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ABSTRACT

The variance bounds tests of the present value model of stock prices

are re-examined in this paper. A direct test of the model based on

ordinary least squares estimation of a simple regression equation is

proposed as an alternative and it is shown that this regression

approach has several advantages over the variance bounds tests. This

test is easily adapted to the important case in which the percentage

changes in real dividends and real stock prices are stationary pro-

cesses. The t*ests are applied to quarterly data for the Standard &

Poor's Index of 500 Common Stocks and tJie results are much more

>

conclusive than those obtained by previous tests.





THE PRESENT VALUE MODEL OF STOCK PRICES:
REGRESSION TESTS AND MONTE CARLO RESULTS

Shiller (1981a and 1981b) and LeRoy and Porter (1981) have tested

the present value model of stock prices by examining the implicit re-

strictions of this model on the variation of stock prices. Their

results suggest that actual stock prices vary too much to be con-

sistent with this model. If we examine their results closely, we find

that Shiller does not construct formal statistical tests of the model

and that most of the tests in LeRoy and Porter are not statistically

significant because the standard errors of the variance estimates are

quite large. In addition, some critics have argued that the relevant

time series are not covariance stationary, even after the removal of a

time trend, and that the variance estimates are unreliable. This

argument has been made by Kleidon (1982, 198A) and by Marsh and Merton

(1983, 1984). An alternative would be to model the percentage changes

in dividends, earnings, and stock prices as covariance stationary time

series. Shiller (1981a) considers this alternative specification, but

notes that it does not lead to tractable variance bounds for stock

prices. In this paper, a direct regression test of the present value

model is developed as an alternative to the variance bounds test, and

the test is extended to handle the case in which the percentage changes

in dividends, earnings, and stock prices are covariance stationary.

The present value model of stock prices has the following form:

oo
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where P is the asset price at the end of period t and D is the divi-

dend paid during period t. E is the conditional expectations operator,

conditional on information available in period t. E without a subscript

will represent the unconditional expectations operator. P and D are

expressed in real terms. This simple expectations model follows from

the expected real rate of return being constant and is generally asso-

ciated with risk neutrality in asset pricing models, but some empiri-

cal researchers argue that expected real rates of return are approxi-

mately constant even in the presence of risk aversion. If we let
00

* i
P = T P~ D

, .
, we observe that the model implies

c
j-i

t+1

(i) »* - p
t

+ n
t ,

where n is the forecast error. The assumption of rational expectations

(or market efficiency) requires that P and n be uncorrelated, so that

we get

Var(P *) = Var(P ) + Var(n )

,

*
and we conclude that Var(P ) < Var(P ). Thus, we have an upper bound

on the variation of stock prices.

Two problems are encountered when one attempts a test of this bound

on the variation of stock prices. First, the time series must be co-

variance stationary; that is, the unconditional means, variances, and

covariances of the series must be finite and must not depend on time.

Shiller removes a long-term trend from his series on dividends and

prices and applies the variance restrictions to the detrended series.

LeRoy and Porter argue that there are no apparent trends in their
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adjusted series for earnings and prices and that further adjustments

are not necessary. The second problem deals with the estimation of the

variance of P (or a detrended P..), a series which is not observable.

Shiller calculates this series recursively by assuming a value at the

end of the sample period and then he computes a sample variance for

the constructured series, but he does not develop a statistical test

of the variance restrictions. LeRoy and Porter formulate and estimate

bivariate time series models to compute the variances. This method

requires the researcher to formulate a time series model and then test

the variance bounds conditional on the formulated model. Singleton

*
(1980) has shown that the variance of a series like P can be esti-

mated in the frequency domain if we have a prior estimate for the

discount factor. The hypothesis tests developed for these variance

estimators will depend on the large sample distribution theory for

variance estimators. It is well-known that these large sample distri-

butions depend on the effects of fourth cumulants of the innovations

of the process generating the observed time series, and for this

reason the distributions typically used for hypothesis testing are not

robust if we drop the assumption that the innovations are multivariate

2
normal. It is extremely difficult to estimate the standard errors of

the variance estimates if we want to relax the assumption of normally

distributed innovations (or the assumption that the fourth camulants

are all zero). The large sample distributions for many of the stan-

dard econometric estimators (such as ordinary least squares, gener-

alized least squares, or instrumental variables) do not require the

innovations or error terms to be normally distributed. For this



-4-

reason, the regression tests developed in the next section impose a

less restrictive set of assumptions.

LeRoy and Porter developed several tests for the implied variance

bounds. Even though their point estimates indicate rejection of the

present value model, the confidence intervals are so large that the

model is rejected in only a few of the cases examined. In a chapter of

my dissertation (1982, Ch. 5), I calculated frequency domain variance

estimators and found the point estimates for the variances of the price

series to be many times greater than the estimates for the upper bounds,

but the standard errors associated with these estimates are so large

that the tests of the model are barely significant at the 5% level.

It appears that these variances are not being estimated with much pre-

cision. More recently, Flavin (1983) has examined the finite sample

properties of the variance estimators and has found that the resulting

tests are biased against the null hypothesis. One can hardly argue

that these tests of the present value model are conclusive. The alter-

native regression tests are developed in Section I, and the empirical'

results are presented in Section II. In Section III, I present the

results of a Monte Carlo study which examines the finite sample proper-

ties of the proposed test statistics.

I. The Alternative Regression Test

In a note, Geweke (1980) has shown that regression tests of expec-

tations models are more powerful than variance bounds tests. This

testing procedure has been the one most frequently applied in tests of

other expectations models (e.g., tests of forward rates as unbiased
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predictors of spot rates in foreign exchange markets). If the series

P were observable, then the relationship in equation (1), implied by

the present value model, could be easily tested by a least squares

* *
regression of P on a constant and P . To calculate P , we need a

prior estimate of the discount factor P and the entire realization of

the dividend series (D,., t = 1,2,...,°°). Consider the following esti-

mate of P from a sample t = 1,...,T,T+1:

P* - PD
T+1

+ BP
T+1

~* * *
P,,, . = BP„, + pDmT-l T T

P
t

, pp^ + pD

P
x

- «P
2

+ PD
2

,

where B is determined from a prior estimate. Under the null hypothesis

of the present value model, we still have the result that E (P,_) - P^

*
for t = 1,...,T. In fact, this construction of P is similar to

'

t

Shiller's except that we use the last value of the stock price instead

of a sample average. We again have a regression relation:

(2) P = a + bP + e
,

where a and b should equal zero and one and e is a forecast errorH
t

which should be uncorrelated with P according to the null hypothesis.

The parameters a and b can be estimated consistently by ordinary least
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squares (OLS) , but the disadvantages of this approach are that we re-

quire a prior estimate of P and e is a serially correlated error

3
term. Hansen and Hodrick (1980) have shown that OLS produces reliable,

but inefficient estimates and test statistics for expectations models

of this form.

Another approach to testing the relationship in equation (1) is to

restate it in terms of observable dividends and stock prices. First

we rewrite the equation under the alternative hypothesis using the lag

operator (L : Lx = x _):

PL"
1

D = a + bP^ + n •

i-pl"
1

Now we multiply both sides of the equation by the filter —=— to get
PL

(3) D
t

- a-bP
t

+ }pt^ +V
where u = (— L - l)n . We now have an equation that is a function of

t p t

observable time series and an error term, and we do not require a prior

estimate of P, it becomes another parameter to estimate with a and b.

The application of this filter is similar to the usual generalized

least squares (GLS) correction for first-order autocorrelation in the

4
error term, but this filter is unstable. As a result, u is a*

t

*
serially uncorrelated error term. In the regression .of P on P , P

is predetermined but not strictly exogenous, and it is well-known

that the standard GLS correction for serial correlation does not pro-

duce consistent parameter estimates if the right-hand side variables

are not strictly exogenous. In equation (3), P and u are corre-

lated, and we must use an instrumental variables (IV) estimator.
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Under the null hypothesis of the present value model, a = 0, b = 1,

and E (u .) = for i > 0. Under the alternative hypothesis, we
t t+

1

—

relax the restrictions on a and b and preserve the restriction on the

error term. Hence, u should be uncorrelated with any variable dated

t-1 or earlier, and a natural set of instruments includes lagged

dividends, lagged stock prices, and lagged values of variables which

are important for predicting dividends. Lintner (1956) and Fama and

Babiak (1968) have shown that earnings play an important role in the

behavior of dividends over time; thus lagged earnings should be

included as instrumental variables. The advantage of this second ap-

proach to the regression test is that we do not require a prior esti-

*
mate of the discount factor and we do not need to estimate the P

series.

If we want to estimate the parameters of equations (2) and (3),

the relevant time series must have finite second moments, and this

condition is normally satisfied by requiring that the time series be

stationary, or at least covariance stationary. This condition is

necessary for estimating the variances in the variance bounds tests

and it is also important for the OLS and IV estimators. One approach

is to follow Shiller and remove a long-term trend from the data as

follows: p = P (1+g) and d = D (1+g) where p and d are the

respective detrended series. The discount factor for the model using

detrended data becomes y = P(l+g), and the following equations can be

derived for the detrended series:
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~*
(4) p = a + bp

t
+ e

t

(5) d
t

- a - b P(. +^P
t _ 1

+ u
t>

~*
where p is computed by using y> detrended dividends, and the terminal

value of detrended stock prices. For equation (5), we must use an IV

estimator and we still have the condition that E _. (u ) =0.

In the alternative specif icatioa, the dividend process is not

mean-reverting. Here we assume that the percentage changes in

dividends and stock prices as well as the price-dividend ratio

f—— , —r-, —J are stationary. Shiller (1981a) notes that the terminal

condition for the present value model is not necessarily satisfied if

we assume that only — and —— are stationary. If the terminal

condition is not satisfied, we have the undesirable result that there

is no solution for the stock price. Shiller imposes the terminal

c.

condition by requiring the price-dividend ratio to be stationary.

Kleidon, Marsh, and Merton have presented evidence that this kind of

model for dividends is not rejected by the data in tests with Shiller's

trend model as the alternative hypothesis. For the remainder of the

paper, I focus on this specification of dividends and stock prices,

but I include the tests on detrended data so that the results can be

compared with Shiller's variance bounds tests. The relationship in

equation (1) is now modified as follows:

P P n

(6) £ . a* + b* £ + £,
t t t

and again a* = and b* = 1 for the present value model. To develop

the regression test, we replace P in (6) with its estimate P . To
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derive the corresponding filtered equation, we apply the same filter

as before to both sides of the equation after rewriting it as follows:

P* =
PL

, D = a*D + b*P + r\

1-PL

D
t

- a*(|- D
t_ x

- D
t
) + b*<± P^ - P

t
) + (i Vl - n

t
)

-n + - n

D
t - "t-1 " bP

t
+
? P

t-1
+ Va* "^

a* b*
where a = —7-= rr arid b = - —. Then the equation can be rewritten

P(l+a*) 1+a*

as a function of stationary time series plus an error term.

bA-i.
u
t-i

D
t-i

p Vi t

"n
t
+

p*
n
t-l

where u = -n rrr;: • Under the null hypothesis for the present valut
t (l+a*)D _

JV v

model, a = and b = 1. The error u again has the property that it is

uncorrelated with variables dated t-1 and earlier, and it is not

P

serially correlated. Note that Efu (— )) * 0, and again we must
t

t-1

use an IV estimator.

In addition to separate tests on the coefficients a and b, we can

use the OLS estimators and the IV estimators to construct joint tests

of the restrictions for the present value model (joint tests that

a = and b = 1). These regression tests have several advantages over

the variance bounds test. The variance bounds test is based on an

inequality restriction which may contain a substantial amount of

slack, whereas the regression test constitutes a direct test of the

model. In the regression tests, we avoid the need to construct
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hypothesis tests for variances which usually require additional

restrictions on the distributional properties of the innovations. For

the tests based on IV estimators, we eliminate the need to use a prior

estimate for the discount factor. The regression tests described here

are more in the spirit of the variance bounds tests than the previous

regression tests of market efficiency in the finance literature. The

regression tests of market efficiency have focused on regressions of

rates of return on past information to see if there is any predictable

variation in returns and the results indicate that there is very

little. The regression tests derived in this section, like the var-

iance bounds tests, are tests of the relation in equation (1), where

the underlying issue is the use of stock prices as unbiased predictors

of future dividends holding discount rates constant, not the predict-

ability of the return series.

In constructing the tests based on OLS estimates of equations (4)

and (6) and IV estimates of equations (5) and (7), we encounter several

subtle econometric problems. The error terms in (4) and (6) will be

serially correlated, at least under the null hypothesis, and the

standard variance matrix for the OLS estimates will be inappropriate.

To account for this problem, we apply Hansen's (1979) method for com-

puting asymptotic variances:

Var(f) = T(X'X)"
1
S(X*X)"

1

b

where X is the (Tx2) matrix containing a constant and the right hand

side variable and S is the spectral density matrix of either
P
t

(e ,e p ) or (e ,e t— ) evaluated at the zero frequency. The spectral
t ' t

p
t t ' t D J
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density matrices are estimated by using the Parzen procedure and a

flat window as described in Nerlove, Grether and Carvalho (1978, pp.

67-68). Second order autoregressions are used to pre-whiten the

series. This approach to estimating the variance matrix incorporates

the fact that the stock price variable is not strictly exogenous in

the equation and it allows for conditional heteroskedasticity in the

error term.

Our theory tells us nothing about the variances of the forecast

errors or the error terms of the equations; hence there is nothing in

the theory that requires conditional variances to be constant. The

OLS estimators for (4) and (6) are still consistent and the variance

matrix for the estimators accounts for the possibility of conditional

heteroskedasticity. If the conditional variance of the error term in

either (5) or (7) is constant, then the appropriate estimator is the

nonlinear two-stage least squares estimator of Amemiya (1974). Note

that if the conditional variance of the error term is constant in

either (5) or (7), then it cannot be constant in the other equation.

To account for conditional heteroskedasticity in (5) and (7), we apply

Hansen's (1982) generalized method of moments (GMM) estimator. Let u

be a vector of length T containing the residuals of either (5) or (7);

T is the sample size. Let Z be the (Txk) matrix containing the instru-

mental variables and z be the t'th row of Z. For equation (5), z. =

(l,d ,,p , ,c _), where c , is the detrended earnings measure lagged

one period. For equation (7), the instruments are the growth rates in

dividends and earnings, the price-dividend ratio, and the price-

earnings ratio, all lagged one period so that
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' M Vl °t-l
Pfl Pfl,

£t
"

' D
t_ 2

« C
t _ 2

' D^' C^'

where C is the earnings measure. Let 6_' = (a,b,y) for (5) or

Pi' = (a,b,fl) for (7) and the GMM-IV estimator is computed by

min i = (I u'Z)w"
1 (I Z'u),

1

where W is a weighting matrix which can be a function of the sample

data. If the error term is conditionally heteroskedastic, then the

optimal weighting matrix is E(u z z_). In most cases, one must
t—t—

t

estimate W . The following two-step estimator which replaces W with

a consistent estimate W is asymptotically equivalent to the optimal

estimator. First, estimate f) using a weighting matrix which produces

initial consistent estimates; then use the consistent estimates to

form u and estimate W from the sample moments:

T1-2 i

w~ = — y u z z .

T T t—t—

t

Finally, re-estimate ^ using W . For the initial weighting matrix, I

use W = — Z'Z which produces the nonlinear two-stage least squares

estimator. The covariance matrix for is computed as follows:

Su A_i 3u _i
VarCi) = TK^fVZW^Z'C^)] \.

Using both the OLS estimates and the GMM-IV estimates, we can test

the restriction of the present value model (a = 0, b = 1) by computing

2
the following y statistic:

2
m

f

a *' -l,a n

X
(2) 'b-l J l b-l J '
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where V is the variance-covariance matrix for the estimates a and b.

The test statistic has a large sample distribution that is Chi-squared

with two degrees of freedom. An additional test for the model can be

computed by using the criterion function for the GMM-IV estimators of

(5) and (7). We restrict the parameters a and b to their respective

values under the null hypothesis and estimate the discount factor

(B or y)« We can then test the model by applying Hansen's specif ica-

2
tion test in Lemma 4.2: the statistic T min I should have a x dis-

tribution with degrees of freedom equal to the number of orthogonality

conditions (the number of instrumental variables) minus the number of

estimated parameters, in this case one. If the value of this test

statistic is too large, then the model is rejected. This test is more

in the spirit of the familiar regression tests of market efficiency to

which I alluded earlier. If there is significant correlation between

the error term u and the lagged variables used as instruments, then

the test will indicate rejection of the present value model.

II. Empirical Results

The present value model of stock prices is tested by using quarterly

data for the Standard and Poor's Index of 500 Common Stocks for the

period 1947 to the second quarter of 1983. In its publication Trade and

Security Statistics , Standard and Poor's compiles quarterly data on its

price index of 500 common stocks as well as indices on earnings and

dividends for the companies included in the index. The implicit price

deflator for personal consumption expenditures is used to deflate the

three series. To detrend the data for estimation of equations (4) and
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(5), I have used a method similar to that used by Shiller. The

following regressions are used to estimate the common growth trend for

real dividends and real stock prices:

in D
t

= a
x

+ fcnd+g^-t,

'in P
t

= a
2

+ )in(l+g
2
)*t.

The two estimates, 2,n(l+g.. ) and £n(l+g„), are averaged to form the OLS

estimate of the common growth rate (1+g), and this estimate is used to

detrend both series. A separate trend regression is estimated for

real earnings. For equations (6) and (7), it is not necessary to

detrend the data because the effects of long-term trends or growth

rates are removed when we form ratios.

The initial research effort focused on the GMM-IV estimation of the

filtered regression equations (5) and (7). The results are quite ex-

treme: the estimates for b range from -.033 to .017, the t statistics

for the tests that b = 1 range from -411.20 to -75.74, and the

2
X(?\ statistics for the joint tests range from 6173 to 212000. These

extreme results indicate rejection of the present value model at the

zero marginal significance level. In a subsequent Monte Carlo study,

which is described in Section III, I found that there is an extreme

finite sample bias in the GMM-IV estimates. For 100 simulations of a

model in which stock prices satisfy the present value model, the GMM-IV

2estimates of b range from -.068 to .1075 and the Xo\ statistics for

the joint test have extremely high values. The Monte Carlo results

indicate that tests based on the GMM-IV estimation of a and b in the
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filtered regression equations have an extreme bias against the present

value model. The detailed results on the GMM-IV estimation of (5) and

(7) are omitted for this reason. The Monte Carlo study does not reveal

extreme biases for the other estimators and test statistics, and the

results are reported in Tables I and II.

The results for the OLS estimation of equations (4) and (6) are

presented in Table I. Both equations are estimated for a longer sample

period 1947-83 and a more recent sample period 1960-83. The purpose

of the second sample period is to show the results for a more recent

Q

period. Because the results for the two sample periods are similar,*

the discussion will concentrate onthe longer sample period. The prior

estimates for the discount factor are computed from estimates of the

p + d— t t
average real return. Let r be the sample mean of , and the

Pt-1
estimate of y is the reciprocal of r

1
. Let r~ be the sample mean of

P
t

+ D
t -—

, and the estimate of 8 is the reciprocal of r . The estimated
t-1

trend coefficients used for detrending the data in (4) are shown in the

middle of the table. For the longer sample period, the trend coeffi-

cients for 2,n D and £n P are .004398 and .005628, respectively, so

that the resulting estimate of (1+g) is 1.005026. The same trend coef-

ficients are used for the data for the more recent sample period because

the estimated trend coefficient over the shorter period is negative for

real stock prices. This result alone indicates that the data fit the

model poorly or that stock prices deviated substantially from their long

term trend. The estimates for a and b in the longer sample period are

35.47 and -.02478, and the respective t statistics for a = and b = 1 are
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26.33 and -42.82. The separate t tests on a and b indicate rejection

2
at extremely low marginal significance levels. The Xfj\ statistic

for the joint test is 5014 which also has an extremely low marginal

o

significance level. In addition, the sample standard deviation of p

*
is sixteen times greater than a(p ), the estimate of the theoretical

upper bound. In Shiller's study, a(p ) exceeds a(p._) by a factor of

five times for the S&P series and by a factor of thirteen for the Dow

Jones Industrial Average. The results of the OLS tests on detrended

data imply the same dramatic rejection of the present value model.

The results for equation (6) are contained in the bottom panel of

Table I, and again we have dramatic rejection of the model. The OLS

estimates of a and b are 73.34 and -.02092, and the respective t

statistics for a = and b = 1 are 6.53 and -10.02. The separate t

tests are not quite as dramatic, but the results indicate rejection

2
at extremely low significance levels. The ^ . , statistic for the

joint test has an extreme value of 366, and the sample standard devia-

tion of the price-dividend ratio exceeds the estimate of its upper

bound by a factor of 1.67. Even though the violation of the upper

bound is not dramatic, the tests based on the OLS estimates indicate

overwhelming evidence against the model.

Despite the problems with the GMM-IV estimates of a and b in the

filtered regression equation, we can restrict a and b to zero and one

2
and compute a x test based on Hansen's specification error test. The

results of these tests are contained in Table II. The top panel con-

tains the results for equation (5) and the bottom panel contains the

2
results for equation (7). The x tests are all significant at the
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1% level except for the test associated with equation (7) for the

shorter sample period, which is significant at the 2.5% level. Al-

though these tests are significant at standard significance levels,

the results are not as dramatic as those obtained with variance bounds

tests or the OLS regression tests. As I pointed out earlier, this

test is similar to the regression tests of market efficiency, and the

results are similar. This test can also be criticized by observing -'

that earnings in period t-1 are being used to predict dividends and

prices in period t, but earnings are normally reported with some lag.

III. The Monte Carlo Simulations

The regression tests reported in Section II indicate dramatic re-

jection of the present value model. Kleidon and Flavin have presented

evidence that the variance bounds tests can be biased against the

present value model, and for this reason a Monte Carlo study of the

estimators and test statistics developed in Section I has been per-

formed. The purpose of the simulation study *is to examine the per-

formance of the test statistics when stock prices do in fact satisfy

the present value model. I have already noted that the Monte Carlo

study of the GMM-IV estimator indicates a severe bias against the

model.

The simulated model for dividends and earnings has the following

form:

in D
t

- in D
t_ 1

= a
1

- a
2

in D + a
2

in X
fc

+ e
lt

in X
t

= a
3

+ in X + e^,



-18-

where e, and p_ are normally distributed and independent. The
It 2t

coefficient on earnings is restricted so that we get a steady state

dividend payout ratio which does not depend on the level of earnings;

a
l

in this model the steady-state dividend payout ratio is exp( ). The
a
2

form of the dividend equation is motivated by Lintner's well-known

study of dividend policy. In the model, earnings follow a multiplica-

tive random walk with drift, so that D /D , and X /X , are

stationary time series. I then compute stock prices using the present

value model:

P
t
^u\(D

t+j
)

a^Cl-a,

t "t -a.

00
a m « ^ i a o v1 a ((1-a

_

T. P^D
(1_a 2 )

X
1" (1"a 2) expf-J I= 7. P^'D z X *' exp

i=i
t t "2

.1 (1-a )

2j
-l

+ a a,( T. (j+l-k)(l-a )

K l
) + ± an vw vri ~ /Vi ~2' ' 2 "1 (-a

2
)(2-a

2
)

. (l-(l-a
9 )

2i
) (l-(l-a V1

)

+ ir;[(l-a
9
)^ ^— + 2(l-a

?
) p—

-f
+ j]}

2
(l-(l-a

2
)

2
)

(
" a

2
)

2 2
where p is the discount factor and a, and a

9
are the respective vari-

ances of f, and F_ . As i gets large, the terms in the summation are
It 2t

approaching:

P^V ,-^) = X. expf(-i) +L 2 (—7L--T)
t t+j t a_ 2 1 a.(2-aj

2
(l-a_) 1-a .

2
.

+ ^t l—r + at ( *•)} [Pexpfa + ± ap ]

J

2 2
l-(l-a )

2 _a
2

3 2 2
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As an approximation for some large k, we have

X (8exp{a -K-a } )

I B
J E

t
(D )

--£
12 .

j=k+l J

o
l-Bexp{a

3
+^o

2
)

2
* a

l 1 2 1 12 {-*-~a o 2 2
where X = X exp{ (—) + -*j ( , . ) + -so =- + cr (—-)}

C t a
2

z 1 a
2
U a

2 ; I l
(l-(l-a )

Z
)

Z a
2

I experimented with values of 100, 200, and 300 for k and found that

the stock price using k = 100 is extremely close to the value using

k = 300.

To get simulated data that resemble actual dividends and earnings,

I estimated the parameter values by fitting the model with seasonal

dummies to actual data. (Earnings for the S&P 500 have not been nega-

tive during the post World War II period.) The following model was

used in the simulations:

in D - £n D = -0.3938 - .5811 in D + .5811 in X + e
1(

.

^n X
fc

- in X = .0042 + e
2t

Var(e
lt

) - .030032, VarU^) = .006979,

where the coefficients for the dummy variables are omitted and each

intercept represents the average of the quarterly intercepts. The

model was simulated without the seasonality, and the Q value was set

at .9801625 to be consistent with average real returns on a quarterly

basis.

The results of 1000 simulations are contained in Table III and

there is some evidence of a finite sample bias in sample sizes of 145.
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The mean of the 1000 estimates for the slope coefficient b is .9048,

compared to the true mean of one. This suggests that there is a small

downward bias in this estimator. But the slope coefficients range from

.2563 to 2.596 and never have a value as low as those estimated from

actual data. The large sample approximation for the t statistics is

the standard normal distribution, and the results in the middle of

Table III Indicate that neither of the separate t tests has a bias

against the present value model. In fact, the simulations indicate

that the Type I error at various critical values is being overstated.

2
The asymptotic X(?\ distribution, however, appears to be a poor approxi-

mation for the joint test on a and b. The critical value for the 5

percent significance level is 5.99, but 294 (or 29%) of the simulations

produced test statistics exceeding 5.99. In fact, 189 (or 19%) of the

simulations produced values that exceeded the critical value at 0.5 per-

cent level. The maximum simulated value for the test statistic was

96.16. The large sample distribution is a poor approximation in this

application, but the joint test statistic computed from actual data in

the sample period of 145 observations is much greater than the maximum

2
value produced by the simulations. The unusually large Xo\ statistics

seem to be the result of large negative covariances between the estima-

tes of a and b. In summary, the simulations indicate that despite a

small finite sample bias in the estimates of a and b, the estimates and

the separate t statistics are not biased against the present value

2model. The ioint test based on the y,„ s statistic does have a bias
*(2)

against the model. One final observation concerns the sample standard
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p* P p

deviations of jr— and -r-— . The sample standard deviation of -jr— exceeds
P* t t t

that of jr— in only 16 of the 1000 simulations, and it never exceeds the

estimated upper bound by a factor of more than 1.16. In the sample of

p
t

145 actual observations for equation (6), the standard deviation of -=r-

P
t

l

exceeds that of — by a factor of 1.67.

In Table IV, I present the results of 1000 simulations of the

2
X//,\ statistic with a and b restricted in the filtered equation. For

this test, we first estimate p with the GMM estimator allowing for

conditional heteroskedasticity in the error term. The test statistic

2
under the null hypothesis is distributed asymptotically as a x with

4 degrees of freedom, and the asymptotic distribution appears to be a

good approximation for the upper tail of the distribution.

IV. Conclusion

The results for the S&P 500 data suggest that the present value

model of stock, prices with rational expectations does not adequately

describe the behavior of asset prices in the stock market. The alter-

native tests described here do not require some of the additional

assumptions required to derive tests based on estimates of variances,

and the results are much more conclusive than those previously

obtained for tests of variance bounds. In addition, this test is

modified to handle the case in which the percentage changes in real

dividends and real stock prices are stationary and the results are

found to be qualitatively the same.

There are several competing hypotheses in the literature which

attempt to explain the results of the variance bounds tests.
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Blanchard and Watson (1982) interpret Shiller's results as evidence of

an arbitrary term in the rational expectations solution for stock

prices, specifically a stochastic bubble. Another more appealing

explanation is that risk aversion and varying real interest rates are

responsible for the observed volatility of stock prices. Kleidon,

Marsh, and Merton have argued that combining the present value model

with nonstationary processes for dividends and stock prices is capable

of explaining stock price variability, but the results presented here

for equation (6) reject this explanation. These tests do not allow us

to pinpoint the causes of stock price volatility, but we can conclude

that some of the variation in stock prices is due to something other

than the variation in dividends or the market's expectations of future

dividends. Indeed, a casual reading of the financial press suggests

that stock prices are quite sensitive to interest rate changes.
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FOOTNOTES

1. For a discussion of this model and other expectations models, see
LeRoy's survey (1982).

2. For the asymptotic distribution of sample variances for time series,
see Hannan (1970, pp. 209-12). In a footnote (footnote 15, p. 567),
LeRoy and Porter recognize this subtle assumption in the derivation
of their tests.

3. It is easy to show that the error term should be a first order
autoregression that is stable in the forward direction.
e t

= Pe t+1 + ^t+l' w^ere n t+l * s a variable which is uncorrelated
with variables known at time t or earlier including itself.

4. The root of (1-PL ) lies inside the unit circle, but the filter
is stable going in the forward direction.

5. This subtle point is frequently ignored in applied econometrics.
To apply Hansen's GMM estimator for example, we need to have sta-
tionary time series.

6. In a comment on Shiller's paper, Copeland (1983) has argued that
the long term growth rate for dividends may be changing. His argu-
ment is confined to the effect of a one-period change, but we must
consider how the growth rate changes over time. When we assume
that the percentage changes in dividend and stock prices are sta-
tionary, we normally think of a constant growth rate for the series.
If the random growth rate for dividends is itself a stationary pro-

cess, then the series {•=:— , =—J will be stationary. If we assume

that the random growth rate is not stationary, then we again run the
risk of not satisfying the terminal condition for the present value
model.

7. The data for dividends are reported as a twelve-month moving total.

LeRoy and Porter obtained the data necessary to recompute the quar-
terly dividends and their numbers are available in a technical
appendix to their original paper.

8. Also, the S&P index was expanded from 90 stocks to 500 stocks in

1957.
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TABLE I

OLS Models

Sample Period
1947:1 to 1983:11

14 5

Sample Period
1960:1 to 1983: II

93

Detrended Data: p =

(Prior Estimate)

a + bp + e

o
e

2
X (2)

.9846

35.47
(1.347)

-.02478

(.02393)

.8887

5014.13

.9917

43.95
(3.611)

.1790
(.05632)

9.431

305.91

Trend Coefficients

Dividends
Stock Prices
Earnings

(1+g)

.004398

.005628

.005572
1.005026

.004398

.005628

.005572
1.005026

Ratio Data : =—- = a + b —— + e

(Prior Estimate)
.9797

73.34
(11.24)

-.02092

(.1019)

.9868

92.96
(9.979)

-.04153
(.09948)

e

2
:

(2)

277.1

366.27

69.52

128.84

Standard errors are in parentheses. The standard errors and X/ ? \

statistics are based on error terms with serial correlation
and conditional heteroskedasticity.



TABLE II

Tests of Restricted Filtered Equations

Sample Period Sample Period
1947:1 to 1983:11 1960:1 to 1983:11

93

-9881

30.16 *

1.70

12.85

Detrended Data: d
t

+ p
t

YP
t .-1

+ U
t

T 14 5

.9876

-2
a
u

14.46

D.W. 1.70

T min I >
2

13.59
(a=0, b=l)

Trend coefficients are the same as in Table I.

D + P P

Ratio Data : — = P + u

T 144 92

P .9823 .9904

a
2

60.05 73.61
u

D.W. 1.71 1.68

T min I = y f
. 14.04 13.12

(a=0, b=l)^ ;

Estimates are based on conditional heteroskedasticity for error terms



TABLE III

Results of 1000 Simulations of OLS Model
Sample Sizes = 145

6 (Prior Estimate)

a

b

t(a=0)

t(b=l)

2
X (2)

Mean Range

.9800 .9580 to 1.0002

2.787 -95.65 to 61.20

.9048 .2563 to 2.596

.06366 -1.483 to 3.047

.2699 -4.961 to 1.908

6.513 .000367 to 96.19

Number of Times Number of Times
|t(a)| > X (%) |t(b=l)| > x (%) PR[ It 1 > x]

4 (.4%) 24 (2.4%) .10

2 (.2%) 11 (1.1%) .05

1 (.1%) 7 (.7%) .025

1 (.1%) 4 (.4%) .01

1.645

1.96

2.326

2.576

Number of Times

2 2
x.

x_( 2
) Exceeds x (%) £liX( 2

) > X J

5.99147 294 (29.4%) .05

7.37776 247 (24.7%) .025

9.21034 212 (21.2%) .01

10.5966 189 (18.9%) .005



TABLE IV

Results of 1000 Simulations for Restricted Filtered Model
Sample Sizes = 144

Mean Values

R .9808

2
Test Statistic, y,,, 3.956

9.4877

11.1433

13.2767

14.8602

Number of Times
Test Statistic
Exceeds x (%) Pr tX(

2

4) > *J

37 (3.7%) .05

19 (1.9%) .025

7 (.7%) .01

5 (.5%) .005
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