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SUMMARY 

A cable-towed instrumentation system, capable of meas- 

uring and continuously recording data from oceanic depths 

as great as 5000 feet is described. General system design 

is outlined, with particular attention paid to contrasting 

requirements for faired- and unfaired-cable systems. The 

hydromechanical design for a depressor is included, as well 

as the detailed arrangements for a typical temperature- 

recording system. 
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INTRODUCTION 

There iS a serious need for improvement in techniques of 

acquiring and recording oceanographic data. Improvements in 

both the quantity and quality of such data are needed, as well 

as extension of the range of depths to which measurements can 

be taken. This is particularly true with respect to measurement 

of temperature distribution. 

An obvious method for increasing the rate (and thus the 

quantity) of data acquisition consists of spacing appropriate 

measuring devices at intervals along a line normal to the 

surface of the water, and then moving the entire array through 

the area of interest, continually monitoring the instrumentation. 

Several systems based on this principle have been designed, the 

best known being the "thermistor chain" (2)° developed by the 

Commercial Engineering Company in conjunction with the Woods 

Hole Oceanographic Institute. 

While these systems represent a significant technologi- 

cal advance, the extreme weight and bulk involved to attain 

Numbers in parentheses refer to the list of references 
on page 94, 
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depths of about 1000 feet preclude extension to major depths. 

The Systems Engineering Division, sponsored by the Office of 

Naval Research, therefore undertook a program to increase the 

capabilities of such systems by designing to the practical 

Maximum limits possible within the envelope of pertinent 

restrictions. The program had the following general ob= 

jectives: 

dhe Study the requirements for deep-towed, continuous- 

reading oceanographic instrumentation and develop 

design criteria; 

Dee Conduct experimental verification of techniques 

necessary to implement the above design criteria; 

and 

37 Conceptually design and prepare specifications 

for systems functional at 5000-foot and 1000-foot 

depths, including shipboard handling equipment. 

It soon became apparent that the most expeditious approach 

to these objectives was to proceed with the conceptual design 

of the deeper of the two systems, as this would assure early 

recognition of relevant problems and force development of 

pertinent design criteria. Moreover, it was decided that 

whereaS provision could not be made for every measurement 

that might be desired by oceanographers for specific investi- 

gations, the design should be directed toward satisfying 
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the need for temperature measurements in the vertical profile, 

as the thermal structure of theocean is of direct and con- 

tinuing interest in nearly every branch of cceanography. 

The major result of this work consists of the conceptual 

design and specification for a cable-towed oceanographic 

instrument system suitable for simultaneously positioning 

measuring devices at discrete depth intervals to 5000 feet. 

The requirements and pertinent design criteria are contained 

in a general description of the development of this system. 

It should be noted that, although directed toward temperature 

measurements, the design is sufficiently flexible to accommo- 

date any measurement for which suitably miniaturized in situ 

measurement devices exist. The volume of the instrument 

containers and the spacing along the tow wire can be varied 

to accommodate special requirements. 

Feasibility of the major concepts has been demonstrated 

by carrying out necessary preliminary design. Certain criti- 

cal components have been breadboarded and subjected to suffi- 

cient test to demonstrate validity. Details are reported 

in the appropriate sections of thereport. 

Finally, those problems which have not been completely 

resolved are discussed, and a recommended program for future 

action is given. 
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REQUIREMENTS FOR DEEP-TOWED INSTRUMENTATION SYSTEM 
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REQUIREMENTS FOR DEEP-TOWED INSTRUMENTATION SYSTEM 

To establish the range of requirements for the system 

under consideration, personnel of five of the major oceano- 

graphic facilities in the United States were interrogated 

with respect to their future plans and needs. Although 

unanimity of need was not expected, the results indicate 

that a more significant range of immediate and near future 

needs can be satisfied by a versatile instrument Support 

system than was at first believed possible. The major con- 

clusions drawn from these visits are summarized below: 

dk The oceanographic laboratories require deep- 

towed-instrumentation capability. About equal 

need was expressed for moderate speed (6-8 knots) 

very deeply towed systems, and shallow (1000-foot) 

intermediate speed (8-10 knots) systems suitable 

for fine-scale definition. A maximum depth of 

5000 feet appears to cover the area of greatest 

interest, as this encompasses the deep sound channel 

and the regions with the greatest variation in 

physical characteristics. 

Pe The system should be adaptable for use with many 

different sensing devices and recording systems; 

it is essential that there be considerable flexi- 

bility in locating the sensors along the cable. 
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Considerable emphasis must be placed on minimizing 

Size and weight, particularly in the handling equip- 

ment, Since the capacity of many oceanographic 

vessels is already overtaxed. The maximum weight 

of a depressor should not exceed 1000 pounds to 

minimize handling problems. 

3. The system should be operable with or without 

instrument modules. 

4, The system should be capable of a wide variety of 

measurements. Measurement of temperature is of 

greatest immediate concern although provision must 

be made for measurements of conductivity, salinity, 

and oxygen content. 

ole Emphasis at present should be placed on the attain- 

ment of desired depths and speeds with a reliable 

hydromechanical system not posing unreasonable 

problems in shipboard handling. Final selection 

of intelligence-transmission techniques should be 

deferred, although telemetry seems the only practi- 

cal system for the depths and degree of coverage 

desired. 

The major premise to be drawn from these discussions 

is that whereas it appears practical to adapt the towing 

system to a wide range of applications, demonstration of the 
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feasibility of attaining the desired range of speed and 

depths with a system which does not impose unreasonable 

shipboard handling requirements if of first concern. This 

premise was accordingly adopted as the working philosophy. 

10 
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SYSTEM DESCRIPTION 

This study resulted in a conceptual design essentially 

Satisfying the requirements detailed in the preceding section. 

The design, shown diagrammatically in Figure 13, consists of 

a number of lengths of three-quarter-inch diameter cable 

coupled end-to-end with a pipe-like housing. This housing 

(Figure 10) provides for instrumentation in the central section. 

The end pieces contain the cable terminals and appropriate 

electrical fittings. 

The cable is covered with a free-swiveling, hydrodynamic 

fairing (Figure 9) to reduce drag and vibration. The instru- 

ment modules are also faired. 

A core-space of about one-half-inch diameter is available 

within the load-carrying cable armor to accommodate any suit-— 

able electrical cable. 

The cable-fairing-module assembly is retained at proper 

depth by a depressor (Figure 3) which develops the requisite 

depressing force by a combination of weight and hydrodynamic 

reaction. 

Shipboard handling can be accomplished by a tractor- 

type capstan (Figure 12) for systems with rigid instrument 

modules distributed along the faired cable, or a twin load- 

drum (Figure 11) for systems lacking modules. 

12 
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Shipboard storage can be accomplished by the use of 

six compact storage reels, each accommodating 1000 feet of 

cable (cable connectors at 1000-foot intervals permitting 

such breakdown) or by coiling the cable in 6000-foot-capa- 

city stowage wells. 

A system employing binary coding to permit sequential 

sampling of the sensing gages was designed only to demonstrate 

the feasibility of transmitting data from a large number of 

sensors with the selected wire size. This technique provides 

for sampling 128 sensors with only ten conductors. The number 

of sensors may be doubled by each additional wire. 

The various components are described in greater detail 

in later sections. 

ES 
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SYSTEM DESIGN 
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SYSTEM DESIGN 

SYSTEM CONSIDERATIONS 

This study is concerned with means for providing con- 

tinuous underway measurement of ocean variables at a number 

of points in a vertical profile. The design of a towed- 

instrument system, with a flexible towing member providing 

both data link and support, is presented. 

The problem consisted essentially of finding a configura- 

tion to provide the required 5000-foot depth, utilizing a 

towing link of sufficient dimensions to accommodate the 

data-transmission function and also providing a reasonable 

margin of reserve strength at a specified towing speed without 

imposing unusual demands on handling gear. 

The first step in the solution of this problem was the 

establishment of the relationship between the towing link 

and the forces required to maintain it in the desired con- 

figuration. The towing link was specified from the results 

of these studies, incorporating data-transmission requirements. 

A depressor was then designed, achieving the required force 

characteristics without unreasonable size and weight penalties. 

Instrument containers, compatible with this towing link 

were then investigated and winching equipment selected. 

As the interdependent requirements can be most conveniently 

discussed in conjunction with particular components, detailed 

considerations are presented in the appropriate following sections. 

15 
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COMPONENT SELECTION AND DESIGN 

Selection of Cable Type 

Several types of towing member have been used in comparable 

applications. One such type is a segmented chain of rigid 

links with provision for one or more separate electrical con- 

ductors. Typical of such designs is the "thermistor chain," 

developed by the Commercial Engineering Company in conjunction 

with Woods Hole Oceanographic Institution (2), and successfully 

used in obtaining continuous measurements of the temperature 

profile. The largest such unit, in use by the Department of 

Oceanography and Meteorology at the Agricultural and Mechanical 

College of Texas, has a length of 900 feet. The significant 

disadvantage of this towed system lies in its size and weight. 

Since even the 900-foot unit is extremely bulky, this type 

of equipment would hardly be practicable for use to a depth 

o£ 5000 feet, 

Another type of towing member is a stranded steel cable 

combined with one or more electrical conductors. In one de- 

Sign, a conventional wire rope center is employed as a strain 

member; the insulated electrical leads are wrapped around 

this core, and the whole is enclosed in insulation. An alterna- 

tive design, known as armored cable, has the electrical mem- 

ber, either multi-conductor or co-axial, as the core with the 

steel wires wrapped around the outside in one or two layers. 

16 
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The single-armor type is frequently employed as undersea 

transmission cable. The double-armor cable is used extensively 

in oil-drilling operations and in naval systems such as the 

variable-depth sonar. There is a Significant advantage in 

using a cable with the electrical leads in the outer jacket 

as this simplifies the problem of connecting measuring 

instruments along the cable. This advmtage is offset, 

however, by handling problems, as the electrical leads are 

susceptible to crushing and wear. In some applications, a 

wire rope and a separately attached electrical cable have 

been employed. Here, the handling problem is still serious, 

as the electrical leads may be crushed under the wire rope 

in passing over sheaves and drums; it is not practicable to 

prevent twisting of the two cables in handling. Furthermore, 

under tow, the electrical cable tends to billow out between 

points of attachment and thus to increase the drag and vibra- 

tion of the system. This can cause early fatigue failure of the 

electrical leads, and breakdown of the insulation. 

Another design employs the strength member as an electri- 

Cal conductor. This principle is used in the cable used in 

the deep oceanographic instrumentation probes being developed 

by Scripps Institute of Oceanography. That cable, manufactured 

by Columbia-Geneva Steel, is a steel strand composed of 19 wires, 

0.03l-inch O.D., and 18 wires, 0.028=-inch O.D., covered with a 

polyethylene jacket to 0.32-inch O.D. This cable has an 

17 
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estimated breaking strength of 2800 pounds. FM telemetering 

with a seawater return is used to send a large number of 

signals over several miles of cable. This technique offers 

some definite advantages, particularly in simplifying the . 

connector problem, although its use does require a complex 

electronic telemetering system both within the instrument 

package and at the shipboard recording station, 

These possible designs were considered at length, and 

discussed with members of organizations engaged in oceano- 

graphic research. As a result, it was decided to select 

a double-armor cable, with either a co-axial or multi-conductor 

core, aS the basic configuration for the system. This selec- 

tion does not preclude the possibility of using a single- 

strand combined strength and electrical conductor, however, 

Since the basic design can be readily adapted to such use. 

Consideration was also given to the problem of adding 

fairing to the cable to reduce its drag and vibration. Al- 

though the use of fairing seriously complicates the problems 

of storage and handling, and adds significantly to the cost, 

the achievement of great depths at reasonable towing speeds 

without the use of fairing is impractical. Unfortunately, 

obtaining comparisons of configurations that might satisfy 

requirements for depth and speed involves laborious calcu- 

lations, using methods as described in (3). The 

tediousness of this task motivated the development of the 

18 
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simplified engineering design procedure presented in (1). 

Since the earlier report, (1), constitutes an integral part 

of this study program, the details of these calculations 

will not be repeated here. 

If we refer to the analysis of (1), a comparison of the 

unfaired- and faired-cable system requirements necessary to 

achieve a 5000-foot depth can be made. In the faired=-cable 

case, it is shown that, if the tension at the water surface 

is limited to one-third the breaking strength of the cable, 

the minimum value of ¢> required to reach a depth of 5000 

feet is 42 x 10% 88 Here, d is the diametér of the 
£t 

cable and V, the towing speed. Corresponding to this ratio, 
ay 

QO. . lbs : : 
the value of g> is 1.14 x 108 fre. ° Here, T, is the required 

downforce on the bottom end. The required cable length, s,, 

is 6200 feet, and the horizontal distance from the bottom 

end of the cable to the tow point is 3500 feet. 

In the unfaired-cable case, as a result .of the choice 

of the hydrodynamic loading functions, the aurves do not 

exhibit a minimum value for = >» This may be seen in Figure 

1, which presents a comparison of the requirements for the 

faired and unfaired cases. 

In carrying out these calculations, the methods of (4) 

were employed. The tension in the cable at the water surface 

was assumed to be one-third the breaking strength of the 

19 
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double-armor cable. The fairing was assumed to be weightless 

in water. Other assumptions are noted in Figure 1. 

Significant advantages in the use of faired cable for 

achieving the 5000-foot depth are apparent in Figure l. 

From the minimum value, 42 x 107° sec*/ft for oe , the minimum 

allowable diameter of faired cable may be determined, once 

the highest desired towing speed is selected. The curves 

show that if unfaired cable of the same diameter were employed 

for the same requirements of depth and speed, more than twice 

the length of cable would have to be used. Moreover, the 

reguired downforce at the lower end would be about double 

that required for the faired cable. For these reasons, and 

because of the greater cable-life expectancy attributable to 

fairing, faired cable was selected for this design, in spite 

of the additional handling problems and increased costs. 
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Selection of Cable Size and Downforce 

Since we have now chosen the basic configuration, and 

have determined that the minimum value ss is 42 x 1075 

sec“/ft for the 5000-foot depth, the selection of seisile size 

becomes a matter of balancing requirements for a reasonable 

upper limit on the towing speed against the required size of 

electrical conductors and the practical problems of handling 

the system. Figure 1 shows the cable size and downforce 

required as a function of the maximum speed of tow, the down- 

T 
force being obtained from the value 52 = 1.14 x 10° 25 ; 

corresponding to the minimum value of Be - Note that, at the 

Maximum allowable speed corresponding to the cable size 

selected, the cable length and horizontal distance of the 

bottom end from the tow point remain the same: namely, 

6200 feet and 3500 feet, respectively. 

Upon examination of Figure 2, it becomes evident that 

the required cable size and dowmeonee increase rapidly with 

increase in speed. This is due, of course, to the fact 

that the hydrodynamic forces acting on the system increase 

aS the square of the speed. If we adopt the position that, 

in consideration of difficulty in handling and system costs, 

it is desirable to keep the cable size as small as possible, 

then the required size of electrical conductors becomes the 

22 
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dominant design factor. The size of the conductor, depending 

as it does m the characteristics of the instrumentation, 

cannot be definitely established at this time. Rigid speci- 

fications of cable size must await delineation of specific 

applications on which instrumentation choice, and hence 

conductor size, depends. However, it appears likely that 

cable of at least one=half-inch diameter will be required for 

most applications. To allow for some flexibility in the 

instrumentation, cable of three-quarter-inch diameter was 

selected for this study. On this basis, maximum towing speed 

attainable without allowing the tension to exceed one-third 

the breaking strength of the cable, is about 7.2 knots. The 

downforce required at this speed is about 4450 pounds. 

24 
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Design of the Towed Body 

Two methods may be used to produce the downforce required 

on the bottom end of the cable. One is to attach a stable 

towed body, with weight in water equal to the required force; 

the other is to employ the hydrodynamic force produced by 

depressing wings attached to the body. 

Disadvantages of using weight alone are: 

1. The heavier the body the more difficult the 

problem of shipboard handling; and 

With constant weight and a given cable length, 

depth of tow decreases with increase:.in. speed. 

Advantages of using weight alone are: 

107 The towed body is less responsive to disturbances 

from the flow and from motion of the towing vessel; 

Design of the towed body is less critical and less 

difficult; 

The body is less subject to serious damage in handling; 

and 

Accelerative forces during launching and retrieving 

while under way are less severe than transient hydro- 

dynamic forces experienced with a winged body. 

25 
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In applications where the required downforce is small 

(less than 1000 pounds) and the speed low, it is generally 

conceded that downforce can best be produced by the use of 

weight alone. There are exceptions to this: in a helicopter- 

towed system, weight becomes a critical factor. The con- 

figuration considered herein requires a downforce of 4450 

pounds at a deSign speed of 7.2 knots. Users of oceano- 

graphic equipment were asked for comment on the shipboard- 

handling problem of such a heavy body and were unanimously 

of the opinion that the maximum practicable weight, for ease 

of handling aboard most oceanographic vessels, should not 

exceed 1000 pounds. They also concurred in citing a maximum 

acceptable linear dimension of seven feet. 

In view of this unanimity of opinion, our configuration 

was designed to achieve the required downforce by a combina- 

tion of weight and dynamic depression. An arbitrary weight 

of 1000 pounds in water was assumed, and calculations were 

made (see Appendix I) to determine the wing and tail configur- 

ations needed to produce the additional 3450 pounds of down 

force at a towing speed of 7.2 knots. A biplane configura- 

tion was selected to keep the span small for easier handling. 

With the calculated necessary effective hydrodynamic lifting 

area of 39.75 square feet distributed equally, each wing, 

and the tail, has an area of about 13 square feet. The re- 

sulting configuration is shown in Figure 3. 
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The wings are swept back to reduce the danger of fouling 

by seaweed and debris. Provision is made for an instrument 

capsule with a volume of about one cubic foot, to house equip- 

ment required at the maximum depth. The volume of the housing 

was selected arbitrarily and can be increased considerably 

without significant change in the system characteristics. 

Since the total weight of the body in water will be less than 

1000 pounds, the additional static downforce required is pro- 

vided by ballast weights. This provision facilitates static 

trim of the body and also increases the metacentric stability. 

The stability of the body has been treated only for the 

static case. However, the margin of static stability, deter- 

mined by past experience, should ensure satisfactory dynamic 

stability. This and other towing characteristics of the body 

can best be verified by limited tests in a towing basin. Such 

tests are usually desirable in any event in order to make 

final adjustments to ballast, location of tow point, and 

settings of wings and control surfaces. 

The effect of variation in speed on downforce and drag 

was calculated. Results, presented in Figure 4, show that 

the cable angle at the body is about 84 degrees at the 

design speed, this angle being arctan — » where Ly is the 

total downforce and D the total drag. With decrease in speed, 

the angle increases to a maximum of 90 degrees, since the 

weight is a constant and the hydrodynamic forces vary 

28 
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approximately as the square of the speed. This result is 

consistent with the assumption made in (1), that the cable 

angle is not significantly less than 90 degrees. 
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Effect of Variation in Speed and Cable Length 

The basic design configuration of the cable-body 

system having been determined, it is of interest to determine 

the effects of changes in the speed and length of cable payed 

out. Using the results of Figure 4, and the tabulated func- 

tions in (4), calculations of these effects were made and 

results presented in Figures 5, 6, 7, and 8. Figure 5 shows 

that, as the speed is reduced from 7.2 knots to zero, addi- 

tional cable can be payed out to achieve a maximum depth 

of about 17,000 feet without exceeding a static tension of 

one-third the breaking strength of the cable. For the chosen 

three-fourths-inch double-armor cable, this limiting tension 

is approximately 15,000 pounds. Figures 6, 7, and 8 show 

the effect of speed variation on the tension at the top, T,, 

the depth, y, and the horizontal didpiacenent of the body, 

x, for fixed cable lengths of 1000, 3000, and 6000 feet. The 

figure for maximum attainable depth shows a small discrepancy 

between this computation and (1). This discrepancy derives 

from tke assumption made in (1) that the cable angle at the 

bottom is 90 degrees. The curves in Figures 5, 6, 7, and 8, 

based on the calculated values of cable angle shown in Figure 

4, represent a refinement of the original design approximation. 

Further examination of Figures 6 and 7 shows that the 

full speed capability has not been utilized since the tensions 

31 
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at 8 knots are below the imposed limiting value. The tensions 

vary nearly as the square of the towing speed in this speed 

range; we may estimate the maximum towing speed for a cable 

length of 1000 feet to be 11 knots and for a cable length 

of 3000 feet, 9 knots. 
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Cable Fairing 

Considerable effort has been expended, during the past 

ten years, on the development of a satisfactory design for 

cable fairing. The most outstanding development of this 

period was the David Taylor Model Basin enclosed fairing 

design (DTMB No. 7). This fairing, of molded rubber in a 

streamline cross section, completely encloses the cable. 

The fairing was used in continuous lengths for such aplicacions 

as the air-towed and ship-towed sonar. Success was tempered by 

serious problems in handling and storing, as fairing of the 

enclosed design did not lend itself to running oer drums 

and sheaves under load. Canadian researchers partially 

solved the handling problem when they modified the DTMB design 

and clipped the fairing to the cable. Certain improvements 

in this modification were introduced at DTMB as a result of 

model studies. It was found that the fineness ratio (the 

ratio of the chord length of cable-plus-fairing to the cable 

diameter) could be reduced to 4:1. It was also found that 

the ideal fairing thickness was about eight-tenths the diameter 

of the cable. A clip-type fairing for a three-quarter-inch 

cable designed according to these specifications, is shown in 

Figure 9. 

The tendency of fairing to stretch more than cable under 

load constitutes a serious design problem. Even with fiber 

reinforcing strands molded into the leading edge, long sections 

of fairing tend to stretch along the cable and bunch up at 
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SECTION A-A ET 

Clip-Type Fairing 

Figure 2 - Double-Armor Cable with 





the lower end, Attempts to use swaged rings on the cable to 

support the clips have thus far been unsuccessful because the 

rings become loosened when the cable elongates under load. 

Recently, studies have been initiated to develop better 

methods of securing supporting rings on the cable but this 

problem is not yet solved. The problem of fairing stretching 

is minimized in our present design because each section of 

fairing will be less than 200 feet long. Each section would 

be supported at the upper end by a swivel attached to the 

lower end connector of each instrument module. The problem 

of bunching can be easily avoided if provision is made for 

slight stretch of the fairing sections at the bottom ends. 

In specifying the use of cable fairing it is important 

to consider the manufacturing cost. Most fairing is made of 

natural rubber which is hand-layed to approximate Size and 

then cured in a heated mold. This process is expensive, and 

even fairing of small section costs as much as five or six 

dollars per foot. Although studies of alternate materials, 

and possible development of an extrusion technique, have been 

initiated, no material has yet been found to possess as 

Many desirable features as a rubber compound. Furthermore, 

extruded plastic fairings are subject to non-uniform stresses 

which cause asymmetries in shape and consequent erratic towing 

characteristics. 
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The most feasible means of cost reduction seem to lie in 

improved methods of rubber-fairing production. The Navy has 

recently contracted with the Marsh and Marine Manufacturing 

Company of Howeton: Texas for the development of a new manu- 

facturing technique and the production of sample fairing 

lengths. This development has been discussed with represen- 

tatives of Marsh and Marine; they expect their studies to 

lead to production of clip-type fairing at considerably re- 

duced cost. 
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Design of the Instrument Housings 

The instrument housings for attachment at points along 

the faired double-armor cable must fulfill a number of 

requirements, They must: 

a Be watertight; 

Be designed to house sensors of a variety of 

sizes and shapes; 

Provide for necessary electronic equipment for 

transmission; 

Provide watertight electrical connectors; 

Be compatible with the shipboard handling system; 

Provide for free-swiveling attachment of the 

sections of cable fairing; 

Be of modular design, easily and rapidly connected 

to or removed from the cable; 

Be of materials compatible with the steel cable 

in sea water and resistant to chemical corrosion. 

It is vital that none of these stipulations adversely 

affect the towing characteristics of the system. 
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In order to fulfill these requirements, and recognizing 

the impracticability of controlling twist in the cable under 

load, it was decided to design an instrument housing circular 

in cross-section concentric with the cable. 

In the absence of definite instrumentation details, the 

size of the housing was fixed arbitrarily. A cylinder with 

a minimum inside diameter of three inches, and a usable 

inside length of 12 inches, to provide space for housing a 

thermistor bridge and associated telemetry equipment, was 

selected fac the preliminary design. Specifications were 

prepared, and an assembly, shown in Figure 10, was procured 

from the Marsh and Marine Manufacturing Company to demonstrate 

the feasibility of the design. 

In this design, a mechanical clamping arrangement is used 

to secure the armor wires, but the quality of performance of 

this method has not yet been proven. Some difficulty can be 

expected, since the inner and outer armor wires are not of 

the same diameter. An alternate design, which shows consider- 

able promise, consists of a poured fitting with epoxy as the 

potting material. The David Taylor Model Basin has been 

experimenting with a fitting of this type for some time and 

have found it to be completely satisfactory. If it can be 

established that a poured epoxy fitting will stand up for 

long periods, then it would appear to be the best solution to 

the armor-wire connector problem. 
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Shipboard Handling Equipment 

Probably the most important consideration in the use of 

any faired-cable, system is the design of handling equipment 

for reeling in, paying out, and storing hundreds of feet of 

cable. The design of such equipment is even more critical in 

the system under consideration, since a number of instrument 

modules attached to the cable must also be handled. 

It appears certain that, in handling long lengths of 

faired cable, it will be necessary to use a traction system 

which is separate from the cable-storing system. There are 

two ways in which this might be accomplished; one is to 

use twin load-drums and the other, to press the cable between 

tractor-like treads coupled to a drive motor. Either may be 

used in conjunction with one or more storage reels or with a 

cable well. 

In the twin load-drum system, the cable is wrapped around 

two conventional drums as though they were a single unit. 

Projections of the drum axes are parallel in the plane of the 

deck and intersect at a small angle in a plane perpendicular 

to the deck. This angle determines the axial displacement of 

the cable as it passes from one sina to the other and this 

"canting" of the axes prevents "walking" of the cable along 

the drums. The diameter of the drums is determined, as in 
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conventional designs, by the minimum bending diameter of the 

cable. The length of the drums, however, need only be enough 

to accommodate the number of wraps required to absorb the 

tension in friction. Figure 11 shows a typical design using 

this principle. 

The difficulty in using the twin-drum system (or any 

other drum system for that. matter), lies in the necessity of 

passing the instrument modules under tension over the drums. 

The modules may be expected to be of large diameter in 

comparison with the cable, and of a length not significantly 

smaller than the drum radius, As a result, the concentrated 

loading on the module and the sharp bend in the cable at the 

connector may exceed strength limitations. The magnitude of 

this problem cannot, of course, be properly assessed until 

specifications are developed for a particular system. 

Nevertheless, it is likely that a drum system will not be 

acceptable for many such applications unless the drums are 

made considerably larger than would normally be required. 

For the system proposed here, tests with a small model twin- 

drum system are in progress, but results were not available 

in time to be included in this report. 

Although the basic idea of a tractor-type capstan system 

has long been used in handling metal tubing and cable during 

the manufacturing process, the idea has only recently been 

applied to shipboard cable-handling problems. The principal 
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proponent of this system is the Entwhistle Manufacturing 

Corporation of Providence, Rhode Island. This Company 

manufactures a number of different types of tractor-type 

capstans under the trade name "Caterpuller." The Navy 

some months ago purchased one unit (Similar to that shown in 

Figure 12) andinstalled it on the destroyer USS GLENNON. 

Tests of this unit have been made by Destroyer Development 

Division, Group II at Newport, Rhode Island in connection with 

the installation of a deep=-moored buoy system. It is reported 

that the unit on the GLENNON has successfully handled one- 

quarter-inch wire rope. Shackles and fittings up to two 

inches in diameter have been passed through the treads with 

no apparent difficulty and with no change required in the 

setting of the machine, 

The use of a "Caterpuller" for the application proposed 

herein has been discussed with representatives of Entwhistle. 

The incorporation of a fail-safe system was emphasized, 

insuring that, if a failure in the equipment should occur, 

there would be no possibility for release of traction 

thereby allowing the cable to run free. Entwhistle repre- 

sentatives are of the opinion that a "Caterpuller" can be 

designed satisfying all system requirements and incorporating 

a fail-safe system insuring that any failure will cause 

sufficient pressure to be applied to the treads to restrain 

the cable under a load equal to the breaking strength. They 

47 



| 
it 

‘gn bin don iva maa = 

“wns ge od oat | 

‘aadoane He" 

oa sie gD: , 

| eee Bh si assays ous, bawoon nat le ae ea . 

ay bok bned Mieheceres ‘Rest veoingeas ait ne i) 



CLASS D 

TYPE D-VA-72 

CATERPULLER 

Track Design: Floating. 

Track Arrangement: Vertical. 

Loading: Single Track - Multiple Pneumatic. 

Effective Track Length: 45 Inches. 

Maximum Recommended Operating Speed: 650 FPM. 

Maximum Pull; 4000 Lbs. at 90 FPM. 
Maximum Horsepower Input: 15 HP. 

Cable Capacity: 3/16 to 6 inches in diameter. 
Total Weight: 4500 Lbs. with drive. 

Required Floor Space: 110 inches long, 64 inches wide. 

Drive: Powered and Controlled to suit application. 

Application: Cable Extrusion Lines. 

Courtesy Entwhistle 
Manufacturing Company, 

Providence, R. I. 
FIGURE NO, 12 ae 
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also feel that the instrument modules can be passed through 

the treads without damage either to modules or to tread 

faces. 

As for the size of "Caterpuller" required for this 

application, (5) reports that a track loading of 500 pounds 

per inch is a reasonable design value. With such a loading 

"tractive pulls of from 100 to 300 pounds per inch of effec= 

tive track have been achieved." Thus, to provide a maximum 

pull of 10,000 pounds, an effective track length of 33 to 100 

inches would be required. 

Figure 8 shows that at one or two knots, the tension in 

the cable, attributable chiefly to the combined weight of the 

body and cable is only about 6000 pounds. If the traction 

unit is designed to inhaul only at low towing speeds, the 

power required would not be large. Since inhaul and payout 

at frequent intervals should not be necessary, it would seem 

unreasonable to deSign for inhaul at the highest towing 

speed. Even if the inhaul load is not high, however, there 

is still a question regarding the normal loading that can be 

applied to the cable by the tread faces. This question arises 

as a result of the fairing. Even though the fairing is of 

rubber and of a thickness equal to Slene-vSnens the cable 

diameter, prevention of slippage of the cable relative to 

the fairing has not been demonstrated. The friction coeffi- 

cient for the armored cable in contact with the tread faces 
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could conceivably vary between 0.05 and 0.3 depending on the 

presence of water or some form of preservative on the cable. 

This will be a factor in determining cable slippage. A further 

problem could arise in connection with the clip deSign. If 

the clips are made of spring steel to prevent permanent defor- 

mation by traction-unit pressure, they may be hard enough 

to damage the cable. A possible alternative is the use of 

some type of plastic clip, but this requires further study 

before actual selection of a clip design can be made. 

The "Caterpuller" appears to offer the best solution 

to the design of an acceptable traction unit for the applica- 

tion discussed in this report. There are, however, many 

questions tobe resolved before such a system can be considered 

acceptable. These questions can be resolved only by experi- 

ments with an existing "Caterpuller" unit in handling faired 

cable under tension. 

Coping with the tension in the cable constitutes only 

part of the over-all handling problem; the other part in- 

volves storage of the cable on the low-tension side. One 

method is to store the cable on one or more reels which might 

be either separately driven or coupled to the load system to 

provide a small amount of back tension. Approximately 1000 

feet of three-quarter-inch faired cable could be stored ona 

Single, thin reel eight feet in diameter, with a two-foot 

diameter core. By uSing six such reels, and breaking the 
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cable with a connector at 1000-foot intervals, the entire 

6000 feet of cable could be stored. An alternate method 

would be to stare the entire 6000 feet of faired cable ona 

Single reel six to eight feet in diameter and three to four 

feet wide. This would, however, require a level-wind device 

to provide for uniform spooling on the storage reel. 

The use of one or more storage reels provides advantages 

in transporting the cable to and from the ship and in elimina- 

ting any need for manual handling during stowage operations. 

There is at least one disadvantage, however, in that the 

stored instrument modules are not readily accessible for 

inspection, servicing, or replacement. 

Another method feeds the cable from the traction unit 

to a tank or cable well where it would be stored in a figure- 

eight to eliminate any kinking tendency. Considerable manual 

labor is involved in this method, but simplicity and easier 

access to the instrument modules are advantages. When this 

method was first proposed, the main objection concerned the 

safety hazard in the event of a failure in the traction unit. 

As noted previously, however, it is necessary to provide a 

fail-safe traction unit regardless of the selected storage 

system. 

Since the proposed system will be comprised of short 

lengths of faired cable coupled by the module connectors, it 
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has been suggested that each length be de-coupled and stored 

along the deck during cable inhaul. Inasmuch as provision 

is to be made for quick disconnection of the modules, this 

appears at first glance to be an attractive solution. Upon 

further reflection, however, it can be anticipated that 

serious problems would arise from fouling of the electrical 

connectors by dirt and moisture. Once the array is 

assembled and checked out it should be de-coupled only when 

absolutely necessary to alter spacing, to change instrumen- 

tation, or to repair faulty elements. 
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INSTRUMENTATION 

Although it was not the intent of this study to analyze 

requirements for instrumentation and data transmission, it 

was impossible to omit such considerations completely. 

Studies related to typical instrumentation housing and infa@ - 

mation transmission led to the design of a system for moni- 

toring the temperature and pressure at many points along 

the cable. Some of the critical circuit elements were 

"breadboarded" to check the design. A detailed description 

of the instrument circuitry is given in Appendix III. In 

this Loe binary coding is employed to sige possible the 

sequential sampling of 128 sensing gages by the use of only 

seven wires for gage selection, one wire for gage output, 

one wire for calibration, and one wire for power. The ground 

return is provided either by an additional wire or by the 

steel jacket and the seawater. The number of sensing gages 

may be doubled for sack additional gage-selection wire. A | 

feature of the system is that failure in one of the instrument 

packages will not affect theoperation of the rest of the system. 

Although this instrument system offers distinct advan- 

tages over a co-axial FM telemetering system, there is no 

reason why a system employing coaxial cable could not be 

designed. The only requirement to be met is that the 

electrical conductor must be small enough to occupy the 
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core of the double-armor cable. Since the core diameter of 

a three-quarter-inch cable iS approximately one-half inch, 

there would be ample room for either type of telemetering 

system. Admittedly, either system involves the use of complex 

electronic circuitry but, even with relatively wide spacing 

of the sensors, it does not appear possible to avoid the use 

of a somewhat sophisticated electronic system. This 

Should not, however, be cause for great concern since far more 

complex telemetry systems are currently in wide use and im- 

provements in reliability at decreased cost are being made 

continually. The development or selection da satisfactory 

telemetering method, therefore, should not be a Significant 

obstacle in the development of the proposed measuring system. 
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DISCUSSION 

This study was conducted to provide a design for a cable- 

towed system capable of making simultaneous measurements at 

a great many depths in a vertical profile down to 5000 feet, 

with continuous monitoring of the instrumentation, The 

result is a generalized design (shown diagrammatically in 

Figure 13), satisfying the basic requirements of such a system. 

The most promising means for achieving such depths at 

reasonable towing speeds is the use of double-armor cable 

with clip-type fairing. The fairing must be limited to 

relatively short lengths, probably no greater than one or 

two hundred feet, and the upper end of each fairing length 

must be tied back into the cable by means of a Swivel support. 

The required downforce on the bottom end of the cable may 

be obtained by a sonindigeveilen of weight, and hydrodynamic 

force produced by depressing wings. To facilitate handling, 

the body weight should not exceed 1000 pounds. 

A depth of 5000 feet can be attained with only 6200 feet 

of cable at a towing speed of 7 knots, using three-quarter-— 

inch-diameter double-armor faired cable, without exceeding 

one-third the breaking strength (approximately 15,000 pounds). 

The "Caterpuller" offers the most promise in shipboard 

handling of systems containing rigid instrument modules dis- 

tributed along the faired cable, A twin load-drum should be 

Satisfactory for systems not containing such modules, 
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SHIPBOARD HANDLING 

EQUIPMENT 

CABLE AND 

FAIRING 

INSTRUMENT 

MODULE AND 

CABLE CONNECTOR 

DEPRESSOR 

AND INSTRUMENT 

HOUSING 

Figure 13 - Generalized Design of a Cable-Towed 

Instrumentation System 57 





Several questions remain to be resolved in the deSign of 

the equipment, but it appears that solutions can be obtained 

by developmental modifications of existing devices, and 

predevelopment tests to obtain certain basic data. 

Selection of the maximum length of cable fairing between 

terminal points can be made on the basis of the Eames’ hydro- 

dynamic loading assumptions (4) once the maximum towing 

speed has been set and the "stretch" characteristics of the 

fairing determined, An answer derived from the Eames' loading 

functions should be conservative, as noted earlier. 

With respect to the problem of connecting the double- 

armor cable to the module terminals, an alternate method is 

available, uSing swaged lead fittings, Several companies 

have developed this art to a fairly high level of saphistica- 

tion, It thus appears reasonable to expect that the problem 

can be resolved with only a moderate amount of development. 

Two problems were mentioned in connection with the 

handling equipment: passage of module “lumps" through the 

"“Caterpuller" and slip of the cable relative to the fairing. 

The existence and severity of these problems can be established 

with relatively inexpensive tests, Simulated modules of various 

sizes could be clamped to a three-quarter-inch-diameter cable 

and passed through a "Caterpuller." Similar tests can be 

conducted with a short length of almost any existing fairing, 
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utilizing cables of various diameters to simulate a range of 

t/d ratios. Questions concerning the use of metal clips on 

the fairing can be resolved at the same time, 

The remaining impediment, the high unit cost of cable 

fairing, requires the development of mass-production techniques 

and procurement orders for large quantities. It is understood 

that a contract for the development of such techniques has 

been awarded to the Marsh and Marine Company of Houston, 

In consideratim of the solution of many seemingly more complex 

mass production problems, it appears reasonable to expect 

success in this area. 
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CONCLUSIONS AND RECOMMENDATIONS 
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CONCLUSIONS AND RECOMMENDATIONS 

The results of this study indicate that a towed oceano- 

graphic instrument system capable of measuring and recording 

data from depths as great as 5000 feet is now possible. Cer- 

tain problems remain to be solved; they are primarily of a 

mechanical nature, however, and should be solved by a moderate 

additional development and test program. 

It is felt that the inherent advantages and increased 

capabilities offered by this concept justify a development 

effort to produce an operational system. 

In concurrence with the majority of oceanographers con- 

sulted, it is recommended that such developmental work be 

directed toward the demonstration of feasibility of hydro- 

mechanical specifications with minor emphasis on instrumen- 

tation problems. It is further recommended that work be 

initiated at an early date to resolve the few remaining 

technical problems. 
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APPENDIX I 

PRELIMINARY DESIGN OF A DEPRESSOR FOR THE TOWED, VERTICAL~ 

INSTRUMENTATION ARRAY 
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this heavy type of depressor. Moreover, the present design 

Should have relatively high damping, so that the effect of 

disturbances should not prove serious, 

Although a detailed structural investigation was not 

undertaken, an abbreviated analysis was made and the results 

indicate that no serious structural difficulties need be 

expected. 
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HYDRODYNAMIC DESIGN 

Weight, Lift, and Drag; Pitching Moments 

The DEFINITION SKETCH shows the depressor with biplane 

wing and biplane horizontal stabilizer and defines, by illus- 

tration, the principal linear dimensions relating the positions 

of the wing, stabilizer, and towpoint. The distances xy and Xy 

are the horizontal spacings of the mean quarter-chord points 

of the wing and stabilizer forward and aft of the towpoint, 

respectively. A longitudinal reference axis fixed on the body 

and passing through the towpoint is chosen so as to lie in 

the intended streamwise direction when the depressor is in 

steady tow. The sketch also illustrates the pitch angle, 06, 

defined by the inclination of the longitudinal reference axis 

with respect to the direction of motion. The incidence angles 

Lay and iy are likewise defined as the inclinations of the chords 

of the cambered wing and horizontal stabilizer, both with 

respect to the longitudinal reference axis of the body. 

The sketch illustrates also the lift and drag forces, Lay 

Li» D._, and Di? produced by the wing and horizontal stabilizer, 

and the hydrodynamic moments My and Mi» all referred to points 

at the quarter-chord and mid-gap poisitions of the biplanes. 

These last points on the wing and tail are further related 

to the reference axis by the vertical spacings hy and Rue 

To attain the desired hydrodynamic downforce and the trim 

condition, ca 0, and to provide static stability in pitch 
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N 

Towpoint 

Longitudinal 
Body Axis 

Definition Sketch for Hydrodynamic 
Design of the Depressor 
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about the towpoint, three conditions must be satisfied: 

2g =) b= Wi [1] 

2M = 0 [2] 

gq qq uM< 0 Le 

when @ = QO, 

Here 2 L is the total vertical hydrodynamic force; = M 

is the total force moment about a transverse axis through 

the towpoint; and W is the weight of the body in water. 

We now define the following: 

Pp »  Gensity of the fluid; 

U , velocity of tow; 

q ,° dynamic pressure, pU*/2; 

D., , ‘ drag of wing and tail, respectively; (i Tsk 

ce Cy » mean chord of wing,and chord of horizontal 
tail surface; 

Su Ss, » Lifting surface area of wing and horizontal 
taal: 

€ ,: “downwash" angle (inclination of fluid stream- 
lines relative to the remote flow) at the tail; 

Ly Ls » lift coefficients, L,/4 Sip Ly/4 Sy? 

: drag coefficients, D/4d Sy D,,/4 Si 

Mi» Ms » Moment coefficients, M/4 Si (cle 5 M./4 Su Cr ? 

With the further notation that an appended subscript "9" 

denotes differentiation with respect to pitch angle, conditions 
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[1], [2], and [3] may be written: 

U oy = i x = =- 2 iy Sg St Bes (Li € D,,) 1h W (elvan 

(os) 
i a 4 ¢ = 

= Tay Sig Sy t Dw Sw Pe + My Sw ow 

os be fe é / é 

(Le € De) SE (D,, te Li) Sy h,, 

fie Soir [2a] 

oO V (Ling * Diy) Sp my (Dir 7 1g) Sy Bw 

ie Seu he ewe te are Dea eC! = ea) Ds, | Sy %y 

ratte etl iaveg) Oe Deeg en Cl aaee a) | S Ry [3a] 

Equations [2a] and [3a] do not include the moment due to 

the body's weight-in-water. It is intended, however, to specify 

the location of the ballast so as to place the effective center 

of the gravitational forces directly below the towpoint when 

the depressor assumes the design condition, 9 = 0, in tow. 

In the preliminary choice of the dimensions of the depressor, 

the drag was neglected and various ratios of S, to Soy aspect 
H 

ratios, and wing-tail separations were tested until a suitably 

compact configuration was obtained. Moderately large gap-to- 

span ratios, G/b, and gap-to-chord ratios, G/C were chosen to 

minimize biplane interference effects. Also, biplanes of 

equal span and area and with zero stagger were selected. On 

this basis, a preliminary configuration was obtained and the 

values of the areas, aspect ratios, and overall length and height 

fixed. At this stage, camber and wing and stabilizer incidence 
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had not been fixed. The complete equations were then used 

to refine the estimates of wing and tail incidence and camber 

needed to satisfy design requirements. For this purpose, all 

gGuantitites in [la], [2a], and [3a] are expressed 

of the effective angles of attack of the wing and 

Stabilizer. For the condition, @ = 0, the latter 

respectively, iy + By and i - €. Here (-B) -- 

H Br 

of zero lift in the free-stream characteristic of 

wing or tail. 

in terms 

horizontal 

are 

is the angle 

the biplane 

If, for brevity, we write w for i+ 6B am designate 

by “a" the slope of the lift curve (i.e., the derivative of 

the lift coefficient with respect to angle of attack), the 

required identities may be written, in the case, 9 = 0: 

Leg = ay Oy 7 Ly = ay (a, — €) 

Di Henle sep! ene) ee j—aDeey ty Ds W we Wi H Hp Hi 

aN A al peu 
Mi Mow Bie MoH 

r) = e 4 = 

me 0 oN 7 Lig = a: (1 - &) 

t aa ‘ . G = : 

Die ~ Pwie 1 Pag) annie 

[4] 

Here Ds is the profile drag coefficient, assumed independent 

/ 

of angle of attack; and Dy is the induced=drag coefficient 

assumed given by 
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where A is the the aspect ratio, b/s; b is the span; 5 is a 

tip correction factor for the isolated monoplane of equiva- 

lent aspect ratio; am o is the biplane interference factor 

for finite aspect ratio (Reference 6). 

The values Mew and Mon depend upon the camber of the 

airfoils, being zero for symmetrical foils. Reference 6 

gives MS So t B. Also, Mo is independent of angle of 

attack so that Me does not appear the expression for static 

Stability, eaquacion Salle 

For thin airfoils of small circular arc camber,Zzp is 

half the angle subtended by the arc. Thus the camber £ 

(maximum height of the mean camber line above the reference 

chord)i=aseS C/2. 

The lift curve slope, a, for a biplane may be deduced 

from the expression for the induced angle given by Reference 6; 

a 
5 ie) ——————— 

where ay is the lift curve slope of the lifting surface for 

infinite aspect ratio; tT is a second tip correction factor for 

the isolated monoplane airfoil of equivalent aspect ratio; 

and 6’ is the biplane interference correction for infinite 

aspect ratio. The equivalent aspect ratio of a biplane con- 

Sisting of equal areas and spans is identically the aspect 

ratio of the isolated wings. 
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The downwash angle is expressed in terms of the value 

obtaining at the position of the idealized lifting line for 

an elliptic spanwise load distribution. The latter quantity, 

designated Eo? is equal to Li / TA, e The downwash angle far 

behind the wing approaches twice the value Eo: Some reduc- 

tion, however, occurs from viscous losses. Also the value 

is reduced in the region above and below the vortex sheet. 

An estimate of the latter reduction is given by Glauert 

(Reference 6) for spanwise position as a function of the 

ratio of height above the vortex sheet to the semispan. 

The approximate value of the average height of the horizontal 

Stabilizer planes above the zero lift lines of the two wings 

for the initial configuration is 0.46 "a » The value of the 

downwash at that position above the wing was taken to be Eo: 

On the basis of the equivalence in the induced drags, 

the downwash of the biplane is greater than the downwash for 

and the 
a 

the equivalent isolated monoplane by the amount Ske A 3 

expression for the downwash angle at the tail plane is 

finally EG (1 + go) (Reference 6, p. 187). 

Finally, to express equations [la] and [2a] completely 

in terms of Oo and Os» we need only fix 6. This was done by 

imposing the condition that the remote flow be tangent to 

the mean camber line of the airfoil at the leading edge. 

Since, for small circular arc camber, this condition is 
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satisfied if i = 28, the middle pair of Equations [4] become 

OH ae 
63) 

WA reas a) 2 

Values of the parameters defining the final configuration 

are given in Table 1, and the resulting geometry is shown in 

Figure 3 in the body of the report. 

The gravitational force and moment were then estimated 

to verify that the values initially estimated could be obtained 

with reasonable volume of ballast. This was found to be the 

Case. 

Since considerable uncertainty attends the prediction 

of the downwash angle, provision must be made for adjusting 

the horizontal stabilier incidence. As it is not convenient 

to adjust the entire stabilizer assembly, an elevator should 

be provided for this purpose. 

The uncertainty in the actual effective value of the 

downwash is, at most, Eo From Table l, Le = 0.75. Therefore 

0.0734 m | J Il 

4,2 degrees. 

The elevator must thus provide for a minimum rotation of the 

horizontal stabilizer zero-lift-line of + 2.1 degrees. 

For design purposes, we shall arbitrarily triple the required 

range by requiring a shift in the horizontal stabilizer 
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zero-lift line of 6 degrees for a 20-degree elevator deflec- 

tion, i.e., an elevator effectiveness (a0,,/45) of Ops.) ahis 

condition is theoretically satisfied for a flap-to-stabilizer 

chord ratio of only 0.05 (Reference 7). Effectiveness factors 

of this magnitude are rarely obtained in practice, however, 

and experimental evidence (Reference 8) indicates that the 

flap-to-stabilizer chord ratio should be as much as 0.125 

for installations with sealed gaps. If a sealed gap is not 

used, a ratio of not less than 0.2 should be selected. 

Lateral Forces; Yaw and Roll Moments 

The balance of forces in the lateral plane must satisfy 

the relations 

> Fy = 0 [5] 

2a 0 [6] 

SL = ) zal 

a (= M,.) =70 [8] 

oF GS © [9] 

Here 2 Fy is the sum of all lateral forces; 2 M, is the sum 

of all moments about the vertical axis; 2 M,. is the sum of 

all moments about the longitudinal axis. It is, of course, 

required that the above conditions be met for zero values of 

roll angle » and yaw angle vy. 

Conditions [5], [6], and [7] are met if the depressor 
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is symmetrical about the x-z plane while [8] is satisfied by 

positioning the center of weight-in-water below the towpoint. 

With respect to yaw, the principal destablizing elements 

of the configuration are the vertical struts connecting the 

main wing panels and, since both the wing struts and vertical 

stabilizers are symmetrically disposed, we may write for 

Equation [9]: 

= (eM) ka SK. Gea aS xg 
dy Stos . Sis Ve OV re 

where subscript s denotes the forward struts and v the verti- 

cal stabilizers. The tail efficiency factor, a,./4; must be 

considered since the span of the vertical stabilizer passes 

through the wake of the lower wing. Since the gap-to-chord 

ratios of both wing and vertical stabilizer struts are large, 

and since each is effectively end-plated by the wing and hori- 

zontal stabilizer, we may assume, a_ =a_=a_. Then assuming 
s Vv fe) 

a,./4 = 0.8, we need only require 0.8 sy x, > S, Xo: From 

Table 1, Ss, = 4.6 sq ft; aos Saf? £t; s.> Les? sqG. it: 

and x2 = 0.51 £t. A more refined estimate of stability in 

yaw would include the contributions of the horizontal lifting 

surfaces, the bulbous housings, and the remaining parts of 

the structure. But this appears to be unnecessary. 
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TABLE 1 

GEOMETRIC PARAMETERS FOR THE VERTICAL PROFILE 
INSTRUMENTATION DEPRESSOR 

GENERAL 

Total Wing Area iS} Se) 7/5) Ser see 

Towpoint Location 30% ith 

Tail Length xy 4.5 £t 

Overall Length L* 6.42 fre 

Overall Height SO) se 

Overall Width 6.54 ft 

WING _ 

Biplane Area Sy 26.5 sq £t 

Aspect Ratio Ay 3.425 

Mean Chord ae 202 fet 

Taper Ratio ug 0.6 

Span bi 6.56) Be 

Camber Factor B = 2£/c 0.0788 

Lift Coefficient Lv 0.755 

Lift Curve Slope Le (3618 

Incidence iy 9° 

Gap Gy Zod) ie 

Camber of Root f. G7 10> fr 

Camber of Tip f. OnOGR Et 
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HORIZONTAL STABILIZER 

Biplane Area Si 13.25 sq £t 

Aspect Ratio 4.1 

Chord Cy oA) athe 

Span bi, SOME 

Taper Ratio re Lo®) 

Camber Factor 2£7,€ 0.024 

Lift Coefficient Le 0.255 

Lift Curve Slope Le 3.56 

Incidence | vee Spel 

Gap Gi Pro) ake 

VERTICAL STABILIZER 

Biplane Area s. 4.6 sq ft 

Chord Cy dbo dS) | ake 

Taper A 1.00 

Rudder Chord Cu. Q,ASS ie (0.2 Cc) 

Lever Arm ee S50 a9 

WING STRUTS 

Effective Strut Area S, 1, 38\sq. £t 

Chord Cc. “O5275;-£6 

Taper Ratio ve 1.00 

Lever Arm x Onow se 

TORT 310 
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APPENDIX If 

INSTRUMENTATION FOR MEASUREMENT OF TEMPERATURE PROFILE 
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APPENDIX IL 

INSTRUMENTATION FOR MEASUREMENT OF TEMPERATURE PROFILE 

INTRODUCTION 

This section presents the design of an electronic instru- 

ment system for continuous temperature recording at each of 

a large number of points along the 6000-foot cable of the 

towed system described in the preceding sections of this 

report. The purpose of the detailed design is to provide an 

embodiment of the basic aemease of the deep-towed vertical 

chain of sensors, first, as a demonstration of feasibility 

and, second, as the preliminary design of a practical instru- 

ment system for ebtai nine data of primary imeesede in oceano= 

graphy. 

A towed, vertical-profile, temperature-sensing chain, 

currently in use by Woods Hole Oceanographic Institution, 

is described in (2). It contains 22 thermistors equally 

spaced along its 900-foot length. The cross-sectional area 

of the faired chain is large enough to accommodate separate 

electrical leads connecting the thermistors to the shipboard 

Sampling and recording apparatus. 

By contrast, the present system calls for one hundred 

or more measuring points spaced along 6000 feet of cable, the 

cross-sectional area of which is sufficient to accommodate 

only about twenty electrical leads of reasonable size and 

insulation. 
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In the scheme adopted, the sampling of the various 

temperature and depth sensors is accomplished by time-sharing 

multiplexing employing a binary code transmitted along seven 

electrical conductors extending the length of the cable. 

The use of a seven=-digit binary code allows the use of any 

number of modules up to 128. The number of modules may be 

doubled by the addition of another digit. The electronic 

equipment for decoding the switching signal, which interro- 

gates each sensor in turn, is contained in the individual 

module. The module, when interrogated, transmits a carrier 

the frequency of which is controlled by its temperature or 

depth sensor. All power and switching signals are shipboard 

generated. 

The electronic measurement system thus conforms to the 

modular concept of the basic cable-and-body vertical sensing 

array. The number of modules, and hence of measuring points, 

is variable and essentially unlimited. Modules are completely 

interchangeable (except for an identifying binary number 

carried on an easily removable coded card) and the type of 

sensor may be varied from module to module without change in 

the remainder of the system. 

Figure 14 is a simplified block diagram of a telemetering 

system which incorporates switching circuits to control the 

action at each module. Additional features and details are 

given below in descriptions of the various sub-divisions of 

81 



| iy tren eke As aotalbigal wit aparece : 

ya, style= yet partis [ epatcaeytaah om pynanor: Asa bis oxyaiared | 

| ne yan gad ‘paddimase | pba? ir mie ry worvetan, eabeskataiom
 Hh 

wide: mele! ee adr ol, ae end Boestie esd douhaing Eabhaaoe lo 

Bid * an wits owotle abive yxanihd digsbnoven a 20 ond ‘ont! if he 

aS wa ae kubor TQ, aegis wat | “BS ‘e4 qu aso abo bis) rodinunt i | 

vengtron: Le ott vets orton +0 aaidibbs arty yt beisued 

aise foie. Lope partido: thwe oat ent Bode 103 “apamehope,. 

| bondbx Baad mart he bomistdae ad asus ret LOS dso ode) 

ims uD addmmini x3, be saparse ann hades \eiubom ad? weittok ia "4 

“30 onada toga st ast ya botioadaop Bi todo 40 vpn odd 

“Bucodaade ax8 ealnmpit cate Ore sow ay ceenee. Hou A ithe 

; OA i 

i | . | vay il He iv me iy wes 

0 ott ‘ag navioitina wud modaye Siuma sureaon otaosdae te on ms ed a ae 
f a 

Yio reve) ad auvtanntgiaehh pieed oct 30, es heey! 
ww 

CO Re eg 

ey one wotyten, ‘elite Ltatsoonne! tae 6 
y f j PP ae 

“podinio: wrens pauaaenabe bat al a 
at Ni 1 

“eraamponotog ® 10 nant 
a 

\y Ah Mo 



w
e
z
6
e
t
q
 

y
o
o
T
a
 

u
o
T
R
I
e
R
U
S
U
M
I
A
A
S
U
L
 

S
T
F
J
o
r
I
d
 

s
A
a
n
q
Q
e
r
e
d
u
e
L
 

- 
p
T
 

e
m
m
b
t
a
 

z
o
s
u
e
s
 

-
d
w
o
L
 

10 e
T
N
p
o
u
w
e
s
a
 

A
e
t
d
s
t
a
 

z1ojzeTBUSyH 
Zaposedqa 

a
p
o
d
 

p
u
e
u
m
0
)
 

a
T
d
u
r
e
s
 

eo Td
u
e
s
 

JTeued 

y
o
1
3
U
0
D
 

82 



- 

‘Byece orsaxsx 

ETanxe r¢ - Zederer: 

epinweness 
AJ 

» 2 

~ogrye 

as % 

ce 

i 

es 7 

7 e774 

isp 

f 
ct 

i 

<i 

' , 
prebrsaA. 

Ge6recsror code 2axhys 

ain in vy, 



the systen. Critical sections of the electronic switching 

and gage circuits have been breadboarded. Stated scanning 

rates and signal frequencies may be considered merely as 

typical, since these may be fixed variously as required in 

an actual system. 
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SHIPBOARD EQUIPMENT 

Figure 15 shows the shipboard equipment in block 

diagram, For purposes of description we consider in order: 

the power supply; the gage-selection control circuitry; 

Gigital display and printer; and the analogue display. 

The power to operate all gage packages is derived from 

a Single power supply. A variable transformer is adjusted 

either manually or automatically to maintain the current at 

one ampere regardless of the number of gage packages operative 

in the chain. The power is led to the individual packages 

through a transformer in each module where the output of the 

secondary is rectified and used to power the package. The 

primary windings of all the gage packages in the chain are 

connected in series. Thus, in the event of a short or open 

circuit anywhere in the secondary side in a module, the 

remaining modules will continue eo receive power in the pro- 

per amount. This "fail-safe" arrangement is employed also in 

the control and calibration circuits described below. 

Approximately 330 volts will be required to operate 128 

gages with 5000 feet of cable if a conductor of No. 22 copper 

wire is used for the power. The return wire will be the outer 

Steel armor of the cable or an internal heavy gage lead. The 

power-supply frequency may be 60 cycles, although 400-cycle 

power is preferable in that it allows smaller transformers 
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in the modules, Other conductors in the cable will be: 

seven gage-selection control wires; one or two calibration 

control wires; and one conductor for returning the gage 

signal. 

The gage-selection control consists of a timer which 

generates pulses at two-second intervals, a seven-bit binary 

counter which operates seven relays in such sequence as to 

range through all the binary digits from 0000000 to 1111111, 

and a 3-digit decimal counter the function of which is to reset 

the binary counter after the latter has covered the range that 

includes the total number of instrument packages. Each of 

the relays, when operated, sends a CW signal derived from the 

power supply down one of the seven gage-selection control 

wires. The combination of seven "on" or “off" CW signals 

‘is decoded in each package in such a way that only one of 

the packages sends back an FM gage-reading signal. Provision 

is made for a manual reset of the binary counter and for 

manual selection of the binary-coded sampling signal. 

Thus, in automatic operation, the control circuit interro- 

gates the whole chain at the rate of one reading each two 

seconds and automatically repeats the cycle. The operation 

may be interrupted and varied manually at any time. 

Since the primary purpose of this study was to determine 

the feasibility of obtaining data from a chain of sensors 
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strung out on a 6000-foot cable, no detailed consideration 

has been given to the display and recording problem. [In fact, 

no aspects of the display, recording, or processing in the 

system shown are peculiar to the use of a deep-towed instrument 

chain. The display and recording equipment indicated in the 

block diagram may therefore be considered as illustrations of 

a wide class of available equipment. 

A feature of the digital display and printer shown is 

that the digit representing the temperature or depth is 

obtained directly by counting the number of cycles in the 

FM gage signal for a selected interval of time. The display 

and print-out may be made direct reading in, for example, ~ 

degrees Centigrade simply by proper selection of the counting- 

time interval and a “bias count” which the counter adds to or 

subtracts from the total count of cycles occurring in the 

counting-time interval. The only requirement on the relation 

between themeasured quantity and the gage-signal frequency 

is that it be a linear one. As an example, suppose that the 

gage-signal frequency is 6200 cycles per second at 0° Cc, 

11,000 cycles per second at 30° Cc. A decimal counter which 

counts for 0.625 seconds and sores 3875 from the result-~ 

ing count will read out temperature directly a hundredths of 

a degree C. 

The analogue temperature plotter indicated employs conven- 

tional circuitry to convert the frequency of the gage signal 
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to a proportionate voltage. The display gives a temperature 

profile graphically. More sophisticated apparatus for pre- 

senting the data in various forms is readily adaptable to the 

gage system described. 
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GAGE PACKAGES 

Figure 16 details the electrical circuitry of a modular 

package for measuring temperature, The temperature sensor 

consists of a pair of thermistors which control the frequency 

of a Wien-bridge oscillator. Tests have shown that, with 

suitable padding resistors, the frequency can be made a 

linear function of the temperature. Typically, the oscillator 

frequency may be made to vary from 6000 cycles per second 

at 0° C to 12,000 cycles per second at 30°C. In this way, 

by means of a shipboard counter and timer, direct digital 

readout of temperature may be obtained. 

Figure 16 shows also the seven "bit" circuits which 

decode the control signal. Each bit circuit has two 

outputs of opposite polarity. The polarities are interchanged 

when the primary winding of the transformer is caused by the 

control signal to carry current. The binary number identi- 

fying a package is determined by the seven binary choices 

involved in connecting one of the two outputs (A or A 9 

B or B, etc.) of each of its seven bit circuits into the 

7-input “and" circuit. The carrier oscillator, the frequency 

of which is controlled by the measured temperature or 

pressure, will be turned on only if all seven inputs to the 

"and" gate are of the proper (same) polarity. Thus, each of 

128 different packages can be interrogated separately by 

the proper combination of the presence or absence of exciting 
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current in seven control lines. The primaries of the "A" 

transformers in all of the packages are connected in series; 

similarly the "B" transformers; etc. Thus, the control 

circuits have the same "fail-safe" feature as the power circuit. 

Calibration of the temperature and pressure sensors is 

accomplished by remotely switching the frequency control of 

the telemetering oscillator to one or more sets of calibrated 

resistors, Switching is accomplished by sending a control 

Signal which excites the primary windings of the calibration 

circuit transformers of all packages. The output from the 

secondary is rectified and caused to operate a relay which 

effects the necessary switching from sensor to calibration 

resistors. In order to avoid the unnecessary power drain 

incurred by operating relays in all packages, the calibration 

signal is applied to a 2-input "and" gate along with the output 

of the 7-input control "and" gate so that only the relay in 

the package being interrogated is operated, Inclusion of 

one calibration circuit allows the control of the oscillator 

frequency to be switched from sensor to one set of calibration 

resistors. Addition of a second calibration circuit would 

add two more calibration points, should this be desirable. 

It is probable that one circuit will suffice since the real 

‘purpose of the “calibration” is to apply a check on the 

proper operation of the telemetering system, 

on 
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A very small number (perhaps three) of pressure measur- 

ing packages will be required to indicate the depth of the 

temperature sensors, The pressure gage will control the 

frequency of an oscillator and the package will be scanned 

in the Same manner as the temperature packages. To obtain 

the required accuracy of pressure measurement pressure 

transducers of a preciSion strain gage type may be required. 

For use with these, precision sub-carrier type oscillators, 

commercially available, will be modified to suit the require- 

ments of the system. 

The signal Snpieeier contained in each package serves 

a double purpose: it amplifies the FM carrier generated by 

the signal oscillator in its own package and, when a gage 

farther down the chain is being sampled, transmits the FM 

signal from below on up the chain. The fail-safe feature 

afforded by the use of transformers in the power, control, 

and calibration circuits is provided in the signal amplifier 

by isolation resistors. If, for example, one gage package 

becomes flooded the signal from the lower gages will feed 

around that amplifier through resistor Re The next ampli- 

fier will be able to raise the signal to the standard level. 

92 



iM, i 

do a  pmieatong. edu saan ont aa “sonaan oe 

etre Léowo oayd ter
resséciti sok oor w

ei eae 

p04 irps's ond dye oy ‘Bevtit) beet ek Lite donut aie inom 

va 

te, “ ben wis ae 

one ak somzotagesd 20 oe 

i 6) Dohiveag, ea, sgkwawte nad 



REFERENCES 

93 



i y Wed eapan 
i {Vhs Wey 

i } 

f ‘ f 

" i 

at 

ay rd 
fii 

i me a) i if 
1 i 1 ‘ 

j hy, y f 

ae 
i ae 

i i 

i D i fo 
, N i cael 

. % é i 
" . dt l f nik 4 

’ y Ms : { } i i h iy ; ’ { . 
' hs { ay Pe fet 

At 
a Mae > Bs it "y 

Wl i f 

J Ma i 1D tenes tetiay qaanvay ie acy 
; j slant prt mee Bs BD iy i tis ia 

ities a 

iu Tey) 
iy 

ey i Mh Hs 
i" 

‘ ty 
ia ey 
ln 



REFERENCES 

Ellsworth, W. M.: General Design Criteria for Cable- 
Towed Body Systems Using Faired and Unfaired Cable; 

Systems Engineering Division, PneumoDynamics 
Corporation Report No. TN-SEDU-6634-1, October, 1960, 

Hubbard, C. J. and Richardson, W. S.: The -Contouring 
Temperature Recorder; Woods Hole Oceanographic 
Institution, Reference No. 59-16 (Unpublished 
Manuscript), April 1959, 

Pode, L.: Tables for Computing the Equilibrium Configur- 
ation of a Flexible Cable in a Uniform Stream; 

David Taylor Model Basin Report No. 687, March 1951, 

Eames, M. C.: The Configuration of a Cable Towing a 
Heavy Submerged Body from a Surface Vessel; Naval 
Research Establishment (Canada) Report PHx-103, 
November 1956, 

SSS SS S255 : Description and Application of the "Caterpuller" 
Tractor Type Capstan; brochure issued by the Entwhistle 
Manufacturing Corporation (no date). 

Glauert, H.: The Elements of Aerofoil and Airscrew Theory; 
Cambridge University Press, 1948. 

Fehlner, L. F.: The Design of Control Surfaces for 
Hydrodynamic Applications; David Taylor Model Basin 
Report C-358, January 1951. 

Abbott, I. H., et al.: Summary of Airfoil Data; NACA 
Report No. 824, 1945. 

94 



“ax pre 

Vn WI ee aE 
‘ahs sedis ah) aetna 

ro pe 0 mn ae 
+ abr A ald 

oi Beye At Bim. i 

4 ee ah AC ini 

OBR vedas 100 Me peaa vhs “ol 

oP a 1 stent ian, fi 

. os pa A LEE EON 4 Saunt ein 

Same oa Live tee aM rage briey mers sentes oe 

if Dk ale SERA 

; ad oy ue that haere wi dit o%. i otha 

4 ee 4 i iF 
BY a) a Shite ses nee yer aun dei ae 

4 tak! nf ‘t OQ j 

oa Hesuilehaanl 

esta Sadik LEAS Mh 

109, oer er. 
BL Nae penis eRe | 
i yoreryris i : ds Rat Bien 0 bab maid EF wo 

fan: a8 a ‘sacl sn wet Mi 

| ¢ neddabapuat emoee | 
gegen ute; arinrce es elie aa 

ait fateb or) h ok Se Len Sasson A aaN 
i ee 

so eduenels oo 4H 3 xsKeeee 
287 es Wee Le r

aul ont nang: a i Dy 

we 

i oo son 

we eninge acy nih cial 

Ye We pon er Bik: Wc} 1 SB 
! » Lael 0 * 

ee FS = 

Ss 

WWE 4041000. 10. abo 
Cyst Gives 1 Bah ADL Is | 

te Ret Des caaidnchall ee 

i a 2 i, 
ycomeummumamangiss 



DISTRIBUTION LIST 

for 

PucumoDynamics (Cleveland Pneumatic) Reports 

Office of Naval Research 
Washington 25, D, C. 

1 Attn: Biology Branch (Code 446) 
1 Surface Branch (Code 463) 

a Undersea Warfare (Cede 466) 
1 Special Projects (Cade 418} 

1 Acoustics Branch (Code 411) 

1 Fluid Dynamics (Geode 438) 

1 Contract Administrator Southesatern 

Area 

Office of Naval Research 

2110 G Street, N.W. 
Washington 7, D, CG, 

2 Director 

Naval Research Laboratory 

Attn: Technical Services 

information Officer 

Washington 25, D, C, 

2 U.S. Navy Hydrographic Office 

Atta: Division of Oceanography 
Washington 25, D. C. 

Ghief, Bureau of Ships 

Navy Department 

Washington 25, D.G, 
i Atta: Code 671D 
i Cede 3416 

1 Code 583 

i Code 370 

Chief, Bureau of Naval Weapons 
Navy Departme ut 

Washington 25, D, ©, 
1 Atta: FAME-3 

ik RUDG 252 

2 Commanding Officer & Directar 
U. S. Navy Electronics Laboratory 
San Diego 52, California 
Attn: Goede 2250 

1 Commander 

Heégtrs., Detachment 2 
Air Force Research Division 

Geophysical Research Directorate 

Laurence G, Hanscom Field 
Bedford, Massachusetts 

1 Commanding Officer & Dire 

U. S&S. Naval Civil eupineer) 

Laboratory 

Port Hueneme, California 

Atin: Code 54 

R 3 G2 gh 

1 Gommander, Naval Ordnance 

Taber see y, 

White Oak, Silver Spring, Md, 

Attn: E, Liberman, Librarian 

ner aeetrine Officer 

Naval Ordaance Test Station 

paces Lake, California 

1 Attn: Code 753 
1 Gode 508 

1 Commanding Officer 

Naval Radiological Defense Laboratory 

Sau Francisco, California 

2 Commanding Officer & Director 

David Taylor Model Basin 

Washington 7, D. CG. 

1 Gormrmanding Officer 

U. &. Naval Underwater Sound 
Laboratory 
New London, Connecticut 

1 Commanding Officer 
U. S. Navy Mine Defense Laboratory 
Panama City, Florida 

1 Commauding Officer 
U. S. Navy Air Development Center 

Johnsvile, Penasylvania 

Attn: NADC Library 

l Hdqirs., U.S. Airy Force 
Attn: AFDRT+«-RD (Lt. Gol, Jamigon) 

Washington 25, D, ©, 

2 Director, Bureau of Gommercial 

Fisheries 

U.S, Fish & Wildlife Service 

Department of Interior 

Washington 25, D. C. 



eathtO palansetieiod 

ser iatcr athe 4 ajuk Tawa 

a) ,6esl auido 

zy + me 2 nota. i 

Ae chow i 

. tfc? golisemimoQ | 

dieimilet o-sele faakgoloiies Lavalt 
sintontil) Ganeisonas’ gat 

“goss oh! aa Stee gathoaninoD S 

tar Lebybt solye. to biyes 
ey sl .N neprrbciass Ve 

Masi? oolhaptsreed s 
“ier galovribtea’) foveal’ .2 iC 

yetsrodsed. 

aupigaerau isecsanculk wall, 7” 

bn yee fnceeie ee £ 

Banos mane eva .8) Oy e 
| a aotenet en 

i vaunge all 20 & 
A csraani LoD dt} ca 

ed AS nosy 

VERS tad ery ’ : Yi ie . ; nm 

mtd woke eoayCtocsubal 

edit” 

aan KO Davart Ne sate 
ie (ee morgan Wh 

(65 ehgo), do Ei eet ved ROLE: eat, ey 

(Sb eboD) sdcash conkuge’ ae 
(Jah ubod) StslxaW ppotebaly 3) ae 

(319 shod) aisstowt latoaqe: (| Pee 
(Lid sboop Pons7& esos Yaa 

(Heb aber) Sate Sek, iy a aan 

nn sins ad reee noteiaasiubiA ioustead a 
Bara | " 

Voznepedl Lavell to eG) 7 
WAM towate D ObUR yy 
oa) ag * nolystiteaW | t 

i seine 0h ion i 

qiotstodad Aor epeeh seugih) 
ewutvro8 isphienay oe 

eo oidiesrgedbyBty 

bearing 6 



en ea rece wowsty C6453 ) i atin 1 Sur LY MOeseAaton GlLice ; ; ER 

Ort ce of tae Chief ef R&D Woes “isle Oce: ROS Yt py ec tnsti 

Departmen tofthe Arm y Woods Hole, Massachueetia 

Washington 25, D, ©, 
- nd a FaF ey ge ay omy apg 9 ou tose Nats sash vom 
LEROY. ANASTPAWVAnNSSES Marine Atta: Research Support Division j 

4 T RDOLY 

i Uv. Ss. Army Geach Grosion Boars ~ Wnivereity of Rhede Island 
‘620i Little Falis Road, N, W. Kingston, Rhede teland 

Washington i6, D. &, 
1 Chairman 

1d Office of Technical Services Department of Meteorelosy & Cceanogtaph 

_ Department of Commerce New York University 
| Washington 25, 0, C, Fie ais New York 53, New York 

' 10 Armed Services Technical Information 1 Gulf Coast Research Laboratery 

Genter Fost Office Box 

Dacument Section, Arlington Hall Ocean Springs, Mississippi 

Avlingten 12, Virginia Attn: Librarian 

Commandant (OFU} k Pirector 

uv, =: _ Coast Guard Larmout eoreicee Observatory 
Torrey Olitt 

Palicaues, New York. 

2 Director 

Marine Physical Laboratery 

San Diego 52, Califernia 

&é Director 

Hudson Laboratories 
i45 Palisade Street 

Debbs Ferry, New York 

1 Director 

Applied Physica Laboratery 

University of Washington 
Seattle 5, Washington 

1 Sell Telephone Laboratories 
Whippany, New Jersey 
Atta: Dr, W. A, Tyrreli 

i Applied Physica Laboratory 

Johna Hopkias University 
8621 Georgia Avenue 

silver Spring, Maryland 

Attn: Mr, George L, Scielstad 



ey athe mba Ae 
sci i ane a i Tei a bi ene 

wey sllialaitt ny tna 
ada aia 

= 5 & | = = = is = 

. ae pagan dnd fate: ‘are a vagerennty 

f at Pee , pa : ve eee ayer 

eet ak ih ae hy a ” by avin sn 

an ie PAY ; , "5 

ti wir 

; » all ix Tit LEN Sri 

Fe Pe Tee 3 

' vie ae 

Teel Jam eee 

Oo “ , i 

ee ee ee ee eas Hin 

a Geen 44 tae ee 

Ne ' * ; _ as i. javiieraitt er 

—.° | : 4 ovaren Henke! seas gt 

eae | w Be ee ee a ne 
| js ere pranv’d sl ] ee 



3 British Joint Services Mission 

Main Navy Building 

19th & Constitution Ave,, N.W. 

Washington 25, D. C, 

3 Canadian Joint Staff 

2450 Me cachuaetts Ave., N, W 

Washington, D. CG. 

1 Admiraity Research Laboratory 

Teddington 
Middlesex, Engiand 
Via: Chief of Nava] Operations (Op~705) 

Department of the Navy — 
Washington 25, D, ©. 

1 Commanding Officer 
Underwater Detection Establishment 

Portland, England 
Via: Chisf of Naval Operations (Op-703) 

Department of the Navy 

Washingtou 25, D. C. 

1 Cdr. Destroyer Development Group Two 

U.S.N. Base 
New Port, Rhode Island 

1 Cdr, Destroyer Development Group 

prigeacitic 
San Diego, California 

‘1 Great Lakes Research Division 
Institute of Science & Technology 

_*‘University of Michisan 
he Aun Arbor, Michigan 
it a (bay John C, Ayers (above address) 
m, 

x | Director 
he sapealke Bay Institute 
‘ohns Hopkins University 

Tyan Maryland Hall 

| Baltimore 18, Marylard 

% 

a Eiaatacd tecesken Institute 

M. nile Park, California 
a re: 

a ‘Lamont Geophysical Observatory 
5 Bermuda Field Station 

ie Georges, Bermuda 

2 

University of Miarni 

#i Rickenbacker Caveewa 

Virginia Ke 

Miami 49, Flerida 

pad, Department 

Meteorology 
. bol 

Texas A & M College 
College Station, Texas 

memt of Oceancyrarhy & 

i Director 

Scripps Institution of Oceanography 
La Jolla, California 

1 Depariznasnt af Engineering 
University of California 

Berkeley, California 

1 Head, Department of Oceanography 

University of Washington 
Seattle, 5, Washington 

1 Director, Hawaiian Marine Laboratory 

University of Hawaii 

Honolulu, Hawaii 

1 Director 
Arctic Research Laboratory 

Box 1070 

Fairbanks, Alaska 

1 Director 

Bermuda Biological Station for Research 

St, Georges, Bermuda 

I Laboratory Director 

Bureau of Commercizl] Fisheries 

Biological Laboratory 

450-B Jordan Hall 
Stanford, California 

1 Department of Geodesy & Geophysics 

Cambridge University 

Cambridge, England 

1 Allan Hancock Foundation 

University Park 

Los Angeles 7, California 





x 
* 

Z 

te ‘ee: cet Bo rt oe 



va 

anh 
ae Ay 

NCE 
nih RN 

Nal 
Bre OCR 


