
TC 179 H6



YB 11043







ECONOMIC WATER SUPPLY AND DRAINAGE

### BY THE SAME AUTHOR.

PRACTICAL HYDRAULIC (WATER SUPPLY AND DRAINAGE) TABLES AND DIAGRAMS. With 6 Plates and 7 Diagrams in the Text. Crown 8vo. 3s. 6d.

PRACTICAL EARTHWORK TABLES. With 9 Plates. Crown 8vo. 2s. 6d.

> LONGMANS, GREEN, AND CO., 39 Paternoster Row, London; New York, Bombay, and Calcutta.

# THE PRECISE AND THEREFORE ECONOMIC CALCULATION

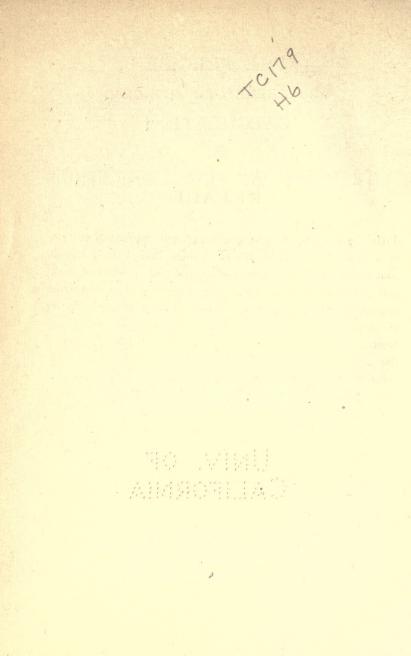
OF

PIPE DRAIN AND SEWER DIMENSIONS

### FOR USE IN

# WATER SUPPLY, DRAINAGE, &c.

BY


## C. E. HOUSDEN

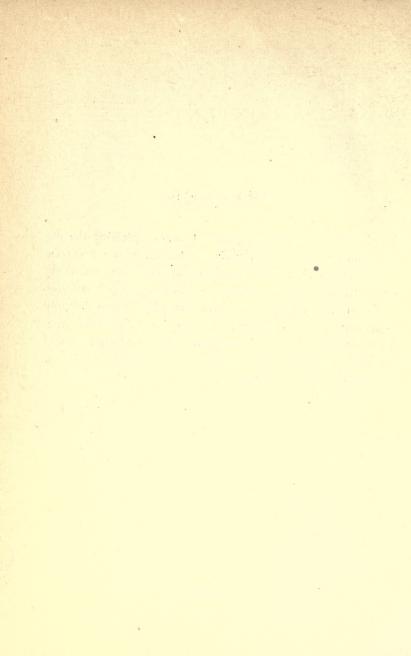
LATE SUPERINTENDING ENGINEER, PUBLIC WORKS DEPARTMENT, INDIA; AND SANITARY ENGINEER TO THE GOVERNMENTS OF BURMA AND EASTERN BENGAL AND ASSAM

## LONGMANS, GREEN, AND CO

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •</t

39 PATERNOSTER ROW, LONDON NEW YORK, BOMBAY AND CALCUTTA




## PREFACE

THIS small work aims at providing and explaining the use of a short series of Hydraulic Tables (based on a careful comparison of all available coefficients) and some good drain and sewer designs to which the Tables apply, wherefrom engineers, contractors, and others interested in the 'supply of water' or the 'drainage of land' can, adopting any desired coefficient, rapidly, confidently and accurately ascertain the safe minimum dimensions, and therefore the lowest reliable cost of the pipes, drains and sewers required for such purposes.

C. E. H.

London, January, 1912.

me



# CONTENTS

### CHAPTER I

### THE TABLES

The preparation and scope of the Tables—Hydraulic formulæ applicable to pipes and channels—Development of the formulæ—Values of C, how ascertained—The Tables shortly described—Discharges to be allowed for

### CHAPTER II

#### DRAINS AND SEWERS

Good drain designs—Drain designs all usefully based on an inscribed semicircle—Conversion of drains into sewers —Special advantages of a drain on type I

### CHAPTER III

#### PERMISSIBLE VELOCITIES

Velocities in a system of pipes—The actual velocity in a pipe, how ascertained—Permissible velocity in a pipe—Permissible velocities in drains and sewers

14

PAGE

1

7

### CHAPTER IV

### WORKING EXAMPLES

Small discharges—Large discharges—Pipes—Large discharges —Masonry or concrete Drains and sewers—Large discharges—Drains in earth—Very large discharges— General—Permissible velocities—The general application of the Tables—The full utility of the Tables—'Average hydraulic gradients,' when most useful

## CONTENTS

## FULL-PAGE PLATES

| Plate | Ι.   | Drain, Type I                    |  |             | PAGE<br>8 |
|-------|------|----------------------------------|--|-------------|-----------|
| •     | II.  | Drain, Type II                   |  | · · · · · · | 9         |
| ,, 1  | III. | Half Peg Top and Half Egg Drains |  |             | 10        |

## TABLES

| Tables | Ι | to | VIII |  |  |  |  | 27-44 |
|--------|---|----|------|--|--|--|--|-------|
|        |   |    |      |  |  |  |  |       |

## APPENDICES

| Appendix | A |     |      |      |      |     |  |  | 45    |
|----------|---|-----|------|------|------|-----|--|--|-------|
|          | в |     |      |      | <br> | : . |  |  | 46    |
|          | С |     | . *  |      |      |     |  |  | 47    |
|          | D | and | Tabl | e IX |      |     |  |  | 48-51 |
|          | E |     |      |      |      |     |  |  | 52    |
| ,,       | F |     |      |      | <br> |     |  |  | 53    |

# ECONOMIC WATER SUPPLY AND DRAINAGE

## CHAPTER I

### THE TABLES

The preparation and scope of the Tables.—Some of the accompanying Tables have been framed and are applied on the same principles as the author's 'Practical Hydraulic Tables and Diagrams' (Longmans, Green & Co., 1907), to which they are a self-contained independent supplement, adding to, revising and simplifying the more useful original Tables in the light of the knowledge and experience gained in their practical application and use. The remainder extend their scope.

The dimensions of pipes of several useful types of masonry or concrete drains and sewers and of drains in earth can, it will be found, be easily, neatly and accurately ascertained from the complete series, utilising to the full all available fall, and adopting at will a fair selection of generally accepted coefficients used by Kutter, Unwin, Fanning, Bazin, &c.

The improved Tables are of special use in the precise determination of drain and sewer dimensions, the calculation of which is by no means a simple matter when, as is usually the case, only the required discharge and the available slope in the water surface are known.

A table of squares and square roots will be found of much assistance in their application. (See Appendix F.)

**2. Hydraulic formulæ applicable to pipes and channels.**—The general formulæ for ascertaining the flow of water in pipes and channels, on which the Tables are mainly based, are :

$$\mathbf{F} = \mathbf{A} \mathbf{v} \quad . \quad . \quad . \quad (\mathbf{i})$$

(a) where

(i) F is the discharge required, or under supply, in a pipe or channel in *cubic feet per second* (cusecs);

(ii) A is the water area of a pipe or channel in square feet; and

(iii) v is the mean velocity of flow in feet per second.

(b) 
$$v = C \sqrt{R} \sqrt{S}$$
 . . (ii)

### where

(i) R is 'the hydraulic mean radius' of a pipe or the 'hydraulic mean depth' of a channel,

i.e. 
$$R = \frac{\text{the water area in square feet}}{\text{the wetted perimeter in feet}} = \frac{A}{P}$$
 . (iii)

(ii) S (the 'hydraulic gradient' or 'virtual slope' of a pipe or channel) is the sine of the inclination, or fall per unit of length, of the water surface, practically:

$$S = \frac{\text{available head in feet}}{\text{the length of the pipe or channel in feet}} = \frac{H}{L}$$
. (iv)

(iii) C is a coefficient derived from experiment, and depending mainly on the roughness of the interior surface, but also to some extent on R and S.

3. Development of the formulæ.—Squaring formula (i) we have—

$$\mathbf{F}^2 = \mathbf{A}^2 \, \boldsymbol{v}^2$$

 $\frac{L}{H} F^2 = A^2 C^2 R.$ 

or as  $v = C\sqrt{R}\sqrt{S}$  (formula (ii))

$$F^2 = A^2 C^2 R S = A^2 C^2 R \frac{H}{L}$$

. (v)

whence

## THE TABLES

Therefore for pipes, for which  $A = \frac{\pi D^2}{4}$  and  $R = \frac{D}{4}$  (D being the diameter of the pipe *in feet*)—

or with the diameter of the pipe expressed in inches (d)-

$$\frac{\mathrm{L}}{\mathrm{H}} \mathrm{F}^{2} = \mathrm{C}^{2} \times 0.155 \times \left(\frac{d}{12}\right)^{5} \qquad . \qquad . \qquad (\mathrm{vii})$$

(whence

$$rac{4L}{H}$$
 F<sup>2</sup> = C<sup>2</sup> × 0.155 ×  $\left(rac{d}{12}
ight)^5$  for half pipes . (viiA))

As 1 cusec is equal to  $625 \times 60 = 375$  gallons per minute (*galmins* as an abbreviation = say G)—

(whence

$$\frac{4L}{H}G^2 = \frac{C^2 d^5}{11.5}$$
 for half pipes . . . (viiiA))

4. Values of C, how ascertained.—Some generally accepted values of C can be obtained from—

(a) Kutter's formula-

$$C = \frac{41^{\circ}6 + \frac{1^{\circ}811}{n} + \frac{0^{\circ}00281}{S}}{1 + \left(41^{\circ}6 + \frac{0^{\circ}00281}{S}\right)\frac{n}{\sqrt{R}}} \quad . \qquad . \quad (ix)$$

in which

n = 0.010 for pure cement plaster, coated clean pipes.

в 2

- n = 0.011 for mixed cement plaster, clean pipes in best order.
- n = 0.013 for ashlar concrete and brickwork, pipes in ordinary condition.
- n = 0.015 for rough brickwork, incrusted iron.
- n = 0.025 for rivers and canals in good order.

(b) Values of  $\zeta$  for clean coated and rusted iron pipes. formulated in Tables in Professor Unwin's 'A Treatise on Hydraulics' (A. & C. Black, London) and used in the formula:

$$C = \sqrt{\frac{2g}{\zeta}}$$
 (in which  $2g = 64.4$ ) . (x)

(c) Values of C for clean pipes and for channels in 'A Treatise on Water Supply and Hydraulic Engineering' (J. T. Fanning: D. Van Nostrand, New York).

In all the above cases the values of C depend on the velocity in and consequently on the 'hydraulic gradient' or 'virtual slope' of a particular pipe or channel as well as on its hydraulic mean radius or depth.

The values of C and consequently of  $\frac{L}{H}$  F<sup>2</sup> therefore vary to some extent with the slope. (See Table I.)

A fixed value of  $C = 91^{\circ}6$  for clean pipes can be deduced from Box's formula  $\frac{L}{3} = \frac{(3d)^5H}{G^2}$ , whence  $\frac{L}{H}G^2 = 3 (3d)^5 =$ 729d<sup>5</sup> ('Practical Hydraulics,' Thomas Box : E. & F. N. Spon, London), and a fixed value of  $C = 76^{\circ}2$  for rusted iron pipes from the formula  $H = \frac{LF^2}{900D^5}$ , whence  $\frac{L}{H}F^2 = 900 D^5$ , used by A. E. Silk in the preparation of his 'Tables for calculating the Discharge of Water in Pipes' (E. & F. N. Spon, London). (d) Bazin's values of C (Unwin) for—

(i) Canals in earth newly dressed, which are :--If R = 1,  $C = 62^{\circ}1$ . If R = 2,  $C = 75^{\circ}5$ . If R = 3,  $C = 83^{\circ}6$ . If R = 4,  $C = 89^{\circ}1$ . (ii) Ordinary earth canals, which are :--

If R = 1, C = 47. If R = 2,  $C = 59^{\circ}1$ .

If R = 3,  $C = 66^{\circ}8$ . If R = 4,  $C = 72^{\circ}3$ .

5. The Tables shortly described.—*Tables I and II*, for use in obtaining the dimensions of pipes and of masonry or concrete drains and sewers, have both been framed from Kutter's values of C with n = 0.013 and n = 0.011 (very nearly) after a careful comparison of the values of C calculated by all the above-mentioned methods.

From the comparisons so made it has been ascertained that for pipes over 6 in. in diameter (dealt with in Table I) the values of  $\frac{L}{H} F^2$  (formula (vii)) are, using Unwin's values of C for clean pipes, for all practical purposes the same as those obtained from Kutter's coefficients with n = 0.013[equivalent closely to Bazin's and Fanning's values of C for planks, ashlar, concrete, and brick] for a 1 in. larger diameter (Appendix A), and that the values of  $\frac{L}{H}F^2$  with n = 0.011(Kutter) are further very nearly the same as those obtained from Unwin's values of C for asphalted pipes (which differ but little from his values of  $\frac{L}{H}F^2$  for clean pipes) and from Fanning's values of C for clean pipes (Appendix B), also that the additions to be made to clean pipe diameters to allow for eventual incrustation when needed (ascertained as in Appendix C) are those shown in col. III of Table I.

These additions are found to increase uniformly with increase in diameter and are clearly due to eddies, which considerably retard velocity, produced by a roughened interior, and not to such actual extensive reductions in pipe diameters.

For pipes under 6 in. in diameter, the comparison of the values of  $\frac{L}{H}$  G<sup>2</sup> (formula (viii)) with Kutter's n = 0.013 and Fanning's and Box's values of C (roughly equivalent to

Kutter's n = 0.011) are shown in Table II. The dimensions for incrusted pipes being ascertained from col. I of the Table.

[A consideration of cols. 5 and 6 of Appendix B shows :---

(i) That the differences in the coefficients used therein do not practically, for pipes under 12 in. in diameter, affect the dimensions of pipe diameters ascertained from the values of  $\frac{L}{H}$  F<sup>2</sup> prepared from the said coefficients.

(ii) That the diameters for larger pipes obtainable from Box's coefficients are clearly too great.

(iii) That diameters calculated from Kutter's n = 0.011 and Fanning's coefficients for clean pipes can be brought into accord with those obtainable from col. II of Table I by *deducting* from the latter 1 in. for pipes from 24 in. to 42 in. in diameter and 2 in. for pipes from 43 in. to 60 in. in diameter.]

Table III applicable to drains in earth on 'the most economical section' (type II, Chap. II) has been prepared from the values of  $\frac{L}{H}$  F<sup>2</sup> for depths increasing from 1 ft. by tenths of a foot (easily laid out with a levelling staff) to 6 ft. ascertained from—

(a) The mean values of  $C\sqrt{R}$ , which for any value of R are practically the same for all slopes, deduced from Kutter's formula with n = 0.025 (equivalent about to Fanning's values of C for 'Smooth loam and some vegetation').

(b) Bazin's values of C given above for-

(i) 'Canals in earth newly dressed' (Fanning's 'Smooth sandy soil').

(ii) 'Ordinary earth canals' (Fanning's 'Regular soil, some vegetation').

Table IV facilitates the calculation of the values of  $\frac{L}{H}$  F<sup>2</sup> and  $\frac{L}{H}$  G<sup>2</sup>.

Table V gives the areas, values of R,  $C\sqrt{R}$ , &c., for drains in earth on type II from 6 ft. to 8 ft. deep with side slopes of 1 to 1, and other slopes if needed.

Table VI gives the areas, bedwidths, perimeters, &c., of similar (type II) drains from 1 ft. to 6 ft. deep with side slopes varying from 0 to 1 to 3 to 1.

*Table VII* is a Table of the fifth powers of numbers for use in ascertaining the dimensions of very large pipes and drains.

Table VIII facilitates the calculation of Kutter's values of C with n = 0.013.

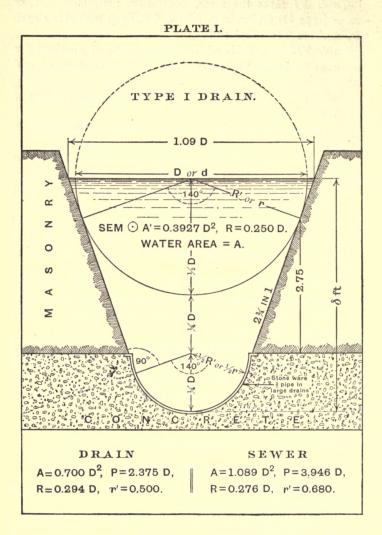
The application of all the above Tables is illustrated in Chapter IV.

Table IX (Appendix D) gives the end areas of drains on type II for various depths and side slopes.

Its application is explained in the Appendix.

6. Discharges to be allowed for.—The provision to be made for 'Water supply' and 'Drainage' respectively will depend to a considerable extent on local conditions and requirements, the following should however in most cases suffice :—

(a) For Water Supply an allowance of one cusec for 10,000 persons equivalent to a maximum (24-hour) flow of 54 gallons per head or a daily (12-hour) allowance of 27 gallons per person.


(b) For drainage a run off of one cusec from each 100,000 sq. ft. of area drained (equivalent very nearly to an intensity of run off of  $\frac{1}{2}$  in. per hour) in localities where the average annual rainfall is 80 in., and a proportionate increase or decrease for a greater or lesser rainfall.

### CHAPTER II

### DRAINS AND SEWERS

**Good drain designs.**—Four good designs for drains are illustrated in Plates I, II, and III.

The design in Plate I (hereafter referred to as a type I drain) is specially suitable for masonry or concrete drains as are also, to a minor extent, the types illustrated in Plate III.



## DRAINS AND SEWERS

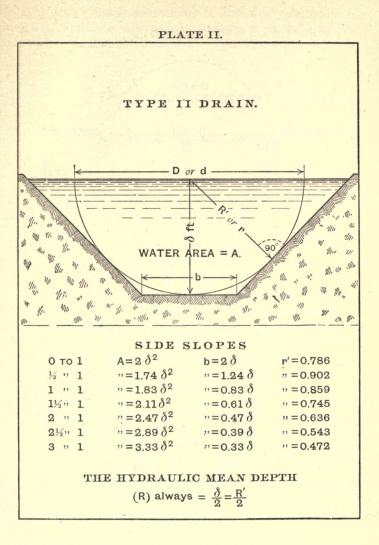
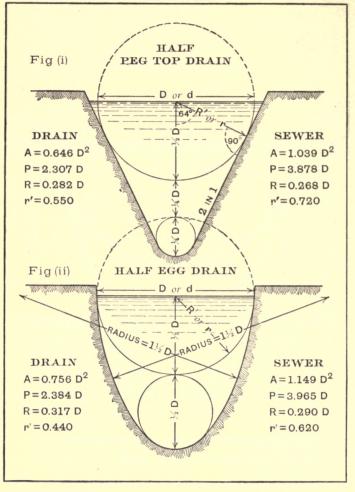
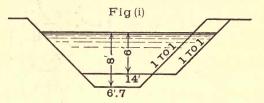





PLATE III.



## DRAINS AND SEWERS

The design illustrated in Plate II (hereafter referred to as a type II drain) is well suited for drains in earth, being 'the most economical section' (Unwin). (See Fig. (i).)



In this section the water areas and hydraulic mean depths of the two drains, and consequently their discharging capacities are practically the same (Chap. IV, p. 23).

The saving in earth work is self-evident but not great, being about 9 c. ft. per ft. run for depths of 10 ft. and 8 ft.

It is greater in deep cutting and in ground with a cross slope. (See Appendix D.)

2. Drain designs all usefully based on an inscribed semicircle.—As all the designs illustrated are based on inscribed semicircles, it follows that, if the velocity in a particular drain can be ascertained, the relative portion of the entire discharge flowing through the area covered by the inscribed semicircle can be calculated, and the dimensions of the semicircle (and therefore of the entire drain) ascertained as in the case of semicircular drains or half pipes.

When, as in the case of a type II drain, the hydraulic mean depth of the drain is the same as the hydraulic mean radius of the inscribed semicircle, i. e.  $\frac{D}{4}$  or  $\frac{R'}{2}$  (R' being the radius *in feet*), the velocity in the entire drain will be the same as that in a semicircular drain of the same type and of the dimensions of the inscribed semicircle, and the amount of flow through the area covered by the inscribed semicircle can be ascertained from a consideration of the proportion which the respective areas bear one to another.

| Ina   | a type | II drain | these a  | re :—                | in The design in the                                                           |
|-------|--------|----------|----------|----------------------|--------------------------------------------------------------------------------|
| (i)   | when   | the side | slopes a | are 0 to 1,          | $\frac{0.3927 \text{D}^2}{2 \left(\frac{\text{D}}{2}\right)^2} = 0.786$        |
| (ii)  | "      | "        | "        | $\frac{1}{2}$ to 1,  | $\frac{0.3927 D^2}{1.74 \left(\frac{D}{2}\right)^2} = 0.902$                   |
| (iii) | "      | "        | "        | 1 to 1,              | $\frac{0.3927 D^2}{1.83 \left(\frac{D}{2}\right)^2} = 0.859$                   |
| (iv)  | "      | "        | "        | $1\frac{1}{2}$ to 1, | $\frac{0.3927 D^2}{2.11 \left(\frac{D}{2}\right)^2} = 0.745$                   |
| (v)   | "      | "        | "        | 2 to 1,              | $\frac{0.3927 \mathrm{D}^2}{2.47 \left(\frac{\mathrm{D}}{2}\right)^2} = 0.636$ |
| (vi)  | "      | ,,,      | "        | $2\frac{1}{2}$ to 1, | $\frac{0.3927 \mathrm{D}^2}{2.89 \left(\frac{\mathrm{D}}{2}\right)^2} = 0.543$ |
| (vii) | "      | "        | "        | 3 to 1,              | $\frac{0.3927\mathrm{D}^2}{3.33 \left(\frac{\mathrm{D}}{2}\right)^2} = 0.472$  |

The figures in the last column may be designated 'reduction coefficients' and denoted by r' (see Plates).

When however the hydraulic mean depth of a drain is greater than the hydraulic mean radius of the inscribed semicircle, as in the case of drains illustrated in Plates I and III, the velocity will be increased, and such increase in velocity has to be taken into account.

From actual calculation it has been ascertained that the average relative velocities would for ordinary diameters and slopes be as under :---

|                           | drain | semi | icircular drain |
|---------------------------|-------|------|-----------------|
| In a type I drain as      | 112   | :    | 100.            |
| In a half peg top drain a | s 109 | :    | 100.            |
| In a half egg drain as    | 118   | :    | 100.            |

### DRAINS AND SEWERS

and r' in these cases would be

- (i)  $r' = \frac{0.3927 D^2}{0.7000 D^2} \times \frac{100}{112} = 0.50$
- (ii)  $r' = \frac{0.3027 \text{ D}^2}{0.6460 \text{ D}^2} \times \frac{100}{109} = 0.55$
- (iii)  $r' = \frac{0.3927 D^2}{0.7560 D^2} \times \frac{100}{118} = 0.44$

3. Conversion of drains into sewers.—Drains of the types illustrated in Plates I and III can be converted into useful types of masonry or concrete sewers by arching them over as shown in dotted lines on the Plates, the required dimensions being ascertained from the circles on which the designs are based.

A more economical design for sewers is to cover the drains over with stone or reinforced concrete slabs.

The relative increase in velocities is, in the case of arched sewers, found to be as follows :--

|                           | sewer | circular drain |     |  |
|---------------------------|-------|----------------|-----|--|
| In a type I sewer as      | 107   | :              | 100 |  |
| In a peg top sewer as     | 105   | :              | 100 |  |
| In an egg shaped sewer as | 112   | :              | 100 |  |

The values of r' being

| (i) | r' = | $\frac{0.7854 D^2}{1.089 D^2}$ | × | $\frac{100}{107} =$ | = 0'68 |
|-----|------|--------------------------------|---|---------------------|--------|
|-----|------|--------------------------------|---|---------------------|--------|

(ii) 
$$r' = \frac{0.7854 \text{D}^2}{1.039 \text{D}^2} \times \frac{100}{105} = 0.72$$

(iii) 
$$r' = \frac{0.7854 \text{D}^2}{1.149 \text{D}^2} \times \frac{100}{112} = 0.62$$

['*Reduction Coefficients*' can be similarly ascertained for any drain or sewer in which a semicircle or circle can be inscribed.]

4. Special advantages of a drain on type I.—A drain on type I has the following special advantages :—

(i) As for it the value of

$$\frac{4\mathrm{L}}{\mathrm{H}} \times \left(\frac{\mathrm{F}}{2}\right)^2 = \frac{\mathrm{L}}{\mathrm{H}} \mathrm{F}^2$$

the value of  $D\left(\frac{d}{12}\right)$ , which is the same as the depth of the drain ( $\delta$ ), can be ascertained from the calculated values of  $\frac{L}{H} F^2$  as in the case of a pipe.

(ii) The areas, perimeters and values of R, for the drain, when running partially full, can be easily calculated.

For drains running full,  $\frac{3}{4}$  full,  $\frac{1}{2}$  full and  $\frac{1}{4}$  full, they are :

| Area | $ = 0.700 D_{2} $   | P = 2.375D  | R = 0.294D |
|------|---------------------|-------------|------------|
| ,,   | $= 0.454 D_{5}^{2}$ | P = 1.845 D | R = 0.246D |
| ,,   | $= 0.252 D_{5}^{2}$ | P = 1.315D  | R = 0.192D |
| ,,   | $= 0.197 D_{5}^{3}$ | P = 0.786D  | R = 0.251D |

Whence the proportionate discharging capacities will be 100, 58, 26, 25 or more roughly 1,  $\frac{3}{5}$ ,  $\frac{1}{4}$ ,  $\frac{1}{4}$ : the relative velocities being as 100 : 87 : 70 : 87, a good cleansing velocity being thus secured.

(iii) A drain on this type is easy to construct and keep clean.

(iv) A portion (lower) of the drain need only be constructed to begin with, the upper portion being in earth, until funds allow of the full masonry or concrete section being carried to completion.

## CHAPTER III

### PERMISSIBLE VELOCITIES

Velocities in a system of pipes.—The velocities in the pipes in a distribution system cannot well be accurately regulated, as it is self-evident, that not only will the head available at the source of supply, and therefore the head, in other words the pressure, in the system generally affect the pipe velocities, but that the velocity in a particular pipe will

also vary at times, according to the consumption of water and the consequent draw off from other pipes in the system. When all the taps are open at the same time the velocity will be lower in any given pipe, than it will be when this pipe is alone being drawn on.

At the same time there is a permissible limit to the velocity in a pipe.

If the velocities are great, it will be difficult to obtain sufficient pressure in the distant parts of the area under supply in hours of large consumption, and the risk to the mains from sudden variations of flow, causing what is known as hydraulic shock, will be great; the question therefore needs consideration.

2. The actual velocity in a pipe, how ascertained.— The velocity in a pipe can be accurately calculated from the already referred to general formula (ii) :

$$v = C\sqrt{R}\sqrt{S}$$
, in which  $S = \frac{H}{L}$ 

The velocity in any pipe or half pipe can be also very closely calculated from the following formulæ once the discharge and diameter are known:—

- (a) For pipes  $v = \frac{G}{2d^2}$  . . . (xiA)
- (b) For half pipes  $v = \frac{G}{d^2}$  . . . (xiB)

when the discharge (G) is in galmins; and

- (a) For pipes  $v = \frac{375 F}{2d^2}$  . . . (xiiA)
- (b) For half pipes  $v = \frac{375F}{d^2}$  . . . (xiiB)

when the discharge (F) is in cusecs.

The velocities so ascertained will always be a trifle,  $\frac{1}{49}$ <sup>th</sup>, above the true velocities as actually, for pipes,

$$v = 0.49 \frac{G}{d^2}$$
 or  $= 0.49 \frac{375F}{d^2}$ 

3. Permissible velocity in a pipe.—Professor Unwin in 'A Treatise on Hydraulics' gives a rough rule for ascertaining the maximum safe velocity: his formula is (v' being the permissible velocity)—

$$v' = 1.45D + 2$$
 . . (xiii)

(D being the diameter of the pipe in feet).

With the diameter expressed in inches (d) the formula becomes—

$$v' = 0.12d + 2$$
 . . (xiv)

4. Permissible velocities in drains and sewers.— The velocity in a masonry or concrete drain or sewer should not as a rule exceed 5 ft. per sec. and in a drain in earth 3 ft. per sec. (see Chap. IV, 'Working Examples').

### CHAPTER IV

### WORKING EXAMPLES

**Small discharges.**—Assume to begin with, that it is desired to ascertain the diameter of a clean pipe (n = 0.011, very nearly) to discharge 4 galmins, the length of the pipe being 1000 ft. and the head available 10 ft.

The 'hydraulic gradient' or 'virtual slope' of the pipe  $\left(\frac{H}{L}\right)$  will then be  $\frac{10}{1000}$ , or 1 in 100, and therefore  $\frac{L}{H}G^2 = 100 \times 4^2 = 1600$  and the diameter of the required pipe (d) would from Table II, col. II be  $1\frac{1}{4}$  in.

For an incrusted pipe it would from Table II, col. 1 be  $1\frac{3}{4}$  in.

For a clean coated pipe (n = 0.010) its diameter could be safely taken at 1 in.

For a stoneware pipe (n = 0.013) d would  $= 1\frac{3}{4}$  in.

For a semicircular stoneware half-pipe  $(n = 0.013) \frac{4L}{H} G^2$ would = 6400, whence, from col. 1, Table II, d = 2 in. and  $\delta$ therefore  $= \frac{1}{12}$  ft.

2. Large discharges. — Pipes. — Suppose that the 'hydraulic gradient' of a single pipe or the 'average hydraulic gradient' of a series of connected pipes is found to be 1 in 1764 (square of 42), and that the required discharge in the single pipe or in a pipe in the series is 21 cusecs, then from Table IV, from the horizontal column opposite a required discharge of 21 cusecs—

| 10               | 000 t          | imes                           | 441  | for | 1 =     | 441,000 |
|------------------|----------------|--------------------------------|------|-----|---------|---------|
|                  | 100            | ,,                             | 3087 | "   | 7 =     | 308,700 |
|                  | 10             | ,,                             | 2646 | ,,  | 6=      | 26,460  |
|                  | 1              | "                              | 1764 | "   | 4 ==    | 1,764   |
| and the value of | $\frac{L}{H}F$ | <sup>72</sup> = 2 <sup>7</sup> | 1764 | × 2 | $1^2 =$ | 777,924 |

A check on the calculation is thus secured.

Using now Table I, cols. II and IX, the required diameter of a clean pipe (n = 0.011 very nearly) would be 39 in. (Unwin).

For a clean coated pipe for Kutter's n = 0.010 it could be taken at 38 in. or even 37 in., from Unwin's coefficients it would however be safer to keep it at 39 in. (para. 5, Chap. I).

For n = 0.011 exactly or for Fanning's coefficients d = 39 - 1 = 38 in. (para. 5, Chap. I).

For an incrusted pipe (cols. II and III) d = 39 + 6 = 45 in. (It is the same from Appendix C.)

3. Large discharges.—Masonry or concrete drains and sewers.—For a semicircular unlined masonry or concrete drain (n = 0.013) the value of

 $\frac{4L}{H}$  F<sup>2</sup>, formula (viiA), would be  $4 \times 777,924 = 3,111,696$ whence, from cols. I and IX, Table I,

$$d = 52$$
 in., and  $\delta = \frac{D}{2} = 2$  ft. 2 in.

For a mixed cement lined drain (n = 0.011 very nearly) dwould = 51 in. For a pure cement lined drain it could safely be taken at 50 in.

The value of d for n = 0.013 can however in the above case

C

be more accurately ascertained from Table I in the following manner :---

The difference between the values of  $\frac{L}{H} F^2$  for a 52 in. diameter and a 51 in. diameter is 3,274,000 - 2,924,000 = 350,000 or say 35,000 for each tenth of an inch and between 3,111,696 and 2,924,000 it is 187,696; therefore  $\frac{187696}{35000}$  = say 6 and the exact diameter of an unlined masonry or concrete semicircular drain would thus at its large end be 51.6 in., a proportionate *discharge*, not proportionate *area*, being adopted for the central or other section, as the drain is an open one with a steady flow into it along its whole length. For a

$$\frac{4L}{H}F^2 = 4 \times 1764 \times 1 = 7056$$

whence

d = 17 in. and  $A = 0.3927 \times 17^{2} = 113.5$  sq. in. = 0.8 sq. ft.

The drain area with  $d = 51^{\circ}6$  in. would be  $0.3927 \times 51^{\circ}6^2 = 1035^{\circ}8$  sq. in. or 7.2 sq. ft. or about only nine times the area needed for a discharge of 1 cusec, whereas the discharge capacity (21 cusecs) is over twenty times as much.

The velocity in a semicircular drain with  $d = 51^{\circ}6$  in. and F = 21 cusecs would from formula (xiiB) be—

$$v = \frac{375 \times 21}{51.6^2} = 3.0$$
 ft. per sec.

whence  $F = 7.2 \times 3 = 21.6$  cusecs against a required discharge of 21 cusecs.

For a type I drain the value of  $\frac{4L}{H}$  F<sup>2</sup> would be the same as the value of  $\frac{L}{H}$  F<sup>2</sup> for a circular drain, i.e. 777,924, and d, which is also the *depth* of the drain, therefore (with n = 0.013) = 40 in., whence  $\delta = 3$  ft. 4 in.

For a half peg top drain  $21 \times 0.55 = 11.6$  and  $4 \times 1764 \times 1764$ 

 $11^{\circ}6^2 = 7056 \times 135 = 952,560$ , whence, with  $n = 0^{\circ}013$ , d = 42 in.

For a half egg drain  $21 \times 0.44 = 9.2$  and  $4 \times 1764 \times 9.2^2$ = 7056 × 84.7 = 597,643, whence (for n = 0.013) d = 38 in.

The area of a type I drain 40 in. in depth would be 0'700  $\times 40^2 = 1120$  sq. in. = 7'8 sq. ft.

The velocity in a type I drain would be from formula (xiiB) allowing for increased velocity =  $\frac{375 \times 10^{\cdot5}}{40^2} \times \frac{112}{100} = 2^{\cdot8}$  ft. per sec., whence F = 7.8 × 2.8 = 21.84 cusecs against a required discharge of 21 cusecs.

For a type I sewer  $21 \times 0.68 = 14.3$  and  $\frac{L}{H}F^2 = 1764 \times 14.3^2 = 360,800$  and therefore d = 35 in.

Also, as A=9'2 sq. ft. and  $v = \frac{375 \times 14'3}{2 \times 35^2} \times \frac{107}{100} = 2'35$  ft.

per sec.,  $F = 9'2 \times 2'35 = 22'8$  cusecs.

The safe values for the above reasons being-

|     |                                       | in.              |
|-----|---------------------------------------|------------------|
| 1.  | Clean pipe                            | d = 39           |
| 2.  | Clean coated pipe                     | d = 38           |
| 3.  | Incrusted pipe                        | d = 45           |
| 4.  | Semicircular unlined masonry drain    | d = 52           |
| 5.  | ,, more exactly                       | d = 51.6         |
| 6.  | Semicircular drain lined mixed cement | d = 51           |
| 7.  | ,, ,, ,, pure cement                  | d = 50           |
| 8.  | Type I drain unlined •                | d = 40           |
| 9.  | Half peg top drain unlined            | d = 42           |
| 10. | Half egg drain unlined                | $d = 38^{\circ}$ |
| 11. | Type I sewer unlined                  | d = 35           |

If by slightly raising (0.13 ft. in 1764 ft. or 0.075 per 1000) the water level at the source of supply, or if, by assuming that the outlet level is lowered by an equal amount, the hydraulic gradient is steepened from 1 in 1764 to 1 in  $\frac{689000}{21^2} = 1$  in 1562 (689,000 being the exact value of  $\frac{L}{H}$  F<sup>2</sup> for a 39 in. pipe with n = 0.013 for a virtual slope of 1 in 1000 to 2000), the c 2 values of d above given could be reduced by 1 in. in each case (No. 5 to 50'4 in. exactly).

4. Large discharges.—Drains in earth.—For drains in earth on type II with side slopes of 1 to 1 the 'reduction coefficient' (r') would be say 0'86, and therefore  $21.0 \times 0.86 = 18$ .

The value of  $\frac{4L}{H}$  F<sup>2</sup> for a hydraulic gradient of 1 in 1764 would then be 7056 × 324 = 2,286,144 and the values of  $\delta$ , the depths of the required drains, would from Table III be—

| For | Kutter's $n =$ | = 0 | ·025 |  | • | • | • | 2'7 ft. |
|-----|----------------|-----|------|--|---|---|---|---------|
| ,,  | Bazin's (i)    |     |      |  |   |   | • | 2'6 ft. |
| ,,  | Bazin's (ii)   |     | 4.1  |  |   | • |   | 2'8 ft. |

In the first case C  $\sqrt{R} = 69'9$  (Table III) and A = 13'34 sq. ft. (Table VI), therefore the velocity in the drain will be  $\frac{69'9}{42} = 1'67$  ft. per sec., and F = 13'34 × 1'67 = 22'3 cusecs,

against a required discharge of 21 cusecs.

The approximate velocity can be more easily ascertained from  $v = \frac{F}{A} = \frac{21}{13'34} =$  say 1'6 ft. per sec.

This shows that the velocity in the drain is a safe one, i.e. well under 3 ft. per sec.

For Bazin (i)  $F = 12'37 \times 1'79 = 22'14$  cusecs. For Bazin (ii)  $F = 14'35 \times 1'46 = 20'95$  cusecs.

For a drain with side slopes of 3 to 1,  $21 \times 0.47 = \text{say } 10$ , and  $7056 \times 100 = 705,600$ , whence the values of  $\delta$  are (Table III)—

Kutter (n = 0.025) 2.2 ft. and  $F = 16.12 \times 1.43 = 23$  cusecs Bazin (i) 2.1 ft. ,  $F = 14.69 \times 1.52 = 22.33$  , Bazin (ii) 2.3 ft. ,  $F = 17.62 \times 1.24 = 21.85$  ,

5. Very large discharges.—General.—The dimensions of pipes and drains and sewers to suit very large discharges can be ascertained from the following approximate formulæ:

### WORKING EXAMPLES

(a) For pipes and masonry or concrete drains or sewers (n = 0.013):

$$D^5 = \frac{\frac{L}{H}F^2}{2600}$$
 and  $\frac{\frac{4L}{H}F^2}{2600}$  respectively . (xv)

(b) For drains in earth on type II:

(i) For Kutter's coefficients with n = 0.025 -

$$D^5 = \frac{4L}{H}F^2$$
 . . . (xvi)

(ii) For Bazin's (i) coefficients-

$$D^{5} = \frac{\frac{4L}{H}F^{2}}{1000}$$
 . . . (xvii)

(iii) For Bazin's (ii) coefficients-

$$D^5 = \frac{\frac{4L}{H}F^2}{800}$$
 . . . (xviii)

These formulæ are applied as follows :

then

Suppose that for a pipe  $(n = 0.013) \frac{L}{H} = 2000$  and F = 200,

$$D^5 = \left(\frac{d}{12}\right)^5 = \frac{2000 \times 200^2}{2600} = \text{say } 38,000$$

and from Table VII the value of D is somewhere between 7 ft. and 8 ft.

But as  $d^3 = 30,800 \times 12^5 = 7,664,025,600$ , therefore d = 95 in. more exactly.

This would also be the *depth* of an unlined masonry or concrete drain on type I.

With n = 0.011 very nearly, d = 94 in.

Taking the diameter of the pipe at 8 ft., we have  $R = \frac{8}{4} = 2$ and  $\sqrt{R} = 1.41$ , whence (using Table VIII) from Kutter's

formula, the value of  $C\sqrt{R}$  (with n=0.013), = 183.9, and as  $\sqrt{2000} = 44.7$  the velocity would be  $\frac{183.9}{44.7} = 4.12$  ft. per sec.

The area of an 8 ft. diameter pipe =  $0.7854 \times 8^2 = 50.27$  sq. ft.

$$\therefore$$
 F = 50'27 × 4'12 = 207 cusecs.

This shows that the ascertained diameter is very approximately correct.

The allowance for incrustation in this case would from analogy be  $\frac{96-6}{6} = 15$  in. Large single pipes or circular or arched sewers are therefore better avoided as far as possible —two, each to carry half the required discharge, being used instead, if found cheaper.

For a drain in earth on type II with side slopes of 1 to 1 and n = 0.025, if  $\frac{L}{H} = 4000$  and F = 200, D<sup>5</sup> (formula xvi) will equal  $\frac{4 \times 4000 \times (200 \times 0.86)^2}{900} = 526,000$ , and the value of

D is from Table VII somewhere between 13 ft. and 14 ft.

But as 537,824 - 371,293 = 166,531, the difference for each tenth of a foot will be, say, 16,650; also as 526,000 - 371,000 = 155,000 and as  $\frac{155,000}{16,650} = 0.9$ , the exact value of D will be

13'9 ft., whence  $\delta = \frac{D}{2} = 6'95$  ft. = say 7 ft.

The area then = 89'7 sq. ft. (Table V), and  $v = \frac{138}{\sqrt{4000}} =$ 

2'2 ft. per sec., whence  $F = 89'7 \times 2'2 = 197'34$  cusecs, the required discharge being 200 cusecs.

It will therefore be safer to adopt a drain 7'1 ft. deep.

When, however, the depth of a drain in earth on type II exceeds 6 ft. it will often be advisable to change the type of

### WORKING EXAMPLES

drain and find a new value for the bedwidth (b) for a depth of 6 ft., or any other desired depth given in Table VI.

Suppose that the required depth to water level for a drain on the 'most economical section' with side slopes of 1 to 1 is found to be 8 ft., then R will = 4 ft. and C  $\sqrt{R}$  (Kutter) = 151 (Table V), also A = 117'12 sq. ft. As the required side slopes are 1 to 1, the end areas will for a 6 ft. depth equal 6 × 6 = 36 sq. ft. whence the central area = 117 - 36 = 81 sq. ft. and

therefore  $b = \frac{81}{6} =$  say 14 ft., as increase in perimeter will

necessitate an increase in area if the hydraulic mean depth is to be approximately the same. The total area of the new drain would thus be (14 + 6) 6 = 120 sq. ft., and the new perimeter = (from Table VI) 14 + (P - b) = 14 + 16.98 = say 31, whence  $R = \frac{120}{31} = 3.9$ .

The velocity for any slope will then be very nearly the same as in the 8 ft. deep drain on type II (R = 4), and the discharge also practically the same. For a slope of 1 in 4000 v (with R=4)= $\frac{151}{63'3}$ = 2'40 ft. per sec., and F = 117 × 2'4 =

280 cusecs; also v (with R = 3'9) =  $\frac{148'4}{63'3}$  = 2'35 ft. per sec., and

 $F = 120 \times 2.35 = 282$  cusecs.

This, however, might not, in another instance, have been the case; a further calculation to ascertain a suitable area and velocity to give the required discharge would then be necessary.

With b = 15, A would = 120 + 6 = 126 sq. ft., and P = 31 + 1 = 32, whence R = 4 and C  $\sqrt{R}$  (Kutter) = 151, the velocity for a slope of 1 in 4000 being  $\frac{151}{63'3} = 2'40$  ft. per sec.,

whence  $F = 126 \times 2.4 = 302$  cusecs.

6. Permissible velocities.—Taking for pipes the examples worked out in paras. 1 and 2 above, the velocity in a clean

pipe  $1\frac{1}{4}$  in. in diameter with a discharge of 4 galmins would be from formula (xiA) =  $\frac{4}{2 \times 1\frac{1}{4} \times 1\frac{1}{4}} = 1.28$  ft. per sec. and the permissible velocity from formula (xiv)—

$$v' = 0.12 \times 1\frac{1}{4} + 2 = 2.15$$
 ft. per sec.

For a 39 in. pipe discharging 21 cusecs the actual velocity would be from formula (xiiA)  $\frac{375 \times 21}{2 \times 39^3} = 2.55$  ft. per sec. and the permissible velocity from formula xiv =  $0.12 \times 39 + 2 = 6.68$  ft. per sec.

No increase in diameter is therefore in either case necessary.

When the velocity in a masonry or concrete drain is found to exceed 5 ft. per sec., and in a drain in earth 3 ft. per sec., it will generally be necessary to ascertain the slope in the water surface needed to keep the velocity down to the desired maximum, by providing falls at suitable intervals.

This slope can be calculated from formula (ii)-

$$v = C \sqrt{R} \sqrt{S}$$

In an earthen drain, maximum permissible velocity 3 ft. per sec., with C  $\sqrt{R} = 151^{\circ}0$  (Kutter R = 4)  $\sqrt{S} = \frac{3}{151} =$ say  $\frac{1}{50}$ , and the required slope in the water surface is 1 in 50<sup>2</sup>

or 1 in 2500.

For a velocity of 5 ft. per sec., the safe slope in the water surface would be 1 in 900, for  $C\sqrt{R} = 151$ .

7. The general application of the Tables.—Tables in the form of the present ones can be used for the solution of most hydraulic problems—see several examples of the practical application of similar Tables in Vol. IV, 'Building Construction,' Rivington's Series (the Tables in which depend, however, on Darcy's coefficients alone); also the author's work mentioned in para. 1, Chap. I, 8. The full utility of the Tables.—As correct methods have been formulated for (with a choice of coefficients) accurately calculating, for any available fall, the dimensions of pipes and of masonry or concrete drains and sewers to the tenths of an inch, and of drains in earth to the nearest tenth of a foot, it follows that if the dimensions so ascertained can be adopted there will in each case be a, even if only small, saving in quantities and consequently in cost, which will in large schemes generally make an appreciable difference in the total expenditure (see Appendix E).

There should be no practical difficulty in constructing masonry or concrete drains or drains in earth to the exact calculated sections.

With pipes ordinary market or available sizes will generally have to be used.

The actual heads needed for given discharges can however in such cases be ascertained from the Tables, and the total head at disposal in a long line of pipes or in a system of pipes utilised to the best advantage, any surplus head found available being used, if so desired, to steepen the hydraulic gradients, and thus reduce the size or sizes and therefore cost of the most expensive pipe or pipes.

Suppose that we have to deal with a line of four pipes each 1000 ft. long, and that the total head available is 10 ft., the 'average hydraulic gradient' of the line of pipes, so long as no one pipe rises above this gradient, will then be 1 in 400.

If the required discharges are 10, 8, 6, and 4 cusecs respectively, we have from Table I for incrusted pipes :---

 $400 \times 10^2 = 40,000$  and d (market size) = 22 + 3 = 25 in.

| 400 ×        | $8^2 = 25,600$ | "  | " | " | = 21 + 3 = 24 " |
|--------------|----------------|----|---|---|-----------------|
| $400 \times$ | $6^2 = 14,400$ | ,, | " | " | = 19 + 3 = 22 " |
| 400 ×        | $4^2 = 6,400$  | ,, | " | " | = 16 + 2 = 18 " |

The ultimate heads required would be-

In the 16 in. pipe from  $\frac{1000 \times 4^2}{H}$  = 7,800, H = 2.05 ft.

", ", 19 in. ", ",  $\frac{1000 \times 6^2}{H} = 18,900, H = 1.91$  ft. ", ", 21 in. ", ",  $\frac{1000 \times 8^2}{H} = 31,800, H = 2.01$  ft. Or a total head of 5.97 ft.

This would leave a head of say 10 - 6 = 4 ft. available for the 22 in. pipe, and therefore for it  $\frac{L}{H} F^2 = \frac{1000}{4} \times 10^2 = 25,000$ , and a 21 in. pipe can be substituted for the 22 in. one. In fact a 20 in. pipe could well be used, and the required diameters fixed at 24 in., 23 in., 22 in., 18 in.

9. 'Average hydraulic gradients,' when most useful.— By adopting the system of 'average hydraulic gradients,' (see the Author's 'Practical Hydraulic Tables') the required sizes of pipes in a complicated system of Water Supply can be quickly and accurately ascertained, the first gradient used being that from the source of supply to the *highest* point in the system at which water, however small the amount may be, is required—the surplus head always available (see above) being used, if so desired, as a reserve to overcome friction in bends, elbows, &c., which so far has not been taken into account, and is in large projects generally speaking a negligible quantity, as all taps are never likely to be open at the same time, and the surplus head can be utilised in reducing the size of the usually long and expensive supply main or that of any other large pipe in the system.

TABLE I—giving the values of  $\frac{L}{H}$  F<sup>2</sup> with n = 0.013 and n = 0.011 very nearly for diameters from 1 in. to 60 in. for 'virtual slopes' of 1 in 1 to 1 in 4000.

|                                                                 | 2000 to 4000<br>X            | 20<br>20<br>1,570<br>2,000<br>5,000<br>5,000<br>7,000<br>1,200<br>1,7,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>!</u> .                                                      | 1000 to 2000<br>IX           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\frac{L}{H}$ F <sup>2</sup> for virtual slopes between 1 in.:- | 500 to 1000<br>VIII          | 2.4<br>2.4<br>2.4<br>2.5<br>5.5<br>116<br>1,750<br>1,750<br>2,650<br>3,500<br>1,7,700<br>10,500<br>10,500<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>11,200<br>10 |
| virtual slopes                                                  | 300 to 500<br>VII            | 0.47<br>0.47<br>2.4<br>8.6<br>2.4<br>1.18<br>1.18<br>1.140<br>1.780<br>3.5900<br>3.5900<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.780<br>1.890<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,900<br>1.8,9000<br>1.8,9000<br>1.8,9000<br>1.8,9000<br>1.8,9000<br>1.8,9000<br>1.8,9000<br>1.8,9000<br>1.8,90000<br>1.8,90000<br>1.8,900000<br>1.8,9000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Values of $\frac{L}{H}$ F <sup>2</sup> for                      | 200 to 300<br>VI             | 0.048<br>0.48<br>0.48<br>8.8<br>8.8<br>57<br>57<br>57<br>57<br>57<br>1121<br>1211<br>712<br>1,712<br>1,712<br>1,712<br>1,712<br>1,712<br>7,860<br>7,860<br>10,700<br>11,740<br>11,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Value                                                           | 100 to 200<br>V              | 0.001         0.048         0.048         0.47           0.148         0.148         0.148         0.47           0.148         0.148         0.148         0.47           2.5         8.8         8.8         8.6           2.5         8.8         8.8         2.4           2.5         2.5         8.8         2.4           2.5         2.5         2.4         2.4           2.5         2.4         2.5         2.4           2.5         2.4         2.7         2.7           2.5         2.4         2.7         2.7           2.5         2.4         2.4         2.4           2.5         2.4         2.3         2.4           2.33         1.154         1.150         1.140           1.7795         1.790         1.780         1.780           2.650         3.940         3.900         3.900           3.950         5.600         7.800         1.780           1.0,700         19,100         19,100         14,40           1.4,40         14,40         14,300         14,4300           1.9,100         19,000         19,000         19,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 | 1 to 100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| n for                                                           | Additio                      | 1 in.<br>2 in.<br>3 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| meters                                                          | n = 0.011 very nearly        | ii   12 % 4 % 7 % 7 % 4 % 2 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pipe diameters                                                  | <b>11</b> = 0 <sup>013</sup> | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

TABLE I

| 1        |
|----------|
| 1        |
| 4        |
| 4        |
| 4        |
| 4        |
| -        |
| -        |
| E L      |
| E        |
| E I-     |
| E I-     |
| LE I-    |
| LE I-    |
| LE I-    |
| SLE I-   |
| BLE I-   |
| BLE I-   |
| BLE I-   |
| BLE I-   |
| ABLE I-  |
| ABL      |
| TABLE I- |

2000 to 4000 × 1000 to 2000 23,700 30,500 39,000 63,000 76,000 76,000 118,000 118,000 118,000 166,000 204,000 241,000 279,000 335,000 3390,000 447,000 668,000 689,000 801,000 801,000 XI  $\frac{L}{H}$  F<sup>2</sup> for virtual slopes between 1 in. :--500 to 1000 701,000 IIIA 24,700 31,800 40,600 51,100 65,000 79,000 122,000 147,000 171,000 210,000 287,000 345,000 402,000 460,000 542,000 625,000 708,000 823,000 300 to 500 249,000 IIA 200 to 300  $\begin{array}{c} 24,800\\ 32,000\\ 51,300\\ 75,400\\ 75,400\\ 79,400\\ 97,400\\ 97,400\\ 1122,400\\ 1172,000\\ 211,200\end{array}$ 250,000 288,000 346,000 404,000 462,000 545,000 628,000 710,000 826,000 IV Values of 79,700 97,700 122,700 147,700 173,000 00 to 200 24,900 32,100 40,900 65,600 211,700 2250,500 347,000 347,000 405,000 546,000 629,000 629,000 828,000 828,000 51,500 Þ 148,000 174,000 212,000 251,000 2890,000 348,000 466,000 464,000 25,000 32,200 51,700 65,800 80,000 100,000 123,000 41,000 547,000 714,000 830,000 530,000 1 to 100  $\nabla$ I 3 in. 4 in. 5 in. 6 in. incrustation III Addition for very nearly II 110.0 = uPipe diameters 3333654325252525252323 \* 'n. = 0.013z

\* Or adopting Unwin's coefficients for clean pipes.

WATER SUPPLY AND DRAINAGE

| 2.    |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| 8     |
| ö     |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| hind  |
| -     |
| -     |
| -     |
| H     |
| H     |
| H H   |
| E I.  |
| EI    |
| EI.   |
| EI.   |
| LE I. |
| H     |
| H     |
| H     |
| H     |
| BL    |
| BL    |
| BL    |
| BL    |
| ABL   |
| ABL   |
| ABL   |
| BL    |
| ABL   |

|                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - |
|--------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                            | 2000 to 4000<br>X       | 884,000<br>994,000<br>1,144,000<br>1,290,000<br>1,440,000<br>1,440,000<br>1,444,000<br>2,313,000<br>2,313,000<br>2,313,000<br>3,185,000<br>3,185,000<br>3,527,000<br>3,527,000<br>3,527,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,000<br>5,728,0000<br>5,728,0000<br>5,728,00000000000000000000000000000000000 |   |
| 1.                                         | 1000 to 2000<br>IX      | $\begin{array}{c} 915,000\\ 1,027,000\\ 1,182,000\\ 1,336,000\\ 1,697,000\\ 1,993,000\\ 2,110,000\\ 2,381,000\\ 2,381,000\\ 2,381,000\\ 3,524,000\\ 3,574,000\\ 3,574,000\\ 3,574,000\\ 5,870,000\\ 5,870,000\\ 5,870,000\\ 5,899,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,989,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,000\\ 6,999,$                                                                                                                                                                                                          |   |
| between 1 in.                              | 500 to 1000<br>VIII     | $\begin{array}{c} 935,000\\ 1,045,000\\ 1,202,000\\ 1,515,000\\ 1,515,000\\ 1,515,000\\ 2,142,000\\ 2,145,000\\ 2,145,000\\ 2,416,000\\ 2,416,000\\ 2,416,000\\ 2,507,000\\ 3,575,000\\ 5,941,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,000\\ 5,975,$                                                                                                                                                                                                          |   |
| L F2 for virtual slopes between 1 in.:     | 300 to 500              | 939,000<br>1,054,000<br>1,212,000<br>1,527,000<br>1,738,000<br>1,738,000<br>2,157,000<br>2,157,000<br>2,435,000<br>2,435,000<br>2,435,000<br>2,435,000<br>4,506,000<br>4,506,000<br>5,977,000<br>5,977,000<br>5,977,000<br>5,547,000<br>5,547,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Values of $\frac{L}{H}$ F <sup>2</sup> for | 200 to 300<br>IVI       | $\begin{array}{c} 942,000\\ 1,217,000\\ 1,375,000\\ 1,375,000\\ 1,375,000\\ 1,532,000\\ 1,532,000\\ 2,167,000\\ 2,167,000\\ 2,720,000\\ 3,353,000\\ 3,353,000\\ 3,353,000\\ 5,927,000\\ 5,927,000\\ 5,927,000\\ 5,927,000\\ 5,927,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,000\\ 5,562,$                                                                                                                                                                                                          |   |
| Value                                      | 100 to 200<br>V         | $\begin{array}{c} 944,000\\ 1,060,000\\ 1,219,000\\ 1,377,000\\ 1,377,000\\ 1,747,000\\ 1,747,000\\ 2,171,000\\ 2,171,000\\ 3,301,000\\ 3,358,000\\ 3,358,000\\ 3,358,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,574,000\\ 6,57,000\\ 6,57,000\\ 6,57,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000\\ 7,142,000$                                                                                                                                                                                                          |   |
|                                            | 1 to 100<br>IV          | $\begin{array}{c} 946,000\\ 1,221,000\\ 1,380,000\\ 1,538,000\\ 1,538,000\\ 1,750,000\\ 2,1750,000\\ 2,176,000\\ 2,176,000\\ 3,306,000\\ 3,324,000\\ 3,324,000\\ 5,449,000\\ 5,449,000\\ 5,449,000\\ 5,449,000\\ 5,449,000\\ 5,6449,000\\ 5,600\\ 5,83,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,730,000\\ 5,750,000\\ 5,750,000\\ 5,750,000\\ 5,750,000$                                                                                                                                                                                                          |   |
| toi for<br>tation                          | E Additio               | 6 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Pipe diameters                             | u = 0.011very nearly II | 6 4 4 4 4 4 4 4 4 4 6 4 8 4 7 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Pipe di                                    | 1<br>I                  | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |

TABLE I

\* Or adopting Unwin's coefficients for clean pipes.

| tom                                                                                 |                                         | Diameter of                            | pipe<br>in inches                                                                        | III | in.<br>2 <del>1</del> | З       | 32      | 4       | S         | 9         | 7          | 8          |
|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|-----|-----------------------|---------|---------|---------|-----------|-----------|------------|------------|
| mall pipes fi                                                                       |                                         |                                        | Fanning * with $n = 0.011$ )                                                             | II  | 83,500                | 215,000 | 454,000 | 926,000 | 2,900,000 | 7,350,000 | 16,400,000 | 32,600,000 |
| TABLE II—giving for all slopes, the values of $\frac{L}{H}G^2$ for small pipes from | er                                      | Values of $\frac{L}{H}$ G <sup>2</sup> | $\begin{array}{c c} Box \\ \text{(about = Kutter} \\ \text{with } n = 0.011 \end{array}$ | II  | 69,200                | 177,000 | 367,000 | 746,000 | 2,278,000 | 5,770,000 | 12,250,000 | 23,900,000 |
| e values of                                                                         | $\frac{3}{8}$ in. to 8 in. in diameter  |                                        | Kutter with $n = 0.013$                                                                  | I   | 24,800                | 69,000  | 164,000 | 354,000 | 1,250,000 | 3,480,000 | 8,157,000  | 17,160,000 |
| ll slopes, th                                                                       | <sup>3</sup> / <sub>8</sub> in. to 8 ir | Diameter of                            | pipe<br>in inches                                                                        | III | <u>مزه</u>            | -101    | bola.   | Ţ       | 14        | 1ž        | 54<br>54   | 2          |
| riving for a                                                                        |                                         |                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                   | II  | 5.2                   | 21      | 190     | 820     | 2,460     | 6,350     | 13,650     | 27,830     |
| BLE II-6                                                                            |                                         | Values of $\frac{L}{H}G^2$             | Box<br>(about = Kutter                                                                   | II  | 2.9                   | 23      | 173     | 729     | 2,225     | 5,536     | 11,950     | 23,330     |
| TA                                                                                  |                                         |                                        | Kutter with $n = 0.013$                                                                  | Ι   | 5.0                   | 2.3     | 23      | 127     | 476       | 1,296     | 3,125      | 6,750      |

\* Velocity 5 ft. per sec. Unwin's coefficients for small pipes are not available.

| -                                                                                                                     |   |
|-----------------------------------------------------------------------------------------------------------------------|---|
| O                                                                                                                     |   |
| -                                                                                                                     |   |
| H                                                                                                                     |   |
| (1)                                                                                                                   |   |
| d                                                                                                                     |   |
| ty                                                                                                                    |   |
| -                                                                                                                     |   |
| IO                                                                                                                    |   |
| Р                                                                                                                     |   |
| E                                                                                                                     | ç |
| g                                                                                                                     |   |
| e l                                                                                                                   | • |
|                                                                                                                       |   |
| S                                                                                                                     | 1 |
| .9                                                                                                                    | ľ |
| g                                                                                                                     |   |
| q                                                                                                                     |   |
|                                                                                                                       | 4 |
| 5                                                                                                                     | 1 |
|                                                                                                                       |   |
| J                                                                                                                     | 1 |
| Se                                                                                                                    | 3 |
| 1.2                                                                                                                   | ď |
| R                                                                                                                     |   |
| >                                                                                                                     |   |
| -                                                                                                                     |   |
| 0                                                                                                                     |   |
| 63                                                                                                                    |   |
| FI                                                                                                                    |   |
| 115                                                                                                                   |   |
|                                                                                                                       |   |
| f                                                                                                                     |   |
|                                                                                                                       |   |
| e                                                                                                                     |   |
| n                                                                                                                     |   |
| a                                                                                                                     |   |
| -                                                                                                                     |   |
| ne                                                                                                                    |   |
| Ŧ                                                                                                                     |   |
| 20                                                                                                                    |   |
| .H                                                                                                                    |   |
| . A                                                                                                                   |   |
| 00                                                                                                                    |   |
|                                                                                                                       |   |
| -                                                                                                                     |   |
| Π                                                                                                                     |   |
| [7]                                                                                                                   |   |
| -                                                                                                                     |   |
| E                                                                                                                     |   |
| H                                                                                                                     |   |
| 2                                                                                                                     |   |
| TABLE III—giving the values of $\frac{L}{H}$ F <sup>3</sup> , C $\sqrt{R}$ , &c., for drains in earth on type II, for |   |
|                                                                                                                       |   |

depths increasing by the tenths of a foot from 1 ft. to 6 ft.

|                    |                              |          | 00     | 00     | 000    | 000    | 000    | 000     | 000     | 000     | 000     | 000     | 000     | 000     | 000       | 000       | 000       | 000       | 000       | 000       | 000       | 000       | 000       | 000       | 000       |   |
|--------------------|------------------------------|----------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| Bazin (ii)         | L F <sup>3</sup>             |          | 8,100  | 13,4   | 21,5   | 33,2   | 49,5   | 73,     | 102,    | 142,0   | 195,0   | 266,0   | 351,0   | 458,    | 200'      | 766,      | . 978     | 1,200,000 | 1,000 I   | 1,900,    | 2,300,    | 2,800,    | 3,400,000 | 4,000,000 | 4,800,000 | _ |
| Ba                 | C VR                         |          | 28.4   | c.0£   | 32.2   | 34.0   | 35.8   | 37.7    | 39.2    | 41.5    | 43.0    | 45.0    | 47.0    | 48.5    | 9.05      | 52.1      | 23.8      | 55.5      | 1.19      | 26.69     | 1.19      | 0.29      | 64.6      | 66.4      | 68.3      |   |
| Bazin (i)          | $\frac{L}{H}$ F <sup>2</sup> | N. C. L. | 14,700 | 24,200 | 38,800 | 59,500 | 89,500 | 127,800 | 181,600 | 252,000 | 344,000 | 458,000 | 611,000 | 793,000 | 1,000,000 | 1,300,000 | 1,700,000 | 2,000,000 | 2,500,000 | 3,200,000 | 3,900,000 | 4,700,000 | 5.600,000 | 6.800,000 | 8,100,000 |   |
| Ba                 | C VR                         | A OF M   | 38.2   | 40.6   | 43.2   | 45.5   | 47.8   | 50'1    | 52.6    | 25.0    | 27.0    | 2.65    | 62.1    | 64.0    | 9.99      | 9.89      | 9.04      | 72.6      | 75.2      | 77.4      | 2.64      | 81.7      | 6.88      | 86.2      | 88.3      |   |
| Kutter $n = 0.025$ | L F2<br>H                    |          | 10,200 | 17.500 | 26.200 | 46.000 | 70.500 | 102,700 | 145.000 | 200.000 | 274.000 | 372,000 | 490,000 | 648,000 | 832.000   | 1,000,000 | 1,400,000 | 1,700,000 | 2,100,000 | 2.600.000 | 3 200.000 | 3 900.000 | 4 600 000 | 5 500 000 | 6.600.000 |   |
| Kutter             | C VR                         |          | 31.9   | 34.9   | 37.5   | 40.0   | 42.4   | 44.7    | 47.0    | 49.2    | 6.05    | 53.6    | 8.55    | 6.45    | 6.65      | 62.1      | 64.1      | 66.1      | 0.89      | 6.69      | 8.12      | 73.7      | 9.54      | 77.4      | 2.04      |   |
|                    | V.R.                         |          | 0.20   | 0.74   | 44.0   | 08.0   | 0.83   | 0.86    | 68.0    | 26.0    | 0.04    | 26.0    | 00.1    | 20.1    | 50.1      | 1.07      | 60.1      | 11.1      | 1.14      | 1.16      | 1.18      | 02.1      | 00.1      | 1.74      | 1.26      | 4 |
|                    | ы                            |          | 0.20   | 55.0   | 09.0   | 59.0   | 02.0   | 54.0    | 08.0    | 58.0    | 00.0    | 50.0    | 00.1    | 50.1    | 01.1      | 51.1      | 1.20      | 1.25      | 1.30      | 58.1      | 07.1      | 24.1      | 09.1      | 22.4      | 09.1      | 3 |
|                    | $\delta = \frac{D}{2}$ ft.   |          | 0.1    | 1.1    | 1.1    | 1.2    | 7.1    | 2.1     |         | 0.1     | 1.0     | 0.1     | 0.0     | 10      | 4 0.0     | 10        | 10        | 1.0       | 9.0       | 2.2       | 1 0       | 0.0       | 40        | 0.0       | 10.0      | 4 |

TABLE III

|                    | F3                         | 0000      | 0000      | 6,900,000  | 8,200,000  | 9,600,000  | 11,200,000 | 0,000      | 0'000      | 0,000      | 0,000      | 0000'0     | 0'000      | 0,000      | 0'000      | 0,000      | 0,000      | 0,000      | 0,000      | 0,000       | 0,000       | 0000'0      | 0000'0      | 0000'0      | 0,000         | 0,000       | 0,000       | 0,000       | 0,000       | 0.000       |
|--------------------|----------------------------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|
| Bazin (ii)         | H F3                       | 5 80      | 00'0      | 6,90       | 8,20       | 09'6       | 11,20      | 13,10      | 15,30      | 17,700,000 | 20,500,000 | 23,200,000 | 26,500,000 | 30,100,000 | 34,100,000 | 38,500,000 | 43,600,000 | 49,000,000 | 55,000,000 | 61,500,000  | 68,700,000  | 76,500,000  | 85,700,000  | 93,500,000  | 106,500,000   | 117,600,000 | 129,000,000 | 142,800,000 | 157,000,000 | 164.200.000 |
| B                  | C VR                       | 70.1      | 1 0/      | 72.0       | 23.9       | 75.8       | 8.11       | 5.64       | 1.18       | 82.7       | 84.3       | 0.98       | 87.5       | 89.2       | 8.06       | 5.26       | 94.1       | 95.8       | 97.3       | 0.66        | 100.6       | 102.3       | 103.8       | 105.5       | 107.1         | 108.8       | 110.4       | 112.0       | 113.8       | 115.6       |
| Bazin (i)          | L F3                       | 0 700 000 | 000'00''  | 11,500,000 | 13,600,000 | 15,800,000 | 18,500,000 | 21,500,000 | 24,900,000 | 28,900,000 | 33,100,000 | 37,700,000 | 42,800,000 | 48,600,000 | 54,900,000 | 61,900,000 | 69,700,000 | 78,400,000 | 87,600,000 | 107,900,000 | 109,500,000 | 121,200.000 | 135,500,000 | 147,300,000 | 167,300,000   | 184,500,000 | 201,800,000 | 222,900,000 | 245,100,000 | 257 000 000 |
| Ba                 | CVR-                       | 9.00      | 0.00      | 92.8       | 95.2       | 97.4       | 8.66       | 101.4      | 103.8      | 106.5      | 108.5      | 110.6      | 6.111      | 114.0      | 116.2      | 117.6      | 119.8      | 121.2      | 123.2      | 125.4       | 127.8       | 129.3       | 130.7       | 133.0       | 134.3         | 137.6       | 139.1       | 140.6       | 142.9       | 144.6       |
| Kutter $u = 0.025$ | L F3                       | 700 000 7 | 000,000,0 | 9,100,000  | 10,700,000 | 12,400,000 | 14,400,000 | 16,700,000 | 19,300,000 | 22,200,000 | 25,500,000 | 29,000,000 | 32,700,000 | 37,000,000 | 41,500,000 | 47,000,000 | 52,900,000 | 59,000,000 | 66,500,000 | 71,500,000  | 82,100,000  | 90,800,000  | 101,300,000 | 109,700,000 | . 124,500,000 | 137,000,000 | 149,300,000 | 164,800,000 | 180,500,000 | 108 000 000 |
| Kutter             | C VR                       | 01.0      | 0 10      | 82.8       | 84.5       | 86.2       | 6.48       | 9.68       | 91.3       | 0.86       | 94.7       | 96.3       | 6.26       | 5.66       | 1.101      | 102.7      | 104.3      | 105'9      | 107.5      | 0.601       | 110.5       | 112.0       | 113.5       | 115.0       | 116.5         | 118.0       | 119.5       | 121.0       | 122.5       | 0.701       |
|                    | √R                         | 00.1      | 1 40      | 1.30       | 1.32       | 1.34       | 1.36       | 1.37       | 1.39       | 1.41       | 1.43       | 1.45       | 1.46       | 1.48       | 1.50       | 1.51       | 1.53       | 1.54       | 1.56       | 1.58        | 1.60        | 1.61        | 1.62        | 1.64        | 1.66          | 1.68        | 69.1        | 02.1        | 1.72        | 1.73        |
|                    | R                          | 1.66      | CO 1      | 1.70       | 1.75       | 1.80       | 1.85       | 06.1       | 1.95       | 2.00       | 2.05       | 2.10       | 2.15       | 2.20       | 2.25       | 2.30       | 2.35       | 2.40       | 2.45       | 2.50        | 2.55        | 2.60        | 2.65        | 2.70        | 2.75          | 2.80        | 2.85        | 2.90        | 2.62        | 00.0        |
|                    | $\delta = \frac{D}{2}$ ft. | 6.6       | 00        | 3.4        | 3.5        | 3.6        | 3.7        | 3.8        | 3.9        | 4.0        | 4.1        | 4.2        | 4.3        | 4.4        | 4.5        | 4.6        | 4.7        | 4.8        | 6.4        | 2.0         | 5.1         | 5.2         | 5.3         | 5.4         | 5.2           | 9.5         | 2.5         | 8.5         | 6.5         | 0.9         |

TABLE III-continued

32

## WATER SUPPLY AND DRAINAGE

#### TABLE IV

TABLE IV—for ascertaining the values of  $\frac{L}{H}F^2$  and  $\frac{L}{H}G^2$  as explained on page 17. For a required discharge of say 88'5 cusecs a mean may be taken between values ascertained for 88 cusecs and 89 cusecs,  $\frac{3}{10}$  the difference for 88'3 being added to ascertained value for 88.

| ired<br>arge          | 1   |        | Squ     | are of Di | ischarge N | Multiplied | by      |         |         |
|-----------------------|-----|--------|---------|-----------|------------|------------|---------|---------|---------|
| Required<br>Discharge | 1   | 2      | 3       | 4         | 5          | 6          | 7       | 8       | 9       |
| 1 2                   | 1 4 | 2<br>8 | 3<br>12 | 4<br>16   | 5<br>20    | 6<br>24    | 7<br>28 | 8<br>32 | 9<br>36 |
| 3                     | 9   | 18.    | 27      | 36        | 45         | 54         | 63      | 72      | 81      |
| 4                     | 16  | 32     | 48      | 64        | 80         | 96         | 112     | 128     | 144     |
| 56                    | 25  | 50     | 75      | 100       | 125        | 150        | 175     | 200     | 225     |
|                       | 36  | 72     | 108     | 144       | 180        | 216        | 252     | 288     | 324     |
| 7 8                   | 49  | 98     | 147     | 196       | 245        | 294        | 343     | 392     | 441     |
|                       | 64  | 128    | 192     | 256       | 320        | 384        | 448     | 512     | 576     |
| 9                     | 81  | 162    | 243     | 324       | 405        | 486        | 567     | 648     | 729     |
| 10                    | 100 | 200    | 300     | 400       | 500        | 600        | 700     | 800     | 900     |
| 11                    | 121 | 242    | 363     | 484       | 605        | 726        | 847     | 968     | 1089    |
| 12                    | 144 | 288    | 432     | 576       | 720        | 864        | 1008    | 1152 '  | 1296    |
| 13                    | 169 | 338    | 507     | 676       | 845        | 1014       | 1183    | 1352    | 1521    |
| 14                    | 196 | 392    | 588     | 784       | 980        | 1176       | 1372    | 1568    | 1764    |
| 15                    | 225 | 450    | 675     | 900       | 1125       | 1350       | 1575    | 1800    | 2025    |
| 16                    | 256 | 512    | 768     | 1024      | 1280       | 1536       | 1792    | 2048    | 2304    |
| 17                    | 289 | 578    | 867     | 1156      | 1445       | 1734       | 2023    | 2312    | 2601    |
| 18                    | 324 | 648    | 972     | 1296      | 1620       | 1944       | 2268    | 2592    | 2916    |
| 19                    | 361 | 722    | 1083    | 1444      | 1805       | 2166       | 2527    | 2888    | 3249    |
| 20                    | 400 | 800    | 1200    | 1600      | 2000       | 2400       | 2800    | 3200    | 3600    |
| 21                    | 441 | 882    | 1323    | 1764      | 2205       | 2646       | 3087    | 3528    | 3969    |
| 22                    | 484 | 968    | 1452    | 1936      | 2420       | 2904       | 3388    | 3872    | 4356    |
| 23                    | 529 | 1058   | 1587    | 2116      | 2645       | 3174       | 3703    | 4232    | 4761    |
| 24                    | 576 | 1152   | 1728    | 2304      | 2880       | 3456       | 4032    | 4608    | 5184    |
| 25                    | 625 | 1250   | 1875    | 2500      | 3125       | 3750       | 4375    | 5000    | 5625    |
| Galmins<br>or Cusecs  | 1   | 2      | 3       | 4         | 5          | 6          | 7       | 8       | 9       |

33

D

### TABLE IV—continued

| Required<br>Discharge | Square of Discharge Multiplied by |      |      |       |       |       |       |       |       |  |  |  |  |
|-----------------------|-----------------------------------|------|------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| Requ                  | 1                                 | 2    | 3    | 4     | 5     | 6     | 7     | 8     | 9     |  |  |  |  |
| 26                    | 676                               | 1352 | 2028 | 2704  | 3380  | 4056  | 4732  | 5408  | 6084  |  |  |  |  |
| 27                    | 729                               | 1458 | 2187 | 2916  | 3645  | 4374  | 5103  | 5832  | 6561  |  |  |  |  |
| 28                    | 784                               | 1568 | 2352 | 3136  | 3920  | 4704  | 5488  | 6272  | 7056  |  |  |  |  |
| /29                   | 841                               | 1682 | 2523 | 3364  | 4205  | 5046  | 5887  | 6728  | 7569  |  |  |  |  |
| 30                    | 900                               | 1800 | 2700 | 3600  | 4500  | 5400  | 6300  | 7200  | 8100  |  |  |  |  |
| 31                    | 961                               | 1922 | 2883 | 3844  | 4805  | 5766  | 6727  | 7688  | 8649  |  |  |  |  |
| 32                    | 1024                              | 2048 | 3072 | 4096  | 5120  | 6144  | 7168  | 8192  | 9216  |  |  |  |  |
| 33                    | 1089                              | 2178 | 3267 | 4356  | 5445  | 6534  | 7623  | 8712  | 9801  |  |  |  |  |
| 34                    | 1156                              | 2312 | 3468 | 4624  | 5780  | 6936  | 8092  | 9248  | 10404 |  |  |  |  |
| 35                    | 1225                              | 2450 | 3675 | 4900  | 6125  | 7350  | 8575  | 9800  | 11025 |  |  |  |  |
| 36                    | 1296                              | 2592 | 3888 | 5184  | 6480  | 7776  | 9072  | 10368 | 11664 |  |  |  |  |
| 37                    | 1369                              | 2738 | 4107 | 5476  | 6845  | 8214  | 9583  | 10952 | 12321 |  |  |  |  |
| 38                    | 1444                              | 2888 | 4332 | 5776  | 7220  | 8664  | 10108 | 11552 | 12996 |  |  |  |  |
| 39                    | 1521                              | 3042 | 4563 | 6084  | 7605  | 9126  | 10647 | 12168 | 13689 |  |  |  |  |
| 40                    | 1600                              | 3200 | 4800 | 6400  | 8000  | 9600  | 11200 | 12800 | 14400 |  |  |  |  |
| 41                    | 1681                              | 3362 | 5043 | 6724  | 8405  | 10086 | 11767 | 13448 | 15129 |  |  |  |  |
| 42                    | 1764                              | 3528 | 5292 | 7056  | 8820  | 10584 | 12348 | 14112 | 15876 |  |  |  |  |
| 43                    | 1849                              | 3698 | 5547 | 7396  | 9245  | 11094 | 12943 | 14792 | 16641 |  |  |  |  |
| 44                    | 1936                              | 3872 | 5808 | 7744  | 9680  | 11616 | 13552 | 15488 | 17424 |  |  |  |  |
| 45                    | 2025                              | 4050 | 6075 | 8100  | 10125 | 12150 | 14175 | 16900 | 18225 |  |  |  |  |
| 46                    | 2116                              | 4232 | 6348 | 8464  | 10580 | 12696 | 14812 | 16928 | 19044 |  |  |  |  |
| 47                    | 2209                              | 4418 | 6627 | 8836  | 11045 | 13254 | 15463 | 17672 | 19881 |  |  |  |  |
| 48                    | 2304                              | 4608 | 6912 | 9216  | 11520 | 13824 | 16128 | 18432 | 20736 |  |  |  |  |
| 49                    | 2401                              | 4802 | 7203 | 9604  | 12005 | 14406 | 16807 | 19208 | 21609 |  |  |  |  |
| 50                    | 2500                              | 5000 | 7500 | 10000 | 12500 | 15000 | 17500 | 20000 | 22500 |  |  |  |  |
| Galmins<br>or Cusecs  | 1                                 | 2    | 3    | 4     | 5     | 6     | 7     | 8     | 9     |  |  |  |  |

## TABLE IV

# TABLE IV—continued

| red                   | Square of Discharge Multiplied by |       |       |       |       |       |       |       |          |  |  |  |
|-----------------------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|----------|--|--|--|
| Required<br>Discharge | 1                                 | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9        |  |  |  |
| 51                    | 2601                              | 5202  | 7803  | 10404 | 13005 | 15606 | 18207 | 20808 | 23409    |  |  |  |
| 52                    | 2704                              | 5408  | 8112  | 10816 | 13520 | 16224 | 18928 | 21632 | 24336    |  |  |  |
| 53                    | 2809                              | 5618  | 8427  | 11236 | 14045 | 16854 | 19663 | 22472 | 25281    |  |  |  |
| 54                    | 2916                              | 5832  | 8748  | 11664 | 14580 | 17496 | 20412 | 23328 | 26244    |  |  |  |
| 55                    | 3025                              | 6050  | 9075  | 12100 | 15125 | 18150 | 21175 | 24200 | 27225    |  |  |  |
| 56                    | 3136                              | 6272  | 9408  | 12544 | 15680 | 18816 | 21952 | 25088 | 28224    |  |  |  |
| 57                    | 3249                              | 6498  | 9747  | 12996 | 16245 | 19494 | 22743 | 25992 | 29241    |  |  |  |
| 58                    | 3364                              | 6728  | 10092 | 13456 | 16820 | 20184 | 23548 | 26912 | 30276    |  |  |  |
| 59                    | 3481                              | 6962  | 10443 | 13924 | 17405 | 20886 | 24367 | 27848 | 31329    |  |  |  |
| 60                    | 3600                              | 7200  | 10800 | 14400 | 18000 | 21600 | 25200 | 28800 | 32400    |  |  |  |
| 61                    | 3721                              | 7442  | 11163 | 14884 | 18605 | 22326 | 26047 | 29768 | 33489    |  |  |  |
| 62                    | 3844                              | 7688  | 11532 | 15376 | 19220 | 23064 | 26908 | 30752 | 34596    |  |  |  |
| 63                    | 3969                              | 7938  | 11907 | 15876 | 19845 | 23814 | 27783 | 31752 | 35721    |  |  |  |
| 64                    | 4096                              | 8192  | 12288 | 16384 | 20480 | 24576 | 28672 | 32768 | 36864    |  |  |  |
| 65                    | 4225                              | 8450  | 12675 | 16900 | 21125 | 25350 | 29575 | 33800 | 38025    |  |  |  |
| 66                    | 4356                              | 8712  | 13068 | 17424 | 21780 | 22136 | 30492 | 34848 | 39204    |  |  |  |
| 67                    | 4489                              | 8978  | 13467 | 17956 | 22445 | 26934 | 31423 | 35912 | 40401    |  |  |  |
| 68                    | 4624                              | 9248  | 13872 | 18496 | 23120 | 27744 | 32368 | 36992 | 41616    |  |  |  |
| 69                    | 4761                              | 9522  | 14283 | 19044 | 23805 | 28566 | 33327 | 38088 | 42849    |  |  |  |
| 70                    | 4900                              | 9800  | 14700 | 19600 | 24500 | 29400 | 34300 | 39200 | 44100    |  |  |  |
| 71                    | 5041                              | 10082 | 15123 | 20164 | 25205 | 30246 | 35287 | 40328 | 45369    |  |  |  |
| 72                    | 5184                              | 10368 | 15552 | 20736 | 25920 | 31104 | 36288 | 41472 | 46656    |  |  |  |
| 73                    | 5329                              | 10658 | 15987 | 21316 | 26645 | 31974 | 37303 | 42632 | 47961    |  |  |  |
| 74                    | 5476                              | 10952 | 16428 | 21904 | 27380 | 32856 | 38332 | 43808 | 49284    |  |  |  |
| 75                    | 5625                              | 11250 | 16875 | 22500 | 28125 | 33750 | 39375 | 45000 | 50625    |  |  |  |
| Galmins<br>or Cusecs  | 1                                 | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9<br>D 2 |  |  |  |

# TABLE IV—continued

| Required             |       | Square of Discharge Multiplied by |                |                |                |                |                |                |       |  |  |  |  |  |
|----------------------|-------|-----------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|--|--|--|--|--|
| Req                  | 1     | 2                                 | 3              | 4              | 5              | 6              | 7              | 8              |       |  |  |  |  |  |
| 76<br>77             |       | 11552<br>11858                    | 17328<br>17787 | 23104<br>23716 | 28880<br>29645 | 34656<br>35574 | 40432<br>41503 | 46208<br>47432 |       |  |  |  |  |  |
| 78                   | 6084  | 12168                             | 18252          | 24336          | 30420          | 36504          | 42588          | 48672          | 54756 |  |  |  |  |  |
| 79                   | 6241  | 12482                             | 18723          | 24964          | 31205          | 37446          | 43687          | 49928          | 56169 |  |  |  |  |  |
| 80                   | 6400  | 12800                             | 19200          | 25600          | 32000          | 38400          | 44800          | 51200          | 57600 |  |  |  |  |  |
| 81                   | 6561  | 13122                             | 19683          | 26244          | 32805          | 39366          | 45927          | 52488          | 59049 |  |  |  |  |  |
| 82                   | 6724  | 13448                             | 20172          | 26896          | 33620          | 40344          | 47068          | 53792          | 60516 |  |  |  |  |  |
| 83                   | 6889  | 13778                             | 20667          | 27556          | 34445          | 41334          | 48223          | 55112          | 62001 |  |  |  |  |  |
| 84                   | 7056  | 14112                             | 21168          | 28224          | 35280          | 42336          | 49392          | 56448          | 63504 |  |  |  |  |  |
| 85                   | 7225  | 14450                             | 21675          | 28900          | 36125          | 43350          | 50575          | 57800          | 65025 |  |  |  |  |  |
| 86                   | 7396  | 14792                             | 22188          | 29584          | 36980          | 44376          | 51772          | 59168          | 66564 |  |  |  |  |  |
| 87                   | 7569  | 15138                             | 22707          | 30276          | 37845          | 45414          | 52983          | 60552          | 68121 |  |  |  |  |  |
| 88                   | 7744  | 15488                             | 23232          | 30976          | 38720          | 46464          | 54208          | 61952          | 69696 |  |  |  |  |  |
| 89                   | 7921  | 15842                             | 23763          | 31684          | 39605          | 47526          | 55447          | 63368          | 71289 |  |  |  |  |  |
| 90                   | 8100  | 16200                             | 24300          | 32400          | 40500          | 48600          | 56700          | 64800          | 72900 |  |  |  |  |  |
| 91                   | 8281  | 16562                             | 24843          | 33124          | 41405          | 49686          | 57967          | 66248          | 74529 |  |  |  |  |  |
| 92                   | 8464  | 16928                             | 25392          | <b>3385</b> 6  | 42320          | 50784          | 59248          | 67712          | 76176 |  |  |  |  |  |
| 93                   | 8649  | 17298                             | 25947          | <b>3</b> 4596  | 43245          | 51894          | 60543          | 69192          | 77841 |  |  |  |  |  |
| 94                   | 8836  | 17672                             | 26508          | 35344          | 44180          | 53016          | 61852          | 70688          | 79524 |  |  |  |  |  |
| 95                   | 9025  | 18050                             | 27075          | 36100          | 45125          | 54150          | 63175          | 72200          | 81225 |  |  |  |  |  |
| 96                   | 9216  | 18432                             | 27648          | 36864          | 46080          | 55296          | 64512          | 73728          | 82944 |  |  |  |  |  |
| 97                   | 9409  | 18818                             | 28227          | 37636          | 47045          | 56464          | 65863          | 75272          | 84681 |  |  |  |  |  |
| 98                   | 9604  | 19208                             | 28812          | 38416          | 48020          | 57624          | 67228          | 76832          | 86436 |  |  |  |  |  |
| 99                   | 9801  | 19602                             | 29403          | 39204          | 49005          | 58806          | 68607          | 78408          | 88209 |  |  |  |  |  |
| 100                  | 10000 | 20000                             | 30000          | 40000          | 50000          | 60000          | 70000          | 80000          | 90000 |  |  |  |  |  |
| Galmins<br>or Cusecs | 1     | 2                                 | 3              | 4              | 5              | 6              | 7              | 8              | 9     |  |  |  |  |  |

TABLE V-giving the areas and values of R, C  $\sqrt{R}$ , &c., for drains on Type II

from 6 ft. to 8 ft. deep.

Bazin (ii) 115'6 117'4 121'7 121'7 123'2 124'6 123'2 124'6 133'2 133'2 133'7 133'7 133'7 133'7 133'7 133'7 133'7 133'7 133'7 144'3 144'7 144'3 Values of  $C\sqrt{R}$ Bazin (i) 144'6 146'8 156'8 151'8 155'1 155'1 155'1 155'1 155'1 155'1 165'0 166'7 166'7 166'7 166'7 165'0 165'0 165'0 165'0 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 177'3 Kutter n = 0.025124'0 125'4 125'4 128'2 132'4 132'4 133'3 135'2 135'2 135'2 135'2 135'2 135'2 135'2 135'2 135'2 135'2 135'2 135'2 143°2 144°5 145°8 147°1 140.6 141.9 148.4 51.0 Multiply 1 to for  $\frac{1}{2}$  to 1; 1.15 for  $1\frac{1}{2}$ to 1; 1.35 1.09 for 0 to 1 areas by 1; by 0.95 1.58 for  $2\frac{1}{2}$  to 1; 1.82 to 1. for 2 to 1 Other for 3 t with side slopes 1 1 to 1 65°88 68°09 70°35 72°63 74°96 77°32 79.71 81.15 84.62 87.13 89.67 94.87 97.52 97.52 97.52 97.52 97.52 105.70 1105.70 1105.70 1111.34 R 3.003.053.053.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.1503.150¥ DIN 11 60

TABLE V

TABLE VI-giving the areas (A), bedwidths slopes of 0 to 1 to 3

| 1                                                                                   |                               |                              |                              |                              |                              |                                                                                  | stope                        | S OI                         | 0 10                         | 1 10                         | 5           |
|-------------------------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------|
| 1.9                                                                                 | 1.8                           | 1.7                          | 1.6                          | 1.2                          | 1.4                          | 1'3                                                                              | 1.2                          | 1.1                          | 1.0                          | $\delta = \frac{D}{2}$       | Side slopes |
| 7·22                                                                                | 6°48                          | 5.78                         | 5·12                         | 4.50                         | 3·92                         | 3·38                                                                             | 2.88                         | 2·42                         | 2.00                         | A                            | 0 to 1      |
| 3·80                                                                                | 3°60                          | 3.40                         | 3·20                         | 3.00                         | 2·80                         | 2·60                                                                             | 2.40                         | 2·20                         | 2.00                         | b                            |             |
| 7·60                                                                                | 7°20                          | 6.80                         | 6·40                         | 6.00                         | 5·60                         | 5·20                                                                             | 4.80                         | 4·40                         | 4.00                         | P                            |             |
| 3·80                                                                                | 3°60                          | 3.40                         | 3·20                         | 3.00                         | 2·80                         | 2·60                                                                             | 2.40                         | 2·20                         | 2.00                         | P-b                          |             |
| 6 <sup>.</sup> 28                                                                   | 5.64                          | 5.03                         | 4·45                         | 3.92                         | 3.41                         | 2.94                                                                             | 2.50                         | 2.10                         | 1.74                         | А                            | 🛓 to 1      |
| 2 <sup>.</sup> 36                                                                   | 2.23                          | 2.11                         | 1·98                         | 1.86                         | 1.74                         | 1.61                                                                             | 1.49                         | 1.36                         | 1.24                         | b                            |             |
| 6 <sup>.</sup> 61                                                                   | 6.26                          | 5.92                         | 5·57                         | 5.22                         | 4.87                         | 4.52                                                                             | 4.17                         | 3.83                         | 3.48                         | Р                            |             |
| 4 <sup>.</sup> 25                                                                   | 4.03                          | 3.81                         | 3·59                         | 3.36                         | 3.13                         | 2.91                                                                             | 2.68                         | 2.47                         | 2.24                         | Р-b                          |             |
| 6.61                                                                                | 5 <sup>.</sup> 93             | 5·28                         | 4.68                         | 4·12                         | 3.58                         | 3.09                                                                             | 2.63                         | 2·21                         | 1.83                         | А                            | 1 to 1      |
| 1.58                                                                                | 1 <sup>.</sup> 49             | 1·41                         | 1.32                         | 1·24                         | 1.16                         | 1.08                                                                             | 0.99                         | 0·91                         | 0.83                         | b                            |             |
| 6.95                                                                                | 6 <sup>.</sup> 59             | 6·22                         | 5.86                         | 5·49                         | 5.12                         | 4.76                                                                             | 4.39                         | 4·03                         | 3.66                         | Р                            |             |
| 5.37                                                                                | 5 <sup>.</sup> 10             | 4·81                         | 4.54                         | 4·25                         | 3.96                         | 3.68                                                                             | 3.40                         | 3·12                         | 2.83                         | Р-b                          |             |
| 7.62                                                                                | 6 <sup>.</sup> 83             | 6 <sup>.</sup> 10            | 5 <sup>.</sup> 40            | 4·74                         | 4·14                         | 3.57                                                                             | 3.04                         | 2·55                         | 2.11                         | А                            | 11 to 1     |
| 1.17                                                                                | 1 <sup>.</sup> 10             | 1 <sup>.</sup> 04            | 0 <sup>.</sup> 98            | 0·92                         | 0·85                         | 0.79                                                                             | 0.73                         | 0·67                         | 0.61                         | b                            |             |
| 8.02                                                                                | 7 <sup>.</sup> 60             | 7 <sup>.</sup> 17            | 6 <sup>.</sup> 75            | 6·33                         | 5·91                         | 5.49                                                                             | 5.06                         | 4·64                         | 4.22                         | Р                            |             |
| 6.85                                                                                | 6 <sup>.</sup> 50             | 6 <sup>.</sup> 13            | 5 <sup>.</sup> 77            | 5·41                         | 5·06                         | 4.70                                                                             | 4.33                         | 3·97                         | 3.61                         | Р-b                          |             |
| 8·92                                                                                | 8.00                          | 7 <sup>.</sup> 14            | 6·32                         | 5 <sup>.</sup> 56            | 4·84                         | 4·17                                                                             | 3·55                         | 2.98                         | 2·47                         | А                            | 2 to 1      |
| 0·89                                                                                | 0.85                          | 0 <sup>.</sup> 80            | 0·75                         | 0 <sup>.</sup> 71            | 0·66                         | 0·61                                                                             | 0·56                         | 0.52                         | 0·47                         | b                            |             |
| 9·39                                                                                | 8.88                          | 8 <sup>.</sup> 40            | 7·90                         | 7 <sup>.</sup> 41            | 6·92                         | 6·42                                                                             | 5·93                         | 5.43                         | 4·94                         | Р                            |             |
| 8·50                                                                                | 8.03                          | 7 <sup>.</sup> 60            | 7·15                         | 6 <sup>.</sup> 70            | 6·25                         | 5·81                                                                             | 5·37                         | 4.91                         | 4·47                         | Р-b                          |             |
| 10 <sup>.</sup> 43<br>0 <sup>.</sup> 74<br>10 <sup>.</sup> 98<br>10 <sup>.</sup> 24 | 9'36<br>0'70<br>10'40<br>9'70 | 8·35<br>0·66<br>9·83<br>9·17 | 7·40<br>0·62<br>9·25<br>8·63 | 6°50<br>0°59<br>8°67<br>8°08 | 5.66<br>0.55<br>8.09<br>7.54 | 4 <sup>.</sup> 88<br>0 <sup>.</sup> 51<br>7 <sup>.</sup> 51<br>7 <sup>.</sup> 00 | 4°16<br>0°47<br>6°94<br>6°47 | 3·50<br>0·43<br>6·36<br>5·93 | 2.89<br>0.39<br>5.78<br>5.39 | А<br><i>b</i><br>Р- <i>b</i> | 2 to 12     |
| 12.02                                                                               | 10 <sup>.</sup> 99            | 9.62                         | 8.53                         | 7:49                         | 6 <sup>•</sup> 53            | 5.63                                                                             | 4.80                         | 4.03                         | 3·33                         | A                            | 3 to 1      |
| 0.63                                                                                | 0 <sup>.</sup> 59             | 0.56                         | 0.53                         | 0:49                         | 0 <sup>•</sup> 46            | 0.43                                                                             | 0.39                         | 0.36                         | 0·33                         | b                            |             |
| 12.65                                                                               | 11 <sup>.</sup> 99            | 11.32                        | 10.66                        | 10:00                        | 9 <sup>•</sup> 33            | 8.66                                                                             | 8.00                         | 7.33                         | 6·66                         | P                            |             |
| 12.02                                                                               | 11 <sup>.</sup> 40            | 10.76                        | 10.13                        | 9:51                         | 8 <sup>•</sup> 87            | 8.23                                                                             | 7.61                         | 6.97                         | 6·33                         | P b                          |             |

## TABLE VI

(b), perimeters (P), &c., of drains on Type II, with side to 1. (See Plate II.)

|                    | Dec 1 |       | 11.)               |                    |                    |                    |                    |                    |                    |             | -           |
|--------------------|-------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------|-------------|
| 2.9                | 2.8   | 2.7   | 2.6                | 2:5                | 2.4                | 2.3                | 2:2                | 2.1                | 2.0                | δ=D<br>2    | Side slopes |
| 16 <sup>.</sup> 82 | 15.68 | 14·58 | 13.52              | 12 <sup>.</sup> 50 | 11·52              | 10 <sup>.</sup> 58 | 9.68               | 8.82               | 8.00               | А           | 0 to 1      |
| 5 <sup>.</sup> 80  | 5.60  | 5·40  | 5.20               | 5 <sup>.</sup> 00  | 4·80               | 4 <sup>.</sup> 60  | 4.44               | 4.20               | 4.00               | b           |             |
| 11 <sup>.</sup> 60 | 11.20 | 10·80 | 10.40              | 10 <sup>.</sup> 00 | 9·60               | 9 <sup>.</sup> 20  | 8.80               | 8.40               | 8.00               | Р           |             |
| 5 <sup>.</sup> 80  | 5.60  | 5·40  | 5.20               | 5 <sup>.</sup> 00  | 4·80               | 4 <sup>.</sup> 60  | 4.40               | 4.20               | 4.00               | Р-b         |             |
| 14.63              | 13.64 | 12.68 | 11.76              | 10 <sup>.</sup> 88 | 10.02              | 9 <sup>.</sup> 20  | 8 <sup>.</sup> 42  | 7 <sup>.</sup> 67  | 6'96               | A           | 1 to 1      |
| 3.60               | 3.47  | 3.34  | 3.22               | .3 <sup>.</sup> 10 | 2.97               | 2 <sup>.</sup> 85  | 2 <sup>.</sup> 73  | 2 <sup>.</sup> 60  | 2'48               | b           |             |
| 10.09              | 9.74  | 9.40  | 9.05               | 8 <sup>.</sup> 70  | 8.35               | 8 <sup>.</sup> 00  | 7 <sup>.</sup> 66  | 7 <sup>.</sup> 31  | 6'96               | P           |             |
| 6.49               | 6.27  | 6.06  | 5.83               | 5 <sup>.</sup> 60  | 5.38               | 5 <sup>.</sup> 15  | 4 <sup>.</sup> 93  | 4 <sup>.</sup> 71  | 4'48               | P-b         |             |
| 15 <sup>.</sup> 39 | 14·35 | 13·34 | 12 <sup>.</sup> 37 | 11.43              | 10 <sup>.54</sup>  | 9.68               | 8.85               | 8 <sup>.</sup> 07  | 7 <sup>.</sup> 32  | А           | 1 to 1      |
| 2 <sup>.</sup> 41  | 2·32  | 2·24  | 2 <sup>.</sup> 16  | 2.07               | 1 <sup>.99</sup>   | 1.91               | 1.83               | 1 <sup>.</sup> 74  | 1 <sup>.</sup> 66  | b           |             |
| 10 <sup>.</sup> 61 | 10·25 | 9·88  | 9 <sup>.</sup> 52  | 9.15               | 8 <sup>.78</sup>   | 8.42               | 8.05               | 7 <sup>.</sup> 69  | 7 <sup>.</sup> 32  | Р           |             |
| 8 <sup>.</sup> 20  | 7·93  | 7·64  | 7 <sup>.</sup> 36  | 7.07               | 6 <sup>.79</sup>   | 6.51               | 6.22               | 5 <sup>.</sup> 95  | 5 <sup>.</sup> 66  | Р-b         |             |
| 17 <sup>.</sup> 75 | 16.54 | 15.58 | 14·26              | 13.10              | 12°15              | 11°16              | 10 <sup>.</sup> 21 | 9'30               | 8 <sup>.</sup> 44  | А           | 11 to 1     |
| 1 <sup>.</sup> 77  | 1.71  | 1.64  | 1·58               | 1.52               | 1°46               | 1°40               | 1 <sup>.</sup> 34  | 1'28               | 1 <sup>.</sup> 22  | b           |             |
| 12 <sup>.</sup> 24 | 11.82 | 11.39 | 10·97              | 10.55              | 10°13              | 9°70               | 9 <sup>.</sup> 28  | 8'86               | 8 <sup>.</sup> 44  | Р           |             |
| 10 <sup>.</sup> 47 | 10.11 | 9.75  | 9·39               | 9.03               | 8°64               | 8°30               | 7 <sup>.</sup> 94  | 7'58               | 7 <sup>.</sup> 22  | Р-b         |             |
| 20 <sup>.77</sup>  | 19·35 | 18.00 | 16 <sup>.70</sup>  | 15 <sup>.</sup> 44 | 14 <sup>.</sup> 23 | 13.07              | 11.95              | 10 <sup>.</sup> 89 | 9.88               | А           | 2 to 1      |
| 1:36               | 1·32  | 1.27  | 1 <sup>.</sup> 22  | 1 <sup>.</sup> 18  | 1 <sup>.</sup> 13  | 1.08               | 1.03               | 0 <sup>.</sup> 99  | 0.94               | b           |             |
| 14 <sup>.</sup> 33 | 13·83 | 13.34 | 12 <sup>.</sup> 84 | 12 <sup>.</sup> 35 | 11 <sup>.</sup> 86 | 11.36              | 10.87              | 10 <sup>.</sup> 37 | 9.88               | Р           |             |
| 12 <sup>.</sup> 97 | 12·51 | 12.07 | 11 <sup>.</sup> 62 | 11 <sup>.</sup> 17 | 10 <sup>.</sup> 73 | 10.28              | 9.84               | 9 <sup>.</sup> 38  | 8.94               | Р-b         |             |
| 24·30              | 22.66 | 21.07 | 19 <sup>.</sup> 54 | 18.06              | 16.65              | 15 <sup>.</sup> 29 | 13 <sup>.</sup> 99 | 12 <sup>.75</sup>  | 11.56              | А           | 21 to 1     |
| 1·13               | 1.09  | 1.05  | 1 <sup>.</sup> 01  | 0.98               | 0.94               | 0 <sup>.</sup> 90  | 0 <sup>.</sup> 86  | 0 <sup>.82</sup>   | 0.78               | b           |             |
| 16·76              | 16.18 | 15.61 | 15 <sup>.</sup> 03 | 14.45              | 13.87              | 13 <sup>.</sup> 29 | 12 <sup>.</sup> 72 | 12 <sup>.14</sup>  | 11.56              | Р           |             |
| 15·63              | 15.09 | 14.56 | 14 <sup>.</sup> 02 | 13.47              | 12.93              | 12 <sup>.</sup> 39 | 11 <sup>.</sup> 86 | 11 <sup>.</sup> 32 | 10.78              | Р-b         |             |
| 28.00              | 26.11 | 24·28 | 22 <sup>.</sup> 51 | 20.81              | 19 <sup>.</sup> 18 | 17.62              | 16 <sup>.</sup> 12 | 14.69              | 13 <sup>.</sup> 32 | А           | 3 to 1      |
| 0.96               | 0.92  | 0·89  | 0 <sup>.</sup> 86  | 0.83               | 0 <sup>.</sup> 79  | 0.76               | 0 <sup>.</sup> 73  | 0.69               | 0 <sup>.</sup> 66  | <i>b</i>    |             |
| 19.31              | 18.65 | 17·98 | 17 <sup>.</sup> 32 | 16.65              | 15 <sup>.</sup> 98 | 15.32              | 14 <sup>.</sup> 65 | 13.99              | 13 <sup>.</sup> 32 | Р           |             |
| 18.35              | 17.73 | 17·09 | 16 <sup>.</sup> 49 | 15.82              | 15 <sup>.</sup> 19 | 14.56              | 13 <sup>.</sup> 92 | 13.30              | 12 <sup>.</sup> 66 | Р- <i>b</i> |             |

## TABLE VI—continued

|                                                                                    |                                                                                    |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                   | -            |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------|--------------|
| 3.9                                                                                | 3.8                                                                                | 3.7                                                                                 | 3.6                                                                                 | 3.5                                                                                 | 3.4                                                                                 | 3.3                                                                                 | 3.2                                                                                 | 3.1                                                                                 | 3.0                                                                                 | 8=D                               | Side slopes. |
| 30 <sup>.</sup> 42<br>7 <sup>.</sup> 80<br>15 <sup>.</sup> 60<br>7 <sup>.</sup> 60 | 28 <sup>.</sup> 88<br>7 <sup>.</sup> 60<br>15 <sup>.</sup> 20<br>7 <sup>.</sup> 60 | 27 <sup>.</sup> 38<br>7 <sup>.</sup> 40<br>14 <sup>.</sup> 80<br>7 <sup>.</sup> 40  | 25 <sup>.</sup> 92<br>7 <sup>.</sup> 20<br>14 <sup>.</sup> 40<br>7 <sup>.</sup> 20  | 24 <sup>.</sup> 50<br>7 <sup>.</sup> 00<br>14 <sup>.</sup> 00<br>7 <sup>.</sup> 00  | 23·12<br>6·80<br>13·60<br>6·80                                                      | 21.78<br>6.60<br>13.20<br>6.60                                                      | 20 <sup>.</sup> 48<br>6 <sup>.</sup> 40<br>12 <sup>.</sup> 80<br>6 <sup>.</sup> 40  | 19 <sup>.</sup> 22<br>6 <sup>.</sup> 20<br>12 <sup>.</sup> 40<br>6 <sup>.</sup> 20  | 18.00<br>6.00<br>12.00<br>6.00                                                      | А<br>b<br>Р<br>Р-b                | 0 to 1       |
| 26.46<br>4.83<br>13.57<br>8.74                                                     | 25.12<br>4.71<br>13.22<br>8.51                                                     | 23 <sup>.</sup> 82<br>4 <sup>.</sup> 59<br>12 <sup>.</sup> 88<br>8 <sup>.</sup> 29  | 22 <sup>.55</sup><br>4 <sup>.</sup> 46<br>12 <sup>.53</sup><br>8 <sup>.01</sup>     | 21·32<br>4·34<br>12·18<br>7·84                                                      | 20 <sup>.</sup> 11<br>4 <sup>.</sup> 21<br>11 <sup>.</sup> 83<br>7 <sup>.</sup> 62  | 18 <sup>.</sup> 95<br>4 <sup>.</sup> 09<br>11 <sup>.</sup> 48<br>7 <sup>.</sup> 39  | 17 <sup>.</sup> 82<br>3 <sup>.</sup> 97<br>11 <sup>.</sup> 14<br>7 <sup>.</sup> 17  | 16 <sup>.72</sup><br>3 <sup>.84</sup><br>10 <sup>.79</sup><br>6 <sup>.95</sup>      | 15.66<br>3.72<br>10.44<br>6.72                                                      | A<br>b<br>P<br>P-b                | ± to 1       |
| 27.83<br>3.23<br>14.27<br>11.04                                                    | 3 <sup>.</sup> 15<br>13 <sup>.</sup> 90                                            | 25 <sup>.</sup> 04<br>3 <sup>.</sup> 07<br>13 <sup>.</sup> 54<br>10 <sup>.</sup> 47 | 23 <sup>.72</sup><br>2 <sup>.99</sup><br>13 <sup>.</sup> 18<br>10 <sup>.</sup> 19   | 22 <sup>.</sup> 41<br>2 <sup>.</sup> 91<br>12 <sup>.</sup> 81<br>9 <sup>.</sup> 90  | 21·15<br>2·82<br>12·44<br>9·62                                                      | 19 <sup>.</sup> 92<br>2 <sup>.</sup> 73<br>12 <sup>.</sup> 08<br>9 <sup>.</sup> 35  | 18 <sup>.</sup> 74<br>2 <sup>.</sup> 65<br>11 <sup>.</sup> 71<br>9 <sup>.</sup> 06  | 17 <sup>.</sup> 58<br>2 <sup>.</sup> 57<br>11 <sup>.</sup> 35<br>8 <sup>.</sup> 78  | 16 <sup>.</sup> 47<br>2 <sup>.</sup> 49<br>10 <sup>.</sup> 98<br>8 <sup>.</sup> 49  | А<br>b<br>Р<br>Р-b                | 1 to 1       |
| 32.09<br>2.38<br>16.46<br>14.08                                                    | 2 <sup>.</sup> 32<br>16 <sup>.</sup> 04                                            | 28.89<br>2.26<br>15.61<br>13.35                                                     | 27 <sup>.</sup> 34<br>2 <sup>.</sup> 19<br>15 <sup>.</sup> 19<br>13 <sup>.</sup> 00 | 25.85<br>2.13<br>14.77<br>12.64                                                     | 24·39<br>2·07<br>14·35<br>12·28                                                     | 22.93<br>2.01<br>13.93<br>11.92                                                     | 21.61<br>1.95<br>13.50<br>11.55                                                     | 20 <sup>.</sup> 27<br>1 <sup>.</sup> 89<br>13 <sup>.</sup> 08<br>11 <sup>.</sup> 19 | 18 <sup>.</sup> 99<br>1 <sup>.</sup> 83<br>12 <sup>.</sup> 66<br>10 <sup>.</sup> 83 | А<br>b<br>Р<br>Р-b                | 11 to 1      |
| 37 <sup>.57</sup><br>1 <sup>.83</sup><br>19 <sup>.25</sup><br>17 <sup>.42</sup>    | 1 79<br>18 <sup>.</sup> 77                                                         | 18.28                                                                               | 32.01<br>1.69<br>17.78<br>16.09                                                     | 30°26<br>1°65<br>17°29<br>15°64                                                     | 28 <sup>.</sup> 55<br>1 <sup>.</sup> 60<br>16 <sup>.</sup> 80<br>15 <sup>.</sup> 20 | 26 <sup>.</sup> 85<br>1 <sup>.</sup> 55<br>16 <sup>.</sup> 30<br>14 <sup>.</sup> 75 | 25 <sup>.</sup> 29<br>1 <sup>.</sup> 50<br>15 <sup>.</sup> 80<br>14 <sup>.</sup> 30 | 23 <sup>.</sup> 74<br>1 <sup>.</sup> 46<br>15 <sup>.</sup> 31<br>13 <sup>.</sup> 85 | 22 <sup>.</sup> 23<br>1 <sup>.</sup> 41<br>14 <sup>.</sup> 82<br>13 <sup>.</sup> 41 | А<br>b<br>Р<br>Р-b                | 2 to 1       |
| 43'96<br>1'52<br>22'54<br>21'02                                                    | 1.48<br>21.96                                                                      | 1 <sup>.</sup> 44<br>21 <sup>.</sup> 39                                             | 37 <sup>.</sup> 45<br>1 <sup>.</sup> 41<br>20 <sup>.</sup> 81<br>19 <sup>.</sup> 40 | 35 <sup>.</sup> 40<br>1 <sup>.</sup> 37<br>20 <sup>.</sup> 23<br>18 <sup>.</sup> 86 | 33·41<br>1·33<br>19·65<br>18·32                                                     | 31 <sup>.</sup> 47<br>1 <sup>.</sup> 29<br>19 <sup>.</sup> 01<br>17 <sup>.</sup> 78 | 29 <sup>.</sup> 60<br>1 <sup>.</sup> 25<br>18 <sup>.</sup> 50<br>17 <sup>.</sup> 25 | 27 <sup>.</sup> 77<br>1 <sup>.</sup> 21<br>17 <sup>.</sup> 92<br>16 <sup>.</sup> 71 | 26 <sup>.</sup> 01<br>1 <sup>.</sup> 17<br>17 <sup>.</sup> 34<br>16 <sup>.</sup> 17 | А<br><i>b</i><br>Р<br>Р- <i>b</i> | 21 to 1      |
| 50.65<br>1.29<br>25.97<br>24.68                                                    | 0 1·25<br>25·31                                                                    | 1·22<br>24·64                                                                       | 43°16<br>1°19<br>23°98<br>22°79                                                     | 40 <sup>.79</sup><br>1 <sup>.</sup> 16<br>23 <sup>.</sup> 31<br>22 <sup>.</sup> 15  | 38.49<br>1.12<br>22.64<br>21.52                                                     | 36 <sup>.</sup> 26<br>1 <sup>.</sup> 09<br>21 <sup>.</sup> 98<br>20 <sup>.</sup> 89 | 34°10<br>1°06<br>21°31<br>20°25                                                     | 31.00<br>1.02<br>20.65<br>19.63                                                     | 29 <sup>.</sup> 97<br>0 <sup>.</sup> 99<br>19 <sup>.</sup> 98<br>18 <sup>.</sup> 99 | А<br>b<br>Р<br>Р-b                | 3 to 1       |

## TABLE VI 41

## TABLE VI-continued

.

| 4.9                | 4.8                | 4.7                | 4.6                | 4.2                | 4.4                | 4:3                             | 4.2                | 4.1                | 4.0                | 8=0 | Side slopes. |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|--------------------|--------------------|--------------------|-----|--------------|
| 48.02              | 46 <sup>.</sup> 08 | 44.18              | 42·32              | 40°50              | 38 <sup>.72</sup>  | 36 <sup>.</sup> 98              | 35 <sup>.</sup> 28 | 33.62              | 32.00              | A   | 0 to 1       |
| 9.80               | 9 <sup>.</sup> 60  | 9.40               | 9·20               | 9°00               | 8 <sup>.80</sup>   | 8 <sup>.</sup> 60               | 8 <sup>.</sup> 40  | 8.20               | 8.00               | b   |              |
| 19.60              | 19 <sup>.</sup> 20 | 18.80              | 18·40              | 18°00              | 17 <sup>.60</sup>  | 17 <sup>.</sup> 20              | 16 <sup>.</sup> 80 | 16.40              | 16.00              | P   |              |
| 9.80               | 9 <sup>.</sup> 60  | 9.40               | 9·20               | 9°00               | 8 <sup>.80</sup>   | 8 <sup>.</sup> 60               | 8 <sup>.</sup> 40  | 8.20               | 8.00               | P-b |              |
| 41 <sup>.77</sup>  | 40 <sup>.</sup> 09 | 38.44              | 36.82              | 35 <sup>.</sup> 23 | 33.69              | 31.17                           | 30 <sup>.</sup> 69 | 29 <sup>.</sup> 25 | 27.84              | А   | 1 to 1       |
| 6 <sup>.07</sup>   | 5 <sup>.</sup> 95  | 5.82               | 5.70               | 5 <sup>.</sup> 58  | 5.4                | 5.33                            | 5 <sup>.</sup> 20  | 5 <sup>.</sup> 08  | 4.96               | b   |              |
| 17 <sup>.05</sup>  | 16 <sup>.</sup> 70 | 16.36              | 16.00              | 15 <sup>.</sup> 66 | 15.31              | 14.96                           | 14 <sup>.</sup> 62 | 14 <sup>.</sup> 27 | 13.92              | Р   |              |
| 10 <sup>.98</sup>  | 10 <sup>.</sup> 75 | 10.54              | 10.30              | 10 <sup>.</sup> 08 | 9.85               | 9.63                            | 9 <sup>.</sup> 42  | 9 <sup>.</sup> 19  | 8.96               | Р-b |              |
| 43 <sup>.</sup> 93 | 42.16              | 40 <sup>.</sup> 42 | 38.72              | 37 <sup>.</sup> 06 | 35 <sup>.</sup> 42 | 33 <sup>.</sup> 83              | 32 <sup>.</sup> 28 | 30 <sup>.76</sup>  | 29 <sup>.</sup> 28 | А   | 1 to 1       |
| 4 <sup>.</sup> 07  | 3.98               | 3 90               | 3.82               | 3 <sup>.</sup> 73  | 3 <sup>.</sup> 65  | 3 <sup>.</sup> 57               | 3 <sup>.</sup> 48  | 3 <sup>.41</sup>   | 3 <sup>.</sup> 32  | b   |              |
| 17 <sup>.</sup> 93 | 17.57              | 17 <sup>.</sup> 20 | 16.84              | 16 <sup>.</sup> 47 | 16 <sup>.</sup> 10 | 15 <sup>.</sup> 74              | 15 <sup>.</sup> 37 | 15 <sup>.00</sup>  | 14 <sup>.</sup> 64 | P   |              |
| 13 <sup>.</sup> 86 | 13.59              | 13 <sup>.</sup> 30 | 13.02              | 12 <sup>.</sup> 74 | 12 <sup>.</sup> 45 | 12 <sup>.</sup> 17              | 11 <sup>.</sup> 89 | 11 <sup>.59</sup>  | 11 <sup>.</sup> 32 | P-b |              |
| 50.66              | 48.61              | 46 <sup>.</sup> 91 | 44 <sup>.</sup> 65 | 42.73              | 40 <sup>.</sup> 85 | 39 <sup>.</sup> 01 <sup>°</sup> | 37 <sup>.</sup> 22 | 35·47              | 33 <sup>.</sup> 76 | А   | 11 to 1      |
| 2.99               | 2.93               | 2 <sup>.</sup> 87  | 2 <sup>.</sup> 81  | 2.74               | 2 <sup>.</sup> 68  | 2 <sup>.</sup> 62               | 2 <sup>.</sup> 56  | 2·50               | 2 <sup>.</sup> 44  | b   |              |
| 20.68              | 20.26              | 19 <sup>.</sup> 83 | 19 <sup>.</sup> 41 | 18.99              | 18 <sup>.</sup> 57 | 18 <sup>.</sup> 15              | 17 <sup>.</sup> 72 | 17·30              | 16 <sup>.</sup> 88 | Р   |              |
| 17.69              | 17.33              | 16 <sup>.</sup> 96 | 16 <sup>.</sup> 60 | 16.25              | 15 <sup>.</sup> 89 | 15 <sup>.</sup> 53              | 15 <sup>.</sup> 12 | 14·80              | 14 <sup>.</sup> 44 | Р-b |              |
| 59°30              | 56 <sup>.</sup> 91 | 54·56              | 52·27              | 50°02              | 47 <sup>.</sup> 82 | 45 <sup>.</sup> 65              | 43 <sup>.57</sup>  | 41.52              | 39 <sup>.</sup> 52 | А   | 2 to 1       |
| 2°30               | 2 <sup>.</sup> 25  | 2·21               | 2·16               | 2°11               | 2 <sup>.</sup> 07  | 2 <sup>.</sup> 02               | 1 <sup>.97</sup>   | 1.93               | 1 <sup>.</sup> 88  | b   |              |
| 24°21              | 23 <sup>.</sup> 71 | 23·22              | 22·72              | 22°23              | 21 <sup>.</sup> 74 | 21 <sup>.</sup> 24              | 20 <sup>.75</sup>  | 20.25              | 19 <sup>.</sup> 76 | Р   |              |
| 21°91              | 21 <sup>.</sup> 46 | 21·01              | 20·56              | 20°12              | 19 <sup>.</sup> 67 | 19 <sup>.</sup> 22              | 18 <sup>.78</sup>  | 18.32              | 17 <sup>.</sup> 88 | Р-b |              |
| 69 <sup>.</sup> 39 | 66 <sup>•</sup> 59 | 63 <sup>.</sup> 84 | 61 <sup>.</sup> 15 | 58.52              | 55 <sup>.</sup> 95 | 53 <sup>.</sup> 44              | 50 <sup>.</sup> 98 | 48.48              | 46°24              | А   | 21 to 1      |
| 1 <sup>.</sup> 91  | 1 <sup>•</sup> 87  | 1 <sup>.</sup> 83  | 1 <sup>.</sup> 79  | 1.76               | 1 <sup>.</sup> 72  | 1 <sup>.</sup> 68               | 1 <sup>.</sup> 64  | 1.60               | 1°56               | b   |              |
| 28 <sup>.</sup> 32 | 27 <sup>•</sup> 74 | 27 <sup>.</sup> 17 | 26 <sup>.</sup> 59 | 26.01              | 25 <sup>.</sup> 43 | 24 <sup>.</sup> 85              | 24 <sup>.</sup> 28 | 23.70              | 23°12              | P   |              |
| 26 <sup>.</sup> 41 | 25 <sup>•</sup> 87 | 25 <sup>.</sup> 34 | 24 <sup>.</sup> 80 | 24.25              | 23 <sup>.</sup> 71 | 23 <sup>.</sup> 17              | 22 <sup>.</sup> 64 | 22.10              | 21°56              | P-b |              |
| 79 <sup>.</sup> 96 | 76.72              | 73·56              | 70°46              | 67 <sup>.</sup> 43 | 63 <sup>.</sup> 47 | 61 <sup>.</sup> 57              | 58 <sup>.</sup> 74 | <b>5</b> 6·28      | 53°28              | A   | 3 to 1       |
| 1 <sup>.</sup> 62  | 1.58               | 1·55               | 1°52               | 1 <sup>.</sup> 49  | 1 <sup>.</sup> 45  | 1 <sup>.</sup> 42               | 1 <sup>.</sup> 39  | 1·35               | 1°32               | b   |              |
| 32 <sup>.</sup> 63 | 31.97              | 31·30              | 30°64              | 29 <sup>.</sup> 97 | 29 <sup>.</sup> 30 | 28 <sup>.</sup> 64              | 27 <sup>.</sup> 97 | 27·31              | 26°64              | P   |              |
| 31 <sup>.</sup> 01 | 30.39              | 29·75              | 29°12              | 28 <sup>.</sup> 48 | 27 <sup>.</sup> 85 | 27 <sup>.</sup> 22              | 26 <sup>.</sup> 58 | 25·96              | 25°32              | P-b |              |

### TABLE VI-continued

| 6.0                                                                                 | 5.9                                     | 5.8                              | 5.7                                                                                 | 5.6                                                                                 | 5.5                                     | 5.4                                      | 5.3                                      | 5.2                                                                                 | 5.1                                      | 5.0                                      | 8 = D                             | Side slopes |
|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|-------------|
| 72:00<br>12:00<br>24:00<br>12:00                                                    | 69.62<br>11.80<br>23.60<br>11.80        | 67.28<br>11.60<br>23.20<br>11.60 | 64.98<br>11.40<br>22.80<br>11.40                                                    | 62.72<br>11.20<br>22.40<br>11.20                                                    | 11.00<br>22.00                          | 10 <sup>.</sup> 80<br>21 <sup>.</sup> 60 | 10 <sup>.</sup> 60<br>21 <sup>.</sup> 20 | 54.08<br>10.40<br>20.80<br>10.40                                                    | 10 <sup>.</sup> 20<br>20 <sup>.</sup> 40 | 10 <sup>.</sup> 00<br>20 <sup>.</sup> 00 | А<br>b<br>Р<br>Р-b                | 0 to 1      |
| 62 <sup>.</sup> 64<br>7 <sup>.</sup> 44<br>20 <sup>.</sup> 88<br>13 <sup>.</sup> 44 | 20.23                                   | 58.53<br>7.19<br>20.18<br>12.99  | 56 <sup>.</sup> 53<br>7 <sup>.</sup> 07<br>19 <sup>.</sup> 84<br>12 <sup>.</sup> 77 | 54·57<br>6·94<br>19·49<br>12·55                                                     | 6 <sup>.</sup> 82<br>19 <sup>.</sup> 14 | 6 <sup>.</sup> 70<br>18 <sup>.</sup> 79  | 6 <sup>.</sup> 57<br>18 <sup>.</sup> 44  | 47 <sup>.</sup> 05<br>6 <sup>.</sup> 45<br>18 <sup>.</sup> 11<br>11 <sup>.</sup> 66 | 6 <sup>.</sup> 32<br>17 <sup>.</sup> 75  | 6 <sup>.</sup> 20<br>17 <sup>.</sup> 40  | А<br>b<br>Р<br>Р-b                | 1 to 1      |
| 65 <sup>.</sup> 88<br>4 <sup>.</sup> 98<br>21 <sup>.</sup> 96<br>16 <sup>.</sup> 98 | 4 <sup>.</sup> 90<br>21 <sup>.</sup> 59 | 61·56<br>4·81<br>21·23<br>16·42  | 59.46<br>4.73<br>20.86<br>16.13                                                     | 57 <sup>.</sup> 88<br>4 <sup>.</sup> 65<br>20 <sup>.</sup> 50<br>15 <sup>.</sup> 85 | 4 <sup>.</sup> 57<br>20 <sup>.</sup> 13 | 4 <sup>.</sup> 48<br>19 <sup>.</sup> 76  | 4·40<br>19·40                            | 49 <sup>.</sup> 48<br>4 <sup>.</sup> 32<br>19 <sup>.</sup> 03<br>14 <sup>.</sup> 71 | 4·23<br>18·67                            | 4 <sup>.</sup> 15<br>18 <sup>.</sup> 30  | А<br><i>b</i><br>Р<br>Р- <i>b</i> | 1 to 1      |
| 75.96<br>3.66<br>25.32<br>21.66                                                     | 3.60<br>24.90                           | 70'98<br>3'54<br>24'48<br>20'94  | 68 <sup>.</sup> 55<br>3 <sup>.</sup> 48<br>24 <sup>.</sup> 05<br>20 <sup>.</sup> 57 | 66 <sup>.</sup> 27<br>3 <sup>.</sup> 42<br>23 <sup>.</sup> 63<br>20 <sup>.</sup> 21 | 3°36<br>23°21                           | 3 <sup>.</sup> 29<br>22 <sup>.</sup> 79  | 3·23<br>22·37                            | 57 <sup>.</sup> 05<br>3 <sup>.</sup> 17<br>21 <sup>.</sup> 94<br>18 <sup>.</sup> 77 | 3 <sup>.</sup> 11<br>21 <sup>.</sup> 52  | 3 <sup>.</sup> 05<br>21 <sup>.</sup> 10  | А<br>b<br>Р<br>Р-b                | 11 to 1     |
| 88 <sup>.</sup> 92<br>2 <sup>.</sup> 82<br>29 <sup>.</sup> 64<br>26 <sup>.</sup> 82 | 2 <sup>.77</sup><br>29 <sup>.</sup> 15  | 83 09<br>2.73<br>28.65<br>25.92  | 80°25<br>2°68<br>28°16<br>25°48                                                     | 77 <sup>•</sup> 46<br>2 <sup>•</sup> 63<br>27 <sup>•</sup> 66<br>25 <sup>•</sup> 03 | 2:59<br>27:17                           | 2°54<br>26°68                            | 2 <sup>.</sup> 49<br>26 <sup>.</sup> 18  | 66'79<br>2'44<br>25'69<br>23'25                                                     | 2 <sup>.</sup> 40<br>25 <sup>.</sup> 19  | 2 <sup>.</sup> 35<br>24 <sup>.</sup> 70  | А<br>b<br>Р<br>Р-b                | 2 to 1      |
| 104.04<br>2.34<br>34.68<br>32.34                                                    | 34.10                                   | 2°26<br>33°52                    | 2·22<br>32·95                                                                       | 90.63<br>2.18<br>32.37<br>30.19                                                     | 2°15<br>31°79                           | 2°11<br>31°21                            | 2.07<br>30.63                            | 78'16<br>2'03<br>30'06<br>28'03                                                     | 1·99<br>29·48                            | 1 <sup>.</sup> 95<br>28 <sup>.</sup> 90  | b<br>P                            | 21 to 1     |
| 119'88<br>1'98<br>39'96<br>37'98                                                    | 39.29                                   | 1.91<br>38.63                    | 1 <sup>.</sup> 88<br>37 <sup>.</sup> 96                                             | 1°85<br>37°30                                                                       | 1.82<br>36.63                           | 2 1·78<br>35·96                          | 1.75<br>35.30                            | 90°04<br>1°72<br>34°63<br>32°91                                                     | 1.68<br>33.97                            | 1.65<br>33.30                            | <b>b</b><br>Р                     | 3 to 1      |

#### TABLE VII

## TABLE VII—for use in ascertaining the dimensions of very large pipes and drains. (See pages 21 and 22.)

| No.      | Fifth Power              | No.      | Fifth Power              | No.      | Fifth Power                           |
|----------|--------------------------|----------|--------------------------|----------|---------------------------------------|
|          | 7                        | 25       | E0 E01 97E               |          | 1 452 022 560                         |
| 1        | 1<br>32                  | 35<br>36 | 52,521,875<br>60,466,176 | 68<br>69 | 1,453,933,568                         |
| 2<br>3   | 243                      | 37       | 69,343,957               | . 70     | 1,564,031,349                         |
| 3<br>4   | 1,024                    | - 38     | 79,235,168               | 71       | 1,804,229,351                         |
| 5        | 3,125                    | 39       | 90,224,199               | 72       | 1,934,917,632                         |
| 6        | 7,776                    | 40       | 102,400,000              | 73       | 2,073,071,593                         |
| 7        | 16,807                   | 41       | 115,856,201              | 74       | 2,219,006,624                         |
| 8        | 32,768                   | 42       | 130,691,232              | 75       | 2,373,046,875                         |
| 9        | 59,049                   | 43       | 147,008,443              | 76       | 2.535.525.376                         |
| 10       | 100,000                  | 44       | 164,916,224              | 77       | 2,706,784,157                         |
| 11       | 161,051                  | 45       | 184,528,125              | 78       | 2,887,174,368                         |
| 12       | 248,832                  | 46       | 205,962,976              | 79       | 3,077,056,399                         |
| 13       | 371,293                  | 47       | 229,345,007              | 80       | 3,276,800,000                         |
| 14       | 537,824                  | 48       | 254,803,968              | 81       | 3,486,784,401                         |
| 15       | 759,375                  | 49       | 282,475,249              | 82       | 3,707,398,432                         |
| 16       | 1,048,576                | 50       | 312,500,000              | 83       | 3,939,040,643                         |
| 17       | 1,419,857                | 51       | 345,025,251              | 84       | 4,182,119,424                         |
| 18       | 1,889,568                | 52       | 380,204,032              | 85       | 4,437,053,125                         |
| 19       | 2,476,099                | 53       | 418,195,493              | 86       | 4,704,270,176                         |
| 20       | 3,200,000                | 54       | 459,165,024              | 87       | 4,984,209,207                         |
| 21       | 4,084,101                | 55       | 503,284,375              | 88       | 5,277,319,168                         |
| 22       | 5,153,632                | 56       | 550,731,776              | 89       | 5,584,059,449                         |
| 23       | 6,436,343                | 57       | 601,692,057              | 90       | 5,904,900,000                         |
| 24       | 7,962,624                | 58       | 656,356,768              | 91       | 6,240,321,451                         |
| 25       | 9,765,625                | 59       | 714,924,299              | 92       | 6,590,815,232                         |
| 26       | 11,881,376               | 60       | 777,600,000              | 93       | 6,956,883,693                         |
| 27       | 14,348,907               | 61       | 844,596,301              | 94       | 7,339,040,224                         |
| 28       | 17,210,368               | 62       | 916,132,832              | 95       | 7,737,809,375                         |
| 29       | 20,511,149               | 63       | 992,436,543              | 96       | 8,153,726,976                         |
| 30       | 24,300,000               | 64       | 1,073,741,824            | 97       | 8,587,340,257                         |
| 31       | 28,629,151               | 65       | 1,160,290,625            | 98<br>99 | 9,039,207,968                         |
| 32<br>33 | 33,554,432               | 66<br>67 | 1,252,332,576            | 100      | 10.000.000.000                        |
| 34       | 39,135,393<br>45,435,424 | 07       | 1,350,125,107            | 100      | 10,000,000,000                        |
| 54       | 73,733,744               |          |                          |          | 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 |

#### Table of Fifth Powers of Numbers

TABLE VIII—giving the values of x and y for ascertaining Kutter's values of C (with n = 0.013) from the formula

| I                            | II      | III .    | I                            | II      | III      |
|------------------------------|---------|----------|------------------------------|---------|----------|
| Virtual<br>Slope 1 in        | x       | y        | Virtual<br>Slope 1 in        | x       | y        |
| 100                          | 181.250 | 0*545230 | 1300                         | 184.622 | 0.289066 |
| 200                          | 181.231 | 0.248883 | 1400                         | 184.903 | 0.592719 |
| 300                          | 181.812 | 0.552536 | 1500                         | 185.184 | 0.596372 |
| 400                          | 182.093 | 0.556189 | 1600                         | 185.465 | 0.600025 |
| 500                          | 182.374 | 0.559842 | 1700                         | 185.746 | 0.603678 |
| 600                          | 182.655 | 0.563495 | 1800                         | 186.027 | 0.607331 |
| 700                          | 182.936 | 0.567148 | 1900                         | 186.308 | 0.610984 |
| 800                          | 183.217 | 0.570801 | 2000                         | 186.589 | 0.614637 |
| 900                          | 183.498 | 0.574454 | 2100                         | 186.870 | 0.618290 |
| 1000                         | 183.779 | 0.578107 | 2200                         | 187.151 | 0.621943 |
| 1100                         | 184.060 | 0.581760 | 2300                         | 187.432 | 0.625596 |
| 1200                         | 184.341 | 0.282413 | 2400                         | 187.713 | 0.629249 |
| Add for<br>each extra<br>100 | 0.281   | 0.003653 | Add for<br>each extra<br>100 | 0.281   | 0.003653 |

 $C = \frac{x\sqrt{R}}{\sqrt{R} + y}$ 

| APPENDIX |
|----------|
|----------|

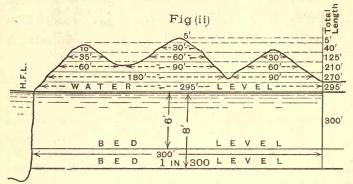
APPENDIX A—comparing the values of  $\frac{L}{H}F^3$  for some pipes from 6 in. to 48 in. in diameter for differences of one inch, the velocities in the pipes being the same and ranging from 1 ft. to 5 ft. per sec., the values of  $\frac{L}{H}F^3$  being calculated from Kutter's coefficients with n = 0.013 and Unwin's coefficients for clean pipes equivalent very nearly to Kutter's coefficients with n = 0.011. See Appendix B.

|                               |        | - 191               |                              |     | -    |     |       |        |        |         |           |
|-------------------------------|--------|---------------------|------------------------------|-----|------|-----|-------|--------|--------|---------|-----------|
|                               |        | Unwin<br>clean pipe | L Fa                         |     | 58   | 455 | 1 000 | 16,000 | 72 400 | 577 400 | 2,491,000 |
|                               | 4 to 5 |                     | a                            | in. | 9    | 0   |       |        | 24     | 36      | 48        |
|                               | 4 t    | Kutter $n = 0.013$  | L F2                         |     | 58   | 423 | 1 800 | 14 500 | 65 400 | 542,000 | 2,416,000 |
|                               |        |                     | a                            | in. | 5    | 10  |       | 0      | 50     | 27      | 49        |
|                               |        | Unwin<br>clean pipe | L F2<br>H                    |     | 57   | 446 | 1 960 | 15 760 | 006 04 | 577.400 | 2,491,000 |
|                               | 3 to 4 | 0                   | a                            | in. | 9    | 6   | 12    | 18     | 24     | 36      | 48        |
| r second                      | 3 ti   | Kutter $u = 0.013$  | L F2<br>H                    |     | 58   | 421 | 1.800 | 14.400 | 65,000 | 537.000 | 2,398,000 |
| et pe                         |        |                     | q                            | in. | 2    | 10  | 13    | 19     | 25     | 37      | 49        |
| Velocities in feet per second |        | Unwin<br>clean pipe | L F2                         |     | 56   | 430 | 1,920 | 15,400 | 69.400 | 563,700 | 2,432,800 |
| £                             | 33     | 0                   | à                            | in. | 9    | 6   | 12    | 18     | 24     | 36      | 48        |
|                               | 2 to   | Kutter $n = 0.013$  | L F <sup>2</sup>             |     | 57   | 419 | 1,780 | 14,200 | 63,000 | 527,000 | 2,381,000 |
|                               |        |                     | q                            | in. | 2    | 10  | 13    | 19     | 25     | 37      | 49        |
|                               |        | Unwin<br>clean pipe | L F2<br>H                    |     | 54   | 423 | 1,880 | 15,000 | 67,900 | 538,000 | 2,380,000 |
|                               | 19     | 0                   | d                            | in. | 9    | 6   | 12    | 18     | 24     | 36.     | 48        |
|                               | 1 to   | Kutter $n = 0.013$  | $\frac{L}{H}$ F <sup>2</sup> |     | 57 6 | 415 | 1,780 | 13,800 | 60,000 | 508,000 | 2,313,000 |
|                               |        |                     | d                            | in. | 2    | 10  | 13    | 19     | 25     | 37      | 49        |

APPENDIX B—comparing the values of  $\frac{L}{H}$  F<sup>2</sup> for some pipes from 6 in. to 48 in. in

diameter with velocities of from 1 ft. to 5 ft. per second deduced from Kutter's Coefficients (with n = 0.011 exactly) from Unwin's Coefficients for asphalted iron pipes, and from Fanning's values of C for clean pipes; also, for all velocities, from Box's fixed value of C (91'6) for clean pipes.

| 4. |                                     |           |                                                |                                                    |                       |     | -     |        |           |         |                                                                                           |
|----|-------------------------------------|-----------|------------------------------------------------|----------------------------------------------------|-----------------------|-----|-------|--------|-----------|---------|-------------------------------------------------------------------------------------------|
|    | IIA                                 |           | Box clean                                      | ((,,)                                              | 14 (IO)               | 307 | 1,290 | 0830   | 41,400    | 314,400 | 1,325,000                                                                                 |
|    |                                     |           | Fanning<br>clean                               | Table I<br>nthesis<br>(6")                         | fo <sup>//</sup> ) 52 |     | 1,850 | 15,500 | 000'14    | 608,000 | ,850,000                                                                                  |
|    | 4 to 5                              |           | niwnU<br>bəiladqas                             | Diameters from Table I<br>Col. II., in parenthesis | (a'') 57              |     | 950   | 15,00  | 69,000    | 549,000 | 2,380,00                                                                                  |
|    |                                     |           | Kutter<br>R = 0.011                            | Diameter<br>Col. 11.,<br>(6'')                     | 10/1) 38              |     | 1,780 | 004,00 | 000,022 0 | 682,000 | 3,160,00                                                                                  |
|    |                                     |           | Fanning<br>clean                               |                                                    | 50                    | 410 | 1,820 | 15,000 | 69,600    | 593,000 | 2,800,000                                                                                 |
|    | 3 to 4                              | H Fa      | niwnU<br>bətladqaa                             |                                                    | 56                    | 432 | 1,880 | 14,900 | 66,700    | 529,000 | 2,275,000                                                                                 |
|    |                                     | Values of | $\mathbf{K}_{\mathrm{UI1er}}^{\mathrm{UI1er}}$ |                                                    | 38                    | 377 | 1,760 | 16,300 | 77,500    | 676,000 | 3,070,000                                                                                 |
|    |                                     | -         | Fanning<br>Clean                               |                                                    | 49                    | 396 | 1,766 | 14,600 | 68,000    | 585,000 | 2,770,000                                                                                 |
|    | 2 to 3                              |           | niwnU<br>bətladqea                             | •                                                  | 53                    | 410 | 1,790 | 14,000 | 62,700    | 499,000 | 2,140,000                                                                                 |
|    |                                     |           | n = 0.011                                      |                                                    | 36                    | 376 | 1,730 | 16,200 | 75,800    | 668,000 | 2,980,000                                                                                 |
|    |                                     |           | Fanning<br>Clean                               |                                                    | 45                    | 382 | 1,670 | 4,100  | 66,000    | 576,000 | 2,750,000                                                                                 |
|    | 1 to 2                              |           | Unwin<br>asphalted                             |                                                    | 49                    | 377 | 1,640 | 13,000 | 58,000    | 459,000 | 2,900,000 1,970,000 2,750,000 2,980,000 2,140,000 2,770,000 3,070,000 2,275,000 2,800,000 |
|    |                                     |           | Kutter<br>Kutter                               |                                                    | 36                    | 375 | 1,700 | 16,100 | 73,700    | 658,000 | 2,900,000                                                                                 |
|    | Velocities<br>in feet per<br>second |           | Pipe<br>diameters<br>in inches                 | in.                                                | 9                     | 6   | 12    | 18     | 24        | 36      | 48                                                                                        |


#### APPENDIX C

APPENDIX C—comparing the values of  $\frac{L}{H}$  F<sup>2</sup> for incrusted pipes from 6 in. to 48 in. in diameter derived for all velocities from Unwin's and Silk's values of C for incrusted pipes with some high velocity (4 ft. to 5 ft. per second) values of  $\frac{L}{H}$  F<sup>2</sup> for pipes calculated from Unwin's coefficients for clean pipes (Appendix A).

| eters                                        | Val                                                                                                        | ues of $\frac{L}{H}$ F <sup>2</sup> |                                                                                                                                                                                                                                   | eters                                                                                         | Va                                                | lues of $\frac{L}{H} F^2$                    |                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pipe diameters                               | Unwi                                                                                                       | in                                  | Silk                                                                                                                                                                                                                              | Pipe diameters                                                                                | Ur                                                | win                                          | Silk                                                                                                                                                                                                                              |
|                                              | Clean                                                                                                      | Incrusted                           | Incrusted                                                                                                                                                                                                                         | Pipe                                                                                          | Clean                                             | Incrusted                                    | Incrusted                                                                                                                                                                                                                         |
| $\begin{array}{c} \text{in.} & \text{6} \\ $ | $ \frac{1^{*}}{2^{*}} = \frac{58}{1,900} $ $ \frac{16,000}{3^{*}} $ $ \frac{72}{4^{*}} = \frac{100}{100} $ | 56<br>112<br>205<br>346<br>623      | $\begin{array}{c} 28\\ 59\\ 116\\ 212\\ 355\\ 594\\ 900\\ 1,300\\ 1,900\\ 2,700\\ 3,400\\ 6,800\\ 8,800\\ 11,300\\ 14,400\\ 8,800\\ 11,300\\ 14,400\\ 22,400\\ 22,400\\ 28,800\\ 35,300\\ 42,600\\ 52,200\\ 62,100\\ \end{array}$ | in.<br>29-<br>30-<br>31-<br>32-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33 | 229,400<br>5″<br>577,000<br>6″<br>1,276,000<br>7″ | 122,600<br>145,200<br>170,000<br>197,000<br> | 73,400<br>87,800<br>101,000<br>116,000<br>135,000<br>185,000<br>218,700<br>248,000<br>324,000<br>324,000<br>324,000<br>324,000<br>366,000<br>413,000<br>472,500<br>525,000<br>585,000<br>660,000<br>733,000<br>817,000<br>922,000 |

#### APPENDIX D

THE quantities of earthwork in the two drain sections if carried for a length of 300 ft. in deep cutting through ground having the longitudinal section illustrated in Fig. (ii) would, calculated from Table IX [which has been prepared from the author's 'Practical



HORIZONTAL SCALE 100' = 1" VERTICAL SCALE 10' = 1"

Earthwork Tables' (Longmans, Green, & Co., 1907) and is used in the manner therein advocated], be as follows, the cross slope in the ground, if not too great, being entirely neglected as practically it makes, for any given section, but little difference—see Fig. (iii) below.

(a) In the 8 ft. deep drain, bedwidth 6.7 ft., side slopes 1 to 1.

| Depth of<br>drain |       | Central area     |         | End areas<br>(Table IX) |      | Total area |    | Length |   | Contents |
|-------------------|-------|------------------|---------|-------------------------|------|------------|----|--------|---|----------|
| ft.               | ft.   | ft.              | sq. ft. | sq.f                    | t.   | sq. ft.    |    | ft.    |   | c. ft.   |
| 1 to 8            | 6'7 × | (8 =             | = 53.6  | + 64                    | =    | 117.6      | ×  | 300    | = | 35,280   |
| 9                 | 6'7 × | (1 =             | = 6.7   | +17                     | =    | 23.7       | ×  | 295    | = | 6,992    |
| 10                | 6'7 × | (1 =             | = 6.7   | +19                     | =    | 25.7       | ×  | 270    | = | 6,939    |
| 11                | 6'7 × | (1 =             | = 6'7   | +21                     | =    | 27.7       | ×  | 210    |   | 5,817    |
| 12                | 6'7 × | (1 =             | = 6.7   | +23                     | =    | 29.7       | ×  | 125    | = | 3,712    |
| 13                | 6'7 × | <1 =             | = 6.7   | +25                     | =    | 31.7       | ×  | 40     | = | 1,268    |
| $13\frac{1}{2}$   | 6'7 × | $(\frac{1}{2} =$ | = 3.3   | + 13.                   | 25 = | 16.22      | iх | 5      | = | 83       |
|                   |       |                  |         |                         |      | Tot        | al |        |   | 60.091   |

#### APPENDIX D

(b) In the 6 ft. deep drain, bedwidth 14 ft., side slopes 1 to 1.

| Depth of<br>drain | -Central are              | End areas<br>(Table IX) | Total area | Length  | Contents |
|-------------------|---------------------------|-------------------------|------------|---------|----------|
| ft.               | ft. ft. so                | . ft. sq. ft.           | sq. ft.    | ft.     | c. ft.   |
| 1 to 6            | $14 \times 6 =$           | 84 + 36 :               | = 120 >    | < 300 = | 36,000   |
| 7                 | $14 \times 1 =$           | 14 + 13 :               | = 27 >     | < 295 = | 7,965    |
| 8 9               | $14 \times 1 =$           | 14 + 15 :               | = 29 >     | < 270 = | 7,830    |
| 9 .               | $14 \times 1 =$           | 14 + 17 :               | = 31 >     | < 210 = | 6,510    |
| 10                | $14 \times 1 =$           | 14 + 19 =               | = 33 >     | ( 125 = | 4,125    |
| 11                | $14 \times 1 =$           | 14 + 21 :               | = 35 >     | < 40 =  | 1,400    |
| $11\frac{1}{2}$   | $14 \times \frac{1}{2} =$ | 7 + 11.25 :             | = 18.25 >  | < 5 =   | 91       |
|                   |                           | Sere Ste                | Total      |         | 63,921   |

or an increase of about 3,900 c. ft. or  $\frac{3900}{300} = 13$  c. ft. per foot run.

2. The quantities of earthwork in a cutting or bank however long carried through or over ground with a longitudinal contour however varied can be similarly ascertained from Table IX, or from the fuller Tables given in the Author's 'Practical Earthwork Tables' above referred to, the preparation of a large number of cross sections being entirely avoided as well as the subsequent calculations therefrom.

3. When the ground through which a drain has to be carried has a considerable cross slope which cannot well be neglected, the cross sections of the two drains would be as shown in Fig. (iii) which has been prepared for a cross slope of 4 to 1.

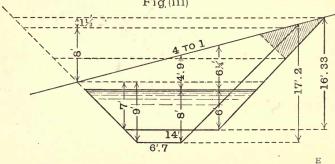



Fig (iii)

The maximum depths ascertained by calculation being-

(i) For the 8 ft. drain  $\frac{12.9 \times 4}{3} = 17.2 = \text{say 17 ft.}$ 

(ii) For the 6 ft. drain  $\frac{12^{25} \times 4}{3} = 16^{33} = \text{say } 16^{5}$  ft.

The respective areas ascertained from Table IX are:

(a) In the 8 ft. drain, maximum depth 17 ft.

 $17 \times 6.7 + 289 = 403$  less 160 (the end areas for a depth of 8 ft. with S + S' = 1 + 4 = 5) = 243 sq. ft.

(b) In the 6 ft. drain, maximum depth  $16\frac{1}{2}$  ft.

 $16'5 \times 14 + 272'25 = 503'25$  less 225'625 (the end areas for a depth of  $9\frac{1}{2}$  ft. with S + S' = 5) = 277'625 sq. ft., say 278 sq. ft.

An increase of 35 c. ft. per foot run.

| ,              |         | -                                            |             |                      | _   |       | _    |      | 1    |      | d     |       | _        | 1     |       | _     |       |       |       |       | _     |       |       |        |     |                                                          |
|----------------|---------|----------------------------------------------|-------------|----------------------|-----|-------|------|------|------|------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-----|----------------------------------------------------------|
| slopes.        |         | (+S'=8)                                      | X           | Total                | 4   | 16    | 36   | 64   | 100  | 144  | 196   | 256   | 324      | 400   | 484   | 576   | 676   | 784   | 006   | 1024  | 1156  | 1296  | 1444  | 1600   |     | n of 1'<br>+ 1'0                                         |
| side slo       |         | =6) 4 to 1 (S+S'=                            |             | One<br>foot<br>layer | 4   | 12    | 20   | 28   | 36   | 44   | 52    | 60    | 68       | 76    | 84    | 92    | 100   | 108   | 116   | 124   | 132   | 140   | 148   | 156    |     | a mean of 1'<br>layers + 1'0                             |
| and            |         |                                              |             | Total                | ŝ   | 12    | 27   | 48   | 75   | 108  | 147   | 192   | 243      | 300   | 363   | 432   | 507   | 588   | 675   | 768   | 867   | 972   | 1083  | 1200   |     | + 0.75                                                   |
| deptus         |         | 3 to 1 (S                                    |             | One<br>foot<br>layer | 3   | 6     | 15   | 21   | 27   | 33   | 39    | 45    | 51       | 57    | 63    | 69    | 75    | 81    | 87    | 93    | 66    | 105   | 111   | 117    | 1.  | 4 mean of 1 <sup>7</sup><br>layers + 0.75                |
| various deptns | 9       | + S'=5)                                      | 13          | Total                | 2.5 | 10.01 | 22.5 | 40.0 | 62.5 | 0.06 | 122.5 | 160.0 | 202.5    | 250.0 | 302.5 | 360'0 | 422.5 | 490.0 | 562.5 | 640.0 | 722.5 | 810.0 | 902.5 | 0.000  |     | of 1'<br>0'625                                           |
| IOI VE         |         | 4) $2\frac{1}{2}$ to 1 (S+S'=5) 3 to 1 (S+S' | Ŧ           | One<br>foot<br>layer | 2.5 | 2.2   | 12.5 | 17.5 | 22.2 | 27.5 | 32.5  | 37.5  | 42.5     | 47.5  | 52.5  | 21.2  | 62.5  | 67.5  | 72.5  | 2.44  | 82.5  | 87.5  | 92.5  | 97.5 1 | ę., | a mean of 1'<br>layers + 0'625                           |
| Lype II        | lingues | (S+S'=4)                                     | square feet | Total                | 10  | 8     | 18   | 32   | 50   | 72   | 98    | 128   | 162      | 200   | 242   | 288   | 338   | 392   | 450   | 512   | 578   | 648   | 722   | 800    |     | of 1'                                                    |
| I no s         | o anic  | 2 to 1 (S                                    | Areas in so | One<br>foot<br>layer | 67  | 9     | 10   | 14   | 18   | 22   | 26    | 30    | 34       | 38    | 42    | 46    | 50    | 54    | 58    | 62    | 99    | 70    | 74    | 78     | -   | $\frac{1}{3}$ mean of 1'<br>layers + 0.50                |
| Calars on Side | )       | S'=3)                                        | A           | Total                | 1.5 | 0.9   | 13.5 | 24.0 | 37.5 | 54.0 | 73.5  | 0.96  | 121.5    | 150.0 | 181.5 | 216.0 | 253.5 | 294.0 | 337.5 | 384.0 | 433.5 | 486.0 | 541.5 | 0.009  |     | of 1'<br>0'375                                           |
| areas or       |         | 1 <sup>3</sup> / <sub>3</sub> to 1 (S+       |             | One<br>foot<br>layer | 1.5 | 4.5   | 7.5  | 10.5 | 13.5 | 16.5 | 19.2  | 22.2  | 25.5     | 28.5  | 31.5  | 34.5  | 37.5  | 40.5  | 43.5  | 46.5  | 49.5  | 52.5  | 55.5  | 58.5   |     | a mean c<br>layers + 0                                   |
| end            | -       | S'= 2)                                       | -           | Total .              | 1   | 4     | 6    | 16   | 25   | 36   | 49    | 64    | 81       | 100   | 121   | 144   | 169   | 196   | 225   | 256   | 289   | 324   | 361   | 400    | -   | + 0'25                                                   |
| ng the         |         | =1) 1 to 1 (S+                               |             | One<br>foot<br>layer | 1   | ŝ     | ŝ    | 7    | 6    | 11   | . 13. | 15    | 17       | 19    | 21    | 23    | 25    | 27    | 29    | 31    | 33    | 35    | 37    | 39     | -   | $\frac{1}{3}$ mean of 1'<br>layers + 0'25                |
| g1V1ng         | -       | + S' = 1)                                    |             | Total                | 5.0 | 2.0   | 4.2  | 0.8  | 12.5 | 18.0 | 24.2  | 32.0  | 40.5     | 20.0  | 2.09  | 72.0  | 84.5  | 0.86  | 112.5 | 128.0 | 144.5 | 162.0 | 180.5 | 200.0  |     | of 1'<br>0'125                                           |
| E IV           | -       | to 1 (S+                                     |             | One<br>foot<br>layer | 5.0 | 1.2   | 2.2  | 3.5  | 4.5  | 5.2  | 6.5   | 2.2   | 2.2<br>8 | 5.6   | 10.5  | 11.5  | 12.5  | 13.5  | 14.5  | 15.5  | 16.5  | 17.5  | 18.5  | 19.5   |     | <sup>4</sup> / <sub>4</sub> mean of 1'<br>layers + 0'125 |
| IADLE          |         | Depth<br>of                                  | drain<br>in | teet                 | 1   | 7     | m    | 4    | 20   | 01   | -     | 0     | 6        | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20     |     | Additions<br>for half<br>feet                            |

TABLE IX 51

5 • TARIF IV.

#### APPENDIX E

THAT the calculation of the exact dimensions of masonry or concrete drains makes an appreciable saving in cost is easily demonstrated.

Suppose that the ascertained 'hydraulic gradient' is 1 in 1000 and the required discharge 0'2 cusecs. Then for a semicircular

concrete drain  $(n = 0.013) \frac{4L}{H} F^2 = 4 \times 1000 \times (0.2)^2 = 160$ , and

from Table I d = 9 in., but as  $(227 - 116)\frac{1}{10} = 11$  and as 160 - 116 = 44, d more exactly = 8.4 in. Taking it at 8.5 in. and assuming that the top widths of the sides of the concrete drains (backs vertical) are each 4 in. and that the depth of concrete below the drain bottom is 4 in. also, the concrete areas in the two drains will respectively be:

With 
$$d = 9$$
 in. A = 17 in.  $\times 8\frac{1}{2}$  in.  $-0.4 \times 9^{2}$   
= 144.5  $-32.4 = 112$  sq. in.  
With  $d = 8\frac{1}{2}$  in. A =  $16\frac{1}{2}$  in.  $\times 8\frac{1}{4}$  in.  $-0.4 \times 8.5$   
=  $136.1 - 28.9 = 107$  sq. in.

or a saving of 5 sq. in. in 112 sq. in. or 4.5 per cent.

A concrete drain on Type I with d = 9 in. would, under similar circumstances, discharge 0.4 cusecs, and the concrete areas, would for a similarly dimensioned drain, be:

| With $d = 9$ in.   | $A = 17 \text{ in.} \times 13 \text{ in.} - 0.7 \times 9^{2}$                |
|--------------------|------------------------------------------------------------------------------|
|                    | = 221 - 56.7 = 164.3 sq. in.                                                 |
| With $d = 8.5$ in. | $A = 16\frac{1}{2}$ in. $\times 12\frac{1}{2}$ in. $-0.7 \times 8.5^{\circ}$ |
|                    | $= 206^{\circ}3 - 50^{\circ}6 = 155^{\circ}7$ sq. in.                        |

or a saving of 8'6 sq. in. in 164'3 sq. in. or 5'2 per cent.

In larger drains on Type I the saving would be somewhat less; with d = 31 in. and 30.5 in. respectively (the top widths at sides and depth of foundation being 6 in. instead of 4 in.) the saving in area would be 18 sq. in. in 918 sq. in. or 2 per cent.

Small drains with d under 9 in. should, as a rule, be semicircular ones, as they are easier to construct and keep clean than small drains on Type I.

# APPENDIX

#### APPENDIX F

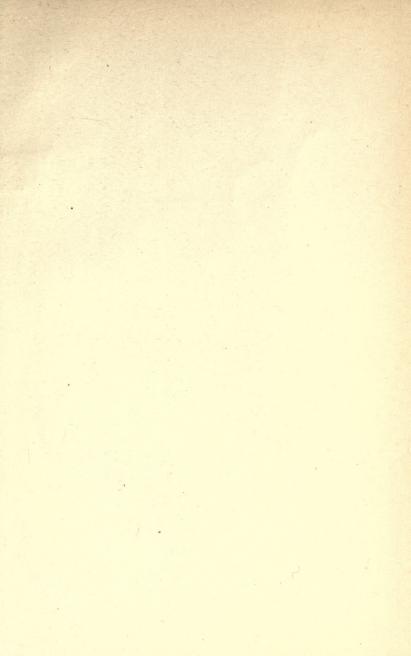
The squares and square roots of numbers can, with a little trouble, be ascertained from Cols. I. and II. of Table IV. in the following manner very approximately :—

Required the square of 44'72.

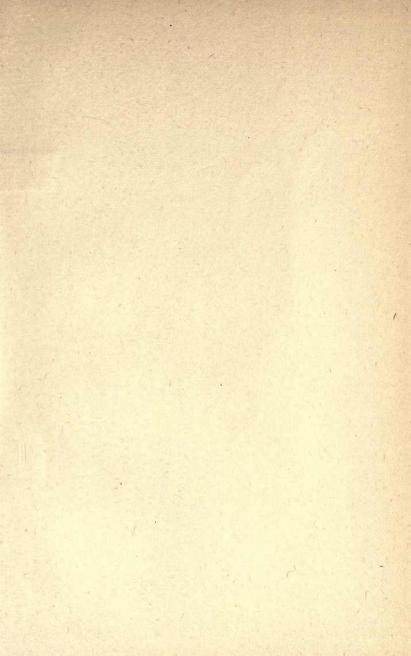
The square of 45 is 2025 " " " 44 is 1936

#### A difference of 89

and as  $89 \times 0.72 = 64$ , the square of 44.72 is 1936 + 64 = 2000. Per contra, the square root of 2000 is  $44 + \frac{64}{89} = 44 + 0.72$ = 44.72.


> PRINTED BY SPOTTISWOODE AND CO. LTD., COLCHESTER LONDON AND ETON

# 


## V RICKERSK

is optimized in the result of products can with a lift for any closed from Cole, it is diff. of Table 2, it the issues were any approximately of differentiation of the second of the second of the second of the optimized of the second of the

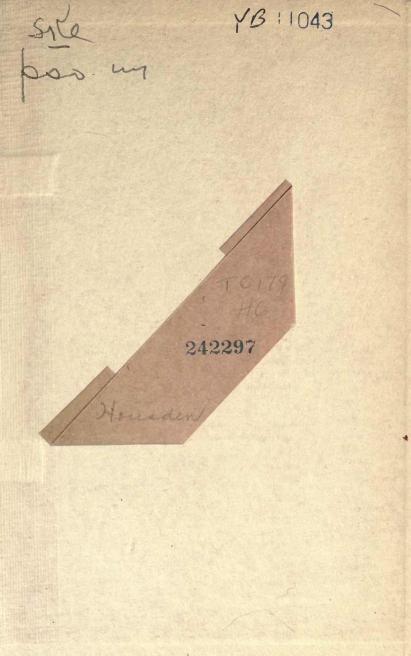
Autor and the second of A is a second of the second s







|                             | CULATION DEPARTMENT |   |  |  |  |  |  |  |
|-----------------------------|---------------------|---|--|--|--|--|--|--|
| LOAN PERIOD <b>HOME USE</b> | RIN                 | 3 |  |  |  |  |  |  |
| 4                           | 5                   | 6 |  |  |  |  |  |  |


ALL BOOKS MAY BE RECALLED AFTER 7 DAYS.

Renewls and Recharges may be made 4 days prior to the due date. Books may be Renewed by calling 642-3405.

| SENT ON ILL    |                 |                      |  |  |  |  |  |  |
|----------------|-----------------|----------------------|--|--|--|--|--|--|
| MAY 2 7 1997   |                 |                      |  |  |  |  |  |  |
| U. C. BERKELEY |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                |                 |                      |  |  |  |  |  |  |
|                | UNIVERSITY OF C | CALIFORNIA, BERKELEY |  |  |  |  |  |  |

FORM NO. DD6

JNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720-6000



