PRELIMINARY STUDIES ON
THE TURBULENT CHARACTERISTICS OF OCEAN WAVES

UNDERWATER ORDNANCE STATION NEWPORT, RHODE ISLAND

U. S. NAVAL UNDERWATER ORDINANCE STATION NEWPORT: RHODE ISLAND

TECHNICAL MEMORANDUM

Prepared by:
D. H. SHOVING

July 1965


```
J. BORTOTII
Commander, USSN
Acting Commanding Officer
```

WEPTASK Assignment No
RU22-2E-000/219-1/R004-03-01

FOREWORD

The work discussed in this report is a result of studies presently being made by the Naval Underwater Ordnance Station (NUOS), Newport, R. I., and the Planetary Circulations Project of the Department of Meteorology, M.I.T., Cambridge, Mass.

The objective is to form a better understanding of the dynamic and turbulent motions of wind waves and swell.

ABSTRACT

This report presents the results of preliminary ocean wave studies made in an endeavor to learn more about the turbulent characteristics of wind waves in the open ocean.

A series of hypothetical wave modelspresented indicate a mechanism: of momentum transfer within the waves.

Two series of wave motion measurements were made, one from a Navy pier in Narragansett Bay and a second from Buzzards Bay Entrance Light Station. The measurements were made to obtain rough data on particle velocity motions in various sea states and to examine their variances, covariances and respective spectral properties. These preliminary measurements indicated that relatively large amounts of windwimparted momentum are transferred through the water column by correlations of the wave motions themselves.

The values of the variances of the particle motions reflected the strong exponential attenuation with depth. The auto-spectra clearly displayed the fundamental frequencies of the wind waves and the low frequency swell. The strong attenuations of the wind wave turbulence with depth is contrasted with the weaker attenuation of the swell.

ACKIVOWLEDGEMENTS

The assistance of U. S. Coast Guard personnel aboard the Bumzards Bay Entrance Light Station is greatly appreciated. Also thanks is due the officers and men of the U. S. Naval Air Torpedo Unit, Quonset Point, R. I., for helicopter transportation to and from the Light Station facility.

Computation time on the MIT IBM 7094 digital computer for spectra analysis was provided by the Planetary Circulations Project of the Department of Meteorology, M.I.T., Cambridge, Mass.

Assistance in programming and computer problems was given by Mr. Richard Lavoie of NUOS and Mrs. Judith Copeland of MIT.

INTRODUCTION

The purpose of this report is to discuss the preliminary efforts in the studies of turbulence characteristics in ocean waves. A brief review is made of recent wave measurements together with a discussion of instrumentation procedures. The problem of estimating the turbulent transfer of wind-imparted momentum is considered in conjunction with three hypothetical wave models.

Need for Data on Wave Dynamics

Wind waves in the ocean are known to be composed of water particles whose motion is essentially rotational or turbulent in character. The vast majority of ocean wave measurements have been concerned with recording the time variation of the free surface or the variation of hydrostatic pressure beneath the waves. From these data very little information can be obtained regarding the dynamic properties of the water particles themselves or of the gross turbulent energy in the waves.

To understand the dynamics of wave generation and dissipation, in situ measurements of the particle motions are necessary, since the key to the generation of wind waves is the ability of the surface layers to transfer wind-derived momentum to the deeper layers.

The manner by which wind imparts momentum and energy to the sea surface, causing wind waves and currents, is not well understood. This momentum, however, must be transferred from the sea surface to the deeper layers solely by the motions of the water particles themselves. This vertical transfer of horizontal momentum is done by means of turbulent motions, although the process may be more orderly than is indicated by the term.

Thus, if the momentum transfer through the upper layers is being considered, it becomes apparent that one should also examine the effects of the more regular, quasi-oscillatory particle motions of the waves, since the waves themselves are indeed a manifestation of wind stress.

The question then arises as to what sort of orbital configurations could provide a simple mechanism for the downard transfer of wind-imparted horizontal momentum. One such geometry would be that of a properly tilted ellipse. A particle might then acquire horizontal momentum from the wind stress at the top of its orbit and transfer the momentum downard as it moves in its trajectory. Starr has also shown the probability of some such mechanism on other grounds. The mechanism described in this report should be capable of representation as a Reynolds stress in terms of Eulerian hydrodynamic variables. It is of interest then to consider the problem of measuring these effects.

NARRAGANSETT BAY MEASUREMENTS

The following experiments were reported by the writer ${ }^{2}$ and can be summarized as follows:

During August 1963, measurements of the velocity components beneath ocean waves were made utilizing two adjacent ducted current meters mounted orthogonally as to sense the particle velocity components in the plane normal to the wave crests. The meter system is shown in figure I_{o}. This system of orthogonally mounted ducted meters is termed OMDUM I. The cylinders are about 10 cm in diameter and 20 cm long. The OMDUM I was fixed to the end of a vertical steel beam supported rigidly at the end of a naval pier in Narmagansett Bay, R. I. Impellers, mounted within the cyIinders on jewelled bearings, were neutrally buoyant. The tips of the impellers contained small iron slugs which, upon rotation, perturbed magnetic fields of small induction coils incorporated in an oscillator circuit unit attached to the sides of the cylinders. The output from the amplitude modulated system reflected the pulses as the impellers rotated in the fluid flow. Because of an assymetry of the megnetic fields of the induction coils, the sense of the rotation of the impellers, i.e., the direction of flow, was presented as a unique signature in the output.

A two channel strip chart recorder was used to register the rate of flow through each of the impellers. The da, ta were hand-converted into a continuous plot of the fluctuating velocities, $\mathrm{U}^{\text {: }}$ and w^{2}, as a function of time. From this time series the sign and magnitude of the U^{2} and W^{2} were selected at 0.3 -second intervals and placed on punched cards for computer processing.

The meters were immersed about 15 cm below the trough level of the waves, With the horizontal flowwsensing meter aimed normal to the crest line. Generated over on upowind fetch of about 5 km , the waves displayed clearly
defined crests, visually estimated at 1.5 second periods. Wind speed was about $9 \mathrm{~m} \mathrm{sec}-1$, wave height about $50-75 \mathrm{~cm}$, and water depth below the instrument about 7 meters. The assumption was that the waves were essentially surface (i.e., deep water) waves.

The covariance $\overline{\mathrm{U}^{8} W^{8}}$ between the 1188 pairs of data was found to be $-7.8 \mathrm{~cm}^{2} \mathrm{sec}^{-2}$, which is an estimate of the magnitude and sign of the Reynolds stress (downward momenturn flux). The Reynolds stress is here defined as $\tau=\rho \overline{U^{8} W^{8}} . \rho$ is the density of water, which is assumed constant. The linear correlation coefficient between U^{8} and W^{8} was -0.21 .

Spectral analysis was made of the time series data utilizing the methods described by Tukey3. Autocovariance spectra were made of the time series data of the two velocity components and are shown in the upper curves of figure 2. The spectra show peaks at wave periods of about 1.5 sec , which was approximately the observed wave period. Both of the velocity components exhibit similarly shaped peaks. The co-spectra component of the covariance spectra exhibits a negative peak at the dominant wave frequency. This indicates that the downward momentum flux, due to the negative correlation of the velocity components, occurred at frequencies equivalent to those of the waves.

The interpretation given to dynamics of wave measurements from this statistical analysis is critically dependent upon the sensing character of the ducted meter system. A continuing study is being conducted of the response characteristics of the meters, including a series of laboratory and field tests. (The OMDUM II system was developed and was geometrically similar to OMDUM I. This new system utilized similar magnets mounted on the impellers, and pickup coils in lieu of the oscillator and amplifying circuits which proved unreliable in OMDUM I.)

The OMDUM II was first calibrated for steady-state flow parallel to the axis of each of the cylinders. Then the axes of the cylinders were set at arbitrary angles between 0 and 90° from the direction of steady flow to obtain the variation in instrument response to the "off angle flow". Finally, the impeller response to accelerative flow was measured.

The results indicate that the meters have essentially identical calibrations for steady flow parallel to the respective cylinder axis. The flow response as the meter axis is rotated with respect to the flow direction follows closely the cosine law. In other words, the component of flow varies as the cosine of the angle subtended by the cylinder axis and the mean flow direction. Further tests are being conducted for purposes of assessing the exact angle-response relationships.

To assess the response time of the impellers, the OMDUM II was sinusoidally oscillated vertically in a test tank, and the fluctuating response of the meter was recorded. These velocity variations, obtained from the calibration curve for the steady flow, were compared directly with the
output of an accelerometer attached to the meters. The frequency response of the impellers was shown to be greater than 10 cps . This rapid response permits accurate sensing of perturbations of the time scales of wind waves of the period from 0.5 to 8 seconds.

It is realized that there must be a limiting size of eddy or oscillatory configuration for which the volume dimensions of the meter alter or interfere with the inherent motions of the eddies. The effect of decreasing orbital size upon flow sensing is to be determined by measuring the meter response of the ducted meters in a wave generating flume system at the Coastal Engineering Laboratory in Washington, D. C.

THREE HYPOTHETICAL WAVE MODELS

A comprehensive understanding of the analysis and synthesis of the Tukey spectral estimates is essential for drawing valid conclusions and making interpretations regarding the nature of wave motions as derived from their statistical properties. To best assess the application of the spectral analysis upon the two component velocity time-series data, three sets of hypothetical wave data were constructed and analyzed. These sets of data depicted three different wave models: one whose particle motions are (a) quasi-random with an induced bias to give $U^{8} W^{2}<0$ with no preferred frequency in the covariance spectra; (b) quasi-ideal sinusoidal particle motions With no intentional bias giving $U^{*} W^{8} \sim 0$; and (c) sinusoidal velocity fluctuations with a bias rendering $U^{8} W^{2}<0$ and having a preferred frequency in the covariance spectra equivalent to the frequency of the quasi-sinusoidal velocity functions.

The three sets of data each contained 600 pairs consisting of the horizontal velocity component U_{n} and the vertical velocity component W_{n}. The subscript n indicates the nth data point where $n=1,2,3, \cdots-N_{N}$, and N being the total number of data pieces equally spaced at time intervals of Δ t. Thus, the total period of sampling, T, is equal to $\mathbb{N} \Delta t$. For the three time series T is 180 seconds. The amplitude or half range of the velocity components for all three data sets was about $10 \mathrm{~cm} \mathrm{sec}^{-1}$. Table 1 lists the pertinent statistical parameters of the three data ensembles. A description of the three models follows.

Biased Random Wave Model (BR)
The first hypothetical wave model can be envisaged as a surface wave field where the particle motion is quasi-random produced by many oscillatory progressive waves moving in many directions. The term "quasi-random" is used for two reasons: (1) the values of time series data were arbitrarily chosen without use of tables of random numbers and (2) about 5% of actual values of data points were altered to give a slight negative correlation function, i.e., a value of the covariance function at zero lag ($\mathrm{U}^{8} \mathrm{~W}^{8}$) less
than zero. The actual value of the function is about $-3.98 \mathrm{~cm}^{2} \mathrm{sec}^{-2}$. This simulated value of the stress near the water surface is thus 3.98 dynes cm^{-2} which is of the order of magnitude of assumed mean wind stress upon the real ccean surface. This model will be referred to as Biased Random Wave Model (BR).

Unbiased Simple Harmonic Wave Model (USH)
The second set of data is characterized by representing the horizontal and vertical components as quasiosinusoidal functions. Assumed is a simple harmonic wave model in the form of an ideal deen water progressive ocean wave as described by Lamb ${ }^{4}$. This model was derived, assuming an irrotational incompressible fluid in which the wave length is much less than the water depth.

The component particle velocity components are described by

$$
\begin{equation*}
U(X, Z, t)=\sigma A e^{-K Z} \operatorname{SIN}(K X-\sigma t) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
W(X, Z, t)=-\sigma A e^{-K Z} \cos (K X-\sigma t) \tag{2}
\end{equation*}
$$

Where: A, K, and σ are amplitude (cm), wave number ($\mathrm{cm}-\mathrm{I}$) and circular frequency ($\sec ^{-1}$), respectively.

Thus, for a fized depth Z_{0} and horizontal coordinate X_{0} we may write

$$
\begin{equation*}
U\left(X_{C}, Z_{C}, t\right)=U(t)=A^{3} \text { SIN } \sigma t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
W\left(X_{0}, Z_{0}, t\right)=W(t)=-A^{s} \cos \sigma t \tag{4}
\end{equation*}
$$

Where $\quad A^{s}=\sigma A e^{\infty K Z} Z_{0}=$ Constont.

The second data series is represented in equations (3) and (4) as simple harmonic oscillators mutuaily out of phase by $\pi / 2$ or one quarter of a wave period. Actually, the sinusoidal functions were only approximated, since they were hand-drawn over a time-amplitude grid having the proper frequency and amplitude. The data coints were then picked off the two curves at $\Delta t=0.3$ seconds. The value of $\mathrm{U}^{8} \mathrm{~W}^{8}$ is identicaily zero for the long train of waves represented ory tre sine and cosine furctions in equations
(3) and (4). Since the data were only approximately sinusoidal, the value of $\mathrm{U}^{8} \mathrm{~W}^{2}$ for USH (table l) is small but not zero.

Biased Simple Harmonic Wave Model (BSH)

The third hypothetical wave model is described as a Biased Simple Harmonic Wave function. This model is identical in every respect with USH except that the $U(t)$ function has been slightly increased at its positive maximum point. This intentional biasing was done for two reasons: (I) to synthesize a desired negative value of $U^{8} W^{8}$ for the BSH model and (2) to bias the BSH radel by a simcle mechanism, perhaps not unlike that existing in natural ocean waves.

This technique seems reasonable since, as stated previously, any energy and momentum within the wave must be transmitted through the actual wave suriace by a frictional drag and/or a form drag of the wind. Thus, the wind kions effectively howiontaily across the waves and causes an actual tractive stress on the crests of the waves and probably a pressure force upon the "upwind" side of the waves. Accepting this as fact, it can then be assumed that the transfer of momentum domwards in the waves is caused simply by turbolence in the water. The wind momentum is transferred by an eddy process in which the eddies are just the water waves themselves. Both of these forcing mechanisms could produce a sensible acceleration of the particles at the crest, i.e., when the $U(t)$ component is positive and maximum.

This is the reason for placing within the horizontal oscillatory component of the BSH model a biasing component which is of the frequency of the waves themselves. Hence, at a fixed point in the water column, a momentum transfer of this sort would appear as a direct coupling effect occurring at the dominant wave frequency.

STATISICAI CHARACTHRISIICS OF THE HYPOTHETICAI WAVE MODELS
The three sets of data were analyzed for pertinent statistical parameters using the Turay spectron estimate prozrain prepared by Convair on the MIT IBM 7090 Computer.

The statistical parameters of the three pieces of data are listed in table I. The number of pieces of data, the period of sampling, and the time spacing are identical for all three sets of data. ITone of the mean values of the horisontal and vertical velocity components, designated by $U^{\text {t }}$ and W^{8}, exceed 0.5 cm sec^{-1}.

The variences $\overline{U^{2}}$ and $\overline{W^{2}}$ (which are equivalent to the auto-covariance function at zero lag) ars about $15.16 \mathrm{~cm}^{2} \mathrm{sec}^{-2}$ for the BR model and between 49 and $55 \mathrm{~cm}^{2} \sec ^{-2}$ for the USEI ma BSH models (figures 2, 3, and 4). The
covariance function for the two biased models, BR and BSH, is -3.98 and $-2.57 \mathrm{~cm}^{2} \sec ^{-2}$ respectively. The covariance for the ideal sinusoidal function is, of course, much smailer, i.e., $-0.045 \mathrm{~cm}^{2} \sec ^{-2}$.

The correlation coefficient, $R_{\text {oth, }}$ for the $B R$ model is -0.21 and ficr the BSH model is -0.05 . For the USH model the correlation coefficient is even smaller at -9 x 10-4.

The auto-covarisnce and coveriance spectra (which are the Fourier transforms of the respective functions) of the three sets of data are plotted in figures 3, 4, and 5. The "in phase" or real part cf the covariance spectra (termed co-spectrum) is plotted below the power spectra pairs in these figures.

The power spectra of each relocity component, i.e., $\Phi \mathrm{U}$, and Φ, are plotted as $\mathrm{cm}^{2} \sec ^{-2}$ per sycle per second versus frequency (and period) on the abscissa. The values of $\bar{I} U$ and Φ for $B R$ are similar, with each showing a dominant low frequency peak between 0.2 and 0.3 cps. This peak is well defined and drops sharply at about 0.4 cps. From 0.4 through to the Iimiting frequency of akout $I \cdot 7$ cps the $\bar{\perp}$ W fluctuates in a similar manner as ΦU except that the latter displays two peaks, one at 0.8 cps and one at about l. 1 cps. These oscillations ol the power spectrum functions are mostly due to chance since the dats were generated in a quasimandom fashion.

The cross spectrum shows repeated fluctuations, displaying negative peaks at $0.3,0.8$ and I. 25 . There is, however, no extreme peaking indicative of predominant coupling at any one frequency. The comspectral function is, in general, negative throughout the frequency range.

The power spectra of the unbiased sinusoidal waves, USH, figure 4, show the expected shamply defined peaks at 0.5 cps , thich is the chosen frequency of the sinusoidal velocity components.

The co-spectrum function displays only a very slight negative perturbation, at about 0.5 cps, which is less than lo\% of the magnitude of the cross spectra of the BR.

Turming to the porer soectrs of the biased simple hamonic waves (BSH), figure 5, again the pronounced pears of the velocity functions occur at a band between 0.3 to 0.6 ass. The base of the peek for the BSH model is mroader than for the USH.

The coospectrom of the BSH model, figure 5 (bottom), is of special interest since it displays a strong negative peak centered at 0.5 cps. It appears as almost a mirror image of the power spectrums above.

Thus, by ailtewing the magnituode of the ampilitude of the $U(t)$ component by about 5% in a cyelie feshion, cowariance function is increased by almost two orders of magnituae, and the ccospectra are completely modified to show
a strong negative correlation at a frequency associated with the waves themselves. This type of simple (BSH) mechanism may well be primarily responsible for the dowward flux of wind-imparted momentum through the water column.

OPEN OUEATY MRASUREMENTS

A series of preliminary "open ocesn" observations were made with the slightly modified wave meter termed OMDM II at the Buocards Bay Entrance Light Station, which is situated in 20 m of water off the southern coast of Massachusetts (figure 6). The meter system was supported in a semi-rigid geometry by an errai of supporting guys above it and a 50 kgm vertical damping weight suspended below it.

The rreasurements were made on 11 May 1964 during a period of steady wind conditions, with a mean wind speed of about $6-8 \mathrm{~m} \mathrm{sec}{ }^{-1}$. The spectra results of velocity data taken at a depth of 1 meter and 4 meters below the wave trough level are shom in iigures 7 and 8.

The auto-covariance spectra of the U^{t} and W^{8} values at both depths indicate peaks at about 3-4 seconds, which agrees with the visual estimates of the wave periods. There is a strong attenuation of the U^{8} component spectra relative to the W^{2} at perioas greater than about 1.3 seconds. This effect, apparently caused by a swinging motion in the horizontal direction, is the reaction of the meter system to the back-and-forth U^{8} velocity component. Thus, the reaction of the rneter aygten tended to attenuate the amplitude of the U' fluctuation component due to the gross wave motions. This effect has been largely elimineiea by modifying the wire support system and using a heavier damping weight. At the time of this writing a new, smaller meter system has been constmeted and tested which has about half the cross sectional area as the original device. Rain data fron this smaller meter are strongly indicative that, due to the reduction of drag, the reaction to the oscillatory horizontal motions has been effectively removed.

Retuming agein to figures 7 and 8 , note the effective reddening of the spectral peaks of both pains of spectra with depth, i.e., the high frequencies are darpea more effectively vith cepth. Measurements were made at o (just under the trough leve1), $I_{2} 2,3,4$ ank 5 meters. This shift to more dominant low frequencies with depth is characteristic of the data.

Other than obsemving the gross attenuation of the frequencies above, say, I. 8 cps , the reader should be cautioned of the possible limitations of the meter"s detectalility of turbulent or eddy structures which approach the scale dimensions of the meter itself. Although the impellers have a fast response character, the variations in velocity at the higher frequency bandwidths will likely be associated with smeller eudy scales approximating the dimensions of the meter. i。eo, 20 cm .

When examining the depth variation of aprticular velocity component, say, W^{8}, one finds that the variance $\overline{W^{2}}$ decreases in an exponential manner. lote that the area under the spectmum cruse of Φ (f) versus frequency is equal to the variance of the particuiai component caused by fluctuations occurring between the frequency ranges studied.

Tnus,

$$
\begin{equation*}
\overline{W^{2}}=\int_{C}^{f_{1}} \Phi_{U T}(f) d \pm \tag{5}
\end{equation*}
$$

The turbulent kinetic energy may be defined by the relation:

$$
\begin{equation*}
E_{\mathrm{K}}=I / 2 \rho\left(\overline{U^{8} 2}+\overline{\bar{W}^{8} 2}\right) \tag{6}
\end{equation*}
$$

Thus, the spectra of the relocity components are in fact true energy density spectra, since the area unaer the spectral curve for a particular velocity component must be equivalent to the turbulent energy contribution of the component of velccity.

The covariance sfectre (bcttom curves) display a negative peak which occurs at the spectral band of the waves. The duto-ccvariance function at zerolag for the l-neter dextin was -23.3 $\mathrm{cm}^{2} \mathrm{sec}^{-2}$ and the linear correlation coefficient was - 0.17 . For the 4 meter depth the covariance function was $-14.1 \mathrm{~cm}^{2} \mathrm{sec}^{-2}$ and the correlation coefficient was $0-0.30$. As with the Narragansett Bay measurements, these sovariances seem extremely large in terms of the usuai empiricoi estimate cf stresses of the order of I dyne cm-2.

Based on the hypctreticar wave model data, it appears that if the stresses in the surface regime are about I dyne cm^{-2}, ther only very smali velocity correlations of alout $=0.05$ are required to preduce a Reynolds stress of this velue. Frobably the fucted meter system will be unable to detect such smal corelations because of the masking efieet ot relatively large scale perturiations caused by tre friteraction of the meter with the illow eround it.

However, tive resulta so zor arain=le inzicate strong negative correlations peaking at, the peroods of $3-6$ seconas. It is difincult to imagine that the meter system, properly mounted in the wave iegime, wuid artificially produce correlations at these relatively low frequencies.

No quantitative conslusions can be made yet, regarding the momentum fiux mechanisms. However, there is no prior justificetion for discounting the vaiues of covariance functions drainej from them since there are no previous direct measurements of streas to reler to.

A series of wave motion observations were made 7 December 1964 in order to test a newly constructed orthogonally mounted ducted meter system OMDUM III．This meter is a smaller version of the OMDUM I and II previously described．The cylinders are about 8 cm in diameter and about 14 cm in length．In the OMDUM III system the drag on the meters，caused by the oscillatory wave motions，caused the meters to move with the horizontal motions，resulting in a demping of the amplitude of the $U(t)$ record．The variances of $U(t)$ were usually from 0.5 to 0.1 times the $W(t)$ variances． Drag is reduced since the new meter has a cross sectional area of about half that of the OMDUM II．Also，more overall stability is provided by a pyramidal suspension with added vertical weight。

The three series of observations were made from 1300－1430 hours．The sky was mostly clear and the air temperature $0.5^{\circ} \mathrm{C}$ ．Sea state was $1-2$ ， with waves estimated at $3-4 \mathrm{~m}$ in wavelength and． $20-40 \mathrm{~cm}$ wave heights． From 䜣 a slight swell was detected but was too iII－defined for estimates of its parameters．

The wind was light and relatively steady at $2.5-4.5 \mathrm{~m} \mathrm{sec}-1$ from the WNW．The U meter was aimed at $285^{\circ}-290^{\circ}$ true；the wind wave directions seemed to vary from 280－295．

A surmary of the statistical data，along with the meteorological con－ ditions，are presented in table 2.

There was still a disproportion of the response of the U meter with respect to the W meter，as show by the variances of U and W at the various depths．However，these first results were preliminary in nature，since the OMDUM III system had not been calibrated for absolute speeds and the impeller design had been somewhat modified．

It is instructive，however，to examine the auto－spectra of the tro velocity components shown in figures 9 and IO。

The U spectra（designated by $\Phi_{U}(f)$ ）at the depths of $0.5,1.0$ ，and 2.0 meters，in figure 9，display the strong attenuation with depth at all fre－ quencies from 0 to 2.5 cps ．

Two obvious peaks are aisplayez，the highest at about ． 100 to ． 200 cps （T－5－10 sec），and the smaler at $035-045 \mathrm{cps}(T-2.2-2.9 \mathrm{sec})$ ．

The Iow frequency peak is caused by swell and ambient low frequency oscillations from meandering motions of the tidal currents boout the tower． There is a strong indication of low frequency oscillatory current motion With periods ranging from 8 sec to 30 or 40 sec ．The large values of the covariance function at zero lags in table 2 are caused primarily by these lower frequency components and not by correlations of wind wave frequencies of，say， $\mathbf{l}=5$ seconds．

The 2 m peak rises above the 0.5 and 1 m spectrum curves, below 0.25 cps. This is indicative that oscillations occurred during the different sampling periods which were not stationary. This is further suggested by the mean values of the horizontal component which vary from 13.6 to 21.6 cm sec-l, indicating a low frequency meandering motion.

The secondary peak is at $0.400 \mathrm{cps}(T-2.5$ seconds) and is characteristic of the wind waves observed at the time of measurement. In this wind wave frequency band and upwards to the cutoff frequency, the spectral density decreases markedly with depth. This shows that the motions in this band (0.40-2.50 cps or $2.5-0.4$ sec period) are of stationary character. In other words, the spectral characteristics of the wind wave motions seem not to have changed over the period of sampling, whereas the lower frequency motions apparently show marked variations or trends. The auto spectra function of the vertical velocity component $\Phi_{W}(f)$ is similar to the function $\Phi_{U}(f)$. The low frequency peak again shows indication that slowly varying motions occurred of frequencies in the range from $0.10-0.25 \mathrm{cps}$.

The wind wave peak occurs at about $0.40-0.50 \mathrm{cps}$, indicating a slightly lower frequency peak than the U spectra.

The 0.5 m spectra indicate a lingering of energy existing in the region from the wind wave peak out to the cutoff value of 2.5 cps . That is, the $\Phi_{U}(f)$ curve for 0.5 m tends to flatten out at a value of $0.5 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ between $2.30-2.50 \mathrm{cps}$, whereas in this same frequency range the $\Phi_{W}(f)$ curve drops to about $0.05 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ as seen in figure 10 .

Both sets of spectra indicate the presence of the wind waves at frequencies centered at $4.0-5.0 \mathrm{cps}$ and an exponential decrease in the variance contribution at this band.

Both the variances and spectra of the U and W component at 2 m are similar. This could indicate that at the sea surface the turbulent wave motions cause artificial perturbations on the meters and distort the spectra of the motions. At a deeper depth this gives a truer picture of the wind wave oscillatory patterns. Thus at the depths beneath the $0.5-1 \mathrm{~m}$ levels, means are available for faithfully reproducing gross orbital motions of the particles.

Wave measurements in a variety of meteorological conditions are being continued at Buzzards Bay Entrance Light Station, and further results of these "open ocean" measurements will be reported at a later date.

Round Hill Field Station of MIT is being funded from NUOS to utilize and study the potential of the Buzzards Tower for making wind stress measurements. It is hoped to coordinate wind and wave momentum flux measurements to provide a better understanding of the interactions and transfer of energy between the wind and ocean and hence provide dynamic pressure and acceleration data for the design specifications of high speed vehicle and hydrofoil systems.

CONCLUDING REMARKS

The statistical calculations using hypothetical wave models indicated that very small negative correlations between the horizontal and vertical particle motions can provide relatively large stresses in the wave regime.

These first attempts to evaluate Reynolds stresses in open ocean waves produced relatively large stresses in the range of $-20 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ and even larger. Similarly, the linear correlation coefficients are of the order of -0.1 to -0.2 . The covariance spectra indicated that the main contribution to the covariance occurs at the ambient wave frequencies.

It is concluded that types of instruments as OMDUM III can prove useful in the assessment of spectral characteristics of wave motions as a function of meteorological conditions, sea state, and depth from the free surface. Properly applied instrumentation such as described in this report can be used to determine ambient turbulent conditions caused by wind waves for comparison with artificially produced turbulence caused by vessels.

Further studies are being made of the dynamic response characteristics of the ducted meter system, with particular emphasis on its response to small scale eddy sizes and "off-angle" flow. Also, use of a drag sphere system for sensing shear stresses is under investigation.

REFERENCES

1. Starr, V. P., 1961, Hydrodynamical Red-Shift Phenomena in Geophysics, Pure and Applied Geophys, Vol. 48; p. 109.
2. Shonting, D. H., 1964, A Preliminary Investigation of Momentum Flux in Ocean Waves, Pure and Applied Geophys, Vol. 57; pp. 149-152.
3. Tukey, J. W., 1949, The Sampling Theory of Power Spectrum Estimates Symposium on Applications of Autocorrelation Analysis to Physical Problems, Woods Hole, Mass. ONR Pub. 47.
4. Lamb, H., 1879, Hydrodynamics, Dover Pub:, New York, N.Y.; 738 pp .

$$
\begin{aligned}
& \begin{array}{l}
\text { Set } \\
\text { Random } \\
\text { Biased } \\
\text { (BR) } \\
\text { Ideal } \\
\text { SinusoidaI } \\
\text { (USH) } \\
\text { Biased } \\
\text { Sinusoidal } \\
\text { (BSH) }
\end{array} \\
& \text { ㄷ ® ® }
\end{aligned}
$$

TABLE 2

STMMARY OF STATISTICAI DATA OF BBELS \#8*
WIND: Light Variable $2-5-4-5 \mathrm{~m} \mathrm{sec}-1$ from W-NW
SEA: Iight Ti~ $0.2-0.4 \mathrm{~m}$ L $\sim 3.4 \mathrm{~m}$ from W-NW
SWEL工: Slight - from South

Time	Depth (m)	IV	T	\triangle T	$\xrightarrow{\circ}$	W	$\underline{\underline{U}}$	$\bar{W} \underline{ }$	$\underline{U^{12}}$	U'W	$\underline{\mathrm{R}_{\mathrm{UW}}}$
1324-1329	0.5	13:6	31.5	0.2		2.3	26.8	701.0	354.1	-46.92	-0.094
1310-1315	1.0	1245	250	0.2		6.4	21.6	348.2	183.8	6.36	+0.025
1337-1342	2.0	1359	270	0.2		2.9	13.6	250.6	239.7	76.6	+0.313

* Buzzards Bay Entrence Iight Station

The First Orthogonally-Mounted Ducted Meter System - OMDUM 1

Figure 1

Auto and Cross Spectra of Real (Fig. 2) and Hypothetical (Figs. 3, 4, and 5) Wave Particle Velocities

Figures 2, 3, 4, and 5

Buzzards Bay Entrance Light Station Looking East

Auto and Cross Spectra of Particle Velocity Motions at Buzzards Bay Entrance Light Station Using OMDUM II

DISTRIBUIION LIST

Addressee

No. of Copies
Chief, Bureau of Naval Weapons (DLI-3I)
(For dissemination within BUWEPS as follows:
FASS - 1 copy; RU-222 - 2 copies; DLI - 2 copies)

```
Director of Defense Research and Engineering1Attn: Coordinating Committee on SciencePentagonWashington, D.C.
```

Office of Naval Research 2
Geophysics Branch (Code 416)
Washington, D. C.
Attn: Dr. Donald Martineau 1
Office of Naval Research
Washington, D. C.
Attn: Biology Branch (Code 446) 1
Attn: Surface Branch (Code 463) 1
Attn: Undersea Warfare (Code 466) 1
Attn: Special Projects (Code 418) 1
Commanding Officer 1Office of Naval Research Branch
495 Summer street
Boston, Massachusetts
Commanding Officer 1
Office of Naval Research
207 West 24 th Street
New York, New York
Comanding Officer 1
Office of Naval Research Branch
The John Crerar Library Building
86 East Randolph Street
Chicago, Illinois
Commanding Officer l
Office of Naval Research Branch
1000 Geary Street
San Francisco, California

DISTRIBUTION IIST（2）

Adäressee

No．of Copies
Commending officer
Office of Navai Research Branch
1030 East Green Street
Pasadena，CaIifornia
Cormanding Officer
Office of Naval Research Branch
IVavy \＃loo，Fleet Post Office
New York，New York
Oceanographer
1
Office of Naval Research
IVavy \＃100，Box 39
Eleet Post Office
Ne酎 York，INeW York
Contract Administrator Southeastern Area
I
Office of Naval Research
$2 I 10$＂${ }^{34}$ Street，N．W．
Washington，D．C．
ONR Special Representative
1
c／o Fiudson Laboratories
Columbia University
145 Palisade Street
Dobos Ferry，New York
Director
Naval Research Iaboratory
Attn：Code 5500
Weshington，D．C．
Oceanographer
1
U．S．iTeval Oceanographic Office
Weshington，D．C．
Attn：Library（Code 1640）
Office of the U．S．Na，vai Weather Service
I
U．S．Naval Station
Washington，D．C．
Commanding Officer and Director
1
U．S．ITavy Electronics Laboratory
Sen Diego，California
Attn：Coむe 2201 I
Attn：Code 2420

DISTRIBUTION IIST (3)

Addressee

No. of Copies
Commander, Naval Ordnance Laboratory
White Oaik, Silver Spring, Maryland
Attn: E. Liberman, Librarian
Commanding Officer
Naval Ordnance Test Station
China Lake, California
Commanding Officer
Naval Radiological Defense Iaboratory
San Francisco, California
Chief, Bureau of Ships
1
Department of the Navy
Washington, D. C.
Attn: Code 688
Officer in Charge
U. S. Navy Weather Research Facility

Naval Air Station, Bldg. R-48
Norfolk, Virginia
Superintendent I
U. S. Naval Academy

Annapolis, Maryland
Department of Meteorology and Oceanography
U. S. Naval Postgraduate School

Monterey, California
Commending Officer
1
Ü. S. Na, Val Underwater Sound Laboratory
New London, Connecticut
Commanding Officer
1
U. S. Navy Mine Defense Laboratory

Panama City, Florida
U. S. Army Coastal Engineering Research Laboratory

1 5201 Littlle Fralls Road, \mathbb{N}.W.
Washington, D. C.
Army Research Office
1
Washington, D.C.
Attn: Environmentai Sciences Division

DISTRIBUTION LIST (4)

Director
1
Coast \& Gecdetic Survey
U. S. Department of Commerce

Washington, D.C.
Attn: Office of Oceanography
Director of Meteorological Research
U. S. Weather Bureau.

Washington, D. C.
Iabonatory Diractor
1
Bureau of Commersial Fisheries
Biclogical Iaboratory
450-3 Jordan Hill
Stenford, California
Bureau of Commercial Fisheries
I
U. S. Fish and Wildlife Service

Post Office Box 3830
Honolulu, Hawaii
Attn: Librarian
Director
2
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts
Attn: Dr. Erik Krause
1
Directcr
1
Narragansett Marine Iaboratory
University of Rhode Island
Kingston, Rinode Island
Bingham Oceanographic Laboratories
I
Yale University
New Heven, Connecticut
GuIf Coast Researoh Laboratory I
Post Office Boz
Ocean Sorings, Mississippi
Atin: Librerian
Cheirman
1
Department of Meteorology and Oceanography
New York University
IUEN Yonk, Net Tork

DISTRIBUTION LIST (5)

Director
Lamont Geological Observatory
Torrey Cliff
Palisades, New York
Director
Hudson Laboratories
145 Palisade Street
Dobbs Ferry, New York
Great Lakes Research Division
Institute of Science and Technology
University of Michigan
Ann Arbor, Michigan
Director
l
Chesapeake Bay Institute
Johns Hopkins University
121 Maryland Hall
Baltimore, Maryland
Oceanographic Institute
1
Florida State University
Tallahassee, Florida
Director, Marine Laboratory
1
University of Miami
\#I Rickenbacker Causeway
Virginia Key
Miami, Florida
Head, Department of Oceanography and Meteorology
2
Texas A\&M College
College Station, Texas
Director
1
Scripps Institution of Oceanography
La Jolla, California
Head, Department of Oceanography
I
Oregon State University
Corvallis, Oregon
Director
1
Aretic Research Iaboratory
Barrow, Alaska

DISTRIBUTION IIST (6)
Addressee
Director
No. of Copies

Bermuda Biologicel Station for Research St. Georges, Bermuda

Director
Hawaiian Marine Laboratory
University of Hawaii
HonoIulu, Haweii
Applied Physics Laboratory
1
University of Washington
1013 NE Fortieth Street
Seattle: Washington
Notionsl Institute for Oceanography
1
Wormley, Godalming,
England
Administrator
Defense Documeritation Center for
Scientific and Technical Information (DDC)
Bldg. No. 5, Cemeron Station
Alexandric, Virginis 22314
Chief of IVaval Operations (Op-03EG)
1
Massachusetts Institute of Technology
Memorial Drive
Cambridge, Massachusetts
Attn: Earth Science Library
Attn: Director, Department of Meteonology I
Attn: Director, Department of Geology and Geophysics I
Commanding Cfricer
U. S. Coast Ciama

Oceanographic Unit
159 \#. Piavy Yara Amex
Woskington, D. C.
Commenäing Officer
I
Aids to NVavigation
U.S. Coast Guard Base

Boston, Mass.
Attn: Captain Goca - Search and Rescue I

DISTRIBUTION LIST (7)

Commanding Officer
Buzzards Bay Entrance Light Station
(U. S. Coast Guard Station)

Woods Hole, Mass.
U. S. Weather Bureau

Logan Airport Station
Boston, Mass.
Attn: Mr. Robert Lynd

Commanding Officer
U. S. Naval Air Torpedo Unit (NATU)

Quonset Point, R. I.

Security Classification

DOCUMENT CONTROL DATA - R\&D

(Security classification of title, body of abstract and indexing annotation must be ontered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)
U. S. Naval Underwater Ordnance Station

Newport, R. I.

UNCLASSIFIED
2 b GROUP
3. REPORT TITLE

Preliminary Studies on the Turbulent Characteristics of Ocean Waves
4. DESCRIPTIVE NOTES (Type of report and inciusive dates)

5. AUTHOR(S) (Last name, first name, initial)

Shonting, David H.

$\begin{aligned} & \text { 6. REPORT DATE } \\ & \text { JuIY } 1965 \end{aligned}$	$\begin{gathered} \text { 7a. totalno. of pages } \\ 23 \end{gathered}$	7b. NO. OFREFS
8a. CONTRACT OR GRANT NO. b. PROJECT NO.	98. ORIGINATOR'S REPORT NUMEER(S) TM No. 342	
c. WEPTASK Assignment $\mathbb{N o}$ 。 RU22-2E-000/219 I/ROO4-03-01	98. OTHER REPORT NO(S) (Any other numbers that may bo assigned\qquad	

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.
11. SUPPL EMENTARY NOTES
-.-.....
12. SPONSORING MILITARY ACTIVITY

BUWEPS - NUOS

13. ABSTRACT

This report presents the results of preliminary ocean wave studies made in an endeavor to learn more about the turbulent characteristics of wind waves in the open ocean.

A series of hypothetical wave models presented indicate a mechanism of momentum transfer within the waves.

IWo series of wave motion measurements were made, one from a Navy pier in Narragansett Bay and a second from Buzzards Bay Entrance Iight Station. The measurements were made to obtain rough data on particle velocity motions in various sea states and to examine their variances, covariances and respective spectral properties. These preliminary measurements indicated that relatively large amounts of wind-imparted momentum are transferred through the water column by correlations of the wave motions themselves.

The values of the variances of the particle motions reflected the strong exponential attenuation with depth. The auto-spectra clearly displayed the fundamental frequencies of the wind waves and the low frequency swell. The strong attenuations of the wind wave turbulence with depth is contrasted with the weaker attenuation of the swell.

Security Classification

14.	KEY WORDS	LINK A		LINK B		LINK C	
		ROLE	WT	ROLE	${ }^{W}$	ROLE	${ }_{W}$
	Ocean Wares Oceanography IuřンiZenここ（Ocean Waves） Weive じararさeristies Wave Meइsumenerts						

INSTRUCTIONS

1．ORIGINATING ACTIVITY：Enter the name and address of the contractor，subcontractor，grantee，Department of De－ fense activity or other organization（corporate author）issuing the report．
2a．REPORT SECUETY CLASSIFICATION：Enter the over－ all security classification of the report．Indicate whether ＂Restricted Data＂is included．Marking is to be in accord－ ance with appropriate security regulations．
2b．GROUP：Automatic downgrading is specified in DoD Di－ rective 5200,10 and Armed Forces Industrial Manual．Enter the group number．Also，when applicable，show that optional markings have been used for Group 3 and Group 4 ＇as author－ ized．
3．REPORT TITLE：Enter the complete report title in all capital letters．Titles in all cases should be unclassified． If a meaningful title cannot be selected without classifica－ tion，show titie classification in all copitals in parenthesis immediately following the title．
4．DESCRIPTIVE NOTES：If appropriate，enter the type of report，e．g．，interim，progress，summary，annual，or final． Give the inclusive dates when a specific reporting period is covered．
5．AUTHOR（S）：Enter the name（s）of author（s）as shown on or in the report．Enter last name，first name，middl initial． If silitary，show rank and branch of service．The name of the principal aisthor is an absolute minimum requirement．
6．REPORT DATE．Enter the date of the report as day， month，year；or month，year．If more than one date appear： on the report，use date of publication
7a．TOTAL NUMBER OF PAGES：The total page count should follow normal pagination procedures，$i_{0} e_{0}$ ，enter the number of pages containing information
7b．NUMBER OF REFERENCES Enter the total number of references cited in the report．
8a．CONTRACT OR GRANT NUMBER：If appropriate，enter the applicable number of the contract of grant under which the report was written．
$8 b, 8 c, \& 8 d$ ．PROJECT NUMBER：Enter the appropriate military department identification，such as project number， subproject number，system numbers，task number，etc．
9a．ORIGINATOR＇S REPORT NUMBER（S）：Enter the offi－ cial report number by which the document will be identified and controlled by the originating activity．This number must be unique to this report．
9b．OTHER REPORT NUMBER（S）：If the report has been assigned any other report numbers（either by the originator or by the sponsor），also enter this number（s）．
10．AVAILABILITY／LIMITATION NOTICES：Enter any lim－ itations on further dissemination of the report，other than those
imposed by security classification，using standard statements such es：
（1）＂Qualified requesters may obtain coples of this report from DDC．＂
（2）＂Foreign announcement and dissemination of this report by DDC is not authorized＂
（3）＂U．S．Government agencies may obtain copies of this report directly from DDC．Other qualified DDC users shall request through
（4）＂U．S．militery agencios moy obtain copies of this report directly from DDC．Other qualified users shall request through

5）＂All distribution of this report is controlled Qual－ ified DDC users shall request through
\qquad
If the report has been furnished to the Office of Technical Services，Department of Commerce，for sale to the public，indi－ cate this fact and enter the price，if known
11．SUPPLEMENTARY NOTES：Use for additional explana－ tory notes．
12．SPONSORING MULITARY ACTIVITY：Enter the name of the departmental project office or laboratory sponsoring（pay ing for）the research and development．Include address．
13．ABSTRACT：Enter an abstract giving a brief and factual summary of the document indicative of the report，even though it may also appear olsewhere in the body of the technical re－ port．If additional space is required，a continuation sheet shall be attached．

It is highly desirable that the abstract of classified reports be unclassified．Each paragraph of the abstract shall end with an indication of the military security classification of the in－ formation in the paragraph，represented as（TS），（S），（C），or（U）．

There is no limitation on the length of the abstract．How－ ever，the suggested length is from 150 to 225 words．
14．KEY WORDS：Key words are techaically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report．Key words must be selected so that no security classification is required．Identi－ fiers，such as equipment model designation，trade name，military project code name，geographic location，may be used as key words but will be followed by an indication of technical con－ text．The assignment of links，rales，and weights is optional．

Naval Underwater Ordnance Station, Newport, R. I. (TM No. 342)	1. Oceanography 2. Ocean Waves	Naval Underwater Ordnance Station, Newport, R.I. (TM No. 342)	1. Oceanography 2. Ocean Waves
PRELIMINARY STUDIES ON THE TURBULENT CHARACTERISTICS OF OCEAN WAVES, by D. H. Shonting. July 1965, 23pp.	3. Wave Characteristics	preliminary studies on the turbulent Characteristics of ocean waves, by D. H. Shonting. July 1965, 23pp.	3. Wave Characteristics
	4. Turbulence (Ocean Waves)		4. Turbulence (Ocean Waves)
UNCLASSIFIED	1. Shonting, D. H.	UNCLASSIFIED	I. Shonting, D. H.
This report presents the results of preliminary ocean wave studies made in an endeavor to learn more about the turbulent characteristics of wind waves in the open ocean. A series of hypothetical wave models presented indicate a mechanism of momentum transfer within the waves.	WEPTASK Assignment No. RU22-2E-000/219 1/R004-03-01	This report presents the results of preliminary ocean wave studies made in an endeavor to learn more about the turbulent characteristics of wind waves in the open ocean. A series of hypothetical wave models presented indicate a mechanism of momentum transfer within the waves.	WEPTASK Assignment No. RU22-2E-000/219 1/R004-03-01
	UNCLASSIFIED		UNCLASSIFIED
Naval Underwater Ordnance Station, Newport, R. I. (TM No. 342)	1. Oceanography 2. Ocean Waves	Naval Underwater Ordnance Station, Newport, R. I. (TM No. 342)	1. Oceanography
PRELIMINARY STUDIES ON THE TURBULENT CHARACTERISTICS OF OCEAN WAVES, by D. H. Shonting. July 1965, 23pp.	3. Wave Characteristics	Preliminary studies on the turbulent CHARACTERISTICS OF OCEAN WAVES, by D. H. Shonting. July 1965, 23pp.	3. Wave Characteristics
	1. Shonting, D. H.		I. Shonting, D. H.
This report presents the results of preliminary ocean wave studies made in an endeavor to learn more about the turbulent characteristics of wind waves in the open ocean. A series of hypothetical wave models presented indicate a mechanism of momentum transfer within the waves.	WEPTASK Assignment No. RU22-2E-000/219 1/R004-03.01	This report presents the results of preliminary ocean wave studies made in an endeavor to learn more about the turbulent characteristics of wind waves in the open ocean.	WEPTASK Assignment No. RU22-2E-000/219 1/R004-03-01
	UNCLASSIFIED	the waves.	UNCLASSIFIED

