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PREFACE

COMMENCING

in the year 1914 a series of articles by the

author of this book appeared in the pages of Building

Age, with the title
"
Design of Beams, Girders and Trusses."

The articles were completed early in 1916, and in reply to an in-

sistent demand they were prepared for appearance in book form

with practically an equal amount of new material. The present

book is the result.

Before writing the articles the subject matter had been tried

out on a number of classes of students, some of them in evening

schools and some in private classes organized for the purpose of

preparing the students to pass state examinations to obtain a

license to practice architecture. The writer in the intervals of

a busy professional life has managed to find time to teach in even-

ing schools a deserving class of men who entered the offices of

architects and contractors at too early an age.

Samuel Butler says:
" There are plenty of things that most boys

would give their ears to know; these and these only are the proper

things for them to sharpen their wits upon." It happens that a

great many boys have a taste for drafting and like to watch con-

struction work. Under the guidance of woefully ignorant teachers,

lacking practical experience outside the class room, drafting is

thought to be an end; and equipped with a certain facility in

elementary drafting these unfortunate boys go forth to seek em-

ployment. They find it, and after laboring a few years discover

that draftsmen who are merely draftsmen are truly unfortunate

beings. Never enough to go around in brisk times, they are a

drug on the labor market in dull times. The boys were given what

they were ready to give their ears to know, but their immature

judgment was at fault and the judgment of their teachers was no
better.

When a realization comes of the fact that a man must "
learn

more to earn more," Samuel Butler is there again with a wise

remark as follows: "The rule should be never to learn a thing till

one is pretty sure one wants it, or that one will want it before
3
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long so badly as not to be able to get on without it." No one

knows the truth of this remark more than the men who made a

false start and got into the low paid trade of drafting. The pity
is that some one with sufficient intelligence had not made them
understand at the age of sixteen that a draftsman should know

something more than just enough to draw lines on paper, copying

examples of the work of other men. If this sort of knowledge
were pounded into them they would "

give their ears
"

to know

enough to fit them for advancement.

The realization comes to few before the age of twenty-five. Many
are by that time married and to these men the first

"
lay-off"

comes shortly after marriage, because periods of business depression

are just far enough apart to allow this. Few, if any, have attended

High School and few have graduated from High School. This is

the sort of material that came to the author for many years in

his evening class work. Not many of the men could find time

outside of class hours to work problems. None of them were sure

of themselves when it came to working problems. The men most

illy prepared to understand a mathematical demonstration were

most eager to know "
why." Many hours were spent in trying

out ways to demonstrate truths in structural mechanics and the

mechanics of materials, so that men skilled only in arithmetic

could understand them. The men generally resented a seeming

attempt to cram them with formulas and rules without a "
step

by step
"

explanation of the work. When the author began to

teach this class of pupils he was told by instructors who had tried

it before that most of them were too thick-headed to do anything
with. The author found it otherwise. Where men were dull it

was generally because they were overworked or were struggling

in deep financial sloughs.

The men wished to learn. That much was certain. If they did

not wish to learn they could have had a better time elsewhere and

been in Docket by the amount of the fees they paid for instruc-

tion. The author told them at the beginning of each term that

if they failed to get their money's worth they could blame him,

for he was there to teach them what they wished earnestly to

learn. They were a great inspiration to him and those evenings

in the class room in an atmosphere of dogged earnestness and

intense hopefulness will ever remain fragrant in his memory.

They paid him for many hours he put in when he was tired, trying
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to think of plain statements of elementary truths. He has heard

from a number of the men since, who told him that the work he

did was an inspiration to them. The work was not undertaken

for the small amount the schools could afford to pay, but was

done principally because he liked the service. The great regret

of his life has been that he could never secure financial inducement

to enable him to make teaching his life work.

The book is written to reach the men who cannot attend even-

ing classes in mechanics of materials and structural design. It is

written also to be used as a text book in such classes. The articles

in Building Age were mimeographed by a number of teachers for

use in manual training and high schools and it is hoped these

teachers will use the book as a text. The author has done his

best to make the subject matter plain. The book is peculiarly

adapted for the use of self-tutored men and the author would like

to hear from such readers, so that explanations and statements

they fail to grasp may be ironed out in future editions.

There is no royal road to learning. In addition to listening to

lectures or reading books the student must do a certain amount
of thinking and reasoning. It is not enough to accept a statement

as true. The reason why it is true must be understood. The bur-

den on memory is lessened as reasons are grasped. For a man

studying alone the mistake should never be made of putting an

entire evening on the work. Study one hour each evening, rain

or shine, and study hard. A rest of an hour is good and then

another hour, or even half an hour, of study will be found to clear

matters up wonderfully. Early in the game start teaching the

office boy, for to teach is one of the best ways to learn. If the office

boy cannot be interested then the studying is not being done right,

for a man who is studying in the proper spirit becomes some-

what enthusiastic over his progress. The most commonplace
facts are wonderful. That is why the newly found knowledge
should be passed on to the office boy, for men who know will not

care to have things they know placed before them as fresh

discoveries.

One considerable difficulty in the path of the self-tutored man
is eliminated when he finds a ready listener and pupil. The

tiresomeness of studying alone is hard to describe and accounts

for so many quitting early in the work. The writer usually or-

ganized a class, of some sort when he had to bone in a hurry and
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found it of advantage. Even so, difficulties arise, but they are

much like the troubles the old man spoke about on his death bed

as having been very real when they came, but as a matter of fact

most of them never happened. Walter Bagehot, in
"
Physics and

Politics," says:
"
Everybody who has studied mathematics knows

how many shadowy difficulties he seemed to have before he un-

derstood the problem, and how impossible it was, when once the

demonstration had flashed upon him, ever to comprehend those

indistinct difficulties again, or to call up the mental confusion

that admitted them."
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PRACTICAL
STRUCTURAL DESIGN

CHAPTER I

External Forces

A STRUCTURE is a combination of parts designed to hold

in equilibrium definite forces and in this book the word

"structure" is limited to buildings.

The intention being to give a modern treatment in the plainest

possible manner, it is necessary to settle upon a definite termin-

ology, that is, upon a system of shorthand symbols to use

for it is best to present rules in a condensed manner in order that

every step in an operation may be quickly apprehended. A rule

thus written becomes a formula. Formulas are merely mathe-

matical shorthand, and when a formula is seen it is not algebra.

Algebra is useful hi deriving a formula, but when the formula is

presented it requires only the use of common arithmetic to solve it.

Let W = a uniformly distributed load.

Let w = a unit of a distributed load. On a panel w is the load

per square foot. On a beam or girder w'is the load per

lineal foot. Then it follows that W = w multiplied

by the span.

P = a concentrated load. When several concentrated

loads are used the different loads are designated by
subscripts, as P, P,, P, P,, etc.

S = clear span between supports.

L = length of span used for obtaining a bending moment.

That is, a beammay extend from one support to another

with a span, S, measured from face to face of sup-

port, and this will be used in obtaining W, the total

load on the span. To find the bending effect of the

load it is necessary to use a length measured from

center to center of supports, or from points back of
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the face of the supports and this length is L, which

is always greater than S.

I = any portion of L or S used to obtain a distance from

the support to the center of gravity of a load. When
distances are required to several loads, subscripts cor-

responding to those under the respective

loads are used. Thus to load P, we use /,;

J to load PH we use L etc.

5. \->\ The use of the letters is illustrated in Fig.

*-7 *l
I 1, in which a cantilever beam is shown; and

in Fig. 2, in which is shown a beam on two
Fig. 1 TheCantilever SUppOrts . To illustrate a uniformly distri-

buted load the weight of the beam is used.

Sometimes the letters a, 6, c, etc., are used to designate portions

of a span or lengths less than the whole, but these will be dealt

with as they may arise. The letters x, y, z, etc., are used simi-

larly and will be dealt with when required.

DEAD LOAD. The weight of the structure and permanent loads.

LIVE LOAD. The load the structure is designed to carry in ad-

dition to the dead load. The live load consists of machinery,

merchandise, people, etc.

IMPACT. The effect of a live load in motion. It is added to the

live load and varies from twenty-five per cent for a slowly moving
load on a rigid structure to one

hundred per cent for a live load

suddenly applied.

WIND. This force acts perpendi-

cularly to the pressed surface, so is

horizontal on the sides of a building

and is a diagonal load when it acts
Fig 2_ Beam Iteŝ ng on Two

on a sloping roof. Supports

Moments

A cantilever beam is supported at one end and may be loaded

at any point with a concentrated load. The load tends to bend

the beam down. The uniformly distributed weight of the beam
tends to bend the beam also, so on all loaded beams there must be

considered the actual weight of the beam plus added loads it may
carry. The name "

cantilever
"
gives a hint that the bending action

is similar to that of a lever.
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All formulas and rules for obtaining the effect of loads on beams
are derived from the fundamental principle of the lever. It makes

no difference whether the beam rests on one, two, or more sup-

ports, the principle of the lever, as represented by the cantilever

beam in Fig. 1, gives the key for obtaining the desired information.

All formulas and rules for obtaining the strength of a beam to

resist the bending effect are similarly based on the principle of

the lever.

The bending effect is termed a
"
Bending Moment

" and the resist-

ing effect, dependent upon the form, size, and material, of the

beam, is termed the
"
Resisting Moment." The bending moment

is first found and then a beam having an equal resisting moment
is used to carry the load.

In structural design the moment may be compared to the com-

mon denominator in problems involving fractions. There are two

quantities which must be reduced to a common measure before

operations involving both can be performed. This explains why
engineers invariably equate (make equal) the bending moment
and resisting moment instead of working by rules derived by other

men. Each man who does much designing work derives rules

for himself because only by so doing can he be certain of their

correctness. When the underlying principle of moments is under-

stood no man should have trouble in verifying rules which he may
run across in his work or reading.

Tables are published of resisting moments of standard size

beams from which a designer may readily obtain a beam to resist

a bending moment, which is calculated for each case. Spans and

also loads to be carried on the spans vary considerably, every

building presenting a number of different combinations. All

rules and formulas apply to beams which are secured against side-

wise bending.

When the resisting moment is greater than the bending moment
there is obtained a factor of safety.

Let M = moment. This may be either bending or resisting

moment.

Mb = bending moment. The subscript is used only when
both moments are used in the same expression, and

there must be some distinguishing mark.

Mr = resisting moment, the subscript being used only when
the subscript b is used for the bending moment.
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The factor of safety = -

Mb
A Moment is the product of a force multiplied by the distance

through which it acts.

In Fig. 1 the load P, acts through a distance Lr The formula is

M = PL,

Forces act through the center of gravity of bodies, and a load

is a force, for it tends to bend the beam down. The length L, is

measured from the center of the support to the center of gravity

of the load.

For a uniformly distributed load the center of gravity is at the

center, which for the beam will be one-half of L, so the formula

for the bending moment due to the uniformly distributed load is

The total moment on the beam, when W is the weight of the

beam, is WTM or Mb
= PL,+^

In Fig. 6 a cantilever beam carries two concentrated loads. For

this condition wr

For more than two loads the formula will be the same, it being

only necessary to obtain the moment for each load and for the

weight of the beam and add them together.

When the load is in pounds and the distance to the center of

gravity is in feet the bending moment is in foot pounds. When
the distance is in inches the bending moment is in inch pounds.

A bending moment in foot pounds is converted into inch pounds

by multiplying by 12. A bending moment in inch pounds is

converted into foot pounds by dividing by 12.

The following examples will illustrate the foregoing formulas :

1. A cantilever beam projecting 10 ft. beyond a wall and weigh-

ing 50 Ibs. per lineal foot carries a concentrated load of 400 Ibs.

at a point 7 ft. from the wall. Find the bending moment in foot

pounds.
The total load is 500 Ibs. (weight of beam) + 400 Ibs. = 900 Ibs.

Assume the beam to be fastened in the wall 1 ft. and the center of
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bearing is then 6 in. from the face of the wall. The length used

for the beam will be 10 ft. 6 in. (10.5 ft.) and the distance to the

concentrated load will be 7 ft. 6 in. (7.5 ft.).

Mb
= (400 X 7.5) +

(

5 * 10 '5

)
= 5625 ft. Ibs.

Add a load of 200 Ibs. 4 ft. from the wall and a load of 300

8 ft. from the wall.

Mb = (400 x 7.5) + (200 x 4.5) + (300 x 8.5) +

The reader will notice that the distance to the center of gravity

has in all cases been measured back from the face of the support,

but the length used in computing the weight of the beam was the

clear length. In this way all the weights are those clear of the

supports, for the portion of the beam resting on the support has

no effect on the bending moment.

It is wrong to use only the distance from the face of the support

for cantilever beams, or the clear span between supports for

simply supported beams, when figuring a bending moment, as it,

throws all the bearing on the edge. By using the longer distance

in computing bending moments a stiffer beam is secured. Com-
mercial designers in competitive work invariably use the distance

measured from the face of supports, as they thereby save a little

material and are enabled to cut down cost. All designs should be

prepared by men who have no other interest than that of securing

for the owner a design which is not
"
skinned."

Continuous beams with uniform moment of inertia are not

subject to all the limitations of simply supported beams. This

will be discussed later.

Reactions

The loads acting downward exert an action on the beam,
which is resisted by the strength of the bearing. Considered theo-

retically the bearing exerts an upward force pushing against the

downward force and equal in amount. This is an example of the

old saying,
"
Action and reaction are always equal and in opposite

directions."

The reactions being equal to the load, it follows that the reac-
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tion of a cantilever beam is equal to the sum of the weight of the

beam and all loads it may carry.

R = reaction.

For beams carried on two or more supports a method will be

given later for computing the reactions on each support.

Shear

Shear is a downward cutting force exerted at the edge of each

support. It is called shear because if the material is soft the edge
of the support will cut it. A piece of butter resting on the edges of

two upturned knife blades is as good an example as any, perhaps,
of true shear.

V = shear. It is always equal to the reaction at the support,

and at other points on the beam varies according to laws

to be hereafter explained.

The use of the capital V to designate shear may be explained

by its resemblance to a sharp cutting

edge. Mathematicians may give an-

other reason, but the writer is inter-

ested in fixing a fact in the mind of

the student.

Graphical Methods for Moment,
Shear, etc.

In Fig. 3 a concentrated load acts

at the point D on the beam, AD.
The beam is drawn to any scale and
the load shown on it, as in the figure.

Underneath is drawn the line A,D,
and the bending moment at the sup-

Plot this to any

(c)

Shear

Fig. 3 Concentrated Load at
port is computed.
scale (say 1000 Ibs. = 1 in.) on the

vertical line A, A,,. Connect A H to D, by a straight line A H D, as

shown at (6). To find the bending moment at any intermediate

point on the beam drop a vertical line across the diagram and the

length of the line intercepted between the upper and lower lines

of the bending moment triangle gives the bending moment. For

example the bending moment at B is given by the line B,B,, and

the bending moment at C is given by the line C,C,,. The vertical

lines are forces and the horizontal lines are lengths, the closing
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line of the triangle being merely a closing line. There is no bend-

ing moment at D.

At (c) is drawn the shear diagram. The load being concen-

trated at the end, the shear of course is constant from the point

of application of the

load to the support.

The shear may be

found at any point by

measuring a vertical

line at the point across

the shear diagram.

Relation between

Shear and Moment

Diagram

Assume line C
fC,, to

be dropped across the

shear diagram. Then

the area of the shear

diagram to the right of

the line, that is to the

free end, gives the

bending moment at C.

Similarly, the area of

the shear diagram to

the right of line B,,B,

gives the bending mo-

ment at B. The area

is in foot pounds be-

cause the vertical di-

mension is expressed in

Moment Diagram

Shear Diagram

Fig. 4 Several Loads on a Beam

The relation is truepounds and the horizontal dimension in feet,

in all cases and must not be forgotten.

In Fig. 4 is shown the case of several loads on a beam. The bend-

ing moment at D = 0. The bending moment at C = 8 X 600, and

this is plotted as line CC,. The bending moment at B = (15 x 600)

+ (7 x 400), and this is plotted as line BB,. The bending mo-

ment at A = (19 x 600) + (11 X 400) + (4 x 200), and this is

plotted as line AA,.

The shear diagram, at (c), shows the shear at the right end
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The shear at the end

Beam

to be constant and equal to the load at the end until it reaches

the next load. It immediately changes to the sum of the two
loads and continues as a constant amount to the next load, when
it immediately becomes the sum of the three loads, continuing
thus to the point of support.

In Fig. 5 are shown the diagrams for a uniformly distributed

load.

and the moment at the end = 0.

The shear diagram is a triangle and
the shear at intermediate sections

varies as the vertical depth of the

triangle at the respective sections.

The bending moment diagram is

formed by a closing line which is a

semi-parabola. This may be proven

by dividing the uniform load into any
number of loads equal in amount and

finding the moment, as in Fig. 4, for

each load and connecting the ends of

the moments drawn to scale. The

closing line is a broken line, which

approaches a curve, depending upon
the number of unit loads into which

the uniform load is divided. By using

Moment
Diagram

fc)

Shear Diagram

Fig. 5 Diagrams for a Uni-

formly Distributed Load

a sufficient number the closing line becomes a parabolic curve.

If we assume the unit load to be one foot long and call it w, and

the length from any point to the free end is I feet, the moment
at any point is

,, wl-Mb = '

By using this formula points may be plotted one foot apart and

the ends connected by using a French curve.

In Fig. 6 is illustrated the effect of concentrated loads combined

with a uniformly distributed load. When a beam carries concen-

trated loads the shear and moment diagrams are drawn as de-

scribed for the uniform load. Then the moments and shears due

to the concentrated loads are drawn upward from the top hori-

zontal line of the diagrams. The total moment at any point is

the distance, BB, or CC, from the top closing line to the bot-

tom closing line, the intermediate horizontal line being disregarded.
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(a)

In Fig. 7 is shown the actual shear when the loads have a defi-

nite width and when the beam rests on a support of a definite

width. At the face of the

support the shear is a maxi-

mum and it is zero at the

end of the support. It is not

usual to show this in shear

diagrams, for it complicates

the drafting work without

enough benefit to pay for the

trouble. The slight difference

increases the factor of safety.

Beams Resting on Two

Supports

To determine bending mo-
ments on beams on two or

more supports, it is necessary
to find first the amount of

the reactions.

In Fig. 8 a concentrated

load is carried on a beam

resting freely on two supports.

For convenience we adopt the

conventional method of be-

ginning at the left end as in

reading. The word "conven- ^ ^
tional

"
has the same root form

as the word "convenience"

so may be easily remembered.

Common sense assures us

(c)

Shear Diagram

,,,.-, i Fig. 6 A Cantilever Beam Carryingthat if the load is in the Two Concentrated Loads
middle one-half will be carried

by each support. Let us imagine the concentrated load to be

stationary and the ends of the beam pushed up by the reactions.

The reactions being equal to the load, there is no movement, but
the forces actually exist.

Each reaction being one-half of P, then RI = ^ and R2 = -
2 2

This gives two cantilever beams with moments acting about
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(around) the load, with a lever arm = The bending moment

under the load (middle of span) is

,, P L PL

The reader is not to forget that in computing reactions, which

take into account only the

weight, we use the clear

span (5), but in computing
the moment we use the

length (L) from the center

of bearing on the support.

*n FiS- 9 a uniform load

(represented by the weight
ear Diagram of the beam) is carried Qn

. 7 A Cantilever Beam Supporting two supports on which it

an I-beam rests freely.

w
Each reaction = _-> in which W = wS.

This gives two cantilevers with moments acting about the center

of gravity of the beam, which being in the middle of the span

makes the length of the moment arms =
j-

measured from the

middle of the span to the center of gravity of each half span.

The bending moment is
^ ...................^___ ...............

W L WL wSL
"

* /t\M =
-^ X -T = -f> or -- I_(2_ I

A 4 O O "^ W&-

w
The load

-^
acts as a uni-

Fig 8_ Concentrated Load at Mid.

formly distributed load and ^n with Beam on Two Supports

not as a concentrated load at the end, although it is equal to the

reaction.

The reader will notice that the multiplication sign (x) is not

used between letters, for when several letters are written together
in formulas it means they are to be multiplied together. If the

multiplication sign were used it might be mistaken for the letter

x when written. The multiplication sign is always used between

figures. Thus, WL stands for W x L, but 67 means sixty-seven

and does not mean 6x7= 42.
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In Fig. 10 a concentrated load is assumed to be at the middle

of an opening spanned by a beam of uniform weight. The reac-

p w P + W
tions are as follows: R\ = R2 =

-^ + -^-
= ~ The bending

Zi 6 A

,, PL WL
moment is M =

j- -\

^-.

In Fig. 11 several concentrated loads are shown on a span and

the reactions are to be _^
found.

Commencing at the left

end take moments about 1 1

ely ^ c\g.

RI. Thus the bending mo.

ment at the left support is

T\f _ pn i p n _i_ p n Fig. 9 Uniform Load on Beam Resting+ /V*, + n<V
on Two Supports

This moment will have a

tendency to carry the far end of the beam, at #2, downward

unless a supporting force is exerted to hold it in position.

Here the principle of moments is again applied. The moment
of a force is equal to the force multiplied by the distance, or arm,

through which it acts, so it is necessary to have at R 2 an upward
moment equal to the downward moment. This is obtained by

dividing the downward moment by the span length.

F---FF^ "i
2 =

po+pr p"a"

"
~*"7r\ #1 =

(sum of the loads) #2 .

( h* I

pj ^ ^~^- 1-|

This is proved when we con-

sider that the sum of the re-

actions is equal to the total

Fig. 10 Concentrated Center Load and load. The amount of each
Uniform Load on Beam Resting on reaction may be checked by

taking moments from the right

end instead of the left and working as before.

Example: Let a = 3 feet and P = 200 Ibs.

a, = 7
" "

P, - 300 "

a,,
= 11

" "
P,, = 250 "

Span = 15 feet.
750 = total load.

7?
(3 X 200) + (7 x 300) + (11 X 250)

/ta =
T^

= 363.33 Ibs.

#1 = 750 - 363.33 = 386.67 Ibs.
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Checking by taking moments about the right end.

(4 x 250) + (8 X 300) + (12 x 200)
db.b7

R2 = 750 = 386.67 = 363.33 Ibs.

The same results may be obtained by common proportion, but

upon examination the method by moments is seen to be exactly

_ a^
the same thing, but with

t- *-----
j

less work. If the reactions

'^\ /^\ /E\ were found by the common
school arithmetical process

of proportion the work

would be longer and mis-

Fig. 11 -Several Concentrated Loads on takeg more t to occur
Beam Having Two Supports ,, ,

. . .

The method of moments

is the shortest and neatest way of working.

In Fig. 12 three concentrated loads are shown on a beam of

which the weight is uniformly distributed. First find the reactions

due to the concentrated loads. Then add to each reaction half

the weight of the uniformly distributed load.

Example. Assume a beam having a weight of 50 Ibs. per

lineal foot on a 15-ft. span, carrying the concentrated loads given

in the last example. What are the reactions?

Answer. Weight of beam = 15 x 50 = 750 Ibs.

The reaction at each end =
.

-=- = 375 Ibs.

761.67 Ibs.

#2=363.33+375= 738.33
"

Total load 1500.00
"

When the bending moment Fig. 12 Uniform Load and Several

is wanted at any section of a Concentrated Loads on Beam

beam we assume the beam at
Havmg Tw Supports

the section to be supported at the section and moments are taken

about it as if it were a cantilever beam. The reaction is an up-
ward force creating an upward moment and the loads are down-

ward forces creating a downward moment. The difference between

the moments in opposite directions is the bending moment at the

chosen section. When a beam is freely supported on two or more
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supports, this is always a positive (downward) moment, the beam

being in tension on the lower side and in compression on the

upper side between supports.

Bending Moment at any Point on a Beam on Two Supports

The loads are shown in position and amount in Fig. 13. First

find the reactions.

751.56

K 9> -- H
|^ 13.5'

Fig. 13 Example of Uniform Load and Several Concentrated Loads on

Beam on Two Supports

2
= (4.5x200) + (7.5 X30Q) + (11.5x250) + (8x750)

16

!
= (200 + 300 + 250 + 750) - 751.56 = 748.44 Ibs.

Check for Ri :

(4.5x250) + (8.5x300) + (11.5x200) + (8x750)

In finding the reactions the weight of the beam = 15 X 50 = 750

Ibs. This was multiplied by half the length of the span, which

gave the quantity above, 8 X 750.

What is the bending moment at the section zz?

The section xx is 2 ft. from the face of the left support.

The span face to face of supports = 15 ft., but the length center

to center of bearings = 16 ft., assuming a bearing 1 ft. long on

each support. Therefore the moment arm from the section to

the reaction at the right end = 13.5 ft. The moment arms to the

loads from the section are marked on the figure. There is one

moment arm, however, of 6.5 ft. to be explained. It is the length

from the section to the center of gravity of that portion of the

beam lying between the section and the support at the right end.

The total clear span = 15 ft. and the section is 2 ft. from the left
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support. The length of the beam therefore to the right support
= 13 ft., and one-half = 6.5 ft. The weight = 13 x 50 = 650 Ibs.

M = (13.5x751.56)-[(2x200)+(5x300)+(6.5x650) + (9x250)] =

1771.06 ft. Ibs.

In Fig. 14 the section xx is taken 5 ft. from the left sup-

port. This leaves the load of 200 Ibs. to the left of the section,

(fe @
=v

RI -151.56

-10.5

Fig. 14 Another Example of Uniform Load and Several Concentrated

Loads on Beam on Two Supports

so it is omitted from the calculations. The load was used in ob-

taining the reactions, but in this present example it will be noticed

that the moment arm from the section is only 10.5 ft. to the

reaction. The beam length = 15 5 = 10 ft. and the weight
= 10 X 50 = 500 Ibs., with a moment arm to the center of gravity
= 5ft.

M = (10.5x751.56)-[(2x300)+(5x500)+(6x250)>3291.38ft.lbs.

0(300\ (
7SO\

\^ y\ vLx
i \c\g.

Fig. 15 Still Another Example of Uniform Load and Several

Concentrated Loads on Beam on Two Supports

In Fig. 15 the section xx, is taken 8 ft. from the left sup-

port. The beam length = 15 - 8 = 7ft. and the weight = 7 X 50

= 350 Ibs., with a moment arm of 3.75 ft. to the center of gravity.

M = (7.5 X 751.56) -
[(3 x 250) + (3.75 X 350)] =

3574.2 ft. Ibs.
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The method given for obtaining the bending moment at any
section is used for any number of loads, three loads being used in

the examples for the sake of clearness. The computations being
illustrative the reactions have been given to fractions of a pound
and the moments have been given to fractions of foot pounds.
In actual work, it is generally considered that the nearest unit

is sufficiently exact.

Rule for Obtaining the Bending Moment; at any Section

of a Beam

Multiply one end reaction by the length from it to the section.

From the moment thus obtained subtract the sum of the moments

of the loads lying Between the section and the chosen reaction, using
as moment arms the length in each case from the center of gravity

of the load to the section. The a H^.... _ ^

portion of the beam included '^
between the section and the re-

action is to be counted as a load.

A floor is merely a shallow Fig. 16 Concentrated Load at Any

beam, usually with a width of Point on Beam on Two Supports
.. ~ .

,
as bnown

12 inches.

A beam is a secondary girder and the load is usually uniformly

distributed.

A girder is uniformly loaded when it carries the floor slab

directly without the floor load going first to beams. When the

floor rests on beams the reactions at the ends of the beams are

concentrated loads going to the girders.

A girder is generally carried on walls or columns and beams are

generally carried on girders. A rafter is a girder and purlins are

beams, or joists.

For a load concentrated at any point, referring to Fig. 16,

,, Pab ,
. , .M = -^> for load only.

Li

The derivation of the formula is as follows:

R2
= _, and Ri = P - R2 ,

Li

Tb*-M -**..*'.*&>
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The maximum bending moment for a single load is always under

the load. If the weight of the beam is included the moment under

the load is

M = RJ) ->

in which w = weight of beam per lineal foot.

Example. A beam with a length of 15 ft. between centers of

supports carries a load of 600 lbs. at a point 5 ft. from the left

support. The weight of the beam per lineal foot is 9 lbs. What
is the bending moment?

First. For load only.

,, Pab 600 X 5 X 10 OAAA ., .,M = -j = = 2000 ft. lbs.
Li lo

Second. For load and beam.

Pa wL 600 X 5 135
Rz -

-j-
+ ~n~ =

J-R-
1 o~ = *o7.5 lbs.

...1,2 /q v 102\M = RJ> -
^-

= (267.5 x 10)
- f

*
2 J

= 2675 - 450

= 2225 ft. lbs.

Referring to Fig. 17, the load P acts through the center of

gravity, but the effect is

lessened because the load is

distributed over a portion of

the beam instead of acting

at a point as it would were

the load round like a ball.

Fig. 17- Partially Distributed Load on a
Consider the load of QQQ

Beam Resting on Two Supports as Shown
lbs. in the last example to

be distributed over a length of 3 ft. What is the total bending

moment under the load?

tf.ftj-f-l
Writing this out it appears

q v 102 fiOft v 3
M = (267.5 x 10)

- ^-^ ^^ = 2675 - 450 - 225

= 2000 ft. lbs.



EXTERNAL FORCES 25

The formulas for the reactions are the same as though the load

was concentrated at a point.

For two equidistant loads on a beam, as in Fig. 18, the formula

for the reactions reads

The moment due to the loads only is a maximum under each

load and is constant at all points on the beam between the loads.

M ( for loads only) = Pa.

This can be proved. The loads being placed on the beam at

the same distance from the end, call each load P. Then the total

load = 2P. One-half of the

total load goes to each end, /^K /j^\
so the reaction must be

r|
- ^-

= P. The moment is
2 f

- L

equal to the reaction multi- Fig. 18 Two Equidistant Concentrated

plied by the arm through Loads on Beam on Two Supports as Shown

which it acts, therefore M = Pa.

Adding the weight of the beam gives us under the load,

M = R,a -
yf

in which w = weight per lineal foot of beam
a = length of beam between load and reaction.

To prove that the moment is the same under the middle of the

beam as it is under each load we must multiply the reaction by
half the span and subtract from it the load multiplied by half the

span minus the length of the arm from the load to the reaction.

The full written-out expression is as follows:

11. P X \-
NOTE. In the above expression algebra has been used for the

first time. The product of two positive (+) quantities is positive.

The product of two negative (-) quantities is positive. The

product of a positive (+) and a negative (-) quantity is negative.

In the above expression, where the subtraction is indicated, the

load P is negative and the first quantity within the parenthesis

is positive, for when no sign is written the positive (+) sign is
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understood. The second quantity is negative. By clearing

away the parenthesis and multiplying each quantity within by
PT PT

the load we obtain + -^- and
,
which of course cancel each

z z

other, leaving Pa, for P = reaction when weight of beam is

neglected.

Example (Fig. 19). A beam 15 ft. long, weighing 9 Ibs. per
lineal foot, carries two loads of 300 Ibs. each at points distant 5 ft.

,_ 5, from the ends. Find the

boh fod\ bending moment.
i

[

N|/
i

N
T cgr.

I

i First. Under each

15'-

load for the loads only.

M = Pa = 300 x 5 =

1500 ft. Ibs.

Fig. 19 -Diagram Illustrating the Example Thig moment
'

ig con.

stant for each point on the beam between the loads.

Second. Under each load for the load and the weight of the

beam.

R, = R z
= p + E= 300 + ^-4^ = 367.5 Ibs.

z z

M = (367.5 x 5)
- ~-^ = 1725 ft. Ibs.

This moment is not constant, for the weight of the beam between

the loads must be considered. The increase is slight and usually

is negligible, except in the case of concrete beams, in which the

dead load often equals or exceeds the live load. This example
will be worked out in detail, there being four distinct steps.

First. Total moment at middle of beam = Rz X -~-

Second. Moment due to weight of half the beam. The

weight = -~ Multiply this by the distance from the middle of

the span to the center of gravity of half the beam = This

reduces to -^- X -7
=

Q-, to be subtracted from the total moment,
2i 4 o

which took into consideration the weight of the beam. This gives
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Third. The moment due to the concentrated load must

be subtracted. The load is multiplied by the distance from

the middle of the beam to the load =(~n a
) J

this giving P x

I -
a)

= - + Pa, and as this is to be subtracted the minus

sign is placed before -^~-z

Fourth. The whole expression now appears,

When adding positive and negative quantities add each kind

separately. Take the difference of the sums and prefix the sign

of the greater sum. By inclosing the two negative quantities in

a parenthesis the sign of the second is changed, so the full expression

may be written

PL wU\

The arithmetical work is simple, as here shown

= (300 X 5 + 367.5 x 7.5)
- (300 x 7.5 +

9 X
?
25 = 1753 ft. Ibs.

Graphical Methods

To divide a line into any number of equal parts use the geo-

metrical principle of similar triangles.

"

3 2 3 5 5 6 7 V
Fig. 20 Division of Line into Equal Parts

In Fig. 20 let AC represent a line that is to be divided into any
number of equal parts. The length is such that no regular scale

can be used readily for the purpose. Set off from one end a line,

A B, at any angle. This line is drawn to some scale and divided

into as many equal parts as it is desired to divide the line AC.
Connect B to C and through the divisions on the line AB draw

lines parallel to BC, as shown.
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A number of curves are used by engineers and scientists, the

most useful of which, and the only one used by structural de-

signers, is the parabola. This curve is formed by cutting a section

Fig. 21 Section of Cone Developed into Parabola

through a cone parallel to the slope, as shown by the line EF
in Fig. 21. The major axis in all curves is designated by the letter

A and the minor axis, perpendicular to the major axis, by the small

letter a. The axes of a parabola are infinite, so for this curve A
designates height and a one-half the base.

r

L_

Fig. 22 The Parabola and its Equations

In Fig. 22 let X and x = the abscissas and Y and y the ordinates

of the parabola. The abscissas are parallel to and the ordinates

are perpendicular to the major axis. Assuming X and Y each
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with a value of 1, and X divided into 10 equal parts, the following

values are obtained, numbering the spaces from the bottom up.

Points on X Ordinates (Y)

1 0.949

2 0.894

3 0.837

4 0.775

5 0.707

6 0.633

7 0.548

8 0.447

9 0.317

Assuming X and Y each with a value of 1, with X divided

into 8 equal parts, the following values are obtained :

Points on X Ordinates (Y)

1 0.936

2 0.866

3 :... 0.791

4 0.707

5 0.612

6 0.50

7 0.353

To construct a parabola by using a table of ordinates erect a

perpendicular at the middle of the span having a height equal

to the bending moment, using any convenient scale. Divide the

line into 8 or 10 equal parts and through the division points draw

horizontal lines parallel with the beam. Multiply the half span

by the value of the ordinate for any line and set off to scale the

length of the ordinate. Connect the ends by means of a French

curve and thus obtain the parabola. In this method the scale for

all horizontal lines is the scale used in drawing the beam.

In Fig. 23 another method is shown. Divide the span of the

beam into any number of equal parts, numbering from each end

as shown. Multiply the maximum moment by the product of

the two figures under any line and divide by the product of the

two equal figures under the maximum moment line. The result

is the length of the perpendicular at the two numbers. Connect-

ing the upper ends of the perpendiculars by using a French curve,

the parabola is drawn. The scale used in drawing the perpendicu-
lar lines is the scale used in setting off the value of the bending
moment at the middle of the span.
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Compute the moments at the points shown in

1000 x 7 x 3

Example.

Fig. 23.

1000 X 6 x 4

5x5

1000 X 8 x 2

5x5

= 960

640

5x5

1000 x 9 x 1

5x5

= 840

= 360

The parabola in Fig. 23 was constructed by using perpendiculars

computed as shown and the curve drawn with a French curve.

The middle perpendi-

cular line was divided

into 10 equal parts

and the ordinates to

the major axis mea-

sured off on the hori-

zontal lines to check

the accuracy of the

curve. This is recom-

mended as an exercise

for the student.

A graphical method
for constructing a pa-

rabola is shown in Fig.

24. The perpendicular

representing the bend-

ing moment at the

Fig. 23 Ordinate Method for Constructing middle of the beam is
Parabola ,

set up and a rectangle

drawn, with a height equal to the bending moment and a width

equal to the span. The horizontal lines of the rectangle are

divided into any number of equal parts and the vertical end lines

into half this number. In the example the horizontal lines are

divided into 8 parts and the vertical lines into 4 parts. From the

apex radiating lines are drawn to the end divisions and vertical lines

are drawn through the horizontal divisions. A curve is drawn

through the intersections of the radiating and vertical lines.

All the common methods in use for drawing parabolas have

been given in order that the students may have a choice of methods

as well as to show that in even the most ordinary matters there

are several ways of accomplishing a result. The man who knows
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only one way for doing anything is apt to be dogmatic and think

his way alone is right. An ingenious man will discover for himself

Fig. 24 Graphical Method for Constructing Parabola

many ways to shorten his work when he knows he is not compelled

to adhere to some method he has been shown.

When the height of the parabola is greater than the span more

accurate results may be obtained than when the height and span
are nearly equal, or when the height is less than the span. Use

a scale that will give results with the accuracy required for the

work. In some work the height of the parabola may be much

Fig. 25 Graphical Solution for One Concentrated Load

Resting on a Beam

less than the span and still give results sufficiently accurate.

When the height of the parabola is not greater than one-tenth
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the span, a semicircle may be used. For cantilever beams the

vertex of the parabola is at the support. For beams on two or

more supports the vertex of the parabola between the supports

is at the top.

For one concentrated load in the middle of a beam resting freely

on two supports drop a perpendicular line under the load to repre-

sent the amount of the
a >K- bi ^ bending moment, as

. J^-b 4fe a M

Fig. 26 Graphical Method for Two Concen-

trated Loads Resting on a Beam

shown in Fig. 25. Con-

nect the lower end, C,

of the line by straight

lines to A and B.

Measuring vertically

from any point on the

center line of the beam
to the bounding line,

ACS, gives the bend-

ing moment at that

point. The moment
at any point may be

computed also if the

arithmetical method is preferred to the graphical method. The

load being concentrated at the middle of the span,

PL
4

'M

To compute the bending moment at any section, xx, distant

y from the end, use the principle of similar triangles

L PL

from which (for the load only)

PL

X L
Py
2'

The shear diagram is shown below. For a concentrated load

the shear is constant from the load to each end and the end shear

is always equal to the reaction.

In Fig. 26 two concentrated loads are shown. Call the length
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from either end a and that from the other end 6. Then under

each load (for the load only)

Through each load drop a perpendicular and set off the bending

moment on each line

for the load above
' ^

that line. Connect the T
_"" "".7".."_

S

M

"~

ends of the lines to the

ends of the center line

of the beam, thus mak-

ing two triangles. Un-

der each load is the

moment due to the

load, plus the moment
due to the other load

shown by the inter-

cepts, Pb and PI&I.

From a set off ac = Pb

and from at set off

aiCi = PI&I. The total

moment under P = PC

and under Pi = PiCi.

Connect the points by
the lines acciB, thus

forming a bending mo-

ment diagram (for the

loads only). The bend-

ing moment at any

point on the beam is

obtained by measuring
from the center line

Fig. 27 Graphical Method for Several Loads
on a Beam

(AB), of the beam to the bounding line of the bending moment
curve.

In Fig. 27 is illustrated the application of the method just

described to three loads. Any number of loads may be similarly

treated, no matter how unequal in weight nor how unevenly spaced.

Assume any number of equal loads equally spaced as in Fig. 28.

This amounts to a uniform load, and, triangles being drawn as

shown, for each load, a bending moment diagram is formed of which
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the boundary is a parabola. Knowing this to be true a parabola

with a height represented by
V-

= WL
8

~
8

M

is drawn to represent the bending moment for uniformly loaded

beams. The bending
moment at any point
is obtained by measur-

ing vertically from the

center line of the beam
to the parabola. The

bending moment at any

point of a uniformly
loaded beam is com-

puted as follows, call-

ing the distance from

the end of the beam to

the point in question x :

T., wlx wx2

A moving load, for

example a single wheel,

occupies each point on

the beam as it travels.

If a triangle is drawn

for each position of the

load and the triangles

are connected by a

bounding line a para-

bola will be formed

with a middle ordinate

equal to
Fig. 28 Graphical Method for Uniformly

Distributed Load on a Beam

M PLM = -->

for the continuous line across the span, of units each equal to the

load on the wheel, compares with a uniform load. Consequently,

to ascertain the bending moment at any point on a beam due to

a single traveling load, construct a parabola with a middle ordinate
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as above and measure the ordinate to the curve at the point

where the desired bending moment is to be found.

In Fig. 29 is shown the effect of concentrated loads plus the

uniform load due to the weight of the beam. The moment due to

the uniform weight of the beam is computed and a center line

measured upward to

represent this mo-

ment. Construct a

parabola.

Below the center

line of the beam con- i / x-x ,

struct a moment dia- L/ V ?) \

gram representing the

effects of the concen-

trated loads. The

bending moment at

any point is shown

by the line intercept-

ed by the upper and

lower boundaries of

the moment curves.

For example, at a dis-

tance y from the left

end of the beam the

bending moment is

shown by the length

of the line xxi.

In Fig. 29 the re-

actions are drawn to

scale so that ac and bd

each represent one-half the uniform load. Draw the horizontal

line ab and connect c to d. The two triangles represent the

shear to scale at all points on the beam. The horizontal measure-

ments are lengths and the vertical measurements are loads. Since

beams usually weigh much less than any load they carry it is com-

monly stated that the maximum moment and zero shear, or point

where shear passes through zero, occur always under a concen-

trated load. The student can see that this statement must be

qualified when the uniform load is considerable. The combined

shear diagram in Fig. 29 is obtained by adding the end reactions

Combined Shear

Fig. 29 Graphical Method for Combination of

Concentrated and Uniformly Distributed

Loads on a Beam
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due to the different load systems and making the sloped lines

parallel to those in the diagram of uniform load shear.

General Method for Position of Maximum Bending Moment

First . Find the reactions.

Second. Starting from either end add the loads until a point

is reached where the sum of the loads equals or exceeds the reaction

at that end. This is the point of maximum bending moment.

General Method for Locating Point of Zero Shear

First. Call the left reaction positive (+) and the right reaction

negative ( ).

Second. Call each load negative ( ) and successively subtract

from the left reaction each load, prefixing the proper sign until the

sign of the sum of the quantities changes from positive (+) to nega-

tive ( ). This is the point of zero shear and maximum bending

moment.

An inspection will show the two rules to be identical.

For a uniform load the shear at any point distant x from either

support is found as follows :

wL
Shear at x =

-^
wx.

When a moving uniform load is passing over the beam, a train

of small trucks, for example, the maximum shear at any point

When the load covers the span x = and the maximum shear at

, wL
the ends = -=

A crane travels on a girder with two wheels equally loaded and

separated by a constant dis-

tance. The maximum bending
moment is under one wheel

when this wheel is as far from
.i r # one SUpp0rt as the center of

Fig. 30 Two Equal Rolling Loads at gravity of the total load is

Fixed Distance Apart from ^ opposite gupp()rt

Referring to Fig. 30, if a is less than 0.586 L,

M =
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The maximum moment will occur twice on the span as the load

moves along, the moments being equal and distant one-fourth a

from the middle of .the span. The maximum shear is at one end

when, one of the wheels is

directly over the edge of the

support. j
(4)

In Fig. 31 is illustrated the fe-
case of two unequal loads at

ff
-** L -~"

If

fixed distance apart, moving .
.3

Fig. 31 Two Unequal Rolling Loads
across a span. Ihe maximum at flxe(̂ Distance Apart
moment is under the heavier

load. The maximum end shear is under the heavier load when it

is over the edge of the support.

Let w = weight of lighter wheel load (A).

W = total load = A + B.

a = distance center to center of wheels.

y = distance from heavier wheel to mid-span.

Mmax = maximum bending moment under heavier load.

JlSr-

In Fig. 32 is shown a graphical method for ascertaining the

bending moment when a load occupies a definite length on the

beam. The triangle is first drawn as though the entire weight
was concentrated at the center of gravity of the load. Drop ver-

tical lines from the ends of the load to intersect the triangle.

Connect the points of intersection by a straight line. Use this

line as the base of a parabola, which is then constructed as shown.

This method is also used if one end of the load rests on one

abutment.

Overhanging Beams

When beams overhang one or two supports the methods for

obtaining reactions, bending moments, and shears are no different

from those used for cantilever beams and beams resting freely

on two supports. The three examples following are from Greene's

"Structural Mechanics" (3d ed.).



38 PRACTICAL STRUCTURAL DESIGN

Fig. 32 Graphical Method for Concentrated Load with Wide Bearing

Studying Fig. 33 we see that the reactions are as follows:

750 x 25

20
937.5 Ibs.

R* = 750- 937.5^ -187.5 Ibs.

The weight of the beam has been neglected and the load at the

extreme left tends to revolve the beam around Ri so an additional

20'-

R2 IB7.S

Fig. 33 Concentrated Load on Short Overhanging Beam

load of 187.5 Ibs. will be required at #2 to hold down the right

end. The negative sign indicates an upward pull.
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The bending moment at Ri is

M = -750 x 5 = -3750 ft. Ibs.,

indicating a negative bending moment, tending to make the

beam convex at this support, showing tension to exist in the

upper part and compression in the lower part of the beam. At
section x-xi

M = -#2 X 10 = -187.5 x 10 = -1875 ft. Ibs.

also negative because R 2 is negative.

Check the moment at Ri as follows, using R 2 :

M = -187.5 x 20 = -3750 ft. Ibs.

This beam has a negative bending moment at all points, which

indicates tension above, and compression below, the neutral axis.

R2 eooitx

L- ........................
20'- J...V.^....J

fi,"750/bs.

Fig. 34 Concentrated Load on Long Overhanging Beam with Supports

Close Together

A positive bending moment indicates tension below, and compres-
sion above, the neutral axis.

In Fig. 34 the reactions are

ft _ 150X25 = 750 ,bs
o

fl2 = 150 - 750 = -600 Ibs.

Note that the divisor is, in all cases, the distance between sup-

ports. Both reactions are large compared with the load, showing
the absurdity of considering a beam to be fastened at supports

when it runs only a short distance into a wall. No beam should

be considered as tied unless it runs into a wall a couple of feet at

least and actually carries enough load to counteract the amount

of negative reaction.

Several loads are shown in Fig. 35 on a beam resting on two

supports and overhanging one of the supports.

D 100x18+200x16+150x13+300x11+50x8+80
16

880 - 665.625 = 214.375 Ibs.

.__ A0 _
= 665.62D Ibs.
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Fig. 36 illustrates an example given in Volume 1 of
"
Building

Construction," edited by F. M. Simpson, in which the weight of

the beam is considered. The total length of the beam is 28 ft. and

the weight is 100 Ibs. per lineal foot.

Fig. 35 Beam Carrying Several Concentrated Loads with

Short Overhang at One End

p 23 X 1000 + 14 x 1200 + 9 X 2800 - 5 x 500
ti\ =

20
~"

R z
= 5500 - 3125 = 1875 Ibs.

For all the overhanging beam cases the amount and location

of bending moment and shear at any point on the beam may be

found by the rules previously given for cantilever beams and

beams resting on two supports. Notice that the distance from

either reaction to the center of gravity of the weight of the beam
is equal to the distance from the other reaction to the center of

gravity of the weight of the beam for uniformly distributed loads

covering the whole beam. This applies as well to the team alone,

for the weight of a beam is uniformly distributed.

In Fig. 37 the beam weighs 20 Ibs. per lineal foot = 21 x 20 = 420

Ibs. Half is carried on each support, for the overhang is equal at

19'-

.-4.- ........- ...................
-20'.

.............._............L ......5' .....j
R2-2375/b&

Fig. 36 Beam Carrying Several Concentrated Loads, with

Both Ends Overhanging

either end. Each support also carries the concentrated load near-

est to it in this particular example.

Rl
= R 2

= 210 + 250 = 460 Ibs.

On the moment diagram the upper curved line (parabola with

vertex at the support) under the overhanging end shows moment
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due to the cantilever end of the beam. The straight line under

it shows moment due to the concentrated load on the extreme

end. The lower slightly curved lines, AC and BD, represent the

combined moments under the cantilever ends. This line at each

point is the sum of the two moments, so is a mean between the

parabola and straight line.

The bending moment at the middle of the span between the

two supports is found as follows, there being a positive and a nega-

tive moment to consider:

-M = 250 x 10.5 + (10.5 x 20) x 5.25 = -3827.5 ft. Ibs.

+M = 460 X 7.5 = 3450 ft. Ibs.

Actual

M = +M - M = -3827.5 + 3450 = -377.5 ft. Ibs.

This negative mo-

ment is set off at the

middle of the span

measuring down from

the line A B. The pa-

rabola CED is drawn.

The bending moment
at any point is found

by scaling the length

intercepted between
the line AB and the

bounding lineACEDB
of the bending moment

diagram. All lengths

measured horizontally

are distances and all

lengths measured ver-

tically are forces.

t 1-T- IL-.V- J

U^-~~
l5'~*--~ ipt

Shear Diagram

Fig. 37 Graphical Method for Beam with Two
Overhanging Ends

When the positive moment is greater than the negative moment
the point E is set off above the line AB, so the parabola in such

case is partly above and partly below this line. The curve above

indicates positive and the curve below indicates negative moment.

The maximum moment is where the shear changes sign. Where
the moment curve crosses the line AB there is no moment, this

point being termed the
"
point of reverse moment "

or
"
point of

contraflexure," or
"
point of inflection."
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The shear diagram is evident. After drawing all the diagrams
the student should check the moment at different sections by means
of the shear diagram. Drop a vertical line through the shear

diagram from any point on the beam. The area of the shear dia-

gram between this section and the nearest support is equal to the

bending moment at the section. When a beam rests on two sup-

ports and the moment is desired at any point the beam is assumed

to be fixed there and to be pushed up by a force equal in amount
to the reaction. Thus it is a cantilever beam, and by reference to

Fig. 3 it will be found that for a cantilever beam the moment
at any section is equal to the area of the shear diagram between

that section and the free end.

The principle of the lever applies in all cases and moment effects

are additive; therefore the effect of additional concentrated loads

on the beam may be readily found. This is recommended as an

exercise, arithmetical computations being checked by graphical

methods.

In the figures an arrow point indicates the center of gravity

of the bearing area. The clear span is S and the length of the

beam is L\. The moment span is L. To simplify all computa-

Ttions use L

, ,

and instead of M

use the formula M =

2

w X S X I/i

~8~~
wL2

the average length being used in all cases, as it is close enough
for all practical purposes.

In examples involving loads concentrated at some point one

side of the middle of a span the distance to the nearer support has

been termed a and the distance to the farther support b. Then

PabM =
~T-

The custom in modern text books is to use the letter a for the

shorter length and designate the longer length by describing it

as the difference between L and a. Thus

u Pa(L ~
a)M - --
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The older method was given for the reason that it is so frequently

met with in handbooks and trade papers, but the method of modern

text books is preferable and should be used by the student in his

work.

Equivalent Distributed Loads

A convenient method to use in figuring bending moments when
one or more concentrated loads must be considered in addition

to a uniformly distributed load, is to reduce the concentrated

loads to equivalent distributed loads. Suppose we take the ex-

pression last given for the effect of a concentrated load at some

point of the beam:

The problem is to find the value of W, the uniformly distributed

load.

W T

Arrange it thus, M = 5o

Eliminating fractions, 8M = WL

Dividing, W = -
L̂I

The student can see that after obtaining the bending moment
for the concentrated load the bending moment had only to be

equated to that for a uniformly distributed load. If he does a

little thinking he will see that if the concentrated load is off center

very far the bending moment is greater than it is at the center of

the span, yet the equation of the uniformly distributed load was

made on the basis of the maximum moment being at the center of

the span.

The method of equivalent uniformly distributed loads is in

common use in many designing offices, but only because it saves

a little time and because beams come in stock sizes. It always

gives a trifle larger beam than is necessary, so it is a safe method

to use. When the greatest possible economy is desired, or the

beam size selected is on the border line between a heavy and a

light beam, the exact method should be used to obtain the size,

as thereby considerable saving may be effected. The exact method

should be used also when a built-up girder is to be designed.

The uniform load has been found. Divide it by the concentrated

load and get a factor we will call m. Then divide the span by the
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distance from the concentrated load to the nearest support and

call the result x.

W L

Example. A beam weighing 200 Ibs. on a span of 12 ft. carries

a concentrated load of 750 Ibs. 3 ft. from one end. What is the

equivalent distributed load? What is the bending moment?

, , Pa(L -a) 750 x 3 x 9 ___ _
,, luAns. M = *-=-- = --

77;
-- = 1687.5 ft. Ibs.

L 12

8M8x 1687.5

W 1125m -
~P

=
750-

= L5 '

L 12
x = = = 4.

a 3

The equivalent distributed load producing a bending moment

equivalent to the bending moment produced by the concentrated

load = 1125 Ibs. and to this must be added the weight of the

beam, 200 Ibs. The total bending moment is

WL 1325X2

The student is advised to compute a table, following the above

example, with the concentrated load assumed to be placed at vari-

ous points on the beam, the table giving values of m and x, to be

used in shortening labor in future work.

Such tables are in use giving values of m and x for a dozen or

more points on a beam. The following table gives these values

for ten points:

When x = 2 m = 2

x = 3 m = 1.78

x = 4 m = 1.5

x = 5 m = 1.28

x = 6 m = 1.11

x = 7 m = 0.98

x = 8 m = 0.875

x = 9 m = 0.79

x = 10 m = 0.72
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In using the table first find the value of x by dividing the total

span by the distance from the nearest support to the load. Then

multiply the load by m in the table opposite the value found for

x. Do this for each concentrated load in turn, add the weight of

Fig. 38 Reference Table Showing the Strength and
Stiffness of Beams

the beam, and then find the bending moment for the total uniformly

distributed load so obtained.

The method of equivalent uniformly distributed loads is

applicable only to bending moments. When a load is uniformly
distributed the end reactions are equal and the shear is always

equal to the reaction, so if the reactions and shears are considered

at each end as being one-half the equivalent distributed load the

beam may be weak in shearing resistance and the supports may be

improperly designed. It is necessary, therefore, to compute the
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reactions by the exact method and at the same time find the

maximum shear. The beam will be designed for maximum shear

and the supports will be properly taken care of.

The accompanying table of strength and stiffness of beam is

valuable for daily reference in beam calculations. The subject

of deflection will be taken up later. This table, Fig. 38, takes

as a basis the uniformly distributed load on a beam resting freely

on two supports. In the first column is shown the loading con-

dition; in the second column the formulas for ascertaining the

bending moments; in the third column the relative loads, and in

the fourth column the relative deflection due to these loads. For

example, the cantilever beam carrying a concentrated load at one

end will support only one-eighth the load the same size beam with

the same span will carry when freely supported at the two ends.

The deflection under this load will be 3.2 times the deflection of

the freely supported beam carrying 8 times the load. The uni-

formly distributed load on a beam securely fastened over supports
is 1.5(3/2) times the load carried on the same beam on the

same span when freely supported and the deflection is greatly

lessened, being only 0.3 the deflection of the freely supported
beam carrying two-thirds the load of the restrained beam.

Restrained Beams

In Fig. 39 is shown a beam tied into the supports. This is known

as a restrained beam. A restrained beam carrying one centrally

concentrated load will be first considered.

Q-

Fig. 39 Beam Resting on Fig. 40 Beam Deflected under

Supports Loads

When a beam is simply supported, that is rests on supports

without being fastened in place, it deflects under load as shown

in an exaggerated manner in Fig. 40, so the ends AB and CD
slope and are no longer vertical. At E there is compression and

at F there is tension, but no tensile or compressive stresses exist

at A, B, C and D.

When a beam having a uniform moment of inertia (that is, a
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y
I

Fig. 41

beam symmetrical in form with material uniform throughout)

is restrained, the ends have no slope when the beam carries a load.

The case is shown in Fig. 41, where the ends are extended to

some distance, b, where a

load is placed which has sufn- I

cient weight to hold the ends Q
in the original positions. '-

Tension under such condi- L

tions exists at A and C with

compression at B and D. At

the point where the beam
ceases to be horizontal and bends down there is neither tension

nor compression, the only existing force being shear. This point

is termed the
"
point of contraflexure," the

"
point of reverse

moment," or the
"
point of inflection."

In Fig. 42 the shaded tri-

angles represent the mo-
ments of the actual center

load and the two assumed

end loads. These loads, as

well as the length 6, may
actually exist, but the same

effect will be obtained by riveting or otherwise fastening the ends

of the beams to, or in, solid supports; therefore the loads and the

moment areas beyond the point of support are said to be imagi-

nary or assumed. The condition created is that of a simply sup-

ported beam, having a length measured between the points of

contraflexure, carried on the ends of

two short cantilevers. An expression

must be found for the force creating

such a condition and also for the

lengths of the cantilevers, that is, the

distance from the point of support to

the point of contraflexure.

In Fig. 43 let the triangle ABC re-

present the moment area due to a

concentrated load at midspan of a

freely supported beam, AC. The two end triangles AGF and CDE
are the moment areas of the loads causing the restraint. An in-

spection will show that the combined areas of the two end triangles

Fig. 42
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must equal the area of the triangle FEE and that the points of

contraflexure lie vertically beneath E and F.

Assume a rectangle AGDC placed on the span AC. The area

of this rectangle times the distance to the center of gravity from

either support must equal the area of the triangle ABC times the

distance of its center of gravity from the same support. This is

known as equating moment areas, or,

(AC x AG) x y = ^ x y.

Let AG = x. The span, AC, is common to both sides of the

equation and the length, y, of the moment arm is one-half of AC,
so may be eliminated, as it also is common *to both sides of the

equation, which is treated as follows;

AC x Z
Eliminating y, AC x x = =

^
Eliminating the common factor AC, x =

i

V
From the similarity of triangles, since AG = DC = x = -&

then AF = FB, and CE = EB, for F lies in the line AB and E
lies in the line CB, and the line GD, parallel to AC, intersects the

line AB in F and the line EC in E,

The length EF = GF + ED; therefore. the area of the triangle

FBE = area of triangle AGF + area of triangle CDS. The length

AC
GF = ED =

-^ ;
therefore the points of contraflexure are \L

from the supports.

Since Z =
^-

and x = =>

PT PT
then x = negative moment = \ x r- = ~

The positive moment
Z I PL PL

=2
=

2
X

4
=+-r

PI PT PT 7

Let ^ = ^P; then PI =^ and I = ^ (eliminating P).4 o ^ ^

Since I =
-^

and I + 2a = L,

L -I L
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The uniformly loaded beam restrained at the ends is shown in

Fig. 44. The reasoning follows that for the beam carrying one

center concentrated load. The bending moment diagram, however,

WL
is a parabola with height, Z = > the area of which is equal to

o

the product of the base times two-

thirds the height ;
then

Eliminate like quantities from the

two sides of the equation and

2Z
*-T

Then x = negative moment =

2 WL WL~
3
x IT

= ~
l2~'

at ea e

The center positive moment = x ^
= + -^jo o 2A

Now take unit load per lineal foot = w.

"A.'''. WJ2 WL2
t

WL2
. , L2

, ,. . .. x
Let ~^~

= ~^r> tnen wl = ~5~ an(i ' =
"5~ (eliminating ?).

o Z4 o o

z /? =A L
\ 3 V3 1-732

When L = 1,1 = -^ = 0.5773L.
1. 1 oZ

Since Z = 0.5773L and Z + 2a = L,

a = L_^ 1.0000- 0.5773

Continuous Beams

Continuous beams, that is beams running over a number of

supports, are designed by methods which are an extension of the

principles used for overhanging beams and restrained beams.

The only instance of continuous beams in wood construction ap-

pears in the placing of floors over joists or closely spaced beams.

On account of the excessive deflection of wood this is not justifi-

able, for the theory underlying continuous and restrained beams
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requires that the supports be immovable. The slightest settle-

ment causes increased stress and sometimes a reversal of stress.

As it is merely a matter of properly designed connections, con-

tinuous girders and beams are sometimes used in steel structures.

They are not common, however.

The maximum stresses are invariably over the supports, and

lack of realization of this fact has caused distress to some de-

signers. The principle of continuous beams finds application in

reinforced concrete work. Owing to the monolithic character of

reinforced concrete there is no other proper way for designing in

this material. To assume that the bending moment on a span

= does not make it so, and designers who assumed that the
o

greater stiffness thus secured would permit the use of a smaller

moment over supports suffered in reputation thereby.

By methods involving the use of higher mathematics it can be

proved that the sum of the moment in the middle of the span and

the moment at one support = -5 In the study of restrained
o

beams this has been shown, for, disregarding the signs,

WL WL _
3TFL _ WL

12
+

24
=:

24 8
'

The smaller moment, however, is in the span and the larger

WL
moment is over the support. To assume M =

^
does n t make

the moment over the support =
-^r-

based on the following reason-

WL WL 3TFL 2WL WL
ing;

j^-
=

-g| ^4"
=
-^"

The moment over the

WL
support is -vo~' or nearly this amount, no matter what assumption

may be made for the bending coefficient in the middle of the

span.

When the moment of inertia of the beam, or slab, is constant,

the tension over the support is that due to a moment =
^r->

if the span is designed for M = +
-jo~'

However, if the amount of

steel is reduced so the resisting moment will be barely sufficient
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45 Coefficients for Maximum Negative
Bending Moments for Uniform Loads over

the Supports of Continuous Beams with

Equal Spans. M = CwP, in which
C = coefficient.

Example: M = ~ = 0.125 wP.

to take care of this amount of bending moment, the moment of

inertia is thereby altered. Changing the moment of inertia has

the effect of greatly increasing the tension in the steel over the

supports. The posi-

tive and negative
moments should total

%WL and not \WL,
this in effect making
the positive and nega-

tive moments for in-

terior spans and sup-

ports =iW-
When one panel is

loaded and an adja-

cent panel is not
loaded there will be

an uplift in the un-

loaded panel, for it opposes only the dead load to the combined

dead and live load on the loaded panel. To make the positive

and negative moment coefficients in each panel equal gives the

necessary stiffness and increased weight.

Assuming spans equal in length and loaded uniformly, the

negative bending moment
coefficients to use over

supports are shown in Fig.

45. Each square repre-

sents a support and the

coefficients are given as

decimal instead of com-

mon fractions. The mo-
Fig. 46 Coefficients for Maximum Positive , , i

Bending Moments for Uniform Loads on
ments are constant at the

Equal Spans of Continuous Beams. edges and across the tops.
M = Cwl-, in which C = coefficient. Assuming spans equal

Examples: M =^ = 0.125 wP. in leri&h and loaded uni-

formly, the positive bend-

ing moment coefficients to use for the spans are shown in Fig. 46.

The coefficients, however, are the theoretical coefficients for beams

with constant moment of inertia. They should not be used for

the reasons given above, for it is best to have the positive and

negative moments equal.
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Assuming spans equal in length and loaded uniformly, the

coefficients to use in figuring the reactions on the supports are

given in Fig. 47. These coefficients give the total reaction due to

the load from the middle of one span to the middle of the adjacent

span, one full panel

length. The moments
on each side of the

support differ, as

shown in Fig. 46, so

the shear at the edge
of the supports is pro-

portional to the mo-

Fig. 47 Coefficients for Reactions for Beams ment coefficients in
under Uniform Load over Several Equal Spans fu p annn<s TTnallv
and Freely Supported at the Ends, fl = Cwl.

* SpanS
/ .

JsU
fly '

however, it is safe to

use half the reaction for the shear on each side of a support. The
three figures are all based on the assumption that the ends of the

beams are freely supported.

Spans are not always equal in length for continuous beams
and the beams are not always uniformly loaded. A complete
discussion of such conditions is best treated graphically and will

be taken up in another chapter.

When spans are unequal the reactions for continuous beams

must be computed for each span separately. The total reaction

on any intermediate support is equal to the sum of the reactions

for the adjacent spans.

Let MI = moment at left end of span.

Mz = moment at right end of span.

Ri = reaction at left end.

Rz = reaction at right end.

w = load per lineal foot.

Z = span. When the moment is in foot pounds the span
is in feet.

/2

R, x I - M2 = -Mi + ^>
by taking moments about Rz from which

wl Mj - M, ,

Rl =
~2 1

wl M2 -M!
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The reaction from a continuous slab is carried by the beam and

constitutes the uniform load on the beam, plus the weight of the

beam. This in turn is carried by the girder and, together with

the weight of the girder, constitutes the uniform load on the girder.

The girder, if continuous, transmits to the columns the effect of

the unbalanced moments over supports, of slab, beam, and girder.

Columns must be proportioned to carry this load made up of the

direct weights plus the unbalanced moments in the system of

framing.

Building ordinances require that the effects of unbalanced

moments must be considered in design. The author in his own

practice designs in this manner. It is the practice of all reputable

designers. The majority of reinforced concrete buildings in the

past have been designed by firms engaged in the business of sell-

ing steel. A large part of the work of the author for several years

consisted in checking these
"
free

"
(so-called) designs and he has

not found one in which anything more than the direct load was

considered. The practice being somewhat common and struc-

tural engineers in building departments having passed designs so

prepared, he has had no other alternative, for it was what is termed
" common practice." After the date on which the present book

is placed on the market he will approve no more designs following

the old
" common practice

" and will force designers to fully

recognize the effect of unbalanced moments.

The "
free design

"
is usually given in the following way. An

architect is employed by an owner to prepare plans for a rein-

forced concrete structure. The architect not being an engineer

specialist has a choice of either employing a reputable engineer

to prepare the engineering design, for which he must pay a con-

siderable part of his own fee if he has no engineer employed on

salary, or he merely prepares general drawings and in his speci-

fications states that competitive engineering plans will be accepted.

Sometimes he fixes the stresses and other necessary designing speci-

fications, but more commonly omits to do so. Many architects

believe that reinforced concrete design is as standard as steel

design, which is not the case.

Contractors who bid on the work apply to steel selling con-

cerns for designs. These are prepared and the contractor is given
a lump sum price for the steel, which includes the cost of making
the design. Frequently the amount of concrete is guaranteed by
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the steel salesman. Sometimes the above procedure is varied by
a draftsman being employed to make the building plans and the

owner takes up the design of the structure directly with some steel

salesman. In this case the plans are furnished without cost to

the owner, provided the firm supplying the plans sells the steel.

A price is fixed for the plans in case the owner purchases the steel

elsewhere. The price for the design must then be added to bids

for the steel, which usually results in the owner purchasing the

steel from the firm giving him the
"
free

"
design. There is severe

competition in the steel-selling game, the result being that few

designs thus made are as good as they should be.

The designers employed by steel salesmen are first-class men
in nearly every instance, but in order to hold their positions they
work for their employers rather than for the owners, which is quite

natural. Few of these men, when they finally go into business for

themselves, design exactly as they were forced to design when they
were required to assist in selling steel. If the owner employs a

reputable engineer in private practice to do the engineering work

and pays him a fee in addition to that paid to the architect, he

will receive designs which conform to the best modern practice and

all contractors will bid on these designs. The difference in cost

between the certainty of good work and the uncertainty affect-

ing the
"
skinning

"
of designs by steel salesmen will be very small.

Frequently the competition between contractors will entirely

wipe out the difference.

Owing .to the large number of unsatisfactory designs received

under the competitive method of having steel salesmen furnish

the engineering work, and to the failures occurring during con-

struction, the practice should be abandoned. The average owner,
and many architects, consider the engineer as an expert juggler

with figures and a sort of human attachment to a slide rule and

table book. When a steel-selling concern boasts of the ability of

the engineers employed by it the engineers are really only highly

trained men doing clerical work, for computing the strength of

parts is nothing more. The engineer really is, or should be so

considered, a man whose only interest is the safeguarding of the

interests of his employer. No man can serve two masters, and the

designer who is trying to help his employer make the largest pos-

sible profit on the sale of steel cannot be a disinterested designer

for the owner who does not employ him directly but merely
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obtains his technical services through a salesman as an inter-

mediary.

Sometimes architects and owners obtain competitive designs

on specifications prepared by a reputable engineer in private

practice and insert in the specifications a clause that the success-

ful bidder must deposit some definite amount to pay the cost of

having the designs checked by the engineer, whose name is given.

The author does a great deal of work of this sort and is glad to see

that many architects are now insisting upon having competitive

designs thus checked. When they all do it there will undoubtedly
be a radical change in

" common practice."

When an engineer is independently employed to furnish engi-

neering service he should not accept the work if it stops with the

furnishing of the plans and details. He should insist upon being

retained as an adviser during the progress of the work. The
work of the best designers may often be discredited when the low-

est bidder is not possessed of enough experience, or honesty, to

put into the fabrication of the structure the quality of work which

the designer put into the design. That many poorly designed

buildings stand to-day is due to the fact that the work was per-

formed by honest, experienced contractors.



CHAPTER II

Internal Forces

THE
term "

bending moment "
is a description of the

breaking effect of external forces on a beam. The term
"
resisting moment

"
is a description of the effect of internal

forces in a beam set up to resist breaking. Beams not stayed

laterally will bend to one side, in which case the full value of the

resisting moment is not obtained.

The action of the resisting forces may be illustrated by simple

framework, for a frame is merely a light beam containing little

or no superfluous material. The ideal frame contains no superflu-

ous material, but if this is obtained by an increase in cost of fabri-

cation the frame is not ideal from the standpoint of the user,

regardless of the mathematically ideal condition.

The designer soon finds that mathematical analysis of stresses

treats frames as lines through the center of gravity of pieces. It

is with pieces that the designer has to deal. In a mathematical

design of a frame all forces act at points, and when a line of infini-

tesimal thickness, dealt with by the mathematician, is replaced by
a piece of wood or steel or concrete, certain stresses are set up
around the points. Then joints are constructed and an Analysis
must be made of the forces around the joints, this involving the

design of rivets and fastenings to keep the joints from moving.
A simple beam contains some superfluous material, but much

of this material acts to transmit stresses in various directions and

thus takes care of internal stresses which otherwise would inter-

fere with the direct action assumed to take place along the lines

connecting the points around which the forces act.

The strongest frame is a triangle, for a triangle with sides of

fixed length cannot distort under direct stresses acting along the

center lines of the pieces of which it is composed.
The capital letters A, B, and C are used to designate the three

angles of a triangle, and the corresponding small letters are used

56
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to designate the sides opposite the angles. By placing the capital

letters so small b will represent the base and small a will represent

the altitude (height) of a triangle the student has a mnemonic

idea of the relations of the sides and angles. In the following

figures
a = BC (line from B to C)

6 = AC (line from A to C)

c = AB (line from A to B)

Fig. 48 Frame with Inclined Strut

Then in Fig. 48 b = Va2 + c2 = 8.246,

u^^-....

* ,: zrrr^^

Fig. 49 Frame with Inclined Strut and In-

clined Tie

in Fig. 49 6 = c = V (a/2)
2 + (line A-a)

2 = 8.062,

Fig. 50 Frame with Inclined Tie

in Fig. 50 c = Va2 + b2 = 8.246.

The rule is known as the
" Rule of Pythagoras

" and is given

in every school arithmetic as follows:

In every right-angled triangle the square on the hypothenuse is

equal to the sum of the squares on the other two sides.

In Fig. 48

cP = 8 X 3000 = 24,000 ft. Ibs. in member C.
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The stress in c = =
7.

= 12,000 Ibs. tension, for the stress
a z

acts away from the point B.

bP = 8.246 x 3000 = 24,738 ft. Ibs.

for member 6.

r r> cy
A *7OQ

The stress in b = = ' = 12,369 Ibs. compression, for the

stress acts toward the point C.

In Fig. 49 cP = bP = 8.062 x 3000 = 24,186 ft. Ibs.

24 186
Stress in c = stress in 6 = '- = 12,093 Ibs., the character of

the stress in each member being determined by whether the mem-
ber pulls from the point of fastening or pushes toward the support.

In Fig. 50 cP = 8.246 x 3000 = 24,738 ft. Ibs. Stress in

= 12,369 Ibs. tension.

bP = 8 x 3000 = 24,000 ft. Ibs.

bP 24 000
Stress in b =

-^
=

^
= 12,000 Ibs. compression.

The examples show that the stress at any point in a horizontal

member of a frame is equal to the bending moment at the point divided

by the depth of the frame at that point. The stress in an inclined

member is equal to the stress in the corresponding horizontal member

times the ratio of their respective lengths.

A frame is so made that certain members are hi tension and

other members are in compression, the shear being carried by the

vertical and inclined members. The lines of travel of the stresses

are plainly exhibited. The same lines exist in a solid beam, so in

a beam it is also true that the horizontal stress is equal to the

bending moment divided by the depth of the beam. On one side

of the neutral axis the stress is tension and on the other side the

stress is compression. This will be fully explained later.

Assume that the frame is made of some material, 'wood for

.example, in which a fiber stress of 500 Ibs. per square inch can be

used in either tension or compression. Referring to Fig. 49, where

the stress in each member is equal, each member will require an

area =
cc'nn

= 24.186 sq. ins. Extracting the square root gives
OUU

the dimensions of each piece as 5.85 ins. x 5.85 ins., which, of course,
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will be commercial 6 ins. x 6 ins. wood, after surfacing. The pieces

therefore can be 6 ins. square. The lines of stress pass through

the centers of the pieces, otherwise some twisting and bending
strains will be set up. Twisting is called torsion in such cases.

The actual construction of such a bracket frame is shown in

Fig. 51, the stresses for which are given in Fig. 50. The lower

piece rests on an angle at the wall and a plate may be placed

between the end and

the wall if the pressure

exerted is greater than

the wall can stand.

The area of the plate

will be such that the </*- /A ,

, v . i* v, i^oW**-
pressure will be distri-

buted to an extent cal-
Fig. 51 Design for Sidewalk Canopy AN

culated to keep the

allowable compressive load on the wall within proper limits. The
load P represents the reaction at the outer end of the frame,

the reaction at the wall end being carried on the angle support.

The diagonal is a rod which will be about 1 in. in diameter if of

steel, for steel can be stressed to 16,000 Ibs. per square inch in

tension. To anchor the rod in the wall a bolt 1 in. in diameter

extends into the far side and there a plate is fixed or it may be

anchored in a concrete block in the wall.

The circumference of a circle is 3.1416 x the diameter. The
circumference of a 1-in. rod is 3.1416 ins., so for each inch in length

there is an area of 3.1416 sq. ins. An adhesion of concrete to

steel of 75 Ib. per square inch is customary, so the adhesion per

inch of length of the anchor rod in the concrete = 3.14 x 75 = 236
12 QCO

Ibs. The total length of the rod = ^ = 52.41 ins. Instead of

using one straight rod with a ring in the end it can be made

U-shaped, each leg embedded in the concrete 27 ins. A much
lower stress may be obtained by running the tie rod higher, an

angle of about 45 degrees being good.

This example was worked to illustrate the simplicity of such

computations and to show that all lines of stress must pass through

points. In Fig. 51 the tie rod is shown to run quite a distance

into the bottom member in order to have all the forces acting

property. In practical work the vertical bolt suspending the
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load will have an eye ring at the top to receive the tie. The

eccentricity will not be large enough to make a great difference,

but even this small amount can be greatly reduced by running the

tie at a steeper angle.

Assume that the lines of stress are contained within a beam,

Fig. 52, anchored in the wall in the usual way. The size of the

beam is proportioned to take care of the tensile, compressive, and

shearing stresses and the anchorage is the only item to be now con-

sidered. The wall reaction is

equa] t the sum Of aii tne

loads on the beam, so the

weight of the wall resting on

the beam must be equal to, or

Fig. 52 Action of Moments in Anchor-
exceed, the reaction. Weight

age of Cantilever Beam

bottom surface, and as the wall must be of a definite width to rest

on the beam a moment is created.

In Fig. 52 the weight of the wall multiplied by the distance

from the face to the center of gravity must be equal to the moment
obtained by multiplying the loads on the beam by the respective

distances from their centers of gravity to the face of the wall.

The illustration of how the stresses are obtained is true for

beams or frames resting on two or more supports, the stress being

equal to the moment at a point divided by the depth at that

point. When the lower member is a square piece of timber the

distance is measured from its center and when the upper member
is a rod the distance is measured to the center of the rod. That is,

all distances are measured between centers of gravity of the parts,

or members, of a frame, the total over-all height from the top to

the bottom being equal to the distance center to center plus half

the thickness of each piece.

When a frame or truss is composed of angles or other rolled

shapes the distance is always measured between centers of gravity

of the top and bottom chords. Thus when depth is mentioned

it is not the over-all depth. The stress obtained is the stress on

the center line passing through the center of gravity, the stress

being slightly larger at the outer edge of the rolled section and

slightly smaller at the inner edge, when there is bending. In

pieces acting as plain ties or plain struts, so .the stress is pure

tension or pure compression without bending stress, the stress is
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equal over the entire area. In a frame pieces are generally so

placed that the stresses are purely tension or compression, but a

beam is a solidly filled frame and the stress is greatest at top and

bottom, reducing to zero on the line where the compressive force

changes to tension. It is necessary then to find the position of

the center of gravity of the beam on each side of the neutral

plane.

The question may be asked,
" Why is the depth used as a

divisor?
"

Referring to Fig. 48 and Fig. 49 a dotted line is shown

from B to D. The moment is obtained by multiplying the load

by the horizontal distance from the wall. To resist this moment,
which means to prop up the member AB, there must be some

force exerted at a distance BD from the point B. That is, the

bending moment and the moment to resist it are taken about the

point B. The bending moment at B = 8 x 3000 = 24,000 ft. Ibs.

This is resisted by some force acting about the point B with an

arm = BD. Thus the upward pushing force in the member
AC must equal the downward moment divided by the length BD.
This upward force is a reaction and is compressive.

To obtain a reaction multiply the loads by the distance through
which they act and divide by the span length between supports.

The obtaining of tensile and compressive stresses is the same

thing. First a 'downward bending moment is obtained and then

a reaction is found by dividing, not by the span of the beam, but

by the span between supports. There is an upper support to

which the tension member is fastened and a lower support against

which the compression member abuts. The distance between them

is the span between supports. This span is the distance measured

on the shortest line between the lines representing the direction

of the forces, so it is perpendicular to the direction of the inclined

member. For all practical purposes the lower support is at D
and not at C. The member is merely carried on to the point C.

It is correct to multiply the load by the arm BA and divide

by the arm BD in all cases, but considerable work must be done

to obtain the length of the arm BD. This requires a knowledge
of geometry and trigonometry and the use of tables of functions

of angles. To obtain the length of the inclined member and use

this as a moment arm and then divide by the vertical, distance

between the centers of gravity of the top and bottom members,
is the shortest method and commonly used, for the result is correct.
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The experienced structural designer uses tables of squares to

lighten the labor of making the computations involved in obtaining

the hypothenuse of a triangle. Barlow's Tables contain the

squares, cubes, square roots and cube roots of all numbers from

1 to 10,000. Smoley's Tables for the Use of Structural Designers
contain the squares of all lengths up to 100 ft., varying by six-

teenths of an inch.

Moment of Resistance

In Fig. 53 is illustrated a beam loaded so there is a tendency
to bend, which tendency is resisted by compression in the upper

fibers and tension in

the lower fibers.

The beam rests on

-j
two supports. If it

were a cantilever
Fig. 53 Compressive and Tensile Force Triangles keam the compres-

in a Beam
sion would be in

the lower fibers and the tension in the upper fibers. The two

triangles show graphically the forces, the horizontal shading repre-

senting the compressive force and the vertical shading represent-

ing the tensile force. The overlapping portions of the triangles

neutralize each other, and the force triangles in Fig. 54 are the

result. In the case considered the beam is uniform hi cross sec-

tion and the stresses in tension and compression are equal ;
there-

fore the triangles are equal in size and the neutral plane where

the triangles meet is in the center of area of the cross section.

The neutral plane

is a plane in the t*~

center of gravity of

the section, parallel
|

with the upper and

lower surfaces,
where there is no Fig. 54-The Usual Method ofRepresenting Action

of Resisting 1 orces in a Beam
tension or compres-
sion. The stresses above and below are opposite in nature;

therefore the only stress along the neutral plane is horizontal

shear. The word "
neutral" implies that in this plane opposite

forces are neutralized.

This definition of the neutral plane is important. In all text

books the illustrations refer to beam sections of homogeneous

i
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material, with equal tensile and compressive unit stresses. There-

fore the center of gravity of the beam section is the center of

gravity of the area of the section. For this reason a great many
students claim that the neutral plane is always in the center of

gravity, which is correct, but they insist that this section of

gravity is at mid-depth, which is not always correct.

The total tension must equal the total compression. When a

beam is strong in compression and weak in tension, or vice versa,

the neutral plane will not be in the center of area of the cross

section if the beam is not proportioned for this condition, but it

will be in the center of gravity. We will now explain this state-

ment, which appears to be contradictory. Assume the stress

triangles in Fig. 54 to be equal, although the tensile fiber stress

may be lower than the compressive fiber stress. The fact that

the two forces must balance makes the height of one triangle

greater than the other, for
"
fiber stresses are directly propor-

tional to their distance from the neutral axis." We therefore have

two triangles of stress, one with a wide base (high fiber stress)

and the other with a narrow base (low fiber stress). The heights

obviously must vary in proportion in order that these
"

stress

areas
"

will be equal.

The illustrations are of an imaginary beam section, a thin slice,

so the position of the neutral plane is represented by a line called

the
"
neutral axis

" and the triangles represent the sides of wedges
across the beam. Much of the difficulty met with by students in

regard to the neutral axis arises from the fact that such illustra-

tions are used. The material is not actually stretched and short-

ened as indicated, the triangles being imaginary, each with a

base representing a force and not a length.

The neutral axis is in the center of gravity of a section, sym-
metrical or unsymmetrical, provided such position is the center

of gravity of a couple in the section. If the stresses are different

but the section is symmetrical the neutral axis will be nearer the

side having the higher stress. If the section is unsymmetrical,

to balance the difference in the fiber stresses, the neutral axis will

be in the center of gravity of the section and also in the center

of area. An example of this is the cast iron beam. Before taking

it up a definition will be given of a couple. A couple consists of

two equal opposite forces acting in parallel lines about a point.

One illustration is a load on a beam and the reaction at the end
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of the beam. Another is the tensile force in a beam balanced by
the compressive force. They are equal and opposite in amount,

acting at the end of an arm measuring the distance between the

centers of gravity of the two forces.

It is customary to use in cast iron a tensile fiber stress of 3000

Ibs. per square inch and a compressive fiber stress of 10,000 Ibs.

per square inch.

A cast iron beam, therefore, is made in the form of an inverted

T, the well-known cast iron window lintel being an example in

point. First the beam was proportioned and the center of gravity

of the cross section found. The tensile stress being the maximum
at the lower surface, the average stress multiplied by the area of

the section below the center of gravity gave the tensile force

(total tensile stress). The area above the center of gravity tunes

one-half the maximum compressive fiber stress gave the total

compressive force. If they were not equal a new section would

be chosen and after a few trials a section would be obtained in

which the area below the neutral axis tunes the average tensile

fiber stress equaled the area above the neutral axis times the

average compressive fiber stress.

This particular example is interesting because it disproves a

statement frequently met with in books of a certain class, namely
that

"
the moments of the horizontal forces on the two sides of

the neutral axis must be equal." Assuming this statement to be

true, the distance from the center of gravity of the tensile area to

the neutral axis must equal the distance from the center of gravity

of the compressive area to the neutral axis. Having located the

position of the neutral axis as above described, take a moment
arm from the neutral axis to the center of area of each section and

multiply the area by the average stress times the moment arm.

One trial will show the falsity of the statement. The force (stress)

areas on each side must be equal, and the moments do not balance

about the neutral axis, except when the cross section is sym-
metrical and the tensile fiber stress is equal to the compressive

fiber stress. The moment arm is measured from the center of

gravity of the stress triangle on one side, not the center of area,

to the center of gravity of the stress triangle on the other side.

The moments of resistance will be equal, which is quite a different

statement from that which makes the moments equal on the

two sides of the neutral axis.
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In Fig. 54 let the small / stand for the maximum fiber stress, that

is the unit stress, which is generally expressed in pounds per square

inch. Then/c = unit compressive stress and ft
= unit tensile stress.

When the stresses are equal the letter / is used without a subscript.

All forces must act through the center of gravity of bodies or

areas in order to effect a movement of the whole without turning

it, as about an axis. The center of gravity of a triangle is one-

third the distance from the base. In Fig. 54 the triangle on one

side of the neutral axis has a height equal to one-half the total

height of the beam, therefore is represented by
- The width of
z

the triangle at the base is represented by the unit stress at that

place, /. The triangle is a force triangle and the area is equal to

the total force exerted on it. This is found by the ordinary rule

for areas of triangles half the base multiplied by the height or

A- f *
h - fh~

2
X

2
- T

The length j is known as the moment arm. The moment arm
is the distance between the centers of gravity of the tension and

compression members. The lower triangle is the tension member,
if we assume the beam to be a frame, and the upper triangle is

the compression member, the neutral plane being the dividing

line. Since the forces act at a point and this point is the center

of gravity of the member, then the total force in compression,

,
acts to balance the total force in tension, ~, with a moment

2 h 4/i 2/i
arm = 2 ><

3
X

2
= T = T

The moment arm times the compressive (or tensile) force gives

the moment of resistance per unit of breadth,

2h h2VV
This reasoning has been based on a breadth equal to 1, or unity.

To make practical use of the expression the breadth, designated

by 6, must be introduced. This gives the expression for the

moment of resistance of a beam of homogeneous material and

rectangular cross section commonly seen in text books,

M - fbh*-MT---'
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Some writers use d (depth) instead of h (height), but as d is

used these days to indicate the depth from the top of a reinforced-

concrete beam to the center of gravity of 'the steel reinforcement

(the real depth of a reinforced-concrete beam) the letter h is

preferred when the total over-all height or depth of a beam is

meant. In a reinforced-concrete beam the concrete below the

center of the steel is used solely for bond and protection and is

not considered in computations to ascertain the strength of the

beam.

The moment of resistance of a rectangular beam of homogeneous
material is said to be "

the section modulus times the fiber stress."

This means that

is an expression denoting the effect of the shape of the beam or the

resistance it offers to destruction by loading. No matter what

the material or what the stress used, the effect of the shape is the

same and this is called the
"
section modulus," the word " modulus"

meaning
" measure." It is, therefore, the measure of the resistance

of the shape.

Every shape has a section modulus designated by S in the

steel manufacturers' handbooks. The calculation of the section

modulus for a beam with rectangular cross section has been

given, as it is the most simple section to handle without confusing

the reader with a mass of figures.

To compute the section modulus for any shape first assume

some axis passing through the center of gravity. Then divide

the area into any number of layers desired by lines parallel to the"

axis. Find the area of each layer and the distance from the axis

to the center of gravity of each layer. Multiply each layer by
the square of the distance from the axis to the center of gravity

of the layer and add the products. Thus is obtained the Moment
of Inertia, an expression denoting the disinclination of the body

to move as a whole. The Moment of Inertia divided by the distance

from the axis to the highest stressed fiber gives the Section

Modulus.

For a rectangular beam the moment of inertia is

12'
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and this divided by the distance from the neutral axis to the

most distant fiber gives the section modulus, as follows:

W_h = bW 2 = fe^
12

:

2 12
X

n 6

the distance from the neutral axis to the skin being h + 2.

The section modulus is dependent entirely upon the shape and

is independent of the weight of a beam and of the strength of the

material in the beam. Tables giving the section modulus when
once computed are good for all time. In steel manufacturers'

handbooks tables are given of the section moduli for every shape

rolled, so the proper beam may be selected when the bending
moment is known and the fiber stress is known.

Let M = moment (bending moment = resisting moment) in inch

pounds.
S = section modulus in inches.

/ = allowable maximum fiber stress in pounds per square
inch.

then M = SfandS =
j-

Me
In many books the expression / =

^y-
is encountered. The

moment divided by the section modulus gives the fiber stress. The

section modulus = -. in which
c

I = moment of inertia.

c = distance from the neutral axis to the most stressed fiber.

Sometimes y is used instead of c. -
_,

, M Me
Therefore / = =_
One method for finding the Moment of Inertia and the Section

Modulus for T-sections, L's, etc., is to first assume a rectangular

section having dimensions equal to the extreme outside dimen-

sions of the shape. Find the properties (i.e., I and S) for this

rectangular section. Next take each hollow portion considered

as a smaller rectangular section and find the properties. Adding
the results for each of the pieces cut away and subtracting the

sum from the properties for the entire section, the properties are

found for the remainder.

Example. What is the section modulus for a hollow rec-

tangular section having an outside width of 8 ins. and an outside
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depth of 12 ins., the thickness of the shell being 1 in.? Axis

horizontal.

S (for entire section) = f = 8x12x12 - 192

8 (for interior section) , 6

| = x 10 x 10
. 100

S (for metal section of hollow shape) = 92 his.

Example. What is the section modulus for a T-section 12 ins.

deep over-all with an extreme width of 8 ins. and with stem and

flanges each \ in. thick? Axis horizontal.

,
6/i

2 8 x 12 x 12
S (for entire section) = =

^
= 192 ins.

S (for section on one side) =
3 '75 *** = 75.625 ins., and

2 X 75.625 = 151.25 ins.

The S for the section = 192 - 151.25 = 40.75 ins. The fiber

stress is called by some writers the
"
skin stress," a very good

term, for it is actually the stress in the outer skin, which is assumed

to have no thickness, or has an infinitesimal thickness. The

stress, within the elastic limit, varies uniformly as a straight line

to zero at the neutral axis. Therefore on each layer between the

skin and the neutral axis the stress is less than that assumed

in the computations. The total stress is equal to the average

stress multiplied by the distance from the neutral axis to the

skin.

In Fig. 55 two beam sections are shown with the axes at right

angles and the respective moments of inertia and section moduli

are also given. The moment of resistance depends upon the square

of the depth, so that for two rectangular beams of homogeneous

material, having the same breadth, the beam having a depth
twice as great as that of the other beam has a resisting moment
four times as great. It will also be much stiffer, so there will

be less deflection with a deep beam. The most economical

beam, considering stiffness and strength, with a rectangular

cross section, has a breadth between two-thirds and three-fourths

the depth.

A beam of /-section is possible in steel and iron because of the
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L

Ax/sA-A
1-720 1-2/5.8

S-120 S- 3&0

AxisB-B
1-125 1-95

strength of these materials. The material is so disposed that

practically all the metal highly stressed is concentrated in the

flanges, the web transmitting the stresses and taking care of

shear. When a beam of /-section is required having a depth greater
than can be properly rolled, one is made of a plate having angles
riveted along the edges, this being known as a plate girder. When
a still deeper girder is required a lat-

ticed girder is used, this being known
as a truss.

Wooden beams are made only in

solid form, rectangular or round, for

wood is composed of distinct fibers,

many of which would be completely
detached from the main fibers in

shaping the section to provide broad

flanges. Steel and iron will transmit

stresses equally well in all directions,

so while in the filleted section con-

necting the flange to the web there is I ig. 55 Comparison of Mo-

some concentration of stresses, this

has been taken care of in designing

the beam. In all solid and rolled

shapes the maximum fiber stress is the skin stress. In built-up

sections, such as plate or latticed girders, the maximum fiber

stress is assumed to cover the flange member and the whole

action is on the line passing through the center of gravity of the

flange. The stress is transmitted from the web, or the web

members, to the flange through rivets, which must be properly

proportioned in size and properly spaced to take care of the shear.

Elastic Limit

Within the limit of strength known as the
"

elastic limit," all

materials may be stressed a number of times and recover their

original dimensions. The elastic limit is a stress where the

material is permanently deformed and stress in excess of the

elastic limit causes rapid deformation. Up to the elastic limit

the stress-strain curve is straight, but it curves after the elastic

limit is passed. Fig. 56 is a stress-strain diagram of steel, iron,

and wrood and gives a good idea of the relative strengths and

deformations. The illustration is copied from "Materials of

ments of Inertia and Section

Moduli in a Rectangular
Beam and in an I-beam



70 PRACTICAL STRUCTURAL DESIGN

Construction," by the late Professor J. B. Johnson. His descrip-

tion of the apparent elastic limit is that when it is reached the

deformation for each increment of stress is about double the

deformation for the increment immediately preceding. The curve

becomes a parabola, or is very nearly parabolic.

All the statements made about the moment of resistance of

beams are true only within the elastic limit of the material, for

they are based on
"Hooke's Law" that
"
Stress is proportional

to strain." When the

elastic limit is reached

the law is no longer

true. A generation ago
when steel was stressed

to 16,000 Ibs. per square

inch it was said to have

a factor of. safety of 4,

based on the ultimate

strength of the steel,

64,000 Ibs. per square

inch. To-day the fac-

tor of safety is based

on the elastic limit, and

as this varies between

Fig. 56 Stress-strain Diagram of Steel, Iron,

and Wood

29,000 and 36,000 Ibs. per square inch, averaging about 32,000 Ibs.,

depending upon the hardness of the steel, the factor of safety is

said to be 2, based on the elastic limit. There is a permanent set

after the elastic limit is passed and a progressive weakening, even

though the material may not fail until it is stressed up to four

times the allowable working fiber stress.

Modulus of Elasticity

The modulus of elasticity is a number obtained by dividing the

stress by the deformation it causes. If it were a force it would

be defined as a force which will stretch a unit piece of material to

twice its length or compress it one-half. It is not a force, nor is

it a pure number, for it is expressed in pounds.

A certain steel bar having an area of one square inch was stressed

in tension 16,000 Ibs. and the stretch carefully measured was
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found to be 0.000534 the length. What was the modulus of

elasticity?

J^ffff, = 30,000,000 Ibs. (in round numbers).
U.UUUDO4:

In the example the bar was one inch square. It may make it

more clear if the modulus of elasticity is defined as the ratio found

by dividing the unit stress by the unit deformation, or unit strain.

Stress is a force and strain is the deformation produced by a force.

The modulus of elasticity is used to compare the relative

deformation of materials which must act together. Steel may be

said to have a modulus of elasticity of 30,000,000. Concrete is

made of so many different mixtures and the workmanship varies

so greatly between specimens that an average value of the modulus

of elasticity must be taken for each mixture. The average value

of 1:2:4 concrete is 2,000,000 and the ratio between the moduli

of elasticity of structural grade steel and 1:2:4 concrete is taken

30 000 000
to be

2 OOQ OOQ
= 15- The writer a few years aS caUed this

the
"
ratio of deformation

"
instead of the

"
ratio between moduli

of elasticity," and his term is very commonly used now. To give

a clear explanation of the matter assume a piece of concrete with

a unit cross-sectional area and beside it a piece of steel with the

same area. An equal load is placed on each piece and the short-

ening measured. It will be discovered that the steel shortened

one-fifteenth as much as the concrete, therefore the ratio of defor-

mation = 15. Concrete can really have no modulus of elasticity, for

it is a brittle material with an elastic limit very difficult to measure.

When, however, concrete is tested it shows enough consistency

in deformation to warrant the adoption of a value for the modulus

of elasticity by means of which a workable ratio of deformation

may be obtained.

Reinforced Concrete Beams

Whereas in beams of a uniform material there is a gradual

and uniform increase in stress from the neutral axis to the top

and bottom, in beams of reinforced concrete this is true only of

the upper portion of the beam. Roughly, the tensile strength of

concrete is about one-tenth the compressive strength. Since in a

beam the tensile and compressive forces must be equal, the neutral

axis in a beam of plain concrete under load will be very high.
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The tensile stress is low and the eompressive stress is high, so the

height of the tensile force triangle will be greater than the height

of the eompressive force triangle. Steel is placed near the bot-

tom of a reinforced concrete beam to give it increased tensile

strength, and this lowers the neutral axis. The concrete is not

relied upon to furnish any tensile strength, this being concen-

trated in the steel. The concrete below the neutral axis is there-

fore used only to furnish shearing strength and protect the steel

from corrosion.

The total tensile stress is considered as being carried by the

steel, and the eompressive stress is carried by the concrete above

the neutral axis, where the variation in fiber stress follows the

. n 5

Fig. 57

straight line law already considered. Actually, the eompressive
stress varies as a parabola and not as a triangle, but to use the

triangle is safe and the
"
straight-line method

"
alone is permitted

in building ordinances and in all regulations issued by responsible

officials in this and other countries.

To properly treat reinforced concrete design will require a book,

and the author has one in preparation which will shortly follow

the present book, and replace his
"
Reinforced Concrete, a Manual

of Practice," written in 1907 and now out of print. The method
he uses for determining the position of the neutral axis in a rein-

forced concrete will be given here, together with his method for

determining the percentage of steel. The methods, and the

resulting formulas, he believes to be original, as they have never

appeared in any book to his knowledge, or to the knowledge of a

large number of teachers and consulting engineers to whom he

wrote about the matter.
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We have in reinforced concrete a material (steel) stressed in

tension which is from 20 to 30 times stronger than the compressive

strength of the concrete. Furthermore, the weaker material has

a deformation under load 15 tunes greater than the deformation

of the stronger material.

Let E, - modulus of elasticity of the steel.

Ec
= modulus of elasticity of the concrete.

n = ration of deformation = -=? (usually 15).

fs
= allowable fiber stress (working stress) in the steel.

fe
= allowable fiber stress (working stress) in the concrete.

m = stress ratio = -r*

d = depth from top of concrete beam to center of gravity
of the steel reinforcement.

k = depth from the top of the beam to the neutral axis

(expressed as a percentage of d).

j = moment arm expressed as a per cent of d. When the

value of d is given in inches then the moment arm is jd.

k dk
j
= 1 - - and jd = d - -

Referring to Fig. 57; on a piece of squared paper set off ten units

vertically. Measuring to the right along the top lay off n. Measur-

ing to the right along the bottom lay off m. Connect the ends as

shown to form two triangles which cross at the neutral axis. The

depth, k, to the neutral axis may then be measured on the paper.
The two triangles show an obvious geome-
trical relation which enables us to find k j-
by computation, thus: i

~

n

n + m

Fig. 58 illustrates the triangle of com-

pressive force. The area of the triangle

f= J

-^xk.
The tensile force is equal to the

Fig 58

area of the steel times the fiber stress, so the area of the steel will

be obtained by dividing the compressive force by the steel fiber

stress. Units are used throughout, so the steel area will be the

ratio between the concrete and the steel. Then,
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/ fc

Another expression for p is found as follows : The unit moment
of resistance is expressed by a Resistance Factor, R. For the steel

this is R s and for the concrete this is Re .

kj and R, =
pjf..

The moment of resistance of a concrete beam = Rbd?, in which

R is the resistance factor for the
"
balanced

"
beam, that is, a

beam in which the tensile force exactly equals the compressive
force. Fig. 59 is a chart for obtaining R and p for different

stresses in steel and concrete. The stresses recommended by
the Joint Committee on Concrete and Reinforced Concrete are

16,000 Ibs. per square inch for the steel and 650 Ibs. per square

inch for 1:2:4 concrete.

For rectangular reinforced-concrete beams (and for slabs with

width 6, of 12 ins.) the following formulas are used, the moment

being in inch pounds and all beam dimensions in inches.

M = Rbd2

M

Hi
Rb

When the moment is in foot pounds, b will be in feet and d

in inches, or 6 and d will be in inches and R will be divided

by 12.

The Portland Cement Association, Chicago, 111., is an organiza-

tion supported by the cement manufacturers of the United States

and Canada for the purpose of disseminating information about

cement and concrete. Every man in the building business should

have his name and address on the mailing list, for some of the

Association bulletins deal with questions of design, while all the

bulletins should be on file in the office of every one who has anything

to do with construction work.
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Fig. 59 Coefficients of Resistance of Reinforced Concrete Beams
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Shearing Resistance

A beam may be strong enough to carry the load without a

bending failure, which will crush the fibers at the top or pull them

apart at the bottom, yet it may fail in shear. The direct shearing

stress at any section on a beam is found by dividing the shear at

the section by the area of the beam at the section. The direct

shear, however, is seldom operative, this action being best repre-

sented by a punch making holes in a plate or by a large shear

cutting a plate. The shearing stress which breaks a beam is di-

agonal tension resulting from the combined action of the horizontal

and vertical shearing stresses.

The direct vertical end shear is equal to the maximum reaction.

The horizontal shear is equal in amount and acts along the neutral

plane where the fiber stress in bending changes from tension to

compression, the stress being in reality a sliding of the fibers where

they have no bending stress. The diagonal tension is the com-

ponent of these two actions. (Fig. 60.) Referring again to the

statement that the area of the shear diagram between any sec-

tion and the nearest support, for a beam resting on two, or more,

supports, equals the bending moment at the section, the unit

shear at any section amounts to

_ V
-jd

in which s = unit shear in pounds per square inch,

V = shear at the section in pounds,

MI = moment in inch pounds at one side of section,

Mz = moment in inch pounds at the other side of section,

jd = moment arm in inches.

The allowable shearing stress in steel is

10,000 Ibs. per square inch. After obtain-

ing the size of beam to carry a certain load,

divide the maximum reaction by the web
thickness multiplied by the depth of the

beam. This will give the shearing stress in

Fig. 60 Relation be- pounds per square inch. If it exceeds 10,000
tween Moment and Ibs. a larger beam is required. In the steel

Shear handbooks the total amount of shear for

which a beam is safe is given in the tables of
"
Properties of

Sections." For example, in taking out from the tables a beam
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of sufficient size to carry the load, the total amount of shear the

beam is good for should be equal to or exceed the maximum reac-

tion. Thin webs act like long slender columns and may fail by

crippling. The crippling strength of the beams is also given in the

tables and this should be equal to or exceed the maximum reaction.

Fig. 61 is a very old illustration used by many writers to explain

shearing action in a beam. Let (a) represent a beam assumed

to be composed of a

number of planks not
(b) fastened together.

Fig. 61 Illustration of Horizontal Shear When loaded the

planks bend and slide on each other as shown. This sliding action

is horizontal shear, which is zero at the top and bottom edges

and a maximum along the neutral plane where the tensile stress

changes to compressive stress.

Spike the planks together (6) and they will not separate when

the beam bends under load. The sliding stress is pure shear

on the spikes connecting the planks. The spikes act by bearing on

the planks into which they are driven, and in this manner some

tension is carried from outer to inner planks. The resultant force

is called diagonal tension.

Imagine a beam of any material divided into a great number of

horizontal layers. Along the imaginary joints shear exists which

is resisted by the tensile strength of the material. In beams of

steel or iron, in which materials the tensile strength is equal in

all directions, the diagonal tension thus developed may be strong

enough to tear the web along a diagonal line extending upward
from the support. The web must be thick enough to resist the

diagonal shear or, in the case of a plate girder, be strengthened

by stiffeners.

Reinforced-concrete beams fail similarly in diagonal shear.

This may be resisted by making the stem of the beam thick or,

if it is desirable to use little concrete in the stem, stirrups are

added to resist diagonal tension. There are other theories which

endeavor to account for the diagonal cracks which appear some-

tunes in reinforced-concrete beams, but the generally accepted
method for proportioning stirrups is based on shear expressed as

diagonal tension, and since the desired result is accomplished and

the computations are readily performed this method it is believed

will persist.
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Wood is composed of actual horizontal fibers, instead of the

imaginary fibers, or horizontal planes, considered in analyzing

shear in beams of homogeneous material. If wood were equally

strong in all directions, a shearing failure in this material would

also be indicated by the appearance of diagonal cracks.

Shear in Wooden Beams

In wooden beams the dangerous shear acts along the neutral

plane and the beam may split, thus by shearing action being con-

verted into two shallow beams, which will then break by bending,

for the upper half must carry the whole load and the lower half

carries the whole load when the upper half is destroyed. The

strength in shear of wooden beams should be tested by the follow-

ing formula. If the distributed load found by this formula is

smaller than that found by the bending formula, increase the size

of the beam.

_
o

in which W = the load the beam will carry without failing in shear.

6 = breadth in inches,

h = height in inches,

s = shearing stress per square inch, usually one-tenth

the maximum fiber stress in bending.

The above formula is derived as follows:

W
v _W_ , _Z._JL_E 3 3TF

~ T ai "
jhb

~
Ihb

~
2
X

2hJb
~

4hb

, , . .

and, therefore W

Modulus of Rupture

The modulus of rupture is a measure which represents a com-

bination of all the forces that tend to break a beam
; i.e., the com-

bined action of tension compression, shear, and crippling. It was

formerly used in beam design to obtain the breaking load, which

was divided by some factor of safety to determine the safe load.

To-day it is used only for materials in which it is difficult to sepa-

rate the different stresses, as, for example, clay, stone, and plain

concrete. The moment of resistance, using an allowable safe
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fiber stress, is used in computations for beams of wood, steel, iron,

and reinforced concrete.

The unit moment of resistance is a number which contains all

the known quantities in an expression, leaving only the unknowns

to be found. For example, the moment of resistance of a wooden

beam in which we can use a maximum fiber stress of 1200 Ibs. per

square inch is 120 bh*Mr
=

g
,

and by dividing the fiber stress by 6 the unit moment of resistance

equals 200, from which we get

Mr = 200 bhz = Rbh\

Some men use R for wooden beams, but where the divisor is

so small the only advantage is some slight simplification of the

work, provided a table of values of R has been previously com-

puted for the woods used. In reinforced-concrete work a number

of factors enter into the formula for the resisting moment and the

use of a table, or of a diagram which is really a graphical table,

for all possible values of R is almost indispensable for the designer.

Where a number of factors enter into a computation it is easy to

forget to use some.

Deflection

The amount of deflection when a beam is loaded is measured

on the bottom or top of the beam for convenience. The difference

in elevation between the end of the beam and the middle is the

deflection. The deflection actually used in computations is the de-

flection at the neutral axis, but the deflection measured on the

bottom or top, which for obvious reasons is more readily obtained

than the deflection of the neutral plane, is close enough for all

practical purposes.

Deflection in beams and girders used in buildings is important

only when the lower side carries a plastered ceiling. The deflec-

tion is limited to a maximum of one-three-hundred-and-sixtieth

of the span to prevent cracks in the plaster. A greater deflection

is not unsightly and is permissible when constant. Wood and steel

beams straighten when the load is relieved and deflect when the

load is increased. It is the movement that causes plaster to crack,

so this must be limited. For beams and trusses under moving
loads the deflection must be limited to an amount which will not

set up dangerous vibrations, but with this the ordinary structural
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designer seldom has to deal, it being part of the work involved

in the design of bridges. Deflection also affects appearance and

a camber is given to trusses to hide deflection.

A beam may be amply strong so that it will not fail by bending,

shearing, or crippling, and yet the deflection may be so great that

it will not be suitable for use in the proposed location. The amount

of deflection must then be found and if it exceeds the allowable

deflection a deeper beam must be substituted. When using steel

it is often possible to secure a deep beam which will weigh less

than a beam of less depth of practically equal strength in bending
and shear. For timber, experience indicates that the most eco-

nomical beam, considering the two factors of strength and stiffness,

has a breadth equal to two-thirds or three-fourths the depth.

Deflection Formulas

Deflection formulas as usually presented are formidable in

appearance, so tables are given in the steel handbooks which

enable the deflection in inches to be found by dividing a factor in

the table by the depth of the rolled section in inches.

Similar information for wooden beams was not so readily

obtainable until in 1913 the Yellow Pine Manufacturers' Associa-

tion issued a book entitled "A Manual of Standard Wood Con-

struction," following the lines laid down previously by the steel

manufacturers in their handbooks. Copies of this book may
be obtained from the secretary of the above association in

St. Louis, Mo.
The "

Structural Timber Handbook, for Pacific Coast Woods "
is

issued by the West Coast Lumbermen's Association, Seattle, Wash.,
and valuable books on the subject of wood design may be obtained

from the National Lumber Manufacturers' Association, Chicago, 111.

The complicated formulas for deflection are made to appear as

follows, after certain substitutions and transformations of factors :

in which D = deflection in inches,

/ = allowable maximum fiber stress in bending,
L = length in feet,

E = modulus of elasticity,

h = height of beam in inches.
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Assuming common values :

For steel, / = 16,000 Ibs. per square inch, D = -r*

For wood, / = 1300 Ibs. per square inch, D =
TT~T*

L2

For wood, / = 1000 Ibs. per square inch, D = TT~T'

For wood, / = 800 Ibs. per square inch, D =
^-r-

See page 98.

Aids to Computation

In addition to the handbooks of the steel companies and the
" Manual of Standard Wood Construction," designers use dia-

grams and slide rules to lighten their work on simple problems.

The following are suggested in this connection:

The Wager timber scale for computing the strength of wooden

beams, $1.

The Merritt beam scale for computing the strength of steel

beams, $1.

Des Moines Bridge & Iron Company's calculator for steel

beams, channels, angles, and tees, 25 cents.

The two first mentioned are made of heavy paper and the

third is of celluloid. The writer has used them daily in his work

for some years.

The most complete rule for this work is one designed by Benja-
min Winslow. It enables one to design with any fiber stress, any

span, any spacing, any system of loading, etc. The rule is made of

German silver and costs $10. The size is 3^ ins. x 10| ins. X 16 ins.

Taking the place as it does of all pocket books, tables and diagrams,

the writer feels that to omit recommending it to structural drafts-

men and designers would be a neglect on his part of a plain duty.

Mr. Winslow has also placed on the market a similar slide rule

for reinforced-concrete design.

Slide rules of the Mannheim type are used to-day by all 'engi-

neers, but a recent improvement is known as the Phillips slide

rule. This rule enables one to multiply three factors at one

setting and the arrangement of the graduations wonderfully in-

creases the value of the slide rule for all purposes. This new rule

sells for $5.

Example. Determine the size of a wooden beam using a
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maximum fiber stress of 1000 Ibs. per square inch to carry a

uniformly distributed load of 6000 Ibs. on a span of 14 ft.

Answer. Assume the beam to weigh 20 Ibs. per linear foot

= 14 x 20 = 280 Ibs. The total load = 6280 Ibs.

M = 628 X 14 X 12 = 1.5 x 6280 x 14 = 131,880 in. Ibs.
o

Assume a depth of 12 ins., which will give a beam 11.5 ins. the

usual depth of a commercial size 12-in. beam.

Mr = ^- = 167 bh2 = 131,880 in. Ibs.
o

Mr 131,880

This calls for a commercial size beam 7 ins. X 12 ins., the actual

size of which will probably be about 6.5 ins. x 11.5 ins. The weight

per linear foot, assuming wood to weigh 35 Ibs. per cubic foot, will

be
6 '5 X

\\'f
X 35 = 18.2 Ibs. This is so close to the weight

J.44

assumed that we will let it stand.

Investigate for shear.

4x 6.5 X 11.5 X 100

O O

The load of 6280 Ibs. is therefore safe.

The deflection is to be kept below -jg-^ of the span

12x14
360

= 0.466 in.

14x14 L= 0.38 in. =
7-77:

44 X 11.5 443

Find the span on which the safe bending load is equal to the safe

shearing load.

_8jtf_ 143,500"
12 W ~

1.5 X 9967

This beam cannot be safely loaded with more than 9967 Ibs.

on any span of less than 9 ft. 8 ins. no matter what the safe load

in bending may be. (The moment used here is the actual resisting

moment of the beam which had to be selected to carry the load,

that is, M = 167 x 6.5 X 11.52 = 143,500 in. Ibs., the actual bend-
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ing moment as we have seen being 131,880 in. Ibs. It is cheaper to

use a commercial beam with a resisting moment larger than the

bending moment than to trim the beam down to the theoretically

exact size. This happens with rolled steel beams also. When a

built-up plate girder or a latticed girder (truss) is used the differ-

ence between the bending moment and resisting moment can be

cut to a smaller amount. Reinforced concrete is a material which

permits of closer designing than rolled shapes, hence the differ-

ences in design shown by equally competent designers tackling

the same problem when using reinforced concrete.

A formula to find the limiting span when bending and shear

are considered is developed as follows for wood : M in inch pounds.

8M M 3M M
L =

12W 1.5 x 4bhs Qbhs 2bhs

Find the deflection on the limiting span.

Q 67 v 1 2
The allowable deflection = = 0.323 in.

The actual deflection = - =
'

= 0.184 in.
44/i 44 x 11.5

Find the allowable safe uniformly distributed load the beam
will carry on a span of 20 ft.

, 8M 143,500^ =
i2L

=
L5t2(

12 v 20
Allowable deflection = * = 0.667 in.

ouU

Actual deflection =
,

2
.

X
^ K

= 0.79 in.
44 X 11.5

The deflection is too great if the lower side of the beam is to be

plastered, or the beam is to carry a plastered ceiling.

NOTE. When a wooden beam has a depth in inches less than

two-thirds the span in feet the deflection is apt to cause plaster to

crack. Try a beam 14 ins. deep, the actual depth being 13.5 ins.

, _ M r 143,500" ~
167 x 13.52

*

Try a commercial 6 ins. X 14 ins. = 5.5 ins. X 13.5 ins.

Mr = 167 x 5.5 x 13.52 = 167,500 in. Ibs.

This beam is seen to be excessively strong, but a beam 4.5 ins. x 13.5
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ins. would have a resisting moment of only 137,000 ins. Ibs. Allow-

able deflection = 0.667 ins. Actual deflection

20 X 20 AA__ .

= TA
-

TIT-?
= 0.6675 ms.

44 x 13.5

The deflection in the formulas presented is dependent upon
the stress, so the deflection found is that produced when the beam
is fully stressed, that is, when the full resisting moment of 167,500

in. Ibs. is developed. Under the load found for the 20-ft. span the

moment is only 143,500 in. Ibs., so the deflection will be less than

that given.

This case may be dealt with as follows if it is desired to find the

actual deflection. The divisor for the span squared is 41 for a

fiber stress of 1300 Ibs. per square inch, 44 for a fiber stress of 1000

Ibs. per square inch, and 46 for a fiber stress of 800 Ibs. per square
inch. The divisor is seen to alter by 1 for each 100 Ibs. change in

unit fiber stress. Find the maximum fiber stress for the bending
moment developed and then applying the proper divisor ascertain

the actual deflection.

143,500 6 x 143,500
/ -
-^-

=
5 5 x 13

. 2
= 859.2 Ibs. per square inch.

6

The divisor for all practical purposes is 45.6.

L2 20 x 20D = -
45.6 X 13.5

=
'65 mS "

The load this beam can carry on a 20-ft. span with a deflection

equal to 0.6675 in. is

All the computations have been made with a slide rule, so in

some cases the terminal figures in the results may differ slightly

from those found by arithmetical computations, but when deal-

ing with large quantities small differences in the units place make
no material difference in results.

The calculations for deflection in wooden beams can never

give exact results, for woods vary in texture throughout and the

amount of moisture and seasoning also act to increase or decrease

deflection.



CHAPTER III

Problems in Design of Beams

THE
two standard steel handbooks are the

"
Carnegie Pocket

Companion
" and the

" Cambria Steel Manual." The

designer should have one *or both of these books. The
Bethlehem Steel Company issues a handbook which the designer

should also possess, owing to the differences in shape and carrying

capacity of the Bethlehem and standard beams.

The Cambria and Carnegie handbooks contain a great deal of

text book matter and are very useful to students and to men who
wish occasionally to refresh their memories on points of design.

They contain the usual tables indispensable to structural de-

signers. The handbook of the Lackawanna Steel Company and

that issued by Jones & Laughlin contain the indispensable tables

and some memory aiding text, but not as much as the first books

mentioned.

For a uniformly distributed load the size of a beam is easily

obtained. Tables give the uniformly distributed loads in pounds
for all spans, varying by single feet which the different beams can

carry. By reducing concentrated loads to their equivalents in

uniformly distributed loads these tables may be used for any

system of loading without first ascertaining the bending moment.

When concentrated loads are dealt with as such and the bend-

ing moments are found, the proper size beam may be found by

looking up the bending moment in foot pounds, opposite which,

on the same line, is found the size and weight of the beam. Beams
must be secured (stayed) laterally to prevent side bending ;

other-

wise the carrying capacity is less than that given in the tables.

The Carnegie book formerly gave a factor of strength, C, to

use when the bending moment was used. It is designated as C
in the Bethlehem book and as F in the Cambria book. In the 1913

edition of Carnegie this factor is not given, the bending moment
in foot pounds being shown on the page containing the other

properties of beams.

85
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The factor of strength is obtained as follows:

The fiber stress is in pounds per square inch and the section

modulus is in square inches, therefore the resisting moment is in

inch pounds, or 12 times the bending moment in foot pounds.
Two-thirds the moment in inch pounds is equal to 8 times the

bending moment in foot pounds; which, in turn is equal to the

total uniform load in pounds times the span in feet, for a freely

supported beam.

Let S = section modulus in inches.

/ = maximum fiber stress in Ib. per sq. in.

Then C = F =
$fS.

Let M = bending moment in foot pounds.
Then C = F = SM.

Having computed the bending moment in foot pounds, multiply

by 8 and in the table of properties of beams look for this value,

or the nearest higher value, of F (or of C) in the Cambria or Beth-

lehem book. Following the line to the right, the beam is found

which has this factor of strength. Each of the books mentioned

contains a separate table of bending moments in foot pounds for

each beam, so the designer has his choice of methods to use in

obtaining a beam size when he has the bending moment instead

of the uniformly distributed load.

Example. A beam carrying several concentrated loads must

resist a bending moment of 46,680 ft. Ibs. What is the best size

and weight of beam to use?

Carnegie (1913 edition) : On page 184 it is shown that the

resisting moment of a 12-in. I-beam weighing 31.5 Ibs. per Hn. ft.

= 47,960 Ibs., so this beam will be used.

Page 182 contains a description of all the factors shown on

page 184, relating to the properties of beams. The student is now

prepared to study pages 133, 140, 141, 164, 167 to 171 inclusive,

176 to 182 inclusive.

Cambria (1913 edition) : On page 118 it is shown that a 12-in.

I-beam weighing 31.5 Ibs. per lin. ft. has a resisting moment of

48,000 ft. Ibs.

The following pages should be studied by the student, 76, 77,

80 to 89 inclusive, 142 to 147 inclusive, 158 to 163 inclusive.

"Lackawanna Hand Book" (1915 edition): This book does

not contain a table of bending moments for standard beams so
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the bending moment in foot pounds must be multiplied by 8 and

the tables on pages 164 to 167 consulted. The size of beam is

given in Col. 12 on page 167 and we find that a 12-in. I-beam,

weighing 31.5 Ibs. per lin. ft., will be required. On the pages
mentioned is a column containing distances center to center of

beams required to make the radii of gyration equal; a very useful

table to use when designing columns.

In this book the student should read carefully pages 144 to

163 inclusive.

Jones & Laughlin, "Standard Steel Construction" (1916

edition : This book does not contain a table of bending moments
for I-beams, neither does it contain a table of factors, C. or F.

Our problem is solved as follows; Since the moment divided by
the fiber stress equals the Section Modulus, divide the bending
moment in foot pounds by the fiber stress, 16,000 Ibs., and this

gives the section modulus in feet. Multiply by 12 to obtain

the section modulus in inches. Look up this value on pages
105-106. Proceeding in this fashion we get (46,680 -r- 16,000)

X 12 = 35 in. = S. On page 106 the nearest value is 36, cor-

responding to a 12-in. I-beam weighing 31.5 Ibs. per lineal foot.

The student should now become familiar with pages 95 to 175

inclusive, and with page 243 in this book.

Bethlehem (1911 edition): On page 38 a 9-in. girder-beam

weighing 38 Ibs. per lin. ft. has a resisting moment of 50,630 Ibs.

On page 39 a 12-in. Bethlehem I-beam weighing 28.5 Ibs. per lin. ft.

has a resisting moment of 48,050 ft. Ibs.

To understand why the Bethlehem beams are stronger than

standard I-beams of equal depth, read pages 3 to 9 inclusive. Then

study pages 30, 31, 56, 66, 68, 99 to 103 inclusive.

In studying the pages mentioned the student should work

examples in order to become familiar with the use of the tables.

The tables of deflection factors should be thoroughly understood,
which is not a difficult matter if the remarks on deflection in this

chapter have been given proper attention.

After thoroughly mastering the subject matter on the pages
enumerated the student should study pages 283 to 292 inclusive

in Carnegie ;
56 to 71 inclusive in Cambria

;
104 to 107 in Beth-

lehem. The pages mentioned in each book cover the same sub-

jects, so it is not necessary to use the three books, one giving all

that is necessary. Should the student, however, possess the three
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books, it will be well to study the subjects thoroughly in one

and then become familiar with the similar matter presented in

the others.

Only rolled shapes have been considered so far. Compound
shapes, i.e. plate girders and trusses, will be taken up later.

Practical Problems in Design

1. Find the resisting moment of flooring f in. thick; in.

thick
; 1| in. thick

; If ins. thick.

Answer. f in. = 0.625 in.
;

in. = 0.875 in.
; If ins. = 1.125

ins.
; If ins. = 1.75 ins. The width,will be taken as 12 ins., as floor

loads are generally given in pounds per square foot. The flooring

is white pine having a fiber stress of 800 Ibs. per square inch.

[In all problems it is understood that by fiber stress is meant

the maximum (skin) stress.] The unit moment of resistance

= 800 -r- 6 = 133.33.

Mr = 133.33 X 12 x 0.6252 = 625 in. Ibs.

Mr = 133.33 x 12 x 0.8752 = 1225 in. Ibs.

Mr = 133.33 x 12 x 1.1252 = 2025 in. Ibs.

Mr = 133.33 X 12 x 1.752 = 4900 in. Ibs.

2. What is the greatest spacing permissible between joists if

the deflection is to be limited the usual amount?

Flooring comes in long pieces and thus, extending over a number
of supports, to each of which it is nailed, the thickness can be equal

in inches to one-half the span in feet. This gives a maximum span
for the |-in. of 2 x 0.625 = 1.25 ft. (15 ins.) ; |-in., 2 x 0.875 = 1.75

ft. (21 ins.) ; H-ins., 2 x 1.125 = 2.25 ft. (27 ins.) ; If-ins., 2 x 1.75

= 3.5 ft. (42 ins.).

Floors generally have greater stiffness than is here shown

because of the tongue and groove along the edges, but this is fre-

quently nullified by the fact that the loads brought on floors are

more often concentrated than uniformly distributed. The above

rule for deflection is arbitrary, and if the spans mentioned are

actually used it will be well to check the deflection by a proper
formula. Refer to the table of relative strength and stiffness of

beams. The deflection formula gives deflection for uniform loads

on beams resting freely on two end supports. First find the de-

flection by the formula and multiply it by the constant found in

the column of relative deflections, opposite the condition of loading

to which the case under consideration may apply.
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3. Neglecting deflection, what is the greatest permissible spacing

of joists for the following loads per square foot (including the weight
of the flooring) : 42 Ibs.

; 781bs.; 103 Ibs.; 129 Ibs.?

Flooring extends over several supports, so we may assume a

condition of restraint and use the formula

,, wU . . .M =
2~,

in foot pounds.

The load is given in pounds per square foot, so the span should

be in feet. The formula then becomes

, , . .,M = in. Ibs.

which reduces to M = wl? in. Ibs. %

ci- -i i f Tkr .

Similarly, for M =
5 in. Ibs.
o

we obtain M = l.5wL? in. Ibs.

Another condition sometimes met with in wood and steel design

and frequently used in reinforced concrete design is a partially

restrained condition in which the beam rests freely on one end

support and is fully restrained at the other support. For this con-

dition the coefficient is 10 and

M = in. Ibs., or M = l.2wL\

Using the expression M = wl?, the spans for the various floor

thicknesses are found as follows:

M
4 /ML2 = . or L = V/w V w

Using the resisting moments in inch pounds obtained for each

thickness,

f-in. flooring: L = = 3.85 ft.

The rest of the examples are left to the student as a useful

exercise.

4. A floor is constructed of 2-in. (1.75-in.) planking laid over

beams spaced 4 ft. 6 ins. center to center, the span of the beam from

wall to girder being 18 ft. Find size of beam when the total load
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per square foot, including weight of beam and floor, is 132 Ibs. per

square foot. Material yellow pine with an allowable fiber stress

of 1300 Ibs. per square inch. Deflection ignored.

Answer. The total load on the panel is 132 x 4.5 X 18

= 10,700 Ibs.

M = 1.5 X 10,700 x 18 = 288,900 in. Ibs.

Try an 8-in. x 14-in. beam (7.5 ins. x 13.5 ins.)

, , 1300 x 7.5 x 13.52 _n _ . ._ . .,Mr
= ^ = 296,156 in. Ibs.

6

Try for shear

w _*_ 4X7.5X13.5X130
O O

W. N. Twelvetrees, a British engineer, developed the following

method for designing a beam in which the breadth is to be some

definite proportion of the depth.

Let n = r ,
then 6 =

V n

Applying the method to the example under consideration:

Let R = t =^ = 217.
6 6

First. Design so the breadth equals one-half the depth.

Use commercial size 7.5 ins. X 14.5 ins.

Second. Design so the breadth equals two-thirds the depth.
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Substituting in the formula n =
1.5, find h = 12.6 ins.

2 x 12.6
6 =

5
= 8.4 ins.

o

Use a commercial size beam 9 ins. x 13 ins.

Third. Design so the breadth equals three-quarters the depth.

Substituting in the formula n =
1.33, find h = 12.08 ins.

, 3 x 12.08
6 = -

A
= 9.06 ins.

4

Use commercial size beam 9.5 ins. x 12.5 ins.

The student will have noticed that in all cases the exact size

computed cannot be used and it is necessary to take a commercial

size enough larger so the loss in dimensions through cutting will

give a beam the size of the computed beam, or slightly larger.

Small beams will run from j in. to f in. smaller than nominal size,

but beams of the size here considered will seldom run less than

| in. smaller in each dimension than the nominal size, and if the

superintendent of construction is not careful the loss will be

even greater. The writer is acquainted with designers who use

the nominal size always in their designs, assuming that the maxi-

mum fiber stress allowed is really less than the wood can stand.

It is not good practice.

Assuming that the fiber stresses are based on the use of wood

freely exposed to weather, then the following increases in fiber

stress are allowable for long-leaf yellow pine:

Class A (moisture contents, 18 per cent). Structures freely

exposed to the weather, such as railway trestles, uncovered bridges,

etc., let allowable stress equal 1 x /.

Class B (moisture contents, 15 per cent). Structures under

roof but without side shelter, freely exposed to outside air, but

protected from rain, such as roof trusses of open shops and sheds,

covered bridges over stream, etc., let allowable stress equal 1.15 x /.

Class C (moisture contents, 12 per cent). Structures in build-

ings unheated, but more or less protected from outside air, such

as roof trusses of barns, inclosed shops and sheds, etc., let allow-

able stress equal 1.4 x/.
Class D (moisture contents, 10 per cent). Structures in

buildings at all times protected from the outside air, heated in

the winter, such as roof trusses in houses, halls, churches, etc.,

let allowable stress equal 1.55 x/.
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For all woods other than long-leaf yellow pine the increases to

be one-half those given. The shearing stress, however, cannot

exceed one-tenth the fiber stress used for Class A structures.

Building ordinances in American cities do not recognize any
difference in allowable stresses dependent on the moisture contents,

so the fiber stresses permitted in cities apply to all structures.

It would be better if the city ordinance requirements were based

on Class D structures with proportionate decrease for structures

in other classes.

The following table gives the allowable fiber stresses for wood
in the city of Chicago (1916). Each designer should use the stresses

permitted in the largest city nearest to the place where the building

is to be erected.

The first column gives the name of the wood. The second column

gives the maximum bending fiber stress and this is the maximum
stress allowed if the wood is to be used as a tie in straight tension

something rarely possible because of the difficulty in making

proper connections so the nails, screws or bolts will properly trans-

mit the entire pull on the piece.

The third column gives the compressive stress per square inch

on wood posts having a least breadth one-fifteenth the length.

For lengths greater than fifteen times the least dimension, the

compressive stress must be reduced, by a formula given in the

ordinance, long slender pieces bending under load and causing

additional strain on the concave side.

The fourth column gives the allowable bearing stress per square
inch on the under side of a beam on the supports. The reaction
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is to be divided by the stress given in this column in order to obtain

the number of square inches bearing surface. The student should

pay attention to this column, for it explains the reason why steel

and iron post caps are used instead of the old-fashioned wooden

bolsters. If the load on a column is carried straight down on the

ends of fibers, the full bearing capacity of the wood can be utilized.

When a bolster is set between the foot of a post on one floor

and the top of the post on the floor below, the compression across

the grain of the wood in the bolster governs the carrying capacity
of the post, or the bolster will crush.

The fifth column gives the allowable shearing stress with the

grain, the use of this column having been explained in the examples
when a test was made of the weight-carrying capacity of a beam
BO it would not fail in shear.

There is a shear parallel with the grain and if through some

unavoidable circumstance it ever becomes necessary to design so

a wide beam overhangs the sides of a support this shear will act.

It should not exceed the safe shear with the grain.

There is a shear across the grain, that is, a tendency for the

beam to be cut at the edge of the support. Provided the allow-

able compression across the grain is not exceeded, i.e., sufficient

bearing surface is provided, the effect of this shear is negligible.

The use of hangers and stirrups is common to-day. They save

head room but increase the insurance rate, for the reason that metal

is affected by intense heat. A large piece of timber will char on

the surface and must be exposed to an intense flame for a long
time before it begins to burn. The heat that will merely char a

timber and do it little harm will heat wrought iron and steel to

such an extent that the stirrup will be weakened and permit the

suspended beam to drop. A study of a bending moment curve

shows that at the bearing end of a beam there is practically no

moment, so the area of a beam may be reduced nearly one-half

at the supports without impairing the bearing capacity. If the

strength of a stirrup is reduced one-half by fire the beam may drop.

Many types of stirrups are on the market,- and before adopting

anything other than a plain bent strap of steel or wrought iron

the designer should require the manufacturers to furnish records

of tests on the stirrups they propose to supply.

To design a stirrup: First obtain the area required for bearing,
then the thickness to prevent straightening at the edge of the sup-
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port, then check to see that the area of the vertical legs is sufficient

in tensile strength to carry the load. This last item is generally
taken care of when the other conditions are satisfied.

5. Design a strap hanger, or stirrup, for the 8-in. x 14-in. beam
in the last example.

Answer. The total load = 10,700 Ibs. which gives a reaction

= 5350 Ibs. The allowable compression across the grain = 250 Ibs.

eo-n

per square inch, so the bearing area in the stirrup = - = 21.4

sq. ins. The width of the beam is 8 ins., therefore the width of the

strap under the end of the beam = ^- = 2.66 ins. Make the strapo

2.75 ins. wide, a stock width. Allowing a value of 10,000 Ibs. per

Fig. 62 Various Styles of Stirrups

square inch tension for wrought iron the required area of the two
corn

legs =
Q

= 0.535 sq. ins. or 0.2675 sq. ins. for each leg. The

thickness of metal required = '

= 0.097 in. (practically No.
Z.to

10 gauge). Allowing a fiber stress of 14,000 Ibs. per square inch
corn

for steel, the required area in the two legs = ^^ = 0.382 sq.

in., or 0.191 sq. in. for each leg. The thickness of metal required

= - g
= 0.0695 in. (practically No. 13 gauge). Each leg must

^./o

rest on top of the girder with a length of not less than 4 ins.

This is thin metal and will surely straighten under the load,

besides which it does not offer enough body to resist corrosion.

Use a minimum thickness of f in. The stirrup shown in Fig. 62

is double and the weight of the beam on either side tends to bal-

ance the weight of the beam on the opposite side of the girder.

A stirrup 2| ins. wide of j-in. metal will therefore be all right and

may be wrought iron or steel. A couple of holes drilled through
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the top for lag screws or spikes will take care of unequal loading
on beams.

When a half stirrup is used it must be investigated for bending
at the bearing edge. Assume a bearing length of 4 ins.

4

This computation considers the legs as cantilever beams uniformly
loaded.

The thickness of the metal is f in. (0.375 in.) and the width is

to be found. For wrought iron with a fiber stress of 10,000 Ibs. per
10 000

square inch, R = = 1667. For steel with a fiber stress of

.

14,000 Ibs. per square inch, R = - = 2333.

*_M_ 5350"
Rh*

~
1667 x 0.3752

"

of which each leg will be one-half, or 11.4 ins. for wrought iron.

COKQ
For steel, b = ^^ = 16.3 ins., of which each leg will be

Zooo X U.oiO

one-half, or 8.15 ins.

The reason for the low stresses used is due to the blacksmith

work required to bend the metal to the required shape, the heating

annealing the metal and restoring disturbed molecules to a normal

condition. Cold working has a contrary effect within limits

but may crack the metal, thus nullifying the effect of the strain

which sets up internal stresses that apparently cause an increase

in strength.

The effect of increasing the thickness of the metal is to make
a considerable reduction in width on the supporting girder. Try
a ^-in. steel strap.

5350
k = oooo TTEs

= 9.2 ins., of which each leg will be one-half,Zooo X U.O

or 4.6 ins. By increasing the thickness in. the width of the strap

has been reduced nearly one-half. The wide strap will weigh
10.4 Ibs. per lineal foot. The narrow strap of thicker metal will

weigh 7.8 Ibs. per lineal foot, so will be the cheaper strap to use.

If a stirrup is not designed to be safe according to calculations

such as those illustrated it should not be used. A lack of strength

in bending is sometimes claimed to be taken care of by using a

longer support and holding it down with lag screws or spikes.
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The longer support increases the bending moment and the holding

down strength of the fastenings must be investigated. The leg

is sometimes run across the top of the girder and bent down on

the other side and there fastened, which is sometimes good, but the

increase in material added to the cost of fastenings and the cost

of labor to drive them amounts to more than the cost of the addi-

tional thickness necessary to prevent straightening. A stirrup

strong enough to carry a load without bending is more satisfactory

than one confessedly weak with which fastenings must be used.

Tops of beams and girders should not be cut to make a seat

for stirrups. This weakens the timber, so the under side of the

floor planking should be cut to make pockets for the stirrups. A
cheaper method is to lay a strip of wood to carry the flooring on

top of the beam between stirrups. When the floor is double the

under layer may be cut away at the stirrups, the upper layer being

amply strong to carry over the small hole. Fig. 62 is reproduced
from "Ryerson's Ready Reference." The stirrups illustrated are

made of wrought iron and the recommendation is made in the book

that the following sizes mentioned in the table should in general

be used for the size of joist supported, the stirrups, unless other-

wise specified, being furnished \ in. smaller than nominal size of

timber or joist. Wall hangers rest on plates as shown.

TABLE OF STIRRUP SIZES AND CAPACITIES

Another method for carrying the ends of joists on a girder when
head room is to be saved and the joists cannot rest on top of girders

is shown in Fig. 63. This depends upon shearing resistance of

the spikes. First find the width of bearing required for each joist

by dividing the reaction by the bearing strength across the grain.

Use nails having a length practically three times the thickness

of the bearing strip as a minimum, so they will go into the girder
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a depth about twice the thickness of the bearing strip. The num-
ber of nails to use depends on the reaction, and the thickness of the

nail. Divide the reaction in pounds by 100 to get the number of

20d. nails
; by 150 for 30d. nails

; by 175 for 40d. nails
; by 200

for 50d. nails; by 225 for 60d. nails. There is considerable dif-

ference in weight between nails and spikes having the same desig-

nation and the above figures refer to nails. The nails should be

spaced at least 3 ins. apart horizontally and this can be accom-

plished by putting half near the bottom of the strip and half near

the top, thus staggering them. The size of nail to use will therefore

be determined by the spacing when the reaction is considerable.

Fig. 63 Wood End Bearings for Joists

The above described bearing strip support for joists is a cheap
method. Formerly it was customary to use girders considerably

larger than were necessary and seats were cut into them for the

joists. This increased the labor cost and when water settled into

the joints they rotted. The introduction of slow burning construc-

tion also acted to throw the gaining of joists into girders into

disrepute because of the increased fire risk in the joints. When
a nailed bearing strip is used it should be carefully computed.
The bearing should be at least half an inch wider than the com-

puted bearing. The ends of the joists should be carefully fitted.

It is advisable with thick joists to top nail them to the girder to

prevent twisting or winding. With thin joists a solid bridging

should be inserted at the ends, nailed to the girder. When this is

done many of the objections to the joiners pocket are introduced.

Therefore metal hangers are better when for any reason it is not

advisable to have the joists rest on top of a girder. In slow burn-

ing construction neither hangers or bearing strips are proper.

The thickness of joists in such construction should be not less

than half the depth and the minimum cross-sectional area should

be 72 inches. All joists should rest on top of girders.

The maximum shear on a wooden beam is along the neutral

axis and season checks are apt to occur here, so nailing strips
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should be as far from the neutral axis as possible, which indicates

the bottom of the girder, as a proper location. When a seating is

cut into the bottom of a joist it is apt to cause the joist to split,

and if season checks open at this point the joist will be greatly

weakened. Half the depth of a joist may be cut out at the very
end without weakening it for carrying purposes, for the bending
moment at the end is zero, but if a joist splits for any considerable

distance from the end it is greatly weakened. The principal

objection, therefore, to the nailed bearing strip is the danger of

splitting the joists at the upper edge of the seat. If the joists rest

without cutting on the bearing strip and the strip is properly de-

signed, it cannot be condemned. There will, however, in this case,

be a projection of the girder below the ceiling equal to the width

of the strip.

6. Design a laminated floor to carry a total load of 48 Ibs. per

square foot on a span of 16 ft. Use white pine with a fiber stress

of 800 Ibs. per square foot. Ignore deflection.

A laminated floor is a solid floor consisting of 2-in. planks spiked

side by side. The width to use in designing is 12 ins., the load

being in pounds per square foot.

M = 1.5 x 48 X 162 = 18,432 in. Ibs.

/ = 800 .

'

. R = 800 + 6 = 133.

133 X 12

Use 2 ins. X 4 ins., which will give an actual depth of 3f ins.

If the deflection is not to exceed -5%-$ of the span, the deflection

. , 16 x 12 n _. .

will be = 0.534 in.
ooU

Z/
2 162

Actual deflection = 7^- = 7^ _oe = 1.535 ins.
46n 46 X 3.625

The formulas previously given for deflection, page 80, are

based on the fiber stress and to avoid several trial computations
to ascertain the depth with the reduced stress use the rule that :

The deflection in beams varies as the cube of the length in feet

divided by the breadth in inches multiplied by the cube of the depth

in inches.

Expressed as a formula it appears:

Depth varies as rrr
bh3
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Let L = span in feet,

6 = breadth in inches,

h = depth in inches (required for strength),

x = depth in inches (required for deflection),

D = deflection found in inches,

d = allowable deflection in inches.

Then ,lDh
3

. Jl.535 x 3.G253
, ,-

.

* =
Shr

=
S/ 0.534

=5 -15ms -

Use nominal 2-in. x 6-in. planks.

The formula is developed as follows :

dU
_
PL*

bh? btf
'

which becomes ^! x M.
bh3

x DL3

Cancelling common factors, we get j^ and y? =
T-, the formula

used above.

7. Assuming a floor with same load and fiber stress is to be

carried on joists find the size required for joists 12 ins. center to

center and 16 ins. center to center. Deflection to govern.

The allowable deflection = 16

3^Q
12

= 0.534 in.

L2 162

46Z) 46 X 0.534

The depth in this example needed to avoid undue deflection is

based on the fiber stress used in design, for the breadth is governed

by the depth. In the case of the laminated floor a constant breadth

of 12 ins. was used and the deflection was fixed by a lower fiber

stress than that used for strength only.

The bending moment for a width of 1 ft. = 18,432 in. Ibs. (from
the last example). The thickness of the joist will be

18,432
6 =

133 x 10.625*
= L23mS -

Use nominal 1.5-in x 11-in. joists, 12 ins. center to center.

With joists spaced 16 ins. center to center the bending moment
is increased one-third, 18,432 x 1.333 = 24,600 in. Ibs.

24,600
6 =

133 X 10.625*
= IM mS '

Use nominal 2-in. x 11-in. joists, 16 ins. center to center.
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The increase in amount of lumber is about one-fourth, while

the increased carrying capacity is one-third, so it will be better

to use the 16-in. spacing than to use the 12-in. spacing. Thinner

joists than 2-in. are not advisable when it is possible to avoid them,
so this is another reason for using the wider spacing. To make the

floors stiff and to avoid bending under load, or warping of the

joists from any cause, lines of cross bridging should be used at

intervals approximately twenty-four times the thickness of the

joist. This for 2-in. joists will be 48-in. (4-ft.) centers.

Beams on a Slope

Let S = length of beam on slope,

L = horizontal span,

W = total load uniformly distributed on the slope,W = total load beam can carry,

TI7/ WS
then W = -jr-

Li

The foregoing applies in the case of stringers supporting stairs

and inclined rafters carrying a load on the upper surface. There

is a horizontal and a vertical force acting when a beam is inclined

and the resultant thrust increases the compression and decreases

the tension in the fibers. It is usually unimportant and may be

neglected when the slope is less than thirty degrees, but should

be investigated in any .case. When an inclined member of a truss

carries a load on the upper surface in addition to the direct thrust,

the member must be designed to take these loadings into account.

Let M = bending moment due to the load.

/ = fiber stress.

A = area of member in cross section

W = direct load along axis of the member.

h = depth of the member.

I = moment of inertia of member, which is assumed here

to be symmetrical.

, W Mh
then /- + _ _ .

In the above expression the first part gives the average fiber

stress due to the direct load acting along the length of the member,
that is, the push. The second half is the familiar expression for

the fiber stress in a beam bending under load. Use it twice, once

with a positive sign and once with a negative sign. The ex-



PROBLEMS IN DESIGN OF BEAM 101

pression sometimes appears,

W M
f=+ A ^'

in which S = section modulus.

Buckling of Beams

The author has been careful in calling attention to the fact that

beam formulas and tables of carrying capacity of beams assume

the beams to be stayed for lateral stiffness. If a beam is too long
the upper half acts as a slender column having a least dimension

equal to the breadth. When a floor is fastened to the upper sur-

face along the length it is usually a sufficient stay. It is best,

however, to have a stay as well for the lower edge of the beam.

A familiar illustration is the cross bridging between wood floor

joists placed at intervals of about 24 times the breadth of the joist.

In steel beams the lateral stays should be spaced at intervals not

exceeding 40 times the width of the flange. All stays prevent
a sidewise buckling, and the stay at the lower edge prevents a

blow from pushing the beam to one side, which would cause the

loading to become eccentric and thereby increase the stresses.

The effect of lateral deflection and eccentric loading is to set up
the simultaneous action of a direct thrust plus bending.

Stiffness of Wood Beams

The following formula was evolved by Thomas Tredgold, a noted

British authority on carpentry in the last century. A beam

designed according to this formula will deflect less than ^^ the

span.
6 = breadth of beam in inches,

h = depth of beam in inches,

L = span in feet,

P = concentrated load in middle of span,

W = uniformly distributed load = 0.625P,

3 \UPC AUWC
k =

\-F"
=
\-T~'

UPC UWC
o = r

h*

C = a constant = 0.010 for fir and yellow pine.
= 0.013 for oak and white pine.



CHAPTER IV

Girders and Trusses

A METHOD frequently used by carpenters to strengthen

joists and beams is shown in Fig. 64. Two pieces are

nailed as indicated, the presumption being that they exert

an arching action because the ends abut at the middle of the span
and the nails hold the pieces in place when thrust is exerted.

. Wood shrinks

when it dries, so

Fig. 64 A Poor Method for Reinforcing Joists
the close contact

is lost, and then

considerable deflection must take place before the ends again meet,

the bending being sufficient to cause failure in many instances.

Provided the hoped-for arch action does occur there will be such

a pushing against the nails that the wood is bound to split. How-

ever, assuming the arch action does take place and the nails do

not split the pieces the reinforcement is not effective. For effec-

tive arch action there must be substantial abutments provided.

If there are no substantial abutments a tie rod is necessary to tie

the ends together and take the thrust. There being no tie rod,

it is evident that the lower part of the joist will have to act as

a tie. We know that when a beam is loaded the lower fibers are

stressed in tension and the upper fibers are stressed in compres-
sion. To increase the tension in the bottom by adding to it the

amount required to take care of the thrust

in the diagonal reinforcing strips is not

helpful. This old-time method is, therefore,

based on a fallacy and should be abandoned.

In Fig. 65 is shown another method, the

reinforcing being spiked along the top edge
to make a beam of T-section. This raises the

Fig. 65 T-beam of

Wood

neutral surface so the increased area in compression is supposed
to be offset by an increased area in tension.

Assume a joist 3 ins. X 14 ins. of wood in which a fiber stress of

102
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1200 Ibs. per square inch is used. A strip 1 in. x 4 ins. is spiked on

each side along the top. How much is the strength increased?

i 4 ^.u *f fib? 1200 x 3 X 142
The original strength, Mr =

J

-^-
= - --- = 117,600 in.

Ibs., the neutral plane being in the middle of the joist. To find the

position of the neutral plane in the T-section use the method of

moments, taking moments about the lower edge:
The original piece, 3 X 14 x 7 = 294

One added piece 1 x 4 x 12 = 48

Second added piece 1 X 4 x 12 = 48

390

Area = (3 x 14) + (2x4) =~~50
= 7 ' 8 ms<

First the area of the .beam was multiplied by the distance of

the center of gravity above the bottom, the result being 294.

Then the area of each added piece was multiplied by the distance

of its center of gravity above the bottom of the beam. This was
12 ins., being half the depth of the piece added to the difference in

depth of the beam and the piece. The products were added to-

gether, the sum being 390. Dividing by the total area, 50 sq. ins.,

the distance from the bottom to the center of gravity (center of

area in this case) was found to be 7.08 ins.

The original moment arm = f x 14 = 9.333 ins., that is, 9.333 ins.

Before the pieces were added at the top the moment of resistance

was equal to the area on one side of the neutral axis multiplied by
the average fiber stress times the moment arm, that is:

~- x 3 x 7 x 9.333 = 117,600 in. Ibs.

The strength of the beam is fixed by the fiber stress and the

smaller stressed area. In this T-section the smaller area is the

portion in tension below the neutral axis and the resisting moment

= X 3 x 7.08 X 9.333 = 118,944 in. Ibs.
a

The increase in strength is very small, so the area added above

the neutral axis was excessive. Better results would have been

obtained by nailing one strip along the bottom and one along

the top, thus increasing the area equally in tension and compres-

sion, without altering the position of the neutral axis. The proper

method to follow is to increase the thickness by adding boards

on one or both sides for the full depth. An example will be worked

out:
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In a mill-constructed building 7 ins. x 14 ins. white pine beams

spaced 5 ft. on centers are used with a span of 20 ft. The allow-

able maximum fiber stress is 800 Ibs. per square inch and the beams

are to be strengthened so the total floor load can be increased to

100 Ibs. per square foot, inclusive of floor, beams, and live load.

Testing first the strength of the beams against failure by longi-

tudinal shear on the neutral axis, the unit shear being one-tenth

the allowable fiber stress,

4X7X14 x 80

The total panel load will be 5 x 20 X 100 = 10,000 Ibs., so the

beam will carry the additional load without failing in shear.

Mb = 1.5 x 10,000 X 20 - 300,000 in. Ibs.

M, = 80 X
J
X142 = 182,933 in. Ibs.

Then the difference between the bending moment and the

resisting moment is 300,000 - 182,933 = 117,067 in. Ibs., which

difference must be cared for by reinforcement. To secure equal
deflection the reinforcement should be the same wood, white pine,

but the difference will not be appreciable in this case, and to use

yellow pine will give a smaller piece for reinforcement because

of the higher allowable fiber stress. The beam is in an old build-

ing and quite likely the maximum deflection in the white pine has

been reached, and there is a decided permanent set. The reinforce-

ment should be added when the floor is unloaded in order to enable

the old beam and the new pieces to deflect together when the

live load is added, the difference in deflection between the two kinds

of wood being cared for by the deflection due to dead load in the

wood having the greatest deflection.

Assuming, therefore, yellow pine with a fiber stress of 1300 Ibs.

per square inch and a depth of .14 ins. the thickness is to be com-

puted. Let
R = 1300 *- 6 = 217

, M 117,067
6 =^ =

217tl4l
=2J6mS-

Use two If-in. planks, one on each side. When surfaced the

thickness will be practically 2f ins.

The load is uniformly distributed; the original beam is large

enough to carry the required load without a shearing failure;
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the diagram for bending moment due to a uniformly distributed

load is a parabola; therefore the reinforcing planks need not ex-

tend the full length of the beam. They would have to extend the

full length if there were danger of a longitudinal shearing failure,

and the thickness of the reinforcement would also be governed

by the requirement for shear.

Dividing; 182,933 -=- 300,000 = 0.61, which shows that the resist-

ing moment of the beam is 61 per cent of the bending moment
created by the load. The ends of the reinforcing planks must extend

each side of the middle of the span to the point where the bend-

ing moment is 61 per cent of the bending moment at the middle

of the span. This may be obtained graphically by constructing
a parabola with a base equal to 20 and a height about equal to

this, the height divided decimally to any scale. At a height equal
to 61 on the middle ordinate draw a horizontal line to intersect

the parabola. From the point of intersection drop a perpendicular
to the base. This defines the point where, theoretically, the rein-

forcement may end. Practically it should extend a little further.

The lengths of the reinforcing planks may be calculated by men
who can solve a quadratic equation. The bending moment on a

uniformly loaded beam at any point distant x from one end is as

follows: wLx WX2

ar,-_ .

Substitute the values for Mx , w, and L and solve for x.

W = ' = 523 Ibs. per lineal foot (in even numbers).

-I QO OQQ
MX =

-^
= 15,244 ft. Ibs. (in even numbers). This moment

is the resisting moment of the beam without reinforcement.

Then 15,244 - 523 * 2 * - *.

Clearing of fractions,

2 x 15,244 = 30,488 = 523 x 20x - 523z2
.

Dividing by the coefficient of z2
,

58.3 = 20x - x2
.

Transposing, x2 - 20x = -58.3.

Extracting the square root,

+ -TT V ir - 58.3 = 3.55 ft.
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The reinforcing planks (theoretically) should have a length

of 20 -
(2 x 3.55) = 13.90 ft. Practically it will be best to make

them 15 ft. long, which leaves 2 ft. 6 ins. without reinforcement at

each end of the beam.

The planks must be attached to the beam by screws or nails,

the latter being the cheaper. To get the best results the length

must be not less than three times the thickness of the plank, in

order that the nail may be embedded in the beam a depth at least

twice the thickness of the plank. From a table of sizes of standard

steel wire nails and spikes (in the steel manufacturers' handbooks)
we find a 30d. nail is 4.5 ins. long, the length required. There must

be enough nails used so the beam and planks will act together

and the force to be resisted is shear, for if the beam bends and the

planks do not bend there will be a sliding movement between

them.

When a nail resists a shearing force three actions are set up:
1. A bending caused by the pull of one piece against the nail em-

bedded in the other piece. 2. A shear hi the nail which is caused

if the nail is so stiff that it will not bend. 3. Bearing against the

wood in which the nail is embedded. The size of the nail must be

proportioned to care for the action most likely to cause a failure.

When the material to be held is wood the bearing action of the nail

against the wood is the only one to be considered, for if the nail

furnishes area enough to transmit the shear it will be thick enough
to resist bending and also thick enough not to shear across. Rivets

in metal have to be similarly proportioned, but bending is seldom

feared while failure by shear of the rivet or by insufficient bear-

ing against the metal is practically, and usually, of equal impor-

tance. Both must be figured, whereas in the case of wood only

the bearing value is considered. The bearing value is computed
as follows:

The 30d. nail (not spike) is made from No. 5 wire, the diameter

being 0.207 in. The cross-sectional area through a l|-in. plank

is 0.207 x 1.5 = 0.311 sq. ins. The compressive value of the softer

wood must be used, which is 700 Ibs. per square inch with the grain,

assuming the nail to bear on the end of the wood where it enters.

The bearing value for one nail is found by multiplying the bearing

area by the allowable fiber stress in compression with the grain,

0.311 x 700 = 218 Ibs. This is the method to be used when no

data is at hand giving the actual safe bearing values.
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The actual safe bearing value for any nail is about two-thirds

of the value as above computed. One reason is that there is no

common gauge used by nail makers, so that while tables may show

that nails are made of certain wire, not all tables give the diameter

of the wire in decimals of an inch, and

there being a number of wire and

metal gauges in use we do not know
the exact sizes of the nails used in the

published experiments. The experi-

ments referred to may have been

made with nails not quite so thick as

the nails used in computing the bear-

ing value. A second reason for the

Fig. 66 Shear Diagram for

Original Beam

actual bearing value being so small is that the nails push the fibers

of the wood aside and start a splitting action, which is increased

when the shearing action is set up. This second reason is no doubt

much more important than the first. The method of figuring

bearing value just illustrated is correct for bolts for which holes

must be bored, but gives a value about 50 per cent too large for

driven wire nails and for screws. The designer must not forget

this. Having settled on the size of nail and the bearing value of

each nail, the number and spacing must be determined.

Fig. 66 is the shear diagram for the uniformly loaded beam.

At each end the shear = reaction = 10,450 -=- 2 = 5225 Ibs. The
nails should be

closer together

near the ends,

where the shear

Fig. 67 Shear Diagram for Reinforced Beam

is a maximum,
so theoretically

the spacing
should vary

from nail to nail. Practically the spacing can be maintained at

uniform intervals for each foot, which makes the diagram resemble

Fig. 67, the reinforcement ending 2.5 ft. from each end.

The method to be described follows the common method for

spacing rivets in the flanges of plate girders. There is another

method which will later be illustrated, because it shows exactly how
the stresses in the top and bottom flanges of plate girders affect the

rivets used to connect the flanges to the web. In the present
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example the original beam may be said to represent the web,
the reinforcing pieces the flange members, and the nails the rivets

used in plate girders. The spacing of stirrups in a reinforced-con-

crete beam is another illustration of the transmission of stresses

from one part of a beam to another by designing to resist shear.

In a truss the sizes of the members are varied, for the panel lengths

are equal. When the nails in a reinforced wooden beam are of the

same size, the rivets in a plate girder are the same size and the

stirrups in a reinforced-concrete beam are the same size, the

variation in shear is taken care of by varying the spacing.
COOK v 8

Two feet from the end of the beam the shear is = 4180

Ibs. The width of the original beam is 7 ins., and the two planks
4180 x 7

increase the width to 9.75 ins., or ^-^=
= 3000 Ibs., which will

. . 4180 - 3000
be carried by the original beam, leaving

-=-- = 590 Ibs. to

be carried by each plank. The nails must transfer this from the

beam to the plank and they should be driven 1 in. from the edge,

both top and bottom. Let

V = total vertical shear at the point considered,

r = resistance of one nail (bearing value),

d = distance hi inches between lines of nails (in the present

example d = 12 ins. vertically),

p = pitch of nails in inches (the horizontal distance center to

center between nails) ;

rd 145 X 12 n _ .

then p = = = 2.95 ms.

Space the nails 2f ins. center to center along the upper and lower

edge for at least 6 ins. at each end, the first nail being driven 1 in.

from the end of the plank.
COOK, v 7

Shear 3 ft. from erid = ^ := 3660 Ibs.

.
,

3660 - 3000
Shear carried by each plank = --=-- = 330 Ibs.

p = = 3.92 ins. Space the nails 3f ins. center to center

along the upper and lower edge of the plank for 1 ft.

Shear 4 ft. from end = 522

^Q

X 6 = 3135 Ibs.
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Shear carried by each plank = 3135 ~ 300 = 67 .5 ibs.

145 x 12 _ _ .

P= -67^- =25 -8m -

Nails should be driven not more than 12 ins., on centers, so,

beginning at the end of the fourth foot from the end of the beam
drive nails on 12-in. centers top and bottom. Along the neutral

axis drive nails on 18-in. centers. The completed work is shown
in Fig. 68.

No reduction in area was figured, as nails merely push wood
fibers aside, but when bolts are used the effective depth of the

beam is reduced by the thickness of each line of bolts. If bolts

Bottom

Fig. 68 Beam Reinforced by Planks on the Sides

f in. in diameter are used in two lines, and the hole for each bolt

is | in., the effective depth is reduced by 2 x | = If ins. This is

serious, for the strength of beams varies with the squares of the

respective depths.

Sometimes beams are reinforced by nailing a plank or strip of

steel along the bottom. Assume the same conditions as in the

last example, and use a thin white pine plank on the bottom.

Maintaining the breadth the problem is to obtain a new depth.

The fiber stress for white pine is 800 Ibs., so R = 800/6 = 167

and h =
y

=
Y

>

y
= 16 ins. The original depth is 14

ins., so a plank 2 ins. thick by 7 ins. wide must be spiked or

bolted to the bottom. A thick plank like this must be fastened

with bolts, and the holes will reduce the area, which will make

necessary an increase in thickness. Methods for finding the length

of the reinforcing plank and the pitch of the bolts have been given,

the depth used being the full depth of the original beam plus half

the thickness of the reinforcing plank.
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To reinforce with a steel plate on the bottom use a moment
arm = f X 14 = 9.333 ins. The fiber stress in the steel will be

16,000 Ibs. per square Inch. Then area of plate = ool^'^Jnnn9.000 x ib,ooo
= 0.783 sq. ins., and 0.783 -=- 7 = 0.118 ins., the thickness of the

plate. Use lag screws to fasten the plate to the beam, the proper

pitch being determined as in the last example, using the full depth.

The objection to the use of the steel plate is that the compression
in the upper half of the beam is increased, although the effect

of adding the plate is to lower the neutral plane. The proper
method for reinforcing a beam, or girder, in place is to add planks

on one side or on both sides, but

when fixtures or wires are in the

way it may be best to use a steel

plate on the bottom.

Compound beams have been made

consisting of two shallow beams

superimposed (Fig. 69). If not care-

Fig. 69 Compound Beam
fully fastened together they act

singly, because the line between them is in the position occupied

by the neutral axis of a solid beam, having a depth equal to the

combined depth of the two pieces. Several methods have been

used to cause the two pieces to act together, one of which is

shown -in Fig. 69, the other in Fig. 70.

No matter how thoroughly the pieces are fastened together

the strength of such a compound beam is only about 70 to 75

per cent of the strength of a beam of equal dimensions made
from one piece of timber. The deflection of such a beam under

load is much greater than the deflection of a beam of equal dimen-

sions made from one piece of timber.

The diagonal side pieces shown in Fig. 69 should be preferably of

a harder wood than the beam, and each should be not less than one-

eighth the thickness of the beam, thus making a beam 25 per cent

wider than the width of the pieces of which it is composed. The

pieces should be diagonal and slope in opposite directions on the

sides of the beam. Plenty of nails must be used.

In Fig. 70 the pins should be of hard wood or of metal. It is

best to use two pieces in each hole, wedge-shaped, so they may be

driven tight and have a bearing against the wood the full width

of the beam. The shear being greatest along the neutral axis,
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it is here the pieces should join and the pins be driven. Between
the pins should be vertical bolts with larger washers to hold the

pieces together. The spacing of the pins will be determined in

like manner as the pitch of nails is determined when reinforcing

planks are used on the side. First determine the bearing value

of the wood and the

shearing value with the

grain. Divide the shear

where a pin is placed by
the allowable bearing

Fig. 70- Compound Beam

times the breadth to. obtain the depth of the hole, half of which

will be cut in each half of the beam. The shear divided by the

breadth times the allowable unit shear with the grain gives the

minimum distance allowable between. pins. When the computa-
tions are completed it will be discovered that the pins get farther

apart as the middle of the span is approached.
Flitch plate girders, Fig. 71, are seldom used to-day, although

very popular at one time. The only reason for referring to this

type of compound girder here is to show wherein it fails. A flitched

girder consists of a plate of steel, or wrought iron, between two

planks, the whole construction being firmly bolted together.

The writer, in wrecking old buildings, found a number of such

beams evidently put together on a basis of relative fiber stresses,

with no thought for relative deflections. He worked once in the

office of an architect who tried to get him to design such a beam
in this way and the man was greatly surprised when the proper

method was shown to him. The method used is as

follows: Assuming a maximum bending fiber stress of

1300 Ibs. per square inch for wood and 16,000 Ibs. per

square inch for steel, the relative areas of wood and

steel will be 16,000 + 1300 = 12.5, or a |-in steel plate

between two |-in. planks makes a girder having the

strength of four f-in. planks.

Referring to the deflection formulas it is seen that for a fiber

stress of 16,000 Ibs. in steel the deflection in inches on any span

=
^rr, while for a fiber stress of 1300 Ibs. in wood the de-
v)U/i

flection = Therefore yellow pine deflects 60 -^ 41 = 1.46

times as much as steel, under the respective fiber stresses given.
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This question of deflection does not take into consideration the

thickness of the material, for deflection is governed by the span
and the depth.

The statement about relative deflections means that if the

thicknesses are proportioned by the relative stresses, then the wood

planks must be 1.46 times as deep as the steel plate between them.

This will not do in practice, so it is necessary to obtain the rela-

tion between the stresses when the plate has a depth equal to the

depth of the inclosing planks. The fiber stress in the wood divided

by the fiber stress in the steel must equal the modulus of elasticity

of the wood divided by the modulus of elasticity of the steel;

that is,

fj!>_E*
fs

~
E.'

/EW 16,000 x 1,500,000Then'=V =

30,000,000
= 800 Ibs. per square inch.

This is a low stress for yellow pine, so a softer wood can be

used. Assume a wood having a modulus of elasticity of 1,000,000,

iU , 16,000 x 1,000,000 coc .,

then/" =
30,000,000

= 535 Ibs. per square inch.

If a steel fiber stress of 18,000 Ibs. per square inch is assumed,
the fiber stress in the wood = 600 Ibs. per square inch. The com-

putations show that for a flitch plate beam a soft, cheap wood is

the kind to use. It is wasteful to use a wood in which a high

fiber stress may be permitted.

To design a flitched girder the fiber stresses are first found.

Then assume the depth and thickness of the steel plate. Find how
much it will carry as a thin deep beam and deduct this load from

the total load to be carried. The difference is to be carried by the

two wood planks of which we know the depth and the fiber stress,

so it is easy to find the thickness. The bolts are figured to trans-

mit the shear. It is an interesting exercise to design a flitch girder,

but a rolled steel beam or a trussed wooden girder will usually be

cheaper.

Plate Girders

Plate girders are compound girders made of wrought iron or

steel, the latter material being generally used to-day, for it may
be used with a higher fiber stress, thereby reducing the weight.

When rolled beams are not obtainable in a large enough size a
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plate girder is used, provided a rolled beam cannot be made to

serve, by attaching plates to the flanges. Tables of plate girders

are given in the steel handbooks, so the architect or builder finds

it as easy to select a plate girder for much of his work as it is to

select a rolled I-beam or channel for light loads on shorter spans.

When the load, or the span, either or both, make a plate girder

too heavy, a trussed girder is used.

Fig. 72 shows a plate girder. The thin vertical plate is known
as the web and is made thick enough to carry the shear. It acts

also as a long slender column, so must be safe against crippling.

When proportioned to carry the shear and the thickness is greater

than sV the depth between the rivets in the upper and lower flanges,

Fig. 72 Plate Girder with Cover Plates and Stiffeners

the plate is safe against crippling. When designed to carry the

shear and a thickness less than ?\ the depth is obtained, it is neces-

sary to use stiffeners spaced regularly at intervals equal to the

depth of the girder. Additional stiffeners are placed under con-

centrated loads and at the ends. Intermediate stiffeners are some-

times crimped over the flange angles, but it is as common to have

fillers placed under them, the thickness of the fillers being equal

to the thickness of the flange angle, so the stiffeners will be straight

and have the ends resting on the outstanding leg of the flange

angles. No scientific rules seem to be commonly accepted for

designing intermediate stiffeners, the usual empirical method

being to have the outstanding leg equal in width to -jV the depth

plus 2 in.

End stiffeners act as columns to carry the end shear, which is

delivered to them by the web plate and carried to the bearing

plate. Stiffeners under concentrated loads are designed as columns.

The ends of all stiffeners designed as columns should be milled

or ground to fit perfectly against the bottom flange angles.
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Divide the load by a fiber stress of 12,500 Ibs. per square inch for

the area of the stiffeners and use fillers to keep the stiffeners

straight.

The flange may be made solely of angles extending the whole

length of the web plate, or of angles with plates riveted to them,

the latter type being adopted when angles alone will not be suffi-

ciently strong. The plates seldom extend the full length and if

more than one flange plate is used the outer plates are very short,

the lengths increasing progressively as they get closer to the angles.

These plates are known as cover plates, and when different thick-

nesses are used the thinner plates are on the outside.

The resisting moment is determined as follows: one-eighth

the area of the web is considered as forming part of the flange.

This is the usual custom, but some engineers use only TV and

some T*J.

*, t uM r of web =
o

b = thickness of web plate.

d = total depth of plate.

/ = unit fiber stress (usually 16,000 Ibs. per sq. in).

M r of angles = Adf.

A = area in sq. ins. of the two angles on one edge of

plate.

d = distance center to center of gravity of the

angles on upper and lower edges of web

plate.

/ = unit fiber stress.

M r of cover plates = Adf.

A = area in sq. in. of plates on one edge of web

plate at middle of span.

d = distance center to center of gravity of cover

plates.

/ = unit fiber stress.

The total moment of resistance of the plate girder is the sum
of the moments of resistance of the web, the angles, and the cover

plates.

The rivets used to connect the flange angles to the web and to

connect the cover plates to the angles must be spaced to take



GIRDERS AND TRUSSES 115

care of the shear, this being accomplished by using the following

formula :

rd
p = r

in which V = total vertical shear at the section considered,

r = the resistance of one rivet,

d = distance in inches between the center of the upper
row of rivets and the lower row of rivets,

p = pitch, center to center of rivets, hi the flange.

The bending moment due to uniform load varies as a parabola,

and as plate girders are generally designed for a uniform load the

cover plates are varied in length to provide enough area for ten-

sion or compression. They extend a short distance past the point

where they are no longer required, to allow for proper connec-

tions. By having the plates stop when no longer required some

weight is saved and the design is the most economical possible.

When concentrated loads must be cared for in addition to a uniform

load the process is altered.

Let A = total area of angles and cover plates in one flange at

mid-span,

a\ = area of shortest cover plate,

a2
= area of second cover plate,

ax = area of longest plate, the plates being numbered pro-

gressively from 1 to the end, x being used to signify

any general terminating number.

Similarly li, lz In, etc. = lengths of the plates, the letter

n being used to designate the general number applying to the last

plate, thus ln = length of the last plate considered.

L
then, In =

-/=
X Vi + 2 + . . . ax .

The angles always extend the full length of the web plate.

In spacing rivets in the flanges of plate girders it is common

practice to have the rivet spacing uniform between stiffeners, the

amount of vertical shear considered as being taken at each stif-

fener. The minimum distance between centers of rivets is three

diameters of the rivet, but not less than 3 ins. for f-in. rivets and

2^ ins. for f-in. rivets. In the flanges the maximum pitch should

not exceed six times the diameter of the rivets. The maximum

pitch at ends of cover plates should not exceed four diameters of

the rivets for a length equal to twice the depth of the girder. The
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maximum pitch in stiffeners is determined by the loading, if any,

but should never exceed a maximum of 4| ins. The load on an

intermediate stiffener, and the load plus the end shear trans-

mitted to an end stiffener, is divided by the bearing, or shearing,

value of the rivet on the plate to obtain the number of rivets.

These are equally spaced, but the maximum spacing is, as stated

above, 4^ ins.

When it is necessary to splice the web of a girder the splice

plates on each side of the web must be proportioned so the rivets

will not be unduly stressed. The moment causing vertical bending
in the girder makes the

stress in the rivets

greater as the bottom

or top is approached.
Sometimes an addi-

tional
" moment splice

"

must be added on the

sides of the web close to

the flange angles.

The lengths of flange

cover plates and the

spacing of rivets may
be done graphically.
In fact the graphical

method for obtaining

the length of cover

plates is that commonly
Fig. 73

used by designers. Fig. 29 shows a moment diagram on a beam

carrying a uniform load and several distributed loads. Fig. 73

shows the combined curve for this condition, so that it will not

be necessary to measure up and down from the neutral axis and
add the lengths.

The moment curve for a plate girder is similarly drawn. For

a uniform load only, the curve is a parabola, so it is necessary to

show but one-half the span. All horizontal measurements are

made to the scale of the drawing, and all vertical measurements
are made to the scale used for the bending moment. Make the

drawing no larger than is necessary to obtain accurate data.

To set off the lengths of cover plates draw a vertical line through
the point of maximum bending moment, Fig. 74. Begin at the
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Cover Plate

Cover Plate \

Fld'hge bnjfgifr

bottom and set off first the amount of moment carried by the

web (|, TV or TV, according to specifications) and above this set

off the amount carried by the flange angles. The number of cover

plates having been determined, set off in succession the amount
of moment carried by each. Through the points fixing the amount
of moment carried by the web and the angles draw horizontal

lines to the ends of ,

the span. Through
the points fixing the

amount of moment
carried by each cover

plate draw horizontal

lines beyond the mo-

ment curve 2 or 3

feet. This projection

allows length in which

to place a few rivets

so the plates begin

to be effective when
needed.

The lengths of the

cover plates are scaled

from the diagram.
When the plate girder

Fig- 74

carries a moving load on top it is usual to have the top cover

plate next the angles extend the full length of the girder. This

protects the angles against the entry of moisture in the joints and

stiffens them near the ends against the effects of deflection of the

frame carrying the load.

A similar diagram may be used for spacing rivets. The vertical

scale represents the total maximum tensile (or compressive) stress

in the girder, instead of the maximum moment. The number
of rivets necessary to resist this stress is determined by dividing

the stress by the safe allowable stress on each rivet. The vertical

line is divided into as many parts as there are rivets required.

Through the division points draw horizontal lines, Fig. 75, to an

intersection with the boundary curve. From the points of inter-

section with the boundary curve drop vertical lines to the base.

A rivet will be placed at each intersection thus determined. A
similar method may be used for spacing stirrups in beams of

Plate Girder
*
Heuiral Axis,
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reinforced concrete. The moment diagram for obtaining the

lengths of cover plates may be used without change for determin-

ing rivet spacing by adopting a scale for the vertical lines pro-

portioned to the ratio the total stress bears to the moment. By
total stress is meant the product of the area of the flange angles

plus the area of the

cover plates multi-

plied by the unit

stress.

Beams with Uniform

Stress

When the shape of

a beam resembles the

shape of the bending
moment diagram the

stress is the same
along the length.
When the top and

bottom of a beam are

parallel the stress di-

minishes toward the

ends. Cast-iron

beams, therefore, are

generally made with a "
belly," for the material can be distributed

at will since the beam is cast in a mold. This effects some saving
in the cost of patterns and castings. Plate girders are sometimes

made in this form, a familiar example being the main girders

along the under side of railway cars. The stress equals the mo-

ment at any point divided by the depth of the beam at that

point.

Trussed Beams

The trussed beam shown in Fig. 76 is the most simple form of

truss. One-half of a uniformly distributed load is assumed to be

concentrated over the strut hi the middle, so, letting

Fig. 75
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Referring to Figs. 48, 49, 50, wherein the stress is shown to

be equal to the moment divided by the depth, the compressive

stress in the long horizontal member is,

The length of the diagonal portion of the tie is found by the

formula
,-j^

,n j\ 2

2

and the tensile stress in the diagonal is

T =
2d

The compressive stress in the vertical strut depends upon the

construction of the horizontal member. If it is in two pieces joined

over the strut, one-

half the load, P, is I -~F~ -*f*- \ ->|

carried by the strut.

If it is in one piece,

or composed of

several planks so
Fig 76 .

_
single strut Belly Rod Beam

joined that they act

as one piece, the strut carries fP when P is a single concentrated

load or $W when IT is a uniformly distributed load. This value

must be used for P in the above formulas.

When the single strutted beam carries a single concentrated

load over the strut the latter carries the whole load, plus half the

weight of the uniformly distributed load of the beam. The ten-

sile and compressive stresses in the horizontal and diagonal members
are found as explained above.

In Fig. 77 is shown a beam with struts at the third points.

The bending moment for a beam carrying two equal loads, P,
at a distance = L -r- 3 from each end, is

The horizontal stress C = TTT*
3d

Pt
The diagonal stress, T = =-

The compressive stress in each strut = P.
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When the load is uniformly distributed | is carried by each strut,

W
so in the above expressions substitute -5- for P.

o

When the horizontal member is in one piece and uniformly

loaded, each strut carries -^ of W.
The above formulas are true for any depth of truss of the single or

double strut kind. The truss may be reversed so that the sloping

members are above and the long horizontal member is below.

Then the lower member carries tension and the upper members

are in compression. The methods of computation are not altered

r
........

*
......T ........*- ........

fr
......

*!

"-VU .....-r

Fig. 77. Double Strut Belly Rod Beam

except that the vertical pieces are ties instead of struts. With
the load applied at the upper end the ties carry no stress from the

load but are used merely to maintain the horizontality of the

lower chord. With the load applied at the lower end each vertical

carries the amount it would carry if the beam were inverted. With

a double-tied beam the tie serves to hold the frame together in

case of a rolling load, or a load applied other than vertically, in

which case it does carry stress. Diagonal counters set between

the ties will take care of such stresses and the ties merely serve

to hold the frame together. It is advisable to have ties many
times in trusses when an analysis shows they are not stressed,

in order to carry the weight of the lower chord. If the lower

chord must carry all of its own weight, or any load between sup-

ports, bending and shearing stresses will be set up in the lower

chord in addition to the direct tensile stress. This is one reason

for making all tension members of metal when possible.

Dimensions are on center lines. The tension rods should go

through the ends of the compression member at the neutral axis.

The plates at the ends should be normal to the direption of the

tie. The area of each plate is obtained by dividing the tension

in the rod by the allowable safe unit compressive stress on the end

of the wood.

The area of each strut is obtained by dividing the compression
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in the strut by the safe unit compressive stress in the material

of which it is made. The area of the end of the strut against

the wood is found by dividing the compression in the struts by
the allowable safe unit compressive stress across the grain of the

wood.

The size of the long compression member is obtained by design-

ing it as a column, plus the effect of bending caused by whatever

load it may carry as a beam, with spans figured between end sup-

ports and vertical struts, or ties. The unit compressive stress on

the end of wood may be used when the length of the member
between supports does not exceed 15 times the least thickness.

For longer pieces the unit compressive stress must be reduced by
an appropriate column formula.

The sizes of metal tension members are fixed by dividing the

total tension by the allowable safe unit tensile stress in the metal

used. If threads are cut in a rod, this size must be at the root of

the threads. If the rod has upset threads the full area of the rod

may be used. The minimum size rod to use in any tie is f in.

diameter.

The size of a tension member made of wood is obtained by
dividing the total tension by the allowable safe tensile stress in

the wood and adding thereto an area equal to that caused by
bolt holes and seating of other truss members.

Trusses

A truss is a system of framework forming a skeleton beam. The

top chord is in compression; the bottom chord is in tension;

the web members (interior braces and ties) carry the shear. The

parts must be in equilibrium, that is each push must be balanced

by a pull or a push from the opposite direction. This indicates

the triangle as the perfect truss, for it cannot be changed in shape
without breaking at the joints.

Trusses are of two kinds, those with parallel chords and those

with nonparallel chords. The parallel chord truss will first be

considered. Fig. 78 shows the development of the Pratt truss

from two panels to six panels. Assume a load = 1 at the middle

vertical. Half the load goes to each support so the coefficient

for the two middle diagonal ties =
\. If the load is applied at

the top, 1 is the coefficient for the middle vertical, but if the

load is suspended at d the coefficient = 0.
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In Fig. 78 (6) two panels have been added and it is assumed

the panels are loaded equally, the loads being concentrated at

the joints. The end panels not only carry the reactions from the

original middle triangle but their own loads in addition. The

diagonal ties ef are more heavily stressed on this account than are

the ties cd, the stress being tension, for the whole load is sus-

pended at the end points /. This increased tension throws on the

h f b 9. c f s A

Load on Bottom Chord Load on Top Chord

Fig. 78

middle of the upper chord the added load of the end panels in

addition to the load carried by the middle triangle, so the middle

panels of both upper and lower chords are more heavily stressed

than the end panels.

The coefficient for ad and cd =
|. When the unit load, 1, at

the next joint is at c the coefficient for ce = | + 1 = f ,
but if the

load is at e the coefficient for ce =
\. The coefficient for ef is the

sum of the coefficient for dc and the unit load on the line ce. The
above explanations are based on the load being on one chord only.

When there are loads on both chords there should be two sets of

coefficients written down and their sum used. Using the positive

sign (+) to indicate compression and the negative sign ( ) to indi-

cate tension, the algebraic sum is meant when the stresses are

opposite in kind. To check what has been stated, note that there

are three panel joints carrying equal loads, so f of the total load
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goes to each support. If the load is uniformly distributed one-

half a panel load will be concentrated at/, but this is carried

directly on the supports and has no effect on the stresses in the

framework.

In Fig. 78 (c) two more panels have been added. If the load is

on the top chord the coefficients are as follows:

M = 1 ce = f fg = f

cd = \ e/
= f gh = %

If the load is on the bottom chord :

bd = ae = | fg = f

ad=% <5f=f 0ft -f
Merely for illustration the end panels have been completed by

dotted lines. The coefficient for hi = f (that is, it carries the reac-

tion). The difference, f f = \ at h, acts vertically and creates

no stress in the truss. The member gi carries no load when the

weights all act vertically, but in case of wind or rolling loads caus-

ing horizontal or diagonal action on the frame there will be com-

pression on the member gi at the end where the load is applied

and tension in the same member at the opposite end. When the

vertical post hi is omitted, the end h rests on the abutment and

the truss is said to be suspended.

Fig. 79 shows the development of the Howe truss, which is merely
the Pratt truss inverted. The verticals are in tension and the

diagonals are in compression. The Pratt truss is usually the more

economical and may be built of metal, or of metal and wood. The
Howe truss is usually a combination of metal for tension members
and wood for compression members. For maximum economy in

metal trusses the compression members should be as short as

possible, so the Howe truss is not well adapted for all metal

construction.

Coefficients for the Howe truss are written as explained for

the Pratt truss, with the stresses reversed in kind. The middle

vertical, however, is opposite in character as affected by the load.

That is, when the load is on the lower chord the coefficient =
1,

but when it is on the upper chord the coefficient = 0. Practically,

however, in the latter case the vertical does carry a portion of the

weight of the lower chord in -the middle panel. This is very small

and the smallest sized rod used will more than take care of it.

A coefficient represents the proportion of panel load carried

by the member on which it is written. Coefficients are used only
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when all the panels carry equal loads, the truss then being sym-

metrically loaded. Instead of starting from the middle panel

and working to the ends, the coefficients may be obtained as

follows: Count each panel load = 1. One-half the number of

panel loads will be the reaction (expressed as fractional coefficients).

From one end reaction subtract 1 successively at each panel

joint and thus obtain the coefficient for each member in the

(a)

Fig. 79

following panel. The coefficient for the chord in any panel is the

sum of the coefficients of the diagonals between that panel and the

end support.

The weight (TF) carried by each truss member is equal to the

coefficient of the member multiplied by the unit panel load, P.

Let I = length of panel, center to center of verticals.

d = depth of truss, center to center of chords.

t = length of diagonal, center to center of chords,

then t = VI2 + d*.

Stress in diagonals = r-

Wl
Stress in chords = r'

d

Stress in verticals = W
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The theory of coefficients is as follows: Assuming the truss

to be symmetrically loaded with uniform loading on each panel,

half the load on the middle panel alternately pulls and pushes

(or pushes and pulls) on all the web members until the end of the

truss is reached. Each panel load, as' its point of application is

reached, is added and the end web member carries half the entire

load on the truss. Thus the load on the web members increases

from the center to the ends and the load on a chord increases from

the ends to the center. The end half panel load is carried by the

abutment. It creates no stress in the truss.

For irregular and unsymmetrical loading find the reactions as

for a simple beam similarly loaded with concentrated loads, and

the panel joint where the maximum moment occurs is the point

of zero shear. From this point the loads run up and down the

web members to the ends, instead of from the center panel, as in

the case of uniform and symmetrical loading. For unsymmetri-

cally loaded trusses the weight per panel is used instead of the

proportion of weight (coefficient).

A truss being merely a skeleton beam, a study of the manner
in which the loads go to the abutments shows that the weight
on each panel is really the shear on the panel. It is thus feasible

and practical to consider the truss as a beam and from the re-

action at either end subtract in succession the loads on the panel

joints until the point of zero shear is reached. In Fig. 80 is

shown a truss with the shear diagram. The shear on gh =

25,000 Ibs.
;
on ef

= 15,000 Ibs.
;
on cd = 5000 Ibs., the panel load

being 10,000 Ibs. concentrated at the joints. The skeleton truss

lies on the center lines of the members, the panel length being
10 ft. and the height 10 ft. The length of a diagonal = 14.14 ft.,

, 14.14 x 25,000
so the compression in gh =

-^
= 35,950 Ibs. The

, 14.14 x 15,000 01 __. lu
compression in ef

=
-^

= 21,750 Ibs. The com-

14. 14. v ^000
pression in dc = - ^

- = 7190 Ibs.

With the load considered as applied on the upper chord the

tension in gf = 15,000 Ibs.; the tension in ec = 5000 Ibs.; and

the tension in bd = 0. With the load considered as applied on

the lower chord the tension in gf = 25,000 Ibs.
;
the tension in ec

= 15,000 Ibs.; and the tension in bd = 5000 Ibs.
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Wl
The compression and tension per panel in the chords =

,->U

therefore compression m eg = tension in fh = 25,000 Ibs., for the

Z 10
ratio 1 =

77j
= 1- ^ ne compression m de = tension in cf

=

25,000 + 15,000 = 40,000 Ibs. The tension in be = 25,000 + 15,000

+ 5000 = 45,000 Ibs.

The object of the computations being to obtain the stresses so

Fig. 80.

the members may be proportioned, the method above given of

following the loads from joint to joint and obtaining the coefficients

for uniformly and symmetrically loaded beams, or of obtaining

the shear at panel joints for unsymmetrically loaded beams, is

adequate and simple.

It can be proven that a truss is merely a skeleton beam by
finding the shear and bending moment at each joint and then divid-

ing the bending moment by the depth obtain the stresses in the

chords, the web members carrying the shear. In Fig. 80 the end

reactions each equal 25,000 Ibs. Then

M, at/ = 10 x 25,000 = 250,000 ft. Ibs.

M, at g =
0, for the top chord rests on gh.

M, at c = (20 x 25,000) - (10 x 10,000) = 40,000 ft. Ibs.

M, at e = 10 x 25,000 = 250,000 ft. Ibs.
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M,at6 = (30x25,000) -(10x10,000+20x10,000) =450,000 ft. Ibs.

M, atd = (20 x 25,000)
-

(10 x 10,000) = 400,000 ft. Ibs.

Dividing the moments by the depth,

250 000
tension in fh = compression in eg = = 25,000 Ibs.,

tension in cf = compression in de = 400,000

10
40,000 Ibs.,

. . , 450,000 . _ nAn 1U
tension in be = = 45,000 Ibs.,

Fig. 81 shows a truss having an odd number of panels. There

is no stress in the dotted cross diagonals in the middle panel except

Fig. 81.

in case of wind or rolling loads, or otherwise unbalanced loading.

Coefficients may readily be written for uniform and symmetrical

loadings for this case, or the loads may be followed from the point

of zero shear in cases of unsymmetrical loading, or the shear method

may be followed.

In Fig. 82 (c) is shown a truss with a subvertical and sub-

diagonal at each end. Such an arrangement involves the con-

sideration of an additional triangle in which half the weight is

added to the load at 6 and is then carried to a, the other half being

added to the load at c. This arrangement offers no difficulty when

figured by the shear method, but sometimes causes trouble and
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confusion when an attempt is made to trace out the loads from

the middle panel, or point of zero shear.

Some trusses have nonparallel chords. The shapes vary from

those higher at one end, as in Fig. 82 (a), to those approaching an

arch form as at (6). Part of the shear is carried by the sloping

chord. When the chord stress is found by one of the preceding

methods it is the horizontal stress. For a sloping chord the hori-

zontal stress must be multiplied by the inclined length and the

product divided by the panel length, the result being the axial

(longitudinal) stress in the inclined member.

In the Warren truss (Fig. 83) the stresses in the web members

are alternately tension and compression, the light lines indicating

tension and the heavy lines compression. Each panel is an equi-

lateral triangle and in the figure the truss is a single system. By
using another set of triangles and placing the trusses side by side

so one triangle overlaps another by half the width, we obtain a

double system. Similarly, we may use a triple-system or a four-

system truss. When two or more systems are used the result is

a Latticed Truss, (Fig. 84).

Let W = total load on the truss, uniformly distributed,

P = load on each triangle,

n = number of triangles in the primary single system.
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W
Then, in a single system truss, P =

In a double-system truss, P = ir

(2n) - 1

W
In a triple-system truss, P = ^-^

-

(6n) i

W
In a four-system truss, P = -rrr -

Having found the panel load, P, each system is figured as a

frame, and the combined strength of the systems determines the

(4 (?) 4 (I) tt (I) 4
'X I A I A 4 /^

~<
(f) ^ (D ^

fj"

Fig. 83 Warren Truss.

strength of the completed truss. The systems are connected

together at every joint where the members meet or cross. The
lower apices are the panel joints when the load is on the lower

chord and the upper apices are the panel joints when the load is

on the upper chord.

In Fig. 83 (a) the load is on the lower chord and in (6) the load

is on the upper chord. The truss is here assumed to be uniformly

and symmetrically loaded. Coefficients may be written by start-

ing from the center line of the span. On the upper and lower

chords are placed the summation of the coefficients for the chords

in the respective panels. In Fig. 83 (a) the coefficient for L Z/i is

one-half that for U\ Uz and in (6) the coefficient for Uo U\ is one-

half that for LiZ/2. The dotted parallelograms at L and Li,

and U and Ui, represent to scale the panel load set off vertically
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with the parallelogram of forces completed by drawing horizontal

lines to intersect the'triangles. Then a = stress on U\ Uz = stress

on L\Lz. It is twice 6 which represents the stress on Uo U\ and

Z/oLi. The thrust of the brace t/iL = the pull of the tie U Li.

It is resolved at the point of support on the abutment into a hori-

zontal component along the chord, and a downward vertical com-

ponent, which latter is resisted by the upward reaction of the

abutment.

A usual ratio of depth to span in trusses is one-tenth, but

circumstances may alter this. It may be used in the absence of

computations to ascertain the economic depth and economic

Fig. 84. Multiple System Warren Truss. (Lattice Truss.)

ratio of depth to span. For Howe trusses the best angle for the

diagonals is 45 degrees. When any different angle which indicates

a panel length greater or less than the depth is adopted, the

Pratt truss is better. For trusses of the Warren type the angle

should be 60 degrees.

Deflection is usually taken care of by making the horizontal

panel length at the upper end inch longer than the horizontal

panel length at the lower end, in every ten feet of span. This

does not alter the lengths of the verticals but does alter the lengths

of diagonals and when the truss is in place the bottom chord will

be cambered upward. Were it perfectly straight it would appear to

the eye to sag. The amount of camber in inches is found as follows:

d = depth of truss in inches.

s = span of chord in inches.

c = camber in inches.

Sd
C = T

In some of the figures of trusses the spaces are lettered. This

is the system introduced by Mr. Bow for the graphical analysis

of frames. The member is indicated by the letters between which

it lies. In addition to this system of lettering the spaces the

joints are sometimes numbered. The spaces are lettered to identify

the member in the graphical analysis and the joints are numbered

only when the detail drawing of the joint is to be referred to.
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Some of the trusses shown have the joints lettered with a capital

U on the upper chord and a capital L on the lower chord. The

subscript figure represents the number of the joint from the left

end, the joint, or joints, at the abutments being 0. In the draw-

ings a joint is referred to by the U or L and the subscript indi-

cating the number of the joint. A member is identified by giving

the letter and subscript number of the joint at each end of the mem-
ber. This method of identifying joints and members is common.

Architects and designers of buildings have to deal with the

simpler forms of trusses, but when it is desirable to introduce the

maximum economy into a design, that truss is most economical in

which the stresses in the chords are constant from end to end. This

points to a truss having the general outline of a bowstring girder.

The top chord should be straight and not curved between joints.

To obtain a curved outline for a roof it is easy to use fillers or vary
the depths of the purlins resting on the trusses. For an exposed
chord where the polygonal form would be unsightly the expedient

is sometimes adopted of curving the segments, thereby introducing

bent beams with arching action. This should never be done. It

is better to use a false curved chord in segments to hide the short

straight pieces.

The stresses in the top and bottom chord of a bowstring truss

are found with sufficient accuracy by assuming the truss to be

uniformly loaded. The moment divided by the depth gives the

maximum stress at the center of the top chord and throughout the

lower chord, the formula being

in which T = total tension,

C = total compression,

I = length in feet,

w = uniform load per lineal foot,

d = depth in feet at center of span.

The chord assumes some of the functions of braces as the ends

are approached, where the inclination of the chord increases, and

the compression is nearly uniform throughout the length. The

compression at any point distant y feet from the center is given

by the following formula, _
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The stress in the braces increases from the ends to the center,

as in the case of the Queen truss, and may be figured the same

way. The vertical rods at the joints are in tension and the braces

are in compression. The center panel is usually as wide as the

height, which decreases the angles at which the braces are set

as they approach the ends.

Steeply pitched roofs of the Howe truss type may be figured

by the method of coefficients when the loads are uniform and

symmetrically placed. They may be figured by the cumulative

load method or by the shear method when unsymmetrically or

Rf3P R*4P R2

Fig. 85A. (a) King Truss: (6) (c) (d) Queen Trusses,

irregularly loaded. In Fig. 85A the truss with one vertical is

a King truss. When the vertical is a post it is a King Post truss

and when the vertical is a tie it is a King Rod truss. At (6) and

(c) are shown Queen trusses, these being known by the number
of panels into which they are divided and, like the King truss,

being Queen Post or Queen Rod trusses, as the verticals may be

posts or rods.

In a system of roof framing all longitudinal members are called

purlins and all members extending from the eaves to the ridge

are rafters. The top chord of a truss is composed of rafters.

Main purlins extend from truss to truss, resting on the joints at

the upper ends of verticals. Intermediate rafters rest on the

main purlins when the spacing between trusses is considerable

and across the rafters sheathing is placed to carry the roof cover-

ing. By so doing all loads are concentrated at the upper ends of

the verticals, so the truss rafters (upper chord) are in compres-
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sion. Sometimes no intermediate rafters are used, the roofing

being carried by purlins resting on the joints.

To obtain proper results the sloping rafter of the truss is divided

into equal spaces and verticals are dropped to the bottom chord

(or tie). Braces extend from the foot of one vertical to the top of

another. If, through any error or because it is considered best,

intermediate purlins rest on the truss rafters, or the roof is carried

directly on these rafters, it will be necessary to design them to

carry the bending stress in addition to the direct compression.
In the King truss, Fig. 85A (a), the load, P, when applied at

the upper vertex causes no stress in the rod BB. When applied at

the lower end the stress is tension and equal to the load. The stress

AB = half the load, so the coefficient =
\. The stress in the

horizontal tie rod = half the load x ,
.

, > that is
height

In the Queen truss the action resembles an arch in that the com-

pressive and tensile stresses increase towards the supports in the

rafters and tie, and the stresses in the verticals and diagonals

decrease toward the supports, for the inclined rafters carry part of

the shear. Half of the load on each end panel is carried by the

abutments and creates no stress in the truss.

In Fig. 85A (6) a load is assumed to be applied at the upper end

of BC. If the load is at the lower end the rod BC carries this

load to the rafter at the vertex of the triangle. If the load is

applied directly to the rafter at the vertex there is no stress in BC.

This will not again be referred to, as it applies to the rod in the

end triangle in all trusses. Half the load is carried on AB and half

goes down CD to the tie. The load on the top of the truss is in-

creased by the load coming to the tie by the braces CD on both

sides of the center; therefore it is 2P, if the load on a joint is called

P. The vertical rod, DD, however, carries only the load at the

lower end. This load 2P from the top of the truss is carried half-

way down the truss to the joint and there it has added to it the

p
load -~ of the brace AB, this brace therefore carrying a load

3P= The tie rod is in tension by an amount

3P half the span 3P L 3PL
= T >

height
r 1 =

~2~
X

2d
= ~
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In Fig. 85A (c) the rafter is divided into three equal parts. Each
P 3P

joint carries a load, P, The load on DC =
-^

;
on DE =

-^
;

KD
on EF = -- The vertical FF carries 3P. The rafter AF carries

3P 5P
-jr- ;

AD carries -x-; A5 carries 3P. The tie rod carries at the
z &

o p r

end a stress =
-^T"

The stress in the tie rod on the section

K p j
TE= , In actual practice the tie rod is uniform in size

throughout the span.

With the examples given the student should have no trouble

tracing the loads on the members of the truss shown at (d).

Each vertical is hi tension by an amount equal to the load it

carries. Each diagonal member is in compression by an amount

=
^7-

in which x = amount of load on the member,

L = length of member,
d = the vertical height from the bottom to the

top of the member.

All measurements are on center lines. The slope of the rafter

is constant so the ratio is obtained once by dividing the slant

length of the rafter by the height of the truss. The slopes change
at each panel for the interior braces, so a ratio must be found for

each separately.

Coefficients for Fink trusses, Fan trusses, and Pratt trusses with

inclined rafters have been calculated for different degrees of slope

and for varying numbers of panels, based on uniform symmetrical
loads. Tables of these coefficients are given on pages 309-311, of

the 1913 edition of the
"
Carnegie Pocket Companion

"
for trusses

to be made of steel or wrought iron. Steel is commonly used except
when corrosion is a grave danger, in which case wrought iron is

preferred. All metal trusses are made of rolled shapes with

riveted connections. The trusses illustrated may be a combina-

tion of steel rods for tension members and wood for compression
members. Fink trusses are very generally used because most of

the members are in tension and the struts are short. Partial

loading can never cause maximum stresses in the parts of Fink

trusses as they may in other forms of trusses.
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Roof Loads

For information as to proper roof loads and the effect of wind

the student is referred to pages 305-307, 1913 edition "Carnegie
Pocket Companion." This will also be dealt with in the chapter
on "

Graphic Statics." Usually city ordinances specify that a

roof shall be capable of carrying 40 Ibs. per square foot of hori-

zontal surface, in addition to its own weight,. this allowing for

wind, snow, live load, and roofing. Some cities require only 25 Ibs.

and others 30 Ibs. For a steeply pitched roof 25 Ibs. is proper, but

for a very flat roof the designing load should not be less than 50

Ibs. per square foot. Each joint in a frame carries a load, P,

equal to the truss spacing times the panel length multiplied by
the load per square foot.

The Signs Used for Stresses

The author mentioned that the positive (+) sign indicates

compression and the negative ( ) sign indicates tension. This

is the way he was taught, and thirty years ago this use of the

signs was common with American and British writers. There

was a certain mnemonic aid in using the signs thus, for compres-
sion thickens a body and tension makes it thinner, so the

" minus

sign
"

expressed the idea of thinness. In drawings the pieces

in compression were indicated by heavy lines and the pieces in

tension by light lines.

Continental European writers used the signs in a directly

opposite sense, for strict mathematical analysis in which careful

attention must be paid to the signs of quantities resulted in bring-

ing compression out at the end with a negative sign and tension

with a positive sign. The well-trained mathematician needs no

aid from mnemonics. The result of late years has been to unsettle

American and British authors, and a reader of modern books must

be careful to ascertain just how the signs are used by the author.

It is to be hoped that at some not distant day all writers will

agree upon a definite use of the signs, but for the purposes of the

present work the author believes the mnemonic value, as given

above, is too great to be neglected.
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CHAPTER V

Joints and Connections

FIG.
85s was copied from a sheet of drawings forming part of

a set made for the building of a public school in a middle

western state. The writer knows from experience in check-

ing designs that this is a common type of roof. Amateur architects

and many young draftsmen have a fondness for constructing
wooden trusses with light tension members of wood. The
student who read Chapter IV carefully knows how simple a

Usheefing
matter it is to find

'

.composition*** ,/^'sfnp rva^fa. ^ thestressesinthe
members of a simple
truss. There are many
hand-books on the

market which contain

diagrams and formu-

las for the design of

trusses, so it is not a difficult thing to proportion the members

of any form of truss.

The student is advised to check the design of the truss shown

in Fig. 85s. It will be a very useful exercise. The joists are on

16-in. centers. The joists under the roof are 2 in. x 8 in. and

carrying sheathing on which is placed the composition roofing.

The ceiling joists are 2 in. x 6 in. In the design assume a fiber

stress hi tension and compression of 800 Ibs. per sq. in., the loads

per square foot of horizontal surface to be as follows: composition

roofing, 5 Ibs.
; joists, 5 Ibs.; sheathing, 4 Ibs.; plastering, 5 Ibs.;

roof load 30 Ibs.
; truss, 4 Ibs.

In the specifications appeared the following clause:
" The truss

is to be well and securely nailed together, but the number of nails

at each joint shall not be less than shown on the drawings." The
draftsman had placed eight dots at each joint, probably meaning
each dot to represent a nail. The size of nail to use was not given.

On the advice of the author the roof was changed so it appeared
136
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as if inverted, putting all the diagonal members in compression

and substituting vertical wrought iron rods for the thin boards

used in the original design. Before accepting the change, however,

the architect attempted to retain his truss by substituting in each

joint four f-in. bolts, saying that he had been architect for more

than twenty schoolhouses, in which he had used the form of truss

shown in his drawings.

When a member is in compression the joint is not so hard to

construct, or design, as a connection at the end of a tension mem-
ber. It is an elemental fact that when a piece in compression
rests on another piece there must be a bearing area of the proper
size to prevent crushing. It is only in joints for pieces in tension

that the average draftsman seems to forget elementary principles.

He laps one piece over another, specifies that the contractor shall
"
nail it securely," and passes on to something else. It is either

because of laziness or downright ignorance that such things happen.

Experienced contractors are often life savers for incompetent

draftsmen, for we can hardly call them designers.

When there is a pull in a board used to transmit tension in a

truss the joint must be strong enough to resist the pull. It is

necessary to decide on the size of nail to use and then divide the

total pull by the resisting power of one nail to obtain the number
of nails to use. To avoid splitting the wood the nails should be

separated by a space at least twenty times the thickness of the

nail. Even this rule must be modified by the sort of wood used,

as some wood is brittle and cannot stand many nails in a small

space. Wire nails do not cut through the fibers, but spread them

apart so it is not necessary to make up the area occupied by the

nails, but this must be considered in using cut nails. The proper
size of nail to use is governed largely by the length. It must be

not less than three times the length of the thinnest outside piece.

If it cannot go two-thirds its length into wood, because the wood
is not thick enough, the end must be firmly clinched.

A rule often blindly given in pocket books for the lateral resisting

value in pounds for nails is as follows:

P = Cd, in which

P = total number of pounds transverse load per nail,

C = a coefficient varying from 4.5 to 12, depending on the nail,

whether wire or cut, and on the wood,
d = the size of nail in pennyweights.
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A more logical rule given by Mr. H. D. Dewell, in Western

Engineering, Vol. 7, page 291, is as follows for Douglas Fir,

P = 4000 d\
in which d = diameter of nail in inches.

For other woods multiply the result by the following coefficients:

Long-leaf yellow pine 1.05

White pine 78

Norway pine 65

White oak -. 78

For common wood screws use the constant 4375 instead of the

constant 4000 used for nails.

Nails or common wood screws are generally thought of first

for fastening timber because they are cheap and the labor cost of

driving them is low. Their usefulness, however, is limited to thin

pieces carrying little stress. When the load is too great to be

transmitted properly by nails or common screws, or the pieces

are too thick, lag screws may be used on account of the low

labor cost as compared with that required for bolts, for which

holes must first be bored. Mr. H. D. Dewell, in Engineering

News, Vol. 76, page 797, gives the following recommended working
values for lag screws.

Description Pounds per screw

Metal plate lagged to timber, H X 4^-in. screw 1030

Metal plate lagged to timber, % x 5-in. screw 1200

Timber planking lagged to timber, % x 4J^-in. screw 900

Timber planking lagged to timber, J^ x 5-in. screw 1050

Generally speaking the resistance of lag screws varies with the

ratio of their diameters, so the values above given may be used

as a basis for other sizes.

The strength of nails, lag screws, and bolts in wood cannot be

computed the same as rivets in metal, for the rivets may shear,

but this is impossible with joints in wood. Nails, screws, or bolts

will bend, for the wood will crush long before the shearing strength

of the metal is reached. It is necessary, therefore, to use bearing

values obtained by experiments. Mr. H. D. Dewell, in Engineer-

ing News, Vol. 76, page 115, described the result of tests made

with bolts. Two thin pieces of timber were fastened to a thick

piece, by bolts passing through with washers on the ends. The
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two side pieces were placed on the table of a testing machine and

the center piece was pressed down until failure resulted.

The following table is recommended as giving proper safe loads

corresponding to a slip not exceeding -^ in. They are for end

bearing with bolts having a driving fit and the thickness of each

side piece equal to, or greater than, one-half the thickness of the

main timber. For side bearing (across the grain) the values can

be taken at six-tenths the values given for end bearing in the

table.

The values in the table are for double shear, that is, for three

pieces of timber having two shearing planes. For cases of single

shear, two timbers bolted together, use one-half the values given
in the table.

The working values given are for Douglas fir. For other timbers

the values are to be multiplied by the factors following:

Long-leaf yellow pine 1.05

White pine 78

Norway pine 65

White oak . . . .78

TABLE OF WORKING STRENGTH OP ONE BOLT IN TIMBER JOINT

IN DRY TIMBER, AS FOR USE IN INTERIOR OF BUILDING

(Bolt in double shear bearing against end of grain.)

Size of Bolt

Ins. diam.

Thickness of One Side Piece ^ One-half

Thickness of Center Timber =

For single shear take one-half the above values. For bearing

against the side of grain take six-tenths the above values.

Joints in timber are sometimes made with a large pin on which

a timber rests. The pieces are joined at an angle less than 90

degrees and the bearing per square inch on the fibers will be some-

thing less than the allowable safe bearing with the grain and con-

siderably greater than the allowable safe bearing across the grain

for broad surfaces.
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n =

Let n = the bearing per sq. in. on the diametrical area of the

pin, having a driving fit.

p = the allowable bearing per sq. in. on the ends of the fibers,

q = the allowable bearing per sq. in. perpendicular to the

direction of the fibers.

+ f? (Dewell formula)

Example. A brace rests against a

2-inch pipe driven through the bottom

chord of a truss to act as a pin joint.

The allowable bearing on the ends of

the fibers is 1200 Ibs. per square inch

and the allowable cross bearing is 300

Ibs. per square inch.

What bearing can be used on the

diametral area of the pin?

Answer. (\ x 1200) + (f x 300) =
Fig- 86 - 600 Ibs. per sq. in.

Mr. H. D. Dewell was Chief Structural Engineer, Panama-
Pacific International Exposition, San Francisco, 1915. The

possibilities of timber construction were probably never better

treated than in the work under his charge, and a great many
experiments and detailed studies were made in order to design

properly. The results were given by him in a series of articles

in the June to December issues (inclusive), 1916, of Western Engi-

neering, San Francisco, Cal. The author has made free use of the

articles by Mr. Dewell and discarded much material prepared for

this chapter, based on older writings,

some of which were speculative and

some of which were founded on experi-

mental work conducted by men not so

skilled as are the modern experimenters.

Standards are well enough in their

places, but men should not blindly use

standards without knowing all reasons

and the authority. Standard washers should not be used, merely
on the advice of an advertisement writer, to carry certain loads

until their sufficiency has been checked by computations for the

wood with which they are to be used. If a washer is too small it

will be drawn into, and crush the fibers of, the wood.

Bolts placed through the joints of trusses will have washers as

Fig. 87.
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shown in Fig. 87. One washer will bear on the side of the fibers

and the other washer will bear at an angle to the fibers. Using
the proper table giving the safe bearing strength of the wood

perpendicular to the fibers proportion the side bearing washer

accordingly. For the safe pressure to allow under the washer

set at an angle to the fibers, and also to determine the safe bearing

at the foot of the sloping member, several formulas have been

proposed.

The Jacoby formula is as follows:

n = p sin2 + q cos2
0,

as given in his book "
Structural Details." In Engineering News,

Vol. 68, Professor Malverd A. Howe published the result of some

tests made to determine the allowable bearing pressure on inclined

surfaces for various timbers, and recommended the formula

n = q + (p
-

q)
(oQpJ

in which n = the allowable unit stress on a surface which makes
an angle 6 with the direction of the fibers,

p = the allowable unit stress against the ends of the fibers,

q = the allowable unit stress on the sides of the fibers.

The author in attempting to simplify the formula of Professor

Jacoby and make it fit closer to some experiments on timber

other than yellow pine, which the Jacoby formula closely fitted

at low angles, developed the following straight-line formula.

n =
r^r>

minimum value equal to q. Straight line 80 to 90.

Later, learning of the Howe formula, he attempted to simplify

it and developed the following formula:

t\ / /) \2
n =

77-57 f 77^7: )
> minimum value equal to q.

U.ol \1UU/

In the two formulas of the author the angle 6 is expressed in

figures, as 10, 20, 30, etc.

In Fig. 88 the four formulas are platted. The diagram appeared
in the July, 1916, Western Engineering, with the Jacoby and Howe
formulas, the author adding here the curves produced by his own
formulas.

The student should now be able to determine the size and

number of nails, screws, lag screws, or bolts for all the joints of the



142 PRACTICAL STRUCTURAL DESIGN

truss shown in Fig. 85s. It being assumed that wire nails and

common screws merely push the fibers aside, no additional area is

required on account of the holes. Lag screws and bolts, however,
cut the fibers, so it is necessary to add to the members a width

equal to the diameters of the holes. By the time the student has

worked through the

problem of detail-

ing all the joints he

will probably learn

that there is not

area enough for

fastenings. The

problem will serve

to show why tim-

ber should not be

used for members
in tension unless

the load from other

It is best when using

Use wrought iron or

20 30 40 50

Value of Bin Degrees.

Fig. 88.

70 60 "90

members can be transferred by end thrust,

wood to have all joints in compression,

steel for tension members.

Fig. 89 illustrates several types of joints and fastenings used in

framing timber. Bolts in carpentry should be used, when pos-

sible, only to hold abutting portions of timber together. It is not

always possible to so use them, but the hint is enough to set a man
to studying seriously every joint he makes in order to hold to the

rule if possible. Straps are more expensive than bolts and are not

so good. A detail that is too common and which should never

be used is shown at (a); what happens when the wood shrinks

is shown at (6), for it is impossible to tighten the joint. Water

getting into the toe of a joint often causes the fibers to decay and

this added to shrinkage ruins the truss. A preferable method is

shown at (c). The bolt may be tightened from time to time. This

form of joint, however, should never be designed with part of the

load carried by the abutting end and part by the inclined bolt.

Many experiments have demonstrated that under test the two do

not act together. The weaker system will act first and give way
before the other gets into action. It is best to design for the entire

load to be taken by the dap and use the inclined bolt only for the

purpose of holding the pieces in contact. All bolts will be screwed
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tight so that washers should be designed with area enough to de-

velop the safe working stress in the bolts without exceeding the

safe bearing on the wood. If the safe bearing is exceeded, which

will be the case if

the washers are too

small, the fibers will

be cut around the

edges of the washers

and decay will set in.

At (d) is shown a

method sometimes

adopted for upper

chord joints and at

(e) is shown what

happens when the

wood shrinks. A

proper joint is shown

at ( / ) with the cen-

ter lines of all pieces

meeting at a com-

mon point. This
idea of all the center

lines meeting at a

common point is also

illustrated at (0) and

(ti). This is neces-

sary to avoid rota-
Fig. 89

tion which would cause a bending moment. When part of a piece

of timber is cut out for a dap the stress is concentrated in the

rest of the piece, which alters the position of the center lines.

This must be considered in the design and will be discussed when

we take up the design of joints.

At (i) is shown a brace abutting on a post. If a waling is spiked

along a line of posts, or blocks with the fibers in a horizontal posi-

tion are bolted to the posts, and the braces rest on the sides of the

fibers, there will be settlement when shrinkage occurs. When
blocks, or cleats, are used as shown they should have the fibers

vertical and the dap should be deep enough to transmit all the

load to the post. The bolts shown are used only to hold the cleats

in place. To design the bolts, however, it is well to have them
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strong enough to carry half the load, which will maintain the

integrity of the joint in case the cleats through shrinkage, or decay
of dap, lose one-half their strength. To prevent the braces from

being pushed off to one side they may be nailed to the cleats or

a thin strip of iron may be inserted in a saw cut, one-half in the

cleat and one-half in the foot of the brace.

At ( j) is shown a method often used in making a joint at the

foot of a raking member. The vertical bolts are assumed to resist

the thrust. It is a poor joint. The habit of many draftsmen is

to guess at the number of bolts, and they seldom add additional

area to supply that lost in the bolt holes. A better joint is shown
at (&). ^The black circles are the ends of pipes used as shear pins.

They are designed to take all the thrust and the joint is made by
spiking the two pieces together, after which the bolt holes are

bored and the bolts driven and tightened. Enough bolts should

be used to take half the tension in the lower chord; as direct

tension, not cross bearing. After the bolts are tightened the spike
can be removed and holes bored for the pins which are then

driven through.

In making joints in woodwork study the problem carefully.

Avoid pockets where moisture may collect. Cracks seriously weaken
timber framework, and as cracks usually start from interior angles
all complicated framing joints should be avoided. Frame all pieces

so the center lines through stressed areas will meet at a common

point and try to make all jointing lines straight. Jogs in joints

not only are apt to start cracks, but there is a danger of shrinkage,

causing unequal bearing, which will set up bending moments
about the joint, so it is best to have straight joints which admit of

adjustment. If through any mischance the two faces do not meet

perfectly, insert a thin sheet of lead, which, in course of time, will

equalize the bearing. Engineering principles were seldom used

for timber joints in former generations, much of the work being
done by carpenters who had no engineering training and by drafts-

men who blindly copied old examples. Design the joint in accord-

ance with engineering principles, not forgetting that wood shrinks

and that when moist it rots. The joint is bound to be all right if

it is simple and the computations show it to be adequate for the

work it must do.

In studying joints of members they are considered as single

sticks. Methods for making single sticks out of a number of pieces
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will be shown, but, while it makes very little difference for tension

pieces, it is bad practice to use several pieces to form compression

members when single sticks can be obtained.

In Fig. 90 is shown the truss illustrated in Fig. 80, the computa-
tions for which were made as an exercise. We will now proceed

to design some of the joints. Assume the wood to be Yellow

Pine, Grade 1 (Underwriter's Code), in which the allowable safe

stresses are as follows:

Tension 1600 Ibs. per sq. in.

Compression (end bearing) 1200 Ibs. per sq. in.

Compression (side bearing) 350 Ibs. per sq. in.

Shear (with the grain) 120 Ibs. per sq. in.

The stresses in the steel are as follows:

Tension 16,000 Ibs. per sq. in.

Shear 10,000 Ibs. per sq. in.

Bearing 20,000 Ibs. per sq. in.

For the strength of bolts and lag screws in combined shear,

bearing and cross bending, see pages 138 and 139.

The compression in L U\ is 35,950 Ibs. and the tension in

IioLi 25,000 Ibs. The lower chord is always dimensioned to take

care of the maximum tension, which in this case is 45,000 Ibs.

This leaves considerable excess material in the end panels, which

is available for cutting to form connections. Similarly, the upper
chord is dimensioned for the maximum compression and the size is

uniform throughout. .

Before proceeding to design the connection joints at the ends

of a truss and at the ends of panels it is necessary to know the sizes

of the members. If material has to be cut out for the formation of

joints the required area can be added to the member provided
it has not enough excess material to provide the necessary area

for the details. Proceeding in this manner we will study all the
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usual methods for making joints in tension and compression

members and then design the joints.

It is not always possible to get a single stick to use as a tension

or compression chord in a truss, and it is necessary to build them

up in nearly every instance. If a single stick is used the area is

increased to allow for the hole through which the largest vertical

rod passes. In the truss now being considered the sizes of the rods

are found as follows:

The rod at Us will be 1 in. diameter if the threaded ends are

upset, and if the ends are not upset the diameter will be If ins.

This rod may be smaller as the stress is very low, but it is not

advisable to use a rod of smaller diameter for such a length. The

stress in rod at UzLz will be the same as the rod at Us, for the stress

is 15,000 Ibs. and the allowable stress in the steel is 16,000 Ibs. per

square inch. The net area of the rod at U\L\ = ' = 1.56 sq. ins.,
lo,UUU

and we will use a rod 1| ins. diameter if the threaded ends are upset.

If upset ends are not used the loss due to cutting of the threads

will require the use of a rod If ins. diameter. The following table

gives the dimensions of rods with upset screw ends. To obtain

the diameter at the root of the thread cut in a bolt use the figures

in the second column for the outside diameter and the diameter

at the root of the thread will be found in the third column. The
screw threads in the table are Franklin Institute standards. In

the 1913 edition of the
"
Carnegie Pocket Companion

"
the tables

for upset screw threads are American Bridge Company standards.

REMARKS. As upsetting reduces the strength of iron, bars

having the same diameter at root of thread as that of the bar

invariably break in the screw end, when tested to destruction,

without developing the full strength of the bar. It is therefore

necessary to make up for this loss in strength by an excess of

metal in the upset screw ends over that in the bar.

To make one upset end for 5-inch length of thread, allow 6-inch

length of rod additional.
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UPSET SCREW ENDS FOR ROUND AND SQUARE BARS



148 PRACTICAL STRUCTURAL DESIGN

The following table gives weights and areas for square and round

bars and rods.

WEIGHTS AND AREAS OF SQUARE AND ROUND BARS
AND CIRCUMFERENCES OF ROUND BARS

(One cubic foot of steel weighing 489.6 Ibs.)
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SQUARE AND ROUND BARS Continued

For designing plate washers the following table will be useful.

TANK IRON AND STEEL, WEIGHT OF SUPERFICIAL FOOT

The low temperature (as compared with iron) at which steel plates have

to be finished causes a slight springing of the rolls, leaving the plate thicker

in the center. This, combined with greater density, causes steel plates, if

kept up to full thickness on the edges, to weigh more than iron. Both iron

and steel over 72 inches wide are liable to run even heavier than the weights

given above.
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Tables of sizes and weights of plates and bars for all the gauges
in use are given in all the steel handbooks.

The areas of washers will be as follows, the cross bearing strength
5000

of the wood being 350 Ibs. per square inch; U3 and L3
= = 14.3

ooO

sq. ins. The washer should extend across the chord, which we will

assume is 8 ins. wide, so the width will be, 7^- = 1.78 ins. Make
o

it 2 ins. wide. The thickness = 4 x (2 x 35 ) = 140o in. Ibs. bend-
6

ing moment considering it to be two cantilever beams, one on either

side of the bolt extending to the edge of the chord.

The thickness ( = = = 0.5! i, (make it

in.). Tables of standard square and round washers may be used,

if available, but the area must be sufficient to keep the stress on

the side of the wood down to the allowable limit. The washer may
be round or square, but it is best usually to have to go across the

width of the chord. If square the above washer will be 3.81 ins.

X 3.81 ins. If round the diameter will be 4f in.

The washers at Uz and Lz will have the following area:

' = 42.9 sq. ins. If extended across the chord the dimensions

will be 5| ins. X 8 ins. If square the dimensions will be 6.6 ins. X 6.6

ins. If round, the diameter will be 1\ ins. Assuming a washer of

steel with dimensions o| ins. X 8 ins. the thickness will be obtained

by using the following formula:

WLb

in which t = thickness in inches,

W = total load centrally applied,

L = length of plate (width of chord) bolt hole,

6 = width of plate = bolt hole,

/ = allowable unit fiber stress.

The above formula is good also for cast iron, using for the fiber

stress a stress which is an average of the allowable tensile and com-

pressive stresses. With cast iron the thickness obtained will be

at the edge of the nut on the end of the bolt, and it may diminish

to one-half this thickness at the edges. For very large washers a
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saving can be made by using ribs, each rib being considered as a

cantilever carrying a part of the load, shear being duly taken into

account. No casting should be less than f in. thick and sharp
corners should be avoided.

The washers at Ui and LI = ' = 71.5 sq. in. If extended
ooU

across the chord the dimensions will be 8 in. x 9 in. and this is

the best size to make them, for if square or round they will pro-

ject beyond the edges, thereby decreasing the bearing area and

increasing the stress on the wood. The thickness will be com-

puted by the formula used in the case of the washers at joints

C/2 and Z/2-

The size of the lower chord will now be computed. The maxi-

mum tensile stress is 45,000 Ibs. The allowable fiber stress is

1600 Ibs. The area = = 28.1 sq. ins. The width will be
lOUU

assumed at 8 ins., from which will be subtracted 2 ins. on account

of the hole for the largest vertical rod, which leaves a net width of

28 1
6 ins. The depth = ~- = 4.7 ins. "If it will be possible to use a

single piece of timber for the bottom chord we can use a 5 ins. X 8

ins. stick. It is not possible that a single stick can be obtained and

we will take it for granted some splicing will be necessary, which

will call for two lines of f-in. bolts going through the sides of the

chord. This makes the thickness 4.7 + (2 x f)
= 6.2 ins. Using

commercial size timbers, this will make the chord 8 ins. wide and

7 ins. deep. It is usually best to have the depth equal or exceed

the width and we will make the chord 8 ins. X 8 ins.

The maximum stress in the upper chord is 40,000 Ibs. and the

area = ' = 33.3 sq. ins. Assuming a width of 8 ins. and sub-

33 3
*

tracting 2 ins. for the hole for the rod the depth =
^-

= 5.55 ins.

A shallow beam has a tendency to deflect unduly and if it is under

compression the deflection will be increased. It will be advisable,

therefore, to increase the depth and as this will decrease the breadth

the minimum advisable thickness should be found.

The allowable maximum compressive fiber stress is based on

a length not exceeding 15 times the least thickness. When the

length is greater the fiber stress is decreased. One-fifteenth of
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10 ft. = 8 ins., so this width should be maintained. The depth
should not be less than this amount, which fixes the size of the

top chord at 8 ins. X 8 ins. and as the piece will carry nothing but

its own weight the deflection will not create anxiety, for by thus

40 000
increasing the size of the piece the fiber stress becomes

-^- 5- =8340x8
Ibs. per square inch.

In the truss being designed the loads are small and the members
are small, so there should be no difficulty in getting pieces of the

dimensions here given. There will be then no additional areas

to subtract for bolt holes. In trusses, however, which carry heavy
loads in which several pieces must be used to form the members
allowance must always be made for bolt holes. In this truss it is

assumed that all the loads are concentrated at the panel points.

If rafters rest on the top or bottom chords they must act as beams

to carry such loads and must be designed for the stress thus caused

in addition to the direct stress caused by tension in the lower

chord, if the rafters rest on it, or to the stress caused by com-

pression in the upper chord if the rafters rest on it.

For a piece acting as a combined tie and beam or acting as a

combined strut and a beam use the following formula to obtain

the breadth when the depth is assumed.

in which 6 = the breadth of the piece,

/ = the maximum fiber stress (compression for the upper

chord, tension for the lower chord),

h = the depth of the piece,

M = the bending moment in inch pounds,

D = the total direct load (compression or tension).

In practical work, in calculating a rectangular piece, the depth

may be assumed and the breadth computed to take care of M.
Add enough breadth to carry the direct load. Or, assume a

breadth and design for a depth sufficient to take care of M, and

add enough breadth to take care of the direct load.

Fig. 91 shows a bolted fish-plate splice used in connecting sec-

tions of a solid piece in tension. Formerly this was done on the

assumption that the bolts bent and they were designed to resist

the bending moment. The moment arm was equal in length
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to one-fourth the thickness of the middle piece, plus one-half the

thickness of the outer piece, or splice pad. The load was half the

total tension and each bolt carried its proportionate share. This

is the method found in the majority of text books. It called for

very large bolts and made a heavy, awkward-appearing connec-

tion. It is the proper method to use for pin connections (Fig. 86),

the size of the pins being also figured for direct shear and the

computations for end lengths and distances between bolts being

computed as in the examples following.

The method for fish-plate joints used by the writer and shown

in Fig. 91 is the modified fish-plate joint proposed by Mr. Dewell,

*W-l"Bolh, WUMal/eab/eHtishersecKhBoffS.

Side Eleve

Top View

Fig. 91.

and the strength of the bolts is based on the table on page 139.

Net area required = ' = 28.1 sq. ins.
JLtJUU

Assume the splice pads to be 2 ins. thick and 8 ins. wide, which

gives an area of 32 sq. ins. Two 1-in. bolts will occupy a space
2 ins. wide, with a bearing of 4 sq. ins., which will bring the splice

pads down to the proper net size.

From the table on page 139 the strength of 1-in. bolts in double

shear with 2-in. fish-plates = 2460 Ibs.

45,000Number of bolts required =
2460

18.3. There should be an

even number of bolts and we should not use a higher stress than has

been shown to be safe, so this points to the use of 20 bolts. This

means 20 bolts on each side of the joint, for the entire pull must
be carried into the fish-plates and then be carried by another set

of bolts back from the fish-plate into the main piece on the other

side of the joint. The total number of bolts therefore will be 40.

There is a transverse tension in every piece which tends to cause
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the wood to split along the center line of the bolts. The amount

of this tension is one-tenth the longitudinal tension, and the safe

allowable fiber stress is one-tenth the safe allowable longitudinal

stress. The resultant is a shearing stress and must be allowed for

in spacing the bolts.

The shearing stress is assumed to act at each edge of each bolt

so that when a bolt passes through a 2-in. plank it exerts a shear-

ing stress on four inches, as shown at (c) Fig. 90. We are now ready

to space the bolts and determine the length of the splice pads.

The total shearing area in direct pull = '

07 K

Spacing of bolts for shear =
2Q 4 2

=

375 sq. ins.

2.34 ins.

.35

1.00

. . ,. . 45,000x0.1
Spacmg required for transverse tension =

16Q x 20 x 4
=

Adding diameter of bolts

Required spacing of bolts 3.69 ins.

Bolts will be spaced 3| in. staggered, with double this distance

from the ends of the splice pads.

TOT

/6, l'Shear Pins

10, V Bo/fs

20,
3
/g'x 3.%" Washers Side Elevation.

Fig. 92

By using thicker splice pads there would be required a less

number of bolts and the spacing would have been closer. It Is

not pretended that the details here worked out are the most

economical, for only the methods are shown. Each designer should

work out several details. The bill of material and labor must be

made out for each and unit prices applied in order to determine

the least expensive detail.
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All bolts should have a driving fit. This may be obtained by

boring all holes from one side with a bit the right size to assure

a driving fit. If any hole is large then use the next size larger

bolt. In determining the working loads on bolts the washers played
no part, so on bolts used for this type of fish-plate joint, standard

washers may be used, drawn tight enough to insure a good bear-

ing.
" In general the fewer bolts there are to place, the less will

be the cost for labor, and the more certain will be the combined

action. Against these considerations must be weighed the amount
of metal in the bolts and the availability of the chosen size. Stock

bolts are, of course, cheaper than special sizes." (Dewell.)

In Fig. 92 is shown a shear-pin joint for tension members. This

is very reliable for thoroughly seasoned timber but should not be

used in green timber. Any shrinkage' of the timber will allow a

slip in the joint. Hardwood pins may be used, but metal is better

and square bars or round are equally serviceable. Iron pipe is

generally used. The pieces are cut and fitted together, then spiked

to hold them in position during the fitting of the bolts. After the

bolts are driven and the washers drawn tight, holes are bored and

the shear pins driven. The drawing shows the shear pins vertical,

but they may just as well be horizontal, if the designer fears

vertical pins may fall out.

Assume the diameter of the shear pins to be \\ ins. and the

fish-plates to be 3 ins. X 8 ins. The net section of the two plates

will be 4.5 x 8 = 36 sq. ins. The unit tensile stress in the plates

will be ^ = 1250 Ibs. per square inch, which leaves the plates

safe, as the allowable stress is 1500 Ibs. per square inch.

The number of pins required is fixed by the bearing area on the

end of the fibers in the holes, = . ,,
45

o 1 onn = 6.25. Use 8
U./O X o X l^UU

pins, for there must be an even number.

Total shearing area required = ' = 375 sq. ins.

375
Spacing of pins for shear = ^ 5 = 5.85 ins. Adding the thick-

et X o

ness of the pins, 5.85 + 1.5 = 7.35 ins. Make it 8 ins. center to

center.

Subtract from the thickness of the fish-plate one-half the thick-

ness of the pins, which leaves 3 0.75 = 2.25 ins. for the uncut
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portion, the tension acting through and considered as concentrated

in the center, which is thus 3 - 1.125 = 1.875 ins. from the shearing

joint between the main piece and the fish-plates. Add to this

one-half the projection of the shear-pin into the main member
= 1.875 + 0.75 = 2.625 ins., which is the moment arm for the

couple acting in the joint. The moment = 2.625 x 22,500 = 59,063

in. lb., the action tending to raise one end of the plate from its

seat. This is resisted by tension in the bolts.

Assuming the bolts to be set halfway between the shear pins

the length of the moment (or lever) arm from the edge of the

hole to the center of the bolt = 4 - 0.75 = 3.25 ins. The stress

59 063
in the bolts = ' = 18,200 Ibs. Four bolts will be used, as

oJaO
18' 200

shown, and the stress =
^

= 4550 Ibs. per bolt. Use f-in.

bolts, the net area of which, at the root of the threads, = 0.42 sq. in.,

4550
which causes a stress =

-^5
= 10,830 Ibs. per square inch, which

will be all right for a wrought iron bolt.

For developing the bolts plate washers may be designed. The
tension on each bolt = 4550 Ibs. and the area for each washer

= - = 13 sq. ins. Make each washer 3f x 3f ins. The student
o5U

can compute the thickness as an exercise by the formula on page

151 . Standard round washers of equal area may of course be used.

The area of the chord will now be checked. Vertically there

will be a hole 1| diameter (half on each side), which subtracts

12 sq. ins. Horizontally there will be two f-in. holes, with an

area of 11.375 sq. ins., which, added to the area of the vertical

holes, = 11.375 + 12 = 23.375 sq. ins. The gross area of the

chord is 64 sq. ins. and the net area = 40.625 sq. ins. The

fiber stress = ' = 1100 Ibs. per square inch. The chord has

plenty of area for the maximum tension.

In Fig. 93 is illustrated an old type known as a tabled fish-

plate splice. It may be considered to be reasonably effective when

the entire stress can be taken by not more than two tables on

either side of the chDrd joint. There is comparatively little sec-

ondary tension in the bolts, therefore they can act in their most

efficient manner. Washers of generous size must be provided in
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order that the joint may be well pulled together at the time of

framing and the bolts be able to hold the tables in place when the

stress comes. The joint is dependent to a very large degree on

the tightness with which the timbers are held in place by the

bolts, and excessive shrinkage in the timber would allow the fish-

plates to be overstrained. If it is not certain that the timber will

be well seasoned before use, the fish-plates should be made larger

than computations indicate to be necessary and it will be advisable

to use about ten per cent more bolts than those provided by com-

putations. Spikes can be toe-nailed into the fish-plates and will

be a great help.

Depth of cut for table and chord: Area required for cut

45,000

1600 x 2 x 8

Length of table for shear: Area required = = 22.4
o X A X

ins, (make it 23 ins.)

Size of bolts required : The stress is transmitted from the uncut

portion of the chord to the uncut portion of the fish-plate past the

.

2,4"x8"5plice Pads ?8-4* 7-
->

JL-. f [-$ u-l-4
i

t<- 23"- < .-23"- <- 23 ><- 23

Top View.

T "^ f -f
-

....Jfp.._.._J.._ ^-....S-//^

Side Elevation.

Fig. 93

joint, where it is again transmitted to the other section of the

chord. The resultant stress thus travels through the center of

the uncut portion of the fish-plate, which in this case is two inches

thick, so the center of stress is 1 in. from the face. The resultant

of the pressure on the table where it transfers stress is at the

center of the cut, which in this case is 1 in. from the inner side of

the fish-plate. There is a moment arm between the compressive
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stress on the edge of the table and the tensile stress in the uncut

portion of the fish-plate which is equal to one-half the thickness of

the fish-plate, in this case 2 ins. These two equal and opposite

forces constitute a couple acting on the fish-plate equal to one-half

the stress in the chord times one-half the thickness of the fish-

plate, or, 22,500 Ibs. x 2 ins. = 45,000 in. Ibs. This moment
must be resisted by tension in the bolts acting about the bearing

face of the tables. The bolts should be placed on the vertical

line through the center of the tables. Their lever arm is thus

equal to one-half the table length, in this case 11.5 in. The ten-

sion on the bolts
11.

3920 Ibs. Two bolts will be used

having an area of 0.3920 sq. in., for the stress on wrought iron bolts

should not exceed 10,000 Ibs. per sq. in. The nearest size is found

to be | in. bolts, which have an area at the root of the threads

= 0.202 sq. in. and the combined area of two f-in. bolts = 0.404

sq. in. Two f-in. bolts therefore will be used in the middle of

each table and four more will be used as shown to bind the joint

together.

In Fig. 94 is shown a steel-tabled fish-plate joint. This is a

joint that requires especially good and careful inspection. It is a

detail for members carrying heavy stresses. It costs considerable

for materials and on account of the number of -tables required

the labor cost is high, for there must be very careful cutting to

insure even and

tf$t-/af"-*$*-s~-9tr>p 9"^Jy/of~-^fr snuS bearing for all

the tables.

Bearing area re-

quired for tables =

.ins.

, .

8,l%x8"Tables,bear/ngedgesmf//ed.AI/riVefs
34 depth of tables =

12, $sBolfs. 37 5
Side Elevation. ~~ = 2>34 in>

Fig ' 94
(make it 2| in.).

Will use tables IfV in. = 8 in., requiring 8 tables in all.

Each table transmits
^

= 11,250 Ibs. and requires three

f-in. rivets, as determined by bearing on a TVin - plate (see PaSe
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190). The tables are solid pieces of steel bar 1T\ ins. thick by 3 ins.

wide riveted to the i^-in. plate used as a fish-plate. The thickness

of the fish-plate is determined as follows:

Net section of one plate required = ~- '

^^ = 1.41 sq. ins.
a X

Net section of fy by 8-in. steel plate (deducting the three rivet

holes for the table rivets) = fV X (8
-

(3 x f))
= 1.68 sq. ins.

Size of bolts required to resist moment on tables: Moment

= 11,250 Ibs. x |1 in. = 7383 in. Ibs. Tension in bolts = -

o.O

= 2110 Ibs. Use two f-in. bolts.

Space between tables = + 1| = 13| in.
1 I , *)()

Sometimes the lower chord cannot be made of a single piece

spliced by means of a fish-plate or shear pin splices, but a number
of 2-in. or 3-in. planks must be used. The methods adopted for

splicing such chords are illustrated in Fig. 95.

It may be assumed at the start that there should be an odd

number of planks, for the center plank has so much section cut

away for holes through which the verticals will pass, that it cannot

be counted on as furnishing any tensile strength. Usually the

middle rod is smaller than the others and about half the section

of the center plank is available at this point for tensile strength,

which is an additional factor of safety. The center planks are

regarded merely as blocks in which a bearing is obtained for bolts.

The lower chord under consideration is so light that only three

planks will be used. The center plank will be 2 ins. and the outer

planks will each be 3 ins. thick. It is well to have the planks

rough sawed and not finished, as the rough surfaces increase

friction and also leave a small space for ventilation between the

planks. The length of the truss is 60 ft. center to center of bear-

ings, and, in the absence of data as to the end joints, we will

assume two feet added, making the total length 62 ft. The outer

planks must lap past each other for some considerable distance

to allow space for the bolts which will be used to tie them to-

gether. Assuming that planks may be purchased 8 ins. X 38 ft.,

each side will have one plank 38 ft. long and one plank 62 38 = 24

ft. long. These lengths will be alternated so that at one end on

one side there will be a 38-ft. plank and on the opposite side of

the chord there will be a 24-ft. plank. This gives a lap of 14 ft.
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The lap will be in the panels in which the stress is 45,000 Ibs.

Each outer plank will carry half the stress. We will assume two rows

of f-in. bolts fastening the planks together and these bolts will be

in double shear, for they pass through the center plank. Referring

to the table on page 139 each bolt is capable of carrying 1450 Ibs.

While each outer planks carries half the stress, when all bolting

is done, all the stress passes through the middle splice, half coming
in from each side plank and being transferred through the bolts

to the plank on the other side; therefore the bolts in the middle

splice must be proportioned to carry all the tension.

Number of bolts required = = 31. Use 32 bolts.

45,000
Total shearing area = = 375 sq. in.

375
Spacing of bolts for shear = == -

^
= 0.975 in.

oZ X O X ^

c. it 45,000x0.1 .,,.
Spacing required for transverse tension = '

00
= 0.147 in.

Adding diameter of bolts =0.75

Required spacing of bolts = 1.872 in.

The spacing may be increased to any desirable amount, so before

settling the matter the connections for the other planks will be

taken up.

The other planks each carry one-half the tension, so all the fig-

ures above may be prorated accordingly. In each joint there will

375
be 16 bolts. The total area required for shear = -^- = 187.5 sq. ins.

z

1 88
Spacing of bolts for shear =

-^
= 0.98 in.

lo x t> x ^

22,500x0.1 A1 ._

Spacing required for transverse tension = r~
lfi

= 0.146

Adding diameter of bolts = 0.75

Required spacing for bolts = 1.872 in.

Before spacing the bolts determine how far the first bolts will

be placed from the end of the planks. The shear on one bolt is

1450 Ibs. with bearing on a thickness of 6 ins. of plank. For the

interior bolts this is placed on two lines at the ends of the diameter,

but for an end bolt it is best to use but one line, considering that

the greatest danger is shearing on a line through the center

of the bolts. The length required for shear on the end bolt



JOINTS AND CONNECTIONS 161

1450
2.02 in., so the end bolts may be placed 2.02 +

0.75

"2"6x120
= 2.395 ins. from the end of the plank.

In Fig. 95 is shown (with width exaggerated) the arrangement
of the bolts. The spacing so carefully figured is the closest safe

spacing. The bolts can be placed much farther apart if desired.

In the middle splice carrying all the tension place two bolts seven

inches from the ends of the planks. Space the remaining bolts

10 ins. center to center. The 14-ft. lap in the middle of the truss

is then connected up so that the two outer planks act to carry

rnTTniiini

Fig. 95

half the tension from one support to the other. It now remains

to bolt the other two outside planks to them in order that the rest

of the tension can be carried.

There should be two bolts close to each joint, so, six inches from

the end of the planks, put in two bolts. Each joint has 16 bolts in

two lines, which bolts may be spaced 12 ins. center to center. For

the rest of the chord put bolts at intervals of 4 ft. staggered and

at the very end put two bolts through 6 ins. from the end to make
a firm bearing for the end of the brace. Between the bolts,

used merely to hold the planks firm, large spikes may be driven

at intervals of about 12 ins. to make the whole construction

more rigid.

The same principles apply when five or more planks are used.

In such a case, however, it often happens that long planks may
be placed in the middle of the span in such manner that all the
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splices will come in panels in which the stress is low, the full

area of the planks being available for carrying the tension hi the

middle of the span where it is greatest. In any event the splicing

of the bottom chord of a truss, when said chord is composed of

plank, is a matter requiring a great deal of careful study. It is

an easy matter to make a poor splice. The writer has seen some

in which the designer calculated for one-half the stress going

through a certain splice when actually all the stress went through it.

In Fig. 96 is illustrated a detail of a bottom chord in which all

the tension is carried by a steel plate and underneath are two

pieces of timber large enough to carry the plate and take out the

sag. This is from a plan for a standard wooden highway bridge

.-/?, Bo/fs

fe
IffOaA

ir^^v:ir;ii?/_:v/.:::rj:::::^/j/j::::z::;:;..-v^
vZ? Lower Chord

Bottom View of Chord . Cross Section.

Fig. 96

designed by Hugh C. Lewis, Bridge Engineer in the State Highway

Department of Utah, E. R. Morton, State Road Engineer. The

figures were copied from Engineering News, Sept. 21, 1916. Note

the spliced joint between the two timber pieces in the chord.

This consists of a long splice plate, large enough to carry all the

stress, between the two outer chord pieces. The use of such a

splice leaves a wide air space between the two chord pieces for

ventilation. When a bottom chord consists of three planks

and the center plank between two vertical rods is long enough
to serve as a splice piece, the two outside pieces may break

joints at a section passing through the chord, as shown in this

detail.

In Fig. 97 several methods are shown for making joints in a

piece under compression. These joints are used in the top chords

of trusses and also in columns, for the top chord of a truss is a

column. The detail shown at (a) is the best of the lot. The ends

should be carefully dressed to insure an even bearing. The detail

at (6) is in common use and is not so good as (a). It has two bear-

ing surfaces and this makes it very difficult to get an absolutely

true bearing. It may fit tight at one end and not fit evenly at the

other end. When the load is brought on one-half the member
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carries all the load until the fibers give and then the other end

comes into bearing. The detail of (c) should never be used. It

has two end bearings and in addition has the sloping face which

is difficult to fit. If one, or both ends, compress through rotting

or crushing of the fibers, the load is carried on the sloping face,

which increases the tension on the bolts and hastens the destruc-

tion of the member. When splices are made in a top chord the

joints are preferably vertical, the views shown being top or bottom,
as may be desired. The number of bolts to use, and the sizes,

are matters determined by judgment and experience in the three

details shown.

The detail at (d) is one commonly used when the piece under

compression is made of several pieces. The pieces should be as

thick as possible, and if more than one thickness is used use the

thinner pieces inside and the thicker pieces on the outside. To

design such a member consider the load to be uniformly distributed

so that each piece carries a load proportionate to the area. If one

piece bends, part of the load it carries must be transferred to the

adjoining piece by shear, so shear pins are inserted at intervals

of 15 tunes the thickness of the thinner of the pieces. Divide the

total load by the number of planes between the pieces, that is,

by the number of pieces less one. This may be assumed to be

shear and it is divided by the number of shear pins in one joint to

determine the amount of bearing for each pin. From this the

bearing area may be ascertained in the manner shown for the shear

pin splice and the table fish-plate splice for tension members. The

bolts are close to the pins and are designed to take tension, the

amount of which is ascer-

tained from the moment
caused by the load carried

by the outer pieces. A
compression member, or

column, carefully designed

according to the above

method, should be about

95 per cent as efficient as

a solid piece of the same outside dimensions. The ends should

be carefully dressed to insure the load being uniformly carried by
all the pieces. It is advisable to use a thin sheet of lead on each

end of the member.
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For many years it has been accepted as true that if a piece

under compression is made of a number of smaller pieces it will

not act as a solid piece. A number of experiments were made to

determine this and it was discovered that the secret lay in the

connections. Pieces as ordinarily made were found to be very
deficient in strength. Thin planks spiked together as thoroughly

as the ingenuity of the experimenter could devise proved to be

almost as strong in small specimens as solid pieces. It is not

likely, however, that in actual work this amount of nailing will

be done. Experiments made on rather large columns did not show

up so well as experiments on smaller columns.

It is considered to be not the best practice to build up com-

pression members of thin pieces, and when slender pieces are used

they should be as few in number as possible and shear pins should

be used as shown in Fig. 97 (d). If a number of thin planks must

be used they should be spiked together by gradually building up,

no expense for spikes being spared. After the piece is built up
lay wide pieces across the edges and spike these pieces to the edge
of each plank. These cross pieces will cover the two sides from

one end to the other and serve to call each plank to the assistance

of all the others in case there is any bending.

It has been stated that the compressive fiber stress given in

specifications for wood is based on pieces having a length not

greater than 15 times the diameter or least thickness. When
the proportions adopted provide for a more slender column the

following formula is used to ascertain the reduced fiber stress to

be used.

in which

/"
= reduced unit fiber stress.

/ = unit fiber stress for pieces having a length not exceeding 15d.

L = length of post.

d = diameter of round post or least dimension of rectangular post.

This formula is used in Chicago for wooden posts. There are

several formulas in common use for finding the reduced stress to

use for slender posts and these will be discussed in the chapter

dealing with columns.

L The reason it is difficult to get several pieces to work properly
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unless thoroughly connected by shear pins or spikes, is that the

ratio of slenderness reduces the load carrying capacity in a greater

degree than the load is reduced by the number of pieces. For

example the allowable unit fiber stress for solid piece with dimen-

sions equal to, or greater than, one-fifteenth the length may be

1200 Ibs. per sq. in. Divide the solid piece into four slices and the

ratio of slenderness for each slice (plank) is one-fourth of one-

fifteenth =
-J-Q L. By the above formula the allowable fiber stress

is only 400 Ibs. per sq. in. Assume that the whole load is carried

on the cross section at 1200 Ibs. per sq. in. provided it is a solid

piece. By dividing it into four planks, each carrying one-fourth

the load, it is seen the total carrying capacity of the four slender

pieces is only one-fourth the total load. That is, the four pieces

acting separately are each strong enough to carry one-sixteenth

of the load. By nailing them together at intervals they are made
to act together to some extent, and if arrangements are made
to connect them together rigidly at intervals not greater than one-

fifteenth the thickness of each piece the allowable fiber stress is

increased. Putting bolts or spikes through several planks is not

nearly so effective as spiking them together by internal nailing,

that is by
"

piling
"
them, by which term is meant nailing each

plank to a lower one, the spikes passing through at least three

after three are assembled. Two should be spiked together and

the spikes clinched. Then the
"
piling

"
is done by adding a plank

first to one side and then a plank to the other side, so the first

two planks form the core. To hold the two outside planks the

cross pieces are nailed on the edges.

Member UzL^ has a length of 14.14 ft., measured from center

line to center line of the chords, but somewhat less in the clear.

The total length, however, will be used for convenience in pro-

portioning the piece. Assume a piece 4 in. x 8 in., in which the

14 X 12
ratio of least thickness to length = - = 40. This is much

too great. Try a 6 in. x 6 in. and the ratio = J = 28,
6

which is still large, but we will investigate and see whether the

piece will do.

First find the fiber stress. This is usually done by using a

straight-line formula, but other formulas are discussed in the
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chapter dealing with column design. The straight-line formula

used for wooden columns in Chicago is as follows:

L

in which/ = reduced fiber stress per sq. in. hi compression.

/ = fiber stress used for columns having a length less

than 15 tunes the diameter or least thickness.

L = length.

d = diameter or least thickness.

When L is in feet, d is in feet; and when L is in inches, d

is in inches.

Using this formula for the case under consideration

/'
= 1200

(l
-
g^g

2

)
= 1200 x 0.65 = 780 Ibs. per sq. in.

The area of the piece is 36 sq. ins. and the total working strength
= 36 X 780 = 28,000 Ibs. The actual load it must carry is only
7190 Ibs., but in ordinances and specifications the maximum ratio

for the length divided by least width (ratio of slenderness) is

30 and the 6 in. x 6 in. piece barely comes within the limit. This

ratio is for vertical posts, whereas sloping posts have a tendency
to bend under their own weight, so something must be added for

additional stiffness. If it were not for this the 4 in. x 6 in. piece

would be good, as it has a safe compressive strength of 18,240

ins. considered as a vertical post. The ratio of slenderness of 40,

however, is against it.

The piece U*L\ and the piece C/iL will be made 8 in. x 8 in.

without computation, for the former has only a load of 21,750 Ibs.

to carry and as a vertical post a 6 in. x 6 in. can safely carry

28,000 Ibs. The additional stiffness secured by adding two inches

to the breadth and thickness saves it from bending. To compute
it we find that the safe fiber stress is 835 Ibs. and it can carry as

a vertical column 53,440 Ibs.; therefore this size will do for the

end piece.

When joint details are designed it may be discovered that some

of the members must be made larger to allow for bolt holes good

daps. This additional area may be added at the tune, but the

detailing of the truss should proceed in the order here followed, so

the pieces used in the computations may be reasonably close to

the actual dimensions finally adopted.
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The

Designing Joints

In Fig. 98 is shown one method for making the joint L .

computations, in order, are as follows:

Depth of toe, 6 = 45, therefore n = 1200 X 0.45 = 540 Ibs.

per sq. in.

35 950
Required area in bearing = ' = 66.6 sq. ins.

/>/> />

Required depth of face = - 8.33 ins.

The above operations involved finding the fiber stress in com-

pression per sq. in., dividing the total load to find the required

area and then dividing the area by the width of the chord to find

the required depth of the end of the brace. This depth being

normal to the angle of the brace we divide it by the secant

of the angle and find that the vertical depth of cut in the chord

= 8.33 -5- 1.4141 = 5.9 ins. The depth of the cut should be such

that below the point there will be enough area left in the chord

to carry the tension. Neglecting the middle filler, the width of

the chord is 6 ins., so the depth = 25,000 = 2.6 ins. Practically,6x1600

the depth of the cut should not be more than one-half the depth

of the chord, so another detail should be selected.

We can, at this point, assuming the computed depth of cut is

correct, proceed to find the length of chord projection for shear

and find the center line

of support; merely to

show in detail the nec-

essary computations. f<-

For this purpose the I

depth of the vertical

cut in the chord will

be assumed to be four

inches.

Forces are assumed

to be concentrated, or

to act along the center

lines of stressed mem-
bers. In the end piece the compression is all acting on the square

end face, 4 ins. deep x 8 ins. wide and the center lines of the
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forces are as shown by the heavy lines. Below the end piece the

uncut area of the chord carries all the tension, and this acts in

the center, as shown by the heavy arrow.

The two forces form a couple with a moment arm of 4 ins.

The moment = 4 x 25,000 = 100,000 in. Ibs.

If the center line of the support is placed under the vertical

line dropped from the center of the end face the bending moment

just found will exert a tendency to open the joint, because of the

pull around the lower edge. The reaction therefore should come

under the intersection of the center line drawn through the face

of the end piece and the line through the center of area of ten-

sion, as illustrated in Fig. 98. The exact position may be computed

by dividing the moment just found, by the reaction,
' = 4 ins.

which is the distance required to the left. It is merely a coincidence

that in this particular example the reaction equaled the tension

in the end panel of the lower chord.

It remains to find the chord projection for shear, the length a.

The width of the chord is 8 ins. and the allowable shearing stress

is 120 Ibs. per sq. in., with a total compression load of 25,000 Ibs.

We have discovered that the center line of the reaction should

be 4 his. to the left of the center of the bearing area on the end

brace. This is 5.42 ins. to the left of the lowest point of the end

brace, where it is set into the chord, and there is consequently a

projection, 26 5.42 = 20.58 ins. beyond the center of the sup-

porting wall or column. This may be concealed by corbelling out

the, brickwork of the wall, but very often such a projection is

objectionable. Designers who do not think clearly will often place

the support under the very end of the projecting piece, and this

sets up bending moments which will cause the chord to break.

Assume, for example, in the present instance that the center

line of the support is 6 ins. from the end of the projecting chord.

This leaves 20 ins. to the deepest cut and 18.58 ins. to the vertical

line from the center of the face of the brace. The bending moment
= 18.58 X 25,000 = 464,500 in. Ibs. The vertical moment arm

between the compression and tension area is 4 ins. and the area of

the tension side below the cut = 8 X 5.17 = 41.36 sq. ins.
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464 500
The tensile stress = ' = 2807 Ibs. per sq. in., and the

4 X 41.oo

allowable stress is 1600 Ibs. per sq. in., therefore the center line

of the support cannot

be so far from the

end of the brace. The

proper position, in or-

der to keep all forces

in equilibrium, is 5.42

ins. left of the bottom

point of the end piece.

The tension caused by

moving the support
farther to the left

must be added to the

tension in the chord;

so the actual stress, if

the support is away at the end, = (41.36 x 2807) + 25,000 =

141,098 Ibs.

In Fig. 99 is shown another method of forming the joint, the

toe cut not being perpendicular (normal) to the line of thrust.

The angle at the toe is 75 degrees and the angle of the sloping

bottom of the cut is 16 degrees; for the angle between the sur-

faces may vary, it not being necessary to have the lower point

a right angle. Computations will be made to obtain the area of

the pressed surface and the allowable and actual pressures on the

surfaces. The computations for obtaining the projecting length

of the chord for shear will not be made, for it is like the work

done in the detail shown in Fig. 98.

Depth of toe: 6 = 75 degrees, n = 1200 x 0.75 = 900 Ibs. per sq. in.

35,950

900Required area in bearing 40 sq. ins.

40
Required depth of toe =

-3-o
5 ins.

This depth is too great for the lower chord, for if it is used the

depth of the chord must be increased, which will increase the weight

and be an uneconomical proceeding. We will therefore abandon

this type of joint for the truss, but the computations will be carried

through, merely as a problem, in order to show how the two bear-

ing surfaces affect the position of the center line of the support.
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Pressure on inclined bed: 6 = 16 degrees, n = 1200 X 0.16 =

192 Ibs. per sq. in. This is below the allowable safe pressure

across the grain, which is 350 Ibs. per sq. in. which we will use.

18,000
Required area in bearing = = 51.o sq. ins.

OOU

Actual area = 10.5 x 8 = 84 sq. ins. The area therefore is more

than sufficient for its component of pressure.

The student is to observe the effect the distribution of the

pressure on two bearing faces has on the depth of the cut. It is

obvious that when the cut is normal to the stress in the brace

the whole thrust must be taken on the toe of the post and none is

taken by the inclined face. Actually there is a small component
normal to the center line of the brace, but it is so small that it can

be neglected. It is probably taken care of by friction of the toe

on the cut, or by slight tension in the bolts.

The small diagram in the upper left-hand corner of Fig. 99 is

perhaps self-evident, but will be explained. The load travels

down the brace until it reaches a point opposite the center of the

inclined face, when it divides, part going to the inclined face and

part to the toe. This is drawn to scale on the line AB. The line

AC is parallel to the line of the toe. The other lines require no

explanation, for the values are marked on the diagram and also

on the drawing.

The vertical component of the inclined face is 18,000 Ibs. and

the vertical component of the toe is 10,500 Ibs., the distance

10 500
between them being 4.5 in. The center of gravity =

18000
'

+1Q 50Q

= 0.369 X 4.5 = 1.66 in. from the right component.
The bending moment of the couple in the chord = 4 x 25,000

= 100,000 in. Ibs. This divided by the reaction gives the distance

the center line of the support must be shifted to the left to insure

equilibrium. The reaction in this case merely happens to equal
the tension in the lower chord, so the center line of the reaction

must be 4 ins. to the left of the position above found, or, 4 + 1.66

= 5.66 ins. to the left of the center of the lower bed on which the

brace rests.

Fig. 99 purposely contains as few lines as possible in order to

avoid confusing the student. In both details there are two inclined

bolts with cast-iron washers to keep the pieces in position, so all

the bearing areas will have a proper contact. No method is known
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whereby the stress can be computed in these bolts. The size is

fixed by judgment based on experience. For a truss with such

light loads as the one under review, f-in. bolts might be used,

but designers generally prefer to use nothing smaller than a

f-in. bolt, this being good practice. Since they carry a very
small stress, if any, it is not necessary to cut a seat in the lower

chord, which would weaken it, but cast iron washers of the

form shown are used, they being seated in the timber about half

an inch.

The detail in Fig. 99 is not good, for the reason that the sloping

face on the 16-degree angle cannot be accurately cut on account

of the depth to which the piece must go into the chord. The
back edge of the sloping face should meet the top of the chord.

These details must be worked out on the drawing board to a large

scale in addition to being computed. The computations and draw-

ing to scale must go together. In all the end joint details a block

is inserted through which the bolts go. This is to diminish as much
as possible the effect of secondary stresses set up by the bolts. In

Fig. 99 the slope of the bed might be carried to the top of the

chord without weakening it and a block fitted in the space, but it

increases the labor cost. The designer understands, of course,

that he should make several designs and choose the one that costs

the least and will do the work.

In Fig. 100 is illustrated a very common form of joint and it is

not a good one. This joint

is used in an attempt to

get rid of the long end pro-

jection caused by design-

ing to resist shear. The

end of the brace is dapped
into the top of the chord

merely to hold it in place.

The diagonal bolts take

all the stress and the shear

is resisted close to the bot-

tom of the chord. Note

the line diagram in the

upper left-hand corner of
Fig. 100

the figure. The line AB is parallel with the brace and is drawn
to a scale to represent the load. The line AC is parallel to the
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direction of the bolts. The line BC is perpendicular to the bed

cut into the top of the chord. The line BC intersects the line

AC at C. The line AC to scale gives the tension in the bolts.

This is found to be 45,500 Ibs.

Deciding to use two bolts the tension in each = 22,750 Ibs.,

which calls for two If-in. bolts. The holes must be filled so there

is no reason to use bolts with upset threads, and the size of the

bolt is determined by the area at the root of the thread. The

shear
25,000

13 ins., therefore the clear distance between
2 x8 X 120

the edges of the cuts to receive the bolts cannot be less than 13 ins.

The distance from the edge of the first cut to the end of the chord

must be equal to or exceed 13 ins., for each bolt washer is assumed

to carry half the total shear.

The allowable pressure on the side of the wood is 350 Ibs. per

sq. in. and the washers on the face of the end brace are dimen-
22 750

sioned as follows: ^
' = 8.1 ins. Make them 8 in. x 8 in.

o X ooO
The thickness may be found by the rules mentioned earlier. The
washers on the lower end can be smaller, for they bear on the wood
at an angle. The allowable pressure, the angle being 45 degrees,
= 1200 X p.45 = 540 Ibs. per sq. in. The width of the washers

22 750
= L-r-

?7
r = 5.25 ins. The vertical cut into the bottom of the chord

o X o4(J

to permit these washers to bear properly is 3f ins. deep, which leaves

a space of 3 ins. be-

tween the top of the

cut and the bottom

of the brace seat for

the tension in the

chord. Counting the

width as being 6 ins.

the strength of the

chord = 3 X 6 X 1600

= 28,800 Ibs., so the
CLofffescf,

chord is safe. When
Flg - 101

this form of joint is

detailed so part of the load is carried by thrust against the chord

and part is carried by the bolts, the weaker detail will give way
before the other is brought into play, as they do not act together.

Therefore an end joint should be designed so all the load is carried

'2,l"BoIh
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by the thrust of the brace against the chord, or it must all be

carried by the bolts.

In Fig. 101 is illustrated a low-cost end joint. A bolster is

placed on top of the lower chord and pins are used to transfer

the stress by shear, 2-in. pins being used. There may be unequal

shrinkage in the chord and bolster which will interfere with the

proper action of the round pins, so it is better to omit the pins

and use a bolster large enough to permit it to lock into the top

of the chord as a tabled fish-plate. The vertical bolts carry one-

half the tension and the method to use in figuring the size of the

bolts has been presented.

This joint is designed as follows: Using an 8 in. x 10 in. bolster

the depth below the bottom of the cut will be 4.34 ins. Deduct

8 sq. ins. for the half pins and f x 4.34 ins. for the bolt holes, leaving

25 000
an area of 23.47 sq. ins. The tensile stress will be

' = 1065 Ibs.

per sq. in., and the allowable safe fiber stress is 1600 Ibs. per sq. in.

Therefore the 8 in. x 10 in. bolster is O.K.
OK 000

Uncut projection for shear = ~ - -^ = 26 ins.
o X l^JU ,

The compression on the round pins will be taken at 800 Ibs.

25 000
per sq. in. The required number of 2-in. pins = ' = 3.9.

Use 4 pins.

The thickness of bolster back of the brace required for ten-

25 000
sion =

^'
' = 2 ins. The thickness is 4.34 ins. less 1 in. for

o X
the pins = 3.34 ins., so this is O.K.

OK 000
The stress per pin = ^^- = 6250 Ibs.

The clear space between pins =
5
- ^ = 6.5 ins.
o X l^&U

Sometimes a detail similar to that shown in Fig. 100 is used,

but instead of two bolts one is used. In the case considered this

bolt will be 2|-in. diameter. Instead of making a triangular cut

in the bottom of the chord to form a bearing surface for the washer,

a casting is used at the bottom for the lower end of the bolt. It

is very common to use such washers without computing the size

necessary, and in many existing trusses this detail is weak. The

computations are as follows, referring to Fig. 102 (a) :
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In the diagram in the upper left-hand corner the tensile stress

in the bolt is 45,500 Ibs. This at the bottom of the chord is con-

verted into a horizontal and a vertical

component, shown in the lines AC and

CD. First taking the value given by
the line AD we find the depth of cut

necessary for the vertical component.

Depth of cut =

Fig. 102.

= 3.34 ins. (make it 3| ins.).

The bottom of the plate must be large enough to allow a bearing

of 350 Ibs. per sq. in. against the side of the wood, the width of

the plate being 8 ins.

Length of plate
= 11. 4 ins. (make it 11% ins.).X oOU

The thickness of this plate must be found by assuming the

edges projecting beyond the collar around the bolt, as cantilevers

uniformly loaded. The thickness of the sloping leg in the chord

must be figured in the same way. The plate on top of the bracer

at the upper end of the bolt must have enough area to keep the

bearing down to 350 Ibs. per sq. in.

The plate must be set far enough from the end of the chord to

prevent shearing.
oo 000

Length for shear = ^ ^= 33.4 ins. (make it 33| ins.).
o X l^U

The center of the bolt should be as nearly as possible at the

center of the plate, which helps to fix the position of the bolt

through the chord and brace, taking into consideration the size of

washer at the upper end. Insert a hardwood block in the angle.

In Fig. 102 (6) is a detail used to prevent the cutting of the

bottom chord for washers and to avoid the expense of the special
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casting shown at (a). The position of the bolt is fixed by the size

of the washer at the upper end and by the necessity for having
the uncut portion of the block long enough to resist failure by
shear. The pins are shown square, but they may be round if

desired. From the examples given the student should have no

difficulty in designing a detail such as this. Supply enough pins

for bearing and enough space between them for shear. The ver-

tical bolts are in tension, but of course this tension is greatly re-

duced by the stiffness of the block, the thinner part of which

must have area enough to carry the tension in the end panel of

the chord. The lower washer must have area enough to keep
the pressure to the limit imposed by the angle at which the pres-

sure is delivered to the wood.

In Fig. 103 is illustrated a cast-iron shoe. It may have slightly

different details, this being true of every design here illustrated.

The form shown is a rather com-

mon type. There are no diagonal

bolts, so the pressure on the top of

the chord is not uniform. A toe

projecting in front of the brace is

provided to take care of this. The E^
depth of the lugs is fixed by the end

bearing strength of the wood. The
thickness of the lugs is fixed by
their resistance to shear and bend-

ing, for they are short cantilevers

and are so designed. The spacing

of the lugs is governed by the

shearing strength of the timber Fig. 103.

with the grain. The first lug is usually placed directly under the

end of the batter post. The arrangement of the ribs fitting into

the end of the batter post is much a matter of judgment. Cast

iron is a brittle metal and it is best to have the least thickness

more than half an inch. The thickness to use will usually be

determined by the size of the casting; a large heavy casting re-

quiring larger individual parts, should have all the parts thick,

because a fall will be more apt to injure it than a smaller casting.

Proceeding with the design. The wood at the end of the batter

post is not held by bolts, nor confined in a shoe, therefore a

reduced stress will be used.
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Depth of toe, = 45. n = 540 Ibs. per sq. in.

_. . , .. , , . 25,000
Required area for end bearing =

-^777-
= 46.4 sq. ins.

o4U

Required depth of vertical cut = ~- = 5.8 ins.

Required area of horizontal cut, 6 = 45. n = 540 Ibs. per sq. in.

Use vertical component of the diagonal load, which for 45 de-

grees is one-half.

35,950 00 ,Area =
2^540

= 33 '3 Sq " mS '

oo o

Length of horizontal cut =
5
-

-7^ -^
= 5.5 ins.

o (6 X )

In this example the angle is 45 degrees and the vertical cut

and horizontal cut will be equal, each being 8 x 0.707 = 5.66 ins.

The vertical cut, for the assumed fiber stress, should be 5.8 ins.,

which indicates that the casting should be designed with the

two bearing surfaces forming an angle differing enough from

90 degrees to keep the stress within the limits fixed. If the design

is not altered the stress on the end area =
-=-^

- = 552 Ibs. per
O.OD X o

sq. in., which is an increase of only 4 per cent, so will be allowed

to stand.

The maximum unit bearing pressure of the shoe on the lower

chord must not exceed the allowable bearing stress on the side

of the fibers. Draw a horizontal line from the mid-height of the

toe to intersect with the diagonal line meeting the point of the

toe. From this intersection drop a vertical line to represent

the vertical component of the thrust. The diagonal line rep-

resents the diagonal thrust and the horizontal and vertical

components, respectively, are shown as heavy arrows.

The distance from the vertical component to the front edge

of shoe (point of maximum pressure) scales 8.5 ins. and this length

will be called a. Next find the length of the shoe. The lugs each

carry one-half the shear, or 12,500 Ibs.

12 500
The area for bearing = ' = 10.4 sq. ins. The depth of the

10 4
lug = ^ = 1.3 ins. (make it 1.5 ins.).

o

12 500
Length required for shear = '

ort
= 13 ins.
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This fixes the clear distance between lugs at 13 ins. and the

front lug will be set not less than 13 ins. from the end of the lower

chord. The end of the shoe will extend 2 ins. beyond the rear lug.

This makes the total length of the shoe, L = 25 ins.

Let a = distance from front lug to toe of shoe.

L = length of shoe.

q = maximum pressure in Ib. per sq. in. at front edge of toe.

vertical reaction 35,950 _"

which is well within allowable stress.

The thickness of the lugs is determined by treating them as

cantilevers. The depth is 1.5 ins. loaded uniformly with 12,500 Ibs.

The bending moment = f

% ) X 12,500 = 14,080 in. Ibs.

The moment of resistance of a rectangular section, Mr = Rbd?.

The compressive stress of cast iron is 10,000 Ibs. per sq. in. and
the tensile stress is 3000 Ibs. per sq. in. A mean of these values

may be used in determining the resisting moment, but it is better

to use the tensile stress, and R = 3000 -=- 6 = 500. Then

=
V 500 x 8

~

Moment of rotation of lugs = bending moment on lug = 14,080

in. Ibs. Tension in bolt back of lug =
(2

'

.,.
= 5120 Ibs. Use

one |-in. bolt.

Figures 104, 105, and 106 are reproduced from an article by
Henry D. Dewell in

Western Engineering for

September, 1916, the

fourth in the valuable

series referred to.

The computations for

Fig. 104 are as follows:

Area required for bear-

ing between upper and

Fig. 104.

sq. ins. (Mr. Dewell used side bearing stress of 285 Ibs. per sq. in.)
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Depth of lugs =
2 x 1600 x 8

= 1>915 inS ' Use 2"in ' lugs '

Thickness of lugs for bending :

Bending moment on one lug = 24,500 Ibs. x 1.5 = 36,750 in. Ibs.

Thickness of lug assumed to be 1 in.

Required section modulus =
OK'QQQ

= 1-465.

Required thickness of lug = 1.05 ins. Use 1-in. plate as assumed.

49 000
Length required for shear between lugs = = ~

5
= 20.4 ins.

A X loU X o

Use 1 ft. 8.5 ins.

4-Q 000
Depth of toe = *%, Q

= 3.84 ins. Use 4 ins.
loUU X o

Bearing stress of 1600 Ibs. per sq. in. is used, as the timber

fibers are confined and therefore capable of taking full end com-

pression.

Stress in bolster = horizontal component of stress in two f-in.

bolts = 4830 Ibs. x 2 x 0.5 = 4830 Ibs.

4830
No. of shear pins required =

Qftn
= 0.75. Use one 2-in. pin.oUU X o

In the cast-iron shoe shown in Fig. 103 the projection of the

toe limited the bearing stress on the top of the chord. In the

form shown in Fig. 104, since the line of thrust intersects the shoe

practically at the end of the toe, the inclined bolts will be called

into play to prevent a rotation of the shoe, which would greatly

increase the toe pres-

sure. The bolts, there-

fore, must be always

tight in order to

secure an approxi-

mately uniform ver-

pressure.

|R eWBotsfer 8,%'BoHs
This form of joint

Z^%*3^Y3ifJfcrfw* 10, %6'x3%j(3% Washers
js considered very

Mill Bearing Edge of Tables. .

good because it is

simple in action and

comparatively easy to frame into the timber. Both lugs must

have an even bearing against the wood and this is a hard thing

to secure, but if the inspection is good the work will be all right.

When there is more than one bearing surface this objection
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always arises. If the fitting is not properly done the joint can

be shimmed with thin metal shims.

Mr. Dewell makes the following comments: "This shoe can

be used only for stresses requiring not more than two lugs, hence

its field of application is limited. Another defect is that the

forge work is difficult with the thickness of plate used. Especially

is this true of the bending of the end of the inner plate to form

the inner lug. Incidentally, this detail forms a good example of

the consideration of actual unit working stresses as compared
with purely theoretical values, as mentioned in the first article

of this series. With a 2-in. depth of lug, the bearing pres-

sure against the ends of the fibers is assumed to be 1600 Ibs.

per sq. in. On account of the fillet formed in bending
the plate, the actual bearing area will be decreased and the

actual unit working stress will probably be around 1800 Ibs. per

sq. in."

In Fig. 104 and Fig. 105 the sizes of the two diagonal bolts are

determined by judgment and experience. They are not suscep-

tible of computation. The vertical bolts are found by computa-
tion. When any computation is omitted in any of the examples
it is for the reason that the student is assumed to know how to

make it. Every detail must be investigated according to the

principles and methods illustrated.

Fig. ] 05 is a modification of Fig. 104. Steel tables rivetted to

the plate are substituted for the lugs used in Fig. 104. The forge
work is less; any number of tables may be used; and the main

plate may be reduced to a thickness determined by considera-

tion of shear and tension alone. In Fig. 104 the plate thickness

is determined by the thickness required of the lug to prevent it

straightening under load. No table should be placed under the

foot of the batter post, for the seat for the table is usually cut a

little deeper than the table, so the full bearing area under the

post will not be obtained with a table under it.

The computations for Fig. 105 are as follows:

Depth of toe as in Fig. 104, 4 in.

Area required for bearing between upper and lower chord

28,125

A 10-in depth will, therefore, be required for the upper chord,

giving an area of 8 X 13 ins. = 104 sq. ins.
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4Q 000
Depth of tables (assuming 3 used) = =-- ^ - = 1.275 ins.

o X o X lOUU

Use 1T
5
8 X 3 ins.

Assuming three rivets in each table, stress in each rivet =

49 000

^
= 5450 Ibs. Use three f-in. rivets in each table.

Thickness of plate for bearing against rivets = f in.

49 000
Thickness of plate for shear = ' - = 0.614 in.

1U,UUU X o

49 000
Thickness of plate for tension =

36>000 x (8

'

m .
_ 2 .8in0

- 0.59

in. Make plate f in. thick.

, , , .
.. i . , . 1.3125 in. + 0.625 in. 49,000Moment of rotation of tables =

5 X ^
= 15,800 in. Ibs.

i ^ soo
Stress in bolts =^^ = 4520 Ibs.

, o.O

Add stress due to pin in bolster = | X ? X 800 Ibs. X 8 ins. =

800 Ibs.

Total stress in two bolts = 5320 Ibs. Use two f-in. bolts.

Using two f-in. diagonal bolts, the horizontal component in

the bolster will be as in Fig. 104, requiring one pin.

49 000
Distance required between tables for shear = = ~ -== =

o X o X lou

13.6 ins. Usel3fins.

Fig. 106 illustrates a practically perfect joint, except that it

is not cheap. The chord and batter post stresses are transmitted

to the gusset plates by
means of lag screws acting

in shear. There is no ec-

centricity of stresses and

consequently no secondary
stresses. With good in-

spection the lag screws will

fit closely. The holes in the

R|
13Spaces 3"-j '-3"

*fi'
steel plates for the lag

Holes inplates for lag screws drilledhWdiam Screws are drilled ^ in.

Black spots sf,o lag screws in near
plate. fa diameter than the

jOpcn circles snow lag screws in far plate.
diameter of the screws. The

plates should be fitted to

the timber and the holes marked, after which they are bored
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in the wood to a diameter a trifle less than the diameter of the

shank of the screws at the base of the threads. The lag screws

are to be screwed, not driven, into place. Bolts should not be

used, for it would be next to impossible to fit the plates so the

holes will all be in line. To make a fit the bolts would require

some bending and thus much of their value in shear would be lost.

"This type of end detail is well suited to t'russes of an A
shape, resting upon posts. The side plates in such cases may be

extended to engage the top of the post, and thus to give consid-

erable stiffness to the building frame." Dewell.

Computations for Fig. 106.

56 500
Number of lag screws in upper chord = ' = 47.

, , 49,000Number of lag screws in lower chord = ' = 41.

Thickness of plate = fV m -

Intermediate Joints in Trusses

Intermediate joints in trusses must follow the general rule for

joints in wood, that the carpenter work must be as simple as possible.

The condition must be satisfied that the center lines of all

members must meet at a common point. In nearly all joints of

the types shown in Fig. 107 and Fig. 108 it often happens that

when all the center lines

meet at a common point

the hole for the rod will cut

away a part of the strut,

or the toes of the struts

will bear against the rods.

Sometimes this condition

cannot be avoided if the

strut is to be dapped into Fis- 107 -

the chord. Quoting again from Dewell: "If it so happens that

the rod has not a driving fit in the chord, which condition will

usually exist, especially with an upset rod and a deep chord, the

toe of the strut will have bearing against the chord for only part
of its width. The result of this condition will be that the actual

bearing area may not be over one-half of what was assumed in

design, and the unit-bearing stress may consequently be double

the allowable."
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Two methods of framing intermediate joints are shown in Fig.

107 and Fig. 108. They are very common and yet violate the

principle that the carpenter work should be simple. When the

strut is not normal to the member it abuts against, the two sur-

faces of the indent must be separately investigated and the bear-

ing pressure found, for each. The unit bearing pressure having
been found the"minimum bearing area must then be determined

by methods already given. It involves considerable "cut and

try
" work. It is also imperative that the exact angles used must

be marked on the drawings so the carpenters can make the joints

in the field and secure the conditions assumed in the design. The

angles of cuts having been found so the bearing is correct on each

face, the depth of each cut is fixed by the bearing stress on the

ends of the fibers, at the assumed angles. In Fig. 107 the cuts

are not normal, the stress actually acting along the center line

of the strut, or so nearly along the center line that the moment
due to eccentricity may be neglected. In Fig. 108 the cuts are

normal and the total thrust

is assumed to act over the

face of the normal cut. The
unit stress on the fibers of the

chord is found as shown hi

the design of the cut for the

end brace. The depth of the

cut is then found. At the

upper end the normal (right

angle) cut is on the lower

side of the strut and at the lower end it is on the upper side.

Draw lines through the centers of these normal areas, parallel

with the top and bottom of the strut. The eccentricity is the

distance between these center lines.

Multiply the thrust by the eccentricity in inches and get the

bending moment in inch pounds. This has a tendency to make

the end of the strut move on the face of the normal cut and

"jump out." It must be resisted by the friction of the wood on

the face of the cut. Divide the eccentric moment by the length

of the strut in inches and this gives the force to be developed by
friction. Assuming the coefficient of wood against wood, for

sliding friction, to be 0.2, multiply the direct thrust by 0.2 and

obtain the resistance the wood will offer against being forced out
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of the cut by the bending moment. Nails and spikes offer resist-

ance against being pulled out, so if the ends of the strut are "toe

nailed
"
this additional resistance will be good. It seldom happens

that the eccentric moment divided by the length of the strut will

give an amount exceeding the direct thrust multiplied by the co-

efficient of friction, but if it does then spikes or bolts must be

used to hold the toe in place. Carelessness in keeping all joints

tight reduces the effect of friction, and decay in the joint also

seriously affects it. In the j obits illustrated there is often a

serious loss in the efficiency of the upper and lower chords because

of the depth of the indent. Details tending to reduce cutting

into chords should be favored.

It has been said that all forces should act through the center

lines of members. All the detailing is done with this in mind.

Due to careless detailing, or, if the detailing has been good, then

due to careless framing, any variation in the relation of web mem-
bers meeting in a panel point may increase secondary stresses to

a dangerous amount. The horizontal component of the diagonal

thrust acts through the lower chord on a line intersecting the

center of bearing of the thrust. The tension in the chord acts on

the center line through the

uncut portion of the chord.

There is a moment devel-

oped by the vertical dis-

tance between these two

lines of action. The ver- Vs^~ \^f] Dar%"
tical component of the

thrust acts through the

center of the face of the

cut. This forms a couple
Fis- 109 '

with the tension in the vertical rod. There is a moment developed

by the distance between the center of the rod and the line of action

of the vertical component of the thrust in the strut. In wooden

trusses the secondary stresses are seldom important except when

very high unit stresses are used, but we cannot afford to neglect

consideration of the possibility of neglect to keep the joints tight

and the possibility of rotting setting in. It is very little trouble

to investigate the effect of secondary stresses and provide addi-

tional material, or to redesign the joint to reduce the secondary

stresses to a minimum. It is at least important that secondary
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stresses should be investigated when high unit stresses are

used.

The advantages of the type of joint shown in Fig. 109 are best

summed up in the words of Mr. Dewell: 1 "In this joint, the

strut has a full bearing on the butt block, and the butt block,

in turn, utilizes the total width of the chord for bearing. Also,

the detail takes advantage of the full bearing pressure in end com-

pression of the butt block on the chord, resulting in a minimum

depth of cut into the chord. Nearly all the cuts are normal,
and the others are simple. All the cuts can be easily and accu-

rately laid out and made by the carpenter. The length of the

butt block can be adjusted to fit all conditions of possible inter-

ference with other connections. Its minimum length is deter-

mined by longitudinal shear. The bolt through the end of the

butt block holds the block securely in its socket. Whether there

is any actual tension in the bolt depends upon the length of the

butt block. This can be determined at once by inspection. If

the line of the thrust of the strut falls within the base of the

block, there can be no tension in the joint. However, it is well

to provide at least a f-in. bolt to bind the joint together thor-

oughly." In another place, Mr. Dewell says: "The detail of

Fig. 109 is seldom used; nevertheless it is the most consistent

and logical in principle and the simplest of construction of the

three types shown." In the foregoing remarks the author

heartily concurs. In too many cases draftsmen, not entitled

to be termed designers, merely butt opposing diagonals against

one another with no provision for transmitting the component
of the diagonal stress to the chord. Designers must never forget

that all forces can be assumed to act along lines: these lines in-

tersect lines in other members and the force is then divided and

goes in two directions. The main force is termed the resultant

and the other forces the components. This will be discussed

fully in the chapter on Graphic Statics.

Pin Connections

A pin connection is sometimes an economical connection. It may
be used with either wooden or metal frames. The pieces connected

1 Western Engineering, Oct. 1916, p. 386.



JOINTS AND CONNECTIONS 185

by the pin must have enough bearing area to prevent crushing.

This being attained the pin is designed to resist shear and bending.
Pin connections require a minimum of material in the members.

The cost of fabrication with pin connected trusses is not high.

Such trusses cost less than rivetted trusses. The joint is flexible,

if the pin does not rust, for all forces meet on the axis of the pin.

It is theoretically a perfect joint and for many years was favored

by American bridge engineers for the reasons given. European

engineers always favored the rivetted joint because of its rigidity

and all joints were designed to take care of eccentric stresses.

Under heavy traffic it was found that the pin holes wore badly
and thus the trusses became too flexible. When pins rusted into

place eccentric stresses were set up and frequently the members
were too small to take care of them. The pin-connected joint

at the present time is not high in favor with bridge engineers, but

it is all right for roof trusses.

Referring to Fig. 110 the bearing area is found by assuming
the whole load to rest on a strip having a length equal to the

combined thicknesses of the pieces

connected, with a width equal to

the diameter of the pin. Some-

times, for example in the case of

a built-up member, an extra thick-

ness of steel is rivetted to the

side of a member in order to ob-

tain increased bearing area at the

pin hole. This is often cheaper
than to increase the thickness of

the metal in the member through-
out the whole length.

Fig. 110.

The shear on the pin seldom determines the thickness, the bear-

ing area and bending stresses being usually of greater importance.
The shear, however, should in all cases be investigated. The num-
ber of joints, that is the divisions between the pieces, will be one

less than the number of pieces. Divide the sum of the loads

on the pin by the number of joints to obtain the shear on each

joint, if the pieces are of equal thickness. If they are not equally

thick the shear on each joint will be equal to the sum of the re-

actions of the pieces on either side of the joint. If the pin is

found to be too small to carry the shear the diameter must be
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increased, which will have the effect of reducing the unit stress in

bearing.

To determine the flexure hi pins the following formula is used

for the resisting moment:

32 8
in which

M = moment of forces for any section through the pin.

/ = allowable unit fiber stress in bending.

TT = 3.1416.

d = diameter of pin.

A = cross-sectional area of pin.

The load in every member must be reduced to the horizontal

and vertical component loads, and must be considered as acting

in each member along the center line, so that the point of applica-

tion of each horizontal and vertical component is at the center

of bearing of the corresponding member. This means that if

two |-in. bars are side by side the moment arm = \ + \ = \ in.

The horizontal forces are equal on both sides of the pin, other-

wise there would not be equilibrium. Similarly the vertical force

downward is equal to the upward acting vertical force.

The bending moment (to which the resisting moment must be

equated) is as follows :

M = V(Mh) 2 + (Mv)
2
.

in whichM = resulting bending moment in inch pounds.

(Mh) = maximum moment of all horizontal stresses.

(Mv) = maximum moment of all vertical stresses.

In designing pin joints no two adjacent bars should pull in the

same direction, unless they shall by so doing reduce the bending
moment. The joint must be symmetrically arranged to avoid

torsion. Diagonal ties should be placed close to the vertical

member and the horizontal ties should preferably be on the out-

side. Sometimes packing pieces are required between the mem-
bers that carry stress, but these packing pieces merely lengthen

the moment arm between adjacent members. The joint being

symmetrical the computation stops at the center piece.

In determining the horizontal moments take one-half the sum
of the thickness of adjacent bars for the moment arm between

these two bars. The moment between the first two bars is equal

to the load on the outer bar times the moment arm. The moment
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between the second and third bars is equal to the moment just

found plus the difference between the loads on the first and

second bars times the moment arm between the second and third.

The moment between the third and fourth bars is equal to the

last moment plus the difference between the load on the first bar,

less the sum of the loads on the second and third, times the mo-
ment arm between the third and fourth bars. In determining
the vertical moment multiply the vertical load by the distance

between centers of the vertical member and the most distant

inclined member. If there are a number of inclined members
then proceed as in computing the horizontal moments, using

the vertical loads.

Referring to Fig. 110 the loads on the members are designated
as PI, P2 ,

P3 and P4 . The moment arms are designated as A,

B, C, and D, being in inches. The resulting moments are desig-

nated by Ma ,
Mb ,

M c ,
and M*.

At P2 the moment = Ma = PI x A.

At P3 the moment = Mb
= Ma + (Pi

- P2) X B.

At P4 the moment = Mc
= Mb + (Pi - P2 + PS) X C.

The members P4 are inclined and the center piece is vertical.

The vertical moment is equal to the vertical load multiplied by
the arm D. The vertical member is made of two channels and the

other members are eye bars.

Fig. Ill is from the 1913 edition of the Carnegie Pocket Com-

panion. A pin has to carry a load of 64,000 Ibs. :

required the size at 24,000 Ibs. fiber stress, assuming

the distance between points of support to be 5 ins.

Bending moment = 64,000 x 5 -=- 4 = 80,000 in.

Ibs. This it is seen considers the center load as

concentrated and allows nothing for the distribu-

tion of the load over a part of the span. The size

of the pin may be obtained from the table on page
219 in that book. Looking in the column headed

by 24,000 find the nearest (larger) resisting moment,
which is 80,900 in. Ibs. In the first column at the

left is the diameter, 3| in.

The size and diameter of the pin may also be found from the

expression, M = fAd -f- 8.
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First divide / by 8 = 24,000 -r 8 = 3000.

Then M = 3000 Ad

0.7854 d2
,
therefore Ad = 0.7854 d3

.

80,000

0.7854 x 3000'

-4
80,000

0.7854 x 3000

Many tension members in steel work are made of round rods

or rectangular eye bars. The ends are fastened to the frame by
means of pins passing through loops or yokes or eyes. The area

of the main part of the member is found by dividing the total

tension by the allowable fiber stress. The thickness of the loop,

the yoke or the eye is determined by the required bearing area

on the pin. If the enlarged section on the end to receive the pin

is welded to the member the stress used should be low to allow

for imperfections in the welding. If the members are purchased
from the mills already welded they should be purchased under

very rigid specifications. The use of clevises, turnbuckles and

sleeve nuts permits tension members to be lengthened and

adjusted for length.

In the Carnegie Pocket Companion, 1913 edition, all the in-

formation the designer needs about the sizes of screw threads,

bolts, eye bars, loop rods, clevises, turnbuckles and sleeve nuts

is found on pages 112 to 122 inclusive, 215, 218, 219, 223.

Similar information is found on pages 322 and pages 331 to

357 inclusive in the 1914 edition of the Cambria Steel Hand Book.

In the 1916 edition of Jones & Laughlin, Standard Steel Con-

struction, this information is on page 246 and on pages 255 to 268

inclusive. The Lackawanna Steel Company Hand Book contains

similar information on pages 339 to 363 inclusive.

Rivets and Rivetting

A rivet is a piece of metal which connects together two or

more pieces of metal. In structural work rivets are made of soft

steel. A head is formed on one end of a rivet when it is made and

when used the rivet is heated and the surplus length projecting
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beyond the plates is formed into a head by means of presses in

the shop or by hammers in the field.

A rivet should never be used in tension when it is possible to

avoid so using it. In very exceptional cases a rivet may have to

be so used and then the allowable tensile stress should not exceed

8000 Ibs. per sq. in. The body of the rivet when used in tension

may be amply large, but the thickness of the head must be inves-

tigated to determine whether it will be sheared by the pull on

the rivet, this shearing being on a circle having a diameter equal

to the diameter of the body of the rivet. The head of the rivet

must be thick enough to withstand the shear.

The reason for not using rivets in tension is that the unequal

heating and cooling during the process of fabrication of a member
which is rivetted together sets up in the rivet expansion and con-

traction stresses of unknown amount. It has happened many
times that rivet heads were snapped off when cooling and they

snap off sometimes in extremely hot weather and in extremely
cold weather. With such stresses existing in rivets it is mani-

festly dangerous to further impose on them a direct tensile stress,

for the rivet heads may be on the verge of snapping off and any

slight additional load may cause them to go. It is best to use

bolts in joints in which rivets would be subjected to tension when
field rivets are driven and if shop driven rivets are under tension

the stress should be very low. Shop driven rivets are pressed
into place and all the conditions in the shop make it likely that

the work is uniform. It is impossible, however, to secure proper
conditions in the field, for the heat cannot be controlled and many
rivets are burned. They are thrown through the air and driven

after some cooling has taken place. The hammering may be

uneven and the rivets may not be hot enough when driven to

be forced to completely fill the hole.

Rivets are assumed to act entirely in shear and all computa-
tions for rivetted joints are based on this assumption. There

can be no doubt that friction is a big factor in rivetted joints,

the rivets in shrinking drawing the plates together and holding
them in contact so that friction between the plates assists the

shearing strength of the rivets. The assistance obtained from

friction is neglected in computations and merely increases the

factor of safety of the joints.

Rivets may fail by bending. This effect, however, is not
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important except in very long rivets holding several plates. The

action is then similar to that on a pin and is investigated simi-

larly. It may be advisable then to use bolts or pins.

Rivets are much cheaper than bolts, otherwise bolts would

be used, for they are safe in bending and in tension as well

as in shear. An objection, however, to bolts is that it is

difficult to screw the nuts tight and keep them from becoming
loose under vibration. When bolts are used where rivets, if

used, might be in tension, means must be provided for keeping
the nuts tight. Even the best nut locks require frequent

inspection. *

The accompanying table from the Jones & Laughlin Hand
Book gives the value of rivets in plates of different thicknesses.

The values used are common and the steel handbooks all contain

tables for other values.

In single shear rivets connect two plates, so there is one joint

on which the plates may slide, precisely like the blades of shears.

In double shear rivets connect together three, or more, plates

so there are at least two joints on which the plates may slide.

When three plates are used the middle plate is assumed to be

pulling out from between the two outer plates.

In the table the thickness of the plates connected by rivets is

given together with the bearing value and the shearing value.

Figuring shear at 10,000 Ibs. per sq. in. the value of the rivet in

shear is constant, no matter what the thickness of the plate.

The bearing value of the plate is 20,000 Ibs. per sq. in. and a

comparison of the figures shows immediately when the value of

a rivet is determined by bearing and when by shear.

The strength in double shear is of course just twice that in

single shear. The bearing on the plate is determined by the

thickness of a single plate, of two adjacent plates in which the

stresses are opposite. If two or more adjacent plates are fastened

together and act as one plate, then the plate thickness is the

combined thickness of the plates.

In the table the strength of the rivetted joint is determined by
the shearing value of the rivet above the heavy line in some of

the columns. Below the heavy lines the strength is fixed by the

bearing value of the plate.

To determine the number of rivets to use first select the size of

rivet. The thickness of the plate is determined when designing
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the member. Looking in the table, in the column headed by
thickness of plate, opposite the size of rivet will be found the

bearing value. In the column headed by shear find the shearing

'^W//M^MM^/M value of the rivet. Use the smaller

^\^m\^s^ value. Divide the total load by
?

|~~^ ^~] ^j
tn^s selected value and obtain the

* ! --- I -* number of rivets. If the rivets

are in double shear double the

/i shearing value given in the table

and compare it with the bearing

ji ^ _ I < value, using the smaller amount.

The rivets girted in this way are

> I XT

{ 1

Double Shear g^fe against destruction by shear-

Fig. 112.
^g across an(j the edges of the

holes through the plate will not crush. Fig. 112 illustrates single

and double shear.

Let / = bearing value on plate in Ibs. per sq. in.

t = thickness of plate in inches.

v = shearing value of rivet in Ibs. per sq. in.

d = diameter of rivet.

Then

Shearing value in single shear = 0.7854 x d2 x v.

Shearing value in double shear = 2 x 0.7854 x d2 X V.

Bearing value = d x t x /.

When driven, rivets are assumed to completely fill the holes,

and, therefore, in compression pieces no reduction in area is made
for the rivet holes. Tensile stress cannot, however, be trans-

mitted through the rivets and the area occupied by rivet holes

weakens the piece in tension. If the member is narrow and one

hole is drilled, or punched through it, the piece must be increased in

width or thickness to make up for the area removed by the hole.

Thus, if in a bar 4 ins. wide and f in. thick a hole f in. diameter

is made, the bar will be increased in width by f in., or the thick-

ness will be increased, provided the width must be maintained.

The thickness is increased as follows: The width left is 3.25 ins.

The area removed is \ X f = f sq. in. The thickness to be added

equals 0.3750 -f- 3.25 =
Tft- in., making the total thickness \\ in.

There may be one hole through the plate or there may be several.

If the holes are in line the cross-sectional area of one hole is de-

ducted. If the holes are in two lines the cross-sectional area of
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two holes will be deducted. Similarly three holes will be deducted

for three lines, etc. It means that a strip of metal equal to the

width of the rivet hole is ignored provided all the rivets are

driven within the strip, or if the rivets are driven in two or more

strips then these strips are ignored in making computation for

strength in tension.

A structural designer will determine the number of rivets in

the manner described. He may then arrange them in a group

O O i'O OOOSOO
O O i O O

Fig. 113. Fig. 114.

similar to that shown in Fig. 113, for structural designers do not

always study joint efficiency. A boiler maker, on the contrary,

would study the joint in order to obtain the maximum efficiency

and his detail would resemble Fig. 114. There is no reason why
a structural designer should not obtain the highest possible

efficiency in designing rivetted joints.

Assume that the tension in the joint is 30,000 Ibs. and each

rivet carries 5000 Ibs. In Fig. 113 three rivet holes must be de-

ducted, which means additional material added to the member,
for only the material left after the holes are made can carry ten-

sion. The rivets carry shear at an assumed unit shearing stress.

The holes, however, cut out an area which carries tension at an

assumed unit tensile stress.

In Fig. 114 the end rivet carries one-sixth of the stress as

shear. The plate on a section through the hole carries the total

stress. The diameter, therefore, of the rivet hole is one-seventh

of the total width of the plate. On a section through the two

rivets the plate loses in each hole one-seventh vpf r
the total width,

but as it had enough area to carry seven-sixths "of the load the

cutting of two holes leaves enough area to carry five-sevenths of

the load.

The plate with an area sufficient to carry five-sevenths of the

load then reaches the section near the end where there are three

rivet holes. Each hole has a diameter of one-seventh the width

of the plate and the three holes leave four-sevenths of the area

intact.

At the single rivet one-sixth of the stress is carried in
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while the plate can carry the whole. At the line of the two rivets

one-half (three-sixths) of the stress is carried by shear while the

remainder of the plate can carry five-sevenths of the load. At

the line of the three rivets all the stress can be carried by shear

while the plate has area enough remaining to carry four-sevenths

of the load. Therefore, by this arrangement of rivets it is neces-

sary to deduct only the width of one hole, whereas if the rivets

are arranged as in Fig. 113 it will be necessary to deduct the width

of three holes.

When an arrangement is made such as that shown in Fig. 114

the splice plates will be a little longer and possibly a little thicker

than the plates used in an arrangement such as that shown in

Fig. 113. This is, however, offset by the fact that when material

is added to overcome the cross-sectional area cut out by holes,

the material is added to the area of the member throughout
its whole length. The saving effected by a design like Fig. 114

is two rivet holes when compared with the design shown in

Fig. 113.

The efficiency principle is applicable only to splices and in

connections of rivetted trusses. There are many cases in which

the efficiency principle must be disregarded, except as it affects

the sizes of rivets used.

A rivetted joint fails by shearing of the rivets or by the metal

between the rivets giving way. The distance between centers

of rivets is termed the pitch. It is fixed partly by considering

the shearing strength of the metal. It is fixed partly by arbitrary

specifications. It is fixed partly by the requirement that the

section between rivet holes must be fully as strong as the rivet.

Referring to the rivets shown in Fig. 113 and Fig. 114. The

plate if it tears will tear at the weakest point. This may be on

the vertical line joining centers of the rivets and may be on a

zigzag line joining centers of adjacent lines of rivets. Experi-

ments apparently indicate that rupture is as likely to occur on

the zigzag line as on the vertical line, the cross-sectional net

area determining this matter. By net area is meant the area

measured between edges of holes. Some specifications require

that the net area on the zigzag line exceed the square area by
30 per cent, but general rules should never be followed, except

when required by specifications. It is poor policy for designers

to follow arbitrary rules when they are competent to investigate,
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and have the time to investigate, the conditions of a particular

case. Much poor designing and unsafe designing can be traced

to blind observance of rules with apparent disregard of

reasoning.

Standards

Fabrication standards are fixed by the types and capacities of

the tools and machines with which a fabricating shop is equipped.
A designer should know the standards of the shop in which his

steel work will be fabricated and endeavor to arrange his detail-

ing accordingly. This will insure the lowest possible cost for his

client.

Standards for rivet spacing will be found on pages 212, 213,

and 214, Carnegie, 1913 ed. : 328, 329 and 330, Cambria, 1914 ed.;

246 to 259 incl., Jones & Laughlin, 1916 ed.; 336, 337 and 338,

Lackawanna, 1915 ed. The student is advised to study carefully

a number of other pages in these books, dealing with the subject
of rivets. Tables for the pitch (the distance between rivets) of

rivets in angles are based on the angle developed. That is, the

angle bent flat as if it were a narrow plate. This is an important

thing to remember in detailing.

All manufacturers have standard beam connections based on

developing the full strength of the beam on the shortest span on

which it will carry the maximum load without failure by crip-

pling or shear. When loading conditions are not severe some

expense can be saved by designing connections to fit the case.

When no details are shown for beam connections the standard

connections are understood. It is well, however, to make a note

to this effect on the drawings and avoid controversy. Refer also

to the particular standards wanted. Standard beam connec-

tions are given on page 207, Carnegie, 1913 ed.
;
42 to 50 incl.,

Cambria, 1914 ed.; 88, 89, Bethlehem, 1911 ed.; 323 to 331

incl., Lackawanna, 1915 ed.
;

126 to 129 incl., Jones & Laughlin,

1916 ed.

It is time now for the student to procure sets of specifications

for detailing structural steel. Some of the handbooks contain

such specifications and all contain valuable data for specifications.

The following specifications are recommended for purchase and

study :

Standard Specifications for Structural Steel, Timber, Concrete
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and Reinforced Concrete. By John C. Ostrup. Sold by the U. P. C.

Book Company, Inc., New York, for $1.00

General Specifications for Structural Work of Buildings. By
C. C. Schneider. Sold by the publisher of this book for 75 cts.

Specifications and Tables for Steel Framed Structures. Pre-

pared by the American Bridge Company. Distributed by the

New York and Chicago offices free of charge.

Building Code recommended by The National Board of Fire

Underwriters. Address the officers of the Board, 76 Williams

Street, New York, N. Y. Similar information is to be had in

the building ordinances of all large cities. Small details, however,
of the sizes of members and spacing of rivets, etc., can only be

had in specifications similar to the first three mentioned.

A number of standard specifications for structural work are

sold and a list can be obtained from any large publishing and

bookselling concern.

Secondary Stresses in Framed Structures

Secondary stresses in framed structures are due, primarily,

to faulty details. In the general design of a framed structure

it is assumed that all forces meet at a common point, which is

the intersection of the axes through the centers of gravity of the

members forming the joint. In the case of a pin connected truss,

with the pin clean and the joint in first-class condition, this

assumption is very nearly met. In the case of rivetted joints

the direction of each member is rigidly fixed and when the struc-

ture deflects under load all members are placed in double curva-

ture. This condition of secondary stress is accentuated by faulty

joints, the resulting stresses with carefully studied joints being
often negligible. With faulty joints a structure may fail because

of secondary stresses.

The effect of faulty design can best be shown by an example
and Fig. 115 shows a joint in the top chord of a Warren truss.

Taking A as the center of moments the total bending moment,
due to eccentricity, is 35,600 x 7.5 = 267,000 in. Ibs. This mo-
ment is apportioned among the four members meeting at the

joint in accordance with their relative rigidities, which is found

by dividing their Moment of Inertia (to be found in the steel

handbooks) by one-half the length of the member, all in inches.

To understand this question of relative rigidity assume that
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a bending moment is set up at a joint where all the members are

rigidly connected and that the other ends of the members are

likewise rigidly connected. The members are bent at their ends

in opposite directions,

thus setting up a double
j^^aftrofCnvify

curvature, with a point j \.,.?x/5^\l^
6
***.

of contraflexure, or

point of zero moment
in the middle of the

length. The members

may be considered as

beams fastened at the

joint with the middle

point the free end. All

the members, therefore,

resist the bending moment in proportion to their relative rigidities.

The angular displacement of the joint is the same for all the

members meeting at the joint. The angular displacement at

the joint then is the deflection of the middle point of any member
divided by the half length of that member. This can be demon-

strated by an expression in which appears the modulus of elas-

ticity, the bending moment, the moment of inertia, the half length

and the angular displacement. Dropping all the factors common
to all the members there are left only the Moment of Inertia and

the half length, so it is readily seen that the total bending mo-
ment is divided among the several members in proportion to their

respective rigidities, that is in proportion to y The Moment of

Inertia is in inches and the half length should properly be in

inches. However fewer figures are used and the work simplified

by dividing the Moment of Inertia by the total length of the

member in feet. The proportionate values are the same. This

will be illustrated.

Let the total length of the chord between joints be 12 ft. and

the depth between centers of gravity be 6 ft. The length of the

diagonals will be 8.24 ft. but in the division we will use only 8 ft.

The Moment of Inertia of the top chord is 27, the value for one

angle being 13.5, as shown on page 148, Carnegie, 1913 ed., and on

page 113, Jones & Laughlin, 1916 ed., similar values being given
in the other standard steel handbooks. Similarly the Moment
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27 6 8
of Inertia for the braces is 6.8. Dividing, -= = 2.25, and - =

0.85. Suppose the 8 and the 12 are divided by 2, to get the half-

length, and then multiplied by 12 to reduce the half-length to

inches, it is plain to see that this is equivalent to multiplying the

8 and 12 by 6, so the result of the division in each case will be

one-sixth as large as before, but the proportion is unaltered.

This illustration has been worked out because it explains the

appearance of many expressions which often cause the amateur

considerable trouble. A man accustomed to reasoning as he

figures will often introduce many short cuts into formulas and

expressions which he alone will understand, but the reasons for

which can be readily worked out by any other equally competent
man.

Returning to Fig. 115, add together the values of y for the

two chord members and the two web members, the sum being

(2 x 2.25) -I- (2 x 0.85) = 6.19. The moments are now distributed

as follows:

2.25 x 267,000

6.19
= 97,000 in. Ibs. for the chord.

0.85 x 267,000 _ _ , . u u u-
To
- = 36,700 in. Ibs. for the web members.

The maximum fiber stress in the members induced by these

moments is as follows :

For chords, / = = >
xi = 14,400 Ibs. per sq. in. The

4 in. is the distance from the top of the angles of the chord mem-
bers to the center of gravity axis, parallel to it, of the rivets.

My 36,700 x 2.25 10 onnFor Web Members, / = ~ = - - 12,300 Ibs. per
1 D.o

sq. in. The 2.25 ins. is the distance from the back of the angle

to the center line of the rivets.

Compare the stresses due to the eccentricity caused by failing

to have the lines through the center of gravity of the members

meet at a common po nt, with the stresses used in the design and

marked on Fig. 115. It will be seen that the secondary stresses

are about fifty per cent greater than the direct stresses and will

cause the failure of the joint ultimately, for the effect of the direct

and eccentric stresses is the sum of the two.
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In proportioning the web member carrying tension the area

of one rivet hole is deducted from the area of the member. In

the web member subjected to compression the whole area is taken,
for the rivet is assumed to fill the hole. The resulting direct

stresses are shown in the figure. Provided the rivets are driven

on the line of the center of gravity of the member the ascer-

tained direct stresses will be realized. If the rivets are driven

to one side of the axis of the center of gravity an eccentricity

will be developed which may very seriously increase the stress.

Where angles are used to resist direct

stress, and connected through one leg

only, the gauge line for the rivets should

be set in as close to the back of the

angle, or as near to the center of gravity

axis as possible. This matter is of funda-

mental importance and yet it is habitu-

ally disregarded in structural work.

The rivet clearance for machine driving is shown in Fig. 116.

It is customary to use so-called "standard gauges
"

for angles,

pitching the rivets from the back of the angle a distance some-

what greater than the half width of the leg. In the case of the

web members shown in Fig. 115 the dimension D would be |f
in. Adding to this the thickness of the outstanding leg, we obtain

1| ins. as the permissible gauge of these angles. This coincides

exactly with the center of gravity axis of the angles and if the

rivets were so placed the fiber stress due to eccentricity of the

line of rivets would be entirely eliminated. The method to use

in figuring the stress due to eccentricity in the line of rivets is

given in detail in another chapter.

To avoid eccentricity as much as possible in a group of rivets

the forces should act through the center of gravity of the group.

The best way to obtain the center of gravity is by using the

method of moments, as shown in Fig. 117.

Having found the center of gravity of a group of rivets find

the axis through the center of gravity of the member connected

to the plate or angle forming the connection. Extend this axis

through the group of rivets. If it does not pass through the

center of gravity of the group it can be replaced by a force equal

in amount and parallel, which will pass through the center of

gravity. There will be a moment developed equal to the load
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multiplied by the perpendicular distance between these two

lines of action.

Each rivet in the group carries an amount of direct stress as

shear equal to the total load divided by the number of rivets.

STATICAL MOMENT ABOUT
AXIS xx'

? t 3

\ <?

x-i-.t~.~

STATICAL MOMENT ABOUT
AXIS yy'

Total Area = 5A
Total M =A(2d + e)

Total Area = 5A
Total M = A(

5A

9 =
5A

Fig. 117. Method of Moments to find Center of Gravity of Group of Rivets.

If the direct application of the load causes a bending moment,
then each rivet has an added stress due to bending moment.

The stress in any rivet due to bending moment varies directly

as its distance from the center of gravity of the group of

rivets, and its resisting moment varies as the square of this

distance.

Fig. 118 represents an angle connection for the end of a 10-in.

I-beam weighing 25 Ibs. per lineal foot. The reaction from the

load carried on the beam is 13,720 Ibs. delivered to the leg out-

standing from the beam, the other leg being connected to the

web of the beam. Finding the center of gravity of the three

rivets and multiplying we get an eccentric bending moment,

M = 13,720 X 3.25 = 56,290 in. Ibs.
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The shear on each rivet due to direct stress is

Each rivet has also

some stress due to

bending moment.

The necessary resist-

ing moment is found

as follows:

13,720
4573 Ibs.

in which

M = resisting moment
A = stress in a rivet

due to bending.

x, y and z represent,
g-

respectively, the moment arm for the rivets bearing these letters.

Transposing,

A = 56,290 = 8650 Ibs.
+ y

z +z2 6.513

The stress in each rivet due to bending is equal to this figure,

multiplied by the distance of the rivet from the center of gravity.

Stress on x = 8650 x 1.46 = 12,640 Ibs.

Stress on y = 8650 x 1.46 = 12,640 Ibs.

Stress on z = 8650 x 1.50 = 12,980 Ibs.

Adding the direct shearing stress to these figures, by the paral-

lelogram of forces drawn in Fig. 118 the resultant stress on rivets

x and y is 15,600 Ibs., as shown.

The web thickness of a 10-in., 25-lb. I-beam is 0.31 in. The

bearing area of a f-in. rivet is, therefore, 0.31 x 0.75 = 0.2325

sq. in.

15,600 Ibs. divided by 0.2325 = 62,100 Ibs. per sq. in. bearing

stress on web of beam. This is more than three times the amount
shown as permissible in the rivet table, where the allowable stress

in bearing is 20,000 Ibs. per sq. in. The connection here shown

is, therefore, not good for a reaction of 13,720 Ibs.

In Fig. 119 at (a) is shown an angle connected by both legs

to the gusset plate. Only one hole is deducted, for the holes are

staggered to preserve the net section. This staggering is done

also, when not necessary to preserve the net section, in order to

permit of driving the rivets in two legs with plenty of "clearance."
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When an angle is connected by both legs the total area of the

angle, less the area of the holes, is taken. When an angle is

connected through one leg, as at (6), the load will be eccentric.

The problem is then complicated, but an easy practical solution

is to use only the area of one leg.

Problem. An angle in tension has to carry a load of 50,000 Ibs.,

using f-in. rivets.

Area of member
/ 16,000

3.12 sq. ins.

W

If connected by
the two legs try a

5" X 5" x |", the

area of which is 3.61

sq. ins. (Carnegie,

p. 146.) The area of

the hole is f
" x f =

H" = 0.328 sq. in.

The net area is 3.61

- 0.328 = 3.282 sq.

ins. Notice that the diameter of the hole is |" greater than the

diameter of the rivet, giving -fa" clearance. This rule is general

for all rivets.

If connected by one leg it is assumed that this leg will carry

all the stress. Assume a thickness of f", and as the area is 3.12

sq. ins. divide and add, to the width thus obtained, the diameter

of the hole. Then 3.12 -=- 0.5 = 6.24" + 0.875" = 7.115". This is

plainly not suitable, for it does not fit any standard angle. Try
a thickness of f" and we get 3.12 -=- 0.625 = 5" + 0.875 = 5.875".

This is nearly six niches, so we will use a 6" X 3?" X f
"
angle.

The practice of using |-in. and -fVin- gusset plates in roof trusses

is very common, yet considerations of economy, as well as effici-

ency, would seem to indicate the use of thick plates. The plates

should be of such thickness that the bearing value of a rivet in

the plate is about equal to the value of the rivet in double shear.

This would reduce the number of rivets in a joint considerably

and reduce the size of the plate correspondingly. The slight in-

crease in the weight of the plates is apt to be more than offset

by the reduction in the number of rivets. The use of thicker

places and fewer rivets also measurably reduce the secondary

bending stresses in the members due to fixity of their ends. The
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author never uses a plate as thin as \ in. The least thickness of

any member or plate in a truss should be T
5
^ in., for some metal

should be provided to offset the wasting effect of rust. It is well

enough to consider that the metal will always be inspected and

kept painted, but we know that painting is neglected for shame-

fully long periods of time.

In Fig. 120 (a) is shown a joint in a riveted Pratt truss that is

of common occurrence. Here the axes of the members are con-

U (a)

Fig. 120

current, but the rivet connections through the chord are eccentric

to the intersection of the lines of stress, and a bending moment
results. The proper construction of this joint is shown at (6)

and the student is advised to perform the calculations for the

two joints and determine for himself the amounts of the eccentric

stresses. The truss for which joints were designed in wood can

be designed now for steel and the two details in Fig. 120 can be

assumed for this truss.

Fig. 121 (a) shows the heel of a roof truss. It is a common

detail, but that does not make it desirable or proper. It merely
shows the power of example and illustrates the proneness of

draftsmen to copy blindly. The three forces acting at the heel,

namely, the compression in the rafter, the tension in the bottom

chord, and the column, or wall, reaction are non-concurrent. A
bending moment results which induces large fiber stresses in the

members. The method to follow in determining the amounts of

the stresses was illustrated in the case of the Warren truss.

Fig. 121 (6) is, likewise, an improper detail unless the heel

plate is thick enough to resist the bending moment between the

point of intersection of the three forces and its attachment to

the members. The plate should also be planed or chipped flush

with the backs of the angles of the bottom chord when it is not

possible to get sufficient rivets immediately over the column to

transmit the total reaction into the plate.
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Fig. 121 (c) show an efficient and proper detail for the heel of

a truss.

Fig. 122 (a) shows a detail of a knee brace connection to a

column which is not uncommon in mill building construction.

(c)

Fig. 121 Fig. 122

This detail is open to the same criticism as the other eccentric

connections already discussed. It is especially to be condemned

in view of the fact that the knee brace is subject to tension, as

well as compression, and when the knee brace is in tension the

entire stress must be resisted by two rivet heads.

Fig. 122 (6) shows the proper detail for this connection. The

gauge A, for the rivets connecting the knee to the column flange,

should be as small as possible, and the thickness of the connection

angles should be such that their moment of resistance at the

rivets is equal to the bending moment. This bending moment
is equal to one-half the horizontal component of the stress in the

knee brace, multiplied by A.

Fig. 122 (c) is a detail known as a knuckle plate connection.
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It is sometimes used, in lieu of a knee brace, in order to economize

head room and to avoid obstructing the crane trolley travel. The
knuckle plate should never be used as a substitute for the knee

brace in a building high enough for a crane.

The greater part of the material and all but three of the illus-

trations in the section on "Secondary Stresses in Framed Stresses"

was taken from a paper bearing that name presented by E. W.
Pittman before the Engineers Society of Western Pennsylvania.
In several paragraphs the exact language was used. The paper
was published in the Proceedings of the Society (Pittsburgh, Pa.)

for February, 1909. The student should read the whole of the

paper and the discussion following it. In the December, 1916,

issue of the Journal appeared a valuable paper by E. W. Pittman

entitled
" Factors Affecting Cost of Structural Steel Work," and

a paper by George H. Danforth entitled "Some Items Affecting

Cost of Structural Steel Work," with discussion by a number of

men of wide experience. Back numbers of the Journal cost fifty

cents each.

Reference was made in an earlier chapter to Smoley's Parallel

Tables of Logarithms and Squares, which are indispensable to

structural designers in computing the lengths and bevels of truss

and frame members. During the month of January, 1917, ap-

peared Smoley's Parallel Tables of Slopes and Risers, with Ready
Solution of Right Triangles. This second book also will be one

that structural designers will not willingly go without, once they
learn its value.

The design of compression members will be dealt with in the

chapter on Columns and Structures. In Chapter VI will be

taken up also the design of members subjected to both tension

and compression.

The "One-book Man" is not a broad man. Even with the

best possible explanations an author does not always succeed in

getting the reader to thoroughly grasp his ideas. It is, therefore,

an excellent plan to do some collateral, parallel reading when

studying, in order to obtain the methods of working of more than

one person. The author believes students will receive a great deal

of benefit by starting at this point to study the following books.

"Bridge and Structural Design." Thomson, $2.

"Structural Engineering." Husband & Harby, $2.50.

"Typical Steel Railway Bridges." Thomson, $2.



206 PRACTICAL STRUCTURAL DESIGN

The books named abound in worked examples of detailing.

The authors had in mind men of Limited mathematical attain-

ments.

Not all the students will become, or wish to become, structural

detailers. To become a first-class commercial detailer will re-

quire a great deal of practical experience and the following books

should be studied and kept as works of reference.

"Steel Structures." Morris, $2.25.

"Structural Engineers' Handbook." Ketchum, $5.

The only really adequate book on the design of modern high

steel frame buildings, popularly called "sky-scrapers," is "Steel

Construction," by H. J. Burt, $2.25. It is written in a simple

manner for the instruction of correspondence school students.

The books by Morris and Ketchum are of college grade. The

publishers of this book can supply all the books mentioned.



CHAPTER VI

Graphic Statics

THE
student knows that a line can be drawn to represent a

force, because forces act through the center of gravity of

a body and this is a point. A line is a succession of points,

or is the path of travel of a point. A line representing a force

indicates by its direction the direction in which the force acts.

When drawn to a scale the length may represent the amount of

the force in any selected unit, pounds, tons, etc.

In earlier chapters some simple graphical methods were pre-

sented for obtaining bending moments and shear on beams, but

to solve more complicated problems, and to make even those

shown a little more A

simple, reciprocal dia-

grams must be used.

The reciprocal dia-

gram method for

making computations
is known by the name
of Graphic Statics.

In Fig. 123 is shown

the Parallelogram of Fig. 123.- Parallelogram of Forces.

Forces. The line AB shows the pressure of the wind against a

roof truss. All forces act normally to the surface pressed, so the

wind always blows perpendicularly to the slope of a roof. It may
be resolved into a vertical force represented by BD and a hori-

zontal force represented by the line BC.

The vertical force as weight may be added to the weight of

the roof and any loads that may come upon it, and the members

of the truss be proportioned to carry all the loads. The horizon-

tal force may be assumed to act to push the roof off the support

and is a measure of the force to be resisted by bolts which tie the

truss to the supports.

All forces may be resolved into components. The force AB
in Fig. 123 might be considered as produced by two given forces,

207
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Fig. 124. Triangle of Forces.

BC and BD. That is, if the horizontal force had been given, the

line CB could have been drawn. The vertical force having been

given, the line BD could have been drawn, it being assumed that

the two forces meet at one point, B. From D draw a horizontal

line and from C draw a vertical line to intersect it, at A. The

diagonal line AB is the resultant of

the two forces.

The resultant is the line required

to close a figure and the other forces

are components of the resultant.

In Fig. 124 it is shown that it is

not necessary to complete the parallelogram. Let AB and A B'

be two forces acting at the point A. Draw them to scale and

from B' draw a line parallel to AB. From B draw a line parallel

to AB'. The two lines will meet at C. The line AC is the result-

ant. The force A B' is the force BC. The resultant would have

been obtained if we had merely drawn AB and then from B
drawn BC to represent the force AB'. The figure ABC is known
as the Triangle of Forces. It is formed by drawing the forces

end to end and obtaining the resultant by drawing a closing line.

In order to obtain equilibrium it is necessary that all the forces

acting on any body meet at a common point or be parallel. If

all non-parallel forces do not meet at a point then there will be a

moment arm which will cause

rotation. When all the forces

are parallel equilibrium is ob-

tained by supplying a result-

ant large enough to balance

the forces acting in opposite

directions.

In Fig. 125 are four forces

acting at the point 0, of a

body. The polygon of forces

is shown at the right and all

the lines are drawn to scale. The line 04 drawn to close the

polygon represents the weight which the body must have to resist

being moved by the forces. It represents also the direction in

which the body will move if not heavy enough to resist the push.

This polygon could have been drawn as follows, and the student

is advised so to draw it in order to get a clear idea of the matter ;

Fig. 125. Polygon of Forces.
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First, taking the forces 1 and 2, construct a parallelogram and

obtain the resultant. Using this resultant as a force form a

parallelogram with it and force 3. The resultant thus obtained

will be combined as a force with force 4. The final resultant

obtained will be the force 04. On the figure here shown the

resultant of 1 and 2 will be a line 02. The resultant of 02 and

force 3 will be a line 03. Then the resultant of force 4 and 03
will be 04.

Action and reaction are equal when equilibrium is to be pre-

served. The arrow points on the force lines show the direction

in which each force acts. The resultant measures the force neces-

sary to preserve equilibrium; therefore, the direction is against

the general direction of all the forces. The arrow point on the

resultant indicates this, and the result is that the closed figure

has the arrow points so arranged that the forces can be followed

consecutively. This indicates equilibrium, and if the arrow

points do not indicate a consecutive line of travel it is evidence

that equilibrium does not exist. The polygon should not be

closed, or there is some mistake in the construction.

The resultant is the force required to maintain equilibrium,

or it may be a force which can replace all the other forces. In

Fig. 123 is an example of where two forces are substituted for one

force. The vertical and horizontal components may be assumed

to replace the diagonal force acting against the roof. Here there

is, strictly speaking, no resultant considered. A certain force has

been resolved into two components.
To obtain a resultant all the forces are arranged to form a tri-

angle or polygon and the closing line is the resultant. To resolve

a force into two forces acting at any angle draw the resultant to

scale. From one end draw a line of indefinite length in the direc-

tion of one component. From the other end, on the same side,

draw another line of indefinite length in the direction of the

second component. The lines will intersect and the lengths thus

fixed will represent to scale the amounts of the components. The
student is advised to study carefully the difference between

resultant forces and component forces. A force may have any
number of components, but in a system of framing the number
will be fixed by the number of members meeting at a joint.

The designer of buildings will usually deal only with parallel

loads. The direct loads on a roof act vertically at the joints. The
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wind load will also act at the joints, but not vertically, this, how-

'ever making no difference in the method of treatment, for the

wind loads on the joints will be parallel, although not vertical.

In an earlier chapter the wind effect on roofs was assumed to be a

vertical load, but when finding the stresses in a roof truss by
graphic statics one diagram is drawn for the vertical loads and
a separate diagram for the effect of wind. Stresses are tabulated

for each system of loading and added. There are several "com-
bined

" methods for making a single diagram serve for the vertical

loads and wind loads, but they are not easy to remember and the

separate diagrams cannot be forgotten once they are mastered.

Truss

Fig. 126. Forces in King Truss by Graphic Statics.

In Fig. 126 is shown a king truss with the reciprocal diagram.
The loads are marked at each joint. The two end loads are carried

directly by the walls, so do not affect the stresses in the members
of the truss. The spaces between members are lettered. A verti-

cal line is drawn on one side of the truss. This is usually on the

right side, but it may be on the left if most convenient. Begin-

ning at the top, all the loads are set off as shown. The loads are

between the lettered portions of the members, so the spaces on

the vertical load line drawn to scale represent the loads between

the letters. After setting off all the loads the lines of the truss

members are transferred by means of triangles, or parallel rule,

to connect with the load line. This gives the sloping lines meet-

ing on the line CF.

The construction here described is for a truss uniformly loaded

with equal reactions. The amount of the reaction at each end'
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is shown on the right of the load line. The loads are set off verti-

cally to scale and when the construction of the stress (reciprocal)

diagram is completed the lengths of the lines are measured by
the same scale and the amounts of the stresses found.

The character of the stress in each member must be determined

and this can only be done by some study and by following the

loads. It is a help, at first, to make a free-hand diagram for each

joint and place arrow heads on each line, remembering that if

the frame is to be in equilibrium it must be possible to start at

one joint and follow the lines clear around the figure to the start-

ing point. The student is advised to make the figures now to be

described, free hand, and move the pencil as he follows the

directions.

The kind of stress is to be found. Start with the joint between

B and D, sketching it on the stress diagram. Here there is a

vertical load of 2000 Ibs., from B to D on the reciprocal (stress)

diagram. Move from D to E and the arrow point is seen to point

to the joint. The stress is compressive. Move from E to C.

The arrow point is towards the joint, so the stress is compressive.

Move from C to B. The arrow point is towards the joint and the

stress is compressive.

Take the joint at the foot of the truss, between A and B. This

should have been taken first, but the second joint gave the best

illustration for a beginner. Start from B on the load line and

move to C. This is towards the joint, so the stress is compressive.

Move from C to F on the load line. This is away from the joint,

so the stress is tensile.

It has been determined that the stress in DE, in D'E', in CE,
and in C'E', is compressive. A vertical member connects the

upper and lower joint. Assuming this member to be cut, will

the joints be spread apart or will they close up? If they will be

spread apart, then the action of the forces at the joints will cause

tension in the member. If they will close up, then the member
will be in compression. Applying this reasoning, it is seen that

the stress in E E' is tensile. The character of stresses in all

members of trusses may be determined by such reasoning.

The stress in the vertical member may, however, be deter-

mined by the first method. On the load line take the load of 2000

Ibs. between D and D'. Go from D' on the load line to E" and as

the arrow point is towards the joint the stress is compressive.
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From E' to E the arrow point is away from the joint, so the stress

is tensile. . From E to D the arrow point is towards the joint, so

the stress is compressive.

The truss is symmetrical with symmetrical loads, so having

obtained the stresses and their character in the members on one

side of the center, as well as in the center vertical member, all

the required information has been found.

In Fig. 127 is shown a Queen truss with its reciprocal diagram.

The truss is symmetrical with symmetrical loading, so the end

reactions are equal. It is only necessary to draw one half of the

stress diagram, for there is no center vertical member. ABCIA

k- -9000

Fig. 127. Forces in Queen Truss by Graphic Statics.

is the reciprocal for the joint between A and B. BCEDB is the

reciprocal for the joint between B and D. ICEHI is the recip-

rocal for the joint CEHL DFGHED is the reciprocal for the

joint EGH. FF'GF is the reciprocal of the joint between F and

F'. The point on the load line is below the point 7, a distance

equal to FI.

In the examples shown no account has been taken of wind.

The reactions are equal and when wind is considered as acting

normal to the surface of the roof the reactions are unequal.

Therefore until the graphical method for obtaining reactions

with unequal loading is shown, we will assume the wind to be

reduced to a load acting vertically. For slopes not exceeding
30 degrees from the horizontal this will not make much difference

and is fairly common practice. To avoid confusing the student

vertical loading will be considered first and after illustrating the

work on the forms of trusses in common use the general method
for obtaining stresses caused by wind will be taken up.

The word "
stress

" has been used because it is so commonly
used in connection with the members of a truss. It is not strictly

correct.
"
Force

"
is the proper word and forces act on the mem-
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bers. These forces set up strains in the members. A strain is the

amount of deformation caused by the action of an external

force and all internal stresses are caused by strains. From this

point the word "
force

"
will be used instead of the word stress."

The loads on the panel joints are found by assuming an area

equal to the width of a panel and a length equal to the spacing

between trusses. This is based on each truss carrying the load

on a distance measured halfway between adjacent trusses and

each panel in a truss carrying a load on a width measured half

way between adjacent verticals. Half the load on the end panels

of a truss is carried by the wall.

Fig. 128 shows a truss with a middle vertical and two side

verticals, together with one-half the force diagram. The con-

Fig. 128. Forces by Graphic Statics in Queen Truss with Center Rod.

struction is not different from the trusses already illustrated, but

attention is called to the fact that the side verticals, in the recipro-

cal diagram, end at the tie rod. The middle vertical, on the con-

trary, ties the truss together speaking in a general way so

it is measured from G to G'. The student should be able without

trouble to trace the reciprocals on Fig. 128.

Fig. 129 illustrates a truss with a cambered tie rod. Notice

that the loads are plotted in order on the reciprocal diagram and

the sloping lines transferred as before. From the middle point

there are two reaction lines, representing the camber in the tie

rod, instead of one horizontal line. The side verticals end on the

lines representing the tie rod, but the middle vertical goes across

the open space to tie the two main rafters together in the top
chord and carry the stress to the tie rod. If this vertical line



214 PRACTICAL STRUCTURAL DESIGN

were not drawn in this way there would be a vertical line with a

gap in it and the letter m and the letter I would be repeated.

Since there is but one member with these letters there can be

but one line in the reciprocal diagram having these letters at

the ends.

In Fig. 129 is used for the first time the most orderly arrange-

ment of letters to designate truss members. Beginning at the

left the letters run consecutively along the outside of the truss to

the extreme right and continue in the same consecutive manner

back to the left. When the loads are laid off on the vertical load

line the letters run in regular order. This is a convenient way

Fig. 129. Truss with Cambered Tie Rod.

when the truss is unsymmetrically loaded and is, therefore, con-

venient when it is symmetrically loaded and but one-half of the

reciprocal diagram is shown. Capital letters are used on the truss

diagram and the corresponding small letters shown on the recip-

rocal diagram. The joints are numbered, in order that the joint

referred to may be described readily with the fewest words. This

system for numbering joints is used generally for trusses having

non-parallel chords. Trusses with parallel chords have the joint

numbered with the letter U prefixed to the number on the

upper chord and with the letter L prefixed to the number on

the lower chord. The student is advised to use the method of

lettering and numbering shown in Fig. 129.

In Fig. 130 is shown a simple Fink truss with cambered tie rod.

The Fink truss is said to have been invented by Albert Fink and is

an early form of metal truss. In Europe it is known as the Belgian

truss and is commonly supposed there to have been the invention

of a Belgian engineer. In some English text books it is called a
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truss. Such happenings are common in engineering. Men educated

in mathematics and applied mechanics, when set to solve a problem,

are apt to solve it in pretty much the same way, although separated

Fig. 130. Fink Truss with Cambered Tie Rod, Load on Upper Chord.

by oceans and continents and perhaps ignorant each of the other.

Patent attorneys say that certain patents are applied for at about

the same time by several men, the one first making an application

receiving the patent, and the others are left with a firm belief that

some one must have told him of their work.

The truss with the cambered tie rod and diagonal, instead of

vertical, ties is treated like the truss in Fig. 129, but the diagonal

ties meet as shown at a point on the horizontal center line.

Fig. 131. Truss with Load on Upper and Lower Chords.

In Fig. 131 is shown a truss with loads on the lower chord as

well as on the upper chord. First the loads on the upper chord

are laid off on the vertical load line. The loads on the lower
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chord are added and one-half the total gives the reaction for each

end. The reactions are laid off as shown, overlapping on the

load line. The cambered tie rods are transferred to meet these

points and extended to intersect with the rafter lines. The
horizontal part of the tie rod is drawn from the middle point of

the load line. The diagram is not hard to construct if care is

taken.

The drawing for a truss with a horizontal tie rod, or horizontal

lower chord, is similar. First the loads on the top chord are set

off on the vertical load line. Then the loads on the lower chord

are added, the reactions obtained and set off and horizontal lines

drawn from the points marking the amount of the end reactions.

The Fink truss is economical because the struts are short and

most of the members are in tension. Partial loading cannot

cause maximum stresses in the members as it will in other com-

mon forms of trusses. It is a difficult roof to frame when the

slope is slight, so it should be used only for pitches exceeding 27

degrees. The form shown in Figs. 130 and 131 is the most simple

one, a common form of the Fink truss being illustrated in Fig.

132 and Fig. 133.

In Building Age for May, 1916, Mr. Harry B. Wrigley, Allen-

town, Pa., presented the following method for dealing with the

web members of a Fink truss, without substitution or change. So

far as the author knows, this method has never before been pre-

sented in print, so Mr. Wrigley may be justified in claiming it to

be original with himself.

In the graphical analysis of forces in a Fink, or Belgian, truss,

a difficulty is encountered at joint 5, supporting the load CD,

Fig. 132; for after determining the forces in the members meet-

ing at joints 1, 2, and 3 there remain three unknown forces at

joint 5, namely, in members DP, PO, and ON. A similar diffi-

culty is met with at joint 4, where there are three unknown

forces, namely, in members NO, OR, and RK.
It is a well-known fact that in order to construct a polygon of

forces in equilibrium, acting in the same plane, through the same

point, all conditions but two must be known.

In Fig. 132 (a) is shown the truss, with the force diagram at

(6). To illustrate the new method consider the left half of the

truss as shown at (c) and lay off the load line abcdek, and reactions

kr' and r'a, in the usual manner; then construct the stress diagram
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for the web members as shown by the dotted lines at (6), taking

the joints in numerical order.

It is evident that the panel loads to the right of load EF do

not affect the web members to the left of this load; therefore,

having determined the web forces, complete the load line aj,

and reactions jk and ka, at (6), to obtain the forces in the chord

members. The diagram Imnopqr should be made identical with

Fig. 132. The Wrigley Solution of the Fink Truss Problem.

the dotted diagram I'm'n'o'p'q'r'. The above method applies as

well to diagrams for wind loads.

In Fig. 133 three methods are shown for drawing the reciprocal

diagram for a Fink truss. The Barr method is to proceed with

the construction until the line is drawn from v to u. Then on the

truss draw a dotted line from joint 4 to joint 6. On the reciprocal

diagram from the point u draw a line towards t, of indefinite length.

Transfer from the truss diagram the line from 4 to 6, meeting,

on the reciprocal diagram, the line ui at d', and terminating at

r, on the line er. From r draw the line rs and the remainder of

the diagram is then readily drawn. This is applicable for cases

of unequal loading and for wind.

A method which is correct when the reactions are equal and

the joints are equally loaded, is to draw the line, on the reciprocal
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diagram, from w to v and then from s to r. With unequal load-

ing this method must not be attempted. It cannot be used for

wind loads.

A third method is known as the "Moment solution." A truss

is merely a framed beam. Find the maximum bending moment
and divide by the depth of the truss at the point of maximum
moment. In the figure the maximum moment is at the middle

of the span, where the rise is a maximum. Dividing the moment

by the depth gives the force in the tie rod QX. Set this off to

scale from x on the reciprocal diagram, to q. Transfer the line

QR from the truss diagram to the reciprocal diagram, from q

0>)

Fig. 133. Three Solutions of the Fink Truss Problem.

to r. This fixes the point r and from here the reciprocal dia-

gram may be completed. This method is applicable for cases of

unequal loading and for wind.

Unequal Loading

In Fig. 134 is shown a beam loaded at several points with loads

varying in amount. The problem is to find the reactions. Draw
the beam to scale and place the loads on it at the proper points.

To the right draw a vertical line and set off the loads to scale.

Set off a point, 0, at any distance, but the best position is one

which will make the two lines drawn from it to the end of the

load line about equal in length. This would make the pole dis-

tance, horizontally, about half the length of the load line. The
scale will be chosen so the diagram will not be too large, provided

the scale used will give all the necessary information. From the

points on the load line indicating the loads, draw lines to the pole.

Through the load points on the beam drop vertical lines and

transfer the rays from the polar diagram to form the equilibrium

polygon at (6). The broken line forming the bottom of the
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equilibrium polygon must begin at one reaction line and close on
the other. The two ends are connected by the line oo. This line

is transferred to the polar dia-

gram, as shown by the dotted

line. The distance on the load

line from the top to an inter-

section with the closing line oo,

is the amount of the left reac-

tion and from the point o, on

the load line, to the bottom
of the load line, is the right

reaction, all as shown at (c).

The polar distance, H, at

(c) is measured with the scale

used in setting off the loads,

for it is a force. The vertical

distances on the equilibrium

.......J
Fig. 134. Moment, Shear and Re-

actions for Beam. , ,, , ,.

polygon, from the closing line

to the broken bottom line, are measured with the scale used in

drawing the beam. The vertical depth of the equilibrium poly-

gon, at any point, multiplied by the polar distance gives the

bending moment at that point. If the vertical distance is in feet

and the polar distance is in pounds, the moment is in pound feet.

At (d) is shown the shear diagram, for which it is believed no

explanation is necessary.

Fig. 135. Roof Truss Unequally Loaded.

In Fig. 135 is shown a roof truss having unequal loads on the

panel points. A polar diagram is drawn first, to obtain the reac-
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tions. The load line is then set off for the reciprocal diagram
and the reactions are scaled off on it. In this case the load line

must show all the loads and must be complete whereas in

trusses symmetrically loaded it is necessary to draw only one-

half the reciprocal diagram.

In Fig. 136 the treatment of a Warren truss loaded on the top

(V V
Fig. 136. Warren Deck Truss.

chord is given. The vertical dotted lines at the ends are in

compression and deliver then* loads direct to the abutments.

The horizontal line to the first joint in the upper chord delivers

part of its load as a reaction, to the upper joint and part to the

vertical post.

Notice carefully the treatment of the Warren through truss

(loaded on lower chord), as shown in Fig. 137.

In Fig. 138 is shown the reciprocal diagram for a Howe truss

loaded on the lower chord and in Fig. 139 is shown a Howe truss

C

P/ \ N / \ L / \ J / \6
\ \/0\/M\/K\/l V

\

Fig. 137. Warren Through Truss.

loaded on the upper chord. In the through truss the middle

vertical carries a load, but in the deck truss it carries no load, as

shown by the two letters at the end of the reciprocal diagram.
All reciprocal diagrams must close and when a line must be

omitted in order to make a diagram close, put the extra letters

at the joint where there is an apparent jumble and letter the next
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joint in order. Reciprocal diagrams show plainly when there is

a redundancy of members and also show when a member should

TH

Fig. 138. Howe Through Truss.

be added. The student is advised to make reciprocal diagrams

for odd panel trusses of the Warren, Howe and Pratt types after

studying this chapter, as an exercise. Odd panel trusses have

been purposely omitted in order to give the student an oppor-

Fig. 139. Howe Deck Truss.

tunity to exercise his brain in studying the problem. It will

help to make the complete diagram and run the lines from the

two ends, so if there is any trouble encountered it will be caught
in the middle and can be readily solved. In some trusses there

\

Fig. 140. Pratt Through Truss.

may be members that are not stressed except under moving
loads. Determine this positively. Take nothing for granted.
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When reciprocal figures do not close there is either another mem-
ber required or the work of the draftsman is poor.

\

Fig. 141. Pratt Deck Truss.

The diagrams for the Pratt truss, shown in Fig. 140 and Fig.

141 are readily followed.

In Fig. 142 and Fig. 143, of bowstring trusses, the student

should observe how nearly uniform the stress is in the chord for

each panel. The web stresses are very small, and, as the arch

Fig. 142. Through Bowstring Truss and Girder Stringer.

more nearly approaches a parabola the lower will be the stresses

in the web members and the more nearly equal will be the stress

in each panel length of the chords. The student should make
diagrams for Pratt, Howe, Whipple and Warren trusses with

parallel chords and compare these with the same framing of web

Fig. 143. Deck Bowstring Truss.

members in bowstring trusses of the same span, carrying the

same loads.
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A form of truss used for exhibition halls, drill halls, etc., is

shown in Fig. 144 with Whipple framing of web members, and

in Fig. 145, with the web members framed as in a Warren truss.

Fig. 144. Crescent Roof Truss. Whipple Framing.

On the load line the loads are set off vertically to scale and from

each point a line is drawn parallel with the top chord. The loads

being symmetrical it is really necessary to draw but one-half of

the force diagram. With trusses having as complicated a fram-

ing as these curved, crescent shape trusses, it is difficult to trans-

fer all the lines from the truss diagram to the force diagram and

have them truly parallel. In such cases it sometimes pays to

Fig. 145. Crescent Roof Truss. Warren Framing.

compute the angles of slope by trigonometry and set the lines

off with a protractor or by using a table of chords.

The hog-back truss shown in Fig. 146 is in common use and
sometimes the upper chord is curved instead of straight. No
difficulty should be encountered in obtaining the stresses in such
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a truss, for it is merely necessary to classify the web framing and

follow the methods given for that special framing.
The shed-roof truss (Fig. 147) is so called because it slopes one

way, like the roof of a lean-to shed. In this type it is necessary to

set off the whole

load line, as though
the roof had unequal
reactions. Notice

the difference in

the stresses in the

member QR and

the member OP.

The scissors truss

shown in Fig. 148

is a very common
Fig. 146. -Hog Back Truss. ^^ ft fayorite

with many builders and draftsmen. Setting off the loads on

the load line it is very quickly discovered that to make the

force diagram close it is necessary to commence with the load

on joint 3, instead of either joint 2 or joint 5. Completing
the diagram, which has to be done by drawing the dotted lines

aj and fj, it is discovered that all the members are in compression.

The dotted lines aj and fj represent the thrust of the truss against

the walls or tops of the buttresses. The dotted line oj repre-

sents the tension required to resist the thrust, consequently the

H IlL

Fig. 147. Shed Roof Truss.

pull in a rod which can be run from joint 1 to joint 6 and convert

the diagonal thrust into a vertical reaction.

A vertical rod may be used to connect joints 3 and 4, and this

will render the rod from 1 to 6 unnecessary and will convert the
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truss into one having vertical reactions. This rod will also change

the diagram and render it possible to start from either end of the

load line and project the

members. This the student

is advised to do as an exer-

cise. If the reactions from

roof trusses are not vertical,

walls will be forced out and

the trusses will sag.

A step forward from the

scissors truss gives the truss

with curved tie, shown in

Fig. 149. This is very often

seen in churches. Some-

times the framing is exposed and at

other times a ceiling is attached to the

Fig. 148. Scissors Truss.

curved tie.

The curved tie is usually

a T iron which is bolted to

the rafters at the ends. The

upright leg of the T is set

into the horizontal brace

and into the rafters as well.

Though the tie is curved the

pull is straight from joint 4

to joint 3 and joint 7 and is

straight from 3 to 1 and

from 7 to 8. At (6) is shown

the truss diagram and at (c)

is shown the force diagram.
Between the joints the T A

must have enough stiffness to

retain the curved form into

which it is rolled, or bent.

The hammer-beam truss,

shown in Fig. 150, is a hand-

some truss much used for

churches and stately halls,

with exposed rafters. The Fig. 149. Truss with Curved Tie.
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curved members SW and NW have no stress except under wind.
Another form of this roof dispenses with the vertical tie PQ and
the analysis resembles that for the scissors truss. Nothing is

gained by doing without the vertical tie, but, on the contrary,
the roof is bettered by having the tie.

In this truss all that portion above joints 5 and 10 is treated as

a separate roof, resting on the frame represented by joints 1, 5,

10, 14. The dotted lines from 5 to 1 and from 10 to 14 represent
in direction the thrust of the roof and it is necessary to have

Fig. 150. Hammer Beam Truss.

buttresses to carry it, or divide it at the lower joints into a ver-

tical component which the wall will carry and a diagonal com-

ponent acting along the roof of an aisle in the building. The
aisle roof in turn will deliver its load to walls Or buttresses.

In the force diagram, to the right, the loads are laid off ver-

tically, beginning with joint 4, represented by the load be, the loads

on joint 2 and joint 13 going vertically into the wall or column.

One-half the load at joint 4 is carried by the lower joint, so on

the load line from a point midway between 6 and c draw a dotted

line parallel with the line on the truss diagram from 5 to 1. This

intersects the horizontal reaction line at w, and the length xw

gives the amount of horizontal thrust on the support at 5th

lowest joint.

There is no stress in rw and ow. These members are stressed

in tension by the small upper truss of which they are the tie,

but they are stressed an equal amount in compression, due to

the thrust against the walls, and one stress neutralizes the other.
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Wind Force

It was stated that when the slope of a roof is less than 30

degrees it is customary to assume the wind load as acting hori-

zontally. When the slope is greater than 30 degrees the wind

is an important matter and the exact amount and direction must

be considered. When the forces in a roof are treated graphically

the best practice is to obtain the exact forces caused by wind, no

matter what the slope of the roof.

A number of formulas for wind are in use, but the most modern

is that of Duchemin. It is based on very careful experiments
and is considered the most reliable wind pressure formula now
in use.

Let P = horizontal wind pressure in pounds per square foot.

Pn = wind pressure normal to the surface of the roof, in

pounds per square foot.

A = angle of the surface of the roof, with the horizontal,

expressed in degrees.

, 2 sin A

All designers like simple straight-line formulas, so the following

is used by a number of men. It gives values somewhat lower

than those given by the Duchemin formula, but agrees fairly

well with some experiments. For roofs having a slope exceeding
45 degrees the full horizontal pressure is used. When the angle
is less than 45 degrees, the straight-line formula is

Pn = P(A + 45).

A number of years ago Professor Karl Pearson proposed that the

pressure on a roof, normal to the surface, be taken as equal in

pounds per square foot to the slope of the roof expressed in degrees,

up to a maximum of the number of pounds horizontal pressure,

after which the normal pressure should be equal to the horizontal

pressure. For example, when the angle of the roof with the

horizontal is 20 degrees, the normal pressure will be 20 Ibs. per

square foot. Expressed as a formula, using a maximum of 50

Ibs. per square foot, the horizontal pressure used in early days,

it appears
P * A



228 PRACTICAL STRUCTURAL DESIGN

and the maximum angle of slope will be 50 degrees. Professor

Ricker a few years ago proposed a similar formula, using 30 Ibs.

pressure and 30 degrees maximum slope, to accord with modern

practice.

The horizontal wind pressure is fixed in specifications. It is

usually taken as 30 Ibs. per square foot against vertical flat sur-

faces. The following modifications are made for surfaces not

flat:

Cylindrical chimney, 67 per cent of horizontal pressure.

Octagonal chimney, 71 per cent.

Rectangular building of large size, 80 per cent.

Concave side of shallow cylinders, channels and cups 115 to

130 per cent. For deep cups and concave side of spheres,

130 to 170 per cent. (Ketchum.)
When the wind pressure against a roof is reduced to the normal

pressure a stress diagram may be drawn after finding the reac-

tions. The pressure normal to the surface acts at each joint the

same as any load for which the roof may be designed. The effect

the wind force on the roof will have on the walls or columns

determines the stresses in the roof members.

There are three general cases:

1. The roof may be fastened to the support at both ends.

2. The roof may be attached to one end support and the other

end may rest on a plate and be free to move.

3. The roof may be attached to one end support and the other

end may rest on rollers.

With Case 2 and Case 3

(a) The wind may come from the attached end.

(b) The wind may come from the free end.

With Case 1 the reactions cannot be vertical and the horizontal

thrust causes bending in the roof support, whether it be a wall

or a column. The reactions are parallel to the resultant wind

pressure.

With Case 2 the reaction at the fast end is parallel to the re-

sultant wind pressure and the reaction at the "free
"
end makes

an angle with the vertical equal to the coefficient of friction

between steel and steel, about 18 degrees.

With case 3 the reaction at the free end is vertical.

The cases selected for illustration are very simple. The matter

is simple. To give a number of force diagrams showing the effect
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of wind on a number of forms of roof trusses would make it appear

complicated. A simple truss is sufficient. The principles are

as easy to grasp as any of the work in graphic statics and the

earnest student can go through all the trusses illustrated in this

chapter and make diagrams for the effect of wind on each truss.

First obtain the direction of the resultant of the wind and the

directions of the reactions due to wind. Draw a triangle repre-

senting this. From the intersection where the reactions meet,
draw a reaction line, representing the forces in amount and

direction on the lower chord. On the inclined wind resultant

set off the wind load on each joint and from this load line draw

lines parallel to the members of the truss and complete the force

diagram. The force diagram for wind differs from that in which

vertical loads are considered, merely by having the load line

inclined and not vertical. All the other lines are parallel to the

truss members.

Tables of stresses must be made for roof trusses when all loads

are separately considered. Such a table will have a number of

columns ruled on lined paper. Each system of loading will have

two columns, one for tension and one for compression. The
columns are as follows, from left to right:

1. Designation of members between joints.

2. Dead load on top chord (+) and (-).

3. Snow load (+) and (-).

4. Wind load (+) and (-).

5. Uniform load on lower chord (+) and ( ).

6. Trolley, or other, moving loads (+) and (-).

7. Total loading (+) and (-).

Each member shown in the last column to have both tensile

and compressive forces to resist is designed accordingly.

In Fig. 151 at (a) is shown a roof truss and the graphical

method for finding the reactions and the wind stresses, with the

two ends of the truss secured to the supports. First, referring to

(a), the reactions are found by multiplying the length of the slope

on one side by the distance between trusses, to obtain the area

acted upon by the wind. This area is multiplied by the wind

pressure per square foot. It acts at the center of area, as shown

by the arrow.

To obtain the reactions graphically, prolong the line of the

wind resultant through the truss, and the length, ab, represents
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to scale the amount of the wind force. At the left end, Ri, lay

off the length cd, equal to 06. Connect the right end, Rz, to d

with a straight line, intersecting ab in e. Then the length ae

Fig. 151. Wind on Roof with Ends Fast.

represents the left reaction and the length be represents the

right reaction. The wind is assumed to be blowing from the

left, but, for this case, the members are dimensioned to be strong

enough to resist the wind from either side. The reactions will

then in amount be equal to the larger reaction. At (6) is shown
the force diagram for the wind.

In Fig. 152 is shown a method for computing the reactions

when both ends of the roof are fast (secured). The reaction

lines are drawn parallel to the wind resultant. The wind acts

at the center of one

side of the roof. The
distances x and y are

measured normal to

the resultant. Mul-

tiply the wind by the

length y and divide by

\
\

f +
"

the length x. This

.-""' gives R2 ,
which is

subtracted from the

total wind force to

Fig. 152. Inclined Reactions from Wind. obtain R r . The prob-

lem is seen to be that of a beam carrying a single concentrated

load.

Y
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In Fig. 153 the roof is assumed to rest at one end on rollers,

in order to take care of temperature changes, which, in trusses

secured at both ends, often cause tremendous changes in the

stresses. The re-

action at the free

end is vertical and

the wind is from the

fast end. At the
, , ,

free end drop a ver-

tical line. Through
the center of area

on the windward

side of the roof

draw a line, normal

to the slope, down-

ward to an inter-

section with the

vertical reaction

line. The point of

intersection is then

connected to the

fast end by a line,

which gives the di-

rection of result-
Fig. 153. Wind Pressure on Roof-wind on Fast

Side.

ant Ri.

At (6) is the force diagram. First draw a load line parallel

to the wind resultant and lay off the amount of wind at each

end joint and at each joint on the truss. From the ends draw

lines parallel to the two reaction lines. This forms a triangle

alf, the side fl being equal to Rz, and the side al being equal to

72 1. The remainder of the diagram is readily drawn, all the lines

on the windward side being parallel to the members of the truss,

with the load line (the wind) inclined.

In Fig. 154 is shown the method to use when the wind is blow-

ing from the free end towards the fast end. No explanation is

required for this figure if the explanations given for Fig. 153 are

understood.

The free end of a truss may rest on steel plates instead of

rollers. The only difference between this method and that when
the free end rests on rollers is that the reaction under the free
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end is inclined at an angle of 18 degrees from the vertical away
from the wind, this being practically the angle of friction of steel

on steel. Trusses are of course designed for the maximum stresses,

and with the majority of trusses the maximum stresses occur

with the wind from

the fast side. Ana-

lyze the truss with

wind from either side

and then proportion

each member for the

greatest force it is

send expected to resist,

niters the two sides of the

truss being alike.R2

(b)

Wind Pressure on Roof-Wind on Free

Side.

Concentrated Loads

Sometimes a roof

truss must be de-

signed to carry a

trolley at some joint.

The designer does

not always know in

advance on whichFig. 154.

Sidfi.

panel the trolley will

be carried, the owner of the building wishing to be free to change
such things at pleasure. Instead of a trolley it may be a shaft

for machinery, or a heavy pipe.

The method to pursue in such a case is to design the truss for

the dead load, which will include the allowance for snow if any,

then design for wind, then make diagrams for the concentrated

loading at each joint where it is liable to come. This brings up
the question of maximum and minimum stress and reversal of

stress.

Maximum and Minimum and Reversed Stresses

Specifications usually state the safe allowable unit stress for

all materials, but seldom give the stresses to use for members

subjected to changing stresses and reversal of stress. It is cus-

tomary in such cases to use a
"
Range Formula."
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Let / = unit stress specified, and which will be used for dead

load, or for total quiescent load.

Sm = maximum load on the member.

Sp = minimum load on member,

then

Working Stress = =TT

When one load is compressive and the other is tensile replace

the positive (+) sign by a negative (-) sign.

Example. The maximum and minimum loads in a certain

member are respectively 105,000 Ibs. tensile and 49,000 Ibs. ten-

sile. What is a proper working stress?

An, Working **. - = 13,200 Ibs.

per sq. in.

Example. The maximum and minimum loads are respectively

105,000 Ibs. tension and 23,000 Ibs. compression. What is the

proper unit working stress?

Ans. Working stress = ^^ (l
- .

N?1

>??Ln')
= 9600 Ibs.

l.O \ A X lUo,UUU/

per sq. in.

The reduced stress found by the above range formula is used

for members in tension. The compressive stress is determined

by an appropriate column

formula, but it cannot

exceed the range stress.

Snow Load

The snow load is al- M

ways included with the ^
dead load. It varies with

the latitude as well as

with the slope of the

roof. In Fig. 155 is

shown the snow load to

Latitude in Degrees

Fig. 155. Snow Load on Roofs for Different

Latitudes

use according to the recommendation of Professor Ketchum in

"The Design of Steel Mill Buildings" in 1903.

English text books state that an allowance of 5 Ibs. per sq. ft.

of horizontal projection is common for Great Britain. Ketchum
recommends the minimum ice and sleet load for all slopes of
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roofs, plus the recommended snow load; for a high wind may
succeed a heavy sleet. Not all engineers use the snow load in

addition to the wind load, arguing that a high wind will blow

away the snow. The possibility, however, of a high wind follow-

ing sleet, which cannot be blown away, must be considered. A
minimum of 10 Ibs. per sq. ft. should be used except in localities

mentioned on Fig. 155. A sleet storm may follow a heavy snow-

storm, and, hi its turn, be followed by a heavy wind.

Wind on a Curved Roof

In Fig. 156 is shown the graphical method to follow in obtain-

ing the reactions for a roof having curved chords. First find

the inclination of each panel

of the top chord in degrees

and find the normal compo-
nent of the wind on each

slope. Multiply the area of

each panel by the normal

force of the wind on the panel

and set this off at each end of

the panel (i.e., at each joint)

and complete each parallelo-

gram of forces. Draw the dot-

ted lines, representing the re-

sultant for each parallelogram.

At (6) draw the polar diagram. The line ed is parallel with the

resultant at the joint DEP. The line dc is parallel with the re-

sultant at the joint CDR, etc. The length of each line is equal

to the amount of the resultant wind force at the joint through

which the resultant passes. Connect the points ae and the direc-

tion of the resultant wind force on one side of the roof is found,

and its amount.

At (c) draw the equilibrium polygon. The line o2 is parallel

with the line ob of the polar diagram. Similarly the line 23 is

parallel with the line oc and the line 3u is parallel with the line

od, of the polar diagram. The line ou is transferred to the polar

diagram as the resultant closing the equilibrium polygon. The

line oe on the polar diagram is transferred to the equilibrium

polygon as the line w^.and the line oa is transferred as the line

(b)

Fig. 156 Reactions for Wind on
Curved Roof
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0.4. The intersection of these lines fixes the location of the re-

sultant wind force, which acts normally to the lie ou.

The roof is assumed to be fast at the supports, so the resultant

wind force multiplied by y and divided by x gives the amount
of #2 . If one end of the roof is free the reactions are found as in

Fig. 153 and Fig. 154, after finding the amount and location

of the resultant as just shown.

The remainder of the process for ascertaining the forces in

the members is exactly as shown in other cases, the only difference

being that the load line is

parallel to the resultant of

the wind pressure. The dia-

gram will appear to be com-

plicated but it only needs care

and patience to make it right.

Some of the lines on the truss

diagram are very short and it

may be advisable to plot them A
'

with a protractor, or compute
their direction by using tables,

as it is difficult to transfer a

short line and draw a long
line parallel with it.

Cantilever Trusses

In Fig 157 is shown a can-

tilever truss that appears to

be a favorite with examiners,
for it is found in many exami-

nation papers. In this par-

ticular example the right re-

action is zero. Sometimes this
Fig. 157 CantUever Truss

roof is shown with the left support under joint 7. Sometimes

the loads are varied so there is a negative reaction on the

right, which means the end of the truss must be tied down.

Sometimes there is a small positive reaction at the right, which

is ignored if the forces are small in the members. This roof is

for a grand stand. In a cantilever truss the loads at the ends

are used, whereas they are ignored in ordinary trusses because

there they are carried directly by the walls.
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The reactions are computed as follows, for the truss shown,

(300 X 36) + 600(30 + 24 + 18 + 12 + 6)

18
= 3600 Ibs.,

Fig. 158 Braced Cantilever with Concentrated Load
at End

which is equal to the total load on the truss, therefore the truss

is exactly bal-

anced on the

support at joint

5. The author

has examination

I V papers in which

this roof truss

appears with

supports at the

two ends and

also at the right

end and (in

turn) each ver-

tical, which
gives four different combinations. Some of the problems require

the wind load to be computed while others assume all loads as

vertical. With four different ways
to support the truss, with and

without wind and these various

conditions varied by varying the

amount of vertical load at each

joint it is readily seen why ex-

aminers like this truss. Students

preparing for architects' license

examinations should work it with

a number of changes in all the

conditions.

Fig. 158 represents a braced

cantilever carrying a single con-

centrated load at the end. The
dead load is neglected and the

frame therefore is weightless.

Fig. 159 represents a braced

cantilever with a load at each

joint. This illustrates the general method for dealing with

cantilever trusses. On the truss diagram the loads are shown

Fig. 159 Braced Cantilever

Loaded on Joints
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at the joints. Multiply each load by the horizontal distance

from the support. Add the products. Divide by the sum of

the loads, to obtain the position of the center of gravity of all

the loads. Continue the horizontal reaction line (Ri) to an

intersection with the, vertical dotted line through the center of

gravity. Draw the diagonal line (#2) to show the direction of

the reaction at the bottom chord support.

To draw the stress diagram first lay off on a vertical load line

the sum of the loads. From the upper end draw a horizontal

line and from the lower end draw a diagonal line parallel to the

inclined reaction. The point of intersection, j, on the force dia-

gram fixes the amount of each reaction. From j drop a vertical

load line on which set off each joint load and close the diagram
at the bottom. The rest of the diagram is evident. The vertical

fe is not stressed but is merely used to carry the weight of the

lower chord in the end panel.

Accuracy in Drawing

In graphic statics everything depends on the care with which

the work is done. The pencils used should be very sharp and

the lines as thin as possible. The lines in the force diagram must

positively be parallel with the lines on the truss diagram. The
work checks when the reciprocal diagrams close and if they do

not close the work must be carefully searched for errors. A use-

ful check is to determine some stresses analytically by taking
moments. The scale should be one that will not require too

large a sheet of paper and will allow a reading of one hundred

pounds. For roof trusses of usual spans the scale can be twenty
thousand pounds per inch.

The foregoing presentation of the subject of graphic statics

covers the subject only so far as roof trusses are concerned. It

may be applied to any braced structure and other applications

will be shown in the following chapter. The principles are simple
and any student who works faithfully through the examples

given should have no hesitancy in attempting to analyze graphi-

cally the forces in any braced frame.

Continuous Beams

The continuous beam is not used much in steel buildings but

is used in all reinforced concrete buildings. All methods for

dealing with the continuous beam are based on the assumption
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that the supports are at the same level and remain there. If

one support settles the stresses are increased enormously. It is

customary to use the "Three-moment Theorem" in dealing
with continuous beams, but it is rather involved and a great many
men do not take the trouble to investigate carefully the mo-
ments on continuous beams. The following graphical method
was proposed many years ago by T. Claxton Fidler in "A Prac-

tical Treatise on Bridge Construction." Another graphical

method is demonstrated in DuBois "
Graphical Statics" and

Church's "Mechanics of Engineering."

The Fidler method is known as the
" Method of Characteristic

Points." Refer to Fig. 44 on page 49, where the effect of restrain-

(d)j-=
Fig. 160 A Graphical Treatment of Continuous Beams. Fidler method

ing the ends of a uniformly loaded beam is discussed. To extend

this to a continuous girder uniformly loaded compute the bend-

ing moment on each span separately as though it were simply

supported at the ends. The bending moment = WL -5- 8 and a

parabola must be drawn on each span with the middle ordinate

equal to the moment, as in Fig. 160.

Divide each span into three equal parts and at the third points

erect vertical lines. Make each vertical line equal to two-thirds

the height of the parabola within which it is situated. Draw a

circle around the end of the line, the characteristic point be-

ing in the center of the circle. These characteristic points in

Fig. 160 are numbered from 1 to 8 inclusive.

The end spans, of the series here shown, rest freely on the outer

end supports, hence characteristic points 1 and 8 are disregarded.
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If the end spans were restrained at the outer ends, the broken base

line would pass through points 1 and 8. Starting from A a line

is drawn upward to the vertical line through support B. This

broken line should pass above point 2 and below point 3, or it

should pass below point 2 and above point 3, or it should pass

through these points. In the present case it passes through
them.

Passing through point 3 the line passes below point 4 and

strikes the vertical line through support C. It then passes above

point 5 and point 6 and below point 7 to close on support E.

The broken line must be fixed by trial in all cases. It must

pass below (or above) one point and above (or below) the adjacent

point in the adjoining span to the vertical line through the sup-

ports. If the spans are equal the broken base line passes as far

below one point as it passes above the adjacent point on the

adjoining span. When the spans are unequal the line passes

above or below inversely as the length of the span. That is, on

the shorter 'span the vertical space is greater than it is on the

longer span; in proportion to the lengths of the spans.

In fixing the position of the broken line the author puts over

the drawing a sheet of tracing paper on which to mark the several

trial lines. When the final line is selected the points on the ver-

tical lines through supports are pricked in with a needle, the

tracing paper is taken off, and the line drawn. The line can

have only one position.

In the figure the moment diagram is shown at (a). The broken

line is a base line from which to scale the bending moments. All

the shaded portion within the parabola on each span represents

positive moment. All the shaded portion outside the parabola
between it and the vertical line through supports represents

negative moment. At (6) is shown graphically the system of

cantilever and simply supported beams into which a continuous

beam over several supports is divided. The ends of the can-

tilevers are at the point of contraflexure, the curved line at (d)

showing the deflection of the beam to an exaggerated scale.

At (c) is the curve for shears and also reactions. The reaction

is always equal to the shear. The shear is zero at the point of

maximum bending moment, or, rather, it passes through zero at

this point, the sign for shear being positive (+) above the base

line and negative ( ) below the line. The reaction on either
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side of the support is equal to the shear on the same side. The

total reaction on any support is the sum of the positive and nega-

tive shear.

To compute the shear and reactions proceed as follows: Shear

at A (+) = half the uniform load on span 1 to 2. The reaction

is equal to the shear.

Shear on left of B ( )
= total load on the span, less left reaction.

Shear on right of B (+) = load on cantilever 3 to 4, plus half

the load on the suspended span 4 to 5.

Reaction on support B = sum of the + and shear, as found

above.

Shear on left of C ( )
= half the load on span 4 to 5, plus the

load on the cantilever 5 to 6.

Shear on the right of C (+) = load on cantilever 6 to 7, plus

hah' the load on the suspended span 7 to 8.

Reaction on support C = sum of the + and - shear.

Shear on the left of D (-) = hah" the load on suspended span
7 to 8, plus the load on the cantilever 8 to 9.

Shear on the right of D (+) = load on cantilever 9 to 10, plus

half the load on the suspended span 10 to 11.

Reaction on support D = sum of the + and shear.

Shear and reaction at E = half the load on the span 10 to 11.

Check the results by using the formulas on page 52.

The method for obtaining moments, shears, and reactions by
the use of "characteristic points" may be used for any number
of spans, equal or unequal, all spans loaded or some carrying a

live and dead load and others carrying only a dead load.



CHAPTER VII

Columns and Structures

A PIER is made of brick, stone, or concrete. That is, it is a

l\ masonry post and because it is not safe to permit any bending
stress it must be limited in height. A concrete pier rein-

forced with steel may develop into a slender column.

The Chicago Building Ordinance provides that no masonry

pier can have a height exceeding 12 times the least thickness.

When the height is less than 6 times the least thickness the allow-

able unit compressive stress is that fixed in the ordinance. When
the height exceeds 6 times the least thickness the fiber stress must

be reduced by the following formula:

in which / = reduced unit compressive stress;

c = unit compressive stress mentioned in the ordinance;
H = height in feet;

D = least width, or thickness, in feet.

The distinction between posts and columns is seldom definitely

drawn. Itmay be said that a post is solid and short. -A column

is long and may be hollow or of some shape other than round or

rectangular.

Specifications vary with the ideas of the men who write them
and great differences exist between specifications and building

ordinances the country over. The statements made in this sec-

tion are therefore not to be taken as meeting the requirements
of the leading designers but are presented merely as examples
of how such things are regulated in some places.

In Chicago the maximum length of timber posts cannot exceed

30 diameters, or 30 times the least thickness. Hereafter when
diameter is mentioned in connection with columns and posts

it is understood to mean also the least thickness, if the column

is rectangular and not round. Timber posts, or columns, can-

not be used in buildings over one hundred feet in height, nor in

241
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buildings of a greater height than twice the width, for wooden

posts are not continuous and, therefore, cannot be relied upon
in case of heavy winds to stiffen the building.

The allowable unit compressive stress for wood is for short

blocks only, in which the length does not exceed twice the di-

ameter. The unit stress on wooden posts is found by the follow-

ing formula:

L

in which/ = reduced fiber stress;

c = unit compressive stress mentioned in ordinance;

L = length in feet;

d = diameter, or least thickness, in feet;

C = a constant, which is 80 in Chicago and has values

ranging from 60 to 100 in other cities.

The above formula is called in some places the "Straight-line

formula" and in other places the "Winslow formula," from

Benjamin Winslow, who is credited with being the originator.

Wooden posts should be solid. A number of experiments

made on wooden posts built up of thick planks spiked side by side

showed that the strength of such posts is not the sum of the

strength of the planks. Each plank when loaded on the end

tends to deflect as though it were a long slender column. Some

experiments made for Mr. Dewell in California on short models

gave better results than any other recorded experiments, but

his built-up posts were better made than is apt to be the case

with full-size posts. If a wooden post is built up shear pins must

be put between the planks and bolts must go through the other

way. Sometimes plates on the edges securely screwed to each

of the planks will make them act together.

Only very short posts fail by crushing under load. The usual

failure in posts and columns is caused by bending, which crushes

the fibers on the concave side and frequently causes tension in

the convex side. For long columns it is necessary to use a for-

mula for reducing the allowable compressive stress for short blocks.

The stress is progressively reduced as the length of the column

is increased until finally a point is reached beyond which the

"slenderness ratio" is so great that the column may be unsafe.

The "
slenderness ratio" is -. for masonry piers and wooden posts
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and it is - for metal columns. The factor "r" is the "radius

of gyration,"

Before describing this important factor the general question
of column formulas may well be touched on. The Euler formula

is intended for such long slender columns that it is not in prac-

tical use, being of value to investigators and mathematicians in

studying the effect of loads applied at the end of pieces like

piston rods.

At least a century ago Tredgold proposed a general form for

column formulas and this was later modified by Professor Gordon,
so it appeared as follows:

in which / = reduced unit fiber stress,

c = allowable compressive unit stress,

k = a constant,

L = length,

d = diameter, or least thickness.

The constant "k" depended not only upon the material but

on the shape of the section.

With the Gordon formula it was necessary to make innumerable

experiments and thus obtain constants. It would be necessary

to make columns of many sizes and of every imaginable shape,

built up in every conceivable way, and test them to destruction

in order to be able to design similar columns.

Professor Rankine, who succeeded Gordon as Professor of

Civil Engineering in the University of Glasgow, modified the

Gordon formula by substituting the radius of gyration for the

diameter. A great many writers refer to the Gordon formula

when they mean the Rankine formula, and others refer to the

Rankine formula as the Gordon-Rankine. There appears to

be considerable confusion as to what constitutes the difference,

and some men do not appear to realize that there is any difference.

The Rankine formula is essentially a modification of the Euler

formula by combining the underlying principles of that formula,

which dealt with a thread, with the Gordon formula which took

into account the fact that a column had thickness as well as

length. The Rankine formula is known in Germany as the
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Schwarz formula, an engineer of that name on the continent

of Europe having developed it independently of Rankine about

the same time. A number of other men proposed the same, or

a similar, form for the expression but Rankine and Schwarz ob-

tained the best publicity in advance of their colleagues.

In the Rankine formula the constant "k" of the Gordon formula,

which was fixed by the shape and the material, becomes the con-

stant "a" which is fixed by the material alone. The constant

is modified by the method of supporting the ends of the column:

Rankine formula for flat ends (fixed in direction) :

1 +a
lr

For rounded ends (direction not fixed) multiply a by 4.

For hinged ends (position fixed but direction not fixed) multi-

ply a by 2.

For one end flat and the other round multiply a by 1.78.

In the Rankine formula the compressive fiber stress was the

breaking strength and the reduced stress was the reduced break-

ing strength, which was divided by a factor of safety to obtain

the safe working stress. The same result is obtained by dividing

the breaking strength by the factor of safety. For example

Rankine used c = 70,000 and a =
^QQQ The stress / was di-

vided by the factor of safety 5. To-day c = 14,000 and a =

as before, but / is the safe unit stress without further operation.

The values of the breaking stress and the empirical constants

to use in the Rankine formula were experimentally determined

by Christie and Hodgkinson many years ago as follows:

Hard steel, c = 70,000 Ibs. per sq. in. a =

Mild steel, c = 48,000 Ibs. per sq. in.

20,000

1

30,000

Wrought iron, c = 36,000 Ibs. per sq. in. a

Cast iron, c = 80,000 Ibs. per sq. in. a

Timber, c = 7,200 Ibs. per sq. in. a
3000
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The recommended factors of safety were as follows: 10 for

timber; 5 for metal under moving load; 4 for metal under quies-

cent load. The constants were for ratios of - between 20 and 200,

and are, therefore, not reliable for longer columns.

The Chicago building ordinance limits the extreme length of

cast iron columns to 70 times the least radius of gyration. The

length of rolled steel compression members cannot exceed 120

times the least radius of gyration, but the limiting ratio of struts

for wind bracing may be 150 times the least radius of gyration.

See some of the specifications recommended for study and com-

pare them with the provisions above quoted.

Radius of Gyration

The radius of gyration was once humorously referred to as a

happy thought in terminology as it is not a radius and has noth-

ing to do with gyration. It is a term used by mathematicians

and students of mechanics of materials to describe a factor used

in the design of compression members in structures. It is ac-

tually the square root of the moment of inertia of a section divided

by the area, or,

in which r = radius of gyration,

I = moment of inertia,

A = area of section.

The moment of inertia and the area being in inches, the radius

of gyration is in inches.

The would-be humorist was wrong in his statement, for the

radius of gyration may be shown to be a radius and it has actually

to do with gyration.

Each cross section has two radii of gyration, one perpendicular

to the axis y and the other perpendicular to the axis x. In using
a formula the least radius is chosen, except when it may be safe

to use the greater. Assume that the mass rotates (bends) about

the given axis. If the column bends, some resistance will be

offered by the section, which is assumed to be a mass moved by
the rotation (bending) of the column about the axis chosen.

Assuming the section to be a rotating body, there is some kinetic

energy developed, and in order to find the amount it is first neces-
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sary to determine the point through which the kinetic energy

acts, or determine what is essentially a center of gravity. The

moment of inertia is the sum of all the small units of a section

multiplied by the square of the distance of each unit from the

axis. Divide this by the area and extract the square root and

the radius of gyration is found to be the root mean square of the

distances of all the separate units of the mass from the axis. It

is actually a radius from the axis to the center of an imaginary

ring in which is assumed to be concentrated the mass of the sec-

tion. If this is not plain the author offers his apologies, for he

cannot make it any plainer without wandering off into a mathe-

matical demonstration which would defeat the objects aimed

at in writing this book. It is of little consequence, however, as

it is enough to accept the judgment of eminent men who have

worked the matter out satisfactorily.

Straight-line Formula

The Euler formula applies only to the thread in the vertical

axis of a very long and very slender column and the Rankine

formula is also to a large extent a theoretically correct formula,

the value of which is seriously affected by faults in workmanship
and design, as well as by defects in materials. It is a laborious

formula to use and engineers like simple formulas. In making
tests of full-size columns it was found by plotting the results

that the Rankine formula gives rather low stresses for columns

having a slenderness ratio under 80, and somewhat high stresses

for a slenderness ratio over 150. A straight line drawn through
the points, on the sheet on which the results of the tests were

plotted, in such a way that it passed through the center of mass

of the points, resulted in the formula:

/ = 16,000 -
70J;,

which is known as the "Straight-line" formula for steel columns.

It is used in Chicago, where the formulas for wrought iron and

cast iron are as follows:

wrought iron, / = 12,000 - 60-

cast iron, / = 10,000 -
60^
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but in no case is the maximum stress permitted to exceed that

fixed in the ordinance, 14,000 for steel; 10,000 for wrought iron;

and 10,000 for cast iron. For steel columns filled with, and en-

cased in, concrete extending at least three inches beyond the

outer edge of the steel, where the steel is calculated to carry the

entire live and dead load, the allowable stress per square inch on

the steel is determined by the following formula,

/ = 18,000 - 70-
r

,

but cannot exceed 16,000 Ibs.

The student is referred to the following pages in the standard

steel handbooks: Carnegie (1913), 251 to 282 incl, 327 to 329

inch Cambria (1914), 192 to 276 incl., 394-5. Jones & Laugh-
lin (1916), 176 to 217 incl., 281 to 283 incl. Lackawanna (1915),

205 to 288 incl., Bethlehem (1911), 8, 43 to 55 incl., 70 to 87 incl.,

97 and 98. In addition to the information contained on the

pages mentioned there are tables of the radius of gyration of

pieces having different shapes and of pieces in combination,

such as angles back to back, etc.

In Fig. 162 the curves show the allowable fiber stresses per-

mitted in the larger American cities and given in various steel

handbooks, etc. Some of the curves are for modifications of the

original Rankine formula with the theoretically correct curve

according to that formula. Others give values according to

various straight-line formulas. Speaking generally the first figure

in the straight-line formula gives a fair idea of the factor of safety

intended by the man responsible for the expression. Assuming
a maximum strength of 64,000 Ibs. per sq. in. for structural grade

steel, the factor of safety when the formula starts with 16,000

Ibs. is 4; for 19,200 Ibs. it is 3.333, etc. This is modified again

by the slope of the curve (even straight lines being called curves

in graphical work). Notice that there is a top limit when the

curve goes horizontally, this being 14,000 Ibs. for Chicago.

To use the chart determine the ratio of slenderness within

which the column length is fixed. Assume a section by trial

and determine the radius of gyration in inches. Divide the

length in inches by the radius of gyration to obtain the slender-

ness ratio which must be within the limit decided upon. If it is

past the limit the work must be done over with another assumed

section. If the slenderness ratio is within the limit find it at the
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bottom of the chart and go vertically upward to the curve repre-

senting the formula used. From this intersection proceed hori-

zontally to the left, where the proper fiber stress will be found.

Divide the load by this fiber stress and obtain the required cross-

sectional area of the column. If it agrees with, or is less than,

the area of the assumed column section the assumed section may
be used and the designing of the details proceeded with. Another
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Fig. 162 Steel Column Formulas Used in the United States

way is to multiply the cross-sectional area of the assumed column

section by the fiber stress and if this gives a carrying capacity

equal to, or greater than, the load the section may be used. If

it is less, then another section must be assumed and the work

gone through again.

The steel handbooks contain tables of columns intended to

save the designers much of the above work. In using these tables

the designer will notice that values of the carrying capacities, for

the columns are given with the lesser and with the greater radius

of gyration. Be careful in using the tables to see which value

is used. Either value may be used in computing the effect of

eccentric loads, depending upon which side the load comes. The
smaller radius of gyration is used in determining the unit stress
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for concentric loading. However, there are cases when the use

of the larger radius of gyration may be permitted. If a column

is built into a wall of first-class masonry so that it cannot bend

in the weaker direction the larger radius of gyration may be

used. A casing of a few inches of concrete is not enough to satisfy

the requirement that the column be stayed in the weaker direc-

tion. The supported length of a column is the length used in

the formulas. If a column is supported in the weaker direction

by adequate bracing the supported length is the distance between

the attached ends of the stays, and the column may be designed

with the smaller radius of gyration combined with the shorter

lengths, or it may be designed with the larger radius of gyration

combined with the greater length. When possible the weaker

dimension of the column should be turned in the direction of

the closer supports. Even when the least radius of gyration is

chosen the column should be so placed in the structure that the

heavier loads come on the longer axis.

The effect of eccentric loading is taken care of by increasing
the size of the column. The tendency of the column to bend is

determined by the slenderness of the section and it can bend

sideways to the load, this being the reason for using the least

radius of gyration regardless of the direction from which the load

may come to the column. In the column tables in the steel hand-

books the total load is generally given, together with a state-

ment as to which radius of gyration is used in computing the

strength of the column. The tables are computed by one of the

several formulas plotted in Fig. 162.

In assuming column sections the formulas given do not take

into account the various methods for attaching the principal

parts together. From the result of experiments it is believed safe

to use the allowable fiber stress by formula for columns with

solid web plates, as for example plate and angle columns. For

laced columns use about seventy-five per cent and for columns

fastened by batten plates use about fifty per cent of the fiber

stress given by formula.

Fig. 163 appeared in Engineering News, in 1913 in an article

by O. von Voigtlander on Approximate Radii of Gyration. The
use of the table saves a great deal of labor on the part of the

designer when he can know in advance the outside dimensions

of his columns or struts. It is not necessary to know this accu-
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rately, but usually it can be determined in advance just what

maximum size is permissible. In the figure the meaning of the

letters used is plain, but attention must be called to 19 in which

"b" is the distance back to back of the channels and it must be

not less than 63 per cent of the nominal size of the channel. The

procedure is to assume the form of section and the extreme

dimensions. Then apply the rules given in Fig. 163 and thus

get an approximate value for the radius of gyration. Proceed as

before and when the allowable fiber stress is found proceed to

get the area and then select the plates and shapes to make the

selected section. When it has been designed find the exact

radius of gyration and test for the fiber stress.

Wrought iron columns are seldom used, for the material is

hard to obtain and steel is stronger pound for pound. Wrought
iron and steel columns are usually two or three stories long.

Column splices should be so arranged that not more than one-

half the total number of columns splice at any one floor level.

All connections between columns, girders, and beams should be

rivetted. Theoretically it is best to vary the sizes of columns

from story to story, but it is less expensive with steel and wrought
iron columns to have them not less than two stories long, of the

same size, for the extra amount of material often costs less than

the labor required to change sizes at each floor. Cast iron columns

and wooden columns are never more than one story in length

and the practical impossibility of making rigid connections at

floor levels limits the use of cast iron and wood for columns to

low buildings, for they offer poor resistance to wind.

No column is free to turn as though the end were round or

as if it bore against a pin. Such conditions do not arise in build-

ing construction, although they may be nearly attained in bridges.

The columns in massive buildings are sometimes considered as

fixed at the ends, but mass implies positive rigidity. In sheds and

low mill and shop structures columns are not considered as fixed

at the ends unless specially massive foundations are used for

the purpose of assuring such a condition, something seldom

done. The majority of engineers advocate the assumption
of two rounded ends for all cases short of positive fixety, as

there are so many secondary stresses, experiments showing
that columns tested to destruction fail in detail rather than as

a whole.



252 PRACTICAL STRUCTURAL DESIGN

Fig. 164 illustrates the four conditions affecting the end load-

ing of columns. At (a) is shown the column with pin-joints at

top and bottom. This is the standard case assumed for all column

formulas, a modification being a flat-ended column, the bolts at

the ends of which are intended to merely hold it in position and

are not strong enough to resist much tension. The I in the for-

mulas is the total unsupported length of the column.

At (6) is a column fixed at the ends to maintain both position

and direction. The I to use is one-half the unsupported length.

At (c) one end is fixed (in

position and direction) and

the other end is a pin, or

hinged, end, fixed, in position

but not in direction. The I

to use is two-thirds the un-

supported length.

At (d) the lower end of the

column is fixed in position

and direction but the upper
end is free to move laterally,

Fig. 164 Methods of Fixing Columns
,

.f
differing from (a) and (c) in

which the upper end of the column is vertically over the lower

end. The column shown at (d) bends in a simple curve which is

one-half that of a column double the length, as shown by the

lower dotted end. Obviously the I to use is twice the actual

length of the column.

The temptation to consider a greater degree of fixity than is

actually obtained is great, and all designers must be warned

against yielding to it. Probably the only fixed columns in a build-

ing are those on the ground floor of a high building with massive

foundations. Above the ground floor there is bound to be some

vibration and swaying, especially in a wind.

To Proportion Struts or Compression Members

Every strut is designed as a column with rounded or hinged

ends. Nothing is deducted for rivet holes, as the rivets are assumed

to fill them. First select the form of strut from the many illus-

trated in Fig. 163, decide on the radius of gyration, and be careful

with angles to use two, back to back, even when the computa-
tions show one to be amply strong. Steel compression members
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Fig. 165 Eccentric Loads on Columns

in trusses are apt to contain considerable excess material because

they are usually composed of angles, but the excess material is

often of considerable advantage when wind is considered. The
consideration of holes in tension members leads to an excess of

material, and the effect of the radius of gyration is similar in com-

pression members.

Eccentric Loads on Columns

The column formulas heretofore considered are based on a

load acting vertically and applied at the upper end of the vertical

axis of the column. This is termed concentric loading. The only

tendency to bend is that caused

by the fibers being too strong

to crush or tear until after

considerable side bending
takes place.

An eccentric load is one ap-

plied at some distance off the

center of the column and act-

ing vertically. This is illustrated in Fig. 165. At (a) two loads

are shown carried on opposite sides of the column. Each reaction

is assumed to act vertically at the middle of the bracket on which

the beam rests. From the reaction of A to the axis of the column

the distance is x and from the reaction of B to the axis of the

column the distance is y. The center of gravity of the two loads

is found by the principle of momentSjjmd the distance of the

center of gravity from the axis of the column is
e^

the eccentri-

city of the loads.

(Ax) + (By)
A + B

This eccentricity is always on the side of the heavier load.

At (6) the eccentricity is the distance from the center of the

bracket support to the center line (axis) of the column. In both

cases the load is the total eccentric load, which, multiplied by
the eccentricity, causes a bending moment in the column. This

bending moment increases the compression on the side of the

column on which the eccentricity exists and causes tension on the

far side. Sometimes this tension may be great enough to over-

come the compression caused by the direct load, in which case

the column will fail. All columns are loaded eccentrically and
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suggested methods for dealing with this condition are not always

correct.

The effect of an eccentric load is assumed to disappear at each

story height. That is, the tension, or additional compression,

caused in any story length of column by eccentric loading is

assumed to be a maximum at the mid-length of the column on

that story and to be zero at the ends.

With a concentric load the unit compressive stress over the

cross-sectional area of the column is

f
W

f = T
in which / = unit compressive stress in pounds per square inch,

W = concentric load in pounds,

A = area of cross section in square inches.

Let e = eccentricity in inches,

n = distance from axis of column to extreme fiber in the

direction of the eccentric load,

P = eccentric load = A or A + B.

The bending moment due to the eccentric load is

M = Pe,

and the extreme fiber stress due to the combination of direct and

eccentric load is

in which / = moment of inertia in direction of bending.

The positive sign (+) is used to obtain the compression and

the negative sign (-) is used to obtain the tension. The com-

pressive stress cannot exceed the safe allowable stress determined

by a column stress reduction formula and the tensile stress is

not considered.

The foregoing is an approximation only, but is satisfactory

when the flexural stress due to eccentric loading is not large.

The majority of designers use only seventy-five per cent of the

moment due to eccentricity and reduce the eccentric load to an

equivalent concentric load by the following expression:

We
= 0.75 (^

in which We
= the equivalent eccentric load,

r = radius of gyration.
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With the both formulas it is necessary to select a column sec-

tion and obtain the values of e, r and n. There is little difference

in the values of r and n between columns of nearly the same size,

so one computation for the value of We will generally be sufficient.

An experienced designer can usually select a trial size so nearly

right that but one approximation will be necessary.

Having obtained We it is necessary to add to it the direct con-

centric load W and the eccentric load P; thus WeWP = Wt the

.total equivalent concentric load, and the uniform compressive

fiber stress becomes / =
-p

When something better than a very close approximation (good

enough for ninety-five per cent of columns) is wanted, the follow-

ing formula by Professor J. B. Johnson may be used.

Mn
f*

=
-pj?1 WE

in which fb = unit flexural stress in pounds per square inch,

L = length of the piece in inches,

E = modulus of elasticity of the material.

The Johnson formula is used for beams subjected to bending
as well as to direct compression or tension; and, also, to struts

and ties eccentrically loaded in addition to having a concentric

load to carry. The unit flexural stress must be added, algebrai-

cally, to the direct stress due to the concentric load, and the sum
of the two cannot exceed the safe fiber stress of the column as

determined by a column stress reduction formula.

For columns, ties and struts, the load P acts parallel to the

piece and M = Pe. For beams the moment M is the bending
moment caused by the dead load of the beam plus whatever ad-

ditional transverse load there may be on it. Therefore, for beam

subjected to direct tension or compression in addition to cross

W
bending the P is really W, as used in the expression -j- and is

A.

not an eccentric load, but is the direct concentric tension or

compression.

The beams carried by wooden columns and steel columns rest

on brackets attached to the columns. There can, therefore, be

no uncertainty as to the amount of eccentricity, e. Concrete

columns are cast integrally with beams and slabs, so considerable
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uncertainty often exists in the minds of draftsmen as to the

amount of eccentricity. The author assumes that the load from

the beam is delivered to the column in a uniformly varying amount

from the face of the column to the vertical axis. The vertical

load acting through the center of gravity makes the moment
arm for each beam equal to one-third the width, measured from

the center of the column, that is, two-thirds of half the width.

Multiply each load by this arm, add the products, and divide by
the sum of the loads, which will give the eccentricity measured

from the center of the column.

When columns are connected by girders then the deflection in

the frame will vary with the relative rigidities of the connected

members and this will fix the stresses at the connections.

Wind Bracing for Columns and Frames

In the handbook of the Passaic Rolling Mill Co., a number of

years ago the whole subject of wind bracing in buildings was dis-

posed of with the presentation of

~T "Bethlehem Handbook" (1908) of

A which only the one edition, now
r out of print, was issued the same

figures and formulas were given.

In the following formulas col-

umns are considered as fixed at

both ends. If columns are not

! fixed at the ends substitute 2h for

h, everywhere in the formulas. All

Fig. 166 Case I of Portal Framing members are constructed to resist

tension (-) and compression (+).

H = total horizontal force at top of frame.

Stress in the knee braces = H f -= + W-

Stress in the columns = H i a +-}-;

Stress in the girder = H (l +^
Mb on the columns = H + -r

Mb on the girder = H I
^
~
y (

a +
2
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Stress in AB = =*= H (l +

Stress in CD = H (= + -r-

\2 4a>

Stress in diagonals = -^
(I
+

4) /'

Stress in columns = == # (a + -W-

ft

Afb on columns = H x T-
4

Diagonal bracing is the cheapest in tall buildings, but it is not

possible always to use it on account of window or other openings.

It is, therefore, necessary in most

cases to use girders at floor levels,

as illustrated in Fig. 166, or

trusses, as illustrated in Fig. 167.

The figures show but one frame

and apply to single story build-

ings. It is easy to say that a

high building may be considered

to be a series of such frames

superimposed and side by side.
| H

Difficulties arise when it is neces- * -
z

sary to apportion the wind load Fig. 167 Case II of Portal

, , , Framing
on each story and on each column.

It is assumed that at each floor level the stiff floors will distribute

the load to the columns and it is only in the vertical frames that

attention must be paid to proportioning of members to resist wind.

Every building having a height twice the width must be pro-

portioned to resist wind and the pressure per square foot of the

wind is fixed by the ordinance followed by the designer. If,

there is no building ordinance to be followed then the usual require-

ment is 30 Ibs. per sq. ft. of exposed surface.

The designer has a choice of lines through which the wind

force may be carried to the foundations. Look up the specifica-

tions and see just how the stresses are fixed when wind is included.

Then test each line of columns to see if they can carry wind as

well as the gravity loads. If they can do this the building is

stable against wind. If they will not do it the designer must fix

on some lines of columns, with their connecting floor girders,

H
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which must be designed as a frame to carry the wind loads. If,

by slightly deepening the girders on all lines of columns the

matter can be accomplished, then all the lines of columns may be

called into service. Usually, however, the necessity for making

openings through interior walls requires that a minimum of depth
be used in girders and that the sizes of columns must be a mini-

mum. When it is decided to keep the area between columns as

free as possible from obstructing beams, ties, and struts, it will

be necessary to select a few lines of columns parallel with the

wind, which, with their connecting girders, trusses, or ties, will be

designed as frames to resist the force of the wind. Wall columns

are usually chosen and the spandrel beams are deepened, be-

cause, being in the walls, they cannot be in the way of partitions

or alterations in the interior of the building. When necessary to

strengthen framework across the interior of a building it is usual

to do it on the wall lines of light wells.

For wind alone the columns of a building may be considered

to have two fixed ends, except the columns supporting the roof.

If the footings are not designed to resist the additional force of

the wind the lower columns are not considered fixed. It is hardly

probable that the foundations will not be so designed. Assum-

ing the columns to be fixed and the trusses or girders connecting

the columns to be strongly attached to them, there will be a point

of contraflexure in each column and in each girder. For con-

venience in designing this point of contraflexure is taken to be

in the middle. It is not an accurate assumption, but it is safe

and lessens the tune required for computation and simplifies the

work. There is moment only at the ends, and, so far as the wind

force is concerned, the columns and girders can be hinged at the

points of contraflexure. This really means that each column

consists of two cantilevers extending upward and downward
from the floor beam with a length equal to half the story height;

and each girder consists of two cantilevers extending to the right

and left of the column and with a length equal to one-half the

span.

For each story the total amount of wind on the story is assumed

to be concentrated at the middle of the column on. This force

is horizontal shear. Assuming the tall building to be a vertical

cantilever beam the wind loads are the loads (horizontal shear)

in each story. Adding these loads from the top down the total
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shear at each story height is found, precisely as shear is deter-

mined for any cantilever beam.

This shear is distributed across the frame in the direction of

the wind by dividing the total shear at any floor by twice the

number of panels. (Number of columns less 1 = number of

panels.) Each end column carries the amount thus found and

each intermediate column carries double this amount, because

the end columns support only one-half a panel and each inter-

mediate column supports a full panel.

For the top story the formulas in relating to Fig. 166 or Fig.

167 may be used. The direct stress in the column is added to

the concentric load in that column, but is not carried to the floor

below. The bending moment in the column is treated as a mo-
ment due to eccentric loading.

For each story below the top the moment for each column is

equal to the total horizontal shear on that column multiplied

by the story height. The wind force is assumed to act at the

mid-height and as the column is practically a cantilever with a

length equal to half the story height the proper length to use for

this condition of a column fixed at the bottom and free at the

upper end is twice the actual length.

The bending moment in a girder is in all cases the mean be-

tween the bending moments in the column below and above the

girder. It is independent of the span. The moments in columns

and girders are at the ends, the force in the middle being shear.

The bending moments in girders must be provided for by adding
haunches to them instead of using simple brackets. Brackets

on which girders rest are assumed to resist vertical shear by the

rivets which connect them to the columns. They should be de-

signed, when possible, so none of the rivets will be in tension.

Gusset plates and brackets for connecting wind-bracing girders

to columns are in compression below, or above the girder and

are in tension above, or below, the girder. It is, therefore, neces-

sary to use a very low tensile stress in the rivets, which it is cer-

tain they can withstand, and this it will be found calls for a

great number of rivets. A tensile stress of 6000 Ibs. per sq. in.

is used in such cases.

Fig. 168 is a graphical representation of the moments in some

of the columns and girders of a frame. The moment is a maxi-

mum at the end and varies uniformly, so it is only necessary to
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plat each moment on opposite sides of the members and draw a

straight line connecting the end lines. The shear is constant, as

it is a concentrated load.

The author has here presented the method he uses in designing

frames of buildings to

resist wind. There are

several other methods

in use, and not all

engineers will agree

with the method here

given. It is, however,

simple and agrees well

with such meager
knowledge as we now

possess of the actual

force of the wind on

tall buildings. It is

Moments in Girders.

Shear on Girders.

Fig. 168 Graphic Representation of Moments probably in more
common use than any

and Shears in Frame of a Building

other method. Another method is to assume the building frame

as a vertical cantilever beam loaded at the mid-point of each

story with the wind as a concentrated load. The total moment
is found for the beam at each floor level

and this is divided among the lines of

columns proportionately to their dis-

tance from the neutral axis, which is

assumed to be midway between the ex-

terior columns. The bending moments
in columns and girders are equal at the

respective floor levels.

In Fig. 169 is shown the method of

bracing frames by means of diagonal

ties, known as sway bracing. It is as-

sumed that the bracing is provided only

between the exterior columns and the

first line of interior column, The wind

load is applied at each floor level. The
two lines of columns become, respectively, the upper and lower

chord of a cantilever truss, the floor beams or girders are the

verticals, and the diagonal ties carry shear. Such a method
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causes no bending in the columns but does add a direct load. It

adds a direct load to the floor beams or girders, which must be

investigated. The forces may be ascertained analytically or

graphically. It is usually best to put in counters, as indicated

by the dotted lines.

Loads on Columns in Buildings

The dead weight of a building is a constant matter. Live

loads vary from time to time. Just what proportion of live load

should be carried to columns is not settled, but it is common prac-

tice to design the columns supporting the roof for the full dead

and live roof load. The columns supporting the floor next to the

roof are designed to carry the load transmitted to them by the

roof columns together with the dead load of the floor and part

of the live load. In Chicago only 85 per cent of the live load on

the top floor is carried to the columns. In other cities 90 per cent

is used and some engineers use 95 per cent of the live load. It

is only on the top floor columns that any difference of opinion

exists. On all columns below the top floor the live load is reduced

progressively 5 per cent per floor until the reduction amounts

to 50 per cent of the live load. From this floor, only 50 per cent

of the live load on each floor is carried to the column, together

with the total dead load. Using Chicago requirements and

assuming a ten-story building with 100 Ibs. per sq. ft. live load

on each floor; roof live load 30 Ibs., etc., the load per square foot

carried to the columns will be as follows:
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The loads are tabulated as in the above table and the area of

floor served by a column is multiplied by the total load per square

foot shown in the last column, in order to determine the column

load at each floor.

The area of floor served by interior columns is equal to the

space enclosed between four columns. Side wall columns serve

an area equal to one-half this and corner columns serve an area

one-fourth that of the space between four columns. In other

words loads go to the nearest support. The wall columns carry

the additional dead load of the walls, each column carrying a

length of wall measured midway between adjacent columns, that

is, a panel length.

For the load permitted on various soils and for the amount

of live load to be carried to foundations, with and without pil-

ing, consult the various specifications mentioned and the steel

handbooks.

The distribution of load on footings is not treated adequately

in many textbooks. The dead load is constant and the live load

is variable. If the total load, dead plus reduced live load, is used

in proportioning the footings the footings under the interior

columns will be entirely too large if the building stands vacant.

The footings under the walls, however, will continue to settle

and old buildings with humps in the floors over the girders were

no doubt so designed that the footings under all columns were

proportioned for the total dead and live load, or total dead and

reduced live load.

A common method is to use for interior columns the allowable

soil load and for wall columns a soil load about 500 Ibs. per sq.

ft. less, and then proportion the footings for the total load brought
down as illustrated. Some men make the soil load for the exterior

columns one-third less than that for the interior columns and

design the footings for the total dead plus the reduced live load.

Mr. Schneider recommends the following method: Proportion
the footing under the column carrying the maximum live load.

Divide the total load by the allowable soil pressure and obtain

the square feet required to carry the load. Divide the dead load

by the area thus found and obtain a reduced soil pressure per

square foot. Using this reduced soil pressure design the rest of

the footings for the dead load only. This is very conservative

but may well be used for reinforced concrete buildings, as all the
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beams, girders, and slabs are designed as continuous. Any settle-

ment will be bad and generous foundations will prevent settlement.

The Schneider method calls for expensive foundations, and

Mr. Daniel E. Moran suggests using one-half the probable maxi-

mum live load, instead of the full live load advised by Mr. Schnei-

der. Mr. Moran says: "The maximum probable load is the

load which in the opinion of the designer will actually come upon
the footings, and is to be determined by a study of the conditions

which will obtain when the building is occupied. For instance,

in a schoolhouse the number of children in each class room and

the weight of desks, chairs, etc., may be determined with con-

siderable accuracy and these loads will make the maximum

probable live load. As a further illustration, in many school-

houses there is an assembly room which is only used when the

class rooms are vacant, and consequently if class room loads are

used assembly room loads should be omitted or vice versa, the

greater one of these loadings to be used for the probable load."

See on this point Engineering News, March 6, 1913, and April

3, 1913.

The author was taught, thirty years or more ago, to propor-

tion the loads as follows: the dead plus the reduced live loads

were carried down and the footing under the corner column carry-

ing the least dead load was designed for the dead and live load.

The allowable soil pressure was multiplied by the per cent of

dead load brought down to this footing, to obtain a "soil factor."

The soil factor was divided by the percentage of dead load brought
down for each column and thus was obtained a new allowable soil

pressure for each column. With these allowable soil pressures

as thus determined for each footing the footings were designed

for the dead and live load. This method is really practically the

same as that proposed by Mr. Schneider, except that the column

loaded the most heavily with dead load is the critical column,

whereas with the Schneider method the column loaded the most

heavily with live load is the critical column. The method so

long used by the author is preferred by him, but instead of the

corner column carrying the least dead load he selects that

column on which the live load is not less than 15 per cent. This

will be sufficient for many buildings. When there is much ma-

chinery in a building and the building is occupied by large num-

bers of employees for eight hours and is closed for sixteen hours
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each day, that column is selected on which the live load is from

20 to 25 per cent, to allow for the constant machine load. The
student can see that there is considerable room for the exercise

of judgment in the matter, provided the fact is recognized that

to design all footings for the sum of the dead and live loads is

wrong.
The load on walls is assumed to be one foot long. The load on

one lineal foot of wall is divided by the allowable soil pressure

per square foot and the width I of the

footing found, Fig. 170. It is then

stepped. An old rule was to draw a line

r*| upward, at an angle of 60 degrees from

I

the end of the footing to the lower

^1
*

corner of the wall and form steps so the

.'l'^"**
line touched the inner corners. By as-

suming a safe fiber stress for the masonry
Fig. 170 anci computing the offsets as projecting

Stepped Masonry Footing cantileyers the thickness and projections

of the steps may be computed. The following formula is used

generally by designers; referring to Fig. 170:

o = offset in inches,

t = thickness in inches,

p = allowable soil pressure in pounds per sq. in.,

s = safe unit tensile stress in the material,

= 30 Ibs. per sq. in. for 1-3-5 concrete,

= 60 Ibs. per sq. in. for 1-2-4 concrete.

Various authorities give values for stone and for brick laid in

cement mortar. The values for stone cannot be used unless the

stone projects less than one-half its length beyond the step above.

This is to provide for true cantilever action. If built in this way
s = 80 to 130 Ibs. per sq. in. for limestone, the same for sandstone

and 180 Ibs. per sq. in. for granite. Hard-burned brick laid up in

cement mortar in good bond by a first-class mason is considered

to be good for 40 Ibs. per sq. in. The author advises the use of

concrete.

The formula is derived as follows:

P^ x 2 = P,
144

X
2 288
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for p is in pounds per square feet and o is in inches, so it is neces-

sary to reduce p to pounds per square inch. The load is uni-

formly distributed along the cantilever o = po, and the force

acts through the center of gravity =
5- The moment of resistance

sbtz

for a rectangular section =
-^->

but, since 6 = 1 (the unit width)

the equation becomes

Mb = Mr =
2!

= f
'

Dividing, ^r
= sf

2
.

Multiplying, po
2 = 48st2

.

48s 2 3 x
Dividing o2 = =

p p

Extracting the square root, o =

The assumption is made in this case that the projection, or

offset, is a cantilever with the maxi- w
mum moment at the face of the

T-,

support. This is true in the case CTlc- y
->|

of all stepped footings for walls.
r

'

'

1

When the wall is relatively thin,

the projection of the footing being

long, the maximum moment is as-

sumed to be in the center of the Fi
j?-

171

footing under the center of the wall.

The formula for footings such as grillage beams and reinforced

concrete, referring to Fig. 171, is

"

~4~*

The load is assumed to be uniformly distributed over the

pressed area. The formula may be derived in two ways.
First. Assume one-half the load to be carried on one project-

ing end having a length =
^

= y

_ W y _Wy

Second. Assume the slab to be a freely supported beam with a

span length = L and loaded in the middle with a load W occupy-

ing a width a.
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M - WL _ Wa 2WL Wa W ^L ~
a) -E2

4
"

8
=

8 8
=

8
=

4
'

since (L -
a) = 2y.

Not all authorities agree that the above formula for the design

of footings is correct, the contention being that the maximum
moment is at the face of the wall, and not under the center. The

following formula is used for this assumption :

h - =
2y + a

A
2 2(2y + a)

To design a wall footing let w = weight per lineal foot of wall

and divide this by the safe soil load per square foot. This will

give the width L of the footing. The bending moment being ob-

tained the total thickness

will be i and the total off-

set is o, in the formula for

stepped footings. This will

tne thickness at the
Y-* face of the wall and it may

be stepped off by dividing
Fig. 172- Design of Stepped Footings

.,.^ any number Qf^
each with a thickness, t, and solving for o by the formula for

each step.

Such footings are seldom so designed. The usual way is to

ascertain the width and then from the edge of the bottom of the

wall draw a line at an angle of 45 degrees, or 60 degrees, with

the horizontal until the horizontal distance separating the lines

is equal to the spread of the footing. Steps are then drawn to

touch this line, as shown in Fig. 172.

The real use made of the formulas for bending moment on

footings is to determine the size of I beams to use in a grillage

foundation, or the thickness and reinforcement for a reinforced

concrete footing. The design of grillage footings is given in the

steel handbooks. A reinforced concrete footing is designed as a

slab one foot wide, the thickness being fixed both by shear and

bending.

Column footings differ from wall footings in being square or

rectangular. If the footing is square the area is found by dividing

the total load by the allowable soil pressure. The square root of

this area gives the length of each side. If the side of the column
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is longer than the end and it is desired to proportion the ends and

sides of the footing in the same ratio the following procedure is

adopted.

Let L = the long side,

6 = the short side,

A = the area of the footing in square feet.

Then -r- = o, which is the ratio of the length and breadth of the

column area and of the area of the footing, that is,

L = ab,

A = bL = b + ab = ab2
,

'.-vf
Having obtained the length and breadth of the footing it is

assumed that there are four cantilever beams projecting from

Fig. 173 The Design of Column Footings

the column. Each has a width at one end equal to the width of

the column base and a width at the other end equal to the length

of the side. The beams are thus wedge shaped with the maxi-

mum moment at the narrow end. Each beam carries one-fourth

of the total load. For convenience the beam may be considered

to be divided into four strips, as shown in Fig. 173.

Referring to the figure and assuming that in this case one-

fourth the load is carried on each beam, then the beam ajfe carries

W
Each strip carries a part of this load in proportion to the

area of the strip. The strips may be of equal width, as shown,
or they may be varied in order to have equal loads on the strips.
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Each load is assumed to be concentrated at the center of gravity

of each strip and the projection y is assumed to be the length of

a cantilever beam. The moment across the beam on the lines

bi, ch, dg, and ef, can be readily ascertained and the shears can

also be found on these lines. In this example we are assuming a

reinforced concrete beam. The thickness of the footing on each

line can be found in the usual way for the design of a concrete

beam, or slab, both for bending stress and for shear. The steel

may be proportioned and the logical method for arranging the

steel would be to have it in four layers, two normal to the sides

of the slab and two diagonal, as indicated by the dotted lines in

the lower part of Fig. 173.

Another method, used by the author, is to take the expres-

sion M = -~f used for wall footings, and assume that the foot-

ing being square and there being eight projections instead of two,

the expression should be M =
-r^>

and use this moment to design

a reinforced concrete beam having a width equal to the column

base on top of the footing. The beams are considered as being

so arranged that two are normal to the sides of the footing and

two are diagonal. They are designed as reinforced concrete beams

and as merged so that while each layer of steel carries the tension

for the beam it represents, the concrete is stressed in compression

from all directions, which makes it safe and increases its resist-

ance to shear.

Reinforced concrete footings may be stepped or sloped on top.

If sloped the forms must be well anchored down, for the con-

crete will have a tendency to cause them to float. The author

obtained the best results with concrete footings by stepping them.

The steps are formed by frames of boards. The first step is cast

to the proper level and the frame for the next step placed on it,

when it becomes firm enough to carry the weight of the next step

without bulging up around the edges of the form. If the con-

crete is mixed to the proper consistency there will never be any
trouble with this bulging and the steps can be poured quickly.

The proper consistency for concrete is that of a soft tooth paste.

It should never be thin enough to pour into a form. For rein-

forced concrete it should be thin enough to flow very sluggishly

so it will surround the reinforcement, but it should never be so
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thin that the aggregates have a tendency to separate. Get in

touch with the Portland Cement Association, Chicago, 111., when
reliable information on concrete is required. The Association

has a well equipped laboratory where all questions affecting the

use of portland cement and the manufacture and use of concrete

are investigated.

Column Brackets and Bases

Brackets on steel columns for carrying beams and girders are

rivetted to the columns. For light loads they are simple shelf

angles. For heavy loads they consist of plates stiffened with

angles. Details are given in the steel handbooks.

Post caps for wooden columns are illustrated in a book entitled

"Heavy Timber Mill Construction Buildings" distributed free

of cost by the National Lumber Manufacturers Bureau, Chicago,

111. Mill construction has its place and every architectural de-

signer should have a copy of the book. Some of the statements

therein should be modified and the student is advised to obtain

from the Portland Cement Association, Chicago, 111., a bulletin

entitled "Why Build Fireproof," written by the author, and

thus obtain a glance at both sides of the question. The book on

mill construction illustrates cast iron and steel post caps for

carrying beams and girders. The girders do not rest on top of

the posts, for the carrying power of the posts would be reduced

thereby. It was formerly the custom to use wooden bolsters,

on which to rest the girders and beams, in order to shorten the

span. The side bearing strength of wood is much lower than the

strength with the fibers. When the direct load comes down
the post with a bearing stress, say, of 1100 Ibs. per square inch,

and rests on the side of a bolster the bearing stress is reduced at

once to 235 pounds per square inch, or more, depending upon
the wood. Bolsters to-day are used only under roof girders. They
are better in case of fire than cast iron or steel but so greatly

reduce the carrying power of the posts that they are not eco-

nomical. Post caps come in a number of different shapes. To in-

vestigate the strength of a post cap obtain the moment of inertia

of the cross section of the carrying portion. Then find the fiber

stress by the method shown on page 67. The bending moment is

the moment caused by the reaction from the beam acting at half

the length of the projection from the face of the column.
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Cast iron brackets are cast on the side of cast iron columns.

There is really no rational method for designing them. They
should be at least as thick as the shell of the column. For light

loads one bracket is used under the shelf and for wide beams two,

or more, brackets are used to avoid eccentricity in the loading.

The depth of the brackets at the face

of the column must be enough to pre-

vent shearing. There is of course a

bending moment created by the reac-

tion from the beam. This bending
moment divided by the depth of the

bracket gives the tension in the shelf

where it is attached to the shell of

the column. This tension must be

divided by the length of the edges of

the shelf and multiplied by the thick-

ness of the metal in the shell to de-

termine the shearing stress which acts

to tear the shelf away from the shell.

This shearing stress divided by the

safe allowable shear in the metal

Fig. 174 Cast Iron, or Steel,

Ribbed Column Base

must be less than the tension, or the thickness of the shelf must

be increased. Such computations are merely checks but should

not be neglected.

In Fig. 174 is illustrated a ribbed cast iron base cap for a

column. No known rational method exists for determining the

stresses, so these bases are made according to empirical rules.

The thickness of all the parts should be not less than the thick-

ness of the shell of the column. All parts should have the same

thickness to avoid danger of casting cracks. A small fillet should

be used in every angle.

The projection at the top should be not less than three inches

wide, so bolts can be used with plenty of clearance for the heads.

When the bottom projection P is greater than six inches, ribs should

be used. The height H should never be less than the projecting P
and the diameter of the base under the column should be equal to

that of the column. The number of ribs should never be less than

eight, and an empirical rule for fixing the number of ribs is that

the space between ribs at the circumference of the column should

never be greater than twice the thickness of the shell.
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Cast steel bases are better than cast iron bases and built-up

steel bases are a great deal better than cast steel bases. Cast

steel bases are designed in the same way as cast iron bases. Built-

up steel bases are illustrated in the steel handbooks.

When the projection P of a cast iron, or cast steel, base is not

greater than six inches a plate may often be used to advantage.
The formula to use in the design of such a plate is given on page

152, where it is used to design a washer under the head of a bolt.

Mention is there made of ribs acting as cantilevers and if the

student wishes to attempt to design bearing plates and bases

of cast iron according to formulas, he is advised to procure from

the Engineering Experiment Station, University of Illinois, Ur-

bana, 111., a copy of the bulletin on the design of cast iron column

bases and bearing plates. He is advised also to procure a copy
of Bulletin No. 67 on the design of reinforced concrete footings.

The size of a column is fixed by the compressive strength of

the material. The column rests on concrete, stone or brick foot-

ings, which have a lower strength in compression, so it becomes

necessary to enlarge the lower end in order not to overstress the

masonry. It is most convenient, in the majority of cases, to set

the spread base before erecting the column, so bases are made
to which the columns are bolted. The area of the bottom of the

base is obtained by dividing the load by the bearing strength of

the masonry.

Eccentric Loads on Footings

In Fig. 175 is illustrated a common case of eccentric loading
on the footing of a wall. The formula to use is given on pages

100 and 101. The direct load divided by the area of the footing

gives the pressure per square foot on the soil. A vertical line is

drawn through the center of gravity of the footing and a vertical

line is drawn through the center of gravity of the wall.
.
The

horizontal distance e is the moment arm. Multiply the load in

pounds by the moment arm, e, in feet and use the bending mo-
ment in the formula. In the formula h is used as the depth of

the member. In the case of the footing h is the width, I shown

in the figure. The resulting fiber stress cannot exceed the safe

allowable bearing pressure on the soil. A positive (+) result

indicates compression and a negative ( ) sign indicates uplift.

The two shaded diagrams illustrate the action. The upper one



272 PRACTICAL STRUCTURAL DESIGN

shows the load per square foot over the footing, provided the

load is applied through the center of gravity. The lower diagram
shows the effect of the bending moment to increase the compres-

sion on one side and lessen it on the other.

If the sum of the two does not exceed the safe allowable pres-

sure at one toe and there is no uplift (tension) on the other toe

the footing will be safe. The rule to as-

sure safety is known as the "Middle-third

rule" in which the resultant pressure to

prevent overturning must be kept within

the middle third of the base. The middle-

third rule has been considerably over-

worked. What it really amounts to is a

statement that if the resultant of all pres-

sures brought to bear on a footing base is

kept within the middle third the average
stress will not exceed one-half the maxi-

mum and there will be no tension.

The condition shown in Fig. 175 is not

always possible to avoid, for foundations

must be kept within lot lines. The remedy

Fig. 175 Eccentric Load
on Wall Footing

apparently is to so construct the footing that a line may be drawn

at an angle of thirty degrees, with the vertical, from the edge of

the wall to the lower edge of the footing and keep within the

footing. When the load brought down by the wall reaches the

footing it will spread out and thus the center of effort of the load

will not be directly under the center of the wall, but will be some-

what nearer the center of gravity of the footing. This may be

the case if the wall is not in excavation. If it is in excavation

the load is no doubt partly distributed to the earth on the out-

side of the wall, so the center of effort of the load is actually

under the center of the wall, provided the load passes as readily

through the masonry as it does through the earth on the side.

The footing may be of solid concrete, with a depth fixed by the

sixty degree line, so that it will not distort under load. If this

is the case, then as soon as the earth under the heavily pressed

edge gives way the entire bottom of the footing will come into

bearing and relieve the stress on the soil. The same effect should

possibly be secured by using a lighter footing of concrete heavily

reinforced so it cannot bend. Something also may be gained



COLUMNS AND STRUCTURES 273

by having the inner toe deeper than the outer instead of keeping
the base level.

The best remedy is to drive piling to help the earth carry any
excessive load. In several of the specifications mentioned, rules

are given for the use of piles. A pile acts by the bearing of the

lower end of the pile on the soil into which it is driven, plus the

friction of the pressed soil on the surface of the pile. The mini-

mum distance center to center of piles should not be less than

three feet, except under unusual conditions. Driving piles too

closely together often results in an actual lessening of the carry-

ing capacity.

To find the center of gravity of a stepped footing such as that

shown in Fig. 175 multiply the area of each strip by half the dis-

tance from the outer edge. Add the results and divide by the

total area. This gives the horizontal distance to the center of

gravity. The distance from the bottom is found similarly by
dividing the area into strips by vertical lines and multiplying

each area by half the depth. It is the method of moments, al-

ready explained for irregular sections and for bending moments
on rivets. The center of gravity is not essential in the footing

problem, but it is essential to obtain the horizontal distance to

a vertical line through the center of gravity.

Eccentric Loads on Column Base

A column exposed to the force of wind acting to push it to one

side will put an eccentric load on the base. There are two cases.

I. The column hinged to the base. The horizontal force in

this case acts at the base of the column. The vertical force acts

-vertically through the center of the base and the resultant of the

horizontal and vertical forces should be kept within the middle

third if possible.

II. The column is fastened to the base sufficiently to make the

base practically a part of the column, or at least develop a bend-

ing moment = H x ' m which

H = horizontal thrust,

I = length of column.

In Case I the horizontal force acts at the top of the footing,

as shown in Fig. 176. In Case II it acts halfway up on the

column. It is important to remember these distinctions. The
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(0

distance x on the bottom of the footing should in all cases be not

more than - the base, to keep the average stress within one-half

the maximum and insure that there is no tension, or uplift, on

the other side. This "middle third theory" is merely a state-

ment. Provided the maximum soil pressure is not greater than

the allowable safe

pressure the re-

sultant can be
outside the middle

third. The state-

ment is frequently
made that when
the resultant

passes beyond the

] *-H \ middle third the

Fig. 1 76 Eccentric Load on Column Bases
structure is in

danger of being

overturned. The fact is that whenever the resultant of a hori-

zontal and a vertical force passes through a footing at any point

off center the overturning tendency is present. To be safe it is

necessary to see that no undue load is placed on the soil. The
"middle third" theory is a safe one to follow, but it should not

be followed blindly.

Let H = horizontal force,

h = distance at which H acts above bottom of base,

W = vertical load on footing,

Hh
then x = W
Let 6 = length of base (that is, the dimension at right angle to

the force H, the dimension B being in the direction

of the force H).

p = pressure on soil hi pounds per sq. ft., all the dimensions

being expressed in feet and the weight and wind force

in pounds;

then, when the resultant falls within the middle third,

When the resultant falls beyond the middle third

2w
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The student should study the formation of the last three

formulas. The first one means that a force H, acting with an

arm h, tends to overturn a body having a weight W. It is,

therefore, necessary to find the length of an arm x, through which

W acts to resist the overturning moment Hh.

In the second the distance x cannot be greater than one-sixth

of B. The total weight is distributed over an area Bb. With
these hints the student should attempt to construct the formulas

as an exercise.

Attaching Column Bases to Footings

Column bases are attached to footings by bolts. A horizontal

force, such as wind, develops a bending moment in the column

where it is attached to the footing. Referring

to Fig. 177, divide the bending moment by
the distance x between the center lines of the

bolts in the direction of the force. This gives

the pull on the bolts. The distance is mea-

sured between centers of bolts instead of from

the leeward edge of the plate to the center

line of the windward bolts, to avoid bending
the edge of the plate.

The pull in the bolts is divided by the allow-

able tensile fiber stress, to obtain the required bolt area. Divid-

ing this by two gives the area of one bolt, and the circumference

is readily found when the diameter is known. Dividing the cir-

cumference in inches by 50 Ibs. gives the total bond resistance per

lineal inch of bolt. Dividing the uplift on one bolt by this

amount, the length of bolt is obtained.

The area of footing is determined by the bearing value of the

soil. The depth must be great enough to make the footing of

the weight required and also furnish area for embedment of

bolts. The weight of the footing is fixed by the requirement that

it be heavy enough to anchor the structure, or so much of the

structure as may bfe carried by the column which rests on the

footing.

The horizontal force acting on the column is applied to the

column at the proper height. The force multiplied by the height

exerts an overturning moment. Dividing this moment by the

width of the building the weight of the foundation is obtained.
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This is illustrated in Fig. 178. The direct weight W is made

up of the weight carried to the foundation by the column, plus

the overturning moment exerted by the force H acting on the

windward column. The force H, acting on the leeward column

is an eccentric load on the footing, as already described. The

student must remember

that each column carries

part of the total horizontal

thrust.

Owing to the uncertainty

of just where the force will

act because the attachment

may not be rigid, there is
'

,_ _ , ,. some uncertainty as to the
Pig. 1/8 foundations under Columns ,

exact amount of force ex-

erted on footings. If the columns are fixed (hinged) in such a

way that they bend at the top of the footing, the only force

exerted by wind on a footing will be that transmitted by the

windward column as a direct vertical load. If the column is

rigidly attached then the leeward column adds an eccentric load.

If the columns are rigidly attached the force H acts at a height

equal to one-half the column length. If there is a knee brace

some men assume the length I to be the distance from the base

to the lower end of the knee brace. To be safe it is best to con-

sider the column length to be measured to the bottom chord of

the truss.

If the columns are poorly connected, or hinged, to the footing,

the total wind force on the windward column is assumed to act

at a height equal to the full column length, plus one-half the

height of the roof truss.

For taller buildings than here illustrated the total force of the

wind is assumed to act at half the height of the building, or if

only the upper portion of the building is exposed, at half the

height of the exposed portion, measured from the ground, the

full amount of wind being figured only on the exposed portion.

This moment divided by the width of the building gives the

weight which must be opposed to resist overturning. Determine

the direct weight coming on the footing and if it is not enough
increase the depth of the footing so it will have enough weight.
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Cantilever Footing

The subject of cantilever footings is very simple, although a

number of students seem to find it difficult. In Fig. 179 the

column on the right is against a wall, or property line, and the

footing must be kept within the limits of the property. The
first line of ulterior columns

must, therefore, help out the

wall columns. First find the

proper size of footing under

each line of columns. The
outside footing is arranged so

;

|

the outer face is even with . i I i/,,

"
1

//,. ,, //. //// I \w///", i

the lot line. The load P, com- l^f \#'"" \ r*-\*
j

ing down the wall column, acts
1 l> x I

at the center of the column
Fig 179_ Cantilever Footings

and the distance to the center

of the footing gives the moment due to eccentric loading, thus

M = Pa.

Divide this by the load in the interior column to obtain the

eccentricity 6. The footing under the interior column is then

so located that the center of the footing will be distant b feet

from the center line of the column. Thus,

. Pa
b =

pT-

To transfer the loads from the columns to the centers of the

respective footings the columns rest on a girder having a resist-

ing moment Mr
= Mt, = Pa = P'b. The girder must also be de-

signed for deflection, as a cantilever at each end, and for shear

which is usually very high.
" Foundations of Bridges and Buildings," by Jacoby and Davis,

price $7.50, is the best book on the subject with which the writer

is acquainted. The student is advised to consult it if he needs

more information on this important subject.

Stresses in Towers

A tank tower, or any braced tower or pole, may be designed

as a vertical cantilever beam or truss.

The vertical load, consisting of the weight of the water, tank,

and framework, is transmitted directly to the foundations through
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the columns, each carrying its proportionate share of the load.

This vertical load is not considered in the graphical stress dia-

gram used to determine the force due to wind, so must be added

to the wind forces after the stress diagram is constructed and

scaled. The struts and ties carry no part of the tank and water

load, being used to take care of the wind load and to divide the

column into intermediate lengths so the columns may be as

WIND

Stresses in

Struts andAnc or/
Botts a

5000 b

A
, .k 33-0 ->J

Tower Diagram.

Fig. 180 Stresses in Water Tower

small as possible, each column being considered as having a length

equal to the height of one bay.

The plan of the base in Fig. 180 shows that the maximum
stresses in the rods and struts occur when the wind is blowing

against the side of the tower. The maximum stresses in columns

occur when the wind is blowing diagonally across the tower and

are 0.707 of the amounts obtained from the diagram. The wind

force is not the result of a constant load, so in a number of specifi-

cations only 80 per cent of the maximum wind force is considered.

The wind acts at the top through the center of gravity of the

filled tank, and at the joints on the side of the tower. In the
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tower diagram dotted lines are shown, transmitting the wind
from the tank to the frame. In the stress diagram the uplift is

measured from / to I. The tower loads are all positive (compres-

sion). In the tower diagram dotted counters are shown. These

are not stressed with the wind coming from the left, but are

stressed with the wind coming from the right. Each bay, there-

fore, is braced with cross braces designed both for tension and

compression. The stress diagram shown is only one method for

drawing such diagram.

Wind acts against the side of a square or rectangular building

over the whole area. Against an octagonal structure the width

is measured on the longest possible diagonal, and the area of the

height multiplied by this diagonal is multiplied by 0.707, for

some of the force of the wind is lost against the sloping faces.

Against a cylindrical structure more of the force is lost on the

curved surface, so the diameter is multiplied by the height and

the product by 0.667. In old text books the statement is fre-

quently met with that the pressure of the wind against a cylindri-

cal surface is one-half that against a square having a side equal

to the diameter of the cylinder. Exact mathematical analysis

shows it to be two-thirds instead of one-half.

The design of foundations under water towers is similar to

the design of foundations under the columns of buildings. The

weight of the water and tank carried down by each column,
added to the weight of the foundation, must be sufficient to oppose
the overturning effect of the wind, the uplift. It is necessary to

make a stress diagram, assuming the tank to be empty. It can

be assumed that the columns are rigidly braced so there will be

no bending to set up an eccentric load in the foundation blocks.

The bolts anchoring the column footings to the columns must be

strong enough to lift the weight of the blocks.

The Design of Chimneys

A chimney is subjected to direct stress and also to a bending
moment caused by wind. The resultant stress on the leeward

edge must not exceed the safe allowable stress.

> The formula is / =
-j- -j->

in which W = weight of stack above section considered,

A = area of ring in square inches,
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M = bending moment in inch pounds,

c = distance from resultant through section to lee-

ward edge, in inches,

7 = moment of inertia.

The quantity c is of importance because the chimney shaft is

hollow. With a solid symmetrical section the distance to the

most stressed fiber is measured from the center of area, that is,

the center of gravity. In a hollow ring or square the pressure

varying uniformly from zero on the windward edge to a maxi-

mum on the leeward edge is not an average at the neutral axis

of the section, but is an average at a point a trifle beyond. The
distance from the center of area to the center of pressure will

be termed q.

Let D = outer diameter of a round hollow shaft or outside length

of a square hollow shaft.

d = inner diameter of a round hollow shaft or inner length

of a square hollow shaft.

D2 + d2

then, for a round hollow shaft q = 5-^ >

oLf

and for a square hollow shaft q =
^-^

Approximately values of q are f for square and | for round

shafts. r

The chimney for analysis is divided into a number of sections

and the horizontal area found at each section. The weight of

the chimney above any section is ascertained and divided by the

area of the ring to get the direct pressure. . The vertical area of

the chimney above the section is obtained and multiplied by the

factor 0.707 if octagonal and 0.667 if cylindrical. The height to

the center of this area, measured from the section, is a moment

arm, by which the wind moment is obtained. Then find c and

apply the formula. The compressive fiber stress should not ex-

ceed the maximum allowed for the material and for good brick

in cement mortar there can be some tension on the windward

side not exceeding one-tenth the compressive stress, provided
the tension is not more than one-fifteenth of the allowable com-

pressive stress in the material. With lime mortar tension is not

permissible.
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The material is generally brick and the maximum allowable

compressive stress is fixed by building ordinances or in the speci-

fications governing the design.

For a rough check of a design

Let P = the total wind pressure in pounds,
h = height in feet to the center of gravity of the shaft,

W = weight of shaft above section,

D = outer dimension,

WD
then, for round shafts hP = -r- > (Approx.)

WD
and, for square shafts hP = = (Approx.)

o

Having tested the shaft at a number of joints, approximately

twenty-five feet apart, redesigning the walls if found to be un-

stable, or if the maximum pressure exceeds the safe allowable

pressure the final test is made at the base, on top of the founda-

tion.

The spread base must be designed to carry the shaft without

exceeding the safe allowable soil pressure. It may be square,

octagonal, or round. It is subjected to a direct load, which is the

weight of the shaft. The weight of the lining is neglected for

brick and concrete chimneys. It is subjected to an eccentric

load due to the moment caused by the wind. Then,

W -M
p 'A 2f

in which p = soil pressure in pounds per square foot,

M = moment in foot pounds,

I = moment of inertia in square feet,

and the distance to the most stressed fiber is one-half the length,

or width, of the footing.

. . , ,, W(D4 - d4
)

/, for hollow circular shaft =
Vsj

-

D4 d*
I, for hollow square shaft = -~

D4

7, for square section =
^FTLZ

I, for circular section = -^
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A concrete chimney is frequently more economical than a

brick chimney because the maximum compressive stress is greater

than for brick and the tension can be equal to nfc> in which

n = ratio of deformation between steel and concrete,

fe
= maximum unit compressive stress in the concrete.

The wind may come from any direction therefore, the rein-

forcement must be equally spaced around the circumference of

the shaft. The shaft

may then be designed

by trial. Assume a

certain steel area and

assume it be in the

H
-Uoment

farm^^ing
4

^a.
fOFm Of a thill rfttg Of

"r
-^Sn $7VsB steel - Find the mo-

ment of inertia and

ascertain how much
direct load and bend-

ing load it will carry

(see page 67). The
steel may be assumed

to have a value of

12,000 Ibs. per sq. in.

A concrete shell is de-

signed to carry the

direct load and wind

moment the steel can-

not carry, and when

the combined concrete

section and steel sec-

tion is found, which

will carry the direct

Fig. 181 Formulae for Self-supporting Steel

Stacks

load and wind moment, the steel is placed in the middle of the

thickness of the concrete ring in the form of rods or bars.

Each section is designed in this manner and when the base is

reached the vertical bars are run into it a sufficient length for

anchorage.

Self-supporting steel stacks are often -carried on columns and

the proper formulas to use for this condition are shown in Fig.

181. These stacks may be anchored to concrete foundations

by means of bolts, or they may be on girders and anchored by a
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number of bolts to rings riveted to the girders. To determine

the size of the bolts the chimney is assumed as tending to over-

turn about one edge of the bolt circle. The principle is that used

in the case of bolts fastening column bases to footings.

Brick stacks may usually start with a thickness of nine inches

for the top twenty-five feet and increase half a brick in each

twent}r-five feet down. This is merely a rule by which to deter-

mine trial thicknesses. A general rule for the top thickness is

as follows

t = 3 +0.4 + 0.005 H,

in which t = thickness in inches of upper course (neglecting

ornamentation).

d = clear inside diameter at top in feet,

H = height of stack in feet.

The thickness of metal in steel stacks is governed by dura-

bility as well as by strength. The stack is a hollow circular can-

tilever beam (see page 67) in which the weight of the metal is of

relatively small importance, the wind being the largest force.

It is usual to start with plates f in. thick at the top of the stack

if not lined and some designers use | in. plates at the top for

lined stacks. Some designers increase the thickness by TV in.

each 30 or 40 feet, while others increase by ^ in. At each 30 or

40 feet the section is investigated and the thickness of the plate

fixed by the fiber stress.

To insure tight joints the rivet spacing is not less than 2.5

times the rivet diameter, or more than 16 tunes the thickness of

the plate. Usually the rivet spacing is investigated and deter-

mined only for the lowest tier of plates of any thickness. The
rivets are in shear due to bending moment as well as ordinary

shear.

Not enough data is available for reinforced concrete chimneys
to fix trial thicknesses, as for brick and steel stacks. The least

thickness should be six inches. The average increase in thick-

ness is approximately at the rate of one inch in 50 ft. for trial

sections.

Tanks and Retaining Walls

Fig. 182 shows curves for ascertaining the pressure in bins

and tanks. They were computed by the author when he was

Chief Engineer of the Fireproof Construction Bureau, Portland
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Fig. 182 Curves for Designing Tanks
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Cement Association, and have been printed in booklets and

several periodicals.

These curves were computed by the Janssen formula and

checked with other curves and tables. The pressures are for

walls of concrete. For walls of steel multiply by 1.20 and for

walls of wood multiply by 0.95.

When the depth of a tank is less than the diameter the surface

of the slope of repose of the material will pass through the top
without intersecting the opposite wall. The pressure in such

a case is similar to that exerted by a fluid and the expression for

pressure at any depth is

P = md,
in which m = a constant,

d = depth hi feet,

P = pressure in pounds per square foot.

The constant m for water is 31.25, no matter how deep the tank

or what its diameter. The constants for common materials are

shown in Fig. 182. They represent one-half the weight of an

equivalent fluid, that is a fluid which at any depth exerts the

same pressure as the material considered.

When granular materials are confined in deep bins the opposite

sides come into play as soon as the depth exceeds the diameter.

The friction, of the material against the walls causes the walls to

carry some of the load, whereas with a fluid the pressure is always
normal to the surface pressed. For deep bins the pressure at

any depth in a bin or tank may be read directly from the curves.

WTien the depth of the bin is less than the diameter the total

pressure against a vertical strip one foot wide is

H = Mffi,

in which H = total horizontal pressure.

The overturning moment M = H x 5-o

The foregoing formulas are used to design square and rect-

angular tanks and bins, and retaining walls, holding water or

granular dry materials.

In a circular tank the horizontal pressure is coverted into

tension in the circumference.

T = W x f ,

in which T = circumferential tension in a strip one foot deep,
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D = diameter in feet,

W = the weight of one cubic foot of a fluid.

It is customary to take one-half the weight of the fluid, or

equivalent fluid, and multiply it by the diameter. This is the

constant m for each material shown in Fig. 182.

The circumferential tension divided by the allowable fiber

stress in the material gives the number of square inches required.

If the tank is to be of steel the thickness of the plate is found by

dividing the area by 12, the depth of the strip. The proper allow-

ance must then be made for rivet holes.

If the tank is to be of reinforced concrete the steel area must

be sufficient to carry all the tension. Sometimes cracks will

open in concrete walls, and if the concrete is relied on to carry

part of the stress, the tensional strength of the concrete is lost

with the first crack and the steel immediately carries this addi-

tional stress.

When there are no cracks in the concrete it does carry part of

the load, so the thickness of the shell is fixed by assuming that

the strength of the concrete in tension is 150 Ibs. per sq. in. Di-

viding the total stress by 150 the concrete area is found and

dividing this by 12 the thickness of the shell is fixed. It should

never be less than four inches when first class experienced work-

men are employed and six inches is a safe enough minimum to

use for all tanks.

The shell of the tank as thus designed will carry double the

tension, part of which is carried by the steel and part by the

concrete.

Let A = total area = A c + A s
= A c + nA c ,

in which A c
= area of concrete in square inches,

A 8
= area of steel in square inches,

n = ratio of deformation between steel and concrete.

The thickness of the concrete multiplied by 12 is the total area

from which must be subtracted the area of the steel, leaving A CJ

the net concrete area.
' The area of the steel is multiplied by n

and added to the net concrete area, this giving the area, A, in the

formula. Dividing the total stress by A the average unit stress

in tension is obtained and this is the stress on the concrete. Mul-

tiplied by n it gives the actual unit tensile stress in the steel. This

stress is very low but the instant a crack appears in the concrete,

thus reducing the section, the steel stress is increased 'by an
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amount equal to n times the area of concrete in the face of the

crack, times the average unit stress. If the crack extends through
the wall the steel carries all the tension.

Ah1

granular materials have an angle of repose, which is as

follows: Sand, 25 to 30, gravel and broken stone, 30 to 40;
ashes, 25 to 30; coal, 30 to 45; grain 28. The angle of

repose is generally designated in formulas by <.

The factor k fixes the ratio of lateral to vertical pressure and

according to the theory of the ellipse of stress,

, _ 1 sin <

~
1 + sin <f>

It has been determined experimentally for several materials

and has a value of 0.6 for grain.

The weight carried on the bottom of any bin is the t^tal weight
of the material, minus the weight carried by the walls. The
foundations are designed under the walls by taking the total

weight transferred to the walls, plus the weight of the walls, plus

wind force. If columns and girders are used under the floor of

the bin, part of the weight on the bottom is carried to the walls

as reaction.

Materials have an angle of repose which is an angle of slope

assumed by the surface of the material when piled. There is

also an angle of friction, the tangent of which is known as the

coefficient of friction. The coefficient of friction of the grains

of material on each other is the factor k. The coefficient of fric-

tion of the material against a surface confining it is determined

experimentally, and the factor C hi Fig. 182 is the coefficient of

friction of the various materials against concrete. In determin-

ing the weight carried by the walls it is necessary to consider

k and C.

The weight carried by the wall on a strip one foot wide for

any depth is, approximately,

in which w = weight of material per cubic foot,

R = hydraulic radius = - in feet,

h = depth of bin in feet,

k = ratio of lateral to vertical pressure,

C = coefficient of friction.
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The above expression is only approximate, as the entire expres-
sion is very complex. The result, however, is correct within

such a small per cent that it is safe to use it. The load on a verti-

cal strip one foot wide multiplied by the circumference in feet

gives the total vertical weight carried by the walls, the remainder

being carried by the bottom. The weight on the bottom is not

uniform, being in the form of an ellipsoid, the bending moment
2 WD2

for which will be M = 5 H = provided the attachment of the

bottom to the sides is good.

The curves may be used for round or square tanks. In a round

tank the pressure is that on a square fodt on the circumference.

For square tanks it is the pressure per square foot of perimeter.

It may be used for rectangular tanks in which the length is not

more than 1.5 tunes the breadth by dividing 4 times the area of

the rectangular tank by the perimeter. This gives the diameter

of an equivalent circular tank, or the side of an equivalent square

tank, by means of which from Fig. 182 can be obtained the pres-

sure to use with the dimensions of the rectangular tank.

Hoppered bottoms are used for bins as a rule but are somewhat

expensive when made of concrete, on account of the formwork.

A common practice for bins having tunnels underground is to

make a flat bottom and pile cinders, or damp sand, on it with the

surface sloping towards the discharge hole. The surface is then

covered with concrete several inches thick, generally reinforced.

The pressure against a retaining wall, and the overturning

moment, may be obtained by formula, using the constants for

equivalent fluid pressure. That method, however, is good only

for a wall retaining a fill level with the top of the wall. It is not

applicable to a surcharged wall, that is, one holding a fill which

extends above the top of and slopes to the wall. The graphical

method shown in Fig. 182 is a development of the Coulomb

theory of a "maximum wedge." According to this theory the

fill will not slip forward until the surface is steeper than the

natural angle of repose. When it starts to slip it breaks on a

line approximately halfway between the angle of repose and the

vertical, the wedge ahead of this line alone exerting an overturn-

ing pressure on the wall.

In Fig. 183 the line AE represents the surface slope at the

angle of repose <. The line El is the surface of the fill, the angle
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x being the angle of surcharge. The length of the line AE is

fixed by the intersection of the angle of repose drawn from the

bottom of the wall and the angle of surcharge drawn from the

top of the wall. From the middle point of the line AE a semicircle

ABDE is drawn.

The angle C is the angle of friction of the filling against the

back of the wall. The line IH is drawn at an angle with the

back of the wall equal to the sum of the angle of repose and

the angle of friction C to an intersection with the line AE.
From A as a center, with a radius = AB, describe an arc cut-

ting AE at F. Draw FJ parallel with the line IH. With radius

Fig. 183 Graphical Method for obtaining Pressure against Retaining Wall

FJ describe an arc intersecting the line AE at G and draw the

triangle FJG.

The line AJ is the cleavage line of the material and the area

of the triangle FJG multiplied by the weight of a cubic foot of

the material will give the pressure against a strip of the wall

one foot long. This pressure is considered to be concentrated at

a point above the base of the wall equal to one-third the height,

the height being measured from the bottom of the wall, and not

from the surface of the ground. The direction of this thrust T
is not determined, authorities not agreeing. Some assert that

it is parallel with the slope of the surcharge and some that it

makes an angle, C, with the back, while others count it as a hori-

zontal thrust. In the figure it is drawn parallel with the angle

of friction. A larger moment is obtained by considering the

thrust as horizontal and a wall designed to resist this horizontal
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thrust has a larger factor of safety than one designed to resist

a thrust at an angle. The author designs retaining walls on the

assumption of a horizontal thrust.

The resultant of the weight of the wall and the thrust must

pass through the base at such a point as will keep the toe pres-

sure within the allowable soil pressure per square foot. It is

considered best to keep the resultant within the middle third

of the wall. In the figure the thrust is shown as meeting a ver-

tical line through the center of gravity at a point one-third the

height above the base. This makes the thrust line strike the wall

a trifle above the one-third point. With a horizontal thrust the

application is exactly one-third above the base.

The diagram here given is independent of the shape of the

wall. In fact a single line representing the back of the wall could

have been drawn just as well. The diagram merely gives the

amount of thrust, its direction and the point of application. A
separate diagram may be drawn from the wall if the work is to

be graphical, and only the thrust line from this figure will be

required.

For a well-built concrete wall not reinforced the width of the

base can be one-third the height for ordinary earth. For a brick

or well-built cut stone wall with cement mortar joints the bottom

width can be one-third the height + 1. For an ordinary stone

or brick wall the thickness of the base should be at least one-half

the height. Such empirical rules make it very easy to draw plans

for walls. With reinforced concrete walls it is necessary to know
the pressure and overturning moment so the wall may be designed

to resist definite forces.

A reinforced concrete retaining wall is built in the shape of a

capital L. The weight of the earth on the outstanding rear leg is

counted as part of the weight of the wall, the back of the wall

being vertical and extending upward from the rear end of the

slab. The coefficient of friction is k =
^ = r > and the angle
1 +sm <f>

corresponding to this is used in the graphical analysis instead of

the angle C.

The thrust acting at .one-third the height tends to overturn

the wall. The vertical front face of the wall must, therefore, be

designed as a cantilever beam to resist this moment, anchoring

into the base. The small toe in front is extended to widen the
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base and bring the toe pressure within the safe maximum pres-

sure. This projecting toe is designed as a cantilever beam resist-

ing the upward pressure. The slab in the rear is designed as a

cantilever beam to carry the weight of the earth on it which

forms a part of the wall.

Sometimes the wall has counterforts along the back at regular

intervals, acting as ties. The spacing of these counterforts varies

from an interval equal to the height of the wall for walls under

fifteen feet in height to one-third the height for walls thirty feet

in height, and proportionately for walls more than fifteen and

less than thirty feet high. These counterforts have rods running
in them from the top of the wall to the back edge of the bottom

slab, to reinforce them as cantilever girders carrying the front

slab. The front slab is designed as a slab with a span equal to

the distance center to center of counterforts,

and is reinforced horizontally.

The wall designed as a cantilever has vertical

reinforcement in the front wall and the rein-

forcement in the bottom slab and toe is normal

to the face of the wall. The counterforted

wall has vertical and sloping steel in the coun-

terforts, but the slab reinforcement is all para-

llel with the length of the wall.
Restrained Wall

In Fig. 184 is shown, diagrammatically, a

retaining wall tied at the top and bottom. This may occur in the

case of an area wall pressing against a sidewalk at the top and

against a heavy floor at the bottom. It may occur as a wall

pressing against a foundation, or floor at the bottom, and having
a long girder, or waling, along the top held by ties to deadmen.

The maximum bending moment is at a point = 0.58 h. It is

then M = 0.64p/i
3

,

in which p = pressure in pounds per square foot of a fluid. For

grain, p = 42; for stone, p = 48; for bituminous coal, p = 24;

for anthracite coal, p = 36; for ashes, p = 16; for sand, p = 48;

for earth, p = 32 (average).

The maximum bending moment caused 'by water is

M = 4/i
3

.

The fluid weights are not actual weights but merely represent

the weight that must be possessed by a fluid which would exert

the same pressure against a wall as the material to which it cor-
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responds. The formulas for fluid pressure are more simple than

those in which a number of factors must be used, so the material

is assumed to act as a fluid having a weight per cubic foot very
much less than the actual weight of the material.

In Fig. 185 three problems in the design of lintels over open-

ings are shown. At A the lower opening is spanned by a lintel

which carries a load indicated by the shaded triangle, which is

equilateral. The reason this triangular load is carried is that

the brick work bond

will have strength
enough to assume a

form resembling an

arch. The bending
moment due to a tri-

angular load is

Fig. 185 Lintels over Openings
The point of the

arch over the lower

opening is below the bottom of the upper opening a depth equal

to, or greater than, one-fourth the span of the upper opening.
In the upper opening there is a lintel to carry the coping wall.

A sixty degree line drawn from each upper corner will intersect

the coping wah
1

;
therefore the lintel must be figured to carry all

the load above it, within the shaded area.

At B is shown another case. The sides of an equilateral tri-

angle will intersect the bottom of the upper opening so it is com-

mon to assume the sloping lines at the side to connect the corners

of the openings as shown. The triangle over the top of the upper

opening is more than one-fourth the span below the top of the

wall, so as some arch action can take place the lintel is assumed

to carry only the triangular portion of the wall. The author

would not so design the two lintels. The lintel over the bottom

opening would be designed to carry ah
1

the load between the

dotted vertical lines.

At C a similar condition is found. The lintel over the lowest

opening should be designed to carry all the load between two

vertical lines extended from the upper corners to the top of the

wall. It is not safe to assume the sloping form of the broken

wall opening unless there is a bridging across sufficient to form
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an arch. That is why the arch is not assumed to act unless the

wall across the break has depth enough to insure it acting as a

beam to span the opening.

In the three cases, therefore, the lower lintels must be designed

to carry the area of wall shown between the dotted lines, and the

lintels for the upper openings are designed to carry the small

shaded triangular areas at B and C and the rectangular area

shown at the top at A.

A few things pertaining to the design of buildings have not been

discussed because they are to be found in the steel and lumber

handbooks, without which no designer can work. With the

assistance of those books the student should have no difficulty

in handling all the ordinary problems arising in the design of

structures. It is hoped that the application of the MOMENT
has been treated so consistently throughout this book that the

student will have no difficulty in analyzing any problem that

may come up in his work.
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Accuracy in drawing, 237

Aids to computation, 81

Anchorage of cantilever beam, 60

Angular displacement of joint, 197

Axis, Neutral, in reinforced concrete,
72

Axis, Position of neutral, 63

B
Barlow's tables, 62

Bars and rods, table, 148

Bases, Built-up, 271

Bases, Cast steel, 271

Beam, cantilever, Load on, 10

Beam carrying several loads, ends

overhanging, 40

Beam carrying several loads, one

end overhanging, 40

Beam, definition, 23

Beam, Design of cast iron, 64

Beam on two supports, Bending
moment at any point, 21

Beam on two supports, Partially

distributed load, 24

Beam on two supports, Two equi-

distant concentrated loads, 25

Beam oa two supports, Uniform and

several concentrated loads, 20

Beam, Several loads on, 15

Beam truss, Hammer, 226

Beams and frames, 56

Beams and girders, Deflection in,

79

Beams, Belly-rod, 119

Beams, Breadth and depth of, 90

Beams, Buckling of, 101

Beams, Continuous, 49, 237

Beams, continuous, Maximum mo-
ment for, 50

Beams, Continuous, with uniform

moment of inertia, 13

Beams, Deflection in, 98

Beams, Lateral stiffness of, 101

Beams, Loads on overhanging, 37

Beams on a slope, 100

Beams on more than one support,

Computing reactions on, 14

Beams on two supports, Several con-

centrated loads, 20

Beams resting on two supports, 17

Beams, Restrained, 46

Beams, Riveting ends of, 47

Beams, Shear diagrams for, 107

Beams, Single strut, 119

Beams, Staying of, 101

Beams, Strength and stiffness of, 45

Beams, Tredgold's, Thos., rule for,

101

Beams, Twelvetree's, W. N., rule for,

90

Beams with uniform stress, 118

Bearing stress in wood, 139

Bearing stress in wood, Dewell's for-

mula, 140

Bearing stress in wood, Howe's for-

mula, 141

Bearing stress in wood, Jacoby's

formula, 141

Belgian truss, 214

Belly-rod beams, 119

Bending moment at any section of

beam, Rule for, 23

Bending moment, definition, 11

Bending moment for several loads on

beam, 33

Bending moment for uniformly dis-

tributed load on beam, 34

Bending moment on beam, Graphi-
cal solution of, 31

295
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Bending moment on beam on two

supports, 21

Bending moment on cantilever beam,
12

Bending moment, Rule for position

of maximum, 36

Bias and tanks, Curves for designing,

283

Bins and tanks, Square and rec-

tangular, 285

Bins, Hoppered bottoms in, 288

Bins or tanks, Friction of material

on walls of, 286, 287

Bins, Overturning moment in, 288

Bolts and fastenings in carpentry, 142

Bolts, Resistance of, 139

Books for study, 205

Bottom chord steel, Wooden truss,

162

Bowstring girders, Stresses in, 131

Bowstring trusses, 222

Braces in roof trusses, Stresses in,

132

Bracing, Diagonal, in tall buildings,

257

Bracket frame, construction, 59

Brackets and bases for columns, 269

Brackets and gusset plates, 259

Brick and stone laid in cement mor-

tar, 264

Brick and stone walls, Bottom width,
290

Brick stacks, Rule for thickness, 283

Buckling of beams, 101

Building frames, Moments and shears

in, 260

Building ordinances in America, 92

Buildings, Dead weight of, 261

Buildings, Loads on columns in, 261

Built-up lower chord design, 159

Built-up posts, Dewell's experiments,
242

Built-up steel bases, 271

Cambered tie rod, Truss with, 214

Canopy, Design of sidewalk, 59

Cantilever beam, Anchorage of, 6C

Cantilever beam, Bending moment

on, 12

Cantilever beam, Load on, 10

Cantilever beam, Moment for con-

centrated load on, 12

Cantilever beam, Resisting moment

on, 12

Cantilever footings, 277

Cantilever trusses, 235

Caps for wooden columns, 269

Carpentry, Bolts and fastenings in,

142

Carrying capacity of pins, 187

Cast iron beam design, 64

Cast iron lintel design, 64

Cast iron or steel ribbed column base,

270

Cast iron shoe, 175

Cast iron strength, 64

Cast steel bases, 271

Cement mortar, Stone and brick

laid in, 264

Center of gravity, Loads act through,

12

Center of gravity, Loads at, 12

Center of gravity of group of rivets,

200

Characteristic points, Fidler's

method, 238

Chimneys, Design of, 279

Chimneys, Stresses in, 280

Chimneys, Thickness of reinforced

concrete, 283

Column and wall footings, 266

Column bars, Attaching to footings,

275

Column base, Cast iron or steel

ribbed, 270

Column base, Eccentric loads on, 273

Column brackets and bases, 269

Column, Horizontal force acting

on, 275

Columns and girders, Contraflexure

point in, 258

Columns and girders, Moments in,

259

Columns and frames, Wind bracing

on, 256
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Columns and posts, Distinction be-

tween, 241

Columns and structures, 241

Columns, Area of floor served by

interior, 262

Columns, Caps for wooden, 269

Columns, Eccentric loads on, 253

Columns, Euler's formula, 243

Columns, Foundations under, 276

Columns, Gordon's formula, 243

Columns in buildings, Loads on, 261

Columns, Methods of fixing, 252

Columns, Rankine's formula, 243

Columns, Wrought iron, 251

Compound beams, 110

Compression pieces, Built-up, 163

Computation, Aids to, 81

Computing reactions, 18

Concentrated loads, 232

Concentrated loads on beams on

two supports, 20

Concrete beam, Moment of resist-

ance, 74

Connections and joists, 136

Construction of parabola, 28

Continuous beams, 237

Continuous beams, Maximum mo-
ment for, 50

Contraflexure point in columns and

girders, 258

Contraflexure, Point of, 41, 46

Counterforts in retaining walls, 291

Couple, definition, 63

Cover plates and stiffeners for plate

girders, 113

Cover plates, definition, 114

Cover plates, Proportioning, 117

Cracks in timber framework, 144

Crane loads on girders, 36

Crescent truss, 223

Curves for designing bins and tanks,

283

Dead load, definition, 10

Dead weight of buildings, 261

Deck truss, Pratt, 222

Deck truss, Warren, 220

Deflection formulas, 80

Deflection in beams and girders, 79,

98

Deformation, Ratio of, 71

Design of beams, Problems in, 85

Design of chimneys, 279

Design of floors, 88

Design of riveted joints, 192

Design of rods, 146

Design of tank towers, 277

Designers and salesmen, 54

Designing footings, 266

Designs for joints and fastenings, 143

Details for wood truss, 142

Dewell, H. D., Experiments of, 138

Diagonal bracing in tall buildings, 257

Distributed equivalent loads, 43

Distributed loads on footings, 262

Distribution of pressure on bearing

faces, 170

Dividing line into equal parts, 27

Double shear rivets, 191

Double strut belly-rod beam, 120

Drawing, Accuracy in, 237

Duchemin's formula for wind pres-

sure, 227

Eccentric loading, Flexure stress due

to, 254

Eccentric loads on column base, 273

Eccentric loads on columns, 253

Eccentric loads on footings, 271

Elastic limit, definition, 69

Employment of engineers, 55

End joint, Design of, 173

End stiffeners, 113

Engineers, Employment of, 55

Equivalent distributed loads, 43

Euler's straight-line formula, 246

Eye-bars, 186

F
Fabrication standards for steel, 195

Factor of safety, definition, 112

Fan trusses, 134

Faulty design, Effect of, on framed

structures, 196
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Fiber stresses in wood, 91, 164

Fiber stress of yellow pine, 104

Fink trusses, 134, 214

Fink truss problem, Wrigley's so-

lution, 217

Fish-plate splice, 153

Flexure in pins, formula, 186

Flexure stress due to eccentric load-

ing, 254

^Flitch plate girders, 111

Floor, Area of, served by interior

columns, 262

Floor, definition, 123

Floor, Description of laminated, 98

Floors, Design of, 88

Fluid weight, 291

Foot pounds, definition, 12

Footings, Attaching column bars to,

275

Footings, Cantilever, 277

Footings, Designing, 266

Footings, Distributed loads on, 262

Footings, Eccentric loads on, 271

Footings, Reinforced, 268

Footings, Wall and column, 266

Force, Triangles of, 62

Forces, Parallelogram of, 207

Forces, Polygon of, 208

Forces, Triangle of, 208

Formula for self-supporting steel

stacks, 282

Formulas, definition, 9

Foundations of water towers, 279

Foundations under columns, 276

Frame, stress at any point, 58,60

Framed structures, Effect of faulty

design, 196

Frames are forces, 56

Frames with inclined struts, 57

Free designing, 53

Friction in riveted joints, 189

Friction of material on walls of bins

or tanks, 285, 287

Girder, definition, 23

Girders and trusses, 102

Girders, Crane loads on, 36

Girders, Flitch plate, 111

Girders, Moving loads on, 34

Girders, Wheel loads on, 36

Graphical method for constructing

parabola, 31

Graphical method for finding wind
stresses and reactions, 229

Graphical methods for moment and
shear in beams, 14

Graphic statics, 207

Graphic statics, King truss forces by,

210

Graphic statics, Queen truss forces

by, 212

Gusset plates and brackets, 259

Hammer beam truss, 226

Hangers and stirrups, 293

Heel, Roof truss, 203

Hog back truss, 224

Hoppered bottoms in bins, 288

Horizontal force acting on column,
275

Horizontal shearing stresses, 75

Howe truss, Development of, 123

Impact, definition, 210

Inch and foot pounds, Moments in,

12

Inch pounds, definition, 12

Inclined reactions from wind, 228

Inertia, Moment of, 66

Inflection, Point of, 41, 46

Interior columns, Area of floor served

by, 262

Intermediate joints in trusses, 181

Intermediate joints, Methods of

framing, 182

Internal forces and resisting moment,
56

Internal forces, definition, 56

J

Joint, Angular Displacement of, 197

Joint details for trusses of wood, 142

Joints and fastenings, Designs for, 143
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Joints, definition, 23

Joints in trusses, Intermediate, 181

Joints in wood, Designing, 167

Joints, Locating, in trusses, 131

Joints, Riveted vs. pin connections,

185

Joists and connections, 136

Joists, End bearing of, 296

Joists, Design of reinforced, 102

Ketchum's recommendations for

snow load, 233

King truss, 132

King truss forces by graphic statics,

210

Knee brace connection, 204

Knuckle plate connection, 204

Lag screws, Resistance of, 138

Laminated floor, description, 98

Lateral deflection and eccentric load-

ing, 101

Lateral stays for steel beams, 101

Lateral stiffness of beams, 101

Lattice truss, 128

Length of spans, 13, 42

Lettering spaces in truss diagrams,

Mr. Bow's system, 130

Lever and moment, 11

Lewis and Morton's wooden high-

way bridge design, 162

Line, Dividing, into equal parts, 27

Lintel, Cast iron, design, 64

Lintels over openings, three designs,

292

Live load, definition, 10

Loading of columns, Conditions af-

fecting end, 252

Load on beam, Bending moment for

uniformly distributed, 34

Load on beam on two supports, Par-

tially distributed, 24

Load on cantilever beam, Moment
for concentrated, 12

Loads act through center of gravity,

12

Loads at center of gravity, 12

Loads, Effect of combining con-

centrated and uniformly distrib-

uted, 16, 25

Loads on beam, Bending moment
for several, 33

Loads on beam on two supports,
Two equidistant concentrated, 25

Loads on beam, Several, 15

Loads on columns in buildings, 261

Loads on columns, Johnson's for-

mula, 255

Loads on overhanging beams, 37

Loads on roofs, 135

Loads on span, Two unequal, 37

Lower chord, Built-up design, 159

Lower chord, Design of, 162

M
Machine driving, Rivet clearance for,

199

Maximum bending moment, Rule

for position of, 36

Maximum, minimum and reversed

stresses, 232

Maximum moment for continuous

beams, 50

Maximum shear on wooden beams,
97

Metal in steel stacks, Thickness of,

233

Methods of fixing columns, 252

Methods of framing intermediate

joints, 182

Mill-constructed building, 104

Modulus of elasticity, definition, 70

Modulus of rupture, 78

Moisture in woodwork joints, 144

Moment and shear in beams, Graphi-
cal methods for, 14

Moment and shear, Relation between,

15,42
Moment curve for plate girders, 116

Moment for concentrated load on

cantilever beam, 12

Moment, Importance of principles of,

11

Moment of inertia, 66
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Moment of inertia, Continuous beams

with uniform, 13

Moment of inertia, Method of finding,

66

Moment of resistance defined, 62, 65

Moment of resistance of concrete

beam, 74

Moments and shears in building

frames, 260

Moments, definition, 10

Moments in columns and girders, 259

Moments in inch and foot pounds,
12

Moments on continuous beams,
Church's method, 238

Moments on continuous beams, Du
Bois' method, 238

Moments on continuous beams, Fid-

ler's method, 238

Moments, Unbalanced, 53

Moving loads on girders, 34

Nails, Resistance of, 106, 138

National Lumber Manufacturers'

Association, 80

Neutral axis in reinforced concrete,

72

Neutral axis, Position of, 63

Neutral plane, definition, 62

Ordinate method for constructing

parabola, 30

Overturning moment in bins, 288

Parabola, Construction of, 28

Parabola, Graphical method for con-

structing, 31

Parabola, Ordinate method for con-

structing, 30

Parallelogram of forces, 207

Pearson's formula for wind pressure,

227

Pin connections, 185

Pin joints, Design of, 186

Pins, carrying capacity, 187

Plate connection, Knuckle, 204

Plate girder flanges, Spacing of rivets

in, 115, 117

Plate girders, Cover plates and stif-

feners for, 113

Plate girders, Design of, 112

Plate, steel, Table of, 150

Point of contraflexure, 41, 46

Point of inflection, 41, 46

Point of reverse moment, 41, 46

Polygon of forces, 208

Portland Cement Association, 74

Posts and columns, Distinction be-

tween, 241

Pratt deck truss, 222

Pratt through truss, 221

Pratt truss, Development of, 121

Pressure against retaining walls, 289

Problems in design of beams, 85

Proportioning struts or compression

members, 252

Purlins, definition, 23

Pythagoras, Rule of, 57

Queen truss, 132

Queen truss forces by graphic statics,

212

Radii of gyration, Approximate, 245,

250

Reactions and wind stresses, Graphi-
cal method for finding, 229

Reactions for continuous beams, 52

Reactions on supports, 13

Rectangular reinforced concrete

beams, formula, 74

Reinforced concrete beams, 71

Reinforced concrete beams, Failure

in diagonal shear of, 77

Reinforced concrete chimneys, Thick-

ness of, 283

Reinforced concrete design, Slide

rules for, 81

Reinforced concrete footings, 268

Reinforced concrete, Neutral axis in,

72
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Reinforced concrete retaining wall,

290

Reinforced joists, Design of, 102

Reinforcing planks, Length of, 106

Relation between moment and shear,

15, 42

Resistance, Development of mo-

ment of, 65

Resistance, Moment of, defined, 63

Resistance of lag screws, 138

Resistance of nails, 106, 138

Resistance of wood screws, 138

Resisting forces, Action of, 56

Resisting moment and internal forces,

56

Resisting moment, definition, 1 1

Resisting moment on cantilever beam,
12

Restrained beams, 46

Retaining wall tied at top and bottom,
291

Retaining wall, Reinforced concrete,

290

Retaining walls and tanks, 283

Retaining walls, Counterforts in, 291

Retaining walls, Pressure against, 289

Reverse moment, Point of, 41, 46

Rivet clearance for machine driving,

199

Rivet spacing, Standards for, 195

Rivets, and riveting, 188

Rivets, Double shear, 191

Rivets, Finding center of gravity of

group of, 200

Rivets in metal, 106

Rivets in plate girder flanges, Spac-

ing, 115, 117

Rivets, Shearing and bearing value

of, table, 190

Riveted connections, 185

Riveting ends of beams, 47

Riveted joints vs. pin connections,

185

Rivets, Single shear, 191

Rivets, Table of, 190

Rivets, Strength of, 190

Rods, Design of, 146

Rods and bars, table, 148

Roof, curved, Wind on, 234

Roof loads, 135

Roof truss heel, 203

Roof trusses, Stresses in, 132

Roof trusses, Tables of stresses, 229

Rule for bending moment at any
section of beam, 23

Rule for locating point of zero shear,

36

Rule for position of maximum bend-

ing moment, 36

Rule of Pythagoras, 57

Rupture, Modulus of, 78

S

Safety, Definition of factor of, 12

Scissors truss, 225

Screw end bars, table, 147

Secondary stresses in framed struc-

tures, 196

Section modulus, definition, 66

Section modulus for T-sections,

Method of finding, 66

Shear and moment, Relation be-

tween, 15, 42

Shear, definition, 14

Shear diagrams for beams, 107

Shear in wooden beams, 78

Shear, zero, Rule for locating point

of, 36

Shearing and bearing value of rivets,

table, 190

Shear-pin splice, 155

Shearing resistance, 75

Shearing stresses, horizontal, 75

Shearing stress in steel, 75

Shears and moments in building

frames, 260

Shed roof truss, 224

Shop-driven rivets, 189

Sidewalk canopy design, 59

Signs used for stresses, 135

Single shear rivets, 191

Single strut beams, 119

Slide rules, 81

Slide rules for reinforced concrete

design, 81

Slope, Beams on, 100
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Smoley's tables for structural de-

signers, 62

Snow load, Ketchum's recommenda-

tions, 233

Span, Length of, 42

Span, Two unequal loads on, 37

Specifications for structural steel, 195

Spikes, see Nails, 106

Splice, shear-pin, 155

Stacks, brick, Rule for thickness, 283

Stair and rafter stringers, 100

Standards for rivet spacing, 195

Standards for steel work, 195

Statics, Graphic, 207

Steel beams, Lateral stays for, 101

Steel column formula used in the

United States, 248

Steel handbooks, 85, 87

Steel plate, Table of, 150

Steel salesmen designers, 54

Steel, Shearing stress in, 75

Steel stacks, Formula for self-sup-

porting, 282

Steel work, Standards for, 195

Stiffness of wood beams, 101

Stirrups and hangers, 93

Stirrup sizes and capacities, table, 96

Stone and brick laid in cement mor-

tar, 264

Stone and brick walls, Bottom width,

290

Straight-line formula, Euler's, 246

Straight-line formula, Winslow's, 242

Strength and stiffness of beams, 45

Stress at any point in frame, 58, 60

Stress in water towers, 278

Stress strain diagram, 69

Stresses in bowstring girders, 131

Stresses in braces in roof trusses, 132

Stresses in chimneys, 280

Stresses in roof trusses, 132

Stresses in towers, 277

Stresses in trusses, 124

Stresses in Warren truss, 128

Stresses, Secondary, in framed struc-

tures, 196

Stresses, Secondary, in wooden

3, 183

Stresses, Signs used for, 135

Stringers, Stair and rafter, 100

Structural steel, Specifications for,

195

Structure, definition, 9

Structures and columns, 241

Struts or compression members, Pro-

portioning, 252

Stub tabled fish-plate joint, 158

Supports, Beams resting on two, 17

Tabled fish-plate splice, 156

Tables of stresses for roof trusses, 229

Tank, iron and steel, table, 149

Tank tower design, 277

Tank walls, Weight against, 287

Tanks and bins, Curves for design-

ing, 283

Tanks and bins, Square and rectan-

gular, 285

Tanks and retaining walls, 283

Tension in rivets, 189

Three-moment theorem, 238

Through truss, Pratt, 221

Through truss, Warren, 220

Tie and strut, Design of combined,
153

Timber framework, Cracks in, 144

Timbers, Working value of, 139

Top chords of trusses, Making joints

for, 162

Towers, Stresses in, 277

Tredgold's, Thos., rule for beams, 101

Triangle of forces, 208

Triangle the strongest frame, 56

Triangles of force, 62

Truss a skeleton beam, 121, 125, 126

Truss, Crescent, 223

Truss, Hog back, 224

Truss, Lattice, 128

Truss, Scissors, 225

Truss, Shed roof, 224

Truss with cambered tie rod, 214

Truss with subvertical and sub-

diagonal ends, 127

Trussed beams, 118

Trusses and girders, 102
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Trusses, Cantilever, 235

Trusses, Coefficient for, 122, 123

Trusses, definition, 121

Trusses, Intermediate joints in, 181

Trusses, Locating joints in, 131

Trusses of wood, Details for, 142

Trusses, Ratio of depth to span in,

130

T-sections, Method of finding section

modulus, 66

Twelvetree's, W. N., rule for beams, 90

Unbalanced moments, 53

Unequal loading, 218

Uniform and concentrated loads on

beam on two supports, 20

Uniform stress in beams, 118

United States, Steel column formula

used in, 248

Unit moment of resistance, 74

Unit shear, 75

Upper chord, Design of, 162

Vertical shearing stresses, 75

W
Wall and column footings, 266

Walls of bins or tanks, Friction of

material on, 285, 287

Warren deck truss, 220

Warren through truss, 220

Warren truss, Stresses in, 128

Washers, Design of, 150

Water towers, Foundations of, 279

Water towers, Stress in, 278

Weight against tank walls, 287

West Coast Lumbermen's Associa-

tion, 80

Wheel loads on girders, 36

Wind, Action of, 10

Wind bracing on columns and frames,
256

Wind force, 227

Wind, Inclined reactions from, 228

Wind on a curved roof, 234

Wind pressure, Duchemin's formula,
227

Wind pressure, Pearson's formula,
227

Wind stresses and reactions, Graphi-
cal method for finding, 229

Winslow's straight-line formula, 242

Wood beams, Stiffness of, 101

Wood, Deflection of, 49

Wood, Fiber stresses in, 91

Wood screws, Resistance of, 138

Wood ties in framework, 138

Wood truss details, 142

Wooden beams, Maximum shear on,

97

Wooden beams, Shear in, 78

Wooden beams, Strength in shear,

formula, 78

Wooden highway bridge, design of

H. C. Lewis and E. R. Morton, 162

Wooden trusses, Secondary stresses

in, 183

Wrigley's Fink truss problem, 217

Wrought iron columns, 251

Yellow pine, Fiber stress of, 104

Yellow Pine Manufacturers' Associa-

tion, 80

Zero shear, Rule for locating point

of, 36
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