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NOTATION 

Blade-section chord length 

Pressure coefficient 

Propeller Diameter 

Meanline shape function 

Gravitational acceleration 

Unit base vectors in a cylindrical polar reference system 

Unit base vectors in a Cartesian reference frame 

Total rake: axial displacement of blade-section midchord 

point from y-z plane 

Advance coefficient 

Torque coefficient 

Thrust coefficient 

Propeller rotational speed, revolutions per unit time 

Pitch of blade section 

Pressure 

Ambient pressure 

Torque absorbed by blades, or strength of discrete line 

source per unit length 

Distributed source strength 

Propeller radius 

Radial coordinate 

Position vector of field point 

Thrust produced by blades 

Thickness shape function 



V Total velocity vector 

Vp Reference speed 

GEai75 4) Cartesian coordinates fixed on propeller 

(0 9¥ 5225) Cartesian coordinates in inertial reference frame 

x, Fraction of chord, measured from leading edge 

Xp Fraction of radius, measured from axis of rotation 

Zz, Number of blades 

a Angle of attack 

r Strength of discrete bound vortex for two-dimensional 

airfoil 

ite Chordwise discrete vortex on the blade surface 

Iie Spanwise discrete vortex on the blade surface 

BG Fane pac. Total distributed vortex on the blade surface 

Mi Chordwise distributed vortex on the blade surface 

Jas Spanwise distributed vortex on the blade surface 

= 
8 = tan (z/y) Angular coordinate in propeller-fixed coordinates 

O. = tan (2,/y,) Angular coordinate in inertial reference frame 

85 Skew angle; circumferential displacement of blade-section 

midchord point from z=0 plane 

fe) Fluid density 

(0) Pitch angle of blade section nose-tail line; measured 

on cylinder of radius r 

Q = 27n Propeller rotational speed; radians per unit time 

w Vorticity vector in flow field 

vi 



ABSTRACT 

A procedure and numerical results are presented for the 

prediction of the steady pressure distribution on a rotating 

propeller blade surface based on lifting surface theory. A 

computer code, named the Propeller Steady Pressure (PSP) 

program, has been developed by extending the existing pro- 

peller analysis program, PSF, based on vortex/source lattice 

techniques, developed at the Massachusetts Institute of 

Technology. Predictions by PSP are compared with selected 

experimental values that are believed to be accurately and 

reliably measured. Comparisons are also made between PSP 

predictions and other theoretical predictions. The pre- 

dictions by PSP are generally in good agreement with experi- 

mental values and with other prediction methods except for 

the tip region where current procedures may not be accurate 

enough to represent the actual flow. 

INTRODUCTION 

Knowledge of the pressure distribution on the propeller blade surface is 

essential to understanding cavitation phenomena, boundary layer characteristics 

and stress on blades. Measuring the pressure distribution on a rotating blade is 

extremely difficult and time-consuming, and even then the reliability and repeat— 

ability of the experimental data are often questionable. Nevertheless, a number 

of experimental results of reasonable reliability are available, such as the ones 

* 
obtained by Mavludoff, | Kato,” Yamasaki, ° Takei et alia Tosswp.” and Versmissen 

and Van Gent,” 

The ability to predict the blade pressure distribution reliably and accurately 

is also highly desirable. Many institutions throughout the world have their own 

prediction methods; most of them are based on lifting-surface methods such as those 

of Okamura, / Kuiper, ® Brockett,” and Tsakonas et silage and a two-dimensional pro- 

cedure with some empirical corrections for three-dimensional effects by Bahgat./! 

In this report, a procedure is presented to predict the pressure distribution 

on the propeller blade surface operating in steady flow based on the discrete 

vortex/source lattice method developed by Greeley and avis The discrete 

vortex lattice method has been used in the field of aerodynamics as early as 1943 

*A complete listing of references is given on page 15. 



by Gaudimes:* for the calculation of aerodynamic forces on an arbitrary wing shape. 

The accuracy of this simple method has been found very gaiieBackorr and in two- 

dimensional flow "yemarkable't. +> The primary advantage in using the discrete 

vortex/source lattice method is the ease and the flexibility to model the complex 

geometries of the propeller blades and their trailing vortex wake. With the advent 

of large computers, panel methods are widely used for the design and analysis of 

three-dimensional aerodynamic configurations both as the simple vortex/source 

lattice approximation and as more complex local elements. 

In the area of marine hydrodynamics, Kerwin and ioe? developed a discrete 

vortex/source method and corresponding computer code, PUF2, for the prediction of 

steady and unsteady performance of subcavitating propellers. Rotsaserstn | and 

eo developed a procedure to compute the pressure distribution based on the 

method developed by Kerwin and 6,2? More recently, Greeley and Rea” 

developed design and analysis procedures and corresponding computer codes, PBD-10 

for design and PSF for analysis, for propellers operating in steady flow. Greeley 

and Reman made improvements to the steady part of the procedure developed by 

Kerwin and igen 2 in two major areas; one is the improved semi-empirical description 

of the trailing vortex sheet and the other is the capability to model the flow 

over the outer portion of the blade more accurately. In the present work, only 

the "global" part of the procedure developed by Greeley and Renin has been 

investigated for the pressure distribution. The more accurate local flow model 

near the tip is yet to be examined. 

A computer code, named the Propeller Steady Pressure (PSP) program, has been 

developed by extending the propeller analysis program, PSF, presented by Geealey” 

and Greeley and Kerwin. This report describes the computer code and presents 

some comparisons of the predictions made by PSP with experimental measurements and 

predictions by other theories. 

OVERVIEW OF PSP 

The Propeller Steady Pressure (PSP) code is basically the same as the Propeller 

Steady Flow (PSF) analysis program developed by Greeley and Keruiln, except for 

the additional capability in PSP of calculating the pressure distribution on the 

blade surface. The PSF code assumes that the propeller operates in an axisymmetric 

onset flow consisting of axial, radial, and tangential components. The presence 

of the propeller hub and any other boundaries to the flow is ignored. The blade 



boundary layers are assumed to be thin, so that the flow can be treated as inviscid, 

except for the calculation of frictional drag. 

The nonrotating coordinate system, (X59 5925)» and rotating coordinate system, 

(x,y,z), fixed to the blades are shown in Figure 1. The x-axis of the fixed and 

rotating system are coincident, as are the (y,z) and (¥ 5925) planes. The defini- 

tion of the angular coordinates in the fixed system, 0» and in the rotating sys- 

tem, 8, are also defined in Figure 1. The propeller rotates at a constant angular 

velocity, 2 = -Mi. A field point, P, in the fluid with angular coordinate, 8, in 

the rotating frame has an angular coordinate 

6 = 6 - Nt Gib) 
ie) 

in the fixed frame for a right-handed propeller shown in Figure 1. 

The blade geometry is defined relative to a midchord line, which is para- 

metrically defined by the radial distribution of skew, 8), and total rake, 

i, (r). The pitch angle, o(r), and chord length, c(r), define the angle and extent 

of the sectional nose-tail line along the pitch helix on the surface of a cylinder 

of radius r. The meanline offset, f(r,x.), and thickness distribution, t(r,x)5 

describe the section characteristics of the blade as a function of radius, r, and 

nondimensional arc length, Xoo along the nose-tail line. The meanline, f, is 

measured along the cylindrical surface at right angles to the nose-tail line. The 

thickness, t, is measured perpendicular to the meanline,* 

The blades and vortex wake are represented by straight-line vortex and source 

lattice elements of constant strength, distributed over the meanline surface of the 

blade (see Figure 2) and the assumed surface of the trailing vortex sheet. The 

vortices are arranged in the traditional horseshoe configuration (see Figure 3) so 

as to satisfy Kelvin's conditions automatically, and the strength of each horseshoe 

vortex is determined by solving a set of simultaneous equations, each satisfying 

the flow tangency condition at a blade control point. Source strength is deter- 

mined from the slope of the thickness distribution and resultant onset speed. 

* at DINSRDC, the thickness is conventionally measured perpendicular to the 

nose-tail line. In linear theory the differences of these two specifications is 

of higher order. 



The position of the shed vortex sheet is determined iteratively by first 

solving the boundary value problem with an assumed position, and then aligning the 

wake with the computed total velocity field for a specified radial contraction. 

The boundary value problem is then re-solved and the procedure is repeated until 

convergence (see Figure 4). This process of wake alignment is different from the 

simple wake model in pur2, 1° where the trailing vortex wake geometry is defined at 

the outset by several semi-empirically determined geometric parameters. 

Once a converged solution is obtained, blade forces are computed by applying 

the Kutta-Joukowski and Lagally theorems. The Lagally theorem is used to compute 

the forces on the source elements as a modification for the effect of the thickness 

onseae”” This modification is equivalent to subtracting the thickness-induced 

velocity from the total velocity used to compute the Kutta-Joukowski force on the 

vortex elements. If the thickness-induced velocity were included in the total 

velocity, the resulting Kutta-Joukowski force would be larger than experimental 

values. In PSF, as in PUF2, an empirical suction factor is used to estimate the 

leading-edge suction force at off-design conditions. The reader is referred to 

, eZ : : 
Greeley and Kerwin for details of the computation. 

MODIFICATIONS TO PSF 

In PSF, the overall blade load is computed by summing up the elementary loads 

(the jump in pressure across the surface) acting on each line vortex and source 

element. The elementary load is computed at the midpoint of each spanwise and 

chordwise singularity on the key blade by assuming the average velocity over the 

length of a singularity can be approximated by the velocity at its midpoint. This 

point is called "load point." Since the total velocity is calculated at each load 

point to compute the load, it is logical to choose the same point as the "pressure 

point" for pressure calculation. In the present study, pressure is computed at 

only the pressure points on the spanwise singularities and is interpolated at 

specified radii. 

The velocity calculated at the load point in PSF is a mean velocity that does 

not include the self-induced velocity due to the singularity segment where the 

elementary load is calculated. However, when computing the pressure, not the jump 

in pressure, the velocity jump across the singularity must be included. 



Since the vortex/source sheet on the blade surface is represented by "discrete" 

singularity elements, each discrete element represents a certain area. Therefore, 

when computing the velocity jump across the vortex sheet, we have to redistribute 

this concentrated vortex/source over the area. 

Consider a two-dimensional airfoil illustrated in Figure 5. The discrete 

bound vortices/sources are located on the meanline at the quarter chord of each 

meanline segment to approximate the continuous distribution of the vortex/source 

along the meanline. Suppose qr is the strength of the bound vortex at the Tee 

segment whose length is Ac,. Then the distributed vortex strength, Y,> over this 

segment can be approximated by: 

(2) 

assuming the vorticity is uniformly distributed over the segment. The velocity 

jump across the vortex sheet is related to the local vortex strength, Yy> as 

follows: 

Ne Y. ar aL = 1 
Wi), = ye and We == os (3) 

where the plus sign represents the upper surface and the minus sign the lower sur- 

face. In this two-dimensional case, the velocity jump is tangent to the surface 

in the chordwise direction. 

Similarly, the distributed source strength, q,> over the same segment will be: 

Gq, = (4) 

where Q; is the strength of the discrete source element. The source sheet induces 

a jump in normal velocity, that is related to the local source strength, q,> as 

follows: 

q. q. 

pre tl 8 =e ) 



where the plus and minus signs represent the upper and lower surfaces, respec-— 

tively. ’ 

For three-dimensional flow such as that on propeller blades, the direction of 

velocity jump depends on both the spanwise and chordwise vortices. In this case, 

both spanwise and chordwise singularities have to be properly accounted for when 

computing the velocity jump. The following is the algorithm adopted in the pre- 

sent study. 

Suppose we want to compute the velocity jump at the qe pressure point on qian 

spanwise vortex element. The total distributed vortex at this point, Yy> is the 

sum of the spanwise and chordwise distributed vortices: 

1 > Gide 9 OLs (6) 

The spanwise distributed vortex, Gar is approximated by: 

i = The, a 
a 

where Ac, is the length of the chordwise segment represented by the discrete span- 

wise vortex, Ci: This is analogous to the two-dimensional distributed bound 

vortex (see Equation (2)). The chordwise distributed vortex, (Y)> is approximated 

by the vector average of the four adjacent chordwise vortices, (QO p (T)o9> 3 

and De. (see Figure 6): 

4 
: AEA =e i 
a ae Ar ie 

where Ar, is the length of the radial segment represented by each discrete chord- 

wise vortex, Wad a The total distributed vortex, Yi? is then converted to the 

velocity jump in the tangential direction by using Equation (3). 

The velocity jump due to the source sheet is identical to the two-dimensional 

case (see Equation (5)) since the boundary condition for thickness effects results 

in the same relation between source strength and slope of the chordwise thickness 

distribution with radius as a parameter. These velocity jumps due to vortices and 

sources are added to the velocity induced by all other singularities to obtain the 

total velocity induced by the propeller. 



The pressure on a propeller blade surface rotating at a constant angular 

velocity, 2 = -Ni (see Figure 1), in an axisymmetric onset flow can be expressed 

as (see Appendix): 

1 2 ae DS = Olh= WD), =e Wi wy (9) 

where W = coral weiloeiliays W = Wap safle, oP Wap W 
= Sand =W) =ois =p So 

a - ; ; Fe mee an 
Ve axisymmetric onset flow; wet Vii Vines Vo &o 

V_ = perturbation velocity due to the propeller blades and 

“P their wakes 

Vg = perturbation velocity due to the other sources such 
as appendages or lifting surfaces 

(i4,e ,e,) = unit vectors in the axial, radial and tangential 

directions in the cylindrical coordinate system 

(x,r,8) rotating with the propeller 

The subscript, A, in Equation (9) indicates a point on the same streamline where 

the pressure is computed. 

If a propeller is operating in a uniform onset flow with only an axial compo- 

nent and with no other sources of disturbance, i.e., the flow condition for all 

the experimental measurements correlated in this report, the pressure will be: 

1 2 DP a FAO Ts Tr +e Po (10) 

where V = Wat Mer + woo and p, is the pressure at any point far upstream of a 

propeller. 

We define the pressure coefficient a as 

PFA 
QS eee ean Se (1) 
Pp L y2 y2 = x 

aR R 

where Vp is a reference speed. In PSP, three options are given for VR; one is the 

local inflow speed to the blade section, Vve + (2mnr)2 , the other two options are 

the local inflow speed at r = 0.7R and the ship speed. 



RESULTS AND DISCUSSIONS 

The procedure to calculate the pressure distribution presented in the.pre- 

ceding section has been applied to the following configurations: 

1. Two-dimensional airfoil sections; flat plate, NACA 0012 and NACA 4412 

sections 

2. IHI Propeller MP 282 

3. DINSRDC Propeller 4718 

4. NSMB Model Propeller 

5. DINSRDC Propeller 4118 

6. DINSRDC Propeller 4498 

The geometric characteristics of these propellers are summarized in Table 1. The 

predictions by PSP are compared with either experimental measurements or other 

theoretical predictions. 

TWO-DIMENSIONAL AIRFOIL SECTIONS 

In order to test the validity of the discrete vortex/source lattice method for 

pressure computation, a computer program, FOIL2D, was developed for computing the 

pressure distribution on two-dimensional airfoil sections. FOIL2D has all the 

ingredients of the discrete vortex/source lattice method except for three-dimen-— 

sional effects. 

Figure 7 shows the comparison of the predicted pressure distribution on a flat 

plate with an angle of attack a = 4 degrees by FOIL2D with the analytical solution in 

Reference 20. In Figure 8, the pressure distribution is compared for the analytical 

soilueioan” and the FOIL2D predictions on the NACA 0012 section at zero angle of 

attack. In Figure 9, measured pressure distribution on NACA 4412 section at 

a = 6.4 degrees is compared with predictions by different methods including FOIL2D. 

Agreements between the predictions by FOIL2D and experiments as well as those 

between the former and other prediction methods are excellent for two-dimensional 

shapes. 

IHI MODEL PROPELLER MP 282 

The open-water performance and the pressure distribution were computed on the 

Ishikawajima-Harima Heavy Industries (IHL) large model propeller MP 282 operating 

in uniform flow. The diameter of the propeller is 0.95 m. This propeller has 

radially varying meanline and thickness distribution. The predictions are 

8 



compared with the experimental measurements performed using individual tubes to 

a hub sensor made at IHI Ship Model Besinne an 

The open-water performance was calculated and compared with experimental 

results in Figure 10. The predicted Ky values are in excellent agreement with 

experimental measurements. The predicted K, values are about 5 percent greater 

than the experimental values over the ifn be advance coefficients. 

The pressure distribution on the blade of Propeller MP 282 was calculated for 

two different J values; J = 1.054 and J = 1.163. The pressure coefficients were 

calculated on both the suction and the pressure sides at selected radii (r/R = 0.6, 

Os75 Os8> Os) - 

In Figures 11 and 12, the experimental measurements and the predicted Us are 

compared at J = 1.054 and J = 1.163, respectively. The experimental measurements 

were made at a Reynolds number, RA = 1.9 x 10. The calculated pressure coeffi- 

cients are in good agreement with measurements on the pressure side except near 

the leading edge, but generally overpredict the suction side pressure. The agree- 

ment at the reduced J value is better than that at the increased J value. In 

general, the predicted values are in satisfactory agreement with the experimental 

measurements throughout the radius at the two different J values. 

In Figure 13, the oil-film test results reconstructed from the photographs in 

Reference 21 are shown at two Reynolds numbers; 1.1 x 10° and 2.6 x 1°. The oil 

film illustrates the surface streamlines on both sides of the blade. At the 

reduced RK, condition, the flow patterns on the suction side have significantly 

reduced shear stress over the forward part of the blade and a clear separation 

occurs slightly past midchord. On the pressure side, reduced shear regions occur 

toward the leading edge and some indication of a leading-edge laminar separation 

bubble occurs at both Reynolds numbers. 

No surface flow patterns are presented in Reference 21 for the test Ro of 

le) x 10°. However, judging from the measured pressure coefficients shown in 

Figures 11 and 12, it is possible that separation occurred near 0.7 fraction of 

chord on the suction side and at the leading edge on the pressure side in the form 

of a icra ile Such separation would explain the suction peak on the pressure side 

near the leading edge and the pressure peak measured at 0.7 radius at 0.7 fraction 

of chord (measurements were not made at a similar chordwise position at other 

radii). It is further hypothesized that the suction side separation is a thin 



layer with only minor influence on the pressure away from the separation line. 

: 3 Fee nic ; ; 
Previous data for this propeller indicated that the pressure at the point in 

question exhibited the same property as a function of Reynolds number. 

DINSRDC PROPELLER 4718 

The steady pressure distribution was calculated on the surface of DINSRDC 

controllable-pitch Propeller 4718 at the design advance coefficient, J = 0.75. 

The propeller has three blades with diameter of 2 feet (0.61 meters), EAR of 0.44, 

and tip skew of 20 degrees. In Figure 14, the predicted pressure coefficients are 

compared with experimental HEASUTETEMES” on the blade surface with the propeller 

operating in uniform flow at three different radii; r/R = 0.5, 0.7, and 0.9. The 

pressure was measured by transducers mounted on both sides of the blade surface. 

The experimental values were measured at six different RY values ranging from 

Des) uo 10° EG. 4503) x 10° at the design J. For this range of Ro the flow on the 

surface should be fully turbulent so that the pressure distribution would be nearly 

independent of Rv However, the experimental measurements showed substantial 

variations for different RO values. The variation is more pronounced on the 

suction side than on the pressure side. In general, the pressure coefficients 

increase with increasing RA values. The measured pressure coefficients shown in 

Figure 14 represent the average values over the range of Rk: Unpublished flow 

visualization* of the surface streamlines showed no anomolous flow over the blades. 

At r/R = 0.7, the computed values are in reasonable agreement with experi- 

mental values. However, the agreement at the other two radii is not as good as 

that at r/R = 0.7. At r/R = 0.5, the experimental results show some irregular 

peaks at ig 0.12 and 0.5 on both sides. jieeeue” explained that some of these 

irregularities in the measured values might be partially attributed to the effect 

of the relatively large fairwater and hub. 

More recently, Jessup* measured blade pressure on the same Propeller 4718 

using another technique. In this experiment, Jessup measured the pressure distri- 

bution only on the suction side at two radii, r/R = 0.5 and 0.8 at the design 

J = 0.751. In Figure 15, the two sets of experimental values are compared with PSP 

*Private communication from S. Jessup, DTNSRDC, Code 1544. 
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predictions. Although both experimental measurements showed Reynolds number 

effects, the correlation between PSP predictions and the new experimental values 

improved substantially. 

The larger discrepancy at r/R = 0.9 on the suction side may be due to real 

flow effects. However, experimental inaccuracy demonstrated at r/R = 0.5, or the 

coarse modeling for the global solution in the analytic treatment of the flow in 

that region can also be a possible source of the discrepancy. 

NSMB MODEL PROPELLER 

The steady pressure distribution was computed on the NSMB model propeller at 

J = 0.4 and 0.6 to correlate with experimental daca.” This propeller has simple 

geometric characteristics; no rake, no skew, and a single section shape over the 

radius. It was originally designed for bubble cavitation investigation. 

The open-water performance was calculated and compared with experimental re- 

sults in Figure 16. The predicted Kp and K, are in excellent agreement with the 

experimental values for the range of J nth except for very reduced ones. 

In Figures 17 and 18, the predicted pressure coefficients are compared with 

experimental measurements obtained at NSMB° at J = 0.4 and 0.6, respectively, at 

ive Ghittenene racine e/R = O64, 0.5, 0665 Oo7> emal O28, Ae e/R = O09, Omilly joie 

dicted values are plotted since the pressure was not measured at that radius. The 

pressure was measured by transducers mounted within both sides of the blade surface. 

The experimental measurements were made twice within a six-month period in 

order to assess the repeatability. The two series of experimental results are 

shown in Figures 17 and 18. The repeatability is generally good. The predicted 

values on both sides are in good agreement with experimental measurements at both 

J values. 

COMPARISON WITH OTHER PROCEDURES 

In 1978, the ITTC Propeller Committee surveyed existing prediction methods for 

pressure distribution on the propeller blade guvtaceu They compared the pre- 

dictions made by various methods from sixteen participating institutions throughout 

the world. The propeller selected for the comparative calculations was DTNSRDC 

Propeller 4118, a three-bladed research propeller tested thoroughly at DTNSRDC for 

open-water performance, cavitation, and unsteady forces. 

Wil 



In Figure 19, the predictions by PSP are compared with other predictions 

represented by the envelope covering all the predicted results at the design 

advance coefficient, J = 0.833. The predicted values by PSP are within the 

envelope of the predictions by other methods. 

In Figure 20, comparisons are made between predictions by PSP and by a lifting 

surface method presented by Bapalwee. for a propeller similar to DINSRDC Propeller 

4498 at J = 0.888. The propeller is warped with 72 degrees warp angle at the tip. 

The section meanline is similar to the NACA a = 0.8 meanline. 

The predictions made by the two different methods are in good agreement at 

r/R = 0.254, but the discrepancies increase toward the tip region, as it did for 

the experimental data of Jessup. 

SUMMARY AND CONCLUSIONS 

The discrete vortex/source lattice lifting surface method has been used for 

the prediction of steady pressure distribution on a rotating propeller blade sur- 

face. A computer code, PSP, has been developed by extending the existing propeller 

global analysis program, PSF, developed at M.I.T. 

For pressure computations on the propeller blades, the velocity jump across 

the vortex/source sheet must be carefully treated and include the effects of both 

the spanwise and chordwise vortices. In PSP, the effect of the chordwise vortices 

at the pressure point, the midpoint of each spanwise vortex, was accounted for by 

interpolating from the four adjacent chordwise vortices. 

Comparisons of the predictions by PSP with experimental measurements and pre- 

dictions by other methods on selected model propellers generally showed good 

correlations. The correlations near the tip region, especially for skewed pro- 

pellers, i.e., Propellers 4718 (20 degrees tip skew) and 4498 (72 degrees tip skew), 

are not as good as those for the inner region. Possible explanations may be that 

near the tip region of skewed propellers, viscous effects may be large or that the 

current numerical modeling in lifting surface representations may not be accurate 

enough. 

*The predictions by Brockett shown in Figure 20 are taken from Figure A 

(linear 3D method) in "Discussions and Authors' Closures" section of Reference 9. 
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RECOMMENDATIONS 

Based on the investigations made in the present work, the following studies 

are recommended in order to further improve the current prediction method: 

1. The improved-accuracy, tip-flow part of the PSF should be used for the 

prediction of the pressure distribution near the tip region. The tip flow is very 

complicated and of practical importance, and yet the prediction near the tip region 

is not as good as that for the inner region. Since the tip flow model contains 

a finer lattice arrangement than does the global flow model, the tip flow solution 

is expected to give more accurate results. The modification to the tip flow part 

for pressure calculations is straightforward. 

2. In order to be able to predict viscous phenomena such as suction-side 

separation or leading-edge laminar bubble separation that is frequently observed 

in experiments with model propellers, suitable analytical and numerical analysis 

should be undertaken. Some initial efforts in this area have been ondezesken. 

3. In order to further assess the validity and limitation of the current 

procedure, comparative calculations are recommended with other theories for a 

wide range of propellers and operating conditions. 

4, Parametric calculations of propeller characteristics of practical 

importance such as cavitation inception, boundary layer development, and blade 

stress should be undertaken. 
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APPENDIX 

PRESSURE IN A MOVING FRAME OF REFERENCE 

In a moving frame of reference, Euler's equation of motion of an inviscid 

and incompressible fluid can be expressed as follows (see Bakeielloz-—)s 

DV 1 ar dQ 
— =- — Vp + F - /—~— + — xrt+22xVtiQx xr) (12) 
Dt Fe) = 2 dt = et NT Oe Site es 

dt 

where BDE = material derivative defined by sel oe MM a Wo W 
Dt Dt dt — 

V = total velocity with respect to the moving reference frame 

0 = fluid density 

p = pressure 

F = body force per unit mass 

as position vector of the origin of the moving frame 

Q = angular velocity of the moving frame about the origin 

r = position vector of a field point in the moving frame 

The last two terms, 22 x V and 2 x (2 x r), are called the Coriolis force and the 

centrifugal force, respectively. 

If we take neat i 0 and 2 = constant, Equation (12) becomes: 

ar + WV) =-— V+ E- M@xV-Qx xr) (13) 

Assuming that the gravity force is the only body force acting on the fluid, one 

can express F by: 

F= WiGeve (14) 

where g is the gravitational acceleration and vie is the vertical coordinate in the 

nonrotating coordinate system (X59 522) as shown in Figure 1. It is to be noted 

that this term is time-dependent in the rotating frame of reference. 

Utilizing Equation (14) and the vector identities, 
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SV(vev) = (WV) + Vx (Vx V)  @ 

and 

1 2 
“2x Qx xr) = 5V(2x x|", (16) 

one can express Equation (13) as follows: 

fy jo. 1 2 om 
ye eriey) cares WAL Vere we wile ahaa ae) (17) 

Here, w is the vorticity in the fluid measured in the moving frame of reference. 

Now, consider a propeller rotating at a constant angular velocity, 2 = —Qi 

(a right-hand rotation propeller, see Figure 1), in an axisymmetric wake of a ship, 

where the flow is steady in the rotating frame of reference. The ship wake velo- 

Calieyy q Nie, can be expressed in polar components as: 

We = Wek + Vien + Vg&q (18) 

where VEG Wa and Vo are radially varying axial, radial, and tangential components, 

respectively. It is assumed that the variation of the ship wake velocity in the 

radial direction is small. 

In addition to the ship wake velocity we assume that there exists another 

axisymmetric disturbance velocity component, Ne that is introduced locally by 

nearby appendages or other lifting surfaces: 

WS Nal ae We 
ox— fo) 9) rr % Voe2e (19) 

Then the total velocity, V, in a cylindrical coordinate system rotating with 

the propeller can be expressed as follows: 

3 4 20 Veale alsa ew (20) 

where a is the perturbation velocity due to the presence of the propeller. 
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In the rotating coordinate system, the vorticity vector, w, can be expressed 

as the sum of two terms: 

(21) 

where W is the vorticity due to the rotation of the coordinate system and wis 

the vorticity in the inertial reference frame. From the definition of vorticity, 

it can be shown that: 

WS Wx (rQe, ) = -22 (22) 

Tf we let r = xi + re (6), |Q x r| term on the left-hand side of Equation (17) 

will be: 

|Q = 2) 2 (23) 

Substituting Equations (21) to (23) into Equation (17) with the assumption 

of the steady flow, we have: 

ee cw eipall 2 a V > WW ar 5 7) (rQ)7~ + BY, V x @ (24) 

By integrating Equation (24) along a path in the flow between two arbitrary 

points, A and B, we obtain the Bernoulli equation: 

B 
| (Vxw) + dr (25) 

A 

where H(r,t) is sometimes called the Bernoulli head and is defined by: 

H(t) = > Vv + 2 - + (9)? + gy (26) 

If we take the integral path dr along a streamline or a vortex line, i.e., 

parallel to V or Oo respectively, the integral in Equation (25) vanishes since the 

dot product in Equation (25) is equal to zero. It then follows that the Bernoulli 

head is constant along a streamline or a vortex line. 

By taking a reference point, A, as a point along the streamline far upstream 

of the propeller where the propeller perturbation velocity, ey and the other 
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disturbance velocity, Us are negligibly small, the Bernoulli constant, Ha» will 

be: 

Oe ieee 12 His E WE ar a + By]. (27) 

Then the pressure at an arbitrary point in the fluid can be expressed as: 

1 2 Pie? p=- zequu - (7), - emt - on) y,,) + By (28) 

where V = Ma) + rie, oF ue + NG and the subscript A indicates a point on the same 

streamline (or vortex line) where the pressure is computed. The effect of gravity, 

“pay, = Yon) in Equation (28) gives rise to a once-per-revolution periodic varia- 

tion in the pressure in the rotating coordinate system. Since this term does not 

contribute to the mean pressure and the loading, it is not considered in the pre- 

sent study. However, this term may be important when cavitation inception is of 

interest. 

For a uniform onset flow (potential flow) with only an axial component and 

with no other disturbance than the propeller itself, i.e., the flow condition 

applicable to all the experimental measurements correlated in this report, the 

pressure equation becomes even simpler: 

it 1 Re Ae 2 | MID 
i ogy Ol ve ral ep (29) 

co 

where V = Via + re P + re and p,, is the known pressure far upstream. In this 

case, the Bernoulli head is constant everywhere in the fluid since there is no 

vorticity in the flow (see Equation (24)). 
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Figure 1 - Fixed and Rotating Coordinate Systems for a 

Right-Hand-Rotation Propeller 
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Figure 2 - Discretization of Blade Singularities 
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Figure 4 - Trailing Wake Geometry after Wake Alignment 
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Figure 5 - Discrete Singularity Distribution for Two- 

Dimensional Airfoil Section 
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Figure 6 - Schematic Representation of the Effect of Chordwise 

Vortices on the it) pressure Point 
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Figure 8 —- Pressure Distribution on NACA 0012 Section 
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O EXPERIMENT NACA 4412 SECTION 

a = 6.4° @ FOIL2D PREDICTION 

EXACT POTENTIAL THEORY 
(REF. 20) 
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Figure 9 - Pressure Distribution on NACA 4412 Section 

at a = 6.4 Degrees 
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THRUST AND TORQUE COEFFICIENTS 

IH! PROPELLER 

IH] EXPERIMENT 

° PSP/PSF PREDICTION 

ADVANCE COEFFICIENT, J 

Figure 10 - Open-Water Performance of IHI Model 

Propeller MP 282 
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IH! PROPELLER, J = 71.054 
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Figure 11 - Pressure Distribution on IHI Model Propeller 

MP 282 at J = 1.054 
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IH!i PROPELLER, J = 1.163 

— —— — EXPERIMENT 

PSP PREDICTION 
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Figure 12 - Pressure Distribution on IHI Model Propeller 

MP 282 at J = 1.163 
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Rn=1.1x 108, J=1.14 
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R,=2.6 x 108, J=1.15 

Figure 13 - Surface Flow Patterns by Oil-Film Test on IHI 

Model Propeller MP 282 
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DTNSRDC PROPELLER 4718, J = 0.75 

SUCTION SIDE 

PRESSURE SIDE 
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Figure 14 - Pressure Distribution on DTNSRDC Propeller 

4718 at J = 0.75 
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THRUST AND TORQUE COEFFICIENTS 

NSMB PROPELLER 

NSMB EXPERIMENT 

Oo PSP/PSF PREDICTION 

0.2 0.4 0.6 0.8 

ADVANCE COEFFICIENT, J 

Figure 16 - Open-Water Performance of NSMB Model Propeller 
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Figure 17 - Pressure Distribution on NSMB Propeller at J = 0.4 
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Figure 17 (Continued) 
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P-P, Yeo V2. 

Figure 18 - Pressure Distribution on NSMB Propeller at J = 0.6 
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