8615-125	330.0643	•5	89.5356	812.25	23149.125	637.9411
.7	65-0311	424'00	8869-743	336-5360	.0	00-1630	823.69	23639-000	616-9261
-8	65.3452	432.64	8998.912	339 7954	-8	90.4780	829.44	23887.872	651.4421
•9	$65 \cdot 6594$	436.81	9129.329	343.0705	•9	90.7922	835.21	$24137 \cdot 569$	655.9739
21	65.9736	441	9261	346.3614	29	91·1 064	841	24389	660.5214
1	66·2870	445.21	9393.931	349.6679	•1	91.4205	846.81	24642.171	665.0845
-3	66-7016	419.41	9663-597	356-3281	•4	91.7347	858.49	25153 757	674.2580
•4	67.2930	457.96	9800.344	359.6817	•4	92.3630	864.36	25412.184	678.8683
•5	67.5444	462.25	9938·375	363 0511	•5	92.6772	870-25	$25672 \cdot 375$	$683 \cdot 4943$
•6	67.8585	466.56	$10077 \cdot 696$	366.4362	•6	92.9913	876.16	25934.336	$688 \cdot 1360$
.7	68.1727	470.89	10218.313	369-8370	•7	93.3055	882.09	26198.073	692.7934
.0	68-8010	4/0.24	10300-232	373.2034	.8	93.0190	894-01	26730-800	097 1000
22	69.1152	484	10648	380.1336	30	94.2480	900	27000	706-8600
•1	69.4293	488.41	10793-861	383.5972	•1	$94 \cdot 5621$	906.01	27270.901	711.5802
•2	69.7435	492.84	10941-048	387.0765	•2	94.8763	912.04	27543 608	$716 \cdot 3162$
•3	70.0576	497-29	11089.567	390.5751	.3	95.1904	918.09	2/818.127	721.0678
•4	70-6860	506-25	11239.424	391.0823	4	95.8188	930.25	28372.625	720.6182
•6	71.0001	510.76	11543.176	401.1509	•6	96.1329	936-36	28652.616	735.4171
-7	71.3143	515.29	11697.083	404.7087	7	96.4471	942.49	$28934 \cdot 443$	740.2316
.8	71.6284	519.84	11852-352	408.2823	•8	96.7612	948.64	29218.112	745.0618
.9	71.9426	524.41	12008-989	411.8716	.9	97.0754	994.81	29503.029	749 9077
23	72.2508	533.61	12107	410.0079	51	97.3890	967.21	30080-231	759-6467
.2	72 8851	538-24	12487.168	422.7336	.2	98.0179	973.44	30371.328	764.5397
.3	73.1992	542.89	12649-337	426.3858	.3	98.3320	979.69	30664-297	769.4485
•4	73.5134	547.56	12812.904	430.0536	•4	98.6452	985.96	30959-144	774.3729
•5	73.8276	552.25	12977-875	433-7371	•5	98.9604	992 25	31200'875	779.3131
•6	74.1417	561.60	13141.206	437.4363		99.2745	1001-80	31855-013	789-2108
.8	74.7680	566.14	13481.272	441-1011	.8	99-9028	1011.24	32157.432	794.2278
.9	75.0882	571-21	13651.919	448.6283	9.	100.2170	1017.61	32461.759	799.2308
24	75.3984	576	13824	452.3904	32	100.5312	1024	32768	804.2496
•1	75.7125	580.81	13997.541	456-1681	1	100.8453	1030.41	33076.161	809.2840
2	76.9409	585.64	14172.488	459.9616	2	101-1595	1043-20	33698-267	819-2000
•4	76-6523	595-36	14526-781	467-5057	-3	101-4730	1049.76	34012.224	824.4815
•5	76.9692	600-25	14706-125	471.4363	.5	102.1020	1056-25	$34328 \cdot 125$	829.5787
•6	77.2833	605.16	14886.936	475-2926	•6	102.4161	1062.76	34645.976	834.6917
•7	77.5975	610.09	15069-223	479.1646	7	102.7303	1069-29	34965.783	839-8203
.8	77.9116	615.04	15252.992	483.0524	.8	103.0444	10/0-04	35611.289	850-1919
.9	18.2208	020.01	19438-249	480.99998	.9	109.9990	1004 11	50011 200	000 1440

`

CIRCLES, ADVANCING BY A TENTH.

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
33	103.6728	1089	35937	855.3006	41	128.8056	1681	68921	1320.2574
•1	103.9869	1095.61	$36264 \cdot 691$	860.4920	•1	$129 \cdot 1197$	$1689 \cdot 21$	69426·531	13267055
•2	104.3011	1102-24	$36594 \cdot 368$	865.6992	•2	$129 \cdot 4323$	1697.44	$69934 \cdot 528$	$1333 \cdot 1693$
•3	104.6151	1108.89	36926.037	870.9222	•3	129.7480	1705.69	70444.997	$1339 \cdot 6489$
4	104.9294	1110-05	37239.704	870.1008	-4	130.0622	1799.05	71179-975	1340 1441
-6	105-5577	1122-25	37933-056	886-6851	•6	130.6905	1730.56	71991-296	1359-1818
.7	105.8719	1125.69	38272.753	891.9709	.7	131.0047	1738-89	72511.713	1365.7242
-8	106.1860	1142.44	$38614 \cdot 472$	897.2723	•8	131-3188	1747.24	73034 632	$1372 \cdot 2822$
•9	106.5002	1149.21	38958.219	902.5895	•9	131.6320	1755-61	73560.059	1378.8560
34	$106 \cdot 8144$	1156	39304	907.9224	42	131.9472	1764	74088	$1385 \cdot 4456$
1.1	107.1285	1162.81	39651.821	913-2709	.1	132.2613	1772.41	74618.461	1392.0508
	107.4272	1159.40	40001.080	021-0115	•3	132.8806	1780.90	75686.067	1405.2082
-4	108-0710	1182.26	40707.584	929-4109	•4	133.2038	1797.76	76225-024	1403 3083
.5	108.3852	1190.25	41063.625	934.8223	•5	133.5180	1806.25	76765.625	1418 6287
•6	108.6993	1197.16	41421.736	940.2494	•6	133-8321	1814.76*	77308 776	$1425 \cdot 3125$
•7	109.0352	1204.09	41781.923	$945 \cdot 6922$.7	$134 \cdot 1463$	1823.29	77854.483	1432.0119
•8	$109 \cdot 3076$	1211.04	42144.192	951.1508	•8	134.4604	1831.84	78402.752	1438.7271
	109.6418	1218.01	42008.049	990.0290	40	134.7740	1840.41	78958-589	1410.4580
30,1	110-2701	1220	42010	967-6206	40	135-1020	1857-61	80062-991	1452-2040
.2	110.5843	1239-01	43614.208	973-1420	•2	135.7171	1866-24	80621.568	1465.7448
•3	110.8984	1246.09	43986.977	978.6790	•3	136-0332	$1874 \cdot 89$	81182.737	1472.5385
•4	$111 \cdot 2126$	$1253 \cdot 16$	$44361 \cdot 864$	984-2318	•4	$136 \cdot 3454$	$1883 \cdot 56$	81746.504	$1479 \cdot 3480$
•5	111.5268	1260.25	44738-875	989.8003	•5	136.6596	$1892 \cdot 25$	82312.875	$1486 \cdot 1731$
•6	111.8409	1267.36	45118.016	995-3845	•6	136.9737	1900.96	82881.856	1493.0139
	112.1001	1274.49	45499-293	1000.9843		137-2879	1019.44	83493.493	1499.8705
•9	112 + 1092 112 + 7831	1281.04	46268-279	1012-9313	.0	137.0020	1918.44	84604.519	1513-6287
36	113.0976	1296	46656	1012-2515	44	138-2304	1936	85184	1520.5344
·1	113.4117	1303-21	47045.831	1023.5411	-1	138.5445	1944-81	85766.121	1527.4537
•2	$113 \cdot 7259$	1310.44	47437.928	$1029 \cdot 2195$	•2	138-8587	1953.64	86350-888	1534.3888
•3	114.0400	1317.69	$47832 \cdot 147$	$1034 \cdot 9131$	•3	$139 \cdot 1728$	1962.49	86938-307	$1541 \cdot 3396$
•4	114.3542	1324.96	48228.544	1040.6235	•4	139.4870	1971.36	87528.384	1548.3061
•0	114.6684	1332-25	48627 125	1046-3491	.5	139.8012	1980-25	88121.125	1555-2883
.7	114.9829	1316-89	49027-890	1052-0904	.7	140-1103	1989.10	89314-623	1560-2008
.8	115.6108	1354.24	49836.032	1063-6200	-8	140 4295	2007.04	89915-392	1576.3292
•9	115.9250	1361.61	50243.409	1069-4084	•9	141.0578	2016-01	90518.849	1583.3742
37	$116 \cdot 2392$	1369	50653	$1075 \cdot 2126$	45	141.3720	2025	91125	1590.4350
•1	116.5533	1376.41	$51064 \cdot 811$	$1081 \cdot 0324$	1	141.6861	2034.01	$91733 \cdot 851$	$1597 \cdot 5114$
•2	116.8675	1383.84	$51478 \cdot 848$	1086-8679	•2	142.0003	2043.04	92345.408	1604.6036
•3	117.1816	1391.29	51895.117	1092.7191	•3	142.3144	2052.09	92959.077	1618-8250
•5	117.8100	1406.25	52731-375	1104.1687	-5	112.0108	2001.10	94196-375	1625.9743
•6	$118 \cdot 1241$	1413.76	53157.376	1110.3671	•6	143.2569	2079-36	94818.816	1633-1293
•7	$118 \cdot 4383$	$1421 \cdot 29$	53582.633	1116.2811	•7	143.5711	2088.49	95443·993	1640.3020
•8	118.7524	1428.84	54010.152	1122.2109	•8	$143 \cdot 8852$	2097.64	96071.912	$1647 \cdot 4864$
.9	119.0666	1436.41	$54439 \cdot 939$	$1128 \cdot 1564$	•9	144.1994	2106.81	96702.579	$1654 \cdot 6885$
38	119-3808	1444	54872	1134-1176	46	144.5136	2116	97336	1661.9064
1 .2	120.0001	1401.61	557.19.068	1140.0946	.1	145.1410	2125.21	97972.181	1676.2801
1 .3	120.3232	1466.80	56181-887	1152.0054	-3	145.4560	2143.60	99252-817	1683-6541
•4	120.6374	1474.56	56623.104	1158-1194	•4	145.7702	2152.96	99897.344	1690.9347
•5	120.9516	1482.25	$57066 \cdot 625$	1164-1591	•5	146.0844	2162.25	100544.625	$1698 \cdot 2311$
1 .6	$121 \cdot 2657$	1489.96	57512-456	$1170 \cdot 2145$	•6	146.3985	2171.56	101194.696	$1705 \cdot 5432$
1 7	121.5799	1497.69	57960.603	1176-2857	7	146.7127	2180.89	101847.563	1712 8710
.0	121.8940	1519.01	58862.000	1182.3725	.8	147.0268	2190.24	102203.232	1720.2144
39	122.5221	1521	59310	1201-5204	47	147-6550	2199.01	103823	1734-9486
1	122 8365	1528.81	59776-471	1200.7273	1.1	147.9693	2218.41	104487.111	1742.3392
•2	$123 \cdot 1507$	1536.64	60236-288	1206.8770	.2	148.2835	2227.84	105154.048	1749.7455
•3	$123 \cdot 4648$	1544.49	60698.457	1213 0424	•3	148.5976	$2237 \cdot 29$	105823.817	1757.1675
•4	123.7790	1552.36	61162.984	$1219 \cdot 2243$	•4	148.9118	2246.76	$106496 \cdot 424$	1764.6045
•0	124.0932	1560.25	61629.875	1225.4203	•5	149.2260	2256-25	107171.875	1772 0587
.7	191 7915	1576-00	62570.772	1231.6328	•6	149.5361	2265.70	107600170	1787-0197
1 .8	125.0356	1584-04	63041.792	1244-1910		150-1681	2284-84	109215-352	1794.5133
.9	125.3498	1592.01	63521.199	1250.3646	-9	150.4826	2294 41	109902-239	1802-0296
40	125.6640	1600	64000	1256.6400	48	150.7968	2304	110592	1809.5616
1	125.9781	1608.01	64481.201	1262.9310	•1	151.1109	2313.61	111284.641	$1817 \cdot 1092$
2	126.2923	1616.04	64964.808	1269-2388	•2	151.4251	2323.24	111980-168	1824.6726
-4	120.0004	1622-09	65450.827	1275.5602	•3	152.052	2332 89	112078.087	1832 2018
.5	127.2348	1640.95	66420-125	1288-9593	-4 -E	152 3676	2352-25	114084.125	1847-4571
•6	127 5489	1648.36	66923-416	1294.6219	.6	152.6817	2361.96	114791.256	1855-0833
.7	127.8631	1656.49	67419.143	1301.0071	.7	152.9959	2371.69	115501.303	1862.7253
.8	$128 \cdot 1772$	1664-64	67917-312	$1307 \cdot 4082$	•8	153.3100	2381.44	$116214 \cdot 272$	$1870 \cdot 3829$
.9	128.4914	1672.81	68417.929	$1313 \cdot 8249$	•9	$153 \cdot 6242$	2391.21	116930-169	1878.0563

.

.

THE PRACTICAL MODEL CALCULATOR.

49 13-9384 201 11649 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-71 1857-75 2157-765 2157-7765 2157-7765 2157-7765 2157-7765 2157-7765 2157-7765 2157-7765 2157-7765	Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49	153-9384	2401	117649	1885.7454	57	179.0712	3249	185193	2551.7646
************************************	•1	$154 \cdot 2525$	2410.81	118370.771	1893·4501	•1	$179 \cdot 3853$	3260.41	186169-411	2500.7200
3 1947808 240.948 1992274 199708 25729 198132517 25776050 4 1557823 240.945 1992276 357761 191102975 357761 191102975 357761 191102975 30577857 5 1564561 2440976 1220257837 19122058 367761 191102975 20257787 6 1576800 25000 12205643 191497524 1815866 335724 191102976 20257827 2029856 60 1576800 25000 125006 19035000 51 1822268 35741 19110520 20297632 20297632 20297632 20297632 20297632 20297632 20297632 20297632 20297632 20297632 20297632 20297632 2029772 202977827 20297782 20297622 20297782 20297632 20297632 202977827 202977827 202977827 202977827 202977827 202977827 202977827 202977827 202977827 202977827 202977827 202977827 202	•2	154.5667	2120.64	119095.488	1901-1706	•2	179.6995	3271.84	$187149 \cdot 248$	$2569 \cdot 7031$
5 15355002 2540-25 121287575 1924-253 5 180-961 350-25 19010-57 2500-75 2500-7	•3	155-1050	2430.49	120553-784	1908.9008	•3	180.3278	3253-29	188132.517	2578.6959
-6 155-823 2400-76 12222986 1822906 -6 181-986 3327-76 191102-976 2005-7857 7 156-137 2470-00 2104-823 48 181-986 3320-81 2210-082 2222-9856 60 157-9800 2500 125004 1935-663 9 185-2286 3344 136112 2222-9856 61 135-0224 3200-064 127357450 1197-1368 -1 185-4443 337-84 19117-368 2002-0782 237-84 19117-368 2002-0782 237-84 19117-368 2002-0782 237-84 19117-368 2002-0782 237-84 19117-368 2002-0782 237-84 237-84 237-84 237-84 2002-0782 237-84 237-8	•5	155.5092	2450-25	121287.375	1924 4263	-5	180.6420	3306-25	190109-375	2596.7987
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•6	155.8233	2460.16	122023-936	1932-2096	•6	180.9561	3317.76	191102.976	2605.7687
*** 166+361 2480-04 12366.992 1947-824 *** 1817-886 323-241 18410-552 2223-8857 50 157-0800 2000 123570-460 1993-6000 56 182-2268 364 136112 2224-2865 31 155-0224 2300-06 1273-2571 1971-1368 -1 185-4411 2617-296-26 41 158-3600 230-2461 1997-1358 -2 185-4411 3077-81 17117-368 200-3782 41 158-3600 230-2461 1200-5416 -4 185-4464 3074-44 2037-742 2715-77831 51 159-2701 2570-49 13026-5432 200-288-346 8 184-260 303-6469 2724-712 2715-4773 51 100-226 2600-11 13187-2229 204-874 1 185-6643 340-641 2074-44 2037-742 271-7172 271-7172 271-7172 271-7172 271-7172 271-7173 272-282-7840 185-6443 340-742 210-71746 787-727	•7	156.1375	2470.09	122763.473	1940-0086	•7	$181 \cdot 2803$	$3329 \cdot 29$	192100.033	2614.8243
9 1617438 239000 124201499 1900003 16174390 23024 11414323 22429325 1 1577083 220004 126054001 11993043 1 1222152 10713338 22429325 3 1560242 2500004 126054003 19973326 1583552 10713338 20000455 20000455 20000455 20000455 20000455 20000455 20000455 20000465 2000045 2000045 2000045 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 20000465 <td< td=""><td>.8</td><td>156.4516</td><td>2480.04</td><td>123505-992</td><td>1947-8234</td><td>•8</td><td>181.5844</td><td>3340.84</td><td>193100.552</td><td>2623.8957</td></td<>	.8	156.4516	2480.04	123505-992	1947-8234	•8	181.5844	3340.84	193100.552	2623.8957
$\begin{array}{c} \mathbf{u} \\ $	50	157-0800	2490.01	124251.499	1999.0938		181.8980	3352.41	194104.539	2632.9828
$\begin{array}{c} 157-083 & 252-064 & 128560-085 & 1979-2324 & 21 83411 & 3287+24 & 107137 368 & 900-3852 \\ 31 556-0224 & 25300-06 & 128054-0064 & 1997-0146 & 41 8344604 & 310-56 & 190170-704 & 2606-3852 \\ 41 58-3660 & 2550-26 & 12875-653 & 2002-9663 & 51 887-563 & 522-52 & 2000-655 & 2687-583 \\ 51 58-6503 & 2550-26 & 130096-512 & 2019-9007 & 61 84-0077 & 3433-96 & 201230 & 66 & 2070-321 \\ 71 & 169-279 & 2570-40 & 1303023-843 & 2018-9628 & 71 & 184-411 & 34566 & 2022-2003 & 270-6244 \\ 81 59-6502 & 2550-64 & 131096-512 & 2028-8346 & 68 & 1847-260 & 3457-44 & 20397747 & 2719-713 \\ 71 & 160-2216 & 2001 & 133212 & 2028-8346 & 68 & 1847-260 & 3457-44 & 2039774 & 2729-714 \\ 71 & 106-3677 & 2017-12 & 133422-81 & 2008-8754 & 21 859627 & 3504-66 & 207474-688 & 2713-753 \\ 21 & 100-3460 & 2021-44 & 134217727 & 2058-8754 & 21 859627 & 3504-66 & 207474-688 & 2713-753 \\ 41 & 100-4360 & 2021-46 & 135796-744 & 2091-7746 & 68 & 1852-967 & 3504-66 & 207474-688 & 2713-751 \\ 41 & 104-320 & 2059-25 & 1365996-75 & 2083-0711 & 51 8596252 & 3504-69 & 212776-178 & 2789-564 \\ 41 & 164-478 & 2083-16 & 130798-350 & 2017-146 & 61 87-2008 & 356246 & 212776-178 & 2789-564 \\ 71 & 162-4207 & 2072-89 & 138188+13 & 2099-278 & 71 87-5535 & 3564-09 & 212776-178 & 2789-564 \\ 71 & 162-4307 & 2072-89 & 138188+13 & 2099-278 & 71 87-5535 & 3564-09 & 212776-178 & 2789-564 \\ 71 & 160-652 & 272-56 & 138798-66 & 2123-7216 & 118-98101 & 3012-01 & 2170-810 & 2280-8720 \\ 21 & 13-9985 & 272-48 & 13877-842 & 2107-116 & 51 88-9905 & 2104-48-55 & 2789-8644 \\ 71 & 160-648 & 276-73 & 2714-41 & 1442276-18 & 2137-216 & 10-883469 & 22447-102 & 2868-720 & 288-720 \\ 71 & 160-6408 & 275-52 & 134305-667 & 2123-7207 & 288-8210 & 2107-816 & 288-7260 $	1.1	157-3941	2510.01	125751.501	1971-3618	1	182 5269	3375-61	196122-941	2651 2016
3 185.0224 2530.00 127235277 1987.1328 -3 185.1522 3308.60 186.152257 2602.4623 4 158.3606 255.024 12875.7625 2002.9663 -6 188.7736 342.252 200.01065 2687.7351 7 158.4216 2005.463 201.9067 184.9728 200.22003 46 184.723 200.4377 144.4110 344.964 202.22003 77.184.4110 344.974 201.97472 271.54733 1 100.537 201.917 201.8376.81 1 185.9625 201.84771 9 185.9625 200.84784 201.8476.91 271.572.54.21 3 161.1420 201.9744 201.993.84 201.974.45 201.974.45 272.52.42 272.52.42 4 164.7422 202.241.45 135.969.67 200.9278 7 201.957.1717.173 270.922.62 270.957.1717.173 270.922.62 270.957.1717.173 270.922.62 270.957.1717.173 270.957.62 200.9278.75 277.1717.173 270.957.62 271.471.056.22 <	.2	157.7083	2520.04	126506.008	1979-2394	·2	182 8411	3387.24	197137.368	2660.3382
4 188-3366 2540-16 128024064 1995-0416 -4 183-4044 3410-56 199176-704 2576-6538 6 158-6044 2500-36 128554-226 2001-9007 -6 184-0077 3433-96 201230-065 2676-5531 7 150-271 2570-441 310096512 2028-8546 -8 184-7200 3457-44 203379 2724715-7733 9 150-40622 2580-64 131096512 2028-8546 -8 184-7200 3457-44 203379 27237174 9 150-6052 2021-14 150 368-574 3416-45 271474-58 27237175 2 100-8357 2011-7140 6 1872572 21064+875 2718-5123 16 16224207 2072-80 138188-13 2009-278 7 1875553 3564-00 21276-173 7718-5123 9 163-0490 2039-61 130798-359 2115-5612 9 18818 385700 2108-4484 2108-7203 2789-8644	•3	158.0224	2530.09	127263.527	1987.1326	•3	$183 \cdot 1552$	3398.89	198155-287	2669.4882
$ \begin{array}{c} 138 - 0.00 \\ 1169 - 0.$	•4	158-3366	2540.16	128024.064	1995-0416	•4	183.4694	3410.56	199176-704	2678.6538
$\begin{array}{c} 1 \\ 5 \\ 1 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$	6.	158-9619	2560.26	128/8/ 020	2002.9003	6.	184.0077	3422.20	200201.625	2687 8351
is 159-5932 2550-64 13187220 345744 202397474 202397472 2715713 11 100-2216 2001 132342231 2005743 500443 27239771 27339774 2003376409 27247175 21 100-5357 2011-11 133432231 20568784 21 185-6663 340241 200425071 27339774 21 105-5641 34517 2006237 3163-2666 340241 207474585 2725412 31 161-6782 2641-66 13500-6977 2006237 31 183-2666 316449 20747473 27197473 6 1627042 26522-56 137385906 20017746 6 1875233 355216 21176713 27194733 9 163-0410 2686241 134098332 21074146 8 1875676 376044 213847109 28184230 9 163-0463 2745741 144287761 13876778 1884760 36000 21064757 221876712 22088723	.7	159-2791	2570.49	130323-843	2018-8628	.7	184.4119	3445.69	202262.003	2706.2449
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.8	159.5932	2580.64	131096.512	2026-8346	•8	184.7260	3457.44	203297.472	2715.4733
	•9	$159 \cdot 9074$	2590.81	131872-229	2034.8770	•9	185.0402	$3469 \cdot 21$	$204336 \cdot 469$	2724.7175
$ \begin{array}{c} 1 & 100^{+0.367} \\ 21 & 100^{+0.367} \\ 201 & 101^{+0.27} \\ 100^{+0.367} \\ 101^{+0.27} \\ 101^$	51	160 2216	2601	132651	2042.8254	59	185.3544	3481	205379	2733.9774
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.1	160-8499	2011-21	134917-728	2000 8443	.2	185-0827	3492'81	200425-071	2743 2029
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.3	161.1640	2631.69	135005.697	2066-9293	.3	186-2696	3516.49	208527.857	2761.8512
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•4	161.4782	2641.96	135796.744	2074-9953	•4	186.6110	3528.36	209584.584	2771.1739
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•5	161.7924	$2652 \cdot 25$	136590.875	2083.0771	. •5	186.9252	3540.25	210644.875	2780.5123
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•6	162-1065	2662.56	137388.096	2091.1746	•6	187-2393	3552.16	211708.736	2789.8664
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		162-7318	2672.89	138001-832	2099-2018		187-8676	3576-04	212110.113	2199-2302
	.9	163-0490	2693.61	139798-359	2115.5612	.9	188-1818	3588.01	214921.799	2818.0230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	$163 \cdot 3632$	2704	140608	2123.7216	60	188.4960	3600	216000	2827.4400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•1	163-6773	2714 41	141420.761	2131.8976	•1	188.8101	3612.01	217081-801	2836.8726
$ \begin{array}{c} 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\$	•2	163.9935	2724.84	142236.648	2140.0893	.2	189.1243	3624.04	218167.208	2846.3210
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.4	164-6198	2715.76	143877-824	2156.5199	.4	189.7526	3648.16	220318-864	2865-2648
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.5	164.9340	2756-25	144703.125	2164.7587	.5	190.0668	3660.25	221445.125	2874.7603
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•6	$165 \cdot 2481$	2766.76	145531.576	2173.0133	•6	190.3809	3672.36	222545.016	2884.2615
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.7	165.5623	2777.29	146363.183	2181.2835	.7	190.6951	3684.49	223648.543	2893.7984
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	166-1906	2787.81	147197.952	2189.5095	.0	191.0092	3096.04	224700-712	2903.3410
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	53	166-5048	2809	148877	2206-1886	61	191.6376	3721	226981	2922.4734
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•1	166-8189	2819.61	149721.291	2214.5216	-1	191.9517	3733.21	228099.131	2932.0631
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•2	167.1331	2830.24	150568.768	2222.8704	•2	192.2659	3745.44	229220.928	2941.6685
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•3	167-4472	2940.89	151419.437	2231.2350	•3	192.5800	3757.69	230346.397	2951.2897
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•5	168.0756	2862.25	153130.375	2248-0111	-5	192 8942	3782.25	232608.375	2970.5791
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	168-3897	2872.96	153990-656	2256.4227	.6	193.5225	3794.56	233744.896	2980 2474
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•7	168.7049	2883.69	154854.153	2264-8701	•7	$193 \cdot 8367$	3806-89	$234885 \cdot 113$	$2989 \cdot 9314$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•8	169-0180	2894.44	155720.872	2273-2931	•8	194.1508	3819.24	236029 032	2999.6300
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54	169-5522	2905-21	157.161	2281.7519	.9	101.7709	3844	236110.099	3019-0776
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.1	169-9605	2926-81	158340.421	2298.7165	.1	195.0933	3856.41	239483.061	3028.8244
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•2	170 2747	2937.64	159220.088	$2307 \cdot 2224$	·2	195.4075	3868.84	240641.848	3038.5809
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•3	170.5888	$2948 \cdot 49$	160103-007	2315.7440	•3	195.7216	3881.29	241804-367	3048.3651
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•4	170.9030	2959.36	160989.184	2324-2813	•4	196.0358	3893.70	242970.624	3058.1591
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-6	171.5313	2981.16	162771.336	2341.4030	-6	196.6641	3918.76	245314.376	3077.7941
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-7	171.8455	2992.09	163667.323	2349.9874	.7	196.9783	3931.29	246491.883	3087.6341
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•8	172.1596	3003.04	164566.592	2358.5876	-8	$197 \cdot 2924$	3943.84	247673.152	3097.4919
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	172.4738	3014.01	165469-149	2367 2034	.9	197.6066	3956.41	248858.189	3107-3644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	172.7880	3025	167284-151	2375.8550	63	108-9208	3081-61	251239.591	3127.1564
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.2	173-4163	3047.04	168196-608	2393.1452	.2	198.5491	3994.24	252435.968	3137.0758
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.3	173.7304	3058-09	169112.377	$2401 \cdot 8238$	•3	198.8632	4006.89	253636.137	3147.0114
$ \begin{array}{c} 15 & 174.3588 & 3080.25 & 170953875 & 2419.2283 & \cdot 5 & 199.4916 & 4032.22 & 20504.745 & 3105.9415 \\ -6 & 174.6729 & 3091.66 & 1712508.693 & 2436.6956 & \cdot 7 & 200-1199 & 4057.69 & 25874.553 & 3186.9097 \\ -8 & 175.6092 & 3113.64 & 17374.112 & 2445.4528 & \cdot 8 & 200.4340 & 4070.44 & 225684.772 & 30269.472 \\ -9 & 175.6154 & 3124.81 & 174676.879 & 2454.2257 & -9 & 200.7482 & 4083.21 & 200917.119 & 3206.9531 \\ -1 & 176.2437 & 3147.21 & 176558.441 & 2471.5187 & -1 & 21.376.5410 & 2127.70503 \\ -2 & 176.5772 & 3168.69 & 178435.547 & 2489.4745 & \cdot 3 & 202.0488 & 12374.721 & 3227.1527 \\ -3 & 176.579 & 3158.44 & 177504.238 & 2480.6387 & -2 & 201.6907 & 4121.64 & 246409.288 & 3237.1327 & 0503 \\ -3 & 176.6572 & 3169.69 & 178453.547 & 2489.4745 & \cdot 3 & 202.0488 & 4138.492 & 265847.707 & 32371.2288 \\ -4 & 177.1862 & 3180.96 & 179406.144 & 2498.3259 & 4 & 202.3190 & 4147.36 & 26689.775 & 3237.1327 & 0503 \\ -6 & 177.78145 & 320.56 & 1832.1496 & 251.0776 & 32.207.4633 & 4180.492 & 265847.75 & 3237.75988 \\ -7 & 178.1287 & 3214.89 & 182284.263 & 2524.9736 & -7 & 203.2615 & 4186.90 & 270.840.23 & 3257.7598 \\ -7 & 178.1287 & 3214.89 & 182284.263 & 2524.9736 & -7 & 203.2615 & 4186.90 & 270.840.23 & 3257.7598 \\ -7 & 178.1287 & 3214.89 & 182284.263 & 2524.9738 & -7 & 203.2615 & 4186.90 & 270.840.23 & 3257.7598 \\ -7 & 178.1287 & 3214.89 & 182284.263 & 2524.9738 & -7 & 203.2615 & 4186.90 & 270.840.23 & 3257.7598 \\ -7 & 178.1287 & 3214.89 & 182284.263 & 2524.9738 & -7 & 203.2615 & 4186.90 & 270.840.23 & 3257.7598 \\ -7 & 178.1287 & 327.61 & 184220.009 & 242.8188 & -9 & 203.8888 & 4212.01 & 273359.449 & 320.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 327.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 326.741.26 & 327.751.2$	•4	174.0446	$3069 \cdot 16$	170031.464	2410.5182	•4	199.1774	4019.56	254840.104	3156.9664
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•5	174.3588	3080.25	170953.875	2419-2283	•5	199.4916	4032.20	257259-456	3176-9115
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0	174.9771	3102.49	172808-693	2436 6956	•0	200.1199	4057.69	258474.853	3186.9097
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.8	175.3092	3113.64	173741.112	2445.4528	.8	200.4340	4070.44	259694.072	3196.9235
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•9	175.6154	3124.81	174676.879	$2454 \cdot 2257$	•9	200.7482	4083.21	260917.119	3206.9531
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	175.9296	3136	175616	2463.0144	64	201.0624	4096	202144	3227+0503
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		176-5570	3147.21	177501-398	24/1.818/	1	201.6907	4121.64	264609.288	3237.1360
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.3	176.8720	3169-69	178453.547	2489.4745	.3	202.0048	4134.49	265847.707	$3247 \cdot 2284$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•4	177.1862	3180.96	179406.144	2498-3259	•4	202-3190	4147.36	267089-984	3257-3365
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•5	177.5004	3192.25	180362.125	2507.1931	•5	202.6332	4160.25	268336 125	3267 4603
·8 178·4428 3226·24 18226·1432 5226·8888 ·8 203·5756 4109·04 272097·792 3297·9200 ·9 178·7570 3237·61 184220·009 2542·8188 ·9 203·8898 4212·01 27359·449 3306·1126	.6	178-1987	3203.56	181321.496	2516.0760	.6	202.9473	4186.09	270840.023	3287.7550
·9 178·7570 3237·61 184220·009 2542·8188 ·9 203·8898 4212·01 273359·449 3308·1126	.8	178.4428	3226.24	183250.432	2533-8888	.8	203-5756	4199.04	272097.792	3297-9200
	.9	178.7570	3237.61	184220.009	2542.8188	.9	203.8898	4212.01	273359.449	3308-1126

~

CIRCLES, ADVANCING BY A TENTH.

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
65	204.2040	4225	274625	3318.3150	73	229.3368	5329	389017	4185·3966
•1	204.5181	4238.01	275894.451	3328.5340	•1	229.6509	5343.61	390617-891	4196.8712
•2	204.8323	4251.04	277167.808	3338.7668	•2	2:29.9651	5358-24	$392223 \cdot 168$	$4208 \cdot 3614$
-3	205.1404	4264.09	278+15.077	3349.0162	•3	230.2792	5372.89	393832-837	4219.8678
.4	205 7748	42/1.10	219120.204	3369-5623	-4	230.5934	5102:05	393110.901	4231.3896
•6	206.0889	4303-36	282300.416	3379-8589	.6	230 9070	5416.96	398688-256	4251 1803
•7	$206 \cdot 4031$	4316.49	283593.393	3390.1712	•7	231.5359	5431.69	400315.553	4266.0493
•8	206.7172	4329.64	284890.312	3400.4992	•8	231.8500	5446.44	401947.272	4277.6339
.9	207.0314	4342.81	286191.179	3410.8429	.9	232.1642	5461.21	403583.419	4289-2343
66	207.3406	4356	287490	3421.2024	74	232.4784	5476	405224	4300.8504
1 .2	207-0597	4309.41	200004101	3141.9633	-2	232 7925	5505-61	400809.021	4312 4821
.3	208.2880	4395.69	291434-247	3452.3749	•3	233 4208	5520.49	410172.407	4335.7928
•4	208.6022	4408.96	292754-944	3462.7971	•4	233.7350	5535.36	411830.784	4347.4717
•5	208.9164	$4422 \cdot 25$	294079.625	3473.2351	•5	234.0492	5550.25	$413493 \cdot 625$	$4359 \cdot 1663$
•6	209-2305	4435.56	290408-290	3483 0888	.6	234.3633	5565.16	415160.936	4370-8766
	209.5447	4462.24	298077.632	3504.6432	.8	234.0775	5595-04	410832.723	4382.0026
.9	210.1730	4475-61	299418.309	3515.1430	.9	235.3058	5610.01	420189-749	4106.1018
67	210.4872	4489	300763	$3525 \cdot 6606$	75	235.6200	5625	421875	4417.8750
•1	210.8013	$4502 \cdot 41$	302111.711	3536 1928	•1	$235 \cdot 9341$	5640.01	423564.751	$4429 \cdot 6638$
•2	211.1155	4515.84	303464.448	3546.7407	.2	$236 \cdot 2483$	5655.04	425259.008	4441.4684
6* 1.	211.4290	45429-29	306182-021	3567.8837	.4	236.5624	5685+16	426957.777	4403.2886
•5	212.0580	4546-25	307546.875	3578.4787	-5	230'8700	5700.25	420001.004	4400 1240
•6	$212 \cdot 3721$	4569.76	308915-776	3589-0895	•6	237.5049	5715.36	432081.216	4488.8437
•7	$212 \cdot 6863$	$4583 \cdot 29$	$310288 \cdot 733$	$3599 \cdot 7159$	•7	237.8191	5730.49	433798.093	4500 7268
•8	213.0004	4596.81	311665.752	3610.3581	•8	$238 \cdot 1332$	5745.61	$435519 \cdot 512$	$4512 \cdot 6256$
.9	213.3140	4610.41	313046.839	3621-0160		238.4474	5760.81	437245.479	4524.5401
·1	213.9429	4024 4637-61	315821.241	3642.3788	10.1	2387616	5701.91	438970	4000 4704
.2	$214 \cdot 2571$	4651.24	317214.568	3653 0838	·2	239.3899	5806.44	442450.728	4560.3787
•3	214.5712	4664.89	$318611 \cdot 987$	3663.8040	•3	239.7040	5821.69	444194.947	4572.3553
•4	$214 \cdot 8854$	4678.56	$320013 \cdot 504$	$3674 \cdot 5410$	•4	240.0182	5836.96	445943.744	4584.3583
•5	215.1996	4692.25	321419.125	3685.2931	.5	240.3324	5852.25	$447697 \cdot 125$	4596-3571
.0	215.8279	4710-60	324212.703	3706-8445	.0	240.6465	5867.50	449455.096	4608.3816
-8	$216 \cdot 1420$	4733.44	325660.672	3717.6437	-8	240.9007	5898.24	452381-832	4632.1776
•9	$216\ 4562$	4747 21	327082.769	3728.4587	•9	241.5987	5913.61	454756.609	4644 5492
69	216.7704	4761	328509	3739.2894	77	241.9032	5929	456533	4656.6366
•1	217.2027	4774.81	329939-371	3750-1357	•1	$242 \cdot 2173$	5944.41	458314.011	4068.7396
-2	217.5957	4/88.61	332812.557	3771-8756	•2	242.5315	5075-20	461880-017	4680.8583
•4	218.0270	4816.36	$334255 \cdot 384$	3782.7691	-4	242 0400	5990 76	463684.821	4705.1429
•5	$218 \cdot 3412$	4830.25	335702.375	3793.6783	•5	243.4740	$6006 \cdot 25$	465484.375	4717.3087
•6	218.6553	4844.16	337153-536	$3804 \cdot 6032$	•6	$243 \cdot 7881$	6021.76	467288.576	4729.4903
•7	218.9695	4858.09	338608.873	3815.5438	.7	$244 \cdot 1023$	6037-29	$469097 \cdot 433$	4741.6875
8· 0·	219-2850	4872.04	341539-000	3820.9002	•8	244.4164	6052.84	470910.952	4753.9605
70	219.9120	4900	343000	3848.4600	78	215-0448	C084	474552	4778-3736
-1	$220 \cdot 2261$	4914.01	344472.101	3859.4952	·1	245.3589	6099.61	476379.541	4790.6336
•2	220.5403	4928.04	$345948 \cdot 408$	3870.4826	•2	245.6731	$6115 \cdot 24$	$478211 \cdot 768$	4802.9094
•3	220.8544	4942.09	347428.927	3881.5174	•3	$245 \cdot 9872$	6130.89	480048-687	4815.2010
•4	221.1828	4970-25	350102-625	3892.0000	•4	246.3014	6146.50	481890 304	4827.5082
•6	221.7969	4984.36	351895-816	3914 7163	•6	246.0100	6177-96	485587.656	4852.1697
.7	222.1111	4998.49	353393-243	$3925 \cdot 8140$.7	247.2439	6193-69	487443.403	4864.5241
•8	222.4252	5012.64	354894.912	3936-9274	•8	$247 \cdot 5480$	$6209 \cdot 44$	489303.872	4876-8973
9	2227394	5026·81	356400.829	3948-0565	9	247.8722	6225·21	491169-069	4889-2799
1 .1	223.3677	5055-91	350 195.491	3959-2014	19	248.1864	0241	493039	4901'0814
.2	223.6819	5069.44	360944.128	3981.5381	.2	248-5005	6272.64	496793-088	4926.5314
•3	223.9960	5083-69	362467.097	3992.7301	.3	249.1288	6288.49	498677.257	4938-9820
•4	$224 \cdot 3102$	5097.96	36399 4· 344	4003-9373	•4	$249 \cdot 4430$	6304.36	500566.184	4951.4443
•5	224.6214	5112.25	365525.875	4015.1611	•5	$249 \cdot 7572$	6320.25	502459.875	4963 9243
·0 ·7	225.2527	5140.80	362601-690	4020 4002	•0	250.0713	6330.10	506961.579	49764840
-8	225.5668	5155-24	370146.232	4048-9254	-8	250.58996	6368.04	508169.592	5001.4586
•9	$225 \cdot 8810$	5169-61	371694-959	4060-2116	•9	251.0138	6384.01	510082.399	5014.0014
72	$226 \cdot 1952$	5184	373248	4071.5136	80	251.3280	6400	512000	5026.5600
.1	226.5093	5198.41	374805-361	4082.8332	1	251.6421	6416.01	513922.401	5039.1342
-3	227.1376	0212·84 5997-90	377032-067	4094.1040	.2	251.9563	0432.04	010849*608 517781-607	5061-7242
•4	$227 \cdot 4518$	5241.76	379503.421	4116-8793	•4	252.5846	6464.16	519718-464	5076 9552
•5	227.7660	5256-25	381078.125	4128.2587	•5	252.8988	6480.25	521660.125	5089.5883
•6	228.0801	5270.76	382657.176	4139.6524	•6	$253 \cdot 2129$	6496-36	523606.616	5102.2411
-8	228.7084	5285·29	384240.583	4151.0667	.7	253.5271	6512.49	525557.943	5114.9096
•9	229.0226	5314.41	387120-480	4173-9376	-0	200.0412	6544-81	520175-120	5140-9937
			001 INO 100			-01 -001		0-0110 140	0.10 .001

61

F

62 THE PRACTICAL MODEL CALCULATOR.

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area,
81	254.4696	6561	531441	5153·0094	89	279.6024	7921	704969	6221.1534
•1	254.7837	6577.21	533411.731	5165-7407	•1	$279 \cdot 9165$	7938-81	707347.971	$6235 \cdot 1413$
•2	255.0979	6593.44	535387.328	5178.4877	-2	280.2307	7956-64	709732.288	6249·1450
•3	255.4120	6609.69	537367-797	5201-0225	•3	280.5448	7974.49	712121.957	6263.1644
-4	2001202	6612.25	541343-275	5916-9921	-4	280.8590	2010.95	714516-984	6277-1995
-6	256-3545	6658.56	543338.496	5229-6330	•6	281.4873	8028-16	710323-136	6305-3168
.7	256.6687	6674.89	545338.513	5242.4586	.7	281.8825	8046-09	721734-273	6319-3990
-8	256.9828	6691.24	547343.432	5255·2998	•8	282.1156	8064.04	724150.792	6333-4970
•9	$257 \cdot 2970$	6707.61	549353-259	$5268 \cdot 1568$.9	282.4298	8082.01	$726572 \cdot 699$	6347.6813
82	257.6112	6724	001308	5281.0296	90	282.7440	8100	729000	6361.7400
1.2	251.9205	6756-81	555412.218	5306-9221	.2	200.0001	8136-04	731432701	6319.8890
.3	258.5536	6773-29	557441.767	5319.7439	•3	283.6864	8154 09	736314-327	6404-2222
•4	258.8646	6789.76	559476-224	5332.6775	•4	284.0006	8172.16	738763-264	6418-4144
•5	259 1820	$6806 \cdot 25$	561515.625	5345.6287	•5	$584 \cdot 3148$	8190.25	741217.625	6432.6223
•6	259.4961	6822.76	563559-976	5358.5957	•6	284.6289	8208.36	743677.416	6446.8474
•7	259.8103	6839-29	567669-283	5371.5983	1.0	284.9431	8226.49	746142.643	6461.0852
.0	260.1244	6879.11	569722.789	5307-5008	.0	285.5714	8969-81	751080.420	6480-6100
83	260.7528	6889	571787	5410.6206	91	285.8856	8281	753571	6503.8974
-1	261.0669	6905-61	573856-191	5423 6660	•1	286.1997	8299.21	756058.031	6518.1995
•2	261.3811	6922-24	575930.368	5436.7272	•2	$286 \cdot 5139$	8317.44	758550 528	6532.5178
•3	$261 \cdot 6952$	6938.89	578009.537	5449.8042	•3	286.8290	8335-69	761048.497	$6546 \cdot 8909$
•4	262 0094	6955.56	580093.704	5462.8968	•4	287.1422	8353.96	763551.944	6561.2081
6.	202.3230	6088-06	584277-056	5480-1201	•6	287.7705	8312-20	768575-206	6520-0152
.7	262.9519	7005.69	586376-253	5502.2689	.7	288-0847	8408.89	771095.213	6604.3922
.8	263-2640	7022.44	588480.472	5515.4243	•8	288-3988	8427.24	773620.632	6618.7542
•9	263·5802	7039-21	590589.719	5528.5958	•9	288.7130	8445.61	776151.559	6633-1820
84	$263 \cdot 8944$	7056	592704	5541.7824	92	$289 \cdot 0272$	8464	778688	$6647 \cdot 6256$
1 .1	261.2085	7072-81	594823.321	5554.9849	1.1	289.3413	8482.41	781229.961	6662.0848
.2	261.9227	7089.04	590947.088	5581-4372	.3	289.0606	8000.84	786220.467	6601.01.61
1	265.1510	7123-36	601211.584	5591.6869	.4	290.2838	8537.76	788889-024	6705-5567
.5	265.4652	7140.25	603351.125	5607.9523	.5	290.5980	8556-25	791453.125	6720.0787
•6	265.7793	7157.16	605495.736	$5621 \cdot 2334$	•6	290.9121	8574.76	794022.776	6734.6165
•7	266.0935	7174.09	607645.423	$5634 \cdot 5682$	•7	291.2263	8593-29	796597.983	$6749 \cdot 1699$
.8	266.4076	7191.04	609800-192	5647.8428	.8	291.5404	8611.84	799178-752	6763-7391
85	267.0360	7208.01	614195	5674.5150	03	291.8040	8030.41	801705-089	0778-3240
.1	267.3501	7242.01	616295.051	5687.8746	.1	292.4829	8667.61	806954.491	6807.5408
•2	267.6643	7259.04	618470-208	5701.2500	•2	292.7971	8686-24	809557.568	6822.1730
•3	$267 \cdot 9784$	7276.09	620650.477	5714.6410	•3	$293 \cdot 1112$	8704.89	812166.237	6836-8206
•4	268-2926	7293.16	622835-864	5728.0478	•4	293.4254	8723.56	814780.504	6851.4840
.5	208.0008	7310.25	620020-375	5741.4703	.5	293-7396	8742.25	817400-375	6860-0570
.7	269-2351	7311.19	629422.793	5768-3624	.7	294-0007	8770-60	822656-953	6895-5685
.8	269.5492	7361.64	631628.712	5781.8320	.8	294.6820	8798.44	825293.672	6910-2947
•9	269.8634	7378-81	633839.779	5795-3173	•9	294.9962	8817.21	827936-019	6925-0367
86	270.1776	7396	636056	5808·8184	94	$295 \cdot 3104$	8836	830584	$6939 \cdot 7944$
1	270.4917	7413.21	638277.381	5822-3351	•1	295.6245	8854.81	833237.621	6954.5677
.2	270.8039	7430.44	619795-617	5810.4157	.2	295'9387	8873.04	835890.888	0909-3508
.4	271.4342	7464.96	644972.544	5862.9795	.4	296.5670	8911-36	841232.384	6998-9821
.5	271.7484	7482.25	647214-625	5876-5591	.5	296.8812	8930-25	843908.625	7013-8183
•6	272.0665	7499.56	649461.896	5890.1541	•6	297.1953	8949-16	846590.536	7028.6702
1 .7	272.3767	7516-89	651714.363	5903.7654	.7	297.5095	8968-09	849278-123	7043-5025
.8	272.6908	7551-21	656224.000	5031-0244	.8	297.8236	8987-04	854670.940	7058-1180
87	273-2109	7569	658503	5944-6996	95	298.1578	90:25	857375	7088-9350
°'.1	273-6333	7586-41	660776-311	5958-3644	.1	298.7661	9044.01	860085-351	7103-1654
·2	273.9875	7603.84	663054.848	5972.0559	.2	299.0723	9063.04	862801.408	7118-1116
•3	$274 \cdot 2616$	7621.29	665338-617	5985·7691	•3	299-3944	9082.09	865523.177	7133.0734
•4	274.5758	7638.76	667627.624	5999·4821	•4	239.7086	9101.16	868250-664	7148.0510
.5	274.8900	7656.25	669921.875	6013-2187	.5	300.0228	9120.25	870983.875	7163-0443
.7	275-5182	7601.90	674526-133	6040-7301	.7	300-3309	9158.40	876467.402	7193-0750
.8	275-8324	7708-84	676836.152	6054-5149	.8	300.9652	9177.64	879217.912	7208 1184
•9	276.1466	7726 41	679151-439	6068-3224	· •9	301.2794	9196-81	881974 079	7223.1745
88	276.4608	7744	681472	6082.1376	96	301.5936	9216	884736	7238-2464
.1	276.7749	7761.61	683797.841	6095.9684	1	301.9077	9235-21	887503.681	7253-3339
.2	277.4022	7779-24	686128.908	6109.8150	2	302-2219	9254.44	890277-128	7268 4371
•4	277.7174	7814-56	690807-104	6137.5554	-0	302-3500	9292-96	895841-341	7298-6907
•5	278.0316	7832-25	693154.122	6151-4491	.5	303-1644	9312-25	898632.125	7313-8411
•6	278-3457	7849-96	695506-456	6165.3585	.6	303-4785	9331.56	901428-696	7329.0072
.7	278.6599	7867-69	697864.103	6179-2837	.7	303.7927	9350-89	904231.063	7344-1890
.8	278.9750	7885.44	700227.072	6193-2245	.8	304.1068	9370-24	907039-232	7359-3864
1 9	19'2082	1903.21	102090-069	0207.1811	.9	304.4210	9999.01	000000.209	1914.9990

TABLE OF THE LENGTH OF CIRCULAR ARCS.

Diam.	Circum.	Square.	Cube.	Area.	Diam.	Circum.	Square.	Cube.	Area.
97 •1 •2	304.7352 305.0493 305.3635	94099428.419447.84	912673 915498.611 918330.048	$\begin{array}{c} 7389 \cdot 8286 \\ 7405 \cdot 0732 \\ 7420 \cdot 3335 \end{array}$	·6 ·7 ·8	309.7617 310.0759 310.3960	9721.96 9741.69 9761.44	958585·256 961504·803 964430·272	$\begin{array}{r} 7635 \cdot 6273 \\ 7651 \cdot 1933 \\ 7666 \cdot 6349 \end{array}$
·3 •4	305.6776 305.9918	9467·29 9486·76	$921167 \cdot 317$ $924010 \cdot 424$	7435.6095 7450.9013	.9	310.7042 311.0184	9781·21 9801	967361·669 970299	$7682 \cdot 1623$ 7697 \cdot 7054
•5	306-3060	9506-25	926859-375	7466.2087	1	311.3325	9820·81	973242.271	$7713 \cdot 2641$ 7728 $\cdot 8386$
•7	306.9363	9545-29	932574.833	7496.8707	•3	311.9608	9860.49	979146.657	7741-4288
•9	307·2484 307·5626	9584·41	935441-352 938313-739	7527.5956	•5	812·5892	9900·25	982107-784 985074-875	7775-6563
98 $\cdot 1$	307·8768 308·1909	9604 9623-61	941192 944076-141	7542.9816 7558.3832	•6	$312 \cdot 9033$ $313 \cdot 2175$	9920·16 9940·09	988047·936 991026·973	7791·2936 7806·9466
·2 ·3	308·5051 308·8192	9643·24 9662·89	946966·168 949862·087	7573-8006 7589-2338	·8 •9	313.5116 313.8458	9960.04 9980.01	994011·992 997002·999	$7822 \cdot 6154$ $7838 \cdot 2998$
•4 •5	$309 \cdot 1334$ $309 \cdot 4476$	9682·56 9702·25	952763·904 955671·625	7604.6826 7620.1471	100	314.1600	10000	1000000	7854.0000
			1	1		1	1	l	

A TABLE of the Length of Circular Arcs, radius being unity.

Degree.	Length.	Degree.	Length.	Min.	Length.	Sec.	Length.
1	0.0174553	60	1.0471976	1	0.0002909	1	0.000048
2	0.0349066	70	1.2217305	2	0.0005818	2	0.000097
3	0.0523599	80	1.3962634	3	0.0008727	3	0.0000145
4	0.0698132	90	1.5707963	4	0.0011636	4	0.0000194
5	0.0872665	100	1.7453293	5	0.0014544	5	0.0000242
6	0.1047198	120	2.0943951	6	0.0017453	6	0.0000291
7	0.1221730	150	2.6179939	7	0.0020362	7	0.0000339
8	0.1396263	180	3.1415927	8	0.0023271	8	0.0000388
9	0.1570796	210	3.6651914	9	0.0026180	9	0.0000436
10	0.1745329	240	4.1887902	10	0.0029089	10	0.0000485
20	0.3490659	270	4.7123890	20	0.0058178	20	0.0000970
30	0.5235988	300	5.2359878	30	0.0087266	30	0.0001454
40	0.6981317	330	5.7595865	40	0.0116355	40	0.0001939
50	0.8726646	360	6.2831853	50	0.0145444	50	0.0002424

Required the length of a circular arc of 37° 42' 58"?

 $\begin{array}{l} 30^{\circ} = 0.5235988 \\ 7^{\circ} = 0.1221730 \\ 40' = 0.0116355 \\ 2' = 0.0020368 \\ 50'' = 0.0002424 \\ 8'' = 0.0000388 \end{array}$

The length $\overline{0.6582703}$ required in terms of the radius.

 1207° Fahrenheit = 1° of Wedgewood's pyrometer. Iron melts at about 166° Wedgewood; 200362° Fahrenheit.

Sound passes in air at a velocity of 1142 feet a second, and in water at a velocity of 4700 feet.

Freezing water gives out 140° of heat, and may be cooled as low as 20°. All solids absorb heat when becoming a fluid, and the quantity of heat that renders a substance fluid is termed its caloric of fluidity, or latent heat. Fluids in vacuo boil with 124° less heat, than when under the pressure of the atmosphere.

THE PRACTICAL MODEL CALCULATOR.

Height.	Area of Segment.	A rea of Zone.	Height.	Area of Segment.	Area of Zone.	Height.	A rea of Segment,	Area of Zone.
·001	·000042	·001000	.051	·015119	.050912	·101	·041476	$\cdot 100309$
.002	.000119	.002000	.052	.015561	.051906	·102	.042080	.101288
.003	.000219	.003000	.053	.016007	.052901	·103	.052687	.102267
.004	.000337	.004000	.054	.016457	.053895	·104	.043296	.103246
·005	.000470	.005000	.055	.016911	.054890	.105	.043908	.104223
					001000		010000	
·006	·000618	•006000	·056	·017369	$\cdot 055883$	·106	$\cdot 044522$	$\cdot 105201$
·007	·000779	007000	·057	$\cdot 017831$	056877	·107	·045139	·106178
· 0 08	.000951	.008000	·058	·018296	057870	·108	$\cdot 045759$	$\cdot 107155$
·009	$\cdot 001135$	·009000	·059	·018766	·058863	·109	0.46381	$\cdot 108131$
.010	$\cdot 001329$	·010000	•060	·019239	·059856	·110	·047005	·109107
011	001500	011000	0.01	010710	000040	111	0.15000	110000
•011	•001533	•011000	•061	.019716	060849	111	•047632	•110082
•012	•001746	•011999	•062	•020196	•061841	112	•048262	•111057
•013	•001968	•012999	•063	020680	062833	•113	048894	•112031
•014	•002199	•013998	.064	021108	003823	.115	•049528	•113004
.019	.002438	.014998	.005	.021659	.004911	.115	.020102	.113978
·016	.002685	.015997	•066	.022154	.065807	.116	.050804	.114951
.017	002940	.016997	.067	.022652	.066799	.117	.051446	.115094
-018	003202	.017996	.068	.023154	.067790	.118	•052090	.116896
.019	+003471	.018996	•069	.023659	068782	.119	•052736	.117867
.020	.003748	.019995	.070	.024168	069771	.120	.053385	.118838
020	000110	010000	0.0	021100	000000		000000	110000
·021	.004031	$\cdot 020994$.071	.024680	$\cdot 070761$	·121	·054036	$\cdot 119809$
·022	$\cdot 004322$	$\cdot 021993$.072	$\cdot 025195$.071751	·122	.054689	$\cdot 120779$
·023	·004618	$\cdot 022992$	•073	·025714	·072740	·123	.055345	$\cdot 121748$
·024	$\cdot 004921$	023991	.074	·026236	.073729	·124	·056003	$\cdot 122717$
·025	·005230	$\cdot 024990$	075	·026761	·074718	·125	·056663	$\cdot 123686$
			0.00			100		
•026	·005546	•025989	•076	027289	.075707	•126	•057326	•124654
•027	005867	026987	.077	027821	•076695	127	•057991	•125621
•028	·006194	0.027986	.078	•028356	•077683	128	•058658	•126588
•029	.006527	•028984	.079	028894	.078670	129	•059327	•127555
.030	.006865	029982	.080	.029435	.019698	.130	.028888	•128521
.031	.007209	.030980	.081	.029979	.080645	•131	.060672	.129486
.032	007558	031978	.082	.030526	.081631	.132	0.061348	.130451
·033	007913	032976	.083	.031076	.082618	·133	.062026	.131415
.034	008273	.033974	.084	.031629	.083604	.134	.062707	.132379
·035	·008638	.034972	.085	.032186	·084589	·135	·063389	$\cdot 133342$
	000000	00101-						
·036	·009008	·035969	·086	$\cdot 032745$	·085574	·136	$\cdot 064074$	$\cdot 134304$
·037	$\cdot 009383$	·036967	·087	$\cdot 033307$	·086559	·137	$\cdot 064760$	$\cdot 135266$
·038	$\cdot 009763$	$\cdot 037965$	·088	$\cdot 033872$	$\cdot 087544$	$\cdot 138$	$\cdot 065449$	$\cdot 136228$
•039	·010148	$\cdot 038962$	·089	$\cdot 034441$	$\cdot 088528$	·139	$\cdot 066140$	$\cdot 137189$
·040	$\cdot 010537$	$\cdot 039958$	·090	$\cdot 035011$	089512	•140	·066833	$\cdot 138149$
0.11	010001	040054	.001	095595	.000406	.141	.067598	.120100
·0±1	•010931	•040954	.091	·030000	090490	.141	.069995	1140069
.042	011330	-0419017	.092	-030102	.009461	.142	068924	141096
.014	.019149	-042947	-095	-000741 -	.092401	.144	•069625	111020
.045	.012554	014040	.005	.037000	.094496	.145	.070328	149949
040	012004	014940	.090	001909	031120	140	010020	172072
·046	·012971	·045935	·096	·038496	·095407	.146	·071033	$\cdot 143898$
.047	·013392	·046931	.097	.039087	·096388	.147	·071741	·144854
.048	·013818	·047927	.098	.039680	·097369	.148	$\cdot 072450$	·145810
·049	.014247	·048922	·099	.040276	.098350	·149	$\cdot 073161$	$\cdot 146765$
·050	$\cdot 014681$	$\cdot 049917$	·100	.040875	·099330	·150	·073874	$\cdot 147719$

AREAS of the Segments and Zones of a Circle of which the DIAMETER is Unity, and supposed to be divided into 1000 equal parts.

AREAS OF THE SEGMENTS AND ZONES OF A CIRCLE.

65

Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.
.151	.074590	149674	.206	.116650	.200015	.961	.163140	.248608
170	074000	140074	200	117400	-200010	.000	164010	.940461
102	075500	149020	.201	110071	200924	-202	104019	249401
.153	.076026	150578	•208	118271	-201855	•203	•164899	•250212
·154	.076747	·151530	·209	.119083	•202744	•264	•165780	•251162
•155	077469	$ \cdot 152481 $	·210	$\cdot 119897$	·203652	·265	·166663	+252011
.156	.078194	.153431	.211	$\cdot 120712$	·204559	·266	·167546	$\cdot 252851$
.157	.078921	.154381	.212	.121529	.205465	.267	.168430	.253704
.159	070640	155330	.913	.122347	+206370	.268	.169315	.254549
150	.000900	156979	.914	199167	.207274	.960	170909	.955202
109	.000300	157000	-214	120107	-909179	-203	1710202	0500002
.100	.081112	.157220	-210	120000	-200170	-270	-171080	-200200
.161	·081846	$\cdot 158173$	·216	$\cdot 124810$	·209080	·271	$\cdot 171978$	$\cdot 257075$
.162	.082582	.159119	$\cdot 217$	4125634	$\cdot 209981$	$\cdot 272$	$\cdot 172867$	$\cdot 257915$
.163	.083320	.160065	.218	$\cdot 126459$	$\cdot 210882$.273	173758	258754
164	.084059	161010	.919	.127285	.911782	.974	174649	.259591
101	.094901	161054	.220	128113	.212680	.975	.175549	.960497
.105	1004001	.101354	-220	120110	212000	-210	110042	-200421
.166	085544	·162898	·221	$\cdot 128942$	$\cdot 213577$	·276	$\cdot 176435$	·261261
.167	.086289	.163841	·222	$\cdot 129773$	$\cdot 214474$	·277	$\cdot 177330$	$\cdot 262094$
.168	.087036	.165784	·223	·130605	$\cdot 215369$.278	$\cdot 178225$	$\cdot 262926$
.169	087785	165725	.224	.131438	$\cdot 216264$.279	$\cdot 179122$	·263757
170	.088535	166666	.995	.139979	.917157	.280	.180019	-264586
110	000000	.100000	-220	102212	211101	200	100015	204000
.171	.089287	·167606	·226	$\cdot 133108$	$\cdot 218050$	·281	·180918	$\cdot 265414$
·172	.090041	$\cdot 168549$	·227	$\cdot 133945$	$\cdot 218941$	$\cdot 282$	$\cdot 181817$	$\cdot 266240$
.173	·090797	·160484	$\cdot 228$	$\cdot 134784$	$\cdot 219832$	·283	$\cdot 182718$	$\cdot 267065$
.174	.091554	$\cdot 170422$	·229	$\cdot 135624$	$\cdot 220721$.284	·183619	$\cdot 267889$
.175	.092313	.171359	·230	$\cdot 136465$	$\cdot 221610$	·285	$\cdot 184521$	·268711
•176	$\cdot 093074$	$\cdot 172295$	$\cdot 231$	$\cdot 137307$	·222497	·286	$\cdot 185425$	$\cdot 269532$
·177	093836	$ \cdot 173231 $	·232	$\cdot 138150$	•223354	•287	$\cdot 186329$	·270352
·178	$\cdot 094601$	·174166	·233	$\cdot 138995$	$\cdot 224269$	·288	$\cdot 187234$	$\cdot 271170$
.179	$\cdot 095366$	·175100	·234	$\cdot 139841$	$\cdot 225153$	·289	$\cdot 188140$	$\cdot 271987$
·180	·096134	·176033	·235	·140688	·226036	·290	·189047	$\cdot 272802$
.101	.006002	176066	.926	.141597	.996010	.901	.190055	.072616
101	090903	177907	.027	141007	-220919	.000	100964	-273010
102	097074	170000	.201	142007	-227800	.292	101555	•274428
.183	098447	178828	•238	143238	•228680	-293	.191775	•275239
.184	099221	•179759	•239	•144091	·229559	·294	$\cdot 192684$	$\cdot 276049$
·185	•099997	$\cdot 180688$	·240	·144944	·230439	·295	$\cdot 193596$	$\cdot 276857$
.186	.100774	.181617	.241	$\cdot 145799$	$\cdot 231313$	·296	$\cdot 194509$	$\cdot 277664$
.187	.101553	.182545	.242	.146655	·232189	.297	.195422	·278469
188	.102334	.183472	.243	.147519	.233063	.208	196337	.279278
.180	103116	184208	.944	.148971	.233027	.200	107959	.280075
.100	103900	185323	.945	.140920	.234800	.200	.108169	·280876
1.30	100000	100020	240	110200	201009	000	190100	200010
·191	$\cdot 104685$	$\cdot 186248$	•246	$\cdot 150091$	$\cdot 235680$	·301	$\cdot 199085$	·281675
·192	$\cdot 105472$	$\cdot 187172$	·257	$\cdot 150953$	·236550	·302	·200003	·282473
·193	·106261	·188094	•248	$\cdot 151816$	·237419	·303	·200922	·283269
·194	·107051	·189016	•249	$\cdot 152680$	·238287	·304	·201841	·284063
·195	$\cdot 107842$	$\cdot 189938$	·250	$\cdot 153546$	$\cdot 239153$	•305	$\cdot 202761$	$\cdot 284857$
.196	108636	.190858	.251	.154419	.240019	.306	.203683	.285648
107	100000	101777	.251	155990	.940889	.207	200000	200040
100	1109400	109000	.050	156140	.941746	.900	201000	200400
198	1110220	102014	-200	157010	040000	.900	200021	201221
.199	111024	193614	•204	157009	242008	.309	-206451	-288014
.200	111823	194531	.200	.191990	·243409	.910	-20/3/6	-288799
.201	$\cdot 112624$	·195447	·256	$\cdot 158762$	$\cdot 244328$	·311	·208301	·289583
·202	$\cdot 113426$	·196362	·257	$\cdot 159636$	·245187	·312	·209227	·290365
·203	.114230	·197277	.258	.160510	$\cdot 246044$	·313	·210154	$\cdot 291146$
.204	.115035	198190	.259	$\cdot 161386$	·246900	.314	.211082	$\cdot 291925$
.205	.115842	.199103	-260	.162263	$\cdot 247755$.315	.212011	.292702
1 -00		100100	-00	1000		010	anaoni i	202102

F 2

5

THE PRACTICAL MODEL CALCULATOR.

Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.
·316	·212940	+293478	.371	.265144	·333372	.426	.318970	·366463
.317	.213871	.294252	.372	.266111	.334041	.427	.319959	.366985
.318	.214802	-295025	.373	.267078	.334708	.428	.320918	-367504
.319	.215733	-295796	.374	-268045	.335373	.429	.321938	-368019
,320	-216666	.296565	-375	.269013	-336036	.430	3220028	-368531
010	-210000	200000	010	203015	000000	400	-042920	.000001
·321	$\cdot 217599$	·297333	·376	$\cdot 269982$	·336696	·431	$\cdot 323918$	·369040
.322	$\cdot 218533$	$\cdot 298098$	•377	$\cdot 270951$	·337354	$\cdot 432$	·324909	·369545
·323	$\cdot 219468$	$\cdot 298863$.378	$\cdot 271920$	·338010 ·	·433	·325900	·370047
·324	$\cdot 220404$	·299625	·379	$\cdot 272890$	·338663	·434	$\cdot 326892$	$\cdot 370545$
·325	$\cdot 221340$	•300386	.380	$\cdot 273861$	•339314	•435	·327882	•371040
-326	$\cdot 222277$.301145	·381	$\cdot 274832$	·339963	•436	·328874	·371531
-327	$\cdot 223215$.301902	.382	$\cdot 275803$	·340609	.437	.329866	$\cdot 372019$
·328	·224154	.302658	.383	.276775	$\cdot 341253$	•438	.330858	$\cdot 372503$
-329	-225093	·303412	·384	$\cdot 277748$	·341895	•439	·331850	$\cdot 372983$
.330	·226033	.304164	.385	.278721	·342534	.440	.332843	.373460
							002010	0,0100
<i>∗</i> 331	-226974	·304914	·386	$\cdot 279694$	·343171	•441	·333836	·373933
$\cdot 332$	$\cdot 227915$	·305663	·387	$\cdot 280668$	·343805	•442	·334829	·374403
·333	$\cdot 228858$	·306410	-388	$\cdot 281642$	·344437	•443	$\cdot 335822$	$\cdot 374868$
·334	$\cdot 229801$	·307155	•389	$\cdot 282617$	·345067	•444	$\cdot 336816$	$\cdot 375330$
·335	$\cdot 230745$	$\cdot 307898$	·390-	·283592	·345694	•445	$\cdot 337810$	·375788
·336	·231689	-308640	.391	·284568	·346318	·446	·338804	$\cdot 376242$
·337	$\cdot 232634$	·309379	·392	$\cdot 285544$	·346940	·447	·339798	$\cdot 376692$
·338	·233580	.310117	·393	$\cdot 286521$.347560	.448	·340793	$\cdot 377138$
.339	$\cdot 234526$	·310853	·394	$\cdot 287498$	·348177	.449	.341787	$\cdot 377580$
·340	$\cdot 235473$	$\cdot 311588$	•395	$\cdot 288476$	·348791	·450	$\cdot 342782$	$\cdot 378018$
.341	-236421	·312319	.396	·289453	·349403	.451	·343777	$\cdot 378452$
.342	·237369	-313050	.397	.290432	.350012	.452	.344772	.378881
.343	-238318	•313778	.398	.291411	·350619	.453	.345768	.379307
.344	·239268	.314505	·399	.292390	·351228	.454	.346764	.379728
·345	$\cdot 240218$	·315230	•400	·293369	$\cdot 351824$.455	·347759	$\cdot 380145$
.346	·241169	·315952	-401	·294349	$\cdot 352423$	•456	·348755	·380557
.347	$\cdot 242121$	·316673	·402	$\cdot 295330$	·353019	.457	$\cdot 349752$	$\cdot 380965$
.348	$\cdot 243074$	·317393	·403	$\cdot 296311$	$\cdot 353612$.458	·350748	·381369
.349	$\cdot 244026$.318110	.404	$\cdot 297292$	·354202	.459	351745	$\cdot 381768$
·350	$\cdot 244980$	$\cdot 318825$	·405	$\cdot 298273$	·354790	•460	$\cdot 352742$	$\cdot 382162$
.251	·245934	·319538	.406	·299255	·355376	•461	.353739	·382551
-352	-246889	·320249	.407	·300238	·355958	•462	-354736	·382936
.353	.247845	-320958	.408	.301220	·356537	•463	-355732	-383316
.354	-248801	.321666	.409	.302203	.357114	.464	·356730	·383691
·355	-249757	·322371	.410	·303187	·357688	•465	•357727	$\cdot 384061$
	0.0001.0	000077	411	00/171	250050	100	050505	004402
•356	250715	•323075	•411	-304171	950007	*466	·558725	·504426
•357	251673	•323775	•412	·300155	000021	•467	·309723	·301/80
·358	·252631	•324474	•413	·306140	·359392	•468	•360721	•385144
•359	·253590	•325171	•414	•307125	·009904	•409	•361719	•383490
·360	·254550	•325866	•415	-308110	.900913	•470	•302717	+66666.
·361	·255510	·326559	•416	·309095	·361070	•471	·363715	·386172
·362	$\cdot 256471$	•327250	•417	•310081	·301623	•472	•364713	*386505
•363	$\cdot 257433$	·327939	•418	·311068	•362173	•473	•365712	386832
·364	·258395	·328625	•419	•312054	·362720	•474	•366710	•387153
•365	·259357	·329310	•420	•313041	•363264	•475	•367709	.387469
·366	$\cdot 260320$	·329992	•421	·314029	·363805	•476	·368708	·387778
•367	$\cdot 261284$	·330673	.422	·315016	·364343	•477	$\cdot 369707$	·388081
·368	$\cdot 262248$	·331351	·423	$\cdot 316004$	·364878	•478	·370706	·388377
·369	$\cdot 263213$	·332027	•424	$\cdot 316992$	·365410	•479	·371704	$\cdot 388669$
·370	$\cdot 254178$	·332700	•425	·317981	·365939	·480	·372704	$\cdot 388951$

RULES FOR FINDING THE AREA OF A CIRCULAR ZONE, ETC. 67

Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.	Height.	Area of Seg.	Area of Zone.
·481	·373703	·389228	·491	·383699	·391564	•496	·388699	·392362
•483	·375702	·389759	·492 ·493	·385699	·391920	•497	·390699	·392580
·484 ·435	$\cdot 376702 \\ \cdot 377701$	·390014 ·390261	·494 ·495	·386699 ·387699	·392081 ·392229	·499 ·500	$\cdot 391699 \\ \cdot 392699$	·392657 ·392699
·486	·378701	·390500						
·487	$\cdot 379700$	·390730	To	find the	area of a	seam	ent of a	circle.

To find the area of a segment of a circle.

RULE .- Divide the height, or versed sine, by the diameter of the circle, and find the quotient in the column of heights.

Then take out the corresponding area, in the column of areas, and multiply it by the square of the diameter; this will give the area of the segment.

·488

·489

·490

.380700

 $\cdot 381699$

 $\cdot 382699$

·390953

·391166

·391370

Required the area of a segment of a circle, whose height is $3\frac{1}{4}$ feet, and the diameter of the circle 50 feet.

 $3\frac{1}{4} = 3.25$; and $3.25 \div 50 = .065$.

 $\cdot 065$, by the Table, = $\cdot 021659$; and $\cdot 021659 \times 50^2 = 54 \cdot 147500$, the area required.

To find the area of a circular zone.

RULE 1.—When the zone is less than a semi-circle, divide the height by the longest chord, and seek the quotient in the column of heights. Take out the corresponding area, in the next column on the right hand, and multiply it by the square of the longest chord.

Required the area of a zone whose longest chord is 50, and height 15.

 $15 \div 50 = \cdot 300$; and $\cdot 300$, by the Table, $= \cdot 280876$.

Hence $\cdot 280876 \times 50^2 = 702 \cdot 19$, the area of the zone.

RULE 2.—When the zone is greater than a semi-circle, take the height on each side of the diameter of the circle.

Required the area of a zone, the diameter of the circle being 50, and the height of the zone on each side of the line which passes through the diameter of the circle 20 and 15 respectively.

 $20 \div 50 = .400$; .400, by the Table, = .351824; and $.351824 \times$ $50^2 = 879.56.$

 $15 \div 50 = \cdot 300$; $\cdot 300$, by the Table, $= \cdot 280876$; and $\cdot 280876 \times$ Hence $879 \cdot 56 + 702 \cdot 19 = 1581 \cdot 75$. $50^2 = 702.19.$

Approximating rule to find the area of a segment of a circle.

RULE.—Multiply the chord of the segment by the versed sine, divide the product by 3, and multiply the remainder by 2.

Cube the height, or versed sine, find how often twice the length of the chord is contained in it, and add the quotient to the former product; this will give the area of the segment very nearly.

Required the area of the segment of a circle, the chord being 12, and the versed sine 2.

$$12 \times 2 = 24; \frac{24}{3} = 8; \text{ and } 8 \times 2 = 16.$$

 $2^3 \div 24 = \cdot 3333.$

Hence $16 + \cdot 3333 = 16 \cdot 3333$, the area of the segment very nearly.

68 PROPORTIONS OF THE LENGTHS OF CIRCULAR ARCS.

Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.	Height Oi Arc.	Length of Arc.	Height of Arc.	Length of Arc.
·100	1.02645	·181	1.08519	•261	1.17275	·341	1.28583	•421	1.42041
.101	1.02698	·182	1.08611	·262	1.17401	·342	1.28739	•422	1.42222
·102	1.02752	·183	1.08704	·263	1.17527	•343	1.28895	•423	1.42402
·103	1.02800	184	1.08890	264	1.17584	*344	1.29052	•424	1.42583
.105	1.02914	•186	1.08984	•266	1.17912	•346	1.29366	•426	1.42945
·106	1.02970	·187	1.09079	267	1.18040	•347	1.29523	•427	1.43127
•107	1.03026	188	1.009174	•268	1.18162	*348	1.29681	•428	1.43309
.108	1.03139	•190	1.09365	.209	1.18294	•350	1.29839	•430	1.43491
.110	1.03196	·191	1.09461	.271	1.18557	•351	1.30156	•431	1.43856
·111	1.03254	·192	1.09557	.272	1.18688	*352	1.30315	•432	1.44039
112	1.03312	•193	1.09004	-2/3	1.18819	•353	1.30474	*433	1.44222
•114	1.03430	195	1.09850	275	1.19082	*355	1.30794	•435	1.44589
•115	1.03490	•196	1.09949	·276	1.19214	*356	1.30954	•436	1.44773
•116	1.03551	•197	1.10048	•277	1.19345	•357	1.31115	•437	1.44957
118	1.03672	.199	1.10247	-279	1.19610	•359	1.31437	•439	1.45327
•119	1.03734	•200	1.10348	·280	1.19743	•360	1.31599	•440	1.45512
120	1.03797	•201	1.10447	*281	1.19887	*361	1.31761	•441	1.45697
122	1.03923	202	1.10650	-282	1.20146	363	1.32086	•443	1.45555
•123	1.03987	. 204	1.10752	•284	1.20282	.364	1.32249	•444	1.46255
124	1.04051	*205	1.10855	*285	1.20419	*365	1.32413	•445	1.46441
125	1.04110	•200	1.10958	-286	1.20558	*367	1.32577	•440	1.46628
.127	1.04247	·208	1.11165	•288	1.20828	•368	1.32905	•448	1.47002
·128	1.04313	•209	1.11269	·289	1.20967	•369	1.33069	•449	1.47189
•129	1.04380	•210	1.11374	·290	1.21202	•370	1.33234	•450	1.47377
130	1.04515	•212	1.11584	-292	1.21381	.372	1.33564	•452	1.47753
.132	1.04584	·213	1.11692	•293	1.21520	•373	1.33730	•453	1.47942
133	1.04652	•214	1.11796	•294	1.21658	•374	1.33896	•454	1.48131
134	1.04792	•215	1.12011	•295	1.21926	-376	1.34229	•456	1.48520
•136	1.04862	217	1.12118	.297	1.22061	•377	1.34396	•457	1.48699
137	1.04932	•218	1.12225	•298	1.22203	.378	1.34563	•458	1.48889
138	1.05075	•219	1.12334	•299	1.22347	-379	1.34731	•460	1.49079
.140	1.05147	·221	1.12556	•301	1.22635	•381	1.35068	•461	1.49460
•141	1.05220	•222	1.12663	*302	1.22776	*382	1.35237	•462	1.49651
142	1.05367	•223	1.12774	*303	1.22918	-383	1.35400	•464	1.49842
.144	1.05441	•225	1.12997	•305	1.23205	.385	1.35744	•465	1.50224
•145	1.05516	•226	1.13108	•306	1.23349	*386	1.35914	•466	1.50416
•146	1.05667	•227	1.13219	*307	1.23494	-387	1.36084	•467	1.50608
•148	1.05743	•229	1.13444	•309	1.23780	*389	1.36425	•469	1.50992
.149	1.05819	•230	1.13557	•310	1.23925	•390	1.36596	.470	1.51185
150	1.05973	•231	1.13671	•311	1.24070	*391	1.36767	·471 ·479	1.51378
152	1.06051	•233	1.13903	.313	1.24360	*393	1.37111	473	1.51764
·153	1.06130	•234	1.14020	•314	1.24506	*394	1.37283	•474	1.51958
•155	1.06209	•235	1.14136	*315	1.24654	*395	1.37455	475	1.52346
156	1.06368	•237	1.14363	.317	1.24946	•397	1.37801	.477	1.52541
•157	1.06449	*238	1.14480	*318	1.25095	*398	1.37974	.478	1.52736
•159	1.06611	-239	1.14597	-319	1.25243	•400	1.38322	419	1.53126
160	1.06693	•241	1.14831	•321	1.25539	•401	1.38496	•481	1.53322
.161	1.06775	•242	1.14949	•322	1.25686	•402	1.38671	•482	1.53518
162	1.06941	•243	1.15067	•323	1.25836	•403	1*38846	•483	1.53910
•164	1.07025	-245	1.15308	.325	1.26137	•405	1.39196	•485	1.54106
·165	1.07109	•246	1.15429	•326	1.26286	•406	1.39372	•486	1.54302
166	1.07194	247	1.15549	327	1.26437	-407	1.39548	·487	1.54696
•168	1.07365	249	1.15791	*329	1.26740	.409	1.39900	•489	1.54893
169	1.07451	•250	1.15912	•330	1.26892	•410	1.40077	•490	1.55090
170	1.07537	•251	1.16033	331	1.27044	•411	1.40254	+491	1.55486
172	1.07711	•253	1.16279	+333	1.27349	•413	1.40610	•493	1.55685
173	1.07799	•254	1.16402	•334	1.27502	•414	1.40788	•494	1.55854
174	1.07888	*255	1.16610	*335	1.27656	•415	1.40966	·495	1.56282
.176	1.08066	.257	1.16774	-337	1.27864	•417	1.41324	•497	1.56481
177	1.08156	•258	1.16899	•338	1.28118	•418	1.41503	•498	1.56680
178	1.08246	·259 •260	1.17024	•339	1.282/3	•419	1.41882	•500	1.50879
1.180	1.08428	200	1 1/100	040	A MOTAO	1.0	1 11001	000	101010

PROPORTIONS OF THE LENGTHS OF SEMI-ELLIPTIC ARCS. 69

PROPORTIONS OF THE LENGTHS OF SEMI-ELLIPTIC ARCS.

Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.
·100	1.04162	·157	1.10113	·214	1.66678	·271	1.23835	·328	1.31472
.101	1.04262	.158	1.10224	·215	1.16799	.272	1.23966	·329	1.31610
·102	1.04362	·159	1.10335	·216	1.16920	·273	1.24097	.330	1.31748
·103	1.04462	·160	1.10447	·217	1.17041	·274	1.24228	.331	1.31886
.104	1.04562	·161	1.10560	·218	1.17163	·275	1.24359	.332	1.32024
.105	1.04662	$\cdot 162$	1.10672	·219	1.17285	·276	1.24480	.333	1.32162
·106	1.04762	·163	1.10784	·220	1.17407	·277	1.24612	·334	1.32300
·107	1.04862	·164	1.10896	·221	1.17529	·278	1.24744	•335	1.32438
.108	1.04962	·165	1.11008	•222	1.17651	·279	1.24876	•336	1.32576
·109	1.05063	·166	1.11120	·223	1.17774	·280	1.25010	·337	1.32715
·110	1.05164	·167	1.11232	·224	1.17897	·281	1.25142	·338	1.32854
·111	1.05265	·168	1.11344	·225	1.18020	·282	1.25274	•339	1.32993
$\cdot 112$	1.05366	·169	1.11456	·226	1.18143	·283	1.25406	•340	1.33132
.113	1.05467	•170	1.11569	·227	1.18266	·284	1.25538	.341	1.33272
·114	1.05568	·171	1.11682	·228	1.18390	-285	1.25670	.342	1.33412
$\cdot 115$	1.05669	$\cdot 172$	1.11795	$\cdot 229$	1.18514	·286	1.25803	•343	1.33552
$\cdot 116$	1.05770	·173	1.11908	·230	1.18638	·287	1.25936	•344	1.33692
·117	1.05872	·174	1.12021	·231	1.18762	·288	1.26069	•345	1.33833
•118	1.05974	·175	1.12134	·232	1.18886	•289	1.26202	•346	1.33974
•119	1.06076	$\cdot 176$	1.12247	•233	1.19010	•290	1.26335	•347	1.34115
•120	1.06178	•177	1.12360	•234	1.19134	•291	1.26468	•348	1.34256
•121	1.06280	•178	1.12473	•235	1.19258	•292	1.26601	•349	1.34397
•122	1.06382	•179	1.12586	•236	1.19382	•293	1.26/34	•350	1.34539
123	1.00484	101	1.12099	•237	1.19506	294	1.20867	•851	1.34681
•124 195	1.06680	100	1.12813	•238	1.19630	295	1.07100	•352	1.34823
·120 190	1.06709	182	1.19041	•239	1.10000	-296	1.97967	•305	1.34965
120	1.06205	183	1.19155	•240	1.19880	-297	1.97401	•304	1.35108
.199	1.06009	104	1.19960	•241	1.20003	-298	1.97595	·500	1.35251
.120	1.07001	100	1.12209	•242	1.20150	.299	1.27050	-550	1.30394
.130	1.07204	.187	1.13497	-245	1.20200	-301	1.27803	.358	1.95690
131	1.07308	188	1.13611	-244	1.20506	-202	1.27027	.350	1.95000
132	1.07412	.189	1.13726	-240	1.20632	-302	1.28071	.360	1.35067
.133	1.07516	.100	1.13841	-240	1.20052 1.20758	•303	1.28205	.361	1.26111
.134	1.07621	.191	1.13956	.241	1.20884	•305	1.28339	.362	1.26955
.135	1.07726	.192	1.14071	•249	1.21010	-306	1.28474	.363	1.36399
$\cdot 136$	1.07831	·193	1.14186	.250	1.21136	.307	1.28609	.364	1.36543
$\cdot 137$	1.07937	·194	1.14301	.251	1.21263	.308	1.28744	.365	1.36688
·138	1.08043	$\cdot 195$	1.14416	$\cdot 252$	1.21390	.309	1.28879	·366	1.36833
·139	1.08149	·196	1.14531	$\cdot 253$	1.21517	.310	1.29014	.367	1.36978
·140	1.08255	·197	1.14646	$\cdot 254$	1.21644	.311	1.29149	.368	1.37123
·141	1.08362	·198	1.14762	$\cdot 255$	1.21772	.312	1.29285	•369	1.37268
·142	1.08469	$\cdot 199$	1.14888	$\cdot 256$	1.21900	·313	1.29421	.370	1.37414
$\cdot 143$	1.08576	·200	1.15014	·257	1.22028	·314	2.29557	·371	1.37662
·144	1.08684	·201	1.15131	$\cdot 258$	1.22156	·315	1.29603	$\cdot 372$	1.37708
$\cdot 145$	1.08792	·202	1.15248	$\cdot 259$	1.22284	·316	1.29829	·373	1.37854
$\cdot 146$	1.08901	·203	1.15366	·260	1.22412	•317	1.29965	·374	1.38000
.147	1.09010	$\cdot 204$	1.15484	·261	1.22541	·318	1.30102	.375	1.38146
·148	1.09119	$\cdot 205$	1.15602	$\cdot 262$	1.22670	$\cdot 319$	1.30239	·376	1.38292
.149	1.09228	·206	1.15720	$\cdot 263$	1.22799	·320	1.30376	•377	1.38439
·150	1.09330	·207	1.15838	$\cdot 264$	1.22928	•321	1.30513	·378	1.38585
·151	1.09448	·208	1.15957	·265	1.23057	•322	1.30650	•379	1.38732
152	1.00000	•209	1.16076	•266	1.23186	•323	1.30787	.380	1.38879
103	1.002603	.210	1.16196	•267	1.23315	•324	1.30924	•381	1.39024
155	1.009180	-211	1.16496	·268	1.23445	•325	1.911001	•382	1.39169
156	1.10009	-212	1.16557	·269	1.200705	·326	1 01007	.383	1.39314
100	1,10002	213	1.10991	.270	1'23705	.321	1.31335	384	1.33493

THE PRACTICAL MODEL CALCULATOR.

Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.						
·385	1.39605	-447	1.48850	.509	1.58474	.571	1.68195	•633	1.78172
·386	1.39751	·448	1.49003	·510	1.58629	.572	1.68354	·634	1.78335
·387	1.39897	•449	1.49157	·511	1.58784	·573	1.68513	•635	1.78498
·388	1.40043	•450	1.49311	.512	1.58940	•574	1.68672	•636	1.78660
•389	1.40189	•451	1.49465	•513	1.59096	•575	1.68831	•637	1.78823
.390	1.40335	•452	1.49018	•514	1.50408	.577	1.60140	.638	1.78986
.391	1.40697	.453	1.49771	·010	1.50564	.578	1.60208	-039	1.709149
.392	1.40773	.455	1.50077	-510	1.59504	.570	1.69467	•641	1.70475
.394	1.40919	.456	1.50230	-518	1.59876	.580	1.69626	•642	1.79638
-395	1.41065	.457	1.50383	.519	1.60032	.581	1.69785	.643	1.79801
.396 -	1.41211	.458	1.50536	.520	1.60188	.582	1.69945	.644	1.79964
.397	1.41357	•459	1.50689	.521	1.60344	·583	1.70105	·645	1.80127
·398	1.41504	•460	1.50842	.522	1.60500	·584	1.70264	·646	1.80290
·399	1.41651	•461	1.50996	-523	1.60656	·585	1.70424	•647	1.80454
•400	1.41798	•462	1.51150	·524	1.60812	•586	1.70584	•648	1.80617
•401	1.41945	•463	1.51304	•525	1.60968	•587	1.70745	•649	1.80780
•402	1.42092	•464	1.51458	•526	1.61124	•588	1.71005	•650	1.80943
•403	1.40206	.400	1.51766	.027	1.61496	.500	1.71060	.651	1.01071
.404	1.49533	467	1.51090	.520	1.61509	.591	1.71220	.052	1.91/95
.405	1.49681	468	1.52074	.529	1.61748	.592	1.71546	.055	1.81500
.407	1.42829	-469	1.52229	.531	1.61904	.593	1.71707	.655	1.81763
.408	1.42977	.470	1.52384	.532	1.62060	.594	1.71868	•656	1.81928
.409	1.43125	.471	1.52539	.533	1.62216	.595	1.72029	.657	1.82091
•410	1.43273	.472	1.52691	.534	1.62372	·596	1.72190	·658	1.82255
•411	1.43421	.473	1.52849	.535	1.62528	.597	1.72350	·659	1.82419
·412	1.43569	.474	1.53004	•536	1.62684	·598	1.72511	•660	1.82583
·413	1.43718	.475	1.53159	•537	1.62840	•599	1.72672	·661	1.82747
•414	1.43867	.476	1.53314	•538	1.62996	•600	1.72833	•662	1.82911
•415	1.44016	.477	1.53469	.539	1.63152	•601	1.72994	•663	1.83075
•416	1.44914	.418	1.59791	•540	1.69465	.602	1.79916	.664	1.83240
.418	1.44463	.480	1.53937	.549	1.63623	.604	1.73477	•666	1.82568
.410	1.44613	.481	1.54093	.543	1.63780	.605	1.73638	-667	1.83733
.420	1.44763	.482	1.54249	-544	1.63937	.606	1.73799	.668	1.83897
.421	1.44913	.483	1.54405	.545	1.64094	.607	1.73960	.669	1.84061
.422	1.45064	.484	1.54561	.546	1.64251	·608	1.74121	•670	1.84226
·423	1.45214	.485	1.54718	.547	1.64408	·609	1.74283	•671	1.84391
·424	1.45364	•486	1.54875	.548	1.64565	·610	1.74444	•672	1.84556
·425	1.45515	.487	1.55032	•549	1.64722	•611	1.74605	•673	1.84720
•426	1.45665	.488	1.55189	.550	1.64879	•612	1.74767	•674	1.84885
•427	1.45066	.489	1.55502	•551	1.65109	•013	1.75001	.675	1.85050
420	1.46167	.491	1.55660	.552	1.65250	+615	1.75959	.677	1.85270
.430	1.46268	.492	1.55817	.554	1.65507	•616	1.75414	.678	1.85544
.431	1.46419	.493	1.55974	.555	1.65665	.617	1.75576	.679	1.85709
.432	1.46570	.494	1.56131	.556	1.65823	·618	1.75738	.680	1.85874
•433	1.46721	.495	1.56289	.557	1.65981	·619	1.75900	·681	1.86039
·434	1.46872	.496	1.56447	.558	1.66139	·620	1.76062	.682	1.86205
•435	1.47023	.497	1.56605	·559	1.66297	·621	1.76224	.683	1.86370
•436	1.47174	•498	1.56763	.560	1.66455	•622	1.76386	·684	1.86535
•437	1.47326	•499	1.56921	•561	1.66613	•623	1.76548	•685	1.86700
.438	1.47690	.500	1.57089	•562	1.66771	•024	1.76970	.685	1.86866
.140	1.47720	.500	1.57990	.563	1.670929	.620	1.77094	180.	1.87100
.440	1.47924	.502	1.57544	•004 .565	1.67945	-627	1.77197	-680	1.87269
•442	1.48086	.504	1.57699	•566	1.67403	.628	1.77359	•690	1-87527
•443	1.48238	.505	1.57854	.567	1.67561	-629	1.77521	·691	1.87693
.444	1.48391	.506	1.58009	.568	1.67719	·630	1.77684	·692	1.87859
•445	1.48544	.507	1.58164	.569	1.67877	•631	1.77847	•693	1.88024
•446	1.48697	508	1.58319	.570	1.68036	·632	1.78009	-694	1.88190

70
PROPORTIONS OF THE LENGTHS OF SEMI-ELLIPTIC ARCS. 71

Δ.

Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.	Height of Are.	Length of Arc.	Height of Arc.	Length of Arc.	Height of Arc.	Length of Arc.
·695	1.88356	•757	1.98794	·818	2.09360	·879	$2 \cdot 20292$	·940	2.31479
•696	1.88522	·758	1.98964	·819	2.09536	·880	2.20474	·941	2.31666
·697	1.88688	•759	1.99134	•820	2.09712	•881	2.20656	•942	2.31852
·698	1.88854	•760	1.99305	•821	2.09888	.882	2.20839	•943	$2 \cdot 32038$
.699	1.89020	•761	1.99476	.822	2.10065	.883	2.21022	.944	2.32224
.700	1.00250	.762	1.00010	.823	2.10410	.004	2.21200	.945	2.32411
.701	1.90510	-764	1.00080	-825	2.10596	-886	2.91571	.940	2.30785
.702	1.89685	-765	2.00160	.826	2.10773	•887	2.21071 2.21754	.948	2.32100
.704	1.89851	.766	2.00100 2.00331	.827	2.10950	-888	$2 \cdot 21937$.949	2.33160
.705	1.90017	.767	2.00502	.828	2.11127	.889	2.22120	.950	2.33348
.706	1.90184	.768	2.00673	·829	2.11304	·890	2.22303	.951	2.33537
.707	1.90350	.769	2.00844	·830	2.11481	·891	2.22486	.952	2.33726
.708	1.90517	·770	2.01016	·831	2.11659	·892	$2 \cdot 22670$	·953	2.33915
.709	1.90684	•771	2.01187	·832	2.11837	·893	2.22854	•954	2.34104
·710	1.90852	·772	2.01359	·833	2.12015	·894	2.23038	•955	2.34293
·711	1.91019	·773	2.01531	·834	2.12193	·895	2.23222	•956	2.34483
·712	1.91187	·774	2.01702	•835	2.12371	•896	2.23406	·957	$ 2 \cdot 34673 $
•713	1.91355	•775	2.01874	•836	2.12549	•897	2.23590	•958	2.34862
.714	1.91523	•776	2.02045	•837	2.12727	.898	2.23774	•959	2.35051
•715	1.91691	.777	2:02217	•838	2.12905	.899	2.23958	.960	2.35241
•716	1.91859	.778	2.02389	•839	2.13083	.900	2.24142	.961	2.35431
•717	1.00105	.790	2.02561	.041	2.13201	.901	2.24525	.962	2.35621
.718	1.092190	.781	2.02133	.041	2.19409	.002	2.24601	.963	2.35810
-790	1.02521	-789	2.02907	·042	2.13010	-903	2.24091	.062	2.36000
.791	1.09700	.782	2.03050	-844	2.13076	·005	2.25057	.066	2.20191
.792	1.92868	.784	2.03425	•845	2.10070 2.14155	.906	2.25240	.967	2.36571
.723	1.93036	.785	2.03598	·846	2.14334	.907	2.25423	.968	2.36762
.724	1.93204	.786	2.03771	·847	2.14513	.908	2.25606	.969	2.36952
.725	1.93373	·787	2.03944	·848	$2 \cdot 14692$	•909	2.25789	.970	2.37143
.726	1.93541	·788	2.04117	·849	2.14871	·910	$2 \cdot 25972$	·971	$2 \cdot 37334$
·727	1.93710	·789	2.04290	·850	2.15050	·911	2.26155	.972	$2 \cdot 37525$
·728	1.93878	·790	2.04462	·851	$2 \cdot 15229$	·912	2.26338	·973	2.37716
·729	1.94046	·791	2.04635	$\cdot 852$	2.15409	·913	2.26521	·974	2.37908
·730	1.94215	$\cdot 792$	2.04809	·853	2.15589	·914	2.26704	·975	2.38100
$\cdot 731$	1.94383	•793	2.04983	•854	2.15770	·915	2.26888	·976	2.38291
.732	1.94552	•794	2.05157	•855	2.15950	•916	2.27071	•977	2.38482
•733	1.94721	-795	2.05331	•855	2.16130	•917	2.27254	•978	2.38673
•/34	1.05050	.790	2.05670	·001	2.16490	.918	2.27437	.000	2.38864
.798	1.05998	.708	2.05959	.250	2.16669	.020	2.278020	.001	2.39035
.737	1.95397	.700	2.06027	•860	2.16848	.920	2.27987	.085	2.20420
.738	1.95566	.800	2.06202	·861	2.10040 2.17028	.922	2.28170	.983	2.39631
.739	1.95735	·801	2.06377	·862	2.17209	.923	2.28354	.984	2.39822
.740	1.95994	.802	2.06552	·863	2.17389	.924	2.28537	.985	2.40016
.741	1.96074	·803	2.06727	·864	2.17570	.925	2.28720	·986	2.40208
$\cdot 742$	1.96244	·804	2.06901	·865	2.17751	·926	2.28903	.987	$2 \cdot 40400$
.743	1.96414	·805	2.07076	·866	2.17932	·927	2.29086	·988	$2 \cdot 40592$
.744	1.96583	·806	2.07251	·867	2.18113	·928	2.29270	·989	2.40784
.745	1.96753	·807	2.07427	·868	$2 \cdot 18294$	·929	$2 \cdot 29453$	•990	2.40976
$\cdot 746$	1.96923	·808	2.07602	•869	2.18475	•930	2.29636	·991	2.41169
.747	1.97093	•809	2.07777	.870	2.18656	·931	2.29820	•992	2.41362
•748	1.97262	-810	2.07953	.871	2.18837	.932	2.30004	.993	2.41556
.749	1.07600	·811	2.08128	·8/2	2.10200	·933	2.30188	.994	2.41749
·750	1.07779	.812	2.08304	·0/0	9.10390	·934	2.20513	.995	2.41943
.759	1.970.12	.914	2.08656	-875	2.19564	.930	2.20201	.990	2.422136
.753	1.98113	-815	2.08832	-876	2.19746	-937	2.30926	.997	2.42529
.754	1.98283	-816	2.09008	.877	2.19928	.938	2.31111	.990	2.49715
.755	1.98453	.817	2.09198	-878	2.20110	.939	2.31295	.1000	2.42908
.756	1.98623								

To find the length of an arc of a circle, or the curve of a right semi-ellipse.

RULE.—Divide the height by the base, and the quotient will be the height of an arc of which the base is unity. Seek, in the Table of Circular or of Semi-elliptical arcs, as the case may be, for a number corresponding to this quotient, and take the length of the arc from the next right-hand column. Multiply the number thus taken out by the base of the arc, and the product will be the length of the arc or curve required.

In a Bridge, suppose the profiles of the arches are the arcs of circles; the span of the middle arch is 240 feet and the height 24 feet; required the length of the arc.

 $24 \div 240 = \cdot 100$; and $\cdot 100$, by the Table, is $1 \cdot 02645$.

Hence $1.02645 \times 24 = 246.34800$ feet, the length required.

The profiles of the arches of a Bridge are all equal and similar semi-ellipses; the span of each is 120 feet, and the rise 18 feet; required the length of the curve.

 $28 \div 120 = 233$; and 233 by the Table, is 1.19010.

Hence $1.19010 \times 120 = 142.81200$ feet, the length required.

In this example there is, in the division of 28 by 120, a remainder of 40, or one-third part of the divisor; consequently, the answer, 142.81200, is rather less than the truth. But this difference, in even so large an arch, is little more than half an inch; therefore, except where extreme accuracy is required, it is not worth computing.

These Tables are equally useful in estimating works which may be carried into practice, and the quantity of work to be executed from drawings to a scale.

As the Tables do not afford the means of finding the lengths of the curves of elliptical arcs which are less than half of the entire figure, the following geometrical method is given to supply the defect.

Let the curve, of which the length is required to be found, be ABC.

Produce the height line Bd to meet the centre of the curve in g. Draw the right line Ag, and from the centre g, with the distance gB describe an arc Bh, meeting Ag in h. Bisect Ahin i, and from the centre g with the radius gi describe the arc ik, meeting dB produced to k; then ik is half the arc ABC. A TABLE of the Reciprocals of Numbers; or the DECIMAL FRAC-TIONS corresponding to VULGAR FRACTIONS of which the Numerator is unity or 1.

[In the following Tables, the Decimal fractions are Reciprocals of the Denominators of those opposite to them; and their product is = unity.

To find the Decimal corresponding to a fraction having a higher Numerator than 1, multiply the Decimal opposite to the given Denominator, by the given Numerator. Thus, the Decimal corresponding to $\frac{1}{64}$ being $\cdot 015625$, the Decimal to $\frac{15}{64}$ will be $\cdot 015625 \times 15 = \cdot 234375$.]

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/2	•5	1/47	·0212766	1/92	·010869565
1/3	•333333333	1/48	·020833333	1/93	$\cdot 010752688$
1/4	·25	1/49	$\cdot 020408163$	1/94	$\cdot 010638298$
1/5	·2	1/50	•02	1/95	·010526316
1/6	·166666667	1/51	•019607843	1/96	•010416667
1/7	•142857143	1/52	•019230769	1/97	•010309278
1/8	·120	1/00	018867925	1/98	010204082
1/9	.1	1/04	.018181818	1/99	•01010101
1/10	.00000001	1/56	017857143	1/100	-00360066
1/12	0833333333	1/57	01754386	1/102	009803922
1/13	.076923077	1/58	.017241379	1/103	009708738
1/14	0.071428571	1/59	$\cdot 016949153$	1/104	·009615385
1/15	.066666667	1/60	$\cdot 016666667$	1/105	$\cdot 00952381$
1/16	$\cdot 0625$	1/61	$\cdot 016393443$	1/106	$\cdot 009433962$
1/17	·058823529	1/62	$\cdot 016129032$	1/107	·009345794
1/18	·055555556	1/63	$\cdot 015873016$	1/108	$\cdot 009259259$
1/19	$\cdot 052631579$	1/64	$\cdot 015625$	1/109	$\cdot 009174312$
1/20	•05	1/65	$\cdot 015384615$	1/110	·009090909
1/21	•047619048	1/66	·015151515	1/111	•009009009
1/22	•040404040	1/67	•014925373	1/112	•008928571
1/23	043478201	1/68	014705882	1/113	·008849558
1/24	.01	1/09	014492704	1/114	.008605659
1/25	038461538	1/70	-014260714	1/110	-008095052
1/27	+037037037	$\frac{1/71}{1/72}$	0138888889	1/117	+008547009
1/28	.035714286	1/73	01369863	1/118	008474576
1/29	$\cdot 034482759$	1/74	$\cdot 013513514$	1/119	008403361
1/30	·033333333	1/75	·013333333	1/120	·008333333
1/31	$\cdot 032258065$	1/76	·013157895	1/121	·008264463
1/32	·03125	1/77	$\cdot 012987013$	1/122	·008196721
1/33	·030303030	1/78	$\cdot 012820513$	1/123	$\cdot 008130081$
1/34	•029411765	= 1/79	$\cdot 012658228$	1/124	008064516
1/35	•028571429	1/80	•0125	1/125	008
1/30	0277777778	1/81	012345679	1/126	•007936508
1/97	.026315780	1/82	.012195122	1/127	0078195
1/39	025641026	1/84	.011004769	1/120	007751038
1/40	.025	1/85	•011764706	1/120	007692308
1/41	·024390244	1/86	·011627907	1/131	007633588
1/42	$\cdot 023809524$	1/87	.011494253	1/132	.007575758
1/43	$\cdot 023255814$	1/88	·011363636	1/133	.007518797
1/44	·022727273	1/89	·011235955	1/134	$\cdot 007462687$
1/45	$\cdot 0222222222$	1/90	•011111111	1/135	·007407407
1/46	·02173913	1/91	·010989011	1/136	·007352941

G

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal,	Fraction or Numb.	Decimal or Reciprocal.
1/137	·00729927	1/198	·005050505	1/259	·003861004
1/138	. •007246377	1/199	·005025126	1/260	·003846154
1/139	$\cdot 007194245$	1/200	.005	1/261	·003831418
1/140	$\cdot 007142857$	1/201	$\cdot 004975124$	1/262	·003816794
1/141	·007092199	1/202	$\cdot 004950495$	1/263	·003802281
1/142	·007042254	1/203	$\cdot 004926108$	1/264	$\cdot 003787879$
1/143	•006993007	1/204	·004901961	1/265	·003773585
1/144	006944444	1/205	·004878049	1/266	•003759398
1/140	000090002	1/206	·004854369	1/267	•003745318
1/140	0000049310	1/207	•004830918	1/268	•003731343
1/141	006756757	1/208	004807692	1/209	.002702704
1/140	006711400	1/209	-004761005	1/270	003103704
1/150	+0066666667	1/210	+004701905	1/271	003676471
1/151	006622517	1/211	004716081	1/272	+003663004
1/152	.006578947	1/212	004694836	1/274	•003649635
1/153	.006535948	1/214	004672897	1/275	.003636364
1/154	.006493506	1/215	004651163	1/276	•003623188
1/155	·006451613	1/216	.00462963	1/277	.003610108
1/156	·006410256	1/217	.004608295	1/278	$\cdot 003597122$
1/157	·006369427	1/218	·004587156	1/279	$\cdot 003584229$
1/158	·006329114	1/219	$\cdot 00456621$	1/280	·003571429
1/159	·006289308	1/220	·004545455	1/281	·003558719
1/160	·00625	1/221	$\cdot 004524887$	1/282	$\cdot 003546099$
1/161	·00621118	1/222	·004504505	1/283	·003533569
1/162	·00617284	1/223	$\cdot 004484305$	1/284	·003522127
1/163	·006134969	1/224	·004464286	1/285	$\cdot 003508772$
1/164	·006097561	1/225	·004444444	1/286	·003496503
1/165	·006060606	1/226	$\cdot 004424779$	1/287	$\cdot 003484321$
1/166	·006024096	1/227	$\cdot 004405286$	1/288	003472222
1/107	005988024	1/228	•004385965	1/289	•003460208
1/108	00501716	1/229	·004366812	1/290	•003448276
1/109	.005991710	1/200	•004347820	1/291	·003430420
1/171	005847053	1/201	-004329004	1/292	.003419060
1/172	005813953	1/232	-004310343	1/294	+003401361
1/173	.005780347	1/234	.004273504	1/295	.003389831
1/174	.005747126	1/235	004255319	1/296	.003378378
1/175	.005714286	1/236	004237288	1/297	·003367003
1/176	·005681818	1/237	$\cdot 004219409$	1/298	·003355705
1/177	·005649718	1/238	.004201681	1/299	$\cdot 003344482$
1/178	·005617978	1/239	·0041841	1/300	·003333333
1/179	·005586592	1/240	$\cdot 004166667$	1/301	$\cdot 003322259$
1/180	·005555556	1/241	·004149378	1/302	$\cdot 003311258$
1/181	$\cdot 005524862$	1/242	$\cdot 004132231$	1/303	·00330133
1/182	·005494505	1/243	·004115226	1/304	$\cdot 003289474$
1/183	•005464481	1/244	+004098361	1/305	003278689
1/184	·005434783	1/245	•004081633	1/306	•003267974
1/185	•005405405	1/246	-004065041	1/307	003257329
1/180	005247504	1/247	-004022252	1/308	0000440703
1/182	.005310140	1/248	-004016064	1/310	+003225806
1/189	.005291005	1/250	•004	1/311	.003215434
1/190	005263158	1/251	003984064	1/312	·003205128
1/191	·005235602	1/252	.003968254	1/313	003194888
1/192	.005208333	1/253	.003952569	1/314	·003184713
1/193	·005181347	1/254	.003937008	1/315	$\cdot 003174603$
1/194	$\cdot 005154639$	1/255	.003921569	1/316	$\cdot 003164557$
1/195	$\cdot 005128205$	1/256	$\cdot 00390625$	1/317	$\cdot 003154574$
1/196	·005102041	1/257	$\cdot 003891051$	1/318	·003144654
1/197	$\cdot 005076142$	1/258	$\cdot 003875969$	1/319	·003134796

TABLE OF RECIPROCALS OF NUMBERS.

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/320	·003125	1/381	·002624672	1/442	·002262443
1/321	·003115265	1/382	·002617801	1/443	·002257336
1/322	$\cdot 00310559$	1/383	·002610966	1/444	$\cdot 002252252$
1/323	$\cdot 003095975$	1/384	$\cdot 002604167$	1/445	$\cdot 002247191$
1/324	$\cdot 00308642$	1/385	·002597403	1/446	$\cdot 002242152$
1/325	$\cdot 003076923$	1/386	$\cdot 002590674$	1/447	$\cdot 002237136$
1/326	·003067485	1/387	·002583979	1/448	$\cdot 002232143$
1/327	$\cdot 003058104$	1/388	$\cdot 00257732$	1/449	$\cdot 002227171$
1/328	·00304878	1/389	$\cdot 002570694$	1/450	$\cdot 0022222222$
1/329	$\cdot 003039514$	1/390	$\cdot 002564103$	1/451	$\cdot 002217295$
1/330	·003030303	1/391	$\cdot 002557545$	1/452	·002212389
1/331	$\cdot 003021148$	1/392	$\cdot 00255102$	1/453	$\cdot 002207506$
1/332	$\cdot 003012048$	1/393	$\cdot 002544529$	1/454	$\cdot 002202643$
1/333	·003003003	1/394	$\cdot 002538071$	1/455	$\cdot 002197802$
1/334	·002994012	1/395	$\cdot 002531646$	1/456	$\cdot 002192982$
1/335	$\cdot 002985075$	1/396	$\cdot 002525253$	1/457	$\cdot 002188184$
1/336	.00297619	1/397	$\cdot 002518892$	1/458	$\cdot 002183406$
1/337	$\cdot 002967359$	1/398	$\cdot 002512563$	1/459	$\cdot 002178649$
1/338	.00295858	1/399	$\cdot 002506266$	1/460	+002173913
1/339	$\cdot 002949853$	1/400	·0025	1/461	· 0 02169197
1/340	$\cdot 002941176$	1/401	$\cdot 002493766$	1/462	$\cdot 002164502$
1/341	$\cdot 002932551$	1/402	$\cdot 002487562$	1/463	$\cdot 002159827$
1/342	·002923977	1/403	$\cdot 00248139$	1/464	$\cdot 002155172$
1/343	$\cdot 002915452$	1/404	$\cdot 002475248$	1/465	$\cdot 002150538$
1/344	.002906977	1/405	$\cdot 002469136$	1/466	$\cdot 002145923$
1/345	$\cdot 002898551$	1/406	$\cdot 002463054$	1/467	·002141328
1/346	002890173	1/407	$\cdot 002457002$	1/468	$\cdot 002136752$
1/347	$\cdot 002881844$	1/408	$\cdot 00245098$	1/469	$\cdot 002132196$
1/348	$\cdot 002873563$	1/409	$\cdot 002444988$	1/470	$\cdot 00212766$
1/349	·00286533	1/410	$\cdot 002439024$	1/471	$\cdot 002123142$
1/350	002857143	1/411	$\cdot 00243309$	1/472	$\cdot 002118644$
1/351	+002849003	1/412	$\cdot 002427184$	1/473	$\cdot 002114165$
1/352	002840909	1/413	$\cdot 002421308$	1/474	$\cdot 002109705$
1/353	002832861	1/414	·002415459	1/475	·002105263
1/354	002824859	1/415	$\cdot 002409639$	1/476	•00210084
1/355	•002816901	1/416	·002406846	1/477	•002096486
1/356	002808989	1/417	002398082	1/4/8	•00209205
1/357	00280112	1/418	002392344	1/479	•002087683
1/358	002793296	1/419	·002386635	1/480	•002083333
1/359	.002785515	1/420	·002380952	1/481	.002079002
1/360	-002777778	1/421	•002375297	1/482	•002074689
1/301	002770083	1/422	•002369668	1/483	·002070395
1/302	.002762431	1/423	·002364066	1/484	·002000110
1/303	·002704821	1/424	•002358491	1/480	·002001800
1/304	002747235	1/420	002352941	1/486	002007013
1/000	002739726	1/420	.002347418	1/48/	002000000
1/000	00275224	1/427	•00234192	1/400	-00204918
1/00/	002724796	1/428	•002336449	1/409	00204499
1/308	.002717391	1/429	002331002	1/490	002040810
1/309	.002710027	1/400	002320081	1/401	-00203000
1/3/0	002702703	1/431	002320180	1/492	00203232
1/9/1	002099418	1/402	002014010	1/490	0020203098
1/072	.002000172	1/400	002309409	1/494	.002024291
1/070	.002080900	1/404	002004147	1/400	.00202020202
1/0/4	002010191	1/400	002298691	1/490	.002010129
1/070	002000007	1/400	.002299910	1/497	.002012072
1/377	002009074	1/439	00220000	1/100	.002008082
1/379	00205252	1/400	.002205105	1/500	+002
1/370	•002638591	1/400	.002279797	1/501	001996008
1/380	.002631579	1/441	002267574	1/502	.001992032
1/000	002001019	T/AAT	002201014	1/002	001002002

`

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/503	$\cdot 001988072$	1/564	·00177305	1/625	·0016
1/504	$\cdot 001984127$	1/565	·001769912	1/626	·001597444
1/505	·001980198	1/566	·001766784	1/627	·001594896
1/506	$\cdot 001976285$	1/567	·001763668	1/628	$\cdot 001592357$
1/507	$\cdot 001972387$	1/568	$\cdot 001760563$	1/629	·001589825
1/508	$\cdot 001968504$	1/569	001757469	1/630	$\cdot 001587302$
1/509	·001964637	1/570	·001754386	1/631	$\cdot 001584786$
1/510	·001960784	1/571	•001751313	1/632	001582278
1/511	•001956947	1/572	·001748252	1/633	·001579779
1/512	·001953125	1/573	·001745201	1/634	·001577287
1/013	001949318	1/074	00174210	1/030	001570207
1/014	001940020	1/070	00173913	1/030	001572527
1/516	.001941748	1/577	.001732102	1/007	.001567208
1/517	-001937984	1/578	+001730104	1/639	001564945
1/518	001930502	1/579	.001727116	1/640	•0015625
1/519	001926782	1/580	.001724138	1/641	001560062
1/520	001923077	1/581	+00172117	1/642	+001557632
1/521	001919386	1/582	.001718213	1/643	·00155521
1/522	$\cdot 001915709$	1/583	$\cdot 001715266$	1/644	$\cdot 001552795$
1/523	$\cdot 001912046$	1/584	·001712329	1/645	$\cdot 001550388$
1/524	$\cdot 001908397$	1'/585	$\cdot 001709402$	1/646	$\cdot 001547988$
1/525	$\cdot 001904762$	1/586	$\cdot 001706485$	1/647	$\cdot 001545595$
1/526	·001901141	1/587	·001703578	1/648	·00154321
1/527	$\cdot 001897533$	1/588	$\cdot 00170068$	1/649	$\cdot 001540832$
1/528	$\cdot 001893939$	1/589	$\cdot 001697793$	1/650	$\cdot 001538462$
1/529	$\cdot 001890359$	1/590	$\cdot 001694915$	1/651	$\cdot 001536098$
1/530	$\cdot 001886792$	1/591	$\cdot 001692047$	1/652	$\cdot 001533742$
1/531	$\cdot 001883239$	1/592	$\cdot 001689189$	1/653	•001531394
1/532	·001879699	1/593	·001686341	1/654	•001529052
1/533	•001876173	1/594	·001683502	1/650	•001526718
1/034	001872039	1/090	-001000072	1/050	00152459
1/000	001809109	1/590	.001675042	1/658	.001519751
1/597	-001869197	1/598	+001672241	1/659	001517451
1/538	+001858736	1/599	.001669449	1/660	001515152
1/539	001855288	1/600	.001666667	1/661	.001512859
1/540	001851852	1/601	001663894	1/662	$\cdot 001510574$
1/541	.001848429	1/602	.00166113	1/663	$\cdot 001508296$
1/542	·001845018	1/603	$\cdot 001658375$	1/664	$\cdot 001506024$
1/543	·001841621	1/604	$\cdot 001655629$	1/665	·001503759
1/544	·001838235	1/605	$\cdot 001652893$	1/666	$\cdot 001501502$
1/545	·001834862	1/606	$\cdot 001650165$	1/667 -	·00149925
1/546	$\cdot 001831502$	1/607	$\cdot 001647446$	1/668	•001497006
1/547	·001828154	1/608	·001644737	1/669	•001494768
1/548	001824818	1/609	•001642036	1/670	.001492537
1/549	•001821494	1/610	·001639344	1/071	.001490515
1/550	•001818182	1/011	-001622087	1/072	.001485884
1/001	.001814684	1/012	.001631991	1/674	+00148368
1/002	-001808218	1/614	001628664	1/675	.001481481
1/554	001805054	1/615	·001626016	1/676	·00147929
1/555	001801802	1/616	.001623377	1/677	.001477105
1/556	·001798561	1/617	$\cdot 001620746$	1/678	.001474926
1/557	$\cdot 001795332$	1/618	$\cdot 001618123$	1/679	$\cdot 001472754$
1/558	.001792115	1/619	·001615509	1/680	·001470588
1/559	.001788909	1/620	·001612903	1/681	·001468429
1/560	001785714	1/621	·001610306	1/682	$\cdot 001466276$
1/561	·001782531	1/622	:001607717	1/683	•001464129
1/562	·001779359	1/623	•001605136	1/684	•001461988
1/563	·001776199	1/624	·001602564	1/685	.001459854

TABLE OF RECIPROCALS OF NUMBERS.

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/686	$\cdot 001457726$	1/747	·001338688	1/808	·001237624
1/687	·001455604	1/748	·001336898	1/809	$\cdot 001236094$
1/688	$\cdot 001453488$	1/749	·001335113	1/810	·001234568
1/689	$\cdot 001451379$	1/750	·0013333333	1/811	$\cdot 001233046$
1/690	001449275	1/751	•001331558	1/812	•001231527
1/691	•001447178	1/752	•001329787	1/813	•001230012
1/092	001449087	1/754	·001328021	1/814	*001228501
1/090	+001445001	1/755	+00132020	1/010	+001220994
1/695	001438849	1/756	001322751	1/817	+00122399
1/696	.001436782	1/757	$\cdot 001321004$	1/818	•001222494
1/697	.00143472	1/758	$\cdot 001319261$	1/819	.001221001
1/698	001432665	1/759	$\cdot 001317523$	1/820	$\cdot 001219512$
1/699	·001430615	1/760	$\cdot 001315789$	1/821	-001218027
1/700	·001428571	1/761	$\cdot 00131406$	1/822	·001216545
1/701	$\cdot 001426534$	1/762	$\cdot 001312336$	1/823	·001215067
1/702	$\cdot 001424501$	1/763	$\cdot 001310616$	1/824	$\cdot 001213592$
1/703	•001422475	1/764	•001308901	1/825	•001212121
1/704	•001420455	1/765	•00130719	1/820	•001210694
1/700	·00141844	1/765	•001303483	1/827	00120919
1/700	+001410431	1/768	.001303781	1/020	001207729
1/708	001412429	1/769	+001302000	1/830	+001204819
1/709	.001410437	1/770	+001298701	1/831	•001203369
1/710	001408451	1/771	$\cdot 001297017$	1/832	·001201923
1/711	$\cdot 00140647$	1/772	$\cdot 001295337$	1/833	$\cdot 00120048$
1/712	·001404494	1/773	+001293661	1/834	$\cdot 001199041$
1/713	$\cdot 001402525$	1/774	·00129199	1/835	$\cdot 001197605$
1/714	$\cdot 00140056$	1/775	$\cdot 001290323$	1/836	$\cdot 001196172$
1/715	$\cdot 001398601$	1/776	$\cdot 00128866$	1/837	·001194743
1/716	•001396648	1/777	001287001	1/838	•001193317
1/717	0013947	1/778	•001285347	1/839	•001191895
1/710	.001392708	1/79	-001288097	1/040	.001190470
1/719	-001388889	1/781	.001282031	1/842	+001185648
1/721	001386963	1/782	+001278772	1/843	+00118624
1/722	.001385042	1/783	.001277139	1/844	.001184834
1/723	$\cdot 001383126$	1/784	$\cdot 00127551$	1/845	$\cdot 001183432$
1/724	·001381215	1/785	$\cdot 001273885$	1/846	·001182033
1/725	·00137931	1/786	$\cdot 001272265$	1/847	·001180638
1/726	·00137741	1/787	$\cdot 001270648$	1/848	$\cdot 001179245$
1/727	$\cdot 001375516$	1/788	$\cdot 001269036$	1/849	$\cdot 001177856$
1/728	•001373626	1/789	•001267427	1/850	•001176471
1/729	001371742	1/790	·001265823	1/851	001179088
1/790	.001369803	1/791	•001264225	1/952	.001179333
1/732	-00136619	1/792	.001261034	1/854	+00117096
1/733	001364256	1/794	+001259446	1/855	001169591
1/734	·001362398	1/795	$\cdot 001257862$	1/856	$\cdot 001168224$
1/735	·001360544	1/796	$\cdot 001256281$	1/857	·001166861
1/736	·001358696	1/797	$\cdot 001254705$	1/858	·001165501
1/737	$\cdot 001356852$	1/798	$\cdot 001253133$	1/859	·001164144
1/738	·001355014	1/799	$\cdot 001251364$	1/860	$\cdot 001162791$
1/739	·00135318	1/800	•00125	1/861	·00116144
1/740	•001351351	1/801	·001248439	1/862	·001160093
1/741	001349528	1/802	001246883	1/863	·001158749
1/742	001347709	1/003	00124000	1/004	+001157407
1/740	001344086	1/805	001240701	1/866	001154734
1/745	.001342282	1/806	+001240695	1/867	001153403
1/746	.001340483	1/807	$\cdot 001239157$	1/868	$\cdot 001152074$
1					

77

G 2

Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.	Fraction or Numb.	Decimal or Reciprocal.
1/869	·001150748	1/913	·00109529	1/957	·001044932
1/870	·001149425	1/914	·001094092	1/958	·001043841
1/871	·001148106	1/915	·001092896	1/959	$\cdot 001042753$
1/872	·001146789	1/916	·001091703	1/960	·001041667
1/873	·001145475	1/917	·001090513	1/961	·001040583
1/874	·001144165	1/918	·001089325	1/962	$\cdot 001039501$
1/875	·001142857	1/919	·001088139	1/963	$\cdot 001038422$
1/876	·001141553	1/920	·001086957	1/964	$\cdot 001037344$
1/877	·001140251	1/921	·001085776	1/965	$\cdot 001036269$
1/878	$\cdot 001138952$	1/922	·001084599	1/966	$\cdot 001035197$
1/879	·001137656	1/923	$\cdot 001083423$	1/967	·001034126
1/880	$\cdot 001136364$	1/924	$\cdot 001082251$	1/968	·001033058
1/881	$\cdot 001135074$	1/925	$\cdot 001081081$	1/969	$\cdot 001031992$
1/882	$\cdot 001133787$	1/926	$\cdot 001079914$	1/970	$\cdot 001030928$
1/883	·001132503	1/927	$\cdot 001078749$	1/971	$\cdot 001029866$
1/884	·001131222	1/928	·001077586	1/972	$\cdot 001028807$
1/885	·001129944	1/929	·001076426	1/973	$\cdot 001027749$
1/886	·001128668	1/930	$\cdot 001075269$	1/974	$\cdot 001026694$
1/887	$\cdot 001127396$	1/931	$\cdot 001074114$	1/975	$\cdot 001025641$
1/888	$\cdot 001126126$	1/932	$\cdot 001072961$	1/976	$\cdot 00102459$
1/889	$\cdot 001124859$	1/933	·001071811	1/977	$\cdot 001023541$
1/890	$\cdot 001123596$	1/934	·001070664	1/978	$\cdot 001022495$
1/891	$\cdot 001122334$	1/935	·001069519	1/979	$\cdot 00102145$
1/892	$\cdot 001121076$	1/936	$\cdot 001068376$	1/980	$\cdot 001020408$
1/893	$\cdot 001119821$	1/937	$\cdot 001067236$	1/981	$\cdot 001019168$
1/894	$\cdot 001118568$	1/938	·001066098	1/982	·00101833
1/895	$\cdot 001117818$	1/939	·001064963	1/983	$\cdot 001017294$
1/896	·001116071	1/940	·00106383	1/984	$\cdot 00101626$
1/897	$\cdot 001114827$	1/941	$\cdot 001062699$	1/985	$\cdot 001015228$
1/898	$\cdot 001113586$	1/942	$\cdot 001061571$	1/986	$\cdot 001014199$
1/899	$\cdot 001112347$	1/943	·001060445	1/987	•001013171
1/900	·001111111	1/944	·001059322	1/988	001012146
1/901	·001109878	1/945	·001058201	1/989	•001011122
1/902	$\cdot 001108647$	1/946	•001057082	1/990	•001010101
1/903	$\cdot 00110742$	1/947	·001055966	1/991	•001009082
1/904	·001106195	1/948	$\cdot 001054852$	1/992	•001008065
1/905	$\cdot 001104972$	1/949	•001053741	1/993	•001007049
1/906	•001103753	1/950	·001052632	1/994	•001006036
1/907	$\cdot 001102536$	1/951	001051525	1/995	•001005025
1/908	$\cdot 001101322$	1/952	.00105042	1/996	•001004016
1/909	•00110011	1/953	+001049318	1/997	•001003009
1/910	•001098901	1/954	.001048218	1/998	001002004
1/911	•001091695	1/955	.00104712	1/999	1001001001
1/912	·001096491	1/956	•001046025	1/1000	.001

Divide 80000 by 971.

By the above Table we find that 1 divided by 971 gives $\cdot 001029866$, and $\cdot 001029866 \times 80000 = 82 \cdot 38928$. What is the sum of $\frac{5}{553}$ and $\frac{2}{953}$?

	··.	5 883	+	$\frac{2}{953}$				_	·007761141	
2	×	1 953	-	·00104	9318	×	2	=	·002098636	
5	×	$\frac{1}{883}$	-	·00113	2503	×	5	-	·005662515	

MENSURATION OF SOLIDS.

WEIGHTS AND VALUES IN DECIMAL PARTS.

TRO	Y WEIGHT.	AV	OIRDUPOIS WEIGHT.	AV	OIRDUPOIS WEIGHT.
Dec.	. parts of a lb.	Dec.	parts of a cwt.	Dec	parts of a lb.
Ozs.	Decimals.	Qrs.	Decimals.	Ozs. Decimals.	
11	·916666	3	•75	15	·9375
10	·833333	2	$2 \cdot 5$		·875
9	.75	1	·25	13	·8125
8	·666666	lbs.	Decimals.	12	•75
7	·583333	27	$\cdot 241071$	11	$\cdot 6875$
6	•5	26	$\cdot 232142$	10	·625
5	·416666	25	·223214	9	·5625
4	·333333	24	$\cdot 214286$	8	•5
3	·25	23	·205357	7	·4375
2	·166666	22	$\cdot 196428$	6	·375
1	·083333	21	$\cdot 187500$	5	$\cdot 3125$
Dwts.	Decimals.	20	$\cdot 178572$	4	·25
19	·079166	19	$\cdot 169643$	3	·1875
18	·075	18	·160714	2	$\cdot 125$
17	·070833	17	$\cdot 151785$	1	.0625
16	·066666	16	$\cdot 142856$	Drs.	Decimals.
15	$\cdot 0625$	15	·133928	15	$\cdot 058593$
14	·058333	14	$\cdot 125$	14	·054686
13	·054166	13	·116071	13	$\cdot 050780$
12	·05	12	·107143	12	$\cdot 046874$
11	$\cdot 045833$	11	11 .098214		$\cdot 042968$
10	·041666	10	$\cdot 089286$	10	$\cdot 039062$
9	·0375	9	·080357	9	$\cdot 035156$
8	·033333	8	$\cdot 071428$	8	$\cdot 03125$
7	·029166	7	$\cdot 0625$	7	$\cdot 027343$
6	·025	6	$\cdot 053571$	6	$\cdot 023437$
5	·020833	5	·044643	5	$\cdot 019531$
4	·016666	4	·035714	4	$\cdot 015625$
3	.0125	3	·026786	3	.011718
2	·008333	2	$\cdot 017857$	2	.007812
1	·004166	ī	+008928	1	·003906
Grs.	Decimals.	078.	Decimals.		
15	$\cdot 002604$	15	·008370		LONG
14	·002430	14	$\cdot 007812$		EASURE.
13	·002257	13	·007254	Dec.	parts of a foot.
12	·002083	12	·006696	Ins	Decimals
11	·001910	11	·006138	11	·916666
10	$\cdot 001736$	10	·005580	10	·833333
9	$\cdot 001562$	9	$\cdot 005022$	9	.75
8	·001389	8	·004464	8	·666666
7	·001215	7	·003906	7	·583333
6	$\cdot 001042$	6	·003348	6	•5
5	.000868	5	.002790	5	·416666
4	·000694	4	·002232	4	·333333
3	·000521	3	·001674	ŝ	·25
2	.000347	2	·001116	2	·166666
1	.000173	1	·000558	1	·083333

To find the solidity of a cube, the height of one of its sides being given.—Multiply the side of the cube by itself, and that product again by the side, and it will give the solidity required.

The side \overrightarrow{AB} , or BC, of the cube ABCDFGHE, _g is 25.5: what is the solidity ?

Here $AB^3 = (22 \cdot 5)|^3 = 25 \cdot 5 \times 25 \cdot 5 \times 25 \cdot 5 = 25 \cdot 5 \times 650 \cdot 25 = 16581 \cdot 375$, content of the cube.

To find the solidity of a parallelopipedon. —Multiply the length by the breadth, and that product again by the depth or altitude, and it will give the solidity required.

Required the solidity of a parallelopipedon $_{G}$ ABCDFEHG, whose length AB is 8 feet, its breadth FD 4½ feet, and the depth or altitude AD 63 feet?

Here $AB \times AD \times FD = 8 \times 6.75 \times 4.5 = 54 \times 4.5 = 243$ solid feet, the contents of the parallelopipedon.

To find the solidity of a prism.—Multiply the area of the base into the perpendicular height of the prism, and the product will be the solidity.

What is the solidity of the triangular prism ABCF ED, whose length AB is 10 feet, and either of the equal sides, BC, CD, or DB, of one of its equilateral $_{A2}$ ends BCD, $2\frac{1}{2}$ feet?

Here $\frac{1}{4} \times 2.5^2 \times \sqrt{3} = \frac{1}{4} \times 6.25 \times \sqrt{3} = 1.5625 \times \sqrt{3} = 1.5625 \times 1.732 = 2.70625 = area of the base BCD.$

$$Or, \frac{2 \cdot 5 + 2 \cdot 5 + 2 \cdot 5}{2} = \frac{7 \cdot 5}{2} = 3 \cdot 75 = \frac{1}{2} \text{ sum of}$$

Е

the sides, BC, CD, DB, of the triangle CDB.

And 3.75 - 2.5 = 1.25, $\therefore 1.25$, 1.25 and 1.25 = 3 differences. Whence $\sqrt{3.75} \times 1.25 \times 1.25 \times 1.25 = \sqrt{3.75} \times 1.25^3 = \sqrt{7.32421875} = 2.7063 = area of the base as before,$

And $2.7063 \times 10 = 27.063$ solid feet, the content of the prism required.

To find the convex surface of a cylinder.—Multiply the periphery or circumference of the base, by the height of the cylinder, and the product will be the convex surface.

What is the convex surface of the right cylinder ABCD, whose length BC is 20 feet, and the diameter of its base AB 2 feet?

Here $3.1416 \times 2 = 6.2832 = periphery of the base AB.$

And $6.2832 \times 20 = 125.6640$ square feet, the convexity required.

To find the solidity of a cylinder.—Multiply the area of the base by the perpendicular height of the cylinder, and the product will be the solidity.

What is the solidity of the cylinder ABCD, the diameter of whose base AB is 30 inches, and the height BC 50 inches.

Here $\cdot 7854 \times 30^2 = \cdot 7854 \times 900 = 706 \cdot 86 = area of the base AB.$ 35343

And $706.86 \times 50 = 35343$ cubic inches; or $\frac{50010}{1728} = 20.4531$ solid feet.

в

The four following cases contain all the rules for finding the superficies and solidities of cylindrical ungulas.

When the section is parallel to the axis of the cylinder. 1 RULE .- Multiply the length of the arc line of the base by the height of the cylinder, and the product will be the curve surface.

Multiply the area of the base by the height of the A cylinder, and the product will be the solidity.

When the section passes obliquely through the opposite sides of the cylinder.

RULE.—Multiply the circumference of the base of the cylinder by half the sum of the greatest and least lengths E of the ungula, and the product will be the curve surface.

Multiply the area of the base of the cylinder by half ^A the sum of the greatest and least lengths of the ungula, and the product will be the solidity.

When the section passes through the base of the cylin- 16 der, and one of its sides.

RULE.-Multiply the sine of half the arc of the base by the diameter of the cylinder, and from this product subtract the product of the arc and cosine.

Multiply the difference thus found, by the quotient of B the height divided by the versed sine, and the product will be the curve surface.

From 3 of the cube of the right sine of half the arc of the base, subtract the product of the area of the base and the cosine of the said half arc.

Multiply the difference, thus found, by the quotient arising from the height divided by the versed sine, and the product will be the solidity.

When the section passes obliquely through both ends of the cylinder.

RULE.—Conceive the section to be continued, till it meets the side of the cylinder produced; then say, as the difference of the versed sines of half the arcs of the two ends of the ungula is to the versed sine of half the B arc of the less end, so is the height of the cylinder to the part of the side produced.

Find the surface of each of the ungulas, thus formed, and their difference will be the *surface*.

In like manner find the solidities of each of the ungulas, and their difference will be the *solidity*.

To find the convex surface of a right cone.—Multiply the circumference of the base by the slant height, or the length of the side of the cone, and half the product will be the surface required.

The diameter of the base AB is 3 feet, and the slant height AC or BC 15 feet; required the convex surface of the cone ACB.

6

н

H

Here $3.1416 \times 3 = 9.4248 = \text{circumference of the base AB.}$ And $\frac{9.4248 \times 15}{2} = \frac{141.3720}{2} = 70.686$ square feet, the convex surface required.

To find the convex surface of the frustum of a right cone.—Multiply the sum of the perimeters of the two ends, by the slant height of the frustum, and half the product will be the surface required.

In the frustum ABDE, the circumferences of the two ends AB and DE are 22.5 and 15.75 respectively, and the slant height BD is 26; what is the convex surface?

 $Here \frac{(22.5 + 15.75) \times 26}{2} = \overline{22.5 + 15.75}$ × 13 = 38.25 × 13 = 497.25 = convex surface.

To find the solidity of a cone or pyramid.—Multiply the area of the base by one-third of the perpendicular height of the cone or pyramid, and the product will be the solidity.

Required the solidity of the cone ACB, whose diameter AB is 20, and its perpendicular height CS 24.

Here $\cdot 7854 \times 20^2 = \cdot 7854 \times 400 = 314 \cdot 16$ = area of the base AB.

And $314.16 \times \frac{24}{3} = 314.16 \times 8 = 2513.28$ = solidity required.

Required the solidity of the hexagonal pyramid ECBD, each of the equal sides of its base being 40, and the perpendicular height CS 60.

Here 2.598076 (multiplier when the side is 1) $\times 40^2 = 2.598076 \times 1600 = 4156.9216 = area$ of the base.

And $4156.9216 \times \frac{60}{3} = 4156.9216 \times 20 = 83138.432$ solidity.

To find the solidity of a frustum of a cone or pyramid.—For the frustum of a cone, the diameters or circumferences of the two ends, and the height being given.

Add together the square of the diameter of the greater end, the square of the diameter of the less end, and the product of the two

Е

diameters; multiply the sum by \cdot 7854, and the product by the height; $\frac{1}{3}$ of the last product will be the solidity. Or,

Add together the square of the circumference of the greater end, the square of the circumference of the less end, and the product of the two circumferences; multiply the sum by $\cdot 07958$, and the product by the height; $\frac{1}{3}$ of the last product will be the solidity.

For the frustum of a pyramid whose sides are regular polygons.— Add together the square of a side of the greater end, the square of a side of the less end, and the product of these two sides; multiply the sum by the proper number in the Table of Superficies, and the product by the height; $\frac{1}{3}$ of the last product will be the solidity.

When the ends of the pyramids are not regular polygons.—Add together the areas of the two ends and the square root of their product; multiply the sum by the height, and $\frac{1}{3}$ of the product will be the solidity.

What is the solidity of the frustum of the cone EABD, the diameter of whose greater end AB is 5 feet, that of the less end ED, 3 feet, and the perpendicular height S_s , 9 feet?

$$\frac{(5^2 + 3^2 + 5 \times 3) \times .7854 \times 9}{3} = \frac{346 \cdot 3614}{3}$$

115.4538 solid feet, the content of the frustum.

What is the solidity of the frustum e EDBb of a hexagonal pyramid, the side ED of whose greater end is 4 feet, that eb of the less end 3 feet, and the height Ss, 9 feet?

$$\frac{(4^2 + 3^2 + 4 \times 3) \times 2 \cdot 598076 \times 9}{3} = \frac{865 \cdot 159308}{3}$$

 $= 288 \cdot 386436$ solid feet, the solidity required.

The following cases contain all the rules for finding the superficies and solidities of conical ungulas.

When the section passes through the opposite extremities of the ends of the frustum.

Let D = AB the diameter of the greater end; d = CD, the diameter of the less end; h = perpendicular height of the frustum, and n = .7854.

Then $\frac{d^2 - d\sqrt{Dd}}{D - d} \times \frac{nDh}{3}$ = solidity of the greater A elliptic ungula ADB.

 $\frac{\dot{D} \sqrt{Dd} - d^2}{D - d} \times \frac{ndh}{3} = \text{solidity of the less ungula ACD.}$ $\frac{(D^2 - d^2)^2}{D - d} \times \frac{nh}{3} = \text{difference of these hoofs.}$ And $\frac{n}{D - d} \sqrt{4h^2 + (D - d^2)} \times (D^2 - \frac{D + d}{2} \sqrt{Dd} = \text{curve}$

surface of ADB.

When the section cuts off parts of the base, and makes the angle DrB less than the angle CAB.

Let S = tabular segment, whose versed sine is Br÷D; s – tab. seg. whose versed sine is Br - (D - d)÷ d, and the other letters as above. The (S × D³ – s × d³ × $\frac{Br}{Br - D - d} \sqrt{\frac{Br}{Br - D - d}}$ $\times \frac{\frac{1}{2}\hbar}{D-d} = \text{solidity of the elliptic hoof EFBD.}$ And $\frac{1}{D-d}\sqrt{4h^2+(D-d)^2}\times(\text{seg. FBE}-\frac{d^2}{D^2}\times\frac{\frac{1}{2}\times(D+d)-\Lambda r}{d-\Lambda r}$ $\times \sqrt{\frac{\mathrm{B}r}{d-\mathrm{A}r}} \times \mathrm{seg.}$ of the circle AB, whose height is $\mathrm{D} \times \frac{d-\mathrm{A}r}{d}$ = convex surface of EFBD. When the section is parallel to one of the sides of the frustum. Let A = area of the base FBE, and the other let-Then $\left(\frac{\mathbf{A} \times \mathbf{D}}{\mathbf{D} - d} - \frac{4}{3}d\sqrt{(\mathbf{B} - d) \times d}\right) \times \frac{1}{3}h = \text{solidity}$ ters as before. of the parabolic hoof EFBD. And $\frac{1}{D-d}\sqrt{4h^2 \times (D-d)^2} \times (\text{seg. FBE} - \frac{2}{3}\overline{D-d})$ $\times \sqrt{d} \times \overline{D-d} = \text{convex surface of EFBD.}$ When the section cuts off part of the base, and makes the angle DrB greater than the angle CAB. Let the area of the hyperbolic section EDF = A, and the area of the circular seg. EBF = a.

Then $\frac{\frac{1}{3}h}{D-h} \times (a \times D - A \times \frac{d \times Er}{Cr}) = \text{solidity of}$ the hyperbolic ungula EFBD.

And $\frac{1}{D-d} \times \sqrt{4h^2 + (D-d)^2} \times (\text{cir. seg. EBF} - \frac{d^2}{F})^2 \times \frac{Br - \frac{1}{2}(D-d)}{Br - D - d} \sqrt{\frac{Br}{Br - d - D}} = \text{curve surface of EFBD.}$

The transverse diameter of the hyp. seg. $= \frac{d \times Cr}{D - d - Br}$ and the conjugate $= d \sqrt{\frac{Br}{D - d - Br}}$, from which its area may be found by the former rules.

To find the solidity of a cuneus or wedge.—Add twice the length of the base to the length of the edge, and reserve the number.

Multiply the height of the wedge by the breadth of the base, and this product by the reserved number; $\frac{1}{6}$ of the last product will be the solidity.

MENSURATION OF SOLIDS.

E How many solid feet are there in a wedge, whose base is 5 feet 4 inches long, and 9 inches broad, the length of the edge being 3 feet 6 inches, and the perpendicular height 2 feet 4 inches?

п G

 $Here \frac{(64 \times 2 + 42) \times 28 \times 9}{6} = \frac{(128 + 42) \times 28 \times 9}{6}$ $\frac{170 \times 28 \times 9}{6} = \frac{170 \times 28 \times 3}{2} = 170 \times 14 \times 3 = 7140 \text{ solid}$ inches.

And $7140 \div 1728 = 4.1319$ solid feet, the content.

To find the solidity of a prismoid .- To the sum of the areas of the two ends add four times the area of a section parallel to and equally distant from both ends, and this last sum multiplied by $\frac{1}{6}$ of the height will give the solidity.

The length of the middle rectangle is equal to half the sum of the lengths of the rectangles of the two ends, and its breadth equal to half the sum of the breadths of those rectangles.

What is the solidity of a rectangle prismoid, the length and breadth of one end being 14 and 12 inches, and the corresponding sides of the other 6 and 4 inches, and the perpendicular $30\frac{1}{2}$ feet.

Here $14 \times 12 + 6 \times 4 = 168 + 24 = 192 = DQ$

sum of the area of the two ends. Also $\frac{14+6}{2} = \frac{20}{2} = 10 = \text{length of the middle rectangle.}$

And $\frac{12+4}{2} = \frac{16}{2} = 8 = breadth of the middle rectangle.$

Whence $10 \times 8 \times 4 = 80 \times 4 = 320 = 4$ times the area of the middle rectangle.

 $Or (320 + 192) \times \frac{366}{6} = 512 \times 61 = 31232$ solid inches.

And $31232 \div 1728 = 18.074$ solid feet, the content.

To find the convex surface of a sphere.-Multiply the diameter of the sphere by its circumference, and the product will be the convex superficies required.

The curve surface of any zone or segment will also be found by multiplying its height by the whole circumference of the sphere.

What is the convex superficies of a globe BCG whose diameter BG is 17 inches?

Here $3.1416 \times 17 \times 17 = 53.4072 \times 17 =$ 907.9224 square inches.

And $907:9224 \div 144 = 6.305$ square feet.

To find the solidity of a sphere or globe.—Multiply the cube of the diameter by \cdot 5236, and the product will be the solidity.

What is the solidity of the sphere AEBC, E whose diameter AB is 17 inches?

Here $17^3 \times \cdot 5236 = 17 \times 17 \times 17 \times \cdot 5236 =$ $289 \times 17 \times 5236 = 4913 \times \cdot 5236 = 2572 \cdot 4468$ A solid inches.

And $2572.4468 \div 1728 = 1.48868$ solid feet.

To find the solidity of the segment of a sphere.—To three times the square of the radius of its base add the square of its height, and this sum multiplied by the height, and the product again by $\cdot 5236$, will give the solidity. Or,

From three times the diameter of the sphere subtract twice the height of the segment, multiply by the square of the height, and that product by $\cdot 5236$; the last product will be the solidity.

The radius Cn of the base of the segment CAD is 7 inches, and the height An 4 inches; what is the solidity?

 $\begin{array}{l} Here \left(7^2 \times 3 + 4^2\right) \times 4 \times \cdot 5236 = (49 \times 3 + 4^2) \\ \times 4 \times \cdot 5236 = (147 + 4^2) \times 4 \times \cdot 5236 = (147 + 16) \\ \times 4 \times \cdot 5236 = 163 \times 4 \times \cdot 5236 = 652 \times \cdot 5236 \\ = 341 \cdot 3872 \ solid \ inches. \end{array}$

To find the solidity of a frustum or zone of a sphere.—To the sum of the squares of the radii of the two ends, add one-third of the square of their distance, or of the breadth of the zone, and this sum multiplied by the said breadth, and the product again by 1.5708, will give the solidity.

What is the solid content of the zone ABCD, whose greater diameter AB is 20 inches, the less diameter CD 15 inches, and the distance nm of the two ends 10 inches?

Here
$$(10^2 + 7.5^2 + \frac{10^2}{3}) \times 10 \times 1.5708 =$$

 $(100 + 56 \cdot 25 + 33 \cdot 33) \times 10 \times 1 \cdot 5708 = 189 \cdot 58$

 $\times 10 \times 1.5708 = 1895.8 \times 1.5708 = 2977.92264$ solid inches.

To find the solidity of a spheroid.—Multiply the square of the revolving axe by the fixed axe, and this product again by .5236, and it will give the solidity required.

 $\cdot 5236$ is = $\frac{1}{6}$ of $3 \cdot 1416$.

In the prolate spheroid ABCD, the transverse, or fixed axe AC is 90, and the conjugate or revolving axe DB is 70; what is the solidity?

Here $DB^2 \times AC \times .5236 = 70^2 \times 90$ $\times .5236 = 4900 \times 90 \times .5236 = 441000$ $\times .5236 = 230907.6 = solidity required.$

в

To find the content of the middle frustum of a spheroid, its length, the middle diameter, and that of either of the ends, being given, when the ends are circular or parallel to the revolving axis.— To twice the square of the middle diameter add the square of the diameter of either of the ends, and this sum multiplied by the length of the frustum, and the product again by .2618, will give the solidity.

Where $\cdot 2618 = \frac{1}{12}$ of 3.1416.

In the middle frustum of a spheroid EFGH, the middle diameter DB is 50 inches, and that of either of the ends EF or GH is 40 inches, and its $\stackrel{A}{\leftarrow}$ length nm 18 inches; what is its solidity?

 $\begin{array}{c} Here \ (50^2 \times 2 + 40^2) \times 18 \times \cdot 2618 \\ = (2500 \times 2 + 1600) \times 18 \times \cdot 2618 \\ = (5000 \times 18 \times \cdot 2618 \\ = 118800 \times \cdot 2613 \\ = 31101 \cdot 84 \ cubic \\ inches. \end{array}$

When the ends are elliptical or perpendicular to the revolving axis.—Multiply twice the transverse diameter of the middle section by its conjugate diameter, and to this product add the product of the transverse and conjugate diameters of either of the ends.

Multiply the sum thus found by the distance of the ends or the height of the frustum, and the product again by .2618, and it will give the solidity required.

In the middle frustum ABCD of an oblate spheroid, the diameters of the middle section EF are 50 and 30, those of the end AD 40 and 24, and its height *ne* 18; what is the \mathbf{E} solidity?

 $\begin{array}{l} Here \ (50 \times 2 \times 30 + \overline{40 \times 24}) \times 18 \times \cdot 2618 \\ = (3000 + 960) \times 18 \times \cdot 2618 = 3960 \times 18 \times \\ \cdot 2618 = 71280 \times \cdot 2618 = 18661 \cdot 104 = the \ solidity. \end{array}$

To find the solidity of the segment of a spheroid, when the base is parallel to the revolving axis.—Divide the square of the revolving axis by the square of the fixed axe, and multiply the quotient by the difference between three times the fixed axe and twice the height of the segment.

Multiply the product thus found by the square of the height of the segment, and this product again by $\cdot 5236$, and it will give the solidity required.

In the prolate spheroid DEFD, the transverse axis 2 DO is 100, the conjugate AC 60, and the height Dn of the segment EDF 10; what is the solidity?

 $\cdot 36 \times 280 \times 10^2 \times \cdot 5236 = 100.80 \times 100 \times \cdot 5236 = 10080 \times \cdot 5236 = 5277.888 = the solidity.$

When the base is perpendicular to the revolving axis.—Divide the fixed axe by the revolving axe, and multiply the quotient by the difference between three times the revolving axe and twice the height of the segment.

Multiply the product thus found by the square of the height of the segment, and this product again by .5236, and it will give the solidity required.

In the prolate spheroid aEbF, the transverse axe EF is 100, the conjugate ab 60, and the height an of the segment aAD 12; what is the solidity?

Here 156 (= diff. of 3ab and 2an) × 1² (= EF ÷ ab × 144 (= square of an) × ·5236 = $\frac{156 \times 5}{2}$ × 144 × ·5236 = 52 × 5 × 144 × ·5236 = 260 ×

 $144 \times .5236 = 37440 \times .5236 = 19603.584 = the solidity.$

To find the solidity of a parabolic conoid.—Multiply the area of the base by half the altitude, and the product will be the content.

What is the solidity of the paraboloid ADB, whose height Dm is 84, and the diameter BA of its circular base 48?

Here $48^2 \times \cdot 7854 \times 42 \ (= \frac{1}{2} Dm) = 2304 \times \cdot 7854 \times 42 = 1809 \cdot 5616 \times 42 = 76001 \cdot 5872$ = the solidity.

To find the solidity of the frustum of a paraboloid, when its ends are perpendicular to the axe of the solid.—Multiply the sum of the squares of the diameters of the two ends by the height of the frustum, and the product again by \cdot 3927, and it will give the solidity.

Required the solidity of the parabolic frustum ABCd, the diameter AB of the greater end being 58, that of the less end dc 30, and the height no 18.

Here $(58^2 + 30^2) \times 18 \times \cdot 3927 = (3364 + 900) \times 18 \times \cdot 3927 = 4264 \times 18 \times \cdot 3927 = 76752 \times \cdot 3927 = 30140 \cdot 5104 = the solidity.$

To find the solidity of an hyperboloid.—To the square of the radius of the base add the square of the middle diameter between the base and the vertex, and this sum multiplied by the altitude, and the product again by $\cdot 5236$ will give the solidity.

In the hyperboloid ACB, the altitude Cr is 10, the radius Ar of the base 12, and the middle diameter nm 15.8745; what is the solidity?

 $\begin{array}{r} \hline Here \ \overline{15\cdot8745^2} + 12^2 \times 10 \times \cdot5236 = \\ \hline 251\cdot99975 + 144 \times 10 \times \cdot5236 = 395\cdot99975 \times \\ 10 \times \cdot5236 = 3959\cdot9975 \times \cdot5236 = 2073\cdot454691 \\ = the \ solidity. \end{array}$

To find the solidity of the frustum of an hyperbolic conoid.—Add together the squares of the greatest and least semi-diameters, and the square of the whole diameter in the middle; then this sum being multiplied by the altitude, and the product again by .5236, will give the solidity.

In the hyperbolic frustum ADCB, the length rs is 20, the diameter AB of the greater end 32, that DC of the less end 24, and the middle diameter nm 28.1708; required the solidity.

 $\begin{array}{l} Here \left(16^2 + 12^2 + 28 \cdot 1708^2\right) \times 20 \times \cdot 52359 \\ = \left(256 + 144 + 793 \cdot 5939\right) \times 20 \times \cdot 52359 \\ = 1193 \cdot 5939 \times 20 \times \cdot 52359 \\ = 23871 \cdot 878 \times \cdot 52359 \\ = 12499 \cdot 07660202 \\ = solidity. \end{array}$

To find the solidity of a tetraedron.—Multiply $\frac{1}{12}$ of the cube of the linear side by the square root of 2, and the product will be the solidity.

The linear side of a tetraedron ABCn is 4; what is the solidity?

 $\frac{4^{3}}{12} \times \sqrt{2} = \frac{4 \times 4 \times 4}{12} \times \sqrt{2} = \frac{4 \times 4}{3} \times \sqrt{2} = \frac{16}{3} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{3} \times \sqrt{2} = \frac{16}{3} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{22 \cdot 624}{3} = 7 \cdot 5413 = solidity.$

To find the solidity of an octaedron.—Multiply $\frac{1}{3}$ of the cube of the linear side by the square root of 2, and the product will be the solidity.

What is the solidity of the octaedron BGAD, whose linear side is 4?

 $\frac{4^{3}}{3} \times \checkmark 2 = \frac{64}{3} \times \checkmark 2 = 21.333, \times \checkmark 2 = B \leqslant$ 21.333 × 1.414 = 30.16486 = solidity.

To find the solidity of a dodecaedron.—To 21 times the square root of 5 add 47, and divide the sum by 40: then the square root of the quotient being multiplied by five times the cube of the linear side will give the solidity.

The linear side of the dodecaedron ABCDE is 3; what is the solidity?

To find the solidity of an icosaedron.—To three times the square root of 5 add 7, and divide the sum by 2; then the square root of H_{2}^{2}

С

this quotient being multiplied by § of the cube of the linear side will give the solidity.

That is $\frac{5}{6}$ S³ × \checkmark $(\frac{7+3\sqrt{5}}{2})$ = solidity when S is = to the linear side.

The linear side of the icosaedron ABCDEF is 3; what is the solidity? $\sqrt{\frac{3\sqrt{5}+7}{2}} \times \frac{5 \times 3^2}{6} = \sqrt{\frac{3 \times 2 \cdot 23606 + 7}{2}} e^{\frac{13 \cdot 70818}{2}} \times \frac{5 \times 9}{2} = \sqrt{\frac{6 \cdot 70818 + 7}{2}} \times \frac{5 \times 9}{2} = e^{\frac{13 \cdot 70818}{2}} \times \frac{45}{2} = \sqrt{6 \cdot 85409} \times 22 \cdot 5 = 2 \cdot 61803}$

The superficies and solidity of any of the five regular bodies may be found as follows:

RULE 1. Multiply the tabular area by the square of the linear edge, and the product will be the superficies.

2. Multiply the tabular solidity by the cube of the linear edge, and the product will be the solidity.

No. of Sides.	Names.	Surfaces.	Solidities.
4 6 8 12 20	Tetraedron Hexaedron Octaedron Dodecaedron Icosaedron	$\begin{array}{r} 1.73205\\ 6.00000\\ 3.46410\\ 20.64578\\ 8.66025\end{array}$	$\begin{array}{c} 0.11785\\ 1.00000\\ 0.47140\\ 7.66312\\ 2.18169\end{array}$

Surfaces and Solidities of the Regular Bodies.

To find the convex superficies of a cylindric ring.—To the thickness of the ring add the inner diameter, and this sum being multiplied by the thickness, and the product again by 9.8696, will give the superficies.

The thickness of Ac of a cylindric ring is 3 inches, and the inner diameter cd 12 inches; what is the convex superficies?

 $\frac{12 + 3 \times 3 \times 9 \cdot 8696}{45 \times 9 \cdot 8696} = 444 \cdot 132 = superficies.$

To find the solidity of a cylindric ring.—To the thickness of the ring add the inner diameter, and this sum being multiplied by the square of half the thickness, and the product again by 9.8696, will give the solidity. What is the solidity of an anchor ring, whose inner diameter is 8 inches, and thickness in metal 3 inches?

 $\overline{8+3} \times \overline{\frac{8}{2}} \times 9 \cdot 8696 = 11 \times 1 \cdot 5^2 \times 9 \cdot 8693 = 11 \times 2 \cdot 25 \times 9 \cdot 8696 = 24 \cdot 75 \times 9 \cdot 8696 = 244 \cdot 2726 = solidity.$

The inner diameter AB of the cylindric ring cdef equals 18 feet, and the sectional diameter cA or Be equals 9 inches; required the convex surface and solidity of the ring.

18 feet \times 12 = 216 inches, and $\overline{216}$ + 9 \times 9 \times 9 \times 9 \times 9 \times 8696 = 19985 \cdot 94 square inches.

 $216 + 9 \times 9^2 \times 2.4674 = 44968.365$ cubic inches.

In the formation of a hoop or ring of wrought iron, it is found in practice that in bending the iron, the side or edge which forms the interior diameter of the hoop is upset or shortened, while at the same time the exterior diameter is drawn or lengthened; therefore, the proper diameter by which to determine the length of the iron in an unbent state, is the distance from centre to centre of the iron of which the hoop is composed: *hence the rule to determine the length of the iron.* If it is the interior diameter of the hoop that is given, add the thickness of the iron; but if the exterior diameter, subtract from the given diameter the thickness of the iron, multiply the sum or remainder by 3.1416, and the product is the length of the iron, in equal terms of unity.

Supposing the interior diameter of a hoop to be 32 inches, and the thickness of the iron $1\frac{1}{4}$, what must be the proper length of the iron, independent of any allowance for shutting?

 $32 + 1.25 = 33.25 \times 3.1416 = 104.458$ inches.

But the same is obtained simply by inspection in the Table of Circumferences.

Thus, $33 \cdot 25 = 2$ feet $9\frac{1}{4}$ in., opposite to which is 8 feet $8\frac{1}{2}$ inches. Again, let it be required to form a hoop of iron $\frac{7}{8}$ inch in thickness, and $16\frac{1}{4}$ inches outside diameter.

16.5 - .875 = 15.625, or 1 foot $3\frac{5}{8}$ inches; opposite to which, in the Table of Circumferences, is 4 feet 1 inch, independent of any allowance for shutting.

The length for angle iron, of which to form a ring of a given diameter, varies according to the strength of the iron at the root; and the rule is, for a ring with the flange outside, *add* to its required interior diameter, twice the extreme strength of the iron at the

root; or, for a ring with the flange inside, subtract twice the extreme strength; and the sum or remainder is the diameter by which to determine the length of the angle iron. Thus, suppose two angle iron rings similar to the following be required, the exterior diameter AB, and interior diameter CD, each to be 1 foot $10\frac{1}{2}$ inches, and c d

the extreme strength of the iron at the root cd, cd, &c, $\frac{3}{4}$ of an inch;

twice $\frac{7}{8} = 1\frac{3}{4}$, and 1 ft. $10\frac{1}{2}$ in. $+1\frac{3}{4} = 2$ ft. $\frac{1}{4}$ in., opposite to which, in the Table of Circumferences, is 6 ft. $4\frac{1}{4}$ in., the length of the iron for CD; and 1 ft. $10\frac{1}{2}$ in. $-1\frac{3}{4} = 1$ ft. $8\frac{3}{4}$ in., opposite to which is 5 ft. $5\frac{1}{4}$ in., the length of the iron for AB.

But observe, as before, that the necessary allowance for shutting must be added to the length of the iron, in addition to the length as expressed by the Table.

Required the capacity in gallons of a locomotive engine tender tank, 2 feet 8 inches in depth, and its superficial dimensions the following, with reference to the annexed plan:

Length, or	dist. between	Α	and	В	-	10 ft.	$2\frac{3}{4}$ in.	or, 122.75 in.
Breadth	"	С	and	D	=	6	7를	79.5
Length	"	i	and	g	=	3	$10\frac{3}{4}$	46.75
Mean bread space or	$^{\mathrm{th} \mathrm{of} \mathrm{coke}}$	lm		Ū	-	3	$1\frac{1}{4}$	37.25
Diameter of	f circle	rn			==	2	81	32.25
66	"	ps			=	1	6 <u>‡</u>	18.5
Radius of b	ack corners	$\overline{v}x$			=		4	4

Then, $122.75 \times 79.5 = 9758.525$ square inches, as a rectangle. And $18.5^2 \times .7854 = 268.8$ " " area of circle formed by the two ends.

Total 10027.325 " from which deduct the area of the coke-space, and the difference of area between the semicircle formed by the two back corners, and that of a rectangle of equal length and breadth;

Then $46.75 \times 37.25 = 1731.4375$ area of r, n, s, t, in sq. ins. $32.25^2 \times .7854$

 $\frac{2}{2} = 408.4$ area of half the circle *rn*.

Radius of back corners = 4 inches;

consequently $8^2 \times .7854 = 25.13$, the semicircle's area; and $8 \times 4 = 32 - 25.13 = 6.87$ inches taken off by rounding the corners.

Hence, $\overline{1731\cdot4375 + 408\cdot4 + 6\cdot87} = 2146\cdot707$, and

 $10027 \cdot 235 - 2146 \cdot 707 = 7880 \cdot 618$ square inches, or whole area in plan,

 7880.618×32 the depth = 252179.776 cubic inches, and 252179.776 divided by 231 gives 1091.6873 the content in gallons.

TABLES by which to facilitate the Mensuration of Timber.

Breadth in inches.	Area of a lineal foot.	Breadth in inches.	Area of a lineal foot.	Breadth in inches.	Area of a lineal foot.
1	·0208	4	·3334	8	·6667
10	·0417	41	·3542	81	·6875
34	·0625	$4\frac{1}{2}$	·375	$8\frac{1}{2}$	·7084
1	·0834	$4\frac{3}{4}$	·3958	$8\frac{3}{4}$	·7292
11	·1042	5	·4167	9	•75
11	$\cdot 125$	$5\frac{1}{4}$	·4375	91	·7708
$1\frac{3}{4}$	·1459	$5\frac{1}{2}$	·4583	91	·7917
2	·1667	$5\frac{3}{4}$	·4792	$9\frac{3}{4}$	$\cdot 8125$
$2\frac{1}{4}$	·1875	•6	•5	10	·8334
$2\frac{1}{2}$	·2084	64	·5208	101	·8542
$2\bar{3}_{4}$	·2292	$6\frac{1}{2}$	·5416	$10\frac{1}{2}$	·875
3	·25	$6\frac{3}{4}$	·5625	$10\frac{3}{4}$	·8959
31	·2708	7^{-}	·5833	11	·9167
$3\frac{1}{2}$	·2916	71	·6042	114	·9375
$3\frac{3}{4}$	·3125	$7\frac{1}{2}$	·625	111	·9583
		$7\frac{3}{4}$	·6458	$11\frac{3}{4}$	$\cdot 9792$

1. Flat or Board Measure.

Application and Use of the Table.

Required the number of square feet in a board or plank $16\frac{1}{2}$ feet in length and $9\frac{3}{4}$ inches in breadth.

Opposite $9\frac{3}{4}$ is $\cdot 8125 \times 16 \cdot 5 = 13 \cdot 4$ square feet.

A board 1 foot $2\frac{3}{4}$ inches in breadth, and 21 feet in length; what is its superficial content in square feet?

Opposite $2\frac{3}{4}$ is $\cdot 2292$, to which add the 1 foot; then $1\cdot 2292 \times 21 = 25\cdot 8$ square feet.

In a board $15\frac{1}{2}$ inches at one end, 9 inches at the other, and $14\frac{1}{2}$ feet in length, how many square feet?

 $\frac{15\cdot5+9}{2} = 12\frac{1}{4}$, or 1.0208; and 1.0208 × 14.5 = 14.8 sq. ft.

The solidity of round or unsquared timber may be found with much more accuracy by the succeeding Rule:—Multiply the square of one-fifth of the mean girth by twice the length, and the product will be the solidity, very near the truth.

A piece of timber is 30 feet long, and the mean girth is 128 inches, what is the solidity?

$$\frac{128}{5} = 25.6.$$

Then $\frac{25.6^2 \times 60}{144} = 273.06$ cubic feet.

This is nearer the truth than if one-fourth the girth be employed.

Mean 1/4 girt in inches.	Cubic feet in each lineal foot.	Mean 1/4 girt in inches.	Cubic feet in each lineal foot.	Mean 1/4 girt in inches.	Cubic feet in each lineal foot.	Mean ¼ girt in inches.	Cubic feet in each lineal foot.
6	·25	12	1	18	2.25	24	4
64	•272	124	1.042	184	2.313	244	4.084
61	•294	125	1.085	185	2.376	241	4.168
64	•317	124	1.129	184	2.442	244	4.254
7	•340	13	1.174	19	2.506	25	4.34
74	•364	$13\frac{1}{4}$	1.219	$19\frac{1}{4}$	2.574	$25\frac{1}{4}$	4.428
71	•39	$13\frac{1}{2}$	1.265	$19\frac{1}{2}$	2.64	$25\frac{1}{2}$	4.516
$7\frac{3}{4}$	•417	$13\frac{3}{4}$	1.313	$19\frac{3}{4}$	2.709	$25\frac{3}{4}$	4.605
8	•444	14	1.361	20	2.777	26	4.694
81	•472	141	1.41	$20\frac{1}{4}$	2.898	$26\frac{1}{4}$	4.785
81	•501	$14\frac{1}{2}$	1.46	$20\frac{1}{2}$	2.917	$26\frac{1}{2}$	4.876
83	•531	$14\frac{3}{4}$	1.511	$20\frac{3}{4}$	2.99	$26\frac{3}{4}$	4.969
9	•562	15	1.562	21	3.062	27	5.062
91	•594	151	1 .615	$21\frac{1}{4}$	3.136	$27\frac{1}{4}$	5.158
91	·626	151	1.668	211	3.209	$27\frac{1}{2}$	5.252
93	.659	153	1.772	213	3.285	$27\frac{3}{4}$	5.348
10	.694	16	1.777	22	3.362	28	5.444
101	.73	161	1.833	221	3.438	281	5.542
101	•766	164	1.89	221	3.516	281	5.64
103	·803	163	1.948	$22\frac{3}{4}$	3.598	283	5.74
11	•84	17	2.006	23	3.673	29	5.84
111	•878	171	2.066	231	3.754	291	5.941
111	·918	171	2.126	231	3.835	291	6.044
113	•959	173	2.187	233	3.917	293	6.146
4				4	1	4	

2. Cubic or Solid Measure.

In the cubic estimation of timber, custom has established the rule of $\frac{1}{4}$, the mean girt being the side of the square considered as the cross sectional dimensions; hence, multiply the number of cubic feet by lineal foot as in the Table of Cubic Measure opposite the $\frac{1}{4}$ girt, and the product is the solidity of the given dimensions in cubic feet.

Suppose the mean $\frac{1}{4}$ girt of a tree $21\frac{1}{4}$ inches, and its length 16 feet, what are its contents in cubic feet?

 $3.136 \times 16 = 50.176$ cubic feet.

Battens, Deals, and Planks are each similar in their various lengths, but differing in their widths and thicknesses, and hence their principal distinction: thus, a batten is 7 inches by $2\frac{1}{2}$, a deal 9 by 3, and a plank 11 by 3, these being what are termed the standard dimensions, by which they are bought and sold, the length of each being taken at 12 feet; therefore, in estimating for the proper value of any quantity, nothing more is required than their lineal dimensions, by which to ascertain the number of times 12 feet, there are in the given whole.

Suppose I wish to purchase the following:

	7 0	f 6 feet	6 ×	7 =	42	feet	
	5	14	$14 \times$	5 =	70		
	11	19	$19 \times$	11 =	209		
and	6	21	$21 \times$	6 =	126		
				12)	447) 37.25 standard	deals.

MENSURATION OF TIMBER.

1	Inches.		Ft. In.	1	Inches.	1	Ft.	In.	1	Inches.		Ft.	In.
	$ \begin{array}{r} 2 \\ 2_{\frac{1}{2}} \\ 3_{\frac{1}{2}} \\ 4_{\frac{1}{2}} \\ 4_{\frac{1}{2}} \\ 5_{\frac{1}{2}} \\ $		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	by	$ \begin{array}{r} 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \end{array} $		9 8 7 6 5 5	0 0 2 6 0 6	6 inches by	$ \begin{array}{r} 9\frac{1}{2} \\ 10 \\ 10\frac{1}{2} \\ 11 \\ 11\frac{1}{2} \\ 12 \end{array} $		$egin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\end{array}$	6 5 3 2 1 0
2 inches by	$ \begin{array}{c} 5 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \\ 2 \\ 9 \\ 9 \\ 1 \\ 10 \\ 10 \\ 1 \end{array} $	ıgth	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 inches	$ \begin{array}{r} 7\frac{1}{2} \\ 8 \\ 8\frac{1}{2} \\ 9 \\ 9\frac{1}{2} \\ 10 \\ 10\frac{1}{2} \\ 11 \\ 11\frac{1}{2} \\ 12 \\ \end{array} $	agth	4 4 4 4 3 3 3 3 3 3 3 3	9 6 3 0 9 7 5 3 2 0	7 inches by	$7 \\ 7\frac{1}{2} \\ 8 \\ 9\frac{1}{2} \\ 9\frac{1}{2} \\ 10\frac{1}{10\frac{1}{2}} \\ 11\frac{11\frac{1}{2}}{12} \\ 12$	ıgth	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{r} 11 \\ 9 \\ 6 \\ 5 \\ 3 \\ 2 \\ 1 \\ 11 \\ 10 \\ 9 \\ 8 \end{array} $
	$ \begin{array}{c} 11^{1} \\ 11\frac{1}{2} \\ 12 \end{array} $	re in len	$ \begin{array}{ccc} 6 & 6 \\ 6 & 4 \\ 6 & 0 \end{array} $		$5 \\ 5\frac{1}{2} \\ 6 \\ 6 \\ 1$	ire in lei	5 5 4	9 3 10		8 81 9	re in ler	$\frac{2}{2}$	3 1 0
	$ \begin{array}{r} 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \\ 6 \\ 6 $	requi	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 inches by	$ \begin{array}{c} 0\frac{1}{2} \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 10 \end{array} $	requi	4 4 3 3 3 3 3 0	5 1 10 7 5 2 0	8 inches b	$\begin{array}{c} & 9\frac{1}{2} \\ 10 \\ 10\frac{1}{2} \\ 11 \\ 11\frac{1}{2} \\ 12 \end{array}$	requi		10 9 8 7 7 6
3 inches by	$ \begin{array}{c} 6\frac{1}{2} \\ 7 \\ 7\frac{1}{2} \\ 8 \\ 8\frac{1}{2} \\ 9 \\ 01 \end{array} $		$\begin{array}{c} 7 & 4 \\ 6 & 10 \\ 6 & 4 \\ 6 & 0 \\ 5 & 8 \\ 5 & 4 \\ 5 & 0 \end{array}$		$ \begin{array}{r} 10 \\ 10 \\ 11 \\ 11 \\ 12 \\ \hline 6 \\ 61 \end{array} $			10 9 8 6 4 0	9 inchés by	$9 \\ 9^{\frac{1}{2}} \\ 10 \\ 10^{\frac{1}{2}} \\ 11 \\ 11^{\frac{1}{2}} \\ 12 \\ 10^{\frac{1}{2}} \\ 1$	6	$ \begin{array}{c} 1 \\ $	9 8 7 6 5 4
	$\begin{array}{c} 3\frac{1}{2} \\ 10 \\ 10\frac{1}{2} \\ 11 \\ 11\frac{1}{2} \\ 12 \end{array}$		$\begin{array}{c} 3 & 0 \\ 4 & 10 \\ 4 & 6 \\ 4 & 4 \\ 4 & 2 \\ 4 & 0 \end{array}$	6 inches by	$ \begin{array}{c} 0 \hat{s} \\ 7 \\ 7 \\ $		33322	5 2 0 10 8	10 in. by	$ \begin{array}{r} 12 \\ 10 \\ 10 \\ 10 \\ 11 \\ 11 \\ 11 \\ 11 \\ 12 \\ \end{array} $		1 1 1 1 1	4 5 4 3

 TABLE showing the number of Lineal Feet of Scantling of various dimensions, which are equal to a Cubic Foot.

Hewn and sawed timber are measured by the cubic foot. The *unit* of board measure is a superficial foot one inch thick.

To measure round timber.—Multiply the length in feet by the square of $\frac{1}{4}$ of the mean girth in inches, and the product divided by 144 gives the content in cubic feet.

The $\frac{1}{4}$ girths of a piece of timber, taken at five points, equally distant from each other, are 24, 28, 33, 35, and 40 inches; the length 30 feet, what is the content?

$$\frac{24 + 28 + 33 + 35 + 40}{5} = 32.$$

Then $\frac{32^2 \times 30}{144} = 213\frac{1}{3}$ cubic feet.

Diam.	Superficies.	Solidity.	Diam.	Superficies.	Solidity.	Diam.	Superficies.	Solidity.
1.0	3.1416	·5236	4.7	69.3979	54.3617	8.4	221.6712	310-3398
-1	3.8013	·6969	8	72.3824	57.9059	.5	226.9806	321.5558
.2	4.5239	·9047	.9	75.4298	61.6010	.6	232.3527	333.0389
•3	5.3093	1.1503	5.0	78.5400	65.4500	•7	237.7877	344.7921
•4	6.1575	1.4367	•1	81.7130	69.4560	.8	243.2855	356.8187
.5	7.0686	1.7671	•2	84.9488	73.6223	.9	248.8461	369.1217
•6	8.0424	2.1446	•3	88.2475	77.9519	9.0	$254 \cdot 4696$	381.7044
•7	9.0792	2.5724	•4	91.6090	$82 \cdot 4481$	•1	260.1558	$394 \cdot 5697$
•8	10.1787	3.0536	.5	95.0334	87.1139	•2	265.9130	407.7210
•9	11.3411	3.5913	•6	98.5205	91.9525	•3	271.7169	$421 \cdot 1613$
$2 \cdot 0$	12.5664	4.1888	.7	102.0705	96.9670	•4	277.5917	$434 \cdot 8937$
•1	13.8544	4.8490	•8	$105 \cdot 6834$	$102 \cdot 1606$	•5	$283 \cdot 5294$	$448 \cdot 9215$
$\cdot 2$	$15 \cdot 2053$	5.5752	•9	109.3590	107.5364	•6	289.5298	$463 \cdot 2477$
•3	16.6190	6 3706	6.0	113.0976	113.0976	•7	295.5931	477.7755
•4	18.0956	7.2382	· ·1	$116 \cdot 8989$	$118 \cdot 8472$	-8	301.7192	$492 \cdot 8081$
•5	19.6350	8.1812	•2	120.7631	124.7885	•9	307.9082	508.0485
•6	21.2372	9.2027	•3	124.6901	130.9246	10.0	314.1600	$523 \cdot 6000$
.7	22.9022	10.3060	•4	128.6799	$137 \cdot 2585$	•1	320.4746	539.4656
•8	24.6300	11.4940	•5	132.7326	143.7936	•2	326.8520	$555 \cdot 6485$
•9	26.4208	12.7700	•6	$136 \cdot 8480$	150.5329	•3	$333 \cdot 2923$	$572 \cdot 1518$
3.0	28.2744	14.1372	•7	141.0264	157.4795	•4	339.7954	588.9784
•1	30.1907	15.5985	•8	$145 \cdot 2675$	164.6365	•5	$346 \cdot 3614$	$606 \cdot 1324$
$\cdot 2$	32.1699	17.1573	•9	149.5715	172.0073	•6	352.9901	$623 \cdot 6159$
•3	34.2120	$18 \cdot 8166$	7.0	$.153 \cdot 9384$	$179 \cdot 5948$	•7	359.6817	$641 \cdot 4325$
•4	36.3168	20.5795	•1	$158 \cdot 3680$	$187 \cdot 4021$	•8	$366 \cdot 4362$	$659 \cdot 5852$
•5	38.4846	$22 \cdot 4493$	•2	$162 \cdot 8605$	$195 \cdot 4326$	•9	$373 \cdot 2534$	678.0771
•6	40.7151	$24 \cdot 4290$	•3	$167 \cdot 4158$	203.6893	11.0	380.1336	696.9116
•7	43.0085	26.5219	•4	172.0340	$212 \cdot 1752$	•1	387.0765	716.0915
•8	45.3647	28.7309	•5	176.7150	220.8937	$\cdot 2$	394.0823	735.6200
•9	47.7837	31.0594	•6	$181 \cdot 4588$	$229 \cdot 8478$	•3	401.1509	$755 \cdot 5008$
4.0	50.2656	33.5104	•7	$186 \cdot 2654$	239.0511	•4	$408 \cdot 2823$	$775 \cdot 7364$
•1	52.8102	36.0870	•8	191.1349	$248 \cdot 4754$	•5	$415 \cdot 4766$	796.3301
$\cdot 2$	55.4178	38.7924	•9	196.0672	$258 \cdot 1552$	•6	422.7336	$817 \cdot 2851$
•3	58.0881	41.6298	8.0	201.0624	268.0832	•7	430.0536	838.6045
•4	60.8213	$44 \cdot 6023$	•1	$206 \cdot 1203$	$278 \cdot 2625$	•8	$437 \cdot 4363$	860.2915
•5	$63 \cdot 6174$	47.7130	$\cdot 2$	$211 \cdot 2411$	$288 \cdot 6962$	•9	$444 \cdot 8819$	$882 \cdot 3492$
•6	66.4782	50.9651	•3	$216 \cdot 4248$	299.3876	12.0	452.3904	904.7808

TABLE containing the Superficies and Solid Content of Spheres, from1 to 12, and advancing by a tenth.

To reduce Solid Inches into Solid Feet.

1728 Solid Inches to one Solid Foot.

Feet.	Inches.	Feet.	Inches.	Feet.	Inches.	Feet.	Inches.	Feet.	Inches.	Feet.	Inches.
1=	=1728	18=	=31104	35=	=60480	52:	=88956	69=	=119232	85=	=146880
2	3456	19	32832	36	62208	53	91584	70	120960	86	148608
3	5184	20	34560	37	63936	54	93312	71	122688	87	150336
4	6912	21	36288	38	65664	55	95040	72	124416	88	152064
5	8640	22	38016	39	67392	56	96768	73	126144	89	153792
6	10368	23	39744	40	69120	57	98496	74	127872	90	155520
7	12096	24	41472	41	70848	58	100224	75	129600	91	157248
8	13824	25	43200	42	72576	59	101952	76	131328	92	158976
9	15552	26	44928	43	74304	60	103680	77	133056	93	160704
10	17280	27	46656	44	76032	61	105408	78	134784	94	162432
11	19008	28	48384	45	77760	62	107136	79	136512	95	164160
12	20736	29	50112	46	79488	63	108864	80	138240	96	165888
13	22464	30	51840	47	81216	64	110592	81	139968	97	167616
14	24192	31	53568	48	82944	65	112320	82	141696	98	169344
15	25920	32	55296	49	84672	66	114048	83	143424	99	171072
16	27648	33	57024	50	86400	67	115776	84	145152	100	172800
17	29376	34	58752	51	88128	68	117504				

CUTTINGS AND EMBANKMENTS.

THE angle of repose upon railways, or that incline on which a carriage would rest in whatever situation it was placed, is said to be at 1 in 280, or nearly 19 feet per mile; at any greater rise than this, the force of gravity overcomes the horizontal traction, and carriages will not rest, or remain quiescent upon the line, but will of themselves run down the line with accelerated velocity. The angle of practical effect is variously stated, ranging from 1 in 75 to 1 in 330.

The width of land required for a railway must vary with the depth of the cuttings and length of embankments, together with the slopes necessary to be given to suit the various materials of which the cuttings are composed: thus, rock will generally stand when the sides are vertical; chalk varies from $\frac{1}{6}$ to 1, to 1 to 1; gravel $1\frac{1}{2}$ to 1; coal $1\frac{1}{2}$ to 1; clay 1 to 1, &c.; but where land can be obtained at a reasonable rate, it is always well to be on the safe side.

The following Table is calculated for the purpose of ascertaining the extent of any cutting in cubic yards, for 1 chain, 22 yards, or 66 feet in length, the slopes or angles of the sides being those which are most in general practice, and formation level equal 30 feet.

Depth	Half		Content	Content	Content	Depth	Half		Content	Content	Content
of	width	Content	of 1 per-	of 3 per-	of 6 per-	of	width	Content	of 1 per-	of 3 per-	of 6 per-
eut-	at	in cubic	pendicu-	pendicu-	pendicu-	eut-	at	in cubic	pendicu-	pendicu-	pendicu-
feet.	feet.	chain.	hreadth	hreadth	hreadth	feet	feet	chain.	hreadth	breadth.	breadth.
1	16	75.78	2.44	7.33	14.67	26	41	3599.11	63.55	190.67	381.33
2	17	156.42	4.89	14.67	29.33	27	42	3762.00	65.99	198.00	396.00
3	18	242.00	7.33	22.00	44.00	28	43	3969.78	68.43	205.33	410.67
4	19	332.44	9.78	29.33	58.67	29	44	$4182 \cdot 44$	70.88	212.67	425.33
5	20	427.78	12.22	36.67	73.33	30	45	4400.00	73.32	220.00	440.00
6	21	528.00	14.67	44.00	88.00	31	46	4622.44	75.77	227.33	454.67
7	22	633.11	17.11	51.33	102.67	32	47	4849.78	78.22	234.67	469.33
8	23	743.11	19.56	58.67	117.33	33	48	5082.00	80.67	242.00	484.00
9	24	858.00	22.00	66.00	132.00	34	49	5319.11	83.11	249.33	498.67
10	25	977.78	24.44	73.33	146.67	35	50	5561.11	85.55	256.67	513.33
11	26	1102.44	26.89	80.67	161.33	36	51	5808.00	88.00	264.00	528.00
12	27	1232.00	29.33	88.00	176.00	37	52	6059.78	90.44	271.33	542.67
13	28	1366.44	31.78	95.33	190.67	38	53	6316.44	92.39	278.67	557.33
14	29	1505.78	34.22	102.67	$205 \cdot 33$	39	54	6578.00	95.33	286.00	572.00
15	30	1650.00	36.66	110.00	220.00	40	55	6844.44	97.77	293.33	586.67
16	31	1799.11	39.11	117.33	234.67	41	56	7115.78	100.22	300.67	601.33
17	32	1953.11	41.55	124.67	249.33	42	57	7392.00	102.66	308.00	616.00
18	33	2112.00	43.99	132.00	264.00	43	58	7673.11	105.11	315.33	630.67
19	34	2275.78	46.44	139.33	278.67	44	59	7959.11	107.55	322.67	645.33
20	35	2444.44	48.89	146.67	293.33	45	60	8250.00	109.99	330.00	660.00
21	36	2618.00	51.33	154.00	308.00	46	61	8545.78	112.44	337.33	674.67
22	37	2796.44	53.77	161.33	322.67	47	62	8846.44	114.88	344.67	689.33
23	38	2979.78	56.21	168.67	337.33	48	63	9152.00	117.33	352.00	704.00
24	39	3168.00	58.66	176.00	352.00	49	64	9462.44	119.77	359.33	718.67
25	40	3361.11	61.10	183.33	366.67	50	65	9777.78	122.21	366.67	733.33
	1	1	1								

Slopes 1 to 1.

Depth of cut- ting in fect.	Half width at top in feet.	Content in cubic yards per chain.	Content of 1 per- pendicu- lar ft. in breadth.	Content of 3 per- pendicu- lar ft. in breadth.	Content of 6 per- pendicu- lar ft. in breadth.	Depth of cut- ting in feet.	Half width at top in feet.	Content in cubic yards per chain.	Content of 1 per- pendicu- lar ft. in breadth.	Content of 3 per- pendicu- lar ft. in breadth.	Content of 6 per- pendicu- iar ft. in breadth.
1	161	77.00	2.44	7.33	14.67	26	54	4385.33	63.55	190.67	381.33
2	18	161.33	4.89	14.67	29.33	27	551	4653.00	65.99	198.00	396.00
3	19;	253.00	7.33	22.00	44.00	28	57	4928.00	68.43	205.33	410.67
4	21	352.00	9.78	29.33	58.67	29	$58\frac{1}{2}$	5210.33	70.88	212.67	425.33
5	223	453.33	12.22	36.67	73.33	30	60	5500.00	73.32	220.00	440.00
6	24	572.00	14.67	44.00	88.00	31	$61\frac{1}{2}$	5797.00	75.77	227.33	454.67
7	251	693·00	17.11	51.33	102.67	32	63	6101.33	78.22	234.67	469.33
8	27^{-}	821.33	19.56	58.67	117.33	33	$64\frac{1}{2}$	6413·00	80.67	242.00	484.00
9	$28\frac{1}{2}$	957.00	22.00	66.00	132.00	34	66^{-}	6732.00	83.11	249.33	498.67
10	30	1100.00	$24 \cdot 44$	73.33	146.67	35	$67\frac{1}{2}$	7058.33	85.55	256.67	513.33
11	$31\frac{1}{2}$	1250.33	26.89	80.67	161.33	36	69^{-}	7392.00	88.00	264.00	528.00
12	33	1408.00	29.33	88.00	176.00	37	705	7733·00	90.44	271.33	542.67
13	$34\frac{1}{2}$	1573.00	31.78	95.33	190.67	38	72	8081.33	92.39	278.67	557.33
14	36	1745.33	34.22	102.67	205.33	39	731	8437.00	95.33	286.00	572.00
15	$37\frac{1}{2}$	1925.00	36.66	110.00	220.00	40	75	8800.00	97.77	293.33	586.67
16	39	2112.00	39.11	117.33	234.67	41	761	9170.33	100.22	300.67	601.33
17	$40\frac{1}{2}$	2306.33	41.55	124.67	249.33	42	78^{-}	9548.00	102.66	308.00	616.00
18	42^{-}	2508.00	43.99	132.00	264.00	43	$79\frac{1}{2}$	9933.00	105.11	315.33	630.67
19	$43\frac{1}{2}$	2717.00	46.44	139.33	278.67	44	81	10325.33	107.55	322.67	645.33
20	45^{-}	2933.33	48.89	146.67	293.33	45	$82\frac{1}{2}$	10725.00	109.99	330.00	660.00
21	$46\frac{1}{2}$	3157.00	51.33	154.00	308.00	46	84	11132.00	112.44	337.33	674.67
22	48	3388.00	53.77	161.33	322.67	47	$85\frac{1}{2}$	11546.33	114.88	344.67	689.33
23	$49\frac{1}{2}$	3626.33	56.21	168.67	337.33	48	87	11968.00	117.33	352.00	704.00
24	51^{-}	3872.00	58.66	176.00	352.00	49	$88\frac{1}{2}$	12397.00	119.77	359.33	718.67
25	$52\frac{1}{2}$	4125.00	61.10	183.33	366.67	50	90	$12833 \cdot 33$	122.21	366.67	733.33
	-										-

Slopes $1\frac{1}{2}$ to 1.

07	0		-1
NIODES	\mathbf{z}	to.	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_		

Depth of cut- ting in feet.	Half width at top in feet.	Content in cubic yards per chain.	Content of 1 per- pendicu- lar ft. in breadth.	Content of 3 per- pendicu- lar ft. in breadth.	Content of 6 per- pendicu- lar ft. in breadth.	Depth of cut- ting in feet.	Half width at top in feet.	Content in cubic yards per chain.	Content of 1 per- pendicu- lar ft. in breadth.	Content of 3 per- pendicu- lar ft. in breadth.	Content of 6 per- pendicu- lar ft. in breadth.
1	17	78.22	2.44	7.33	14.67	26	67	5211.55	63.55	190.67	381.33
2	19	166.22	4.89	14.67	29.33	27	69	5544.00	65.99	198.00	396.00
3	21	264.00	7.33	22.00	44.00	28	71	5886.22	68.43	205.33	410.67
4	23	371.55	9.78	29.33	58.67	29	73	6238.22	70.88	212.67	$425 \cdot 33$
5	25	<b>488.89</b>	12.22	36.67	73.33	30	75	6600.00	73.32	220.00	440.00
6	27	616.00	14.67	<b>4</b> 4·00	88.00	31	77	6971·55	75.77	227.33	454.67
7	29	752.89	17.11	51.33	102.67	32	79	7352.89	78.22	234.67	469.33
8	31	899.55	19.56	58.67	117.33	33	81	7744.00	80.67	242.00	484.00
9	33	1056.00	22.00	66.00	132.00	34	83	8144.89	83.11	249.33	498.67
10	35	$1222 \cdot 22$	24.44	73.33	146.67	35	85	8555.55	85.55	256.67	513.33
11	37	1398.22	26.89	80.67	161.33	36	87	8976.00	88.00	264.00	528.00
12	39	1584.00	29.33	88.00	176.00	37	89	9406.22	90.44	271.33	542.67
13	41	1779.55	31.78	95.33	190 67	38	91	9846.22	92.39	278.67	557.33
14	43	1984.89	34.22	102.67	205.33	39	93	10296.00	95.33	286.00	572.00
15	45	2200.00	36.66	110.00	220.00	40	95	$10755 \cdot 55$	97.77	293.33	586.67
16	47	2424.89	39.11	117.33	234.67	41	97	$11224 \cdot 89$	100.22	300.67	601.33
17	49	2659.55	41.55	124.67	249.33	42	99	11704.00	102.66	308.00	616.00
18	51	2904.00	43.99	132.00	264.00	43	101	$12192 \cdot 89$	$105 \cdot 11$	315.33	630.67
19	53	3158.22	46.44	139.33	278.67	44	103	12691.55	107.55	322.67	645.33
20	55	$34 \cdot 2222$	48.89	146.67	293.33	45	105	13200.00	109.99	330.00	660.00
21	57	3696.00	51.33	154.00	308.00	46	107	$13718 \cdot 22$	112.44	337.33	674.67
22	59	3979.55	53.77	161.33	322.67	47	109	14246.22	114.88	344.67	689.33
23	61	4272.89	56.21	168.67	337.33	48	111	14784.00	117.33	352.00	704.00
24	63	4576.00	58.66	176.00	352.00	49	113	15331.55	119.77	359.33	718.67
25	65	$4888 \cdot 89$	61.10	183.33	366.67	50	115	$15888 \cdot 89$	$122 \cdot 21$	366.67	733.33
۱				1	1		_		1	1	

By the fourth, fifth, and sixth columns in each table, the number of cubic yards is easily ascertained at any other width of formation level above or below 30 feet, having the same slopes as by the tables, thus :---

Suppose an excavation of 40 feet in depth, and 33 feet in width at formation level, whose slopes or sides are at an angle of 2 to 1, required the extent of excavation in cubic yards:

$$10755 \cdot 55 + 293 \cdot 33 = 11048 \cdot 88$$
 cubic yards.

The number of cubic yards in any other excavation may be ascertained by the following simple rule :

To the width at formation level in feet, add the horizontal length of the side of the triangle formed by the slope, multiply the sum by the depth of the cutting, or excavation, and by the length, also in feet; divide the product by 27, and the quotient is the content in cubic yards.

Suppose a cutting of any length, and of which take 1 chain, its depth being  $14\frac{1}{2}$  feet, width at the bottom 28 feet, and whose sides have a slope of  $1\frac{1}{4}$  to 1, required the content in cubic yards :

$$\frac{14.5 \times 1.25 = 18.125 + 28 \times 14 = 645.75 \times 66}{\frac{42619.5}{27} = 1578.5 \text{ cubic yards.}}$$

 $\frac{l}{6} \left\{ (b + rh') h' + (b + rh) h + 4 \left[ b + r \frac{h + h'}{2} \right] \frac{h + h'}{2} \right\}$ 

gives the content of any cutting. In words, this formula will be:— To the area of each end, add four times the middle area; the sum multiplied by the length and divided by 6 gives the content. The breadth at the bottom of cutting = b; the perpendicular depth of cutting at the higher end = h; the perpendicular depths of cutting at the lower end = h'; l, the length of the solid; and rh' the ratio of the perpendicular height of the slope to the horizontal base, multiplied by the height h'. rh, the ratio r, of the perpendicular height of the slope, to the horizontal base, multiplied by the height h.

Let b = 30; h = 50; h' = 20; l = 84 feet; and 2 to 5 or  $\frac{2}{5}$  the ratio of the perpendicular height of the slope to the horizontal base:

 $\begin{aligned} &\frac{84}{6} \left\{ (30 + \frac{2}{5} \times 20) \ 20 + (30 + \frac{2}{5} \times 50) \ 50 + 4 \ [30 + \frac{2}{5} \frac{50 + 20}{2}] \right. \\ &\left. \frac{50 + 20}{2} \right\} = 14 \left\{ 38 \times 20 + 50 \times 50 + 4 \times 44 \times 35 \right\} = 131880 \\ &\text{cubic feet.} \quad \frac{131880}{27} = 4884 \cdot 44 \ \text{cubic yards.} \end{aligned}$ 

This rule is one of the most useful in the mensuration of solids, it will give the content of any irregular solid very nearly, whether it be bounded by right lines or not.

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1	1	1	1.0000000	1.0000000	·100000000
2	4	8	1.4142136	1.2599210	·500000000
3	9	27	1.7320508	1.4422496	·3333333333
4	16	64	2.0000000	1.5874011	$\cdot 250000000$
5	25	125	$2 \cdot 2360680$	1.7099759	$\cdot 200000000$
6	36	216	$2 \cdot 4494897$	1.8171206	·166666667
7	49	343	2.6457513	1.9129312	$\cdot 142857143$
8	64	512	$2 \cdot 8284271$	2.0000000	$\cdot 125000000$
9	81	729	8.0000000	2.0800837	•111111111
10	100	1000	3.1622777	2.1544347	·100000000
11	191	1331	3.3166248	2.2239801	•090909091
12	144	1798	3.4641016	2.2894286	•0833333333
12	160	9107	8.6055519	2.2004200	•076923077
10	109	2137	2.7416574	2.4101499	.071498571
15	005	2141	2.0700022	9.4669191	066666667
10	240	0010	4.0000000	2.4002121	-000000007
10	200	4090	4.1001050	2.0190421	-052900000
10	209	4910	4-1201000	0.0007414	000020029
18	324	5852	4.2420407	2.020/414	000000000
19	361	6859	4.3588989	2.0684016	•052631579
20	400	8000	4.4721360	2.7144177	.050000000
21	441	9261	4.5825757	2.7589243	•047619048
	484	10648	4.6904158	2.8020393	•045454545
23	529	12167	4.7958315	2.8438670	$\cdot 043478261$
24	576	13824	4.8989795	2.8844991	·041666667
25	625	15625	5.0000000	2.9240177	·040000000
26	676	17576	5.0990195	2.9624960	$\cdot 038461538$
27	729	19683	5.1961524	3.0000000	·037037037
28	784	21952	5.2915026	3.0365889	·035714286
29	841	24389	5.3851648	3.0723168	034482759
30	900	27000	$5 \cdot 4772256$	$3 \cdot 1072325$	·033333333
31	961	29791	5.5677644	3.1413806	$\cdot 032258065$
32	1024	32768	5.6568542	$3 \cdot 1748021$	$\cdot 031250000$
33	1089	35937	5.7445626	$3 \cdot 2075343$	·030303030
34	1156	39304	5.8309519	3.2396118	·029411765
35	1225	42875	5.9160798	$3 \cdot 2710663$	$\cdot 028571429$
36	1296	46656	6.0000000	$3 \cdot 3019272$	·027777778
37	1369	50653	6.0827625	3.3322218	·027027027
38	1444	54872	6.1644140	3.3619754	$\cdot 026315789$
39	1521	59319	$6 \cdot 2449980$	$3 \cdot 3912114$	$\cdot 025641026$
40	1600	64000	6.8245553	3.4199519	·025000000
41	1681	68921	6.4031242	3.4482172	$\cdot 024390244$
42	1764	74088	6.4807407	3.4760266	$\cdot 023809524$
43	1849	79507	6.5574385	8.5033981	$\cdot 023255814$
44	1986	85184	6.6332496	3.5303483	·022727273
45	2025	91125	6.7082039	3.5568933	022222222
46	2116	97336	6.7823300	3.5830479	·021739130
47	2209	103823	6.8556546	3.6088261	·021276600
48	2304	110592	6.9282032	3.6342411	·020833333
49	2401	117640	7.0000000	3.6593057	+020408163
50	2500	125000	7.0710678	3.6840314	-020000000
51	2601	139651	7.1414984	3.7084298	•019607843
59	2704	140600	7.9111096	3.7395111	019230769
52	9900	1/00/7	7.9801000	3.7569959	+018867025
54	2009	157404	7.9494600	8.7707621	+018518510
55	2025	166275	7.4161095	3.8020525	+018181818
50	3126	175610	7.40090140	3.8959694	.017857142
57	29/0	195102	7.5409944	2.9495011	-017543860
01	0249	100108	1.9498344	0.0400011	.011040000

TABLE of Squares, Cubes, Square and Cube Roots of Numbers.

TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 101

Number.	Squares,	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
58	3364	195112	7.6157731	3.8708766	·017241379
59	3481	205379	7.6811457	3.8929965	$\cdot 016949153$
60	3600	216000	7.7459667	3.9148676	·016666667
61	3721	226981	7.8102497	3.9304972	·016393443
62	3844	238328	7.8740079	3.9578915	·016129032
63	3969	250047	7.9372539	3.9790571	·015873016
64	4096	262144	8.0000000	4.0000000	$\cdot 015625000$
65	4225	274625	8.0622577	4.0207256	·015384615
66	4356	287496	8.1240384	4.0412401	·015151515
67	4489	300763	8.1853528	4.0615480	$\cdot 014925373$
68	4624	314432	8.2462113	4.0816551	·014705882
69	4761	328509	8.3066239	4.1015661	$\cdot 014492754$
70	4900	343000	8.3666003	4.1212853	014285714
71	5041	357911	8.4261498	4.1408178	•014084517
72	5184	3/3248	8.4892814	4.1601676	.013888889
73	5329	405994	0.0000007	4.1093390	013698630
74	5695	400224	8.6609540	4.1900004	.013913914
76	5776	421075	8.7177070	4.2352026	010000000000000000000000000000000000000
77	5020	456533	8.7749644	4.95/3910	010107090
78	6084	474552	8.8317609	4.2726586	012820513
79	6241	493039	8.8881944	4.2908404	012658228
80	6400	512000	8.9442719	4.3088695	.012500000
81	6561	531441	9.0000000	4.3267487	012345679
82	6724	551368	9.0553851	4.3444815	012195122
83	6889	571787	9.1104336	4.3620707	·012048193
84	7056	592704	9.1651514	4.3795191	$\cdot 011904762$
85	7225	614125	9.2195445	4·3968296	·011764706
86	7396	636056	9.2736185	4.4140049	·011627907
87	7569	658503	9.3273791	4.4310476	$\cdot 011494253$
88	7744	681472	9.3808315	4.4470692	·011363636
89	7921	704969	9.4339811	$4 \cdot 4647451$	·011235955
90	8100	729000	9.4868330	4.4814047	·011111111
91	8281	753571	9.5393920	$4 \cdot 4979414$	$\cdot 010989011$
92	8464	778688	9.5916630	4.5143574	•010869565
93	8649	804357	9.6436508	4.5306549	•010752688
94	8836	830584	9.6953597	4.5468359	010638298
90	9025	80/0/4	9.7467943	4.5629026	010326316
90	9210	019679	0.0499579	4.5047000	.010200078
09	9604	0/1102	0.8004040	4.6104262	-010309278
99	9801	970299	9.9498744	4.6260650	01010101010
100	10000	1000000	10.0000000	4.6415888	·010000000
101	10201	1030301	10.0498756	4.6570095	.009900990
102	10404	1061208	10.0995049	4.6723287	.009803922
103	10609	1092727	10.1488916	4.6875482	·009708738
104	10816	1124864	10.1980390	4.7026694	·009615385
105	11025	1157625	10.2469508	4.7176940	·009523810
106	11236	1191016	10.2956301	4.7326235	·009433962
107	-11449	1225043	10.3440804	4.7474594	·009345794
108	11664	1259712	10.3923048	4.7622032	.009259259
109	11881	1295029	10.4403065	4.7768562	$\cdot 009174312$
110	12100	1331000	10.4880885	4.7914199	.009090909
111	12321	1367631	10.5356538	4.8058995	009009009
112	12544	1404928	- 10.00000000000000000000000000000000000	4.0202845	008928571
113	12/09	1442897	10.6770799	4.0040001	008771020
114	12990	1590875	10.7938053	4.8690449	-008605659
116	18456	1560896	10.7703296	4.8769990	-008099082
117	13689	1601613	10.8166538	4.8909732	008547009
118	13924	1643032	10.8627805	4.9048681	.008474576
119	14161	1685159	10.9087121	4.9186847	·008403361

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
120	14400	1728000	10.9544512	4.9394949	+008333333
120	14641	1771561	11.0000000	4.9460874	·008264463
122	14834	1815848	11.0453610	4.9596757	·008196721
123	15129	1860867	11.0905365	4.9731898	+008130081
124	15376	1906624	11.1355287	4.9866310	·008064516
125	15625	1953125	11.1803399	5.0000000	.008000000
126	15876	2000376	$11 \cdot 2249722$	5.0132979	·007936508
127	16129	2048383	11.2694277	5.0265257	·007874016
128	16384	2097152	11.3137085	5.0396842	·007812500
129	16641	2146689	11.3578167	5.0527743	·007751938
130	16900	2197000	11.4017543	5.0657970	·007692308
131	17161	2248091	11.4455231	5.0787531	·007633588
132	17424	2299968	11.4891253	5.0916434	$\cdot 007575758$
133	17689	2352637	11.5325626	5.1044687	$\cdot 007518797$
134	17956	2406104	11.5758369	5.1172299	·007462687
135	18225	2460375	11.6189500	5.1299278	•007407407
136	18496	2515456	11.6619038	5.1425632	•007352941
137	18769	2571353	11.7046999	5.1551367	007299270
138	19044	2628072	11.7473444	5.10/0493	007240377
139	19321	2080019	11.0901500	5.1094041	007194240
140	10000	2744000	11.0749491	5.9049941	007142857
141	19001	2000221	11.0162752	5.9171034	•007042254
144	20104	2005200	11.0589607	5.9903915	•006993007
140	20449	2924201	12.0000000	5.9414828	006944444
145	21025	3048625	12.0415946	5.2535879	.006896552
146	21316	3112136	12.0830460	5-2656374	·006849315
147	21609	3176523	12.1243557	5.2776321	$\cdot 006802721$
148	21904	3241792	$12 \cdot 1655251$	5.2895725	·006756757
149	22201	3307949	$12 \cdot 2065556$	5.3014592	·006711409
150	22500	3375000	$12 \cdot 2474487$	5.3132928	•0066666667
151	22801	3442951	$12 \cdot 2882057$	5.3250740	·006622517
152	23104	3511008	12.3288280	5.3368033	$\cdot 006578947$
153	23409	3581577	12.3693169	5.3484812	•006535948
154	23716	3652264	$12 \cdot 4096736$	5.3601084	•006493506
155	24025	3723875	12.4498996	5.3716854	•006451613
156	24336	3796416	12.4899960	0.3832126	006410206
157	24649	3869893	12.5299641	5.4061907	+006220114
150	24964	3944312	12.0090001	5.4175015	006280308
160	25201	4019079	12.6401106	5.4288352	006250000
161	25000	4173981	12.6885775	5.4401218	006211180
162	26244	4251528	12.7279221	5.4513618	.006172840
163	26569	4330747	12.7671453	5.4625556	·006134969
164	26896	4410944	12.8062485	5.4737037	$\cdot 006097561$
165	27225	4492125	12.8452326	5.4848066	•006060606
166	27556	4574296	12.8840987	5.4958647	·006024096
167	27889	4657463	12.9228480	5.5068784	$\cdot 005988024$
168	28224	4741632	12.9614814	5.5178484	•005952381
169	28561	4826809	13.0000000	0.5287748	•005917160
170	28900	4913000	13.0384048	0.5396583	005847059
171	29241	5000211	13.0766968	0.0004991	-005819059
172	29584	5088448	13-1148770	5.5790546	-005780247
173	29929	D1///17	12.1000060	5.5827702	•005747196
175	30276	0208024 5950975	13,9997566	5.5934447	.005714286
176	30020	5451776	13.2664002	5.6040787	005681818
177	31390	5545933	13.3041347	5.6146724	·005649718
178	31684	5639752	13.3416641	5.6252263	·005617978
179	32041	5735339	13.3790882	5.6357408	$\cdot 005586592$
180	32400	5832000	13.4164079	5.6462162	·005555556
181	32761	5929741	13.4536240	5.6566528	$\cdot 005524862$

# TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS.

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
182	33124	6028568	13.4907376	5.6670511	·005494505
183	33489	6128487	13.5277493	5.6774114	$\cdot 005464481$
184	33856	6229504	13.5646600	5.6877340	$\cdot 005434783$
185	34225	6331625	13.6014705	5.6980192	$\cdot 005405405$
186	34596	6434856	13.6381817	5.7082675	$\cdot 005376344$
187	34969	6539203	13.6747943	5.7184791	$\cdot 005347594$
188	35344	6644672	13.7113092	5.7286543	$\cdot 005319149$
189	35721	6751269	13.7477271	5.7387936	$\cdot 005291005$
190	36100	6859000	13.7840488	5.7488971	$\cdot 005263158$
191	36481	6967871	$13 \cdot 8202750$	5.7589652	$\cdot 005235602$
192	-36864	7077888	13.8564065	5.7689982	·005208333
193	37249	7189517	$13 \cdot 8924400$	5.7789966	$\cdot 005181347$
194	37636	7301384	13.9283883	5.7889604	$\cdot 005154639$
195	38025	7414875	13.9642400	5.7988900	$\cdot 005128205$
196	38416	7529536	14.0000000	5.8087857	$\cdot 005102041$
197	38809	7645373	14.0356688	5.8186479	005076142
198	39204	7762392	14.0712473	5.8284867	•005050505
199	39601	7880599	14.1067360	5.8382725	•005025126
200	40000	8000000	14.1421356	5.8480355	•005000000
201	40401	8120601	14.1774469	5.8577660	004975124
202	40804	8242408	14.2126704	5.8674673	•004950495
203	41209	8365427	14.2478068	5.8771307	•004926108
204	41616	8489664	14.2828569	5.8867653	•004901961
205	42025	8010120	14.31/8211	5.8963685	.004878049
205	42400	0/41010	14.3027001	0.9009406	.004804809
201	42049	0009/43	14.4000051	5.09104017	-004050910
200	40204	01909912	14.4568999	0'9249921 5.0944791	-004807092
209	44100	0261000	14.4019767	5.0420220	004761005
210	44591	0303031	14.5958300	5.0522418	+004701303
211	44944	9528128	14.5602198	5.9697390	+004735050
213	45369	9663597	14.5945195	5.9720926	004694836
214	45796	9800344	14.6287388	5.9814240	·004672897
215	46225	9938375	14.6628783	5.9907264	•004651163
216	46656	10077696	14.6969385	6.0000000	·004629630
217	47089	10218313	14.7309199	6.0092450	·004608295
218	47524	10360232	14.7648231	6.0184617	·004587156
219	47961	10503459	14.7986486	6.0276502	·004566210
220	48400	10648000	14.8323970	6.0368107	·004545455
221	48841	10793861	14.8660687	6.0459435	$\cdot 004524887$
222	49284	10941048	14.8996644	6.0550489	·004504505
223	49729	11089567	14.9331845	6.0641270	·004484305
224	50176	11239424	14.9666295	6.0731779	·004464286
225	50625	11390625	15.0000000	6.0824020	·004444444
226	51076	11543176	15.0332964	6.0991994	$\cdot 004424779$
227	51529	11697083	15.0665192	6.1001702	$\cdot 004405286$
228	51984	11852352	15.0996689	6.1091147	·004385965
229	52441	12008989	15.1327460	6.1180332	004366812
230	52900	12167000	15.1657509	6.1269257	•004347826
201	59994	12326391	15.1986842	6.1357924	004329004
252	54090	12487108	15.0040075	0.1446337	.004810345
400	54750	12049337	15.0070595	0.1034495	004291845
235	55995	12012904	15,2007007	6.1710059	004273304
236	55696	131/4956	15.9699015	6.1707466	004200019
237	56160	13219052	15-3042919	6.189/400	004207208
238	56644	13481279	15.4979486	6.1971544	004219409
239	57121	13651919	15.4596248	6.2058218	+004184100
240	57600	13824000	15.4919334	6.2144650	•004166667
241	58081	13997521	15.5241747	6.2230843	+004149378
242	58564	14172488	$15 \cdot 5563492$	6.2316797	.004132231
243	59049	14348907	15.5884573	6.2402515	$\cdot 004115226$
	1	1		-	

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
244	59536	14526784	15.6204994	6.2487998	·004098361
245	60025	14706125	15.6524758	$6 \cdot 2573248$	·004081633
246	60516	14886936	15.6843871	$6 \cdot 2658266$	·004065041
247	61009	15069223	15.7162336	$6 \cdot 2743054$	·004048583
248	61504	15252992	15.7480157	6.2827613	·004032258
249	62001	15438249	15.7797338	6.2911946	·004016064
250	62500	15625000	15.8113883	6.2996053	·004000000
251	63001	15813251	15.8429795	6.3079935	·003984064
252	63504	16003008	$15 \cdot 8745079$	6.3163596	·003968254
253	64009	16194277	15.9059737	6.3247035	·003952569
254	64516	16387064	15.9373775	6.3330256	·003937008
255	65025	16581375	15.9687194	6.3413257	$\cdot 003921569$
256	65536	16777216	16.0000000	6.3496042	•003906250
257	66049	16974593	16.0312195	6.3578611	·003891051
258	65054	17173512	16.0623784	6.3660968	•003875969
209	67081	17373979	16.0934/69	0.3743111	003861004
200	69101	17576000	10.1240100	0.3823043	003040104
201	68644	17779001	10.1004944	6.2022070	003031410
202	60160	1/904/20	16.9179747	6.4060595	-002800094
200	60606	10191447	16.9490769	6.4150097	000002201
265	70225	18609695	16.2788206	6.4221583	003778585
266	70756	18821096	16.3095064	6.4319976	•003759398
267	71289	19034163	16.3401346	6.4392767	003745318
268	71824	19248832	16.3707055	6.4473057	·003731343
269	72361	19465109	16.4012195	6 4553148	$\cdot 003717472$
270	72900	19683000	16.4316767	6.4633041	003703704
271	73441	19902511	16.4620776	6.4712736	·003690037
272	73984	20123643	16.4924225	6.4792236	$\cdot 003676471$
273	74529	20346417	16.5227116	6.4871541	·003663004
274	75076	20570824	16.5529454	6.4950653	$\cdot 003649635$
275	75625	20796875	16.5831240	6.5029572	·003636364
276	76176	21024576	16.6132477	6.5108300	·003623188
277	76729	21253933	16.6433170	6.5186839	·003610108
278	77284	21484952	16.6783320	6.5265189	$\cdot 003597122$
279	77841	21717639	16.7032931	6.5343351	·003584229
280	78400	21952000	16.7332005	6.5421326	003571429
281	78961	22188041	16.7630546	6.5499116	.003558719
282	79524	22425768	16.7928556	6.5576722	*003546099
285	00009	22069187	16.8226038	0.0004144	0033333009
201	81995	22900304 99140195	10.8010490	6.5909449	•002502772
200	81706	23149123	16.0115945	6.5885292	+003496503
287	82369	23639903	16.9410742	6.5962023	.003484321
288	82944	23887872	16.9705627	6.6038545	.003472222
289	83521	24137569	17.0000000	6.6114890	·003460208
290	84100	24389000	17.0293864	6.6191060	003448276
291	84681	24642171	17.0587221	6.6267054	$\cdot 003436426$
292	85264	24897088	17.0880075	6.6342874	$\cdot 003424658$
293	85849	25153757	17.1172428	6.6418522	·003412969
294	86436	25412184	17.1464282	6.6493998	·003401361
295	87025	25672375	17.1755640	6.6569302	·003389831
. 296	87616	25934836	$17 \cdot 2046505$	6.6644437	·003378378
297	88209	26198073	$17 \cdot 2336879$	6.6719403	•003367003
298	88804	26463592	· 17·2626765	6.6794200	•003355705
299	89401	26730899	17.2916165	6.6868831	.003344482
300	90000	27000000	17.3205081	6.7015500	•0033333333
301	90601	27270901	17.3493516	0.7017593	003522259
302	91204	27543608	17.3781472	6.7165700	-003311238
204	91009	2/81812/ 28004464	17.4955952	6.7239508	003289474
205	02005	20094404	17.4649409	6.7312155	003278680
505	55040	20012020	11.4042492	0 1010100	000210000

# TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS. 105

Γ	Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1-	306	93636	28652616	17.4928557	6.7386641	·003267974
	307	94249	28934443	17.5214155	6.7459967	$\cdot 003257329$
	308	94864	29218112	17.5499288	6.7533134	$\cdot 003246753$
L	309	95481	29503609	17.5783958	6.7606143	$\cdot 003236246$
	310	96100	29791000	17.6068169	6.7678995	$\cdot 003225806$
	311	96721	30080231	17.6351921	6.7751690	$\cdot 003215434$
	312	97344	30371328	17.6635217	6.7824229	$\cdot 003205128$
1	313	97969	30664297	17.6918060	6.7896613	·003194888
	314	98596	30959144	17.7200451	6.7968844	$\cdot 003184713$
1	315	99225	31255875	17.7482393	6.8040921	$\cdot 003174603$
	316	99856	31554496	17.7763888	6.8112847	$\cdot 003164557$
1	317	100489	31855013	17.8044938	6.8184620	$\cdot 003154574$
	318	101124	32157432	17.8325545	6.8256242	·003144654
	319	101761	32461759	17.8605711	6.8327714	003134796
	320	102400	32768000	17.0164700	0.9399031	003125000
	321	103041	00000101	17 0449504	0.04/0210	•005115265
	322	103684	33380248	17.079949009	6.9619190	-003103590
	020	104529	24012204	18.0000000	6.96929255	.002090970
1	04± 205	104970	94998195	18-0077564	6.8759499	.003030420
	226	106025	34645976	18.0554701	6.8823888	003067485
	327	106929	34965783	18.0831413	6.8894188	+003058104
	328	107584	35287552	18.1107703	6.8964345	+003048780
	329	108241	35611289	18.1383571	6.9034359	+003039514
	830	108900	35937000	18.1659021	6.9104232	•003030303
	831	109561	36264691	18.1934054	6.9173964	$\cdot 003021148$
	332	110224	36594368	18.2208672	6.9243556	.003012048
	333	110889	36926037	18.2482876	6.9313088	·003003003
	334	111556	37259704	$18 \cdot 2756669$	6.9382321	$\cdot 002994012$
	335	112225	37595375	18.3030052	6.9451496	+002985075
1	336	112896	37933056	18.3303028	6.9520533	·002976190
	337	113569	38272753	18.3575598	6.9589434	·002967359
	338	114244	38614472	18.3847763	6.9658198	•002958580
	839	.114921	38958219	18.4119526	6.9726826	$\cdot 002949853$
	340	115600	39304000	18.4390889	6.9795321	$\cdot 002941176$
	341	116281	39651821	18.4661853	6.9863681	$\cdot 002932551$
	342	116964	40001688	18.4932420	6.9931906	•002923977
	343	117649	40353607	18.5202592	7.0000000	•002915452
	245	110005	40707004	10.5741756	7.0125701	•002906977
	346	119020	41003025	18.6010759	7.0202400	002898551
	247	190409	41781023	18.6270360	7.0271058	.002890175
	348	121104	42144192	18.6547581	7.0338497	.002873563
	349	121801	42508549	18.6815417	7.0405860	002865330
	350	122500	42875000	18.7082869	7.0472987	+002857143
	351	123201	43243551	18.7349940	7.0540041	.002849003
	352	123904	43614208	18.7616630	7.0606967	.002840909
	353	124609	43986977	18.7882942	7.0673767	$\cdot 002832861$
	354	125316	44361864	18.8148877	7.0740440	·002824859
	355	126025	44738875	18.8414437	7.0806988	·002816901
	356	126736	45118016	18.8679623	7.0873411	·002808989
	357	127449	45499293	18.8944436	7.0939709	·002801120
	358	128164	45882712	18.9208879	7.1005885	•002793296
	359	128881	46268279	18.9472953	7.1071937	002785515
	360	129600	46656000	18.9736660	7.1137866	002777778
	260	130321	47045831	19.0000000	7.1960260	002770083
	262	101044	4/43/928	19.0202976	7.1394005	002762431
	364	131/09	4/00/14/	19.0787840	7.1400370	-002704821
	365	133995	48697195	19.1049739	7.1465695	002747205
	366	133956	49027896	19.1311265	7.1530901	002739940
	367	134689	49430863	19.1572441	7.1595988	002724796

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
368	135424	49836032	19.1833261	7.1660957	·002717391
369	136161	50243409	$19 \cdot 2093727$	7.1725809	002710027
370	136900	50653000	$19 \cdot 2353841$	7.1790544	·002702703
371	137641	51064811	$19 \cdot 2613603$	7.1855162	·002695418
372	138384	51478848	19.2873015	7.1919663	$\cdot 002688172$
373	139129	51895117	19.3132079	7.1984050	·002680965
374	139876	52313624	19.3390796	7.2048322	$\cdot 002673797$
375	140625	52734375	19.3649167	7.2112479	·002666667
376	141376	53157376	19.3907194	7.2176522	$\cdot 002659574$
377	142129	53582633	19.4164878	7.2240450	·002652520
378	142884	54010152	19.4422221	7.2304268	$\cdot 002645503$
379	143641	54439939	19.4679223	7.2367972	$\cdot 002638521$
380	144400	54872000	19.4935887	7.2431565	$\cdot 002631579$
381	145161	55306341	19.5192213	7.2495045	$\cdot 002624672$
382	145924	55742968	19.5448203	7.2558415	$\cdot 002617801$
383	146689	56181887	19.5703858	7.2621675	·002610966
384	147456	56623104	19.5959179	7.2684824	·002604167
385	148225	57066625	19.6214169	7.2747864	$\cdot 002597403$
386	148996	57512456	19.6468827	7.2810794	$\cdot 002590674$
387	149769	57960603	19.6723156	7.2873617	$\cdot 002583979$
388	150544	58411072	19.6977156	7.2936330	$\cdot 002577320$
389	151321	58863869	19.7230829	7.2998936	·002570694
390	152100	59319000	19.7484177	7.3061436	•002564103
391	152881	09770471	19.7737199	7.3123828	•002557545
392	153004	60236288	19.7989899	7.3186114	•002551020
090	155998	61169084	19.8242270	7.9910960	•002544529
394	100200	61690975	19.8494882	7.0070009	.002538071
000	150025	60000196	10.0007407	7.9494905	002051040
307	157609	62570772	10.02/8588	7.9405066	00202020203
208	159404	62044709	10.0400373	7.2557624	002010002
299	150201	63591199	19.9749844	7.3619178	•002512505
400	160000	64000000	20.0000000	7.3680630	•002500000
401	160801	64481201	20.0249844	7.3741979	.002493766
402	161604	64964808	20.0499377	7.3803227	002487562
403	162409	65450827	20.0748599	7.3864373	·002481390
404	163216	65939264	20.0997512	7.3925418	$\cdot 002475248$
405	164025	66430125	20.1246118	7.3986363	$\cdot 002469136$
406	164836	66923416	20.1494417	7.4047206	$\cdot 002463054$
407	165649	67419143	20.1742410	7.4107950	$\cdot 002457002$
408	166464	67917312	20.1990099	7.4168595	$\cdot 002450980$
409	167281	68417929	20.2237484	7.4229142	·002444988
410	168100	68921000	20.2484567	7.4289589	·002439024
411	168921	69426531	20.2731349	7.4349938	$\cdot 002433090$
412	169744	69934528	20.2977831	7.4410189	$\cdot 002427184$
413	170569	70444997	20.3224014	7.4470343	$\cdot 002421308$
414	171396	70957944	20.3469899	7.4530399	$\cdot 002415459$
415	172225	71473375	20.3715488	7.4590359	$\cdot 002409639$
416	173056	71991296	20.3960781	7.4650223	$\cdot 002406846$
417	173889	72511713	20.4205779	7.4709991	$\cdot 002398082$
418	174724	73034632	20.4450483	7.4769664	•002892344
419	175561	73560059	20.4694895	7.4829242	•002386635
420	176400	74088000	20.4939015	7 4049119	·002380952
421	177241	74618461	20.0182845	7.5007400	002875297
422	178084	75151448	20.5420380	7.5066607	002309068
423	178929	75686967	20.2009038	7.5195715	002304000
424	180605	70220024	20.0912000	7.5184720	002000491
420	181476	10100020	20.0100201	7.5243652	002347418
427	189390	77954499	20.66397074	7.5302482	002341920
428	183184	78409759	20.6881609	7.5361221	002336449
429	184041	78953589	20.7123152	7.5419867	$\cdot 002331002$
	,	<b>C</b> 1	C D to	Cube Durite	Desismenta
---------	------------------	------------------	--------------------	-------------	--------------------------
Number.	Squares.	Cubes.	Square Robts.	Cube Roots.	Reciprocals.
430	184900	79507000	20.7364414	7.5478423	•002325581
431	185761	80062991	20.7605395	7.5536888	•002320186
432	180024	80021568	20.7840097	7.5090203	•002314813
400	10/409	81182737	20.8000020	7.5711749	002309409
404	100000	01/40004	20.8566536	7.5760940	-002304147
436	190096	89881856	20-8806130	7.5897865	-0022985578
437	190969	83453453	20.9045450	7.5885793	002288330
438	191844	84027672	20.9284495	7.5943633	002283105
439	192721	84604519	20.9523268	7.6001385	$\cdot 002277904$
440	193600	$\cdot$ 85184000	20.9761770	7.6059049	$\cdot 002272727$
441	194481	85766121	21.0000000	7.6116626	$\cdot 002267574$
442	195364	86350888	21.0237960	7.6174116	$\cdot 002262443$
443	196249	86938307	21.0475652	7.6231519	$\cdot 002257336$
444	197136	87528384	21.0713075	7.6288837	$\cdot 002252252$
445	198025	88121125	21.0950231	7.6346067	$\cdot 002247191$
446	198916	88716536	$21 \cdot 1187121$	7.6403213	002242152
447	199809	89314623	21.1423745	7.6460272	002237136
448	200704	89910392	21.1000100	7.6574199	•002232143
449	201001	90010049	21.1090201	7.6620042	.002227171
451	202000	91733851	21.2367606	7.6687665	.0022222222
452	204304	92345408	21.2602916	7.6744303	.002212389
453	205209	92959677	21.2837967	7.6800857	+002207506
454	206116	93576664	$21 \cdot 3072758$	7.6857328	$\cdot 002202643$
455	207025	94196375	$21 \cdot 3307290$	7.6913717	$\cdot 002197802$
456	207936	94818816	$21 \cdot 3541565$	7.6970023	$\cdot 002192982$
457	208849	95443993	21.3775583	7.7026246	$\cdot 002188184$
458	209764	96071912	$21 \cdot 4009346$	7.7082388	$\cdot 002183406$
459	210681	96702579	$21 \cdot 4242853$	7.7188448	002178649
460	211600	97336000	21.4476106	7.7194426	002173913
401	212021 919444	97972181	21.4709106	7.7200320	002169197
463	213444	99252847	21.5174348	7.7361877	.002104502
464	215296	99897344	21.5406592	7.7417532	+002155021
465	216225	100544625	21.5638587	7.7473109	+002150538
466	217156	101194696	21.5870331	7.7528606	·002145923
467	218089	101847563	21.6101828	7.7584023	·002141328
468	219024	102503232	21.6333077	7.7639361	·002136752
469	219961	103161709	21.6564078	7.7694620	$\cdot 002132196$
470	220900	103823000	21.6794834	7.7749801	$\cdot 002127660$
471	221841		21.7025344	7.7804904	002123142
473	444/0± 992790	105292217	21.7200010	7.7014875	002118644
474	224676	106496494	21.7400032	7.7914010	.002114100
475	225625	107171875	21.7944947	7.8094538	002105263
476	226576	107850176	21.8174242	7.8079254	.002100840
477	227529	108531333	21.8403297	7.8133892	.002096486
478	228484	109215352	21.8632111	7.8188456	$\cdot 002092050$
479	229441	109902239	21.8860686	7.8242942	·002087683
480	230400	110592000	21.9089023	7.8297353	·002083333
481	231361	111284641	21.9317122	7.8351688	·002079002
482	232324	111980168	21.9544984	7.8405949	002074689
480	233289	1120/808/	21.9772610	7.0514044	002070393
485	204200	114084195	22.0000000	7.8568981	-002000110 -002061254
486	236196	114791256	22.0454077	7.8622242	+002057619
487	237169	115501303	22.0680765	7.8676130	·002053388
488	238144	116214272	22.0907220	7.8729944	·002049180
489	239121	116930169	$22 \cdot 1133444$	7.8783684	$\cdot 002044990$
490	240100	117649000	$22 \cdot 1359436$	7.8837352	$\cdot 002040816$
491	241081	118370771	$22 \cdot 1585198$	7.8890946	·002036660

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
492	242064	119095488	22.1810730	7.8944468	·002032520
493	243049	119823157	$22 \cdot 2036033$	7.8997917	·002028398
494	244036	120553784	$22 \cdot 2261108$	7.9051294	$\cdot 002024291$
495	245025	121287375	$22 \cdot 2485955$	7.9104599	$\cdot 002020202$
496	246016	122023936	$22 \cdot 2710575$	7.9157832	$\cdot 002016129$
497	247009	122763473	$22 \cdot 2934968$	7.9210994	·002012072
498	248004	123505992	$22 \cdot 3159136$	7.9264085	$\cdot 002008032$
499	249001	124251499	$22 \cdot 3383079$	7.9317104	·002004008
500	250000	125000000	$22 \cdot 3606798$	7.9370053	·002000000
501	251001	125751501	$22 \cdot 3830293$	7.9422931	·001996008
502	252004	126506008	$22 \cdot 4053565$	7.9475739	$\cdot 001992032$
503	253009	127263527	$22 \cdot 4276615$	7.9528477	$\cdot 001988072$
504	254016	128024064	$22 \cdot 4499443$	7.9581144	$\cdot 001984127$
505	255025	128787625	$22 \cdot 4722051$	7.9633743	·001980198
506	256036	129554216	$22 \cdot 4944438$	7.9686271	·001976285
507	257049	130323843	22.5166605	7.9738731	•001972387
508	258064	131096512	22.5388553	7.9791122	•001968504
509	259081	131872229	22.5610283	7.9843444	•001964637
510	260100	132651000	22.5831796	7.9895697	•001960784
511	261121	133432831	22.6053091	7.9947883	•001956947
512	202144	134217728	22.02/41/0	8.0000000	*001993120
513	203109	130000097	22.6495033	8.0002049	001949318
514	204190	100500075	22.0710001	8.0155040	001940020
510	200220	130390873	22.0930114	8.0007704	-001941740
510	200230	10/000000	22.1100004	8.0250574	-001937984
519	268324	128001829	22.7506134	8.0211287	001004200
510	269361	120708250	22.7030134	8.0362035	001930302
520	270400	140608000	22.8035085	8.0414515	001923077
591	271411	141420761	22.8254244	8.0466030	001919386
522	272484	142236648	22.8473193	8.0517479	$\cdot 001915709$
523	273529	143055667	22.8691933	8.0568862	$\cdot 001912046$
524	274576	143877824	$22 \cdot 8910463$	8.0620180	$\cdot 001908397$
525	275625	144703125	22.9128785	8.0671432	$\cdot 001904762$
526	276676	145531576	22.9346899	8.0722620	·001901141
527	277729	146363183	22.9564806	8.0773743	·001897533
528	278784	147197952	22.9782506	8.0824800	·001893939
529	279841	148035889	23.0000000	8.0875794	·001890359
530	280900	148877001	23.0217289	8.0926723	$\cdot 001886792$
531	281961	149721291	23.0434372	8.0977589	$\cdot 001883239$
532	283024	150568768	23.0651252	8.1028390	$\cdot 001879699$
533	284089	151419437	23.0867928	8.1079128	•001876173
534	285156	152273304	$23 \cdot 1084400$	8.1129803	•001872659
535	286225	153130375	23.1300670	8.1180414	•001869159
536	287296	153990656	23.1516738	8.1230962	001869072
537	288309	154804103	23.1732005	0.120144/	-001858798
538	209444	100/200/2	23.1948270	0.10010/0	-001000700
539	290521	157464000	23.2103/39	8.1422520	-001851852
540	200691	159940491	23.2504067	8.1482765	+001848429
549	292001	150990088	23.2808035	8.1532939	001845018
542	294840	160103007	23.3023604	8.1583051	+001841621
544	295936	160989184	23.3238076	8.1633102	·001838235
545	297025	161878625	23.3452351	8.1683092	·001834862
546	298116	162771336	23.3666429	8.1733020	·001831502
547	299209	163667323	23.3880311	8.1782888	·001828154
548	300304	164566592	23.4093998	8.1832695	·001824818
549	801401	165469149	23.4307490	8.1882441	$\cdot 001821494$
550	302500	166375000	23.4520788	8.1932127	·001818182
551	303601	167284151	23.4733892	8.1981753	·001814882
552	804704	168196608	23.4946802	8.2031319	$\cdot 001811594$
553	305809	169112377	23.5159520	8.2080825	·001808318

109

	1				1
Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
554	306916	170031464	$23 \cdot 5372046$	$8 \cdot 2130271$	$\cdot 001805054$
555	308025	170953875	$23 \cdot 5584380$	8.2179657	$\cdot 001801802$
556	309136	171879616	$23 \cdot 5796522$	8.2228985	$\cdot 001798561$
557	310249	172808693	23.6008474	8.2278254	$\cdot 001795332$
558	311364	173741112	23.6220236	8.2327463	•001792115
559	312481	174676879	23.6431808	8.2376614	•001788909
560	313600	170550401	23.0043191	8.2425706	•001789714
569	01±121 915044	177504298	23.7065302	8.9599715	.001770250
563	216969	178453547	23.7276210	8.2572635	+001776199
564	318096	179406144	23.7486842	8.2621492	.001773050
565	319225	180362125	23.7697286	$8 \cdot 2670294$	.001769912
566	320356	181321496	23.7907545	8.2719039	$\cdot 001766784$
567	321489	182284263	$23 \cdot 8117618$	8.2767726	$\cdot 001763668$
568	322624	183250432	23.8327506	8.2816255	·001760563
569	323761	184220009	$23 \cdot 8537209$	8.2864928	$\cdot 001757469$
570	324900	185193000	23.8746728	8.2913444	+001754386
571	326041	186169411	23.8956063	8.2961903	$\cdot 001751313$
572	327184	187149248	23.9165215	8.3010304	$\cdot 001748252$
573	328329	188132517	23.9374184	8.3058651	•001745201
574 575	529470	109119224	23.9582971	8.9155175	001720120
576	991776	190109575	20.0000000	8,2202252	.001739130
577	332927	192100033	24.0000000	8.2251475	-001733102
578	334084	193100552	24.0416306	8.3299542	+001730104
579	335241	194104539	24.0624188	8.3347553	+001727116
580	336400	195112000	24.0831891	8.3395509	001724138
581	337561	196122941	$24 \cdot 1039416$	8.3443410	$\cdot 001721170$
582	338724	197137368	$24 \cdot 1246762$	8.3491256	$\cdot 001718213$
583	339889	198155287	$24 \cdot 1453929$	8.3539047	$\cdot 001715266$
584	341056	199176704	$24 \cdot 1660919$	8.3586784	$\cdot 001712329$
585	342225	200201625	$24 \cdot 1867732$	8.3634466	001709402
507	343390	201230030	24.2074369	8.3682095	•001706485
588	344005	202202003	24.2280829	8.2777188	.001705578
589	346921	204336469	24.2407110	8.3824653	•001697793
590	348100	205379000	24.2899156	8.3872065	+001694915
591	349281	206425071	$24 \cdot 3104996$	8.3919428	$\cdot 001692047$
592	350464	207474688	$24 \cdot 3310501$	8.3966729	001689189
593	351649	208527857	$24 \cdot 3515913$	8.4013981	·001686341
594	352836	209584584	24.3721152	8.4061180	·001683502
595	354025	210644875	$24 \cdot 3926218$	8.4108326	$\cdot 001680672$
596	355216	211708736	24.4131112	8.4155419	•001677852
500	356409	212776173	24.4335834	8.4202460	001675042
098 500	30/004	21304/192	24.4040380	8.4906229	001660440
600	360000	214921799	24.4048074	0.4290909	-001009449 -001666667
601	361201	217081801	24-4940974	8.4390098	001663894
602	362404	218167208	24.5356883	8.4436877	·001661130
603	363609	219256227	24.5560583	8.4483605	$\cdot 001658375$
604	364816	220348864	24.5764115	$8 \cdot 4530281$	$\cdot 001655629$
605	366025	221445125	$24 \cdot 5967478$	8.4576906	·001652893
606	367236	222545016	24.6170673	8.4623479	•001650165
607	368449	223648543	24.6373700	8.4670001	001647446
608	369664	224755712	24.6576560	8.4716471	001644737
610	379100	220800029	24.0779204	8.4800961	+001042036
611	373391	228099131	24.0301/01	8.4855579	001636661
612	374544	229220928	24.7386338	8.4901848	001633987
613	375769	230346397	24.7588368	8.4948065	·001631321
614	376996	231475544	24.7790234	$8 \cdot 4994233$	$\cdot 001628664$
615	378225	232608375	24.7991935	8.5040350	·001626016

к

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
616	379456	233744896	24.8193473	8.5086417	$\cdot 001623377$
617	380689	234885113	24.8394847	$8 \cdot 5132435$	$\cdot 001620746$
618	381924	. 236029032	$24 \cdot 8596058$	8.5178403	$\cdot 001618123$
619	383161	237176659	$24 \cdot 8797106$	$8 \cdot 5224331$	$\cdot 001615509$
620	384400	238328000	24.8997992	8.5270189	$\cdot 001612903$
621	385641	239483061	24.9198716	8.5316009	$\cdot 001610306$
622	386884	240641848	24.9399278	8.5361780	·001607717
623	388129	241804367	24.9599679	8.5407501	·001605136
624	389376	242970624	24.9799920	8.5453173	$\cdot 001602564$
625	390625	244140625	25.0000000	8.5498797	$\cdot 001600000$
626	391876	245134376	25.0199920	8.5544372	$\cdot 001597444$
627	393129	246491883	25.0399681	8.5589899	$\cdot 001594896$
628	.394384	247673152	25.0599282	8.5635377	$\cdot 001592357$
629	395641	248858189	25.0798724	8.5680807	$\cdot 001589825$
630	396900	250047000	25.0998008	8.5726189	$\cdot 001587302$
631	398161	251239591	$25 \cdot 1197134$	8.5771523	$\cdot 001584786$
632	399424	252435968	$25 \cdot 1396102$	8.5816809	$\cdot 001582278$
633	400689	253636137	$25 \cdot 1594913$	8.5862247	$\cdot 001579779$
634	401956	254840104	$25 \cdot 1793566$	8.5907238	$\cdot 001577287$
635	403225	256047875	$25 \cdot 1992063$	8.5952380	$\cdot 001574803$
636	404496	257259456	$25 \cdot 2190404$	8.5997476	$\cdot 001572327$
637	405769	258474853	$25 \cdot 2388589$	8.6042525	$\cdot 001569859$
638	407044	259694072	$25 \cdot 2586619$	8.6087526	001567398
639	408321	260917119	$25 \cdot 2784493$	8.6132480	$\cdot 001564945$
640	409600	262144000	$25 \cdot 2982213$	8.6177388	•001562500
641	410881	263374721	25.3179778	8.6222248	$\cdot 001560062$
642	412164	264609288	25.3377189	8.6267063	$\cdot 001557632$
643	413449	265847707	23.3574447	8.6311830	•001555210
644	414736	267089984	25.3771551	8.6356551	•001552795
645	416125	268336125	25.3968502	8.6401226	•001550388
646	417316	269585136	25.4165302	8.6445855	•001547988
647	418609	270840023	25.4361947	8.6490437	•001545595
648	-419904	272097792	25.4558441	8.6534974	•001543210
649	421201	273359449	20.4/04/84	8.6579465	•001540852
650	422000	274020000	20.4900970	8.0023911	001536404
001	423801	270894401	20.014/013	0.00000010	.001599749
002	420104	277107000	20.0042907	0.0712000	.001591904
000	420405	270440077	20.000001	9.6901997	.001520052
655	427710	219120204	20.0104201	8.6845456	.001526718
656	420220	281011010	25.6194060	8.6880630	.001524390
657	431630	282503203	25.6320119	8.6033750	001522070
658	432964	284890312	25.6515107	8.6977843	•001519751
659	434281	286191179	25.6709953	8.7021882	+001517451
660	435600	287496000	25.6904652	8.7065877	.001515152
661	436921	288804781	25.7099203	8.7109827	001512859
662	438244	290117528	25.7293607	8.7153734	$\cdot 001510574$
663	439569	291434247	25.7487864	8.7197596	001508296
664	440896	292754944	25.7681975	8.7241414	$\cdot 001506024$
665	442225	294079625	25.7875939	8.7285187	001503759
666	443556	295408296	25.8069758	8.7328918	$\cdot 001501502$
667	444899	296740963	$25 \cdot 8263431$	8.7372604	·001499250
668	446224	298077632	25.8456960	8.7416246	·001497006
669	447561	299418309	25.8650343	8.7459846	·001494768
670	448900	300763000	$25 \cdot 8843582$	8.7503401	$\cdot 001492537$
671	450241	302111711	25.9036677	8.7546913	·001490313
672	451584	303464448	25.9229628	8.7590383	$\cdot 001488095$
673	452929	304821217	25.9422435	8.7633809	$\cdot 001485884$
674	454276	306182024	25.9615100	8.7677192	·001483680
675	455625	307546875	25.9807621	8.7720532	·001481481
676	456976	308915776	26.0000000	8.7763830	$\cdot 001479290$
677	458329	310288733	26.0192237	8.7807084	·001477105

•

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
678	459684	311665752	26.0384331	8.7850296	$\cdot 001474926$
679	461041	313046839	26.0576284	8.7893466	$\cdot 001472754$
680	462400	314432000	26.0768096	8.7936593	.001470588
681	463761	315821241	26.0959767	8.7979679	$\cdot 001468429$
682	465124	317214568	$26 \cdot 1151297$	8.8022721	$\cdot 001466276$
683	466489	318611987	$26 \cdot 1342687$	8.8065722	$\cdot 001464129$
684	467856	320013504	26.1533937	8.8108681	$\cdot 001461988$
685	469225	321419125	26.1725047	8.8151598	$\cdot 001459854$
686	470596	322828856	26.1916017	8.8194474	$\cdot 001457726$
687	471969	324242703	$26 \cdot 2106848$	8.8237307	$\cdot 001455604$
688	473344	325660672	$26 \cdot 2297541$	8.8280099	$\cdot 001453488$
689	474721	327082769	$26 \cdot 2488095$	8.8322850	$\cdot 001451379$
690	476100	328509000	$26 \cdot 2678511$	8.8365559	$\cdot 001449275$
691	477481	829939371	$26 \cdot 2868789$	8.8408227	$\cdot 001447178$
692	478864	331373888	26.3058929	8.8450854	$\cdot 001445087$
693	480249	332812557	$26 \cdot 3248932$	8.8493440	·001443001
694	481636	334255384	$26 \cdot 3438797$	8.8535985	$\cdot 001440922$
695	483025	335702375	26.3628527	8.8578489	$\cdot 001438849$
696	484416	337153536	26.3818119	8.8620952	$\cdot 001436782$
697	485809	338608873	$26 \cdot 4007576$	8.8663375	$\cdot 001434720$
698	487204	340068392	$26 \cdot 4196896$	8.8705757	$\cdot 001432665$
699	488601	341532099	$26 \cdot 4386081$	· 8·8748099	$\cdot 001430615$
700	490000	343000000	$26 \cdot 4575131$	8.8790400	$\cdot 001428571$
701	491401	344472101	$26 \cdot 4764046$	8.8832661	$\cdot 001426534$
702	492804	345948408	26.4952826	8.8874882	$\cdot 001424501$
703	494209	347428927	26.5141472	8.8917063	$\cdot 001422475$
704	495616	348913664	26.5329983	8.8959204	$\cdot 001420455$
705	497025	350402625	26.5518361	8.9001304	$\cdot 001418440$
706	498436	351895816	26.5706605	8.9043366	$\cdot 001416431$
707	499849	353393243	26.5894716	8.9085387	$\cdot 001414427$
708	501264	354894912	26.6082694	8.9127369	$\cdot 001412429$
709	502681	356400829	26.6270539	8.9169311	$\cdot 001410437$
710	504100	357911000	26.6458252	8.9211214	001408451
711	505521	309420431	20.0040833	8.9253078	·001406470
712	500944	360944128	20.0833281	8.9294902	·001404494
713	508309	302407097	26.7020398	8.9330087	·001402525
714	009790 511995	265595975	20.1201184	0.0400140	001400560
716	519856	367061696	207594059	8.0461900	-001398001
710	512050	368601813	20.7301703	0.0509401009	-001390048
718	515594	370146232	26.7055990	8.0545090	.001394700
710	516961	371694959	26.8141754	8.0586581	.001392738
720	518400	373248000	26.8328157	8.0628005	-001390821
721	519841	374805361	26.8514439	8.9669570	001386969
722	521284	376367048	26.8700577	8.9711007	001385049
723	522729	377933067	26.8886593	8.9752406	+001383126
724	524176	379503424	26.9072481	8.9793766	+001381215
725	525625	381078125	26.9258240	8.9835089	+001379310
726	527076	382657176	26.9443872	8.9876373	$\cdot 001377410$
727	528529	384240583	26.9629375	8.9917620	$\cdot 001375516$
728	529984	385828352	26.9814751	8.9958899	$\cdot 001373626$
729	531441	387420489	27.0000000	9.0000000	$\cdot 001371742$
730	532900	389017000	27.0185122	9.0041134	$\cdot 001369863$
731	534361	390617891	27.0370117	9.0082229	$\cdot 001367989$
732	535824	392223168	27.0554985	9.0123288	·001366120
733	537289	393832837	27.0739727	9.0164309	$\cdot 001364256$
734	538756	395446904	27.0924344	9.0205293	$\cdot 001362398$
735	540225	397065375	$27 \cdot 1108834$	9.0246239	$\cdot 001360544$
736	541696	398688256	$27 \cdot 1293199$	9.0287149	·001358696
737	543169	400315553	27.1477149	9.0328021	$\cdot 001356852$
738	544644	401947272	27.1661554	9.0368857	$\cdot 001355014$
139	546121	403583419	27.1845544	9.0409655	·001353180

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
740	547600	405224000	27.2029140	9.0450419	$\cdot 001351351$
741	549801	406869021	$27 \cdot 2213152$	9.0491142	$\cdot 001349528$
742	550564 '	408518488	27.2396769	9.0531831	·001347709
743	552049	410172407	27.2580263	9.0572482	$\cdot 001345895$
744	553536	411830784	$27 \cdot 2763634$	9.0613098	·001344086
745	555025	413493625	$27 \cdot 2946881$	9.0653677	·001342282
746	556516	415160936	$27 \cdot 3130006$	9.0694220	$\cdot 001340483$
747	558009	416832723	27.3313007	9.0734726	·001338688
748	559504	418508992	$27 \cdot 3495887$	9.0775197	·001336898
749	561001	420189749	$27 \cdot 3678644$	9.0815631	·001335113
750	562500	421875000	27.3861279	9.0856030	·001333333
751	564001	423564751	$27 \cdot 4043792$	9.0896352	$\cdot 001331558$
752	565504	425259008	$27 \cdot 4226184$	9.0936719	$\cdot 001329787$
753	567009	426957777	27.4408455	9.0977010	·001328021
754	568516	428661064	27.4590604	9.1017265	•001326260
755	570025	430368875	27.4772633	9.1057485	001324503
756	579040	432081216	27.4954542	9.1097669	•001322751
757	5745049	433798093	27.5136330	9.1137818	•001321004
100	570001	435519512	27.5517998	9.11/1931	•001319261
709	577600	43/2404/9	27.5690075	9.1218010	001317523
761	570191	400711001	27.59699979	0.1208061	001313789
769	580644	440711001	27.6042475	0.1220001	.001014000
763	582169	442400720	27.6994546	9.1377071	-001312330
764	583696	445943744	27.6405499	9.1417874	-001310010
765	585225	447697195	27.6586334	9.1457742	.001303301
766	586756	449455096	27.6767050	9.1497576	+001305483
767	588289	451217663	27.6947648	9.1537375	001303781
768	589824	452984832	27.7128129	9.1577139	+001302083
769	591361	454756609	27.7308492	9.1616869	.001300390
770	592900	456533000	27.7488739	9.1656565	$\cdot 001298701$
771	594441	458314011	27.7668868	9.1696225	$\cdot 001297017$
772	595984	460099648	27.7848880	9.1735852	·001295337
773	597529	461889917	27.8028775	9.1775445	·001293661
774	599076	463684824	$27 \cdot 8208555$	9.1815003	$\cdot 001291990$
775	600625	465484375	27.8388218	9.1854527	$\cdot 001290323$
776	602176	467288576	27.8567766	9.1894018	$\cdot 001288660$
777	603729	469097433	27.8747197	9.1933474	·001287001
778	605284	470910952	$27 \cdot 8926514$	9.1972897	$\cdot 001285347$
779	606841	472729139	27.9105715	9.2012286	$\cdot 001283697$
780	608400	474552000	27.9284801	9.2051641	•001282051
781	609961	476379541	27.9463772	9.2090962	•001280410
182	611024	4/8211/68	27.9642629	9.2130250	•001278772
100	61/656	40004008/	21.90213/2	0.9909706	-001277139
795	616995	401090504	28.0178515	9.9947014	-001270010
786	617796	485587656	28.0356015	9.2287068	-001270000
787	619369	487443403	28.0535203	9.2326189	001272205
788	620944	489303872	28.0713377	9.2365277	+001269036
789	622521	491169069	28.0891438	9.2404333	+001267427
790	624100	493039000	28.1069386	9.2443355	001265823
791	625681	494913671	28.1247222	$9 \cdot 2482344$	$\cdot 001264223$
792	627624	496793088	28.1424946	8.2521300	.001262626
793	628849	498677257	28.1602557	$9 \cdot 2560224$	.001261034
794	630436	500566184	28.1780056	9.2599114	$\cdot 001259446$
795	632025	502459875	28.1957444	9.2637973	$\cdot 001257862$
796	633616	504358336	28.2134720	9.2676798	$\cdot 001256281$
797	635209	506261573	$28 \cdot 2311884$	9.2715592	$\cdot 001254705$
798	636804	508169592	28.2488938	$9 \cdot 2754352$	$\cdot 001253133$
799	638401	510082399	28.2665881	· 9·2793081	·001251364
800	640000	512000000	28.2842712	9.2831777	·001250000
801	641601	513922401	28.3019434	9.2870444	001248439

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
802	643204	515849608	$28 \cdot 3196045$	9.2909072	$\cdot 001246883$
803	644809	517781627	$28 \cdot 3372546$	9.2947671	·001245330
804	646416	519718464	$28 \cdot 3548938$	$9 \cdot 2986239$	·001243781
805	648025	521660125	28.3725219	9.3024775	$\cdot 001242236$
806	649636	523606616	$28 \cdot 3901391$	9.3063278	·001240695
807	651249	525557943	$28 \cdot 4077454$	9.3101750	$\cdot 001239157$
808	652864	527514112	$28 \cdot 4253408$	9.3140190	001237624
809	654481	529475129	$28 \cdot 4429253$	9.3178599	$\cdot 001236094$
810	656100	531441000	$28 \cdot 4604989$	9.3216975	$\cdot 001234568$
811	657721	533411731	28.4780617	9.3255320	$\cdot 001233046$
812	659344	535387328	$28 \cdot 4956137$	9.3293634	$\cdot 001231527$
813	660969	537367797	$28 \cdot 5131549$	9.3331916	$\cdot 001230012$
814	662596	539353144	28.5306852	9.3370167	$\cdot 001228501$
815	664225	541343375	28.5482048	9.3408386	•001226994
816	665856	543338496	28.5657137	9.3446575	•001225499
817	667489	545338513	28.5832119	9.3484731	-001223990
818	669124	547343432	28.6006993	9.3522857	•001222494
819	670761	549353259	28.6181760	9.3500952	•001221001
820	672400	551368000	28.6356421	9.3599016	•001219512
821	074041	003387001	28.6530976	9.3637049	001218027
822	677990	557441767	28.0700424	9.3070001	001210949
823	679076	550476994	28.08/9/10	9.5715022	001210007
824	600692	561515695	28.7004002	9.5750905	001216094
820	600020	562550076	28.7228132	9.3100010	00121212121
020	692020	5650009970		0.9864600	.001210034
0.00	695594	567662559	201010011	0.2002410	.001203130
820	687941	569799789	20.7022601	0.20/0206	001207723
820	688900	571787000	28.8007206	0.3977964	.001200210
831	690561	573856191	28.8270706	9.4015691	•001203369
832	692224	575930368	28.8444102	9.4053387	001201923
833	693889	578009537	28.8617394	9.4091054	001201620
834	695556	580093704	28.8790582	9.4128690	001199041
835	697225	582182875	28.8963666	9.4166297	.001197605
836	698896	584277056	28.9136646	9.4203873	.001196172
837	700569	586376253	28.9309523	9.4241420	$\cdot 001194743$
838	702244	588480472	$28 \cdot 9482297$	9.4278936	·001193317
839	703921	590589719	28.9654967	9.4316423	·001191895
840	705600	592704000	28.9827535	9.4353800	·001190476
841	707281	594823321	29.0000000	9.4391307	·001189061
842	708964	596947688	29.0172363	9.4428704	·001187648
843	710649	599077107	29.0344623	9.4466072	·001186240
844	712336	601211584	29.0516781	9.4503410	001184834
845	714025	603351125	29.0688837	9.4540719	$\cdot 001183432$
846	715716	605495736	29.0860791	9.4577999	$\cdot 001182033$
847	717409	607645423	$29 \cdot 1032644$	9.4615249	·001180638
848	719104	609800192	29.1204396	9.4652470	;001179245
849	720801	611960049	29.1376046	9.4689661	•001177856
850	722500	614125000	29.1547595	9.4726824	•001176471
851	724201	616295051	29.1719043	9.4763957	•001175088
652	723904	620650477	29.1890390	9.4801061	001173709
000	727009	600001477	29.2061637	9.4838136	•001172333
855	731025	625026275	29.2232/84	9.40/0102	-001160501
856	739736	697999016	29.2403830	0.4040100	-001169991
857	734449	629422793	20.0745692	9.4986147	001166861
858	736164	631698719	29.2016270	9.5092079	-001165501
859	737881	633839779	29.3087018	9.5050080	+001164144
860	739600	636056000	29.3257566	9.5096854	.001162791
861	741321	638277381	29.3428015	9.5133699	.001161440
862	743044	640503928	29.3598365	9.5170515	.001160093
863	744769	642735647	29.3768616	9.5207303	.001158749
1	1	1		1	

8

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
864	746496	644972544	29.3938769	9.5244063	•001157407
865	748225	647214625	29.4108823	9.5280794	001156069
866	749956	649461896	29.4278779	9.5317497	.001154734
867	751689	651714363	29.4448637	9.5354172	.001153403
868	753424	653972032	29.4618397	9.5390818	$\cdot 001152074$
869	755161	656234909	29.4788059	9.5427437	·001150748
870	756900	658503000	$29 \cdot 4957624$	9.5464027	·001149425
871	758641	660776311	29.5127091	9.5500589	·001148106
872	760384	663054848	$29 \cdot 5296461$	9.5537123	$\cdot 001146789$
873	762129	665338617	29.5465734	9.5573630	•001145475
874	763876	667627624	29.5634910	9.5610108	•001144165
875	765625	669921875	29.5803989	9.5646559	001142857
8/6	701510	072221370	29.09/29/2	9.0002/02	-001141005
011	7709129	676926159	29.0141000	0.5755745	-001140251
870	779641	679151439	29.6470349	9.5792085	001137656
880	774400	681472000	29.6647939	9.5828397	+001136364
881	776161	683797841	29.6816442	9.5864682	001135074
882	777924	686128968	29.6984848	9.5900937	.001133787
883	779689	688465387	29.7153159	9.5937169	·001132503
884	781456	690807104	29.7321375	9.5973373	·001131222
885	783225	693154125	29.7489496	9.6009548	·001129944
886	784996	695506456	29.7657521	9.6045696	·001128668
887	786769	697864103	29.7825452	9.6081817	·001127396
888	788544	700227072	29.7993289	9.6117911	•001126126
889	790321	702595369	$29 \cdot 8161030$	9.6153977	•001124859
890	792100	704969000	29.8328678	9.6190017	•001123596
891	793881	707347971	29.8496231	9.6220030	001122334
892	793004	7101932200	29.8003090	9.6907075	-001121070
893	700286	714516084	29.80081000	9.6333907	001118568
895	801025	716917875	29.9165506	9.6369812	001117818
896	802816	719323136	29.9332591	9.6405690	·001116071
897	804609	721734273	29.9499583	9.6441542	$\cdot 001114827$
898	806404	724150792	$29 \cdot 9666481$	9.6477367	·001113586
899	808201	726572699	$29 \cdot 9833287$	9.6513166	•001112347
900	810000	729000000	30.0000000	9.6548938	•001111111
901	811801	731432701	30.0166621	9.6584684	·001109878
902	813604	733870808	30.0333148	9.6620403	•001108647
903	815409	736314327	30.0499584	9.6656096	001107420
904	817216	738763264	30.0665928	9.6691762	.001106195
905	819025	741217020	20.00022179	0.6763017	001104372
906	820830	745077410	30.0996559	9.6798604	001102536
008	822049	748613312	80.1330383	9.6834166	.001101322
000	826281	751089429	30.1496269	9.6869701	.001100110
910	828100	753571000	30.1662063	9.6905211	·001098901
911	829921	756058031	30.1827765	9.6940694	·001097695
912	831744	758550825	30.1993377	9.6976151	·001096491
913	833569	761048497	30.2158899	9.7011583	·001095290
914	835396	763551944	30.2324329	9.7046989	•001094092
915	837225	766060875	30.2489669	9.7082369	•001092896
916	839056	768575296	30.2654919	9.7117723	-001091703
917	840889	771095213	30.2820079	9.7103001	•001090013
918	842724	776151550	20.2150122	9.7293631	001089329
919	844561	778688000	30-33150128	9.7258883	·001086957
021	848941	781999961	30.3479818	9.7294109	.001085776
929	850084	783777448	30.3644529	9.7329309	.001084599
923	851929	786330467	30.3809151	9.7364484	·001083423
094	853776	788889024	30.3973683	9.7399634	·001082251
944 1	000110	100000041			

-	Nut ber.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
	926	857476	794022776	30.4302481	9.7469857	·001079914
	927	859329	796597983	30.4466747	9.7504930	·001078749
	928	861184	799178752	30.4630924	9.7539979	$\cdot 001077586$
	929	863041	801765089	30.4795013	9.7575002	·001076426
	930	864900	804357000	30.4959014	9.7610001	$\cdot 001075269$
	931	866761	806954491	30.5122926	9.7644974	$\cdot 001074114$
	932	868624	809557568	30.5286750	9.7679922	$\cdot 001072961$
	933	870489	812166237	30.5450487	9.7714845	001071811
	934	872356	814780504	30.5614136	9.7749743	·001070664
	935	874225	817400375	30.5777697	9.7784616	·001069519
	936	876096	820025856	30.5941171	9.7829400	001008376
	937	877969	895909679	20.6967957	9-7004200	-001066008
	958	0/9044	897936012	30.6431069	9-7009007	-001060098
	939	882600	830584000	30.6594194	9.7958611	+001063830
	0.11	885481	833237621	30.6757233	9.7993336	+001062699
	942	887364	835896888	30.6920185	9.8028036	.001061571
	943	889249	838561807	30.7083051	9.8062711	.001060445
į	944	891136	841232384	30.7245830	9.8097362	$\cdot 001059322$
	945	893025	843908625	30.7408523	9.8131989	·001058201
	946	894916	846590536	30.7571130	$9 \cdot 8166591$	.001057082
	947	896808	849278123	30.7733651	9-8201169	·001055966
	948	898704	851971392	30.7896086	9.8235723	$\cdot 001054852$
	949	900601	854670349	30.8058436	9.8270252	·001053741
	950	902500	857375000	30.8220700	9.8304757	$\cdot 001052632$
	951	904401	860085351	30.8382879	9.8339238	001051525
	952	906304	862801408	30.8544972	9.8373695	•001050420
	953	908209	860023177	30-8706981	9.8408127	•001049318
	994	910110	870089875	30.8808904	9.8442030	001048218
	956	012020	873799816	30.9030743	9.8511920	+001047120
	957	915849	876467493	30.9354166	9.8545617	+001040020
	958	917764	879217912	30.9515751	9.8579929	·001043841
	959	919681	881974079	30.9677251	9.8614218	$\cdot 001042753$
	960	921600	884736000	30.9838668	9.8648483	.001041667
	961	923521	887503681	-31.0000000	9.8682724	·001040583
	962	925444	890277128	31.0161248	9.8716941	·001039501
	963	927369	893056347	31.0322413	9.8751135	·001038422
	964	929296	895841344	31.0483494	9.8785305	·001037344
	965	931225	898632125	31.0644491	9.8819451	·001036269
	966	933156	901428696	31.0805405	9.8853574	$\cdot 001035197$
	967	935089	904231063	31.0966236	9.8887673	·001034126
	968	937024	907039232	31.1126984	9.8921749	•001033058
	969	938961	909853209	31.1287648	9.8955801	•001031992
	970	940900	912673000	31.1448230	9.8989830	001030928
	971	942841	010220040	31.1608729	9.9023835	-001029866
	912	914/84	091167917	31.1/69140	9.9001817	+001028807
	974	918676	924010494	31.9020791	9.9195719	-001026694
	975	950625	926859375	31.9949900	9.9159624	-001025641
	976	952576	929714176	31.2409987	9.9193513	·001024590
	977	954529	932574833	31.2569992	· 9·9227379	.001023541
	978	956484	935441352	31.2729915	9.9261222	·001022495
	979	958441	938313739	31.2889757	9.9295042	·001021450
	980	960400	941192000	31.3049517	9.9328839	·001020408
	981	962361	944076141	$31 \cdot 3209195$	9.9362613	·001019168
	982	964324	946966168	$31 \cdot 3368792$	9.9396363	·001018330
	983	966289	949862087	31.3528308	9.9430092	$\cdot 001017294$
	984	968256	952763904	$31 \cdot 3687743$	9.9463797	·001016260
	985	970225	955671625	31.3847097	9.9497479	•001015228
	986	972196	958585256	31.4006369	9.9531138	•001014199
	1 901	9/4169	961504803	31.4165561	9.9564775	i •001013171

116

THE PRACTICAL MODEL CALCULATOR.

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
988	976144	964430272	$31 \cdot 4324673$	9.9598389	·001012146
989	978121	967361669	31.4483704	9.9631981	$\cdot 001011122$
990	980100	970299000	$31 \cdot 4642654$	9.9665549	-001010101
991	982081	973242271	$31 \cdot 4801525$	9.9699055	·001009082
992	984064	976191488	31.4960315	9.9732619	·001008065
993	986049	979146657	31.5119025	9-9766120	-001007049
994	988036	. 982107784	31.5277655	9.9799599	-001006036
995	990025	985074875	$31 \cdot 5436206$	9-9833055	-001005025
996	992016	988047936	31.5594677	9.9866488	·001004016
997	994009	991026973	31.5753068	9.9899900	-001003009
998	996004	994011992	$31 \cdot 5911380$	9.9933289	-001002004
999	998001	997002999	31.6069613	9.9966656	-001001001
1000	1000000	1000000000	$31 \cdot 6227766$	10.0000000	-001000000
1001	1000201	1003003001	31.6385840	10-0033222	-0009990010
1002	1004004	1006012008	31.6543866	10-0066622	-0009980040
1003	1006009	1009027027	31.6701752	10.0099899	•0009970090
1004	1008016	1012048064	31.6859590	10.0133155	•0009960159
1005	1010025	1015075125	31.7017349	10.0166389	•0009950249
1005	1010036	1018108216	31.7175030	10.0199601	•0009940358
1007	1014049	1021147343	31-7332033	10.0232791	•0009930487
1008	1010004	1024192512	51.7490157	10.0265958	•0009920638
1009	1018081	102/243/29	31.704/003	10.0299104	-0009910808
1010	1020100	1030301000	21.7069969	10-0362228	.0009900990
1011	1020121	1000004001	91.9110474	10-0309350	.000989119
1012	1024144	1000400720	21.0076600	10.0398410	.0009881428
1013	1020109	1039509197	31.8422666	10.0464506	-00098/1008
1015	1020190	1042678375	31.8590646	10.0404500	.0009859913
1016	1032256	1049070070	31.8747549	10.0530514	-0009842520
1017	1034289	1051871913	31.8904374	10.0563485	.0009832842
1018	1036324	1054977832	31.9061123	10.0596435	.0009823185
1019	1038361	1058089859	31.9217794	10.0629364	.000981354
1020	1040400	1061208000	31.9374388	10.0662271	· -0009803922
1021	1042441	1064332261	31.9530906	10.0695156	.0009794319
1022	1044484	1067462648	31.9687347	10.0728020	.0009784736
1023	1046529	1070599167	31.9843712	10.0760863	.0009775171
1024	1048576	1073741824	32.0000000	10.0793684	·000976562
1025	1050625	1076890625	32.0156212	10.0826484	·0009756098
1026	1052676	1080045576	32.0312348	10.0859262	-0009746589
1027	1054729	1083206683	32.0468407	10.0892019	-0009737098
1028	1056784	1086373952	32.0624391	10.0924755	·0009727626
1029	1058841	1089547389	32.0780298	10.0957469	•0009718173
1030	1060900	1092727000	32.0936131	10-0990163	•0009708738
1031	1062961	1095912791	32.1091887	10.1022835	•0009699321
1032	1065024	1099104768	32-1247568	10.1000117	0009689922
1033	1067089	1102302937	32.1403173	10.1088117	000968054:
1034	1009150	1100007304	32.1558704	10.1159914	-000967118
1030	1071225	1108/1/8/5	32.1/14159	10.1105014	•0009661836
1030	1075290	1111934000	22.1009039	10.1919499	-0009652510
1037	1075303	1119197099	22.212024044	10.1210420	.000904320
1030	1077444	1191699310	32.2100014	10.1283457	•0009694630
1040	1081600	1124864000	32.2490310	10.1315941	000961538
1041	1083681	1128111991	32.2645316	10.1348403	+0009606149
1042	1085764	1131366088	32-2800248	10.1380845	+0009596929
1043	1087849	1134626507	32-2955105	10.1413266	.0009587739
1044	1089936	1137893184	32.3109888	10.1445667	.000957854
1045	1092025	1141166125	32.3264598	10.1478047	.0009569378
1046	1094116	1144445336	32.3419233	10.1510406	-0009560229
1047	1096209	1147730323	32.3573794	10.1542744	·0009551098
1048	1098304	1151022592	$32 \cdot 3728281$	10.1575062	·0009541985
1049	1100401	1154320649	32-3882695	10.1607359	·0009532888

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1050	1102500	1157625000	32.4037035	10.1639636	.0009523810
1051	1104601	1160935651	$32 \cdot 4191301$	10.1671893	.0009514748
1052	1106704	1164252608	$32 \cdot 4345495$	10.1704129	.0009505703
1053	1108809	1167575877	32.4499615	10.1736344	.0009496676
1054	1110916	1170905464	$32 \cdot 4653662$	10.1768539	·0009487666
1055	1113125	1174241375	$32 \cdot 4807635$	10.1800714	·0009478673
1056	1115136	1177583616	$32 \cdot 4961536$	10.1832868	·0009469697
1057	1117249	1180932193	32.5115364	10.1865002	·0009460738
1058	1119364	1184287112	32.5269119	10.1897116	•0009451796
1059	1121481	1187648379	32.5422802	10.1929209	•0009442871
1060	1123600	1104920021	32·00/0412 29.5790040	10.1002226	•0009433962
1061	1120721	1104009901	39.5883415	10.199005260	.0009425071
1062	1120069	1201157047	32.6035807	10.2020009	.0009410130
1064	1120000	1204550144	32.6190129	10.2089375	.0009398496
1065	1134225	1207949625	32.6343377	10.2121347	0009389671
1066	1136356	1211355496	32.6496554	10.2153300	.0009380863
1067	1138489	1214767763	$32 \cdot 6649659$	10.2185233	.0009372071
1068	1140624	1218186432	32.6802693	10.2217146	·0009363296
1069	1142761	1221611509	$32 \cdot 6955654$	10.2249039	.0009354537
1070	1144900	1225043000	32.7108544	10.2280912	·0009345794
1071	1147041	1228480911	$32 \cdot 7261363$	10.2312766	·0009337068
1072	1149184	1231925248	32.7414111	10.2344599	·0009328358
1073	1151329	1235376017	32.7566787	10.2376413	·0009319664
1074	1153476	1238833224	$32 \cdot 7719392$	10.2408207	·0009310987
1075	1155625	1242296875	32.7871926	10.2439981	·0009302326
1076	1157776	1245766976	32.8024398	10.2471735	0009293680
1077	1159929	1249243533	32.8176782	10.2503470	0009285051
1078	1162084	1252726552	32.8329103	10.2535186	0009276438
1079	1104241	1226210039	32.8481394	10.2000881	0009207841
1080	1168561	1209712000	92.8785644	10.2098001	-0009259259
1082	1170794	1266723368	32.8937684	10.2661850	.0009242144
1083	1172889	1270238787	32.9089653	10.2693467	•0009233610
1084	1175056	1273760704	32.9241553	10.2725065	$\cdot 0009225092$
1085	1177225	1277289125	32.9393382	10.2756644	.0009216590
1086	1179396	1280824056	32.9545141	10.2788203	.0009208103
1087	1181569	1284365503	32.9696830	10.2819743	·0009199632
1088	1183744	1287913472	32.9848450	10.2851264	·0009191176
1089	1185921	1291467969	33.0000000	10.2882765	·0009182736
1090	1188100	1295029000	33.0151480	10.2914247	$\cdot 0009174312$
1091	1190281	1298596571	33.0302891	10.2945709	0009165903
1092	1192464		33.0454233	19.2977153	•0009157509
1093	1194649	1305/5135/	33.0605505	10.3008577	0009149131
1094	1196836	1309338584	33.0756708	10.3039982	.0009140768
1090	1199020	1012902010	33.0907842	10.30/1308	.0009132420
1090	1201210	1390130679	33.1008907	10.212/082	.0009115770
1097	1205405	1323753199	33.1260830	10.3165411	.0009107468
1099	1207801	1327373299	33.1511689	10.3196721	.0009099181
1100	1210000	1331000000	33.1662479	10.3228012	.0009090909
1101	1212201	1334633301	33.1813200	10.3259284	.0009082652
1102	1214404	1338273208	33.1963853	10.3290537	.0009074410
1103	1216609	1341919727	33.2114438	10.3321770	·0009066183
1104	1218816	1345572864	33.2266955	10.3352985	.0009057971
1105	1221025	1349232625	$33 \cdot 2415403$	10.3384181	$\cdot 0009049774$
1106	1223236	1352899016	33.2565783	10.3415358	·0009041591
1107	1225449	1356572043	$33 \cdot 2716095$	10.3446517	•0009033424
1108	1227664	1366251712	33.2866339	10.8477657	•0009025271
1109	1229881	1363938029	33-3016516	10.3508778	•0009017133
1110	1202100		33.3166625	10.3539880	.0003003003
1 1111	1404021	1011030031	93-9910000	10.2910.804	.0009000900

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1112	1236544	1375036928	33.3466640	10.3602029	·0008992806
1113	1238769	1378749897	33.3616546	10.3633076	.0008984726
1114	1240996	1382469544	33.3766385	10.3664103	·0008976661
1115	1243225	1386195875	33.3916157	10.3695113	-0008968610
1116	1245456	1389928896	$33 \cdot 4065862$	10.3726103	.0008960753
1117	1247689	1393668613	$33 \cdot 4215499$	10.3757076	·0008952551
1118	1249924	1397415032	33.4365070	10.3788030	·0008944544
1119	1252161	1401168159	$33 \cdot 4514573$	10.3818965	·0008936550
1120	1254400	1404928000	$33 \cdot 4664011$	10.3849882	+0008928571
1121	1256641	1408694561	33.4813381	10-3880781	·0008960607
1122	1258884	1412467848	$33 \cdot 4962684$	10.3911661	•0008912656
1123	1261129	1416247867	33.5111921	10.3942527	0008904720
1124	1263376	1420034624	33.5261092	10.3973366	•0008896797
1120	1265625	1423828129	33.5410196	10.4004192	•0008888889
1120	120/8/6	142/0200/0	00.570000e	10.4034999	.0008879114
1120	1270129	1401400000	22.5257110	10.4006557	.0008865948
1120	1974641	1400249102	33,6005052	10.4197910	.0008857396
1120	1276000	1442897000	33-6154726	10.4158044	-0008849558
1131	1279161	1446731091	33-6303434	10.4188760	.0008841733
1132	1281424	1450571968	33.6452077	10.4219458	.0008833922
1133	1283689	1454419637	33.6600653	10.4250138	-0008826125
1134	1285956	1458274104	33.6749165	10.4280800	-0008818342
1135	1288225	1462135375	33.6897610	10.4311443	·0008810573
1136	1290496	1466003456	33.7045991	10.4342069	·0008802817
1137	1292769	1469878353	33.7174306	10.4372677	0008795075
1138	1295044	1473760072	33.7340556	10.4403677	·0008787346
1139	1297321	1477648619	33.7490741	10.4433839	·0008779631
1140	1299600	1481544000	33.7638860	10.4464393	-0008771930
1141	1301881	1485446221	33.7786915	10.4494929	•0008764242
1144	1304104	1409000200	00.0000000	10.4555049	-0008730307
1144	1208726	1495271207	33-8230601	10.4586421	-0008741259
1145	1311025	1501123625	33.8378486	10.4616896	.0008733624
1146	1313316	1505060136	33.8526218	10.4647343	.0008726003
1147	1315609	1509003523	33.8673884	10.4677773	·0008718396
1148	1317904	1512953792	33.8821487	10.4708158	.0008710801
1149	1320201	1516910949	33.8969025	10.4738579	-0008703220
1150	1322500	1520875000	<b>33</b> ·9116499	10.4768955	·0008695652
1151	1324801	1524845951	33.9263909	10.4799314	·0008688097
1152	1327104	1528823808	33.9411255	10.4829656	•0008680556
1153	1329409	1532808577	33.9558537	10.4859980	•0008673027
1154	1331716	1536800264	33.9705755	10.4890286	-00086655511
1150	1334025	1540798875	33.9852910	10.4920575	-0008650510
1157	1000000	1549004410	34.0147097	10.4990047	-0008643042
1158	1240064	1559836219	34.0203000	10.5011337	0008635579
1159	1343981	1556862679	34.0440890	10.5041556	-0008628128
1160	1345600	1560896000	34.0587727	10.5071757	.0008620690
1161	1347921	1564936281	34.0734501	10.5101942	·0008613244
1162	1350244	1568983528	34.0881211	10.5132109	·0008605852
1163	1352569	1573037749	34.0127858	10.5162259	$\cdot 0008598452$
1164	1354896	1577098944	34.1174442	10.5192391	·0008591065
1165	1357225	1581167125	34.1320963	10.5222506	+0008583691
1166	1359556	1585242296	34.1467422	10-5252604	-0008576329
1167	1361889	1589324463	34-1613817	10.5282685	0008561644
1100	1304224	1593413632	34.1/60150	10.5949705	.0008554290
1170	1268000	1601612000	34.9052627	10.5379895	+0008547009
1171	1371941	1605798911	34.2198773	10.5402837	0008539710
1172	1373584	1609840448	34-2344855	10.5432832	.0008532423
1173	1375929	1613964717	34.2490875	10.5462810	·0008525149

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1174	1378276	1618096024	34.2636834	10.5492771	·0008517888
1175	1380625	1622234375	$34 \cdot 2782730$	10.5522715	·0008510638
1176	1382976	1626379776	34.2928564	10.5552642	·0008503401
1177	1385329	1630532233	34.3074336	10.5582552	·0008496177
1178	1387684	1634691752	34.3220046	10.5612445	$\cdot 0008488964$
1179	1390041	1638858339	34.3365694	10.5642322	$\cdot 0008481764$
1180	1392400	1643032000	$34 \cdot 3511281$	10.5672181	·0008471576
1181	1394761	1647212741	34.3656805	10.5702024	·0008467401
1182	1397124	1651400568	$34 \cdot 3802268$	10.5731849	$\cdot 0008460237$
1183	1399489	1655595487	$34 \cdot 3947670$	10.5761658	$\cdot 0008453085$
1184	1401856	1659797504	34.4093011	10.5791449	$\cdot 0008445946$
1185	1404225	1664006625	$34 \cdot 4238289$	10.5821225	$\cdot 0008438819$
1186	1406596	1668222856	34.4383507	10.5850983	$\cdot 0008431703$
1187	1408969	1672446203	34.4528663	10.5880725	·0008424600
1188	1411344	10/00/00/2	34.4013739	10.5910450	·0008417508
1189	1413/21	1680914629	34.4818/93	10.5940158	0008410429
1190	1410100	1080109000	04·4900/00 94.5100670	10.5000505	•0008403361
1100	1410401	1009410071	04·0100010 94.5959590	10.20999020	.0008396306
1192	1420804	1607026057	24.5208291	10.0029104	.0008389202
1195	1425249	17092930037	34.5542051	10.6089451	.0008382320
1105	1428025	1706489875	34.5687790	10.6118060	.0008375209
1196	1430416	1710777536	84.5832329	10.6147652	+0008361201
1197	1432809	1715072373	34.5976879	10.6177228	+0008354919
1198	1435204	1719374392	34.6121366	10.6206788	0008347245
1199	1437601	1723683599	34.6265794	10.6236331	.0008340284
1200	1440000	1728000000	34.6410162	10.6265857	·00083333333
1201	1442401	1732323601	$84 \cdot 6554469$	10.6295367	·0008326395
1202	1444804	1736654408	$34 \cdot 6698716$	10.6324860	·0008319468
1203	1447209	1740992427	$34 \cdot 6842904$	10.6354338	·0008312552
1204	1449616	1745337664	34.6987031	10.6383799	·0008305648
1205	1452025	1749690125	34.7131099	10.6413244	·0008298755
1206	1454436	1754049816	34.7275107	10.6442672	·0008291874
1207	1456849	1758416743	34.7419055	10.6472085	·0008285004
1208	1459264	1762790912	34.7562944	10.6501480	$\cdot 0008278146$
1209	1461681	1767172329	34.7706773	10.6530860	·0008271299
1210	1464100	1771561000	34.7850543	10.6560223	$\cdot 0008264463$
1211	1466521	1775956931	34.7994253	10.6589570	0008257638
1212	1408944	1780360128	34.813/904	10.6618902	.0008250825
1215	1471309	1781/7039/	34.8281490	10.6648217	•0008244023
1214	1476995	1709100044	24.0560501	10.0077516	0008237232
1210	1478656	1793013370	24.0711015	10.6726066	0008230493
1210	1481089	1802485212	24.9955071	10.6765917	.0008225084
1218	1483524	1806939929	34.8998567	10.6794559	.0008910181
1219	1485961	1811386459	84.9141805	10.6823771	.0008203445
1220	1488400	1815848000	34.9284984	10.6852973	.0008196721
1221	1490841	1820316861	34.9428104	10.6882160	.0008190008
1222	1493284	1824793048	34.9571166	10.6911331	.0008183306
1223	1495729	1829276567	34.9714169	10.6940486	.0008176615
1224	1498176	1833764247	34.9857114	10.6969625	·0008169935
1225	1500625	1838265625	35.0000000	10.6998748	·0008163265
1226	1503276	1842771176	35.0142828	10.7027855	.0008156607
1227	1505529	1847284083	35.0285598	10.7056947	·0008149959
1228	1507984	1851804352	35.0428309	10.7086023	.0008143322
1229	1510441	1856331989	35.0570963	10.7115083	·0008136696
1230	1512900	1860867000	35.0713558	10.7144127	·0008130081
1231	1515361	1865409391	35.0856096	10.7173155	·0008123477
1232	1517824	1869959168	35.0998575	10.7202168	•0008116883
1203	1520289	1874516337	35.1140997	10.7231165	0008110300
1935	1525995	1899650075	50·1283361 95.1495569	10.7260146	0008103728
1200	1020220	10030020/0	39.1429908	10.7289112	.0008031166

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1236	1527696	1888232256	35.1567917	10.7318062	$\cdot 0008090615$
1237	1530169	1892819053	35.1710108	10.7346997	·0008084074
1238	1532644	1897413272	$35 \cdot 1852242$	10.7375916	.0008077544
1239	1535121	1902014919	$35 \cdot 1994318$	10.7404819	·0008071025
1240	1537600	1906624000	$35 \cdot 2136337$	10.7433707	·0008064516
1241	1540081	1911240521	$35 \cdot 2278299$	10.7462579	·0008058018
1242	1542564	1915864488	$35 \cdot 2420204$	10.7491436	$\cdot 0008051530$
1243	1545049	1920495907	$35 \cdot 2562051$	10.7520277	$\cdot 0008045052$
1244	1547536	1925134784	$35 \cdot 2703842$	10.7549103	•0008038585
1245	1550025	1929781125	35.2845575	10.7577913	•0008032129
1246	1552521	1934434936	35.2987252	10.7606708	0008025682
1247	100009	1939096223	35-31288/2	10.7635488	•0008019240
1248	1500001	1943/04992	30.3270430	10.7609001	.0008006405
1249	1569500	1940441249	00.0411941	10.7791795	.0008000405
1250	1565001	1955125000	25.2604784	10.7750453	+0007993605
1251	1567504	1969515008	35.3836120	10.7779156	.0007987220
1252	1570009	1967221277	35.3977400	10.7807843	.0007980846
1254	1572516	1971935064	35.4118624	10.7836516	0007974482
1255	1575025	1976656375	$35 \cdot 4259792$	10.7865173	.0007968127
1256	1577536	1981385216	35.4400903	10.7893815	·0007961783
1257	1580049	1986121593	$35 \cdot 4541958$	10.7922441	$\cdot 0007955449$
1258	1582564	1990865512	35.4682957	10.7951053	.0007949126
1259	1585081	1995616979	$35 \cdot 4823900$	10.7979649	.0007942812
1260	1587600	2000376000	$35 \cdot 4964787$	10.8008230	.0007936508
1261	1590121	2005142581	35.5105618	10.8036797	·0007930214
1262	1592644	2009916728	$35 \cdot 5246393$	10.8065348	·0007923930
1263	1595166	2014698447	$35 \cdot 5387113$	10.8093884	·0007917656
1264	1597696	2019487744	35.5527777	10.8122404	·0007911392
1265	1600225	2024284625	35.5668385	10.8150909	•0007905138
1266	1602756	2029089096	35.5808937	10.8179400	•0007898894
1207	1607894	2033901103	50*0949404 25.6090976	10.8996996	-0007886435
1200	1610361	2030720032	35-6230262	10-8264782	+0007880221
1200	1612900	2048383000	35.6370593	10.8293213	.0007874016
1271	1615441	2053225511	35-6510869	10.8321629	.0007867821
1272	1617984	2058075648	35.6651090	10.8350030	.0007861635
1273	1620529	2062933417	35.6791255	10.8378416	.0007855460
1274	1623076	2067798824	35.6931366	10.8406788	.0007849294
1275	1625625	2072671875	35.7071421	10.8435144	0007843137
1276	1628176	2077552576	35.7211422	10.8463485	.0007836991
1277	1630729	2082440933	35.7351367	10.8491812	·0007830854
1278	1633284	2087336952	35.7491258	10.8520125	$\cdot 0007824726$
1279	1635841	2092240639	35.7631095	10.8548422	0007818608
1280	1638400	2097152000	35.7770876	10.8576704	0007812500
1281	1640961	2102071841	35:7910603	10.8604972	0007800401
1282	1643524	2100997708	35.0100270	10.8661454	.0007704999
1285	1040009	2111902107	25.0220457	10.8680687	0007799162
1284	1651995	2110074604	25.8468966	10.8717897	-0007782101
1200	1653796	2126781656	35.8608421	10.8746091	.0007776050
1287	1656369	2131746903	35.8747822	10.8774271	.0007770008
1288	1658944	2136719872	35.8887169	10.8802436	.0007763975
1289	1661521	2141700569	35.9026461	10.8830587	.0007757952
1290	1664100	2146689000	35.9165699	10.8858723	.0007751938
1291	1666681	2151685171	35.9304884	10.8886845	.0007745933
1292	1669264	2156689088	35.9444015	10.8914952	·0007739938
1293	1671849	2161700757	35.9583092	10.8943044	•0007733952
1294	1674436	2166720184	35.9722115	10.8971123	0007727975
1295	1677025	2171747375	35.9861084	10.009709	0007722008
1296	1679616	2176782336	36.0000000	10.9027280	0007710100
1297	1682209	2181825073	30.0138862	10.9055209	.0001110100

.

			1		
Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1298	1684804	2186875592	36.0277671	10.9083290	$\cdot 0007704160$
1299	1687401	2191933899	36.0416426	10.9111296	·0007698229
1300	1690000	2197000000	36.0555128	10.9139287	·0007692308
1301	1692601	2202073901	36.0693776	10.9167265	·0007686395
1302	1695204	2207155608	36.0832371	10.9195228	·0007680492
1303	1697809	2212245127	36.0970913	10.9228177	·0007674579
1304	1700416	2217342464	36.1109402	10.9251111	$\cdot 0007668712$
1305	1703025	2222447625	36.1247837	10.9279031	$\cdot 0007662835$
1306	1705636	2227560616	36.1386220	10.9306937	·0007656968
1307	1708249	2232681443	36.1524550	10.9334829	•0007651109
1308	1710864	2237810112	36.1662826	10.9362706	0007645260
1309	1713481	2242946629	36.1801050	10.9390569	0007639419
1310	1716100	2248091000	36.1939221	10.9418418	•0007633588
1311	1718721	2253243231	36.2077340	10.9446253	•0007627765
1312	1721344	2208403528	36.2215406	10.94/50/4	•0007621951
1313	1723969	2263571297		10.95001880	0007616446
1314	1726596	2268/4/144	30.2491379	10.9529073	0007610350
1315	1729220	22/39308/8	30.2020287		.0007509504
1316	1/31800	22/9122490	30.2707143	10.99889219	0007598784
1317	1734489	2284322013	30.2904240	10.9012900	.0007593014
1318	1737124	2289929432	30.3042097	10.0668402	•0007581203
1019	1739701	2294744709	00.0100000	10.0000423	0007555555
1320	1742400	2299900000	00.0010042	10.9090101	0007570092
1321	1740041	2000199101	00.0400007	10.9720020	0007564907
1022	1750990	2010400240	96.9790670	10.0770171	0007559570
1020	1759076	2220040204	26.2262100	10.0206202	-0007559870
1995	1755695	2020040224	26.4005404	10.0824469	0007547170
1920	1759976	2320203123	36.4149890	10.0862086	.0007541479
1920	1760929	2336759783	36.4980119	10.9889696	.0007535795
1328	1763584	2342039552	36.4417343	10.9917293	0007530120
1329	1766241	2347334289	36.4554593	10.9944876	•0007524454
1330	1768900	2352637000	36.4691650	10.9972445	0007518797
1331	1771561	2357947691	36.4828727	11.0000000	.0007513148
1332	1774224	2363266368	36.4965752	11.0027541	.0007507508
1333	1776889	2368593037	36.5102725	11.0055069	.0007501875
1334	1779556	2373927704	36.5239647	11.0082583	$\cdot 0007496252$
1335	1782225	2379270375	36.5376518	11.0110082	$\cdot 0007490637$
1336	1784896	2384621056	36.5513888	11.0137569	.0007485030
1337	1787569	2389979753	$36 \cdot 5650106$	11.0165041	·0007479432
1338	1790244	2395346472	36.5786823	11.0192500	$\cdot 0007473842$
1339	1792921	2400721219	$36 \cdot 5923489$	11.0219945	.0007468260
1340	1795600	2406104000	36.6060104	11.0247377	0007462687
1341	1798281	2411494821	36.6196668	11.0274795	·0007457122
1342	1800964	2416893688	36.6333181	11.0302199	·0007451565
1343	1803649	2422300607	36.6469144	11.0329590	·0007446016
1344	1806336	2427715584	36.6606056	11.0356967	·0007440476
1345	1809025	2433138625	36.6742416	11.0384330	·0007434944
1346	1811716	2438569736	$36 \cdot 6878726$	11.0411680	$\cdot 0007429421$
1347	1814409	2444008923	36.7014986	11.0439017	$\cdot 0007423905$
1348	1817104	2449456192	36.7151195	11.0466339	$\cdot 0007418398$
1349	1819801	2454911549	36.7287353	11.0493649	•0007412898
1350	1822500	2460375000	36.7423461	11.0520945	0007407407
1351	1825201	2469846551	36.7559519	11.0548227	0007401924
1352	182/904	2471326208	36-7695526	11.0009759	-0007396450
1000	1030609	24/0813977	30.7831483	11.0620004	0007390983
1004	1833316	2482309864	30.1901390	11.0657000	0007389924
1356	1000020	240/0100/0	26.8020052	11.0694497	0007350074
1357	1841440	2490020010	36,82749000	11.0711690	.0007260107
1358	1844164	2504374719	36.8510515	11.0738898	+0007363770
1359	1846881	2509911979	36-8646179	11.0766002	.0007858859
1000	1010001		50 00 10112	11.0100000	00010000002

.

L

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1360	1849600	2515456000	36.8781778	11.0793165	·0007352941
1361	1852321	2521008881	36.8917335	11.0820314	.0007347539
1362	1855044	2526569928	36.9052842	11.0847449	.0007342144
1363	1857769	2532139147	36.9188299	11.0874571	·0007336757
1364	1860496	2537716544	36.9323706	11.0901679	.0007331378
1365	1863225	2543302125	36.9459064	11.0928775	·0007326007
1366	1865956	2548895896	36.9594372	11.0955857	.0007320644
1367	1868689	2554497863	36.9729631	11.0982926	·0007315289
1368	1871424	2560108032	36.9864840	11.1009982	·0007309942
1369	1874161	2565726409	37.0000000	11.1037025	$\cdot 0007304602$
1370	1876900	2571353000	37.0135110	11.1064054	·0007299270
1371	1879641	2576987811	37.0270172	11.1091070	$\cdot 0007293946$
1372	1882384	2582630848	37.0405184	11.1118073	$\cdot 0007288630$
1373	1885129	2588282117	37.0540146	11.1145064	$\cdot 0007283321$
1374	1887876	2593941624	37.0675060	11.1172041	•0007278020
1375	1890625	2599609375	37.0899924	11.1095055	•0007272727
1376	1893376	2605285376	37.0944740	11.1225955	0007267442
1377	1896129	2610969633	37.1079506	11.1252893	•0007262164
13/8	1898884	2616662152	37.1214224	11.12/9817	0007256894
13/9	1901641	2022302939	37.1499510	11.1999600	•0007201032
1000	1904400	2020072000	97.1619694	11.1960514	.0007240377
1001	1000004	2000700041	27.1759606	11.1997996	.0007241130
1004	1019620	2033014300	37.1887070	11.1414946	-0007230658
1384	1912009	2650991104	37.2021505	11.1441093	.0007295434
1385	1918225	2656741625	37.2155881	11.1467996	.0007220217
1386	1920996	2662500456	37.2290209	11.1494747	.0007215007
1387	1923769	2668267603	37.2424489	11.1521555	.0007209805
1388	1926544	2674043072	37.2558720	11.1548350	.0007204611
1389	1929321	2679826869	37.2692903	11.1575133	.0007199424
1390	1932100	2685619000	37.2827037	11.1601903	$\cdot 0007194245$
1391	1934881	2691419471	37.2961124	11.1628659	·0007189073
1392	1937664	2697228288	$37 \cdot 3095162$	11.1655403	.0007183908
1393	1940449	2703045457	$37 \cdot 3229152$	11.1682134	.0007178751
1394	1943236	2708870984	37.3363094	11.1708852	$\cdot 0007173601$
1395	1946025	2714704875	37.3496988	11.1735558	$\cdot 0007168459$
1396	1948816	2720547136	37.3630834	11.1762250	·0007163324
1397	1951609	2726397773	37.3764632	11.1788930	$\cdot 0007158196$
1398	1954404	2732256792	37.3898382	11.1815598	$\cdot 0007153076$
1399	1957201	2738124199	37.4032084	11.1842252	•0007147963
1400	1960000	2744000000	37.4165738	11.1868894	•0007142857
1401	1962801	2749884201	37.4299345	11.1895523	•0007137759
1402	1965604	2700/16808	37.4432904	11.1049749	0007107594
1403	1908409	27010/182/ 9767597064	07-4000410 37.4600990	11.1075994	.0007127284
1404	1971210	27735051204	37.4833206	11.9001919	0007117498
1400	1976826	2779431416	37.4966665	11.2028479	.0007119376
1407	1979649	2785366143	37.5099987	11.2055032	.0007107821
1408	1982464	2791309312	37.5233261	11.2081573	.0007102273
1409	1985281	2797260929	37.5366487	11.2108101	$\cdot 0007097232$
1410	1988100	2803221000	37.5499667	11.2134617	.0007092199
1411	1990921	2809189531	37.5632799	11.2161120	.0007087172
1412	1993744	2815166528	37.5765885	11.2187611	.0007082153
1413	1996569	2821151997	37.5898922	11.2214089	·0007077141
1414	1999396	2827145944	37.6031913	11.2240054	·0007072136
1415	2002225	2833148375	37.6164857	$11 \cdot 2267007$	·0007067138
1416	2005056	2839159296	37.6297754	11.2293448	$\cdot 0007062147$
1417	2007889	2845178713	37.6430604	11.2319876	$\cdot 0007057163$
1418	2010724	2851206632	37.6563407	11-2346292	.0007052186
1419	2013561	2857243059	37.6696164	11.2372696	0007047216
1420	2016400	2863288000	37.0028874	11-2399087	0007042254
1421	2019241	2869341461	31.0901936	11-2420400	.0007037298

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
14.9.9	2022084	2875403448	37.7094153	11.2451831	·0007032349
1428	2024929	2881473967	37.7226722	11.2478185	.0007027407
1494	2027776	2887553024	37.7359245	11.2504527	.0007022472
1425	2030625	2893640625	37.7491722	11.2530856	.0007017544
1426	2033476	2899736776	37.7624152	11.2557173	$\cdot 0007012623$
1427	2036329	2905841483	37.7756535	11.2583478	.0007007708
1428	2039184	2911954752	37.7888873	11.2609770	.0007002801
1429	2042041	2918076589	37.8021163	11.2636050	·0006997901
1430	2044900	2924207000	37.8153408	11.2662318	·0006993007
1431	2047761	2930345991	37.8285606	$11 \cdot 2688573$	-0006988120
1432	2050624	2936493568	37.8417759	11.2714816	·0006983240
1433	2053489	2942649737	$37 \cdot 8549864$	11.2741047	·0006978367
1434	2056356	2948814504	37.8681924	11.2767266	·0006973501
1435	2059225	2954987875	37.8813938	11.2793472	·0006968641
1436	2062096	2961169856	37.8945906	11.2819666	·0006963788
1437	2064969	2967360453	37.9077828	11.2845849	·0006958942
1438	2067844	2973559672	37.9209704	11.2872019	·0006954103
1439	2070721	2979767519	37.9341538	11.2898177	·0006949270
1440	2073600	2985984000	37.9473319	11.2924323	·0006944444
1441	2076481	2992209121	37.9605058	$11 \cdot 2950457$	•0006939625
1442	2079364	3098442888	37.9736751	11.2976579	·0006934813
1443	2082249	3004685307	37.9868398	11.3002688	·0006930007
1444	2085136	3010936384	38.0000000	11.3028786	·0006925208
1445	2088025	3017196125	38.0131556	11.3054871	·0006920415
1446	2080916	3023464536	38.0263067	11.3080945	·0006915629
1447	2093809	3029741623	38.0394532	11.3107006	·0006910850
1448	2096704	3036027392	38.0525952	11.3133056	·0006906078
1449	2099601	3042321849	38.0657326	11.3159094	$\cdot 0006901312$
1450	2102500	3048625000	38.0788655	11.3185119	·0006896552
1451	2105401	3054936851	38.0919939	11.3211132	•0006891799
1452	2108304	3061257408	38.1051178	11.3237134	0006887052
1453	2111209	3067586777	38.1182371	11.3263124	0006882312
1454	2114116	3073924664	38.1313519	11.3289102	0000877579
1455	2117025	3080271375	38.1444622	11.3315067	0006872852
1400	2119930	3086626816	38.15/5681	11.3341022	0000808132
1407	2122849	200022990993	38.1700093	11.3300904	0000803412
1408	2120704	0099303912	20.10002	11.9410019	00008954010
1409	2120001	2110126000	28.0000469	11.9444710	.0006840215
1400	2131000	3112130000	38.002039403	11.2470614	0006844697
1469	2134021	3194043198	38,9361085	11.3406407	.0006839945
1463	2140369	3131359847	38.9401890	11.2599269	.0006835940
1464	2143296	3137785344	38.2622520	11.3548997	+0006830601
1465	2146225	3144219625	38.2753184	11.3574075	0006825939
1466	2149156	3150662696	38.2883794	11.3599911	0006821282
1467	2152089	8157114563	38.3014360	11.3625735	.0006816633
1468	2155024	3163575232	38.3144881	11.3651547	·0006811989
1469	2157961	3170044709	38.3275358	11.3677347	.0006807352
1470	2160900	3176523000	38.3405790	11.3703136	·0006802721
1471	2163841	3183010111	38-3536178	11.3728914	·0006798097
1472	2166784	3189506048	38.3666522	11.3754679	.0006793478
1473	2169729	3196010817	38.3796821	11.3780433	.0006788866
1474	2172676	3202524424	38.3927076	11.3806175	·0006784261
1475	2175625	3209046875	38.4057287	11.3831906	·0006779661
1476	2178576	3215578176	38.4187454	11.3857625	·0006775068
1477	2181529	3222118333	38.4317577	11.3883332	·0006770481
1478	2184484	3228667352	38.4447656	11.3909028	.0006765900
1479	2187441	3235225239	$38 \cdot 4577691$	11.3934712	·0006761325
1480	2190400	3241792000	38.4707681	11.3960384	•0006756757
1481	2193361	3248367641	38.4837627	11.3986045	·0006752194
1482	2196324	8254952168	38.4967530	11.4011695	·0006747638
1485	2199289	3261545587	38.2097390	11.4037332	·0006743088

Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1484	2202256	3268147904	38.5227206	$11 \cdot 4062959$	$\cdot 0006738544$
1485	2205225	3274759125	38.5356977	11.4088574	·0006734007
1486	2208196	3281379256	$38 \cdot 5486705$	11.4114177	$\cdot 0006729474$
1487	2211169	3288008303	$38 \cdot 5616389$	11.4139769	$\cdot 0006724950$
1488	2214144	3294646272	$38 \cdot 5746030$	11.4165349	$\cdot 0006720430$
1489	2217121	3301293169	$38 \cdot 5875627$	11.4190918	·0006715917
1490	2220100	3307949000	38.6005181	11.4206476	·0006711409
1491	2223081	3314613771	38.6134691	11.4242022	·0006706908
1492	2226004	3321287488	38.6264158	11.4267556	$\cdot 0006702413$
1493	2229049	3227970157	38.6393582	11.4293079	•0006697924
1494	2232036	3334661784	38.6522962	11.4318591	•0006693440
1490	2259029	3341302375	38.0002299	11.4844092	•0006688963
1490	2238010	00400/1900	00.0101093	11.4205050	0000084492
1497	2241009	0001/901/0 9961517009	30°0910043 98-7040050	11.4390009	.0006675567
1400	2244004	3368954400	38.7160914	11.4445080	.0006671114
1500	2250000	3375000000	38.7298335	11.4471494	•00066666667
1501	2253001	3381754501	38.7427412	11.4496857	.0006662225
1502	2256004	3388518008	38.7556447	11.4522278	.0006657790
1503	2259009	3395290527	38.7685439	11.4547688	.0006553360
1504	2262016	3402072064	38.7814389	11.4573087	·0006648936
1505	2265025	3408862625	38.7943294	11.4598476	.0006644518
1506	2268036	3415662216	38.8072158	11.4623850	·0006640106
1507	2271049	3422470843	38.8200978	11.4649215	·0006635700
1508	2274064	3429288512	$38 \cdot 8329757$	11.4674568	·0006631300
1509	2277081	3436115229	$38 \cdot 8458491$	11.4699911	·0006626905
1510	2280100	3442951000	$38 \cdot 8587184$	11.4725242	$\cdot 0006622517$
1511	2283121	3449795831	38.8715834	11.4750562	·0006618134
1512	2286144	3456649728	38.8814442	11.4775871	•0006613757
1513	2289169	3463512697	38.8973006	11.4801169	•0006609385
1515	2292190	34/0384/44	28.0220000	11.4051791	*0006600660
1516	2290220	3484156006	38.0358447	11.4876005	.0006596306
1517	2301289	3491055413	38.9486841	11.4902249	.0006591958
1518	2304324	3597963832	38.9615194	11.4927491	.0006587615
1519	2307361	3504881359	38.9743505	11.4952722	.0006583278
1520	2310400	3511808000	38.9871774	11.4977942	$\cdot 0006578947$
1521	2313441	3518743761	39.0000000	11.5003151	$\cdot 0006574622$
1522	2316484	3525688648	39.0128184	11.5028348	·0006570302
1523	2319529	3532642667	39.0256326	11.5053535	·0006565988
1524	2322576	3539605824	39.0384426	11.5078711	$\cdot 0006561680$
1525	2325625	3546578125	39.0512483	11.5103876	·0006557377
1526	2328676	3553559576	39.0640499	11.5129030	•0006553080
1527	2331729	3567549552	39.0768473	11.5154173	·0006548788
1528	2354/84	3000008183	39.0896406	11.5904495	0006510999
1529	200/841	0014058889	39.1024296	11.5990595	.0006525049
1590	2340900	358860/201	39.1970051	11.5254634	+0006531679
1532	2347024	3595640768	39.1407716	11.5279722	.0006527415
1533	2350089	3602686437	39.1535439	11.5304799	.0006523157
1534	2353156	3609741304	39.1663120	11.5329865	.0006518905
1535	2356225	3616805375	39.1790760	11.5354920	.0000514658
1536	2359256	3623878656	39.1918359	11.5379965	·0006510417
1537	2362369	3630961153	39.2045915	11.5404998	·0006506181
1538	2365444	3638052872	$39 \cdot 2173431$	11.5430021	·0006501951
1539	2368521	3645153819	39.2300905	11.5455033	·0006497726
1540	2371600	3652264000	39.2428337	11.5480034	•0006493506
1541	2374681	3659383421	39-2555728	11-5505025	0006489293
1542	23/7764	3666512088	39.2683078	11.5554079	+0006485084
1543	2380849	3073650007	39.2810387	11.5570091	+0006476694
1545	2387095	3687052695	39-2957004	11.560.1878	.0006479409
1949	2001020	0001900020	0001000	11.0004010	00001/2102

Number.         Squares         Cubes.         Squares Roots.         Cube Roots.         Resignenals.           1544         2390116         3605119336         39.319208         11-5654740         -0006468305           1547         2390304         37094785392         89.3319208         11-5654740         -0006450718           1549         2390401         371067214         89.357373         11-5704559         -00064474353           1550         2402500         373857600         89.3703873         11-5779208         -00064474354           1552         2408704         3738508608         89.3954312         11-56779208         -0006443299           1553         2414916         3752779464         39.420807         11-5828919         -00064430808           1556         2421136         3770425616         89.441658         11-5678588         -0006443209           1558         2409481         376355938         39.4458893         11-5693407         -0006442508           1559         2409481         3764516000         39.4461658         11-5672455         -00064414385           1560         2438000         376416000         39.4948533         11-5023013         -0006492150           1561         24480721         380	1			1		
1546         2390116         3605119336         39-3122065         11-5622915         -000648305           1547         2393209         3702204323         39-331208         11-5654740         -0006451244           1549         2399401         3716672149         39-3673373         11-5704559         -0006451948           1550         2405601         3731087151         39-3827373         11-572453         -00064439150           1552         2408704         3753808608         39-3954312         11-5774936         -00064439150           1555         2418025         3760028875         39-438488         11-5828919         -0006443086           1555         2418025         3706028875         39-438488         11-5878588         -0006426208           1555         242136         377455509         39-4548589         11-5903407         -0006430848           1556         242138         3705416000         39-4968353         11-5977799         -0006422084           1560         243600         3706416000         39-4968353         11-607342         -0006492049           1562         2449844         81706224         39-5727179         11-6002576         -000640219           1562         2449255         838307125	Number.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
	1546	2390116	3695119336	39.3192065	11.5629815	·0006468305
1548         2390401         370478592         39-3446311         11-56704555         -0006455778           1549         2390401         3716672149         80-8573373         11-572453         -0006447453           1551         2405001         373808008         80-3954312         11-574386         -0006447459           1552         2408704         37153808077         39-4081210         11-5828919         -0006443209           1553         241805         3752779464         39-4208067         11-5828919         -0006435066           1555         2418025         376028875         39-438483         11-5673658         -0006422035           1557         2421436         37628616         39-4450658         11-5938013         -0006414868           1560         2421306         376416000         39-4968353         11-5073799         -0006414636           1562         2438044         381086328         39-5221457         11-6027342         -0006402049           1562         2449249         881880547         39-5347349         11-6078414         -0066389765           1564         2440060         882564144         39-527179         1-60727342         -0006485062           1564         2440255         883057125	1547	2393209	3702294323	39.3319208	11.5654740	$\cdot 0006464124$
	1548	2396304	3709478592	39.3446311	11.5679655	$\cdot 0006459948$
1550         2402500         3723875000         39-3700394         11-5724363         -0006447453           1551         2405601         373087151         39-3827373         11-5779208         -0006447453           1552         241809         3745530377         39-4081210         11-5828919         -0006439150           1554         2414916         3752779464         39-4208067         11-5828919         -0006438006           1555         242136         376287616         39-4461658         11-587858         -0006426735           1557         2421434         3774555693         39-4481740         11-5953013         -0006414368           1559         24230481         3781087175         39-4841740         11-5053013         -0006414368           1560         2438040         3796416000         39-4968353         11-5077799         -0006412630           1561         2438712         3805047         39-5447399         11-6027342         -0006402049           1662         2438944         811086328         39-5271479         11-6027342         -0006389763           1565         244925         883067125         39-5608090         11-6101575         -000638562           1567         2445489         881751263	1549	2399401	3716672149	39.3573373	11.5704559	$\cdot 0006455778$
	1550	2402500	3723875000	$39 \cdot 3700394$	11.5729453	·0006451613
$      1552 2408704 3738308068 3938054312 11-5779208 -00064329150 \\      11-584069 -00064329150 11-5828919 -00064329150 \\      1555 2418025 376028875 39-433488 11-5883759 -0006439506 \\      1555 2412136 3767287616 39-4461658 11-5878588 -00064226735 \\      1555 2421249 377455698 39-4384813 11-5938017 -0006422608 \\      1559 2427364 378183112 39-4715087 11-5928215 -0006414858 \\      1559 2420481 3781838112 39-4715087 11-5928215 -0006414858 \\      1559 2430481 378119879 39-4841740 11-5953013 -0006414368 \\      1560 2438000 3796410000 39-4968353 11-5977799 -0006410256 \\      1661 2436721 3803721481 39-5094925 11-6002576 -00064901256 \\      1661 2446026 382564144 39-5474399 11-607844 -0006337852 \\      1564 2440006 3825641444 39-5477179 11-607844 -000633755 \\      1564 2440006 3825641444 39-5477179 11-6126299 -0006385076 \\      1566 2452356 3840389496 39-5727179 11-6126299 -0006385076 \\      1567 2452458 384037125 39-5600809 11-6151012 -000638572 \\      1567 245489 3847751263 39-585508 11-651012 -000638572 \\       1569 2461761 386258009 39-6106046 11-620407 -000637486 \\       1570 2464900 38698300 39-6232255 11-6225088 -0006369427 \\       1572 2471184 3854701248 39-6484552 11-6224088 -000636372 \\      1572 2471184 3854701248 39-6484552 11-622408 -000638572 \\      1572 2471184 3854701248 39-6484552 11-622408 -000638572 \\      1572 246901 3852552 39-7240481 11-632371 -0006383624 \\      1576 2483776 391449076 39-6886655 11-6372957 -0006338240 \\      1576 248376 391480076 39-688665 11-6372957 -000633122 \\      1576 248376 391480076 39-688665 11-6372957 -000633122 \\      1576 248670 394381200 39-7240481 11-6422164 -000633113 \\      1578 249064 39285525 39-7240481 11-642364 -0006331145 \\       1578 249064 392887539 39-7366829 11-6446895 -0006341154 \\       1578 249064 392887539 39-7366829 11-64468751 -000633122 \\       1580 2250724 3958809868 39-7748686 11-6529452 -0006313131 \\           1582 251744 4004529472 39-847177 11-669574 -000633122 \\            1589 2558691 4002474857 39-94976 11-6548349 -000633113 \\            $	1551	2405601	3731087151	39.3827373	11.5754336	·0006447453
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1552	2408704	3738308608	$39 \cdot 3954312$	11.5779208	·0006443299
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1553	2411809	3745539377	$39 \cdot 4081210$	11.5804069	$\cdot 0006439150$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1554	2414916	3752779464	$39 \cdot 4208067$	11.5828919	·0006435006
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1555	2418025	3760028875	$39 \cdot 4334883$	11.5853759	·0006430868
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1556	2421136	3767287616	39.4461658	11.5878588	$\cdot 0006426735$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1557	2424249	3774555693	39.4588393	11.5903407	·0006422608
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1558	2427364	3781833112	39.4715087	11.5928215	·0006418485
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1559	2430481	3789119879	39.4841740	11.5953013	·0006414368
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1560	2433600	3796416000	39.4968353	11.5977799	·0006410256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1561	2436721	3803721481	$39 \cdot 5094925$	11.6002576	·0006406150
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1562	2439844	3811036328	39.5221457	11.6027342	·0006402049
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1563	2442969	3818360547	$39 \cdot 5347948$	11.6052097	·0006397953
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1564	2446096	3825641444	$39 \cdot 5474399$	11.6076841	•0006393862
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1565	2449225	3833037125	$39 \cdot 5600809$	11.6101575	·0006389776
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1566	2452356	3840389496	$39 \cdot 5727179$	11.6126299	·0006385696
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1567	2455489	3847751263	$39 \cdot 5853508$	11.6151012	·0006381621
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1568	2458624	3855123432	39.5979797	11.6175715	·0006377551
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1569	2461761	3862503009	39.6106046	11.6200407	•0006373486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1570	2464900	3869883000	$39 \cdot 6232255$	11.6225088	·0006369427
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1571	2468041	3877292411	39.6358424	11.6249759	·0006365372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1572	2471184	3884701248	$39 \cdot 6484552$	11.6274420	·0006361323
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1573	2474329	3892119157	39.6610640	11.6299070	·0006357279
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1574	2477476	3899547224	39.6736688	11.6323710	•0006353240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1575	2480625	3906984375	39.6862696	11.6348339	•0006349206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1576	2483776	3914430976	39.6988665	11.6372957	·0006345178
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1577	2486929	3921887033	39.7114593	11.6397566	·0006341154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1578	2490084	3929352552	39.7240481	11.6422164	·0006337136
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1579	2493241	3936827539	39.7366329	11.6446751	$\cdot 0006333122$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1580	2496400	3944312000	39.7492138	11.6471329	0006329114
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1581	2499561	3951805941	39.7617907	11.6495895	·0006325111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1582	2502724	3959309368	39.7743636	11.6520452	0006321113
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1583	2505889	3966822287	39.7869325	11.6544998	·0006317119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1584	2509056	3974344704	39.7994976	11.6569534	0006313131
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1585	2512225	3981876625	39.8120585	11.6594059	$\cdot 0006309148$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1586	2515396	3989418056	39.8246155	11.6618574	·0006305170
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1587	2518569	3996969003	39.8371686	11.6643079	•0006301197
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1588	2521744	4004529472	39.8497177	11.6667574	·0006297229
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1589	2524921	4012099469	39.8622628	11.6692058	·0006293266
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1590	2528100	4014679000	39.8748040	11.6716532	·0006289308
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1591	2531281	4027268071	39.8873413	11.6740996	•0006285355
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1592	2534464	4034866688	39.8998747	11.6765449	•0006281407
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1593	2537649	4042474857	39.9124041	11.6789892	•0006277464
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1594	2540836	4050092584	39.9249295	11.6814325	•0006273526
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1595	2544025	4057719875	39.9374511	11.6838748	•0006269592
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1596	2047216	4065356736	39.9499687	11.6863161	•0006265664
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1597	2550409	4073003173	39.9624824	11.6887563	•0006261741
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1598	2003604	4080659192	39.9749922	11.6911955	0006257822
1000 200000 409600000 40·000000 11·6960709 ·0006250000	1099	2555801	4088324799	39.9874980	11.6936337	•0006253909
	1000	2500000	4096000000	40.0000000	11.090103	•0006250000

To find the square or cube root of a number consisting of integers and decimals.

RULE.—Multiply the difference between the root of the integer part of the given number, and the root of the next higher integer number, by the decimal part of the given number, and add the  $_{\rm L}2$ 

product to the root of the given integer number; the sum is the root required.

Required the square root of 20.321.

Square root of 21 = 4.5825

Do. 20 = 4.4721

 $\cdot 1104 \times \cdot 321 + 4 \cdot 4721 = 4 \cdot 5075384$ , the

square root required.

Required the cube root of 16.42.

Cube root of 17 = 2.5712

Do. 16 = 2.5198

 $\cdot 0514 \times \cdot 42 + 2 \cdot 5198 = 2 \cdot 541388$ , the cube

root required.

#### To find the squares of numbers in arithmetical progression; or, to extend the foregoing table of squares.

RULE.—Find, in the usual way, the squares of the first two numbers, and subtract the less from the greater. Set down the square of the larger number, in a separate column, and add to it the difference already found, with the addition of 2, as a constant quantity; the product will be the square of the next following number.

The	square	of	1500=	22500002	250000
The	square	of	1499=	2247001	
			Difference	2999 + 2 =	3001
The	square	of	1501	2	253001
			Difference	3001 + 2 =	3003
The	square	of	1502		256004

To find the square of a greater number than is contained in the table.

RULE 1.—If the number required to be squared exceed by 2, 3, 4, or any other number of times, any number contained in the table, let the square affixed to the number in the table be multiplied by the square of 2, 3, or 4, &c., and the product will be the answer sought.

Required the square of 2595.

2595 is three times greater than 865; and the square of 865, by the table, is 748225.

Then,  $748225 \times 3^2 = 6734025$ .

RULE 2.—If the number required to be squared be an odd number, and do not exceed twice the amount of any number contained in the table, find the two numbers nearest to each other, which, added together, make that sum; then the sum of the squares of these two numbers, by the table, multiplied by 2, will exceed the square required by 1.

Required the square of 1865.

The two nearest numbers (932 + 933) = 1865.

Then, by table  $(932^2 = 868624) + (933^2 = 870489) = 1739113 \times 2 = 3478226 - 1 = 3478225.$ 

To find the cube of a greater number than is contained in the table.

RULE.—Proceed, as in squares, to find how many times the number required to be cubed exceeds the number contained in the table. Multiply the cube of that number by the cube of as many times as the number sought exceeds the number in the table, and the product will be the answer required.

Required the cube of 3984.

3984 is 4 times greater than 996; and the cube of 996, by the table, is 988047936.

Then,  $988047936 \times 4^3 = 63235067904$ .

#### To find the square or cube root of a higher number than is in the table.

RULE.—Refer to the table, and seek in the column of squares or cubes the number nearest to that number whose root is sought, and the number from which that square or cube is derived will be the answer required, when decimals are not of importance.

Required the square root of 542869.

In the Table of Squares, the nearest number is 543169; and the number from which that square has been obtained is 737.

Therefore,  $\sqrt{542869} = 737$  nearly.

#### To find more nearly the cube root of a higher number than is in the table.

RULE.—Ascertain, by the table, the nearest cube number to the number given, and call it the assumed cube.

Multiply the assumed cube, and the given number, respectively, by 2; to the product of the assumed cube add the given number, and to the product of the given number add the assumed cube.

Then, by proportion, as the sum of the assumed cube is to the sum of the given number, so is the root of the assumed cube to the root of the given number.

Required the cube root of 412568555.

By the table, the nearest number is 411830784, and its cube root is 744.

Therefore,  $411830784 \times 2 + 412568555 = 1236230123$ .

And,  $412568555 \times 2 + 411830784 = 1236967894$ .

Hence, as 1236230123: 1236967894:: 744: 744.369, very nearly.

#### To find the square or cube root of a number containing decimals.

RULE.—Subtract the square root or cube root of the *integer* of the given number from the root of the next higher number, and multiply the difference by the decimal part. The product, added to the root of the integer of the given number will be the answer required.

Required the square root of 321.62.

 $\sqrt{321} = 17.9164729$ , and  $\sqrt{322} = 17.9443584$ ; the difference ( $\cdot 0278855$ )  $\times \cdot 62 + 17.9164729 = 17.9337619$ .

#### To obtain the square root or cube root of a number containing decimals, by inspection.

RULE.—The square or cube root of a number containing decimals may be found at once by inspection of the tables, by taking the figures cut off in the *number*, by the decimal point, in *pairs* if for the square root, and in *triads* if for the cube root. The following example will show the results obtained, by simple inspection of the tables, from the figures 234, and from the numbers formed by the addition of the decimal point or of ciphers.

Number.	Square Root.	Cube Root.
$\cdot 00234$	·0483735465*	$\cdot 132761439 \pm$
·0234	·152970585	·2841
·2340	·483735465	·61622401
2.34	1.52970585	1.32761439
23.40	4.83735465	2.860
234	$15 \cdot 2970585$	6.1622401
2340	48.3735465	$13 \cdot 2761439$
23400	152.970585	28.60

#### To find the cubes of numbers in arithmetical progression, or to extend the preceding table of cubes.

RULE.—Find the cubes of the first two numbers, and subtract the less from the greater. Then, multiply the least of the two numbers cubed by 6, add the product, with the addition of 6 as a constant quantity, to the difference; and thus, adding 6 each time to the sum last added, form a first series of differences.

To form a second series of differences, bring down, in a separate column, the cube of the highest of the above numbers, and add the difference to it. The amount will be the cube of the next general number.

Required the cubes of 1501, 1502, and 1503.

First serie	s of differences.	Second series of differences.			
By Tab. 1500 = 3 1499 = 3	3375000000 3368254499	Then, 3375000000 Cube of 1500 Diff. for 1500 = 6754501			
$1499 \times 6 + 6 =$	6745501 difference. 9000	$\begin{array}{r} 3381754501 \text{ Cube of } 1501 \\ \text{Diff. for } 1501 = 6763507 \end{array}$			
9000 + 6 =	6754501 diff. of 1500 9006	$\begin{array}{r} 3388518008 \text{ Cube of } 1502 \\ \text{Diff. for } 1502 = 6772519 \end{array}$			
9006 + 6 =	6763507 diff. of 1501 9012	3395290527 Cube of 1503			
-	6772519 diff. of 1502 &c., &c.				

* Derived from .002340 by means of 2340.

+ Derived from .002340 by means of 2340.

[‡] The nearest result by simple inspection is obtained for 023 by 23. But four places correct can always be obtained by looking in the table of cubes for the nearest triad or triads, in this instance for 23400; the cube beginning with the figures 23393 is that of 2860, whence 2860 is true to the last place, and is afterwards substituted.

Number.	4th Power.	5th Power.	Number.	4th Power.	5th Power.
1	1	1	76	33362176	2535525376
2	16	- 32	77	35153041	2706784157
3	81	243	78	37015056	2887174368
4	256	1024	79	38950081	3077056399
5	625	3120	80	40960000	3276800000
6	1296	16807	89	45040/21	3480/84401
	4006	22768	83	40212170	3030040643
	6561	59049	84	49787136	4182119424
10	10000	100000	85	52200625	4437053125
1 ii 1	14641	161051	86	54708016	4704270176
12	20736	248832	87	57289761	4984209207
13	28561	371293	88	59969536	5277319168
14	38416	537824	89	62742241	5584059449
15	50625	759375	90	69610000	5904900000 6940201451
10	000000	1/10857	91	71630906	6500815939
18	104976	1889568	93	74805201	6596883693
19	130321	2476099	94	78074896	7339040224
20	160000	3200000	95	81450625	7737809375
21	194481	4084101	96	84934656	8153726976
22	234256	5153632	97	88529281	8587340257
23	279841	6436343	98	92236816	9039207968
24	331776	7962624	99	96059601	9509900499
25	390025	9765625	100	100000000	10000000000
20	531411	1/3/8007	101	109040401	10010100001
28	614656	17210368	103	112550881	11592740743
29	707281	20511149	104	116985856	12166529024
30	810000	24300000	105	121550625	12762815625
31	923521	28629151	106	126247696	13382255776
32	1048576	33554432	107	131079601	14025517307
33	1185921	39135393	108	136048896	14693280768
34	1336336	45435424	109	141158161	15386239549
30	1000020	02021870	110	151007041	10100100000
37	1874161	60343057	112	157351936	17623416832
38	2085136	79235168	113	163047361	18424351793
39	2313441	90224199	114	168896016	19254145824
40	2560000	102400000	115	174900625	20113571875
41	2825761	115856201	116	181063936	21003416576
42	3111696	130691232	117	187388721	21924480357
43	3418801	147008443	118	193877776	22877577568
44	4100625	104910224	119	200535921	23803330399
46	4477456	205962976	121	214358881	25937424601
47	4879681	229345007	122	221533456	27027081632
48	5308416	254803968	123	228886641	28153056843
49	5764801	282475249	124	236421376	29316250624
50	6250000	312500000	125	244140625	30517578125
50	0700201	345025251	120	25204/376	3175/909376
52	7800481	418105403	121	200144041	94950738368
54	8503056	459165024	129	276922881	35723051649
55	9150625	503284375	130	285610000	37129300000
56	9834496	550731776	131	294499921	38579489651
57	10556001	601692057	132	303595776	40074642432
58	11316496	656356768	133	312900721	41615795893
59	12117361	714924299	134	322417936	43204003424
61	13845841	844596301	136	342100020	46525874176
62	14776336	916132832	137	352275361	48261724457
63	15752961	992436543	138	362673936	50049003168
64	16777216	1073741824	139	373301041	51888844699
65	17850625	1160290625	140	384160000	53782400000
66	18974736	1252332576	141	395254161	55730836701
60	20151121	1350125107	142	400586896	57735339232
60	213010/0	1400900000	140	410101001	61017364994
70	24010000	1680700000	145	442050625	64097340625
71	25411681	1804229351	146	454371856	66338290976
72	26873856	1934917632	147	466948881	68641485507
73	28398241	2073071593	148	479785216	71008211968
74	29986576	2219006624	149 9	492884401	73439775749

# TABLE of the Fourth and Fifth Powers of Numbers.

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
1.01	·0099503	1.58	$\cdot 4574248$	2.15	·7654678	2.72	1.0006318
1.02	·0198026	1.59	·4637340	2.16	$\cdot 7701082$	2.73	1.0043015
1.03	·0295588	1.60	·4700036	2.17	·7747271	2.74	1.0079579
1.04	·0392207	1.61	·4762341	2.18	·7793248	2.75	1.0116008
1.05	$\cdot 0487902$	1.62	·4824261	2.19	·7839015	2.76	1.0152306
1.06	·0582689	1.63	·4885800	2.20	$\cdot 7884573$	2.77	1.0188473
1.07	·0676586	1.64	·4946962	2.21	$\cdot 7929925$	2.78	1.0224509
1.08	·0769610	1.65	·5007752	2.22	·7975071	2.79	1.0260415
1.09	-0861777	1.66	.5068175	2.23	·8020015	2.80	1.0296194
1.10	·0953102	1.67	·5128236	2.24	·8064758	2.81	1.0331844
1.11	·1043600	1.68	.5187937	2.25	·8109302	2.82	1.0367368
1.12	·1133287	1.69	.5247285	2.26	·8153648	2.83	1.0402766
1.13	·1222176	1.70	$\cdot 5306282$	2.27	·8197798	2.84	1.0438040
1.14	·1310283	1.71	·5364933	2.28	·8241754	2.85	1.0473189
1.15	·1397619	1.72	·5423242	2.29	·8285518	2.86	1.0508216
1.16	·1484200	1.73	.5481214	2.30	·8329091	2.87	1.0543120
1.17	$\cdot 1570037$	1.74	·5538851	2.31	·8372475	2.88	1.0577902
1.18	·1655144	1.75	$\cdot 5596157$	2.32	·8415671	2.89	1.0612564
1.19	$\cdot 1739533$	1.76	·5653138	2.33	·8458682	2.90	1.0647107
1.20	.1823215	1.77	.5709795	2.34	·8501509	2.91	1.0681530
1.21	$\cdot 1906203$	1.78	.5766133	2.35	·8544153	2.92	1.0715836
1.22	·1988508	1.79	.5822156	2.36	·8586616	2.93	1.0750024
1.23	·2070141	1.80	.5877866	2.37	·8628899	2.94	1.0784095
1.24	·2151113	1.81	.5933268	2.38	·8671004	2.95	1.0818051
1.25	·2231435	1.82	.5988365	2.39	·8712933	2.96	1.0851892
1.26	·2311117	1.83	.6043159	2.40	·8754687	2.97	1.0885619
1.27	·2390169	1.84	.6097655	2.41	·8796267	2.98	1.0919233
1.28	·2468600	1.85	·6151856	2.42	·8837675	2.99	1.0952733
1.29	.2546422	1.86	·6205764	2.43	·8878912	3.00	1.0986123
1.30	·2623642	1.87	.6259384	2.44	·8919980	3.01	1.1019400
1.31	·2700271	1.88	·6312717	2.45	·8960880	3.02	1.1052568
1.32	·2776317	1.89	·6365768	2.46	·9001613	3.03	1.1085626
1.33	·2851789	1.90	·6418538	2.47	·9042181	3.04	1.1118575
1.34	·2926696	1.91	·6471032	2.48	·9082585	3.05	1.1151415
1.35	·3001045	1.92	.6523251	2.49	·9122826	3.06	1.1184149
1.36	·3074846	1.93	.6575200	2.50	·9162907	3.07	1.1216775
1.37	·3148107	1.94	·6626879	2.51	·9202827	3.08	1.1249295
1.38	·3220834	1.95	·6678293	2.52	·9242589	3.09	1.1281710
1.39	·3293037	1.96	·6729444	2.53	$\cdot 9282193$	3.10	1.1314021
1.40	$\cdot 3364722$	1.97	.6780335	2.54	·9321640	3.11	1.1346227
1.41	·3435897	1.98	·6830968	2.55	·9360933	3.12	1.1378330
1.42	·3506568	1.99	·6881346	2.56	·9400072	3.13	1.1410330
1.43	$\cdot 3576744$	2.00	·6931472	2.57	$\cdot 9439058$	3.14	1.1442227
1.44	·3646431	2.01	·6981347	2.58	·9477893	8.15	1.1474024
1.45	·3715635	2.02	·7030974	2.59	$\cdot 9516578$	3.16	1.1505720
1.46	-3784364	2.03	.7080357	2.60	·9555114	3.17	1.1537315
1.47	$\cdot 3852624$	2.04	·7129497	2.61	$\cdot 9593502$	3.18	1.1568811
1.48	·3920420	2.05	·7178397	2.62	·9631743	3.19	1.1600209
1.49	·3987761	2.06	$\cdot 7227059$	2.63	·9669838	3.20	1.1631508
1.50	·4054651	2.07	.7275485	2.64	·9707789	3.21	1.1662709
1.51	·4121096	2.08	·7323678	2.65	·9745596	3.22	1.1693813
1.52	·4187103	2.09	.7371640	2.66	·9783261	3.23	1.1724821
1.53	·4252677	2.10	·7419373	2.67	.9820784	3.24	1.1755733
1.54	·4317824	2.11	.7466879	2.68	.9858167	3.25	1.1786549
1.55	·4382549	2.12	.7514160	2.69	·9895411	3.26	1.1817271
1.56	·4446858	2.13	.7561219	2.70	·9932517	3.27	1.1847899
1.57	·4510756	2.14	•7608058	2.71	•9969486	3.28	1.1878434
	l	1		1			

TABLE of Hyperbolic Logarithms.

## TABLE OF HYPERBOLIC LOGARITHMS. 131

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
3.29	1.1908875	3.91	1.3635373	4.53	1.5107219	5.15	1.6389967
3.30	1.1939224	3.92	1.3660916	4.54	1.5129269	5.16	1.6409365
3.31	1.1969481	3.93	1.3686394	4.55	1.5151272	5.17	1.6428726
3.32	1.1999647	3.94	1.3711807	4.56	1.5173226	5.18	1.6448050
3.33	1.2029722	3-95	1.3737156	4.57	1.5195132	5.19	1.6467336
3.34	1.2059707	3.96	1.3762440	4.58	1.5216990	5.20	1.6486586
3.35	1.2089603	3.97	1.3787661	4.59	1.5238800	5.21	1.6505798
3.36	1.2119409	3.98	1.3812818	4.60	1.5260563	5.22	1.6524974
3.37	1.2149127	3.99	1.3837912	4.61	1.5202047	5.94	1.6569914
3.38	1.9909900	4.00	1.3802943	4.62	1.5995569	5.95	1.6520020
0.39	1.9937754	4.02	1.2019212	4.64	1.5947149	5.26	1.6601310
3.41	1.2267104	4.03	1.3937662	4.65	1.5368672	5.27	1.6620303
3.42	1.2296405	4.04	1.3962446	4.66	1.5390154	5.28	1.6639260
3.43	1.2325605	4.05	1.3987168	4.67	1.5411590	5.29	1.6658182
3.44	1.2354714	4.06	1.4011829	4.68	1.5432981	5.30	1.6677068
3.45	1.2383742	4.07	1.4036429	4.69	1.5454325	5.31	1.6695918
3.46	1.2412685	4.08	1.4060969	4.70	1.5475625	5.32	1.6714733
3.47	1.2441545	4.09	1.4085449	4.71	1.5496879	5.33	1.6733512
3.48	1.2470322	4.10	1.4109869	4.72	1.5518087	5.34	1.6752256
3.49	1.2499017	4.11	1.4134230	4.73	1.5539252	5.35	1.6770965
3.50	1.2527629	4.12	1.4168531	4.74	1.5560371	5.97	1.6806926
0.01	1.2594600	4.13	1.4182774	4.10	1.5609476	5.20	1.6896889
3.52	1.2619079	4.15	1.4200907	4.77	1.5693469	5.30	1.6845453
3.54	1.2641266	4.16	1.4255150	4.78	1.5644405	5.40	1.6863989
3.55	1.2669475	4.17	1.4279160	4.79	1.5665304	5.41	1.6882491
3.56	1.2697605	4.18	1.4303112	4.80	1.5686159	5.42	1.6900958
3.57	1.2725655	4.19	1.4327007	4.81	1.5706971	5.43	1.6919391
3.58	1.2753627	4.20	1.4350845	4.82	1.5727739	5.44	1.6937790
3.59	1.2781521	4.21	1.4374626	4.83	1.5748464	5.45	1.6956155
3.60	1.2809338	4.22	1.4398351	4.84	1.5769147	5.46	1.6974487
3.61	1.2837077	4.23	1.4422020	4.85	1.5789787	5.47	1.6992786
3.62	1.2864740	4.24	1.4445632	4.86	1.5810384	5.48	1.7011051
3.63	1.2892326	4.25	1.4469189	4.87	1.5830939	5.49	1.7029282
0.04	1.2919836	4.20	1.4492691	4.88	1.5851452	0.00 5.51	1.7065646
3.66	1.2974621	4.98	1.4520520	4.00	1.5802250	5.59	1.7083778
3.67	1.3001916	4.29	1.4562867	4.91	1.5912739	5.53	1.7101878
3.68	1.3029127	4.30	1.4586149	4.92	1.5933085	5.54	1.7119944
3.69	1.3056264	4.31	1.4609379	4.93	1.5953389	5.55	1.7137979
3.70	1.3083328	4.32	1.4632553	4.94	1.5973653	5.56	1.7155981
3.71	1.3110318	4.33	1.4655675	4.95	1.5993875	5.57	1.7173950
3.72	1.3137236	4.34	1.4678743	4.96	1.6014057	5.58	1.7191887
3.73	1.3164082	4.35	1.4701758	4.97	1.6034198	5.59	1.7209792
3.74	1.3190856	4.36	1.4724720	4.98	1.6054298	5.60	1.7227666
3.75	1-3217558	4.37	1.4747630	4.99	1.6074358	5.61	1.7245507
3.76	1.8050740	4.38	1.4770487	5.00	1.6094379	5.62	1.7203316
0.11	1.9207940	4.39	1.4793292	5.09	1.6114359	5.64	1.7208840
3.70	1.3392660	4.40	1.4816045	5.02	1.6154300	5.65	1.7316555
3.80	1.3350010	4.42	1.4861396	5.04	1.6174060	5.66	1.7334238
3.81	1.3376291	4.43	1.4883995	5.05	1.6193882	5.67	1.7351891
3.82	1.3402504	4.44	1.4906543	5.06	1.6213664	5.68	1.7369512
3.83	1.3428648	4.45	1.4929040	5.07	1.6233408	5.69	1.7387102
3.84	1.3454723	4.46	1.4951487	5.08	1.6253112	5.70	1.7404661
3.85	1.3480731	4.47	1.4973883	5.09	1.6272778	5.71	1.7422189
3.86	1.3506671	4.48	1.4996230	5.10	1.6292405	5.72	1.7439687
3.87	1.3532544	4.49	1.5018527	5.11	1.6311994	5.73	1.7457155
3.88	1.3558351	4.50	1.5040774	5.12	1.6331544	5.74	1.7474591
3.00	1.3084091	4.51	1.5062971	5.13	1.6351056	5.75	1.7491998
0.90	1.3009765	4.92	1.5085119	5.14	1.6370530	5.76	1.7509374

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
5.77	1.7526720	6.39	1.8547342	7.01	1.9473376	7.63	2.0320878
5.78	1.7544036	6.40	1.8562979	7.02	1.9487632	7.64	2.0333976
5.79	1.7561323	6.41	1.8578592	7.03	1.9501866	7.65	2.0347056
5.80	1.7578579	6.42	1.8594181	7.04	1.9516080	7.66	2.0360119
5.81	1.7595805	6.43	1.8609745	7.05	1.9530275	7.67	2.0373166
5.82	1.7613002	6.44	1.8625285	7.06	1.9544449	7.68	2.0386195
5.83	1.7630170	6.45	1.8640801	7.07	1.9558604	7.69	2.0399207
5.84	1.7647308	6.46	1.8656293	7.08	1.9572739	7.70	2.0412203
5.85	1.7664416	6.47	1.8671761	7.09	1.9586853	7.71	2.0425181
5.86	1.7681496	6.48	1.8687205	7.10	1.9600947	7.72	2.0438143
5.87	1.7698546	6.49	1.8702625	7.11	1.9615022	7.73	2.0451088
5.88	1.7715567	6.50	1.8718021	7.12	1.9629077	7.74	2.0464016
5.89	1.7732559	6.51	1.8733394	7.13	1.9643112	7.75	2.0476928
5.90	1.7749523	6.52	1.8748743	7.14	1.9657127	7.76	2.0489823
5.91	1.7766458	6.53	1.8764069	7.15	1.9671123	7.77	2.0502701
5.92	1.7783364	6.54	1.8779371	7.16	1.9685099	7.78	2.0515563
5.93	1.7800242	6.55	1.8794650	7.17	1.9699056	7.79	2.0528408
5.94	1.7817091	6.56	1.8809906	7.18	1.9712993	7.80	2.0541237
5.95	1.7833912	6.57	1.8825138	7.19	1.9726911	7.81	2.0554049
5.96	1.7850704	6.58	1.8840347	7.20	1.9740810	7.82	2.0566845
5.97	1.7867469	6.59	1.8855533	7.21	1.9754689	7.83	2.0579624
5.98	1.7884205	6.60	1.8870696	7.22	1.9768549	7.84	2.0592388
5.99	1.7900914	6.61	1.8885837	7.23	1.9782390	7.85	2.0605135
6.00	1.7917594	6.62	1.8900954	7.24	1.9796212	7.86	2.0617866
6.01	1.7934247	6.63	1.8916048	7.25	1.9810014	7.87	2.0630580
6.02	1.7950872	6.64	1.8931119	7.26	1.9823798	7.88	2.0643278
6.03	1.7967470	6.65	1.8946168	7.27	1.9837562	7.89	2.0655961
6.04	1.7984040	6.66	1.8961194	7.28	1.9851308	7.90	2.0668627
6.05	1.8000582	6.67	1.8976198	7.29	1.9865035	7.91	2.0681277
6.06	1.8017098	6.68	1.8991179	7.30	1.9878743	7.92	.2.0693911
6.07	1.8033586	6.69	1.9006138	7.31	1.9892432	7.93	2.0706530
6.08	1.8050047	6.70	1.9021075	7.32	1.9906103	. 7.94	2.0719132
6.09	1.8066481	6.71	1.9035989	7.33	1.9919754	7.95	2.0731719
6.10	1.8082887	6.72	1.9050881	7.34	1.9933387	7.96	2.0744290
0.11	1.8099267	6.73	1.9005751	7.35	1.9947002	7.97	2.0700040
0.12	1.8191047	0.74	1.9080600	7.30	1.9960599	7.90	2.0709504
6.14	1.0100047	0.70	1.0110008	7 90	1.0007796	0.00	2.0704415
6.15	1.9164590	0.70	1.0195011	7.90	9.0001978	9.01	2.0806907
6.16	1.8180767	6.78	1.0120771	7.40	2.001278	8.02	2.0819384
6.17	1.8196988	6.79	1.9154509	7.41	2.0028305	8.03	2.0831845
6.18	1.8913189	6.80	1.9169226	7.49	2.0041790	8.04	2.0844290
6.19	1.8229351	6.81	1.9183921	7.43	2.0055258	8.05	2.0856720
6.20	1.8245493	6.82	1.9198594	7.44	2.0068708	8.06	2.0869135
6.21	1.8261608	6.83	1.9213247	7.45	2.0082140	8.07	2.0881534
6.22	1.8277699	6.84	1.9227877	7.46	2.0095553	8.08	2.0893918
6.23	1.8293763	6.85	1.9242486	7.47	2.0108949	8.09	2.0906287
6.24	1.8309801	6.86	1.9257074	7.48	2.0122327	8.10	2.0918640
6.25	1.8325814	6.87	1.9271641	7.49	2.0135687	8.11	2.0930984
6.26	1.8341801	6.88	1.9286186	7.50	2.0149030	8.12	2.0943306
6.27	1.8357763	6.89	1.9300710	7.51	2.0162354	8.13	2.0955613
6.28	1.8373699	6.90	1.9315214	7.52	2.0175661	8.14	2.0967905
6.29	1.8389610	6.91	1.9329696	7.53	2.0188950	8.15	2.0980182
6.30	1.8405496	6.92	1.9344157	7.54	2.0202221	8.16	2.0992444
6.31	1.8421356	6.93	1.9358598	7.55	2.0215475	8.17	$2 \cdot 1004691$
6.32	1.8437191	6.94	1.9373017	7.56	2.0228711	8.18	2.1016923
6.33	1.8453002	6.95	1.9387416	7.57	2.0241929	8.19	2.1029140
6.34	1.8468787	6.96	1.9401794	7.58	2.0255131	8.20	2.1041341
6.35	1.8484547	6.97	1.9416152	7.59	2.0268315	8.21	2.1053529
6.36	1.8500283	6.98	1.9430489	7.60	2.0281482	8.22	2.1065702
6.37	1.8515994	6.99	1.9444805	7.61	2.0294631	8.23	2.1077861
6.38	1.8231680	7.00	1.9459101	7.62	2.0307763	8.24	2.1099998

#### TABLE OF HYPERBOLIC LOGARITHMS.

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
8.25	2.1102128	8.69	2.1621729	9.13	2.2115656	9.57	$2 \cdot 2586332$
8.26	$2 \cdot 1114243$	8.70	$2 \cdot 1633230$	9.14	2.2126603	9.58	$2 \cdot 2596776$
8.27	$2 \cdot 1126343$	8.71	2.1644718	9.15	2.2137538	9.59	$2 \cdot 2607209$
8.28	$2 \cdot 1138428$	8.72	$2 \cdot 1656192$	9.16	2.2148461	9.60	$2 \cdot 2617631$
8.29	$2 \cdot 1150499$	8.73	2.1667653	9.17	2.2159372	9.61	$2 \cdot 2628042$
8.30	$2 \cdot 1162555$	8.74	2.1679101	9.18	2.2170272	9.62	$2 \cdot 2638442$
8.31	2.1174596	8.75	2.1690536	9.19	2.2181160	9.63	$2 \cdot 2648832$
8.32	$2 \cdot 1186622$	8.76	2.1701959	9.20	2.2192034	9.64	$2 \cdot 2659211$
8.33	2.1198634	8.77	2.1713367	9.21	$2 \cdot 2202898$	9.65	$2 \cdot 2669579$
8.34	$2 \cdot 1210632$	8.78	2.1724763	9.22	2.2213750	9.66	$2 \cdot 2679936$
8.35	$2 \cdot 1222615$	8.79	2.1736146	9.23	2.2224590	9.67	$2 \cdot 2690282$
8.36	2.1234584	8.80	$2 \cdot 1747517$	9.24	$2 \cdot 2235418$	9.68	$2 \cdot 2700618$
8.37	$2 \cdot 1246539$	8.81	2.1758874	9.25	$2 \cdot 2246235$	9.69	$2 \cdot 2710944$
8.38	2.1258479	8.82	2.1770218	9.26	$2 \cdot 2257040$	9.70	2.2721258
8.39	2.1270405	8.83	2.1781550	9.27	2.2267833	9.71	2.2731562
8.40	2.1282317	8.84	2.1792868	9.28	2.2278615	9.72	2.2741856
8.41	2.1294214	8.85	2.1804174	9.29	2.2289385	9.73	2.2752138
8.42	2.1306098	8.86	2.1815467	9.30	2.2300144	9.74	2.2762411
8.43	2.1317967	8.87	2.1826747	9.31	2.2310890	9.75	2.2772673
8.44	2.1329822	8.88	2.1838015	- 9.32	2.2321626	9.76	2.2782924
8.45	2.1341664	8.89	2.1849270	9.33	2.2332350	9.77	2.2793165
8.46	2.1353491	8.90	2.1860512	9.34	2.2343062	9.78	2.2803395
8.47	2.1365304	8.91	2.1871742	9.35	2.2353/63	9.79	2.2813614
8.48	2.1377104	8.92	2.1882959	9.36	2.2364452	9.80	2.2823823
8.49	2.1388889	8.93	2.1894163	9.37	2.2375130	9.81	2.2834022
8.50	2.1400661	8.94	2.1905355	9.38	2.2385797	9.82	2.2844211
8.91	2.1412419	8.95	2.1916535	9.39	2.2396452	9.83	2.2894389
8.92	2.1424163	8.96	2.1927702	9.40	2.2407096	9.84	2.2864556
8.99	2.1430893	0.00	2.1938896	9.41	2.2417729	9.99	2.28/4/14
8.94	2.144/609	9.99	2.1949998	9.42	2.2428590	9.80	2.2884861
0.50	2.1409012	9.99	2.1901128	9.43	2.2400900	0.00	2.2094998
0.57	2.14/1001	9.00	2.19/2240	0.45	2.2449009	0.90	2.2900124
0.50	2.1402070	0.02	2.1903390	9.40	2.2400147	0.00	2.2910241
8.50	2.1494009	9.02	2-1994440	0.47	2.2410120	9.90	2.2920047
8.60	2.1517699	0.04	2.2003028	0.19	2.2401200	0.00	2.2000440
8.61	2.1529242	9.05	2.2010391	9.40	2.2491049	9.92	2.2940029
8.62	2.1540851	9.06	2.2027047	9.49	2.2502560	9.94	2.2905004
8.63	2.1559445	9.07	2.2030031	9.51	2.2593438	9.95	2.2000070
8.64	2.1564026	9.08	2.2060741	9.52	2.2533948	9.96	2.2985770
8.65	2.1575593	9.09	2.2071748	9.52	2.2544446	9.97	2.2995806
8.66	2.1587147	9.10	2.2082744	9.54	2.2554934	9.98	2.3005831
8.67	2.1598687	9.11	2.2093727	9.55	2.2565411	9.99	2.3015846
8.68	2.1610215	9.12	2.2104697	9.56	2.2575877	10.00	2.3025851
0.00	- 1010210			000		1000	- 0040001

Logarithms were invented by Juste Byrge, a Frenchman, and not by Napier. See "Biographie Universelle," "The Calculus of Form," article 822, and "The Practical, Short, and Direct Method of Calculating the Logarithm of any given Number and the Number corresponding to any given Logarithm," discovered by Oliver Byrne, the author of the present work. Juste Byrge also invented the proportional compasses, and was a profound astronomer and mathematician. The common Logarithm of a number multiplied by  $2\cdot302585052994$  gives the hyperbolic Logarithm of that number. The common Logarithm of  $2\cdot22$  is  $\cdot346353$ ...  $2\cdot302585 \times \cdot346353$  $= \cdot7975071$  the hyperbolic Logarithm. The application of Logarithms to the calculations of the Engineer will be treated of hereafter.

#### COMBINATIONS OF ALGEBRAIC QUANTITIES.

THE following practical examples will serve to illustrate the method of combining or representing numbers or quantities algebraically; the chief object of which is, to help the memory with respect to the use of the signs and letters, or symbols.

Let 
$$a = 6$$
,  $b = 4$ ,  $c = 3$ ,  $d = 2$ ,  $e = 1$ , and  $f = 0$ .  
Then will, (1)  $2a + b = 12 + 4 = 16$ .  
(2)  $ab + 2c - d = 24 + 6 - 2 = 28$ .  
(3)  $a^2 - b^2 + e + f = 36 - 16 + 1 + 0 = 21$ .  
(4)  $b^2 \times (a - b) = 16 \times (6 - 4) = 16 \times 2 = 32$ .  
(5)  $3abc - 7de = 216 - 14 = 202$ .  
(6)  $2(a - b)(5c - 2d) = (12 - 8) \times (15 - 4) = 44$ .  
(7)  $\frac{c^2 - c^2}{d + f} \times (a - c) = \frac{9 - 1}{2 + 0} \times (6 - 3) = 4 \times 3 = 12$ .  
(8)  $\checkmark (a^2 - 2b^2) + d - f = \checkmark (36 - 32) + 2 - 0 = 4$ .  
(9)  $3ab - (a - b - c + d) = 72 - 1 = 71$ .  
(10)  $3ab - (a - b - c - d) = 72 + 3 = 75$ .  
(11)  $\frac{\checkmark 2abc}{\sqrt{(ab - 4d)}} \times (c + d) = \frac{\sqrt{144}}{\sqrt{(24 - 8)}} \times (3 + 2) = 15$ .

In solving the following questions, the letters a, b, c, &c. are supposed to have the same values as before, namely, 6, 4, 3, &c.; but any other values might have been assigned to them; therefore, do not suppose that a must necessarily be 6, nor that b must be 4, for the letter a may be put for any known quantity, number, or magnitude whatever; thus a may represent 10 miles, or 50 pounds, or any number or quantity, or it may represent 1 globe, or 2 cubic feet, &c.; the same may be said of b, or any other letter.

(1)	a+b-c=7.	(6) $4(a^2-b^2)(c-e) = 160.$
(2)	3bc-d+e=35.	(7) $\frac{a^2 - b^2}{a + d} \times (d^2 + e^2) = 52.$
(3)	$2a^2 + c^2 - d + f = 79.$	(8) $\sqrt{(2a^2+2d^2)+bc-f}=20.$
(4)	$\frac{a^2}{b} \times (b - c + d) = 27.$	(9) $4a^2b - (c^2 - d - e) = 570.$
(5)	$5c^2d - a^2 + 4de = 62.$	(10) $\frac{\sqrt{4a^2}}{\sqrt{(10d^2-4cd)}} \times \frac{a}{d} - c^2 = 0.$

In the use of algebraic symbols,  $3\sqrt[3]{4a-b}$  signifies the same thing as  $3(4a-b)^{\frac{1}{3}}$ .

 $4 (c+d)^{\frac{1}{2}} (a+b)^{\frac{1}{3}}$ , or  $4 \times \overline{c+d^{\frac{1}{2}}} \times \overline{a+b^{\frac{1}{3}}}$ , signifies the same thing as  $4 \sqrt{c+d} \cdot \sqrt[3]{a+b}$ .

## THE STEAM ENGINE.

THE particular example which we shall select is that of an engine having 8 feet stroke and 64 inch cylinder.

The breadth of the web of the crank at the paddle centre is the breadth which the web would have if it were continued to the paddle centre. Suppose that we wished to know the breadth of the web of crank of an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper breadth of the web of crank at paddle centre would in this case be about 18 inches.

To find the breadth of crank at paddle centre.—Multiply the square of the length of the crank in inches by 1.561, and then multiply the square of the diameter of cylinder in inches by .1235; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide the product by 45; finally extract the cube root of the quotient. The result is the breadth of the web of crank at paddle centre.

Thus, to apply this rule to the particular example which we have selected, we have

	48 = length of crank in inches.
	48
	$\overline{2304}$
	1.561 = constant multiplier.
	3596.5
	505.8 found below.
	$\overline{4102.3}$
	64 = diameter of cylinder.
	64
	4096
	$\cdot 1235 = \text{constant multiplier.}$
	505.8
and	$\sqrt{4102\cdot 3} = 64\cdot 05$ nearly. 4096 = square of the diameter of the cylinder.

45) 262348.5

5829.97

and  $\sqrt[3]{5829.97} = 18$  nearly.

Suppose that we wished the proper thickness of the large eye of crank for an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper thickness for the large eye of crank is 5.77 inches.

RULE.—To find the thickness of large eye of crank.—Multiply the square of the length of the crank in inches by 1.561, and then multiply the square of the diameter of the cylinder in inches by .1235; multiply the sum of these products by the square of the diameter of the cylinder in inches; afterwards, divide the product by 1828.28; divide this quotient by the length of the crank in inches; finally extract the cube root of the quotient. The result is the proper thickness of the large eye of crank in inches.

Thus, to apply this rule to the particular example which we have selected, we have

48 = length of crank in inches.
$\frac{48}{2304}$
1.561 constant multiplier.
3596.5
505.8
4102.3
$\begin{array}{c} 64 = \text{diameter of cylinder in inches.} \\ \underline{64} \end{array}$
4096
$\cdot 1235 = \text{constant multiplier.}$
505.8
4102.3
4096 = square of diameter.
48) 16803020.8
$1828 \cdot 28) 350062 \cdot 94$
191.47
and $\sqrt{191.47} = 5.77$ nearly.

The proper thickness of the web of crank at paddle shaft centre is the thickness which the web ought to have if continued to centre of the shaft. Suppose that it were required to find the proper thickness of web of crank at shaft centre for an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper thickness of the web at shaft centre in this case would be 8.97inches.

RULE.—To find the thickness of the web of crank at paddle shaft centre.—Multiply the square of the length of crank in inches by 1:561, and then multiply the square of the diameter in inches by 1235; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide this quotient by 360; finally extract the cube root of the quotient. The result is the thickness of the web of crank at paddle shaft centre in inches.

Thus, to apply the rule to the particular example which we have selected, we have

48 =length of crank in inches. UNIVE 1.561 = constant multiplier.64 = diameter of cylinder.

64 4096  $\cdot 1235 = \text{constant multiplier.}$ 505.8And  $\checkmark 4102.3 = 64.05$  nearly. 4096 =square of diameter. 360) 262348.5

48

2304

3596.5505.84102.3

$$\frac{728.75}{728.75}$$
And  $\sqrt[3]{782.75} = 9$  nearly.

Suppose that it were required to find the proper diameter for the paddle shaft journal of an engine whose stroke is 8 feet and diameter of cylinder 64 inches. The proper diameter of the paddle shaft journal in this case is 14.06 inches.

RULE.— To find the diameter of the paddle shaft journal.—Multiply the square of the diameter of cylinder in inches by the length of the crank in inches; extract the cube root of the product; finally multiply the result by .242. The final product is the diameter of the paddle shaft journal in inches.

Thus, to apply this rule to the particular example which we have before selected, we have

> 64 = diameter of cylinder in inches.64 4096 48 =length of crank in inches. 196608 and  $\sqrt[3]{196608} = 58.148$ but  $58.148 \times .242 = 14.07$  inches.

Suppose it were required to find the proper length of the paddle shaft journal for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. The proper length of the paddle shaft journal would be, in this case, 17.59 inches.

The following rule serves for engines of all sizes:

RULE.—To find the length of the paddle shaft journal.—Multiply the square of the diameter of the cylinder in inches by the length of the crank in inches; extract the cube root of the quotient; multiply the result by 303. The product is the length of the м 2

paddle shaft journal in inches. (The length of the paddle shaft journal is 14 times the diameter.)

To apply this rule to the example which we have selected, we have

and  $\sqrt[3]{196608} = 58.148$ ... length of journal =  $58.148 \times .303 = 17.60$  inches.

We shall now calculate the proper dimensions of some of those parts which do not depend upon the length of the stroke. Suppose it were required to find the proper dimensions of the respective parts of a marine engine the diameter of whose cylinder is 64 inches.

Diameter of crank-pin journal = 90.9 inches, or about 9 inches.

Length of crank-pin journal = 10.18 inches, or nearly  $10\frac{1}{5}$  inches.

Breadth of the eye of cross-head = 2.64 inches, or between  $2\frac{1}{2}$  and  $2\frac{3}{4}$  inches.

Depth of the eye of cross-head = 18.37 inches, or very nearly  $18\frac{1}{2}$  inches.

Diameter of the journal of cross-head = 5.5 inches, or  $5\frac{1}{2}$  inches.

Length of journal of cross-head = 6.19 inches, or very nearly  $6\frac{1}{2}$  inches.

Thickness of the web of cross-head at middle = 4.6 inches, or somewhat more than  $4\frac{1}{2}$  inches.

Breadth of web of cross-head at middle = 17.15 inches, or between  $17\frac{1}{10}$  and  $17\frac{1}{1}$  inches.

Thickness of web of cross-head at journal = 3.93 inches, or very nearly 4 inches.

Breadth of web of cross-head at journal = 6.46 inches, or nearly  $6\frac{1}{2}$  inches.

Diameter of piston rod = 6.4 inches, or  $6\frac{2}{5}$  inches.

Length of part of piston rod in piston = 12.8 inches, or  $12\frac{1}{2}$  inches.

Major diameter of part of piston rod in cross-head = 06.8 inches, or nearly  $6\frac{1}{10}$  inches.

Minor diameter of part of piston rod in cross-head = 5.76 inches, or  $5\frac{3}{4}$  inches.

Major diameter of part of piston rod in piston = 8.96 inches, or nearly 9 inches.

Minor diameter of part of piston rod in piston = 7.36 inches, or between  $7\frac{1}{4}$  and  $7\frac{1}{2}$  inches.

Depth of gibs and cutter through cross-head = 6.72 inches, or very nearly  $6\frac{3}{4}$  inches.

Thickness of gibs and cutter through cross-head = 1.35 inches, or between  $1\frac{1}{4}$  and  $1\frac{1}{2}$  inches.

Depth of cutter through piston = 5.45 inches, or nearly  $5\frac{1}{2}$  inches.

Thickness of cutter through piston = 2.24 inches, or nearly  $2\frac{1}{4}$  inches. Diameter of connecting rod at ends = 6.08 inches, or nearly

Drameter of connecting rod at ends = 0.08 menes, or nearly  $6_{10}$  inches.

Major diameter of part of connecting rod in cross-tail = 6.27 inches, or about  $6\frac{1}{4}$  inches.

Minor diameter of part of connecting rod in cross-tail = 5.76 inches, or nearly  $5\frac{3}{4}$  inches.

Breadth of butt = 9.98 inches, or very nearly 10 inches.

Thickness of but = 8 inches.

Mean thickness of strap at cutter = 2.75 inches, or  $2\frac{3}{4}$  inches.

Mean thickness of strap above cutter = 2.06 inches, or somewhat more than 2 inches.

Distance of cutter from end of strap = 3.08 inches, or very nearly  $3\frac{1}{10}$  inches.

Breadth of gibs and cutter through cross-tail = 6.73 inches, or very nearly  $6\frac{3}{4}$  inches.

Breadth of gibs and cutter through butt = 7.04 inches, or somewhat more than 7 inches.

Thickness of gibs and cutter through but 1.84 inches, or between  $1\frac{3}{4}$  and 2 inches.

These results are calculated from the following rules, which give correct results for all sizes of engines.

RULE 1. To find the diameter of crank-pin journal.—Multiply the diameter of the cylinder in inches by .142. The result is the diameter of crank-pin journal in inches.

RULE 2. To find the length of crank-pin journal.—Multiply the diameter of the cylinder in inches by .16. The product is the length of the crank-pin journal in inches.

RULE 3. To find the breadth of the eye of cross-head.—Multiply the diameter of the cylinder in inches by  $\cdot 041$ . The product is the breadth of the eye in inches.

RULE 4. To find the depth of the eye of cross-head.—Multiply the diameter of the cylinder in inches by 286. The product is the depth of the eye of cross-head in inches.

RULE 5. To find the diameter of the journal of cross-head.— Multiply the diameter of the cylinder in inches by 086. The product is the diameter of the journal in inches.

RULE 6. To find the length of the journal of cross-head.—Multiply the diameter of the cylinder in inches by .097. The product is the length of the journal in inches.

RULE 7. To find the thickness of the web of cross-head at middle. —Multiply the diameter of the cylinder in inches by 072. The product is the thickness of the web of cross-head at middle in inches.

RULE 8. To find the breadth of web of cross-head at middle.— Multiply the diameter of the cylinder in inches by 268. The product is the breadth of the web of cross-head at middle in inches. RULE 9. To find the thickness of the web of cross-head at journal. —Multiply the diameter of the cylinder in inches by .061. The product is the thickness of the web of cross-head at journal in inches.

RULE 10. To find the breadth of web of cross-head at journal.— Multiply the diameter of the cylinder in inches by .101. The product is the breadth of the web of cross-head at journal in inches.

RULE 11. To find the diameter of the piston rod.—Divide the diameter of the cylinder in inches by 10. The quotient is the diameter of the piston rod in inches.

RULE 12. To find the length of the part of the piston rod in the piston.—Divide the diameter of the cylinder in inches by 5. The quotient is the length of the part of the piston rod in the piston in inches.

RULE 13. To find the major diameter of the part of piston rod in cross-head.—Multiply the diameter of the cylinder in inches by .095. The product is the major diameter of the part of piston rod in cross-head in inches.

RULE 14. To find the minor diameter of the part of piston rod in cross-head.—Multiply the diameter of the cylinder in inches by 09. The product is the minor diameter of the part of piston rod in cross-head in inches.

RULE 15. To find the major diameter of the part of piston rod in piston.—Multiply the diameter of the cylinder in inches by 14. The product is the major diameter of the part of piston rod in piston in inches.

RULE 16. To find the minor diameter of the part of piston rod in piston.—Multiply the diameter of the cylinder in inches by  $\cdot 115$ . The product is the minor diameter of the part of piston rod in piston.

RULE 17. To find the depth of gibs and cutter through crosshead.—Multiply the diameter of the cylinder in inches by  $\cdot 105$ . The product is the depth of the gibs and cutter through crosshead.

RULE 18. To find the thickness of the gibs and cutter through cross-head.—Multiply the diameter of the cylinder in inches by .021. The product is the thickness of the gibs and cutter through cross-head.

RULE 19. To find the depth of cutter through piston.—Multiply the diameter of the cylinder in inches by 085. The product is the depth of the cutter through piston in inches.

RULE 20. To find the thickness of cutter through piston.—Multiply the diameter of the cylinder in inches by 035. The product is the thickness of cutter through piston in inches.

RULE 21. To find the diameter of connecting rod at ends.—Multiply the diameter of the cylinder in inches by 095. The product is the diameter of the connecting rod at ends in inches.

RULE 22. To find the major diameter of the part of connecting rod in cross-tail.—Multiply the diameter of the cylinder in inches by .098. The product is the major diameter of the part of connecting rod in cross-tail.

RULE 23. To find the minor diameter of the part of connecting rod in cross-tail.—Multiply the diameter of the cylinder in inches by .09. The product is the minor diameter of the part of connecting rod in cross-tail in inches.

RULE 24. To find the breadth of butt.—Multiply the diameter of the cylinder in inches by 156. The product is the breadth of the butt in inches.

RULE 25. To find the thickness of the butt.—Divide the diameter of the cylinder in inches by 8. The quotient is the thickness of the butt in inches.

RULE 26. To find the mean thickness of the strap at cutter. Multiply the diameter of the cylinder in inches by  $\cdot 043$ . The product is the mean thickness of the strap at cutter.

RULE 27. To find the mean thickness of the strap above cutter.— Multiply the diameter of the cylinder in inches by  $\cdot 032$ . The product is the mean thickness of the strap above cutter.

RULE 28. To find the distance of cutter from end of strap.— Multiply the diameter of the cylinder in inches by 048. The product is the distance of cutter from end of strap in inches.

RULE 29. To find the breadth of the gibs and cutter through cross-tail.—Multiply the diameter of the cylinder in inches by  $\cdot 105$ . The product is the breadth of the gibs and cutter through cross-tail.

RULE 30. To find the breadth of the gibs and cutter through butt.—Multiply the diameter of the cylinder in inches by '11. The product is the breadth of the gibs and cutter through butt in inches.

RULE 31. To find the thickness of the gibs and cutter through butt.—Multiply the diameter of the cylinder in inches by  $\cdot 029$ . The product is the thickness of the gibs and cutter through butt in inches.

To find other parts of the engine which do not depend upon the stroke. Suppose it were required to find the thickness of the small eye of crank for an engine the diameter of whose cylinder is 64 inches. According to the rule, the proper thickness of the small eye of crank is 4.04 inches. Again, suppose it were required to find the length of the small eye of crank. Hence, according to the rule, the proper length of the small eye of crank is 11.94 inches. Again, supposing it were required to find the proper thickness of the web of crank at pin centre; that is to say, the thickness which it would have if continued to the pin centre. According to the rule, the proper thickness for the web of crank at pin centre is 7.04 inches. Again, suppose it were required to find the breadth of the web of crank at pin centre; that is to say, the breadth which it would have if it were continued to the pin centre. Hence, according to the rule, the proper breadth of the web of crank at pin centre is 10.24 inches.

These results are calculated from the following rules, which give the proper dimensions for engines of all sizes:

RULE 1. To find the breadth of the small eye of crank.—Multiply the diameter of the cylinder in inches by .063. The product is the proper breadth of the small eye of crank in inches.

RULE 2. To find the length of the small eye of crank.—Multiply the diameter of the cylinder in inches by .187. The product is the proper length of the small eye of crank in inches.

RULE 3. To find the thickness of the web of crank at pin centre.— Multiply the diameter of the cylinder in inches by  $\cdot 11$ . The product is the proper thickness of the web of crank at pin centre in inches.

RULE 4. To find the breadth of the web of crank at pin centre.— Multiply the diameter of the cylinder in inches by  $\cdot 16$ . The product is the proper breadth of crank at pin centre in inches.

To illustrate the use of the succeeding rules, let us take the particular example of an engine of 8 feet stroke and 64-inch cylinder, and let us suppose that the length of the connecting rod is 12 feet, and the side rod 10 feet. We find by a previous rule that the diameter of the connecting rod at ends is 6.08, and the ratio between the diameters at middle and ends of a connecting rod, whose length is 12 feet, is 1.504. Hence, the proper diameter at middle of the connecting rod =  $6.08 \times 1.504$  inches = 9.144inches. And again, we find the diameter of cylinder side rods at ends, for the particular engine which we have selected, is 4.10, and the ratio between the diameters at middle and ends of cylinder side rods, whose lengths are 10 feet, is 1.42. Hence, according to the rules, the proper diameter of the cylinder side rods at middle is equal to  $4.1 \times 1.42$  inches = 5.82 inches.

To find some of those parts of the engine which do not depend upon the stroke. Suppose we take the particular example of an engine the diameter of whose cylinder is 64 inches. We find from the following rules that

Diameter of cylinder side rods at ends =  $4 \cdot 1$  inches, or  $4_{10}^{1}$  inches.

Breadth of butt = 4.93 inches, or very nearly 5 inches.

Thickness of butt = 3.9 inches, or  $3\frac{9}{10}$  inches.

Mean thickness of strap at cutter = 2.06 inches, or a little more than 2 inches.

Mean thickness of strap below cutter = 1.47 inches, or very nearly  $1\frac{1}{2}$  inches.

Depths of gibs and cutter = 5.12 inches, or a little more than  $5\frac{1}{10}$  inches.

Thickness of gibs and cutter = 1.03 inches, or a little more than 1 inch.

Diameter of main centre journal = 11.71 inches, or very nearly  $11\frac{3}{4}$  inches.

Length of main centre journal = 17.6 inches, or  $17\frac{2}{5}$  inches.
Depth of eye round end studs of lever = 4.75 inches, or  $4\frac{3}{4}$  inches. Thickness of eye round end studs of lever = 3.33 inches, or  $3\frac{1}{3}$  inches.

Diameter of end studs of lever = 4.48 inches, or very nearly  $4\frac{1}{2}$  inches.

Length of end stude of lever = 4.86 inches, or between  $4\frac{3}{4}$  and 5 inches.

Diameter of air-pump stude = 2.91 inches, or nearly 3 inches. Length of air-pump stude = 3.16 inches, or nearly  $3\frac{1}{5}$  inches.

These results were obtained from the following rules, which will be found to give the proper dimensions for all sizes of engines.

RULE 1. To find the diameter of cylinder side rods at ends.— Multiply the diameter of the cylinder in inches by .065. The product is the diameter of the cylinder side rods at ends in inches.

RULE 2. To find the breadth of butt in inches.—Multiply the diameter of the cylinder in inches by 077. The product is the breadth of the butt in inches.

RULE 3. To find the thickness of the butt.—Multiply the diameter of the cylinder in inches by .061. The product is the thickness of the butt in inches.

RULE 4. To find the mean thickness of strap at cutter.—Multiply the diameter of the cylinder in inches by 032. The product is the mean thickness of the strap at cutter.

RULE 5. To find the mean thickness of strap below cutter.—Multiply the diameter of the cylinder in inches by 023. The product is the mean thickness of strap below cutter in inches.

RULE 6. To find the depth of gibs and cutter.—Multiply the diameter of the cylinder in inches by 08. The product is the depth of the gibs and cutter in inches.

RULE 7. To find the thickness of gibs and cutter.—Multiply the diameter of the cylinder in inches by  $\cdot 016$ . The product is the thickness of gibs and cutter in inches.

RULE 8. To find the diameter of the main centre journal.—Multiply the diameter of the cylinder in inches by 183. The product is the diameter of the main centre journal in inches.

RULE 9. To find the length of the main centre journal.—Multiply the diameter of the cylinder in inches by  $\cdot 275$ . The product is the diameter of the cylinder in inches.

RULE 10. To find the depth of eye round end stude of lever.— Multiply the diameter of the cylinder in inches by 074. The product is the depth of the eye round end stude of lever in inches.

RULE 11. To find the thickness of eye round end stude of lever.

-Multiply the diameter of the cylinder in inches by 052. The product is the thickness of eye round end studs of lever in inches.

RULE 12. To find the diameter of the end stude of lever.—Multiply the diameter of the cylinder in inches by 07. The product is the diameter of the end stude of lever in inches.

RULE 13. To find the length of the end stude of lever.-Multiply

the diameter of the cylinder in inches by  $\cdot 076$ . The product is the length of the end study of lever in inches.

RULE 14. To find the diameter of the air-pump studs.—Multiply the diameter of the cylinder in inches by 045. The product is the diameter of the air-pump studs in inches.

RULE 15. To find the length of the air-pump studs.—Multiply the diameter of the cylinder in inches by 049. The product is the length of the air-pump studs in inches.

The next rule gives the proper depth in inches across the centre of the side lever, when, as is generally the case, the side lever is of cast iron. It will be observed that the depth is made to depend upon the diameter of the cylinder and the length of the lever, and not at all upon the length of the stroke, except indeed in so far as the length of the lever may depend upon the length of the stroke. Suppose it were required to find the proper depth across the centre of a side lever whose length is 20 feet, and the diameter of the cylinder 64 inches. According to the rule, the proper depth across the centre would be 39.26 inches.

The following rule will give the proper dimensions for any size of engine:

RULE.—To find the depth across the centre of the side lever.— Multiply the length of the side lever in feet by .7423; extract the cube root of the product, and reserve the result for a multiplier. Then square the diameter of the cylinder in inches; extract the cube root of the result. The product of the final result and the reserved multiplier is the depth of the side lever in inches across the centre.

Thus, to apply this rule to the particular example which we have selected, we have

20 = length of side lever in feet.  $\frac{\cdot 7423}{14\cdot 846} = \text{constant multiplier.}$   $\frac{14\cdot 846}{14\cdot 846} = 2\cdot 458 \text{ nearly.}$  64 = diameter of cylinder in inches. $\frac{64}{4096}$ 

and  $\sqrt[3]{4096} = 16$ 

Hence depth at centre =  $16 \times 2.458$  inches = 39.33 inches, or between  $39\frac{1}{4}$  and  $39\frac{1}{2}$  inches.

The next set of rules give the dimensions of several of the parts of the air-pump machinery which depend upon the diameter of the cylinder only. To illustrate the use of these rules, let us take the particular example of an engine the diameter of whose cylinder is 64 inches. We find from the succeeding rules successively,

Diameter of air-pump = 38.4 inches, or  $38\frac{2}{5}$  inches.

Thickness of the eye of air-pump cross-head = 1.58 inches, or a little more than  $1\frac{1}{2}$  inches.

Depth of eye of air-pump cross-head = 11.01, or about 11 inches. Diameter of end journals of air-pump cross-head = 3.29 inches, or somewhat more than  $3\frac{1}{4}$  inches.

Length of end journals of air-pump cross-head = 3.7 inches, or  $3\frac{1}{75}$  inches.

Thickness of the web of air-pump cross-head at middle = 2.76 inches, or a little more than  $2\frac{3}{4}$  inches.

Depth of web of air-pump cross-head at middle = 10.29 inches, or somewhat more than  $10\frac{1}{4}$  inches.

Thickness of web of air-pump cross-head at journal = 2.35 inches, or about  $2\frac{3}{2}$  inches.

Depth of web of air-pump cross-head at journal = 3.89 inches, or about  $3\frac{4}{4}$  inches.

Diameter of air-pump piston rod when made of copper = 4.27 inches, or about  $4\frac{1}{4}$  inches.

Depth of gibs and cutter through air-pump cross-head = 4.04 inches, or a little more than 4 inches.

Thickness of gibs and cutter through air-pump cross-head =  $\cdot 81$  inches, or about  $\frac{1}{8}$  inch.

Depth of cutter through piston = 3.27 inches, or somewhat more than  $3\frac{1}{4}$  inches.

Thickness of cutter through piston = 1.34 inches, or about  $1\frac{3}{5}$  inches.

These results were obtained from the following rules, and give the proper dimensions for all sizes of engines:

RULE 1. To find the diameter of the air-pump.—Multiply the diameter of the cylinder in inches by .6. The product is the diameter of air-pump in inches.

RULE 2. To find the thickness of the eye of air-pump cross-head. —Multiply the diameter of the cylinder in inches by .025. The product is the thickness of the eye of air-pump cross-head in inches.

RULE 3. To find the depth of eye of air-pump cross-head.—Multiply the diameter of the cylinder in inches by 171. The product is the depth of the eye of air-pump cross-head in inches.

RULE 4. To find the diameter of the journals of air-pump crosshead.—Multiply the diameter of the cylinder in inches by 051. The product is the diameter of the end journals.

RULE 5. To find the length of the end journals for air-pump cross-head.—Multiply the diameter of the cylinder in inches by '058. The product is the length of the air-pump cross-head journals in inches.

RULE 6. To find the thickness of the web of air-pump cross-head at middle.—Multiply the diameter of the cylinder in inches by .043. The product is the thickness at middle of the web of air-pump cross-head in inches.

RULE 7. To find the depth at middle of the web of air-pump crosshead.—Multiply the diameter of the cylinder in inches by .161. The product is the depth at middle of air-pump cross-head in inches.

RULE 8. To find the thickness of the web of air-pump crosshead at journals.—Multiply the diameter of the cylinder in inches by 037. The product is the thickness of the web of air-pump cross-head at journals in inches.

RULE 9. To find the depth of the air-pump cross-head web at journals.—Multiply the diameter of the cylinder in inches by .061. The product is the depth at journals of the web of air-pump cross-head.

RULE 10. To find the diameter of the air-pump piston rod when of copper.—Multiply the diameter of the cylinder in inches by '067. The product is the diameter of the air-pump piston rod, when of copper, in inches.

RULE 11. To find the depth of gibs and cutter through air-pump cross-head.—Multiply the diameter of the cylinder in inches by .063. The product is the depth of the gibs and cutter through airpump cross-head in inches.

RULE 12. To find the thickness of the gibs and cutter through air-pump cross-head.—Multiply the diameter of the cylinder in inches by 013. The product is the thickness of the gibs and cutter in inches.

RULE 13. To find the depth of cutter through piston.—Multiply the diameter of the cylinder in inches by  $\cdot 051$ . The product is the depth of the cutter through piston in inches.

RULE 14. To find the thickness of cutter through air-pump piston.—Multiply the diameter of the cylinder in inches by 021. The product is the thickness of the cutter through air-pump piston.

The next seven rules give the dimensions of the remaining parts of the engine which do not depend upon the stroke. To exemplify their use, suppose it were required to find the corresponding dimensions for an engine the diameter of whose cylinder is 64 inches. According to the rule, the proper diameter of the air-pump side rod would be 2.48 inches. Hence, according to the rule, the proper breadth of butt is 2.95 inches. According to the rule, the proper thickness of butt is 2.35 inches. According to the rule, the proper thickness of strap at cutter ought to be 1.24 inches. Hence, according to the rule, the mean thickness of strap below cutter is .91 inch. According to the rule, the proper depth for the gibs and cutter is 2.94 inches. According to the rule, the proper thickness of the gibs and cutter is .63 inches.

The following rules give the correct dimensions for all sizes of engines:

RULE 1. To find the diameter of air-pump side rod at ends.— Multiply the diameter of the cylinder in inches by 039. The product is the diameter of the air-pump side rod at ends in inches.

RULE 2. To find the breadth of butt for air-pump.-Multiply the

diameter of the cylinder in inches by 046. The product is the breadth of butt in inches.

RULE 3. To find the thickness of butt for air-pump.—Multiply the diameter of the cylinder in inches by .037. The product is the thickness of butt for air-pump in inches.

RULE 4. To find the mean thickness of strap at cutter.—Multiply the diameter of the cylinder in inches by 019. The product is the mean thickness of strap at cutter for air-pump in inches.

RULE 5. To find the mean thickness of strap below cutter.—Multiply the diameter of the cylinder in inches by 0.14. The product is the mean thickness of strap below cutter in inches.

RULE 6. To find the depth of gibs and cutter for air-pump.— Multiply the diameter of the cylinder in inches by 0.48. The product is the depth of gibs and cutter for air-pump in inches.

RULE 7. To find the thickness of gibs and cutter for air-pump. Divide the diameter of the cylinder in inches by 100. The quotient is the proper thickness of the gibs and cutter for air-pump in inches.

With regard to other dimensions made to depend upon the nominal horse power of the engine :—Suppose that we take the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. We find that the nominal horse power of this engine is nearly 175. Hence we have successively,

Diameter of valve shaft at journal in inches = 4.85, or between  $4\frac{3}{4}$  and 5 inches.

Diameter of parallel motion shaft at journal in inches = 3.91, or very nearly 4 inches.

Diameter of valve rod in inches = 2.44, or about  $2\frac{3}{8}$  inches.

Diameter of radius rod at smallest part in inches = 1.97, or very nearly 2 inches.

Area of eccentric rod, at smallest part, in square inches = 8.37, or about  $8\frac{3}{8}$  square inches.

Sectional area of eccentric hoop in square inches = 8.75, or  $8\frac{3}{4}$  square inches.

Diameter of eccentric pin in inches =  $2 \cdot 24$ , or  $2\frac{1}{4}$  inches.

Breadth of valve lever for eccentric pin at eye in inches = 5.7, or very nearly  $5\frac{3}{4}$  inches.

Thickness of valve lever for eccentric pin at eye in inches = 3. Breadth of parallel motion crank at eye =  $4\cdot 2$  inches, or very nearly  $4\frac{1}{4}$  inches.

Thickness of parallel motion crank at eye = 1.76 inches, or about  $1\frac{3}{4}$  inches.

To find the area in square inches of each steam port. Suppose it were required to find the area of each steam port for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the area of each steam port would be 202.26 square inches.

With regard to the rule, we may remark that the area of the

steam port ought to depend principally upon the cubical content of the cylinder, which again depends entirely upon the product of the square of the diameter of the cylinder and the length of the stroke of the engine. It is well known, however, that the quantity of steam admitted by a small hole does not bear so great a proportion to the quantity admitted by a larger one, as the area of the one does to the area of the other; and a certain allowance ought to be made for this. In the absence of correct theoretical information on this point, we have attempted to make a proper allowance by supplying a constant; but of course this plan ought only to be regarded as an approximation. Our rule is as follows:

RULE.—To find the area of each steam port.—Multiply the square of the diameter of the cylinder in inches by the length of the stroke in feet; multiply this product by 11; divide the last product by 1800; and, finally, to the quotient add 8. The result is the area of each steam port in square inches.

To show the use of this rule, we shall apply it to a particular example. We shall apply it to an engine whose stroke is 6 feet, and diameter of cylinder 30 inches. Then, according to the rule, we have

30 = diameter of the cylinder in inches. 30 = 30 = square of diameter. 6 = length of stroke in feet. 5400 = 11  $59400 \div 1800 = 33$  8 = constant to be added.

41 = area of steam port in square inches.

When the length of the opening of steam port is from any circumstance found, the corresponding depth in inches may be found, by dividing the number corresponding to the particular engine, by the given length in inches: conversely, the length may be found, when for some reason or other the depth is fixed, by dividing the number corresponding to the particular engine, by the given depth in inches: the quotient is the length in inches.

The next rule is useful for determining the diameter of the steam pipe branching off to any particular engine. Suppose it were required to find the diameter of the branch steam pipe for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the proper diameter of the steam pipe would be 13.16 inches.

The following rule will be found to give the proper diameter of steam pipe for all sizes of engines.

RULE.—To find the diameter of branch steam pipe.—Multiply together the square of the diameter of the cylinder in inches, the length of the stroke in feet, and  $\cdot 00498$ ; to the product add  $10\cdot 2$ , and extract the square root of the sum. The result is the diameter of the steam pipe in inches.

To exemplify the use of this rule we shall take an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. In this case we have as follows :---

64 = d 64	ameter of cylinder in inches.
$\frac{1}{4096} = sc$ $8 = le$	uare of diameter. ngth of stroke in feet.
32768 •0049	8 = constant multiplier.
$\overline{\begin{matrix}163\cdot18\\10\cdot2\end{matrix}}$	= constant to be added.
173.38 and 1	173.38 = 13.16.

To find the diameter of the pipes connected with the engine. They are made to depend upon the nominal horse power of the engine. Suppose it were required to apply this rule to determine the size of the pipes for two marine engines, whose strokes are each 8 feet, and diameters of cylinder each 64 inches. We find the nominal horse power of each of these engines to be 174.3. Hence, according to the rules, we have in succession,

Diameter of waste water pipe = 15.87 inches, or between  $15\frac{3}{4}$  and 16 inches.

Area of foot-valve passage = 323 square inches.

Area of injection pipe = 14.88 square inches.

If the injection pipe be cylindrical, then by referring to the table of areas of circles, we see that its diameter would be about  $4\frac{3}{2}$  inches.

Diameter of feed pipe = 4.12 inches, or between 4 and  $4\frac{1}{4}$  inches.

Diameter of waste steam pipe =  $12 \cdot 17$  inches, or nearly  $12\frac{1}{4}$  inches.

Diameter of safety valve,

When one is used =14.05 inches. When two are used = 9.94 inches. When three are used = 8.12 inches. When four are used = 7.04 inches.

These results were obtained from the following rules, which will give the correct dimensions for all sizes of engines.

RULE 1. To find the diameter of waste water pipe.—Multiply the square root of the nominal horse power of the engine by 1.2. The product is the diameter of the waste water pipe in inches.

RULE 2. To find the area of foot-value passage.—Multiply the  $N^2$ 

nominal horse power of the engine by 9; divide the product by 5; add 8 to the quotient. The sum is the area of foot-valve passage in square inches.

RULE 3. To find the area of injection pipe.—Multiply the nominal horse power of the engine by .069; to the product add 2.81. The sum is the area of the injection pipe in square inches.

RULE 4. To find the diameter of feed pipe.—Multiply the nominal horse power of the engine by 04; to the product add 3; extract the square root of the sum. The result is the diameter of the feed pipe in inches.

RULE 5. To find the diameter of waste steam pipe.—Multiply the collective nominal horse power of the engines by .375; to the product add 16.875; extract the square root of the sum. The final result is the diameter of the waste steam pipe in inches.

RULE 6. To find the diameter of the safety valve when only one is used.—To one-half the collective nominal horse power of the engines add 22.5; extract the square root of the sum. The result is the diameter of the safety valve when only one is used.

RULE 7. To find the diameter of the safety valve when two are used.—Multiply the collective nominal horse power of the engines by .25; to the product add 11.25; extract the square root of the sum. The result is the diameter of the safety valve when two are used.

RULE 8. To find the diameter of the safety value when three are used.—To one-sixth of the collective nominal horse power of the engines add 7.5; extract the square root of the sum. The result is the diameter of the safety value where three are used.

RULE 9. To find the diameter of the safety valve when four are used.—Multiply the collective nominal horse power of the engines by 125; to the product add 5.625; extract the square root of the sum. The result is the diameter of the safety valve when four are used.

Another rule for safety valves, and a preferable one for low pressures, is to allow 8 of a circular inch of area per nominal horse power.

The next rule is for determining the depth across the web of the main beam of a land engine. Suppose we wished to find the proper depth at the centre of the main beam of a land engine whose main beam is 16 feet long, and diameter of cylinder 64 inches. According to the rule, the proper depth of the web across the centre is 46.17 inches. This rule gives correct dimensions for all sizes of engines.

RULE.—To find the depth of the web at the centre of the main beam of a land engine.—Multiply together the square of the diameter of the cylinder in inches, half the length of the main beam in feet, and the number 3; extract the cube root of the product. The result is the proper depth of the web of the main beam across the centre in inches, when the main beam is constructed of cast iron. engine whose main beam is 20 feet long, and the diameter of the

cylinder 64 inches. In this case we have

	64 = diam	eter of cylinder in inches.							
	04								
	4096 = square of the diameter.								
	$10 = \frac{1}{2}$ length of main beam in feet.								
	40960								
	3 = cons	tant multiplier.							
	122880	14 11							
0	0	$122880(49.714 = \sqrt[3]{122880})$							
4	16	64							
4	$\overline{16}$	58880							
4	32	53649							
8	4800	5231							
4	1161	5112							
120	5961	119							
9	1242	74							
129	7203	35							
9	10	~							
138	730								
9	10								
147	741								

To find the depth of the main beam across the ends. Suppose it were required to find the depth at ends of a cast-iron main beam whose length is 20 feet, when the diameter of the cylinder is 64 inches. The proper depth will be 19.89 inches.

The following rule gives the proper dimensions for all sizes of engines.

RULE.-To find the depth of main beam at ends.-Multiply together the square of the diameter of the cylinder in inches, half the length of the main beam in feet, and the number 192; extract the cube root of the product. The result is the depth in inches of the main beam at ends, when of cast iron.

To illustrate this rule, let us apply it to the particular example of an engine whose main beam is 20 feet long, and the diameter of the cylinder 64 inches. In this case we have as follows:

> 64 = diameter of cylinder in inches.64 4096 = square of diameter of cylinder.  $10 = \frac{1}{2}$  length of main beam in feet. 40960  $\cdot 192 = \text{constant multiplier.}$ 7864.32

0	0 .	7864.3	2(19.89)	= \$7864.32
1	1	1		
1	1	6864		
1	2	5859		
$\frac{1}{2}$	300	1005		
1	351	898		
30	651	107		
9	432			
39	1083			
9	4			
48	112			
9	4		r	
57	116			0

so that, according to the rule, the depth at ends is nearly 20 inches. To find the dimensions of the feed-pump in cubic inches. Sup-

To find the dimensions of the feed-pullip in cubic linelies. Suppose we take the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. The proper content of the feed-pump would be 1093.36 cubic inches. Suppose, now, that the cold-water pump was suspended from the main beam at a fourth of the distance between the centre and the end, so that its stroke would be 2 feet, or 24 inches. In this case the area of the pump would be equal to  $1093.36 \div 24 = 45.556$  square inches; so that we conclude that the diameter is between  $7\frac{1}{2}$  and  $7\frac{3}{4}$  inches. Conversely, suppose that it was wished to find the stroke of the pump when the diameter was 5 inches. We find the area of the pump to be 19.635 square inches; so that the stroke of the feed-pump must be equal to  $1093.36 \div 19.635 = 55.69$  inches, or very nearly  $55\frac{3}{4}$  inches.

This rule will be found to give correct dimensions for all sizes of engines:

RULE.—To find the content of the feed-pump.—Multiply the square of the diameter of the cylinder in inches by the length of the stroke in feet; divide the product by 30. The quotient is the content of the feed-pump in cubic inches.

Thus, for an engine whose stroke is 6 feet, and diameter of cylinder 50 inches, we have,

50 = diameter of cylinder.

2500 = square of the diameter of the cylinder.

6 =length of stroke in feet.

30)15000

500 = content of feed-pump in cubic inches.

To determine the content of the cold-water pump in cubic feet. To illustrate this, suppose we take the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. Suppose, now, the stroke of the pump to be 5 feet, then the area equal to  $7.45 \div 5 = 1.49$  square feet = 214.56 square inches; we see that the diameter of the pump is about  $16\frac{1}{2}$  inches. Again, suppose that the diameter of the cold-water pump was 20 inches, and that it was required to find the length of its stroke. The area of the pump is 314.16 square inches, or  $314.16 \div 144 = 2.18$ square feet; so that the stroke of the pump is equal to  $7.45 \div$ 2.18 = 3.42 feet.

The content is calculated from the following rule, which will be found to give correct dimensions for all sizes of engines:

RULE.— To find the content of the cold-water pump.—Multiply the square of the diameter of the cylinder in inches by the length of the stroke in feet; divide the product by 4400. The quotient is the content of the cold-water pump in cubic feet.

To explain this rule, we shall take the particular example of an engine whose stroke is  $5\frac{1}{2}$  feet, and diameter of cylinder 60 inches. In this case we have in succession,

60	= diameter of cylinder in inches.
60	
$3600 \\ 51$	= square of the diameter of cylinder. = length of stroke in feet.
4400) 19800	long in or show in room
4.5	= content of cold water nump in cubic feet.

To determine the proper thickness of the large eye of crank for fly-wheel shaft when the crank is of cast iron. The crank is sometimes cast on the shaft, and of course the thickness of the large eye is not then so great as when the crank is only keyed on the shaft, or rather there is then no large eye at all. To illustrate the use of this rule, we shall apply it to the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. Hence, according to the rule, the proper thickness of the large eye of crank when of cast iron is 8.07 inches. For a marine engine of 8 feet stroke and 64 inch cylinder, the thickness of the large eye of crank is about  $5\frac{3}{4}$  inches. The difference is thus about  $2\frac{1}{4}$ inches, which is an allowance for the inferiority of cast iron to malleable iron.

The following rule will be found to give correct dimensions for all sizes of engines:

RULE.—To find the thickness of the large eye of crank for flywheel shaft when of cast iron.—Multiply the square of the length of the crank in inches by 1.561, and then multiply the square of the diameter of the cylinder in inches by .1235; multiply the sum of these products by the square of the diameter of cylinder in inches; divide this product by 666.283; divide this quotient by the length of the crank in inches; finally extract the cube root of the quotient. The result is the proper thickness of the large eye of crank for fly-wheel shaft in inches, when of cast iron.

As this rule is rather complicated, we shall show its application to the particular example already selected.

> 48 =length of crank in inches. 48

2304 = square of length of crank in inches. 1.561 = constant multiplier.

3596.5

64 =diameter of cylinder in inches.

64

4096 = square of the diameter of cylinder.  $\cdot 1235 =$  constant multiplier.

505.8

3596.5

 $4102 \cdot 3 = \text{sum of products.}$ 

4096 = square of the diameter of cylinder.

666.283) 16803020.8

length of crank=48) 25219.045

525.397

and  $\sqrt[3]{525 \cdot 397} = 8.07$  nearly.

To find the breadth of the web of crank at the centre of the flywheel shaft, that is to say, the breadth which it would have if itwere continued to the centre of the fly-wheel shaft. Suppose it were required to find the breadth of the crank at the centre of the fly-wheel shaft for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the proper breadth is 22.49 inches. According to a former rule, the breadth of the web of a cast iron crank of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches, is about 18 inches. The difference between these two is about  $4\frac{1}{2}$  inches; which is not too great an allowance for the inferiority of the cast iron.

The following rule will be found to give correct dimensions for all sizes of engines:

RULE.—To find the breadth of the web of crank at fly-wheel shaft, when of cast iron.—Multiply the square of the length of the crank in inches by 1.561, and then multiply the square of the diameter of the cylinder in inches by .1235; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide the product by 23.04, and finally extract the cube root of the quotient. The final result is the breadth of the crank at the centre of the fly-wheel shaft, when the crank is of cast iron.

As this rule is rather complicated, we shall illustrate it by show-

ing its application to the particular example of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches.

64 =diameter of cylinder in inches.  $\mathbf{64}$ 4096 = square of the diameter of cylinder.  $\cdot 1235 = \text{constant multiplier.}$ 505.8 48 =length of crank in inches. 48 2304 = square of the length of crank. 1.561 = constant multiplier.3596.5 505.8 $4102 \cdot 3 = \text{sum of products.}$  $\sqrt{4102.3} = 64.05$  nearly. 4096 = square of the diameter of cylinder. constant divisor = 23.04) 262348.511386.66 nearly. and  $\sqrt[3]{11386.66} = 22.49$ .

To determine the thickness of the web of crank at the centre of the fly-wheel shaft; that is to say, the thickness which it would have if it were continued so far. Suppose it were required to find the thickness of web of crank at the centre of fly-wheel shaft of an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the proper thickness would be 11.26 inches. The proper thickness of web at centre of paddle shaft for a marine engine whose stroke is 8 feet, and diameter of cylinder 64 inches, is nearly 9 inches. The difference between the two thicknesses is about  $2\frac{1}{4}$  inches, which is not too great an allowance for the inferiority of cast iron to malleable iron.

The following rule will be found to give correct dimensions for all sizes of engines :

RULE.—To find the thickness of the web of crank at centre of fly-wheel shaft, when of cast iron.—Multiply the square of the length of the crank in inches by 1.561, and then multiply the square of the diameter of the cylinder in inches by .1235; multiply the square root of the sum of these products by the square of the diameter of the cylinder in inches; divide this product by 184.32; finally extract the cube root of the quotient. The result is the thickness of the web of crank at the centre of the fly-wheel shaft when of cast iron, in inches.

As this rule is rather complicated, we shall illustrate it by applying it to the particular engine which we have already selected.

48 =length of crank in inches. 48 2304 = square of length of crank. 1.561 = constant multiplier.3596.5 64 =diameter of cylinder in inches. 64 4096 = square of the diameter of cylinder.  $\cdot 1235 = \text{constant multiplier.}$ 505.8 3596.5  $4102 \cdot 3 = \text{sum of products.}$ and  $\sqrt{4102.3} = 64.05$  nearly. 4096 =square of diameter. Constant divisor =  $184 \cdot 32) 262348 \cdot 5$ 1423.33

and  $\sqrt[3]{1423\cdot33} = 11\cdot24$ 

To find the proper diameter of the fly-wheel shaft at its smallest part, when, as is usually the case, it is of cast iron. Suppose it were required to find the diameter of the fly-wheel shaft for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches. According to the rule, the diameter would be 17.59 inches. It is obvious enough that the fly-wheel shaft stands in much the same relation to the land engine, as the paddle shaft does to the marine According to a former rule, the diameter of the paddle engine. shaft journal of a marine engine whose stroke is 8 feet, and diameter of cylinder 64 inches, is about 14 inches. The difference betwixt the diameter of the paddle shaft for the marine engine, and the diameter of the fly-wheel shaft for the corresponding land engine is about 31 inches. This will be found to be a very proper allowance for the different circumstances connected with the land engine.

The following rule will be found to give correct dimensions for all sizes of engines.

RULE.—To find the diameter of the fly-wheel shaft at smallest part, when it is of cast iron.—Multiply the square of the diameter of the cylinder in inches by the length of the crank in inches; extract the cube root of the product; finally multiply the result by 3025. The result is the diameter of the fly-wheel shaft at smallest part in inches.

We shall illustrate this rule by applying it to the particular engine which we have already selected.

#### THE STEAM ENGINE.

		diameter of cylinder in inches.
	4096 = 48 = 196608	square of the diameter. length of crank in inches.
0	100000	100000 (50 15
0	0	196608 (58.15 = 3 196608
5	<b>25</b>	125
5	25	71608
5	50	70112
		10112
10	7500	1496
5	1264	1011
150	8764	485
8	1208	. 100
	1040	and the second se
158	10092	
8	2	e
166	1011	
100	1011	
0	Z	
174	1013	

and  $58.15 \times .3025 = 1759$ 

which agrees with the number given by a former rule.

To determine the sectional area of the fly-wheel rim when of cast iron. Suppose it were required to find the sectional area of the rim of a fly-wheel for an engine whose stroke is 8 feet, and diameter of cylinder 64 inches, the diameter of the fly-wheel itself being 30 feet. According to the rule, the sectional area of the rim in square inches =  $146.4 \times .813 = 119.02$ . We may remark that this calculation has been made on the supposition that the flywheel is so connected with the engine, as to make exactly one revolution for each double stroke of the piston. If the fly-wheel is so connected with the engine as to make more than one revolution for each double stroke, then the rim does not need to be so heavy as we make it. If, on the contrary, the fly-wheel does not make a complete revolution for each double stroke of the engine, then it ought to be heavier than this rule makes it.

RULE.—To find the sectional area of the rim of the fly-wheel when of cast iron.—Multiply together the square of the diameter of the cylinder in inches, the square of the length of the stroke in feet, the cube root of the length of the stroke in feet, and 6.125; divide the final product by the cube of the diameter of the fly-wheel in feet. The quotient is the sectional area of the rim of fly-wheel in square inches, provided it is of cast iron.

As this rule is rather complicated, we shall endeavour to illustrate it by showing its application to a particular engine. We shall apply the rule to determine the sectional area of the rim of flywheel for an engine whose stroke is 8 feet, diameter of cylinder 50 inches; the diameter of the fly-wheel being 20 feet. For this engine we have as follows:

 $\frac{2500}{64} = \text{square of diameter of cylinder.}$   $\frac{64}{160000} = \text{square of the length of stroke.}$   $\frac{2}{320000} = \text{cube root of the length of stroke.}$   $\frac{6\cdot125}{1960000} = \text{constant multiplier.}$ 

therefore sectional area in square inches =  $1960000 \div 20^3 = 1960000 \div 8000 = 1960 \div 8 = 245$ .

In the following formulas we denote the diameter of the cylinder in inches by D, the length of the crank in inches by R, the length of the stroke in feet, and the nominal horse power of the engine by H.P.

MARINE ENGINES.—DIMENSIONS OF SEVERAL OF THE PARTS OF THE SIDE LEVER.

Depth of eye round end studs of lever =  $\cdot 074 \times D$ . Thickness of eye round end studs of lever =  $\cdot 052 \times D$ . Diameter of end studs, in inches =  $\cdot 07 \times D$ . Length of end studs, in inches =  $\cdot 076 \times D$ . Diameter of air-pump studs, in inches =  $\cdot 045 \times D$ . Length of air-pump studs, in inches =  $\cdot 049 \times D$ .

Depth of cast iron side lever across centre, in inches =  $D^{\frac{4}{3}} \times \{\cdot7423 \times \text{length of lever in feet}\}^{\frac{1}{3}}$ .

MARINE ENGINE.-DIMENSIONS OF SEVERAL PARTS OF AIR-PUMP CROSS-HEAD.

Diameter of air-pump, in inches =  $\cdot 6 \times D$ . Thickness of eye for air-pump rod, in inches =  $\cdot 025 \times D$ . Depth of eye for air-pump rod, in inches =  $\cdot 171 \times D$ . Diameter of end journals, in inches =  $\cdot 051 \times D$ . Length of end journals, in inches =  $\cdot 058 \times D$ . Thickness of web at middle, in inches =  $\cdot 043 \times D$ . Depth of web at middle, in inches =  $\cdot 161 \times D$ . Thickness of web at journal =  $\cdot 037 \times D$ . Depth of web at journal =  $\cdot 061 \times D$ .

MARINE ENGINE.—DÍMENSIONS OF THE PARTS OF AIR-PUMP PISTON-ROD.

Diameter of air-pump piston-rod, when of copper, in inches =  $.967 \times D$ .

Depth of gibs and cutter through cross-head, in inches =  $.063 \times D$ .

Thickness of gibs and cutter through cross-head, in inches =  $.013 \times D$ .

Depth of cutter through piston, in inches =  $\cdot 051 \times D$ . Thickness of cutter through piston, in inches =  $\cdot 021 \times D$ .

MARINE ENGINE.—DIMENSIONS OF THE REMAINING PARTS OF THE AIR-PUMP MACHINERY.

Diameter of air-pump side rods at ends, in inches =  $\cdot 039 \times D$ . Breadth of butt, in inches =  $\cdot 046 \times D$ .

Thickness of butt, in inches =  $\cdot 037 \times D$ .

Mean thickness of strap at cutter, in inches =  $\cdot 019 \times D$ . Mean thickness of strap below cutter, in inches =  $\cdot 014 \times D$ . Depth of gibs and cutter, in inches =  $\cdot 048 \times D$ . Thickness of gibs and cutter in inches =  $D \div 100$ .

MARINE AND LAND ENGINES .- AREA OF STEAM PORTS.

Area of each steam port, in square inches =  $11 \times l \times D^2 \div 1800 + 8$ .

MARINE AND LAND ENGINES .- DIMENSIONS OF BRANCH STEAM PIPES.

Diameter of each branch steam pipe =  $\checkmark \cdot 00498 \times l \times D^2 \times 10 \cdot 2$ .

MARINE ENGINE.—DIMENSIONS OF SEVERAL OF THE PIPES CONNECTED WITH THE ENGINE.

Diameter of waste water pipe, in inches =  $1.2 \times \sqrt{\text{H.P.}}$ . Area of foot-valve passage, in square inches =  $1.8 \times \text{H.P.} + 8$ . Area of injection pipe, in square inches =  $.069 \times \text{H.P.} + 2.81$ . Diameter of feed pipe, in inches =  $\sqrt{.04 \times \text{H.P.} + 3}$ . Diameter of waste steam pipe in inches =  $\sqrt{.375 \times \text{H.P.} + 16.875}$ .

MARINE AND LAND ENGINES .- DIMENSIONS OF SAFETY-VALVES.

Diam. of safety-valve, when one only is used =  $\sqrt{\cdot 5 \times \text{H.P.} + 22 \cdot 5}$ . Diam. of safety-valve, when two are used =  $\sqrt{\cdot 25 \times \text{H.P.} + 11 \cdot 25}$ . Diam. of safety-valve, when three are used =  $\sqrt{\cdot 167 \times \text{H.P.} + 7 \cdot 5}$ . Diam. of safety-valve, when four are used =  $\sqrt{\cdot 125 \times \text{H.P.} + 5 \cdot 625}$ .

LAND ENGINE .- DIMENSIONS OF MAIN BEAM.

Depth of web of main beam across centre =

 $\sqrt[3]{3 \times D^2 \times half}$  length of main beam in feet. Depth of main beam at ends =

 $\sqrt[3]{192 \times D^2 \times half}$  length of main beam, in feet.

LAND AND MARINE ENGINES.—CONTENT OF FEED-PUMP. Content of feed-pump, in cubic inches =  $D^2 \times l \div 30$ .

LAND ENGINES.—CONTENT OF COLD WATER PUMP. Content of cold water pump, in cubic feet =  $D^2 \times l \div 4400$ 

#### THE PRACTICAL MODEL CALCULATOR.

LAND ENGINES.—DIMENSIONS OF CRANK. Thickness of large eye of crank, in inches =

 $\sqrt[3]{D^2 \times (1.561 \times R^2 + .1235 D^2)} \div (R \times 666.283).$ 

Breadth of web of crank at fly-wheel shaft centre, in inches =  $\sqrt[3]{D^2 \times \sqrt{(1.561 \times R^2 + .1235 \times D^2)}} \div 23.04.$ 

Thickness of web of crank at fly-wheel shaft centre, in inches =  $\sqrt[3]{D^2 \times \sqrt{(1.561 \times R^2 + .1235 \times D^2)} \div 184.32}$ .

LAND ENGINES .- DIMENSIONS OF FLY-WHEEL SHAFT.

Diameter of fly-wheel shaft, when of cast iron =  $3025 \times \sqrt[3]{R \times D^2}$ .

# DIMENSIONS OF PARTS OF LOCOMOTIVES.

# DIAMETER OF CYLINDER.

In locomotive engines, the diameter of the cylinder varies less than either the land or the marine engine. In few of the locomotive engines at present in use is the diameter of the cylinder greater than 16 inches, or less than 12 inches. The length of the stroke of nearly all the locomotive engines at present in use is 18 inches, and there are always two cylinders, which are generally connected to cranks upon the axle, standing at right angles with one another.

## AREA OF INDUCTION PORTS.

RULE.—To find the size of the steam ports for the locomotive engine.—Multiply the square of the diameter of the cylinder by .068. The product is the proper size of the steam ports in square inches.

Required the proper size of the steam ports of a locomotive engine whose diameter is 15 inches. Here, according to the rule, size of steam ports  $= \cdot 068 \times 15 \times 15 = \cdot 068 \times 225 = 15 \cdot 3$  square inches, or between  $15\frac{1}{4}$  and  $15\frac{1}{2}$  square inches.

After having determined the area of the ports, we may easily find the depth when the length is given, or, conversely, the length when the depth is given. Thus, suppose we knew that the length was 8 inches, then we find that the depth should be  $15\cdot3 \div 8 =$  $1\cdot9125$  inches, or nearly 2 inches; or suppose we knew the depth was 2 inches, then we would find that the length was  $15\cdot3 \div 2 =$  $7\cdot65$  inches, or nearly  $7\frac{3}{4}$  inches.

#### AREA OF EDUCTION PORTS.

The proper area for the eduction ports may be found from the following rule.

RULE.—To find the area of the eduction ports.—Multiply the square of the diameter of the cylinder in inches by 128. The product is the area of the eduction ports in square inches.

Required the area of the eduction ports of a locomotive engine,

when the diameter of the cylinders is 13 inches. In this example we have, according to the rule,

Area of eduction port =  $\cdot 128 \times 13^2 = \cdot 128 \times 169 = 21 \cdot 632$ inches, or between  $21\frac{1}{2}$  and  $21\frac{3}{4}$  square inches.

# BREADTH OF BRIDGE BETWEEN PORTS.

The breadth of the bridges between the eduction port and the induction ports is usually between  $\frac{3}{2}$  inch and 1 inch.

#### DIAMETER OF BOILER.

It is obvious that the diameter of the boiler may vary very considerably; but it is limited chiefly by considerations of strength; and 3 feet are found a convenient diameter. Rules for the strength of boilers will be given hereafter.

RULE.—To find the inside diameter of the boiler.—Multiply the diameter of the cylinder in inches by 3.11. The product is the inside diameter of the boiler in inches.

Required the inside diameter of the boiler for a locomotive engine, the diameter of the cylinders being 15 inches.

In this example we have, according to the rule,

Inside diameter of boiler =  $15 \times 3.11 = 46.65$  inches, or about 3 feet  $10\frac{5}{8}$  inches.

# LENGTH OF BOILER.

The length of the boiler is usually in practice between 8 feet and  $8\frac{1}{2}$  feet.

#### DIAMETER OF STEAM DOME, INSIDE.

It is obvious that the diameter of the steam dome may be varied considerably, according to circumstances; but the first-indication is to make it large enough. It is usual, however, in practice, to proportion the diameter of the steam dome to the diameter of the cylinder; and there appears to be no great objection to this. The following rule will be found to give the diameter of the dome usually adopted in practice.

RULE.—To find the diameter of the steam dome.—Multiply the diameter of the cylinder in inches by 1.43. The product is the diameter of the dome in inches.

Required the diameter of the steam dome for a locomotive engine whose diameter of cylinders is 13 inches. In this example we have, according to the rule,

Diameter of steam dome =  $1.43 \times 13 = 18.59$  inches, or about 181 inches.

#### HEIGHT OF STEAM DOME.

The height of the steam dome may vary. Judging from practice, it appears that a uniform height of  $2\frac{1}{2}$  feet would answer very well.

o 2

#### DIAMETER OF SAFETY-VALVE.

In practice the diameter of the safety-valve varies considerably. The following rule gives the diameter of the safety-valve usually adopted in practice.

RULE.—To find the diameter of the safety-valve.—Divide the diameter of the cylinder in inches by 4. The quotient is the diameter of the safety-valve in inches.

Required the diameter of the safety-values for the boiler of a locomotive engine, the diameter of the cylinder being 13 inches. Here, according to the rule, diameter of safety-value =  $13 \div 4 = 31$  inches. A larger size, however, is preferable, as being less likely to stick.

## DIAMETER OF VALVE SPINDLE.

The following rule will be found to give the correct diameter of the valve spindle. It is entirely founded on practice.

RULE.—To find the diameter of the valve spindle.—Multiply the diameter of the cylinder in inches by 076. The product is the proper diameter of the valve spindle.

Required the diameter of the valve spindle for a locomotive engine whose cylinders' diameters are 13 inches.

In this example we have, according to the rule, diameter of valve spindle =  $13 \times .076 = .988$  inches, or very nearly 1 inch.

#### DIAMETER OF CHIMNEY.

It is usual in practice to make the diameter of the chimney equal to the diameter of the cylinder. Thus a locomotive engine whose cylinders' diameters are 15 inches would have the inside diameter of the chimney also 15 inches, or thereabouts. This rule has, at least, the merit of simplicity.

#### AREA OF FIRE-GRATE.

The following rule determines the area of the fire-grate usually given in practice. We may remark, that the area of the fire-grate in practice follows a more certain rule than any other part of the engine appears to do; but it is in all cases much too small, and occasions a great loss of power by the urging of the blast it renders necessary, and a rapid deterioration of the furnace plates from excessive heat. There is no good reason why the furnace should not be nearly as long as the boiler: it would then resemble the furnace of a marine boiler, and be as manageable.

RULE.— To find the area of the fire-grate.—Multiply the diameter of the cylinder in inches by .77. The product is the area of the firegrate in superficial feet.

Required the area of the fire-grate of a locomotive engine, the diameters of the cylinders being 15 inches.

In this example we have, according to the rule,

Area of fire-grate =  $.77 \times 15 = 11.55$  square feet,

or about 111 square feet. Though this rule, however, represents

the usual practice, the area of the fire-grate should not be contingent upon the size of the cylinder, but upon the quantity of steam to be raised.

# AREA OF HEATING SURFACE.

In the construction of a locomotive engine, one great object is to obtain a boiler which will produce a sufficient quantity of steam with as little bulk and weight as possible. This object is admirably accomplished in the construction of the boiler of the locomotive engine. This little barrel of tubes generates more steam in an hour than was formerly raised from a boiler and fire occupying a considerable house. This favourable result is obtained simply by exposing the water to a greater amount of heating surface.

In the usual construction of the locomotive boiler, it is obvious that we can only consider four of the six faces of the inside fire-box as effective heating surface; viz. the crown of the box, and the three perpendicular sides. The circumferences of the tubes are also effective heating surface; so that the whole effective heating surface of a locomotive boiler may be considered to be the four faces of the inside fire-box, plus the sum of the surfaces of the tubes. Understanding this to be the effective heating surface, the following rule determines the average amount of heating surface usually given in practice.

RULE.— To find the effective heating surface.—Multiply the square of the diameter of the cylinder in inches by 5; divide the product by 2. The quotient is the area of the effective heating surface in square feet.

Required the effective heating surface of the boiler of a locomotive engine, the diameters of the cylinders being 15 inches.

In this example we have, according to the rule,

Effective heating surface =  $15^2 \times 5 \div 2 = 225 \times 5 \div 2 = 1125 \div 2 = 562\frac{1}{2}$  square feet.

According to the rule which we have given for the fire-grate, the area of the fire-grate for this boiler would be about 111 square feet. We may suppose, therefore, the area of the crown of the box to be 12 square feet. The area of the three perpendicular sides of the inside fire-box is usually three times the area of the crown; so that the effective heating surface of the fire-box is 48 square feet. Hence the heating surface of the tubes =  $526 \cdot 5 - 48 = 478 \cdot 5$  square feet. The inside diameters of the tubes are generally about  $1\frac{3}{4}$  inches; and therefore the circumference of a section of these tubes, according to the table, is 5.4978 inches. Hence, supposing the tube to be  $8\frac{1}{2}$  feet long, the surface of one =  $5.4978 \times 8\frac{1}{2} \div 12 =$  $\cdot 45815 \times 8\frac{1}{2} = 3 \cdot 8943$  square feet; and, therefore, the number of tubes =  $478 \cdot 5 \div 3 \cdot 8943 = 123$  nearly. The amount of heating surface, however, like that of grate surface, is properly a function of the quantity of steam to be raised, and the proportions of both, given hereafter, will be found to answer well for boilers of every description.

#### AREA OF WATER-LEVEL.

This, of course, varies with the different circumstances of the boiler. The average area may be found from the following rule.

RULE.—To find the area of the water-level.—Multiply the diameter of the cylinder in inches by 2.08. The product is the area of the water-level in square feet.

Required the area of the water-level for a locomotive engine, whose cylinders' diameters are 14 inches.

In this case we have, according to the rule,

Area of water-level =  $14 \times 2.08 = 29.12$  square feet.

## CUBICAL CONTENT OF WATER IN BOILER.

This, of course, varies not only in different boilers, but also in the same boiler at different times. The following rule is supposed to give the average quantity of water in the boiler.

RULE.—To find the cubical content of the water in the boiler.— Multiply the square of the diameter of the cylinder in inches by 9: divide the product by 40. The quotient is the cubical content of the water in the boiler in cubic feet.

Required the average cubical content of the water in the boiler of a locomotive engine, the diameters of the cylinders being 14 inches. In this example we have, according to the rule,

Cubical content of water =  $9 \times 14^2 \div 40 = 44.1$  cubic, feet.

#### CONTENT OF FEED-PUMP.

In the locomotive engine, the feed-pump is generally attached to the cross-head, and consequently it has the same stroke as the piston. As we have mentioned before, the stroke of the locomotive engine is generally in practice 18 inches. Hence, assuming the stroke of the feed-pump to be constantly 18 inches, it only remains for us to determine the diameter of the ram. It may be found from the following rule.

RULE.—To find the diameter of the feed-pump ram.—Multiply the square of the diameter of the cylinder in inches by 011. The product is the diameter of the ram in inches.

Required the diameter of the ram for the feed-pump for a locomotive engine whose diameter of cylinder is 14 inches. In this example we have, according to the rule,

Diameter of ram =  $\cdot 011 \times 14^2 = \cdot 011 \times 196 = 2 \cdot 156$  inches, or between 2 and 21 inches.

#### CUBICAL CONTENT OF STEAM ROOM.

The quantity of steam in the boiler varies not only for different boilers, but even for the same boiler in different circumstances. But when the locomotive is in motion, there is usually a certain proportion of the boiler filled with the steam. Including the dome and the steam pipe, the content of the steam room will be found usually to be somewhat less than the cubical content of the water. But as it is desirable that it should be increased, we give the following rule.

RULE.—To find the cubical content of the steam room.—Multiply the square of the diameter of the cylinder in inches by 9; divide the product by 40. The quotient is the cubical content of the steam room in cubic feet.

Required the cubical content of the steam room in a locomotive boiler, the diameters of the cylinders being 12 inches.

In this example we have, according to the rule,

Cubical content of steam room =  $9 \times 12^2 \div 40 = 9 \times 144 \div 40 = 32.4$  cubic feet.

CUBICAL CONTENT OF INSIDE FIRE-BOX ABOVE FIRE-BARS.

The following rule determines the cubical content of fire-box usually given in practice.

RULE.—To find the cubical content of inside fire-box above firebars.—Divide the square of the diameter of the cylinder in inches by 4. The quotient is the content of the inside fire-box above firebars in cubic feet.

Required the content of inside fire-box above fire-bars in a locomotive engine, when the diameters of the cylinders are each 15 inches.

In this example we have, according to the rule,

Content of inside fire-box above fire-bars  $= 15^3 \div 4 = 225 \div 4 = 564$  cubic feet.

THICKNESS OF THE PLATES OF BOILER.

In general, the thickness of the plates of the locomotive boiler is  $\frac{3}{5}$  inch. In some cases, however, the thickness is only  $\frac{5}{16}$  inch.

## INSIDE DIAMETER OF STEAM PIPE.

The diameter usually given to the steam pipe of the locomotive engine may be found from the following rule.

RULE.—To find the diameter of the steam pipe of the locomotive engine.—Multiply the square of the diameter of the cylinder in inches by  $\cdot 03$ . The product is the diameter of the steam pipe in inches.

Required the diameter of the steam pipe of a locomotive engine, the diameter of the cylinder being 13 inches. Here, according to the rule, diameter of steam pipe =  $\cdot 03 \times 13^2 = \cdot 03 \times 169 = 5 \cdot 07$ inches; or a very little more than 5 inches. The steam pipe is usually made too small in engines intended for high speeds.

## DIAMETER OF BRANCH STEAM PIPES.

The following rule gives the usual diameter of the branch steam pipe for locomotive engines.

RULE.—To find the diameter of the branch steam pipe for the locomotive engine.—Multiply the square of the diameter of the cylinder in inches by .021. The product is the diameter of the branch steam pipe for the locomotive engine in inches. Required the diameter of the branch steam pipes for a locomotive engine, when the cylinder's diameter is 15 inches. Here, according to the rule, diameter of branch pipe =  $\cdot 021 \times 15^2 = \cdot 021 \times 225 = 4 \cdot 725$  inches, or about  $4\frac{3}{4}$  inches.

## DIAMETER OF TOP OF BLAST PIPE.

The diameter of the top of the blast pipe may be found from the following rule.

RULE.— To find the diameter of the top of the blast pipe.—Multiply the square of the diameter of the cylinder in inches by 0.17. The product is the diameter of the top of the blast pipe in inches.

The diameter of a locomotive engine is 13 inches; required the diameter of the blast pipe at top. Here, according to the rule, diameter of blast pipe at top =  $\cdot 017 \times 13^2 = \cdot 017 \times 169 = 2 \cdot 873$  inches, or between  $2\frac{3}{4}$  and 3 inches; but the orifice of the blast pipe should always be made as large as the demands of the blast will permit.

## DIAMETER OF FEED PIPES.

There appear to be no theoretical considerations which would lead us to determine exactly the proper size of the feed pipes. Judging from practice, however, the following rule will be found to give the proper dimensions.

RULE.—To find the diameter of the feed pipes.—Multiply the diameter of the cylinder in inches by 141. The product is the proper diameter of the feed pipes.

Required the diameter of the feed pipes for a locomotive engine, the diameter of the cylinder being 15 inches.

In this example we have, according to the rule,

Diameter of feed-pipe =  $15 \times \cdot 141 = 2 \cdot 115$  inches, or between 2 and  $2\frac{1}{4}$  inches.

#### DIAMETER OF PISTON ROD.

The diameter of the piston rod for the locomotive engine is usually about one-seventh the diameter of the cylinder. Making practice our guide, therefore, we have the following rule.

RULE.—To find the diameter of the piston rod for the locomotive engine.—Divide the diameter of the cylinder in inches by 7. The quotient is the diameter of the piston rod in inches.

The diameter of the cylinder of a locomotive engine is 15 inches; required the diameter of the piston rod. Here, according to the rule, diameter of piston rod  $=15 \div 7 = 21$  inches.

#### THICKNESS OF PISTON.

The thickness of the piston in locomotive engines is usually about two-sevenths of the diameter of the cylinder. Making practice our guide, therefore, we have the following rule.

RULE.— To find the thickness of the piston in the locomotive engine.—Multiply the diameter of the cylinder in inches by 2; divide the product by 7. The quotient is the thickness of the piston in inches.

The diameter of the cylinder of a locomotive engine is 14 inches; required the thickness of the piston. Here, according to the rule, thickness of piston  $= 2 \times 14 \div 7 = 4$  inches.

## DIAMETER OF CONNECTING RODS AT MIDDLE.

The following rule gives the diameter of the connecting rod at middle. The rule, we may remark, is entirely founded on practice.

RULE.—To find the diameter of the connecting rod at middle of the locomotive engine.—Multiply the diameter of the cylinder in inches by  $\cdot 21$ . The product is the diameter of the connecting rod at middle in inches.

Required the diameter of the connecting rods at middle for a locomotive engine, the diameter of the cylinders being twelve inches.

For this example we have, according to the rule,

Diameter of connecting rods at middle =  $12 \times \cdot 21 = 2 \cdot 52$  inches, or  $2\frac{1}{2}$  inches.

## DIAMETER OF BALL ON CROSS-HEAD SPINDLE.

The diameter of the ball on the cross-head spindle may be found from the following rule.

RULE.—To find the diameter of the ball on cross-head spindle of a locomotive engine.—Multiply the diameter of the cylinder in inches by 23. The product is the diameter of the ball on the cross-head spindle.

Required the diameter of the ball on the cross-head spindle of a locomotive engine, when the diameter of the cylinder is 15 inches. Here, according to the rule,

Diameter of ball =  $\cdot 23 \times 15 = 3 \cdot 45$  inches, or nearly  $3\frac{1}{2}$  inches.

## DIAMETER OF THE INSIDE BEARINGS OF THE CRANK AXLE.

It is obvious that the inside bearings of the crank axle of the locomotive engine correspond to the paddle-shaft journal of the marine engine, and to the fly-wheel shaft journal of the land-engine. We may conclude, therefore, that the proper diameter of these bearings ought to depend jointly upon the length of the stroke and the diameter of the cylinder. In the locomotive engine the stroke is usually 18 inches, so that we may consider that the diameter of the bearing depends solely upon the diameter of the cylinder. The following rule will give the diameter of the inside bearing.

RULE.—To find the diameter of the inside bearing for the locomotive engine.—Extract the cube root of the square of the diameter of the cylinder in inches; multiply the result by 96. The product is the proper diameter of the inside bearing of the crank axle for the locomotive engine.

Required the diameter of the inside bearing of the crank axle

for a locomotive engine whose cylinders are of 13-inch diameters. In this example we have, according to the rule,

13 13	= diameter of	cylinder in inches.	
$\frac{10}{169}$	= square of t	he diameter of cylind	ler.
0	0	169(5.5289 = 3	169
5	25	120	
5	25	44000	
5	50	41375	
10	7500	2625	
5	775	1820	
150	8275	805	
5	800	726	
155	9075	79	
5	3		
160	910		
- 5	3		~
165	913		

and diameter of bearing =  $5.5289 \times .96 = 5.31$  inches nearly; or between  $5\frac{1}{4}$  and  $5\frac{1}{2}$  inches.

DIAMETER OF THE OUTSIDE BEARINGS OF THE CRANK AXLE.

The crank axle, in addition to resting upon the inside bearings, is sometimes also made to rest partly upon outside bearings. These outside bearings are added only for the sake of steadiness, and they do not need to be so strong as the inside bearings. The proper size of the diameter of these bearings may be found from the following rule.

RULE.—To find the diameter of outside bearings for the locomotive engine.—Multiply the square of the diameters of the cylinders in inches by 396; extract the cube root of the product. The result is the diameter of the outside bearings in inches.

Required the proper diameter of the outside bearings for a locomotive engine, the diameter of its cylinders being 15 inches.

In this example we have, according to the rule,

 $\begin{array}{r} 15 = \text{diameter of cylinders in inches.} \\ 15 \\ \hline 225 = \text{square of diameter of cylinder.} \\ \hline 396 = \text{constant multiplier.} \\ \hline 89\cdot1 \end{array}$ 

168

0	0	$89.1(4.466 = \sqrt[3]{89.1})$
4	16	64
$\overline{4}$	$\overline{16}$	25100
4	32	21184
8	4800	3916
4	496	3528
$\overline{120}$	5296	388
4	512	358
$\overline{124}$	5808	
4	8	
$1\overline{28}$	588	
4	8	
$\overline{132}$	$\overline{596}$	

Hence diameter of outside bearing = 4.466 inches, or very nearly  $4\frac{1}{2}$  inches.

## DIAMETER OF PLAIN PART OF CRANK AXLE.

It is usual to make the plain part of crank axle of the same sectional area as the inside bearings. Hence, to determine the sectional area of the plain part when it is cylindrical, we have the following rule.

RULE.—To determine the diameter of the plain part of crank axle for the locomotive engine.—Extract the cube root of the square of the diameter of the cylinder in inches; multiply the result by '96. The product is the proper diameter of the plain part of the crank axle of the locomotive engine in inches.

Required the diameter of the plain part of the crank axle for the locomotive engine, whose cylinders' diameters are 14 inches. In this example we have, according to the rule,

14 = diameter of cylinder in inches.

14

 $\overline{196}$  = square of the diameter of cylinder.

0 5	$\begin{array}{c} \cdot 0 \\ 25 \end{array}$	196(5.808 = 125)	<b>∛</b> 196
$\overline{\overline{5}}$	25	71.000	
$\frac{5}{10}$	50 7500	$\frac{70.112}{.888}$	
5	1264	000	
150	8764		
158	$\frac{1328}{10092}$		
8			
166 8			
174			

Hence the plain part of crank axle =  $5.808 \times .96 = 5.58$  nearly, or a little more than  $5\frac{1}{2}$  inches.

#### DIAMETER OF CRANK PIN.

The following rule gives the proper diameter of the crank pin. It is obvious that the crank pin of the locomotive engine is not altogether analogous to the crank pin of the marine or land engine, and, like them, ought to depend upon the diameter of the cylinder, as it is usually formed out of the solid axle.

RULE.—To find the diameter of the crank pin for the locomotive engine.—Multiply the diameter of the cylinder in inches by .404. The product is the diameter of the crank pin in inches.

Required the diameter of the crank pin of a locomotive engine whose cylinders' diameters are 15 inches.

In this example we have, according to the rule,

Diameter of crank pin =  $15 \times \cdot 404 = 6.06$  inches, or about 6 inches.

#### LENGTH OF CRANK PIN.

The length of the crank pin usually given in practice may be found from the following rule.

RULE.—To find the length of the crank pin.—Multiply the diameter of the cylinder in inches by 233. The product is the length of the crank pins in inches.

Required the length of the crank pins for a locomotive engine with a diameter of cylinder of 13 inches.

In this example we have, according to the rule,

Length of crank pin =  $13 \times 233 = 3.029$  inches,

or about 3 inches. The part of the crank axle answering to the crank pin is usually rounded very much at the corners, both to give additional strength, and to prevent side play.

These then are the chief dimensions of locomotive engines according to the practice most generally followed. The establishment of express trains and the general exigencies of steam locomotion are daily introducing innovations, the effect of which is to make the engines of greater size and power: but it cannot be said that a plan of locomotive engine has yet been contrived that is free from grave objections. The most material of these defects is the necessity that yet exists of expending a large proportion of the power in the production of a draft; and this evil is traceable to the inadequate area of the fire-grate, which makes an enormous rush of air through the fire necessary to accomplish the combustion of the fuel requisite for the production of the steam. To gain a sufficient area of fire-grate, an entirely new arrangement of engine must be adopted: the furnace must be greatly lengthened, and perhaps it may be found that short upright tubes, or the very ingenious arrangement of Mr. Dimpfell, of Philadelphia, may be introduced with advantage. Upright tubes have been found to be more effectual in raising steam than horizontal tubes; but the tube plate in the case of upright tubes would be more liable to burn.

We here give the preceding rules in formulas, in the belief that those well acquainted with algebraic symbols prefer to have a rule expressed as a formula, as they can thus see at once the different operations to be performed. In the following formulas we denote the diameter of the cylinder in inches by D.

## LOCOMOTIVE ENGINE .- PARTS OF THE CYLINDER.

Area of induction ports, in square inches =  $.068 \times D^2$ . Area of eduction ports, in square inches =  $\cdot 128 \times D^2$ . Breadth of bridge between ports between 3 inch and 1 inch.

#### LOCOMOTIVE ENGINE .--- PARTS OF BOILER.

Diameter of boiler, in inches =  $3 \cdot 11 \times D$ . Length of boiler between 8 feet and 12 feet. Diameter of steam dome, inside, in inches =  $1.43 \times D$ . Height of steam dome =  $2\frac{1}{2}$  feet. Diameter of safety valve, in inches =  $D \div 4$ . Diameter of valve spindle, in inches =  $\cdot 076 \times D$ . Diameter of chimney, in inches = D. Area of fire-grate, in square feet =  $.77 \times D$ . Area of heating surface, in square feet =  $5 \times D^2 \div 2$ . Area of water level, in square feet =  $2.08 \times D$ . Cubical content of water in boiler, in cubic feet =  $9 \times D^2 \div 40$ . Diameter of feed-pump ram, in inches =  $\cdot 011 \times D^2$ . Cubical content of steam room, in cubic feet  $= 9 \times D^2 \div 40$ . Cubical content of inside fire-box above fire bars, in cubic feet =  $D^2 \div 4.$ 

Thickness of the plates of boiler  $= \frac{3}{2}$  inch.

LOCOMOTIVE ENGINE. - DIMENSIONS OF SEVERAL PIPES.

Inside diameter of steam pipe, in inches =  $\cdot 03 \times D^2$ . Inside diameter of branch steam pipe, in inches =  $\cdot 021 \times D^2$ . Inside diameter of the top of blast pipe =  $\cdot 017 \times D^2$ . Inside diameter of the feed pipes =  $\cdot 141 \times D$ .

## LOCOMOTIVE ENGINE.-DIMENSIONS OF SEVERAL MOVING PARTS.

Diameter of piston rod, in inches =  $D \div 7$ . Thickness of piston, in inches =  $2 D \div 7$ .

Diameter of connecting rods at middle, in inches =  $\cdot 21 \times D$ .

Diameter of the ball on cross-head spindle, in inches =  $\cdot 23 \times D$ . Diameter of the inside bearings of the crank axle, in inches =  $\cdot 96 \times \sqrt[3]{D^2}$ .

Diameter of the plain part of crank axle, in inches =  $96 \times \sqrt[3]{D^2}$ . Diameter of the outside bearings of the crank axle, in inches = ✓ ·396 × D².

Diameter of crank pin, in inches =  $\cdot 404 \times D$ . Length of crank pin, in inches =  $\cdot 233 \times D$ .

# THE PRACTICAL MODEL CALCULATOR.

Tempe- rature, Fahren- heit.	Dalton.	Ure.	Young.	Ivory.	Tredgold.	Southern.	Robison.	Watt.
0°	0.08							
10	0.12							
20	0.17		0.11					
32	0.26	0.20	0.18		0.17	0.16	0.00	
40	0.34	0.25	0.20		0.24	0.22	0.10	
50	0.49	0.36	0.36	0.36	0.37	0.33	0.20	
60	0.65	0.52	0.53	1	0.55	0.48	0.35	
70	0.87	0.73	0.75	0.73	0.78	0.68	0.55	0.77
80	1.16	1.01	1.05		1.11	0.95	0.82	
90	1.59	1.36	1.44	1.36	1.53	1.34	1.18	
100	2.12	1.86	1.95		2.08	1.84	1.60	1.55
110	2.79	2.45	2.62	2.46	2.79	2.56	2.25	
120	3.63	3.30	3.46		3.68	3.46	3.00	
130	4.71	4.37	4.54	4.41	4.81	4.43	3.95	
140	6.05	5.78	5.88		6.21	5.75	5.15	5.14
150	7.73	7.53	7.55	7.42	7.94	7.46	6.72	
160	9.79	9.60	9.62		10.05	9.52	8.65	8.92
170	12.31	12.05	12.14	12.05	12.60	12.14	11.05	11.37
180	15.38	15.16	15.23		15.67	15.20	14.05	12.73
190	18.98	19.00	18.96	18.93	19.00		17.85	19.00
200	23.51	23.60	23.44		23.71		22.65	
210	28.82	28.88	28.81	28.81	28.86		28.62	
212	30.00	30.00	30.00	30.00	30.00	30.00	30.00	29.40
220	35.18	35.54	35.19		34.92		35.8	33.65
230	44.60	43.10	42.47	42.63	42.00		44.5	40
240	53.45	51.70	51.66		50.24		54.9	49.0

TABLE of the Pressure of Steam, in Inches of Mercury, at different Temperatures.

TABLE of the Temperature of Steam at different Pressures in Atmospheres.

D	Enand	1			1				Enandalia
Atmospheres.	Academy.	Dr. Ure.	Young.	Ivory.	Tredgold.	Southern.	Robison.	Watt.	Institute.
1st At.	212.00	212°	212°	212°	212°		212°	2120	212°
2d At.	250.5	250.0	240.3	249	250	250.3		252.5	250.0
3d At.	$275 \cdot 2$	275.0	271		274		267		275.2
4th At.	293.7	291.5	288	290	294	293.4			291.5
5th At.	308.8	304.5	302		309	•••			304.5
6th At.	320.4	315.5			322	•••			315.5
7th At.	331.7	325.5				•••		•••	326.5
8th At.	342.0	336.0		337	342	843.6		•••	336.0
9th At.	350.0	345.0				•••		•••	345.0
10th At.	358.9							•••	352.5
11th At.	366.8							•••	
12th At.	374.0				372	•••		•••	•••
13th At.	380.6			•••	/				
14th At.	- 386.9					•••		•••	
15th At.	392.8							•••	383.8
16th At.	398.5							•••	
17th At.	403.8							•••	•••
18th At.	408.9					•••			
19th At.	413.9		•••			•••		•••	
20th At.	418.5				414			•••	405
30th At.	457.2	••••						•••	
40th At.	466.6				· 4	•••		•••	
50th At.	510.6					•••			
		1		1			1 1	1	1

172

#### THE STEAM ENGINE.

	and a second sec	
Fahren.	Fahren.	Fahren.
32 1000	61 1069	90 1132
33 1002	62 1071	91 1134
34 1004	63 1073	92 1136
35 1007	64 1075	93 1138
36 1009	65 1077	94 1140
37 1012	66 1030	95 1142
38 1015	67 1080	96 1144
39 1018	68 1034	97 1146
40 1021	69 1087	98 1148
41 1023	70 1089	99 1150
42 1025	71 1091	100 1152
43 1027	72 1093	110 1173
44 1030	73 1095	120 1194
45 1032	74 1097	130 1215
46 1034	75 1099	140 1235
47 1036	76 1101	150 1255
48 1038	77 1104	160 1275
49 1040	78 1106	170 1295
50 1043	79 1108	180 1315
51 1045	80 1110	190 1334
52 1047	81 1112	200 1364
53 1050	82 1114	210 1372
54 1052	83 1116	212 1376 .
55 1055	84 1118	302 1558
56 1057	85 1121	392 1739
57 1059	86 1123	482 1919
58 1062	87 1125	572 2098
59 1064	88 1128	680 2312
60 1066	89 1130	

TABLE of the Expansion of Air by Heat.

# STRENGTH OF MATERIALS.

The chief materials, of which it is necessary to record the strength in this place, are cast and malleable iron; and many experiments have been made at different times upon each of these substances, though not with any very close correspondence. The following is a summary of them:—

Materials.	С	s	E	м
Iron, cast { from	$\begin{array}{c} 16300\\ 36000\\ 60000\\ 80000\\ \end{array}$	8100	69120000	5530000
		9000	91440000	6770000

The first column of figures, marked C, contains the mean strength of cohesion on an inch section of the material; the second, marked S, the constant for transverse strains; the third, marked E, the constant for deflections; and the fourth, marked M, the modulus of elasticity. The introduction of the hot blast iron brought with it the impression that it was less strong than that previously in use, and the experiments which had previously been confided in as giving results near enough the truth, for all practical purposes, were no longer considered to be applicable to the new state of things. New experiments were therefore made. The following Table gives, we have no doubt, results as nearly correct as can be required or attained :—

Р2

## RESULTS OF EXPERIMENTS ON THE STRENGTH AND OTHER PRO-PERTIES OF CAST IRON.

In the following Table each bar is reduced to exactly one inch square; and the transverse strength, which may be taken as a criterion of the value of each Iron, is obtained from a mean between the experiments upon it;—first on bars 4 ft. 6 in. between the supports; and next on those of half the length, or 2 ft. 3 in. between the supports. All the other results are deduced from the 4 ft. 6 in. bars. In all cases the weights were laid on the middle of the bar.

								· · · · · · · · · · · · · · · · · · ·
NAME OF IRON.	Specific Gravity.	Modulus of elasticity in Ibs. per sq. inch, or stiff- ness.	Breaking weight in ibs. of bars 4 ft. 6 in. between supports.	Breaking weight in lhs. of bars 2 ft. 8 in. reduced to 4 ft. 6in. between supports.	Mean breaking weight in ibs. (S.)	Ultimate deflection of 4 ft. 6 in. bars, in parts of an inch.	Power of the 4 ft. 6 in. bars to resist impact.	Colour.
Dickerson's, Newark, N. J.	7.030	18470000	510	532	600	1.530	991	Grav
Ponkey, No. 3. Cold Blast	7.122	17211000	567	595	581	1.747	992	Whitish gray
Devon, No. 3. Hot Blast*	7.251	22473650	537		537	1.09	.589	White
Oldberry, No. 3. Hot Blast	7.300	22733400	543	517	530	1.005	549	White
Pattison, N. J. Hot Blast*	7.056	17873100	520	534	527	1.365	710	Whitish gray
Beaufort, No. 3. Hot Blast	7.069	16802000	505	529	517	1.599	807	Dullish gray
Pennsylvanian	17.8	15379500	500	515	502	1.815	889	Dark gray
Bute, No. 1. Cold Blast	7.000	15163000	495	487	491	1.764	812	Bluish gray
Wind Mill End, No. 2. Cold Blast	7.040	16490000	483	490	489	1.601	710	Dark gray
Boutort No. 2. Cold Blast	7.108	16901000	450	170	400	1.519	790	Dull group
Low Moor No. 2. Rot Blast	7.055	14500500	410	483	47.2	1.852	855	Dun gray
Buffery No 1 Cold Blast*	7.079	15381200	463	200	463	1.55	721	Grav
Brimbo, No. 2. Cold Blast	7.017	14911666	466	453	459	1.748	815	Light grav
Apedale, No. 2. Hot Blast	7.017	14852000	457	455	456	1.730	791	Light gray
Oldberry, No. 2. Cold Blast	7.059	14307500	453	457	455	1.811	822	Dark gray
Pentwyn, No. 2	7.038	15193000	438	473	455	1.484	650	Bluish gray
Maesteg, No. 2 ·····	7.038	13959500	453	455	454	1.957	886	Dark gray
Muirkirk, No. 1. Cold Blast*	7.113	14003550	443	464	453	1.734	770	Bright gray
Adelphi, No. 2. Cold Blast	7.080	13815500	441	457	449	1.759	777	Light gray
Blania, No. 3. Cold Blast	7.159	14281466	433	464	448	1.726	747	Bright gray
Devon, No. 3. Cold Blast* ·····	7.285	22907700	448	100	448	•790	353	Light gray
Gartsherrie, No. 3. Hot Blast .	7.017	13894000	427	467	447	1.007	998	Light gray
Frood, No. 2. Cold Blast.	7.020	13112000	400	434	444	1.820	620	Light gray
Common No. 2. Cold Plasts	7.004	10787000	444	449	444	1.226	503	Dark gray
Dundyron No 2 Cold Blast	7.087	16524000	411	420	413	1.160	674	Dull grow
Magetar (Marked Red)	7.038	13071500	440	411	412	1.887	830	Bluish gray
Corbyns Hall, No. 2	7-007	13845866	430	454	442	1.687	727	Grav
Ponfypool, No. 2	7.080	13136500	439	441	440	1.857	816	Dull blue
Wallbrook, No. 3	6.979	15394766	432	449	440	1.443	625	Light grav
Milton, No. 3. Hot Blast	7.051	15852500	427	449	438	1.368	585	Gray
Buffery, No. 1. Hot Blast*	6.998	13730500	436		436	1.64	721	Dull gray
Level, No. 1. Hot Blast	7.080	15452500	-461	403	432	1.516	699	Light gray
Pant, No. 2	6.975	15280900	408	455	431	1.251	511	Light gray
Level, No. 2. Hot Blast	7.031	15241000	419	439	429	1.358	570	Dull gray
W. S. S., No. 2	7.041	14953333	413	446	429	1.519	004	Light gray
Eagle Foundry, No. 2. Hot Blast	7.038	14211000	408	440	421	9.904	010	Bluish gray
Eisicar, No. 2. Cold Blast	7.007	12080000	499	490	496	1.450	691	Gray
Colthom No. 1 Hot Blast	7.128	15510066	464	385	424	1.532	716	Whitish gray
Carroll No 2 Cold Blast	7.069	17036000	430	408	419	1.231	530	Grav
Muirkirk, No. 1. Hot Blast*	6.953	13294400	417	419	418	1.570	656	Bluish grav
Bierley, No. 2	7.185	16156133	404	432	418	1.222	494	Dark grav
Coed-Talon, No. 2. Hot Blast*	6.969	14322500	409	424	416	1.882	771	Bright grav
Coed-Talon, No. 2. Cold Blast*	6.955	14304000	408	418	413	1.470	600	Gray
Monkland, No. 2. Hot Blast	6.916	12259500	402	404	403	1.762	709	Bluish gray
Ley's Works, No. 1. Hot Blast	6.957	11539333	392		392	1.890	742	Bluish gray
Milton, No. 1. Hot Blast	6.976	11974500	353	386	369	1.525	538	Gray
Plaskynaston, No. 2. Hot Blast .	0.810	13341033	318	381	391	1.300	917	Light gray

The irons with asterisks are taken from Experiments on Hot and Cold Blast Iron.

RULE.—To find from the above Table the breaking weight in rectangular bars, generally. Calling b and d the breadth and depth in inches, and l the distance between the supports, in feet, and putting 4.5 for 4 ft. 6 in., we have  $\frac{4 \cdot 5 \times b \ d^2 S}{l}$  = breaking weight in lbs.,—the value of S being taken from the above Table. For example:—What weight would be necessary to break a bar of Low Moor Iron, 2 inches broad, 3 inches deep, and 6 feet between the supports? According to the rule given above, we have b = 2 inches, d = 3 inches, l = 6 feet, S = 472 from the Table. Then  $\frac{4 \cdot 5 \times b \ d^2 S}{l} = \frac{4 \cdot 5 \times 2 \times 3^2 \times 472}{6} = 6372$  lbs., the breaking weight.

 TABLE of the Cohesive Power of Bodies whose Cross Sectional Areas
 equal one Square Inch.

Swedish bar iron         65,000           Russian         do         59,470           English         do         56,000           Cast steel         134,250           Blistered do         138,155           Shear do         127,633           Wrought copper         38,893           Hard gun-metal         86,363           Cast iron         17,9635           Tin, cast         17,9635           Bismuth, cast         8,256           Lead, cast         3,255           Lead, cast         1,824           Elastic power or direct tension of wrought iron, medium quality         22,400	METALS.	Cohesive Power in lbs.
Russian do       59,470         English do       56,000         Cast steel       134,250         Blistered do       138,150         Shear do       127,633         Wrought copper       38,893         Hard gun-metal       36,363         Cast copper       19,072         Yellow brass, cast       17,963         Cast iron       17,962         Tin, cast       3,254         Lead, cast       3,254         Elastic power or direct tension of wrought iron, medium quality       22,400	Swedish bar iron	65,000
English         do         56,000           Cast steel         134,250           Blistered do         138,155           Shear do         127,633           Wrought copper         33,895           Hard gun-metal         36,366           Cast copper         19,077           Yellow brass, cast         17,662           Cast iron         17,662           Tin, cast         8,256           Lead, cast         1,824           Elastic power or direct tension of wrought iron, medium quality         22,400	Russian do	59,470
Cast steel	English do	56,000
Blistered do	Cast steel	134.256
Shear do.         127,63:           Wrought copper         33,89:           Hard gun-metal.         36,36:           Cast copper.         19,07:           Yellow brass, cast         17,96:           Cast iron         17,96:           Tin, cast.         4,73:           Bismuth, cast         3,25:           Lead, cast.         1,82:           Elastic power or direct tension of wrought iron, medium quality         22,400	Blistered do	133,152
Wrought copper       33,89         Hard gun-metal.       36,363         Cast copper       19,073         Yellow brass, cast       17,963         Cast iron       17,623         Tin, cast       8,256         Lead, cast       8,256         Elastic power or direct tension of wrought iron, medium quality       22,400	Shear do	127.632
Hard gun-metal.       36,360         Cast copper.       19,077         Yellow brass, cast       17,962         Cast iron       17,625         Tin, cast       8,256         Lead, cast       1,822         Elastic power or direct tension of wrought iron, medium quality       22,400	Wrought copper	33.892
Cast copper	Hard gun-metal	36,368
Yellow brass, cast         17,963           Cast iron         17,623           Tin, cast         4,733           Bismuth, cast         3,250           Lead, cast         1,824           Elastic power or direct tension of wrought iron, medium quality         22,400	Cast copper	19.072
Cast iron         17,622           Tin, cast.         4,736           Bismuth, cast         8,256           Lead, cast.         1,824           Elastic power or direct tension of wrought iron, medium quality.         22,400	Yellow brass, cast	17,968
Tin, cast	Cast iron	17.628
Bismuth, cast	Tin. cast	4.736
Lead, cast	Bismuth, cast	8,250
Elastic power or direct tension of wrought iron, medium quality	Lead. cast	1.824
	Elastic power or direct tension of wrought iron, medium quality	22,400

NOTE.—A bar of iron is extended 000096, or nearly one tenthousandth part of its length, for every ton of direct strain per square inch of sectional area.

### CENTRE OF GRAVITY.

The centre of gravity of a body is that point within it which continually endeavours to gain the lowest possible situation; or it is that point on which the body, being freely suspended, will remain at rest in all positions. The centre of gravity of a body does not always exist within the matter of which the body is composed, there being bodies of such forms as to preclude the possibility of this being the case, but it must either be surrounded by the constituent matter, or so placed that the particles shall be symmetrically situated, with respect to a vertical line in which the position of the centre occurs. Thus, the centre of gravity of a ring is not in the substance of the ring itself, but, if the ring be uniform, it will be in the axis of its circumscribing cylinder; and if the ring varies in form or density, it will be situated nearest to those parts where the weight or density is greatest. Varying the position of a body will not cause any change in the situation of the centre of gravity; for any change of position the body undergoes will only have the effect of altering the directions of the sustaining forces, which will still preserve their parallelism. When a body is suspended by any other point than its centre of gravity, it will not rest unless that centre be in the same vertical line with the point of suspension; for, in every other position, the force which is intended to insure the equilibrium will not directly oppose the resultant of gravity upon the particles of the body, and of course the equilibrium will not obtain; the directions of the forces of gravity upon the constituent particles are all parallel to one another and perpendicular If a heavy body be sustained by two or more to the horizon. forces, their lines of direction must meet either at the centre of gravity, or in the vertical line in which it occurs.

A body cannot descend or fall downwards, unless it be in such a position that by its motion the centre of gravity descends. If a body stands on a plane, and a line be drawn perpendicular to the horizon, and if this perpendicular line fall within the base of the body, it will be supported without falling; but if the perpendicular falls without the base of the body, it will overset. For when the perpendicular falls within the base, the body cannot be moved at all without raising the centre of gravity; but when the perpendicular falls without the base towards any side, if the body be moved towards that side, the centre of gravity will descend, and consequently the body will overset in that direction. If a perpendicular to the horizon from the centre of gravity fall upon the extremity of the base, the body may continue to stand, but the least force that can be applied will cause it to overset in that direction; and the nearer the perpendicular is to any side the easier the body will be made to fall on that side, but the nearer the perpendicular is to the middle of the base the firmer the body will stand. If the centre of gravity of a body be supported, the whole body is supported, and the place of the centre of gravity must be considered as the place of the body, and it is always in a line which is perpendicular to the horizon.

In any two bodies, the common centre of gravity divides the line that joins their individual centres into two parts that are to one another reciprocally as the magnitudes of the bodies. The products of the bodies multiplied by their respective distances from the common centre of gravity are equal. If a weight be laid upon any point of an inflexible lever which is supported at the ends, the pressure on each point of the support will be inversely as the respective distances from the point where the weight is applied. In a system of three bodies, if a line be drawn from the centre of gravity of any one of them to the common centre of the other two, then the common centre of all the three bodies divides the line into two parts that are to each other reciprocally as the magnitude of the body from which the line is drawn to the sum of the magnitudes of the other two; and, consequently, the single body multiplied by its distance from the common centre of gravity is equal to the sum of the other bodies multiplied by the distance of their common centre from the common centre of the system.

If there be taken any point in the straight line or lever joining the centres of gravity of two bodies, the sum of the two products of each body multiplied by its distance from that point is equal to the product of the sum of the bodies multiplied by the distance of their common centre of gravity from 'the same point. The two bodies have, therefore, the same tendency to turn the lever about the assumed point, as if they were both placed in their common centre of gravity. Or, if the line with the bodies moves about the assumed point, the sum of the momenta is equal to the momentum of the sum of the bodies placed at their common centre of gravity. The same property holds with respect to any number of bodies whatever, and also when the bodies are not placed in the line, but in perpendiculars to it passing through the bodies. If any plane pass through the assumed point, perpendicular to the line in which it subsists, then the distance of the common centre of gravity of all the bodies from that plain is equal to the sum of all the momenta divided by the sum of all the bodies. We may here specify the positions of the centre of gravity in several figures of very frequent occurrence.

In a straight line, or in a straight bar or rod of uniform figure and density, the position of the centre of gravity is at the middle of its length. In the plane of a triangle the centre of gravity is situated in the straight line drawn from any one of the angles to the middle of the opposite side, and at two-thirds of this line distant from the angle where it originates, or one-third distant from the base. In the surface of a trapezium the centre of gravity is in the intersections of the straight lines that join the centres of the opposite triangles made by the two diagonals. The centre of gravity of the surface of a parallelogram is at the intersection of the diagonals, or at the intersection of the two lines which bisect the figure from its opposite sides. In any regular polygon the centre of gravity is at the same point as the centre of magnitude. In a circular arc the position of the centre of gravity is distant from the centre of the circle by the measure of a fourth proportional to the arc, radius, and chord. In a semicircular arc the position of the centre of gravity is distant from the centre by the measure of a third proportional to the arc of the quadrant and the radius. In the sector of a circle the position of the centre of gravity is distant from the centre of the circle by a fourth proportional to three times the arc of the sector, the chord of the arc, and the diameter of the circle. In a circular segment, the position of the centre of gravity is distant from the centre of the circle by a space which is equal to the cube or third power of the chord divided by twelve times the area of the segment. In a semicircle

12

the position of the centre of gravity is distant from the centre of the circle by a space which is equal to four times the radius divided by the constant number  $3.1416 \times 3 = 9.4248$ . In a parabola the position of the centre of gravity is distant from the vertex by three-fifths of the axis. In a semi-parabola the position of the centre of gravity is at the intersection of the co-ordinates, one of which is parallel to the base, and distant from it by two-fifths of the axis, and the other parallel to the axis, but distant from it by three-eighths of the semi-base.

The centres of gravity of the surface of a cylinder, a cone, and conic frustum, are respectively at the same distances from the origin as are the centres of gravity of the parallelogram, the triangle, and the trapezoid, which are sections passing along the axes of the respective solids. The centre of gravity of the surface of a spheric segment is at the middle of the versed sine or height. The centre of gravity of the convex surface of a spherical zone is at the middle of that portion of the axis of the sphere intercepted by its two bases. In prisms and cylinders the position of the centre of gravity is at the middle of the straight line that joins the centres of gravity of their opposite ends. In pyramids and cones the centre of gravity is in ' the straight line that joins the vertex with the centre of gravity of the base, and at three-fourths of its length from the vertex, and one-fourth from the base. In a semisphere, or semispheroid, the position of the centre of gravity is distant from the centre by threeeighths of the radius. In a parabolic conoid the position of the centre of gravity is distant from the base by one-third of the axis, or two-thirds of the axis distant from the vertex. There are several other bodies and figures of which the position of the centre of gravity is known; but as the position in those cases cannot be defined without algebra, we omit them.

#### CENTRIPETAL AND CENTRIFUGAL FORCES.

Central forces are of two kinds, centripetal and centrifugal. Centripetal force is that force by which a body is attracted or impelled towards a certain fixed point as a centre, and that point towards which the body is urged is called the centre of attraction or the centre of force. Centrifugal force is that force by which a body endeavours to recede from the centre of attraction, and from which it would actually fly off in the direction of a tangent if it were not prevented by the action of the centripetal force. These two forces are therefore antagonistic; the action of the one being directly opposed to that of the other. It is on the joint action of these two forces that all curvilinear motion depends. Circular motion is that affection of curvilinear motion where the body is constrained to move in the circumference of a circle: if it continues to move so as to describe the entire circle, it is denominated rotatory motion, and the body is said to revolve in a circular orbit, the centre of which is called the centre of motion. In all circular motions the deflection or deviation from the rectilinear course is constantly the same at
every point of the orbit, in which case the centripetal and centrifugal forces are equal to one another. In circular orbits the centripetal forces, by which equal bodies placed at equal distances from the centres of force are attracted or drawn towards those centres, are proportional to the quantities of matter in the central bodies. This is manifest, for since all attraction takes place towards some particular body, every particle in the attracting body must produce its individual effect; consequently, a body containing twice the quantity of matter will exert twice the attractive energy, and a body containing thrice the quantity of matter will operate with thrice the attractive force, and so on according to the quantity of matter in the attracting body.

Any body, whether large or small, when placed at the same distance from the centre of force, is attracted or drawn through equal spaces in the same time by the action of the central body. This is obvious from the consideration that although a body two or three times greater is urged with two or three times greater an attractive force, yet there is two or three times the quantity of matter to be moved; and, as we have shown elsewhere, the velocity generated in a given time is directly proportional to the force by which it is generated, and inversely as the quantity of matter in the moving or attracted body. But the force which in the present instance is the weight of the body is proportional to the quantity of matter which it contains; consequently, the velocity generated is directly and inversely proportional to the quantity of matter in the attracted body, and is, therefore, a given or a constant quantity. Hence, the centripetal force, or force towards the centre of the circular orbit, is not measured by the magnitude of the revolving body, but only by the space which it describes or passes over in a given time. When a body revolves in a circular orbit, and is retained in it by means of a centripetal force directed to the centre, the actual velocity of the revolving body at every point of its revolution is equal to that which it would acquire by falling perpendicularly with the same uniform force through one-fourth of the diameter, or one-half the radius of its orbit; and this velocity. is the same as would be acquired by a second body in falling through half the radius, whilst the first body, in revolving in its orbit, describes a portion of the circumference which is equal in length to half the diameter of the circle. Consequently, if a body revolves uniformly in the circumference of a circle by means of a given centripetal force, the portion of the circumference which it describes in any time is a mean proportional between the diameter of the circle and the space which the body would descend perpendicularly in the same time, and with the same given force continued uniformly.

The *periodic time*, in the doctrine of central forces, is the time occupied by a body in performing a complete revolution round the centre, when that body is constrained to move in the circumference by means of a centripetal force directed to that point; and when the body revolves in a circular orbit, the periodic time, or the time of performing a complete revolution, is expressed by the term  $\pi t \sqrt{\frac{d}{a}}$ , and the velocity or space passed over in the time t will be

 $\checkmark ds$ ; in which expressions d denotes the diameter of the circular orbit described by the revolving body, s the space descended in any time by a body falling perpendicularly downwards with the same uniform force, t the time of descending through the space, s and  $\pi$ the circumference of a circle whose diameter is unity. If several bodies revolving in circles round the same or different centres be retained in their orbits by the action of centripetal forces directed to those points, the periodic times will be directly as the square roots of the radii or distances of the revolving bodies, and inversely as the square roots of the centripetal forces, or, what is the same thing, the squares of the periodic times are directly as the radii, and inversely as the centripetal forces.

### CENTRE OF GYRATION.

The centre of gyration is that point in which, if all the constituent particles, or all the matter contained in a revolving body, or system of bodies, were concentrated, the same angular velocity would be generated in the same time by a given force acting at any place as would be generated by the same force acting similarly on the body or system itself according to its formation.

The angular motion of a body, or system of bodies, is the motion of a line connecting any point with the centre or axis of motion, and is the same in all parts of the same revolving system.

In different unconnected bodies, each revolving about a centre, the angular velocity is directly proportional to the absolute velocity, and inversely as the distance from the centre of motion; so that, if the absolute velocities of the revolving bodies be proportional to their radii or distances, the angular velocities will be equal. If the axis of motion passes through the centre of gravity, then is this centre called the principal centre of gyration.

The distance of the centre of gyration from the point of suspension, or the axis of motion in any body or system of bodies, is a geometrical mean between the centres of gravity and oscillation from the same point or axis; consequently, having found the distances of these centres in any proposed case, the square root of their product will give the distance of the centre of gyration. If any part of a system be conceived to be collected in the centre of gyration of that particular part, the centre of gyration of the whole system will continue the same as before; for the same force that moved this part of the system before along with the rest will move it now without any change; and consequently, if each part of the system be collected into its own particular centre, the common centre of the whole system will continue the same. If a circle be described about the centre of gravity of any system, and the axis of rotation be made to pass through any point of the circumference,

the distance of the centre of gyration from that point will always be the same.

If the periphery of a circle revolve about an axis passing through the centre, and at right angles to its plane, it is the same thing as if all the matter were collected into any one point in the periphery. And moreover, the plane of a circle or a disk containing twice the quantity of matter as the said periphery, and having the same diameter, will in an equal time acquire the same angular velocity. If the matter of a revolving body were actually to be placed in the centre of gyration, it ought either to be arranged in the circumference, or in two points of the circumference diametrically opposite to each other, and equally distant from the centre of motion, for by this means the centre of motion will coincide with the centre of gravity, and the body will revolve without any lateral force on any side. These are the chief properties connected with the centre of gyration, and the following are a few of the cases in which its position has been ascertained.

In a right line, or a cylinder of very small diameter revolving about one of its extremities, the distance of the centre of gyration from the centre of motion is equal to the length of the revolving line or cylinder multiplied by the square root of  $\frac{1}{3}$ . In the plane of a circle, or a cylinder revolving about the axis, it is equal to the radius multiplied by the square root of  $\frac{1}{2}$ . In the circumference of a circle revolving about the diameter it is equal to the radius multiplied by the square root of  $\frac{1}{2}$ . In the plane of a circle revolving about the diameter it is equal to one-half the radius. In a thin circular ring revolving about one of its diameters as an axis it is equal to the radius multiplied by the square root of  $\frac{1}{2}$ . In a solid globe revolving about the diameter it is equal to the radius multiplied by the square root of  $\frac{2}{5}$ . In the surface of a sphere revolving about the diameter it is equal to the radius multiplied by the square root of  $\frac{2}{3}$ . In a right cone revolving about the axis it is equal to the radius of the base multiplied by the square root of  $\frac{3}{10}$ . In all these cases the distance is estimated from the centre of the axis of motion. We shall have occasion to illustrate these principles when we come to treat of fly-wheels in the construction of the different parts of steam engines.

When bodies revolving in the circumferences of different circles are retained in their orbits by centripetal forces directed to the centres, the periodic times of revolution are directly proportional to the distances or radii of the circles, and inversely as the velocities of motion; and the periodic times, under like circumstances, are directly as the velocities of motion, and inversely as the centripetal forces. If the times of revolution are equal, the velocities and centripetal forces are directly as the distances or radii of the circles. If the centripetal forces are equal, the squares of the times of revolution and the squares of the velocities are as the distances or radii of the circles. If the times of revolution are as

Q

the radii of the circles, the velocities will be equal, and the centripetal forces reciprocally as the radii.

If several bodies revolve in circular orbits round the same or different centres, the velocities are directly as the distances or radii, and inversely as the times of revolution. The velocities are directly as the centripetal forces and the times of revolution. The squares of the velocities are proportional to the centripetal forces, and the distances or radii of the circles. When the velocities are equal, the times of revolution are proportional to the radii of the circles in which the bodies revolve, and the radii of the circles are inversely as the centripetal forces. If the velocities be proportional to the distances or radii of the circles, the centripetal forces will be in the same ratio, and the times of revolution will be equal.

If several bodies revolve in circular orbits about the same or different centres, the centripetal forces are proportional to the distances or radii of the circles directly, and inversely as the squares of the times of revolution. The centripetal forces are directly proportional to the velocities, and inversely as the times of revolution. The centripetal forces are directly as the squares of the velocities, and inversely as the distances or radii of the circles. When the centripetal forces are equal, the velocities are proportional to the times of revolution, and the distances as the squares of the times or as the squares of the velocities. When the central forces are proportional to the distances or radii of the circles, the times of revolution are equal. If several bodies revolve in circular orbits about the same or different centres, the radii of the circles are directly proportional to the centripetal forces, and the squares of the periodic times. The distances or radii of the circles are directly as the velocities and periodic times. The distances or radii of the circles are directly as the squares of the velocities, and reciprocally as the centripetal forces. If the distances are equal, the centripetal forces are directly as the squares of the velocities, and reciprocally as the squares of the times of revolution; the velocities also are reciprocally as the times of revolution. The converse of these principles and properties are equally true; and all that has been here stated in regard 'to centripetal forces is similarly true of centrifugal forces, they being equal and contrary to each other.

The quantities of matter in all attracting bodies, having other bodies revolving about them in circular orbits, are proportional to the cubes of the distances directly, and to the squares of the times of revolution reciprocally. The attractive force of a body is directly proportional to the quantity of matter, and inversely as the square of the distance. If the centripetal force of a body revolving in a circular orbit be proportional to the distance from the centre, a body let fall from the upper extremity of the vertical diameter will reach the centre in the same time that the revolving body describes one-fourth part of the orbit. The velocity of the descending body at any point of the diameter is proportional to

the ordinate of the circle at that point; and the time of falling through any portion of the diameter is proportional to the arc of the circumference whose versed sine is the space fallen through. All the times of falling from any altitudes whatever to the centre of the orbit will be equal; for these times are equal to one-fourth of the periodic times, and these times, under the specified conditions, are equal. The velocity of the descending body at the centre of the circular orbit is equal to the velocity of the revolving body.

These are the chief principles that we need consider regarding the motion of bodies in circular orbits; and from them we are led to the consideration of bodies suspended on a centre, and made to revolve in a circle beneath the suspending point, so that when the body describes the circumference of a circle, the string or wire by which it is suspended describes the surface of a cone. A body thus revolving is called a conical pendulum, and this species of pendulum, or, as it is usually termed, the governor, is of great importance in mechanical arrangements, being employed to regulate the movements of steam engines, water-wheels, and other mechanism. As we shall have occasion to show the construction and use of this instrument when treating of the parts and proportions of engines, we need not do more at present than state the principles on which its action depends. We must, however, previously say a few words on the properties of the simple pendulum, or that which, being suspended from a centre, is made to vibrate from side to side in the same vertical plane.

### PENDULUMS.

If a pendulum vibrates in a small circular arc, the time of performing one vibration is to the time occupied by a heavy body in falling perpendicularly through half the length of the pendulum as the circumference of a circle is to its diameter. All vibrations of the same pendulum made in very small circular arcs, are made in very nearly the same time. The space described by a falling body in the time of one vibration is to half the length of the pendulum as the square of the circumference of a circle is to the square of the diameter. The lengths of two pendulums which by vibrating describe similar circular arcs are to each other as the squares of the times of vibration. The times of pendulums vibrating in small circular arcs are as the square roots of the lengths of the pendulums. The velocity of a pendulum at the lowest point of its path is proportional to the chord of the arc through which it descends to acquire that velocity. Pendulums of the same length vibrate in the same time, whatever the weights may be. From which we infer, that all bodies near the earth's surface, whether they be heavy or light, will fall through equal spaces in equal times, the resistance of the air not being considered.

The lengths of pendulums vibrating in the same time in different positions of the earth's surface are as the forces of gravity in those positions. The times wherein pendulums of the same length will vibrate by different forces of gravity are inversely as the square

### THE PRACTICAL MODEL CALCULATOR.

roots of the forces. The lengths of pendulums vibrating in different places are as the forces of gravity at those places and the squares of the times of vibration. The times in which pendulums of any length perform their vibrations are directly as the square roots of their lengths, and inversely as the square roots of the gravitating forces. The forces of gravity at different places on the earth's surface are directly as the lengths of the pendulums, and inversely as the squares of the times of vibration. These are the chief properties of a simple pendulum vibrating in a vertical plane, and the principal problems that arise in connection with it are the following, viz. :

To find the length of a pendulum that shall make any number of vibrations in a given time; and secondly, having given the length of a pendulum, to find the number of vibrations it will make in any time given.—These are problems of very easy solution, and the rules for resolving them are simply as follow:—For the first, the rule is, multiply the square of the number of seconds in the given time by the constant number  $39 \cdot 1015$ , and divide the product by the square of the number of vibrations, for the length of the pendulum in inches. For the second, it is, multiply the square of the number of seconds in the given time by the constant number  $39 \cdot 1393$ , divide the product by the given length of the pendulum in inches, and extract the square root of the quotient for the number of vibrations sought. The number  $39 \cdot 1015$  is the length of a pendulum in inches, that vibrates seconds, or sixty times in a minute, in the latitude of Philadelphia.

Suppose a pendulum is found to make 35 vibrations in a minute; what is the distance from the centre of suspension to the centre of oscillation?

Here, by the rule, the number of seconds in the given time is 60; hence we get  $60 \times 60 \times 39 \cdot 1015 = 140765 \cdot 4$ , which, being divided by  $35 \times 35 = 1225$ , gives  $140765 \cdot 4 \div 1225 = 114 \cdot 9105$ inches for the length required.

The length of a pendulum between the centre of suspension and the centre of oscillation is 64 inches; what number of vibrations will it make in 60 seconds?

By the rule we have  $60 \times 60 \times 39 \cdot 1015 = 140765 \cdot 4$ , which, being divided by 64, gives  $140765 \cdot 4 \div 64 = 2199 \cdot 46$ , and the square root of this is  $2199 \cdot 46 = 46 \cdot 9$ , number of vibrations sought. When the given time is a minute, or 60 seconds, as in the two examples proposed above, the product of the constant number  $39 \cdot 1015$  by the square of the time, or  $140765 \cdot 4$ , is itself a constant quantity, which, being kept in mind, will in some measure facilitate the process of calculation in all similar cases. We now return to the consideration of the conical pendulum, or that in which the ball revolves about a vertical axis in the circumference of a circular plane which is parallel to the horizon.

### CONICAL PENDULUM.

If a pendulum be suspended from the upper extremity of a vertical axis, and be made to revolve about that axis by a conical motion, which constrains the revolving body to move in the circumference of a circle whose plane is parallel to the horizon, then the time in which the pendulum performs a revolution about the axis can easily be found.

Let CD be the pendulum in question, suspended from C, the upper extremity of the vertical axis CD,

upper extremity of the vertical axis CD, and let the ball or body B, by revolving about the said axis, describe the circle BE AH, the plane of which is parallel to the horizon; it is proposed to assign the time of description, or the time in which the body B performs a revolution about the axis CD, at the distance BD.

Conceive the axis CD to denote the weight ⁴( of the revolving body, or its force in the direction of gravity; then, by the Compo-



sition and Resolution of Forces, CB will denote the force or tension of the string or wire that retains the revolving body in the direction CB, and BD the force tending to the centre of the plane of revolution at D. But, by the general laws of motion and forces previously laid down, if the time be given, the space described will be directly proportional to the force; but, by the laws of gravity, the space fallen perpendicularly from rest, in one second of time, is  $g = 16_{\frac{1}{12}}$  feet; consequently we have CD : BD : :  $16_{\frac{1}{12}}:\frac{16_{\frac{1}{12}}.BD}{CD}$ , the space described towards D by the force in BD in one second. Consequently, by the laws of centripetal forces, the periodic time, or the time of the body revolving in the circle BEAH, is expressed by the term  $\pi \sqrt{\frac{2 \cdot \text{CD}}{16 \frac{1}{12}}}$ , where  $\pi = 3.1416$ , the circumference of a circle whose diameter is unity; or putting t to denote the time, and expressing the height CD in feet, we get t = 6.2832CD  $\sqrt{\frac{32}{12 \times 321}}$ , or, by reducing the expression to its simplest form, it becomes  $t = 0.31986\sqrt{\text{CD}}$ , where CD must be estimated in inches, and t in seconds. Here we have obtained an expression of great

simplicity, and the practical rule for reducing it may be expressed in words as follows: RULE.—Multiply the square root of the height, or the distance

between the point of suspension and the centre of the plane of revolution, in inches, by the constant fraction 0.31986, and the product will be the time of revolution in seconds.

In what time will a conical pendulum revolve about its vertical axis, supposing the distance between the point of suspension and the centre of the plane of revolution to be 39.1393 inches, which is the length of a simple pendulum that vibrates seconds in latitude  $51^{\circ} 30'$ ?

The square root of 39.1393 is 6.2561; consequently, by the rule.

we have,  $6.2561 \times 0.31986 = 2.0011$  seconds for the time of revolution sought. It consequently revolves 30 times in a minute, as it ought to do by the theory of the simple pendulum.

By reversing the process, the height of the cone, or the distance between the point of suspension and the centre of the plane of revolution, corresponding to any given time, can easily be ascertained; for we have only to divide the number of seconds in the given time by the constant decimal 0.31986, and the square of the quotient will be the required height in inches. Thus, suppose it were required to find the height of a conical pendulum that would revolve 30 times in a minute. Here the time of revolution is 2 seconds for  $60 \div 30 = 2$ ; therefore, by division, it is  $2 \div 0.31986 = 6.2527$ . which, being squared, gives 6.2527 = 39.0961 inches, or the length of a simple pendulum that vibrates seconds very nearly. In all conical pendulums the times of revolution, or the periodic times, are proportional to the square roots of the heights of the cones. This is manifest, for in the foregoing equation of the periodic time the numbers 6.2832 and 386, or  $12 \times 321$ , are constant quantities, consequently t varies as  $\sqrt{\overline{\text{CD}}}$ .

If the heights of the cones, or the distances between the points of suspension and the centres of the planes of revolution, be the same, the periodic times, or the times of revolution, will be the same, whatever may be the radii of the circles described by the re-



volving bodies. This will be clearly understood by contemplating the subjoined diagram, where all the pendulums Ca, Cb, Cc, Cd, and Ce, having the common axis CD, will revolve in the same time; and

if they are all in the same vertical plane when first put in motion, they will continue to revolve in that plane, whatever be the velocity, . so long as the common axis or height of the cone remains the same. This will become manifest, if we conceive an inflexible bar or rod of iron to pass through the centres of all the balls as well as the common axis, for then the bar and the several balls must all revolve. in the same time; but if any one of them should be allowed to rise higher, its velocity would be increased; and if it descends, the velocity will be decreased.

Half the periodic time of a conical pendulum is equal to the time of vibration of a simple pendulum, the length of which is equal to the axis or height of the cone; that is, the simple pendulum makes two oscillations or vibrations from side to side, or it . arrives at the same point from which it departed, in the same time that the conical pendulum revolves about its axis. The space descended by a falling body in the time of one revolution of the conical pendulum is equal to 3.1416² multiplied by twice the height or axis of the cone. The periodic time, or the time of one revolution is equal to the product of  $3.1416 \sqrt{2}$  multiplied by the time of falling through the height of the cone. The weight of a conical pendulum, when revolving in the circumference of a circle, bears the same proportion to the centrifugal force, or its tendency to fly . off in a straight line, as the axis or height of the cone bears to the radius of the plane of revolution; consequently, when the height of the cone is equal to the radius of its base, the centripetal or centrifugal force is equal to the power of gravity.

These are the principles on which the action of the conical pendulum depends; but as we shall hereafter have occasion to consider it more at large, we need not say more respecting it in this place. Before dismissing the subject, however, it may be proper to put the reader in possession of the rules for calculating the position of the centre of oscillation in vibrating bodies, in a few cases where it has been determined, these being the cases that are of the most frequent occurrence in practice.

The centre of oscillation in a vibrating body is that point in the line of suspension, in which, if all the matter of the system were collected, any force applied there would generate the same angular motion in a given time as the same force applied at the centre of gravity. The centres of oscillation for several figures of very frequent use, suspended from their vertices and vibrating flatwise, are as follow :---

In a right line, or parallelogram, or a cylinder of very small diameter, the centre of oscillation is at two-thirds of the length from the point of suspension. In an isosceles triangle the centre of oscillation is at three-fourths of the altitude. In a circle it is five-fourths of the radius. In the common parabola, it is five-sevenths of its altitude. In a parabola of any order it is  $\left(\frac{2\ n+1}{3\ n+1}\right)$  × altitude, where *n* denotes the order of the figure.

In bodies vibrating laterally, or in their own plane, the centres of oscillation are situated as follows; namely, in a circle the centre of oscillation is at three-fourths of the diameter; in a rectangle, suspended at one of its angles, it is at two-thirds of the diagonal; in a parabola, suspended by the vertex, it is five-sevenths of the axis, increased by one-third of the parameter; in a parabola, suspended by the middle of its base, it is four-sevenths of the axis. increased by half the parameter; in the sector of a circle it is three times the arc of the sector multiplied by the radius, and divided by four times the chord; in a right cone it is four-fifths of the axis or height, increased by the quotient that arises when the square of the radius of the base is divided by five times the height; in a globe or sphere it is the radius of the sphere, plus the length of the thread by which it is suspended, plus the quotient that arises when twice the square of the radius is divided by five times the sum of the radius and the length of the suspending thread. In all these cases the distance is estimated from the point of suspension, and since the centres of oscillation and percussion are in one and the same point, whatever has been said of the one is equally true of the other.

# THE TEMPERATURE AND ELASTIC FORCE OF STEAM.

In estimating the mechanical action of steam, the intensity of its elastic force must be referred to some known standard measure, such as the pressure which it exerts against a square inch of the surface that contains it, usually reckoned by so many pounds avoirdupois upon the square inch. The intensity of the elastic force is also estimated by the inches in height of a vertical column of mercury, whose weight is equal to the pressure exerted by the steam on a surface equal to the base of the mercurial column. It may also be estimated by the height of a vertical column of water measured in feet; or generally, the elastic force of any fluid may be compared with that of atmospheric air when in its usual state of temperature and density; this is equal to a column of mercury 30 inches or  $2\frac{1}{2}$  feet in height.

When the temperature of steam is increased, respect being had to its density, the elastic force, or the effort to separate the parts of the containing vessel and occupy a larger space, is also increased; and when the temperature is diminished, a corresponding and proportionate diminution takes place in the intensity of the emancipating effort or elastic power. It consequently follows that there must be some law or principle connecting the temperature of steam with its elastic force; and an intimate acquaintance with this law, in so far as it is known, must be of the greatest importance in all our researches respecting the theory and the mechanical operations of the steam engine.

To find a theorem, by means of which it may be ascertained when a general law exists, and to determine what that law is, in cases where it is known to obtain.—Suppose, for example, that it is required to assign the nature of the law that subsists between the

### THE STEAM ENGINE.

temperature of steam and its elastic force, on the supposition that the elasticity is proportional to some power of the temperature, and unaffected by any other constant or co-efficient, except the exponent by which the law is indicated. Let E and e be any two values of the elasticity, and T, t, the corresponding temperatures deducted from observation. It is proposed to ascertain the powers of T and t, to which E and e are respectively proportional. Let n denote the index or exponent of the required power; then by the conditions of the problem admitting that a law exists, we get,  $T^n: t^n: E:e$ ; but by the principles of proportion, it is  $\frac{t^n}{T^n} = \frac{e}{E}$ ; and if this be expressed logarithmically, it is  $n \times \log$ .  $\frac{t}{T} = \log$ .  $\frac{e}{E}$ , and by reducing the equation in respect of n, it finally becomes

$$a = \frac{\log e - \log E}{\log t - \log T}.$$

The theorem that we have here obtained is in its form sufficiently simple for practical application; it is of frequent occurrence in physical science, but especially so in inquiries respecting the motion of bodies moving in air and other resisting media; and it is even applicable to the determination of the planetary motions themselves. The process indicated by it in the case that we have chosen, is simply, To divide the difference of the logarithms of the elasticities by the difference of the logarithms of the corresponding temperatures, and the quotient will express that power of the temperature to which the elasticity is proportional.

Take as an example the following data :--In two experiments it was found that when the temperature of steam was 250.3 and 343.6 degrees of Fahrenheit's scale, the corresponding elastic forces were 59.6 and 238.4 inches of the mercurial column respectively. From these data it is required to determine the law which connects the temperature with the elastic force on the supposition that a law does actually exist under the specified conditions. The process by the rule is as follows:

Greater temperature, 343.6 Lesser temperature, 250.3	log. log.	2·5352941 2·3984608
Remainder	-	0.1368333
Greater elastic force, 238.4 Lesser elastic force, 59.6	log. log.	$ \begin{array}{r}         2 \cdot 3773063 \\         1 \cdot 7752463     \end{array} $
Remainder	-	0.6020600

Let the second of these remainders be divided by the first, as directed in the rule, and we get  $n = 6020600 \div 1368333 = 4.3998$ , the exponent sought. Consequently, by taking the nearest unit, for the sake of simplicity, we shall have, according to this result, the following analogy, viz.:

T4'4: t4'4 :: E : e;

that is, the elasticities are proportional to the 4.4 power of the temperatures very nearly.

Now this law is rigorously correct, as applied to the particular cases that furnished it; for if the two temperatures and one elasticity be given, the other elasticity will be found as indicated by the above analogy; or if the two elasticities and one temperature be given, the other temperature will be found by a similar process. It by no means follows, however, that the principle is general, nor could we venture to affirm that the exponent here obtained will accurately represent the result of any other experiments than those from which it is deduced, whether the temperature be higher or lower than that of boiling water; but this we learn from it, that the index which represents the law of elasticity is of a very high order, and that the general equation, whatever its form may be, must involve other conditions than those which we have assumed in the foregoing investigation. The theorem, however, is valuable to practical men, not only as being applicable to numerous other branches of mechanical inquiry, but as leading directly to the methods by which some of the best rules have been obtained for calculating the elasticity of steam, when in contact with the liquid from which it is generated.

We now proceed to apply our formula to the determination of a general law, or such as will nearly represent the class of experiments on which it rests; and for this purpose we must first assign the limits, and then inquire under what conditions the limitations take place, for by these limitations we must in a great measure be guided in determining the ultimate form of the equation which represents the law of elasticity.

The limits of elasticity will be readily assigned from the following considerations, viz. : In the first place, it is obvious that steam cannot exist when the cohesive attraction of the particles is of greater intensity than the repulsive energy of the caloric or matter of heat interposed between them; for in this case, the change from an elastic fluid to a solid may take place without passing through the intermediate stage of liquidity : hence we infer that there must be a temperature at which the elastic force is nothing, and this temperature, whatever may be its value, corresponds to the lower limit of elasticity. The higher limit will be discovered by similar considerations, for it must take place when the density of steam is the same as that of water, which therefore depends on the modulus of elasticity of water. The modulus of elasticity of any substance is the measure of its elastic force; that of water at 60° of temperature is 22,100 atmospheres. Thus, for instance, suppose a given quantity of water to be confined in a close vessel which it exactly fills, and let it be exposed to a high degree of temperature, then it is obvious that in this state no steam would be produced, and the force which is exerted to separate the parts of the vessel is simply the expansive force of compressed water; we therefore have the following proportion. As the expanded volume of water is to the

quantity of expansion, so is the modulus of elasticity of water to the elastic force of steam of the same density as water.

Having therefore assigned the limits beyond which the elastic force of steam cannot reach, we shall now proceed to apply the principle of our formula to the determination of the general law which connects the temperature with the elastic force; and for this purpose, in addition to the notation which we have already laid down, let c denote some constant quantity that affects the elasticity, and d the temperature at which the elasticity vanishes; then since this temperature must be applied subtractively, we have from the foregoing principle,  $c \mathbf{E} = (\mathbf{T} - \delta)^n$ , and  $c e = (t - \delta)^n$ . From either of these equations, therefore, the constant quantity c can be determined in terms of the rest when they are known; thus we have  $c = \frac{(\mathbf{T} - \delta)^n}{\mathbf{E}}$ , and  $c = \frac{(t - \delta)^n}{e}$ , and by comparing these two independent values of c, the value of n becomes known; for  $\frac{(\mathbf{T} - \delta)^n}{\mathbf{E}} = \frac{(t - \delta)^n}{e}$ , and consequently

$$e = \frac{\log \ e - \log \ E}{\log \ (t - \delta) - \log \ (T - \delta)}. \quad . \quad . \quad (A).$$

In this equation the value of the symbol  $\delta$  is unknown; in order therefore to determine it, we must have another independent expression for the value of n; and in order to this, let the elasticities E and e become E' and e' respectively; while the corresponding temperatures T and t assume the values T' and t'; then by a similar process to the above, we get  $\frac{(T'-\delta)^n}{E'} = \frac{(t'-\delta)}{e'}$ , and

 $n = \frac{\log. e' - \log. E'}{\log. (t' - \delta) - \log. (T' - \delta)} \dots (B).$ 

Let the equations (Å) and (B) be compared with each other, and we shall then have an expression involving only the unknown quantity  $\delta$ , for it must be understood that the several temperatures with their corresponding elasticities are to be deduced from experiment; and in consequence, the law that we derive from them must be strictly empirical; thus we have

$$\frac{\log \cdot e - \log \cdot \mathbf{E}}{\log \cdot (t - \delta) - \log \cdot (\mathbf{T} - \delta)} = \frac{\log \cdot e' - \log \cdot \mathbf{E}}{\log \cdot (t' - \delta) - \log \cdot (\mathbf{T}' - \delta)} \cdot \cdot (\mathbf{C}).$$

We have no direct method of reducing expressions of this sort, and the usual process is therefore by approximation, or by the rule of trial and error, and it is in this way that the value of the quantity  $\delta$  must be found; and for the purpose of performing the reduction, we shall select experiments performed with great care, and may consequently be considered as representing the law of elasticity with very great nicety.

Т	=	212·0	Fahrenheit	E	=	29.8	inches	of	mercury.	
t	=	250.3		e	-	59.6				
T'	-	293.4		$\mathbf{E'}$	-	119.2				
t'		343.6		e'		238.4				

# THE PRACTICAL MODEL CALCULATOR.

Therefore, by substituting these numbers in equation (C), and making a few trials, we find that  $\delta = -50^{\circ}$ , and substituting this in either of the equations (A) or (B), we get n = 5.08; and finally, by substituting these values of  $\delta$  and n in either of the expressions for the constant quantity c, we get c = 64674730000, the 5.08 root of which is 134.27 very nearly; hence we have

$$\mathbf{F} = \left\{ \frac{t+50}{134 \cdot 27} \right\}^{5 \cdot 68} \dots \dots (\mathbf{D}).$$

Where the symbol F denotes generally the elastic force of the steam in inches of mercury, and t the corresponding temperature in degrees of Fahrenheit's thermometer, the logarithm of the denominator of the fraction is  $2\cdot1279717$ , which may be used as a constant in calculating the elastic force corresponding to any given temperature. We have thus discovered a rule of a very simple form; it errs in defect; but this might have been remedied by assuming two points near one extremity of the range of experiment, and two points near the other extremity; and by substituting the observed numbers in equation (C), different constants and a more correct exponent would accordingly have been obtained. Mr. Southern has, by pursuing a method somewhat analogous to that which is here described, found his experiments to be very nearly represented by

$$\mathbf{F} = \left\{ \frac{t + 51 \cdot 3}{135 \cdot 767} \right\}^{5 \cdot 13}$$

But even here the formula errs in defect, for he has found it necessary to correct it by adding the arbitrary decimal 0.1; and thus modified, it becomes

$$\mathbf{F} = \left\{ \frac{t + 51.3}{135 \cdot 767} \right\}^{5 \cdot 13} + 0 \cdot 1. \quad . \quad . \quad . \quad (\mathbf{E}).$$

Our own formula may also be corrected by the application of some arbitrary constant of greater magnitude; but as our motive for tracing the steps of investigation in the foregoing case was to exdmplify the method of determining the law of elasticity, our end is answered; for we consider it a very unsatisfactory thing merely to be put in possession of a formula purporting to be applicable to some particular purpose, without at the same time being put in possession of the method by which that formula was obtained, and the principles on which it rests. Having thus exhibited the principles and the method of reduction, the reader will have greater confidence as regards the consistency of the processes that he may be called upon to perform. The operation implied by equation (E) may be expressed in words as follows:—

RULE.—To the given temperature in degrees of Fahrenheit's thermometer add 51.3 degrees and divide the sum by 135.767; to the 5.13 power of the quotient add the constant fraction  $\frac{1}{10}$ , and the sum will be the elastic force in inches of mercury.

### THE STEAM ENGINE.

193

The process here described is that which is performed by the rules of common arithmetic; but since the index is affected by a fraction, it is difficult to perform in that way: we must therefore have recourse to logarithms as the only means of avoiding the difficulty. The rule adapted to these numbers is as follows:—

RULE FOR LOGARITHMS.—To the given temperature in degrees of Fahrenheit's thermometer add  $51\cdot3$  degrees; then, from the logarithm of the sum subtract  $2\cdot1327940$  or the logarithm of  $135\cdot767$ , the denominator of the fraction; multiply the remainder by the index  $5\cdot13$ , and to the natural number answering to the sum add the constant fraction  $\frac{1}{10}$ ; the sum will be the elastic force in inches of mercury.

If the temperature of steam be 250.3 degrees as indicated by Fahrenheit's thermometer, what is the corresponding elastic force in inches of mercury?

By the rule it is 250.3 + 51.3 = 301.6 log. 2.4794313constant den. = 135.767 log. 2.1327940 subtract

remainder = 0.3466373

31.5 inverted

 $\begin{array}{r} 17331865 \\ 346637 \\ 103991 \end{array}$ 

# natural number 60.013 log. 1.7782493

If this be increased by  $\frac{1}{10}$ , we get 60.113 inches of mercury for the elastic force of steam at 250.3 degrees of Fahrenheit.

By simply reversing the process or transposing equation (E), the temperature corresponding to any given elastic force can easily be found; the transformed expression is as follows, viz.:

$$t = 135.767 (F - 0.1)^{\frac{1}{5.13}} - 51.3 \dots (F).$$

Since, in consequence of the complicated index, the process of calculation cannot easily be performed by common arithmetic, it is needless to give a rule for reducing the equation in that way; we shall therefore at once give the rule for performing the process by logarithms.

RULE.—From the given elastic force in inches of mercury, subtract the constant fraction 0.1; divide the logarithm of the remainder by 5.13, and to the quotient add the logarithm 2.1327940; find the natural number answering to the sum of the logarithms, and from the number thus found subtract the constant 51.3, and the remainder will be the temperature sought.

Supposing the elastic force of steam or the vapour of water to be equivalent to the weight of a vertical column of mercury, the height of which is 238.4 inches; what is the corresponding temperature in degrees of Fahrenheit's thermometer?

Here, by proceeding as directed in the rule, we have 238.4 - 0.1 =

R

238.3, and dividing the logarithm of this remainder by the constant exponent 5.13, we get

required temperature =  $343 \cdot 31$  degrees of Fahrenheit's thermometer.

The temperature by observation is 343.6 degrees, giving a difference of only 0.29 of a degree in defect. For low temperature or low pressure steam, that is, steam not exceeding the simple pressure of the atmosphere, M. Pambour gives

$$p = 0.04948 + \left(\frac{t+51.3}{155.7256}\right)^{513}$$
. . . (G).

In which equation the symbol p denotes the pressure in pounds avoirdupois per square inch, and t the temperature in degrees of Fahrenheit's thermometer. When this expression is reduced in reference to temperature, it is

$$t = 155.7256 (p - 0.04948)^{\frac{1}{513}} - 51.3$$
 . . . (H).

The formula of Tredgold is well known. The equation, in its original form, is

$$177 f^{\hat{6}} = t + 100 \dots (I):$$

where f denotes the elastic force of steam in inches of mercury, and t the temperature in degrees of Fahrenheit's thermometer. The same formula, as modified and corrected by M. Millet, becomes

$$179 \cdot 0773 f^{\overline{6}} = t + 103 \dots (K).$$

Dr. Young of Dublin constructed a formula which was adapted to the experiments of his countryman Dr. Dalton: it assumed a form sufficiently simple and elegant; it is thus expressed—

$$f = (1 + 0.0029 t)^7 \dots \dots (L):$$

where the symbol f denotes the elastic force of steam expressed in atmospheres of 30 inches of mercury, and t the temperature in degrees estimated above 212 of Fahrenheit. This formula is not applicable in practice, especially in high temperatures, as it deviates very widely and rapidly from the results of observation: it is chiefly remarkable as being made the basis of a numerous class of theorems somewhat varied, but of a more correct and satisfactory character. The Commission of the French Academy represented their experiments by means of a formula constructed on the same principles: it is thus expressed—

 $f = (1 + 0.7153 t)^5 \dots (M)$ :

where f denotes the elastic force of the steam expressed in atmospheres of 0.76 metres or 29.922 inches of mercury, and t the tem-

# THE STEAM ENGINE.

perature estimated above 100 degrees of the centigrade thermometer; but when the same formula is so transformed as to be expressed in the usual terms adopted in practice, it is

$$p = (0.2679 + 0.0067585 t)^{5} \dots (N)$$
:

where p is the pressure in pounds per square inch, and t the temperature in degrees of Fahrenheit's scale, estimated above 212 or simple atmospheric pressure.

The committee of the Franklin Institute adopted the exponent  $\delta$ , and found it necessary to change the constant 0.0029 into 0.00333; thus modified, they represented their experiments by the equation

$$p = (0.460467 + 0.00521478 t)^6 \dots \dots \dots (0).$$

By combining Dr. Dalton's experiments with the mean between those of the French Academy and the Franklin Institute, we obtain the following equations, the one being applicable for temperatures below 212 degrees, and the other for temperatures above that point as far as 50 atmospheres. Thus, for low pressure steam, that is, for steam of less temperature than 212, it is

$$f = \left(\frac{t+175}{387}\right)^{771307}$$
... (P):

and for steam above the temperature of 212, it is

 $f = \left(\frac{t+121}{333}\right)^{6\cdot 42}$ . . . . (Q).

In consequence therefore of the high and imposing authority from which these formulas are deduced, we shall adopt them in all our subsequent calculations relative to the steam engine; and in order to render their application easy and familiar, we shall translate them into rules in words at length, and illustrate them by the resolution of appropriate numerical examples; and for the sake of a systematic arrangement, we think proper to branch the subject into a series of problems, as follows:

The temperature of steam being given in degrees of Fahrenheit's thermometer, to find the corresponding elastic force in inches of mercury.—The problem, as here propounded, is resolved by one or other of the last two equations, and the process indicated by the arrangement is thus expressed :—

RULE.—To the given temperature expressed in degrees of Fahrenheit's thermometer, add the constant temperature 175; find the logarithm answering to the sum, from which subtract the constant 2.587711; multiply the remainder by the index 7.71307, and the product will be the logarithm of the elastic force in atmospheres of 30 inches of mercury when the given temperature is less than 212 degrees. But when the temperature is greater than 212, increase it by 121; then, from the logarithm of the temperature thus increased, subtract the constant logarithm 2.522444, multiply the remainder by the exponent 6.42, and the product will be the logarithm of the elastic force in atmospheres of 30 inches of mercury; which being multiplied by 30 will give the force in inches, or if multiplied by 14.76 the result will be expressed in pounds avoirdupois per square inch.

When steam is generated under a temperature of 187 degrees of Fahrenheit's thermometer, what is its corresponding elastic force in atmospheres of 30 inches of mercury?

In this example, the given temperature is less than 212 degrees: it will therefore be resolved by the first clause of the preceding rule, in which the additive constant is 175; hence we get

 $187 + 175 = 362...\log. 2.558709$ Constant divisor = 387...log. 2.587711 subtract

 $9.970998 \times 7.71307 = 9.773393$ 

And the corresponding natural number is 0.5934 atmospheres, or 17.802 inches of mercury, the elastic force required, or if expressed in pounds per square inch, it is  $0.5934 \times 14.76 = 8.76$  lbs. very nearly. If the temperature be 250 degrees of Fahrenheit, the process is as follows:

 $250 + 121 = 371...\log 2.569374$ Constant divisor =  $333...\log 2.522444$  subtract

 $0.046930 \times 6.42 = 0.301291$ 

And the corresponding natural number is 2.0012 atmospheres, or 60.036 inches of mercury, and in pounds per square inch it is  $2.0012 \times 14.76 = 29.54$  lbs. very nearly.

It is sometimes convenient to express the results in inches of mercury, without a previous determination in atmospheres, and for this purpose the rule is simply as follows:

RULE.—Multiply the given temperature in degrees of Fahrenheit's thermometer by the constant coefficient 1.5542, and to the product add the constant number 271.985; then from the logarithm of the sum subtract the constant logarithm 2.587711, and multiply the remainder by the exponent 7.71307; the natural number answering to the product, considered as a logarithm, will give the elastic force in inches of mercury. This answers to the case when the temperature is less than 212 degrees; but when it is above that point proceed as follows:

Multiply the given temperature in degrees of Fahrenheit's thermometer by the constant coefficient 1.69856, and to the product add the constant number 205.526; then from the logarithm of the sum subtract the constant logarithm 2.522444, and multiply the remainder by the exponent 6.42; the natural number answering to the product considered as a logarithm, will give the elastic force in inches of mercury. Take, for example, the temperatures as assumed above, and the process, according to the rule, is as follows:

 $187 \times 1.5542 = 290.6354$ Constant = 271.985 add

> Sum =  $562.6204...\log_{2.750216}$ Constant =  $387...\log_{2.587711}$  subtract

# $0.162505 \times 7.71307 = 1.253408$

And the natural number answering to this logarithm is 17.923 inches of mercury. By the preceding calculation the result is 17.802; the slight difference arises from the introduction of the decimal constants, which in consequence of not terminating at the proper place are taken to the nearest unit in the last figure, but the process is equally true notwithstanding. For the higher temperature, we get  $250 \times 1.60856 = 424.640$ 

 $250 \times 1.69856 = 424.640$ 

Constant = 205.526 add

 $Sum = \overline{630.166}.....\log 2.799456$ Constant = 333.....log. 2.522444 subtract

 $0.277011 \times 6.42 = 1.778410$ 

And the natural number answering to this logarithm is 60.036 inches of mercury, agreeing exactly with the result obtained as above.

It is moreover sometimes convenient to express the force of the steam in pounds per square inch, without a previous determination in atmospheres or inches of mercury; and when the equations are modified for that purpose, they supply us with the following process, viz.:

Multiply the given temperature by the constant coefficient 1.41666, and to the product add the constant number 247.9155; then, from the logarithm of the sum subtract the constant logarithm 2.587711, and multiply the remainder by the index 7.71307; the natural number answering to the product will give the pressure in pounds per square inch, when the temperature is less than 212 degrees; but for all greater temperatures the process is as follows:

Multiply the given temperature by the constant coefficient 1.5209, and to the product add the constant number 184.0289; then, from the logarithm of the sum subtract the constant logarithm 2.522444, and multiply the remainder by the exponent 6.42; the natural or common number answering to the product, will express the force of the steam in pounds per square inch. If any of these results be multiplied by the decimal 0.7854, the product will be the corresponding pressure in pounds per circular inch. Taking, therefore, the temperatures previously employed, the operation is as follows:

 $187 \times 1.41666 = 264.9155$ Constant = 247.9155 add

> Sum =  $512.8310.\log. 2.709974$ Constant =  $387.....\log. 2.587711$  subtract

> > $0.122263 \times 7.71307 = 0.942656$

R 2

And the number answering to this logarithm is 8.763 lbs. per square inch, and  $8.763 \times 0.7854 = 6.8824$  lbs. per circular inch, the proportion in the two cases being as 1 to 0.7554. Again, for the higher temperature, it is

$$50 \times 1.5209 = 380.2250$$
  
Constant = 184.0289 add  
Sum = 564.2539.....log. 2.751475  
Constant = 333.....log. 2.522444 subtraction

# $0.229031 \times 6.42 = 1.470279$

And the number answering to this logarithm is 29.568 lbs. per square inch, or  $29568 \times 0.7854 = 23.2226$  lbs. per circular inch.

We have now to reverse the process, and determine the temperature corresponding to any given power of the steam, and for this purpose we must so transpose the formulas (P) and (Q), as to express the temperature in terms of the elastic force, combined with given constant numbers; but as it is probable that many of our readers would prefer to see the theorems from which the rules are deduced, we here subjoin them.

For the lower temperature, or that which does not exceed the temperature of boiling water, we get

 $t = 249 f^{\frac{1}{7.71307}} - 175 \dots (R).$ 

Where t denotes the temperature in degrees of Fahrenheit's thermometer, and f the elastic force in inches of mercury, less than 30 inches, or one atmosphere; but when the elastic force is greater than one atmosphere, the formula for the corresponding temperature is as follows:

 $t = 196f^{\frac{1}{642}} - 121 \dots$  (S).

In the construction of these formulas, we have, for the sake of simplicity, omitted the fractions that obtain in the coefficient of f; for since they are very small, the omission will not produce an error of any consequence; indeed, no error will arise on this account, as we retain the correct logarithms, a circumstance that enables the computer to ascertain the true value of the coefficients whenever it is necessary so to do; but in all cases of actual practice, the results derived from the integral coefficients will be quite sufficient. The rule supplied by the equations (R) and (S) is thus expressed:

When the elastic force is less than the pressure of the atmosphere, that is, less than 30 inches of the mercurial column,—

Rule.—Divide the logarithm of the given elastic force in inches of mercury, by the constant index 7.71307, and to the quotient add the constant logarithm 2.396204; then from the common or natural number answering to the sum, subtract the constant temperature 175 degrees, and the remainder will be the temperature sought in degrees of Fahrenheit's thermometer. But when the elastic force exceeds 30 inches, or one atmosphere, the following rule applies:

Divide the logarithm of the given elastic force in inches of mercury by the constant index 6.42, and to the quotient add the constant logarithm 2.292363: then, from the natural number answering to the sum subtract the constant temperature 121 degrees, and the remainder will be the temperature sought. Similar rules might be constructed for determining the temperature, when the pressure in pounds per square inch is given; but since this is a less useful case of the problem, we have thought proper to omit it. We therefore proceed to exemplify the above rules, and for this purpose we shall suppose the pressure in the two cases to be equivalent to the weight of 19 and 60 inches of mercury respectively. The operations will therefore be as follows:

Log.  $19 \div 7.71307 = 1.278754 \div 7.71307 = 0.165791$ Constant coefficient = 249.....log. 2.396204 add Natural number = 364.75....log. 2.561994

Natural number = 364.75.....log. 2.561994 Constant temperature = 175 subtract Required temperature = 189.75 degrees of Fahrenheit's scale. For the higher elastic force the operation is as follows :

Log.  $60 \div 6.42 = 1.778151 \div 6.42 = 0.276969$ Constant coefficient = 196 .....log. 2.292363 add Natural number = 370.97....log. 2.569332 Constant temperature = 121 subtract

Required temperature = 249.97 degrees of Fahrenheit's scale.

All the preceding results, as computed by our rules, agree as nearly with observation as can be desired : but they have all been obtained on the supposition that the steam is in contact with the liquid from which it is generated; and in this case it is evident that the steam must always attain an elastic force corresponding to the temperature; and in accordance to any increase of pressure, supposing the temperature to remain the same, a quantity of it . corresponding to the degree of compression must simply be condensed into water, and in consequence will leave the diminished space occupied by steam of the original degree of tension; or otherwise to express it, if the temperature and pressure invariably correspond with each other, it is impossible to increase the density and elasticity of the steam except by increasing the temperature at the same time; and, contrariwise, the temperature cannot be increased without at the same time increasing the elasticity and density. This being admitted, it is obvious that under these circumstances the steam must always maintain its maximum of pressure and density : but if it be separated from the liquid that produces it, and if its temperature in this case be increased, it will be found not to possess a higher degree of elasticity than a volume of atmospheric air similarly confined, and heated to the same temperature. Under this new condition, the state of maximum density and elasticity ceases; for it is obvious that since no water is present, there cannot be any

more steam generated by an increase of temperature; and consequently the force of the steam is only that which confines it to its original bulk, and is measured by the effort which it exerts to expand itself. Our next object, therefore, is to inquire what is the law of elasticity of steam under the conditions that we have here specified.

The specific gravity of steam, its density, and the volume which it occupies at different temperatures, have been determined by experiment with very great precision; and it has also been ascertained that the expansion of vapour by means of heat is regulated by the same laws as the expansion of the other gases, viz. that all gases expand from unity to 1.375 in bulk by 180 degrees of temperature; and again, that steam obeys the law discovered by Boyle and Mariotte, contracting in volume in proportion to the degree of pressure which it sustains. We have therefore to inquire what space a given quantity of water converted into steam will occupy at a given pressure; and from thence we can ascertain the specific gravity, density, and volume at all other pressures.

When a gas or vapour is submitted to a constant pressure, the quantity which it expands by a given rise of temperature is calculated by the following theorem,

$$v' = v \left( \frac{t' + 459}{t + 459} \right)$$
....(T)

where t and t' are the temperatures, and v, v' the corresponding volumes before and after expansion; hence this rule.

RULE.—To each of the temperatures before and after expansion, add the constant experimental number 459; divide the greater sum by the lesser, and multiply the quotient by the volume at the lower temperature, and the product will give the expanded volume.

If the volume of steam at the temperature of 212 degrees of Fahrenheit be 1711 times the bulk of the water that produces it, what will be its volume at the temperature of 250.3 degrees, supposing the pressure to be the same in both cases?

Here, by the rule, we have 212 + 459 = 671, and  $250\cdot3 + 459 = 709\cdot3$ ; consequently, by dividing the greater by the lesser, and multiplying by the given volume, we get  $\frac{709\cdot3}{671} \times 1711 = 1808\cdot66$ 

for the volume at the temperature of 250.3 degrees.

Again, if the elastic force at the lower temperature and the corresponding volume be given, the elastic force at the higher temperature can readily be found; for it is simply as the volume the vapour occupies at the lower temperature is to the volume at the higher temperature, or what it would become by expansion, so is the elastic force given to that required.

If the volume which steam occupies under any given pressure and temperature be given, the volume which it will occupy under any proposed pressure can readily be found by reversing the preceding process, or by referring to chemical tables containing the

# THE STEAM ENGINE.

specific gravity of the gases compared with air as unity at the same pressure and temperature. Now, air at the mean state of the atmosphere has a specific gravity of 12 as compared with water at 1000; and the bulks are inversely as the specific gravities, according to the general laws of the properties of matter previously announced; hence it follows that air is 818 times the bulk of an equal weight of water, for  $1000 \div 1_{\frac{2}{9}} = 818.18$ . But, by the experiments of Dr. Dalton, it has been found that steam of the same pressure and temperature has a specific gravity of .625 compared with air as unity; consequently, we have only to divide the number 818.18 by .625, and the quotient will give the proportion of volume of the vapour to one of the liquid from which it is generated; thus we get  $818 \cdot 18 \div \cdot 625 = 1309$ ; that is, the volume of steam at 60 degrees of Fahrenheit, its force being 30 inches of mercury, is 1309 times the volume of an equal weight of water; hence it follows, from equation (T), that when the temperature increases to t', the volume becomes

$$v' = 1309 \times \left(\frac{459 + t'}{459 + 60}\right) = 2.524(459 + t');$$

and from this expression, the volume corresponding to any specified elastic force f, and temperature t', may easily be found; for it is inversely as the compressing force: that is,

f: 30:: 2.525(459 + t'): v';consequently, by working out the analogy, we get

 $v = \frac{75 \cdot 67(459 + t')}{f} \dots (U).$ 

By this theorem is found the volume of steam as compared with that of the water producing it, when under a pressure corresponding to the temperature. The rule in words is as follows:

RULE.—Calculate the elastic force in inches of mercury by the rule already given for that purpose, and reserve it for a divisor. To the given temperature add the constant number 459, and multiply the sum by 75.67; then divide the product by the reserved divisor, and the quotient will give the volume sought.

When the temperature of steam is 250.3 degrees of Fahrenheit's thermometer, what is the volume, compared with that of water?

The temperature being greater than 212 degrees, the force is calculated by the rule to equation (Q), and the process is as follows:  $250\cdot3 + 121 = 371\cdot3 \log \cdot 2\cdot5697249$ 

 $250.3 + 121 = 371.3 \log 2.5697249$ Constant divisor = 333 log. 2.5224442 subtract

 $0.0472807 \times 6.42 = 0.3035421$ 

Atmosphere = 30 inches of mercury log. 1.4771213 add Elastic force = 60.348 log.  $\overline{1.7806634}$ Again it is, 450.4850.2 500.24 as 5002000 by 5002000 by 500000

 $\frac{459 + 250 \cdot 3 = 709 \cdot 3 \log 2 \cdot 8508300}{\text{Constant coefficient} = 75 \cdot 67 \log 1 \cdot 8789237} \text{add } 4.7297537}$ 

Volume = 889.39 times that of water, log.  $\overline{2.9490903}$  remainder.

Thus we have given the method of calculating the elastic force of steam when the temperature is given either in atmospheres or inches of mercury, and also in pounds or the square or circular inch: we have also reversed the process, and determined the temperature corresponding to any given elastic force. We have, moreover, shown how to find the volume corresponding to different temperatures, when the pressure is constant; and, finally, we have calculated the volume, when under a pressure due to the elastic force. These are the chief subjects of calculation as regards the properties of steam; and we earnestly advise our readers to render themselves familiar with the several operations. The calculations as regards the motion of steam in the parts of an engine to produce power, will be considered in another part of the present treatise.

The equation (U), we may add, can be exhibited in a different form involving only the temperature and known quantities; for since the expressions (P) and (Q) represent the elastic force in terms of the temperature, according as it is under or above 212 degrees of Fahrenheit, we have only to substitute those values of the elastic force when reduced to inches of mercury, instead of the symbol fin equation (U), and we obtain, when the temperature is less than 212 degrees,

 $Vol. = 75.67(tem. + 459) \div (.004016 \times tem. + .702807)^{7.71307}$ . (V).

and when the temperature exceeds 212 degrees, the expression becomes

# $Vol. = 75.67(tem. + 459) \div .005101 \times tem. + .617195)^{6.42}$ . (W.)

These expressions are simple in their form, and easily reduced; but, in pursuance of the plan we have adopted, it becomes necessary to express the manner of their reduction in words at length, as follows:

RULE.—When the given temperature is under 212 degrees, multiply the temperature in degrees of Fahrenheit's thermometer by the constant fraction  $\cdot 004016$ , and to the product add the constant increment  $\cdot 702807$ ; multiply the logarithm of the sum by the index  $7 \cdot 71307$ , and find the natural or common number answering to the product, which reserve for a divisor. To the temperature add the constant number 459, and multiply the sum by the coefficient  $75 \cdot 67$  for a dividend; divide the latter result by the former, and the quotient will express the volume of steam when that of water is unity.

Again, when the given temperature is greater than 212 degrees, multiply it by the fraction  $\cdot 005101$ , and to the product add the constant increment  $\cdot 617195$ ; multiply the logarithm of the sum by the index 6.42, and reserve the natural number answering to the product for a divisor; find the dividend as directed above, which, being divided by the divisor, will give the volume of steam when that of the water is unity.

How many cubic feet of steam will be supplied by one cubic foot

# THE STEAM ENGINE.

of water, under the respective temperatures of 187 and 293.4 degrees of Fahrenheit's thermometer?

Here, by the rule, we have

 $187 \times 0.004016 = 0.750992$ Constant increment = 0.702807

# $Sum = 1.453799 \log \cdot 1625043 \times 7.71307 = 1.2534069$

and the number answering to this logarithm is 17.92284, the divisor. But 187 + 459 = 646, and  $646 \times 75.67 = 48882.82$ , the dividend; hence, by division, we get  $48882.82 \div 17.92284 = 2727.4$  cubic feet of steam from one cubic foot of water.

Again, for the higher temperature, it is

 $293.4 \times 0.005101 = 1.496633$ Constant increment = 0.617195

 $Sum = 2.113828 \log 0.3250696 \times 642 = 2.0869468;$ 

and the number answering to this logarithm is  $122 \cdot 165$ , the divisor. But  $293 \cdot 4 + 459 = 752 \cdot 4$ , and  $752 \cdot 4 \times 75 \cdot 67 = 56934 \cdot 108$ , the dividend; therefore, by division, we get  $56934 \cdot 108 \div 122 \cdot 165 = 466 \cdot 04$  cubic feet of steam from one cubic foot of water.

The preceding is a very simple process for calculating the volume which the steam of a cubic foot of water will occupy when under a pressure due to a given temperature and elastic force; and since a knowledge of this particular is of the utmost importance in calculations connected with the steam engine, it is presumed that our readers will find it to their advantage to render themselves familiar with the method of obtaining it. The above example includes both cases of the problem, a circumstance which gives to the operation, considered as a whole, a somewhat formidable appearance: but it would be difficult to conceive a case in actual practice where the application of both the formulas will be required at one and the same time; the entire process must therefore be considered as embracing only one of the cases above exemplified; and consequently it can be performed with the greatest facility by every person who is acquainted with the use of logarithms; and those unacquainted with the application of logarithms ought to make themselves masters of that very simple mode of computation.

Another thing which it is necessary sometimes to discover in reasoning on the properties of steam as referred to its action in a steam engine, is the weight of a cubic foot, or any other quantity of it, expressed in grains, corresponding to a given temperature and pressure. Now, it has been ascertained by experiment, that when the temperature of steam is 60 degrees of Fahrenheit, and the pressure equal to 30 inches of mercury, the weight of a cubic foot in grains is 329.4; but the weight is directly proportional to the elastic force, for the elastic force is proportional to the density: consequently, if f denote any other elastic force, and w the weight in grains corresponding thereto, then we have

30: f:: 329.4: w = 10.98 f,

# THE PRACTICAL MODEL CALCULATOR.

the weight of a cubic foot of vapour at the force f, and temperature 60 degrees of Fahrenheit. Let t denote the temperature at the force f; then by equation (T), we have  $v = \frac{459 + t}{459 + 60} = \frac{459 + t}{519}$ , the volume at the temperature t, supposing the volume at 60 degrees to be unity; that is, one cubic foot. Now, since the densities are inversely proportional to the spaces which the vapour occupies, we have  $\frac{(459 + t)}{519} : 1 :: w : w' = \frac{519w}{459 + t}$ ; but by the preceding analogy, the value of w is 10.98f; therefore, by substitution, we get

$$w' = \frac{5698 \cdot 62f}{459 + t} \quad . \quad . \quad . \quad (X).$$

This equation expresses the weight in grains of a cubic foot of steam at the temperature t and force f; and if we substitute the value of f, from equations (P) and (Q), reduced to inches of mercury, and modified for the two cases of temperature below and above 212 degrees of Fahrenheit, we shall obtain, in the first case,  $w' = (0.012324 \times \text{temp.} + 2.155611)^{7.1307} \div (\text{temp.} + 459)...(Y)$  and for the second case, where the temperature exceeds 212, it is  $w' = (0.01962 \times \text{temp.} + 2.37374)^{6.42} \div (\text{temp.} + 459)...(Z)$ 

These two equations, like those marked (V) and (W) are sufficiently simple in their form, and offer but little difficulty in their application. The rule for their reduction when expressed in words at length, is as follows:

RULE.—When the temperature is less than 212 degrees, multiply the given temperature, in degrees of Fahrenheit's thermometer, by the fraction 0.012324, and to the product add the constant increment 2.155611; then multiply the logarithm of the sum by the index 7.71307, and from the product subtract the logarithm of the temperature, increased by 459; the natural number answering to the remainder will be the weight of a cubic foot in grains.

Again, when the temperature exceeds 212, multiply it by the fraction 0.01962, and to the product add the constant increment  $2\cdot37374$ ; then multiply the logarithm of the sum by the index  $6\cdot42$ , and from the product subtract the logarithm of the temperature increased by 459; the natural number answering to the remainder will be the weight of a cubic foot in grains.

Supposing the temperatures to be as in the preceding example, what will be the weight of a cubic foot in grains for the two cases?

Here, by the rule, we have

 $187 \times 0.012324 = 2.304588$ Constant increment = 2.155611

 $\begin{array}{c} \text{Sum} = 4.460199 \quad \text{log. } 0.6493542 \times 7.71807 = 5.0085143 \\ 187 + 459 = 646 \quad . \quad . \quad \text{log. } 2.8102325, \text{ subtract} \\ \text{Natural number} = 157.863 \text{ grains per cubic foot} \quad \text{log. } 2.1982818 \end{array}$ 

For the higher temperature, it is  $293.4 \times 0.01962 = 5.756508$ Constant increment = 2.373740

Natural number = 925.59 grains per cubic foot . log. 2.9664176

Here again the operation resolves both cases of the problem; but in practice only one of them can be required.

# THE MOTION OF ELASTIC FLUIDS.

The next subject that claims our attention is the velocity with which elastic fluids or vapours move in pipes or confined passages. It is a well-known fact in the doctrine of pneumatics, that the motion of free elastic fluids depends upon the temperature and pressure of the atmosphere; and, consequently, when an elastic fluid is confined in a close vessel, it must be similarly circumstanced with regard to temperature and pressure as it would be in an atmosphere competent to exert the same pressure upon it. The simplest and most convenient way of estimating the motion of an elastic fluid is to assign the height of a column of uniform density, capable of producing the same pressure as that which the fluid sustains in its state of confinement; for under the pressure of such a column, the velocity into a perfect vacuum will be the same as that acquired by a heavy body in falling through the height of the homogeneous column, a proper allowance being made for the contraction at the aperture or orifice through which the fluid flows.

When a passage is opened between two vessels containing fluids of different densities, the fluid of greatest density rushes out of the vessel that contains it, into the one containing the rarer fluid, and the velocity of influx at the first instant of the motion is equal to that which a heavy body acquires in falling through a certain height, and that height is equal to the difference of two uniform columns of the fluid of greatest density, competent to produce the pressures under which the fluids are originally confined ; and the velocity of motion at any other instant is proportional to the square root of the difference between the heights of the uniform columns producing the pressures at that instant. Hence we infer that the velocity of motion continually decreases,—the density of the fluids in the two vessels approaching nearer and nearer to an equality, and after a certain time an equilibrium obtains, and the velocity of motion ceases.

It is abundantly confirmed by observation and experiment, that oblique action produces very nearly the same effect in the motion of elastic fluids through apertures as it does in the case of water; and it has moreover been ascertained that eddies take place under similar circumstances, and these eddies must of course have a tendency to retard the motion: it therefore becomes necessary, in all the calculations of practice, to make some allowance for the retardation that takes place in passing the orifice; and this end is most

 $\mathbf{s}$ 

conveniently answered by modifying the constant coefficient according to the nature of the aperture through which the motion is made. Numerous experiments have been made to ascertain the effect of contraction in orifices of different forms and under different conditions, and amongst those which have proved the most successful in this respect, we may mention the experiments of Du Buat and Eytelwein, the latter of whom has supplied us with a series of coefficients, which, although not exclusively applicable to the case of the steam engine, yet, on account of their extensive utility, we take the liberty to transcribe. They are as follow:—

1.	For the velocity of motion that would re-
	sult from the direct unretarded action of
	the column of the fluid that produces it, we
	have $3 V = \sqrt{579h}$
9	For an orifice or tube in the form of the
4.	contracted usin $10 \text{ V} - \frac{16084h}{6084h}$
0	The mide maximum having the sill on a)
э.	For wide openings having the sill on a
	level with the bottom of the reservoir
4.	For sluices with walls in a line with the $\geq 10 V = \sqrt{5929h}$
	orifice
5.	For bridges with pointed piers
6.	For narrow openings having the sill on a
	level with the bottom of the reservoir
7.	For small openings in a sluice with side
	walls
8.	For abrunt projections.
9	For bridges with square piers
10	For openings in sluiges without side walls $10 \text{ V} - \sqrt{2601h}$
	For openings in states without side waits $10^{\circ} - \sqrt{2001}$
	For openings or ornices in a thin plate $V = \sqrt{25h}$
12.	For a straight tube from 2 to 3 diameters
	in length projecting outwards10 V = $\sqrt{4225}$
13.	For a tube from 2 to 3 diameters in length
	projecting inwards10 V = $\sqrt{2976 \cdot 25h}$

It is necessary to observe, that in all these equations V is the velocity of motion in feet per second, and h the height of the column producing it, estimated also in feet. Nos. 1, 2, 11, 12, and 13 are those which more particularly apply to the usual passages for the steam in a steam engine; but since all the others meet their application in the every-day practice of the civil engineer, we have thought it useful to supply them.

### MOTION OF STEAM IN AN ENGINE.

We have already stated that the best method of estimating the motion of an elastic fluid, such as steam or the vapour of water, is to assign the height of a uniform column of that fluid capable of producing the pressure: the determination of this column is therefore the leading step of the inquiry; and since the elastic force of steam is usually reckoned in inches of mercury, 30 inches being

equal to the pressure of the atmosphere, the subject presents but little difficulty; for we have already seen that the height of a column of water of the temperature of 60 degrees, balancing a column of 30 inches of mercury, is 34.023 feet; the corresponding column of steam must therefore be as its relative bulk and elastic force; hence we have 30: 34.023: fv: h = 1.1341 fv, where f is the elastic force of the steam in inches of mercury, v the corresponding volume or bulk when that of water is unity, and h the height of a uniform column of the fluid capable of producing the pressure due to the elastic force; consequently, in the case of a direct unretarded action, the velocity into a perfect vacuum, according to No. 1 of the preceding class of formulas, is  $V = 8.542 \sqrt{f v}$ ; but for the best form of pipes, or a conical tube in form of the contracted vein, the velocity into a vacuum, according to No. 2, becomes V = 8.307  $\sqrt{fv}$ ; and for pipes of the usual construction, No. 12 gives  $V = 6.922 \sqrt{fv}$ ; No. 13 gives  $V = 5.804 \sqrt{fv}$ ; and in the case of a simple orifice in a thin plate, we get from No. 11 V = 5.322  $\sqrt{fv}$ . The consideration of all these equations may occasionally be required, but our researches will at present be limited to that arising from No. 12, as being the best adapted for general practice; and for the purpose of shortening the investigation, we shall take no further notice of the case in which the temperature of the steam is below 212 degrees of Fahrenheit; for the expression which indicates the velocity into a vacuum being independent of the elastic force, a separate consideration for the two cases is here unnecessary.

It has been shown in the equation marked (U), that the volume of steam which is generated from an unit of water, is  $v = \frac{75 \cdot 67 \text{ (temp. } + 459)}{c}$ ; let this value of v be substituted for it in

the equation  $V = 6.922 \sqrt{f v}$ , and we obtain for the velocity into a vacuum for the usual form of steam passages, as follows, viz. :

$$V = 60.2143 \sqrt{(\text{temp.} + 459)}$$
.

This is a very neat and simple expression, and the object determined by it is a very important one: it therefore merits the reader's utmost attention, especially if he is desirous of becoming familiar with the calculations in reference to the motion of steam. The rule which the equation supplies, when expressed in words at length, is as follows:—

RULE.—To the temperature of the steam, in degrees of Fahrenheit's thermometer, add the constant number or increment 459, and multiply the square root of the sum by 60.2143; the product will be the velocity with which the steam rushes into a vacuum in feet per second.

With what velocity will steam of 293.4 degrees of Fahrenheit's thermometer rush into a vacuum when under a pressure due to the elastic force corresponding to the given temperature.

By the rule it is  $293.4 + 459 = 752.4.....\frac{1}{2} \log 1.4382244$ Constant coefficient = 60.2143....log. 1.7797018 add Velocity into a vacuum in feet per second = 1651.68....log. 3.2179262

This is the velocity into a perfect vacuum, when the motion is made through a straight pipe of uniform diameter; but when the pipe is alternately enlarged and contracted, the velocity must necessarily be reduced in proportion to the nature of the contraction; and it is further manifest, that every bend and angle in a pipe will be attended with a correspondent diminution in the velocity of motion: it therefore behoves us, in the actual construction of steam passages, to avoid these causes of loss as much as possible; and where they cannot be avoided altogether, such forms should be adopted as will produce the smallest possible retarding effect. cases where the forms are limited by the situation and conditions of construction, such corrections should be applied as the circumstances of the case demand; and the amount of these corrections must be estimated according to the nature of the obstructions themselves. For each right-angled bend, the diminution of velocity is usually set down as being about one-tenth of its unobstructed value; but whether this conclusion be correct or not, it is at least certain that the obstruction in the case of a right-angled bend is much greater than in that of a gradually curved one. It is a very common thing, especially in steam vessels, for the main steam pipe to send off branches at right angles to each cylinder, and it is easy to see that a great diminution in the velocity of the steam must take In the expansion valve chest a further obstruction place here. must be met with, probably to the extent of reducing the velocity of the steam two-tenths of its whole amount.

These proportional corrections are not to be taken as the results of experiments that have been performed for the purpose of determining the effect of the above causes of retardation: we have no experiments of this sort on which reliance can be placed; and, in consequence, such elements can only be inferred from a comparison of the principles that regulate the motion of other fluids under similar circumstances: they will, however, greatly assist the engineer in arriving at an approximate estimate of the diminution that takes place in the velocity in passing any number of obstructions, when the precise nature of those obstructions can be ascertained. In the generality of practical cases, if the constant coefficient 60.2143 be reduced in the ratio of 650 to 450, the resulting constant 41.6868may be employed without introducing an error of any consequence.

OF THE ASCENT OF SMOKE AND HEATED AIR IN CHIMNEYS.

The subject of chimney flues, with the ascent of smoke and heated air, is another case of the motion of elastic fluids, in which, by a change of temperature, an atmospheric column assumes a different density from another, where no such alteration of temperature occurs. The proper construction of chimneys is a matter of very great importance to the practical engineer, for in a close fireplace,

designed for the generation of steam, there must be a considerable draught to accomplish the intended purpose, and this depends upon the three following particulars, viz. :

1. The height of the chimney from the throat to the top.

2. The area of the transverse section.

3. The temperature at which the smoke and heated air are allowed to enter it.

The formula for determining the power of the chimney may be investigated in the following manner:

- Put h = the height in feet from the place where the flue enters to the top of the chimney,
  - b = the number of cubic feet of air of atmospheric density that the chimney must discharge per hour,
  - a = the area of the aperture in square inches through which b cubic feet of air must pass when expanded by a change of temperature,
  - v = the velocity of ascent in feet per second,
  - t' = the temperature of the external air, and
  - t = the temperature of the air to be discharged by the chimney.

Now the force producing the motion in this case is manifestly the difference between the weight of a column of the atmospheric air and another of the air discharged by the chimney: and when the temperature of the atmospheric air is at 52 degrees of Fahrenheit's thermometer, this difference will be indicated by the term  $h\left(\frac{t'-t}{t'+459}\right)$ ; the velocity of ascent will therefore be  $v = \sqrt{64\frac{2}{5}} h\left\{\frac{t'-t}{t'+459}\right\}$  feet per second, and the quantity of air discharged per second will therefore be,  $a \sqrt{64\frac{2}{5}}\left\{\frac{t'-t}{t'+459}\right\}$ , supposing that there is no contraction in the stream of air; but it is found by experiment, that in all cases the contraction that takes place diminishes the quantity discharged, by about three-eighths of the whole; consequently, the quantity discharged per hour in cu-

bic feet becomes

$$b = 125.69 \ a \sqrt{\frac{h(t'-t)}{t'+459}}.$$

This would be the quantity discharged, provided there were no increase of volume in consequence of the change of temperature; but air expands from b to  $\frac{b(t'+459)}{t+459}$  for t'-t degrees of temperature, as has been shown elsewhere; consequently, by comparison, we have

$$\frac{b(t'+459)}{t+459} = 125.69 \ a \sqrt{\frac{h(t'-t)}{t+459}}.$$

From this equation, therefore, any one of the quantities which it involves can be found, when the others are given: it however supposes that there is no other cause of diminution but the contraction at the aperture; but this can seldom if ever be the case; for eddies, loss of heat, obstructions, and change of direction in the chimney, will diminish the velocity, and consequently a larger area will be required to suffer the heated air to pass. A sufficient allowance for these causes of retardation will be made, if we change the coefficient 125.69 to 100; and in this case the equation for the area of section becomes

$$a = b \sqrt{(t'+459)^3} \div 100 (t+459) \sqrt{h(t'-t)}.$$

And if we take the mean temperature of the air of the atmosphere at 52 degrees of Fahrenheit, and make an allowance of 16 degrees for the difference of density between atmospheric air and coal smoke, our equation will ultimately assume the form

$$a = b \sqrt{(t' + 459)^3} \div 51100 \sqrt{h(t' - t - 16)}.$$

It has been found by experiment that 200 cubic feet of air of atmospheric density are required for the complete combustion of one pound of coal, and the consumption of ten pounds of coal per hour is usually reckoned equivalent to one horse power: it therefore appears that 2000 cubic feet of air per hour must pass through the fire for each horse power of the engine. This is a large allowance, but it is the safest plan to calculate in excess in the first instance; for the chimney may afterwards be convenient, even if considerably larger than is necessary. The rule for reducing the equation is as follows:—

RULE.—Multiply the number of horse power of the engine by the  $\frac{s}{2}$  power of the temperature at which the air enters the chimney, increased by 459; then divide the product by 25.55 times the square root of the height of the chimney in feet, multiplied by the difference of temperature, less 16 degrees, and the quotient will be the area of the chimney in square inches.

Suppose the height of the chimney for a 40-horse engine to be 70 feet, what should be its area when the difference between the temperature at which the air enters the flue, and that of the atmosphere is 250 degrees?

Here, by the rule, we have,

 $250 + 52 = 302, \text{ the temperature at which the air enters} \\ \text{Constant increment} = 459 \qquad [the flue. \\ \text{Sum} = 761.....log. 2.8813847 \\ 3 \\ 2) \hline 8.6441541 \\ \hline 4.3220770 \\ \text{Number of horse power} = 40.....log. \frac{1.6020600}{5.9241370} \\ \hline \end{array}$ 

### THE STEAM ENGINE.

250 - 16 = 234 height = 70 feet	log. 2·3692159 log. 1·8450980	
	$2)\overline{4.2143139}$	}
Constant = $25.55$ .	$\left\{ \frac{2 \cdot 1071569}{1.4073909} \right\}$	3.5145478

Hence the area of the chimney in square inches is 256.79, log. 2.4095892; and in this way may the area be calculated for any other case; but particular care must be taken to have the data accurately determined before the calculation is begun. In the above example the particulars are merely assumed; but even that is sufficient to show the process of calculation, which is more immediately the object of the present inquiry. It is right, however, to add, that recent experiments have greatly shaken the doctrine that it is beneficial to make chimneys small at the top, though such is the way in which they are, nevertheless, still constructed, and our rules must have reference to the present practice. It appears, however, that it would be the best way to make chimneys expand as they ascend, after the manner of a trumpet, with its mouth turned downwards: but these experiments require further confirmation.

The method of calculation adopted above is founded on the principle of correcting the temperature for the difference between the specific gravity of atmospheric air and that of coal-smoke, the one being unity and the other 1.05; there is, however, another method, somewhat more elegant and legitimate, by employing the specific gravity of coal-smoke itself: the investigation is rather tedious and prolix, but the resulting formula is by no means difficult; and since both methods give the same result when properly calculated, we make no further apology for presenting our readers with another rule for obtaining the same object. The formula is as follows:

$$a = \frac{b(t'+459)}{2757\cdot 5} \sqrt{\frac{1}{h(t'-77\cdot 55)}}$$

where a is the area of the transverse section of the chimney in square inches, b the quantity of atmospheric air required for combustion of the coal in cubic feet per hour, h the height of the chimney in feet, and t' the temperature at which the air enters the flue after passing through the fire. The rule for performing this process is thus expressed:

RULE.—From the temperature at which the air enters the chimney, subtract the constant decrement 77.55; multiply the remainder by the height of the chimney in feet, divide unity by the product, and extract the square root of the quotient. To the temperature of the heated air, add the constant number 459; multiply the sum by the number of cubic feet required for combustion per hour, and divide the product by the number 2757.5; then multiply the quotient by the square root found as above, and the product will be the number of square inches in the transverse section of the chimney.

5.9241370)

Suppose a mass of fuel in a state of combustion to require 5000 cubic feet of air per hour, what must be the size of the chimney when its height is 100 feet, the temperature at which the heated air enters the chimney being 200 degrees of Fahrenheit's thermometer?

By the rule we have 200-77.55=122.45 . . log. 2.0879588 Height of the chimney=100. . . . log. 2.0000000

4.0879588

2)5.9120412

7.9560206

# $200+459=659 \dots \log 2\cdot 8188854 \\5000 \dots \log 3\cdot 6989700 \\2757\cdot 5 \text{ ar. co. log. } 6\cdot 5594845 \\ \end{array} \right\} \text{ add } 3\cdot 0773399 \\ \hline 1 \text{ opproved}$

1.0333605 10.798 in.

This appears to be a very small flue for the quantity of air that passes through it per hour; but it must be observed that we have assumed a great height for the shaft, which has the effect of creating a very powerful draught, thereby drawing off the heated air with great rapidity.

The advantage of a high flue is so very great, that the reader may be desirous of knowing to what height a chimney of a given base may be carried with safety, in cases where it is inconvenient to secure it with lateral stays; and, as an approximate rule for this purpose is not difficult of investigation, we think proper to supply it here.

When the chimney is equally wide throughout its whole height, the formula is

 $s = h \sqrt{\frac{156}{12000 - \frac{1}{3} h w}};$ 

but when the side of the base is double the size of the top, the equation becomes

 $s = h \sqrt{\frac{104}{12000 - 0.42 \ h \ w}};$ 

where s is the side of the base in feet,  $\hbar$  the height, and m the weight of one cubic foot of the material. When the chimney stalk is not square, but longer on the one side than the other, s must be the least dimension. The proportion of solid wall to a given base, as sanctioned by experience, is about two-thirds of its area, consequently w ought to be two-thirds of the weight of a cubic foot of brickwork. Now, a cubic foot of dried brickwork is, on an average, 114 lbs.; consequently w = 76 lbs.; and if this be substituted in the foregoing equations, we get for a chimney of equal size throughout,

$$h = h \sqrt{\frac{156}{1200 - 25 h}};$$

### THE STEAM ENGINE.

and when the chimney tapers to one-half the size at top, it is

$$s-h\sqrt{\frac{104}{12000-32 h}};$$

where it may be remarked that 12000 lbs. is the cohesive force of one square foot of mortar; and in the investigation of the formulas we have assumed the greatest force of the wind on a square foot of surface at 52 lbs. These equations are too simple in their form to require elucidation from us; we therefore leave the reduction as an exercise to the reader, who it is presumed will find no difficulty in resolving the several cases that may arise in the course of his practice.

 $v = \sqrt{\frac{2 g \operatorname{H} a t \operatorname{D}}{\operatorname{D} + 2 g \operatorname{K} (\operatorname{L} + \operatorname{H})}},$ 

is the expression given by M. Péclet for the velocity of smoke in a chimney. v, the velocity; t, the temperature, whose maximum value is about 300° centigrade;  $g = 32\frac{1}{6}$  feet; D, the diameter of the chimney; H, the height; L, the length of horizontal flues, supposing them formed into a cylinder of the same diameter as that of the chimney.  $K = \cdot 0127$  for brick,  $= \cdot 005$  for sheetiron, and  $= \cdot 0025$  for cast-iron chimneys.  $a = \cdot 00365$ .

Let L=60; H=150; D=5; K= $\cdot$ 005; 2g=64 $\frac{1}{3}$ ; t=300°;

$$a = 00365$$
. Then  $v = \sqrt{D + 2 g \text{ K(H+L)}} = 26.986$  feet.

A cubic foot of water raised into steam is reckoned equivalent to a horse power, and to generate the steam with sufficient rapidity, an allowance of one square foot of fire-bars, and one square yard of effective heating surface, are very commonly made in practice, at least in land engines. These proportions, however, greatly vary in different cases; and in some of the best marine engine boilers, where the area of fire-grate is restricted by the breadth of the vessel, and the impossibility of firing long furnaces effectually at sea, half a square foot of fire-grate per horse power is a very common proportion. Ten cubic feet of water in the boiler per horse power, and ten cubic feet of steam room per horse power, have been assigned as the average proportion of these elements; but the fact is, no general rule can be formed upon the subject, for the proportions which would be suitable for a wagon boiler would be inapplicable to a tubular boiler, whether marine or locomotive; and good examples will in such cases be found a safer guide than rules which must often give a false result. A capacity of three cubic feet per horse power is a common enough proportion of furnace-room, and it is a good plan to make the furnaces of a considerable width, as they can then be fired more effectually, and do not produce so much smoke as if they are made narrow. As regards the question of draft, there is a great difference of opinion among engineers upon the subject, some preferring a very slow draft and others a rapid one. It is obvious that the question of draft is virtually that of

the area of fire-grate, or of the quantity of fuel consumed upon a given area of grate surface, and the weight of fuel burned on a foot of fire-grate per hour varies in different cases in practice from 31 to 80 lbs. Upon the quickness of the draft again hinges the question of the proper thickness of the stratum of incandescent fuel upon the grate; for if the draft be very strong, and the fire at the same time be thin, a great deal of uncombined oxygen will escape up through the fire, and a needless refrigeration of the contents of the flues will be thereby occasioned; whereas, if the fire be thick, and the draft be sluggish, much of the useful effect of the coal will be lost by the formation of carbonic oxide. The length of the circuit made by the smoke varies in almost every boiler, and the same may be said of the area of the flue in its cross section, through which the smoke has to pass. As an average, about one-fifth of the area of fire-grate for the area of the flue behind the bridge. diminished to half that amount for the area of the chimney, has been given as a good proportion, but the examples which we have given, and the average flue area of the boilers which we shall describe, may be taken as a safer guide than any such loose statements. When the flue is too long, or its sectional area is insufficient, the draft becomes insufficient to furnish the requisite quantity of steam; whereas if the flue be too short or too large in its area, a large quantity of the heat escapes up the chimney, and a deposition of soot in the flues also takes place. This last fault is one of material consequence in the case of tubular boilers consuming bituminous coal, though indeed the evil might be remedied by blocking some of the tubes up. The area of water-level is about 5 feet per horse power in land boilers. In many cases, however, it is much less; but it is always desirable to make the area of the waterlevel as large as possible, as, when it is contracted, not only is the water-level subject to sudden and dangerous fluctuations, but water is almost sure to be carried into the cylinder with the steam, in consequence of the violent agitation of the water, caused by the It ascent of a large volume of steam through a small superficies. would be an improvement in boilers, we think, to place over each furnace an inverted vessel immerged in the water, which might catch the steam in its ascent, and deliver it quietly by a pipe rising above the water-level. The water-level would thus be preserved from any inconvenient agitation, and the weight of water within the boiler would be diminished at the same time that the original depth of water over the furnaces was preserved. It would also be an improvement to make the sides of the furnaces of marine boilers sloping, instead of vertical, as is the common practice, for the steam could then ascend freely at the instant of its formation, instead of being entangled among the rivets and landings of the plates, and superinducing an overheating of the plates by preventing a free access of the water to the metal.

We have, in the following table, collected a few of the principal results of experiments made on steam boilers.
<b>m</b>		- <b>T</b>
	DIT	
1 A	BL B.	- L.
_		_

NATURE OF THE BOILERS USED.	Mean of Huel Towan, and United Mines boilers, in Cornwall.	Boiler, at Warwick.	Mean of 8 experiments at the Al- bion Mills, Clithero, Preston, and New River Water Com- pany.	Atmospherio Engine, at Long Benton, 1772.	Mean of 11 of M. de Pambour's experiments.	Cornish boiler at the East London Water Works, 1839.	Another boiler at the East Lon- don Water Works, 1839.
-	Cylindrical with inter- nal flue.	Wagon.	Wagon.	Circular or Hay-stack.	Locomo- tive.	Cylindrical with inter- nal flue.	Wagon with inter- nal flue.
Total area of heated sur-	962	152	342.8	459	<b>3</b> 34·6	798	588
Length of circuit made by {	155	50.66	72.5	52.8	7.0	83-1	78
Area of fire grates in square	23.66	23.33	26.09	35.10	7.03	14.25	37-26
Weight of fuel burned on each square foot of grate, per hour, in lbs	3.46	4.00	10.75	20.34	79-33	46.82	13·31
Cub. ft. of water evaporated from initial temperature by 112 lbs. of fuel	1,8.87	16.44	13-91	14-11	11-14		
Cubic feet of water eva- porated per hour from initial temperature	13.81	13.79	34.40	90•7	55.18		
face for each cubic foot of water evaporated per hour	69-58	11.00	9.96	. 5.06	6.06	17.17	
Square feet of heated sur- face for each square foot	40.65	6.51	13-13	13.08	47.59	56-0	15.78
Pressure of steam above the atmosphere in lbs }	42.2	2.2	3.68	1.2	50 ·	15.45	

The economical effects of expansion will be found to be very clearly exhibited in the next table. The duties are recorded in the fifth line from the top, and the degree of expansion in the bottom line. It will be observed, that the order in which the different engines stand in respect of superiority of duty is the same as in respect of amount of expansion. The Holmbush engine has a duty of 140,484,848 lbs. raised 1 foot by 1 cwt. of coals, and the steam acts expansively over .83 of the whole stroke; while the waterworks' Cornish engine has only a duty of 105,664,118 lbs., and expands the steam over only 687 of the whole stroke. Again, comparing the second and last engines together, the Albion Mills engine has a duty of 25,756,752 lbs., and no expansive action. The water-works' engine, again, acts expansively over one-half of its stroke, and has an increased duty of 46,602,333 lbs. Other causes, of course, may influence these comparisons, especially the last, where one engine is a double-acting rotative engine, and the other a single-acting pumping one; but there can be no doubt that the expansive action in the latter is the principal cause of its more economical performance.

The heating surface per horse power allowed by some engineers is about 9 square feet in wagon boilers, reckoning the total surface as effective surface, if the boilers be of a considerable size; but in the case of small boilers, the proportion is larger. The total

	Atmospheric En-1 gine, Long Ben- ton, Northum- berland, date 1772.	Non-expansive rota- tive condensing Engine, Albion Mills, London, date 1786.	Holmbush, Cornish, condensing En-1 grae, single acting for pumping water. Steam acts expan- sivelyafter the first sixth of the stroke. 1836.	Noncondensing double-acting Engine, nonex- pansive, Con- shire, 1823.	Cornish Engine, East London Water Works.	Pumping Engine at East London Water Works.
Diameter of cylinder in inches Lenoth of stroke in feet	52 7	34 8	50 9.1	18	79 <del>4</del> 10	59 <u>5</u> 7-91
Number of strokes per minute	12	16	4.63	27.5	. 2	11.5
Pressure on the piston, above or below the atmosphere ) in lbs per souare inch	<u>ج</u> • •	Estimated at -2.5	+ +30	+20	+5.17	+2.15
Weight in Ibs. raised one foot by 112 lbs. of coals	12,600,000 14.280	25,756,752 28,489	140,484,848	12,418,560	105,664,118	46,602,333
Effective power of the engine at time of experiment in horse nower	40.5	20-0	26.48	12.0	• • •	
Efficiency of the steam, its efficiency in the Albion Mills being unity	102-	1.000	4.180	•556	8.89	1.87
Efficiency of the fuel, its efficiency in the Albion Mills being unity	·480	1-000	5.454	•482	4.1	1.81
Distance of the piston from the end of its stroke when } the steam is cut off in parts of the length of stroke. }	0	0	•833	0	-687	ŵ
the steam is cut on in parts of the length of surves. )						

TABLE II.

216

THE PRACTICAL MODEL CALCULATOR.

heating surface of a two horse power wagon boiler is, according to Fitzgerald's proportions, 30 square feet, or 15 ft. per horse power; whereas, in the case of a 45 horse power boiler the total heating surface is 438 square feet, or 9.6 ft. per horse power. The capacity of steam room is 83 cubic feet per horse power, in the two horse power boiler, and 53 cubic feet in the 20 horse power boiler; and in the larger class of boilers, such as those suitable for 30 and 45 horse power engines, the capacity of the steam room does not fall below this amount, and indeed is nearer 6 than 5³/₄ cubic feet per horse power. The content of water is  $18\frac{1}{2}$  cubic feet per horse power in the two horse power boiler, and 15 cubic feet per horse power in the 20 horse power boiler. In marine boilers about the same proportions obtain in most particulars. The original boilers of one or two large steamers were proportioned with about half a square foot of fire grate per horse power, and 10 square feet of flue and furnace surface, reckoning the total amount as effective; but in the boilers of other vessels a somewhat smaller proportion of heating surface was adopted. In some cases we have found that, in their marine flue boilers, 9 square feet of flue and furnace surface are requisite to boil off a cubic foot of, water per hour, which is the proportion that obtains in some land boilers; but inasmuch as in modern engines the nominal considerably exceeds the actual power, they allow 11 square feet of heating surface per nominal horse power in their marine boilers, and they reckon, as effective heating surface, the tops of the flues, and the whole of the sides of the flues, but not the bottoms. They have been in the habit of allowing for the capacity of the steam space in marine boilers 16 times the content of the cylinder; but as there are two cylinders, this is equivalent to 8 times the content of both cylinders, which is the proportion commonly followed in land engines, and which agrees very nearly with the proportion of between 5 and 6 cubic feet of steam room per horse power. Taking, for example, an engine with 23 inches diameter of cylinder and 4 feet stroke, which will be 18.4 horse power-the area of the cylinder will be 415.476 square inches, which, multiplied by 48, the number of inches in the stroke, will give 19942.848 for the capacity of the cylinder in cubic inches; 8 times this is 159542.784 cubic inches, or 92.3 cubic feet; 92.3 divided by 18.4 is rather more than 5 cubic feet per horse power. There is less necessity, however, that the steam space should be large when the flow of steam from the boiler is very uniform, as it will be where there are two engines attached to the boiler at right angles with one another, or where the engines work at a great speed, as in the case of locomotive engines. A high steam chest too, by rendering boiling over into the steam pipes, or priming as it is called, more difficult, obviates the necessity for so large a steam space; and the use of steam of a high pressure, worked expansively, has the same operation; so that in modern marine boilers, of the tubular construction, where the whole of these modifying circumstances exist, there is no necessity for so

T

large a proportion of steam room as 5 or 6 cubic feet per horse power, and about half that amount more nearly represents the general practice. Many allow 0.64 of a square foot per nominal horse power of grate bars in their marine boilers, and a good effect arises from this proportion; but sometimes so large an area of fire grate cannot be conveniently got, and the proportion of half a square foot per horse power seems to answer very well in engines working with some expansion, and is now very widely adopted. With this allowance, there will be about 22 square feet of heating surface per square foot of fire grate; and if the consumption of fuel be taken at 6 lbs. per nominal horse power per hour, there will be 12 lbs. of coal consumed per hour on each square foot of grate. The flues of all flue boilers diminish in their calorimeter as they approach the chimney; some very satisfactory boilers have been made by allowing a proportion of 0.6 of a square foot of fire grate per nominal horse power, and making the sectional area of the flue at the largest part 4th of the area of fire grate, and the smallest part, where it enters the chimney, 11th of the area of the fire grate; but in some of the boilers proportioned on this plan the maximum sectional area is only  $\frac{1}{75}$  or  $\frac{1}{85}$ , according to the purposes of the boiler. These proportions are retained whether the boiler is flue or tubular, and from 14 to 16 square feet of tube surface is allowed per nominal horse power; but such boilers, although they may give abundance of steam, are generally, perhaps needlessly, bulky.

We shall therefore conclude our remarks upon the subject by introducing a table of the comparative evaporative power of different kinds of coal, which will prove useful, by affording data for the comparison of experiments upon different boilers when different kinds of coal are used.

 
 TABLE of the Comparative Evaporative Power of different kinds of Coal.

No.	Description of Coals.	Water evapo- rated per lb of Coals.
1	The best Welsh	Lbs. 9.493
2.	Anthracite American	9.14
3	The best small Pittsburgh	8.526
4	Average small Newcastle	8.074
5	Pennsylvanian	10.45
° 6	Coke from Gas-works	7.908
7	Coke and Newcastle, small, 1 and 1	7.897
8	Welsh and Newcastle, mixed 1 and 1	7.865
9	Derbyshire and small Newcastle, 1 and 1	7.710
10	Average large Newcastle	7.658
11	Derbyshire	6.772
12	Blythe Main, Northumberland	6.600

Strength of boilers.—The extension of the expansive method of employing steam to boilers of every denomination, and the gradual introduction in connection therewith of a higher pressure than formerly, makes the question of the strength of boilers one of great and increasing importance. This topic was very successfully elucidated, a few years ago, by a committee of the Franklin Institute, Philadelphia, and we shall here recapitulate a few of the more important of the conclusions at which they arrived. Iron boiler plate was found to increase in tenacity as its temperature was raised, until it reached a temperature of 550° above the freezing point, at which point its tenacity began to diminish. The following table exhibits the cohesive strength at different temperatures.

At	32°	to 80°	the tenacity	was	=	56,000	lbs.,	or 1-7th below its maximum.
At	570°				=	66,500	lbs.,	the maximum.
At	720°				-	55,000	lbs.,	the same nearly as at 32°.
At	1050°					32,000	lbs.,	nearly 1 of the maximum.
At	1240°					22,000	lbs.,	nearly $\frac{1}{3}$ of the maximum.
At	1317°					9,000	lbs.,	nearly 1-7th of the maximum.
At	3000°	iron b	ecomes fluid.					

The difference in strength between strips of iron cut in the direction of the fibre, and strips cut across the grain, was found to be about 6 per cent. in favour of the former. Repeated piling and welding was found to increase the tenacity and closeness of the iron, but welding together different kinds of iron was found to give an unfavourable result; riveting plates was found to occasion a diminution in their strength, to the extent of about one-third. The accidental overheating of a boiler was found to reduce its strength from 65,000 lbs. to 45,000 lbs. per square inch. Taking into account all these contingencies, it appears expedient to limit the tensile force upon boilers in actual use to about 3000 lbs. per square inch of iron.

Copper follows a different law, and appears to diminish in strength by every addition of heat, reckoning from the freezing point. The square of the diminution of strength seems to keep pace with the cube of the temperature, as appears by the following table :—

TABLE showing the Diminution of Strength of COPPER Boiler Plates by additions to the Temperature, the Cohesion at 32° being 32,800 lbs. per Square Inch.

No.	Temperature above 32°.	Diminution of Strength.	No.	Temperature above 32°.	Diminution of . Strength.
1	90°	0.0175	9	660°	0.3425
2	180	0.0540	10	769	0.4398
3	270	0.0926	11	812	0.4944
4	360	0.1513	12	880	0.5581
5	450	0.2046	13	984	0.6691 -
6	460	0.2133	14	1000	0.6741
7	513	0.2446	15	1200	0.8861
8	529	0.2558	16	1300	1.0000
	1	1		1	

In the case of iron, the following are the results when tabulated after a similar fashion.

Temperature observed.	Diminution of Tenacity observed.	Temperature observed.	Diminution of Tenacity observed.
550°	0.0000	824°	0.2010
570	0.0869	932	0.3324
596	0.0899	947	0.3593
600	0.0964	1030	0.4478
630	0.1047	1111	0.5514
562	0.1155	1155	0.6000
722	0.1436	1159	0.6011
732	0.1491	1187	0.6352
734	0.1535	1237	0.6622
766	0.1589	1245	0.6715
770	0.1627	1317	0.7001

TABLE of Experiments on IRON Boiler Plate at High Temperature; the Mean Maximum Tenacity being at 550° = 65,000 lbs. per Square Inch.

The application of stays to marine boilers, especially in those parts of the water spaces which lie in the wake of the furnace bars, has given engineers much trouble; the 3 plate, of which ordinary boilers are composed, is hardly thick enough to retain a stay with security by merely tapping the plate, whereas, if the stay be riveted, the head of the rivet will in all probability be soon burnt away. The best practice appears to be to run the stays used for the water spaces in this situation, in a line somewhat beneath the level of the bars, so that they may be shielded as much as possible from the fire, while those which are required above the level of the bars should be kept as nearly as possible towards the crown of the furnace, so as to be removed from the immediate contact of the fire. Screw bolts with a fine thread tapped into the plate, and with a thin head upon the one side, and a thin nut made of a piece of boiler plate on the other, appear to be the best description of stay that has yet been contrived. The stays between the sides of the boiler shell, or the bottom of the boiler and the top, present little difficulty in their application, and the chief thing that is to be attended to is to take care that there be plenty of them; but we may here remark that we think it an indispensable thing, when there is any high pressure of steam to be employed, that the furnace crown be stayed to the top of the boiler. This, it will be observed, is done in the boilers of the Tagus and Infernal; and we know of no better specimen of staying than is afforded by those boilers.

### AREA OF STEAM PASSAGES.

RULE.—To the temperature of steam in the boiler add the constant increment 459; multiply the sum by 11025; and extract the square root of the product. Multiply the length of stroke by the number of strokes per minute; divide the product by the square root just found; and multiply the square root of the quotient by the diameter of the cylinder; the product will be the diameter of the steam passages. Let it be required to determine the diameter of the steam passages in an engine of which the diameter of the cylinder is 48 inches, the length of stroke  $4\frac{1}{2}$  feet, and the number of strokes per minute 26, supposing the temperature under which the steam is generated to be 250 degrees of Fahrenheit's thermometer.

Here by the rule we get  $\sqrt{11025(250 + 459)} = 2795 \cdot 84$ ; the number of strokes is 26, and the length of stroke  $4\frac{1}{2}$  feet; hence it is  $\delta = d\sqrt{\frac{117}{2795 \cdot 84}} = 0.20456d = 0.20456 \times 48 = 9.819$  inches; so that the diameter of the steam passages is a little more than one-fifth of the diameter of the cylinder. The same rule will answer for high and low pressure engines, and also for the passages into the condenser.

## LOSS OF FORCE BY THE DECREASE OF TEMPERATURE IN THE STEAM PIPES.

RULE.—From the temperature of the surface of the steam pipes subtract the temperature of the external air; multiply the remainder by the length of the pipes in feet, and again by the constant number or coefficient 1.68; then divide the product by the diameter of the pipe in inches drawn into the velocity of the steam in feet per second, and the quotient will express the diminution of temperature in degrees of Fahrenheit's thermometer.

Let the length of the steam pipe be 16 feet and its diameter 5 inches, and suppose the velocity of the steam to be about 95 feet per second, what will be the diminution of temperature, on the supposition that the steam is at  $250^{\circ}$  and the external air at  $60^{\circ}$  of Fahrenheit?

Here, by the note to the above rule, the temperature of the surface of the steam pipe is  $250 - 250 \times 0.05 = 237.5$ ; hence we get  $t'' = \frac{1.68 \times 16(237.5 - 60)}{5 \times 95} = 10.044$  degrees.

If we examine the manner of the composition of the above equation, it will be perceived that, since the diameter of the pipe and the velocity of motion enter as divisors, the loss of heat will be less as these factors are greater; but, on the other hand, the loss of heat will be greater in proportion to the length of pipe and the temperature of the steam. Since the steam is reduced from a higher to a lower temperature during its passage through the steam pipes, it must be attended with a corresponding diminution in the elastic force; it therefore becomes necessary to ascertain to what extent the force is reduced, in consequence of the loss of heat that takes place in passing along the pipes. This is an inquiry of some importance to the manufacturers of steam engines, as it serves to guard them against a very common mistake into which they are liable to fall, especially in reference to steamboat engines, where it is usual to cause the pipe to pass round the cylinder, instead of carrying it in the shortest direction from the boiler, in order to decrease the quantity of surface exposed to the cooling effect of the atmosphere.

т2

RULE.—From the temperature of the surface of the steam pipe subtract the temperature of the external air; multiply the remainder by the length of the pipe in feet, and again by the constant fractional coefficient 0.00168; divide the product by the diameter of the pipe in inches drawn into the velocity of steam in feet per second, and subtract the quotient from unity; then multiply the difference thus obtained by the elastic force corresponding to the temperature of steam in the boiler, and the product will be the elastic force of the steam as reduced by cooling in passing through the pipes.

Let the dimensions of the pipe, the temperature of the steam, and its velocity through the passages, be the same as in the preceding example, what will be the quantity of reduction in the elastic force occasioned by the effect of cooling in traversing the steam pipe?

Since the elastic force of the steam in the boiler enters the equation from which the above rule is deduced, it becomes necessary in the first place to calculate its value; and this is to be done by a rule already given, which answers to the case in which the temperature is greater than 212°; thus we have

 $250 \times 1.69856 = 424.640$ Constant number = 205.526 add

 $Sum = 630.166 \dots \log 2.79945$ 

Constant divisor =  $333....\log 2.522444$  subtract

 $0.277011 \times 6.42 = 1.778410$ 

which is the logarithm of 60.036 inches of mercury.

Again, we have  $250 - 0.05 \times 250 = 237.5$ ; consequently, by multiplying as directed in the rule, we get  $237.5 \times 0.00168 \times 16$ = 6.384, which being divided by  $95 \times 5 = 475$ , gives 0.01344; and by taking this from unity and multiplying the remainder by the elastic force as calculated above, the value of the reduced elastic force becomes

# $f' = 60.036 \ (1 - 0.01344) = 59.229$ inches of mercury.

The loss of force is therefore 60.036 - 59.229 = 0.807 inches of mercury, which amounts to  $\frac{1}{75}$ th part of the entire elastic force of the steam in the boiler as generated under the given temperature, being a quantity of sufficient importance to claim the attention of our engineers.

#### FEED WATER.

The quantity of water required to supply the waste occasioned by evaporation from a boiler, or, as it is technically termed, the "feed water" required by a boiler working with any given pressure, is easily determinable. For, since the relative volumes of water and steam at any given pressure are known, it becomes necessary merely to restore the quantity of water by the feed pump equiva-

lent to that abstracted in the form of steam, which the known relation of the density to the pressure of the steam renders of easy accomplishment. In practice, however, it is necessary that the feed pump should be able to supply a much larger quantity of water than what theory prescribes, as a great waste of water sometimes occurs from leakage or priming, and it is necessary to provide against such contingencies. The feed pump is usually made of such dimensions as to be capable of supplying 31 times the water that the boiler will evaporate, and in low pressure engines, where the cylinder is double acting and the feed pump single acting, this proportion will be maintained by making the pump a 240th of the capacity of the cylinder. In low pressure engines the pressure in the boiler may be taken at 5 lbs. above the pressure of the atmosphere, or 20 lbs. in all; and as high pressure steam is merely low . pressure steam compressed into a smaller compass, the size of the feed pump relatively to the size of the cylinder must obviously vary in the direct proportion of the pressure. If, then, the feed pump be 1-240th of the capacity of the cylinder when the total pressure of the steam is 20 lbs., it must be 1-120th of the capacity of the cylinder when the total pressure of the steam is 40 lbs., or 25 lbs. above the atmosphere. This law of variation is expressed by the following rule, which gives the capacity of feed pump proper for all pressures :---Multiply the capacity of the cylinder in cubic inches by the total pressure of the steam in lbs. per square inch, or the pressure in lbs. per square inch on the safety valve, plus 15, and divide the product by 4800; the quotient is the capacity of the feed pump in cubic inches, when the feed pump is single acting and the engine double acting. If the feed pump be double acting, or the engine single acting, the capacity of the pump must be just one-half what is given by this rule.

## CONDENSING WATER.

It was found that the most beneficial temperature of the hot well was 100 degrees. If, therefore, the temperature of the steam be 212°, and the latent heat 1000°, then 1212° may be taken to represent the heat contained in the steam, or 1112° if we deduct the temperature of the hot well. If the temperature of the injection water be 50°, then 50 degrees of cold are available for the abstraction of heat, and as the total quantity of heat to be abstracted is that requisite to raise the quantity of water in the steam 1112 degrees, or 1112 times that quantity, one degree, it would raise one-fiftieth of this, or 22.24 times the quantity of water in the steam, 50 degrees. A cubic inch of water, therefore, raised into steam, will require 22.24 cubic inches of water at 50 degrees for its condensation, and will form therewith 23.24 cubic inches of hot water at 100 degrees. It has been a practice to allow about a wine pint (28.9 cubic inches) of injection water for every cubic inch of water evaporated from the boiler. The usual capacity for the cold water pump is 18th of the capacity of the cylinder, which allows some water to run to waste. As a maximum

effect is obtained when the temperature of the hot well is about  $100^{\circ}$ , it will not be advisable to reduce it below that temperature in practice. With the superior vacuum due to a temperature of  $70^{\circ}$ or  $80^{\circ}$  the admission of so much cold water into the condenser becomes necessary,—and which has afterwards to be pumped out in opposition to the pressure of the atmosphere,—so that the gain in the vacuum does not equal the loss of power occasioned by the additional load upon the pump, and there is, therefore, a clear loss by the reduction of the temperature below  $100^{\circ}$ , if such reduction be caused by the admission of an additional quantity of water. If the reduction of temperature, however, be caused by the use of colder water, there is a gain produced by it, though the gain will within certain limits be greater, if advantage be taken of the lowness of the temperature to diminish the quantity of injection.

## SAFETY VALVES.

RULE.—Add 459 to the temperature of the steam in degrees of Fahrenheit; divide the sum by the product of the elastic force of the steam in inches of mercury, into its excess above the weight of the atmosphere in inches of mercury; multiply the square root of the quotient by  $\cdot 0653$ ; multiply this product by the number of cubic feet per hour of water evaporated, and this last product is the theoretical area of the orifice of the safety valve in square inches.

To apply this to an example—which, however, it must be remembered, will give a result much too small for practice.

Required the least area of a safety valve of a boiler suited for a 250 horse power engine, working with steam 6 lbs. more than the atmosphere on the square inch.

In this case the total pressure is equal to 21 lbs. per square inch; and as in round numbers one pound of pressure is equal to about two inches of mercury, it follows that f = 42 inches of mercury.

It will be necessary to calculate t from formula (S) already given. The operation is as follows :—

> log.  $42 \div 6.42 = 1.623249 \div 6.42 = 0.252842$ constant co-efficient = 196 2.292363 2.545205natural number = 350.92constant temperature = 121 t = 229.92therefore  $\sqrt{\frac{459 + t}{f(f - 30)}} = \sqrt{\frac{459 + 229.92}{42 \times 12}}$   $= \sqrt{\frac{688.92}{50.4}} = \sqrt{1.3669} = 1.168$ ; therefore  $x = .0653 \times 1.168 \times N = .0757$  N.

We have stated in a former part of this work that a cubic foot of water evaporated per hour is equivalent to one horse power; therefore in this case N = 250 and x = 18.925 sq. in.

As another example. Required the proper area of the safety valve of a boiler suited to an engine of 500 horse power, when it is wished that the steam should never acquire an elastic force greater than 60 lbs. on the square inch above the atmosphere.

In this case the whole elastic force of the steam is  $7\hat{J}$  lbs.; and as 1 pound corresponds in round numbers to 2 inches of mercury, it follows that f = 150. It will be necessary to calculate the temperature corresponding to this force. The operation is as follows :—

Log.  $150 \div 6.42 = 2.176091 \div 6.42 = .338955$ constant co-efficient = 196natural number = 427.876constant temperature = 121

required temperature 306.876 degrees of Fahrenheit's scale therefore  $\frac{459 + t}{f(f-30)} = \frac{459 + 306.876}{150(150-30)} = \frac{765.876}{150 \times 120} = \frac{765.896}{18000}$  = .043549; therefore  $\sqrt{\frac{459 + t}{f(f-30)}} = \sqrt{.042549} = .20628$ . Hence the required area =  $.0653 \times .20628 \times 500 = .01347 \times 500 = 6.735$  square inches.

If the area of the safety value of a boiler suited for an engine of 500 horse power be required, when it is wished the steam should never acquire a greater temperature than 300°, it will be necessary to calculate the elastic force corresponding to this temperature; and by formula for this purpose, the required area =  $\cdot 0653 \times \cdot 231 \times$  $500 = \cdot 0151 \times 500 = 7.55$  square inches. It will be perceived from these examples that the greater the elasticity and the higher the corresponding temperature the less is the area of the safety value. This is just as might have been expected, for then the steam can escape with increased velocity. We may repeat that the results we have arrived at are much less than those used in practice. For the sake of safety, the orifices of the safety value are intentionally made much larger than what theory requires; usually  $\frac{8}{10}$  of a square inch per horse power is the ordinary proportion allowed in the case of low pressure engines.

## THE SLIDE VALVE.

The four following practical rules are applicable alike to short slide and long D valves.

RULE I.— To find how much cover must be given on the steam side in order to cut the steam off at any given part of the stroke.— From the length of the stroke of the piston, subtract the length of that part of the stroke that is to be made before the steam is cut off. Divide the remainder by the length of the stroke of the



piston, and extract the square root of the quotient. Multiply the square root thus found by half the length of the stroke of the valve, and from the product take half the lead, and the remainder will be the cover required.

RULE II.— To find at what part of the stroke any given amount of cover on the steam side will cut off the steam.—Add the cover on the steam side to the lead; divide the sum by half the length of stroke of the valve. In a table of natural sines find the arc whose sine is equal to the quotient thus obtained. To this arc add 90°, and from the sum of these two arcs subtract the arc whose cosine is equal to the cover on the steam side divided by half the stroke of the valve. Find the cosine of the remaining arc, add 1 to it, and multiply the sum by half the stroke of the piston, and the product is the length of that part of the stroke that will be made by the piston before the steam is cut off.

RULE III.—To find how much before the end of the stroke, the exhaustion of the steam in front of the piston will be cut off.—To the cover on the steam side add the lead, and divide the sum by half the length of the stroke of the valve. Find the arc whose sine is equal to the quotient, and add 90° to it. Divide the cover on the exhausting side by half the stroke of the valve, and find the arc whose cosine is equal to the quotient. Subtract this arc from the one last obtained, and find the cosine of the remainder. Subtract this cosine from 2, and multiply the remainder by half the stroke of the piston. The product is the distance of the piston from the end of its stroke when the exhaustion is cut off.

RULE IV.— To find how far the piston is from the end of its stroke, when the steam that is propelling it by expansion is allowed to escape to the condenser.—To the cover on the steam side add the lead, divide the sum by half the stroke of the valve, and find the arc whose sine is equal to the quotient. Find the arc whose cosine is equal to the cover on the exhausting side, divided by half the stroke of the valve. Add these two arcs together, and subtract 90°. Find the cosine of the residue, subtract it from 1, and multiply the remainder by half the stroke of the piston. The product is the distance of the piston from the end of its stroke, when the steam that is propelling it is allowed to escape to the condenser. In using these rules, all the dimensions are to be taken in inches, and the answers will be found in inches also.

From an examination of the formulas we have given on this subject, it will be perceived (supposing that there is no lead) that the part of the stroke where the steam is cut off, is determined by the proportion which the cover on the steam side bears to the length of the stroke of the valve: so that in all cases where the cover bears the same proportion to the length of the stroke of the valve, the steam will be cut off at the same part of the stroke of the piston.

In the first line, accordingly, of Table I., will be found eight different parts of the stroke of the piston designated; and directly below each, in the second line, is given the quantity of cover requisite to cause the steam to be cut off at that particular part of the stroke. The different sizes of the cover are given in the second line, in decimal parts of the length of the stroke of the valve; so that, to get the quantity of cover corresponding to any of the given degrees of expansion, it is only necessary to take the decimal in the second line, which stands under the fraction in the first, that marks the degree of expansion, and multiply that decimal by the length you intend to make the stroke of the valve. Thus, suppose you have an engine in which you wish to have the steam cut off when the piston is a quarter of the length of its stroke from the end of it, look in the table, and you will find in the third column from the left, 1. Directly under that, in the second line, you have the decimal 250. Suppose that you think 18 inches will be a convenient length for the stroke of the valve, multiply the decimal  $\cdot 250$  by 18, which gives  $4\frac{1}{2}$ . Hence we learn that with an 18 inch stroke for the valve,  $4\frac{1}{2}$  inches of cover on the steam side will cause the steam to be cut off when the piston has still a quarter of its stroke to perform.

Half the stroke of the valve must always be at least equal to the cover on the steam side added to the breadth of the port. By the "breadth" of the port, we mean its dimension in the direction of the valve's motion; in short, its perpendicular depth when the cylinder is upright. The words "cover" and "lap" are synonymous. Consequently, as the cover, in this case, must be  $4\frac{1}{2}$  inches, and as half the stroke of the valve is 9 inches, the breadth of the port cannot be more than  $(9 - 4\frac{1}{2} = 4\frac{1}{2})$   $4\frac{1}{2}$  inches. If this breadth of port is not enough, we must increase the stroke of the valve; by which means we shall get both the cover and the breadth of the port proportionally increased. Thus, if we make the length of valve stroke 20 inches, we shall have for the cover  $250 \times 20 = 5$  inches, and for the breadth of the port 10 - 5 = 5 inches.

Distance of the piston from the termination of its stroke, when the steam is cut off, in parts of the length of its stroke.	24 0r 13	<del>7</del> 24	6 24 0r 1 4	<u>5</u> 24	4 24 0 <b>r</b> 1 6	8 24 0 <b>r</b> 18	2 24 0r 1 12	• ¹ / ₂₄
Cover on the steam side of the valve, in decimal parts of the length of its stroke.	·289	·270	·250	•228	·204	•177	·144	·102

TABLE I.

This table, as we have already intimated, is computed on the supposition that the valve is to have no lead; but, if it is to have lead, all that is necessary is to subtract half the proposed lead from the cover found from the table, and the remainder will be the

# THE PRACTICAL MODEL CALCULATOR.

proper quantity of cover to give to the valve. Suppose that, in the last example, the valve was to have  $\frac{1}{4}$  inch of lead, we would subtract  $\frac{1}{8}$  inch from the 5 inches found for the cover by the table: that would leave  $4\frac{7}{8}$  inches for the quantity of cover that the valve ought to have.

67TS	**
ILADT D	11
LABLE	114

Length of the stroke	Cove	r required o	n the steam unde	side of the r-noted par	valve to cut ts of the stro	the steam of	ff at any of	the
Inches.	18	7 24	1	$\frac{5}{24}$	1 6	18	$\frac{1}{12}$	· 1/24
24	6.94	6.48	6.00	5.47	4.90	4.25	3.47	2.45
231	6.79	6.34	5.88	5.36	4.4.79	4.16	3.39	2.39
23	6.65	6.21	5.75	5.24	4.69	4.07	3.32	2.34
221	6.50	6.07	5.62	5.13	4.59	3.98	3.25	2.29
22	6.36	5.94	5.50	5.02	4.49	3.89	3.13	2.24
211	6.21	5.80	5.38	4.90	4.39	3.80	8.10	2.19
21	6.07	5.67	5.25	4.79	4.28	3.72	- 3.03	2.14
201	5.92	5.53	5.12	4.67	4.18	8.63	2.96	2.09
202	5.78	5.40	5.00	4.56	4.08	3.54	2.89	· 2.04
191	5.64	5.26	4.87	4.45	3.98	3.45	2.82	1.99
19	5.49	5.13	4.75	4.33	3.88	3.36	2.74	1.94
181	5.34	4.99	4.62	4.22	3.77	3.27	2.67	1.88
182	5.20	4.86	4.50	4.10	3.67	3.19	2.60	1.83
171	5.06	4.79	4.37	3.99	3.57	8.10	2.58	1.78
172	4.91	4.59	4.95	3.88	3.47	3.01	2.45	1.79
161	4.77	4.45	4.19	3.76	3.36	2.92	2.38	1.68
16	4.69	4.39	4.00	3.65	3.26	2.83	2.31	1.69
151	4.48	4.18	3.97	3.53	3.16	2.74	2.94	1.58
15	4.99	4.05	3.75	3.49	3.06	2.65	2.16	1.59
141	4.10	2.01	8.69	3.81	2.96	2.57	2.00	1.49
142	4.05	3.78	8.50	3.10	2.86	2.48	2.02	1.49
191	2.00	2.64	2.27	3.08	2.75	2.20	1.05	1.97
12	8.76	9.51	2.95	2.06	2.65	2.30	1.99	1.20
191	3.61	2.97	9.10	9.95	2.55	2.91	1.00	1.02
19	2.47	0.01	2.00	2.00	2.00	0.19	1.79	1.90
111	2.20	9.10	0.07	9.69	9.95	2.14	1.66	1.17
112	9.10	0.07	2.01	0.51	2.00	1.05	1.00	1.10
101	2.02	2.91	2.10	2.20	2.14	1.90	1.50	1.07
102	0.00	2.93	2.02	2.29	2.14	1.77	1.01	1.07
10	2.09	2.70	2.90	2.28	1.02	1.00	1.44	1.02
92	2.00	2.90	2.37	2.17	1.93	1.50	1.02	•90
9	2.00	2.43	2.20	2.00	1.79	1.50	1.00	•92
02	2.40	2.29	2.12	1.94	1.70	1.00	1.23	.90
0	2.31	2.46	2.00	1.82	1.03	1.42	1.10	.81
72	2.10	2.02	1.87	1.00	1.03	1.30	1.08	.76
61	2.02	1.89	1.75	1.00	1.43	1.24	1.01	.71
01	1.99	1.10	1.62	1.48	1.32	1.10	•94	•66
0	1.78	1.62	1.20	1.37	1.22	1.06	-86	•61
01	1.98	1.48	1.37	1.25	1.12	.97	.79	•56
5	1.44	1.35	1.25	1.14	1.02	.88	.72	•51
41	1.30	1.21	1.12	1.03	.92	.80	•65	•46
4	1.16	1.08	-1.00	91	•82	.71	•58	•41
32	1.01	·94	.87	•80	.71	.62	•50	·85
ð	•86	·81	.75	.68	.61	•53	•44	.30

Table II. is an extension of Table I. for the purpose of obviating, in most cases, the necessity of even the very small degree of trouble required in multiplying the stroke of the valve by one of the decimals in Table I. The first line of Table II. consists, as in Table I., of eight fractions, indicating the various parts of the stroke

at which the steam may be cut off. The first column on the left hand consists of various numbers that represent the different lengths that may be given to the stroke of the valve, diminishing, by half-inches, from 24 inches to 3 inches. Suppose that you wish the steam cut off at any of the eight parts of the stroke indicated in the first line of the table, (say at ¹/₆ from the end of the stroke,) you find 1 at the top of the sixth column from the left. Look for the proposed length of stroke of the valve (say 17 inches) in the first column on the left. From 17, in that column, run along the line towards the right, and in the sixth column, and directly under the 1 at the top, you will find 3.47, which is the cover required to cause the steam to be cut off at  $\frac{1}{6}$  from the end of the stroke, if the valve has no lead. If you wish to give it lead, (say 1 inch,) subtract the half of that, or  $\frac{1}{8} = \cdot 125$  inch from 3.47, and you will have 3.47 - .125 = 3.345 inches, the quantity of cover that the value should have.

To find the greatest breadth that we can give to the port in this case, we have, as before, half the length of stroke,  $8\frac{1}{2}-3\cdot345=5\cdot155$  inches, which is the greatest breadth we can give to the port with this length of stroke. It is scarcely necessary to observe that it is not at all essential that the port should be so broad as this; indeed, where great length of stroke in the valve is not inconvenient, it is always an advantage to make it travel farther than is just necessary to make the port full open; because, when it travels farther, both the exhausting and steam ports are more quickly opened, so as to allow greater freedom of motion to the steam.

The manner of using this table is so simple, that we need not trouble the reader with more examples. We pass on, therefore, to explain the use of Table III.

Suppose that the piston of a steam engine is making its downward stroke, that the steam is entering the upper part of the cylinder by the upper steam-port, and escaping from below the piston by the lower exhausting-port; then, if (as is generally the case) the slide valve has some cover on the steam side, the upper port will be closed before the piston gets to the bottom of the stroke, and the steam above then acts expansively, while the communication between the bottom of the cylinder and the condenser still continues open, to allow any vapour from the condensed water in the cylinder, or any leakage past the piston, to escape into the condenser; but, before the piston gets to the bottom of the cylinder, this passage to the condenser will also be cut off by the valve closing the lower port. Soon after the lower port is thus closed, the upper port will be opened towards the condenser, so as to allow the steam that has been acting expansively to escape. Thus, before the piston has completed its stroke, the propelling power is removed from behind it, and a resisting power is opposed before it, arising from the vapour in the cylinder, which has no longer any passage open to the condenser. It is evident, that if there is no cover on the exhausting side of the valve, the exhausting port before • the piston will be closed, and the one behind it opened, at the same time; but, if there is any cover on the exhausting side, the port before the piston will be closed before that behind it is opened; and the interval between the closing of the one and the opening of the other will depend on the quantity of cover on the exhausting side of the valve. Again, the position of the piston in the cylinder, when these ports are closed and opened respectively, will depend on the quantity of cover that the valve has on the steam side. If the cover is large enough to cut the steam off when the piston is yet a considerable distance from the end of its stroke, these ports will be closed and opened at a proportionably early part of the stroke; and when it is attempted to obtain great expansion by the slide-valve alone, without an expansion-valve, considerable loss of power is incurred from this cause.

Table III. is intended to show the parts of the stroke where, under any given arrangement of slide valve, these ports close and open respectively, so that thereby the engineer may be able to estimate how much of the efficiency of the engine he loses, while he is trying to add to the power of the steam by increasing the expansion in this manner. In the table, there are eight double columns, and at the heads of these columns are eight fractions, as before, representing so many different parts of the stroke at which the steam may be supposed to be cut off.

In the left-hand single column in each double one, are four decimals, which represent the distance of the piston (in terms of the length of its stroke) from the end of its stroke when the exhaustingport before it is opened, corresponding with the degree of expansion indicated by the fraction at the top of the double column and the cover on the exhausting side opposite to these decimals respectively in the left-hand column. The right-hand single column in each double one contains also each four decimals, which show in the same way at what part of the stroke the exhausting-port behind the piston is opened. A few examples will, perhaps, explain this best.

Suppose we have an engine in which the slide valve is made to cut the steam off when the piston is 1-3d from the end of its stroke, and that the cover on the exhausting side of the valve is 1-8th of the whole length of its stroke. Let the stroke of the piston be 6 feet, or 72 inches. We wish to know when the exhausting-port before the piston will be closed, and when the one behind it will be opened. At the top of the left-hand double column, the given degree of expansion (1-3d) is marked, and in the extreme left column we have at the top the given amount of cover (1-8th). Opposite the 1-8th, in the first double column, we have .178 and .033, which decimals, multiplied respectively by 72, the length of the stroke, will give the required positions of the piston: thus  $72 \times 178 = 12.8$ inches = distance of the piston from the end of the stroke when the exhausting-port before the piston is shut; and  $72 \times .033 = 2.38$ inches = distance of the piston from the end of its stroke when the exhausting-port behind it is opened.

# THE STEAM ENGINE.

	in parts of	Cover on the exhausting side of the valve the length of its stroke.	1-8th	1-16th	1-32d	0
	Steam c 1-3d the end stro	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	•178	·130	.113	-092
	ut off at from 1 of the oke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	•033	•060	-073	-092
	Steam ^e c 7-24ths the end stre	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	·161	·118	•101 -	-082
	ut off at s from l of the oke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	-026	-052	<b>•0</b> 66	.082
-	Steam c 1-4th the end stre	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	·143	·100	·085	-067
	ut off at from l of the oke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	.019	·040	-051	-067
T	Steam of 5-24th the end stro	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	.126	-085	<b>·</b> 069	-055
ABLE I	ut off at is from 1 of the ike.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	-012 -	-030	·042	-055
	Steam of 1-6th the end stre	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	·109	·071	-053	-043
	eut off at from l of the oke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	·008	.022	•033	-043
	Steam c 1-8th the end str	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	·093	-058	-043	•033
	ut off at from l of the oke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	-004	.015	-023	•033
	Steam c 1-12th the end stro	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke.)	-074	-043	·033	-022
	ut off at 1 from 1 of the 1 ke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	.001	-008	-013	-022
	Steam cu 1-24th the end stro	Distance of the piston from the end of its stroke, when the exhausting-port before it is shut (in parts of the stroke).	.053	-027	-024	-011
	ut off at from of the ke.	Distance of the piston from the end of its stroke, when the exhausting-port behind it is opened (in parts of the stroke).	-001	-002	-004	-011

ş

ŝ

To take another example. Let the stroke of the valve be 16 inches, the cover on the exhausting side  $\frac{1}{2}$  inch, the cover on the steam side 31 inches, the length of the stroke of the piston 60 inches. It is required to ascertain all the particulars of the working of this valve. The cover on the exhausting side is evidently 1 of the length of the valve stroke. Again, looking at 16 in the left-hand column of Table II., we find in the same horizontal line 3.26, or very nearly  $3\frac{1}{4}$  under  $\frac{1}{6}$  at the head of the column, thus showing that the steam will be cut off at 1 from the end of the stroke. Again, under 1 at the head of the fifth double column from the left in Table III., and in a horizontal line with 1 in the left-hand column, we have  $\cdot 053$  and  $\cdot 033$ . Hence,  $\cdot 053 \times 60 = 3 \cdot 18$  inches = distance of the piston from the end of its stroke when the exhausting-port before it is shut, and  $0.033 \times 60 = 1.98$  inches = distance of the piston from the end of its stroke when the exhausting-port behind it is opened. If in this valve the cover on the exhausting side were increased (say to 2 inches, or  $\frac{1}{2}$  of the stroke,) the effect would be to make the port before the valve be shut sooner in the proportion of  $\cdot 109$  to  $\cdot 053$ , and the port behind it later in the proportion of  $\cdot 008$ to 033 (see Table III.) Whereas, if the cover on the exhausting side were removed entirely, the port before the piston would be shut and that behind it opened at the same time, and (see bottom of fifth double column, Table III.) the distance of the piston from the end of its stroke at that time would be  $\cdot 043 \times 60 = 2.58$  inches.

An inspection of Table III. shows us the effect of increasing the expansion by the slide-valve in augmenting the loss of power occasioned by the imperfect action of the eduction passages. Referring to the bottom line of the table, we see that the eduction passage before the piston is closed, and that behind it opened, (thus destroying the whole moving power of the engine,) when the piston is  $\cdot 092$  from the end of its stroke, the steam being cut off at  $\frac{1}{24}$  from the end of the stroke, the moving power is not withdrawn till only  $\cdot 011$  of the stroke remains uncompleted. It will also be observed that increasing the cover on the exhausting side has the effect of retaining the action of the steam longer *behind* the piston, but it at the same time causes the eduction-port *before* it to be closed sooner.

A very cursory examination of the action of the slide valve is sufficient to show that the cover on the steam side should always be greater than on the exhausting side. If they are equal, the steam would be admitted on one side of the piston at the same time that it was allowed to escape from the other; but universal experience has shown that when this is the case, a very considerable part of the power of the engine is destroyed by the resistance opposed to the piston, by the exhausting steam not getting away to the condenser with sufficient rapidity. Hence we see the necessity of the cover on the exhausting side being always less than the cover on the steam side; and the difference should be the greater the higher' the velocity of the piston is intended to be, because the quicker the

piston moves the passage for the waste steam requires to be the larger, so as to admit of its getting away to the condenser with as great rapidity as possible. In locomotive or other engines, where it is not wished to expand the steam in the cylinder at all, the slide valve is sometimes made with very little cover on the steam side : and in these circumstances, in order to get a sufficient difference between the cover on the steam and exhausting sides of the valve, it may be necessary not only to take away all the cover on the exhausting side, but to take off still more, so as to make both exhausting passages be in some degree open, when the valve is at the middle of its stroke. This, accordingly, is sometimes done in such circumstances as we have described; but, when there is even a small degree of cover on the steam side, this plan of taking more than all the cover off the exhausting side ought never to be resorted to, as it can serve no good purpose, and will materially increase an evil we have already explained, viz. the opening of the exhausting-port behind the piston before the stroke is nearly completed. The tables apply equally to the common short slide three-ported valves and to the long D valves.

In fig. 1 is exhibited a common arrangement of the valves in la



comotive engines, and in figs. 2 and 3 is shown an arrangement for working valves by a shifting cam, by which the amount of expansion may be varied. This particular arrangement, however, is antiquated, and is now but little used.

The extent to which expansion can be carried beneficially by means of lap upon the valve is about one-third of the stroke; that is, the valve may be made with so much lap, that the steam will be cut off when one-third of the stroke has been performed, leaving the residue to be accomplished by the agency of the expanding steam; but if more lap be put on than answers to this amount of expansion, a very distorted action of the valve will be produced, which will impair the efficiency of the engine. If a further amount of expansion than this is wanted, it may be accomplished by wiredrawing the steam, or by so contracting the steam passage, that the pressure within the cylinder must decline when the speed of the piston is accelerated, as it is about the middle of the stroke. Thus, for example, if the valve be so made as to shut off the steam by the time two-thirds of the stroke have been performed, and the steam be at the same time throttled in the steam pipe, the full pressure of the steam within the cylinder cannot be maintained except near the beginning of the stroke where the piston travels slowly; for as the speed of the piston increases, the pressure necessarily subsides, until the piston approaches the other end of the cylinder, where the pressure would rise again but that the operation of the lap on the valve by this time has had the effect of closing the communication between the cylinder and steam pipe, so as to prevent more steam from entering. By throttling the steam, therefore, in the manner here indicated, the amount of expansion due to the lap may be doubled, so that an engine with lap enough upon the valve to cut off the steam at two-thirds of the stroke, may, by the aid of wire-drawing, be virtually rendered capable of cutting off the steam at one-third of the stroke. The usual manner of cutting off the steam, however, is by means of a separate valve, termed an expansion valve; but such a device appears to be hardly necessary in many engines. In the Cornish engines, where the steam is cut off in some cases at one-twelfth of the stroke, a separate valve for the admission of steam, other than that which permits its escape, is of course indispensable; but in common rotative engines, which may realize expansive efficacy by throttling, a separate expansive valve does not appear to be required. In all engines there is a point beyond which expansion cannot be carried with advantage, as the resistance to be surmounted by the engine will then become equal to the impelling power; but in engines working with a high pressure of steam that point is not so speedily attained.

In high pressure, as contrasted with condensing engines, there is always the loss of the vacuum, which will generally amount to 12 or 13 lbs. on the square inch, and in high pressure engines there is a benefit arising from the use of a very high pressure over a pressure of a moderate account. In all high pressure engines, there is

a diminution in the power caused by the counteracting pressure of the atmosphere on the educting side of the piston; for the force of the piston in its descent would obviously be greater, if there was a vacuum beneath it; and the counteracting pressure of the atmosphere is relatively less when the steam used is of a very high pressure. It is clear, that if we bring down the pressure of the steam in a high pressure engine to the pressure of the atmosphere, it will not exert any power at all, whatever quantity of steam may be expended, and if the pressure be brought nearly as low as that of the atmosphere, the engine will exert only a very small amount of power; whereas, if a very high pressure be employed, the pressure of the atmosphere will become relatively as small in counteracting the impelling pressure, as the attenuated vapour in the condenser of a condensing engine is in resisting the lower pressure which is there employed. Setting aside loss from friction, and supposing the vacuum to be a perfect one, there would be no benefit arising from the use of steam of a high pressure in condensing engines, for the same weight of steam used without expansion, or with the same measure of expansion, would produce at every pressure the same amount of mechanical power. A piston with a square foot of area, and a stroke of three feet with a pressure of one atmosphere, would obviously lift the same weight through the same distance, as a cylinder with half a square foot of area, a stroke of three feet, and a pressure of two atmospheres. In the one case, we have three cubic feet of steam of the pressure of one atmosphere, and in the other case  $1\frac{1}{2}$  cubic feet of the pressure of two atmospheres. But there is the same weight of steam, or the same quantity of heat and water in it, in both cases ; so that it appears a given weight of steam would, under such circumstances, produce a definite amount of power, without reference to the pressure. In the case of ordinary engines, however, these conditions do not exactly apply; the vacuum is not a perfect one, and the pressure of the resisting vapour becomes relatively greater as the pressure of the steam is diminished; the friction also becomes greater from the necessity of employing larger cylinders, so that even in the case of condensing engines, there is a benefit arising from the use of steam of a considerable pressure. Expansion cannot be carried beneficially to any great extent, unless the initial pressure be considerable; for if steam of a low pressure were used, the ultimate tension would be reduced to a point so nearly approaching that of the vapour in the condenser, that the difference would not suffice to overcome the friction of the piston; and a loss of power would be occasioned by carrying expansion to such an extent. In some of the Cornish engines, the steam is cut off at one-twelfth of the stroke; but there would be a loss arising from carrying the expansion so far, instead of a gain, unless the pressure of the steam were considerable. It is clear, that in the case of engines which carry expansion very far, a very perfect vacuum in the condenser is more important than it is in other cases. Nothing can be easier than to compute the ultimate pressure of expanded steam, so as to see at what point expansion ceases to be productive of benefit; for as the pressure of expanded steam is inversely as the space occupied, the terminal pressure when the expansion is twelve times is just one-twelfth of what it was at first, and so on, in all other projections. The total pressure should be taken as the initial pressure—not the pressure on the safety valve, but that pressure plus the pressure of the atmosphere.

In high pressure engines, working at from 70 to 90 lbs. on the square inch, as in the case of locomotives, the efficiency of a given quantity of water raised into steam may be considered to be about the same as in condensing engines. If the pressure of steam in a high pressure engine be 120 lbs., or 125 lbs. above the atmosphere, then the resistance occasioned by the atmosphere will cause a loss of the power. If the pressure of the steam in a low pressure engine be 16 lbs. on the square inch, or 11 lbs. above the atmosphere, and the tension of the vapour in the condenser be equivalent to 4 inches of mercury, or 2 lbs. of pressure on the square inch, then the resistance occasioned by this rare vapour will also cause a loss of ith of the power. A high pressure engine, therefore, with a pressure of 105 lbs. above the atmosphere, works with only the same loss from resistance to the piston, as a low pressure engine with a pressure of 1 lb. above the atmosphere, and with these proportions the power produced by a given weight of steam will be the same, whether the engine be high pressure or condensing.

### SPHEROIDAL CONDITION OF WATER IN BOILERS.

Some of the more prominent causes of boiler explosions have been already enumerated; but explosions have in some cases been attributed to the spheroidal condition of the water in the boiler, consequent upon the flues becoming red-hot from a deficiency of water, the accumulation of scale, or otherwise. The attachment of scale, from its imperfect conducting power, will cause the iron to be unduly heated; and if the scale be accidentally detached, a partial explosion may occur in consequence. It is found, that a sudden disengagement of steam does not immediately follow the contact of water with the hot metal, for water thrown upon redhot iron is not immediately converted into steam, but assumes the spheroidal form and rolls about in globules over the surface. These globules, however high the temperature of the metal may be on which they are placed, never rise above the temperature of 205°, and give off but very little steam; but if the temperature of the metal be lowered, the water ceases to retain the spheroidal form, and comes into intimate contact with the metal, whereby a rapid disengagement of steam takes place. If water be poured into a very hot copper flask, the flask may be corked up, as there will be scarce any steam produced so long as the high temperature is maintained; but so soon as the temperature is suffered to fall below 350° or 400°, the spheroidal condition being no longer maintainable, steam is generated with rapidity, and the cork will be projected from the

mouth of the flask with great force. In a boiler, no doubt, where there is a considerable head of water, the repellant action of the spheroidal globules will be more effectually counteracted than in the small vessels employed in experimental researches. But it is doubtful whether in all boilers there may not be something of the spheroidal action perpetually in operation, and leading to effects at present mysterious or inexplicable.

One of the most singular phenomena attending the spheroidal condition is, that the vapour arising from a spheroid is of a far higher temperature than the spheroid itself. Thus, if a thermometer be held in the atmosphere of vapour which surrounds a spheroid of water, the mercury, instead of standing at 205°, as would be the case if it had been immersed in the spheroid, will rise to a point determinable by the temperature of the vessel in which the spheroid exists. In the case of a spheroid, for example, existing within a crucible raised to a temperature of  $400^\circ$ , the thermometer, if held in the vapour, will rise to that point; and if the crucible be made red-hot, the thermometer will be burst, from the boiling point of mercury having been exceeded. A part of this effect may, indeed, be traced to direct radiation, yet it appears indisputable, from the experiments which have been made, that the vapour of a liquid spheroid is much hotter than the spheroid itself.

## EXPANSION.

At page 131 we have given a table of hyperbolic or Byrgean logarithms, for the purpose of facilitating computations upon this subject.

Let the pressure of the steam in the boiler be expressed by unity, and let x represent the space through which the piston has moved whilst urged by the expanding steam. The density will then be  $\frac{1}{1+x}$ , and, assuming that the densities and elasticities are proportionate,  $\frac{d x}{1+x}$  will be the differential of the efficiency, and the efficiency itself will be the integral of this, or, in other words, the hyperbolic logarithm of the denominator; wherefore the efficiency of the whole stroke will be  $1 + \log(1+x)$ .

Supposing the pressure of the atmosphere to be 15 lbs., 15 + 35 = 50 lbs., and if the steam be cut off at 4th of the stroke, it will be expanded into four times its original volume; so that at the termination of the stroke, its pressure will be  $50 \div 4 = 12 \cdot 2$  lbs., or  $2 \cdot 8$  lbs. less than the atmospheric pressure.

When the steam is cut off at one-fourth, it is evident that x = 3. In such case the efficiency is

 $1 + \log(1 + 3)$ , or  $1 + \log(4)$ .

The hyperbolic logarithm of 4 is 1.386294, so that the efficiency of the steam becomes 2.386294; that is, by cutting off the steam at  $\frac{1}{4}$ , more than twice the effect is produced with the same consumption of fuel; in other words, one-half of the fuel is saved. This result may thus be expressed in words :—Divide the length of the stroke through which the steam expands by the length of stroke performed with the full pressure, which last portion call 1; the hyperbolic logarithm of the quotient is the increase of efficiency due to expansion. We introduce on the following page more detailed tables, to facilitate the computation of the power of an engine working expansively, or rather to supersede the necessity of entering into a computation at all in each particular case.

The first column in each of the following tables contains the initial pressure of the steam in pounds, and the remaining columns contain the mean pressure of steam throughout the stroke, with the different degrees of expansion indicated at the top of the columns, and which express the portion of the stroke during which the steam acts expansively. Thus, for example, if steam be admitted to the cylinder at a pressure of 3 pounds per square inch, and be cut off within  $\frac{1}{3}$ th of the end of the stroke, the mean pressure during the whole stroke will be 2.96 pounds per square inch. In like manner, if steam at the pressure of 3 pounds per square inch were cut off after the piston had gone through  $\frac{1}{3}$ th of the stroke, leaving the steam to expand through the remaining  $\frac{7}{3}$ th, the mean pressure during the whole stroke would be 1.164 pounds per square inch.

## FRICTION.

The friction of iron sliding upon brass, which has been oiled and then wiped dry, so that no film of oil is interposed, is about  $\frac{1}{11}$  of the pressure; but in machines in actual operation, where there is a film of oil between the rubbing surfaces, the fraction is only about one-third of this amount, or 13d of the weight. The tractive resistance of locomotives at low speeds, which is entirely made up of friction, is in some cases  $\frac{1}{500}$  th of the weight; but on the average about the load, which nearly agrees with my former statement. If the total friction be  $\frac{1}{300}$ th of the load, and the rolling friction be the load, then the friction of attrition must be the of the load; and if the diameter of the wheels be 36 in., and the diameter of the axles be 3 in., which are common proportions, the friction of attrition must be increased in the proportion of 36 to 3, or 12 times, to represent the friction of the rubbing surface when moving with the velocity of the carriage. 12 ths are about 15th of the load, which does not differ much from the proportion of ¹/₃₃d, as previously stated. While this, however, is the average result, the friction is a good deal less in some cases. Engineers, in some experiments upon the friction, found the friction to amount to less than 1 th of the weight; and in some experiments upon the friction of locomotive axles, it was found that by ample lubrication the friction might be made as little as both of the weight, and the traction, with the ordinary size of wheels, would in such a case be about stoth of the weight. The function of lubricating substances is to prevent the rubbing surfaces from coming into contact, whereby abrasion would be produced, and unguents are effectual in this

## THE STEAM ENGINE.

## EXPANDED STEAM.—MEAN PRESSURE AT DIFFERENT DENSITIES AND RATE OF EXPANSION.

The column headed 0 contains the initial pressure in lbs., and the remaining columns contain the mean pressure in lbs., with different grades of expansion.

			EXPANSIO	N BY EIGHTHS	•		
0	$\frac{1}{8}$	28	8	48	<u>5</u> 8	<u>6</u> 8	<u>7</u> 8
3	2.96	2.89	2.75	2.53	2.22	1.789	1.154
4	3.95	3.85	3.67	3.38	2.96	2.386	1.539
5	4.948	4.818	4.593	4.232	3.708	2.982	1.924
6	5.937	5.782	5.512	5.079	4.450	3.579	2.309
7	6.927	6.746	6.431	5.925	5.241	4.175	2.694
8	7.917	7.710	7.350	6.772	5.934	4.772	3.079
9	8.906	8.673	8.268	7.618	6.675	5.368	3.463
10	9.896	9.637	9.187	8.465	7.417	5.965	3.848
11	10.885	10.601	10.106	9.311	8.159	6.561	4.233
12	11.875	11.565	10.925	10.158	8.901	7.158	4.618
13	12.865	12.528	11.943	11.004	9.642	7.754	5.003
14	13.854	13.492	12.862	11.851	10.384	8.531	5.388
15	14.844	14.456	13.781	12.697	11.126	8.947	5.773
16	15.834	15.420	14.700	13.544	11.868	9.544	6.158
17	16.823	16.383	15.618	14.390	12.609	10.140	6.542
18	17.813	17.347	16.537	15.237	13.351	10.737	6.927
19	18.702	18.311	17.448	16.803	14.093	11.333	7.312
20	19.792	19.275	18.375	16.930	14.835	11.930	7.697
25	24.740	24.093	22.968	21.162	18.543	14.912	9.621
30	29.688	28.912	27.562	25.395	22.252	17.895	11.546
35	34.636	33.731	33.156	29.627	25.961	20.877	13.470
40	39.585	38.550	36.750	33.860	29.670	23.860	15.395
<b>45</b>	44.533	43.368	41.343	38.092	33.378	26.842	17.319
50	49.481	48.187	45.937	42.325	37.067	29.825	19.243

EXPANSION BY TENTHS.									
0	10	$\frac{2}{10}$	- <mark>8</mark> 10	4 10	5 10	$\frac{6}{10}$	7 10	8 10	<del>3</del> 10
3	2.980	2.930	2.830	2.710	2.539	2.299	1.981	1.668	0.990
4	3.974	3.913	3.780	3.614	3.386	3.065	2.642	2.087	1.320
5	4.968	4.892	4.725	4.518	4.232	3.832	3.303	2.609	1.651
6	5.961	5.870	5.670	5.421	5.079	4.598	3.963	3.130	1.981
7	6.955	6.848	6.615	6.325	5.925	5.364	4.624	3.652	2.311
8	7.948	7.827	7.560	7.228	6.772	6.131	5.284	4.174	2.641
9	8.942	8.805	8.505	8.132	7.618	6.897	5.945	4.696	2.971
10	9.936	9.784	9.450	9.036	8.465	7.664	6.606	5.218	3.302
11	10.929	10.762	10.395	9.939	9.311	8.430	7.266	5.739	3.632
12	11.923	11.740	11.340	10.843	10.158	9.196	7.927	6.261	3.962
13	12.856	12.719	12.285	11.746	10.994	9.963	8.587	6.783	4.292
14	13.910	13.967	13.230	12.650	11.851	10.729	9.248	7.305	4.622
15	14.904	14.676	14.175	13.554	12.697	11.496	9.909	7.827	4.953
16	15.897	15.654	15.120	14.457	13.544	12.262	10.569	8.348	5.283
17	16.891	16.632	16.065	15.361	14.051	13.028	11.230	8.870	5.613
18	17.884	17.611	17.010	16.264	15.237	13.795	11.890	9.392	5.944
19	18.878	18.589	17.955	17.168	16.083	14.561	12.551	9.914	6.273
20	19.872	19.568	18.900	18.072	16.930	15.328	13.212	10.436	6.600
25	24.840	$24 \cdot 460$	23.625	22.590	21.162	19.160	16.515	13.040	8.255
30	29.808	29.352	$28 \cdot 350$	27.108	25.395	22.992	19.818	15.654	9.906
35	34.776	34.244	33.075	31.626	29.627	26.824	23.121	18.263	11.557
40	39.744	39.136	37.800	36.144	33.860	30.656	26.224	20.872	13.208
45	44.912	44.028	42.525	40.662	38.092	34.888	29.727	23.481	14.859
50	49.680	48.920	47.250	45.180	42.325	38.320	33.030	26.090	16.510

239

respect in the proportion of their viscidity; but if the viscidity of the unguent be greater than what suffices to keep the surfaces asunder, an additional resistance will be occasioned; and the nature of the unguent selected should always have reference, therefore, to the size of the rubbing surfaces, or to the pressure per square inch upon them. With oil, the friction appears to be a minimum when the pressure on the surface of a bearing is about 90 lbs. per square inch: the friction from too small a surface increases twice as rapidly as the friction from too large a surface; added to which, the bearing, when the surface is too small, wears rapidly away. For all sorts of machinery, the oil of Patrick Sarsfield Devlan, of Reading, Pa., is the best.

#### HORSE POWER.

A horse power is an amount of mechanical force capable of raising 33,000 lbs. one foot high in a minute. The average force exerted by the strongest horses, amounting to 33,000 lbs., raised one foot high in the minute, was adopted, and has since been retained. The efficacy of engines of a given size, however, has been so much increased, that the dimensions answerable to a horse power then, will raise much more than 33,000 lbs. one foot high in the minute now; so that an actual horse power, and a nominal horse power are no longer convertible terms. In some engines every nominal horse power will raise 52,000 lbs. one foot high in the minute, in others 60,000 lbs., and in others 66,000 lbs.; so that an actual and nominal horse power are no longer comparable quantities,-the one being a unit of dimension, and the other a unit of force. The actual horse power of an engine is ascertained by an instrument called an indicator; but the nominal power is ascertained by a reference to the dimensions of the cylinder, and may be computed by the following rule :---Multiply the square of the diameter of the cylinder in inches by the velocity of the piston in feet per minute, and divide the product by 6,000; the quotient is the number of nominal horses power. In using this rule, however, it is necessary to adopt the speed of piston which varies with the length of the stroke. The speed of piston with a two feet stroke is, according to this system, 160 per minute; with a 2 ft. 6 in. stroke, 170; 3 ft., 180; 3 ft., 6 in., 189; 4 ft., 200; 5 ft., 215; 6 ft., 228; 7 ft., 245; 8 ft., 256 ft.

By ascertaining the ratio in which the velocity of the piston increases with the length of the stroke, the element of velocity may be cast out altogether; and this for most purposes is the most convenient method of procedure. To ascertain the nominal power by this method, multiply the square of the diameter of the cylinder in inches by the cube root of the stroke in feet, and divide the product by 47; the quotient is the number of nominal horses power of the engine. This rule supposes a uniform effective pressure upon the piston of 7 lbs. per square inch; the effective pressure upon the piston of 4 horse power engines of some of the best makers has been estimated at 6.8 lbs. per square inch, and the pressure increased slightly with the power, and became 6.94 lbs. per square inch in engines of 100 horse power; but it appears to be more convenient to take a uniform pressure of 7 lbs. for all powers. Small engines, indeed, are somewhat less effective in proportion than large ones; but the difference can be made up by slightly increasing the pressure in the boiler; and small boilers will bear such an increase without inconvenience.

Nominal power, it is clear, cannot be transformed into actual power, for the nominal horse power expresses the size of an engine, and the actual horse power the number of times 33,000 lbs. it will lift one foot high in a minute. To find the number of times 33,000 lbs. or 528 cubic feet of water, an engine will raise one foot high in a minute,-or, in other words, the actual power,-we first find the pressure in the cylinder by means of the indicator, from which we deduct a pound and a half of pressure for friction, the loss of power in working the air pump, &c.; multiply the area of the piston in square inches by this residual pressure, and by the motion of the piston, in feet per minute, and divide by 33,000; the quotient is the actual number of horse power. The same result is attained by squaring the diameter of the cylinder, multiplying by the pressure per square inch, as shown by the indicator, less a pound and a half, and by the motion of the piston in feet, and dividing by The quantity thus arrived at, will, in the case of nearly all 42,017. modern engines, be very different from that obtained by multiplying the square of the diameter of the cylinder by the cube root of the stroke, and dividing by 47, which expresses the nominal power; and the actual and nominal power must by no means be confounded, as they are totally different things. The duty of an engine is the work done in relation to the fuel consumed, and in ordinary mill or marine engines it can only be ascertained by the indicator, as the load upon such engines is variable, and cannot readily be determined: but in the case of engines for pumping water, where the load is constant, the number of strokes performed by the engine represents the duty; and a mechanism to register the number of strokes made by the engine in a given time, is a sufficient test of the engine's performance.

In high pressure engines the actual power is readily ascertained by the indicator, by the same process by which the actual power of low pressure engines is ascertained. The friction of a locomotive engine when unloaded, is found by experiment to be about 1 lb. per square inch on the surface of the pistons, and the additional friction caused by any additional resistance is estimated at about 14 of that resistance; but it will be a sufficiently near approximation to the power consumed by friction in high pressure engines, if we make a deduction of a pound and a half from the pressure on that account, as in the case of low pressure engines. High pressure engines, it is true, have no air pump to work; but the deduction of a pound and a half of pressure is relatively a much smaller one where the pressure is high than where it does not much exceed the

241

pressure of the atmosphere. The rule, therefore, for the actual horse power of a high pressure engine will stand thus :--Square the diameter of the cylinder in inches, multiply by the pressure of the steam in the cylinder per square inch, less 11 lbs., and by the speed of the piston in feet per minute, and divide by 42,017; the quotient is the actual horse power. The nominal horse power of a high pressure engine has never been defined; but it should obviously hold the same relation to the actual power as that which obtains in the case of condensing engines, so that an engine of a given nominal horse power may be capable of performing the same work, whether high pressure or condensing. This relation is maintained in the following rule, which expresses the nominal horse power of high pressure engines :---Multiply the square of the diameter of the cylinder in inches by the pressure on the piston in pounds per square inch, and by the speed of the piston in feet per minute. and divide the product by 120,000; the quotient is the power of the engine in nominal horses power. If the pressure upon the piston be 80 lbs. per square inch, the operation may be abbreviated by multiplying the square of the diameter of the cylinder by the speed of the piston, and dividing by 1,500, which will give the same result. This rule for nominal horse power, however, is not representative of the dimensions of the cylinder; but a rule for the nominal horse power of high pressure engines which shall discard altogether the element of velocity, is easily constructed; and, as different pressures are used in different engines, the pressure must become an element in the computation. The rule for the nominal power will therefore stand thus :---Multiply the square of the diameter of the cylinder in inches by the pressure on the piston in pounds per square inch, and the cube root of the stroke in feet, and divide the product by 940; the quotient is the power of the engine in nominal horse power, the engine working at the ordinary speed of 128 times the cube root of the stroke.

A summary of the results arrived at by these rules is given in the following tables, which, for the convenience of reference, we introduce.

## PARALLEL MOTION.

RULE I.—In such a combination of two levers as is represented in Figs. 1 and 2, page 245, to find the length of radius bar required for any given length of lever CG, and proportion of parts of the link, GE and FE, so as to make the point E move in a perpendicular line.—Multiply the length of GC by the length of the segment GE, and divide the product by the length of the segment FE. The quotient is the length of the radius bar.

RULE II.—(Fig. 2, page 245.) The length of the radius bar and of C G being given, to find the length of the segment (F E) of the link next the radius bar.—Multiply the length of C G by the

ter of ler in les.	LENGTH OF STROKE IN FEET.											
Diathe Cylind Inel	1	112	2	21/2	3	31	4	41/2	5	$5\frac{1}{2}$	6	7
4	•34	.39	.43	•46	•49	•52	.54	•56	.58	•60	.62	•65
5	- 53	•61	•67	.72	.76	-81	.84	-88	-91	•94	96	1.02
6	•76	-87	•96	1.04	1.10	1.16	1.22	1.26	1.31	1.35	1.39	1.47
7	1.04	1.19	1.31	1.41	1.50	1.58	1.65	1.72	1.78	1.84	1.89	1.99
8	1.36	1.56	1.72	1.85	1.96	2.07	2.16	2.25	2.33	2.40	2.47	2.60
9	1.72	1.97	2.17	2.34	2.49	2.62	2.74	2.84	2.95	3.04	3.13	3.30
10	2.13	2.44	2.68	2.89	3.07	3.23	3.38	3.51	3.64	3.76	3.87	4.07
11	2.57	2.95	3.24	3.49	3.77	3.91	4.15	4.25	4.40	4.54	4.68	4.92
12	3.06	3.51	3.86	4.16	4.42	4.65	4.86	5.06	5.24	5.41	5.57	5.86
13	3.60	4.12	4.53	4.88	5.19	5.46	5.64	5.94	6.15	6.32	6.23	6.88
- 14	4.17	4.77	5.25	5.66	6.01	6.33	6.62	6.88	7.13	7.36	7.58	7.98
15	4.77	5.48	6.03	6.20	6.90	7.27	7.60	7.90	8.19	8.42	8.70	9.16
16	5.45	6.53	6.86	7.39	7.86	8.27	8.65	8.99	9.31	9.61	9.90	10.42
17	6.12	7.04	7.75	8.35	8.86	9.34	9.76	10.15	10.52	10.85	11.17	11.76
18	6.89	7.89	8.68	9.36	9.94	10.47	10.94	11.38	11.79	12.17	12.03	13.19
19	7.68	8.79	9.68	10.42	11.17	11.66	12.19	12.68	13.13	13.96	15.40	14.09
20	8.91	9.74	10.72	11.95	12.27	12.92	13.01	14.00	14.99	10.10	10.40	10 20
22	10.30	11.79	12.97	13.98	14.80	10.03	10.02	17.30	17.00	21.69	10.11	19.10
24	14.20	14.03	10.10	10.03	00.75	10.01	18.40	20.20	20.99	01.03	26.14	20.44
20	14.09	10.00	21.02	19.02	20.75	05.99	24.00	20.19	24.0	20.39	20.14	21.00
20	10.15	19.09	04.12	22.04	97.69	20.07	20.40	21.04	20.04	33.00	34.90	36.63
30	21.70	94.06	27.51	20.99	31.42	29.09	34.50	35.07	37.98	38-46	39-59	41.68
34	24.60	28.16	30.99	33-30	35.44	37.34	39.04	40-60	42.06	43.41	44.69	47.05
36	27.57	31.56	34.74	37.42	39.77	41.87	43.77	45.52	47.15	48.67	50.11	52.75
38	30.72	35.17	38.71	41.69	44.66	46.64	48.77	50.72	52.54	54.23	55.83	58.78
40	34.04	38.97	42.89	46.20	49.10	51.69	54.04	56-20	58.21	60.09	61.86	65.12
42	37.53	42.96	47.29	50.94	54.13	56.98	59.58	61.96	64.18	66-25	68.21	71.78
44	41.19	47.15	51.90	55.91	59.38	62.54	66.46	68.00	70.44	72.71	74.85	78.79
46	45.02	51.54	56.72	61.10	64.88	68.19	71.43	74.33	76.69	79.47	81.81	86.12
48	49.02	56.11	61.76	66.53	70.70	74.42	77.82	80.94	83.83	86.53	89.08	93.78
50	53.19	60.89	67.02	72.19	76.71	80.76	84.44	87.82	. 90.96	93.89	96.65	101.7
52	57.55	65.86	72.48	78.08	83.00	87.35	90.25	94.98	98.40	101.55	104.5	<b>110.0</b>
54	62.04	71.02	78.17	84.20	89.48	94.20	98.49	102.4	106.1	109.5	112.7	118.7
56	66.72	76.38	84.07	90.55	96-23	101.30	105.9	110.1	114.1	117.8	121.2	127.6
58	71.28	81.93	90.18	97.14	103.2	108.6	113.6	118.2	122.4	126-3	129.2	136.7
60	76.60	87.68	90.90	103.9	110.4	116.3	121.6	126.4	131.0	135.2	139 2	146.0
62	81.79	93.62	103.04	111.0	117.90	124.18	129.81	135.03	139-86	144.37	148.6	106.7
0*	87.19	99.84	116.0	118.3	120.0	132'3	138.3	143.9	149.0	103.82	100.4	100.1
00	92.03	110.0	102.0	120.0	141.0	140.7	141'3	103.0	108.0	103.0	170.0	100.0
70	104.00	110.9	120 8	141.5	150.4	149.4	100 2	170.1	170.0	104.0	100.4	100.4
70	110-20	100.0	1010	140.7	150.1	167.4	175-1	100.1	100.0	104.7	109.4	199.4
74	116.5	120.4	146.8	158-1	167.0	176.7	1954	1021	100.9	1947	2004	2110
76	199.0	140.7	154.8	166.8	178.6	186.6	105.0	002.0	210.1	216.0	002.9	935.1
78	129.4	148.2	163.1	175.6	186.7	196.5	205.4	212.1	221.4	228.5	235-2	247.6
80	136.2	155.8	171.6	184.8	196.4	206.7	216-1	224.8	232.8	210.4	247.4	260.5
82	143.0	163.8	180.2	194.2	206.2	217.3	226.9	237.8	244.6	252.5	260.0	273.8
84	150.1	171.8	189.1	203.8	216.5	227.9	238.3	247.8	256-7	265.0	272.8	287.1
86	157.4	180.1	198.2	213.6	227.0	237.8	247.4	258.2	269.1	277.8	286.0	301.0
88	164.8	188.6	207.6	223.6	237.5	250.2	261.6	272.0	281.7	290.8	299.4	315.2
90	172.3	197.3	217.1	233.9	248.6	261.7	273.6	284.5	291.7	304.2	313.2	329.7

TABLE of Nominal Horse Power of Low Pressure Engines.

length of the link G F, and divide the product by the sum of the lengths of the radius bar and of C G. The quotient is the length required.

RULE III.—(Figs. 3 and 4, pages 246 and 247.) To find the length of the radius bar (FH), the length of CG being given.—Square the length of CG, and divide it by the length of DG. The quotient is the length required.

RULE IV.—(Figs. 3 and 4, pages 246 and 247.) To find the length of the radius bar, the horizontal distance of its centre (H) from the main centre being given.—To this given horizontal distance, add half the versed sine (D N) of the arc described by the end of beam (D). Square this sum. Take the same sum, and add to it the length of

## THE PRACTICAL MODEL CALCULATOR.

ter of her in hes.	Length of Stroke in Feet.											
Diame	1	11/2	2	$2\frac{1}{2}$	3	$3\frac{1}{2}$	4	41	5	$5\frac{1}{2}$	6	7
2	•25	•29	•32	•35	•37	•38	•40	•42	•44	•45	•46	•49
21	•39	*45	.50	-54	.57	.60	•63	•66	*68	•70	.72	.76
3	.07	60.	-12	1.00	1.19	1.10	1.04	1.90	1.94	1.00	1.49	1.10
31	1.09	1.17	1.90	1.90	1.47	1.56	1.69	1.69	1.74	1.90	1.96	1.49
4	1.00	1.49	1.69	1.75	1.90	1.06	2.05	0.19	0.01	0.00	9.95	0.47
49	1.50	1.83	2.01	2.16	2.00	2.43	2.52	2.10	2.73	2.80	2.88	3.06
51	1.02	2.21	2.43	2.62	9.78	2.03	8.12	2.19	8.50	3.49	3.51	3.60
6	2.28	2.61	2.88	3.12	3.30	3.48	3.66	3.78	3.93	4.05	4.17	4.41
61	2.69	3.09	3.39	3.66	3.90	4.08	4.23	4.44	4.62	4.77	4.89	5.16
7	3.12	3.57	3.93	4.23	4.50	4.74	4.95	5.16	5.34	5.52	5.67	5-97
71.	3.60	4.11	4.53	4.86	5.19	5.46	5.70	5.94	6.15	6.33	6.51	6.87
8	4.08	4.68	5.16	5.55	5.88	6.21	6.48	6.75	6.99	7.20	7.41	7.80
81	4.62	5.28	5.82	6.27	6.63	6.99	7.32	7.62	7.89	8.13	8.37	8.82
9	5.16	5.91	6.51	7.02	7.47	7.86	8.22	8.52	8.85	9.12	9.39	9.90
91	5.76	6.60	7.26	7.80	8.37	8.76	9.15	9.51	9.84	10.17	10.47	10.01
10	6.39	7.32	• 8·04	8.67	9.21	9.69	10.14	10.53	10.92	11.28	11.61	12.21
101	7.05	8.04	8.88	9.54	10.14	10.68	11.16	11.61	12.03	12.42	12.78	13.47
11	7.71	8.85	9.72	10.47	11.31	11.73	12.45	12.75	13.20	13.62	14.04	14.76
114	8.43	9.66	10.62	11.40	12.15	12.78	13.80	13.92	14.01	14.00	10.03	10.14
12	9.18	10.93	10.77	12.41	13.20	15.15	14.00	10.18	10.12	17.50	10.10	17.98
124.	9.90	10.90	12.5/	14.64	14.37	16.99	16.00	17.90	19.45	10.05	10.50	19.00
10	11.64	12.30	14.64	15.79	16.77	17.67	18.48	10.90	10.50	20.59	21.15	21 04
103	19.51	14.91	15.75	16.08	18.03	18.90	19.86	20.64	21.39	22.08	22.74	23.94
141	13.41	15.36	16.92	18.21	19.35	20.37	21.30	22.14	22.95	23.70	24.39	25.62
15	14.31	16.44	18-09	19.50	20.70	21.81	22.80	23.70	24.57	25.35	26.10	27.48
16	16.35	18.69	20.58	22.17	23.58	24.81	25.95	26.97	27.93	28.83	29.70	31.26
17	18.45	21.12	23.25	25-05	26.58	28.02	29.28	30.45	31.56	32.55	33.57	35.28
18	20.67	23.67	26.04	28.08	29.82	31.41	32.82	34.14	35.37	36.51	37.59	39.57
19	23.04	26.37	29.04	31.26	33.51	34.98	36.57	38.04	39.39	40.68	41.88	44.07
20	25.53	29.22	32.16	34.65	36.81	38.76	40.53	42.15	43.65	45.06	46.38	48.84
22	30.90	35.37	38.91	41.94	44.55	46.89	49.86	51.90	52.95	54.54	56.13	59.10
24	36.78	42.09	46.32	49.89	53.01	55.83	58.35	60.69	62.85	64.89	66.81	70.32
26	43.17	49.38	54.36	58.56	62.25	65.52	67.68	71.25	73.80	76.17	78.42	82.93
28	.50.04	57.27	03.00	67.92	72.18	75.99	79.44	82.62	89.90	88.32	90.93	100.0
30	07.40	00'70	90.59	00.71	04.06	00.94	91.20	94'80	111.9	115.4	11014	109.9
32	79.90	94.49	02.00	100.99	106.2	112.0	117.1	107.9	126-2	120.9	124.0	141.1
26	99.71	01.09	101.9	110.0 22	110.2	125.6	191.2	196.5	141.4	146.0	150.3	158.2
38	02.16	105.5	116.1	125.0	134.0	136.9	146.3	152.1	157.6	16.2.7	167.5	176.3
40	102.1	116.9	129.6	128.6	147.3	155-1	162.1	168.6	174.6	180.2	185.6	195.3
42	112.6	128.9	141.8	152.8	162.4	170.9	178.7	185.9	192.5	198.7	204.6	215.3
44	123.5	141.4	155.7	167.7	178.1	187.6	199.4	204.0	211.3	218.1	224.5	236-3
46	135.0	154.6	170.1	183.3	194.6	204.6	214.3	223.0	230.0	238.4	245.4	258.3
48	147.0	168.3	185.3	199.6	212.1	223.2	233.4	242.8	251.5	259.6	267.2	281.3
50	159.6	182.6	201.0	216.5	230.1	242.3	253.3	263.4	272.9	281.6	289.9	305.1
52	172.6	197.6	217.4	234.2	249.0	262.0	270.7	284.9	295.2	304.6	313.5	330.0
54	186-1	213.0	234.5	252.6	268.4	282.6	295.4	307.2	318.3	328.5	338.1	356.1
56	200.1	229.1	252.2	271.6	288.7	303.9	317.7	330.3	342.3	353.4	363.6	382.8
58	214.7	245.8	270.5	291.4	309.6	325.8	340.8	354.6	367.2	378.9	389.7	410.1
60	229.8	263.0	289.5	311.7	331.2	348.9	364.8	379.2	393.0	405.6	417.6	439.2

TABLE of Nominal Horse Power of High Pressure Engines.

the beam (C D). Divide the square previously found by this last sum, and the quotient is the length sought.

RULE V.—(Figs. 5 and 6, pages 247, 248.)—To find the length of the radius bar, CG and PQ being given.—Square CG, and multiply the square by the length of the side rod (PD): call this product A. Multiply QD by the length of the side lever (CD). From this product subtract the product of DP into CG, and divide A by the remainder. The quotient is the length required.

RULE VI.—(Figs. 5 and 6, pages 247, 248.) To find the length of the radius bar; PQ, and the horizontal distance of the centre H of the radius bar from the main centre being given.—To the given horizontal distance add half the versed sine (DN) of the arc described



by the extremity (D) of the side lever. Square this sum and multiply the square by the length of the side rod (P D). Call this product A. Take the same horizontal distance as before added to the same half versed sine (D N), and multiply the sum by the length of the side rod (P D): to the product add the product of the length of  $v^2$ 



the side lever CD into the length of QD, and divide A by the sum. The quotient will be the length required.

When the centre H of the radius has its position determined, rules 4 and 6 will always give the length of the radius bar F H. To get the length of C G, it will only be necessary to draw through the point F a line parallel to the side rod D P, and the point where that line cuts D C will be the position of the pin G.

In using these formulas and rules, the dimensions must all be taken in the same measure; that is, either all in feet, or all in inches; and when great accuracy is required, the corrections given in Table (A) must be added to or subtracted from the calculated length of the radius bar, according as it is less or greater than the length of C G, the part of the beam that works it.

1. RULE 4.—Let the horizontal distance (M C) of the centre (H)



of the radius bar from the main centre be equal to 51 inches; the half versed sine D N = 3 inches, and D C = 126 inches; then by the rule we will have

 $\frac{(51+3)^2}{51+3+126} = \frac{(54)^2}{180} = \frac{2916}{180} = 16\cdot2 \text{ inches, }.$ which is the required length of the radius bar (F H).



2. RULE 5.—The following dimensions are those of the Red Rover steamer: CG = 32 DP = 94 QD = 74 CD = 65 PQ = 20. By the rule we have,  $A = (32)^2 \times 94 = 96256$  and

 $\overline{74 \times 65 - 94 \times 32} = \overline{1802} = 53.4,$ 

which is the required length of the radius bar.

3. RULE 6.—Take the same data as in the last example, only supposing that C G is not given, and that the centre H is fixed at a horizontal distance from the main centre, equal to 83.5 inches. Then the half versed sine of the arc D' D D'' will be about 2 inches, and we will have by the rule

$$\frac{A = (83 \cdot 5 + 2)^2 \times 94 = 705963 \cdot 5 \text{ and}}{\frac{A}{85 \cdot 5 \times 94 + 65 \times 74} = \frac{705963 \cdot 5}{1284 \cdot 7} = 54 \cdot 8 \text{ inches},}$$

the required length of the radius bar in this case.

TABLE	$(\mathbf{A})$	١.

This column gives $\frac{FH}{CG}$ when CG is the greater, and $\frac{CG}{FH}$ when FH is the greater.	Correction to be added to or subtracted from the calcu- lated length of the radius bar, in decimal parts of its calculated length.				
1.0	0				
•9	.0034				
.8	.0075				
•7	•0163				
× ·6	.0270				
.5	.0452				
•4	-0817				

In both of the last two examples  $\frac{C}{H}\frac{G}{F} = \cdot 6$  nearly. The correction found by Table (A), therefore, would be  $54 \times \cdot 027 = 1.458$ inches, which must be subtracted from the lengths already found for the radius bar, because it is longer than C G. The corrected lengths will therefore be

> In example 2.....F H = 51.94 inches. In example 3.....F H = 53.34 inches.

RULE. To find the depth of the main beam at the centre. Divide the length in inches from the centre of motion to the point where the piston rod is attached, by the diameter of the cylinder in inches; multiply the quotient by the maximum pressure in pounds per square inch of the steam in the boiler; divide the product by 202 for cast iron, and 236 for malleable iron: in either case, the cube root of the quotient multiplied by the diameter of the cylinder in inches gives the depth in inches of the beam at the centre of To find the breadth at the centre.-Divide the depth in motion. inches by 16; the quotient is the breadth in inches.

An engine beam is three times the diameter of the cylinder, from the centre to the point where the piston rod acts on it; the force of the steam in the boiler when about to force open the safety valve is 10 lbs. per square inch. Required the depth and breadth when the beam is of cast iron.

In this case 
$$n = 3$$
, and  $P = 10$ , and therefore  
 $d = D\left\{\frac{30}{202}\right\}^{\frac{1}{3}} = \cdot 53 \text{ D.}$   
The breadth  $= \frac{\cdot 53}{202} \text{ D} = \cdot 03 \text{ D.}$ 

It will be observed that our rule gives the least value to the depth. In actual practice, however, it is necessary to make allowance for accidents, or for faultiness in the materials. This may be done by making the depth greater than that determined by the rule; or, perhaps more properly, by taking the pressure of the steam much greater than it can ever possibly be. As for the dimensions of the other parts of the beam, it is obvious that they ought to diminish towards the extremities; for the power of a beam to resist a cross strain varies inversely as its length. The dimensions may be determined from the formula  $f b d^2 = 6 W l$ .

16 -

To apply the formula to cranks, we may assume the depth at the shaft to be equal to n times the diameter of the shaft; hence, if  $m \times D$  be the diameter of the shaft, the depth of the crank will be  $n \times m \times D$ . Substituting this in the formula  $f b d^2 = 6 W l$ , and it becomes  $f b \times n^2 \times m^2 \times D^2 = 6 W l$ . Now, as before,  $W = .7854 \times P \times D^2$ , so that the formula becomes  $f \times b \times n^2 \times$  $m^2 = 4.7124 \times P \times l$ . The value of *n* is arbitrary. In practice it may be made equal to 11 or 1.5. Taking this value, then, for cast iron, the formula becomes  $15300 \times b \times \frac{9}{4} \times m^2 = 4.7124 \times P \times l$ , or  $7305 m^2 b = P l$ ; but if L denote the length of the crank in feet, the formula becomes  $609 m^2 b = P L$ , and  $\therefore b = P \times L \div 609 m^2$ . This formula may be put into the form of a rule, thus:—

RULE.—To find the breadth at the shaft when the depth is equal to  $1\frac{1}{2}$  times the diameter of the shaft.—Divide the square of the diameter of the shaft in inches by the square of the diameter of the cylinder; multiply the quotient by 609, and reserve the product for a divisor; multiply the greatest elastic force of the steam in lbs. per square inch by the length of the crank in feet, and divide the product by the reserved divisor: the quotient is the breadth of the crank at the shaft.

A crank shaft is  $\frac{1}{4}$  the diameter of the cylinder; the greatest possible force of the steam in the boiler is 20 lbs. per square inch; and the length of the shaft is 3 feet. Required the breadth of the crank at the shaft when its depth is equal to  $1\frac{1}{2}$  times the diameter of the shaft.

In this case  $m = \frac{1}{4}$ , so that the reserved divisor  $-\frac{609}{16} = 38$ : again, elastic force of steam in lbs. per square inch = 20 lbs.; hence width of crank  $=\frac{3 \times 20}{38} = 1.6$  inches nearly.

RULE.—To find the diameter of a revolving shaft.—Form a reserved divisor thus: multiply the number of revolutions which the shaft makes for each double stroke of the piston by the number 1222 for cast iron, and the number 1376 for malleable iron. Then divide the radius of the crank, or the radius of the wheel, by the diameter of the cylinder; multiply the quotient by the greatest pressure of the steam in the boiler expressed in lbs. per square inch; divide the product by the reserved divisor; extract the cube root of the quotient, and multiply the result by the diameter of the cylinder in inches. The product is the diameter of the shaft in inches.

STRENGTH OF RODS WHEN THE STRAIN IS WHOLLY TENSILE; SUCH AS THE PISTON ROD OF SINGLE ACTING ENGINES, PUMP RODS, ETC.

RULE.—To find the diameter of a rod exposed to a tensile force only.—Multiply the diameter of the piston in inches by the square root of the greatest elastic force of the steam in the boiler estimated in lbs. per square inch; the product, divided by 95, is the diameter of the rod in inches.

Required the diameter of the transverse section of a piston rod in a single acting engine, when the diameter of the cylinder is 50 inches, and the greatest possible force of the steam in the boiler is 16 lbs. per square inch. Here, according to the formula,

 $d = \frac{50}{95} \sqrt{16} = \frac{200}{95} = 2.1$  inches.
RULE.—To find the strength of rods alternately extended and compressed, such as the piston rods of double acting engines.—Multiply the diameter of the piston in inches by the square root of the maximum pressure of the steam in lbs. per square inch; divide the product by

### 47 for cast iron,

### 50 for malleable iron.

This rule applies to the piston rods of double acting engines, parallel motion rods, air-pump and force-pump rods, and the like. The rule may also be applied to determine the strength of connecting rods, by taking, instead of P, a number P', such that  $P' \times sine$ of the greatest angle which the connecting rod makes with the direction = P.

Supposing the greatest force of the steam in the boiler to be 16 lbs. per square inch, and the diameter of the cylinder 50 inches; required the diameter of the piston rod, supposing the engine to be double acting. In this case

for cast iron 
$$d = \frac{D}{47}\sqrt{P} = \frac{50 \times 4}{47} = 5$$
 inches nearly;  
for malleable iron  $d = \frac{D}{50}\sqrt{P} = 4$  inches.

The pressure, however, is always taken in practice at more than 16 lbs. If the pressure be taken at 25 lbs., the diameter of a malleable iron piston rod will be 5 inches, which is the usual proportion. Piston rods are never made of cast iron, but air-pump rods are sometimes made of brass, and the connecting rods of land engines are cast iron in most cases.

## FORMULAS FOR THE STRENGTH OF VARIOUS PARTS OF MARINE ENGINES.

The following general rules give the dimensions proper for the parts of marine engines, and we shall recapitulate, with all possible brevity, the data upon which the denominations rest.

Let pressure of the steam in boiler = p lbs. per square inch,

Diameter of cylinder = D inches,

Length of stroke = 2 R inches.

The vacuum below the piston is never complete, so that there always remains a vapour of steam possessing a certain elasticity. We may suppose this vapour to be able to balance the weight of the piston. Hence the entire pressure on the square inch of piston in lbs. = p + pressure of atmosphere = 15 + p. We shall substitute P for 15 + p. Hence

Entire pressure on piston in lbs. =  $.7854 \times (15 + p) \times D^2$ =  $.7854 \times P \times D^2$ .

The dimensions of the paddle-shaft journal may be found from the following formulas, which are calculated so that the strain in ordinary working  $= \frac{5}{6}$  elastic force.

Diameter of paddle-shaft journal =  $.08264 \{R \times P \times D^2\}^{\frac{1}{3}}$ Length of ditto =  $1\frac{1}{4} \times \text{diameter}$ .

#### THE PRACTICAL MODEL CALCULATOR.

The dimensions of the several parts of the crank may be found from the following formulas, which are calculated so that the strain in ordinary working = one-half the elastic force; and when one paddle is suddenly brought up, the strain at shaft end of crank  $=\frac{2}{3}$ elastic force, the strain at pin end of crank = elastic force.

Exterior diameter of large eye = diameter of paddle-shaft +

$$\left\{ \frac{D\left[P \times 1.561 \times R^2 + .00494 \times D^2 \times P^2\right]^{\frac{1}{2}}}{75.59 \times \sqrt{R}} \right\}^{\frac{2}{3}}$$

Length of ditto = diameter of paddle shaft.

Exterior diameter of small eye = diameter of crank pin +  $02521 \times \sqrt{P} \times D$ .

Length of ditto =  $\cdot 0375 \times \sqrt{P} \times D$ . Thickness of web at paddle centre =

$$\left\{ \frac{\mathbf{D}^2 \times \mathbf{P} \times \sqrt{\{1 \cdot 561 \times \mathbf{R}^2 + \cdot 00494 \times \mathbf{D}^2 \times \mathbf{P}\}}}{9000} \right\}^{\frac{1}{2}}$$

Breadth of ditto  $= 2 \times$  thickness.

Thickness of web at pin centre  $-.022 \times \sqrt{P} \times D$ .

Breadth of ditto =  $\frac{3}{2} \times$  thickness.

As these formulas are rather complicated, we may show what they become when p = 10 or P = 25.

Exterior diameter of large eye = diameter of paddle shaft +

$$\frac{D\sqrt{(1.561\times R^2+.1235\times D^2)}}{15.12\times\sqrt{R}}\bigg\}^{\frac{2}{3}}$$

Length of ditto = diameter of paddle shaft.

Exterior diameter of small eye = equal diameter of crank pin +  $\cdot 126 \times D$ .

Length of ditto =  $\cdot 1875 \times D$ .

Thickness of web at pin centre =  $\cdot 11 \times D$ .

Breadth of ditto =  $\frac{3}{2} \times$  thickness of web.

The dimensions of the crank pin journal may be found from the following formulas, which are calculated so that strain when bearing at outer end = elastic force, and in ordinary working strain = one-third of elastic force.

Diameter of crank-pin journal =  $\cdot 02836 \times \sqrt{P} \times D$ .

Length of ditto  $= \frac{9}{8} \times \text{diameter.}$ 

The dimensions of the several parts of the cross head may be found from the following formulas, in which we have assumed, for the purpose of calculation, the length =  $1.4 \times D$ . The formulas have been calculated so as to give the strain of web =  $\frac{1}{2 \cdot 225} \times$ elastic force; strain of journal in ordinary working =  $\frac{1}{2 \cdot 33} \times$  elastic force, and when bearing at outer end =  $\frac{1}{1 \cdot 165} \times$  elastic force.

Depth of ditto =  $\cdot 0979 \times P^{\frac{1}{3}} \times D$ .

Diameter of journal =  $\cdot 01716 \times \sqrt{P} \times D$ . Length of ditto =  $\frac{9}{8}$  diameter of journal. Thickness of web at middle =  $\cdot 0245 \times P^{\frac{1}{3}} \times D$ . Breadth of ditto =  $\cdot 09178 \times P^{\frac{1}{3}} \times D$ . Thickness of web at journal =  $\cdot 0122 \times P^{\frac{1}{2}} \times D$ . Breadth of ditto =  $\cdot 0203 \times P^{\frac{1}{2}} \times D$ . The dimensions of the several parts of the piston rod may be found from the following formulas, which are calculated so that the strain of piston rod  $= \frac{1}{4}$  elastic force. Diameter of the piston rod =  $\frac{\sqrt{P} \times D}{50}$ . Length of part in piston =  $\cdot 04 \times D \times P$ . Major diameter of part in crosshead =  $\cdot 019 \times \sqrt{P} \times D$ . Minor diameter of ditto =  $\cdot 018 \times \sqrt{P} \times D$ . Major diameter of part in piston =  $\cdot 028 \times \sqrt{P} \times D$ . Minor diameter of ditto =  $\cdot 023 \times \sqrt{P} \times D$ . Depth of gibs and cutter through crosshead =  $0358 \times P^{\frac{1}{3}} \times D$ . Thickness of ditto =  $\cdot 007 \times P^{\frac{1}{3}} \times D$ . Depth of cutter through piston =  $\cdot 017 \times \sqrt{P} \times D$ . Thickness of ditto =  $\cdot 007 \times P^{\frac{1}{2}} \times D$ . The dimensions of the several parts of the connecting rod may be found from the following formulas, which are calculated so that the strain of the connecting rod and the strain of the strap are both equal to one-sixth of the elastic force. Diameter of connecting rod at ends =  $\cdot 019 \times P^{\frac{1}{2}} \times D$ . Diameter of ditto at middle =  $\{1 + .0035 \times \text{length in inches}\}$  $\times \cdot 019 \times \sqrt{P} \times D.$ Major diameter of part in crosstail =  $\cdot 0196 \times P^{\frac{1}{2}} \times D$ . Minor ditto =  $\cdot 018 \times P^{\frac{1}{2}} \times D$ . Breadth of butt =  $\cdot 0313 \times P^{\frac{1}{2}} \times D$ . Thickness of ditto =  $\cdot 025 \times P^{\frac{1}{2}} \times D$ . Mean thickness of strap at cutter =  $.00854 \times \sqrt{P} \times D$ . Ditto above cutter =  $\cdot 00634 \times \sqrt{P} \times D$ . Distance of cutter from end of strap =  $\cdot 0097 \times \sqrt{P} \times D$ . Breadth of gibs and cutter through crosstail =  $\cdot 0358 \times P^{\frac{1}{3}} \times D$ . Breadth of gibs and cutter through butt =  $022 \times P^{\frac{1}{2}} \times D$ . Thickness of ditto =  $\cdot 00564 \times P^{\frac{1}{2}} \times D$ .

## THE PRACTICAL MODEL CALCULATOR.

The dimensions of the several parts of the side rods may be found from the following formulas, which are calculated so as to make the strain of the side rod = one-sixth of elastic force, and the strains of strap and cutter = one-fifth of elastic force.

Diameter of cylinder side rods at ends =  $\cdot 0129 \times P^{\frac{1}{2}} \times D$ . Diameter of ditto at middle =  $(1 + \cdot 0035 \times \text{length in inches})$ .

$$\times \cdot 0129 \times P^2 \times D.$$

Breadth of butt =  $\cdot 0154 \times P^{\frac{1}{2}} \times D$ .

Thickness of ditto =  $\cdot 0122 \times P^{\frac{1}{2}} \times D$ .

Diameter of journal at top end of side rod =  $\cdot 01716 \times P^{\frac{1}{2}} \times D$ . Length of journal at top end =  $\frac{9}{8}$  diameter.

Diameter of journal at bottom end =  $\cdot 014 \times P^{\frac{1}{2}} \times D$ .

Length of ditto =  $\cdot 0152 \times P^{\frac{1}{2}} \times D$ .

Mean thickness of strap at cutter =  $\cdot 00643 \times P^{\frac{1}{2}} \times D$ .

Ditto below cutter =  $\cdot 0047 \times P^{\frac{1}{2}} \times D$ .

Breadth of gibs and cutter =  $\cdot 016 \times P^{\frac{1}{2}} \times D$ .

Thickness of ditto =  $\cdot 0033 \times P^{\frac{1}{2}} \times D$ .

The dimensions of the main centre journal may be found from the following formulas, which are calculated so as to make the strain in ordinary working = one half elastic force.

Diameter of main centre journal =  $\cdot 0367 \times P^2 \times D$ .

Length of ditto  $= \frac{3}{2} \times \text{diameter.}$ 

The dimensions of the several parts of the air-pump may be found from the corresponding formulas given above, by taking for D another number d the diameter of air-pump.

DIMENSIONS OF THE SEVERAL PARTS OF FURNACES AND BOILERS.

Perhaps in none of the parts of a steam engine does the practice of engineers vary more than in those connected with furnaces and boilers. There are, no doubt, certain proportions for these, as well as for the others, which produce the maximum amount of useful effect for particular given purposes; but the determination of these proportions, from theoretical considerations, has hitherto been attended with insuperable difficulties, arising principally from our imperfect knowledge of the laws of combustion of fuel, and of the laws according to which caloric is imparted to the water in the boiler. In giving, therefore, the following proportions for the different parts, we desire to have it understood that we do not affirm them to be the best, absolutely considered; we give them only as the average practice of the best modern constructors. In most of the cases we have given the average value per nominal horse power. It is well known that the term, horse power is a conventional unit for measuring the size of steam engines, just as a foot or a mile is

#### THE STEAM ENGINE.

a unit for the measurement of extension. There is this difference, however, in the two cases, that whereas the length of a foot is fixed definitively, and is known to every one, the dimensions proper to an engine horse power differ in the practice of every different maker: and the same kind of confusion is thereby introduced into engineering as if one person were to make his foot-rule eleven inches long, and another thirteen inches. It signifies very little what a horse power is defined to be; but when once defined, the measurement should be kept inviolable. The question now arises, what standard ought to be the accepted one. For our present purpose, it is necessary to connect by a formula the three quantities, nominal horses power, length of stroke, and diameter of cylinder. With this intention,

# Let S =length of stroke in feet,

d = diameter of cylinder in inches;

Then the nominal horse power  $=\frac{d^2 \times \sqrt[3]{3}S}{47}$  nearly.

I. Area of Fire Grate.—The average practice is to give .55 square feet for each nominal horse power. Hence the following rule:

RULE 1.—To find the area of the fire grate.—Multiply the number of horses power by 55; the product is the area of the fire grate in square feet.

Required the total area of the fire grate for an engine of 400 horse power. Here total area of fire grate in square feet =  $400 \times .55 = 220$ .

A rule may also be found for expressing the area of the fire grate in terms of the length of stroke and the diameter of the cylinder. For this purpose we have,

total area of fire grate =  $\frac{\cdot 55 \times d^2 \times \sqrt[3]{8}}{47}$  feet =  $\frac{d^2 \times \sqrt[3]{8}}{86}$  feet.

This formula expressed in words gives the following rule.

RULE 2.— To find the area of fire grate.—Multiply the cube root of the length of stroke in feet by the square of the diameter in inches; divide the product by 86; the quotient is the area of fire grate in square feet.

Required the total area of the fire grate for an engine whose stroke = 8 feet, and diameter of cylinder = 50 inches.

Here, according to the rule,

total area of fire grate in square feet  $=\frac{50^2 \times \sqrt[3]{8}}{86} = \frac{2500 \times 2}{86} = 5000$ 

 $\frac{3000}{86} = 59$  nearly.

In order to work this example by the first rule, we find the nominal horse power of the engine whose dimensions we have specified is 104.3; hence,

total area of fire grate in square feet =  $106.4 \times .55 = 58.5$ .

With regard to these rules we may remark, not only that they are founded on practice, and therefore empyrical, but they are only applicable to large engines. When an engine is very small, it requires a much larger area of fire grate in proportion to its size than a larger one. This depends upon the necessity of having a certain amount of fire grate for the proper combustion of the coal.

II. Length of Furnace.—The length of the furnace differs considerably, even in the practice of the same engineer. Indeed, all the dimensions of the furnace depend to a certain extent upon the peculiarity of its position. From the difficulty of firing long furnaces efficiently, it has been found more beneficial to restrict the length of the furnace to about six feet than to employ furnaces of greater length.

III. Height of Furnace above Bars.—This dimension is variable, but it is a common practice to make the height about two feet.

IV. Capacity of Furnace Chamber above Bars.—The average per horse power may be taken at 1.17 feet. Hence the following rule:

RULE.— To find the capacity of furnace chamber above bars.— Multiply the number of nominal horses power by 1.17; the product is the capacity of furnace chambers above bars in cubic feet.

V. Areas of Flues or Tubes in smallest part.—The average value of the area per horse power is 11.2 sq. in. Hence we have the following rule:

RULE.—To find the total area of the flues or tubes in smallest part.—Multiply the number of horse power by 11.2; the product is the total area in square inches of flues or tubes in smallest part.

Required total area of flues or tubes for the boiler of a steam engine when the horse power = 400.

For this example we have, according to the rule,

Total area in square inches =  $400 \times 11 \cdot 2 = 4480$ .

We may also find a very convenient rule expressed in terms of the stroke and the diameter of cylinder. Thus,

Total area of tubes or flues in square inches =  $\frac{11\cdot 2 \times d^2 \times \sqrt[3]{S}}{4^{17}}$ 

$$=\frac{d^2\times\sqrt[3]{S}}{4}.$$

VI. Effective Heating Surface.—The effective heating surface of flue boilers is the whole of furnace surface above bars, the whole of tops of flues, half the sides of flues, and none of the bottoms; hence the effective flue surface is about half the total flue surface. In tubular boilers, however, the whole of the tube surface is reckoned effective surface.

#### EFFECTIVE HEATING SURFACE OF FLUE BOILERS.

RULE 1.—To find the effective heating surface of marine flue boilers of large size.—Multiply the number of nominal horse power by 5; the product is the area of effective heating surface in square feet. Required the effective heating surface of an engine of 400 nominal horse power.

In this case, according to the rule, effective heating surface in square feet =  $400 \times 5 = 2000$ .

The effective heating surface may be expressed in terms of the length of stroke and the diameter of the cylinder.

RULE 2.—To find the total effective heating surface of marine flue boilers.—Multiply the square of the diameter of cylinder in inches by the cube root of the length of stroke in feet; divide the product by 10: the quotient expresses the number of square feet of effective heating surface.

Required the amount of effective heating surface for an engine whose stroke = 8 ft., and diameter of cylinder = 50 inches.

Here, according to Rule 2, effective heating surface in square feet

$$=\frac{50^2\times\sqrt[3]{8}}{10}=\frac{2500\times2}{10}=\frac{5000}{10}=500.$$

To solve this example according to the first rule, we have the nominal horse power of the engine equal to 106.4. Hence, according to Rule 2, total effective heating surface in square feet =  $106.4 \times 4.92 = 523\frac{1}{2}$ .

EFFECTIVE HEATING SURFACE OF TUBULAR BOILERS.

The effective heating surface of tubular boilers is about equal to the total heating surface of flue boilers, or is double the effective surface; but then the total tube surface is reckoned effective surface.

It appears that the total heating surface of flue and tubular marine boilers is about the same, namely, about 10 square feet per horse power.

VII. Area of Chimney.—Rule 1.—To find the area of chimney. —Multiply the number of nominal horse power by 10.23; the product is the area of chimney in square inches.

Required the area of the chimney for an engine of 400 nominal horse power.

In this example we have, according to the rule,

area of chimney in square inches =  $400 \times 10.23 = 4092$ .

We may also find a rule for connecting together the area of the chimney, the length of the stroke, and the diameter of the cylinder.

RULE 2.— To find the area of the chimney.—Multiply the square of the diameter expressed in inches by the cube root of the stroke expressed in feet; divide the product by the number 5; the quotient expresses the number of square inches in the area of chimney.

Required the area of the chimney for an engine whose stroke = 8 feet, and diameter of cylinder = 50 inches.

We have in this example from the rule,

area of chimney in square inches  $=\frac{50^2 \times \sqrt[3]{8}}{5}=\frac{2500 \times 2}{5}=$  1000.

w 2

To work this example according to the first rule, we find, that the nominal horse power of this engine is 104.6: hence,

area of chimney in square inches =  $104.6 \times 10.23 = 1070$ .

The latter value is greater than the former one by 70 inches. This difference arises from our taking too great a divisor in Rule 2. Either of the values, however, is near enough for all practical purposes.

VIII. Water in Boiler.—The quantity of water in the boiler differs not only for different boilers, but differs even for the same boiler at different times. It may be useful, however, to know the average quantity of water in the boiler for an engine of a given horse power.

RULE 1.—To determine the average quantity of water in the boiler.—Multiply the number of horse power by 5; the product expresses the cubic feet of water usually in the boiler.

This rule may be so modified as to make it depend upon the stroke and diameter of the cylinder of engine.

RULE 2.— To determine the cubic feet of water usually in the boiler.—Multiply together the cube root of the stroke in feet, the square of the diameter of the cylinder in inches, and the number 5; divide the continual product by 47; the quotient expresses the cubic feet of water usually in the boiler.

Required the usual quantity of water in the boilers of an engine whose stroke = 8 feet, and diameter of cylinder 50 inches.

Here we have from the rule,

cubic feet of water in boiler =  $\frac{5 \times 50^2 \times \sqrt[3]{8}}{47} = \frac{5 \times 2500 \times 2}{47}$ 

 $=\frac{25000}{47}=532$  nearly.

The engine, with the dimensions we have specified, is of 106.4 nominal horse power. Hence, according to Rule 1,

cubic feet of water in boiler =  $106.4 \times 5 = 532$ .

IX. Area of Water Level.—RULE 1.—To find the area of water level.—The area of water level contains the same number of square feet as there are units in the number expressing the nominal horse power of the engine.

Required the area of water level for an engine of 200 nominal horse power. According to the rule, the answer is 200 square feet.

We add a rule for finding the area of water level when the diameter of cylinder and the length of stroke is given.

RULE 2.— To find the area of water level.—Multiply the square of the diameter in inches by the cube root of the stroke in feet; divide the product by 47; the quotient expresses the number of square feet in the area of water level.

Required the area of the water level for an engine whose stroke is 8 feet, and diameter of cylinder 50 inches.

## In this case, according to the rule,

area of water level in square feet =  $\frac{50^2 \times \sqrt[3]{8}}{47} = 106$ .

X. Steam Room.—It is obvious that the steam room, like the quantity of water, is an extremely variable quantity, differing, not only for different boilers, but even in the same boiler at different times. It is desirable, however, to know the content of that part of the boiler usually filled with steam.

RULE 1.— To determine the average quantity of steam room.— Multiply the number expressing the nominal horse power by 3; the product expresses the average number of cubic feet of steam room.

Required the average capacity of steam room for an engine of 460 nominal horse power.

According to the rule,

Average capacity of steam room =  $460 \times 3$  cubic feet = 1380 cubic feet.

This rule may be so modified as to apply when the length of stroke and diameter of cylinder are given.

RULE 2.—Multiply the square of the diameter of the cylinder in inches by the cube root of the stroke in feet; divide the product by 15; the quotient expresses the number of cubic feet of steam room.

Required the average capacity of steam room for an engine whose stroke is 8 feet, and diameter of cylinder 5 inches.

In this case, according to the rule,

Steam room in cubic feet  $=\frac{50^2 \times \sqrt[3]{8}}{15} = \frac{2500 \times 2}{15} = \frac{5000}{15} = 333\frac{1}{3}$ .

We find that the nominal horse power of this engine is 106.4; hence, according to Rule 1,

average steam room in cubic feet =  $106.4 \times 3 = 320$  nearly.

Before leaving these rules, we would again repeat that they ought not to be considered as rules founded upon considerations for giving the maximum effect from the combustion of a given amount of fuel; and consequently the engineer ought not to consider them as invariable, but merely to be followed as far as circumstances will permit. We give them, indeed, as the medium value of the very variable practice of several well-known constructors; consequently, although the proportions given by the rules may not be the best possible for producing the most useful effect, still the engineer who is guided by them is sure not to be very far from the common practice of most of our best engineers. It has often been lamented that the methods used by different engine makers for estimating the nominal powers of their engines have been so various that we can form no real estimate of the dimensions of the engine, from its reputed nominal horse power, unless we know its maker; but the

same confusion exists, also, to some extent, in the construction of boilers. Indeed, many things may be mentioned, which have hitherto operated as a barrier to the practical application of any standard of engine power for proportioning the different parts of the boiler and furnace. The magnitude of furnace and the extent of heating surface necessary to produce any required rate of evaporation in the boiler are indeed known, yet each engine-maker has his own rule in these matters, and which he seems to think preferable to all others, and there are various circumstances influencing the result which render facts incomparable unless those circumstances are the same. Thus the circumstances that govern the rate of evaporation, as influenced by different degrees of draught, may be regarded as but imperfectly known. And, supposing the difficulty of ascertaining this rate of evaporation were surmounted. there would still remain some difficulty in ascertaining the amount of power absorbed by the condensation of the steam on its passage to the cylinder-the imperfect condensation of the same steam after it has worked the piston-the friction of the various moving parts of the machinery-and, especially, the difference of effect of these losses of power in engines constructed on different scales of magnitude. Practice must often vary, to a certain extent, in the construction of the different parts of the boiler and furnace of an engine; for, independently of the difficulty of solving the general problem in engineering, the determination of the maximum effect with the minimum of means, practice would still require to vary according as in any particular case the desired minimum of means was that of weight, or bulk, or expense of material. Again, in estimating the proper proportions for a boiler and its appendages, reference ought to be made to the distinction between the "power" or "effect" of the boiler, and its "duty." This is a distinction to be considered also in the engine itself. The power of an engine has reference to the time it takes to produce a certain mechanical effect without reference to the amount of fuel consumed; and, on the other hand, the duty of an engine has reference to the amount of mechanical effect produced by a certain consumption of fuel, and is independent of the time it takes to produce that effect. In expressing the duty of engines, it would have prevented much needless confusion if the duty of the boiler had been entirely separated from that of the engine, as, indeed, they are two very distinct things. The duty performed by ordinary land rotative steam engines is-

One horse power exerted by 10 lbs. of fuel an hour; or,

Quarter of a million of lbs. raised 1 foot high by 1 lb. of coal; or, Twenty millions of lbs. raised one foot by each bushel of coals.

Though in the best class of rotative engines the consumption is not above half of this amount.

The constant aim of different engine makers is to increase the amount of the duty; that is, to make 10 lbs. of fuel exert a greater effect than one horse power; or, in other words, to make 1 lb. of

coal raise more than a quarter of a million of lbs. one foot high. To a great extent they have been successful in this. They have caused 5 lbs. of coal to exert the force of one horse power, and even in some cases as little as  $3\frac{1}{2}$  lbs.; but in these latter cases the economy is due chiefly to expansive action. In some of the engines, however, working with a consumption of 10 lbs. of coal per nominal horse hower per hour, the power really exerted amounts to much more than that represented by 33,000 lbs. lifted one foot high in the minute for each horse power. Some engines lift 56,000 lbs. one foot high in the minute by each horse power, with a consumption of 10 lbs. of coal per horse power per hour; and even this performance has been somewhat exceeded without a recourse to expansive action. In all modern engines the actual performance much exceeds the nominal power; and reference must be had to this circumstance in contrasting the duty of different engines.

## MECHANICAL POWER OF STEAM.

We may here give a table of some of the properties of steam, and of its mechanical effects at different pressures. This table may help to solve many problems respecting the mechanical effect of steam, usually requiring much laborious calculation.

PRESSURES.		Tem-	Weight	Velocity	ME	HANIC.	AL EFF	ECT IN OF St	HORSE TEAM.	Powe	R OF 1	LB.	
		in de- grees Fahren.	Cubio Foot Steam.	Cubio Foot Steam.	of Exit.	W	ithout C Exps	ondensati naion.	on.		Conder Expa	nsation.	
Atmo-	Lbs. per Sq. Inch.				0	$\frac{1}{2}$	<del>1</del>	4	0	1/2	13	14	
1.00	14.70	212.00	0.0364	0	0	32.4	95.2	170.5	91.3	150.1	178.6	194.6	
1.25	18.38	$223 \cdot 88$	0.0440	873	21.5	10.1	32.3	87.4	95-9	158.7	190.6	209.9	
1.50	22.05	234.32	0.0529	1135	36.4	39.3	10.8	30.6	99.3	165.2	199.6	221.1	
1.75	25.72	242.78	0.0609	1295	47.4	60.8	42.5	11.1	102.0	170.0	206.2	229.5	
2.00	29.40	250.79	0.0688	1407	55.9	77.5	67.0	43.2	104.3	174.2	212.0	236.5	
2.25	33.08	257.90	0.0766	1491	62.8	90.9	86.5	68.8	106.2	177.7	216.7	242.4	
2.50	36.75	263.93	0.0344	1556	68.4	101.8	102.4	89.6	107.7	180.5	220.5	247.1	
2.75	40.42	269.87	0.0921	1608	73.1	111.0	115.8	107.1	109.3	183.2	224.2	251.6	
3.00	44.10	275.00	0.0998	1652	71.1	118.8	127.1	121.9	110.6	185.4	227.7	$255 \cdot 2$	
3.32	47.78	279.86	0.1073	1690	80.7	125.6	137.1	136.7	111.7	187.6	230.0	258.7	
3.20	51.45	284.63	0.1148	1722	83.8	131.5	145.6	145.8	112.7	189.4	232.4	261.6	
3.75	55.12	288.66	0.1225	1750	86.5	136-8	153.2	155.6	113.7	190.1	234.7	264.4	
4.00	58.18	$292 \cdot 91$	0.1298	1774	89.0	141.5	160	164.5	114.6	192.8	236.9	267.0	
4.20	66.15	300.27	0.1445	1816	93.2	149.8	171.5	179.4	116.2	195.6	240.5	271.4	
5.00	73.50	307.94	0.1590	1850	96.8	156.5	181.6	192.0	117.7	198.3	244.1	275.6	
6.00	88.20	320.00	0.1878	1904	102.5	167.2	196.5	211.4	120.2	202.6	249.7	282.2	
7.00	102.90	331.56	0.2159	1945	107.0	175.6	208.4	226.5	122.4	206.4	254.6	$288 \cdot 1$	
8.00	117.60	340.83	0.2436	1978	110.6	182.4	217.9	238.4	124.3	209	258.8	292.1	
9.00	132.30	351.32	0.2708	2006	113.7	188.2	225.9	248.5	126.0	212	262.7	293.6	
10.00	147.00	359.60	0.2977	2029	116.3	193.0	232.5	256.7	127.5	215	266.0	301.4	
12.50	183.75	377.42	0.3642	2074	121.5	202.5	245.5	273.0	130.7	220	272.9	309.5	
15.00	220.50	392.90	0.4288	2109	125.7	210.0	255.6	285.4	133.4	225	278.9	316.4	
17.50	257.25	406.40	0.4924	2136	129.0	216.0	263.6	295.2	135.7	229	283.9	322.2	
20	294.00	418.56	0.5549	2159	131.8	221.0	270-3	305.3	137.8	233	288.3	327.2	
25	367.50	429.34	0.6775	2196	136.3	229.1	281.0	316.2	141.2	238	295.7	335.8	
30	441.00	$457 \cdot 16$	0.7970	2226	140.0	235.6	289.5	326.4	144.2	244	302.0	343.1	

It is quite clear that although there is no theoretical limit to the benefit derivable from expansion, there must be a limit in practice, arising from the friction incidental to the use of very large cylinders, the magnitude of the deduction due to uncondensed vapour when the steam is of a very low pressure, and other circumstances which it is needless to relate. It is clear, too, that while the effi-

ciency of the steam is increased by expansive action, the efficiency of the engine is diminished, unless the pressure of the steam or the speed of the piston be increased correspondingly; and that an engine of any given size will not exert the same power if made to operate expansively without any other alteration that would have been realized if the engine had been worked with the full pressure of the In the Cornish engines, which work with steam of 40 lbs. steam. on the inch, the steam is cut off at one-twelfth of the stroke : but if the steam were cut off at one-twelfth of the stroke in engines employing a very low pressure, it would probably be found that there would be a loss rather than a gain from carrying the expansion so far, as the benefit might be more than neutralized by the friction incidental to the use of so large a cylinder as would be necessary to accomplish this expansion; and unless the vacuum were a very good one, there would be but little difference between the pressure of the steam at the end of the stroke and the pressure of the vapour in the condenser, so that the urging force might not at that point be sufficient to overcome the friction. In practice, therefore, in particular cases, expansion may be carried too far, though theoretically the amount of the benefit increases with the amount of the expansion.

We must here introduce a simple practical rule to enable those who may not be familiar with mathematical symbols to determine the amount of benefit due to any particular measure of expansion. When expansion is performed by an expansion valve, it is an easy thing to ascertain at what point of the stroke the valve is shut by the cam, and where expansion is performed by the slide valve the amount of expansion is easily determinable when the lap and stroke of the valve are known.

RULE.—To find the Increase of Efficiency arising from working Steam expansively.—Divide the total length of the stroke by the distance (which call 1) through which the piston moves before the steam is cut off. The hyperbolic logarithm of the whole stroke expressed in terms of the part of the stroke performed with the full pressure of steam, represents the increase of efficiency due to expansion.

Suppose that the pressure of the steam working an engine is 45 lbs. on the square inch above the atmosphere, and that the steam is cut off at one-fourth of the stroke; what is the increase of efficiency due to this measure of expansion?

If one-fourth be reckoned as 1, then four-fourths must be taken as 4, and the hyperbolic logarithm of 4 will be found to be 1.386, which is the increase of efficiency. The total efficiency of the quantity of steam expended during a stroke, therefore, which without expansion would have been 1, becomes 2.386 when expanded into 4 times its bulk, or, in round numbers, 2.4.

Let the pressure of the steam be the same as in the last example, and let the steam be cut off at half-stroke: what, then, is the increase of efficiency? Here half the stroke is to be reckoned as 1, and the whole stroke has therefore to be reckoned as 2. The hyperbolic logarithm of 2 is  $\cdot 693$ , which is the increase of efficiency, and the total efficiency of the stroke is  $1 \cdot 693$ , or  $1 \cdot 7$ .

of the stroke is 1.693, or 1.7. We may here give a table to illustrate the mechanical effect of steam under varying circumstances. The table shows the me-

Total pressure in lbs. per Square Inch.	Correspond- ing Tem- perature.	Velume of Steam compared with Water.	Mechanical effect of Cubic Inch of Water.	Total pressure in lbs. per Square Iuch.	Correspond- ing Tem- perature.	Volume of Steam compared with Water.	Mechanical effect of Cubic Inch of Water.
1	103	. 20.868	1789	51	284	544	9312
2	196	10.874	1812	52	286	534	2816
2	141	7437	1859	53	287	525	2320
4	150	5685	1805	54	988	516	9294
5	102	4617	1094	55	289	508	9397
6	101	3807	1049	56	1 2001	500	9321
7	176	3376	1969	57	292	492	2335
8	199	2983	1989	58	292	484	2000
0	104	2674	2006	50	200	477	2000
10	107	2426	2000	60	201	470	2040
11	102	2991	2022	61	200	463	2011
19	201	2050	2050	69	208	456	0255
14	201	1004	2000	69	200	149	0950
10	200	1778	2003	64	200	443	2000
14	209	1660	2074	65	201	497	0985
10	215	1009	2080	00	200	401	2300
10	210	1400	2097	00	202	495	2009
10	220	1400	2107	01	204	440	2372
10	223	1940	2117	00	304	410	2319
19	226	1040	2126	. 09	303	414	23/8
20	228	1281	2135	10	306	408	2382
21	231	1220	2144	1 71	307	403	2385
22	234	11/4	2152	12	308	398	2388
23	236	112/	2160	13	309	393	2391
24	239	1084	2168	14	- 310	388	2394
20	241	1044	2175	75	311	383	2397
26	243	1007	2182	10	312	379	2400
27	245	9/3	2189	11	313	374	2403
28	248	941	2196	78	314	370	2405
29	250	-911	2202	19	315	366	2408
30	252	883	2209	80	316	362	2411
31	254	857	2215	81	317	358	2414
32	255	833	2221	82	318	354	2417
33	257	810	2226	83	318	350	2419
34	259	188	2232	84	319	346	2422
30	261	767	2238	85	320	342	2425
36	263	148	2243	86	321	339	2427
37	264	729	2248	87	322	835	2430
38	266	712	2253	88	323	332	2432
39	267	695	2259	89	323	328	2435
40	269	679	2264	90	324	325	2438
. 41	271	664	2268	91	325	322	2440
42	272	649	2273	92	326	319	2443
43	274	635	2278	98	327	316	2445
44	275	622	2282	94	327	313	2448
40	276	610	2287	95	328	310	2450
40	278	598	2291	96	329	307	2453
47	279	586	2296	97	330	304	2455
48	280	575	2300	98	330	301	2457
49	282	564	2304	99	331	298	2460
50	283	554	2308	100	332	295	2462

chanical effect of the steam generated from a cubic inch of water. Our formula gives the effect of a cubic foot of water; but it can be modified to give the effect of the steam of a cubic inch by dividing by 1728. In this manner we find, for the mechanical effect of the steam of a cubic inch of water, about 3 (459 + t) lbs. raised one foot high. The table shows that the mechanical effect increases with the temperature. The increase is very rapid for temperatures below  $212^\circ$ ; but for temperatures above this the increase is less; and for the temperatures used in practice we may consider, without any material error, the mechanical effect as constant.

#### INDICATOR.

An instrument for ascertaining the amount of the pressure of steam and the state of the vacuum throughout the stroke of a steam engine. Fitzgerald and Neucumn long employed an instrument of this kind, the nature of which was for a long time not generally known. Boulton and Watt used an instrument acting upon the same principle and equally accurate; but much more portable. In peculiarity of construction it is simply a small cylinder truly bored, and into which a piston is inserted and loaded by a spring of suitable elasticity to the graduated scale thereon attached.

The action of an indicator is that of describing, on a piece of paper attached, a diagram or figure approximating more or less to that of a rectangle, varying of course with the merits or demerits of the engine's productive effect. The breadth or height of the diagram is the sum of the force of the steam and extent of the vacuum; the length being the amount of revolution given to the paper during the piston's performance of its stroke.

To render the indicator applicable, it is commonly screwed into the cylinder cover, and the motion to the paper obtained by means of a sufficient length of small twine attached to one of the radius bars; but such application cannot always be conveniently effected, more especially in engines on the marine principle; hence, other parts of such engines, and other means whereby to effect a proper degree of motion, must unavoidably be resorted to. In those of direct action the crosshead is the only convenient place of attachment; but because the length of the engine's stroke is considerably more than the movement required for the paper on the indicator, it is necessary to introduce a pulley and axle, by which means the various movements are qualified to suit each other.

When the indicator is fixed and the movement for the paper properly adjusted, allow the engine to make a few revolutions previous to opening the cock; by which means a horizontal line will be deacribed upon the paper by the pencil attached, and denominated the atmospheric line, because it distinguishes between the effect of the steam and that of the vacuum. Open the cock, and if the engine be upon the descending stroke, the steam will instantly raise the piston of the indicator, and, by the motion of the paper with the pencil pressing thereon, the top side of the diagram will be formed.

At the termination of the stroke and immediately previous to its return, the piston of the indicator is pressed down by the surrounding atmosphere, consequently the bottom side of the diagram is described, and by the time the engine is about to make another descending stroke, the piston of the indicator is where it first started from, the diagram being completed; hence is delineated the mean elastic action of the steam above that of the atmospheric line, and also the mean extent of the vacuum underneath it.

But in order to elucidate more clearly by example, take the following diagram, taken from a marine engine, the steam being cut off after the piston had passed through twothirds of its stroke, the graduated scale on the indicator, tenths of an inch, as shown at each end of the diagram annexed.

Previous to the cock being opened, the atmospheric line AB was formed, and, when opened, the pencil was instantly raised by the action of the steam on the piston to C, or what is generally termed the *starting corner*; by the movement of the paper and at the termination of the stroke the line CD was formed, showing the force of the steam and extent of expansion; from D to E show the moments of

eduction; from E to F the quality of the vacuum; and from F to A the lead or advance of the valve; thus every change in the engine is exhibited, and every deviation from a rectangle, except that of *expansion* and *lead* of the valve show the extent of proportionate defect. Expansion produces apparently a defective diagram, but in reality such is not the case, because the diminished power of the engine is more than compensated by the saving in steam. Also the lead of the valve produces an apparent defect, but a certain amount must be given, as being found advantageous to the working of the engine, but the steam and eduction corners ought to be as square as possible; any rounding on the steam corner shows a defect from want of lead; and rounding on the eduction corner that of the passages or apertures being too small.

RULE.—To compute the power of an Engine from the Indicator Diagram.—Divide the diagram in the direction of its length into any convenient number of equal parts, through which draw lines at right angles to the atmospheric line, add together the lengths of all the spaces taken in measurements corresponding with the scale on the indicator, divide the sum by the number of spaces, and the



quotient is the mean effective pressure on the piston in lbs. per square inch.

Let the result of the preceding diagram be taken as an example. Then, the whole sum of vacuum spaces =  $1220 \div 10 = 12 \cdot 2$  lbs. mean effect obtained by the vacuum; and in a similar manner the mean effective pressure of steam is found to be 6.28 lbs., hence the total effective force = 18.48 lbs. per square inch. And supposing 2.5 lbs. per square inch be absorbed by friction, What is the actual power of the engine, the cylinder's diameter being 32 inches, and the velocity of the piston 226 feet per minute?

 $18 \cdot 48 - 2 \cdot 5 = 15 \cdot 98 \text{ lbs. per square inch of net available force.}$ Then  $\frac{32^2 \times \cdot 7854 \times 15 \cdot 98 \times 226}{33000} = 88 \text{ horses power.}$ 

The line under the diagram and parallel to the atmospheric line is  $\frac{15}{15}$ ths distant, and represents the perfect vacuum line, the space between showing the amount of force with which the uncondensed steam or vapour resists the ascent or descent of the piston at every part of the stroke.

As the mean pressure of the atmosphere is 15 lbs. per square inch, and the mean specific gravity of mercury 13560, or 2.037 cubic inches equal 1 lb., it will of course rise in the barometer attached to the condenser about 2 inches for every lb. effect of vacuum, and as a pure vacuum would be indicated by 30 inches of mercury, the distance between the two lines shows whether there is or is not any amount of defect, as sometimes there is a considerable difference in extent of vacuum in the cylinder to that in the condenser.

To estimate by means of an indicator the amount of effective power produced by a steam engine.—Multiply the area of the piston in square inches by the average force of the steam in lbs. and by the velocity of the piston in feet per minute; divide the product by 33,000, and  $\frac{7}{10}$ ths of the quotient equal the effective power.

Suppose an engine with a cylinder of  $37\frac{1}{2}$  inches diameter, a stroke of 7 feet, and making 17 revolutions per minute, or 238 feet velocity, and the average indicated pressure of the steam 16.73 lbs. per square inch; required the effective power.

Area = 1104.4687 inches  $\times 16.73$  lbs.  $\times 238$  feet

 $= \frac{133 \cdot 26 \times 7}{10} = 93 \cdot 282 \text{ horse power.}$ 

To determine the proper velocity for the piston of a steam engine.— Multiply the logarithm of the *n*th part of the stroke at which the steam is cut off by  $2\cdot3$ , and to the product of which add  $\cdot7$ . Multiply the sum by the distance in feet the piston has travelled when the steam is cut off, and 120 times the square root of the product equal the proper velocity for the piston in feet per minute.

## WEIGHT COMBINED WITH MASS, VELOCITY, FORCE, AND WORK DONE.

CALCULATIONS ON THE PRINCIPLE OF VIS VIVA.—MATERIALS EMPLOYED IN THE CONSTRUCTION OF MACHINES.—STRENGTH OF MATERIALS, THEIR PROPERTIES.—TORSION, DEFLEXION, ELASTICITY, TENACITIES, COMPRESSIONS, ETC.—FRICTION OF REST AND OF MOTION, COEFFICIENTS OF ALL SORTS OF MOTION.—BANDS.—ROPES.—WHEELS.—HYDRAU-LICS.—NEW TABLES FOR THE MOTION AND FRICTION OF WATER.— WATER-WHEELS.—WINDMILLS, ETC.

1. Suppose a body resting on a perfectly smooth table, and, when in motion, to present no impediment to the body in its course, but merely to counteract the force of gravity upon it; if this body weighing 800 lbs. be pressed by the force of 30 lbs. acting horizontally and continuously, the motion under such circumstances will be uniformly accelerated: what is the acceleration?

$$\frac{30}{800} \times 32 \cdot 2 = 1 \cdot 2075$$
 feet the second.

2. What force is necessary to move the above-mentioned heavy body, with a 23 feet acceleration, under the same circumstances?

$$\frac{25}{32 \cdot 2} \times 800 = 57.14285$$
 lbs.

The second of these examples illustrates the principle that the force which impels a body with a certain acceleration is equal to the weight of the body multiplied by the ratio of its acceleration to that of gravity. The first illustrates the reverse, namely, the acceleration with which a body is moved forward with a given force, is equal to the acceleration of gravity multiplied by the ratio of the force to the weight.

3. A railway car, weighing 1120 lbs., moves with a 5 feet velocity upon horizontal rails, which, let us suppose, offer no impediment to the motion, and is constantly pushed by an invariable force of 50 lbs. during 20 seconds : with what velocity is it moving at the end of the 20th second, or at the beginning of the 21st second?

$$5 + 32 \cdot 2 \times \frac{50}{1120} \times 20 = 33 \cdot 75$$
, the velocity.

4. A carriage, circumstanced as in the last question, weighs 4000 lbs.; its initial velocity is 30 feet the second, and its terminal velocity is 70 feet: with which force is the body impelled, supposing it to be in motion 20 seconds?

$$\frac{(70 - 30) \times 4000}{32 \cdot 2 \times 20} = 242.17$$
 lbs.

We have before noticed that the weight (W), divided by  $32\cdot 2$ , or (g), gives the mass; that is,

 $\frac{\text{Weight}}{g} = \text{mass},$ And, force = mass × acceleration.

5. Suppose a railway carriage, weighing 6440 lbs., moves on a horizontal plane offering no impediment, and is uniformly accelerated 4 feet the second, what continuous force is applied?

> 6440 32.2 = 200 lbs. mass.

 $200 \times 4 = 800$  lbs., the force applied.

By the four succeeding formulas, all questions may be answered that may be proposed relative to the rectilinear motions of bodies by a constant force.

For uniformly accelerated motions:

$$v = a + 32 \cdot 2 \frac{F}{W} \times t;$$
  
$$s = at + 16 \cdot 1 \frac{F}{W} \times t^{2}.$$

For uniformly retarded motions:

$$v = a - 32 \cdot 2 \frac{\mathbf{F}}{\mathbf{W}} \times t;$$
  

$$s = at - 16 \cdot 1 \times \frac{\mathbf{F}}{\mathbf{W}} \times t^{2};$$

t = the time in seconds, W = the weight in lbs., F = the force in lbs., a = the initial velocity, and v = the terminal velocity.

6. A sleigh, weighing 2000 lbs., going at the rate of 20 feet a second, has to overcome by its motion a friction of 30 lbs.: what velocity has it after 10 seconds, and what distance has it described ?

 $20 - 32 \cdot 2 \times \frac{30}{2000} \times 10 = 15 \cdot 17$  feet velocity.

 $20 \times 10 - 16.1 \times \frac{30}{2000} \times (10)^2 = 175.85$  feet, distance de-

scribed.

7. In order to find the mechanical work which a draught-horse performs in drawing a carriage, an instrument called a dynamometer, or measure of force, is thus used : it is put into communication on one side of the carriage, and on the other with the traces of the horse, and the force is observed from time to time. Let 126 lbs. be the initial force; after 40 feet is described, let 130 lbs. be the force given by the dynamometer; after 40 feet more is described, let 129 lbs. be the force; after 40 feet more is passed over, let 140 lbs. be the force; and let the next two spaces of 40 feet give forces of 130 and 120 lbs. respectively. What is the mechanical work done?

$$\begin{array}{c} 126 \text{ initial force.} \\ 120 \text{ terminal force.} \\ 2) \underline{246} \\ 123 \text{ mean.} \end{array}$$

123 + 130 + 129 + 140 + 130 = 130.4

 $130.4 \times 40 \times 5 = 26080$  units of work.

The following rule, usually given to find the areas of irregular figures, may be applied where great accuracy is required.

RULE .- To the sum of the first and last, or extreme ordinates, add four times the sum of the 2d, 4th, 6th, or even ordinates, and twice the sum of the 3d, 5th, 7th, &c., or odd ordinates, not including the extreme ones; the result multiplied by  $\frac{1}{3}$  the ordinates' equidistance will be the sum.

> 126 120

246 sum of first and last.

 $246 + 4 \times 130 + 2 \times 129 + 4 \times 140 + 2 \times 130 = 1844.$  $\frac{1844 \times 40}{2} = 24586.66$  units of work or pounds raised one foot

high. This rule of equidistant ordinates is of great use in the art of ship-building. This application we shall introduce in the proper place.

8. How many units of work are necessary to impart to a carriage of 3000 lbs. weight, resting on a perfectly smooth railroad, a velocity of 100 feet?

 $\frac{(100)^2}{2 \times 32 \cdot 2} \times 3000 = 465838 \cdot 2 \text{ units.}$ 

A unit of work is that labour which is equal to the raising of a pound through the space of one foot. A unit of work is done when one pound pressure is exerted through a space of one foot, no matter in what direction that space may lie.

Kane Fitzgerald, the first that made steam turn a crank, and patented it, and the fly-wheel to regulate its motion, estimated that a horse could perform 33000 units of work in a minute, that is, raise 33000 lbs. one foot high in a minute. To perform 465838.2 units of work in 10 minutes would require the application 1.4116 horse power.

9. What work is done by a force, acting upon another carriage, under the same circumstances, weighing 5000 lbs., which transforms the velocity from 30 to 50 feet?

 $\frac{(30)^2}{64\cdot 4}$  = 13.9907, the height due to 30 feet velocity.

 $\frac{(50)^2}{64\cdot4} = 38\cdot8043$ , the height due to 50 feet velocity.

From Take	38·8043 13·9907
	24·8136 5000
	124068.0000

x 2

1 1.

1.15. 8

### THE PRACTICAL MODEL CALCULATOR.

... 124068 are the units of work, and just so much work will the carriage perform if a resistance be opposed to it, and it be gradually brought from a 50 feet velocity to a 30 feet velocity.

The following is without doubt a very simple formula, but the most useful one in mechanics; by it we have solved the last two questions:

$$\mathbf{Fs} = (\mathbf{H} - h) \mathbf{W}.$$

This simple formula involves the principle technically termed the principle of VIS VIVA, or LIVING FORCES. H is the height due to one velocity, say v or  $H = \frac{v^2}{2q}$  and h, the height due to another a,

or  $h = \frac{a^2}{2q}$ . The weight of the mass = W; the force F, and the space s.

To express this principle in words, we may say, that the working power ( $\mathbf{F}s$ ) which a mass either acquires when it passes from a lesser velocity (a) to a greater velocity (v), or produces when it is compelled to pass from a greater velocity (v) into a less (a), is always equal to the product of the weight of the mass and the difference of the heights due to the velocities.

When we know the units of work, and the distance in which the change of velocity goes on, the force is easily found; and when the force is known, the distance is readily determined. Suppose, in the last example, that the change of velocity from 30 to 50 feet took place in a distance of 300 feet, then

#### 124068

= 413.56 lbs. = F, the force constantly applied during 300 300 feet.

10. If a sleigh, weighing 2000 lbs., after describing a distance of 250 feet, has completely lost a velocity of 100 feet, what constant resistance does the friction offer?

Since the terminal velocity = 0, the height due to it = 0, hence

 $\frac{(100)^2}{64\cdot 4} \times \frac{2000}{250} = 1242 \cdot 2352 \text{ lbs.}$ 

We have been calculating upon the principle of vis viva; but the product of the mass and the square of the velocity, without attaching to it any definite idea, is termed the vis viva, or living force.

11. A body weighing 2300 lbs. moves with a velocity of 20 feet the second, required the vis viva?

$$\frac{2300}{32 \cdot 2} = 71 \cdot 42857$$
 lbs., mass.

 $71.42857 \times (20)^2 = 28571.428$ , the amount of vis viva.

Hence, if a mass enters from a velocity a, into another v, the unit of work done is equal to half the difference of the vis viva, at the commencement and end of the change of velocity.

For if the mass be put = M, and W the weight,

Then  $M = \frac{W}{g}$ , and the vis viva to velocity  $a = Ma^2 = \frac{Wa^2}{g}$ ;

and the vis viva to velocity  $v = Mv^2 = \frac{Wv^2}{g}$ .

Then  $\frac{1}{2} \left\{ \frac{Wv^2}{g} - \frac{Wa^2}{g} \right\} = \left( \frac{v^2}{2g} - \frac{a^2}{2g} \right)^3 \times W = (H - h) W$ , for  $\frac{v^2}{2g}$  and  $\frac{a^2}{2g}$ , give the heights due to the velocities v and a, respectively. The useful formula

$$Fs \doteq (H - h) W.$$

before given, page 270, may be applied to variable as well as to constant forces, if, instead of the constant force F, the mean value of the force be applied.

## STRENGTH OF MATERIALS.

## ON MATERIAL EMPLOYED IN THE CONSTRUCTION OF MACHINES.

In theoretical mechanics, we deal with imaginary quantities, which are perfect in all their properties; they are perfectly hard, and perfectly elastic; devoid of weight in statics and of friction in dynamics. In practical mechanics, we deal with real material objects, among which we find none which are perfectly hard, and none, except gaseous bodies, which are perfectly elastic; all have weight, and experience resistance in dynamical action. Practical mechanics is the science of automatic labour, and its objects are machines and their applications to the transmission, modification, and regulation of motive power. In this it takes as a basis the theoretical deductions of pure mechanics, but superadds to the formulæ of the mathematician a multitude of facts deduced from observation, and experimentally elaborates a new code of laws suited to the varied conditions to be fulfilled in the economy of the industrial arts.

In reference to the structure of machines, it is to be observed that however simple or complex the machine may be, it is of importance that its parts combine lightness with strength, and rigidity with uniformity of action; and that it communicates the power without shocks and sudden changes of motion, by which the passive resistances may be increased and the effect of the engine diminished.

To adjust properly the disposition and arrangement of the individual members of a machine, implies an exact knowledge and estimate of the amount of strain to which they are respectively subject in the working of the machine; and this skill, when exercised in conjunction with an intimate acquaintance with the nature of the materials of which the parts are themselves composed, must contribute to the production of a machine possessing the highest amount of capability attainable with the given conditions.

Materials .- The material most commonly employed in the con-

struction of machinery is iron, in the two states of *cast* and *wrought* or *forged* iron; and of these, there are several varieties of quality. It becomes therefore a problem of much practical importance to determine, at least approximately, the capabilities of the particular material employed, to resist permanent alteration in the directions in which they are subjected to strain in the reception and transmission of the motive power.

To indicate briefly the fundamental conditions which determine the capability of a given weight and form of material to resist a given force, it must, in the first place, be observed, that rupture may take place either by tension or by compression in the direction of the length. To the former condition of strain is opposed. the tenacity of the material; to the other is opposed the resistance to the crushing of its substance. Rupture, by transverse strain, is opposed both by the tenacity of the material and its capability to withstand compression together of its particles. Lastly, the bar may be ruptured by torsion. Mr. Oliver Byrne, the author of the present work, in his New Theory of the Strength of Materials has pointed out new elements of much importance.

The capabilities of a material to resist extension and compression are often different. Thus, the soft gray variety of cast iron offers a greater resistance to a force of extension than the white variety in a ratio of nearly eight to five; but the last offers the greatest resistance to a compressing force.

The resistance of cast iron to rupture by extension varies from 6 to 9 tons upon the square inch; and that to rupture by compression, from 36 to 65 tons. The resistance to extension of the best forged iron may be reckoned at 25 tons per inch; but the corresponding resistance to compression, although not satisfactorily ascertained, is generally considered to be greatly less than that of cast iron. Roudelet makes it 31½ tons on the square inch. Cast iron (and even wood) is therefore to be preferred for vertical supports.

The forces resisting rupture are as the areas of the sections of rupture, the material being the same; this principle holds not only in respect of iron, but also of wood. Many inquiries have been instituted to determine the commonly received principle, that the strength of rectangular beams of the same width to resist rupture by transverse strain is as the squares of the depths of the beams.

In these respects the experiments, although valuable on account of their extent and the care with which they were conducted, possess little novelty; but in directing attention to the elastic properties of the materials experimented upon, it was found that the received doctrine of relation between the limit of elasticity and weight requires modification. The common assumption is, that the destruction of the elastic properties of a material, that is, the displacement beyond the elastic limit, does not manifest itself until the load exceeds one-third of the breaking weight. It was found, however, on the contrary, that its effect was produced and manifested in a permanent set of the material when the load did not ex-

#### STRENGTH OF MATERIALS.

ceed one-sixteenth of that necessary to produce rupture. Thus a bar of one inch square, supported between props  $4\frac{1}{2}$  feet apart, did not break till loaded with 496 lbs. but showed a permanent deflection or set when loaded with 16 lbs. In other cases, loads of 7 lbs. and 14 lbs. were found to produce permanent sets when the breaking weights were respectively 364 lbs. and 1120 lbs. These sets were therefore given by  $\frac{1}{12}$  and  $\frac{1}{10}$  th of the breaking weights.

Since these results were obtained, it has been found that time and the weight of the material itself are sufficient to effect a permanent deflection in a beam supported between props, so that there would seem to be no such limits in respect to transverse strain as those known by the name of elastic limits, and consequently the principle of loading a beam within the elastic limit has no foundation in practice. The beam yields continually to the load, but with an exceedingly slow progression, until the load approximates to the breaking weight, when rupture speedily succeeds to a rapid deflection.

As respects the effect of tension and compression by transverse strain, it was ascertained by a very ingenious experiment that equal loads produced equal deflections in both cases.

Another most important principle developed by experiments, is that respecting the compression of supporting columns of different heights. When the height of the column exceeded a certain limit, it was found that the crushing force became constant, and did not increase as the height of the column increased, until it reached another limit at which it began to yield, not strictly by crushing, but by the bending of the material. The first limit was found to be a height of little less than three times the radius of the column; and the second double that height, or about six times the radius of the column. In columns of different heights between these limits, having equal diameters, the force producing rupture by compression was nearly constant. When the column was less than the lower limit, the crushing force became greater, and when it was greater than the higher limit, the crushing force became less. It was further found that in all cases, where the height of the column was exactly above the limits of three times the radius, the section of rupture was a plane inclined at nearly the same constant angle of 55 degrees to the axis of the column. These facts mutually explain each other; for in every height of column above the limit, the section of rupture being a plane at the same angle to the axis of the column, must of necessity be a plane of the same size, and therefore in each case the cohesion of the same number of particles must be overcome in producing rupture. And further, the same number of particles being to be overcome under the same circumstances for every different height, the same force will be required to overcome that amount of cohesion, until at double the height (three diameters) the column begins to bend under its load. This height being surpassed, it follows that a pressure which becomes continually less as the length of the column is increased, will be sufficient to break it.

This property, moreover, is not confined to cast iron; the experiments of M. Rondelet show that with columns of wrought iron, wood, and stone, similar results are obtained.

From these facts then, it appears that if supporting columns be taken of different diameters, and of heights so great as not to allow of their bending, yet sufficiently high to allow of a complete separation of the planes of fracture, that is, of heights intermediate to three times and six times their radius, then will their strengths be as the number of particles in their planes of fracture; and the planes of fracture being inclined at equal angles to the axes of the columns, their areas will be as the transverse sections of the columns, and consequently the strengths of the columns will be as their transverse sections respectively. Taking the mean of three experiments upon a column 1 inch diameter, the crushing force was 6426 lbs.; whilst the mean of four experiments, conducted in exactly the same manner, upon a column of  $\frac{3}{8}$  of an inch diameter, gave 14542 lbs. The diameters of the columns being 2 to 3, the areas of transverse section were therefore 4 to 9, which is very nearly the ratio of the crushing weights.

When the length of the column is so great that its fracture is produced wholly by bending of its material, the limit has been fixed for columns of cast iron, at 30 times the diameter when the ends are flat, and 15 times the diameter when the ends are rounded. In shorter columns, fracture takes place partly by crushing and partly by bending of the material. When the column is enlarged in the middle of its length from one and a half to two times the diameter of the ends, the strength was found by the same experimenter to be greater by one-seventh than in solid columns containing the same quantity of iron, in the same length, with their extremities rounded; and stronger by an eighth or a ninth when the extremities were flat and rendered immovable by disks.

The following formulas give the absolute strength of cylindrical columns to sustain pressure in the direction of their length. In these formulas

D = the external diameter of the column in inches.

d = the internal diameter of hollow columns in inches.

L = the length of the column in feet.

W = the breaking weight in tons.

Character of the column.	Length of the column exceeding 15 times its diameter.	Length of the column exceeding 30 times its diameter.
Solid cylindrical co- lumn of cast iron, Hollow cylindrical co- lumn of cast iron, Solid cylindrical co- lumn of wrought iron,	Both ends rounded. $W = 14.9 \frac{D^{3.76}}{L^{1.7}}$ . $W = 13 \frac{D^{3.76}}{L^{1.7}}$ . $W = 42.8 \frac{D^{3.76}}{L^{2}}$ .	$W = \frac{Both ends fint.}{44 \cdot 16 \frac{D^{3} \cdot s_{5}}{L^{1 \cdot \tau}}}$ $W = 44 \cdot 34 \frac{D^{3 \cdot s_{5}} - d^{3 \cdot s_{5}}}{L^{1 \cdot \tau}}$ $W = 133 \cdot 75 \frac{D^{3 \cdot s_{5}}}{L^{3 \cdot \tau}}$

For shorter columns, if W' represent the weight in tons which would break the column by bending alone, as given by the preced-

ing formulas, and W" the weight in tons which would crush the column without bending it, as determined from the subjoined table, then the absolute breaking weight of the column W, is represented in tons by the formula,

$$W = \frac{W' \times W''}{W' + W''}$$

These rules require the use of logarithms in their applications.

When a beam is deflected by transverse strain, the material on that side of it on which it sustains the strain is compressed, and the material on the opposite side is extended. The imaginary surface at which the compression terminates and the extension begins-at which there is supposed to be neither extension nor compressionis termed the neutral axis of the beam. What constitutes the strength of a beam is its resistance to compression on the one side and to extension on the other side of that axis-the forces acting about the line of axis like antagonist force at the two extremities of a lever, so that if either of them yield, the beam will be broken. It becomes, however, a question of importance to determine the relation of these forces; in other words, to determine whether the beam of given form and material will yield first to compression or to extension. This point is settled by reference to the columns of the subsequent table, page 280, in which it will be observed that the metals require a much greater force to crush them than to tear them asunder, and that the woods require a much smaller force.

There is also another consideration which must not be overlooked. Bearing in mind the condition of antagonism of the forces, it is obvious, that the further these forces are placed from the neutral axis, that is, from the fulcrum of their leverage, the greater must be their effect. In other words, all the material resisting compression will produce its greatest effect when collected the farthest possible from the neutral axis at the top of the beam; and, in like manner, all the material resisting extension will produce its greatest effect when similarly disposed at the bottom of the beam. We are thus directed to the first general principle of the distribution of the material into two flanges-one forming the top and the other the bottom of the beam-joined by a comparatively slender rib. Associating with this principle the relation of the forces of extension and compression of the material employed, we arrive at a form of beam in which the material is so distributed, that at the instant it is about to break by extension on the one side, it is about to break by com-

pression on the other, and consequently is of the strongest form. Thus, supposing that it is required to determine that form in a girder of cast iron: the ratio of the crushing force of that metal to the force of extension may be

taken generally as  $6\frac{1}{2}$  to 1, which is therefore also the ratio of the lower to the upper flange, as in the annexed sectional diagram.

A series of nine castings were made, gradually increasing the lower flange at the expense of the upper one, and in the first eight experiments the beam broke by the tearing asunder of the lower flange; and in the last experiment the beam yielded by the crushing of the upper flange. In the eight experiments the upper flange was therefore the weakest, and in the ninth the strongest, so that the form of maximum strength was intermediate, and very closely allied to that form of beam employed in the last experiment, which was greatly the strongest. The circumstances of these experiments are contained in the following table.

No. of experi- ments.	Ratio of surfaces of com- pression and extension.	Area of cross sections in sq. inches.	Strength per sq. inch of sections in lbs.
, 1	1 to 1	2.82	2368
2	1 to 2	2.87	2567
3	1 to 4	3.02	2737
4	1 to 41	3.37	3183
5	1 to 4	4.50	3214
6	. 1 to 51	5.00	3346
7	1 to $3\frac{1}{5}$	4.628	3246
8	1 to 4.3	5.86	3317
9	1 to 6.1	6.4	4075

To determine the weight necessary to *break* beams cast according to the form described :

Multiply the area of the section of the lower flange by the depth of the beam, and divide the product by the distance between the two points on which the beam is supported: this quotient multiplied by 536 when the beams are cast erect, and by 514 when they are cast horizontally, will give the breaking weight in cwts.

From this it is not to be inferred that the beam ought to have the same transverse section throughout its length. On the contrary, it is clear that the section ought to have a definite relation to the leverage at which the load acts. From a mathematical con-

sideration of the conditions, it indeed appears that the effect of a given load to break the beam varies when it is placed over different points of it, as the products

of the distances of these points from the points of support of the beam. Thus the effect of a weight placed at the point  $W_4$  is to the effect of the same weight acting upon the point  $W_2$ , as the product  $AW_4 \times W_4$  B is to the product  $AW_2 \times W_2$  B; the points of support being at A and B. Since then the effect of a weight increases as it approaches the middle of the length of the beam, at which it is a maximum, it is plain that the beam does not require to have the same transverse section near to its extremities as in the middle; and, guided by the principle stated, it is easy to perceive that its strength at different points should in strictness vary as the products of the distances of these points from the points of support. By



taking this law as a fundamental condition in the distribution of the strength of a beam, whose load we may conceive to be accumulated at the middle of its length, we arrive at the strongest form which can be attained under given circumstances, with a given amount of material; we arrive at that form which renders the beam equally liable to rupture at every point. Now this form of maximum strength may be attained in two ways; either by varying the depth of the beam according to the law stated, or by preserving the depth everywhere the same, and varying the dimensions of the upper and lower flanges according to the same law. The conditions are manifestly identical. We may therefore assume generally the condition that the section is rectangular, and that the thickness of the flanges is constant; then the outline determined by the law in question, in the one case of the elevation of the beam and in the other of the plan of the flanges, is the geometrical curve called a parabola-rather, two parabolas joined base to base at the middle between the points of support. The annexed diagram represents the plan of a cast-iron girder according to this form, the depth



being uniform throughout. Both flanges are of the same form, but the dimensions of the upper one are such as to give it only a sixth of the strength of the other.

This, it will be observed, is also the form, considered as an elevation, of the beam of a steam engine, which good taste and regard to economy of material have rendered common.

It must, however, be borne in mind, that in the actual practice of construction, materials cannot with safety be subjected to forces approaching to those which produce rupture. In machinery especially, they are liable to various and accidental pressures, besides those of a permanent kind, for which allowance must be made. The engineer must therefore in his practice depend much on experience and consideration of the species of work which the engine is designed to perform. If the engine be intended for spinning, pumping, blowing, or other *regular* work, the material may be subjected to pressures approaching two-thirds of that which would actually produce rupture; but in engines employed to drive bonemills, stampers, breaking-down rollers, and the like, double that strength will often be found insufficient. In cases of that nature, experience is a better guide than theory.

It is also to be remarked that we are often obliged to depart from the form of strength which the calculation gives, on account of the partial strains which would be put upon some of the parts of a casting, in consequence of unequal cooling of the metal when the thicknesses are unequal. An expert founder can often reduce the irregular contractions which thus result; but, even under the best management, fracture is not unfrequently produced by irregu-

Y

larity of cooling, and it is at all times better to avoid the danger entirely, than to endeavour to obviate it by artifice. For this reason, the parts of a casting ought to be as nearly as possible of such thickness as to cool and contract regularly, and by that means all partial strain of the parts will be avoided.

With respect to design, it is also to be remarked, that mere theoretical properties of parts will not, under all the varieties of circumstances which arise in the working of a machine, insure that exact adjustment of material and propriety of form so much desired in constructive mechanics. Every design ought to take for its basis the mathematical conditions involved, and it would, perhaps, be impossible to arrive at the best forms and proportions by any more direct mode of calculation; but it is necessary to superadd to the mathematical demonstration, the exercise of a well-matured judgment, to secure that degree of adjustment and arrangement of parts in which the merits of a good design mainly consist. A purely theoretical engine would look strangely deficient to the practised eye of the engineer; and the merely theoretical contriver would speedily find himself lost, should he venture beyond his construction on paper. His nice calculations of the "work to be performed," of the vis viva of the mechanical organs of his machine, and of the modulus of elasticity of his material, would, in practice, alike deceive him.

The first consideration in the design of a machine is the quantity of work which each part has to perform—in other words, the forces, active and inactive, which it has to resist; the direction of the forces in relation to the cross-section and points of support; the velocity, and the changes of velocity to which the moving parts are subject. The calculations necessary to obtain these must not be confined to theory alone; neither should they be entirely deduced by "rule of thumb;" by the first mode the strength would, in all probability, be deficient from deficiency of material, and by the second *rule* the material would be injudiciously disposed; weight would be added often where least needed, merely from the determination to avoid fracture, and in consequence of a want of knowledge respecting the true forms best adapted to give strength.

To the following general principles, in practice, there are but few real exceptions:

I. Direct Strain.—To this a straight line must be opposed, and if the part be of considerable

length, vibration ought to be counteracted by intersection of planes, (technically *feathers*,) as represented in the annexed diagrams,

or some such form, consistent with the purpose for which the part is intended.

II. Transverse Strain.—To this a parabolic form of section must be opposed, or some simple figure including the parabolic form. For economy of material, the vertex of the curve ought to be at the point where the force is applied; and when the strain passes



alternately from one side of the part to the other, the curve ought to be on both sides, as in the beam of a steam engine.

When a loaded piece is supported at one end only, if the breadth be everywhere the same, the form of equal strength is a triangle; but, if the section be a circle, then the solid will be that generated by the revolution of a semi-parabola about its longer axis. In practice, it will, however, be sufficient to employ the frustum of a cone, of which, in the case of cast iron, the diameter at the unsupported end is one-third of the diameter at the fixed end.

III. Torsion.—The section most commonly opposed to torsion is a circle; and, if the strain be applied to a cylinder, it is obvious the rupture must first take place at the surface, where the torsion is greatest, and that the further the material is placed from the neutral axis, the greater must be its power of resistance; and hence, the amount of materials being the same, a shaft is stronger when made hollow than if it were made solid.

It ought not, however, to be supposed that the circle is the only figure which gives an axis the property of offering, in every direction, the same resistance to flexure. On the contrary, a square section gives the same resistance in the direction of its sides, and of its diagonals; and, indeed, in every direction the resistance is equal. This is, moreover, the case with a great number of other figures, which may be formed by combining the circle and the square in a symmetrical manner; and hence, if the axis, strengthened by salient sides, as in feathered shafts, do not answer as well as cylindrical ones, it must arise from their not being so well disposed to resist torsion, and not from any irregularities of flexure about the axis inherent in the particular form of section.

This subject has been investigated with much care, and, according to M. Cauchy, the modulus of rupture by torsion, T, is connected with the modulus of rupture by transverse strain S, by the simple analogy  $T = \frac{4}{5} S$ .

The forms of all the parts of a machine, in whatever situation and under every variety of circumstances, may be deduced from these simple figures; and, if the calculations of their dimensions be correctly determined, the parts will not only possess the requisite degree of strength, but they will also accord with the general principles of good taste.

In arranging the details of a machine, two circumstances ought to be taken into consideration. The first is, that the parts subject to wear and influenced by strain, should be capable of adjustment; the second is, that every part should, in relation to the work it has to perform, be equally strong, and present to the eye a figure that is consistent with its degree of action. Theory, practice, and taste must all combine to produce such a combination. No formal law can be expressed, either by words or figures, by which a certain contour should be preferred to another; both may be equally strong and equally correct in reference to theory; custom, then, must be appealed to as the guide.

## THE PRACTICAL MODEL CALCULATOR.

~

## TABLES OF THE MECHANICAL PROPERTIES OF THE MATERIALS MOST COMMONLY EMPLOYED IN THE CONSTRUCTION OF MACHINES AND FRAMINGS.

and the second se							
NAMES.	Specific Gravity.	Weight of 1 cubic ft. in 1bs.	Tenacity per square inch in lbs.	Crushing force per sq. in. in lbs.	Modulus of elasticity in lbs.	Mod. of rupture in 1bs.	Crushing force to tenacity.
TABLE IMechanical Properties of							
Brass (cast)	8-399	525-00 537-93	17968 19072	10304	8930000	_	0.573:1
ditto (sheet)	8.785	549.06	61998			-	
ditto (in bolts)	7.700	491.90	48000 251/ tong		94090000		
ditto (in bars)	\$7.760	475.50	2572 10113		24920000		
ditto (hammered)	(7.800	45/-00	30 tons				
ditto (Russian) in bars			27 tons 32 tons				
ditto (English) in wire, 10th inch diam. ditto (Russian) in wire, 1-20th to 1-30th			36 to 43 tons				
inch diameter ditto (rolled in sheets and cut lengthwise)	13-		14 tons				
ditto cut crosswise ditto in chains, oval links, 6 inches clear,	5-		18 tons				
iron 1/2 inch diameter	}		21½ tons				
Cast-iron (Old Park).	-		20 10115		18014400	48240	
ditto (Alfreton)					17686400	44046	
ditto (scrap)	7.046	440.37	13505	108540	18032000	45828 37503	8.037:1
ditto ( do. do.) cold blast . ditto ( do. No.3)	7.066	441.62 443.37	16683 14200	$106375 \\ 115442$	17270500 16246966	38556 33980	6-376:1 8-129:1
ditto ( do. do. ) hot blast . ditto (Devon, No. 3) cold blast .	7.056	441.00	17755	133440	17873100 22907700	42120 36288	7.515:1
ditto ( do. do. ) hot blast . ditto (Buffrey, No. 1) cold blast .	7.229	451.81	21907 17466	145435 93366	22473650 15381200	43497 37503	5-346 - 1
ditto ( do. do. ) hot blast . ditto (Coed-Talon No. 2) cold blast	6.998	437.37	13434	86397	13730500	35316	6 431 : 1
ditto ( do. do.) hot blast.	6.968	435.50	16676	82739	14322500	33145	4.961:1
ditto ( do. do.) hot blast .	6.970	435.62			14707900	40159	
ditto (Muirkirk, No. 1) cold blast .	6.976	436.00			14003550	$\frac{28552}{35923}$	
ditto ( do. do. ) hot blast . ditto (Elsicar, No. 1) cold blast	6-953	434.56 439.37			13294400 13981000	33850 34862	
Lead (English cast)	11.446	717.45 712.93	1824 3328		720000	_	
ditto (wire-drawn	11.317	705.12	2581 40902			=	
Mercury (at 320)	13.619	851.18					
Steel (soft)	7.780	486.25	120000		20000000	-	
Tin (cast)	7.291	455.68	5322		4608000	-	
ditto (rolled	7.215	450.9			13030000		
TABLE II.—Principal Woods.	0.71	44.97	16000	-	1159000	11909	
Beech { New	0.854	53.37	15784	7733 {	13536000	93363	0.55:1
Birch Common	0.090	49.50	15000	6402	1562400	10920	0.43:1
Christiania middle .	0.648	43.62	12400	11055	1257600	9624 9864	
Deal Norway spruce	0.590	30'87 21.25	17600		1535200	10385	
Elm (seasoned)	0.470	29·37 36·75	7000 13489	10331	699840	6078	$\overline{0.79:1}$
Fir Riga	0.553	34·56 47·06	12000	6000	2191200	6612	0.50:1
Larch (seasoned)	0.522	32.62 76.25	10220	5568	1052800	6894	0.55:1
Mahogany (Spanish)	0.800	50.00	16500	8198		-	0.50:1
English	0.934	58.37	17300	9504 dry 5	1451200	10032	0.28:1 0.57:1
Oak Canadian	0.872	54.20	10253	9509 dry }	2148800	10596	$\left\{ \begin{matrix} 0.42:1 \\ 0.95:1 \end{matrix} \right.$
(Pitch	0.756	47·24 41·25	12780 7818		1191200 1225600	8748 9792	
Pine {Red	0.657	41.06		5375 5445	1840000	8946	
Plane-tree	0.64	40.00	11700	0107			
Poplar	0.383	23.93	7200	$\left\{ \begin{array}{c} 3107 \text{ wet} \\ 5124 \text{ dry} \end{array} \right\}$			$\left\{ \substack{0.43:1\\0.74:1}  ight.$
Teak (dry)	0.657	41.06	15000	12101	2414400	14772	0.81:1
Yew (Spanish)	0.807	50.43	8000			1	

### THE COHESIVE STRENGTH OF BODIES.

The following TABLE contains the result of experiments on the cohesive strength of various bodies in avoirdupois pounds; also, one-third of the ultimate strength of each body, this being considered sufficient, in most cases, for a permanent load:

Names of Bodies.	Square Bar.	One-third.	Round Bar.	One-third.
WOODS.	lbs.	lbs.	lbs.	lbs.
Boxwood	20000	6667	15708	5236
Ash	17000	5667	13357	4452
Teak	15000	5000	11781	3927
Fir	12000	4000	9424	3141
Beach	11500	3866	9032	3011
0ak	11000	3667	8639	2880
METALS.				
Cast iron	18656	6219	14652	4884
English wrought iron	55872	18624	43881	14627
Swedish do. do	72064	24021	56599	18866
Blistered steel	133152	44384	104577	34859
Shear do	124400	41366	97703	32568
Cast do	134256	44752	105454	35151
Cast copper	19072	6357	14979	4993
Wrought do	33792	11264	26540	8827
Yellow brass	17968	5989	14112	4704
Cast tin	4736	1579	8719	1239
Cast lead	1824	608	1432	477

#### PROBLEM I.

RULE.—To find the ultimate cohesive strength of square, round, and rectangular bars, of any of the various bodies, as specified in the table.—Multiply the strength of an inch bar, (as in the table,) of the body required, by the cross sectional area of square and rectangular bars, or by the square of the diameter of round bars; and the product will be the ultimate cohesive strength.

A bar of cast iron being  $1\frac{1}{2}$  inches square, required its cohesive power.

## $1.5 \times 1.5 \times 18656 = 41976$ lbs.

Required the cohesive force of a bar of English wrought iron, 2 inches broad, and  $\frac{2}{3}$  of an inch in thickness.

 $2 \times \cdot 375 \times 55872 = 41904$  lbs.

Required the ultimate cohesive strength of a round bar of wrought copper  $\frac{3}{4}$  of an inch in diameter.

 $\cdot 75^2 \times 26540 = 14928 \cdot 75$  lbs.

## PROBLEM II.

RULE.—The weight of a body being given, to find the cross sectional dimensions of a bar or rod capable of sustaining that weight.— For square and round bars, divide the weight given by one-third of the cohesive strength of an inch bar, (as specified in the table,) and the square root of the quotient will be the side of the square, or diameter of the bar in inches.

x 2

And if rectangular, divide the quotient by the breadth, and the result will be the thickness.

What must be the side of a square bar of Swedish iron to sustain a permanent weight of 18000 lbs?

 $\sqrt{\frac{18000}{24021}} = .86$ , or nearly  $\frac{7}{8}$  of an inch square.

Required the diameter of a round rod of cast copper to carry a weight of 6800 lbs.

 $\sqrt{\frac{6800}{4993}} = 1.16$  inches diameter.

A bar of English wrought iron is to be applied to carry a weight of 2760 lbs.; required the thickness, the breadth being two inches.

2760

 $\frac{2100}{18624} = \cdot 142 \div 2 = \cdot 071$  of an inch in thickness.

A TABLE showing the circumference of a rope equal to a chain made of iron of a given diameter, and the weight in tons that each is proved to carry ; also, the weight of a foot of chain made from iron of that dimension.

Ropes. Cir. in Ins.	Chains. Diam. in Inches.	Proved to carry in tons.	Weight of a lineal foot in lbs. Avr.
3	$\frac{1}{4}$ and $\frac{1}{16}$	1	1.08
4.	38	2	1.5
$4\frac{3}{4}$	3 and 1	- 3	2
51	$\frac{1}{2}$	4	2.7
6	$\frac{1}{2}$ and $\frac{1}{16}$	5	3.3
$-6\frac{1}{2}$	<u>5</u> 8	6	4
7	$\frac{5}{8}$ and $\frac{1}{16}$	8	4.6
71/2	34	$9\frac{3}{4}$	5.5
8	$\frac{3}{4}$ and $\frac{1}{16}$	111	6.1
9	78	13	7.2
91	3 and 16	15	8.4
101	1 inch.	18	9.4

#### ON THE TRANSVERSE STRENGTH OF BODIES.

The tranverse strength of a body is that power which it exerts in opposing any force acting in a perpendicular direction to its length, as in the case of beams, levers, &c., for the fundamental principles of which observe the following:-

That the transverse strength of beams, &c. is inversely as their lengths, and directly as their breadths, and square of their depths, and, if cylindrical, as the cubes of their diameters; that is, if a beam 6 feet long, 2 inches broad, and 4 inches deep, can carry 2000 lbs., another beam of the same material, 12 feet long, 2 inches broad, and 4 inches deep, will only carry 1000, being inversely as their lengths. Again, if a beam 6 feet long, 2 inches broad, and 4 inches deep, can support a weight of 2000 lbs., another beam of

the same material, 6 feet long, 4 inches broad, and 4 inches deep, will support double that weight, being directly as their breadths; —but a beam of that material, 6 feet long, 2 inches broad, and 8 inches deep, will sustain a weight of 8000 lbs.; being as the square of their depths.

From a mean of experiments made, to ascertain the transverse strength of various bodies, it appears that the ultimate strength of an inch square, and an inch round bar of each, 1 foot long, loaded in the middle, and lying loose at both ends, is nearly as follows, in lbs. avoirdupois.

Names of Bodies.	Square Bar.	One-third.	Round Bar.	One-third.
Oak	800	267	628	209
Ash	1137	379	893	298
Elm	569	139	447	149
Pitch pine	916	305	719	239
Deal	566	188	444	148
Cast iron	2580	860	2026	675
Wrought iron	4013	1338	3152	1050

#### PROBLEM I.

RULE.—To find the ultimate transverse strength of any rectangular beam, supported at both ends, and loaded in the middle; or supported in the middle, and loaded at both ends; also, when the weight is between the middle and the end; likewise when fixed at one end and loaded at the other.—Multiply the strength of an inch square bar, 1 foot long, (as in the table,) by the breadth, and square of the depth in inches, and divide the product by the length in feet; the quotient will be the weight in lbs. avoirdupois.

What weight will break a beam of oak 4 inches broad, 8 inches deep, and 20 feet between the supports?

$$\frac{800 \times 4 \times 8^2}{20} = 10240 \text{ lbs.}$$

When a beam is supported in the middle, and loaded at each end, it will bear the same weight as when supported at both ends and loaded in the middle; that is, each end will bear half the weight.

When the weight is not situated in the middle of the beam, but placed somewhere between the middle and the end, multiply twice the length of the long end by twice the length of the short end, and divide the product by the whole length of the beam; the quotient will be the effectual length.

Required the ultimate transverse strength of a pitch pine plank 24 feet long, 3 inches broad, 7 inches deep, and the weight placed 8 feet from one end.

$$\frac{32 \times 16}{24} = 21.3 \text{ effective length.}$$
  
and 
$$\frac{916 \times 3 \times 7^2}{21.3} = 6321 \text{ lbs.}$$

Again, when a beam is fixed at one end and loaded at the other, it will only bear  $\frac{1}{4}$  of the weight as when supported at both ends and loaded in the middle.

What is the weight requisite to break a deal beam 6 inches broad, 9 inches deep, and projecting 12 feet from the wall?

$$\frac{566 \times 6 \times 9^2}{12} = 22923 \div 4 = 5730.7 \text{ lbs.}$$

The same rules apply as well to beams of a cylindrical form, with this exception, that the strength of a round bar (as in the table) is multiplied by the cube of the diameter, in place of the breadth, and square of the depth.

Required the ultimate transverse strength of a solid cylinder of cast iron 12 feet long and 5 inches diameter.

• 
$$\frac{2026 \times 5^3}{12} = 21104$$
 lbs.

What is the ultimate transverse strength of a hollow shaft of cast iron 12 feet long, 8 inches diameter outside, and containing the same cross sectional area as a solid cylinder 5 inches diameter?

$$\sqrt{8^2 - 5^2} = 6.24$$
, and  $8^3 - 6.24^3 = 269$ .  
Then,  $\frac{2026 \times 269}{12} = 45416$  lbs.

When a beam is fixed at both ends, and loaded in the middle, it will bear one-half more than it will when loose at both ends.

And if a beam is loose at both ends, and the weight laid uniformly along its length, it will bear double; but if fixed at both ends, and the weight laid uniformly along its length, it will bear triple the weight.

#### PROBLEM II.

RULE.—To find the breadth or depth of beams intended to support a permanent weight.—Multiply the length between the supports, in feet, by the weight to be supported in lbs., and divide the product by one-third of the ultimate strength of an inch bar, (as in the table,) multiplied by the square of the depth; the quotient will be the breadth, or, multiplied by the breadth, the quotient will be the square of the depth, both in inches.

Required the breadth of a cast iron beam 16 feet long, 7 inches deep, and to support a weight of 4 tons in the middle.

4 tons = 8960 lbs. and 
$$\frac{8960 \times 16}{860 \times 7^2} = 3.4$$
 inches.

What must be the depth of a cast iron beam 3.4 inches broad, 16 feet long, and to bear a permanent weight of four tons in the middle?

 $\sqrt{\frac{8960 \times 16}{860 \times 3.4}} = 7 \text{ inches.}$ 

When a beam is fixed at both ends, the divisor must be multiplied by 1.5, on account of it being capable of bearing one-half more.

When a beam is loaded uniformly throughout, and loose at both ends, the divisor must be multiplied by 2, because it will bear double the weight.

If a beam is fast at both ends, and loaded uniformly throughout, the divisor must be multipled by 3, on account that it will bear triple the weight.

Required the breadth of an oak beam 20 feet long, 12 inches deep, made fast at both ends, and to be capable of supporting a weight of 12 tons in the middle.

$$26880 \times 20$$

12 tons = 26880 lbs., and  $\frac{266 \times 12^2}{266 \times 12^2 \times 1.5} = 9.7$  inches.

Again, when a beam is fixed at one end, and loaded at the other, the divisor must be multiplied by 25; because it will only bear one-fourth of the weight.

Required the depth of a beam of ash 6 inches broad, 9 feet projecting from the wall, and to carry a weight of 47 cwt.

47 cwt. = 5264 lbs., and 
$$\sqrt{\frac{5264 \times 9}{379 \times 6 \times \cdot 25}} = 9.12$$
 inches deep.

And when the weight is not placed in the middle of a beam, the effective length must be found as in Problem I.

Required the depth of a deal beam 20 feet long, and to support a weight of 63 cwt. 6 feet from one end.

 $\frac{28 \times 12}{20} = 16.8 \text{ effective length of beam, and}$   $\frac{63 \text{ cwt.} = 7056 \text{ lbs.}; \text{ hence}}{\sqrt{\frac{7056 \times 16.8}{188 \times 6}} = 10.24 \text{ inches deep.}}$ 

Beams or shafts exposed to lateral pressure are subject to all the foregoing rules, but in the case of water-wheel shafts, &c., some allowances must be made for wear; then the divisor may be changed from 675 to 600 for cast iron.

Required the diameter of bearings for a water-wheel shaft 12 feet long, to carry a weight of 10 tons in the middle.

 $\frac{10 \text{ tons} = 22400 \text{ lbs., and}}{600} = \sqrt[3]{448} = 7.65 \text{ inches diameter.}}$ 

And when the weight is equally distributed along its length, the cube root of half the quotient will be the diameter, thus:

 $\frac{448}{2} = \sqrt[3]{224} = 6.07$  inches diameter.

Required the diameter of a solid cylinder of cast iron, for the shaft of a crane, to be capable of sustaining a weight of 10 tons;

## THE PRACTICAL MODEL CALCULATOR.

one end of the shaft to be made fast in the ground, the other to project  $6\frac{1}{2}$  feet; and the effective leverage of the jib as  $1\frac{3}{4}$  to 1.

10 tons = 22400 lbs., and

 $\frac{22400 \times 6.5 \times 1.75}{675 \times .25} = 1509$ 

## And $\sqrt[3]{1509} = 11.47$ inches diameter.

The strength of cast iron to wrought iron, in this direction, is as 9 is to 14 nearly; hence, if wrought iron is taken in place of cast iron in the last example, what must be its diameter?

 $\sqrt[3]{\frac{1509 \times 9}{14}} = 9.89 \text{ inches diameter.}$ 

## ON TORSION OR TWISTING.

The strength of bodies to resist *torsion*, or wrenching asunder, is directly as the cubes of their diameters; or, if square, as the cube of one side; and inversely as the force applied multiplied into the length of the lever.

Hence the rule.—1. Multiply the strength of an inch bar, by experiment, (as in the following table,) by the cube of the diameter, or of one side in inches; and divide by the radius of the wheel, or length of the lever also in inches; and the quotient will be the ultimate strength of the shaft or bar, in lbs. avoirdupois.

2.—Multiply the force applied in pounds by the length of the lever in inches, and divide the product by one-third of the ultimate strength of an inch bar, (as in the table,) and the cube root of the quotient will be the diameter, or side of a square bar in inches; that is, capable of resisting that force permanently.

The following TABLE contains the result of experiments on inch bars, of various metals, in lbs. avoirdupois.

Names of Bodies.	Round Bar.	One-third.	Square Bar.	One-third.
Cast iron	11943	3981	15206	5069
English wrought iron	12063	4021	15360	5120
Swedish do. do.	11400	3800	14592	4864
Blistered steel	20025	6675	25497	8499
Sheardo	20508	6836	26112	8704
Cast do	21111	7037	26880	8960
Yellow brass	5549	1850	7065	2355
Cast copper	4825	1608	6144	2048
Tin	1688	563	2150	717
Lead	1206	402	1536	512

What weight, applied on the end of a 5 feet lever, will wrench asunder a 3 inch round bar of cast iron?

 $\frac{11943 \times 3^3}{60} = 5374$  lbs. avoirdupois.

Required the side of a square bar of wrought iron, capable of resisting the twist of 600 lbs. on the end of a lever 8 feet long.

 $\frac{600 \times 96}{5120} = 2\frac{1}{4}$  inches.

286
#### STRENGTH OF MATERIALS. ALIFORNIC

UNIVERSI

In the case of revolving shafts for machinery, &c., the strength is directly as the cubes of their diameters, and revolutions, and inversely as the resistance they have to overcome; hence,

From *practice*, we find that a 40 horse power steam engine, making 25 revolutions per minute, requires a shaft (*if made of wrought-iron*) to be 8 inches diameter: now, the cube of 8, multiplied by 25, and divided by 40 = 320; which serves as a constant multiplier for all others in the same proportion.

What must be the diameter of a wrought iron shaft for an engine of 65 horse power, making 23 revolutions per minute?

$$\sqrt[3]{\frac{65 \times 320}{23}} = 9.67$$
 inches diameter.

James Glenie, the mathematician, gives 400 as a constant multiplier for cast iron shafts that are intended for first movers in machinery;

200 for second movers; and

100 for shafts connecting smaller machinery, &c.

The velocity of a 30 horse power steam engine is intended to be 19 revolutions per minute. Required the diameter of bearings for the fly-wheel shaft.

$$\sqrt[4]{\frac{400 \times 30}{19}} = 8.579$$
 inches diameter.

Required the diameter of the bearings of shafts, as second movers from a 30 horse engine; their velocity being 36 revolutions per minute.

 $\sqrt[3]{\frac{200 \times 30}{36}} = 5.5$  inches diameter.

When shafting is intended to be of wrought iron, use 160 as the multiplier for second movers; and 80 for shafts connecting smaller machinery.

 TABLE of the Proportionate Length of Bearings, or Journals for

 Shafts of various diameters.

Dia. in Inches.	Len. in Inches.	Dia. in Inches.	Len. in Inches.
1	$1\frac{3}{4}$	$6\frac{1}{2}$	83
	24	- 7	9 <u>3</u>
201	3 91		10
		81	104
32		9	$11^{\frac{118}{8}}$
$3\frac{1}{2}$	47 .	91	$12\frac{3}{4}$
4	$5\frac{1}{2}$	10	$13\frac{1}{4}$
41	$6\frac{1}{8}$	$10\frac{1}{2}$	14
5	$6\frac{3}{4}$	11	$14\frac{1}{2}$
51	$7\frac{1}{2}$	$11\frac{1}{2}$	$15\frac{1}{4}$
0	04	12	16

#### THE PRACTICAL MODEL CALCULATOR.

and the second	Abso	lute.	Comp	Compared with Cast Iron.					
Names of Bodies.	Tenacity in lbs. per sq. inch.	Resistance to compression in lbs. per sq. in.	Its strength is	Its extensi- bility is	Its stiffness is				
Ash	14130		0.23	2.6	0.089				
Beech	12225	8548	0.15	2.1	0.073				
Brass	17268	10304	0.435	0.9	0.49				
Brick	275	562	0.1.1.000	-					
Cast iron	13434	86397	1.000	1.0	1.000				
Copper (wrought)	33000		_ *	-	· ·				
Elm	9720	1033	0.21	2.9	0.073				
Fir. or Pine, white	12346	2028	0.23	2.4	0.1				
— — red	11800	5375	0.3	2.4	0.1				
vellow	11835	5445	0.25	2.9	0.087				
Granite. Aberdeen		10910	-	-					
Gun-metal (copper 8.									
and tin 1)	35838		0.63	1.25	0.535				
Malleable iron	56000		1.12	0.86	1.3				
Larch	12240	5568	0.136	2.3	0.058				
Lead	1824	-	0.096	2.5	0.0385				
Mahogany, Honduras	11475	8000	0.24	2.9	0.487				
Marble	551	6060	_						
Oak	11880	9504	0.25	2.8	0.093				
Rope (1 in. in circum.)	200	_							
Steel	128000								
Stone, Bath	478								
- Craigleith	772	5490		-					
- Dundee	2661	6630		-					
- Portland	857	3729			-				
Tin (cast)	4736		0.182	0.75	0.25				
Zinc (sheet)	9120		0.365	0.5	0.76				

Tenacities, Resistances to Compression, and other Properties of the common Materials of Construction.

Comparative Strength and Weight of Ropes and Chains.

Circum. of rope in inches.	Weight per fa- thom in lbs. Diameter of	Usight per fa- thom in lbs.	Proof strength in tons & cwt.	Circum. of rope in inches.	Weight per fa- thom in lbs.	Diameter of chain in inches.	Weight per fa- thom in lbs.	Proof strength in tons & ewt.
$\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{4} \\ 5 \\ 5\frac{8}{4} \\ 6\frac{1}{2} \\ 7 \\ 8 \\ 8\frac{8}{4} \\ 9\frac{1}{5} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10\\ 10_{\frac{8}{4}}\\ 11\frac{1}{2}\\ 12\frac{1}{4}\\ 13\\ 13\frac{8}{4}\\ 14\frac{1}{2}\\ 15\frac{1}{4}\\ 16 \end{array}$	$\begin{array}{c} 23\\ 28\\ 30\frac{1}{2}\\ 36\\ 39\\ 45\\ 48\frac{1}{2}\\ 56\\ 60 \end{array}$	$\begin{array}{c} \frac{7}{8} \\ \frac{15}{16} \\ 1 \text{ in.} \\ 1 \frac{1}{16} \\ 1 \frac{1}{8} \\ 1 \frac{3}{16} \\ 1 \frac{1}{4} \\ 1 \frac{5}{16} \\ 1 \frac{3}{8} \end{array}$	$\begin{array}{r} 43 \\ 49 \\ 56 \\ 63 \\ 71 \\ 79 \\ 87 \\ 96 \\ 106 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

It must be understood and also borne in mind, that in estimating the amount of tensile strain to which a body is subjected, the weight of the body itself must also be taken into account; for according to its position so may it approximate to its whole weight, in tend-

288

ing to produce tension within itself; as in the almost constant application of ropes and chains to great depths, considerable heights, &c.

Alloys that are of greater Tenacity than the sum of their Constituents, as determined by the Experiments of Muschenbroek.

Swedish copper 6 parts, Malacca tin 1-tenacity per square	e inch 64,000	lbs
Chili copper 6 parts, Malacca tin 1	60,000	
Japan copper 5 parts, Banca tin 1		
Anglesea copper 6 parts, Cornish tin 1		
Common block tin 4, lead 1, zinc 1	13,000	
Malacca tin 4, regulus of antimony 1	12,000	
Block tin 3, lead 1	10,200	
Block tin 8, zinc 1		
Lead 1, zinc 1	4,500	

TABLE of Data, containing the Results of Experiments on the Elasticity and Strength of various Species of Timber.

Species of Timber.	Value of E.	Value of S.	Species of Timber.	Value of E.	Value of S.
Teak Poona English oak Canadian do Dantzie do	$     \begin{array}{r}       174 \cdot 7 \\       122 \cdot 26 \\       105 \\       155 \cdot 5 \\       86 \cdot 2     \end{array} $	$\begin{array}{r} 2462 \\ 2221 \\ 1672 \\ 1766 \\ 1457 \end{array}$	Elm Pitch pine Red pine New England fir Riga fir	50.6488.68133158.590	$     \begin{array}{r}       1013 \\       1632 \\       1341 \\       1102 \\       1100     \end{array} $
Adriatic do Ash Beech	70.5 119 98	$\frac{1383}{2026}\\1556$	Mar Forest do. Larch Norway spruce	$63 \\ 76 \\ 105.47$	$1200 \\ 900 \\ 1474$

RULE.—To find the dimensions of a beam capable of sustaining a given weight, with a given degree of deflection, when supported at both ends .- Multiply the weight to be supported in lbs. by the cube of the length in feet; divide the product by 32 times the tabular value of E, multiplied into the given deflection in inches, and the quotient is the breadth multiplied by the cube of the depth in inches.

When the beam is intended to be square, then the fourth root of the quotient is the breadth and depth required.

If the beam is to be cylindrical, multiply the quotient by 1.7, and the fourth root of the product is the diameter.

The distance between the supports of a beam of Riga fir is 16 feet, and the weight it must be capable of sustaining in the middle of its length is 8000 lbs., with a deflection of not more than  $\frac{3}{4}$  of an inch; what must be the depth of the beam, supposing the breadth 8 inches?

 $\frac{16 \times 8000}{90 \times 32 \times .75} = 15175 \div 8 = \sqrt[3]{1897} = 12.35 \text{ in. the depth.}$ 

**RULE.**—To determine the absolute strength of a rectangular beam of timber when supported at both ends, and loaded in the middle of its length, as beams in general ought to be calculated to, so that they may be rendered capable of withstanding all accidental cases of emergency.-Multiply the tabular value of S by four times the depth of the beam in inches, and by the area of the cross section in inches; divide the product by the distance between the supports

in inches, and the quotient will be the absolute strength of the beam in lbs.

If the beam be not laid horizontally, the distance between the supports, for calculation, must be the horizontal distance.

One-fourth of the weight obtained by the rule is the greatest weight that ought to be applied in practice as permanent load.

If the load is to be applied at any other point than the middle, then the strength will be, as the product of the two distances is to the square of half the length of the beam between the supports; or, twice the distance from one end, multiplied by twice from the other, and divided by the whole length, equal the effective length of the beam.

In a building 18 feet in width, an engine boiler of  $5\frac{1}{2}$  tons is to be fixed, the centre of which to be 7 feet from the wall; and having two pieces of red pine 10 inches by 6, which I can lay across the two walls for the purpose of slinging it at each end,—may I with sufficient confidence apply them, so as to effect this object?

 $\frac{2240 \times 5.5}{2} = 6160$  lbs. to carry at each end.

And 18 feet -7 = 11, double each, or 14 and 22, then  $\frac{14 \times 22}{18}$ = 17 feet, or 204 inches, effective length of beam.

Tabular value of S, red pine =  $\frac{1341 \times 4 \times 10 \times 60}{204} = 15776$ 

lbs., the absolute strength of each piece of timber at that point.

RULE.— To determine the dimensions of a rectangular beam capable of supporting a required weight, with a given degree of deflection, when fixed at one end.—Divide the weight to be supported, in lbs., by the tabular value of E, multiplied by the breadth and deflection, both in inches; and the cube root of the quotient, multiplied by the length in feet, equal the depth required in inches.

A beam of ash is intended to bear a load of 700 lbs. at its extremity; its length being 5 feet, its breadth 4 inches, and the deflection not to exceed  $\frac{1}{2}$  an inch.

Tabular value of  $\vec{E} = 119 \times 4 \times \cdot 5 = 238$ , the divisor; then 700  $\div 238 = \sqrt[3]{2.94} \times 5 = 7.25$  inches, depth of the beam.

RULE.—To find the absolute strength of a rectangular beam, when fixed at one end, and loaded at the other.—Multiply the value of S by the depth of the beam, and by the area of its section, both in inches; divide the product by the leverage in inches, and the quotient equal the absolute strength of the beam in lbs.

A beam of Riga fir, 12 inches by  $4\frac{1}{2}$ , and projecting  $6\frac{1}{2}$  feet from the wall; what is the greatest weight it will support at the extremity of its length?

Tabular value of S = 1100  $12 \times 4.5 = 54$  sectional area,  $1100 \times 12 \times 54$ 78 = 9138.4 lbs.

290

Then, -

#### STRENGTH OF MATERIALS.

When fracture of a beam is produced by vertical pressure, the fibres of the lower section of fracture are separated by extension. whilst at the same time those of the upper portion are destroyed by compression; hence exists a point in section where neither the one nor the other takes place, and which is distinguished as the point of neutral axis. Therefore, by the law of fracture thus established, and proper data of tenacity and compression given, as in the Table (p. 281), we are enabled to form metal beams of strongest section with the least possible material: thus, in cast iron the resistance to compression is nearly as  $6\frac{1}{2}$  to 1 of tenacity; consequently a beam of cast iron, to be of strongest section, must be of the form TB, and a parabola in the direction of its

length, the quantity of material in the bottom flange being about 61 times that of the upper: but such is not the case with beams of timber; for although the tenacity

of timber be on an average twice that of its resistance to compression, its flexibility is so great, that any considerable length of beam, where columns cannot be situated to its support, requires to be strengthened or trussed by iron rods, as in the following manner:



And these applications of principle not only tend to diminish deflection, but the required purpose is also more effectively attained, and that by lighter pieces of timber.

RULE. — To ascertain the absolute strength of a cast iron beam of the preceding form, or that of strongest section .- Multiply the sectional area of the bottom flange in inches by the depth of the beam in inches, and divide the product by the distance between the supports also in inches; and 514 times the quotient equal the absolute strength of the beam in cwts.

The strongest form in which any given quantity of matter can be disposed is that of a hollow cylinder; and it has been demonstrated that the maximum of strength is obtained in cast iron, when the thickness of the annulus or ring amounts to the cylinder's external diameter; the relative strength of a solid to that of a hollow cylinder being as the diameters of their sections.

The following table shows the greatest weight that ever ought to be laid upon a beam for permanent load, and if there be any liability to jerks, &c., ample allowance must be made; also, the weight of the beam itself must be included.

RULE.—To find the weight of a cast iron beam of given dimensions.—Multiply the sectional area in inches by the length in feet, and by 3.2, the product equal the weight in lbs.

Required the weight of a uniform rectangular beam of cast iron, 16 feet in length, 11 inches in breadth, and  $1\frac{1}{2}$  inch in thickness.

 $11 \times 1.5 \times 16 \times 3.2 = 844.8$  lbs.

#### THE PRACTICAL MODEL CALCULATOR.

A TABLE showing the Weight or Pressure a Beam of Cast Iron, 1 inch in breadth, will sustain without destroying its elastic force, when it is supported at each end, and loaded in the middle of its length, and also the deflection in the middle which that weight will produce.

Length.	6 fe	et.	7 fe	et.	8 fe	et.	9 fe	et.	10 fe	eet.
Depth in in.	Wt. in lbs.	Defl. in in.								
3	1278	.24	1089	.33	954	•426	855	•54	765	·66
31	1739	.205	1482	.28	1298	•365	1164	•46	1041	.57
4	2272	.18	1936	.245	1700	.32	1520	•405	1360	.5
41	2875	.16	-2450	·217	2146	·284	1924	•36	1721	•443
5	3560	.144	3050	•196	2650	·256	2375	.32	2125	•4
6	5112	.12	4356	.163	3816	·213	3420	.27	3060	•33
7	6958	.103	5929	.14	-5194	·183	4655	•23	4165	•29
8	9088	.09	7744	·123	6784	•16	6080	·203	5440	.25
9		_	9801	·109	8586	.142	7695	·18	6885	.22
10			12100	.098	10600	.128	9500	·162	8500	•2
11		-		-	12826	.117	11495	.15	10285	.18
12		-		-	15264	.107	13680	·135	12240	.17
13						- 1	16100	.125	14400	.154
14		-	_	-		-	18600	·115	16700	·143
	12 fe	et.	14 fe	et.	16 fe	et.	18 fe	et.	20 fe	et.
6	2548	•48	2184	.65	1912	.85	1699	1.08	1530	1.34
7	3471	.41	2975	.58	2603	.73	2314	.93	2082	1.14
8	4532	·36	3884	#49	3396	•64	3020	·81	2720	1.00
9	5733	.32	4914	•44	4302	.57	3825	.72	-3438	.89
10	7083	·28	6071	.39	5312	.51	4722	•64	4250	•8
11	8570	·26	7346	·36	6428	•47	5714	•59	5142	.73
12	10192	·24	8736	·33	7648	•43	6796	$\cdot 54$	6120	•67
13	11971	·22	10260	·31	8978	•39	7980	•49	7182	•61
14	13883	.21	11900	-28	10412	•36	9255	•46	8330	.57
15	15937	•19	13660	·26	11952	·34	10624	•43	9562	.53
16	18128	•18	15536	.24	13584	.32	12080	•40	10880	•5
17	20500	.17	17500	.23	15353	•3	13647	·38	12282	•47
18	22932	.16	19656	·21	17208	·28	15700	•36	13752	•44

Resistance of Bodies to Flexure by Vertical Pressure.—When a piece of timber is employed as a column or support, its tendency to yielding by compression is different according to the proportion between its length and area of its cross section; and supposing the form that of a cylinder whose length is less than seven or eight times its diameter, it is impossible to bend it by any force applied longitudinally, as it will be destroyed by splitting before that bending can take place; but when the length exceeds this, the column will bend under a certain load, and be ultimately destroyed by a similar kind of action to that which has place in the transverse strain.

Columns of cast iron and of other bodies are also similarly circumstanced.

When the length of a cast iron column with flat ends equals about thirty times its diameter, fracture will be produced wholly by bending of the material ;—when of less length, fracture takes place partly by crushing and partly by bending : but, when the column

is enlarged in the middle of its length from one and a half to twice its diameter at the ends, by being cast hollow, the strength is greater by ¹/₄th than in a solid column containing the same quantity of material.

RULE.—To determine the dimensions of a support or column to bear without sensible curvature a given pressure in the direction of its axis.—Multiply the pressure to be supported in lbs. by the square of the column's length in feet, and divide the product by twenty times the tabular value of E; and the quotient will be equal to the breadth multiplied by the cube of the least thickness, both being expressed in inches.

When the pillar or support is a square, its side will be the fourth root of the quotient.

If the pillar or column be a cylinder, multiply the tabular value of E by 12, and the fourth root of the quotient equal the diameter.

What should be the least dimensions of an oak support, to bear a weight of 2240 lbs. without sensible flexure, its breadth being 3 inches, and its length 5 feet?

Tabular value of E = 105, and  $\frac{2240 \times 5^3}{20 \times 105 \times 3} = \sqrt[3]{8\cdot888} = 2.05$  inches.

Required the side of a square piece of Riga fir, 9 feet in length, to bear a permanent weight of 6000 lbs.

Tabular value of E = 96, and  $\frac{6000 \times 9^2}{20 \times 96} = 4\sqrt{253} = 4$  inches nearly.

Dimensions of Cylindrical Columns of Cast Iron to sustain a given load or pressure with safety.

s.			'		Length	or beigh	t in feet.	0.211-		いない	0
mete	4	6	8	10	12	14	16	18	20	22	24
Dia					Weigh	t or load	in cwts.		1		
2	72	60	49	40	32	26	$22 \cdot$	18	* 15	13	11
21	119	105	91	77	65	55	47	40	34	29	25
3	178	163	145	128	111	97	84	73	64	56	49
31	247	232	214	191	172	156	135	119	106	. 94	83
4	326	310	288	266	242	220	198	178	160	144	130
41	418	400	379	354	327	301	275	251	229	208	189
5	522	501	479	452	427	394	365	337	310	285	262
6	607	592	573	550	525	497	469	440	413	386	360
7	1032	1013	989	959	924	887	848	808	765	725	686
8	1333	1315	1289	1259	1224	1185	1142	1097	1052	1005	959
9	1716	1697	1672	1640	1603	1561	1515	1467	1416	1364	1311
10	2119	2100	2077	2045	2007	1964	1916	1865	1811	1755	1697
11	2570	2550	2520	2490	2450	2410	2358	2305	2248	2189	2127
12	3050	3040	3020	2970	2930	2900	2830	2780	2730	2670	2600
1										1.00	

Practical utility of the preceding Table.—Wanting to support the front of a building with cast iron columns 18 feet in length, 8 inches in diameter, and the metal 1 inch in thickness; what weight may  $z^2$ 

I confidently expect each column capable of supporting without tendency to deflection?

Opposite 8 inches diameter and under 18 feet = 1097Also opposite 6 in. diameter and under 18 feet = 440

657 cwts.

_

The	strength o	of cast iron as a	column	being	-	1.0000
	·	steel			=	2.518
		wrought iron			-	1.745
	_	oak (Dantzic)	-		=	·1088
		red deal			=	.0785

Elasticity of torsion, or resistance of bodies to twisting.-The angle of flexure by torsion is as the length and extensibility of the body directly, and inversely as the diameter; hence, the length of a bar or shaft being given, the power, and the leverage the power acts with, being known, and also the number of degrees of torsion that will not affect the action of the machine, to determine the diameter in cast iron with a given angle of flexure.

RULE .- Multiply the power in lbs. by the length of the shaft in feet, and by the leverage in feet; divide the product by fifty-five times the number of degrees in the angle of torsion, and the fourth root of the quotient equal the shaft's diameter in inches.

Required the diameters for a series of shafts 35 feet in length. and to transmit a power equal to 1245 lbs., acting at the circumference of a wheel 21 feet radius, so that the twist of the shafts on the application of the power may not exceed one degree.  $\frac{1245 \times 35 \times 2.5}{1245 \times 35} = 4\sqrt{1981} = 6.67$  inches in diameter.

Relative strength of metals to resist torsion.

Cast iron	= 1	1	Swedis	sh bar	r iron	=	1.05
Copper	-	•48	Englis	h	do		1.12
Yellow brass		·511	Shear	steel		=	1.96
Gun-metal	==	·55	Cast	do		=	2.1

DEFLEXION OF RECTANGULAR BEAMS.

RULE. - To ascertain the amount of deflexion of a uniform beam of cast iron, supported at both ends, and loaded in the middle to the extent of its elastic force.-Multiply the square of the length in feet by  $\cdot 02$ , and the product divided by the depth in inches equal the deflexion.

Required the deflection of a cast iron beam 18 feet long between the supports, 12.8 inches deep, 2.56 inches in breadth, and bearing a weight of 20,000 lbs. in the middle of its length.

 $18^2 \times \cdot 02$ 

= .506 inches from a straight line in the middle. 12.8

For beams of a similar description, loaded uniformly, the rule is the same, only multiply by  $\cdot 025$  in place of  $\cdot 02$ .

RULE.-To find the deflection of a beam when fixed at one end

and loaded at the other.—Divide the length in feet of the fixed part of the beam by the length in feet of the part which yields to the force, and add 1 to the quotient; then multiply the square of the length in feet by the quotient so increased, and also by '13; divide this product by the middle depth in inches, and the quotient will be the deflection, in inches also.

Multiply the deflection so obtained for cast iron by .86, the product equal the deflection for wrought iron; for oak, multiply by 2.8; and for fir, 2.4.

A	TABLE	of the	Depths	of Squa	re Beam	s or Ba	rs of Ca	st Iron,
	calcula	ted to	support.	from 1 (	wt. to 14	Tons is	n the Mi	ddle, the
	Deflecti	ion not	to excee	$d \frac{1}{40} th of$	an Inch	for each	Foot in	Length.

Lengths	in Feet	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Weight in cwt.	Weight in lbs.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.	Depth.
		In.	In.	In.	In.	In.	In.	In.	In.	In.	ln.	In.	ln.	In.	In.
1 cwt.	112	1.2	1-4	1.7	1-9	2.0	2.2	2.4	2.5	2.6	2.7	2.9	3.0	3.1	$3\cdot 2$
2	124	1.4	1.7	$2 \cdot 0$	2.2	2.4	2.6	2.8	3.0	3.1	3.3	3.4	3.6	3.7	3.8
3	336	1.6	1.9	2.2	2.4	2.7	2.9	3.1	3.3	3.4	3.6	3.8	3.9	4.1	$4\cdot 2$
4	448	1.7	$2 \cdot 0$	2.4	2.6	2.9	3.1	3.3	3.0	3.7	3.9	4.0	4.2	4.8	4.5
5	560	1.8	$2 \cdot 2$	2.5	2.8	3.0	3.3	3.5	3.7	3.9	4.1	4.3	4.4	4.6	4.8
6	672	1.8	$2\cdot 2$	2.6	2.9	3.2	3.4	3.7	3.9	4.1	4.3	4.5	4.6	4.8	5.0
7	784	1.9	2.3	2.7	3.0	3.3	3.6	3.8	4.1	4.2	4.4	4.6	4.8	5.0	5.2
8'	896	2.0	2.4	2.8	3.1	3.4	3.7	3.9	4.2	4.4	4.6	4.8	5.0	5.2	5.4
9	1,008	2.0	2.5	2.9	3.5	3.5	3.8	4.0	4.3	4.2	4.7	4.9	5.1	5.3	5.2
10	1,120	2.1	2.6	8.0	3.3	3.6	3.9	4.2	4.1	4.7	4.9	5.2	5.3	5.4	5.7
11	1,232	2.1	2.6	3.0	3.4	3.7	4.0	4.3	4.5	4.8	5.0	5.3	5.4	9.0	5.8
12	1,344	2.2	2.7	3.1	3.2	3.8	4.1	4.4	4.7	4.9	5.1	5.3	5.2	5.7	5.9
13	1,456	2.2	2.7	3.1	3.2	3.8	4.2	4.4	4.7	4.9	5.2	5.4	5.6	5.9	6.0
14	1,568	2.3	2.8	$3\cdot 2$	3.6	3.9	4.2	4.5	4.8	5.0	5.3	5.5	5.7	6.0	6.1
15	1,680	2.3	2.8	3.2	3.6	4.0	4.3	4.6	4.9	5.2	5.4	5.6	5.8	6.1	6.2
16	1,792	2.4	2.9	3.3	3.2	4.0	4.4	4.7	5.0	5.2	5.2	5.7	5.9	6.2	6.4
17	1,904	2.4	2.9	3.4	3.8	4.1	4.4	4.7	5.0	5.3	5.2	5.8	6.0	6.2	6.5
18 -	2,016	2.4	3.0	3.4	3.8	4.2	4.2	4.8	5.1	5.4	5.6	5.9	6.1	6.1	6.6
19	2,128	2.5	3.0	3.5	3.8	4.2	4.6	4.9	5.2	5.4	5.7	6.0	6.2	6.5	6.7
1 ton.	2,240	2.5	3.0	3.5	3.9	4.3	4.6	4.9	5.2	5.5	5.8	6.0	6.3	6.2	6.8
1‡	2,800	2.6	3.2	3.7	4.1	4.5	4.9	5.2	5.5	5.8	6.1	6.4	6.6	6.9	7.2
1±	3,360	2.8	3.4	3.9	$4 \cdot 3$	4.7	5.1	5.5	5.8	6.1	6.4	6.7	7.0	7.2	7.5
11	3,920	2.9	3.5	4.0	4.5	4.9	5.3	5.7	6.0	6.3	6.7	6.9	7.2	7.5	7.7
2	4,480	2.9	3.5	4.1	4.7	5.1	5.5	5.9	6.2	6.5	6.8	7.2	7.6	7.7	8.0
21	5,600	3.1	3.8	4.4	4.9	5.5	5.8	6.2	6.6	6.9	7.3	7.6	7.9	8.2	8.5
3	6,720	3.3	4.0	4.6	5.1	5.7	6.1	6.2	6.9	7.3	7.6	7.9	8.3	8.6	8.9
31	7,840	3.4	4.1	4.8	5.3	5.8	6.3	6.7	7.1	7.5	7.9	8.2	8.6	8.9	9.2
4	8,960	3.5	4.3	4.9	5.5	6.0	6.5	7.0	7.4	7.8	8.2	8.5	8.9	9.2	9.5
4	10,080	-	4.4	5.1	5.7	6.2	6.7	7.2	7.6	8.0	8.4	8.8	9.1	9.5	9.8
5	11,200	-	4.5	5.2	5.8	6.4	6.9	7.4	7.8	8.2	8.6	9.0	9.4	9.7	10.1
6	13,440	-		5.5	6.1	6.7	7.2	7.7	8.2	8.6	9.0	9.4	9.8	10.5	10.5
7	15,680	-	-	5.7	6.3	6.9	7.5	8.0	8.5	.8.9	94	9.8	10.2	10.6	11.0
8	17,920		-	5.9	6.6	7.2	7.8	8.3	8.8	9.3	9.7	10.1	10.6	10.9	11.3
9	20,160	-	-	6.0	6.8	7.4	8.0	8.5	9.0	9.5	10.0	10.4	10.9	11.3	11.7
10	22,400	-	-	-	6.9	7.6	8.2	8.8	9-3	9.8	10.3	10.7	11.2	11.6	12.0
11	24,640	-		-	7.1	7.8	8.4	9.0	9.5	10.0	10.5	11.0	11.5	11.9	12.3
12	26,880	-	-	-	7.2	7.9	8.6	9.2	9.7	10.2	10.8	11.2	11.7	12.1	12.5-
13	29,120		-	-	7.4	8.1	8.8	9.4	9.9	10.4	11.0	11.5	11.9	12.4	12.8
14	31,360	-	-	- 1	7.5	8.3	8.9	9.5	10.1	10.6	11.1	11.7	12.1	12.6	13.0
Deflection	in inches	•1	·15	·2	·25	•3	•35	•4	•45	•5	•55	•6	•65	.7	75
Length	s in Feet	10	12	14	16	18	20	22	24	26	28	30	32	34	36
15	33,600	7.7	8.4	9.1	9.7	10.3	10.8	11.4	11.9	12.3	12.8	13.2	13.7	14.1	14.5
16	35,840	7.8	8.5	9.2	9.8	10.4	11.0	11.5	12.0	12.5	13.0	13.5	13.9	14.3	14.7
17	38,080	7.9	8.7	.9.4	10.0	10.6	11.2	11.7	12.2	12.7	13.2	13.7	14.1	14.5	14.9
18	40,320	8.0	8.8	9.5	10.1	10.8	11.3	11.9	12.4	12.9	13.4	13.9	14.3	14.7	15.1
19	42,560	8.1	8.9	9.6	10.3	10.9	11.5	12.2	12.6	13.1	13.6	14.)	14.5	15.0	15.4
20	44,800	1	9.0	9.7	10.4	11.0	11.6	12.5	12.7	13.2	13.8	14.2	14.7	15.1	15 6
22	49,280	-	9.2	10.0	10.7	11.3	11.9	12.8	13.0	13.6	14.1	14.6	15.1	15.5	15.9
24	53,760		9.4	10.2	10.9	11.5	12.2	13.0	13.4	13.9	14.4	14.9	15.4	15.9	16.3
26	58,240	- 1	9.6	10.4	11.1	11.8	12.4	13.3	13.6	14.2	14.7	15.2	15.7	16.2	16.7
28	62,720	-	9.8	10.6	11.4	12.0	12.7	13.5	13.9	14.4	15.0	15.5	16-0	16.5	17.0
Deflection	n in inches	-25		-35	-4	•45		-55		-66		-75			
			0	00	- <b>x</b> -	<b>T</b> U		00	-0	00		10		00	9

THE PRACTICAL MODEL CALCULATOR.

Length	s in Feet	14	16	18	20	22	24	26	28	30	32	34	86	38	40
Weight in tons.	Weight in lbs.	Depth.													
		In.													
30	67,200	10.8	11.5	12.2	12.9	13.5	14.1	14.7	15.2	15.7	16.3	16.8	17.3	17.7	18.2
32	71,680	11.0	11.7	12.4	13.1	13.7	14.3	14.9	15.5	16.0	16.5	17.0	17.5	18.0	18.5
34	76,160	11.1	11.9	12.6	13.3	13.9	14.5	15.1	15.7	16.2	16.8	17.3	17.8	18.3	18.8
36	80,640	11.3	12.0	12.8	13.4	14.1	14.7	15.3	15.9	16.5	17.0	17.5	18.0	18.5	19.0
38	85,120	11.4	12.2	13.0	13.6	14.3	14.9	15.5	16.1	16.7	17.2	17.8	18.3	18.8	19.3
40	89,600	-	12.4	13.1	13.8	14.5	15.1	15.7	16.4	16.9	17.5	18.0	18.5	19.1	19.5
42	94,080		12.5	13.3	14.0	14.7	15.3	15.9	16.5	17.1	17.7	18.2	18.7	19.3	19.8
44	98,560		12.7	13.5	14.2	14.9	15.5	16.1	16.8	17.4	17.9	18.5	19.0	19.5	20.0
46	103,040		12.8	13.6	14.3	15.0	15.7	16.3	17.0	17.6	18.1	18.7	19.2	19.8	20.3
48	107,520	-	13.0	13.7	14.5	15.2	15.9	16.5	17.1	17.7	18.3	18.8	19.4	20.0	20.5
50	112,000		-	13.8	14.6	15.3	16.0	16.6	17.3	17.9	18.5	19.0	19.6	20.1	20.7
52	116,480	-		14.0	14.7	15.5	16.2	16.8	17.5	18.1	18.7	19.2	19.8	20.3	21.0
54	120,960		-	14.1	14.9	15.7	16.3	17.0	17.6	18.2	18.8	19.4	19.9	20.5	21.1
56	125,440	-		14.3	15.0	15.8	16.5	17.1	17.8	18.4	19.0	19.6	20.1	20.7	21.3
58	129,920	-		14.4	15.1	15.9	16.6	17.3	17.9	18.5	19.2	19.7	20.3	20.9	21.4
60	134,400	-	-	14.5	15.3	16.0	16.7	17.4	18.1	18.7	19.3	19.9	20.5	21.1	21.6
Deflection	n in inches	•35	•4	•45	•5	•55	•6	•65	•7	.75	•8	•85	•9	•95	1.0

Examples illustrative of the Table.—1. To find the depth of a rectangular bar of cast iron to support a weight of 10 tons in the middle of its length, the deflection not to exceed  $\frac{1}{40}$  of an inch per foot in length, and its length 20 feet, also let the depth be 6 times the breadth.

Opposite 6 times the weight and under 20 feet in length is  $15\cdot3$  inches, the depth, and  $\frac{1}{6}$  of  $15\cdot3 = 2\cdot6$  inches, the breadth.

2. To find the diameter for a cast iron shaft or solid cylinder that will bear a given pressure, the flexure in the middle not to exceed  $\frac{1}{40}$ th of an inch for each foot of its length, the distance of the bearings being 20 feet, and the pressure on the middle equals 10 tons.

Constant multiplier 1.7 for round shafts, then  $10 \times 1.7 = 17$ . And opposite 17 tons and under 20 feet is 11.2 inches for the diameter.

But half that flexure is quite enough for revolving shafts: hence  $17 \times 2 = 34$  tons, and opposite 34 tons is 13.3 inches for the diameter.

3. A body 256 lbs. weight, presses against its horizontal support, so that it requires the force of 52 lbs. to overcome its friction; if the body be increased to 8750 lbs., what force will cause it to pass from a state of rest to one of motion?

52

 $\frac{62}{256} = 203125 =$ , in this case, the coefficient of friction;

 $\therefore 8750 \times 203125 = 1777.34375$  lbs., the force required.

This calculation is based upon the law, that friction is proportional to the normal pressure between the rubbing surfaces. Twice the pressure gives twice the friction; three times the pressure gives three times the friction; and so on. With light pressures, this law may not hold, but then it is to be attributed to the proportionately greater effect of adhesion.

4. If a sleigh, weighing 250 lbs., requires a force of 28 lbs. to draw it along; when 1120 lbs. are placed in it, required the units of work expended to move the whole 350 feet?

#### STRENGTH OF MATERIALS.

28

 $\frac{-2}{250} = \cdot 112$ , the coefficient of friction.

Then  $(1120 + 250) \times \cdot 112 = 153.44$  lbs., the force required to move the whole.

 $\therefore 153.44 \times 350 = 53704$ , the units of work required.

A UNIT OF WORK is the labour which is equal to that of raising one pound a foot high. It is supposed that a horse can perform 33000 units of work in a minute.

It may also be remarked that friction is independent of the extent of the surfaces in contact, except with trifling pressures and large surfaces, which is on account of the effect of adhesion. The friction of motion is independent of velocity, and is generally less than that of quiescence.

5. Required the coefficient of friction, for a sliding motion, of castiron upon wrought, lubricated with Devlin's oil, and under the following circumstances: the load A. and sledge nm, weighs 8420 lbs., and requires



a weight W, of 1200 lbs. to cause it to pass from a state of rest into one of motion: the sledge and load pass over 22 feet on the horizontal way rs, in 8 seconds.

In this case the coefficient of sliding motion will be

 $\frac{1200}{8420} - \frac{1200 + 8420}{8420} \times \frac{2 \times 22}{g \times 8^2},$ in which g = 32.2 feet; the acceleration of the free descent of bodies brought about by gravity. The above expression becomes

> 44  $\cdot 142515 - 1 \cdot 142515 \times \frac{1}{2060 \cdot 8} = \cdot 118121.$

Hence the coefficient of the friction of motion is .118121, and the coefficient of the friction of quiescence is .142515.

OF FRICTION, OR RESISTANCE TO MOTION IN BODIES ROLLING OR RUB-BING ON EACH OTHER.

In the years 1831, 1832, and 1833, a very extensive set of experiments were made at Metz, by M. Morin, under the sanction of the French government, to determine as nearly as possible the laws of friction; and by which the following were fully established:

1. When no unguent is interposed, the friction of any two surfaces (whether of quiescence or of motion) is directly proportional to the force with which they are pressed perpendicularly together; so that for any two given surfaces of contact there is a constant ratio of the friction to the perpendicular pressure of the one surface upon the other. Whilst this ratio is thus the same for the same

surfaces of contact, it is different for different surfaces of contact. The particular value of it in respect to any two given surfaces of contact is called the coefficient of friction in respect to those surfaces.

2. When no unguent is interposed, the amount of the friction is, in every case, wholly independent of the extent of the surfaces of contact; so that, the force with which two surfaces are pressed together being the same, their friction is the same, whatever may be the extent of their surfaces of contact.

3. That the friction of motion is wholly independent of the velocity of the motion.

4. That where unguents are interposed, the coefficient of friction depends upon the nature of the unguent, and upon the greater or less abundance of the supply. In respect to the supply of the unguent, there are two extreme cases, that in which the surfaces of contact are but slightly rubbed with the unctuous matter, as, for instance, with an oiled or greasy cloth, and that in which a continuous stratum of unguent remains continually interposed between the moving surfaces; and in this state the amount of friction is found to be dependent rather upon the nature of the unguent than upon that of the surfaces of contact. M. Morin found that with unguents (hog's lard and olive oil) interposed in a continuous stratum between surfaces of wood on metal, wood on wood, metal on wood, and metal on metal, when in motion, have all of them very near the same coefficient of friction, being in all cases included between  $\cdot 07$  and  $\cdot 08$ .

The coefficient for the unguent tallow is the same, except in that of metals upon metals. This unguent appears to be less suited for metallic substances than the others, and gives for the mean value of its coefficient, under the same circumstances,  $\cdot 10$ . Hence, it is evident, that where the extent of the surface sustaining a given pressure is so great as to make the pressure less than that which corresponds to a state of perfect separation, this greater extent of surface tends to increase the friction by reason of that adhesiveness of the unguent, dependent upon its greater or less viscosity, whose effect is proportional to the extent of the surfaces between which it is interposed.

It was found, from a mean of experiments with different unguents on axles, in motion and under different pressures, that, with the unguent tallow, under a pressure of from 1 to 5 cwt., the friction did not exceed  $\frac{1}{10}$ th of the whole pressure; when soft soap was applied, it became  $\frac{1}{14}$ th; and with the softer unguents applied, such as oil, hog's lard, &c., the ratio of the friction to the pressure increased; but with the harder unguents, as soft soap, tallow, and anti-attrition composition, the friction considerably diminished; consequently, to render an unguent of proper efficiency, the nature of the unguent must be measured by the pressure or weight tending to force the surfaces together.

10	Coefficients	Coefficients of Friction.		
Surfaces of Contact.	Friction of Motion.	Friction of Quiescence		
Oak upon oak, the fibres being parallel to the motion. Ditto, the fibres of the moving body being perpendicu-	0.018	0.390		
lar to the motion	0.143	0.314		
Oak upon elm, fibres parallel	0.136			
Elm upon oak, do	0.119	0.420		
Beech upon oak, do	0.330	-		
Elm upon elm, do	0.140			
Wrought iron upon elm, do	0.138			
Ditto upon wrought iron, do	0.177			
Ditto upon cast iron, do	•••	0.118		
Cast iron upon wrought iron, do	0.143			
Wrought iron upon brass, do	0.160			
Brass upon wrought iron, do	0.166			
Cast iron upon oak, do	. 0.107	0.100		
Ditto upon elm, do., the unguent being tallow	0.125			
Ditto, do., the unguent being hog's lard and black		•		
lead	0.137			
Elm upon cast iron	0.135	0.098		
Cast iron upon cast iron	0.144			
Ditto upon brass.	0.132			
Brass upon cast iron	0.107			
Ditto upon brass	0.134	0.164		
Copper upon oak	0.100			
Yellow copper upon cast iron	0.115			
Leather (ox-hide), well tanned, upon cast iron. wetted	0.229	0.267		
Ditto upon brass, wetted	0.244			

TABLE of the Results of Experiments on the Friction of Unctuous Surfaces. By M. MORIN.

In these experiments, the surfaces, after having been smeared with an unguent, were wiped, so that no interposing layer of the unguent prevented intimate contact.

TABLE of the Results of Experiments on Friction, with Unguents interposed. By M. MORIN.

	Coefficients	of Friction.	-
Surfaces of Contact.	Friction of Motion.	Friction of Quiescence.	Unguents.
Oak upon oak, fibres parallel	0.164	0.440	Dry soap.
Do. do	0.075	0.164	Tallow.
Do. do	0.067		Hog's lard.
Do., fibres perpendicular	0.083	0.254	Tallow.
Do. do	0.072		Hog's lard.
Do. do	0.250		Water.
Do. upon elm, fibres parallel	0.136		Dry soap.
Do. do	0.073	0.178	Tallow.
Do. do	0.066		Hog's lard.
Do. upon cast iron	0.080	> ]	Tallow.
Do. upon wrought iron	0.098		Tallow.
Beech upon oak, fibres parallel	0.055	·	Tallow.
Elm upon oak, do	0.137	0.411	Dry soap.
Do. do	0.170	0.142	Tallow.
Do do	0.060		Hog's lard.
Elm upon elm, do	0.139	0.217	Dry soap.
Do. upon cast iron	0.066		Tallow.
Wrought iron upon oak, fibres }	0.256	0.649	{ Greased and satu- { rated with water.
Do. do	0.214		Dry soap.

## THE PRACTICAL MODEL CALCULATOR.

1 - 12	1 72 8	Coefficients	of Friction.	
Surfaces	s of Contact.	Friction of Motion.	Friction of Quiescence.	Unguents.
Wrought iron parallel	upon oak, fibres }	0.085	0.108	Tallow.
Do. upon elm,	do	0.078		Tallow.
Do.	do	0.076		Hog's lard.
Do.	do	0.055		Olive oil.
Do, upon cast	iron. do	0.103		Tallow
Do.	do	0.076		Hog's lard
Do	do	0.066	0.100	Olive oil
Do upon wro	ught iron do	0.082	0 100	Tullow
Do. upon wro	do '	0.081		How's land
Do.	do	0.070	0.115	Olive oil
Wnought inon	upon bross do	0.103	0 110	
wrought from	upon brass, do	0.075		Tanow.
D0.	d0	0.079		Hog's lard.
Do.	u0	0.190		Olive oil.
Cast iron upo	n oak, do	0.199		Dry soap.
Do.	do	0.218	0.646	Greased and satu-
Do.	do	0.078	0.100	Tallow.
Do.	do	0.075		Hog's lard
Do	do	0.075	0.100	Olive oil
Do upon alm	do	0.077	0 100	Tallow
Do. upon cim	, do	0.061		Olive oil
D0.	do	0.091		f Hog's lard and
D0.	u0	0.021		) plumbago.
Do. upon wro	ught iron		0.100	Tallow.
Do. upon cast	t iron	0.314		Water.
Do.	đo	0.197		Soan.
Do.	do	0.100	0.100	Tallow.
Do	do	0.070	0.100	Hog's lard.
Do.	do	0.064		Olive oil.
Do.	do	0.055		{ Hog's lard and
		0.100	1	( plumbago.
Do. upon bra	SS	0.103		Tallow.
Do. do.		0.075		Hog's lard.
Do. do.		0.078		Olive oil.
Copper upon	oak, fibres parallel	0.069	0.100	Tallow.
Yellow copper	r upon cast iron	0.072	0.103	Tallow.
Do.	do	0.068		Hog's lard.
Do.	do	0.066		Olive oil.
Brass upon c	ast iron	0.086	0.106	Tallow.
Do.	do	0.077		Olive oil.
Do. upon wro	ught iron	0.081		Tallow.
Do.	do	0.089	-	{ Lard and plum-
Do.	do	0.072		(bago. Olive oil.
Brass upon h	rass	0.058		Olive oil.
Steel upon co	st iron	0.105	0.108	Tallow.
Do	do.	0.081	0100	Hog's lard
Do.	do	0.079		Olive oil.
Do unon www	ught iron	0.098		Tallow
Do. upon wro	do	0.076		Hor's lard
Do upon here		0.056		Tallow
Do. upon bra		0.052		Olive oil
Do. do.	•••••	0.007		∫ Lard and plum-
Do. do.		0.001		bago.
Tanned ox-hi	ide upon cast iron	0.365		rated with water.

The extent of the surfaces in these experiments bore such a relation to the pressure as to cause them to be separated from one another throughout by an interposed stratum of the unguent.

TABLE of the K	lesults of E	xperiments	on the Fr	iction of	Gudgeons
or Axle-ends	, in motion	upon their	bearings.	By M.	MORIN.

Surfaces in Contact.	State of the Surfaces.	Coefficient of Friction.
Cost in solar in	Coated with oil of olives, with hog's lard, tallow, and soft gome	0.07 to 0.08
cast iron bearings.	With the same and water	0.08
	Greasy	0.14
	(Greasy and wetted	0.14
· · · · · ·	with hog's lard, tallow, }	0.07 to 0.08
cast iron axles in cast iron bearings.	Greasy	0.16
Ū .	Greasy and damped	0.16
Wrought iron axles	(Coated with oil of olives, )	0.13
in cast iron bear- ings.	{ tallow, hog's lard, or } soft gome	0.07 to 0.08
Wrought iron axles	hog's lard, or tallow,	0.07 to 0.08
in brass bearings.	Coated with hard gome	0.09
	Scarcely greasy	0.19
Iron axles in lignum	{Coated with oil or hog's }	0.11
vitæ bearings.	Greasy	0.19
Brass axles in brass bearings.	{ Coated with oil { With hog's lard	0.10 0.09

 
 TABLE of Coefficients of Friction under Pressures increased continually up to limits of Abrasion.

Desame	Coefficients of Friction.								
Square Inch.	Wrought Iron upon Wrought Iron.	Wrought Iron upon Cast Iron.	Steel upon Cast Iron.	Brass upon Cast Iron.					
32.5 lbs.	•140	·174	·166	·157					
1.66 cwts.	·250	·275	·300	·225					
2.00	·271	·292	·333	.219					
2.33	·285	·321	·340	·214					
2.66	·297	•329	· ·344	·211					
3.00	.312	•333	·347	·215					
3.33	·350	·351	-351	•206					
3.66	•376	·353	.353	.205					
4.00	-395	.365	.354	.208					
4.33	•403	.366	.356	•221					
4.66	.409	•366	•357	.223					
5.00	100	•367	-358	.233					
5.33		-367	.359	.234					
5.66		.367	.367	.285					
6.00		•376	.403	-233					
6.83		.434	100	.234					
6.66		101		.235					
7.00				.232					
7.33				.973					
1.00			•••••	-210 3					

2 A

Comparative friction of steam engines of different modifications, if the beam engine be taken as the standard of comparison :---

The vibrating engine	has	a gain of 1.	1 per cent.
The direct-action engine, with slides		loss of 1.	8 -
Ditto, with rollers		gain of 0.	8
Ditto, with a parallel motion		gain of 1.	3 — .

Excessive allowance for friction has hitherto been made in calculating the effective power of engines in general; as it is found practically, by experiments, that, where the pressure upon the piston is about 12 lbs. per square inch, the friction does not amount to more than  $1\frac{1}{2}$  lbs.; and also that, by experiments with an indicator on an engine of 50 horse power, the whole amount of friction did not exceed 5 horse power, or one-tenth of the whole power of the engine.

RECENT EXPERIMENTS MADE BY M. MORIN ON THE STIFFNESS OF ROPES, OR THE RESISTANCE OF ROPES TO BENDING UPON A CIRCULAR ARC.

The experiments upon which the rules and table following are founded were made by Coulomb, with an apparatus the invention of Amonton, and Coulomb himself deduced from them the following results :---

1. That the resistance to bending could be represented by an expression consisting of two terms, the one constant for each rope and each roller, which we shall designate by the letter A, and which this philosopher named the natural stiffness, because it depends on the mode of fabrication of the rope, and the degree of tension of its yarns and strands; the other, proportional to the tension, T, of the end of the rope which is being bent, and which is expressed by the product, BT, in which B is also a number constant for each rope and each roller.

2. That the resistance to bending varied inversely as the diameter of the roller.

Thus the complete resistance is represented by the expression

$$\frac{A + BT}{D}$$
,

where D represents the diameter of the roller.

Coulomb supposed that for tarred ropes the stiffness was proportional to the number of yarns, and M. Navier inferred, from examination of Coulomb's experiments, that the coefficients A and B were proportional to a certain power of the diameter, which depended on the extent to which the cords were worn. M. Morin, however, deems this hypothesis inadmissible, and the following is an extract from his new work, "Leçons de Mécanique Pratique," -December, 1846 :---

"To extend the results of the experiments of Coulomb to ropes of different diameters from those which had been experimented upon, M. Navier has allowed, very explicitly, what Coulomb had but surmised: that the coefficients, A, were proportional to a cer-

#### STRENGTH OF MATERIALS.

tain power of the diameter, which depended on the state of wear of the ropes; but this supposition appears to us neither borne out, nor even admissible, for it would lead to this consequence, that a worn rope of a metre diameter would have the same stiffness as a new rope, which is evidently wrong; and, besides, the comparison alone of the values of A and B shows that the power to which the diameter should be raised would not be the same for the two terms of the resistance."

Since, then, the form proposed by M. Navier for the expression of the resistance of ropes to bending cannot be admitted, it is necessary to search for another, and it appears natural to try if the factors A and B cannot be expressed for white ropes, simply according to the number of yarns in the ropes, as Coulomb has inferred for tarred ropes.

Now, dividing the values of A, obtained for each rope by M. Navier, by the number of yarns, we find for

$$n = 30 \ d = 0^{m} \cdot 200 \ A = 0 \cdot 222460 \frac{A}{n} = 0 \cdot 0074153.$$
$$n = 15 \ d = 0^{m} \cdot 144 \ A = 0 \cdot 063514 \frac{A}{n} = 0 \cdot 0042343.$$
$$n = 6 \ d = 0^{m} \cdot 0088 \ A = 0 \cdot 010604 \frac{A}{n} = 0 \cdot 0017673.$$

It is seen from this that the number A is not simply proportional to the number of yarns.

Comparing, then, the values of the ratio  $\frac{A}{n}$  corresponding to the three ropes, we find the following results :---

Number of yarns.	Values of $\frac{A}{n}$ .	Differences of the numbers of yarns.	Differences of the values of $\frac{A}{n}$ .	Differences of the values of $\frac{A}{n}$ for each yarn of difference.
80	0·0074153	From 30 to 15. 15 yarns	0.0031810	0.000212
15	0·0042343	- 15 to 6. 9 -	0.0024770	0.000272
6	0·0017673	- 30 to 6. 24 -	0.0056400	0.000252

Mean difference per yarn, 0.000245

It follows, from the above, that the values of A, given by the experiments, will be represented with sufficient exactness for all practical purposes by the formula

$$A = n \left[ 0.0017673 + 0.000245 (n - 6) \right].$$
  
= n [0.0002973 + 0.000245 n].

An expression relating only to dry white ropes, such as were used by Coulomb in his experiments.

With regard to the number B, it appears to be proportional to the number of yarns, for we find for

$n=30 \ d=0^{\mathrm{m}} \cdot 0200$	$\mathbf{B} = 0.009738  \frac{\mathbf{B}}{n}$	= 0.0003246
$n = 15 \ d = 0^{\text{m}} \cdot 0144$	$\mathbf{B} = 0.005518  \frac{\mathbf{B}}{n}$	= 0.0003678
$n = 6 d = 0^{\text{m}} \cdot 0088$	$\mathbf{B} = 0.002380 \ \frac{\mathbf{B}}{n}$	= 0.0003967
	Mean	0.0003630

Whence

#### B = 0.000363 n.

Consequently, the results of the experiments of Coulomb on dry white ropes will be represented with sufficient exactness for practical purposes by the formula

K = n [0.000297 + 0.000245 n + 0.000363 T] kil. which will give the resistance to bending upon a drum of a metre in diameter, or by the formula

$$\mathbf{R} = \frac{n}{\mathbf{D}} \left[ 0.000297 + 0.000245 \ n + 0.000363 \ \mathrm{T} \right] \text{ kil.}$$

for a drum of diameter D metres.

These formulas, transformed into the American scale of weights and measures, become

R = n [0.0021508 + 0.0017724 n + 0.00119096 T] lbs. for a drum of a foot in diameter, and

 $\mathbf{R} = \frac{n}{D} \left[ 0.0021508 + 0.0017724 \ n + 0.00119096 \ \mathrm{T} \right] \text{ lbs.}$ 

for a drum of diameter D feet.

With respect to worn ropes, the rule given by M. Navier cannot be admitted, as we have shown above, because it would give for the stiffness of a rope of a diameter equal to unity the same stiffness as for a new rope.

The experiments of Coulomb on worn ropes not being sufficiently complete, and not furnishing any precise data, it is not possible, without new researches, to give a rule for calculating the stiffness of these ropes.

#### TARRED ROPES.

In reducing the results of the experiments of Coulomb on tarred ropes, as we have done for white ropes, we find the following values :---

$$n = 30 \text{ yarns} A = 0.34982 \qquad B = 0.0125605$$
  

$$n = 15 - A = 0.106003 \qquad B = 0.006037$$
  

$$n = 6 - A = 0.0212012 \qquad B = 0.0025997$$

which differ very slightly from those which M. Navier has given. But, if we look for the resistance corresponding to each yarn, we find

#### STRENGTH OF MATERIALS.

$$n = 30 \text{ yarns} \quad \frac{A}{n} = 0.0116603 \quad \frac{B}{n} = 0.000418683$$

$$n = 15 \quad - \quad \frac{A}{n} = 0.0070662 \quad \frac{B}{n} = 0.000402466$$

$$n = 6 \quad - \quad \frac{A}{n} = 0.0035335 \quad \frac{B}{n} = 0.000433283$$
Mean.....0.000418144

We see by this that the value of B is for tarred ropes, as for white ropes, sensibly proportional to the number of yarns, but it is not so for that of A, as M. Navier has supposed.

Comparing, as we have done for white ropes, the values of  $\frac{A}{n}$ corresponding to the three ropes of 30, 15, and 6 yarns, we obtain the following results :---

Number of yarns.	Values of $\frac{\Lambda}{n}$ .	Differences of the number of yarns.	Differences of the values of $\frac{A}{n}$ .	Differences of the values of $\frac{A}{n}$ for each yarn of difference.	
$\begin{array}{c} 30\\15\\6\end{array}$	0·0116603	From 30 to 15. 15 yarns	0·0045941	0.000306	
	0·0070662	- 15 to 6. 9 -	0·0035327	0.000392	
	0·0035335	- 60 to 6. 25 -	0·0081268	0.000339	

Mean.....0.000346

305

It follows from this that the value of A can be represented by the formula

 $A = n \left[ 0.0035335 + 0.000346 \left( n - 6 \right) \right]$ 

= n [0.0014575 + 0.000346 n]

and the whole resistance on a roller of diameter D metres, by

 $\mathbf{R} = \frac{n}{D} \left[ 0.0014575 + 0.000346 \ n + 0.000418144 \ \mathrm{T} \right] \text{ kil.}$ 

Transforming this expression to the American scale of weights and measures, we have

 $\mathbf{R} = \frac{n}{D} \left[ 0.01054412 + 0.00250309 \ n + 0.001371889 \ \mathrm{T} \right] \text{ lbs.}$ 

for the resistance on a roller of diameter D feet.

This expression is exactly of the same form as that which relates to white ropes, and shows that the stiffness of tarred ropes is a little greater than that of new white ropes.

In the following table, the diameters corresponding to the different numbers of yarns are calculated from the data of Coulomb, by the formulas,

d cent. =  $\sqrt{0.1338} n$  for dry white ropes, and

d cent. =  $\sqrt{0.186}$  n for tarred ropes,

which, reduced to the American scale, become

d inches =  $\sqrt{0.020739} n$  for dry white ropes, and

20

d inches =  $\sqrt{0.02883}$  for tarred ropes. 2 . 2

NOTE.—The diameter of the rope is to be included in D; thus, with an inch rope passing round a pulley, 8 inches in diameter in the groove, the diameter of the roller is to be considered as 9 inches.

arns.		Dry White Ropes.	· · · · ·		Tarred Ropes.	
No. of y	Diameter.	Value of the natural stiffness, A.	Value of the stiff- ness proportional to the tension, B.	Diameter.	Value of the natural stiffness, A.	Value of the stiff- ness proportional to the tension, B.
	ft.	lbs."		ft.	lbs.	
6	0.0293	0.0767120	0.0071457	0.0347	0.153376	0.00823133
9	0.0360	0.1629234	0.0107186	0.0425	0.297647	0.01234700
12	0.0416	0.2810384	0.0142915	0.0490	0.486976	0.01646267
15	0.0465	0.4310571	0.0178644	0.0548	0.721357	0.02057834
18	0.0209	0.6129795	0.0214373	0.0600	0.000795	0.02469400
21	0.0550	0.8268054	0.0250102	0.0648	1.325289	0.02880967
24	0.0588	1.0725350	0.0285831	0.0693	1.694839	0.03292534
27	0.0622	1.3501682	0.0321559	0.0735	2.109444	0.03704100
30	0.0657	1.6597051	0.0357288	0.0775	2.569105	0.04115667
33	0.0689	2.0011455	0.0393017	0.0813	3.073821	0.04527234
36	0.0720	2.3744897	0.0428746	0.0849	3.623593	0.04938800
39	0.0749	2.7797375	0.0464475	6.0884	4.218416	0.05350367
42	0.0778	3.2168888	0.0500203	0.0917	4.858304	0.05761934
45	0.0805	3.6859438	0.0535932	0.0949	5.543242	0.06173501
48	0.0831	4.1869024	0.0571661	0.0980	6-273237	0.06585067
51	0.0857	4.7197647	0.0607390	0.1010	7.048287	0.06996634
54	0.0882	5-2845306	0.0643119	0.1040	7.868393	0.07408201
57	0.0908	5.8812001	0.0678847	0.1070	8.733554	0.07819767
60	0.0926	6.5097733	0.0714576	0.1099	9.643771	0.08231334
n	√0•000144n	$\begin{cases} \frac{0.0021508n}{+0.0017724n_n^2} \end{cases}$	0.00119096n	¥0.00020n	$\begin{cases} 0.01054412n \\ +0.00250309n^{\frac{2}{n}} \end{cases}$	0.001371889n

Application of the preceding Tables or Formulas.

To find the stiffness of a rope of a given diameter or number of yarns, we must first obtain from the table, or by the formulas, the values of the quantities A and B corresponding to these given quantities, and knowing the tension, T, of the end to be wound up, we shall have its resistance to bending on a drum of a foot in diameter, by the formula

$$\mathbf{R} = \mathbf{A} + \mathbf{BT}.$$

Then, dividing this quantity by the diameter of the roller or pulley round which the rope is actually to be bent, we shall have the resistance to bending on this roller.

What is the stiffness of a dry white rope, in good condition, of 60 yarns, or 0928 diameter, which passes over a pulley of 6 inches diameter in the groove, under a tension of 1000 lbs.? The table gives for a dry white rope of 60 yarns, in good condition, bent upon a drum of a foot in diameter,

$$A = 0.50977$$
  $B = 0.0714576$ 

and we have D = 0.5 + 0.0928; and consequently,

$$\mathbf{R} = \frac{6.50977 + 0.0714576 \times 1000}{0.5928} = 128 \text{ lbs}$$

The whole resistance to be overcome, not including the friction on the axis, is then

Q + R = 1000 + 128 = 1128 lbs.

The stiffness in this case augments the resistance by more than one-eighth of its value.

FURTHER RECENT EXPERIMENTS MADE BY M. MORIN, ON THE TRAC-TION OF CARRIAGES, AND THE DESTRUCTIVE EFFECTS WHICH THEY PRODUCE UPON THE ROADS.

The study of the effects which are produced when a carriage is set in motion can be divided into two distinct parts: the traction of carriages, properly so called, and their action upon the roads.

The researches relative to the traction of carriages have for their object to determine the magnitude of the effort that the motive power ought to exercise according to the weight of the load, to the diameter and breadth of the wheels, to the velocity of the carriage, and to the state of repair and nature of the roads.

The first experiments on the resistance that cylindrical bodies offer to being rolled on a level surface are due to Coulomb, who determined the resistance offered by rollers of lignum vitæ and elm, on plane oak surfaces placed horizontally.

His experiments showed that the resistance was directly proportional to the pressure, and inversely proportional to the diameter of the rollers.

If, then, P represent the pressure, and r the radius of the roller, the resistance to rolling, R, could, according to the laws of Coulomb, be expressed by the formula

$$R = A \frac{P}{r}$$

in which A would be a number, constant for each kind of ground, but varying with different kinds, and with the state of their surfaces.

The results of experiments made at Vincennes show that the law of Coulomb is approximately correct, but that the resistance increases as the width of the parts in contact diminishes.

Other experiments of the same nature have confirmed these conclusions; and we may allow, at least, as a law sufficiently exact for practical purposes, that for woods, plasters, leather, and generally for hard bodies, the resistance to rolling is nearly—

-1st. Proportional to the pressure.

2d. Inversely proportional to the diameter of the wheels.

3d. Greater as the breadth of the zone in contact is smaller.

EXPERIMENTS UPON CARRIAGES TRAVELLING ON ORDINARY ROADS.

These experiments were not considered sufficient to authorize the extension of the foregoing conclusions to the motion of carriages on ordinary roads. It was necessary to operate directly on the carriages themselves, and in the usual circumstances in which they are placed. Experiments on this subject were therefore undertaken, first at Metz, in 1837 and 1838, and afterwards at Courbevoie, in 1839 and 1841, with carriages of every species; and attention was directed separately to the influence upon the magnitude of the traction, of the pressure, of the diameter of the wheels, of their breadth, of the speed, and of the state of the ground.

In heavily laden carriages, which it is most important to take

into consideration, the weight of the wheels may be neglected in comparison with the total load; and the relation between the load and the traction, upon a level road, is approximately given by the equation-

 $\frac{F_1}{P} = \frac{2 (A \times fr_1)}{r' \times r''}$  for carriages with four wheels,  $\frac{\mathbf{F}_{1}}{\mathbf{P}} = \frac{\mathbf{A} \times fr_{1}}{r}$  for carriages with two wheels,

and

in which F, represents the horizontal component of the traction;

P, the total pressure on the ground;

r' and r" the radii of the fore and hind wheels;

 $r_1$  the mean radius of the boxes;

f the coefficient of friction;

and A the constant multiplier in Coulomb's formula for the resistance to rolling.

These expressions will serve us hereafter to determine, by aid of experiment, the ratio of the traction to the load for the most usual cases.

## Influence of the Pressure.

To observe the influence of the pressure upon the resistance to rolling, the same carriages were made to pass with different loads over the same road in the same state.

Ratio of the Carriages employed. Road traversed. Pressure. Traction. traction to the load. kil. kil. 6992 180.71 Chariot porte corps Road from Courbe-1/38.6 d'artillerie. voie to Colomber, 6140 -159.91/39.2 dry, in good re-4580 113.7 1/40.2pair, dusty. Chariotderoulage, Road from Courbe-7126 138.9 1/51.3voie to Bezous, solid, *hard grawithout springs. 5458 115.51/48.9 4450 93.2 1/47.7 vel, very dry. 3430 68.41/50.2Chariotde roulage, Road from Colomber 1600 39.3 1/40.83292 89.2with springs. to Courbevoie, 1/36.9 136.0 pitched, in ordina-4996 1/36.8 ry repair, † muddy Carriages with six Road from Courbe-3000 138.91/21.61/21.0 equal wheels. voie to Colomber, 4692 224.0 deep ruts, with muddy detritus. Two carriages with 285.8 6000 1/21.0 six equal wheels, 6000 286.71/21.0 hooked on, one behind the other.

The results of some of these experiments, made at a walking pace, are given in the following table :-

From the examination of this table, it appears that on Isolid gravel and on pitched roads the resistance of carriages to traction is sensibly proportional to the pressure.

* En gravier dur. † Pavé en état ordinaire.

#### STRENGTH OF MATERIALS.

We remark that the experiments made upon one and upon two six-wheeled carriages have given the same traction for a load of 6000 kilogrammes, including the vehicle, whether it was borne upon one carriage or upon two. It follows thence that the traction is, cæteris paribus and between certain limits, independent of the number of wheels.

## Influence of the Diameter of the Wheels.

To observe the influence of the diameter of the wheels on the traction, carriages loaded with the same weights, having wheels with tires of the same width, and of which the diameters only were varied between very extended limits, were made to traverse the same parts of roads in the same state. Some of the results obtained are given in the following table.

These examples show that on solid roads it may be admitted as a practical law that the traction is inversely proportional to the diameters of the wheels.

Carriages employed.	Roads traversed.	Diameter of the wheels in metres.		Diameter of the wheels in English feet.		Ial Ire, P ₁ .	n, F ₁ .	Ratio of the trac-	a of the he arles.	Resist-	Value of A	Value of A
		Fore wheels 2 7'	Hind wheels 2 r''	Fore wheels 2 r'	Hind wheels 2 r''	To	Tractio	the pres- sure.	Friction boxes on	rolling, R.	French scale.	American scale.
Chariot porte corps d'artil- lerie.	Road from Cour- bevoie to Colom- ber, *solid gra- vel. dusty	m. 2.029 1.453 0.872	m. 2·029 1·453 0·872	6·657 4·767 2·861	6·657 4·767 2·861	kil. 4928 4930 4924	kil. 81.6 108.6 179.0	1/60· 1/45·5 1/27·4	kil. 9·6 14·4 25·3	kil. 72.0 94.2 153.7	0-0148 0-0139 0-0137	0.04856 0.04560 0.04494
Porte corps d'ar- tillerie.		2·029 1·453	2·029 1·453	6·657 4·767	6-657 4-767	4692 4594	51·45 71·45	1/90·45 1/64·3	9·0 13·2	42·45 58·25	0·0092 0·0092	0-03018 0-03018
Chariot comtois. A six-wheeled carriage.	+Pitched pave- ment of Fon- tainebleau.	1·110 0·860	1·358 0·860	3·642 2·822	4·455 2·822	1871 3270	32·10 81·05	1/58•4 1/40•4	4·7 9·7	27·40 71·35	0·0089 0·0094	0•02920 0•03084
four wheels. Camion. Camion.	]	0·860 0·592 0·420	0-860 0-660 0-597	2·822 1·942 1·378	2·822 2·165 1·959	3270 1500 1600	78·80 52·30 68·20	1/41·5 1/28·8 1/22·4	9.7 8.8 11.6	69:10 43:50 56:60	0 <b>·0091</b> 0·0091 0·0089	0-02986 0-02986 0-02920

## Influence of the Width of the Felloes.

Experiments made upon wheels of different breadths, having the same diameter, show, 1st, that on soft ground the resistance to rolling *increases* as the width of the felloe; 2dly, on solid gravel and pitched roads, the resistance is very nearly *independent* of the width of the felloe.

### Influence of the Velocity.

To investigate the influence of the velocity on the traction of carriages, the same carriages were made to traverse different roads in various conditions; and in each series of experiments the velocities, while all other circumstances remained the same, underwent successive changes from a walk to a canter.

Some of the results of these experiments are given in the following table :---

* Empierrement solide.

#### THE PRACTICAL MODEL CALCULATOR.

Carriage employed.	Ground passed over.	Load.	Pace.	Rate of speed, in miles, per hour.	Trac- tion.	Ratio of the traction to the load.
Apparatus upon a brass shaft.	Ground of the po- lygon at Metz, wet and soft.	kil. 1042	Walk Trot	miles. 3·13 6·26	kil. 165·0 168·0	$\frac{1/6 \cdot 32}{1/6 \cdot 2}$
	P	1335	Walk	2.860	215.0	1/6.21
A sixteen-pounder carriage and piece.	Road from Metz to Montigny, solid gravel, very even and very dry.	3750	Walk *Brisk walk Trot †Canter	2.820 3.400 5.480 8.450	92· 92· 102· 121·	1/40·8 1/40·8 1/40·8 1/36·8 1/31·
Chariot des Mes- sageries, sus-	Pitched road of Fontainebleau.	3288	Walk	2.770	144.	1/22.8
pended upon six		3353	*Brisk walk	3.82	153.	1/21.9
springs.			Trot ‡Brisk trot.	$5.28 \\ 8.05$	$161 \cdot 183 \cdot 5$	1/20.8 1/18.3

We see, by these examples, that the traction undergoes no sensible augmentation with the increase of velocity on soft grounds; but that on solid and uneven roads it increases with an increase of velocity, and in a greater degree as the ground is more uneven, and the carriage has less spring.

To find the relation between the resistance to rolling and the velocity, the velocities were set off as abscissas, and the values of A furnished by the experiments, as ordinates; and the points thus determined were, for each series of experiments, situated very nearly upon a straight line. The value of A, then, can be represented by the expression,

$$\mathbf{A} = a + d \left( \mathbf{V} - 2 \right)$$

in which a is a number constant for each particular state of each kind of ground, and which expresses the value of the number A for the velocity, V = 2 miles, (per hour,) which is that of a very slow walk.

d, a factor constant for each kind of ground and each sort of carriage.

The results of experiments made with a carriage of a siege train, with its piece, gave, on the Montigny road, §very good solid gravel,—

 $A = 0.03215 \times 0.00295 (V - 2).$ 

On the ||pitched road of Metz,  $A = 0.01936 \times 0.08200 (V - 2)$ . These examples are sufficient to show—

1st. That, at a walk, the resistance on a good pitched road is less than that on very good solid gravel, very dry.

2d. That, at high speeds, the resistance on the pitched road increases very rapidly with the velocity.

On rough roads the resistance increases with the velocity much more slowly, however, for carriages with springs.

* Pas allongé.	+ Grand trot.		1 Trot allongé.
3 En très bon empierremen	nt.	Pavé en	n grès de Sieack.

Thus, for a chariot des Messageries Générales, on a pitched road, the experiments gave  $A = 0.0117 \times 0.00361 (V - 2)$ ; while, with the springs wedged so as to prevent their action, the experiments gave, for the same carriage, on a similar road,  $A = 0.02723 \times$ 0.01312 (V - 2). At a speed of nine miles per hour, the springs diminish the resistance by one-half.

The experiments further showed that, while the pitched road was inferior to a *solid gravel road when dry and in good repair, the latter lost its superiority when muddy or out of repair.

#### INFLUENCE OF THE INCLINATION OF THE TRACES.

The inclination of the traces, to produce the maximum effect, is given by the expression—

$$hf = \frac{\mathbf{A} \times 0.96 \, f \, r'}{r - 0.4 \, f \, r'}$$

in which h = the height of the fore extremity of the trace above the point where it is attached to the carriage; b = the horizontal distance between these two points. r' is the radius of interior of the boxes, and r the radius of the wheel.

The inclination given by this expression for ordinary carriages is very small; and for trucks with wheels of small diameter it is much less than the construction generally permits.

It follows, from the preceding-remarks, that it is advantageous to employ, for all carriages, wheels of as large a diameter as can be used, without interfering with the other essentials to the purposes to which they are to be adapted. Carts have, in this respect, the advantage over wagons; but, on the other hand, on rough roads, the thill horse, jerked about by the shafts, is soon fatigued. Now, by bringing the hind wheels as far forward as possible, and placing the load nearly over them, the wagon is, in effect, transformed into a cart; only care must be taken to place the centre of gravity of the load so far in front of the hind wheels that the wagon may not turn over in going up hill.

#### ON THE DESTRUCTIVE EFFECTS PRODUCED BY CARRIAGES ON THE ROADS.

If we take stones of mean diameter from  $2\frac{3}{4}$  to  $3\frac{1}{4}$  inches, and, on a road slightly moist and soft, place them first under the small wheels of a diligence, and then under the large wheels, we find that, in the former case, the stones, pushed forward by the small wheels, penetrate the surface, ploughing and tearing it up; while in the latter, being merely pressed and leant upon by the large wheels, they undergo no displacement.

From this simple experiment we are enabled to conclude that the wear of the roads by the wheels of carriages is greater the smaller the diameter of the wheels.

Experiments having proved that on hard grounds the traction was but slightly increased when the breadths of the wheels was

* En empierrement.

diminished, we might also conclude that the wear of the road would be but slightly increased by diminishing the width of the felloes.

Lastly, the resistance to rolling increasing with the velocity, it was natural to think that carriages going at a trot would do more injury to the roads than those going at a walk. But springs, by diminishing the intensity of the impacts, are able to compensate, in certain proportions, for the effects of the velocity.

Experiments, made upon a grand scale, and having for their object to observe directly the destructive effects of carriages upon the roads, have confirmed these conclusions.

These experiments showed that with equal loads, on a solid gravel road, wheels of two inches breadth produced considerably more wear than those of  $4\frac{1}{2}$  inches, but that beyond the latter width there was scarcely any advantage, so far as the preservation of the road was concerned, in increasing the size of the tire of the wheel.

Experiments made with wheels of the same breadth, and of diameters of 2.86 ft., 4.77 ft., and 6.69 ft., showed that after the carriage of 10018.2 tons, over tracks 218.72 yards long, the track passed over by the carriage with the smallest wheels was by far the most worn; while, on that passed over by the carriage with the wheels of 6.69 ft. diameter, the wear was scarcely perceptible.

Experiments made upon two wagons exactly similar in all other respects, but one with and one without springs, showed that the wear of the roads, as well as the increase of traction, after the passage of 4577.36 tons over the same track, was sensibly the same for the carriage without springs, going at a walk of from 2.237 to 2.684 miles per hour, and for that with springs, going at a trot of from 7.158 to 8.053 miles per hour.

#### HYDRAULICS.

THE DISCHARGE OF WATER BY SIMPLE ORIFICES AND TUBES.

THE formulas for finding the quantities of water discharged in a given time are of an extensive and complicated nature. The more important and practical results are given in the following Deductions.

When an aperture is made in the bottom or side of a vessel containing water or other homogeneous fluid, the whole of the particles of fluid in the vessel will descend in lines nearly vertical, until they arrive within three or four inches of the place of discharge, when they will acquire a direction more or less oblique, and flow directly towards the orifice.

The particles, however, that are immediately over the orifice, descend vertically through the whole distance, while those nearer to the sides of the vessel, diverted into a direction more or less oblique as they approach the orifice, move with a less velocity than the former; and thus it is that there is produced a contraction in the size of the stream immediately beyond the opening, designated the vena contracta, and bearing a proportion to that of the orifice of

#### HYDRAULICS.

about 5 to 8, if it pass through a thin plate, or of 6 to 8, if through a short cylindrical tube. But if the tube be conical to a length equal to half its larger diameter, having the issuing diameter less than the entering diameter in the proportion of 26 to 33, the stream does not become contracted.

If the vessel be kept constantly full, there will flow from the aperture twice the quantity that the vessel is capable of containing, in the same time in which it would have emptied itself if not kept supplied.

1. How many horse-power (H. P.) is required to raise 6000 cubic feet of water the hour from a depth of 300 feet?

A cubic foot of water weighs 62.5 lbs. avoirdupois.

 $6000 \times 62.5$ 

 $\frac{60}{60} = 6250$ , the weight of water raised a minute.

 $6250 \times 300 = 1875000$ , the units of work each minute.

Then  $\frac{1875000}{33000} = 56.818 =$  the horse-power required.

2. What quantity of water may be discharged through a cylindrical mouth-piece 2 inches in diameter, under a head of 25 feet?

 $\frac{2}{12} = \frac{1}{6}$  of a foot; ... the area of the cross section of the

mouth-piece, in feet, is  $\frac{1}{6} \times \frac{1}{6} \times \cdot 7854 = \cdot 021816$ .

Theory gives  $\cdot 021816 \sqrt{2} g \times 25$  the cubic feet discharged each second; but experiments show that the effective discharge is 97 per cent. of this theoretical quantity:  $g = 32 \cdot 2$ .

Hence,  $\cdot 97 \times \cdot 021816 \sqrt{64 \cdot 4 \times 25} = \cdot 84912$ , the cubic feet discharged each second.

 $\cdot 84912 \times 62.5 = 53.0688$  lbs. of water discharged each second.

Effluent water produces, by its vis viva, about 6 per cent. less mechanical effect than does its weight by falling from the height of the head.

3. What quantity of water flows through a circular orifice in a thin horizontal plate, 3 inches in diameter, under a head of 49 feet?

Taking the contraction of the fluid vein into account, the velocity of the discharge is about 97 per cent. of that given by theory.

The theoretic velocity is  $\sqrt{2g \times 49} = 7 \sqrt{6.44} = 56.21$ .

 $\cdot 97 \times 56 \cdot 21 = 54 \cdot 523 =$  the velocity of the discharge.

The area of the transverse section of the contracted vein is .64 of the transverse section of the orifice.

 $\frac{3}{12} = \frac{1}{4} = .25$ , and  $(.25)^2 \times .7854 = .0490875 = area of orifice.$ 

 $\therefore \cdot 64 \times \cdot 0490875 = \cdot 031416$ , the area of the transverse section of the contracted vein.

2 B

Hence,  $54.523 \times .031416 = 1.7129$ , the cubic feet of water discharged each second. The later experiments of Poncelet, Bidone, and Lesbros give .563 for the coefficient of contraction. Water issuing through lesser orifices give greater coefficients of contraction, and become greater for elongated rectangles, than for those which approach the form of a square.

Observations show that the result above obtained is too great;  $\frac{1}{18}$  of this result are found to be very near the truth.

# $\frac{8}{13}$ of 1.7129 = 1.0541.

4. What quantity of water flows through a rectangular aperture 7.87 inches broad, and 3.94 inches deep, the surface of the water being 5 feet above the upper edge; the plate through which the water flows being .125 of an inch thick.

 $\frac{7 \cdot 87}{12} = \cdot 65583$ , decimal of a foot.  $\frac{3 \cdot 94}{12} = \cdot 32833$ , decimal of a foot.

 $5 \cdot$  and  $5 \cdot 32833$  are the heads of water above the uppermost and lowest horizontal surfaces.

The theoretical discharge will be

 $\frac{2}{3} \times \cdot 65583 \sqrt{2 g} \left( (5 \cdot 328)^{\frac{3}{2}} - (5)^{\frac{3}{2}} \right) = 3 \cdot 9268 \text{ cubic feet.}$ 

Table I. gives the coefficient of efflux in this case,  $\cdot 615$ , which is found opposite 5 feet and under 4 inches; for 3.94 is nearly equal 4.

 $3.9268 \times .615 = 2.415$  cubic feet, the effective discharge.

5. What water is discharged through a rectangular orifice in a thin plate 6 inches broad, 3 inches deep, under a head of 9 feet measured directly over the orifice?

$$\frac{6}{12} = \cdot 5$$
, decimal of a foot.  
$$\frac{3}{12} = \cdot 25$$
, decimal of a foot.

The theoretical discharge will be

 $\frac{2}{3} \times \cdot 5 \sqrt{2g} \left\{ (9 \cdot 25)^{\frac{3}{2}} - (9)^{\frac{3}{2}} \right\} = 3 \cdot 033 \text{ cubic feet.}$ 

Table II. gives the coefficient of efflux between .604 and .606; we shall take it at .605, then

 $3.033 \times .605 = 1.833$  cubic feet, the effective discharge.

6. A weir  $\cdot 82$  feet broad, and  $4 \cdot 92$  feet head of water, how many cubic feet are discharged each second ?

The quantity will be

 $c \times \cdot 82 \sqrt{2g} (4 \cdot 92)^3; g = 32 \cdot 2;$ 

#### HYDRAULICS.

TABLE	I.—The	Coefficients for	the Efflux	through	rectangu	lar ori-
fices	in a thin	vertical plate.	The heads	are med	asured wh	here the
wate	r may be	considered still		-		

Head of water, or distance of the surface of the			HEIGHT O	F ORIFICE.		
upper side of the orifice in feet.	In. 8•	In. 4·	In. 2·	In. 1·	In. •8	In. •4
·1	·579	.599	•619	·634	·656	•686
•2	·582	·601	.620	.638	·654	·681
•3	·585	·603	·621	·640	·653	·676
•4	·588	.605	.622	.639	·652	·671
.5	·591	·607	·623	·637	·650	•666
•6	.594	·609	·624	.635	.649	·662
- •7	.596	·611	.625	634	.648	.659
·8	.597	·613	·623	·632	•647	.656
-9	·598	·615	·627	·631	.645	·653
1.0	·599	·616	·628	·630	·644	·650
2.0	·600	·617	·628	·628	·641	.647
3.0	·601	·617	•626	·626	•638	·644
4.0	$\cdot 602$	·616	·624	·623	.634	.640
5.0	·604	·615	.621	·621	·630	·635
6.0	·603	·613	·618	·618	·625	•630
7.0	.602	·611	·615	·615	•621	·625
8.0	·601	·609	·612	·613	.617	·619
9.0	·600	·606	.609	·610	·614	·613
10.0	•600	·604	·606	·608	•611	•609

TABLE II.— The Coefficients for the Efflux through rectangular orifices in a thin vertical plate, the heads of water being measured directly over the orifice.

Head of water, or distance of the surface of the water from the			EIGHT OF	ORIFICE.		N -
upper side of the orifice in feet.	In. 8•	In. 4•	In. 2·	In. 1·	In. ·8	In. 4
·1	·593	·613	·637	·659	•685	•708
•2	·593	$\cdot 612$	·636	·656	·680	.701
•3	·593	·613	·635	·653	·676	·694
•4	·594	.614	·634	·650	.672	.687
•5	.595	.614	·633	·647	·668	·681
•6	.597	·615	.632	·644	·664	.675
•7	.598	·615	·631	·641	·660	·669
•8	.599	·616	.630	·638	·655	.663
•9	·601	·616	629	·635	•650	.657
1.0	·603	·617	.629	·632	·644	·651
2.0	·604	·617	.626	·628	·640	·646
3.0	·605	·616	.622	•627	·636	.641
4.0	·604	·614	.618	·624	.632	·636
5.0	·604	·613	·616	.621	·628	.631
6.0	•603	.612	·613	·618	·624	.626
7.0	·603	·610	·611	·616	·620	·621
8.0	.602	•608	.609	·614	·616	617
9.0	·601	.607	.607	·612	·613	•613
10.0	·601	•603	•606	•610	•610	•609

/

#### THE PRACTICAL MODEL CALCULATOR.

c is termed the coefficient of efflux, and on an average may be taken at  $\cdot 4$ . It is found to vary from  $\cdot 385$  to  $\cdot 444$ .

Then  $\cdot 4 \times \cdot 82 \sqrt{(64\cdot 4) (4\cdot 92)^3} = 2\cdot 670033$ , the cubic feet discharged each second.

7. What breadth must be given to a notch, in a thin plate, with a head of water of 9 inches, to allow 10 cubic feet to flow each second?

The breadth will be represented by

 $\frac{10}{c \sqrt{2g \times (\cdot75)^3}} = \frac{10}{\cdot 4 \times \sqrt{64 \cdot 4 \times (\cdot75)^3}} = 4.7963 \text{ feet.}$ 

Changes in the coefficients of efflux through convergent sides often present themselves in practice : they occur in dams which are . inclined to the horizon.

Poncelet found the coefficient  $\cdot 8$ , when the board was inclined 45°, and the coefficient  $\cdot 74$  for an inclination of 63° 34′, that is for a slope of 1 for a base, and 2 for a perpendicular.

8. If a sluice board, inclined at an angle of  $50^{\circ}$ , which goes across a channel 2.25 feet broad, is drawn out .5 feet, what quantity of water will be discharged, the surface of the water standing 4. feet above the surface of the channel, and the coefficient of efflux taken at .78?

The height of the aperture =  $\cdot 5 \sin .50^\circ = \cdot 3830222$ ; 4 and  $4 \cdot - \cdot 3830222 = 3 \cdot 6169778$ , are the heads of water.

$$\therefore \frac{2}{3} \times 2.25 \times .78 \times \sqrt{2g} \left\{ \left(4\right)^{\frac{3}{2}} - \left(3.617\right)^{\frac{3}{2}} \right\} = 10.5257 \text{ cu}$$

bic feet, the quantity discharged.

The calculations just made appertain to those cases where the water flows from all sides towards the aperture, and forms a contracted vein on every side. We shall next calculate in cases where the water flows from one or more sides to the aperture, and hence

produces a stream only  $\blacktriangle$ partially contracted. *m*, *n*, *o*, *p*, are four orifices in the bottom ABCD of a vessel; the contraction by efflux through the orifice *o*, in the middle of the bottom, is general, as the water can flow to it from all sides; the contraction c



from the efflux through m, n, p, is partial, as the water can only flow to them from one, two, or three sides. Partial contraction gives an oblique direction to the stream, and increases the quantity discharged.

9. What quantity of water is delivered through a flow 4 feet broad, and 1 foot deep, vertical aperture, at a pressure of 2 feet above the upper edge, supposing the lower edge to coincide with

the lower side of the channel, so that there is no contraction at the bottom ?

The theoretical discharge will be

$$\frac{2}{3} \times \frac{4}{1} \times \sqrt{2g} \left\{ (3)^{\frac{8}{2}} - (2)^{\frac{8}{2}} \right\} = 50.668 \text{ cubic feet.}$$

The coefficient of contraction given in the table page 315, may be taken at  $\cdot 603$ .

I.—Comparison of the Theoretical with the Real Discharges from an Orifice.

Constant height of the water in the reservoir above the centre of the orifice.	Theoretical dis- charge through a circular orifice one inch in di- ameter.	Real discharge in the same time through the same orifice.	Ratio of the theoretical to the real discharge.
Paris Feet.	Cubic Inches.	Cubic Inches.	1 to 0.62123
2	6196	3846	1 to 0.62073
3	7589	4710	1 to 0.62064
4	8763	5436	1 to 0.62034
5	9797	6075	1 to 0.62010
6	10732	6654	1 to 0.62000
7	11592	7183	1 to 0.61965
8	12392	7672	1  to  0.61911
9	13144	8135	1 to 0.61892
10	13855	8574	1 to 0.61883
11	14530	8990	1 to 0.61873
$\overline{12}$	15180	9384	1 to 0.61819
13	15797	9764	1 to 0.61810
14	16393	10130	1 to 0.61795
15	16968	10472	1 to 0.61716

II.—Comparison of the Theoretical with the Real Discharges from a Tube.

Constant height of the water in the reservoir above the centre of the orifice.	Theoretical dis- charge through a circular orifice one inch in di- ameter.	Real discharge in the same time by a cylindrical tube one inch in diameter and two inches long.	Ratio of the theoretical to the real discharge.
Paris Feet.	Cubic Inches.	Cubic Inches.	
1	4381	8539	1 to 0.81781
2	6196	5002	1 to 0.80729
3	7589	6126 /	1 to 0.80724
4	8763	7070	1 to 0.80681
5	9797	7900	1 to 0.80638
6	10732	8654	1 to 0.80638
7	11592	9340	1 to 0.80577
8	12392	9975	1 to 0.80496
9	13144	10579	1 to 0.80485
10	13855	11151	1 to 0.80483
11	14530	11693	1 to 0.80477
12	15180	12205	1 to 0.80403
13	15797	12699	1 to 0.80390
14	16393	13177	1 to 0.80382
15	16968	13620	1 to 0.80270

## THE DISCHARGE BY DIFFERENT APERTURES AND TUBES, UNDER DIF-FERENT HEADS OF WATER.

The velocity of water flowing out of a horizontal aperture, is as the square root of the height of the head of the water.—That is, the pressure, and consequently the height, is as the square of the velocity; for, the quantity flowing out in any short time is as the velocity; and the force required to produce a velocity in a certain quantity of matter in a given time is also as that velocity; therefore, the force must be as the square of the velocity.

Or, supposing a very small cylindrical plate of water, immediately over the orifice, to be put in motion at each instant, by the pressure of the whole cylinder upon it, employed only in generating its velocity; this plate would be urged by a force as much greater than its own weight as the column is higher than itself, through a space shorter in the same proportion than that height. But where the forces are inversely as the spaces described, the final velocities are equal. Therefore, the velocity of the water flowing out must be equal to that of a heavy body falling from the height of the head of water; which is found, very nearly, by multiplying the square root of that height in feet by 8, for the number of feet described in a second. Thus, a head of 1 foot gives 8; a head of 9 feet, 24. This is the theoretical velocity; but, in consequence of the contraction of the stream, we must, in order to obtain the actual velocity, multiply the square root of the height, in feet, by 5 instead of 8.

The velocity of a fluid issuing from an aperture is not affected by its density being greater or less. Mercury and water issue with equal velocities at equal altitudes.

The proportion of the theoretical to the actual velocity of a fluid issuing through an opening in a thin substance, according to M. Eytelwein, is as 1 to  $\cdot$ 619; but more recent experiments make it as 1 to  $\cdot$ 621 up to  $\cdot$ 645.

APPLICATION OF THE TABLES IN THE PRECEDING PAGE.

TABLE I.— To find the quantities of water discharged by orifices of different sizes under different altitudes of the fluid in the reservoir.

To find the quantity of fluid discharged by a circular aperture 3 inches in diameter, the constant altitude being 30 feet.

As the real discharges are in the compound ratio of the area of the apertures and the square roots of the altitudes of the water, and as the theoretical quantity of water discharged by an orifice one inch in diameter from a height of 15 feet is, by the second column of the table, 16968 cubic inches in a minute, we have this proportion:  $1 \sqrt{15}: 9 \sqrt{30}:: 16968: 215961$  cubic inches; the theoretical quantity required. This quantity being diminished in the ratio of 1 to .62, being the ratio of the theoretical to the actual discharge, according to the fourth column of the table, gives 133896 cubic inches for the actual quantity of water discharged by

#### HYDRAULICS.

the given aperture. Hence, the quantity should be rather greater, because large orifices discharge more in proportion than small ones; while it should be rather less, because the altitude of the fluid being greater than that in the table with which it is compared, the flowing vein of water becomes rather more contracted. The quantity thus found, therefore, is nearly accurate as an average.

When the orifice and altitude are less than those in the table, a few cubic inches should be deducted from the result thus derived.

The altitude of the fluid being multiplied by the coefficient 8.016 will give its theoretical velocity; and as the velocities are as the quantities discharged, the real velocity may be deducted from the theoretical by means of the foregoing results.

TABLE II.—To find the quantities of water discharged by tubes of different diameter, and under different heights of water.

To find the quantity of water discharged by a cylindrical tube, 4 inches in diameter, and 8 inches long, the constant altitude of the water in the reservoir being 25 feet.

Find, in the same manner as by the example to Table I., the theoretical quantity discharged, which is furnished by this analogy.  $1 \sqrt{15} : 16 \sqrt{25} :: 16968 : 350490$  cubic inches, the theoretical discharge. This, diminished in the ratio of 1 to  $\cdot 81$  by the 4th column, will give 28473 cubic inches for the actual quantity discharged. If the tube be *shorter* than twice its diameter, the quantity discharged will be diminished, and approximate to that from a simple orifice, as shown by the production of the vena contracta already described.

According to Eytelwein, the proportion of the theoretical to the real discharge through tubes, is as follows:

Through the shortest tube that will cause the stream to adhere everywhere to its sides, as 1 to 0.8125.

Through short tubes, having their lengths from two to four times their diameters, as 1 to 0.82.

Through a tube projecting within the reservoir, as 1 to 0.50.

It should, however, be stated, that in the contraction of the stream the ratio is not constant. It undergoes perceptible variations by altering the form and position of the orifice, the thickness of the plate, the form of the vessel, and the velocity of the issuing fluid.

## Deductions from experiments made by Bossut, Michelloti.

1. That the quantities of fluid discharged in equal times from different-sized apertures, the altitude of the fluid in the reservoir being the same, are to each other nearly as the area of the apertures.

2. That the quantities of water discharged in equal times by the same orifice under different heads of water, are nearly as the square roots of the corresponding heights of water in the reservoir above the centre of the apertures. 3. That, in general, the quantities of water discharged, in the same time, by different apertures under different heights of water in the reservoir, are to one another in the compound ratio of the areas of the apertures, and the square roots of the altitudes of the water in the reservoirs.

4. That on account of the friction, the smallest orifice discharges proportionally less water than those which are larger and of a similar figure, under the same heads of water.

5. That, from the same cause, of several orifices whose areas are equal, that which has the smallest perimeter will discharge more water than the other, under the same altitudes of water in the reservoir. Hence, circular apertures are most advantageous, as they have less rubbing surface under the same area.

6. That, in consequence of a slight augmentation which the contraction of the fluid vein undergoes, in proportion as the height of the fluid in the reservoir increases, the expenditure ought to be a little diminished.

7. That the discharge of a fluid through a cylindrical horizontal tube, the diameter and length of which are equal to one another, is the same as through a simple orifice.

8. That if the cylindrical horizontal tube be of greater length than the extent of the diameter, the discharge of water is much increased.

9. That the length of the cylindrical horizontal tube may be increased with advantage to four times the diameter of the orifice.

10. That the diameters of the apertures and altitudes of water in the reservoir being the same, the theoretic discharge through a thin aperture, which is supposed to have no contraction in the vein, the discharge through an additional cylindrical tube of greater length than the extent of its diameter, and the actual discharge through an aperture pierced in a thin substance, are to each other as the numbers 16, 13, 10.

11. That the discharges by different additional cylindrical tubes, under the same head of water, are nearly proportional to the areas of the orifices, or to the squares of the diameters of the orifices.

12. That the discharges by additional cylindrical tubes of the same diameter, under different heads of water, are nearly proportional to the square roots of the head of water.

13. That from the two preceding corollaries it follows, in general, that the discharge during the same time, by different additional tubes, and under different heads of water in the reservoir, are to one another nearly in the compound ratio of the squares of the diameters of the tubes, and the square roots of the heads of water.

The discharge of fluids by additional tubes of a conical figure, when the inner to the outer diameter of the orifice is as 33 to 26, is augmented very nearly one-seventeenth and seven-tenths more than by cylindrical tubes, if the enlargement be not carried too far.

## DISCHARGE BY COMPOUND TUBES.

#### Deductions from the experiments of M. Venturi.

In the discharge by compound tubes, if the part of the additional tube nearest the reservoir have the form of the contracted vein, the expenditure will be the same as if the fluid were not contracted at all; and if to the smallest diameter of this cone a cylindrical pipe be attached, of the same diameter as the least section of the contracted vein, the discharge of the fluid will, in a horizontal direction, be lessened by the friction of the water against the side of the pipe; but if the same tube be applied in a vertical direction, the expenditure will be augmented, on the principle of the gravitation of falling bodies; consequently, the greater the length of pipe, the more abundant is the discharge of fluid.

If the additional compound tube have a cone applied to the opposite extremity of the pipe, the expenditure will, under the same head of water, be increased, in comparison with that through a simple orifice, in the ratio of 24 to 10.

In order to produce this singular effect, the cone nearest to the reservoir must be of the form of the contracted vein, which will increase the expenditure in the ratio of  $12 \cdot 1$  to 10. At the other extremity of the pipe, a truncated conical tube must be applied, of which the length must be nearly nine times the smaller diameter, and its outward diameter must be 1.8 times the smaller one. This additional cone will increase the discharge in the proportion of 24 to 10. But if a great length of pipe intervene, this additional tube has little or no effect on the quantity discharged.

According to M. Venturi's experiments on the discharge of water by bent tubes, it appears that while, with a height of water in the reservoir of 32.5 inches, 4 Paris cubic feet were discharged through a cylindrical horizontal tube in the space of 45 seconds, the discharge of the same quantity through a tube of the same diameter, with a curved end, occupied 50 seconds, and through a like tube bent at right angles, 70 seconds. Therefore, in making cocks or pipes for the discharge or conveyance of water, great attention should be paid to the nature and angle of the bendings; right angles should be studiously avoided.

The interruption of the discharge by various enlargements of the diameter of the tubes having been investigated by M. Venturi, by means of a tube with a diameter of 9 lines, enlarged in several parts to a diameter of 24 lines, the retardation was found to increase nearly in proportion to the number of enlargements; the motion of the fluid, in passing into the enlarged parts, being diverted from its direct course into eddies against the sides of the enlargements. From which it may be deduced, that if the internal roughness of a pipe diminish the expenditure, the friction of the water against these asperities does not form any considerable part of the cause. A right-lined tube may have its internal surface highly polished throughout its whole length, and it may every-

#### THE PRACTICAL MODEL CALCULATOR.

where possess a diameter greater than the orifice to which it is applied; but, nevertheless, the expenditure will be greatly retarded if the pipe should have enlarged parts or swellings. It is not enough that elbows and contractions be avoided; for it may happen, by an intermediate enlargement, that the whole of the other advantage may be lost. This will be obvious from the results in the following table, deduced from experiments with tubes having various enlargements of diameter.

Head of water in inches.	Number of en- larged parts.	Seconds in which 4 cubic feet were discharged.		
32.5	0.	109		
32.5	1	147		
32.5	3	192		
32.5	5	240 🛸		

#### DISCHARGE BY CONDUIT PIPES.

On account of the friction against the sides, the less the diameter of the pipe, the less proportionally is the discharge of fluid. And, from the same cause, the greater the length of conduit pipe, the greater the diminution of the discharge. Hence, the discharges made in equal times by horizontal pipes of different lengths, but of the same diameter, and under the same altitude of water, are to one another in the inverse ratio of the square roots of the lengths. In order to have a perceptible and continuous discharge of fluid, the altitude of the water in the reservoir, above the axis of the conduit pipe, must not be less than 1²/₃ inch for every 180 feet of the length of the pipe.

The ratio of the difference of discharge in pipes, 16 and 24 lines diameter respectively, may be known by comparing the ratios of Table I. with the ratios of Table II., in the following page.

The greater the angle of inclination of a conduit pipe, the greater will be the discharge in a given time; but when the angle of the conduit pipe is 6° 31', or the depression of the lower extremity of the pipe is one-eighth or one-ninth of its length, the relative gravity of the fluid will be counterbalanced by the resistance or friction against the sides; and the discharge is then the same as by an additional horizontal tube of the same diameter.

A curvilinear pipe, the altitude of the water in the reservoir being the same, discharges less water when the flexures lie horizontally, than a rectilinear pipe of the same diameter and length.

The discharge by a curvilinear pipe of the same diameter and length, and under the same head of water, is still further diminished when the flexures lie in a vertical instead of a horizontal plane.

When there is a number of contrary flexures in a large pipe, the air sometimes lodges in the highest parts of the flexures, and greatly retards the motion of the water, unless prevented by air-holes, or stopcocks.
### HYDRAULICS.

TABLE I.—Comparison of the discharge by conduit pipes of different lengths, 16 lines in diameter, with the discharge by additional tubes inserted in the same reservoir.—By M. BOSSUT.

Constant altitude of the	Length of	Quantity of W in a n	ater discharged binute.	Ratio between the		
Water above the centre of the aperture.	the conduit pipe.	by additional tube, 16 lines in diameter.	by conduit pipe, 16 lines in diameter.	quantities furnished by tube and pipe.		
Feet.	Feet.	Cubic Inches.	Cubic Inches.	•		
1 *	30	6330	2778	100 to 43.39		
1	60	6330 ~	1957	100 to 30.91		
1	* 90	6330	1587	100 to 25.07		
1	120	6330	1351	100 to 21.34		
1 .	150	6330	1178	100 to 18.61		
1	. 180	6330	1052	100 to 16.62		
2	30	8939	4066	100 to 45.48		
2	60	8939	2888	100 to 32.31		
2	90	8939	2352	100 to 26.31		
2	120	8939	2011	100 to 22.50		
2	150	8939	1762	100 to 19.71		
2	180	8939	1583	100 to 17.70		

TABLE II.—Comparison of the discharge by conduit pipes of different lengths, 24 lines in diameter, with the discharge by additional tubes inserted in the same reservoir.—By M. BOSSUT.

Constant altitude of the	Length of	Quantity of W in a n	Ratio between the		
Water above the centre of the aperture.	the conduit pipe.	by additional tube, 24 lines in diameter.	by conduit pipe, 24 lines in diameter.	quantities furnished by tube and pipe.	
Feet.	Feet.	Cubio Inches.	Cubic Inches.		
1	30	14243	7680	100 to 53.92	
1	60	14243	5564	100 to 39.06	
1	90	14243	4534	100 to 31.83	
1	120	14243	3944	100 to 27.69	
1	150	14243	3486	100 to 24.48	
1 .	180	14243	3119	100 to 21.90	
2	30	20112	11219	100 to 55.78	
2	60	20112	8190	100 to 40.72	
2	90	20112	6812	100 to 33.87	
2	120	20112	5885	100 to 29.26	
2	150	20112	5232	100 to 26.01	
2	180	20112	4710	100 to 23.41	

DISCHARGE BY WEIRS AND RECTANGULAR APERTURES.

Rectangular orifices in the side of a reservoir, extending to the surface.

The velocity varying nearly as the square root of the height, may here be represented by the ordinates of a parabola, and the quantity of water discharged by the area of the parabola, or two-thirds of that of the circumscribing rectangle. So that the quantity discharged may be found by taking two-thirds of the velocity due to the mean height, and allowing for the contraction of the stream, according to the form of the opening.

In a lake, for example, in the side of which a rectangular opening is made without any oblique lateral walls, three feet wide, and

n 14

extending two feet below the surface of the water, the coefficient of the velocity, corrected for contraction, is 5.1, and the corrected mean velocity  $\frac{2}{3}\sqrt{2} \times 5.1 = 4.8$ ; therefore the area being 6, the discharge of water in a second is 28.8 cubic feet, or nearly four hogsheads.

The same coefficient serves for determining the discharge over a weir of considerable breadth; and, hence, to deduce the depth or breadth requisite for the discharge of a given quantity of water. For example, a lake has a weir three feet in breadth, and the surface of the water stands at the height of five feet above it: it is required how much the weir must be widened, in order that the water may be a foot lower. Here the velocity is  $\frac{2}{3}\sqrt{5} \times 5$ ·1, and the quantity of water  $\frac{2}{3}\sqrt{5} \times 5$ ·1  $\times 3 \times 5$ ; but the velocity must be re-

duced to  $\frac{2}{3}\sqrt{4} \times 5.1$ , and then the section will be  $\frac{\frac{2}{3}\sqrt{5} \times 5.1 \times 3 \times 5}{\frac{2}{3}\sqrt{4} \times 5.1}$ 

 $=\frac{\sqrt{5}\times3\times5}{\sqrt{4}}=7.5\times\sqrt{5}; \text{ and the height being 4, the breadth}$ 

must be  $\frac{7\cdot 5}{4}\sqrt{5} = 4\cdot 19$  feet.

The discharge from reservoirs, with lateral orifices of considerable magnitude, and a constant head of water, may be found by determining the difference in the discharge by two open orifices of different heights; or, in most cases, with nearly equal accuracy, by considering the velocity due to the distance, below the surface, of the centre of gravity of the orifice.

Under the same height of water in the reservoir, the same quantity always flows in a canal, of whatever length and declivity; but in a tube, a difference in length and declivity has a great effect on the quantity of water discharged.

The velocity of water flowing in a river or stream varies at different parts of the same transverse section. It is found to be greatest where the water is deepest, at somewhat less than onehalf the depth from the surface; diminishing towards the sides and shallow parts.

Resistance to bodies moving in fluids.—The deductions from the experiments of C. Colles, (who first planned the Croton Aqueduct, New York,) and others, on this intricate subject, are, as stated, thus:

1. The confirmation of the theory, that the resistance of fluids to passing bodies is as the squares of the velocities.

2. That, contrary to the received opinion, a cone will move through the water with much less resistance with its apex foremost, than with its base forward.

3. That the increasing the length of a solid, of almost any form, by the addition of a cylinder in the middle, diminishes the resistance with which it moves, provided the weight in the water remains the same.

4. That the greatest breadth of the moving body should be placed at the distance of two-fifths of the whole length from the bow, when applied to the ordinary forms in naval architecture.

5. That the bottom of a floating solid should be made triangular; as in that case it will meet with the least resistance when moving in the direction of its longest axis, and with the greatest resistance when moving with its broadside foremost.

Friction of fluids.—Some experiments have been made on this subject, with reference to the motion of bodies in water, upon a cylindrical model, 30 inches in length, 26 inches in diameter, and weighing 255 lbs. avoirdupois. The cylinder was placed in a cistern of salt water, and made to vibrate on knife-edges passing through its axis, and was deflected over to various angles by means of a weight attached to the arm of a lever. The experiments were then repeated without the water, and the following are the angles of deflection and vibration in the two cases.

In the	salt water.	In the atmosphere.			
Angle of Deflection.	Angle to which it vibrated.	Angle of Deflection.	Angle to which it vibrated.		
22° 30' 22 10 21 54 21 36 &c.	22° 24′ 22 6 21 48 21 30 &c.	22° 30' 21 36 20 48 &c.	20° 0' 21 3 20 16 &c.		

Showing that the amplitude of vibration when oscillating in water is considerably less than when oscillating without water. In the experiments there is a falling off in the angle of 24', or nearly half a degree. The amount of force acting on the surface of the cylinder necessary to cause the above difference was calculated; and the author thinks that it is not equally distributed on the surface of the cylinder, but that the amount on any particular part might vary as the depth. On this supposition, a constant pressure at a unit of depth is assumed, and this, multiplied by the depth of any other point of the cylinder immersed in the water, will give the pressure at that point. These forces or moments being summed by integration and equated with the sum of the moments given by the experiments, we have the value of the constant pressure at a unit of depth =  $\cdot 0000469$ . This constant, in another experiment, the weight of the model being 197 lbs. avoirdupois, and consequently the part immersed in the water being different from that in the other experiment, was .0000452, which differs very little from the former, -indicating the probability of the correctness of the assumption.

The drainage of water through pipes.—The experiments made under the direction of the Metropolitan Commissioners of Sewers, on the capacities of pipes for the drainage of towns, have presented some useful results for the guidance of those who have to make

2C

calculations for a similar purpose. The pipes, of various diameters, from 3 to 12 inches, were laid on a platform of 100 feet in length, the declivity of which could be varied from a horizontal level to a fall of 1 in 10. The water was admitted at the head of the pipe, and at five junctions, or tributary pipes on each side, so regulated as to keep the main pipe full.

The results were as follow :---

It was found-to mention only one result-that a line of 6-inch pipes, 100 feet long, at an inclination of 1 in 60, discharged 75 cubic feet per minute. The same experiment, repeated with the line of pipes reduced to 50 feet in length, gave very nearly the same result. Without the addition of junctions, the transverse sectional area of the stream of water near the discharging end was reduced to onefifth of the corresponding area of the pipe, and it required a simple head of water of about 22 inches to give the same result as that accruing under the circumstances of the junctions. With regard to varying sizes and inclinations, it appears, sufficiently for practical purposes, that the squares of the discharges are as the fifth powers of the diameters; and again, that in steeper declivities than 1 in 70, the discharges are as the square roots of the inclinations; but at less declivities than 1 in 70, the ratios of the discharges diminish very rapidly, and are governed by no constant law. At a certain small declivity, the relative discharge is as the fifth root of the inclination; at a smaller declivity, it is found as the seventh root of the inclination; and so on, as it approaches the horizontal plane. This may be exemplified by the following results found by actual experiment:

Inclination.	Discharges in 100 feet per minute.	Inclination.	Discharges in 100 feet per minute.
1 in 60	75	1 in 320	49
1 in 80	68	1 in 400	48.5
1 in 100	63	1 in 480	48
1 in 120	59	1 in 640	47.5
1 in 160	54	1 in 800	47.2
1 in 200	52	1 in 1200	46.7
1 in 240	; 50	Level	46

Discharges of a 6-inch pipe at several inclinations.

The conclusion arrived at is, that the requisite sizes of drains and sewers can be determined (near enough for practical purposes, as an important circumstance has to be considered in providing for the deposition of solid matter, which disadvantageously alters the form of the aqueduct, and contracts the water-way) by taking the result of the 6-inch pipe, under the circumstances before mentioned as a *datum*, and assuming that the squares of the discharges are as the fifth powers of the diameters.

That at greater declivities than 1 in 70, the discharges are as the square roots of the inclinations.

Pr Sec

That at less declivities than 1 in 70, the usual law will not obtain; but near approximations to the truth may be obtained by observing the relative discharges of a pipe laid at various small inclinations.

That increasing the number of junctions, at intervals, accelerates the velocity of the main stream in a ratio which increases as the square root of the inclination, and which is greater than the ratio of resistance due to a proportionable increase in the length of the aqueduct. The velocity at which the lateral streams enter the main line, is a most important circumstance governing the flow of water. In practice, these velocities are constantly variable, considered individually, and always different considered collectively, so that their united effect it is difficult to estimate. Again, the same sewer at different periods may be quite filled, but discharges in a given time very different quantities of water. It should be mentioned that in the case of the 6-inch pipe, which discharged 75 cubic feet per minute, the lateral streams had a velocity of a few feet per second, and the junctions were placed at an angle of about 35° with the main line. It is needless to say that all junctions should be made as nearly parallel with the main line as possible, otherwise the forces of the lateral currents may impede rather than maintain or accelerate the main streams.

# WATER WHEELS.

### THE UNDERSHOT WHEEL.

THE ratio between the power and effect of an undershot wheel is as 10 to 3.18; consequently 31.43 lbs. of water must be expended per second to produce a mechanical effect equal to that of the estimated labour of an active man.

The velocity of the periphery of the undershot wheel should be equal to half the velocity of the stream; the float-boards should be so constructed as to rise perpendicularly from the water; not more than one-half should ever be below the surface; and from 3 to 5 should be immersed at once, according to the magnitude of the wheel.

The following maxims have been deduced from experiments :---

1. The virtual or effective head of water being the same, the effect will be nearly as the quantity expended; that is, if a mill, driven by a fall of water, whose virtual head is 10 feet, and which discharges 30 cubic feet of water in a second, grind four bolls of corn in an hour; another mill having the same virtual head, but which discharges 60 cubic feet of water, will grind eight bolls of corn in an hour.

2. The expense of water being the same, the effect will be nearly as the height of the virtual or effective head.

3. The quantity of water expended being the same, the effect is nearly as the square of its velocity; that is, if a mill, driven by a

certain quantity of water, moving with the velocity of four feet per second, grind three bolls of corn in an hour; another mill, driven by the same quantity of water, moving with the velocity of five feet per second, will grind nearly  $4\frac{7}{10}$  bolls in the hour, because  $3:4\frac{7}{10}::4^2:5^2$  nearly.

4. The aperture being the same, the effect will be nearly as the cube of the velocity of the water; that is, if a mill driven by water, moving through a certain aperture, with the velocity of four feet per second, grind three bolls of corn in an hour; another mill, driven by water, moving through the same aperture with the velocity of five feet per second, will grind  $5\frac{43}{60}$  bolls nearly in an hour; for as  $3:5\frac{43}{50}::4^3:5^3$  nearly.

The height of the virtual head of water may be easily determined from the velocity of the water, for the heights are as the squares of the velocities, and, consequently, the velocities are as the square roots of the height.

To calculate the proportions of undershot wheels.—Find the perpendicular height of the fall of water above the bottom of the millcourse, and having diminished this number by one-half the depth of the water where it meets the wheel, call that the height of the fall,

Multiply the height of the fall, so found, by 64.348, and take the square root of the product, which will be the velocity of the water.

Take one-half of the velocity of the water, and it will be the velocity to be given to the float-boards, or the number of feet they must move through in a second, to produce a maximum effect. Divide the circumference of the wheel by the velocity of its float-boards per second, and the quotient will be the number of seconds in which the wheel revolves. Divide 60 by the quotient thus found, and the new quotient will be the number of revolutions made by the wheel in a minute.

Divide 90, the number of revolutions which a millstone, 5 feet in diameter, should make in a minute, by the number of revolutions made by the wheel in a minute, the quotient will be the number of turns the millstone ought to make for one turn of the wheel. Then, as the number of revolutions of the wheel in a minute is to the number of revolutions of the millstone in a minute, so must the number of staves in the trundle be to the number of teeth in the wheel, (the nearest in whole numbers.) Multiply the number of revolutions made by the wheel in a minute, by the number of revolutions made by the millstone for one turn of the wheel, and the product will be the number of revolutions made by the millstone in a minute.

The effect of the water wheel is a *maximum*, when its circumference moves with one-half, or, more accurately, with threesevenths of the velocity of the stream.

### THE BREAST WHEEL.

The effect of a breast wheel is equal to the effect of an under shot wheel, whose head of water is equal to the difference of level between the surface of water in the reservoir, and the part where it strikes the wheel, added to that of an overshot, whose height is equal to the difference of level between the part where it strikes the wheel and the level of the tail water.

When the fall of water is between 4 and 10 feet, a breast wheel should be erected, provided there be enough of water; an undershot should be used when the fall is below 4 feet, and an overshot wheel when the fall exceeds 10 feet. Also, when the fall exceeds 10 feet, it should be divided into two, and two breast wheels be erected upon it.

	Breadth of the float-boards.	Depth of the foat-boards.	Radius of water wheel, reckoned from the extremity of float-boards.	Yelocity of the wheel in a second.	Time in which the wheel performs one revolution.	Turns of the mill- stone for one of the wheels.	Force of the Water upon the float- boards.	Capacity Mater required in a second to turn the wheel.
1	0.17	198.6	0.75	2.18	1.92	4.80	1536	74.30
2	0.34	35.1	1.50	3.09	2.72	6.80	1084	37.15
3	0.51	12.7	2.26	3.78	3.33	8.32	886	24.77
4	0.69	6.2	3.01	4.36	3.84	9.60	762	18.57
5	0.86	3.57	3.76	4.88	4.28	10.70	680	14.86
6	1.03	2.25	4.51	5.35	4.70	11.76	626	12.38
7	1.20	1.53	5.26	5.77	5.08	12.70	581	10.61
8	1.37	1.10	6.02	6.17	5.43	13.58	543	9.29
9	1.54	0.81	6.77	6.55	5.76	14.40	512	8.26
10	1.71	0.77	7.52	6.90	6.07	15.18	486	7.43

TABLE for breast wheels.

It is evident, from the preceding table, that when the height of the fall is less than 3 feet, the depth of the float-boards is so great, and their breadth so small, that the breast wheel cannot well be employed; and, on the contrary, when the height of the fall approaches to 10 feet, the depth of the float-boards is too small in proportion to their breadth; these two extremes, therefore, must be avoided in practice. The ninth column contains the quantity of water necessary for impelling the wheel; but the total expense of water should always exceed this by the quantity, at least, which escapes between the mill-course and the sides and extremities of the float-boards.

### THE OVERSHOT WHEEL.

The ratio between the power and effect of an overshot wheel, is as 10 to 6.6, when the water is delivered above the apex of the wheel, and is computed from the whole height of the fall; and as 10 to 8 when computed from the height of the wheel only; consequently, the quantity of water expended per second, to produce a mechanical effect equal to that of the aforesaid estimated labour of an active man, is, in the first instance, 15.15 lbs., and in the second instance, 12.5 lbs.

Hence, the effect of the overshot wheel, under the same circum-2 c 2

stances of quantity and fall, is, at a medium, double that of the undershot.

The velocity of the periphery of an overshot wheel should be from  $6\frac{1}{2}$  to  $8\frac{1}{2}$  feet per second.

The higher the wheel is, in proportion to the whole descent, the greater will be the effect.

And from the equality of the ratio between the power and effect, subsisting where the constructions are similar, we must infer that the effects, as well as the powers, are as the quantities of water and perpendicular heights multiplied together respectively.

Working machinery by hydraulic pressure.—The vertical pressure of water, acting on a piston, for raising weights and driving machinery, is coming into use in many places where it can be advantageously applied. At Liverpool, Newcastle, Glasgow, and other places, it is applied to the working of cranes, drawing coal-wagons, and other purposes requiring continuous power. The presence of a natural fall, like that of Golway, Ireland, which can be conducted to the engine through pipes, is, of course, the most economical situation for the application of such power; in other situations, artificial power must be used to raise the water, which, even under this disadvantage, may, from its readiness and simplicity of action, be often serviceably employed. Wherever the contiguity of a steam engine would be dangerous, or otherwise objectionable, a water engine would afford the means of receiving and applying the power from any required distance, precautions being taken against the action of frost on the fluid.

Required the horse power of a centre discharging *Turbine* water wheel, the head of water being 25 feet, and the area of the opening 400 inches.

The following table shows the working horse power of both the inward and outward discharging Turbine water wheels; they are calculated to the square inch of opening.

Centre Discharging Turbine.		Outward Discharg- ing Turbine.	Centr	e Discharging Turbine.	Outward Discharg- ing Turbine.
Head.	Horse Power.	Horse Power.	Head.	Horse Power.	Horse Power.
3	·00821	·012611	22	·19523	·339972
4	.01483	·025145	23	·20787	·364182
5	.02137	.038124	24	·22315	·384615
6	.02685	.045618	25	·23667	·412013
7	·03414	.058314	26	·25125	·437519
8	·04198	.074413	27	·26482	•455698
9	.05206	.089025	28	·28135	·484427
10	05883	.106215	29	.29563	·510833
11	.06921	.118127	30	-30817	·537721
12	.07851	.135610	31	·32316	.561425
13	.08882	150638	32	·33617	.587148
14	.10054	.173158	33	•34823	·611013
15	.11002	.192234	34	.36154	·638174
16	.12093	·211592	35	.37123	·665164
17	.13196	·281161	36	·69874	·692156
18	.14275	·257145	37	•40118	·726148
19	.15613	273325	38	·41762	·764115
20	.16927	·296618	39	42156	·804479
21	.18109	·317167	40	·43718	·849814

330

ę

Opposite 25 in the column marked "Head," the working horse power to the square inch is found to be 25667, which, multiplied by 400, gives 94.668, the horse power required.

What is the working horse power of an outward discharging Turbine, under the effective head of 20 feet; the area of all the openings being 325 square inches. In the table, opposite 20, we find  $\cdot 296618$ , then  $\cdot 296618 \times 325 = 96.4$ , the required horse power.

What is the number of revolutions a minute of an outward discharging Turbine wheel, the head being 19 feet and the diameter of the wheel 60 inches?

In the table for the outward discharging wheel, opposite 19, and under 60 inches, we find 97, the number of revolutions required.

What is the number of revolutions a minute of an inward discharging Turbine, under a head of 21 feet, the diameter being 72 inches?

In the table for the inward discharging wheel, opposite 21 feet, and under 72 inches, we find 95, the number of revolutions a minute.

These Turbine tables were calculated by the author's brother, the late John O'Byrne, C. E., who died in New York, on the 6th of April, 1851.

Head in feet.	DIAMETER IN INCHES.												
	24	30	36	42	48	54	60	66	72	78	84	90	96
3	100	80	70	60	52	42	37	35	32	30	28	27	21
4	111	89	73	63	57	-49	- 44	41	37	34	32	30	28
5	123	100	82	71	62	55	51	45	42	38	37	33	31
6	135	109	91	78	68	62	55	50	45	42	38	37	36
7	146	118	96	84	73	65	59	53	49	47	42	40	38
8	156	125	105	90	79	71	63	57	52	49	43	42	39
9	166	133	111	95	83	75	67	61	57	50	49	45	41
10	175	140	117	100	87	79	70	64	59	55	51	47	46
11	183	147	122	105	92	81	74	, 67	62	57	54	49	48
12	191	156	127	110	96	85	79	70	64	59	55	53	51
13	200	159	133	115	100	89	81	73	67	62	57	55	53
14	206	166	138	118	104	92	83	75	69	64	59	57	55
15	213	171	142	122	107	95	86	78	- 72	66	61	58	56
16	222	177	148	126	111	98	89	82	74	69	64	59	57
17	227	182	152	131	115	101	91	83	77	71	66	62	59
18	234	187	156	134	117	105	94	85	78	73	67	63	61
19	238	193	161	138	120	107	97	88	81	74	69	64	63
20	247	197	164	141	124	110	99	90	84	76	71	66	64
21	252	202	168	145	126	114	101	92	85	78	73	68	65
22	259	208	172	149	129	115	105	94	87	80	74	/69	67
23	263	212	176	151	133	119	106	96	89	84	77	72	70
24	270	216	180	155	135	120	109	98	92	85	78	~74	72
25	277	222	184	158	138	123	111	101	93	86	80	76	74
26	282	226	189	161	141	125	113	103	95	87	81	78	76
27	286	229	191	165	143	129	116	105	97	88	83	79	77
28	291	233	195	167	146	130	118	107	99	91	85	80	78
29	297	237	199	170	149	132	119	109	100	92	86	81	80
30	303	241	202	174	152	135	122	111	102	94	88	82	81

Outward discharging Turbine.

# THE PRACTICAL MODEL CALCULATOR.

ė.					Dı	AMETER	IN INCI	HES.					
Head	24	30	36	42	48	54	60	66	72	78	64	90	96
3	111	86	74	62	54	48	47	40	36	32	31	30	27
4	125	96	83	70	62	55	51	45	41	37	36	34	31
5	141	112	94	78	69	61	55	50	46	43	40	37	36
6	152	122	101	86	76	67	62	55	51	47	43	42	38
7	166	131	108	93	82	72	65	60	54	51	47	44	42
~ 8	175	139	116	99	87	76	71	63	57	54	49	47	45
9	186	149	123	06	93	81	74	68	63	57	53	51	47
10	195	156	129	111	99	86	78	71	66	61	56	52	49
11	208	167	136	117	102	91	82	74	68	63	58	56	52
12	217	169	142	122	107	97	85	78	71	66	61	57	54
13	221	178	148	127	112	99	89	82	74	69	64	61	56
14	231	184	153	133	116	104	92	85	76	71	66	62	58
15	238	191	159	136	119	107	95	87	80	73	68	64	61
16	245	198	165	144	123	111	99	90	83	76	71	66	63
17	252	203	168	148	127	114	102	92	85	78	73	68	64
18	269	209	173	150	132	116	104	95	87	82	75	69	66
19	267	215	176	153	134	120	108	98	89	83	77	72	67
20	276	222	183	157	138	122	111	101	93	85	79	74	69
21	288	226	186	162	141	125	118	103	95	86	80	75	71
22	290	230	192	164	145	129	116	107	96	89	83	77	73
23	299	235	196	167	146	133	118	109	97	91	84	79	74
24	303	240	201	171	151	135	122	111	101	93	86	80	75
$\overline{25}$	310	247	206	176	155	138	123	112	104	96	88	82	76
26	314	248	210	180	157	139	126	115	106	97	90	84	79
27	319	254	213	183	162	142	128	117	108	99	92	85	80
$\frac{1}{28}$	327	261	218	186	164	146	129	119	109	102	93	87	82
29	333	265	221	189	166	148	133	121	111	103	95	89	83
30	336	271	224	193	168.	151	136	124	114	105	97	90	85

# Inward discharging Turbine.

# WINDMILLS.

1. THE velocity of windmill sails, whether unloaded or loaded, so as to produce a maximum effect, is nearly as the velocity of the wind, their shape and position being the same.

2. The load at the maximum is nearly, but somewhat less than, as the square of the velocity of the wind, the shape and position of the sails being the same.

3. The effects of the same sails, at a maximum, are nearly, but somewhat less than, as the cubes of the velocity of the wind.

4. The load of the same sails, at the maximum, is nearly as the squares, and their effect as the cubes of their number of turns in a given time.

5. When sails are loaded so as to produce a maximum at a given velocity, and the velocity of the wind increases, the load continuing the same,—1st, the increase of effect, when the increase of the velocity of the wind is small, will be nearly as the squares of those velocities; 2dly, when the velocity of the wind is double, the effects will be nearly as 10 to  $27\frac{1}{2}$ ; but, 3dly, when the velocities compared are more than double of that when the given load produces a maximum, the effects increase nearly in the simple ratio of the velocity of the wind.

### WINDMILLS.

6. In sails where the figure and position are similar, and the velocity of the wind the same, the number of turns, in a given time, will be reciprocally as the radius or length of the sail.

7. The load, at a maximum, which sails of a similar figure and position will overcome, at a given distance from the centre of motion, will be as the cube of the radius.

8. The effects of sails of similar figure and position are as the square of the radius.

9. The velocity of the extremities of Dutch sails, as well as of the enlarged sails, in all their usual positions when unloaded, or even loaded to a maximum, is considerably greater than that of the wind.

The results in Table 1 are for Dutch sails, in their common position, when the radius was 30 feet. Table 2 contains the most efficient angles.

	1.			. Z.	
Number of revolutions of wind-shaft in a minute.	Velocity of the wind in an hour.	Ratio between velocity of wind and re- volutions of wind-shaft.	Parts of the radius, which is divided into six parts.	Angle with the axis.	Angle of weather.
3	2 miles	0.666	$\frac{1}{2}$	72° 71	18° 19
5	4 miles	0.800	3 4	72 74	18 middle 16
6	5 miles	0.833	5 6	$\begin{array}{c} 77\frac{1}{2} \\ 83 \end{array}$	$rac{12rac{1}{2}}{7}$

Supposing the radius of the sail to be 30 feet, then the sail will commence at  $\frac{1}{6}$ , or 5 feet from the axis, where the angle of inclination will be 72 degrees; at  $\frac{2}{6}$ , or 10 feet from the axis, the angle will be 71 degrees, and so on.

# Results of Experiments on the effect of Windmill Sails in grinding corn.—By M. COULOMB.

A windmill, with four sails, measuring 72 feet from the extremity of one sail to that of the opposite one, and 6 feet 7 inches wide, or a little more, was found capable of raising 1100 lbs. avoirdupois 238 feet in a minute, and of working, on an average, eight hours in a day. This is equivalent to the work of 34 men, 30 square feet of canvas performing about the daily work of a man.

When a vertical windmill is employed to grind corn, the millstone makes 5 revolutions in the same time that the sails and the arbor make 1.

The mill does not begin to turn till the velocity of the wind is about 13 feet per second.

When the velocity of the wind is 19 feet per second, the sails make from 11 to 12 turns in a minute, and the mill will grind from 880 to 990 lbs. avoirdupois in an hour, or about 22,000 lbs. in 24 hours.

# THE APPLICATION OF LOGARITHMS.

THE practice of performing calculations by Logarithms is an exercise so useful to computers, that it requires a more particular explanation than could have been properly given in that part of the work allotted to Arithmetic.

A few of the various applications of logarithms, best suited to the calculations of the engineer and mechanic, have therefore been collected, and are, with other matter, given, in hopes that they will come into general use, as the certainty and accuracy of their results can be more safely relied upon and more easily obtained than with common arithmetic.

By a slight examination, the student will perceive, in some degree, the nature and effect of these calculations; and, by frequent exercise, will obtain a dexterity of operation in every case admitting of their use. He will also more readily penetrate the plans of the different devices employed in instrumental calculations, which are rendered obscure and perplexing to most practical men by their ignorance of the proper application of logarithms.

Logarithms are artificial numbers which stand for natural numbers, and are so contrived, that if the logarithm of one number be added to the logarithm of another, the sum will be the logarithm of the product of these numbers; and if the logarithm of one number be taken from the logarithm of another, the remainder is the logarithm of the latter divided by the former; and also, if the logarithm of a number be multiplied by 2, 3, 4, or 5, &c., we shall have the logarithm of the square, cube, &c., of that number; and, on the other hand, if divided by 2, 3, 4, or 5, &c., we have the logarithm of the square root, cube root, fourth root, &c., of the proposed number; so that with the aid of logarithms, multiplication and division are performed by addition and subtraction; and the raising of powers and extracting of roots are effected by multiplying or dividing by the indices of the powers and roots.

In the table at the end of this work, are given the logarithms of the natural numbers, from 1  $\cdot$  to 1000000 by the help of differences; in large tables, only the decimal part of the logarithm is given, as the index is readily determined; for the index of the logarithm of any number greater than unity, is equal to one less than the number of figures on the left hand of the decimal point; thus,

The index of 12345 is 4. ---- 1234.5 - 3.,

The index of any decimal fraction is a negative number equal to one and the number of zeros immediately following the decimal point; thus,

The index of	$\cdot 00012345$	is	-4.	or	4.
	·0012345	is	-3.	or	3.
	·012345	is	$-2 \cdot$	or	$\overline{2}$ .
·	·12345	is	-1.	or	1.

Because the decimal part of the logarithm is always positive, it is better to place the negative sign of the index above, instead of before it; thus;  $\overline{3}$ · instead of -3. For the log. of  $\cdot 00012345$  is better expressed by  $\overline{4} \cdot 0914911$ , than by  $-4 \cdot 0914911$ , because only the index is negative—*i. e.*, 4 is negative and  $\cdot 0914911$  is positive, and may stand thus,  $-4 \cdot + \cdot 0914911$ .

Sometimes, instead of employing negative indices, their complements to 10 are used :

for 4.0914911 is	substituted 6.0914911
<u>- 3</u> ·0914911 -	7·0914911
$-\overline{2}.0914911 -$	8·0914911
&c.	&c.

When this is done, it is necessary to allow, at some subsequent stage, for the tens by which the indices have thus been increased.

It is so easy to take logarithms and their corresponding numbers out of tables of logarithms, that we need not dwell on the method of doing so, but proceed to their application.

### MULTIPLICATION BY LOGARITHMS.

Take the logarithms of the factors from the table, and add them together; then the natural number answering to the sum is the product required: observing, in the addition, that what is to be carried from the decimal parts of the logarithms is always positive, and must therefore be added to the positive indices; the difference between this sum and the sum of the negative indices is the index of the logarithm of the product, to which prefix the sign of the greater.

This method will be found more convenient to those who have only a slight knowledge of logarithms, than that of using the arithmetical complements of the negative indices.

1. Multiply 37.153 by 4.086, by logarithms.

Nos. 27.152	Logs.
4.086	0.6112984
Prod. 151.8071	2.1812923
2. Multiply 112.246 by 13.958,	by logarithms.
Nos.	Logs.
$112 \cdot 246 \dots$	
13.958	1.1448232
Prod. 1566.729	

3. Multiply 46.7512 by .3275, by logarithms.

Nos.	Logs.
46.7512	1.6697928
·3275	$\dots \overline{1} \cdot 5152113$
Prod. 15.31102	1.1850041

Here the +1 that is to be carried from the decimals, cancels the -1, and consequently there remains 1 in the upper line to be set down.

4. Multiply .37816 by .04782, by logarithms.

Nos.	Logs.
·37816	$\overline{1}.5776756$
·04782	$\overline{2} \cdot 6796096$
Prod. 0.0180836	$\overline{2} \cdot 2572852$

Here the +1 that is to be carried from the decimals, destroys the -1 in the upper line, as before, and there remains the -2to be set down.

5. Multiply 3.768, 2.053, and .007693, together.

Nos.	Logs.
3.768	0.5761109
2.053	
·007693	<u>3</u> ·8860957
Prod0595108	$\overline{\overline{2}\cdot7745955}$

Here the +1 that is to be carried from the decimals, when added to -3, makes -2 to be set down.

6. Multiply 3.586, 2.1046, .8372, and .0294, together.

Nos.	Logs.
3.586	0.5546103
2.1046	
·8372	$\overline{1}.9228292$
·0294	$\overline{2} \cdot 4683473$

Here the +2 that is to be carried, cancels the -2, and there remains the -1 to be set down.

# DIVISION BY LOGARITHMS.

From the logarithm of the dividend, subtract the logarithm of the divisor; the natural number answering to the remainder will be the quotient required.

Observing, that if the index of the logarithm to be subtracted is positive, it is to be counted as negative, and if negative, to be considered as positive; and if one has to be carried from the decimals, it is always negative: so that the index of the logarithm of the quotient is equal to the sum of the index of the dividend, the index

of the divisor with its sign changed, and -1 when 1 is to be carried from the decimal part of the logarithms. 1. Divide 4768.2 by 36.954, by logarithms.

Nos.	Logs.
4768.2	3.6783545
36.954	<b>1</b> ·5676615
Quot. 129.032	
2. Divide 21.754 by 2.4678, 1	by logarithms.
INOS.	Logs.
2·4678	
Quot. 8.81514	0.9452291
3. Divide 4.6257 by .17608, 1	oy logarithms.
Nos.	Logs.
4.6257	0.6651775
·17608	<u>1</u> ·2457100
Quot. 26.27045	
Here the -1 in the lower ind then taken for the index of the 4. Divide ·27684 by 5·1576,	lex, is changed into $+1$ , which is result. by logarithms.
Nos.	Logs.
$\cdot 276845\cdot 1576$	$1 \cdot 4422288$ 0 \cdot 7124477
Quot. •0536761	
Here the 1 that is to be carr -1, and then added to $-1$ in for the index of the result.	ied from the decimals, is taken as the upper index, which gives $-2$
5. Divide 6.9875 by .075789,	by logarithms.
Nos.	Logs.
6.9875	0.8443218
·075789	<u>2</u> ·8796062
Quot. 92.1967	<u>1·9647156</u>
Here the 1 that is to be carr $-2$ , which makes $-1$ , and this is $+1$ .	ied from the decimals, is added to put down, with its sign changed,
6. Divide .19876 by .0012345	b, by logarithms.
Nos.	_ Logs.
·19876	<i>.</i> 1·2983290
·0012345	$\dots \overline{3} \cdot 0914911$
Quot. 161.0043	2·2068379
Here $-3$ in the lower index, ded to 1, the other index, gives	is changed into $+3$ , and this ad- +3 - 1, or 2.
2 D	22

# PROPORTION; OR, THE RULE OF THREE, BY LOGARITHMS.

From the sum of the logarithms of the numbers to be multiplied together, take the sum of the logarithms of the divisors: the remainder is the logarithm of the term sought.

Or the same may be performed more conveniently, for any single proportion, thus:—Find the complement of the logarithm of the first term, or what it wants of 10, by beginning at the left hand and taking each of the figures from 9, except the last figure on the right, which must be taken from 10; then add this result and the logarithms of the other two figures together: the sum, abating 10 in the index, will be the logarithm of the fourth term.

1. Find a fourth proportional to 37.125, 14.768, and 135.279, by logarithms.

Log. of 37.125	.: <b>1</b> ·5696665
Complement	
Log. of 14.768	1.1693217
Log. of 135.279	2.1312304
Ans. 53.8128	

2. Find a fourth proportional to .05764, .7186, and .34721, by logarithms.

Log. of .05764	2.7607240
Complement	11.2392760
Log. of .7186	$\overline{1.8564872}$
Log. of ·34721	$\overline{1} \cdot 5405922$
Ans. 4.32868	0.6363554

3. Find a third proportional to 12.796 and 3.24718, by logarithms. Log. of 12.796......<u>1.1070742</u> Complement

Complement	
Log. of 3.24718	0.5115064
Log. of 3.24718	0.5115064
Ans. ·8240216	<u>1</u> ·9159386

INVOLUTION; OR, THE RAISING OF POWERS, BY LOGARITHMS.

Multiply the logarithm of the given number by the index of the proposed power; then the natural number answering to the result will be the power required. Observing, if the index be negative, the index of the product will be negative; but as what is to be carried from the decimal part will be affirmative, therefore the difference is the index of the result.

1. Find the square of 2.7568, by logarithms.

### THE APPLICATION OF LOGARITHMS.

2. Find the cube of 7.0851, by logari	thms.
Log. of 7.0851	0.8503460
9	3
Cube 355.6625	2.5510380
Therefore 355.6625 is the answer.	0 ) le color calé la
3. Find the fifth power of .87451, by	logarithms.

Log. of •87451.....1·9417648

Fifth power  $\cdot 5114695 \dots \overline{1} \cdot 7088240$ Where 5 times the negative index  $\overline{1}$ , being -5, and +4 to carry, the index of the power is  $\overline{1}$ .

4. Find the 365th power of 1.0045, by logarithms. Log. of 1.0045......0.0019499 365 97495 116994 58497

# Power 5.148888.....Log. 0.7117135

EVOLUTION; OR, THE EXTRACTION OF ROOTS, BY LOGARITHMS.

Divide the logarithm of the given number by 2 for the square root, 3 for the cube root, &c., and the natural number answering to the result will be the root required.

But if it be a compound root, or one that consists both of a root and a power, multiply the logarithm of the given number by the numerator of the index, and divide the product by the denominator, for the logarithm of the root sought.

Observing, in either case, when the index of the logarithm is negative, and cannot be divided without a remainder, to increase it by such a number as will render it exactly divisible; and then carry the units borrowed, as so many tens, to the first figure of the decimal part, and divide the whole accordingly.

1. Find the square root of 27.465, by logarithms.

 $\mathbf{2}$ .

3.

Log. of 27.465	2) 1.4387796
Root 5.2407	
Find the cube root of 35.6415, by	y logarithms.
Log. of 35.6415	3)1.5519560
Root 3.29093	
Find the fifth root of 7.0825, by	logarithms.
Log. of 7.0825	5) 0.8501866
Root 1.479235	1700373

# THE PRACTICAL MODEL CALCULATOR.

4.	Find the 365th root of 1.045, h	y logarithms.
	Log. of 1.045	365) 0.0191163
	Root 1.000121	0.0000524

5. Find the value of  $(\cdot 001234)^{\frac{2}{3}}$ , by logarithms.

2

# $3)\overline{6.1826304}$

Here the divisor 3 being contained exactly twice in the negative index -6, the index of the quotient, to be put down, will be -2.

6. Find the value of  $(\cdot 024554)^{\frac{8}{2}}$ , by logarithms.

v o

# $2)\overline{6}.1703669$

Here, 2 not being contained exactly in -5, 1 is added to it, which gives -3 for the quotient; and the 1 that is borrowed being carried to the next figure makes 11, which, divided by 2, gives  $\cdot5851834$  for the decimal part of the logarithm.

METHOD OF CALCULATING THE LOGARITHM OF ANY GIVEN NUMBER, AND THE NUMBER CORRESPONDING TO ANY GIVEN LOGARITHM. DIS-COVERED BY OLIVER BYRNE, THE AUTHOR OF THE PRESENT WORK.

The succeeding numbers possess a particular property, which is worth being remembered.

In these numbers, if the decimal points be changed, it is evident the logarithms corresponding can also be set down without any calculation whatever.

Thus, the log. of  $137 \cdot 1288574238542 = 2 \cdot 1371288574238542$ ; the log. of  $35 \cdot 50260181586591 = 1 \cdot 550260181586591$ ; log.  $\cdot 002375812087593221 = \overline{3} \cdot 375812087593221$ ; log.  $\cdot 0008951915998267852 = \overline{4} \cdot 951915998267852$ ; and so on in similar cases, since the change of the decimal point in a number can only affect the whole number of its logarithm.

These numbers whose logarithms are made up of the same digits will be found extremely useful hereafter. We shall next give a simple method of multiplying any number by any power of 11, 101, 1001, 10001, 100001, &c.

This multiplication is performed by the aid of coefficients of a binomial raised to the proposed power.

Let it be required to multiply 54247 by  $(101)^6$ .

The number must be divided into periods of two figures when the nultiplier is 101; into periods of three figures when the multiplier s 1001; into periods of four figures when the multiplier is 10001; and so on.

d	C	6	a	1	1		
54	24	70	00	00	1	1	
3	25	48	20	00	a	6	
	8	13	70	50	Ъ	15	
		10	84	94	c	20	ŝ
			8	14	d	15	
. 1				3	e	6	
	d 54 3	$\begin{array}{c c} d & c \\ 54 & 24 \\ 3 & 25 \\ 8 \end{array}$	$\begin{array}{c c c} d & c & b \\ 54 & 24 & 70 \\ 3 & 25 & 48 \\ & 8 & 13 \\ & & 10 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $54247) \times (101)^6 = 5758428361$ , true to 10 places of figures.

This operation is readily understood, since the multipliers for the oth power are 1, 6, 15, 20, 15, 6, 1; we begin at a, a period in advance, and multiply by 6; then we commence at b, two periods in advance, and multiply by 15; at c, three periods in advance, and nultiply by 20; at d, four periods in advance (counting from the right to the left), and multiply by 15; the period, e, should be nultiplied by 6, but, as it is blank, we only set down the 3 carried from multiplying d, or its first figure by 6.

As it is extremely easy to operate with 1, 5, 10, 10, 5, 1, the nultipliers for the 5th power, it may be more convenient first to nultiply the given number by  $(101)^5$ , and then by  $(101)^1$ ; because, to multiply any number by 5, we have only to affix a cipher (or suppose it affixed) and to take the half of the result.

The above example, if worked in the manner just described, will stand as follows:

2 d 2



The truth of this is readily shown by common multiplication, but the process is cumbersome. However, for the sake of comparison, we shall in this instance multiply 54247 by (101) raised to the 6th power.

101	
101	в
101	
1010	
10201	$=(101)^{2}$ .
101	()
10201	-
102010	
1030301	$=(101)^{3}$
. 101	(101).
1030301	
10303010	
104060301	- (101)4
101000001	- (101).
104060401	-
1040604010	
10510100501	- (101)3
10510100501	= (101).
10510100501	1
105101005010	
100101000010	(101)6
1061520150601	$= (101)^{\circ}$ .
04241	1
7430641054207	1.50 (1.1
4240080002404	1 200
4246080602404	1
5307600753005	

5758428360|9652447 the required product,

18

which shows that the former process gives the result true to 10 places of figures, of which we shall add another example.

Multiply 34567812 by (1001)³, so that the result may be true to 12 places of figures.

6	a		
3456	7812	0000	1
2	7654	2496	8a
1	9	6790	28b
•		19	56c

3459 5475 9305 the required product.

The remaining multipliers, 70, 56, 28, 8, 1, are not necessary in obtaining the first 12 figures of the product of 34567812 by 10001 in the 8th power.

A's 28 and 56 are large multipliers, the work may stand thus

C	6	a		
	3456	7812	0000	1
	2	7654	2496	a 8
		6	9136	
		2	7654	
			17	
			2	
-				



Perhaps this product might be obtained with greater ease by first multiplying 34567812 by (10001)⁵, and the product by (10001)³; the operation will stand thus:

 $\begin{array}{r} 345678120000.....1\\ 172839060.....5\\ 34568.....10\\ \underline{3.....10}\\ 345850093631 = 34567812 \times (10001)^{5}.\\ 103755298.....3\\ \underline{10376}....3\end{array}$ 

345954759305 =twelve places of the product of 34567812 by  $(10001)^{5} \times (10001)^{3} = (34567812) \times (10001)^{8}$ .

Although these methods are extremely simple, yet cases will occur, when one of them will have the preference.

Our next object is to determine the logarithms 1.1; 1.01; 1.001; 1.0001; 1.00001; &c.

It is well known that

log.  $(1 + n) = M (n - \frac{1}{2}n^2 + \frac{1}{3}n^3 - \frac{1}{4}n^4 + \frac{1}{6}n^5 - \frac{1}{6}n^6 + \&c.)$ M being the modulus, =  $\cdot 432944819032618276511289$ , &c.

It is evident that when n is  $\frac{1}{10}$ ,  $\frac{1}{100}$ ,  $\frac{1}{10000}$ ,  $\frac{1}{100000}$ , &c., the calculation becomes yery simple.

 $\begin{array}{l} M = \cdot 4342944819032518 \\ \frac{1}{2} M = \cdot 2171472409516259 \\ \frac{1}{3} M = \cdot 1447648273010839 \\ \frac{1}{4} M = \cdot 1085736204758130 \\ \frac{1}{6} M = \cdot 0868588963806504 \\ \frac{1}{6} M = \cdot 0723824136505420 \\ \frac{1}{6} M = \cdot 0720420788433217 \\ \frac{1}{6} M = \cdot 0542868102379065 \\ \frac{1}{6} M = \cdot 0482549424336946 \\ \frac{1}{6} M = \cdot 0434294481903252 \end{array}$ 

&c. &c., are constants employed to determine the logarithms of 11, 101, 1001, 100001, &c.

To compute the log. of 1.001. In this case  $n = \frac{1}{1000}$ .

- +  $\frac{M}{1000} = .0004342944819033$  positive
- $-\frac{\frac{1}{2}M}{(1000)^2} = \frac{\cdot 0000002171472410}{\cdot 0004340773346623}$  negative
- $+ \frac{\frac{1}{3}M}{(1000)^3} = \frac{.000000001447648}{.0004340774794271} \text{ positive}$ 
  - $-\frac{\frac{1}{4}M}{(1000)^4} = \frac{\cdot 0000000000001086}{\cdot 0004340774793185}$  negative

true to sixteen places.

It is almost unnecessary to remark, that, instead of adding and subtracting alternately, as above, the positive and negative terms may be summed separately, which will render the operation more concise.

Positive Terms.	Negative Terms.
$\cdot 0004342944819033$	.0000002171472410
1447648	1086
1	.0000002171473496
$+ \cdot 0004342945266682$	24-1 0
- 000000217473496	1 1 1

 $\cdot 0004340774793186 = \log 1.001.$ 

In a similar manner the succeeding logarithms may be obtained to almost any degree of accuracy.

# THE APPLICATION OF LOGARITHMS.

Log. 1.1	= .04139268	5158225 &	c. which w	ve call A	L
1.01	= ·00432137	3782643		- I	3
1.001	= ·00043407	7479319	-	- (	Ľ
1.0001	- ·00004342	7276863		- I	)
1.00001	$= \cdot 000004343$	2923104	-	- F	3
1.000001	$= \cdot 00000043$	1294265		— H	7
1.0000001	= ·00000004	8429447		- 0	ł
1.00000001	- ·00000000	1342945		- E	I
1.000000001	$= \cdot 00000000000000000000000000000000000$	0434295		: :	I
1.000000001	$= \cdot 00000000000000000000000000000000000$	0043430			J
1.0000000001	= ·00000000	0004343	_	— K	5
1.000000000001	$= \cdot 00000000000000000000000000000000000$	0000434		- I	
1.000000000000000000000000000000000000	- ·00000000	0000043	· · · · ·	<u> </u>	ſ
1.000000000000000000000000000000000000	- ·00000000	0000004		- N	Ţ,
&c.	&c.			&c.	

Without further formality or paraphernalia, for it is presumed that such is not necessary, we shall commence operating, as the method can be acquired with ease, and put in a clearer point of view by proper examples.

Required the logarithm of 542470, to seven places of decimals.

542470. 3254820	
81371	
8	
$5758 4284 = 6B = \cdot 02592824$ 1 7275	
3	3
Take $57601562 = 3D = .00013028$ . Trom $57604569$	
$576)$ $\cdot \cdot \cdot \cdot 3 007$ 2 880 = 5E = $\cdot 00002171$	
$\frac{1 27}{1 15} = 2F = \cdot 00000087$	
$\frac{1 2}{1 2} = 2 G = \cdot 00000009$	
·02608119 Take 5·76045693 From	, 1

Hence we have log. 542470 = 5.73437574, which is correct to seven decimal places.

6 B is written to represent 6 times the log. of 1.01.

The nearest number to 542470, whose log. is composed of the same digits as itself, being  $576045 \cdot 6934$ , &c., our object was to raise 542470 to  $576045 \cdot 69$  by multiplying 542470 by some power or powers of 1.1, 1.001, 1.0001, &c.

It is here necessary to remark, that A is not employed, because the given number multiplied by 1.1, would exceed 576045.69; for a like reason C is omitted.

Again, when half the figures coincide, the process may be performed (as above) by common division; the part which coincides becoming the divisor; thus, in finding 5 E, 576 is divided into 3007, it goes 5 times, the E showing that there are five figures in each period at this step. For A, there is but one figure in each period; for B, there are two figures; for C, there are three figures in each period, and so on.

Let it be required to calculate the logarithm of 2785.9, true to seven places of decimals.

It will be found more convenient, in this instance, to bring the given number to 3550.26018, the log. of which is 3.55026908.

2 7 8 5 9 0 0 0  5 5 7 1 8 0 0  2 7 8 5 9 0
$\begin{array}{c} 3 \ 3   7 \ 0   9 \ 3   9 \ 0 = 2 \ \mathbf{A} = \cdot 08278537 \\ 1   6 \ 8   5 \ 4   7 \ 0 \\ 3   3 \ 7   0 \ 9 \\ 3   3 \ 7 \\ 2 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Take $35499801 = 2C = .00086815$ From $35502602$
$355) \cdot \cdot \cdot 2   8 \ 0 \ 1 = 7 \ E = \cdot 00003040$
3 16 = 8 F = 00000347 $2 84$
$3 _2 = 9 G = \cdot 00000039$ $3 _2$
Take         ·10529465           From         3·55026018
$\log 2785.9 = 3.44496553$

At the Observatory at Paris, g = 9.80896 metres, the second being the unit of time, what is the logarithm of 9.80896? In this example, we shall bring 9.80896 to 9.99999, &c.

# THE APPLICATION OF LOGARITHMS.

-	9	8	08	8 9 8 0	6 8	00 96	0 0	00					12	la k			-1
-	9	9	0 8	70 91 3	465	96 34 66	0453	0642		1	в	-	•0	04	321	37	38
	9	9	9	6 5 2 9	79	0589	3  7  0	220	-	9	C	-	•0	039	906	697	73
	9	9	9 9	95	6 9 9 9	98	08	4 3 6	-	3	D	-	•0	00	130	)28:	18
Take From <u>1</u>	9.0	90	9:0	99 00	60	97	9	30 7	-	4	E	-	•0	000	)17	371	17
From v	wh	ic	h ·	we	h	ave		•		.3 2 7	F H J		•0 •0 •0	000 000 000	001 000 000	1309 000	29 87 03
										T	'ak	è	.0	08	377	036	35

From 1.0000000000

Log. 9.80896 = .9916229635

As before observed, 9 C might have been obtained in the following manner:

890|704|960|0 = 1 B, as above. 4|953|524|8 9|907|0 9|95 times 995|668|401|7 3|982|673|6 5|973|9 4|0

4 times 9996570532 = 9 C.

A French metre is equal to 3.2808992 English feet, required the log. of 3.2808992.

e	d	C	6	a	The Part of the Pa	
	32	80	89	92	00once	
*	2	29	66	29	44 7 times from a	8
		6	88	98	8821 - 8	5
			11	48	3135 - 0	3
				11	4835 — d	l
					721	9
-	35	17	56	80	$\overline{18} = \mathbf{B}  7.$	

RRAR

The manner in which B 7 is obtained is worthy of remark: the multipliers being 1, 7, 21, 35, 35, 21, 7, 1, when 7 times the first line (commencing with the period marked a) is obtained, 21 times the same line (commencing with the period marked b) is determined by multiplying the 2d line by 3. If the 2d line be again multiplied by 5, we have the 4th line of the multiplier 35; but to multiply by 5, we have only to take the half the product produced by multiplying by 7, advancing the result one figure to the right. Hence, to find the result for 35 is almost as easy as to find the result for 5.

But the object in this case being to bring the proposed number to 35502601815, the process must be continued.

The 2d (or 9) line is produced by beginning at a, but the multiplication may be performed by subtracting 3517568 from 35175680; the 36 line is produced by beginning at b, observing to carry from the preceding figure, making the usual allowance when the number is followed by 5, 6, 7, 8, or 9. The 36 line may be produced by multiplying the 9 line by 4, beginning one period more to the left. To multiply by 84 is not apparently so convenient, for  $84 \times 352 = 29|568$ ; and as only one figure of the period 568 is required, when the proper allowance is made, the result becomes 29|6.

But, since 84 is equal to  $36 \times 2\frac{1}{3}$ , we have only to multiply the 36 line by 2, and add  $\frac{1}{3}$  of it; with such management, the work will stand thus:—

 $351|756|801|8 = B 7, \text{ as before} \\3|165|811|2 = 9 \text{ times} \\12|663|2 = 36 \text{ times} \\24|3 = 72 \text{ times} \\4|2 = 12 \text{ times} \\ \end{bmatrix} = 84 \text{ times}$ 

# $354\,935\,305\,8 = C\,9$

This amounts to very little more than adding the above numbers together.

Many other contractions will suggest themselves, when the mulpliers are large: thus, to multiply any number 57837 by 9, as alluded to above, is easily effected, by the following well-known process:—Subtract the first figure to the right from 10, the second from the first, the third from the second, and so on.

Thus, 
$$57837 \times 9 = \begin{cases} 578370...\text{ten times} \\ 57837...\text{once} \\ 520533...\text{nine times} \end{cases}$$

Such simple observations are to be found in every book on mental arithmetic, and therefore require but little attention here. The whole work of the previous example will stand thus:---

-		3 2 8 ( 2 2 9 (		200 44 888 31 48	+	7
	B7 =	3 5 1	7568 1658 126	$\begin{array}{c c} 0 & 1 & 8 \\ 1 & 1 & 2 \\ 3 & 3 & 2 \\ 2 & 9 & 6 \end{array}$	· · ·	$\cdot 0302496165 = 7 \text{ B}$
	C 9 =	3549	353( 7098	) 5 8 3 7 1 3 5	-	$\cdot 0039066973 = 9 C$
	D 2 =	3550	0 6 2 9 1 7 7 5	) 6 4 5 0 3 4	-	$\cdot 0000868546 = 2 D$
Take From	E 5 ;=	3550 3550	2404 2601	71 82	-	$\cdot 0000217146 = 5 E$
	3550) F 5		.1 97 1 77	11 50	-	0000021715 = 5 F
-1	G 5			61 75	-	0000002172 = 5  G
*	H 5		1	78	- •	0000000217 = 5 H
	I 2	•		8  7	-	0000000009 = I 2
	J 3		-3	1 1	-	$\cdot 0000000001 = J 3$
				Tak Fro	n a	·0342672944 3·5502601816
		Log.	8280·89 8·28089	992 = 992 =	= 3	·5159928972 ·5159928972.

The constant sidereal year consists of 365.25636516 days; what is the log. of this number?

In this case it is better to bring the constant 35502601816 to 36525636516, instead of bringing the given number to the constant, as in the former examples.

2 E

THE PRACTICAL MODEL CALCULATOR.

	3550	
	71	0 0 5 2 0 3 6
	The last to be	3 5 5 0 2 6 0
	$B_2 = 36211$	$\overline{62041112} = .0086427476 = 2$ B
	28	9729633
	-10	1014054
		2028
	0.0 0.0.0	$\frac{2020}{00000} = 0.004700000 = 0.00000000000000000000000000000$
	C8 = 3050	6949827 = 0034726298 = 80
	1	8253475
	5	3651
Take	D'5 = 3652	5 2 0 6 9 5 3 = .0002171364 = 5 D
From	3652	5636516
	$36525\cdot 2)$	429563
	E1 =	365252 = .0000043429 = 1E
		64911
	TO 1	26525 - 0000004343 - 1F
	r 1 =	50525 = 000004545 = 11
		27786
	G7 =	25568 = .0000003040 = 7  G
		2218
	H 6 =	2191 = .0000000261 = 6 H
	TO	217
	17 -	$\overline{2}5 = .000000003 = 7 \text{ J}$
	. –	$\frac{10}{0102976014}$
		11 9.5500001910
		Add 3.9902001810
1	Tence, log, 365	$2 \cdot 5636516 = 3 \cdot 5625978030$

 $\therefore$  log.  $365 \cdot 25636516 = 2 \cdot 562597803$ .

M. Regnault determined with the greatest care the density of mercury to be 13.59593 at the temperature 0°, centigrade. It is required to calculate the log. of 13.59593, to eight places of decimals. In this case it is better to bring the given number to *the constant* 

1371288574. 135959300 1087674 3807 C 8 = 137050788 = .003472630 = 8C68525 14Subtract D 5 =  $\overline{137119328} = .000217136 = 5$  D 137128857 From  $9|5\ 2\ 9 = \cdot 000026058 = E\ 6$ E6 = 82271302 F9 = 1234 = .000003909 = F968  $\cdot 000000022 = H5$ H5 =69 ·003719755

# APPLICATION OF LOGARITHMS.

# Take $\cdot 003719755$ <br/>From $\cdot 137128857$ log. 1.359593 = ...133409102 $\cdot ..$ log. 13.59593 = 1.133409102

TO DETERMINE THE NUMBER CORRESPONDING TO A GIVEN LOGARITHM.

This problem has been very much neglected-so much so, that none of our elementary books ever allude to a method of computing the number answering to a given logarithm. When an opera-tion is performed by the use of logarithms, it is very seldom that the resulting logarithm can be found in the table; we have, therefore, to find the nearest less logarithm, and the next greater, and correct them by proportion, so that there may be found an intermediate number that will agree with the given logarithm, or nearly But although the proportional parts of the difference abridge so. this process, we can only find a number appertaining to any logarithm to seven places of figures when using our best modern tables. As, however, the tabular logarithms extend only to a degree of approximation, fixed generally at seven decimal places, all of which, except those answering to the number 10 and its powers, err, either in excess or defect, the maximum limit of which is 1 in the last decimal, and since both errors may conspire, the 7th figure cannot be depended on as strictly true, unless the proposed logarithm falls between the limits of log. 10000 and log. 22200.

Indubitably we are now speaking of extreme cases, but since it is not an unfrequent occurrence that some calculations require the most rigid accuracy, and many resulting logarithms may be extended beyond the limits of the table, this subject ought to have a place in a work like the present. It is not part of the present design to enter into a strict or formal demonstration of the following mode of finding the number corresponding to a given logarithm, as the operation will be fully explained by suitable examples.

What number corresponds to the logarithm 3.4449555?

The next less constant log. to the one proposed is 2.37581209, or rather, 3.37581209, when the characteristic or index is increased by a unit. Secondly.

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First from take	3.44496555 3.37581209		$\begin{array}{c} 2 3\ 7\ 5\ 8\ 1\ 2\ 0\ 9 \text{ constant} \\ 2\ 3\ 7\ 5\ 8\ 1\ 2\ 1 = A\ 1 \end{array}$
-	$ \begin{array}{r} $	$= 1 \mathrm{A}$	$\begin{array}{c} 2 \ 6 \ 1 \ 3 \ 3 \ 9 \ 3 \ 3 \ 0 \\ 1 \ 5 \ 6 \ 8 \ 0 \ 3 \ 6 \ 0 \end{array}$
	$\cdot 02776077$ $\cdot 02592824$	= 6 B	3 9 2 0 0 9 5 2 2 7 3 9
,	$\begin{array}{r}183253 \\ 173631 \end{array}$	= 4 C	$2\overline{77 416 965}_{1 109 668} = B6$
	$\begin{array}{r} \dots 9622 \\ \underline{8685} \\ \end{array}$	= 2 D	
	937		2785 2829 8 = C4

... 2785.90016 is the number sought.

What number corresponds to the logarithm 5.73437574? When the index of this log. is reduced by a unit, the nearest next less constant is 4.66924683.

From	4.73437574
Take	4.66924683
	·6512891
	41392691 A
	·2373622
	21606875 B
	212035
	1736314 C
	39304
	39085
	219. There is noither the equal of
	. 217 5 F this number nor a
	$\frac{21}{2}$ 0 G less obtainable from
•	2 4 H E: E 0. or E. is
	- omitted.
Then,	4 6 6 9 2 4 6 8 3
	46692468A1
	51 36 17 15 1
	2 5 6 8 0 8 5 8
	5 13 61 7
	5 13 6
	2 6
	5 3 9 8 1 6 7 8 8B 5
	2 1 5 9 2 6 7
	3 2 3 9
	2
- 10	541979296C4
e.,	487781
- 11	190
- 0 j	542467272D9
11:	
	[2]2H 4
	542470006

 \therefore 542470.006 is the number whose logarithm is 5.73437574.

352

Had the given logarithm represented a decimal with a positive index, the required number would be 0.000054247, &c.; or if written with a negative index, as $\overline{5}.73437574$, the result would be the same, for the characteristic $\overline{5}$, shows how many places the first significant figure is below unity.

Required the number corresponding to log. 2.3727451. The constant 100000000 is the one to be employed in this case.

1.3727451 the given log. minus 1 in the index.

•3727451	
3725349 9 4	stind of the
	An Contract Press
$\dots 2109$	
17374 D	1.1
379	1
347 8 F	2 L L L L L L L
<u></u>	8
$\dots 25$	
225 F	1 ×
3	17 10
3 7 G	
	the second second
1 0 0 0 0 0 0 0 Constant.	
900000	· · · · ·
3 6 0 0 0 0 0	2
84000	47-00 Control 1000
126000	
12600	and a state of the second state of the
840	
1 1 1 1 1 1 1 1 1 1 1 1 3 6 12 1 1 - 1 - 1 - 1 - 1	· · · · · · · · · · · · · · · · · · ·
9	
23579485 A 9	V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
9432	a di se la di s
	and the party
2358819118 D4	at a state of the state
1807 E 8	in The Londer
	· · · · · · · · · · · · · · · · · · ·
	A A A A
23590949	-1 10 -00 - 11 -

... 235.90949 is the required number, and the seconds in the diurnal apparent motion of the stars.

 $235 \cdot 90949'' = 3' 55 \cdot 90949''$

Let it be required to find the hyperbolic logarithm of any number, as 3.1415926536. The common log. of this number is .49714987269 (33), and the common log. of this log. is $\overline{1.6964873}$.

The modulus of the common system of logarithms is 4342944819, &c.

 $\therefore 1: 4342944819::$ hyperbolic log. N: common log. N.

To distinguish the hyperbolic logarithm of the number N from its common logarithm, it is necessary to write the hyp. log. Log. N. and the common logarithm log. N.

Hence, $4342944819 \times \text{Log. N} = \log \text{. N}$;

or log. $(.4342944819) + \log. (\log. N) = \log. (\log. N).$

 \therefore log. (Log. N) = log. (log. N) - $\overline{1} \cdot 6377843$; for $\overline{1} \cdot 6377843$ = log. 4342944819.

Now, to work the above example, from 1.6964873

take 1.6377843

.0587030, the number

corresponding to this com. log. will be the hyp. log. of 3.1415927. ·0587030 must be reduced to ·0000000 which is known to be the log. of 1.

·0587030		1 A = 1 1 0 0 0 0 0 0 0
0413927	1 A	4 4 0 0 0 0 0
173103		6 6 0 0 0
172855	4 R	440
	1 1	1
	5 17	$\overline{11446 6 4 4 1} = B4$
	0 L	5 7 2 3 = E 5
31		8 0 1 = F 7
30	$7 \mathrm{F}$	2 3 = G 2
	2 G	114472988

... 1.14472988 is the hyperbolic log. of 3.1415927, true to the last figure; for the hyp. log. 3.1415926535898 = 1.1447298858494.

The reason of this operation is very clear, because $1 \times 1.1 \times (1.01)^4 \times (1.00001)^5 \times (1.000001)^7 \times (1.0000001)^2 =$ 1.14472988.

This example answers the purpose of illustration, but the hyp. log. of 3.1415927 can be more readily found by dividing its com. log. .49714987269 by the constant .4342944819, which is termed the modulus of the common system of logarithms.

Suppose it is known that 1.3426139 is the log. of the decimal which a *French litre* is of an English gallon. Required the decimal.

The index, 1, may be changed to any other characteristic, so as to suit any of the constants, as the alteration is easily allowed for when the work is completed. In this instance, it is best to put +1 instead of $\overline{1}$.

I Insteau of I.	
From 1.3426139	1 0 0 0 0 0 0 0 0 Constant
Take 1.0000000	80000000
•3426139	
0011415 0 4	560000
3311415 = 8 A	70000
$\cdot \overline{0114724}$	
86427 = 2 B	
28297	2000
26045 = 6 C	1
2252	0 1/4 9/5 0/0 01
2202	21400801 = A8

THE APPLICATION OF LOGARITHMS.

2252	21 43 58 88 1 = A8
2171 = 5 D	4287178
81	21 43 6
43 = 1 E	$\overline{218 667 495} = B2$
38	1312005
35 = 8 F	3 2 8 0
3	4
3 = 7 G	219982784 = C6
. w. t	1099991
0 - 3 3 0 ·	2 2
	220092797 = D5
	2201 = E1
	1761 = F8
•	1 34 = G 1

220096913

 \therefore The French litre = $\cdot 2200969$ English gallons. In measuring heights by the barometer, it is necessary to know the ratio of the density of the mercury to that of the air.

At Paris, a litre of air at 0° centigrade, under a pressure of 760 millimetres, weighs 1.293187 grammes. At the level of the sea, in latitude 45°, it weighs 1.292697 grammes. A litre of water, at its maximum density, weighs 1000 grammes, and a litre of mercury, at the temperature of 0° cent., weighs 13595.93 grammes:

13595.93

 $\therefore \frac{1}{1 \cdot 292697} = \text{the ratio at } 45^{\circ}$

Now, log. $13595 \cdot 93 = 4 \cdot 133409102$ (29)and log. 1.292697 = 0.111496744 (30)

 $\overline{4.021912358}$ = the log. of the ratio at 45°. To find the number corresponding to this log., it is necessary to reject the index for the present, and reduce the decimal part to zero. By this means the necessity of using any of the constants is superseded.

·021912358	1 0 0 0 0 0 0 0 0 0
$\cdot 021606869 = 5 B$	5000000
305489	100000
303991 = 7 D	10000
<u>000001</u> – 1 D	50
1498	1051 0100 5 = B5
1303 = 3 F	73571
	22
174 = 4 G	$\overline{105174598} = D7$
· 01	316 = F3
17 - 4 U	42 = G4
11 = 1 11	4 = H 4
4	1 = I 9
4 = 9 I	105174961
13595-93	

1.292697 = 10517.49, &c., which is easily ... by logarithms, verified by common division.

THE PRACTICAL MODEL CALCULATOR.

M. Regnault found that, at Paris, the litre of atmospheric air weighs 1.293187 grammes; the litre of nitrogen 1.256167 grammes; a litre of oxygen, 1.429802 grammes; of hydrogen, 0.089578 grammes; and of carbonic acid, 1.977414 grammes. But, strictly considered, these numbers are only correct for the locality in which the experiments were made; that is for the latitude of 48° 50' 14" and a height about 60 metres above the level of the sea; M. Regnault finds the weight of the litre of air under the parallel of 45° latitude, and at the same distance from the centre of the earth as that which the experiments were tried, to be 12.926697.

Assuming this as the standard, he deduces for any other latitude, any other distance from the centre of the earth, the formula,

$$w = \frac{1.292697 (1.00001885) (1 - 0.002837) \cos 2 x}{1 + \frac{2 h}{R}}$$

Here, w is the weight of the litre of air, R the mean radius of the earth = 6366198 metres, h the height of the place of observation above the mean radius, and λ the latitude of the place.

At Philadelphia, lat. 39° 56' 51.5", suppose the radius of the earth to be 6367653 metres, the weight of the litre of air will be 1.2914892 grammes. The ratio of the density of mercury to that of air at the level of the sea at Philadelphia is 10527.735 to 1; required the number of degrees in an arc whose length is equal to that of the radius.

As $3.1415926535898 : 1 :: \frac{360}{2}$: the required degrees.

Log. 3.141592	$a_{265359} =$	$2 \cdot 556302500767$ $0 \cdot 497149872694$					
ni oʻ	log. 2 =	$\frac{2\cdot059452623073}{0\cdot301029995664}$					
0.040	in de s	1.758122632409	=	the	log.	of	the

number required.

When the index of this log. is changed into 4, the nearest next less constant is 4.669246832878.

From 4.758122632409 Take 4.669246832878	4 6 6 9 2 4 6 8 3 2 8 7 8 = Constant 933849366576
088875799531 2 A - 08785370316	46692468329
$2 \text{ A} = \frac{32103510310}{6090429215}$	56 49 78 86 67 8
$1 B = \frac{4321373783}{1769055432}$	5706286554461 = B1 22825146218
$4 \text{ C} = \frac{1736309917}{92745515}$	3 423 771 9.
7 E = 30400462	<u> </u>
	57291 45961 229 = C4

antoin diana ang

THE APPLICATION OF LOGARITHMS.

		2345053	57291 45961 229 = C4
5 F	==	2171471	401040217
			12 031
3 G	_	130288	572954 701347 7 = E7
		43294	28647735
9 H	_	39087	<u> </u>
		4207	5729575 6 6 1 2 69 = F5
9 I	_	3909	1 7 1 8 8 73 = G3
		298	5 1 5 6 6 2 = H9
6 J	-	261	5 1 5 6 6 =1 9
		37	3458 = 50 458 = K8
8 K	_	35	29 = 15
		$\frac{33}{9}$	5729577951295 - the num-
5 L	-	2	ber required.
			· · · · · · · · · · · · · · · · · · ·

But the original index is 1; \therefore 57.29577951295° are the number of degrees in an arc the length of which is equal to that of the radius.

The above result may be easily verified by common division, a method, no doubt, which would be preferred by many, for logarithms are seldom used when the ordinary rules of arithmetic can be applied with any reasonable facility. However, this example, like many others, is introduced to show with what ease and correctness the number corresponding to a given log. can be obtained. The extent, also, by far exceeds that obtainable by any tables extant.

Other computations give,

 $r^{\circ} = 57 \cdot 2957795130^{\circ} = 57^{\circ} 17' 44'' \cdot 80624$ the degrees in an arc = radius.

r' = 3437.7467707849' = 3437.44''.80624the minutes in an arc = radius.

$$r'' = 206264 \cdot 8062470963$$

the number of seconds in an arc = radius.

The relative mean motion of the moon from the sun in a Julian or fictitious year, of $365\frac{1}{4}$ days, is 12 cir. 4 signs, $12^{\circ} 40' 15.977315' = 16029615.977315''$.

 $\therefore 16029615 \cdot 977315'': 1 \text{ circumference } (= 129600'')$

:: 365.25 days

: 29.5305889216 days = the mean synodic month. This proportion may, for the sake of example, be found by logarithms.

Log. 365.25 log. 1296000	2·56259022460634 6·11260500153457
log. 16029615·977315 =	8.67519522614091 7.20492311805406
2× 1.5%	1.47027210808685

If the index of this log. be made 2 instead of 1, the nearest next less constant will be 2.375812087593221.

From 2.47027210808685 Take 2.37581208759322 $\cdot 09446002049363$ 2 A = 08278537031645 $\cdot 1167465017718$ 2 B = 864274756529 $\cdot .303190261189$ 6 C = 260446487591 $\cdot .42743773598$	2 3 7 5 8 1 2 0 8 7 5 9 3 2 2 Const. 47 5 1 6 2 4 1 7 5 1 8 6 4 2 3 7 5 8 1 2 0 8 7 5 9 3 2 8 7 4 7 3 2 6 2 5 9 8 7 7 9 = 2 A 57 4 9 4 6 5 2 5 1 9 7 6 2 8 7 4 7 3 2 6 2 6 0 2 9 3 2 5 1 4 7 5 1 7 7 0 1 5 = 2 B 1 7 5 9 5 0 8 8 5 1 0 6 2 4 3 9 8 7 7 2 1 2 8 5 8 6 5 0 2 9
9 D = 39084549177	4 399
$8 E = \frac{3474338483}{1184885938}$ 4 F = 173717706	$\frac{2}{2950 1538 8669 635} = C6$ $\frac{2}{2 6551 3849 803}$ 10 6205 540
11168232	24781
2 G = 8685889	4
$5 \text{ H} = \frac{2482343}{2171473}$	$\begin{array}{c} 29528 10087 49763 = D9\\ 2 36224 80700\\ 8 26787\end{array}$
	17
7 I = 304006	$\overline{295304632057267} = E8$
	1181218528
1 J = 4343	1 7 7 2
5 K = 2520 2172	2953058 1327756 7 = F4 5906116 3 8
8 T. — 348	
	295305872538735 = G2 14765994 - H5
2 N = 1	2067141 = 17
	29531 = J1
	1 4 76 5 = K5
	2 36 2 = L8
	6 = N 2

295305889217832

.:. 29.5305889218 is the number required.

To perform, by logarithms, the ordinary operations of multiplication, division, proportion, or even the extraction of the square root, except in the way of illustration, is not the design of these pages; for such an application of logarithms, in a particular manner only, diminish the labour of the operator. It is not necessary, however, to examine minutely here the instances in which common arithmetic is preferable to artificial numbers; besides, much will depend on the skill and facility of the operator.
TRIGONOMETRY.

ANGULAR MAGNITUDES.—TRIGONOMETRY.—HEIGHT AND DISTANCES.— SPHERICAL TRIGONOMETRY.—THE APPLICATION OF LOGARITHMS TO ANGULAR MAGNITUDES.

PLANE TRIGONOMETRY treats of the relations and calculations of the sides and angles of plane triangles.

The circumference of every circle is supposed to be divided into 360 equal parts, called degrees; also each degree into 60 minutes, each minute into 60 seconds, and so on.

Hence a semicircle contains 180 degrees, and a quadrant 90 degrees.

The measure of any angle is an arc of any circle contained between the two lines which form that angle, the angular point being the centre; and it is estimated by the number of degrees contained in that arc.

Hence, a right angle being measured by a quadrant, or quarter of the circle, is an angle of 90 degrees; and the sum of the three angles of every triangle, or two right angles, is equal to 180 degrees. Therefore, in a right-angled triangle, taking one of the acute angles from 90 degrees, leaves the other acute angle; and the sum of two angles, in any triangle, taken from 180 degrees, leaves the third angle; or one angle being taken from 180 degrees, leaves the sum of the other two angles.

Degrees are marked at the top of the figure with a small °, minutes with ', seconds with ", and so on. Thus, 57° 30' 12" denote 57 degrees 30 minutes and 12 seconds.

The complement of an arc, is what it wants of a quadrant or 90°. Thus, if AD be a quadrant, then BD is the complement of the arc AB; and, reciprocally, AB is the complement of BD. So E that, if AB be an arc of 50°, then its complement BD will be 40°.

The supplement of an arc, is what it wants of I / Ga semicircle, or 180°. Thus, if ADE be a semicircle, then BDE is the supplement of the arc AB; and, reciprocally, AB is the supplement of the arc BDE. So that, if AB be an arc of 50°, then its supplement BDE will be 130°.

The sine, or right sine, of an arc, is the line drawn from one extremity of the arc, perpendicular to the diameter passing through the other extremity. Thus, BF is the sine of the arc AB, or of the arc BDE.

Hence the sine (BF) is half the chord (BG) of the double are (BAG).

The versed sine of an arc, is the part of the diameter intercepted between the arc and its sine. So, AF is the versed sine of the arc AB, and EF the versed sine of the arc EDB. The tangent of an arc is a line touching the circle in one extremity of that arc, continued from thence to meet a line drawn from the centre through the other extremity: which last line is called the secant of the same arc. Thus, AH is the tangent, and CH the secant, of the arc AB. Also, EI is the tangent, and CI the secant, of the supplemental arc BDE. And this latter tangent and secant are equal to the former, but are accounted negative, as being drawn in an opposite or contrary direction to the former.

The cosine, cotangent, and cosecant, of an arc, are the sine, tangent, and secant of the complement of that arc, the co being only a contraction of the word complement. Thus, the arcs AB, BD being the complements of each other, the sine, tangent or secant of the one of these, is the cosine, cotangent or cosecant of the other. So, BF, the sine of AB, is the cosine of BD; and BK, the sine of BD, is the cosine of AB: in like manner, AH, the tangent of AB, is the cotangent of BD; and DL, the tangent of DB, is the cotangent of AB: also, CH, the secant of AB, is the cosecant of BD; and CL, the secant of BD, is the cosecant of AB.

Hence several remarkable properties easily follow from these definitions; as,

That an arc and its supplement have the same sine, tangent, and secant; but the two latter, the tangent and secant, are accounted negative when the arc is greater than a quadrant or 90 degrees.

When the arc is 0, or nothing, the sine and tangent are nothing, but the secant is then the radius CA. But when the arc is a quadrant AD, then the sine is the greatest it can be, being the radius CD of the circle; and both the tangent and secant are infinite.

Of any arc AB, the versed sine AF, and cosine BK, or CF, together make up the radius CA of the circle. The radius CA, tangent AH, and secant CH, form a right-angled triangle CAH. So also do the radius, sine, and cosine, form another right-angled triangle CBF or CBK. As also the radius, cotangent, and cosecant, another rightangled triangle CDL. And all these right-angled triangles are similar to each other.

The sine, tangent, or secant of an angle, is the sine, tangent, or secant of the arc by which the angle is measured, or of the degrees, &c. in the same arc or angle.

The method of constructing the scales of chords, sines, tangents, and secants, usually engraven on instruments, for practice, is exhibited in the annexed figure.

360

TRIGONOMETRY.

A trigonometrical canon, is a table exhibiting the length of the sine, tangent, and secant, to every degree and minute of the quadrant, with respect to the radius, which is expressed by unity, or 1, and conceived to be divided into 10000000 or more decimal parts. And further, the logarithms of these sines, tangents, and secants are also ranged in the tables; which are most commonly used, as they perform the calculations by only addition and subtraction, instead of the multiplication and division by the natural sines, &c., according to the nature of logarithms.

Upon this table depends the numeral solution of the several cases in trigonometry. It will therefore be proper to begin with the mode of constructing it, which may be done in the following manner:-

To find the sine and cosine of a given arc.

This problem is resolved after various ways. One of these is as follows, viz. by means of the ratio between the diameter and circumference of a circle, together with the known series for the sine and cosine, hereafter demonstrated. Thus, the semi-circumference of the circle, whose radius is 1, being 3.141592653589793, &c., the proportion will therefore be,

As the number of degrees or minutes in the semicircle,

Is to the degrees or minutes in the proposed arc,

So is 3.14159265, &c., to the length of the said arc.

This length of the arc being denoted by the letter a; also its sine and cosine by s and c; then will these two be expressed by the two following series, viz.:--

$$s = a - \frac{a^3}{2.3} + \frac{a^5}{2.3.4.5} - \frac{a^7}{2.3.4.5.6.7} + \&c.$$

= $a - \frac{a^3}{6} + \frac{a^5}{120} - \frac{a^7}{5040} + \&c.$
 $c = 1 - \frac{a^2}{2} + \frac{a^4}{2.3.4} - \frac{a^6}{2.3.4.5.6} + \&c.$
= $1 - \frac{a^2}{2} + \frac{a^4}{24} - \frac{a^6}{720} + \&c.$

If it be required to find the sine and cosine of one minute. Then, the number of minutes in 180° being 10800, it will be first, as 10800 : 1 :: 3.14159265, &c. : .000290888208665 = the length of an arc of one minute. Therefore, in this case,

·0002908882 a =and $\frac{1}{6}a^3 = \cdot 00000000004$, &c. the difference is s = .0002908882 the sine of 1 minute. Also, from 1. take $\frac{1}{2}a^2 = 0.000000423079$, &c. leaves c = .9999999577 the cosine of 1 minute. 2 F

. . . .

For the sine and cosine of 5 degrees.

Here, as $180^{\circ}: 5^{\circ}:: 3.14159265$, &c., : .08726646 = a the length of 5 degrees.

 $\alpha = \cdot 08726646$ $-\frac{1}{6}a^3 = -.00011076$ $+ \frac{1}{120}a^5 = \cdot 00000004$

these collected give s = .08715574 the sine of 5°.

Hence,

And, for the cosine, $1 = 1 \cdot \frac{1}{2a^2} = -\frac{0.00380771}{0.00000241} + \frac{1}{24}a^4 = -\frac{0.00380771}{0.00000241}$

these collected, give $c = \cdot 99619470$ the consine of 5°.

After the same manner, the sine and cosine of any other arc may be computed. But the greater the arc is, the slower the series will converge, in which case a greater number of terms must be taken to bring out the conclusion to the same degree of exactness.

Or, having found the sine, the cosine will be found from it, by the property of the right-angled triangle CBF, viz. the cosine $CF = \sqrt{CB^2 - BF^2}$, or $c = \sqrt{1 - s^2}$.

There are also other methods of constructing the canon of sines and cosines, which, for brevity's sake, are here omitted.

To compute the tangents and secants.

The sines and cosines being known, or found, by the foregoing problem; the tangents and secants will be easily found, from the principle of similar triangles, in the following manner :---

In the first figure, where, of the arc AB, BF is the sine, CF or BK the cosine, AH the tangent, CH the secant, DL the cotangent, and CL the cosecant, the radius being CA, or CB, or CD; the three similar triangles CFB, CAH, CDL, give the following proportions:

1. CF : FB :: CA : AH; whence the tangent is known, being a fourth proportional to the cosine, sine, and radius.

2. CF: CB:: CA: CH; whence the secant is known, being a third proportional to the cosine and radius.

3. BF: FC :: CD : DL; whence the cotangent is known, being a fourth proportional to the sine, cosine, and radius.

4. BF: BC :: CD : CL; whence the cosecant is known, being a third proportional to the sine and radius.

Having given an idea of the calculations of sines, tangents, and secants, we may now proceed to resolve the several cases of trigonometry; previous to which, however, it may be proper to add a few preparatory notes and observations, as below.

There are usually three methods of resolving triangles, or the cases of trigonometry-namely, geometrical construction, arithmetical computation, and instrumental operation.

In the first method.-The triangle is constructed by making the parts of the given magnitudes, namely, the sides from a scale of

362

TRIGONOMETRY.

equal parts, and the angles from a scale of chords, or by some other instrument. Then, measuring the unknown parts by the same scales or instruments, the solution will be obtained near the truth.

In the second method.—Having stated the terms of the proportion according to the proper rule or theorem, resolve it like any other proportion, in which a fourth term is to be found from three given terms, by multiplying the second and third together, and dividing the product by the first, in working with the natural numbers; or, in working with the logarithms, add the logs. of the second and third terms together, and from the sum take the log. of the first term; then the natural number answering to the remainder is the fourth term sought.

In the third method.—Or instrumentally, as suppose by the log. lines on one side of the common two-foot scales; extend the compasses from the first term to the second or third, which happens to be of the same kind with it; then that extent will reach from the other term to the fourth term, as required, taking both extents towards the same end of the scale.

In every triangle, or case in trigonometry, there must be given three parts, to find the other three. And, of the three parts that are given, one of them at least must be a side; because the same angles are common to an infinite number of triangles.

All the cases in trigonometry may be comprised in three varieties only; viz.

1. When a side and its opposite angle are given.

2. When two sides and the contained angle are given.

3. When the three sides are given.

For there cannot possibly be more than these three varieties of cases; for each of which it will therefore be proper to give a separate theorem, as follows:

When a side and its opposite angle are two of the given parts.

Then the sides of the triangle have the same proportion to each other, as the sines of their opposite angles have.

That is,

As any one side, Is to the sine of its opposite angle; So is any other side,

To the sine of its opposite angle. For, let ABC be the proposed triangle, having AB the greatest side, and BC the least. Take AD = BC, considering it as a radius; and let fall the perpendiculars DE, CF, which will evidently be the sines of the angles A and B, to the radius AD or BC. But the triangles ADE, ACF, are equiangular, and therefore AC : CF :: AD or BC : DE; that is, AC is to the sine of its opposite angle B, as BC to the sine of its opposite angle A.

In practice, to find an angle, begin the proportion with a side

opposite a given angle. And to find a side, begin with an angle opposite a given side.

An angle found by this rule is ambiguous, or uncertain whether it be acute or obtuse, unless it be a right angle, or unless its magnitude be such as to prevent the ambiguity; because the sine answers to two angles, which are supplements to each other; and accordingly the geometrical construction forms two triangles with the same parts that are given, as in the example below; and when there is no restriction or limitation included in the question, either of them may be taken. The degrees in the table, answering to the sine, are the acute angle; but if the angle be obtuse, subtract those degrees from 180°, and the remainder will be the obtuse angle. When a given angle is obtuse, or a right one, there can be no ambiguity; for then neither of the other angles can be obtuse, and the geometrical construction will form only one triangle.

In the plane triangle ABC,

Given, $\begin{cases} AB 345 \text{ yards} \\ BC 232 \text{ yards} \\ \text{angle A } 37^{\circ} 20' \end{cases}$

Required the other parts.

Geometrically.—Draw an indefinite line, upon which set off AB = 345, from some convenient scale of equal parts. Make the angle A = $37\frac{1}{3}^{\circ}$. With a radius of 232, taken from the same scale of equal parts, and centre B, cross AC in the two points C, C. Lastly, join BC, BC, and the figure is constructed, which gives two triangles, showing that the case is ambiguous.

Then, the sides AC measured by the scale of equal parts, and the angles B and C measured by the line of chords, or other instrument, will be found to be nearly as below; viz.

A	C 174 a	ngle E	3 27°	: an	gle C	115 <u>‡</u> °
, or	$374\frac{1}{2}$	or	$78\frac{1}{4}$	• •	or	$64\frac{\overline{1}}{2}$
Arithmet	tically.—First	, to fir	nd the a	ngles a	at C:	
As side	* * BC	232 .		• • • • • • • •	log	$2 \cdot 3654880$
To sin. c	pp. angle A	37°	20'			9.7827958
So side	AB	345.				2.5378191
To sin. o	pp. angle C	115°	36' or 6	4° 24		9.9551269
I	Add angle A	37 -	20 3	87 20		
3	The sum.	152	56 or 10	1 44	1. 6.2	
, J	Taken from	180	00 18	30 00	1 31	
I	Leaves angle 1	B 27	04 or 7	8 16	0128	
hen, to fi	nd the side A	C:	P 5	1.08	2.161	
As sine	angle A	37º 2	0''	-111 -	log	. 9.7827958
To oppos	site side BC	23	2	1514		2.365488
To oppos		270 0	4'	81		9.6580371
So sine a	$\mathbf{angle} \in \mathbf{B} \setminus \{$	78 1	G . o'sate :		-	9.9908291
To oppos	site side AC	174.0	7			2.2407293

374.56

or,

2.5735213

Τ

TRIGONOMETRY.

In the plane triangle ABC, Given, $\begin{cases}
AB 365 \text{ poles} \\
\text{angle A} 57^{\circ} 12' \\
\text{angle B} 24 45
\end{cases}$ Ans. $\begin{cases}
\text{angle C} 98^{\circ} 3' \\
AC 154 33 \\
BC 309 86
\end{cases}$ In the plane triangle ABC

TH MUC F	nano unangio	111 0,	2 1 2 141	1. 55 12 th	. 3	61.11	1.1.1
Given,	AC 1 BC 1 angle A	20 feet 12 feet 57° 27′		angle B or, 1	64° 15 57	34' 25 58	21″ 39 39
Required 1	the other part	ts. Wisha	Ans. {	angio	7	7	91
		A sa i Til	201	or,		2 00	41
	£	18		AE	112	1.62	teet
		" P uph	1 63 -6	or.	16	3.47	feet

When two sides and their contained angle are given. Then it will be,

As the sum of those two sides, the state states

Is to the difference of the same sides;

So is the tang. of half the sum of their opposite angles,

To the tang. of half the difference of the same angles.

Hence, because it is known that the half sum of any two quantities increased by their half difference, gives the greater, and diminished by it gives the less, if the half difference of the angles, so found, be added to their half sum, it will give the greater angle, and subtracting it will leave the less angle.

Then, all the angles being now known, the unknown side will be found by the former theorem.

Let ÅBC be the proposed triangle, having E the two given sides AC, BC, including the given angle C. With the centre C, and radius CA, the less of these two sides, describe a semicircle, meeting the other side BC produced in D and E. Join AE, AD, and draw DF parallel to AE.

Now the angle DAE, in a semicircle, is a right angle, or AE is perpendicular to AD; and DF, parallel to AE, is also perpendicular

And to A Friday

to AD: consequently, AE is the tangent of CDA the half sum and DF the tangent of DAB the half difference of the angles, to the same radius AD, by the definition of a tangent. But, the tangents AE, DF, being parallel, it will be as BE : BD :: AE : DF; that is, as the sum of the sides is to the difference of the sides, so is the tangent of half the sum of the opposite angles, to the tangent of half their difference.

The sum of the unknown angles is found, by taking the given angle from 180°.

In the plane triangle ABC,

Given, $\begin{cases} AB 345 \text{ yards} \\ AC 174.07 \text{ yards} \\ \text{angle A} 37^{\circ} 20' \end{cases}$

Required the other parts.

Geometrically.—Draw AB = 345 from a scale of equal parts. Make the angle $A = 37^{\circ} 20'$. Set off AC = 174 by the scale of equal parts. Join BC, and it is done.

Then the other parts being measured, they are found to be nearly as follows, viz. the side BC 232 yards, the angle B 27°, and the angle C $115\frac{1}{2}^{\circ}$.

Arithmetically.

As sum of sides AB, AC	519.07 log.	2.7152259
To difference of sides AB, AC	170.93	$2 \cdot 2328183$
So tangent half sum angles C and B	71° 20'	10.4712979
To tangent half difference angles C and B	44 16	9.9888903

Their sum gives angle C 115 36 Their diff. gives angle B 27 4

Then, by the former theorem,

As sine angle C 115° 36', or 64° 24'log.	9.0551259
To its opposite side AB 345	2.5378191
So sine angle A 37° 20'	9.7827958
To its opposite side BC 232	$2 \cdot 3654890$

In the plane triangle ABC,

	AB 365 poles			
Given, «	AC 154-33			
	angle A 57° 12'	1.	6 BC	309.86
Required	the other parts.		angle B	24° 45'
	•		angle C	98° 3'

In the plane triangle ABC, Given, $\begin{cases} AC 120 \text{ yards} \\ BC 112 \text{ yards} \\ angle C 57^{\circ} 58' 39'' \end{cases}$ Required the other parts. Required the other parts. $\begin{cases} AB 112.65 \\ angle A 57^{\circ} 27' 0'' \\ angle B 64 34 21 \end{cases}$

TRIGONOMETRY.

When the three sides of the triangle are given.

Then, having let fall a perpendicular from the greatest angle upon the opposite side, or base, dividing it into two segments, and the whole triangle into two right-angled triangles; it will be,

> As the base, or sum of the segments, Is to the sum of the other two sides; So is the difference of those sides, To the difference of the segments of the base.

Then, half the difference of the segments being added to the half sum, or the half base, gives the greater segment; and the same subtracted gives the less segment.

Hence, in each of the two right-angled triangles, there will be known two sides, and the angle opposite to one of them; consequently, the other angles will be found by the first problem.

The rectangle under the sum and difference of the two sides, is equal to the rectangle under the sum and difference of the two segments. Therefore, by forming the sides of these rectangles into a proportion, it will appear that the sums and differences are proportional, as in this theorem.

In the plane triangle ABC, Given, the sides $\begin{cases} AB 345 \text{ yards} \\ AC 232 \\ BC 174.07 \end{cases}$

To find the angles.

Geometrically.—Draw the base AB = 345 by a scale of equal parts. With radius 232, and centre A, describe an arc; and with radius 174, and centre B, describe another arc, cutting the former in C. Join AC, BC, and it is done.

Then, by measuring the angles, they will be found to be nearly as follows, viz. angle A 27°, angle B $37\frac{1}{3}^{\circ}$, and angle C $115\frac{1}{2}^{\circ}$.

Arithmetically .--- Having let fall the perpendicular CP, it will be,

As the bas that is, as	te $AB : AC + BC :: AC - B$ 345 : 406.07 :: 57.93 : 68.18 its half is the half base is	3C: AP - BP 3 = AP - BP . 34.09 .172.50
	the sum of these isand their difference	.206.59 = AP .138.41 = BP
		ALC: NOT THE REPORT OF THE PARTY OF THE PART

riten, in the triangle Ar 0, right	t-anglet	latr,	
As the side AC	232	log.	2.3654880
To sine opposite angle	90° .		10.0000000
So is side AP	206.59	·····	$2 \cdot 3151093$
To sine opposite angle ACP	62° 56'		9.9496213
Which taken from	90 00		C
Leaves the angle A	27 04	121.0	

Again, in the triangle BPC, right-angled at P, As the side of BC..... 174.07log. 2.2407239 To sine opposite angle P... 90° 10.0000000 So is side BP..... 138.41. $2 \cdot 1411675$ To sin. opposite angle BCP 52° 40'..... 9.9004436Which taken from..... 90 00 Leaves the angle B... 37 20 Also, the angle ACP... 62° 56' Added to angle BCP... 52 40 Gives the whole angle ACB...115 36 So that all the three angles are as follow, viz. the angle A 27° 4'; the angle B 37° 20'; the angle C 115° 36'. In the plane triangle ABC, (AB 365 poles Given the sides, -AC 154.33 BC 309.86. (angle A 57° 12' To find the angles. angle B 24 45 angle C 98 3 In the plane triangle ABC, (AB 120 Given the sides, AC 112.65 (angle A 57° 27' 00" BC 112 angle B 57 58 39 angle C 64 34 21 To find the angles. The three foregoing theorems include all the cases of plane tri-

angles, both right-angled and oblique; besides which, there are other theorems suited to some particular forms of triangles, which are sometimes more expeditious in their use than the general ones; one of which, as the case for which it serves so frequently occurs, may be here taken, as follows :---

When, in a right-angled triangle, there are given one leg and the angles; to find the other leg or the hypothenuse; it will be,

> As radius, i. e. sine of 90° or tangent of 45° Is to the given leg,

So is the tangent of its adjacent angle To the other leg;

And so is the secant of the same angle To the hypothenuse.

AB being the given leg, in the right-angled triangle ABC; with the centre A, and any assumed radius, AD, describe an arc DE, and draw DF perpendicular to AB, or parallel to BC. Now it is evident, from the definitions, that DF is the tangent, and AF the secant, of the arc DE, or of the angle A which $\frac{1}{A}$ D B is measured by that arc, to the radius AD. Then, because of the parallels BC, DF, it will be as AD : AB :: DF : BC :: AF : AC, which is the same as the theorem is in words.

OF HEIGHTS AND DISTANCES.

In the right-angled triangle ABC,

Given $\left\{\begin{array}{c} \text{the leg AB 162}\\ \text{angle A 53° 7' 48''} \end{array}\right\}$ to find AC and BC.

Geometrically.—Make AB = 162 equal parts, and the angle $A = 53^{\circ} 7' 48''$; then raise the perpendicular BC, meeting AC in C. So shall AC measure 270, and BC 216.

Arithmetically.

As	radius	tang. 45°	log.	10.0000000
To	leg AB	162		$2 \cdot 2095150$
So	tang. angle A	53° 7' 48"		10.1249371
To	leg BC	216		$2 \cdot 3344521$
So	secant angle A	53° 7' 48"		10.2218477
То	hyp. AC	270		2.4313627

In the right-angled triangle ABC,

Given $\begin{cases} \text{the leg AB 180} \\ \text{the angle A 62° 40'} \end{cases}$ To find the other two sides.

{ AC 392.0147 BC 348.2464

B

There is sometimes given another method for right-angled triangles, which is this:

ABC being such a triangle, make one leg AB radius, that is, with centre A, and distance AB, describe an arc BF. Then it is evident that the other leg BC represents the tangent, and the hypothenuse $_{A \in AC}$ AC the secant, of the arc BF, or of the angle A. In like manner, if the leg BC be made radius;

In like manner, if the leg BC be made radius; then the other leg AB will represent the tangent, and the hypothenuse AC the secant, of the arc BG or angle C.

But if the hypothenuse be made radius; then each leg will represent the sine of its opposite angle; namely, the leg AB the sine of the arc AE or angle C, and the leg BC the sine of the arc CD, or angle A.

And then the general rule for all these cases is this, namely, that the sides of the triangle bear to each other the same proportion as the parts which they represent.

And this is called, Making every side radius.

OF HEIGHTS AND DISTANCES.

By the mensuration and protraction of lines and angles, are determined the lengths, heights, depths, and distances of bodies or objects.

Accessible lines are measured by applying to them some certain measure a number of times, as an inch, or foot, or yard. But inaccessible lines must be measured by taking angles, or by some such method, drawn from the principles of geometry.

When instruments are used for taking the magnitude of the

angles in degrees, the lines are then calculated by trigonometry: in the other methods, the lines are calculated from the principle of similar triangles, without regard to the measure of the angles.

Angles of elevation, or of depression, are usually taken either with a theodolite, or with a quadrant, divided into degrees and minutes, and furnished with a plummet suspended from the centre, and two sides fixed on one of the radii, or else with telescopic sights.

To take an angle of altitude and depression with the quadrant.

Let A be any object, as the sun, moon, or a star, or the top of a tower, or hill, or other eminence; and let it be required to find the measure of the angle ABC, which a line drawn from the object makes with the horizontal line BC.

Fix the centre of the quadrant in the angular point, and move it round there as a centre, till with one eye at

H

C

D, the other being shut, you perceive the object A through the sights: then will the arc GH of the quadrant, cut off by the plumb line BH, be the measure of the angle ABC, as required.

The angle ABC of depression of any object A, is taken in the same manner; except that here the eye is applied to the centre, and the measure of the angle is the arc GH, on the other side of the plumb line.

The following examples are to be constructed and calculated by the foregoing methods, treated of in trigonometry.

Having measured a distance of 200 feet, in a direct horizontal line, from the bottom of a steeple, the angle of elevation of its top, taken at that distance, was found to be 47° 30': from hence it is required to find the height of the steeple.

Construction.—Draw an indefinite line, upon which set off AC = 200 equal parts, for the measured distance. Erect the indefinite perpendicular AB; and draw CB so as to make the angle $C = 47^{\circ} 30'$, the angle of elevation; and it is done. Then AB, measured on the scale of equal parts, is nearly 2184.

Calculation.

As radius	10.0000000
To AC 200	2.3010300
So tang. angle C 47° 30'	10.0379475
To AB 218.26 required	2.3389775

What was the perpendicular height of a cloud, or of a balloon, when its angles of elevation were 35° and 64° , as taken by two observers, at the same time, both on the same side of it, and in the same vertical plane; their distance, as under, being half a mile, or 880 yards. And what was its distance from the said two observers?

Construction.—Draw an indefinite ground line, upon which set off the given distance AB = 880; then A and B are the places of the observers. Make the angle $A = 35^{\circ}$, and the angle B = 64° ; and the intersection of the lines at C will be the place of the balloon; from whence the perpendicular CD, being let fall, will be its perpendicular height. Then, by measurement, are found the distances and height nearly, as follows, viz. AC 1631, BC 1041, DC 936.

				Calculation.
First,	from	angle	В	64°
	Take	angle	A	35
	Leaves	angle	ACB	29

		- /	
Then, in the triangle ABC,	Ā	В	D
As sine angle ACB 29°		9.6855712	
To opposite side AB 880		2.9444827	
So sine angle A 35°		9.7585913	
To opposite side BC 1041.12	5	3.0175028	
As sine angle ACB 29°		9.6855712	
To opposite side AB 880		2.9444827	
So sine angle B 116° or 64	0	9.9536602	
To opposite side AC 1631.442	·····	$3 \cdot 2125717$	
And in the triangle BCD		1. 1.00	
And, in the triangle DOD,		~	

As sine angle D	90°	.10.0000000
To opposite side BC	1041.125	. 3.0175028
So sine angle B	64°	. 9.9536602
· To opposite side CD	935.757	. 2.9711630

Having to find the height of an obelisk standing on the top of a declivity, I first measured from its bottom, a distance of 40 feet, and there found the angle, formed by the oblique plane and a line imagined to go to top of the obelisk 41°; but, after measuring on in the same direction 60 feet farther, the like angle was only 23° 45'. What then was the height of the obelisk?

Construction.—Draw an indefinite line for the sloping plane or declivity, in which assume any point A for the bottom of the obelisk, from whence set off the distance AC = 40, and again CD = 60 equal parts. Then make the angle $C = 41^{\circ}$, and the angle $D = 23^{\circ} 45'$; and the point B, where the two lines meet, will be the top of the obelisk. Therefore AB, joined, will be its height.

1 1 1 1 x 41

				Calc	ulation.
From	the	angle	C	41°	00'
Take	the	angle	D	23	45
Leave	s the	angle	DBC	17	15

And, in the triangle ABC,

As sum of sides	CB, CA 121	·488	2.0845333
To difference of sides	CB, CA 41	.488	1.6179225
So tang. half sum angl	es A, B 69	° 30′]	10.4272623
To tang. half diff. angl	es A, B 42	$24\frac{1}{2}$	9.9606516
The diff. of these is ang	le CBA 27	$5\frac{1}{2}$	
Lastly, as sine angle C	BA 27° 5½'		9.6582842
To opposite side C	A 40		1.6020600
So sine angle C	41°0′		9.8169429
To opposite side A	B 57.623		1.7607187

Wanting to know the distance between two inaccessible trees, or other objects, from the top of a tower, 120 feet high, which lay in the same right line with the two objects, I took the angles formed by the perpendicular wall and lines conceived to be drawn from the top of the tower to the bottom of each tree, and found them to be 33° and $64\frac{1}{2}^{\circ}$. What then may be the distance between the two objects?

Construction.—Draw the indefinite ground line BD, and perpendicular to it BA = 120 equal parts. Then draw the two lines AC, AD, making the two angles BAC, BAD, equal to the given

angles 33° and $64\frac{1}{2}$ °. So shall C and D be the places of the two objects.

Calculation.-First, In the right-angled triangle ABC,

As	radius	
To	AB120	2.0791812
So	tang. angle BAC 33°	9.8125174
То	BC77.929	1 ·8916986

And, in the right-angled triangle ABD,

As radius	í	10.0000000
То АВ	120	2.0791812
So tang. angle BAD	64 <u>1</u> °	$10 \cdot 3215039$
To BD251.	585	2.4006851
From which take BC 77.	929	VF 1

Leaves the dist. CD 173.656 as required.

SPHERICAL TRIGONOMETRY.

Being on the side of a river, and wanting to know the distance to a house which was seen on the other side, I measured 200 yards in a straight line by the side of the river; and then at each end of this line of distance, took the horizontal angle formed between the house and the other end of the line; which angles were, the one of them $68^{\circ} 2'$, and the other $73^{\circ} 15'$. What then were the distances from each end to the house?

Construction.—Draw the line AB = 200 equal parts. Then draw AC so as to make the angle $A = 68^{\circ} 2'$, and BC to make the angle $B = 73^{\circ} 15'$. So shall the point C be the place of the house required.

Calculation.	AN CERT
To the given angle A. 68° 2'	10= -
Add the given angle B 73 15	-lat
Then their sum 141 17	Setter The
Being taken from 180 0	7==={
Leaves the third angle C 38 43	· set and set
Hence, As sin. angle C 38° 43'	9.7962062^{B}
To op. side AB 200	2.3010300
So sin. angle A 68° 2'	9.9672679
To op. side BC 296.54	$2 \cdot 4720917$
And, As sin. angle C 38° 43'	9.7962062
To op. side AB 200	2.3010300
So sin. angle B 73° 15'	$\dots .9.9811711$
To op. side AC 306.19	$2 \cdot 4859949$

SPHERICAL TRIGONOMETRY.

This Article is taken from a short Practical Treatise on Spherical Trigonometry, by Oliver Byrne, the author of the present work. Published by J. A. Valpy. London, 1835.

As the sides and angles of spherical triangles are measured by circular arcs, and as these arcs are often greater than 90°, it may be necessary to mention one or two particulars respecting them.

The arc CB, which when added to AB makes up a quadrant or 90°, is called the complement of the arc AB; every arc will have a complement, even those which are themselves greater than 90°, provided we consider the arcs measured in the direction ABCD, &c., as positive, and consequently those measured in the opposite direction as negative. The complement BC of the arc AB commences at B, where AB terminates,

and may be considered as generated by the motion of B, the ex-

tremity of the radius OB, in the direction BC. But the complement of the arc AD or DC, commencing in like manner at the extremity D, must be generated by the motion of D in the opposite direction, and the angular magnitude AOD will here be diminished by the motion of OD, in generating the complement; therefore the complement of AOD or of AD may with propriety be considered negative.

Calling the arc AB or AD, θ , the complement will be $90^{\circ} - \theta$; the complement of $36^{\circ} 44' 33''$ is $53^{\circ} 15' 27''$; and the complement of $136^{\circ} 27' 39''$ is negative $46^{\circ} 27' 39''$.

The arc BE, which must be added to AB to make up a semicircle or 180°, is called the *supplement* of the arc AB. If the arc is greater than 180°, as the arc ADF its supplement, FE measured in the reverse direction is negative. The expression for the supplement of any arc θ is therefore 180° — θ ; thus the supplement of 112° 29' 35'' is 67° 30' 25'', and the supplement of 205° 42' is negative 25° 42'.

In the same manner as the complementary and supplementary arcs are considered as positive or negative, according to the direction in which they are measured, so are the arcs themselves positive or negative; thus, still taking A for the commencement, or origin, of the arcs, as AB is positive, AH will be negative. In the doctrine of triangles, we consider only positive angles or arcs, and the magnitudes of these are comprised between $\theta = 0$ and $\theta =$ 180°; but in the general theory of angular quantity, we consider both positive and negative angles, according as they are situated above or below the fixed line AO, from which they are measured, that is, according as the arcs by which they are estimated are positive or negative. Thus the angle BOA is positive, and the angle AOH negative. Moreover, in this more extended theory of angular magnitude, an angle may consist of any number of degrees whatever; thus, if the revolving line OB set out from the fixed line OA, and make n revolutions and a part, the angular magnitude generated is measured by n times 360°, plus the degrees in the additional part.

In a right-angled spherical triangle we are to recognise but five

parts, namely, the three sides a, b, c, and the two angles A, B; so that the right angle C is omitted.

Let A', c', B, b' be the complements of A, c, B, respectively, and suppose b, a, B', c', A', to be placed on the hand, as in the annexed figure, and that the fingers stand in a circular order, the parts represented by the fingers thus placed are called b'circular parts.

If we take any one of these as a middle part, the two which lie next to it, one on each side, will be *adjacent* parts. The two parts immediately beyond the adjacent parts, one on each side, are called the opposite parts.

Thus, taking A' for a middle part, b and c' will be *adjacent* parts, and a and B' are opposite parts.

If we take c' as a middle part, A' and B' are adjacent parts, and b, a, opposite parts.

When B' is a middle part, c', a, become adjacent parts, and A', b, opposite parts.

Again, if we take a as a middle part, then B', b, will be adjacent parts, and c', A', opposite parts.

Lastly, taking b as a middle part, A', a, are adjacent parts, and c', B', opposite parts.

This being understood, Napier's two rules may be expressed as follows :---

I. Rad. \times sin. middle part = product of tan. adjacent parts.

II. Rad. \times sin. middle part = product of cos. opposite parts.

Both these rules may be comprehended in a single expression, thus, Rad. sin. mid. = prod. tan. adja. = prod. cos. opp.;

and to retain this in the memory we have only to remember, that the vowels in the contractions sin., tan., cos., are the same as those in the contractions mid., adja., opp., to which they are joined.

These rules comprehend all the succeeding equations, reading from the centre, R = radius.

In the solution of right-angled spherical triangles, two parts are given to find a third, therefore it is necessary, in the application of this formula, to choose for the middle part that which causes the other two to become either adjacent parts or opposite parts.

In a right-angled spherical triangle, the hypothenuse

 $c = 61^{\circ}$ 4' 56"; and the angle A = 61° 50' 29". Required the adjacent leg? 90° 0' 90° 0' 00" 00" = 61 4 56A = 6150 $\mathbf{29}$ 04 = c'. 31 = A.-55 $\mathbf{28}$ 9 28

In this example, A' is selected for the middle part, because then b and c' become adjacent parts, as in the annexed figure.

Rad $\times \sin A' = \tan b \times \tan c'$. $\therefore \tan b = \frac{\operatorname{rad.} \times \sin A'}{\tan c'}$.

By Logarithms.

Rad. $-\dots -10.0000000$ Sin. A'-28°9'21''-9.6738628 19.6738628Tan. c'-28°55'4''-9.7422808

Tan.b'-40°30'16"-9.9315820

The side adjacent to the given angle is acute or obtuse, according as the hypothenuse is of the

same, or of different species with the given angle. \therefore the leg $b = 40^{\circ} 30' 16''$, acute. Supposing the hypothenuse $c = 113^{\circ} 55'$, and the angle $A = 31^{\circ} 51'$,

Supposing the hypothenuse $c = 113^{\circ} 55^{\circ}$, and the angle $A = 31^{\circ} 51^{\circ}$, then the adjacent leg b would be $117^{\circ} 34^{\circ}$, obtuse.

SPHERICAL TRIGONÒMETRY.

In the right-angled spherical triangle ABC, are given the hypothenuse $c = 113^{\circ} 55'$, and the angle $A = 104^{\circ} 08'$; to find the opposite leg a.

In this example, a is taken for the middle part, then A' and c' are opposite parts. (See the subjoined figure.)

From the general formula, we have,

Rad. $\times \sin a = \cos A' \times \cos c'$. $\therefore \sin a = \frac{\cos A' \times \cos c'}{\text{Rad.}}$.

 $\begin{array}{c} By \ Logarithms.\\ \cos. A' - 14^{\circ} \ 08'..... \ 9.9860509\\ \cos. c' \ - 23 \ 55 \ \dots \ 9.9610108\\ \hline 19.9476617\\ Radius.....10.0000000\\ \sin. a \ \left\{\begin{array}{c} 117^{\circ} \ 34'\\ 62 \ 26\end{array}\right\} \dots \ 9.9476617\end{array}$

The obtuse side 117° 34' is the leg required, for the side opposite to the given angle is always of the same species with the given angle.

If in a right-angled spherical triangle, the hypothenuse were 78° 20', and the angle $A = 37^{\circ}$ 25', then the opposite leg $a = 36^{\circ}$ 31', and not 143° 29', because the given angle is acute.

In a right-angled spherical triangle, are given $c = 78^{\circ} 20'$, and $A = 37^{\circ} 25'$, to find the angle B.

			0
- 1	90°	0'	
c =	78	20	
	11	40 =	c'.
	90°	0'	
A =	37	25	20
	52	35 =	A'
2 0	ə 2		

When the hypothenuse and an angle are given, the other angle is acute or obtuse, according as the given parts are of the same or of different species.

In the above example, both the given parts are acute, therefore the required angle is *acute*; but if one be acute and the other obtuse, then the angle found would be obtuse:—Thus, if the hypothenuse be 113° 55', and the angle $A = 31^{\circ} 51'$; then will B' = $14^{\circ} 08'$, and the angle $B = 104^{\circ} 08'$.

Given the hypothenuse $c = 61^{\circ} 04' 56''$, and the side or leg, $a = 40^{\circ} 30' 20''$, to find the angle adjacent to a. c' = B'

5

$$c = \frac{90^{\circ} \ 0' \ 0''}{28 \ 55 \ 04''} = c'$$

The three parts are here connected; therefore the complement of B is the *middle part*, a and the complement of c are the adjacent parts.

Hence we have, Rad. $\times \sin . B' = \tan . a \times \tan . c'$. $\therefore \sin . B' = \frac{\tan . a \times \tan . c'}{\text{Rad.}}$

$$\overline{61 \ 50 \ 29} = B.$$

The angle adjacent to the given side is acute or obtuse according as the hypothenuse is of the same or of different species with the given side.

Before working the above example, it was easy to foresee that the angle B would be acute; but suppose the hypothenuse = 70° 20', and the side $a = 117^{\circ}$ 34', then the angle B would be obtuse, because a and c are of different species.

RULE V.—In a spherical triangle, right-angled at c, are given $c = 78^{\circ} 20'$ and $b = 117^{\circ} 34'$, to find the angle B; opposite the given leg, (see the next diagram.)

In this example, b becomes the middle part, and c' and B' opposite parts; and therefore, by the rule,

But since the angle opposite the given side is of the same species with the given side, 90° must be added to B', to pro- ^a duce B:—viz. 90° + 25° 09' = 115° 09'.

Given $c = 61^{\circ} 04'$ 56", and $b = 40^{\circ} 30'$ 20", to find the other side *a*.

Here c' is the middle part, a and b the opposite parts; hence by position 4, $a = 50^{\circ} 30' 30''$.

Given the side $b = 48^{\circ} 24' 16''$, and the adjacent angle $A = 66^{\circ} 20' 40''$, to find the side a.

In this instance, b is the middle part, the complement of A and a are adjacent parts. Consequently, $a = 59^{\circ} 38' 27''$.

In the right-angled spherical triangle ABC,

Given { The side $a = 59^{\circ} 38' 27''$ Its adjacent angle $B = 52^{\circ} 32' 55''$ } to find the angle A.

Answer, 66° 20' 40".

The required angle is of the same species as the *given* side, and *vice versa*.

Given the side $b = 49^{\circ} 17'$, and its adjacent angle $A = 23^{\circ} 28'$, to find the hypothenuse.

Making A' the middle part, the others will be adjacent parts, and, therefore, by the first rule we have $c = 51^{\circ} 42' 37''$.

In a spherical triangle, right-angled at C, are given $b = 29^{\circ} 12'$ 50", and $B = 37^{\circ} 26' 21"$, to find the side a.

Taking a for the middle part, the other two will be adjacent parts; hence by the rule,

Rad. $\times \sin a = \tan b \times \tan B'$ that is, rad. $\times \sin a = \tan b \times \cot B$ $\therefore \sin a = \frac{\tan b \times \cot B}{\operatorname{rad.}}$

In this case, there are two solutions, i. e. a and the supplement of a, because both of them have the same sine. As sin. ais necessarily positive, b and B must necessarily be always of the same species, so that, as observed before, the sides including the right angle are always of the same species as the opposite angles.

380

In working this example, we find the log. sin. a = 9.8635411, which corresponds to $46^{\circ} 55' 02''$,

or, 133° 04′ 58″.

It appears, therefore, that a is ambiguous, for there exist two right-angled triangles, having an oblique angle, and the opposite side in the one equal to an oblique angle and an opposite side in the other, but the remaining oblique angle in the one the supplement of the remaining oblique

angle in the other. These triangles are situated with respect to each other, on the sphere, as the triangles ABC, ADC, in the annexed diagram, in which, with the exception of the common side AC, and the equal angles B, D, the parts of the one triangle are supplements of the corresponding parts of the other.

In a right-angled spherical triangle are

Given { the side a..... = $42^{\circ} 12'$, } to find the adjacent angle A = 48° } angle B.

The complement of the given angle is the middle part; and neither a nor B' being joined to A', they are consequently opposite parts; hence, the angle $B = 64^{\circ} 35'$, or $115^{\circ} 25'$; this case, like the last, being ambiguous, or doubtful.

Given $a = 11^{\circ} 30'$, and $A = 23^{\circ} 30'$, to find the hypothenuse c. $c = 30^{\circ}$, or 150° , being ambiguous.

In a right-angled triangle, there are given the two perpendicular sides, viz. $a = 48^{\circ} 24' 16''$, $b = 59^{\circ} 38' 27''$, to find the angle A.

$$A = 66^{\circ} 20' 40''.$$

Given $a = 142^{\circ} 31'$, $b = 54^{\circ} 22'$, to find *c*. $c = 117^{\circ} 33'$.

Given $\left\{ \begin{array}{l} A = 37^{\circ} 25' \\ B = 81 12 \end{array} \right\}$ Required the side a. $a = 36^{\circ} 31'$.

Given $\begin{cases} A = 66^{\circ} 20' 40'' \\ B = 52 32 55 \end{cases}$ to find the hypothenuse c. $c = 70^{\circ} 23' 42''.$

MEASUREMENT OF ANGLES.

From the " Civil Engineer and Architect's Journal," for Oct. and Nov. 1847.

A NEW METHOD OF MEASURING THE DEGREES, MINUTES, ETC., IN ANY RECTILINEAR ANGLE BY COMPASSES ONLY, WITHOUT USING SCALE OR PROTRACTOR.

APPLY AB = x, from B to 1; from 1 to 2; from 2 to 3; from 3 to 4; from 4 to 5. Then take B 5, in the compasses, and apply it from B to 6; from 6 to 7; from 7 to 8; from 8 to 9; and from 9 to 10, near the middle of the arc AB. With the same opening,

B 5 or A 4, or y, which we shall term it, lay off 4,11, 11,12, and 12,13. Then the arc between 13 and 10 is found to be contained 23 times in the arc AB.

382

Hence, we have, $5x - y = 360^\circ$; 9y + z = x:

$$9y + z = x; 23 z = x; \text{ or, } z = \frac{x}{23}.$$

$$\therefore 9y + \frac{x}{23} = x, \qquad \therefore y = \frac{22x}{207}$$

By substituting this value in the first equation, we obtain,

$$5x - \frac{24x}{207} = 360.$$

$$\frac{1013x}{207} = 360, \text{ and } x = \frac{360 \times 207}{1013} = 73^{\circ} \ 33' \cdot 82.$$

Apply AB = x, from B to 1; from 1 to 2; from 2 to 3; from 3 to 4. Then take B 4, in the compasses, and apply it on the arc, from B to 4; from 4 to 5; from 5 to 6; from 6 to 7; and from 7 to 8, near the middle of the arc AB. With the same opening, B4 = y, lay off A 9, 9,10, 10,11, 11,12, 12,13, and 13,14. The arc between 14 and 8 is found to be contained nearly 24 times in the arc AB. Therefore, we have,

How to lay off an angle of any number of degrees, minutes, §c., with compasses only, without the use of scale or protractor.

Let it be required to lay off an angle of $36^{\circ} 40' = \beta$. Take any small opening of the compasses less than one-tenth of the radius, and lay off any number of equal small arcs, from A to 1; a from 1 to 2; from 2 to 3, &c., until we have laid off an arc, AB, greater than the one required. Draw Bb through the centre o, then will the arc ab =arc AB, which we shall

put = 20ϕ in this example, and proceed to measure ab as in the first example. Lay off ab from b to c; from c to d; from d to e; from e to f; from f to g. Putting $g \ a = \triangle_1$, then,

 $6 \times 20 + \Delta_i = 360^\circ = \frac{108}{11}\beta$; because, $\frac{360^{\circ}}{36^{\circ} 40'} = \frac{21600}{2200} = \frac{108}{11}.$

Lay off, as before directed, $ga_1 = \triangle_1$, from a to h, from h to s, and b to t; then calling st_1, \triangle_2 , we have

$$3 \triangle_1 + \triangle_2 = 20 \varphi;$$

and we find that st is contained 28 times in the arc ab;

 $\therefore 120 \,\phi + \bigtriangleup_{1} = \frac{108}{11} \,\beta; \ 3 \,\bigtriangleup_{1} + \bigtriangleup_{2} = 20 \,\phi; \text{ and } 28 \,\bigtriangleup_{2} = 20 \,\phi.$

Eliminating \triangle_1 and \triangle_2 , we find

$$\theta = \frac{29205}{2269} \phi = 12.9$$
 times ϕ nearly;

 $\therefore 36^{\circ} 40' = \angle A \circ N$ is laid off with as much ease and certainty as by a protractor.

As a second example, let it be required to lay off an angle of 132° 27′. From 180° 0′ take 132° 27′ = 47° 33′, which put = β $\frac{360°}{47° 33′} = \frac{2400}{317}$ when put = $\frac{5}{\delta}$, then $\frac{5}{\delta}\beta = 360° = \pi$.

We have laid off 29 small arcs from A to B; $29 = \epsilon$. AB = a b = b c = c d = d e = c f. And $a g = b h = a f = \triangle_1$; $h g = \triangle_2$ $\therefore 5 \times 29 \,\phi + \bigtriangleup_{\mathbf{1}} = 360^{\circ} = \frac{\nu}{\delta}\beta = m \,e \,\phi \pm \bigtriangleup_{\mathbf{1}} \tag{1}$

$$2 \bigtriangleup_1 - \bigtriangleup_2 = 29 \phi, \text{ or } n \bigtriangleup_1 \pm \bigtriangleup_2 = \varepsilon \phi \qquad (2)$$

$$13 \bigtriangleup_2 = 29 \phi$$
, or $q \bigtriangleup_2 = \varepsilon \phi$ (3)

384

Eliminating \triangle_1 and \triangle_2 , we have

 $\beta = \frac{\{m \, n \, q \pm (q \mp 1)\} \epsilon \, \delta}{\nu \, n \, q} \, \phi = \frac{\{5 \cdot 2 \cdot 13 + (13 + 1)\} 29 \cdot 317}{2400 \cdot 2 \cdot 13} \, \phi = \frac{1323729}{2400 \cdot 2 \cdot 13} \, \phi$

 $\frac{1020125}{62400} \phi = 21\frac{1}{4}$ times ϕ very nearly. Hence the line o N determines the angle $a \circ N = 132^{\circ} 27'$.

In the expression

$$\beta = \frac{\{m n q \pm (q \mp 1)\} \epsilon \delta}{\nu n q} \phi \quad (\mathbf{R})$$

substituting the numerals of the first example, then

 $\beta = \frac{\{6\cdot 3\cdot 28 + (28 - 1)\}20\cdot 11}{108\cdot 3\cdot 28} \phi = \frac{29205}{2268} \phi = 12\cdot 9 \text{ times } \phi \text{ nearly,}$ the result before obtained.

The ambiguous signs of (R) cannot be mistaken or lead to error, if the manner in which it is deduced from (1), (2), (3), be attended to. From (3)

 $\triangle_{\mathfrak{s}} = \frac{\mathfrak{e} \, \phi}{q}$; substituting this value of $\triangle_{\mathfrak{s}}$, in (2),

 $n \bigtriangleup_1 = \epsilon \phi \mp \bigtriangleup_2 = \epsilon \phi \mp \frac{\epsilon \phi}{q}$; which, when substituted for \bigtriangleup_1 in (1), gives

$$\frac{v}{\delta}\beta = m \ \epsilon \phi \pm \frac{1}{n} \left(\epsilon \phi \mp \frac{\epsilon \phi}{q}\right);$$
 from which (R) is found.

This method of measuring angles is more exact than it may appear; for if, in the first example, we take

$$5x - y = 360; 9y + z = x; \text{ and } 20z = x;$$

then $x = \frac{64800}{881} = 73^{\circ} 33' 85.$

The first equations gave $73^{\circ} 33' 82$ when 23z = x, so it does not matter much whether 20, 21, 22, 23, 24, or 25 times z make x. This fact is particularly worth attention.

Given the three angles to find the three sides.

The following formulas give any side a of any spherical triangle.

sin.
$$\frac{1}{2}a = \sqrt{\frac{-\cos \frac{1}{2}S\cos (\frac{1}{2}S - A)}{\sin B \sin C}}$$
, and
cos. $\frac{1}{2}a = \sqrt{\frac{\cos (\frac{1}{2}S - B)\cos (\frac{1}{2}S - C)}{\sin B \sin C}}$

Given the three sides to find the three angles.

$$\sin. \frac{1}{2} A = \sqrt{\frac{\sin. (\frac{1}{2} S - b) \sin. (\frac{1}{2} S - c)}{\sin. b \sin. c.}}$$
$$\cos. \frac{1}{2} A = \sqrt{\frac{\sin. \frac{1}{2} S \sin. (\frac{1}{2} S - a)}{\sin. b \sin. c.}}$$

GRAVITY-WEIGHT-MASS.

SPECIFIC GRAVITY, CENTRE OF GRAVITY, AND OTHER CENTRES OF BODIES. —WEIGHTS OF ENGINEERING AND MECHANICAL MATERIALS.—BRASS, COPPER, STEEL, IBON, WATER, STONE, LEAD, TIN, BOUND, SQUARE, FLAT, ANGULAR, ETC.

1. In a second, the acceleration of a body falling freely in vacuo is $32 \cdot 2$ feet; what velocity has it acquired at the end of 5 seconds?

 $32 \cdot 2 \times 5 = 161$ feet, the velocity.

2. A cylinder rolling down an inclined plane with an initial velocity of 24 feet a second, and suppose it to acquire each second 5 additional feet velocity; what is its velocity at the end of 3.7 seconds?

$$24 + 3.7 \times 5 = 42.5$$
 feet.

3. Suppose a locomotive, moving at the rate of 30 feet a second, (as it is usually termed, with a 30 feet velocity,) and suppose it to lose 5 feet velocity every second; what is its velocity at the end of 3.33 seconds?

The acceleration is -3.33, negative.

$$\therefore 30 - 5 \times 3.33 = 13.35$$
 feet.

4. If a body has acquired a velocity of 36 feet in 11 seconds, by uniformly accelerated motion; what is the space described?

$$\frac{36 \times 11}{2} = 198$$
 feet.

5. A carriage at rest moves with an accelerated motion over a space of 200 feet in 45 seconds; at what velocity does it proceed at the beginning of the 46th second?

 $\frac{200 \times 2}{45} = 8.889$ feet, the velocity at the end of the 45th second.

The four fundamental formulas of uniformly accelerated motion are

$$v = pt; \quad s = \frac{vt}{2}; \quad s = \frac{pt^2}{2}; \quad s = \frac{v^3}{2p}.$$

v the velocity, p the acceleration, t the time, and s the space.

6. What space will a body describe that moves with an acceleration of 11.5 feet for 10 seconds.

$$\frac{11.5 \times (10)^2}{2} = 575 \text{ feet.}$$

7. A body commences to move with an acceleration of 5.5 feet, and moves on until it is moving at the rate of 100 feet a second; what space has it described?

 $\frac{(100)^2}{2 \times 5.5} = 909.09$ feet.

GRAVITY-WEIGHT-MASS.

8. A body is propelled with an initial velocity of 3 feet, and with an acceleration of 8 feet a second; what space is described in 13 seconds?

$$3 \times 13 + \frac{8 \times (13)^2}{2} = 715$$
 feet.

9. What distance will a body perform in 35 seconds, commencing with a velocity of 10 feet, and being accelerated to move with a velocity of 40 feet at the beginning of the 36th second?

$$\frac{10+40}{2} \times 35 = 875$$
 feet, the distance.

The formulas for a uniformly accelerated motion, commencing with a velocity c, are as follow :--

$$v = c + pt; \quad s = ct + \frac{pt^2}{2}; \quad s = \frac{c+v}{2}t; \quad s = \frac{v^2 - c^2}{2n}.$$

The succeeding formulas are applicable for a uniformly retarded motion with an initial velocity e.

$$v = c - pt; \quad s = ct - \frac{pt^2}{2}; \quad s = \frac{c+v}{2}t; \quad s = \frac{c^2 - v^2}{2p}t;$$

10. A body rolls up an inclined plane, with an initial velocity of 50 feet, and suffers a retardation of 10 feet the second; to what height will it ascend? Reduced in States of the III

$$\frac{50}{10} = 5 \text{ seconds, the time.}$$
$$\frac{(50)^2}{2 \times 10} = 125 \text{ feet, the height required.}$$

The free vertical descent of bodies in vacuo offers an important example of uniformly accelerated motion. The acceleration in theprevious examples was designated by p, but in the particular mo-tion, brought about by the force of gravity, the acceleration is designated by the letter g, and has the mean value of $32 \cdot 2$ feet.

If this value of g be substituted for p, in the preceding formula, have. 1. 19 11 we have,

$$v = 32 \cdot 2 \times t; v = 8 \cdot 024964 \times \sqrt{s}; s = 16 \cdot 1 \times t^2; s = \cdot 015528 \times v^2; t = \cdot 031056 \times v; and t = \cdot 2492224 \times \sqrt{s}.$$

11. What velocity will a body acquire at the end of 5 seconds. in its free descent? 1 1 = 1 = 1

$$32 \cdot 2 \times 5 = 161$$
 feet.

1 ten la

12. What velocity will a body acquire, after a free descent through a space of 400 feet?

 $8.024964 \times \sqrt{400} = 160.49928$ feet. Vet onorv mi

13. What space will a body pass over in its free descent during 10 seconds?

 $16.1 \times (10)^2 = 1610$ feet.

\$ 10.57 6

14. A body falling freely in vacuo, has in its free descent acquired a velocity of 112 feet; what space is passed over?

$$(015528 \times (112)^2 = 194.783232$$
 feet.

15. In what time will a body falling freely acquire the velocity of 30 feet?

16. In what time will a body pass over a space of 16 feet, falling freely in vacuo? 1 1 1 1 1 1 1 1

 $\cdot 2492224 \times \sqrt{16} = \cdot 9968896$ seconds.

If the free descent of bodies go on, with an initial velocity, which we may call c, the formulas are,

 $v = c + gt; v = c + 32 \cdot 2 \times t; v = \sqrt{c^2 + 2gs}; v = \sqrt{c^2 + 64 \cdot 4 \times s};$ $s = ct + g\frac{t^2}{2} = ct + 16 \cdot 1 \times t^2; \ s = \frac{v^2 - c^2}{2g} = \cdot 015528 (v^2 - c^2).$

If a body be projected vertically to height, with a velocity which we shall term c, then the formulas become,

$$v = c - 32 \cdot 2 \times t; \ v = \sqrt{c^2 - 64 \cdot 4 \times s}; \ s = ct - g\frac{t}{2} = ct - 16 \cdot 1 \times t^2; \ s = \frac{c^2 - v^2}{2g} = \cdot 015528 \ (c^2 - v^2).$$

17. What space is described by a body passing from 18 fect velocity to 30 feet velocity during its free descent in vacuo.

From the annexed table, we find that the height due to 30 feet locity.....= 13.97516 The height due to 18.....= 5.03106 velocity

Since this problem and table are often required in practical me-

chanics, we shall enter into more particulars respecting it. 77.9 9 9

dout finds to share
$$\frac{v^2 - c^2}{2 \pi} = \frac{v^2}{2 \pi} - \frac{c^2}{2 \pi}$$

if we put h = height due to the initial velocity c; that is, $h = \frac{1}{2g}$; and h_i = the height due to the terminal velocity v; that is, $h_1 = \frac{v^3}{2 \sigma}$; then, $u \to out \pi$

 $s = h_1 - h$, for falling bodies, as in the last example; and $s = h - h_i$, for ascending bodies.

Although these formulas are only strictly true for a free descent in vacuo, they may be used in air, when the velocity is not great. The table will be found useful in hydraulics, and for other heights and velocities besides those set down, for by inspection it is seen that the height .201242 answers to the velocity 3.6; and the height 20.12423 to 36; and the height 2012.423 to 360; and so on.

388

5 mm 13

WEIGHT-GRAVITY-MASS.

TABLE of the Heights corresponding to different Velocities, in feet the second.

et.	CORRESPONDING HEIGHT IN FEET.											
Veloc in Fe	0	1	2	8	4	5	6	7	8	9		
0	.000000	·000155	·000621	·001398	·002484	.003882	-005590	•007609	.009938	•012578		
1	·015528	.018789	·020652	·026242	·0304348	.0349379	.039752	•044876	.050311	·056056		
2	·062112	·068478	•075155	.082143	·089441	·097050	·104969	·113199	·121739	·130590		
3	$\cdot 139752$	·149224	·159006	·169099	.187888	·190217	·201242	·212577	·224224	·236180		
4	·248447	·261025	$\cdot 273913$	·285714	·300621	•314441	•328572	•343013	·357764	·372826		
5	·388199	·403882	·419877	·436180	·452795	·469720	•486956	.504503	·522360	.550578		
6	•559006	.577795	·596894	·616304	·636025	•656060	.676397	·697050	.718013	•739286		
7	.760870	.782764	·804970	·827484	·850310	·873447	·896895	·920652	·944721	·969099		
8	·993789	1.018790	1.044100	1.069720	1.095652	1.121895	1.148421	1.175311	1.201482	1.229971		
9	1.257764	1.285869	1.314285	1.343012	1.372050	1.401400	1.431055	1.461025	1.491304	1.521894		

The following extension is obtained from the foregoing table, by mere inspection, and moving the decimal point as before directed.

Velocity in Feet.	Corresponding Height in Feet.						
10	1.552795	19	5.60559	28	12.17392	37	21.25777
11	1.878882	20	6.21118	29	13.05901	38	22.42236
12	2.065218	21	6.84783	30	13.97516	39	23.61802
13	2.624224	22 .	7.51558	31	14.92237	40	24.84472
14	3.043478	23	8.21429	32	15.90062	41	26.10249
15	3.49379	24	8.94410	33	16.90994	42	27.39131
16	3.97516	25	9.70497	34	18.78883	43	28.57143
17	4.48758	26	10.49690	35	19.02174	44	30.06212
18	5.03106	27	11.31988	36	20.12423	45	31.4441

18. What mass does a body weighing 30268 lbs. contain? $\frac{30268}{32 \cdot 2} = \frac{302680}{322} = 940 \text{ lbs.}$

For the mass is equal to the weight divided by g. And g is taken equal to $32 \cdot 2$; but the acceleration of gravity is somewhat variable; it becomes greater the nearer we approach the poles of the earth. It is greatest at the poles and least at the equator, and also diminishes the more a body is above or below the level of the sea. The mass, so long as nothing is added to or taken from it, is invariable, whether at the centre of the earth or at any distance from it. If M be the mass and W the weight of a body,

Then
$$M = \frac{W}{g} = \frac{W}{32 \cdot 2} = .0310559 W.$$

19. What is the mass of a body whose weight is 200 lbs? $\cdot 031055 \times 200 = 6 \cdot 21118$ lbs.

The weight of a body whose mass is 200 lbs. is $32.2 \times 200 = 6440.0$ lbs. It may be remarked, that one and the same steel spring is differently bent by one and the same weight at different places.

The force which accelerates the motion of a heavy body on an inclined plane, is to the force of gravity as the sine of the inclina-

tion of the plane to the radius, or as the height of the plane to its length.

The velocity acquired by a body in falling from rest through a given height, is the same, whether it fall freely, or descend on a plane at whatever inclination.

The space through which a body will descend on an inclined plane, is to the space through which it would fall freely in the same time, as the sine of the inclination of the plane to the radius.

The velocities which bodies acquire by descending along chords of the same circle, are as the lengths of those chords.

. If the body descend in a curve, it suffers no loss of velocity.

The centre of gravity of a body is a point about which all its parts are in equilibrio.

Hence, if a body be suspended or supported by this point, the body will rest in any position into which it is put. We may, therefore, consider the whole weight of a body as centred in this point.

The common centre of gravity of two or more bodies, is the point about which they would equiponderate or rest in any position. If the centres of gravity of two bodies be connected by a right line, the distances from the common centre of gravity are reciprocally as the weights of the bodies.

If a line be drawn from the centre of gravity of a body, perpendicular to the horizon, it is called *the line of direction*, being the line that the centre of gravity would describe if the body fell freely.

The centre of gyration is that part of a body revolving about an axis, into which if the whole quantity of matter were collected, the same moving force would generate the same angular velocity.

To find the centre of Gyration.—Multiply the weight of the several particles by the squares of their distances from the centre of motion, and divide the sum of the products by the weight of the whole mass; the square root of the quotient will be the distance of the centre of gyration from the centre of motion.

The distances of the centre of gyration from the centre of motion, in different revolving bodies, are as follow :----

In a straight rod revolving about one end, the length $\times \cdot 5773$.

In a circular plate, revolving on its centre, the radius \times .7071.

In a circular plate, revolving about one diameter, the radius $\times \cdot 5$.

In a thin circular ring, revolving about one diameter, radius \times .7071.

In a solid sphere, revolving about one diameter, the radius \times .6325.

In a thin hollow sphere, revolving about one diameter, radius \times :8164.

In a cone, revolving about its axis, the radius of the base \times .5477.

In a right-angled cone, revolving about its vertex, the height × 866.

390

In a paraboloid, revolving about its axis, the radius of the base $\times \cdot 5773$.

The centre of percussion is that point in a body revolving about a fixed axis, into which the whole of the force or motion is collected.

It is, therefore, that point of a revolving body which would strike any obstacle with the greatest effect; and, from this property, it has received the name of the centre of percussion.

The centres of oscillation and percussion are in the same point.

If a heavy straight bar, of uniform density, be suspended at one extremity, the distance of its centre of percussion is two-thirds of its length.

In a long slender rod of a cylindrical or prismatic shape, the centre of percussion is nearly two-thirds of the length from the axis of suspension.

In an isosceles triangle, suspended by its apex, the distance of the centre of percussion is three-fourths of its altitude. In a line or rod whose density varies as the distance from the point of suspension, also in a fly-wheel, and in wheels in general, the centre of percussion is distant from the centre of suspension three-fourths of the length.

In a very slender cone or pyramid, vibrating about its apex, the distance of its centre of percussion is nearly four-fifths of its length.

Pendulums of the same length vibrate slower, the nearer they are brought to the equator. A pendulum, therefore, to vibrate seconds at the equator, must be somewhat shorter than at the poles.

When we consider a simple pendulum as a ball, which is suspended by a rod or line, supposed to be inflexible, and without weight, we suppose the whole weight to be collected in the centre of gravity of the ball. But when a pendulum consists of a ball, or any other figure, suspended by a metallic or wooden rod, the length of the pendulum is the distance from the point of suspension to a point in the pendulum, called the *centre of oscillation*, which does not exactly coincide with the centre of gravity of the ball.

If a rod of iron were suspended, and made to vibrate, that point in which all its force would be collected is called its centre of oscillation, and is situated at two-thirds the length of the rod from the point of suspension.

SPECIFIC GRAVITY.

THE comparative density of various substances, expressed by the term *specific gravity*, affords the means of readily determining the bulk from the known weight, or the weight from the known bulk; and this will be found more especially useful, in cases where the substance is too large to admit of being weighed, or too irregular in shape to allow of correct measurement. The standard with which all solids and liquids are thus compared, is that of distilled water, one cubic foot of which weighs 1000 ounces avoirdupois: and the specific gravity of a *solid* body is determined by the difference between its weight in the air, and in water. Thus,

If the body be *heavier* than water, it will displace a quantity of fluid equal to it in *bulk*, and will lose as much weight on immersion as that of an equal bulk of the fluid. Let it be weighed first, therefore, in the air, and then in water, and its weight in the air be divided by the difference between the two weights, and the quotient will be its specific gravity, that of water being unity.

A piece of copper ore weighs $56\frac{1}{4}$ ounces in the air, and $43\frac{3}{4}$ ounces in water; required its specific gravity.

 $56 \cdot 25 - 43 \cdot 75 = 12 \cdot 5$ and $56 \cdot 25 \div 12 \cdot 5 = 4 \cdot 5$, the specific gravity.

If the body be *lighter* than water, it will float, and displace a quantity of fluid equal to it in *weight*, the bulk of which will be equal to that only of the part immersed. A heavier substance must, therefore, be attached to it, so that the two may sink in the fluid. Then, the weight of the lighter substance in the air, must be added to that of the heavier substance in water, and the weight of both united, in water, be subtracted from the sum; the weight of the lighter body in the air must then be divided by the difference, and the quotient will be the specific gravity of the lighter substance required.

A piece of fir weighs 40 ounces in the air, and, being immersed in water attached to a piece of iron weighing 30 ounces, the *two* together are found to weigh 3.3 ounces in water, and the iron alone, 25.8 ounces in the water; required the specific gravity of the wood.

 $40 + 25 \cdot 8 = 65 \cdot 8 - 3 \cdot 3 = 62 \cdot 5$; and $40 \div 62 \cdot 5 = 0 \cdot 64$, the specific gravity of the fir.

The specific gravity of a *fluid* may be determined by taking a solid body, heavy enough to sink in the fluid, and of known specific gravity, and weighing it both in the air and in the fluid. The difference between the two weights must be multiplied by the specific gravity of the solid body, and the product divided by the weight of the solid in the air: the quotient will be the specific gravity of the fluid, that of water being unity.

Required the specific gravity of a given mixture of muriatic acid and water; a piece of glass, the specific gravity of which is 3, weighing $3\frac{3}{4}$ ounces when immersed in it, and 6 ounces in the air.

 $6 - 3.75 = 2.25 \times 3 = 6.75 \div 6 = 1.125$, the specific gravity.

Since the weight of a cubic foot of distilled water, at the temperature of 60 degrees, (Fahrenheit,) has been ascertained to be 1000 avoirdupois ounces, it follows that the specific gravities of all bodies compared with it, may be made to express the weight, in ounces, of a cubic foot of each, by multiplying these specific gravities (compared with that of water as unity) by 1000. Thus, that of water being 1, and that of silver, as compared with it, being 10.474, the multiplication of each by 1000 will give 1000 ounces for the cubic foot of water, and 10474 ounces for the cubic foot of silver. SPECIFIC GRAVITY.

In the following tables of *specific gravities*, the numbers in the *first* column, if taken as whole numbers, represent the weight of a cubic foot in ounces; but if the last *three* figures are taken as decimals, they indicate the specific gravity of the body, water being considered as unity, or 1.

To ascertain the number of cubic feet in a substance, from its weight, the whole weight in *pounds* avoirdupois must be divided by the figures against the name, in the *second* column of the table, taken as whole numbers and decimals, and the quotient will be the contents in cubic feet.

Required the cubic content of a mass of cast-iron, weighing 7 cwt. 1 qr. = 812 lbs.

812 lbs. \div 450.5 (the tabular weight) = 1.803 cubic feet.

To find the weight from the measurement or cubic content of a substance, this operation must be reversed, and the number of cubic feet, found by the rules given under "Mensuration of Solids," multiplied by the figures in the second column, to obtain the weight in pounds avoirdupois.

Required the weight of a log of oak, 3 feet by 2 feet 6 inches, and 9 feet long.

 $9 \times 3 \times 2.5 = 67.5$ cubic feet.

And 67.5×58.2 (the tabular weight) = 3928.5 lbs., or 35 cwt. 0 qr. $8\frac{1}{2}$ lbs.

The velocity g, which is the measure of the force of gravity, varies with the latitude of the place, and with its altitude above the level of the sea.

The force of gravity at the latitude of $45^{\circ} = 32.1803$ feet; at any other latitude L, g = 32.1803 feet -0.0821 cos. 2 L. If g' represents the force of gravity at the height h above the sea, and r the radius of the earth, the force of gravity at the level of the

sea will be $g = g' \left(1 + \frac{5h}{4r}\right)$.

In the latitude of London, at the level of the sea, g = 32.191 feet.

Do. Washington, do. do., g = 32.155 feet. The length of a pendulum vibrating seconds is in a constant ratio to the force of gravity.

$$\frac{g}{l} = 9.8696044.$$

Length of a pendulum vibrating seconds at the level of the sea, in various latitudes.

A	t the Equator						·0152 i	nches	s.
	Washington,	lat. 38°	53'	23"			0958		
	New York,	lat. 40°	42'	40"			1017		
	London,	lat. 51°	31'			39	·1393		
		lat. 45°				39	·1270	-	
		lat. L		39)·1270 in	0	09982	cos.	2 L.

Specific Gravity of various Substances.

in to a second	Weight of a oubic foot	Weight of a subie foot		Weight of a cubic foot	Weight of a cubic foot
METALS.	in ounces.	in pounds.	STONES.—Continued.	in ounces.	in pounds.
Antimony, fused . Bismuth, cast . Brass, common, cast . cast . wire-drawn . Copper, cast . wire-drawn . Gold, pure, cast . 22 carats, stand . 22 carats, stand . bars . hars . Lead, east . hitharge . Manganese . Mercury, solid . 400 helow 00 . at 32 deg. Fahr. at 212 deg. Nickel cast .	6,624 9,823 7,824 8,544 8,544 8,788 17,486 15,709 7,207 7,788 11,352 14,350 13,619 13,550 13,575 13,575 7,807	$\begin{array}{c} 414 \cdot 0 \\ 614 \cdot 0 \\ 439 \cdot 0 \\ 524 \cdot 8 \\ 534 \cdot 0 \\ 554 \cdot 9 \\ 1203 \cdot 6 \\ 1093 \cdot 0 \\ 982 \cdot 0 \\ 450 \cdot 5 \\ 436 \cdot 8 \\ 709 \cdot 5 \\ 437 \cdot 5 \\ 977 \cdot 0 \\ 851 \cdot 2 \\ 843 \cdot 8 \\ 836 \cdot 8 \\ 438 \cdot 0 \\ \end{array}$	Grindstone Gyrsum, opaque semi-transparent. Jet, hituminous Lime-stone Marhle Portelaiu, China. Portelaiu, China. Portelaiu, China. Portelaiu, China. Portelaistone Pumice stone Pumice stone Rotten-stone Slate; common new Stone, common rag Sulphur, native melted	$\begin{array}{c} 2,143\\ 2,168\\ 2,336\\ 1,259\\ 3,182\\ 2,700\\ 2,454\\ 2,335\\ 2,570\\ 915\\ 2,416\\ 1,981\\ 2,651\\ 2,601\\ 1,981\\ 2,652\\ 2,454\\ 2,520\\ 2,470\\ 2,033\\ 1,991\\ 1,991\\ \end{array}$	$\begin{array}{c} 134\cdot 0\\ 135\cdot 5\\ 144\cdot 1\\ 78\cdot 8\\ 199\cdot 0\\ 168\cdot 8\\ 155\cdot 2\\ 149\cdot 1\\ 160\cdot 6\\ 57\cdot 2\\ 151\cdot 0\\ 162\cdot 6\\ 124\cdot 0\\ 162\cdot 6\\ 124\cdot 0\\ 162\cdot 6\\ 124\cdot 0\\ 167\cdot 0\\ 178\cdot 4\\ 157\cdot 5\\ 154\cdot 4\\ 127\cdot 1\\ 124\cdot 5\end{array}$
Platina, crude, grains. purified. hammered rolled. wire-drawn Silver, cast, pure Parisian standard French coin siniling, Geo. III. Steel, soft. hardened. tempered and hard tempered and hard Tin, pure Cornish. Tuagsten. Uranium. Wolfram. Zinc, usual state pure.	$15,602\\19,500\\20,337\\22,069\\21,042\\10,474\\10,175\\10,043\\10,534\\10,534\\10,534\\7,840\\7,818\\7,2816\\7,818\\7,281\\6,066\\6,440\\7,119\\6,562\\7,191$	$\begin{array}{c} 975.1\\ 1218\cdot8\\ 1271\cdot1\\ 1319\cdot4\\ 1315\cdot1\\ 635\cdot0\\ 632\cdot0\\ 632\cdot0\\ 635\cdot4\\ 489\cdot6\\ 499\cdot0\\ 488\cdot5\\ 453\cdot6\\ 459\cdot6\\ 499\cdot0\\ 488\cdot6\\ 453\cdot6\\ 455\cdot6\\ 449\cdot0\\ 449\cdot5\\ 0\\ 449\cdot5\\ 0\\ 449\cdot5\\ 0\\ 449\cdot5\\ 0\\ 449\cdot5\\ 0\\ 129\cdot5\\ 0\\ 0\\ 129\cdot5\\ 0\\ 129\cdot5\\ 0\\ 129\cdot5\\ 0\\ 129\cdot5\\ 0\\ 0\\ 129\cdot5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	LiQUIDS. Acetie acid Acetous acid Alcohol, commercial highly rectified Beer Ether, sulphurie Milk of cows Muriatie acid highly concentrated Oil of almonds, sweet hemp-seed linseed olives poppies rape-seed turpentine, essence whales	$\begin{array}{c} 1,007\\ 1,025\\ 837\\ 829\\ 897\\ 1,032\\ 739\\ 1,032\\ 1,194\\ 1,271\\ 1,583\\ 917\\ 926\\ 940\\ 915\\ 924\\ 919\\ 919\\ 919\\ 870\\ 923\\ \end{array}$	$\begin{array}{c} 63.0\\ 64.1\\ 52.3\\ 51.8\\ 56.1\\ 63.0\\ 46.2\\ 64.5\\ 79.5\\ 99.0\\ 57.4\\ 58.8\\ 57.8\\$
WOODS. Ash	845 852 912 1,323 1,031 561 1,315 715 1,040 240	$52.9 \\ 53.2 \\ 57.0 \\ 83.0 \\ 64.5 \\ 35.1 \\ 82.2 \\ 44.8 \\ 65.0 \\ 15.0 \\ $	Spirits of wine, commercial f highly rectified Sulphuric acid highly concentrated Turpentine, liquid Vinegar, distilled Water, rain, or distilled sea. MISCELLANEOUS SUB- STANCES	837 829 1,841 2,125 991 1,010 1,000 1,026	52·4 51·9 115·1 133·0 62·0 63·1 62·5 64·1
Ebony, Indian	1,209 1,331 671 657 569 1,333 604 913 1,063 750 1,170 952 1,327 671 585 807	75-6 83-2 42-0 41-1 35-6 83-4 37-8 57-1 66-5 47-0 73-1 73-1 83-0 42-0 36-6 50-5	Beeswax. Butter . Camphor . Fat, beef or mutton . hogs' . Honey . Indigo . Ivory . Lard . Opium . Sugar, white. Tallow .	965 942 989 923 937 1,450 769 1,826 948 1,336 943 1,606 942	$\begin{array}{c} 60^{\circ}4\\ 59^{\circ}0\\ 62^{\circ}0\\ 57^{\circ}8\\ 58^{\circ}6\\ 90^{\circ}6\\ 48^{\circ}1\\ 114^{\circ}1\\ 59^{\circ}2\\ 83^{\circ}5\\ 59^{\circ}0\\ 100^{\circ}4\\ 59^{\circ}0 \end{array}$
STONES, EARTHS, ETC. Alabaster, yellow white Borax Brick earth Chalk Coal, Cannel Newcastle Staffordshire South Emery Flint, black Glass, flint white Granite, Aberd, blue Cornish Egyptian, red gray	$\begin{array}{c} 2,699\\ 2,730\\ 1,714\\ 2,000\\ 2,784\\ 1,270\\ 1,270\\ 1,240\\ 1,300\\ 4,000\\ 2,582\\ 2,933\\ 2,892\\ 2,652\\ 2,662\\ 2,654\\ 2,728\end{array}$	$\begin{array}{c} 168:8\\ 170\cdot6\\ 107\cdot1\\ 125\cdot0\\ 79\cdot4\\ 79\cdot4\\ 79\cdot4\\ 77\cdot5\\ 81\cdot2\\ 250\cdot0\\ 162\cdot0\\ 162\cdot0\\ 162\cdot0\\ 162\cdot2\\ 166\cdot4\\ 165\cdot9\\ 170\cdot5\\ 170\cdot5\\ \end{array}$	Atmospheric air being en as 1. Atmospheric, or common air Ammoniacal gas Azote Carbonic acid Carbonic oxide Carbonic oxide Carbonic oxide Carbureted hydrogen Muriatie acid gas Nitrons gas Nitrons gas Nitrons acid gas Steam Salphuretted hydrogen Salphureted hydrogen Salphureted hydrogen	stimated	1.000 .590 .969 1.520 .960 .491 .470 .074 1.278 1.094 2.427 1.104 .690 1.777 2.193
SPECIFIC GRAVITY.

TABLE of the Weight of a Foot in length of Flat and Rolled Iron.

ness hes arts.	-		1		BREADI	H IN D	NCHES .	AND PA	RTS OF	AN II	сн.	1				
Thick in inc	4	$3\frac{3}{4}$	31/2	31	3	$2\frac{3}{4}$	21/2	21	2	$1\frac{3}{4}$	11/2	138	$1\frac{1}{4}$	1	<u>3</u> 4	1
1000 1400 1400 1400 1400 1400 1400 1100 1100 1100	1.68 2.52 3.36 5.04 6.72 8.40 10.08 11.76 13.44 15.12	1.57 2.36 3.15 4.72 6.30 7.87 9.45 11.02 12.60 14.16 15.75	1.47 2.20 2.94 4.41 5.88 7.35 8.82 10.29 11.76 13.20	1·36 2·04 2·73 4·09 5·46 6·82 8·19 9·45 10·92 12·28 12·28	1.26 1.89 2.52 3.78 5.04 6.30 7.56 8.82 10.08 11.34	1.15 1.73 2.31 3.46 4.62 5.77 6.93 8.08 9.24 10.39	1.05 1.57 2.10 3.15 4.20 5.25 6.30 7.35 8.40 9.45	2 0.94 1.41 1.89 2.83 3.78 4.72 5.66 6.61 7.56 8.50	0.84 1.26 1.68 2.52 3.36 4.20 5.04 5.88 6.72 7.56	0.73 1.10 1.47 2.20 2.94 3.67 4.41 5.14 5.87 6.60	0.63 0.94 1.26 1.89 2.52 3.15 3.78 4.41 5.04 5.67	0.57 0.86 1.18 1.73 2.31 2.88 3.46 4.04 4.62 5.19	0.52 0.78 1.05 1.57 2.10 2.62 3.15 3.67 4.20 4.72	0.42 0.63 0.84 1.26 1.68 2.10 2.52 2.94	0.31 0.47 0.63 0.94 1.26 1.57	0.21 0.31 0.42 0.63
14 14 14 14 14 14 14 14 14 14 14 14 14 1	16.80 18.48 20.18 23.54 26.88 33.65 40.32 47.04	15·75 17·32 18·90 22·05 25·20 31·50 37·80	14.70 16.16 17.64 20.58 23.52 29.40 35.28	$13.65 \\ 15.01 \\ 16.38 \\ 19.11 \\ 21.84 \\ 27.39 \\ 32.76$	$12.60 \\ 13.86 \\ 15.12 \\ 17.64 \\ 20.16 \\ 25.20 $	11.55 12.70 13.86 16.17 18.48 23.10	10.50 11.55 12.60 14.70 16.80	9·45 10·39 11·34 13·22 15·12	8·40 9·24 10·08	7:35 8:07 8:80	6.30	5.77				

TABLE of the Weight of Cast-iron Pipes, in lengths.

Bore. Bore. Holder. Holder. Holder. Long. Meight Bore. Long. Thick. Holder. Long. Thick Long. Thick Long. Lo	Long.	Weight.
Inch. Inch. Feet. C. qr. lb. Inch. Inch. Feet. C. qr. lb. Inch. Inch. 1 $\frac{1}{4}$ $\frac{31}{2}$ 12 $6\frac{1}{2}$ $\frac{3}{8}$ 9 2 0 16 11 $\frac{1}{2}$ $\frac{1}{2}$	Feet.	C. qr. lb. 5 0 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	7 3 20 10 3 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	5116 639
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9	$\begin{array}{cccc}11&2&12\\&5&3&7\end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$\begin{array}{c} 7 & 1 & 12 \\ 8 & 3 & 16 \\ 11 & 2 & 24 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9	9 1 0 12 1 ·14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$\begin{array}{c} 6 & 0 & 24 \\ 7 & 3 & 14 \\ 0 & 2 & 0 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9	9 3 7 13 0 26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\$\bar{x}\$ 9 3 3 7 \$\bar{x}\$ 9 5 3 7 \$\bar{x}\$ 1 \$\bar{y}\$ 5 0 12 \$\bar{x}\$ 9 7 0 1 <th1< th=""> <th1< th=""> 1 <t< td=""><td>9</td><td>10 9 10 13 2 17 17 1 6</td></t<></th1<></th1<>	9	10 9 10 13 2 17 17 1 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.	7 0 22 10 1 20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9	14 0 8 17 3 14

TABLE of the Weight of one Foot Length of Malleable Iron.

SQUA	RE IRON.		ROU	IND IRON.	
Scantling.	Weight.	Diameter.	Weight.	Circumference.	Weight.
Inches.	Pounds.	Inches.	Pounds.	Inches.	Pounds.
1	0.21	1 1	0.16	1	0.26
183	0.47	3	0.37	11	0.41
1	0.84	1	0.66	11	0.59
5	1.34	5	1.03	13	0.82
34	1.89	334	1.48	2	1.05
1	2.57	1	2.02 -	21	1.34
1	3.36	* 1	2.63	21	1.65
11	4.25	11	3.33	23	2.01
11	5.25	11	4.12	3	2.37
18	6.35	18	4.98	31	2.79
14	7.56	11	5.93	31	3.24
18	8.87	18	6.96	33	3.69
13	10.29	13	8.08	4	4.23
11	11.81	17	9.27	41	5.35
2	13.44	2	10.55	5	6.61
21	17.01	21	13.35	51	7.99
21	21.00	21	16·48	6	9.51
23	25.41	23	19.95	61	11.18
8	30.24	3	23.73	7	12.96
31	41.16	31	27.85	71	14.78
4	53.76	31	32.32	8	16.92
41	68.04	33	87.09	/ 81	19.21
5	84.00	4	42.21	9	21.53
6	120.96	43	53.41	10	26.43
7	164.64	5	65.93	12	31.99

The following tables are rendered of great utility by means of this table :---

The weight of	Water	being	1.
	Copper	==	8.8
	Brass	=	8.4
	Iron, cast	=	7.2
	Lead		11.3
	Zinc		7.2
	Gun-metal	=	8.7
	Sand	=	1.5
	Coal		1.25
	Brick	=	2.0
	Stone	-	2.5
	Timber, average		0.85

Suppose it be required to ascertain the weight of a cast iron pipe 26¹/₄ inches outside and $23\frac{3}{4}$ inside, the length being $6\frac{1}{2}$ feet. Opposite 26¹/₄ in the table is

 $234.8576 \times 7.2 \times 6.5 = 10991.135.$

And opposite $23\frac{3}{4}$ in the table is

 $192 \cdot 2856 \times 7 \cdot 2 \times 6 \cdot 5 = 8998 \cdot 966$ subtract

1992.169 lbs. avr.

SPECIFIC GRAVITY.

Surface and Solidity of Spheres.

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in lbs.
1 in.	3.1416	·5236	•8060	·6666	·0190
TE	3.5465	•6280	·8563	.7082	.0227
1	3.9760	.7455	.9067	.7500	.0270
3	4.4301	·8767	·9571	•7917	.0317
1	4.9087	1.0226	1.0075	.8333	.0370
. 5	5.4117	1.1838	1.0578	.8750	.0428
3	5.9395	1.3611	1.1082	.9166	.0500
7	6.4918	1.5553	1.1586	.9583	.0563
10	7.0686	1.7671	1.2090	1.0000	.0640
9	7.6699	2.0000	1.2593	1.0416	.0723
5	8.2957	2.2467	1.3097	1.0833	.0813
11	8.9461	2.5161	1.3601	1.1349	.0910
16 3	9.6211	2.8061	1.4105	1.1666	•1015
4 13	10.3206	3.1176	1.4608	1.0002	•1100
16	11.0446	3.4514	1.5110	1.9500	1120
8	11.7020	9.0001	1.5616	1.0016	1200
16	10.5664	0.1000	1.0000	1.2910	1510
2 11.	12.0004	41000	1.0020	1.3333	1010
T ₆	13'3040	4.9938	1.0033	1.3750	1662
8	14.1862	5.0243	1.7127	1.4166	.1818
T ₆	15.0330	5.4807	1.7631	1.4582	.1982
4	15.9043	6.9640	1.8132	1.2000	•2160
16	16.8000	6.4749	1.8638	1.5516	•2342
8	17.7205	7.0143	1.9142	1.5832	2540
76	18.6655	7.5828	1.9646	1.6250	2743
12	19.6350	8.1812	2.0150	1.6666	2960
9 16	20.6290	8.8103	2.0653	1.7082	·3187
5	21.6475	9.4708	2.1157	1.7500	•3426
++	22.6907	10.1634	2.1661	1.7915	•3676
34	23.7583	10.8892	2.2165	1.8332	.3939
13	24.8505	11.6485	2.2668	1.8750	•4213
7	25.9672	12.4426	2.3172	1.9165	•4501
15	27.1084	13.2718	2:3676	1.9582	•4800
3 in.	28.2744	14.1372	2.4180	2.0000	.5114
1.	29.4647	15.0392	2.4683	2.0415	.5440
10	30.6796	15.9790	2.5187	2.0832	.5780
3	31.9191	16.9570	2:5691	2.1250	·6133
10	33.1831	17.9742	2.6195	2.1665	.6401
5	35.3715	19.0311	2.6698	2.2082	·6884
16	35.7847	20.1289	2.7202	2.2500	•7281
87	37.1994	21.2680	2.7706	2.2015	•7603
16	38.4846	20000	2.8210	0.2220	.8190
2 9	20.8713	22.6725	9.8712	2.2750	.8561
T 6 5	11.0205	20 0700	2 0/15	2.0100	+0091
8	41 2020	24 9410	2.9217	2.4100	9021
16	44 1100	20 2009	2.0005	24004	:0007
4	44.1101	20.0100	3.0223	2.5000	9901
1,6	40.0000	29.0102	3.1020	2.0410	1.1090
8	41-1430	21.0640	3 1232	2.0052	1.1561
16	48.1010	31.9040	3.1730	2.0200	1.1074
4 10.	51.0400	35.3104	3.2240	2.0000	1.1974
T 6	51.8480	35.1058	3.2/43	2.7082	1.2098
8	53 4562	30.7511	3.3247	2.7500	1.3293
To	55.0884	38.44/1	3.3751	2.7915	1.3906
4	56.7451	40.1944	3.4255	2.8332	1.4538
To	58.4262	42.0461	3.4758	2.8750	1.5208
8	60.1321	43.8463	3.5262	2.9165	1.5860
T'6	61.8625	45.7524	3.5766	2.9582	1.6550

THE PRACTICAL MODEL CALCULATOR.

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in lbs	
12	63.6174	47.7127	3.6270	3.0000	1.7258	
1 ⁹	65.3968	49.7290	3.6773	3.0412	1.7987	
58	67.2007	51.8006	3.7277	3.0832	1.8736	
++	69.0352	53.9290	3.7781	3.1250	1.9506	
34	70.8823	56.1151	3.8285	3.1665	2.0297	
13	72.7599	58.3595	3.8788	3.2080	2.1109	
7	74.6620	60.6629	3.9292	3.2500	2.1942	
15	76.5887	62.9261	3.0706	3.2013	2.2760	
5^{10}	78.5400	65.4500	4.0300	2.2220	2.3673	
1	80.5157	67.9351	4.0803	3.3750	2.4572	
16	82.5160	70.4894	4.1207	3.4155	2.5453	
3	84.5400	72.0026	1.1011	2.4589	2.6438	
16	86.5002	75.7664	4.0215	2.5000	2.7605	
4 5	00.6641	70.5077	4.0010	2.5414	2,000	
16	00.7697	10.0011	4.2818	0.50414	2 0390	
8 7	90.7027	81 3083	4.3322	3.9832	2.9407	
T 6	92.8898	84.1777	4.3820	3.0200	3.0447	
2	95.0334	87.1139	4.4330	3.6665	3.1509	
16	97.2053	90.1175	4.4633	3.7080	3.2595	
8	99.4021	93.1875	4.5337	3.7500	3.3706	
16	101.6233	96.3304	4.5841	3.7913	3.4843	
<u>3</u> 4	$103 \cdot 8691$	99.5412	4.6345	3.8330	3.6004	
13	106.1394	102.8225	4.6848	3.8750	3.7191	
78	$108 \cdot 4342$	106.1754	4.7352	3.9163	3.8404	
15	110.7536	109.5973	4.7856	3.9580	3.9641	
6 in.	113.0976	113.0976	4.8360	4.0000	4.0907	
1.	115.4660	116.6688	4.8863	4.0417	4.2200	
10	117.8590	120.3139	4.9367	4.0833	4.3517	
3	120.2771	124.0374	4.9871	4.1250	4.4874	
16	122.7187	127.8320	5.0375	4.1666	4.6236	
4 5	125.1852	131.7053	5.0878	4.2083	4.7638	
16	127.6765	135-6563	5.1382	4.2500	4.9067	
8 7	120.1023	130.6854	5.1886	4.2017	5.0524	
16	139.7396	143.7036	5.2300	4.3332	5.2010	
2 9	125.0074	147.0915	5.2803	4.3750	5.3525	
16	197.0067	159.9400	5.2277	4.4165	5.5069	
8	140:5006	152-2499	5.2001	4.45.99	5.6796	
16	140.3000	100.0997	5-3901	4.4000	5,9045	
4	143.1391	101.0315	5*4400	4.5000	6.0001	
16	145.8021	167.5461	5-4908	4.5410	6.1550	
8	148.4896	170.1682	5.5412	4.0832	6.9095	
$\frac{15}{16}$	151.2017	174.8270	5.5916	4.0200	0.3230	
7 in.	153.9384	179.5948	5.6420	4.0000	0.4960	
IG	156.6995	$184 \cdot 4484$	5.6923	4.7082	6.6725	
18	159.4852	189.3882	5.7427	4.7500	6.8502	
3	$162 \cdot 2955$	194.1165	5.7931	4.7915	7.0212	
1	$165 \cdot 1303$	$199 \cdot 5325$	5.8435	4.8332	7.2171	
5	167.9895	204.7371	5.8938	4.8750	7.4053	
3	170.8735	210.0331	5.9442	4.9166	7.5970	
17	$173 \cdot 7520$	$215 \cdot 4172$	5.9946	4.9582	7.7916	
10	176.7150	220.8937	6.0450	5.0000	7.9897	
9	179.6725	226.7240	6.0953	5.0415	8.2006	
16	182.6545	232.1235	6.1457	5.0832	8.3960	
8	185.6611	237.8883	6.1961	5.1250	8.6044	
16	188.6923	243.7276	6.2465	5.1665	8.8157	
4	191.7480	249.4720	6.2968	5.2082	9.0234	
16	104.8989	255.7191	6.3472	5.2500	9.2491	
8	107.0220	261.0672	6.3976	5.2913	9.4753	
16	201-0694	201 3013	6.4480	5.3330	9.6965	
o in.	201 0024	200 0002	6.4093	5.2750	0.0260	

SPECIFIC GRAVITY.

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in lbs
+	207.3946	280.8469	6.5487	5.4164	10.1583
-3- 16	210.5976	287.3780	6.5991	5.4581	10.3944
ł	$213 \cdot 8251$	294.0095	6.6495	5.5000	10.6343
5	217.0770	300.7422	6.6998	5.5414	10.8778
3	220.3537	307.5771	6.7502	5.5831	11.1250
7.	223.6549	314.5147	6.8006	5.6250	11.3760
1	226.9806	321.5553	6.8510	5.6664	11.6306
9	230.3308	328.7012	6.9013	5.7080	11.8891
5	233.7055	335-0517	6.9517	5.7500	12.1514
11	237.1048	343.2070	7.0021	5.7013	12.4170
16	240.5997	250.7710	7.0525	5.0220	12.6974
4	240 0201	250.2410	7.1099	5.9750	12:0619
16	245 9771	200.0412	7.1520	5.0169	12 9012
8	247 4000	500.0199	7.0026	5.0500	10 4090
16	200.9410	3/3.80/3	7-2030	0.0000	13.0200
9 in.	254.4690	381.7017	7.2540	0.0000	13.8062
T ₆	258.0261	389.7118	7.3043	6.0417	14.0959
8	261.5872	397.8306	7.3547	6.0833	14.3895
16	$265 \cdot 1829$	406.0613	. 7.4051	6.1250	14.6872
4	$268 \cdot 8031$	$414 \cdot 4048$	- 7.4555	6.1667	14.9890
16	$272 \cdot 4477$	$421 \cdot 2907$	7.5058 =	6.2083	15.2381
38	$276 \cdot 1171$	431.4361	7.5562	6.2500	15.6050
78	$279 \cdot 8110$	440.1294	7.6066	6.2916	15.9195
1	$283 \cdot 5294$	448.9215	7.6570	6.3333	16.2375
9	$287 \cdot 2723$	457.8500	7.7073	6.3750	16.5604
5	291.0397	466.8763	7.7557	6.4166	16.6869
ů l	$294 \cdot 8310$	476.0304	7.8081	6.4582	17.2180
3	298.4483	485.3035	7.8585	6.5000	17:5534
13	302.4894	494.6952	7.9088	6.5415	17.8931
16	306.3550	504.2004	7.9592	6.5832	18.2373
8	310.0459	512.8426	8.0006	6.6250	18.5857
16 O in	214.1600	592.6000	8:0600	6.6666	18.6796
1	218.0009	522.4700	8.1102	6,7000	10.0060
16	299.0620	549.4014	0.1007	6.7500	10.6577
8	344 0030	559,0001	0.1007	0.7000	19.0011
TG	320.0514	560.0001	8.2111	0.7910	20.0240
4	330.0043	203.8003	8.2015	0.9229	20.3948
1 e	334.1016	574.2371	8.3118	6.8750	20.0082
8	338.1637	584.7415	8.3622	6.9166	21.1501
16	$342 \cdot 2503$	595.3677	8.4126	6.9582	21.5344
2	$346 \cdot 3614$	606.1318	8.4630	7.0000	21.9238
18	350.4970	$617 \cdot 0207$	8.5133	7.0416	22.3176
58	354.6571	628.0387	8.5637	7.0833	22.7162
++	$358 \cdot 8418$	639.1871	8.6141	7.1250	23.1194
34	363.0511	650.4666	8.6645	7.1666	23.5274
18	367.2849	661.8580	8.7148	7.2082	23.9394
1	371.5432	673.4222*	8.7652	7.2500	24.3577
15	375.8261	685.0997	8.8156	7.2915	24.7801
1 in. /	380.1336	696.9116	8.8660	7.3330	25.2073
1	384.4655	708.9106	8.9163	7.3750	- 25.6414
1	388.8220	720.9409	8.9667	7.4165	26.0764
3	393.2031	733.1599	9.0171	7.4582	26.5184
16	397.6087	745.5004	9.0675	7.5000	26.5657
5	402.0387	758.0104	9.1178	7.5414	27.4169
16	406.4025	770.6440	0.1682	7.5929	27.8749
8	410.7700	792.5797	0.9196	7.6050	28.2400
16	410 1120	706.2201	9 2100	7.6664	20 3420
2	410.0040	190.301	9.2090	7.70004	20.0033
16	420.0049	009.3844	9.9193	77080	29-2/04
8	424 00/0	022-0807	9.2091	7.7010	29.1521
16	429 1351	939.8089	9.4201	1.1913	30.2370

Diameter.	Surface.	Solidity.	Cube.	Cylinder.	Water in lbs.	
34	433.7371	849.4035	9.4705	7.8330	30.7229	
13	438.3636	863.0283	9.5208	7.8750	$31 \cdot 2157$	
I.G	443.0146	876.7999	9.5772	7.9163	31.3883	
15	447.6902	890.7070	9.6216	7.9580	$32 \cdot 2169$	
12 in.	452.3904	904.7808	9.6720	8.0000	32.7259	
1	471.4363	- 962.5158	9.8735	8.1666	$34 \cdot 8142$	
1	490.8750	1022.656	10.0750	8.3332	36.9886	
3	506.7064	1085.251	10.2765	8.5000	$39 \cdot 2535$	
13 in.	530.9304	1150.337	10.4780	8.6666	41.6077	
1	551.5471	1218.000	10.6790	8.8332	44.0551	
1	572.5566	1288.252	10.8810	9.0000	46.5961	
3	593.9587	1361.346	11.0825	9.1665	49.2399	
14 in.	615.7536	1436.758	11.2840	9.8332	51.9675	
1	637.9411	1515.106	11.4855	9.5000	54.8014	
1	· 660·5214	1596.260	11.6870	9.6665	57.7367	
3	683.4943	1680.265	11.8885	9.8332	60.7751	
15 in.	706.8600	1767.150	12.0900	10.0000	64.0178	
+	730.6183	1856.988	12.2915	10.1666	67.1672	
10	754.7694	1949.821	12.4930	10.3332	70.5250	
3	779.3131	2045.697	12.6940	10.5000	73.9929	
16 in.	804.2496	2144.665	12.8960	10.6666	77.5725	

TABLE containing the Weight of Flat Bar Iron, 1 foot in length, of various breadths and thicknesses.

in.		SL.		THICK	NESS IN P	ARTS OF	AN INCH.			· · · · ·
eadth	4	16	8	18	1/2	9 16	- <u>5</u> - 8	3 4	7	1 inch.
¥_	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
1 in.	0.83	1.04	1.25	1.45	1.66	1.87	2.08	2.50	2.91	3.33
11	0.93	1.17	1.40	1.64	1.87	2.00	2.34	2.81	3.28	3.75
11	1.04	1.30	1.56	1.82	2.08	2.34	2.60	3.12	3.74	4.16
13	1.14	1.43	1.71	2.00	2.29	2.57	2.86	3.43	4.01	4.58
11	1.25	1.56	1.87	2.18	2.50	2.81	3.12	8.75	4.37	5.00
1\$	1.35	1.69	2.03	2.36	2.70	3.04	3.38	4.06	4.73	5.41
13	1.45	1.82	2.18	2.55	2.91	3.28	3.64	4.37	5.10	5.83
17	1.56	1.95	2.34	2.73	3.12	3.51	8.90	4.68	5.46	6.25
2 in.	1.66	2.08	2.50	2.91	3.33	3.75	4.16	5.00	5.83	6.66
21	1.77	2.21	2.65	3.09	3.54	3.98	4.42	5.31	6.19	7.08
21	1.87	2.34	2.81	3.28	3.75	4.21	4.68	5.62	6.56	7.50
23	1.97	2.47	2.96	3.46	3.95	4.45	4.94	5.93	6.92	7.91
$2\frac{2}{2}$	2.08	2.60	3.12	3.64	4.16	4.68	5.20	6.25	7.29	8.33
25	2.18	2.73	3.28	3.82	4.37	4.92	5.46	6.56	7.65	8.75
$2\frac{3}{4}$	2.29	2.86	3.43	4.01	4.58	5.15	5.72	6.87	8.02	9.16
27	2.39	2.99	3.59	4.19	4.79	5.39	5.98	7.18	8.38	9.58
3 in.	2.50	3.12	3.75	4.37	5.00	5.62	6.25	7.50	8.75	10.00
31	2.70	3.38	4.06	4.73	5.41	6.09	6.77	8.12	9.47	10.83
31	2.91	3.64	4.37	5.10	5.83	6.56	7.29	8.75	10.20	11.66
33	3.12	3.90	4.68	5.46	6.25	7.03	7.81	9.37	10.93	12.50
4 in.	3.33	4.16	5.00	5.83	6.66	7.50	8.33	10.00	11.66	13.33
41	3.54	4.42	5.31	6.19	7.08	7.96	8.85	10.62	12.39	14.16
41	3.75	4.68	5.62	6.56	7.50	8.43	9.37	11.25	13.12	15.00
43	3.95	4.94	5.93	6.92	7.91	8.90	9.89	11.87	13.85	15.33
5 in.	4.17	5.20	6.25	7.29	8.33	9.37	10.41	12.50	14.58	16.66
51	4.37	5.46	6.56	7.65	8.75	9.84	, 10.93	13.12	15.31	17.50
51	4.58	5.72	6.87	8.02	9.16	10.31	11.45	13.75	16.04	18.33
53	4.79	5.98	- 7.18	8.38	9.58	10.78	11.97	14.37	16.77	19.16
6 in.	5.00	6.26	7.50	8.75	10.00	11.25	12.50	15.00	17.50	20.00

					MET.	ALS.					STON	ES, EAI	атнs,	ETC.
Names.	Specific gravity.	Melting points in de- grees of Fahrenheit.	Contraction in parts of an inch yer lineal foot from the fluid to the average tempera- ture in solid state.	Ultimate cohesive strength of an inch sq. prism in tons.	Scale of wire-drawing ductility.	Scale of laminable ductility.	Ratio of hardness.	Boale as conductors of electricity.	Ratio of power in the conduction of heat.	Names.	Specific gravity.	Weight of a cubic foot in lbs.	Cubis feet in a ton.	Tons required to orush114-in.cubes.
Platinum Pure Gold Pure Silver . Bismuth Copper, cast. " wrought Brass, cast . " wrought Brass, cast . " bar Steel, soft . " hard . Tin, east . " in east .	19500 19258 13500 11352 10474 8923 8788 8910 7824 8396 7264 7700 7833 7816 7291 7190	3280 2016 612 1873 476 1996 1900 2786 442 773	··· ·319 ··· ·156 ·193 ·· ·210 ·· ·125 ·133 ·· ·133 ·· ·278 ·329	··· ··· ··· ··· ··· ··· ··· ··· ··· ··	3 1 5 6 4 8 7	51 72 3 6 8 48	18 10 2.4 2.0 2.8 {to any degree 47 {to any degree 47 to any degree 1.2 1.6	3 6 2 1 4 5 7	3.8 10.0 9.7 8.9 8.6 3.7 3.0 3.6	Marble, average Granite, ditto - Purbeck stone - Portland ditto - Bristol ditto - Millistone - Craigleith ditto Grindstone - Chalk, Brit. Brick - Coal, Scotch - "Newcastle "Staffordsh. "Cannel -	2730 2651 2601 2570 2554 2484 2415 2362 2143 2781 2000 1300 1270 1240 1238	$\begin{array}{c} 170\mbox{-}00\\ 165\mbox{-}68\\ 162\mbox{-}56\\ 150\mbox{-}62\\ 155\mbox{-}25\\ 155\mbox{-}25\\ 155\mbox{-}93\\ 147\mbox{-}62\\ 133\mbox{-}93\\ 173\mbox{-}81\\ 125\mbox{-}00\\ 81\mbox{-}15\\ 79\mbox{-}37\\ 77\mbox{-}50\\ 77\mbox{-}37\\ 77\mbox{-}37\\ \end{array}$	$13 \\ 13 \\ 13 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 16 \\ 14 \\ 17 \\ 27 \\ 29 \\ 29 \\ 29 \\ 17 \\ 27 \\ 29 \\ 29 \\ 17 \\ 29 \\ 29 \\ 29 \\ 17 \\ 29 \\ 29 \\ 29 \\ 17 \\ 29 \\ 29 \\ 29 \\ 17 \\ 29 \\ 29 \\ 29 \\ 17 \\ 29 \\ 29 \\ 29 \\ 17 \\ 29 \\ 29 \\ 29 \\ 29 \\ 29 \\ 29 \\ 29 \\ 29$	9-25 6-2 9-0 4-5 5-7 5-0 6-6 0-5 0-8

TABLE combining the Specific Gravities and other Properties ofBodies.Water the standard of comparison, or 1000.

TABLE containing the Weight of Columns of Water, each one foot in length, and of Various Diameters, in lbs. avoirdupois.

Diam	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.
3 10	3.0672	9 in.	27.6120	15 in.	76.7004	21 in.	150.2376	27 in.	248-5116	33 in	371-9944
1/	3.3288	1/	28.3848	16	77-0844	16	152.1288	1/	250-8180	1/	274.0520
	3.6000	1	29.1672	14	70.2702	12	153-9348	1	253-1359	12	276-2004
1 32	3.8320	32	29.9604	3/	80-5836	32	155.7396	22	255-1632	3	370.4509
12	4.1748	12	30.7657	12	91-0000	12	157-5780	12	257.9045	1 18	999.5094
52	4.4784	52	31-6524	5	83.9960	5/	159-4152	52	260-1504	23	205.4900
78	4.7928	34	32:4060	3%	84-5698	3	161-2644	38	262.5006	38	200.4294
22	5.1180	22	33-2424	2%	85-0104	7	163-1220	12	264-9706	24	201.1290
4 in	5.4540	10 in.	34.0884	16 in.	87-2688	22 in.	164 9928	28 in	267.9616	34 8	204.0740
1/	5.7996	1/	31-9464	1/	88-6368	1/2	166.8732	14	260-6529	Ju.	206-07/22
1/	6.1572	1	35.8152	1	90.0168	12	168.7632	1	272.0544	18	1 300-9700
34	6.5244	32	36.6936	3/2	91-4176	37	170-6652	32	975-6679	34	409.90920
12	6.9024	12	37.5823	12	92-80-30	1%	172:5780	1 12	276-9016	18	405.7500
52	7.2912	5%	38.4828	3%	94-2192	5%	174.5004	5/	270.3259	1 32	109.6049
3/	7 6903	3%	39-3936	34	95.6412	3/	176.4336	3/	281.7708	1 3	411-4116
2/2	8.1012	2%	40.3152	2%	97-0740	2	178.3776	7/	284-9960	4	414-6190
5 in.	8.5212	11 in.	41.2476	17 in.	98.5176	23 in.	180.3324	29 in.	286 6920	35 in	417.5059
1/	8.9532	1/	42.1908	1/2	99.9720	1/2	182.2980	16	289-1688	1	420.5814
14	9.3948	14	43.1436	1/4	101.4372	14	184.2744	1	291-6564	18	423-5832
3%	9.8484	3/8	44.1084	3/8	102-9120	3/8	186-2616	3/	294 1548	32	426.5928
12	10.3126	1%	45.0828	1%	104-3988	3/9	188-2584	10	296.5548	12	420-6120
5%	10.7856	5%	46.0680	5/2	105.8952	5/8	190.2672	5%	299.1828	32	439-6439
3/	11.2704	34	47.0640	34	107.4024	3/4	192.2856	3/	301.7124	3/	435-6840
2%	11.7660	7/8	48.0708	1 7/8	108.9204	7/8	194-3184	2/	304.2540	2	433 7368
6 in.	12.2712	12 in.	49.0884	18 in.	110.4492	24 in.	196-3548	30 in.	306.8052	36 in.	441.7992
1/8	12.7884	1/8	50.1168	1/3	111.9388	1/8	198.4056	1/2	309.3672	1/1	447-9573
14	$13 \cdot 3152$	14	51.1548	1/4	113.5392	14	200.4672	1/4	311 9400	13%	454.1678
3/8	13.8540	3/8	$52 \cdot 2048$	38	115.0992	18	203.5384	3/8	314.5224	34	460-4105
1/2	14.4024	1/2	$53 \cdot 2644$	1/2	116.6712	1/2	204.6216	1/2	317.1168	37 in.	466-6960
1/8	14.9616	28	54.3348	28	118.2528	28	206.7144	1 1/8	319.7220	1/4	473.0240
3/4	15.5316	4	55.4760	24	119.8452	4	208.8192	34	322.3368	1/2	479.3946
7/8	16-1124	108	56.4804	108	121.4484	3	210.9336	18	324.9624	3/4	485.8078
7 in.	16 7028	13 in.	57.6108	19 in.	123.0624	25 in.	213.0588	31 in.	327.6000	38 in.	492.2637
1/8	17.3052	18	58.7244	18	124.6872	18	215.1948	1/8	330.2472	34	498.7621
4	17.9172	14	59.8476	4	126-3228	1 34	217.3416	1 24	332.9052	1/2	505.3032
18	18.5412	18	60.9828	18	127.9680	18	219.4980	18	335.5728	3/4	511.9979
1 2	19.1/48	73	62.12/0	1 23	129.6252	73	221.0664	1 23	338-2524	39 in.	$518 \cdot 4132$
28	19.8192	78 .	63.2832	28	131.5320	18	223.8444	28	340.9428	14	$525 \cdot 1821$
4	20.4/44	.74	04 4490	24	132.9696	24	220.0344	24	343.6428	1/2	531-8936
8	21.1404	14 in	66.9149	20 10	134.0580	26 in	228 2340	29 in	340.0704	14	538 6478
014.	22-5036	1/	68-0126	1/	130.3302	1/	230 4144	1/	349.0704	40 in.	040.4440
18	23.2020	1.8	60.9220	1	130.00/2	18	234-8576	18	251.5590	14	552.2839
4	23.9100	3/	70.4424	3/	141-5194	3/	237-1404	374	257,2049	13	009.1009
18	24.5288	18	71.6724	12	142.9602	12	220.2028	18	360-0606	413	579.0577
33	25.3524	5/	72.9120	52	145-0128	5/	241-6572	5	369-9459	*1 11.	597.1100
3/	26.0988	3/	74-1649	3/	146-7756	34	243-9312	3/	365-6304	19 10	601-2526
7/	26 8500	7%	75.4272	24	148 5492	2%	246-2160	2	368-4276	50 in	700-2426
18		1 10		1 18	1 10 0104	/8		18	000 2010	00 14.	100 6260

 $\mathbf{26}$

THE PRACTICAL MODEL CALCULATOR.

				LENG	TH OF T	HE BARS	IN FEET.		•	
nche	1 foot.	2 feet.	3 feet.	4 feet.	5 feet.	6 feet.	7 feet.	8 feet.	9 feet.	10 feet.
Hā	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
ł	0.2	0.4	0.6	0.8	1.1	1.3	1.5	1.7	1.9	2.1
430	0.5	1.0	1.4	1.9	2.4	2.9	3.3	3.8	4.3	4.8
1 de la compañía de l	0.8	1.7	2.5	3.4	4.2	5.1	5.9	6.8	7.6	8.5
1500	1.3	2.6	4.0	5.3	6.6	7.9	9.2	10.6	11.0	13.2
34	1.9	3.8	5.7	7.6	9.5	11.4	13.3	15.2	17.1	19.0
78	2.6	$5\cdot 2$	7.8	10.4	12.9	15.5	18.1	20.7	23.3	25.9
1 in.	3.4	6.8	10.1	13.5	16.9	20.3	23.7	27.0	30.4	33.8
11	4.3	8.6	12.8	17.1	21.4	25.7	29.9	34.2	38.5	42.8
$1\frac{1}{4}$	5.3	10.6	15.8	21.1	26.4	31.7	37.0	42.2	47.5	52.8
18	6.4	12.8	19.2	25.6	32.0	38.3	44.7	51.1	57.5	63.9
11	- 7.6	15.2	22.8	30.4	38.0	45.6	$53 \cdot 2$	60.8	68.4	76.0
15	8.9	17.9	26.8	35.7	44.6	53.6	62.5	71.4	80.3	89.3
$1\frac{3}{4}$	10.4	20.7	31.1	41.4	51.8	62.1	72.5	82.8	93.2	103.5
15	11.9	23.8	35.6	47.5	59.4	71.3	83.2	95.1	106.9	118.8
2 in.	13.5	27.0	40.6	54.1	67.6	81.1	94.6	108.2	121.7	135.2
$2\frac{1}{8}$	15.3	30.5	45.8	61.1	76.3	91.6	106.8	122.1	137.4	152.6
$2\frac{1}{4}$	17.1	34.2	51.3	68.4	85.6	102.7	119.8	136.9	154.0	$171 \cdot 1$
$2\frac{3}{8}$	19.1	38.1	57.2	76.3	95.3	114.4	133.5	152.5	171.6	190.7
$2\frac{1}{2}$	21.1	42.8	63.4	84.5	105.6	126.7	147.8	169.0	190.1	211.2
$2\frac{5}{8}$	23.3	46.6	69.9	93.2	116.5	139.8	163.0	186.3	209.6	232.9
$2\frac{3}{4}$	25.6	51.1	76.7	102.2	127.8	153.4	178.9	204.5	230.0	255.6
$2\frac{7}{8}$	27.9	55.9	83.8	111.8	139.7	167.6	195.7	223.5	251.5	279.4
3 in.	30.4	60.8	91.2	121.7	152.1	182.5	212.9	$243 \cdot 3$	273.7	304.2
3 1	33.0	66.0	99.0	132.0	165.1	198.1	231.1	264.1	297.1	330.1
$3\frac{1}{4}$	35.7	71.4	107.1	142.8	178.5	214.2	249.9	285.6	321.3	357.0
33	38.5	77.0	115.5	154.0	192.5	231.0	269.5	308.0	346.5	385.0
31	41.4	82.8	124.2	165.6	207.0	248.4	289-8	331.3	372.7	414.1
35	44.4	88.8	133.3	177.7	$222 \cdot 1$	266.5	310.9	355.3	399.8	444.2
$3\frac{3}{4}$	47.5	95.1	142.6	190.1	237.7	285.2	332.7	380.3	427.8	475.3
37	50.8	101.5	152.3	203.0	253.8	304.5	355.3	406 .0	456.8	507.6
4 in.	54.1	108.2	162.3	216.3	270.4	324.5	378.6	432.7	486.8	540.8
41	57.5	115.0	172.6	230.1	287.6	345.1	402.6	460.1	517.7	575.2
$4\frac{1}{4}$	61.1	$122 \cdot 1$	$183 \cdot 2$	244.2	305.3	366.3	427.4	488.4	549.5	610.6
43	64.7	129.4	194.1	258.8	323.5	388.2	452.9	517.6	582.3	647.0
41	68.4	136.9	205.3	273.8	342.2	410.7	479.1	547.6	616.0	684.5
48	72.3	144.6	216.9	289.2	361.5	433.8	506.1	578.4	650.7	723.1
$4\frac{3}{4}$	76.3	152.5	228.8	$305 \cdot 1$	381.3	457.6	533.8	610.1	686.4	762.6
47	80.3	160.7	241.0	321.3	401.7	482.0	562.3	642.7	723.0	803.3
5 in.	84.5	169.0	253.4	337.9	422.4	506.9	591.4	675.8	760.3	844.8
54	93.2	186.3	279.5	872.7	465.8	559.0	652.2	145.3	838.5	931.7
51	102.2	204.5	306.7	409.0	511.2	613.4	715.7	817.9	920.2	1022.4
$5\frac{3}{4}$	1111.8	223.5	335.3	447.0	558.8	670.5	782.3	894.0	1005.8	1117.6
6 in.	121.7	243.3	365.0	486.7	608.3	730.0	841.6	973.3	1009.5	1216.6

TABLE containing the Weight of Square Bar Iron, from 1 to 10 feet in length, and from $\frac{1}{4}$ of an inch to 6 inches square.

TABLE of the Weight of a Square Foot of Sheet Iron in lbs. avoirdupois, the thickness being the number on the wire-gauge. No. 1 is $\frac{5}{16}$ of an inch; No. 4, $\frac{1}{4}$; No. 11, $\frac{1}{3}$, fc.

No. on wire-gauge	1	2	3	4	5	6	7	8	9	10	11
Pounds avoir	12.5	12	11	10	9	8	7.5	7	6	5.68	5
No. on wire-gauge	12	13	14	15	16	17	18	19	20	21	22
Pounds avoir	4.62	4.31	4	3.95	3	2.5	2.18	1.93	1.62	1.5	1.37

SPECIFIC GRAVITY.

TABLE of the Weight of a Square Foot of Boiler Plate Iron, from $\frac{1}{8}$ to 1 inch thick, in lbs. avoirdupois.

18	3 16	1	15	8	7	12	9 16	58	116	34	13	$\frac{7}{8}$	15	1 in.
5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40

TABLE containing the Weight of Round Bar Iron, from 1 to 10 feet in length, and from $\frac{1}{4}$ of an inch to 6 inches diameter.

er.				LENG	TH OF TH	E BARS I	N FEET.			
nche	1 foot.	2 feet.	3 feet.	4 feet.	5 feet.	6 feet.	7 feet.	8 feet.	9 feet.	10 feet.
di l	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
1	0.2	0.3	0.5	0.7	0.8	· 1.0	1.2	1.3	1.5	1.7
130	0.4	0.7	1.1	1.5	1.9	2.2	2.6	3.0	3.4	3.7
1	0.7	1.3	2.0	2.7	3.3	4.0	4.6	5.3	6.0	6.6
5	1.0	$2 \cdot 1$	3.1	4.2	5.2	6.3	7.3	8.3	9.4	10.4
34	1.5	3.0	4.5	6.0	7.5	9.0	10.5	11.9	13.4	14.9
1	2.0	4.1	6.1	8.1	10.2	12.2	14.2	16.3	18.3	20.3
l in.	2.7	5.3	8.0	10.6	13.3	15.9	18.6	21.2	23.9	26.5
11	3.4	6.7	10.1	13.4	16.8	20.2	23.5	26.9	30.2	33.6
11	$4\cdot 2$	8.3	12.5	16.7	20.9	25.0	29.2	33.4	37.5	41.7
18	5.0	10.0	15.1	20.1	25.1	30.1	35.1	40.2	45.2	50.2
14	6.0	11.9	17.9	23.9	29.9	35.8	41.8	47.8	53.7	59.7
1 ន	7.0	14.0	21.0	28.0	35.1	42.1	49.1	56.1	63.1	70.1
$1\frac{3}{4}$	8.1	16.3	24.4	32.5	40.6	48.8	56.9	65.0	73.2	81.3
$1\frac{7}{8}$	9.3	18.7	28.0	37.3	46.7	56.0	65.3	74.7	84.0	93.3
2 in.	10.6	21.2	31.8	42.5	53.1	63.7	74.3	84.9	95.5	106.2
$2\frac{1}{8}$	12.0	24.0	36.0	48.0	59.9	71.9	83.9	95.9	107.9	119.9
21	13.4	26.9	40.3	53.8	67.2	80.6	94.1	107.5	121.0	134.4
23	15.0	30.0	44.9	60.0	74.9	89.9	104.8	119.8	134.8	149.8
24	16.7	33.4	50.1	66.8	83.5	100.1	116.8	133.6	150.2	166.9
$2\frac{5}{8}$	18.3	36.6	54.9	73.2	91.5	109.8	128.1	146.3	164.6	182.9
$2\frac{3}{4}$	20.1	40.2	60.2	80.3	100.4	120.5	140.5	160.6	180.7	200.8
$2\frac{7}{8}$	21.9	43.9	65.8	87.8	109-7	131.7	153.6	175.6	197.5	219.4
3 in.	23.9	47.8	71.7	95.6	119.4	143.3	167.2	191.1	215.0	238.9
3 1	25.9	51.9	77.8	103.7	129.6	155.6	181.5	207.4	233.3	259.3
31	28.0	56.1	84.1	112.2	140.2	168.2	196.3	224.3	253.4	280.4
33	30.2	60.5	90.7	121.0	151.2	181.4	211.7	241.9	272.2	302.4
$3\frac{1}{2}$	32.5	65.0	97.5	130.0	162.6	195.1	227.6	260.1	292.6	325.1
$3\frac{5}{8}$	34.9	69.8	104.7	139.5	174.4	209.3	244.2	279.1	314.0	348.9
$3\frac{3}{4}$	37.3	74.7	112.0	149.3	186.7	224.0	261.3	298.7	336.0	373.3
$3\frac{7}{8}$	39.9	79.7	119.6	159.5	199.3	239.2	279.0	318.9	358.8	398.6
4 in.	42.5	84.9	127.4	169.9	212.3	254.8	297.2	339:7	382.2	424.6
41:	45.2	90.3	135.5	180.7	225.9	271.0	316.2	361.4	406.6	451.7
$4\frac{1}{4}$	48.0	95.9	143.9	191.8	239.8	287.7	335.7	383.6	431.6	479.5
4 <u>3</u>	50.8	101.6	152.4	203.3	254.1	304.9	355.7	406.5	457.3	508 2
$4\frac{1}{2}$	53.8	107.5	161.3	215.0	268.8	322.6	376.3	430.1	483.8	537.6
45	56.8	113.6	170.4	227.2	283.9	340.7	397.5	454.3	511.1	567.9
$4\frac{3}{4}$	60.0	119.8	179.7.	239.6	299.5	359.4	419.3	479.2	539.1	599.0
$4\frac{7}{8}$	63.1	126.2	189.3	252.4	315.5	378.6	441.7	504.8	567.8	630.9
5 in.	66.8	133.5	200.3	267.0	333.8	400.5	467.3	534.0	600.8	667.5
$5\frac{1}{4}$	73.2	146.3	219.5	292.7	365.9	439.0	512.2	585.4	658.5	731.7
$5\frac{1}{2}$	80.3	160.6	240.9	321.2	401.5	481.8	562.1	642.4	722.7	803.0
$5\frac{3}{4}$	87.8	175.6	$263 \cdot 3$	351.1	438.9	526.7	614.4	702.2	790.0	877.8
6 in.	95.6	191.1	286.7	382.2	477.8	573.3	668.9	764.4	860.0	955.5

TABLE of the Weight of Cast Iron Plates, per Superficial Foot, from one-eighth of an inch to one inch thick.

⅓ inch.	1/4 inch.	¾ inch.	½ inch.	% inch.	¾ inch.	7∕8 inch.	l inch.
lbs. oz.	lbs. oz.	lbs. oz.	lbs. oz.	lbs. oz.	lbs. oz.	lbs, oz.	lbs. oz.
4 13 3	9 10 <u>5</u>	14 8	19 5 <u>3</u>	24 23	29 0	33 13 3	38 103

403

TABLE containing the Weight of Cast Iron Pipes, 1 foot in length.

r of				THICKNESS	IN INCHES.			
ore in	38	1	<u>5</u> 8	34	78	1 inch.	11	$1\frac{1}{4}$
eid H	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
11	6.9	. 9.9	· · · · · · · ·				·	
2^{-}	8.8	12.3	16.1	20.3				
21	10.6	14.7	19.2	23.9				
3	12.4	17.2	22.2	27.6	33.3	39.3	45.6	
31	14.2	19.6	25.3	31.3	37.6	44.2	51.1	
4	16.8	22.1	28.4	35.0	41.9	49.1	56.6	64.4
41	18.0	24.5	31.4	38.7	46.2	54.0	62.1	70.6
5	19.8	27.0	34.5	42.3	50.5	58.9	67.6	76.7
51	21.6	29.5	37.6	46.0	54.8	63.8	73.2	82.8
6	23.5	31.9	40.7	49.7	59.1	68.7	78.7	88.8
61	25.3	34.4	43.7	53.4	63.4	73.4	84.2	95.1
7	27.2	36.8	46.8	56.8	67.7	78.5	89.7	101.2
71	29.0	39.1	49.9	60.7	72.0	83.5	95.3	107.4
8	30.8	41.7	52.9	64.4	76.2	88.4	100.8	113.5
81	32.9	44.4	56.2	68.3	80.8	93.5	106.5	119.9
9	34.5	46.6	59.1	71.8	84.8	98.2	111.8	125.8
91	36.3	49.1	62.1	75.5	89.1	103.1	117.4	131.9
102	38.2	51.5	65.2	79.2	93.4	108.0	122.8	138.1
101		54.0	68.2	82.8	97.7	112.9	128.4	144.2
11		56.4	71.3	86.5	102.0	117.8	133.9	150.3
111		58.9	74.3	90.1	106.3	122.7	139.4	156.4
12		61.3	77.4	93.6	110.6	127.6	145.0	162.6
13			82.7	101.2	118.2	187.4	154.1	173.5
14			89.5	108.2	126.5	146.2	165.3	185.2
15			95.2	115.7	135.3	156.2	176.2	198.1
16				123.3	143.1	166.1	187.5	211.3
17				130.2	152.5	178.5	198.2	223.4
18				137.0	161.2	185.3	209.1	235.6
19				10. 0	169.2	195.7	999.3	247.1
20					178.1	205.2	933.9	259.0
21					1.01	214.1	243.5	273.9
22			10-			223.0	254.8	285.4
23						223.4	265.5	200 1
24					*****	245.2	200.0	310.6

TABLE containing the Weight of Solid Cylinders of Cast Iron, one foot in length, and from $\frac{3}{4}$ of an inch to 14 inches diameter.

Diameter in Inches.	Weight in Lbs.						
3	1.39	27	20.48	47	58.72	73	148.87
1	1.88	3 in.	22.35	5 in.	61.96	8 in.	158.63
1 in.	2.47	31	24.20	51	64.66	81	168.15
11	3.13	31	-26.18	51	68.31	81	179.08
14	3.87	33	28.23	53	71.00	83	189.00
18	4.68	31	30.36	51	74.98	9 in.	200.77
1	5.57	35	32.57	55	78.65	91	211.12
15	6.54	33	34.85	53	81.95	91	223.70
13	7.59	37	37.21	57	85.81	93	235.31
17	8.71	4 in.	39.66	6 in.	89.23	10 in.	247.87
2 in.	9.91	41	41.80	61	96.82	101	$273 \cdot 27$
21	11.19	41	44.77	61	104.72.	11 in.	299.92
21	12.54	43	47.00	63	112.93	113	327.81
23	- 13.98	41	50.19	7 in.	121.45	12 in.	356.93
24	15.49	48	52.71	71	130.28	13	418.90
28	17.08	43	55.92	71	139.42	14	485.83
$2\frac{3}{4}$	18.74						

TABLE containing	the Weight of	f a Squ	iare Foot	of Copper	and
Lead, in lbs. av	oirdupois, from	1 1 to 1	an inch	in thickness,	ad-
vancing by $\frac{1}{32}$.					

Thickness.	Copper.	Lead.
1 .	1.45	1.85
1	2.90	3.70
8 99	4.35	5.54
1	5.80	7.39
i + 4	7.26	9.24
$\frac{1}{4} + \frac{1}{16}$	8.71	11.08
1 + 3	10.16	12.93
1	11.61	14.77
1+2	13.07	16.62
1 + 1	14.52	18.47
1 + 8	15.97	20.31
8	17.41	22.16
å + 1	18.87	24.00
8 + 1	20.32	25.85
$\frac{8}{8} + \frac{8}{80}$	21.77	27.70
$\frac{1}{2}$	23.22	29.55

 TABLE for finding the Weight of Malleable Iron, Copper, and Lead
 Pipes, 12 inches long, of various thicknesses, and any diameter

 required.
 Pipes, 12

Thickness.	Malleable Iron.	Copper.	Lead.
$\frac{1}{32}$ of an inch.	·104	· ·121	·1:539
1	•208	·2419	·3078
3 30	·3108	·3628	•4616
1	•414	·4838	•6155
1 + 4	·518	·6047	•7694
1 + 1	•621	•7258	·9232
$\frac{1}{4} + \frac{8}{82}$.725	·8466	1.0771
1	·828	·9678	1.231

RULE.—Multiply the circumference of the pipe in inches by the numbers opposite the thickness required, and by the length in feet; the product will be the weight in avoirdupois lbs. nearly.

Required the weight of a copper pipe 12 feet long, 15 inches in circumference, $\frac{1}{8} + \frac{1}{16}$ of an inch in thickness.

 $.7258 \times 15 = 10.817 \times 12 = 130.644$ lbs. nearly.

TABLE of the Weight of a Square Foot of Millboard in lbs. avoirdupois

Thickness in inches	1 8	- <u>8</u> 16	4	5 16	, 8
Weight in lbs	·688	1.032	1.376	1.72	2.064

THE PRACTICAL MODEL CALCULATOR.

Inch.	Round.	Square.	Inch.	Round.	Square.
ł	·163	·208	23	16.32	20.80
- Solo	·367	•467	25	18.00	22.89
1	.653	·830	23	19.76	25.12
15	1.02	1.30	27	21.59	27.46
3	1.47	1.87	3	23.52	29.92
1 7	2.00	2.55	31	27.60	35.12
1°	2.61	8.32	31	32.00	40.80
11	3.31	4.21	33	36.72	46.72
11	4.08	5.20	4	41.76	53.12
13	4.94	6.28	41	47.25	60.00
11	5.88	7.48	41	52.93	67.24
15	6.90	8.78	43	58.92	74.95
1%	8.00	10.20	5	65-28	83.20
17	9.18	11.68	51	72.00	91.56
2°	10.44	13.28	51	79.04	100.48
21	11.80	15.00	53	86.36	109.82
21	13.23	16.81	6	94.08	119.68
23	14.73	18.74	7	128.00	163.20

 TABLE containing the Weight of Wrought Iron Bars 12 inches long in lbs. avoirdupois.

TABLE of the Proportional Dimensions of 6-sided Nuts for Bolts from $\frac{1}{4}$ to $2\frac{1}{2}$ inches diameter.

14	<u>8</u> 8	$\frac{1}{2}$	58	34	78	1	11	$1\frac{1}{4}$
$\frac{11}{16}$	$\frac{18}{16}$	1	1.8	13	$1_{\frac{9}{16}}$	13	$1\frac{15}{16}$	$2\frac{1}{8}$
<u>8</u> 4	15	$1_{\frac{1}{8}}$	18	$1_{\frac{8}{16}}$	$1_{\frac{13}{16}}$	2	$2\frac{1}{4}$	27
5 16	7 16	9 16	<u>8</u> 4	7 8	1	$1_{\frac{1}{8}}$	$1_{\frac{1}{4}}$	$1_{\frac{7}{16}}$
18	$1_{\frac{1}{2}}$	15	13/4	178	2	$2\frac{1}{4}$	$2\frac{1}{2}$	
2516	$2\frac{1}{2}$	$2\frac{11}{16}$	278	$3\frac{1}{16}$	$3\frac{1}{4}$	35	4	
$2_{\frac{11}{16}}$	$2\frac{7}{8}$	$3\frac{1}{8}$	$3\frac{5}{16}$	$3\frac{1}{2}$	$3\frac{8}{4}$	$4\frac{3}{16}$	458	
1916	$1\frac{11}{16}$	$1_{\frac{18}{16}}$	2	$2\frac{1}{8}$	$2_{\frac{1}{4}}$	$2\frac{1}{2}$	$2\frac{3}{4}$	
	$ \begin{array}{c c} \frac{1}{4} \\ \frac{11}{16} \\ \frac{8}{4} \\ \frac{5}{16} \\ \frac{5}{16} \\ \frac{1}{8} \\ 2\frac{5}{16} \\ 2\frac{11}{16} \\ 2\frac{11}{16} \\ \frac{1}{9} \\ \frac{9}{16} \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 TABLE of the Specific Gravity of Water at different temperatures,

 that at 62° being taken as unity.

70° F.	•99913	52° F.	1.00076
68	·99936	50	1.00087
66	·99958	48	1.00095
64	•99980	46	1.00102
62	1.	44	1.00107
58	1.00035	42	1.00111
56	1.00050	40	1.00113
54	1.00064	38	1.00115

'The difference of temperatures between 62° and $39^{\circ}2$, where water attains its greatest density, will vary the bulk of a gallon rather less than the third of a cubic inch.

SPECIFIC GRAVITY.

Inches.	Lbs.	Inches.	Lbs.	Inches.	Lbs.
1	·14	43	14.76	81	- 84.56
11	.20	47	15.95	85	88.34
11	.27	5°	17.12	83	92.24
18	.37	51	18.54	87	96.26
11	.47	51	19.93	9°	100.39
15	.59	53	21.39	91	104.62
13	.74	51	22.91	91	108.98
17	•91	55	24.51	98	113.46
2	1.10	53	26.18	94	118.06
21	1.32	57	27.91	95 .	122.77
21	1.57	6	29.72	93	127.63
23	1.84	61	31.64	97	132.60
24	2.15	61	33.62	10	137.71
25	2.49	63	35.67	101	142.91
24	2.86	61	37.80	101	148.28
$2\frac{1}{8}$	3.27	65	40.10	10 \$	153.78
3	3.72	63	42.35	104	159.40
31	4.20	67	44.74	105	165.16
31	4.72	7	47.21	104	171.05
33	5.29	71	49.79	107	177.10
31	5.80	71	52.47	11	183.29
35	6.56	78	55.23	111	189.60
33	7.26	75	58.06	111	196.10
37	8.01	75	60.04	11§	202.67
4	8.81	74	64.09	111	209.43
41	9.67	71	67.25	115	216.32
41	10.57	8	70.49	114	223.40
43	11.53	81.	73.85	117	230.57
41	12.55	81	77.32	12	237.94
45	13.62	83	80.88		

TABLE of the Weight of Cast Iron Balls in pounds avoirdupois,from 1 to 12 inches diameter, advancing by an eighth.

TABLE of the Weight of Flat Bar Iron, 12 inches long, in lbs. avoirdupois.

Thie	kness.	18	3 16	1/4	<u>3</u> 8	1/2	5	3 <u>4</u> .	78	1 inch.
	12	·21	·31	·42	.63				100	
	34	·31	•47	•63	•94	1.26	1.57			
	r	$\cdot 42$	•63	·84	1.26	1.68	2.10	2.52	2.94	
	11	.52	.78	1.05	1.57	2.10	2.62	3.15	3.67	4.20
	13	·57	·86	1.18	1.73	2.31	2.88	3.46	4.04	4.62
	14	.63	.94	1.26	1.89	2.52	3.15	3.78	4.41	5.04
es	13	.73	1.10	1.47	2.20	2.94	3.67	4.41	5.14	5.87
cp	2^*	·84	1.26	1.68	2.52	3.36	4.20	5.06	5.88	6.72
	21	.96	1.41	1.89	2.83	3.78	4.72	5.66	6.61	7.56
E.	21	1.05	1.57	2.10	8.15	4.20	5.25	6.30	7.35	8.40
4	23	1.15	1.73	2.31	3.46	4.62	5.77	6.93	8.08	9.24
E	3	1.26	1.89	2.52	3.78	5.04	6.30	7.56	8.82	10.08
es.	31	1.36	2.04	2.73	4.09	5.46	6.82	8.19	9.55	10.92
a l	31	1.47	2.20	2.94	4.41	5.88	7.35	8.82	10.29	11.76
	33	1.57	2.36	3.15	4.72	6.30	7.87	9.45	11.02	12.60
	4	1.68	2.52	3.36	5.04	6.72	8.40	10.08	11 76	13.44
	41	1.89	2.83	3.73	5.67	7.56	9.45	11.34	13.23	15.12
	5	2.10	3.15	4.12	6.30	8.40	10.50	12.60	16.70	17.80
	6	2.52	3.78	5.04	7.56	10.08	12.60	15.12	17.64	20.16
1	1			1	1	1	1			

Weight of a copper rod 12 inches long and 1 inch diameter = 3.039 lbs. Weight of a brass rod 12 inches long and 1 inch diameter = 2.86 lbs.

Diameter.	Weight of round.	Weight of square.	Diameter.	Weight of round.	Weight of square.
Inches.	Lbs.	Lbs.	Inches.	Lbs.	Lbs.
1	.17	·22	13	8.66	11.03
200	•39	.50	17	9.95	12.66
1	•70	.90	2	11.32	14.41
58	1.10	1.40	21	12.78	16.27
34	1.59	2.02	21	14.32	18.24
7	2.16	2.75	23	15.96	20.32
1	2.83	3.60	21	17.68	22.53
11	3.58	4.56	25	19.50	24.83
14	4.42	5.63	$2\frac{3}{4}$	21.40	27.25
18	5.35	6.81	$2\frac{7}{8}$	23.39	29.78
11	6.36	8.00	3	25.47	32.43
18	7.47	9.51			

BRASS .- Weight of a Lineal Foot of Round and Square.

STEEL .- Weight of One Foot of Round Steel.

Diameter in inches and parts.	4	ecțeo	12	15 <mark>1</mark> 00	34	78	1	13	11	138	11	15	$1\frac{3}{4}$	$1\frac{7}{8}$	2
Weight in lbs. and deci- mal parts.	·167	•376	·669	1.04	1.5	2.05	2.67	3.38	4·18	5.06	6.02	7.07	8.2	.)•4 1	11.71

TABLES OF THE WEIGHTS OF ROLLED IRON,

Per lineal foot, of various sections, illustrated in the accompanying cuts, viz. Parallel Angle Iron, equal and unequal sides; Taper Angle Iron; Parallel T Iron, equal and unequal depth and width; Taper T Iron; Sash Iron; and Permanent and Temporary Rails.

TABLE I.—Parallel Angle Iron, of equal sides. (Fig. 1.)

Length of sides AB, in inches.	Uniform thickness throughout.	Weight of one lineal foot in lbs.	
Inches.	1 v res. * - 3 8	8·0 7-0	Fig. 1.
24 21 21 24	5-16ths	5.75 4.5 2.75	ſ
$\frac{13}{11}$		8·75 3·0 2·5	
$1\frac{3}{8}$ $1\frac{1}{4}$ $1\frac{1}{8}$	No. 6 wire-gauge 8 9	1.75 1.5 1.25	amanna
	10 10 11	$1.0 \\ .875 \\ .625$	A
4-c/00	·· 11 12	•568 •5	

Length of side A, in inches.	Length of side B, in inches.	Uniform thickness throughout.	Weight of one lineal foot in lbs.	Fig. 2.
Inches. $3\frac{1}{2}$ 3 $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{4}$ $2\frac$	Inches. 5 5 4 4 4 4 4 8 2 2 2	Inches. 5-16ths 5-16ths 4 4 4	9.75 8.75 7.5 6.75 5.75 5.5 4.75 3.375 2.875	B
$ \begin{array}{c} 3_{2} \\ 3_{3} \\ 2_{14} \\ 2_{12} \\ 2_{2} \\ 2_{2} \\ 1_{11} \\ 1_{12} $	$ \begin{array}{c} 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	5-16ths 5-16ths 4 4 4 4 4 4 3-16ths	$\begin{array}{c} 8.75 \\ 7.5 \\ 6.75 \\ 5.75 \\ 5.5 \\ 4.75 \\ 8.875 \\ 2.875 \\ 2.25 \end{array}$	

TABLE II.—Parallel Angle Iron, of unequal sides. (Fig. 2.)

TABLE III.—Taper Angle Iron, of equal sides. (Fig. 3.)

Length of sides, A A, in inches.	Thickness of edges at B.	Thickness of root at C.	Weight of one lineal foot in lbs.	Fig. 3.
Inches.	Inches.	Inches.		B
4	.1	5	14.0	
3	12	58	10.375	
$2\frac{3}{4}$	7-16ths	9-16ths	8.25	A
$2\frac{1}{2}$	38	12	6.5	Ac
$2\frac{1}{4}$	5-16ths, full	7-16ths	5.0	Manna
2	🛓 full	5-16ths, full	3.875	
14	4	5-16ths	3.25	4
15	4 bare	5-16ths, bare	2.625	

TABLE IV.—Parallel | Iron, of unequal width and depth. (Fig. 4.)

Width of top table A, in inches.	Total depth B, in inches.	Uniform thick- ness of top table C.	Uniform thickness of rib D.	Weight of one lineal foot in lbs.	Fig 4
Inches.	Inches.	Inches.	Inches.		11g. 4.
5	6	ł	1	15.75	A
$4\frac{1}{2}$	31	1	9.16ths	13.25	enn millinnnnink
4	3	338	38	8.875	
$3\frac{1}{2}$	3	38	* \$	8.25	
31	4	12	2	12.5	в
22	3	38	8	7.0	
	2	5-16ths	å full	4.5	D
13	12	D-16ths	5-16ths	4.0	
11	2	4	4	0.975	
11	11		4	2.375	-
1	11	3-16ths	3-16ths	1.5	
34	14	3-16ths	3-16ths	1.125	

Width of top table, and total depth A A.	Uniform thickness throughout.	Weight of one lineal foot in lbs.
Inches.	Inches.	
6 5	7-16ths ?	13.75
4	80	9·75 8·5
3	- 8 8 5 1 (4) -	7.5
	5-16ths	4.625
2 1¥	5-16ths	3·75 3·0
		2.25
	3-16ths	1.10
8 4	8	·725 ·625

. 6

TABLE VI.—Taper T Iron. (Fig. 6.)

	7	1				+ +8. 0.
Width of top table A, in inches.	Total depth B, in inches.	Thickness of top table at root C.	Thickness of top table at edges D.	Uniform thickness of rib E.	Weight of one lineal foot in lbs.	D
Inches.	Inches.	Inches.	Inches.	Inches.		C
3	31	1	38	7-16ths	8.0	
3	25	7-16ths	30		8.0	В
21	3	7-16ths	5-16ths	5-16ths	5.25	•
2	21	5	· 카	+	6.5	E F
2	11	Å full	5-16ths	100	3.5	
2	11	5-16ths	ł	1 A	2.875	

TABLE VII.—Sash Iron. (Fig. 7.)

Total depth A.	Depth of rebate B.	Width at edge C.	Greatest width D.	Weight of one lineal foot in lbs.
Inches.	Inches.		Inches.	
2	1	No. 9 wire-gauge	5-8ths	1.75
13	34	7	9-16ths	1.625
$1\frac{1}{2}$	34	6	9-16ths	1.25
13	58	10	9-16ths	1.125
$1\frac{1}{4}$	5	10	9-16ths	1.0
1	12	8	$\frac{1}{2}$	•75

]	Fig. 7.
C	A A A A A A A A A A A A A A A A A A A
<b·< td=""><td>D</td></b·<>	D

Fig. 8.

Ram

TABLE VIII.—Rails equal top and bottomTables.(Fig. 8.)

Depth A, in inches.	Width across top and bottom B B, in inches.	Thickness of rib C.	Weight of one lineal foot in lbs.
Inches.	Inches.	Inches,	
5	25	34	25.0
$4\frac{1}{2}$	$2\frac{1}{2}$	34	23.33
$4\frac{1}{2}$	$2\frac{1}{2}$	58	21.66

TABLE	IX.—	Tem_{f}	porary	Rails.	(Fig.	9.)
-------	------	-----------	--------	--------	-------	----	---

Top width A, in inches.	Rib width B, in inches.	Bed width C, in inches.	Total depth D, in , inches.	Thickness of bed E.	Weight of one lineal foot in lbs.
Inches. 11 13 13 14 17 8 2	Inches. 5855 5855 5855 5855 8855	Inches. 3 3 4 4	Inches. 2 2 1 2 2 3 3 3 3	Inches. 7-16ths 12 12 12	9·0 12·0 16·0 17·33

 TABLE of Natural Sines, Co-sines, Tangents, Co-tangents, Secants, and Co-secants, to every degree of the Quadrant.

Deg.	Sines.	Co-sines.	Tangents.	Co-tangents.	Secants.	Co-secants.	Degree.
0	·00000	1.00000	·00000	Infinite.	1.00000	Infinite.	90
1	·01745	·99985	·01746	57.2900	1.00015	57.2987	89
2	·03490	·99939	·03492	28.6363	1.00061	28.6537	88
3	$\cdot 05234$	·99863	·05241	19.0811	1.00137	19.1073	87
4	·06976	·99756	·06993	14.3007	1.00244	14.3356	86
5	·08716	·99619	.08749	11.4301	1.00382	11.4737	85
6	$\cdot 10453$	·99452	·10510	9.51236	1.00551	9.56677	84
7	$\cdot 12187$	·99255	·12278	8.14435	1.00751	8.20551	83
8	·13917	·99027	·14054	7.11537	1.00983	7.18530	82
9	$\cdot 15643$	·98769	·15838	6.31375	1.01246	6.39245	81
10	$\cdot 17365$	·98481	·17633	5.67128	1.01543	5.75877	80
11	$\cdot 19081$	·98163	·19438	5.14455	1.01872	5.24084	79
12	$\cdot 20791$	·97815	·21256	4.70463	1.02234	4.80973	78
13	$\cdot 22495$	·97437	·23087	4.33148	1.02630	4.44541	77
14	·24192	·97030	·24933	4.01078	1.03061	4.13356	76
15	$\cdot 25882$	·96593	·26795	3.73205	1.03528	3.86370	75
16	.27564	·96126	.28675	3.48741	1.04030	3.62796	74
17	·29237	.95630	·30573	3.27085	1.04569	3.42030	73
18	30902	.95106	·32492	3.07768	1.05146	3.23607	72
19	·32557	.94552	·34433	2.90421	1.05762	3.07155	71
20	.34202	.93969	·36397	2.74748	1.06418	2.92380	70
21	.35837	·93358	·38386	2.60509	1.07114	2.79043	69
22	.37461	.92718	.40403	2.47509	1.07853	2.66947	68
23	-39073	.92050	.42447	2.35585	1.08636	2.55930	67
24	•40674	.91355	•44523	2.24004	1.09464	2.45859	66
25	•42262	·90631	•46631	2.14451	1.10338	2.36620	65
26	•43837	.89879	•48773	2.05030	1.11260	2.28117	64
27	•45399	.89101	.50952	1.96261	1.12233	2.20869	63
28	•46947	.88295	.53171	1.88073	1.13257	2.13005	62
29	.48481	.87462	.55431	1.80405	1.14335	2.06266	61
30	.50000	-86603	.57735	1.73205	1.15470	2.00000	60
31	.51504	.85717	.60086	1.66428	1.16663	1.94160	59
32	.52992	.84805	.62487	1.60033	1.17918	1.88708	58
33	.54464	-83867	.64941	1.53986	1.19236	1.83608	57
34	+55919	.82904	.67451	1.48256	1.20622	1.78829	56
35	.57358	.81915	.70021	1.42815	1.22077	1.74345	55
36	+58778	.80902	.72654	1.37638	1.23607	1.70130	54
37	+60181	.79863	.75355	1.32704	1.25214	1.66164	53
38	·61566	.78801	.78129	1.27994	1.26902	1.62497	52
39	+62032	.77715	.80978	1.93400	1.98676	1.58002	51
40	.64279	•76604	+83910	1.19175	1.80541	1.55572	50
41	.65606	.75471	.86929	1.15037	1.32511	1.59495	49
42	.66913	.74314	.90040	1.11061	1.34561	1.49448	48
43	.68200	.73135	.93251	1.07237	1.36706	1.46628	47
44	.69466	.71934	.96569	1.03553	1.39012	1.43956	46
45	. 70711	.70711	1.00000	1.00000	1.41421	1.41421	45
				1 00000		1 11101	
Deg.	Co-sines.	Sines.	Co-tangents.	Tangents.	Co-secants.	Secants.	Degree.

MOMENT OF INERTIA.

CORDS, KNOTS, NODES, CHAIN-BRIDGE.—ANGULAR VELOCITY.—RADIUS OF GYRATION.

1. If the cord q NB, be fixed at the extremity B, and stretched by a weight of 500 lbs. at the extremity q, and the middle knot or node N, by a force of 255 lbs. pulling upwards, under an angle $a \ N b$ of 54°; what is the tension and position of NB.

Angle $q N r = 180^{\circ}$ - angle q NP; and 90° - $a N b = b N c = q N r = 36^{\circ}$; cos. $36^{\circ} = -80902$.

 $\sqrt{500^2 + 255^2 - 2 \times 255 \times 500 \times \cos 36^\circ} = 329.7$ lbs., the magnitude of the tension.

500 sin. 36°

 $\frac{300 \text{ sm. } 500}{329 \cdot 7} = \cdot 891386 = \text{sine of angles } b \text{ N} \text{ s, or angle BN } r = 63^{\circ} 2'.$

2. Between the points A and B, a cord 10 feet in length is stretched by a weight W of 500 lbs. suspended to it by a ring; the horizontal distance AE = 6.6 feet, and the vertical distance BE = 3.2 feet; required the position of the ring C, the tensions, and directions of the rope.

The tensions of the cords AC, CB are equal, and angle AC b = angle b CB.

AD = AC + CB = 10 feet. $\checkmark (10^2 - 6 \cdot 6^2) = 7 \cdot 5126 = ED; BD = 7 \cdot 5126 - 3 \cdot 2 = 4 \cdot 3126$ $Dn = \frac{4 \cdot 3126}{2} = 2 \cdot 1563; 7 \cdot 5126 : 2 \cdot 1563 :: 10 : \frac{21 \cdot 563}{7 \cdot 5126} = 2 \cdot 87 = CD = CB; \text{ and } CA = 10 - 2 \cdot 87 = 7 \cdot 13.$

$$\frac{B n}{B c} = \text{cosine } b \text{ CB} = \frac{2 \cdot 1563}{2 \cdot 87} = \cdot 75132.$$

 $\therefore \angle b \, CB = 41^\circ \, 18'; \frac{W}{2 \cos \cdot 41^\circ \, 18'} = \frac{500}{1 \cdot 50264} = 332 \cdot 7 \, \text{lbs.},$ the tension on the cord CB, which is equal to the tension on AC. 3. Let 500,000 lbs. be the whole weight on a chain-bridge whose span AB = 400 feet, and height of the arc CD = 40 feet; required the tensions and other circumstances respecting the chains.

The tangent of the angles of inclination of the ends of the chain is equal

 $\frac{40 \times 2}{200} = \cdot 40000$, the angle answer-

ing to this natural tangent is $21^{\circ} 48'$. The vertical tension at each point of suspension is = half the weight = 250000; the horizontal tension at the points of suspension = $250000 \times \text{cot.}$ $21^{\circ} 48' = \frac{250000}{\cdot 4} = 625000$ lbs.

The whole tension at one end will be

 $\sqrt{625000^2 + 250000^2} = 673146$ lbs.

4. Suppose the piston of a steam engine, with its rod, weighs 1000 lbs.; it has no velocity at its highest and lowest positions, but in the middle the velocity is a maximum and equal 10 ft.; what effect will it accumulate by virtue of its inertia in the first half of its path, and give out again in the second half; and what is the mean force which would be requisite to accelerate the motion of the piston in the first half of its path, which is the same as that which it would exert in the second half by its retardation, the length of stroke being 8 feet.

According to the principle of vis viva, the effect which the piston will accumulate by virtue of its inertia in the first half of its path, and give out again in the second half =

 $\frac{1552 \cdot 794}{4} = 388 \cdot 1985$ lbs., the mean force.

MOMENT OF INERTIA, or the MOMENT OF ROTATION, or the MOMENT OF THE MASS, is the sum of the products of the particles.

of the mass and the squares of their distances from the axis of rotation.

5. If a body at rest, but capable of turning round a fixed axis A, possesses a moment of inertia of 121 units of work, the measures taken in feet and pounds, made to turn by means of a cord and weight of 36 lbs., lying over a pulley in a path of 10 feet; what are the circumstances of the motion.

 $\sqrt{\frac{2 \times 36 \times 10}{121}} = 2.439347$ feet, the angular velocity of the

body, which call v; so that each point at the distance of one foot "from the axis of revolution will describe, after the accumulatior of 121 units of work, 2.44 feet in a second.

 $6 \cdot 2832 = \text{circumference of a circle 2 feet in diameter,}$ $\frac{6 \cdot 2832}{2 \cdot 44} = 2 \cdot 6 \text{ seconds, the time of one revolution.}$

6. If an angular velocity of 3 feet passes into a velocity of 7 feet; what mechanical effect will a mass produce so moving, supposing the moment of inertia to be 200, the measures taken in feet and pounds.

According to the principles of vis viva,

 $(7^2 - 3^2) \frac{200}{2} = 4000$ units of work, which may be 40 lbs.

raised 100 feet, 80 lbs. raised 50 feet, 400 lbs. raised 10 feet; and so on.

7. The weight of a rotating mass B is 500 lbs., its distance OB from the axis of rotation 3 feet, the weight W, constituting the moving force, 90 lbs., its arm AO = OC = 4 feet; required the circumstances of the motion that ensues.

 $\left\{\begin{array}{l}90 + \frac{3^3}{4^2} 500\right\} \div \\32.2 = 11.53 \text{ lbs.,}\\\text{the inert mass accele-}\\\text{rated by the force of}\\\text{W. And it is well}\\\text{known that the force}\\\text{divided by the mass}\\\text{gives the accelera-}\\\text{tion.}\end{array}\right.$

 $\therefore \frac{90}{11\cdot 53} = 7.806$, the acceleration of the motion of W. The

angular acceleration in a circle 1 foot from the axis $=\frac{1.000}{4}=1.9515$.

After 10 seconds the acquired angular velocity will be $1.9515 \times 10 = 19.515.$

And the corresponding distance $=\frac{1.9515 \times 10^2}{2} = 97.575$ feet, measured on a circle one foot from O.

The space described by the weight W is $\frac{7 \cdot 806 \times 10^2}{2} = 390 \cdot 3$ feet, which is the same as the space described by C. The circumference of a circle one foot from C = $3 \cdot 1416$.

 $\therefore \frac{97 \cdot 575}{3 \cdot 1416} = 31 \cdot 059$ revolutions.

In the rotation of a body AB about a fixed axis O, all its points describe equal angles in equal times. If the body rotate in a certain time through the angle θ° , or arc $\phi = \frac{\theta^{\circ}}{180^{\circ}}\pi$, radius = 1; and hence, $\pi = 3.141592$, &c.; the elements of the body, a, b, c, &c., at the distances $oa = x_1, ob = \frac{1}{B}$

ments of the mass at the distances $x_1, x_2, x_3, \&c.$, will be,

zx1, zx2, zx3, &c.

And if a be the mass of the element at a; b the mass of the element at b; c the mass of the element at c, &c., their vis viva will be,

 $(z x_1)^2 a, (z x_2)^2 b, (z x_3)^2 c, \&c.$

And the sum of the vis viva of the whole body =

 $z^{2}(x_{1}^{2}a + x_{2}^{2}b + x_{3}^{2}c, \&c.)$

According to our definition, $x_1^2 a + x_2^2 b + x_3^2 c$, &c. is the moment of inertia, which may be represented by R; then z^2 R is the vis viva of a body revolving with the angular velocity z. Therefore, to communicate to a body in a state of rest an angular velocity z, a mechanical effect Fs, or force \times space $= \frac{1}{2}$ the vis viva, must be expended; that is, $Fs = \frac{1}{2} z^2 R$, or, which is the same thing, a body performing the units of work Fs, passes from the angular velocity z to a state of rest. In general, if the initial angular velocity = v, and the terminal angular velocity = z, the units of work will be,

$$\mathbf{F}s = \frac{z^2 - v^2}{2} \times \mathbf{R}.$$

The moment of inertia of a body about an axis not passing through the centre of gravity is equivalent to its moment of inertia about an axis running parallel to it through the centre of gravity, increased by the product of the mass of the body and the square of the distance of the two centres.

It is necessary to know the moments of inertia of the principal geometrical bodies, because they very often come into application in mechanical investigations. If these bodies be homogeneous, as in the following we will always suppose to be the case, the particles of the mass M_1 , M_2 , &c. are proportional to the corresponding particles of the volume V_1 , V_2 , &c.; and hence the measure of the moment of inertia may be replaced by the sum of the particles of the volume, and the squares of their distances from the axis of revolution. In this sense, the moments of inertia of lines and surfaces may also be found.

If the whole mass of a body be supposed to be collected into one point, its distance from the axis may be determined on the supposition that the mass so concentrated possesses the same moment of inertia as if distributed over its space. This distance is called the *radius of gyration*, or *of inertia*. If R be the moment of inertia, M the mass, and r the radius of gyration, we then have $M r^2 =$

R, and hence $r = \sqrt{\frac{R}{M}}$. We must bear in mind that this radius by no means gives a determinate point, but a circle only, within whose circumference the mass may be considered as arbitrarily distributed.

If into the formula $R_1 = R + M e^2$, expressed in the words above printed in italics, we introduce $R = M r^2$ and $R_1 = M r_1^2$, we obtain $r_1^2 = r^2 + e^2$; that is, the square of the radius of gyration referred to a given axis = the square of the radius of gyration referred to a parallel line of gravity, plus the square of the distance between the two axes.

Wheel and axle.—The theory of the moment of inertia finds its most frequent application in machines and instruments, because in these rotary motions about a fixed axis are those which generally present themselves.

If two weights, P and Q, act on a wheel and axle ACDB, with the arms CA = a and DB = b through the medium of perfectly flexible strings, and if the radius of the gudgeons be so small that their friction may be neglected, it will remain in equilibrium if the statical moments P. CA and Q. DB are equal, and therefore Pa = Qb. But if the moment of the weight P is greater than that of Q, therefore Pa > Qb, P will descend and Q ascend; if Pa < Qb, P will ascend and Q descend. Let us now examine the

conditions of motion in the case that Pa > Qb. The force corresponding to the weight Q and acting at the arm b generates at the arm a a force $\frac{Qb}{a}$, which acts opposite to the force corresponding to the weight P, and hence there is a residuary moving force $P - \frac{Qb}{a}$ acting at A. The mass $\frac{Q}{g}$ is reduced by its transference from the distance b to that of a to $\frac{Qb^2}{ga^2}$; hence the mass moved by $P - \frac{Qb}{a}$ is $M = \left(P + \frac{Qb^2}{a^2}\right) \div g$, or, if the moment of inertia of

MOMENT OF INERTIA. TO THE

the wheel and axle without the weights P and Q = $\frac{G y^2}{g}$, and, therefore, its inert mass reduced to A = $\frac{G y^2}{g a^2}$, we have, more exactly, M = $\left(P + \frac{Q b^2}{a^2} + \frac{G y^2}{a^2}\right) \div g = (P a^2 + Q b^2 + G y^2) \div g a^2$.

From thence it follows that the accelerated motion of the weight P, together with that of the circumference of the wheel, namely,

 $p = \frac{\text{moving force}}{\text{mass}} = \frac{P - \frac{Qb}{a}}{Pa^2 + Qb^2 + Gy^2}g\,a^2 = \frac{Pa - Qb}{Pa^2 + Qb^2 + Gy^2}g\,a;$ on the other hand, the accelerated motion of the ascending weight Q, or of the circumference of the axle, is,

$$q = \frac{b}{a}p = \frac{\operatorname{P} a - \operatorname{Q} b}{\operatorname{P} a^2 + \operatorname{Q} b^2 + \operatorname{G} y^2}g b.$$

The tension of the string by P is $S = P - \frac{Pp}{g} = P(1 - \frac{p}{g})$, that of the string by Q is $T = Q + \frac{Qq}{g} = Q(1 + \frac{q}{g})$; hence the pressure on the gudgeon is,

$$S + T = P + Q - \frac{Pp}{g} + \frac{Qq}{g} = P + Q - \frac{(Pa - Qb)^2}{Pa^2 + Qb^2 + Gy^2};$$

the pressure, therefore, on the gudgeons for a revolving wheel and axle is less than for one in a state of equilibrium. Lastly, from the accelerating forces p and q, the rest of the relations of motion may be found; after t seconds, the velocity of P is v = pt, of Q is $v_1 = qt$, and the space described by P is $s = \frac{1}{2}pt^2$, by Q is $s_1 = \frac{1}{2}qt^2$.

Let the weight P at the wheel be = 60 lbs., that at the axle Q = 160 lbs., the arm of the first CA = a = 20 inches, that of the second DB = b = 6 inches; further, let the axle consist of a solid cylinder of 10 lbs. weight, and the wheel of two iron rings and four arms, the rings of 40 and 12 lbs., the arms together of 15 lbs. weight; lastly, let the radii of the greater ring AE = 20 and 19 inches, that of the less FG = 8 and 6 inches; required the conditions of motion of this machine. The moving force at the circumference of the wheel is,

$$P - \frac{b}{a}Q = 60 - \frac{6}{20}160 = 60 - 48 = 12$$
 lbs.,

the moment of inertia of the machine, neglecting the masses of the gudgeons and the strings, is equivalent to the moment of inertia of the axle $= \frac{W b^2}{2} = \frac{10 \cdot 6^2}{2} = 180$, plus the moment of the smaller ring $= \frac{R_1 (r_1^2 + r_2^2)}{2} = \frac{12 (8^2 + 6^2)}{2} = 600$, plus the moment of

the larger ring = $\frac{40(20^2 + 19^2)}{2} = 15220$, plus the moment of the arms, approximately = $\frac{A}{3} \frac{(\rho_4^3 - \rho_3^3)}{(\rho_4 - \rho_3)} = \frac{A}{3} \frac{\rho_4^2 + \rho_4 \rho_8 + \rho_8^2}{3} = \frac{15(19^2 + 19 \times 8 + 8^2)}{3} = 2885$; hence, collectively, $Gy^2 = 180 + 600 + 15220 + 2885 = 18885$, or for foot measure = $\frac{18885}{144} = 131\cdot14$. The collective mass, reduced to the circumference of the wheel is, = $\left(P + \frac{Qb^2 + Gy^2}{a^2}\right) \div g = \left[60 + 160\left(\frac{6}{20}\right)^2 + \frac{18885}{20^2}\right] \div g = \left(60 + 160 \times 0.09 + \frac{18885}{400}\right) 0.031 = 121\cdot61 \times 0.031 = 337$ lbs. Accordingly, the accelerated motion of the weight P, together with that of the circumference of the wheel, is, $P = \frac{b}{2} O$

$$p = \frac{P - \frac{1}{a}Q}{\frac{P + Qb^2 + Gy^2}{a^2}}g = \frac{12}{3.77} = 3.183 \text{ feet; on the other}$$

hand, that of Q is $q = \frac{b}{a}p = \frac{6}{20}3 \cdot 183 = 0.954$ feet; further, the tension of the string by P is $= (1 - \frac{p}{g})P = (1 - \frac{3 \cdot 133}{32 \cdot 2})$ 60 = 54.07 lbs.; that by Q, on the other hand, Q = $(1 + \frac{q}{g})Q = (1 + 0.925 \times 0.032)$ 160 = 1.030 160 = 164.8 lbs.; and consequently the pressure on the gudgeons S + T = 54.06 + 164.80 = 218.86 lbs., or inclusive of the weight of the machine = 218.86 + 77 = 295.86 lbs. After 10 seconds, P has acquired the velocity $pt = 3.084 \times 10 = 30.84$ feet, and described the space $s = \frac{vt}{2} = 30.84 \times 5 = 154.2$ feet, and Q has ascended a height $\frac{b}{a}s = 0.3 \times 154.2 = 46.26$ feet.

The weight P which communicates to the weight Q the accelerated motion $q = \frac{P a b - Q b^2}{P a^2 + Q b^2 + G y^2} g$, may also be replaced by another weight P₁, without changing the acceleration of the motion Q, if it act at the arm a_1 , for which,

$$\frac{P_{a}a_{1} - Qb}{P_{a}a_{1}^{2} + Qb^{2} + Gy^{2}} = \frac{Pa - Qb}{Pa^{2} + Qb + Gy^{2}}$$

The magnitude $\frac{Pa^2 + Qb^2 + Gy^2}{Pa - Qb}$, represented by k, and we ob-

tain a_1^2 , $-ka_1 = -\frac{Qb(b+k) + Gy^2}{P_1}$, and the arm in question,

$$a_{1} = \frac{1}{2} k \pm \sqrt{\left(\frac{k}{2}\right)^{2} - \frac{Q b (b + k) + G y^{2}}{P_{1}}}.$$

We may also find by help of the differential calculus, that the motion of Q is most accelerated by the weight P, when the arm of the latter corresponds to the equation $Pa^2 - 2 Qab = Qb^2 + Gy^2$, therefore,

$$a = \frac{b Q}{P} + \sqrt{\left(\frac{b Q}{P}\right)^2 + Q b^2 + G y^2}.$$

The formula found above assumes a complicated form if the friction of the gudgeons and the rigidity of the cord are taken into account. If we represent the statical moments of both resistances by Fr, we must then substitute for the moving force $P - \frac{b}{a}Q$, the value $P - \frac{Qb + Fr}{a}$, whence the acceleration of Q comes out, $q = \frac{(Pa - Fr)b - Qb^2}{Pa^2 + Qb^2 + Gy^2}g$ and $a = \frac{Qb + Fr}{P} + \sqrt{\left(\frac{Qb + Fr}{P}\right)^2 + Qb^2 + Gy^2}}$. The weights P = 30 lbs. Q = 80 lbs. act at the arms a = 2 feet, and $b = \frac{1}{2}$ foot of a wheel and axle, and their moments of inertia Gy^2 amount to 60 lbs.; then the accelerated motion of the ascending weight Q is, $q = \frac{30 \times 2 \times \frac{1}{2} - 80 \times (\frac{1}{2})^2}{200 + 2^2 + 200 + 60}g = \frac{30 - 20}{120 + 20 + 60} \cdot 32 \cdot 2 = \frac{322}{200} =$

 $\begin{array}{l} \underset{q}{\text{ng weight Q is,}} & = \frac{30 \times 2 \times \frac{1}{2} - 80 \times (\frac{1}{2})^2}{30 \times 2^2 + 80 \times (\frac{1}{2})^2 + 60} g = \frac{30 - 20}{120 + 20 + 60} \ 32 \cdot 2 = \frac{322}{200} = 1 \cdot 61 \text{ feet.} \quad \text{But if a weight P}_4 = 45 \text{ lbs. generates the same acceleration in the motion of Q, the arm of P}_4 \text{ is then,} \end{array}$

$$a_{1} = \frac{k}{2} \pm \sqrt{\left(\frac{k}{2}\right)^{2} - \frac{80 \times \frac{1}{2}\left(\frac{1}{2} + k\right) + 60}{45}}, \text{ or as } k = \frac{200}{60 - 40} = 10, a_{1} \text{ is } = 5 \pm \sqrt{25 - \frac{32}{3}} = 5 \pm \frac{1}{3} 11.358 = 5 \pm 3.786 = 8.786$$
feet, or 1.214 feet.

The accelerated motion of Q comes out greatest if the arm of the force or radius of the wheel amount to,

$$a = \frac{\frac{1}{2} \times 80}{30} + \sqrt{\left(\frac{40}{30}\right)^2 + \frac{20 + 60}{30}} = \frac{4}{3} + \sqrt{\frac{16}{9} + \frac{24}{9}} = \frac{4 + \sqrt{40}}{3} = \frac{3 \cdot 4415}{3}$$

3.4415 feet, and q is = $\left(\frac{30 \times 1.7207 - 20}{30 \times (3.4415)^2 + 80}\right) g = \frac{31 \cdot 621}{435 \cdot 32} g = \frac{2 \cdot 339}{3}$ feet.

The statical moment of the friction, together with the rigidity of the string, is Fr = 8; then, instead of Q b, we must put Q b + Fr = 40 + 8 = 48; whence it follows that,

 $a = \frac{48}{30} + \sqrt{\left(\frac{40}{30}\right)^2 + \frac{8}{3}} = 1.6 + \sqrt{5.227} = 3.886$, and the correspondent maximum accelerating force $30 \times 1.943 - 8 \times 1 - 20$ 34.29

$$q = \frac{50 \times 1^{-949} - 8 \times \frac{1}{2} - 20}{30 \times (3.886)^2 + 80} g = \frac{5429}{533} \times 32.2 = 2.071 \text{ feet.}$$

WEIGHT, ACCELERATION, AND MASS.

PARALLELOGRAM OF FORCES.—THE PRINCIPLE OF VIRTUAL VELOCITIES. —MECHANICAL POWERS: CONTINUOUS CIRCULAR MOTION, GEARING, TEETH OF WHEELS, DRUMS, PULLEYS, PUMPING ENGINES, ETC.

1. If a weight of 10 lbs., moved by the hand, ascends with a 3 feet acceleration, what is the pressure on the hand?

$$10(1 + \frac{3}{32 \cdot 2}) = 10.93168$$
 lbs.

If a weight of 10 lbs., moved by the hand, descends with a 3 feet acceleration, the pressure on the hand will be 9.06832 lbs., for then

$$10 \left(1 - \frac{5}{32 \cdot 2}\right) = 9.06832.$$

If w be the weight of the mass acted upon by the force of the hand, and also by the force of gravity, as g = 32.2, the mass moved by the sum or difference of these forces will be $= \frac{w}{g}$. If P be the pressure on the hand, and p its acceleration, the body falls with the force $\frac{w}{g}p$; it also falls with the force w - P; hence,

$$w - \mathbf{P} = \frac{w}{g} p \quad \therefore \mathbf{P} = (1 - \frac{p}{g}) w.$$

When the body is ascending, then p is negative,

and
$$w + \mathbf{P} = \frac{w}{g} (-p)$$
 $\therefore \mathbf{P} = (1 + \frac{p}{g}) w.$

2. If a body of 200 lbs. be moved on a smooth horizontal track, by the joint action of two forces, and describes a space of 10 feet in the first second, what is the amount of each of these forces; the first makes an angle of 35° with the track upon which the body moves, and the other an angle of 50° ?

In solving this question, the natural sines of the angles 35°, 50°, and of their sum 85°, will be required. We shall first take these from the table:

 $\sin. 35^\circ = \cdot 57358$ $\sin. 50^\circ = \cdot 76604$ $\sin. 85^\circ = \cdot 99619$.

The acceleration is = 20 feet, that is, twice the space passed over in the first second,

 $\frac{200}{32\cdot 2}$ = the mass, and $\frac{200}{32\cdot 2} \times 20 = 124\cdot 224$ lbs., the force of the resultant, in the direction of the track upon which the body moves.

WEIGHT, ACCELERATION, AND MASS.

One of the components $=\frac{124 \cdot 224 \text{ sin. } 35^{\circ}}{\text{sin. } (35^{\circ} + 50^{\circ})} = 71 \cdot 52 \text{ lbs.}$ The other component $=\frac{124 \cdot 224 \text{ sin. } 50^{\circ}}{\text{sin. } (35^{\circ} + 50^{\circ})} = 95 \cdot 52 \text{ lbs.}$ These, and the like results, may be obtained with greater ease

by logarithms.

Log. 1	24.224	=	2.0942055
Log. s	in. 35°	=	9.7585913
			11.8527968
Log. si	in. 85°	-	9.9983442
Log. of	f 71·52413	=	1.8544526
Log. 1	24.224	=	2.0942055
Log. si	in. 50°	=	9.8842540
			11.9784595
Log. si	in. (85°)	=	9.9983442
Log. of	f 95·5247	-	1.9801153

3. A carriage weighing 8000 lbs. is moved forward by a force f_1 of 500 lbs. upon a horizontal surface AB; during the motion, two resistances have to be overcome, one horizontal of 100 lbs., the amount of friction, represented in the figure by f_s , the other f_s of

200 lbs. acting downwards; the angles $f_s n f_s$ and $f_1 n m$, which the directions of these forces make with the horizon, are 61° and 21° respectively: it is required to know what work the force f_1 will perform by converting a 5 feet initial velocity of the carriage into a 20 feet velocity.

If we put x = n m, the distance the carriage moves in passing from a 5 to a 20 feet velocity,

The work of the force $f_1 = f_1 \times nq = 500 \times \cos 21^\circ \times x$. The work of the force $f_3 = (-f_3) \times nm = -100 \times x$. The work of the force $f_3 = (-f_2) \times np = -200 \times \cos .61^\circ \times x$. Consequently, the work of the effective force will be $269 \cdot 828 \times x = \{500 \times .94358 - 100 - 200 \times .48481\} x$, since the natural cosine of $21^\circ = .93358$, and the natural cosine of $61^\circ = .48481$.

But according to the principle of vis viva, the work done is equal to

$$\frac{20^2 - 5^2}{64 \cdot 4} \times 8000 = 46589 \cdot 82.$$

269.828 × x = 46589.82 and x = $\frac{46589 \cdot 82}{269 \cdot 828}$ =

772.665 feet, the space passed over by the carriage.

This question is solved on the PRINCIPLE OF VIRTUAL VELOCITIES, which we shall explain, as it is of essential service in practical mechanics.

This explanation depends on what is technically termed the "Parallelogram of Forces."

When a material point O, is acted upon by two forces f_1, f_2 , whose directions Of_1, Of_2 , make with each other an angle, if Of_1, Of_2 represent the magnitudes and directions of the forces, the diagonal of the parallelogram $Of_1 f_3 f_2$ represents the resultant in magnitude and direction; that is, the diagonal represents a single force equal to the combined actions of the forces represented by the sides. And if the sides of the parallelogram represent the accelerations of the forces, the diagonal represents the resultant acceleration. Draw through O, two axes OX and OY, at right angles to each other, and resolve the forces f_1 and f_2 , as well as their resultant f_3 , into components in the directions of these axes; namely, f_1 into n_1 and m_1 ; f_2 into n_2 and m_3 ; and f_3 into n_3 and m_3 . The forces in one axis are n_1, n_2 , and n_3 ; and those in the other m_1, m_2 , and m_3 .

 $n_{s} = n_{1} + n_{s}$ and $m_{s} = m_{1} + m_{s}$. (E).

Now if we take in the axis OX any point P, and let fall from it

the perpendiculars PA, PB, PC, on the directions of the forces f_{i} , f_{s}, f_{s} , we obtain the following similar right-angled triangles, namely,

OAP and
$$O n_1 f_1$$
 are similar;
OBP and $O n_3 f_3$ _____;
OCP and $O n_3 f_3$ _____;

 $\therefore \frac{On_1}{Of_1} = \frac{OA}{OP} = \frac{n_1}{f_1} \text{ and } n_1 = \frac{AO}{OP} f_1.$ It is easily seen also that $n_s = \frac{\mathrm{CO}}{\mathrm{OP}} f_s$; and $n_s = \frac{\mathrm{BO}}{\mathrm{OP}} f_s$.

If the values be substituted in (E), we obtain

$$BO \times f_3 = CO \times f_9 + AO \times f_1.$$

From the similarity of these triangles, and the remaining equation of (E), we can readily find that

$$PB \times f_{a} = PA \times f_{1} + PC \times f_{2}$$

The equation becomes more compact by putting

OA, OC, OB, respectively equal s_1 , s_2 s_3 ; and PA, PC, PB, $\frac{1}{f_1 g_2} = f_2 g_3$, g_3 , g_3 . Then $f_3 s_3 = f_2 s_2 + f_1 s_1$ and $f_3 q_2 = f_2 q_3 + f_1 q_1$.

The same holds good with any number of forces $f_1, f_2, f_3, \&c.$, and their resultant f_n , that is

$$f_n s_n = f_1 s_1 + f_3 s_3 + f_3 s_3 + \&c.$$

and $f_n q_n = f_1 q_1 + f_2 q_3 + f_3 q_3 + \&c.$

If the point of application O, move in a straight line to P, then $OA = s_1$ is called the space of the force f_1 , and $f_1 s_1$ the work done by the force f_1 , in moving the body from O to P. OB is the space of the resultant, and the product $f_3 s_3$, the work done by it. $f_3 s_3$ is the work done by f_3 in moving the material point O from O to P. Hence the work done by the resultant is equal to all the work done by the component forces, as we have shown,

$$f_n s_n = f_1 s_1 + f_2 s_2 + f_3 s_3 + \&c.$$

PRINCIPLES AND PRACTICAL APPLICATIONS OF MECHANICAL POWERS,

MECHANICAL Powers, or the Elements of Machinery, are certain simple mechanical arrangements whereby weights may be raised or resistances overcome with the exertion of less power or strength than is necessary without them.

They are usually accounted six in number, viz. the lever, the wheel and axle, the pulley, the inclined plane, the wedge, and the screw; but properly two of these comprise the whole, namely, the lever and inclined plane,-the wheel and axle being only a lever of the first kind, and the pulley a lever of the second,-the wedge and the screw being also similarly allied to that of the inclined plane: however, although such seems to be the case in these respects, yet they each require, on account of their various modifications, a peculiar rule of estimation adapted expressly to the different circumstances in which they are individually required to act.

THE LEVER.

Levers, according to mode of application, as the following, are

distinguished as being of the first, second, or third kind; and although levers of equal lengths produce different effects, the general principles of estimation in all are the same; namely, the power is to the

weight or resistance, as the distance of the one end to the fulcrum is to the distance of the other end to the same point.

In the *first kind*, the power is to the resistance, as the distance AB is to the distance BC.

In the second, the power is to the resistance, as the distance AB is to that of AC; and,

In the *third*, the resistance is to the power, as the distance AB is to that of AC.

RULE, first kind.—Divide the longer by the shorter end of the lever from the fulcrum, and the quotient is the effective force that the power applied is equal to.

Let the handle of a pump equal 65 inches in length, and 10 inches from the shortest end to centre of motion; what is the amount of effective leverage thereby obtained?

$$65 - 10 = 55$$
, and $\frac{55}{10} = 5\frac{1}{2}$ to 1.

Required the situation of the fulcrum on which to rest a lever of 15 feet, so that $2\frac{1}{2}$ cwt. placed at one end may equipoise 30 cwt. at the other, the weight of the lever not being taken into account.

 $\frac{15 \times 2.5}{2.5 + 30} = 1.154$ feet from the end on which the 30 cwt. is to be placed.

It is by the second kind of lever that the greatest effect is obtained from any given amount of power; hence the propriety of the application of this principle to the working of force pumps, and shearing of iron, as by the lever of a punching-press, &c.

RULE, second kind.—Divide the whole length of lever, or distance from power to fulcrum, by the distance from fulcrum to weight, and the quotient is the proportion of effect that the power is to the weight or resistance to be overcome.

Required the amount of effect or force produced by a power of

50 lbs. on the ram of a Bramah's pump, the length of the lever being 3 feet, and distance from ram to fulcrum 41 inches.

3 feet = 36 inches, and $\frac{36}{4\cdot 5} = 8$, or the power and resistance are to each other as 8 to 1; hence $50 \times 8 = 400$ lbs. force upon the ram.

The lever on the safety valve of a steam boiler is of the third kind, the action of the steam being the power, and the weight or spring-balance attached the resistance; but in such application the action of the lever's weight must also be taken into account.

THE WHEEL AND PINION, OR CRANE.

The mechanical advantage of the wheel and axle, or crane, is as the velocity of the weight to the velocity of the power; and being only a modification of the first kind of lever, it of course partakes of the same principles.

RULE. To determine the amount of effective power produced from a given power by means of a crane with known peculiarities.-Multiply together the diameter of the circle described by the winch, or handle, and the number of revolutions of the pinion to 1 of the wheel; divide the product by the barrel's diameter in equal terms of dimensions, and the quotient is the effective power to 1 of exertive force.

Let there be a crane the winch of which describes a circle of 30 inches in diameter; the pinion makes 8 revolutions for 1. of the wheel, and the barrel is 11 inches in diameter; required the effective power in principle, also the weight that 36 lbs. would raise, friction not being taken into account.

 $\frac{30 \times 8}{11} = 21.8 \text{ to } 1 \text{ of exertive force ; and } 21.8 \times 36 = 784.8 \text{ lbs.}$

RULE .- Given any two parts of a crane, to find the third, that shall produce any required proportion of mechanical effect .- Multiply the two given parts together, and divide the product by the required proportion of effect; the quotient is the dimensions of the other parts in equal terms of unity.

Suppose that a crane is required, the ratio of power to effect being as 40 to 1, and that a wheel and pinion 11 to 1 is unavoidably compelled to be employed, also the throw of each handle to be 16 inches; what must be the barrel's diameter on which the rope or chain must coil?

 $16 \times 2 = 32$ inches diameter described by the handle.

And $\frac{32 \times 11}{40} = 8.8$ inches, the barrel's diameter.

THE PULLEY.

The principle of the pulley, or, more practically, the block and tackle, is the distribution of weight on various points of support; the mechanical advantage derived depending entirely upon the

flexibility and tension of the rope, and the number of pulleys or sheives in the lower or rising block: hence, by blocks and tackle of the usual kind, the power is to the weight as the number of cords attached to the lower block; whence the following rules.

Divide the weight to be raised by the number of cords leading to, from, or attached to the lower block; and the quotient is the power required to produce an equilibrium, provided friction did not exist.

Divide the weight to be raised by the power to be applied; the quotient is the number of sheives in, or cords attached to the rising block.

Required the power necessary to raise a weight of 3000 lbs. by a four and five-sheived block and tackle, the four being the movable or rising block.

Necessarily there are nine cords leading to and from the rising block.

Consequently $\frac{3000}{9} = 333$ lbs., the power required.

I require to raise a weight of 1 ton 18 cwt., or 4256 lbs.; the amount of my power to effect this object being 500 lbs., what kind of block and tackle must I of necessity employ?

4256

 $\frac{-200}{500} = 8.51$ cords; of necessity there must be 4 sheives or 9 cords in the rising block.

As the effective power of the crane may, by additional wheels and pinions, be increased to any required extent, so may the pulley and tackle be similarly augmented by purchase upon purchase.

THE INCLINED PLANE.

The *inclined plane* is properly the second elementary power, and may be defined the lifting of a load by regular instalments. In principle it consists of any right line not coinciding with, but lying in a sloping direction to, that of the horizon; the standard of comparison of which commonly consists in referring the rise to so many parts in a certain length or distance, as 1 in 100, 1 in 200, &c.,—the first number representing the perpendicular height, and the latter the horizontal length in attaining such height, both numbers being of the same denomination, unless otherwise expressed; but it may be necessary to remark, that the inclination of a plane, the sine of inclination, the height per mile, or the height for any length, the ratio, &c., are all synonymous terms.

The advantage gained by the inclined plane, when the power acts in a parallel direction to the plane, is as the length to the height or angle of inclination: hence the rule. Divide the weight by the ratio of inclination, and the quotient equal the power that will just support that weight upon the plane. Or, multiply the weight by the height of the plane, and divide by the length,—the quotient is the power. Required the power or equivalent weight capable of supporting a load of 350 lbs. upon a plane of 1 in 12, or 3 feet in height and 36 feet in length.

 $\frac{350}{12} = 29.16$ lbs., or $\frac{350 \times 3}{36} = 29.16$ lbs. power, as before.

The weight multiplied by the length of the base, and the product divided by the length of the incline, the quotient equal the pressure or downward weight upon the incline.

T.	ABLE	showing	the.	Resistan	ce op	posed t	o the	Motion	of	Carriages	3
	on d	ifferent	Incli	nations	of A	scendin	ng or	Descen	ding	Planes,	,
	what	ever pa	rt of th	he insist	ent u	eight t	hey a	re draw	n by		

ns.		HUNDREDS.										
Te		100	200	300	400	500	600	700	800	900		
		·01	·005	·00333	.0025	.002	.00167	.00143	·00125	-00111		
10	•1	·00909	·00476	$\cdot 00322$	·00244	·00196	·00164	.00141	$\cdot 00123$	·0011		
20	.05	·00833	.00454	·00312	.00238	.00192	.00161	·00139	$\cdot 00122$	·00109		
30	·0333	.00769	.00435	·00303	.00232	·00189	·00159	.00137	.0012	.00107		
40	.025	·00714	.00417	.00294	.00227	.00185	·00156	·00135	·00119	·00106		
50	.02	.00667	.004	.00286	.00222	.00182	·00154	.00133	.00118	·00105		
60	.0166	.00625	.00385	.00278	.00217	.00178	.00151	·00131	·00116	·00104		
70	.0143	.00588	.0037	.0027	.00213	.00175	·00149	.0013	·00115	·00103		
80	.0125	.00555	.00357	.00263	.00208	.00172	·00147	.00128	·00114	.00102		
90	·0111	.00526	·00345	·00256	·00204	·00169	·00145	·00126	·00112	·00101		

Although this table has been calculated particularly for carriages on railway inclines, it may with equal propriety be applied to any other incline, the amount of traction on a level being known.

Application of the preceding Table.

What weight will a tractive power of 150 lbs. draw up an incline of 1 in 340, the resistance on the level being estimated at $\frac{1}{240}$ th part of the insistent weight?

In a line with 40 in the left-hand column and under 200 is $\cdot 00417$ Also in the same line and under 390 is..... $\cdot 00294$

Added together = $\cdot 00711$

Then $\frac{150}{.00711} = 21097$ lbs. weight drawn up the plane.

What weight would a force of 150 lbs. draw down the same plane, the fraction on the level being the same as before?

Friction on the level = $\cdot 00417$ Gravity of the plane = $\cdot 00294$ subtract = $\cdot 00123$

And $\frac{150}{.00123} = 121915$ lbs. weight drawn down the plane.

Example of incline when velocity is taken into account.—A power of 230 lbs., at a velocity of 75 feet per minute, is to be employed for moving weights up an inclined plane 12 feet in height and 163 feet in length, the least velocity of the weight to be 8 feet per minute; required the greatest weight that the power is equal to.

 $\frac{230 \times 75 \times 163}{12 \times 8} = \frac{2811750}{96} = 29288 \text{ lbs., or } 13.25 \text{ tons.}$

TABLE of Inclined Planes, showing the ascent or descent per yard, and the corresponding ascent or descent per chain, per mile; and also the ratio.

Per yard.		Per chain.	Per mile.	Ratio.	Per	r yard.	Per chain.	Per mile.	Ratio.
In parts of an in.	In dec'ls. of an inch.	Inches.	Feet.	l inch.	In parts of an in.	In decimals of an inch.	Inches.	Feet.	l inch.
	·0156	·344	2.29	2304	7.6	·4375	9.625	64.17	82
4.5	.0208	•458	3.06	1728	1	•5	11	73.33	72
10	.0312	.687	4.58	1152	-9-	·5625	12.375	82.5	64
24	.0417	·917	6.11	864	70	·5833	12.833	85.56	62
TE	.0625	1.375	9.17	576	3	•6	13.2	88	60
10	.0833	1.833	12.22	432	550	.625	13.75	91.67	58
T's	•1	2.2	14.67	360	24	.6667	14.667	97.78	54
10	.125	2.75	18.33	288	11	.6875	15.125	100.83	52
i	.1667	3.667	24.44	216	7.	•7	15.4	102.67	51
30	.1875	4.125	27.50	192	3	.75	16.5	110	48
10	.2	4.4	29.33	180	4	•8.	17.6	117.33	45
1 1	.25	5.5	36.67	144	13	·8125	17.875	119.17	44
3	.3	6.6	44	120	5	·8333	18.333	122.22	43
5	.3125	6.875	45.83	115	07	·875	19.25	128.33	41
10	.3333	7.333	48.89	108	, j	•9	19.8	132	40
000	.375	8.25	55	- 96	10	.9167	20.167	134.44	39
24	•4	8.8	58.67	20	15	.9375	20.625	137.5	38
5	•4167	9.167	61.11	86	1	1	22	146.67	36

THE WEDGE.

The wedge is a double inclined plane; consequently its principles are the same: hence, when two bodies are forced as under by means of the wedge in a direction parallel to its head,—Multiply the resisting power by half the thickness of the head or back of the wedge, and divide the product by the length of one of its inclined sides; the quotient is the force equal to the resistance.

The breadth of the back or head of a wedge being 3 inches, and its inclined sides each 10 inches, required the power necessary to act upon the wedge so as to separate two substances whose resisting force is equal to 150 lbs.

$$\frac{150 \times 1.5}{10} = 22.5$$
 lbs.

When only one of the bodies is movable, the whole breadth of the wedge is taken for the multiplier.

THE SCREW.

The screw, in principle, is that of an inclined plane wound around a cylinder, which generates a spiral of uniform inclination, each revolution producing a rise or traverse motion equal to the pitch of the screw, or distance between two consecutive threads,—the pitch being the height or angle of inclination, and the circumference
the length of the plane when a lever is not applied; but the lever being a necessary qualification of the screw, the circle which it describes is taken, instead of the screw's circumference, as the length of the plane: hence the mechanical advantage is, as the circumference of the circle described by the lever where the power acts, is to the pitch of the screw, so is the force to the resistance in principle.

Required the effective power obtained by a screw of $\frac{7}{5}$ inch pitch, and moved by a force equal to 50 lbs. at the extremity of a lever 30 inches in length.

$$\frac{30 \times 2 \times 3.1416 \times 50}{.875} = 10760 \text{ lbs.}$$

Required the power necessary to overcome a resistance equal to 7000 lbs. by a screw of $1\frac{1}{4}$ inch pitch, and moved by a lever 25 inches in length.

$$\frac{7000 \times 1.25}{25 \times 2 \times 3.1416} = 55.73$$
 lbs. power.

In the case of a screw acting on the periphery of a toothed wheel, the power is to the resistance, as the product of the circle's circumference described by the winch or lever, and radius of the wheel, to the product of the screw's pitch, and radius of the axle, or point whence the power is transmitted; but observe, that if the screw consist of more than one helix or thread, the apparent pitch must be increased so many times as there are threads in the screw. Hence, to find what weight a given power will equipoise: RULE.—Multiply together the radius of the wheel, the length of

RULE.—Multiply together the radius of the wheel, the length of the lever at which the power acts, the magnitude of the power, and the constant number 6.2832; divide the product by the radius of the axle into the pitch of the screw, and the quotient is the weight that the power is equal to.

What weight will be sustained in equilibrio by a power of 100 lbs. acting at the end of a lever 24 inches in length, the radius of the axle, or point whence the power is transmitted, being 8 inches, the radius of the wheel 14 inches, the screw consisting of a double thread, and the apparent pitch equal $\frac{5}{8}$ of an inch?

 $14 \times 24 \times 100 \times 6.2832$

 $\frac{11.11.11.100 \times 0.2002}{.625 \times 2 \times 8} = 21111.55$ lbs., or 9.4 tons, the power sustained.

If an endless screw be turned by a handle of 20 inches, the threads of the screw being distant half an inch; the screw turns a toothed wheel, the pinion of which turns another wheel, and the pinion of this another wheel, to the barrel of which a weight W is attached; it is required to find the weight a man will be able to sustain, who acts at the handle with a force of 150 lbs., the diameters of the wheels being 18 inches, and those of the pinions and barrel 2 inches.

 $150 \times 20 \times 3.1416 \times 2 \times 18^3 = W \times 2^3 \times \frac{1}{2};$

... W = 12269 tons.

CONTINUOUS CIRCULAR MOTION.

In mechanics, circular motion is transmitted by means of wheels, drums, or pulleys; and accordingly as the driving and driven are of equal or unequal diameters, so are equal or unequal velocities produced: hence the principle on which the following rules are founded.

RULE. — When time is not taken into account. — Divide the greater diameter, or number of teeth, by the lesser diameter, or number of teeth, and the quotient is the number of revolutions the lesser will make for 1 of the greater.

How many revolutions will a pinion of 20 teeth make for 1 of a wheel with 125?

$125 \div 20 = 6.25$, or $6\frac{1}{4}$ revolutions.

Intermediate wheels, of whatever diameters, so as to connect communication at any required distance apart, cause no variation of velocity more than otherwise would result were the first and last in immediate contact.

RULE.—To find the number of revolutions of the last, to 1 of the first, in a train of wheels and pinions.—Divide the product of all the teeth in the driving, by the product of all the teeth in the driven, and the quotient equal the ratio of velocity required.

Required the ratio of velocity of the last, to 1 of the first, in the following train of wheels and pinions; viz., *pinions driving*,—the first of which contains 10 teeth, the second 15, and third 18;—*wheels driven*,—first 15 teeth, second 25, and third 32.

 $10 \times 15 \times 18$

10 .. 01

 $\overline{15 \times 25 \times 32} = \cdot 225$ of a revolution the wheel will make to 1 of the pinion.

A wheel of 42 teeth giving motion to one of 12, on which shaft is a pulley of 21 inches diameter, driving one of 6; required the number of revolutions of the last pulley to 1 of the first wheel.

$$\frac{42 \times 21}{12 \times 6} = 12.25$$
, or $12\frac{1}{4}$ revolutions.

Where increase or decrease of velocity is required to be communicated by wheel-work, it has been demonstrated that the number of teeth on each pinion should not be less than 1 to 6 of its wheel, unless there be some other important reason for a higher ratio.

RULE.— When time must be regarded.—Multiply the diameter, or number of teeth in the driver, by its velocity in any given time, and divide the product by the required velocity of the driven; the quotient equal the number of teeth, or diameter of the driven, to produce the velocity required.

If a wheel containing 84 teeth makes 20 revolutions per minute, how many must another contain to work in contact, and make 60 revolutions in the same time? $\frac{84 \times 20}{60} = 28 \text{ teeth.}$

From a shaft making 45 revolutions per minute, and with a pinion 9 inches diameter at the pitch line, I wish to transmit motion at 15 revolutions per minute; what at the pitch line must be the diameter of the wheel?

$$\frac{45 \times 9}{15} = 27$$
 inches.

Required the diameter of a pulley to make 16 revolutions in the same time as one of 24 inches making 36.

$$\frac{24 \times 36}{16} = 54$$
 inches.

RULE.—The distance between the centres and velocities of two wheels being given, to find their proper diameters.—Divide the greatest velocity by the least; the quotient is the ratio of diameter the wheels must bear to each other. Hence, divide the distance between the centres by the ratio plus 1; the quotient equal the radius of the smaller wheel; and subtract the radius thus obtained from the distance between the centres; the remainder equal the radius of the other.

The distance of two shafts from centre to centre is 50 inches, and the velocity of the one 25 revolutions per minute, the other is to make 80 in the same time; the proper diameters of the wheels at the pitch lines are required.

 $80 \div 25 = 3.2$, ratio of velocity, and $\frac{50}{3.2 + 1} = 11.9$, the ra-

dius of the smaller wheel; then 50 - 11.9 = 38.1, radius of larger; their diameters are $11.9 \times 2 = 23.8$, and $38.1 \times 2 = 76.2$ inches.

To obtain or diminish an accumulated velocity by means of wheels and pinions, or wheels, pinions, and pulleys, it is necessary that a proportional ratio of velocity should exist, and which is simply thus attained :—Multiply the given and required velocities together, and the square root of the product is the mean or proportionate velocity.

Let the given velocity of a wheel containing 54 teeth equal 16 revolutions per minute, and the given diameter of an intermediate pulley equal 25 inches, to obtain a velocity of 81 revolutions in a machine; required the number of teeth in the intermediate wheel, and diameter of the last pulley.

 $\sqrt{81 \times 16} = 36$ mean velocity.

 $\frac{54 \times 16}{36} = 24$ teeth, and $\frac{25 \times 36}{81} = 11.1$ inches, diameter of pulley.

To determine the proportion of wheels for screw cutting by a lathe.—In a lathe properly adapted, screws to any degree of pitch, or number of threads in a given length, may be cut by means of a leading screw of any given pitch, accompanied with change wheels and pinions; course pitches being effected generally by means of one wheel and one pinion with a *carrier*, or *intermediate wheel*, which cause no variation or change of motion to take place: hence the following

RULE.—Divide the number of threads in a given length of the screw which is to be cut, by the number of threads in the same length of the leading screw attached to the lathe; and the quotient is the ratio that the wheel on the end of the screw must bear to that on the end of the lathe spindle.

Let it be required to cut a screw with 5 threads in an inch, the leading screw being of $\frac{1}{2}$ inch pitch, or containing 2 threads in an inch; what must be the ratio of wheels applied?

 $5 \div 2 = 2.5$, the ratio they must bear to each other.

Then suppose a pinion of 40 teeth be fixed upon for the spindle,-

 $40 \times 2.5 = 100$ teeth for the wheel on the end of the screw.

But screws of a greater degree of fineness than about 8 threads in an inch are more conveniently cut by an additional wheel and pinion, because of the proper degree of velocity being more effectively attained; and these, on account of revolving upon a stud, are commonly designated the *stud-wheels*, or *stud-wheel* and *pinion*; but the mode of calculation and ratio of screw are the same as in the preceding rule;—hence, all that is further necessary is to fix upon any 3 wheels at pleasure, as those for the spindle and studwheels,—then multiply the number of teeth in the spindle-wheel by the ratio of the screw, and by the number of teeth in that wheel or pinion which is in contact with the wheel on the end of the screw; divide the product by the stud-wheel in contact with the spindlewheel, and the quotient is the number of teeth required in the wheel on the end of the leading screw.

Suppose a screw is required to be cut containing 25 threads in an inch, the leading screw as before having 2 threads in an inch, and that a wheel of 60 teeth is fixed upon for the end of the spindle, 20 for the pinion in contact with the screw-wheel, and 100 for that in contact with the wheel on the end of the spindle;—required the number of teeth in the wheel for the end of the leading screw.

$$25 \div 2 = 12.5$$
, and $\frac{60 \times 12.5 \times 20}{100} = 150$ teeth.

Or, suppose the spindle and screw-wheels to be those fixed upon, also any one of the stud-wheels, to find the number of teeth in the other.

 $\frac{60 \times 12.5}{150 \times 100} = 20 \text{ teeth, or } \frac{60 \times 12.5 \times 20}{150} = 100 \text{ teeth.}$

CONTINUOUS CIRCULAR MOTION.

d	Num	ber of th in	d	1	Number o	f teeth	in	a	1	Number o	f teeth	in
Number of threads i inch of screw.	Lathe spindle- wheel.	Leading screw- wheel.	Number of threads i inch of screw.	Lathe spindle- wheel.	Wheel in contact with spindle-wheel.	Pinion in contact with screw-wheel.	Leading screw- wheel.	Number of threads i inch of screw.	Lathe spindle- wheel.	Wheel in contact with spindle-wheel.	Pinion in contact with screw-wheel.	Leading screw- wheel.
1	80	40	81	40	55	20	60	19	50	95	20	100
11	80	50	81	90	85	20	90	193	80	120	20	130
11	80	60	83	60.	70	20	75	20	60	100	20	120
$1\frac{3}{4}$	80	70	91	90	90	20	95	201	40	90	20	90
2	80	90	93	40	60	20	65	21	e80	120	20	140
$2\frac{1}{4}$	80	90	-10	60	75	20	80	22	60	110	20	120
$2\frac{1}{2}$	80	100	101	50	70	20	75	$22\frac{1}{2}$	80	120	20	150
$2\frac{3}{4}$	80	110	11	60	55	20	120	$22\frac{3}{4}$	80	130	20	140
3	80	120	12	90	90	20	120	$23\frac{3}{4}$	40	95	20	100
31	80	130	$12\frac{3}{4}$	60	85	20	90	24	65	120	20	130
31	80	140	13	90	90	20	130	25	60	100	20	150
34	80	150	131	60	90	20	90	251	30	85	20	90
4	40	80	134	80	100	20	110	26	170	130	20	140
44	40	85	14	90	90	20	140	27	40	90	20	120
42	40	90	144	00	90	20	95	212	40	140	20	110
44	40	100	10	90	90	20	100	28	10	140	20	100
51	40	110	161	80	100	20	120	202	70	140	20	150
6	40	190	161	80	110	20	190	29	20	80	20	190
61	40	120	17	45	85	20	90	32	40	110	20	120
72	40	140	171	80	100	20	140	34	30	85	20	120
71	40	150	18	40	60	20	120	35	60	140	20	150
82	30	120	183	80	100	20	150	36	30	90	20	120

TABLE of Change Wheels for Screw Cutting, the leading screw being of $\frac{1}{2}$ inch pitch, or containing two threads in an inch.

 TABLE by which to determine the Number of Teeth, or Pitch of Small Wheels.

Diametral pitch.	Circular pitch.	Diametral pitch.	Circular pitch.
3	1.047	9	.349
4	.785	10	·314
5	-628	12	·262
6	.524	14	·224
7	•449	16	·196
8	.393	20	.157

Required the number of teeth that a wheel of 16 inches diameter will contain of a 10 pitch.

 $16 \times 10 = 160$ teeth, and the circular pitch = $\cdot 314$ inch.

What must be the diameter of a wheel for a 9 pitch of 126 teeth? 126

 $\frac{120}{9} = 14$ inches diameter, circular pitch $\cdot 349$ inch.

The pitch is reckoned on the diameter of the wheel instead of the circumference, and designated wheels of 8 pitch, 12 pitch, &c.

THE PRACTICAL MODEL CALCULATOR.

TABLE of the Diameters of Wheels at their pitch circle, to contain a required number of teeth at a given pitch.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c $	in. 988 104 1288 444 544 544 544 544 788 9 10 107 89 107 107 07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	95552 10522 1255 1255 1255 10 10 10 10 10 10 10 10 10 10 10 10 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	988844444489 11234454489 108789 108789 108789
$ \begin{array}{c} 38 & [1 \ 0 \ 114 \ 1 \ 131 \ 1 \ 24 \ 1 \ 38 \ 1 \ 42 \ 1 \ 38 \ 1 \ 42 \ 1 \ 38 \ 1 \ 42 \ 1 \ 38 \ 1 \ 42 \ 1 \ 38 \ 1 \ 42 \ 1 \ 38 \ 1 \ 42 \ 42$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1234567890110123456778901101234567890110123 1101234567890110123456778901101234567890110123

CONTINUOUS CIRCULAR MOTION.

÷	1		-							F	IT	сн о	F	THE 3	re:	ETH I	IN	INCH	ES	5.								
aber o	1	in.		1 <u>৳</u>		1‡		13		11	-	15		14	1	17	2	in.		21		2‡ ,	T	21		24	3	in.
Nun te	1	han h					:	DIAM	ET:	ER AT	c 7	THE P	IT	сн с	R	CLE I	N	FEET	A	ND I	NC	HES.						
71	1	10 8	2	$1\frac{1}{2}$	2	41	2	7	2	97	3	03	3	31	3	68	3	91	4	0	4	.27	4	81	5	21	5	$7\frac{3}{4}$
72	1	107	2	17	2	45	2	71	2	103	3	11	3	41	3	63	3	97	4	03	4	31	4	91	5	3	5	81
73	1	111	2	21	2	. 5	2	8	2	107	3	12	3	48	3	71	3	101	4	18	4	41	4	10	5	37	5	93
74	1	114	2	21	2	51	2	83	2	118	3	$2\frac{1}{4}$	3	51	3	77	3	$11\frac{1}{8}$	4	2	4	5	4	107	5	42	5	104
75	1	114	2	21	2	53	2	87	2	117	3	27	3	53	3	83	3	$11\frac{2}{4}$	4	23	4	5#	4	114	5	58	5	118
76	2	01	2	31	2	61	2	9 <u>1</u>	3	0±	3	31	3	63	3	93	4	03	4	3ĵ	4	61	5	01	5	61	6	01
77	2	03	2	31	2	68	2	97	3	$0\frac{3}{4}$	3	37	3	67	3	97	4	1	4	4	4	71	5	11	5	78	6	11
78	2	07	2	3 7	2	7	2	101	3	$1\frac{1}{2}$	3	48	3	71	3	$10\frac{1}{2}$	4	15	4	43	4	73	5	2	5	8 <u>1</u>	6	21
79	2	11	2	41	2	7 8	2	101	3	$1\frac{1}{4}$	3	47	3	8	3	111	4	$2\frac{1}{4}$	4	51	4	81	5	27	5	9 <u>1</u>	6	31
80	2	14	2	48	2	74	2	11	3	21	3	58	3	81	3	11#	4	3	4	61	4	- 9 1	5	38	5	10	6	43
81	2	13	2	5	2	81	2	111	3	28	3	57	3	91	4	03	4	31	4	67	4	10	5	41	5	107	6	53
82	2	21	2	53	2	85	2	117	3	31	3	63	3	95	4	07	4	41	4	71	4	103	5	51	5	$11\frac{3}{4}$	6	63
83	2	24	2	$5\frac{3}{4}$	2	9	3	03	3	35	3	67	3	101	4	11	4	47	4	81	4	111	5	6	6	0 8	6	71
84	2	23	2	6	2	93	3	03	3	4	3	71	3	101	4	21	4	51	4	81	5	- 01	5	67	6	11	6	81
85	2	3	2	63	2	- 9 3	3	11	3	41	3	78	3	111	4	2#	4	61	4	91	5	07	5	75	6	23	6	91
86	2	38	2	63	2	10 1	3	18	3	51	3	81	3	117	4	31	4	63	4	101	5	14	5	81	6	$3\frac{1}{2}$	6	104
87	2	38	2	71	2	10 8	3	2	3	51	3	9	4	01	4	37	4	78	4	107	5	$2\frac{1}{2}$	5	<u>91</u>	6	4 <u>1</u>	6	11
88	2	4	2	71	2	11	3	$2\frac{1}{2}$	3	6	3	91	4	1	4	41	4	8	4	114	5	3	5	10	6	5	7	0
89	2	43	2	71	2	113	3	27	3	61	3	10	4	11	4	51	4	8#	5	01	5	31	5	103	6	57	7	1
90	2	48	2	81	2	111	3	31	3	7	3	101	4	21	4	5#	4	91	5	07	5	41	5	11#	6	63	7	2
91	2	43	2	8 <u>1</u>	3	01	3	37	3	71	3	11	4	23	4	61	4	97	5	11	5	51	6	03	6	7	7	27
92	2	51	2	87	3	0	3	41	3	77	3	115	4	31	4	7	4	101	5	21	5	57	6	1	6	81	7	37
93	2	5	2	91	3	1	3	44	3	8#	4	01	4	37	4	71	4	111	5	27	5	64	6	2	6	93	7	47
94	2	57	2	95	3	18	3	51	3	87	4	05	4	43	4	81	4	$11\frac{3}{4}$	5	31	5	78	6	$2\frac{3}{4}$	6	101	7	57
95	2	61	2	10	3	$1\frac{3}{4}$	3	51	3	93	4	11	4	47	4	83	5	01	5	41	5	8	6	31	6	111	7	63
96	2	61	2	103	3	$2\frac{1}{8}$	3	6	3	91	4	15	4	51	4	98	5	11	5	5	5	83	6	48	7	0	7	78
97	2	67	2	107	3	28	3	63	3	101	4	21	4	6	4	10	5	13	5	54	5	91	6	51	7	07	7	84
98	3 2	71	2	11	3	3	3	67	3	101	4	25	4	61	4	101	5	23	5	61	5	101	6	6	7	13	7	91
99	2	71	2	118	3	33	3	73	3	111	4	31	4	71	4	11	5	3	5	7	5	11	6	63	17	25	7	101
100	2	73	2	117	3	31	13	73	3	113	4	33	4	73	4	115	5	35	5	78	5	118	6	71	17	34	7	111
101	2	81	3	01	13	41	3	81	4	01	4	41	4	81	5	Oł	5	41	5	81	6	01	6	83	7	43	8	01
102	2 2	8	13	01	3	43	3	85	4	0	4	43	4	87	5	1	5	5	5	9	6	1	6	91	17	51	8	13

TABLE of the Strength of the Teeth of Cast Iron Wheels at a given velocity.

724.1	a mh i chun ann	P	S	trength of teeth	in horse power, a	t
of teeth in inches.	of teeth in inches.	of teeth in inches.	3 feet per second.	4 feet per second.	6 feet per second.	8 feet per second.
3.99	1.9	7.6	20.57	27.43	41.14	54.85
3.78	1.8	7.2	17.49	23.32	34.98	46.64
3.57	1.7	6.8	14.73	19.65	29.46	39.28
3.36	1.6	6.4	12.28	16.38	24.56	32.74
3.15	1.5	6	10.12	13.50	20.24	26.98
2.94	1.4	5.6	8.22	10.97	16.44	21.92
2.73	1.3	5.2	6.58	8.78	13.16	17.54
2.52	1.2	4.8	5.18	6.91	10.36	13.81
2.31	1.1	4.4	3.99	5.32	7.98	10.64
$2 \cdot 1$	1.0	4	3.00	4.00	6.00	8.00
1.89	9	3.6	2.18	2.91	4.36	5.81
1.68	8	3.2	1.53	2.04	3.06	3.08
1.47	.7	2.8	1.027	1.37	2.04	2.72
1.26	•6	2.4	•64	·86	1.38	1.84
1.05	• •5	2	·375	-50	-75	1.00

ADDITIONAL EXAMPLES ON THE VELOCITY OF WHEELS, DRUMS, PULLEYS, ETC.

IF a wheel that contains 75 teeth makes 16 revolutions per minute, required the number of teeth in another to work in it, and make 24 revolutions in the same time.

 $\frac{75 \times 16}{24} = 50$ teeth.

A wheel, 64 inches diameter, and making 42 revolutions per minute, is to give motion to a shaft at the rate of 77 revolutions in the same time: required the diameter of a wheel suitable for that purpose.

$$\frac{64 \times 42}{77} = 34.9$$
 inches.

Required the number of revolutions per minute made by a wheel or pulley 20 inches diameter, when driven by another of 4 feet diameter, and making 46 revolutions per minute.

$$\frac{48 \times 46}{20} = 110.4 \text{ revolutions.}$$

A shaft, at the rate of 22 revolutions per minute, is to give motion, by a pair of wheels, to another shaft at the rate of $15\frac{1}{2}$; the distance of the shafts from centre to centre is $45\frac{1}{2}$ inches; the diameters of the wheels at the pitch lines are required.

 $\frac{45\cdot5 \times 15\cdot5}{22 + 15\cdot5} = 18\cdot81$ radius of the driving wheel.

And $\frac{45\cdot5 \times 22}{22 + 15\cdot5} = 26\cdot69$ radius of the driven wheel.

Suppose a drum to make 20 revolutions per minute, required the diameter of another to make 58 revolutions in the same time.

 $58 \div 20 = 2.9$, that is, their diameters must be as 2.9 to 1; thus, if the one making 20 revolutions be called 30 inches, the other will be $30 \div 2.9 = 10.345$ inches diameter.

Required the diameter of a pulley, to make $12\frac{1}{2}$ revolutions in the same time as one of 32 inches making 26.

 $\frac{32 \times 26}{12 \cdot 5} = 66 \cdot 56$ inches diameter.

A shaft, at the rate of 16 revolutions per minute, is to give motion to a piece of machinery at the rate of 81 revolutions in the same time; the motion is to be communicated by means of two wheels and two pulleys with an intermediate shaft; the driving wheel contains 54 feet, and the driving pulley is 25 inches diameter; required the number of teeth in the other wheel, and the diameter of the other pulley. $\sqrt{81 \times 16} = 36$, the mean velocity between 16 and 81; then, $\frac{16 \times 54}{36} = 24$ teeth; and $\frac{36 \times 25}{81} = 11.11$ inches, diameter of pulley.

Suppose in the last example the revolutions of one of the wheels to be given, the number of teeth in both, and likewise the diameter of each pulley, to find the revolutions of the last pulley.

> $\frac{16 \times 54}{24} = 36$, velocity of the intermediate shaft; and $\frac{36 \times 25}{11 \cdot 11} = 81$, the velocity of the machine.

TABLE for finding the radius of a wheel when the pitch is given, or the pitch of a wheel when the radius is given, that shall contain from 10 to 150 teeth, and any pitch required.

Number of Teeth.	Radius.	Number of Teeth.	Radius.	Number of Teeth.	Radius.	Number of Teeth.	- Radius.
10	1.618	46	7.327	81	12.895	116	18.464
11	1.774	47	7.486	82	13.054	117	18:623
12	1.932	48	7.645	83	13.213	118	18.782
13	2.089	49	7.804	84	. 13.370	119	18.941
14	$2 \cdot 247$	50	7.963	85	13.531	120	19.101
15	$2 \cdot 405$	51	8.122	86	13.690	121	19.260
16	2.563	52	8.281	87	13.849	122	19.419
17	2.721	53	8.440	88	14.008	123	19.578
18	2.879	54	8.599	89	14.168	124	19.737
19	3.038	55	8.758	90	14.327	125	19.896
20	8.196	56	8.917	91	14.486	126	20.055
21	3.355	57-	9.076	92	14.645	127	20.214
22	3.513	58	9.235	93	14.804	128	20.374
23	3.672	59	9.394	94	14.963	129	20.533
24	3.830	60	9.553	95	15.122	130	20.692
25	3.989	61	9.712	96	15.281	131	20.851
26	4.148	62	9.872	97	15.440	132	. 21.010
27	4.307	63	10.031	98	15.600	133	21.169
28	4.465	64	10.190	99	15.759	134	21.328
29	4.624	65	10.349	100	15.918	135	21.488
30	4.788	66	10.508	101	16.077	136	21.647
31	4.942	67	10.667	102	16.236	137	21.806
32	5.101	68	10.826	103	16.395	138	21.965
33	5.260	69	10.985	104	16.554	139	$22 \cdot 124$
34	5.419	70	11.144	105	16.713	140	22.283
35	5.578	71	11.303	106	16.873	141	22.442
36	5.737	72	11.463	107	17.032	142	22.602
37	5.896	73	. 11.622	108	17.191	143	22.761
38	6.055	74	11.781	109	17.350	144	22.920
39	6.214	75	11.940	110	17.509	145	23.079
40	6.373	76	12.099	111	17.668	146	23.238
41	6.532	77	12.258	112	6 17.827	147	23.397
· 42	6.691	78	12.417	113	17.987	148	23.556
43	6.850	79	12.576	114	18.146	149	23.716
44	7.009	80	12.735	115	18.305	150	23.875
45	7.168	1		1		1	

RULE.—Multiply the radius in the table by the pitch given, and the product will be the radius of the wheel required.

THE PRACTICAL MODEL CALCULATOR.

Or, divide the radius of the wheel by the radius in the table, and the quotient will be the pitch of the wheel required.

Required the radius of a wheel to contain 64 teeth, of 3 inch pitch.

$10.19 \times 3 = 30.57$ inches.

What is the pitch of a wheel to contain 80 teeth, when the radius is 25.47 inches?

$$25.47 \div 12.735 = 2$$
 inch pitch.

Or. set off upon a straight line AB seven times the pitch AC given; divide that, or another exactly the same length, into eleven equal parts; call each of those divisions four, or each of those divisions will be equal to four teeth upon the radius. If a circle be made with any number (20) of these equal parts as radius, AC the pitch will go that number (20) of times round the circle.

Were it required to find the diameter of a wheel to contain 17 teeth, the construction would be as follows :---

Regular approved proportions for wheels with flat arms in the middle of the ring, and ribs or feathers on each side.—The length of the teeth = the pitch, besides clearance, or the pitch, clearance included.

Thickness of the teeth 4	the pitch.
Breadth on the face	
Edge of the rim	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rib projecting inside the rim	
Thickness of the flat arms 4	

Breadth of the arms at the points = 2 teeth and $\frac{1}{4}$ the pitch, getting broader towards the centre of the wheel in the proportion of $\frac{1}{4}$ inch to every foot in length.

Thickness of the ribs, or feathers, ‡ the pitch.

Thickness of metal round the eye, or centre, 7 the pitch.

Wheels made with plain arms, the teeth are in the same proportion as above; the ring and the arms are each equal to one cog or tooth in thickness, and the metal round the eye same as above, in feathered wheels.

These proportions differ, though slightly, in different works and in different localities; but they are the most commonly employed, and are besides the most consistent with good and accurate work-

a b = Pitch of teeth = 1 pitch. $mn = \text{Depth to pitch line, PP, = \frac{3}{10} - .$ $ns + nm = \text{Working depth of tooth, = \frac{4}{10} - .$ $C b - ns = \text{Bottom clearance, = \frac{1}{10} - .$ $f h = \text{Whole depth to root, = \frac{7}{10} - .$ $p q = \text{Thickness of tooth, = \frac{5}{11} - .$ $r p = \text{Width of space, = \frac{4}{11} - .$

The use of the following table is very evident, and the manner of applying it may be rendered still more obvious by the following examples :—

$\pi = 3.1416.$

1. Given a wheel of 88 teeth, $2\frac{1}{2}$ inch pitch, to find the diameter of the pitch circle. Here the tabular number in the second column answering to the given pitch is '7958, which multiplied by 88 gives 70.03 for the diameter required.

2. Given a wheel of 5 feet (60 inches) diameter, $2\frac{3}{4}$ inch pitch, to find the number of teeth. Here the factor in the third column

corresponding to the given pitch is 1.1333, which multiplied by 60 gives 68 for the number of teeth.

It may, however, so happen that the answer found in this manner contains a fraction—which being inadmissible by the nature of the question, it becomes necessary to alter slightly the diameter of the pitch circle. This is readily accomplished by taking the nearest whole number to the answer found, and finding the modified diameter by means of the second column. The following case will fully explain what is meant:

3. Given a wheel 33 inches diameter. $1\frac{3}{4}$ inch pitch, to find the number of teeth. The corresponding factor is 1.7952, which multiplied by 33 gives 59.242 for the number of teeth, that is, 59¹/₄ teeth nearly. Now, 59 would here be the nearest whole number; but as a wheel of 60 teeth may be preferred for convenience of calculation of speeds, we may adopt that number and find the diameter corresponding. The factor in the second column answering to 13 pitch is .557, and this multiplied by 60 gives 33.4 inches as the diameter which the wheel ought to have.

	$D = \frac{P}{\pi} \times N$	$N = \frac{\pi}{P} \times D$
Pitch in inches and parts of an	RULETo find the diameter in inches, multi-	Rule To find the number of teeth, multiply
inch.	of teeth by the tabular num-	the given dia- meter in inches by the tabular
	ber answering to the given pitch.	number an- swering to the given pitch.
Values of P	Values of $\frac{P}{\pi}$	Values of $\frac{\pi}{P}$
6	1.9095	·5236
5	1.5915	·6283
41	1.4270	·6981
4	1.2732	.7854
-31	1.1141	·8976
3	·9547	1.0472
$2\frac{3}{4}$	·8754	1.1333
21	·7958	1.2566
$2\frac{1}{4}$	·7135	1.3963
2	·6366	1.5708
17	·5937	1.6755
$1\frac{3}{4}$	•5570	1.7952
1§	·5141	.1.9264
$1\frac{1}{2}$	·4774	2.0944
18	·4377	2.2848
$1\frac{1}{4}$	·3979	2.5132
1븅	·3568	2.7926
1	·3183	3.1416
78	$\cdot 2785$	3.5904
34	·2387	4.1888
<u>5</u> 8	·1989	5.0266
12	$\cdot 1592$	6.2832
38	.1194	8.3776
1 4	·0796	12.5664

RULE.—To find the power that a cast iron wheel is capable of transmitting at any given velocity.—Multiply the breadth of the teeth, or face of the wheel, in inches, by the square of the thickness of one tooth, and divide the product by the length of the teeth, the quotient is the strength in horse power at a velocity of 136 feet per minute.

Required the power that a wheel of the following dimensions ought to transmit with safety, namely,

The strength at any other velocity is found by multiplying the power so obtained by any other required velocity, and by $\cdot 0044$, the quotient is the power at that velocity.

Suppose the wheel as above, at a velocity of 320 feet per minute.

 $7.35 \times 320 \times .0044 = 10.3488$ horse power.

Here the second of the second

MAXIMUM VELOCITY AND POWER OF WATER WHEELS. 443

N. B. OT.

ON THE MAXIMUM VELOCITY AND POWER OF WATER WHEELS.

OF UNDERSHOT WHEELS.

THE term "undershot" is applied to a wheel when the water strikes at, or below, the centre; and the greatest effect is produced when the periphery of the wheels moves with a velocity of .57 that of the water; hence, to find the velocity of the water, multiply the square root or the perpendicular height of the fall in feet by 8, and the product is the velocity in feet per second.

Required the maximum velocity of an undershot wheel, when propelled by a fall of water 6 feet in height.

 $\sqrt{6} = 2.45 \times 8 = 19.6$ feet, velocity of water. And $19.6 \times .57 = 11.17$ feet per second for the wheel.

OF BREAST AND OVERSHOT WHEELS.

Wheels that have the water applied between the centre and the vertex are styled breast wheels, and overshot when the water is brought over the wheel and laid on the opposite side; however, in either case the maximum velocity is $\frac{2}{3}$ that of the water; hence, to find the head of water proper for a wheel at any velocity, say:

As the square of 16.083, or 258.67, is to 4, so is the square of the velocity of the wheel in feet per second to the head of water required. By *head* is understood the distance between the aperture of the sluice and where the water strikes upon the wheel.

Required the head of water necessary for a wheel of 24 feet diameter, moving with a velocity of 5 feet per second.

 $\frac{5 \times 3}{2} = 7.5$ feet, velocity of the water.

And $258.67: 4:: 7.5^2: .87$ feet, head of water required.

But one-tenth of a foot of head must be added for every foot of increase in the diameter of the wheel, from 15 to 20 feet, and .05 more for every foot of increase from 20 to 30 feet, commencing with five-tenths for a 15 feet wheel.

This additional head is intended to compensate for the friction of water in the aperture of the sluice to keep the velocity as 3 to 2 of the wheel; thus, in place of $\cdot 87$ feet head for a 24 feet wheel, it will be $\cdot 87 + 1\cdot 2 = 2\cdot 07$ feet head of water.

If the water flow from under the sluice, multiply the square root of the depth in feet by 5.4, and by the area of the orifice also in feet, and the product is the quantity discharged in cubic feet per second.

Again, if the water flow over the sluice, multiply the square root of the depth in feet by 5.4, and $\frac{2}{3}$ of the product multiplied by the length and depth, also in feet, gives the number of cubic feet discharged per second nearly.

Required the number of cubic feet per second that will issue from the orifice of a sluice 5 feet long, 9 inches wide, and 4 feet from the surface of the water.

$$\sqrt{4} = 2 \times 5.4 = 10.8$$
 feet velocity.

And $5 \times .75 \times 10.8 = 40.5$ cubic feet per second.

What quantity of water per second will be expended over a wear, dam, or sluice, whose length is 10 feet, and depth 6 inches?

$$\sqrt{5} = \cdot 2236 \times 5.4 = \frac{1 \cdot 20744 \times 2}{3} = \cdot 80496$$
 feet velocity.

Then $10 \times \cdot 5 = 5$ feet, and $\cdot 80496 \times 5 = 4 \cdot 0248$ cubic feet per second nearly.

In estimating the power of water wheels, half the head must be added to the whole fall, because 1 foot of fall is equal to 2 feet of head; call this the effective perpendicular descent; multiply the weight of the water per second by the effective perpendicular descent and by 60; divide the product by 33,000, and the quotient is the effect expressed in horse power.

Given 16 cubic feet of water per second, to be applied to an undershot wheel, the head being 12 feet; required the power produced.

$$12 \div 2 = 6$$
 and $\frac{6 \times 16 \times 62 \cdot 5 \times 60}{33000} = 10.9$ horse power nearly.

Given 16 cubic feet of water per second, to be applied to a high breast or an overshot wheel, with 2 feet head and 10 feet fall; required the power.

$$2 \div 2 = 1$$
 and $\frac{\overline{1+10} \times 16 \times 62.5 \times 60}{33000} = 20$ horse power.

Only about two-thirds of the above results can be taken as real communicative power to machinery.

OF THE CIRCLE OF GYRATION IN WATER WHEELS.

The centre or circle of gyration is that point in a revolving body into which, if the whole quantity of matter were collected, the same moving force would generate the same angular velocity, which renders it of the utmost importance in the erection of water wheels, and the motion ought always to be communicated from that point when it is possible.

RULE.—To find the circle of gyration.—Add into one sum twice the weight of the shrouding, buckets, &c., multiplied by the square of the radius, $\frac{2}{3}$ of the weight of the arms, multiplied by the square of the radius, and the weight of the water multiplied by the square of the radius also; divide the sum by twice the weight of the shrouding, arms, &c., added to the weight of the water, and the square root of the quotient is the distance of the circle of gyration from the centre of suspension nearly.

MAXIMUM VELOCITY AND POWER OF WATER WHEELS. 445

Required the distance of the centre of gyration from the centre of suspension in a water wheel 22 feet diameter, shrouding, buckets, &c. = 18 tons, arms = 12 tons, and water = 10 tons.

And $\overline{18 + 12} \times 2 = 60 + 10 = 70$; hence, 6534

 $[\]sqrt{\frac{6634}{70}} = 9.6$ feet from the centre of suspension nearly.

Number.	Angle with the	e Plane of Motion.
1 .	.18°	240
2	- 19	21
3	18	18
4	16	14
5	121	9
6	7	3 extremity.

TABLE of Angles for Windmill Sails.

The radius is supposed to be divided into six equal parts, and $\frac{1}{6}$ from the centre is called 1, the extremity being denoted by 6.

The first column contains the angles according to an old custom; but experience has taught us that the angles in the second column are preferable.

THE VELOCITY OF THRESHING MACHINES, MILLSTONES, BORING IRON, ETC.

The drum or beaters of a threshing machine ought to move with a velocity of about 3000 feet per minute; hence, divide 11460 by the diameter of the drum in inches; or 955 by the diameter of the drum in feet; and the quotient is the number of revolutions required per minute. And the feeding rollers must make half the revolutions of the drum, when their diameters are about $3\frac{1}{2}$ inches.

If the machine is driven by horses, their velocity ought to be from $2\frac{1}{2}$ to 3 times round a 24 feet ring per minute. Divide 500 by the diameter of a millstone, in feet, or 6000 by

Divide 500 by the diameter of a millstone, in feet, or 6000 by the diameter in inches, and the quotient is the number of revolutions required per minute.

In boring cast iron the cutters ought to have a velocity of about 108 inches per minute, or divide 36 by the diameter in inches, the quotient is the number of revolutions of the boring head per minute. And divide 100 by the diameter in inches, the quotient is the number of revolutions per minute, for turning wrought iron in general, and about half that velocity for cast iron.

5 time ----

OF PUMPS AND PUMPING ENGINES.

PUMPS are chiefly designated by the names of lifting and force pumps; lifting pumps are applied to wells, &c., where the height of the bucket, from the surface of the water, must not exceed 33 feet; this being nearly equal to the pressure of the atmosphere, or the height to which water would be forced up into a vacuum by the pressure of the atmosphere. Force pumps are applicable on all other occasions, as raising water to any required height, supplying boilers against the force of the steam, hydrostatic presses, &c.

The power required to raise water to any height is as the weight and velocity of the water with an addition of about $\frac{1}{2}$ of the whole power for friction; hence the

RULE.—Multiply the perpendicular height of the water, in feet, by the velocity, also in feet, and by the square of the pump's diameter in inches, and again by '341; (this being the weight of a column of water 1 inch diameter, and 12 inches high, in lbs. avoirdupois;) divide the product by 33,000, and $\frac{1}{2}$ of the quotient added to the whole quotient will be the number of horse power required.

Required the power necessary to overcome the resistance and friction of a column of water 4 inches diameter, 60 feet high, and flowing with a velocity of 130 feet per minute.

 $\frac{60 \times 130 \times 4^2 \times \cdot 341}{33000} = \frac{1 \cdot 3}{5} = \cdot 26 + 1 \cdot 3 = 156$ horse power nearly.

Hot liquor pumps, or pumps to be employed in raising any fluid where steam is generated, require to be placed in the fluid, or as low as the bottom of it, on account of the steam filling the pipes, and acting as a counterpoise to the atmosphere; and the diameter of the pipes to and from a pump ought not to be less than $\frac{2}{3}$ of the pump's diameter.

RULE.—The diameter of a pump and velocity of the water given, to find the quantity discharged in gallons, or cubic feet, in any given time.—Multiply the velocity of the water, in feet per minute, by the square of the pump's diameter in inches, and by $\cdot 041$ for gallons, or $\cdot 0005454$ for cubic feet, and the product will be the number of gallons, or cubic feet, discharged in the given time nearly.

What is the number of gallons of water discharged per hour by a pump 4 inches diameter, the water flowing at the rate of 130 feet per minute?

 $130 \times 60 = 7800$ feet per hour.

And, $7800 \times 4^2 \times .041 = 5116.8$ gallons.

RULE 1.—The length of stroke and number of strokes given, to find the diameter of a pump, and number of horse power that will discharge a given quantity of water in a given time.—Multiply the number of cubic feet by 2201, and divide the product by the velocity of the water, in inches, and the square root of the quotient will be the pump's diameter, in inches.

2. Multiply the number of cubic feet by 62.5, and by the perpendicular height of the water in feet, divide the product by 33,000, then will $\frac{1}{2}$ of the quotient, added to the whole quotient, be the number of horse power required.

Required the diameter of a pump, and number of horse power, capable of filling a cistern 20 feet long, 12 feet wide, and $6\frac{1}{2}$ feet deep, in 45 minutes, whose perpendicular height is 53 feet; the pump to have an effective stroke of 26 inches, and make 30 strokes per minute.

 $20 \times 12 \times 6.5 = 1560 \text{ cubic feet, and}$ $\frac{1560}{45} = 34.66 \text{ cubic feet per minute.}$ $\frac{\text{Then, } 34.66 \times 2201}{\sqrt{26} \times 30} = 9.89 \text{ inches diameter of pump.}$ $\frac{\text{And } 34.66 \times 62.5 \times 53}{33000} = \frac{3.48}{5} = .69 + 3.48 = 4.17 \text{ horse}$

power.

RULE.—To find the time a cistern will take in filling, when a known quantity of water is going in, and a known portion of that water is going out, in a given time.—Divide the content of the cistern, in gallons, by the difference of the quantity going in, and the quantity going out, and the quotient is the time in hours and parts that the cistern will take in filling.

If 30 gallons per hour run in and $2\tilde{2}\frac{1}{2}$ gallons per hour run out of a cistern capable of containing 200 gallons, in what time will the cistern be filled?

30 - 22.5 = 7.5, and $200 \div 7.5 = 26.666$, or 26 hours and 40 minutes.

To find the time a vessel will take in emptying itself of water. Mr. O'Neill ascertained, from very accurate experiments, that a vessel, 3.166 feet long and 2.705 inches diameter, would empty itself in 3 minutes and 16 seconds, through an orifice in the bottom, whose area is .0141 inches; and another 6.458 feet long, the diameter and orifice, as before, would do the same in 4 minutes and 40 seconds; hence, from these experiments, a rule is obtained, namely,

Multiply the square root of the depth in feet by the area of the falling surface in inches, divide the product by the area of the orifice, multiplied by 3.7, and the quotient is the time required in seconds, nearly.

How long will it require to empty a vessel of water, 9 feet high, and 20 inches diameter, through a hole $\frac{3}{4}$ inch in diameter?

 $\sqrt{9} = 3$, the square root of the depth, 314.16 inches, area of the falling surface, .4417 inches, area of the orifice; Then, $\frac{314 \cdot 16 \times 3}{\cdot 4417 \times 3.7} = 576.7$ seconds, or 9 minutes and 36 seconds.

On the pressure of fluids.—The side of any vessel containing a fluid sustains a pressure equal to the area of the side, multiplied by half the depth; thus,

Suppose each side of a vessel to be 12 feet long and 5 feet deep, when filled with water, what pressure is upon each side?

 $12 \times 5 = 60$ feet, the area of the side,

2.5 feet = half the depth, and .

62.5 lbs. = the weight of a cubic foot of water. Then, $60 \times 2.5 \times 62.5 = 9375$ lbs.

RULE.—To find the weight that a given power can raise by a hydrostatic press.—Multiply the square of the diameter of the ram in inches by the power applied in lbs., and by the effective leverage of the pump-handle; divide the product by the square of the pump's diameter, also in inches, and the quotient is the weight that the power is equal to.

What weight will a power of 50 lbs. raise by means of a hydrostatic press, whose ram is 7 inches diameter, pump $\frac{7}{8}$, and the effective leverage of the pump-handle being as 6 to 1?

 $\frac{7^2 \times 50 \times 6}{.875^2} = 19200 \text{ lbs., or 8 tons 11 cwt.}$

In the following rules for pumping engines the boiler is supposed to be loaded with about $2\frac{1}{2}$ lbs. per square inch, and the barometer attached to the condenser indicating 26 inches on an average, or 13 lbs., = $15\frac{1}{2}$ lbs., from which deduct $\frac{1}{3}$ for friction, leaves a pressure of 10 lbs. nearly upon each square inch of the piston.

RULE.—To find the diameter of a cylinder to work a pump of a given diameter for a given depth.—Multiply the square of the pump's diameter in inches by $\frac{1}{2}$ of the depth of the pit in fathoms, and the square root of the product will be the cylinder's diameter in inches.

Required the diameter of a cylinder to work a pump 12 inches diameter and 27 fathoms deep.

 $\sqrt{(12^2 \times 9)} = 36$ inches diameter.

RULE.— To find the diameter of a pump, that a cylinder of a given diameter can work at a given depth.—Divide three times the square of the cylinder's diameter in inches by the depth of the pit in fathoms, and the square root of the quotient will be the pump's diameter in inches.

What diameter of a pump will a 36-inch cylinder be capable of working 27 fathoms deep?

 $\sqrt{\frac{36^2 \times 3}{27}} = 12$ inches diameter.

RULE.— To find the depth from which a pump of a given diameter will work by means of a cylinder of a given diameter.—Divide three

times the square of the cylinder's diameter in inches by the square of the pump's diameter also in inches, and the quotient will be the depth of the pit in fathoms.

Required the depth that a cylinder of 36 inches diameter will work a pump of 12 inches diameter.

$$\sqrt{\frac{36^2 \times 3}{144}} = 27 \text{ fathoms.}$$

An inelastic body of 30 lbs. weight, moves with a 3 feet velocity, and is struck by another inelastic body having a 7 feet velocity, the two will then proceed, after the blow, with the velocity

$$w = \frac{50 \times 7 + 30 \times 3}{50 + 30} = \frac{350 + 90}{80} = \frac{44}{8} = \frac{11}{2} = 5\frac{1}{2} \text{ feet.}$$

To cause a body of 120 lbs. weight to pass from a velocity $c_2 = 1\frac{1}{2}$ feet into a 2 feet velocity v, it is struck by a heavy body of 50 lbs., what velocity will the body acquire? Here

$$c_1 = v + \frac{(v - c_2) M_2}{M_1} = 2 + \frac{(2 - 1.5) \times 120}{50} = 2 + \frac{6}{5} = 3.2$$

feet.

Two perfectly elastic spheres, the one of 10 lbs. the other of 16 lbs. weight, impinge with the velocities 12 and 6 feet against each other, what will be their velocities after impact? Here $M_1 = 10$ and $c_1 = 12$ feet, but $M_2 = 16$ and $c_2 = -6$ feet, hence the loss of velocity of the first body will be

$$c_1 - v_1 = \frac{2 \times 16 \ (12 + 6)}{10 + 16} = \frac{2 \times 16 \times 18}{26} = 22.154$$
 feet; and

the gain in velocity of the other, $v_s - c_s = \frac{2 \times 10 \times 18}{26} = 13.846$

feet. From this the first body after impact will recoil with the velocity $v_1 = 12 - 22 \cdot 154 = -10 \cdot 154$ feet; and the other with that of $-6 + 13 \cdot 846 = 7,846$ feet. Moreover, the measure of vis viva of the two bodies after impact $= M_1 v_1^2 + M_2 v_3^2 = 10 \times 10 \cdot 154^2 + 16 \times 7 \cdot 846^2 = 1031 + 985 = 2016$, as likewise of that before impact, namely: $M_1 c_1^2 + M_2 c_3^2 = 10 \times 12^2 + 16 \times 6^2 =$ 1440 + 576 = 2016. Were these bodies inelastic, the first would only lose in velocity $\frac{c_1 - v_1}{2} = 11 \cdot 077$ feet, and the other gain $\frac{v_2 - c_2}{2} = 6 \cdot 923$ feet; the first would still retain, after impact, the velocity $12 - 11 \cdot 077 = 0 \cdot 923$ feet, and the second take up the velocity $-6 + 6 \cdot 923 = 0 \cdot 923$, and the loss of mechanical effect would be $(2016 - (10 + 16) \cdot 0 \cdot 923^2) \div 2g = (2016 - 2 \cdot 22) \times 0 \cdot 0155 = 29 \cdot 35$ ft. Ibs.

29

- 5" - 5" + 1" + 1

CENTRIPETAL AND CENTRIFUGAL FORCE.

1. WHAT is the centrifugal force of a body weighing 20 lbs. that describes a circle of 10 feet radius 200 times in a minute?

 $000331 \times 200^2 \times 20 \times 10 = 2648$ lbs., the centrifugal force. .00331 is a constant number.

It is a well established fact that the centrifugal force is to the weight of the body as double the height due to the velocity is to the radius of revolution. Hence, this question may be thus solved :

 $20 \times 3.1416 = 62.832$, the circumference of the circle of 10 feet radius.

 $62.832 \times 200 = 12566.4$ feet, the space passed over by the weight in one minute.

12566.4

= 209.44 feet, the space described in a second, which 60 is called the velocity.

 $\frac{(209\cdot44)^2}{64\cdot4} = 681\cdot136$ feet, the height due to the velocity.

If F be the centrifugal force-

F: 20:: 1362.272: 10.

:. $F = \frac{1362 \cdot 272 \times 20}{10} = 2724 \cdot 544$ lbs. The former rule gives

2648 lbs.

2. What is the centrifugal force at the equator on a body weighing 300 lbs., supposing the radius of the earth = 21000000 feet, and the time of rotation = 86400'' = 24 hours?

 $F = 1.224 \times \frac{21000000 \times 300}{86400^2} = 1.03298$ lbs., or one pound 864002

very nearly. 1.224 is a constant multiplier.

 $3.1416 \times 21000000 = 65973600$ feet, $\frac{1}{2}$ the circumference of the earth at the equator.

 2×65973600

= $1527 \cdot 16$ feet, the velocity of the weight 86400 each second.

 $(1527.16)^2$

= 36214.56, the height due to the velocity. 64.4

F: 300 ::: 72429.12 : 21000000.

 $72429 \cdot 12 \times 300$

 $\mathbf{F} = \frac{1}{21000000} = 1.0347$ nearly, as by the former approximate method.

3. If a body weighing 100 lbs. describe a circle of 10 feet radius 300 times a minute, what is the diameter of a cast iron cylindrical rod, connecting the body with the axis, that will safely support this weight? The centrifugal force will be,

 $000331 \times 300^2 \times 100 \times 10 = 29790$ lbs.

From the strength of materials, page 281, we find that the ultimate cohesive strength for each circular inch of cross sectional area is 14652 lbs.; but one-third of this weight, or 4884 lbs., can only be applied with safety.

 $\frac{|29790}{4884} = 2.46982$ inches, the diameter of the cylindrical rod.

4. The dimensions, the density, and strength of a millstone ABDE are given; it is required to find the angular velocity v, in consequence of which rupture will take place on account of the centrifugal force.

If we put the radius of the millstone = $r_1 = 24$ inches = CG; the radius = CK of its eye = $r_s = 4$ inches; the height PQ = GH = l = 12 inches; the density = t = 2500 = specific gravity of the millstone; and the modulus of strength = K = 750 lbs. = the ultimate cohesive strength of each square inch of cross sectional area in the section PH, supposing the centrifugal forces -F and +F to cause the separation in this section.

 $(r_1 - r_2) l$ = area of parallelogram GR.

Hence, the force in lbs. required to cause rupture will be,

 $2(r_1 - r_2) l \times K$; the weight of the stone $G = \pi (r_1^2 - r_2^2) l_{\gamma}$, and the radius of gyration of each half of the stone, i. e. the distance of its centre of gravity from the axis of rotation $r = \frac{4}{3\pi} \times \frac{r_1^3 - r_3^3}{r_1^2 - r_1^2}$ At the moment of rupture, the centrifugal force of half the stone is equivalent to the strength; we hence obtain the equation of condition $\omega \times \frac{1}{2} \frac{Gr}{g} = 2(r_1 - r_2) l K$, i. e. $\omega^2 \times \frac{2}{3}(r_1^3 - r_2^3) \frac{l\gamma}{g} = 2(r_1 - r_2) l K$; or leaving out 2*l* on both sides, it follows that

$$\omega = \sqrt{\frac{3g(r_1 - r_2) K}{(r_1^3 - r_2^3) \gamma}} = \sqrt{\frac{3g K}{(r_1^2 + r_1 r_2 + r_2^2) \gamma}}.$$

If $r_1 = 2$ feet = 24 inches, $r_2 = 4$ inches, K = 750 lbs., and the specific gravity of the millstone = 2.5; therefore the weight of a cubic inch of its mass = $\frac{62.5 \times 2.5}{1728} = 0.0903$ lbs.; it follows that the angular velocity at the moment of rupture is,

$$\omega = \sqrt{\frac{3 \times 12 \times 32 \cdot 2 \times 750}{688 \times 0.9903}} = \sqrt{\frac{869400}{62 \cdot 1264}} = 112 \cdot 1 \text{ inches.}$$

If the number of rotations per minute = n, we have then $\omega = \frac{2 \pi n}{60}$; hence, inversely, $n = \frac{30 \omega}{\pi}$, but here $= \frac{30 \times 112 \cdot 1}{\pi} = 1070$. The average number of rotations of such a millstone is only 120, therefore 9 times less.

With what velocity must a body of 8 lbs. impinge against another at rest of 25 lbs., in order that the last may have a velocity of 2 feet? Were the bodies inelastic, we should then have to put: $v = \frac{M_1 c_1}{M_1 + M_2}$, i. e. $2 = \frac{8 \times c_1}{8 + 25}$, hence $c_1 = \frac{33}{4} = 8\frac{1}{4}$ feet, the required velocity; but were they elastic, we should have $v_2 = \frac{2 M_1 c_1}{M_1 + M_2}$; hence, $c_1 = \frac{33}{8} = 4\frac{1}{8}$ feet.

If in a machine, 16 blows per minute take place between two inelastic bodies $M_1 = \frac{1000}{g}$ lbs. and $M_s = \frac{1200}{g}$ lbs., with the velocities $c_1 = 5$ feet, and $c_2 = 2$ feet, then the loss in mechanical effect from these blows will be: $L = \frac{16}{60} \times \frac{(5-2)^2}{2g} \times \frac{1000 \cdot 1200}{2200} = \frac{4}{15} \times 9 \times \frac{1}{64 \cdot 4} \times \frac{6000}{11} = 0.576 \times \frac{400}{11} = 20.94$ units of work per second.

If two trains upon a railroad of 120000 lbs. and 160000 lbs. weight, come into collision with the velocities $c_1 = 20$, and $c_2 = 15$ feet, there will ensue a loss of mechanical effect expended upon the destruction of the locomotives and carriages, which in the case of perfect inelasticity of the impinging parts, will amount to

 $=\frac{(20 + 15)^2}{2g} \times \frac{120000 \times 160000}{280000} = 35^2 \times \frac{1}{64 \cdot 4} \times \frac{1920000}{28} = 1344000 \text{ ft. lbs., or units of work.}$

SHIP-BUILDING AND NAVAL ARCHITECTURE.

Two rules, by which the principal calculations in the art of shipbuilding are made, may be employed to measure the area or superficial space enclosed by a curve, and a straight line taken as a base.

RULE I.—If the area bounded by the curve line ABC and the straight line AC is required to be estimated, by the rule, the base AC is divided into an even number of equal parts, to give an odd number of points of division.

Where the base AC is divided into twenty equal parts, giving twenty-one points of division, and the lines 1.1, 2.2, 3.3, &c., are drawn from these points at right angles or square to AC, to meet the curve ABC, these lines, 1.1, 2.2, 3.3, &c., are denominated ordinates, and the linear measurement of them, on a scale of parts, is taken and used in the following general expression of the rule.

Area = {A + 4 P + 2 Q}
$$\frac{7}{3}$$
.

Where A = sum of the first and last ordinates, or 1.1 and 21.21.

4 P = sum of the even ordinates multiplied by 4.

Or, $\{2d + 4th + 6th + 8th + 10th + 12th + 14th + 16th + 18th + 20th\} \times 4$.

2 Q = sum of the remaining ordinates; or,

 ${3d + 5th + 7th + 9th + 11th + 13th + 15th + 17th + 19th} \times 2.$

And r is equal to the linear measurement of the common interval between the ordinates, or one of the equal divisions of the base AC. This rule, for determining the area contained under the curve and the base, may be put under another form; for as the

Area = {A + 4 P + 2 Q} ×
$$\frac{r}{3}$$
; it may be transferred into
Area = { $\frac{A}{2}$ + 2 P + Q} × $\frac{2r}{2}$.

The practical advantages to be derived from this modification of the general rule will appear when the methods of calculation are further developed.

RULE II.—If the base AC be so divided that the equal intervals are in number a multiple of the numeral 3, then the total number of the points of division, and consequently the ordinates to the curve, will be a multiple of the numeral 3 with one added, and the area under the curve ABC, and the base AC, can be determined by the following general expression:

Area = {A + 2 P + 3 Q}
$$\times \frac{\delta r}{8}$$
.

Where A = sum of the first and last ordinates, or 1 and 16.

2 P = sum of the 4th, 7th, 10th, 13th, multiplied by 2, or ordinates bearing the distinction of being in position as multiples of the numeral 3, with one added.

3 Q, the sum of the remaining ordinates, multiplied by 3, or of the 2d, 3d, 5th, 6th, 7th, 8th, 9th, 11th, 12th, 14th, and 15th, multiplied by 3.

The number of equal divisions for this rule must be either 3, 6, 9, 12, or 15, &c., being multiples of the numeral 3, whence the ordinates will be in number under such divisions, multiples of the numeral 3, with one added.

This rule admits also of a modification in form, to make it more convenient of application.

For area = {A + 2 P + 3 Q}
$$\times \frac{3}{8}r$$
.

As before advanced for the change adopted in the general expression for the first rule, the utility of this modification of the second rule will be observable when the calculations on the immersed body are proceeded with.

The rules are formed under the supposition that in the first rule the curve ABC, which passes through the extremities of the ordinates, is a portion of a common parabola, while in the second rule the curve is assumed to be a cubic parabola; the results to be obtained from an indiscriminate use of either of these rules, differ from each other in so trifling a degree, (considered practically and not mathematically,) as not to sensibly affect the deductions derived by them.

William O'Neill, or, as English writers term him, William Neal, was the first to rectify a curve of any sort; this curve was the semi-cubical parabola; these rules, of such use in the art of shipbuilding, were first given by him, but as is usual, claimed by English pretenders.

The foregoing rules, when applied to the measurement of the

immersed portion of a floating body, as the displacement of a ship, are used as follows.

The ship is considered as being divided longitudinally by equidistant athwartship or transverse vertical planes, the boundaries of which planes give the external form of the vessel at the respective stations, and therefore the comparative forms of any intermediate portion of it.

If the ship be immersed to the line AB, considered as the line of the proposed deepest immersion or lading, the curves HLO and KMF would give the external form of the ship at the positions G and I in that line; and the areas GHLO, IKMF contained under the curves HLO, KMF, the right lines GH, IK, (the half-breadths of the plane of proposed flotation AB at the points G and I,) and the right lines GO, IF, the immersed depths of the body at those points are the areas to be measured; and if the areas obtained be represented by linear measurements, and are set off on lines drawn at right angles to the line AB at their respective stations, a curve bounding the representative areas would be formed, and the measurement by the rules of the area contained under this curve, and the right line, AB, or length of the ship on the load-water line, would give the sum of the areas thus represented, and thence the solid contents of the immersed portion of the ship in cubic feet of In accordance with this application of those rules to measpace. sure the displacement of the ship, the usual practice is to divide the ship into equidistant vertical and longitudinal planes, the longitudinal planes being parallel to the load-water section or horizontal section formed by the proposed deepest immersion.

To measure the areas of these planes after they have been delineated by the draughtsman, the constructor divides the depth of each of the vertical sections, or the length of each horizontal section, into such a number of equal divisions as will make either one or the other of the rules 1 or 2 applicable. If the first rule be preferred, the equal divisions must be of an even number, so that there may be an odd number of ordinates; while the use of the second rule, to measure the area, will require the equal divisions of the base to be in number a multiple of the numeral 3, which will make the ordinates to be in number a multiple of the numeral 3, with one added. From the points of equal divisions in the respective sections thus determined, perpendicular ordinates are drawn to meet the curve, or the external form of the transverse planes of the body; and a table for the ordinates thus obtained, having been made, as shown page 467, the measures by scale of the respective ordinates are therein inserted.

THE PRACTICAL MODEL CALCULATOR.

For the area IKMF, the linear measurements of IK, $1\cdot 1$, $2\cdot 2$, $3\cdot 3$, $4\cdot 4$, are taken by a scale of parts, and inserted in the column marked 5, page 467, the whole length AB of the load-water line being divided into 10 equal divisions, and the area IKMF being supposed as the fifth from B, the fore extreme of the load-water line. To apply the first rule to the measurement of the area of No. 5 section, the ordinates are extracted from the table, page 467, and operated upon as directed by the rule; viz.

· · Area =	$\{A + 4P + 2Q\} \times$	$r \overline{3}$
IK, or first, 4·4, or last,	1.1, or 2d, 3.3, or 4th,	$2 \cdot 2$ or $3d$, $\times 2$.
lded together $=$ A.	added together and $\times 4 = 4$ P.	or 2 Q.

By rule, area = {A + 4 P + 2 Q} $\times \frac{7}{3}$.

Whence area = { $(IK + 4\cdot 4) + (1\cdot 1 + 3\cdot 3) + 2\cdot 2 \times 2$ } $\times \frac{r}{3}$ = area IKMF; and, in a similar manner, may the several areas of the other transverse sections be determined.

When these areas have all been thus measured, they are to be summed by the same rules; the areas themselves being considered as lines, and the result will give the solid for displacement in cubic feet. To shorten this tedious application of the formula, the arrangement of having double-columned tables of ordinates was introduced, as shown on page 484, and for the more ready use of this enlarged table, the modifications in the formula 467, before alluded to, were adopted, that of

Area =
$$\left\{ A + 4P + 2Q \right\} \times \frac{r}{3} = \left\{ \frac{A}{2} + 2P + Q \right\} \times \frac{2r}{3}$$
,
and that of

Area =
$$\left\{ A + 2P + 3Q \right\} \times \frac{3r}{8} = \left\{ \frac{A}{2} + P + 1.5Q \right\} \times \frac{3}{4}r$$

as rendering the required number of figures much less, whereby accuracy of calculation is insured and time is saved.

In using a table of ordinates constructed for this method of calculation, the linear measurement of the several ordinates of vertical section 5 and the corresponding ones of all the others would be inserted in the double columns prepared for them, in the following order:—

In the first and last lines of the enlarged table for the ordinates, distinguishable by $\frac{A}{2}$, in the left-hand column of each pair, the measurements of the first and last ordinates of the respective areas are placed, and in the right-hand column of each pair one-half of such measurements, as being one-half of the first and last ordinates of each vertical section or area. In the lines distinguished by 2 P, in the left-hand column, the measurements of the even ordinates

a

of each respective area are placed, which having been multiplied by two, the result is placed in the respective right-hand columns prepared for each vertical section; while in those lines of the table distinguished by Q, the measurements of the ordinates themselves are placed in the right-hand columns, as not requiring by the modification of the rules any operation to be used on them, before being taken into the sum forming the sub-multiple of the respective areas.

It may here with propriety be suggested, that in practice the insertion of the linear measurements of the ordinates in the table in red ink will be found useful, and that after such has been done, by the upper line of figures in the table of ordinates thus arranged, being divided by two, the second line of figures being multipled by two, and so on with the others as shown by the table, and the results thus obtained being inserted in their respective right-hand columns as before described, great facility and despatch of calculation are afforded to the constructor.

That this method will yield a correct measurement of the areas will be evident by an inspection of the terms of the general expression of area = $\left\{\frac{A}{2} + 2P + Q\right\} \times \frac{2r}{3}$, which are placed against the several lines of the table of ordinates. And it will be equally apparent, that the sum total of the figures inserted in the righthand columns appropriated to each section is a sub-multiple of the area of each section, and that these results arising from the use of the form for area of $\left\{\frac{A}{2} + 2P + Q\right\}$ will be one-half of those that would be obtained by abstracting the ordinates from the table, page 467, and using them in the expression A + 4P + 2Q; and therefore to complete the calculation for the areas by the rule, the first results for the areas must be multiplied by $\frac{2r}{3}$, and the last by $\frac{r}{3}$, where r is equal to the common interval or equal division of the base in linear feet; or the part of the expression for areas of $\left\{\frac{A}{2} + 2P + Q\right\}$ must be multiplied by $\frac{2r}{3}$, to make it equivalent to $\{A + 4P + 2Q\} \times \frac{r}{3}$.

The sub-multiples of the areas of the vertical sections thus determined, require to be summed together for the solid of displacement, and by considering the sub-multiples of the areas to be, as before stated, represented by lines or proportionate ordinates, O'Neill's rules, by the same table of ordinates with an additional column, may be made available to the development of the solid of displacement. For the sectional areas being represented by lines, by the first rule, one-half the first and last areas, added to the sum of the products arising from multiplying the even ordinates or representative areas by two, together with the odd ordinates or the areas as given by

the tables, and these being placed in the additional column of the table prepared for them, the sub-multiple of the solid of displacement will be given.

The operation will stand thus: Sub-multiple of each of the areas = $\left\{\frac{A}{2} + 2P + Q\right\}$, or each area will be $\frac{2r}{3}$ less than the full result, and the representative lines for the areas will be diminished in that proportion; and having used these sub-multiples of the areas thus diminished in the second operation for obtaining the sub-multiple of the solid of displacement under the same rule, the results will again be $\frac{2r'}{3}$ less than the true result; therefore the sum thus determined will have to be multiplied by the quantity $\frac{2r}{3} \times \frac{2r'}{3}$, to give the solid required. In this expression, of $\frac{2r}{3} \times \frac{2r'}{3}$, r = the equal distances taken in the vertical planes to

obtain the respective vertical areas; r' = the equal distances at which the vertical areas are apart on the longitudinal plane of the ship.

The displacement being thus determined, by an arrangement of an enlarged table of ordinates, the functions arising from the submultiples of the areas of the vertical sections being placed in O'Neill's rules to ascertain the displacement, may be used in the table of ordinates to find the distance of the centre of gravity of the immersed body from any assumed vertical plane; and also the distance that the same point—" the centre of gravity of displacement" —is in depth from the load-water or line of deepest immersion, and that from the considerations which follow :—

In a system of bodies, the centre of gravity of it is found by multiplying the magnitude or density of each body by its respective distance from the beginning of the system, and dividing the sum of such products by the sum of the magnitudes or densities. The displacement of a ship may be considered as made up of a succession of vertical immersed areas; and if it be assumed that the moments arising from multiplying the area of each section by its relative distance from an initial plane may be represented by successive lineal measurements, the general rules will furnish the summation of such moments; and the displacement or sum of the areas has been obtained by a similar process, from whence, by the rule for finding the centre of gravity of a system as before given, the distance of the common centre of gravity from the assumed initial plane would be ascertained, by dividing the sum of the moments of the areas by the sum of the areas or the solid of displacement.

To extend this reasoning to the enlarged table of ordinates used for the second method of calculation: The sub-multiples of the respective areas, when put into the formulas to obtain the proportionate solid of displacement, are relatively changed in value to give that solid, and consequently the moments of such functions of

the vertical areas will be to each other in the same ratio; and the sum of these proportionate moments, if considered as lines, can be ascertained by multiplying the functions of the areas by their relative distances from the assumed initial plane, or by the number of the equal intervals of division they are respectively from it, and afterwards, by the rules, summing these results, forming the sum of the moments of the sub-multiples of the functions of the vertical areas: and the proportionate sub-multiple for the displacement is shown on the table; the division therefore of the former, or the sum of the proportional moments of the functions of the areas, by the proportionate sub-multiple for the displacement, will give the distance (in intervals of equal division) that the centre of gravity of the displacement is from the initial plane, which being multiplied by the value in feet of the equal intervals between the areas, will give the distance in feet from the assumed initial plane, or from the extremity of the base line of the proportional sectional areas for displacement. This reasoning will apply equally to finding the position of the centre of gravity of the body immersed, both as respects length and depth, and on the enlarged tables for construction given, (pages 484 and 485,) the constructor, by adopting this arrangement, will at once have under his observation the calculations on, and the results of, the most important elements of a naval construction.

The foregoing tabular system, for the application of O'Neill's rules to the calculations required on the immersed volume of a ship's bottom, led to a lineal delineation of the numerical results of the tables, and thence the development of a curve of sectional areas, on a base equivalent to the length of the immersed portion of the body, or of the length at the load-water line. To effect this, the sub-multiples of the sectional areas, taken from the tables for calculation, are severally divided by such a constant number as to make their delineation convenient; then these thus further reduced sub-multiples of the areas, being set off at their respective positions on the base, formed by the length of the load-water line, a curve passed through the extreme points of these measurements, will bound an area, that to the depth used for the common divisor would form a zone, representative of the solid of displacement! The accuracy of such a representation will be easily admitted, if the former reasoning is referred to.

To obtain the solid of displacement from this representative area, the load-water line or plane of deepest immersion is considered as being divided lengthwise into two equal parts, which assumption divides the base of the curve of sectional areas also into two equal portions: the line of representative area to that medial point is then drawn to the curve, and triangles are formed on each side of it by joining the point where it meets the curve with the extremities of the base line; this arrangement divides the representative area into four parts, two triangles which are equal, viz. 1 and 2, and two other areas which are contained under the hypothenuse of these triangles and the curves of sections, or 3 and 4 of the annexed diagram.

ABCDA equal sectional area, representative of the half displacement as a zone of a given common depth.

AC equal the length of the load-water section from the fore-side of the rabbet of the stem to the aft-side of the rabbet of the post, and D the point of equal division.

BD, the representative area of half the immersed vertical section at the medial point D, joining B with the points A and C, will complete the division of the representative area ABCDA.

ABD and CBD, under such considerations, are equal triangles.

BECB, BFAB, areas, bounded respectively by the hypothenuse AB or BC of the triangles and the curve of sectional areas; and, supposing the curves AFB and BEC to be portions of common parabolas, the solid of displacement will be in the following terms:

The area of each of the triangles is equal to $\frac{1}{4}$ of AC × BD; hence the sum of the two = $\frac{1}{2}$ of AC × BD: the hypothenuse AB or BC = $\int \left[\left(\frac{AC}{2} \right)^2 + BD^2 \right]$, and the area of BECB if considered as approximating to a common parabola = $\int \left[\left(\frac{AC}{2} \right)^2 + BD^2 \right]$ × $\frac{2}{3}$ of the greatest perpendicular on the hypothenuse BC.

Area of BFAB under the same assumption = $\sqrt{\left[\left(\frac{AC}{2}\right)^2 + BD^2\right]}$ × $\frac{2}{3}$ of the greatest perpendicular on the hypothenuse AB; whence the whole displacement will be expressed by $\frac{1}{2}$ AC × BD × $\sqrt{\left[\left(\frac{AC}{2}\right)^2 + BD^2\right]} \times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse B C + $\sqrt{\left[\left(\frac{AC}{2}\right)^2 + BD^2\right]} \times \frac{2}{3}$ of the greatest perpendicular on the hypothenuse AB.

By a similar method, from the light draught of water, or the depth of immersion on launching the ship, the light displacement, or the weight of the hull or fabric, may be delineated and estimated; and the representative curve for it being placed relatively on the same base as that used for the representative curve for the load displacement, the area contained between the curve bounding the representative area for the load displacement, and the curve bounding the representative area for the light displacement, will be a representative area of the sum of the weights to be received on board, and point out their position to bring the ship from the light line

of flotation, or the line of immersion due to the weight of the hull when completed in every respect, to that of the deepest immersion, or the proposed load-water line of the constructor—a representation that would enable the constructor to apportion the weights to be placed on board to the upward pressure of the water, and thence approximate to the stowage that would insure the easiest movements of a ship in a sea.

By an inspection of the diagram of the curve of sectional areas, it will clearly be seen that the representative area for displacement under the division of it, into the triangles 1 and 2, and parabolic portions of the area 3 and 4, will point out the relative capacities of the displacement, under the fore and after half-lengths of the base or load-water line; for, by construction, the triangles ABD and CBD are equal, and therefore the comparative values of the areas BECB and BFAB, or of $\sqrt{\left[\left(\frac{AC}{2}\right)^2 + BD^2\right] \times \frac{2}{3}}$ of the greatest perpendicular on the hypothenuse BC, compared with $\sqrt{\left[\left(\frac{AC}{2}\right)^2 + BD^2\right] \times \frac{2}{3}}$ of the greatest perpendicular on the hypothenuse AB, or of the relative values of the greatest perpendiculars on the hypothenuses BC and AB, will give the relative capacities of the fore and after portions of the immersed body or the displacement.

The representative area ABCDA admits also of a measurement by the second rule.

Let BD, as before, be the representative area at the middle point.

Divide AD or DC into three equal portions, then the equal divisions being a multiple of 3, the second rule is applicable to measure the areas ABDA or BCDB; for the area ABDA =

 $\begin{cases} 6,6 + BD + 2 \times 0 + 3 \{\overline{4,4 + 5,5}\} \} \frac{3r}{8}; 6,6 = 0; \\ = \left\{ BD + 3 \{4,4 + 5,5\} \right\} \frac{DC}{8}; \text{ and area BCDB} = \\ \left\{ \overline{1,1 + BD} + 2 \times 0 + 3 \times \{2,2 + 3,3\} \right\} \frac{3r}{8}, \text{where } 1,1 = 0 \\ \left\{ BD + 3 \times \{\overline{2,2 + 3,3}\} \right\} \frac{AD}{8} = BCDB, \text{ and the displace-} \\ \text{ment} = \left\{ BD + 3 \times \{4,4 + 5,5\} \right\} \frac{DC}{8} + \left\{ BD + 3 \times \{2,2 + 3,3\} \right\} \\ \times \frac{AD}{8} \times \text{ by the constant divisor of the areas, or the depth of the zone in feet.} \end{cases}$

The rules given by O'Neill for the measurement of the immersed portion of the body of a ship, having been theoretically stated, the practical application of them will be given on the construction.

The immersed part of a ship, being a portion of the parallelopipedon formed by the three dimensions;—length on the load-water line, from the foreside of the rabbet of the stem to the aftside of the rabbet of the stern-post; extreme breadth in midships of the load-water section; and depth of immersion in midships from the lower edge of the rabbet of the keel;—it would seem that the first step towards the reduction of the parallelopipedon, or oblong, into the required form, would be to find what portion of it would be of the same contents as the proposed displacement of the ship—a knowledge of which would enable the constructor, by a comparison of the result with a similar element of an approved ship, to determine whether the principal dimensions assumed would (under the form intended) give an immersed body equal to carrying the proposed weights or lading.

The relative capacities of the immersed bodies contained under the fore and after lengths of the load-water line must next be fixed, and the constructor in this very important element of a construction will find little to guide him from the results of past experience and practice. From deductions on approved ships of rival constructors it will be developed, that in this essential element, "the relative difference between the two bodies," they vary from 1 to 13 per cent. on the whole displacement.

The relative capacities of the fore and after bodies of immersion under the proposed load-water line would seem at the first glance of the subject to be a fixed and determinate quantity, as being a conclusion easily arrived at from a knowledge of the proportions due to the superincumbent weights—under such a consideration, the weight of the anchors, bowsprit, and foremast would necessarily be supposed to require an excess in the body immersed under the fore half-length of the load-water line over that immersed under the after half-length of the same element.

In a ship, the necessary arrangement of the weights, to preserve the proposed relative immersion of the extremes or the intended draught of water, would be pointed out by a delineated curve of sectional areas, described as before directed; but a want of that system, or of some other, has often caused an error in the actual draught of water, and that under a great relative excess of the volumes of displacement in the fore and after portions of the immersed body.

The men-of-war brigs built to a construction-draught of water 12 ft. 9 in. forward, 14 ft. 4 in. abaft, giving 1 ft. 7 in. difference, had under such a construction a difference of displacement between the immersed bodies under the fore and after half-lengths of the load-water line that was equivalent to 10.4 tons for every 100 tons of the vessel's total displacement or weight; but these ships, when

stowed and equipped for sea, came to the load-draught of water of 14 ft. 2 in. forward, 14 ft. 3 in. aft;-difference 1 inch, or an immersion of the fore extreme of 18 inches more than was intended by the constructor. The reason of this practical departure from the proposed line of flotation of the constructor was, that the internal space or hold of the ship necessarily followed the external form, giving a hold proportionate to the displacement contained under the several portions of the body; but an injudicious disposal of the stores (in placing the weights too far forward) made them more than equivalent to the upward pressure of the water at the respective portions of the proposed immersion of the body, and thence arose the error or excess in the fore immersion by giving a greater draught of water than was designed. The stowage of a ship's hold, under a reference to the representative area for the displacement, contained between the curves of sectional areas developed for the light and load displacements, would prevent similar errors under any extent to which the relative capacity of the two bodies might be carried. This relative capacity of the two bodies will affect the form of the vessel's extremes, giving a short or long bow, a clear or full run to the rudder; for the whole displacement being a fixed quantity, if the portion of it under the fore half-length of the loadwater line be increased, it must be followed by a proportionate diminution of the portion of the displacement under the after half-length of the load-water line, so that the total volume of the displacement may remain the same, which arrangement will give a proportionately full bow and clean run, and vice versa.

The curve of sectional areas under the foregoing considerations is also applicable to a comparison of the relative qualities of ships of the same rate, by showing at one view the distribution of the volume of displacement in each ship, under the draught of water which has been found on trial to give the greatest velocity; based on which, deductions may be made from the relative capacities of the bodies pointed out by the sectional curves, that will serve to guide the naval constructor in future constructions.

The curve of sectional areas is also available for forming a scale to measure the amount of displacement of a ship to any assumed or given draught of water. To effect this, on the sheer draught or longitudinal plan of the ship between the load-water line, or that of deepest immersion, and the line denoting the upper edge of the rabbet of the keel, draw intermediate lines parallel to the loadwater line as denoting lines of intermediate immersion between the keel and load-water line; these lines may be placed equidistant from each other, but they are not necessarily required to be so. Find the curve of sectional areas, due to each immersion of the ship denoted by these lines, and measure the areas bounded respectively by these curves, in the manner as before directed for the load displacement: these results will give the magnitudes of the immersed portions of the body in cubic feet, which being divided by 35, the mean of the number of cubic feet of salt or fresh water that are equivalent to a ton in weight, will give their respective weights in tons.

Assume a line of scale for depth, or mean draught of water, the lower part of which is to be considered the underside of the false keel of the ship, and set off on this line, by means of a scale of parts, the depths of the immersions at the middle section of the longitudinal plan; draw lines (at the points thus obtained) perpendicular to this assumed line for depth or draught of water, and having determined a scale to denote the tons, set off on each line by this scale the tons ascertained by the curves of sectional areas to be due to the respective immersions of the body; then a curve passed through these points will be one on which the weights in tons due to the intermediate immersions of the body may be ascertained; or, the displacement of a ship to the mean of a given draught may be found by setting up the mean depth on the scale, showing the draught of water-transferring that depth to the curve for tonnage, and then carrying the point thus obtained on the curve for tonnage to the scale of tons, which will give the number of tons of displacement to that depth of immersion or draught of water.

Description of the several plans to be delineated by the draughtsman, previous to the commencement of the calculations.

Sheer Plan.—A projection of the form of the vessel on a longitudinal and vertical plane, assumed to pass through the middle of the ship, and on which the position of any point in her may be fixed with respect to height and length.

Half-breadth Plan.—The form of the vessel projected on to a longitudinal and horizontal plane, assumed to pass through the extreme length of ship, and on which the position of any point in the ship may be fixed for length and breadth.

Body Plan.—The forms of the vertical and athwartship sections of the ship, projected on to a vertical and athwartship plane, assumed to pass through the largest athwartship and vertical section of her, and on which plan the position of any point in the ship may be fixed for height and breadth.

These plans conjointly will determine every possible point required; for, by inspection, it will be found—

That the sheer and half-breadth plans have

one dimension common to both, viz.:.....Length. Half-breadth and body plane.....Breadth. Sheer and body plane.....Height.

Which dimensions form the co-ordinates for any point in the solid,

and must determine the position of it. The point C in the load-water section AB, has for its co-ordinates to fix its position,

The length, 1.5 of the half-breadth plan.

Height, 5.C of the sheer plan,

And the breadth, 1.C of the body plan of section.

And the same for any other point of the solid or of the ship.

In the sheer plan, AB represents the line of deepest immersion, a a, b b, c c, d d, lines drawn parallel to that line at a distance of '9 feet, making with AB an odd number of ordinates for the use of

the first general rule for the area, where area = $\{A + 4P + 2Q\} \times \frac{1}{3}$, and A = the sum of the first and last ordinates.

P = the sum of the even ordinates, as 2, 4.

Q = the sum of the odd ordinates, as 3, &c.

The line AB, or length of the load-water line, is bisected at C, and AC, CB are thence equal; C being the middle point of the load-water line, the spaces BC, AC are again divided into four equal divisions, giving five ordinates for each space, at a distance apart of $5 \cdot 5$ feet.

This arrangement will give the immersed body of the vessel, as being divided into two parts under an equal division of the loadwater line, and an odd number of ordinates in each section of the body for the application of the first general rule given for finding the areas of the vertical sections and thence the displacement.

The half-breadth plan delineates the form of the body immersed for length and breadth, the line AB of the sheer plan being represented in the half-breadth plan by the line marked AB, and a a, b b, c c, d d, of the sheer plan by the lines similarly distinguished in the half-breadth plan.

The body plan gives the form of the body in the depth, the lines distinguished 5.5 in the sheer and half-breadth plans being in the body plan developed by the curve 5.5.5, giving the external form of the ship at the section 5.5; the same reasoning applies to the other divisions of the load-water line AB.

A pile of 400 lbs. weight is driven by the last round of 20 blows of a 500 lbs. heavy ram, falling from a height of 5 feet; 6 inches deeper, what resistance will the ground offer, or what load will the pile sustain without penetrating deeper?

Here G = 400, G₁ = 700 lbs., H = 5, and $s = \frac{0.5}{20} = 0.025$ feet, whereby it is supposed that the pile penetrates equally far for each blow.

 $P = \left(\frac{700}{700 + 400}\right)^2 \frac{400 \times 5}{0.025} = \left(\frac{7}{11}\right)^2 \times 80000 = 32400 \text{ lbs.},$

the ram, not during penetration, remaining upon the pile.

 $P = \frac{700^2 \times 5}{1100 \times 0.025} = \frac{4900}{11} \times 200 = 89100 \text{ lbs., the ram remaining upon the pile during penetration.}$

For duration, with security, such piles are only loaded from $\frac{1}{100}$ to $\frac{1}{10}$ of their strength.

466

THE PRACTICAL MODEL CALCULATOR.

Calculations required for the construction drawing of a yacht of 36 tons.—1st. Usual mode of calculating the displacement by vertical and horizontal sections.

TABLE of Ordinates for Yacht of 36 Tons.

Distinguish- ing No. of he sections.}	1	2	3	4	(5)	6	7	8	9	-
1' A	•4	3.0	5.0	6.0	6.3	$\overline{6 \cdot 1}$	5.4	3.7	•4	r = the distance be- tween the ordi-
2' P	·35	2.4	4 ·2	5.6	5.6	5.5	4.4	2.6	•35	nates used for the vertical sec- tion = -02 feet
3' Q	•3	1.7	3.2	4.4	5.0	4 ·6	3.4	1.7	•3	r! = the distance be- tween the ordi-
4' P	$\cdot 25$	1.0	$2 \cdot 2$	3.2	3.8	3.4	2.4	1.1	$\cdot 25$	nates used for the horizontal
5' A	·2	•4	1.3	$2 \cdot 0$	$2 \cdot 4$	2.0	1.4	•6	•2	feet.

From this Table the following application of O'Neill's rule, No. 1, is usually made to obtain the volume of displacement to the draught of water shown on the drawing as the load-water line, or line of proposed deepest immersion, designated by AB.

General terms of the rule :--

Breadth.

Half

Area =
$$\left\{ A + 4P + 2Q \right\} \times \frac{r}{3}$$
.

To find $\frac{1}{2}$ the area of vertical section 1, fore body:—

 $\begin{array}{c} A = \text{sum of} \\ \text{the first} \\ \text{and last} \end{array} \right\} \begin{array}{c} \cdot 4 \\ \cdot 2 \\ \cdot 6 \\ \hline 6 \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline 6 \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ \cdot 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 6 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ - 2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ - 2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ - 2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ - 2 \\ - 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \cdot 2 \\ - 2 \\ - 2 \\ - 2 \\ \end{array} \\ \end{array}$

$$\begin{cases} A + 4P + 2Q \\ 3 \cdot 6 \times \frac{\cdot 92}{3} = 1 \cdot 2 \times \cdot 92 = 1 \cdot 104 = \frac{1}{2} \text{ area of section 1.} \end{cases}$$

Which sum is half the area of the section 1, and is kept in that form of the half-measurement for the convenience of calculation.

Fore Body.	1
Vertical Section 2.	
3.0 2.4	1.7
•4 1.0	2
$\overline{3\cdot4} = A$ $\overline{3\cdot4} = P$	$\overline{3\cdot4} = 2 Q$
4	
$\overline{13.6} = 4 P$	
$3\cdot 4 = A$	
$3\cdot 4 = 2 Q$	
20.4 = A + 4P + 2Q	
$\cdot 92 = r$	
408	
3) <u>18.108</u>	
$6.256 = \frac{1}{2}$ area of Section 2.	
Vertical Section 3.	
5.0 4.2	3.2
$\frac{1\cdot3}{2\cdot2}$	2
6.3 = A $6.4 = P$	6.4 = 2 Q
25.0 = 4 P 6.2 - A	
6.4 = 2.0	
$\frac{38\cdot3}{38\cdot3} = A + 4P + 2Q$	
.92 = r	4
766	
3447	
3) 35.236	
$\overline{11.745} = \overline{A + 4P + 2Q} \times \frac{r}{5} = \frac{1}{2}$	area of Section 3.
Vertical Section 4.	4.4
2.0 3.2	2
$\frac{20}{8:0} - A = \frac{52}{8:8} - P$	$\frac{1}{8\cdot8} = 20$
$30 - \mathbf{A}$ $30 - 1$	
$\overline{35 \cdot 2} = 4 P$	
$8 \cdot 0 = A$	
$8 \cdot 8 = 2 \mathrm{Q}$	
$\overline{52 \cdot 0} = \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$	
$\cdot 92 = r$	
1040	
4680	
3) 47.840	
$\overline{15.946} = \overline{A + 4P + 2Q} \times \frac{7}{9} = \frac{1}{2} a$	rea of Section 4.

SHIP-BUILDING AND NAVAL ARCHITECTURE.

Vertical Section 5. 6.3 5.6 5.0 2.4 3.8 2 8.7 9.4 $\overline{10.0} = 2$ = P 4 37.6 = 4 P $8 \cdot 7 = A$ $10.0 = 2 \Omega$ $\overline{56\cdot3} = \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$ $\cdot 92 = r$ 1126 5067 3)51.796 $17 \cdot 265 = \overline{A + 4P + 2Q} \times \frac{1}{2} = \frac{1}{2}$ area of Section 5. Half areas of Vertical Sections 1, 2, 3, 4, and 5. No. 1..... 1.104 feet. 2..... 6.256 15.946Displacement of the body under the fore half-length of the loadwater line by the vertical sections, or the summation of the vertical areas 1, 2, 3, 4, and 5, by the formula for the solid, as being equal to $\left\{ A' + 4 P' + 2 Q' \right\} \times \frac{r'}{3}$ where A' = sum of 1st and 5th areas.P' 2d and 4th areas. Q' =66 3d area.

And r' = distance between the vertical sections, or 5.5 feet.

1 1·104	2 6.256	311.745 = Q'
$517 \cdot 265$	415.946	2
$\overline{18.369} = \mathrm{A}'$	$\overline{22 \cdot 202} = \mathbf{P}'$	$\overline{23\cdot490} = 2\mathrm{Q'}$
	4	
0.3.2	$\overline{88.808} = 4 \mathbf{P'}$	ma
	18.369 = A'	
	23.490 = 2 Q'	
	$\overline{130.667} = A' + 4$	P' + 2Q'
	$5 \cdot 5 = r'$	
0.00	653335	
	653335	
3	3)718.6685	
	$\overline{239.556} = \overline{A' + 4 F}$	$\overline{r'+2Q'} \times \frac{r'}{2} = \text{cubic ft. of}$
	2 space in $\frac{1}{2}$	fore-body. 3
	$\overline{479.112}$ = cubic fe	et of space in fore-body.

Displacement of the body immersed under the after half-length of the load-water line by the vertical areas 5, 6, 7, 8, and 9 of the Table of ordinates.

aubic of cranatic	. Ver	tical Sec	ction 6.			
5, as fore body.	6.1	5.5			$4 \cdot 6 = Q$	
17.265	2.0	3.4			2	
	$\overline{8\cdot 1} = A$	8.9 =	• P		$\overline{9\cdot 2} = 2 Q$	
		4	4-			
		35.6 =	4 P			
		8.1 =	A			
		9.2 =	2 Q			
		52.9 =	A + 4I	P + 2Q		
		.92 =	r			
in the second second	1 1	1058				
1 0 1 2 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	0.1	2.001	*			
1	$(3)\frac{4}{4}$	8.008		<u>r</u>	(1 area	of
	~1	6.222 =	= A + 4P	$+2Q\times_{\overline{3}}$	= { Section	n 6.
	Ver	tical Sec	ction 7.			
	5.4	4.4			$3\cdot 4 = Q$	
:	1.4	2.4			2	
	$6 \cdot 8 = A$	6.8 =	= P		$6 \cdot 8 = 2 Q$	
1.1.55 Sec.	1 30 co 1	4				
horres 10 mg	1117100	27.2 = 6.9	= 4 P			
Jun Marco Data da	1	6.8 -	- Δ			
		10.8 -	- A _ A T	0 + 90	,	
		·92 =	- A T II : f	- T 4 Q		
		816				
		3672				
	3)3	7.536	2 and		a band the	
	1	2.512 =	$=\overline{A+4P}$	$\frac{r}{+20} \times \frac{r}{2}$	$=\left\{\frac{1}{2} \text{ area}\right\}$	of
	17 au	in T Qu	4	3	[Section	17.
(3.7	2.6	cuon o.		1.7 = 0	
	•6	1.1			-2	
	$\overline{4\cdot3} = A$	3.7 =	P		$\overline{3\cdot4} = 20$	
		4			•	
	-	14.8 =	4 P			
· · · ·		$4 \cdot 3 =$	A			
,		3.4 =	• 2 Q			
		22.5 =	A + 4I	P + 2Q		
		.92 =	r	ł.		
		450.	7015. A. M.			
1-10(100),	÷ • 3	2025	1 4 C - 1			
-0.51	3)20	0.700		r	(1 area	of
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5.9 =	A+4P-	+2Q×3=	= Section	8.

Vertical Section 9. •4 $\frac{\cdot 3}{2} = Q$ ·35 ·2 $\cdot 25$ $\overline{\mathbf{6}} = \mathbf{A}$ $\cdot 60 = P$ $\overline{6} = 2Q$ 4 $2\overline{\cdot 4} = 4 P$ $\cdot 6 = A$ $\cdot 6 = 2 Q$ $\overline{3 \cdot 6} = A + 4P + 2Q$ $\cdot 92 = r$ $\overline{72}$ 324 $3)\overline{3\cdot 312}$ $\frac{1}{1\cdot 104} = \overline{A + 4P + 2Q} \times \frac{r}{3} = \frac{1}{2} \text{ area of Section 9.}$ Half areas of the vertical sections 5, 6, 7, 8, and 9. Sections. 5.....17.2656.....16.227.,.....12.512 8..... 6.9 1.104 Displacement of the after-body under the after half-length of the load-water line by the vertical sections, or the summation of the immersed areas of the vertical sections 5, 6, 7, 8, and 9 by the formula for the solid as being equal to

 $\overline{\mathbf{A'} + 4\mathbf{P'} + 2\mathbf{Q'}} \times \frac{r}{3}$ where A' = sum of the 5th and 9th areas. P' =" 6th and 8th areas. Q' =" 7th area. and r' = the distance between the vertical sections, or 5.5 ft. $5...17 \cdot 265$ 6...16.227...12.512 = 0'9... 1.104 8... 6.900 $\mathbf{2}$ $\overline{23.120} = \mathbf{P}'$ $\overline{25.024} = 2 0'$ 18.369 = A'4 $\overline{92 \cdot 480} = 4 \,\mathrm{P'}$ 25.024 = 2 Q'18.369 = A' $\overline{135.873} = A' + 4 P' + 2 Q'$ 5.5 = r $679 \cdot 365$ 67.9363)747.3015 $\overline{249 \cdot 1005} = \overline{A' + 4P' + 2Q'} \times \frac{r'}{3} = \text{cubic ft.}$ $2 \quad \text{in } \frac{1}{2} \text{ after-body.}$ 498.2010 After-body in cubic ft. of space.

Displacement of Fore-body by Horizontal Sections. Horizontal Section 1'. 6.0 5.0 = 00.46.3 3.0 $\overline{9 \cdot 0} = P$ $\overline{10.0} = 0$ $\overline{6.7} = \mathbf{A'}$ 4 $\overline{36.00} = 4 P$ 10.00 = 2 Q6.70 = A $\overline{52.70} = A + 4P + 2Q$ 5.5 = r2635 26353)289.85 $\overline{96\cdot61} = \overline{A+4P+2Q} \times \frac{r}{3} = \frac{1}{2}$ area of Section 1'. Horizontal Section 2'. $\begin{array}{c} 4 \cdot 2 = \mathbf{Q} \\ 2 \end{array}$ ·35 5.72.45.60 $\overline{8\cdot4} = 2 Q$ $\overline{5\cdot95} = A$ $\overline{8\cdot 1} = P$ 4 32.4 = 4 P8.4 = 2Q5.95 = A $\overline{46.75} = A + 4P + 2Q$ 5.5 = r2337523375 $3)\overline{257.125}$ $\overline{85.708} = \overline{A + 4P + 2Q} \times \frac{r}{2} = \frac{1}{2}$ area of Section 2'. Horizontal Section 3'. $3 \cdot 2 = Q$ 4.4 .3 5.0 1.7 $\overline{6\cdot4} = 2 Q$ $\overline{5\cdot3} = A$ $6 \cdot 1 = P$ 4 $\overline{24\cdot4} = 4$ P $5 \cdot 3 = A$ 6.4 = 2 Q $\overline{36\cdot 1} = \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$ 5.5 = r1805 1805 3) 198.55 $\overline{66.18} = \overline{A + 4P + 2Q} \times \frac{7}{3}$ $=\frac{1}{2}$ area of Section 3'.

SHIP-BUILDING AND NAVAL ARCHITECTURE.

	Horizo	ntal Section 4'.		
$\cdot 25$	3.2	interest of the	2.2 =	Q
3.8	1.0		2	
$\overline{4.05} = \mathbf{A}$	$\overline{\begin{array}{c}4\cdot2\\4\end{array}} = \mathbf{P}$	and the second second	4.4 =	2 Q .
	$\overline{\begin{array}{c}16\cdot8\\4\cdot05=A\end{array}} = 4 \mathrm{I}$	P		
1	4.40 = 20	2		
	$25 \cdot 25 = A$ $5 \cdot 5 = r$	+4P+2Q		
	12625			
	12625	1 1. 1. 1.		
3) 138.875	* i · · · · · · · · · · · · · · · · · ·		
	$46 \cdot 291 = \overline{A}$	+4P+2Q	$< \frac{r}{3} = \begin{cases} \frac{1}{2} \\ \mathrm{Se} \end{cases}$	area of ction 4'.
	Horizon	ntal Section 5'.		
•2	2.0		1.3 =	Q
$\frac{2\cdot 4}{2\cdot 4}$	<u>•4</u>			
$2 \cdot 6 = A$	$2 \cdot 4 = P$ 4		2.6 =	2 Q
	9.6 = 41	P	1	
	$2 \cdot 6 = A$			
	$2 \cdot 6 = 2 $	Q.	96 g = 1 - 1 - 1	1 = 21
	14.8 = A	+4P+2Q	Colonia a	
	5.5 = r	5 1.7 1. 19		
	740			
	740		12	
	3)81.40			
	$\overline{27:13} = \overline{A}$	+4P+2Q	$\times \frac{r}{3} = \begin{cases} \frac{1}{2} \\ S \end{cases}$	area of ection 5'.
Displacemen	nt of the fore-be	ody under the f	ore half-leng	th of the
load-water lin	e by horizontal	sections, or t	he summatio	on of the
horizontal sec	tions of the for	re-body 1', 2', 8	3', 4', and 5	b', by the
formula for th	e sona, as peing	r equal to	2	

$$\overline{\mathbf{A}' + 4\mathbf{P}' + 2\mathbf{Q}'} \times \frac{7}{3};$$

where

$$A' =$$
sum of the 1'st and 5'th areas;
 $P' =$ " 2'd and 4'th areas;
 $Q' =$ " 3'd area;

and r = the distance between the horizontal sections, or $\cdot 92$ feet. Half areas of the Horizontal Sections 1', 2', 3', 4', and 5'. $1' = 96 \cdot 61$. | 4' = 46 \cdot 29.

Areas.	Areas.	Areas.
$5' \dots 27 \cdot 13$	2'85·70 4'46·29	$3' \dots 66 \cdot 18 = Q'$
123.74 = A	′ 131·99	$\frac{1}{2}$ $\frac{1}$
	527.99 123.74 132.30	$ \begin{array}{l} \overline{92} = 4 P' \\ 40 = A' \\ 60 = 2 Q' $
	784·09	$\frac{\partial 2}{\partial 2} = \mathbf{A}' + 4\mathbf{P}' + 2\mathbf{Q}'$ $\frac{\partial 2}{\partial 2} = r$
	$\frac{156818}{7056828}$	
	3)721.3646	
	240.45 2	$= \overline{\mathbf{A}' + 4\mathbf{P}' + 2\mathbf{Q}'} \times \frac{r}{3} = \begin{cases} \text{cubic ft. in} \\ \frac{1}{2} \text{ fore-body.} \end{cases}$
	480.90	= fore-body by horizontal sections in cubic feet of space.

Displacement, by horizontal sections of the body immersed under the after half-length of the load-water line, or by the horizontal areas 1', 2', 3', 4', and 5', of the table of ordinates.

Calcu	lated areas of $1'$, $2'$, $3'$	3', 4', and 5'.
	Section 1' After-bo	dy.
6·3 ·4	6·1 3·7	$5 \cdot 4 = Q$
$\overline{6.7} = \mathbf{A}$	$\overline{9.8} = P$ 4	$\overline{10.8} = 2 \mathrm{Q}$
5	$\overrightarrow{6\cdot7} = \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$ $5\cdot5 = r$	2
2 28	335 35	
3)311	•85	(ł · · ·
10	$\overline{3.95} = \overline{A + 4P + 20}$	$\overline{\mathbb{Q}} \times \frac{r'}{3} = \begin{cases} \frac{1}{2} \text{ area of } \\ \text{Section } 1'. \end{cases}$

	Section 2' After-body.	
5.6 5.5		4.4
·35 2·6	•	2
55 <u>20</u>	D	$\overline{0.0} - 0.0$
5.95 = A - 6.1	= r	0.0 = 4.0
4		
32.40	=4P	
5.95	= A	
8.80	= 2Q	
47.15	$= \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$	
5.5	= r	
23575		
23575		
3) $\overline{259 \cdot 325}$		
86.441	$-\frac{1}{1}$	area of Section 9/
00.441	$= A + 41 + 2Q \times \frac{3}{3} - \frac{1}{2}$	area or Section 2.
	Section 31 After hada	
5.0 4.6	Section o 21 ter-oouy.	3.4 = 0
·3 1·7		•2
5.3 = A = 6.3	= P	6.8 = 2 Q
4		
25.2	=4P	
5.3	= A	
6.8	= 2 Q	
37.3	$= \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$	
5.5	= r	
1865	· · · · · · · · · · · · · · · · · · ·	
1865		
$3)\overline{205.15}$		
68:38	$=\overline{A+4P+2Q}\times \frac{r}{2}=\frac{1}{2}e$	area of Section 3'.
00.00	11 1 1 1 2 4 . 3 2	
	Section A! After body	
0.0	Section + 11/ter-body.	0.4 0
3.8 3.4		$2^{\cdot}4 = Q$
·25 <u>1·1</u>	-	4
4.05 = A 4.5	= P	4.8 = 2 Q
4		
18.00	=4P	
4.05	$= \mathbf{A}$	
• 4.80	= 2 Q	
$\overline{26.85}$	$= \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}$	
5.5	= r'	
13425		
13425	1	
3) 147.675		
49.995	$-\overline{\mathbf{A} + 4\mathbf{P} + 2\mathbf{O}} \times \frac{r'}{r} - 1$	area of Section 4/
10 440	$-11 + 11 + 4\sqrt{3} = 2$	area or Sconon 4.

		Dection	i o After	r-00ay.			
2.4	2.0			1		1.4 =	Q
·2	•6					2	Č.
$\overline{2 \cdot 6} = \mathbf{A}$	2.6 =	= P				$\overline{2\cdot 8} =$	2 Q
	4						
	10.4 =	= 4 P					
	2.8 =	= 2 Q /		6	10.00		
	2.6 =	= A					
	$\overline{15.8} =$	= A + 4	4P + 20	2 4	S		
	5.5 =	= r'					
	790						
	790	•					
3	$) \overline{86.90}$	100		ant	٤		
	28:96 =	$=\overline{\mathbf{A}+4}$	P + 2Q	$\times \frac{7}{3} =$	$=\frac{1}{2}$ are:	a of Sec	tion 5

Displacement by horizontal sections of the after-body under the after half-length of the load-water line, or the summation of the horizontal sections of the after-body, 1', 2', 3', 4', and 5', by the formula of the solid, as being equal to

$$\overline{\mathbf{A'} + 4\mathbf{P'} + 2\mathbf{Q'}} \times \frac{r'}{3}.$$

Half areas of the After Horizontal Sections, 1', 2', 3', 4', and 5'.

ections.	Areas.
1'	
2'	
3'	
4'	
51	28.96

Areas.	Areas.	Areas.
1'103.95	2'86.44	$3'68\cdot 38 = Q'$
5' 28.96	4'49.22	2
132.91	$= A' \overline{135.66}$	$= \mathbf{P'} \qquad \overline{136.76} = 2 \mathbf{Q'}$
	. 4	
	542.64	=4 P'
10h	132.91	= A'
	136.76	= 2 Q'
	812.31	= A' + 4P' + 2Q'
	·92	=r
	$1\overline{62462}$	
	731079	the the the she was
	$3)\overline{747\cdot 3252}$	12 - 1616 - 1710 - 1
	$\overline{249.1084}$	$=\overline{A'+4P'+2Q'\times \frac{1}{3}}=$ cubic ft. of
	2	1 after-body by horizontal sections.
· · · · · · · · · · ·	498.2168	= After-body by horizontal sections
		in cubic feet of space.

		DISPL	AC	EMENT.				
By Vert	ical Sect	ions.		By Horn	izon	tal Sec	ctions.	
Fore-body After-body	(p. 469) (p. 471)	Cubic Feet. 479.11 498.20		Fore-body After-body	(p. (p.	474) 476)	Cubic Fe 480.9 498.2	et. 00 16
	Sum Half	$\frac{977 \cdot 30}{488 \cdot 65}$				Sum Holf	979·1	16
By H By V	orizontal ertical Se	Sections	• • • •		cu 97 97	11211 bic Feet. 79.116 17.300	100 0	00
Cubic Feet.	I	Difference	e			1.816	cubic	feet

979.49 = capacity or displacement in cubic feet of space.

The mean weight of salt and fresh water gives 35 cubic feet of space, when filled with water, to be equivalent to a ton avoirdupois; thence the displacement in cubic feet of space being divided by 35 will give the weight of the volume displaced in tons avoirdupois; or 979.49 being divided by 35 gives

$$\frac{5)979\cdot49}{7)\underline{195\cdot898}}$$

$$\overline{27\cdot985} \text{ tor}$$

7.985 tons, the weight of the calculated immersed body in tons.

AREA OF THE MIDSHIP SECTION, OR OF THE GREATEST TRANSVERSE SECTION.

Section at 5.

1.16.3 5.52	$2 \cdot 2 \dots 6 \cdot 0$ $4 \cdot 4 \dots 2 \cdot 3$			3.34.	8 = Q	
6.5 =	$= \mathbf{A} \begin{array}{c} 8 \cdot 3 = \\ \underline{4} \\ \hline \hline \end{array}$	= P		9.	6 = 2 Q	
	33.2 = 6.5 = 9.6 = -2.5	= 4 P = A - 2 0				
	$\frac{30}{49.3} =$	= A +	4P+2	Q		
¢	$\frac{1.25}{2465} = \frac{2465}{986}$	$=\frac{7}{3}$ whe	ere $r = t$ v	he depth, ided by 4 l·25 ft.	from 1 to 5, d = 5 ft. by $4 =$	i- =
1	$\frac{493}{3)\overline{61.625}}$	-				
	20.541 = 2	= A +	4P + 20	$\overline{Q} \times \frac{7}{3} = 0$	$\int \frac{1}{2}$ area of mic ship section.	1-
e	41.082 =	= Area	of midshi	p section v	vithout keel.	

LOAD-WATER LINE.

Area of the load-water line, or area of the assumed deepest plane of immersion, delineated on the half-breadth plan, and marked by the curve AB. From the table of ordinates, p. 467, we have—

•4	3.0				5.0		
•4 ·	6.0				6.3		
· · · ·	6.1				5.4		
0 - A	3.7				6.7		
	18.8	- P		1	$\frac{0.7}{2} = 0$	2	
	4			3	3.4 - 9	0	
	75.2	= 4 P			01-2		
	·8	= A					
	33.4	= 2 Q					
	109.4	= A +	4'P + 2	Q			
	5.5	= r'					
	5470						
	5470						
3	$) \overline{601.70}$						
	200.56	$=\overline{\mathbf{A}}$ +	4 P + 2	$\overline{2} \overline{Q} \times \frac{r}{3}$	$= \begin{cases} \frac{1}{2} \\ w_i \end{cases}$	area of load ater line.	I -
	-					-	

 $200.56 = \frac{1}{2}$ area of load-water section in superficial feet.

 $401 \cdot 12 =$ area of load-water section, which amount of area being divided by 12, will give the number of cubic feet of space that would be contained in a zone of that area of an inch in depth, and that result being again divided by 35, as the number of cubic feet of water equivalent to a ton in weight, will give the number of tons that will immerse the vessel one inch at that line of immersion.

 $12)401\cdot12 =$ area of load-water section in superficial feet.

 $5)33\cdot42$ = cubic feet in zone of one inch in depth.

7)6.684

 $\cdot 955 =$ tons to the inch of immersion at load-water line.

CENTRE OF GRAVITY OF THE DISPLACEMENT. Estimated from Section 1, considered as the Initial Plane.

Distingu No. of the	Areas.	1/2 Vertical Areas.		Moments.
(1	1.104	×	0
69.	2	6.256	×	1 6.256
à.	3	11.745	×	2 23.490
Tom	4	16.069	×	3 48.207
#	5	$17 \cdot 265$	×	4 69.060
. (\$6	16.222	×	5 81.110
14.	7	12.512	×	6 75.072
a l	8	6.900	×	7 48.300
A L	9	1.104	x	8 8.832

Moments placed in the Rule.

		!
- 5	$Sum = \overline{A + 4P + 2Q} \times$	$\frac{r'}{3}$
000.000	6.256	23.490
8.832	48.207	69.060
8.832 - A	81.110	75.072
0.002 - A	48.300	167.622 = Q
	183.873 = P	2
	4	$335 \cdot 244 = 2 Q$
	735.492 = 4 P	
	8.832 = A	
	$335 \cdot 244 = 2 Q$	
	1079.568 = A +	4 P + 2 Q
	5.5 = r'	
	5397840	
	5397840	
	$3) \overline{5937.6240}$	
	$\overline{1979 \cdot 208} = \overline{A} + \overline{A}$	$\overline{4P + 2Q} \times \frac{r'}{2}$
		9

sum of the moments of half the displacement from section 1, in intervals of space of 5.5 ft.; and the half displacement in cubic feet by vertical sections is 488.650 (p. 477) cubic ft.; whence it is found, by dividing the moment 1979.208 by 488.650, that the distance of the centre of gravity of displacement from the section 1 is as follows:—

> 488.65) 1979.208 (4.05 intervals from 1.195460 interval = 5.5 ft.246080244325 interval = 5.5 ft.244325 interval = 5.5 ft.2455 interva

1755 therefore $4.05 \times 5.5 = 22.27$ ft. = distance of the centre of gravity of the calculated immersed body from 1.

DEPTH OF THE CENTRE OF GRAVITY OF THE DISPLACEMENT BELOW THE LOAD-WATER SECTION.

Fore-body. After-body.

Section.		Areas.		Areas.	Sum of t	he Areas			Moments.
1'	1	96.61	1	(103.95	200.5	6 X	0	=	000.000
2'	473.	85.708	476.	86·44		48 ×	1		172.148
3'	à	66·18		68·38	134.5	6 X	2	.=	269.12
4'	ron	46.29	ron	49.22	95.5	1 x	3		286.53
5'		27.13		28.96	56.0	9 x	4	-	224.36

000·00 224·36	$\begin{array}{cccc} 172.148 & 269.12 = 0\\ 286.530 & 2 \end{array}$	
$\overline{224 \cdot 36} = \mathbf{A}$	$\overline{458.678} = P$ $\overline{538.24} = 2 Q$	
	$\overline{\begin{array}{c} 1834.712 = 4 P \\ 224.360 = A \\ 538.240 = 2 Q \\ \hline 2597.312 = A + 4 P + 2 Q \\ \underline{92 = r} \\ 5194624 \end{array}}$	
$(3)\frac{2}{25}$	$\frac{3375808}{389 \cdot 52704} = \overline{A + 4 P + 2 Q} \times \frac{r}{3}$	

sum of the moments of the half displacement calculated from the load-water line: the half displacement by horizontal sections is 489.588 (p. 477) cubic feet; the sum of the moments of the half displacement 796.509 ft., being divided by that quantity, will give the distance in intervals of .92 ft.; the centre of gravity of displacement is below the load-water line.

Half solid of	Momenta	1. 1. 1.		
489.558	796.509)1.6	2 intervals of	92 feet: therefore	
	489558	1.62	,	
•		$\times \cdot 92$		
	3069510			
	2937348	324		
		1458		
	1321620			
	979116	1·4904 ft.	= the distance the	cen-
	342504	tro	e of gravity of the cited immersed body i	alcu- s be-
		lo	w the load-water sec	tion.

DISTANCE OF THE CENTRE OF GRAVITY OF THE AREA OF THE LOAD-WATER SECTION FROM SECTION 1.

No. of Section.	Ordinates of Section 1 from the Table, p. 467.	Distances of them in intervals of 5.5 ft. from Section 1.	Moments; being the Pro- duct of the Areas by the respective Distances.
1	•4	0	000.000
2	3.0	1	. 3.0
3	5.0	2	10.0
4	6.0	3	18.0
5	6.3	4	$25 \cdot 2$
6	6.1	5	30.5
7	5.4	6	32.4
8	3.7	7	25.9
9	.4	8 *	3.2

SHIP-BUILDING AND NAVAL ARCHITECTURE.

481

The moments, for summation, put into the rule. 00.0 3.0 10.0 $3 \cdot 2$ 18.0 25.232.4 30.5 $3 \cdot 2 = A$ 25.967.6 = 077.4 = P $\mathbf{2}$ 4 $135 \cdot 2 = 2 Q$ 309.6 = 4 P3.2 = A $135 \cdot 2 = 2 Q$ $448 \cdot 0 = A + 4P + 2Q$ 5.5 = r'2240 22403)2464.0 $\overline{821\cdot 3} = \overline{\mathbf{A} + 4\mathbf{P} + 2\mathbf{Q}} \times \frac{r'}{2} =$

sum of the moments of the half area of the load-water section reckoned from 1; the half area of the load-water section is 200.56 feet (p. 478); the distance, therefore, of the centre of gravity of the load-water section from 1 will be found in intervals of space of 5.5 feet, by dividing the sum of these moments by the half area, thus :-

Half Area. Moments. No. 200.56) 821.3333 (4.09 intervals, each 5.5 ft. in length. 80224 190933 18050410429

and $4.09 \times 5.5 = 22.5$ ft. gives the distance of the centre of gravity of the load-water section from section 1 of the drawing.

Relative capacities of the bodies immersed under the fore and after lengths of equal division of the load-water line-

By former calculations.

After-body immersed contains......497.79 cubic ft. of space. 66 " Fore-body

Difference..... 16.09 =

the excess in cubic feet of space of the body displaced under the after half-length of the load-water line over that under the forehalf of the same line-

Sum of the bodies (by former calculation) or whole displacement in cubic feet of space (p. 477)...... } 979.49

equal to 9.7949 hundreds of cubic feet of space, whence 16.09, or the difference between the two bodies in cubic feet, being divided by 9.7949, or the displacement expressed in terms of the hundreds of cubic feet of space, will give the excess for every hundred cubic feet of the whole displacement.

Displacement in Hundreds of Cubic	Excess in Cubic Feet	
9.7949)	16.09000 (1.	6 = Ratio of the excess of
-	97949	the after-body of dis-
	629510	placement over the
1	587694	fore-body of the same,
*	•41816	denoted by a per-cent- age of the whole dis-
	METACENTRE	placement.

METACENTRE.

A measure of the comparative stability of a ship, or the height of the metacentre above the centre of gravity of displacement estimated, from the expression $\frac{2}{3}\int \frac{y^3 dx}{D}$, in which f is the sign of in-

tegration and signifies sum :---

y = the ordinates of the half-breadth load-water section.

dx = the differential increment of the length of load-water section.

D = displacement of the immersed portion of the body in cubic feet of space.

Ordinates from the table.	Cubes of the Ordinate
(•4	00.064
3.0	
5.0	
⊧ 6.0	
[≈] { 6·3	250.047
Å 6·1	
5.4	$157 \cdot 464$
3.7	50.653
•4	0.064

Cubes placed in O'Neill's rule for summation of

	Area = (A + 4P + 2Q)	$\times \frac{1}{3}$
00.064	27.000	125.000
00.064	216.000	250.047
·128 =	$= A \qquad 226.981$	157.464
	50.623	$\overline{532.511} = Q$
	$\overline{520.634} = P$	2
0.00	4	$\overline{1065.022} = 2 Q$
	$2082 \cdot 536 = 4 P$	
1. 200 1	$1065 \cdot 022 = 2 Q$	
	000.128 = A	1 thu (1)
	$\overline{3147.686} = A + 4$	4P + 2Q
	5.5 = r'	The second
	15738430	*
	15738430	
Sun	3) 17312.2730	beau i
	$\int y^3 dx = 5770.7576 = A + 4$	$\frac{r}{P+2Q} \times \frac{r'}{3} =$

summation of the cubes of the ordinates of the load-water section; and the height of the metacentre above the centre of gravity of
displacement is expressed by $\frac{2}{3} \int \frac{y^3 dx}{D}$, in which expression $y^3 dx =$
5770.75 and D = 979.1 (p. 477) whence $\frac{2}{3} \times \frac{5770.75}{979.1} = 3.98$ feet
is the height of the metacentre above the centre of gravity of the displacement. RESULTS OF THE CALCULATIONS.
1st Method.
Displacement in cubic feet of space = $979 \cdot 149$. Displacement in tons of 35 cubic feet of water to a ton
Area of midship section
the proposed deepest immersion $= 401.12$ superficial feet.
Tons to one inch of immersion at $= .955$ tons.
Longitudinal distance of the centre of gravity of displacement from $= 22 \cdot 22$ feet. section 1.
Depth of the centre of gravity of displacement below the load-water $= 1.4904$ feet.
Distance of the centre of gravity of the load-water section from vertical section 1
Relative capacity of the after-body in excess of the fore-body in cubic $= 16.09$ feet of space
Per-centage on the whole displace- ment $\left. \frac{1}{06} \right\} = 1.06.$
Height of the metacentre above the centre of gravity of displacement,
estimated from the expression $= 3.98$ feet.
$\frac{2}{3}J$ D.

The young naval architect has thus been led through the essential calculations on the immersed portion of a ship considered as a floating body. The term essential has here been used under a knowledge that the table of results might have been swollen to a small volume by a lengthened comparison of the elements of the naval construction, such as the ratio of the area of the midship section to the area of the load-water section, and that of the area of the midship section to the circumscribing parallelogram; data that will always suggest themselves to the mind, and furnish salutary exercise for his judgment, while the introduction of such comparisons into these rudiments might deter the novice from entering

OF THE

-		Summation of the	Value of / y 3 dx. 00-032		54-000	4 2 1	125-000		432.000		250.047		
				s a	7. 9		-		61		-		
		Cubes of the Ordi-	Load-water Section. 00.64		27.000		125.000		216-000		250-047	dinal Areas.	
		Moment for Centre of Gravity of	Load-water Line. 000-00		.6.00	00-01			36.00	12.60		ns of Longitu	
			0	-		10	. 01	2			4	Functio	
4		N 1	0.20		6.00		5-00	0	12-00	1	3.15	26.35	13.17
1	$\frac{\Lambda}{2}$	•4	0.20	3.0	1.50	5.0	2.50	6.0	3.00	6.3	3.15		
			0.17		4.80	¢ 	4.20		11.20		2.80	23.17	46.34
Y.	2 P	·35	0.70	2.4	4 ·80	4.2	8.40	5.6	11.20	5.6	11.20		
E-BOD	Q		0.15	0.05	3.40		3.20	6	8.80		2.50	18.05	18.05
FOR		•3	0.30	1.7	1.70	3.2	3.20	4.4	4.40	5.0	5.00		
•			0.12		2.00		2-20		6.40		1.90	12.62	25.24
	2 P	·25	0.50	1.0	2.00	$2\cdot 2$	4.40	3.2	6.40	3.8	7.60		
٠			0.10		0.80		1.30	1.3	4.00	- 1	1.20	7-40	3.70
	A 2	$\cdot 2$	0.10	•4	•20	1.3	•65	2.0	1.00	2.4	1.20		
	в	Func of Ve Ar	etions ertical eas. 1.80		10.20		19.15		26.00		28.15	Fu the Lon Are	nction of Solid by gitudinal as 106.50
		Mult for S	ipliers -in		61		i in		61		-43		
	с	Func- tions of	for the Solid.		20-40	т. 1	19-15		52-00	••	14-07	01 001	20-001
			0		. A		63		(co)		4	f the	(sa
	Moments for Contro of Gravity of Displace- ment. 000-00 0			20-40		38•30		156-00		56-28	Function o Solid by	tical Are	

	Summation of the	Cubes for the Value of f y 3 dx.		453-962		157-464		191-306		00-032	1249.049	010.0/CT			
		-	-	63		1	•	69		×8					
	Cubes of the	Ordinates of Load-water Bection. 250-047		226-981		157-464		50-653		00-064					`
	Moment for Centre of	(travity of Load-water Line. 12-60		00-19	Ŧ	32-40		61-80	121	1.60	001.00	00.477	**	4	x
		4		'n		9		, r	-0	∞					
		3.15		12:20	- F	5.40		7-40	1	0-20	28.35		10	Sum of the Func- tions of Fore	Moments for the Centre of Gra- vity of
$\frac{\Lambda}{2}$	6.3	3.15	6.1	3.05	5.4	2.70	3.7	1.85	•4	0-20-		1/2	14.7	and After- bodies. 14.17 13.17 } 27.34	Dis- place- ment. 01000.00
		2.80		11-00		4-40		5.20	-	71-0	23-57				4.
2 P	<u>5.</u> 6	11-20	5.5	11:00	4.4	8-80	2.6	5.20	.35	•70		2	<u>47·14</u>	$47.14 \\ 46.34 $ 93.48	<u>1 93·48</u>
		2-50		9-20	-	3.40		3-40		0-15	18.65		Ţ		
Q	5.0	5.00	4.6	4.60	3.4	3.40	1.7	1.70	.3	0-30		1	<u>18·65</u>	$\left[\frac{18.65}{18.05} ight\}$ 36.70	2 73.40
		1-90		98.9	-,	2.40		2:20	-	0-12	13-42		••)) 1		
2 P	3.8	7.60	3.4	6.80	2.4	4.80	1.1	2.20	•25	0.20	-	2	26.84	$26 \cdot 84 \\ 25 \cdot 24 $ 52.08	3 156-24
		1-2		4-00		1-40		1:20	1.0	0-10	06-1				
$\frac{\Lambda}{2}$	2·4	1.20	2.0	1.00	1.4	•70	•6	•30	.2	·10	_	1/2	3.95	$\left[\begin{array}{c} 3.95\\ 3.70 \end{array}\right]$ 7.60	4 30.60
в	of V Ar	ertical eas.		98:45		90.40		11.05	-				110.75	217.25	353.72
	Mul for	solid.		20 4.5 N				N		1.80	-			S. Mes	* *
с	Func- tions of	the Areas for the Solid. 14-07		52-90	20-40		2	22-50		06		110-77		4 in	
	• 10	4		ca		9				80		f the	olid.	feet.	
11	Moments for Centre of Grante of Displace- ment, 55:23			264-50		122-40		157-50		7-20		n.4 08.8/8	5 02	r == -92	8

AFTER-BODY.

SHIP-BUILDING AND NAVAL ARCHITECTURE.

on a task that would thence seem to be involved in such voluminous results. For the second method of calculation, the table of ordinates is in two portions, viz. the fore and after-bodies under the division of the load-water section into two equal parts, the length of such section being restricted to the distance from the fore-edge of the rabbet of the stem to the after-edge of the rabbet of the post. The enlarged tables are shown at pages 484 and 485, and the directions for the working of these tables have been given at page 459, observing only that the ordinates have not been herein inserted in red, as it was there suggested, to insure perspicuity and accuracy.

RESULTS FROM THE TABLES.

Area = $\left\{\frac{A}{2} + 2P + Q\right\} \frac{2r}{3}$ By modified rule. And solid = areas for ordinates $\left\{ = \left\{ \begin{array}{c} \mathbf{A}' \\ 2 \end{array} + 2 \mathbf{P}' + \mathbf{Q}' \right\} + \frac{2 r'}{3} \right\}$ summed by rule Functions of the areas marked $B = \left\{ \frac{A}{2} + 2P + Q \right\}$ Function of the solid equal to B, placed in O'Neill's rules = A' + 2P' + Q' = EWhence displacement = E $\times \frac{2r}{3} \times \frac{2r'}{3}$, in the example r = .92r' = 5.5.Therefore $\frac{1}{2}$ displacement = E $\times \frac{2r}{3} \times \frac{2r'}{3}$ = E $\times \frac{1\cdot 84}{3} \times \frac{11}{3}$ = $E \times \frac{20 \cdot 24}{9}$. VALUE OF E FROM THE TABLES BY VERTICAL SECTIONS. Table 1...106.50 = submultiple of the fore-body by vertical sections. 66 Table 2...110.77 =after-body $\overline{217 \cdot 27} = \text{sum of the submultiples} = \text{E}.$ $\frac{1}{2}$ displacement = E $\times \frac{20 \cdot 24}{9} = \frac{217 \cdot 27 \times 20 \cdot 24}{9} = 24 \cdot 14 \times 20 \cdot 24 =$ $488 \cdot 5936 = \frac{1}{2}$ solid of displacement by the summation of the vertical areas given in cubic feet of space. $\mathbf{2}$ $5) \overline{977.1872}$ 7)195.4374 27.92= Displacement by vertical sections in tons of 35 cubic feet of space. VALUE OF E FROM THE TABLES BY HORIZONTAL SECTIONS. Table 1...106.50 = submultiple of the fore-body by horizontal sections. Table 2...110.75 = submultiple of the after-body by horizontal sections.

From whence the same results will be obtained.

AREA OF MIDSHIP SECTION.

From table $1...28 \cdot 15 =$ submultiple of the area of Section 5. $1 \cdot 84 = 2 r$

11260 22520 2015	
3)51.7960	
$17 \cdot 265 \\ 3 \cdot 275$	$= \frac{1}{2} \text{ area of upper space of midship section.}$ = $\frac{1}{2}$ area of the lower " " below $d d$,
$\overline{20.540}_{2}$	$=\frac{1}{2}$ area of midship section.
41.08	= area of midship section.
AREA	OF THE LOAD-WATER LINE.
From table 126.35 From table 228.35	= submultiple of the area of the fore-body. = " " after-body.
54·70 11	= submultiple for $\frac{1}{2}$ area of load-water line. = $2 r'$
3)601.7	
200·56 2	$= \frac{1}{2} \operatorname{area} = \frac{\overline{A}}{2} + 2 P + Q \times \frac{2 r'}{3}$
12)401.12	= area of load-water line.
5) 33.42	and the second
7)6.684	
•955	= tons per inch of immersion at the load- water line.

POSITION OF THE CENTRE OF GRAVITY OF DISPLACEMENT.

By table 2...878.86 = moments from Section 1. and E......217.27 = corresponding function of the displacement. 217.27) 878.86 (.404 intervals of 5.5 feet, giving 4.04 × 869.08 5.5 = 22.22 feet as the distance of the centre of gravity of the dis-97800 glacement from Section 1. 86908 10892

DEPTH OF THE CENTRE OF GRAVITY OF THE DISPLACEMENT BELOW THE LOAD-WATER SECTION.

By table 2...353.72 = moments from load-water line. and E......217.25 = corresponding function of the displacement.

 $\begin{array}{r} 217 \cdot 25 \\ 217 \cdot 25 \\ \hline 136 \cdot 470 \\ \hline 130 \cdot 350 \\ \hline 61200 \\ \hline 43450 \\ \hline 17750 \end{array} \begin{array}{r} .92 = 1 \cdot 4904 \text{ as the distance that} \\ .92 = 1 \cdot 4904 \text{ as t$

POSITION OF THE CENTRE OF GRAVITY OF THE LOAD-WATER LINE OF DEEPEST IMMERSION.

From table 1......26.35 ft. From table 2...224.000 = moments "2......28.35 from 1st section."

Function for area...54.7) 224.0 (4.09 intervals of 5.5 feet, giving 218.8 $4.09 \times 5.5 = 22.495$ feet

-	00	
	5200	
	4923	
r	·277	

 $4.09 \times 5.5 = 22.495$ feet as the distance that the centre of gravity of the load-water section is from vertical section 1.

RELATIVE CAPACITIES OF THE CALCULATED IMMERSED BODIES CON-TAINED UNDER THE FORE AND AFTER-LENGTHS OF EQUAL DIVISION OF THE LOAD-WATER LINE.

From table 1...Function for the fore-solid.....106.50 From table 2...Function for the after-solid.....110.75

4.25

Sum of the functions......217.25

The difference, 4.25 feet, expresses the excess in cubic feet of space of the body, displaced under the after half-length of the load-water line, over that under the fore half-length of the same line, and the sum of the functions, 217.25, is equal to 2.1725 hundreds of cubic feet of space; whence, 4.25 feet, or the difference between the functions for the two bodies, being divided by the function 2.1725, or the function for the displacement of the calculated body expressed in terms of hundreds of cubic feet of space, will give the excess for every hundred cubic feet of that displacement:

Function of Displace- ment.	Excess in Cubic Feet of Space.	
2.1725)	↓·2 5000 (1·9 2·1725	ratio of the excess of the after- body of calculation over the
	207750 195525	fore-body of the same, de- noted by a per-centage of the displacement, calculated by
	·12225	the table of ordinates.

18:11-1.1.1. 19:11

SHIP-BUILDING AND NAVAL ARCHITECTURE.

HEIGHT OF THE METACENTRE ABOVE TH DISPLACEMENT	IE CENTRE OF C	RAVITY OF
From table 2 The summation of the of the cubes of the ordinates for the the $\int y^3 dx$	the functions the value of $\left\{ \begin{array}{c} = \\ \dots \\ \end{array} \right\} =$	· 1573·843.
The corresponding function for the so)iia =	- 411-20.
from whence the height of the metace	entre above the $u^3 dx$	centre of
gravity of displacement, expressed by $\frac{1}{3}$	$f \frac{g}{D}$ is as fol	lows:
$f y^3 dx = 1573.843 \times \frac{2 r'}{3}$ when	re $r' = 5.5$ feet	-
$\frac{1573 \cdot 843 \times 11}{2} = \frac{17312 \cdot 273}{2}$	= 5770.75 feet	
(Page 485) $217 \cdot 27 \times \frac{2r}{2} \times \frac{2r'}{2} = 1$ dist	accement = 488	8·5936 feet.
whence displacement or $D = 97$	7.1872: and th	ence
9 .3 dr 9 5770.75 11	541.59	
$\frac{2}{3}f\frac{y^{-}\mathrm{dx}}{\mathrm{D}} = \frac{2}{3} \times \frac{371073}{977.1872} = \frac{11}{298}$	$\frac{34135}{31\cdot 5616} = 3.98$	feet.
		• >
RESULTS OBTAINED UNDER THE TWO M	IETHODS OF CALC	ULATION
	Old Method.	Second Method.
Displacement in cubic feet of space Displacement in tons of 35 cubic feet	979.139	977.187
of water to a ton	27.985	27.92
	Superficial ft	Superficial #
Area of midship section	41.08	41.08
Area of load-water line or plane at	H 00	H 00
the proposed deepest immersion Tons to one inch of immersion at line	401.12	401·12
of flotation	·9526 tons.	•955 tons.
Longitudinal distance of the centre of		
gravity of the displacement from	00.00.0	00.00.0
section 1	22.22 It.	22·22 ft.
placement below the load-water sec-		
tion	1.4812 ft.	1.4904 ft.
Relative capacities of the bodies	1.6 per cent.	1.9 per ct.
fieight of the metacentre above the	9.09 6	2.00 €
centre of gravity of displacement	0'00 IL.	9.90 It.

THIRD METHOD OF CALCULATION.

CALCULATIONS ON THE DRAUGHT OF THE VACHT OF 36 TONS USING THE CURVE OF SECTIONAL AREAS.

The load-water line AB, in the sheer plan, is divided into two equal parts at the point C, and those equal parts are again subdivided at the points D and E; at the points C, D, and E,

Ordinates.

-

thus obtained, the transverse vertical sections of the vessel' are delineated.

The length of the load-water line from the fore edge of the rabbet of the stem B, to the after edge of the rabbet of the post A, is next drawn below and parallel to the base line SF of the sheer plan; this line, FG, becomes the base line of the curve of the sectional areas. The common sections of the transverse vertical sections of C, D, and E, (which will be straight lines,) with this horizontal and longitudinal plan, are drawn from their respective points of division, H, I, and K, in half-breadth plan. The areas of these transverse vertical sections at D, C, and E, are then calculated, as before, thus :---

Area =
$$\left\{ \mathbf{A} + 4\mathbf{P} + 2\mathbf{Q} \right\} \times \frac{r}{3} = \left\{ \frac{\mathbf{A}}{2} + 2\mathbf{P} + \mathbf{Q} \right\} \times \frac{2r}{3}$$
; or,
Area = $\left\{ \mathbf{A} + 2\mathbf{P} + 3\mathbf{Q} \right\} \times \frac{3}{8}r = \left\{ \frac{\mathbf{A}}{2} + \mathbf{P} + 1.5\mathbf{Q} \right\} \times \frac{3}{4}r$.

Half Area of Transverse Vertical Section, at C, by Rule 1,

	or, $\frac{1}{2}$ Area =	$\left\{\frac{A}{2}+2P\right\}$	+ Q	$\frac{2r}{3}$.	
1st6·3 Last ·2	2d 4th	6.0	3	$\mathbf{d}4\cdot8 = \mathbf{Q}$	
2) 6.5		$8\cdot 3 = P$			
3.25	$=\frac{A}{2}$	2			
	1.1	$\overline{16.60} = 2 \mathbf{I}$			
		$3 \cdot 25 = \frac{A}{2}$			
		$4.80 = \overline{Q}$			
		A		-	
		$24.65 = \frac{11}{2}$	+2P+	Q	
		$\cdot 83 = \frac{2r}{3}$	1010		
		7395			
	1	9720			
	20	$\overline{0.4595} = \overline{\frac{A}{2}}$	+2P+	$Q \times \frac{2r}{3} = \frac{1}{2}$	area
		60-12	of	section C in	feet.
CM, or d	epth = 5.0 fee	t, whence C	$\frac{M}{4}$, or $\frac{5}{4}$	$\frac{0}{1} = 1.25 =$	r =
		2	2 × 1.25	2.5	
distance betw	veen the ordinat	tes, and $\frac{\pi}{2}$ =	3	$=\frac{1}{2}=.83$	feet.

3

Half Area of Section C, by Rule 2, or, $\frac{1}{2}$ area = $\left\{\frac{A}{2} + P + 1.5 Q\right\} \times \frac{3}{4} r$. 5.6 2d. 1st. ...6·3 $\mathbf{P}=\mathbf{0}$ 3.05 3d. Last... ·2 $\overline{8.65} = Q.$ 2)6.5 $4 \cdot 32 = \frac{1}{2} Q.$ $12.97 = 1.5 \Omega$ $\frac{3\cdot25}{12\cdot97} = \frac{A}{2} + P + 1\cdot5Q$ 16.221 7 5 = 3r = CM = 5.0 feet. $(4)\overline{81.10}$ $\frac{1}{20\cdot 275} = \frac{1}{2} \operatorname{area} = \frac{\overline{A}}{2} + P + 1\cdot 5Q \times \frac{3}{4}r.$ Half Area of the Transverse Vertical Section at E. $3d. \dots 2 \cdot 9 = Q$ 1st.5.0 2d. ...4·2 4th. ...1.7 Last... ·2 $\overline{5\cdot9} = P$ $2)\overline{5\cdot 2}$ $1\overline{1\cdot 8} = 2P$ $2 \cdot 6 = \frac{A}{2}$ $2 \cdot 9 = 0$ $\overline{17\cdot3} = \frac{A}{2} + 2P + Q$ EO, or depth = 4.2 feet, whence $\frac{\text{EO}}{4} = \frac{4 \cdot 2}{4} = 1.05 = r = \text{dis}$ tance between the ordinates, and $\frac{2r}{3} = \frac{1.05 \times 2}{3} = \frac{2.1}{3} = .7$ feet; therefore, Area = $\left\{\frac{\mathbf{A}}{2} + 2\mathbf{P} + \mathbf{Q}\right\} \times \frac{2r}{3} = 17\cdot3 \times \cdot7 = 12\cdot11 = \text{half}$ area of transverse vertical section at E. Half Area of the Transverse Vertical Section at D. $3d. \dots 1.46 = Q$ 2d. ...3.5 1st. ...5·40 4th....0.7 Last...9.2 $\overline{4\cdot 2} = P$ 2)5·6 $\overline{8\cdot4} = 2P$ $2.8 = \frac{1}{2} = 310.6$ 1.46 = Q $12.66 = \frac{A}{2} + 2P + Q$

DN, or depth = 5.8 feet, whence $\frac{DN}{4} = \frac{5 \cdot 8}{4} = 1 \cdot 45$ feet = $r = \text{distance between the ordinates, and } \frac{2r}{3} = \frac{2 \times 1 \cdot 45}{3} = \frac{2 \cdot 9}{3} = \frac{\cdot 97}{3}$ feet; therefore,

Area = $\left\{\frac{A}{2}2 + P + Q\right\} \times \frac{2r}{3} = 12.66 \times .97 = 12.28$ feet = half area of transverse vertical section at D.

Half Areas of the Transverse Vertical Sections. Foot.

of which 2.42 is set off from H as HR, 4.04 feet from I as IQ, and 2.45 feet from K as KP; the curve IRQPG, passing through the extremities P, Q, and R of the ordinates PK, QI, and RH, is the curve bounding the area of a zone, which, to the depth of 5 feet for a solid, will give in cubic feet of space the half displacement of the immersed body, or the displacement of the yacht to the line AB of proposed deepest immersion.

To measure this representative area, and from thence the solid, join the points Q, G, and I by the straight lines QG, QF, dividing the curvilinear area FRQPGF into the two triangles QGI, QFI, and the two areas GPQG, FRQF. The triangles by construction are equal, and the area of each one of them is equivalent to $\frac{GI \times QI}{2}$, or the whole area GQFIG = $\frac{GI \times QI}{2} \times 2 = GI \times QI$ or FI × IQ, FI being equal to IG, each being the half-length of the same element, the load-water line or line of deepest immersion. The areas QPGQ, QRFQ, are bounded by the curve lines QPG, QRF, which are assumed as portions of common parabolas, and under such an assumption their respective areas are equal to $\frac{2}{3}$ of the circumscribing parallelograms, or the area QPGQ = $\frac{2}{3}$ of $GQ \times x$, and the area FRQF = $\frac{2}{3}$ of FQ $\times x'$, where x and x' are the greatest perpendiculars that can be drawn from the bases QG and QF to meet the curves QPG, QRF.

DISPLACEMENT.

AB by a scale of parts = 44 feet, whence FI or IG equal $\frac{AB}{2} = \frac{44}{2}$ feet = 22 feet; ordinate QI of the medial section = 4.04 feet; and QG = FQ, being the respective hypothenuses of the equal triangles QGI, QFI, are each equal to $\sqrt{IG^2 + QI^2} = \sqrt{22^2 + 4.04^2} = \sqrt{484 + 16.32} = \sqrt{500.32} = 22.37$ feet; and x, by measurement with a scale of parts, = .6 foot, and x' also .6 foot, from which the half displacement in cubic feet of space will be obtained as follows:—

or area of the triangle QGI + area of the triangle QFI + area of the space QPGQ + area of the space FRQF = to the representative area FRQPG, which being multiplied by the assumed depth of 5 feet for the zone of half displacement gives 540.48 cubic feet of space, which divided by 35, as the number of such cubic feet that are equivalent to one ton of medium water, gives

3)540.48

7)108.09

15.44 tons for half displacement,

and that the whole weight of the body is equal to $15.54 \times 2 = 30.88$ tons = displacement to the line of proposed deepest immersion AB.

RELATIVE CAPACITIES OF THE BODIES IMMERSED UNDER THE FORE AND AFTER HALF-LENGTHS OF THE LOAD-WATER LINE, AS GIVEN BY THE DELINEATED CURVE OF SECTIONAL AREAS.

The triangles QGI and QFI being equal, the relative capacities of the fore and after-bodies will be determined by the proportion that the area QPGI bears to the area QRFI; and as these areas involve two equal terms, or that the base FQ = the base QG, it follows, that the relation of these areas to each other will be expressed by the proportion that the perpendiculars x and x' bear to each other. In the example given, the fore and after-bodies, or the displacements under the fore and after half-lengths of the loadwater AB, are equal; as the perpendiculars x and x' taken from the diagram, on a scale of equal parts, are each $\cdot 6$ of a foot.

The area of the midship section is denoted relatively by the medial ordinate of the curve of sections QI, and the full amount of it is obtained by multiplying the function QI by the depth of the zone M. In the example:

M = 5; QI = 4.04; then half area of medial section = 4.04×5

and the second s

Area of midship section.....20.20

5

TABLES OF LOGARITHMS.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
1000	000000		1060	025306		1120	049218	0	1180	071882	
1	000434	43	1	025715	41	1	049606	89	1	072250	37
_2	000868	86	2	026124	82	2	049993	77	2	072617	73
3	001301	130	3	026533	122	3	050380	116	3	072985	110
4	001734	173	. 4	026942	163	. 4	050766	104	4	073352	14/
5	002166	216	5	027350	204	0 6	051152	198	Ð	074095	100
6	002598	209	0 7	02//0/	240	7	051094	204	7	074451	956
	003029	946	8	020104	200	8	059209	209	8	074901	293
0	003400	280	a a	028071	367	9	052694	347	9	075182	330
9	005091	000	1070	020310	001	1120	052079	011	1100	075547	000
1010	004321	12	1070	029304	40	1100	053463	28	1150	675019	36
	004/01	40	9	029109	Q1	9	053846	77	9	076914	78
2	005600	128	3	030600	121	3	054230	115	3	076640	109
	006038	171	4	031004	162	4	054613	153	4	077004	145
5	006166	214	5	031408	202	5	054996	191	5	077368	181
6	006894	257	6	031812	242	6	055378	230	6	077731	218
7	007321	300	7	032216	283	7	055760	268	7	078094	254
8	007748	343	8	032619	323	8	056142	306	8	078457	290
9	008174	385	9	033021	364	9	056524	345	9	078819	327
1020	008600		1080	033424		1140	056905		1200	079181	
1	009026	42	1	033826	40	1	057286	38	1	079543	36
	009451	85	2	034227	80.	2	057666	76	2	079904	72
3	009876	127	3	034628	120	- 3	058046	114	3	080266	108
4	010300	170	4	035029	160	4	058426	152	4	080626	144
5	010724	212	5	035430	200	5	058805	190	.5	080987	180
6	011147	254	6	035830	240	6	059185	228	6	081347	216
7	011570	297	7	036229	280	7	059563	266	7	081707	252
8	011993	339	8	036629	321	8	059942	304	8	082067	288
9	012415	382	9	037028	361	9	060320	342	9	082426	324
1030	012837		1090	037426		1150	060698		1210	082785	
1	013259	42	1	037825	40	1	061075	38	1	083144	36
2	013680	84	2	038223	79		061452	110		083503	107
3	014100	120	0	038620	119	0	061829	110	0	083861	107
4	014020	100	4 5	039017	109	4 5	062200	100	4 5	084219	145
) 0 6	014940	210	6	039414	190	6	062064	996	6	084024	914
7	015779	294	7	040907	200		063333	263	7	085901	214
8	016197	336	8	040602	318	8	063709	301	8	085647	286
9	016615	378	9	040998	357	9	064083	338	9	086004	322
1040	017039		1100	041393	1	1160	064458		1220	086360	
1010	017451	42	1	041787	39	1	064832	37	1	086716	35
2	017868	8 83		042182	79	2	065206	75	$\overline{2}$	087071	71
3	018284	125	3	042575	118	3	065580	112	3	087426	106
4	018700) 166	4	042969	157	4	065953	149	4	087781	142
5	019116	3 208	5	043362	196	5	066326	186	5	088136	177
6	019532	2 250	6	043755	236	6	066699	224	6	088490	213
7	019947	291	7	044148	275	7	067071	261	7	088845	248
8	020361	833	8	044540	314	8	067443	298	.8	089198	284
6	020778	5 374	9	044931	354	9	067814	336	9	089552	319
1050	021189)	1110	045323		1170	068186		1230	089905	1
1	021603	3 41		045714	39	1	068557	37		090258	35
2	022016	5 82	2	046105	78		068928	74		090611	70
	022428	5 124		046495	117	8	069298	111	3	090963	106
	02284	100	4	046885	156	4	059668	148	4	091315	141
	02325	4 200		0412/0	190		070038	100	D C	002010	911
	023004	\$ 989		012059	404	07	070407	222	07	092018	246
5	02448	3 330		018449	319		071145	296	8	092721	282
	02489	3 371	ļ	048830	351	9	071514	333	9	093071	317
1	1-2-00	1	1	0.0000	1.001	11	0.1011	1000	11	1	1

32

.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
1940	093422		1300	113943	1	1360	133539		1420	152288	
1 1	093772	35	1	114277	33	1000	133858	32	1	152594	30
2	094122	70	2	114611	67	$\overline{2}$	134177	64	$\overline{2}$	152900	61
3	094471	105	3	114944	100	-3	134496	96	3	153205	91
4	094820	140	4	115278	133	4	134814	127	4	153510	122
5	095169	175	5	115610	167	5	135133	159	5	153815	152
6	095518	210	6	115943	200'	6	135451	191	6	154119	183
7	095866	245	7	116276	233	7	135768	223	7	154424	213
8	096215	280	8	116608	267	8	136086	255	8	154728	244
9	096562	315	9	116940	300	9	136403	287	9	155032	274
1250	096910		1310	117271		1370	136721		1430	155336	
1	097257	35	1	117603	33	1	137037	32	1	155640	30
2	097604	69	2	117934	66	2	137354	63	2	155943	60
3	097951	104	3	118265	99	3	137670	94	8	156246	91
4	098297	138	4	118595	132	4	137987	126	4	156549	121
5	098014	173	Ð	110920	100	D C	138303	158	5	156852	151
0	098990	208	0	119200	190	0	138618	189	0	15/104	181
	099335	242	0	119000	231		138934	221		157750	211
0	100026	211	0	119910	204		139249	202	0	150001	242
9	100020	011	1000	100554	201	1000	100000	204	9	150001	212
1260	100370	94	1320	1200/4	0.0	1380	139879	01	1440	158362	20
1	100/10	34 60	1	120903	00 60		140194	31	1	150065	30
2 9	101009	109	2	121201	00	· 2	140000	03	2	150966	00
0	101400	100	0	121000	121	0	140022	194	0	159200	190
5	102000	179	5	121000	164	5	141150	157	45	150868	150
6	102030	206	6	122543	197	6	141763	188	6	160168	180
7	102777	200	7	122871	230	7	142076	219	7	160468	210
8	103119	275	8	123198	262	8	142389	251	8	160769	240
9	103462	309	9	123525	295	9	142702	282	9	161068	270
1270	103804		1330	123852		1390	143015		1450	161368	
1	104146	34	1	124178	33	1	143327	31	1	161667	30
2	104487	68	2	124504	65	2	143639	62	$\overline{2}$	161967	60
3	104828	102	3	124830	98	3	143951	93	3	162266	89
4	105169	136	4	125156	130	4	144263	125	4	162564	119
5	105510	170	5	125481	163	5	144574	156	5	162863	149
6	105851	204	6	125806	195	6	144885	187	6	163161	179
7	106191	238	7	126131	228	7	145196	218	7	163460	209
8	106531	272	8	126456	260	8	145507	249	8	163757	239
9	106870	306	9	126781	293	9	145818	280	9	164055	269
1280	107210		1340	127105		1400	146128		1460	164353	
1	107549	34		127429	32		146438	31	1	164650	30
2	107888	67	2	127752	65	2	146748	62	2	164947	59
3	108227	101	3	128076	91	3	147058	93	3	105244	89
4	198000	130	4	128599	129	4	14/30/	124	4	100041	119
0	100941	109	0	120/22	101	6	147095	100	0	166194	140
7	109241	400	7	120040	996	7	141900	917	7	166430	207
	109916	270	8	129690	258	8	148603	248	8	166726	237
9	110253	304	9	130012	291	9	148911	279	9	167022	267
1900	110500	001	1850	130224		1410	149910		1470	167317	
1200	110926	34	1000	130655	32	1 1	149527	31	1 1	167613	29
9	111262	67	- 2	180977	64	2	149835	61	2	167908	59
8	111598	101	3	131298	96	3	150142	92	3	168203	88
4	111934	134	4	131619	128	4	150449	123	4	168497	118
5	112270	168	5	131939	160	5	150756	154	5	168792	147
6	112605	201	6	132260	192	6	151063	184	6	169086	177
7	112940	235	7	132580	224	7	151370	215	7	169380	206
8	113275	268	8	132900	256	8	151676	246	8	169674	236
9	113609	302	9	133219	288	9	151982	277	9	169968	265

.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
1480	170262		1540	187521		1600	204120		1660	220108	
1	170555	29	1	187803	28	1	204391	27	1	220370	26
$\overline{2}$	170848	58	2	188084	56	2	204662	54	2	220631	52
3	171141	88	3	188366	84	3	204933	81	3	220892	78
4	171434	117	4	188647	113	4	205204	108	4	221153	104
5	171726	146	5	188928	141	5	205475	135	5	221414	130
6	172019	175	6	189209	169	6	205745	162	6	221675	157
7.	172311	204	7	189490	197	. 7	206016	189	7	221936	183
8	172608	234	8	189771	225	8	206286	216	8	222196	209
9	172895	263	9	190051	253	9	206556	243	9	222456	235
1490	173186		1550	190332		1610	206826		1670	222716	
1	173478	29	1	190612	28	1	207095	27	1	222976	26
2	173769	58	$\overline{2}$	190892	56	2	207365	54	2	223236	52
3	174060	87	3	191171	84	/ 3	207634	81	3	223496	78
4	174351	116	4	191451	112	4	207903	108	4	223755	104
5	174641	145	5	191730	140	5	208172	135	5	224015	130
, 6	174932	175	6	192010	168	6	208441	162	6	224274	156
7	175222	204	7	192289	196	7	208710	188	7	224533	182
8	175512	233	8	192567	224	8	208978	215	8	224792	208
9	175802	261	9	192846	252	9	209247	241	9	225051	234
1500	176091		1560	193125		1620	209515		1680	225309	
1	176381	29	1	193403	28	1	209783	27	1	225568	26
2	176670	58	$\hat{2}$	193681	56	$\hat{2}$	210051	54	2	225826	$\overline{52}$
3	176959	86	3	193959	83	3	210318	80	3	226084	77
4	177248	115	4	194237	111	4	210586	107	4	226342	103
5	177536	144	5	194514	139	5	210853	134	5	226600	129
6	177825	173	6	194792	166	6	211120	161	6	226858	155
.7	178113	202	7	195069	194	7	211388	187	7	227115	181
8	178401	231	8	195346	222	8	211654	214	8	227372	206
9	178689	259	9	195623	250	9	211921	240	9	227630	232
1510	178977		1570	195900		1630	212188		1690	227887	
1	179264	29	1	196176	27	1	212454	27	1	228144	26
2	179552	57	2	196452	55	2	212720	53	2	228400	51
3	179839	86	3	196729	83	3	212986	80	3	228657	77
4	180126	115	4	197005	110	4	213252	106	4	228918	102
5	180413	144	5	197281	138	5	213518	133	5	229170	128
6	180699	172	6	197556	166	6	213783	159	6	229426	154
7	180986	201	7	197832	193	7	214049	186	7	229682	179
8	181272	230	8	198107	221	8	214314	212	8	229938	205
9	181558	258	9	198382	248	9	214579	239	9	230193	231
1520	181844		1580	198657		1640	214844		1700	230449	
1	182129	28	1	198932	27	1	215109	26	1	230704	25
2	182415	57	2	199206	55	2	215373	53	2	230960	51
3	182700	86	3	199481	82	3	215638	79	3	231215	76
4	182985	114	4	199755	110	4	215902	106	4	231470	102
5	183270	143	5	200029	137	5	216166	132	5	231724	127
6	183554	171	6	200303	164	6	216430	158	6	231979	153
7	183839	200	7	200577	192	7	216694	185	7	232233	178
8	184123	228	8	200850	219	8	216957	211	8	232488	204
9	184407	256	9	201124	247	9	217221	238	9	232742	229
1530	184691		1590	201397		1650	217484		1710	232996	
1	184975	28	1	201670	27	1	217747	26	1	233250	25
2	185259	57	2	201943	54	2	218010	52	2	233504	51
3	185542	85	3	202216	82	3	218278	79	8	233757	76
4	185825	113	4	202488	109	4	218535	105	4	234011	101
5	186108	142	5	202761	136	5	218798	131	5	234264	127
6	186391	170	6	203033	163	6	219060	157	6	234517	152
7	186674	198	7	203305	191	7	219322	183	7	234770	177
8	186956	227	8	203577	218	8	219584	210	8	235023	202
9	187239	255	9	203848	245	9	219846	236	9	235276	228

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
1720	235528		1780	250420		1840	264818		1900	278754	
1	235781	25	1	250664	24	1	265054	23	1	278982	23
2	236033	50	2	250908	49	2	265290	47	2	279210	45
3	236285	76	3	251151	73	3	265525	70	3	279439	68
4	236537	101	4	251395	97	4	265761	94	4	279667	91
5	236789	126	5	251638	121	5	265996	117	5	279895	114
6	237041	151	6	251881	146	6	266232	141	6	280123	137
7	237292	176	7	252125	171	7	266467	164	7	280351	160
8	237544	202	8	252367	195	8	266702	188	8	280578	182
. 9	237795	227	9	252610	219	9	266937	211	9	280806	205
1730	238046		1790	252853		1850	267172		1910	281033	
1	238297	25	1	253096	24	1	267406	23	1	281261	23
2	238548	50	2	253338	48	2	267641	47	2	281488	45
3	238799	75	3	253580	73	3	267875	70	3	281715	68
4	239049	100	4	253822	97	4	268110	94	4	281942	91
5	239299	125	5	254064	121	5	268344	117	5	282169	113
6	239550	150	6	254306	145	6	268578	141	6	282395	136
7	239800	175	7	254548	170	7	268812	164	7	282622	159
8	240050	200	8	254790	194	8	269046	188	3	282849	181
9	240300	225	9	255031	218	- 9	269279	211	9	283075	204
1740	240549		1800	255273		1860	269513		1920	283301	
1	240799	25	1	255514	24	1	269746	23	1	283527	23
2	241048	50	$\frac{1}{2}$	255755	48	$\overline{2}$	269980	47	$\hat{2}$	283752	45
3	241297	75	3	255996	72	3	270213	70	3	283979	68
4	241546	100	4	256236	96	4	270446	93	4	284205	90
5	241795	124	5	256477	120	5	270679	116	5	284431	113
6	242044	149	6	256718	144	6	270912	140	6	284656	135
7	242293	174	7	256958	168	7	271144	163	7	284882	158
8	242541	199	8	257198	192	8	271377	186	8	285107	180
9	242790	223	9	257439	216	9	271609	210	9	285332	203
1750	943038		1810	257679		1870	271842		1930	985557	
1100	243286	25	1010	257918	24	1010	279074	23	1000	200001	0.0
2	243534	50	2	258158	48	2	272306	46	2	286007	45
3	243782	74	3	258398	72	3	272538	70	3	286239	67
4	244030	90	4	258637	96	· 4	272776	93	4	286456	80
5	244000	194	5	258877	120	5	273001	116	5	286681	119
6	244524	149	6	259116	144	6	273233	139	6	286905	134
7	244772	174	7	259355	167	7	273464	162	7	287130	157
8	245019	198	8	259594	192	8	273696	186	8	287354	179
ğ	245266	222	ğ	259833	215	ğ	273927	209	ğ	287578	202
1700	045519		1900	000071		1990	074150		1040	007000	202
1100	945750	95	1020	2000/1	24	1000	274220	92	1 340	201002	00
1	946006	40	1 0	200010	48	9	974690	46	9	200020	144
2	240000	43	4	200040	71	3	274020	60	2	400449	67
1	046400	14	1	200101	95	4	274000	0.0	1	200410	80
5	240400	192	5	201020	119	5	275001	115	5	200030	119
6	240140	149	6	261501	143	6	975549	138	6	200320	194
7	947996	172	7	261728	167	7	275779	161	7	280366	156
e e	247499	107		261976	191	-8	276002	184	8	289580	178
0	247798	291	a	262214	214	9	276929	207	a	289819	201
1550	047070		1000	000451		1000	070400	-0.	1050	200012	201
1110	24/9/3	05	1000	202401	04	1090	076601	02	1900	290030	60
1	240219	20		202000	24	1	076001	40	1	290201	44
2	040404	49	20	202920	41	2	077151	60	20	290400	67
3	240/09	14	0	200102	05	O A	077900	09	0	290702	01
4	240904	100	4	200399	110	4	277600	115	4	290920	111
0	249198	147	0	200000	110	0	077090	128	0	29114/	122
- 7	040207	170	07	200010	142	07	979067	161	0 7	291009	156
6	940020	100	0	201109	100	0	278906	182	0	201001	178
0	250170	200	0	201010	919	~ 0	978595	206	0	201010	200
9	200110	440	1 3	401004	410	3	210040	400	9	202004	400

,

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	
1960	292256		2020	805851		2080	318063		2140	330414		
1	292478	22	1	305566	21	1	318272	21	1	330617	20	
2	292699	44	2	305781	43	$\hat{2}$	318481	42	2	330819	40	١.
3	292920	66	3	305996	64	3	318689	63	3	331022	61	
4	293141	88	4	306211	86	4	318898	83	4	331225	81	
5	293363	110	5	306425	107	5	319106	104	5	331427	101	
6	293583	133	6	306639	129	6	319314	125	6	331630	121	
7	293804	155	7	306854	150	7	319522	146	7	331832	141	
8	294025	177	8	307068	172	8	319730	167	8	332034	162	
9	294246	199	9	307282	193	9	319938	188	9	332236	182	
1970	294466		2030	307496		2090	320146		2150	339438		ł.
1010	294687	22	1	307710	21	1	320354	21	1	332640	20	
2	294907	44	$\overline{2}$	307924	42	2	320562	41	2	332842	40	
3	295127	66	3	308137	64	3	320769	62	3	333044	60	
4	295347	88	4	308351	85	4	320977	83	4	333246	81	
5	295567	110	5	308564	107	5	321184	104	5	333447	101	ĺ.
6	295787	132	6	308778	128	6	321391	125	6	333649	121	
7	296007	154	7	308991	149	7	321598	145	7	333850	141	
8	296226	176	8	309204	171	8	321805	166	8	334051	161	
9	296446	198	9	309417	192	9	322012	187	9	334253	181	
1980	206665		2040	209620		9100	200010	101	9160	224454	101	
1000	206884	99	1	300843	- 21	1 1	200406	91	1	224655	90	
9	200004	44	2	310056	42	2	200822		9	224956	40	
2	207104	66	3	310968	64	2	22000	41	3	225056	40	
4	207542	88	4	310481	85	4	392046	82	4	335957	80	
5	207761	109	5	310693	106	5	292959	102	5	325458	100	
6	207070	131	B	310000	197	6	2020404	100	6	1335658	100	
7	208198	153	7	211118	148	7	222665	144	7	225850	140	
8	208110	175	8	811330	170	8	393871	165	8	226059	140	
G G	298635	197	9	311542	191	9	324077	186	9	336260	180	
1000	000052	101	2050	911754	101	9110	001000	100	9170	000200	100	
1 1990	298000	99	2000	911066	01	2110	324282	01	2170	330400	00	l
1	299071	44	1 0	919177	40	1	024400	21	1	000000	20	l
	299209	65	2	919980	44	20	324094	41	2 9	000000	40	L
0	299001	87	4	319600	00 94	U A	995105	02	1	997960	00	
1 5	200140	100	5	310810	106	5	905910	109	5	297450	100	
6	200160	131	6	812012	197	6	225516	100	6	227650	100	
7	200378	158	7	312924	148	7	205701	140	7	227858	140	
8	200595	174	8	313445	160	8	225026	164	8	228058	160	ļ
. 0	300813	196	ğ	818656	190	G G	296121	185	a a	338957	180	
0000	201020	100	2060	010000	100	0100	020101	100	0100	000450	100	
2000	301030		2000	010007	01	2120	320330	00	2100	000050	00	
1	001441	42	1 0	014070	21		520941	20	1	0000055	20	
2	001404	40	2	014209	42	4	020740	41	4	000000	40	
0	001001	00	1	014409	03	0	020900	01	0	220052	00	
4	201090	100	5	214090	105	4 5	027100	102	4 5	220451	100	
0	002114	190	6	915190	100	6	007500	102	6	220650	110	
0 7	200547	150	7	215246	120	7	007767	140	7	220840	119	
0	202041	172	8	915550	141	0	021101	140	8	340047	150	
0	202020	105	9	315760	100	0	000176	194	0	240946	170	
9	002300	150	0070	015050	109	0100	020170	104	0100	040440	119	
2010	303196		2070	815970		2130	328380	00	2190	340444	-	l
	303412	22	1	010180	21	1	328583	20	1	340642	20	
2	803628	43		316390	42	2	328787	41	2	340841	40	
3	303844	65	8	316599	63	3	328991	61	3	341039	59	
4	304059	86	4	310809	84	4	329194	81	4	341237	19	
5	304275	108	5	317018	105	5	329398	102	5	341435	99	1
6	304490	129	6	017227	126	6	329601	122	6	341632	119	i
1 7	304706	101		01/436	147	1	329805	142		341830	139	
8	205120	104	8	017040	108	8	330008	103	8	042028	108	
9	909190	134	9	01/004	199	9	000211	100	9	044220	1/8	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop Part	i.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2200	342423		2260	354108		2320	365488		2380	376577	,	
2 2 3 2 3 6 3 3 5 3 5 3 5 3 5 3 5 3 5 3 6 3 7 1 4 3 5 3 6 3 3 7 5 3 6 3 7 7 4 3 6 3 7 7 4 3 6 3 7 7 7 3 7 7 7 3 7 7 3 7 7 3 7 3 3 6 3 3 6 3	1	342620	20	1	354301	19	1	365675	19	1	376759	1 18	;
3 343014 50 3 354685 58 3 366049 56 3 377124 55 4 343400 99 5 3556068 96 5 366422 93 5 377488 10 7 343802 138 7 356524 134 7 366796 11 6 377670 100 7 343802 138 7 3565643 154 8 366983 150 8 378314 164 2210 344492 2270 356026 2330 367356 2300 378398 1 378561 36 2 344785 39 2 367607 7 3 378915 56 3 378906 91 365599 57 3 367915 5 378906 91 364570 18 5369891 95 5 538287 93 5 379487 109 7 379468 177 15 6 3687172 17 379687 16 3899772 56	2	342817	39	2	354493	38	2	365862	37	2	376942	36	;
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	343014	59	3	354685	58	3	366049	56	3	377124	55	,
5 43490 9 99 5 5 85068 96 5 3 6423 93 5 877488 10 6 34560 118 6 355200 115 6 366610 112 6 377670 109 7 343802 138 7 355452 134 7 367766 131 7 377852 127 8 34899 158 8 355643 154 8 36698 150 8 378034 146 9 344196 178 9 35584 173 9 367169 168 9 378308 1 2 344785 30 2 2270 356026 2330 367356 2309 378308 1 2 344785 30 2 356599 57 3 367715 56 3 378043 55 4 361718 7 8 4 356790 76 4 368107 15 4 379124 73 5 345874 98 5 356981 95 5 3 38287 98 5 378948 55 344981 59 8 3 256599 57 3 367715 56 3 378948 55 345676 118 6 357172 115 6 368473 112 6 379487 109 7 35766 137 7 357663 134 7 368569 10 7 3 3879048 107 7 35766 137 7 357663 134 7 368569 10 7 3 389030 164 9 345744 172 9 357744 172 9 369040 107 9 380030 164 2220 346353 2280 357935 2340 369216 2400 380211 1 346649 19 1 365125 19 1 369401 19 1 380392 18 346939 58 3 358506 57 3 369772 56 3 380772 56 380774 172 9 357744 139 3 5 381115 91 6 347525 117 6 356966 152 8 370688 147 9 380034 164 234674 130 2 358316 82 2360 3771 2 880573 36 346939 58 3 358506 57 3 369772 56 3 380774 55 347330 97 5 358886 95 5 370143 93 5 381115 91 6 347525 117 6 350466 171 9 370548 147 127 8 347015 156 18 8 350456 152 8 370688 148 8 381656 145 9 348110 175 9 359464 171 9 370548 147 18 2440 882077 1 3186092 19 1 371253 18 1 382167 18 2410 882077 1 380492 114 6 372175 111 6 382077 18 2480 84805 2290 359835 2350 371068 148 8 381656 145 349278 97 5 360783 95 5 37199 19 2 5 382917 90 6 349472 117 6 360473 91 7 9337648 120 7 338277 126 8 349860 156 8 3 31630 152 8 3734187 74 4 388957 54 349268 78 4 360593 77 9 3374847 74 4 384353 77 2400 36127 7 3 31160 13 373	4	343212	79	4	354876	77	4	366236	75	4	377306	73	
	- 5	343409	99	5	355068	96	5	366423	93	5	377488	91	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	343606	118	6	355260	115	6	366610	112	6	377670	109	1
	7	343802	138	7	355452	134	7	366796	131	1 7	377852	127	
9 344196 178 9 367169 168 9 378216 164 2210 344589 2270 356026 2330 367366 2390 378398 1 344589 20 1 356217 19 1 367542 19 1 378580 18 2 344785 39 2 356490 57 3 367915 56 3 378948 55 3 44981 59 3 356599 57 3 8679175 4 378948 57 378966 11 6 3797868 127 5 345770 118 6 357741 172 15 368844 149 8 379848 127 8 345692 157 8 35755 2340 369216 2400 380211 1 346593 2280 357935 2340 369617 3 369774 55 3446730	8	343999	158	8	355643	154	8	366983	150	8	378034	146	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	344196	178	9	355834	173	9	367169	168	9	378216	164	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2210	344392		2270	356026		2330	367356		2390	378398		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	344589	20	1	356217	19	1	367542	19	1	378580	1 18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	344785	39	2	356408	38	. 2	367729	37	$\hat{2}$	378761	36	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 3	344981	59	3	356599	57	3	367915	56	3	378943	55	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	345178	78	4	356790	76	4	368101	75	4	379124	73	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	345374	98	5	356981	95	5	368287	93	5	379306	91	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	345570	118	6	357172	115	6	368473	112	6	379487	109	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	345766	137	7	357363	134	7	368659	130	7	379668	127	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	345962	157	8	357554	153	8	368844	149	8	379849	146	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	346157	176	9	357744	172	9	369030	167	9	380030	164	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2220	346353		2280	357935		2340	369216		2400	380211		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	346549	19	1	358125	19	1	369401	19	1	380392	18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	346744	39	$\overline{2}$	358316	38	2	369587	37	2	380573	36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	346939	58	3	358506	-57	3	369772	56	3	380754	55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	347135	78	4	358696	76	4	369958	74	4	380934	73	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	347330	97	5	358886	95	5	370143	93	5	381115	91	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	347525	117	6	359076	114	6	370328	111	6	381296	109	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~ 7	347720	137	7	359266	133	7	370513	130	7	381476	127	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	347915	156	8	359456	152	8	370698	148	8	381656	145	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	348110	175	9	359646	171	9	370883	167	9	381837	163	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2230	848305		2290	359835		2350	371068		2410	382017		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	848500	19	1	360025	19	1	371253	18	1	382197	18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	848694	39	2	360215	38	$\overline{2}$	371437	37	$\frac{1}{2}$	382377	36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	348889	58	3	360404	57	3	371622	55	3	382557	54	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	349083	78	4	360593	76	4	371806	74	4	382737	72	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	349278	97	5	360783	95	5	371991	92	5	382917	90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	349472	117	6	360972	114	6	372175	111	6	383097	108	I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	349666	137	7	361161	133	7	372360	129	7	383277	126	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	349860	156	8	361350	152	8	372544	148	8	383456	144	ł
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	350054	175	9	361539	171	9	372728	166	9	383636	162	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2240	350248		2300	361728		2360	372912		2420	383815		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	350442	19	1	361917	19	1	373096	18	1	383995	18	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	350636	39	2	362105	38	2	373280	37	$\overline{2}$	384174	36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	350829	58	3	362294	56	3	373464	55	3	384353	54	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	351023	77	4	362482	75	4	373647	74	.4	384533	72	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	351216	97	5	362671	94	5	373831	92	5	384712	90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	351410	116	6	362859	113	6	374015	110	6	384891	108	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	351603	135	7	363048	132	7	374198	129	7	385070	126	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	351796	155	8	363236	151	8	374382	147	8	385249	144	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	351989	174	9	363424	170	9	374565	166	9	385428	162	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2250	352182		2310	363612		2370	374748		2430	385606		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	352375	19	1	363800	19	1	374932	18	1	385785	18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{2}$	352568	38	2	363988	37	2	375115	37	2	385964	35	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	352761	58	3	364176	56	3	375298	55	3	386142	53	Ĺ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	352954	77	4	364363	75	4	375481	73	4	386321	71	Ĺ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	353147	96	5	364551	94	5	375664	92	5	386499	89	Ĺ
7 353532 134 7 364926 131 7 376029 128 7 386856 125 8 353724 154 8 365113 150 8 376212 147 8 387034 143 9 353916 173 9 365801 166 6 876894 145 6 987912 147	6	353339	115	6	364739	112	6	375846	110	6	386677	107	Ĺ
8 353724 154 8 365113 150 8 376212 147 8 387034 143 9 353916 173 9 365301 169 8 376294 145 6 887032 147	7	353532	134	7	364926	131	7	376029	128	7	386856	125	į.
9 353916 173 9 365301 169 9 376894 165 9 287919 161	8	353724	154	8	365113	150	8	376212	147	8	387034	143	í.
	9	353916	173	9	365301	169	9	376394	165	. 9	387212	161	
No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.		
--------	---------	----------------	-----------	--------	----------------	------	--------	----------------	----------	--------	----------------		
9440	387390		2500	397940		2560	408940		2620	418301			
2440	387568	18	2000	398114	17	1	408410	17	1	418467	17		
2	387746	36	$\hat{2}$	398287	35	2	408579	34	2	418633	33		
3	387923	53	3	398461	53	3	408749	51	3	418798	50		
4	388101	71	4	398634	69	4	408918	68	4	418964	66		
5	388279	89	ŝ	398808	87	5	409087	85	*5	419129	83		
6	388456	107	6	398981	104	6	409257	102	6	419295	99		
7	388634	125	7	399154	121	7	409426	119	7	419460	116		
8	388811	142	8	399327	138	8	409595	136	8	419625	132		
9	388989	160	9	399501	156	9	409764	153	9	419791	149		
9450	220166	100	2510	200674		2570	400033		2630	419956			
2400	380242	18	2010	399847	17	1	410102	17	2000	420121	16		
9	280590	26	9	400020	35	2	410271	34	2	420286	33		
2	380607	53	3	400192	53	3	410440	50	3	420451	49		
4	389875	71	4	400365	69	4	410608	67	4	420616	66		
5	390051	89	5	400538	87	5	410777	84	5	420781	82		
6	390228	107	6	400711	104	6	410946	101	- 6	420945	99		
7	390405	125	7	400883	121	7	411114	118	7	421110	115		
8	390582	142	8	401056	138	8	411283	135	8	421275	132		
9	390759	160	ğ	401228	156	9	411451	152	9	421439	148		
9460	200025	100	2590	101400	100	0590	411690	102	9640	191604			
2400	201110	10	2520	401400	17	2000	411020	17	2040	421004	16		
1	091114	10	1	401010	- 24	1	411/00	11	1	421700	10		
4	201404	50	2	401740	54	4	411900	50	. 4	421900	10		
0	201641	00	0	401917	80	0	412124	00	0	422097	49		
4 5	201011	00	4	402009	09	. 4	412292	01	1 4 K	444401	89		
0	201002	100	6	402201	102	0	412400	101	0	422420	04		
7	909160	100	. 7	402400	100	- 07	412020	110	7	422090	115		
	200245	140	0	402000	120	0	412790	195	6	422104	129		
0	9092040	150	0	402777	150	0	412904	150	0	422910	149		
0.170	002021	100	0700	402949	100	3	410104	104	9	425062	140		
2470	392697	10	2530	403120	1.7	2590	413300	1	2650	423246	10		
1	392873	18	1	403292	17	1	413467	17	1	423410	10		
2	393048	50	2	403464	34		413635	33		423573	33		
0	393224	00	0	403035	02	3	413802	50	3	423/3/	49		
4	000575	00	4 5	400007	09	4	413970	01	4	423001	00		
6	0900751	100	0	403910	102	0	414107	1 84	0	424004	00		
7	202096	100	7	404145	100	0 7	414000	1117	0 7	424220	114		
	20/101	1/1	e e	404020	120	6	414472	111		424094	114		
0	204976	159	0	404492	154	0	414059	151	0	424000	147		
0.400	004470	100	0540	404000	104	9	414000	101	9	424/10	141		
2480	394452	1 1 1	2540	404834	1.7	2600	414973		2660	424882	10		
1	394027	17	1	405005	17		415140	17	1	425045	16		
	004077	50		405175	34	2	415307	33	2	425208	33		
3	094911	00	3	405515	16, 1	3	4104/4	50	3	420371	49		
4	090102	07	4	400017	08	4	410641	67	4	420534	00		
0	090020	104	O c	400088	100	0	415074	84	5	420697	81		
0 7	205670	104	0 7	400000	102	0	4109/4	101	6 7	420860	98		
6	205050	122	0	406029	119		410141	111		420023	114		
0	306095	157	. 0	400199	150	8	410308	154	8	420180	130		
9400	000100	191	0000	400070	103	9	4104/4	1190	9	420349	147		
2490	396199		2550	406540		2610	416640	1	2670	426511	1		
1	396374	17		406710	17	1	416807	17	1	426674	16		
2	396548	35	2	406881	34	2	416973	33	2	426836	33		
3	396722	53	3	407051	51	3	417139	50	3	426999	49		
4	396896	70	4	407221	68	4	417306	66	4	427161	65		
5	397070	87	1 5	407391	85	5	417472	83	5	427324	81		
6	39/245	104	<u>6</u>	407561	102	6	417638	100	6	427486	98		
0	097418	122	7	407731	119	7	417804	116	7	427648	114		
8	207760	139	8	407900	130	8	41/9/0	133	8	427811	130		
9	1991100	1107	9	408070	153	9	418135	149	9	427973	147		

* 9

.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
2680	428185		2740	437751		2800	447158		2860	456366	
1	428297	16	1	437909	16	1	447313	15	1	456518	15
2	428459	32	2	438067	32	2	447468	31	2	456670	30
3	428621	48	3	438226	47	3	447623	46	3	456821	46
4	428782	05	4	438384	63	4	447778	62	4	456973	61
5	428944	81	5	438542	79	5	447933	77	5	457125	76
6	429106	97	- 6	438700	95	6	448088	93	6	457276	91
7	429268	113	7	438859	111	7	448242	108	7	457428	106
8	429429	129	8	439017	127	8	448397	124	8	457579	122
9	429591	145	9	439175	143	9	448552	139	9	457730	137
2690	429752	1	2750	439333		2810	448706		2870	457882	
1	429914	16	1	439491	16	1	448861	15	1	458033	15
2	430075	32	2	439648	32	2	449015	31	2	458184	30
3	430236	48	3	439806	47	3	449170	46	3	458336	45
4	430398	65	4	439964	63	4	449324	62	4	458487	61
5	430559	81	5	440122	79	5	449478	77	5	458638	76
6	430720	97	6	440279	95	6	449633	92	6	458789	91
7	430881	113	7	440437	111	7	449787	108	7	458940	106
8	431042	129	8	440594	126	8	449941	123	8	459091	121
9	431203	145	9	440752	142	9	450095	139	9	459242	136
2700	431364	_	2760	440909	-	2820	450249		2880	459392	
1	431525	16	1	441066	16	1	450403	15	1	459543	15
2	431685	32	$\overline{2}$	441224	31	2	450557	31	$\hat{2}$	459694	30
3	431846	48	. 3	441381	47	3	450711	46	3	459845	45
4	432007	64	4	441538	63	4	450865	62	4	459995	61
5	432167	80	5	441695	78	5	451018	77	5	460146	76
6	432328	96	6	441852	94	6	451172	92	6	460296	91
7	432488	112	7	442009	110	- 7	451326	108	7	460447	106
8	432649	128	8	442166	126	8	451479	128	8	460597	121
9	432809	144	9	442323	141	9	451633	139	9	460747	136
2710	432969		2770	442480		2830	451786	1	2890	460898	
1	433129	16	1	442636	16	1	451940	15	1	461048	15
2	433290	32	2	442793	31	2	452093	31	2	461198	30
3	433450	48	3	442950	47	3	452247	46	3	461348	45
4	433610	64	4	443106	63	4	452400	61	4	461498	60
5	433770	80	5	443263	78	5	452553	77	5	461649	75
6	433930	96	6	443419	94	6	452706	92	6	461799	90
7	434090	112	7	443576	110	7	452859	107	7	461948	105
8	434249	128	8	443732	126	8	453012	123	8	462098	120
9	434409	144	9	443888	141	9	453165	138	9	462248	135
2720	434569		2780	444045		2840	453318	-	2900	462398	
1	434728	16	1	444201	16	1	453471	15	1	462548	15
2	434888	82	2	444357	31	2	453624	31	2	462697	30
3	435048	48	3	444513	47	- 3	453777	46	3	462847	45
4	435207	64	4	444669	62	4	453930	61	4	462997	60
5	435366	80	5	444825	78	5	454082	77	5	463146	75
6	435526	96	6	444981	94	6	454235	92	6	463296	90
7	435685	112	7	445137	109	7	454387	107	7	463445	105
8	435844	128	8	445293	125	8	454540	123	8	463594	120
9	436003	144	9	445448	140	9	454692	138	9	463744	135
2730	436163		2790	445604		2850	454845	1	2910	463893	
* 1	436322	16	1	445760	16	1	454997	15	1	464042	15
2	436481	32	2	445915	31	2	455149	30	2	464191	30
3	436640	47	3	446071	47	3	455302	46	3	464340	45
4	436798	63	. 4	446226	62	4	455454	61	4	464489	60
5	436957	79	ő	446382	78	5	455606	76	5	464639	75
6	437116	95	6	446537	94	6	455758	91	6	464787	90
7	437275	111	7	446692	109	7	455910	106	7	464936	105
8	437433	127	8	446848	125	8	456062	122	8	465085	120
. 9	437592	143	9	447003	140	9	456214	137	9	465234	135

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
2920	465383		2980	474216		3040	482874		3100	491362	
1	465532	15	1	474362	15	1	483016	14	1	491502	14
2	465680	_ 30	2	474508	29	-2	483159	28	2	491642	28
3	465829	44	3	474653	44	3	483302	43	3	491782	42
4	465977	59	° 4	474799	58	4	483445	57	4	491922	56
5	466126	74	5	474944	73	5	483587	71	5	492062	70
6	466274	89	6	475090	88	6	483730	85	6	492201	84
7	466423	104	- 7	475235	102	7	483872	99	7	492341	98
8	466571	118	8	475381	117	8	484015	114	8	492481	112
9	466719	133	9	475526	131	9	484157	128	9	492621	126
2930	466868		2990	475671		3050	484300		3110	492760	14
1	467016	15	1	475816	15	. 1	484442	14	1	492900	14
$\overline{2}$	467164	30	2	475962	29	2	484584	28	2	493040	28
3	467312	44	3	476107	43	3	484727	43	3	493179	42
4	467460	59	4	476252	58	4	484869	57	4	493319	56
5	467608	74	5	476397	72	5	485011	71	5	493458	70
6	467756	89	6	476542	87	6	485153	85	6	493597	84
7	467904	104	7	476687	101	7	485295	99	7	493737	98
8	468052	118	8	476832	116	8	485437	114	8	493876	142
9	468200	133	9	476976	130	. 9.	485579	128	9	494015	126
2940	468347		3000	477121		3060	485721	-	8190	494155	
1	468495	15	1	477266	14	1	485863	14	1	494994	14
2	468643	30	2	477411	29	2	486005	28		1044294	98
3	468790	44	3	477555	43	3	486147	42	2	404579	41
4	868938	59	4	477700	58	4	486980	57	4	404711	56
5	469085	74	- 5	477844	- 7.2	5	486430	71	5	404950	60
6	469233	89	6	477989	87	6	486572	85	6	494989	83
7	469380	104	7	478133	101	7	486714	99	7	405198	97
8	469527	118	8	478278	116	8	486855	114	8	495967	111
9	469675	133	9	478422	130	9	486997	128	9	-495406	195
2950	469822		3010	478566		3070	497139		2120	405544	1
2300	469969	15	1	478711	14	1	407100	14	0100	490044	14
	470116	29	9	478855	90	9	407400	14	0	405000	00
23	470263	44	3	478000	42	2	407441	40	2	405060	41
4	470410	59	4	479143	58	1	407000	57	0	406000	56
× 5	470557	74	1 5	470987	72	5	40704	71	4 5	406997	60
6	470704	88	6	479431	86	6	487086	85	6	496376	83
7	470851	103	7	479575	101	7	488197	00	7	496514	07
8	470998	118	8	479719	115	8	488269	112		496653	111
9	471145	132	9	479863	130	9	488410	197	a a	496791	195
2060	471909		2020	480007	100	2000	100110	141	21 10	100000	120
2300	471498	15	0020	400007	14	3000	400001	14	0140	490930	14
1 5	471585	1 90	1 0	480904	90		100092	14		407900	14
4	471799	40	2 2	480499	1 49	2 9	100000	40	20	407944	11
4	471878	59	1	480589	58	0	400910	44	0	407490	41
5	479095	78	5	480795	79	4 5	1909114	50	4 5	407691	80
0 A	479171	88	e e	480860	86	0	109200	01	0	407750	09
7	479317	102	7	481019	1101	7	409090	04	7	407907	00
9	479.464	117	0	481156	115	0	180677	110	0	408095	110
9	472610	132	g g	481999	130	0	180818	196	0	408172	194
0070	470750	102	0000	401440	100	0000	400010	120	0150	4000110	144
4910	170000	15	3030	401440	11	3090	4099908	1 14	0616	498311	1 10
	479040	10		401000	14		490099	14	1	498448	14
4	479105	49	2	401/29	49	2	490239	28		498986	28
3	479941	44	8	4010/2	40	3	490380	42	3	498/24	41
4	479407	09	4	402010	51	4	490020	06	4	498862	66
0	179699	00	0	402109	00	0	490001	10	5	498999	09
7	479770	100	07	402002	100	0	490001	100	07	499137	07
R	473995	1117	1 : 0	402440	114	0	401001	110	0	499210	110
	474070	129	0	102000	1.14	0	401000	112	0	400550	104
1 9	#14010	102	9	402/31	129	9	491222	120	9	488990	124

.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
3160	499687		3220	507856	-	3280	515874	-	3340	523746	
1	499824	14	1	507991	13	1	516006	13	1	523876	13
2	499962	27	2	508125	27	2	516139	26	2	524006	26
3	500099	41	3	508260	40	3	516271	40	3	524136	39
4	500236	55	4	508395	54	4	516403	53	4	524266	52
5	500374	68	5	508530	67	5	516535	66	5	524396	65
6	500511	82	6	508664	81	6	516668	79	6	524526	78
7	500648	96	7	508799	94	7	516800	92	7	524656	91
8	500785	110	8	508933	108	8	516932	106	8	524785	104
9	500922	123	j g	509068	121	9	517064	119	9	524915	117
9170	501050		0000	500000		0000	517100		9950	595045	
1 1	501106	14	0200	5009202	19	0200	517000	12	0000	595174	19
1	501190	14		500471	10	1	517400	10	1	505904	10
. 4	001000	21	2	500000	40	4	517500	40	4	505494	20
Ŭ A	501470	41	3	500540	40	0	017092	40	Ŭ A	020404	09
4	501507	55	4	509740	54	4	517724	00	4	020003	02
D	501744	68	5	509874	67	D	517855	66	5	525693	60
6	501880	82	6	510008	81	6	517987	19	6	525822	18
7	502017	96	7	510143	94	1	518119	92	1 7	525951	91
8	502154	110	8	510277	108	8	518251	106	8	526081	104
9	502290	123	9	510411	121	9	518382	119	9	526210	117
3180	502427		3240	510545		3300	518514		3360	526339	
. 1	502564	14	1	510679	13	1	518645	13	1	526468	13
2	502700	27	2	510813	27	2	518777	26	2	526598	26
3	502837	41	3	510947	40	3	518909	39	3	526727	39
4	502973	54	4	511081	54	4	519040	52	4	526856	52
5	503109	68	5	511215	67	5	519171	66	- 5	526985	65
6	503246	82	6	511348	80	6	519303	79	6	527114	78
7	503382	95	7	511482	94	7	519434	92	7	527243	91
8	503518	100	8	511616	107	8	519565	105	8	527372	104
9	503654	123	9	511750	121	9	519697	118	9	527501	117
9100	509701	140	9950	511999	1-1	2210	510898		2270	527630	
5150	509097	14	3200	519017	19	0010	510050	12	00/0	597750	13
1	504009	14	1	510150	10	1	590000	96	1	597999	26
4	504100	21		510004	40	4 9	500001	20	4	599016	20
0	504995	41	0	510417	40	0	500950	59	0	599145	51
4	504471	04	4	012417	67	4	500400	602	4	500074	64
0	504607	68	0	012001	01	0	020400	70	0	500400	77
0	504740	82	0	012004	00	0	520014	19	0 77	500591	00
(504743	95	1	012818	93		020740	92		500000	109
0	004878	109	8	512951	107	0	020070	1100	0	500700	1100
9	505014	122	9	513084	120	9	521007	110	9	920100	110
3200	505150		3260	513218		3320	521138		3380	528917	
1	505286	14	1	513351	13	1	521269	13	1	529045	13
2	505421	27	2	513484	27	2	521400	26	2	529174	26
3	505557	41	3	513617	40	3	521530	39	3	529302	38
4	505692	54	4	513750	53	4	521661	52	4	529430	51
5	505828	68	5	513883	66	5	521792	65	5	529559	64
6	505963	82	6	514016	80	6	521922	78	6	529687	77
7	506099	95	7	514149	93	7	522053	97	7	529815	90
8	506234	109	8	514282	106	8	522183	104	.8	529943	103
9	506370	122	9	514415	120	9	522314	117	9	530072	116
3210	506505		3270	514548		3330	522444		3390	530200	
1	506640	18	1	514680	13	1	522575	13	1	530328	13
2	506775	27	2	514813	27	2	522705	26	2	530456	26
3	506911	40	3	514946	40	3	522835	39	3	530584	38
4	507046	54	4	515079	53	4	522966	52	4	530712	51
5	507191	67	5	515211	66	5	523096	65	5	530840	64
6	507916	21	ß	515944	80	6	523226	78	6	530968	77
7	507451	04	7	515476	93	7	523356	97	7	531095	90
	001401	34		01010	100	0	592486	104	8	531993	102
e	507590	100	1 Q	1515600	1 11 10						1 1 1 2

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
3400	531479		3460	539076	-	3520	546543		3580	553883	
1	531607	13	1	539202	13	1	546666	12	1	554004	12
2	531734	25	2	539327	25	2	546789	25	2	554126	24
3	531862	38	3	539452	38	3	546913	37	3	554247	36
4	531990	51	4	539578	50	4	547036	49	4	554368	49
5	532117	63	5	539703	63	5	547159	62	5	554489	61
6	532245	76	6	539829	75	6	547282	74	, 6	554610	73
7	532372	89	7	539954	88	7	547405	86	. 7	554731	85
8	532500	102	8	540079	100	8	547529	99	8	554852	97
9	532627	114	9	540204	113	9	54/652	111	6 9	554973	109
3410	532754		3470	540329	10	3530	547775	10	3590	555094	
1	532882	13	1	540455	12	1	54/898	12	1	000210	12
. 2	200100	20	2	540205	20	1 43 Z	548021	20	2	000000	24
0	200100	50	0	540700	50	0	540066	31	0	555570	30
4 5	599901	62	4 5	540055	69	4	540200	49	4	555600	40
6	533518	76	6	541080	75	6	548519	74	6	555820	79
7	533645	89	7	541205	87	7	548635	86	7	555940	84
8	533772	102	8	541330	100	8	548758	98	8	556061	96
9	533899	114	9	541454	112	9	548881	111	' 9	556182	108
3420	534026		3480	541579		3540	540003		3600	556302	100
1	534153	13	1	541704	12	1	549126	12	1	556423	. 12
2	534280	25	2	541829	25	2	549249	25	$\frac{1}{2}$	556544	24
3	534407	38	3	541953	37	3	549371	37	3	556664	36
4	534534	51	4	542078	50	4	549494	49	4	556785	48
5	534661	63	5	542203	62	5	549616	61	5	556905	60
6	534787	76	. 6	542327	75	6	549739	74	6	557026	72
7	534914	89	7	542452	87	7	549861	86	7	557146	84
8	535041	102	8	542576	100	8	549984	98	8	557267	96
9	535167	114	9	542701	112	9	550106	111	9	557387	108
3430	535294		3490	542825	•	3550	550228		3610	557507	
1	535421	13	1	542950	12	1	550351	12	1	557627	12
2	535547	25	· 2	543074	25	2	550473	24	2	557748	24
3	535674	38	3	543199	37	3	550595	37	- 3	557868	36
4	535800	50	4	543523	50	4	550717	49	4	557988	48
0	596059	00	0	040441	02	0	000840	01	D	000108	60
7	526170	00	7	549606	10	07	000902	00	07	000220	12
8	526306	101	8	543820	100	6	551906	00	6	559460	06
9	536432	114	9	543944	119	9	551200	110	9	558589	108
3440	536558		3500	544069	11.4	2560	551450	110	2000	559700	100
1	536685	13	1	544192	12	1	551572	12	1	558829	12
2	536811	25	2	544316	25	2	551694	24	2	558948	24
3	536937	38	3	544440	37	3	551816	37	3	559068	26
' 4	537063	50	4	544564	50	4	551938	49	4	559188	48
5	537189	63	5	544688	62	5	552059	61	5	559308	60
6	537315	76	6	544812	74	6	552181	73	6	559428	72
7	537441	88	7	544936	87	7	552303	86	7	559548	84
8	537567	101	8	545060	99	8	552425	98	8	559667	96
9	537693	114	9	545183	112	9	552546	110	9	559787	108
3450	537819		3510	545307	1.1	3570	552668		3630	559907	
1	537945	13	1	545431	12	1	552790	12	- 1	560026	12
2	538071	25	2	545554	25	2	552911	24	2	560146	24
3	530197	38	3	045678	37	3	053033	36	3	560265	36
- 4	539440	00	4	545007	49	4	003104	49	4	560385	48
R R	538574	03	D C	546040	02	5	559900	01	0	560004	60
7	538690	80	07	546179	14 88	07	552510	10	07	560749	01
8	538825	101	9	546296	00	8	553640	97	0	560862	04
9	538951	114	9	546419	1111	9	553762	109	9	560982	108
	1.00001	1	11 0	010110	1	11 0	000104	100	5	000002	100

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
3640	561101		3700	568202		3760	575188		3820	582063	
1	561221	12	1	568319	12	1	575303	12	1	582177	11
$\hat{2}$	561340	24	2	568436	23	2	575419	23	$\overline{2}$	582291	23
3	561459	36	3	568554	35	3	575534	35	3	582404	34
4	561578	48	4	568671	47	4	575650	46	4	582518	45
5	561698	60	5	568788	58	5	575765	58	5	582631	56
6	561817	72	6	568905	70	6	575880	69	6	582745	68
7	561936	84	7	569023	82	7	575996	80	7	582858	79
8	562055	96	8	569140	94	8	576111	92	8	582972	90
9	562174	108	9	569257	106	9	576226	104	9	583085	102
3650	562293		3710	569374		3770	576341		3830	583199	
1	562412	12	1	569491	12	1	576457	12	1	583312	11
2	562531	24	- 2	569608	23	2	576572	23	2	583426	23
3	562650	36	3	569725	35	3	576687	35	3	583539	34
4	562768	48	4	569842	47	4	576802	46	4	583652	45
5	562887	60	5	569959	58	5	576917	58	5	583765	56
6	563006	71	0	570076	170	6	577032	69	6	582879	68
1	563120	83		570193	82		577147	80	1	083992	19
8	563244	95	8	570309	94	8	511262	92	8	084100	90
9	063362	107	9	570426	106	9	5/13/1	104	9	084218	102
3660	563481		3720	570543		3780	577492		3840	584331	
4	563600	12	1	570660	12	1	577607	11	1	584444	11
2	563718	24	- 2	570776	23		577721	23		584007	23
3	563837	36	3	570893	35	0	577830	04	Ŭ A	504502	34
4	563999	48	4 5	571100	41	4 5	1011901 5-00cc	40	4 5	594906	40
5	564074	60	0 E	571949	00	0	018000	68	0	595000	50
0 7	504192	11	7	571950	01	07	578905	80	7	585199	70
	564490	00	8	571476	03	8	578410	91	8	585235	00
0	564548	107	9	571592	105	9	578525	103	9	585348	102
0070	F04000	107	0790	571700	100	2700	570020	100	2950	585461	102
3070	564794	10	0100	571995	1 19	1 0100	578754	11	1	585574	11
1 0	564002	14	2	57104.)	92	9	578868	23	5	585686	99
	565021	24	3	572058	- 25	3	578983	34	3	585799	34
4	565139	47	4	572174	47	4	579097	46	4	585912	45
5	565257	59	5	572291	58	5	579212	57	5	586024	56
6	565376	71	6	572407	70	6	579326	68	6	586137	67
7	565494	83	7	572523	81	7	579441	80	7	586250	78
8	565612	95	8	572639	93	8	579555	91	8	586362	90
9	565730	107	9	572755	105	9	579669	103	9	586475	101
3680	565848		3740	572872		3800	579784		3860	586587	
1	565966	12	1	572988	12	1	579898	11	1	586700	11
2	566084	24	2	573104	23	2	580012	23	2	586812	22
3	566202	35	3	573220	35	3	580126	34	3	586925	34
4	566320	47	4	573336	46	4	580240	46	4	587037	45
5	566437	59	5	573452	58	5	580355	57	5	587149	56
_ 6	566555	71	6	573568	70	6	580469	68	6	587262	67
7	566673	83	7	573684	81	7	580583	80	7	587374	78
8	566791	94	8	573800	93	8	580697	91	8	07500	90
9	566909	106	9	573915	104	9	580811	103	9	08/099	101
3690	567026		3750	574031	1	3810	580925	1	3870	087711	
1	567144	12		574147	12	1	581039	11	1	00/823	11
2	567262	24	2	574263	28	2	081103	23	2	589047	22
	567379	35	3	014379	35	3	501207	1 16	0	599160	15
4	567014	47	4	574610	40	4	591405	57	H 5	588979	-40
0	567790	09	e e	574796	00	e e	581609	68	A B	588384	67
07	567940	00	7	574841	1 81	- 7	581799	80	7	588496	78
0	567967	04	8	574957	93	8	581836	91	8	588608	90
9	568084	106	9	575072	104	9	581950	103	9	588720	101

ſ	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
ľ	3880	588832		3940	595496		4000	602060	4.0	4060	608526	
l	1	588944	11	1	595606	11	1	602169	11	1	608633	11
	$\overline{2}$	589056	22	2	595717	22	2	602277	22	2	608740	21
	3	589167	33	3	595827	33	3	602386	33	3	608847	32
	4	589279	44	4	595937	44	• 4	602494	43	- 4	608954	43
	5	589391	56	5	596047	55	- 5	602603	54	5	609061	53
	6	589503	67	6	596157	66	6	602711	65	6	609167	64
1	7	589615	78	7	596267	77	7	602819	76	7	609274	75
	8	589726	89	8	596377	88	8	602928	87	8	609381	86
	9	589838	100	9	596487	99	9	603036	98	9	609488	96
	3890	589950		3950	596597		4010	603144		4070	609594	2
	1	590061	11	1	596707	11	1	603253	11	1	609701	11
	2	590173	22	2	596817	22	2	603361	22	2	609808	21
	3	590284	33	3	596927	33	.3	603469	33	3	609914	32
	4	590396	44	4	597037	44	4	603577	43	4	610021	43
	5	590507	56	5	597146	00	D	603686	54	5	610128	53
	6	590619	67	6	597256	00	6	603794	65	6	610234	64
	7	590730	78	7	597366	11		603902	76	7	610341	75
	8	590842	89	8	597476	00	8	604010	87	8	610447	86
	9	590953	100	9	591585	99	9	604118	98	9	610554	96
	3900	591065	1	3960	597695		4020	604226	100	4080	610660	
	1	591176	11	1	597805	11	1	604334	11	1	610767	-11
	2	591287	22	2	597914	22	2	604442	22	2	610873	21
	3	591399	33	3	598024	33	3	604550	32	3	610979	32
	4	591510	44	4	598134	44	4	604658	43	4	611086	42
	5	591621	56	5	598243	55	5	604766	54	5	611192	53
	6	591732	67	6	598353	66	6	604874	65	6	611298	64
	7	591843	78	7	598462	11	7	604982	76	7	611405	74
	8	591955	89	8	598572	88	8	605089	86	8	611511	85
	9	592066	100	9	598681	99	9	605197	97	9	611617	95
	3910	592177	1	3970	598190	1 11	4030	605305		4090	611723	111
	1	592288	11	1	598900	00		605413	11		611829	
	2	092399	24	2 0	500110	22	2	0000021	22		011930	21
	5	500001	00	0	500000	144	0	000020	32	0	012042	104
	4	592021	44	4	50099440	55	4	000130	40	4	012140	44
	0	50994194	67	6	500446	66	6	605051	65	6	619260	64
	07	509054	78	0 7	500556	77	07	606050	76	0	619466	74
	0	502064	80		500665	88		606166	96		619579	85
		593175	100	9	599774	99	9	606274	97	9	612678	95
	3920	593286		3980	599883	-	4040	606381		4100	612784	100
	1 1	593397	11	1	599992	11	1	606489	111	1 1	612890	11
	2	593508	22	2	600101	22	2	606596	21	2	612996	21
	3	593618	33	3	600210	33	3	606704	32	3	613101	32
	4	593729	44	4	600319	44	4	606811	43	4	613207	42
	5	593840	55	5	600428	54	5	606919	54	5	613313	53
	6	593950	66	6	600537	65	6	607026	64	6	613419	64
	7	594061	77	7	600646	76	7	607133	75	7	613525	74
	8	594171	88	8	600755	87	8	607241	86	8	613630	85
	9	594282	99	9	600864	95	9	607348	96	9	613736	95
	3930	594398	3	3990	600973		4050	607455		4110	613842	
	1	594508	3 11	1	601082	11	1	607562	11	1	613947	11
	2	594613	3 22	2	601190	22	2	607669	21	2	614053	21
	3	594724	1 33	3	601299	33	3	607777	32	3	614159	32
	4	594834	44	4	601408	44	4	607884	43	4	614264	42
	5	59494	5 55	5	601517	54	5	607991	54	5	614370	53
	6	595054	66	6	601625	65	6	608098	64	6	614475	63
	7	59516	5 77	7	601734	76	7	608205	75	7	614581	74
	8	595276	3 88	8	601848	8 87	8	608312	86	8	614686	84
	1 0	1595386	3 99	9	601951	98	9	608419	1 96	9	614792	95

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
4120	614897	-	4180	621176		4240	627366		4300	633468	
1	615003	11	: 1	621280	10	1	627468	10	1	633569	10
2	615108	21	2	621384	21	2	627571	20	2	633670	20
3	615213	31	3	621488	31	3	627673	31	3	633771	30
4	615319	42	4	621592	42	4	627775	41 [°]	4	633872	40
5	615424	52	5	621695	52	5	627878	51	5	633973	50
6	615529	63	6	621799	62	6	627980	61	6	634074	61
7	615634	73	7	621903	73	7	628082	72	7	634175	71
8	615740	84	8	622007	83	8	628184	82	8	634276	81
9	615845	95	9	622110	94	9	628287	92	9	634376	91
4130	615950		4190	622214	-	4250	628389		4310	634477	
1	616055	11	1	622318	10	1	628491	10	1	634578	10
2	616160	21	2	622421	21	2	628593	20	2	634679	20
3	616265	31	3	622525	31	3	628695	31	3	634779	30
4	616370	42	• 4	622628	41	4	628797	41	4	634880	40
5	616475	52	5	622732	52	5	628900	51	5	634981	50
6	616580	63	6	622835	62	- 6	629002	61	6	635081	61
7	616685	73	7	622939	72	7	629104	72	7	635182	71
8	616790	84	8	623042	83	8	629206	82	8	635283	81
9	616895	95	9	623146	93	9	629308	92	9	635383	91
4140	617000		4200	623249		4260	629410		4320	635484	
1	617105	10	1	623353	10	1	629511	10	1	635584	10
2	617210	21	2	623456	21	9	629613	20	2	635685	20
3	617315	31	2	622550	21	2	629715	20	3	635785	30
4	617420	42	4	623663	41	1	620817	41	4	635886	40
5	617524	52	5	623766	59	5	629919	51	5	635986	50
6	617629	63	6	623869	62	6	630021	61	6	636086	60
7	617734	73	7	623972	72	7	630123	71	7	636187	70
8	617839	84	8	624076	83	8	630224	81	8	636287	80
- 9	617943	94	9	624179	93	9	630326	91	9	636388	90
4150	618048		1910	694999		4970	620428	•1	1220	636488	1
1100	618153	10	4210	624285	10	4270	630530	10	4000	636588	10
2	618257	21	9	624488	21	9	630681	20	2	636688	20
3	618362	31	2	624501	21	2	630733	30	2	636789	30
4	618466	42	1	624604	41	4	630834	41	4	636889	40
5	618571	52	5	694798	51	5	630936	51	5	636989	50
6	618675	62	6	694001	62	6	631038	61	6	637089	60
7	618780	73	7	625004	72	7	631139	71	7	637189	70
8	618884	83		625107	82	8	631941	81	8	637289	80
9	618989	94	9	625209	93	q	631342	91	9	637390	90
4160	610003	01	4990	020200	00	1990	621444	01	1210	637400	
100	610109	10	4420	695415	10	4200	631545	10	1040	637590	10
9	610309	91	1	695519	91	1	691647	20	1 9	637690	20
2	610406	31	2	625691	31	2	631749	20	4	637790	30
0	619511	49	0	625794	41	0	631840	41	3	637890	40
5	610615	59	5	625997	51	5	631051	51	5	637990	50
0	610710	69	6	625020	69	e o	639059	61	6	638090	60
7	610822	73	7	6260329	79	7	632153	71	7	638190	70
8	610020	83	9	626125	89	8	632255	81	8	638289	80
0	620032	94	9	626238	93	a	632356	91	9	638389	90
4170	600102	T	4000	020200	00	4000	699457	01	4950	629490	
4170	020136	10	4230	020340	10	4290	002407	10	4000	698580	10
1	620240	91	1	020443	10	1	002000	10	1	638680	20
2	620344	21	2	020040	21	2	620761	20	2	638780	20
3	600550	10	ð	020048	01	3	690000	41	O A	638666	40
4	620002	42	4	696959	41 51	4	62002	51	4 5	638060	50
0	6200260	69	0	020000	60	0	622003	61	e e	630066	60
07	620760	72	7	627059	79	. 0	622165	71	0	630188	70
0	620004	82	0	697161	89	0	633966	81	8	639987	80
0	621070	00	0	697969	92	0	633267	91	0	689387	90
9	021072	04	9	021205	30	9	000001	01	9	000001	00

-

ï

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
4360	639486		4420	645422	1.	4480	651278		4540	657056	
1	639586	10	1	645520	10	1	651375	10	1	657151	10
2	639686	20	2	645619	20	2	651472	19	2	657247	19
3	639785	30	3	645717	30	3	651569	29	3	657343	28
4	639885	40	4	645815	39	. 4	651666	38	4	657438	38
5	639984	50	5	645913	49	5	651762	48	5	657534	47
6	640084	60	6	646011	59	6	651859	58	6	657629	57
7	640183	70	7	646109	69	7	651956	67	. 7	657725	67
8	640283	80	8	646208	79	8	652053	77	8	657820	76
9	640382	90	9	646306	89	9	652150	87	9	657916	86
4370	640481	4	4430	646404	C 1.	4490	652246		4550	658011	1.50
1010	940581	10	1	646502	10	1	652343	10	1	658107	10
2	640680	20	2	646600	20	$\overline{2}$	652440	19	2	658202	19
3	640779	30	3	646698	29	3	652536	24	3	658298	28
4	640879	40	4	646796	39	4	652633	38	4	658393	38
5	640978	50	5	646894	49	5	652730	48	5	658488	47
6	641077	60	6	646991	59	6	652826	58	6	658584	57
7	641176	70	7	647089	69	7	652923	67	7	658679	67
8	641276	80	8	647187	78	8	653019	77	8	658774	76
ğ	641375	90	9	647285	88	9	653116	87	9	658870	86
4900	641474		4440	647900	00 .	4500	659019	01	4500	CEODOF	00
4000	641572	10	4440	047000	10	1	652200	10	4000	650060	10
1	041070	10	1	047401	10	1 0	000009	10	1	009000	10
2	641771	20	2	047079	20	4 9	000400	19	2	009100	19
0	041771	40	J.	04/0/0	29	0	000002	29	0	009200	28
4	641070	50	4	04/1/4	39	4	0000000	38	4	009340	38
.0	649060	50	0	04/0/2	49	0	000000	48	0	009441	41
40	649168	60	0	047909	60	7	659000	58	7	000000	01
0	649967	70	0	649165	79	6	652004	67	6	650706	76
0	649366	80	0	649969	80	a	654090	07	0	65099120	20
4000	012000	00	4450	010202	00	4510	001000	01	4570	000041	00
4390	042404	10	4450	648360	10	4510	654176		4570	659916	10
1	042003	10	1	648458	10	1	654273	10	1	660011	10
2	042002	20	2	048000	19	2	004369	19	2	660106	19
J	042/01	30		048003	29	ð	004400	29	ð	660201	28
4	042800	40	4	648790	39	4	004062	38	4	660296	38
0	042909	49	Ð	048848	49	0	004008	48	Ð	660391	41
0	040000	-09 -09	0	648940	86	. 0	004/04	58	0	000486	57
6	040100	70		649043	68		004800	67		660581	67
8	045255	19	8	649140	18	8	054940	77	8	660676	76
9	043334	89	9	649237	88	9	000042	86	9	660771	86
4400	643453		4460	649335		4520	655138		4580	660865	10
1	643551	10	1	649432	10	1	655234	10	1	660960	9
2	643650	20	2	649530	19	2	655331	19	2	661055	19
3	643749	30	- 3	649627	29	3	655427	29	3	661150	28
4	643847	39	4	649724	39	4	655523	38	4	661245	38
5	643946	49	5	649821	49	5	655619	48	5	661339	47
6	644044	59	6	649919	58	6	655714	58	6	661434	57
. 7	644143	69	7	650016	68	7	655810	67	7	661529	+66
8	644242	79	8	650113	78	. 8	655906	77	8	661623	76
9	644340	89	9	650210	88	9	656002	86	9	661718	85
4410	644439		4470	650307		4530	656098		4590	661813	1.1
1	644537	10	1	650405	10	1	656194	10	1	661907	9
2	644635	20	2	650502	19	2	656290	19	2	662002	19
3	644734	30	3	650599	29	8	656386	29	3	662096	28
4	644832	39	4	650696	39	. 4	656481	38	4	662191	38
5	644931	49	5	650793	49	5	656577	48	5	662285	47
6	645029	59	6	650890	58	6	656673	58	6	662380	57
7	645127	69	7	650987	68	7	656769	67	7	662474	66
8	645226	79	8	651084	78	8	656864	77	8	662569	76
9 :	645324	89	9	651181	88	9	656960	86.1	9	662663	85

17

.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	
4600	662758		4660	668386		4720	673942		4780	679428		
1	662852	9	1	668479	9	1	674034	9	1	679519	9	
2	662947	19	2	668572	19	2	674126	18	2	679610	18	ł
3	663041	28	3	668665	28	3	674218	28	3	679700	27	ĺ
4	663135	38	4	668758	37	4	674310	37	4	679791	36	
5	663230	47	5	668852	47	5	674402	46	5	679882	45	1
6	663324	57	6	668945	56	6	674494	55	6	679973	55	
7	663418	66	7	669038	65	7	674586	64	7	680063	64	
8	663512	76	8	669131	74	8	674677	74	8	680154	73	
q	663607	85	9	669224	84	g g	674769	83	9	680245	89	
4410	000001	00	1070	000017	01	1700	074001	00	4700	000210	02	
4610	000701	0	40/0	009011	0	4100	074001		4/90	000333		
1	003193	9	1	009410	10	1	074995	10	1	080420	9	
2	003889	19	2	669303	19	2	070040	18	2	680517	18	
3	663983	28	3	669596	28	3	675136	28	3	680607	27	
4	664078	38	4	669689	37	4	010228	31	4	680698	36	
õ	664172	47	5	669782	47	5	675320	46	5	680789	45	
6	664266	56	6	669875	56	6	675412	55	6	680879	55	
7	664360	66	7	669967	65	7	675503	64	7	680970	64	
8	664454	75	8	670060	74	8	675595	74	8	681060	73	
9	664548	85	9	670153	84	9	675687	83	9	681151	82	
4620	664642	i	4680	670246		4740	675778		4800	681241		Ì
1	664736	9	1	670339	9	1	675870	9	1	681332	9	i
2	664830	19	$\overline{2}$	670431	18	2	675962	18	$\overline{2}$	681422	18	
3	664924	28	.3	670524	28	3	676053	27	3	681513	27	1
4	665018	38	4	670617	37	4	676145	36	4	681603	36	
5	665112	47	5	670710	46	5	676236	46	5	681693	45	1
6	665206	56	6	670802	55	6	676328	55	6	681784	54	
7	665900	66	7	670895	61	-	676419	64	7	681874	62	
	665303	75	8	670988	7.1		676511	78	8	681064	70	
0	665487	85		671080	82	0	676602	82	a	689055	81	ł
1000	000101	00	4000	071170	00	4770	010004	04	4010	002000	01	1
4630	0000001		4090	071170	0	4150	070091	0	4810	002140		İ
1	665560	1 10	1	071200	10	1	070700	10	1	682235	9	1
2	000709	19		071000	10	2	010010	10	2	682326	18	1
3	665862	28	3	071401	28	3	676968	21	3	682416	21	
4	665956	38	4	071045	31	4	677059	30	4	682506	36	
5	666050	41	5	071030	40	5	677151	40	5	682596	45	1
6	666143	56	6	071728	66	6	677242	55	6	682686	'54	
7	666237	66		671821	64	7	677333	64	7	682777	63	
8	666331	75	8	671913	74	8	677424	73	8	682867	72	1
9	666424	85	9	672005	83	9	677516	82	9	682957	81	
4640	666518		4700	672098		4760	677607		4820	683047		ł
1	666612	9	1	672190	9	1 1	677698	9	1	683137	9	
2	666705	19	-2	672283	18	2	677789	18	2	683227	18	Í
3	666799	28	3	672375	28	3	677881	27	3	683317	27	
4	666892	37	4	672467	37	4	677972	36	4	683407	36	
5	666986	47	5	672560	46	5	678063	45	5	683497	45	1
6	667079	56	6	672652	55	6	678154	55	6	683587	54	
47	667173	65	7	672744	64	7	678245	64	7	683677	63	
8	667266	74	8	672836	74	8	678336	73	8	683767	72	
9	667359	84	9	672929	83	9	678427	82	9	683857	81	
1050	667452		1710	673091		4770	679519		1990	682047		
1 1000	667546	0	1 1	672112	0	1 1	678600	0	1 1	684027	9	ļ
	667640	10		672905	110	1	679700	18		684197	18	
2	667799	10	2	672907	10	2 9	679701	97	2	684917	97	Ì
3	667000	20	0	679200	20	0	670000	20	0	684907	26	
4	001020	17	4	679400	101	4	679079	45	4	684200	15	
5	001920	41	0	670574	40	0	670064	E.C.	0	681100	10	
6	000013	00	0	013014	00	0	079004	61	0 7	604576	62	
	000100	00		013000	04		079100	72	0	604000	7.0	
8	000199	14	8	010108	14	0	079240	10	0	004000	01	1
1 9	068293	84	9	013850	83	. 9	019337	82	9	084790	01	1

No.	Log.	Prop. Par.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
4840	684845		4900	690196		4960	695482	0	5020	700704	
1	684935	9	1	690285	9	1	695569	9	1	700790	9
2	685025	18	2	690373	18	2	695657	17	2	700877	17
3	685114	27	3	690462	27	3	695744	26	3	700963	26
4	685204	36	4	690550	35	4	695832	35	4	701050	35
5	685294	45	5	690639	44	5	695919	44	5	701136	43
6	685383	54	6	690727	53	6	696007	52	6	701222	52
7	685473	63	7	690816	62	7	696094	61	7	701309	61
8	685563	72	.8	690905	11	8	090182	10	8	701395	10
9	685652	81	9	090993	80	9	090209	19	9	101482	10
4850	685742		4910	691081		4970	696356		5030	701568	
1	685831	9	1	691170	10	1	696444	17		701654	9.
2	685921	18	2 9	601247	10	2 9	090001	11	2 9	701741	11
3	696100	21		601425	21	0	606706	20		701027	20
4	686180	45	. 5	691524	44	4 5	696793	44	5	701000	42
6	686279	54	6	691612	53	6	696880	52	6	702086	52
7	686368	63	. 7	691700	62	7	696968	61	7	702172	61
8	686457	72	8	691789	71	8	697055	70	8	702258	70
9	686547	81	9	691877	80	9	697142	79	9	702344	78
4860	686636		4920	691965		4980	697229		5040	702430	
1	686726	9	1	692053	9	1	697317	9	1	702517	9
2	686815	18	2	692142	18	2	697404	17	2	702603	17
3	686904	27	3	692230	27	3	697491	26	3	702689	26
4	686994	36	4	692318	35	4	697578	35	4	702775	34
5	687083	45	5	692406	44	5	697665	44	5	702861	43
6	687172	54	6	692494	53	6	697752	52	6	702947	52
. 7	687261	63	7	692583	62	7	697839	61	7	703033	60
8	687351	72	8	692671		8	697926	70	8	703119	69
9	687440	81	9	692739	80	9	698013	19	9	103205	11
4870	687529		4930	692847		4990	698100		5050	703291	
1	687618	1 10		692930	10	1	698188	17		103311	9
2	697706	10	4 2	602111	10	2 9	602269	11		709540	11
0	687886	36	4	693199	20	1	698448	35	1	702625	20
5	687975	45	5	693287	44	5	698535	44	5	703721	43
6	688064	54	6	693375	53	- 6	698622	52	6	703807	52
7	688153	62	7	693463	62	7	698709	61	7	703893	60
8	688242	72	8	693551	70	8	698796	70	8	703979	69
9	688331	80	9	693639	79	9	698883	79	9	704065	77
4880	688420		4940	693727		5000	698970		5060	704150	
1	688509	9	1	693815	9	1	699057	9	1	704236	9
2	688598	18	.2	693903	18	2	699144	17	2	704322	17
3	688687	27	3	693991	26	3	699231	26	3	704408	26
4	688776	36	4	694078	35	4	699317	35	4	704494	34
5	688800	40	O C	094100	44	5	699404	43	- 5	704579	43
07	1000900	60	07	604204	00	0	099491	61	0	104060	02
	680191	79	8	694430	70		600664	70	0	704997	60
9	689220	80	9	694517	79	9	699751	78	9	704922	77
4800	680200		4950	694605		5010	600838	1.0	5070	705009	1
1 1	689398	9	1	694693	9	1 1	699924	9	1 1	705094	9
2	689486	18	2	694781	18	2	700011	17	2	705179	117
3	689575	27	1 3	694868	26	3	700098	26	3	705265	26
4	689664	36	4	694956	35	4	700184	35	4	705350	34
5	689753	45	5	695044	44	5	700271	43	5	705436	43
6	689841	54	6	695131	53	6	700358	52	6	705522	52
7	689930	62	7	695219	62	7	700444	61	7	705607	60
8	690019	72	8	695307	70	8	700531	70	8	705693	69
9	690107	80	1 9	695394	79	9	700617	18	9	705778	177

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 66
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8 74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 66
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 41
7 708166 60 7 713238 59 7 718253 58 7 7232 8 708251 68 8 713322 67 8 718336 66 8 7232 9 708336 77 9 713426 76 9 718419 75 9 7233 5110 708421 5170 713490 5230 718502 5290 7234 1 708506 9 1 718574 8 1 718685 8 1 7235 2 708591 17 2 713658 17 2 718668 17 2 7234 8 708591 17 2 713658 17 2 718668 17 2 7236 8 708676 9 719749 95 9 7087 7927	7 49
8 708251 68 8 713322 67 8 718336 66 8 7232 9 708336 77 9 718406 76 9 718419 75 9 7233 5110 708421 5170 713490 5230 718502 5290 7234 1 708506 9 1 718574 8 1 718685 8 1 7235 2 708591 17 2 718658 17 2 718668 17 2 7234 8 708591 17 2 718658 17 2 7236 8 708591 17 2 718658 17 2 7236 8 708591 17 2 718658 17 2 7236 9 70879 19 9 9 7927 7927	9 58
9 708336 77 9 718406 76 9 718419 75 9 7233 5110 708421 5170 713490 5230 718502 5290 7234 1 708506 9 1 718574 8 1 718685 8 1 7235 2 708591 17 2 718658 17 2 718668 17 2 7234 8 708591 17 2 718658 17 2 718668 17 2 7234 9 708791 17 2 718658 17 2 7236 2 708591 17 2 718658 17 2 7236 8 708678 9 719749 9 7218751 07 9 7234	1 66
5110 708421 5170 713490 5230 718502 5290 7234 1 708506 9 1 713574 8 1 718585 8 1 7235 2 708591 17 2 718658 17 2 718658 17 2 7234 8 708591 17 2 718658 17 2 7236 8 708791 17 2 718658 17 2 7236 9 708791 17 2 718658 17 2 7236	4 74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
2 708591 17 2 713658 17 2 718668 17 2 7286 3 708676 26 3 718742 25 3 718751 27 7287	8 8
2 708676 96 9 719749 95 9 719751 95 9 7097	0 16
0 (000/0 20 0 10(44 20 0 10(01 20 0 120))	2 25
4 708761 34 4 713826 34 4 718834 33 4 7237	4 33
5 708846 43 5 713910 42 5 718917 42 5 7238	6 41
6 708931 51 6 713994 50 6 719000 50 6 7239	8 49
7 709015 60 7 714078 59 7 719083 58 7 72403	0 57
8 709100 68 8 714162 67 8 719165 66 8 7241	2 66
9 709185 77 9 714246 76 9 719248 75 9 72419	4 74
5120 709270 5180 714330 5240 719331 5300 7242	6
1 709355 8 1 714414 8 1 719414 8 1 7243	8 8
$2 709440 17 \cdot 2 714497 17 2 719497 17 2 72449$	0 16
3 709524 25 3 714581 25 3 719580 25 3 72455	2 25
4 709609 34 4 714665 34 4 719663 33 4 72460	3 33
5 709694 42 5 714749 42 5 719745 41 5 72468	5 41
6 709779 51 6 714832 50 6 719828 50 6 72476	7 49
7 709863 59 7 714916 59 7 719911 58 7 7248	9 57
8 709948 68 8 715000 67 8 719994 66 8 72499	1 66
9 710033 76 9 715084 76 9 720077 75 9 72501	3 74
5180 710117 5190 715167 5250 720159 5310 72509	5
	6 8
	8 16
3 710371 25 3 715418 25 3 720407 25 3 72584	0 25
4 710456 34 4 715502 34 4 720490 33 4 7254:	2 33
5 710540 42 5 715586 42 5 720573 41 5 72550	3 41
6 710625 51 6 715669 50 6 720655 50 6 72558	5 49
7 710710 59 7, 715753 59 7 720738 58 7 72566	7 57
8 710794 67 8 715836 67 8 720821 66 8 72574	8 66
9 710879 76 9 715920 76 9 720903 75 9 72583	0 74

,

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
5320	725912		5380	730782		5440	735599		5500	740363	
1	725993	8	1	730863	8	1	735679	8	1	740442	8
2	726075	16	2	730944	16	2	735759	16	2	740521	16
3	726156	24	3	731024	24	3	735838	24	3	740599	24
4	726238	33	4	731105	32	4	735918	32	4	740678	32
5	726320	41	5	731186	40	5	735998	40	5	740757	40
6	726401	49	6	731266	49	6	736078	48	6	740836	47
7	726483	57	7	731347	57	7	736157	56	7	740915	55
8	726564	65	8	731428	65	8	736237	64	8	740994	63
9	726646	73	9	731508	73	9	736317	72	9	741073	71
5330	726727	-	5390	731589		5450	736396		5510	741152	
1	726809	8	1	731669	8	1	736476	8	1	741230	8
2	726890	16	2	731750	16	2	736556	16	2	741309	16
3	726972	24	3	731830	24	3	736635	24	3	741388	24
4	727053	33	4	731911	32	4	736715	32	4	741467	32
5	727134	41	* 5	731991	40	5	736795	40	5	741546	40
6	727216	49	6	732072	48	6	736874	48	6	741624	47
7	727297	57	7	732152	56	7	736954	56	7	741703	55
8	727379	65	8	732233	64	8	737034	64	8	741782	63
9	727460	73	9	732313	72	9	737113	72	9	741860	71
5340	727541		5400	782894		5460	737193		5520	741939	
1	727623	8	1	732474	8	1	737272	8	1	742018	8
2	727704	16		739555	16	2	737352	16	2	742096	16
3	727785	24	2	782635	24	3	737431	24	3	742175	23
4	727866	33	4	739715	32	4	737511	39	4	742254	81
5	727948	41	5	732796	40	5	737590	40	5	742332	39
6	728029	49	6	732876	48	6	737670	48	6	742411	47
7	728110	57	7	732956	56	7	737749	56	7	742489	55
8	728191	65	8	733037	64	8	737829	64	8	742568	63
9	728273	73	9	733117	72	9	737908	72	9	742647	71
5250	798954	••	5410	733107		5470	737087		5530	749795	
. 1	798435	8	1	732978	9	1	738067	0	1	749804	8
2	798516	16	9	799958	16	2	738146	16	2	749889	16
2	798507	24	2	733438	24	2	728995	94	2	749961	23
4	798678	22	4	722518	39	4	728205	29	4	743039	31
5	728759	41	5	733598	40	5	738384	40	5	743118	39
6	728841	49	6	722679	48	6	738463	48	6	743196	47
7	728922	57	7	733759	56	7	738543	56	7	743275	55
8	729003	65	8	733839	64	8	738622	64	8	743353	63
ğ	729084	73	9	733919	72		738701	72	9	743431	71
5960	790165		5490	799000		5480	799791		5540	749510	
1	720246	8	1	734070	8	1	738860	8	1	743588	8
2	720227	16	9	73/150	16	9	738030	16	2	743667	16
2	720408	94	2	794940	24	2	730018	94	3	743745	23
4	720480	32	4	734390	32	4	739097	32	4	743823	31
5	799570	41	5	784400	40	5	739177	40	5	743902	39
6	790651	40	ß	784480	48	- 6	789956	47	6	743980	47
7	790729	57	7	734560	56	7	739335	55	7	744058	55
8	799812	65	8	734640	64	8	739414	63	8	744136	63
9	729802	78	9	734790	72	9	739492	71	9	744215	71
5970	700074		5490	794900	.4	5400	790570		5550	744909	
00/0	729974	0	0400	794000	0	0490	720651	0	0000	744270	6
1	730035	10	1	794000	10	1	790790	16	1	744011	10
2	730136	10	4	795040	10	4	720010	04	2	744500	10
J A	730217	24	3	725100	24	0	720000	29	0	744040	20
4	730298	82 40	4	795000	02	4	720020	10	4	744000	20
O	730378	40	Ð	735200	40	0	740047	40	0	744004	09
0	790540	49	0	100219	40	0	740190	11	7	744940	55
	720601	01	6	725/20	64	0	740120	62	0	744010	62
	100071	- DO		100400	114	1 0	1 20200	00	0	1 1 1 7 1 7 1	00

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
5560	745075		5620	749736	-	5680	754348		5740	758912	
1	745153	8	1	749814	8	1	754425	8	1	758988	8
2	745231	16	2	749891	16	2	754501	15	2	759063	15
3	745309	23	3	749968	23	3	754578	23	3	759139	23
4	745387	31	4	750045	31	4	754654	30	4	759214	30
5	745465	39	5	750123	39	5	754730	38	5	759290	38
6	745543	47	6	750200	47	6	754807	46	6	759366	45
7	745621	55	7	750277	54	7	754883	53	7	759441	53
8	745699	62	8	750354	62	8	754960	61	8	759517	60
9	745777	70	9	750431	70	9	755036	69	9	759592	68
5570	745855		5630	750508		5690	755112		5750	759668	
1	745933	8	1	750586	8	1	755189	8	1	759743	8
2	746011	16	2	750663	16	2	755265	15	2	759819	15
3	746089	23	3	750740	23	3	755341	23	3	759894	23
4	746167	31	4	750817	31	4	755417	30	4	759970	30
5	746245	39	Ð	750894	39	5	755494	38	5	760045	38
6	746323	47	6	750971	47	0	755570	46	6	760121	45
1	746401	55		751048	54		755646	58	7	760196	53
8	746479	62	8	751125	62	8	755722	61	8	760272	60
9	746556	10	9	751202	70	9	755799	69	9	760347	68
5580	746634		5640	751279		5700	755875		5760	760422	
1	746712	8	1	751356	8	1	755951	8	1	760498	8
2	746790	16	2	751433	15	2	756027	15	2	760573	15
3	746868	23	3	751510	23	3	756103	23	3	760649	23
4	746945	31	4	751587	30	4	756180	30	4	760724	30
5	747023	39	5	751664	. 38	5	756256	38	5	760799	38
6	747101	47	6	751741	46	6	756332	46	6	760875	45
1	747179	55		701818	54		706408	53	1	760950	53
8	747250	62	0	751070	62	0	756484	61	8	761025	
9	14/334	10	9	751972	10	9	799900	69	9	761100	60
5590	747412		5650	752048		5710	756636		5770	761176	
1	747489	8		752125	8	1	756712	8	1	761251	8
2	747567	16		752202	15	Z	756788	15	2	761326	15
3	747645	23	3	102219	23	3	756864	23	3	761402	23
4	14/122	31	4	750499	30	4	750940	30	4	761477	00
e e	747800	39	0	759500	30	D C	757000	38	D C	701002	15
5	747055	54	7	759586	54	7	757169	40	07	761027	52
6	749002	69	8	752663	69	8	757944	61		761779	60
0	749110	70	a	759740	70	0	757990	60	0	761953	68
5 000	740100	10	FRED	750016		5790	757906	0.0	5700	701000	00
3000	740066	0	0000	759803	0	0120	757479	9	0100	769002	8
1	749249	16	1 0	752070	15	1	757549	15	1	762078	15
2	740040	10	2	752047	10	4	757694	10	1 2	769153	92
0	7/8/08	20	4	753128	30	1	757700	30	- 0	769998	30
5	748576	20	5	753200	38	5	757775	38	5	762303	38
6	748653	47	6	753277	46	6	757851	46	6	762378	45
7	748731	54	7	753353	54	7	757927	53	7	762453	52
8	748808	62	8	753430	62	8	758003	61	8	762529	60
9	748885	70	9	753506	70	9	758079	68	• 9	762604	68
5610	748963		5670	753583		5730	758155	- (1)	5790	762679	
1	749040	8	1	753660	8	1	758230	8	1	762754	8
2	749118	16	2	753736	15	2	758306	15	2	762829	15
2	749195	23	3	753813	23	3	758382	23	3	762904	22
4	749272	31	4	753889	30	4	758458	30	4	762978	30
5	749350	39	5	753966	38	5	758533	38	5	763053	38
6	749427	47	6	754042	46	6	758609	46	6	763128	45
7	749504	54	7	754119	54	7	758685	53	7	763203	52
8	749582	62	8	754195	62	8	758760	61	8	763278	60
9	749659	70	9	754272	70	9	758836	68	9	768353	68

22

.

۰.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
5800	763428		5860	767898		5920	772322	(1) (m)	5980	776701	.1
1	763503	7	1	767972	7	1	772395	7	1	776774	7
$\overline{2}$	763578	15	2	768046	15	2	772468	15	2	776846	14
3	763653	22	3	768120	22	3	772542	22	. 3	776919	22
4	763727	30	4	768194	- 30	4	772615	29	4	776992	29
5	763802	37	5	768268	37	5	772688	37	5	777064	36
6	763877	45	. 6	768342	45	6	772762	44	6	777137	43
7	763952	52	7	768416	52	7	772835	51	7	777209	51
8	764027	60	8	768490	59	8	772908	59	. 8	777282	58
9	764101	67	9	768564	67	9	772981	66	9	777854	65
5810	764176		5870	768638		5930	773055		5990	777427	4
1	764251	7	1	768712	7	1	773128	7	1	777499	7
2	764326	15	2	768786	15	2	773201	15	2	777572	-14
3	764400	22	3	768860	22	3	773274	22	3	777644	22
4	764475	30	4	768934	30	4	773348	29	4	777717	29
5	764550	37	5	769008	37	5	773421	37	5	777789	36
6	764624	45	6	769082	45	6	773494	44	6	777862	43
7	764699	52	7	769156	52	7	773567	51	7	777934	51
8	764774	60	8	769230	59	8	773640	59	8	778006	58
9	764848	67	9	769303	67	9	773713	66	9	778079	65
5820	764923		5880	769377	0	5940	773786		6000	778151	
1	764998	7	1	769451	7	1	773860	7	1	778224	7
$\hat{2}$	765072	15	$\overline{2}$	769525	15	2	773933	15	$\overline{2}$	778296	14
3	765147	22	3	769599	22	3	774006	22	3	778368	22
4	765221	30	4	769673	30	4	774079	29	4	778441	29
5	765296	37	5	769746	37	5	774152	37	5	778513	36
6	765370	45	6	769820	45	6	774225	44	6	778585	43
7	765445	52	7	769894	52	7	774298	51	7	778658	51
8	765520	60	8	769968	59	8	774371	59	8	778730	58
9	765594	67	9	770042	67	9	774444	66	9	778802	65
5830	765669		5890	770115		5950	774517		6010	778874	
1	765743	7	1	770189	7	1	774590	7	1	778947	7
2	765818	15	2	770263	15	$\tilde{2}$	774663	15	2	779019	14
3	765892	22	3	770336	22	3	774736	22	3	779091	22
4	765966	30	4	770410	30	4	774809	29	4	779163	29
5	766041	37	5	770484	37	5	774882	37	5	779236	36
6	766115	45	6	770557	45	6	774955	44	6	779308	43
7	766190	52	7	770631	52	7	775028	51	7	779380	51
8	766264	60	8	770705	59	8	775100	59	8	779452	58
9	766338	67	9	770778	67	9	775173	66	9	779524	65
5840	766413		5900	770852		5960	775246		6020	779596	0
1	766487	7	1	770926	7	1	775319	7	1	779669	7
2	766562	15	2	770999	15	$\hat{2}$	775392	15	2	779741	14
. 3	766636	22	3	771073	22	3	775465	22	3	779813	22
4	766710	30	4	771146	30	4	775538	29	4	779885	29
5	766785	37	5	771220	37	5	775610	37	5	779957	36
6	766859	45	6	771293	45	6	775683	44	6	780029	43
7	766933	52	7	771367	52	7	775756	51	7	780101	50
8	767007	60	8	771440	59	8	775829	•59	8	780173	58
.9	767082	67	9	771514	67	9	775902	66	9	780245	65
5850	767156		5910	771587		5970	775974	0	6030	780317	
1	767920	7	1	771661	7	1	776047	7	1	780380	1 7
9	767204	15	9	771784	15	9	776120	15	9	780461	14
2	767970	20	2	771808	22	2	776192	29	2	780522	99
4	767453	30	4	771881	30	4	776265	29	4	780605	20
5	767527	37	5	771955	37	5	776338	37	5	780677	36
6	767601	45	6	779098	44	6	776411	44	6	780740	43
7	767675	52	7	779109	52	7	776483	51	7	780891	50
8	767749	59	8	779175	59	8	776556	50	8	7808021	58
9	767823	67	9	772948	67	9	776629	66	9	780965	65
	101040		1	114410		1 3	110029	00	1 3	100305	00

No.	Log.	Prop. Part.	No.	· Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
6040	781037		6100	785330		6160	789581	-	6220	793790	
1	781109	7	1	785401	7	1	789651	7	1	793860	7
2	781181	14	2	785472	14	2	789722	14	2	793930	14
3	781253	22	3	785543	21	3	789792	21	3	794000	21
4	781324	29	4	785615	28	4	789863	28	4	794070	28
5	781396	36	5	785686	36	5	789933	35	5	794139	35
6	781468	43	6	785757	43	6	790004	42	6	794209	42
. 7	781540	50	7	785828	50	7	790074	49	7	794279	49
8	781612	58	8	785899	57	8	790144	56	8	794349	56
9	781684	65	9	785970	64	9	790215	63	9	794418	63
6050	781755	-	6110	786041		6170	790285		6230	794488	
1	781827	7	1	786112	7	1	790356	7	1	794558	7
2	781899	14	2	786183	14	2	790426	14	2	794627	14
3	781971	22	3	786254	21	3	790496	21	3	794697	21
4	782042	29	4	786325	28	4	790567	28	4	794767	28
5	782114	36	5	786396	36	5	790637	35	5	794836	35
6	782186	43	6	786467	43	6	790707	42	6	794906	42
7	782258	50	7	786538	50	7	790778	49	7	794976	49
8	782329	58	8	786609	57	8	790848	- 56	8	795045	56
9	782401	65	9	786680	64	9	790918	63	9	795115	63
6060	782473		6120	786751		6180	790988		6240	795185	
1	782544	7	1	786822	7	1	791059	7	1	795254	7
2	782616	14	2	786893	14	2	791129	14	2	795324	14
3	782688	21	3	786964	21	3	791199	21	- 3	795393	21
4	782759	29	4	787035	28	4	791269	28	4	795463	28
5	782831	36	5	787106	36	5	791340	35	5	795532	35
6	782902	43	6	787177	43	6	791410	42	6	795602	42
7	782974	50	7	787248	50	~ 7	791480	49	7	795671	49
8	783046	57	8	787319	57	8	791550	56	8	795741	56
ğ	783117	64	9	787390	64	.9	791620	63	9	795810	63
6070	799190		6120	797460	01	6100	701601	00	6950	705990	00
0070	799960	1 7	0100	707591	-	0190	701761	7	0200	705040	7
1 0	700200	114	9	707609	11		701991	114	1.	706010	114
2	789409	14	2	707679	14	2	701001	14	4 9	706099	14
0	700475	21	1	707744	21	0	701071	1 21	0	706159	21
14 5	799546	29	-4	707015	20	5	709041	20	14 5	706997	20
6	709610	49	6	707005	40	6	700111	40	6	706907	10
7	792690	50	7	797056	40	7	709191	40	7	706266	40
	799761	57		700007	49	0	709959	49		706426	49
0	700000	01	0	700041	00		700200	00	0	706505	00
6000	100004	04	0140	700000	00	0000	194044	03	0000	730000	05
6080 1	783904	7	6140	788168	7	6200	792392	7	6260	796644	7
2	784046	14	9	788310	114	9	792532	14	2	796713	14
2	78/118	91	2	799991	91	3	702602	91	2	796789	91
- 4	79/190	21	1	799451	00	1	709679	1 90	1	706859	97
5	794961	29	5	799500	20	1 5	709749	25	5	706091	25
6	704999	49	6	700500	10	6	700010	40	6	706000	49
7	791409	50	7	700000	44	1 7	700000	40	7	707060	40
	704475	57		700794	40	0	702052	40	i e	707190	56
9	784546	64	9	788804	63	9	793022	63	9	797198	62
6000	794617	D.	6150	799975	00	6210	702002	00	6970	797968	0.
1	794690	7	0100	799046	7	0210	702162	7	1	797837	7
9	784760	114	1 9	780016	111	9	703921	114	2	797406	14
4 9	78/001	01	20	780007	01	4 0	709201	91	2	797475	91
0	78/000	41	0	780157	00	0	702271	99	1	797545	97
4 5	794074	20	4	700000	20	4	702441	25	K	797614	25
0	785045	1 42	0	790900	10	e a	702511	1 42	6	797689	49
07	795116	50	07	780220	40	07	703591	1 40	7	797759	40
° 0	785197	57	0	780440	50	0	793651	56	8	797821	56
0	785950	64	0	780510	69		793791	62	9	797800	62
9	1100209	04	1 9	100010	00	1 0	100141	1 00	11 0	100000	1 04

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop Part
6280	797960		6340	802089		6400	806180		6460	810233	
1	798029	7	1	802158	7	1	806248	7	1	810300	7
2	798098	14	2	802226	14	2	806316	14	2	810367	13
3	798167	21	3	802295	21	3	806384	20	3	810434	20
4	798236	28	4	802363	27	4	806451	27	4	810501	27
5	798305	34	5	802432	34	5	806519	34	5	810569	33
6	798374	41	6	802500	41	6	806587	41	6	810636	40
7	798443	48	* 7	802568	48	7	806655	48	7	810703	47
8	798512	55	8	802637	55	8	806723	54	8	810770	54
9	798582	62	9	802705	62	9	806790	61	9	810837	60
6290	798651		6350	802774		6410	806858	_	6470	810904	
1	798720	7	•1	802842	7	1	806926	1	1	810971	7
	798789	14	2	802910	14	2	806994	14	2	811038	13
3	198858	21	3	802979	21	3	807061	20	3	811106	20
4	798927	28	4	803047	21	4	807129	21	4	811173	27
0	798996	34	5	803110	34	5	007197	04	0	011240	33
0	799000	41	0	000050	41	0	007204	41	0 7	011007	40
6	799134	48	1	803202	40	1	007002	40 54	0	011074	41
8	799203	00	8	803320	60	8	007400	61	Ö	011441	04
9	199212	62	9	000000	02	9	007407	01	9	011575	00
6300	799341	-	6360	803457	-	6420	807535	7	6480	811575	-
1	799409	1	1	803525		1	807003	14	1	011500	110
	199418	14	2	803094	14	2	807070	14	2.	811709	13
3	799047	21	3	803062	21	3	007006	20	. 3	811/10	20
4	799616	28	4	803730	21	4	807800	21	4	011010	21
e e	799000	34	0	003027	34	D C	807041	04 41	Ð	011077	10
07	700202	41	0 7	000007	41	07	007941	41	07	011977	40
	700809	40	6	000900	40	0	808076	54	6	012044	41
0	799961	69	0	804071	60	0	808143	61	0	819178	60
6310	800029	02	6970	804139	. 04	6430	808211		6490	819945	00
1	800098	7	1	804208	7	1 1	808279	7	1	812312	7
2	800167	14	2	804276	14	9	808346	14	2	812378	13
3	800236	21	3	804344	21	3	808414	20	3	812445	20
4	800305	28	4	804412	27	4	808481	27	4	812512	27
5	800373	34	5	804480	34	5	808549	34	5	812579	33
6	800442	41	6	804548	41	6	808616	41	6	812646	40
7	800511	48	7	804616	48	7	808684	48	7	812713	47
8	800580	55	8	804685	55	8	808751	54	8	812780	54
9	800648	62	9	804753	62	9	808818	61	9	812847	60
6320	800717		6380	804821		6440	808886		6500	812913	1.25
1	800786	7	1	804889	7	1	808953	7	1	812980	7
2	800854	14	2	804957	14	2	809021	13	-2	813047	13
3	800923	21	3	805025	20	3	809088	20	3	813114	20
4	800992	28	4	805093	27	4	809156	27	4	813181	27
5	801060	34.	5	805161	34	5	809223	34	5	813247	33
6	801129	41	0	805229	41	6	809290	40	6	813314	40
	801198	48	1	805297	48		809338	41		813381	41
0	801200	60 62	a a	805433	61	. 0	809425	61	0	813514	60
6990	801404	02	6200	805501	01	6450	200560	01	6510	019501	00
0000	801479	1 7	0000	805560	7	0400	800607	7	0010	010001	7
1 0	801541	114	9	805697	14	9	809604	18	-1	812714	12
2	801600	21	2	805705	20	2	809769	20	2	813781	20
4	801678	27	4	805773	27	1	809820	27		813849	27
5	801747	34	Ē	805841	34	5	809896	34	5	813914	- 33
e	801815	41	6	805908	41	6	809964	40	6	813981	40
7	801884	48	7	805976	48	7	810031	47	7	814048	47
8	8 801952	55	8	806044	54	8	810098	54	8	814114	54
9	802021	62	9	806112	61	9	810165	61	9	814181	60

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
6520	814248		6580	818226		6640	822168		6700	826075	
1	814314	7	1	818292	7	1	822233	7	1	826140	6
2	814381	13	· 2	818358	13	2	822299	13	2	826204	13
3	814447	20	- 3	818424	20	3	822364	20	3	826269	19
4	814514	26	4	818490	26	4	822430	26	4	826334	26
5	814581	33	5	818556	33	5	822495	33	5	826399	32
6	814647	40	6	818622	40	6	822560	39	6	826464	39
7	814714	46	7	818688	46	7	822626	46	7	826528	45
8	814780	53	8	818754	53	8	822691	52	8	826593	52
9	814847	60	9	818819	59	9	822756	59	9	826658	58
6530	814913		6590	818885		6650	822823		6710	826722	
1	814980	7	1	818951	7	1	822887	. 7	1	826787	6
$\overline{2}$	815046	13	2	819017	-13	2	822952	13	2	826852	13
3	815113	20	3	819083	20	3	823018	20	3	826917	19
4	815179	26	4	819149	26	4	823083	26	4	826981	26
5	815246	33	5	819215	33	5	823148	33	5	827046	32
6	815312	40	6	819281	40	6	823213	39	6	827111	39
7	815378	46	7	819346	46	7	823279	46	7	827175	45
8	815445	53	. 8	819412	53	8	823344	52	8	827240	52
9	815511	60	9	819478	59	9	823409	59	9	827305	58
6540	815578		6600	819544		6660	823474		6720	827369	1
1	815644	7	1	819610	7	1	823539	7	1	827434	6
. 2	815711	13	2	819675	13	2	823605	13	2	827498	13
3	815777	20	3	819741	20	. 3	823670	20	3	827563	19
4	815843	26	4	819807	26	4	823735	26	4	827628	26
5	815910	33	5	819873	33	5	823800	33	5	827692	32
6	815976	40	6	819939	40	6	823865	39	6	827757	39
7	816042	46	7	820004	46	7	823930	46	7	827821	45
8	816109	53	8	820070	53	8	823996	52	8	827886	52
9	816175	60	9	820136	59	9	824061	59	9	827951	58
6550	816241		6610	820201	-	6670	824126		6730	828015	
1	816308	7	1	820267	7	1	824191	6	1	828080	6
2	816374	13	2	820333	13	2	824256	13	2	828144	13
3	816440	20	3	820399	20	3	824321	19	3	828209	19
4	816506	26	. 4	820464	26	4.	824386	26	4	828273	26
5	816573	33	5	820530	33	5	824451	32	5	828338	32
6	816639	40	6	820595	40	6	824516	39	6	828402	39
7	816705	46	7	820661	46	7	824581	45	7	828467	45
8	816771	53	8	820727	53	8	824646	52	8	828531	52
9	816838	60	9	820792	59	9	824711	58	9	828595	58
6560	816904		6620	820858		6680	824776		6740	828660	
1	816970	7	1	820924	7	1	824841	6	1	828724	6
2	817036	13	2	820989	13	2	824906	13	2	828789	13
3	817102	20	- 3	821055	20	3	824971	19	3	828853	19
4	817169	26	4	821120	26	4	825036	26	4	828918	26
5	817235	33	5	821186	33	5	825101	32	5	828982	32
6	817301	40	6	821251	40	6	825166	39	6	829046	39
7	817367	46	1 7	821317	46	7	825231	45	7	829111	45
8	817433	53	8	821382	53	8	825296	52	8	829175	52
9	817499	59	9	821448	59	9	825361	58	9	829239	58
6570	817565	1	6630	821514		6690	825426		6750	829304	
1	817631	7	1	821579	7	1	825491	6	1	829368	6
2	817698	13	2	821644	13	2	825556	13	2	829432	13
- 3	817764	20	3	821710	20	3	825621	19	3	829497	19
-4	817830	26	4	821775	26	4	825686	26	4	829561	26
5	817896	33	5	821841	33	5	825751	32	5	829625	32
6	817962	40	6	821906	39	6	825815	39	6	829690	39
7	818028	46	7	821972	46	7	825880	45	7	829754	45
8	818094	53	8	822037	52	8	825945	52	8	829818	52
9	818160	59	9	822103	59	. 9	826010	98	9	829882	58

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log	Prop. Part.	No.	Log.	Prop. Part.
60 تن	829947		6820	833784		6880	837588	10	6940	841359	
1	830011	6	1	833848	6	1	837652	6	1	841422	6
2	830075	13	2	833912	13	2	837715	13	2	841485	13
3	830139	19	8	833975	19	3	837778	19	3	841547	19
4	830204	26	4	834039	26	4	837841	25	4	841610	25
5	830268	32	5	834103	32	5	837904	82	5	841672	31
6	830332	38	6	834166	38	6	837967	38	6	841735	38
7	830396	45	7	834230	45	7	838030	44	7	841797	44
8	830460	51	8	834293	51	8	838093	50	8	841860	50
9	830525	58	9	834357	58	9	838156	57	9	841922	56
6770	830589		6830	834421		6890	838219	5	6950	841985	
1	830653	6	1	834484	6	1	838282	6	1	842047	6
2	830717	13	2	834548	13	2	838345	13	2	842110	12
3	830781	19	3	834611	19	3	838408	19	3	842172	19
4	830845	26	4	834675	26	4	838471	25	4	842235	25
5	830909	32	5	834739	32	5	838534	32	5	842297	31
· 6	830973	38	6	834802	38	6	838597	38	6	842360	37
7	831037	45	7	834866	45	7	838660	44	7	842422	44
8	831102	51	8	834929	51	8	838723	50	8	842484	50
9	831166	58	9	834993	58	9	838786	57	9	842547	56
6780	831230		6840	835056	11	6900	838849		6960	842609	
1	831294	6	1	835120	6	1	838912	6	1	842672	6
2	831358	13	2	835183	13	2	838975	13	- 2	842734	12
3	831422	19	3	835247	19	3	839038	19	3	842796	19
4	831486	26	4	835310	26	4	839101	25	4	842859	25
5	831550	32	5	835373	32	5	839164	31	5	842921	31
6	831614	38	6	835437	38	6	839227	38	6	842983	37
7	831678	45	7	835500	45	7	839289	44	= 7	843046	44
8	831742	51	· . 8	835564	51	8	839352	50	8	843108	50
9	831806	58	9	835627	58	9	839415	57	9	843170	56
6790	831870		6850	835691	1	6910	839478		6970	843233	
1	831934	6	1	835754	6	- 1	839541	6	1	843295	6
2	831998	13	2	835817	13	2	839604	13	2	843357	12
3	832062	19	3	835881	19	3	839667	19	3	843420	19
4	832126	26	4	835944	26	4	839729	25	4	843482	25
5	832189	32	5	836007	32	5	839792	31	5	843544	31
6	832253	38	6	836071	38	6	839855	38	6	843606	37
7	832317	45	7	836134	45	7	839918	44	7	843669	43
8	832381	- 51	8	836197	51	8	839981	50	8	843731	50
9	832445	58	9	836261	58	9	840043	57	9	843793	56
6800	832509	12	6860	836324	ŀ	6920	840106		6980	843855	(
1	832573	6	1	836387	6	1	840169	6	1	843918	6
2	832637	13	e 2	836451	13	2	840232	13	2	843980	12
3	832700	19	3	836514	19	3	840294	19	3	844042	19
4	832764	26	4	836577	26	4	840357	25	4	844104	25
5	832828	32	5	836641	32	5	840420	31	5	844166	31
6	832892	38	6	836704	38	6	840482	38	6	844229	37
7	832956	45	7	836767	45	7	840545	44	7	844291	43
8	833020	51	8	836830	51	- 8	840608	50	8	844353	50
9.	833083	58	9	836894	58	9	840671	57	9	844415	56
6810	833147		6870	836957	1	6930	840733	0.00	6990	844477	
1	833211	6	1	837020	6	1	840796	6	1	844539	6
2	833275	13	2	837083	13	2	840859	13	2	844601	12
3	833338	19	- 3	837146	19	3	840921	-19	3	844664	19
4	833402	26	4	837210	25	4	840984	25	4	844726	25
5	833466	32	5	837273	32	5	841046	31	5	844788	31
6	833530	38	6	837336	38	6	841109	38	6	844850	37
7	022502	1 15	7	837390	44	7	841172	44	7	844912	43
	000090	1 40	1	001000			UTTT T			OTTOTA	
8	833657	51	8	837462	51	8	841234	50	8	844974	50

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
7000	845098		7060	848805		7120	852480	÷	7180	856124	
1	845160	6	1	848866	6	1	852541	6	1	856185	6
2	845222	12	2	848928	12	2	852602	12	2	856245	12
3	845284	19	3	848989	18	3	852663	18	3	856306	18
4	845346	25	4	849051	25	4	852724	24	4	856366	24
5	845408	31	5	849112	31	5	852785	30	5	856427	30
6	845470	37	6	849174	37	6	852846	37	6	856487	36
	845532	43	1	849235	43		852907	43	7	856548	42
8	840094	50	8	849290	49	8	852968	49	8	806608	48
9	040000	00	9	049000	99	9	803029	99	9	800008	94
7010	845718		7070	849419		7130	853090	0	7190	856729	0
1	040/00	10	1	Q405401	10	1	000110	10		000109	10
2	845004	14	2	849604	12	4	000211	12	2 9	856010	12
4	845966	25	4	849665	95	4	853333	94	0	856970	94
5	846028	31	5	849726	31	5	853394	30	5	857031	30
6	846090	37	6	849788	37	6	853455	37	6	857091	36
7	846151	43	7	849849	43	7	853516	43	7	857151	42
8	846213	50	8	849911	49	8	853576	49	8	857212	48
9	846275	56	9	849972	55	9	853637	55	9	857272	54
7020	846337		7080	850033		7140	853698		7200	857332	
1	846399	6	1	850095	6	• 1	853759	6	1	857393	6
2	846461	12	2	850156	12	2	853820	12	2	857453	12
3	846523	19	3	850217	18	3	853881	18	3	857513	18
4	846584	25	4	850279	25	4	853941	24	4	857574	24
5	846646	31	5	850340	31	5	854002	30	5	857634	30
6	846708	37	6	850401	37	6	854063	37	6	857694	36
7	846770	43	7	850462	43	7	854124	43	7	857754	42
8	846832	50	8	850524	49	8	854185	49	8	857815	48
9	846894	56	9	850585	55	9	854245	55	9	857875	54
7030	846955		7090	850646		7150	854306		7210	857935	
1	847017	6	1	850707	6	1	854367	6	1	857995	6
. 2	847079	12	2	850709	12		804427	12		808000	12
0	847909	19	0	850801	10		954540	10	3	000110	10
5	847264	31	5	850952	20	5	854610	29	4 5	858236	30
6	847326	37	6	851014	37	6	854670	36	6	858297	36
7	847388	43	7	851075	43	7	854731	42	1 7	858357	42
8	847449	50	8	851136	49	8	854792	48	8	858417	48
9	847511	56	9	851197	55	9	854852	54	9	858477	54
7040	847573		7100	851258		7160	854913		7220	858537	
1	847634	6	1	851320	6	1	854974	6	1	858597	6
2	847696	12	2	851381	12	2	855034	12	2	858657	12
3	847758	18	3	851442	18	3	855095	18	3	858718	18
4	847819	25	4	851503	25	4	855156	24	4	858778	24
5	847881	31	5	851564	31	5	855216	30	5	858838	30
6	847943	37	6	851625	37	6	855277	36	6	858898	36
	848004	43		851686	43		855337	42		858958	42
. 0	848000	49	0	001/4/	49	. 0	800398	48	8	850078	40
5050	040127	00	9	051000	00	9	000409	04	9	050100	04
1000	848189	0	1110	851870	0	1110	855519	0	7230	809138	6
1 9	040201	10	1 0	001901	10	1 9	000000	10	1 0	850959	19
2	848274	12	2	859059	12	2	855701	12	2	850919	18
	848435	25		852114	25	1	855761	24	1	859278	24
5	848497	31	5	852175	31	5	855822	30	5	859439	30
6	848559	37	6	852236	37	6	855882	36	6	859499	36
7	848620	43	7	852297	43	7	855943	42	7	859559	42
8	848682	49	8	852358	49	8	856003	48	8	859619	48
9	848743	55	9	852419	55	9	856064	54	9	859679	54

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
7240	859739		7300	863323		7360	866878		7420	870404	
1240	859799	6	1	863382	6	1	866937	6	1	870462	6
$\hat{2}$	859858	12	2	863442	12	2	866996	12	2	870521	12
3	859918	18	3	863501	18	3	867055	18	3	870579	18
4	859978	24	4	863561	24	4	867114	24	4	870638	24
5	860038	30	5	863620	30	5	867173	29	5	870696	29
6	860098	36	6	863680	36	6	867232	35	6	870755	35
7	860158	42	7	863739	42	7	867291	41	~7	870813	41
8	860218	48	8	863798	48	8	867350	47	8	870872	47
9	860278	54	9	863858	54	9	867409	53	9	870930	53
7250	860338	01	7310	863917		7870	867467		7430	870989	
1200	860398	B	1	863977	6	1	867526	6	1	871047	6
2	860458	19	2	864036	12	2	867585	12	2	871106	12
3	860518	18	3	864096	18	3	867644	18	3	871164	18
4	860578	94	4	864155	24	4	867703	24	4	871223	24
5	860637	20	5	864914	30	5	867762	29	5	871281	29
6	860697	36	6	864274	36	6	867821	35	6	871339	35
7	860757	49	7	864333	42	7	867880	41	7	871398	41
8	860817	48	8	864392	48	8	867939	47	8	871456	47
9	860877	54	9	864452	54	9	867998	53	9	871515	53
7960	860027	0 I	7990	964511	01	7990	969056	00	7440	871579	
1200	000907	0	1320	004011	e	1300	000000	e	1440	071070	6
1	000990	10	1	004070	10	1	000110	10	1	871600	10
4	001000	12	2	004000	12	2	000114	12	2	071740	12
0	001110	10	0	004009	10	0	000400	10	0	071006	10
4	001170	24	4	001140	24	4	000494	24	4 5	071065	20
6	861905	90	0	004000	26	0	000000	29	0	871002	25
. 7	961955	49	7	964096	40	07	000409	11	7	971091	41
	961415	44		004940	44	6	000400	41	0	8790.10	47
0	961475	40	0	965045	40	0	000021	50	0	879008	52
-	001470	04	9	000040	04	5	000000	00	9	012030	00
7270	861534		7330	865104		7390	868644		7450	872156	
1	861594	6	1	865163	0	1	\$68703	6	1	872215	6
	861004	12	2	865222	12	2	868762	12	2	872273	12
5	001/14	18	3	800282	18	J J	808821	18	3	872331	18
4	001//0	24	4	800341	24	4	868879	24	4	8/2389	-23
0	001000	30	O O	800400	30	0	868938	29	D C	872448	29
7	001090	40	07	000409	40	07	000991	00	0	070504	50
6	001904	42	0	000010	42	0	009000	41	0	070000	41
0	002012	40	0	000010	40	0	009114	41	0	070001	41
	002012	94	9	800037	04	9	809173	00	9	8/2081	99
7280	862131		7340	865696		7400	869232		7460	872739	
1	862191	10	1	865755	10	1	869290	0	1	872797	6
2	862251	12	2	865814	12	2	869349	12	2	872855	12
0	002310	10	3	865874	10	J J	869408	10	3	872913	18
4	002370	24	4	865933	24	4	869466	24	4	872972	23
0	002430	30	0	865992	30	D C	869525	29	5	873030	29
07	002409	30	07	8660001	40	07	869984	30	0	873088	35
0	002049	44	6	000110	42	0	009042	41		873140	41
0	002000	40	0	800109	40	0	869701	41	8	873204	41
9	002000	04	9	000220	94	9	809100	00	9	8/3202	99
7290	862728		7350	866287		7410	869818		7470	873321	
1	862787	6	1	866346	6	1	869877	6	1	873379	6
2	862847	12	2	866405	12	2	869935	12	2	873437	12
3	862906	18	3	866465	18	3	869994	18	8	873495	18
4	862966	24	4	866524	24	4	870053	24	4	873553	23
D	003025	30	5	866583	30	5	870111	29	5	873611	29
07	003085	36	6	866642	35	6	870170	30	6	873669	35
0	000144	42		000701	41		870228	41	7	873727	41
ð o	000204	48	8	000700	41	8	870287	47	8	8/3785	47
9	000203	04	9	900918	99	9	0/0345	00	- 9	873844	53

 $\mathbf{29}$

No.	Log.	Prop. Part.	No,	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
7480	873902		7540	877371	,	7600	880814	181	7660	884229	
1	873960	6	1	877429	6	1	880871	6	1	884285	6
2	874018	12	2	877486	$\cdot 12$	-2	880928	11	2	884342	11
3	874076	17	3	877544	17	3	880985	17	3	884399	17
4	874134	23	4	877602	23	4	881042	23	4	884455	23
5	874192	29	5	877659	29	5	881099	28	5	884512	28
6	874250	35	6	877717	34	6	881156	34	6	884569	34
7	874308	41	7	877774	40	7	881213	40	7	884625	40
8	874366	46	8	877832	46	8	881970	46	8	884689	40
0	074404	59	q	877880	59	a	001210	51	0	004002	40
	0/4444	04		011000	04	-010	001040	01		001109	51
7490	874482		1550	811941		7610	881385		1670	884795	
1	874540	6	1	878004	6	1	881442	6	1	884852	6
2	874598	12	2	878062	12	2	881499	11	2	884909	11
3	874656	17	3	878119	17	3	881556	17	3	884965	17
4	874714	23	4	878177	23	4	881613	23	4	885022	23
5	874772	29	5	878234	29	5	881670	28	5	885078	28
6	874830	35	. 6	878292	34	6	881727	34	6	885135	34
7	874887	41	7	878349	40	7	881784	40	7	885192	40
8	874945	46	8	878407	46	8	881841	46	8	885248	46
9	875003	52	9	878464	52	9	881898	51	9	885305	51
7500	075061	-	7560	8785.1.)		7690	991055		7690	005961	01
1000	075110	0	1000	979570	e	1020	001000	6	1000	000001	0
1	870119	10	1	010019	10	1	002012	11	1	005454	0
2	875177	12	4	070001	12	2	882069	11	2	889414	11
3	875235	17	5	8/8594	17	3	882126	11	3	889931	17
4	875293	23	-4	878751	23	4	882183	23	4	885587	23
5	875351	29	5	878809	29	5	882240	28	5	885644	28
6	875409	35	6	878866	34	6	882297	34	6	885700	34
7	875466	41	7	878924	40	7	882354	40	7	885757	39
8	875524	46	8	878981	46	8	882411	46	8	885813	45
9	875582	52	9	879038	52	9	882468	51	9	885870	51
7510	875640	100.75	7570	879096	1. 1	7630	882524		7690	885926	
1	875698	6	1	879153	6	1	882581	6	1	885983	6
9	875756	19	2	879211	19	2	882638	11	2	886039	11
3	975919	17	3	879268	12	3	882695	17	9	886096	17
1	075071	- 99	4	870395	11	4	002000	93	4	996159	0.00
5	075000	20	5	870383	20	5	002102	28	4	000102	00
0	075007	29	e o	070440	29	e	002003	20	0	000209	20
0	819981	50	0	079440	34	07	000000	40	0	000200	04
	876040	41		079491	40	0	002920	40		0000021	39
8	876102	46	8	879555	46	8	882980	40	8	886378	45
9	876160	52	9	879612	52	9	883037	91	9	886434	51
7520	876218		7580	879669		7640	883093		7700	886491	
1	876276	6	1	879726	6	1	883150	6	1	886547	6
2	876333	12	2	879784	11	2	883207	11	2	886604	11
3	876391	17	3	879841	17	3	883264	17	3	886660	17
4	876449	23	4	879898	23	4	883321	23	4	886716	23
5	876507	29	5	879956	028	5	883377	28	5	886773	28
6	876564	34	6	880013	34	6	883434	34	6	886829	34
7	876622	40	7	880070	40	7	883491	40	7	886885	39
8	876680	46	8	880127	46	8	883548	46	8	886942	45
0	876797	59	9	880185	51	a a	883605	51	ğ	886998	51
	010101	04	===00	000100	01		000000			007054	01
1530	876795		1590	000242		1600	883661	0	1110	007004	0
1	876853	6	1	880299	6	1	883718	6	1	88/111	0
2	876910	12	2	880356	11	2	883775	11	2	887167	11
3	876968	. 17	3	880413	17	3	883832	17	3	887223	17
4	877026	23	4	880471	23	4	883888	23	4	887280	23
5	877083	29	5	880528	28	5	883945	28	5	887336	28
6	877141	34	6	880585	34	6	884002	34	6	887392	34
7	877198	40	.7	880642	40	7	884059	40	7	887449	39
8	877256	46	8	880699	46	8	884115	46	8	887505	45
9	877314	52	9	880756	51	9	884172	51	9	887561	51

ŀ

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
7720	887617		7780	890980		7840	894316		7900	897627	
1	887674	6	1	891035	6	1	894371	6	1	897682	6
2	887730	11	2	891091	11	2	894427	11	2	897737	11
3	887786	17	3	891147	17	- 3	894482	17	3	897792	17
4	887842	23	4	891203	22	4	894538	22	4	897847	22
5	887898	28	5	891259	28	5	894593	27	5	897902	27
6	887955	34	6	891314	34	6	894648	33	. 6	897957	33
1	888011	39	1 7	891370	39	0	894704	39	0	898012	39
8	888007	40	8	891420	40	0	894709	44	8	898007	44
9	000140	91	9	091404	50	7050	004014	00	5	090124	90
1130	0000006	c	1190	891007	c	1000	804095	6	1910	090170	e
9	888909	11	1 9	801640	11	2	894980	11	9	808286	11
2 3	888348	17	3	891705	17	3	895036	17	3	898341	17
4	888404	22	4	891760	22	4	895091	22	4	898396	22
5	888460	$\bar{28}$	5	891816	28	5	895146	27	5	898451	27
6	888516	34	6	891872	33	6	895201	33	6	898506	33
7	888573	39	7	891928	39	7	895257	39	7	898561	39
8	888629	45	8	891983	44	8	895312	44	8	898615	44
9	888685	50	9	892039	50	9	895367	50	9	898670	50
7740	888741		7800	892095	1	7860	895423	•	7920	898725	
1	888797	6	1	892150	6	1	895478	6	1	898780	5
2	888853	11	2	892206	11	2	895533	11	2	898835	11
3	888909	17	3	892262	17	3	895588	17	_3	898890	17
. 4	888965	22	4	892317	22	4	895643	22	4	898944	22
5	889021	28	5	892373	28	5	895699	27	5	898999	27
6	889077	34	67	892429	33	0	899794	33	0 7	899004	88
6	009104	- 39 - 45	0	8092484	- 59 - 44	6	805864	09		800164	38
0	880.546	40 50	0	802505	50	o o	895920	50	a	800.18	44
7750	0002410	00	7010	002000	00	7070	805075	00	7020	000210	00
1100	880258	6	1010	692001 609707	ß	10/0	806030	6	1900	800398	5
9	889414	11	1 9	802762	11	9	896085	11	9	899383	11
3	889470	17	2	892818	17	3	896140	17	3	899437	17
4	889526	22	4	892873	22	4	896195	22	4	899492	22
5	889582	28	5	892929	28	5	896251	27	5	899547	27
6	889638	34	6	892985	33	6	896306	33	6	899602	33
7	889694	39	7	893040	39	7	896361	39	7.	899656	38
8	889750	45	8	893096	44	8	896416	44	.8	899711	44
9	889806	50	9	893151	50	9	896471	50	9	899766	50
7760	889862		7820	893207		7880	896526		7940	899820	
1	889918	6	1	893262	6	1	896581	6	1	899875	5
2	889974	11	2	893318	11	2	896636	11	. 2	899930	11
3	890030	17	3	893373	17	3	896692	17	3	899985	17
4	890086	22	4	893429	22	4	896/4/	22	4	900039	22
0 6	800107	20	0	093404	20	5	806857	22	0	900094	21
7	800253	29	. 0	802505	30	07	806019	30	07	000149	20
8	890309	45	8	893651	44	8	896967	44	8	900258	44
9	890365	50	9	893706	50	9	897022	50	9	900312	50
7770	890421		7830	803769	00	7900	897077		7950	000367	00
1	890477	6	1	893817	6	1000	897132	6	1000	900422	5
2	890533	11	2	893873	11	2	897187	11	2	900476	11
3	890589	17	3	893928	17	3	897242	17	3	900531	17
4	890644	22	4	893984	22	4	897297	22	4	900586	22
5	890700	28	5	894039	28	5	897352	27	5	900640	27
6	890756	34	6	894094	33	6	897407	33	6	900695	33
7	890812	39	7	894150	39	. 7	897462	39	7	900749	38
8	890868	45	8	894205	44	8	897517	44	8	900804	44
9	890924	50	9	894261	50	9	897572	50	9	900858	50

No.	Log.	Prop, Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
7960	900913		8020	904174		8080	907411		8140	910624	
1	900968	5	1	904228	5	1	907465	5	1	910678	5
2	901022	11	2	904283	11	2	907519	11	$\tilde{2}$	910731	11
3	901077	16	3	904337	16	3	907573	16	3	910784	16
4	901131	22	4	904391	22	4	907626	22	4	910838	21
5	901186	27	5	904445	27	5	907680	27	- 5	910891	27
6	901240	33	6	904499	32	6	907734	29	6	910944	20
7	901210	38	7	904553	38	7	007787	22	7	010009	97
é	001240	44	8	904607	43	8	007841	12	8	011051	19
0	001404	40	a a	004661	10		007805	40	0	011104	40
9	501404	40	0000	001001	40	0000	001000	49	9	511104	40
7970	901458		8030	904715	-	8090	907948		8150	911158	
1	901513	5	1	901770	D	1	908002	5	1	911211	5
2	901567	11	2	904824	11	2	908056	11	2	911264	11
3	901622	16	3	904878	16	3	908109	16	3	911317	16
4	901676	22	4	904932	22	4	908163	22	4	911371	21
5	901731	27	5	904986	27	5	908217	27	5	911424	27
6	901785	33	6	905040	32	6	908270	32	6	911477	32
7	901840	38	7	905094	38	7	908324	38	7	911530	37
8	901894	44	8	905148	43	8	908378	43	8	911584	42
9	901948	49	. 9	905202	49	9	908431	49	9	911637	48
7980	902003		8040	905256	5-	8100	908485		8160	911690	
1	902057	5	1	905310	5	1	908539	5	1	911743	5
2	902112	11	2	905364	11	2	908592	11	$\frac{1}{2}$	911797	11
2	002166	16	3	905418	16	2	008646	16	3	911850	16
4	002100	10	4	005479	29	1	008600	91	1	011002	91
5	0022221	97	5	005526	27	5	008753	97	5	011056	07
0	0002210	20	6	005590	20	G	000000	41 90	6	010000	20
0 7	902029	00	7	005694	04	7	900001	04	7	010000	04
	902004	38		900004	19	6	900000	01	0	912000	31
8	902400	44	0	900000	40	0	900914	40	0	912110	42
9	902492	49	9	900742	49	9	909901	48	9	912109	48
7990	902547		8050	905796		8110	909021		8170	912222	
1	902601	5	1	905850	5	1	909074	5	1	912275	5
2	902655	11	2	905904	11		909128	11	2	912328	11
3	902710	16	3	005958	16	3	909181	16	3	912381	16
- 4	902764	22	4	906012	22	4	909235	21	4	912435	21
5	902818	27	5	906065	27	- 5	909288	27	5	912488	27
6	902873	33	. 6	906119	32	6	909342	32	6	912541	32
7	902927	38	7	906173	88	7	909395	37	7	912594	37
8	902981	44	8	906227	43	8	909449	43	8	912647	42
9	903036	49	. 9	906281	49	9	909502	48	9	912700	48
8000	903090		8060	906335		8120	909556		8180	912753	
1	903144	5	1	906389	5	1	909609	5	1	912806	5
2	903198	11	2	906443	11	2	909663	11	2	912859	11
3	903253	16	3	906497	16	3	909716	16	3	912913	16
4	903307	99	4	906550	22	4	909770	21	4	912966	21
5	903361	97	- 5	906604	27	5	909823	27	5	913019	27
6	903416	29	6	906658	32	6	909877	39	G	913072	32
7	003470	90	7	006719	38	7	000030	27	7	913195	37
é	002594	42	8	006766	43	0	000084	12		913178	49
0	002579	40	a	006090	10	0	010037	40	0	013981	10
9	000010	49	0000	000020	40	9	010000	40	0100	010201	40
8010	903632	-	8010	906873	-	8130	910090	-	8190	913284	
1	903687	5	1	906927	0	1	910144	5	1.	913337	5
2	903741	11	2	906981	11	2	910197	11	2	913390	11
3	903795	16	3	907035	16	3	910251	16	3	913443	16
4	903849	22	4	907089	22	4	910304	21	4	913496	21
5	903903	27	5	907142	27	5	910358	27	5	913549	27
6	903958	32	6	907196	32	6	910411	32	6	913602	32
7	904012	38	7	907250	38	7	910464	37	7	913655	37
8	904066	43	8	907304	43	. 8	910518	43	8	913708	42
9	904120	49	9	907358	49	9	910571	48	9	913761	48

•

١

LOGARITHMS OF NUMBERS. OF CALIFORN

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
8900	012814		8260	916980		8320	090198	-	8380	993944	
0200	913867	5	1	917033	5	1	920175	5	1	923296	5
$\hat{2}$	913920	11	2	917085	11	2	920228	10	2	923348	10
3	913973	16	3	917138	16	3	920280	16	3	923399	16
4	914026	21	4	917190	21	4	920332	21	4	923451	21
5	914079	27	5	917243	26	5	920384	26	5	923503	26
6	914131	32	6	917295	31	6	920436	31	. 6	923555	31
7	914184	37	7	917348	37	7	920489	36	7	923607	36
8	914237	42	8	917400	42	8	920541	42	8	923658	42
9	914290	48	9	917453	47	9	920593	47	9	923710	47
8210	914343		8270	917505		8330	920645		8390	923762	
1	914396	5	1	917558	5	1	920697	5	1	923814	5
2	914449	11	2	917610		2	920749	10		923865	10
3	914502	16	J J	917003	10	3	920801	16	3	923917	16
45	914000	21	4 5	017768	21	4 5	920000	21	4	923909	21
6	014660	32	6	917820	31	6	920900	20	0	024021	20
. 7	914713	37	7	917873	37	7	921010	36	7	994194	36
8	914766	42	8	917925	42	8	921062	42	8	924176	42
9	914819	48	9	917978	47	9	921114	47	9	924228	47
8220	914872		8280	918030		8340	921166		8400	924279	
1	914925	5	1	918083	5	1	921218	5	1	924331	5
2	914977	11	2	918135	11	2	921270	10	2	924383	10
3	915030	16	3	918188	16	3	921322	16	3	924434	15
4	915083	21	4	918240	21	4	921374	21	4	924486	21
5	915136	27	5	918292	26	5	921426	26	5	924538	26
6	915189	32	6	918345	31	6	921478	31	6	924589	31
7	915241	37	7	918397	87	7	921530	36	7	924641	36
8	915294	42	8	918450	42	8	921582	42	8	924693	41
9	915347	48	9	918502	47	9	921634	47	9	924744	46
8230	915400		8290	918555		8350	921686		8410	924796	
1	915453	5	1	918607	5	1	921738	5	1	924848	5
2	915505	11	2	918659	11	2	921790	10	2	924899	10
J J	910000	10	0	918712	16	3	921842	16	3	924951	15
5	015664	97	5	018816	41 96	4 5	921094	21	4	920002	21
6	915716	32	6	918869	20	6	921940	20	6	920004	20
7	915769	37	7	918921	37	7	922050	36	7	925157	36
8	915822	42	8	918973	42	8	922102	42	8	925209	41
9	915874	48	9	919026	47	9	922154	47	9	925260	46
8240	915927		8300	919078		8360	922206		8420	925312	
1	915980	5	1	919130	5	1	922258	5	1	925364	5
2	916033	11	2	919183	11	2	922310	10	$\hat{2}$	925415	10
3	916085	16	• 3	919235	16	3	922362	16	3	925467	15
4	916138	21	4	919287	21	4	922414	21	4	925518	21
5	916191	27	5	919340	26	5	922466	26	5	925570	26
6	916243	32	6	919392	31	6	922518	31	6	925621	31
. 7	916296	37	7	919444	37	7	922570	36	7	925673	36
8	916349	42	8	919496	42	8	922622	42	8	925724	41
9	916401	48	9	919549	47	9	922674	47	9	925776	46
8250	916454	_	8310	919601	-	8370	922725		8430	925828	
1	916507	11	1	919653	5	1	922777	5	1	925879	5
2	916559	11	2	919705	11.	2	922829	10	2	925931	10
5	916664	10 91	0	010010	10	3	922881	10	3	925982	15
5	916717	26	4 5	919869	26	4 5	0220085	26	4	920034	21
6	916770	31	6	919914	31	6	923037	31	e e	920080	20
. 7	916822	37	7	919967	37	7	923088	36	0	926188	26
8	916875	42	8	920019	42	8	923140	42	8	926239	41
9	916927	47	9	920071	47	9	923192	47	9	926291	46

33

UNIVERS TY

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
8440	926342		8500	929419		8560	932474		8620	935507	
1	926394	5	1	929470	5	1	932524	5	1	935558	5
2	926445	10	2	929521	10	2	932575	10	- 2	935608	10
3	926497	15	3	929572	15	3	932626	15	3	935658	15
4	926548	21	4	929623	20	4	932677	20	4	935709	20
5	926600	26	5	929674	26	5	932727	25	5	935759	25
6	926651	31	6	929725	31	6	932778	30	6	935809	30
7	926702	36	7	929776	36	7	932829	35	7	935860	35
8	926754	41	8	929827	41	8	932879	40	8	935910	40
9	926805	46	9	929878	46	9	932930	45	9	935960	45
8450	926857		8510	929930		8570	932981		8630	936011	
1	926908	5	1	929981	5	1	933031	5	1	936061	5
2	926959	10	2	930032	10	2	933082	10	2	936111	10
3	927011	15	3	930083	15	3	933133	15	3	936162	15
4	927062	21	4	930134	20	4	933183	20	4	936212	20
5	927114	26	5	930185	26	5	933234	25	5	936262	25
6	927165	31	6	930236	31	6	933285	30	6	936313	30
7	927216	36	7	930287	36	7	933335	35	7	936363	35
8	927268	41	8	930338	41	8	933386	40	8	936413	40
9	927319	46	9	930389	46	9	933437	45	9	936463	45
8460	927370		8520	930440		8580	933487		8640	936514	
1	927422	5	1	930491	5	1	933538	5	1	936564	5
2	027473	10	2	930541	10	9	022588	10	2	926614	10
3	097594	15	3	930592	15	2	033630	15	2	936664	15
4	027576	21	4	930643	20	4	022600	20	4	026715	20
5	027697	26	5	930694	25	5	933740	20	5	036765	25
6	027678	31	6	930745	21	6	022701	20	6	936815	30
7	027730	36	7	930796	26	7	022841	25	7	926865	35
8	927781	41	8	930847	41	8	033892	40	8	936916	40
9	927832	46	9	930898	46	g	933943	40	9	936966	45
0470	007000	10	9590	020010	10	0:00	022002	40	9650	027016	10
04/0	941000	5	1	031000	5	0000	9999999	-	1	097066	5
1	007086	10	9	021051	10	1	024004	10	9	097116	10
2	028027	15	2	031102	15	2	02/1/5	10	2	097167	15
0	028082	91	4	021152	20	0	024105	10	1	027017	20
4	920000	21	5	021002	20	- 4	094946	20	14 5	991211	20
6	028101	20	6	021954	20	6	024206	20	6	027217	20
0 7	920191	90	7	021205	96	0	094947	30	7	097967	25
0	940444	41	8	021256	41	6	094907	30	0	097419	40
0	940495	41	q	031407	41	0	024448	40	a	027468	45
9	000000	40	0540	001450	40	0000	001100	40	0000	007710	TO
8480	928396	-	0040	931400	-	8600	934498	-	8000	937318	
1	920447	10	9	991909	10	1	994949	10	1	097010	10
2	928498	10	4	991000	10	2	934099	10	2	937010	10
3	928949	10	3	991010	10	5	934000	10	0	937000	10
4	928601	21	4	991001	20	4	934700	20	. 5	937710	20
9	928002	26	- 6	901712	20	0	934/01	20	0	9077010	20
0	928703	51	7	991014	00	0 7	994001	30	7	997019	95
	928794	30	0	001004	30	0	994002	30		991009	30
8	928800	41	0	991015	41	0	994902	40	0	991919	40
9	920000	40	0000	001000	40	9	304300	40	0050	000010	40
8490	928908		8550	931966		8610	935003		8070	938019	-
1	928959	10	1	932017	D	1	930054	0	1	930009	10
2	929010	10	Z	952068	10	Z	930104	10	2 0	000119	10
3	929061	15	3	932118	15	3	935154	15	3	930109	10
4	929112	20	4	932169	20	4	935205	20	4	938219	20
5	929163	26	. 0	932220	25	5	935255	25	9	938209	20
6	929214	31	0	932271	30	6	935306	30	0	938319	30
7	929266	36	1	932321	35	1	935356	30	6	938310	30
8	929317	41	8	952512	40	8	939400	40	8	000420	40
9	929368	46	9	932423	45	9	935457	40	9	938470	40

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
8680	938520		8740	941511		8800	944483		8860	947434	
1	938570	5	1	941561	5	1	944532	5	1	947483	5
2	938620	10	2	941611	10	2	944581	10	2	947532	10
3	938670	15	3	941660	15	3	944631	15	3	947081	10
4	938720	20	4	941710	20	4	944680	20	4	947030	20
5	938770	25	O C	941700	20	5	944729	25	- 0	947079	20
0	930020	30	07	941009	25	07	944/19	00 95	07	941140	29
6	038020	40	8	041000	40	6	044977	40	8	047896	20
0	038070	40	a	041058	45	0	044097	40	a	947875	14
0000	020000	40	0750	040000	TO	0010	044070	40	0070	047094	TT
8690	939020	5	0/00	942008	5	0010	944970	5	0010	047072	5
1	939070	10	1	049107	10	1	940020	10	1 0	94/9/0	10
2	939120	10	2	042107	15	2	045104	10	2	048070	15
0	020990	20	4	949906	20	0	045179	20	4	048110	20
4	939270	25	5	949256	25	5	945175	20	5	948168	25
6	939319	30	6	942206	30	ß	045979	20	6	948917	29
7	939369	35	7	942355	35	7	945391	35	7	948266	34
* 8	939419	40	8	942405	40	8	945370	40	8	948315	39
9	939469	45	9	942454	45	9	945419	45	9	948364	44
8700	030510		8760	949504		8820	045460	10	8880	048412	
1	939569	5	1	942554	5	0020	045518	5	1	948169	5
9	939619	10	9	942603	10	9	045567	10	9	948511	10
2	939669	15	3	942653	15	2	045616	15	2	918560	15
4	939719	20	4	942702	20	4	945665	20	4	948608	20
5	939769	25	5	949752	$\frac{20}{25}$	5	945715	25	5	948657	25
6	939819	30	6	942801	30	6	945764	29	6	948706	29
7	939868	35	7	942851	35	7	945813	34	7	948755	34
8	939918	40	8	942900	40	8	945862	39	8	948804	39
9	939968	45	9	942950	45	9	945911	44	9	948853	44
8710	940018		8770	943000		8830	945961		8800	0.48002	
1	940068	5	1	943049	5	1	946010	5	1	948951	5
2	940118	10	2	943099	10	2	946059	10	2	948999	10
3	940168	15	3	943148	15	3	946108	15	3	949048	15
4	940218	20	4	943198	20	4	946157	20	4	949097	20
5	940267	25	. 5	943247	25	5	946207	25	5	949146	25
6	940317	30	6	943297	30	6	946256	29	6	949195	29
7	940367.	35	7	943346	35	7	946305	34	7	949244	34
8	940417	40	8	943396	40	8	946354	39	8	949292	39
9	940467	45	9	943445	45	9	946403	44	9	949341	44
8720	940516		8780	943494		8840	946452		8900	949390	
1	940566	5	1	943544	5	1	946501	5	1	949489	5
2	940616	10	2	943593	10	2	946550	10	2	949488	10
3	940666	15	3	943643	15	3	946600	15	3	949536	15
4	940716	20	4	943692	20	4	946649	20	4	949585	20
5	940765	25	5	943742	25	5	946698	25	5	949634	25
6	940815	30	6	943791	30	6	946747	29	6	949683	29
7	940865	35	7	943841	30	7	946796	34	7	949731	34
8	940915	40	8	943890	40	8	946845	39	8	949780	39
9	940964	40	9	948989	45	9	946894	44	9	949829	44
8730	941014		8790	943989		8850	946943		8910	949878	
	941064	5		944038	5	1	946992	5	1	949926	5
2	941114	10	2	944088	10	2	947041	10	2	949975	10
3	941163	10	3	944137	15	3	947090	15	• 3	950024	15
4	941213	20	4	944186	20	.4	947139	20	4	900073	20
	041203	20	G C	04490	20	D C	94/189	25	5	900121	20
07	041260	25	67	044230	25	. 0	947238	29	6 7	990170	29
0	941419	40	0	014994	40	0	047220	04 20	0	050967	20
0	941469	45	0	941499	45	a	947995	44	0	950207	44
0	011104	1 30	1 0	011100	10	11 3	011000	1.1	9	000010	1.1

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
8920	950365	-	8980	953276		9040	956168	-	9100	959041	
1	950413	5	1	953325	5	1	956216	5	1	959089	5
2	950462	10	2	953373	10	2	956264	10	2	959137	10
3	950511	15	3	953421	15	3	956312	14	3	959184	14
4	950560	19	4	953470	19	4	956361	19	4	959232	19
5	950608	24	5	953518	24	5	956409	24	5	959280	24
6	950657	29	6	953566	29	6	.956457	29	6	959328	29
7	950705	34	7	953615	34	7	956505	34	7	959375	34
8	950754	39	8	953663	39	8	956553	38	8	959423	38
9	950803	44	9	953711	44	9	956601	43	9	959471	43
8930	950851		8990	953760		9050	956649		9110	959518	
1	950900	5	1	953808	5	1	956697	5	1	959566	5
2	950949	10	2	953856	10	2	956745	10	2	959614	10
3	950997	15	3	953905	15	3	956792	14	3	959661	14
4	951046	19	4	953953	19	4	956840	19	4	959709	19
5	951095	24	5	954001	24	5	956888	24	5	959757	24
6	951143	29	6	954049	29	6	956936	29	6	959804	29
7	951192	34	7	954098	34	7	956984	34	7	959852	34
8	951240	39	8	954146	39	8	957032	38	8	959900	38
9	951289	44	9	954194	44	9	957080	43	9	959947	43
8940	951337		9000	954949		0060	957128		9120	959995	
1	951386	5	1	054901	5	5000	057176	5	0140	060049	5
2	951425	10	2	054330	10	9	057994	10	0	060000	10
2	951482	15	3	054387	14	2	057979	14	2	060138	14
4	051520	19	4	054495	14	0	057990	10	0	060195	10
	051590	24	5	054484	19	4 5	057269	10	4 5	060022	10
6	051690	29	6	054599	24	6	057416	244	6	0600200	00
. 7	051677	34	7	054580	29	7	057464	23	7	060200	20
8	051796	39	8	054698	90	0	057511	90	6	060276	00
. 0	051774	44	q	054677	00	0	057550	42	0	060422	12
0050	051009	17	0010	05 4705	40	0050	057007	40	0100	000120	40
8990	991823	5	9010	904720	-	9010	997007	-	9130	9004/1	-
1	991872	10	1	994773	0	1	997099	5	1	900018	
2	951920	10	2	954821	10	2	997703	10	2	960566	10
0	901909	10	0	994009	14	3	997791	14	3	900013	14
4	992017	10	4	994918	19	4	997799	19	4	960661	19
0	992000	24	0	904900		Ð	991041		Ð	900709	24
2	902114	20	0 7	900014	29	0	997894	29	0	900100	28
6	992103	20	0	900002	34		957942	34		900804	00
0	992211	11	0	900110	38	0	991990	00	0	900901	100
9	902209	33	9	900100	43	9	900000	43	9	900899	40
8960	952308	_	9020	955206		9080	958086	_	9140	960946	
1	952356.	0	1	955255	5	1	958134	5	1	960994	5
2	952405	10	2	955803	10	2	958181	10	2	961041	10
3	952453	10	3	955351	14	3	958229	14	3	961089	14
4	952502	19	4	955399	19	4	958277	19	4	961136	19
5	952550	24	5	955447	24	5	958325	24	5	961184	24
6	952599	29	6	955495	29	6	958373	29.	6	961231	28
7	952647	34	1	955543	34	1	958420	34	7	961279	33
8	952696	39	8	955592	38	8	958468	38	8	961326	38
9	952744	44	9	955640	43	9	958516	43	9	961374	43
8970	952792		9030	955688		9090	958564		9150	961421	
1	952841	5	1	955736	5	1	958612	5	1	961469	5
2	952889	10	2	955784	10	2	958659	10	2	961516	10
3	952938	15	3	955832	14	3	958707	14	3	961563	14
4	059086	T 9	4	955880	19	4	958755	19	4	961611	19
5	004000				1 04	5	058802	94	5	061659	04
0	953034	24	5	955928	24	0	200000	41	0	301000	24t
6	953034 953083	$\frac{24}{29}$	56	955928 955976	24 29	6	958850	29	6	961706	24 28
67	953034 953083 953131	24 29 84	5 6 7	955928 955976 956024	24 29 34	6 7	958850 958898	29 34	6 7	961706 961753	24 28 33
6 7 8	953034 953083 953131 953180	24 29 34 39	5 6 7 8	955928 955976 956024 956072	24 29 34 38	6 7 8	958850 958898 958946	29 34 38	6 7 8	961706 961753 961801	24 28 33 38

,

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
9160	961895		9220	964731		9280	967548		9340	970347	
1	961943	5	1	964778	5	1	967595	5	1	970393	5
$\overline{2}$	961990	10	2	964825	9	2	967642	9	2	970440	9
8	962038	14	3	964872	14	3	967688	14	3	970486	14
4	962085	19	4	964919	19	4	967735	19	4	970533	19
5	962132	24	5	964966	24	5	967782	23	5	970579	23
6	962180	28	6	965013	28	6	967829	28	6	970626	28
7	962227	33	7	965060	33	7	967875	33	7	970672	33
8	962275	38	8	965108	38	8	967922	38	8	970719	37
9	962322	43	9	965155	42	9	967969	42	9	970765	42
9170	962369		9230	965202		9290	968016		9350	970812	
1	962417	5	1	965249	5	1	968062	5	1	970858	5
2	962464	9	2	965296	9	$\hat{2}$	968109	9	2	970904	ğ
3	962511	14	3	965343	14	3	968156	14	3	970951	14
4	962559	19	4	965390	19	4	968203	19	4	970997	19
5	962606	24	5	965437	24	5	968249	23	5	971044	23
6	962653	28	6	965484	28	6	968296	28	6	971090	28
7	962701	33	7	965531	33	7	968343	33	7	971137	33
8	962748	38	8	965578	38	8	968389	38	8	971183	37
9	962795	42	9	965625	42	9	968436	42	9	971229	42
9180	962842		0240	965672		0200	068189		9360	071976	
1	962890	5	1	965719	5	1	068520	5	1	071299	5
9	962937	ğ	9	965766	a	9	068576	0	9	071260	0
2	962985	14	2	965813	14	2	068692	14	3	071415	14
4	963039	10	4	965860	10	1	068670	10	4	071461	14
5	063070	24	5	965907	94	5	069716	17	5	071500	19
6	063196	24	6	965954	24	6	069769	20	6	071554	20
7	062174	20	7	966001	22	7	0600100	20	7	071004	20
8	963991	28	8	966048	28	8	068856	27	8	971000	00 97
9	963268	19	9	966095	49	a a	900000	19	9	071609	01
0100	000200	74	0050	066149	74	0010	000000	74	0970	071030	42
9190	000010	E	9200	066190	E	9310	968990	-	9370	971740	_
1	062410	0	1 9	066936	9	1	900990	0	1 0	9/1/80	9
20	062457	14	2	066283	14	2	909043	14	2 9	971052	9
0	062504	10	0	066290	14	0	909090	14	0	971879	14
5	062559	10	4 5	966376	10	4 5	909100	19	4 5	971920	19
6	062500	24 90	6	966493	44 90	0	909100	20	0	9/19/1	23
7	963646	20	7	966470	22	7	060976	20	7	972010	20
6	069609	20		966517	00 90	0	060202	00	6	972004	00
0	963741	49	9	966564	49	0	909525	19	.0	972110	51
0000	000741	14	0000	000001	44	0000	000410	**4	0000	972100	44
9200	903788	e	9260	900011		9320	969416		9380	972203	
1	903030	0	1	900000	0	1	969462	9	1	972249	5
2	963882	14	2	900700	9	2	969509	9	2	972295	9
3	963929	14	3	900702	14	3	969556	14	3	972342	14
4	963977	19	4	900798	19	4	969602	19	4	972388	18
0	904024	24	0	900849	24	0	969649	23	0	972434	23
0	904071	20	0 7	900894	28	07	909095	28	0	972480	28
6	904110	00	0	900939	00		969742	55		972527	32
0	904100	00	0	900900	30	0	909788	31	8	972573	31
9	904212	42	90	907055	42	9	909835	42	9	972619	41
9210	964260	_	9270	967080	-	9330	969882	_	9390	972666	-
.1	964307	Ð	1	967127	5	1	969928	5	1	972712	5
2	964354	9	2	967173	.9	2	969975	9	2	972758	9
3	964401	14	3	967220	14	8	970021	14	3	972804	14
4	964448	19	4	967267	19	4	970068	19	4	972851	18
5	964495	24	5	967314	24	5	970114	23	5	972897	23
6	964542	28	6	967361	28	6	970161	28	6	972943	28
7	964590	33		967408	33	7	970207	33	7	972989	32
8	964637	38	8	967404	38	8	970254	37	8	973035	37
9	904084	42	9	901901	42	9	910300	42	9	978082	41

•

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
9400	973128		9460	975891		9520	978637	01	9580	981365	
1	973174	5	1	975937	5	1	978683	5	1	981411	5
. 2	973220	9	2	975983	9	2	978728	9	2	981456	9
- 3	973266	14	3	976029	14	3	978774	14	3	981501	14
4	973313	18	4	976075	18	4	978819	18	4	981547	18
5	973359	23	5	976121	23	5	978865	23	5	981592	23
6	973405	28	6	976166	28	6	978911	27	6	981637	27
7	973451	32	7	976212	32	7	978956	32	7	981683	32
8	973497	37	8	976258	37	8	979002	36	8	981728	36
9	973543	41	9	976304	41	9	979047	41	9	981773	41
9410	973590		9470	976350		9530	979093		9590	981819	
1	973636	5	1	976396	5	1	979138	5	1	981864	5
2	973682	9	2	976442	9	2	979184	9	2	981909	9
3	973728	14	3	976487	14	3	979230	14	3	981954	14
4	973774	18	4	976533	18	4	979275	18	4	982000	18
5	973820	23	5	976579	23	5	979321	23	5	982045	23
6	973866	28	6	976625	28	6	979366	27	6	982090	27
7	973913	32	7	976671	32	7	979412	32	7	982135	32
8	973959	37	8	976717	37	8	979457	36	8	982181	36
9	974005	41	9	976762	41	9	979503	41	9	982226	41
9420	974051		9480	976808		9540	979548		9600	982271	
1	974097	5	1	976854	5	1	979594	5	1	982316	5
2	974143	9	2	976900	9.	2	979639	g	2	982362	9
3	974189	14	3	976946	14	3	979685	14	3	982407	14
4	974235	18	4	976991	18	4	979730	18	4	982452	18
5	974281	93	5	977037	23	5	979776	23	5	982497	23
6	974327	28	6	977083	27	6	979821	27	6	982543	27
7	974373	39	. 7	977129	32	7	979867	32	7	982588	32
	974420	37	8	977175	37	8	979912	36	8	982633	36
9	974466	41	. 9	977220	41	9	979958	41	9	982678	41
0420	074519		0400	077966	1	0550	090002		0610	029792	
9400	074558	5	1	077219	5	1 3000	080010	5	1 1	089760	5
1	074604	0	9	077258	0	1 0	000010	0	1 0	0202103	0
2	074650	14	2	077402	14	2	900094	14	2	020250	14
0	074606	19	4	077440	19	1	000195	10	1	089004	18
4 5	074749	10	5	077495	92	5	080991	10	4 5	089040	28
6	074788	100	6	077541	20	6	080201	20	6	082004	20
7	074894	20	7	077586	20	7	080210	20	7	982040	39
- 6	074880	97	8	077639	37		080267	26	8	082085	36
0	074096	11	0	077678	41	0	080419	41	0	983130	41
0.110	071020	TI	0500	077704	11	0500	000450	11	0000	000175	
9440	974972	=	9000	977720	E	9000	900400	E	9020	0000110	5
	9750010	9	1	9777015	0	1	980908	0	1	903220	0
2	975004	9	2 2	977001	14	20	980549	14	2 9	900400	14
3	975110	14	0	977000	14	0	980094	14	0	002256	19
4	979190	10	4	977900	10	4	980040	10	4	089401	10
0	975202	23	0	977952	20	0	900000	20	0	089446	20
0	975240	20	7	070040	41	7	900100	24	0 7	0004401	32
	975294	04	0	070040	04	0	900110	204		009596	26
0	075900	01	0	070105	1 41	0	000021	41	0	089581	41
9	970000	41	0.710	970150	41	3	900001	41	9	000001	
9450	975432	-	9510	978180	-	9570	980912	-	9630	983626	E
1	975478	5	1	978226	5	1	980957	0	1	983671	0
1 2	975524	9	2	978272	9	2	981003	9	2	983716	9
3	975570	14	3	978317	14	3	981048	14	3	983762	14
4	975616	18	4	978363	18	4	981093	18	4	983807	18
5	975661	23	5	978409	23	5	981139	23	5	983852	23
6	975707	28	6	978454	27	6	981184	21	6	983897	21
7	975753	32	7	978500	82	* 7	981229	32	1	983942	32
8	975799	31	8	978546	37	8	981275	30	. 8	983981	30
9	975845	.41	1 9	978591	41	9	981320	41	9	984032	- 41

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
9640	984077		9700	986772		9760	989450		9820	992111	
1	984122	5	1	986816	4	1	989494	4	1	992156	4
2	984167	9	2	986861	9	2	989539	9	2	992200	9
3	984212	14	3	986906	13	8	989583	13	3	992244	13
4	984257	18	4	986951	18	4	989628	18	4	992288	18
5	984302	23	5	986995	22	5	989672	22	5	992333	22
6	984347	27	6	987040	27	6	989717	21	6	992377	20
0	984392	02 96	1	98/080	31	6.	989/01	51 96	6	992421	95
8	984437	00 41	8	987130	30 4ù	0	989800	00 40	0	992400	40
0000	004507	±1	9	007010	40	0770	000005	40	0000	00.0559	40
9650	984927	5	9/10	987219	4	9110	9999999	4	9000	992000	1
1 0	984972	0	1	987204	4		9099999	4	1 9	992090	4
3	984662	14	2	987353	13	3	990028	13	3	992686	13
4	984707	18	4	987398	18	. 4	990072	18	4	992730	18
5	984752	$\frac{10}{23}$	5	987443	22	5	990117	22	5	992774	22
6	984797	27	6	987487	27	6	990161	27	6	992818	26
7	984842	32	7	987532	31	7	990206	31	7	992863	31
8	984887	36	. 8	987577	36	8	990250	36	8	992907	35
9	984932	41	9	987622	40	9	990294	40	9	992951	40
9660	984977		9720	987666		9780	990339		9840	992995	
1	985022	5	1	987711	4	1	990383	4	1	993039	4
2	985067	9	2	987756	9	2	990428	9	2	993083	9
3	985112	14	3	987800	13	3	990472	13	3	993127	13
4	985157	18	4	987845	18	4	990516	18	4	993172	18
5	985202	23	5	987890	22	5	990561	22	5	993216	22
6	985247	27	6	987934	27	6	990605	27	6	993260	26
	985292	32	7	987979	31	7	990650	31	7	993304	31
8	985337	36	8	988024	36	8	990694	36	8	993348	35
9	985382	41	9	988068	40	9	990738	40	9	993392	40
9670	985426		9730	988113		9790	990783		9850	993436	
1	985471	4		988157	4	1	990827	4	1	993480	4
	985510	19		988202	19	2	990871	19		993024	19
0	985606	18	0	988247	10	1 0	990910	10	O A	990000	10
5	085651	92	4 5	900491	10	4 5	990900	20	4 5	999010	99
6	985696	27	6	088381	27	6	991049	27	6	993701	26
7	985741	31	7	988425	31	7	991093	31	7	993745	31
8	985786	36	8	988470	36	8	991137	36	8	993789	35
9	985830	40	9	988514	40	9	991182	40	9	993833	40
9680	985875		9740	988559		9800	991226		9860	993877	
1	985920	4	1	988603	4	1	991270	4	1	993921	4
2	985965	9	2	988648	9	2	991315	9	2	993965	9
3	986010	13	3	988693	13	3	991359	13	3	994009	13
4	986055	18	4	988737	18	4	991403	18	4	994053	18
5	986100	22	5	988782	22	5	991448	22	5	994097	22
6	986144	27	6	988826	27	6	991492	27	6	994141	26
7	986189	31	7	988871	31	7	991536	31	7	994185	31
8	986234	36	8	988915	36	8	991580	36	8	994229	35
9	986279	40	9	988960	40	9	991625	40	9	994273	40
9690	986324		9750	989005		9810	991669		9870	994317	
1	986369	4		989049	4	1	991718	4	1	994361	4
2	986418	19		989094	9	2	991757	19	2	994405	19
3	986458	10	3	989138	10	3	991802	10	3	001109	10
4	980903	20	4	989183	10	4	991846	10	4 5	004597	10
G A	986509	27		000070	27	C C	991090	27	B B	994581	26
7	986627	1 31	07	080212	31	07	001070	31	7	994625	31
1 8	986682	36	0	989861	36	2	992092	36	8	994669	-85
9	986727	40	0	989405	40	9	992067	40	9	994713	40
	1000.21	1	1. 6 3	000400		11 0	000001			1	

Ń

.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
9880	994757		9910	996074		9940	997386		9970	998695	
1	994801	4	1	996117	4	1	997430	4	1	998739	4
2	994845	9	2	996161	9	2	997474	9	2	998782	9
3.	994889	13	3	996205	13	3	997517	13	3	998826	13
4	994933	18	4	996249	18	4	997561	17	4	998869	17
5	994977	22	5	996293	22	5	997605	22	5	998913	22
- 6	995021	26	6	996336	26	6	997648	26	6	998956	26
7	995064	31	7	996380	31	7	997692	30	. 7	999000	30
8	995108	35	8	996424	35	8	997736	35	8	999043	35
9	995152	40	9	996468	40	9	997779	39	9	999087	39
9890	995196		9920	996512		9950	997823		9980	999130	
1	995240	4	1	996555	4	1	997867	4	1	999174	4
2	995284	9	2	996599	9	2	997910	9	2	999218	9
3	995328	13	3	996643	13	3	997954	13	3	999261	13
4	995372	18	4	996687	18	4	997998	17	4	999305	17
5	995416	22	5	996730	22	5	998041	22	5	999348	22
6	995460	26	6	996774	26	6	998085	26	6	999392	26
7	995504	31	7	996818	31	7	998128	30	7	999435	30
8	995547	35	8	996862	35	8	998172	35.	8	999478	35
9	995591	40	9	996905	40	9	998216	39	9	999522	39
9900	995635		9930	996949		9960	998259		9990	999565	
1	995679	4	1	996993	4	1	998303	4	1	999609	4
2	995723	9	2	997037	9	2.	998346	9	2	999652	9
3	995767	13	3	997080	13	3	998390	13	3	999696	13
4	995811	18	4	997124	18	4	998434	17	4	999739	17
5	995854	22	5	997168	22	5	998477	22	5	999783	22
6	995898	26	6	997212	26	6	998521	26	6	999826	26
7	995942	31	7	997255	31	7	998564	30	7	999870	30
8	995986	35	8	997299	35	8	998608	35	8	999913	35
9	996030	40	9	997343	39	9	998652	39	9	999957	39

No.	LOGARITHMS TO 50 DECIMAL PLACES.
1	0.0000000000000000000000000000000000000
2	$0\cdot 30102999566398119521373889472449302676818988146211$
3	0.47712125471966243729502790325511530920012886419069
4	0.60205999132796239042747778944898605353637976292422
5	0.69897000433601880478626110527550697323181011853789
6	0.77815125038364363250876679797960833596831874565280
7	0.84509804001425683071221625859263619348357239632397
8	0.90308998699194358564121668417347908030456964438633
9	0.95424250943932487459005580651023061840025772838139
10	1.0000000000000000000000000000000000000
11	1.04139268515822504075019997124302424170670219046645
12	$1\cdot 07918124604762482772250569270410136273650862711491$
13	$1\cdot\!11394335230683676920650515794232843082972918838707$
14	$1 \cdot 14612803567823802592595515331712922025176227778607$
15	$1\cdot 17609125905568124208128900853062228243193898272859$
16	$1 \cdot 20411998265592478085495557889797210707275952584843$
17	$1\cdot 23044892137827392854016989432833703000756737842505$
18	1.25527250510330606980379470123472364516844760984350
19	$1\cdot 27875360095282896153633347575692931795112933739450$
20	$1\cdot 30102999566398119521373889472449302676818988146211$
21	1.32221929473391926800724416184775150268370126051866
22	1.34242268082220623596393886596751726847489207192856
23	$1\cdot 36172783601759287886777711225118954969751103483610$
24	1.38021124171160602293624458742859438950469850857702
25	1.39794000867203760957252221055101394646362023707578

LOGARITHMIC SINES, ETC.

0	DEG.
---	------

1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Cosine.	,
0			Infinite.			Infinite.	·000000	10.000000	60
1	6.463726		3.536274	6.463726		13.536274	·000000	10.000000	59
2	6.764756	501717	3·235244	6.764756	501717	13.235244	.000000	10.000000	57 57
3	7.065786	293480	2.934214	7.065786	293480	12.934214	.000000	10.000000	56 .
5	7.162696	161517	2.837304	7.162696	161517	12.837304	.000000	10.000000	55
6	7.241877	131968	2.758123	7.241878	131969	12.758122	.000001	9.9999999	54
7	7.308824	111578	2.691176	7.308825	111578	12.691175	.000001	9.9999999	53
8	7.366816	96653	2.633184	7.366817	96653	12.633183	$\cdot 000001$	9.999999	52
9	7.417968	85254	2.582032	7.417970	85254	12.582030	000001	9.9999999	51
10	7.505110	76262	2.036274	7.505120	16263	12.536273	000002	9.9999998	50
19	7.549006	62081	2.457094	7.542909	62081	12.457091	.000002	9.999999	49
12	7.577668	57936	2.422332	7.577672	57987	12.422328	.000003	9.999997	47
14	7.609853	53641	2.390147	7.609857	53642	12.390143	.000004	9.999996	46
15	7.639816	49938	2.360184	7.639820	49939	12.360180	.000004	9.999996	45
16	7.667845	46714	$2 \cdot 332155$	7.667849	46715	12.332151	.000005	9.999995	44
17	7.694173	43881	2.305827	7.694179	43882	12.305821	000005	9.999995	43
18	7.718997	41372	2.281003	7.719003	41373	12.280997	000006	9.9999994	42
-19	7.764754	39130	2.291922	7.764761	39130	12.297910	.000007	0.000003	41
21	7.785943	35315	2.214057	7.785951	35315	12.214049	-000007	9.999992	39
22	7.806146	33672	2.193854	7.806155	33673	12.193845	.000009	9.999991	38
23	7.825451	32175	$2 \cdot 174549$	7.825460	32176	12.174540	·000010	9.999990	37
24	7.843934	30805	$2 \cdot 156066$	7.843944	30807	$12 \cdot 156056$	·000011	9.999989	36
25	7.861662	29547	2.138338	7.861674	29549	$12 \cdot 138326$	·000011	9.999989	35
26	7.878695	28388	2.121305	7.878708	28390	$12 \cdot 121292$	000012	9.999988	34
27	7.010970	27317	2.080191	7.010004	27318	12.090106	000013	9.999987	33
29	7.926119	25899	2.033121 2.073881	7.926134	20320	12.073866	.000014	9.999985	31
30	7.940842	24538	2.059158	7.940858	24540	12.059142	000017	9.999983	30
31	7.955082	23733	2.044918	7.955100	23735	12.044900	000018	9.999982	29
32	7.968870	22980	2.031130	7.968889	22982	12.031111	000019	9.999981	28
33	7.982233	22273	2.017767	7.982253	22275	12.017747	·000020	9.999980	27
34	0.007797	21608	2.004802	7.995219	21610	12.004781	000021	9.999979	26
00 26	8.020021	20981	1.992213	8.020045	20983	11.992191	000023	9.9999977	20
37	8.031919	19831	1.968081	8.031945	19833	11.968055	000024	9.999975	23
38	8.043501	19302	1.956499	8.043527	19305	11.956473	000027	9.999973	22
39	8.054781	18801	1.945219	8.054809	18803	11.945191	.000028	9.999972	21
40	8.065776	18325	1.934224	8.065806	18327	11.934194	000029	9.999971	20
41	8.076500) 17872	1.923500	8.076531	17875	11.923469	000031	9.999969	19
42	8.007109	17441	1.000017	8.007917	17444	11.913003	000032	9.9999968	18
40	8.107167	16690	1.899899	8.107909	16649	11.809709	000034	0.000061 9.999900	16
45	8.116926	16265	1.883074	8.11696	16268	11.883037	000037	9.999968	15
46	8.126471	15908	1.873529	8.126510	15911	11.873490	.000039	9.999961	14
47	8.135810) 15566	1.864190	8.135851	15568	11.864149	.000041	9.999959	13
48	8.144953	3 15238	1.855047	8.144996	15241	11.855004	000042	9.999958	12
49	8.153907	14924	1.846093	8.153952	14927	11.846048	000044	9.999956	11
51	8.171090	14622	1.837319	8.162727	14625	11.837273	000040	9.999954	10
59	8.170719) 14000 ≥ 14054	1.820287	8.170769	14057	11.820072	000040	0.000050	8
58	8.18798	5 13786	1.812015	8.188036	13790	11.811964	000052	9.9999948	7
54	8.196102	2 13529	1.803898	8.196156	3 13532	11.803844	000054	9.999946	6
55	8.204070	13280	1.795930	8.204126	3 13284	11.795874	000056	9.999944	5
56	8.21189	5 13041	1.788105	8.211953	3 13044	11.788047	000058	9.999942	4
57	8.21958		1.780419	8.219641			000060	9.999940	3
60 J	8.22/13	12087	1.765449	8.994691	12091	11.765970	000062	9.999938	
60	8.24185	12072	1.758145	8.24199	12070	11.758079	000004	9.9999990	
	Cosine		Recent	C dario 44		Tanant	000000		<u> </u>
1 1	ti Cosine.		1 Secant.	- Cotangent		i Langent.	Il Cosecant.	sine.	н ′

41

89 DEG.

No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.	No.	Log.	Prop. Part.
9880	994757	4	9910	996074		9940	997386	0	9970	998695	
1	994801	4	1	996117	4	1	997430	4	1	998739	4
$\tilde{2}$	994845	9	2	996161	9	2	997474	9	2	998782	9
3	994889	13	3	996205	13	3	997517	13	3	998826	13
4	994933	18	4	996249	18	4	997561	17	4	998869	17
5	994977	22	5	996293	22	5	997605	22	5	998913	22
6	995021	26	6	996336	26	6	997648	26	6	998956	26
7	995064	31	7	996380	31	7	997692	30	. 7	999000	30
8	995108	35	8	996424	35	8	997736	35	8	999043	35
9	995152	40	9	996468	40	9	997779	39	9	999087	39
9890	995196		9920	996512		9950	997823		9980	999130	
1	995240	4	1	996555	4	1	997867	4	1	999174	4
2	995284	9	2	996599	9	2	997910	9	2	999218	9
3	995328	13	3	996643	13	3	997954	13	3	999261	13
4	995372	18	4	996687	18	4	997998	17	4	999305	17
5	995416	22	5	996730	22	5	998041	22	5	999348	22
6	995460	26	6	996774	26	6	998085	26	6	999392	26
7	995504	31	7	996818	31	7	998128	30	7	999435	30
8	995547	35	8	996862	35	8	998172	35.	8	999478	35
9	995591	40	9	996905	40	9	998216	39	9	999522	39
9900	995635		9930	996949		9960	998259		9990	999565	
1	995679	4	1	996993	4	1	998303	4	1	999609	4
2	995723	9	2	997037	9	2.	998346	9	2	999652	9
3	995767	13	3	997080	13	3	998390	13	3	999696	13
4	995811	18	4	997124	18	4	998434	17	4	999739	17
5	995854	22	5	997168	22	5	998477	22	5	999783	22
6	995898	26	6	997212	26	6	998521	26	6	999826	26
7	995942	31	7	997255	31	7	998564	30	7	999870	30
8	995986	35	8	997299	35	8	998608	35	8	999913	35
9	996030	40	9	997343	39	9	998652	39	9	999957	39

No.	LOGARITHMS TO 50 DECIMAL PLACES.
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline 7 7 7 7 7 $	$\begin{array}{l} 0.00000000000000000000000000000000000$
7 8 9 10 11	$\begin{array}{l} 0.845098040014226830712216238592636193483572396632397\\ 0.90308998699194358564121668417347908030456964438633\\ 0.95424250943932487459005580651023061840025772838139\\ 1.000000000000000000000000000000000000$
12 13 14 15	$\begin{array}{l} 1.07918124604762482772250569270410186273650862711491\\ 1.11394335230683676920650515794232843082972918838707\\ 1.14612803567823802592595515331712922025176227778607\\ 1.17609125905568124208128900853062228243193898272859\end{array}$
16 17 18 19 20	$\begin{array}{l} 1\cdot 20411998265592478085495557889797210707275952584848\\ 1\cdot 23044892187827892854016989432883708000756737842505\\ 1\cdot 25527250510330606980379470123472864516844760984350\\ 1\cdot 278758600952828961586838476756692981795112983739450\\ 1\cdot 30102999566398119521873889472449802676818988146211\\ \end{array}$
21 22 23 24 25	$\begin{array}{ } 1\cdot 32221929473391926800724416184775150268870126051866\\ \cdot 1\cdot 3424226808222062359639886596751726847489207192856\\ 1\cdot 36172783601759287886777711225118954969751103483610\\ 1\cdot 380211241711606022986244587428594389504698504857702\\ 1\cdot 39794000867203760957252221055101394646362023707578\end{array}$

LOGARITHMIC SINES, ETC.

0 deg.

_			•								
	'	Sine.	Diff. 100″	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Cosine.	'	1
	0	2 400500		Infinite.	0 400500		Infinite.	·000000	10.000000	60	1
	1	0·463726	501717	3.036274	6.764756	501717	13.030274	.000000	10.000000	59	-
	- 2	6.940847	293485	3.059153	6.940847	293485	13.059153	-000000	10.000000	57	
	4	7.065786	208231	2.934214	7.065786	208231	12.934214	.000000	10.000000	56	1
	5	7.162696	161517	$2 \cdot 837304$	7.162696	161517	$12 \cdot 837304$	·000000	10.000000	55	l
	6	7.241877	131968	2.758123	7.241878	131969	12.758122	$\cdot 000001$	9.9999999	54	í
	7	7.308824	111578	2.691176	7.308825	111578	12.691175	$\cdot 000001$	9.9999999	53	
	8	7.366816	96653	2.633184	7.366817	96653	12.633183	000001	8.88866	52	
	10	7.469796	80204	2.002032	7.469707	80204	12.5962030	.000001	9.9999999	50	
	11	7.505118	68988	2.494882	7.505120	68988	12.494880	000002	9.999998	49	
	$\overline{12}$	7.542906	62981	$2 \cdot 457094$	7.542909	62981	12.457091	.000003	9.999997	48	
	13	7.577668	57936	$2 \cdot 422332$	7.577672	57937	$12 \cdot 422328$.000003	9.999997	47	į
	14	7.609853	53641	2.390147	7.609857	53642	12.390143	·000004	9.999996	46	
	15	7.639816	49938	2.360184	7.639820	49939	$12 \cdot 360180$	$\cdot 000004$	9.999996	45	
	16	7.667845	46714	2.332155	7.667849	46715	12.332151	000005	9.999995	44	
	17	7.718007	43881	2.303827	7.710009	43882	12.305821	0000000	9.9999995	43	and the second se
	10	7.749478	39135	2.257522	7.749484	39136	12.257516	.000000	9.9999994	41	
	20	7.764754	37127	$2 \cdot 235246$	7.764761	37128	12.235239	.000007	9.999993	40	
	21	7.785943	35315	$2 \cdot 214057$	7.785951	35315	12.214049	000008	9.999992	39	
	22	7.806146	33672	2.193854	7.806155	33673	12.193845	.000009	9.999991	38	
	23	7.825451	32175	$2 \cdot 174549$	7.825460	32176	$12 \cdot 174540$	000010	9.999990	37	
	24	7.843934	30805	2.156066	7.843944	30807	$12 \cdot 156056$	$\cdot 000011$	9.999989	36	
	25	7.861662	29547	2.138338	7.861674	29549	12.138326	$\cdot 000011$	9.999989	35	
	26	7.878695	28388	2.121305	7.878708	28390	$12 \cdot 121292$	000012	9.999988	34	ļ
	21	7.010070	27317	2.080101	7.010004	27318	12.104901	000013	9.999987	33	
	$\frac{20}{20}$	7.926110	20828	2.009121	7.026124	20320	12.072866	000014	9.9999980	94	
	$\frac{29}{30}$	7.940842	24538	2.079001 2.059158	7.940858	23401	12.075800 12.059142	-000015	9.999983	30	
	31	7.955082	23733	2.044918	7.955100	23735	12.044900	000018	9.999982	29	
	32	7.968870	22980	2.031130	7.968889	22982	12.031111	000019	9.999981	28	
	33	7.982233	22273	2.017767	7.982253	22275	12.017747	000020	9.999980	27	
	34	7.995198	21608	2.004802	7.995219	21610	12.004781	000021	9.9999979	26	
	35	8.007787	20981	1.992213	8.007809	20983	11.992191	·000023	9.999977	25	
	36	8.020021	20390	1.979979	8.020045	20392	11.979955	000024	9.999976	24	
	31	0.031919	19831	1.056400	8.049507	19833	11.968055	000025	9.999975	23	
	20	8.054781	19302	1.045910	8.054800	19909	11.045101	.000027	9.999973	22	
	40	8.065776	18325	1.934224	8.065806	18327	11.934194	.000020	9.999971	20	
	41	8.076500	17872	1.923500	8.076531	17875	11.923469	.000031	9.999969	19	
l	42	8.086965	17441	1.913035	8.086997	17444	11.913003	000032	9.999968	18	
l	43	8.097183	17031	1.902817	8.097217	17034	11.902783	000034	9.999966	17	
۱	44	8.107167	16639	1.892833	8.107202	16642	11.892798	$\cdot 000036$	9.999964	16	
۱	45	8.116926	16265	1.883074	8.116963	16268	11.883037	000037	9.999963	15	
ł	46	8.125471	15500	1.873529	8.126510	15911	11.873490	000039	9.999961	14	
	41	8.144059	15988	1.855047	8.144006	15941	11.855004	000041	9.9999999	13	
	49	8.153907	14924	1.846093	8.153959	14997	11.846048	.000044	9.999956	11	
I	50	8.162681	14622	1.837319	8.162727	14625	11.837273	.000046	9.999954	10	
	51	8.171280	14333	1.828720	8.171328	14336	11.828672	.000048	9.999952	9	
	52	8.179713	14054	1.820287	8.179768	14057	11.820237	.000050	9.999950	8	
	53	8.187985	13786	1.812015	8.188036	13790	11.811964	000052	9.999948	7	
	54	8.196102	13529	1.803898	8.196156	13532	11.803844	000054	9.999946	6	
	- 55 50	8.204070	13280	1.795930	8.204126	13284	11.795874	000056	9.999944	5	
	- 00 - 57	8.210591	13041	1.780410	8.910641	10044	11.780250	000008	9.9999942	4 9	
	58	8.227184	12010	1.772866	8.22719	12591	11.772805	000000	9.9999940	2	
	59	8.234557	12372	1.765443	8.234621	12376	11.765379	000064	9.999936	ĩ	
	. 60	8.241855	12164	1.758145	$8 \cdot 241922$	12168	11.758078	000066	9.999934	$\hat{0}$	
	-,-	Cosine.		Secant.	Cotangent.		Tangent	Cosecant.	Sine.		•
									~~~~		

89 DEG.

## J LOGARITHMIC SINES, ETC.

42 1 deg.

1

,	Sine.	Diff. 1007	Cosecant.	Tangent.	Diff.	Cotangent.	Secant.	Cosine.	,
	8-241855		1.758145	8.241921		11.758079	.000066	9.999934	60
1	8.249033	11963	1.750967	8.249102	11967	11.750898	.000068	9.999932	59
2	8.256094	11768	1.743906	8.256165	11772	11.743835	.000071	9.999929	58
3	$8 \cdot 263042$	11580	1.736958	8.263115	11584	11.736885	.000073	9.999927	57
4	$8 \cdot 269881$	11397	1.730119	8.269956	11402	11.730044	.000075	9.999925	56
5	8.276614	11221	1.723386	8.276691	11225	11.723309	·000078	9.999922	55
6	$8 \cdot 283243$	11050	1.716757	8.283323	11054	11.716677	·000080	9.999920	54
7	8.289773	10883	1.710227	8.289856	10887	11.710144	.000082	9.999918	53
8	8.296207	10722	1.703793	8.296292	10726	11.703708	$\cdot 000085$	9.999915	52
9	8.302546	10565	1.697454	8.302634	10570	11.697366	.000087	9.999913	51
10	8.308794	10413	1.691206	8.308884	10418	11.691116	·000090	9.999910	50
11	8.314954	10266	1.685046	8.315046	10270	11.684954	$\cdot 000093$	9.999907	49
12	8.321027	10122	1.678973	8.321122	10126	11.678878	·000095	9.999905	48
13	8.327016	9982	1.672984	8.327114	9987	11.672886	000098	9.999902	47
14	8.332924	984/	1.667076	8.333025	9851	11.666975	000101	9.999899	46
10	0.0300103	9/14	1.051247	8.338830	9719	11.001144	000103	9.999897	45
10	0.950101	9000	1.640010	8.344010	9590	11.630390	.000106	9.999894	44
10	8.255709	0220	1.644017	0.000289	9400	11.644105	.000109	9.999991	43
10	8.361915	9990	1.632625	8.261490	0004	11.622570	.000112	0.000662	42
20	8.366777	9103	1.632992	8.366805	0100	11.622105	.000110	0.000880	40
21	8.372171	8990	1.627899	8.379909	8995	11.627708	-000118	9.999870	30
22	8.377499	8880	1.622501	8.377699	8885	11.622378	-000121	9-999876	28
23	8.382762	8772	1.617238	8.382889	8777	11.617111	000121	9.999873	37
24	8.387962	8667	1.612038	8.388092	8672	11.611908	000121	9.999870	36
25	8.393101	8564	1.606899	8.393234	8570	11.606766	000133	9.999867	35
26	8.398179	8464	1.601821	8.398315	8470	11.601685	000136	9.999864	34
27	8.403199	8366	1.596801	8.403338	8371	11.596662	000139	9.999861	33
$\overline{28}$	8.408161	8271	1.591839	8.408304	8276	11.591696	000142	9.999858	32
29	8.413068	8177	1.586932	8.413213	8182	11.586787	.000146	9.999854	31
30	8.417919	8086	1.582081	8.418068	8091	11.581932	·000149	9.999851	30
31	8.422717	7996	1.577283	8.422869	8002	11.577131	$\cdot 000152$	9.999848	29
32	8.427462	7909	1.572538	8.427618	7914	11.572382	$\cdot 000156$	9.999844	28
33	8.432156	7823	1.567844	8.432315	7829	11.567685	$\cdot 000159$	9.999841	27
34	8.436800	7740	1.563200	8.436962	7745	11.563038	000162	9.999838	26
35	8.441394	7657	1.558606	8.441560	7663	11.558440	000166	9.999834	25
36	8.445941	7577	1.554059	8.446110	7583	11.553890	$\cdot 000169$	9.999831	24
37	8.450440	7499	1.549560	8.450613	7505	11.549387	000173	9.999827	23
38	8.454893	7422	1.545107	8.455070	7428	11.544930	000176	9.999824	22
39	8.459301	7346	1.540699	8.459481	7352	11.540519	000180	9.999820	21
40	8.403000	7213	1.536335	8.463849	7279	11.536151	000184	9.999816	20
41	0.407900	7100	1.595707	8.408172	7206	11.531828	000187	9.999813	19
42	8-476400	7060	1.599500	0.472404	7000	11.502007	-000191	9.99900	10
40	8-480609	6001	1.510207	8.480209	6000	11.510100	000190	0.000801	16
45	8-184849	6924	1.515159	8.485050	6021	11.514050	.000199	9.999001	15
46	8.488962	6859	1.511027	8.489170	6865	11.510820	-000208	9.999794	14
47	8.493040	6794	1.506960	8.493250	6801	11.506750	.000210	9.999790	13
48	8.497078	6731	1.502922	8.497293	6738	11.502707	.000214	9.999786	12
49	8.501080	6669	1.498920	8.501298	6676	11.498702	.000218	9.999782	11
50	8.505045	6608	1.494955	8.505267	6615	11.494733	.000222	9.999778	10
51	8.508974	6548	1.491026	8.509200	6555	11.490800	.000226	9.999774	9
52	8.512867	6489	1.487133	8.513098	6496	11.486902	.000231	9.999769	8
53	8.516726	6432	1.483274	8.516961	6439	11.483039	.000235	9.999765	7
54	8.520551	6375	1.479449	8.520790	6382	11.479210	$\cdot 000239$	9.999761	6
55	8.524343	6319	1.475657	8.524586	6326	11.475414	·000243	9.999757	5
56	8.528102	6264	1.471898	8.528349	6272	11.471651	000247	9.999753	4
57	8.531828	6211	1.468172	8.532080	6218	11.467920	000252	9.999748	3
58	8.535523	6158	1.464477	8.535779	6165	$11 \cdot 464221$	000256	9.999744	2
1 59	8.539186	6106	1.460814	8.539447	6113	11.460558	000260	9.999740	
: 00	0.942818	0000	1.497181	0.943084	6062	11.496916	000265	9.999130	0
1	Cosine.		Secant.	Cotangent.		Tang	Curecant.	S'ne.	

Sine. 88 DEG.
2 DEG.

,	Sine.	Diff. 100″	Cosecant.	Tangent.	Diff. 100″	Cotangent.	Secant.	Diff. 100″	Cosine.	'
0	8.542819		1.457181	8.543084		11.456916	.000265		9.999735	60
1	$8 \cdot 546422$	6004	1.453578	8.546691	6012	11.453309	$\cdot 000269$	07	9.999731	59
2	8.549995	5955	1.450005	8.550268	5962	11.449732	$\cdot 000274$	07	9.999726	58
3	8.553539	5906	1.446461	8.553817	5914	$11 \cdot 446183$	$\cdot 000278$	08	9.999722	57
4	8.557054	5858	1.442946	8.557336	5866	11.442664	.000283	08	9.999717	56
5	8.560540	5811	1.439460	8.560828	5819	11.439172	000287	07	9.999713	55
6	8.963999	0760	1.4995.001	8.504291	0110	11.420079	.000292	08	9.999708	04 50
6	8.570896	0719 5874	1.490164	8.571127	5689	11.498869	000230	08	0.000600	59
9	8.574214	5630	1.425786	8.574590	5638	11.425480	.000306	08	9.999694	51
10	8.577566	5587	1.422434	8.577877	5595	11.422123	000311	08	9.999689	50
11	8.580892	5544	1.419108	8.581208	5552	11.418792	000315	07	9.999685	49
12	8.584193	5502	1.415807	8.584514	5510	11.415486	.000320	08	9.999680	48
13	8.587469	5460	1.412531	8.587795	5468	11.412205	$\cdot 000325$	08	9.999675	47
14	8.590721	5419	1.409279	8.591051	5427	11.408949	.000330	08	9.999670	46
15	8.593948	5379	1.406052	8.594283	5387	11.405717	.000335	08	9.999665	45
16	8.597152	5339	1.402848	8.597492	5347	11.402508	·000340	08	9.999660	44
17	8.600332	5300	1.399668	8.600677	5308	11.399323	000345	08	9.999655	43
18	8.003489 9.000000	5261 2000	1.396511	8.603839	0270 5090	11.396161	000300	08	9.999650	42
19	8.600724	5186	1.200966	8.610004	5104	11.393022	.0003555	00	9.9999040	41
20	8-61-28-23	5149	1.387177	8.613189	5158	11.386811	.000365	08	9.9999040	20
22	8.615891	5112	1.384109	8.616262	5121	11.383738	000371	10	9.999629	38
$\bar{23}$	8.618937	5076	1.381063	8.619313	5085	11.380687	000376	$\vec{08}$	9.999624	37
24	8.621962	5041	1.378038	8.622343	5050	11.377657	.000381	08	9.999619	36
25	8.624965	5006	1.375035	8.625352	5015	11.374648	$\cdot 000386$	08	9.999614	35
26	8.627948	4972	1.372052	8.628340	4981	11.371660	$\cdot 000392$	10	9.999608	34
27	8.630911	4938	1.369089	8.631308	4947	11.368692	$\cdot 000397$	08	9.999603	33
28	8.633854	4904	1.366146	8.634256	4913	11.365744	$\cdot 000403$	10	9.999597	32
29	8.636776	4871	1.363224	8.637184	4880	11.362816	000408	08	9.999592	31
30	8.639680	4839	1.360320	8.640093	4848	11.359907	000414	08	9.999586	30
20	0.042000	4800	1.254579	0.042982	4010	11.254147	000419	10	9.999581	29
32	8.648974	4710	1.351796	8.648704	4753	11.251206	-000420	10	9.9999070	20
34	8.651102	4712	1.348898	8.651537	4722	11.348463	.000436	10	9.9999564	26
35	8.653911	4682	1.346089	8.654352	4691	11.345648	000442	10	9.999558	25
36	8.656702	4652	1.343298	8.657149	4661	11.342851	.000447	08	9.999553	24
37	8.659475	4622	1.340525	8.659928	4631	11.340072	·000453	10	9.999547	<b>23</b>
38	8.662230	4592	1.337770	8.662689	4602	11.337311	·000459	10	9.999541	22
39	8.664968	4563	1.335032	8.665433	4573	11.334567	$\cdot 000465$	10	9.999535	21
40	8.667689	4535	1.332311	8.668160	4544	11.331840	000471	10	9.999529	20
41	8.670393	4506	1.829607	8.670870	4516	11.329130	000476	08	9.999524	19
42	0.075080	4479	1.294940	8.073003	4400	11.326437	000482	10	9.999518	18
40	8.678105	4401	1.321595	8.678000	4401	11.923701	-000400	10	9.9999512	16
45	8.681043	4397	1.318957	8.681544	4407	11.318456	.000500	10	9.999500	15
46	8.683665	4370	1.316335	8.684172	4380	11.315828	.000507	10	9.999493	14
47	8.686272	4344	1.313728	8.686784	4354	11.313216	.000513	12	9.999487	13
48	8.688863	4318	1.311137	8.689381	4328	11.310619	.000519	10	9.999481	12
49	8.691438	4292	1.308562	8.691963	4303	11.308037	.000525	10	9.999475	11
50	8.693998	4267	1.306002	8.694529	4277	11.305471	·000531	10	9.999469	10
51	8.696543	4242	1.303457	8.697081	4252	11.302919	000537	12	9.999463	9
52	8.699073	4217	1.300927	8.699617	4228	11.300383	000544	10	9.999456	8
03	8.704000	4192	1.298411	8.704640	4203	11-297861	000550	10	9.999450	7
55	8.706577	4108	1.905495	8.707140	4155	11.909860	-000569	10	9.999443	0
56	8.709049	4191	1.200420	8.709618	4132	11.292000	.000560	10	9.999431	4
57	8.711507	4097	1.288493	8.712083	4108	11.287917	.000576	12	9.999424	3
58	8.713952	4074	1.286048	8.714534	4085	11.285466	.000582	10	9.999418	2
59	8.716383	4052	1.283617	8.716972	4062	11.283028	000589	12	9.999411	1
60	8.718800	4029	1.281200	8.719396	4040	11.280604	.000596	12	9.999404	0
	Cosine.		1 Secant.	Cotangent.		Tangent.	Cosecant		Sine	1

87 DEG.

.

44 3 deg.

_										
,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	8.718800		1.281200	8.719396		11.280604	·000596		9.999404	60
1	8.721204	4006	1.278796	8.721806	4017	11.278194	000602	10	9.999398	59
2	8.723595	3984	1.276405	8.724204	3995	11.275796	000609	12	9.999391	58
3	8.725972	3962	1.274028	8.726588	3974	11.273412	·000616	12	9.999384	57
4	8.728337	3941	1.271663	8.728959	3952	11.271041	000622	10	9.999378	56
5	8.730688	3919	1.269312	8.731317	3931	11.268683	.000629	12	9.999371	55
6	8.733027	3898	1.266973	8.733663	3909	11.266337	000636	12	9.999364	54
7	8.735354	3877	1.264646	8.735996	3889	11.264004	·000643	12	9.999357	53
8	8.737667	3857	1.262333	8.738317	3868	11.261683	$\cdot 000650$	12	9.999350	52
9	8.739969	3836	1.260031	8.740626	3848	11.259374	000657	12	9.999343	51
10	8.742259	3816	1.257741	8.742922	3827	$11 \cdot 257078$	000664	12	9.999336	50
11	8.744536	3796	1.255464	8.745207	3807	11.254793	$\cdot 000671$	12	9.999329	49
12	8.746802	3776	1.253198	8,747479	3787	$11 \cdot 252521$	·000678	12	9.999322	48
13	8.749055	3756	1.250945	8.749740	3768	$11 \cdot 250260$	·000685	12	9.999315	47
14	8.751297	3737	1.248703	8.751989	3749	11.248011	.000692	12	9.999308	46
15	8.753528	3717	1.246472	8.754227	3729	$11 \cdot 245773$	·000699	12	9.999301	45
16	8.755747	3698	1.244253	8.756453	3710	11.243547	000706	12	9.999294	44
17	8.757955	3679	1.242045	8.758668	3692	$11 \cdot 241332$	$\cdot 000713$	13	9.999287	43
18	8.760151	3661	1.239849	8.760872	3673	$11 \cdot 239128$	$\cdot 000721$	12	9.999279	42
19	8.762337	3642	1.237663	8.763065	3655	$11 \cdot 236935$	$\cdot 000728$	12	9.999272	41
20	8.764511	3624	1.235489	8.765246	3636	$11 \cdot 234754$	$\cdot 000735$	12	9.999265	40
21	8.766675	3606	1.233325	8.767417	3618	11.232583	$\cdot 000743$	13	9.999257	39
22	8.768828	3588	1.231172	8.769578	3600	11.230422	$\cdot 000750$	12	9.999250	38
23	8.770970	3570	1.229030	8.771727	3583	11.228273	$\cdot 000758$	13	9.999242	37
24	8.773101	3553	1.226899	8.773866	3565	11.226134	$\cdot 000765$	12	9.999235	36
25	8.775223	3535	1.224777	8.775995	3548	11.224005	$\cdot 000773$	13	9.999227	35
26	8.777333	3518	1.222667	8.778114	3531	11.221886	$\cdot 000780$	12	9.999220	34
27	8.779434	3501	1.220566	8.780222	3514	11.219778	000788	13	9.999212	33
28	8.781524	3484	1.218476	8.782320	3497	11.217680	000795	13	9.999205	32
29	8.783605	3467	1.216395	8.784408	3480	11-215592	000803	13	9.999197	31
30	8.785675	3451	1.214325	8.786486	3464	11.213514	.000811	13	9.999189	30
.31	8.787736	3434	1.212264	8.788554	3447	11.211446	000819	13	9.999181	29
32	8.789787	3418	1.210213	0.790613	3431	11.209387	000825	12	9.999174	28
83	8.791828	3402	1.208172	0.792662	3410	11.207338	000834	13	9.999166	21
34	8.793859	3380	1.206141	8.706721	3399	11.202299	000842	13	9.999158	26
30	8.795881	3810	1.204119	8.709731	3383	11.203209	.000850	13	9.999100	25
07	8.700907	3334	1.202100	8.900769	0050	11.100997	000000	10	9.999142	24
01	0.199091	0000	1.109109	8.909765	0004	11.107925	000000	10	0.000196	40
00	0.001094	0040	1.106104	8.904759	0001	11.105949	.000014	10	0.000119	24
1 40	8.005050	2000	1.104140	8.806749	0044	11.102950	.000802	10	0.000110	21
40	8.907910	9978	1,109191	8.808717	2200	11.101982	.000030	10	0.000102	10
41	8.900777	2063	1.100202	8.810682	2977	11.180317	0000000	10	0.000004	18
42	8.811796	3249	1.188274	8.812641	3269	11.187359	000000	12	9.999086	17
44	8-813667	3934	1.186333	8-814589	8248	11.185411	-000923	15	9.999077	16
45	8-815599	3219	1.184401	8.816529	3233	11.183471	000020	18	9.999069	15
46	8.817522	3205	1.182478	8.818461	3219	11.181539	.000939	13	9.999061	14
47	8.819436	3191	1.180564	8.820384	3205	11.179616	.000947	15	9.999053	13
48	8.821343	3177	1.178657	8.822298	3191	11.177702	.000956	13	9.999044	12
49	8.823240	3163	1.176760	8.824205	8177	11.175795	.000964	13	9.999036	11
50	8.825130	3149	1.174870	8.826103	3163	11.173897	.000973	15	9.999027	10
51	8.827011	3135	1.172989	8.827992	3150	11.172008	000981	13	9.999019	9
52	8.828884	3122	1.171116	8.829874	3136	11.170126	.000990	15	9.999010	8
53	8.830749	3108	1.169251	8.831748	3123	11.168252	.000998	13	9.999002	7
54	8.832607	3095	1.167393	8.833613	3109	11.166387	.001007	15	9.998993	6
55	8.834456	3082	1.165544	8.835471	3096	11.164529	.001016	15	9.998984	5
56	8.836297	3069	1.163703	8.837321	3083	11.162679	.001024	13	9.998976	4
57	8.838130	3056	1.161870	8.839163	3070	11.160837	.001033	15	9.998967	3
58	8.839956	3043	1.160044	8.840998	3057	11.159002	.001042	15	9.998958	2
59	8.841774	3030	1.158226	8.842825	3045	11.157175	.001050	13	9.998950	1
60	8.843585	3017	1.156415	8.844644	3032	11.155356	·001059	15	9.998941	0
17	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

4 DEG.

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100″	Cosine.	'
0	8.843585		1.156415	8.844644		11.155356	.001059		9.998941	60
1	8.845387	3005	1.154613	$8 \cdot 846455$	3019	11.153545	·001068	15	9.998932	59
2	8.847183	2992	1.152817	8.848260	3007	11.151740	$\cdot 001077$	15	9.998923	58
3	8.848971	2980	1.151029	8.850057	2995	11.149943	001086	15	9.998914	57 50
4	8.850751	2967	1.147475	8.851846	2982	11.148154	.001095	10	0.006606	90 55
6	8.854901	2900	1.14/4/0	8.855403	2910	11.140572	-001113	15	9.998887	54
7	8.856049	2931	1.143951	8.857171	2946	11.142829	.001122	15	9.998878	53
8	8.857801	2919	1.142199	8.858932	2935	11.141068	.001131	15	9.998869	52
9	8.859546	2908	1.140454	8.860686	2923	11.139314	·001140	15	9.998860	51
10	8.861283	2896	1.138717	8.862433	2911	11.137567	·001149	15	9.998851	50
11	8.863014	2884	1.136986	8.864173	2900	11.135827	001159	17	9.998841	49
12	8.864738	2873	1.135262	8.865906	2888	11.134094	001108	15	9.998882	48
10	8.868165	2850	1.131835	8.869351	2866	11.130649	001187	17	9.998813	46
15	8.869868	2839	1.130132	8.871064	2854	11.128936	001101	15	9.998804	45
16	8.871565	2828	1.128435	8.872770	2843	11.127230	.001205	15	9.998795	44
17	8.873255	2817	1.126745	8.874469	2832	11.125531	001215	17	9.998785	43
18	8.874938	2806	1.125062	8.876162	2821	11.123838	$\cdot 001224$	15	9.998776	<b>42</b>
19	8.876615	2795	1.123385	8.877849	2811	$11 \cdot 122151$	001234	17	9.998766	41
20	8.878285	2784	1.121715	8.879529	2800	11.120471	001243	15	9.998757	40
21	8.881607	2110	1.110200	9.0001202	2109	11.117191	.001205	17	9.998747	38
23	8.883258	2752	1.116535 1.116742	8.884530	2768	$11 \cdot 115470$	001202	$15^{11}$	9.998728	37
24	8.884903	2742	1.115097	8.886185	2758	11.113815	.001282	17	9.998718	36
25	8.886542	2731	1.113458	8.887833	2747	11.112167	$\cdot 001292$	17	9.998708	35
26	8.888174	2721	1.111826	8.889476	2737	11.110524	$\cdot 001301$	15	9.998699	34
27	8.889801	2711	1.110199	8.891112	2727	11.108888	001311	17	9.998689	33
28	8.891421	2700	1.106065	8.892742	2717	11.107258	001321	17	9.998679	32
29	8.894643	2690	1.105955	8.894300	2101	11.102634	001332	17	9.998009	81 80
31	8.896246	2670	1.103754	8.897596	2687	11.102404	.001351	17	9.998649	29
32	8.897842	2660	1.102158	8.899203	2677	$11 \cdot 100797$	.001361	17	9.998639	28
33	8.899432	2651	1.100568	8.900803	2667	11.099197	.001371	17	9.998629	27
34	8.901017	2641	1.098983	8.902398	2658	11.097602	.001381	17	9.998619	26
35	8.902596	62631	1.097404	8.903987	2648	11.096013	001391	17	9.998609	25
86	8.904169	2622	1.095831	8.905570	2638	11.094430	001401	17	9.998599	24
31	8.902790	2012	1.094204	8.90/14/	2629	11.00192853	001411	10	9.998589	23
39	8.908855	2593	1.091147	8.910285	2610	11.089715	.001422	17	9.998568	21
40	8.910404	1 2584	1.089596	8.911846	3 2601	11.088154	001442	17	9.998558	20
41	8.911949	2575	1.088051	8.913401	2592	11.086599	.001452	17	9.998548	19
42	8.913488	3 2566	1.086512	8.914951	5283	11.085049	001463	18	9.998537	18
48	8.915022	2 2556	1.084978	8.916495	2574	11.083505	001473	17	9.998527	17
44	8.916550	2547	1.083450	8.918034	2565	11.081966	001484	18	9.998516	16
40	8.010501	2038	1.080400	8.0919900	2500	11.0780432	001494	11/	9.998800	10
40	8.92110	3 2520	1.078897	8.922619	2538	11.077381	.001515	17	9.998485	13
48	8.922610	02512	1.077390	8.924136	5 2530	11.075864	001526	18	9.998474	12
4	8.92411	2 2503	1.075888	8.925649	2521	11.074351	.001536	17	9.998464	11
50	8-92560	2494	1.074391	8.927156	3 2512	11.072844	001547	18	9.998453	10
51	8.92710	2486	1.072900	8.928658	3 2503	11.071342	001558	18	9.998442	9
5	8.92858	12477	1.0071413	8.93015		11.069845	001569	18	9.998431	
0	8.92154	0 2468 1 9460	1.069456	8.02212	2486	11.066866	.001579	10	0.002410	l e
5	8-93301	5 2459	1.066985	8.934616	3 2470	11.065384	.001601	18	9.998200	5
5	8.93448	1 244	1.065519	8.93609	3 2461	11.063907	001612	18	9.998388	4
5	8.93594:	2 2435	1.064058	8.93756	5 2453	11.062435	.001623	18	9.998377	3
58	8 8.93739	8 2427	1.062602	8.939032	2 2445	11.060968	001634	18	9.998366	2
5	8.93885	0 2419	1.061150	8.940494	1 2437	11.059506	001645	18	9.998355	1
60	8.94029	6 2411	1.059704	8.94195	2429	11.058048	001656	18	9.998344	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.	1	Sine.	1

46

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50 59 58 57
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50 59 58 57
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	59 58 57
2    8.943174   2394   1.056826    8.944852   2443   11.055148    .001678    18    9.998322    5	58 57
allo o 44000 000711.055904 10.040005 0405 11.059705 10.001000 10 0 000011	07
3 8-944000 2387 1-000394 8-940290 2400 11-000700 -001089 18 9-998311 0	
4 0.940034 2579 1.059500 0.947734 2597 11.052200 001700 18 9.996500 5 5 8.047456 2371 1.059544 8.940168 2300 11.050829 0.001711 18 0.008280 5	00 55
6 8.948874 2363 1.051126 8.950597 2382 11.049403 .001723 20 9.908277 5	50 54
7 8-950287 23551 049713 8-952021 2374 11 047979 001734 18 9-998266 5	58
8 8.951696 2348 1.048304 8.953441 2366 11.046559 .001745 18 9.998255 5	52
9 8.953100 2340 1.046900 8.954856 2359 11.045144 001757 20 9.998243 5	51
$10 \\ 8 \cdot 954499 \\ 2332 \\ 1 \cdot 045501 \\ 8 \cdot 956267 \\ 2351 \\ 11 \cdot 043733 \\ 001768 \\ 18 \\ 9 \cdot 998232 \\ 5323 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	50
$11 \\ 8 \cdot 955894 \\ 2325 \\ 1 \cdot 044106 \\ 8 \cdot 957674 \\ 2344 \\ 11 \cdot 042326 \\ 001780 \\ 20 \\ 9 \cdot 998220 \\ 4$	49
$12 \  8.957284   2317   1.042716 \  8.959075   2336   11.040925 \  .001791   18   9.998209   40000000000000000000000000000000000$	18
$13 \\ 8 \cdot 958670 \\ 2310 \\ 1 \cdot 041330 \\ 8 \cdot 960473 \\ 2329 \\ 11 \cdot 039527 \\ 001803 \\ 20 \\ 9 \cdot 998197 \\ 40000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 1$	17
$14 \\ 8 \cdot 960052 \\ 2302 \\ 1 \cdot 039948 \\ 8 \cdot 961866 \\ 2322 \\ 11 \cdot 038134 \\ 001814 \\ 18 \\ 9 \cdot 998186 \\ 4$	16
$15 8 \cdot 961429 2295 1 \cdot 038571 8 \cdot 963255 2314 11 \cdot 036745 001826 20 9 \cdot 998174 4$	15
	44
	13
10 8.066202 2266 1.022107 6.062766 2226 11.021224 .001272 12 0.002128 4	±2 41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±1 40
21 8.969600 2252 1.030400 8.971496 2271 11.028504 .001896 20 9.998104 5	29
22 8.970947 2245 1.029053 8.972855 2265 11.027145 .001908 20 9.998092	38
$23 8 \cdot 972289 2238 1 \cdot 027711 8 \cdot 974209 2257 11 \cdot 025791 001920 20 9 \cdot 998080 8$	87
$24 \\ 8 \cdot 973628 \\ 2231 \\ 1 \cdot 026372 \\ 8 \cdot 975560 \\ 2251 \\ 11 \cdot 024440 \\ 001932 \\ 20 \\ 9 \cdot 998068 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $	36
$25 8 \cdot 974962 2224 1 \cdot 025038 8 \cdot 976906 2244 11 \cdot 023094 001944 20 9 \cdot 998056 8$	35
26    8.976293   2217    1.023707    8.978248   2237    1.021752    .001956    20    9.998044    8.978248    2237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    8.978248    2.237    1.021752    .001956    20    9.998044    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    1.021752    .001956    20    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .001956    .00196    .00196    .00196    .00196    .00196    .00196	34
$   27   8\cdot 977619  2210  1\cdot 022381   8\cdot 979586  2230  11\cdot 020414   \cdot 001968  20  9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1   001968  20   9\cdot 998032  1                                  $	33
$28    8 \cdot 978941   2203    1 \cdot 021059    8 \cdot 980921    2223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    223    1 \cdot 019079    \cdot 001980    20    9 \cdot 998020    3 \cdot 980921    2 $	32
$29 \  8 \cdot 980259   2197   1 \cdot 019741 \  8 \cdot 982251   2217   11 \cdot 017749 \  \cdot 001992   20   9 \cdot 998008   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000   3000$	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30
	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 97
34 8-986789 2163 1-013211 8-988842 2184 11-011158 -002053 20 9-997947	26
35 8.988083 2157 1.011917 8.990149 2178 11.009851 0002065 20 9.997935	25
36 8.989374 2150 1.010626 8.991451 2171 11.008549 002078 22 9.997922 2	24
$37 \  8.990660 \  2144 \  1.009340 \  8.992750 \  2165 \  11.007250 \  .002090 \  20 \  9.997910 \  20 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.9997910 \  3.9997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  20 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.997910 \  3.9$	23
$\left[ \begin{array}{c} 38 \\ 8 \cdot 991943 \\ 2138 \\ 1 \cdot 008057 \\ 8 \cdot 994045 \\ 2158 \\ 11 \cdot 005955 \\ 002103 \\ 22 \\ 9 \cdot 997897 \\ 22 \\ 3 \cdot 997897 \\ 3 \cdot 99797 \\ 3 \cdot 997897 \\ 3 \cdot 99797 \\ 3 \cdot 99797 \\ 3 \cdot 99797$	22
$39 8 \cdot 993222 2131 1 \cdot 006778 8 \cdot 995337 2152 11 \cdot 004663 002115 20 9 \cdot 997885 22337 2152 2132 2132 2133 2133 2133 2133 2133$	21
$= 40    8 \cdot 994497    2125    1 \cdot 005503    8 \cdot 996624    2146    1 \cdot 003376    \cdot 002128    22    9 \cdot 997872    22    3 \cdot 997872    3 \cdot 997872    3 \cdot 997872    3 \cdot 997872    3 \cdot 99772 $	20
	19
	18
49 8.0002001 2001 001 01 9.000400 2121 10.333355 0 002100 20 9.337550 1	16
45 9.000816 2094 0.999184 9.003007 2115 10.996998 0.002171 22 9.997809 1	15
46 9.00206920880.997931 9.004272210910.995728 0.00220320 9.9977971	14
47   9.003318   2082   0.996682   9.005534   2103   10.994466   .002216   22   9.997784   10.994466   .002216   22   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   20   9.997784   10.994466   .002216   .002216   20   9.997784   10.994466   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .002216   .0	13
48 9.004563 2076 0.995437 9.006792 2097 10.993208 002229 22 9.997771 1	12
$49 \  9.005805   2070   0.994195 \  9.008047   2091   10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   22   9.997758 \  10.991953 \  002242   20   9.997758 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  10.99144 \  1$	11
$ \  \  50 \  \  9 \cdot 007044 \  \  2064 \  \  0 \cdot 992956 \  \  \  9 \cdot 009298 \  \  2085 \  \  10 \cdot 990702 \  \  \  \  002255 \  \  22 \  \  9 \cdot 997745 \  \  10 \cdot 990702 \  \  \  002255 \  \  22 \  \  9 \cdot 997745 \  \  10 \cdot 990702 \  \  \  002255 \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  10 \cdot 990702 \  \  \  0 \cdot 997745 \  \  0 \cdot 997745 \  \  0 \cdot 997745 \  \  \  0 \cdot 997745 \  \  \  0 \cdot 997745 \  \  0 \cdot 997745 \  \  \  0 \cdot 997745 \  \  \  0 \cdot 997745 \  \  0 \cdot 99774$	10
$51    9 \cdot 008278    2058    0 \cdot 991722    9 \cdot 010546    2079    10 \cdot 989454    \cdot 002268    22    9 \cdot 997732    10 \cdot 989454    \cdot 002268    22    9 \cdot 997732    10 \cdot 989454    \cdot 002268    22    9 \cdot 997732    10 \cdot 989454    \cdot 002268    22    9 \cdot 997732    10 \cdot 989454    \cdot 002268    22    10 \cdot 989454    \cdot 002268    22    10 \cdot 989454    \cdot 002268    22    10 \cdot 989454    \cdot 002268    10 \cdot 989454    10 \cdot$	9
$\begin{bmatrix} 52 \\ 9 \cdot 009510 \\ 2052 \\ 0 \cdot 990490 \\ 0 \cdot 911790 \\ 2074 \\ 10 \cdot 988210 \\ 0 \cdot 002281 \\ 22 \\ 9 \cdot 997719 \\ 0 \cdot 002281 \\ 0 \cdot 00281 \\ 0 \cdot 0028$	8
53 9·010737 2046 0·989263 9·013031 2068 10·986969 0·002294 22 9·997706	1
54 9.011902 2040 0.988038 9.014268 2062 10.985732 0.002307 22 9.997693	5
0014400190900.025600 0.016799905110.029960 0.009999 09 0.007667	0
57 9.015613 2023 0.984387 9.017959 2045 10.982041 0.002858 22 9.997007	* 3
58 9.016824 2017 0.983176 9.019183 2039 10.980817 .002359 22 9.997641	2
59 9.018031 2012 0.981969 9.020403 2034 10.979597 0.002372 22 9.997628	ī
60 9.019235 2006 0.980765 9.021620 2028 10.978380 002386 23 9.997614	ō
Cosine. Secant. Cotangent. Tangent. Cosecant. Sine.	

6 DEG.

1	1	Diff		11	Diff			Diff	1	11
1	Sine.	100"	Cosecant.	Tangent.	100"	Cotangent.	Secant.	100"	Cosine.	1
0	9.019235		·980765	9.021620		10.978380	.002386		9.997614	60
ĩ	9.020435	2000	·979565	9.022834	2023	10.977166	.002399	22	9.997601	59
2	9.021632	1995	·978268	9.024044	2017	10.975956	.002412	22	9.997588	58
3	9.022825	1989	.977175	9.025251	2011	10.974749	.002426	23	9.997574	57
4	9.024016	1984	.975984	9.026455	2006	10.973545	.002439	22	9.997561	56
5	9.025203	1978	·974797	9.027655	2001	10.972345	-002453	23	9.997547	55
6	9.026386	1973	.973614	9.028852	1995	10.971148	002466	22	9.997534	54
7	9.027567	1967	·972433	9.030046	1990	10.969954	.002480	23	9.997520	53
8	9.028744	1962	.971256	9.031237	1985	10.968763	$\cdot 002493$	22	9.997507	52
9	9.029918	1957	$\cdot 970082$	9.032425	1979	10.967575	.002507	23	9.997493	51
10	9.031089	1951	.968911	9.033609	1974	10.966391	$\cdot 002520$	22	9.997480	50
11	9.032257	1946	$\cdot 967743$	9.034791	1969	10.965209	$\cdot 002534$	28	9.997466	49
$\overline{12}$	9.033421	1941	·966579	9.035969	1964	10.964031	002548	23	9.997452	48
13	9.034582	1936	.965418	9.037144	1958	10.962856	.002561	22	9.997439	47
14	9.035741	1930	.964259	9.038316	1953	10.961684	002575	23	9.997425	46
15	9.036896	1925	.963104	9.039485	1948	10.960515	002589	23	9.997411	45
16	9.038048	1920	$\cdot 961952$	9.040651	1943	10.959349	002603	23	9.997397	44
17	9.039197	1915	·960803	9.041813	1938	10.958187	002617	23	9.997383	43
18	9.040342	1910	-959658	9.042973	1933	10.957027	002631	23	9.997369	42
19	9.041485	1905	.958515	9.044130	1928	10.955870	+002645	23	9.997355	41
20	9.042625	1899	·957375	9.045284	1923	10.954716	002659	23	9.997341	40
21	9.043762	1895	·956238	9.046434	1918	10.953566	.002673	23	9.997327	39
22	9.044895	1889	·955105	9.047582	1913	10.952418	.002687	23	9.997313	38
23	9.046026	1884	·953974	9.048727	1908	10.951273	002701	23	9.997299	37
24	9.047154	1879	·952846	9.049869	1903	10.950131	$\cdot 002715$	23	9.997285	36
25	9.048279	1875	. 951721	9.051008	1898	10.948992	$\cdot 002729$	23	9.997271	35
26	9.049400	1870	·950600	9.052144	1893	10.947856	$\cdot 002743$	23	9.997257	34
27	9.050519	1865	·949481	9.053277	1889	10.946723	$\cdot 002758$	25	9.997242	33
28	9.051635	1860	·948365	9.054407	1884	10.945593	$\cdot 002772$	23	9.997228	32
29	9.052749	1855	$\cdot 947251$	9.055535	1879	10.944465	+002786	23	9.997214	31
30	9.053859	1850	$\cdot 946141$	9.056659	1874	10.943341	+002801	25	9.997199	30
31	9.054966	1845	·945034	9.057781	1870	10.942219	+002815	23	9.997185	29
32	9.056071	1841	·943929	9.058900	1865	10.941100	002830	25	9.997170	28
33	9.057172	1836	·942828	9.060016	1860	10.939984	$\cdot 002844$	23	9.997156	27
34	9.058271	1831	·941729	9.061130	1855	10.938870	$\cdot 002859$	25	9.997141	26
35	9.059367	1827	·940633	9.062240	1851	10.937760	002873	23	9.997127	25
36	9.060460	1822	$\cdot 939540$	9.063348	1846	10.936652	002888	25	9.997112	24
37	9.061551	1817	$\cdot 938449$	9.064453	1842	10.935547	.002902	23	9.997098	23
38	9.062639	1813	$\cdot 937361$	9.065556	1837	10.934444	$\cdot 002917$	25	9.997083	22
39	9.063724	1808	$\cdot 936276$	9.066655	1833	10.933345	$\cdot 002932$	25	9.997068	21
40	9.064806	1804	$\cdot 935194$	9.067752	1828	10.932248	+002947	25	9.997053	20
41	9.065885	1799	$\cdot 934115$	9.068846	1824	10.931154	+002961	23	9.997039	19
42	9.066962	1794	$\cdot 933038$	9.069938	1819	10.930062	+002976	25	9.997024	18
43	9.068036	1790	$\cdot 931964$	9.071027	1815	10.928973	$\cdot 002991$	25	9.997009	17
44	9.069107	1786	·930893	9.072113	1810	10.927887	$\cdot 003006$	25	9.996994	16
45	9.070176	1781	$\cdot 929824$	9.073197	1806	10.926803	+003021	25	9.996979	15
46	9.071242	1777	$\cdot 928758$	9.074278	1802	10.925722	+003036	25	9.996964	14
47	9.072306	1772	$\cdot 927694$	9.075356	1797	10.024644	+003051	25	9.996949	18
48	9.073366	1768	·926634	9.076432	1793	10.923568	$\cdot 003066$	25	9.996934	12
49	9.074424	1763	$\cdot 925576$	9.077505	1789	10.922495	$\cdot 003081$	25	9.996919	11
50	9.075480	1759	$\cdot 924520$	9.078576	1784	10.921424	$\cdot 003096$	25	9.996904	10
51	9.076533	1755	$\cdot 923467$	9.079644	1780	10.920356	$\cdot 003111$	25	9.996889	9
52	9.077583	1750	$\cdot 922417$	9.080710	1776	10.919290	$\cdot 003126$	25	9.996874	8
53	9.078631	1746	·921369	9.081773	1772	10.918227	$\cdot 003142$	27	9.996858	7
54	9.079676	1742	·920324	9.082833	1767	10.917167	003157	25	9.996843	6
55	9.080719	1738	·919281	9.083891	1763	10.916109	003172	25	9.996828	5
56	9.081759	1733	·918241	9.084947	1759	10 915053	$\cdot 003188$	27	9.996812	4
57	9.082797	1729	·917203	9.086000	1755	10.914000	.003203	25	9.996797	3
98	9.083232	1725	·916168	9.087050	1751	10.912950	003218	25	9.996782	2
- 29	9.084864	1721	•915136	9.088098	1747	10.911902	.003234	27	9.996766	1
00	9.085894	1717	·914106	9.089144	1743	10.910856	003249	25	9.996751	0
1	Cosine.	;	Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

83 DEG.

48 7 DEG.

•	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.085894		·914106	9.089144		10.910856	.003249		9.996751	60
1	9.086922	1713	·913078	9.090187	1738	10.909813	003265	27	9.996735	59
2	9.087947	1709	·912053	9.091228	1735	10.908772	003280	25	9.996720	58
3	9.088970	1704	·911030	9.092266	1731	10.907734	.003296	27	9.996704	57
4	9.089990	1700	·910010	9.093302	1727	10.906698	003312	27	9.996688	56
5	9.091008	1696	·908992	9.094336	1722	10.905664	$\cdot 003327$	25	9.996673	55
6	9.092024	1692	·907976	9.095367	1719	10.904633	003343	27	9.996657	54
7	9.093037	1688	·906963	9.096395	1715	10.903605	003359	27	9.996641	53
8	9.094047	1684	·905953	9.097422	1711	10.902578	003375	27	9.996625	52
9	9.095056	1680	·904944	9.098446	1707	10.901554	003390	25	9.996610	51
10	9.096062	1676	·903938	9.099468	1703	10.900532	·003406	27	9.996594	50
11	9.097065	1673	·902935	9.100487	1699	10.899513	$\cdot 003422$	27	9.996578	49
12	9.098066	1668	·901934	9.101504	1695	10.898496	003438	27	9.996562	48
13	9.099065	1665	.900935	.9.102519	1691	10.897481	003454	27	9.996546	47
14	9.100062	1661	.899938	9.103532	1687	10.896468	003470	27	9.996530	46
15	9.101056	1657	·898944	9.104542	1684	10.895458	003486	27	9.996514	45
16	9.102048	1653	•897952	9.105550	1680	10.894450	003502	27	9.996498	44
17	9.103037	1049	.896963	9.106556	1676	10.893444	003518	27	9.996482	43
18	9.104025	1040	.895975	9.107559	1672	10.892441	003535	28	9.996465	42
19	9.105010	1642	•894990	9.108560	1669	10.891440	003551	27	9.996449	41
20	9.105992	1038	.894008	9.109559	1665	10.890441	003567	27	9.996433	40
21	9.100973	1620	*893027	9.110556	1661	10.889444	003583	21	9.990417	39
24	9.107931	1000	092049	9.111001	1008	10.888449	003600	20	9.990400	00
20	9.100927	16027	.800000	9.112043	1004	10.887497	.003010	21	0.006966	01
24	0.1109901	1610	.090099	9.110000	1000	10.000407	003032	41	9-990308	20
20	9.111849	1616	-009147	9.114521	1041	10.000479	003049	40 97	0.006225	21
20	0.119800	1619	.997101	0.116401	1690	10.004493	.002689	-10	0.006218	20
28	9.112774	1608	-886996	0.117479	1696	10.889598	003004	97	9.990310	29
20	9.114737	1605	-885263	0.119459	1629	10.881548	.003715	21	9.996285	31
30	9.115698	1601	+884302	9.119499	1690	10.880571	.003731	20	9.996269	30
31	9.116656	1597	.883344	9.120404	1625	10.879596	003748	28	9.996252	29
32	9.117613	1594	.882387	9.121377	1622	10.878623	003765	28	9.996235	28
33	9.118567	1590	·881433	9.122348	1618	10.877652	+003781	27	9.996219	27
34	9.119519	1587	·880481	9.123317	1615	10.876683	003798	28	9.996202	26
35	9.120469	1583	·879531	9.124284	1611	10.875716	.003815	28	9.996185	25
36	9.121417	1580	·878583	9.125249	1608	10.874751	003832	28	9.996168	24
37	9.122362	1576	·877638	9.126211	1604	10.873789	003849	28	9.996151	23
38	9.123306	1573	·876694	9.127172	1601	10.872828	003866	28	9.996134	22
39	9.124248	1569	$\cdot 875752$	9.128130	1597	10.871870	003883	28	9.996117	21
40	9.125187	1566	·874813	9.129087	1594	10.870913	003900	28	9.996100	20
41	9.126125	1562	·873875	9.130041	1591	10.869959	003917	28	9.996083	19
42	9.127060	1559	$\cdot 872940$	9.130994	1587	10.869006	003934	28	9.996066	18
43	9.127993	1556	·872007	9.131944	1584	10.868056	003951	28	9.996049	17
44	9.128925	1552	·871075	9.132893	1581	10.867107	003968	28	9.996032	16
45	9.129854	1549	·870146	9.133839	1577	10.866161	003985	28	9.996015	10
46	9.130781	1545	·869219	9.134784	1574	10.865216	004002	28	0.004050	14
41	9.131706	1542	*868294	9.135726	1571	10.864274	004020	80	9.999980	10
48	9.132630	1539	.867370	9.136667	1567	10.863333	004037	28	9.999903	12
49	9.133331	1500	.800449	9.13/605	1504	10.862395	004054	20	9-990940	10
51	0.125207	1590	*000000U	0.120470	1550	10.860594	.004072	90	9.995011	0
52	0.126209	1525	862607	0.140400	1555	10.850501	.004106	28	9.995894	8
52	9.137916	1529	-869784	0.1/12/0	1551	10.858660	.0041/94	30	9.995876	7
54	9.138128	1519	-861879	9.142260	1548	10.857781	004141	28	9.995859	6
55	9.139037	1516	-860963	9.143196	1545	10.856804	.004159	30	9.995841	5
56	9.139944	1512	-860056	9.144121	1549	10.855879	.004177	30	9.995823	4
57	9.140850	1509	.859150	9.145044	1539	10.854956	.004194	28	9.995806	3
58	9.141754	1506	.858246	9.145966	1535	10.854034	.004212	30	9.995788	2
59	9.142655	1503	·857345	9.146885	1532	10.853115	.004229	28	9.995771	1
60	9.143555	1500	·856445	9.147803	1529	10.852197	$\cdot 004247$	30	9.995753	0
1	Cosine.		Secant.	Cotangent		Tangent.	Cosecant.		Sine.	,
									82 DE	G.

.

2	-	
×	DEC	
	1/ 1/14.	

0.0	1901									
,	Sine.	Duff. 100''	Cosecant.	Tangent.	Diff. 100'	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.143555		·856445	9.147803		10.852197	.004247		9.995753	60
1	9.144453	1496	·855547	9.148718	1526	10.851282	$\cdot 004265$	30	9.995735	59
2	9.145349	1493	·854651	9.149632	1523	10.850368	$\cdot 004283$	30	9.995717	58
3	9.146243	1490	·853757	9.150544	1520	10.849456	004301	30	9.995699	57
4	9.147136	1487	852864	9.151454	1517	10.848546	004319	30	9.995681	56
5	9.148026	1484	·851974	9.152363	1514	10.847637	004336	28	9.995064	00
0	9.148919	1481	·801080	9.153269	1509	10.040731	.004334	30	0.0056-98	52
0	9.149002	1470	-000190	9.155077	1505	10.844023	-004372	-20	0.005610	59
q	9.151569	1479	-848431	9.155978	1502	10.844022	.004409	32	9.995591	51
10	9.152451	1469	.847549	9.156877	1499	10.843123	.004427	30	9.995573	50
11	9.153330	1466	.846670	9.157775	1496	10.842225	0.004445	30	9.995555	49
12	9.154208	1462	·845792	9.158671	1493	10.841329	004463	30	9.995537	48
13	9.155083	1460	·844917	9.159565	1490	10.840435	$\cdot 004481$	30	9.995519	47
14	9.155957	1457	·844043	9.160457	1487	10.839543	·004499	30	9.995501	46
15	9.156830	1454	$\cdot 843170$	9.161347	1484	10.838653	$\cdot 004518$	32	9.995482	45
16	9.157700	1451	$\cdot 842300$	9.162236	1481	10.837764	$\cdot 004536$	30	9.995464	44
17	9.158569	1448	·841431	9.163123	1478	10.836877	004554	30	9.995446	43
18	9.159435	1445	·840565	9.164008	1475	10.835992	004573	32	9.995427	42
19	9.160301	1442	·839699	9.164892	1473	10.835108	004591	30	9.995409	41
20	9.161164	1439	-838836	9.165774	1470	10.834226	004610	32	9.995390	40
21	9.162025	1436	.837975	9.166654	1467	10.833346	004628	30	9.995372	39
22	9.162885	1433	-83/115	9.167532	1464	10.832408	004047	32	9.990303	00
23	9.103/43	1430	.830207	9.108409	1401	10.001091	.004000	32 90	9.990004	01
24	9.165454	1427	·050400	9.109204	1400	10.890842	.004004	00 90	9.9995510	25
20	9.166207	1424	-833603	0.171020	1459	10.828071	.004799	29	0.005978	34
20	9.167159	1422	.832841	0.171800	1450	10.828101	004740	20	9.995260	33
28	9.168008	1416	-831992	9.172767	1447	10.827233	004759	32	9.995241	32
29	9.168856	1413	·831144	9.173634	1444	10.826366	.004778	32	9.995222	31
30	9.169702	1410	·830298	9.174499	1442	10.825501	.004797	32	9.995203	30
31	9.170547	1407	$\cdot 829453$	9.175362	1439	10.824638	004816	32	9.995184	29
32	9.171389	1405	$\cdot 828611$	9.176224	1436	10.823776	004835	32	9.995165	28
83	9.172230	1402	·827770	9.177084	1433	10.822916	$\cdot 004854$	32	9.995146	27
34	9.173070	1399	·826930	9.177942	1431	10.822058	.004873	32	9.995127	26
35	9.173908	1396	$\cdot 826092$	9.178799	1428	10.821201	004892	32	9.995108	25
36	9.174744	1394	$\cdot 825256$	9.179655	1425	10.820345	.004911	32	9.995089	<b>24</b>
37	9.175578	1391	$\cdot 824422$	9.180508	1423	10.819492	·004930	32	9.995070	23
38	9.176411	1388	$\cdot 823589$	9.181360	1420	10.818640	004949	32	9.995051	22
39	9.177242	1385	•822758	9.182211	1417	10.817789	004968	32	9.995032	21
40	9.178072	1383	•821928	9.183059	1415	10.816941	004987	-32	9.995013	20
41	9.178900	1380	-821100	9.183907	1412	10.816093	005007	33	9.994993	19
42	9.19120	13//	·0202/4	9.184/92	1409	10.814409	005045	32	9.994974	10
40	9.181974	1379	·019449	9.186420	140/	10.812561	-005065	02 32	0.00/025	16
45	9.182196	1360	-817804	9.187280	1409	10.812720	-005084	32	9.994916	15
46	9.183016	1367	-816984	9.188120	1399	10.811880	.005104	33	9.994896	14
47	9.183834	1364	.816166	9.188958	1396	10.811042	.005123	32	9.994877	13
48	9.184651	1361	.815349	9.189794	1394	10.810206	.005143	33	9.994857	12
49	9.185466	1359	·814534	9.190629	1391	10.809371	.005162	32	9.994838	11
50	9.186280	1356	·813720	9.191462	1389	10.808538	.005182	33	9.994818	10
51	9.187092	1353	·812908	9.192294	1386	10.807706	·005202	83	9.994798	9
52	9.187903	1351	·812097	9.193124	1384	10.806876	$\cdot 005221$	32	9.994779	8
53	9.188712	1348	$\cdot 811288$	9.193953	1381	10.806047	·005241	33	9.994759	7
54	9.189519	1346	·810481	9.194780	1379	10.805220	$\cdot 005261$	33	9.994739	6
55	9.190325	1343	·809675	9.195606	1376	10.804394	$\cdot 005281$	32	9.994720	5
56	9.191130	1341	·808870	9.196430	1374	10.803570	005300	33	9.994700	4
57	9.191933	1338	·808067	9.197253	1371	10.802747	005320	33	9.994680	3
98 50	9.192734	1336	-807266	9.198074	1369	10.801926	005340	33	9.994660	Z
- 99 - 60	9.195934	1000	*800400	9.198894	1264	10.800106	.005260	00	9.994640	1
-00	0 104002	1.00	600008	9.199/19	1004	10.000401	.003330	00	5.994020	
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1 / 1

81 DEG.

50 9 deg.

1	Sine.	Diff.	Cosecant.	Tangent.	Diff.	Cetangent.	Secant.	Diff.	Cosine.	1,
	9.194339		-805668	9.199713		10.800287	.005380		0.004690	0
1	9.195129	1328	.804871	9.200529	1361	10.799471	-005300	22	9.994020	50
2	9.195925	1326	.804075	9.201345	1359	10.798655	005420	22	9.994580	59
3	9.196719	1323	.803281	9.202159	1356	10.797841	.005440	33	9.994560	57
4	9.197511	1321	·802489	9.202971	1354	10.797029	005460	33	9.994540	56
5	9.198302	1318	·801698	9.203782	1352	10.796218	005481	35	9.994519	55
6	9.199091	1316	·800909	9.204592	1349	10.795408	.005501	33	9.994499	54
7	9.199879	1313	·800121	9.205400	1347	10.794600	005521	33	9.994479	53
8	9.200666	1311	·799334	9.206207	1345	10-793793	005541	33	9.994459	52
9	$9 \cdot 201451$	1308	·798549	9.207013	1342	10.792987	005562	35	9.994438	51
10	9.202234	1306	·797766	9.207817	1340	10.792183	005582	33	9.994418	50
11	9.203017	1304	.796983	9.208619	1338	10.791381	.005602	33	9.994398	49
12	9.203797	1301	·796203	9.209420	1335	10.790580	.005623	35	9.994377	48
13	9.204577	1299	·795423	9.210220	1333	10.789780	005643	33	9.994357	47
14	9.205354	1296	·794646	9.211018	1331	10.788982	005664	35	9.994336	46
15	9.206131	1294	·793869	9.211815	1328	10.788185	005684	33	9.994316	45
16	9.206906	1292	·793094	$9 \cdot 212611$	1326	10.787389	005705	35	9.994295	44
17	9.207679	1289	·792321	9.213405	1324	10.786595	005726	35	9.994274	43
18	9.208452	1287	·791548	9.214198	1321	10.785802	005746	33	9.994254	42
19	$9 \cdot 209222$	1285	·790778	9.214989	1319	10.785011	005767	35	9.994233	41
20	9.209992	1282	·790008	9.215780	1317	10.784220	005788	35	9.994212	40
21	9.210760	1280	$\cdot 789240$	9.216568	1315	10.783432	+005809	35	9.994191	39
22	9.211526	1278	$\cdot 788474$	9.217356	1312	10.782644	005829	33	9.994171	38
23	$9 \cdot 212291$	1275	·787709	9.218142	1310	10.781858	005850	35	9.994150	37
24	9.213055	1273	$\cdot 786945$	9.218926	1308	10.781074	005871	35	9.994129	36
25	9.213818	1271	-786182	9.219710	1305	10.780290	.005892	35	9.994108	35
26	9.214579	1268	· ·785421	9.220492	1303	10.779508	005913	35	9-994087	34
27	9.215338	1266	·784662	9.221272	1301	10.778728	005934	35	9.994066	33
28	9.216097	1264	·783903	9.222052	1299	10.777948	$\cdot 005955$	35	9.994045	32
29	9.216854	1261	.783146	9.222830	1297	10.777170	005976	35	9.994024	31
30	9.217609	1259	$\cdot 782391$	9.223607	1294	10.776393	005997	35	9.994003	30
31	9.218363	1257	$\cdot 781637$	9.224382	1292	10.775618	$\cdot 006018$	35	9.993982	29
32	$9 \cdot 219116$	1255	-780884	9.225156	1290	10.774844	·006040	37	9.993960	28
33	9.219868	1253	.780132	9.225929	1288	10.774071	$\cdot 006061$	35	9.993939	27
34	9.220618	1250	.779382	9.226700	1286	10.773300	006082	35	9.993918	26
30	9.221367	1248	•778633	9.227471	1284	10.772529	.006103	35	9.993897	25
36	9.222115	1246	•111885	9.228239	1281	10.771761	006125	37	9.993875	24
37	9.222861	1244	•777139	9.229007	1279	10.770993	006146	35	9.993854	23
38	9.223606	1242	•776394	9.229773	1277	10.770227	006168	37	9.993832	22
39	9.224349	1239	•775651	9.230539	1275	10.769461	006189	35	9.993811	21
40	9.225092	1237	•774908	9.231302	1273	10.768698	006211	31	9.993789	20
41	9.225833	1235	.774107	9.232065	1271	10.767935	006232	35	9.993768	19
42	9.226073	1233	779690	9.232826	1269	10.70/174	006254	51	9.993746	18
43	9.227311	1231	771059	9.233586	1267	10.705414	006275	30	9.993725	11
44	0.000704	1228	771010	9.234340	1200	10.764007	006210	31	9.993703	15
40	0.000510	1220	770400	0.002020	1202	10.764141	.006940	01	9.9999991	10
40	0.020050	1224	760740	0.996614	1200	10.769996	.006340	00 97	0.009690	14
19	0.990004	1222	760010	0.997960	1258	10.769699	000302	01	9.9999099 0.009616	10
40	9.200904	1220	769025	0.920100	1200	10.76102032	006400	01	0.009504	14
50	9.9201/10	1910	767556	0.990070	1050	10.761190	.006400	27	0.009570	10
51	0.202444	1210	766829	0.990699	1950	10.760279	.006450	37	0.002550	0
52	0.233800	1919	766101	0.240271	1949	10.750690	.006479	27	0.002500	8
52	0.934693	1200	765275	0.9/1110	1240	10.7599049	.006404	37	0.002506	
54	9.935340	1209	764651	0.941865	1944	10.758125	.006516	37	0.003121	6
55	9.236072	1207	762007	9.249610	1919	10.757200	.006528	37	0.002469	5
56	9.236705	1200	763205	9.942254	1940	10.756646	.006560	37	9.992440	à
57	9.237515	1201	.762485	9.244097	1238	10.755903	.006582	37	9.993418	3
58	9.238235	1190	.761765	9.244830	1236	10.755161	.006604	37	9.993396	2
59	9.238953	1197	.761047	9.245579	1234	10.754421	006626	37	9.993374	ī
60	9.239670	1195	.760330	9.246319	1232	10.753681	.006649	38	9.993351	0
	Cosino			Cotor		Tancant	Concert			
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

10 DEG.

-

Γ.	,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100″	Cosine.	1
	$\overline{0}$	9.239670		·760330	9.246319		10.753681	.006649		9.993351	60
	ĩ	9.240386	1193	.759614	9.247057	1230	10.752943	·006671	37	9.993329	59
	$2 \parallel$	9.241101	1191	$\cdot 758899$	9.247794	1228	10.752206	·006693	37	9.993307	58
	3	9.241814	1189	$\cdot 758181$	9.248530	1226	10.751470	/006715	38	9.993285	57
	4	$9 \cdot 242526$	1187	.757474	9.249264	1224	10.750736	.006738	37	9-993262	56
	5	9.243237	1185	.756763	9.249998	1222	10.750002	006760	31	9.993240	00 54
	6	9.243947	1183	.756053	9.250730	1220	10.749270	006783	38	9.993217	04 59
	0	9.244696	1181	100344	9.251461	1210	10.747800	.006809	28	0.003179	59
	0	9.249505	1177	753031	9.252191	1915	10.747080	006851	38	9.993149	51
1	0	9.246775	1175	753225	9.253648	1213	10.746352	.006873	37	9.993127	50
li	ĭ	9.247478	1173	.752522	9.254374	1211	10.745626	006896	38	9.993104	49
lî	$\overline{2}$	9.248181	1171	.751819	$9 \cdot 255100$	1209	10.744900	·006919	38	9.993081	48
i	3	9.248883	1169	$\cdot 751117$	$9 \cdot 255824$	1207	10.744176	·006941	37	9.993059	47
1	4	9.249583	1167	.750417	9.256547	1205	10.743453	·006964	38	9·993036	46
1	5	9.250282	1165	$\cdot 749718$	$9 \cdot 257269$	1203	10.742731	$\cdot 006987$	38	9.993013	45
1	.6	9.250980	1163	·749020	9.257990	1201	10.742010	·007010	38	9.992990	44
1	7	9.251677	1161	$\cdot 748323$	9.258710	1200	10.741290	$\cdot 007033$	38	9.992967	43
1	.8	9.252373	1159	·747627	9.259429	1198	10.740571	007056	38	9.992944	42
1	.9	9.253067	1158	.746933	9.260146	1196	10.739854	007079	38	9.992921	41
12	0	9.253/61	1156	•746239	9.260863	1194	10.739137	007102	38	9.992898	40
		9.204400	1104	140041	9.201078	1192	10.797709	007149	00	9.992019	20
4	22	9.255144	1150	-744000	9.202292	1190	10.736005	.007140	20	0.009890	37
4	20	9.256523	1148	-749100	9.203000	1187	10-736283	-007194	38	9-992806	36
1.	25	9.257211	1146	.742789	9.264428	1185	10.785572	007134	38	9.992783	35
1.2	26	9.257898	1144	.742102	9.265138	1183	10.734862	007241	40	9.992759	34
12	27	9.258583	1142	.741417	9.265847	1181	10.734153	.007264	38	9.992736	33
1 2	28	9.259268	1141	$\cdot 740732$	9.266555	1179	10.733445	.007287	38	9.992713	32
1 2	29	9.259951	1139	$\cdot 740049$	9.267261	1178	10.732739	.007311	38	9.992690	31
5	30	9.260633	1137	$\cdot 739367$	9.267967	1176	10.732033	007334	40	9.992666	30
÷	31	9.261314	1135	·738686	9.268671	1174	10.731329	·007357	38	9.992643	29
1	32	9.261994	1133	·738006	9.269375	1172	10.730625	007381	40	9.992619	28
ł	33	9.262673	1131	.737327	9.270077	1170	10.729923	007404	38	9.992596	27
Ì	34	9.263351	1130	.736649	9.270779	1109	10.729221	007428	40	9.992572	26
é	50	9.204027	1128	.795007	9.271479	1107	10.725921	007451	30	9.992049	20
e	27	9.265377	1120	-794699	9.272170	1164	10.797194	-001410	40	9.992020	24
	88	9.266051	1122	.733949	9.273573	1162	10.726427	.007522	38	9.992478	22
	39	9.266723	1120	.733277	9.274269	1160	10.725731	007546	40	9.992454	21
	40	9.267395	1119	.732605	9.274964	1158	10.725036	007570	40	9.992430	20
	41	9.268065	1117	.731935	9.275658	1157	10.724342	007594	40	9.992406	19
14	42	9.268734	1115	·731266	9.276351	1155	10.723649	007618	40	9.992382	18
	43	9.269402	1113	·730598	9.277043	1153	10.722957	007642	38	9.992358	17
	44	9.270069	1111	$\cdot 729931$	9.277734	1151	10.722266	007665	40	9.992335	16
1	45	9.270735	1110	•729265	9.278424	1150	10.721576	007689	40	9.992311	15
1	46	9.271400	1108	•728600	9.279113	1148	10.720887	007713	40	9.992287	14
1	47	9.272064	1105	•727936	9.279801	1140	10.720199	007737	40	9.992263	13
	48	9.272720	1100	.796619	9.280488	1140	10.719912	007796	40	9.992239	12
	49 50	9.273300	1103	.725051	0.981859	1140	10.718149	.007810	42	9.992214	10
	50	9.274708	1099	.725292	9.282549	1140	10.717458	007834	40	9.992166	9
	52	9.275367	1098	.724633	9.283225	1138	10.716775	007858	40	9.992142	8
	53	9.276025	1096	.723975	9.283907	1136	10.716093	007882	40	9.992118	7
	54	9.276681	1094	·723319	9.284588	1135	10.715412	007907	42	9.992093	6
	55	9.277337	1092	.722663	9.285268	1133	10.714732	007931	40	9.992069	5
	56	9.277991	1091	·722009	9.285947	1131	10.714053	007956	42	9.992044	4
1	57	9.278645	1089	$\cdot 721355$	$9 \cdot 286624$	1130	10.713376	007980	40	9.992020	3
	58	9.279297	1087	•720703	9.287301	1128	10.712699	008004	40	9.991996	2
	59	9.279948	1086	•720052	9.287977	1126	10.712023	008029	42	9.991971	
-	00	9.280599	1084	•719401	9.288652	1125	10.711348	008053	40	9.991947	10
1	,	Cosine.		Secant.	Cotangent.	1	Tangent.	Cosecant.		Sine.	11

35

79 DEG.

11 DEG.

52

ŝ

'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.280599		·719401	$9 \cdot 288652$		10.711348	.008053		9.991947	60
1	9.281248	1082	.718752	9.289326	1123	10.710674	008078	42	9.991922	59
2	9.281897	1081	.718103	9.289999	1122	10.710001	008103	42	9.991897	58
3	9.282544	1079	$\cdot 717456$	9.290671	1120	10.709329	008127	40	9.991873	57
4	$9 \cdot 283190$	1077	.716810	$9 \cdot 291342$	1118	10.708658	008152	42	9.991848	56
5	9.283836	1076	·716164	9.292013	1117	10.707987	008177	42	9.991823	55
6	$9 \cdot 284480$	1074	·715520	9.292682	1115	10.707318	008201	40	9.991799	54
7	$9 \cdot 285124$	1072	·714876	9.293350	1114	10.706650	$   \cdot 008226$	42	9.991774	53
8	9.285766	1071	·714234	9.294017	1112	10.705983	008251	42	9.991749	52
9	9.286408	1069	$\cdot 713592$	9.294684	1111	10.705316	008276	42	9.991724	51
10	9.287048	1067	$\cdot 712952$	9.295349	1109	10.704651	008301	42	9.991699	50
11	9.287688	1066	$\cdot 712312$	9.296013	1107	10.703987	+008326	42	9.991674	49
12	9.288326	1064	•711674	9.296677	1106	10.703323	008351	42	9.991649	48
13	9.288964	1063	.711036	9.297339	1104	10.702661	008376	42	9.991624	47
14	9.289600	1061	$\cdot 710400$	9.298001	1103	10.701999	008401	42	9.991599	46
10	9.290236	1059	.709764	9.298662	1101	10.701338	008426	42	9.991574	45
16	9.290870	1058	~709130	9.299322	1100	10.700678	008451	42	9.991549	44
17	9.291504	1056	.708496	9.299980	1098	10.700020	008476	42	9.991524	43
18	9.292137	1054	•707863	9.300638	1096	10.699362	008502	43	9.991498	42
19	9.292768	1053	·707232	9.301295	1095	10.698705	008527	42	9.991473	41
20	9.293399	1051	·706601	9.301951	1093	10.698049	008552	42	9.991448	40
21	9.294029	1050	•705971	9.302607	1092	10.697393	008578	43	9.991422	39
	9.294658	1048	.705342	9.303261	1090	10.696739	008603	42	9.991397	38
23	9.295286	1046	.704714	9.303914	1089	10.696086	008628	42	9.991372	37
24	9.295913	1045	.704087	9.304567	1087	10.695433	008654	43	9.991346	36
20	9.296539	1043	•703461	9.305218	1086	10.694782	-008679	42	9.991321	35
20	9.297104	1042	•702836	9.305869	1084	10.694131	.008705	43	9.991295	34
21	9.297788	1040	.702212	9.306519	1083	10.693481	008730	42	9.991270	33
20	9.298412	1039	.701588	9.307168	1081	10.692832	008756	43	9.991244	32
29	9.299034	1037	.700966	9.307815	1080	10.692185	008782	43	9.991218	31
91	0.200076	1030	.700345	9.308463	1078	10.691537	1008000	42	9.991193	30
2.)	9.200210	1034	-099724	9.309109	1077	10.000340	.008855	43	9.991167	29
22	9.301514	1092	-609105	9.909794	1070	10.090240	.0000009	43	9.991141	28
31	9.309139	1001	090100	9.310398	1074	10.689002	.008010	43	9.991119	21
35	9.30.2748	1029	-697000	9.311042	1070	10.688315	.0080310	42	0.001064	20
36	9.303364	1020	-091202 -806626	9.911000	1071	10.687672	-008980	40	0.001030	20
37	9.303979	1020	-6060-01	9.912927	1068	10.687022	008302	40	0.001010	124
- 38	9.304593	1023	+695407	0.313608	1067	10.686399	0000000	40	0.0000086	99
39	9.305207	1022	-694793	9.314.247	1065	10.685753	010000	40	9.990960	21
40	9.305819	1020	-694181	9.314885	1064	10.685115	000000	43	9.990934	20
41	9.306430	1019	-693570	9.315523	1062	10.684477	.009092	42	9.990909	19
42	9.307041	1017	692959	9.316159	1061	10.683841	0000002	42	9.990882	18
43	9.307650	1016	.692350	9.316795	1060	10.683205	000110	45	9.990855	17
44	9.308259	1014	·691741	9.317430	1058	10.682570	0.009171	43	9.990829	16
45	9.308867	1013	.691133	9.318064	1057	10.681936	009197	43	9.990803	15
46	9.309474	1011	.690526	9.318697	1055	10.681303	.009223	43	9.990777	14
47	9.310080	1010	.689920	9.319329	1054	10.680671	.009250	45	9.990750	13
48	9.310685	1008	·689315	9.319961	1053	10.680039	0.009276	43	9.990724	12
49	$9 \cdot 311289$	1007	.688711	9.320592	1051	10.679408	0.009303	45	9.990697	11
50	9.311893	1006	·688107	9.321222	1050	10.678778	009329	43	9.990671	10
51	9.312495	1004	.687505	9.321851	1048	10.678149	.009355	43	9.990645	9
52	9.313097	1003	·686903	9.322479	1047	10.677521	$\cdot 009382$	45	9.990618	8.
53	9.313698	1001	686302	9.323106	1045	10.676894	.009409	45	9.990591	7
54	9.314297	1000	.685703	9.323733	1044	10.676267	.009435	43	9.990565	6
55	9.314897	998	·685103	9.324358	1043	10.675642	.009462	45	9.990538	5
56	9.315495	997	.6845,05	9.324983	1041	10.675017	.009489	45	9.990511	4
57	9.316092	996	·683908	9.325607	1040	10.674393	.009515	43	9.990485	3
158	9.316689	994	$\cdot 683311$	9.326231	1039	10.673769	$\cdot 009542$	45	9.990458	2
.59	9.317284	993	$\cdot 682716$	9.326853	1037	10.673147	009569	45	9.990431	1
60	9.317879	, 991	$\cdot 682121$	9.327475	1036	10.672525	·009596	45	9.990404	0
1	Cosine.		secant.	Cotangeut.		Tangent.	Cosecant.		Sine.	1

EG

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.317879		·682121	9.327474		10.672526	·009596		9.990404	$\overline{60}$
1	9.318473	990	.681527	9.328095	1035	10.671905	009622	43	9.990378	59
2	9.319066	988	·680934	9.328715	1033	10.671285	·009649	45	9.990351	58
3	9.319658	987	·680342	9.329334	1032	10.670666	009676	45	9.990324	57
4	9.320249	986	.679751	9.329953	1030	10.670047	·009703	45	9.990297	56
5	9.320840	984	·679160	9.330570	1029	10.669430	-009730	45	9.990270	55
6	9.321430	983	·678570	9.331187	1028	10.668813	009757	45	9.990243	54
7	$9 \cdot 322019$	982	•677981	9.331803	1026	10.668197	.009785	47	9.990215	53
8	9.322607	980	.677393	9.332418	1025	10.667582	009812	40	9.990188	52
9	9.323194	979	.076806	9.333033	1024	10.000907	009839	40	9.990161	01 50
10	9.323780	911	.676220	9.333646	1023	10.005304	.009866	40	9.990134	10
11	9.924000	970	675050	9.334239	1021	10.665190	.0000001	40	0.000070	49
12	9.325534	970	.674466	9.335487	1010	10.664518	-009921	45	9.990079	47
14	9.326117	079	673883	9.336093	1017	10.663907	.009940	45	9.990032	46
15	9.326700	970	.673300	9.336702	1016	10.663298	010003	47	9.989997	45
16	9.327281	969	.672719	9.337311	1015	10.662689	010030	45	9.989970	44
17	9.327862	968	.672138	9.337919	1013	10.662081	010058	47	9.989942	43
18	9.328442	966	.671558	9.338527	1012	10.661473	.010085	45	9.989915	42
19	9.329021	965	·670979	9.339133	1011	10.660867	·010113	47	9.989887	41
20	9.329599	964	·670401	9.339739	1010	10.660261	·010140	45	9.989860	40
21	9.330176	962	$\cdot 669824$	9.340344	1008	10.659656	010168	47	9.989832	39
22	9.330753	961	·669247	9.340948	1007	10.659052	·010196	47	9.989804	38
23	9.331329	960	·668671	9.341552	1006	10.658448	.010223	45	9.989777	37
24	9.331903	958	·668097	9.342155	1004	10.657845	0.010251	47	9.989749	36
25	9.332478	957	$\cdot 667522$	9.342757	1003	10.657243	010279	47	9.989721	35
26	9.333051	956	$\cdot 666949$	9.343358	1002	10.656642	$\cdot 010307$	47	9.989693	34
27	9.333624	954	·666376	9.343958	1001	10.656042	0.010335	47	9.989665	33
28	9.334195	953	•665805	9.344558	999	10.655442	010363	47	9.989637	32
29	9.334767	952	•665233	9.345157	998	10.654843	010390	45	9.989610	31
30	9.335337	950	.664663	9.345755	997	10.654245	010418	47	9.989582	30
01 90	9.335900	949	.004094	9.340303	990	10.000047	010447	40	9.9899993	29
22	0.227042	046	-003020	9.340949	994	10.659455	.010509	41	9.9899920	20
34	9.337610	940	-662300	0.348141	009	10.651950	.010503	47	0.000491	26
35	9.338176	944	.661824	9.348735	991	10.651265	.010559	47	9.989441	25
36	9.338742	943	·661258	9.349329	990	10.650671	010587	47	9.989413	24
37	9.339307	941	·660693	9.349922	988	10.650078	010615	47	9.989385	23
38	9.339871	940	.660129	9.350514	987	10.649486	·010644	48	9.989356	22
39	9.340434	939	·659566	9.351106	986	10.648894	.010672	47	9.989328	21
40	9.340996	937	·659004	9.351697	985	10.648303	010700	47	9.989300	20
41	9.341558	936	$\cdot 658442$	9.352287	983	10.647713	010729	48	9.989271	19
42	9.342119	935	$\cdot 657881$	9.352876	982	10.647124	·010757	47	9.989243	18
43	9.342679	934	•657321	9.353465	981	10.646535	010786	48	9.989214	17
44	9.343239	932	•656761	9.354053	980	10.645947	010814	47	9.989186	16
45	9.343797	931	.656203	9.354640	979	10.645360	010843	48	9.989157	15
46	9.344355	930	*000040 .655000	9.355227	977	10.644778	010872	.48	9.989128	14
41	0.945460	929	-000088	0.956900	976	10.642609	.010900	41	0.020071	10
40	0.24609409	921	652076	0.356020	910	10.649012	.010929	40	0.080011	11
50	9.346579	925	.653421	9.357566	079	10.649434	.010956	40	9.989014	10
51	9.347134	924	.652866	9.358149	971	10.641851	.011015	48	9.988985	9
52	9.347687	922	.652313	9.358731	970	10.641269	.011044	48	9.988956	8
53	9.348240	921	.651760	9.359313	969	10.640687	.011073	48	9.988927	7
54	9.348792	920	·651208	9.359893	968	10.640107	.011102	48	9.988898	6
55	9.349343	919	·650657	9.360474	967	10.639526	.011131	48	9.988869	5
56	9.349893	917	·650107	9.361053	966	10.638947	.011160	48	9.988840	4
57	9.350443	916	$\cdot 649557$	9.361632	965	10.638368	.011189	48	9.988811	8
58	9.350992	915	$\cdot 649008$	9.362210	963	10.637790	·011218	48	9.988782	2
59	9.351540	914	·648460	9.362787	962	10.637213	.011247	48	9.988753	1
60	9.352088	913	·647912	9.363364	961	10.636636	·011276	48	9.988724	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sinc.	,

77 DEG

1

54 13 DEG

'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff 100 ⁹	Cosine.	1,
0	9.352088		·647912	9.363364		10.636636	·011276		9.988724	60
1	9.352635	911	.647365	9.363940	960	10.636060	011305	48	9.988695	59
$\frac{1}{2}$	9.353181	910	.646819	9.364515	959	10.635485	.011334	48	9.988666	58
3	9.353726	909	·646274	9.365090	958	10.634910	.011364	50	9.988636	57
4	9.354271	908	.645729	9.365664	957	10.634336	.011393	48	9.988607	56
5	9.354815	907	.645185	9.366237	955	10.633763	$\cdot 011422$	48	9.988578	55
6	9.355358	905	.644642	9.366810	954	10.633190	.011452	50	9.988548	54
7	9.355901	904	·644099	9.367382	953	10.632618	0.011481	48	9.988519	53
8	9.356443	903	·643557	9.367953	952	10.632047	.011511	50	9.988489	52
9	9.356984	902	-643016	9.368524	951	10.631476	.011540	48	9.988460	51
10	9.357524	901	.642476	9.369094	950	10.630906	.011570	50	9.988430	50
11	9.358064	899	·641936	9.369663	949	10.630337	0.011599	48	9.988401	49
12	9.358603	898	.641397	9.370232	948	10.629768	0011629	50	9.988371	48
13	9.359141	897	·640859	9.370799	946	10.629201	0.011658	48	9.988342	47
14	9.359678	896	.640322	9.371367	945	10.628633	0.011688	50	9.988312	46
15	9.360215	895	.639785	9.371933	944	10.628067	0.011718	50	9.988282	45
16	9.360752	893	.639248	9.372499	943	10.627501	011748	50	9.988252	44
17	9.361287	892	·638713	9.373064	942	10.626936	·011777	48	9.988223	43
18	9.361822	891	.638178	9.373629	941	10.626371	0.011807	50	9.988193	42
19	9.362356	890	.637644	9.374193	940	10.625807	0.011837	50	9.988163	41
20	9.362889	889	.637111	9.374756	939	10.625244	0.011867	50	9.988133	40
21	9.363422	888	.636578	9.375319	938	10.624681	0.011897	50	9.988103	39
22	9.363954	887	.636046	9.375881	937	10.624119	0.011927	50	9.988073	38
23	9.364485	885	.635515	9.376442	935	10.623558	0.011957	50	9.988043	37
24	9.365016	884	·634984	9.377003	934	10.622997	0.011987	50	9.988013	36
25	9.365546	883	.634454	9.377563	933	10.622437	0.012017	50	9.987983	35
26	9.366075	882	.633925	9.378122	932	10.621878	$\cdot 012047$	50	9.987953	34
27	9.366604	881	.633396	9.378681	931	10.621319	0.012078	52	9.987922	33
28	9.367131	880	·632869	9.379239	930	10.620761	0.012108	50	9.987892	32
29	9.367659	879	·632341	9.379797	929	10.620203	0.012138	50	9.987862	31
30	9.368185	878	.631815	9.380354	928	10.619646	$\cdot 012168$	50	9.987832	30
31	9.368711	876	.631289	9.380910	927	10.619090	012199	52	9.987801	29
32	9.369236	875	$\cdot 630764$	9.381466	926	10.618534	$\cdot 012229$	50	9.987771	28
33	9.369761	874	$\cdot 630239$	9.382020	925	10.617980	$\cdot 012260$	52	9.987740	27
34	9.370285	873	.629715	9.382575	924	10.617425	$\cdot 012290$	50	9.987710	26
-35	9.370808	872	$\cdot 629192$	9.383129	923	10.616871	$\cdot 012321$	52	9.987679	25
· 36	9.371330	871	·628670	9.383682	922	10.616318	012351	50	9.987649	24
37	9.371852	870	$\cdot 628148$	9.384234	921	10.615766	0.012382	52	9.987618	23
-38	9.372373	869	$\cdot 627627$	9.384786	920	10.615214	0.012412	50	9.987588	22
39	9.372894	867	$\cdot 627106$	9.385337	919	10.614663	0.012443	52	9.987557	21
-40	9.373414	866	·626586	9.385888	918	10.614112	012474	52	9.987526	20
41	9.373933	865	·626067	9.386438	917	10.613562	012504	50	9.987496	19
-42	9.374452	864	•625548	9.386987	916	10.613013	012535	52	9.987465	18
-43	9.374970	863	·625030	9.387536	914	10.612464	012566	52	9.987434	17
44	9.375487	862	·624513	9.388084	913	10.611916	012597	52	9.987403	16
45	9.376003	861	•623997	9.388631	912	10.611369	012628	52	9.987372	15
46	9.376519	860	·623481	9.389178	911	10.610822	012659	52	9.987341	14
41	9.317035	859	622965	9.389724	910	10.610276	012690	52	9.987310	13
48	9.3/1049	898	·622451	9.390270	909	10.609730	012721	52	9.987279	12
49	9.378063	857	.621937	9.390815	908	10.609185	012752	52	9.987248	11
00	9-318017	856	.621423	9.391360	907	10.608640	012783	52	9.98/217	10
16	9.379089	804	·620911	9.391903	906	10.608097	012814	52	9.987186	9
02	9.3/9001	000	·020399	9.392447	905	10.607553	012845	52	9.98/155	8
93	9.380113	002	.019887	9.392989	904	10.607011	0128/6	52	9.98/124	6
'04 EE	9.380624	001	·019376	0.004070	903	10.605469	012908	50	9.981092	0
00	9.381134	066	.018866	9.394073	902	10.605927	012939	52	9.981061	O A
57	0.900150	049	010307	0.905154	901	10.000386	012970	52	9.991030	4
01	0.200001	040	01/848	0.395154	900	10.004846	013002	05	9.996062	0
50	0.389120	041 QAC	.616090	0.900094	099	10.609767	012064	50	0.066056	4
60	9.882475	845	616995	9.206771	807	10.602990	.012004	52	0.088001	â
	0 000010	040	010520	0.990111	091	10.003229	010030		a-200204	
1 '	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		sine.	1

14 DEG.

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100″	Cosine.	1
0	9.383675		·616325	9.396771		10.603229	·013096		9.986904	60
1	9.384182	844	·615818	9.397309	896	10.602691	$\cdot 013127$	52	9.986873	59
2	9.384687	843	$\cdot 615313$	9.397846	896	10.602154	.013159	53	9.986841	58
3	9.385192	842	·614808	9.398383	895	10.601617	·013191	53	9.986809	57
4	9.385697	841	·614303	9.398919	894	10.601081	013222	52	9.986778	56
5	9.386201	840	·613799	9.399455	893	10.600545	013254	53	9.986746	55
6	9.386704	839	·613296	9.399990	892	10.600010	013286	53	9.986714	54
	9.387207	838	•612793	9.400524	891	10.509040	013317	52	9.980083	00
8	9.387709	001	·012291	9.401000	090	10-598942	010049	59	0.486610	51
10	9.300210	825	-611290	0.402191	888	10.597876	.012412	53	9.486587	50
11	9.389911	834	-610789	9.402656	887	10.597344	.013445	53	9.986555	49
$\frac{11}{12}$	9.389711	833	-610289	9.403187	886	10.596813	.013477	53	9.986523	48
13	9.390210	832	·609790	9.403718	885	10.596282	013509	53	9.986491	47
14	9.390708	831	$\cdot 609292$	9.404249	884	10.595751	0.013541	53	9.986459	46
15	9.391206	830	·608794	9.404778	883	10.595222	·013573	53	9.986427	45
16	9.391703	828	·608297	9.405308	882	10.594692	013605	53	9.986395	44
17	9.392199	827	·607801	9.405836	881	10.594164	013637	53	9.986363	43
18	9.392695	826	$\cdot 607305$	9.406364	880	10.593636	·013669	53	9.986331	42
19	9.393191	825	·606810	9.406892	879	10.593108	·013701	53	9.986299	41
20	9.393685	824	$\cdot 606315$	9.407419	878	10.592581	$\cdot 013734$	55	9.986266	40
21	9.394179	823	·605821	9.407945	877	10.592055	013766	53	9.986234	39
22	9.394673	822	·605327	9.408471	876	10.591529	013798	53	9.986202	38
23	9.395166	821	.604834	9.408997	870	10.500470	013831	50	9.980109	01
24	9.399098	020 910	.004342	9.409921	074	10.590479	013805	55	9.900107	25
20	9.306641	818	602250	9.410560	014	10.589431	013030	53	0.986079	2.1
27	9.397132	817	-602868	9.411092	872	10.588908	013920	55	9.986039	33
28	9.397621	817	+602379	9.411615	871	10.588385	013993	53	9.986007	32
- 29	9.398111	816	·601889	9.412137	870	10.587863	014026	55	9.985974	31
30	9.398600	815	·601400	9.412658	869	10.587342	·014058	53	9.985942	30
31	9.399088	814	·600912	9.413179	868	10.586821	·014091	55	9.985909	29
32	9.399575	813	$\cdot 600425$	9.413699	867	10.586301	·014124	55	9.985876	<b>28</b>
- 33	9.400062	812	$\cdot 599938$	$9 \cdot 414219$	866	10.585781	·014157	55	9.985843	27
34	9.400549	811	$\cdot 599451$	9.414738	865	10.585262	014189	53	9.985811	26
35	9.401035	810	.598965	9.415257	864	10.584743	014222	55	9.985118	25
30	9.401520	009	.598480	9.410770	804	10.5892707	014200	00	9.980740	24
28	9.402005	807	-597995	9.416295	869	10.583190	014200	55	9.985670	20
39	9.40.2409	806	-597011	9.4173.96	861	10.582674	014321	55	9.985646	24
40	9.403455	805	.596545	9.417842	860	10.582158	.014387	55	9.985613	20
41	9.403938	804	·596062	9.418358	859	10.581642	014420	55	9.985580	19
42	9.404420	803	·595580	9.418873	858	10.581127	.014453	55	9.985547	18
43	9.404901	802	$\cdot 595099$	9.419387	857	10.580613	·014486	55	9.985514	17
44	9.405382	801	·594618	$9 \cdot 419901$	856	10.580099	:014520	57	9.985480	16
45	$9 \cdot 405862$	800	$\cdot 594138$	9.420415	855	10.579585	·014553	55	9.985447	15
46	9.406341	799	$\cdot 593659$	9.420927	855	10.579073	014586	55	9.985414	14
47	9.406820	798	·593180	9.421440	854	10.578560	014619	55	9.985381	13
48	9.407299	797	·592701	9.421952	853	10.578048	014653	51	9.985347	12
49	9.407777	790	·092223	9.422403	892	10.577098	014080	57	9.980814	11
51	9.408204	704	-501960	0.4924914	850	10.576516	014720	55	0.085947	10
52	9.400701	794	-590793	9.4.23401	849	10.576007	-014787	57	9.985213	8
53	9.409689	793	.590318	9.424503	848	10.575497	014820	55	9.985180	7
54	9.410157	792	.589843	9.425011	848	10.574989	.014854	57	9.985146	6
55	9.410632	791	·589368	9.425519	847	10.574481	·014887	55	9.985113	5
56	9.411106	790	$\cdot 588894$	9.426027	846	10.573973	·014921	57	9.985079	4
57	9.411579	789	$\cdot 588421$	9.426534	845	10.573466	·014955	57	9.985045	3
58	$9 \cdot 412052$	788	$\cdot 587948$	9.427041	844	10.572959	$\cdot 014989$	57	9.985011	2
59	9.412524	787	·587476	9.427547	843	10.572453	.015022	55	9.984978	1
00	9.412996	786	·587004	9.428052	843	10.571948	·015056	57	9.984944	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

75 DEG.

56 15 deg

									1	k
	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.,	
0	9.419996		.587004	9.428052		10.571948	-015056		9.984944	180
1	9.413467	785	-586533	9.428557	8.19	10.571443	-015090	57	0.084010	50
9	0.412028	784	-586062	9.429062	841	10.570938	-015194	57	9.484876	59
2	0.414408	782	585509	0.420566	940	10.570434	.015159	57	0.084849	57
	0.414978	783	585199	9.430070	630	10.560030	.015100	57	0.094942	50
T E	0.415947	799	594652	0.420572	000	10.560497	015006	57	0.081774	50
0	0.415915	701	594105	0.491075	000	10.500005	015220	57	0.094714	50
7	0.416999	790	-509100	9-401070	000	10.500920	015200	51	9.904140	54
6	9.410200	770	500717	9.401077	001	10.503425	015294	57	9-904100	00
0	9.410701	770	·000249	9.432079	830	10.507921	015920	01	9.984072	52
10	9.417217	110	.902/03	9.452580	865	10.567420	015302	57	9.984638	51
10	9.417684	111	·582316	9.433080	834	10.566920	015397	58	9.984603	50
11	9.418180	110	·381850	9.433580	833	10.566420	-015431	57	9.984569	49
12	9.418615	175	•581385	9.434080	832	10.565920	015465	57	9.984535	48
13	9.419079	114	.580921	9.434579	832	10.565421	015500	58	9.984500	47
14	9.419544	773	·580456	9.435078	831	10.564922	015534	57	9.984466	46
15	9.420007	773	·579993	9.435576	830	10.564424	015568	57	9.984432	45.
16	9.420470	772	·579530	9.436073	829	10.563927	015603	58	9.984397	44
17	9.420933	771	$\cdot 579067$	9.436570	828	10.563430	015637	57	9.984363	43
18	9.421395	770	$\cdot 578605$	9.437067	828	10.562933	015672	58	9.984328	42
19	9.421857	769	$\cdot 578143$	9.437563	827	10.562437	-015706	58	9.984294	41
20	9.422318	768	·577682	9.438059	826	10.561941	015741	57	9.984259	40
21	$9 \cdot 422778$	767	·577222	9.438554	825	10.561446	015776	58	9.984224	39
22	9.423238	767	$\cdot 576762$	9.439048	824	10.560952	015810	57	9.984190	38
23	9.423697	766	$\cdot 576303$	9.439543	823	10.560457	015845	58	9.984155	37
24	9.424156	765	.575844	9.440036	823	10.559964	015880	58	9.984120	36
25	9.424615	764	·575385	9.440529	822	10.559471	015915	58	9.984085	35
26	9.425073	763	·574927	9.441022	821	10.558978	.015950	58	9.984050	34
27	9.425530	762	.574470	9.441514	820	10.558486	015985	58	9.984015	33
28	9.425987	761	·574013	9.442006	819	10.557994	.016019	57	9.983981	32
29	9.426443	760	.573557	9.442497	819	10.557503	0.016054	58	9.983946	31
30	9.426899	760	·573101	9.442988	818	10.557012	0.016089	58	9.983911	30
31	9.427354	759	.572646	9.443479	817	10.556521	016125	60	9.983875	29
32	9.427809	758	.572191	9.443968	816	10.556032	016160	58	9.983840	28
33	9.428263	757	.571737	9.444458	816	10.555542	0.016195	58	9.983805	27
34	9.428717	756	$\cdot 571283$	9.444947	815	10.555053	016230	58	9.983770	26
35	9.429170	755	.570830	9.445435	814	10.554565	016265	58	9.983735	25
36	9.429623	754	.570377	9.445923	813	10.554077	-016300	-58	9.983700	24
37	9.430075	753	.569925	9.446411	819	10.553589	-016336	60	9.983664	23
38	9.430527	759	.569473	9.446898	819	10.553102	.016371	58	9.983629	2.2
39	9.430978	759	-5690-22	9.447384	811	10.552616	-016406	58	9.983594	21
40	9.431429	751	-568571	9.447870	810	10.552120	.016449	60	9.983558	20
41	9.431879	750	-568191	9.448356	800	10.551644	016477	59	9.983523	19
49	9.432320	740	-567671	0.448841	800	10.551150	.016519	60	9.983487	18
49	9.43.)770	740	567999	0.140294	800	10.550674	016549	50	9.982459	17
44	9.433996	749	-566774	9.449810	807	10.550100	016584	60	9.983416	16
45	9.433675	747	566295	9.450904	800	10.540700	.016610	50	9.982281	15
46	9.434199	746	-565879	0.450777	800	10.5/0999	016655	60	0.083345	14
47	0.494540	745	565491	0.451920	805	10.549740	016601	60	0.082200	12
18	0.425010	744	564094	0.451749	000	10.549957	010091	60	0.082972	19
40	0.495400	144	564590	0.450005	004	10.547775	010727	50	0.082020	11
50	0.425000	749	564000	0.459704	003	10.5477004	010702	00	0.082900	10
51	0.496959	740	569647	0.45910	002	10.546010	010198	00	0.082166	0
50	0.492700	741	569000	0.459669	002	10.540013	010004	00	0.089190	0
59	0.497040	740	560750	0.454140	8001	10.546352	010010	60	0.082004	7
54	0.497000	-140	5004108	0.454000	000	10.545852	010040	00	0.000034	e
54	0.490100	740	561071	9.455107	199	10.5403/2	010942	00	0.069099	5
50	0.400129	139	1/8/106	9.499107	199	10.544893	010918	00	0.000022	0
57	0.420014	100	·001428	9.499986	198	10.5494414	017014	80	0.000050	1 2
1 50	9.439014	101	.000986	9.406064	191	10.543936	017000	00	9.902900	0
00	9.439456	130	·200244	9.456542	196	10.543458	017086	00	9.902914	1
09	9.439897	130	.260103	9.457019	196	10.542981	017122	00	0.000010	
00	9.440338	135	.009662	9.457496	195	10.542504	.01/198	00	9.902042	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

16 DEG.

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100″	Cotangent.	Secant.	Diff. 100"	Cosine.	
-0	9.440338		·559662	9.457496		10.542504	.017158		9.982842	$\overline{60}$
1	9.440778	734	.559222	9.457973	794	10.542027	0.017195	62	9.982805	59
$\overline{2}$	9.441218	733	.558782	9.458449	793	10.541551	0.017231	60	9.982769	58
3	9.441658	732	.558342	9.458925	793	10.541075	017267	60	9.982733	57
4	9.442096	731	.557904	9.459400	792	10.540600	017304	62	9.982696	56
5	$9 \cdot 442535$	731	.557465	9.459875	791	10.540125	0.017340	60	9.982660	55
6	9.442973	730	.557027	9.460349	790	10.539651	0.017376	60	9.982624	54
7	9.443410	729	·556590	9.460823	790	10.539177	0.017413	62	9.982587	53
8	9.443847	728	$\cdot 556153$	9.461297	789	10.538703	0.017449	60	9.982551	52
9	9.444284	727	·555716	9.461770	788	10.538230	$\cdot 017486$	62	9.982514	51
10	$9 \cdot 444720$	727	$\cdot 555280$	9.462242	788	10.537758	$\cdot 017523$	62	9.982477	50
11	9.445155	726	·554845	9.462714	787	10.537286	$\cdot 017559$	60	9.982441	49
12	$9 \cdot 445590$	725	$\cdot 554410$	9.463186	786	10.536814	0.017596	62	9.982404	48
13	9.446025	724	·553975	9.463658	785	10.536342	017633	62	9.982367	47
14	9.446459	723	·558541	9.464128	785	10.535872	017669	60	9.982331	46
15	9.446893	723	.553107	9.464599	784	10.535401	017706	62	9.982294	45
16	9.447326	722	.552674	9.465069	783	10.534931	017743	62	9.982257	44
17	9.447759	721	•552241	9.465539	100	10.534401	017/80	62	9.982220	43
18	9.448191	720	·551809	9.400008	702	10.5005932	017817	62	9.982183	42
19	9.448023	720	·0013//	9.4004/0	790	10.000024	017801	62	9.982140	41
20	9.449094	719	.550515	9.400940	780	10.599597	.017091	04 69	0.002079	20
- 41 - 99	0.449400	717	-550085	0.467880	770	10.532120	.017965	62	0.002012	20
92	9.450945	716	-549655	0.468347	778	10.531653	.018002	62	0.081008	27
94	9.450775	716	-549225	9.468814	778	10.531186	018039	62	9.981961	36
25	9.451204	715	.548796	9.469280	777	10.530720	018076	62	9.981924	35
26	9.451632	714	-548368	9.469746	776	10.530254	0.018114	63	9.981886	34
27	9.452060	713	.547940	9.470211	775	10.529789	0.018151	62	9.981849	33
$\frac{1}{28}$	9.452488	713	$\cdot 547512$	9.470676	775	10.529324	.018188	62	9.981812	32
29	9.452915	712	$\cdot 547085$	9.471141	774	10.528859	·018226	63	9.981774	31
30	9.453342	711	$\cdot 546658$	9.471605	773	10.528395	-018263	62	9.981737	30
31	9.453768	710	-546232	9.472068	773	10.527932	018300	62	9.981700	29
32	9.454194	710	$\cdot 545806$	9.472532	772	10.527468	018338	63	9.981662	28
-33	9.454619	709	$\cdot 545381$	9.472995	771	10.527005	0.018375	62	9.981625	27
34	9.455044	708	·544956	9.473457	771	10.526543	0.018413	63	9.981587	<b>26</b>
35	9.455469	707	·544531	9.473919	770	10.526081	0.018451	63	9.981549	25
36	9.455893	707	$\cdot 544107$	9.474381	769	10.525619	.018488	62	9.981512	<b>24</b>
37	$9 \cdot 456316$	706	$\cdot 543684$	9.474842	769	10.525158	0.018526	63	9.981474	23
38	9.456739	705	·543261	9.475303	768	10.524697	$   \cdot 018564$	63	9.981436	22
39	9.457162	704	.542838	9.475763	767	10.524237	018601	62	9.981399	21
40	9.457584	704	•542416	9.476223	101	10.523777	018639	63	9.981361	20
41	9.458006	703	.541994	9.476683	766	10.523317	018677	63	9.981323	19
42	9.458427	702	•541573	9.477142	100	10.522858	018715	03	9.981285	18
40	9.400040	701	-541152	9.477001	764	10.591041	010703	62	9.981241	16
44	0.150688	700	-540752	0.478517	763	10.591483	.018820	63	0.001171	10
10	9.460108	600	.530809	0.478075	769	10.591095	.018867	63	0.001122	14
47	9.460527	698	.539473	9.479439	769	10.520568	-018905	63	0.081005	13
48	9.460946	698	.539054	9.479889	761	10.520111	018943	63	9.981057	12
49	9.461364	697	-538636	9.480345	761	10.519655	018981	63	9.981019	11
50	9.461782	696	.538218	9.480801	760	10.519199	.019019	63	9.980981	10
51	9.462199	695	.537801	9.481257	759	10.518743	019058	65	9.980942	9
52	9.462616	695	.537384	9.481712	759	10.518288	019096	63	9.980904	8
53	9.463032	694	·536968	9.482167	758	10.517833	.019134	63	9.980866	7
54	9.463448	693	·536552	9 482621	757	10.517379	019173	65	9.980827	6
55	9.463864	693	·536136	9.483075	757	10.516925	019211	63	9.980789	5
56	9.464279	692	·535721	9.483529	756	10.516471	019250	65	9.980750	4
57	9.464694	691	·535306	9.483982	755	10.516018	·019288	63	9.980712	3
58	9.465108	690	$\cdot 534892$	9.484435	755	10.515565	.019327	65	9.980673	2
59	$9 \cdot 465522$	690	·534478	9.484887	754	10.515113	019365	63	9.980635	1
60	9.465935	689	•534065	9.485339	753	10.514661	019404	65	9.980596	0
1.	Cosine.		Secant.	Cotangent.	1	Tangent.	Cosecant.		Sine.	,

57

58

59

60

,

9 489593 649

648

·510018

Secant.

9.511776 717

Cotangent.

9.489982

Cosine.

17 DEG.

	1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1
-	0	9.465935		·534065	9.485339		10.514661	·019404		9.980596	60
	1	9.466348	688	$\cdot 533652$	9.485791	753	10.514209	$\cdot 019442$	63	9.980558	59
	2	9.466761	688	.533239	9.486242	752	10.513758	.019481	65	9.980519	58
	3	9.467173	687	.532827	9.486693	751	10.513307	.019520	65	9.980480	57
	4	9.467585	686	.532415	9.487143	751	10.512857	0.019558	63	9.980442	56
	5	9.467996	685	.532004	9.487593	750	10.512407	.019597	65	9.980403	55
	6	9.468407	685	.581593	9.488043	749	10.511957	-019636	65	9.980364	54
	7	9.468817	684	-531183	9.488499	749	10.511508	.019675	65	9.980325	53
	8	9.469927	683	.530773	9488941	748	10.511059	019714	65	9.980286	59
	ġ	9.469637	683	.530363	9.489390	747	10.510610	.019753	65	9-980220	51
	10	9.470046	682	.590054	0.480828	747	10.510169	.010709	65	0.080908	50
1	11	9.470455	681	.599545	9.400986	746	10.500714	.010821	65	9.080160	10
:	19	9.470863	680	.590137	0.400799	740	10.500967	.010870	65	0.080190	40
1	12	0.471971	680	-529101	0.401120	745	10.508207	.010000	65	0.000100	40
	14	0.471670	670	500901	0.401605	740	10.508220	010040	65	0.000059	41
	15	0.479086	678	597014	9.491027	744	10.507097	.010000	00	9.980034	40
	10	9.472000	670	-027914	9.492073	744	10.507927	019988	01	9.980012	40
1	10	9.472492	010	-527508	9.492019	740	10.507481	020021	00	9.919919	44
	11	9.472898	011	•52/102	9.492965	143	10.507035	020066	60	9.979934	43
	18	9.473304	010	•526696	9.493410	742	10.206290	020105	65	9.979895	42
	19	9.473710	676	-526290	9.493854	141	10.506146	020145	67	9.979855	41
	20	9.474115	675	.525885	9.194299	740	10.505701	020184	65	9.979816	40
	21	9.474519	674	·525481	9.494743	740	10.505257	$\cdot 020224$	67	9.979776	39
	22	9.474923	674	$\cdot 525077$	9.495186	739	10.504814	$\cdot 020263$	65	9.979737	38
	23	9.475327	673	$\cdot 524673$	9.495630	739	10.504370	$\cdot 020303$	67	9.979697	37
	24	9.475730	672	$\cdot 524270$	9.496073	738	10.503927	$\cdot 020342$	65	9.979658	36
	25	9.476133	672	$\cdot 523867$	9.496515	737	10.503485	$\cdot 020382$	67	9.979618	35
	26	9.476536	671	$\cdot 523464$	9.496957	737	10.503043	$\cdot 020421$	65	9.979579	34
	27	9.476938	670	$\cdot 523062$	$9 \cdot 497399$	736	10.502601	020461	67	9.979539	33
	28	9.477340	669	$\cdot 522660$	9.497841	736	10.502159	$\cdot 020501$	67	9.979499	32
	29	9.477741	669	$\cdot 522259$	9.498282	735	10.501718	$\cdot 020541$	67	9.979459	31
	30	9.478142	668	$\cdot 521858$	9.498722	734	10.501278	$\cdot 020580$	65	9.979420	30
	31	9.478542	667	$\cdot 521458$	9.499163	734	10.500837	$\cdot 020620$	67	9.979380	29
	32	9.478942	667	$\cdot 521058$	9.499603	733	10.500397	$\cdot 020660$	67	9.979340	28
	33	9.479342	666	$\cdot 520658$	9.500042	733	10.499958	020700	67	9.979300	27
	34	9.479741	665	$\cdot 520259$	$9 \cdot 500481$	732	10.499519	0.020740	67	9.979260	26
	35	9.480140	665	·519860	9.500920	731	10.499080	$\cdot 020780$	67	9.979220	25
	36	9.480539	664	$\cdot 519461$	9.501359	731	10.498641	0.020820	67	9.979180	24
	37	9.480937	663	·519063	9.501797	730	10.498203	020860	67	9.979140	23
	38	9.481334	663	·518666	9.502235	730	10.497765	020900	67	9.979100	22
	39	9.481781	662	·518269	9.502672	729	10.497328	0.020941	68	9.979059	21
	40	9.482128	661	.517872	9.503109	728	10.496891	0.020981	67	9.979019	20
1.	41	9.482525	661	.517475	9.503546	728	10.496454	.021021	67	9.978979	19
	42	9.482921	660	.517079	9.503982	727	10.496018	.021061	67	9.978939	18
1	43	9.483316	659	.516684	9.504418	727	10.495582	0.021102	68	9.978898	17
	44	9.483712	659	.516288	9.504854	726	10.495146	021142	67	9.978858	16
	45	9.484107	658	.515893	9.505289	725	10.494711	.021183	68	9.978817	15
	46	9.484501	657	.515499	9.505724	725	10.494276	.021223	67	9.978777	14
	47	9.484895	657	.515105	9.506159	724	10.493841	.021263	67	9.978737	12
	48	9.485289	656	-514711	9.506593	724	10.493407	.021200	68	9.978696	19
	49	9.485682	655	.514318	9.507027	723	10.492973	.021345	68	9.978655	11
	50	9.486075	655	-513925	9.507460	722	10.492540	-021385	67	9.978615	10
1	51	9.486467	654	-513528	9.507802	722	10.492107	.021496	68	9.978574	10
	52	9.486860	653	-512140	9.508296	791	10-401674	.021467	68	9.978522	8
	53	9.487951	653	.512740	9.508750	721	10.401941	.091507	67	9.978402	7
	54	9.487642	652	-519857	9.509101	790	10-490809	021548	68	9.978459	6
	55	9.488024	651	-511966	9.509699	719	10.400378	.021580	68	9.978411	5
1	56	9.488494	651	.511576	9.510054	710	10-480046	.021630	68	9.978270	1
1	57	9.488814	650	.511196	9-510.195	718	10-489515	021671	68	9.978390	2
	58	9.489204	650	-510796	9.510916	718	10.489084	.021712	68	9.978288	2
				010.00			LOUDDL CA				

72 DEG.

9.978206

Sine.

·510407 ' 9·511346 717 10·488654 021753 68 9·978247

10.488224

Tangent.

021794

Cosecant.

68

 $\frac{2}{1}$ 

0

18 DEG.

, 1	Sina	Diff.	Cosecant	Tangant	Diff.	Cotangent	Secont.	Diff.	Cosine.	,
	Sine.	100"	Cosecant.	Tangent.	100″	Cotangent.		100"		
0	9-489982		·510018	9.511776		10.488224	021794		9.978206	60
1	9.490371	648	$\cdot 509629$	9.512206	716	10.487794	021835	68	9.978165	59
2	9.490759	648	$\cdot 509241$	9.512635	716	10.487365	$\cdot 021876$	68	9.978124	58
3	9.491147	647	·508853	9.513064	715	10.486936	021917	68	9.978083	57
4	9.491535	646	$\cdot 508465$	9.513493	714	10.486507	$\cdot 021958$	69	9.978042	56
5	9.491922	646	$\cdot 508078$	9.513921	714	10.486079	021999	69	9.978001	55
6	9.492308	645	$\cdot 507692$	9.514349	713	10.485651	$\cdot 022041$	69	9.977959	54
7	9.492695	644	+507305	9.514777	713	10.485223	022082	69	9.977918	53
8	9.493081	644	.506919	9.515204	712	10.484796	022123	69	9.977877	52
9	9.493466	643	.506534	9.515631	712	10.484869	022165	69	9.977835	51
10	9.493851	642	.506149	9.516057	711	10.483943	022206	69	9.977794	50
11	9.494236	642	.505764	9.516484	710	10.483516	022248	69	9.977752	49
12	9.494621	641	.505379	9.516910	710	10.483090	022289	69	9.977711	48
13	9.495005	641	.504995	9.517335	709	10.482665	022331	69	9.977669	47
14	9.495388	640	-504612	9.517761	709	10.482239	022372	69	9.977628	46
15	9.495772	639	-504228	9.518185	708	10.481815	022414	69	9.971080	45
10	9.496154	639	+503846	9.518610	708	10.481390	022456	69	0.055502	44
11	9.496537	688	-503463	9.519034	101	10.480900	022497	170	9.977503	43
10	9.496919	637	-503081	9.519458	706	10.480342	022539	70	9.977401	42
19	9.497301	637	.502699	9.519882	706	10.450(118	022581	170	9.977419	41
20	9.497082	636	.502318	9.520305	705	10.479090	022623	70	9.911511	40
21	9.498004	030	-501956	9.520728	705	10.479212	022669	70	9.977555	39
22	9.498444	000	-001000	9.521151	704	10.478497	022707	70	9.977295	50
20	9.498829	004	-501175	9.021073	704	10.478005	022749	70	9.977201	51
24	9.499204	004	-000796	9.521995	703	10.477582	022791	70	9.977209	30
20	0.400062	000	+000410	9.022417	703	10.477169	022035	70	0.077195	00
20	9.499900	004 629	+00057	9.022000	702	10.476741	022879	70	0.077083	04
	9.500791	621	499008	0.509690	702	10.476990	022917	70	0.077041	20
20	9.501099	621	499279	0.594100	701	10.475900	.022909	70	0.076000	21
20	9.501476	630	498901	9.524100	701	10.475480	.092049	70	0.076057	20
91 91	9.501854	690	498044	9.524020	200	10.475061	023043	70	0.076014	00
29	9.509.231	620	497760	0.595950	600	10.474641	020000	70	0.076879	100
22	9.502607	628	407203	0.595778	609	10.474999	.020120	70	0.076830	20
34	9.502984	628	.497016	9.596197	608	10.473803	.023170	71	9.976787	26
35	9.503360	627	496640	9.526615	697	10.473385	020210	71	9.976745	20
36	9.503735	626	496265	9.527033	697	10.472967	.022200	71	9.976702	20
37	9.504110	626	.495890	9.527451	696	10.472549	023340	71	9.976660	23
38	9.504485	625	.495515	9.527868	896	10.472132	.023383	71	9.976617	20
39	9.504860	625	.495140	9.528285	695	10.471715	023426	71	9.976574	21
40	9.505234	624	.494766	9.528702	695	10.471298	.023468	71	9.976532	20
41	9.505608	623	.494392	9.529119	694	10.470881	.023511	71	9.976489	19
42	9.505981	623	.494019	9.529535	694	10.470465	023554	71	9.976446	18
43	9.506354	622	.493646	9.529950	693	10.470050	023596	71	9.976404	17
44	9.506727	622	.493273	9.530366	693	10.469634	023639	71	9.976361	16
45	9.507099	621	.492901	9.530781	692	10.469219	023689	71	9.976318	15
46	9.507471	620	.492529	9.531196	691	10.468804	023725	71	9.976275	14
47	9.507843	620	.492157	9.531611	691	10.468389	023768	71	9.976232	13
48	9.508214	619	.491786	9.532025	690	10.467975	023811	72	9.976189	12
49	9.508585	619	.491415	9.532439	690	10.467561	023854	72	9.976146	11
50	9.508956	618	.491044	9.532853	689	10.467147	023897	72	9.976103	10
51	9.509326	618	.490674	9.533266	689	10 466734	0.023940	72	9.976060	9
52	9.509696	617	.490304	9.533679	688	10.466321	023983	72	9.976017	8
53	9.510065	616	.489935	9.534092	688	10.465908	.024026	72	9.975974	7
54	9.510434	616	.489566	9.534504	687	10.465496	024070	72	9.975930	6
55	9.510803	615	.489197	9.534916	687	10.465084	024113	72	9.975887	5
56	9.511172	615	.488828	9.535328	686	10.464672	024156	72	9.975844	4
57	9.511540	614	.488460	9.535739	686	10.464261	.024200	72	9.975800	3
58	9.511907	613	•488093	9.536150	685	10.463850	024243	72	9.975757	2
59	9.512275	613	•487725	9.536561	685	10.463439	024286	72	9.975714	1
-60	9.512642	612	.487358	9.536972	684	10.463028	0.024330	72	9.975670	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	,
	the second s		No. of Concession, Name	the second se		the second s				_

59

60

19	DEG.									
'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1
0	9.512642		·487358	9.536972		10.463028	024330		9.975670	60
1	9.513009	612	·486991	9.537382	684	10.462618	024373	72	9.975627	59
2	9.513375	611	•486625	9.537792	683	10.462208	024417	73	9.975583	58
3	9.513741	611	·486259	9.538202	683	10.461798	024461	73	9.975539	57
4	9.514107	610	485893	9.538611	682	10.461389	024504	73	9.975496	56
0 8	9.514472	600	400020	9.539020	601	10.460571	024548	13	9.975452	55
7	9.515202	608	484798	9.539837	681	10.460163	024092	73	9.979408	04 59
8	9.515566	608	484434	9.540245	680	10.459755	024679	73	9.975321	00 59
9	9.515930	607	.484070	9.540653	680	10.459347	024723	73	9.975277	51
10	9.516294	607	·483706	9.541061	679	10.458939	024767	73	9.975233	$\tilde{50}$
11	9.516657	606	$\cdot 483343$	9.541468	679	10.458532	0.024811	73	9.975189	49
12	9.517020	605	·482980	9.541875	678	10.458125	0.024855	73	9.975145	48
13	9.517382	605	$\cdot 482618$	9.542281	678	10.457719	024899	73	9.975101	47
14	9.517745	604	$\cdot 482255$	9.542688	677	10.457312	$\cdot 024943$	73	9.975057	46
10	9.518107	604	·481893	9.543094	677	10.456906	024987	73	9.975013	45
10	9.518468	603	481532	9.543499	676	10.456501	025031	73	9.974969	44
18	9.510100	600	.480910	9.543900	070	10.455600	020070	14	9.974920	43
19	9.519551	601	-480440	9.544510	675	10.455985	025120	74	9.974000	42
20	9.519911	601	480089	9.545119	674	10.454881	025208	74	9.974792	40
21	9.520271	600	.479729	9.545524	674	10.454476	025252	74	9.974748	39
22	9.520631	600	·479369	9.545928	673	10.454072	0.025297	74	9.974703	38
23	9.520990	599	·479010	9.546331	673	10.453669	0.025341	74	9.974659	37
24	9.521349	599	·478651	9.546735	672	10.453265	0.025386	74	9.974614	36
25	9.521707	598	$\cdot 478293$	9.547138	672	10.452862	0.025430	74	9.974570	35
26	9.522066	598	$\cdot 477934$	9.547540	671	10.452460	$\cdot 025475$	74	9.974525	34
27	9.522424	597	·477576	9.547943	671	10.452057	$\cdot 025519$	74	9.974481	33
28	9.522781	596	·477219	9.548345	670	10.451655	$\cdot 025564$	74	9.974436	32
29	9.523138	596	•476862	9.548747	670	10.451253	025609	74	9.974391	31
21	9.523493	505	476149	9.549149	669	10.450450	025653	14	9.974347	30
32	9.594908	504	.475709	9.549950	668	10.450040	020098	75	9.974002	29
33	9.524564	594	.475436	9.550352	668	10.449648	025788	75	9.974212	$\frac{20}{27}$
34	9.524920	593	.475080	9.550752	667	10.449248	025833	75	9.974167	26
35	9.525275	593	.474725	9.551152	667	10.448848	025878	75	9.974122	$\overline{25}$
36	9.525630	592	.474370	9.551552	666	10.448448	$\cdot 025923$	75	9.974077	24
37	9.525984	591	$\cdot 474016$	9.551952	666	10.448048	$  \cdot 025968  $	75	9.974032	23
38	9.526339	591	·473661	9.552351	665	10.447649	$\cdot 026013$	75	9.973987	22
39	9.526693	590	$\cdot 473307$	9.552750	665.	10.447250	$\cdot 026058$	75	9.973942	21
40	9.527046	590	·472954	9.553149	665	10.446851	$\cdot 026103$	75	9.973897	20
41	9.527400	589	•472600	9.553548	664	10.446452	026148	75	9.973852	19
44	9.527793	500	472247	9.554946	664	10.445054	026193	10	9.973807	18
44	9.528458	588	471549	9.554741	669	10.445950	020209	75	9.979701	16
45	9.528810	587	.471190	9.555139	662	10.444861	026329	76	9.973671	15
46	9.529161	587	.470839	9.555536	662	10.444464	026375	76	9.973625	14
47	9.529513	586	.470487	9.555933	661	10.444067	0.026420	76	9.973580	13
48	9.529864	586	·470136	9.556329	661	10.443671	0.026465	76	9.973535	12
49	9.530215	585	·469785	9.556725	660	10.443275	.026511	76	9.973489	11
50	9.530565	585	$\cdot 469435$	9.557121	660	10.442879	$\cdot 026556$	76	9.973444	10
51	9.530915	584	$\cdot 469085$	9.557517	659	10.442483	$\cdot 026602$	76	9.973398	9
52	9.531265	584	•468735	9.557913	659	10.442087	026648	76	9.973352	8
03 54	9.531614	583	•468386	9.558308	659	10.441692	026693	10	9.973307	
55	9.931963	500	468037	9.550007	600	10.441298	026739	70	9.973261	5
56	9.529661	591	407088	9.009097	657	10.440903	026785	76	0.072160	0
57	9.532001	581	466001	9.550885	657	10.440115	.026876	76	9.973194	3
58	9.533357	580	466643	9.560279	656	10.439721	.026922	76	9.973078	2
59	9.533704	580	466296	9.560673	656	10.439327	.026968	76	9.973032	ī
60	9.534052	579	.465948	9.561066	655	10.438934	.027014	76	9.972986	0
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	-

20 DEG.

6

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.534052		·465948	9.561066		10.438934	027014		9.972986	60
1	9.534399	578	·465601	9.561459	655	10.438541	.027060	77	9.972940	59
2	9.534745	577	·465255	9.561851	654	10.438149	027106	77	9.972894	58
3	9.535092	577	·464908	9.562244	654	10.437756	0.027152	77	9.972848	57
4	9.535438	577	·464562	9.562636	653	10.437364	$\cdot 027198$	77	9.972802	56
5	9.535783	576	•464217	9.563028	653	10.436972	027245	78	9.972755	55
6	9.536129	576	•463871	9.563419	658	10.436581	027291	77	9.972709	54
	9.536474	510	•463526	9.563811	002	10.435189	027337	11	9.972663	53
Ö	9.000018	574	403182	9.064202	651	10.425408	02/383	70	9.972617	52
10	9.007100	572	402007	9.564092	651	10.435408	027430	10	9.972070	01 50
11	9.537851	573	462149	9.565373	650	10.434627	.027522	77	9.972024	10
$\frac{11}{12}$	9.538194	572	.461806	9.565763	650	10.434237	027569	78	9.972431	48
13	9.538538	572	.461462	9.566153	649	10.433847	027615	77	9.972385	47
14	9.538880	571	·461120	9.566542	649	10.433458	027662	78	9.972338	46
15	9.539223	571	.460777	9.566932	649	10.433068	.027709	78	9.972291	45
16	9.539565	570	-460435	9.567320	648	10.432680	027755	77	9.972245	44
17	9.539907	570	·460093	9.567709	648	10.432291	$\cdot 027802$	78	9.972198	43
18	9.540249	569	$\cdot 459751$	9.568098	647	10.431902	·027849	78	9.972151	<b>42</b>
19	9.540590	569	·459410	9.568486	647	10.431514	0.027895	77	9.972105	41
20	9.540931	568	·459069	9.568873	646	10.431127	$\cdot 027942$	78	9.972058	40
21	9.541272	568	·458728	9.569261	646	10.430739	-027989	78	9.972011	39
22	9.541613	567	·458387	9.569648	645	10.430352	028036	78	9.971964	38
23	9.541953	567	·458047	9.570035	645	10.429965	028083	78	9.971917	37
24	9.942293	000	40//0/	9.570422	040	10.429578	028130	78	9.971870	36
20 52	9.042032	000 565	407000	9.570809	044	10.499905	020004	18	9.971823	35
20	9.042971	565	407029	9.571591	649	10.428800	028224	78	9.971776	34
-24	9.040010	564	456251	9.571067	649	10.428419	028271	10	9.971729	33
20	0.543087	564	456013	9.579359	649	10.497648	.020310	10	0.071625	04
30	9.544325	563	455675	9.572738	642	10.427262	028000	78	9.971588	30
31	9.544663	563	455337	9.573123	642	10.426877	028460	80	9.971540	20
32	9.545000	562	.455000	9.573507	641	10.426493	028507	78	9.971493	28
33	9.545338	562	.454662	9.573892	641	10.426108	0.028554	78	9.971446	27
34	9.545674	561	.454326	9.574276	640	10.425724	028602	80	9.971398	26
35	9.546011	561	$\cdot 453989$	9.574660	640	10.425340	028649	78	9.971351	25
36	9.546347	560	$\cdot 453653$	9.575044	639	10.424956	028697	80	9.971303	<b>24</b>
37	9.546683	560	·453317	9.575427	639	10.424573	028744	78	9.971256	23
38	9.547019	559	•452981	9.575810	639	10.424190	028792	80	9.971208	22
39	9.547354	559	452646	9.576193	638	10.423807	028839	78	9.971161	21
40	9.947089	559	402311	9.010010	000	10.423424	028887	80	9.971113	20
49	9.548950	557	.451641	9.577941	627	10.499650	.020934	10	9.971000	19
43	9.548693	557	451307	9.577793	636	10.422009	.020382	80	0.070070	10
44	9.549027	556	.450978	9.578104	636	10.421896	-029078	80	9.970929	16
45	9.549360	556	.450640	9.578486	636	10.421514	029126	80	9.970874	115
46	9.549693	555	.450307	9.578867	635	10.421133	.029173	78	9.970827	14
47	9.550026	555	.449974	9.579248	635	10.420752	.029221	80	9.970779	13
48	9.550359	554	.449641	9.579629	634	10.420371	·029269	80	9.970731	12
49	9.550692	554	·449308	9.580009	634	10.419991	.029317	80	9.970683	11
50	9.551024	553	·448976	9.580389	634	10.419611	029365	80	9.970635	10
51	9.551356	553	•448644	9.580769	633	10.419231	$\cdot 029414$	82	9.970586	9
52	9.551687	552	·448313	9.581149	633	10.418851	029462	80	9.970538	8
53	9.552018	552	•447982	9.581528	632	10.418472	029510	80	9.970490	7
54	9.552349	552	•447651	9.581907	632	10.418093	029558	80	9.970442	6
00	9.552680	551	•447320	9.982286	032	10.417714	029606	80	9.970394	5
57	9.000010	001	·440990	9.982069	001 691	10.416057	029600	82	9.970345	4
58	0.552670	550	.446990	0.582490	620	10.416570	029703	80	9.970297	0
59	9.554000	540	-446000	9.583800	630	10.416200	.029701	89	9.970249	1
60	9.554329	549	·445671	9.584177	629	10.415823	029848	80	9.970152	0
	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

69 DEG.

62 21 deg.

	,	Sinc.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1	1
	0	9.554329		·445671	9.584177		10.415823	.029848		9.970152	60	-
	1	9:554658	548	$\cdot 445342$	9.584555	629	10.415445	.029897	81	9.970103	59	
	2	9.554987	548	·445013	9.584932	629	10.415068	029945	81	9.970055	58	
	3	9.555315	547	·444685	9.585309	628	10.414691	029994	81	9.970006	57	
	. 4	9.555643	547	·444357	9.585686	628	10.414314	030043	81	9.969957	56	1
	5	9.555971	546	·444029	9.586062	627	10.413938	+030091	81	9.969909	55	1
	6	9.556299	546	·443701	9.586439	627	10.413561	0.030140	81	9.969860	54	1
	7	9.556626	545	·443374	9.586815	627	10.413185	030189	81	9.969811	53	
	8	9.556953	545	·443047	9.587190	626	10.412810	030238	81	9.969762	52	
	9	9.557280	544	·442720	9.587566	626	10.412434	030286	81	9.969714	51	
	10	9.557606	544	$\cdot 442394$	9.587941	625	10.412059	0.030335	81	9.969665	50	1
	11	9.557932	543	·442068	9.588316	625	10.411684	$ \cdot 030384$	81	9.969616	49	i
	12	9.558258	543	$\cdot 441742$	9.588691	625	10.411309	0.030433	82	9.969567	48	
-	13	9.558583	543	•441417	9.589066	624	10.410934	$ \cdot 030482$	82	9.969518	47	1
and the second se	14	9.558909	542	$\cdot 441091$	9.589440	624	10.410560	$ \cdot 030531 $	82	9.969469	46	
-	15	9.559234	542	·440766	9.589814	623	10.410186	$\cdot 030580$	82	9.969420	45	
	16	9.559558	541	$\cdot 440442$	9.590188	623	10.409812	030630	82	9.969370	44	
	17	9.559883	541	·440117	9.590562	623	10.409438	$\cdot 030679$	82	9.969321	43	- 110
	18	9.560207	540	•439793	9.590935	622	10.409065	0.030728	82	9.969272	42	
	19	9.560531	540	·439469	9.591308	622	10.408692	030777	82	9.969223	41	-
-	20	9.560855	539	•439145	9.591681	622	10.408319	030827	82	9.969173	40	
l	21	9.561178	539	•438822	9.592054	621	10.407946	030876	82	9.969124	39	-
	22	9.561501	538	.438499	9.592426	621	10.407574	030925	82	9.969075	38	
	23	9.561824	538	•438176	9.592198	620	10.407202	.030975	82	9.969025	37	1
1	24	9.562146	531	•437854	9.593171	620	10.406829	031024	82	9.968976	36	
	25	9.562468	537	.437532	9.593542	620	10.406458	031074	82	9.968926	35	
	20	9.962790	030	•43/210	9.593914	619	10.406086	031123	83	9.968811	34	ļ
	21	9.000112	500	430000	9.594285	019	10.405244	001100	00	9.908827	- <b>5</b> 5 0.0	
	28	9.000400	595	·430001	9.594050	010	10.403544	001220	00	9.900111	02 91	
	29	9.000700	525	430240	9.595027	610	10.404975	.091999	00	9.900120	10	1
1	91	9.004010	524	430920	9.9999999	617	10.404002	001022	00	9.900010	20	1
	00	9.004090	524	495984	9.090700	617	10.409269	.021499	00	9.900020	29	
	92	0.565026	522	.434064	0.506508	616	10.403402	.091472	82	0.068598	20	-
	24	9.565356	533	.434644	9.596878	616	10.403192	.031521	82	0.968470	26	1
	35	9.565676	532	.434324	9.597247	616	10.402753	031521	83	9.968429	25	
	36	9.565995	532	434005	0.597616	615	10.402384	.031621	83	9.968379	24	ł
	37	9.566314	531	.433686	9.597985	615	10.402015	.031671	83	9.968329	23	1
Į	38	9.566632	531	+433368	9.598354	615	10.401646	.031722	83	9.968278	22	
	39	9.566951	531	.433049	9.598722	614	10.401278	0.031772	83	9.968228	21	
	40	9.567269	530	.432731	9.599091	614	10.400909	0.031822	84	9.968178	20	
	41	9.567587	530	.432413	9.599459	613	10.400541	0.031872	84	9.968128	19	
1	42	9.567904	529	.432096	9.599827	613	10.400173	031922	84	9.968078	18	
	43	9.568222	529	·431778	9.600194	613	10.399806	.031973	84	9.968027	17	
ļ	44	9.568539	528	·431461	9.600562	612	10.399438	.032023	84	9.967977	16	
	45	9.568856	528	·431144	9.600929	612	10.399071	.032073	84	9.967927	15	
1	46	9.569172	528	$\cdot 430828$	9.601296	611	10.398704	032124	84	9.967876	14	
	47	9.569488	527	$\cdot 430512$	9.601662	611	10.398338	0.032174	84	9.967826	13	
l	48	9.569804	527	·430196	9.602029	611	10.397971	032225	84	9.967775	12	
	49	9.570120	526	$\cdot 429880$	9.602395	610	10.397605	$\cdot 032275$	84	9.967725	11	1
	50	9.570435	526	$\cdot 429565$	9.602761	610	10.397239	$\cdot 032326$	84	9.967674	10	-
1	51	9.570751	525	$\cdot 429249$	9.603127	610	10.396873	032376	84	9.967624	9	-
	52	9.571066	525	·428934	9.603493	609	10.396507	$\cdot 032427$	84	9.967573	8	
	53	9.571380	524	$\cdot 428620$	9.603858	609	10.396142	$\cdot 032478$	84	9.967522	7	
	54	9.571695	524	-428305	9.604223	609	10.395777	$\cdot 032529$	85	9.967471	6	ł
	55	9.572009	523	$\cdot 427991$	9.604588	608	10.395412	032579	85	9.967421	5	1
	56	9.572323	523	$\cdot 427677$	9.604953	608	10.395047	032630	85	9.967370	4	-
í	57	9.572636	523	·427364	9.605317	607	10.394683	032681	85	9.967319	3	1
l	58	9.572950	522	·427050	9.605682	607	10.394318	032732	85	9.967268	2	1
ļ	59 60	9.573263	522	·426737	9.606046	607	10.393954	032783	80	9.967217		
i	00	9.573575	521	•426425	9.606410	606	10.883280	·032834	89	9.901100	0	1
l	1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1	ł

22 DEG.

1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	· Cotangent.	Secant.	Diff. 100″	Cosine.	· /
0	9.573575		·426425	9.606410		10.393590	·032834		9.967166	60
1	9.573888	521	·426112	9.606773	606	10.393227	$\cdot 032885$	85	9.967115	59
2	9.574200	520	$\cdot 425800$	9.607137	606	10.392863	032936	85	9.967064	58
3	9.574512	520	·425488	9.607500	605	10.392500	032987	85	9.967013	57
4	9.574824	519	•425176	9.607863	605	10.392137	033039	85	9.966961	56
D	9.575136	519	•424864	9.608225	604	10.391775	033090	85	0.066620	00
07	9.575759	519	•424003	9.008588	604	10:391412	.022100	00	9.900009	52
8	9.576069	518	•493931	9.609319	603	10.390688	.033244	85	9.966756	52
9	9.576379	517	423621	9.609674	603	10.390326	033295	86	9.966705	51
10	9.576689	517	•423311	9.610036	603	10.389964	.033347	86	9.966653	50
11	9.576999	516	·423001	9.610397	602	10.389603	033398	86	9.966602	49
12	9.577309	516	•422691	9.610759	602	10.389211	·033450	86	9.966550	48
13	9.577618	516	·422382	9.611120	602	10.388880	$\cdot 033501$	86	9.966499	47
14	9.577927	515	$\cdot 422073$	9.611480	601	10.388520	033553	86	9.966447	46
15	9.578236	515	•421764	9.611841	601	10.388159	033605	86	9.966395	45
10	9.578545	514	•421455	9.612201	601	10.387799	033696	80	9.900344	44
18	9.570169	519	.420929	9.012001	600	10.287070	033760	86	9.966940	40
19	9.579470	513	420530	9.613281	600	10.386719	033812	86	9.966188	41
20	9.579777	513	.420223	9.613641	599	10.386359	033864	86	9.966136	40
$\overline{21}$	9.580085	512	.419915	9.614000	599	10.386000	.033915	86	9.966085	39
22	9.580392	512	.419608	9.614359	598	10.385641	.033967	87	9.966033	38
23	9.580699	511	·419301	9.614718	598	10.385282	·034019	87	9.965981	37
24	9.581005	511	·418995	9.615077	598	10.384923	$\cdot 034071$	87	9.965929	36
25	9.581312	511	·418688	9.615435	597	10.384565	$\cdot 034124$	87	9.965876	35
26	9.581618	510	$\cdot 418382$	9.615793	597	10.384207	034176	87	9.965824	34
21	9.581924	510	•418076	9.616151	597	10.383849	034228	87	9.965772	33
20	9.589525	009 500	·41///1	9.616509	596	10.383491	034280	87	9.909720	32
30	9.589840	509	417400	9.010007	596	10.389776	034385	87	9.965615	30
31	9.583145	508	.416855	9.617589	595	10.382418	034437	87	9.965563	29
32	9.583449	508	.416551	9.617939	595	10.382061	034489	87	9.965511	28
33	9.583754	507	·416246	9.618295	595	10.381705	.034542	87	9.965458	27
34	9.584058	507	·415942	9.618652	594	10.381348	.034594	87	9.965406	26
35	9.584361	506	·415639	9.619008	594	10.380992	·034647	87	9.965353	25
36	9.584665	506	$\cdot 415335$	9.619364	594	10.380636	034699	88	9.965301	24
37	9.584968	506	·415032	9.619721	593	10.380279	034752	88	9.965248	23
00	9.080272	000 505	•414728	9.620076	593	10.379924	024057	88	9.900190	22
40	9.585877	504	.414129	9.020432	509	10.379008	.024007	00	0.065000	21
41	9.586179	504	413821	9.621149	592	10.378858	.034963	88	9.965037	19
$\hat{42}$	9.586482	503	.413518	9.621497	592	10.378503	035016	88	9.964984	18
43	9.586783	503	.413217	9.621852	591	10.378148	.035069	88	9.964931	17
44	9.587085	503	·412915	9.622207	591	10.377793	.035121	88	9.964879	16
45	9.587386	502	·412614	9.622561	590	10.377439	035174	88	9.964826	15
46	9.587688	502	$\cdot 412312$	9.622915	590	10.377085	0035227	88	9.964773	14
47	9.587989	501	$\cdot 412011$	9.623269	590	10.376731	$\cdot 035280$	88	9.964720	13
48	9.588289	501	•411711	9.623623	589	10.376377	035334	88	9.964666	12
49	9.988990	500	•411410	9.623976	589	10.376024	035387	89	9.964613	11
51	9.580100	500	.410810	9.624330	588	10.375070	.025402	80	9.904000	01
52	9.589489	499	•410511	9.625036	588	10-374964	035546	89	9.964454	8
53	9.589789	499	.410211	9.625388	588	10.374612	035600	89	9.964400	7
54	9.590088	499	·409912	9.625741	587	10.374259	.035653	89	9.964347	6
55	9.590387	<b>498</b>	·409613	9.626093	587	10.373907	.035706	89	9.964294	5
56	9.590686	498	$\cdot 409314$	9.626445	587	10.373555	035760	89	9.964240	4
57	9.590984	497	·409016	9.626797	586	10.373203	035813	89	9.964187	3
98 50	9.591282	497	•408718	9.627149	586	10.372851	035867	89	9.964133	2
60 60	9.501070	497	408420	9.627501	080 595	10.372499	035920	89	9.964080	
	Cosine.	430	Secant.	Cotangent.	000	Tangent.	Cosecant.	09	5'904026 Sine.	1

63

64 23 deg.

				and the second se	and the second se						
	,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
ľ	0	9.591878		·408122	9.627852		10.372148	$\cdot 035974$		9.964026	60
	1	9.592176	496	.407824	9.628203	585	10.371797	.036028	89	9.963972	59
ł	2	9.592473	495	·407527	9.628554	585	10.371446	·036081	89	9.963919	58
Ì	3	9.592770	495	·407230	9.628905	585	10.371095	036135	89	9.963865	57
	4	9.593067	495	·406933	9.629255	584	10.370745	·036189	90	9.963811	56
	5	9.593363	494	·406637	9.629606	584	10.370394	·036243	90	9.963757	55
	6	9.593659	494	·406341	9.629956	583	10.370044	.036296	90	9.963704	54
	7	9.593955	493	·406045	9.630306	583	10.369694	·036350	90	9.963650	53
	8	9.594251	493	-405749	9.630656	583	10:369344	036404	90	9.963596	52
	- 9	9.594547	493	·405453	9.631005	583	10.368995	036458	90	9.963542	51
	10	9.594842	492	·405158	9.631355	582	10.368645	036512	90	9.963488	50
	11	9.595137	492	·404863	9.631704	582	10.368296	036566	90	9.963434	49
	12	9.595432	491	·404568	9.632053	582	10.367947	036621	90	9.963379	48
	13	9.595727	491	·404273	9.632401	581	10.367599	036675	90	9.963325	47
l	14	9.596021	491	·403979	9.632750	581	10.367250	036729	90	9.963271	46
	15	9.596315	490	-403685	9.633098	581	10.366902	036783	90	9.963217	45
	16	9.596609	490	.403391	9.633447	580	10.366553	·036837	90	9.963163	44
ł	17	9.596903	489	-403097	9.633795	580	10 866205	036892	90	9.963108	43
i	18	9.597196	489	-402804	9.634143	580	10.365857	036946	91	9.963054	42
	19	9.597490	489	·402510	9.634490	579	10.365510	$\cdot 037001$	91	9.962999	41
l	20	9.597783	488	-402217	9.634838	579	10.365162	037055	91	9.962945	40
l	21	9.598075	488	•401925	9.635185	579	10.364815	0.037110	91	9.962890	39
ĺ	22	9.598368	487	401632	9.635532	578	10.364468	037164	91	9.962836	38
	23	9.598660	487	•401340	9.635879	578	10.364121	037219	91	9.962781	37
	24	9.598952	487	•401048	9.636226	578	10.363774	037273	91	9.962727	36
ł	20	9.599244	480	.400/56	9.636572	577	10.363428	037328	91	9.962672	35
ł	20	9.999930	480	.400464	9.036919	577	10.363081	037383	91	9.962617	34
	21	9.599827	400	.400173	9.637265	577	10.362735	037438	91	9.962562	33
ļ	20	9.000118	400	·399882	9.03/011	570	10.302389	037492	91	9.902008	02 91
	29	9.000409	400	·2999991	9.091990	570	10.961609	.097600	01	9.902400	90
l	91	9.600700	184	200010	9.030304	576	10.261252	097657	00	0.060242	20
l	20	9.000990	404	208790	9.038041	575	10.261008	007007	02	0.060000	29
l	22	9.601200	483	398420	0.630332	575	10.260663	.027767	92	0.062220	20
	34	9.601860	482	398140	0.630682	575	10.360318	.027899	92	0.062178	26
	35	9.602150	482	.397850	9.640027	574	10.259973	037822	92	9.962178	25
l	36	9.602130	482	.897561	9.640371	574	10.359629	.037933	92	9.962067	24
	37	9.602728	482	.397272	9.640716	574	10.359284	.037988	92	9.962012	23
	38	9.603017	481	.396983	9.641060	573	10.358940	-038043	92	9.961957	22
ł	39	9.603305	481	.396695	9.641404	573	10.358596	-038098	92	9.961902	21
	40	9.603594	481	.396406	9.641747	573	10.358253	038154	92	9.961846	20
ł	41	9.603882	480	.396118	9.642091	572	10.357909	038209	92	9.961791	19
ł	42	9.604170	480	.395830	9.642434	572	10.357566	0.038265	92	9.961735	18
1	43	9.604457	479	.395543	9.642777	572	10.357223	·038320	92	9.961680	17
	44	9.604745	479	.395255	9.643120	572	10.356880	.038376	92	9.961624	16
1	45	9.605032	479	.394968	9.643463	571	10.356537	038431	93	9.961569	15
1	46	9.605319	478	.394681	9.643806	571	10.356194	038487	93	9.961513	14
	47	9.605606	478	.394394	9.644148	571	10.355852	0.038542	93	9.961458	13
İ	48	9.605892	478	.394108	9.644490	570	10.355510	038598	93	9.961402	12
	49	9.606179	477	.393821	9.644832	570	10.355168	$\cdot 038654$	93	9.961346	11
	50	9.606465	477	.393535	9.645174	570	10.354826	0.038710	93	9.961290	10
	51	9.606751	476	.393249	9.645516	570	10.354484	038765	93	9.961235	9
	52	9.607036	476	·392964	9.645857	569	10.354143	· <b>0</b> 38821	93	9.961179	8
	53	9.607322	476	·392678	9.646199	569	10.353801	038877	93	9.961123	7
	54	9.607607	475	·392393	9.646540	569	10.353460	038933	93	9.961067	6
1	55	9.607892	475	·392108	9.646881	568	10.353119	038989	93	9.961011	5
j	56	9.608177	474	-391823	9.647222	568	10.352778	039045	93	9.960955	4
	57	9.608461	474	.391539	9.647562	568	10.352438	039101	93	9.960899	8
	58	9.608/45	4/4	•391200	9.647903	567	10.352097	.039107	93	9.960843	2
	09	9.009029	413	•390971	9.048243	067	10.301707	039214	94	9.900186	
	00	9.009313	413	.990691	9.049993	007	10.991417	059270	94	9.900130	0
	1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1 '

ş

24 DEG.

,	Sine.	Diff.	Cosecant.	Tangent.	Diff.	Cotangent.	Secant.	Diff	Cosine.	
	0.600212	100"	.200697	0.619599	100%	10.251417	.030270		9.960730	80
1	9.009313	179	.200403	9.040000	566	10.351077	039326	94	9.960674	59
$\frac{1}{2}$	9.609880	472	.390120	9.649263	566	10.350737	039382	94	9.960618	58
3	9.610164	472	-389836	9.649602	566	10.350398	.039439	94	9.960561	57
4	9.610447	472	-389553	9.649942	566	10.350058	.039495	94	9.960505	56
5	9.610729	471	·389271	9.650281	565	10.349719	039552	94	9.960448	55
6	9.611012	471	·388988	9.650620	565	10.349380	039608	94	9.960392	54
7	9.611294	470	·388706	9.650959	565	10.349041	039665	94	9.960335	53
8	9.611576	470	$\cdot 388424$	9.651297	564	10.348703	039721	94	9.960279	52
9	9.611858	470	·388142	9.651636	564	10.348364	039778	94	9.960222	51
10	9.612140	469	.387860	9.651974	564	10.348026	039835	94	9.960165	00
11	9.612421	469	38/5/9	9.652312	503	10.347088	.039091	94	9.960109	49
12	9.612702	409	.287017	9.052050	563	10.347019	.040005	99	0.050005	40
10	9.612964	400	-386736	9.653396	563	10.346674	-040000	95	9.959999	46
15	9.613545	467	-386455	9.653663	562	10.346337	040118	95	9.959882	45
16	9.613825	467	-386175	9.654000	562	10.346000	.040175	95	9.959825	44
17	9.614105	467	.385895	9.654337	562	10.345663	$\cdot 040232$	95	9.959768	43
18	9.614385	466	·385615	9.654674	561	10.345326	$\cdot 040289$	95	9.959711	42
19	9.614665	<b>4</b> 66	·385335	9.655011	561	10.344989	·040346	95	9.959654	41
20	9.614944	466	·385056	9.655348	561	10.344652	$\cdot 040404$	95	9.959596	40
21	9.615223	465	·384777	9.655684	561	10.344316	·040461	95	9.959539	39
22	9.615502	465	·384498	9.656020	560	10.343980	·040518	95	9.959482	38
23	9.615781	465	·384219	9.656356	560	10.343644	040575	95	9.959425	37
	9.616060	464	·383940	9.656692	560	10.343308	040632	95	9.959368	36
20	9.616338	404	*383662	9.657028	559	10.342972	.040590	95	9.959310	30.
20	9.010010	404	*000004 .282106	9.007304	550	10.942030	040747	90	9.999205	04
28	9.617179	463	-382828	9.658034	559	10.341066	-040862	96	9.959139	32
$\frac{1}{29}$	9.617450	462	·382550	9.658369	558	10.341631	040919	96	9.959080	31
30	9.617727	462	·382273	9.658704	558	10.341296	.040977	96	9.959023	30
81	9.618004	462	·381996	9.659039	558	10.340961	0.041035	96	9.958965	29
32	9.618281	461	.381719	9.659373	558	10.340627	·041092	96	9.958908	28
33	9.618558	461	·381442	9.659708	557	10.340292	0.041150	96	9.958850	27
34	9.618834	<b>4</b> 61	·381166	9.660042	557	10.339958	0.041208	96	9.958792	26
35	9.619110	460	·380890	9.660376	557	10.339624	$\cdot 041266$	96	9.958734	25
36	9.619386	460	·380614	9.660710	556	10.339290	041323	96	9.958677	24
37	9.619662	460	·380338	9.661043	556	10.338957	041381	96	9.958619	23
00 20	9.619938	459	·380062	9.661377	555	10.338623	041439	96	9.958561	22
- <b>39</b> - <b>4</b> 0	9.020213	409	.270519	9.001/10	555	10.338290	041497	90	9.998903	21
41	9.620468	458	.370937	0.669276	555	10.227694	.041619	97	0.059397	10
42	9.621038	458	378962	9.662709	555	10.337024	.041671	97	9.958329	18
43	9.621313	457	.378687	9.663042	554	10.336958	041729	97	9.958271	17
44	9.621587	457	.378413	9.663375	554	10.336625	.041787	97	9.958213	16
45	9.621861	457	·378139	9.663707	554	10.336293	.041846	97	9.958154	15
46	9.622135	456	·377865	9.664039	554	10.335961	041904	97	9.958096	14
47	9.622409	456	·377591	9.664371	553	10.335629	·041962	97	9.958038	13
48	9.622682	456	·377318	9.664703	553	10.335297	042021	97	9.957979	12
49	9.622956	455	·377044	9.665035	553	10.334965	$\cdot 042079$	97	9.957921	11
50	9.623229	455	·376771	9.665366	553	10.334634	042137	97	9.957863	10
51	9.623502	455	376498	9.665697	552	10.334303	042196	97	9.957804	9
52	9.623/74	404	·376226	9.666029	002	10.333971	042204	91	9.901746	8
54	9-69/910	454	375691	9.666601	551	10.9999900	042013	90	9.997007	ß
55	9.624501	453	.375400	9.667091	551	10.339070	042012	98	9.957570	5
56	9.624863	453	.375137	9.667352	551	10.332648	042489	98	9.957511	4
57	9.625135	453	.374865	9.667682	551	10.332318	042548	98	9.957452	3
58	9.625406	452	.374594	9.668013	550	10.331987	042607	98	9.957393	2
59	9.625677	452	·374323	9.668343	550	10.331657	.042665	98	9.957335	1
60	9.625948	452	·374052	9.668672	550	10.331328	·042724	98	9.957276	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

65 DEG.

66 25 DEG.

								_		
1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1
0	9.625948		·374052	9.668673		10.331327	.042724		9.957276	60
Ĩ	9.626219	451	.373781	9.669002	550	10.330998	.049783	08	0.057917	50
3	0.696400	451	.273510	0.660232	540	10.320668	040940	00	0.057159	20
2	0.696760	451	272240	0.660661	540	10.990990	.042042	90	9.997100	00
3	9.020700	450	979070	0.600001	540	10.000000	042901	90	9.957099	01
4	9.627030	400.	.012910	9.009991	549	10.330009	.042960	98	9.957040	56
9	9.62/300	400	372700	9.670320	548	10.329680	043019	98	9.956981	55
6	9.627570	450	·372430	9.670649	548	10.329351	043079	98	9.956921	54
7	9.627840	449	$\cdot 372160$	9.670977	548	10.329023	$\cdot 043138$	99	9.956862	53
8	9.628109	449	$\cdot 371891$	9.671306	548	10.328694	$\cdot 043197$	99	9.956803	52
9	9.628348	449	$\cdot 371622$	9.671634	547	10-328366	·043256	- 99	9.956744	51
10	9.628647	448	·371353	9.671963	547	10.328037	0.043316	99	9.956684	50
11	9.628916	448	·371084	9.672291	547	10.327709	·043375	99	9.956625	49
12	9.629185	447	·370815	9.672619	547	10.327381	.043434	99	9.956566	48
13	9.629453	447	·370547	9.672947	546	10.327053	.043494	99	9.956506	17
14	9.629721	447	.370279	9.673274	546	10-326726	.043553	99	9.956447	46
15	9.629989	446	+370011	9.673602	546	10.326208	.042612	00	0.056387	40
16	9.630257	446	.960749	0.6730-20	546	10.996071	010679	00	9.900007	40
17	0.620594	140	.960476	0.674057	545	10.925749	040700	99	9-950547	44
10	0.690709	440	000000	9.074201	545	10.020/40	040702	99	9.950208	40
10	9.050794	440	-509206	9.074084	040	10.525410	043792	- 99	9.956208	42
19	9.031059	440	.368941	9.674910	545	10.325090	043852	100	9.956148	41
20	9.631326	445	·368674	9.675237	544	10.324763	043911	100	9.956089	40
21	9.631593	445	·368407	9.675564	544	10.324436	·043971	100	9.956029	39
22	9.631859	444	·368141	9.675890	544	10.324110	·044031	100	9.955969	38
23	9.632125	444	·367875	9.676217	544	10.323783	$\cdot 044091$	100	9.955909	37
24	9.632392	444	·367608	9.676543	543	10.323457	.044151	100	9.955849	36
25	9.632658	443	·367342	9.676869	543	10.323131	0.044211	100	9.955789	35
26	9.632923	443	·367077	9.677194	543	10.322806	0.044271	100	9.955729	34
27	9.633189	443	·366811	9.677520	543	10.322480	.044331	100	9.955669	33
28	9.633454	442	·366546	9.677846	542	10.322154	.044391	100	9.955609	32
29	9.633719	442	·366281	9.678170	542	10.321829	.044452	100	9.955548	31
30	9.633984	449	-366016	0.678496	549	10.391504	.044519	100	0.055488	30
31	9.634249	441	+365751	9.678891	542	10.391179	.044572	100	9.955428	20
2.0	0.624514	441	265486	0.670146	541	10.200954	.044699	100	0.055268	23
04	0.694779	440	-202400	9.079140	541	10.020004	044002	101	9.900000	20
04	5.034110	440	-303222	9.079471	541	10.520529	044095	101	9.900007	41
34	9.035042	440	•304908	9.079795	041	10.320205	044753	101	9.905247	26
.30	9.035306	440	•364694	9.680120	541	10.319880	044814	101	9.955186	25
36	9.635570	439	·364430	9.680444	540	10.319556	044874	101	9.955126	24
37	9.635834	439	•364166	9.680768	540	10.319232	·044935	101	9.955065	23
38	9.636097	439	·363903	9.681092	540	10.318908	044995	101	9.955005	22
39	9.636360	438	·363640	9.681416	540	10.318584	045056	101	9.954944	21
40	9.636623	438	·363377	9.681740	539	10.318260	045117	101	9.954883	20
41	9.636886	438	·363114	9.682063	539	10.317937	.045177	101	9.954823	19
42	9.637148	437	$\cdot 362852$	9.682387	539	10.317613	.045238	101	9.954762	18
43	9.637411	437	·362589	9.682710	539	10.317290	.045299	101	9.954701	17
44	9.637673	437	·362327	9.683033	538	10.316967	.045360	101	9.954640	16
45	9.637935	437	·362065	9.683356	538	10.316644	.045421	101	9.954579	115
46	9.638197	436	·361803	9.683679	538	10.316321	.045482	101	9.954518	14
47	9.638458	436	.361542	9.684001	538	10.315999	.045543	102	9.954457	13
18	9.638720	436	-361280	0.684394	537	10.315676	-045604	102	9.954896	12
40	0.428081	495	-261010	0.684646	537	10.915954	045665	102	0.054335	11
49	0.690040	425	-260759	0.694069	597	10.915099	045796	102	0.054974	10
51	9.039242	400	-300/08	9.004900	597	10.914710	045797	102	0.054919	10
01	9.039503	400	.360497	9.085290	596	10.014000	040101	104	9.904210	9
52	9.039104	404	*360236	9.080012	550	10.314300	042040	104	9-904102	0
53	9.640024	434	.359976	9.685934	030	10.314066	045910	102	9.954090	
54	9.640284	434	•359716	9.686255	536	10.313745	045971	102	9.954029	6
55	9.640544	433	.359456	9.686577	030	10.313423	046032	102	9.953968	D
56	9.640804	433	•359196	9.686898	535	10.313102	046094	102	9.953906	4
57	9.641064	433	•358936	9.687219	535	10.312781	•046155	102	9.953845	3
58	9.641324	432	.358676	9.687540	535	10.312460	.046217	102	9.953783	2
59	9.641583	432	·358417	9.687861	535	10.312139	046278	102	9.953722	1
60	9.641842	432	.358158	9.688182	534	10.311818	·046340	103	9.953660	0
	Corino		Sagant	Cotangent		Tangent.	Cosecant		Sine	1
1	tosine.		Secaut.	overigent.		Tangonal	Josecant.	•	64 DI	ea
									UT DI	- 11 -

26 DEG

20	1/1201									
,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100″	Cosine.	1
0	9.641842		·358158	9.688182		10.311818	.046340		9.953660	60
1	9.642101	431	.357899	9.688502	534	10.311498	·046401	103	9-953599	59
2	9.642360	431	·357640	9.688823	534	10.311177	046463	103	9.953537	58
3	9.642618	431	.357382	9.689143	534	10.310857	$\cdot 046525$	103	9.953475	57
4	9.642877	430	·357123	9.689463	533	10.310537	·046587	103	9.953413	56
5	9.643135	430	·356865	9.689783	533	10.310217	·046648	103	9.953352	55
6	9.643393	430	·356607	9.690103	533	10.309897	·046710	103	9.953290	54
7	9.643650	430	·356350	9.690423	533	10.309577	·046772	103	9.953228	53
8	9.643908	429	$\cdot 356092$	9.690742	533	10.309258	·046834	103	9.953166	52
9	9.644165	429	·355835	9.691062	532	10.308938	046896	103	9.953104	51
10	9.644423	429	•355577	9.691381	532	10.308619	046958	103	9.953042	50
	9.644680	428	•355320	9.691700	532	10.308300	047020	103	9.952980	49
12	9.044930	428	•355064	9.692019	531	10.307981	047082	104	9.992918	48
13	9.045193	428	.354807	9.692338	531	10.307662	047207	104	9.992899	41
14	9.040400	427	.354550	9.692656	201	10.307344	047207	104	9.992793	40
10	9.049700	441	.954090	9.092970	001 591	10.307025	047291	104	9.992791	40
10	9.646918	441	.959799	9.093293	520	10.206288	.047304	104	9-952009	49
18	9.646474	420	-353596	9.093012	530	10.206070	.047456	104	9.952500	49
19	9.646729	426	.353971	9.694248	530	10.305759	.047519	104	9.952481	41
20	9.646984	425	-353016	9.694566	530	10.305434	047581	104	9.952419	40
21	9.647240	425	.352760	9.694883	529	10.305117	.047644	104	9.952356	39
22	9.647494	425	.352506	9.695201	529	10.304799	.047706	104	9.952294	38
23	9.647749	424	.352251	9.695518	529	10.304482	.047769	104	9.952231	37
24	9.648004	424	·351996	9.695836	529	10.304164	.047832	104	9.952168	36
25	9.648258	424	·351742	9.696153	529	10.303847	·047894	105	9.952106	35
26	9.648512	424	·351488	9.696470	528	10.303530	$\cdot 047957$	105	9.952043	<b>34</b>
27	9.648766	423	·351234	9.696787	528	10.303213	·048020	105	9.951980	33
28	9.649020	423	·350980	9.697103	528	10.302897	·048083	105	9.951917	32
29	9.649274	423	·350726	9.697420	528	10.302580	·048146	105	9.951854	31
30	9.649527	422	·350473	9.697736	527	10.302264	·048209	105	9.951791	30
31	9.649781	422	$\cdot 350219$	9.698053	527	10.301947	$\cdot 048272$	105	9.951728	29
32	9.650034	422	•349966	9.698369	527	10.301631	048335	105	9.951665	28
33	9.650287	422	•349713	9.698685	527	10.301315	048398	105	9.951602	27
34	9.0000009	421	•349461	9.099001	526	10.300999	048461	105	9.951539	26
30	9.651044	421	•349208	9.699316	020	10.300684	040024	100	9.901470	20
27	9.651997	421	-340900	9.699632	040 590	10.300308	040000	100	9.901412	124
38	9.651549	420	.348451	9.700963	526	10.900797	.048714	106	0.051986	20
39	9.651800	420	.348200	9.700578	525	10.299499	-048778	106	9.951220	21
40	9.652052	419	-347948	9.700893	525	10.299107	.048841	106	9.951159	20
41	9.652304	419	.347696	9.701208	525	10.298792	.048904	106	9.951096	19
42	9.652555	419	.347445	9.701523	525	10.298477	048968	106	9.951032	18
43	9.652806	418	.347194	9.701837	524	10.298163	.049032	106	9.950968	17
44	9.653057	418	·346943	9.702152	524	10.297848	·049095	106	9.950905	16
45	9.653308	418	·346692	9.702466	524	10.297534	.049159	106	9.950841	15
46	9.653558	418	·346442	9.702780	524	10.297220	·049222	106	9.950778	14
47	9.653808	417	·346192	9.703095	523	10.296905	·049286	106	9.950714	13
48	9.654059	417	$\cdot 345941$	9.703409	523	10.296591	0.049350	106	9.950650	12
49	9.654309	417	$\cdot 345691$	9.703723	523	10.296277	049414	106	9.950586	11
50	9.654558	416	·345442	9.704036	523	10.295964	049478	106	9.950522	10
51	9.654808	416	·345192	9.704350	523	10.295650	049542	107	9.950458	9
52	9.655058	416	•344942	9.704663	522	10.295337	049606	107	9.950394	8
03	9.055307	415	•344693	9.704977	522	10.295023	049670	107	9.950330	7
04	9.0000000	410	•344444	9.705290	500	10.294710	049734	107	9.950266	6
00 Ke	0.656054	410	•544190 .949040	9.705010	501	10.294397	049798	107	9.950202	G
57	9.656200	410	*040940 .949800	0.706000	591	10.294084	049802	107	9.990138	94
58	9.656551	414	-343030	9.706541	591	10.293/72	.049920	107	0.050014	10
59	9.656799	414	-343901	9.706854	521	10.293146	0100055	107	9.949945	1
60	9.657047	418	-342953	9.707166	521	10.292834	.050119	107	9.949881	0
	Onei-			0.000		The	000110			-
	Cosine.		Secant.	Cotangent.		l'angent.	U Cosecant.		Sine.	

36

63 DEG.

.

27 DEG.

68

1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1
0	9.657047		·342953	9.707166		10.292834	050119		9-949881	60
1	9.657295	413	·342705	9.707478	520	10.292522	050184	107	9.949816	59
2	9.657542	413	·342458	9.707790	520	10.292210.	.050248	107	9.949752	58
3	9.657790	412	.342210	9.708102	520	10.291898	0000312	107	9.949688	57
4	9.658037	412	·341963	9.708414	520	10.291586	050377	108	9.949623	56
5	9.658284	412	·341716	9.708726	519	10.291274	$\cdot 050442$	108	9.949558	55
6	9.658531	412	$\cdot 341469$	9.709037	519	10.290963	050506	108	9.949494	54
7	9.658778	411	$\cdot 341222$	9.709349	519	10.290651	$\cdot 050571$	108	9.949429	53
8	9.659025	411	·340975	9.709660	519	10.290340	.050636	108	9.949364	52
9	9.659271	411	$\cdot 340729$	9.709971	519	10.290029	$\cdot 050700$	108	9.949300	51
10	9.659517	410	$\cdot 340483$	9.710282	518	10.289718	050765	108	9.949235	50
11	9.659768	410	·340237	9.710593	518	10.289407	050830	108	9.949170	49
12	9.660009	410	-339991	9.710904	518	10.289096	050895	108	9.949105	48
13	9.660255	409	•339745	9.711215	518	10.288785	050960	108	9.949040	47
14	9.660501	409	·339499	9.711525	518	10.288475	051025	108	9.948975	46
10	9.060746	409	·339254	9.711836	517	10.288164	051090	108	9.948910	45
10	9.000991	409	.039009	9.712146	517	10.287854	051000	108	9.948845	44
10	9.001230	408	.000/04	9.712400	517	10.287944	051005	108	9.948780	43
10	9.001401	400	.998974	9.712700	516	10.287284	051260	109	9.948/15	42
19	9.661970	400	338030	0.712386	516	10.286924	.051416	109	9.948000	41
20	9.662214	407	-337786	9.713696	516	10.286304	-051410	109	0.049510	30
29	9.662459	407	-337541	9.714005	516	10.285995	051546	109	9.948019	38
23	9.662703	407	-337297	9.714314	516	10.285686	051612	100	9.948388	37
24	9.662946	406	.337054	9.714624	515	10.285376	051677	100	9.948323	36
25	9.663190	406	·336810	9.714933	515	10.285067	.051748	109	9.948257	35
26	9.663433	406	·336567	9.715242	515	10.284758	051808	109	9.948192	34
27	9.663677	405	·336323	9.715551	515	10.284449	.051874	109	9.948126	33
28	9.663920	405	·336080	9.715860	514	10.284140	.051940	109	9.948060	32
29	9.664163	405	·335837	9.716168	514	10.283832	.052005	109	9.947995	31
30	9.601406	405	$\cdot 335594$	9.716477	514	10.283523	052071	110	9.947929	30
31	9.664648	404	·335352	9.716785	514	10.283215	052137	110	9.947863	29
32	9.664891	404	·335109	9.717093	514	10.282907	.052203	110	9.947797	$\overline{28}$
33	9.665133	404	·334867	9.717401	513	10.282599	.052269	110	9.947731	27
34	9.665375	403	$\cdot 334625$	9.717709	513	10.282291	052335	110	9.947665	26
35	9.665617	403	·334383	9.718017	513	10.281983	-052400	110	9.947600	25
36	9.665859	403	·334141	9.718325	513	10.281675	052467	110	9.947533	24
37	9.666100	402	·333800	9.718633	513	10.281367	052533	110	9.947467	23
38	9.666342	402	-333658	9.718940	512	10.281060	052599	110	9.947401	22
39	9.666583	402	•333417	9.719248	512	10.280752	052665	110	9.947835	21
40	9.060824	402	.990095	9.719555	512	10.280440	050707	110	9.947269	20
41	9.007000	401	·002900	9.719802	512	10.280188	.059964	110	9.947203	19
44	9.667546	401	.339454	9.790476	511	10.279591	.052004	110	9.947070	17
44	9.667786	401	+332914	9.720789	511	10.279917	-052996	111	9.947004	16
45	9.668027	400	-331972	9.721089	511	10.278911	-053063	111	9.946937	15
46	9.668267	400	-331732	9.721396	511	10.278604	053129	111	9.946871	14
47	9.668506	400	.331494	9.721702	511	10.278298	.053196	111	9.946804	13
48	9.668746	399	+331254	9.722009	510	10.277991	053262	111	9.946738	12
49	9.668986	399	·331014	9.722315	510	10.277685	053329	111	9.946671	11
50	9.669225	399	·830775	9.722621	510	10.277379	053396	111	9.946604	10
51	9.669464	399	·330536	9.722927	510	10.277073	$\cdot 053462$	111	9.946538	9
52	9.669703	398	·330297	9.723232	510	10.276768	$\cdot 053529$	111	9.946471	8
53	9.669942	398	·330058	9.723538	509	10.276462	053596	111	9.946404	7
54	9.670181	398	·329819	9.723844	509	10.276156	053663	111	9.946337	6
55	9.670419	397	·329581	9.724149	509	10.275851	053730	111	9.946270	5
56	9.670658	397	·329342	9.724454	509	10.275546	053797	112	9.946203	4
57	9.670896	397	·829104	9.724759	509	10.275241	053864	$112 \\ 110$	9.946136	3
50	9.671134	397	*328866	9.725065	508	10.274935	052000	112	9.946069	1
60	9.0/13/2	596 200	-328628	9.725659	500	10.974996	054065	112	0.045025	
	2.011003	000	.020091	9.120014	000	10-214020	004000		0.010000	-
11	Cosine.		Secant.	Cotangent.	÷	Tangent.	Cosecant.		Sine.	11

.

28 DEG.

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.671609		·328391	9.725674	-	10.274326	.054065		9.945935	$\overline{60}$
1	9.671847	396	$\cdot 328153$	9.725979	508	10.274021	$\cdot 054132$	112	9.945868	59
<b>2</b>	9.672084	395	$\cdot 327916$	9.726284	508	10.273716	054200	112	9.945800	58
3	9.672321	395	·327679	9.726588	507	10.273412	054267	112	9.945733	57
4	9.672558	395	·327442	9.726892	507	10.273108	.054334	112	9.945666	56
5	9.672795	395	•327205	9.727197	507	10.272803	054402	112	9.945598	55
6	9.673032	394	-326968	9.727501	507	10.272499	054590	112	9.945531	54
6	9.673268	394	-320/32	9.727800	506	10.272199	004000	112	9.945404	50
o a	9.673741	204	-320450	9.798419	506	10.271588	054679	113	9.940090	51
10	9.673977	393	.326023	9.728716	506	10.271284	054739	113	0.045261	50
11	9.674213	393	-325787	9.729020	506	10.270980	.054807	113	9.945193	49
$\hat{12}$	9.674448	393	.325552	9.729323	506	10.270677	054875	113	9.945125	48
13	9.674684	392	.325316	9.729626	505	10.270374	054942	113	9.945058	47
14	9.674919	392	$\cdot 325081$	9.729929	505	10.270071	055010	113	9.944990	46
15	9.675155	392	.324845	9.730233	505	10.269767	055078	113	9.944922	45
16	9.675390	392	·324610	9.730535	505	10.269465	$\cdot 055146$	113	9.944854	44
17	9.675624	391	$\cdot 324376$	9.730838	505	10.269162	055214	113	9.944786	43
18	9.675859	391	$\cdot 324141$	9.731141	504	10.268859	055282	113	9.944718	42
19	9.676094	391	·323906	9.731444	504	10.268556	055350	113	9.944650	41
20	9.676328	391	-323672	9.731746	504	10.268254	055418	113	9.944582	40
21	9.676562	390		9.732048	504	10.267952	055486	114	9.944514	39
22	9.676790	390	·525204	9.732351	504	10.267649	055602	114	9.944446	38
20	9.077084	200	200726	9.782008	509	10.207045	055601	114	9.944577	51
24	0.677408	280	.322502	9.732957	502	10.266749	055750	114	9.944009	00
20	9.677731	389	.322269	9.733558	503	10.266442	.055828	114	0.044179	24
27	9.677964	389	.322036	9.733860	503	10.266140	.055896	114	0.044104	33
28	9.678197	388	.321803	9.734162	503	10.265838	.055964	114	9.944036	32
-29	9.678430	388	.321570	9.734463	502	10.265537	056033	114	9.943967	31
30	9.678663	388	.321337	9.734764	502	10.265236	0.056102	114	9.943899	30
31	9.678895	388	.321105	9.735066	502	10.264934	056170	114	9.943830	29
32	9.679128	387	.320872	9.735367	502	10.264633	0056239	114	9.943761	28
33	9.679360	387	320640	9.735668	502	10.264332	056307	114	9.943693	27
34	9.679592	387	-320408	9.735969	501	10.264031	056376	115	9.943624	26
35	9.679824	387	-320176	9.736269	501	10.263731	056445	115	9.943555	25
36	9.680056	386	·319944	9.736570	501	10.263430	056514	115	9.943486	24
37	9.680288	380	•019/12	9.1.008/1	501	10.203129	056655	110	9.948417	23
00	9.000019	295	.919401	9.797171	500	10.262829	056791	110	9.943348	22
40	9.680982	385	.319018	9.737771	500	10.262929	.056790	115	9.945279	21
41	9.681213	385	.318787	9.738071	500	10.261929	.056859	115	0.043141	10
42	9.681443	385	-318557	9.738371	500	10-261629	056928	115	9.943072	18
43	9.681674	384	-318326	9.738671	500	10.261329	.056997	115	9.943003	17
44	9.681905	384	.318095	9.738971	500	10.261029	.057066	115	9.942934	16
45	9.682135	384	.317865	9.739271	499	10.260729	.057136	115	9.942864	15
46	9.682365	384	.317635	9.739570	499	10.260430	.057205	115	9.942795	14
47	9.682595	383	-317405	9.739870	499	10.260130	0.057274	116	9.942726	13
48	9.682825	383	.317175	9.740169	499	10.259831	057344	116	9.942656	12
49	9.683055	383	•316945	9.740468	499	10.259532	057413	116	9.942587	11
50	9.683284	383	-316/16	9.740767	498	10.259233	057483	116	9.942517	10
51	9.683514	382	010400	9.741066	498	10.0596954	057600	116	9.942448	9
52	0.692070	382	.316099	0.741664	490	10.258226	057600	110	0.049900	N 7
54	9.684901	389	.315799	9.741969	408	10-258038	057761	116	0.040000	Å
55	9.6844201	381	.315570	9.742261	498	10.257739	.057831	116	9.949160	5
56	9.684658	381	.315342	9.742559	497	10.257441	057901	116	9.942099	4
57	9.684887	381	.315113	9.742858	497	10.257142	.057971	116	9.942029	8
58	9.685115	380	.314885	9.743156	497	10.256844	058041	116	9.941959	2
59	9.685343	380	.314657	9.743454	497	10.256546	.058111	116	9.941889	1
60	9.685571	380	314429	9.743752	497	10.256248	058181	117	9.941819	0
/	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

61 DEG.

70

<b>29</b>	DEG.

'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff 100"	Cosine.	
0	9.685571		·314429	9.743752		10.256248	058181		9.941819	60
1	9.685799	380	·314201	9.744050	496	10.255950	058251	117	9.941749	59
2	9.686027	379	·313973	9.744348	496	10.255652	058321	117	9.941679	58
3	9.686254	379	·313746	9.744645	496	10.255355	$ \cdot 058391$	117	9.941609	57
4	9.686482	379	$\cdot 313518$	9.744943	496	10.255057	$ \cdot 058461$	117	9.941539	56
5	9.686709	379	$\cdot 313291$	9.745240	496	10.254760	058531	117	9.941469	55
6	9.686936	378	$\cdot 313064$	9.745538	496	10.254462	.058602	117	9.941398	54
7	9.687163	378	$\cdot 312837$	9.745835	495	10.254165	.058672	117	9.941328	53
8	9.687389	378	$\cdot 312611$	9.746132	495	10.253868	$ \cdot 058742$	117	9.941258	52
9	9.687616	378	$\cdot 312384$	9.746429	495	10.253571	.058813	117	9.941187	51
10	9.687843	377	$\cdot 312157$	9.746726	495	10.253274	$ \cdot 058883$	117	9.941117	50
11	9.688069	377	$\cdot 311931$	9.747023	495	10.252977	$\cdot 058954$	117	9.941046	49
12	9.688295	377	·311705	9.747319	494	10.252681	000000000000000000000000000000000000	118	9.940975	48
13	9.688521	377	·311479	9.747616	494	10.252384	059095	118	9.940905	47
14	9.688747	376	$\cdot 311253$	9.747913	494	10.252087	059166	118	9.940834	46
15	9.688972	376	$\cdot 311028$	9.748209	494	10.251791	059237	118	9.940763	45
16	9.689198	376	$\cdot 310802$	9.748505	494	10.251495	059367	118	9.940693	44
17	9.689423	376	·310577	9.748801	494	10.251199	059378	118	9.940622	43
18	9.689648	375	$\cdot 310352$	9.749097	493	10.250903	0059449	118	9.940551	42
19	9.689873	375	$\cdot 310127$	9.749393	493	10.250607	059520	118	9.940480	41
20	9.690098	375	·309902	9.749689	493	10.250311	059591	118	9.940409	40
21	9.690323	375	·309677	9.749985	493	10.250015	0059662	118	9.940338	39
22	9.690548	374	·309452	9.750281	493	10.249719	059733	118	9.940267	38
23	9.690772	374	·309228	9.750576	493	10.249424	059804	118	9.940196	37
24	9.690996	374	·309004	9.750872	492	10.249128	059875	118	9.940125	36
20	9.691220	374	·308780	9.751167	492	10.248833	059946	119	9.940054	35
26	9.691444	373	·308556	9.751462	492	10.248538	060018	119	9.939982	34
21	9.691668	373	-308332	9.751757	492	10.248243	060089	119	9.939911	33
28	9.691892	373	-308108	9.752052	492	10.247948	060160	119	9.939840	32
29	9.692115	373	-307885	9.752347	491	10.247653	060232	119	9.939768	31
30	9.692339	372	-307661	9.752642	491	10.247358	060303	119	9.939697	30
31	9.692562	372	.307438	9.752987	491	10.247063	060375	119	9.939625	29
52	9.692785	372	-30/215	9.753231	491	10.246769	060446	119	9.939554	28
00	9.093008	8/1	-306992	9.753526	491	10.246474	060518	119	9.939482	21
95	0.093231	071	-300709	9.753820	491	10.246180	0000090	119	9.939410	20
26	9.095455	071	·306347	9.754115	490	10.240880	000001	119	9.939333	20
27	9.095010	3/1	·300324	9.754409	490	10.240091	060005	119	9.939207	24
38	0.604190	970	-300102	9.754007	490	10.240297	000000	120	9.959199	20
20	9.604949	970	-305659	9.755901	490	10.240000	.000011	120	9-959125	24
40	9.604564	370	305436	9.755585	400	10.244709	.0610940	120	0.028080	20
41	0.604786	260	-305430	9.755979	490	10.244410	.061020	120	0.038008	10
19	9.695007	260	.30/00214	0.756179	480	10.244122	.061164	120	0.038836	18
43	9.695229	369	-304771	9.756465	489	10.243525	061227	120	9.938763	17
44	9.695450	869	-304550	9.756750	489	10.243241	.061309	120	9.938691	16
45	9.695671	368	.304329	9.757052	489	10.242948	-061381	120	9.938619	15
46	9.695892	368	304108	9.757345	489	10.242655	061453	120	9.938547	14
47	9.696113	368	.303887	9.757638	488	10.242362	061525	120	9.938475	13
48	9.696334	368	-303666	9.757931	488	10.242069	061598	120	9.938402	12
49	9.696554	367	-303446	9.758224	488	10.241776	.061670	121	9.938330	11
50	9.696775	367	-803225	9.758517	488	10.241482	061742	121	9.938258	10
51	9.696995	367	-303005	9.758810	488	10.241190	061815	121	9.938185	9
52	9.697215	367	.302785	9.759102	488	10.240898	061887	121	9.938113	8
53	9.697435	366	.302565	9.759395	487	10.240605	.061960	121	9.938040	7
54	9.697654	366	-302346	9.759687	487	10.240313	.062033	121	9.937967	6
55	9.697874	366	.302126	9.759979	487	10.240021	.062105	121	9.937895	5
56	9.698094	366	.301906	9.760272	487	10.239728	.062178	121	9.937822	4
57	9.698313	365	.301687	9.760564	487	10.239436	062251	121	9.937749	3
58	9.698532	365	.301468	9.760856	487	10.239144	.062324	121	9.937676	2
59	9.698751	365	.301249	9.761148	486	10.23\$852	·062396	121	9.937604	1
60	9.698970	365	·301030	9.761439	486	10.238561	$\cdot 062469$	121	9.937531	0
,	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

ŝ

30 DEG.

'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.698970		·301030	9.761439		10.238561	062469		9.937531	60
1	9.699189	364	·300811	9.761731	486	10.238269	062542	121	9.937458	59
2	9.699407	364	·300593	9.762023	486	10.237977	062615	122	9.937385	58
3	9.699626	364	·300374	9.762314	486	10.237686	$  \cdot 062688  $	122	9.937312	57
4	9.699844	364	·300156	9.762606	486	10.237394	$  \cdot 062762  $	122	9.937238	56
5	9.700062	363	$\cdot 299938$	9.762897	485	10.237103	+062835	122	9.937165	55
6	9.700280	363	$\cdot 299520$	9.763188	485	10.236812	$\cdot 062908$	122	9.937092	54
7	9.700498	363	$\cdot 299702$	9.763479	485	10.236521	$\cdot 062981$	122	9.937019	53
8	9.700716	363	$\cdot 299284$	9.763770	485	10.236230	$\cdot 063054$	122	9.936946	52
9	9.700933	363	·299067	9.764061	485	10.235939	0.063128	122	9.936872	51
10	9.701151	362	·298849	9.764352	485	10.235648	0.063201	122	9.936799	50
11	9.701368	362	·298632	9.764643	485	10.235357	063275	122	9.936725	49
12	9.701585	362	·298415	9.764933	484	10.235067	063348	122	9.936652	48
15	9.701802	362	-298198	9.765224	484	10.234770	003422	123	9.936578	47
14	9.702019	301	297981	9.765514	484	10.234480	003495	123	9.936505	46
10	9.702230	301 901	-297704	9.765805	404	10.234195	003009	120	9.936431	45
17	0.709660	001	-491040	9.700095	404	10.233900	003043	123	9.930391	44
18	0.702009	260	.297001	9.700300	404	10.222010	.062700	123	9.930284	43
10	9.702000	260	.297110	9.766065	400	10.200020	.062964	123	9.930210	42
20	9.703101	360	.290699	9.767955	400	10.230030	.062029	140	0.056060	41
21	9.703533	360	-296467	9.767545	483	10.232455	.064019	192	0.035088	20
22	9.703749	359	296251	9.767834	483	10.232166	064086	192	0.025014	38
23	9.703964	359	-296036	9.768194	483	10.231876	-064160	120	0.025840	37
24	9.704179	359	-295821	9.768414	482	10.231586	061234	123	9.935766	36
$\overline{25}$	9.704395	359	-295605	9.768703	482	10.231297	064308	124	9.935692	35
26	9.704610	359	·295390	9.768992	482	10.231008	.064382	124	9,935618	34
27	9.704825	358	·295175	9.769281	482	10.230719	.064457	124	9.935543	33
28	9.705040	358	$\cdot 294960$	9.769570	482	10.230430	064531	124	9.935469	32
29	9.705254	358	$\cdot 294746$	9.769860	482	10.230140	.064605	124	9.935395	31
30	9.705469	358	·294531	9.770148	481	10.229852	.064680	124	9.935320	30
31	9.705683	357	$\cdot 294317$	9.770437	481	10.229563	.064754	124	9.935246	29
32	9.705898	357	$\cdot 294102$	9:770726	481	10.229274	0.064829	124	9.935171	28
33	9.706112	357	$\cdot 293888$	9.771015	481	10.228985	$  \cdot 064903  $	124	9.935097	27
34	9.706326	357	$\cdot 293674$	9.771303	481	10.228697	$  \cdot 064978  $	124	9.935022	26
35	9.706539	356	$\cdot 293461$	9.771592	481	10.228408	$  \cdot 065052  $	124	9.934948	25
36	9.706753	356	$\cdot 293247$	9.771880	481	10.228120	$  \cdot 065127  $	124	9.934873	24
. 37	9.706967	356	·293033	9.772168	480	10.227832	$\cdot 065202$	124	9.934798	23
38	9.707180	356	$\cdot 292820$	9.772457	480	10.227543	$\cdot 065277$	125	9.934723	22
39	9.707393	355	·292607	9.772745	480	10.227255	$\cdot 065351$	125	9.934649	21
40	9.707606	305	·292394	9.773033	480	10.226967	065426	125	9.934574	20
41	9.10.819	355	·292181	9.773321	480	10.226679	065501	125	9.934499	19
42	9.708032	300	·291968	9.773608	480	10.226392	065576	125	9.934424	18
40	9.100240	254	.291700	9.113890	400	10.220104	0055500	125	9.934349	11
45	9.708450	254	.901990	9.774104	479	10.220810	065901	120	9.934274	10
46	9.708010	254	.201118	9.774750	470	10.220029	065977	120	0.024109	10
40	9.700002	252	.2900006	9.775046	479	10.220241	065059	140	9.994129	14
48	9.709306	353	.290694	9.775333	479	10.994667	.066027	195	0.022072	10
49	9.709518	353	.290482	9.775621	479	10.224007	-0661027	125	0.033808	11
50	9.709730	353	·290270	9.775908	478	10.224092	066178	126	9.933822	10
51	9.709941	353	·290059	9.776195	478	10.223805	066253	126	9.933747	9
52	9.710153	352	·289847	9.776482	478	10.223518	.066329	126	9.933671	8
53	9.710364	352	$\cdot 289636$	9.776769	478	10.223231	.066404	126	9.933596	7
54	9.710575	352	$\cdot 289425$	9.777055	478	10.222945	.066480	126	9.933520	6
55	9.710786	352	·289214	9.777342	478	10.222658	.066555	126	9.933445	5
56	9.710997	351	$\cdot 289003$	9.777628	478	10.222372	.066631	126	9.933369	4
57	9.711208	351	$\cdot 288792$	9.777915	477	10.222085	.066707	126	9.933293	3
58	9.711419	351	·288581	9.778201	477	10.221799	.066783	126	9.933217	2
59	9.711629	351	·288371	9.778487	477	10.221513	$\cdot 066859$	126	9.933141	1
60	9.711839	350	-288161	9.778774	477	10.221226	·066//34	126	9.933066	0
	Cosine		Sugant	Cotongent		Tanzaur	Case int		Sino	-

G 2

59 DEG.

72

OI DEG.	31	DEG.
---------	----	------

I	'	Sine.	Diff. 100''	Cosecant.	Tangent.	Diff. 100″	Cotangent.	Secant.	Diff. 100″	Cosine.	1
	0	9.711839		·288161	9.778774		10.221226	·066934		9.933066	60
l	1	9.712050	350	·287950	9.779060	477	$10 \cdot 220940$	.067010	126	9.932990	59
	2	9.712260	350	$\cdot 287740$	9.779346	477	10.220654	.067086	127	9.932914	58
	3	9.712469	350	$\cdot 287531$	9.779632	477	10.220368	$\cdot 067162$	127	9.932838	57
	4	9.712679	349	$\cdot 287321$	9.779918	476	10.220082	0.067238	127	9.932762	56
	5	9.712889	349	·287111	9.780203	476	10.219797	-067315	127	9.932685	55
l	6	9.713098	349	$\cdot 286902$	9.780489	476	10.219511	$\cdot 067391$	127	9.932609	54
Į	7	9.713308	349	$\cdot 286692$	9.780775	476	10.219225	$\cdot 067467$	127	9.932533	53
-	8	9.713517	349	$\cdot 286483$	9.781060	476	10.218940	$\cdot 067543$	127	9.932457	52
	9	9.713726	348	·286274	9.781346	476	10.218654	$\cdot 067620$	127	9.932380	51
ĺ	10	9.713935	348	·286065	9.781631	476	10.218369	·067696	127	9.932304	50
I	11	9.714144	348	·285856	9.781916	475	10.218084	067772	127	9.932228	49
	12	9.714352	348	·285648	9.782201	475	10.217799	067849	127	9.932151	48
	13	9.714501	341	•285439	9.782486	4/0	10.217914	067925	127	9.932075	41
	14	9.714709	041	-285231	9.182111	410	10.217229	-008002	120	9.931998	40
į	10	0.715196	947	200022	9.100000	470	10.210344	000019	140	9.931921	40
	17	0.715204	247	-204014	0.782626	475	10.916974	0669999	198	0.091789	19
	18	9.715609	346	-284308	9.783020	470	10.216090	.068300	120	0.091601	40
	19	9.715809	346	.984191	9.784195	474	10.215805	-068386	128	9.031614	41
	20	9.716017	346	.983983	9.784479	474	10.215521	.068463	128	9.931537	40
	21	9.716224	346	-283776	9.784764	474	10.215236	.068540	128	9.931460	39
	22	9.716432	345	-283568	9.785048	474	10.214952	.068617	128	9.931383	38
	23	9.716639	345	·283361	9.785332	474	10.214668	.068694	128	9.931306	37
	24	9.716846	345	·283154	9.785616	474	10.214384	.068771	128	9.931229	36
	25	9.717053	345	·282947	9.785900	473	10.214100	0.068848	129	9.931152	35
	26	9.717259	345	·282741	9.786184	473	10.213816	.068925	129	9.931075	34
	27	9.717466	344	$\cdot 282534$	9.786468	473	10.213532	$\cdot 069002$	129	9.930998	33
	28	9.717673	344	$\cdot 282327$	9.786752	473	10.213248	.069079	129	9.930921	32
	29	9.717879	344	$\cdot 282121$	9.787036	473	10.212964	$\cdot 069157$	129	9.930843	31
ļ	30	9.718085	344	$\cdot 281915$	9.787319	473	10.212681	$\cdot 069234$	129	9.930766	30
	31	9.718291	343	$\cdot 281709$	9.787603	473	10.212397	$\cdot 069312$	129	9.930688	29
ļ	32	9.718497	343	$\cdot 281503$	9.787886	472	10.212114	069389	129	9.930611	28
	33	9.718703	343	·281297	9.788170	472	10.211830	069467	129	9.930533	27
į	34	9.718909	343	·281091	9.788453	472	10.211547	069544	129	9.930456	26
	35	9.719114	343	·280886	9.188736	472	10.211264	069622	129	9.930378	25
1	30 97	0.710595	949	-280080	9.189019	472	10.210981	060777	129	0.090000	92
	20	9.719525	2.19	-200470	9.109502	479	10.210030	.060855	120	0.020145	20
	20	9.710025	249	-280210	9.109000	471	10.210419	.060033	190	0.020067	21
	40	9.720140	341	.279860	9.790151	471	10.209849	.070011	130	9.020989	20
	41	9.720345	341	-279655	9.790433	471	10.209567	.070089	130	9.929911	19
	42	9.720549	341	-279451	9.790716	471	10.209284	070167	130	9.929833	18
	43	9.720754	341	.279246	9.790999	471	10.209001	070245	130	9.929755	17
	44	9.720958	340	.279042	9.791281	471	10.208719	.070323	130	9.929677	16
	45	9.721162	340	$\cdot 278838$	9.791563	471	10.208437	.070401	130	9.929599	15
	46	9.721366	340	·278634	9.791846	·470	10.208154	.070479	130	9.929521	14
	47	9.721570	340	·278430	9.792128	470	10-207872	070558	130	9.929442	13
	48	9.721774	340	·278226	9.792410	470	10.207590	.070636	130	9.929364	12
	49	9.721978	339	·278022	9.792692	470	10.207308	0.070714	131	9.929286	11
	50	9.722181	339	·277819	9.792974	470	10.207026	·070793	131	9.929207	10
	51	9.722385	339	$\cdot 277615$	9.793256	470	10.206744	070871	131	9.929129	9
	52	9.722588	339	·277412	9.793538	470	10.206462	070950	131	9.929050	8
	53	9.722791	339	•277209	9.793819	469	10.206181	071028	131	9.928972	
	54	9.722994	338	•277006	9.794101	469	10.205899	071107	131	9.928893	0
	50	9.723197	338	•276803	9.794383	409	10.202017	071064	101	9.920010	1
	57	0.702600	300	270000	9.194064	409	10.2000055	071204	101	0.028657	2
	58	9.792805	227	.976105	0.705007	460	10.205055	.071499	121	9.928578	2
	59	9.794007	327	.975002	0.705500	460	10.204492	071501	181	9.928499	1
	60	9.724210	327	-275790	9.795789	468	10.204211	071580	131	9.928420	Ô
					0.44		(The second	Concern		Sino	-
		Cosine.	1	Secant.	Cotangent.	1	Langent.	II Cosecant.		0100.	

•

32 DEG.

04	DEG							r		
,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.724210		·275790	9.795789		10.204211	071580		9.928420	60
1	9.724412	337	$\cdot 275588$	9.796070	468	$10 \cdot 203930$	$\cdot 071658$	132	9.928342	59
2	9.724614	337	$\cdot 275386$	9.796351	468	10.203649	071737	132	9.928263	58
3	9.724816	336	$\cdot 275184$	9.796632	468	10.203368	071817	132	9.928183	57
4	9.725017	336	·274983	9.796913	468	10.203087	071896	132	9.928104	56
5	9.725219	336	·274781	9.797194	468	10.202806	071975	132	9.928025	55
67	9.725420	330	•274580	9.797475	408	10.202525	072034	132	9.927946	54
6	9.725622	300	274070	9.797700	400	10.202245	072133	132	9.921867	53
9	9.796094	225	.973976	9.798316	467	10-201504	.072213	132	9.921101	51
10	9.726225	335	273775	9.798596	467	10.201004	072371	132	0.027620	50
11	9.726426	335	.273574	9.798877	467	10.201123	072451	132	9.927549	49
12	9.726626	334	$\cdot 273374$	9.799157	467	10.200843	072530	132	9.927470	48
13	9.726827	334	$\cdot 273173$	9.799437	467	10.200563	0.072610	133	9.927390	47
14	9.727027	334	$\cdot 272973$	9.799717	467	10.200283	072690	133	9.927310	46
15	9.727228	334	$\cdot 272772$	9.799997	467	10.200003	072769	133	9.927231	45
16	9.727428	334	$\cdot 272572$	9.800277	466	10.199723	$\cdot 072849$	133	9.927151	44
17	9.727628	333	:272372	9.800557	466	10.199443	$\cdot 072929$	133	9.927071	43
18	9.727828	333	·272172	9.800836	466	10.199164	$\cdot 073009$	133	9.926991	42
19	9.728027	333	•271973	9.801116	466	10.198884	073089	133	9.926911	41
20	9.128221	000	.971579	9.801390	400	10.108205	073169	133	9.926831	40
21	9.728696	222	.971374	9.801075	400	10.108045	073249	100	9.920791	39
23	9.728825	332	-271175	9.802234	466	10.197766	073409	122	0.026501	27
24	9.729024	332	270976	9.802513	465	10.197487	073489	133	9.926511	36
$\overline{25}$	9.729223	332	.270777	9.802792	465	10.197208	073569	134	9.926431	35
26	9.729422	331	.270578	9.803072	465	10.196928	0.073649	134	9.926351	34
27	9.729621	331	$\cdot 270379$	9.803351	465	10.196649	073730	134	9.926270	33
28	9.729820	331	$\cdot 270180$	9.803630	465	10.196370	0.073810	134	9.926190	32
29	9.730018	331	$\cdot 269982$	9.803908	465	10.196092	·073890	134	9.926110	31
30	9.730217	330	$\cdot 269783$	9.804187	465	10.195813	073971	134	9.926029	30
31	9.730415	330	·269585	9.804466	465	10.195534	$\cdot 074051$	134	9.925949	29
32	9.730613	330	-269387	9.804745	464	10.195255	074132	134	9.925868	28
33	9.730811	330	·209189	9.805023	404	10.194977	074212	134	9.925788	27
25	9.731009	220	-200991	9.805580	404	10.104490	074293	134	9.925707	26
36	9.731404	329	268596	9.805859	464	10.194420	074455	104	9.920020	20
37	9.731602	329	-268398	9.806137	464	10.193863	.074535	135	9.925465	23
38	9.731799	329	·268201	9.806415	464	10.193585	.074616	135	9.925384	22
39	9.731996	329	·268004	9.806693	464	10.193307	.074697	135	9.925303	$\overline{21}$
40	9.732193	328	·267807	9.806971	463	10.193029	.074778	135	9.925222	20
41	9.732390	328	·267610	9.807249	463	10:192751	074859	135	$9 \cdot 925141$	19
42	9.732587	328	·267413	9.807527	463	10.192473	074940	135	9.925060	18
43	9.732784	328	·267216	9.807805	463	10.192195	075021	135	9.924979	17
44	9.732980	328	-267020	9.808083	463	10.191917	075103	135	9.924897	16
40	0.732979	321	200023	0.808630	403	10.101020	075005	130	9.924816	10
47	9.733560	327	-266421	9.808016	403	10.191302	075246	100	9.924/30	14
48	9.733765	327	-266235	9.809193	469	10.190807	075498	136	9.924004	10
49	9.733961	327	·266039	9.809471	462	10.190529	075509	136	9.924491	111
50	9.734157	326	265843	9.809748	462	10.190252	075591	136	9.924409	10
51	9.734353	326	.265647	9.810025	462	10.189975	.075672	136	9.924328	9
52	9.734549	326	·265451	9.810302	462	10.189698	.075754	186	9.924246	8
53	9.734744	326	$\cdot 265256$	9.810580	462	10.189420	075836	136	9.924164	7
54	9.734939	325	$\cdot 265061$	9.810857	462	10.189143	$\cdot 075917$	136	9.924083	6
55	9.735135	325	$\cdot 264865$	9-811134	462-	10.188866	·075999	136	9.924001	5
56	9.735330	325	·264670	9.811410	461	10.188590	0.076081	136	9.923919	4
50	9.735525	325	·264475	9.811687	461	10.188313	076163	136	9.923837	3
90 50	9.705719	325	·264281	9.811964	461	10.185036	076245	136	9.923755	2
60	9.736100	304	·204086	0.819517	401	10.197499	076400	107	9.923673	1
	0.100109	144	-200091	0.012011	-101	10.101409	010409	101	5-925091	<u>v</u>
1	Cosine.	•	Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1 / 1

57 DEG.

,

74

33	DEG.									
'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100 '	Cosine.	1,
0	9.736109		$\cdot 263891$	9.812517		10.187483	076409		9.923591	60
1	9.736303	324	$\cdot 263697$	9.812794	461	10.187206	076491	137	9.923509	59
2	9.736498	324	$\cdot 263502$	9.813070	461	10.186930	076573	137	9.923427	58
3	9.736692	324	$\cdot 263308$	9.813347	461	10.186653	076655	137	9.923345	57
4	9.736886	323	$\cdot 263114$	9.813623	460	10.186377	076737	137	9.923263	56
5	9.737080	323	·262920	9.813899	460	10.186101	0.076819	137	9.923181	55
6	9.737274	323	·262726	9.814175	460	10.185825	076902	137	9.923098	54
1	9.737467	323	·262533	9.814452	460	10.185548	076984	137	9.923016	53
8	9.737661	323	-262339	9.814728	460	10.185272	077067	137	9.922933	52
10	9.131800	322	-202145	9.815004	460	10.184996	077149	137	9.922851	51
10	9.738048	322	·261952	9.815279	460	10.184721	077232	137	9.922768	50
11	9.100241	322	201759	9.810000	460	10.184445	077207	138	9.922686	49
12	9.100404	322	•201000	9.819831	460	10.184169	077490	138	9.922603	48
10	9.798890	022	-2013/3	9.810107	409	10.100090	077560	100	9.922020	41
15	9.790019	321	-201180	9.010002	409	10.100010	077645	100	9.922458	40
16	0.730906	041	-200987	9.010000	409	10.100042	077750	100	9.922000	40
17	9.739398	041 991	-200794	9.010933	409	10.189701	077811	100	9.922412	44
18	9.739590	201	-260410	0.817484	400	10.199516	077804	190	9-944109 0.00010¢	40
19	9.739783	320	-260217	9.817759	400	10.182941	.077077	190	9.922100	41
20	9.739975	320	2600217	9.818035	450	10.181965	.078060	128	0.091040	40
$\tilde{21}$	9.740167	320	-259833	9.818310	459	10-181500	078143	138	0.091857	30
$\overline{22}$	9.740359	320	-259641	9.818585	458	10.181415	.078226	130	9.991774	28
23	9.740550	320	-259450	9.818860	458	10.181140	078309	139	9.921691	37
24	9.740742	319	-259258	9.819135	458	10.180865	078393	139	9.921607	36
25	9.740934	319	·259066	9.819410	458	10.180590	078476	139	9.921524	35
26	9.741125	319	·258875	9.819684	458	10.180316	0.078559	139	9.921441	34
27	9.741316	319	$\cdot 258684$	9.819959	458	10.180041	078643	139	9.921357	33
28	9.741508	319	$\cdot 258492$	9.820234	458	10.179766	0.078726	139	9.921274	32
29	9.741699	318	$\cdot 258301$	9.820508	458	10.179492	.078810	139	9.921190	31
30	9.741889	318	·258111	9.820783	458	10.179217	.078893	139	9.921107	30
31	9.742080	318	.257920	9.821057	457	10.178943	078977	139	9.921023	29
32	9.742271	318	·257729	9.821332	457	10.178668	0.079061	139	9.920939	28
33	9.742462	318	$\cdot 257538$	9.821606	457	10.178394	0.079144	139	9.920856	27
34	9.742652	317	$\cdot 257348$	9.821880	457	10.178120	079228	140	9.920772	26
35	9.742842	317	$\cdot 257158$	9.822154	457	10.177846	$\cdot 079312$	140	9.920688	25
36	9.743033	317	$\cdot 256967$	9.822429	457	10.177571	$\cdot 079396$	140	9.920604	24
37	9.743223	317	$\cdot 256777$	9.822703	457	10.177297	$\cdot 079480$	140	9.920520	23
38	9.743413	317	$\cdot 256587$	9.822977	457	10.177023	$\cdot 079564$	140	9.920436	22
39	9.743602	316	$\cdot 256398$	9.823250	457	10.176750	$\cdot 079648$	140	9.920352	21
40	9.743792	316	$\cdot 256208$	9.823524	456	10.176476	0.079732	140	9.920268	20
41	9.743982	316	·256018	9.823798	456	10.176202	079816	140	9.920184	19
42	9.744171	316	·255829	9.824072	456	10.175928	079901	140	9.920099	18
43	9.744361	316	·255639	9.824345	456	10.175655	079985	140	9.920015	17
44	9.744000	315	·255450	9.824619	456	10.175381	080069	140	9.919931	16
40	9.744739	315	•255261	9.824893	450	10.175107	080154	141	9.919846	10
40	0.745117	510	-2000/2	9.825166	400	10.174834	080238	141	9.919762	14
48	9.745117	010	·204883	9.825439	400	10.174001	080323	141	9.919677	10
49	9.745300	010	·204094	9.820713	400	10.174287	080407	141	9.919993	12
50	9.715682	214	-204000	0.896950	400	10.179741	.080576	141	0.010104	10
51	9.745871	214	-204017	9.820209	455	10.179469	.080670	141	0.010330	0
52	9.746060	314	252940	9.896805	455	10.179105	-080746	141	9.910954	8
53	9.746248	314	253759	9.827078	455	10.179090	.080821	141	9.910160	7
54	9.746436	312	-253564	9.897851	455	10.179640	-080015	141	9.919085	6
55	9.746624	313	-253376	9.827624	455	10.179376	.081000	141	9.919000	5
56	9.746812	313	-253188	9.827897	455	10.172103	081085	142	9.918915	4
57	9.746999	313	-253001	9.828170	455	10-171830	81170	142	9.918880	3
58	9.747187	313	.252813	9.828442	454	10.171558	081255	142	9.918745	2
59	9.747374	312	$\cdot 252626$	9.828715	454	10.171285	.081341	142	9.918659	1
60	9.747562	312	·252438	9.828987	454	10.171013	.081426	142	9.918574	0
	Cosine.		Secant	Cotangent		Tangent	Cosecant		Sine.	
Lane				- Journ Borrow				,		in the second

34 DEG.

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.747562		·252438	9.828987		10.171013	081426		9.918574	60
1	9.747749	312	$\cdot 252251$	9.829260	454	10.170740	.081511	142	9.918489	59
2	9.747936	312	$\cdot 252064$	9.829532	454	10.170468	·081596	142	9.918404	58
3	9.748123	312	·251877	9.829805	454	10.170195	081682	142	9.918318	57
4	9.748310	311	·251690	9.830077	454	10.169923	081767	142	9.918233	56
e B	9.148497	311	·251503	9.830349	454	10.169651	001000	142	9.918147	50
7	9.748000	211	-201017	9.830021	404	10.160107	.082024	142	9.918004	59
8	9.749056	311	.250944	9.831165	453	10.168835	082024	140	9.917801	52
9	9.749243	310	-250757	9.831437	453	10.168563	082195	143	9.917805	51
10	9.749429	310	.250571	9.831709	453	10.168291	.082281	143	9.917719	50
11	9.749615	310	$\cdot 250385$	9.831981	453	10.168019	.082366	143	9.917634	49
12	9.749801	310	$\cdot 250199$	9.832253	453	10.167747	082452	143	9.917548	48
13	9.749987	310	$\cdot 250013$	9.832525	453	10.167475	082538	143	9.917462	47
14	9.750172	309	·249828	9.832796	453	10.167204	082624	143	9.917376	46
15	9.750358	309	·249642	9.833068	453	10.166932	082710	143	9.917290	45
10	9.750243	309	·249407	9.8333339	400	10.166280	082790	143	9.917204	44
18	9.750914	309	-249271	0.833880	404	10.166118	.082062	1140	0.017029	40
10	9.751099	308	.248901	9.834154	452	10-165846	-082054	144	0.016046	44
20	9.751284	308	-248716	9.834425	452	10.165575	003034	144	9.916859	40
$\frac{1}{21}$	9.751469	308	$\cdot 248531$	9.834696	452	10.165304	.083227	144	9.916778	39
22	9.751654	308	·248346	9.834967	452	10.165033	.083313	144	9.916687	38
23	9.751839	308	$\cdot 248161$	9.835238	452	10.164762	083400	144	9.916600	37
24	9.752023	308	$\cdot 247977$	9.835509	452	10.164491	·083486	144	9.916514	36
25	9.752208	307	$\cdot 247792$	9.835780	452	10.164220	0.083573	144	9.916427	35
26	9.752392	307	$\cdot 247608$	9.836051	452	10.163949	· <b>0836</b> 59	144	9.916341	34
27	9.752576	307	•247424	9.836322	451	10.163678	083746	144	9.916254	33
28	9.752760	307	·247240	9.830093	451	10.163407	083833	144	9.916167	32
29	9.752944	206	·247000 946970	9.830804	451	10.163130	083919	145	9.916081	31
31	9.758319	306	.240612	0.837405	401	10.162595	.084000	140	9.915994	30
32	9.753495	306	.246505	9.837675	451	10.162325	084180	140	9.915907	29
33	9.753679	306	.246321	9.837946	451	10.162054	084267	145	9.915733	27
34	9.753862	306	.246138	9.838216	451	10.161784	084354	145	9.915646	$\overline{26}$
35	9.754046	305	·245954	9.838487	451	10.161513	.084441	145	9.915559	25
36	9.754229	305	$\cdot 245771$	9.838757	451	10.161243	084528	145	9.915472	24
37	9.754412	305	$\cdot 245588$	9.839027	450	10.160973	084615	145	9.915385	23
38	9.754595	305	·245405	9.839297	450	10.160703	.084703	145	9.915297	22
39	9.154118	305	·245222	9.839568	450	10.160432	084790	145	9.915210	21
40	9.754900	204	·240040	9.839838	450	10.150809	084877	145	9.915123	20
41	9.755326	304	.244674	9.840108	450	10.159692	085052	140	9.910030	19
43	9.755508	304	-244492	9.840647	450	10.159353	085140	140	9.914948	17
44	9.755690	304	.244310	9.840917	450	10.159083	.085227	146	9.914773	16
45	9.755872	304	.244128	9.841187	450	10.158813	.085315	146	9.914685	15
46	9.756054	303	·243946	9.841457	450	10.158543	.085402	146	9.914598	14
47	9.756236	303	$\cdot 243764$	9.841726	449	10.158274	.085490	146	9.914510	13
48	9.756418	303	243582	9.841996	449	10.158004	085578	146	9.914422	12
49	9.756600	303	$\cdot 243400$	9.842266	449	10.157734	.085666	146	9.914334	11
50	9.756782	303	·243218	9.842535	449	10.157465	085754	146	9.914246	10
50	9.756963	302	·243037	9.842805	449	10.157195	085842	147	9.914158	9
52	9.757996	302 209	·242800	0.849949	449	10.156657	080930	147	9.914070	10
54	9.757507	302	.242014	9.842619	449	10-156389	086106	141	9.913982	e
55	9.757688	302	.242319	9.843882	449	10.156118	.086104	141	9.913894	5
56	9.757869	301	-242131	9.844151	449	10.155849	086282	147	9.913719	4
57	9.758050	301	$\cdot 241950$	9.844420	448	10.155580	.086370	147	9.913630	3
58	9.758230	301	·241770	9.844689	448	10.155311	.086459	147	9.913541	2
59	9.758411	301	$\cdot 241589$	9.844958	448	10.155042	.086547	147	9.913453	1
60	9.758591	301	$\cdot 241409$	9.845227	448	10.154773	·086635	147	9.913365	0
· ·	Cosine.	_	Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

55 DEG.

76

35 DEG.										
,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100″	Cosine.	1
0	9.758591		$\cdot 241409$	9.845227		10.154773	086635		9.913365	60
1	9.758772	301	$\cdot 241228$	9.845496	448	10.154504	086724	147	9.913276	59
2	9.758952	300	$\cdot 241048$	9.845764	448	10.154236	086813	147	9.913187	58
3	9.759132	300	$\cdot 240868$	9.846033	448	10.153967	086901	148	9.913099	57
4	9.759312	300	$\cdot 240688$	9.846302	448	10.153698	086990	148	9.913010	56
5	9.759492	300	·240508	9.846570	448	10.153430	087078	148	9.912922	55
6	9.759672	300	·240328	9.846839	448	10.153161	0.087167	148	9.912833	54
7	9.759852	299	·240148	9.847107	448	10.152893	0.087256	148	9.912744	53
8	9.760031	299	·239969	9.847376	447	10.152624	0.087345	148	9.912655	52
9	9.760211	299	•239789	9.847644	447	10.152356	087434	148	9.912566	51
10	9.760390	299	·239610	9.847913	447	10.152087	087523	148	9.912477	50
11	9.760569	299	·239431	9.848181	447	10.151819	087612	148	9.912388	49
12	9.760748	298	•239252	9.848449	447	10.151551	087701	148	9.912299	48
13	9.760927	298	•239073	9.848717	447	10.151283	087790	149	9.912210	47
14	9.701100	298	•238894	9.848986	447	10.151014	087879	149	9.912121	46
10	9.761285	298	•238715	9.849254	447	10.150746	087969	149	9.912031	45
10	9.761464	298	•238536	9.849522	447	10.150478	088058	149	9.911942	44
10	9.701042	298	*238338	9.849790	447	10.150210	088147	149	9.911853	43
10	9.701821	297	•238179	9.850058	446	10.149942	088237	149	9.911763	42
19	9.761999	297	•238001	9.850325	446	10.149675	088326	149	9.911674	41
20	9.702177	297	23/823	9.850593	446	10.149407	088416	149	9.911584	40
21	9.702300	297	•237644	9.850861	446	10.149139	088505	149	9.911495	39
22	9.702034	297	•237400	9.851129	446	10.148871	088595	149	9.911405	38
23	9.702712	290	•237288	9.851396	446	10.148604	000774	149	9.911315	37
- 44 - 05	9.702009	290	•20/111	9.801004	440	10.148330	000004	150	9.911226	36
20	9.703007	290	•230933	9.851931	446	10.148069	000054	150	9.911136	35
20	9.703240	290	-230/00	9.852199	440	10.147501	088954	150	9.911046	34
21	9.703422	290	*236978	9.852466	446	10.147934	089044	150	9.910956	33
20	9.703000	290	•236400	9.852733	446	10.14/26/	089134	150	9.910866	32
29	9.103111	290	•236223	9.853001	440	10.146999	089224	150	9.910776	31
21	0.764191	200	-200040	9.000400	440	10.140/02	000101	150	9.910686	30
20	0.764200	200	-200009	9.0000000	440	10.146100	000404	150	9.910596	29
22	0.764495	200	.995515	9.003002	440	10.145091	009494	150	9.910006	20
24	0.764669	230	.095090	9.004009	440	10.145664	0099909	150	9.910410	21
25	9.764838	201	.225162	0.954602	440	10.145907	.080765	151	9.910329	20
36	9.765015	201	.224085	9.854870	440	10.145120	-009109	151	9.910200	20
37	9.765191	294	.234800	9.855127	440	10.144863	.080016	151	0.010054	44 92
38	9.765367	204	.234633	9.855404	445	10.144596	.000037	151	0.000069	20
39	9.765544	294	-234456	9.855671	445	10.144329	.090127	151	0.000973	21
40	9.765720	293	.234280	9.855938	444	10.144062	.090218	151	9.909019	20
41	9.765896	293	.234104	9.856204	444	10.143796	.090309	151	9.909691	10
42	9.766072	293	-233928	9.856471	444	10.143529	.090399	151	9.909601	18
43	9.766247	293	.233753	9.856737	444	10.143263	.090490	151	9.909510	17
44	9.766423	293	233577	9.857004	444	10.142996	090581	151	9.909419	16
45	9.766598	293	233402	9.857270	444	10.142730	090672	151	9.909328	15
46	9.766774	292	.233226	9.857537	444	10.142463	090763	152	9.909237	14
47	9.766949	292	233051	9.857803	444	10.142197	.090854	152	9.909146	13
48	9.767124	292	.232876	9.858069	444	10.141931	.090945	152	9.909055	12
49	9.767300	292	.232700	9.858336	444	10.141664	.091036	152	9.908964	11
50	9.767475	292	.232525	9.858602	444	10.141398	.091127	152	9.908873	10
51	9.767649	291	·232351	9.858868	444	10.141132	091219	152	9.908781	9
52	9.767824	291	.232176	9.859134	443	10.140866	.091310	152	9.908690	8
58	9.767999	291	232001	9.859400	443	10.140600	.091401	152	9.908599	7
54	9.768173	291	·231827	9.859666	443	10.140334	.091493	152	9.908507	6
55	9.768348	291	.231652	9.859932	443	10.140068	.091584	152	9.908416	5
56	9.768522	290	.231478	9.860198	443	10.139802	·091676	153	9.908324	4
57	9.768697	290	·231303	9.860464	443	10.139536	.091767	153	9.908233	3
58	9.768871	290	·231129	9.860730	443	10.139270	.091859	153	9.908141	2
59	9.769045	290	·230955	9.860995	443	10.139005	$\cdot 091951$	153	9.908049	1
60	9.769219	290	·230781	9.861261	443	10.138739	$\cdot 092042$	153	9.907958	0
	Coniné		Danant	Cotongort		Tangent	Coreanut		Sine	

54 DEG.

36 DEG.

00	DING.									
'	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100″	Cotangent.	Secant.	Diff. 100″	Cosine.	1
0	9.769219		·230781	9.861261		10.138739	.092042		9.907958	60
1	9.769393	290	·230607	9.861527	443	10.138473	·092134	153	9.907866	59
2	9.769566	289	·230434	$9 \cdot 861792$	443	10.138208	·092226	153	9.907774	58
3	9.769740	289	$\cdot 230260$	9.862058	443	10.137942	·092318	153	9.907682	57
4	9.769913	289	$\cdot 230087$	9.862323	442	10.137677	0.092410	153	9.907590	56
5	9.770087	289	$\cdot 229913$	9.862589	442	10.137411	092502	153	9.907498	55
6	9.770260	289	·229740	9.862854	442	10.137146	092594	153	9.907406	54
	9.770433	288	•229567	9.863119	442	10.126615	.002779	100	9.907314	50
a	9.770770	200	.229394	9.803380	442	10.136350	.0022770	154	0.007120	51
10	9.770952	288	.229221	9.863015	444	10.136085	.092963	154	9.907125	50
11	9.771125	288	-228875	9.864180	442	10.135820	.093055	154	9.906945	49
$\hat{12}$	9.771298	288	·228702	9.864445	442	10.135555	0.093148	154	9.906852	48
13	9.771470	287	$\cdot 228530$	9.864710	442	10.135290	.093240	154	9.906760	47
14	9.771643	287	·228357	9.864975	442	10.135025	·093333	154	9.906667	46
15	9.771815	287	$\cdot 228185$	9.865240	442	10.134760	$\cdot 093425$	154	9.906575	45
16	9.771987	287	$\cdot 228013$	9.865505	441	10.134495	$\cdot 093518$	154	9.906482	44
17	9.772159	287	$\cdot 227841$	9.865770	441	10.134230	0.093611	154	9.906389	43
18	9.772331	287	$\cdot 227669$	9.866035	441	10.133965	0.093704	155	9.906296	42
19	9.772503	286	$\cdot 227497$	9.866300	441	10.133700	093796	155	9.906204	41
20	9.772675	286	•227325	9.866564	441	10.133436	.093889	155	9.906111	40
21	9.772010	280	-22/153	9.866829	441	10.133171	093982	100	9.906018	39
24	9.779100	400 996	·220982	9.867094	441	10.120640	.004160	100	9.903923	27
20	9.773261	200	-220810	9.001000	441	10.190977	.004961	155	0.005720	26
25	9.773533	285	-220055	9.867887	441	10.132011	.094201	155	9.905645	35
26	9.773704	285	-226296	9.868159	441	10.131848	.094448	155	9.905552	34
27	9.773875	285	-226125	9.868416	441	10.131584	.094541	155	9.905459	33
28	9.774046	285	$\cdot 225954$	9.868680	441	10.131320	094634	155	9-905366	32
29	9.774217	285	·225783	9.868945	440	10.131055	0.094728	156	9.905272	31
30	9.774388	285	$\cdot 225612$	9.869209	440	10.130791	0.094821	156	9.905179	30
31	9.774558	284	$\cdot 225442$	9.869473	440	10.130527	·094915	156	9.905085	<b>29</b>
32	9.774729	284	$\cdot 225271$	9.869737	440	10.130263	$\cdot 095008$	156	9.904992	28
33	9.774899	284	$\cdot 225101$	9.870001	440	10.129999	$\cdot 095102$	156	9.904898	27
	9.775070	284	$\cdot 224930$	9.870265	440	10.129735	095196	156	9.904804	26
30	9.775240	284	$\cdot 224760$	9.870529	440	10.129471	095289	156	9.904711	25
36	9.775410	284	·224590	9.870793	440	10.129207	095383	156	9.904617	24
01	9.775750	200	·224420	9.871057	440	10.128943	095477	156	9.904523	23
20	9.775090	200	-224200	9.871321	440	10.128679	090071	157	9.904429	22
40	9.776090	283	.224080	9.071909	440	10.120410	.095005	157	0.004000	20
41	9.776259	283	.223741	0.879119	440	10.127888	.095853	157	9.904147	19
42	9.776429	283	·223571	9.872376	439	10.127624	.095947	157	9.904053	18
43	9.776598	282	·223402	9.872640	439	10.127360	.096041	157	9.903959	17
44	9.776768	282	·223232	9.872903	439	10.127097	.096136	157	9-903864	16
45	9.776937	282	$\cdot 223063$	9.873167	439	10.126833	.096230	157	9.903770	15
46	9.777106	282	·222894	9.873430	439	10.126570	0096324	157	9.903676	14
47	9.777275	282	$\cdot 222725$	9.873694	439	10.126306	096419	157	9.903581	13
48	9.777444	281	$\cdot 222556$	9.873957	439	10.126043	096513	157	9.903487	12
49	9.777613	281	·222387	9.874220	439	10.125780	096608	157	9.903392	11
50	9.777781	281	·222219	9.874484	439	10.125516	096702	158	9.903298	10
01 50	9.1779110	201	222050	9.874747	439	10.125253	096797	158	9.903203	90
52	9.778927	201	.091719	9.075070	439	10.124990	090892	150	0.002014	1 7
54	9.778455	280	.221545	0.875596	409	10.124/2/	.097091	150	0.009014	ß
55	9.778624	280	-221376	9.875800	439	10.124904	.097176	158	9.902819	5
56	9.778792	280	221208	9.876063	438	10.123987	.097271	158	9.902729	4
57	9.778960	280	·221040	9.876326	438	10.123674	.097366	158	9.902634	3
58	9.779128	280	·220872	9.876589	438	10.123411	097461	158	9.902539	2
59	9.779295	280	·220705	9.876851	438	10.123149	097556	159	9.902444	1
60	9.779463	279	$\cdot 220537$	9.877114	438	10.122886	097651	159	9.902349	0
1 /	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

53 DEG.

78

37	DEG.					,				
,	Sinc.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1
0	9.779463		·220537	9.877114		10.122886	0.097651		9.902349	60
1	9.779631	279	·220369	9.877377	438	10.122623	097747	159	9.902253	59
2	9.779798	279	·220202	9.877640	438	10.122360	097842	159	9.902158	58
3	9.779966	279	•220034	9.877903	438	10.122097	.097937	159	9.902063	57
4	9.780133	279	-219807	9.878100	430	10.121835	098033	159	9.901967	56
0	9.780300	279	.219700	9.878428	430	10.121072	098128	159	9.901872	55
0	9.780407	210	-219065	9.878091	400	10.121809	.008210	150	9.901776	04
0	9.780801	978	.910100	0.870916	400	10.120784	.008415	159	9.901081	00
9	9.780968	278	.219039	9.879478	427	10.120704	.098510	150	0.901335	51
. 10	9.781134	278	-218866	9.879741	437	10.120222 10.120259	.098606	159	0.901394	50
11	9.781301	278	-218699	9.880003	437	10.119997	098702	160	9.901298	49
12	9.781468	277	-218532	9.880265	437	10.119735	098798	160	9.901202	48
13	9.781634	277	·218366	9.880528	437	10.119472	098894	160	9.901106	47
14	9.781800	277	·218200	9.880790	437	10.119210	.098990	160	9.901010	46
15	9.781966	277	$\cdot 218034$	9.881052	437	10.118948	099086	160	9.900914	45
16	9.782132	277	·217868	9.881314	437	10.118686	0099182	160	9.900818	44
17	9.782298	277	$\cdot 217702$	9.881576	437	10.118424	099278	160	9.900722	43
18	9.782464	276	$\cdot 217536$	9.881839	437	10.118161	0099374	160	9.900626	42
19	9.782630	276	·217370	9.882101	437	10.117899	·099471	160	9.900529	41
20	9.782796	276	$\cdot 217204$	9.882363	437	10.117637	·099567	160	9.900433	40
21	9.782961	276	$\cdot 217039$	9.882625	437	10.117375	099663	161	9.900337	39
22	9.783127	276	$\cdot 216873$	9.882887	436	10.117113	0.099760	161	9.900240	38
23	9.783292	276	$\cdot 216708$	9.883148	436	10.116852	$\cdot 099856$	161	9.900144	37
24	9.783458	275	$\cdot 216542$	9.883410	436	10.116590	099953	161	9.900047	36
25	9.783623	275	$\cdot 216377$	9.883672	436	10.116328	·100049	161	9.899951	35
<b>26</b>	9.783788	275	$\cdot 216212$	9.883934	436	10.116066	$\cdot 100146$	161	9.899854	34
27	9.783953	275	$\cdot 216047$	9.884196	436	10.115804	·100243	161	9.899757	33
28	9.784118	275	$\cdot 215882$	9.884457	436	10.115543	100340	161	9.899660	32
29.	9.784282	275	·215718	9.884719	436	10.115281	100436	161	9.899564	31
30	9.784447	274	•215553	9.884980	436	10.115020	100533	161	9.899467	80
31	9.784012	274	•210088	9.889242	430	10.114/08	100030	102	9.899370	29
32	9.184110	274	·210224	9.000003	400	10.114997	100727	102	9.899273	28
00	9.785105	274	-210009	9.999109	400	10.119074	100024	162	9.099170	21
25	9.785269	974	.214030	0.886288	426	10.113712	101019	162	0.808081	20
36	9.785433	273	.214567	9.886549	426	10.113451	101010	162	0.808884	20
37	9.785597	273	·214403	9.886810	436	10.113190	101213	162	9.898787	22
38	9.785761	273	.214239	9.887072	435	10.112928	.101311	162	9.898689	29
39	9.785925	273	.214075	9.887333	435	10.112667	101408	162	9.898592	21
40	9.786089	273	$\cdot 213911$	9.887594	435	10.112406	.101506	162	9.898494	$\overline{20}$
41	9.786252	273	$\cdot 213748$	9.887855	435	10.112145	$\cdot 101603$	163	9.898397	19
42	9.786416	272	$\cdot 213584$	9.888116	435	10.111884	.101701	163	9.898299	18
43	9.786579	272	$\cdot 213421$	9.888377	435	10.111623	$\cdot 101798$	163	9.898202	17
44	9.786742	272	$\cdot 213258$	9.888639	435	10.111361	$\cdot 101896$	163	9.898104	16
45	9.786906	272	$\cdot 213094$	9.888900	435	10.111100	$\cdot 101994$	163	9.898006	15
46	9.787069	272	$\cdot 212931$	9.889160	435	10.110840	$\cdot 102092$	163	9.897908	14
47	9.787232	272	$\cdot 212768$	9.889421	435	10.110579	$\cdot 102190$	163	9.897810	13
48	9.787395	271	$\cdot 212605$	9.889682	435	10.110318	$\cdot 102288$	163	9.897712	12
49	9.787557	271	$\cdot 212443$	9.889943	435	10.110057	$\cdot 102386$	163	9.897614	11
50	9.787720	271	$\cdot 212280$	9.890204	435	10.109796	·102484	163	9.897516	10
51	9.787883	271	$\cdot 212117$	9.890465	435	10.109535	$\cdot 102582$	163	9.897418	9
52	9.788045	271	·211955	9.890725	435	10.109275	102680	164	9.897320	8
53	9.788208	271	·211792	9.890986	434	10.109014	·102778	164	9.897222	7
55	9.188370	271	·211630	9.891247	434	10.108753	102877	164	9.897123	0 F
00 50	9.188532	270	•211468	9.891507	434	10.108493	102975	104	9.897025	D
57	9.100094 0.7000F0	270	·211306	9.891168	404	10.107079	109179	164	0.000920	2
58	9.108800	270	-211144	9.092028	434	10.107912	103172	164	0.806790	9
59	0.780120	270	210902	0.800540	194	10.107451	103360	164	9.896621	1
60	9.789349	270	-210658	9.892810	434	10.107190	103468	164	9.896532	ō
	0.0012		210000	0004010	101		Constant			
.	Cosine.	-	Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

52 DEG.

-
38 DEG.

,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	1
-0	9.789342		·210658	9.892810		10.107190	$\cdot 103468$		$9 \cdot 896532$	60
1	9.789504	269	·210496	9.893070	434	10.106930	·103567	164	9.896433	59
2	9.789665	269	$\cdot 210335$	9.893331	434	10.106669	·103665	165	9.896335	58
3	9.789827	269	$\cdot 210173$	9.893591	434	10.106409	·103764	165	9.896236	57
4	9.789988	269	·210012	9.893851	434	10.106149	103863	165	9.896137	56
5	9.790149	269	·209851	9.894111	434	10.105889	103962	165	9.896038	55
6	9.790310	209	-209690	9.094571	484	10.105269	104001	100	9.899939	04 59
0	9.790471	268	209368	9.894002	404	10.105108	104100	165	9.895741	59
a G	9.790793	268	-209207	9.895152	483	10.104848	104359	165	9.895641	51
10	9.790954	268	.209046	9.895412	433	10.104588	.104458	165	9.895542	50
11	9.791115	268	-208885	$9 \cdot 895672$	433	10.104328	.104557	165	9.895443	49
12	9.791275	268	.208725	9.895932	433	10.104068	·104657	166	9.895343	48
13	9.791436	267	$\cdot 208564$	9.896192	433	10.103808	·104756	166	9.895244	47
14	9.791596	267	$\cdot 208404$	9.896452	433	10.103548	·104855	166	9.895145	46
15	9.791757	267	$\cdot 208243$	9.896712	433	10.103288	104955	166	9.895045	45
16	9.791917	267	·208083	9.896971	433	10.103029	105055	166	9.894945	44
17	9.792077	267	·207923	9.897231	483	10.102769	105054	166	9.894846	43
18	9.792237	201	-2077603	9.897491	433	10.102009	105254	100	9.894/40	42
19	9.792597	266	.207003	0.808010	400	10.10102249	105454	166	9.094040	41
20	9.792716	266	.207284	9.898270	433	10.101730	105554	166	9.894446	39
22	9.792876	266	.207124	9.898530	433	10.101470	105654	167	9.894346	38
23	9.793035	266	.206965	9.898789	433	10.101211	.105754	167	9.894246	37
24	9.793195	266	·206805	9.899049	433	10.100951	$\cdot 105854$	167	9.894146	36
25	9.793354	265	.206646	9.899308	432	10.100692	·105954	167	9.894046	35
26	9.793514	265	$\cdot 206486$	9.899568	432	10.100432	·106054	167	9.893946	34
27	9.793673	265	$\cdot 206327$	9.899827	432	10.100173	$\cdot 106154$	167	9.893846	33
28	9.793832	265	-206168	9.900086	432	10.099914	106255	167	9.893745	32
29	9.793991	260	·206009	9.900346	432	10.099654	100355	167	9.893645	31
30	9.794100	200	205609	9.900000	432	10.000196	106556	101	9.893044	30
29	9.794467	264	.205533	9.900004	404	10.098876	106657	169	9.090444	29
33	9.794626	264	.205374	9.901383	432	10.098617	106757	168	9.893243	20
34	9.794784	264	.205216	9.901642	432	10.098358	106858	168	9.893142	26
35	9.794942	264	.205058	9.901901	432	10.098099	.106959	168	9.893041	$\overline{25}$
36	9.795101	264	.204899	9.902160	432	10.097840	·107060	168	9.892940	24
37	9.795259	264	·204741	9.902419	432	10.097581	·107161	168	9.892839	23
38	9.795417	263	-204583	9.902679	432	10.097321	$\cdot 107261$	168	9.892739	22
39	9.795575	263	-204425	9.902938	432	10.097062	107362	168	9.892638	21
40	9.795733	263	-204267	9.903197	432	10.096803	107464	168	9.892536	20
41	9.795891	200	·204109	9.903400	432	10.096343	107866	108	9.892435	19
44	9.7969049	263	.203351	9.903714	401	10.096027	107767	160	0.800000	10
40	9.796364	263	203636	9.904232	431	10.095768	107868	169	9.892132	16
45	9.796521	262	.203479	9.904491	431	10.095509	.107970	169	9.892030	15
46	9.796679	262	.203321	9.904750	431	10.095250	.108071	169	9.891929	14
47	9.796836	262	·203164	9.905008	431	10.094992	·108173	169	9.891827	13
48	9.796993	262	·203007	9.905267	431	10.094733	$\cdot 108274$	169	9.891726	12
49	9.797150	262	·202850	9.905526	431	10.094474	·108376	169	9.891624	11
50	9 797307	262	•202693	9.905784	431	10.094216	108477	169	9.891523	10
51	9.797464	261	•202536	9.906043	431	10.093957	108579	169	9.891421	9
52	9.797021	201	.202379	9.900302	401	10.093698	108081	170	9.891319	87
00	0.707094	201	.2024223	9.906810	401	10.092181	108885	170	0.801115	R
55	9.798001	261	-201909	9.907077	431	10.092928	108987	170	0.801019	5
56	9.798247	261	-201753	9.907336	431	10.092664	109089	170	9.890911	4
57	9.798403	261	·201597	9.907594	431	10.092406	.109191	170	9.890809	3
58	9.798560	260	·201440	9.907852	431	10.092148	·109293	170	9.890707	2
59	9.798716	260	·201284	9.908111	431	10.091889	·109395	170	9.890605	1
60	9.798872	260	·201128	9.908369	431	10.091631	·109497	170	9.890503	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1-

51 DEG.

80

39 D	EG.
------	-----

1			Diff	1		Diff		11	Diff		11
ĺ	'	Sine.	100"	Cosecant.	Tangent.	100"	Cotangent.	Secant.	100	Cosine.	1
I	0	9.798872		·201128	9.908369		10.091631	.109497		9.890509	60
l	1	9.799028	260	201120	9.908628	430	10.091372	109600	170	0.800100	50
ĺ	- 0	9.799184	260	200312	0.008886	120	10.001114	100700	171	0.800400	109
ļ	2	0.700220	200	200810	0.000144	400	10.001114	100202	11/1	9.090290	00
	0	9.199559	200	-200661	9.909144	430	10.090856	109805	171	9.890190	57
ļ	4	9.799495	259	•200505	9.909402	430	10.090598	.109901	171	9.890093	56
	5	9.799651	259	·200349	9.909660	430	10.090340	110010	171	9.889990	55
l	6	9.799806	259	·200194	9.909918	430	10.090082	$\ \cdot 110112$	171	9.889888	54
	7	9.799962	259	·200038	9.910177	430	10.089823	110215	171	9.889785	53
۱	8	9.800117	259	$\cdot 199883$	9.910435	430	10.089565	.110318	171	9.889682	52
ĺ	9	9.800272	259	·199728	9.910693	430	10.089307	.110421	171	9.889579	51
l	10	9.800427	258	.199573	9.910951	430	10.089049	.110523	171	9.889477	50
Į	11	9.800582	258	.199418	9.911209	430	10.088701	110626	171	0.880374	10
ļ	12	9.800737	258	100262	0.011467	420	10.088522	110720	179	0.000074	10
I	12	0.800809	200	100100	0.011704	490	10.000000	110020	170	9.009211	40
l	10	9.000092	400	.199108	9.911/24	430	10.088276	110832	172	9.889108	41
	14	9.801047	200	.198953	9.911982	430	10.088018	.110936	172	9.889064	46
	15	9.801201	258	.198799	9.912240	430	10.087760	$\cdot 111039$	172	9.888961	45
	16	9.801356	258	·198644	9.912498	430	10.087502	$\cdot 111142$	172	9.888858	44
	17	9.801511	257	·198489	9.912756	430	10.087244	$ \cdot 111245$	172	9.888755	43
l	18	9.801665	257	·198335	9.913014	430	10.086986	$ \cdot 111349$	172	9.888651	42
	19	9.801819	257	·198181	9.913271	430	10.086729	.111452	172	9.888548	41
l	20	9.801973	257	.198027	9.913529	429	10.086471	.111556	179	9.888444	40
	21	9.802128	257	.197879	9.913787	490	10.086213	111659	179	0.888341	20
ļ	22	9.802282	257	107719	0.014044	190	10.085056	111769	170	0.000041	00
ļ	22	0.809496	256	107564	0.014909	400	10.005600	111000	170	0.000401	00
	40	9.002430	200	197304	9.914302	429	10.085698	111800	1/3	9.888134	31
	24	9.802589	256	.197411	9.914560	429	10.085440	.111970	173	9.888030	36
l	25	9.802743	256	$\cdot 197257$	9.914817	429	10.085183	$\cdot 112074$	173	9.887926	35
	26	9.802897	256	·197103	9.915075	429	10.084925	$ \cdot 112178$	173	9.887822	34
	27	9.803050	256	·196950	9.915332	429	10.084668	$\cdot 112282$	173	9.887718	33
	28	9.803204	256	·196796	9.915590	429	10.084410	.112386	173	9.887614	32
	29	9.803357	256	.196643	9.915847	429	10.084153	·112490	173	9.887510	31
ł	30	9.803511	255	.196489	9.916104	429	10.083896	.112594	173	9.887406	30
ĺ	31	9.803664	255	196336	9.916362	429	10.083638	.112698	174	9.887302	29
	32	9.803817	255	106183	0.016610	190	10.083981	.112802	174	0.887109	190
ł	22	0.802070	200	106020	0.016077	400	10.000001	112002	174	0.007100	20
	24	0.000370	200	105077	9.9108//	429	10.000120	112001	14	9.001093	41
	95	9.804123	200	.195877	9.917134	429	10.082866	113011	174	9.886989	26
	00	9.804276	255	.195724	9.917391	429	10.082609	.113115	174	9.886885	25
l	30	9.804428	254	·195572	9.917648	429	10.082352	$\cdot 113220$	174	9.886780	24
l	37	9.804581	254	·195419	9.917905	429	10.082095	$\cdot 113324$	174	9.886676	23
ł	38	9.804734	254	·195266	9.918163	429	10.081837	$\cdot 113429$	174	9.886571	22
ŀ	39	9.804886	254	·195114	9.918420	429	10.081580	$\cdot 113534$	174	9.886466	21
	40	9.805039	254	$\cdot 194961$	9.918677	429	10.081323	·113638	174	9.886362	20
ł	41	9.805191	254	$\cdot 194809$	9.918934	429	10.081066	.113743	175	9.886257	19
1	42	9.805342	254	.194657	9.919191	428	10.080809	113848	175	9.886159	18
l	43	9.805495	253	.194505	9.91914	498	10.080552	.112052	175	9.886047	17
	44	9.805647	252	.104959	0.010705	498	10.080905	114050	175	0.885040	16
ł	45	0.805700	050	104001	0.010000	100	10.000490	114100	170	0.000942	15
ĺ	16	0.000199	400	104040	9.919902	100	10.070701	114000	170	9.009931	10
	40	9.009991	203	194049	9.920219	420	10.079781	114268	175	9.885782	14
ł	41	9.806103	253	.193897	9.920476	428	10.079524	114373	175	9.885627	13
l	48	9.806254	253	·193746	9.920733	428	10.079267	114478	175	9.885522	12
}	49	9.806406	253	$\cdot 193594$	9.920990	428	10.079010	$ \cdot 114584$	175	9.885416	11
l	50	9.806557	252	·193443	9.921247	428	10.078753	$\cdot 114689$	175	9.885311	10
l	51	9.806709	252	.193291	9.921503	428	10.078497	.114795	176	9.885205	9
l	52	9.806860	252	.193140	9.921760	428	10.078240	.114900	176	9.885100	8
	53	9.807011	252	.192989	9.922017	428	10.077983	-115006	176	9.884994	7
ĺ	54	9.807168	252	.192837	9.929974	428	10.077796	115111	176	9.884880	6
ĺ	55	9.807914	959	102686	0.022520	498	10.077470	115917	176	9.881782	5
l	56	0.807465	950	109595	0.000707	100	10.077019	115909	170	0.881677	1
1	57	0.807015	951	100005	0.000011	100	10.070070	115400	170	0.001011	0
	50	0.007010	201	192880	9.923044	420	10.010999	115504	1/0	0.0040/2	0
	00	9.807766	201	·192234	9.923300	428	10.076700	115534	176	9.884466	Z
	59	9.807917	251	·192083	9.923557	428	10.076443	·115640	176	9.884360	
1	60	9.808067	251	$\cdot 191933$	9.923813	428	10.076187	·115746	176	9.884254	0
ļ	'	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1
6		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	-		0						-

•

50 DEG.

40 DEG.

										_
'	Sine.	Diff. 100''	Cosecant.	Tangent.	Diff. 100″	Cotangent.	Secant.	Diff. 100″	Cosine.	1
0	9.808067		·191933	9.923813		10.076187	.115746		9.884254	60
1	9.808218	251	$\cdot 191782$	9.924070	428	10.075930	$\cdot 115852$	177	9.884148	59
2	9.808368	251	$\cdot 191632$	9.924327	428	10.075673	$\cdot 115958$	177	9.884042	58
3	9.808519	251	$\cdot 191481$	9.924583	428	10.075417	$\cdot 116064$	177	9.883936	57
4	9.808669	250	$\cdot 191331$	9.924840	427	10.075160	$\cdot 116171$	177	9.883829	56
5	9.808819	250	$\cdot 191181$	9.925096	427	10.074904	$\cdot 116277$	177	9.883723	55
6	9.808969	250	$\cdot 191031$	9.925352	427	10.074648	·116383	177	9.883617	54
7	9.809119	250	$\cdot 190881$	9.925609	427	10.074391	·116490	177	9.883510	53
8	9.809269	250	•190731	9.925865	427	10.074135	116596	177	9.883404	52
9	9.809419	250	•190581	9.926122	427	10.073878	110703	177	9.883297	51
10	9.809569	249	•190431	9.9203/8	427	10.073022	110009	170	0.000004	10
11	9.809/18	249	·190282	9.920034	427	10.072110	1170920	170	9.800004	49
12	9.809808	249	190132	9.920890	421	10.079858	.117120	179	9.002911	40
10	9.810017	940	109900	9.921141	441	10.072507	.117936	170	0.002011	16
15	9.810316	240	180684	0.007650	441	10.072341	.117343	178	0.889657	45
16	9.810465	248	.189535	9.997915	497	10.072085	117450	178	9.882550	44
17	9.810614	248	189386	9.928171	427	10.071829	.117557	178	9.882443	43
18	9.810763	248	189237	9.928427	427	10.071573	.117664	178	9.882336	42
19	9.810912	248	.189088	9.928683	427	10.071317	.117771	179	9.882229	41
20	9.811061	248	.188939	9.928940	427	10.071060	.117879	179	9.882121	40
21	9.811210	248	.188790	9.929196	427	10.070804	$\cdot 117986$	179	9.882014	39
22	9.811358	248	$\cdot 188642$	9.929452	427	10.070548	$\cdot 118093$	179	9.881907	38
23	9.811507	247	·188493	9.929708	427	10.070292	$\cdot 118201$	179	9.881799	37
24	9.811655	247	$\cdot 188345$	9.929964	427	10.070036	+118308	179	9.881692	36
25	9.811804	247	$\cdot 188196$	9.930220	427	10.069780	$\cdot 118416$	179	9.881584	35
26	9.811952	247	$\cdot 188048$	9.930475	427	10.069525	$\cdot 118523$	179	9.881477	34
27	9.812100	247	$\cdot 187900$	9.930731	427	10.069269	$\cdot 118631$	179	9.881369	33
28	9.812248	247	$\cdot 187752$	9.930987	426	10.069013	118739	179	9.881261	32
29	9.812396	247	·187604	9.931243	426	10.068757	118847	180	9.881153	31
30	9.812544	246	·187456	9.931499	426	10.068501	118954	180	9.881046	30
31	9.812692	240	187308	9.931755	426	10.068245	110150	180	9.880938	29
02	0.012040	240	187019	9.932010	420	10.067990	110170	180	9.880830	28
00	0.812125	240	186865	9.932200	440	10.067479	110207	100	9.000722	21
25	9.813283	246	186717	0.032778	496	10.067222	.119495	180	9.000013	20
36	9.813430	246	.186570	9.933033	426	10.066967	.119603	180	0.880307	20
37	9.813578	245	186422	9.933289	426	10.066711	.119711	180	9.880289	23
38	9.813725	245	$\cdot 186275$	9.933545	426	10.066455	.119820	181	9.880180	22
39	9.813872	245	.186128	9.933800	426	10.066200	.119928	181	9.880072	21
40	9.814019	245	.185981	9.934056	426	10.065944	$\cdot 120037$	181	9.879963	20
41	9.814166	245	.185834	9.934311	426	10.065689	.120145	181	9.879855	19
42	9.814313	245	.185687	9.934567	426	10.065433	$\cdot 120254$	181	9.879746	18
43	9.814460	245	·185540	9.934823	426	10.065177	$\cdot 120363$	181	9.879637	17
44	9.814607	244	·185393	9.935078	426	10.064922	$ \cdot 120471$	181	9.879529	16
45	9.814753	244	$\cdot 185247$	9.935333	426	10.064667	$\cdot 120580$	181	9.879420	15
46	9.814900	244	.185100	9.935589	426	10.064411	$\cdot 120689$	181	9.879311	14
47	9.815046	244	184954	9.935844	426	10.064156	$ \cdot 120798$	181	9.879202	13
48	9.815193	244	184807	9.936100	426	10.063900	+120907	182	9.879093	12
49	9.815339	244	184661	9.936355	426	10.063645	121016	182	9.878984	11
50	9.010480	949	104010	9.936610	426	10.0003390	121125	182	9.878875	10
01	9.010032	949	184000	9.930800	420	10.069970	191944	182	9.878766	9
52	9.815994	242	.184076	0.027276	420	10.069694	191459	102	0.979547	0 7
54	9.816069	242	.183921	0.037629	425	10.062368	.191569	189	0.878490	I C
55	9-816215	243	183785	9.937887	425	10.062113	121679	189	0.878298	5
56	9.816361	243	183639	9.938142	425	10.061858	121781	189	9.878210	14
57	9.816507	243	.183493	9.938398	425	10.061602	121891	183	9.878109	3
58	9.816652	242	.183348	9.938653	425	10.061347	.122001	183	9.877999	2
59	9.816798	242	$\cdot 183202$	9.938908	425	10.061092	$\cdot 122110$	183	9.877890	1
60	9.816943	242	·183057	9.939163	425	10.060837	122220	183	9.877780	0
1	Cosine.		Secant.	Cotangent.		Tanzent.	Cosecant		Sine	1
-		in the second second			A					

49 DEG.

82

.

41	DEG.					· · · ·				•
1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100″	Cotangent.	Secant.	Diff. 100"	Cosine.	,
0	9.816943		·183057	9.939163		10.060837	·122220		9.877780	60
1	9.817088	242	$\cdot 182912$	9.939418	425	10.060582	$\cdot 122330$	183	9.877670	59
2	9.817233	242	·182767	9.939673	425	10.060327	$\cdot 122440$	183	9.877560	58
3	9.817379	242	.182621	9.939928	425	10.060072	$\cdot 122550$	183	9.877450	57
4	9.817524	242	·182476	9.940183	425	10.059817	122660	183	9.877340	56
5	9.817668	241	.182332	9.940438	425	10.059562	122770	183	9.877230	55
6	9.817813	241	182187	9.940694	420	10.059306	122880	184	9.877120	54
	9.817958	241	182042	9.940949	420	10.059051	122990	184	9.877010	53
8	9.818103	241	101097	9.941204	420	10.058540	·123101,	104	9.876899	92 51
10	9.818247	241	181/03	9.941408	420	10.0500042	123211	104	9.816189	50
10	9.010092	9/1	181464	9.941714	440	10.058039	120022	104	9:010010	10
19	0.818681	940	181210	9.941900	420	10.057777	193549	184	9.010000	49
12	9.818895	940	181175	9.942425	495	10.057522	123653	184	0.876247	47
14	9.818969	240	181031	9.942733	425	10.057967	120000	184	9.876236	46
15	9.819113	240	-180887	9.942988	425	10.057012	123875	185	9.876125	45
16	9.819257	240	.180743	9.943243	425	10.056757	123986	185	9.876014	44
17	9.819401	240	.180599	9.943498	425	10.056502	124096	185	9.875904	43
18	9.819545	240	.180455	9.943752	425	10.056248	124207	185	9.875793	42
19	9.819689	239	·180311	9.944007	425	10.055993	.124318	185	9.875682	41
20	9.819832	239	.180168	9.944262	425	10.055738	.124429	185	9.875571	40
21	9.819976	239	.180024	9.944517	425	10.055483	$\cdot 124541$	185	9.875459	39
22	9.820120	239	·179880	9.944771	425	10.055229	124652	185	9.875348	38
23	9.820263	239	.179737	9.945026	425	10.054974	·124763	185	9.875237	37
24	9.820406	239	$\cdot 179594$	9.945281	425	10.054719	$\cdot 124874$	185	9.875126	36
25	9.820550	239	·179450	9.945535	425	10.054465	·124986	186	9.875014	35
26	9.820693	238	$\cdot 179307$	9.945790	425	10.054210	$\cdot 125097$	186	9.874903	34
27	9.820836	238	$\cdot 179164$	9.946045	425	10.053955	$\cdot 125209$	186	9.874791	33
28	9.820979	238	·179021	9.946299	425	10.053701	125320	186	9.874680	32
29	9.821122	238	$\cdot 178878$	9.946554	425	10.053446	$ \cdot 125432 $	186	9.874568	31
30	9.821265	238	$\cdot 178735$	9.946808	425	10.053192	$\cdot 125544$	186	9.874456	30
31	9.821407	238	$\cdot 178593$	9.947063	425	10.052937	$\cdot 125656$	186	9.874344	29
32	9.821550	238	$\cdot 178450$	9.947318	424	10.052682	$\cdot 125768$	186	9.874232	28
33	9.821693	238	$\cdot 178307$	9.947572	424	10.052428	$\cdot 125879$	186	9.874121	27
34	9.821835	237	·178165	9.947826	424	10.052174	125991	187	9.874009	26
35	9.821977	237	·178023	9.948081	424	10.051919	126104	187	9.873896	25
30	9.822120	231	177799	9.948336	424	10.051410	120210	107	9.010104	24
51	9.822202	201	177506	9.948090	424	10.051156	120320	107	9.010012	20
00	9.822404	201	177454	9.940044	424	10.050001	196559	187	9.010000	22
39	0.000200	201	177919	9.949099	424	10.050647	196665	187	0.979995	20
40	0.000000	226	.177170	9.949303	494	10.050303	196777	187	0.873993	10
41	0.899079	236	177028	0.01086)	494	10.050138	126800	187	9.873110	18
44	0.893114	230	176886	0.950116	494	10.049884	120030	188	9.872998	17
44	0.892955	226	.176745	9.950370	424	10.049630	127002	188	9.872885	16
45	9.8/23297	236	176603	9.950625	424	10.049375	127228	188	9.872772	115
46	9.823539	236	.176461	9.950879	424	10.049121	127341	188	9.872659	14
47	9.823680	236	$\cdot 176320$	9.951133	424	10.048867	.127453	188	9.872547	13
48	9.823821	235	.176179	9.951388	424	10.048612	$\cdot 127566$	188	9.872434	12
49	9.823963	235	$\cdot 176037$	9.951642	424	10.048358	.127679	188	9.872321	11
50	9.824104	235	.175896	9.951896	424	10.048104	127792	188	9.872208	10
51	9.824245	235	.175755	9.952150	424	10.047850	127905	188	9.872095	9
52	9.824386	235	.175614	9.952405	424	10.047595	128019	189	9.871981	8
53	9.824527	235	.175473	9.952659	424	10.047341	128132	189	9.871868	7
54	9.824668	235	.175332	9.952913	424	10.047087	128245	189	9.871755	6
55	9.824808	234	.175192	9.953167	424	10.046833	128359	189	9.871641	5
56	9.824949	234	·175051	9.953421	423	10.046579	128472	189	9.871528	4
57	9.825090	234	.174910	9.953675	423	10.046325	$\cdot 128586$	189	9.871414	3
58	9.825230	234	·174770	9.953929	423	10.046071	·128699	189	9.871301	2
59	9.825371	234	·174629	9.954183	423	10.045817	128813	189	9.871187	1
60	9.825511	234	174489	9.954437	423	10.045568	128927	189	9.811013	0
1	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.	1	Sine.	11 1

42 DEG.

1	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100″	Cosine.	1
0	9.825511		·174489	9.954437		10.045563	.128927		9.871073	60
1	$9 \cdot 825651$	234	·174349	9.954691	423	10.045309	$\cdot 129040$	190	9.870960	59
2	9.825791	233	$\cdot 174209$	9.954945	423	10.045055	$\cdot 129154$	190	9.870846	58
3	9.825931	233	·174069	9.955200	423	10.044800	$ \cdot 129268$	190	9.870732	57
4	9.826071	233	$\cdot 173929$	9.955454	423	10.044546	129382	190	9.870618	56
5	9.826211	233	•173789	9.955707	423	10.044293	129496	190	9.870504	55
6	9.826351	233	•173649	9.955961	423	10.044039	129610	190	9.870390	54
	9.826491	235	173009	9.956215	423	10.043783	129724	190	9.870270	.08
	0.896770	400	-172920	0.056792	440	10.043031	129039	100	0.870047	02
10	9.826010	200	.173000	9.956077	492	10.043217	120067	101	0.860033	50
11	9.827049	232	$\cdot 172951$	9.957231	423	10.042769	130182	191	9.869818	49
-12	9.827189	232	$\cdot 172811$	9.957485	423	10.042515	130296	191	9.869704	48
13	9.827328	232	$\cdot 172672$	9.957739	423	10.042261	.130411	191	9.869589	47
14	9.827467	232	.172533	9.957993	423	10.042007	$\cdot 130526$	191	9.869474	46
15	9.827606	232	$\cdot 172394$	9.958246	423	10.041754	$\cdot 130640$	191	9.869360	45
16	9.827745	232	$\cdot 172255$	9.958500	423	10.041500	$ \cdot 130755 $	191	9.869245	44
17	9.827884	232	$\cdot 172116$	9.958754	423	10.041246	$ \cdot 130870$	191	9.869130	43
18	9.828023	231	$\cdot 171977$	9.959008	423	10.040992	$ \cdot 130985$	191	9.869015	42
19	9.828162	231	$\cdot 171838$	9.959262	423	10.040738	$ \cdot 131100 $	192	9.868900	41
20	9.828301	231	$\cdot 171699$	9.959516	423	10.040484	$\cdot 131215$	192	9.868785	40
21	9.828439	231	$\cdot 171561$	9.959769	423	10:040231	$\cdot 131330$	192	9.868670	39
22	9.828578	231	$\cdot 171422$	9.960023	423	10.039977	$\cdot 131445$	192	9.868555	38
23	9.828716	231	•171284	9.960277	423	10.039723	101050	192	9.868440	37
24	9.828855	231	·1/1145	9.960531	423	10.039469	131676	192	9.868324	36
20	9.828993	230	170000	9.960784	423	10.039216	131/91	192	9.868209	35
20	9.079191	400	170809	9.961038	420	10.038902	1220000	192	9.000093	04
28	9.829209	220	.170503	9.961291	420	10.038455	132022	192	0.867869	20
29	9.829545	230	170455	9.961799	423	10.038201	$\cdot 132253$	193	9.867747	31
30	9.829683	230	$\cdot 170317$	9.962052	423	10.037948	132369	193	9.867631	130
31	9.829821	230	$\cdot 170179$	9.962306	423	10.037694	$\cdot 132485$	193	9.867515	29
32	9.829959	229	$\cdot 170041$	9.962560	423	10.037440	$\cdot 132601$	193	9.867399	28
33	9.830097	229	$\cdot 169903$	9.962813	423	10.037187	$\cdot 132717$	193	9.867283	27
34	9.830234	229	$\cdot 169766$	9.963067	423	10.036933	·132833	193	9.867167	26
35	9.830372	229	$\cdot 169628$	9.963320	423	10.036680	·132949	193	9.867051	25
36	9.830509	229	·169491	9.963574	423	10.036426	133065	193	9.866935	24
31	9.830646	229	·169354	9.963827	423	10.036173	133181	194	9.866819	23
20	9.990194	229	169216	9.964081	425	10.035919	133297	194	9.866703	22
40	9.831058	249	168049	0.064589	492	10.035419	122520	104	0.866470	21
41	9.831195	220	168805	9.964849	423	10.035158	122647	194	9.866353	10
42	9.831332	228	168668	9.965095	422	10.034905	133763	194	9.866237	18
43	9.831469	228	$\cdot 168531$	9.965349	422	10.034651	133880	194	9.866120	17
44	9.831606	228	$\cdot 168394$	9.965602	422	10.034398	·133996	194	9.866004	16
45	9.831742	228	$\cdot 168258$	9.965855	422	10.034145	·134113	195	9.865887	15
46	9.831879	228	$\cdot 168121$	9.966109	422	10.033891	$\cdot 134230$	195	9.865770	14
47	9.832015	228	$\cdot 167985$	9.966362	422	10.033638	$\cdot 134347$	195	9.865653	13
48	9.832152	227	$\cdot 167848$	9.966616	422	10.033384	$\cdot 134464$	195	9.865536	12
49	9.832288	227	·167712	9.966869	422	10.033131	134581	195	9.865419	11
51	9.832420	221	167490	9.967123	422	10.032877	19401	195	9.865302	10
52	9.002001	221	167202	9-901310	422	10.032024	124010	190	9.000180	9
53	9.832832	227	167167	9.967882	429	10.032371	135050	195	9.864050	7
54	9.832969	227	.167031	9.968136	422	10.031864	135167	195	9.864833	6
55	9.833105	226	166895	9.968389	422	10.031611	135284	196	9.864716	5
56	9.833241	226	·166759	9.968643	422	10.031357	·135402	196	9.864598	4
57	9.833377	226	$\cdot 166623$	9.968896	422	10.031104	$\cdot 135519$	196	9.864481	3
58	9.833512	226	$\cdot 166488$	9.969149	422	10.030851	$\cdot 135637$	196	9.864363	2
59	9.833648	226	$\cdot 166352$	9.969403	422	10.030597	·135755	196	9.864245	1
00	9.833783	226	·166217	9.969656	422	10.030344	·135873	196	9.864127	0
1	Cosine.	1	Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	1

37

47 DEG.

84 43 deg

10	2001					terte at the termination of				
,	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff. 100"	Cosine.	,
$\overline{0}$	9.833783		·166217	9.969656		10.030344	·135873		9.864127	$\overline{60}$
1	9.833919	226	.166081	9.969909	422	10.030091	$\cdot 135990$	196	9.864010	59
<b>2</b>	9.834054	225	·165946	9.970162	422	10.029838	$\cdot 136108$	196	9.863892	58
3	9.834189	225	·165811	9.970416	422	10.029584	$\cdot 136226$	197	9.863774	57
4.	9.834325	225	.165675	9.970669	422	10.029331	$\cdot 136344$	197	9.863656	56
5	9.834460	225	$\cdot 165540$	9.970922	422	10.029078	$\cdot 136462$	197	9.863538	55
6	9.834595	225	$\cdot 165405$	9.971175	422	10.028825	$\cdot 136581$	197	9.863419	54
7	9.834730	225	$\cdot 165270$	9.971429	422	10.028571	·136699	197	$9 \cdot 863301$	53
8	9.834865	225	$\cdot 165135$	9.971682	422	10.028318	$\cdot 136817$	197	$9 \cdot 863183$	52
9	9.834999	225	.165001	9.971935	422	10.028065	$\cdot 136936$	197	9.863064	51
10	9.835134	224	·164866	9.972188	422	10.027812	137054	197	9.862946	50
11	9.835269	224	.164731	9.972441	422	10.027559	137173	198	9.862827	49
12	9.835403	224	·164597	9.972694	422	10.027306	137291	198	9.862709	48
13	9.835538	224	.164462	9.972948	422	10.027052	137410	198	9.862590	47
14	9.835672	224	164328	9.973201	422	10.026799	137529	198	9.862471	46
15	9.835807	224	•164193	9.973454	422	10.026546	107547	198	9.862353	45
10	9.830941	224	104039	9.913/01	422	10.026293	197005	190	9.862234	44
11	9.830075	224	·163925	9.973960	422	10.026040	190004	198	9.862110	43
18	9.830209	223	103/91	9.974213	422	10.025787	120102	190	9.801990	42
19	9.830343	223	1695007	9.974400	422	10.020034	1200120	190	9.001011	41
20	9.030411	220	162220	9.974719	444	10.025281	128260	100	9.001100	20
99	0.826745	220	163955	0.075096	424	10.020027	138481	100	0.861510	20
92	0.026979	220	.163199	0.075470	422	10.024774	138600	100	0.861400	27
91	9.837019	223	162988	9.975739	422	10.024921	138720	199	0.861980	36
25	9.837146	222	162854	9.975985	422	10.024200	138839	199	9.861161	35
26	9.837279	222	162721	9.976238	422	10.023762	138959	199	9.861041	34
27	9.837412	222	162588	9.976491	422	10.023509	139078	199	9.860922	33
28	9.837546	222	.162454	9.976744	422	10.023256	.139198	199	9.860802	32
29	9.837679	222	.162321	9.976997	422	10.023003	.139318	199	9.860682	31
30	9.837812	222	.162188	9.977250	422	10.022750	.139438	200	9.860562	30
31	9.837945	222	·162055	9.977503	422	10.022497	·139558	200	9.860442	29
32	9.838078	222	.161922	9.977756	422	10.022244	$ \cdot 139678$	200	9.860322	28
33	9.838211	221	.161789	9.978009	422	10.021991	$\cdot 139798$	200	9.860202	27
34	9.838344	221	.161656	9.978262	422	10.021738	$  \cdot 139918$	200	9.860082	26
35	9.838477	221	.161523	9.978515	422	10.021485	$  \cdot 140038$	200	9.859962	25
36	9.838610	221	.161390	9.978768	422	10.021232	·140158	200	9.859842	24
37	9.838742	221	.161258	9.979021	422	10.020979	$ \cdot 140279$	200	9.859721	23
38	9.838875	221	.161125	9.979274	422	10.020726	140399	201	9.859601	22
39	9.839007	221	.160993	9.979527	A22	10.020473	140520	201	9.859480	21
40	9.839140	221	.160860	9.979780	422	10.020220	140640	201	9.859360	20
41	9.839272	220	.160728	9.980033	422	10.019967	140761	201	9.859239	19
42	9.839404	220	.160596	9.980286	422	10.019/14	140881	201	9.859119	18
43	9.839536	220	100404	9.980538	422	10.019462	141002	201	9.858998	11
44	9.839668	220	160332	9.980791	422	10.019209	141123	201	9.808811	10
40	9.839800	220	160068	0.091907	424	10.018990	141244	201	9.000100	10
40	9.839932	220	150026	0.081550	499	10.018/50	.141486	202	0.858514	12
41	0.940104	910	.159804	0.081803	499	10.018107	141607	202	0.858302	19
10	0.040190	210	159679	0.982056	499	10.017944	.141798	202	0.858979	11
50	0.840450	219	159541	9.982309	422	10.017691	141849	202	9.858151	10
51	9.840591	219	.159409	9.982562	421	10.017438	141971	202	9.858029	9
52	9.840722	219	.159278	9.982814	421	10.017186	142092	202	9.857908	8
53	9.840854	219	.159146	9.983067	421	10.016933	.142214	202	9.857786	7
54	9.840985	219	.159015	9.983320	421	10.016680	142335	202	9.857665	6
55	9.841116	219	.158884	9.983573	421	10.016427	.142457	203	9.857543	5
56	9.841247	218	.158753	9.983826	421	10.016174	142578	203	9.857422	4
57	9.841378	3 218	.158622	9.984079	421	10.015921	142700	203	9.857300	3
58	9.841509	218	.158491	9.984331	421	10.015669	·142822	203	9.857178	2
59	9.841640	218	.158360	9.984584	421	10.015416	142944	203	9.857056	1
60	9.841771	218	.158229	9.984837	421	10.015163	·143066	203	9.856934	0
,	Cosine.		Secant.	Cotangent.		Tangent.	Cosecant.		Sine.	

46 DEG.

44 DEG.

	Sine.	Diff. 100"	Cosecant.	Tangent.	Diff. 100"	Cotangent.	Secant.	Diff 100"	Cosine.	,
	0.941771		15900	0.084897		10.015162	142066		0.856024	60
0	0.041000	010	1500225	9.904001	401	10.01/010	149199	002	0.956910	50
	9.041902	210	157067	9.985090	421	10.014910	149910	400 609	0.856600	59
Z	9.042033	210	157907	9.900040	421	10.014007	140010	200 004	0.056560	57
3	9.842103	218	157500	9.980090	421	10.014404	140454	204	9.000000	51
4	9.842294	217	.157706	9.985848	421	10.014152	143004	204	9.806446	56
5	9.842424	217	·157576	9.986101	421	10.013899	.143677	204	9.856323	22
6	9.842555	217	·157445	9.986354	421	10.013646	·143799	204	9.856201	54
7	9.842685	217	$\cdot 157315$	9.986607	421	10.013393	143922	204	9.856078	53
8	9.842815	217	$\cdot 157185$	9.986860	421	10.013140	·144044	204	9.855956	52
9	9.842946	217	$\cdot 157054$	9.987112	421	10.012888	$ \cdot 144167 $	204	9.855833	51
10	9.843076	217	$\cdot 156924$	9.987365	421	10.012635	$ \cdot 144289 $	204	9.855711	50
11	9.843206	217	$\cdot 156794$	9.987618	421	10.012382	$ \cdot 144412 $	205	9.855588	49
12	9.843336	216	·156664	9.987871	421	10.012129	144535	205	9.855465	48
13	9.843466	216	$\cdot 156534$	9.988123	421	10.011877	.144658	205	9.855342	47
14	9.843595	216	$\cdot 156405$	9.988376	421	10.011624	.144781	205	9.855212	46
15	9.843725	216	$\cdot 156275$	9.988629	421	10.011371	.144904	205	9.855096	45
16	9.843855	216	$\cdot 156145$	9.988882	421	10.011118	145027	205	9.854973	44
17	9.843984	216	$\cdot 156016$	9.989134	421	10.010866	.145150	205	9.854850	43
18	9.844114	216	155886	0.080287	491	10.010613	145973	205	0.854797	12
10	0.844949	210	155757	0.090640	401	10.010960	145207	000	0.854602	41
10	0.044240	210 915	155600	9.909040	401	10.010300	145590	200	0.0544000	10
20	9.044014	410 915	155400	9.909095	421	10.010107	145020	200	9.004400	40
21	9.044002	210	·100498	9.990145	421	10.009855	145644	200	9.804000	39
	9.844031	210	·155369	9.990398	421	10.009602	145767	206	9.854233	38
23	9.844760	215	·155240	9.990651	421	10.009349	145891	206	9.854109	37
24	9.844889	215	·155111	9.930303	421	10.009097	$\cdot 146014$	206	9.853986	36
25	9.845018	215	$\cdot 154982$	9.991156	421	10.008844	$\cdot 146138$	206	9.853862	35
26	9.845147	215	$\cdot 154853$	9.991409	421	10.008591	$ \cdot 146262 $	206	9.853738	34
27	9.845276	215	$\cdot 154724$	9.991662	421	10.008338	$ \cdot 146386 $	206	9.853614	33
28	9.845405	214	$\cdot 154595$	9.991914	421	10.008086	$ \cdot 146510 $	207	9.853490	32
29	9.845533	214	$\cdot 154467$	9.992167	421	10.007833	$\cdot 146634$	207	9.853366	31
30	9.845662	214	·154338	9.992420	421	10.007580	$\cdot 146758$	207	9.853242	30
31	9.845790	214	$\cdot 154210$	9.992672	421	10.007328	$\cdot 146882$	207	9.853118	29
32	9.845919	214	$\cdot 154081$	9.992925	421	10.007075	147006	207	9.852994	28
33	9.846047	214	$\cdot 153953$	9.993178	421	10.006822	.147131	207	9.852869	27
34	9.846175	214	$\cdot 153825$	9.993430	421	10.006570	.147255	207	9.852745	26
35	9.846304	214	$\cdot 153696$	9.993683	421	10.006317	.147380	207	9.852620	25
36	9.846432	214	.153568	9.993936	421	10.006064	147504	207	9.852496	24
37	9.846560	213	$\cdot 153440$	9.994189	421	10.005811	.147629	208	9.852371	23
38	9.846688	213	$\cdot 153312$	9.994441	421	10.005559	147753	208	9.852247	22
39	9.846816	213	153184	9.994694	421	10.005306	.147878	208	9.852122	21
40	9.846944	912	153056	0.004047	491	10.005052	.148002	200	0.851007	20
41	9.847071	212	152020	0.005100	491	10.004801	149199	200	0.851879	10
49	0.847100	012	159201	0.005459	491	10.004500	140120	200 600	0.951747	10
42	0.947997	012	152601	9.990404	401	10.004040	140200	400 600	9.001141	17
44	0.847454	210	159540	0.005057	191	10.004290	149509	400 900	0.951407	16
15	0.047500	410 910	159419	9.9999901	401	10.002700	140000	408 000	0.051070	10
40	0.947700	010	150001	9.990210	401	10.000790	140020	409	0.051042	10
40	3.04/109	412	150104	9.996463	421	10.003537	140/04	209	0.0511246	14
41	9.84/836	212	152164	9.996715	421	10.003285	148879	209	9.891121	13
48	9.847964	212	152036	9.996968	421	10.003032	·149004	209	9.850996	12
49	9.848091	212	·151909	9.997221	421	10.002779	·149130	209	9.850870	11
50	9.848218	212	$\cdot 151782$	9.997473	421	10.002527	$\cdot 149255$	209	9.850745	10
51	9.848345	212	$\cdot 151655$	9.997726	421	10.002274	$\cdot 149381$	209	9.850619	9
52	9.848472	212	$\cdot 151528$	9.997979	421	10.002021	149507	209	9.850493	8
53	9.848599	211	$\cdot 151401$	9.998231	421	10.001769	$\cdot 149632$	210	9.850368	17
54	9-848726	211	$\cdot 151274$	9.998484	421	10.001516	149758	210	9.850242	6
55	9.848852	211	·151148	9.998737	421	10.001263	149884	210	$9 \cdot 850116$	5
56	9.848979	211	$\cdot 151021$	9.998989	421	10.001011	.150010	210	9.849990	4
57	9.849106	211	$\cdot 150894$	9.999242	421	10.000758	.150136	210	9.849864	3
58	9.849232	211	.150768	9.999495	421	10.000505	.150262	210	9.849738	2
59	9.849359	211	.150641	9.999747	421	10.000253	.150389	210	9.849611	1
60	9.849485	211	.150515	10.000000	421	10.000000	.150515	210	9.849485	0
	Cosina		Faarat	Cotor mat		Tan	Constant		Nin	
1 1	Cosme.		becant.	otangent.	1	1 Langent.	cosecant.		Sine.	1 <b>'</b>

45 DEG.

.



# INDEX.

Arithmetical proportion and progression, 35 ABBREVIATION of the reduction of decimals, 17. | Abrasion, limits of, 301. to 38. Ascent of smoke and heated air in chimneys, Absolute resistances, 288. Absolute strength of cylindrical columns, 274. 208. Accelerated motion, 386. Atmospheres, elastic force of steam in, 195, Accelerated motion of wheel and axle, 419. 196. Acceleration, 415. Atmospheric air, weight of, 356. Average specific gravity of timber, 396. Acceleration and mass, 422. Avoirdupois weight, 6. Actual and nominal horse power, 240. Addition of decimals, 22. Axle and wheel, 417. Addition of fractions, 20. Axle of locomotive engine, 168, 169. Axle-ends or gudgeons, 301. Adhesion, 297. Axles, friction of, 298, 300. Air, expansion of, by heat, 173. Air that passes through the fire for each horse power of the engine, 210. BALLS of cast iron, 407. Air, water, and mercury, 355. Bands, ropes, &c., 267. Air-pump, 254. Bar iron, 400. Air-pump, diameter of, eye of air-pump cross Beam, 151. Beam, the strongest, 276. head, 145. Air-pump machinery, dimensions of several parts of, 144. Bearings of water wheels, 285. Bearings or journals for shafts of various diameters, 287. Air-pump strap at and below cutter, 147. Air-pump studs, 144. Beaters of threshing machine, 445. Ale and beer measure, 8. Before and behind the piston, 232. Algebra and arithmetic, characters used in, 12. Blast pipe, 171. Blistered steel, 281. Algebraic quantities, 134. Alloys, strength of, 287. Blocks, cords, ropes, sheives, 428. Ambiguous cases in spherical trigonometry, Bodies, cohesive power of, 175. 381. Bodies moving in fluids, 324. Amount of effective power produced by steam, Boiler, 171. Boiler plate, experiments on, at high tempe-ratures, 220. 266. Anchor rings, 90. Angle iron, 91, 408, 409, 410. Boiler plates, 403. Angles of windmill sails, 445. Boilers, 256 and 257. Angles, measurement of, by compasses only, Boilers of copper and iron, diminution of 382. the strength of, 219. Angular magnitudes, 359. Angular magnitudes, how measured, 373. Boilers, properties of, 215. Boilers, strength of, 218. Angular velocity, 412. Bolts and nuts, 406. Apothecaries' weight, 6. Bolts, screw and rivet, 220. Apparent motion of the stars, 353. Boring iron, 445. Application of logarithms, 334. Bossut and Michelloti, experiments on the Approximating rule to find the area of a segdischarge of water, 319. Boyle of Cork, 200. ment of a circle, 67. Approximations for facilitating calculations, Bramah's press, 427. 55. Branch steam-pipe, 148. Are of a circle, to find, 49. Brass, copper, iron, properties of, 280. Arc of one minute, to find the length of, 361. Brass, round and square, 408. Arc, the length of which is equal to the ra-Breast wheels, 328, dius, 357. Breast and overshot wheels, maximum ve-Architecture, naval, 453. locity of, 443. Arcs, circular, to find the lengths of, 68. Buckets and shrouding of water wheels, 446. Area of segment and sector of a circle, 51. Building, to support with cast iron columns, Area of steam passages, 220. 293. Areas of circles, 57. Bushel, 5. Areas of segments and zones of circles, 64, Butt for air-pump, 146. 65, 66, 67. Butt, thickness and breadth of, 143. Arithmetic, 10. Butt, to find the breadth of, 141. Arithmetical progression, to find the square Byrne's logarithmic discovery, 340. root of numbers in, 126. Byrne's theory of the strength of materials. Arithmetical solution of plane triangles, 366. 272.

# 584

## INDEX.

CALCULATION in the art of ship-building, 453	Crank axle of locomotive, 169.
to 494.	Crank pin, 170, 252.
Calculation of Friction, 267.	Crank pin journal, 252.
Carriages, motion of, on inclined planes, 429.	Crank pin journal, to find the diameter of, 139
Carriages travelling on ordinary roads, 307.	Crank pin journal, to find the length of, 139.
Carrier or intermediate wheels, 434.	Cross head, 252.
Carts on ordinary roads, 311.	Cross head, to find the breadth of eye of, 139
Cases in plane trigonometry, 363.	Cross head, to find the depth of eye of, 139
Cast iron, 174.	Cross multiplication, 27.
Cast iron pipes, 404.	Cross tail, 253.
Centre of effort, 483.	Cube, 79.
Centre of gravity, 175.	Cube and cube roots of numbers, 100 to 116.
Centre of gravity of displacement of a ship,	Cube root of numbers containing decimals,
456, 457, 458.	128.
Centre of gyration, 180.	Cube root, to extract, 32.
Centre of oscillation, 187.	Cubes, 397 to 400.
Centres of boales, 380.	Cubes, to extend the table of, 128.
Centres of gravity, gyration, percussion os-	Curve, to find the length of, by construction, 72.
cillation, 391.	Curves, to find the areas of, 453.
Centripetal and centrifugal forces, 178, 450.	Cuttings and embankments, 97.
Chain bridge, 412.	Cylinder side rods at ends, to find the diame-
Chimney, 171, 208, 257.	ter of, 143.
Chimney, size of, 212.	Cylinders, 80, 397 to 400.
Chimney, to what height it may be carried	Cylinders of cast iron, 404.
with safety, 212.	
Circle, calculations respecting, 48, 49, 50, 53.	DAMS inclined to the horizon, 316.
Circle of gyration in water wheels, 444.	Decimal approximations for facilitating cal-
Circles, 57 to 61.	culations, 55.
Circles, areas of, 57 to 63.	Decimal equivalents, 56.
Circular arcs, 68.	Decimal fractions, 22.
Circular motion, 422.	Decimal fractions, table of, 73.
Circular parts of spherical triangles, 375.	Decimals, addition of, 22.
Circumference of a circle to radius 1, 361.	Decimals, division of, 24.
Circumferences of circles, 57.	Decimals, multiplication of, 23.
Cloth measure, 7.	Decimals, reduction of, 25, 26.
Coefficient of efflux, 314.	Decimals, rule of three in, 27.
Coefficients of friction, 299.	Decimals, subtraction of, 23.
Conesive strength of boales, now to find, 281.	Deflection of beams, 295.
Collision of rallway trains, 452.	Denection of rectangular beams, 294.
Combinations of algebraic executities 124	Depth of web at the centre of main beam, 150.
Common fractions 15	produced by carriages on
Common materials, 15.	Doulin's oil 907
Complementary and supplementary area 274	Diversion of a course of restional areas 460
Complementary and supplementary arcs, 574.	Diagram of indicator 265
Condenson 226	Diagram of indicator, 200.
Condensing water 223	Diameter of main centre journal 1/3
Conduit nines discharge by 399	Diameter of plain part of grank axla 160
Conc. 82	Diameter of the outside hearings of the grank
Conical pendulum 185 to 187	avia 168
Connecting rod 140 141 253	Diameters of wheels at their nitch circle to
Continuous aircular motion 439	contain a required number of teeth 436
Contraction by efflux 316	Dimensions of the several parts of furnaces
Contraction of the fluid vein 313	and hoilers. 254.
Contractions in the calculation of loca-	Direct method to calculate the logarithm of
rithms 348	any number, 346.
Conner hollers 219	Direct strain, 278
Copper iron, and lead, 405.	Discharge by compound tubes, 321.
Cosine to find, 361.	Discharge by different apertures from differ-
Cosines, contangents, &c., for every degree	ent heads of water, 318.
and minute in the quadrant, 540 to 576.	Discharge of water, 446.
Cosines, natural, 411.	Discharges from orifices. 426.
Cover on the exhausting side of the valve.	Displacement of a ship when treated as a
in parts of the length of stroke. 231.	floating body, 455.
Cover on the steam side, 226.	Displacement of ships, by vertical and hori-
Crane, 427.	zontal sections, 460, 494.
Crane, sustaining weight of, 285.	Distance of the piston from the end of its
Crank at paddle centre, 135.	stroke, when the exhausting port is shut
Crank axle, diameter of the outside bearings	and when it is open, 231.
of, 168.	Distances, how to measure, 369.

Division by logarithms, 336. Force of steam, 188. Forces, centrifugal and centripetal, 178, 450. Dodecaedron, 89. Double acting engines, rods of, 250. Fore and after bodies of immersion, 456, 460. Double position, 44. Form, the strongest, 275. Formulas for the strength of various parts Double table of ordinates, 457. Drainage of water through pipes, 325. of marine engines, 251. Formulas to find the three angles of a sphe-Dr. Dalton, and his countryman, Dr. Young, of Dublin, rical triangle when the three sides are Drums, 422. given, 385. Drums in continuous circular motion, 432. Formula, very useful, 271. Dry or corn measure, 8. Fourth and fifth power of numbers, 129. Duodecimals, 27. Fractions, common, 15. Dutch sails of windmills, 333. Fractions, reduction of, 16, 17, 18, 19. D. valves, 233. Fractions, addition of, 20. Dynamometer, used to measure force, 269. Fractions, subtraction of, 21. Fractions, multiplication of, 21. EDUCTION ports, 17.1. Fractions, division of, 21. Effective discharge of water, 314. Fractions, the rule of three in, 21. Effective heating surface of flue boilers, 256. Fractions, decimal, 22. Fractions, table of. 73. Effects of carriages on ordinary roads, 311. Elastic force of steam, 188. Fractions, addition contracted, 78. Elastic fluids, 205. Fracture, 292. Elliptic arcs, 69, 70, 71, 72. Franklin Institute, 172, 219. Embankments and cuttings, 97. French litre, 355. Endless screw, 431. French measures, 5, 6. Engineering and mechanical materials, 386. French metre, 347. Engine, motion of steam in, 206. Friction, 238. Friction, coefficients of, 300. Engine tender tank, 92. Enlargements of pipes, interruption of dis-Friction of fluids, 325. charge by, 321. Friction of rest and of motion, 267. Evolution, 29. Friction of steam engines of different modi-Evolution by logarithms, 339. fications, 302. Friction of water against the sides of pipes, 321. Eye, diameter of, 251. Eye of crank, 136. Friction of water-wheels, windmills, &c., 267. Eye of crank, to find the length and breadth Friction, or resistance to motion, in bodies of large and small, 142. rolling or rubbing on each other, 297. Friction, laws of, 298. Eye of round end of studs of lever, 143. Examples on the velocity of wheels, drums, Frustums, 83. and pulleys, 438. Frustum of spheroid, 87. Exhaust port, 230. Furnace, 256. Expanded steam, 236. Furnace room, 213. Expansion, 237. Expansion, economical effect of, 216. GALLON, 5. Experiments on the strength and other pro-Gases, 394. perties of cast iron, 174. Geering, 422. Explanation of characters, 12. General and universal expression, 376. Extended theory of angular magnitude, 374. General observations on the steam engine, 259. Exterior diameter of large eye, 252. General trigonometrical solutions, 365, 369. Extraction of roots by logarithms, 339. Geometrical construction, 862. Geometrical construction of the proportion FALL of water, 444. of the radius of a wheel to its pitch, 440. Feed pipe, 150 Geometrical proportion and progression, 38. Feed water, 222. Gibs and cutter, 140, 253. Fellocs of wheels, 309. Gibs and cutter through air pump cross-head, Fellowship, or partnership, 41. 146, 147. Fire-grate, 171, 214. Gibs and cutter through cross-tail and Fitzgerald, 264, 269. through butt, 141. Flange, 91. Gibs and cutter, to find the thickness and Flat bar iron, 407. breadth of, 143. Flat iron, 400. Girder, 275. Flexure by vertical pressure, 292. Girth, the mean in measuring, 94. Flexure of revolving shafts, pillars, &c., 296. Glenie, the mathematician, 287. Flues, 256. Globe, 85. Grate surface, 255. Flues, fires, and boilers, 217. Fluids, the motion of elastic, 205. Gravity, centre of, 175, 386. Fluids, to find the specific gravity of, 392. Gravity, specific, 391. Fluids, the pressure of, 448. Gravity, weight, mass, 386. Fluid vein. contraction of, 313. Gudgeons, 420. Foot-valve passage, 149. Gyration, centre of, 180, 390. Force, 267. Gyration, the centre of different figures and Force, loss of, in steam pipes, 221. bodies, 181.

#### INDEX.

HEADS of water, 318. Heating surface, 256. Heating surface of boilers, 215. Heights and discharges of water, 319. Heights and distances, 359. Height of chimneys, 210. Height of metacentre, 489, 483. Hewn and sawed timber, 95. Hexagon, heptagon, 48. High pressure and condensing engines, 234. Hollow shafts, to find the strength of, 284. Horizontal distance of centre of radius bar, 246, 247. Horse power, 240. Horse power of an engine, dimensions made to depend upon the nominal horse power of an engine, 147. Horse power of pumping engines, 447. Horse power, tables of, 243, 244. Hot blast, 174. Hot liquor pumps, 446. Hydraulic pressure working machinery, 330. Hydraulics, 267, 312. Hydrogen, weight of, 356. Hydrostatic press, 448. Hyperboloid, 88. Hyperbolic logarithms, 130 to 133. Hyperbolic logarithms, how to calculate, 353. Hypothenuse of a spherical triangle, to find, 378. Hypothenuse, 47. ICOSAEDRON, 89. Immersed portions of a ship, to calculate, 456. Immersion and emersion, 453 to 467. Impact, 449. Impinging of elastic and inelastic bodies, 452. Inaccessible distances, 372. Inches in a solid foot, 96. Inclined plane, 428, 429, 430. Inclination of the traces of ordinary carriages, 311. Inclinations, discharge of'a 6-inch pipe at several, 326. Increase of efficiency arising from working steam expansively, 262. Index of logarithms, 334. Indicator, 264, 265. Indicator, the amount of the effective power of steam by, 266. Induction ports, 171 Inelastic bodies, 449. Influence of pressure, velocity, width of felloes, and diameter of wheels, 309. Initial plane, 456, 480, 500. Initial velocity with a free descent, 388. Injection pipe, 150. Inside discharging turbine, 330. Integer, 10. Integers, to find the square root of, 125. Interest, simple, 42. Interest, compound, 43. Involution, 28. Involution, or the raising of powers by logarithms, 338. Irregular polygons, 54. Iron, forged and wrought, 272. Iron plates, 403. Iron, properties of, 175.

Iron, strength of, 173. Iron, taper and parallel, angle and T, railway and sash, 408, 411. JET, specific gravity of, 394. Journal of cross-head, to find diameter of, 139. Journal of cross-head, to find the length of, 139. Journal, the mean centre, to find the diameter of, 143. Journal, strain of, 252. Journals for air-pump cross-head, 145. Journals for shafts of various diameters, 287. Julian year, 357. Juste Byrge, the inventor of logarithms, 133. KANE, Fitzgerald, 269. Keel and keelson, 433 to 500. Kilometre, 5. Kilogramme, 6. Knots, nodes, &c., 412. LATHE spindle wheel, 435. Laying off of angles by compasses only, 384. Leg of a spherical triangle, to find, 377. Length of crank pin of locomotive, 170. Length of paddle-shaft journal, 138. Length of stroke, 227, 251. Lengths that may be given to stroke of the valve, 229. Lengths of circular arcs, 68. Lever, 426. Light displacement, 459. Line of direction, 390. Link next the radius bar, 242. Living forces, or the principle of vis viva,270. Load immersion, 456, 457. Load-water line, 456, 478. Locomotive engine, parts of the cylinder, 171. Locomotive engine, diameter of the outside bearings for, 163. Locomotive engine, dimensions of several moving parts, 171. Locomotive engine, dimensions of several pipes, 171. Locomotive engine, parts of the boiler, 171. Locomotive engine, tender tank, 92. Locomotive and other engines, 233. Logarithmic calculations, 376. Logarithmic calculations of the force of steam, 190 to 193. Logarithmic sines, tangents, and secants for every minute in the quadrant, 540, 576. Logarithms applied to angular magnitudes, 359. Logarithms, hyperbolic, 130. Logarithms of the natural numbers from 1 to 100000 by the help of differences, 503 to 540. Logarithms, the application of, 334. Long measure, 7. Longitudinal distance of the centre of gravity of displacement, 470, 500. Loss of force by the decrease of temperature in the steam pipes, 221. Low pressure engines, 243. Lunes, 54. MACHINERY, elements of, 425.

Machinery worked by hydraulic pressure, 330.

Major and minor diameters of cross-head, | OAK, Dantzic, 280. 253. Main beam at centre, 249. Malleable iron, 396. Marble, 288. Marine boilers, 217. Mass, 267. Mass, gravity, and weight, 386. Mass of a body, to find, when the weight is given, 389. Materials employed in the construction of machines. 267. Materials, their properties, torsion, deflexion, &c., 267. Maximum accelerating force, 421. Maximum velocity and power of water wheels, 443. Measures and weights, 5. Measurement of angular magnitudes, 374. Measurement of angles by compasses only, 382. Mechanical effect, 417. Mechanical powers, 422. Mechanical power of steam, 261. Mensuration of solids, 79. Mensuration of timber, 93. Mensuration of superficies, 45. Mercury, density of, 350. Mercury, to calculate the force of steam in inches of, 201. Method to calculate the logarithm of any given number, 340. Metacentre, 482. Metre, 5. Midship, or greatest transverse section, 460, 487. Millboard, 405. Millstones, 445. Millstones, strength of, 451. Modulus of elasticity, 278. Modulus of logarithms, 343. Modulus of torsion and of rupture, 279. Moment of inertia, 412. Motion of elastic fluids, 205. Motion of steam in an engine, 206. Multiplication of decimals, 23. Multiplication of fractions, 21. Multiplication by logarithms, 335. Musical proportion, 40. NATURAL sines, cosines, tangents, cotangents, secants, and cosecants, to every degree of the quadrant, 411. Naval architecture, 453. New method of multiplication, 342. Nitrogen, weight of, 356. Nominal horse power, tables of, for high and low pressure engines, 243, 244. Notation and numeration, 10. Notation, trigonometrical, 359. Number corresponding to a given logarithm, 351. Number of teeth, or the pitch of small wheels, 435. Numbers, fourth and fifth powers of, 129. Numbers, logarithms of, 540, 495. Numbers, reciprocals of, 73 to 78. Numbers, squares, cubes, &c., of, 100 to 116. Numeral solution of the several cases of trigonometry, 361. Nuts and bolts, 406.

Obelisk, to find the height of, 371. Oblique triangles, 368. Observatory at Paris g == 9.80896 metres,346. O'Byrne's turbine tables, 331. Octagon, 48. Octaedron, 89. O'Neill's experiments, 447. O'Neill's rules employed in the art of shipbuilding, 454. Opium, specific gravity of, 394. Orders of lever, 426. Ordinates employed in the art of ship-building, 455, 456, 458. Orifices and tubes, discharge of water by, 312. Orifices, rectangular, 314. Oscillation, centre of, 187, 391. Outside bearings of crank axle, 168. Outside discharging turbines, 331. Overshot wheels, 329. Overshot wheels, maximum velocity of, 443. Ox-hide, 299. Oxygen, 214, 356. PADDLE-shaft journal, 137, 251. Paraboloid, 88. Parabolic conoid, 88. Parallel angle iron, 409. Parallel motion, 242 to 246. Parallelogram of forces, 422. Parallelopipedon, 80. Partnership, 41. Partial contraction of the fluid vein. 316. Passages, area of steam, 220. Péclet's expression for the velocity of smoke in chimneys, 213. Pendulums, 183, 391. Pendulum, conical, 184. Pendulums, vibrating seconds at the level of the sea in various latitudes, 393. Percussion, centre of, 391. Periodic time, 179. Permanent weight supported by beams, 284. Permutations and combinations, 44. Pillars, strength of, 293. Pinions and wheels in continuous circular motion, 432. Pipes, discharge and drainage of water through, 321, 322, 325. Pipes of cast iron, 395. Pipes for marine engines, 149. Piston, 251. Piston of steam engine, 414. Piston rod, 140, 171, 253. Piston rod of air-pump, 146. Pitch circle, 436 Pitch of teeth, 441. Pitch of wheels, 435, 439. Plane triangles, solution of, 364, 365. Plane trigonometry, 359. Planks, deals, 94. Polygons, 47, 48. Polygons, irregular, 54. Port, upper and lower, 229. Position, double, 44. Position, single, 43. Pound. 5. Power, actual and nominal, 241. Power and properties of steam, 261.

Power that a cast-iron wheel is capable of transmitting, 442.

#### INDEX.

Power of shafts, 294. Ropes, stiffness of, resistance of, to bendin Practical application of the mechanical powers, 425. Practical limit to expansion, 261. Practical observations on steam engines, 260. Principle of virtual velocities, 423. Prism, 80. Prismoid, 85. Properties of bodies, 401. Proportional dimensions of nuts and bolts, 406. Proportion, 14. Proportion, musical, 40. Proportion and progression, arithmetical, 35 to 38. Proportion and progression, geometrical, 38 to 40. Proportion, or the rule of three by logarithms, 338. Proportion of wheels for screw-cutting, 433. Proportions of boilers, grates, &c., 213. Proportions of the lengths of circular arcs, 68. Proportions of undershot wheels, 328. Pulleys, 422, 427. Pump and pumping engines, 446. Pumping engines, 422. Pyramid, 82. Pyrometer, 63. QUADRANT, 359. Quadrant, log. sines, cosines, &c., for every minute in, 540, 576. Quadrant, natural sines and cosines for every degree of, 411. Quadrant, to take angles with, 370. Quantities, known and unknown, 134. Quantity of water that flows through a circular orifice, 313, 319. Quiescence, friction of, 299. RADIUS bar, 242. Radius bar, length of, corrected, 248. Radius of the earth at Philadelphia, 356. Radius of gyration, 412. Radius, length of, in degrees, 357. Rails, temporary, 411. Railway carriage, 268. Railway iron, 410. Raising of powers by logarithms, 338. Reciprocals of numbers, 73 to 78. Recoil, 449. Rectangle, rhombus, rhomboides, to find the areas of, 45, 46. Reduction of fractions, 16, 17, to 19, 20. Regnault's experiments on oxygen, &c., 356. Regular bodies, 90. Relative capacities of the two bodies under the same displacement, 456, 470. Relative strength of materials to resist torsion, 294. Revolving shaft, 250. Riga fir, 290. Right-angled spherical triangles, 374. Ring, circular, to find the area of, 53. Ring, cylindrical, 90. Roads, traction of carriages on, 307. Rolled iron, 395. Roman notation, 11. Rope, strength of, 282. Ropes, bands, &c., 267.

Ropes, blocks, pulleys, 428.

302. Ropes, tarred and dry, 304, 306. Rotative engines, 260. Rotation, moment of, 414. Rotation of a body about a fixed axis, 416. Rotations of millstones, 452. Round and rectangular bars, strength of, 2S1. Round bar-iron, 403. Round steel and brass, 408. Rules for pumping engines, 448. Rule of three, 13. Rule of three by logarithms, 338. Rule of three in fractions, 21. Rupture, 272. SAFETY valves, 149, 150, 224. Sails of windmills, 332. Sash iron, 410. Scales of chords, how to construct, 360. Scale of displacement, 490. Scantling, 95. Screw cutting by lathe, 433. Screw, power of, 430. Screw, to cut, 434. Sectional area measured, 456 to 468. Segments of circles, 64 to 67. Sheives, cords, blocks, 428. Ship-building and naval architecture, 453. Sidereal day, 9. Side lever, to find the depth across the centre of, 144. Side rod, 246, 254. Side rod of air-pump, 146. Sines, cosines, &c., 411. Sines, tangents and secants, 359. Singular phenomena, 237. Sleigh, 268. Slide valve, 225. Slide valve, a cursory examination of, 232. Slopes 11 to 1, 2 to 1, and 1 to 1, 97. Sluice board, 316. Smoke and heated air in chimneys, 202. Solid inches in a solid foot, 96. Solids, mensuration of, 79. Space described by a body during a free descent in vacuo, 388. Specific gravity, 386, 391. Sphere, 85. Spheres, 397 to 400. Spheroid, 86, 87, 88. Spherical trigonometry, 373. Spheroidal condition of water in boilers, 236. Spindle and screw wheels, 434. Square, to find the area of, 45. Square and sheet iron, 402. Squares and square roots of numbers, 100 to 116. Square root, 30. Square root of fractions and mixed numbers, 31. Square measure, 6. Stability, 459. Stars, apparent motion of, 353. Statical moment, 417. Steam engine, 135. Steam dome, 171. Steam passages, 220. Steam pipes, loss of force in, 222. Steam port, 147, 148.

Steam room, 259.

Steam, elastic force of, 188 to 202.

- Steam, temperature of, pressure of, 172.
- Steam, volume of, 202 to 206.
- Steam, weight of, 204.
- Steel, 408.
- Steel, cast, 409. Stiffness of ropes, 302, 306.
- Stowage, 503.
- Stowing the hold of a vessel, 453, 456.
- Strap at cutter, 141.
- Strap, mean thickness of, at and before cutter, 143.
- Strength of bodies, 282.
- Strength of boilers, 218.
- Strength of materials, 173, 271.
- Strength of rods when the strain is wholly tensile, 250.
- Strength of the teeth of cast iron wheels, 437. "'nds of lever, 143.

1-wheel and pinion, 434.

Suptraction of decimals, 23.

Subtraction of fractions, 21.

- TABLE by which to determine the number of teeth or pitch of small wheels, 435.
- Table containing the circumferences, squares, cubes, and areas of circles, from 1 to 100, advancing by a tenth, 57, 58, 59, 60 to 63.
- Table containing the weight of columns of water, each one foot in length, in pounds avoirdupois, 401.
- Table containing the weight of square bar iron, 402.
- Table containing the surface and solidity of spheres, together with the edge of equal cubes, the length of equal cylinders, and weight of water in avoirdupois pounds, 397.
- Table containing the weight of flat bar iron, 400.
- Table containing the specific gravities and other properties of bodies; water the standard of comparison, 401.
- Table containing the weight of round bar iron, 403.
- Table containing the weights of cast iron pipes, 404.
- Table containing the weight of solid cylinders of cast iron, 404.
- Table containing the weight of a square foot of copper and lead, 405.
- Table for finding the weight of malleable iron, copper, and lead, 405.
- Table for finding the radius of a wheel when the pitch is given, or the pitch when the ra-
- dius is given, for any number of teeth, 439. Table for the general construction of tooth wheels, 442.
- Table for breast wheels, 329.
- Table of polygons, 48.
- Table of decimal approximations for facilitating calculations, 55. Table of decimal equivalents, 56.
- Table of the areas of the segments and zones of a circle of which the diameter is unity, 64, 65, 66, 67.
- Table of the proportions of the lengths of semi-elliptic arcs, 69, 70, 72.
- Table of flat or board measure, 93.
- Table of solid timber measure, 94.

- Table of reciprocals of numbers, or of the decimal fractions corresponding to common fractions, 71 to 77, 78.
- Table of weights and values in decimal parts, 79.
- Table of regular bodies, 90.
- Table of the cohesive power of bodies, 175.
- Table of hyperbolic logarithms, 130 to 133.
- Table of the pressure of steam, in inches of mercury at different temperatures, 172.
- Table of the temperature of steam at different pressures, in atmospheres, 172.
- Table of the expansion of air by heat, 173.
- Table of the strength of iron, 173.
- Table of the superficial and solid content of spheres, 96.
- Table of solid inches in a solid foot, 96.
- Table of squares, cubes, square and cube roots, of numbers, 100, 101, 116, 125.
- Table of cover on the exhausting side of the valve in parts of the stroke and distance of piston from the end of its stroke, 231.
- Table of the proportions of the lengths of circular arcs, 68.
- Table of the fourth and fifth power of numbers, 129.
- Table of the properties of different boilers, 215.
- Table of the economical effects of expansion, 216.
- Table of the comparative evaporative power of different kinds of coal, 218.
- Table of the cohesive strength of iron boiler plate at different temperatures, 219.
- Table of diminution of strength of copper boilers, 219.
- Table of expanded steam, 239.
- Table of the proportionate length of bearings, or journals for shafts of various diameters, 287.
- Table of tenacities, resistances to compression and other properties of materials, 288.
- Table of the strength of ropes and chains, 288.
- Table of the strength of alloys, 289.
- Table of data of timber, 289.
- Table of the properties of steam, 261.
- Table of the mechanical properties of steam, 263.

Table of the cohesive strength of bodies, 281.

- Table of the strength of common bodies, 283.
- Table of torsion and twisting of common materials, 286.
- Table of the length of circular arcs, radius being unity, 63.
- Table of experiments on iron boiler plate at high temperature, 220.
- Table of the absolute weight of cylindrical columns; 274.
- Table of flanges of girders, 276.
- Table of mean pressure of steam at different densities and rates of expansion, 239.
- Table of nominal horse power of high pressure engines, 244.
- Table of nominal horse power of low pressure engines, 243.
- Table of dimensions of cylindrical columns of cast iron to sustain a given load with safety, 293.
- Table of strength of columns, 294.

Table of comparative torsion, 294.

- Table of the depths of square beams to support from 1 cwt. to 14 tons, 295, 296.
- Table of the results of experiments on frictions, with unguents interposed, 299, 300.
- Table of the results of experiments on the gudgeons or axle-ends in motion upon their bearings, 301.
- Table of friction, continued to abrasion, 301.
- Table of friction of steam engines of different modifications, 302.
- Table of tarred ropes, 303.
- Table of white ropes, 305.
- Table of dry and tarred ropes, 306.
- Table of the pressure and traction of carriages, 308.
- Table of traction of wheels, 309.
- Table of the ratio of traction to the load, 310.
- Table of the coefficients of the efflux through rectangular orifices in a thin vertical plate, 315.
- Table of the coefficients of efflux, 315.
- Table of comparison of the theoretical with the real discharges from an orifice, 317.
- Table of discharge of tubes of different enlargements, 322.
- Table of the comparison of discharge by pipes of different lengths, 323.
- Table of the comparison of discharge by additional tubes, 323.
- Table of the friction of fluids, 325.
- Table of discharges of a 6-inch pipe at several inclinations, 326.
- Table of the velocity of windmill sails, 333.
- Table of outside discharging turbine, 331.
- Table of inward discharging turbines, 332.
- Table of peculiar logarithms, 340.
- Table of useful logarithms, 345.
- Table of the specific gravity of various substances, 394.
- Table of the weight of a foot in length of flat and rolled iron, 395.
- Table of the weight of cast iron pipes, 395.
- Table of the weight of one foot in length of malleable iron, 396.
- Table of comparison, 396.
- Table of the weight of a square foot of sheet iron, 402.
- Table of the weight of a square foot of boiler plate from  $\frac{1}{5}$  of an inch to 1 inch thick, 403.
- Table of the weights of cast iron plates, 403.
- Table of the weight of mill-board, 405.
- Table of the weight of wrought iron bars, 406.
- Table of the proportional dimensions of nuts and bolts, 406.
- Table of the specific gravity of water at different temperatures, 406.
- Table of the weight of cast iron balls, 407.
- Table of the weight of flat bar iron, 407.
- Table of the weight of square and round brass, 408.
- Table of taper T iron, 410.
- Table of sash iron, 410.
- Table of rails of equal top and bottom, 410. Table of temporary rails, 411.
- Table of natural sines, cosines, tangents, co-
- tangents, secants, and cosecants, to every degree of the quadrant, 411.
- Table of inclined planes, showing the ascent or descent the yard, 430.

- Table of the weight of round steel, 408.
- Table of parallel angle iron of equal sides, 408. Table of parallel angle iron of unequal sides, 409.
- Table of taper angle iron of equal sides, 409. Table of parallel T iron of unequal width and depth, 409.
- Table of change wheels for screw-cutting, 435.
- Table of the diameters of wheels at their pitch circle, to contain a required number of teeth, 436.
- Table of the angle of windmill sails, 445.
- Table of the logarithms of the natural numbers, from 1 to 100000, by the help of differences, 495 to 540.
- Table of log. sincs, cosines, tangents, cotangents, secants and cosecants, for every degree and minute in the quadrant, 540 to 576.
- Table of the strength of the teeth of cast iron wheels at a given velocity, 437.
- Table of approved proportions for wheels with flat arms, 441.
- Table showing the cover required on the steam side of the valve to cut the steam off at any part of the stroke, 228.
- Table showing the cover required, 227.
- Table showing the resistance opposed to the motion of carriages on different inclinations of ascending or descending planes, 429.
- Table showing the number of linear feet of scantling of various dimensions which are equal to a cubic foot, 95.
- Table showing the weight or pressure a beam of cast iron will sustain without destroying its elastic force, 292.
- Table showing the circumference of rope equal to a chain, 282.
- Table to correct parallel motion links, 248.
- Table of parallel T iron of equal depth and width, 410.
- Tables of cuttings and embankments, slopes, 1 to 1;  $1\frac{1}{2}$  to 1; and 2 to 1, 97.

Tables of the heights corresponding to different velocitics, 389.

- Tables of the mechanical properties of the materials most commonly employed in the construction of machines and framings, 280.
- Tangents, 360.
- Tangents and secants, to compute, 362.

Taper angle iron, 410.

- Teeth of wheels in continuous circular motion, 432.
- Teeth of wheels, 422, 436.
- Temperature of steam, 172.
- Temperature and elastic force of steam, 188.
- Tension of chain-bridge, 414.
- Tetraedron, 89.
- Threshing machines, 445.
- Throttling the steam, 234.
- Timber measure, 93.
- Timber, to measure round, 95.
- Time, 7.
- Tonnage of ships, 461 to 494.

Torsion, 279.

- Torsion and twisting, 286.
- Traction of carriages, 307.
- Transverse strength of bodies, 282.

Transverse strain. 278. Transverse strain, time weight, 273. Trapezium, 47. Trapezoid, 47. Triangle, to find the area of, 46, 47. Trigonometry, 359. Trigonometry, spherical, 373. Troy weight, 7. Trussed beams, 291. Tubes, discharge of water through, 312. Tubular boilers, 257. Turbine water-wheels, 330. ULTIMATE pressure of expanded steam, 236. Undecagon, 47. Undershot wheels, 327, 443. Unguents, 299. Ungulas, cylindrical, 81. Ungulas, conical, 83, 84. Unit of length, 5. Unit of weight, 5. Unit of dry capacity, 5. Units of liquids, 5. Units of work, 269, 297, 414, 415. Universal pitch table, 442. Upper steam port, 229. Useful formula, 271. Use of the table of squares, cubes, &c., 127. VACUUM, perfect one, 235. Vacuum below the piston, 251. Vacuo, bodies falling freely in, 388. Valves, different arrangements of, 233. Valve, length of stroke of, in inches, 228. Valve shaft, 147. Valve, safety, 224. Valve, slide, 225. Valve spindle, 171. Vapour in the cylinder, 229. Vein, contraction of fluid, 330. Velocity, force, and work done, 267. Velocity of steam rushing into a vacuum, 207. Velocity of smoke in chimneys, 209, 213. Velocity of piston of steam engine, 266. Velocity of threshing machines, millstones, boring, &c., 445. Velocity of wheels on ordinary roads, 307. Venturi, experiments of, on the discharge of fluids, 421. Versed sine, tabular, 52.

Versed sine of parallel motion ?44. Fersed sine, 359.

Vertical sectional areas, 454. Virtual velocities, 424. Vis viva, principle of, calculations on, 276. 388. Volume of a ship immersed, 456. Volume of steam in a cubic foot of water, 202, 205. WATER, modulus of elasticity of, 190. Water level, 214. Water, feed and condensing, 223. Water, spheroidal condition of, in boilers,236. Water in boiler, and water level, 358. Water, discharge of, through different orifices, 312, 318. Water wheels, 327. Water wheels, maximum velocity of, 443. Web of crank at paddle shaft centre, 136. Web of cross-head at middle, 139. Web of crank at pin centre, 142. Web at paddle centre, 252. Web of cross-head at journal, 140. Web of air-pump cross-head, 145. Wedge, 85. Wedge and screw, 430. Weights and measures, 5. Weights, values of, in decimal parts, 79. Weight, mass, gravity, 386. Weirs, and rectangular apertures, 314, 323. Wheel and axle, 417. Wheel and pinion, 427. Wheels, drums, pulleys, 438. Windmills, 332 Wine measure, 8. Woods, 280. Woods, specific gravity, 394. Work done, weight, 267.

Wrought iron bars, 406.

YARD, 5. Yacht, admeasurement of, 466, 470. Yarns of ropes, 303. Yellow brass, 281. Yew, 280.

ZINC, 280. Zinc, sheet, 288. Zone, spherical, 86. Zone, to find the area of a circular, 53. Zones of circles, to find the areas of, 64, 65, 66.

### THE END.











## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

NOV 1 1940 	
FEB 17 1942	
	LD 21-100m-7,'40 (6936s)

ho y Mill 18/17 8 182 119928 183 174 18.4 TA 151 3

