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PREFACE.
UBRARY

Soon after its expansion in 1894 into a national organization,

the American Mathematical Society inaugurated the series of

Colloquia which have been held in connection with its summer

meetings since 1896, at intervals of two or three years. These

Colloquia consist of courses of lectures delivered by specialists

on selected chapters of their fields of work. Their purpose is

to enable the members of the Society to keep in touch with the

most recent advances of mathematical science and to stimulate

a wide interest in its development.

The list of Colloquia thus far held is as follows:

I. THE BUFFALO COLLOQUIUM, 1896.

(a) Professor MAXIME BOCHER, of Harvard University :

&quot;

Linear

Differential Equations, and Their Applications.&quot;

This Colloquium has not been published, but several papers

appeared at about the time of the Colloquium, in which the

author dealt with topics treated in the lectures.*

(6) Professor JAMES PIERPONT, of Yale University: &quot;Galois s

Theory of Equations.&quot;

Published in the Annals of Mathematics, series 2, volumes 1

and 2 (1900).

II. THE CAMBRIDGE COLLOQUIUM, 1898.

(a) Professor WILLIAM F. OSGOOD, of Harvard University:

&quot;Selected Topics in the Theory of Functions.&quot;

Published in the Bulletin of the American Mathematical Society,

volume 5 (1898), pages 59-87.

* Two of these papers were: &quot;Regular points of linear differential equa
tions of the second order,&quot; Harvard University, 1896; &quot;Notes on some points
in the theory of linear differential equations,&quot; Annals of Mathematics, vol.

12 (1898).
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11 PREFACE.

(6) Professor ARTHUR G. WEBSTER, of Clark University: &quot;The

Partial Differential Equations of Wave Propagation.&quot;

III. THE ITHACA COLLOQUIUM, 1901.

(a) Professor OSKAR BOLZA, of the University of Chicago :

&quot; The

Simplest Type of Problems in the Calculus of Variations.&quot;

Published in amplified form under the title: Lectures on the

Calculus of Variations, Chicago, 1904.

(6) Professor ERNEST W. BROWN, of Haverford College: &quot;Mod

ern Methods of Treating Dynamical Problems, and in

Particular the Problem of Three Bodies.&quot;

IV. THE BOSTON COLLOQUIUM, 1903.

(a) Professor HENRY S. WHITE, of Northwestern University:

&quot;Linear Systems of Curves on Algebraic Surfaces.&quot;

(6) Professor FREDERICK S. WOODS, of the Massachusetts Insti

tute of Technology: &quot;Forms of Non-Euclidean Space.&quot;

(c) Professor EDWARD B. VAN VLECK, of Wesleyan University:

&quot;Selected Topics in the Theory of Divergent Series and

Continued Fractions.&quot;

This Colloquium was published for the Society in the volume:

The Boston Colloquium Lectures on Mathematics, New York,

Macmillan, 1905.

V. THE NEW HAVEN COLLOQUIUM, 1906.

(a) Professor ELIAKIM H. MOORE, of the University of Chicago :

&quot;On the Theory of Bilinear Functional Operations.&quot;

(6) Professor ERNEST J. WILCZYNSKI, of the University of Cali

fornia: &quot;Protective Differential Geometry.&quot;

(c) Professor MAX MASON, of Yale University :

&quot;

Selected Topics

in the Theory of Boundary Value Problems of Differential

Equations.&quot;



PREFACE. Ill

Published by Yale University in the volume : The New Haven

Mathematical Colloquium, New Haven, Yale University Press,

1910.

VI. THE PRINCETON COLLOQUIUM, 1909.

(a) Professor GILBERT A. BLISS, of the University of Chicago :

&quot;Fundamental Existence Theorems.&quot;

(b) Professor EDWARD KASNER, of Columbia University: &quot;Dif

ferential-Geometric Aspects of Dynamics.&quot;

This Colloquium is published here in full.

The Colloquia of the Society are to an extent comparable with

the reports regularly presented to Section A of the British Associa

tion for the Advancement of Science and to the Deutsche Mathe-

matiker-Vereinigung, and in so far play a role complementary to

those of the Bulletin and Transactions. The Society will doubt

less adopt the custom of publishing the lectures of each Colloquium
in a corresponding volume.

The Seventh Colloquium will be held in connection with the

twentieth summer meeting of the Society at Madison, Wisconsin

during the week September 8-13, 1913. Courses of lectures will

be given by Professor LEONARD E. DICKSON, of the University

of Chicago, and Professor WILLIAM F. OSGOOD, of Harvard

University. Thus for the first time an interval of four years has

elapsed between successive Colloquia. As a suitable reflection

and desirable stimulation of the mathematical activity of this

country, it would seem desirable that the Colloquia should be

held oftener. To avoid collision with the meetings of the Inter

national Congress of Mathematicians, the Colloquia might per

haps be arranged for every odd numbered year.

E. H. MOORE.
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FUNDAMENTAL EXISTENCE THEOREMS

BY

GILBERT AMES BLISS

INTRODUCTION

The existence theorems to which these lectures are devoted

have been the subject of a long sequence of investigations

extending from the time of Cauchy. to the present day, and

have found application at the basis of a variety of mathematical

theories including, as perhaps of especial importance, the theory

of algebraic functions and the calculus of variations. If a single

solution (a; b)
=

(a-i, a-2 , , am ; bi, 62 , ,
bn ) of a set of

equations

/afrb 2, , tfrnj 2/1, 2/2, , 2/n)
= (a = 1, 2,

- - -

, tt)

is known, then in a neighborhood of (a b) there is one and only

one other solution corresponding to each set of values x in a

properly chosen neighborhood of the values a, and in the totality

of solutions (x ; y) so defined the variables y are single-valued

and continuous functions of the x s. If a set of initial constants

(, 171, 772, , f] n ) is given, then in a neighborhood of these values

there is one and but one continuous arc

ya= y*(x) (a= 1,2, ...,rc)

satisfying the differential equations

dy

-fa
=

9a(x, 2/i, 2/2, , 2/n) (a = 1, 2,
- -

, n}

and passing through the initial values
rj when x = .

2 1



2 THE PRINCETON COLLOQUIUM.

The formulation and first satisfactory proofs of these theorems,

at least for the case where only two variables x, y are involved,

seem to be ascribed with unanimity to Cauchy. For the implicit

functions his proof rested upon the assumption that the function

/ should be expressible by means of a power series, and the

solution he sought was also so expressible, a restriction which

was later removed with remarkable insight by Dini. For a

differential equation, on the other hand, Cauchy assumed only

the continuity of the function g and its first derivative for y,

and his method of proof, with the well-known alteration due to

Lipschitz, retains to-day recognized advantages over those of

later writers.

In the following pages (1, 16) the two theorems stated

above are proved with such alterations in the usual methods as

seemed desirable or advantageous in the present connection.

The proof given for the fundamental theorem of implicit functions

is applicable when the independent variables x are replaced by a

variable p which has a range of much more general type than a

set of points in an m-dimensional .r-space.* It is not necessary

always to know an initial solution in order that others may be

found. In the treatment of Kepler s equation, for example, which

defines the eccentric anomaly of a planet moving in an elliptical

orbit in terms of the observed mean anomaly, one starts with an

approximate solution only and determines an exact solution by
means of a convergent succession of approximations. This

procedure is closely allied to a method of approximation due to

Goursat (3), suggested apparently by Picard s treatment of the

existence theorem for differential equations.

One of the principal purposes of the paragraphs which follow,

however, is to free the existence theorems as far as possible from

* The notion of a general range has been elucidated by Moore, The New
Haven Mathematical Colloquium, page 4, the special cases which he partic

ularly considers being enumerated on page 1.3. An application of the method

of 1 of these lectures when the range of p is a set of continuous curves, has

been made by Fischer, &quot;A generalization of Volterra s derivative of a function

of a line,&quot; Dissertation, Chicago (1912).
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the often inconvenient restriction which is implied by the words
&quot;

in a neighborhood of,&quot;
or which is so aptly expressed in German

by the phrase
&quot; im Kleinen.&quot; It is evident from very simple

examples that the totality of solutions (x; y) associated con

tinuously with a given initial solution of a system of equations

/ = of the form described above, can not in general have the

property that the variables y are everywhere single-valued

functions of the variables .r, and the result of attempting,

perhaps unconsciously, to preserve the single-valued character

of the solutions has been the restriction of the region to which the

existence theorems apply. In order to avoid this difficulty and

to characterize to some extent the totality of solutions associated

continuously with a given initial one in a region specified in

advance, the writer has introduced ( 5) the notion of a particular

kind of point set called a sheet of points. In a suitably chosen

neighborhood of a point (a; 6) of the sheet there corresponds

to every set of values x sufficiently near to the values a exactly

one point (x; y) of the sheet, and the single-valued functions

y so determined are continuous and have continuous first de

rivatives. This condition does not at all imply that there are

no other points of the sheet outside the specified neighborhood
of the point (a; b) and having a projection x near to a. With

the help of the notion of a sheet of points it can be concluded that

with any initial solution (a ; 6) of the equations / = there is

associated a unique sheet S of solutions whose only boundary

points are so-called exceptional points where the functions /
either actually fail, or else are not assumed, to have the continuity

and other properties which are demanded in the proof of the

well-known theorem for the existence of solutions in a neighbor
hood of an initial one. It is important oftentimes to know
whether or not a sheet of solutions is actually single-valued

throughout its entire extent, and a criterion sufficient to ensure

this property has also been derived (7).
On the basis of these results some important theorems con

cerning the transformation of plane regions into regions of



4 THE PRINCETON COLLOQUIUM.

another plane by means of equations of the form

as in the theory of conformal transformation, have been deduced

( 8). If the functions \[/ have suitable continuity properties

and a non-vanishing functional determinant in the interior of a

simply closed regular curve B in the y-plane, and if B is trans

formed into a simply closed regular curve A of the z-plane, then

the equations define a one-to-one correspondence between the

interiors of A and B, and the inverse functions so defined have

continuity properties similar to those of fa and fa. This is but

a sample of the theorems which may be stated. Others are also

given ( 8) which apply to the transformation of regions not

necessarily finite, and to systems containing more than two

equations.

The theory of the singularities of implicit functions is of con

siderable difficulty and has been but incompletely developed.

For a transformation of the form above in which the functions

^i, fa are analytic, the singular point to be studied, at which the

functional determinant D d(fa, fa)/d(yi, y%) vanishes, as

well as its image in the .r-plane, may both without loss of gener

ality be supposed at the origin. The most general case under

these circumstances is that for which the determinant D does

not vanish identically and the equations \[/i
=

0, fa = have no

real solutions in common near the origin except the values

2/1
= 2/2=0 themselves. It is found that the branches of the

curve D = bound off with a suitably chosen circle about the

origin a number of triangular regions. Each of these regions is

transformed in a one-to-one way into a sort of Riemann surface

on the x-plane which winds about the origin and is bounded by
the image of the boundary of the triangular region (see 11,

Fig. 6). If the signs of D in two adjacent triangular regions

are opposite, then their images overlap along the common

boundary; otherwise they adjoin without overlapping. At any

point of one of the Riemann surfaces the inverse functions defined
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by the transformation are continuous and in the interior of the

surface they have everywhere continuous derivatives. These

results are obtained by means of applications of the theorem

described above for the transformation of the interior of a simply

closed curve E; and the same method of procedure would un

doubtedly be of service when the curves \f/i
=

0, fa = have

real branches through the origin in common, which must occur

whenever they have common points in every neighborhood of

the values 2/1
=

2/2
= 0. The case where the determinant D

vanishes identically is also considered ( 12).

For the singularities of implicit functions defined by a sys

tem of equations / = there is a generalization of the prepara

tion theorem of Weierstrass ( 9) suggested to the writer by
some remarks in the introduction of Poincare s Thesis, and

by a study of the elimination theory of Kronecker for algebraic

equations. The theorem is presented here (13) for two equa
tions and two variables y\, 3/2 in the form originally given at the

time of the Princeton Colloquium, but the method of proof is

similar to that of a later paper* and applies with suitable modi

fications to a system containing more equations and independent

variables. These results can not by any means be said to afford

a complete characterization of the singularities of implicit

functions, but it is hoped that they may be useful in paving the

way for researches of a more comprehensive character.

The writer published some years ago a paperf concerning the

extensibility of the solutions of a system of differential equations,

of the form specified above, from boundary to boundary of a finite

closed region R in which the functions ga are supposed to have suit

able continuity properties. In the last chapter of these lectures the

character of the region has been generalized so that no restrictions

as to its finiteness or closure are made, and it is shown that the

approximations of Cauchy converge to a solution over an interval

* See the footnote to page 73.

t
&quot; The solutions of differential equations of the first order as functions of

their initial values,&quot; Annals of Mathematics, 2d series, vol. 6 (1904), page 49.
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in the interior of which the limiting curve is continuous and

interior to R, while at the ends of the interval the only limit

points of the curve are at infinity or else are on the boundary of the

region. The solutions so defined are continuous and differenti-

able with respect to their initial values, a property which once

proved is of great service in many of the applications of the

existence theorems. One situation in which these results have

an important bearing is related to a partial differential equation

of the first order

F(x, y, 2, dz/dx, dz/dy) = 0.

When this equation is analytic, any analytic curve C, which is

not a so-called integral curve, defines uniquely an analytic surface

containing the curve and satisfying the differential equation. The

uniqueness in this case is a consequence, in the first place, of

the fact that an analytic surface is completely determined when

an initial series defining its values in a limited region is given,

and, in the second place, of the theorem that at a given point

and normal of the initial curve C satisfying the differential equa

tion there is but one series defining an integral surface including

the points of C and having the given initial normal. It is not

self evident in what sense a solution of a non-analytic equation

is uniquely determined by an initial curve, as may be seen by very

simple examples. An initial curve which is not an integral curve

will in general have associated with it, however, a strip of nor

mals which satisfy the partial differential equation, and whose

elements as initial values determine a one-parameter family of

characteristic strips simply covering a region Rxy of the xy-plane

about the projection of the initial curve C. There is one and but

one integral surface of the differential equation with a continu

ously turning tangent plane and continuous curvature, which is

defined at every point of the region Rxy and contains the initial

curve C and its strip of normals ( 19).



CHAPTER I

ORDINARY POINTS OF IMPLICIT FUNCTIONS

1. THE FUNDAMENTAL THEOREM

The fundamental theorem of the implicit function theory

states the existence of a set of functions

2/a
=

y*(xi, *2 , ,
arm ) (a = 1, 2, -, n)

which satisfy a system of equations of the form

(1) /aOi, %2, ,xm ;yi,y2,--,yn) = Q (a = 1, 2, , n)

in a neighborhood of a given initial solution (a; 6). Dini s

method,* for the case in which the functions /are only assumed to

be continuous and to have continuous first derivatives, is to

show the existence of a solution of a single equation, and then

to extend his result by mathematical induction to a system of

the form given above, a plan which has been followed, with

only slight alterations and improvements in form, by most

writers on the theory of functions of a real variable. In a more

recent paperf Goursat has applied a method of successive ap

proximations which enabled him to do away with the assumption
of the existence of the derivatives of the functions / with respect

to the independent variables .r.

One can hardly be dissatisfied with either of these methods of

attack. It is true that wrhen the theorem is stated as precisely

as in the following paragraphs, the determination of the neighbor

hoods at the stage when the induction must be made is rather

inelegant, but the difficulties encountered are not serious. The
introduction of successive approximations is an interesting step,

* Lezioni di Analisi infinitesimale, vol. 1, chap. 13. For historical remarks,
see Osgood, Encyclopadie der mathematischen Wissenschaften, II, B 1, 44

and footnote 30.

^Bulletin de la Societe mathematique de France, vol. 31 (1903), page 185.

7



8 THE PRINCETON COLLOQUIUM.

though it does not simplify the situation and indeed does not

add generality with regard to the assumptions on the functions/.

The method of Dini can in fact, by only a slight modification,

be made to apply to cases where the functions do not have

derivatives with respect to the variables x. The proof which is

given in the following paragraphs seems to have advantages in

the matter of simplicity over either of the others. It applies

equally well, without induction, to one or a system of equations,

and requires only the initial assumptions which Goursat mentions

in his paper.

Where it is possible without sacrificing clearness, the row letters

/, x, y, p, a, b will be used to denote the systems

/ = (/I, /2, , /n), %= Ol, Z2, , Xm),

y = (yi, 2/2, , 2/n), a = (ai, o2 , -, am),

b = (bi, &2, , bn), P = (Ctl, a2}
*

, dm , bi, 62 , , bn).

In this notation the equations (1) have the form

/(*; y)
=

0,

the interpretation being that every element of / is a function of

xi, x2 ,
- -

,
xm ; 2/1, 2/2, *, 2/n, and every /,- is to be set equal to

zero. The notations pe) a
,
b represent respectively the neigh

borhoods

\x-a\&amp;lt;e, \y-b &amp;lt; e;
\

x - a
\

&amp;lt; e; \y-b\&amp;lt;e

of the points p, a, b.

With these notations in mind the fundamental theorem which

is to be proved may be stated as follows:

Hypotheses :

1) the functions f(x\ y) are continuous, and have first partial

derivatives with respect to the variables y which are also continuous,

in a neighborhood of the point (a; 6) which will be denoted by p;

2) /(a; b)
= 0;

3) the functional determinant D =
d(/i, fz t , /n)/d(?/i, 2/2*

, 2/n) is different from zero at p.
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Conclusions:

1) a neighborhood p can be found in which there corresponds

to a given value x at most one solution (x; y) of the equations

/(*; y)
= 0;

2) for any neighborhood p with the property just described a

constant 5 ^ e can be found such that every x in a s has associated

with it a point (x; y) which satisfies the equations f(x\ y)
= 0;

3) the functions y(x\, x^, ,
xm) so found are continuous in

the region a s .

For the neighborhood p e let one be chosen in which the

continuity properties of the functions / are preserved. If

(2; y) and (x; y ) are two points in p f ,
it follows, by applying

Taylor s formula to the differences f(x; y ) f(x; ?/), that

/i(*; )
-

/i(*; y)
=

(&amp;lt;//

-
2/0 + + (y

-
.),

/(*; y ) -/.(*;) =
y&quot;

W-)+ + (. -
y-),

where the arguments of the derivatives dfjdyp have the form

x, y + Oaty y), and &amp;lt; ^a &amp;lt; 1. The determinant of these

derivatives is different from zero when (x; y
f

)
=

(x; y)
=

(a; 6),

and hence must remain different from zero if p f is restricted so

that in it the functional determinant D remains different from

zero. It is then impossible that (x-, y) and (x; y } should both

be solutions of the equations f(x; y)
=

0, if y is distinct from y .

In the corresponding region 6 e the function

#&amp;gt;(; y}
=

/i
2

(&amp;lt;*; ) + tf(a; y)+ + /n
2
(a; y)

has a minimum for y = b, since for that value it vanishes and

for every other it is positive. In particular

&amp;lt;p(a\ T?) &amp;lt;p(a-, b) &amp;gt; m &amp;gt;

when 77 ranges over the closed set of points 77 forming the boundary
of 6 , on account of the continuity of

&amp;lt;p,
and the inequality

&amp;lt;p(x; r?)
-

&amp;lt;p(x-, b) &amp;gt; m
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remains true for all values x in a suitably chosen domain as .

Hence for a fixed x in as the minimum of
&amp;lt;p(x; y) is attained at a

point y interior to 6 e . At such a point, however,

2 a
~

fl
dyn
+ /2

d2/l
+ + fn

dyn
~

&amp;gt;

and this can happen only when all the elements of / are zero,

since the functional determinant D is different from zero in p e .

It follows that to every point x in a there corresponds in p e

a solution (x; y) of the equations /(x; y)
= 0.

The functions y(x\, x2 , ,
xm) defined in this way over the

region as are all continuous. For consider the values y and

y + Ay corresponding to two points x and x + Ax. By apply-

ng Taylor s formula it follows from the relations

f(x-, y + Ay)
-

/(x; y)
=

/(x; y + Ay)
-

/(x + Ax; y + A?/),

which are true because (x; y) and (x + Ax; y + Ay) both make

/ = 0, that

=
fi(x; y + Ay) fi(x + Ax; y + Ay),

(2)

= /nO; y + Ay)
-

/n (x + Ax; y + Ay),

where the arguments of the derivatives dfjdy^ have the form

x
&amp;gt; y + ^aAy (0 &amp;lt; a &amp;lt; 1). The determinant of these deriv

atives is different from zero on account of the way in which p e

was chosen, and the second members of the equations approach

zero with A.r. Hence the same must be true of the quantities
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A?/, and thus the functions y(x\, .r2 , ,
xm ) are seen to be

continuous.

A similar application of Taylor s formula leads to the con

clusion:

If the functions f have derivatives of the first order icith respect

to Xk which are continuous in the neighborhood of p, so have also

the functions y(x\, 0*2, , xm) in the region a
fi ;

and if the f s

have all derivatives of the nth order continuous, so have the functions

y(xi, x2 , -, .T).

For suppose

A.TI =f= 0, A.T2
= A.r 3

= = A.rm = 0.

Then by applying Taylor s formula to the second members of

equations (2) it follows that

i tfiAfr _ c^A^/n ,3/V= Q
i dz/2 A.ri dyn A.TI dxi

nyi n/2 .nn n _ Q
dyi&xi dyz&xi dyn^x l dxi

where the arguments of the derivatives dfjdxi have the form

x + 6a Ax; y + A?/. Hence as Aa-i approaches zero the quotients

approach limits dyjdxi which satisfy the equations

. . .
,

yn i =
dyn dxi dxi

(3)

. ,

t t
,

n =
dyi 3.ri dy2 dxi dyn dx l dxi

where the arguments of the derivatives of / are now (x; y).

A similar consideration shows the existence of the first deriv

atives with respect to the variables .r2 ,
xs , ,

xm . The ex

istence of the higher derivatives follows from the observation

that the solutions of equations (3) for the quotients dfjdy^ are
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differentiable n 1 times with respect to the variables x, on

account of the assumption that the functions / are differentiable

n times.

2. EQUATIONS IN WHICH THE FUNCTIONS ARE ANALYTIC

It seems necessary to proceed differently in order to prove that

when the functions / in equations (1) are analytic with coefficients

and variables permitted to assume imaginary values, the solutions

y = y(xi, x*, -, xm) are also analytic functions of the variables

x. The following theorem can first be proved :

When the functions f are formal series in the variables x; y with

literal coefficients and having no constant terms, then there exists

one and but one set of series

(4) ya = ya (xi,X2, -,arm)

for the variables y, which vanish with the x s and satisfy identically

the equations f(x; y)
= 0. Each coefficient in the series y is

rational in a finite number of those of the functions /, the only

denominators occurring being powers of the determinant R of the

coefficients of the linear terms in y.

To prove this let the equations / = be written in the form

anyi + 0122/2 + -f a\nyn = gi(x; y),

aniyi + anzyz + - - - + annyn = gn (x , y),

where the functions g have no linear terms in y. By multiplying

these equations by proper factors and adding, they may be made

to take the form

(5) ya = ha (x-, y) (a = 1, 2,
-

, ri),

where the series h have still no linear terms in y and have coeffi

cients which are rational in those of the functions /, the only

denominators occurring being the determinant R. Any series

for y which satisfy formally the original equations must satisfy

the last equations, and vice versa.
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Consider now a set of series (4) in which the coefficients are

indeterminates c. If they satisfy the equations (5) identically,

then by comparison of coefficients on the two sides it is seen

that any coefficient cv of a term of degree v must be equal to a

polynomial, with positive integral coefficients, in a finite number

of the coefficients of the functions h and in the coefficients &amp;lt;?_

of terms in the functions y of lower degree than v. For there

are at most a finite number of terms on the right of any given

degree v, and since the functions h have no linear terms in the

variables y it follows that wherever the term containing cv

occurs it is always multiplied by a y or by a power of some of

the variables .r, and hence cv can only appear in terms of degree

greater than v. Since the coefficients of the linear terms in the .

functions y are equal respectively to corresponding coefficients

in the functions h, it follows by an easy induction that every

coefficient in the functions y must be a polynomial with positive

integral coefficients in a finite number of the coefficients

of the functions h. There is evidently but one set of series (4)

of the kind described satisfying formally the equations (5), or

what is the same thing, the equations / = 0.

For any numerical choice of the coefficients of the functions f in

the domain of real or imaginary numbers for which the series f

converge and the determinant R =
\

a
aj8

is different from zero,

the series (4) for y trill also be well-determined and convergent.

For, a set of equations

.(6) y = Ha(x;y) (a= 1,2, -,)
can be constructed whose coefficients are all positive and greater

numerically than the corresponding coefficients in the functions

h, and for which the corresponding series y = Y(XI, .r2 , --, xm )

converge. The coefficients in the functions Y will be greater

numerically than the corresponding coefficients of the series

y(x\, 0*2, -j xm), and hence the series y will also converge.

To show this suppose that p is a positive constant smaller

than the radii of convergence of the functions h(x-, y). Then
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the series h(p; p) are convergent, and each term is numerically

smaller than a constant M chosen greater than the sum of the

absolute values of the terms in any one of the series h(p; p).

The coefficient of any term in h(x; y) is less than M/p
v where v

is the degree of the term. The series

are similar to the series h(x-, y) in the matter of missing terms,

and dominate them in the manner described above, since the

coefficient of any term of degree v is M/p
v
or greater.

The unique series satisfying equations (6) will evidently be

convergent if a convergent series u in x can be determined

satisfying

u
_ \ /

1 __
nu\

for then every series y can be put equal to that series u. The

latter equation is however a quadratic in u and has the solution

_ p
2

W=
2n(p+.n)

S 1-

vanishing with x. This will certainly be representable by a

convergent series in x provided that

\Xi \
&amp;lt; .... ,

P
oi^ 2 (* 1, 2, &amp;gt;, m),

since then the second term under the radical is numerically

less than unity.
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The two theorems which have just been proved enable one to

make the following statement concerning the solutions whose

existence was proved in 1:

// the functions /(.r; y) are analytic in the region p e , then the

solutions (4) of the equations f(x; y)
= are analytic at every point

of the region a&.

It is only necessary to transform the origin of coordinates to

the particular point (or; y) of the solution which it is desired to

investigate.

Furthermore when the domain in which the equations / =
are to be studied is the domain of complex numbers, a theorem

analogous to that of 1 may be stated.

// in the domain of complex numbers the functions f(x; y) are

analytic at a point p(a;b) at which

6) - 0, Z&amp;gt;(; 6)
=

then there exists a neighborhood p e in which any x corresponds to at

most one solution (x; y), either real or complex, of the equations

f(x; y)
= 0. For any such choice of p e a neighborhood a s (d ^ e)

can be found such that every point x in a s has associated with it a

solution (x\y) of the equations f = in p t) and the values y for

these solutions are defined by a set of functions

(7) ya = ya (xi, x*, v, xrn ) (a = 1, 2, , ri)

which are expressible as series in the differences x a convergent

in the region a&.

The existence of the neighborhood p is provable by the ar

gument used in 1, since for any two points (x; y) and (x; y )

in the common domain of convergence of the functions /, equa
tions of the form

(a = 1,2, , n)

hold, where the coefficient A
aft

is a convergent series in the dif-
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ferences x a, y b, y b with constant term equal to a
a/3

.

The existence of the coefficients A can be established by con

sidering two analogous terms in f(x; y) and f(x; y ). The

difference of such a pair of terms will always be linearly expressible

in terms of the differences

(2/&amp;lt;/

- ba)
-

(ya
- ba)

= ya
-

ya (a = 1, 2, , n).

Furthermore for (x, y, y }
=

(a, b } 6) the derivative of the first

member with respect to y/ reduces to a
aj8 ,

while that of the second

is the constant term in A aB . Hence for these values of the

variables the determinant A a$ \

reduces to D(a, b) 4= 0.

By transforming the origin of coordinates to the point (a, b)

and applying the first two theorems of this section, it follows that

there exists a set of convergent series (7) satisfying the equations

/ = identically; and for a sufficiently small region 5 the

points (x; y) which they define will all lie in the neighborhood p .

3. GOURSAT S METHOD OF APPROXIMATION

The method of approximation which is to be presented in the

following paragraphs is of interest primarily because it affords

a direct method of finding the values of implicit functions, and

justifies computations sometimes used in the applications of

the theory. In order to exhibit this method suppose again that

the functions / have the properties described in the principal

theorem of 1, and consider the following set of equations

suggested by Taylor s formula:

fi(x ; y) + du(yi yi) + 012(2/2 2/2) +
+ di n (yn yn )

=
0,

(8)

fn (x ; y) + d n i(yi
-

2/i) + ^2(2/2
-

2/2) +
+ dnn (yn

-
2/n)

=
0,

in which the coefficient a
aj8

is the value of dfjdyp at the point p.

When solved for the variables y
f

,
these equations take the form

(9) ya =v(x;y) (-l,2,...-,n),
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and one verifies readily by substitution of these expressions

in equations (8) that the functions
&amp;lt;p

and all of their first

derivatives with respect to the elements of y are continuous near

p; and at the point p itself
&amp;lt;pa has the value ba , while all of its

derivatives with respect to the y s vanish.

A sequence of systems y
(k) =

(y\
(k\ yz

(k\ -

, 2/n
W

) beginning

with the set

can now be defined by means of the recursion formulas (9), which

are equivalent to

(*= 1,2, .-.,n).

Letp be any neighborhood of p in which the continuity properties

of / are retained, and in which the derivatives of (p remain nu

merically less than 6/n where &amp;lt; 6 &amp;lt; 1. If the values of x are

restricted to a region a s (d ^ e) so small that every element of

the set y satisfies the inequality

(10) .
-

6. &amp;lt; e(l
-

6),

then the points (x; y
(k)

) will all lie in the neighborhhood p e

and will approach uniformly a limiting point (.r; y) which is a

solution of the equations (1).

To prove these statements one needs only to apply successively

the inequality

which follows readily by an application of Taylor s formula.

Since the inequalities (10) hold, the last formula successively

applied shows that

Consequently the sum i/a
(fr) of the first k + 1 terms of the series

(11)
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differs in absolute value from ba by a quantity which is less than

e(l
-

0)(1 + + 2 + h 0*&quot;
1

)
=

(1
- e

k
) &amp;lt; 6.

Hence the points (x; y) all lie in the neighborhood p e ,
and the

series (11) is uniformly convergent in the neighborhood a8 .

The limiting point (x; y) evidently satisfies the equations

/ = 0. For at every stage the values (x, y, y
f

)
=

(x, y
(k
~ 1

\ y
w

)

satisfy the equations (8), and the first members of these equations

approach uniformly the values /(or; y).

The process of determining the solutions described above is

evidently one of trial and error. The values y = b being first

substituted, the equations (9) determine approximately the

correction y b which must be added to b in order to obtain a

solution for any value of x near to a. For the values so corrected

the equations (9) give again a new correction
y&quot; y ,

and so on.

It is ordinarily presupposed that an initial solution (a; 6) is given,

but the process may also lead to the discovery of a solution in case only

an initial point which approximately satisfies the equation is known.

To show this suppose that the functions/ are continuous and have

continuous first partial derivatives with respect to the variables

y in a closed region R of points (x; y) in which the functional

determinant D(x; y) is different from zero. The functions
&amp;lt;p

in

equations (9) are to be thought of as depending upon (x\y),

and also upon the variables (a; 6) which enter in the derivatives

a
a|3

. Then the expressions &amp;lt;p(x, y, a, b), &amp;lt;py (x, y, a, b) are con

tinuous when (x; y), (a; 6) lie in R, and all of the derivatives

&amp;lt;py vanish identically when (x; y)
=

(a; 6). The value of

&amp;lt;p(a, b, a, b) is not necessarily b, however, when (a; b) is not a

solution. Two positive constants, 6 &amp;lt; 1 and e, can be deter

mined so that
I

&amp;lt;py (x, y, a, 6) |

&amp;lt; Bin

whenever (a; 6) and (x; y) satisfy the inequalities

|

x - a
|

&amp;lt; e, \y-b\&amp;lt;*.

If now there exists a point p(a\ b) for which the neighborhood pe
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is entirely within R, and such that

| &amp;lt;p(a, 6, a, 6)
- b

\

&amp;lt; (1
-

6),

then the sequence y
(k) defined converges uniformly as before

in a neighborhood a s of the point a and determines a solution

&amp;lt;*; y).

As an example consider the equation

(12) y-esmy=x (0 &amp;lt; e &amp;lt; 1),

which in the theory of elliptic orbits determines the value of the

eccentric anomaly y in terms of the mean anomaly x. The func

tion
&amp;lt;p

is in this case

&amp;lt;?(sin y y cos b) -f x
&amp;lt;p(x, y, a, b)

-
!_, cos6

and
&amp;lt;py remains less than when

| y
- b

\&amp;lt;
6 ~~ =

.

t&amp;gt;

For any given x = a, a value y = b can be determined, by graph

ical methods for example, so that

&amp;lt;p(a, b, a, b) b
\

= b e sin 6 a

I e cos b
&amp;lt; 6- -(1-0).

The process described above therefore converges in a suitably

chosen neighborhood of .r = a, and a solution of equation (12)

can be found when an approximate solution only has been de

termined in advance.

4. BOLZA S EXTENSION OF THE FUNDAMENTAL

THEOREM*

The neighborhood P e of a set of points P in the space (a:; y)

is the totality of points (x\ y) which satisfy inequalities of the

form

I

x - a
I

&amp;lt; e, \yb\&amp;lt;e,

*
Vorlesungen iiber Variationsrechnung, page 160: also Mathematische

Annalen, vol. 63 (1906), page 247. The theorem was proved independently

by Mason and Bliss,
&quot;

Fields of extremals in space,&quot; Transactions of the

American Mathematical Society, vol. 11 (1910), page 326.
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where (a; 6) is some point of P. The sets of points (a) and (b)

which belong to points (a; b) of P are the projections of P in

the x- and ^/-spaces, and will be denoted by A and B, respectively.

The fundamental theorem of 1 remains true if in its statement

the single point p is replaced by a set of points P which is finite

and closed, and which furthermore has the property that no two

distinct points (a; b), (a ;
b ) of P have the same projection a = a.

According to the conclusions of the theorem there exists then a

neighborhood P e in ivhich no two solutions of the equations f(x; y)
=

have the same projection x
}
and a neighborhood A 8 in which every x

surely belongs to a solution (x; y) in P . The single-valuedfunctions

y(xi, xz,
-

,
xm) so defined in A s are continuous, and if the func

tions f(x\ y) have continuous derivatives of the n-th order in a

neighborhood of P, so have the functions y(xi, x%,
- - -

,
xm) in A&.

To prove the theorem suppose first that a sequence of positive

constants ek (k
=

1, 2, ) approaching zero has been selected

arbitrarily. If the first part of the theorem were not true, then

in any neighborhood P k
there would be two distinct solutions

(x; y)k and (x; y ) k of the equations f(x; y)
=

0, which would

satisfy, respectively, inequalities of the form

|

x - a &amp;lt; 6k ,
| y
-

j8
|

&amp;lt; e*;

(13)

|

x - a
|

&amp;lt; ek , \y
-

(3 &amp;lt; ek

with two points (a; (3) k and (a ; f$ ) k of the set P. Since P is

finite and closed, the sequence of values (a, (3; a , (3 ) k has a

point of condensation (a, b; a
,
b

f

) for which (a; b) and (a
f

;
b )

are both in P. From the inequalities (13) it follows that

(a, b; a , b ) is also a point of condensation for the sequence

(x, y, x, y ) k , and therefore a and a must be the same. The

values b and b must also be identical since P contains only one

point p(a; b) with the projection a. According to the original

statement of the fundamental theorem in 1, a neighborhood p e

can be chosen in which no two solutions of the equations

(x; y)
= have the same projection x. Hence the existence

of the sequences (x; y) k and (x] y ) k with the common point of
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condensation (a; b) is contradicted, and it must always be

possible to select a neighborhood P e in which distinct solutions

of the equations / = always have distinct projections .r.

A similar argument shows that a neighborhood A s can be

selected so that to any point of it there corresponds a solution

of the equations / = 0. Otherwise to each d k of a sequence of

constants approaching zero, there would correspond a point

(x)k in the region A&k
which would belong to no solution in P e .

To each (x)k there would correspond a point (a) k in A satisfying

the inequalities

|

x - a
|

&amp;lt; 5 k

with the values (x) k ,
and the points (a) k would have a point of

condensation a in A, which would also be a point of condensation

for the sequence (.r)*, since A is finite and closed when P is so.

But by the original theorem of 1, again, it is known that a

neighborhood a 5 of a can be chosen in which every point x has

associated with it a solution (x; y) in p f , where p(a;b) is the

point of P having the projection a. Consequently the existence

of the sequence (x)k is contradicted.

If now the region Pe is so restricted that the functional de

terminant D(x; y) remains different from zero throughout it,

then the original theorem of 1 can be applied to show that the

functions y(xi, x2 , , .r n ) are continuous at any point of the

region A s and possess as many continuous derivatives as are pos

sessed by the functions f(x; y).

5. THE UNIQUE SHEET OF SOLUTIONS ASSOCIATED WITH AN

INITIAL SOLUTION

The points of the space (x; y) may be divided into two classes,

ordinary points and exceptional points, with respect to the func

tions /. An ordinary point is one at which the first and third

hypotheses of the theorem of 1 are postulated, that is, one near

which the functions/ and their first derivatives with respect to y
are continuous and the functional determinant D =

d(/i,/2, ,
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fn)ld(yi, 2/2, , 2/n) is different from zero. An exceptional point

is one at which some of these conditions are not fulfilled or are

not presupposed.

A sheet of points in the (m -f- n)-dimensional space (x; y)

may be defined as a point set S with the property that for any

point p(a;b) belonging to the set a neighborhood p can always

be found such that no two points of S in p have the same pro

jection x. In other words, the variables y are single-valued

functions y(x\, xz , ,
xm) in the neighborhood of the point p,

for points of the sheet.

If for any neighborhood 6 of the kind just described, a region

a8 (8^ e) can be found in which every point x belongs to a

point of S in p ,
then p is said to be an interior point of the sheet S.

A boundary point is a limit point of points of the sheet, which

is not itself an interior point and may not even belong to S.

A sheet is said to be connected if every pair (x
f

; y ), (#&quot;; y&quot;)

x&amp;gt;f its interior points can be joined by a continuous curve

x = x(t), y = y(t)

consisting entirely of interior points of the sheet.

In the following pages it is always to be understood that the

sheets considered are continuous and have continuous first

derivatives, or in other words at any interior point of one of them

the functions y(xi, x2 , ,
xm) mentioned above have these

properties. A sheet will be said to become infinite near a point

x if x is the limit of the projections of a sequence of points (x; y)

of the sheet for which one at least of the variables y approaches

infinity.

With the preceding agreements as to nomenclature in mind,

it is possible to prove the following theorem :

If a point p(a\b) is an ordinary point for the functions f and

satisfies the equations f = 0, then there passes through p one and

only one connected sheet of solutions of these equations, with the

properties :

1) all points of the sheet are ordinary points of the functions /;

2) all points are interior points ,
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3) the only boundary points of the sheet are exceptional points for

the system f.

The set of points

[xi, *2 , ,
xm ] yi(xi, xz , ,

xm ), , yn (xi, x2 ,
- -,xm)]

defined over the region a& by the principal theorem of 1, is a

sheet Si of solutions of the equations / = which satisfies all the

requirements of the theorem just stated except possibly the last.

Its points are all interior points since the region a 8 is defined by

inequalities only. If any boundary point p (a \
6 ) of Si is an

ordinary point of the functions / it must satisfy the equations

/ = 0, since the / s are continuous and p is a limit point of points

on Si. Consequently the theorem of 1 can be applied in the

neighborhood of p
1

, and the sheet S so determined near p f

forms with Si a new set S2 . This process may be repeated any
number of times, and the totality of points which can be attained

by a finite number of such extensions, constitutes the sheet S

required in the theorem.

The set of points S so determined constitutes a sheet, since

any point q of it is an ordinary point and a solution of the equa
tions / = 0, and according to the theorem of 1 the solutions of

these equations in the neighborhood of q have the property which

is characteristic of a sheet. From the manner of its construction

the sheet is evidently connected and consists entirely of interior

points. If any boundary point q of S were an ordinary point of

the functions /, the sheet could be extended to include q as an

interior point by the process described in the preceding paragraph.

There could not be a second sheet 2 containing a point TT

not in S and having the properties stated in the theorem. For

there would in that case be a continuous curve

x = x(t), y = y(t) Vi^t^ /2 )

in S joining p with TT and consisting entirely of ordinary points.

In a neighborhood of t = ti all of the points defined on the curve

would also be points of S, since the solutions of the equations
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/ = near the initial point p of the curve are all in S. The values

of t defining points on the curve and in S would therefore have

an upper bound T ^ t2 such that T would define on the curve a

boundary point of S. But this is impossible since all of the

points of the curve are ordinary points.

If the functions / are known to be continuous and to have con

tinuous derivatives in a region R, then it follows readily from

what precedes that through any ordinary solution of the

equations / = interior to R there passes one and only one sheet

of solutions having the property that the only boundary points

of the sheet are boundary points of R, or interior points of R at

which the functional determinant vanishes. If R is finite and

closed and consists entirely of ordinary points for the functions /,

then there can not be more than a finite number of points of

the sheet on any ordinate x. Otherwise the points common to

the ordinate and the sheet would have a point of condensation p,

also in R. Since p is an ordinary point there can be at most one

solution of the equations in a properly chosen neighborhood p e .

It is interesting to determine a criterion which shall characterize

a sheet which is at most single-valued on any ordinate. Such a

criterion is derived in 7 in connection with a theorem due

originally to Schoenflies, and afterwards proved by Osgood.

The proof of it involves the auxiliary notions described in 6

and the following corollaries to the preceding theorem:

// the initial point of a continuous arc

(C*) x t
=

Xi(t) (i
=

1, 2,
. .

-, m; t &amp;lt; t &amp;lt;
t&quot;)

in the x-space is the projection of a solution p (x \ y ) of the equations

f = which is an ordinary point for the functions f, then there is

associated with the arc Cx one and only one continuous curve

(Cxy) Xi=Xi(t), ya=ya (t) (i=l, 2, , m; a=l, 2, , n)

passing through (# ; y
r

) for t = t
,
with the properties:

1) all of its points are solutions of the equations / = and or

dinary points of the functions /;
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2) it is defined either over the whole interval t ^ t ^ /&quot;,
or else

on an interval t ^ t &amp;lt; r ( ^ t&quot;)
such that as t approaches T

the only limit points of the curve Cxy are at infinity or are excep

tional points of the functions f.

The truth of this statement is readily deduced from the con

siderations which precede, or by the following argument. The

fundamental theorem of 1 can be applied at the point (x ; y
r

).

If the arc Cx is entirely within the region xs then the existence

and uniqueness of the curve Cxy is evident. In any case there

will be some intervals t ^ t ^ i\ in which curves Cxy are defined

having all the properties described in the theorem except possibly

2). Suppose that T is the upper bound of the end values ti

for such intervals. Then there is a curve Cxy well defined in

the interval t ^ t &amp;lt; r, and no limit point (a. ; /3) of the curve

as t approaches r can be a finite ordinary point for the func

tions /. For if (a: ; j8) were such a point, it would also satisfy

the equations/ = 0, on account of the continuity of the functions

/, and the theorem of 1 could again be applied at (a ; (3). A
curve CXy with all the properties of the theorem, except possibly

2), could then be defined over an interval including the interval

t ^ t &amp;lt; T in its interior, which contradicts the assumption that

T is the upper bound of such intervals.

There could not be two curvesCxy associated with the projection

CX9 having the properties described in the theorem, and having

distinct points (x\ y ) and (.r; y&quot;) corresponding to the same

value t-2 . For if so, there would be an interval / 3 &amp;lt; t ^ t&amp;gt;2 in

which the curves would be distinct while at t = 3 they coincide.

This is, however, impossible since in a neighborhood of the point

corresponding to t$ there can be but one solution of the equations

/ = corresponding to a given set of values x.

Suppose that a continuum X of points (xi, x%, , .rm ) contains

no projection of a boundary point of a sheet S of solutions of the

equations f = 0, and no point near which the sheet becomes infinite.

Then if X contains the projection of a point on the sheet every other

point of X will also be such a projection. On the other hand, if X
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contains a point which is not a projection of any point of the sheet,

then no point of X can be a projection of a point of S.

These statements follow readily with the help of the last

theorem. For suppose that X contains the projection x of

an interior point (x
f

; y
f

) of a sheet of solutions of the equations

/ = 0, and let x&quot; be any other point of X. SinceX is a continuum

there exists a continuous arc Cx entirely interior to X joining

x and
x&quot;,

and the corresponding continuation curve Cxy must be

defined over the whole of the arc Cx . Hence x&quot; is also the pro

jection of a point of the sheet of solutions through (x \ y
f

). The

rest of the theorem follows at once.

// the curve Cxy in the last theorem but one is defined over the

ivhole arc Cx ,
and has initial and end points p

f and
p&quot; , respectively,

then there always exists a positive constant p such that any curve T x

lying in the p-neighborhood of the curve Cx and joining x to x&quot;
,

has a unique continuation curve Txy also joining p
f and

p&quot;.

The curve

(T x) x = b(u) (
- 1, 2, ,; &amp;lt;; u&quot;)

is said to lie in the p-neighborhood of Cx if there exists a continuous

function

(14) t = t(u) (u
f

&amp;lt;; u ^ u&quot;}

taking the values t
,

t&quot; at the ends of the w-interval, and such

that the point a on T x ,
defined by any value of u, lies in the neigh

borhood a
p

of the corresponding point a of Cx determined by
the relation (14).

It is possible to choose two constants, e and 6 ^ e, so that the

neighborhoods &amp;gt;

e and as have the properties described in the

theorem of 1 uniformly for every point p(a, b) on the arc Cxy .

If not, there would be a sequence of points pk on Cxy with a limit

point TT, for which the largest possible constants & have the

limit zero. But for the point IT there is an effective constant

e &amp;gt; 0, and the constants e^ could not therefore decrease indefi

nitely in size. A similar argument shows the existence of the

constant 6.
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Suppose now that the interval u ^ u ^ u&quot; is divided by

values MA (A*
=

1, 2, -, ?&amp;gt;)

into sub-intervals so small that the

points of any arc ctk-ictk, corresponding on Tx to the values

iik-i ^ u ^ Wjt, all lie in the ^-neighborhood of the point a?t_i,

and further so small that the same is true with respect to the

point ak-i of the arc Ok-iQk of Cx corresponding to ak-iotk by

means of the relation (14). The constant p is supposed to have

FIG. 1.

been chosen equal to J6, so that the curve T lies in the ^5-

neighborhood of C. Then the four-sided closed curve formed by
the two straight lines ak-ictk-i and **, and the two arcs ak-iak

and ak-iotk, lies entirely within the ^-neighborhood of the point

GA--I. The two continuation curves in the .rz/-space, starting with

the point pk-i on Cxy and having as projections the arcs ak-iak&amp;lt;Xk

and ak-ictk-iotk, respectively, lead to the same point ?TA corre

sponding to the point a.k in the .r-space.

It is possible to argue then, that the point ir\ on the continu

ation curve of the arc a a.\ is the same as that of the continuation

curve for a a\oi\ t since the arcs a a\ and a aia\ lie entirely within

the 6-neighborhood of the point a\. Similarly, the point 7r2

for the arc a a2 is the same as that for the continuation curve

along a a 2#2. And finally the point TT&quot; must coincide with
p&quot;,

provided always that the initial points TT and p of the con

tinuation curves are the same.
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In particular if the curve Cxy is defined over the whole arc Cx ,

as described above, then there exists a polygon in the x-space joining

a! and a&quot; in the p-neighborhood of Cx , and along which there is a

continuation curve in S also joining p
f and

p&quot;
. The polygon can

be so chosen that no two adjacent sides have more than an end point

in common.

To show this, let the interval t
r

^ t ^ t&quot; be divided in any

way by means of points of division t
, fa, fa, , tv , t&quot;,

and let

the corresponding points on the curve Cxy be (x \ y }, (&quot;; v&quot;),

, (
(v)

; V
(v}

}, (*&quot;; y&quot;).
The straight line &amp;lt;*&amp;gt;&amp;lt;*+ has the

equation^

Since the functions defining Cx are continuous, and therefore

uniformly continuous, in t
f

^ t ^ t&quot;,
it is possible to take the

points of division t
, fa, fa, ,

tv ,
t&quot; so close together that the

differences x (A?)
,
for any point x on the arc (*&amp;gt; (*+!&amp;gt; of Cx ,

are

uniformly less than an arbitrarily assigned positive constant d;

and the preceding theorem shows that the curve Cxy and the

continuation curve along the polygon both lead from p to
p&quot;

.

If the sides p&amp;gt;p+D and &amp;lt;*+ &amp;lt;*+*&amp;gt; have more than the point
(fc+i) m common, then one of the two would be included entirely

w thin the other, and the continuation curve along (*)J(fc+
2

&amp;gt;

would have the same end points as that along the two successive

sides. Therefore, by replacing adjacent sides by a single one

whenever the two have more than one end point in common, a

polygon as described in the theorem can be found.

6. AUXILIARY THEOREMS AND DEFINITIONS

In this section it is proposed to record some theorems which

will be of service later, especially in the proofs of the theorems of

7. In the first place let it be agreed that a regular curve in

the plane shall mean one which is continuous and has a well-

defined tangent at all except possibly a finite number of points,
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at each of which, however, the slope of the tangent approaches

definite limits as the point is approached from either side.

Analytically this means that the functions

x = x, y = y(t) (f f g t&quot;)

defining a regular curve are continuous in the whole interval

t ^ t ^ t&quot;,
that they are differentiate and satisfy the inequality

(15) (dx/dt)
z + (dy/dty 4=

at all except possibly a finite number of values of t. At an ex

ceptional value t = T, where the derivatives are not well defined

or where the expression (15) vanishes, the angle &amp;lt;p

defined by the

equations

dx/dt dyjdt
cos

&amp;lt;f&amp;gt;

=
j,, ,,.x . ,* ,,..&amp;gt;

sm
&amp;lt;p

=
+ (dyld WlW + (dy/dt)*

has nevertheless a unique limit as t approaches T on the right,

and a unique limit as t approaches r on the left. These two

limits are not necessarily the same.

It is known that a simply closed regular curve C in an xy-

plane divides the plane into two continua, an exterior and a

finite interior.* Any two interior points can be joined by a

regular curve every point of which is an interior point, and a

similar statement holds for exterior points. Any continuous

curve joining an interior and an exterior point must have on it

at least one point of the curve C, and any point p on C can be

joined with an interior point by a regular curve which has in

common with C only the point p.

The interior of a simply closed regular curve

x = x(t), y = y(t) (f ^ t ^ t
ff

)

can be divided by a finite number of segments of straight lines into

* See for example Osgood, Lehrbuch der Funktionentheorie, Chapter V,

4-6; Bliss, &quot;A proof of the fundamental theorem of analysis situs,&quot; Bulletin

of the American Mathematical Society, vol. 12 (1906), page 336.
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regions each of which has a maximum diameter less than an ar

bitrarily assigned positive constant e.*

Let the maximum and minimum values of y in the interval

t ^ t ^ t&quot; be i/i and ?/2 ,
and let pi and p2 be two points of C

at which y has these values. It is desired to show that there is

a segment p p&quot;
of the horizontal line y = (1/1 + 2/2) /2 which

forms with C two simply closed regular curves, p p\p&quot;p and

p
r

pip
f

p , each containing one of the points p\ and p2 .

The points p\ and p2 can be joined by a regular curve D which,

except at its end points, is interior to C. Two arcs of D adjoining

pi and pz, can be marked off in such a way that they do not cut

the line y = (1/1 + 2/2)/2. The remaining arc D of D is entirely

interior to C and can be replaced by a continuous polygon D r

with a finite number of sides, having the same end points and

consisting also of interior points of C only. Any side of D&quot;

which has an end point in common with the line y = (y\-\- yz)l2

may be rotated slightly about its other end point, and in this

way it may be brought about that D&quot; has only interior points

of its sides on the line y = (y\-\- yz)/2, and actually crosses the

line wherever they have a point in common.

The polygon D&quot; must intersect y = (y\ + 2/2)/2 at least once,

say at a point p, since one end point of D&quot; is above and the other

below this line. There will be a segment p p&quot;
of y= (yi+^*)/2,

containing p and such that p
f and

p&quot;
are on the curve C while

every other point of the segment is interior to C. There can be

only a finite number of such segments p p&quot; containing points

of D&quot;
, since D&quot; has at most a finite number of intersections with

the horizontal line. There must be at least one segment on

which D&quot; has an odd number of intersection points, since other

wise both end points of D&quot; would be on the same side of

y = (y\ + 2/2) /2. If p p&quot;
is such a segment, then it forms with

C two simply closed regular curves p pip&quot;p
and p p*p

f

p
f

,

one of which contains p\ and the other p2 . For after its last

intersection with p p&quot;
the polygon D&quot; and hence pz is entirely

exterior to the curve p p\p&quot;p .

* For a similar theorem see Osgood, loc. cit., Chapter V, 9.
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For the moment that part of a curve which does not lie in a

horizontal line may be called the effective arc of the curve, in

view of the fact that the altitude of the curve can not be more

than one half the length of this so-called effective part. If the

altitude of any curve is ^ e, the effective length of either of its

two parts after subdivision by a horizontal line segment, as

described above, will be ^ L e, where L is its effective length.

If the altitude y\ ?/2 of C is greater than e, then the effective

arc of either p pip&quot;p or p pip&quot;p will be greater in length than e,

and the effective length of each will also be less than L e,

where L is the perimeter of C. If the curve p pip&quot;p ,
for example,

has still an altitude greater than e, it may be subdivided by a

horizontal segment as before, and the effective arcs of the two

new curves so found will be less than L 2e. By a continu

ation of this process the interior of C will be subdivided finally

by curves whose effective lengths are less than 2e and whose

altitudes are therefore less than e.

In a similar manner the regions so formed may be subdivided

by vertical segments into others whose breadths are less than c,

and the theorem follows at once.

A set of points in an a*i.r2-plane is connected if any two of its

points can be joined by a continuous arc whose points all belong

to the set, and it is further said to be simply connected if every

simply closed regular curve in it has an interior which also

consists only of points of the set.

It is more difficult to set down a satisfactory definition of

simple connectivity for sets of points in an ??z-dimensional space.

In the following section of these lectures, however, a special type

of simple connectivity is needed which may be defined by means

of some simple auxiliary conceptions.

A normal subspace of two dimensions in a region .Y of points

(xi&amp;gt; #2,

&quot;

j Xm) is a totality of points defined by equations of the

form

Xi = &amp;lt;pi(ui,
u 2 ) (i

=
1, 2, -, m),

where
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1) the values (HI, w2 ) range over a simply connected region 7;

2) no two distinct sets of values u define the same point x;

3) the functions
&amp;lt;p

are continuous and have continuous first

derivatives in U;

4) the determinants of the second order of the matrix of

derivatives \\d(pi/duk \\ (i
=

1, 2, , m\ k = 1, 2) do not all

vanish simultaneously at any point of U.

A simply connected region in two dimensions is defined above,

and a connected region X in a space of points (x\, x2 , ,
xm)

has a definition quite similar to that for two dimensions. In

order to specify conveniently the properties of a region X which

is simply connected, the term elementary curve will also be used.

By an elementary curve in X is meant a simply closed continuous

curve which either lies in a normal subspace of two dimensions

entirely in the interior of X, or else is such that in every neighbor

hood of it there is a simply closed continuous curve having this

property. It is thus seen that while an elementary curve may
not itself be imbedded in one of the two-dimensional normal sub-

spaces interior to X, it can nevertheless be approximated as

closely as may be desired by one which does. The word neighbor

hood is here used in the sense described in connection with the

fourth theorem of 5 (see page 26) .

If a region X is connected, then any simply closed continuous

curve in its interior may be developed into two such curves by
an auxiliary arc joining two of its points, and the process of

development may be continued on the two arcs so formed.

If a region X is such that any simply closed continuous curve in

its interior is an elementary curve, or may be developed into a

number of elementary curves by means of auxiliary arcs, as just

described, then X is said to be simply connected.*

* For a discussion of the connectivity of higher spaces, see Picard and Simart,

Theorie des Fonctions algebriques de deux Variables independantes, Chapitre

II, in particular 11 ff. If every simply closed continuous curve interior

to R lies in a normal subspace of two dimensions interior to R, one sees intu

itively that a second neighboring subspace of the same kind can be passed

through the curve. The closed two-dimensional subspace so formed is
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7. A CRITERION THAT A SHEET OF SOLUTIONS BE SINGLE-

VALUED

Consider in the first place a set of equations

(16) /(*!, .r2 ; yi, 2/2, -, y) = (a = 1, 2, -, n)

in which there are but two independent variables x.

If a connected sheet S of solutions of equations (16) consists only

of ordinary points of the functions f, and furthermore has a simply

connected projection X in the x\Xy-plane such that no interior

point of X is either a point where S becomes infinite or the pro

jection of a boundary point of S, then the sheet S is single-valued

over the interior of X.

Suppose, in contradiction to the theorem, that over any
interior point of A&quot; there were two points, p and

p&quot; , of the sheet.

Since S is connected there would be a continuous curve

(Cxy) x l
=

.ri(0, *2
= *2 (f), I/a

= y.(0

(ft f&quot;;
a- 1,2, .--,)

consisting entirely of interior points of the sheet and joining p
with

p&quot;
in the space (.r; y). The projection

(Cx ) x, = *!(/), .r2
= .r2 (t) (f ^ t ^ t&quot;)

of this curve would necessarily be a closed curve in the o*i.t2-plane,

and by the second theorem of 5 the arc Cxy is the only one

associated with Cx in the sheet S and having the initial point p .

The curve Cx may be simply closed and regular; but if it is

not, there will nevertheless be a curve in the region X having

these properties, and for which the continuation curve analogous

to Cxy is not closed. For, in the first place, from 5 it is seen

that the curve Cx may be supposed to be a polygon no two ad

jacent sides of which have more than an end point in common,

provided that it is desired only to secure a continuous curve in

separated into two parts by the curve, and hence the number which Picard

and Simart designate by p\ is equal to unity for a simply connected region of

the kind defined in the text above.

4
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the sheet passing from p to
p&quot;.

Let the corners of this polygon
in the oxplane be denoted by 1, 2 , , , where is a symbol for

a point (ari, 2 ). The side v i touches i 2 at its end point 1,

and it can be argued therefore that there will be some first side

AA+I which touches some one of the preceding sides elsewhere

than at its initial point A . Let the side so touched by A A+ i

be &&H-I, where K + 1 is necessarily less than \, and let the first

point of A A+I which lies on K H-I be . If the portion of the

curve Cxy which corresponds to the polygon

(17) f, Ui, n-2, -, &, 5

is not closed, then the polygon (17) itself is a simply closed curve

in X of the kind desired above, that is, one along which there

exists a continuation curve in the o*i/-space whose end points

are different.

If the portion of Cxy which corresponds to (17) is closed, then

that part of Cxy which belongs to the polygon

(18) i&amp;gt; 2, &quot;j , , A+I&amp;gt; , &amp;gt;
1

is also continuous and leads from p to
p&quot;.

Since /c + 1 &amp;lt; X

the side JK+i^+2 at least is missing in (18), and the number of

sides is at least one less than that of the original polygon. By
an alteration of the kind suggested in the proof of the last theorem

of 5, which also reduces the number of sides, it can be brought

about, if not already true, that the polygon (18) still has no

two adjacent sides with more than an end point in common.

By continuing this process one must come at some stage to a

simply closed regular curve in the axplane with a corresponding

continuation curve in the #y-space which is not closed. In order

not to complicate the notation too much it may be supposed

that the curve Cx itself is such a curve. Every point of Cx is

an interior point of the region X since the corresponding point

of Cxy is an interior point of the sheet S. The interior of Cx

is therefore also composed entirely of interior points of X, since

X is simply connected. If the interior of Cx is subdivided into
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two parts by a segment of a straight line, as described in the pre

ceding section, the dividing segment will also have a continu

ation curve on the sheet S throughout its entire length, by the

second theorem of 5. For its initial point on the curve Cx

corresponds to an interior point of the sheet S and, by the hy

pothesis of the theorem which is to be proved, none of its points

can be a point where S becomes infinite or can correspond to a

boundary point of S. Hence one of the simply closed curves

formed by the curve Cx and the dividing segment is a curve

retaining the property that it has a continuation curve on

the sheet S which is not closed. Suppose that Cx
f

is this curve.

By continuing the process a sequence of curves
{
Cx
w

} ,
with

diameters approaching zero, can be found, each lying in the

interior of Cx and having an unclosed continuation curve Cxy
(k^

on S.

If a point p (k) is selected arbitrarily on the curve Cxy
(k\ the

sequence {p
w

} (k=l,2, ,
oo

) will have a finite point of conden

sation TT(; j8) in the xy-space which is an interior point of the

sheet S. For the projections .T
(i) of the points p (k) all lie in the in

terior of Cx and hence must have a point of condensation a. Fur

thermore the points of the sequence pw whose projections are in the

neighborhood of a can not become infinite or approach a boundary

point of the sheet, since a is interior to X. They must therefore

have at least one limit point TT which is an interior point of the

sheet, and with which there are associated two neighborhoods
7r e and a s by the principal theorem of 1. Some of the points

p
(V He in w e ,

and have corresponding curves Cx
(k} in &amp;lt;xs . For

such points the continuation curves Cxy
(k) also lie in w e and can

not be unclosed, since to any point x in a s there corresponds in

TT at most one solution of the equations / = 0. The original

assumption that S is multiple-valued in the interior of A&quot; is

therefore contradicted.

The theorem remains true for any system of equations of the form

(19) fa (xi, x2 , ,
xm \ yi, y2 , , #) = (a = 1, 2,
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In this case the curves Cxy and Cx have equations

(CX y) x i
=

s,-(0 y*
= y.(0

(i
= 1,2, -, m; a =

1, 2,
-

, n\ t ^ &amp;lt; ^ O&amp;gt;

(Ca) s t
- =

*,(*),

and the question asked in the proof of the theorem just stated

is whether or not the latter curve may be closed while the former

has distinct end points.

It is a part of the hypothesis of the theorem that the region

X is simply connected according to the definition of the preceding

section; and, according to the arguments made in the paragraphs

above, the curve Cx may be supposed a simply closed polygon.

In any neighborhood of Cx there will be, according to 6, on

account of the simple connectivity, an elementary curve Cx

lying in a normal subspace of two dimensions

(20) xt = gi(u lf uz) (i= 1, 2, -,)

entirely interior to X. If the continuation curve Cxy is not closed,

and if Cx is taken sufficiently near to Cx ,
then the corresponding

continuation curve Cxy will also not be closed.

The normal subspace (20) is defined over a simply connected

domain U of points (ui, w 2), and has no multiple points. To every

point of Cx there corresponds therefore a single pair of values

(Cu) ui

and the functions so defined are continuous, by the principal

theorem of 1, since at every point some pair of the equations (20)

has a functional determinant for u\, u% which js
different from

zero. The curve corresponding to the curve Cxy in the space

(u; y) may be denoted by

(CU y) ui = ui(t), u2
= u2 (t), ya

= ya (t), (a
=

1, 2, , ri),

and its initial point, corresponding to p
f

, by pu (u \ y }. Every

point of Cuy is an ordinary solution of the equations

(21) pa(wi,w2 ; 2/1,2/2, -,yn)=fa (gi,g2, -,; yi^2,&quot;-^) n

(a= 1,2, ..-,n).
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With a continuous curve C joining (u\ , 1/2 ) to an arbitrarily

chosen point (u\ t u%) of U there is always associated a continu

ation curve of solutions of the equations (21), having the initial

point p u
f and defined throughout the whole of C, since any such

curve defines a curve in the .r-space interior to X along the whole

of which there is a corresponding continuation curve for the

equations (19) in the sheet S. Hence there is a unique sheet S u

of solutions of the equations (21) whose projection in the ?/iZ/ 2
-

space is U; and no interior point of U is a point where the sheet

becomes infinite or corresponds to a boundary point of the sheet,

since the same is true of S with respect to X. The preceding

argument can therefore be applied to show that the sheet Su
is single-valued over the region U, and the existence of the curve

Cuy with the distinct end points p u and pu
&quot;

is contradicted.

Hence Cxy can not have distinct end points p
f and

p&quot;,
and the

theorem last stated is proved.

8. TRANSFORMATIONS OF n VARIABLES AND A MODIFICATION

OF A THEOREM OF SCHOENFLIES

It is interesting to deduce by means of the preceding theorems

some conclusions concerning a system of equations of the form

(22) fa (x; y)
= xa

- ^(y lt yz ,
- -

, y n )
= (a = 1, 2,

- -

., n).

The functions
\f/

are once for all assumed to be single-valued,

continuous, and to have continuous first derivatives in a con

tinuum Y in which the functional determinant

D =

is different from zero. By a continuum is meant a set of points

consisting only of interior points any two of which can be con

nected by a continuous curve lying entirely within the set.

The boundary points of Y will be denoted by B, and X will

represent the set of points in the .r-space which corresponds to Y

by means of the equations (22).
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Any sequence {y
w

}
of points (yi

(k
\ y2

(k\ , yn
(k}

)

(k
= 1,2, ) in Y, which approaches infinity or has a point of

B as limit point, defines a corresponding sequence of points

{
xw

}
in X. The set of points of condensation for such sequences

{x
(

}
will be denoted by A.

The totality of solutions of the equations (22) corresponding to

points of the continuum Y form a single connected sheet S whose

only boundary points have projections x and y in the sets A and B,

respectively.

For suppose that (V; y } is a first solution and
(x&quot;; y&quot;) any

other. The points y and
y&quot;

can be joined by a continuous

curve interior to Y

and the corresponding curve

defined by equations (22), is a curve interior to the sheet S and

joining (x
f

; y ) to
(x&quot; , y&quot;),

so that S is evidently connected. Any
boundary point (a] ft) of S must be the limit of a sequence of

points pw for which the projections y are in Y. The limit ft

of the sequence y
(k) can not be in Y, since then (a; ft), by the

theorem of 1, would be an interior point of S. Hence ft must

be in B and a in A.

One may say further that if p
(k) is a sequence of points (x

(k)
; y
w

)

in S for which the sequence xw approaches infinity, then the

only finite points of condensation possible for the sequence

y
w are in B. The statement is true when x and y are inter

changed, on account of the definition above of the set A.

If the points of the set A are distinct from those of the image X
of F, then X is a single continuum ivhose only boundary points

are points of A.

To prove this, consider an arbitrarily chosen point y of F.

None of the points in a suitably chosen neighborhood of the

corresponding values x are points of A, since by the fundamental
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theorem of 1 all such points correspond by means of equations

(22) to points of Y, and are therefore points of X. Consider

now the continuum X consisting of all points x which can be

joined to x f

by continuous curves containing no points of A,

a continuum to which the neighborhood of x f

certainly belongs,

as has just been shown.

All the points of X are in the continuum X, since the solutions

of equations (22) corresponding to points of 7 form a single

connected sheet S. The curve in S joining (x
f

; y ) with any
other point (x&quot;\ y&quot;)

of the sheet has therefore a projection in

the -space joining x f

with x&quot; and containing no points of the

set A.

All of the points of X are points of A . For any set of values

x in X can be joined to x by a continuous curve Cx lying entirely

in X and containing therefore no points of .4. By the second

theorem of 5 the corresponding continuation curve Cxy must

extend along the entire arc Cx , since otherwise the values of y

for points on Cxy would approach infinity or else have a limit

point on the boundary B of F, and some point of Cx would in

that case necessarily be a point of A. It follows that x, like x , is

the image of some point y in Y.

From the initial theorem of the last section, for the case when

there are more than two variables, it follows that

If A is distinct from X, and X is simply connected in the sense of

6, then the sheet S is single-valued. In other words the continuum Y
is tranformed in a one-to-one icay into a continuum X by means of

the equations (22), and the functions

(23) ya
= ya (x l9 x2 ,

- -

-, xn) (a = 1, 2,
- -

., n)

so defined over X are single-valued, continuous, and have continuous

first derivatives.

The character of the functions (23) near any point of X follows

at once from the theorem of 1.

Let it be supposed that the set of points A divides the x-space

into exactly two continua X, H such that every point of A is a bound-
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ary point for each of them, and suppose furthermore that there is a

particular point in H which does not correspond by means of the

equations (22) to any point of Y. Then the image X of Y is

distinct from A and coincides with X. If X is simply connected

the other conclusions of the last theorem follow at once.

In the first place it can be shown that if any point of H

corresponds to a point of Y then every other point
&quot;

of H
would also have this property. For and &quot; can be joined by
a continuous curve

xa = xa (t)

entirely interior to H. The corresponding continuation curve

xa
= xa (t], ya

= ya (t)

of solutions of equations (22) must be defined along the whole of

the interval t ^ t ^ t&quot;,
since otherwise as t approached any

upper bound T of the values t which could be reached by con

tinuation, the corresponding points y of the curve would have

to approach infinity or else have a point of condensation on the

boundary of Y. But this is impossible, since for a sequence of

points x corresponding to a sequence of points in Y approaching

infinity or a boundary point of Y, the only limiting points possible

are at infinity or else in the set A. It follows at once, on account

of the hypothesis of the theorem, that no point of H can correspond

to a point of 7, and neither can any point of A, since in any

neighborhood of such a point of A there are points of H which

in that case would also correspond to values y in Y. The image

of the region Y in the x-space is a single continuum whose only

boundary points are points of A. According to the preceding

argument it cannot be E and it must therefore be X.

A modification of a theorem of Schoenflies can be deduced

readily from the results which precede. The theorem has to do

with a pair of equations of the form

(24) xi = fa(yi, 2/2), xz
=

$z(yi, 2/2)
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in which the functions ^ are single-valued, continuous, and have

continuous derivatives on a simply closed regular curve B of the

?/-plane and in the interior Y of B. The functional determinant

D = dO/ i, $2)16(1/1, 2/2) is supposed to be different from zero in Y.

If the curve A in the x-plane formed by transforming the simply

closed regular curve B in the y-plane, by means of the equations (24),

is distinct from the image X of the interior Y of B, then X is a

simply connected continuum whose only boundary points are

points of A, and the correspondence defined between X and Y is

one-to-one. The single valued functions

(25) y l
=

z/i(.ri, .r2 ), y-2

so determined in the region X, are continuous and have continuous

first derivatives.*

From the preceding theorems of this section it follows that

the complete image X of Y is a single finite continuum whose

only boundary points are points of .4. It remains to show that

X is simply connected and that the correspondence between X
and Y is one-to-one.

If any simply closed regular curve Cx is drawn in X, its interior

must consist entirely of points of A&quot;. Otherwise there would

necessarily be a boundary point of X, a point of the curve A,

interior to Cx , and there would also be points of A exterior to Cx

since X is finite. Hence there would necessarily be a point of

the continuous curve .4 on Cx itself, which contradicts the as

sumption that A and X are distinct. It follows at once from

the first paragraphs of 7 and the simple connectivity of X just

proved, that only one point y in Y corresponds to a given x in

X, and by the theorem of 1 it may be seen that the functions

* Schoenflies assumed only the continuity of the functions ^i, \f/z t adding,

however, that the correspondence defined between the regions X and Y of the

two planes is to be one-to-one. In the theorem here proved \l/\ and ^ 2 are

subjected to further continuity restrictions, but the correspondence is proved
to be unique. See Schoenflies,

&quot; Ueber einen Satz der Analysis Situs,&quot;

Gottinger Xachrichten (1899), page 282. The theorem was later proved by
Osgood and Bernstein in the same journal (1900), pages 94 and 98, respectively.
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(25) have the continuity properties described in the theorem in

the neighborhood of any particular point x.

Another theorem, slightly different in form, may be stated as

follows :

If the images of the points of the simply closed regular curve B
in the y-plane all lie on a simply closed regular curve A in the x-plane,

then the equations (24) define a one-to-one correspondence betiveen

the interior X of A and the interior Y of B, and the functions (25)

so defined have the same continuity properties as before.

In this case it can first be shown that the image x of any point

y in Y must be distinct from A, and the rest of the proof is the

same as before. For, if x were a point of A, every point of

a properly chosen neighborhood of x would also be the image of

a point of Y, since at (x
r

; y } the functional determinant of

equations (24) does not vanish. It would follow then, by con

tinuation, that every point exterior to the curve A would also

be the image of a point of Y, which is impossible since the functions

\[/
are finite. The continuum X is therefore identical with the

interior of A, by the preceding theorems, and the correspondence

between X and Y is one-to-one.

An example applying some of the theorems of 5, 8 is given

at the end of 14.



CHAPTER II

SINGULAR POINTS OF IMPLICIT FUNCTIONS

The theorems which have been developed in the preceding

pages of these lectures have to do with the behavior of implicit

functions at ordinary points, or in regions which have no singular

points in their interiors. For singular points where the functional

determinant vanishes the theory is much more complicated, and

no methods which can be comprehensively applied have so far

been developed. There are, however, many special cases in

widely different fields which have been studied with success,

and it may not be out of place to glance at a few of them before

proceeding to the further theorems with which these pages are

primarily concerned.

Perhaps the most complete single theory which has been

developed is that which has to do with the singularities of an

algebraic function y of x determined by an equation of the form

(i) P(*. y}
=

o,

where P is an irreducible polynomial in the two variables .r and y.

Suppose for convenience that the singular point to be considered

is at the origin, and that the polynomial P(0, y} has a lowest

term of degree n in y. Then it is known that for each value of

x in a sufficiently small neighborhood of x = 0, there exist exactly

n solutions y of equation (1) in the neighborhood of y = 0, and

the values of these solutions are given by k cycles of the form

(2) y = aff* + a/ar-&quot;&quot;* + (j
= \,1, ,k),

where the numbers /*, p are positive integers satisfying the

relations

fjLj &amp;lt; M/ &amp;lt; M/ &amp;lt; &quot;, Pi + P-2 + + Pk = n.

43
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The series is one member of the cycle; the others are found by

replacing xllpj by tt3
vxllPj (v= 1, 2, , PJ 1), where co is a

primitive pj-ih root of unity. The number PJ has no factor in

common with the exponents juy, /z/, , Otherwise the expansion

would be in terms of a root of x of lower order than PJ. Thus

there are in all n series in fractional powers of x which define the

roots of the algebraic equation in the neighborhood of the origin.

The coefficients of the series may be computed by means of the

well-known Newton polygon,* or by methods due to Ham-

burgerf and Brill. J If the substitution x = t
pi is made in the

series (2), the points (x, y) which it defines may be expressed

in the parametric representation

x = f
, y = t {aj + oi l*-* + -

} (j
=

1, 2,
. -

, k).

All the solutions of the equation (1) in the neighborhood of the

origin evidently belong to a finite number of such branches.

With the help of the preparation theorem of Weierstrass,

which is to be studied in the following pages, results similar to

those just given may be proved for the solutions of an equation

F(x, y)
= in the vicinity of any point where F is analytic.

The singularities of a surface

F(x, y, )
-

at a point where the function F is analytic have also been ex

tensively studied. The points of the surface in the neighbor

hood of a singular point are determined by means of a finite

number of expansions of the form

x = P(u, v), y = Q(u, ),

where P and Q are analytic in the parameters u and .

* See Appell and Goursat, Theorie des Fonctions algebriques, pp. 184 ff.

t Weierstrass, Werke, vol. 4, Kapitel 1.

% Miinchener Berichte, vol. 21 (1891), p. 207.

See Black,
&quot; The parametric representation of the neighborhood of a

singular point of an analytic surface,&quot; Proceedings of the American Academy

of Arts and Sciences, vol. 37 (1902), p. 281.
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In the calculus of variations the construction of
&quot;

fields of

extremals
&quot;

in the plane requires the study of the real solutions

of a system of equations of the form

(3) -r = ?(/, a), y = $(t t a).

The extremals are the curves in the .rz/-plane defined by these

equations for different values of a. Suppose that the parametric

values

(4) t ^t ^h, a = a Q

define an arc E which does not intersect itself and which consists

entirely of points where the functional determinant

f~\ A/. \

(o) Aft a)
=

is different from zero. Then to any point (.r, y) in a properly

chosen neighborhood of E there corresponds but one solution

(t, a) of equations (3), in the neighborhood of the values (4); and

the functions

t = t(x, y), a = a(.r, y)

so defined have continuity properties similar to those of
&amp;lt;p

and

\l/
themselves.* The neighborhood thus simply covered by the

extremals (3) is the &quot;field,&quot; and is perhaps the simplest example
of the notion since it consists only of non-singular solutions of the

equations (3).

When it is desired to find an arc C which minimizes an integral

with respect to variations lying entirely on one side of C, a field of

a different sort can be constructed. f The equations of the

The mathematical literature concerned with the singularities of a curve

or surface, particularly their transformation into simpler types, is very large.

The reader is referred to Pascal, Repertorium der hoheren Mathematik, 2d

edition, vol. 2, erste Halfte, pp. 291 ff; and Encyclopadie der Mathematischen

AYissenschaften, II B 2, p. 119, and III C 4, pp. 365 ff.

*
Bolza, Vorlesungen liber Variationsrechnung, pp. 249 ff.

t Bliss,
&quot;

Sufficient conditions for a minimum with respect to one-sided

variations,&quot; Transactions of the American Mathematical Society, vol. 5 (1904),

p. 477; Bolza,
&quot; Existence proof for a field of extremals tangent to a given

curve,&quot; ibid., vol. 8 (1907), p. 399.
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extremals (3) can be taken so that for t they all intersect C
and are tangent to it, and the equations

x =
&amp;lt;p(0, a), y = ^(0, a)

will then be the equations of C. If the curvatures of the two arcs

at their point of contact are always different, then the extremal

arcs E simply cover a portion of the plane N on one side of C
and adjacent to it. In other words, the equations (3) define a

one-to-one correspondence between the points of a region ad

joining the axis t = in the fa-plane, shown in the accompanying

figure, and a certain neighborhood N on one side of the arc C.

a

FIG. 2.

In the interior of the region N the functions t(x, y), a(x, y) have

continuity properties similar to those of
&amp;lt;p

and
\l/

themselves.

It is easy to see that this is a case in which the functional de

terminant (5) vanishes along the boundary t = of the region to

be transformed, since the curves C and E are always tangent.

In a paper published since these lectures were given, Dr. E. J.

Miles* has considered the transformation defined by the equations

* &quot; The absolute minimum of a definite integral in a special field,&quot; Trans

actions of the American Mathematical Society, vol. 13 (1912), pp. 37 ff.
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(3) when the curve C to which the extremals E are tangent has

a cusp, a situation corresponding to still another problem in the

FIG. 3.

calculus of variations. In that case a point (/i, ai) and a curve

F through it are transformed into a point (xi, y\) and a curve C
as shown in the figure. One portion 2 of a neighborhood of

(ti f fli) is then transformed in a one-to-one way into the leaf S,

and the other portion 2 into the leaf S f

. At any point in the

interior of one of the leaves, the variables t and a are single-

valued functions of x, y having continuity properties similar to

those of (p and \[/. The transformation is singular along the

curve F.

The three examples which have been just described are only a

few of the many proofs for the existence of fields involving trans

formations with singular points which might be cited.* Nearly

all of these have to do with singularities of transformations of

the form

(6) x =
&amp;lt;p(u, v), y = $(u, r),

*
Bliss,

&quot; The construction of a field of extremals about a given point,&quot;

Bulletin of the American Mathematical Society, vol. 13 (1906), p. 47; Mason
and Bliss,

&quot;

Fields of extremals in space,&quot; Transactions of the American Mathe

matical Society, vol. 11 (1910), p. 325; Bill, &quot;The construction of a space
field of extremals,&quot; Bulletin of the American Mathematical Society, vol. 15

(1908), p. 374; Sztics, &quot;Sur 1 extremale qui joint deux points donnes,&quot; Mathe-

matische Annalen, vol. 71 (1912), p. 380. The method used by Sziics is quite

closely that of Mason and Bliss in the paper mentioned above.
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or

x =
&amp;lt;p(u, v, w), y = \l/(u, v, w), z = xO, v, w),

which have been studied also in a series of papers of more recent

date presented as dissertations for the degree of doctor of

philosophy at Harvard University.* The methods which have

been used in the different cases have differed widely, and it does

not seem possible at present to formulate a theory which includes

them all. It is the intention of the writer, however, to show in

the following pages how the transformation theorems proved

above in 7 may be applied to throw much light on the nature

of real transformations of the form (6) in the neighborhoods of

singular points. In the section of the lectures immediately

following this introduction a simple algebraic proof of the

preparation theorem of Weierstrass is given, not depending

upon the theory of functions of a complex variable. A general

ization of it is given in a later section which, in what might be

called the general case, enables one to describe the behavior of

the solutions of a system of equations of the form

fi(xi, x2 ,

-
,
xm \ 2/1, 2/2, , 2/n)

=
(i
=

1, 2, -, n)

in the neighborhood of a point where the functional determinant

d(yi, 2/2, , 2/n)

vanishes. For these equations the variables x and y are per

mitted to have complex values. f

*
Urner,

&quot;

Certain singularities of point transformations in space of three

dimensions,&quot; Transactions of the American Mathematical Society, vol. 13 (1912),

p. 233; Clements, &quot;Implicit functions defined by equations with vanishing

jacobian,&quot; to appear in the same journal. Dederick, in a paper entitled
&quot; The

solutions of an equation in two real variables at a point where both the partial

derivatives vanish,&quot; Bulletin of the American Mathematical Society, vol. 16

(1909), p. 174, has discussed the singularities of a curve of the form F(x, y)
=

with the help of a sort of generalization of the Weierstrass preparation theorem

for a function which is not necessarily analytic.

f The proof given in these pages for the last-mentioned theorem is for the

case of two variables y. For n variables see the reference in the last footnote

to 13.
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9. THE PREPARATION THEOREM OF WEIERSTRASS

The theorem which is to be proved may be stated in the

following form:

Letf(xi, x2 , -, xm , y) be a convergent series in the variables x, y,

and such that the series /(O, 0, , 0, y) begins icith a term of degree

n. Then f is factorable in the form

f(xi, x2)
- -

,
xm , y)

=
(y

n+a 1y-\
-----

}-a n )&amp;lt;p(xi,
x2 , ,xm,y),

where ai, a 2 , ,
a n are convergent power series in Xi, x2 , ,

xm

which vanish for Xi = x2
= = xm = 0, and

&amp;lt;p

is a power series

in Xi, x2)
- -

, xm , y which has a constant term different from zero.

In the Bulletin de la Societe Mathematique de France* Goursat

has called attention to the fact that the proof which Weierstrass

gave of this important theorem, as well as the later proofs

which occur in the literature f, make use of the notions of the

function theory, while the theorem itself is essentially of an

algebraic character. In the paper referred to he has given an

elegant and elementary proof of the theorem which is in outline

as follows:

By means of the substitution

y
n = -

aiy
n~ l -

a*y
n~---

the series / can be reduced to a polynomial P of degree n 1

in y, whose n coefficients are convergent series in a\, a 2 , ,

Q n , a*i, -1*2, ,
xm . By the usual theorems of implicit function

theory it is shown that the n equations found by putting these

coefficients equal to zero have unique solutions for a\, a 2 , ,
a n

as power series in Xi, x2 ,
-

,
xm ,

which vanish with x\, x2 ,
- - -

,
xm .

If the values so found are substituted in the formula

y
n = -

&quot; Demonstration elementaire d un theoreme de Weierstrass,&quot; vol. 36

(1908), p. 209.

fSee, for example, Picard, Traite d Analyse, vol. 2, p. 243; Goursat,
Cours d Analyse, vol. 2, p. 284.

5
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and the series / again reduced, a polynomial PI of degree n I

in y will be found whose coefficients are series in Xi, x%, ,
xm , ju.

On account of the way in which the functions a\, a^, ,
an

were determined, this polynomial PI has a factor ju, and hence

/ has a factor (y
n + a\y

n~ l
-\- + an ).

Since the paper of Goursat appeared two further proofs of the

theorem have been published, one by the writer* and the other

by MacMillan,f each of which seems even more direct than that

of Goursat. In the proof which follows use is made of the very

concise and elegant method of MacMillan for determining the

coefficients, while the rest of the proof is similar to that of the

earlier paper of the writer cited above.

The theorem may be stated in a different form as follows:

Suppose thatf(xi, xz , ,
xm , y) is a series with literal coefficients

such that /(O, 0, , 0, y) begins with the term a y
n

. Then there

is one and but one series b(xi, x2 , ,
xm , y) which satisfies formally

the relation

(V) tf
=

P,

where p is a polynomial

p = aGy
n + aiy

n~ l
-f +

whose coefficients ak(x\, #2 , ,
xm)(k = 1, 2, , n) are series

vanishing with the x s.

Each of the coefficients in b and the a s is a rational function of a

finite number of the coefficients of f ivith denominator a power of

aQ ,
and the constant term in b is unity.

If the coefficients in f are chosen numerically so that f converges

anda 4= 0, then the series b and au (k
=

1, 2, , n) also converge.

The functions /, b, p may be written in the forms

/ = a y
n -

y
n+l

fo
-

/i
-

/2
-

(8) b = 6 + 61+ 62 + ,

p = a y
n

pi pz ,

* Bulletin of the American Mathematical Society, vol. 16 (1910), p. 356.

t Ibid., vol. 17 (1910), p. 116.
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where /*, bk, pk are homogeneous expressions of degree k in

1, #2, , .Tm with coefficients which are series in y. It is desired

to determine b so that the identity (7) holds, and so that the

expressions pk have coefficients which contain y only to the degree

n- 1.

By substituting the expressions (8) in the identity (7) and

equating terms of the same degree in the x s, it follows that

&i(a yfo)y
n = b fi pi,

62(00 2//o)#
n =

bofz + 61/1 p2 ,

bk(a yfo)y
n = b fk + bifk-i + + &A-2/2 + &A-I/I Pk,

These equations are to be identities in x and y. The first one

determines 60 uniquely with constant term unity, and further

more so that each coefficient is a quotient, in fact a polynomial

with positive integral coefficients in a finite number of the coef

ficients of /, divided by a power of a . In the second equation

pi must be chosen equal to the terms of & /i which contain y

to the degree n 1 or less, after which 61 is uniquely determined.

Similarly in the kih equation pk must first be chosen to cancel

the terms on the right of degree n I or less in y, and then bk

is unique.

It only remains to show that the series 6 and ak are convergent

in any numerical case for which / converges. There is no loss

of generality in assuming that the series / converges in the domain

|*i|gl, \y\Zl (- 1,2, ,),

since this can always be effected by a substitution of the form

Xi = p&i, y = y (i
=

1, 2, , m).

Suppose then that K is a number greater than the absolute

value of any term in the series /(I, 1, , 1, 1), that is, greater
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than the absolute value of any coefficient in /. If AQ is the

absolute value of a
,
the series

Kyn+l K

where

- X2 )
-

(1 Xm)

dominates / in the sense that every coefficient except the first

has a numerical value equal to or greater than K
,
and the series

B satisfying the relation

BF = A y
n + Aiy

n~ l + - - + A n

analogous to (7) has coefficients numerically greater than the

absolute values of those of b. Hence if B converges the same

will be true of b.

But it is easy to show that the series B converges. It will

certainly do so if convergent series A&, C, D can be found satisfy

ing the relation

i+ . . . +An)(Cy+ D),

because then B would have the value

i-yB =
Cy+D

On comparing the coefficients of the two highest terms in y

in the next to last equation, and for convenience denoting by a.

the constant value

AQ + K

it is found that

C = aAo, D I aAi.

By comparing the other powers of y and substituting these values,
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we have

+

^n-1 + &amp;lt;XS.

A n = aA,A n
- KX.

But these equations have linear terms in A\, A&amp;lt;&amp;gt;, ,
A n with

functional determinant different from zero, and hence have

solutions, by the theorems of 2, which are convergent series in

BI, 2*2,
*

, %m and have no constant terms.

It is evident, in any numerical case for which / is convergent,

that a neighborhood of the origin may be chosen in which the

series b is everywhere different from zero. In such a neighbor

hood all of the values (x\, .r2 , ,
xm , y) which make / vanish are

roots of the equation p = 0, and vice versa.

If/Oi, 0, , 0, y) has its terms of lowest degree homogeneous
and of degree n, then the polynomial p(x\, 0, , 0, y) has the

same initial terms, since the first coefficient of the factor series

6 is unity.

10. THE ZEROS OF
&amp;lt;p(u, v), \f/(u, r), OR THEIR FUNCTIONAL

DETERMINANT

Consider a function
&amp;lt;p(u, r) whose values in the neighborhood

of the origin in the uv-plsme are given by a convergent series in

u and which vanishes for u = v = 0. If the series contains a

factor u in every term it may be written in the form

(9) &amp;lt;p(u, v)
= au k

$(u, v),

where a is a constant different from zero and $(u, v) is a con

vergent series for which $(0, v) has a first term of the form i
m

with coefficient unity. According to the results of the preceding

section, all of the roots of
3&amp;gt;(w, r) in a neighborhood of the origin

will be roots of a certain polynomial

(10) P = i
m + flit*-

1 + + am ,
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where the coefficients c^ are series in u having no constant terms.

The polynomial P may be equal to the product of two poly

nomials of similar form,

c v
m~k + Clv

m-k~ l + ----h

where the coefficients b and c are convergent series in u. In

that case the product 6 c must be identically unity, and by

dividing the first polynomial by 6 and multiplying the second

by the same series, the two factors will have the form

The coefficients b
f and c are now series in u without constant

terms. Otherwise the product P would have a term of lower

degree than v
m

,
with a coefficient series whose constant term

would be different from zero.

It is readily seen from this that the polynomial P is either

irreducible in the sense that it can not be decomposed into a

product of polynomials of the same sort, or else it is the product

of a number of irreducible polynomials of lower degree.

Suppose that Q(u, v) is a polynomial of the form (10) which is

irreducible in the sense just described. Then its discriminant

with respect to v is a series in u which does not vanish identically,

since otherwise Q and Qv would necessarily have a common factor

of the form (10), and Q would not be irreducible. There is a

neighborhood &amp;lt; u ^ HI in which the discriminant is every

where different from zero, and for any value u satisfying these

inequalities the values of v making Q = are all distinct.

According to the results which have been stated above in the

introduction to this chapter of the lectures, the values of v which

make Q vanish for different values of u will be defined by m
series of the form

(11)
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and these series must all be distinct, since for sufficiently small

values u =j= 0, as has been seen, the roots of Q are all distinct.*

It is evident then that all the roots of (p(u, v) in the neighbor

hood of the origin, including those which correspond to the fac

tor uk in equation (9), are given by a finite number of elements

of the form

u = aP, r = br + b r + ,

where a and 6 do not vanish simultaneously, and p, JJL, //,

are positive integers having no common factor.

The product of factors of the form

(12) {v
-

au&quot;
1 * - aV/p -

},

corresponding to the elements of a cycle, is a polynomial Qi(u, v)

of the form (10). For the product Qi is a series in ullp and v

which is unchanged when ullp is replaced by a&amp;gt;

v
u llp

,
and Qi must

therefore contain only powers of ullp whose exponents are multi

ples of p, that is, positive integral powers of u.

On the other hand an irreducible polynomial Q possesses only

a single cycle of elements of the form (12). Each element of a

cycle belonging to Q gives rise, in fact, to a factor Qi of Q of

the form (10). The number of elements in the cycle could not

be greater than the degree of Q, and neither could it be less,

since according to the argument of the paragraph just preceding,

Q would then be divisible by a factor of the same form corre

sponding to the product of the factors (12) belonging to the cycle.

By combining these two results, it follows that the product of

the factors of the form (12) corresponding to the elements of a single

cycle is an irreducible polynomial of the form (10), and conversely

the elements of an irreducible polynomial of the form (10) form a

single cycle.

The Weierstrassian polynomial P of any function (p is a product

of irreducible factors of the same form, some perhaps repeated,
* The method of proof for this statement in the case of a polynomial P

is precisely that of the theory of algebraic functions. See the reference above

(page 44) to Appell and Goursat.
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to each of which there corresponds a cycle of elements. By the

order of an element of
&amp;lt;p

is meant the number of times its factor

(12) is repeated in the product ukP. The order is evidently

equal to the multiplicity in ukP of the irreducible factor to which

the element belongs. If
&amp;lt;p possesses one element of a cycle it

must possess the whole cycle. For the polynomial P belonging

to
&amp;lt;p

has then a common factor with the irreducible polynomial

Q of the cycle, and so must be divisible by Q.

Suppose now that
&amp;lt;p(u, v) and&quot;^(w, v) are two functions of the

form described above, and that the functional determinant

(13) D(u, v)
= &amp;lt;Pv &amp;lt;Pv

does not vanish identically.

// &amp;lt;p

and
\[/

have an element in common, then they have in common

the irreducible polynomial Q of the form (10) to which the element

belongs, and Q is also factor of D.

The first part of this statement follows from the preceding

paragraphs, so that
&amp;lt;p

and
\l/ may be supposed to have the forms

&amp;lt;p

= QA, t = QB.

When these expressions are substituted in the functional de

terminant (13) the presence of the factor Q is at once evident.

A similar argument shows that if &amp;lt;p

has an element with cor

responding factor Q of multiplicity k, and
\{/

has the same element

and factor with multiplicity I, then D contains the element and its

factor with multiplicity k + I 1 at least.

There is a sort of converse to these statements to the effect

that when
&amp;lt;p

and D have an element and its factor Q in common, then

the element and Q are either multiple in
&amp;lt;p

or else are common to
&amp;lt;p

and \//.

To prove this let

&amp;lt;P=QA, D= QC,
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and suppose Q not a multiple factor of
&amp;lt;p.

Then

and it follows readily that the determinant

&amp;lt;?,

has the factor Q, since A can not have any element in common

with Q. Otherwise it would contain the whole irreducible factor

Q-

Since Q is irreducible, its discriminant, a series in u, can not

vanish identically, and there is an interval &amp;lt; u ^ u\ in which

it is different from zero. For any value of u satisfying these

inequalities the polynomials Q and Qv have no common root. If

(15) u = atp , x = a/M + a p +

is the parametric form of one of the elements of Q, then Q(u, v)

vanishes identically in t when these expressions are substituted,

and Qv (u, v) is not identically zero in t along the element. Hence

there is an interval &amp;lt; t ^ ti in which Qv is different from zero.

Since the determinant (14) has the factor Q and therefore vanishes

identically along the curve (15), it follows that

du dv\ _ du _ dv

is an identity in t. Evidently \[/(u, r) must be constant along

the element, and its value is everywhere zero since it vanishes

for t = 0. Hence ^ has the element (15) in common with Q,

and must have Q itself as a factor since Q is irreducible.

The real points (u, v) where one or another of the functions

&amp;lt;p, \l/,
D vanishes play an important role in the investigation

which follows. In the discussion of them which follows it will

always be understood that when u is real and positive the symbol
u1/p stands for the real and positive pih root of u.
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If the function
&amp;lt;p

has no factor u, and if each of its elements

when written in the form

(16) v = u* 1&quot;

{a + a u(fi -^+ -

}

has at least one imaginary coefficient, then in a neighborhood of

the origin no real point (u, v) with u &amp;gt; satisfies the equation

&amp;lt;p(u, v)
= 0.

To show this, suppose for the moment that a is imaginary.

Then for sufficiently small positive values of u the absolute value

of a u(tt ~^lp + will be less than the absolute value of the

imaginary part of a, and the parenthesis in the expression (16)

will also be imaginary. A similar argument would show V to be

complex if one of the higher coefficients were the first not real.

On the other hand, if the coefficients in the expression are all

real, then for positive values of u the values of v are real, and the

points (u, v) so defined lie on a real arc of the form

u = t
p

, v = at&quot;- + aT + - - -

(0 &amp;lt;; t ti).

If the elements of (p are written in the form

(17) v = &amp;lt;**(- uY lp + V(- u)
* 1* + -

-,

where e is a fixed pih root of 1, then an argument similar to

that just given shows that
&amp;lt;p

= is satisfied by no real points

in the neighborhood of the origin with negative values of u,

unless at least one of the expressions (17) in ( u)
llp has all of

its coefficients real. On the other hand any such element with

real coefficients defines points (u, v) on a real arc

u = t
p

,
v = pt* + j8Y

M + (0 ^ J &amp;lt;; ti).

By combining these results it follows that all of the real points, in a

neighborhood of the origin, which satisfy &amp;lt;p(u, v)
=

0, are the

points of a finite number of distinct elements of the form

(18) u = at, v = bP + Vt*- + - - (Q^t^ti)
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whose coefficients are real and such that a and b are not both zero.

It may be of interest to note in passing that if an element of
&amp;lt;p

of the form (16) has real coefficients, then the irreducible poly

nomial Q which belongs to that element is real. For Q is the

product of

v au lp -a u

and the other factors which arise from it by replacing ullp
by

o)
vullp

(v
=

0, 1, 2, -, p 1). The coefficients of the product

are therefore rational integral functions with real coefficients

in the as and the pth roots of unity, and symmetric in the latter.

But symmetric functions of the pth roots of unity are real. A
similar remark holds true for the real elements of the form (17).

Two real elements of the form (18) are said to be distinct if there

is an interval &amp;lt; t 5^ t\ on ichich the points (u, v) which they define

are all distinct. Any two elements are either distinct or else coin

cident throughout.

Let the two elements have the equations

u = atp
,

v = bt + 6 r + -
(0

&amp;lt;

t ^ t,),

u = ct q
, v = dr + d r + - -

(0 &amp;lt;;

t g /2 ).

If a = c = then the elements are distinct unless 6 and d have

the same sign, in which case each defines the same half ray from

the origin along the t-axis. If a = 0, c =f= the elements are

distinct. If a and c are both different from zero then the elements

are distinct unless the expressions

r = & I - I + 6 I

-
I +

-ar+ (.T+
- ; -

are identical in fractional powers of w, in which case the two

elements coincide.

It can readily be seen that if two functions
&amp;lt;p

and ^ have a

real element in common then they must each contain the irreduci

ble real factor which belongs to the element.
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11. SINGULAR POINTS OF A REAL TRANSFORMATION OF Two
VARIABLES

In this section it is proposed to study the singular points of a

transformation

(19) x =
&amp;lt;p(u, v), y = $(u, v)

for which
&amp;lt;p

and \f/ are convergent series in u, v with real coef

ficients. It is presupposed that the functional determinant D
of

&amp;lt;p

and
\[/

does not vanish identically, and that the real elements

of (p and \//
described in 10 are all distinct. There is an interval

^ / ^ ti for which the elements of
&amp;lt;p, \l/, and D which are

distinct have only the point (u, v)
=

(0, 0) in common. Some

of these elements may belong to both
&amp;lt;p

and D, or to \l/ and D,

but none are common to
&amp;lt;p

and \l/. By further restricting the

interval if necessary, it can be effected that the radius

constantly increases on each element as t increases from to t\.

For p is a series in t which does not vanish identically, and its

derivative has the same character. An interval &amp;lt; t ^ t\ can

therefore always be selected on which both p and dp/dt remain

greater than zero.

It follows immediately that a constant pi can be selected so

that any circle about the origin of radius pi or less is intersected

once and but once by each of the elements in question. The

real elements of
&amp;lt;p, $, and D may therefore be represented as

shown in Fig. 4.

// the value of pi is properly restricted then any one of the regions

S shown in the figure is transformed in a one-to-one way by the

equations (19) into a region adjoining the origin and lying

entirely in one quadrant of the xy-plane. The single-valued inverse

functions

(20) u = f(x, y), v = g(x, y)

so defined are continuous over all of S and analytic in its interior.
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To prove this consider the functions r(u, v) and oo(u, v) defined

by the equations

r = &amp;lt;f&amp;gt;+ \lr, cos co = , sin co = .

r r

If the radius pi is properly restricted, then r and co (modulus 2x)

are well defined at every point of the circle with the exception

of the origin, since
&amp;lt;p

and
\f/
have no real roots in common aside

from (u, v)
=

(0, 0).

The value of r increases monotonically along any analytic curve

u = ait + ait~ + ,
v = bit -\- b&amp;lt;f +

for which u and v are not identically zero, as may be seen by

reasoning similar to that applied above for p, after noting that the

series for (p and
\[/

can not vanish identically in t. In particular

E3

FIG. 4. FIG. 5.

if Piis sufficiently small, then r has this property along the bound

aries OEi and OE2 of S, and along an auxiliary arc OE chosen

arbitrarily for purposes of proof between the two elements OEi
and OE2 .

Suppose now that ki is the minimum of r along the arc &quot;1^2,

and select arbitrarily a value k between and ki. The first of
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the equations

(21) r(w, v)
=

k, u(u, v)
= z

is satisfied at a unique point P(u , ) on the arc 0#, and the

corresponding value of z may be denoted by z . The functional

determinant of r and co has the value

d(r, oQ #()
d(t*, u) r

and does not vanish anywhere in the interior of S.

The domain in which the equations (21) are to be studied is

that consisting of points (u, v, z) for which (u, v) is in S, and z

has any real value. According to the first theorem of 5 and

the results of 2 the equations (21) define two analytic functions

(22) u = u(z), v = v(z)

which take the initial values UQ , VQ when z = ZQ ,
and which may

be continued over an interval ZQ ^ z &amp;lt; f &quot;,
as described in 5.

If f
&quot;

is the value defining the largest such interval, the points

(u(z), v(z)) corresponding to interior points of the interval will

all be interior to S, while as z approaches f&quot;
the only limit

points of the values (u(z), v(z)) must lie on the boundary of /S-

Otherwise the curve (22) could be continued beyond the value f &quot;.

The length of the interval ZQ ^ z &amp;lt; f
&quot;

is certainly less than

7T/2, since in the region S neither sinco nor cosco can vanish.

The curve (22) can not intersect itself, since the same values of

(u, v) must define the same z by means of the second of equations

(21).

As z approaches f &quot;,
the point (u(z), v(z)) approaches a unique

limiting point on OEi or OE2 . This follows because at any
limit point the value of r(u, v) would have to be k, and this can

happen at one point PI only of PEZ , and at one point P2 only

of OE2 . The curve could not have both PI and P2 as limit

points as z approaches f &quot;,
since then it would necessarily cross

the arc OE at the only point P where r(u, v) k, and so would

intersect itself.
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A similar argument shows that the equations (21) define an

arc without double point over an interval f &amp;lt; z ^ z
, joining

P with that one of the points PI, P2 which was not the end of

the first arc. For convenience it may be assumed that f is

the value belonging to PI, and f
&quot;

that for P2 . The preceding

inequalities for z would only be reversed if the opposite were the

case.

There are no other points in the region S at which r(u, v)
= k

besides those of the arc PiP2 which has just been defined. If

there were one not on PiP2 , it would give rise to a second curve

of the same sort joining PiP2 . But this new curve would

necessarily intersect the arc OE at P, and hence must coincide

with the original arc PiP2 throughout.

For any value k &amp;lt; k there is a curve similar to PiP2 on which

all of the points (u, v) making r(u, v)
= k

r

lie.

By means of these results it can now be shown that any two

distinct points of the region 0PiP2 are transformed into two

distinct points of the ary-plane. For if (u
r

, ) and
(u&quot;, u&quot;)

defined the same point (x
f

, y ) they would both give r = V x2-\-y
2

the same value k
f

,
and hence must lie on the same curve PiP2 .

But in that case the values of o&amp;gt; corresponding to the two points

would necessarily be different, as has been seen above, and hence

(x y y ) and
(x&quot;, y&quot;)

could not be the same.

From the final theorem of 8 it follows at once that the theorem

last stated above is true, provided that the circle of radius p\

is altered so that the arc of it which lies between the branches

OEi and OE2 lies also within the region OPiP2 . The region

into which S is transformed must lie entirely in one quadrant

of the .r?/-plane, since the values of co which correspond to points

of S are all in one quadrant. In the interior of the image of S

the inverse functions (20) are analytic, since at interior points of

S the determinant D is different from zero.

Some conclusions with regard to the distribution of the

elements of
&amp;lt;p, \f/, and D can be readily derived from the dis

cussion just preceding. For example, no region S can be bounded
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by two elements of
&amp;lt;p.

If it were not so, then in a region bounded

by two elements of
&amp;lt;p

the value of co on the branch OE\ would

be everywhere Tr/2, or else everywhere ir/2, and the same is

true for OE2 . But this is impossible since along the arc P\Pi

the value of co varies monotonically through an interval less

than 7T/2. A similar remark holds for the elements of ^. Hence

it follows easily that

Between any elements of D the elements of &amp;lt;p

and
\f/, if there are

any, must separate each other.

If the determinant D has opposite signs in two adjoining

regions S and S of the circle of radius pi in the wv-plane, shown

in Fig. 5, their transforms in the ;n/-plane will be folded over

the image of the curve OE% and will overlap. In order to prove

this, let it first be remembered that along the element OE^

dr du dv

so that ru and rv can not vanish at any point P% different from

the origin. Neither can they vanish at an interior point of

one of the regions S, since at a point where

&amp;lt;P&amp;lt;Pu U A &amp;lt;P&amp;lt;Pv
v A

ru = - - =
0, rv = - - =

0,

the determinant D would necessarily have the value zero, and

this does not occur in the interior of S. The equations

du dv du dv

are satisfied everywhere between PI and P% on the arc (22).

Hence

du r dv _ r

d~z

=
~D Tv

dz
=
D r*

As z approaches f
&quot;

the direction cosines of the tangent to the
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curve (22), for increasing z, approach the values

on one of the arcs PiPo and P^P^ on the other the limiting

direction is exactly the opposite, since the values of D on the

two arcs have opposite signs. Hence if o&amp;gt;

= z increases along

the arc PiPi it must decrease along P^P^, and vice versa.

In the .r?/-plane these results mean that the images of the

arcs PiPo and PoPs are two arcs of the circle r = k which overlap

near the image of P% ,
the images of S and S f must therefore

be superposed in the vicinity of the image of OE2 .

If the boundary OE2 between S and S is not one of the elements

of D, the images of the two regions in the .r?/-plane will adjoin

each other along the image of OEz, and the inverse functions

(20) will be analytic at every point of the image of OE2 except

the origin. For at such points the functional determinant D is

different from zero.

By combining the results which have so far been deduced,

the truth of the following theorem is established:

For a transformation

(23) .r =
&amp;lt;p(u, r), y = }(u, v)

with the characteristics described in the first paragraph of this

section, a circle C can be selected in the uv-plane with center at the

origin and having the following properties: The circle is inter

sected by each real element of the functional determinant D at some

first point P. The arcs OP so determined on the different elements

divide the interior of C into regions Si, 82, -, 5*. The points

of each region S correspond in a one-to-one way by means of

equations (23) icith the points of a sheet 2 of the xy-plane which

winds about the origin and is bounded by the images of the bound

aries of S. The single-valued functions

(24) u = f(x, y), v = g(x, y]

6
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so determined are continuous at all points of the sheet S and analytic

in the interior of S. // in two adjoining regions, say Si and 82,

the signs of D are opposite, then the images Si and S 2 overlap in

the neighborhood of their common boundary 0?r2 ; if the signs of D
are the same, the regions Si and S 2 adjoin along 0?r2 without over

lapping.

The adjoining figure illustrates the case when D has four real

elements and the signs of D are opposite in any two adjoining

regions S. Further illustrations of the theorem are given in 14.

FIG. 6.

It has not been proved above that the functions (24) are

continuous on a boundary OTT of one of the regions S. Suppose
that TT is a point of such a boundary, and let

(25) , ?T2 , 7T3,

be any sequence of points of S with limit TT. The corresponding

points

(26) pi, p2 , ps,

of S have condensation points in S, one of which may be denoted

by p. There is then a sub-sequence

Pi, Pi , PS, -
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among the points (26) whose limit is p; and on account of the

continuity of the functions (23), the corresponding points

(27) 1Ti ,
7T2 ,

7T 3 ,
-

of the sequence (25) must have as limit point the image of p
in 3. But the limit of (27) is necessarily TT, and TT is therefore

the image of p. It follows at once that the sequence (26) has

a unique limit point p which is the image of TT, and from this

property the continuity of the functions (24) in the ordinary

sense can be readily deduced.

The functions
&amp;lt;p, \f/ }

and D can be expanded in the form

&amp;lt;P

=
&amp;lt;Pm + &amp;lt;Pm+l + *

j

(28) \f/
=

\l/ n ~h ^n+1 ~f~
*

,

D = Dm+n i ~\~ Dm+nl ~\~
&amp;gt;

where
&amp;lt;pk, $k, Dk are homogeneous polynomials in u, v of degree,

k, and

d&amp;lt;pm d(pr

du dv

du dv

If the real roots of
&amp;lt;p
m , \l/ n ,

and An+n-2 are all simple roots and

distinct from each other, there will be an element of
&amp;lt;p, \f/, or D

in each of the corresponding directions, and a notion of the

character of the transformation can be derived without difficulty.

In the applications of 14 this remark is of frequent service.

12. THE CASE WHERE THE FUNCTIONAL DETERMINANT
VANISHES IDENTICALLY

It is well known that when the functional determinant of

two analytic functions
&amp;lt;p

and ^ vanishes identically, then near

any point where not all of the derivatives
&amp;lt;pu , &amp;lt;pv , \f/U) \l/v vanish

the functions
&amp;lt;p

and ^ satisfy a relation of the form

=
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identically in u and v. It is possible to show that such a relation

exists also near a singular point at which the four derivatives

above all vanish.

If a relation can be found after a substitution of the form

(29) u = au\ + j3t&amp;gt;i,
v = yui + 8vi,

for which a8 (3j does not vanish, then it will surely be satisfied

when MI and Vi are replaced by the original variables u, v.

Suppose then that the analytic functions
&amp;lt;p

and
\[/
have already

been prepared by a transformation (29) in such a way that in

the expansions (28) &amp;lt;p
m and

\[/n both contain terms in u alone.

By applying the preparation theorem of Weierstrass to the

functions
&amp;lt;p(u, v) x and \p(u, v) y, two polynomials

P(u, v, x) = um + aiu
m~l + + Om,

Q(u, v, y)
= un + biu&quot;-

1 + ----h bn

are obtained, whose coefficients are convergent series, without

constant terms, in v, x and V, y, respectively. In a certain vicinity

\x\ &amp;lt; e, \y &amp;lt; e, \u\ &amp;lt; e, \v\ &amp;lt; e

the only solutions of the equations

(30) &amp;lt;p(u, v)
- x = 0, $(u, v)

-
y =

are values (u, v, x, y) which make P and Q vanish also, and vice

versa.

The resultant of P and Q is a convergent series R(v, x, y)

for which R(Q, x, y) does not vanish identically. For if all of

the coefficients of R(Q, x, y) were zero, there would be a region

(31) v = 0, \x\ &amp;lt; 5, y &amp;lt; a (5 ^ e)

at any point of which the polynomials P and Q have a common

root in absolute value less than e, and the set of values (u, 0, x, y)

so defined satisfies also the equations (30). The existence of

such a region is, however, impossible, since when y is given
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satisfying (31), a value x can always be selected which is dif

ferent from the values of
&amp;lt;p(u, 0) at all of the n roots of Q(u, 0, y }.

For such a set v = 0, x f

, y
f

in the region (31) there would be no

corresponding value u f

satisfying the equations (30).

The resultant R(v, x, y) vanishes identically in u, v when x

and y are replaced by &amp;lt;&amp;gt; and \[/. For R is expressible in the form

R(v, x, y)
= J/P + NQ,

where M and N are polynomials in u with coefficients which are

series in v, x, y} and P and Q vanish identically when x =
&amp;lt;p,

y = \l/.

The series R(Q, &amp;lt;p, \{/) vanishes identically in u, v. If not, there

would be a straight line u = kv on which R(Q, &amp;lt;p, \[/) and
&amp;lt;p
u

are different from zero except at the origin. Let (u ,
v ) be a

point of this line near (u, v)
=

(0, 0), at which
&amp;lt;p

and \f/ have the

values
&amp;lt;p

and
\f/ , respectively. The series

(32)

vanishes identically, in particular along the curve

(33) V (u, t)
= v

through the point (u
f

, v }. Since
&amp;lt;p
u does not vanish at (u

r

, v ),

this curve can be expressed in the form

u = U(v),
and along it

=0,
U(v)

since the functional determinant of
&amp;lt;p

and ^ vanishes identically.

On the curve (33) the function ^ has therefore the constant

value
\[/ , and the series (32) takes the form

fl(0, v , V) + R,(0, f , * ) +
and vanishes identically in v. Its coefficients must therefore

all vanish, since a series whose zeros have a point of condensation



70 THE PRINCETON COLLOQUIUM.

in the interior of its circle of convergence must have all of its

coefficients equal to zero. This contradicts, however, the as

sumption that a point (u
f

, v ) exists at which R(Q, &amp;lt;p, \[/) does not

vanish.

It has been shown therefore that in case the functional deter

minant of the two convergent series

&amp;lt;P

=
&amp;lt;Pm + &amp;lt;Pm+l + ,

vanishes identically, the two functions &amp;lt;p, \// satisfy a relation of the

form
F(&amp;lt;p, *) =

identically in u, v, where F is itself a convergent series in its two

arguments. This statement is true even when
&amp;lt;p

and
\// both have

singular points at the origin.

It is evident that when D = the transformation

x =
&amp;lt;p(u, v), y = \l/(u, v)

makes all of the points in the neighborhood of the origin in the

wfl-plane correspond to points on the various branches of the

curve

F(x, y)
=

in the zi/-plane. The points (x, y) which are obtained by the

transformation do not cover any region.

13. A GENERALIZATION OF THE PREPARATION THEOREM OF

WEIERSTRASS

Consider for a moment two functions

(34) f(u, v, xi, xz, *, xm}, g(u, v, xi, x2 , ,
xm)

which are polynomials in the variables u, v and have for coefficients

convergent series in xi, x%, , Xm. According to the usual

algebraic theory of elimination, there exists a polynomial p in v
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which has convergent series in the x s as coefficients, and which

is linearly expressible in the form

p = cf + dg,

where c and d are polynomials of the same character as / and g.

If a set of variables (u, v, x) make / and g both vanish, then v

must be a root of the polynomial p; and conversely to any root

of p corresponding to given values x, there exists at least one

pair of values (u, v) which satisfy the two equations / = g
= 0.

There is a generalization of the preparation theorem of Weier-

strass from which similar results may be deduced with respect

to two functions / and g which are not polynomials but series in

the variables u and v, and with respect to the roots of such

functions in a neighborhood of any set of values (UQ, VQ, x )

making / and g vanish. As in the proof of the theorem of 9,

the point in whose neighborhood / and g are to be studied may
be taken without loss of generality at the origin.

Suppose then that f and g are two convergent series in u, v, x

vanishing for (u, v, x) = (0, 0, 0), and such thatf(u, v, 0,0, , 0)

and g(u, v, 0,0, ,0) have no common factor. Then there

exists a polynomial

(35) p=v + piv
n~l + h p,

in which the coefficients pk (k
=

1, 2, , n) are convergent series

in x having no constant terms, with the following properties: (1) it

is linearly expressible in the form

p = cf+ dg,

where c and d are convergent power series in u, v, x; (2) in a properly

chosen neighborhood

(36) || &amp;lt; , |t| &amp;lt; , |x| &amp;lt; c

every root (u, v, x) of f and g must also make p vanish
, (3) there

exists a constant d ^ e such that for any x in the region

(37) x &amp;lt; d
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there is associated with each root v of p a solution (u, v, x) of the

equations f = g
=

satisfying the inequalities (36) .

*

If f(u, v, 0, 0, , 0) and g(u, v, 0, 0, , 0) have no common

factor, then one at least of them, say /, has terms in the variable

u alone, and according to the preparation theorem of Weier-

strass f(u, v, x) has as factor a polynomial of the form

(38) a um + am-1 + + a^iu + am = bf,

in which a is a constant different from zero, and a\, a2 , ,
am

are series in v, x without constant terms. The symmetric
functions of the roots ui, u-z, ,

um of this polynomial are

expressible rationally and integrally in terms of the coefficients

i, 2, ,
a&amp;gt;m

&amp;gt;

and are therefore convergent series in v, x. The

product

(39) g(uk, v, x) = h(v, x)
k=l

is a convergent series in Uk, v, x, also symmetric in the variables

Uk, and hence expressible as convergent series in v, x.

The function h(v, 0) does not vanish identically, on account of

the hypothesis that f(u, v, 0, 0, , 0) and g(u, v, 0, 0, , 0)

have no common factor. If it did vanish identically, then for

every sufficiently small value of v one at least of the expressions

g(u,k, v, 0) would vanish. But in 10 it was seen that when

f(u y v, 0) and g(u, v, 0) have no factor in common, there is always

an interval &amp;lt; v ^ vi in which there is no value v belonging to

a pair (u, v) making both of these functions vanish.

The preparation theorem of Weierstrass can therefore be

applied also to the function h(v, x), and the polynomial so found

is the one desired in the theorem. For, in the first place, a constant

e can be chosen so small that every root (u, v, x) of / and g in

the region (36) must be one of the sets (uk, v, x), and must make
* A proof that the values of u and v belonging to the roots of a system of

equations of the form (34) are roots of polynomials similar to (35) was given

by Poincare in the introduction to his Thesis,
&quot; Sur les proprietes des fonctions

d6finies par les equations aux differences partielles,&quot; Paris (1879).
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the product (39), and hence p, vanish. In the second place, a

constant 6 ^ e can be taken so small that every root v of p as

well as the corresponding sets (uk, v, x) lie in the domain (36).

One at least of these sets must evidently satisfy g
= as well as

/ = 0. The restrictions on 5 and e have been stated somewhat

roughly, but the reader will readily convince himself that these

quantities may be selected so that the convergence of the different

series and their equivalence with the corresponding polynomials

are properly adjusted.

Finally, the polynomial p is linearly expressible in the form

described in the theorem, in terms of / and g. To prove this,

suppose that the above process has been applied to the functions

/ a and g ft. A polynomial P(v, x, a, /3) with coefficients

which are series in x, a, /3 is then found, which may be written

in the form

P(v, x, a, 0) = P(v, x, 0, 0) + Ca + D0,

where C and D are convergent series in the arguments of P.

The series P(u, x,f, g) vanishes identically in u, v, x since P =

must be satisfied by every set of variables (u, v, x, a, 0) in a

neighborhood of the origin which make / a and g /3 vanish,

certainly then by the set (u, v, x, /, g). Hence

P(v, x, 0, 0) = -
Cf
- Dg

is an identity in u, v, x, when a and /3 are replaced in C and D
by the series /, g. But P(v, x, 0, 0) is precisely the polynomial

p(v, x) found above, since for a =
/?
= the steps in the con

struction of P(v, x, 0, 0) are identical with those used in finding p.

If the series f(u, v, 0, 0, , 0) and g(u, v, 0, 0, , 0) begin

with homogeneous polynomials hating no common factor of degrees

m and n, respectively, then the degree of the polynomial p is v=mn.*
* In a paper of recent date the writer has developed a generalization of

this theorem and the results which follow, for a system of equations of the form

fi(xi, x-&amp;gt;,

- -

,
xm ; yi, 7/2, , ?/n) =0 (i

=
1, 2, , n). See Transactions of

the American Mathematical Society, vol. 13 (1912), p. 133.
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Let the lowest terms off(u, v, 0, 0, , 0) and g(u, v, 0, 0, , 0)

be denoted by &amp;lt;p
m (u, v) and

\ftn (u, v), respectively. One of the

two, say &amp;lt;p
m ,

has a term involving u alone with coefficient different

from zero, since
&amp;lt;p
m and

\f/n have no common factor. The terms

of lowest degree in the polynomial (35) are also
&amp;lt;p
m ,

since the

series b has constant term unity. In the product (39) the terms

may be rearranged into groups of the form cvp U, where U is a

homogeneous symmetric function of a certain degree a in

Ui, u&amp;gt;2, ,
um . The expression for such a symmetric function

is isobaric and has the weight a in the coefficients of the poly

nomial (35). When x = the terms of lowest degree in U will

be at least of degree a in v, since each coefficient a* of (35) begins

with the coefficient of um
~k in the polynomial &amp;lt;p

m (u, v). The

terms of lowest degree in v alone in the product (39) will there

fore be those of the product

),

and they have the value v
mn

R/ao, in which is the coefficient of

vm in
&amp;lt;p
m (u, v) and R is the resultant of

&amp;lt;p
m (l, v) and \lsn (l, v).*

But since (pm and
\[/n have no common factor the coefficient of

v
mn

is surely different from zero, and the theorem last stated

follows at once.

// the substitution

v = tu + z

is made, in which t is a new variable, the series

F(u, z, x, t)
=

f(u, z - tu, x),

G(u, z, x, t)
=

g(u, z tu, x)

have a polynomial

(41) P(2; x, t)
= CF + DG

with properties similar to those of p and of the same degree v. In

*
See, for example, Konig, Einleitung in die allgemeine Theorie der alge-

braischen Grossen, p. 311 and p. 271 (d).
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a properly chosen region

(42) ||&amp;lt;, |r|&amp;lt;, |*| &amp;lt;

every root (u, v, x) of f and g defines a factor z tu v of P.

If d ^ e is sufficiently small and x a set of variables satisfying

(43) |*| &amp;lt; 5,

then P has v factors of the form z tu r, for each of which the

values (u, v, x) are a solution of the equations f = g
= in the

region (42).

The degree of P must be the same as that of p, since for

x = t = the series F(u, z, 0, 0), G(u, z, 0, 0) are identically

equal to the series f(u, v, 0) and g(u, v, 0) when i is replaced by z.

In a certain region

(44) \U\ &amp;lt; i, |z| &amp;lt; i, \X\ &amp;lt; i, |*|
&amp;lt; Ci,

where e\ is for convenience taken less than unity, every root

system (it, z, .r, t) of F and G makes P vanish also. If e is taken

less than ei/2 and / is restricted to the range \t\
&amp;lt; ei, every root

system (u, v, x) of / and g in the region (42) gives values u,

z = tu -\- v, x, t satisfying the inequalities (44), and hence P
must vanish identically in t and have z tu v as a factor.

Suppose then that e is a constant satisfying the requirements

of the theorem with respect to the region (42), and that the region

analogous to (37) for the polynomial P and the constant e/2 is

(45) 1*1 &amp;lt; S, \t\&amp;lt;5;

and let x = be any set of values satisfying these inequalities.

If the discriminant of P is not identically zero in t for x =
,

a value t = r can be selected also satisfying (45) and such that

all the roots z of P corresponding to the values ,
r are distinct.

There are then v distinct root systems (u, z, f , T) satisfying the

inequalities (41) with ei replaced by e/2. The corresponding

values (u, v = z tu, ) are v distinct roots of / and g lying in

the region (41). According to the paragraph just preceding, P
has therefore v distinct factors z tu v.
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In case the discriminant of P vanishes identically in t for x =
,

the multiple factors of P(z; , t) can be separated out by the

highest common divisor process, and the factorization of the

resulting polynomial can then be discussed in a manner similar to

that just explained. In either case, therefore, P(z; , t) has only

linear factors of the form z tu v.

The number and character of the root systems (u, v, x) of the

functions / and g in the neighborhood of the origin are well de

fined by means of the polynomial P(z; x, t). To any x in the

region (43) there correspond v root systems (u, v, x) not neces

sarily all distinct, and the ^-valued functions u(x), v(x) so defined

are continuous. This is evidently true for the function v(z),

since its values are the roots of the polynomial P(v; x, 0) whose

coefficients are analytic in x. Similarly z is continuous in x, t,

since its values are the roots of P(z; x, t), and it follows that

u =
(z v)/t, for a fixed value t 4= 0, must be continuous in x.

If P is not irreducible, that is, not decomposable into similar

factors of lower degrees, its discriminant A (a;, /) can not vanish

identically in x, t. At any value x = where A(, t) is not

identically zero in t, the v factors z tu v of P are all distinct.

If t = T is selected so that A(, r) =1= 0, the roots of P are distinct

analytic functions of x and t in the neighborhood of
, T, and

the corresponding values of u and v are analytic functions of x

in the neighborhood of .

The values x = near which the ^-valued functions u, v do

not surely have v distinct analytic branches, are those for which

A(, t) vanishes identically in t. At such a point some of the

values of the root-systems (u, v) coincide, and only those which

are distinct belong necessarily to analytic branches of the

functions u, v. The values which make A(, t) identically

zero must belong to one of the totalities of points defined by

equating to zero the coefficients of the finite number of powers

of t in the discriminant A (a?, t).*

* For the characterization of these totalities after the method of Kronecker

for algebraic equations, see Kistler, &quot;Ueber Funktionen von mehreren komplexen

Veranderlichen,&quot; Dissertation, Gottingen, 1905.
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If P(z, .r, t) is reducible, arguments similar to those above

can be applied to any one of its irreducible factors.

The multiple roots (u, v, x) of the functions f and g are character

ized by the property that the functional determinant d(f, g)/d(u, v)

is zero at such points.

For from the identity (41) in u, z, x, t, it follows by differ

entiation that

= C UF + D UG + CFU + DG U ,

P z
= C ZF + D,G + CF Z + DG Z .

If the determinant

JF
JV-r/u fv

Gu G 2
\ \gu gv

vanishes at a solution (u, v, x) of / = g
=

0, the two equations

above show that

CFU + DGU = 0, P z
= CF Z + DGZ

=

for the values (u, z = tu + v, #); and it follows that ztu v

is a multiple factor of P, since it occurs also in P 2 .

On the other hand suppose that at a set of values (u t
v

, )

the determinant d(/, g)/d(u, v) is different from zero, while/ and

g vanish. It is to be shown that the polynomial P(z; , t) has

tu + v as a simple root. All of the roots of P(z; , /) have the

form tu + v, and some are perhaps multiple. Those which are

distinct will remain distinct for a numerical value t = r \i T

is properly selected, and the derivative

(47) /( , f, f, r) = /( ,
t

, f)
-

rf,( , , f)

can at the same time be made different from zero, f being the

expression TU + v . In the expressions

(48) A Qu
m + A&&quot;-

1 + h -4 TO_iw + rl ro
= BF,

(49) ft
k=\
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analogous to (38) and (39) for the functions F(u, z, , t) and

G(u, z, , t), the factor G(u\, z, , T), where Wi is the root of (48)

which reduces to u for 2 = f ,
is the only one which vanishes

for 2 = f . To prove this it can be seen in the first place that

u is a simple root of (48) for z = f , since the derivative (47) is

different from zero. Furthermore when z = f no other root u2

distinct from u\ can make G(UZ, z, , r) vanish. Otherwise /
and g would vanish not only at the values (u , , ), but also at

(UQ J f
&quot;~ TW2

/

, ), where 2/2 is the value of u% for 2 = f; and

P(z; ,
would have two roots, fa/ + = w + f ru f and

^2 + T
~~ r^2

/

,
which are distinct for t =f= r and equal to f

when t = T. On account of the way in which r was selected,

this is impossible.

The root u\ of (48), that is to say also of F, has an expansion

of the form

in powers of 2
&quot;;
and the value of G(UI, z, , r) is a series

771 ri 771 rir u(j z r z (jru

whose first term is different from zero, since for the values

(u
f

) T&amp;gt; , r) we have

I -f (ii r V t\ -f (n f
-)/ \

=+=0,

as is readily seen from equations (40). Hence the quotient

H(z, , r)l(z f) is different from zero, and neither H(z, f, t)

nor its polynomial P(z\ , t) can have more than one factor

ztu v
f

.

14. APPLICATIONS OF THE PRECEDING THEORY

The real transformation
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has a singular point at the origin when

(51) = 0.

If one of the elements of the determinant is different from zero,

it may be assumed without loss of generality to be ai ;
then

after two transformations

u = diou +
,

or = .r,

the equations (50) take the form

X = U + 20W
2

(52)
y = &20W

2

For convenience the primes have been dropped, and the notation

for coefficients of terms of higher degree than the first is the same

as that in the original equation. It may further be supposed

that the polynomials

have no common factor, in other words that 602 =1= 0- The origin

is then a singular point for the transformation (50) of a very

general type, since aside from the assumption (51) only inequalities

on the coefficients of the series have been exacted.

The functional determinant has the expansion

D(u, v)
= bnu + 2&02 fl +

and hence has a single branch

along which D vanishes and on opposite sides of which D has

different signs. The image A of this curve in the xy-plane has
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an ordinary point at the origin, as shown by its equations

02

The region S in the figure has in it one real element of
&amp;lt;p

and at

most two of
\[/, since the solutions of

&amp;lt;p

= lie on a single real

FIG. 7.

curve through the origin, and those of
\l/
= are either imaginary

or else lie on two real branches. Hence the region 2 which is the

image of S lies on one side only of the curve A and overlaps the

image 2 of S .

Since
&amp;lt;pi

and ^2 have no common factor, the theorems of 13

show that there exist two constants, 8 and e, such that the equa

tions (52) have two and only two solutions [ui(x, y), Vi(x, y), x, y],

[ui(x, y}, vz (x, y), x, y] in the region

M &amp;lt; e, M &amp;lt; e, |*| &amp;lt; e, \y\ &amp;lt; e

corresponding to any (x, y) in the region

M &amp;lt; 5, \y\ &amp;lt; d.

The functions u\, vi, u2 ,
v2 so defined are everywhere continuous

and the two solutions above are analytic and distinct except

along the curve A. On one side of A they are imaginary, on

the other real.
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Another interesting case is that of a transformation (50) for

which again the coefficients are real, and

dcp d\// d&amp;lt;p d\f/

du
~

dv dv du

Such a transformation might be called a monogenic transforma

tion. It follows at once that (p and
\[/

must begin with two

homogeneous polynomials, (pm and
\[/m ,

of the same degree m,

which also satisfy the last equations. Consequently

&amp;lt;p
m + fym = (a + ib)(u + iv)

m = p
m
(a + ib) (cos 6 + i sin 0)

m

and
.

&amp;lt;pm

= P
m
(a cos md b sin mO), \[/m = p

m
(a sin mQ + b cos mO),

where a and b are not both zero. These equations show that

&amp;lt;p
m (u, i ) and $m (u, r) have each m real linear factors in u, v,

and that no factor of ym is also in
\l/m .

The determinant D(u, v) has an expansion

D(u, r)
= D^l + Dtm + &quot;,

where

d&amp;lt;pm d&amp;lt;pm

The homogeneous polynomial Z)2m-i has no real root, since such

a root would necessarily belong to both
d&amp;lt;pm/du and d(pm/dv, and

from the equations

d&amp;lt;pm .
d&amp;lt;pm d\l/m . d\//m d(pm .

d&amp;lt;pm

it follows that
&amp;lt;p
m and

\j/m would then have a common factor.

Hence there are no real points at which D vanishes near the

origin in the wr-plane.

7
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The argument of 11 shows that the elements of
&amp;lt;p
m and

\l/m

separate each other and that a neighborhood of the origin in

the wfl-plane is transformed into a sheet winding m times around

the origin in the z?/-plane, as shown in the figure. This is the

FIG. 8.

well-known transformation of the neighborhood of the origin

in a complex w-plane by means of a relation of the form

2 = Aw A wm+l +

where z = x+iy and w = u + iv. The figure is drawn for m = 3.

There are many other special cases similar to those just given

which might be elucidated by means of the theorems of the

preceding sections, but for which the methods in the two ex

amples just given are typical. It may be of interest, however,

to exhibit an example which illustrates the use of the theorems

of 8, as well as the behavior of a transformation at singular

points.

Suppose that the real w^-plane is transformed by means of

the equations

(53)
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The functional determinant has the value

D(u 9 v)
= (u + v)(u

2 + 2u- 2v)

and it vanishes along the curves

.

u*

v = u, v = u +-,

which have, respectively, the images

83

(54)

x = 2u* + -, y = 0,

If
x ~

3 8

in the o^-plane. These curves are shown in the accompanying

e
1

FIG. 9.

figures, the z-axis being drawn triply between x = and x=32/3
since this segment is described three times by the point (54)

with varying u. To the auxiliary arc &
&amp;lt; u ^ 2, 0=0

there corresponds the curve

ir

shown dotted in the figure.

Consider now, for example, the region a in the uv-pl&ue.
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Its boundary is transformed into the boundary of the region a
in Fig. 10. According to the generalization of the theorem of

5&quot;

FIG. 10.

Schoenflies in 8, the transformation defines a one-to-one

correspondence between the regions a and a; and the inverse

functions u(x, y), v(x, y) so defined are continuous over a. and

analytic in its interior.

Consider now the region of points (u, v, x, y) defined by the

conditions that (u, v) shall lie in the region 6 or on its boundary,
while (x, y) is unrestricted. There is but one sheet of solutions of

equations (53) in this region, since any two particular solutions

(u , v
,
x

, y ), (u&quot;, v&quot;, x&quot;, y&quot;)
interior to the sheet can be joined

by a continuous curve lying entirely within the sheet, as may be

seen by joining (u } v
f

), (u&quot; , v&quot;) by a continuous curve in 6.

No one of the solutions in question has a projection (x, y) outside

of /3, since otherwise every point exterior to (3 would be such a

projection, according to the third theorem of 5 or the fourth of

8; and from the second of equations (53) it is evident that no

solution (u, v, x, y) has a negative value for y. On the other
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hand every point of ft is the projection of a solution. Since ft is

simply connected, it follows from the fourth theorem of 8 that

the sheet of solutions is single-valued and that the equations (53)

define a one-to-one correspondence between b and ft similar to

that for a and a.

A similar argument can be made for each of the regions shown

in the figure and its corresponding image in the .rz/-plane.



CHAPTER III

EXISTENCE THEOREMS FOR DIFFERENTIAL EQUATIONS

It is not within the limited scope of these lectures to give a

complete account of the various methods for proving the existence

of a system of solutions of a set of ordinary differential equations,

nor would it be advisable, in view of the many able presentations

of these fundamental theorems already well known in mathe

matical literature. It is rather the intention of the writer to

insist on conclusions which can be derived from known methods

with regard to the behavior of solutions in any region of size

and shape compatible with the continuity properties of the

functions by means of which the equations are defined, as over

against the usual restriction of the problem to a rectangular or

circular neighborhood of a particular point. It has been remarked

by Picard* and Painlevef that if a continuous solution of the

differential equation

a) | -to*)

exists over an interval a ^ x ^ /3, then the Cauchy polygons of

approximation are defined and converge uniformly to the solution

for all values of x in the interval. In 17 below it is shown that

in a region R in which the function / is continuous and satisfies

the so-called Lipschitz condition, the polygons of Cauchy pass

ing through a given initial point (,77) interior to R define a

priori a continuous solution of the differential equation extending

to infinity or else to the boundary of the region. It follows then

that there is a function

(2) y = &amp;lt;P(X, , i?)

*
Comptes Rendus, vol. 128 (1899), page 1363.

f Bulletin de la Societe Mathematique de France, vol. 27 (1899), p. 151.

86
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satisfying the differential equation (1) and defined over a region

of points (x, , 77) of the form

(, 77) interior to R, ({, 77) &amp;lt; .r &amp;lt; 0(, 77),

and as x approaches a or /? the only limiting points which the

points (.r, y) defined by the function (2) can have are at infinity

or else on the boundary of the region R.

In 18 attention is called to the theorems of Bendixon by
means of which it can be shown that the function (p is continuous,

and in certain circumstances differentiate with respect to the

arguments , 77 as well as with respect to x. The &quot;

imbedding

theorem
&quot;

of Bolza* which asserts that any given solution, near

which the function / has suitable continuity properties, can be

imbedded in a one-parameter family of neighboring solutions

of the differential equation, is an immediate consequence of these

results, an analogue for differential equations of the fundamental

theorem for implicit functions proved in 1.

The methods mentioned above are applicable almost without

change of wording to a system of equations

^f
= h (x, y lt r/2, ., y n ) 0?

=
1, 2, , n)

when the symbols y and/ in equations (1) are interpreted as row

letters in the way apparently first introduced for differential

equations by Peano.f

An interesting deduction from the theorems for a system of

equations is the proof of the existence of a solution of a partial

differential equation

dz dz

which is not necessarily analytic in its five arguments, by means

of the well-known theory of characteristic curves, as described

in 19.

*
Vorlesungen iiber Variationsrechnung, page 179.

f
&quot;

Integration par series des equations differentielles
lineaires,&quot; Mathe-

matische Annalen, vol. 32 (1888), p. 450.
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15. THE CONVERGENCE INEQUALITY

There is an inequality which is of frequent service in the

existence proof of the following sections and which can be readily

deduced from a simple preliminary theorem.

If u is a single-valued function of t with a well-defined forward

derivative u r

at each point of the interval ^ t ^ ti, and if

u
\

&amp;lt; k\u\ + I,

k and / being two positive constants, then u also satisfies the

inequality

H
K|e*&amp;lt;+[

(*&amp;lt;-!),

where U Q is the initial value of u at t = 0.

Consider the function

i,=
\
Uo \e

kt + (e
kt -

1)

satisfying the differential equation

v = kv + I

and having \u \

as its initial value. The value of u is never

greater than that of v, since otherwise the difference u v

would vanish and have a positive or vanishing forward derivative

at some point. At a point where u and v are equal, however,

\u \

&amp;lt; k\u\ + I = kv + / = v
,

which is a contradiction. A similar argument shows that u

is always less than v.

If u is a single-valued function of x with well-defined forward and

backward derivatives at each point of an interval XQ ^ x ^ x\,

and such that

\u &amp;lt; k\u\ + /,

then, for any and x in the interval, u also satisfies the inequality
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This may be proved from the preceding paragraphs by putting

t = x for values of x greater than , and t = x +
for values less than .

16. THE CAUCHY POLYGONS AND THEIR CONVERGENCE OVER

A LIMITED INTERVAL

It is proposed to consider a differential equation (1) for which

the function f(x, y) is continuous in the interior of a certain region

R of the .rz/-plane, and such that the quotient

f(x,y )-f(x,y)

y -y
is finite when (x, y) and (x, y ) lie in any closed region whose

points are all interior to R.

A so-called Cauchy polygon for the equation (1) through a

point (, rj) interior to R is defined by means of equations of the

form

y = y n-i +f(*n-\, yn-i)(x xn-i).

The division points

&amp;lt; ari &amp;lt; 0-2 &amp;lt;

may be taken for convenience at equal distances 6 from each

other. Any value x &amp;gt; will lie on one of the intervals xn-\xn ,

and the polygon will either be well-defined for all such values,

or else there will be a constant /3 such that for every x in the in

terval ^ x &amp;lt; /3 the points of the polygon are interior to R,

while for x = /3 the corresponding point (x, y) will be a point of

the boundary of R. The polygon defined by the equations above

may be denoted by PI(X), and the analogous one when the division

points are distant
S/2&quot;&quot;

1 from each other by Pn (x).

A common interval ^ x ^ a for two functions P(x), Q(x)

with respect to any region R may be defined as one over which
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both are interior to R, and one such that on any ordinate of the

interval all the points between (x, P(x)) and (x, Q(x)) are also

interior points of R.

Consider now a closed region RI interior to R and containing

the point ( , 77), and let m and k be two constants greater respec

tively than the absolute values of f(x, y) and the quotient (4)

in the region RI. If I &amp;gt; is given in advance, the partitions for

any two polygons P(x), Q(x) through (, rj) can be taken so small

that

(5) \P(x)-Q(x)\ ^[(e
kx-^-

1)

for all values of x in any common interval of P(x) and Q(x) with

respect to RI. For at the point (x, y), where y = P(x), the equa

tion

P =
f(x, P) + {/(*_,, jfc_!)

-
/(*, P)} =

/(a-, P) + P

is satisfied by the forward and backward derivatives of the

polygon P. On account of the continuity of f(x, y) there exists

for any / a constant ju such that

x-z \y
-

y \

imply

\f(x,y)-f(x ,y )\&amp;lt;l/2

whenever the points (x, y) and (x, y ) are in RI. If the subdivi

sions for P(x) are taken less than ju and ju/ra in length, it follows

that on the polygon P(x)

\x
- xn-i\ &amp;lt; /*, \P(x)

-
yn-i\ &amp;lt; m\x

- xn-i\ &amp;lt; M,

and hence the absolute value of p is less than 1/2. Similarly

Q(x) satisfies an equation

Q =
/(*, Q) + *,

where
\&amp;lt;r\

&amp;lt; 1/2, provided that its intervals are less in length

than
fjL
and ju/w. The difference P Q has forward and back-
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ward derivatives which satisfy the relations

P -Q \ ^ \f(x,P)-f(X,Q)\ + \p\ + \&amp;lt;r\

&amp;lt; k\P -Q\ + l,

and with the help of the lemma of 15 the desired inequality

follows at once, since P and Q have the same initial value r; at

x= .

If P(x) is a polygon and Q(x) a solution of the differential

equation, or if both are solutions, the same theorem evidently

holds true, because then the function a is identically zero, or else

both p and a vanish.

The polygons Pn (x) all have a common interval. For take

positive constants a and b such that the rectangle

(6) 0x-Sa, \y-i\b

is entirely within R, and consequently has two constants m and

k analogous to those above for RI. The portions of the polygons

in the rectangle (6) all lie between the straight lines

y 77
= == m(x ),

since the slope of any side of any one of them is numerically

less than m. It follows that each is certainly well defined and

within the rectangle over an interval ^ .r ^ i, where i is

the smaller of a and b/m.

The sequence of polynomials Pn (x) converges uniformly, on the

interval ^ x ^ + i, to a function y(x) which has a continuous

derivative and satisfies the differential equation (1). The curve

y y(x) so defined is entirely icithin the region R.

For take e &amp;gt; arbitrarily, and / so small that

Then

\Pn,(x)
- Pn (x)\
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provided that the intervals 5/2
n -1 and d/2

n~l are each less than

the constant ju corresponding to /. Hence the sequence Pn (%)

converges uniformly to a continuous function y(x) on the interval

The equations

Pn(x) =
7? + f Pn (x)dx =

rj + f [f(x, Pn ) + Pn}dx
^

s **t

hold for every n, and the sequences {/(x, Pn)} and {pn } approach

uniformly the limits f(x, y(x)) and zero, respectively. Hence

y(x)
=

r] + J f(x, y(x))dx;

from which it follows by differentiation that y(x) is a solution of

the differential equation.

It is easy to show by means of the convergence inequality

that there is only one continuous solution y = y(x) of the dif

ferential equation (1) in the region R and passing through (, 77).

For suppose there were another, Y(x), distinct from y(x) at a

value x &amp;gt; J. There would then be a value 1 &amp;lt; x at which

y(j&amp;gt;i)

= F(i), and such that the two solutions would be distinct

throughout the interval 1 &amp;lt; x ^ x . In a neighborhood of

the point of intersection (1, 771) interior to R a relation

d(Y-y) =
\f(x, Y)

-
f(x, y)\ &amp;lt; k\Y

-
y\dx

would be satisfied, and hence, from the convergence inequality (3),

Y - y\ ^ o.

This contradicts the hypothesis that y(x) and Y(x) are distinct

throughout the interval 1 &amp;lt; x ^ x .
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17. THE EXISTENCE OF A SOLUTION EXTENDING TO THE

BOUNDARY OF THE REGION R

It has been proved in the preceding section that, on a certain

interval ^ x ^ + i, the polygonal curves y = Pn (x) con

verge uniformly to a continuous solution y = y(x) of the differ

ential equation (1) lying entirely within the region R. The in

terval for which the proof has been given may not be the

largest one on which the sequence of polygons has this property.

There will, however, be a number /3 ^ + a\, possibly infinity,

with the property that on any interval ^ x ^ /3i, where

/3i &amp;lt; /3, the sequence of polygons converges uniformly to a

continuous solution interior to R. A continuous curve y=y(x)
is thus defined which has a derivative and satisfies the differential

equation for all values of x in the interval ^ x &amp;lt; /3.

As x approaches (3 the points (x, y(x)) of the solution can have

no limit point (ft 7) interior to the region R.

If they did, there would be for any given e a value x &amp;lt; (3

such that

\x
-

01 &amp;lt; 6, \y(x )
-

y\ &amp;lt;

|,

and an integer N such that, whenever n ^ N, the inequality

|Pn (.r)
-

2/(.r)i &amp;lt;

|

would hold for all values of x in the interval ^ x ^ x . At the

value x in particular

\Pn (x ) -v\ \Pn (x )
-

y(x )\ + \y(x )
- 7 &amp;lt; e;

so that for n ^ N the points (.? ,
Pn (.r )) would all lie in the

e-neighborhood of the point (/3, 7). About the point ((3, 7) as

center a rectangle

could be described entirely within the region R, and in the portion
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RI of R which lay within the rectangle or within the region

J ^ x ^ x
, y(x)

- e^y ^ y(x) + e

the absolute values of f(x, y) and the quotient (4) would be less

than two constants m and k, respectively. It can be shown

without great difficulty that every polygon Pn (x) for n ^ N
would be defined and lie within the region R for an interval

extending beyond /3 at least a distance A\, where A\ is the smaller

of the numbers A and (B e me)/m. A proof similar to that of

16 would then show that the polygons Pn (x) converge uniformly

to a continuous solution of equation (1) interior to RI over an

interval ^ x ^ ft + A\\ and consequently /3 could not be the

upper bound described above.

As x approaches /3, therefore, the only limiting points of the

solution y = y(x) are at infinity or else are boundary points of

the region R. If R is further a closed region, that is, one con

taining all of its limit points, then there is but one limit point

for the curve y = y(x) as x approaches /3. For suppose (/3, 7)

to be a finite point in any neighborhood of which there are points

on the curve. About ((3, 7) a rectangle

(7) \x-p\A, \y-y\B
can be chosen arbitrarily, and the points of R lying in it form a

finite closed set in which \f(x, y)\ remains always less than a

constant M. On the interval ft A\ &amp;lt; x &amp;lt; /3, where A\ is

the smaller of the numbers A and B/M , all the points of the

curve y = y(x) satisfy the inequality

(8) \y-y\ M(P - *)

For if (# , y ) is any point of the curve in the rectangle (7) and

also in an e-neighborhood of the point (/3, 7), then the inequality

I*
-

*l 5 \v
-

y\ + \y
-

y\

&amp;lt; M(x
f -x)+
-

x) + e
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must be satisfied by any preceding point P (x, y) of the curve

y = y(x) for which the arc PP f

is interior to the rectangle. It

follows that the solution must lie interior to the rectangle and

satisfy the last inequality, at least on an interval x A f &amp;lt;x&amp;lt;x ,

where A e is the smaller of A e and (B e)/M. Hence the

inequality (8) is also true on a properly chosen interval preceding

x = 13. It follows that as x approaches /? there can be but one

limit point for the curve y = y(x), and this limit point is either at

infinity or else is a boundary point of the region R
When the function/fa y) in the differential equation

!-/&amp;lt;*.&quot;

satisfies in a region R the conditions stated at the beginning of 16,

there exists through any interior point (, rj) of the region R one

and but one continuous solution

(9) y = v(x t , T?)

of the differential equation. This solution is defined and interior

to R for all values of x interior to an interval

(10) a(, rj)&amp;lt;
x &amp;lt; 0(, 77),

while as x approaches one of the end values a or /3, the only limiting

points of the solution are either at infinity or else on the boundary of

R. If the region R is closed, then the solution has a unique finite or

infinite limit point as x approaches a or ft.

18. THE CONTINUITY AND DIFFERENTIABILITY OF THE

SOLUTIONS

It can be shown by methods due to Bendixon* that the func

tion
&amp;lt;p(x, , rj) and its derivative

&amp;lt;px (x, , 17), whose existence has

been proved in the preceding sections, are continuous in all three

of their arguments, and if the function f(x, y) has continuous first

derivatives with respect to x and y in the interior of the region R,
* Bulletin de la Societe Mathematiqae de France, vol. 24 (1896), p. 220.
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then
&amp;lt;p

and
&amp;lt;px have also continuous first derivatives with respect

to all of their arguments.

The continuity at any set of values (x, , 77) for which (, 77)

is in R and x satisfies the inequality (10) is provable with the

help of the convergence inequality of 15. For there will

always be a region Rs about the arc S of the solution (9) over the

FIG. 11.

interval from to x, of the kind symbolized in the figure, and so

small that it lies entirely within the region R. If (+A, 77+AT?)

is any point in R, then the solution

OS) y = &amp;lt;P(X

satisfies the inequality

(11) \&amp;lt;p(
+ A, + A, 77

+ A, 77 + AT?)

, 77)!

77
-

where m is the maximum of the absolute value of f(x, y) in

on account of the relation

(12) l^-
*/ -f- A

Hence as long as S remains within the region Rs ,
it satisfies the
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convergence inequality

Mar, f + A, r, + Ai,)
-

*,(*, & q)| g {|Ai,| + w|A{| }&quot;--* ,

the initial values of the two solutions being taken at .r = -f- A.
If A and AT; are sufficiently small the expression on the right

is less than 6 for all values of x belonging to the region R 8 , and

hence S must be defined and interior to Rs for all such values.

Otherwise, for some interior value of x, it would attain one of the

values
&amp;lt;p(x, , 77)

=*=
6, which is seen to be impossible on account

of the choice just made of A and A??.

Consider now the difference

+ \&amp;lt;p(x,

By a step similar to (12), and the inequality (11), it is seen to be

less than

m]A.r!+

whenever A^ and AT; have been so chosen that S lies entirely in

the region R5 . Hence the continuity of
&amp;lt;p(x, {, 77) is proved.

To prove the differentiability of y with respect to and 77,

assume that /(.r, y) has a continuous derivative fy in the region

R, and consider the same solutions S and S in the region R& .

The difference of their ordinates satisfies the equation

-- =
/(.r, &amp;lt;p

where, by Taylor s formula with the integral form of remainder,

A =
I fv (x, &amp;lt;p + uA&amp;lt;p)du

^o

is a continuous function of x, A, AT;, the values
, T; being con-

8
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sidered as constant for the moment. Hence

A f. Adz
A^? = ce

When A = or A?7
=

0, the constant c has respectively the values

c =
A&amp;lt;p|X3

= p(, , 77 + AT?)
-

$&amp;gt;((, J, 77)
=

A?7,

c =
&amp;lt;p({, + A{, i,)

-
&amp;lt;p({, {, 77)

= f f(x, &amp;lt;p +
JI+A*

+ A?, 77)),

where &amp;lt; &amp;lt; 1. Hence the quotients A &amp;lt;p/A, A&amp;lt;p/A 77
have well-

defined limiting values

It may be remarked in conclusion that the theorems which

have been proved in 16-18 are true for systems of equations

as well as for a single one.

19. AN EXISTENCE THEOREM FOR A PARTIAL DIFFERENTIAL

EQUATION OF THE FIRST ORDER WHICH is

NOT NECESSARILY ANALYTIC

Proofs have been given by Cauchy, Kowalewski, Darboux,

and others for the theorem that in general there exists one and

but one analytic surface

z = z(x, y)

which passes through an arbitrarily selected analytic curve C
in the x?/-space and, with the derivatives

dz dz
p = 5~ q

= i~ &amp;gt;dx dy

satisfies a differential equation of the form

F(x, y, z, p, q)
=

0,
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where F is an analytic function of its five arguments. These

proofs, however, say nothing about the solutions which may
exist through a curve C whose defining functions are not ex

pressible by means of power series; and they are not applicable

when F itself has not this property. An existence proof is to

be given below which is based upon much less restrictive as

sumptions on the functions F and the curve C. It involves the

well-known theory of characteristic strips, which are solutions

of a set of ordinary differential equations. If a one-parameter

family of characteristic strips intersecting a given curve C is

properly selected, it will generate a surface S which is a solution

of the differential equation. The existence of the family and the

differentiability of the surface depend, however, upon the

existence and differentiability of the equations of the character

istic strips with respect to the initial values of the variables

which they involve, that is, upon theorems similar to those which

have been developed in the preceding sections.

Suppose that the function F is continuous and has continuous

first and second derivatives in a certain region R of points

(x, y, z, p, q). The differential equations satisfied by the charac

teristic strips have the form

a- -

(13)

Through any initial values (, 77, f, TT, K) interior to R these

equations have a solution with equations and initial conditions

of the form

x = x(u, f, 77, f, TT, K),
=

.r(0, J, 77, f, TT, K),

y = y(u, , I, f, ?r, K), 77
=

y(Q, , 77, f, TT, K),

(14) Z = Z(M, {, 77, f, 7T, K), f = 2(0, {, 77, f, 7T, K),

P = j?(M, , ^, f, 7T, K), 7T = /?(0, J, T?, f, 7T, K),

5
=

?(W, , 77, T, 7T, K),
=

9(0, ?, ?7, f, 7T, K),
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and such that each of the functions on the left and its derivative

for u are continuous and have continuous first derivatives in a

region of values (u, , 77, f, TT, K) for which (, 77, f, TT, K) is a

point interior to # and u lies in an interval, containing the value

u 0, of the form,

( 1?, ?, IT, *)&amp;lt; W&amp;lt; /3(, ??, f, 7T, K).

The points (a;, y, z, p, q) so defined are all interior to the region R.

Along the solution (14) the equations

(15) pxu + qy u zu =

dF
(16) -^

= Fxx u + Fyy u + F zz u + Fppu + F qqu
=

are satisfied identically, so that the direction p : q : 1 is always

normal to the curve defined by the first three equations. Evi

dently if F vanishes at a single point of the strip, it will also

vanish at every other point. The solutions (14) along which F

vanishes are called characteristic strips, and any one of the

strips (14) will surely be of this type if the initial condition

, rj, f, TT, K)
=

is satisfied.

Consider now a continuous and differentiate strip of elements

(17) x =
((!&amp;gt;), y = rj(v), z = f(i-), P = 7r(fl), q

=
K(V)

which lies in the interior of the region R and satisfies the con

ditions

7T&, + K7]v ft,
= 0,

|

Fn v
|

F(, V, f, 7T, K)
=

0, \FK TyJ

where the arguments in the derivatives of F are the same as those

in the second equation. The first two of these conditions imply

that the direction TT : K : 1 is normal to the curve

(19) x =
(t&amp;gt;), y = i?W, 2 = r,
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and that the curve and its strip of normals satisfy the differential

equation. The third prevents the strip from being a so-called

integral strip of the differential equation, through which there

does not in general pass a unique integral surface without

singularities. To make the situation simpler it will be supposed

that the projection of the strip (17) in the xy-p\a.ne does not

intersect itself.

When the functions (17) are substituted in the equations (14),

a new system

x = X(n, v), y = Y(u, r), z = Z(u, r),

p = P(u, v), q
= Q(u, r)

with the initial conditions

|(r)
= X(0, v), rj(v)

= F(0, t), rW = Z(Q, t),

7T - P(0, r), K(V)
=

Q(Q, r)

is determined. There is a region

/ D \ \ e? i, &amp;lt;^ T) &amp;lt;^ -,. &amp;lt;^ ,.

(n ltv ) si 1 w ^ &amp;gt;, PI ^ U ^ i?2&amp;gt;

where ^4 is a negative and 5 a positive constant, in which the

functions (20) are continuous, have continuous first derivatives,

and satisfy the relation

. x
(22)

Yv

4=0.

For if M is the maximum of the absolute values of the functions

on the right in the equations (13), for a closed c-neighborhood of

the points of the strip (17) in the interior of /?, then the solutions

(14) are defined at least over an interval \u\ ^ e/J/, and the

absolute values of A and B can be taken at least as great as this

constant without disturbing the continuity properties desired

for the functions (20) in the region R uv . The condition (22) is

satisfied for the values u = 0, ri ^ ^ r2 because of the first

two of equations (13) and the third of the relations (18); and the
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region Ruv can therefore be chosen so that the determinant is

different from zero everywhere in it.

By an argument similar to that used in proving the theorem

of 4 it can be shown that A and B can be restricted still further,

if necessary, so that no two distinct points (u ,
# ), (u&quot; , v&quot;)

in

the region Ruv define the same point (.r, y) by means

of equations (20). The boundary of the region Ruv is trans

formed then by the first two of equations (20) into a simply

closed regular curve in the .T?/-plane which bounds a portion

Rxy of the xy-plane. The equations establish furthermore a

one-to-one correspondence between the points of Ruv and those

of Rxy ,
and the functions

(23) u = u(x, y), T = v(x, y)

so defined are continuous and have continuous first derivatives

in Rxy . The others of the equations (20) define then three

functions

(24) 2 = z(x, y), p = p(x, y), q
=

q(x, y)

wrhich are also continuous and have continuous first derivatives

in Rxy ,
and which with the values (23) for u and v satisfy the

equations (20) identically in x, y.

The functions (20) satisfy the relations

PXU+QYU -ZU = 0,

(25) PXV + QYV -ZV
=

0,

F(X, Y, Z, P, Q) =
0,

identically in u, v. The first and third of these follow at once

from the equations (15), (16), the second of the equations (18),

and (21). The expression

Q(u,v) = PXV +QYV
- Zv

has the initial values

(26) 12(0, t&amp;gt;)

=
IT&, + jo;
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which vanish on account of the first of equations (18). Further

more

Ou = PVXV + Q U YV + PXUV + QYUV ,

and from the first of equations (25),

= P,XU + QV YU + PXUV + QYW .

By subtracting the last expression from that for fi tt and using

the equations (13) which the functions (20) satisfy, it follows that

Q u
= PUX\ + QU YV

- PVXU
- QV YV

= - dF

in which the arguments of the derivatives of F are the functions

(20). Hence with the help of the third of equations (25) and

the initial values (26),

*m

= 8(0, v)e

* &quot;&quot;

0.

The single-valued function z(x, y) defined above over the region

Rxy has the derivatives

Zu Yu

Z Y

X, Y,

Xv Z
Xu Yu

Xv Yv

=
q(x,

found by substituting the functions (23), (24) in the equations

(20), differentiating the resulting identities, and applying the

first two of the relations (25) . It satisfies the differential equation

F = on account of the third of the equations (25). Further

more

x, y, z(x, y}, p(x, y), q(x, y)

reduce to , ry, f, TT, K at any point of the strip (17), since at such

a point u(, rj)
= and the relations (21) are satisfied.

It has been proved therefore that there is a single-valued
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function

(27) 2 = z(x, y),

defined over a region Rxy of the .ri/-plane, which is continuous and

has continuous first and second derivatives, contains the initial

strip (17), and satisfies the differential equation F = 0.

There is no other surface

(28) z = zi(x, y)

defined over the region Rxy and having these properties. If there

were such a one, it would have to contain all of the points of the

strips defined by equations (20). To prove this, suppose that

(x j y
f

,
z

, p
f

, q
f

) is an element belonging to one of the strips (20)

for values (u
f

, v ), and also to the surface (28). The equations

(29) ^ = Fp (x, y, zi, pi, qi), ^ = Fq (x, y, Zi, p lt &amp;lt;?i),

where p\ and q\ are the derivatives of zi, have a unique solution

(30) x = xi(u), y = yi(u)

reducing to x 1

, y
f

for the initial value u u and defined over an

interval u e ^ u ^ u + . The corresponding equations

(31) x = xi(u), y = yi(u), z = zi(u),

p = p^u), q
=

qi(u),

found by substituting the functions (30) in z\ 9 p\, q\, define a

characteristic strip. For on the surface (28) the equations

Fx + F,Pl + Fpr,

Fy + F zq, + FpSl

are identities in x, y, where r\, s\, t\ are the three second derivatives

of z\(x, y). As a result of these identities and the equations (29),
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dzi dx dy

dqi dx dy

d^
= Sl^ + tl

d7,

= - -
*

where the arguments of the derivatives of F are the functions

(31). The equations (29) and (32) show that the strip (31)

is a characteristic strip. Its initial element for u = u is

(# , y , z , p
f

, q ), the same as that for the strip (20) corresponding

to r = c . Hence the two must coincide on the interval u e

^ M ^ M + e on which both are defined.

The initial element (21) of any one of the strips (20) is by

hypothesis on the surface (28). According to the last paragraph

all of the elements of the strip in an interval \u ^ e must also

lie on the surface, and it follows that there can be no upper

bound except B for the values of u for which this is true. If

?/ &amp;lt; B were such a limiting value, the element (x
1

, y
r

,
z

, p , q )

corresponding to u on the characteristic strip would also belong

to the surface, on account of the continuity of z\(x, y) and its

derivatives; and the interval of coincidence would therefore

be necessarily longer than ^ u &amp;lt; u .

For any point (.r, y) in the region Rxy there is but one set of

values (u, v) solving the first two of equations (20), and the cor

responding value of z from the third equation belongs to both

of the surfaces (27) and (28). The two surfaces must therefore

coincide throughout.

Suppose now that an initial curve of the form (19) is given

instead of the initial strip (17). If to any value r defining a point

(o, T?O, fo) of the curve there corresponds a direction TT O : KO : 1

satisfying the relations (18), and such that (fo *7o To, TTO, KO) is

interior to R, then there will be a strip of elements of the form

(17) along the curve containing these initial values for v r .

For the first two equations (18) have the solution (r ,
TT O , KO)
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when their first members are regarded as functions of v, TT, K,

and on account of the third relation (18) their functional de

terminant for TT, K does not vanish at these values. According

to the fundamental theorem of 1 there is therefore a pair of

functions TT(V), K(V) defined over an interval vi ^ v ^ v% con

taining #o and satisfying, with (0), 77(0), f (0), the relations (18).

The results of the preceding paragraphs may be summarized

as follows:

Suppose that

(C) x = JM, y = 17W, * = fW

is a continuous and differentiate curve, at some point ( , &quot;no, ?o)

=
((o)&amp;gt; i?(0o)&amp;gt; ?(%)) of which there is a normal TTQ : KO : 1

satisfying the equation

, *?o, fo, TTO, *o)
= 0.

Suppose furthermore that

p(%0&amp;gt; 770, ?0, 7TO, K

=1=0,

e imfooZ element ( , 170, fo, TTO, ) fc in a r^ton J? o/

points (x, y, 2, p, g) m which F is continuous and has continuous

first and second derivatives. Then there is a strip of the form

(S) x =
(t&amp;gt;), y = rj(v), z = f (t&amp;gt;), p = TT(), q

=
K(V)

containing (%&amp;lt;), 170, fo, ^o, ^o) /or u =
o&amp;gt;

nrf wcA that all of its

elements have the properties ascribed above to this initial one. If

the projection Cxy of C in the xy-plane does not intersect itself, the

characteristic strips of the differential equation

F(x, y, z, p,q) =

which pass through the elements of S simply cover a region Rxy of
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ihe xy-plane and envelop a single-valued surface

z = z(x, y).

This surface is continuous and has continuous first and second

derivatives in Rxy , contains the strip S, and satisfies the differential

equation F = 0. There is no other surface over the region Rxv ivhich

has these properties.
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DIFFERENTIAL-GEOMETRIC

ASPECTS OF DYNAMICS
BY

EDWARD KASNER

INTRODUCTION

The relations between mathematics and physics have been

presented so frequently and so adequately in recent years, that

further discussion would seem unnecessary. Mathematics,

however, is too often taken to be analysis, and the role of geom

etry is neglected. Geometry may be viewed either as a branch

of pure mathematics, or as the simplest of the physical sciences.

For our discussion we choose the latter point of view: geometry

is the science of actual physical or intuitive space. All physical

phenomena take place in space, and hence necessarily present

geometric aspects. We confine our discussion to mechanics,

and consider the role of geometry in mechanics.

The fundamental concepts of mechanics are: space, time, mass,

and force. Certain preliminary theories deal with some instead

of all these concepts. Space by itself gives rise to pure geometry

with all its subdivisions. According to Sir William Rowan

Hamilton, algebra is the science of pure time; in fact time is

the simplest one-dimensional manifold suggesting the notion

of real number, the continuum, the foundation of analysis.

Neither mass by itself, nor force by itself, gives rise to an inde

pendent theory, for these notions cannot be considered without

considering space also.

Space and time together give rise to kinematics. If we do

not consider velocities and accelerations, but only displacements

(that is, initial and terminal positions without introducing
9 1
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continuous motion from one to the other), we obtain Ampere s

&quot;geometry of motion/ which belongs to pure geometry rather

than to kinematics.

Space and mass give rise to a separate discipline which may
be called the geometry of masses. This deals with centers of

gravity, moments of inertia, and moments of higher type, which

have been studied extensively in recent years, especially by the

Italian mathematicians.

Space and force are the essential concepts employed in rigid

statics. Mass and time are not necessary in this theory, which

deals essentially with the equivalence and reduction of systems

of vectors. The remaining combinations, mass and time, force

and time, mass and force, do not produce separate theories,

since they can not be discussed without introducing also the

concept of space.

Consider then space, time, and mass. The principal develop

ment along this line is Hertz s remarkable &quot;geometry and

kinematics of material systems,&quot; a theory entirely independent

of the concept of force.

The other combinations of three of the four concepts have

not produced separate developments.

Finally, we have the theory which involves all four concepts

simultaneously, namely, kinetics.

Although the geometric aspects of the preliminary theories

are very interesting and important, it is not our intention to

review the progress which has been made in this line. We
mention only Ball s theory of screws, Study s Geometrie der

Dynamen, and the law of duality connecting kinematics and

statics a law which is not dynamical, but purely geometric.

The notion of vector is of course fundamental in many of

these theories. We recall the fact that there are three distinct

types of vector used in mechanics: the free vector, the sliding

vector, the bound vector. These three types differ with respect

to the definition of equivalence. In the first theory, two vectors

are regarded as equivalent when they have the same length
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and direction (including sense). Such free vectors are employed
in combining translations, or forces acting at a point. A free

vector in space has three coordinates. The sum of any number

of vectors is a vector.

In the second theory, dealing with sliding vectors, two vectors

are equivalent only when they have the same line as well as the

same length and sense. Such vectors are used in the statics of

rigid bodies. The sliding vector in space has five coordinates.

A system of these vectors can not usually be reduced to a single

vector. The most general system depends in fact on six essential

parameters: it is a new geometric element which may be repre

sented either as a screw or a dyname.

Finally, in the third type of vector theory, two vectors are

not equivalent unless they have the same initial point and same

terminal point, that is the vector is completely bound. Such a

vector in space depends on six coordinates. The most general

system depends on twelve essential parameters. This is the

theory required in the developments of a-statics.

Statics and kinematics have given rise to very extensive

geometric developments; but kinetics still is thought of almost

exclusively as a matter of differential equations. Lagrange, in

the famous preface to his Mecanique Analytique, stated that

no diagrams would be found in his work: &quot;Lovers of analysis

will thank me for adding a new branch to that science.&quot; The

special object of these lectures will be to point out some of the

geometric aspects of kinetics, especially properties of the tra

jectories described in arbitrary fields of force. While the in

vestigations connected with statics and kinematics are mainly of

algebraic-geometric character, our kinetic discussions relate to

infinitesimal properties, tangents, distribution of curvature,

oscillating conies, and so on: we shall deal chiefly with the

differential geometry of systems of trajectories. It is essential

to observe that the properties considered relate not to the

individual curves, but to the infinite systems of curves.

To emphasize this point, consider the motion of a particle
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in a plane field of force, the force depending only on the

position of the point. For given initial conditions, the particle

will move on a definite curve; taking all possible initial con

ditions, we shall obtain a triply infinite system of curves. A

single curve obviously has no peculiarities, for a particle may
be made to describe any given curve by selecting a proper force,

varying from point to point of that curve. The system of curves,

however, will have intrinsic peculiarities, for if a triply infinite

system of curves is given at random, it will not usually be possible

to find any field of force such that every particle moving in that

field will describe one of the given curves; there is, for instance,

no field of force which produces as its trajectories all the circles

of the plane.

The simplest general property of the system of trajectories

is as follows : If a particle is started at a given position in a given

direction with all possible initial speeds into a field of force, a

single infinity of trajectories will be obtained, one for each value

of the speed; construct for each of these curves the parabola

having four-point contact (osculating parabola); the foci of

these parabolas will always lie on a circle passing through the

given initial point. An equivalent statement is that the di

rectrices of these parabolas will always be concurrent. In space

we employ osculating spheres and find that the locus of the

centers is a straight line.

A completely characteristic set of properties, for both the

plane and space, is given in Chapter I. It is thus possible to

tell when a given system of curves can serve as a system of

dynamical trajectories. A method is obtained for constructing

the^
field from its trajectories. If say a handful of particles is

thrown into an unknown field (the force acting at any point

depending only on the position of the point) and if a photograph

of the totality of paths is taken, then, without any record of

velocity or any observation of time, the field can be constructed.

In particular it is possible, by simple geometric tests, to dis

tinguish conservative from non-conservative fields.
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Chapter II deals with the geometry of conservative forces.

Here the energy equation allows us to group the trajectories

into &quot;natural families.&quot; Such a family is obtained most con

cretely as the totality of oo 4
rays or paths of light in any medium

where the index of refraction varies continuously from point to

point. The geometric characterization is first given by two

simple properties relating to circles of curvature; and then by a

new converse of the theorem of Thomson and Tait. It is seen,

for example, that if a candle is placed in the atmosphere or in

any gas of variable density, the oo 2
rays emitted by it, which may

be curves of very complicated shape, will necessarily have these

properties: (A) the circles of curvature constructed at the given

source all meet at a second point; (B) three of these circles have

four-point (instead of merely three-point) contact with their

curves, and these three are mutually orthogonal; (C) the oo 2

rays form a normal congruence, that is, admit oo 1

orthogonal

surfaces. Natural families are characterized either by (.4) and!

(B), or by (A) and (C).

These results are applied to the propagation of waves in any

isotropic medium. A second and more complicated converse

question suggested by the Thomson-Tait theorem is discussed.

Some interesting optical theorems are given a geometric formu

lation, but the converse problems are left unsettled. The final

section deals with the
&quot;

general problem of dynamics&quot; in the

sense of the French writers.

The third chapter deals with transformation theories. It is

interesting to notice how the most important groups of geometry,
the projective and the conformal, play essential roles in dynamics,
the former in connection with arbitrary fields, the latter- in

connection with conservative fields and natural families. The
infinitesimal contact transformations of mechanics, and a new

group of space-time transformations are also discussed.

The chief subject of Chapter IV is a simple problem in con

strained motion, which includes, and hence serves to unify, the

theories of trajectories, brachistochrones, catenaries, and velocity
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curves in an arbitrary field of force. Complete characteriza

tions are given. Curves of constant pressure and tautochrones

are treated only briefly.

Chapter V includes brief discussions of more complicated

problems in motion, for example, the effect of a resisting medium

on the geometric character of the system of trajectories; the

motions of any number of interacting particles (the results being

of course applicable to the problem of three bodies); finally,

forces depending not only on position but also on the time, both

trajectories and space-time curves being studied. The latter

are constructed, in the sense of Minkowski, in the four-di

mensional space (x, y, z, t), but the application made is to ordinary

dynamics, not to electrodynamics or relativity theory.

The main results of the first two chapters (in particular the

complete characterizations of general systems of trajectories and

jof natural families) were first given by the writer in a series of

four papers published in the Transactions of this Society (1906-

1910). Some of the other results are given in notes published in

ithe Bulletin. The last two chapters, as wr
ell as many sections of

tfhe other chapters, deal with hitherto unpublished results.



CHAPTER I

TRAJECTORIES IN AN ARBITRARY FIELD OF FORCE

1-8. TRAJECTORIES IN THE PLANE

1. We consider first the motion of a particle in the plane

under the action of any positional field of force. The general

equations of motion are

d*x d?ym
W-

= *(* y^ m W = *(* y^

where m is the mass and
&amp;lt;p, \[/

are the rectangular components
of the force acting at any point x, y. There is no loss of gener

ality in assuming the mass of the particle to be unity, so we write*

(1) x =
&amp;lt;p(x, y), y = \fr(x, y).

The particle may be started from any position (.TO , y ) with

any velocity (XQ , 2/0). A definite trajectory is then described.

Since the same curve may be obtained by starting from any one

of its co 1

points, the total number of trajectories, for all initial

conditions, is oo s
. The differential equation of the third order

representing this system of trajectories, found by eliminating

the time from (1), is

(2) (^
-

y &amp;lt;p)y

&quot; =
[fa + (^ - &amp;lt;p

z)y
-

&amp;lt;pvy*}y&quot;
-

3&amp;lt;py&quot;

2
.

This is not an arbitrary differential equation of the third order.

Hence the system of trajectories generated by an arbitrary field

of force must have peculiar geometric properties, which translate

the peculiar analytic form of (2).

* The following notation is employed throughout these lectures: Dots indicate

total differentiation with respect to the time t; primes indicate total differ

entiation with respect to x; subscripts x and y indicate partial differentiation;

finally, the subscript s indicates total differentiation with respect to the arc

length s.

7
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2. Before stating these, we remark that a more intrinsic basis

for the discussion is obtained by decomposing the acting force

into components normal and tangential to the path, instead of

parallel to x and y axis as in (1). Denoting these components

by N and T respectively, the equations of motion are

(3) Vr = N, ws
=

T,

where v denotes the speed, s the arc length, and r the radius of

curvature. By differentiating the first of these equations with

respect to s, and comparing with the second equation, we can

eliminate v, obtaining

(4) (rJV).
= 2T,

a relation which defines the trajectories and is equivalent to (2).

To reduce this to a more explicit form, we introduce an auxiliary

vector, completely determined by the given field of force, namely
the space derivative of the force (considered of course as a

vector). The normal and tangential components of the force

vector are

T1 I

- -
o

the corresponding components of the new vector are

\l/s
-

y y, $x + (^y
-

&amp;lt;px)y
-

&amp;lt;pyy
2==

While the new vector is the s derivative of the force vector, its

components are obviously not the same as the s derivatives of

the old components: the correct relations are found to be

T N
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These formulas are sufficient for the discussion of trajectories.*

By means of (7) we can reduce (4) to the form

(8) Xrs =-3lr+3T.

This is the fundamental intrinsic representation of the system of oc 3

trajectories connected with a given field of force.

From it we may derive very simply a number of geometric

properties. But in dealing with the converse questions which

arise, and in proving the completeness of the set obtained, it is

more convenient to use the equivalent cartesian representation,

that is, equation (2).f

3. The Five Characteristic Properties in the Plane. The system

of trajectories generated by any positional field of force in the

plane has the following set of properties, and conversely, any

system of oc 3 curves which has these properties will be a system

of dynamical trajectories.

* In some of the later discussions we shall need also the space derivatives

of 9Z and
,
which may be written in the form

where

en txx + (2txy 0-r.r)*/

_ y
-

&amp;lt;&amp;gt;*

-
V * x

-
y

&quot;J* I a ~~)

1+2/
2

. = &amp;lt;** + (20jy + t*X}y + (tyy + 2^zy)y
/2

(l+2/
2

)

3/:

. y + iAx + 2(^y
-

4&amp;gt;x)y

f -
(&amp;lt;}&amp;gt;y

+ tx)y
~

~T^^
The functions

&amp;lt;f&amp;gt;, \f/ depend only on the position of the particle; the auxiliary

intrinsic functions Ar

, T, 91, X, 9li, ^ 2 ,
% lt X 2 ,

denned above, depend also

upon the direction of motion; finally, A7

&quot;,,

Ts ,
9? s , X* depend upon the curvature

of the path. Cf. Bull. Amer. Math. Soc., vol. 15 (1909), p. 475.

t Cf. Trans. Amer. Math. Soc., vol. 7 (1906), pp. 401-424. The result

contained in property IV of 3 gives this simple, but apparently overlooked,

dynamical theorem: If a particle starts from rest, the initial curvature of the

path described is one third of the curvature of the line of force through the

initial position.
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I. If for each of the oo 1

trajectories passing through a given

point in a given direction we construct the osculating parabola,

at the given point, the locus of the foci of these parabolas is a

circle passing through that point.

II. The circle that corresponds, according to property I, to a

lineal element, is so situated that the element bisects the angle

between the tangent to the circle and a certain direction fixed

for the given point (the direction of the force acting at the given

point).

III. In each direction at a given point there is one trajectory

which has four-point contact with its circle of curvature: the

locus of the centers of the &amp;lt;*&amp;gt;

1

hyperosculating circles constructed

at the given point is a conic passing through that point in the

fixed direction described in property II.

IV. With any point there is associated a certain conic

passing through it as described in property III. The normal

to the conic at cuts the conic again at a distance equal to three

times the radius of curvature of the line of force passing through

0. (The lines of force are defined geometrically by the fact

that the tangent at any point has the direction associated with

that point in accordance with property II.)

V. When the point is moved, the associated conic referred

to above changes in the following manner. Take any two fixed

perpendicular directions for the x direction and the y direction;

through draw lines in these directions meeting the conic again

at A and B respectively. Also construct the normal at meeting

the conic again at N. At A draw a line in the y direction meeting

this normal in some point A
,
and at B draw a line in the x

direction meeting the normal in some point B . The variation

property referred to takes the form

d 1 d 1 cocox

where AA and BB f

denote distances between points, and where

co denotes the slope of the lines of force relative to the chosen
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x direction. This is true for any pair of orthogonal directions,

FIG. 1.

and therefore really expresses an intrinsic property of the system

of curves.

4. The most general system of oo 3 curves in the plane is

represented by an arbitrary differential equation of the third order

(Fo) y
&quot; =

/(*, y, y , y&quot;).

It thus involves one arbitrary function of four arguments.

A system of dynamical trajectories, on the other hand, is

represented by an equation of the particular form

and thus involves two arbitrary functions of two arguments.

These are the only systems having all five properties I-V.

It is interesting to notice just how the successive imposition

of the properties gradually narrows down the general form (F )

to the particular form (Fv).

5. The most general system having property I is found to be

(F) y
&quot; = G(x, y, y )y&quot; + H(x, y, y )y&quot;\
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It thus involves two arbitrary functions of three arguments.
This type of course includes the dynamical type as a very special

case. It arises in a number of different geometric and physical

investigations. It has therefore its own interest. The char

acteristic property may be stated in various ways, all of course

equivalent to the original form: (I) The osculating parabolas

of the trajectories passing through a given point in a given

direction have the foci situated on a circle passing through the

given point. Five equivalent forms are as follows:

I (2). The directrices of the osculating parabolas form a pencil

It follows that there exists a point (the vertex of this pencil)

from which all the parabolas subtend an angle of 90.

I (3). If for each of the trajectories considered, we construct

the center of curvature of its evolute, the locus of the centers

thus obtained is a parabola passing through 0, and having its

axis parallel to the given initial direction.

I (4). For each of the trajectories, construct the osculating

equiangular spiral. The locus of the centers of the poles of

these spirals is a circle passing through 0.

I (5). Construct for each of the trajectories the axis of devia

tion, that is the line bisecting the chords of the curve which are

parallel and infinitesimally close to the tangent. The tangent of

the angle between the varying axis of deviation and the fixed

normal is a linear function of the radius of curvature.

I (6). The derivative of the radius of curvature with respect

to the arc length is a linear integral function of the radius of

curvature. This is practically a restatement of (5), since for

any curve the derivative of the radius of curvature is known to be

equal to three times the tangent of the angle of deviation. But

in this form it has the advantage of being valid, not only in the

plane, but in space of three and in fact any number of dimensions.

If in addition to property I, we impose property II, the function

H(x, y, y ) is specialized to

3H =
y
-

co(.r, y)
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Thus the most general system with properties I and II is

(Flr) (y
- U

)y&quot;
=

(y
-

where G is any function of x, y, y
f

, and a; is any function of x, y.

The type thus involves one arbitrary function of three arguments

and one arbitrary function of two arguments.

6. Systems with Properties I, II, III. Imposing also property

III, we find that G(x, y, y } must be of the special form

(j =
y &quot;&amp;gt;

Thus the most general system of oo 3 curves having properties I, II,

III is represented by

&amp;lt;Fm) (y
- U

)y&quot;

=
fry + / + V

)y&quot; + 3y&quot;\

involving four arbitrary functions
o&amp;gt;, X, ju, v each of the two

arguments x, y.

This type may be characterized by the following properties

which are then equivalent to I, II, III.

I (2). For a given lineal element, the directrices of the ^o 1

osculating parabolas pass through a common point D.

II (2). When the lineal element turns about the given point 0,

the point D describes a straight line passing through 0.*

III (2). The correspondence between the range of points D
and the pencil of elements through is one-to-two of the special

form

3
z-7

= X sin2 6 + n sin 6 cos Q -f- v cos2
6,

where d denotes the distance OD, and 6 is the angle between the

element and fixed direction of OD.

* In the dynamical case this line OD is perpendicular to the force vector

acting at 0. For certain special fields the point D may remain fixed: this

happens only when the components of the force are conjugate harmonic

functions, that is when the field is of the type termed &quot;

analytic
&quot;

by Lecornu.
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7. If now we add the properties IV and V, the four functions

co, X, n, v appearing in (FIU) must obey the relations

(FIV) Xco
2 + juco + v + ux + wo)y

=
0,

(fv) K + Xco + M) y
- X, = 0.

Thus the general system having properties I-IV involves three

arbitrary functions of x, y\ while that having all five properties

involves two such functions.

By integrating these relations, we may express the four functions

in terms of two arbitrary functions
&amp;lt;p, \[/

as follows:

^ , &amp;lt;f&amp;gt;y &amp;lt;Px ty ^x
CO = ) A = j U, = i V =

&amp;lt;P &amp;lt;P V 9

These values, substituted in the type (FIU), actually give rise

to the type

(*
-

2/W&quot;
=

ty* + (*
- vM -

&amp;lt;pyy
2

}y&quot;

-
3&amp;lt;^&quot;

2

,

and thus the proof is completed that the set of five properties

characterizes the dynamical type.

In connection with the statements I (2), II (2), III (2), property

IV may be formulated as follows :

IV (2) . In the correspondence described in III (2), if the element

approaches the direction of the force the corresponding distance

OD has for its limiting value 3/2 the radius of curvature of the

line of force passing through 0. It is to be remembered that

the direction of the force, and hence also the lines of force, are

defined purely geometrically in terms of the given triply infinite

system of curves by the fact that at any point in the plane

the
&quot;

direction of the force
&quot;

is perpendicular to the line de

scribed as the locus of D in the above equivalent II (2) of

property II.

In the same line of ideas it would be possible to find an equiva

lent for property V (thus completing the characterization), but

the result V (2) cannot be put into simple form. The original

form V may be criticized as inelegant because in it reference

is made to a system of cartesian axes. Of course the result
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expresses an intrinsic property since it is true for all systems of

axes. It would certainly be desirable to restate the result in

intrinsic language. This can be done, for instance, by introducing

the distances cut off by the conic described in IV, not only on

the normal ON, but also on the two lines inclined at an angle of

45 to that normal. However it does not seem possible to obtain

a statement which is both simple and intrinsic in form.

8. Of course many other properties of trajectories may be

obtained, either by reasoning synthetically from the five funda

mental properties, or by reasoning analytically from the funda

mental differential equation. We state only a few samples.

If we shoot particles from a given position in a given direction

with variable speed, the center of curvature of the resulting

trajectories describes a straight line (the normal) and the focus

of the osculating parabola simultaneously describes a circle

(by property II), in such a way that the two ranges (one linear,

the other circular) are homographically related; furthermore the

given point, which is on both ranges, corresponds to itself.

If we shoot from the same position in a direction perpendicular

to that previously employed, the new focal circle will be tangent

(at the given point) to the former focal circle. Conversely if

two focal circles, for the same point, are tangent, the initial

directions to which they correspond will be perpendicular to

each other.

We shall make use of the following properties which describe

the disposition of the oo 1 focal circles constructed at a given

point. The two results which follow are geometrically equivalent,

and either may be substituted for property III in the fundamental

set.

Ill (3). If for each of the elements at a given point we construct

the corresponding focal circle, the locus of the centers of the oo 1

circles thus obtained is a conic with one focus at that point.

Ill (4). The envelope of the oo 1 focal circles is always a circle.*

* This enveloping circle is in general position : it does not usually have

its center at the given point. This simple position arises only when the force

is of the Lecornu type.
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9. ACTUAL AND VIRTUAL TRAJECTORIES

9. If we consider the motion of a cannon ball in a given vertical

plane under the action of gravity assumed constant, the triply

infinite system of trajectories consists of parabolas with vertical

axes. We do not, however, obtain all vertical parabolas, rep

resented by the differential equation of the system of trajectories,

which is here y
&quot;

0, but only those whose concavity is directed

downwards. The other vertical parabolas, with concavity

directed upwards, satisfy the same differential equation, and

it is therefore convenient to include them in the system studied.

We thus have a distinction of actual and virtual trajectories.

The latter are the actual trajectories corresponding to gravity

reversed in direction.

In an arbitrary field of force the same distinction arises.

The complete system of trajectories is composed of the actual

trajectories corresponding to the given force, and the virtual

trajectories which are the actual trajectories corresponding to

the reversed field. It is obvious that the system of trajectories

is not changed if the force acting at every point is multiplied

by a constant. If we were considering only actual trajectories,

it would be necessary to restrict this constant to positive

values, but as we include both actual and virtual, the constant

factor may also be negative. (Of course the constant must

not be zero, since then the force would vanish and we should

obtain the trivial system of straight lines.)

It is easy to show that the virtual trajectories corresponding

to the given field may be found by giving the initial speed of

the particle a pure imaginary value. The cannon ball could be

made to describe a parabola with its concavity directed upwards
if only some kind of powder could be invented which would

cause its initial speed to be imaginary!

In discussing the general geometric properties of trajectories,

we had in mind of course the complete system as defined by the

differential equation. Consider for example property I: for any
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given lineal element the locus of the foci of the parabolas oscu

lating the corresponding trajectories is a circle through the given

point. The question arises, what part of this circle corresponds

to the actual trajectories. It is easily found to be the arc of the

circle cut off by the initial direction line (the common tangent

of the trajectories considered) on that side which is indicated

by the force vector. Thus, if we confined our discussion to

actual trajectories, the focal locus would be, not a circle, but an

arc of a circle, the arc running from the given point to a certain

terminal point A. If we consider all elements through the

locus of the corresponding terminal point A is found to be a

conic passing through in the direction of the force vector.*

For a given element, the point A, which separates the actual

from the virtual, may be defined as the limiting position of the

focus of the osculating parabola as the initial speed becomes

infinitely large. The osculating parabola in this limiting case

becomes a straight line, but the focus has a definite limiting

position.

An analogous distinction, into actual and virtual, presents itself

also in the theories of brachistochrones, catenaries, and tau-

tochrones. The differential equations of the systems of curves

are satisfied by both the actual and virtual curves, and it is the

complete systems that we refer to in all our discussions unless

the contrary is explicitly mentioned.

10-15. TRAJECTORIES ix SPACE

10. Consider the motion of a particle, which we may take to

be of unit mass, in an arbitrary positional field of force. The

equations of motion are

(1) x =
&amp;lt;p(x, y, z), y = \l/(x, y, z), z = xO, y, z).

The particle may be started from any position, in any direction,

with any speed: its motion is then determined by the field of

* This conic is not the same as the conic arising in property III.

10
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force, and it describes a definite trajectory. The totality of

trajectories constitutes a definite system of oo 5 curves. (We
exclude the case where the force vanishes at every point, the

trajectories then being merely the oo 4
straight lines.)

What are the properties of such quintuply infinite systems of

curves? Obviously an arbitrary system of space curves cannot

be obtained as the totality of trajectories connected with any

field of force. In fact the most general system of oo 5 curves

(assuming that oo 1 curves pass through any point of space in

any direction) would be represented by a pair of differential

equations, one of the third order and one of the second order,

of the general form

(2) y
&quot; =

f(x, y, z, y ,
z , y&quot;),

z&quot;
=

g (x, y, z, y
1

,
z

, y&quot;\

thus involving two arbitrary functions of six arguments; while

the dynamical type involves merely three arbitrary functions of

three arguments. The differential equations representing the

dynamical type, obtained by eliminating the time from the

equations of motion, may be written in the form

y&quot;

-&amp;lt;px + y &amp;lt;py + z
&amp;lt;p*

(\f/ y &amp;lt;p)y

&quot; =

(3) _ = _ z
,

The question is to express the peculiar form of these equations

in simple geometric language.

The interpretation of the second equation is obvious: the os

culating plane of the path passes not only through the given

initial direction 1 : y
r

: z
,
but also through the fixed direction

&amp;lt;p :\// : x; &quot;that is, the osculating plane always passes through the

direction of the force acting at the given point. The other

properties are not obvious;* they take into account the form of

the differential equation of third order.

* The simplest of these, property II below and certain consequences, were

first stated in the author s note published in the Bull. Amer. Math. Soc.,
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We cannot now, as in the case of the plane discussion, employ

osculating parabolas, since our curves are twisted. Three

consecutive points of a curve determine an osculating circle.

What do four consecutive points determine? Xo simple type

of osculating curve is available, so we shall make use of the

osculating sphere. The results are therefore quite different in

form from those obtained in the two-dimensional theory.

11. The Four Properties in Space. In order that a system of

oo 5
space curves, of which oo 1

pass through each point in each

direction, shall be identifiable with the system of trajectories

generated by a positional field of force, it is necessary and suffi

cient that it shall have the following four purely geometric

properties :

I. The osculating planes of the oc 3 curves passing through a

given point form a pencil; that is, all the planes pass through a

fixed direction.

II. The osculating spheres of the oo 1 curves passing through
a given point in a given direction form a pencil; their centers;

thus lie on a straight line.

III. The straight lines which correspond, in accordance with

II, to all the oo 2 directions at a given point, form a congruence

(of order one and of class three) consisting of the secants of a

twisted cubic curve; which cubic furthermore passes through the

given point in the direction fixed by property I.

IV. The associated plane systems S f

,
determined by the given

space system in the manner described below, have the five geo

metric properties characteristic of a system of plane dynamical

trajectories. Consider the given system of oo 5
space curves in

connection with any plane p. Through any point of p there pass
oc 2 curves of the given system which are tangent to the plane.

Project the differential elements of the third order belonging to

these space curves orthogonally upon p, thus obtaining oo 2

vol. 12 (1905), pp. 71-74. Somewhat simplified proofs were then given by
Cesaro, in a paper published shortly before his death, in the Memorie di

Torino (1905). The complete set of properties appeared in the Trans. Amer.
Math. Soc., vol. 8 (1907), pp. 121-140.
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plane differential elements of the third order at the selected point.

Applying this process to all points of p, we have a defined set

of oo 4 differential elements of the third order. These elements

define a certain differential equation of the third order, and thus

determine a system of oo 3
integral curves. This we term the

associated system in the plane p. The space system has the

property that every one of these plane systems associated with

it is a system of dynamical trajectories, and therefore has the

five properties stated in 3, which we here denote by IP-VP

in order to avoid confusion with the four spatial properties.

These four properties are ordinally independent: no one can

be derived from those which precede it. The question of absolute

independence is left open: it is quite probable that IV is suf

ficiently strong to furnish a complete characterization by itself.

12. The most general system having property I involves one

arbitrary function of six arguments besides two functions of

three arguments. These systems have the following properties,

which are of course consequences of property I.

The oo l curves passing through a given point in a given di

rection have not only the same osculating plane, but also the

same torsion.

If the torsion is given the corresponding initial directions form

a quadric cone. In particular such a cone defines the directions

of those curves, through the given point, which admit hyper-

osculating planes.

If for each of these curves we construct, at the common point,

the related helix* (that is the helix which agrees with the curve

in osculating plane, curvature, and torsion), the axes of the

helices so obtained generate a cylindroid.

13. The most general system with properties I and II involves

two arbitrary functions of five arguments, besides two functions

of three arguments. Two further statements, each equivalent

to II, are as follows:

*An osculating helix, that is, one having four-point contact with the curve,

does not in general exist.
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If for each of the oo 1 curves defined by a given lineal element

we construct the osculating circle and the osculating sphere,

the distance between the center of the circle and the center of

the sphere varies as a linear integral function of the radius of

curvature.

For the same set of oo 1

curves, the derivative of the radius of

curvature with respect to the arc length can be expressed as a

linear integral function of the radius of curvature.

This last form has the advantage of being valid in space of

two or any number of dimensions. On this basis, however, it

would be difficult to formulate equivalents for the higher prop

erties, so as to obtain a complete characterization.

14. Property III is perhaps the most interesting result obtained.

The most general system having this property in addition to I

and II is represented by a pair of differential equations involving

ten arbitrary functions of three arguments.

One may ask what is the significance of the cubic curve

(we denote it by F), which arises in connection with III. To

each point of space there is related a certain cubic F. If we

shoot from in every direction with every speed, we obtain oo 3

trajectories. Each of these has an osculating sphere with a

definite center C. To each of the trajectories there corresponds

one center C. Usually the center C determines the trajectory.

However if C lies on the curve F, there are oo 1
, instead of one,

corresponding trajectory: in this case in fact the initial direction

may be any direction perpendicular to the line joining and C.*

Thus the curve F may be defined as the locus of those points

which may serve as centers for more than one trajectory through

the given point 0.

A simple consequence of III is that the locus of the centers of

the osculating spheres of the &amp;lt;x&amp;gt;

2
trajectories touching a given

plane at a given point is a quadric surface.

* Two trajectories through have the same osculating sphere only if the

initial speed is the same, and if the line through perpendicular to the initial

elements meets the cubic T.
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If the plane varies, the given point being held fixed, the oo 2

quadrics obtained form a linear system.*

The properties so far considered relate to the curves through a

given point 0. If we have oo 3 curves passing through a point 0,

oo l in each direction, and if, at that point, properties I, II, III

are fulfilled, it will not usually be possible to generate the curves

as trajectories in any field of force. All that follows is that the

relations between y , z
, y&quot;, z&quot;, y &quot;,

z&quot;

f

are of precisely the same

form as those holding for trajectories; and therefore it is possible

to find (in infinitely many ways) a field of force such that each

of the oo 3
trajectories passing through the given point shall

have contact of the third order with some one of the given curves.

15. In order to cause our system to be of the dynamical type,

it is necessary to restrict the ten arbitrary functions involved

in the type characterized by I, II, III so that only three arbi-

traries remain, namely, the components &amp;lt;p, \f/, x defining the field

of force. This is the role of property IV, which states that in

any plane p the associated system S is of the plane dynamical

type. An equivalent statement is as follows:

IV (2). If the oo 2
space curves touching any plane p at any

point are projected orthogonally upon p, the plane curves thus

obtained possess the properties lp ,
II P , IIIP ;

when the point

varies in p, the direction associated with it by II P ,
and the conic

associated with it by IIIP , vary in accordance with the restrictions

expressed in IVP and Vp .

It may be remarked that the first half of this statement holds

for all space systems having properties I, II, III; in fact all

such systems have also property IVP . The real restriction is

in Vp . It is also sufficient to consider, instead of all planes p,

merely those of a triply orthogonal set.

16-25. THE INVERSE PROBLEM OF DYNAMICS: A METHOD
OF GEOMETRIC EXPLORATION

16. The usual direct and inverse problems arising in dynamics

are: first, given the force acting on a particle, to find its motion;
* On the other hand if we vary the given point, keeping the plane fixed,

no simple result is obtained: the oo 2
quadrics constitute an arbitrary family.
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and second, given the motion of a particle, to find the force

acting on it. The first problem is solved by integrating the

differential equations of motion. The second is solved by dif

ferentiating the coordinates of the point with respect to the time.

Suppose, however, that we are given only the path described

by the particle but have no information about the motion along

the curve. If merely a single curve is given, the problem of

finding the acting force would of course be indeterminate. But

if all the trajectories, described by starting particles in a field

of force from all initial positions in all directions with all speeds,

are given, then the field of force is essentially determined (that

is, up to a constant factor). Hence if we were given a photograph

of the entire system of curves generated by some (positional) field

of force, without any record of motion or time, it ought to be possible

to find the law of the field of force. This is easily seen to be true

analytically; but we wish also a purely geometric solution

which will enable us to pass from the given curves to the vector

representing the force at each point of the plane (taking first

the two-dimensional case). The result gives what may be

described as a
jmethod for the geometric exploration of a field of

force.

17. First consider two trajectories passing through the same

point in the same direction. Construct the two osculating

parabolas. The circle passing through the point and the foci

of these parabolas will, according to property I, be the focal

circle corresponding to the given point and the given direction.

Then, according to property II, the direction of the force acting

at will be symmetric to the tangent to this circle at with

respect to the common tangent of the two curves. An equivalent

of this construction is to join to the intersection of the direc

trices of the osculating parabolas: this line is perpendicular to

the direction of the force acting at 0.

If we are given two trajectories passing through in different

directions, then the direction of the force at is not determined.

The same is true if we are given three curves with distinct

tangents.
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18. //, however, we are given four trajectories with distinct

tangents, the force direction is (in general) uniquely determined.

Consider an arbitrary direction at 0, and let us see if it can

be the direction of the force acting at that point. Take the

image of this direction in the tangent to the first of the given

curves; then pass a circle through in the direction so obtained

and through the focus of the corresponding osculating parabola.

Doing this for each of the four curves, we obtain four focal circles.

// there exists a circle touching these four, the direction tested is cor

rect. This follows from property III (4) of 8. We have then a

purely geometric problem: to find a direction at such that the

four circles constructed by means of it shall admit a common

tangent circle. We may simplify this problem by inverting the

configuration considered with respect to 0. We then have,

instead of the four focal circles, four straight lines which are to

be concyclic. As we change the direction tested, these rotate

simultaneously through equal angles about four fixed points,

namely, those obtained by inverting the four foci.

Take an arbitrary oriented direction for trial; construct for

each of the four inverse foci, a direction parallel to the image of

the tangent to the focal circle with respect to the tangent to

the corresponding trajectory. We thus obtain four oriented

lineal elements, one at each of the inverse foci. The problem is

then to rotate these through the same angle a, so that the new

elements shall have concyclic lines.* In this position the image

of the direction of any one of the four elements in the corre

sponding tangent at will give the required direction of the

force. The only ambiguity, in general, will be in the sense (arrow

head) of the force: this, however, may be determined separately

for actual f trajectories by considerations of concavity and con

vexity.

19. The direct analytical treatment is as follows. The dif

ferential equation of the oo 3
trajectories of any positional field

* A simple ruler and compass solution of this problem was suggested to

the author by Professor Wedderburn.

t See 9.
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of force is of the form

(y
f -

)y
&quot; = (X/+V +W + 3y&quot;

2

,

where X, /z, v, co are functions of x, y (and have therefore fixed

numerical values so far as we deal with the oo 2 curves passing

through a given point 0), the latter quantity co representing the

slope of the acting force. Each of the four given curves C\, 2,

C3 , C^ through the point determines certain values of the

derivatives y , y&quot;, y
&quot;

,
that is we are given the differential ele

ments of third order

Vi, y&quot;, y&quot; d =
i, 2, 3, 4).

Substituting these values we have four linear equations

(&amp;lt;//

- oW =
(X*//

2 +W + v) yi
&quot; + 3*/ t

&quot;
2

(i
=

1, 2, 3, 4),

from which we can find the values of X, /z, v, co at the given point.

The required direction of the acting force is determined by the slope

co = -

If*&quot;

where numerator and denominator are determinants of the fourth

order.

20. By any of these methods we may determine the direction*

of the vector representing the force acting at any point of the

plane. How shall we determine the magnitude of the vector?

The determination cannot be absolute, since, as already remarked,

two fields that differ by a constant factor have identical trajec

tories. The magnitude of the vector at any one point may
be taken at random, and then the field is completely determined.

This depends upon the simple fact that if we know the path
* Of course if all the trajectories were given, the direction of the force

would be determined immediately by the fact that the curves in that direc

tion have zero curvature.
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of a particle and also the direction of the force acting at each of

its points, then assuming the magnitude arbitrarily at one point,

it is completely determined at all points. This is an integration

problem. We know the force vector at the initial point 0, and

may decompose it into components N and T, normal and tangent

to the given curve. Assuming the mass to be unity, the initial

speed is given by

vj = rN,

where r is the known radius of curvature. Then from

vvs = T,

we may find vs ,
the rate of variation of the speed for unit of arc.

The speed at any point P of the curve is thus found in the form

where all the quantities in the right-hand member are geo

metrically given. (The integrals throughout are calculated from

point to point P.) If we denote by 6 the inclination of the

force to the curve, so that tan 6 = N/T, the speed is

/-cot

v = v e
r

Since the speed, that is the motion, is now known, the magni
tude of the force is also known. The components at any point P
are

r &amp;lt;t cot 9-r.

N = N e
J ~

r
, T = N cot 6.

21. We see that the construction of the field may be carried

out without knowing all the oo 3
trajectories. So far as the

direction of the force is concerned, it is sufficient to know at

each point of the plane either two trajectories with a common

tangent, or four trajectories with distinct tangents. So far as
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the magnitude is concerned it is then sufficient to know co 1 tra

jectories through one point 0, one for each direction, since we can

then integrate from this point to any point of the plane* along

some one of the curves.

Afield of force is in general determined, and may be constructed,

if ice know 4QO 1 out of the totality of oo 3
trajectories, each of the

four systems of oo 1 curves covering the plane (or the region

considered) simply, that is, one passing through each point of

the plane.

The complete system of oc 3

trajectories is thus determined in

general by four systems of oo 1

trajectories. Further reduction

is possible. In general Soo 1 curves determine the totality, but

no simple constructions are then available. If two simply

infinite systems of curves (that is, a net of curves) are assigned

arbitrarily, a corresponding complete system can be found in a

large infinitude of ways: the corresponding field of force is not

determined up to a constant, but involves arbitrary functions.

The first and most interesting example of the geometric ex

ploration of a field of force arose in Bertrand s discussion of

Kepler s laws. The first of these laws (every planet describes

an ellipse having the sun for a focus) is geometric, while the second

and third are kinematic (involving the areal velocity and the

period). The first law determines all the trajectories, and there

fore determines the field of force. f Hence the newtonian law

of gravitation can be deduced from the first law alone, instead of,

as usual, from all three. Bertrand thus concludes that the

other two laws are consequences of the first. If Kepler had been

a mathematician of the twentieth century, he would have stopped

his laborious observational inductions after noting his first law,

and deduced the other two analytically.

The first law, in Bertrand s discussion, is of course to be taken

ideally: not only the actual planets describe conies with a focus

at the sun, but every particle starting from any position with

* That is, in some region of the plane in some neighborhood of 0.

t It is assumed, of course, that the force depends only upon the position
of the planet.
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any velocity describes such a conic. From what has been

stated above it is sufficient to limit the observations to four

simply infinite systems of conies in
&quot;

general
&quot;

position.

On account of the last phrase, it is easily possible to commit

errors in the application of the result. It would be possible to

give ioo 1 or even oo 2 conies in certain special ways, so that the

field is not determined. (See 23.)

22. This raises the general question: How many trajectories

may be common to two distinct fields of force?

The first field, defined by its components &amp;lt;p, \[/,
has a system of

oo 3
trajectories with a differential equation

(y
-

)

&quot; = (X/ + M2/ + )y&quot; + 3y&quot;

2

;

the second field, with components (p\, \l/i, has a system of tra

jectories given by an analogous equation

(y
-

coO*/
&quot; =

(X l2/

2 + Mtf + &quot;i)y&quot; + V /2
.

If there are any solutions in common,* they must satisfy the

equation of second order

3(co
-

i)y&quot;
=

(y
f -

Two systems of trajectories cannot haw more than oo 2 curves

(one through each point in each direction) in common without

coinciding. If they have oo 2 curves in common the differential

equation of the second order defining these curves must be of

the cubic formf

y&quot;

= Ay
3 + By

2 + Cy
f + D,

where the coefficients are functions of #, y.

Usually the solutions of the equation of the second order will

* In addition to straight lines, y&quot;

=
0, which are common to all systems.

t This form is characterized by the fact that the locus of the centers of

curvature of the curves passing through a given point is a special type of

cubic curve. Cf. Amer. Jour. Math., 1908, p. 207.
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not satisfy either equation of the third order and the two systems

will have no curves in common. An example showing that the

two systems may actually have oo 2 curves in common is given

by the fields

&amp;lt;p

=
x, \//

=
4z/; (pi

= x~3
, \f/i

=
1,

where the equation of second order,

*y&quot;
- y

f

,

defines o 2 curves y = ax2
-f 6, which are trajectories in both

fields.

23. A fortiori 400 1
curves, or any number of simple systems,

may belong to two distinct fields. If the four simple systems

are given in the form

V =
fi(x, y} (i

=
1, 2, 3, 4),

the field, if it exists, will be uniquely defined provided not all the

determinants of fourth order in the matrix

1 1/. , fifi , fffi, /i&quot;, 3/,
2

-/;/;&quot;! |

vanish identically. Here the primes denote complete differen

tiation with respect to x, so that

/ =/.+//
+ ffn + fj, + ///.

This is the exact formulation of the result stated previously
&quot;

in

general.&quot;

24. Consider the simplest of all fields, gravity assumed constant.

If a cannon ball is projected in any way into the field it describes

a vertical parabola. Conversely if every path in an unknown
field is a vertical parabola, it follows that the acting force is

vertical and constant in intensity. How many cannon ball

experiments would have to be made in order to arrive at this con

clusion?

We confine the discussion for simplicity to a fixed vertical
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plane, taken as the xy-pl&ne, so that the equations of motion are

x = 0, y=l

and the trajectories are the oo 3
parabolas

y = ax2 + bx + c.

Suppose first the cannon is kept in one place, say the origin,

and the ball is fired in all directions with all initial speeds, giving

in all oo 2
parabolas

y = ax2 + bx.

This would not be sufficient to prove that the field is uniform.

Another possible field, for example, is

x = x
&quot;, y = yx &quot;.

In fact there are oo 2 distinct fields each consistent with the given

set of oo 2
parabolas.

The same is true if we confine our geometric experiments to

the oo 2
parabolas y ax1 + c found by shooting horizontally

from every point in the axis of ordinates with variable initial

speed. The differential equation of this family is
xy&quot;

= y ,

precisely the one given at the end of 22, and so the two forces

there given are consistent with the experiments, just as much

as ordinary gravity.

If however the shots are fired from all points in the axis of

abscissas, with all initial speeds, at the fixed inclination of 45,

producing as trajectories the oo 2 vertical parabolas whose foci

are on the axis of abscissas, the field must be uniform gravity.

The only possible field is in fact x = 0, y = constant.

The same is true if we fix the amount of powder, that is the

initial speed, and shoot from every point on the ground (the

axis of x), at every angle. This gives oo 2
parabolas with a

common directrix.

As an example of a set of 400 1 observations that would be

sufficient, we mention only the case of shooting from four*

* It may be that three stations are sufficient, but this requires a separate

discussion. Two stations would certainly not suffice.
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stations on the ground, pointing the cannon at the angle 45,
and using all initial speeds.

25. Consider very briefly the general inverse problem in space

of three dimensions. The determination of the magnitude of

the force involves the same considerations as in the plane case.

If we are given two trajectories through in the same direction,

the osculating planes must coincide. The force acts in this

common plane; its direction is determined by projecting the

given space curves orthogonally on this plane, and then using

the plane construction described above.

If we are given two trajectories with distinct osculating planes,

the initial directions will be necessarily distinct; the force-direc

tion is then determined by the intersection of the osculating

planes.

If we are given two trajectories through in different direc

tions, but with the same osculating plane, the direction of the

force is not determined. We need in fact four such curves with

the same osculating plane and different directions before the

force-direction is determined: the requisite construction is again

obtained by orthogonal projections of the curves of the common

osculating plane, thus reducing the problem to that considered

in the two-dimensional theory (cf. 18).

26-27. TESTS FOR A CONSERVATIVE FIELD

26. Since the system of trajectories determines the field of

force, it ought to be possible to find out from the trajectories,

whether the field belongs to any special type, for example, whether

the field is central or conservative.

The lines of force are determined geometrically by property I

in the plane and property II in space. The field will be central if

the lines of force are straight lines passing through a common

point.

We now give a number of tests any one of which will distinguish

a conservative from a non-conservative force. It is not possible

to decide this from the lines of force alone.
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1. First consider the plane theory. Here there is for each

point a certain conic determined by the trajectories in accordance

with property III of 3 as the locus of the centers of the hyper-

osculating circles. For a conservative field (and for no other) this

conic is always a rectangular hyperbola.

2. In connection with property III (3) of 8 we have this test:

The conic which there appears as the locus of the centers of

the focal circles is in the conservative case merely a straight line.

That is, the focal circles constructed at any point all have a

second point in common.

3. The focal circles corresponding to two perpendicular

directions are, in any field, tangent to each other. In the con

servative case the two circles coincide.

4. In any field two trajectories through a given point

exist whose osculating parabolas have the same given focus.

If for one given focus the trajectories are orthogonal at 0, this

will be true for any given focus. When this is the case for every

point 0, the force will be conservative.

27. In the three-dimensional theory, the lines of force in the

conservative case necessarily form a normal congruence; but

this is not a sufficient test. All the tests given below are both

necessary and sufficient.

1. First consider property III of 1 1. In any field there corre

sponds to each point a certain twisted cubic curve F. The con

servative fields are distinguished by the fact that the cubic F is,

for every point 0, of the rectangular type.*

2. An interesting kinematic test, connected with the theorem

of Thomson-Tait, is the following. If from any point we shoot

with a given speed VQ in every direction, oo 2
trajectories will be

obtained. If these form a normal congruence (that is admit a set

of orthogonal surfaces), the same will necessarily be true for any
other speed VQ. The trajectories starting out from any point with

* That is, the cubic intersects the plane at infinity in three mutually

orthogonal directions. All the quadrics passing through the curve are then

of the equilateral type.
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a given speed form a normal congruence when, and only when, the

field is conservative.

The necessity of this condition is included in the Thomson-

Tait theorem discussed in the next chapter. Its sufficiency, of

course, requires a separate discussion which is connected with

the theory of velocity systems.

3. In order to make the preceding test purely geometric, it is

necessary to have a geometric method of assembling those tra

jectories which, starting from the same point, correspond to the

same initial speed. Such a method is readily found from the

fact that the square of the speed varies directly as the radius of

curvature and directly as the normal component of the force.

The oo 2
trajectories corresponding to a given speed have circles

of curvature intersecting each other at the same point on the

line of the force vector; that is, the centers of curvature lie in a

plane perpendicular to the direction of the force acting at the

given point. In the conservative case, the oo 2
trajectories so

selected form a normal congruence.

4. Among the oo 2
trajectories considered there are, for any

field, three which admit hyperosculating circles of curvature.

The three initial directions thus determined will be mutually

orthogonal when and only when the field is conservative.

Only test 1 is directly connected with the set of properties

I-IV of page 19. The other three are suggested by the discussion

of velocity systems (cf. 32).

11



CHAPTER II

NATURAL FAMILIES: THE GEOMETRY OF CONSERVATIVE
FIELDS OF FORCE

28. ORIGIN AND APPLICATION OF THE NATURAL TYPE

28. We now consider the properties of the trajectories gener

ated by conservative fields of force. The total system of tra

jectories will have the general properties previously considered

for an arbitrary field of force, together with the additional proper

ties stated in 26, 27, peculiar to the conservative case.

An entirely new feature presents itself, due to the fact that

the differential equations of motion admit an integral of the

first order, namely, the energy equation. During any motion

of the particle in the given field, the sum of the kinetic and

potential energies is constant; thus each motion corresponds

to a definite value of the constant h, representing the total energy.

The motions may therefore be grouped according to the values of

h. Those corresponding to a given value form what may be

termed, following Painleve, a natural family.

Thus, in space of two dimensions, the complete system of

trajectories for a given conservative field of force consists of oo 3

curves grouped into oo 1 natural families, each composed of oo 2

curves. For example, in the case of ordinary gravity the tra

jectories are the oo 3 vertical parabolas (in a given vertical plane),

and the natural families are formed by grouping together those

parabolas which have the same (horizontal) line as directrix.

In space of three dimensions, the complete system contains

oo 5
trajectories grouped into oo 1 natural families, each containing

oo 4 curves. Examples are the oo 4
parabolas with vertical axes

whose directrices are situated in a fixed horizontal plane; and

the oo 4
circles orthogonal to a fixed sphere. The simplest ex

ample, corresponding to the case of zero force, is the oo 4
straight

lines of space.
34
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This grouping of the trajectories according to the values of

the total energy constant, that is, into natural families, is funda

mental in most dynamical investigations relating to conservative

forces, in particular, those connected with the principle of least

action and the developments of Hamilton and Jacobi. From

this point of view, dynamical problems relating to the same

field of force, but having distinct values of h, are considered as

essentially distinct problems. Quoting Darboux: &quot;This re

striction is in accordance with the spirit of modern mechanics

which attaches less importance to force than to energy, and which

permits us to regard as distinct two problems in which the force

function or work function is the same, but the total energy is.

different.&quot;

It therefore seems of interest to work out the purely geometric

properties of natural families. According to the principle of

least action, such a family is made up of the extremals defined

by the variation problem

J VJJ
7

-\- h ds = minimum,

that is, the curves which cause the first variation of the integral

to vanish. This follows from the fact that the speed v, in the

action integral J vds, is determined by the energy equation

02 = 2(W+h).

Abstractly, a natural family of curves may be defined as one

which can be regarded as the totality of extremals connected

with a variation problem of the form

J Fds = minimum,

where F is any point function, that is, any function of x, y, z in

the three-dimensional case.

Such families arise not only in the discussion of trajectories,

but also, for example, in the discussion of brachistochrones,

catenaries, optical rays, geodesies, and contact transformations.



36 THE PRINCETON COLLOQUIUM.

The brachistochrone problem for a conservative field wT
ith any

work function W leads to the integral

ds

Thus the complete system of brachistochrones is made up of

oo l natural families, one for each value of h.

When a homogeneous, flexible, inextensible string is suspended
in the conservative field, the forms of equilibrium, which are

termed catenaries in the general sense of the word, are obtained

by rendering the integral

f(W+h)ds

a minimum. Hence here also we have oo 1 natural families, one

for each value of A.*

Consider an isotropic medium in which the index of refraction

v varies arbitrarily from point to point. The paths of light in

such a medium, according to Fermat s principle of least time,

are determined by minimizing the integral J vds and hence form

a single natural family. This is the most concrete way of defining

a natural family.

The connection with the theory of geodesies is obvious.

Thus in the two-dimensional case the geodesies of the surface

whose squared element of length (first fundamental form) is

\(x, y)(dx
1 + dy

2
) are found by minimizing the integral J VX ds,

and hence the representing curves in the x, y plane constitute

a natural family. Hence if any surface is represented conformally

on a plane, the geodesies are pictured by a natural family of

curves in that plane. The extension to more variables is evident:

* The complete systems of oo 5 brachistochrones and oo 5 catenaries have

geometric properties distinct from each other and from those of the oo 5

trajectories: no quintuply infinite system of curves can be at the same time

the system of trajectories for some field and the system of brachistochrones

or catenaries in either the same or a different field. The distinctive properties

for an arbitrary field are given in 107, p. 94. Cf. 103.
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any natural family in any space may be obtained by conformal

representation from the geodesies of some other space.*

As a last application we consider the transformations which

Sophus Lie has termed the infinitesimal contact transformations

of mechanics. In the plane case, such a transformation is

defined by a characteristic function of the special form

17(j-, y)(l + ?/

2

)* and is characterized by the fact that the lineal

elements at each point are converted into the elements of a

circle about that point as center. The path curves of every

contact transformation of this category form a natural family.

29-31. CHARACTERISTIC PROPERTIES A AND B

29. Osculating Circles Property A. We now consider the

general geometric properties of a natural family in ordinary

space, that is, the totality of oo 4 extremals connected with an

integral of the form

(1) fF(x, y, z) Vi + / + Z
2

(far.

The differential equations of the family are then the corresponding

Euler-Langrange equations

2&quot;
= (L,

- z L,)(l + y
- + Z -),

where

L =
log F.

Of the oo 4 curves in this family oo 2
pass through any given

point p, one in each direction. Our first result is:

THEOREM 1: The co 4 curves in any natural family have this

property: the circles which at any point p of space osculate the oc 2

curves passing through that point, haie a second point P in common
and thus form a bundle.

*A natural family on a given surface may be regarded as a family of

pseudo-geodesies, that is, one which may be obtained as the conformal picture
of the geodesies on some other surface.
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This property we shall refer to as property A. In the discussion

it is convenient to decompose it into these two statements, also

relating to the oo 2 curves through a given point:

(Ai) The osculating planes constructed at the common point

form a pencil.

(A%) The centers of curvature lie in a plane perpendicular

to the axis of the pencil of osculating planes.

A proof of the theorem stated is easily obtained by regarding

the family as made up of dynamical trajectories. Property AI

results from the fact that the osculating plane of a trajectory

always passes through the force vector. Property A% is proved

by noting that those trajectories through a given point, which

correspond to the same value of the total energy h, are all

described with the same initial velocity v . The radius of

curvature at the initial point is given by the formula

r =
&amp;gt;o

2
/A

T

,

&quot;where N denotes the component of the force along the principal

normal. Since N is the orthogonal projection of a fixed vector,

the locus of its terminal point will be a sphere through the initial

point. The conclusion then follows from the fact that r varies

inversely as N.

The following analytical discussion has the advantage of

answering the converse question which naturally arises: Are

there other systems with property A?

The differential equations of any system of oo 4
space curves,

one determined by each lineal element of space, may be assumed

in the form

(3) y&quot;

=
/(*, y, z, y ,

* ), *&quot;
=

g (x , y ,
z

, y ,
2 ).

Property AI requires that at each point there shall be a certain

direction through which all the osculating planes at that point

must pass. Let the direction in question be given by the ratios

of three arbitrary point functions

(4) *(*, y,z), t(x,y,z), xfo y, *);
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then the requisite condition is

*-
Property A 2 requires that the centers of curvature shall lie in

a plane perpendicular to the direction (4) ;
hence

(6) 4X + *Y + XZ =
1,

where X, Y, Z denote the coordinates of the center relative

to axes with the common point as origin. Using the general

formulas for the center of curvature, and combining with (5), we

find

THEOREM 2: The differential equations of any system of curves

possessing property A are of the form

where
&amp;lt;/&amp;gt;, \l/, x are arbitrary functions of x, y, z. The converse is

valid also.

The equations (2) are seen to be included in this form, hence

the result certainly holds for our natural systems, as stated in

theorem 1.

30. Hyperosculations Property B. The circles of curvature

at a given point, for any system of the form (7), constitute a

bundle. We now inquire whether any of these circles correspond

to four-point, instead of three-point, contact.

If a twisted curve is to have an hyperosculating circle of cur

vature at a given point, two conditions must be satisfied, namely,

(8)

1 y z

y&quot;
z

y
&quot;

z

dr



40 THE PKINCETON COLLOQUIUM.

The first of these states that the osculating plane has four-point

contact with the curve; the second, in which r denotes the radius

of curvature, is the condition for the existence of an osculating

helix, i. e., one with four-point contact. When both conditions

hold the helix is simply the circle of curvature, which then has

hypercontact.

Applying these conditions to the curves defined by (7), we find,

from (8),

(10) (*
- ?/W -

(x
- zW + (y x - zW =

0;

and, from (9),

(11) (1 + / + /)S00 -
(* + i/V + * *)

y V x
f

\ _
J

where the indicated summations extend over $, ^, x and where $ ,

for example, denotes
&amp;lt;f&amp;gt;
x + y &amp;lt;$&amp;gt;v + z $z .

Since we wish to discuss the oo 2 curves through a given point,

we may simplify our equations considerably by taking the axis

of abscissas in the special direction (4). Then, at the selected

point, \l/
and x vanish, and the above equations reduce to

(10 ) y x - z t =
0,

(110 (/ + 2
2

)(4&amp;gt;

- 2
)
-W + z x )

= 0.

Neglecting the trivial solutions for which y
2 + z

/2

vanishes,

we may reduce this pair of simultaneous equations to the form

y %

This set of equations for the determination of y ,
z

r

is of a familiar

type, namely, that arising in the determination of the fixed

points of a collineation, and is easily shown to admit three solu

tions.* Hence

* Of course in special cases some of these may coincide, or the number
of solutions may become infinite. The theorem stated is true

&quot;

in general
&quot;

in so far as it omits these cases which are definitely assignable.
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THEOREM 3: The curves defined by equations of the form (7)

are such that through each point there pass three with hyperosculating

circles at that point.

Since the form (7) is characterized by property A, it follows

that the existence of three hyperosculating circles in each bundle

is a consequence of property A.

We state two further properties, found by considering the

conditions (10 ) and (11 ) separately.

The tangents to those curves of a system (7) which pass through a

given point and there have an hyperosculating plane form a quadric

cone. This cone passes through the special direction (4).

The tangents to those curves which have an osculating helix at the

given point form a cubic cone. This cone passes through the

special direction (4) and through the minimal directions in the

plane normal to that direction.

These properties hold for natural families since they hold for

all systems with property A. By comparing (7) with (2), we

see that the functions 0, \f/, x m the case of a natural family are

v ,(13)
= Lx , \f/

= L
l

and hence are connected by the relations

(14) t,
-

Xy = 0, Xx
-

0, = 0, 0,
- $x = 0.

We now inquire what is the effect of these relations on the

directions of the hyperosculating circles. Introducing, for

symmetry,

(15) X:Y:Z=l:y :z ,

we may write our equations (12) in the homogeneous form

(16) -xl
fc

In virtue of (14), each of the quadric cones (16) is seen* to be

* The condition for such a cone is that the sum of the coefficients of X2
,

Y2
,
and Z2 shall vanish.
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of the rectangular type. Hence the three generators common

to the cones must be mutually orthogonal. This gives

THEOREM 4 : In the case of any natural family the three hyper-

osculating circles which exist in any bundle are mutually orthogonal.

We refer to this property as property B.

31. The relations (14) are seen to be necessary as well as

sufficient for the orthogonality in question. Hence property B
is the equivalent of (14), and serves to single out the natural

families from the more general class defined by equations of

form (7). The latter form was characterized by property .4;

hence we have our

FUNDAMENTAL THEOREM: A system of oo 4
curves, one for each

direction at each point of space, will constitute a natural family

when, and only when, it possesses properties A and B : that is, the

osculating circles at any given point must form a bundle, and the

three hyperosculating circles contained in such a bundle must be

mutually orthogonal.

32. GENERAL VELOCITY SYSTEMS

32. The most general system with property A is represented

by differential equations of the form

z&quot;= (X
-

and thus involves three arbitrary functions. Only in the case

where these functions are the partial derivatives of the same

function is the system a natural one. We now point out a

dynamical problem that leads to the general type (7): this

justifies the term velocity system which we hereafter employ to

denote any system of this type.

Consider a particle (of unit mass) moving in any field of force,

the components of the force being 6, \j/, x- The equations of

motion are then

x = 0(z, y, 2), y = t(x, y, 2), z = x(x, y, 2).

If the initial position and the initial velocity are given the motion
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Is determined. If only the initial position and direction of

motion are given, the osculating plane will be determined but

the radius of curvature r will depend for its value on the initial

speed v. Hence, in addition to the usual formula

O . O I O I &quot;Ov = x- + y-+ z
2
,

there must be a formula expressing v
2 in terms of x, y, z, y ,

z
,

r.

This is furnished by the familiar equation

v
2 = rN,

where N denotes the (principal) normal component of the force,

so that

The result may be written in the two (equivalent) forms

2 y-y tid+yt+S) (X- 2^)(l+/+ g
2

)

y&quot;
z&quot;

In the actual trajectory v varies from point to point. If now we

replace v
2 in this result by some constant, say 1/c, the resulting

equations may be written

The curves satisfying these differential equations they are not

in general trajectories we define as velocity curves. For any field

a curve is a velocity curve corresponding to the speed VQ, provided

a particle starting from any lineal element of the curve with

that speed describes a trajectory osculating the curve. In a

given field of force there are oo 5

trajectories and oo 5
velocity

curves.* If c is given we have oo 4

velocity curves. In particular

* The properties of a complete system of ao 5
velocity curves are analogous

to, but distinct from, those of a complete system of trajectories. Cf. p. 94.
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if c (and hence v) is taken to be unity, our equations become

precisely (7).

Any system of oo 4 curves possessing property A, that is, any

system (7), may be regarded as the totality of velocity curves cor

responding to unit velocity in some (uniquely defined) field of force.

Only when the field is conservative do the velocity systems for

each value of v (or c) become natural systems. The trajectories

also are in this case made up of oo 1 natural families, one for each

value of the energy constant h\ but the two sets of natural families

are distinct. The determination of a velocity system in one

conservative field is equivalent to the determination of a tra

jectory system in another conservative field, and vice versa.

We find in fact the following explicit result:

// two conservative fields with work functions W\ and W2 satisfy

the relation*
zwl

W2
= ae v*

h,

then the oo 4
velocity curves for the speed VQ in the first field coincide

with the oo 4
trajectories for the constant of energy h in the second

field.^

33. RECIPROCAL SYSTEMS

33. With any velocity system S

(S) y&quot;= (*-

there is connected a definite point transformation T: for in virtue

of property A to any point p corresponds a definite point P,

the osculating circles constructed at the first point all passing

through the second point. The transformation T is explicitly

x2

* We note that if Wi is left unaltered and t o varied, W% takes quite distinct

forms. The oo 1
velocity systems in a given field do not constitute the com

plete system of oo 5
trajectories in any field whatever.

t It is seen that the two fields have the same equipotential surfaces and

therefore the same lines of force. (Central fields therefore correspond to

central fields.)
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It is thus entirely general. To an arbitrary transformation*

corresponds a definite velocity system. In particular, to the

inverse transformation T~l there corresponds a certain system

S , which we define as reciprocal to S.

Hence to a general^ velocity system S, that is, any system possessing

property A, there corresponds a definite reciprocal velocity system

S f
. The osculating circles of those curves of system S which pass

through any point p are at the corresponding point P the osculating

circles of the curves of the system S passing through P.

Consider the bundle of circles determined by two corresponding

points p and P. We know that three of these circles have

hypercontact with S-curves at p, and three have hypercontact

with S -curves at P. It is not obvious that the circles so ob

tained really coincide. Omitting the rather long proof, we

merely state the result.

Reciprocal velocity systems have the same hyperosculating circles:

the three circles hyperosculating curves of the given system S at

any point p also hyperosculate curves of the reciprocal system S

at the corresponding point P.

It follows at once that if S possesses property B (that is

mutually orthogonal hyperosculating circles) the same will be

true of S . This means that whenever system S is natural so is S .

The reciprocal of a natural family is always a natural family.

We may restate this in optical terms as follows: With any

isotropic medium, defined by its index of refraction v(x, y, z),

there is connected a certain reciprocal medium with an index of

refraction v(x, y, z): the rays of light in this second medium,

namely, the extremals of

Jv(x, y, z)ds = minimum,

form the system reciprocal to that formed by the rays of light

* It may even degenerate but must not be merely the identical trans

formation. We however exclude systems with degenerate T s from the rest

of the discussion: we assume that the jacobian does not vanish, so that the

inverse transformation exists.

t See preceding footnote.
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in the given medium, namely, the extremals of

fv(x, y, z)ds = minimum.

The actual calculation of v from v requires only operations that

are performable in the Lie sense, namely, eliminations and dif

ferentiations. See Transactions of the American Mathematical

Society, volume 10 (1909), page 213.

34. CHARACTER OF THE TRANSFORMATION T

34. The transformation T (from point p to point P) associated

with the most general system possessing property A is, as we have-

seen, entirely arbitrary. The question arises what is the pecu

liarity of T if the given system is of the natural type. The

answer to this will furnish an equivalent of property B, and

will thus make it possible to characterize natural families with

out introducing hyperosculating circles.

The problem is to describe geometrically the class of trans

formations of the form

2. 2L
h ** y^

depending on one arbitrary function L of x, y, z, instead of three

independent functions required in a general point transformation,

X =
$(.r, y, z), Y = *(x, y, z), Z = X(x, y, z).

For a general (analytic) point transformation the bundle of

lineal elements at any point is converted linearly into the bundle

at the corresponding point. Are there any elements which go

over into parallel elements? It is well known that there are

three. If in particular these three elements are mutually per

pendicular (for every point of space), we obtain a certain category

of transformations which may be termed Darboux* transforma-

* See Proceedings of the London Mathematical Society, 1900.
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tions or deformations. They are analytically of the form

A- = / r = / z =
/.,

involving one arbitrary function. Obviously this is not the class

we desire.

We next ask whether in the general transformation there are

any elements at a given point p each of which is turned into a

cocircular element at the corresponding point P. This is, in a

way, a case correlative to the Darboux case: for whether two

elements in space are parallel or cocircular they have in common

the properties that they are coplanar and equally inclined to the

line pP joining their points. It is found that there are always

three such elements at any point. If we require these to be

mutually orthogonal, we obtain precisely the transformations

connected with natural families.

.4 system of &amp;lt;x&amp;gt;

4
space curves possessing property A will form a

natural family when and only when the associated transformation T

(from point p to point P) has the following property: the three lineal

elements at p each of which is converted into a cocircular element

at P are mutually orthogonal.

We have thus obtained an equivalent for property B. It

may be shown synthetically that the three directions just de

scribed (cocircular elements) always coincide with the directions

of the hyperosculating circles. The orthogonality of the one

triple amounts to the same thing as the orthogonality of the

other.

It may be remarked that the class of transformations connected

with all natural systems do not form a group. It is obvious how

ever that the inverse of any member of the class is contained in

that class. This is the essence of the law of reciprocity for natural

systems, previously obtained by a different method.

35-44. THE CONVERSE OF THOMSON AND TAIT S THEOREM

35. It is well known that if straight lines are drawn orthogonal

to any given surface they will necessarily be orthogonal to an
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infinitude of surfaces (namely the surfaces parallel to the given

surface) . Thomson and Tait in their Natural Philosophy showed

that this property of the &amp;lt;x&amp;gt;

4
straight lines of space holds for the

oo 4
trajectories described in any conservative field with the same

total energy, that is, for any natural family. The writer has

proved that no other families of curves have the property: it is

entirely characteristic of the natural type.* We first state the

original theorem in connection with the general theory of the

calculus of variations, and then take up the converse theorem.

Later a second converse question is discussed.

35 . Thomson and Tait s Theorem. We have seen that a

natural family of curves in space may be regarded as the totality

of extremals of a variation problem of the particular form

(1) J = fF(x, y, z)ds,

where F is a point function, ds is the element of length

2 + df + dz* = l + y
2 + z

2

dx,

and the integral is taken between fixed end points.

It is easily shown that for integrals of this form,f and for no

others, the relation of transversality, in the sense of the calculus

of variations, amounts merely to orthogonality. This suffices

to distinguish our type among variation problems of the general

form

(2) //(*, y, z, y z )dx.

But of course it does not serve as a complete geometric test for

a natural family. What is the geometric character of the systems

of oo 4 extremals connected with any variation problem(2)?

This is an unsolved question in the calculus of variations. J

* At least in the case of space of three dimensions. Cf. Trans. Amer.

Math. Soc., vol. 11 (1910), pp. 121-140.

t Cf. Bolza, Variationsrechnung, p. 691; also p. 146 for the two-dimensional

problem due to Hedrick.

J See the author s paper, &quot;Systems of extremals in the calculus of variations,&quot;

Bull. Amer. Math. Soc., vol. 13 (1908), pp. 289-292.
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We are concerned here only with the integrals of special form J,

defining natural families. Applying Kneser s fundamental

theorem on transversals,* we have this well-known result: If from

the points of any surface S we construct the extremals orthogonal

to the surface, and on each lay off an arc so that the integral J

takes some constant value, then the locus of the end points is a

surface which is also orthogonal to the extremals.

36. This is known as the theorem of Thomson and Tait. It

was obtained by them in connection with the dynamics of a

particle moving in a conservative field the first interpretation

of a natural family considered in 28. Here F(x, y, z) represents

the speed v, as determined by the energy equation

^2= 2(W+h),

where W denotes the work function (negative potential), and

the mass is assumed to be unity. Of course h has a fixed value.

We quote the original statement of the theorem:
&quot;

If from all points of an arbitrary surface particles not mu

tually influencing one another be projected normally with the

proper velocities [so as to make the sum of the kinetic and potential

energies have a given value]; particles which they reach with

equal actions lie on a surface cutting the paths at right angles.&quot;

The integral J, in this case, represents the action

f,ds= f \2(W + h)ds.

The oo l surfaces cutting the curves orthogonally thus appear as

surfaces of equal action.

The corresponding statement for brachistochrones is sometimes

called the theorem of Bertrand:] From the points of any surface

draw the brachistochrones normal to the surface and on each lay

off lengths so that the time of transit is equal to a given quantity;

then the locus of the end points will be another surface orthogonal
*
Bolza, pp. 131 and 691.

t Cf. Routh, Dynamics of a Particle (1898), p. 376. According to Appell,

Mecanique rationelle, vol. 1 (1909), p. 466, this result was indicated by Euler.

12
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to the brachistochrones. Here the integral J represents the time

C dt
- C d-s- - C _^__

J J J Tl2W h

so that the orthogonal surfaces appear as surfaces of equal time.

Corresponding statements may be made, of course, for the other

interpretations leading to natural families. The most concrete

aspect is obtained by using the language of optics. Here the

integrand function is simply the index of refraction v(x, y, z),

varying from point to point in any (isotropic) medium, and the

integral J vds is proportional to the time. The paths of light in

such a medium form a (single) natural family, and every natural

family may be obtained in this way. The oo 2
rays (in general

curved) starting out normally from anys urface admit oo 1

orthogonal surfaces. These present themselves as surfaces of

equal time. We shall describe them as a set of wave fronts or

wave surfaces.

37. The geometric part of the theorem of Thomson and Tait

may be stated as follows: In any natural family of oo 4
space curves,

the co 2 curves which meet any surface orthogonally always form a

normal congruence.

Is this geometric property, which we shall refer to as the

Thomson-Tait property, characteristic? This is in fact the case.

We shall prove, namely, the following

CONVERSE THEOREM. // a quadruply infinite system of curves in

space is such that oo 2
of the curves meet an arbitrarily given surface

orthogonally* and always form a normal congruence (that is, admit

an infinitude of orthogonal surfaces) ,
then the system is of the natural

type, that is, it may be identified with the extremal system belonging

to an integral of theform jF(x, y, z)ds.

38. The result is simple but the proof is rather long. We give

the essential steps.

Consider an arbitrary quadruply infinite system of curves in

* This means the same as requiring that one curve of the system passes

through each point of space in each direction.
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space, assuming that one passes through each point in each

direction. Such a system may be defined by a pair of differential

equations of the second order

(1) y&quot;

= F(x, y, z, y ,
z ), z&quot;

= G(x, y, z, y ,
z ),

where F and G are uniform functions which we assume to be

analytic in the five arguments. Denoting the initial values of

x, y, z, y , z , which may be taken at random, by x, y, z, p, q

respectively, and^ employing X, Y, Z as current coordinates,

we may write the solutions of (1) in the form

Z = 2 + q(X - x)

Here F and G are expressed as functions of .r, y, z, p, q; and M
and N, found by differentiating (1), are given by

M = FX + pFy + qF2 + FFP + GF qt

( O )

N = Gx + pGy + qGz + FGP + GGq .

The terms of higher order will not be needed in our discussion.

Equations (2) involve five arbitrary parameters but of course

represent only oo 4 curves.

Consider now an arbitrary surface 2

(4) z=f(x,y~).

At each point of this surface and normal to it a definite curve

of the given family (1) may be constructed. A certain congruence
will thus bt determined. We wish to express the condition

that this shall be of the normal type, that is, that the oo 2 curves

shall admit a family of orthogonal surfaces.

The direction normal to the surface 2 at any point is given by

1 -P q=fx :/ :- 1,

so that

(5) P = P(x, y), q
=

Q(x, y),

where

(50 P - /,// Q - -
I//,.
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These functions are connected by the relation

(5&quot;) PQ* - QP* - Qv
= 0.

The equations of the oo 2 curves corresponding to the given

initial conditions may now be written

X = x + t,

(6) y=2/+P*

where t takes the place of X x in (2), and where the bars

indicate that the substitution (4), (5) has been carried out, so

that, for example,

(7) F(x,y)=F(x,y,f,P,q).

The coefficients of the powers of t in (6) are thus functions of the

two parameters x, y.

The general condition for a normal congruence given in para

metric form is*

(8) (Y XY) -
(Z ZX} + F (Z FZ) - Z (Y YZ] =

0,

where the parentheses denote jacobians taken with respect to tt

x, y, and Y ,
Z f denote the derivatives of F, Z respectively

with respect to t.

Expanding (8) in powers of t in the form

(9) ^0+ firf + W+ ,

we find that fi vanishes in consequence of (5&quot;).
This is as

it should be, since our oo 2 curves are orthogonal to S by con

struction.

The terms containing the first power of t give

Q)

* We may also use the convenient form due to Beltrami. Cf. Bianchi-

Lukat, Differentialgeometrie, p. 340.
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From (6 ) we find

Fx = Fx + FJX + FPPX + F QQX ,

with corresponding results for Gx and Gy . Substituting these

values, and observing from (5) and (5 ) that

/..-
-

i/ft / = -
PIQ, Q = PQ* - ftP

we may reduce (10) to

(10 ) X {QFX-F,-PG:+GU+(QFP-QG,-PGP)PX

This is then a necessary condition in order that the oo 2 curves

belonging to the quadruply infinite system (1) and orthogonal

to the surface (4) shall form a normal congruence. The result

is to hold in virtue of (4) and (5).

It is of course not a sufficient condition. It merely expresses

the fact that the curves orthogonal to S are also orthogonal to

some consecutive surface, that is, that the congruence is approxi

mately normal to the first degree.

Our main problem is to find all systems (1) which have the

orthogonality property with respect to every base surface S.

It is then necessary that (10 ) should be true for an arbitrary

function /(.r, y). The function can be so selected that for any
chosen values of x and y the quantities /, P, Q, Px ,

Py , Qx ,

shall take arbitrary numerical values; for the only relation to

be fulfilled is
(5&quot;)

and this merely determines Qy . The con

dition (10
7

) must therefore hold identically. Arranging it in the

form

(10&quot;) (1 + P2 +
&amp;lt;2

2
)C + QdQx + C,Py

- C,PX = 0,

and equating coefficients to zero, we find

Co = qFx -F.- PGX + Gy
=

0,

d = (1 + p
2 + q-)F q

- 2qF = 0,

(11) C2 = (1 + tf + q*)Gp
- 2pG =

0,

+ PGP
- qFp ]

+ 2pqF - 2(p
2 + q

z
)G = 0.
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Integration of the second and third of these partial differential

equations gives

F = /i(p, xt y, z)(l + tf + g
2
), G = gi (q, x, y, z)(l + tf + &amp;lt;?

2
),

where /i and gi denote unknown functions of the four arguments
indicated. Substituting these values in the fourth equation,

we find /ip
=

giq , and therefore

/i
= $ - p0, gi

= x ~ ?*,

where
&amp;lt;j&amp;gt;, \f/, x are functions of x, y, z only. The general solution

of the last three equations of the set (11) is therefore

(12) F= (^-^)(l+p2
+&amp;lt;/

2
), G= (x-g&amp;lt;(l+F4-&amp;lt;?

2
).

We have still to satisfy the first equation of (11), which now

reduces to

(13) ik
-

Xy + p(Xx
~

&amp;lt;W + q($y
~ iW = 0.

The functions 0, \l/, x must therefore satisfy the equations

(130 ^ ~
Xy = 0, Xx - &amp;lt;t&amp;gt;*

=
0, (/),

- ^ =
0,

and hence are expressible as the derivatives of a single function

in the form

(13&quot;) 4&amp;gt;

= L,, * = L,, x = i,-

The solutions of the set (11) are therefore

r-(h- Pi,)(i + y
2 + ?

2
),

G= (L,-pLI)(l + p+9I
),

involving an arbitrary function L of z, y, z. The resulting system

(1) is thus recognized to be a natural family. This gives our

fundamental converse theorem.

39. In the above discussion use has been made, not of the

complete condition for a normal congruence, but only of con

dition (10 ) derived from the terms of the first order in t. We

may therefore state a stronger converse result as follows:
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(
The only systems of oo 4 curves which have the property that

the curves orthogonal to any surface are always orthogonal to some

infinitesimally adjacent surface are those of the natural type.

If a congruence of curves meets two neighboring surfaces

orthogonally it need not meet oo 1 surfaces orthogonally, and

therefore it approximates to, but need not coincide with, a normal

congruence. The above theorem shows however that if the

weak requirement of approximate normal character be imposed
on all the congruences obtained from the given quadruply infinite

system, they will all be exactly normal.

40. We may further strengthen our theorem by demanding the

orthogonality property for some instead of all surfaces. Our

fundamental equations (11) resulted from the fact that x, y, z,

/, P, Q, Px , Py, Qx might receive arbitrary numerical values.

It will therefore be sufficient to take a manifold of surfaces

sufficiently large to leave these quantities, or the equivalent

quantities

(15) X, y, Z, ZX , Zy, ZXX ,
ZX y, Zyy,

unrestricted. Since these quantities define a differential surface

element of the second order, we may state the result as follows:

The converse theorem remains valid if, instead of considering

all base surfaces, we employ a manifold of surfaces sufficiently

large to include all the oo 8
possible differential elements of the

second order.

41. The Thomson-Tait theorem holds of course even when the

base S shrinks to a curve or a point: there will still be a normal

congruence orthogonal to the curve or point (in the latter case

orthogonality means simply passage through the point). We
state a number of results obtained in this connection.

If for an arbitrary curve as base the corresponding oo 2
orthog

onal curves of a given quadruply infinite system always form

a normal congruence, the given system is necessarily natural.

If we require each of the congruences here considered to be

of approximately normal character, a more general type of system
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is obtained, namely the velocity type of 32. The velocity type

is thus characterized by the fact that those curves of the system

which meet an arbitrary curve orthogonally are orthogonal to

some infinitesimally adjacent (of course tubular) surface. We
may even restrict ourselves to the case where the base is a curve

of the given system, or the case where it is any straight line.

42. Suppose next that the base is an arbitrary point. Are

natural families the only families of oo 4 curves such that the oo 2

curves passing through any point form a normal congruence?

A discussion shows that this is not the case. There exist families

not of the natural type, for example, that defined by the dif

ferential equations

y&quot;

= y \ z&quot;
=

0,

with the restricted property stated. To find all such systems

would be a rather difficult, but certainly an interesting, under

taking. The result would of course include the natural type as

a special case.

43. It will not however be the velocity type. It may be

shown in fact that the only velocity systems for which the curves

passing through an arbitrary point constitute always a normal

congruence are those of the natural type. Recalling the fact

that the velocity type is characterized by property A, we may

give a new characterization of the natural type as follows:

Natural families are the only quadruply infinite systems of curves

in space such that the oo 2 curves through an arbitrary point admit

an infinitude of orthogonal surfaces, and such that the osculating

circles constructed at the common point form a bundle.

44. It may also be shown that if for every point and every

straight line as base the corresponding congruence is normal,

the system will be natural. To have a velocity system it is

sufficient to demand that the congruence corresponding to an

arbitrary straight line shall be approximately normal. To have

a natural system it is sufficient to demand approximate normality

for the congruences corresponding to arbitrary straight lines and

planes.
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45-53. WAVE PROPAGATION IN AN ISOTROPIC MEDIUM:

PROPERTIES OF WAVE SETS

45. The optical interpretation of a natural family and the

Thomson-Tait property suggest certain sets of surfaces wrhich

we shall now study.

Consider a given medium defined by its index of refraction

v(x, y, z) given as a function of position. The rays (in general

curved lines) are the oo 4 extremals of

(1) J v (x &amp;gt; y&amp;gt;

z^as
~

minimum;

they form the natural family, whose differential equations are

y&quot;

= (L y
/

ix)(1 + y
/ +a /

)

(2)
&quot;-

?

2
,

2

where

(2 ) L = log v.

The oc 2

rays orthogonal to any selected surface S form a

normal congruence, that is, are orthogonal to a set of oo 1 surfaces.

A disturbance originating in the medium on the surface S will

be propagated in the medium through this set of surfaces, which

we term a set of wave fronts. In the given medium an arbitrary

surface belongs to one and only one of these wave sets. A single

surface is thus of arbitrary character, but the sets of surfaces

(3) f(x, y, z)
= constant

that may be wave sets are restricted by the Hamilton-Jacob i

equation

(4) /

The given medium defines also a certain set of level surfaces

v(x, y, z)
= constant.

This, it should be noticed, is not usually a wave set the only ex

ception arising when the level surfaces are parallel. For a given
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medium the number of wave sets is oo
00

, since there is one for

each surface. Each of these sets is cut by the level surfaces in

the equidistant curves of the wave set; that is, along any one of

these curves the distance between consecutive wave surfaces

remains the same.*

46. A single set of wave fronts has no geometric peculiarity.

That is, given any set of surfaces f(x, y, z)
= constant, it will

always be possible to find a medium in which that set will serve

as a wave set. In fact there are oo such media. For in

equation (4), the given function /, without altering the given

surfaces, may be replaced by an arbitrary function 12(/) of itself,

and this gives oo 00
distinct values for v.

When will two sets of wave fronts be consistent? Two arbi

trary sets of surfaces / = constant, /i
= constant cannot usually

be regarded as wave sets in any single medium. The requisite

condition is

where 12, 12i may be any functions. An equivalent condition

is that it must be possible to chose parameters for the two sets

in such a way that

_#
dn drii

where dn and dn\ denote the normal distance between consecutive

surfaces.

47. But a clearer answer may be given in terms of the geometric

properties A and B. If a set of surfaces is to be a wave set, the

oo 2
orthogonal curves must be members of the natural family of

oo 4
rays. If two sets of wave fronts are given, we have then two

congruences of curves. The question then is, when can two

normal congruences of cufves be regarded as belonging to a

natural family?

* This follows immediately from (4) . It is to be remarked, however, that

this property is not characteristic of wave sets.
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Take any point p in space, and consider the two curves, one

from each of the congruences, passing through it. The circles

of curvature at p must intersect again at some point P (by

property A). This condition makes sure that the two congru

ences belong to some velocity system. If now this is to be a

natural system, we must also add property B or rather, since

no hyperosculating circles are directly defined, the equivalent

restriction (see page 47) relating to the transformation from p to

P. The final answer may then be given as follows:

Two sets of wave surfaces belong to the same optical medium when

and only when they satisfy the following geometric conditions:

(A
r

) At any point p of space the circles of curvature of the orthog

onal trajectories of the two sets of surfaces, passing through that

point, intersect again at some point P.

(B } The point transformation from p to P has the property that

the three lineal elements of p each of which corresponds to a cooircular

element at P are mutually orthogonal.

48. Two sets of surfaces taken at random will not belong, as

wave sets, to any medium. On the other hand, as we have said,

one set belongs to oo 80
distinct media. The question then arises,

just what will uniquely determine a medium.

A natural family is uniquely determined if we are given one set

of wave fronts and a single extra trajectory. This means a tra

jectory not belonging to the congruence defined as the orthogonal

trajectories of the wave set.

49. The extra curve however cannot be taken at random; it

must be related in a certain way to the wave set. If the wave

set is f(x, y, z)
= constant, then the condition on the curve is

that it satisfy the Monge equation of second order

(3)

2Ay&quot;
-

(1 + y&quot; + O(A, - /A,) /,
-

y f,

2Az&quot;
-

(1 + y
1 + O.(A,

- z Ax ) /,
- 2 /,

where

(3 ) A =#+/*+/,.

=
0,
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Here/, and hence A, are given, and y and 2 are unknown functions

of x. The interpretation is obvious from property A.

In order that an extra curve shall be consistent with a given

wave set (that is, in order that both shall belong to a single

medium) it is necessary and sufficient that the curve shall cross

the surfaces (of course obliquely) in such a way that at any point

of intersection the circle of curvature of the extra curve shall

intersect the circle of curvature of the curve orthogonal to the

surfaces. When the curve satisfies this restriction, it defines

with the given wave set a unique natural family.

50. If we are merely given one wave set, the number of possible

media is oo* (since v involves arbitrary functions). Each of

these has oo 4
rays (forming a natural family). The totality of

media give rise to a totality of oo rays, namely the solutions

of the Monge equation of second order (3). This equation is of

the type

Ay&quot; + Bz&quot; + 0=0

(where the coefficients are functions of x, y, z, y } z ), which the

author has shown to be characterized by the Meusnier property:*

Those curves which pass through a given point in a given direction

have circles of curvature (constructed at the common point)

generating a sphere.

51. The inverse problem connected with natural families,

namely, given the oo 4
trajectories to construct the generating field

of force, is solved immediately in connection with property A.

The force acting at any point p acts in the line joining that point

to the corresponding point P, and its intensity is proportional to

the reciprocal of the distance between the two points. | This

construction may be carried out if we know a sufficient number of

trajectories, without knowing the whole system.

52. The greatest number of rays which two distinct media

*Kasner, Bull. Amer. Math. Soc., vol. 14 (1908), pp. 461-465. The
result includes the extension of Meusnier s theorem made by Lie, and is in

fact the largest generalization possible.

f The determination of the potential function W(x, y, z) or, what is equiv

alent, the index of refraction v(x, y, z), requires a quadrature.
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can have in common is o 2
(one through each point of space).

If two media have that many in common, it is easily shown that

the resulting congruence is necessarily normal. Any normal

congruence can be obtained in this way, for, as stated above, it

belongs, not only to two, but to oc distinct media.

53. We mention only one special problem: the determination of

those media in which disturbances are propagated by Lame families

of surfaces; that is, every wave set is to be of the Lame type (thus

forming part of a triply orthogonal family of surfaces). The

index of refraction is found to vary inversely as the power of the

point with respect to a fixed sphere; the rays then are the oo 4

circles orthogonal to that sphere. Since the radius of the sphere

may be zero, real, or imaginary, these media yield well known

interpretations of parabolic, hyperbolic, and elliptic geometries.

(See Transactions of the American Mathematical Society, volume

12 (1911), pages 70^74.)

54-61. A SECOND CONVERSE PROBLEM CONNECTED WITH

THE THOMSON-TAIT THEOREM

54. Consider the general conservative field, defined by its

work function W(x, y, z). With any motion of the particle there

is associated a definite value of the constant of total energy

ir2 _ jp = h.

If h is not assigned the complete system of trajectories is made up

of oo 5 curves.

Consider now an arbitrary surface, which we term the base

surface,

(2) z = /(*, y).

From each of its points we may draw normal to the surface oo 1

trajectories since the initial value of the speed v is arbitrary,

We thus have in all oo 3
trajectories normal to Z. In order to have

a congruence we must assign the value of v at each point of 2,

that is, w^e must give a law of distribution of the initial speed. The

question arises: What form of law will make the corresponding
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congruence a normal congruence? Of course for any law the

congruence will be orthogonal to the base surface, but usually

it admits no other orthogonal surfaces.

The Thomson-Tait theorem (in its complete dynamical form)

gives one such law: it states that if the initial speed is selected so as

to make h have the same value at all the points of S, the congru

ence will be normal. It thus gives a plan for constructing oo 1

normal congruences for a given base, one for each value of h.

We shall refer to any one of these as &quot;constructed according

to the Thomson-Tait law.&quot;

Is this the only answer to our question? If oo 2
trajectories

are drawn orthogonal to S and if they form a normal congruence,

does it follow that the distribution of values of the initial speed

is precisely such that the sum of the kinetic and potential energies

has the same value at all points of 2?

The requisite discussion is not simple. We shall merely state

the results we have obtained.

55. The answer to our question is
&quot;

in general
&quot;

in the affirma

tive. The first converse theorem, discussed in 37, is true

without exception. The present is true with exceptions which

may be definitely limited.

For a
&quot;

general
&quot;

base surface 2 in a given conservative field of

force, the only congruences, formed by oo 2
trajectories orthogonal to

S (one drawn at each point), which admit an infinitude of orthogonal

surfaces, are those constructed according to the Thomson-Tait law

(so that the total energy has a constant value).

56. To make this precise we must of course limit the class of

exceptional surfaces connected with a given field. These appear

in the analytical discussion as the solutions of a certain partial

differential equation of the second order*

Wx + qW2 Wx + qW2

* The expanded result is of the form

Pir + F 2s + Pd + P* =
0,

where r, s, t denote the derivatives of second order of z = f(x, y).
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where W is the given work function, and

- Wz

Vl + p
2 +

&amp;lt;?

2

This differential equation defines a class of surfaces which is

seen to depend only on the equipotential surfaces

W(x, y, z)
= constant.

The result may be put into geometric form and stated as follows :

The only surfaces Z which may be exceptional in the theorem of 55

(that is, which may give rise to normal congruences not included in

the Thomson-Tait law) are those with this property: along each of

the equipotential lines* of the surface the component of the acting

force normal to the surface is constant.

57. Observe that it is not stated that the surfaces described,

which exist in any field, actually give rise to additional normal

congruences. To understand the situation more precisely, it is

necessary to observe that in the analytic discussion the condition

for a normal congruence is developed in the form

/ Q! + ?& + . . . =
0,

where t is the parameter which varies along the curve, starting

with the value zero on the surface 2, and the coefficients Q are

functions of the two parameters defining the initial points on 2.

By assumption the congruence is orthogonal to 2, so the term 120j

independent of t, will not appear. For a normal congruence all

the coefficients 12 must vanish. If only a certain number vanish

the congruence may be described as approximately normal (the

approximation being of degree n if 12i
= 122

= 12n
= 0) :

the curves are then orthogonal not only to 2 but also to one or

more (infinitesimally) adjacent surfaces.

58. If now we impose on the congruence of trajectories normal

to 2 the condition 12 1
=

0, we find that this may be fulfilled for

* The equipotential lines of any surface are the lines cut out by the equi

potential surfaces W = const.
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any surface: the restriction is merely on the law of initial speed

and means that the total energy must be the same, not necessarily

over the entire surface, but along each equipotential line of the

surface.*

59. If we further impose the condition fi2
=

0, then for a
&quot;

general surface
&quot;

the law of speed must be the Thomson-Tait

law, but for an
&quot;

exceptional surface
&quot;

the law is the more general

one just stated.

60. The discussion of the higher conditions Q3
=

0, etc., we

have not completed. It is therefore not known precisely in

which cases normal congruences (in the exact sense) may arise.

For central and parallel fields it may be shown that the exceptional

surfacesf actually give rise to normal congruences (in addition

to those included in the Thomson-Tait theory): for such fields

the vanishing of the higher coefficients follows from the vanishing

of the first two.

61. The principal results of the converse problem may be

formulated as follows:

// oc 2
trajectories (of a conservative field), meeting a surface S

orthogonally, are also orthogonal to an infinitesimally adjacent

surface, then the total energy along each equipotential line of S

is constant.

If oo 2
trajectories, selected from the complete system of &amp;lt;x&amp;gt;

5
, form a

normal congruence, then in general they will all belong to the same

natural family (that is, the total energy will be the same for all the

curves) ; except possibly when the oo l

orthogonal surfaces^ are ex

ceptional in the sense defined in 56 (the additional congruences

then and only then are normal to at least the second degree of

approximation) .

Normal congruences not of the Thomson-Tait type (that is, not

*
If, in particular, the surface is one of the equipotential surfaces, the dis

tribution of speed is thus entirely arbitrary.

t In the case of ordinary constant gravity the exceptional surfaces are

those termed moulure surfaces by Monge: they are generated by rolling the

plane of any plane curve about a vertical cylinder of arbitrary cross section.

t If one of these surfaces is exceptional, all will be.
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selected from icithin a natural family) actually arise for central

and parallel fields.

62-67. GEOMETRIC FORMULATION OF SOME CURIOUS OPTICAL

PROPERTIES

62. In Thomson and Tait s Natural Philosophy* the character

istic function of Hamilton is applied to the motion of a particle

in a conservative field of force, and certain results are obtained

which we shall try to restate as purely geometric properties of

a natural family of trajectories. To what extent these properties

are characteristic is not settled. We quote the principal

passages referred to.

&quot;

Let two stations, and ,
be chosen. Let a shot be fired

with a stated velocity, V, from 0, in such a direction as to

pass through . There may clearly be more than one nat

ural path by which this may be done; but, generally speaking,

when one such path is chosen, no other, not considerably diverging

from it, can be found; and any infinitely small deviation in the

line of fire from 0, will cause the bullet to pass infinitely near to,

but not through, . Now let a circle, with infinitely small

radius r, be described round as center, in a plane perpendicular

to the line of fire from this point, and let all with infinitely nearly

the same velocity, but fulfilling the condition that the sum of the

potential and kinetic energies is the same as that of the shot from

bullets be fired from all points of this circle, all directed infinitely

nearly parallel to the line of fire from 0, but each precisely so as

to pass through . Let a target be held at an infinitely small

distance, a
, beyond ,

in a plane perpendicular to the line of the

shot reaching it from 0. The bullets fired from the circum

ference of the circle round 0, will, after passing through ,

strike this target in the circumference of an exceedingly small

ellipse, each with a velocity (corresponding of course to its

position, under the law of energy) differing infinitely little

from V, the common velocity with which they pass through .

Let now a circle, equal to the former, be described round
,

* Part I (Cambridge, 1903), pp. 355-359.

13



66 THE PRINCETON COLLOQUIUM.

in the plane perpendicular to the central path through , and

let bullets be fired from points in its circumference, each with

the proper velocity, and in such a direction infinitely nearly

parallel to the central path as to make it pass through 0. These

bullets, if a target is held to receive them perpendicularly at a

distance a = a V/V, beyond 0, will strike it along the circum

ference of an ellipse equal to the former and placed in a
&quot;

cor

responding
&quot;

position; and the points struck by the individual

bullets will correspond; according to the following law of
&quot;

cor

respondence &quot;: Let P and P r be points of the first and second

circles, and Q and Q the points of the first and second targets

which bullets from them strike; then if P be in a plane containing

the central path through and the position which Q would

take if its ellipse were made circular by a pure strain; Q and Q
are similarly situated on the two ellipses.&quot;

63. The second passage is as follows :

&quot; The most obvious optical

application of this remarkable result is, that in the use of any

optical apparatus whatever, if the eye and the object be inter

changed without altering the position of the instrument, the mag

nifying power is unaltered.&quot; . . .

&quot;

Let the points and be the

optic centers of the eyes of two persons looking at one another

through any set of lenses, prisms, or transparent media arranged

in any way between them. If their pupils are of equal size in

reality, they will be seen as similar ellipses of equal apparent

dimensions by the two observers. Here the imagined particles

of light, projected from the circumference of the pupil of either

eye, are substituted for the projectiles from the circumference

of either circle, and the retina of the other eye takes the place

of the target receiving them, in the general kinetic statement.&quot;*

* This fact and many other applications are included in the following

general proposition.
&quot; The rate of increase of any one component momentum,

corresponding to any one of the coordinates, per unit of increase of any other

coordinate, is equal to the rate of increase of the component momentum cor

responding to the latter per unit increase or dimension of the former coordinate,

according as the two coordinates chosen belong to one configuration of the

system, or one of them belongs to the initial configuration and the other to

the final.&quot;
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64. The statement in the first passage is not purely geometric;

for it involves not only the curves described, but also the speeds

V and V at the points and . We therefore try to formulate

the part of the theorem which is really geometric.

We have a natural family made up of so 4 curves in space,

one for each initial lineal element (point and direction) of space.

Select any one of these curves c and any two points and

upon it. Construct the planes p and p
f normal to this curve at

and .

For each direction through 0, a curve of our family is deter

mined; this strikes the plane p at a definite point. We thus have

a certain correspondence between the bundle of directions

through and the points of p . For directions infinitesimally

close to the direction of c at 0, and for points close to , this

correspondence is linear; and by a proper selection of cartesian

axes at and , we may write the correspondence in the canon

ical form

where (x
f

, y ) denote the coordinates of the point in the plane

p , and the corresponding direction at has direction cosines

proportional to ( : 77 : 1).

In an entirely analogous way, by considering the curves of

the natural family which go through ,
and the points of inter

section with the plane p, we obtain a second linear correspond

ence which may be reduced to the form

=
&amp;lt;x2x, rj

f =
fay,

where (x, y) is the point in the plane p and ( : r\ : 1) gives the

corresponding direction at .

If we were dealing with an arbitrary family of o 4
curves, in

stead of a natural family, these linear correspondences would still

exist; but the choice of axes in the second canonical form would

be different from that required in the first, and the two constants

appearing in the second form would be independent of those
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appearing in the first. The peculiarity of the natural type may be

stated in the following form: First, the canonical axes for the two

correspondences coincide; second, the ratio of the characteristic

constants has the same value for both correspondences.

This is the essential geometric content of the long statement

quoted above from Thomson and Tait. Is this characteristic

of the natural type? We do not know.

64 . A statement in more concrete terms is of interest. If we

start out from in directions equally inclined (the fixed angle

is of course assumed infinitesimal) to the direction of c,

that is, along a cone of revolution having for axis the tangent

of c, the resulting trajectories forming a sort of curvilinear cone,

we strike points on p located on an ellipse with as center.

By changing the angle of the cone we obtain a family of similar

and similarly situated ellipses. The principal axes of these

ellipses are the canonical directions referred to above for the first

correspondence, and the ratio of the diameters is equal to the

ratio of the canonical constants (a\ :/3i). By starting from the

other point O
r

along cones of revolution having for axis the tan

gent to c, we strike the plane p in a second set of homothetic

ellipses. The two sets of ellipses thus obtained, one in the plane p,

and the other in the plane p ,
are similar. This is part of the

property stated, but not the whole. It should be observed that

it has no meaning to say that the two sets are similarly situated,

since they are in different planes.

65. We may, however, obtain two sets in the same plane as

follows : If we start along the cone of revolution from 0, we hit p

in an ellipse. If we wish to hit p in a circle, we must start at

along a certain elliptical cone : the sections of this cone by planes

parallel to p , projected orthogonally on p , give a set of homothetic

ellipses. We thus have in the plane p
f

, two sets of ellipses, the

first set being obtained from cones of revolution at 0, and the

second set being obtained from elliptical cones at by orthogonal

projection of parallel sections. If we were dealing with an arbi

trary family of curves, the two sets thus obtained would be un

related: for a natural family, however, the two sets coincide.
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66. Of course we could also construct two sets in the plane p
and these would coincide; but this would not give an additional

property. In the statement quoted, certain pairs of congruent

instead of merely similar ellipses appear, but that is due to the

introduction of kinematics: namely, use is made of the velocities

V and V at the points and .

&quot;

If and are regarded as

optic centers of the eyes of two persons looking at one another

through any optical apparatus, and if their pupils are of equal

size in reality, they will be seen as similar ellipses of equal

apparent dimensions by the two observers.&quot; It should be ob

served, however, that the dimensions will be equal only under

the assumption that the two eyes are at positions for which the

velocities V and V, or, what is equivalent, the indices of re

fraction v and v
,
are equal. In the most general case of an

isotropic medium, the ellipses will not have equal apparent di

mensions, but the ratio of the dimensions will be equal to the

ratio of the two velocities.

67. Two converse questions remain unanswered. First: Find

all systems of o 4 curves in space such that circles about and

O r

appear as similar ellipses.

Second: Find all systems such that the set of ellipses in the

plane p formed by starting from along cones of revolution,

and the set of ellipses found by orthogonal projection upon p
of the sections cut out by planes parallel to p of those (elliptical

curvilinear) cones at which strike plane p in circles, such that

these two sets of ellipses shall coincide.

68-72. THE SO-CALLED GENERAL PROBLEM OF DYNAMICS

68. Consider any material system (particles or rigid bodies)

with n degrees of freedom, so that its position at each instant is

determined by n independent coordinates denoted by xi, x2 , ,

xn . The kinetic energy T will be represented by a quadratic form

where the coefficients a are functions of the coordinates, and
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the dots denote time derivatives. If the acting forces are con

servative, there will exist a force function W(x\, 2 , ,
xn),

which is assumed to be independent of the time, and the equation

of energy

T- W = h

asserts that in any given motion the sum of the kinetic and

potential energies is constant.

The so-called general problem of dynamics requires the

determination of the motions when we are given the form T,

the function W, and the constant h. The possible trajectories

are then given by the Jacobi principle of least action as the

extremals of the integral

This defines the most general naturalfamily. The integral is of the

form fFds, where F is any point function and ds is the length-

element in a general n-dimensional variety Vn defined by

69. Such a family consists of oo 2 &quot;-1 * curves, in the space Vn ,

one passing through each point in each direction. A complete

characterization is given by J. Lipke, in his doctor s dissertation,*

as follows :

(Ai) The locus of the centers of geodesic curvature of the co&quot;-
1

curves passing through any point of Vn is a flat space of n 1

dimensions Sn-i-

(^ 2 ) The osculating geodesic surfaces (two-dimensional

varieties) at the given point form a bundle of surfaces, all con

taining a fixed direction (and hence the geodesic line in that

direction) which is normal to the S n-i of property A.

(B) The n directions at any point, in which, as a consequence

of the preceding properties, the osculating geodesic circles (circles

* Trans. Amer. Math. Soc., vol. 13 (1912), pp. 77-95.
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of constant geodesic curvature) hyperosculate the curves of the

given family, are mutually orthogonal.

70. This gives the generalization of properties A and B stated

in 29-31. The simpler results there given for ordinary space

apply to a euclidean space of any dimensionality and also to

spaces of constant curvature. In the general space of variable

curvature, the geodesic circles constructed at a given point do

not all meet at a second point, and so no analogue of the law of

reciprocity of natural families presents itself.

71. The theorem of Thomson and Tait remains valid for any

space.* The converse questions connected with it have not been

settled. In all probability the Thomson-Tait geometric property

is characteristic in any space (flat or curved) of dimensionality

greater than two. Obviously in the case of two dimensions the

geometric converse is not valid, since any system of oc 1 curves

admits oc 1

orthogonal curves.

72. The systems characterized by property A (meaning A\

together with A*) are the most general velocity systems in Vn .

The case n = 2 presents a peculiar feature: for then, included in

the velocity type, we have, in addition to the natural type, another

special type of interest (geometric, rather than dynamic), namely
the isogonal typef (systems formed by the oc 2

isogonal trajectories

of an arbitrary simply infinite system of curves). In the case

of the plane (or any surface of constant curvature) the reciprocity

construction for velocity systems is available, and each of the

species, natural and isogonal, is self-reciprocal. The only

families common to the two species are those formed by the

isogonals of an isothermal system, or, what is the same, by velocity

systems generated by Laplacian fields of force. {

* Cf. Darboux, Lemons, vol. 2, last chapter, where references to the memoirs
of Lipschitz and Beltrami are given.

t Scheffers introduced the systems of plane curves
y&quot;

=
(4/ y &amp;lt;p)

(1 + y
2
) in connection with the theory of isogonals, and obtained a law of

reciprocity for isogonal systems. Cf. Leipziger Berichte, 1898, 1900; Mathe-

matische Annalen, vol. 60.

J Cf. the author s note,
&quot; Isothermal systems in dynamics,&quot; Bull. Amer.

Math. Soc., vol. 14 (1908), pp. 169-172.
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We note finally this characteristic distinction between the two

noteworthy species:

For both natural and isogonal families in the plane, the circles

of curvature constructed at any point p have another point P
in common. The point transformation T (from p to P) in the

natural case is such that the two lineal elements at any point,

each of which is converted into a cocircular element, are orthog

onal; while in the isogonal case the two elements, each of which

is converted into an element normal to a cocircular element, are

orthogonal.

If the transformation T connected with a velocity system is

required to be (direct) conformal, the corresponding field must

be Laplacian. Such fields are distinguished from all others by

the fact that each of the infinitude of systems of velocity curves

is then expressible linearly in the two parameters involved.



CHAPTER III

TRANSFORMATION THEORIES IN DYNAMICS

73-81. PROJECTIVE TRANSFORMATIONS

73. The general object of a transformation theory is to relate

new problems to old problems, and so to proceed from the solution

of the latter to the solution of the former. The most important

geometric transformations are the projective and the conformal.

Both groups play important roles in dynamics, the former in

connection with general fields, and the latter in connection with

conservative fields.

74. The importance of projective transformations in dynamics
was brought out by Appell in 1889. Given any positional

field of force in the plane, the corresponding equations of motion

are of the form

&amp;lt;Px
&amp;lt;T~y

(1) jp-rfeiOj -jjt

=
t(x,y)&amp;gt;

If an arbitrary point transformation, unaccompanied by any

change in the time, is applied, the new differential equations

will usually involve not only x and y, but also the velocity com

ponents dxjdt, dyjdt. In fact the only exception is where the

point transformation is merely affine:

xi = ax + by + c, iji
= a x + b y + c .

Appell showed that if a general collineation

ax + by + c a x + b y + c
f

a&quot;x + b&quot;y + c
&quot;

~
a&quot;x + b&quot;y

is accompanied by a change of the time of the form

dt
dil ~

k(a&quot;x+ b&quot;y+ c&quot;)

2

73
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the new differential equations will be of the original form

d2
xi

2

(3)

and therefore define motion in some new positional field of force.

The relation between the new field and the original field is

explicitly as follows

*&amp;gt;i

=
tf(a&quot;x + V y + c&quot;)

z

{C (nfr
-

y&amp;lt;p) + B
&amp;lt;p

-
(4)

where the capital letters denote minors in the determinant

\ab c&quot;\
of (2).

74 . The trajectories of the original field are converted by the

collineation into the trajectories of the new field. Also the

directions of forces of the two fields are projectively related.

It must not be thought, however, that the force vector acting

at a given point (x, y) in the first plane is projected into the

new force vector acting at the point (x\, y\) of the second plane :

the initial points of the two vectors will correspond, of course,

by the given collineation, but the terminal points will not. The

question therefore arises, what is the geometric relation between

the new vector field and the old vector field?

To answer this question we take our rectangular axes so that

the collineation takes its metrical normal form. (Affinities of

course require a separate discussion.) The canonical formulas

for our transformation are

77i 7i2/

y&amp;lt;p),

together with

(50 *1=
S&quot;

To each collineation between the two planes corresponds a defi-



ASPECTS OF DYNAMICS. 75

nite vector transformation. The vectors are here of the third

type (bound vectors) described in the Introduction, requiring

four coordinates for their determination. The original vector is

defined by the four numbers (.r, y, &amp;lt;p, \//), the first two defining

the initial point, and the last two giving the components of the

vector. The coordinates of the new vector are (xi, yi, &amp;lt;p\, ^i).

The vector transformation induced by the given collineation is

not projecthe. The new vector has the same initial point and

the same direction as the projection of the old vector, but has a

different length. The ratio X between the actual length of the

new vector and the length of the projected vector is

(5&quot;)
X = kW(x + &amp;lt;?).

Noting that in the canonical form x and .r-f-
&amp;lt;p

denote the distances

from the initial and terminal points of the original vector to the

vanishing line in the first plane, we may state this result.

Any given (non-affine*) collineation (2) induces a certain vector

transformation (determined up to the factor k) defined analytically

by (2) and (4), and geometrically as follows: If PQ is any bound

vector in the first plane, and if the collineation converts the initial

point P into PI and the terminal point Q into Qi, then the trans

formed bound vector is not PiQi, but P\Qi ,
where Qi is the point

on the line joining P].Qi such that the ratio X = PiQi/PiQi equals

k2 times the cube of the distance from P to the vanishing line times

the distance from Q to that vanishing line.

The transformation converts the co 4 bound vectors of the first

plane, represented by the independent coordinates (.r, y, &amp;lt;p, \l/),

into the oo 4 bound vectors of the new plane, f In the dynamical

application, &amp;lt;p

and
\j/
are given as functions of .r, y, that is, we have

a field of so 2
vectors, one for each initial point: the result of

* In the case of an affine collineation, the induced vector transformation

is, except for the constant factor k, merely the result of applying the affinity

to both ends of the vector. It is thus linear.

t The vector transformations induced by inverse collineations are inverse

to each other. The four-dimensional transformations are therefore Cremona
transformations.
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the transformation is a new field, &amp;lt;pi
and \l/i being expressible in

terms of x i} y\. The oo 3
trajectories of the first field are con

verted by the collineations into the &amp;lt;x&amp;gt;

3
trajectories of the new

field; it is to be noticed however that, during any correspond

ing motions, positions which correspond according to the col

lineation will usually not correspond to the same instant of

time; in fact from (2 )

dt~
J b&quot;y + c&quot;)

&quot; 2

75. If X, Y denote the velocity components at the position

x, y and if the corresponding velocity in the second plane is

Xi, YI, acting at the position x\, y\, then we find, from the ca

nonical form (5),

-
yX).

Thus we have a different vector transformation which may be

termed the phase* transformation (in distinction from the force

transformation of 74) : it gives the relation between the corre

sponding phases in the two planes.

If we speak of points and vectors which correspond in the two

planes according to the given collineation as projectively related,

then the result may be stated in this form:

The new phase vector does not coincide with the projection of the

given phase vector: it has the same initial point, but the ratio of the

actual length to the length of the projected vector is k2 times the product

of the distances from the ends of the original vector to the vanishing

line of the collineation.

76. Having studied the Appell transformation and its geo

metric interpretation in terms of force vectors and phase vectors,

we now ask whether other more general transformations can

play a like role. Appell proved the following converse theorem:

* The phase of a particle at any instant, in the sense of Gibbs, is its

position together with its velocity: it is defined by the four numbers (x, y, x, y).
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The only transformations of the form

xi = $(.r, y), yi
=

&amp;gt;J&amp;gt;(.r, y), dti = n(x, y)dt

which convert every set of differential equations

into one of the same form are those defined by (2), (2 ).

77. By eliminating the time from (1), giving the differential

equation of the trajectories in the form (page 7)

the author proved that the only point transformations which

convert every trajectory system (of a positional field) into a

trajectory system are the collineations. This remains valid

even in the domain of all contact transformations, as we now

proceed to show.

We first consider the class of differential equations (cf. page 11)

(8) y&quot;

= G(x, y, y )y&quot; + H(.r, y, y }y&quot;-

including (7) as a special case, and characterized geometrically by
the possession of property I (that is, the focal locus for each ele

ment is a circle through the given point). We prove this theorem :

The only contact transformations which convert every equation

of type (8) (that is, every system of curves with property I) into

one of the same type are collineations and correlations.

That no other transformations are possible is seen as follows.

If a contact transformation is to convert type (8) into itself, it

must convert the part common to all systems of that type into

itself. The curves defined by y&quot;

=
0, that is, straight lines,

obviously satisfy (8) for every form of G and H. It is obvious

that no other (proper) curves satisfy all such equations. But

since we are dealing with contact transformations and not merely

point transformations, we must replace the concept curve by
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the concept union. In the plane the only unions which are not

(proper) curves are points. A point is regarded as made up of

oo * lineal elements; so a: is constant, y is constant, y
f

is ar

bitrary, and therefore
y&quot;

and y
&quot;

are infinite. Point unions

are to be regarded then as solutions of all equations (8). The

common part thus consists of the oo 2
straight lines and the oo 2

points of the plane. If this is to go into itself, either points

go into points and lines into lines, or else points go into lines and

lines into points. We thus obtain only collineations and cor

relations.

That the collineations actually leave type (8) unchanged is

easily verified analytically.* The work for correlations is simpli

fied by observing that every correlation may be reduced, by
means of collineations, to the form of Legendre s transformation

(9) xi = y
f

, yi
= xy y, iji

=
x,

(which is simply polarity with respect to the conic a?+2y 1 = 0).

Extending (9), we find

(9 ) i&quot;

= p
&quot;/== p

This converts equation (8) into one of the same form

(10) jfc

&quot; = (?,(* t/i, 2/i )2/i&quot; + # i(*i, 0i, 2/. )2/i&quot;

2

,

the new coefficient functions being related to the old as follows:

Gi = H( yi,

HI = G( yi, xiyi yi,

This completes the proof of the theorem stated on the previous

page.

78. If we impose property II on the system (8), that is, if we

consider the subclass in which

(11) H =
-,
yf
-

(*, y)

Trans. Amer. Math. Sac., vol. 7 (1906), p. 420.
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the correlations are no longer available. That collineations

actually convert this subclass into itself is readily verified.

The same is true for the still narrower class, characterized by

properties I, II, and III, in which the differential equation is of

the form (cf. page 13)

(12) (
-

)/&quot;
= (X/ + fty + v\y&quot; + Zy&quot;\

79. We pass now to the case of dynamical trajectories, defined

by type (7), and state the fundamental result:

Collineations are the only contact transformations of the plane

which convert every system of o 3
dynamical trajectories (belonging

to an arbitrary positional field of force) into such a system.

The only possibilities here also are collineations and corre

lations. The former actually have the required property.

The latter have not, as is seen by observing that the application

of the Legendre transformation (9) to a dynamical equation (8)

will result in a new equation, which, while still of the general

form (8), will not usually be of the dynamical form.*

80. Systems of trajectories are characterized by the set of five

geometric properties of page 10. Therefore projective transfor

mation will convert any system of curves having these properties

into a system having the same properties. So, in spite of the

fact that the properties as stated involve metric ideas (osculating

parabolas, angles, circles of curvature, etc.), the set is actually

protectively invariant. It ought to be possible therefore to

restate the geometric characterization in projectile language.

We shall not attempt to carry out this idea completely, and

merely restate properties I and II as follows:

Consider the oc 1

trajectories passing through a given point

in a given direction whose slope is y . For each of these tra

jectories construct the conic which has four-point contact at

and touches the line determined by two arbitrarily selected

* We see from (10 ) that the coefficients G and H, which are rational with re

spect to ?/ ,
are converted into coefficients which are not usually rational.
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points* A and B (which remain fixed in the following statements) ;

through A and B draw tangents to the conic (in addition to the

fixed line) and join the points of contact. The lines thus con

structed, one for each of the &amp;lt;x&amp;gt;

l

trajectories, will form a pencil

(property I).

As the initial direction (that is y ) varies about 0, the vertex of

the pencil just described will move along a straight line] passing

through (property II).

The other properties, especially the fifth, are much more

complicated.

81. In conclusion we point out another way in which the

protective group enters in dynamics. If an arbitrary point

transformation

xi = 3&amp;gt;(x, y), y l
= V(x, y)

is applied to the differential equations

x =
&amp;lt;p(x, y), y = $(x, y},

defining motion under a purely positional force, the new differ

ential equations, of the more general form

will usually define a motion due to a positional force together

with a force depending on the velocity x, y. If this latter force

is to be absent the transformation will be affine, as already re

marked ( 74). If, instead, we demand that the latter force

shall act in the direction of the velocity (and thus be in the

nature of a resistance), we find that the transformation may
be any collineation.

More generally, projective transformations are the only point

* In the original metric statements these are of course the circular points

at infinity.

t The force direction will be determined protectively as the harmonic of

this line with respect to the lines joining to A and B-
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transformations which leave invariant the type

x =
&amp;lt;p(x, y) + xR(.r, y, x, y),

y = \//(x, y) + yR(x, y, x, y),

defining motion of a particle under any positional force together with

any resistance term acting in the direction of motion.

82-91. COXFORMAL TRANSFORMATIONS

82. The importance of conformal transformation is well known

in connection with the theory of the potential. Geometric

inversion or transformation by reciprocal radii, for example,

yields the method of electric images due to Sir William Thomson.

In connection with dynamics, the importance of general con-

formal transformations has been emphasized by Larmor, Goursat,

and Darboux.*

83. Consider any conformal representation of the points of

two surfaces S and Si. The first fundamental forms of the

surfaces may be taken to be

cfe
2 = Edu* + 2Fdudv + Gdf,

dsi- = \(Edu
2 + 2Fdudv + Gdf),

where corresponding points have the same parameters u, v.

The principal theorem is that every natural system on one surface

becomes by the conformal representation a natural system on the

other. This is obvious if we remember that natural systems are

obtained by minimizing an integral in which the integrand is

the element of length multiplied by any point function. Hence

The only point transformations (in any space) which convert

every natural family into a natural family are the conformal.

84. Consider now the oo 3
dynamical trajectories on S produced

by a conservative field of force, the work function being W.

These consist of sc 1 natural families, one for each value of the

*
Cf. the discussion in Routh, Dynamics of a Particle, Xos. 628-635

(method of inversion and conjugate functions).

14
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constant of total energy h. It will be convenient to refer to the

particular natural system produced in the given field W for a

particular value h, as the family due to W + h.

The corresponding family on Si is due to

W+h

Hence the &amp;lt;x&amp;gt;

J related natural families on S, found by varying h&amp;gt;

go over by the conformal representation into o 1 natural families

which are not usually related, that is, do not form the complete

system of trajectories belonging to a conservative field. The

only case in which the new families are related arises when

for then the new systems are due to the work function

Wl
=

1/X.

We then reach the conclusion that in any conformal representation

(excluding the trivial homothetic case*) there is a unique conservative

force whose complete system of o 3
dynamical trajectories is con

verted into the complete system of some (usually distinct) conserva

tive force. The work function of the force in question is defined by

the squared ratio of magnification,

w-\- ^-~ A -
ds*

85. Similar statements may be made for brachistochrones.

Every system of o 2 brachistochrones due to any work function

and a given value of h of course becomes such a system, for any
natural family may be regarded as a family of brachistochrones.

But there is only one complete system of oo 3 brachistochrones which

is converted into a complete system, namely, that defined by the work

* It is obvious that in this case every complete system of trajectories becomes

a complete system. The same holds for brachistochrones and catenaries.
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function
W =

1/X.

For any other work function the oo l families of brachistochrones,

due to W + h, become oo l non-related natural families on Si

due to

\(W+h).

86. In the case of catenaries due to 11 + h, the co 1

usually

non-related natural families corresponding on S\ are due to

W+h
VX

Hence the only complete system of catenaries which i# turned into a

complete system is defined by the work function*

w= Vx.

87. Consider, for example, the conformal representation of the

plane
2 = x + iy

= re
i0

on the plane

zi
=

.TI -f iyi
= rie

i01

defined by

zi = z,
where n is neither nor 1.

Here the squared ratio of magnification is

2(n 1 )

X =

* The three physical cases mentioned may be included in one general dis

cussion by considering the extremals of

J vmds = J (W + h)
m 2ds = minimum;

when m =
1, we have least action and trajectories; when m =

1, least time
and brachistochrones. For every value of m we obtain, by varying h, a sys
tem of oc 3 curves. Cf. the general discussion of the systems Sk denned (for

arbitrary fields) in Chapter IV.
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Applying the theorems stated above, we find that the trajectories

generated by
W = r2(

&quot;-1}

go over into the trajectories of a new field

For brachistochrones the corresponding fields are

W= r
-2(n-l}

^ W^ r

~2(n-^.

and for catenaries

W = r
n
~\ W\ =

f!&quot;&quot;

1

.

The particular transformation Zi = z
2
, that is, n = 2, gives

rise to simple fields. Stating the results in terms of the law of

the central forces obtained, instead of the corresponding work

Junctions, we have:

The trajectories of a central force varying as r (that is, the

conies described about the center of force as center) become

the trajectories of a central force varying as 7*i~
2

(that is, the

conies described about the center of force as focus).

The brachistochrones of a central force varying as r~3 become

the brachistochrones of a central force of constant intensity.

The catenaries of a central force of constant intensity become

the catenaries of a central force varying as rf3 2
.

88. Returning to the general conformal representation, we

observe that &amp;lt;x&amp;gt;

1 natural families forming a complete system of

trajectories can never become a complete system of brachis

tochrones. For the trajectories on S due to W + h become oo 1

natural families on Si, which, when regarded as brachistochrones,

are due to A/(JF + h); and there is no work function which

reduces this expression to the form of a function of u, v plus a

constant depending only on h. Thus for a given (non-homothetic)

conformal transformation there is one system of trajectories
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which is converted into a system of trajectories, and one system

of brachistochrones which is converted into a system of brachis

tochrones, but there is no system of trajectories which is converted

into a system of brachistochrones. The same is true for any
two of the three types trajectories, brachistochrones, catenaries

or of the infinite number of types described in the preceding

footnote (page 83).

89. As another application, consider the velocity curves con

nected with a plane field of force whose work function is W(x, y) .

For a given speed VQ, we obtain &amp;lt;x&amp;gt;

2 such curves, defined by
the property that the curvature at each point and direction

equals the curvature of a free particle starting out from that

point and direction with the speed VQ. The differential equation

of this velocity system is

= (IF,
-

y Wx)(\ + y
2

)^

This is recognized as a natural family; it corresponds to the geo

desies of the surface whose first fundamental form is

2W

By varying VQ we obtain the oo 1

velocity systems belonging to

the given field; they are pictured by the geodesies of oo 1 surfaces.

Consider now a conformal representation of the .r?/-plane

upon itself. This converts dx~ + dy
2 into

e&quot;(dx- + df),

where H(x, y), by known theory, is a harmonic function. We
thus obtain o l new natural families corresponding to the geo

desies of the oo 1 surfaces
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These oo 1 natural families cannot usually be regarded as related

velocity systems for some new field: the requisite condition is

that W shall be the same as H except for a constant factor.

Hence for a given conformal transformation of the plane

(which is not merely a similitude), there is a unique complete

velocity system belonging to a conservative field of force which

is converted into a complete system. The unique work function

is

W = H =
log X,

where X denotes the squared ratio of magnifaction in the given

conformal representation. The fields obtained are Laplacian,

that is, satisfy the condition

Wxx + Wyy
= 0.

As an example, the transformation zi = log z converts the

oo 3
velocity curves of the field W =

log r (in which the force

varies inversely as the distance from the origin) into the co 3

velocity curves of the field W\ = x\ (force vertical and constant).

90. It was shown above that conformal transformations are the

only point transformations which convert every natural family

into a natural family. Natural families are characterized by

properties A and B of 31. It is of interest to notice that

property A by itself is conformally invariant. The most general

system having this property (that osculating circles constructed

at any point have another point in common) is what we have

termed a velocity system. We now prove that

The only point transformations which convert every velocity

system into a velocity system are the conformal transformations.

Consider say the three-dimensional case, where the general

velocity system is

2/

2 + z ), z&quot;
=

(X - zV)d + + z ).

The onlv curves which are common to all such svstems must
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satis y
1 + / + z

2 =
0, y&quot;

=
0, *&quot;

=
0,

and are therefore the minimal straight lines of space. Since

the only transformations converting minimal lines into minimal

lines are conformal, we have the result stated. That conformal

transformations actually leave the velocity type invariant is easily

verified analytically*. The result is obvious synthetically (in

the case of more than two dimensions) since the conformal group

converts circles into circles and bundles of circles into bundles.

Hence if the original system possesses property A, the same will

be true of the transformed system.

91. It maybe shown that, for any given non-conformal trans

formation, there exists one and only one velocity system which

is converted into a velocity system.

92-94. CONTACT TRANSFORMATIONS

92. With each natural family, or, what is the same, with each

isotropic medium, there is associated a definite infinitesimal

contact transformation. This connection, which appears im

plicitly in Hamilton s fundamental memoir of 1835, was worked

out in detail by S. Lie.f

If the index of refraction is v(x, y, z), the associated contact

transformation has the characteristic function

(1) v(x, y, z) V 1 + p
2 + q\

where x, y, z, p, q are considered as the coordinates of a surface

element. If the one-parameter group generated is applied to

an arbitrary surface the resulting oo 1 surfaces form a wave set.

The trajectories or rays appear as the path curves of this group.

Lie showed that the category of transformations which thus

* Cf. American Journal of Mathematics, vol. 27 (1906), p. 213, for the two-

dimensional case.

t
&quot; Die infinitesimalen Beriihrungstransformationen der Mechanik,&quot; Leip-

ziger Berichte (1889), pp. 145-153. A very elegant discussion, with new results,

is given by Vessiot, Bull. Soc. math, de France, vol. 34 (1906), pp. 230-269.
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appears, with a characteristic function of type (1), and which he

termed
&quot;

the infinitesimal contact transformations of mechanics/
7

is distinguished geometrically by the fact that the so-called*

transxersality relation reduces to orthogonality.

93. The following simple and easily proved theorem appears

to be new.

The alternant (or Klammerausdruck of Lie) of the contact trans

formations associated with any two media is always a point trans

formation.

94. Here we are dealing with two natural families in the same

three-dimensional space. In connection with the most general

problem of dynamics (page 70), spaces of any dimensionality must

be considered, with arbitrary variable curvature. The space

depends on the quadratic form defining the kinetic energy:

this determines the quadratic expression appearing under the

radical in the generalization of (-1). The potential! determines

the factor v which may be any point function. The general

theorem is then as follows:

The alternant of the contact transformations associated with two

dynamical problems (or naturalfamilies) will be a point transforma

tion when, and only ichen, the two expressions for the kinetic energy

are either the same or differ by a factor (which may be any point

function) ,
the two potential energies remain entirely arbitrary.

In particular, if any two natural families are constructed in

the same space (which space is entirely arbitrary), the alternant

will be a point transformation.

For a detailed discussion of the two-dimensional case, in

cluding a number of converse results, the reader is referred to

the author s paper, cited in the first footnote below.

* Lie does not use this term. The author borrows it from the closely

connected problem in the calculus of variation. See &quot; The infinitesimal

contact transformations of mechanics,&quot; Bull. Amer. Math. Soc., vol. 16 (1910),

pp. 408-412.

f Here considered as including the energy constant h, which is fixed, since

we are dealing with a natural family.
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95-97. A GROUP OF SPACE-TIME TRANSFORMATIONS

95. In the fundamental transformation of the relativity theory,

known as the Lorentz transformation, the position coordinates

x, y, z and the time coordinate t are merged: the new position

and the new time appear as functions of both the original position

and the original time. The Lorentz group is composed of the

linear transformations of the four variables x, y, z, t which leave

invariant the quadric

.i-
2 + y- + z~ - c-t

2 = 0.

Its importance is due to the fact that it leaves unaltered the form

of the Maxwell equations.

We consider in this section an entirely different group of space-

time transformations, depending on arbitrary functions instead

of arbitrary constants. It arises in connection with ordinary

(newtonian) dynamics in the theory of forces depending on the

time as well as position.

We confine the discussion for the sake of simplicity to the case

of two dimensions. What transformations of the three vari

ables x, y, t will convert any set of equations of the form

d?x d~u
(1) ^ =

&amp;lt;?fc y, 0, ^ = t(x, y, t)

into another set of the same form? An arbitrary transformation

would produce equations representing a force depending, not

only on x, y, t, but also on the velocity dx dt, dy/dt. The problem
is to find those peculiar transformations which do not introduce

the velocity in the final equations. The result is as follows:

The only space-time transformations ichich convert every space-

time field of force into a space-time field are those of the form

(2) t,
=

f(t), xi = (ax + by) Vpffl + g(t),

yi= (cx + dy)4j
7
(f)

The group thus invokes three arbitrary functions f(t), g(t), h(t) as

well as four arbitrary constants a, 6, c, d.
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96. Another representation of the same group, which has the

advantage of avoiding radicals, is

~ =
{X(*)J

2
, xt = (ax + by)\(t) + M (0,

(3)

yi= (cx+dt)\(t) + v(f).

When such a transformation is applied to equations (1),

the new equations are found to be

X5
i
= (XX

- 2\2
)(ax + by) + \2

(a&amp;lt;p + bf) + AM - 2A/i,

X% = (XX
- 2X2

)(cz + dy) + \2
(c&amp;lt;? + df) + \v - 2\i&amp;gt;.

Of course the original variables x, y, t are here to be replaced by
their values in the new variables x\, y\, t\.

97. The transformation converts the space-time curves of the

original force into the space-time curves of a new force. Of

course it is not a point transformation of the #?/-plane, so it does

not, as was the case for the Appell transformation (page 76),

convert trajectories into trajectories. These remarks apply even

in the special case where the force is positional. Consider, as

a simple example, the transformation

ti
= %# , xi = xe l

, yi
=

ye
f

,

applied to the equations

x = x, y = y.

The transformed equations are found to be

xi =0, ft
= 0.

The first field is central, the force varying directly as the distance,

so that the trajectories are oo 3 conies with the same center.

The second force is everywhere zero, so the trajectories are

merely oo 2
straight lines.



CHAPTER IV

CONSTRAINED MOTIONS IN A FIELD. GENERALIZATION OF
THE TRAJECTORY PROBLEM INCLUDING BRACHIS-

TOCHRONES AND CATENARIES

98-114. SYSTEMS Sk DEFINED BY P = kN

98. In connection with a field of force, the only curves usually

studied are the lines of force and the trajectories. In the plane

the lines of force form a simply infinite system, and the tra

jectories a triply infinite system. The former system has no

peculiar properties, since any set of QC 1 curves may be regarded

as the lines of force in some field, in fact in an infinite number of

different fields. The triply infinite system of trajectories has

peculiar properties which have been discussed in Chapter I.

Other noteworthy systems of curves are connected with the field,

for example, brachistrochrones, catenaries, velocity curves, and

tautochrones.

99. Omitting the tautochrones, the other three systems named,

together with the trajectories, may all be obtained as special cases

of this simple general problem : to find curves along which a con

strained motion is possible such that the pressure is proportional

to the normal component of the force.

100. If an arbitrary curve is drawn in the plane field of force,

and the particle, of say unit mass, is started along it from one

of its points with a given speed, the constrained motion along

the given curve is determined. The acceleration along the curve

is given by T, the tangential component of the force vector.

So the speed at any point is determined by

(1) r
2 =

f-Tds.

The pressure P (of course normal to the curve, since the curve

91
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is considered smooth) is given by the elementary formula

(2) P = - - N.

If we increase the initial speed, the effect is to increase v
2
by a

constant c; and hence P changes by the addition of a term of the

form c/r.

101. If the given curve is a trajectory, the initial speed may be

so chosen that the pressure vanishes throughout the motion;

that is, trajectories may be defined as curves of no constraint.

Of course, if a different initial speed is used, P will be of the form

c/r; but, as regards the curves, they are completely characterized

by P = 0.

102. If the given curve is a brachistochrone and if the motion

along it is brachistochronous, Euler proved (assuming the force

to be conservative) that the pressure was double the normal

component of the acting force and opposite to it in direction,

that is, P = 2N. If the force is not conservative, the real

brachistochrones, as defined by a problem of the calculus of varia

tions, form a quadruply infinite system. The curves defined by
the property P = 2N then form a triply infinite system of what

should be called pseudo-brachistochrones. These curves are

really brachistochrones only in the conservative case. No

ambiguity however will arise by terming the system here con

sidered brachistochrones instead of pseudo-brachistochrones.

103. The general problem suggested is to find curves such that P
shall be proportional to N. So P = kN. To a given value of

k there correspond &amp;lt;*&amp;gt;

3 such curves: the system so obtained will

be denoted by Sk* The four special cases of physical interest are

as follows :

k = gives SQ, the system of trajectories;

k = 2 gives 8-2, the system of brachistochrones;

k = 1 gives $1, the system of catenaries;

k = oo gives S^t the system of velocity curves.
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104. The last case requires a justification in terms of limits

which is easily carried out analytically.

105. The third case follows from the known fact that when an

inextensible flexible homogeneous string is suspended in any
field of force, the resulting form of equilibrium, called a catenary

in the general sense of the term, has the dynamical property

that when a particle, started out with the proper initial velocity,

rolls along the curve, the pressure at any point equals the normal

component of the force: that is, catenaries are defined by P = N,

corresponding to k = 1.

106. Of course a triply infinite system Sk exists for any value

of the parameter k. The differential equation of the system,

in intrinsic form, is easily obtained by eliminating v from the

equations

(3) t
2
/r
=

(k + l)N, VTS
= T.

The result is

where

(40 n=2/(k+l).

We may readily find various properties from this intrinsic

equation, but in order to obtain a complete set it is necessary to

have recourse to the equivalent equation in cartesian coordinates

-
I 3 + &quot;- =^-^^ 1

y&amp;gt;

1 ~r y
&quot;

This obviously reduces to the familiar trajectory equation of 1

when n = 2, corresponding to k 0. Brachistochrones cor

respond to n = 2, catenaries to n = 1, velocity curves to

n= 0.

107. We now state the characteristic properties of a system of

the above type for any value of n, that is, any value of k.
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Characteristic Properties of the System S&

Property 1. For any given element (x, y, y ) the foci of the

osculating parabolas of the single infinity of curves determined

by the given element lie on a circle passing through the given point.

Property 2. At any point the tangent of the angle which the

focal circle makes with the given element is to the tangent of

the angle which the given element makes with a certain direction

fixed at (the direction of the acting force) as 3 is to n + 1,

that is, as 3k + 3 is to k + 3.

Property 3. Through a given point there pass a single infinity

of curves admitting hyperosculating circles of curvature; the

centers of these circles lie on a conic passing through the given

point in the direction of the force vector.

Property 4- The normal at the given point cuts the conic

described in property 3, at a distance equal to n + 1, that is

(k + 3)/(fe + 1), times the radius of curvature of the line of

force passing through 0.

Property 5. This is of the same form as property V ( 3)

obtained in the discussion of trajectories, the number 3 being

replaced by the number n + 1. In the notation of page 11

d d 1 cocksy_ __, ,

dxAA &quot;*&quot;

dy BB f &quot;*

(n+ l)o&amp;gt;

2

108. The special case where n equals 1, that is, the system

_3, is exceptional and requires a separate discussion; but as

we do not need the results, this case is omitted.

109. While the properties corresponding to different values

of k are analogous, they are of course not identical. The first

property is common to all the systems. But the second property

involves the parameter k. Thus, while for trajectories the con

stant ratio that appears is 1 (bisection), it is 3 for brachisto-

chrones, 3/2 for catenaries, and 3 for velocity curves. Not only

are the triply infinite systems Sk, corresponding to different

values of k, distinct in any given field of force, but also no two
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systems arising in two distinct fields can ever coincide. For

example, if a certain system of cc 3 curves arises as trajectories

in one field, it cannot also arise as catenaries in either the same

or another field.

110. If we combine all the systems Sk ,
in a given field

(&amp;lt;p, ^),

we obtain a quadruply infinite system which we now proceed

to study. The differential equation of the fourth order defining

this system is readily obtained by eliminating k from the equation

of Sk. It is more convenient to carry this out in terms of in

trinsic quantities, using either the radius of curvature and its

first and second derivatives with respect to the arc, quantities

denoted by r, rs ,
rss ,

or else the radius of curvature together with

the radii of the first and second evolute, quantities which we

denote by r, r\, r2 . The two sets of quantities are equivalent,

being connected by the relations r\
= rrs ,

r = r
2
rss + rrs

2
. The

equation of the quadruply infinite system may then be put, using

the notation of 2, into the form

Nr.+ r* T
|
Q= _

, N
Nru + 2&amp;gt;Jl-

This may be written in either of the forms

rss
=

(/3i + ft&amp;gt;r-

1
)rs + /33 r + A,

r,
= r

-i
ri

2 + (ftr + ft)n + ftr
3 + &r2

,

where the /3 s are functions of x, y, y .

111. We notice first that r2 is quadratic with respect to r\.

Hence for given values of .r, y, y , r, that is for a given curvature

element, the oo l curves of the system have the property that the

locus of the third center of curvature is a parabola with axis

parallel to the fixed radius of curvature, that is, perpendicular

to the initial direction y .

112. An equivalent statement is this: If for each of the curves

we construct the osculating conic (five-point contact), the locus
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of the centers of these conies is a conic passing through a given

point in the given direction. It is perhaps worth while to restate

this, so far as it concerns the four special cases of physical interest,

as follows : In any plane field of force select any fixed element of

curvature; corresponding to the initial values of x, y, y and r so

given, construct the unique trajectory, unique brachistochrone,

unique catenary, the unique velocity curve, and the respective

centers of the osculating conies
;
the four centers so found and

the given point (a*, y) will lie on a conic passing through the latter

point in the given direction y . (Cf. the first footnote on page 98.)

113. Keeping the curvature element fixed and varying the

parameter k, the value of rs or, what is equivalent, of n, varies

linearly. As above, let n denote the fraction 2/(&+ 1); then if

values of n forming an arithmetic progression are selected, the

corresponding values of TI also form an arithmetic progression.

The successive differences in the values of 7*1 corresponding to

the case of trajectory, brachistochrone, catenary, and velocity

curve are proportional to 4, 3, 1.

114. If in the system Sk we keep x, y, y fixed and vary r, two

limiting cases of interest arise. First, if r becomes infinite, then

rs is also infinite, and the limiting curve obtained is a straight

line. In fact the oo 2
straight lines of the plane form part of

every system Sk.

On the other hand, if r approaches zero, then rs approaches a

definite limit

Remembering that the tangent of the angle of deviation is one

third of rs ,
we may state the result obtained as follows: In any

system Sk if we take any lineal element and let r approach zero,

the tangent of the corresponding angle of deviation is to the

tangent of the angle which the force vector makes with the normal

to the given element in the fixed ratio of n + 1 to 3. The special

values of this ratio for the four special systems of physical

interest are respectively 1, 1/3, 2/3, 1/3. In the case of tra

jectories, it is noteworthy that the limiting position of the axis
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of deviation coincides with the direction of the force acting at

the given point.

115-116. CURVES OF CONSTANT PRESSURE

115. We now consider a second simple generalization of the

problem P =
0, defining trajectories. We consider, namely,

curves corresponding to P =
c, where c denotes any constant.

The curves obtained may be termed curves of constant pressure :

only along such a curve is a constrained motion of a particle

possible such that the pressure against the curve remains constant.

For a given value of c a system of oo 3 such curves is obtained,

whose intrinsic equation, found by differentiating the relation

P ^ &r - N =
c,

is

(c+ A&amp;gt;.
= 3T- R.

We see that this system for any value of c retains property I of

the system of trajectories. Omitting the discussion of the higher

properties of these triply infinite systems we consider the quad-

ruply infinite system whose differential equation, found by elimi

nating c, may be written in either of the intrinsic forms

ftr
2 -

3Tr)rss
=

(2r9t
-

7&amp;gt;s
2 + [^r2 + (% - 3)r - 3N]r9 ,

(3lr
-

3Z&amp;gt;2
= (3r^

-

This gives the totality of oo 4 curves of constant pressure defined

by a given field.

As regards special cases of interest, we note, in addition to

c = 0, giving trajectories, the case c = oc which gives rs = 0,

defining circles; hence for any field of force the oo 4 curves of

constant pressure include the oc 3
circles of the plane, which arise

in fact as curves of infinite pressure.

116. The quadruply infinite system which here arises, as well

as that obtained in the previous problem P = kN, comes under
15
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the category represented by a differential equation of the type*

y = Ay
&quot; + By

&quot; + C.

It therefore enjoys the property, previously stated in the other

problem ( 112), that the locus of the centers of the osculating

conies corresponding to any element (x, y, y , y&quot;)
is a conic

touching the element (x, y, y }. Of course, since the forms of

A, B, C in the two problems are quite distinct, the systems are

distinguished in their higher properties.

117-118. TAUTOCHRONES

117. Tautochrones are not included in either of the previous

problems. They are not distinguished by any simple law of pres

sure, f The condition for a tautochrone is that the resulting con

strained motion of a particle along the curve be harmonic, that is,

(1) T=k(s- *&amp;lt;&amp;gt;),

where k is a constant (which is negative for actual and positive

for virtual tautochrones) and s s denotes the arc reckoned

from a fixed point of the curve, the center of the tautochronous

motion. From this

(2) TS8
=

and hence, by expansion, the general equation of the system of oo 3

tautochrones in any field is$

(3) Nrs
= S^r

2 + ($2 + H)r - T,

where the notation is that of 2.

* This type (noteworthy in that it unifies many distinct mathematical and

physical problems) first presented itself in the author s study of &quot;Systems

of extremals in the calculus of variations,&quot; Bull. Amer. Math. Soc., vol. 13

(1907), p. 290: the extremals of any integral of the second order
Jf(x, y, y , y&quot;)dx

form a system of that type. In these lectures other physical problems leading

to species included in this type are treated in 110, 135, 137.

f It may be shown that during any tautochronous motion

p = k(8 - s )
2
/r
- N.

J
&quot; Tautochrones and brachistochrones,&quot; Bull. Amer. Math. Soc., vol. 15

(1909), pp. 475-483.
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We see that r8 is a quadratic function of r, and not a linear

function as in the case of trajectories and the other systems $*.

For a discussion of the geometric properties of tautochrones, we

refer to the dissertation of H. W. Reddick.*

118. There is no field in which the tautochrones coincide with

the trajectories, or with any of the systems Sk, in either the same

or some other field, except for the case k = 2 corresponding

to brachistochrones. The classical work of Huygens and J.

Bernoulli showed that for a uniform field the system of tauto

chrones is identical with the system of brachistochrones. The

author has shown that the only other field where such duplication

occurs is that in which the force is central and varies directly

as the distance. The only case of duplication in two distinct

fields is as follows: The tautochrones of the field
&amp;lt;p

=
0, \j/

= y

coincide with the brachistochrones of the field (p
=

0, \f/
=

y~*.

The particular fields arising in this duplication problem are in

cluded in the interesting class of fields, involving eight parameters,

characterized by the vanishing of the element function T\.

For such a field rs , according to (3), becomes linear in r, and hence

the oo 2
straight lines of the plane are included in the system of

tautochrones. f

118 . Each of the oo 3 tautochrones in a given field has asso

ciated with it a certain time of oscillation, determined by the

value of the constant k in (1). To each value of the period, that

is, to each value of k, corresponds a certain family of oo 2 tauto

chrones, whose differential equation, in implicit form, is

r(k- )
= N,

or, expanded,

(*
-

y &amp;lt;p)y&quot;

= k(\ + y &quot;) -{*,+ (*,+ *,)/+ */}.

We pass over the easy geometric interpretation; and note merely
the special family, corresponding to the value k = 0, for which

* Amer. Jour, of Math., vol. 33 (1911).

t The corresponding problem in space is treated in Reddick s paper and

gives a class of fields involving twenty parameters.
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the period is infinite. This separates the actual from the virtual

tautochrones.

119. NON-UNIFORM CATENARIES

119. It is a familiar fact that vertical parabolas appear in

elementary dynamics in two distinct discussions; first, as trajec

tories of a cannon ball, and secondly as forms of equilibrium of

a chain in which the mass (or load) of any element is propor

tional to the horizontal projection of that element. Here the

force is ordinary gravity. The question arises whether any other

fields of force give rise to a like duplication.

We first consider the following general problem of non-uniform

catenaries. If a flexible string or chain, in which the mass of

any element of length is proportional to some given function n of

x, y, y ,
is suspended in a positional field, the possible forms of

equilibrium are defined by the equation

Nr. = 2T - (1 + 2/ )A7v -r{M + (1 + yT*N(ji, + y ji,)}.

This represents the co 3 non-uniform catenaries for a given field

&amp;lt;p(xy), ^(xy) and a given density law JJL(X, y, y
f

), where ju denotes

iogjif

On the other hand, the trajectories in the given field are defined

by the equation

Nrs
= 3T

7 - rW.

Our problem then is to find those fields for which the two

systems described coincide. The result obtained is that the field

must be central or parallel. The detailed result is as follows:

In any central field of force the oo 3
trajectories may be also

obtained as catenaries by loading the chain so that its density is

proportional to the perpendicular dropped from the center to

the tangent line. In the more special case where the field is

parallel, the density is proportional to the sine of the angle

between the element of the curve and the force.
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It is easy to obtain analogous comparisons between brachisto-

chrones and catenaries. In this case the density must vary

inversely as the cube of the perpendicular dropped from the

center (or of the sine of the angle referred to above). For

example, in the case of gravity the vertical cycloids which appear

as brachistochrones may be obtained as catenaries by causing

the load applied to any element to vary inversely as the cube of

its horizontal projection.

All the results may be included in a generalization found by

comparing the non-uniform catenaries with the systems denoted

by Sk in 103. The density must vary as the (n l)th power
of the perpendicular, where n is the number defined on page 93.

The field is necessarily central or parallel.



CHAPTER V

MORE COMPLICATED TYPES OF FORCE

120-122. MOTION IN A RESISTING MEDIUM

120. We consider the motion of a particle moving in the plane
under a positional field of force and influenced by a resisting

medium, the resistance acting in the direction of the motion and

varying as some function of the speed v. The equations of

motion will then be of the form

(1) x =
&amp;lt;p(x, y) + z/0), y = t(x , y) + yf(&amp;lt;o),

where the resistance R is equal to

R =
vf(v).

The differential equation of the trajectories is found to be

ty
-

y &amp;lt;p)y

&quot; = l*x + iW, -
Vf)

-
y -&amp;lt;pv }

(2)

-3*jf&quot;*- 2f^-y &amp;lt;py&quot;*,

where the argument v of / is to be expressed in terms of x, y,

y , y&quot; by means of

Consider now the oo 1

trajectories starting from a given element

(X y, ?/ ) The focal locus, that is, the locus of the foci, of the

osculating parabolas, varies in shape with the function /, that

is, with the law of resistance.

We know that, if there is no resistance, property I of 3 holds,

that is, the focal locus is a circle passing through the given point.

Are there any resisting media for which this property is pre

served? A simple discussion shows that there are, the appro-

102
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priate media being those for which R is of the form Av2 + B.

For such media, property II will not usually be fulfilled; in

fact the only medium preserving the properties I and II is that

in ivhich the resistance varies as the square of the speed.

If we impose also property III, both A and B must vanish,

that is, the resistance vanishes and the force is purely positional.

It is of interest to examine the case where the resistance varies

as any power v
n of the speed. The differential equation of the

trajectories is then of the form

y&amp;gt;

=
ay&quot; + by&quot; + cy&quot;

m
,

where
m = 1(4- w ).

The focal locus is a curve whose inverse with respect to the given

point is

X= (n + biY+dY1*-1
.

This becomes a straight line (as in the case of no resistance),

when m is 1 or 2, that is, when n is 2 or 0.

The curve is a conic when m is 3 or or 3/2, that is, when n has

one of the values 2 or 4 or 1. When n = 2 the conic is a

parabola with its axis parallel to the given element. When
n = 4 it is a hyperbola, asymptotic to the line of the given initial

element. When n = 1 it is a parabola touching the initial line

(not at the given point).

121. We now state briefly the corresponding results in ordinary

space. No matter what the law of resistance is, property I

(of the set of four properties for space given in 11) is fulfilled;

for the osculating planes necessarily pass through the force

vector. The only laws for which property II is preserved are

those included in

R = A# + B.

If property III is also to be preserved, the resistance must vanish.

122. The results may be derived easily from the intrinsic

equations

(3) r
2 = rN, ws

= T + R,
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obtained by taking components of the acting forces along the

normal and tangent to the trajectory. The geometric equation,

resulting from the elimination of u, is of the form*

(4) Nrs
= - r$l + 3T + 2R.

This gives the relation between rs (the rate of variation of r

with respect to s) and r (the radius of curvature). The resistance

R, which is given as a function of v, is here to be expressed in

terms of r by means of the first of the relations (3). If prop

erty I, of plane trajectories, is to hold, rs must be a linear integ

ral function of r; this will be the case not only when R vanishes,

but also, as stated above, when it is of the form Av2 + B.

123-126. PARTICLE ON A SURFACE

123. The motion of a particle on any constraining surface

x =
&amp;lt;p(u, v), y = \l/(u, v), z = x(u, 0)

under any positional forces may be investigated most simply by
means of the Lagrangian equations

d(dT\_d_T_ d(dT\dT =
dt\du J dv dt\dv ) dv

&quot;

where T is the kinetic energy

2T = Eu2 +2Fuv + Gv*

and U, V are the components of the force given as functions of

u, 0.f The explicit equations of motion are of the form

u = $ + A u2 + 2A luv + A z v*,

v = V BU* 2Buv B2 v
2

* From this we may obtain the following dynamical result : If a particle

starts from rest, the initial radius of curvature of the trajectory is to the

radius of curvature of the line of force passing through the initial point as

3T + 2R is to T. When R vanishes we have the simple result previously

stated.

t See for example Whittaker, Analytical Dynamics, p. 390, and Hada-

mard, Jour, de Math. (5), vol. 3, p. 331.
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where
&amp;lt;$,
^ define the force and the ^4 s and 5 s are functions of

u, v depending only on the given surface.

124. We observe that here ii, v depend not only on the position

u, v but also upon the velocity u, v. Hence the motion in the

?u-plane corresponding to the actual motion on the surface

is not usually generated by any positional force in that plane.

The only exception arises when the ^4 s and the B s vanish

identically: this is the case only if the given surface is develop

able, and if its representation on the Mr-plane differs from its

development on the plane by at most an affine transformation.

Another problem including this as a special case is to deter

mine when the motion in the wr-plane can be regarded as due

to a positional force together with a resistance acting in the

direction of the motion. The condition for this is

B Qu
2 + 2B luv + B 2 v

2
v

Expanding, we find four conditions on the six functions A, B,

which turn out to be precisely the conditions that the geodesies

of the surface shall be pictured by straight lines, a result which

may be proved directly. Hence the only case in which the

motion on the surface is pictured in the wr-plane by a motion

due to a positional force together wTith a resistance depending on

the velocity components and acting in the direction of the motion,

is that in which the surface has constant curvature and the rep

resentation is geodesic.

125. We proceed with the general equations of motion. If

we eliminate the time, we obtain the differential equation of the

third order defining the o 3
trajectories in the form

where the coefficients are functions of.w, v. We confine our

selves to the observation that the picture curves in the uv-
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plane come under*the type

where the coefficients are lineal-element functions : the focal locus

is thus not a circle, but a special quartic. Hence if we consider

the oc 1
trajectories on the surface obtained by starting a particle

at a given point in a given direction with different speeds, the

picture curves in the uv-plaue have osculating parabolas at the

common point whose foci lie on a special quartic curve.

126. What is the simplest property of the actual trajectories

described on the surface? What is, in particular, the locus of

the osculating spheres of the co 1

trajectories considered?

To answer this we take our surface not in parametric form, but

in the explicit form

z = f(x, y).

We may take the given point as origin, the tangent plane as the

xy-plaue, and the fixed initial direction as that of the axis of x.

We find, by differentiating the equation of the surface and making

use of y =
0, z =

0, that

Z
&quot; = a

,
z&quot;

= b + cy&quot;,

where a, b, c are constants, equal respectively to the values of

the partial derivatives fxx , fxxx , 4fxy at the origin. Again, from

the general equation of the trajectories, we have a relation of the

form

y
&quot; = a + ft/&quot; + 72/&quot;

2
.

The center of the osculating sphere of the trajectory is then

z
&quot; b + cy&quot;

y&quot;z

&quot; -
z&quot;tf&quot; y&quot;(b + cy&quot;)

-
a(a+$y&quot; +

-y
&quot; -

(a + ft/&quot; + yy&quot;*
=

y z
&amp;gt; - z

y&amp;gt;
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Here
y&quot;

enters as parameter, varying from curve to curve:

eliminating it, we find the locus, lying in the plane X= 0, to be

P + (3Y(l
- aZ) + 7 (1

- aZ)
2 + Z{bY + c(l

-
aZ)} = 0.

Hence for any positional force on any surface, the oc 1

trajectories

starting from a given lineal element of the surface have osculating

spheres, at the common point, whose centers lie on a (general) conic

in the plane normal to the element.

This conic passes through the center of curvature of the normal

section of the surface determined by the given element. If the

element is in one of the principal directions of the surface, the

conic touches the normal to the surface.

127-130. THE GENERAL FIELD IN SPACE OF ra-DmExsioxs

127. Any dynamical system with n degrees of freedom may be

represented by a particle in space of n dimensions. For example,

an arbitrary rigid body in ordinary space is represented by a

particle in six-dimensional space, and the astronomical problem

of three bodies in the most general case leads to a representative

particle in space of nine dimensions.

For conservative forces, or natural families, the general dis

cussion for any dimensionality has already been given ( 69).

We shall not attempt a complete discussion for arbitrary posi

tional forces (corresponding to that given in Chapter I for two

and three dimensions). The equations of motion for an arbi

trary field are

x\ = Pi(.ri, -, **), -, x n = &amp;lt;Fn(xi, &quot;, ffn).

We confine ourselves to the simplest questions. If the initial

position and initial direction are kept fixed, and only the initial

speed v is varied, what are the properties of the oc l

trajectories

obtained? The simplest geometric result is that rs (the rate of

variation of the radius of curvature with respect to the arc

length) varies as a linear function of r. The locus of the centers

of the osculating spheres is a straight line, just as in the case

where n is three.
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128. A general curve in n-space has at each point an osculating

plane, an osculating 3-flat, and so on up to an osculating (n 1)-

flat. It is obvious that our oo 1

trajectories have the same os

culating plane since this is determined by the given initial

direction and the direction of the force. It can be shown that

the osculating 3-flat is also fixed; the 4-flat varies, generating a

pencil; the 5-flat varies, generating a quadratic system; and so

on, with more complicated variations.

129. Consider next the connection between the various cur

vatures and the speed.

In the plane (n = 2) there is only one curvature 71, and this

varies inversely as the square of v.

In space (n = 3) the first curvature 71 varies as above, and

the second curvature or torsion 72 remains fixed.

If n = 4, we have three curvatures. The laws for 71 and 72

are as above, while

73 = Ci + C2V~
2
,

where c\, c2 are constants (depending of course on the given

initial lineal element).

If n = 5, we have 71 = av~2
, 72 = b (these forms are valid

for any dimensions) and

di + d%v
2 + d^tf

73 = ci + c2v
2 + csv

4
,

d* + dbv
2 +

If n = 6, 73 remains the same, the numerator in 7.1 is replaced

by the square root of a polynomial involving v
8
,
and 75 is given

by a rational formula.

It is easy to write down the general formulas for the n 1

curvatures in n space. All except the first, second, and the

last are irrational. These results are to be regarded as general

izations of the elementary fact (included in the formula for

centrifugal force v
2
/r), that the ordinary curvature varies as v~2

.

130. By eliminating v from any two of the formulas, we can

obtain purely geometric results. For example, in space of four

dimensions, 73 = A -f- By\, where A and B depend only on the
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common initial element. But in higher spaces

This is the form required in particular in the application to the

problem of three bodies, since the representative space has nine

dimensions.

131-132. INTERACTING PARTICLES IN THE PLANE AND IN

SPACE

131. We consider the motion of n + 1 particles, denoted by

M, MI, , Mn , moving in the plane under the action of any
forces depending on the position of the particles. The dif

ferential equations of motion are then of the form

.f =
&amp;lt;p(x, 2/, .TI, 2/1, , .Tn , 2/n),

y = \l/(.v, ?/, .TI, y\, -, xn , yn ),

z i
=

&amp;lt;Pi(x, 2/* -TI, yit
- -

,
xn , yn },

2/i
=

^i(-r, y, TI, yi, -, xn , yn ),

and so on, where the masses which cannot be assumed to be

unity as in the case of a single particle are absorbed with the

forces in the right hand terms. From these equations the fol

lowing properties may be deduced.

(1) Given the phases of J/i, -, and the position and the

direction of J/, a set of oc 1

trajectories of M is determined (one

for each value of the speed) . The foci of the osculating parabolas

lie on a special quartic curve whose inverse with respect to the

given point is a parabola tangent to the given initial line (the

point of contact, however, is usually not the given point).

(2) If the speed of one of the remaining particles, say J/ lf is

varied, all the other initial conditions being unaltered, the

parabolic locus just obtained varies. Its point of contact with

the initial line remains fixed and all the oc 1

parabolas, one for

each value of the speed, are homothetic with respect to the point

of tangency.
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(3) The normal constructed at the common point of tangency

cuts the parabola again at a distance d which varies in such a

way that the square root of d can be expressed as a linear com

bination of the square roots of the radii of curvature of the cor

responding trajectories described by the particles MI, - -

,
Mn .

(4) If we preserve the phases of the particles MI, ,
Mn ,

then, for each initial direction y of M, we obtain, by (1), a

certain parabolic locus. Consider the relation between the

axis of this parabola and the initial direction. It is found that

the initial direction y always bisects the angle between the

direction of the force acting at the given point and the direction

of the axis of the parabola.

(5) Furthermore, the point where the parabola touches the

initial line describes, when y varies, a quartic curve whose

inverse with respect to the given point is a conic passing through

that point in the direction of the force.

It is to be observed that the statement (3) about the variation

of d simplifies considerably in the case of two particles (that is,

n = 1). In that case d varies directly as the radius of curva

ture of the trajectory described by MI.

132. A few corresponding results for the case of any number

of particles moving in space are as follows: If the speed of M
is the sole arbitrary parameter, the oo 1

trajectories of M have

the same osculating plane; the torsion varies according to a

linear integral function of the square root of the curvature; the

locus of the centers of the osculating spheres is a cubic curve of

special type.

If we assign the phases of all the particles except MI and assign

the position and direction of MI, then the speed of MI, or, in

consequence, the curvature of the trajectory described by M\ t

is the only arbitrary parameter. There will then be oo 1 corre

sponding trajectories described by M. These will of course start

from the same point in the same direction with a common os

culating plane and a common curvature, that is, they all have

contact of the second order. The torsion varies and so does the
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center of the osculating sphere. The simultaneous variation is

controlled by the law that the distance from the center of the os

culating sphere to the fixed center of curvature varies as a linear

integral function of the radius of torsion. An equivalent state

ment is that the rate of variation of the radius of curvature

per unit of the arc is expressed by a linear integral function of

the torsion.

All these results apply in particular to the three-body problem.
The present application is more concrete than that indicated in

130, since no higher space is here introduced.*

133-141. FORCES DEPENDING ON THE TIME. TRAJECTORIES

AND SPACE-TIME CURVES

133. Hitherto the force has been assumed to be independent
of the time; now we consider the generalization where the force

depends in any way upon the time as well as the position. Take

the case of a particle moving in the plane; the equations of motion

are then of the form

(1) x =
*&amp;gt;(*, y, 0, y = t(x, y, t).

From these, by differentiation and elimination, we may derive

(2) y
&quot; =

Py&quot; + Qy&quot;

2 + Ry&quot;\

where the coefficients are functions of x, y, y , t, namely,

-
ytp

If we are given the initial time, position and direction, that is,

the initial values of t, x, y, y , there will be a certain set of oo
l

* Since the forces in the three-body problem are conservative, we may
decompose the motions into natural families, and interpret each family in a
flat space of eight dimensions. The circles of curvature at a given point will

meet again; eight of them will be hyperosculating, and these will be mutually
orthogonal. Cf. 70.
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trajectories, one for each value of the initial speed. The follow

ing properties are obtained :

(1) We find that the focal locus (that is, the locus of the foci of

the oo l

osculating parabolas) is a quartic curve whose inverse with

respect to the given point is a parabola which is tangent to the

given direction line (the point of contact is not usually at the

given point).

(2) As y varies (x, y, t being held fixed) this point of contact

describes a cubic curve whose inverse is a conic passing through
the given point in the direction of the force.

(3) The initial direction of y
f

bisects the angle between the

direction of the force and the direction of the axis of the parabola

described in (1).

134. The total system of trajectories, for all initial conditions,

consists of oo 4 curves. Only in the case where the force does

not depend upon the time does the system consist of oo 3 tra

jectories. In the properties stated above, the initial time is

kept fixed. In a certain sense then the results are not purely

geometric: they would not appear in a photograph of the complete

system of trajectories. This system will be represented by a cer

tain differential equation of the fourth order; but it is not possible

to carry out the requisite eliminations in explicit form, and hence

the derivation of purely geometric properties involves essentially

new difficulties. A complete characterization is however ob

tained, by projection from space curves, in 136, 140.

135. There is an interesting special case in which the elimina

tion can be carried out: namely, the problem of the motion of a

particle of variable mass in a positional field of force. The time

then appears only through the mass, so the equations of motion

are of the form

(3) /(*)*
=

&amp;lt;p(x, y), f(t)y
= t(x, y).

As the result of the elimination is complicated, we shall here

consider only the case where the function /(/), representing the

mass, is of one of the special types
4
, t

2
, e

l

, (log 2)
2

- The equa-
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tion of the fourth order representing the trajectories is then

found to be of the form

(4) if
v = Ay

&quot;
2 + By

&quot; + C,

where A, B, C involve only .r, y, y , y&quot;.

We see that the fourth derivative is a quadratic function of the

third derivative. This category of equations of the fourth order

arises in a number of different connections, in particular in the

inverse problem of the calculus of variations, as stated in 116.

The characteristic geometric property may in the present case

be stated as follows:

If the particle, whose mass varies according to one of the four

laws stated, is projected into a field of force from a fixed initial

position in a fixed direction at different times, with the initial

speed for each time so adjusted as to cause the initial curvature

of the trajectory to have a fixed value, and if for each of the

cc 1

trajectories thus obtained we construct the osculating conic

(having five-point contact), the locus of the centers of these

conies is a conic passing through the given conic in the given

direction.

Of course not every system of c 4 curves having this property

can be regarded as a trajectory system corresponding to equations

of motion of the form considered. We do not, however, attempt

a complete characterization.

136. Space-time Curves. When we integrate the equations

of motion, either in the special case where the forces depend only

on the position

(10 x =
&amp;lt;p(x, y), y = $(x, y),

or in the general case where the force depends also on the time

(1) % =
&amp;lt;?(x, y, t), y = $(x, y, 0,

we obtain x and y expressed as functions of t and four constants

of integration. If we represent t by an ordinate perpendicular

to the .rz/-plane, thus considering x, y, t as rectangular coordinates

16
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in space, we obtain a certain system of co 4 curves in that space

which we designate as space-time curves.*

If we project these curves orthogonally on the #?/-plane, we

obtain the trajectories. In the general case (1) there will be

co 4 of these trajectories ;
but in the special case where the force

is positional, only co 3
trajectories arise, since the system of space-

time curves, whose number is still oo 4
, now admits the group of

translations along the /-axis.

If we project the space-time curves orthogonally on the xt-

plane and on the ^-plane, we obtain in each case a system of co 4

plane curves.

What are the properties of the system of co 4
space-time curves?

The following two properties are characteristic:

(1) . The osculating planes of the co 2
space-time curves through

a given point go through a fixed line parallel to the x?/-plane.

(This line is parallel to the direction of the force acting at the

projected point in the ;n/-plane.)

(2) . If the co 2
space-time curves through the given point are

orthogonally projected on any plane perpendicular to the xy-

plane, the co 2
plane curves obtained are such that those which

have the same tangent also have the same curvature.

Another complete characterization may be given as follows:

(3). If the co 2
space-time curves through a given point are

orthogonally projected on either the :r-plane or the yt-plane,

the co 2
plane curves obtained have their centers of curvature

located on a special cubic of the form fi= a(x
2
-\-t

2
) or /

3=
6(?/

2-H2
).

A corresponding cubic locus will then necessarily arise by pro

jection on any plane perpendicular to the .T?/-plane.

*
It may be remarked that if, in problem (1), the force is multiplied by a

constant c (or, what is equivalent, the mass of the particle is multiplied by

1/c), a distinct system of oo 4
space-time curves will be obtained. The totality

of oo 5
space curves, thus related to the oo 1

plane problems

x =
c&amp;lt;f&amp;gt;(x, y, f), y = ct(x, y, t),

may be generated as trajectories in a three-dimensional positional field of

force. The oo 5 curves have the four characteristic properties of a space

system ( 11) and the further peculiarity that the direction of the force is

parallel to the xy-pl&ne.
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137. Consider the co 4 curves in say the .r^-plane. These are

the curves representing graphically the relation between the

abscissa x and the time t. By eliminating y from the set (1),

we obtain a relation of the form

where A, B, C involve only x, x, x and the independent variable

t. The fourth derivative is thus always quadratic with respect

to the third derivative. Hence, by 116, we have this result:

In the .r^-plane (or, more generally, in any plane perpendicular

to the plane xy in which the motion actually takes place), the

oo l curves having any element of curvature in common are such

that the locus of the centers C&quot; of their osculating conies (con

structed at the common point) is a conic passing through the

common point in the direction of the common tangent.

As indicated above, the c 4 curves in the .ry-plane, that is, the

trajectories, do not usually enjoy this simple property. Even

in the case where the time enters only through the mass, the

locus of the centers of the osculating conies may be of any

degree of complication. Its shape depends on the law of vari

ation of the mass. Only for the special laws stated at the bottom

of page 112, together with certain combinations of them, is the

equation of the trajectories of the quadratic type.

138. It is possible to obtain additional general properties of the

.rt-system, describing how the locus conic, corresponding to a cur

vature element, changes when the element changes. For the co

efficients A, B, C determining the position of the conic have the

following forms : A does not involve x, B is linear and integral in

x, C is quadratic and integral in x. Hence these results:

If the curvature element is varied, at the given point 0, in such

a way that the second derivative x is constant, so that only x

varies, the center C&quot; of the corresponding locus conic describes

a new conic.

At the same time a certain two-to-one correspondence arises

between the initial direction of the element and the direction of

the line joining to the center C&quot;.
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139. A clearer picture is perhaps obtained by changing the

notation to correspond with the usual x, y, z notation for rec

tangular coordinates in space. It is then desirable to lay off

the time on the .r-axis, since this is the independent variable.

The actual motion then takes place in the 2/z-plane, and the

differential equations of motion are

d2
y d2

z

The curves in space x, y, z are then the space-time curves. Their

projections on the yz-plane are the trajectories (whose explicit

properties have not been derived). Their projections on the xy-

plane (or on the .-rz-plane, or on any plane parallel to the z-axis)

are curves whose properties have just been stated ( 137, 138).

The differential equation in the or?/-plane is

where the coefficients involve only x, y, and y .

140. We have not attempted a complete direct characterization

of the systems of curves arising in any one of the coordinate

planes. Such a characterization has however been given ( 136)

for the system of co 4
space-time curves. Indirectly this really

solves all the problems. A system of curves in the plane can be

regarded as trajectories of a force depending on time and position

if and only if the curves can be obtained by orthogonal projection

from some system of o 4 curves in space having the properties (1)

and (2) of 136. If, furthermore, the space system is invariant

under translation perpendicular to the given plane, the plane

system, then consisting of only co 3
curves, belongs to a posi

tional field.

141. For any force depending on time and position

x =
&amp;lt;p(x, y, 0, y = $(*, y, t),

the number of space-time curves is always &amp;lt;*&amp;gt;

4
. When we project
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these on the .r?/-plane, to obtain the trajectories, the number is

usually oo 4
. The number reduces to cc 3

if the force is positional

but does not vanish; in the latter case the trajectories are merely

the oo 2
straight lines.

In the .r^-plane the usual number of curves is oo 4
. The only

exception arises when the function
&amp;lt;p

is free from the variable

y. In this case the ar^-curves all satisfy the equation of second

order x =
&amp;lt;p(x, t) and therefore their number is only oo 2

. Similar

statements hold of course for the ?/-plane.

Consider, as a single example, gravity, taken as uniform and

acting in the vertical .ry-plane. The equations of motion are

x = 0, y = g.

The xyt-cuTves are

x = at + b, y= \g$ + ct + d,

a certain family of oo 4
parabolas in space. The ^-curves are

oo 2
straight lines. The ^-curves are oo 2

parabolas. The xy-

curves (that is, the trajectories) are oo 3
parabolas

y = ax2 + (3x
2 + y.

It is to be observed that if the gravity constant g is changed,

the new problem, while giving the same trajectories, gives a dis

tinct family of a^-curves. If g takes all possible values, the

totality of space-time curves obtained is formed of cc 5
parabolas

(namely, those whose axes are parallel to the -axis). These

curves, in accordance with the general statement made in the

footnote on page 114, are the trajectories of a positional field

, in space, the generating force being constant and acting in the

^-direction.

All the results can be extended so as to apply to the four-

dimensional space-time curves depicting motion in ordinary

space.
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