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A PRELIMINARY DESIGN THEORY FOR POLYPHASE 
IMPELLERS IN UNBOUNDED FLOW 

B. Yim 

David W. Taylor Naval Ship Research and Development Center 

Bethesda, Maryland 

ABSTRACT 

The main role of preliminary design for supercavitating propellers is to supply the basic data for 

the final design, such as: the hydrodynamic pitch angle, the radial load distributions, the approximate 

cavity length and the distribution of cavity-source strengths which will help determine the three- 

dimensional cavity-source distribution. For this purpose, the effective use of supercavitating cascade 

theory with lifting-line theory is discussed together with influences of neighboring cavities on cavity 

drag, the hydrodynamic pitch angle, inflow retardation and the optimum pitch distribution of the 

propeller. 

The computer program developed here is applied to several existing propeller models. The results 

show that propeller efficiency is predicted well but pitch distribution is a little larger than for the 

model. The results are analyzed and compared with the results of a lifting-surface design method 

which has been developed recently for use with the present preliminary design method. 

NOMENCLATURE 

Cc Chord length of blade section 

fy Camber factor 

C. Design lift coefficient of blade section 

Cho Lift coefficient of a foil in an infinite medium 

Cc, Thrust coefficient of propeller 

C, Power coefficient 

D Diameter of propeller 

d Distance between the leading edges of neighboring blades at each section 

G Circulation distribution 

J Advance coefficient, V/(DN) 

N Rotation per unit time 

R Propeller radius 

r Radial coordinate divided by propeller radius 

Ty Hub radius divided by propeller radius 

Vv Ship speed 

w Wake fraction 



w Axial component of perturbation velocity 

Wi Tangential component of perturbation velocity 

y Shock-free camber-offset of blade face 

/t Blade number 

a Extra angle of attack superposed to the shock-free foil 

B Hydrodynamic pitch angle 

Y Stagger angle of cascade 

) Flow exit angle of cascade 

€ Drag-lift ratio of a foil at the blade section 

0 Local cavitation number of design propeller 

Ox Cavitation number for infinite-length cavity of cascade 

Q Angular speed of blade 

INTRODUCTION 

_Supercavitating propellers are strong candidates for propulsors on high-speed craft!!]. A design 

method for supercavitating propellers was developed first in this country by Morgan and Tachmindji!?), 

with efforts still continuing|3-7), 

The main problem associated with designing supercavitating propellers as opposed to subcavitating 

propellers is the effect of three-dimensional cavities trailing from the propeller blades. In early work, 

knowledge of an isolated two-dimensional supercavitating foil was combined with subcavitating 

propeller-design theory !2:3]. However, it was soon realized that blade-cavity interference between 

each of the supercavitating propeller blades was too large to be neglected'3:4]_ Thus, three- 

dimensional integrated design methods in which the cavity and the blade were considered to lie on a 

helical surface, were formulated by several hydrodynamicists5:7]. Through the medium of high- 

speed computers!®9], these efforts have shown success in the design theory for subcavitating 

propellers. The difficulty encountered in supercavitating propeller design is that the geometry of the 

cavity surface is not known a priori. For two-dimensional cavity problems the complex-variable 

theory could be efficiently utilized; but not for three dimensions. Numerical solutions using high- 

speed computers have been contemplated!>»7]. However, so far, no practical, reliable, computer 

program seems to exist. 

The hydrodynamic design method of subcavitating propellers may be divided into two steps: 

preliminary or performance design and final or lifting surface design. Preliminary design employs 

three-dimensional lifting-line theory!!®) to find the hydrodynamic pitch angle B; and the vortex 

distribution G along the blade span that will supply the required thrust for the design speed. The 

hydrodynamic pitch angle is the angle of inflow velocity at the propeller plane. From this angle, the 

angle of attack of the blade is measured. The hydrodynamic pitch angle defines a basic helical 

surface where the vortex distribution will be located in the lifting-surface theory for the final 

design!8!. Chordwise pressure and thickness distributions are obtained from two-dimensional airfoil 

theory. In designing supercavitating propellers, it seems to be natural to consider the same two steps 

as those for subcavitating propellers. Thus, the first problem will be preliminary design without 

which there cannot be the final design. As previously mentioned, the preliminary design method of 

Tachmindji and Morgan!?! has not been found to be accurate enough for use in the final design. In 

addition, since final design is extremely complicated!>-7!, it is to be hoped that a preliminary design 

method will help reduce the complexity of the final design. 

To improve the existing preliminary design method for supercavitating propellers, several 

problem areas need to be considered: 



1. Influence of neighboring cavities on cavity drag, which will affect the thrust and torque of 

the propeller. 

2. Influence of cavities on the hydrodynamic pitch angle. 

3. Inflow retardation caused by blades and cavities. 

4. Effect of cavity on the optimum pitch distribution. 

These problem areas will be discussed in the following sections. 

The main role of preliminary design is to supply the basic data for the final design, such as: 

the hydrodynamic pitch angle 6,, the radial load distributions, the approximate cavity length and the 

distribution of cavity-source strengths which will help determine the three-dimensional cavity-source 

distribution. For this purpose the effective use of supercavitating cascade theory with lifting line 

theory is discussed. Inputs for the preliminary design of supercavitating propellers include cavitation 

number, leading-edge cavity thickness, and camber shape. In addition, the same information is 

required as for subcavitating propellers. The minimum leading-edge cavity thickness is supplied from 

a blade strength analysis. The minimum cavity length at each blade section is assumed to be 1.5 

chord lengths. 

The computer program developed here is applied to several existing propeller models. The 

results show that propeller efficiency is predicted well but pitch distribution is a little larger than for 

the model. The results are analyzed and compared with the results of a lifting surface design method 

which has been developed recently for use with the present preliminary design method. 

LIFTING LINE THEORY 

Consider the flow field of a supercavitating propeller rotating with a constant angular velocity in 

an otherwise uniform flow. If fluid viscosity is neglected, the flow is irrotational, and can be 

computed from appropriate vortex and source distributions. The analysis is based on linear theory in 

which the blade angle of attack and the camber are considered to be small so that the cavity is thin. 

The singularity distribution may be, therefore, located on a basic helical surface, near or in the blade 

and cavity. The vortex distribution is proportional to the load distribution on the blade. Since 

there is no load outside of the projection of the blade on the basic surface, the vortex distribution 

for the supercavitating propeller is not different essentially from that for the subcavitating propeller. 

Thus, the basic feature of lifting line theory for the preliminary design of a supercavitating propeller 

is not different from that of a subcavitating propeller. The theory, developed by Lerbs!!°) | has been 

programmed, and is widely used. Because both cavity and blade-friction drag alter the thrust and 

torque of the propeller due to the vortex distribution on the blades in inviscid flow, the calculation 

has to be iterated to find the lifting line vortex distribution in the cavity flow required to produce 

the required thrust. : 

The main changes in the present lifting line program are the addition of an option for computa- 

tion of the optimum distribution of hydrodynamic pitch, which will be discussed later, and considera- 

tion of cavities from supercavitating cascades. These changes enable a full consideration of blade 

cavity interferences to be incorporated while maintaining requirement on the minimum leading edge 

cavity thickness to produce a cavity with a length 50 percent longer than the blade chord. 

BLADE CAVITY INTERFERENCE 

Results of experiments!!!:!2] conducted on supercavitating propellers designed by the method of 

Tachmindji and Morgan!?! indicated that, in general, the propellers were underpitched. One reason 

for this was probably inadequate ‘treatment of blade cavity-interference effects!?-4], Tulin!4] suggested 
using either supercavitating cascades or a cavitating foil above a free surface in two dimensions instead 

of an isolated two-dimensional cavitating foil, to calculate the cavity drag of the blade section of the 

propeller. Scherer et al!!3] also considered a cascade model for the design of a supercavitating 



propeller. It is of interest to point out that the cascade corrections!!4.!5] were originally used in 

subcavitating propeller design methods before the lifting-surface theory was fully developed. Both 

theoretical and experimental data for supercavitating cascades which would be useful for the design 

of supercavitating propellers are very scarce. The cascade section theory and its associated computer 

program developed by Yiml!®-?!] are used here to aid in designing blade shape. 

It must be recognized, however, that a supercavitating cascade is not a perfect model for blade- 

section design principally because of the disparity of the cavitation numbers between the cascade and 

the propeller!*!, That is, in a cascade, the cavitation number can never be smaller than the infinite 

cavity cavitation number o,, which is always larger than zero, while a ventilating propeller has zero 

cavitation number. Even for supercavitating propellers, the cavitation number o near the blade tip, 

in general, is smaller than o,,. Yet, the drag-lift ratio of a meaningful supercavitating foil, influenced 

by neighboring cavities, is considered to be properly analyzed in supercavitating cascade theory, and 

approaches the drag-lift ratio of a blade in the infinite medium near the blade tip. In addition, the 

cascade effect is very sensitive to the shock-free entry angle and to the relation between the leading- 

edge cavity thickness and the cavitation number!?!1_ These also seem to be important blade cavity 

interferences. The effect of the cavitation number should be considered again in the final design!??! 

SUPERCAVITATING CASCADE THEORY 

A two-dimensional supercavitating cascade theory is applied to each blade section. Each section 

has a different hydrodynamic pitch angle 6; and blade chord length c. The distance d between the 

neighboring leading-edges of propeller blades at a blade section is 

£= (Qanyl(Ze) a) 

where r is the radial coordinate and Z is the number of blades. This ratio, d/c represents the solidity 

of the cascade at the blade section. The stagger angle is 

v5 Fi (2) 

The parameters d/c and y are typical of cascades. The angle 6; is not known initially. Thus the 

geometrical advance angle 8 is used first and then the approximate B; is used for the second iteration. 

In using supercavitating cascade theory there are two ways to select blade shapes: one is from 

a given mode of chordwise pressure distributions!!! and the other is from a given mode of foil 

shapes|?!]_, The present program can handle either of the two approaches although the pressure mode 

is restricted !!®!8] to special mathematical forms. The details of cascade theory and the associated 

program are explained in References 17, 18, and 20 for the pressure mode and in Reference 21 for 

the foil mode. In practice, the foil mode is better for designing a supercavitating propeller. 

It is well known that the thrust and power coefficients of propellers are influenced by the 

viscous drag/lift ratio € as shown by the following equations!??), 

: Te et 
c,=4z f G(r) X7V (1 -e tan B:) dr (3) 

mh 

1 w 
Gai rove] dw) ~ 2 |ar verona at (4) 
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where e€ includes the cavity drag effects; r is a nondimensional radial coordinate; r, <r < 1 with r, 

the nondimensional hub radius; and A = V/(QR) with ship speed V, angular speed 82, and propeller 

radius R. 

Since € is very sensitive to section cascade parameters!!62!] | it has to be obtained from super- 

cavitating cascade theory. In addition, € is, in general, a function of the cavitation number and the 

section lift coefficient. Thus, for a different lift coefficient, « has a different value. However, the 

lifting-line propeller design program does not supply the lift coefficient distribution as an input but 

rather as an output. The lift coefficient distribution is obtained by iteration, as for subcavitating 

propellers. Thus, as usual, all the physical quantities such as pressure p, velocity u, drag-lift ratio e, 

cavitation number 9, etc, are normalized by lift coefficient C;. Then even if C; changes, the actual 

values can be obtained by multiplication of C;. However, o not o/C, is given as an input. Therefore 

o/C,, changes with C, while all the physical quantities normalized by C, are functions of a/C,, not a 

alone!*!]_ In addition, even if o/C;, were known, the cavity problem with finite cavity length should 

be solved by iteration because‘the geometry of the problem associated with the cavity length is not 

known a priori. Thus the design of a supercavitating propeller involves double iterations. 

To circumvent this difficulty, the supercavitating cascade problem is divided into two parts!?!1: 
one is the problem of infinite cavity length and the other is that of finite cavity correction. Then, if 

the solution for the infinite cavity length is obtained once at each blade section it can be used 

repeatedly for each iteration for a different value of C;. Fortunately the finite cavity correction is 

simplel!7,21] in a linear design theory where the load distribution is fixed, and can be readily computed 

during each iteration for a different cavity length. 

In the problem for the infinite-cavity cascade!?!! the basic camber shape, such as two-term 
camber in an infinite medium, is given as an input. Then the shock-free angle is found at each section. 

The shock-free angle is very sensitive to cascade parameters!?!!, To this basic camber, which has its 

own shock-free angle, an angle of attack and a point drag are combined to meet the desired lift and 

leading-edge cavity thickness. There are three options at this stage: (1) the amount of camber is 

given (2) the amount of angle of attack is given, and (3) no point drag is given. The method of 

hydrofoil airfoil correspondence!!*) and the Fast Fourier Transform Technique!!! are used to 
compute the drag-lift ratio, the normal velocity on the foil and cavity, the foil cavity shape, and the 

pressure distribution. ; 

For the finite cavity correction, a simple superposition method !'7! is used for many different 

values of cavity lengths assuming that the load distribution on the foil is exactly the same as the case 

of infinite cavity. Therefore, the cavity drag, the angle of attack, and the cavity thickness for a given 

load distribution decrease when the cavity length decreases, although for a fixed foil shape the 

opposite results are obtained. However, by a proper correction, the minimum leading-edge cavity 

thickness is maintained. The cavity length corresponding to o/C, is obtained by interpolation. 

The local cavitation number is smallest at the blade tip of the propeller; much larger at the hub 

and is the function of camber shape, load distribution and the given leading-edge cavity thickness. 

As shown in Reference 21, o/C, is a linear function of the leading-edge cavity thickness. Also, near 

the hub a/C, varies very little even when the cavity length changes!?!1. That is, near the hub where 

the solidity is large, the lift coefficient is proportional to o and almost independent of cavity length. 

Since o/C, varies considerably from the blade tip to the propeller hub, sometimes a/Cy,, may be 

too large to have a stable cavity near the hub. If the supercavitating propeller must have a stable 

cavity at every section, the foil shape should be designed accordingly. Although the leading-edge 

cavity thickness is prescribed such that enough blade thickness can be accommodated inside the 

cavity, the thickness may have to be larger than the strength analysis requires in order to have a 

stable cavity at least as long as 1.5 chord lengths. When this situation applies, the leading-edge cavity 

thickness is computed for the 1.5-chord-length cavity length (see Appendix A), and the leading-edge 

point drag!!8] is superposed to supply the leading-edge thickness without changing the load distribution. 



When the given cavitation number o is smaller than o,, for a minimum leading-edge cavity 

thickness, all the physical quantities corresponding to o,, are taken as an approximation in order to 

have a consistent application of the cascade theory. This situation occurs near the blade tip where o 

and o,, are both smallest, but the physical quantities for a given foil with an infinite cavity seem to 

differ very little between the two cases near the blade tip where the solidity is small!?!1. 

INFLOW ANGLE INFLUENCED BY CAVITIES 

Blade-cavity interference effects may have to be considered not only for cavity drag but also for 

induced velocity on the blades. The induced velocity determines the angle of inflow velocity or the 

hydrodynamic pitch angle B;. The angle 6; determines the regular helical surface where the trailing 

vorticity is usually located!!°l. For a subcavitating propeller, the angle B; is determined completely 

by trailing vortices on the helical surface. The inflow velocity at the propeller plane is the vector 

mean velocity of the velocities far ahead and far behind the propeller. The Kutta-Joukovsky theorem 

for the propeller!**! holds with the vector mean velocity and not with the velocity far upstream as in 

two-dimensional theory. The finite blade thickness, which can be represented by a source distribution, 

can influence neither the flow velocity at infinity nor the vector mean velocity because the source 

effect on the perturbation decays very rapidly with the distance. The finite-cavity thickness can be 

represented also by a source distribution. Therefore, in a supercavitating propeller with finite cavity, 

the cavity cannot influence the hydrodynamic pitch angle directly when the vortex and cavity source 

are superposed for the propeller representation. 

When a long cavity is considered, the infinite-cavity cascade theory shows that the downstream 

flow deflection, or exit angle, is sizable. Thus, the long cavity may induce a sizable contribution on 

the inflow angle. This effect can be seen in the considerable increment of shock-free angle of two- 

term-camber foil in cascade!?!]. Therefore it may be worth trying in the final design a pitch angle of 

blade cavity different from a wake angle 6B; where the trailing vortices are located|?! 

For supercavitating propellers with long cavities the problem of determining 8; is more compli- 

cated than for subcavitating propellers because the inflow angle is influenced by flow retardation as 

well as a cascade effect in addition to the vortex induced velocities. Fortunately, the effect of flow 

retardation tends to cancel the cascade effect !*:2?]. In practice, even a long cavity does not extend 

very far downstream while the trailing vortices extend to infinity. Therefore the present approach is 

to consider the cavity essentially finite and to employ a cascade theory to approximate the inner 

flow of the propeller, considering that 6, is influenced only by the vortices. For subcavitating 

propellers the use of two-dimensional airfoil theory requires determination of an angle of attack with 

respect to 8;. Two-dimensional theory may be considered then as an inner flow theory which is 

imbedded in propeller theory. 

Likewise, when a cascade model is applied to a blade section of a supercavitating propeller, the 

problem is reflected in how to match the inflow velocity of the propeller and the cascade velocity 

field. That is, the hydrodynamic pitch angle 6; must be matched to the vector mean of the velocities 

far upstream and far downstream of the cascade. From momentum considerations in the cascade!4] | 

the far downstream velocity angle 6 is 

5 =—-(cC,-cos ¥)/(2d) (5) 

which is a function of C; only. Therefore, the vector mean velocity is deflected from the velocity 

from far upstream at an approximate angle!4! of 5/2. This direction of the cascade velocity has to 

coincide with the direction of the hydrodynamic pitch angle B; of the propeller. In this way, the 

cascade effect is fully manifested in the angle of attack of the blade. That is, the angle of attack 

becomes much larger than when an isolated supercavitating foil is considered. 



OPTIMUM DISTRIBUTION OF HYDRODYNAMIC PITCH 

The optimum distribution of hydrodynamic pitch for a supercavitating propeller was recently 

found!?3!, The optimum-pitch relation can be adopted as an option in the present design program. 

Namely, instead of using 

(r/A) tan Bj = c, (6) 

the corresponding new relation can be used!23] | 

d 1/2 d 1/2 

(r/A) tan B: = { - ( +G s<) an} i} +c, (< +G “<) wel (7) 

where e€(G) is the drag-lift ratio derived from supercavitating cascade theory as a function of 

circulation G, and c, is a constant which allows a specified thrust requirement to be met. 

INFLOW RETARDATION 

The performance of propellers is highly dependent on the advance coefficient J = V/(DN), where 

D is the diameter and N is revolutions per unit time, or J/t =X. It is well known that if J becomes 

small, the angle gf attack with respect to the inflow velocity grows, and accordingly, the cavity thick- 

ness increases. Thus, investigations have found that the velocity retardation in front of the super- 

cavitating propeller results in a considerable change in performancel!7-?5-261_ This can be a serious 
problem, due to the local perturbation velocities caused by three-dimensional cavity sources in a 

rotating helical surface of the propeller. This effect is qualitatively different from that of the two- 

dimensional cascade approximation of blade sections!*5!. The former is a near-field effect with 

respect to the outer flow of a propeller and the latter is purely an inner flow effect without consider- 

ation of the outer flow. An axisymmetric model was used!?5,26] to evaluate the flow retardation. 

However, this can be more properly handled by the lifting surface theory of supercavitating 

propellers !?21, 

COMPUTER PROGRAM 

A flow chart for the computer program is shown in Figure 1. Essentially the computer program 

is a combination of the lifting-line design program for subcavitating propellers and the appropriate 

supercavitating cascade theory. After reading the inputs, such as the propeller geometry, design speed, 

revolutions per minute, and average wake fraction, flow field calculations for a supercavitating cascade 

having infinite cavity length at each section are performed and saved for later use. Then the first 

approximation of the hydrodynamic pitch angle 6;, is used to calculate the radial lift distribution and 

the section lift coefficients C, by lifting line theory!!9]. For this calculation there are two options; 

(1) tan B(r) is proportional to any given set of tan 6;(r) and (2) the optimum pitch relation, 

Equation (7) is satisfied. Then the computed value of C, is used to calculate o/Cy, which is used to 

find the cavity-length. Then, the infinite cavity drag-lift ratio is corrected, and the thrust (or power) 

is computed and compared with the design thrust (power). If the value of the thrust is not within a 

specified error band, of the design thrust, a new 8; is obtained according to the Newton-Raphson rule 

to compute a new thrust as previously described. This process is iterated until the design thrust is 

obtained; usually two or three iterations are required. The final outputs are the power (thrust) 

coefficient, the efficiency, the nose-tail line angle of attack with respect to 6;, the pitch distribution, 
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Figure | — Flow Chart of Computer Program of the Preliminary 

Design of Supercavitating Propeller 

and the section drag-lift ratio, in addition to all of the cascade section data such as the foil cavity. 

shape, the pressure distribution, and the leading-edge thickness. The cascade section data are also to 

be used for the lifting-surface theory of supercavitating propellers as a leading term of the three- 

dimensional cavity solution. 

The computer execution time on CDC 6700 is about 80 seconds to produce all of the informa- 

tion for preliminary propeller design. 



NUMERICAL RESULTS AND DISCUSSIONS 

The preliminary design program is fully implemented when it is used with the final lifting-surface 

design program [27], These programs although tested for existing supercavitating propellers, have not 

been used for designing a new supercavitating propeller. Experimental evaluations of propellers 

designed by the new theory are planned for the near future. Among many propeller models tested 

at DINSRDC, two propellers, DINSRDC Models 3770 and 3870, were chosen for comparison. The 

former propeller has three blades and a low advance coefficient and the latter has four blades and a 

high advance coefficient. Experiments showed that both propellers had smooth cavities. The 

experimental results and the previous design calculations are reported in Reference 3. 

The design and performance characteristics of the two propellers are listed in Table 1. The 

predicted efficiencies of the lifting-line designs are very close to the measured efficiencies, although 

they are related to the distribution of the leading-edge cavity thickness which is determined from the 

cavity length predicted by cascade theory and a blade strength analysis. When the design leading-edge 

cavity thickness is given, there are two design approaches used here in the preliminary design process 

to meet the lift and the leading-edge conditions: Case | - specify the camber factor per unit C, 

Table 1 — Design and Performance Characteristics of Supercavitating Propellers 

Propeller 

Z 4 
P/D (0.7) 1.243 
EAR 0.727 

Exoerinent 2/D (0.7) 0.344 
J 0.834 
G 0.45 

kt 

n 

by Venning & Haberman? 
Preliminary Design 

(Lifting-Line Theory) 
Lifting-Surface Design 

Case 1 

Case 2 

by Venning & Haberman? 
Preliminary Design 

Case 1 58.2 
nN Case 2 56.7 

Lifting-Surface Design 
Case 1 58.7 
Case 2 58.9 



which multiplies the camber of a two-term foil in an infinite medium, and then adjust the angle of 

attack and the point drag to meet the conditions of the given lift and leading-edge cavity thickness; 

Case 2 - find the camber and the angle of attack to meet the conditions without introducing a point 

drag. If the specified leading-edge thickness is not large enough to produce a cavity longer than 1.5 

chord lengths, a point drag is added to produce a |.5-chord cavity length without changing the lift 

coefficient. If the given camber factor is too large the angle of attack may be negative, i.e. less than 

the shock-free angle of attack. In this case, the given camber of the shock-free foil is reduced to 

meet the given lift coefficient without the negative angle of attack. 

The pitch distributions for Models 3770 and 3870 are shown in Figures 2-4 for various leading- 

edge cavity thicknesses which are shown in Figures 5 and 6 along with the various design thrust 

coefficients C; for Case 1 and Case 2. In the figures, a group of four numbers or symbols (A, B, C, 

D) indicates: A = camber, B = thrust coefficient, C = efficiency, and D = leading-edge cavity 

thickness distribution, as shown in Figures 5 and 6. Radial sections that have finite-length cavities 
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0.6 
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r/R 

Figure 2 — Pitch Distributions of Lifting Line Design 

for Supercavitating Propeller Model 3770, Case | 
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Figure 3 — Pitch Distributions of Lifting Line 

Design for Model 3770, Case 2 
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Figure 4 — Pitch Distributions for Model 3870 
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c/R 

Figure 5 — Leading-Edge Cavity Thickness Distributions 

at x/c = 0.1 for Model 3770 
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Figure 6 — Leading-Edge Cavity Thickness Distributions 

at x/c = 0.1 for Model 3870 

in the cascade theory are marked by small circles on the curves. The pitch distributions for a finite 

cavity propeller have a considerable variation along the span of the blade because the short cavity 

effect on the angle of attack is much larger than the influence of the infinite-cavity cavitation number 

on the leading-edge cavity thickness and on the angle of attack. The short cavity decreases both the 

angle of attack and the cavity drag. Thus, when the leading edge is chosen such that each section 

has an infinite cavity, the pitch distribution is smooth but the efficiency becomes lower as is shown 

in Figures 2-4 and 7. In any case, the pitch distribution is, in general, larger than those of the 

models. This may indicate that the effect of flow retardation is significant. 

From the pitch distribution, the angle of attack with respect to the hydrodynamic advance angle 

6;, can be figured easily. An example of the angle-of-attack distribution determined from the lifting- 

line design method is shown in Figure 8 along with that of Model 3770. The camber distributions 

Co/C;, for propellers 3770 and 3870 are shown in Figures 9 and 10 respectively. The value of cg/C, 

is a measure of the camber assuming that cyy/C; , - ax is the actual foil shape without the point 

drag, having the lift coefficient Cy of the supercavitating foil in the infinite medium, the additional 

nose-tail-line angle of attack a, to the shock-free camber y. When the camber shape is given such as 

by the two-term camber, y is the value of the foil shape which is at the shock-free angle in the blade 

section. Therefore, c,/C,; decreases when q is large, but increases when the cascade effect is large 

with a fixed value of a. 
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Figure 7 — Comparison of Optimum Variable Pitch 

and Constant Pitch in Model 3770 (Case 1) 
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Figure 9 — Camber Distributions for Model 3770 
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Figure 10 — Camber Distributions for Model 3870 

According to lifting-surface theory!??!, only a small correction is required to the cavity source 

distribution for the infinite-cavity cascade; in the case of finite cavities the correction is comparatively 

large. The efficiency of the lifting surface is also very close to the efficiency predicted by lifting- 

line theory. The pitch and camber distributions computed by lifting surface theory are a little 

smaller than those of lifting-line theory because of the effect of flow retardation. However, for the 

supercavitating propeller designed with a short cavity, the corrections to the cascade cavity source, 

pitch, and camber are quite large. 

It must be recognized in the old design of Propeller 3770, that angle is added to the angle of 

attack of the two-dimensional supercavitating foil in the infinite medium as a lifting surface effect. 

However, the increment of angle of attack is actually due to the cascade effect; the three-dimensional 

effect is manifested as a decrement of angle of attack because of the effect of flow retardation. 

A comparison of the optimum pitch distribution obtained from Equation (7) and the pitch 

distribution obtained from the normal condition r tan 8; = constant is shown in Figure 7. The 
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FINITE CAVITY 

x/C 

Figure 11 — Finite Cavity Effects on Foil Shapes 

r/R = 0.53, Model 3870 

efficiencies of the two different supercavitating propellers are almost the same although the efficiency 

of the propeller with the optimum pitch is a little better. In other examples the efficiency due to 

the optimum pitch distribution is also only slightly improved. 

The pressure sides of the blades on Propeller Models 3770 and 3870 have the two-term camber 

shape. The actual leading-edge cavity thickness of the models were not measured. Figure 11 shows 

that the short cavity effect is considerable in changing the foil shape, especially near the trailing-edge. 

If the point drag is added at the leading edge the foil shape changes again. There are lifting-surface 

effects to pitch and camber which must be combined. Therefore, without an actual design and 

experimental evaluation, there can not be a detailed evaluation of the present theory; only an 

approximate comparison of the resulting behaviors can be made. Yet the results of the present 

theory seem to indicate that proper use of supercavitating cascade theory is a correct procedure to 

use in the preliminary design of a supercavitating propeller. 

In the usage of the supercavitating cascade theory, the following points are reemphasized. 

1. The angle of shock-free entry for a cascade is considerably different from that of a single 

foil in an infinite medium. 

2. The leading-edge cavity thickness is one of the important design parameters, and has a linear 

relationship with the infinite-cavity cavitation number. 

3. Separate treatment of the finite-cavity effect simplifies the application of supercavitating 

cascade theory to the propeller blade section design. 

4. The results of infinite-cavity cascade theory are acceptable for preliminary design near the 

blade tip where the actual cavitation number is smaller than the infinite-cavity cavitation number. 
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APPENDIX A 

Leading-Edge Cavity Thickness for a Given Cavity Length 

According to Reference 17 the solution for an finite-cavity cascade c2n be obtained by super- 

position of the infinite cavity solution 

u, -iv, (Al) 

and the finite cavity correction 

u, - iv, (A2) 

That is, the solution is 

u-iv =u, tu, -i(v, tv.) (A3) 

The value at infinity downstream is represented as 

u, =acosy C, (4K) 

v, =-(a?C, tasin y Cy )/(40K) (A4) 

where GC; and oF represent the lift and moment coefficients, respectively, in the transformed plane; 

a is the transformation constant!!7]: and K = (a? d cos y)/(2 7). 

The values at infinity downstream for the finite cavity correction are 

eel -1 Cos y 
5 ~ =z (0/2 u,) (ta a,a-siny i=} | 

— COs 
- -tan7! erie) = -U(a/u-u,) 

a-siny -a,a-siny 

a? a?-2a,asiny+1 1 
aca (a/2-u,) log < i 41 = -v(0/2-u5) (AS) 

ay a*+2a, asiny +l 

where 

uz =U, tu, 

v3 =v tV, 

i=} 
w 

| =v, tany (A6) 

and a, and aj are the corresponding values of the upper and lower cavity lengths in the transformed 

plane. , 

Therefore, C /iGa can be represented in terms of the given finite cavity parameters 9, a), and a3. 

EF 



When the cavity length for the given design cavitation number and the given leading-edge 

thickness is too small, a new leading-edge thickness which produces the required cavity length can be 

obtained as follows. When the cavity length is known, the coordinates of the corresponding cavity 

end point in the transformed plane, a, and a3, are known. From Equations (A4) through (A6), 0/2 

can be represented in terms of C, Kew a, and a3. 

l a 1 
=—j;-Il+ a | aS oe an OO Gee) 

s : i I = lege 
-{Uad, + Usiny# Vos 9G, }- Hy a? Gy +asiny | (A7) 

Thus 

fe Te V~ {Cl + V tan )Bua-~ Z| [{e-1+v tan NBCU siiqnt V Cos yi Chey u 4nK Y 2m Wek 

(A8) 
where ; 

p aie fale 
4nK \Vtany-U 

The cavitation number for infinite cavity has the relation with C./Cu from Equation (A4) 

On, _ — 

2Gn =acosyC, /(C,, 47K) (AY) 

Since [Cy is a linear function of the leading-edge cavity thickness, the new leading-edge cavity 

thickness corresponding to the new value of o,,/C; can be obtained. Because the load distribution 

is already satisfied by the camber and the angle of. attack, the leading-edge thickness should be 

augmented by the additional point drag which does not contribute to the lift. 
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DTNSRDC ISSUES THREE TYPES OF REPORTS 

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH- 
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF 
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT. 

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM- 
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. 
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION. 

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION 
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN- 
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE 
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC 
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE 
BASIS. 




