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PREFACE

THIS book has been planned to supply the needs of practi-

cing engineers who may have problems in estimating, designing

or constructing suspension bridges, and of students who wish to

prepare themselves for work in this field. The aim has been to

produce an up-to-date, practical handbook on the subject, dis-

tinguished by simplicity of treatment and convenience of appli-

cation.

In the first division, on Stresses in Suspension Bridges, the

formulas have been corrected to conform to modern practice,

and reduced to their simplest and most convenient form for

direct application by the designing engineer. The formulas are

supplemented by curves for their expeditious solution, and by
alternative graphical methods for determining stresses.

The second division, on Types and Details of Construction,

presents data and illustrations to assist the designing engineer

in the selection of type of suspension bridge and in the determina-

tion of proportions, specifications, and details for the various

elements of suspension construction.

The third division, on Typical Design Computations, gives

numerical examples of suspension designs of different types

worked out by methods that have proved most efficient in the

author's practice. The designing engineer will find here the

formulas to be used in each successive step of the design, and

the practical methods of applying them, with tabulations, graphs

and short-cuts.

The fourth division, on Erection of Suspension Bridges,

describes and illustrates the successive stages in the erection of

representative structures, from towers to trusses. The opera-

tions of stringing wire cables are presented in detail, with an

outline of the computations for adjustment and control.

iii



iv PREFACE

Methods of erecting eyebar chains and other types are also de-

scribed and illustrated.

The Appendix presents a series of design charts, specially

devised for this book, for the expeditious proportioning of suspen-

sion bridges. These charts give quickly and accurately the

governing stresses throughout any span, saving the time and

labor of applying the stress formulas otherwise required.

The author desires to express his indebtedness to his associate,

Mr. Hoiton D. Robinson, for reviewing the manuscript on

Erection; and to the Department of Plant and Structures of

New York City for many courtesies extended.

D. B. STEINMAN.
NEW YORK CITY

August i, 1922.
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A PRACTICAL TREATISE
ON

SUSPENSION BRIDGES
THEIR DESIGN, CONSTRUCTION AND ERECTION

CHAPTER I

STRESSES IN SUSPENSION BRIDGES

SECTION I. THE CABLE

1. Form of the Cable for Any Loading. If vertical loads

are applied on a cable suspended between two points, it will

assume a definite polygonal form determined by the relations

between the loads (Fig. id).

The end reactions (Ti and T%) will be inclined and will have

horizontal components H. Simple considerations of static

equilibrium show that H will be the same for both end reactions,

and will also equal the horizontal component of the tension in

the cable at any point. H is called the horizontal tension of the

cable

Let M' denote the bending moment produced at any point

of the span by the vertical loads and reactions, calculated as for

a simple beam. Since H, the horizontal component of the end

reaction, acts with a lever-arm y t
the total moment at any point

of the cable will be
M =M'-H-y (i)

This moment must be equal to zero if the cable is assumed to be

flexible. Hence,
M'=H-y, V. . . (2)
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v

*' p

and

(3)

Equation (3) gives the ordinates to the cable curve for any

loading, if the horizontal tension H is known. Since H is con-

stant, the curve is simply the bending moment diagram for the

applied loads, drawn to the proper scale. The scale for con-

FIG. i. The Cable as a Funicular Polygon.

strutting this diagram is determined if the ordinate of any point

of the curve, such as the lowest point, is given. If / is the sag

of the cable, or ordinate to the lowest point C, and if Mc is the

simple-beam bending moment at the same point, then H is

determined from Eq. (2) by McH=7 (4)

To obtain the cable curve graphically, simply draw the

equilibrium polygon for the applied loads, as indicated in Fig. i
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(a, b). The pole distance H must be found by trial or computa-
tion so as to make the polygon pass through the three specified

points, Aj B, and C. The tension T at any point of the cable

is given by the length of the corresponding ray of the pole dia-

gram. H, the horizontal component of all cable tensions, is

constant. By similar triangles, the figure yields

*

T=S~=H- SeC 4>...... (S)

where <f> is the inclination of the cable to the horizontal at any

point. It should be noted that the tensions T in the successive

members of the polygon increase toward the points of support

and attain their maximum values in the first and last members

of the system.

If Vi is the vertical component of the left end reaction, the

vertical shear at any section x of the span will be

(6)

This will also be the vertical component of the cable tension at

the same point. By similar triangles,

(7)

(This relation is also obtained by differentiating both members

of Eq. 2). Combining Eqs. (6) and (7), we may write

-
(8)sr ~s~-

If the loads are continuously distributed, the funicular poly-

gon becomes a continuous curve. If w is the load per horizontal

linear unit at any point having the abscissa x, Eq. (8) becomes
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from which (by differentiation) we obtain the following as the

differential equation of the equilibrium curve:

d?y w , .

For any given law of variation of the continuous load w
y

the integration, of Eq. (10) will give the equation of the curve

assumed by the cable.

2. The Parabolic Cable. For a uniform distributed load,

the bending moment diagram is a parabola. Consequently, by

Eq. (3), if a cable carries a uniform load (w per horizontal linear

unit), the resulting equilibrium curve will be a parabola.

The maximum bending moment in a simple beam would be

M Wl2Mc=~-.

Substituting this value in Eq. (4), the horizontal tension is deter-

mined :

To obtain the equation of the curve, integrate Eq. (10).

With the origin of coordinates at the crown, the integration

yields
wx2

, N

y = ^H
........

.
'.<">

Substituting the value of H from Eq. (u), we obtain the equa-
tion of the parabola,

x2

If the origin of coordinates is taken at one of the supports

(as Aj Fig. i), the equation becomes,

(14)

The maximum tension in the cable, occurring at either sup-

port, will be
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or, by Eq. (n),
wl2 / 75- ( xTi= Vi + i6n2

, (15)
J

where n denotes the ratio of the sag/ to the span /:

Equation (15) may also be derived from Eq. (5) by noting that

the inclination of a parabolic cable at the support is given by,

tan</>i=^
=

4tt. . . . . . (17)

To find the length of the cable, Z,, use the general formula,

Substituting the value of obtained from Eq. (13), we have,

L =

which yields, upon integration,

/
-
log, [4n+(i+ i6n2)*]. . (20)

2 tin

This formula gives the exact length of the parabola between two

ends at equal elevation.

For more expeditious solution, when a good table of hyper-

bolic functions is available, Eq. (20) may be written in the form

L = - (2+sinh 2w), (20')
IOW

where u is defined by sinh u = qn.

An approximate formula for the length of curve may be

obtained by expanding the binomial in Eq. (19) and then inte-

grating. This gives,

. ), ... (21)
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where n is defined by Eq. (16). For small values of the sag-

ratio n, it will be sufficiently accurate to write,

Z, = /(i+frc
2
), . . . . . . (22)

for the length of a parabolic cable in terms of its chord /.

The following table gives the values of L as computed by

Eqs. (20) and (21), respectively.

, -
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If it is desired to refer the curve to the horizontal line AD,
with which the closing chord makes an angle a, the equation

becomes,

/ = >>+ tan a = 4^(/ x)+x-t&na. . . . (23)

To find the lowest point in the curve, located at F, a little to one

side of the center, differentiate Eq. (23) and place the result

equal to zero. Solving for x, we obtain,

7-tanaj
(24)

To find the exact length of the curve, apply Eq. (20) to the

segments VA and VB (Fig. 2), treating each of these segments
as one-half of a complete parabola, and add the results.

An extreme case of the unsymmetrical parabolic curve occurs

in the side-span cables of suspension bridges. Using the nota-

tion shown in Fig. 3, the equation of the curve may be written

in the same way as Eq. (14),

4/1*1

/i
2 (25)

Here, again, y\ and /i are measured vertically from the closing

chord, and x\ and l\ are

measured horizontally.

The true vertex of the

curve or lowest point, F,

will generally be found,

by an equation similar to

Eq. (24), to be outside

point D (Fig. 3). The

exact length of curve will

be VA - VD, or the differ-

ence between two semi-

parabolas each of which

may be calculated by Eq. (20).

An approximate value of the length may be obtained by

I 4 ,

FIG. 3. Parabolic Cable in Side Span.
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taking the closing chord. AD =
li-secai, and adding the para-

bolic curvature correction as in Eq. (22). This will yield

T 7 / ,

8 Wi
2 \

LI = /il sec i+ I, .... (26)

where

wi=-^.
. . . . . (27)

The cable tension in the side span acts in the line of the closing

chord AD (Fig. 3) and is designated by

(28)

Since the lever arms y\ are vertical, they must be multiplied by
the horizontal component of HI, or H, to obtain the bending
moments produced by this force. Hence, as in Eq. (2), we have,

M' = H- yi , ... .

:

. .

|t
(29)

and, as in Eq. (n), we obtain,

( \

(30)

In order that the main and side spans may have equal values

of H, by Eqs. (n) and (30), we have,

Wl2 Will
2

Hence the necessary relation between the sags is

The stress at any point in the cable is given by Eq. (5),

which may be rewritten as

(33)

At the center of the side span, where x\ = ,
the curve is parallel
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to the chord, and the inclination is equal to a\\ hence, at that

point

!)*......
"

(34)

At the support, where x\ = o, the inclination of the cable is given

by

tan </>!
= tan i +4^, ..... (35)

/i

and formula (33) yields

,
. . . (36)

which is the maximum stress in the cable.

4. The Catenary. If the load w is not constant per hori-

zontal unit, but per unit length of the curve, as is the case where

the load on the cable is due to its own weight, Eq. (10) takes the

form,
d2 w sec

Since tan = ^ Eq. (37) may be written,

..... (38)

Integrating this equation, taking the origin at the lowest point

of the curve, we obtain the equation of the cable curve:

y=-
c
(e

cx
+e-<*-2), ..... (39)

w
where c = .

H
This is the equation of a catenary; a cable under its own

weight hangs in a catenary.

Replacing the exponential terms by hyperbolic functions,

Eq. (39) may be written,

i)....... (40)
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To find the length of the catenary, substitute
-j-

obtained
doc

from Eq. (39) in Eq. (18). This gives

e- cx
)dx = -(e^-e~^). . . . (41)

Expressed in hyperbolic functions, Eq. (41) may be written,

T 2 . , Cl f \
Z, =-smh ....... (42)

C 2

Equations (40) and (42) are useful in computations for the

guide wires employed for the regulation of the strands in cable

erection. If the length L is known, Eq. (42) may be solved for

the parameter c, by a method of successive approximations, and

the ordinates may then be obtained from Eq. (40). For the

expeditious solution of these equations, good tables of hyperbolic

functions are required.

If the integration in Eq. (41) is performed between the limits

and x, and the value of y substituted from Eq. (39), we obtain,

(43)

as a formula for the length from the vertex to any point of the

curve. Equation (43) may be used for unsymmetrical catenaries.

The stress at any point in the cable is again given by Eq. (5),

or,

> -

r-*.| ._. . . . . (44)

Since H = -, Eq. (44) may be written:

"HDT
Substituting the value of -~ derived from Eq. (39), we obtain,

(45)
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Replacing the exponential by hyperbolic functions, Eq. (45)

becomes,

T = H-coshcx. . '-.. .

'

f . . (46)

This tension will be a maximum at the ends of the span, where

-, yielding,

-. . . . . . . (47)

Comparing Eqs. (40) and (46), we find,

T =w(y+-\=wy+H . ... (48)

At the span center, where y = o, this gives T= H\ and at the

supports, where y =/, we obtain,

.,- . . r . . , . (49)

If the sag-rat'o (^
=
7) is small, all of the formulas for the

V */

catenary may be replaced, with sufficient accuracy, by the

formulas for parabolic cables.

5. Deformations of the Cable. As a result of elastic elon-

gation, slipping in the saddles, or temperature changes, the

length of cable between supports may alter by an amount AZ,;

as a result of tower deflection or saddle displacement, the span

may alter by an amount A/. Required to find the resulting

changes in cable-sag, A/.

For parabolic cables, the length is given with sufficient

accuracy by Eq. (21). Partial differentiation of that equation
with respect to / and /, respectively, yields the two relations :

8w4)-A/, . .- . (50)

/. . . .... (51)

From Eqs. (50) and (51), there results,

it 15 4ow
2+288w4

.,
A =- 'A
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The required center deflections may be calculated by means of

Eqs. (51) and (52) when AL and A/ are known.

For a change in temperature of / degrees, coefficient of expan-
sion a), the change in cable-length will be,

AZ = to-/-L. ..... (53)

For any loading which produces a horizontal tension H, the

average stress in the cable will be, very closely,

L
jjrs>

and the elastic elongation will be,

L HL
(54)

where E is the coefficient of elasticity and A is the area of cross-

section of the cable.

Another expression for the elastic elongation is

H CL ds2 HI

For a small change in the cable-sag A/, the resulting change
in the horizontal tension is obtained by differentiating Eq. (12):

From Eqs. (56), (51) and (52), may be found the deformations

of the cable produced by any small change in the cable stresses.

SECTION IL UNST.IFFENED SUSPENSION BRIDGES

6. Introduction. The unstiffened suspension bridge is not

used for important structures. The usual form, as indicated in

Fig. 4, consists of a cable passing over two towers and anchored

by back-stays to a firm foundation. The roadway is suspended

from the cable by means of hangers or suspenders. As there is

no stiffening truss, the cable is free to assume the equilibrium

curve of the applied loading.
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7. Stresses in the Cables and Towers. If built-up chains

are used, as in the early suspension bridges, the cross-section

may be varied in proportion to the stresses under maximum

loading. In a wire cable, the cross-section is uniform through-

out.

As the cable and hangers are light in comparison with the

roadway, the combined weight of the three may be considered

as uniformly distributed along the horizontal. Let this total

dead load be w pounds per lineal foot. The cable will then

assume a parabolic curve; and all of the relations derived for a

parabolic cable, represented by Eqs. (n) to (22), will apply.

--S, **r

FIG. 4. Unstiffened Suspension Bridge.

The maximum dead-load stress in the cable, occurring at the

towers, is given by Eq. (15) :

where n is the ratio of the sag / to the span /.

Let there be a uniform live load of p pounds per lineal foot.

The maximum cable stress will evidently occur when the load

covers the whole span, and will have a value,

(57)

Adding the values in Eqs. (15) and (57), we find the total stress

in the cable at the towers:

w2)
K ... ;. ; (S8)
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If ai is the inclination of the backstay to the horizontal

(Fig. 4), the stress in the backstay will be:

ec*: . . (59)

If cable and backstay have equal inclinations at the tower,

their stresses, represented by Eqs. (58) and (59), will be equal.

The vertical reaction of the main cable at the tower is

(w+p)l/2. If the backstay has the same inclination as the

cable, it will also have the same vertical reaction; so that the

total stress in the tower will be,

T=(w+p)-l. . . . . ,.' (60)

8. Deformations under Central Loading. Under partial

loading, the unstiffened cable will be distorted from its initial

parabolic curve. It is re-

quired to find the deflections

produced by the change of

curve, disregarding for the

present any stretching of the

cable or any displacement of
FIG. 5. Loading for Maximum Vertical .

Deflection.
the saddles.

The maximum vertical de-

flection at the center of the cable will occur when a certain

central portion of length kl is covered with live load (/>), in

addition to the dead load (w) covering the whole span (Fig. 5).

The sag of the distorted cable will be, by Eq. (3),

r-S+S-*-* *>

Equating the expressions for the cable-length corresponding

to the initial and distorted conditions, respectively, the lengths

being obtained from the approximate equation (22), and intro-

ducing the symbol q p/w, we obtain:

. (62)
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Solving this equation for H, and substituting in Eq. (61), there

results:

/ =_i + 2qk-qk
2

f
(

.

By differentiating this expression with respect to k, we obtain

the following condition for a maximum value of /' :

k*(i+ 2q)q+2k*(i-q)q+3k
2
(i-q) -46+ 1=0. . (64)

Solving this equation for k and substituting the result in Eq. (63),

we obtain the following values for the maximum crown deflection

For q = -!-= o
w i

6=1.0
'

0.64 0.30 0.28 O.25 0.23 0.21

A/= o .013 .022 .028 .045 .067 .oSo/

From this tabulation we may obtain the following empirical

values, sufficiently accurate between the limits q
= = - to 4:w 4

(65)

A/= (o . 007+o . 046*7 o . oo75<?
2
)/

9. Deformations under Unsymmetrical Loading. The great-

est distortion of the cable

from symmetry, repre-

sented by the maximum
horizontal displacement of

the low point or vertex,

will be produced by a

continuous uniform load

FIG. 6. Maximum Horizontal Displacement
of the Crown.

extending for some dis-

tance kl from the end of

the span. (Fig. 6.)

Applying the principle of Eq. (3), the lowest point of the

cable curve is located by the condition ~j~ =0 5 accordingly,
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with the notation of Fig. 6, so long as the crown V is to the left

of the head of the load (E),

-(l-2x)^pm = o. . . V . (66)
2

Inspection of this equation shows that x will have its maximum
value when k has its maximum value; that is, when kl = l x\

in other words, the greatest lateral displacement occurs when

the head of the moving load reaches the low point, V. Substi-

tuting this value in Eq. (66), we obtain:

-f
(67)

Hence the maximum deviation of the crown (V) from the center

of the span (c), will be (Fig. 6),

w w , .

+F
The total sag of the cable is practically invariable for all

ordinary values of p/w. Consequently, the uplift of the cable

at the center of the span will amount to

We thus obtain the following values:

For ^= I <<
i

*
2 3w 4 3 2 3

=.028 .036 .051 .086 .105 .134 .167 .

A/= .003 .004 .008 .021 .030 .045 .062 .oy6/

10. Deflections Due to Elongation of Cable. The total

length of cable, including the backstays (Fig. 4), is, by Eq. (21),

.' . . (70)

For a change in temperature of t degrees, the total elongation

of cable will be
. . . V. . , (71)
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For the elongation of the cable due to elastic strain, we may
write, by Eq. (55),

sec2 <* 1 ]. . , (72)

In addition there may be a contribution to AZ, from yielding of

the anchorages.

If the cable is capable of slipping over the fixed saddles, the

resulting deflection A/ is obtained by substituting the above

values of AL in Eq. (51).

If, however, a displacement of the saddles or a movement of

the tops of the towers will occur before the cable will slip, any

elongation of the backstays will alter the span (/), but not the

length (L), of the cable in the main span. In that case, the

combined effects of temperature and elastic strain will give:

(73)

and
/ 777 \

A/= 2 sec ! /w//i -sec 0:1+-= ^- sec2
ij

. . (74)

Substituting these values of AL and A/ in Eqs. (51) and (52),

respectively, we obtain the resulting deflection (A/) of the main

cable:

., 15 Ar 15 4ow
2+288w4

A
, .- ^ ' (7S)

If a displacement of the saddles (A/) is accompanied by a

slipping of the cable, so that the total length of the latter between

anchorages (Fig. 4) remains unchanged, then the changes in

length and span of the main cable must satisfy the relation

AL = A/-cosai...... (76)

Substituting these values in Eq. (75), the crown deflection

becomes,

1 5 cos <*i
-

(i 5
- 4on

2+ 288 4
) .

(
.

A/=
16(511

- 8
' ' (77)
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SECTION III. STIFFENED SUSPENSION BRIDGES

11. Introduction. In order to restrict the static distortions

of the flexible cable discussed in the preceding pages, there is

introduced a stiffening truss connected to the cable by hangers

(Figs. 7, 15, 16). The side spans may likewise be suspended
from the cable (Figs. 10, n, 18), or they may be independently

supported; in the latter case the backstays will be straight

(Figs. 15, 1 6, 20). The main-span truss may be simply sup-

ported at the towers (Figs, n, 16), or it may be built continuous

with the side spans (Figs. 18, 20). A hinge may be introduced

at the center of the stiffening truss in order to make the struc-

ture statically determinate (Fig. 8), or to reduce the degree of

indeterminateness.

Another form of stiffened suspension bridge is the braced-

chain type. This type does not make use of the straight stiffen-

ing truss suspended from a cable; instead, the suspension system
itself is made rigid enough to resist distortion, being built in the

jforrn
of an inverted arch (Figs. 21, 22, 23, 24).

For ease of designation, it will be convenient to adopt a sym-
bolic classification of stiffened suspension bridges, based on the

number of hinges in the main span of the truss, as tabulated on

page 19.

In types 2F and 3F, the side spans are not related to the main

elements of the structure and may therefore be omitted from con-

sideration. Hence these types are called
"
single-span bridges."

The suspension bridges with straight stiffening trusses will

be analyzed first.

12. Assumptions Used. In the theory that follows, we

adopt the assumption that the truss is sufficiently stiff to render

the deformations of the cable due to moving load practically

negligible; in other words, we assume, as in all other rigid

structures, that the lever arms of the applied forces are not

altered by the deformations of the system. The resulting

theory is the one ordinarily employed, and is sufficiently accu-

rate for all practical purposes; any errors are generally small

and on the side of safety.
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horizontal, of constant moment of inertia and tied to the cable

throughout its length.

3. The dead load of truss and cable is assumed uniform per

lineal unit, so that the initial curve of the cable is a parabola.

/vvvvvvvvv

V

*r ->^P

FIG. 7. Forces Acting on the Stiffening Truss.

4. The form and ordinates of the cable curve are assumed to

remain unaltered upon application of loading.

5. The dead load is carried wholly by the cable and causes
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no stress in the stiffening truss. The truss is stressed only by
live load and by changes of temperature.

The last assumption is based on erection adjustments, involv-

ing regulation of the hangers and riveting-up of the trusses when

assumed conditions of dead load and temperature are realized.

13. Fundamental Relations. Since the cable in the stiffened

suspension bridge is assumed to be parabolic, the loads acting

on it must always be uniform per horizontal unit of length. All

of the relations established for a uniformly loaded cable (Eqs. (n)
to (36), inclusive) will apply in this case.

If the panel points are uniformly spaced (horizontally), the

suspender forces must be uniform throughout (Fig. 7). These

suspender forces are loads acting downward on the cable, and

upward on the stiffening truss. It is the function of the stiffen-

ing truss to take any live load that may be arbitrarily placed

upon it and distribute it uniformly to the hangers.

The cable maintains equilibrium between the horizontal ten-

sion H (resisted by the anchorages) and the downward acting

suspender forces. If these suspender forces per horizontal linear

unit are denoted by s, they are given by Eq. (n) as

The truss (Fig. 7) must remain in equilibrium under the

arbitrarily applied loads acting downward and the uniformly
distributed suspender forces acting upward. If we imagine the

latter forces removed, then the bending moment M' and the

shear V at any section of the truss, distant x from the left end,

may be determined exactly as for an ordinary beam (simple or

continuous according as the truss rests on two or more supports) .

This moment and shear would be produced if the cable did not

exist and the entire load were carried by the truss alone. If

M8 represents the bending moment of the suspender forces at

the section considered, then the total moment in the stiffening

truss will be

M=M'-M.. .... . (79)
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Similarly, if Vs represents the shear produced by the suspender
forces at the same section, the total shear in the stiffening truss

will be

V=V'-V...... . . (80)

Equations (79) and (80) are the fundamental formulas for

determining the stresses in any stiffening truss. By these

formulas, the stresses can be calculated for any given loading

as soon as the value of H is known.

The dead load is assumed to be exactly balanced by the

initial suspender forces, so that it may be omitted from considera-

tion in these equations.

In calculating M' and V from the specified live load, and

Ms and Vs from the uniform suspender loading given by Eq. (78),

the condition of the stiffening truss as simple or continuous must

be taken into account.

If the stiffening truss is a simple beam (hinged at the towers),

by a familiar property of the funicular polygon, represented by

Eq. (2),

Ms
= H.y, . , . -. . .. (81)

where y is the ordinate to the cable curve measured from the

straight line joining A' and B'
',
the points of the cable directly

above the ends of the truss (Fig. 7). Consequently, Eq. (79)

may be written,
M = M'-H-y. . . . . ...-. (82)

which is identical with equation (i). (In the unstiffened

suspension bridge, M =
o.)

If 4> is the inclination of the cable at the section considered,

the shear produced by the hanger forces is given by Eq. (7) as,

..... v (83)

Consequently, Eq. (80) may be written

F=F'-#-tan0..... (84)

If the two ends of the cable, A' and B 1

',
are at unequal elevations

(Fig. 7) , Eq. (84) must be corrected to the form,

V = V'-H (tan
- tan a) , (84')
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where a is the inclination of the closing line A'E' below the

horizontal.

In Eqs. (82), (84) and (84'), the last term represents the

relief of bending moment or shear by the cable tension H.

Representing Mf

by the ordinates y
f

of an equilibrium polygon
or curve, constructed for the applied loading with a pole distance

= H, Eq. (82) takes the form,
/

M = H(y'-y) (85)

Hence the bending moment at any section of the stiffening

truss is represented by the vertical intercept between the axis

of the cable and the equilibrium polygon for the applied loads

drawn through the points A'B' (Fig. 7).

If the stiffening truss is continuous over several spans, the

relations represented by Eqs. (81) to (85), inclusive, must be

modified to take into account the continuity at the towers.

The corresponding formulas will be developed in the section on

continuous stiffening trusses (Section VI).

14. Influence Lines. To facilitate the study and determina-

tion of suspension bridge stresses for various loadings, influence

diagrams are most convenient.

The base for all influence diagrams is the #-curve

or ^-influence line. This is obtained by plotting the equations

giving the values of H for varying positions of a unit concentra-

tion. In the case of three-hinged suspension bridges, the ^-influ-

ence line is a triangle (Figs. 8 and 9) . In the case of two-hinged

stiffening trusses, the /7-lines (Figs, n, 14) are similar to the

deflection curves of simple beams under uniformly distributed

load. In the case of continuous stiffening trusses, the #-line

(Fig. 18) is similar to the deflection curve of a three-span con-

tinuous beam covered with uniform load in the suspended

spans.

To obtain the influence diagrams for bending moments and

shears, all that is necessary is to superimpose on the ZT-curve,

as a base, appropriately scaled influence lines for moments and

shears in straight beams.
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The general expression for bending moments at any section

(Eq. 82) may be written in the form,

(86)

(excepting that in the case of continuous stiffening trusses, y is

to be replaced by y ef\ see Eq. 212). For a moving con-

centration, represents the moment influence line of a straight

beam, simple or continuous as the case may be, constructed

with the pole distance y. Hence the moment M is proportional

to the difference between the ordinates of this influence line and

those of the ^-influence line. If the two influence lines are

superimposed (Figs. Sb, nb, nc, iSb), the intercepts between

them will represent the desired bending moment M. In the

case of stiffening trusses with hinges at the towers, M' is the

same as the simple-beam bending moment, and its influence

line is familiarly obtained as a triangle whose altitude at the

given section is,

For a parabolic cable, this reduces (by Eq. 14) to

.
*-' . . /'. . . . (88)
y 4/

K/[
f

Hence the triangles for all sections will have the same altitude

y

(Figs. 86, nb). The corresponding altitude for sections in

/

the side spans is -J- (Fig. nc). The areas intercepted between
4/i

the #-line and the triangles, multiplied by py, give the maxi-

mum and minimum bending moments at the given section, X,

of the stiffening truss. Areas below the F-line represent posi-

tive moments, and those above represent negative moments
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(Figs. 8, n, 18). Where the two superimposed lines intersect,

we have a point K, which may be called the zero point, since a

concentration placed at K produces zero bending stress at X.

K is also called the critical point, since it determines the limit

of loading for maximum positive or negative moment at X.

Load to one side of K yields plus bending, and load to the other

side produces negative bending.

The shear at any section of the stiffening truss is given by

Eq. (84) ,
which may be written in the form,

(If the two ends of the cable span are at different elevations,

tan in this equation is to be replaced by tan <f> tan a, where

a is the inclination of the closing chord below the horizontal.

See Eq. 84'). For any given section X, tan
</>,

the slope of the

cable, is a constant and is given by,

.... (90)

The values assumed by the bracketed expression in Eq. (89) for

different positions of a concentrated load may be represented as

the difference between the ordinates of the #-line and those of

the influence line for the shears V
',
the latter being reduced

in the ratio . The latter influence line is familiarly obtained

by drawing the two parallel lines as and U (Figs, ga, gb, 140),

their direction being fixed by the end intercepts

. . (01)
tan</>-tano:

The vertices 5 and / lie on the vertical passing through the given

section X. The maximum shears produced by a uniformly

distributed load are determined by the areas included between

the H and V influence lines; all areas below the #-line are to be

considered positive, and all above negative. These areas must



26 STRESSES IN SUSPENSION BRIDGES

be multiplied by />-tan (or by ^[tan tana]) to obtain the

greatest shear V at the section; and V must be multiplied by the

secant of inclination to get the greatest stress in the web members
cut by the section.

SECTION IV. THREE-HINGED STIFFENING TRUSSES

15. Analysis. This is the only type of stiffened suspension

bridge that is statically determinate (Types 3F, 35, 35). The

provision of the stiffening truss with a central hinge furnishes a

condition which enables H to be directly determined; viz., at

the section through the hinge the moment M must equal zero.

Consequently, if the bending moment at the same section of a

simple beam is denoted by M'o, and if / is the ordinate of the

corresponding point of the cable, by Eq. (82),

Hence the value of H for any loading is equal to the simple-

beam bending moment at the center hinge divided by the sag /.

Accordingly, the cable will receive its maximum stress when the

full span is covered with the live load p. In that case Eq. (92)

yields

B
-Tf>

...... (93)

and, comparing this with Eq. (78), we see that

s = p. ... ... (94)

Hence, under full live load, the conditions are similar to those

for dead load, the cable carrying all the load, the trusses having
no stress. The bending moment at any section will be

Total M = o. . . . . . (94')

For a single load P at a distance kl from the near end of the

span, the simple-beam moment at the center hinge will be

PbJ
if'o~. .

_. ,... - (95)
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Hence, the value of H, by Eq. (92), will be

.

-

. - B-, .,'.' V, (96)

This value ofH will be a maximum for k = |, yielding,

= ........ (97)

According to Eq. (92), the influence line for H will be similar

to the influence line for bending moment M'o at the center of a

simple beam; hence it will be a triangle. It is defined by Eq.

(96); and its maximum ordinate (at the center of the span) is

given by Eq. (97) as //4/. Figures Sb and ga show the ^-influence

line constructed in this manner.

If the truss is uniformly loaded for a distance kl from one

end, the value of H may be found by integrating Eq. (96) or

directly from Eq. (92). We thus obtain:

for<i r = ^.(#), ..... (98)
47

for>J, H =^(4k-2k*-i). . . . (99)
7

For full load (k i), Eq. (99) gives the maximum value of //:

-f....... <>
which is identical with Eq. (93). Equations (98) to (100), inclu-

sive, may also be obtained directly from the //-influence line

(Figs. Sb and 90).

For the half-span loaded, Eqs. (98) and (99) yield,

which is one-half of the value for full load. Substituting this

value in Eq. (78), we find,

s = $P.....
.

- * (102)

One-half of the span is thus subjected to an unbalanced upward
load, s = %p, per lineal foot, and the other half sustains an equal
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downward load, p s = \p. Consequently there will be produced

positive moments in the loaded half, and equal negative moments

in the unloaded half, amounting to

M = $px(--x\; . . . . . (103)

and the maximum moments for this loading, occurring at the

quarter points, (#
=

J/, # = !/), will be,

." , . (104)

FIG. 8. Three-hinged Stiffening Truss Moment Diagrams.

(Type 3/0.

16. Moments in the Stiffening Truss. The influence dia-

grams for bending moments are constructed, in accordance with

Eq. (86) , by superimposing the triangles upon the ^-influence

y

triangle. By Eq. (88) ,
the triangles for all sections have the

same altitude
; and, in the case of the three-hinged stiffening

4/
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truss, this altitude is identical with that of the ^-influence

triangle.

The two triangles are shown superimposed in Fig. Sb. The

shaded area between them is the influence diagram for bending
moment at the section X.

For x = ~, the two triangles would coincide. Hence the
2

moment at the center hinge is zero for all conditions of loading,

which agrees with the condition that the hinge can carry no

bending.

For x <-, the two influence triangles intersect at a point K, a

short distance to the left of the center. K is the zero point or

critical point. All load to the left of K yields plus bending, and

all load to the right produces negative bending.

Since the two superimposed triangles have the same base and

equal altitudes, the plus and minus intercepted areas will be

equal. Hence, if the whole span is loaded, the two areas will

cancel each other, yielding zero moment as required by Eq. (94').

If either of the shaded areas is multiplied by py, it will give

the maximum value of the bending moment at X. The bending
moments may also be obtained analytically from Eq. (82), as

follows :

If the load covers a length kl from one end of the span, the

bending moment at any section x<kl, by Eqs. (82), (98) and

(14), will be,

i-2k2
). . . (105)

Setting
- = o in this equation, we find that for maximum M,

dk

(106)

This equation defines the distance kl to the critical point K
(Fig. 8&). For this value of k, Eq. (105) gives the maximum
value of M for any value of x:

TIT HJT px(l X)(l2X) , ^Max. M = ^
, / . -. . . . (107)
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This value may also be obtained from the shaded areas in

the influence diagram (Fig. 86). Setting = o in the last
ax

equation, we find that the absolute maximum M occurs at,

(108)

Substituting this value in Eqs. (107) and (106), we find that the

absolute maximum value of M is,

Abs. Max. lf=+o.oi883/>/
2

,
. . . (109)

or about -fopl
2

,
and that it occurs at x = 0.2341, when = 0.395.

By loading the remainder of the span (o . 6o5/) ,
we obtain the

maximum negative moment at the same section. This will be

numerically equal to the maximum positive moment, since their

summation at any section must give zero according to Eq. (940.

Hence the absolute maximum negative moment will be,

Abs. Min. M= -0.01883^/2. (109')

After the maximum moments at the different sections along

the span are evaluated from the influence lines, or from Eq. (107),

they may be plotted in the form of curves, as shown in Fig. Sc.

For the three-hinged stiffening truss, these maximum moment

curves are symmetrical about the horizontal axis. They may
be used as a guide for proportioning the chord sections of the

stiffening truss.

17. Shears in the Stiffening Truss. The shears produced
in the stiffening truss by any loading are given by Eq. (84) ;

but the maximum values at the different sections are most con-

veniently determined with the aid of influence lines (Fig. 9).

The influence line for H is a triangle, with altitude = at
47

the center of the span. Upon this is superimposed the influence

line for shears in a simple beam, reduced in the ratio i : tan <j>.

The resulting influence diagram for shear V at a given section

x <- is shown in Fig. ga. There are two zero points or critical

4

points: at x and at kl. The portion of the left span between
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these two points must be loaded to produce maximum positive

shear at the given section. From the geometry of the figure

we find the vosition of the critical point K to be given by,

k = (no)

\ fJJryfaenOff Lin

^ Inf/uer)ce
-L/ne /or l/'-f /an 7>

re)

FIG. 9. Shear Diagrams for Three-hinged Stiffening Truss.

(Type 3F).

With the load covering the length from x to kl, we find the

maximum positive shear at x, either from the diagram or from

Eq. (84), to be given by

Max. F=^-
2
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When x = o, or for end-shear, Eq. (no) gives k=%, and Eq. (in)

yields,

Abs. Max. V=&-. . . ,. . (112)

When x = ^l, we find k = %, and

Max. V-. . . . . (113)

For x> J/, the influence diagram takes the form shown in Fig. gb.

There is only one zero point, namely at the section X. Loading
all of the span beyond X, we find the maximum positive shear,

either from the diagram or from Eq. (84), to be given by,

Max. 7=3-. , . . (114)

This has its greatest value for x = %l, or at the center, where it

has the value,

Max. V=.

Writing expressions for the maximum negative shears in the

same manner, we obtain values identical with Eqs. (in) to

(115), but with opposite sign. In other words, the plus and

minus areas in any shear influence diagram are equal; their

algebraic sum must be zero, since full span loading produces no

stress in the stiffening truss. (See Eq. 94).

Figure gc gives curves showing the variation of maximum

positive and negative shears from end to end of the span. The
curves are a guide for the proportioning of the web- members of

the stiffening truss. For the three-hinged truss, these curves

are symmetrical about the horizontal axis.

If the two ends of the cable' are at unequal elevations, the

foregoing results for shear (Eqs. (no) to (115), inclusive) must

be modified on account of the necessary substitution through-
out the analysis of (tan tan a) for tan <j> as required by

Eq. (84')-
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SECTION V. TWO-HINGED
STIFFENING TRUSSES

18. Determination of the

Horizontal Tension H. In

these bridge systems, the hori-

zontal tension H is statically

indeterminate. The required

equation for the determina-

tion of H must therefore

be deduced from the elas-

tic deformations of the sys-

tem.

Imagine the cable to be

cut at a section close to one

of the anchorages. Then

(with H = o), under the action

of any loads applied on the

bridge, the two cut ends would

separate by some horizontal

distance A. If a unit hori-

zontal force (H = i) be applied

between the cut ends, it would

pull them back toward each

other a small distance 5. The

total horizontal tension H re-

quired to bring the two ends

together again would evi-

dently be the ratio of these

two imaginary displacements,

or,

H =
(116)

CX G
C/3 .0

a
&

Substituting for A and 5

the general expressions for

the displacement of a point
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in an elastic system under the action of given forces, Eq. (116)

becomes,

. (117)

where M' = bending moments (in the stiffening truss) under

given loads, for H = o.

m = bending moments (in the stiffening truss) with zero

loading, for H = i .

u = direct stresses (in the cable, towers and hangers)

with zero loading, for H = i .

I = moments of inertia (of the stiffening truss) .

A = areas of cross-section (of the cable, towers and

hangers) .

In the denominator of Eq. (117) there are two terms, since the

system is made up of members, part of which are acted upon by

bending moments, and part by direct, or axial, stresses. In

the numerator, there is no axial stress term, since for the con-

dition of loading producing A, the cable tension H = o, and all of

the axial stresses (in cables, towers and hangers) vanish.

Equation (117) is the most general form of the expression

for H, and applies to any type of stiffened suspension bridge.

When there are no loads on the span, the bending moments

in the two-hinged stiffening truss are, by Eq. (82) :

M=-H-y. . . . . . (118)

Hence we have, when H =
i,

m=-y (119)

The stress at any section of the cable is given by Eq. (5), which,

for H =
i, reduces to,

ds
'

=-. . , . . ,. . .
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Substituting Eqs. (119) and (120) in Eq. (117), we obtain the

following fundamental equation for H for two-hinged stiffening

trusses (Types 2F and 25) :

(J EI

Cfd* r

J EI J

f \
' ' (I2I)

EAdx2

The integral in the numerator and the first integral in the

denominator represent the contributions of the bending of the

stiffening truss to A and 5 respectively; the integrations extend

over the full length of the stiffening truss suspended from the

cable. The second integral in the denominator represents

the contribution of the cable stretch to the value of 6; the

integration extends over the full length of cable between

anchorages.

In the denominator of Eq. (121), the truss term contributes

about 95 per cent, and the cable term only about 5 per cent of

the total. Hence, certain approximations are permissible in

evaluating the cable term.

Terms for the towers and hangers have been omitted, as they

are negligible. (Their contribution to the denominator would

be only a small decimal of i per cent.)

The terms in the denominator are independent of the loading

and will now be evaluated. See Fig. na for the notation

employed. The symbols /, x, y, /, a, I, A have already been

defined for the main span; and, adding a subscript, we have the

corresponding symbols /i, xi, yi, /i, i, /i, AI }
for the side

spans. In addition we have,

/' = span of the cable, center to center of towers, which

distance may be somewhat greater than the truss

span / (Fig. na);

/2 = horizontal distance from tower to anchorage, which

distance may be greater than the truss span /i (Fig.

na).

Substituting for y its values from Eqs. (14) and (25), the
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first integral in the denominator of Eq. (121), extending over

main and side spans, becomes,

J Ch 8 /
2
/

,

/ 8 fi
2
h\ , .

' ^ +2 - (I22)

The moments of inertia / and /i are here assumed constant over

the respective spans.

I

i
u *-

I

-| L ^
j

Juo -yi/nyec/\Ou
It M

_ia^5^r__ _^ __H
'u

FIG. ii. Moment Diagrams for Two-hinged Stiffening Truss. (Type 25).

The second integral in the denominator of Eq. (121), with

the aid of Eqs. (13) and (23), may be written,
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The cable sections A and A\ are here considered to be uniform

in the respective spans. Usually A=A\. Expanding the

binomials and integrating, we obtain, with sufficient accuracy,

7~r~2
=
^~r( I+8w2)+^~T" sec3ai ( I+8w i

2
)> ( I24)*

where n and n\ are the sag-ratios in main and side spans, respect-

ively :

n={, != ....... (124')
/ /I

Setting the values given by (122) and (124) in Eq. (121),

*EI
and multiplying through by ^T, the formula for H becomes,

J-l" Clfydx+i C'Mi'
E=-//IJ

. . (125)

where, for abbreviation,

; || .- "I: -f (I26)

The elastic coefficient EC
= E, unless the cable is made of wire

ropes. The denominator of Eq. (125), to be used for all suspen-

sion bridges of Type 25, will henceforth be designated by N.

It is a constant for any given structure.

The second term in the numerator represents the contribu-

tion of any loads in the side spans, and will vanish if the side

spans are built independent of the backstays. In the latter case

* If the cable section is not constant but varies with the cable stress (as

in eyebar chains), change 8w 2 to -^n
2
, 8w,.

2 to -^MI*, and sec 3
ai to sec 2

a\\

using A (cable section at crown) instead of A and AI.
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the backstays will be straight (Type 2F, Fig. 16), all terms

containing yi,fi, n\, or v will vanish, and Eq. (125) reduces to

H=
A

fM'ydx
8 E

where a\ is the slope of the backstay.

19. Values of H for Special Cases of Loading. In the

preceding equations, the value of M' depends upon the loading

in the particular case. Expressing M' as a function of x, using

the value of y given by Eq. (14), and performing the integration

as indicated, we find, for a single load P at a distance kl from

either end of the span,

C ;" . (128)

Hence, by Eq. (125), for a concentration in the main span, the

value of the horizontal tension will be,

,
.... (129)

where N denotes the denominator of Eq. (125), and the function

,
. . V (129')

and may be obtained directly from Table I or from the graph in

Fig. 12. The above value of H is a maximum when the load P
is at the middle ot the span; then k=\, and Eq. (129) yields,

Similarly,
'

for a concentration P in either side span, at a

distance k\l\ from either end,

.P, . .. . -.. (131)

*
If the cable section is not constant but varies with the cable stress (as in

eyebar chains), change 8w2 to -^w
2
,
and sec 3

i to sec 2
a\\ using A (cable

section at crown) instead of A and A\.
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9
( 8, $ 3 .
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where B(k\) is the same function as defined by Eq. (129').

This value of H is a maximum when the load P is at the middle

of the side span; then k\ = |, and Eq. (131) yields,

By plotting Eqs. (129) and (131) for different values of k

and ki, we obtain the ZZ-curves or influence lines for H (Figs.

n, 14). The maximum ordinates of these curves are given by

Eqs. (130) and (132).

For a uniform load of p pounds per foot, extending a distance

kl from either end of the main span, we find, by integrating the

function B(k) in Eq. (129'),

where the function,

F(k)=%k
2
-%k*+k*, .... (133')

and may be obtained directly from Table I or from the graph in

Fig. 12. For k = i, F(k) = i.

For similar conditions in either side span, we find for a loaded

length kih,

-#i/, - - (134)

where F(ki) is the same function as defined by Eq. (133') .

The horizontal component of the cable tension will be a

maximum when all spans are fully loaded, or when k = i and

ki = i. Hence, by Eqs. (133) and (134),

Total H = -~(i + 2ir*v)pl. ... v (135)

For a live load covering the central portion, JK, of the main

span, from any section x=jl to any other section x~kl
y
the

application of Eq. (133) yields,

l, . :.. (136)

where F(j) and F(k) are the same function as defined by Eq.
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The graph of F(k) in Fig. 1 2 shows the proportional increase

in the value of H as a uniform load comes on and fills the main

span (or either side span). The difference between the two

ordinates for any sections, / and K, multiplied by for by

CL V will give the value of H for the corresponding partial

loading JK.

For opposite loading conditions, that is, load covering both

side spans and all of the main span with the exception of the

central portion JK, we find the value of H by subtracting the

members of Eq. (136) from those of Eq. (135):

20. Moments in the Stiffening Truss. The bending moment
at any section (main or side span) is given by Eq. (82),

M =M'-Hy, Mi=Mi f

-Hyi. . . . (138)

If any span is free from load, the moments for that span are

obtained by placing M' (or Mi) equal to zero, giving,

M=-Hy, Mi=-Hyi, .... (139)

where H is the cable tension produced by loads in the other

spans, or by temperature.

With all three spans loaded, using the value of H given by
Eq. (135), Eq. (138) yields, for any section in the main span,

Total M =$px(l-x)i-(i+ 2if*v), . . (140)

and, for any section in the side span,

Total Mi=%pxi(h-xi)\i-(i+ 2&>v) . (141)

The influence diagrams for bending moment are constructed,
in accordance with Eq. (86), by superimposing the influence

Mf

triangle for on the ^-influence curve: The H-curve is
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TABLE I

FUNCTIONS OCCURRING IN SUSPENSION BRIDGE FORMULAS
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LOO

.90

.30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 LOO

C(k)=k+k 2-k 3
-

FIG. 13. Graphs for the Solution of Suspension Bridge Formulas.

(Supplementary to Fig. 12).
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For any section in the main span, there is a zero point or

critical point K (Fig. 116), represented by the intersection of the

superimposed influence lines. The distance kl to this critical

point is given by the relation,

C(k)=k+k2 -k* = N-n.~.
.

, . . (142)

Values of the function C(k) are listed in Table i and plotted in a

graph in Figs. 12 and 13, to facilitate the solution of Eq. (142)

for k.

^/The maximum negative moment at any section of the main

span is obtained by loading the length l kl in that span and

completely loading both side spans (Fig. nb). Then, using the

values of Eqs. (133) and (135), Eq. (138) yields,

, Min. Jf =-)+4*H . . (143)

J/-.

where the function, A
D(k) = (2-k- 4k

2+3k*)(i-k)
2

,
. . (1430

and is given, for different values of k, by Table I and by the

graph in Fig. 12 or 13. The value of k or C(k) obtained from

Eq. (142) is to be used.

Equation (143) applies to all sections from x = o to x' = -I.

4

For the minimum moments at the sections near the center, from

x' to lx'j it is necessary to bring on some load also from the left

end of the span, as there are two critical points, K' and Kn
',
for

these sections (see dotted diagram, Fig. n&); so that the

expression (143) for these moments must be corrected by replac-

ing D(k) by D(V)+D(k"), where k' is the value of k (Eq. 142)

corresponding to the given section x, and k" is the value of k

corresponding to the symmetrically located section (/#).
The maximum positive moments are given by the relation,

Max. M = Total Jlf-Min. M. . . (144)
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Subtracting the values given by Eq. (143) from those given by

Eq. (140), we obtain,

. (144')

The loading corresponding to this moment is indicated in Fig.

116; only a portion of the main span is loaded, the side spans

being without load.

There are no critical points in the side spans. For the great-

est negative moment at any section x\ in one of the side spans,

load the other two spans (Fig. nc), giving,

(145)

Loading the span itself produces the greatest positive

moments, which are obtained by the relation,

Max. Mi = Total Mi - Min. Mi..... (146)

Subtracting the values given by Eq. (145) from those given by

Eq. (141), we obtain,

The maximum and minimum moments for the various

sections of a stiffening truss (Type 25), as calculated from

Eqs. (143), (144)? ( J45) and (146), are plotted in Fig. nd, to

serve as a guide in proportioning the chord members.

21. Shears in the Stiffening Truss. With the three spans

completely loaded, the shear at any section x in the main span
will be, by Eqs. (84), (90) and (135),

Total V =^p(l-2x)i-~(i + 2ir3v) J
. .

(147)

and, in the side spans,

Total Fi- iX/i-2*i)i----(i+ 2*r) . (148)

The influence diagram for shear at any section is constructed

according to Eq. (89), by superimposing on che #-curve (Eqs.
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129 and 131) the influence lines for
tan

The latter will have

end intercepts
= cot 0, where <j> is the slope of the cable at the

given section. The resulting influence diagram is shown in

Fig. 140. The intercepted areas, multiplied by p tan $, give

the desired vertical shears V. Areas below the /7-curve repre-

A^
//ox

FIG. 14. Shear Diagrams for Two-hinged Stiffening Truss.

(Type 25).

sent positive or maximum shears, and areas above represent

negative or minimum shears.

Loading the main span from the given section X to the end

of the span, we obtain the maximum positive shears by Eqs.

(84), (90) and (133),
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where the function,

2
f

~
+I'- (I49)

and is given by Table I and the graph in Fig. 12.

For the sections near the ends of the span, from x = o to

x = -\i -- ), the loads must not extend to the end of the spanA 4/
to produce the maximum positive shears, but must extend only

to a point K (Fig. 140) whose abscissa x kl is determined by
the following equation:

. . . (I50)

4 / 2#

For these sections, the positive shears given by Eq. (149) must

be increased by an amount,

-

Add. F = ^/(i-*) 2--~-G(*)-i, - (151)

where the function,

.... (151')

and, like the same function in Eq. (149'), is given by Table I

and the graph in Fig. 12 or 13.

Formula (150) for the critical section is solved in the same

manner as Eq. (142) with the aid of Table I or the graph in

Fig. 12 or 13.

There are no critical points for shear in the side spans. The

influence diagram (Fig. 146) shows the conditions of loading.

For maximum shear at any section xi, the load extends from the

section to the tower, giving,

where G ( - is the same function as denned by Eqs. (1490 and
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The maximum negative shears in main and side spans are

given by the relations,

Min. V = Total V -Max. F, . . . (153)
and

Min. Fi= Total Fi-Max. Fi. . . (153')

The maximum positive and negative shears for different

sections of the main and side spans, as given by Eqs. (149),

(152), (153) and (1530? are plotted for a typical suspension

bridge, in Fig. 140, to serve as a guide in proportioning the web

members.

22. Temperature Stresses. The total length of cable

between anchorages is, by Eqs. (22) and (26),

. (154)
V 3 sec ai/

Corrections should be made in the value of L for any portions of

the cable not included in the spans / or l\.

Under the influence of a rise in temperature, the total increase

in length between anchorages will be:

A = co/L........ (155)

Substituting this value for the numerator in Eqs. (116) to (125),

we obtain,

sEI-vtL , .

t==
~

f
2 -N'l

'
-

' ' ' '

'
S '

where N denotes the denominator of Eq. (125) and L is given

by Eq. (154). (For an extreme variation of /=6oF.,
Eco/ = 11, 7 20.)

The resulting bending moment at any section of the truss is

given by, Mt=-Ht .y, . V . ,'
j&

. (157)

and the vertical shear by,

F,= -tf,(tan0-tana), . . (158)

where is the inclination of the cable at the given section, and

a is the inclination of the cable chord (Eqs. 84', 90).

23. Deflections of the Stiffening Truss. For any specified

loading, the deflections of the stiffening truss may be computed
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as the difference between the downward deflections produced by
the applied loads and the upward deflections produced by the

suspender forces, the stiffening truss being treated as a simple

beam (for Types 2F and 25). The suspender forces are equiva-

lent to an upward-acting load, uniformly distributed over the

entire span, and, by Eq. (78), amounting to,

. .

.

-

,.'. s=%.H. ... . . . (78)

For a uniform load p covering the main span, the resultant

effective load acting on the stiffening truss will be, by Eqs. (78)

and (135),

...... (I59)

and the resulting deflection will be,

In the general case, the applied loads will produce a deflection

at a distance x of,

The suspender forces, given by Eq. (78), will produce an upward

deflection, at a distance x, of,

-H. . . . (162)

It should be noted that this deflection curve (Eq. 162) is similar

to the //-influence curve given by Eq. (129). Using the function

defined by Eq. (129'), Eq. (162) may be written,

The resulting deflection of the truss at any point will then be

obtained from Eqs. (161) and (162) as

d = d'-d". . ,' i
:

. . . (163)
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Equation (160), for a full-span load, may be derived directly

from Eq. (163).

If merely the half-span is loaded with p per unit length, then

the deflection at the quarter-point will be, by Eqs. (161) and

(162), in the loaded half,

and, in the unloaded half,

/S7..L- 26'

6i44\ 2 EI
' (164')

FIG. 15. Detroit-Windsor Bridge.

(Type 2F).

Span 1803 feet. Combined Railway and Highway Bridge. 8 Cables. C. E. Fowler,

Chief Engineer. D. B. Steinman, Associate Engineer. W. H. Burr, G. H. Pegram,
C. N. Monsarrat and C. R. Young, Consulting Engineers.

By Eq. (125), N will always be greater than f. Substituting this

minimum value in Eq. (164) or (164'), we obtain the upward or

downward deflections at the quarter-points:
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The deflections produced by temperature effects, or by a

yielding of the anchorages, are given by Eq. (162'), upon sub-

stituting for H the horizontal tension caused by the given

influence. Substituting the expression from Eq. (156) ,
we obtain,

AZ,

I] N-n'
' . . (166)

where the function B(- \ is defined by Eq. (129') and is given by

Table I and the graph in Fig. 12.

24. Straight Backstays (Type 2F). If the stiffening truss is

built independent of the cables in the side spans (Figs. 15, 16),

T

I

I 4 H
FIG. 1 6. Two-hinged Stiffening Truss with Straight Backstays.

(Type 2F).

the backstays will be straight and /i
= o. Consequently all terms

containing /i, y\, n\=^-, or v =^ will vanish in Eqs. (125) to
*i 7

(166) inclusive.

The side spans will then act as simple beams, unaffected by

any loads in the other spans; and the main-span and cable

stresses will be unaffected by any loads in the side spans.

The denominator of the general expression for H (Eq. 125)

will then reduce to the denominator of Eq. (127):

Equations (131), (134), and (145), will vanish.

* See Footnote to Eq. 127.
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The maximum value of H will be produced by a uniform

load p covering the main span, and will be, by Eq. (135),

Total .

$N-n

The bending moment at any section x of the main span will

then be, by Eq. (140),

Total M=px(l-x)(i~\ .
.;

. (169)

The greatest negative bending moment will be, by Eq. (143),

-\/r* ir ^/LN / \Mm. Af=--^ ^
--D(k). .,.;.. . (170)

The greatest positive moment is then given by Eq. (144') ,

or by,
Max. M = Total K-Min. M. , ^ . (171)

In the side spans, there will be no negative moments. The

greatest positive moments will be, by Eq. (141),

Max. Mi = Tota]Mi=%piXi(h-xi) ,
. . (172)

exactly as in a simple beam.

With load covering the entire span, the shears in the main

span will be, by Eq. (147),

Total 7 =}X*-2*)i~,

and, in the side spans, by Eq. (148),

TotalFi=|#i(/i-2*i). . . . ;. . (174)

The maximum shears in the main span will be given by Eqs.

(149), (150) and (151). In the side spans, the maximum shears

will be, by Eq. (152),

Max.
7i-&i/,(i-l)

2

.
. . . , . (175)

exactly as in a simple beam.

The total length of cable will be, by Eq. (154),

Z, = /'(i+fw
2
) + 2/2 -secai, , . (176)

and the temperature stresses are then given by Eqs. (156), (157)

and (158).
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SECTION VI. HINGELESS STIFFENING TRUSSES

(Types QF and OS)

25. Fundamental Relations. Hingeless stiffening trusses

(Figs. 17, 1 8) are continuous at the towers; hence there will

be bending moments in the truss at the towers.

The moments and shears at any section in the stiffening truss

will be the resultants of the values produced by the downward-

acting loads (M
r and V') and the upward-acting suspender

FIG. 17. Suspension Bridge'over the Rhine at Cologne.

(Type OS).

Continuous Stiffening Girder. Eyebar Chains. Self-anchored. Rocker Towers.

Span 605 feet. Erected 1915.

forces (Ms and Vs). Equations (78), (79) and (80) will apply;
but the continuity of the truss must be taken into account in

calculating the respective moments and shears.

If MI and M2 are the bending moments at the towers pro-

duced by the downward loads on the stiffening truss, and if MQ
is the simple-beam bending moment at any section x, then the
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resultant bending moment due to the downward loads acting on

the continuous truss will be,

il* . . . (I 77)

in the main span, and,

M' =M
+^-Mi,2,

..... (177')

in the side spans.

The upward-acting suspender forces will be uniform over

each span. For any value of H, by Eq. (78), the upward pull

8/" 8/"
will be B~ per lineal foot in the main span and H--^ in the

side spans. Then, by the Theorem of Three Moments for uni-

form load conditions, we find the moments at the towers (for

symmetrical spans) to be,

-H-mi = -H-m2 =-H'(e-f), . . . (178)

in which the coefficient of / is a constant defined by,

where i, r, and v are defined byJEq. (126).

The simple-beam bending m6nieiit produced by the suspender

forces is given by Eq. (81) as H-y. Adding the correction for

the end moments at the towers (Eq. 178), we obtain the result-

ant suspender moments as,

M,=H-(y-e-f), ..... (180)

for any section in the main span ; and, for any section in the side-

spans,

(181)

where x\ is measured from the free end of the span, and yi is the

vertical ordinate of the side cable below the connecting chord

D'A' (Fig. i8a).
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Substituting (177), (i77')> (180) and (181) in Eq. (79), we

have, for bending moments in the main span, (Fig. 19),

.M2 -H(y-ef), . . (182)

and, for bending moments in the side span,

,

k \ k

If any span is without load, Mo for that span will vanish.

The shears produced by the downward-acting loads will be,

=! ..... (184)

in the main span, and

or V' = V -**, . . (185)

in the side spans. In these equations, Fo denotes the simple-

beam shears for the given loading.

The shears produced by the upward-acting suspender forces

will be

Fs
= #(tan</>-tana) ..... (186)

in the main span, and

/ rf\
VS
=H tan</>i-tani-fM . . . (187)

\ hi
in the side spans.

Substituting (184), (185), (186) and (187) in Eq. (80), we

have, for resultant shears in the main span,

. . (188)

and, for resultant shears in the side spans,

(189)
k/

If any span is without load, Fo for that span will vanish.

If the two towers are of equal height, then, in the main span,
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26. Moments at the Towers (Types OF and OS). The

values of the end-moments M\ and M.%, used in Eqs. (177) to

(189), may be determined, for any given loading, by the Theorem

of Three Moments.

For a concentration P in the main span, at a distance kl from

the left tower, we thus obtain,

T/ 7\ i-- --
/ NM2 =-Pl-k(i-k)

^6
. ;
--

. . . (191)
(3+ 2w)(i + 2*r)

The sum of these two end-moments will be,

-k) f x

.

r
,

. .... (192)

. . . (193)

_

and the difference will be,

For a concentration P in the left side span, at a distance kl\

from the outer end, the Theorem of Three Moments yields:

. . . (I94)

ir2(k-k3
)

For a uniform load covering the main span, we obtain,

Ml =M2=- ,

P
^. Y ..... (196)

4(3-Mr)

For a uniform load covering the left side span, we obtain,

. , . (I98)

4

For a uniform load covering all three spans, we obtain,

. . . ( I99)
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27. The Horizontal Tension H. The general formula

(117) for the horizontal tension H is applicable to the continu-

ous stiffening truss (Types OF and 05).

Equation (118), for bending moments produced by the

suspender forces, is now replaced by the expressions (180) and

(181), and Eq. (119) becomes,

m=-y+ef, ...... (200)

for the main span, and

-ef, ..... (201)

for the side spans.

Substituting these values and integrating over all three spans,

we obtain, as a substitute for Eq. (122),

(202)

Equations (120), (123), (124) and (1240 are retained

unchanged. Collecting all the values and substituting in Eq.

(117), we obtain the expression for H in the continuous type of

suspension bridge (in place of Eq. 125) :

H = J H>x i li-i A- (201)
- ' -9 ' --" /8 - 9 '

^-2CT)

The denominator of this expression is a constant for a given

structure, and will henceforth be denoted by N. (If hinges are

inserted at the towers, the coefficient of continuity e will be

zero, and Eq. [203] reduces to Eq. [125]).

28. Values of H for Special Cases of Loading. In the last

equation (203), the value of the numerator depends upon the

loading in any particular case. Expressing M' as a function of x

(Eq. 177), substituting the value of y .given by Eq. (14), and

* See Footnote to Eq. (125).
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performing the integration as indicated, we find, for a single

load P at a distance kl from either end of the main span,

,
. . . (204)

where N denotes the denominator of Eq. (203), and the function

B(k) is defined by Eq. (129') and is given by Table I and Fig. 12.

FIG. 1 8. Moment Diagram for Continuous Stiffening Truss.

(Type OS).

Similarly, for a concentration PI in either side span, at a

distance k\l\ from the free end, we obtain,

. (205)

Plotting Eqs. (204) and (205), we obtain the ^-influence

line, Fig. 186.

If the main span is completely loaded, we obtain, by inte-

grating Eq. (204),

H = ^-(---}'pl. (206)
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If both side spans are completely loaded, we obtain, by

integrating Eq. (205),

If the main span is loaded for a distance kl from either tower,

we obtain, from Eq. (204),

,
. . (208)

where F(k) is defined by Eq. (133') and is given by Table I and

Fig. 12.

If either side span is loaded for a distance k\h from the free

end, we obtain, from Eq. (205),

-ie(2-k l
2
)'k l

2
]p 1l, . (209)

where F(ki) is the same function as defined by Eq. (1330.

In the foregoing equations, N represents the denominator of

Eq. (203).

(If the stiffening truss is interrupted at the towers, the factor

of continuity e = o, and the above formulas reduce to the cor-

responding equations [129] to [135] for the two-hinged stiffening

truss.)

29. Moments in the Stiffening Truss. With all three spans

loaded, the bending moment at any section of the main span is

given, very closely, by Eqs. (182) and (199), as,

Total M=p-H- 4
x-(l-x)-e(pP-H.f), (210)

and, at any section of the side span distant x\ from the free end

by Eqs. (183) and (199), as,

Total M=\p-Hx l (l l -x l}-e(lpP-H}) (211)

where e is defined by Eq. (179), and H is given by the combina-

tion of Eqs. (206) and (207).

The moments for other loadings must be calculated by the
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general Eqs. (182) and (183), with the values of H given by Eqs.

(204) to (209), and the values of M\ and M2 given by Eqs. (190)

to (199).

Influence lines for moments may be drawn as in the previous

cases. For moments in the main span, Eq. (182) is written in

the form,

M=
y- ef

-H-(y-ef), . (212)

thus giving the bending moments as (y ef) times the intercepts
1*7

obtained by superimposing the influence line for - - upon the
y-ef

influence line for H. This construction is indicated in Fig. i8&.

For moments in the side spans, the corresponding influence line

equation is obtained from Eq. (183):

M =
x\

H (213)

For the continuous stiffening truss, the influence line method

just outlined is not very convenient, as the M' influence line

(Fig. 1 86) is a curve for which there is no simple, direct method

of plotting.

A more convenient method is that of the Equilibrium Polygon
constructed with pole-distance H, corresponding to Eq. (85)

and Fig. 7. For the continuous stiffening truss, this construc-

tion is modified as follows (Fig. 19): At a distance cf below the

closing chord A'B'
',
a base line AB is drawn, so that the cable

ordinates measured from this base line will be (ycf) and will

therefore represent Ms (Eq. 180). The equilibrium polygon
A"MB" for any given loads is then constructed upon the same

base line, with the same pole-distance 77; the height AA"

represents M\, the height BB" represents Mz, and the poly-

gon ordinates below A"B" represent M : hence, by Eq. (177),

the ordinates measured below the base line AB represent M'.

Then, by Eq. (79), the intercept between the cable curve and
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the superimposed equilibrium polygon, multiplied by H, will give

the resultant bending moment M at any section.

For a single concentrated load P, the equilibrium polygon
A"MB" is a triangle, and the M intercepts can easily be scaled

or figured. By moving a unit load P to successive panel points,

we thus obtain a set of influence values of M for all sections.

The corresponding construction in the side spans is also indi-

cated in Fig. 19.

30. Temperature Stresses. The horizontal tension pro-

duced by a rise in temperature of f is given by,

Ht
=-

r

f-N-r

i_

FIG. 19. Equilibrium Polygon for Continuous Stiffening Truss.

(Type OS).

where N is the denominator of Eq. (203), and L is given by

Eq. (154).

The resulting moments in the stiffening truss will be given,

by Eqs. (180) and (181), as,

Mt =-Hr(y-ef), (215)

for the main span, and,

M^-H.fy.-^-.efJ,
.' . . . (216)

for the side spans.

The vertical shears are given by Eqs. (186) and (187) as,

7,= -#(tan0-tana), ^ f . . (217)
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for the main span, and

/ ef\
Ft =-ZMtan</>i-tanai-f-), . . . (218)

\ hi
for the side spans.

31. Straight Backstays (Type OF). If the stiffening truss

in the side spans is built independent of the cable (Fig. 20), the

backstays will be straight and/i=o. Consequently, all terms

containing /i, yi, n\=^-, or i)
= ^, will vanish in Eqs. (177) to

k J

(218), inclusive.

On account of the continuity of the trusses, however, each

span will be affected by loads in the other spans.

i _

f
f

FIG. 20. Continuous Stiffening Truss with Straight Backstays.

(Type OF}.

The denominator of the expression for T, Eq. (203), will

become,

where e, the factor of continuity, now has the value,

e = r (220)

Equation (183), for bending moments in the side spans,

will become,

r' ef> (221 )

See Footnote to Eq. (127).
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and Eq. (189), for shears in the side spans, will become,

. . . . - (222)
I I

For a concentration PI in either side span, Eq. (205) becomes,

k^-P l . . . (223)

For a uniform load covering both side spans, Eq. (207)

becomes,

For a uniform load in either side span, covering a length

from the free end, Eq. (209) becomes,

For a uniform load covering all three spans, Eq. (211), for

the bending moments in the side spans, becomes

Total M =
pxi(h-xi)-^($pP-Hf). . (226)

/i

Equation (216), for temperature moments in the side spans,

becomes,

, ..... (227)

and Eq. (218), for the shears, becomes,

.... (228). .....
h

SECTION VII. BRACED-CHAIN SUSPENSION BRIDGES

32. Three-hinged Type (SB). The three-hinged type of

braced-chain suspension bridge is statically determinate. The

suspension system in the main span is simply an inverted three-

hinged arch. The equilibrium polygon for any applied loading
will always pass through the three hinges. The //-influence

line for vertical loads reduces to a triangle whose altitude, if
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the crown-hinge is at the middle of the span and if the correspond-

ing sag is denoted by/, is,

# = -.'..,-.. . . . (229)

The determination of the stresses is made, either analytically

or graphically, exactly as for a three-hinged arch.

Figure 21 shows the single-span type, in which the backstays

are straight (Type 3BF) . If the lower chord is made to coincide

with the equilibrium polygon for dead load or full live load, the

stresses in the top chord and the web members will be zero for

such loading conditions. These members will then be stressed

only by partial or non-uniform loading. Under partial loading,

FIG. 21. Three-hinged Braced Chain with Straight Backstays.

(Type 3BF).

the equilibrium polygon will be displaced from coincidence with

the lower chord: where it passes between the two chords, both

will be in tension; where it passes below the bottom chord,

this member will be in tension and the top chord will be in com-

pression. If the curve of the bottom chord is made such that

the equilibrium polygon will fall near the center of the truss or

between the two chords under all conditions of loading, the

stresses in both chords will always be tension.

Figure 22 shows the three-hinged braced-chain type of suspen-

sion bridge provided with side spans (Type 3BS). The stresses

in the main span trusses are not affected by the presence of the

side spans, and are found as outlined above. The stresses in

the side spans are found as for simple truss spans of the same

length, excepting that there must be added the stresses due to
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the top chord acting as a backstay for the main span. This top
chord receives its greatest compression when the span in ques-
tion is fully loaded, and its greatest tension when the main span
is fully loaded.

Temperature stresses and deflection stresses in three-hinged

structures are generally neglected.

FIG. 22. Three-hinged Braced Chain with Side Spans.

(Type 3BS).

33. Two-hinged Type (25). This system (Fig. 23) is static-

ally of single indetermination with reference to the external

forces, so that the elastic deformations must be considered in

determining the unknown reaction.

The structure is virtually a series of three inverted two-

FIG. 23. Two-hinged Braced Chain with Side Spans

(Type 2BS).

Hhinged arch trusses, having a common horizontal tension

resisted by the anchorage.

The value of H may be determined by the same method as

was used for writing Eqs. (116) and (117). In this case, the

general equation for H takes the form,
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where Z denotes the stresses in the members for any external

loading when H = o (i.e., when the system is cut at the anchor-

ages) ;
u denotes the stresses produced under zero loading when

H = i
;

/ denotes the lengths of the respective members and A
their cross-sections. The summations embrace all the members
in the entire system between anchorages.

The stress in any member is given by adding to Z the stress

produced by H, or,

S =Z+H.u...... (231)

Zl
For a rise in temperature, the elastic elongations are replaced

iLA.

by thermal elongations w#, and Eq. (230) becomes,

A

For uniform temperature rise in all the members, Eq. (232)

may be written,

where L is the total horizontal length between anchorages.

Equations (230) to (233) may also be used for the ordinary

types of suspension bridge with straight stiffening truss (Types
2F and 2S) if the summations are applied to the individual

members of the stiffening truss and to the segments of the cable

between hangers. (The hangers and towers may also be

included.) This will give more accurate results than the ordi-

nary method, as it takes into account the varying moments of

inertia of the stiffening truss and any variations from parabolic

form of cable.

A graphic method of determining H is to find the vertical

deflections at all the panel points produced by a unit horizontal

force (H = i) applied at the ends of the system. The resulting

deflection curve will be the influence line for H. If the ordinates

of this curve are divided by the constant 5 (the horizontal dis-

placement of the ends of the system produced by the same force
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H =
i), they will give directly the values of H produced by a

unit vertical load moving over the spans.

34. Hingeless Type (OB). This type of suspension bridge

(Fig. 24) is threefold statically indeterminate, the redundant

unknowns being the horizontal tension H and the moments at

the towers. Instead, the stresses in any three members, such as

the members at the tops of the towers and one at the center of

the main span, may be chosen as redundants. Let the stresses

in the three redundant members under any given loading be

denoted by Xi, X2, X^. When these three members are cut,

the structure is a simple three-hinged arch; in this condition,

let Z denote the stresses produced by the external loads, and let

#1, U2 and u% denote the stresses produced by applying internal

FIG. 24. Hingeless Braced Chain Suspension Bridge.

(Type OB .

forces Xi = i, X2 = i, and X3
= i. Then, when the three

redundants are restored, the stress in any member will be,

S =Z+XiUi+X2U2+XzU3. , . . (234)

The restoration of the redundant members must satisfy the

three conditions,

/ \=O
> (235)^=o, and

EA

which, with the aid of Eq. (234), may be written:

EA EA

"

= o

EA

(236)
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The redundant members are to be included in these summa-

tions.

The solution of these three simultaneous equations will

yield the three unknowns Xi, X% and ^3, and their sub-

stitution in Eq. (234) will give the stresses throughout the

structure.



CHAPTER II

TYPES AND DETAILS OF CONSTRUCTION

1. Introduction. The economic utilization of the materials

of construction demands that, as far as possible, the predomi-

nating stresses in any structure should be those for which the

material is best adapted. The superior economy of steel in

tension and the uncertainties involved in the design of large-

sized compression members point emphatically to the conclusion

that the material of long-span bridges, for economic designs,

must be found to the greatest possible extent in tensile stress.

This requirement is best fulfilled by the suspension-bridge type.

The superior economy of the suspension type for long-span

bridges is due fundamentally to the following causes:

1 . The very direct stress-paths from the points of loading to

the points of support.

2. The predominance of tensile stress.

3. The highly increased ultimate resistance of steel in the

form of cable wire.

For heavy railway bridges, the suspension bridge will be

more economical than any other type for spans exceeding about

1 500 feet. As the live load becomes lighter in proportion to the

dead load, the suspension bridge becomes increasingly economi-

cal in comparison with other types. For light highway struc-

tures, the suspension type can be used with economic justification

for spans as low as 400 feet.

Besides the economic considerations, the suspension bridge
has many other points of superiority. It is light, aesthetic,

graceful; it provides a roadway at low elevation, and it has a low

center of wind pressure; it dispenses with falsework, and is

easily constructed, using materials that are easily transported;
69
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there is no danger of failure during erection; and after com-

pletion, it is the safest structure known to bridge engineers.

The principal carrying member is the cable, and this has a

vast reserve of strength. In other structures, the failure of a

single truss member will precipitate a collapse; in a suspension

bridge, the rest of the structure will be unaffected. In the old

Niagara Railway Suspension Bridge (built 1855), the chords of

the stiffening truss were broken (due to overloading) and repaired

repeatedly, without interrupting the railroad traffic.
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There are two main classes of suspension bridges : those with

suspended stiffening truss (Figs. 25 to 36), and those with over-

head braced-chain construction (Figs. 37 to 41). For purpose of

reference, there is given here (page 71) a comprehensive system
of classification of suspension bridges, with mnemonic type

symbols and outstanding examples.
2. Various Arrangements of Suspension Spans. The sim-

plest form of suspension bridge is a single span (Type 2F or 3F)

FIG. 26. Brooklyn Bridge.

(Type 3SD).

Elevation, Plan, and Cross-section.

with the cable carried past the towers as diagonal backstays

(Figs. 27, 29). If side spans are added (Fig. 28), they are inde-

pendent of the cable and of the main span. The single-span

suspension bridge may be built either with or without a stiffen-

ing truss (Fig. 27).

The next form is the bridge having three suspended spans

(Types 05, IS, 2S, 35). In this form, stiffening trusses (or

girders) are indispensable. Only two towers are required, and

each side span is about one-half the length of the main span

(Figs. 10, 17, 25,30,33,35).
If the main span is provided with a center hinge (in addition

to end hinges), the three-span structure becomes statically

determinate (Type 35, Fig. 26). The side spans are suspended



B
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from the cable, but carry their loads as simple beams without

affecting the stresses in the cable or in the main span; on the

other hand, any load in the main span or tension in the cable

will produce relieving stresses in the side spans.

Multiple-span suspension construction, with more than two

towers, is not efficient; the great economy of the suspension

type is lost. As the number of spans increases, the value of the

cable tension H is proportionately reduced, and more of the

load is thrown upon the stiffening trusses
;
the bending moments

and the deflections are thus greatly increased. Examples of

this type are the Lambeth Bridge, London, with three equal

spans of 280 feet; and the Seventh St. Bridge, Pittsburgh, having
two main spans of 330 feet and two side spans of 165 feet each.

Multiple-span suspension designs have been proposed with

the intermediate piers serving as anchorages for adjoining spans.

This has both economic and aesthetic disadvantages.

A suspension bridge of two spans with a single tower would

not be economical. The tower would have to be twice the

normal height to give the desired sag-ratio for the cables.

3. Wire Cables vs. Eyebar Chains. One of the first ques-

tions to be decided in the design of a suspension bridge is the

choice between a wire cable and a chain of eyebars (or flats) for

the principal carrying member. The latter enables the bracing

for the prevention of deformation under moving load to be

incorporated in the suspension system; the other ordinarily

requires a separate stiffening truss for the reduction of these

deflections.

The earliest suspension bridges were built with chains. At

first (1796) forged wrought-iron links were employed; then (1818)

wrought-iron eyebars were introduced; and later (1828) open-
hearth steel eyebars came into use. John A. Roebling estab-

lished the use of wire cables (about 1845); and since his time,

wire cables have been used in practically all suspension bridges.

(Two notable exceptions are the Elizabeth Bridge .at Budapest

[Fig. 34] and the Rhine Bridge at Cologne [Fig. 17]).

In Lindenthal's first Quebec Design (Fig. 39), and in his

1894 design for the projected Hudson River Bridge, he pro-
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posed building the braced chains

of pin-connected wire links; such

construction would have the ad-

vantages of accurate work and

close inspection in the shop,

rapid erection, and possibility

of varying the cable-section as

required. Thus far there has

been no opportunity, however,

of demonstrating the feasibility

of combining the overhead brac-

ing system with a cable or chain

of wire.

The economic comparison of

wire cable and eyebar construc-

tion rests on the following con-

siderations: Steel wire with an

elastic limit of 150,000 pounds

per square inch costs but twice

as much as nickel-steel eyebars

with one-third the elastic limit.

The eyebar heads and pins add

about 20 per cent to the weight
of the chain. The wire cable is

self-supporting during erection

and all the problems involved

have been worked out and suc-

cessfully demonstrated. The

eyebars, on the other hand, unless

expensive falsework is used,

would require temporary sup-

porting cables; and the manu-
facture and erection of eyebars
of suitable size for very long

spans present many unsolved

difficulties.

The following points have
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been advanced in favor of chain construction: The section of

an eyebar chain may be varied with the stress, whereas the entire

wire cable must have the maximum section. The possibility of

corrosion in wire cables (if not properly protected) and of

unequal stressing of the wires (if not carefully strung) are

further arguments for adopting eyebars. Finally, pin-connected

eyebars permit speedier erection, especially in spans which would

require large-sized cables.

Comparative designs have shown that, although the eyebar
chain is 2 to i\ times as heavy as the wire cable, the difference

in cost is generally very small. . Where two designs are of equal

cost, the heavier bridge is to be preferred as giving a more rigid

structure. Greater weight, if it does not increase the cost, is an

advantage in a bridge, as it serves to increase the rigidity and

the life of the structure.

With present materials and prices, chain construction

becomes more expensive than wire cables at about icoo-foot

span. (See Fig. 28.) The development of high alloy steels

at a sufficiently low unit price may, however, enable eyebar

construction to displace wire cables even in the longest

spans.

For the proposed Hudson River Bridge of 3240 feet span

(Frontispiece and Fig. 41), it was found that the adoption of the

overhead bracing system instead of a suspended stiffening truss

yielded a saving which greatly outweighed the extra cost of

employing eyebars instead of wire cables.

4. Methods of Vertical Stiffening. On account of the

deformations and undulations under moving load, unstiffened

suspension bridges should not be used except for footbridges.

If no stiffening truss is provided, the distortions and oscilla-

tions of the cable may be limited by using a small sag-ratio;

by making the floor deep and continuous; or by employing a

latticed railing as a stiffening construction (Figs. 27, 33).

Another method of stiffening the suspension bridge is by the

introduction of diagonal stays between the tower and the road-

way (Fig. 26). These, however, have the disadvantage of making
the stress-action uncertain, and of becoming either overstressed
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or inoperative under changes of temperature; moreover, they

introduce unbalanced stresses in the towers.

In recent French construction, diagonal stays are utilized,

but the redundancy of members is more or less remedied by

omitting the suspenders near the towers (Fig. 29). The inde-

terminateness is thus relieved, and the cable stress is reduced.

This arrangement may be used to advantage in the reconstruc-

tion of weak suspension bridges.

A different method of vertical stiffening, known as the Ordish-

Lefeuvre System, dispenses with cable and suspenders; it con-

sists of diagonal stays running from the tops of the towers and

meeting at a number of points along the span, so as to provide a

triangular suspension for each point. These diagonal stays are

FIG. 29. Suspension Bridge at Cannes-Ecluse.

(Type 2FD).

Over the Yonne River (France). Span 760 feet. Built 1900. Wire Rope Cables.

Diagonal Stays.

held straight by hangers from a light catenary cable overhead.

This system was used for a bridge at Prague (1868) and for the

Albert Bridge in London (1872). It proved to be uneconomical

and unsatisfactory. A modified form, known as the Gisclard

System, was devised for a bridge at Villefranche in 1908 and
has since been copied for several other spans in France, despite
its structural and aesthetic drawbacks.

Practically all modern suspension bridges are stiffened by
means of a truss construction, either separate (Figs. 25-36) or

incorporated in the cable system (Figs. 37-41). The different

types of stiffening trusses and braced-chain designs will be

discussed in separate sections.

5. Methods of Lateral Stiffening. To give the structure

lateral stiffness against wind forces, the most effective means is a
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complete system of lateral bracing. If this bracing is in the plane
of the top or bottom chords of the stiffening truss, these chords

may act as members of the lateral systems (Figs. 30, 36);

otherwise, separate wind-chords must be provided (Figs. 38,

39>4)-
The wind bracing just described is sometimes supplemented

by land-ties or wind-anchors, i.e., ropes connecting points on the

roadway to the piers (Fig. 38) or to points on shore. A hori-

zontal suspension system may thus be formed (Fig. 38).

Another device for securing lateral stiffness is by building

the cables and suspenders in inclined planes (Figs. 27, 30). This
"
cradling

"
of the cables, however, does not appreciably increase

the lateral stability of the structure if there is but one cable on

each side. If two or more cables of different inclinations are

provided on each side (Figs. 26, 32), lateral stability is secured,

but at the sacrifice of equal division of cable stresses.

Cradled cables, even if they do not prevent lateral deflection,

will help to bring the resulting oscillations more quickly to

rest an important desideratum in long spans.

6. Comparison of Different Types of Stiffening Truss.

As a result of a comparative estimate of different types of stif-

fened suspension bridge, the following relative weights of cable

and truss (in main span) were obtained.
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greater rigidity is secured at an expense of only 3 per cent increase

in the cost of the structure.

The one-hinged type (15) is the least desirable construction.

It has the highest cable stresses and chord stresses of any type

of stiffening truss. It will cost more than any other type; and

the large variation in chord stresses, the abrupt reversals of

shear, and the lack of rigidity are serious disadvantages.

The two-hinged types (2S and 2F) are widely used and are

probably the most efficient types, all things considered. They
are more economical than the continuous types, and are simpler

to figure. They are far more rigid than type 3F. The hinges

are located in the towers, where they are least objectionable.

Comparing types 25 and 2F, we find that leaving the side

spans free (straight backstays, Type 2F) (Fig. 31) reduces the

bending moments in the main span. The main-span truss

weight is thus reduced by about n per cent, without sensibly

affecting the cable weight. For lightness of truss, type 2F is

exceeded only by the three-hinged suspension bridge. Type 2F

is also more rigid than type 25.

Suspending the side spans (Type 25) (Figs. 30, 35) makes the

cable more flexible, thus throwing more load on the stiffening

truss. As a result, about n per cent is added to the weight of

the truss in the main span, and the cable stress is slightly relieved.

The increase in cost of the main span is generally more than

offset, however, by the saving in the side spans as a result of

their suspension. Without any addition to its weight, the cable

relieves the side spans of their full dead load and nearly all of

their live load. Type 25 will consequently be more economical

than 2F or 3F unless the conditions at the site are favorable to

cheap, independent approach spans (Fig. 31). Another advan-

tage of suspended side spans is the dispensing with falsework for

their erection (Fig. 50).

The three-hinged type (3F) is determinate for calculations.

The addition of the center hinge slightly increases the cable

stress, but effects a small reduction in weight of stiffening truss.

This type is little used on account of its lack of rigidity and other

disadvantages arising from the hinge at mid-span. Inter-
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mediate hinges are troublesome and expensive details, parti-

cularly in long spans; besides augmenting the deflections, they
cause sudden reversals of shear under moving load, and consti-

tute a point of weakness and wear in the structure. There is

also a large waste of material in the minimum chord sections

near the hinges which, in many cases, will offset the theoretical

reduction in the weight of the stiffening truss. Furthermore, a

center hinge conduces to a serious distortion of the cable from the

ideal parabolic form, with a resulting overloading of some of the

hangers. In the case of the Brooklyn Bridge (Fig. 25) ,
the center

hinge or slip joint has caused excessive bending stresses in the

cable at that point, and the breaking of the adjacent suspenders;

1 20 suspenders near the hinge had to be replaced by larger ropes.

7. Types of Braced-Chain Bridges. A stiffening construc-

tion incorporated in the suspension system may be used instead

of the straight stiffening truss at roadway level. The former

construction, as a rule, involves the use of eyebar chains instead

of wire cables (Figs. 37, 38, 40, 41).

A braced-chain suspension bridge is virtually an inverted

arch in which the ends are capable of restricted horizontal move-

ments. The stresses are the same as those in an arch, but with

opposite signs; the principal stress is tension, instead of com-

pression.

Braced-chain bridges may be classified as to the number of

hinges (OB, Fig. 41; 2B, Fig. 39; 3B, Fig. 38); or as to outline

of the suspension system (Parabolic Top Chord, Figs. 37, 39;

Parabolic Bottom Chord, Fig. 38; Parabolic Center Line, Fig. 40;

Parallel Chords, Fig. 41).

If the suspension system has a parabolic top chord and a

straight bottom chord (Type 2BH', Type 3BUH, Fig. 37) it

corresponds to a spandrel braced arch. The Lambeth Bridge,

London, is an example. The top chord, like a cable, carries the

entire dead load. If the live load is not too great in proportion,

the top chord will never have its tensile stresses reversed; it

may then be built as a flexible cable (Lambeth Bridge) or chain

(Frankfort Bridge, Fig. 3-7) . The bottom chord members suffer

reversals of stress, hence they must be built as compression
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members. For erection, the diagonals should be omitted until

all the dead load and one-half the live load are on the structure

at mean temperature; this procedure will minimize the extreme

stresses in bottom chord and web members. The advantage of

making the bottom chord straight is to save hangers and extra

wind chords.

To avoid having very long diagonals near the ends of the

span, the bottom chord may be bent up toward the towers

(Type 2B V, Fig. 39). This construction has the advantage of

maximum truss depth near the quarter-points where the bending

moments are also a maximum. The main part of the lower

chord remains at the roadway level, thereby saving hangers and

extra wind chords over that length.

If the bottom chord is made parabolic, it becomes the prin-

eipal carrying member. This outline is best adapted for three-

hinged systems (Type 3BL). A notable example is the Point

Bridge at Pittsburgh (Fig. 38). In this structure, the top chord

consists of two straight segments, intersecting the bottom chord

at ends and center. Since the bottom chord is the equilibrium

curve for dead load, there are no dead-load stresses in the top
chords or in the web members. The top chords must be made
stiff members, as they are subject to reversals of stress. This

form of suspension bridge (Type 3BL) is statically determinate

and easily figured. It avoids the use of long diagonals required

in the spandrel braced types (2BV, Fig. 39; 2BH-, 3BUH, Fig.

37), but it requires the addition of longitudinal and lateral stiffen-

ing in the roadway.
Instead of being straight lines (Fig. 38), the two top-chord

segments may be curved. In a system proposed by Eads, they
are made convex upward.

To avoid reversals of stress in the chord members, a form

known as the Fidler Truss may be used. In this form (Type
35C), both chords are concave upward; and the line midway
between top and bottom chords is made parabolic, so that the

two chords will have equal tensions under dead load and uni-

form live load. An example of this form is LindenthaPs Second

Quebec Design (Fig. 40) . The outlines of the chords are obtained
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by superimposing the two equilibrium curves for total dead load

plus live load covering each half of the span in turn.

For two-hinged systems (Type 2BF) a crescent-shaped truss

may be used. The top and bottom chains meet at common

supports on the towers, where they are connected to single

backstays. There are no examples of this type.

If the top and bottom chains are kept parallel, we have

either Type 2BP or Type QBP (Fig. 41), according as the truss

bracing is interrupted or continuous at the tower. Both of these

types are indeterminate, and may involve some uncertainty of

stress distribution. Unless the tower and anchorage details are

properly worked out. there is danger of one of the parallel chains

becoming overstressed or inoperative. Examples of these types

are Lindenthal's Seventh St. Bridge at Pittsburgh (Type 2BP)
and his Hudson River Bridge design (Type QBP, Fig. 41).

An important advantage of the braced-chain system of con-

struction over the straight stiffening truss is the greater flexi-

bility of outline, with the possibility of varying the truss depths

for maximum efficiency. By having the greatest depth of the

bracing at the quarter points of the span, where the maximum
moments occur, the stiffness of the bridge with a given expendi-

ture of material is greatly increased; and by using a shallow

depth along the middle third of the span, the temperature

stresses are reduced.

The braced-chain construction (Types 257, 2BH, or SB U)
saves one chord of the truss, as the cable itself forms the upper

chord.

Advantages of the suspended stiffening truss (Figs. 25-36)

are more graceful appearance, dispensing with extra wind chords,

lower elevation of surfaces exposed to wind, less live-load effect on

hangers and cables, simpler connections, easier and safer erection.

In addition, the braced-chain and suspended-truss types

carry with them the respective advantages of eyebars and wire

cables, unless the practically untried combination of overhead

bracing with wire cables is adopted.

8. Economic Proportions for Suspension Bridges. The

minimum ratio of side spans to main span is about J for straight
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backstays, and about \ for suspended side spans. Shorter

ratios tend to make the stresses or sections in the backstays

greater than in the main cable. The length of side span is also

controlled by existing shore conditions, such as relative eleva-

tions and suitable anchorage sites.

The economic ratio of sag to span of the cable between

towers is about i if the backstays are straight and about f if the

side spans are suspended. (See the author's book "
Suspension

Bridges and Cantilevers.") For light highway and foot-bridges,

the sag-ratio may be made as low as iV to iV .

For adequate lateral stiffness the width, center to center,

of outer stiffening trusses should not be less than about u^th of

the span.

The economic depth of stiffening truss is about Ath of the

span (Fig. 31); although a shallower depth (Fig. 35), desirable

for aesthetic reasons, will not materially augment the cost.

For a railroad bridge, the truss depth (at the quarter points)

should not be less than about ^Vth of the span, or the deflection

gradients will exceed i per cent. (See
"
Suspension Bridges

and Cantilevers.") For highway bridges, the depth may be

made as low as ^oth to Ath of the span.

The economic span-limit for suspension bridges is about

3200 feet (Fig. 41). For greater span-lengths, the necessary

outlay would not be warranted by traffic returns; but there are

other returns, such as civic development and increase in realty

values, to justify longer spans. Spans up to $000 feet may be

regarded as feasible.

9. Arrangements of Cross-sections. The unit of suspension

bridge design is the vertical suspension system, consisting of a

cable (or group of cables) and the corresponding suspenders in a

vertical (or slightly inclined) plane.

Since the suspension systems are above the roadway, their

number is limited; they seldom exceed two (Figs. 27, 30, 32,

37-41). In wide bridges having a number of roadways, four

suspension systems may be provided (Figs. 26, 36).

The main carrying element in each suspension system may be

a single cable (Figs. 26, 36), two cables side by side (Figs. 27,32),
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two cables superimposed, or a group of cables or wire ropes

(Figs. 27, 29, 30) ;
or it may consist of a single chain of bars (Figs.

28, 37), two chains simply superimposed (Figs. 33, 34, 39), or

two chains connected by web members to make a vertical stiff-

ening system (Figs. 38, 40, 41).

There is generally one stiffening truss for each suspension

system, and in the same plane; hence, there are ordinarily two

(Figs. 30, 32, 37-41), and at most four stiffening trusses (Fig. 36).

An exception is the Brooklyn Bridge (Fig. 26), having six stiff-

ening trusses for four cables; this, however, has proved to be an

unsatisfactory and inefficient arrangement.

Between the stiffening trusses are the roadways, generally

on a single deck (Figs. 27, 30, 33, 34, 37-40). Sometimes two

decks are provided, in order to provide the required number of

traffic-ways (Figs. 26, 32, 36, 41). Where two decks are used, the

railways are best placed below and the vehicular roadways

above (Figs. 15, 41). In the Williamsburg Bridge (Fig. 32), a

transverse truss is employed to carry the inside floorbeam

reactions to the two outside suspension systems.

The floorbeams either terminate at their connections to the

outer suspension systems (Figs. 26, 27, 30, 37-40); or they

extend beyond as cantilever brackets to carry outside sidewalks

or roadways (Figs. 32, 36, 41). The latter arrangement saves

floorbeam weight; reduces width of towers, piers and anchorages;

and helps in the separation of different traffic-ways. In very

long spans, the first arrangement (with all roadways inside)

may be necessary in order to maintain the requisite width between

trusses for lateral stiffness.

Where there are four suspension systems, the floorbeams

may be made continuous for greater stiffness (Fig. 36) ;
or they

may be provided with hinges to eliminate the indeterminateness.

10. Materials used in Suspension Bridges. The stiffening

trusses are generally built of structural steel, but nickel steel or

other alloy steels may be used; and for minor structures, timber

trusses have been employed.

The cables are generally made of galvanized steel wires

having an ultimate strength of 200,000 to 230,000 pounds per
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square inch, and an elastic limit as high as 150,000 pounds per

square inch.

The suspenders are generally galvanized steel ropes. These are

manufactured in diameters ranging from ij to 2\ inches, and

have a tested ultimate strength given by 80,000X (diameter)
2

.

In smaller bridges (Figs. 29, 30), the cables may be made of

these galvanized steel ropes instead of parallel wires.

The towers are generally built of structural steel (Figs. 30, 31,

35> 37> 38 > 4i); although stone (Figs. 25, 27, 29, 33), concrete,

and timber have been used.

Cast steel is used for all castings, such as saddles (Figs. 32, 33),

cable bands (Figs. 32, 36), strand shoes (Figs. 32, 36), anchorage
knuckles (Figs. 32, 33), and anchor shoes (Figs. 33, 37, 38). Sus-

pender sockets (Figs. 32, 36) are made by drop-forging and

machining.

If chains are adopted instead of wire cables, alloy steels may
be advantageously employed. In a competition for a suspen-

sion bridge at Worms, the Krupp firm guaranteed nickel steel

eyebars with an ultimate strength of 100,000 to 120,000, an

elastic limit of 70,000 pounds per square inch, and an elongation

of 15 per cent. For Lindenthal's Manhattan Bridge design

(1902), nickel steel eyebars with an ultimate strength of 100,000

and with 20 per cent elongation were to be used. The chains

for the Elizabeth bridge at Budapest (Fig. 34) were made of open-

hearth steel with 70,000 to 80,000 ultimate strength and with

20 per cent elongation.

Under average conditions, the substitution of nickel steel

affords a saving of 10 to 15 per cent in the cost of a chain or a

stiffening truss.

11. Wire Ropes. Galvanized steel ropes used for suspenders

and for small bridge cables (Figs. 29, 30), are manufactured in

diameters ranging from ij to 2f inches. Each rope consists of

7 strands, each strand containing 7, 19, 37 or 6 1 wires; the wires

are twisted into strands, in the opposite direction to the twist of

the strands into rope, the angle of twist being about 18. The

weight of the rope in pounds per lineal foot is I.68X (diameter)
2

.

The strength of a twisted wire rope is less than the aggregate
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strength of the indi-

vidual wires. The spi-

ral wires are stressed

about 4 or 5 per cent

higher than the mean

stress per square inch

in the rope, and the

center wire is stressed

15 per cent higher

than the spiral wires.

The tested ultimate

strength of galvanized

steel suspension bridge

rope is given by 80,000

X (diameter)
2

.

When twisted wire

ropes are used for

cables, care must be

observed, when apply-

ing the fundamental

design formulas, to

allow for the reduced

elastic coefficient (E)

of this material; it is

only about f of the

value of E for struc-

tural steel.

The coefficient of

elasticity (E) of a single

rope strand with an

angle of twist of 18 is

85 per cent ofE for par-

allel wires, or about

24,000,000. The co-

efficient of elasticity

(E) of a twisted wire

rope composed of 7 or
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more strands is 85 per cent of E for a single strand, or about

20,000,000.

Twisted wire ropes have a large initial stretch under load,

on account of the spiral lay of the wires and strands. Conse-

quently, at small loads, tests show a high rate of stretch yielding

a modulus of elasticity (E) as low as 10,000,000. After the

initial stretch has been taken up (at a unit stress of about 20,000

pounds per square inch) ,
the rate of elongation is considerably re-

duced, yielding a value of 20,000,000 for the true elastic coefficient

(E). The lower values of E (10,000,000 to 15,000,000) are to be

used in estimating the dead-load elongation of the cable (if com-

posed of wire ropes), and the higher value (20,000,000) should

be used in figuring live-load and temperature stresses.

On account of the high and variable elongations, including

the influence of time, suspenders and cables made of wire ropes

should preferably be provided with screw and nut adjustments to

regulate their lengths to the assumed deflections and elevations.

Cables may be built either of twisted wire ropes or of parallel

wires. For long or heavy spans, parallel wire construction is

best adapted; for light bridges, the use of twisted wire ropes

may be more convenient and expeditious.

In cables formed of twisted wire ropes, the individual ropes

are limited to 250 to 300 wires each, so as to avoid excessive

stiffness and difficulty of handling; consequently, large cable

sections require several such ropes.

A multi-strand cable may be formed of twisted strands

surrounding a straight central strand; or of parallel strands

united at intervals by clamps. Twisted strands ensure a more

even division of load, except that the central strand carries a

little more than its share; but the resulting cable suffers greater

elongation under load. Moreover, since a twisted-strand cable

must be erected as a unit, it is limited in weight and section.

Equal stressing of parallel strands is dependent upon the effi-

ciency of the clamps or bands in gripping them. An advantage
of the parallel construction with bolted clamps is the ease of

correcting overstress in individual strands and of replacing

damaged strands. Clamping systems have been designed for
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large groups of parallel ropes, to ensure unit stress action and to

facilitate renewal of individual ropes; at the same time pre-

serving ample spacing between the ropes to permit inspection

and protection against rusting.

A twisted wire cable of patent locked wire has been developed.
In it the spiral wires have trapezoidal and Z-sections, locking

together so as to leave practically no voids. The advantages
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are compactness, smooth outer surface, firm gripping of the

individual wires, and sealing against the entrance of moisture.

Cables of this construction, ready to erect, have been made in

single strands up to 800 tons tensile strength, and in seven

strands up to 1500 tons.

The application of twisted ropes on a large scale involves

problems requiring further study; whereas parallel wire con-

struction has had ample satisfactory demonstration in the

largest existing suspension bridges.

12. Parallel Wire Cables. Parallel wire cables have the

advantages of maximum compactness, maximum uniformity of

stress in all the wires, and the easiest and safest connection of

the cable to the anchorage. Twisted wire ropes are used for

shorter spans, up to 600 or 700 feet, to save time in erection.

Parallel wires are applicable to spans of any length, and will

cost somewhat less than twisted ropes of the same strength;

they will not stretch as much as twisted ropes, and will there-

fore keep more of the load off the stiffening truss. The only

disadvantage of parallel wire cables is that they consume several

weeks or months in erection.

A common size of wire for cables is No. 6 (Roebling gauge)

which is 0.192 inch diameter and weighs 0.0973 pound per foot

before galvanizing; after galvanizing, the diameter is about

0.195 inch? and the weight is practically TO pound per foot.

The breaking strength of this wire at 220,000 pounds per square

inch is 6400 pounds; the elastic limit at 150,000 pounds per

square inch is 4350 pounds; the working stress at 75,000 pounds

per square inch is 2180 pounds per single wire. Other common
sizes of wire for cables are No. 7 (0.177 inch diameter) and No. 8

(0.162 inch diameter), recommended for shorter spans.

About 250 to 350 of these wires are treated as a single strand

during erection. The cable consists of 7, 19, 37 or 61 of these

strands. At the anchorages, the strands are looped around

grooved shoes (Fig. 36) which are pin-connected to the anchorage

eyebars (Fig. 32). For the rest of their length, the strands are

compacted and bound to form a cylindrical cable of parallel wires.

For security agamst corrosion, the wire should be galvanized.
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The only drawback is a reduction of about 7 per cent in the

strength of the wire per square inch of final gross section (4 per

cent actual reduction in the strength of the wire, and 3 per cent

increase in gross section.)

The splicing of individual wires was formerly effected by

wrapping the overlapping ends with fine wire. A more efficient

splice (giving 95 per cent efficiency) is made by mitering the

ends, threading them and connecting with small sleeve-nuts

(Figs. 32, 36). Both methods have the disadvantage of disturb-

ing the uniformity of the cable section. To reduce the number

of such splices, the lengths of the individual wirer, as manu-

factured have been increased to 3300 feet. In some French

bridges, the ends of the wires, after beveling, were joined by solder-

ing; but the heat reduces the strength of the wire at the splice.

Besides using galvanized wires, additional protection is

secured by providing a tight and continuous wire wrapping
around the cable. Soft, annealed, galvanized wire of No. 8 or

No. 9 Roebling gauge is commonly used. The function of this

wrapping is to exclude moisture, to protect the outer wires, and

to hold the entire mass of wires so tightly as to prevent chafing

and ensure united stress action.

No record can be found of any rusting of wire cables employ-

ing either or both of the above described methods of protection.

13. Cradling of the Cables. In the majority of suspension

bridges, the main span cables do not hang vertically but in

planes inclined toward one another, the inclination ranging from

i : 20 to as much as i : 6. The stiffening trusses, however, are

kept vertical. Even in designs with overhead bracing, the

suspension systems have been cradled with inclinations ranging

from i : 20 to i : 16.

Cradling is employed principally because it is supposed to

augment the lateral stiffness of the structure
; however, the advan-

tage in this respect over vertical cables is but slight. With an in-

clination of i : 10, the increased resistance to lateral displacement

is only i per cent. Moreover, with cradled cables any lateral dis-

placement is accompanied by a tilting of the suspended structure,

resulting in secondary stresses which are difficult to evaluate.
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The following table gives data on the wire cables of the

East River suspension bridges :

/
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CONNECTION OF CABLE TO ANCHOR CHAIN

ANCHORAGE CABLE BAND AND SUSPENDERS

FIG. 32. Williamsburg Bridge.

(Type 2/0.
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(Fig. 36), and then pass back into the strand. Large cables are

divided for this purpose into 7, 19 or 37 strands; and such

cables accordingly have 7, 19, or 37 strand shoes at each end.

Steel pins pass through these shoes for connection to the anchor-

age eyebars (Fig. 32).

The strand shoes are grouped into a number of horizontal

rows (generally 2 or 4), and the anchor chain divides into an

equal number of branches to effect the connection (Fig. 3 2) .

About 10 feet forward of the shoe, the two halves of a strand

are combined into one; and all strands, before leaving the

masonry, are squeezed into a round cable.

The shoes have slotted pin-holes which are provided with

shim-blocks (Fig. 36) to permit regulation of the individual

strands before combining into a cable.

Bending the wires around the shoe produces bending stresses

exceeding the elastic limit; but the resulting stretching of the

outer fibers redistributes the stress over the cross-section of the

wire; with properly ductile steel wire, the strength at the loop

is not materially impaired.

If the wire is very hard, or if the cable consists of wire ropes,

a larger radius of curvature must be provided or some other

form of connection must be used.

For wire ropes a larger shoe is used, with the end of the rope

fastening into a socket after bending around the shoe.

The sling construction is avoided by setting the ends of the

strands or ropes directly into steel sockets. After inserting the

rope into the expanding bore of the socket, the wires are pried

apart and spread with a point tool, and the intervening space

filled with fusible metal (preferably molten zinc). Such socket

connections are now made to develop the full strength of the

rope. The sockets may be designed to bear directly against

the under side of the anchor girder; or they may be threaded

to receive the end of a rod which serves as a continuation of the

strand.

15. Construction of Chains. Chains may be constructed of

horizontal flats piled together and spliced at intervals by means

of friction clamps with bolted flanges. Suspenders are bolted
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to these clamps. This laminated

construction is subject to high

secondary stresses from bending.

Chains may be constructed of

closed links overlapping around

connecting pins to which the

hangers are attached (Fig. 39).

Chains may consist of eyebars

or flats bored at their ends to

receive pins (Figs. 33, 34, 38, 40).

Generally, single-pin connections

are used, and the number of bars

alternates in successive panels.

Otherwise, short two-pin connect-

ing bars may be used, permitting

the number of eyebars to be the

same in adjacent panels.

In American practice (Figs. 38,

40), forged eyebars are used. In

European practice (Figs. 17, 33,

34) ,
the eyebars are made by weld-

ing or riveting, or by cutting from

wide flats. The last is an extrava-

gant procedure.

Where flats are used, the re-

duction of section by the pin-

holes may be largely made up by

riveting pin-plates at the ends of

the bars.

Chains composed of vertical

flats riveted together have been

proposed, but the secondary
stresses from bending would be

very high.

For long spans, the chains

would have large cross-sections,

requiring pins of excessive length.

w

I
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This is circumvented by using two chains, either side by side

or superimposed; in the latter case, if the panels are not too

short, successive hangers are connected alternately to the upper
and lower chains (Figs. 33, 34).

A disadvantage of chain construction is unequal division of

stress in the individual bars between two pins. This may be

caused by inaccuracies in length, differences in temperature,

variations in elastic modulus, bending of the pins, and eccentric

suspender loading. The unequal stressing of the eyebars is

frequently apparent on superficial examination or upon com-

paring the ringing pitch under hammer blows. Actual measure-

ments (by comparing deflections under lateral test loads) have

revealed varying stresses in a single group of eyebars ranging
from 40 to 200 per cent of the mean stress.

16. Suspender Connections. Cable Bands and Sockets.

The attachment of the suspenders to the cable is generally made

by means of cast steel collars called cable bands (Figs. 26, 32, 36).

The cable band may be an open ring with flanged ends to receive

a clamping and connecting bolt (Fig. 26) . More generally it is

made in two halves with flanges (Figs. 32, 36). The band must

grip securely to prevent slipping. The inside of the band should

be left rough to minimize the tendency to slip on the cable;

and space should be left between the flanges for taking up any
looseness of grip, when necessary. A cam-clamping device has

been proposed for automatically increasing the grip as load is

applied through the suspender.

If the hangers are of rigid section, they are bolted to vertical

flanges cast integral with the cable band for this purpose.

If rope suspenders are used, the cable band is cast with a

groove or saddle to receive the rope which passes over it (Figs. 32,

36). Oh account of the varying slope of the cable, the grooves

in the cable bands are at varying angles, requiring a number of

different patterns. To avoid this, the bearing flange of the

grooves may be made curved in elevation.

If the cable is used as a chord of an overhead bracing system,

the rigid web members connect to the cable bands; and the

latter must be made long enough, with ample clamping bolts, to
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develop the friction requisite to take up the chord increment of

the web stresses. A tight layer of wire wrapping against the

ends of the cable bands will add to their security against slipping.

The frictional grip (in pounds) attainable in a cable band,

with maximum permissible stress in the bolts, is 70 to ioond2
,

where n is the number and d is the diameter (in inches) of the

clamping bolts. By this relation may be determined the number

of bolts required to resist a given component parallel to the cable.

If the cable consists of a cluster of wire ropes, soft metal

fillers should be inserted within the band to improve the grip

and to exclude moisture.

The cable band should be designed so as to prevent the admis-

sion of moisture to the cable. The flanges should be designed

for excluding rain, and the joints all around should be securely

calked. The band should preferably be undercut at both ends

for the insertion of the first few turns of the wire wrapping

(Fig. 36).

The free ends of the suspender ropes are secured in sockets

made of high-grade steel drop-forgings (Figs. 32, 36). The end

of the rope is inserted into the expanding shell of the socket, the

ends of the wires are spread apart and the interstices are filled

with molten metal (preferably zinc) which will not shrink

appreciably on cooling. This fastening of the end of the rope

is found, by test, to be unaffected by the ultimate loads causing

failure of the rope.

Closed sockets terminate in a closed loop with which other

links can be engaged. Open sockets terminate in two parallel

eye-ends to receive a bolt or pin for connection to other struc-

tural parts. Threaded sockets (Figs. 32, 36) are cylindrical and

are threaded on the outside to receive adjusting and holding

nuts
;
these sockets may be passed through truss chords or girder

flanges, with the nuts bearing up against the lower cover plates

of these members (Fig. 36).

Sockets are furnished by the wire rope manufacturers, either

loose or fastened to the ropes.

17. Suspension of the Roadway. The suspenders may con-

sist of wire ropes (Figs. 26-28, 30-32, 36); or of rods, bars or
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rolled shapes (Figs. 29, 33, 34, 38-41). There may be one (Fig.

26), two (Fig. 30), or four suspenders (Figs. 32,36) at a panel point.

If the hangers are made of rigid rods (instead of wire ropes),

bending stresses due to lateral or longitudinal swaying of the

bridge are avoided by inserting pin connections or links (Figs. 38,

39> 4o).

Solid steel rods used for hangers generally have a high slender-

ness ratio and are subject to bending and to vibrations; to

provide greater stiffness, tubular and built-up sections have been

substituted (Figs. 34, 38, 41).

Where there are two or more suspenders at a panel point,

the possibility of unequal division of load should be taken into

consideration. Equalizers may be used to advantage (Fig. 32).

After passing around the cable band, the suspender may
extend down as two separate ropes (Fig. 36) ;

or the short end

may be clamped to the main suspender, which then extends

down as a single rope (Fig. 32).

The suspenders may connect directly to the floorbeams

(Figs. 26, 27, 29, 38, 41), or to the top or bottom chord of the

stiffening truss (Figs. 32, 36). IL the latter case, the floorbeams

frame into the chords or into the posts of the stiffening truss.

For connection to the floorbeams or chords, the suspenders

may pass through and bear up against the lower cover plate

with the aid of washers or special castings (Figs. 26, 32, 36); or

they may loop around the floorbeams or chords either directly

(Fig. 27) or with the aid of steel cross-pieces or yokes.

Connecting the suspenders to the top chord of the stiffening

truss requires the entire length of the cable to be above the truss;

this has aesthetic advantages (see Figs. 28, 34, 35), but it adds

the depth of the truss to the required height of the towers.

Lowering the cable saves height (Figs. 25-27, 29-33), Dut

requires either lengthening of the floorbeams or spreading of the

trusses or towers.

Another method of suspending the roadway is to loop the

suspender rope under a small saddle casting from which there

extend downward rigid rods terminating in holding nuts (Fig. 32)

or steel flats bored to receive connecting pins.
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Provision for adjustment of the hangers may be made by
means of the holding nuts (Figs. 32, 36), or by means of sleeve

nuts or turn buckles with right and left threads (such as shown

in Fig. 32). Some engineers prefer to omit provision for adjust-

ment, depending upon careful computation of required length

before cutting the ropes and attaching the sockets.

18. Construction of Stiffening Trusses. The function of

the stiffening truss is to limit the deformations of the cable and

to so distribute any concentrated, unsymmetrical, or non-

uniform loads as to keep the suspender tensions in a constant

proportion (or equal if the cable is parabolic). In other words,

the stiffening truss is required to hold the cable (or chain) in its

initial curve of equilibrium. This will limit the deflections of the

structure, and will resist the setting up of vertical oscillations.

The first suspension bridge provided with a stiffening truss

was the 820-foot railway span at Niagara, built by John A. Roeb-

ling in 1851-55. The Brooklyn Bridge (Fig. 26), completed in

1883 by Roebling's son, was built with 4 cables and 6 stiffening

trusses, and, in addition, was provided with diagonal stays.

Until comparatively recent years, stiffening trusses were

only roughly figured and were made of constant section. The

scientific design of suspension bridges dates from about 1898.

Stiffening trusses are generally built with parallel chords

(Figs. 25, 30, 32, 35); a small variation in depth is sometimes

introduced (Fig. 34). To prevent an unsightly and otherwise

undesirable sag under load, and to counteract the illusion of

sag, a generous camber is usually provided (Fig. 31).

The web system may be of the single Warren (Figs. 30, 35)

double intersection (Fig. 34), or latticed types (Fig. 31). The

J^-truss may also be applied to advantage. Instead of a truss,

plate girders may be used; the Vierendeel girder or quadrangular
truss (like the floorbeam in Fig. 41) has also been proposed.

To make the design statically determinate, a hinge at the

center of the stiffening truss is necessary (Type 3F or 35, Fig. 26) ;

but this construction has many drawbacks. In long spans,

the angle change at the hinge would be so great as to cause

serious bending stresses in the cable and overloading of adjacent
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suspenders. Moreover, the wind stresses must be transferred

through the hinge, and the details become more difficult and

costly.

Making the truss continuous past the towers (Types OF,

05, Fig. 34) yields more effective stiffening: either less material

is required or the deflections are reduced; furthermore, the

impact effects of moving loads entering the main span are

reduced. On the other hand, continuity renders the structure

indeterminate (in the third degree); inaccuracies in construc-

tion, settlement of supports, and unequal warming of the chords

will affect the stresses adversely.

Introducing hinges in the continuous stiffening truss relieves

the indeterminateness and the accompanying uncertainty of

stress conditions. In the Williamsburg Bridge (Fig. 31) a hinge

is placed in each side span, close to the tower; in a prize design

for the Elizabeth Bridge at Budapest (Fig. 34), two hinges were

located in the main span; in both cases, the resulting system is

singly indeterminate. In the usual two-hinged construction

(Types 2F, 26", Figs. 15, 36), the truss is hinged or interrupted

at the towers.

As in other indeterminate structures, all precautions must be

observed in construction to avoid false erection stresses. If

the suspenders are adjustable, a definite apportionment of dead

load between cable and stiffening truss may be secured. The

stiffening truss may be totally relieved of dead-load stress by

adjusting it under full dead load and mean temperature to the

exact form it had when assembled in the shop at the same tem-

perature; or by omitting certain members until full dead load (at

mean temperature) is on the structure. In any case, the joints

should not be riveted until the dead load is on and all adjust-

ments are made.

The stiffening truss may be made of any height, depending

upon the degree of stiffness desired. With increasing depth,

the stiffness is naturally augmented; and, up to a certain limit,

material is saved in the chords of the stiffening truss. Beyond
this limit (economic depth = about ^Vth of the span), the chord

sections commence to increase as a result of the high temperature
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stresses. For the sake of appearance, a somewhat shallower

depth may be used (Fig. 35) without materially affecting the

economy. If the truss has a center hinge, a greater depth

becomes economical, since temperature stresses and uniform

load stresses practically vanish. If the deformations are to be

limited so as not to produce a deflection gradient exceeding

i per cent, the depth must be made not less than Ath of the

span, whether two-hinged or three-hinged.

Bearings must be provided at the towers and abutments to

take the positive reactions of the stiffening truss (even if continu-

ous) ;
and these points of the truss must also be anchored down to

resist the uplift or negative reactions. At the expansion bearings,

the anchorage must be so designed as to permit free horizontal

movement; this may be accomplished either by the use of

anchored rollers above the bearing, or by means of pin-connected

rocker arms. } One bearing of each truss should be fixed against

horizontal movement, in order to resist longitudinal forces.

(An exception was the Niagara Railway Suspension Bridge,

where an automatic wedge device, for dividing the expansion

equally between the two ends of the span, was provided.)

19. Braced-Chain Construction. Overhead stiffening trusses

may be regarded as inverted arches. A common form is the

three-hinged truss with horizontal lower chord (Type 3BH,

Fig. 37), and these are designed similar to spandrel-braced

arches. The chords and web members are built up of plates

and angles with riveted panel points. The center hinge is

designed to transmit the full value of H for dead and live load,

and the maximum vertical shear from live load. At the towers,

both chords are supported on expansion plates; the bottom

chord ends there, but the top chord passes over cast-steel saddles

and continues toward the anchorage. The top chord is sup-

ported at the top of the towers either on rockers or on rollers

(Fig- 37)-

In the three-hinged type (3BH), the center hinge may be

located either in the upper or in the lower chord. In the former

case, the upper chord will carry all of the dead load and full-

span live load; the lower chord and web members will be
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stressed only by partial loading. Accordingly, the upper

chord will have a fairly uniform section, while the other members

will be comparatively light. This arrangement has a disad-

vantage, however, in the necessary break in the floor system

under the hinge; the stringers must be provided with expansion

joints, and the wind bracing must be interrupted.

If the hinge is placed in the lower chord, false members are

required, for the sake of appearance, to cover the interruption

in the top chord. Furthermore, there results a large variation

in the chord stresses: near mid-span, the top chord stresses

become light and the bottom chord stresses become heavy;
and the reverse occurs near the towers.

The hinge may be either of the ordinary pin type or of the

plate type. In the latter case, the chord section is concentrated

into wide horizontal plates to connect the two halves of the span;

and the vertical shears at the point are transmitted by means of

vertical spring plates.

The false members in the interrupted chord may be con-

nected with friction bolts in slotted holes, so that the resulting

friction may act as a brake against oscillations.

To eliminate bending moments in the stiffening truss at the

tower, the end member of the lower chord may be suspended
from the saddle; or it may simply rest on an expansion bearing,

at the tower, with the end vertical omitted from the truss.

Another arrangement is to make the tower integral with the

main span truss, the tower being pivoted at the base, and

the side span having only a hinged connection at the top of

the tower.

The use of a wire cable for the top chord had an illustration

in the Lambeth Bridge, London; but the details did not con-

stitute an example worth copying. For long spans it is generally

considered that the overhead bracing system cannot compete
with the suspended stiffening truss, unless a wire cable is used.

In any case, the use of a cable as a truss chord gives rise to diffi-

culties in the detailing of connections at the panel points; and,

despite noteworthy studies and designs (e.g., Fig. 39), the prob-
lems involved cannot be considered as fully solved.
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When the braced-chain (01 braced-cable) system is used, the

web members should preferably not be connected until full dead

load and half live load are on the structure at mean temperature.

There will thus be accomplished a reduction in extreme stresses

in the web members and lower chords; the maximum tension

will be equal to the maximum compression in each member, and

this stress will be only the arithmetic mean of the extreme

stresses that would be produced without this precaution. How-

ever, if the design specifications prescribe stringent allowances

for alternating stresses, the reduction in sections by this device

will not be material.

The truss depth at the crown (Type 3) should preferably

be between 0.15 and 0.3 of the sag of the chain. Sufficient

depth must be provided to take care of the shearing stresses

and to prevent undue flexibility in the central portion of the

span; but excessive depth, besides increasing the metal required,

impairs the desired graceful appearance of the suspension con-

struction. If the hinge is omitted, any increase in crown-depth
serves to augment the temperature stresses.

The form of braced-chain construction (Type 2B V) pro-

posed by Lindenthai for his first Quebec design (Fig. 39), and

for the Manhattan Bridge, has many advantages. The bottom

chord is bent up toward the towers, so as to obviate the necessity

for long web members. The requirement of extra wind chords

at the ends of the span is not, comparatively, an important

objection.

Suspension trusses with bracing above the principal chain

(Type 3BL) are exemplified in the Point Bridge at Pittsburgh

Fig. 38). In this system the stiffening chords are straight, and

the bottom chord is parabolic. The top chord members have

to resist both tension and compression.

A system having many advantages is the Fidler Truss

(Type SBC), exemplified in Lindenthal's second Quebec design

(Fig. 40), in a Tiber bridge at Rome, and in the Tower Bridge

at London. In this system, consisting of two crescent-shaped

half-arches, both chords are curved, the bottom chord having a

sharper curvature than the equilibrium curve for full load.
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The parabolic curve passes midway between the two chords, so

that they are about equally stressed. With this system it is

possible to avoid compressive stresses in both chords.

In the foregoing systems (Types 3BL, 35C), it should be

noted that the suspended floor system must be interrupted, or

else of negligible moment of inertia, under the center hinge. It

is more important here than in three-hinged arches, on account

of the greater crown deflections in suspension systems.

The systems using parallel chains connected with web-

bracing have been little used on account of the difficulties in

stress analysis. If each chord has its own backstay (Type OBP) ,

the system is threefold statically indeterminate. If the top

chord is interrupted at the towers (Type 2BP), the indetermi-

nateness is reduced. It would be more effective, in such case, to

bring the two chords together in crescent form instead of using

parallel chords. In Lindenthal's Seventh St. Bridge at Pitts-

burgh and in his first design for the North River Bridge, the bot-

tom chord rested directly on bearings on the top of the towers,

and the top chord was connected thereto by a double quad-

rangular linkwork equivalent to a hinge; this made the system

singly indeterminate (aside from the redundancy of web mem-

bers). When parallel chains are used in the side spans, the

bottom chord may be connected to the anchorage; or both

chords may be brought together at a common pin for connec-

tion to the anchor chain.

The latest example of parallel chain construction is Linden-

thal's new design for the Hudson River Bridge (Fig. 41). The

main span is 3240 feet, and the bridge is continuous at the towers

(Type OBP).
20. Wind and Sway Bracing. To take care of transverse

wind pressure and lateral forces from moving train loads, and to

carry these forces to the piers, systems of lateral and sway

bracing are required.

A system of wind bracing must be provided in the plane of

the roadway, since the principal horizontal forces originate

there. Such bracing system is obtained by inserting diagonals

between the floorbeams, so as to form a horizontal truss; using
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for chords either the bottom chords of the main stiffening truss

(Figs. 26, 30, 32, 36, 37) or else adding extra longitudinals called

wind chords (Figs. 38-41, 56).

If the stiffening truss is high enough to afford necessary

clearances, a bracing system in the plane of the top chord may
be added, giving a closed cross-section to the structure (Figs.

26, 32, 36, 43).

If the roadway is elevated, vertical sway frames of cross-

bracing may be introduced between the trusses (Fig. 26) ;
or the

floorbeams may be built of deep latticed construction. In such

case, a single plane of horizontal wind bracing will suffice.

A novel method of transverse bracing is introduced in the

design for the Hudson River Bridge (Fig. 41) in the form of

deep floorbeams (32 feet high) of quadrangular construction

(Vierendeel Girders); the rectangular openings are used as

passageways for the railway tracks.

Bearings must be provided at the towers to take the hori-

zontal reactions of the wind truss without hindering longitudinal

expansion. Vertical pins bearing in slotted guides may be used

for this purpose.

The cables or chains present so small a surface to the wind

as to require no wind bracing; or at most they may be con-

nected together by horizontal ties.

On account of the inherent stable equilibrium of the suspen-

sion system, the wind bracing is to a certain extent relieved of

its duty.

Braced-chain systems are provided with a single wind truss

below the roadway, using either the lower chords of the main

truss (Type 3BH, Fig. 37) or special wind chords (Types 2BVj

SBC, etc., Figs. 38, 39, 40, 41). In addition, transverse sway
frames are located at intervals between the two suspension

trusses in the planes of verticals or diagonals, so far as clearance

requirements permit (Fig. 38). In comparison with other types

of bridges, but little material is needed for this sway bracing

since, in the first place, the low position of the center of gravity

makes the suspension truss stable without bracing, and, in the

second place, there are no top chord compression members (in
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most of these types) to be braced against buckling. It is essen-

tial, however, to provide properly designed rigid portal and

sway bracing between the legs of the main towers (Figs. 37, 38).

A profusion of overhead bracing, besides being structurally

unnecessary, will impair the graceful appearance sought in

suspension constructions.

A center hinge in the stiffening truss introduces complica-

tions in the design of the wind-bracing system. If the hinge is,

as usual, in the top chord, the wind bracing must follow the two

central diagonals to make connection at the hinge; these central

diagonals then act as wind-chord members, and their sections

must be increased accordingly. If the top chord hinge lies

above the roadway, the cross-bracing in the two central panels

connecting with the hinge has to be omitted. This produces a

point of weakness in the horizontal bracing system, and should

be avoided in long spans either by omitting the hinge or by

locating the hinge in the bottom chord.

Early suspension bridges that were found to have excessive

lateral deflections and oscillations were stiffened by means of

wind cables (wire ropes) placed in a horizontal plane under the

roadway; these ropes were connected to the floorbeams and

were anchored to the piers, so as to form a horizontal suspension

system of cable and stiffening truss. To take care of wind in

both directions, a double system of wind cables must be used,

and their sag-ratio should be made as large as possible (Fig. 38).

For greater stiffness, straight auxiliary cables have sometimes

been added.

The efficacy of the above-described system of wind cables is

doubtful, since it is ordinarily impossible to give the ropes

proper initial tension; consequently they do not commence to

take stress until the horizontal deflection of the structure exceeds

a certain amount. For this reason, wind cables have not been

relied upon for modern designs, but rigid wind trusses have been

adopted instead, to take care of the wind pressures.

21. Towers. For purposes of discussion, the tower may be

considered as composed of two parts: the substructure or pier;

and the tower proper, extending above the roadway and sup-
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porting the cables or chains. The pier does not involve any
special features differentiating it from ordinary bridge piers.

The tower must be designed so as not to obstruct the road-

ways. It is therefore composed of a column or tower leg for

each suspension system (Figs. 30, 35-38). For lateral stability,

the tower legs are braced together by means of cross-girders and

cross-bracing (Figs. 30, 35) or by arched portals (Figs. 37, 38).

The sway and portal bracing are necessary to brace the tower

columns against buckling, to take care of lateral components
from cradled cables or chains, and to carry wind stresses down to

the piers.

The design of the tower depends upon the material employed.
This is either masonry (Figs. 25, 27, 29, 33) or, more commonly
steel (Figs. 15, 17, 28, 30-32, 34-41) ,

and occasionally timber.

If masonry is used, the tower may consist of shafts springing

from a common base beneath the roadway and connected together

at the top with gothic arches (Fig. 25) ; or, for smaller spans, the

tower may consist of two separate tapering shafts or obelisks.

To meet architectural requirements and to express resistance

to transverse forces, the outline of the tower should taper toward

the top. This also conforms to structural requirements.
The tower legs must be designed as columns to withstand

the vertical reaction of the cables; also as cantilevers to resist

the unbalanced horizontal tension. The latter will depend upon
the saddle design (fixed or movable), the temperature and load-

ing conditions, and the difference in inclination of main and

side-span cable tangents at the saddle. Forces due to wind

pressure on the cables, towers, and trusses must also be pro-

vided for.

The application of steel to suspension-bridge towers offers

many advantages. The lower cost permits a greater height in

order to secure a more favorable sag-ratio. The thermal expan-
sion of the steel tower balances that of the suspenders, so as to

eliminate serious temperature stresses which would otherwise

arise in indeterminate types (2F, 25, OF, OS).

Steel tower columns (Figs. 15, 17, 30, 36-39) are made up of

plates and angles to form either open or closed cross-sections;
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the sides may be either latticed or closed with cover plates.

The relative dimensions are governed by the usual specifica-

tions for the design of compression members, particularly in

respect to limiting unsupported widths of web plates. The

cross-section enlarges toward the base, or outside stiffening

webs are added; and the base must be anchored to resist the

horizontal forces (Fig. 37).

For high towers, the individual legs may be made of braced-

tower construction, each leg consisting of four columns spread-

ing apart toward the base and connected with lacing or cross-

bracing (Fig. 31).

Rocker towers, pin-bearing at the base, afford the most

economical and scientific design for bridges of longer span.

They eliminate the stresses from unbalanced horizontal forces

without requiring movable saddle construction. The most

notable examples actually constructed are the Elizabeth Bridge
at Budapest (Fig. 34) and the Cologne Bridge (Fig. 17). (See

also Figs. 15, 39, 40.)

If rocker towers are adopted, they must be secured against

overturning during erection. This may be accomplished by
temporary connections to the adjoining truss structure, by
wedging or bracing at the base, or by guying the upper portions
of the tower.

For foot bridges and bridges of small span, the simplest
tower construction employs a stiffened plate for each leg, the

two legs being braced together and carrying steel castings at

the top to hold the cables.

If timber is used, each cable support consists of four battered

posts with framed bracing, the two legs thus formed being con-

nected at the top with cross-bracing.
22. Saddles and Knuckles. The cables are generally con-

tinuous over saddles on top of the towers.

Designs have been made with the main cables terminating
at the towers, with a special connection at the top of the towers

to the backstay cables (e.g., Morison's North River design).
The advantages claimed were shorter cable strands to handle in

erection, elimination of stresses due to bending of the cable
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over the towers, and the possibility of increasing the section of

the backstays to permit steeper inclination. The latter advan-

tages, however, can be secured with continuous cables by employ-

ing certain design features.

If the stress in the backstay, as a result of steeper inclination,

is much greater than in the main cables, auxiliary strands may
be incorporated in the backstay to increase its section; and

provision should be made for the connection of these auxiliary

strands to the saddle. (An example is the Rondout Bridge at

Kingston, N. Y., Fig. 56.)

Cable saddles are generally made of cast steel (Fig. 32).

They are either bolted to the top of the tower (Fig. 36) or pro-

vided with rollers (Figs. 32, 33, 37).

Where fixed saddles are used (Fig. 36), the resultant unbal-

anced horizontal forces must be calculated and provided for in

the design of the tower, unless the tower is made of rocker type

(Figs. 15, 17, 34, 39, 40). If the saddles are movable, the eccen-

tricity of the vertical reaction under various loading conditions

must be provided for.

The simplest but least satisfactory construction, used in

some smaller bridges, consists of fixed saddles over which the

chain or cable is permitted to slide. In early cable bridges, the

wrapping was discontinued near the towers, and the wires were

spread out to a flat section to pass over the saddle casting;

this is objectionable as it gives access to moisture. It is prefer-

able to give the saddle a cross-section conforming to the cable

section; to reduce wear from the rubbing, the cable may be

protected by a lead sleeve. On account of the friction, this

arrangement does not eliminate the unbalanced horizontal pull

on the top of the tower. On the whole, this construction, or

any sliding saddle arrangement, is not to be recommended.

Another saddle arrangement consists of steel pulleys, free to

rotate, over which the cable passes (Fig. 27). A similar arrange-

ment used with chains consists of a fixed roller nest over which

curved eyebars slide (Fig. 33) ;
the resulting bending stresses,

however, are objectionable.

The best arrangement to permit horizontal movement on
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top of the tower consists of a roller support for the saddle (Figs.

32,37). In modern designs, the rollers are of equal height between

two plane surfaces. The construction comprises a bed plate, a

nest of rollers connected by distance bars, and the superimposed

saddle casting. In the saddle rests the cable (Fig. 32) which is

held from sliding by friction or clamping. Instead of a saddle,

the movable part may consist of a casting to which the chains

are pin-connected (Fig. 37). The resultant of the tensions of

the cables or chains should pass through the middle of the

roller nest to give an even distribution of stress. The friction

of the rollers is so small that the obliquity of the resultant

reaction is negligible.

Instead of circular rollers, segmental rollers (rockers) may
be used, so as to furnish a greater diameter and thereby reduce

friction and roller-bearing stress. Segmental rollers, however,

must be secured against excessive motion liable to cause over-

turning.

Rollers (Figs. 32, 33, 37) serve to reduce the bending stresses

on the towers due to unbalanced horizontal cable pull resulting

from temperature and special loading conditions. On the other

hand, they add expense, increase erection complications, give

trouble in maintenance, and merely substitute eccentric vertical

loading for unbalanced horizontal pull. On the whole, fixed

saddles provide a simpler and safer construction.

Another saddle design consists of a rocker, pin-connected at

either upper or lower end to the tower and carrying the cable or

chain at the other end. The rocker-hanger or pendulum type

has been used only in earlier bridges ;
the main objection to it is

the increased height of tower required. The rocker-post type

(Fig. 39) has pin-connection to cable or chain at the upper end,

and has a pin or cylindrical bearing at the lower end.

Short rocker posts should not be used for long spans; after

such posts assume an inclined position under temperature varia-

tion, the return to normal position is seriously resisted by the

necessity of raising the point of cable support through a vertical

height.

The tower itself may be made to serve as a rocker post for its
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full height by providing hinge action at the base. This construc-

tion was used in 1857 for a bridge over the Aare at Berne; also

in the Elizabeth Bridge at Budapest, 1903 (Fig. 34), in Linden-

thal's designs for the Quebec Bridge, 1899, 1910 (Figs. 39, 40)

and for the Manhattan Bridge, 1902; in the Rhine Bridge at

Cologne, 1915 (Fig. 17), and in the design for the Detroit Bridge,

1921 (Fig. 15). Instead of using pins at the lower end, the

hinge-action may be secured by providing the tower leg with

a segmental base (Fig. 17) or with a concave nest of rollers

(Fig. 15).

Knuckles are provided in the anchorages at all points where

the backstays or anchor chains alter their direction (Figs. 29, 32,

33, 36-40, 42). They are similar in function to tower saddles,

and should be designed to permit any movement due to thermal

or elastic elongation of the anchor chain.

Sliding bearings (Figs. 37, 39) are commonly used at knuckle

joints, and may be considered suitable where the directional

change is small. In the Rondout Bridge at Kingston, N. Y.

(Fig. 56), the design consists of vertical pin plates supporting the

knuckle pin and sliding on steel plates anchored in the masonry.
Roller bearings (Figs. 33, 36, 40) give a better design for the

anchorage knuckles. A cable may be carried in a saddle casting

resting on rollers (Fig. 36) ;
and chain eyebars may be either

directly supported on rollers (Fig. 33) or may be pin-connected

to a casting carried on rollers (Fig. 40). The plane of the

rollers should be normal to the bisector of the angle of the chain

or cable.

Rocker supports (Figs. 32, 39, 42) are also used for anchorage

knuckles. The change in direction may be accomplished at

one main rocker strut (Fig. 42), or may be distributed over a

large number of small rocker knuckles (Fig. 32). The direction

of the rocker should preferably coincide with the bisector of the

angle of the chain or cable.

23. Anchorages. The safety of a suspension bridge depends

upon the security of the anchorages. Consequently, in any
new design, the anchorages should receive thorough study and

their construction should be carefully supervised; and, after
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completion, the condition of the" anchorage should receive

watchful attention. Accessibility for inspection and main-

tenance should be considered in the design.

In rare cases it is possible to anchor the cables in natural

rock (Figs. 27, 39, 40). The shaft or tunnel which is to contain

the anchor chain must then be driven to such depth as to reach

and penetrate rock that is perfectly sound, proof against weather-

ing and of sufficient thickness to afford the necessary anchorage.

In most cases, the anchorage requires a masonry construction

which resists the cable pull by friction on its base or by the resist-

ing pressure of the abutting earth (Fig. 34).

Masonry anchorages may be imbedded below ground level,

with backstays connecting them to the nearest towers (Fig. 29) ;

or they may constitute the end abutments of the side spans

(Figs. 26, 28, 30, 32-38, 41). The latter arrangement gener-

ally requires bending or curving the line of the cable or chain

from its initial inclination to a more vertical direction, in order

to secure the necessary depth of anchor plate without excessive

length of anchorage (Figs. 32, 33, 36-38, 42). In addition to

stability against sliding, such anchorage must also be designed

for stability against tilting or overturning. Furthermore, the

applied forces must be followed through the masonry and the

resulting normal and shearing stresses at all sections and joints

must be provided for. The extreme pressures on the base should

also be investigated, to make sure that they do not exceed the

allowable load on the foundation material (Fig. 44). Founda-

tions on piles (Figs. 32, 36) should be avoided, as they give

insufficient security against displacement of the anchorage; if

such foundations are unavoidable, an ample proportion of batter

piles should be provided.

The anchor chains go through the masonry and are fastened

at their ends to anchor plates or to reaction girders. In larger

structures, anchor tunnels may be left in the masonry, affording

access for inspection of the anchor chains (Figs. 33, 34, 37, 42).

As a rule, each cable or chain is separately anchored; in rare

cases, the two cables have been connected in the anchorage so as

to form a loop around a body of masonry or rock.
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The anchor chains are commonly secured by means of an

anchor plate which is either a single casting or built up of cast

sections; the last link is passed through this anchor plate and

is fastened behind it with a special pin or bolt (Figs. 33, 37, 38).

The anchor plate is stiffened against bending by means of per-

pendicular webs or ribs (Figs. 33, 38); it must [have a bearing

surface large enough to transfer and distribute the pressure to a

sufficient area and mass of masonry.
Instead of cast-steel anchor plates, anchor girders built up of

rolled sections have been used in more recent designs (Figs. 32,

39, 40, 42). The chains are pin-connected to the webs of these

girders, and the latter transmit the reaction to grillages or cast-

ings bearing against the masonry.
Provision for adjustment of backstay length may be made in

the anchorage, if not elsewhere. Adjustment may be secured

through the use of wedges in the connection behind the anchor

plate (Fig. 37); or by means of a threaded connection between

the strand sockets and round rods passing through the anchor

plate.

The anchor plates (Figs. 33, 37, 38) are designed like any other

masonry plates. The area is determined by the allowable

bearing pressure on the concrete or stone, and the section of the

plate and stiffening ribs are determined by the shearing and

bending stresses. The holding bolts or wedges must also be

proportioned for shearing and bending stresses; for greater

bending strength, the bolts may be made of oval rather than

circular section.

A connection of cable to anchor chain is illustrated in

Fig. 32.

In small bridges, the cable is often anchored directly, by
passing the wire slings around anchored bolts or around anchor

blocks. This method can be used only with parallel wire strands 1

,

and, if the diameter of the sling is too small, excessive bending
stresses will arise in the wire.

At each change in direction of the cable or chain in the

anchorage, a bearing is required. This may consist of a casting

with rounded surface over which the cable or chain may slide
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(Figs. 37, 39), or of a flat plate on which the eyebar heads rest.

A knuckle casting with bearing for the eyebar pin is preferable

to one on which the eyebar heads bear. If the change in direction

of the anchor chain is considerable, roller bearings (Figs. 33,

36,40) or rockers (Figs. 32, 42) must be provided.

In general, aside from greater simplicity, a straight anchor

chain (Figs. 30, 34) is preferable to a curved or bent chain (Figs.

29, 32, 33, 36-38, 42), as the latter results in greater lengthening of

the cable from compression or settlement of the masonry. Space

limitations, however, frequently make this arrangement unavoid-

able.

If it is desired to leave the anchorage steel accessible, shafts

or tunnels must be provided in the masonry, large enough for a

man to pass through (Figs. 27, 29, 33, 34, 37, 42); a clearance of

2 to 3 feet is necessary. Near the lower end, the shaft generally

becomes constricted in order to reduce the required size of the

anchor plate; consequently the end of the chain is not fully

accessible to inspection. For the examination of the anchor

plate and fastenings, vaulted chambers or horizontal passage-

ways (about 3 to 4 feet wide and 5 to 6 feet high) are provided

behind the anchor plate (Figs. 33, 37, 38, 42). These chambers

may lead to the sides of the anchorage, where they are sealed by
doors (Figs. 33, 42), or they may be reached through horizontal

tunnels (Fig. 27). Inclined shafts (Figs. 27, 33, 37, 42) may be

roofed with stepped slabs, flat slabs or an arched vault. Rain

and dirt must be excluded, and the points of emergence of the

cables or chains should be protected accordingly.

Instead of leaving open passageways for inspection and

painting, the opposite course may be adopted and the anchor-

age completely sealed against the entrance of air or water (Figs.

39, 40, 42). In such designs, the anchorage steel is imbedded

in concrete, or surrounded with waterproofing material, so as to

exclude air and moisture and thereby prevent oxidation. The

shafts receiving the anchor chains or cables are made as narrow

as possible, and are subsequently filled with concrete, cement

mortar, asphaltic cement or other waterproofing substance.

The anchorage may be built of stone masonry or of concrete.
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The use of reinforced concrete gives maximum flexibility in

design.

The forces acting on the anchorage as a whole are the cable

pull, the weight of the masonry and any superimposed reactions,

and the pressure or resistance of abutting earth. For the study
of the internal stresses, the outside cable pull is replaced by the

reactions of the anchor plates and the knuckle castings. By
graphic composition of these various applied forces, the lines of

pressure in the masonry are determined. The resultant of all

the external forces, including the weight of the anchorage, must

intersect the base within the limits necessary to prevent uplift

at the heel (Fig. 44) ;
and the inclination of the resultant from

the normal must not exceed the angle of friction. If it proves

impracticable to secure this stability against sliding with a hori-

zontal foundation, the base may be sloped (Fig. 42) or stepped

to increase the sliding resistance. Stepping the base is not

effective save on hard foundations. In soft ground, requiring

piles, the pile caps should be imbedded in masonry; and the

piles should preferably be battered in the direction of the

resultant pressure.

Granite or other stone blocks should preferably be used to

take the direct pressure of the anchor plate and knuckle cast-

ings (Figs. 32, 33, 37, 42). Extending forward from the anchor

plate, cut-stone blocks may be laid in arch formation, following

the curving line of resultant pressure and with joints normal

thereto. The rest of the anchorage, serving only to provide

weight, may be built of rubble masonry or brickwork in hori-

zontal courses; or of rubble concrete.

Special designs of anchorages are frequently necessitated by

physical conditions and economic limitations. In one design

for a South American bridge, the author devised a buttressed

concrete box filled with sand to give it weight. In another

design, he used a concrete tower encasing the anchor chain and

supporting its saddle, the tower being braced by a flying but-

tress of concrete delivering the resultant to an inclined founda-

tion. For the design of the Detroit-Windsor Bridge (Fig. 15),

on account of the depth to rock, there was devised by C. E.
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Fowler and the author an articulated type of anchorage con-

sisting of two members: an anchor chain in an inclined shaft

leading into rock, and a heavy steel strut in an oppositely

inclined shaft carrying the resultant thrust to rock, both shafts

being rilled with waterproof concrete for the protection of the

steel; the two members form an inverted V, the cable being

attached at their junction.



CHAPTER III

TYPICAL DESIGN COMPUTATIONS

(NOTE. All references are to Chapter I, "Stresses in Suspension Bridges")

EXAMPLE 1

Calculations for Two-hinged Suspension Bridge with

Straight Backstays (Type 2F)

1. Dimensions. The following dimensions are given:

/ = Main Span = 50 panels at 22.5 ft. = 1125 ft. (/'
=

/).

/2
= Side Span =281. 25 ft. =-.

4

/= Cable-sag in main span = 112. 5 ft.
\
n=

j

=
)

/i
= Cable-sag in side spans =o. (Straight backstays).

d = Depth of Truss = 22. 5 ft.

Mean Chord Sections (gross) :

Top = 94 sq. in. Bottom =161 sq. in.

7 = Mean Moment of Inertia of stiffening truss in main

span = 94(14.2)2+ i6i(8.3)
2 = 30,000 in.2 ft.

2
(i truss).

Width, center to center of trusses or cables =34.5 ft.

A = Cable Section= 84 sq. in per cable. (A i
=A) .

tan a = Slope of Cable Chord in main span = o.

tan i
= Slope of Cable Chord in side span =4^=4^=0.4.

2. Stresses in Cable. Given:

w= Dead Load per cable (including cable)

= 2650 Ib. per lin. ft.

125
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^'=Live Load per cable = 850 Ib. per lin. ft.

/ = Assumed Temperature Variation= 60 F.

(w/ = i i, 7 20 Ib. per sq. in.)

All values are given per cable.

For Dead Load, by Eq. (n), the horizontal component of

cable stress is,

wl2 10 , , . f , . ,, .

kips, (i kip = 1000 Ib.)
q/

For Live Load, by Eq. (167), the denominator of the formula

for H is,

By Eq. (168), the live-load tension will be,

p'l 2H=
~ n̂

=
~]S['l

)
'l= I ' I46 P'l = I095 kips.

The total length of cable between anchorages is given by Eq.

(176):

=(i+f 2
) +2- sec ai = (i+ .o27)+i(i.o8) = 1.567.

Then, for temperature, by Eq. (156),

3E/co/L 3(30,000) 1.567H'
=
'^NT

=T7T^F T^(II
'

Adding the values found for H:

D. L. 3730 kips

L. L. 1095

Temp. 75

we obtain, Total H = 4900 kips per cable.

The maximum tension in the cable is, by Eq. (5),

Ti=H-sec ai=H(i.o$) = 5300 kips.

At 65,000 Ib. per sq. in., the cable section required is 5300^
= 82 sq. in. (Section provided = 84 sq. in.)
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3. Moments in Stiffening Truss. Given:

Live Load = p = 1600 Ib. per lin. ft. per truss.

(All values given and calculated are per truss.)

With the main span completely loaded, the bending moment
at any section x is given by Eq. (169) :

Total Jf- - -i#*(*-*)to85).

In other words, only 8.5 per cent of the full-span live load is

carried by the truss. Accordingly, at the center,

pi
2

Total M=
.085

= +21,500 ft. kips per truss.
o

At other points, the values ofM are proportional to the ordinates

of a parabola. They are obtained as follow s:

Section (-
j
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ing values of D(k). The following tabulation shows the succes-

sive steps:

X

1
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In this tabulation of the stresses, the upper signs refer to the top

chord and the lower signs to the bottom chord. Dividing the

above values by the specified unit stresses in tension and com-

pression, respectively, we obtain the required net and gross

sections of the chord members. For the bottom chords, these

sections must be increased to provide for the wind stresses,

computed as indicated below. In addition, the temperature

stresses must be taken into consideration.

The moments produced by temperature variation are given

by Eq. (157):

Mt=-Ht .y.

As found above, #,= 1=75 kips for a temperature variation of

60 F. At the center,

Jf=(75 kipsXii2.5 ft.)
= 8450 ft. kips.

At other sections, the moments are proportional to the parabolic

ordinates y :

Section
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4. Shears in Stiffening Truss.

(p
= i6oo Ib. per lin. ft., %pl

= goo kips.)

With the main span fully loaded, the shears at the various

sections are given by Eq. (173):

Total F=-

Section
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For all sections x<-(i )=.282/, the loading for maximum

shear extends from the given section x to a critical point kl

denned by Eq. (150):

4 /

.431.
2X

The values C(Jfc) are solved for k with the aid of Fig. 13.
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Section
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truss w. The resulting reduction in the effective horizontal load

is given with sufficient accuracy by the formula,

wl*

r
' I

p wl*'
-

(For the derivation of this formula, see Steinman's "Suspension

Bridges and Cantilevers," D. Van Nostrand Co., 1913, page 76.)

In this case, w= total dead load (both trusses)
= 5300 Ib. per lin.

ft.; v = vertical height from cable chord to center of gravity of

the dead load = 13 5 it.; / = moment of inertia of wind truss =

f(i6i)x(34.5)
2 = 96,000 in.

2
ft.

2
Substituting these values, we

obtain,

r = .284

/>~i+.284~

Hence the force of restitution r (due to the obliquity of suspen-

sion after horizontal deflection) amounts, in this case, to 22 per

cent of the applied wind load (p) at the center of the span.

The force r diminishes to zero at the ends of the span, and the

equivalent uniform value of r may be taken as f of the mid-span
value. The resultant horizontal load on the span is,

/>-fr = 400-4(88) =327 Ib. per lin. ft.

Treating this value as a uniform load, the bending moment at

the center is,

Mw=- =
5i,goo ft. kips.

Dividing by the truss width 34.5 ft., we obtain the chord stress

= dz 1 500 kips at mid-span. The wind stresses at other sections

will be proportional to parabolic ordinates, being zero at the

ends of the span.

The shears in the lateral system may also be calculated for

the resultant uniform load of 327 Ib. per lin. ft.



Maximum Horizontal Component = 3,870,000 Ibs.

Maximum Teusion in Cable = 4,300,000 Ibs.

Area =C8 sq. iu.

Two parallel wire cables 10 diameter composed of seven c

each containing 336 No. 6 E.G. (.102 diameter) galvanize

Total wire in two cables 4704. Cables to be continuous o\

Cables to be wrapped with No. 9 gahauized steel wrappi

Mainland

Bteel for floor over anchorages
4 Panels @24'G"

3 Floor beams

f2.Eleetric 24"ls 80 ib's.

T , J 5-Roadway 15"ls42 Ibs.
Joists

^ j..^,,,. pil)e 16
"
u 33 ll)B>

^3-Sidewalk 12"i!i 25 Iba.

Top of Roadway + 2$ Grade

4 Ls 8 x 3 x

2-Pls. 42 x % Transverse

2-FillB2Gjc%
2 Pis. % Longitudinal

2-FillB %
4 Ls 6 x x %1

Bott. of Anchors Rods 3*^ rt per column)
Scale 1 = 30'

ASSUMED LIVE LOAD
Floor. Sj^Btem Railway Stringers, etc. -50 ton electric locomotive

+2000 Ib. p.l.f.

"Impact 50^6

Roadway Stringers 6 ton auto truck or 60 Ibs.per sq.ft.

Impact 25$

Sidewalk Stringers - CO Ibs. per sq. ft. No Impact

Trusses, etc. Railway Loading 2000 Ibs. uniform load

Simultaneous roadway and sidewalk loading 700 lbf.p.U.

Cables, etc. Entire bridge loaded with 50 Ibs. per sq. ft.

Wind Load For Suspension Bridge 25 Ibs. per sq. ft. Viaduc
g
t

3^1bs.

Temperature Variation of 30T.

ASSUMED
DEAD LOAD

Cables 4S

Wrapping S

Bands, etc. 4

Suspenders 2

Floor System 740

Trusses 1147

Lateral Bracing 315

Flooring 000

Railings

Water Main
J325

TOTAL p.l.f. 4050

Sicle Span



lowers

(Expansion
Point All eub struts 4 La 3^ x 8 x % D.L. 2^

K
2 Ls 6 i 3K x K [- 2 Ls C x 3H * KijT % 2 Ls 3^ z 3 I %

All truss verticals 4 is 3}f x 3 x % S.L 2H :

5 7 8 9 10 11 12 13 14 15 10 17 18 19 20 21 22 23 24 25 26 27

64 Panel-@ 20
f

7H"= 1113Vc. c. Tower*

I Expansion Poit

\ \ \
\

b plates

ASSTJMED UNIT STRESSES
Floor System:- Tension 17,000 Ibs. per sq. in.

Compression 17,000-80

Towers, etc:- Tension 18.600 Ibs. per sq. In.

Compression 18,500-85-^
StiiTenin? Truss:- Tension 20.COO Ibs. per sq. in.

Compression 20,000-9o

For combination of D.L. L.L., 1 and W..L increase

unit stresses 25~f>

Suspenders:- Tension 45.0IX) Ibs. per sq. in.

Cables:- Tension 05,0(10 Ibs. per sq. In.

Kote:-

See Sheet 2 of 2 for Stress Sheet of Approach Span

FLORIANOPOLIS SUSPENSION BRIDGE
SANTA CATHARINA, BRAZIL

Section Sheet of Suspension Span 1856*3 Long

BYINGTON & SUNOSTROM.SAO PAULO, BRAZIL, CONTRACTORS
. ROBINSON & STEINMAN, U.S.A. CONSULTING ENGINEERS

1 7)4 Sheet 1 of 2 Aug. 1, 1920

at Florianopolis, Brazil. (Type 25)
H. D. Robinson and D. B. Steinman, 1920.

(To face page 134.)
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For Dead Load, by Eq. (n), the horizontal component of

cable stress is,

H =~=^-wl = $220 kips, (i kip = iooo Ib.)
of o

For Live Load, by Eq. (125), the denominator of the #-equa-

tion is,

A] I A\j I

= 1.626+. 093+. 071 = 1.790.

By Eq. (135), the horizontal tension produced by live load,

covering all three spans, will be,

T *)H =
-jgr(i

+ 2ir3v)p
/
l=- (i . 0164) (9300)

= 1050 kips.

The total length of cable between anchorages is given by
Eq. (154):

L f . 8 2\ . hf . 8 m2 \-= i +-n2
}
+2-1 sec ai-\

----
)
= i .027+ . 767 = i . 794.

I \ 3 / / \ 3 sec3 ail

Then, for temperature, by Eq. (156),

**i /97\T/

f
2Nl

Adding the values found for H:

_ 3 (i 1 7 20) (26200) (i . 794) _
7 \o v x

-- ~roO Kips.
(io8)

2
Xi.790

D. L. 3220 kips

L. L. 1050

Temp. 80

we obtain, Total #=4350 kips per cable.

The maximum tension in the cable is, by Eq. (5),

Ti =H - sec 0i =E(i . 08) = 4700 kips.

At 60,000 Ib. per sq. in., the cable section required is:

4700 -T- 60 = 78 sq. in. per cable.
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3. Moments in Stiffening Truss Main Span.

Given:

Live Load=p 1600 Ib. per lin. ft.

(All values given and calculated are per truss.)

With the three spans completely loaded, the bending moment
at any section x of the main span is given by Eq. (140) :

Total M-

Hence only 9.1 per cent of the full live load is carried by the

stiffening truss. Accordingly, at the center,

Total M .091
~ = +21.200 ft. kips.
o

At other points, the values ofM are proportional to the ordinates

of a parabola. They are obtained as follows:

Section
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X
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Dividing the maximum and minimum moments by the truss

depth (d
=

22.5), we obtain the respective chord stresses. Adding
the temperature and wind stresses found as in Example i and

dividing by the specified unit stresses, we obtain the required

chord sections.

4. Bending Moments in Side Spans.

(p
= i6oo Ib. per lin. ft. per truss).

With all three spans completely loaded, the bending moment
at any section x\ of either side span is given by Eq. (141):

Total lfi=i/wi(/i-*

Accordingly, at the center,

Total Mi = .091 ^- = +2300 ft. kips.

There are no critical points for moments in the side spans. The

minimum moments are given by Eq. (145) :

Min. Mi = -yi-
1 * v

-pl
=

yi(i . i24)pl.

Accordingly, at the center,

Min. MI= i 2(1. 1 24) (1730)
= 23,400 ft. kips.

The maximum moments are given by Eq. (146) :

Max. Mi = Total Jlfi-Min. MI.

Accordingly, at the center,

Max. Jl/i = +2300+23,400= +25,700 ft. kips.

At other sections, the moments are proportional to the ordinates

of a parabola:
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Section
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where the values of G(-\ are taken from Table I or Fig. 12,

The shears are obtained as follows : (%pl
= 864 kips) .

Section
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Section
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There are no critical points for shear in the side spans. The

maximum shear at any section Xi is given by Eq. (152) :

Section
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The temperature moments in the side spans are given by the

formula :

Mt=-Ht -yi,

and will therefore be v(
=

i) times the corresponding main-span
values.

Section
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The assumed wind load (
=

/>
= 4oo Ib. per lin. ft.) is reduced

by the fractional amount, at span center,

wl*

r_
- I3 ^7 . I73

p wl* I+.I73
' 147 '

(20
= 4770 Ib. per lin. ft; 2 = 130 ft; /= 1 24,000 in.2 ft2)

Since the equivalent uniform value of r is f of the mid-span value,

the resultant horizontal load on the span is,

^-|r=4oo-f(59)=35i Ib. per lin. ft

Treating this value as a uniform load, the bending moment at

the center is,

Mw =^- =
51,000 ft. kips.

o

Dividing by the truss width, 42.5 ft., we obtain the chord

stress=1200 kips at mid-span. The wind stresses at other

sections will be proportional to parabolic ordinates.

The end shears in the lateral system will be:

In the side spans, unless they exceed 1000 feet in length, the

reduction in effective wind pressure may be neglected. (In

this example, - would amount to only i per cent.) Hence the

moments and shears are calculated for the full specified wind

load of 400 Ib. per lin. ft., acting on simple spans 360 ft. in length.

EXAMPLE 3

Calculations for Towers of Two-hinged Suspension

Bridge (Type 2S)

1. Dimensions. The bridge is the same as in Example 2.

Each tower consists of two columns of box section, stiffened

with internal diaphragms, and rigidly tied together with trans-

verse bracing in a vertical plane. Each tower column is 225 feet
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high and is made of a double box section, 42.5 inches wide. The

other dimension (d), parallel to the stiffening truss, is 4 feet at

the top, increasing to 9 feet at the base. The walls are ij inches

thick (made up of f-inch plates and corner angles) and the

vertical transverse diaphragm is f-inch thick. Splices are

provided at such intervals as to keep the individual sections

within specified limitations of length or weight for shipment.

Horizontal diaphragms are provided at splices and, in general,

at lo-foot intervals.

The tower columns are battered so as to clear the trusses.

They are 42.5 feet center to center at the top and 53.5 feet

center to center at the base.

2. Movement of Top of Tower. The towers are assumed

fixed at the base and the cable saddles immovable with respect

to the tower.

The maximum fiber stress in the tower columns will occur

when the live load covers the main span and the farther side

span at maximum temperature. Under this condition of load-

ing, the top of the tower will be deflected toward the main

span, as a result of the following deformations :

1. The upward deflection (A/i) at the center of the unloaded

side span.

2. The elongation of the cable between the anchorage and

the tower, due to. the elastic strain produced by the applied

loads.

3. The elongation of the cable due to thermal expansion.

These deformations are computed as follows:

(Live Load = p
f = 860 Ib. per lin. ft. H= 1040 kips.)

i. The upward deflection A/i is found by considering the

unloaded side span as a simple beam subjected to an upward

loading equal to the live-load suspender tensions (Eq. 78) :

= rjo Ib. per lin. ft. per truss,
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2. The elastic elongation of the cable in the side span is, by

Eq. (55),

. 178(1 .077) = . 192 ft.

3. The temperature expansion of the cable in the side span

is, by Eqs. (53) and (26),

We also have:

I j

=
.156(1. 03 7) =0.162 ft.

i . 8 m2
- =secH---- = 1.037,

A/i 3 sec3 i

AZi 16 n\_L=---L_=o.i6o.
A/i 3 sec3 i

The deflection of the top of the tower is then given by,

Substituting the values just calculated, we obtain the maximum
tower deflection:

(.428)+ ? (.192+. 162) =0.408 ft.

1.037

3. Forces Acting on Tower. Considering this deflection as

produced by an unbalanced horizontal force P applied at the

top of the tower, this force may be calculated, if the sectional

dimensions of the tower are known, by the formula,

X2
In the present case, we find S Ax = 1 740. Hence,

p
P=y = 17,200^0

= 7000 lb. per column.
1740

The other loads acting on the tower are the vertical reaction

(V) at the saddles, and the end-shears (Vi) at the point of sup-

port of the stiffening truss. The saddle reaction is given by the

formula:

V= 2H - tan = 2 X4340Xo . 4 = +3470 kips per column.
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The truss reaction, with all spans loaded and maximum tem-

perature rise, is,

7i = (42+32)+ (i4-f n) = +99 kips per column.

With one side span unloaded, as assumed above,

Vi = (45+32) + (n - 140) = - 52 kips per column.

The inaccuracy introduced by neglecting this uplift, FI, will be

on the side of safety; therefore the column need be figured only
for the horizontal load P and the vertical load V.

At any section x of the tower, the horizontal deflection (y)

from the initial vertical position of the axis is given with suffi-

cient accuracy by the equation for the elastic curve of the

cantilever:

4. Calculation of Stresses. The resulting extreme fiber

stresses at any section of the tower will be:

r- K- A ^ V .Pxc.V(yQ-y)cCombined Stress = H H
J

_
Jt

.

A I I

The computations may be arranged as follows, the stresses

being figured for convenience at 25-foot intervals:

Joint
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5. Wind Stresses. To the above tower stresses produced

by live load and temperature, must be added the stresses due to

wind loads.

The truss wind load of 400 Ib. per lin. ft. produces a hori-

zontal reaction at each tower of,

360 -+400 = 266 kips.

This acts at Joint No. 4, (x
=

100).

The deflection of the stiffening truss under wind load pro-

duces a horizontal reaction at the top of each tower of 40 -; and

the wind on the surface of the cables produces an addition to

this reaction amounting to io( (--); hence the total reaction
\4 2/

at the tower top = 26 kips.

The wind acting directly on the tower is assumed at 25 Ib.

per sq. ft. of vertical elevation. This produces, at each joint, an

equivalent concentrated load of 25 X (25^).

Joint
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The transverse bracing is proportioned to resist the shears

tabulated above.

EXAMPLE 4

Estimates of Cable and Wrapping

1. Calculation of Cable Wire. Given a suspension bridge

in which a cable section of 68 sq. in. is to be provided. To find

the material required for cables and wrapping. Other data as

in Example 2.

The total length of each cable is given by Eq. (154):

3

= 1080(1 .027)4-720(1 .034+ .003)
= 1110+746 = 1856 ft.

To this must be added 43 ft. of cable at each end, between end of

truss span and anchorage eyebars (scaled from drawing) ; hence,

Total L = 1856+86 = 1942 ft. per cable.

No. 6 galvanized cable wire will be used = o. 192 in. diameter =

.029 sq. in. area. Each cable consists of 7 strands of 336 wires

each = 23 5 2 wires at 0.29 sq. in. = 68 sq. in.

Weight of No. 6 galvanized wire = o.i Ib. per ft.

Total cable wire = 2X2352 wires at 1942 ft. =9,150,000 lin. ft.

Total weight of cable wire = 9, 150,000 ft. at o.i Ib. = 915,000 Ib.

2. Calculation of Cable Diameter. The diameter of the

cable is figured as follows: The area of a strand will be 10 per

cent greater than the aggregate section of the wires composing
it. In this case the area of each strand will be,

no per centX-6T
8-= io- 7 sq. in.

The corresponding diameter is 3.7 in. The cable diameter will

be 3 strand diameters = 1 1 . i inches. (Adding the thickness of

wrapping, the finished cable will be 1 1 .4 inches in diameter.)

3. Calculation of Wrapping Wire. The wrapping consists

of No. 9 galvanized wrapping wire (soft, annealed), weighing
.06 Ib. per ft. Deducting lengths of cable bands, etc., there will

be 3250 ft. of cable to be wrapped. Since the wrapping wire is

0.15 in. diameter, it will make 80 turns per lin. ft. The diameter



150 TYPICAL DESIGN COMPUTATIONS

of the cable is n.i inches, hence the length of each turn will be

2.9 ft.

Length of wrapping wire = 80 turns at 2.9 ft.

= 232 ft. per lin. ft. of cable.

Weight of wrapping wire = 232 ft. at .06 Ib.

= 13.44 Ib. per lin. ft. of cable.

Total wrapping wire =3250 ft. of cable at 13.44 Ib.

=44,000 Ib.

4. Estimate of Rope Strand Cables. Instead of building

the cable of individual wires, manufactured rope strands may
be used. In the case at hand, with a factor of safety of 3, there

would be required sixty-one if-inch strands per cable. These

galvanized steel ropes weigh 4.34 Ib. per ft.; hence the total

weight hi the cables would be,

2 X 1942 ft. X6i strands at 4.34 Ib = 1,030,000 Ib.

The diameter of the resulting cable would be 7 X if-in. = 11.4 in.,

plus the wrapping. (If rope strands are used, it should be

remembered that their modulus of elasticity E is only about

20,000,000, as compared with 30,000,000 for parallel wire cables.)

EXAMPLE 5

Analysis of Suspension Bridge with Continuous Stiffening Truss

(Type OS)

(See Chap. I.. Pages 53 to 63.)

1. Dimensions. The following dimensions are given:

/= Main Span = 40 panels at 1 7' 7!" = 705 ft. (/'=/).

/= Cable sag in Main Span= 74. 285 ft.
[
n=

j

=
)

V ^ 9-5/
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/i
= Cable-sag in Side Spans = 4.65 ft.

d = Depth of Truss = 15/0 at towers, 10/833 at center,

11/346 at ends.

Width, center to center of trusses or cables = 27 ft.

7 = Mean Moment of Inertia in main span = 1642 in.2 ft.
2

(per truss).

1 1
= Mean Moment of Inertia in side spans =2278.

(i
=
~r =0.72 j.

Ii I

A = Cable Section in main span= 7 strands of 282 wires at

0.192 in. diameter =57. 2 sq. in. per cable.

A 1
= Cable Section in side spans = A,+ 2 strands of 76 wires

= 61 .6 sq. in. per cable.

tan a = Slope of Cable Chord in main span = .026.

tan a\ = Slope of Cable Chord in side spans =0.5.

e = Coefficient of Continuity = = o . 602

2. Stresses in Cables. (All values per cable).

For dead load (2^
= 2850 Ib. per lin. ft. per cable), the hori-

zontal tension is given by Eq. (n) :

H = =^ wl = 2380 kips per cable.
OJ O

The denominator for other values of H is given by Eq. (203) :

With the live load (p
=

*]$o Ib. per lin. ft. per cable) covering the

main span, Eq. (206) gives,

= 6io kips per cable.N
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With the live load (pi
= 750 Ib. per lin. ft. per cable) covering

both side spans, Eq. (207) gives,

The total length of cable is given by Eq. (154) :

_\ I>8

Substituting this value in Eq. (214), we obtain the cable tension

produced by temperature variation (/
= 60 F., E^t 11,720) :

Ht~ ~
f2 N I

==T=47 kips per cable -

Combining the values for dead load, main-span live load, and

fall in temperature, we obtain,

Max. H = 303 7 kips per cable.

In the main span, the maximum slope of the cable is tan
= tan a+4^ = 447; sec = i.096. For this slope, the stress

in the cable is, by Eq. (5),

Max. T =H sec = 3330 kips.

At 60,000 Ib. per sq. in., the cable section required is 3330-^60
=

55.5 sq. in. (The section provided is A =
57.2 sq. in.)

In the side spans, the maximum slope of the cable is tan 0i
= tan ai +4ni = .605; sec <i = 1.1 7. For this slope, the stress

in the cable is, by Eq. (5),

Max. Ti=H- sec 01=3550 kips.

At 60,000 Ib. per sq. in., the cable section required is 3550-7-60
=

59.2 sq. in. (The section provided is A 1
= 61.6 sq. in.)

3. Influence Line for H. For a concentration P traversing

the main span, the values of H are given by Eq. (204) :

Taking the values of B(k) from Table I or Fig. 12, we obtain

the following main-span influence ordinates for H:
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Load Position



154 TYPICAL DESIGN COMPUTATIONS

Panel Point
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These values give the three vertices of the equilibrium triangle;

and, for each load position, the values of M r

for other sections

may be tabulated by straight-line interpolation. Subtracting

from each value of M' the corresponding value of H(y ef), we

obtain the unit-load bending moments M. A typical tabula-

tion for this computation is as follows:

UNIT LOAD AT PANEL POINT 12. (
= 0.2). (#=.948)

Panel Point
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INFLUENCE VALUES OF M FOR UNIT LOADS
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The method of unit loads will be used. The values of H, M
and Mi have been calculated above for different load positions.
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Max. V is the summation of all positive influence values, and

Min. V is the summation of all negative influence values. These

results are multiplied by the panel load [P = =13.22 kips)
\ 40 /

to obtain the vertical shears in kips.

The temperature shears are given by Eq. (217):

Vt
= -#<(tan 0-tana).

The shears are then multiplied by the respective secants of

inclination, to obtain the stresses in the web members of the

stiffening truss.

6. Bending Moments in Side Spans. The bending moments

in the side spans are obtained by the method of unit loads, using

Eq. (183):

h V /i

For loads in the main span, MQ = O, and the values of MI and 71/2

are the same as calculated above. For the far side span com-

pletely loaded, MQ = O, and the value of MI is the same as the

value of Mi calculated above. For unit loads (Pi) in tLe

given side span, the moment M\ is given by Eq. (194) :

2ir2(i+ir)(ki-ki
3
)Mi=-Pl

and

The values of H will be the same as calculated above. Accord

ingly, we have the following values for a unit load (P=i) tra

versing the side span.

Load Position
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The values of y' y\ ~--ej are as follows:
/i

Panel Point: 20

x\-= 1.0
k

22 24

.8 .6

26 28 30

.4 .20

/=-44.7 -35-8 -26.8 -17.9 -8.9 o

Substituting the various values in the equation:

M= M'-H-y',

we obtain the following influence table for side-span moments

(only every second panel point shown here) :

INFLUENCE VAIUES OF M FOR UNIT LOADS
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The temperature moments are calculated by Eq. (216):

where Ht T47 kips.

7. Shears in Side Spans. The left side-span shears are

calculated by Eq. (189) :

V= \ -tf /tan 01-
h / \ .

-i = V'-K-H.

ef
At the tower (Panel Point 20), K= 4^1 j-

=
.105 .254

k
=

. 359; and the value of K diminishes uniformly to,
K=

= + . 105
~~ 2 54

= ~ I49 at the free end (Panel Point 30).
k

Substituting in the above formula the known values of H,

MI and K, we obtain the following table of influence ordinates

for side-span shears (only every second panel point shown here) :

INFLUENCE VALUES OF V FOR UNIT LOADS
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These results are to be multiplied by the panel load (P=i$.22

kips) to obtain the maximum and minimum shears in kips.

FIG. 44. Design of Anchorage.

For the right side span, the shears will be the same, with the

signs changed.
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The temperature shears are given by Eq. (218):

- = -K-Ht .

The shears are then multiplied by the respective secants of

inclination, to obtain the stresses in the web members.

EXAMPLE 6

Design of Anchorage

1. Stability against Sliding. The outline of a design for a

reinforced concrete anchorage is shown in Fig. 44.

The principal forces acting are the cable pull, and the weight
of the anchorage (including any superimposed loads). In the

case at hand, the cable pull
=H -sec = 7800 kips. The weight

of the anchorage and the superimposed loads is 30,000 kips.

This weight is represented in the diagram as a vertical force

drawn through the center of gravity of the anchorage and applied
loads. By a parallelogram of forces, the total resultant is found,

amounting to 29,000 kips. If its inclination from the vertical is

less than the angle of friction, the anchorage is safe against

failure by sliding.

2. Stability against Tilting. The resultant is prolonged to

intersection with the plane of the base, and its vertical com-

ponent (V 28,000 kips) is considered as an eccentric load

applied at the point of intersection. The toe and heel pres-

sures are given by,

. V Vec
P=A-T>

where A is the area of the base (sq. ft.), / is its moment of inertia

about the neutral axis (ft.
4
), e is the distance (ft.) of the resultant

V from the neutral axis, and c is the distance (ft.) from the

neutral axis to the respective extreme fiber. We thus obtain,

for the case at hand, a toe pressure of 10.6 kips per sq. ft. and a

heel pressure of 1.8 kips per sq. ft. The allowable foundation

pressure was 6 tons per sq. ft., so the anchorage figures safe

against settlement or overturning.



CHAPTER IV

ERECTION OF SUSPENSION BRIDGES

1. Introduction. The erection of suspension bridges is

comparatively simple, and is free from dangers attending other

types of long span construction.

The normal order of erection is: substructure, towers and

anchorages, footbridges, cables, suspenders, stiffening truss and

floor system, roadways, cable wrapping.

The cables are the only members requiring specialized knowl-

edge for their erection. The other elements of the bridge, for

the most part, are erected in accordance with the usual field

methods for the corresponding elements of other structures.

2. Erection of the Towers. The erection of the towers may
proceed simultaneously with the construction of the anchorages.

In the case of the Manhattan Bridge, the tower (Fig. 45) con-

sists of four columns supported on cast-steel pedestals resting

on base plates set directly on the masonry pier. The sections

of the pedestals (weighing up to 40 tons) were delivered by light-

ers and lifted by their derricks to the pier-tops; they were rolled

into position on cast-steel balls placed on the bed plate, and then

jacked up to release the balls.

The tower columns were erected by the use of ingenious

derrick platforms (one for each pair of columns) adapted to

travel vertically up the tower as the erection proceeded (Fig. 45).

Each platform (21 feet by 34 feet) projected out from the face

of the tower on the shore side and was supported by two bracket-

struts below. The tipping moment was resisted by two pairs of

rollers or wheels, one -at each column, engaging vertical edges

of the projecting middle portion of the column, the upper wheel

being on the river side and the lower wheel on the shore side.

The vertical support was furnished by hooks engaging the pro-

163
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jecting gusset plates of the bracing system. A stiff-leg derrick

with 45-foot steel boom was mounted at the middle of the inner

side of the platform, being braced back to the outer corners of

the platform. With this derrick the sections of the tower

(weighing up to 62 tons) were lifted from the top of the pier and

set in place, the material having been transferred from scows to

the pier by floating derricks. When a full section had been

added to the tower, blocks were fastened to the top and falls

FIG. 45. Manhattan Bridge. Erection of Towers.

(See Fig. 35, page 97).

attached to the derrick platform by which it then lifted itself to

the next level.

For purposes of handling and erection, each column was

divided by transverse and longitudinal field splice joints into

sections of convenient size. The transverse joints were 12 feet

to 27! feet apart, and were staggered to break joint. Where the

three longitudinal sections changed to two, shim plates were

used to level off. The riveting of the field splices (with i-inch

rivets) was kept several sections back of the erection work in
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order to give opportunity for the transverse joints to come to

full bearing.

Each tower column was finished with a cap section (52 tons)

upon which was set the saddle (15 tons).

In addition to the two traveling derricks, the following

equipment was required for the erection of each tower: two

hoisting engines on the pier; one stiff-leg derrick (lo-tons,

6o-foot boom) on the pier between the tower legs, used in the

assembly of the traveling derricks; two large storage scows

moored to the pier, supplying the respective traveling derricks;

a power plant on shore with two 50-H.P. horizontal boilers, a

steam turbine blower for forced draft, and an air compressor;

30 pneumatic riveting hammers; 6 pneumatic forges.

The force at each tower consisted of a hundred men, including

six riveting gangs. Riveting scaffolds were erected around the

tower for field riveting, and were provided with stairs and

safety railings. The erection record was 2000 tons of steel at

one tower in sixteen working days.

Figure 46 shows the completed tower, 282 feet high above

the masonry, and weighing 12,500,000 pounds.

For the Manhattan tower of the Williamsburg Bridge,

a stationary derrick on the approach falsework was used to erect

the steel up to roadway level; the erection was then completed

by two stiff-leg derricks mounted on a timber tower built up on

the cross-girder between the two tower legs. (The completed
tower is shown in Fig. 57.)

For smaller bridges, the towers may be erected by gin-pole

or by stationary derrick alongside. For the suspension bridge

at Kingston, N. Y. (H. D. Robinson, Chief Engineer), a guyed
derrick with 95-foot steel boom was set up on a square timber

tower 80 feet high, for the erection of each steel tower; the same

derricks later erected the adjoining panels of the stiffening truss

(Fig. 56).

3. Stringing the Footbridge Cables. The first step in cable

erection consists in establishing a connection between the two

banks. Various methods have been used since prehistoric times,

when the first thread was fastened to an arrow and shot across
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from bank to bank. In building the Niagara bridge, a kite was

used to take the first string across the gorge; at other places, a

light rope is drawn across with a rowboat.

In the erection of the Brooklyn Bridge, a f-inch wire rope

was first laid across the East River by means of a tugboat and

scow, and then raised to position. With another line taken

over in the same manner, an endless rope was made, and this

was used for hauling over the remaining traveler ropes and an

FIG. 46. Manhattan Bridge. Erection of Footbridges.

auxiliary if-inch carrier rope; the latter served to carry the load

of the footbridge cables and cradle cables (2 and 2 inches

diameter) when these were hauled across the river.

For the Manhattan Bridge, sixteen if-inch wire ropes were

swung between the towers in four groups of four (Fig. 46) . One

group (to make a single footbridge cable) was taken across at a

time. The four reels were mounted on a scow brought along-

side one of the towers, A. The end of each rope was unreeled

and hauled up over a temporary cast-iron roller saddle mounted
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on top of the tower, and thence carried back to the anchorage A,

where it was made fast. Then the scow was towed across the

river, laying the ropes along the bottom, to the opposite tower B.

The remainder of each rope was then unreeled and coiled on the

deck of the scow. Then, while all river traffic was stopped for a

few minutes, the free end of each rope was hauled up by a line

to the top of Tower B, over a roller saddle and thence to the

Anchorage B; the middle of the rope, or bight, rose out of the

water during this operation, and came up to the desired position.

After being made fast at the Anchorage B, the ropes were socketed

and drawn up to the precise deflection desired, as determined by
levels. Each group of four ropes then formed a temporary
cable for the support of the footbridges (Fig. 46).

The footbridge ropes for the Williamsburg Bridge were strung

in the same manner as for the Manhattan Bridge, except that

three were laid, instead of four, at each trip of the flatboat

across the river.

4. Erection of Footbridges. The next step is the construc-

tion, for each cable, of a footbridge or working platform which

permits the wires to be observed and regulated throughout their

length and greatly facilitates the entire work on the cables.

For the Manhattan Bridge (Fig. 46), traveling cages, hanging
from the footbridge cables as a track, were used by the men

placing the double cantilever floorbeams. These floorbeams,

35! feet long and spaced 21 feet apart, were supported on the

footbridge cables in pairs, and were secured to the upper side of

these cables by U-bolt clamps. Upon the outer portions of the

floorbeams were dapped the stringers, three lines on each side,

and on these were spiked the floorboards, spaced i| inches

apart in the clear. In this manner, four platforms were con-

structed, 8 feet wide, placed concentric with the main cables

and 30 inches (clear) below them. The platforms were provided
with wire-rope handrails. Passage from one platform to another

was provided only at the towers and anchorages, and at mid-

span. Each platform carried nine small towers called
"
hauling

towers" (Fig. 47), about 250 feet apart, to support the sheaves

of the carrying and hauling ropes used for placing the strand
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wires. The platforms were braced and guyed underneath by

backstays from each tower, and by inverted storm cables con-

nected to them at intervals of 54 feet. The entire construction

was of light wooden plank (maximum size 3X12) and all con-

nections were thoroughly bolted with washer bearings. All

woodwork had been previously cut to length, framed, bored and

marked, and hoisted to the tops of the towers. The floorbeams

were slipped down on the cables toward the center of the span

FIG. 47. Manhattan Bridge. Footbridges and Sheave Towers.

and toward the anchorages, set by the men in the traveling

cages, and maintained in position by the stringers dapped to

them. Then the sheave towers and handrails were erected on

the platforms, practically completing the falsework (Fig. 47).

The temporary platforms for the Williamsburg Bridge are

shown in Fig. 57. Two footbridges were used, 67 feet center to

center, connected by transverse bridges every 160 feet.

For the Brooklyn Bridge, Fig. 25, the timber staging con-

sisted of one longitudinal footbridge and five transverse plat-
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forms, called
"
cradles," from which the wires were handled and

regulated during cable-spinning.

5. Parallel Wire Cables. Smaller spans have been built

with ready-made parallel wire cables, served with wire wrapping
at short intervals; but the individual wires in such cables lack

freedom to adjust themselves to the necessary curvature of

suspension, so that objectionable stress conditions arise. For

these reasons it has become general practice to use the method,
introduced by Roebling, of spinning the desired number of

parallel wires in place and then combining them into a cable.

The cable is pressed into cylindrical form and wound with

continuous wire wrapping. This wrapping, together with the

tight cable bands to which the suspenders are attached, serves

to create enough friction pressure between the wires to ensure

united stress action.

Guide wires are used as a means of adjusting the individual

wires to equal length. Slight differences in length, if distributed

over the entire span, will be immaterial. To avoid the excess in

length of the longer wires from accumulating at a single point,

the wire wrapping should be started at a considerable number

of points distributed along the cable; and a large cable should

first be bound into smaller temporary strands by serving with

wire at intervals.

The length of the guide wire must be accurately computed,
so that the resulting cable shall have the desired sag (assumed
in the design) after the bridge is completed. Length corrections

must be made for any cradling of the cables, variation from mean

temperature, the curve of the cable saddle, and the elastic

elongation due to the suspended load.

6. Initial Erection Adjustments. Special computations have

to be made for the location of the guide wires, for setting the

saddles on top of the towers, and for the length of the strand legs.

When the desired final position of the cable, under full dead

load, is known, its length is carefully computed, including the

main span parabola between points of tangency at the saddles,

the short curved portions in the saddles, and the side-span

parabolas or tangents from point of tangency at the saddle to
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the center of shoe pin at the anchorage. Applying corrections

for elastic elongation (due to suspended load) and for difference

of temperature from the assumed mean, the length of unloaded

cable is determined. This gives the length of the guide wire

between the same points.

Assuming no slipping of the strands in the saddles, the

initial position of the saddles is computed so as to balance

tensions (or values of y) between the main and side span cate-

naries. This gives the distance the saddles must be set back

(toward shore) from their final position on the tops of the towers.

Since the strands will be spun about 2 feet above their final

position in the tower saddles, the initial position of the strand

shoes will be a short distance forward of their final position.

This distance is carefully computed and gives the required

length of the
"
strand legs" (Fig. 48). The distance may also be

determined or checked by actual trial with the guide wire.

Taking into consideration the previously calculated and cor-

rected total length of cable between strand shoes, the initial

raised position of the strands above the tower saddles, and the

length of strand legs shifting the initial position of the strand

shoes, the ordinates of the initial catenaries in main and side

spans are carefully computed. These ordinates are used for

setting the guide wires with the aid of level and transit stationed

at towers and anchorages.

For the Cumberland River footbridge (540-foot span, see page

184), the saddles on the two towers were set back about 5 inches

toward shore from center of tower. This distance was figured

from backstay elongation and tower shortening due to dead load

plus one-half live load, so that the center of the tower would

bisect the movement of the shoe (on rollers) for live load at

mean temperature. Allowing for displacement of saddles and

cable stretch, the no-load cable-sag was made 38^ feet in order that

the sag in final position under full live load should be 45 feet.

In the case of the Brooklyn Bridge, the strands were spun
about 57 feet above their final position at mid-span, the purpose,

as stated, being to avoid interference with regulation and to

increase the tension as an initial strength-test of the individual
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wires. In consequence, the strand leg had to be designed so as

to hold the shoe 12 feet behind the anchor pin. After the strand

was finished, the shoes were let forward into their final places

and, at the same time, the strand was lowered from the rollers

on top of the saddle into the saddle, which double operation

caused the vertex to sink into correct position as previously

calculated.

For the Williamsburg Bridge, the strands were spun 15 feet

above their final position, requiring the shoes to be initially set

back of the anchor pin, as in the Brooklyn Bridge.

For the Manhattan and Kingston Bridges (H. D. Robinson,

Engineer-in-charge) ,
the strands were spun parallel to (and

slightly above) their final position. In these cases, the strand

leg held the shoe a short distance in front of the anchor pin;

and the shoe had to be pulled back that distance when the

strands were lowered into the saddle (Fig. 49).

In the case of the Kingston Bridge (yo5-foot span, Fig. 56),

instead of setting the saddles back on the towers, the tops of the

towers were tipped back toward the shore a distance of 6 inches,

by means of temporary backstays, the anchor bolts at the toe

being loosened J inch to permit the tilting. The cables were

erected with the towers and the attached saddles in this position.

As the steelwork in the main span was erected, the backstays

gradually elongated until the towers returned to their final

vertical position.

The initial erection adjustments for the Brooklyn, Williams-

burg, Manhattan and Kingston Bridges are summarized arid

compared in the following table:

INITIAL POSITION OF CABLE STRANDS

(With Reference to Final Position)
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7. Spinning of Cables. The operation of cable-spinning

requires an endless wire rope or
"
traveling rope" (Fig. 48) sus-

pended across the river and driven back and forth by machinery

FIG. 48. Strand Shoes and Traveling Sheaves Ready for Cable Spinning.

(Manhattan Bridge.)

for the purpose of drawing the individual wires for the cable

from one anchorage to the other. There is also suspended a

"guide wire" which is established by computations and re'gu-
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lated by instrumental observations so as to give the desired

deflection of the cable wires.

Large reels, upon which the wires are wound, are placed at

the ends of the bridge alongside the anchor chains (Fig. 48) . The

free end of a wire is fastened around a grooved casting of horse-

shoe outline called a "shoe" (Fig. 48), and the loop or bight,

thus formed is hung around a light grooved wheel (Fig. 48) which

is fastened to the traveling rope. The traveling rope with its

attached wheel, moving toward the other end of the bridge,

thus draws two parts of the wire simultaneously across from

one anchorage to the other; one of these parts, having its end

fixed to the shoe, is called the "standing wire"; while the other,

having its end on the reel, is called the "running wire" and

moves forward with twice the speed of the traveling rope.

Arriving at the other end, the wire loop is taken off the wheel

and laid around the shoe at that end. The two parts of the

wire are then adjusted so as to be accurately parallel to the guide

wire, the operation of adjustment being controlled by signals

from men stationed along the footbridge. The wire is then

temporarily secured around the shoe, and a new loop hung on

the traveling wheel for its second trip. After two or three

hundred wires have thus been drawn across the river and accu-

rately set, they are tied together at intervals to form a cable

strand.

For the Manhattan Bridge, the wires (drawn in 3ooo-foot

lengths) were spliced to make a continuous length of 80,000

feet (4 tons) wound on a wooden reel (Fig. 48). These reels

were 48 inches in diameter (at bottom of groove) and 26 inches

long, and were provided with brake drums. On each anchorage
were set eight reel stands, each with a capacity of four reels.

The equipment used for cable-spinning consisted of an end-

less f-inch steel traveling rope passing around a 6-foot hori-

zontal sheave at each anchorage; machinery for operating the

endless rope; devices for removing and adjusting the wires and

strands; apparatus for compacting and wrapping the cables;

hoisting machinery and power plant.

Attached to the endless rope (" traveling rope") at two
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equidistant points, were deeply-grooved 4-foot carrier sheaves

(" traveling wheels") in goose-neck frames (Fig. 48). These

frames were held securely in a vertical plane, and were designed

with clearance to ride over the supporting sheaves.

The "strand shoe" was held 22 inches in front of final posi-

tion by a special steel construction called a
"
strand leg" (Fig. 48)

attached to the pin between two anchorage eyebars.

The bight of wire was placed around the traveling wheel and

FIG. 49. Manhattan Bridge. Anchoring a Completed Strand.

pulled across. As each part of the wire became dead, it was

taken by an automatic Buffalo grip at the tower and, with a

4-part handtackle of manila rope, adjusted to the guide wire.

It required about seven minutes for a trip across from anchorage

to anchorage (3223 feet). Only ten field splices were required

to a strand (256 wires). After the strand was completed, the

wires were compacted with curved-jaw tongs and fastened (or

"seized") with a few turns of wire, every 10 feet. Then, with a

"strand-bridle" attached to a 35-ton hydraulic jack (Fig. 49),
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the shoe was pulled toward the shore, releasing the strand leg

and the eyebar pin. The strand shoe was then revolved 90

to a vertical position (Fig. 49), and pulled back to position on

the eyebar pin.

The strand was then lifted from the temporary sheaves in

which it was laid at the anchorages and the towers, and lowered

into the permanent saddles; a 20-ton chain hoist and steel

"balance beam" were used for this operation. The strand was

then adjusted to the exact deflection desired, by means of shims

in the strand shoe.

After the seven center strands were completed, they were

bunched together with powerful squeezers to make a cylinder

about 9! inches in diameter, secured with wire
"
seizings" at

intervals. Then the remaining strands were completed, and

compacted in two successive layers around the core, the inter-

stices being filled with petrolatum. A hydraulic compacting

machine was used for this squeezing, and temporary clamps

applied.

Then the cable was coated with red-lead paste, and the

permanent cable bands and suspenders were attached.

After the stiffening trusses and floor were suspended, the

spaces between the cable bands were covered with wire wrap-

ping.

The spinning of these cables took six days for a strand (256

wires) ;
but four strands in each cable were strung simultaneously.

The four cables (each consisting of thirty-seven strands or 9472

wires) were completed in four months. The work of compres-

sing and binding the cables and attaching the suspender clamps

and ropes took two or three months more, but the erection of the

suspended trusses proceeded at the same time.

As soon as the .strands were completed, the footbridges were

hung to the main cables to be later used for the work of cable

wrapping. The temporary footbridge cables were cut up for

use as suspenders.

For the Williamsburg Bridge (Fig. 57), the wire was supplied

on 7-foot wooden reels carrying 90,000 feet (9000 pounds) per

reel. An engine on the New York s'de operated the driving
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wheels around which two endless ropes passed. Two carrier

sheaves on each endless rope traveled back and forth, carrying

two bights across (for two strands) on the forward trip, and two

bights (for two adjacent strands) on the return trip. In this

manner each endless rope was laying four strands at the rate of

fifty wires in each strand in ten hours.

Eight reels of wire were required for each strand. When the

end of a coil was reached, it was held in a vise and connected to a

wire from a fresh reel, by screwing up a sleeve nut over the screw-

threaded ends (which were formed by a special machine to roll

the threads).

As the wire was laid, it was adjusted to conform to the

catenary of the guide wire, in order to secure uniform tension

in the wires of the finished cable.

The carrier wheels moved 400 feet per minute. There were

three men at each anchorage to handle the reels, make splices,

adjust the wire and take the bights off and on the carrier wheels.

As the carrier wheel passed each tower, three men on the top of

the tower clamped handtackle to the wire and pulled up until

the wire was adjusted exactly parallel to the guide wire, as

signaled by men distributed along the footbridge (three men on

each side span and seven men on the main span). These men

clamped the wire to the strand after adjustment. After the

standing wire was adjusted, the running wire was regulated in

the same manner, but in the reverse order. A total of twenty-

five men were thus required to handle the wire as it was laid.

As soon as the strand was completed, the shoe was drawn

clear of its support by a 25-ton ratchet jack anchored to the

masonry. Then the shoe was twisted by hand with a long bar

and thus revolved 90 into a vertical plane and allowed to slip

back towards the tower, thus lowering the strand in the middle

of the main span. The shoe was then permanently connected

to the end pin of the anchor-chain eyebars. Shims back of the

pin in the slotted pin-hole of the strand shoe provided adjust-

ment for the strand length; each f-inch shim corresponded to a

vertical movement of about i inch at mid-span.

When the inner strands were completed, their ties were
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removed and they were made into one strand to avoid trouble

in handling them after they were surrounded by the remaining
strands.

8. Compacting the Cables. Each cable consists of 3, 7, 19

or 37 strands, depending upon its size, and these have to be

compacted to make a cylindrical cable.

For the Manhattan Bridge, the temporary seizings around

the strands were removed and the cable was compacted by

hydraulic squeezers. Sixteen duplicate squeezers were used,

each consisting of a hinged collar with a hydraulic jack of 6-inch

stroke opposite the hinge. A hydraulic hand-pressure pump
was used to produce a pressure of 5000 pounds per square inch

or a total force of 43,000 pounds on the squeezer piston. Seizing

(12 turns of No. 8 wire) was applied close to the squeezer, which

was then moved 2 feet forward to repeat the operation. With

two men operating each squeezer, the four cables were com-

pacted in a few weeks.

9. Placing Cable Bands and Suspenders. After the cables

are compacted (with wire seizing at short intervals to hold them) ,

the cable bands are placed at the panel points.

For the Manhattan Bridge, the cable bands (Fig. 55) con-

sist of split cast-steel sleeves, 3 feet long, with ten if-inch bolts

through the longitudinal flanges. The upper half has two

semicircular grooves, 12 inches apart, for holding the suspender

ropes. The bolts were screwed up tight by means of socket

wrenches with 4-foot handles, operated by two or three men
each.

The if-inch suspender ropes, made by cutting up the tem-

porary footbridge cables, were fitted with cast-steel sockets

5! inches in diameter by 17 inches long. These sockets were

threaded on the outside to receive a cast-steel nut 5^ inches

thick. The ends of the rope were served; and the wires beyond
the serving were spread, cleaned in dilute acid, washed in water

and dried with a painter's torch. The end of the rope was then

passed through the socket (which had been carefully cleaned of

sand and scale) ,
the wires were spread to fill the covered portion,

and melted spelter (heated to a very thin consistency) was
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poured in, filling all the interstices. Some of the finished ropes

were tested, and showed an ultimate strength of 287,000 to

290,000 pounds, with the rope breaking 4 to 8 feet from the

socket; there was no sign of injury at the socket, thread or

nut.

The suspenders were then placed in position around the

cable bands, with their lower ends ready to engage the bottom

chords of the stiffening trusses (Fig. 50).

FIG. 50. Manhattan Bridge. Erection of Lower Chords and Floor System.

10. Erection of Trusses and Floor System. The suspension

from the cables permits the steelwork to be erected without

falsework. In planning the program of erection there must be

considered the method of connection to the suspenders, clear-

ances for travelers, and the reach of the booms. In addition,

the scheme should aim to balance the dead-load distribution

along the span, so as to minimize the distortion of the cables

during erection.

In the Manhattan Bridge, the truss is supported at each
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panel point by four parts of if-inch steel rope suspenders (Fig. 50)

with their bights engaging the main cables and having, at the

lower end, nut bearings on horizontal plates across the bottom

flanges of the lower chord.

All members were shipped separately, the chord members in

two-panel-length pieces weighing 26,000 to 30,000 pounds each.

The erection proceeded at four points simultaneously, work-

ing in both directions from each tower (Fig. 50) . Traveler der-

FIG. 51. Manhattan Bridge. Erection of Verticals.

ricks of 25-ton capacity were used, with 34-foot mast and 5o-foot

boom (covering two panels in advance) and provided with bull-

wheel. At each point of erection there were two of these large

derricks, also one jinnywink derrick with 3O-foot boom and

7-ton capacity. In addition to these twelve movable derricks,

there were four stationary steel-boom derricks at the towers.

Starting at the towers, the lower chords and floor system
were assembled two panels in advance of the travelers, making

temporary connections to the suspenders, until the anchorages
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and mid-span were reached. Then the travelers returned to the

towers to commence their second trip.

The material was hoisted by the tower derricks and loaded

on service cars which delivered it to the traveler derricks. The
service cars ran on the permanent track between the inner and
outer trusses; the cars were hauled away from the tower by
cables operated by hoisting engines on the tower, and returned

empty, by gravity, on the grade furnished by the camber.

FIG. 52. Manhattan Bridge. Erection of Diagonals.

On the first trip, the lower chords, lower deck and verticals

were erected (Fig. 51); on the second trip, the truss diagonals

were erected (Figs. 52, 53); and on the return (Fig. 54), the upper
deck and transverse bracing were put up, thus completing the

structure.

On the first trip, temporary suspender connections were made

to the lower chord at alternate panel points so as to miss the

upper chord splices. After the return of the travelers, permanent
connection and adjustment of the suspenders at the other points
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were made. The temporary suspender connections were removed

before the top chords were erected, and were connected again

(permanently) after the top chords were in place.

A force of three hundred men was employed on this work,

and their record was 300 tons of steel erected in a day. There

were about 1,000,000 field rivets in the three spans. The bridge

was formally opened ten months after the floor hanging com-

menced.

Where the side spans are not suspended from the cables,

FIG. 53. Manhattan Bridge, View before Erection of Top Chords.

falsework is generally required. In the Kingston Suspension

Bridge, Fig. 56, the side spans (although suspended) were

erected on light falsework, as time was thereby saved.

The first few panels of the main span are generally erected

by the stationary derricks at the tower, as far as their booms
can reach. Additional panels may be erected by drifting or

outhauling from the cable; or by the use of
"
runners," that is,

block and falls suspended from the advance cable band and
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operated by the hoisting engine at the tower. At Kingston, the

latter method was adopted, dispensing with the use of travelers

for the main portion of the span.

11. Final Erection Adjustments. The equilibrium polygon

is computed for the dead load acting on the cable, and levels

taken at a number of points on the cable should check these

ordinates. The elevations and camber of the roadway are also

FIG. 54. Manhattan Bridge. Erection of Top Chords.

checked with levels and corrected, where necessary, by adjusting

the lengths of the suspenders.

In completing the stiffening truss, the closing chord members

should be inserted after all the dead load is on the structure, the

connecting holes at one end being drilled in the field.

If the closure of the stiffening truss has to be made before

full dead load is on the structure, or at other than mean tempera-

ture, the vertical deflections are computed for these variations

from assumed normal conditions and the suspenders adjusted

accordingly, before connecting the closing members.



CABLE WRAPPING 183

In adjusting the suspenders, the center hanger is shortened

or lengthened the calculated amount, and the other hangers are

corrected by amounts varying as the ordinates to a parabola.

If the trusses are assembled on the ground before erection,

the exact camber ordinates can be measured and reproduced (by

suspender adjustment), so as to secure zero stress under full

dead load at mean temperature.

An ideal method of checking the final adjustments is by
means of an extensometer, which should check zero stresses

throughout the stiffening truss when normal conditions are

attained, or calculated stresses for any variation from assumed

normal conditions.

Instead of adjusting to zero stress for full dead load, it would

be more scientific and somewhat more economical to adjust for

zero stress at dead load plus one-half live load.

12. Cable Wrapping. Close wire wrapping has proved to be

the most effective protection for cables.

For the Manhattan Bridge, No. 9 galvanized soft-steel wire

(o. 148-inch diameter) was used. This was rapidly wound
around "the cable by a very simple and ingenious self-propelling

machine operated by an electric motor. This machine, designed

by H. D. Robinson, is illustrated in Fig. 55.

In advance of the machine, the temporary seizings are care-

fully removed and the cable painted with a stiff coat of red-

lead paste. The end of the wrapping wire is fastened in a hole

in the groove at the end of the cable band. The machine, carry-

ing the wire on two bobbins or spools, travels around the cable

and applies the wire under a constant tension. The machine

presses the wire against the preceding coil and at the same time

pushes itself along. The rate is about 18 feet per hour.

The machine weighs 1000 pounds and is operated by a

i|-H.P. motor at a speed of 13 R.P.M. It is handled by a force

of six men.

(The small hand-operated device, which was superseded by
the motor-driven machine, is seen at the extreme right in

Fig. 55. It was used to complete the wrapping close to the

cable bands.)
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For the Williamsburg Bridge, wire wrapping was not used;

instead, the cables were covered with a preservative coating of

oil and graphite, then wrapped spirally with three layers of

waterproof duck, and finally enclosed in a thin steel-plate shell

made in two semi-cylindrical portions with overlapping joints

and locked fastenings. This protection has proved inadequate
to keep out moisture and prevent rust, and it has recently (1917-

1921) been replaced by wire wrapping applied with Robinson's

machine.

FIG. 55. Manhattan Bridge. Cable Wrapping Machine.

13. Erection of Wire Rope Cables. The individual wire

ropes composing a cable of this type may be towed across the

river in the same manner as the temporary footbridge ropes of a

parallel wire cable; or they may be strung across by means of a

single working cable stretched from tower to tower.

The latter method was used for a footbridge of 54o-foot span

built in 1919 over the Cumberland River by the American Bridge

Co. Each cable consisted of seven ropes of if-inch diameter.
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A working cable of i-inch wire rope was first stretched across

between the towers for each of the main cables. The main

ropes were unwound from the reels back of one tower. One

end of a rope was lifted to the top of the tower and hauled

across the river to the top of the opposite tower, the rope being

supported from the i-inch working cable by blocks attached at

intervals of about 60 feet, thus preventing too much sag. The

FIG. 56. Erection of Rondout Creek Bridge at Kingston, N. Y., 1921.

Type OS.

Span 705 feet.

rope was then lowered to approximately correct position, and

the sockets attached to the tower shoes. The remaining ropes

were then stretched in the same manner, and all were then

adjusted by nuts at the ends until they touched a level straight-

edge held on the fixed line of sag determined by a transit in the

tower. The cable clamps and suspenders were then placed by
men on a movable working platform hung from the cables,

beginning in the center and working toward each end. A
"boatswain chair" was used to carry out men, materials and
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tools. The floor system was also erected by men on the work-

ing platform, in this case working from both ends toward the

center. The platform was then removed, and the trusses were

erected from the ends toward the center by workmen on the

floor system, using the two working cables (shifted to the center

of the bridge) as a trolley cable for transporting the truss sec-

tions to position. When the top lateral bracing, railings, and

wood floor were added, the structure was completed. A total

FIG. 57. Footbridges for Erection of Williamsburg Bridge.

(See Fig. 31, page 88).

of 205 tons of structural steel and 45 tons of cables were thus

erected in a period of twelve weeks.

14. Erection of Eyebar Chain Bridges. Chain suspension

bridges have, as a rule, been erected upon falsework.

The falsework used for the erection of the Elizabeth Bridge

at Budapest (1902, Span 951 feet) is shown in Fig. 58. The

falsework consisted of huge scaffoldings built on piles and

protected from floating ice by ice breakers. Four openings of

160 feet were left for vessels; these openings were spanned by
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temporary timber bridges floated into place on pontoons. After

the falsework was completed, the main chains were erected in

twelve weeks. The falsework was then taken down and the

steelwork completed.

At a crossing like the East River or the Hudson River, the

use of such falsework would be out of the question. A com-

parison of the cumbersome construction employed for the Eliza-

beth Bridge (Fig. 58) with the comparatively insignificant

scaffolding required for the Williamsburg Bridge (Fig. 57), is

an argument for wire cable vs. eyebar bridges.

FIG. 58. Falsework for the Elizabeth Bridge (Eyebar Chains).

(See Fig. 34, page 95).

A different scheme, eliminating heavy falsework, was used

for the Clifton Bridge (1864, Span 702 feet). Under each set of

three chains, a suspension footbridge was constructed, using
wire ropes. Above this staging, another rope was suspended
to carry the trolley frames for transporting the links. The
chains were commenced simultaneously at the two anchor plates,

the lowest of the three chains being put in first. Commencing
at the anchorage, there were inserted the whole number of links,

namely 12, then n, 10, 9, 8, and so on until the chain was
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diminished to i link; then the chain was continued with i and

2 links, alternately, until the two halves met at mid-span. The

suspended footbridge was strong enough to carry the weight of

this chain (consisting of i and 2 links, alternately) until the

center connection was made; the chain was then made to take

its own weight by removing the blocking under it. The next

operation was to add the remaining links of the chain on the

pins already in place. The process was repeated for the upper

chains, and then the roadway was suspended.

The Cologne Suspension Bridge (1915, Span 605 feet,

Fig. 17), was the first large bridge to be built hingeless. (The

Kingston Bridge, 1921, was the second.) It is of the self-

anchored type, the stiffening girder taking up the horizontal

tension; and the towers are hinged at the base. Nickel steel

was used for the chains, the eyebars being of the European type,

that is, of flat plates (36 to 59 inches wide) bored for 1 2-inch

pin-holes near the ends. The erection of the chains and stiffen-

ing girders proceeded simultaneously on special staging, and

was so conducted that the girders were completed first. The

girders were made three-hinged during erection and then changed

to hingeless by riveting on splice plates.

The procedure was as follows: Falsework was built for the

side spans and a traveler was assembled at each end. The side-

span girders and deck were erected on the falsework, and the

staging built up (on the girders) for the land chains, the traveler

moving forward from the anchorage to the tower during this

operation. The traveler then moved out on cantilever false-

work spans in the main opening, erecting the stiffening girders

and the staging for the chains from the tower to mid-span.

The erection of the chains followed closely upon the erection of

the girders. When the stiffening girders were completed and

the suspension chains connected to the ends (with 24-inch pins),

every third hanger was coupled up. The staging carrying the

chains was then removed, and the remaining hangers were con-

nected and adjusted by means of their turnbuckles to bring the

pin points in the chains into their correct positions. The splices

in the webs and flanges of the stiffening girders at the
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three hinge-points were then riveted up, thus completing the

erection.

For LindenthaFs Quebec Design (1910, Span 1758 feet, Fig.

40), the following scheme of erection was proposed: The side

spans were to be erected on steel falsework first the floor system,

then the eyebars and pins of the lower chord chain, then the

verticals and upper chain eyebars, leaving the pins projecting

out to receive the diagonals and remaining eyebars after the

main span chains were erected and self-supporting. The
towers were to be riveted up in place and temporarily anchored

to the steel staging which, in turn, was to be anchored to the

abutment. The first sets of eyebars (one and two alternating

per panel) of the chains of the middle span were to be erected

from temporary wire rope cables, each consisting of forty steel

wire ropes of 2^-inch diameter. Then the remaining eyebars

and gusset plates were to be pushed on to the pins until the

chains were completed. Thereafter the verticals and diagonals

were slipped in place, and the suspenders and floor system of the

middle span erected.

15. Time Required for Erection. The time schedule for the

Manhattan Bridge (i47o-foot span, Fig. 35) was as follows:

First substructure contracts let 1901

Pier foundations commenced May, 1901

Work commenced on final (revised) design March, 1904

Steel towers commenced July, 1907

Steel towers completed (12,500 tons) July> 1908

Temporary cables strung June 15-20, 1908

Footbridges constructed July 7~*3> 1908

Spinning of main cables commenced (4 cables) . . . Aug. 10, 1908
Last wire strung (37,888 wires) : Dec. 10, 1908

Erection of suspended steel commenced Feb. 23, 1909

Erection of suspended steel completed (24,000 tons) June i, 1909

Approaches completed and bridge formally opened. Dec. 31, 1909

The steel erection, amounting to 42,000 tons of steel between

anchorages and including towers, cables, trusses and decks, was

accomplished in two and a half years.

The Kingston Suspension Bridge (705-foot span, Fig. 56)

was completed in one year (1920-1921), although several
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months were lost in waiting for steel delivery. The bridge con-

tains 1600 tons of structural steel and 250 tons of cables.

The 4<x>-foot-span suspension bridge at Massena, New York,

(Fig. 30; H. D. Robinson, Consulting Engineer) containing 400
tons of steel, was erected complete in six months.
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DESIGN CHARTS FOR SUSPENSION BRIDGES

INTRODUCTION. To expedite the proportioning or checking of

suspension bridges, the author has devised the three charts which

are presented in this Appendix. These charts give directly the

maximum and minimum moments and shears in the stiffen-

ing truss, throughout the main and side spans. The charts

are constructed for the usual form of construction, parabolic

cable with two-hinged stiffening truss; and they cover both

types:

Type 2F Free Side Spans (Straight Backstays).

Type 2S Suspended Side Spans (Curved Backstays).

To use the charts, it is simply necessary to calculate N,
which is a constant for any given structure. This constant N
is denned by Eq. (125) or (167), Chapter I; the formulas for N
are also reproduced on the charts. In these formulas:

/ = moment of inertia of the truss, main span;

1 1
= moment of inertia of the truss, side span;

A =area of cable section, main span*

A i
= area of cable section, side span ;

E = coefficient of elasticity for truss;

Ec
= coefficient of elasticity for cable;

/= cable sag, main span;

/i
= cable sag, side span;

/ = main span of cable (c. to c. of towers) ;

/' = main span of truss (c. to c. of bearings);

/i = side span of truss (c. to c. of bearings) ;

/2 = side span of cable (tower to anchorage) ;

ai = inclination of cable chord in side span.
191
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The value of N is usually about 1.70 for the case of free side

spans (Type 2F), and about 1.80 for the case of suspended side

spans (Type 25).

For the case of suspended side spans (Type 25) it is also

necessary to figure the ratio-product ii^v, where-

~I? T -/

This ratio-product is also a constant for any given structure.

(It is equal to zero when the backstays are straight, Type 2F.

For Type 25 we may usually assume i=i, and v = r2
,
so that

ir*v = r5
, approximately.)

With the values of the two constants N and ir*v known, the

maximum and minimum moments and shears for all points in

main and side spans may be read directly from the charts, thus

dispensing with the usual laborious computations.

Chart I. Bending Moments in Main Span. This chart gives

the governing bending moments throughout the main span. The

upper curves (for different values of N) give the maximum bending

moments, and the lower curves (for different values of N) give the

minimum bending moments. No correction is required except for

minimum moments in the case of suspended side spans (Type

25). The corrections for this case are given by the parabolic

curves plotted below the axis (for different values of - \.

These corrections, like the minimum moments, are negative in

sign, and the two should therefore be added arithmetically.

(These corrections represent the effect of load covering both

side spans.)

The values of Total M (for full loading of all spans) may be

obtained, if desired, by arithmetically subtracting the corrected

Min. M from Max. M. Total M for load covering the main

span alone may be obtained by subtracting the uncorrected

Min. M from Max. M. The resulting values, in either case,

would be represented by parabolas above the axis.

Chart II. Shears in Main Span. This chart gives the gov-

erning shears throughout the main span. The upper curves (for
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different values of N) give the maximum shears, and the lower

curves (for different values of N) give the minimum shears. No
correction is required except for minimum shears in the case of

suspended side spans (Type 25). The corrections for this

case are given by the straight lines plotted below the axis(ifs
v\

for different values of
-js-l-

These corrections are of the

same algebraic sign as the minimum shears, and the two should

therefore be added arithmetically. (These corrections represent

the effect of load covering both side spans.)

On this chart, the plus sign indicates a shear upward on the

outer side and downward on the inner side of a section; the

minus sign indicates a shear in the opposite direction.

The values of Total V (for full loading of all spans) may be

obtained, if desired, by arithmetically subtracting the corrected

Min. V from Max. V. Total V for load covering the main span
alone may be obtained by subtracting the uncorrected Min. V
from Max. V. The resulting values, in either case, would be

represented by radiating straight lines above the axis.

Chart III. Moments and Shears in Side Spans. This chart

gives the governing stresses throughout a side span.

In the left-hand diagram, the upper parabolic curves (for

different values of -
) give the maximum bending moments.

(These curves represent the effect of load covering the given
side span.) The lower parabolic curves (for different values of

T ~\~'L
/
1>

t
i}\

J
give the minimum bending moments. (These curves

represent the effect of load covering the two other spans.)

The values of Total M (for load covering all three spans) may
be obtained, if desired, by arithmetically subtracting Min. M
from Max. M . The resulting values would be represented by
flat parabolas above the axis.

In the right-hand diagram, the upper curves (for different

0FWM\

values of
j

give the maximum shears. (These curves

represent the effect of load covering the given side-span.) The
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lower curves
(for

different values of
* *

j
give the minimum

shears. (These curves represent the effect of load covering the

two other spans.) The values of Total V (for load covering all

three spans) may be obtained, if desired, by arithmetically

subtracting Min. V from Max. V. The resulting values would

be represented by radiating straight lines above the axis.

In this diagram, the plus sign indicates a shear upward on

the outer side and downward on the inner side of a section;

the minus sign indicates a shear in the opposite direction.

Chart III can also be used for a side span not suspended from

the backstays (Type 2F), or for any independent simple span.

The maximum bending moments produced by uniform load are

given by the top curve in the left-hand diagram; the minimum

bending moments are zero. The maximum shears produced by
uniform load are given by the top curve in the right-hand dia-

gram ;
the minimum shears are given by the dotted continuation

curve in the same diagram.

Where locomotive loadings with axle-concentrations are

specified, the equivalent uniform loads are to be used for p in

these charts.
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Aare bridge, 118

Adjustments, 101-103, I2I
>

l69> I7>

171, 176, 182

Advantages, 69, 70, 78, 79, 82

Albert bridge, 77

Alloy steels, 84, 85

Anchor chains, 92*, 120-122

girders, 121

plates, 121

Anchorages, 89, 92*, 94*, 104*, 106*,

107*, 109*, 118, 119*, 120-124,

161*, 162

Anchorage shafts, 122

stresses, 123, 161*, 162

tunnels, 122

Anchoring cables, 91, 92*, 93, 121

strands, 1 74*

Arrangements of cross-sections, 72*,

73*, 83, 84, 92*, 99*, in*
of spans, 72, 74

Assumptions for design, 18, 19

Attachments, 96, 98, 100

B

Backstays, 50*, 51*, 62*, 64*, 72, 79,

88*

Balance beam, 175

Bearings, 103

Bending Moments (see Moments)
Braced cable construction, 96, 105

Braced-chain bridges, 80-82, 103, 108

three-hinged type, 63, 64*, 65*

two-hinged type, 65*, 66

hingeless type, 67*

Braced-chain construction, 64*, 65*,

67*, 103, 106*, 107*, 109*,

in*

Bracing, 77, 78, 91, no, 112, 113

Brooklyn bridge, 70*, 71, 72*, 80, 84, 91,

101, 168, 170, 171

Budapest bridges, 94*, 95*

Cable bands, 85, 92*, 96, 98, 99*, 177

connections, 121

curve, i, 2*, 4, 6*, 7*, 9

deflections, 16, 17

deformations, n, 12, 14*, 15*, 17

diameter, 90, 149, 150

elongation, 16, 17

estimates, 149

in side span, 7*

length, 5, 6, 8, 10, 52

sag, 8

spinning, 172*, 173

squeezing, 177

stresses, 3-5, 8, 9, 11, 13, 126, 134,

I S I
i
I 5 2

tension, 3, 4, 10

unsymmetrical, 6*, 7, 20*

vs. eyebars, 74-76

weight, 149, 150

wire, 85, 89

wrapping, 90, 149, 150, 169, 183,

184*

Cables, 85, 87, 89, 90
Cannes-Ecluse bridge, 77*

Castings, 85

Catenary, 9, 10
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Center hinge, 72, 80, 101, 103, 104,*

105, 113

Central loading, 14*

Chain construction, 75*, 76, 80, 93, 94*,

95*, 96, 103, 106*, 107*, 109*,

in*, 187*

Charts for moments, 192*, 196*

for shears, 193, 194*, 196*

Chord stresses, 128

Cincinnati bridge, 71

Clamping, 87

Clark's bridge, 94*

Classes, 71, 72, 78-81

Classification, 19, 71, 72

Clifton bridge, 187

Closed sockets, 98
Coefficient of elasticity, 86, 87

Cologne bridge, 53*, 74, 115, 118

erection, 188

Common theory, 19

Compacting cables, 177

Comparison of types, 78, 79, 96

Connections, 96, 98, 100, 121

Continuous type (see Hingeless type)

Cradles, 169

Cradling of cables, 78, 90, 91

Crescent type, 82

Cross-sections, 72*, 73*, 83, 84, 92*, 99*,

106*, in*, 134*

Cumberland R. bridge, 170, 184, 185

Curve of cable, i, 2*, 4, 6*, 7*, 9

Danube bridges, 94*, 95*

Deflections of cable, 16, 17

of truss, 49-51

Deformations of cable, n, 12, 14*, 15*,

17

Delaware River bridge, 33*

Depth of truss, 83, 102, 103, 108

Design assumptions, 18, 19

charts, 191-197

computations, 125, 134, 144, 149, 162

Details, 73*, 02*, 94*, 106*, 107*, 109*

134*

Detroit-Windsor bridge, 50*, 118, 123

Diagonal stays, 70*, 72*, 76, 77*

Diameter of cable, 90, 149, 150

Displacement of crown, 15*
of saddle, 17

E
Eads' type, 81

Economic proportions, 82, 83, 102

Elastic coefficient, 86, 87
Elizabeth bridge, 71, 74, 85, 95*,

115, 118

erection, 186, 187*

Elongation of cable, 16, 17

Equalizers, 100

Equilibrium polygon, 2*, 20*, 61*

Erection, 163, 164*, 166*, 168*, 172*,

174*, 178*, 179*, 180*, 181*,

182*, 184*, 185*, 186*, 187*

adjustments, 169-171, 182, 183

calculations, 169-171, 183

equipment, 165, 173, 175-177, i79>

183

force, 165, 176, 177, 181, 183

of cables, 172*, 173

of foot bridges, 166*, 167

of towers, 163, 164*

of trusses, 178*, 179*, 180*, 181*,

182*

records, 165, 175, 177, 181, 186, 189,

190

Estimates, 149, 150

Exact theory, 19

Eyebar bridges, 74, 75*, 76, 94*, 95*,

96, 106*, 109*, in*, 187*

chain erection, 186, 187*, 188, 189

construction, 74, 75*

Falsework, 186*, 187*

Fidler truss, 81, 108, 109*

Floor beams, 84, 92*

Floor system, 178*

Florianopolis bridge, 134*

Footbridge cables, 165, 166*, 167

erection, 166*, 167

Footbridges, 166*, 168*, 186*

Forces acting on tower, 146, 147

on truss, 20*

Form of cable, i, 2*, 4, 6*, 7*, 9
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Frankfort bridge, 80, 81, 104*

Freiburg bridge, 73*

Functions in formulas, 39*, 42, 43*

Galvanizing, 89

Gisclard system, 77

Gotha foot bridge, 119*

Grand Ave. bridge, 71

Graphs for formulas, 39*, 43*

Guide wires, 169, 170

H

H-curves, 23, 28*, 31*, 36*, 46*, 58*,

152,153

Hangers, 96, 100

Hauling towers, 167, 168*

Hingeless type, 53*, 54, 55, 58*, 61*,

67, 102, in*, 150

horizontal tension, 57-59

influence lines, 58*

moments, 59, 60, 61

moments at towers, 56

shears, 55
1

temperature stresses, 61

Hinges, 102, 103, 105, 113

Horizontal displacement, 15*

Horizontal tension 4, 8, 10, 63, 66, 126,

i34, 152

from temperature, 48

two-hinged type, 26, 27, 33-35,

37,38

hingeless type, 57-59

Hudson River bridge, (Frontispiece)*,

71,74, 76,82,110, in*, 115

Influence lines, 23, 24, 25, 28*, 31*,

36*, 46*, 58*, 152, 153

Inspection, 118, 122

K

Kingston bridge, 71, 116, 118

erection, 165, 171, 181, 185*, 189

Knuckles, 85, 92*, 117, 118, 122

Lambeth bridge, 80, 105

Lateral bracing, 77, 91

Length of cable, 5, 6, 8, 10, 52

Limiting spans, 76, 83

Loading, 134*

Loads, 90

on tower, 146, 147

Locked wire cables, 88

London bridges, 80, 105

M
Main span stresses, 136, 139, 153, 156,

192*, 193, 194*

Maintenance, 118, 122

Manhattan bridge, 71, 85, 91, 97*, 99*,

108, 118, 119*

erection, 163, 164*, 166*, 167, 171,

172*, 173, 174*, 177, 178*,

179*, 180*, 181*, 182*, 184*

Masonry, 114, 120, 123

Massena bridge, 86*, 190

Materials, 84, 85

Maximum moments, 28*, 29, 30, 36*

shears, 31*, 32, 46*

Moment charts, 192*, 196*

diagrams, 28*, 36*, 58*

Moments, 21, 20*, 22, 24, 28*, 36*, 58*

in stiffening truss, 127, 129, 136, 139,

153-156, 158

Movement of saddles, 17, 145, 146

of towers, 145, 146

Multiple spans, 74

N

Niagara suspension bridge, 101, 103

North River bridge, (Frontispiece}* 71,

74, 76, 82, no, in*, 115

Notation, i, 34, 35, 37, 42, 71, 125, 134,

150, 151, 191

-,2*,6*, 7*,i3*,2o*, 36*,6i*

O

Ohio River bridge, 71

Open sockets, 98

Ordish system, 77
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Parabolic bottom chord, 80, 106*

cable, 4, 6*, 7*

center line, 80, 109*

coefficients, 127

top chord, 80, 104*, 107*

Parallel wire cables. 87, 89, 169

Patent cables, 88

Philadelphia-Camden bridge, 33*

Pittsburgh bridges, 71, 74, 81, 82, 106*,

108, no
Plant, 165, 173, 175, 176, 179

Point bridge, 71, 81, 106*, 108

Prague bridge, 77

Proportions, 83, 102, 103, 108

Protection of cables, 90

Pulleys, 116

Quebec designs, 71, 74, 81, 107*, 108,

109*, 118, 189

Reaction girders, 120

Reactions, 161*, 162

Rel'ff of wind load, 133, 144

Resultants, 161*, 162

Rhine bridge, 53*

Roadways, 84, 98, 99*

Rocker towers. 50*, 53*, 95*, 107*, 109*

115, JI 7> IJ 8

Rockers, 117, 118

Roebling, 74, 169

Rollers, 116-118

Rondout bridge (see Kingston bridge)

Rope strand cables, 150

Runners, 181

Rusting of cables, 90

Saddle movement, 17, 145, 146

Saddles, 85, 92*, 94*, 104*, 109*, 115,

116

Safety, 70, 118

Sag of cable, 8

Sag ratio, 5, n, 76,83

Section sheet, 134*

Seizing, 174, 175

Seventh St. bridge, 71, 74, 82, no
Shafts, 122

Shear charts, 194*, 196*

diagrams, 31*, 46*

Shears, 3, 20*, 22, 25

in stiffening truss, 130, 131, 139-142,

156-158, 160

Sheave towers, 168*

Siamese Railways, bridge for, 75*
Side span cable, 7*

stresses, 138, 141, 158, 160, 195,

196*

Side spans, 72, 79

Sizes of wire, 89

Sliding, 162

Sockets 85, 92*, 93, 96, 98, 99*, 177,

178

Span arrangements, 72, 74

limits, 76, 83

Spandrel braced types, So, 81, 104*, 107*

Splicing wires, 90, 92*, 99*

Spinning cables, 172*, 173

Squeezing cables, 177

St. Louis bridge, 71

Stability, 162

Steel towers, 114

Stiffened suspension bridges, 18

Stiffening, 72*, 76, 77*, 78

trusses, 101

stresses, 20*

Straight backstays, 50*, 51*, 62*, 64*,

88*, 125

bottom chord, 80, 104*

Strand bridle, 1 74*

legs, 170
-

shoes, 85, 92*, 93, 99*, 172*, 174

Strands, 89, 90, 93

Strength, 84-86, 90
Stress sheet, 134*

Stresses in anchorage, 123, 161*, 162

-in cables, 3-5, 8, 9, 11, 13, 126, 134,

135, 151, 152

in chords, 1 28

in towers, 14, 147, 148
in truss, 127, 130, 136, 138, 139, 141,

153, 156, 158, 160
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Suspender connections, 96, 100

erection, 177, 178*

forces, 20*, 21, 27

Suspenders, 85, 92*, 09*, 100, 177,

Suspension details, 73*, 99*

Sway bracing, no, 112, 113

Table I (functions), 42

Temperature stresses, 48, 61, 126, 129,

132, 142, 143

Tension in cable, 3, 4, 10

Three-hinged type, 26, 27, 28*, 64*,

65*, 106*

influence lines, 28*, 31

moments, 28*, 29, 30

shears, 30, 31*, 32

Tiber bridge, 108

Tilting, 162

Time required, erection, 181, 186, 189,

190

Tower bridge, 108

Tower calculations, 144

erection, 163, 164*

loads, 146, 147

movement, 145, 146

stresses, 14, 147, 148

Towers, 85, 86*, 99*, 104*, 106*, 109*,

113-115, 134*, 144, 164*

Traveling rope, 172*, 173

sheaves, 172*, 174

wheels, 172*, 174

Truss depth, 83, 102, 103, 108

erection, 178*, 179*, 180*, 181*, 182*

Tunnels, 122

Two-hinged type, 33*, 36*, 46*, 50*,

51*, 65*, 134*

deflections, 49-51

horizontal tension, 33-38, 40, 51,

52

influence lines, 36*, 46*

moments, 36*, 41, 44, 45, 52

shears, 45, 46*, 47, 52

temperature stresses, 48

Type 05, 67*, 80

05P, 82, 1 10, in*

OF, 62*, 102

Type OFE, 95*- 05, 53*, 58*, 61*, 78, 102, 150-
15, 79

25, 65*, 80

2BF, 82

2BH, 80, 81

25P, 82, 1 10

255, 65*

25F, 81, 112

o7*, 108
-

2F, 50*, 51*, 75*, 79, 102, 125, 191,

197

-2FZ?,77*
-2FE,75*
-25, 33*, 36*, 46*, 79, 86*, 97*, 99*,

102, 134*, 191

35, 64*, 65*, 80

35C5, iog*, 1 10, 112

35F, 64*

3BH, 103, 104, 112

35L, 81

3BLF, 106*, 108^110

355, 65*

3BUH, 80, 81

3F, 28*, 31*, 79, ioi

357?, 70*, 72*

Types of suspension bridges, 18, 19, 71,

72, 78-81

U
Unit stresses, 134*

Unstiffened suspension bridges, 12, 13*,

14*, 15*, 73*, 94*

Unsymmetrical cable, 6*, 7*, 20*

loading, 15*

Uplift, 120, 123

V

Vertical deflection, 14*

Vierendeel girder, ioi, in*, 112

Villefranche bridge, 77

W
Web systems, ioi

Width of bridge, 83

Williamsburg bridge, 71, 84, 88*, 91,

92*--
erection, 165, 168, 171, 175, 184,

186*
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Wind bracing, no, 112, 113

cables, 74, 106*, 113

chords, 78, 112

loads, 133

stresses, 132, 133, 144, 148

Wire for cables, 89, 90
Wire rope bridges, 77*, 86*

cables, 91, 184, 185

link bridges, 107*

INDEX

Wire ropes, 85-87, 93

splice, 90, 92*, 99*

wrapping, 90

Wrapping, 90, 149, 150

machine, 183, 184*

Youngstown bridge, 71
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