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PREFACE

It has been the author’s experience in the teaching of physical chemis-
try that one can no longer do justice to the principles of chemical thermo-
dynamics in the conventional introductory physical chemistry course
without taking time from much descriptive and theoretical material that
does not actually require the use of thermodynamic methods for its inter-
pretation. At the same time, the scope of chemical thermodynamics
itself has expanded so greatly during the past twenty-five years that a
thorough foundation in this subject is indispensable to the modern
chemist, in whatever field of chemistry his efforts may be directed.

This book is intended to serve a course in chemical thermodynamics
which may accompany or immediately follow the introductory course in
physical chemistry, at either the senior undergraduate or the first-year
graduate level. The emphasis throughout is on general principles and
their origins, with specific applications to a limited number of fields
which are primarily the concern of the chemist. While mathematical
formulations are employed freely throughout, no mathematics beyond
calculus is required ; special mathematical techniques are explained as the
need arises. No prior knowledge of thermodynamics is assumed, since
this course is designed to replace the ordinary thermodynamics course
for chemistry students. The problems given at the end of each chapter
constitute an integral part of the presentation. Most of these problems
have been selected from the chemical research literature; ¢ answers’”’ may
therefore be checked in these cases by consulting the original references.
The fact that so many of the problems have been taken from papers
appearing within the past few years offers convincing evidence, if such is
needed, that chemical thermodynamics is decidedly a living subject. The
book has not been planned as a reference source for chemical thermo-
dynamic data, since extensive critical compilations exist elsewhere,
notably in the definitive project, ‘““Selected Values of Chemical Thermo-
dynamic Properties,”’ issued by the National Bureau of Standards under
the direction of Dr. Frederick D. Rossini.

In keeping with our limited objective, which has been to present the
theoretical structure of the science and its applications to chemistry
without becoming extensively engaged in side issues of extrathermo-
dynamic origin, certain related matters have not been discussed in detail,
particularly where other sources of information are readily available.

v



vi PREFACE

Thus, the Debye monatomic heat-capacity formula and the Debye-
Hiickel limiting law for the activity coeflicients of strong electrolytes
have been introduced for our present purposes as ad hoc results of extra-
thermodynamic theoretical investigations. Their origins and the general
assumptions underlying their derivations have been briefly indicated,
but the reader is referred elsewhere for the actual derivations on the
ground that these have little to do with essential thermodynamic theory.
Likewise, no discussion except in most general terms has been given of
recent theories of nonideal solutions on the ground that, while the tests
of such theories rest mainly on thermodynamic data, the theories them-
selves transcend purely thermodynamic methods of investigation and in
a sense constitute a sequel to the material considered to fall within the
scope of this book. The Gibbs’ surface-concentration theory has not
been included for discussion on the ground that, in the author’s opinion,
much more spectacular progress has been made in this field through
applications of Langmuir’s oriented monomolecular surface film hypoth-
esis than through quantitative applications of Gibbs’ law. With the
aid of the references cited throughout the book, it should be possible
for the enterprising student to follow up further details of many special
applications that may interest him. If time permits, some of these
special topics may be explored at greater length in class by means of
seminar assignments, a valuable method of instruction at the level
indicated.

It has been the author’s good fortune to have studied with a great
scientist and teacher, Professor Louis P. Hammett. @ His boldness of
enterprise, combined with a passion for accurate knowledge and an
impatience with cloudy ideas, has been a source of inspiration through
many years. It is a pleasure to acknowledge personal indebtedness to
him for advice, criticism, and encouragement in the completion of this
work. Any errors are the responsibility of the author, and he will be
glad to receive criticism that may improve the book’s usefulness.

MArTIN A. PAUL
Enpicorr, N.Y.
January, 1951
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CHAPTER 1
TEMPERATURE

In all measurements involving heat, and in many other kinds of physi-
cal and chemical investigations, the concept of temperature is of para-
mount importance. It is therefore appropriate for us to begin the study
of chemical thermodynamics by reviewing how temperature is measured,
even though the full theoretical import of the temperature concept can be
appreciated only after we have discussed the second law of thermody-
namics in Chap. 5.

1-1. Principles of Thermometry. We are endowed by nature with a
temperature sense that enables us to distinguish the relative hotness or
coldness of objects we touch or are otherwise exposed to (as through
thermal radiation). This sense is, however, too crude and limited in
range to be directly useful in precise scientific investigations. Therefore
various types of thermometers have been developed to measure tempera-
ture precisely and to extend the range of measurements far beyond that
directly accessible to our physiological temperature sense.

The ordinary thermometer is based on some conveniently measured
physical property of a standard substance or system, the so-called
““thermometric medium,”” that varies in a single-valued, continuous way
as the medium is made hotter. The most familiar type of thermometer
is based on the expansion of a liquid, such as mercury, confined within a
glass tube. Other types of thermometers are based on the differential
expansion of two strips of different metals joined at their extremities, the
pressure of a gas confined within a glass or metal tube at fixed volume, the
vapor pressure of a liquid, the electric resistance of a metal, the electro-
motive force set up in a circuit composed of two different metals when
their junctions are at different temperatures, the rate of total radiation
and also the spectral distribution of the energy radiated by a black body,
and certain other thermometric properties that have been found useful in
special applications.

In reading a thermometer, we are generally observing directly the
temperature of the thermometric medium rather than that of the sys-
tem to which it is applied. The usefulness of the thermometer for meas-

uring the temperatures of other bodies depends on the following funda-
1



2 PRINCIPLES OF CHEMICAL THERMODYNAMICS

mental thermal principle,! which represents a generalization drawn from
experience:

W henever two or more bodies at different temperatures are exposed to each
other, whether by direct physical contact, by indirect contact through an
intervening material medium, or even at a distance across empty space, they
influence each other in the sense that they tend to undergo changes, until ulti-
mately a state of equilibrium has been establiched from which no further
changes take place; such a state of equilibrium is reached only when all the
bodies have come to a common temperature.

This fundamental principle is in effect a definition of femperature
equality; two bodies that have come to equilibrium with each other (by
this expression we mean that while they are potentially exposed to each
other’s influence, no sensible change is taking place in either) must be at
the same temperature. The criterion of temperature equality thereby
set up is a sufficient, though evidently not a necessary one, for two bodies
may be at the same temperature without having come to a state of equi-
librium in other respects. The general problem in thermometry, then,
is to bring the thermometer to equilibrium with the system whose tem-
perature is to be measured.

Three distinct mechanisms have been recognized whereby tempera-
ture equalization may be brought about: thermal conduction, thermal
convection, and thermal radiation. A detailed discussion of these
mechanisms would involve the concept of heat itself, which we propose to
discuss in Chap. 2, as distinguished from that of temperature. The
following remarks are therefore intended merely as a brief introductory
review.,

When temperature equalization takes place directly across the bound-
ary between two bodies, or when it takes place through an intervening
material medium that itself undergoes no sensible motion during the
process, it is said to take place through thermal conduction. The mathe-
matical theory of thermal conduction was established by J. Fourier in
his “La Théorie analytique de la chaleur,” published in 1822;% in this
work, Fourier gave the first rational definition of that property of a mate-

1 A. G. Worthing and D. Halliday, in their textbook, ‘“Heat,” John Wiley & Sons,
Inc., New York, 1948, refer to the content of this principle, stated by them, however,
in a slightly different form (‘““two systems in thermal equilibrium with a third are
in thermal equilibrium with each other”), as the zeroth law of thermodynamics.
The author believes, however, that it is implied by the second law of thermodynamics
in its most general form (see Chap. 5). We assume it here temporarily as a starting
point, since the second law itself is too abstract to constitute a satisfactory introduc-
tion to the subject.

2 An English translation by A. Freeman of this great classic has been published by
G. E. Stechert & Company, New York.



TEMPERATURE 3

rial substance known as its thermal conductivity. The metals have rela-
tively high thermal conductivities, copper and silver being among the
best conductors; glass, wood, and many ceramics have relatively low
thermal conductivities. There is a general correlation between thermal
and electrical conductivities (the Wiedemann-Franz law, discovered in
1853), which has received a satisfactory explanation in terms of the
modern electronic theory of atomic structure.

Gases and liquids, in addition to showing thermal conduction, may
promote temperature equalization also by means of thermal convection,
associated with sensible motion of the material fluid substance. When
the fluid is unevenly heated by being in contact with a hotter and a colder
body, the temperature inhomogeneity set up in the fluid is accompanied
in general by an inhomogeneity in its density; under the influence of
gravity, therefore, the fluid becomes mechanically unstable, and convec-
tion currents are set up that tend to restore mechanical, and with it,
thermal equilibrium. The process may be accelerated by means of
forced circulation of the fluid (e.g., by means of a pump or a fan). Many
of the thermal insulators used in the building industries consist of porous
solids entraining relatively large volumes of air; the solid network inter-
feres with convection of the air, and thus reduces its rate of thermal
exchange to that characteristic only of its thermal conductivity, which is
low in comparison with the ordinary convective conductivity of free air.
The net thermal conductivity of the insulator will of course be a mean
between the thermal conductivities of the entrained air and of the solid
material itself; air at atmospheric pressure is, however, a poorer thermal
conductor than most solids (for this reason, cork is a better insulator than
solid wood of the same thickness).

Temperature equalization between a hotter and a colder body may pro-
ceed even in the absence of any material connection between them by
means of thermal radiation. This is of course the mechanism by which
the sun heats the earth. According to the generally accepted theory of
exchanges, first proposed by Pierre Prévost of Geneva in 1792, we believe
that all bodies are continually emitting radiation, at a rate that increases
with temperature, but is independent of the surroundings; the rise or fall
of a body’s temperature associated with thermal radiation thus represents
the net effect of its own radiation and the radiation it receives from the
surroundings. In ordinary thermometry, thermal radiation may intro-
duce an important source of error if the thermometer happens to be
exposed to radiation from a source at a different temperature outside the
system whose temperature is being measured, for the thermometer may
then come to an apparently steady state (while it is actually transmitting
heat to or from the system) at a temperature some degrees removed from
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that of the system with which it is in contact. For example, the tem-
perature registered by a meteorological thermometer exposed directly to
the sun may be considerably higher than the air temperature as registered
by a thermometer standing nearby in the shade. Since thermal radia-
tion, like ordinary light, of which it is a special form, tends to travel in
straight lines and is efficiently reflected by a polished metal surface, the
thermometer may be protected from radiation, when necessary, by means
of a surrounding metal shield, whose own temperature is maintained close
to that of the system under investigation. Thermal radiation is a form
of electromagnetic radiation in general; the radiation from a body at
relatively low temperatures is confined to the infrared region of the
spectrum, but as the body’s temperature is increased, the region of
greatest intensity shifts into the visible range, and the thermal radiation
is then perceived in part as ordinary visible light; at still higher tempera-
tures, the region of greatest intensity shifts on into the ultraviolet, but
since the total radiation at the same time increases, the intensity of
the visible part of the radiation, which then appears as dazzling white
light, continues to increase. The laws of thermal radiation have been
well established, theoretically and experimentally, and both the total
intensity and the ‘‘ color”’ or spectral distribution of the thermal radiation
from a “black”’ body, or total radiator, are used independently to measure
high temperatures, as we shall see in Sec. 1-7. Thermal radiation pro-
vides us with a method for measuring the temperatures of objects at a
distance; thus, it is the only direct source of information we have con-
cerning the surface temperatures of the heavenly bodies.

Now, in a general sense, all bodies in the universe are more or less
directly exposed to each other, through conduction, convection, radiation,
or some combination. of these independent mechanisms. Our funda-
mental thermal principle would therefore imply that they are all influenc-
ing each other, undergoing changes that would tend ultimately to equalize
their temperatures; strictly construed, thermal equilibrium must be an
abstraction never actually realized. Nevertheless, the principle is based
on the fact that we recognize and can produce in practice local systems
that satisfy it, in the sense that they are relatively self-contained or insu-
lated with respect to thermal changes. Thus, a localized system con-
sisting of a finite number of contiguous material bodies may be so well
enclosed by a combination of insulating materials and radiation shields
that it comes to an internal state of equilibrium maintained over a period
of time long by ordinary laboratory standards of observation, inde-
pendently of what is going on outside. Changes taking place within a
system so insulated are called adiabatic. Rapid changes, even when the
system is not particularly well insulated, may be effectively adiabatic, if
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they take place during times short in comparison with the time taken by
the system to readjust itself to thermal equilibrium with its surroundings.

Another type of situation that may be realized in practice is for the
system to be immersed in a thermostat, a comparatively large body (of
air, water, transformer oil, copper, etc.) which serves to screen the sys-
tem under observation from direct interaction with the world outside.
In such a situation, the thermal behavior of the system is determined
primarily by its interaction with the thermostat, whose temperature it
tends to assume, and only secondarily, or over a long period of time, by
the comparatively slow interaction between the thermostat and the
external world. The atmosphere of the room, for example, serves ordi-
narily as a crude kind of thermostat; but thermostats of much higher pre-
cision, covering a broad range of working temperatures, and automatically
controlled to maintain constant temperatures for weeks at a time without
attention, have been developed for specific laboratory and industrial
applications. Changes taking place within a system whose temperature
is maintained constant are called ¢sothermal.

The possibility of measuring temperature at all depends on the possi-
bility of establishing equilibrium between the thermometer and the sys-
tem under observation rapidly in comparison with the rate at which the
properties of the system are undergoing change as it reacts with its
environment. The general changes taking place in the system as it
approaches ultimate equilibrium in the world at large may, however, be
greatly retarded by means of thermal insulation or thermostating. The
study of thermally isolated systems and of systems maintained at con-
stant temperature has therefore come to occupy a prominent place in
thermodynamic investigation. Following up the same train of thought,
the temperature of a system that has not attained a state of internal
thermal equilibrium (which would be characterized according to the
fundamental thermal principle by uniform temperature throughout all
its parts) is in a strict sense undefined. If, however, such a system is
explored by means of a thermometer sufficiently sensitive and rapid in
response so0 that it comes to equilibrium with a local element of the sys-
tem within a time short compared with the rate at which the element is
undergoing change as it approaches equilibrium with the rest of the sys-
tem, then we can measure its instantaneous local temperature, in much
the same sense as we measure the temperature of an ‘“isolated’’ system,
which is in reality interacting slowly with its surroundings. In the
mathematical theory of thermal conduction, this idea is extended so far
as to include the concept of a temperature that may vary continuously
from point to point within a material medium as a function of the space
coordinates. In chemical thermodynamics, however, we shall be inter-
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ested primarily in equilibrium states, in which the temperature is uniform
throughout the system under investigation.

1-2. Establishment of a Temperature Scale. 'The thermomecter, when
used with corrections appropriate to its inherent experimental errors (the
nature of which depends on the particular type of thermometer and the
manner in which it is applied), thus fundamentally enables us to judge
whether two different bodies are at the same temperature, or if they are
not, to obtain an objective numerical measure of their relative tempera-
tures. It provides us in general with a sequence of readings of some
particular thermometric property, such as the length of a copper bar, the
pressure of a gas, the electric resistance of a platinum wire, the emf of a
bimetallic circuit, etc., correlated with various degrees of temperature.
Before we can assign numerical values to the temperature itself, we must
adopt a convention concerning the number that is to represent some
standard reproducible difference of temperature. Thischoice of numerical
scale is entirely arbitrary, since only the relative magnitude of one temper-
ature with respect to another, and not the value assigned to any one
temperature taken by itself, has physical meaning.

The standard interval on all modern temperature scales is in principle
the difference between the ice point and the steam point; these are the con-
stant temperatures at which ice and steam, respectively, are in equilib-
rium with water at standard atmospheric pressure (a pressure equal by
convention to 1,013,250 dynes/cm?; this represents the pressure at the
base of a mercury column 760 mm in height at the ice point under the
influence of standard gravity, go = 980.665 cm/sec?).! The difference
between the readings of the thermometer (corrected for the various

1 Much work has been done at the National Bureau of Standards and elsewhere
on the triple point of water as a primary fixed thermometric point, in place of the
ordinary ice point. While the triple point is somewhat less convenient to set up,
requiring the use of a special cell operating at reduced pressure, any uncertainty that
may be introduced by the presence of a variable amount of air dissolved in the water
at the ice point is eliminated, as well as all reference to the pressure, which at the
triple point is fixed by nature (about 4.7 mm Hg). At the Ninth General Conference
on Weights and Measures, in October, 1948 (the General Conference is a diplomatic
body representing 33 participating nations, established under the terms of an inter-
national treaty of 1875, and charged with the power to adopt recommendations con-
cerning standards of weights and measures for international use), a resolution was
therefore adopted defining the zero of the centigrade scale as being the temperature
0.0100 deg below that of the triple point of pure water [H. F. Stimson, Natl. Bur.
Standards J. Research, 42, 209-217 (1949)]. This change of course has had no
immediate practical cffect, and will bear anyhow only on work of the highest precision.
In order to avoid circumlocution, therefore, we shall continue throughout this chapter
to regard zero as identified with the ordinary melting point of ice at atmospheric
pressure.
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experimental errors) at these two arbitrarily selected fixed points is called
the fundamental interval of the thermometer. In order to convert read-
ings of the particular thermometric property into temperatures and so to
establish a temperature scale, an arbitrary number of degrees is assigned
to the temperature difference represented by the fundamental interval,
i.e., to the difference between the steam point and the ice point. On the
Celstus or so-called centigrade scale this number is 100°C; on the modern
Fahrenheit scale, it is 180°F; on the French Réaumur scale, it is 80°Ré.

Let A denote this conventional number of degrees assigned between the
steam point and the ice point on any of these scales, and let A’ denote the
fundamental interval of some particular thermometer whose readings (of
length, pressure, resistance, etc., as the case may be) are represented by
the symbol »'; then for any thermometer of the same type a unique tem-
perature scale could be established most simply by means of a linear rela-
tion of the form

UV —t = % (" — ) (1-1)

where ¢, denotes some standard initial temperature such as the ice point
(by convention, 0°C on the Celsius scale, 32°F on the Fahrenheit scale,
0°Ré on the Réaumur scale), at which the instrument reading is r5, and ¢
is the temperature measure defined by the new reading »’. In other words,
such a temperature measure ¢’ would be defined as increasing in direct
proportion to the increase in the thermometric property »/, the propor-
tionality constant A /A’ being merely a conversion factor for converting
instrument readings (in centimeters, atmospheres, ohms, etc.) into con-
ventional degrees. Such a temperature scale is in fact set up by the
ordinary mercury-in-glass thermometer, whose graduations, constituting
actually a linear scale, are marked off on the capillary directly as tem-
perature degrees. A naive procedure such as this would be entirely
adequate for setting up the temperature scale in the absence of other
methods of measuring temperature. If, however, one makes measure-
ments with a different type of thermometer, whose readings are repre-
sented by 7"’ and whose fundamental interval is A", then in general the
temperature measure ¢’ given by this second type of thermometer, accord-
ing to a similar linear equation,

t" — to = _A‘i’} (T” — 7':;’)

differs, except at the defined ice poirt and steam point, from the tempera-
ture measure ¢’ given by the first (see Table 1-1). In other words, the
electric resistance of a platinum wire does not increase linearly with the



8 PRINCIPLES OF CHEMICAL THERMODYNAMICS

temperature as measured by a mercury-in-glass thermometer, and the
coefficient of expansion of mercury in glass is not uniform on the tempera-
ture scale defined by a constant-volume nitrogen-gas thermometer, etc.
Therefore one must in general qualify temperature measurements so

TABLE 1-1. APPARENT TEMPERATURES AS REGISTERED BY VARIOUS TyYpEs oF
THERMOMETERS ACCORDING TO EqQuaTioN (1-1)*

Type of thermometer t;, °C t;, °C
Linear expansion of a copper bar............| 49.21 206.9
Linear expansion of a silver bar............. 49.50 203.96
Mercury in Jena 16 glass.................| 50.11 200.29
Platinum resistance........................| 50.36 197.03
Platinum-rhodium thermocouple............ 46.9 223.4
Copper-constantan thermocouple............| 48.4 215.6
Constant-volume hydrogen gas..............| 50.003 199.976
Constant-volume helium gas................| 50.001 199.994
Constant-volume neon gas..................| 50.001 199.997
Constant-volume nitrogen gas...............| 50.010 199.978
Constant-volume air gas................... 50.013 199.976
Constant-volume argon gas................. 50.014 199.971
Constant-volume oxygen gas................| 50.016 199.929
Constant-pressure hydrogen gas.............| 50.004 199.976
Constant-pressure helium gas............ ... 50.000 199.999
Constant-pressure neon gas.................| 50.002 199.990
Constant-pressure nitrogen gas..............| 50.032 199.877
Constant-pressure air gas...................| 50.033 199.874
Constant-pressure argon gas................ 50.034 199.863
Constant-pressure oxygen gas...............| 50.035 199.839

* The values of ¢1 and ¢2 are the same for all the thermometers (50.000°C and 200.000°C, respectively,
on the ideal-gas temperature scale). The results for the gas thermometers, standardized with an initial
pressure of 1 m Hg at the ice point, are taken with permission from M. W. Zemansky, ‘‘ Heat and
Thermodynamics,’”’ 2d ed., p. 12, McGraw-Hill Book Company, Inc., New York, 1943. The data for
the other types of thermometers are computed from information found in Landolt-Bornstein, *‘ Phys-
ikalisch-chemische Tabellen,” 5th ed.

obtained, simply by the application of Eq. (1-1), as mercury-in-glass
temperatures (in high-precision thermometry, even the type of glass must
be specified, because different thermometric glasses, having different
coefficients of expansion, give slightly different temperature scales), or as
constant-volume hydrogen temperatures, or as platinum resistance tempera-
tures, etc., as the case may be.
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Now, there is one temperature scale based on the linear equation (1-1)
that has greater generality than other scales. One will note in the data
of Table 1-1 that if one takes as the thermometric property 7 either the
pressure at constant volume or the volume at constant pressure for fixed
mass of any gas, then the temperature ¢’ is found to be almost independent
of the particular gas. Such deviations as do exist among the different
gases (barring those cases in which the gas is known to undergo some
kind of chemical change, such as dissociation or association) are entirely
the result of deviations from Boyle’s law at finite pressures, for if instead
of the pressure at constant volume or the volume at constant pressure,
one takes the pressure-volume product for fixed mass of gas, and at each
temperature determines by extrapolation from a series of measurements
at different pressures its limiting value as p — 0, then the temperature
measure { defined by the linear equation

L=ty =4 llim (pV); — lim (pV)d (1-2)
p—0 p—0

is entirely independent within experimental error of the particular gas
employed. The fundamental interval A in Eq. (1-2), which represents

the increase in the value of lim (pV) between the ice point and the steam
p—0
point, depends of course on the particular gas, as well as on the mass of it

contained in the thermometer; but the ratio A/lim (pV),, representing
0
the relative increase in the value of lim (pV) between the ice point and
p—0

the steam point, is a universal constant, whose accepted value according
to the most precise experimental measurements is 0.36608 + 0.00002
(see Table 1-2).

Equation (1-2), which defines the ideal-gas temperature t, may therefore
be put in the form

A 1111(1) ®V). A

t =t = 536608 lim (pV)s _ 0.36608
—0

If now we assign to the ice point in place of the arbitrary number repre-
sented by & (e.g., o = 0°C on the Celsius scale), the number A /0.36608,
then temperature measures on the new scale, which we shall represent by
the symbol 7', are given by

T = 036608 tim (Vs
p—0

(1-3)
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The number
A

To = 536608 (1-4)
which represents the ice point on the new or absolute ideal-gas temperature
scale, thus has the value 273.16 + 0.01 in terms of centigrade degrecs
(4 = 100°C), or 491.69 + 0.02 in terms of Fahrenheit degrees (4 = 180°F).

One of the important practical methods of determining the value of the
TaBLE 1-2. RELATIVE INCREASE OF PRESSURE AT CONSTANT VOLUME, OF VOLUME

AT CoNSTANT PRESSURE, AND OF IDEAL LiMiTING pV, BETWEEN THE IcE PoIiNT
AND THE STEAM POINT FOR VARIOUS GASEs*

lim V)10 — lim (V)
Gas [ploo - po] [ono - Vo] p—0 ] p—0
Po Vo Vo Do lim (V)
. -0
Alr..ooovi 0.36716 0.36711 0.36604
Argon................ ... 0.36717 0.36724 0.36604
Carbon dioxide........... 0.3710 0.37217 0.3665
Carbon monoxide......... 0.3673 0.3672 0.3663
Ethylene................. 0.3722 0.3735 0.3665
Helium.................. 0.36613 0.36591 0.36608
Hydrogen................ 0.36627 0.36603 0.36604
Methane................. 0.3678 0.3681 0.3662
Neon.......coovvvvennnn. 0.36628 0.36606 0.36604
Nitrogen................. 0.36718 0.36709 0.36610
Oxygen.................. 0.36735 0.36746 0.36604

* The value of po in the second and third columns is 1 atm; the data in these columns are taken from
the compilation by J. B. M. Coppock, Phil. Mag., (7) 19, 446-457 (1935). The limiting values in the
last column are derived from the following sources:

Air, fargon, neon, oxygen: L. Holborn in Landolt-Bornstein, ‘‘Physikalisch-chemische Tabellen,”
6th ed., Supplement I, pp. 64-67, 1927,

Carbon dioxide, ethylene: J. B. M. Coppock and R. Whytlaw-Gray, Proc. Roy. Soc. (London), (A)
148, 487-505 (1934).

Carbon monoxide: E. P. Bartlett, H. C. Hetherington, H. M. Kvalnes, and T. H. Tremearne, J.
Am. Chem. Soc., 52, 1374-1382 (1930).

Helium: W, Heuse and J. Otto, Ann. Physik, (5) 2, 1012—1030 (1929).

Hydrogen: J. Otto in Landolt-Bérnstein, ‘‘ Physikalisch-chemische Tabellen,” 5th ed., Supplement
Ila, p. 52, 1931.

Methane: H, M. Kvalnes and V. L. Gaddy, J. Am. Chem. Soc., 58, 394-399 (1931).

Nitrogen: J. Otto, A. Michels, and H. Wouters, Physik. Z., 88, 97—100 (1934).

The mean, 0.36608 + 0.00002, represents the result of a critical evaluation of all the data, as given
by J. A. Beattie in the symposium, ‘“ Temperature. Its Measurement and Control in Science and
Industry,” pp. 74-88, Reinhold Publishing Corporation, New York, 1941. See also, W. Heuse and
J. Otto, Ann. Physik, (5) 2, 1012-1030 (1929); R. T. Birge, Rev. Modern Phys., 18, 233-239 (1941).

absolute ice point thus consists of precise measurements of lim (pV) for
p—0

hydrogen, nitrogen, helium, etc., at the steam point and at the ice point.
The extrapolation may be most precisely carried out for gases that deviate
least from Boyle’s law at those temperatures around atmospheric pressure;
for this reason, hydrogen, helium, and nitrogen are better thermometric
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gases than carbon dioxide or ammonia.! Temperatures on the absolute
scale are related to temperatures on the ordinary scale, having the same
number of degrees assigned to the fundamental interval but an arbitrary
number ¢, assigned to the ice point itself, through the equation

T =t—t+ To (1-5)

Thus, temperatures on the absolute centigrade or Kelvin femperature
scale? are derived from ordinary centigrade or Celsius temperatures (for
which {, = 0°C) simply by the addition of 273.16; such temperature
measures are designated by the suffix °K; for example, Ty = 273.16°K.
Temperatures on the absolute Fahrenheit or Rankine temperature scale?
are derived from ordinary Fahrenheit temperatures (for which £, = 32°F)
by the addition of 459.69; such temperature measures, which are occa-
sionally used by chemical and mechanical engineers, are designated by
the suffix °R; for example, Ty = 491.69°R.

Now, according to Avogadro’s hypothesis, the value of lirr(l) (»V),

V2and

where V represents the volume per mole, is at any given temperature the
same for all gases; the accepted value at the ice point is 22.4140 + 0.0004
liter atm/mole, derived from measurements on oxygen, whose chemical
molecular weight has the conventional value 32.0000.# The combination

of factors

R = lim (p7) = 22898 1y (57, (1-6)

TO p—0 A »—0

occurring in Eq. (1-3) applied to 1 mole of any gas therefore defines a
universal constant, known as the ideal gas constant R, such that at any
temperature

lim (pV)r = RT 1-7)
p—0

1 The only other method that has been found practicable and sufficiently precise to
date is based on the Joule-Thomson effect, to be discussed in Chap.3. J. R. Roebuck
and T. A. Murrell have given the best estimate of 7'y = 273.17 + 0.02°K by thisinde-
pendent method in the symposium “Temperature. Its Measurement and Control
in Science and Industry,” pp. 60-73, Reinhold Publishing Corporation, New York,
1941; see also J. R. Rocbuck, Phys. Rev., 60, 370-375 (1936).

2 Named after Sir William Thomson, Lord Kelvin, who derived such a scale in
1852 from the second law of thermodynamics, as we shall see in Chap. 5.

8 Named after W. J. M. Rankine, nineteenth century British engineer and physicist.

4 C. 8. Cragoe, J. Research Natl. Bur. Standards, 26, 495-536 (1941); see also
C. 8. Cragoe, in “Temperature. Its Measurement and Control in Science and
Industry,” pp. 89-126, Reinhold Publishing Corporation, New York, 1941; this value
recommended by Cragoe has been adopted by F. D. Rossini and his staff for the
critically evaluated compilation, “Selected Values of Chemical Thermodynamic
Properties,” National Bureau of Standards, Washington, D. C., Dec. 31, 1947.
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This equation is commonly written in the approximate form
pV = RT (1-8)

which may be applied to any gas at pressures sufficiently low so that
deviation from Boyle’s law does not introduce a significant error; Eq.
(1-8) is the familiar ideal-gas equation of state. It was not necessary to
introduce Avogadro’s hypothesis in order to establish the ideal-gas tem-
perature scale, but we have introduced it at this point because the experi-
mental determination of R is so intimately related to the quantities meas-
ured in the setting up of the absolute temperature scale. The numerical
value of R depends of course on the system of measurement used to repre-
sent p and V, as well as on the number of degrees A assigned to the funda-
mental interval; thus, B = 0.0820544 + 0.0000034 liter atm/mole °K;
with p and V represented in mks units, R = 8.31439 + 0.00034 joule/
mole °K. Other equivalent values may be computed by means of the
appropriate conversion factors.!

In Chap. 5, we shall find that a temperature scale of even greater
generality than the ideal-gas temperature scale can be founded on the
second law of thermodynamics. This so-called thermodynamic tempera-
ture scale is entirely independent of the particular material system used
as the thermometer. Its form, however, turns out to be identical with
that of the ideal-gas temperature scale, which constitutes therefore an
experimental method of measuring temperatures on the thermodynamic
scale. We shall accordingly refer to temperatures measured on the ideal-
gas temperature scale as thermodynamic temperatures, and shall use the
symbol ¢ to represent the thermodynamic temperature based on an
arbitrarily assigned ice point and fundamental interval (as on the Celsius
scale) ; we shall use the symbol 7' to represent the absolute thermodynamic
temperature, based on an ice point defined in relation to the fundamental
interval by means of Eq. (1-4), or other equivalent expressions.

Although the adjective “absolute’ is customarily applied to the tem-
perature scale given by Eq. (1-3), one should recognize nevertheless that
only the relative value of one temperature with respect to another has
physical meaning, and not the individual value assigned to any one tem-
perature by itself. A somewhat different method of setting up the
‘““absolute’ scale from the one now in use would be to assign instead of an
arbitrary number 4 to the difference between the steam point and the

1 Throughout this book, we use the expression mole without qualification to mean
gram~mole, or unit of mass represented by the substance’s chemical formula weight in
grams. In chemical engineering, other chemical units of mass, such as the pound-
mole, are also in use; compare O. A. Hougen and K. M. Watson, “Chemical Process
Principles,” John Wiley & Sons, Inc., New York, 1947,
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ice point an arbitrary number 7', to the absolute ice point itself. This
possibility was in fact pointed out in 1854 by J. P. Joule and W. Thomson
(Lord Kelvin), ¢.e., of assigning to 7' in the equation

lim (V).

T=To hm n (pV)e (1-9)

a conventional numerical value, which in the interest of continuity (though
not necessarily in principle) should agree with the best accepted experi-
mental value of 7'y based on the existing scale convention at the time the
change should be made; thereafter, any revision made necessary by
greater refinement in the measurement of 7' would go into revision of the
interval between the ice point and the steam point, rather than into
revision of the value of 7. Joule and Thomson at the time rejected this
method of establishing the absolute temperature scale in favor of the one
we use today; but the proposal to assign a permanent conventional value
to the absolute ice point has recently been revived by W. F. Giauque,!
and has received serious consideration by the Advisory Committee on
Thermometry of the International Bureau of Weights and Measures, and
also by the International Union of Pure and Applied Physics.2 Giauque’s
proposal has the advantages that the relation between ordinary tempera-
tures and corresponding ‘‘absolute’’ temperatures would no longer be
subject to experimental error, and that in the establishment of ‘‘ absolute”’
temperatures directly by means of gas thermometry, the experimental
error introduced by the present necessity of measuring hm (pV) at the

steam point would be eliminated. It has the dlsadva,ntage that in the
standardization of other kinds of thermometers, such as platinum resist-
ance thermometers, the steam point would lose its present status as a
defined thermometric fixed point, and any experimental error in its
establishment (at present thrown into the value of the absolute ice point)
would enter the calibration of the thermometer.? Of course, no immedi-
ate practical effect of such a change in thermometric standards would be
noted. For our present purpose, we need only observe further that no

1W. F. Giauque, Nature, 143, 623-626 (1939).

2 F. G. Brickwedde, Bull. Am. Phys. Soc., 23, No. 3, 23, (1948) (abstract of a paper
presented before the meeting of the American Physical Society in Washington, D.C.,
April 29 to May 1, 1948). The proposal was put before the Ninth General Conference
on Weights and Measures in 1948, and a resolution was adopted recognizing the
principle, but deferring the assignment of a definite value to T'o; see Stimson, op. cit.,
p. 215.

3 H. T. Wensel, in “Temperature. Its Measurement and Control in Science and
Industry,” p. 10, Reinhold Publishing Corporation, New York, 1941.
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change in our understanding of the essentially comparative nature of the
temperature concept is involved, but merely a change in our attitude con-
cerning the most convenient method of realizing the temperature scale in
practice.

Having thus briefly reviewed the principles on which the measurement
of temperature is based, we shall devote the rest of this chapter to descrip-
tions of several kinds of thermometers used to establish the temperature
scale in practice, concluding with a description of the present Inter-
national Temperature Scale. We shall return to a general discussion of
the thermodynamic temperature concept in Chap. 5.

1-3. Liquid-in-glass Thermometers. The earliest known thermom-
eter was invented by Galileo about 1592. It was actually an air thermo-
scope, consisting of air within a glass bulb, confined over wine in a glass
tube leading down into an open cistern or reservoir; as the air expanded
or contracted with rising or falling temperature, its volume was indicated
by the level of the confining liquid within the connecting tube. A scale
was marked on the tube, whose intervals corresponded approximately to
one-thousandth the volume of the bulb. Upon the discovery in 1643 of
atmospheric pressure and the invention of the mercury barometer by
Galileo’s former assistant, E. Torricelli, it became evident that the air
thermoscope was sensitive to changes in the external pressure of the
atmosphere, as well as to temperature changes.

The first hermetically sealed liquid-in-glass thermometer was designed
by Grand Duke Ferdinand II of Tuscany, about 1660. It was much like
a modern alcohol thermometer, consisting of a glass bulb containing wine
or alcohol, sealed to a glass capillary tube, which was sealed off at the
opposite end. Thermometers of this type were put to use by scientists at
the famous Academica del Cimento, founded by Grand Duke Ferdinand
in Florence, and they were long known as Florentine thermometers.
Those used for weather observations were commonly standardized by
marks placed on the capillary tube denoting the extreme positions reached
by the liquid boundary on the hottest day in summer and the coldest day
in winter; intermediate temperatures were judged accordingly, on a scale
subdividing the interval between these extreme ‘fixed’’ points. The
Florentine scientists applied the thermometer also to the earliest measure-
ments of human body temperature. Isaac Newton in 1701 used a
liquid-in-glass thermometer filled with linseed oil to establish a numerical
temperature scale of extended range; using as thermometric fixed points
the melting point of packed snow, to which he assigned the number 0, and
human body temperature, to which he assigned the number 12, he deter-
mined the boiling point of water (34), and the melting points of several
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metals (e.g., tin 72, bismuth 81, lead 96, etc.) ; by placing small quantities
of these molten metals on a block of heated iron, and observing the time
required for each in turn to reach the point of solidification as the block
cooled, he was able to establish the well-known cooling law that bears his
name.!

Mercury thermometers were first introduced about 1724 by Daniel
Gabriel Fahrenheit, who made many improvements in the design and
reproducibility of liquid-in-glass thermometers. Mercury has several
advantages over other available thermometric liquids: it is easily purified,
and does not wet clean glass; its low specific heat and high thermal con-
ductivity result in comparatively rapid attainment of equilibrium with
its surroundings; it is available in liquid form over quite a wide range of
temperatures, from its freezing point at —38.87°C to its normal boiling
point at 356.7°C. In ordinary thermometers, the upper part of the
capillary may be evacuated before the end is sealed off, so that only
mercury vapor is present above the liquid, at its own vapor pressure; but
special thermometers are made in which this space is filled with nitrogen
gas under pressure, permitting extension of the range up to about 500°C;
if the gas were not present, the mercury at high temperatures would tend
to distill readily from the lower into the upper part of the capillary. The
chief disadvantages of mercury compared with other liquids are its high
density, high surface tension, and tendency to stick because of a difference
between the contact angles with glass for an advancing and for a retreat-
ing interface.

Fahrenheit used his thermometers to establish many thermometric
fixed points; he showed, for example, that the variations previously
reported in the boiling points of purified liquids were associated with
variations in the barometric pressure and that at a given pressure the
boiling points were constant and reproducible; he showed also that the
freezing point of water was constant and reproducible, once ice crystals
had formed; previous observers had been misled by the occurrence of
supercooling. By experimenting with so-called freezing mixtures (mix-
tures of various salts with ice), he discovered reproducible fixed tempera-
tures well below the melting point of ice. His original temperature scale,
proposed in 1714, was based on a freezing mixture of ammonium chloride
and ice, to which he assigned the number 0 (this was the lowest tempera-
ture he was able to produce at that time), and normal human body tem-
perature, to which he first assigned the number 12, but later the number

1 Newton’s own account of these experiments, originally published anonymously,
is given by W. F. Magie, ‘“A Source Book of Physics,” pp. 125-128, McGraw-Hill
Book Company, Inc., New York, 1935.
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96.! The latter “fixed” point was clearly unsatisfactory as a primary
standard. The modern method of basing the temperature scale on the
ice point and steam point as defined standards was proposed in 1742 by
Andreas Celsius, astronomer and mathematician at the University of
Upsala; Celsius proposed originally to assign the number 0 to the steam
point, and the number 100 to the ice point, but at the suggestion of his
colleague, M. Stromer, these numbers were later reversed, giving rise to
the modern Celsius or centigrade scale. The modern Fahrenheit scale,
redefined since Fahrenheit’s time, is based on the same two fixed points
as the Celsius scale, but the ice point is assigned the number 32°F and the
steam point the number 212°F, these numbers corresponding to the
approximate temperatures actually found for the two systems on Fahren-
heit’s original scale. .The temperature scale founded by the eighteenth-
century physician and zoologist, R. A. de Réaumur, was originally
planned so that 1 deg rise should correspond to an increase of one one-
thousandth in the volume of the thermometric liquid (an alcohol-water
solution) ; the modern Réaumur scale is, however, based on the arbitrary
assignment of 0°Ré to the ice point and 80°Ré to the steam point.

For many years, mercury-in-glass thermometers were the principal
instruments available to scientists for the measurement of temperature.
The temperature scale was of course established merely by the setting of a
linear scale on the capillary tube to subdivide and extend the interval
defined by the difference between the ice-point and steam-point readings;
modern mercury thermometers are in fact graduated in precisely this
way. Aside, however, from the general difficulties that may arise with
any kind of thermometer, such as error from exposure to direct thermal
radiation, and misleading indications from local temperature inhomo-
geneities or failure of the system under observation to have reached a
state of internal equilibrium, all liquid-in-glass thermometers are subject
to a number of specific errors (including deviation from the thermo-
dynamic or ideal-gas temperature scale), the corrections for which are
sufficiently large and uncertain so that thermometers of this type are no
longer regarded as high-precision instruments. To begin with, there is a
parallax error that limits the precision with which the scale may be read,
and also an error resulting from sticking of the mercury (other thermo-

1 The decimal system of notation was not widely used in Europe until well into the
eighteenth century; nonintegral numbers were expressed as rational fractions, e.g.,
1174, (this custom is by no means obsolete today, in commercial transactions).
All the earlier temperature scales were therefore based on a standard interval between
two primary fixed points rcpresented by a number having many integral factors, so
that the scale could be conveniently subdivided by means of rational fractions (halves,
thirds, quarters, sixths, etc.) '
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metric liquids that wet glass, such as alcohol and toluene, may have com-
parable drainage errors) which may be reduced by averaging the readings
taken with a rising and with a falling thread. Then, among the more
important of the specific corrections are the following:!

1. Correction for nonuniformity of the capillary bore. Since the ther-
mometer bears a linear scale, any variation in the cross-sectional area of
the tube results in error. It is difficult to check the cross-sectional area
precisely in the finished thermometer, so it is most practical to have the
thermometer standardized by a comparison of its readings at tempera-
tures other than the two primary fixed points with those of a standard
thermometer of a different type; the National Bureau of Standards will
perform this service for a nominal fee, provided that the thermometer
satisfies certain specifications with regard to construction; the Bureau
also sells standard samples of highly purified chemicals whose melting
points have been certified.

2. Corrections for ice-point shift. a. A temporary depression of the
ice-point reading will follow every exposure to a higher temperature,
because there is hysteresis in the adjustment of the glass bulb to the
“normal”’ volume; at the ice point itself, it may take several days for the
bulb to return to its true equilibrium volume. For this reason, mercury-
in-glass temperatures are taken with respect to a variable temporary
zero, determined for each reading by immersing the thermometer in an
ice bath immediately after the high-temperature exposure; the ice-point
reading so obtained, which if the high-temperature exposure was at 100°C
may be 0.04 to 0.08°C lower than the reading that would ultimately be
obtained if the thermometer were kept for several days at the ice point,
is taken to be the temporary zero of the scale, and the high-temperature
reading corrected accordingly.

b. There may also be a secular or gradual drift in the ice-point reading
of a more permanent nature, resulting from slow changes taking place in
the glass; permanent displacement of the ice-point reading can be detected
by exposure of the thermometer to the ice-point temperature for several
days, in order to overcome the temporary lag.

¢. If the thermometer has not been properly annealed, the bulb will
undergo permanent contraction when the thermometer is exposed to a
high temperature, with the result that the ice-point reading may rise by
as much as 20°C on the scale. This should not happen if the thermome-

1 Testing of Thermometers, Natl. Bur. Standards Circ. C8, (1926); ‘‘International
Critical Tables,” Vol. I, pp. 54-56, McGraw-Hill Book Company, Inc., New York,
1926; J. Busse, Liquid-in-glass Thermometers, in ‘“Temperature. Its Measurement
and Control in Science and Industry,” pp. 228-255, Reinhold Publishing Corporation,
New York, 1941.
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ter has been constructed from a good grade of thermometric glass, and
been carefully annealed ; permanent displacement of the ice-point reading
should then not exceed 0.1°C so long as the thermometer is never exposed
to temperatures higher than 150°C.

8. Correction for the mean scale degree. One must check the fundamen-
tal interval of the thermometer periodically (once or twice a year) by a
redetermination of the steam-point reading, and correct the entire scale
accordingly ; changes in the fundamental interval may result from secular
changes in the volume of the bulb and the length of the glass scale.

4. Correction for exposed stem. Liquid-in-glass thermometers are
ordinarily calibrated for total immersion. If the thermometer should be
used under conditions such that part of the liquid in the capillary is
exposed at a different temperature from that of the system in which the
bulb rests, then a correction is necessary to the reading which would have
been obtained if the entire stem had been at the same temperature as the
bulb. This correction is generally given in the form

0 =oad(l —1t,)

where & is the correction, expressed in scale degrees, « the coefficient of
cubical expansion of mercury in glass (0.000158/°C for the typical Jena
16"t and Corning normal thermometric glasses), d the number of scale
degrees exposed, ¢ the true bulb temperature (the uncorrected reading is
generally sufficiently close for this purpose), and ¢, the mean temperature
of the exposed stem ; this latter quantity is difficult to ascertain precisely,
because of thermal conduction and radiation; it is usually estimated by
means of a second thermometer placed alongside the first, with its bulb
near the middle of the exposed stem. For special applications in which
the working conditions can be maintained uniform, such as in routine
melting-point determinations, partial-immersion thermometers are manu-
factured, calibrated for a certain depth of immersion (e.g., 75 mm, or
3in.); if the stem is exposed to air at ‘“normal’’ laboratory conditions, no
stem correction is then necessary, but obviously such thermometers
cannot be regarded as high-precision instruments.

5. Corrections for external and internal pressure. The bulb of a modern
centigrade thermometer has a volume equivalent to about 6000 scale
degrees; therefore a change in the volume either of the mercury or of the
glass bulb, or the net effect of a change in both, amounting to as much as
0.02 per cent, besides the normal changes with temperature, will result in
an apparent difference of 1°C in the temperature readings.

a. External pressure on the bulb will decrease its volume at a rate pro-
portional to its diameter and inversely proportional to the wall thickness.
The typical mean effect on a thermometer whose bulb has a diameter
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within the range 5 to 7 mm is +0.1°C/atm. This effect works in the
opposite direction when the thermometer is introduced into an evacuated
system.

b. Internal pressure from the weight of the mercury itself tends to
enlarge the bulb and at the same time decrease the volume of the mercury,
so the coefficient for this effect is about 10 per cent greater than for the
external pressure effect. The thermometer is intended to be used nor-
mally in a horizontal position; the internal pressure correction applies to
readings taken with the thermometer in a vertical or an inclined position,
when the readings tend to be too low.

6. Correction to the thermodynamic scale. At all temperatures except
the defined ice point and steam point, a correction must be applied to the
mercury-in-glass temperature, after the thermometer has been corrected
for all other experimental errors, in order to reduce the readings to the
thermodynamic temperature scale; the coefficient of expansion of mercury
in glass is not uniform on this scale. The corrections have been estab-
lished through fundamental comparison of mercury-in-glass thermometers
with gas thermometers, whose readings have been corrected to the ideal-
gas state by extrapolation to zero pressure; this comparison was first
undertaken by P. Chappuis in 1884, working under the auspices of the
newly constituted International Bureau of Weights and Measures. Cor-
rections for several kinds of thermometric glasses are given in Table 1-3.

Liquid-in-glass thermometers for measurements at low temperatures,
below the freezing point of mercury, are commonly filled with pentane,
alcohol, or toluene. It is customary to calibrate them with respect to a
secondary “fundamental’ interval, defined by the ice point and the car-
bon dioxide sublimation point at normal atmospheric pressure, —78.51°C
on the thermodynamic temperature scale. The corrcctions to the
thermodynamic temperature scale for a pentane-in-glass thermometer
are included in Table 1-3.

1-4. Gas Thermometers. The first true gas thermometer was con-
structed by Guillaume Amontons in 1702. This thermometer contained
air maintained at constant volume by means of a manometer, the pressure
being used as a measure of the temperature. Amontons drew the quite
modern conclusion that heat represented a form of motion, and estimated
the location of the absolute zero point by extrapolating his temperature
scale to the point at which the pressure of the gas, at constant volume,
would vanish. The skillful experimental work of Joseph Louis Gay-
Lussac during the early part of the nineteenth century proved that ali
gases expanded at approximately the same relative rate as the tempera-
ture was increased at constant pressure; this work laid the foundations
of the universal ideal-gas temperature scale. The researches of H. V.
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TaBLE 1-3. CORRECTIONS TO THE THERMODYNAMIC TEMPERATURE SCALE FOR
LiQuip-IN-GL.ASS THERMOMETERS*
Mercury-in-glass Corrections, °C

Verre dur Kow
t, °C (French las Jena 1611 | Jena 59111
hard glass) glass
-39 +0.420
—-20 +0.172 | ...... +0.16 +0.07
0 0.000 0.00 0.00 0.00
+20 —0.085 0.00 —-0.09 —0.04
40 —0.107 +0.01 —0.12 —0.03
60 —0.090 +0.01 —0.10 —0.02
80 —0.050 +0.02 —0.06 0.00
100 ©0.000 0.00 0.00 0.00
120 +0.06 | ...... +0.03 —-0.05
140 4+0.07 | ...... +0.02 —0.16
160 +0.03 | ...... —0.02 —-0.31
180 -0.04 | ...... —-0.12 —0.52
200 —-0.12 | ...... —-0.29 —0.84
300 | ....... | ...... —-2.7 —4.4
400 | ... | oo oo —-12.6
500 | ....... | ...... | ...... —-26.9

Pentane-in-glass Corrections, °C

t, °C Jena 16111

—180 —21.0
—160 —16.2
—140 —11.6
—120 —7.3
—100 —-3.4
—80 —-0.2
—78.5 0.0
—60 +2.0
—40 +3.0
—20 +2.4

0 0.0
+20 —4.4

;'s“lntemational Critical Tables,” Vol. I, pp. 54-56, McGraw-Hill Book Company, Inc., New York,
1926.

Regnault during the middle of the nineteenth century contributed greatly
to the precision of gas measurements, and demonstrated the approximate
nature of Boyle’s law at finite pressures; the idea of extrapolating to zero
pressure in order to establish the corrections from real to ideal-gas
behavior was conceived by Regnault in 1847, but was first applied experi-
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mentally by M. Berthelot in 1898. Mc.)dern research on thermometric
gases (those gases having the lowest critical temperatures) is being
actively pursued, because of its bearing on the determination of the
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¥ic. 1-1. Schematic diagram of constant-volume gas thermometer developed by P.
Chappuis at the International Bureau of Weights and Measures.

absolute ice point, and on the precisc establishment of thermodynamic
temperatures in general.!

A close approach to the ideal-gas temperature scale is realized experi-
mentally in the modern constant-volume gas thermometer (Fig. 1-1).

1For reviews, see F. Henning, Temperaturmessung, in “Handbuch der Physik,”
Vol. IX, Chap. VIII, Springer-Verlag, Berlin, 1926; F. G. Keyes, in ‘“Temperature.
Its Measurement and Control in Science and Industry,” pp. 45-59, Reinhold Pub-
lishing Corporation, New York, 1941; J. A. Beattie, ibid., pp. 74-88; C. S. Cragoe,
tbid., pp. 89-126; C. S. Cragoe, J. Research Natl. Bur. Standards, 26, 495-536 (1941).
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With hydrogen as the thermometric gas, this thermometer was in fact for
many years (1887 to 1927) the standard instrument defining the Inter-
national Temperature Scale. Because hydrogen leaks through the walls
of the bulb at temperatures higher than 500°C, the tendency in recent
years has been to replace hydrogen altogether by nitrogen for measure-
ments above room temperature, and because helium has a lower critical
point, to replace hydrogen by helium for measurements below room tem-
perature. The gas, ordinarily sufficient in amount to produce a pressure
of 1 m Hg at the ice point (the precise correction to the ideal-gas scale
obviously depends on the value of this initial pressure), is confined in
a platinum-iridium tube about 1 m in length and 36 mm in internal
diameter, having a capacity of about 1 liter. It is attached through a
platinum capillary tube about 1 m in length to a mercury manometer;
the tip of a fine platinum needle projecting just beyond the opening of
the connecting capillary tube into the manometer defines a fixed volume
of the gas, not counting the bulb’s own expansion and contraction with
changes in its temperature.

Many corrections which are tedious and difficult to apply are necessary
before the temperature can be determined from the pressure readings.
These include a ‘“dead space’ correction for the gas in the connecting
tube and in the small space surrounding the platinum point, correction
for change in the volume of the bulb with temperature, and with internal
and external pressure, correction for the effects of temperature and pres-
sure on the height of the mercury column, ete. When all these experi-
mental errors have been corrected for, there remains the final correction
from the constant volume, po = 1 m Hg scale, to the ideal-gas scale; such
corrections for several thermometric gases are given in Table 1-4, as deter-
mined by F. G. Keyes from a critical analysis of their behavior at various
pressures.

With nitrogen gas confined in a platinum-rhodium bulb, temperatures
as high as 1600°C have been directly measured by means of gas thermome-
try. The classic research in this range was conducted by Day and Sos-
man,! who determined the melting point of palladium to be 1549.2 + 2°C
on a constant-volume nitrogen scale; by the use of an ice-point pressure of
350 mm Hg instead of the conventional 1 m Hg, their high-temperature
scale became practically identical with the ideal-gas scale, since at the
resulting lower pressures, the deviation of nitrogen from Boyle’s law was
negligible in comparison with other experimental errors. This particular
investigation was of the utmost practical and theoretical importance,
because it served to verify the thermal radiation laws, which are the only

1 A. L. Day and R. B. Sosman, High Temperature Gas Thermometry, Carnegie
Inst. Wash., Pub. 157, 1911.
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means of carrying on the temperature scale beyond this point with satis-
factory precision.

At the other end of the temperature scale, the constant-volume helium-
gas thermometer may be used without special difficulty down to about
5°K. By means of a special low-pressure helium-gas thermometer, hav-
ing an ice-point pressure of but 0.20 ecm Hg, XKeesom and his coworkers
succeeded in measuring directly temperatures down to 0.71°K, at which
point the vapor pressure of liquid helium is but 0.00036 cm Hg; they used

TABLE 1-4. CORRECTIONS OF GAS-THERMOMETER READINGS TO THE THERMODYNAMIC
TEMPERATURE SCALE*

Corrections, °C
t, °C Constant volume, po = 1 m Hg (Z?l?:f'ain;pg:
Hydrogen Helium Nitrogen Nitrogen
=270 | ........ +0.0364
—250 +0.0888 +0.0305
—200 +0.0436 +0.0181
—150 +0.0230 +0.0101 +0.1879
—100 +0.0108 +0.0049 +0.0616
— 50 +0.0037 +0.0017 +0.0174
0 0.0000 0.0000 0.0000 0.0000
100 0.0000 0.0000 0.0000 0.0000
200 +0.0071 +0.0035 +0.0250 +0.1393
300 | ... oo +0.0660 +0.3082
400 | ... o +0.1174 +0.5192
500 | ... ] ool +0.1809 +0.7472
600 |- ........ | ........ +0.2508
1000 | ... | e +0.5895

*F, G. Keyes, in ‘“Temperature. Its Measurement and Control in Science and Industry,” pp
45-59, Reinhold Publishing Corporation, New York, 1941, with permission.
this special gas thermometer to standardize the liquid-helium vapor-
pressure thermometer, which is more sensitive and convenient to use in
the range below 5°K.!

Gas thermometers are obviously not practicable for ordinary tempera-
ture measurements. Their most important function has been the precise
establishment on the thermodynamic temperature scale of a number of
secondary fixed temperatures, which are used for the standardization of
other working thermometers.

1W. H. Keesom, S. Weber, and G. Ngrgaard, Communs. Kamerlingh Onnes Lab.

Univ. Leiden 202b (1929); W. H. Keesom, S. Weber, and G. Schmidt, zbid., 202¢
(1929); see also, W. H. Keesom, ‘“Helium,” Elsevier, Amsterdam, 1942,
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1-6. Resistance Thermometers. The electrical resistivity of many
metals increases with temperature, and several metals, including platinum
and nickel, that undergo no phase transitions or other singularities in
behavior over a wide range of temperatures, and that can be obtained in
sufficiently pure condition, have been found satisfactory for the construc-
tion of resistance thermometers. The first platinum resistance thermom-
eter was constructed by C. William Siemens in 1871, but because of

F1a. 1-2. Platinum resistance thermometer of high precision, such as is used to define the
International Temperature Scale between —190 and 630.5°C. The thermometer is
housed in a glass tube and has four leads for connection to the resistance bridge (see
Fig. 1-3). The sensitive element at the tip, a close-up of which is shown in the inset, con-
sists of a coil of fine platinum wire wound on a mica form. The entire assembly is thor-
oughly aged and adjusted. (Courtesy of Leeds & Northrup Company, Philadelphia.)

inadequate testing on the part of a special committee of the British
Association appointed to report on the new instrument, its further devel-
opment was retarded for a number of years. It was brought to its
present state of perfection mainly through the work of H. L. Callendar,
beginning in 1887.!

The coil of a modern platinum resistance thermometer is wound on a

1 This work has been described by Callendar’s associate, E. H. Griffiths, ‘‘ Methods
of Measuring Temperature,”’ Charles Griffin & Co., Ltd., London, 1925,
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mica form from pure platinum wire having a diameter within the limits
0.05 to 0.2 mm and doubled on itself to eliminate induction effects. The
purity must be such that the ratio of the resistance at the steam point to
the resistance at the ice point is not less than 1.390. The coil is generally
made of such a length that the resistance at the ice point is 2.56 ohms for
thermometers designed to be used at higher temperatures, or 25.6 ohms
for thermometers designed to be used at lower temperatures; the funda-
mental interval is then.1 ohm or 10 ohms, respectively, but in high-pre-
cision thermometry it is always necessary to determine the ice-point and
steam-point resistances by direct measurement for each individual ther-
mometer. If the platinum wire has been properly annealed, and if it is
never thereafter exposed to temperatures in excess of 1200°C, its resistance
at a given temperature will remain stable and reproducible indefinitely.

Compensating
dummy leads

Thermometer
coil and leads

Measuring
resistance A

Equal ratio resistances
T

Fi1a. 1-3. Diagram of thermometer resistance bridge, showing use of compensating leads
(details of adjustment for slight inequality of the ratio arm resistances not shown).

Comparatively heavy platinum leads are sealed to the ends of the coil
and threaded through a series of mica disks, which serve as insulating
supports, and also as baffles to retard air convection currents within the
thermometer (Fig. 1-2). Coil and leads are hermetically sealed within a
hard-glass or porcelain tube, the entire thermometer being not much
larger than an ordinary mercury-in-glass thermometer. The platinum
leads end at terminals, to which ordinary copper external leads from the
resistance bridge are attached. There are several different methods of
eliminating the effect of the lead resistance; one method developed by
Callendar consists of including a pair of dummy leads in the thermometer,
similar to the coil leads and lying parallel with them throughout their
length, but simply joined to each other at the base, just above the coil;
the compensating lead system, including a pair of external leads similar
to those connected to the coil leads, is put in series with the standard
adjustable resistance, in the bridge arm opposite to the one that includes
the coil and its lead system (Fig. 1-3). Since resistance-thermometer
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bridges are always designed with the other two balance arms equal, the
measuring resistance thus balances the true coil resistance, the dummy
lead resistance canceling out the lead resistance of the coil. The bridge
connections must be specially designed so as to keep contact resistances
to a minimum, since the changes of resistance that one wishes to measure
are quite small by ordinary electrical standards of measurement, of order
only 0.01 ohm per 1°C. One of the most convenient and precise resist-
ance bridges designed for this special purpose is that of E. F. Mueller;!
the Mueller bridge permits one to measure temperatures in the range 0 to
660°C within a precision of +0.01°C.

Callendar and Griffiths showed that if the platinum is sufﬁmently pure
and properly annealed, the resistance over a temperature range from 0°C
to at least 500°C is given accurately by the empirical equation

R; = Ro(1 + At + Bt?) (1-10)

where R, denotes the resistance at the ice point and A and B are empirical
constants for the individual thermometer. Equation (1-10) is not in a
form convenient for calculating the temperature from R,, even after A
and B have been determined; if, however, ¢’ represents the platinum
resistance temperature, as defined by the linear equation

R, — R,
Ri00 — R

[compare Eq. (1-1)], then one may readily prove by substituting in Eq.

(1-10) that
[(100) (100)] (1-12)

where 6 is a constant for the particular thermometer related to A and
B by

¢ =100 (1-11)

(100)2B

8= = 111008

(1-13)
Therefore, instead of determining A and B, it is more convenient to meas-
ure & directly by observing the value of ¢’ [7.e., from that of R, by means of
Eq. (1-11)] at some third thermometric fixed point. The sulfur point, or
normal boiling point of sulfur, 444.600°C on the present International
Temperature Scale (see Sec. 1-8), is convenient for this purpose. Once
the value of & has been established by this means, then the correction

LE. F. Mueller, Natl. Bur. Standards, Tech. News Bull. 18, 547-561 (1916); sec
also, the review by E. F. Mueller in “Temperature. Its Measurement and Control
in Science and Industry,” pp. 162-179, Reinhold Publishing Corporation, New York,
1941.
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from the platinum resistance temperature given by Eq. (1-11) to the
International Temperature Scale or to the thermodynamic temperature
(conditioned by the value one uses for the sulfur point, concerning which
some slight degree of uncertainty has existed) is conveniently made
through Eq. (1-12); in applying this equation, the value of £ on the right
need be known only approximately, since the value of the entire correc-
tion is not large; in any event, the equation may be rapidly solved by
successive approximations. This procedure was developed originally by
Callendar. Later work by Heycock and Neville showed that Eq. (1-12),
with the value of & established by calibration at the sulfur point, is accu-
rate from 0°C to the melting point of copper, 1082°C.1

For temperatures below the ice point, the procedure has to be modified,
because the quadratic relation (1-10) fails when the temperature range is
extended below —40°C. By the addition of another empirically deter-
mined constant, in the form

R: = Rl + At + B2 + C(¢t — 100)¢] (1-14)

satisfactory agreement is obtained down to —190°C; Eq. (1-14) is
equivalent to

, ¢ t ¢ t\?
t—1t —6(m—1)m+ﬂ(m—l)(m) (1-15)
where ¢’ and § have the same significance as before, but g8 is another con-
stant for the particular thermometer, related to 4, B, and C of Eq.
(1-14) by
_ (100)4C
6= —Z¥100B

In applying Eq. (1-15), which was proposed originally by M. S. Van
Dusen,? one first determines the value of & for the particular thermometer
by calibration at the sulfur point, using Eq. (1-12), which applies from
0°C up; one then determines the value of 8 in Eq. (1-15), which applies
from 0°C down, by calibration at a fourth thermometric fixed point, the
oxygen point (normal boiling point of oxygen), —182.970°C, retaining
the previously determined value of 6. From the values of 8 and 8 so
determined, one may use Eq. (1-15) conveniently to correct platinum

1C. T. Heycock and F. H. Neville, J. Chem. Soc., 67, 160-199 (1895). See, how-
ever, the more recent discussion by B. K. Blaisdell and J. Kaye, in ‘“Temperature.
Its Measurement and Control in Science and Industry,” pp. 127-140, Reinhold
Publishing Corporation, New York, 1941; they recommend a cubic rather than a
quadratic empirical relation between R: and ¢, for sufficiently high precision even
over the range 0 to 660°C.

2 M. 8. Van Dusen, J. Am. Chem. Soc., 47, 326-332 (1925).
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resistance temperatures ¢’ [as given by Eq. (1-11)] to International or
thermodynamic temperatures ¢, Table 1-5 gives typically the value of
R:/R, for platinum over a wide range of temperatures, as reported by
W. F. Roeser and H. T. Wensel, of the National Bureau of Standards.
Below —190°C, the platinum resistance thermometer becomes rather
insensitive for precise temperature measurement; lead resistance ther-
mometers have been found useful down to —259°C, which represents
approximately the triple point of hydrogen. No general agreement
exists concerning the standardization of resistance thermometers in this

TaBrLgE 1-5. PrLATINUM RESISTANCE AT VARIOUS TEMPERATURES*

t, °C Ri/Ro
—200 0.177
—100 0.599
0 (1.000)
+100 1.392
200 1.773
300 2.142
400 2.499
500 2.844
600 3.178
700 3.500
800 3.810
900 4.109
1000 4.396
1100 4.671
1200 4.935
1300 5.187
1400 5.427
1500 5.655

* W. F. Roeser and H. T. Wensel, in * Temperature. Its Measurement and Control in Science and
Industry,” p. 1312, Reinhold Publishing Corporation, New York, 1941. The specific resistivity of
platinum at 0°C is 9.83 X 107% ohm cm.
range, but a provisional temperature scale between 14 and 83°K, based
on several thermometric fixed points established by means of the con-
stant-volume helium thermometer, has been proposed by scientists at the
National Bureau of Standards.!

1-6. Thermocouples. If two wires of different metals are joined at
their ends, then if the two junctions are at different temperatures, an
electromotive force (emf) is developed in the circuit, which can be meas-
ured by the introduction of a millivoltmeter or a potentiometer. This
effect was discovered by T. J. Seebeck in 1821. Since the emf increases
continuously with the difference between the temperatures of the junc-
tions, its value for a particular pair of metals may be used to measure the

1 H. J. Hoge and F. G. Brickwedde, J. Research Natl. Bur. Standards, 22, 351-373
(1939).
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temperature of the one junction relatively to that of the other. In
precise measurements, the reference junction is ordinarily maintained at
the ice point, while the other exploring junction, the so-called ‘“hot”
junction, is inserted in the system whose temperature is being observed.
Since a thermocouple junction can be quite small in size, with a corre-
spondingly low heat capacity, thermocouples are convenient to use, and
are particularly valuable for following a changing temperature. When
there is risk of contamination, the junction is ordinarily protected by a
porcelain sheath, which necessarily increases the heat capacity and
time lag.

Several different combinations of metals have come into common use.
For temperatures below 350°C, the base-metal copper-constantan and
iron-constantan thermocouples are satisfactory. Constantan itself is an
alloy consisting of 60 per cent copper with 40 per cent nickel, developed
originally as a metal having a low temperature coefficient of resistance.
The emf of a thermocouple whose junctions are only a few hundred
centigrade degrees apart, such as over the range 0 to 350°C when the
reference junction is at the ice point, is represented empirically by a
rather complex equation of the form

E = At — Bl — %) (1-16)

where A, B, and C are supposedly constant over the given range for the
particular pair of metals, but actually vary slightly from one individual
thermocouple to another of the same type. In practice, the individual
thermocouple is most conveniently standardized by a check of its readings
at various fixed temperatures against the values given by standard tables
that have been prepared on the basis of Eq. (1-16) from average values of
A, B, and C, obtained for a number of samples of the particular metals
(see Table 1-6); the deviations from the standard tables are plotted
graphically against E as corrections for the individual thermocouple, and
since such corrections are usually small, they are recorded with ample pre-
cision by this means.?

Above 350°C, copper-constantan thermocouples deteriorate rapidly
because of air oxidation; iron-constantan thermocouples begin to deterio-
rate at somewhat higher temperatures, the life of No. 8 gauge wires in air
at 760°C being on the average about 1000 hr.2 The chromel-alumel

1 See, for example, W. F. Roeser and H. T. Wensel, J. Research Natl. Bur. Standards,
14, 247-282 (1935); sce also their tables in the Appendix to ‘“Temperature. Its
Measurement and Control in Science and Industry,” Reinhold Publishing Corpora-
tion, New York, 1941.

2 W. F. Roeser, in “Temperature. Its Measurement and Control in Science and
Industry,” pp. 180-205, Reinhold Publishing Corporation, 1941.
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thermocouple is useful up to 1200°C; chromel-P consists of 90 per cent
nickel with 10 per cent chromium, while alumel consists of 95 per cent
nickel alloyed with 5 per cent aluminum, silicon, and manganesc; the life
of a No. 8 gauge chromel-aslumel thermocouple in air at 1150°C is about
1000 hr.

In high-precision work at elevated temperatures, the most satisfactory
thermocouple is the platinum-rhodium thermocouple, first introduced by
H. L. Le Chételier in 1886 ; this thermocouple serves to define the present
International Temperature Scale over the range 630.5 to 1063°C. It
consists of a pure platinum wire, coupled with an alloy wire consisting of
90 per cent platinum and 10 per cent rhodium. With the cold junction
at the ice point, the emf is related to the temperature of the hot junction
over the range 630.5 to 1063°C by means of the empirical equation

E =qa+ bt + ct? (1-17)

where a, b, and ¢ are constants for the individual thermocouple, whose
values vary slightly from one thermocouple to another of the same type.
In fundamental work, it is therefore necessary to standardize the indi-
vidual thermocouple by taking readings at at least three thermometric
fixed points established on the International Temperature Scale or on the
thermodynamic temperature scale; for this purpose, the freezing points of
antimony, silver, and gold are available. Here, too, standard tables of £
vs. t have been prepared, based on Eq. (1-17) using average values of a, b,
and c¢ obtained from a number of samples of the wires; one conveniently
corrects the individual thermocouple therefore by plotting the deviations
of its readings from those given by the standard tables, at various stand-
ard thermometric fixed points. One may use the platinum-rhodium
thermocouple at temperatures up to 1600°C, but in the range above
1063°C, it is necessary that one redetermine the constants in the empirical
relationship (1-17); in other words, over the range 1063 to 1600°C, the
emf is related to the temperature by

E=d+bt+ct

but the constants a’, b/, ¢’ are different from the constants a, b, ¢ that fit
the data over the lower temperature range. The thermocouple must
therefore be restandardized by checking its readings at at least three
thermometric fixed points in the new temperature range. Table 1-6
includes standard mean values of platinum-rhodium thermocouple read-
ings over an extended range of temperatures.

For approximate temperature measurements, the emf may be measured
by means of a millivoltmeter. In fact, industrial thermoelectric pyrome-
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ters are manufactured, which consist essentially of millivoltmeters con-
structed with scales graduated directly in temperature degrees, to be used
with a particular type of thermocouple. For precise measurements,
however, a potentiometer is essential; Table 1-6 shows, for example, that
the platinum-rhodium thermocouple around 900°C has a sensitivity of

TaBLE 1-6. CORRESPONDING VALUES OF TEMPERATURE AND EMF ror VARIOUS
TypreEs oFr THERMOCOUPLES

Chromel-P Copper to
¢, °C *Ao Pt-Rh to alumel, } Iron to con- constantan, §
to Pt,* mv stantan, mv
myv mv
—-200 | ...... —5.75 —8.27 —5.539
—-100 | ...... —3.49 —4.82 —3.349
0 0.000 0.00 0.00 0.000
+100 0.643 +4.10 +5.40 +4.276
200 1.436 8.13 10.99 9.285
300 2.315 12.21 16.56 14.859
400 3.250 16.39 22.07 20.865
500 4.219 20.64 27.58
600 5.222 24.90 33.27
700 6.260 29.14 39.30
800 7.330 33.31 45.72
900 8.434 37.36 52.29
1000 9.569 41.31 58.22
1100 10.736 45.14
1200 11.924 48.85
1300 13.120 52.41
1400 14.312 55.81
1500 15.498
1600 16.674
1700 17.841

* Platinum-rhodium: W. F. Roeser and H. T. Wensel, J. Research Natl. Bur. Standards, 10, 275-287
(1933).

1 Chromel-alumel: W. F. Roeser, A. I. Dahl, and G. J. Gowens, ibid. 14, 239-246 (1935).

1 Iron-constantan: W. F. Roeser and A. I. Dahl, ibid., 20, 337-355 (1938).

§ Copper-constantan: L. H. Adams, ‘‘International Critical Tables,” Vol. I, p. 58, McGraw-Hill
Book Company, Inc., New York, 1926.

These tables are given in greater detail by W. F. Roeser and H. T. Wensel in the Appendix to the
symposium, ‘‘Temperature. Its Measurement and Control in Science and Industry,” Reinhold
Publishing Corporation, New York, 1941,

about 0.011 mv/°C; therefore in order to obtain temperature readings
precise to within 0.1°C, one must be able to measure the emf within
+1 wv. This precision is readily attained by means of a high-precision
potentiometer coupled with a sensitive low-resistance galvanometer;
special potentiometers have been designed in which the slide-wire is
eliminated in favor of fixed resistance coils and a selector switch, and
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other features are introduced to improve the sensitivity and decreasc the
effects of parasitic emfs.?

If one is interested in measuring small temperature differences, without
regard to the actual temperature value being measured, the thermocouple
is particularly convenient; a sensitive galvanometer may be used directly
to measure the thermoelectric current between the two junctions. The
thermal sensitivity may be further increased by combining the electrically
insulated hot junctions and cold junctions of several thermocouples
hooked up in series; such a combination is known as a thermopile.

Thermocouples may be used also at low temperatures, but it is neces-
sary of course that they be standardized, preferably through comparison
with a standard platinum resistance thermometer or with a helium-gas
thermometer. The copper-constantan thermocouple, with the ‘“cold”
junction at the ice point, is a quite satisfactory thermometer down to
liquid air temperatures (85°K), and with precautions, may be used down
as far as 11°K, which is below the triple point of hydrogen.2

Among the principal sources of error in thermocouple temperature
measurements, aside from the ordinary calibration errors of the electrical
measuring instruments, are insulation leaks and stray thermoelectric
effects developed in the circuit. The latter effects are attributable to
three sources: (1) the Thomson effect, or emf resulting from temperature
differences along either wire; (2) the Peltier effect, or emf resulting from
temperature differences between bimetallic contacts at other parts of the
circuit besides the thermocouple junctions, such as at binding-post con-
nections, switch points, ete.; (3) the Becquerel effect, or emf resulting
from strains or inhomogeneities within a single wire.

1-7. Radiation Pyrometers. When a body is at a temperature differ-
ent from that of the surroundings, it tends to equalize its temperature
with that of the surroundings by means of thermal radiation. Unlike
thermal conduction and convection, thermal radiation requires no mate-
rial medium for its transmission; in fact, a material medium between the
source and the receiver of the thermal radiation may even absorb or
reflect sorae of the radiation. The thermal energy?® radiated by a hot
body depends not only on its temperature but also on the nature of the
radiating surface. G. R. Kirchhoff proved in 1858 that at a given tem-

1See W. P. White, in “Temperature. Its Measurement and Control in Science
and Industry,” pp. 265-278, Reinhold Publishing Corporation, New York, 1941.

2J. G. Aston, in “Temperature. Its Measurement and Control in Science and
Industry,” pp. 219-227, Reinhold Publishing Corporation, New York, 1941; see also,
R. B. Scott, sbid., pp. 206-218.

3 A precise discussion of the energy concept, and of heat as a form of cnergy, is
given in Chap. 2.
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perature, all bodies necessarily have the same ratio of thermal emissive
power, or rate of energy radiated per unit of surface area, to absorptive
power, or fraction absorbed of the thermal radiation falling on the surface,
for radiation of a given wavelength. This ratio is evidently equal to the
emissive power of a perfectly black body, for which by definition the
absorptive power equals 1 for all wavelengths; a black body or perfect
radiator is in other words a body which completely absorbs the thermal
radiation falling on it, none being reflected at the surface or transmitted
through it. For a black body, therefore, according to Kirchhoff’s law,
the rate of thermal radiation per unit surface area must be a function of
the temperature only, and, conversely, black-body radiation may be used
as a measure of the temperature.

Fig. 1-4. Diagram of a standard experimental black body as designed by W. E. Forsythe.
Tubes 4, B, and D are of alundum or porcelain. Tube A is wound uniformly with platinum
ribbon 2 ¢m wide and 0.01 mm thick. Tube B is wound with the same kind of ribbon but
with a space between windings uniformly increasing on going from the ends toward the
center. C is the blackbody. To heat this black-body to the palladium point a current
of about 8 to 10 amp at 115 volts is required in the winding of tube A and 5 to 10 amp in the
winding of tube B. The space around tube D is packed with some good heat insulator.
(Taken with permission from *‘‘ Measurement of Radiant Energy,” W. E. Forsythe, Ed.,
McGraw-Hill Book Company, Inc., New York, 1937.)

We may therefore measure temperature by observing the thermal radia-
tion of a black body in thermal equilibrium with the system under obser-
vation. A practical black body may consist of a hollow tube or enclosure
having a small viewing aperture and blackened inner walls (see Fig. 1-4);
in use, this body is immersed in the system whose temperature is to be
measured, and the radiation measuring instrument is sighted on the
aperture. Since practically all incident radiation falling on the aperture
is absorbed by internal reflections and scattering within the enclosure, the
thermal radiation issuing from the aperture is characteristic of that of a
black body at the temperature of the enclosure.

Two general types of radiation pyrometers are in use. One type meas-
ures the rate of emission of total energy, without regard to its spectral
distribution, and is therefore known as a total-radiation pyrometer. The
other type measures the spectral distribution of the energy radiated, and
is known as an optical pyrometer.
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Total-radiation pyrometers are based on the law
e=o(T*—1T% (1-18)

where € represents the net rate of transfer of energy per unit area by a
black body at absolute thermodynamic temperature T to a black body at
absolute thermodynamic temperature 7. This law was first proposed on
the basis of empirical evidence by J. Stefan in 1879 but was later deduced
theoretically from thermodynamic reasoning by L. Boltzmann in 1884;
the accepted value of the proportionality constant o, known as Stefan’s
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constant, is (5.673 + 0.004) X 10~® erg/cm? sec deg’! In the total-
radiation pyrometer as designed originally by C. Féry in 1904 (see Fig.
1-5), the radiation from the source is focused by means of a concave
mirror on the “hot’’ junction of a thermopile, whose emf is read by means
of a voltmeter; a collimating hole admits radiation only from a part of the
radiating surface, whose image on the ‘“hot’ junction of the thermopile
is thus reduced in area as the distance between source and mirror is
increased, in direct proportion to the quantity of radiation admitted;
therefore, so long as the field defined by the collimator does not take in

1 R. T. Birge, Rev. Modern Phys., 18, 233-239 (1941); this represents a value derived
in terms of Planck’s constant from the quantum theory of radiation; it is in excellent
agreement, however, with the results of direct measurement of total thermal radiation.



TEMPERATURE 35

more area than that of the source, the intensity of the radiation incident
on the thermopile, and hence the readings of the pyrometer, are inde-
pendent of the distance from the source. Since the emf developed by the
thermopile is approximately proportional to the relatively small difference
of temperature between its ‘“hot’’ and ‘“cold”’ junctions, and since this in
turn is approximately proportional to the intensity of the net radiation
received by the ‘““hot” junction, the emf is given directly by the relation

E = a(T* — TY)

where the constant a includes Stefan’s constant and also the particular
combination of proportionality factors characteristic of the individual
pyrometer; the constant b is close to the theoretical value of 4, but may
differ slightly from 4 for the individual pyrometer because the propor-
tionalities between E and the intensity of the net radiation received are
not exact, and because of other small thermal corrections. If b were
exactly equal to 4, the value of a for the individual pyrometer could be
established, and the pyrometer thereby standardized, by means of a
reading taken at a single thermometric fixed point, such as the freezing
point of gold (1336°K); for temperatures this high, the temperature 7', of
the receiver (i.e., the ‘“hot”’ junction of the thermopile) can be neglected
in the equation for the instrument, because of the high power to which
both T and 7, are raised. In practice, however, the values of a and b for
the individual pyrometer are best determined from a series of readings
over a range of temperatures up to the gold point, in comparison with
those of a standardized thermometer of a different type, such as the
platinum-rhodium thermocouple. For extension of the range to higher
temperatures, beyond the range of other types of thermometers, the
pyrometer may then be used with a rapidly rotating sectored disk before
the collimator; by this means, the intensity of the incident radiation may
be cut down by a known fraction of its true value, and correction from the
apparent reading to the true temperature made accordingly.

The total-radiation pyrometers used in industry are essentially like
that of Fig. 1-5, except that the opening admitting the radiation is usually
covered by a protecting plate of glass or quartz. For approximate or
comparative purposes, particularly of a control nature, one may dispense
with the black body and view the system under investigation directly.
One obtains in this way the equivalent black-body temperature, 7.e., the
temperature at which a black body would show the same intensity of
radiation as that actually shown by the system; since ordinary bodies are
less efficient radiators than black bodies, the true thermodynamic tem-
perature cannot be lower than the equivalent black-body temperature.
One would have to know the absorptive power of the emitting surface in
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order to estimate the true temperature from the equivalent black-body
temperature, but for certain purposes, the equivalent black-body tem-
perature itself may serve as a sufficient indicator.

Optical pyrometers are based practically on Wien’s law,

Iy = ;—15 exp (—— %) (1-19)
where Jy d\ represents the rate of emission of thermal radiation within
the wavelength range X to N + d\ per unit area of radiating surface by a
black body at the absolute thermodynamic temperature 7, and ¢; and c.
are universal constants independent of 7" and A, known, respectively, as
the first and second radiation constants. This law was first derived in
1893 by Wilhelm Wien from thermodynamic reasoning based on the
classical electromagnetic theory of radiation; it was shown by Max
Planck in 1900 to be a special case for sufficiently short wavelengths or
sufficiently low temperatures of a more general radiation law,

1

J; A= ;—15 BT/M'———]. (1-20)
for whose derivation Planck was compelled to assume a quantum theory
of radiation, the first step on the path leading to modern quantum
mechanics. Planck’s law has been thoroughly verified by experiment;
Wien’s law is a sufficiently accurate approximation, however, for visible
thermal radiation at temperatures up to about 4000°K. If one com-
pares the intensity of black-body radiation at the same wavelength for
two different temperatures, 7" and 7°, Eq. (1-19) reduces to

J)‘ ec,/AT°
Ho_efl 1 ca/AT ca/AT®
In 7= (T° T) (e and e >1) (1-21)

Planck’s generalization of this relation is

J)‘ ecz/)‘T° -1

7;? = W (in gener a.l) ( 1-22)

The value of ¢; used in defining the present International Temperature
Scale above 1063°C is 1.438 ¢cm deg.! Thus, if in Eq. (1-21), or more
generally, in Eq. (1-22), 7° represents the gold point, 1336°K, then mecas-
urement of the relative intensity J,/Jy of monochromatic black-body

1 Birge (tbid.) gives 1.4385 + 0.0003 cm deg, as derived by calculation based on
Planck’s radiation theory from the values of other natural constants; this value is in

excellent agreement, however, with the results of direct applications of Planck’s law
(1-22).
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radiation of given wavelength at another temperature compared with
that at the gold point serves to measure the other temperature.

The first optical pyrometer was designed by H. L. Le Chételier in 1892;
the object whose temperature was being determined was viewed against
the superimposed image of the flame of a standard amyl acetate lamp.
The modern disappearing-filament pyrometer, in which the field is viewed
against the superimposed image of the filament of an electrically heated
incandescent lamp, was introduced by F. L. Morse in 1906. This type
of pyrometer is extremely convenient to use; the temperature of the
filament is controlled by means of a variable resistance, and the current
at which the filament just disappears against the background is measured,
a filter being used to ensure approximately monochromatic radiation.
When the filament current is too small, the filament stands out dark
against the lighter background; when the filament current is too large,
the filament stands out bright against the darker background. The
pyrometer is standardized either by observations of the current for black-
body radiation at several standard thermometric fixed points or by com-
parison of the readings with those of a standardized thermocouple.
Standard radiation sources are commercially available, also, consisting of
tungsten ribbon-filament lamps, whose equivalent black-body tempera-
tures have been calibrated as functions of the filament current. For
temperatures higher than the freezing point of gold (1336°K), the pyrome-
ter is commonly used in connection with a rotating sectored disk to cut
down the incident radiation; thus, if 77 represents the apparent tempera-
ture reading given by the pyrometer (standardized by means of readings
at lower temperatures) when the sector openings constitute an angular
aperture of 9 radians, then the value of J,/J3 to be substituted in Eqs.
(1-21) or (1-22) will be 27/8, whence from the known wavelength and the
value of ¢z, one may readily compute the equivalent black-body tempera-
ture 7' of the source.

In another research type of optical pyrometer, described by H. Wanner
in 1902, the lamp filament is heated electrically at constant temperature,
but the radiation from the filament and the radiation from the source
under observation are both plane-polarized by being passed through
Nicol prisms so oriented that the two planes of polarization are at right
angles to each other; the two fields are then viewed through a Nicol
analyzing prism, which is rotated until they appear to be equal in inten-
sity. The setting of the analyzer thus measures the relative intensity
from the filament and from the source, and, by substitution in Eqgs. (1-21)
or (1-22), the temperature of the source (the equivalent black-body tem-
perature if the source is not itself a black body) may be calculated rela-
tively to the established equivalent black-body temperature of the
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filament; a red filter is generally used to ensure approximately mono-
chromatic radiation. Another similar type of pyrometer makes use
actually of a spectrometer to obtain true monochromatic radiation.!

If one integrates J) d\ from A = 0 to A = o, where J, is given approxi-
mately by Eq. (1-19), or in general by Eq. (1-20), one of course obtains
the Boltzmann total radiation law, Eq. (1-18). An important series of
measurements was undertaken by C. E. Mendenhall and W. E. Forsythe
in 1914 to intercompare the temperature scales given by the total-radia-
tion pyrometer and by the disappearing-filament optical pyrometer.?
Over the temperature range between 1750 and 2820°C, the agreement
was within experimental error, thus affording excellent confirmation of
the theory of thermal radiation in general, and of radiation thermometry
in particular. So far as we know, the black-body radiation laws based
on Planck’s quantum theory are exact, and we may use radiation pyrome-
ters with confidence to extend the temperature scale to indefinitely high
temperatures.

1-8. The International Temperature Scale. Everyone recognizes the
thermodynamic temperature scale, or its equivalent, the ideal-gas tem-
perature scale, as the fundamental scale to which all temperature meas-
urements should in principle be ultimately referred. In practice, it is
expedient to set up a working scale, based on instruments less cumber-
some to use than the gas thermometer, and hedged by such conventions
that all scientists shall mean the same thing when they report precise
temperature measures, and shall not be basing their temperature meas-
ures on different conceptions of the best values for such natural constants
as the normal boiling point of sulfur, or the second radiation constant.
This point of view was originally presented by H. L. Callendar, and ulti-
mately won acceptance in the modern International Temperature Scale,
in use since 1927. This scale has been designed to conform as closely as
practicable to the thermodynamic temperature scale, in view of the
information available at the time of its adoption. In recognition of the
fact that no single type of thermometer is satisfactory for measuring
temperatures over the entire range that now interests us, the scale is
based on a set of thermometric fixed points in addition to the theoretically
sufficient ice point and steam point; to each of these fixed points, a tem-
perature has been assigned by convention, representing at the time of the
scale’s adoption the consensus of opinion, as accepted by the General
Conference on Weights and Measures, concerning the ‘““best’” experi-
mental value on the thermodynamic scale; the number of these defined

1 This spectral pyrometer and other types of optical pyrometers are described in

detail by Worthing and Halliday, op. cit., pp. 456-466.
2 C. E. Mendenhall and W. E. Forsythe, Phys. Rev., 4, 62-70 (1914).
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fixed points has been chosen to be sufficient for precise calibration of the
standard working thermometers defining the temperature in various parts
of the scale, but their values are not to be changed, except as revision is
authorized by a future General Conference on Weights and Measures.
The present International Temperature Scale (1948) was adopted by the
Ninth General Conference in October, 1948, and represents the first
revision (all the changes being quite minor in effect) of the scale originally
adopted by the Seventh General Conference in 1927.1

The standard fixed points, all of which represent phase equilibrium
conditions of simple substances, are given in Table 1-7. The oxygen
point, the steam point, and the sulfur point are sensitive to variations in
the barometric pressure; therefore empirical formulas are given, derived
from vapor-pressure data, correcting the temperature for departure of
the pressure from the standard value: po = 1 atm. The freezing point of
antimony is less reproducible than that of the other fixed points, so
instead of having an assigned value, the freezing point of the particular
sample is determined for the purpose of thermocouple standardization at
the higher temperatures by direct measurement with the platinum
resistance thermometer, previously standardized in the usual way at the
ice point, steam point, and sulfur point. The standard working instru-
ments, and their ranges, are also included in Table 1-7.

Temperatures below the oxygen point have not yet been defined on the
International Temperature Scale, because of the uncertainty concerning
the values of the fixed points available in that range. This region has,
however, become increasingly important because of the practical and
theoretical value of thermodynamic measurements extending down to
the lowest attainable temperatures. For such purposes, it is desirable
that the data extend down at least to the liquid-hydrogen region (normal
boiling point, 20.39°K, to the triple point, 13.96°K), and preferably into
the liquid-helium region (normal boiling point, 4.22°K). A provisional
temperature scale covering the range 14 to 83°K has been described by
Hoge and Brickwedde, based on platinum resistance thermometers
calibrated fundamentally against the constant-volume helium-gas ther-
mometer; Hoge has also made a survey of possible fixed points that could
be used for the standardization of resistance or thermoelectric thermome-
ters in the range below —183°C.2

1 A translation of the text of the official 1948 report is given by Stimson, loc. cit.
The original International Temperature Scale (1927) has been described by G. K.
Burgess, J. Research Natl. Bur. Standards, 1, 635-642 (1928).

2 Hoge and Brickwedde, loc. cit.; H. J. Hoge, in ‘‘Temperature. Its Measurement
and Control in Science and Industry,” pp. 141-156, Reinhold Publishing Cor-
poration, New York, 1941.
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TasLE 1-7. THE INTERNATIONAL TEMPERATURE ScALe (1948)

Standard Fixed Points

Fixed point

Condition

Pressure correction, 660-860 mm Hg

Oxygen point. .

Ice point.......

Steam point. . .

Sulfur point....

Silver point. ...

Gold point.....

Liquid-vapor
equilibrium

Equilibrium,
ice and air-
saturated
water

Liquid-vapor
equilibrium

Liquid-vapor
equilibrium

Solid-liquid
equilibrium

Solid-liquid
equilibrium

t, = —182.970 + 9.530 (gl - 1)
0
2
—3.72 (ﬂ - 1) +22 (Jl - 1)3
Po Do
t, = 0.010 (1 - ﬁ) — 0.7 X 10~
Do

(h = depth in mm below surface of
water-ice mixture)

¢, = 100 + 28.012 (;)71 - 1)
0
2 p
— 1164 (ﬁ - 1) +7.1 (!’- - |)3
Po Po
t, = 414.6 + 69.010 (ﬁ - 1)
Po

—27.48 (£ - 1)2 +19.14 (,11 - 1)"
Po Do

Standard Measuring Instruments

Range

Instrument

Conditions

Ice point to freezing
point of antimony

Oxygen point to ice

point

Freczing point of
antimony to gold

point

Platinum resistance
thermometer

Platinum resistance
thermometer

Platinum-rhodium
thermocouple
(platinum vs. 90-
10 platinum-rho-
dium alloy)

R = Ry(1 + At 4+ Bt?), where R, A,
and B are determined by calibration at
the ice point, the steam point, and the
sulfur point; the platinum should be of
such purity that Ri0/Ro is greater than
1.3910

R: = Ro(1 + At + B2 + C(t — 100)),
where Ry, A and B are determined as
above, but the additional constant C is
then determined by calibration at the
oxygen point

E, = a + bt + ct?, where one junction is
maintained at the ice point; a, b, and
¢ are determined by calibration at the
antimony point (630.5°C, measured
precisely with a standard platinum
resistance thermometer), the silver
point, and the gold point
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TaABLE 1-7. THE INTERNATIONAL TEMPERATURE ScALE (1948).—(Continued)

Range Instrument Conditions

Above gold point...| Optical pyrometer | Planck’s law:

c2
J:  er1063+To — 1

J Au -2
eMt+To) — 1

where J:/J au represents ratio of inten-
sities of monochromatic radiation of
wavelength A emitted by a black body
at temperature ¢ and at the gold point;
T, represents the absolute ice point;
¢z = 1.438 cm deg

The lowest temperatures of all (below 1°K, and as low as 0.005°K) have
been attained by the adiabatic demagnetization method described in
Sec. 6-6. The problems of establishing a temperature scale in this region
have been described by C. F. Squire.?

The highest man-made temperatures are undoubtedly those that have
been attained in the explosions of atomic bombs. The surface tempera-
ture of the sun, according to radiation pyrometry, is about 6000°K, but
considerable uncertainty exists concerning the relationship of the sun’s
radiation to that of a black body, the only kind of body for which the
radiation laws are known precisely. Within a similar limitation, the
surface temperatures of the other stars have estimated values ranging
between 3500 and 25,000°K. No direct experimental methods exist as
yet for determining the interior temperatures of stellar bodies, but studies
of atomic energy explosions will no doubt yield pertinent information.
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Problems

1-1. Calculate the value of the gold point on the Fahrenheit and on the Rankine
temperature scales.

1-2. List the possible advantages and disadvantages of water and of dibutyl
phthalate as thermometric liquids for liquid-in-glass thermometers.

1-3. Calculate the emergent stem correction for a mercury thermometer made of
Corning normal glass when the reading is 200.0°C, and the thermometer is immersed
to the 0°C mark; assume an average exposed stem temperature of 25°C.

1-4. According to L.-Holborn (Landolt-Bornstein, ¢ Physikalisch-chemische Tabel-
len,”” 5th ed., Supplement I, p. 66, 1927) the pV product for hydrogen is represented at
moderate pressures by the empirical formulas:

0°C: pV = 0.99918 4 0.00082094p -+ 0.0000003745p?
100°C: pV = 1.36506 + 0.00091400p

where p is represented in meters of mercury and the values of pV are relative to the
arbitrary standard, p¥V = 1.00000 at 0°C and p = 1 m Hg. Calculate the relative
increase in volume, (V10 — Vo)/Vo, for hydrogen gas at 1 atm (0.76 m Hg) pressure
in going from the ice point to the steam point. Calculate also the relative increase in
the quantity llm V).

1-6. Accordmg to, Holborn, the pV product for helium, relative to pV = 1.00000 at
0°C and 1 m Hg, and with p expressed in meters of mercury is given by the following
empirical formulas:

—183°C: pV = 0.32992 4- 0.00062286p -+ 0.000000735p2
0°C: pV = 0.99930 + 0.00069543p
+100°C: pV = 1.36518 + 0.00066804p

Calculate the apparent temperature at the oxygen point given by a constant-pressure
helium-gas thermometer having a pressure of 1 m Hg. Calculate the ideal-gas tem-
perature at the oxygen point, from the limiting behavior of helium at zero pressure.
Calculate by difference the correction to the constant-pressure helium temperature
for obtaining the ideal-gas temperature at the boiling point of oxygen.

1-6. A platinum resistance thermometer reading 2.5602 ohms at the ice point and
3.5614 ohms at the steam point (corrected to standard atmospheric pressure) reads
6.7795 ohms at the sulfur point. Calculate the platinum resistance temperature at
the sulfur point, and calculate the value of §in Callendar’s equation for this thermome-
ter. What is the temperature on the International Temperature Scale when this
thermometer reads 4.5626 ohms?

1-7. What will be the reading of the thermometer of Prob. 1-6 at the equilibrium
temperature of condensing steam on a day on which the barometer reads 750.0 mm
Hg (corrected to 0°C and standard gravity)?

1-8. The reading of the platinum resistance thermometer of Prob. 1-6 at the oxygen
point (corrected to standard atmospheric pressure) is 0.6400 ohm. Calculate the
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value of 8 in Van Dusen’s ecquation for this thermometer, and calculate the tempera-
ture on the International Temperature Scale when it reads 1.7501 ohms.

1-9. The readings of a platinum-rhodium thermocouple with the reference junction
at the ice point are 5.535 mv at the antimony point (established at 630.5°C for the
particular sample of antimony by calibration with a standardized platinum resistance
thermometer), 9.119 mv at the silver point, and 10.301 mv at the gold point. Calcu-
late the empirical constants a, b, and ¢ in the equation

E =a+4bt + ct?

and then calculate what value of £ may be expected at 1000°C. (Compare with
Table 1-6, which corresponds to the data given in this problem.)

1-10. Using a low-resistance lamp-and-scale galvanometer whose microvolt sensi-
tivity is 0.1 uv/mm scale division at 1 m distance from the mirror, what is the approxi-
mate difference of temperature between the junetions of a copper-constantan thermo-
couple (both junctions being around the ice point) that can just be detected by a
galvanometer deflection of 1 mm? How many copper-constantan thermocouples
must one hook in series so that one could detect by means of this galvanometer a
difference of 0.0001°C between the united ‘‘hot” and ‘‘cold”’ junctions?

1-11. The solar constant (rate of reception of solar radiation per unit area of the
carth’s surface normal to the radiation, corrected for atmospheric absorption and
reflection) has been estimated by measurement to have the mean value, 1.351 X 10¢
erg/cm? sec. The mean distance to the sun is 149.5 X 10°® km, and its radius is
6.96 X 10° km. Calculate the rate at which energy is being radiated per square
centimeter of the sun’s surface. Calculate therefrom according to the Stefan-Boltz-
mann law the equivalent black-body temperature at the sun’s surface (the temperature
of the receiving surface of the earth may be neglected in this calculation, because its
fourth power is so much smaller than the fourth power of the sun’s surface tempera-
ture; verify that this is so).

1-12. Prove that according to Wien’s law in the form (1-19), the wavelength cor-
responding to maximum intensity of black-body radiation at a given temperature
always satisfies the formula

AmaxT = 25?

where ¢, represents the second radiation constant. Using Birge’s recommendation
of c; = 1.4385 cm °K, calculate the value of Amax in angstrom units corresponding
to ¢ = 600, 800, 1063, and 1600°C. Calculate the value of 7' when Amax is at the
middle of the visible range, 5500 A.

1-18. The maximum intensity of the sun’s radiation occurs at about 4740 &; using
the equation derived in Prob. 1-12, estimate the equivalent black-body temperature
of the sun’s surface from this independent experimental source, and compare the
result with that of Prob. 1-11. (The discrepancy arises from the fact that solar
radiation is not true black-body radiation.)

1-14. The spectral emissivity (ratio of the intensity of radiation of given wave-
length emitted by the surface to that cmitted by a black body at the same tempera-
ture) of molten steel is estimated to be 0.37 for radiation at 6500 A. If the equivalent
black-body temperature of a sample of molten steel is 1800°K as measured by an opti-
cal pyrometer, what is its true temperature on the International Temperature Scale?

1-16. Tungsten has a spectral emissivity at 6500 Aof0.44. Ifa tungsten ribbon
is at 2000°K, what will be its apparent temperature, if read with a standardized
optical pyrometer?



CHAPTER 2
THE FIRST LAW OF THERMODYNAMICS

Before we are prepared to discuss thermodynamic behavior, we must
trace the development of the energy concept, which had its origin in the
study of mechanical systems. We shall then take up the origin of the
heat concept, and show how J. P. Joule’s magnificent experiments during
the middle of the nineteenth century effected a fusion between these two
apparently diverse concepts, culminating in the great generalization
known as the first law of thermodynamics.

2-1. Energy. There is a principle of mechanics, apparently first
recognized by Gottfried Wilhelm Leibnitz about 1693 on the basis of
Galileo’s earlier experiments with falling bodies and the pendulum, which
states that as an ideal limit for certain types of meehanical systems, their
motions are executed in such ways that a certain quantity we call the
total energy, sum of the kinetic energy and the potential energy, remains
constant with time.! This principle of conservation of energy in mechani-
cal systems is one of the ways of stating Newton’s laws of motion for sys-
tems whose forces depend explicitly only on the positions of the moving
elements, and not on their velocities or the time; such systems are there-
fore called conservative.

For example, let us consider the motion of a point mass, a body of mass
M whose dimensions are sufficiently small in comparison with the dis-
tances through which its motion is followed so that its location at any
moment can be described adequately by the coordinates of a point; the
center of mass of a complex body behaves under certain conditions like a
point mass in which is concentrated the entire mass of the body. Accord-
ing to Newton’s second law of motion,

d dr
(M a') (2-1)

where F denotes the net force acting on the point mass, and r denotes its
position with respect to an arbitrary origin; dr/dr = u denotes the veloc-
ity. Equation (2-1) is, in general, a three-dimensional vector equation,
which includes in compact form the three one-dimensional equations

1 Leibnitz’s so-called vis viva and vis mortua were, respectively, twice our modern

kinetic and potential energies.
44
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_a(yd). gl (@) p iyl
F. = E(M E;')’ Fy = dr (M dT)’ F. = dr (M dr) (2-2)

where F., F,, and F, denote, respectively, the z, y, and z components of
the force, and z, y, and z themselves denote the ordinary Cartesian coordi-
nates of the point mass at the time r. If we take the so-called scalar
product of both sides of Eq. (2-1) with the velocity vector dr/dr [this
operation is equivalent merely to multiplying each component equation
(2-2) by the respective velocity component, and then adding the three
resulting equations],

dr  d dr\ dr df1 dr\’
F &= E(Ma;)'a = (T[EM(E“> ]
and integrate with respect to time between limits 7o and 7, then

/;F-g;d~r=%Mu2——%Mu§ (2-3)
where u represents the magnitude of the velocity (without regard to
direction; u? = u2 + u? + u?) at the time r and corresponding location r,
while u, represents the magnitude of the velocity at the time 7, and cor-
responding location ro. Now, in general, the integral on the left of Eq.
(2-3) is undefined, because the integrand may depend in some way as yet
unspecified on the time. In the special case, however, in which F is an
explicit function only of r, varying perhaps implicitly with = as r varies
with 7, but having always a definite value associated with each value of
1, defined without regard to the value of r, then the integral reduces sim-
ply to a line integral in the position variable r, whose value

str:F(r)-drsfr:Fcosodr (2-4)

defines the work W done by the force on the point mass during its motion
from position 1o to position r; 8 in Eq. (2-4) represents the angle between
the direction of the force and the direction of the element of displacement,
and (F cos 6) therefore represents the component of the vector force F
along the direction of the path that the point mass is momentarily describ-
ing; the value of W may be positive or negative, depending on the sign of
cos 6 during the displacement (i.e., on whether 6 is less than or greater
than 90°). If furthermore F(r) satisfies certain necessary conditions of
continuity, then the indefinite form of the integral always corresponds to
some particular scalar function of r, whose negative is called the potential
energy of the point mass in the particular force field (¢.e., region where F
is defined everywhere as a function of r¥). The definite integral appearing
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in Eq. (2-4) may therefore be represented as the algebraic difference
between the values of this potential-energy function V(r) at the points
1o and r, independently of the particular trajectory described by the point
mass, in the form

f, "F@) dr = — V(@) — V(o)) (2-5)

This integral relationship defining the potential-energy function [whose
zero point is left arbitrary, depending on the assignment of an integration
constant in Eq. (2-5)] may be represented symbolically also by the differ-
ential vector equation

F=-VV (2-6)
which is shorthand for the three simultaneous one-dimensional equations
I S SR 14
’ dx’ v gy’ T 0z

In the special case under consideration, therefore, Eq. (2-3) reduces to

the form
YMu? + V() = Y4Mul + V(r,) = ¢ (2-7)

The expression Y4Mu? is called the kinetic energy of the point mass.
Equation (2-7) thus expresses the fact that motion under the influence of
a conservative force (a force whose value everywhere depends only on the
spatial coordinates of the point mass) is so executed that the sum of the
kinetic and potential energies remains constant with time, equal in particular
to whatever value it happened to have at the start of the motion (r, = 0).
The sum ¢, called the total energy of the point mass, thus appears as an
integration constant to a first integral of Newton’s second-order differ-
ential equations of motion.!

A simple example of a potential-energy function is afforded by the
motion of a body falling in a vacuum under the influence of gravity; in
this case, V = Mgz, where z denotes the height above the earth’s surface,
arbitrarily taken as the zero of potential energy; if one were to take into
consideration sufficiently large changes in altitude, one would have to
represent the gravity ‘‘constant’ g as itself a function of z in the force
relationship, F = Mg, before integrating Eq. (2-5) to find V'; but this
force is essentially one-dimensional, being directed always toward the
center of the earth. Equation (2-7) thus affords an immediate solution
of the equation of motion, in the form

LsMu? + Mgz = €

1 A different but mathematically equivalent first integral, not so useful for our
present purpose, is obtained by integrating Eq. (2-1) directly with respect to time;
the resulting equation relates impulse to momentum.
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where e denotes the sum of the kinetic and potential energies at any stage
of the motion; for a body starting from rest at height zo, for example, the
speed acquired at any height z during the free fall is given by

6Mu® + Mgz = ¢ = Mgz,
leading to the familiar relationship

U = 2920 — 2)

Another example of a potential-energy function is that of a body with
charge e under the influence of another body with charge eo; if r represents
the distance between them, then their electrostatic potential energy has
the form V = A(eeo/Dr), where D denotes the dielectric constant of the
medium (assumed homogeneous) between the charged bodies and A is a
numerical proportionality constant whose value depends on the system
of measurement followed ; the form of this potential-energy function fol-
lows by direct application of Eq. (2-5) to C. A. Coulomb’s inverse-square
electrostatic force law, taking as the zero of potential energy a state in
which the charges are an infinite distance apart.

The concept of conservative forces is readily extended to systems of
independent point masses, interconnected point masses in the form of a
rigid body or an elastic body, idealized fluid bodies, etc. In each case,
the motion is characterized by a constant total energy, which appears as
an integration constant when the differential equations of motion are
integrated. Different states of motion that may be assumed by the
same type of system under different starting conditions are characterized
simply by different values of the constant ¢, which appears therefore as a
parameter in the integral equation of motion for the system.

Real mechanical systems, however, are more or less nonconservative.
A projectile traveling through air, for example, encounters in addition to
the conservative force of gravity a force attributed to air resistance,
which increases in a complex manner with the projectile’s velocity. In
such a case, the potential-energy function in its original sense is unde-
fined, and the method of integrating the differential equations of motion
leading to Eq. (2-7) is invalid. It is convenient, however, for us to
extend the original interpretation of the potential-energy concept, so that
it may be applied to the conservative component of the resultant noncon-
servative force. In the case of the projectile traveling through air, for
example, we define its potential energy in the earth’s field of gravity
exactly as for a projectile traveling in a vacuum, treating the noncon-
servative force of air resistance, which depends explicitly on the pro-
jectile’s relative velocity through the air, as an independent component
of the resultant force. This procedure supposes that it is legitimate to
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resolve the net force in such a manner into independently effective com-
ponents, a supposition justified by general experiments on the compound-
ing of forces. We find then that the total energy, defined as before by
the sum of the kinetic and potential energies, instead of being a constant
of the motion, decreases with time. It is said to be dissipated by the
nonconservative force of air resistance. If, for example, the dissipative
force has the form F; = —Fk %, that is, if it increases in direct proportion
to the first power of the velocity (as it actually does in the case of stream-
lined flow at sufficiently low velocities), then it follows from Eq. (2-3) that

- _/;:kuzdr =€— €

de

a; = —Fku?
where for a body moving under the influence of gravity, e = 14 Mu? + Mgz.
Several distinct types of dissipative processes are recognized besides air
resistance: friction in general, viscous resistance to flow of a fluid, clectric
resistance, the attenuation of a shock wave set up in a material medium,
inelastic collisions, ete.

We thus come to regard the mechanical system as possessing a definite
quantity of energy, which remains constant so long as purely conservative
forces are in effect, but may decrease through the action of dissipative
forces. We have seen that for conservative forces, the definite integral
(2-4) representing the work done by the force F during the displacement
of the moving body from position r, to position r is equal on the one hand
to the increase in the kinetic energy [Eq. (2-3)] and on the other to the
decrease in the potential energy [Eq. (2-5)], both taken in their algebraic
senses with regard to sign. The value of W therefore represents the
measure of a quantity of energy in transfer from potential to kinetic
form (a negative value of W represents a transfer of energy in the oppo-
site direction). If, in Eq. (24), F is measured in dynes and r in cent:-
melers,! then the energy represented by W is said to be measured in ergs
(1 erg = 1 dyne cm = 1 g cm?/sec?); if F is measured in newtons and r in

1 Forces themselves are measured fundamentally by the accelerations they produce
in standard bodies, according to Eq. (2-1); if in that equation M is measured in grams
and (d%/dr®) = d/dr(dr/dr) in centimeters per second per second, then their product
for a given situation will represent by definition the net force acting on the point
mass in dynes; 1 dyne = 1 g em/sec?. If M is measured in kilograms and (d*/dr?)
in meters per second per second, then their product measures the force in newtons;
1 newton = 10° dynes. The ultimate standards of the International Metric System

are of course the International Prototype Kilogram, which represents the mass of a
certain cylinder of platinum-iridium alloy, and the International Prototype Meter,
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meters, then W calculated by Eq. (2-4) is given in joules (1 joule = 107 ergs) ;
it is to be understood that in all relationships such as (2-1), (2-3), (2-4),
(2-5), ete., there is implied a numerical proportionality factor on either
side of the equation, which may be conveniently set equal to 1 if the units
in which the various quantities entering the equation are expressed have
been chosen with this end in view; the numerical equality is valid only
when consistent units have been employed throughout. In the case of a
purely dissipative force or force component, we continue to call W as
defined by Eq. (2-4) the work done by the force on the moving body, but
in this case, there is no balance between loss of potential energy and gain
of kinetic energy; if the force is a purely dissipative one, the total energy
decreases, and —W then represents the quantity of energy dissipated
during the motion of the body from r, to r.

The energy concept is readily extended to electrical circuits through
direct observation of their properties. In order to maintain an electric
current through a given circuit, one must introduce energy in some ele-
ment of the circuit; this may be accomplished mechanically by means of
an electric dynamo or generator, which operates on the principle dis-
covered in 1831 by Michael Faraday that when a metallic conductor
moves across a magnetic field an electric current is induced in the circuit
of which the conductor happens to form a part. This principle affords a
direct means of measuring electrical energy fundamentally in mechanical
terms; thus, the ratio of the mechanical work W required in order to turn
the dynamo (corrected for purely mechanical dissipative losses, such as
through friction and air resistance) to the quantity of electricity ¢ sent
through it defines the electromotive force of the generating unit,

w_Ww
E = v I (2-8)
where I represents the average current lowing during the time . When
the dynamo is on open circuit, this emf is equal to the potential difference

which represents the distance at the ice point between two marks engraved on a
certain bar of the same alloy. These standards, adopted in 1889, have been preserved
in the vaults of the International Bureau of Weights and Measures, near Paris, and
the various nations subsecribing to the upkeep of the Bureau have certified copies,
which serve as national standards. The international standard of time is the Mean
Solar Day, represcnting the interval, averaged throughout the year, between succes-
sive transits of the sun across the meridian at the equator; working standards of time
are at present maintained by means of pendulum clocks, corrected periodically
through astronomical observations. There is a possibility that future time standards
may be based on atomic or molecular vibration frequencies; the National Bureau
of Standards has announced an experimental clock synchronized to a microwave
absorption frequency of the ammonia molecule.
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between the terminals, the potential difference between two points of a
circuit measuring in general the net energy per unit charge expended in
transfering electricity from one point to the other. If the generator be
connected to an electric motor, then electrical energy may be reconverted
to mechanical form as work done by the motor; in an ideal circuit of con-
ductors having no electric resistance, energy would in fact be conserved
during such a transfer from dynamo to motor. In real conductors, how-
ever, some of the energy is always dissipated in overcoming electric
resistance. According to G. S. Ohm’s law, discovered in 1826, if E repre-
sents the emf in a circuit through which the current 7is flowing, then

E =1IR (2-9)

where R is a propérty of the circuit called its electric resistance; in a circuit
consisting of several conductors in series, the circuit resistance is made up
of the sum of the separate resistances of the conducting elements. Since
according to Eq. (2-8), EIr represents the energy introduced into the cir-
cuit in electrical form by the generator, therefore if no work is done else-
where in the circuit, all this energy,

¢ = EIr = I’Rr ' (2-10)

is dissipated by the circuit’s electric resistance. Some of the energy may
be dissipated within the generator through its own internal electric resist-
ance; if the generator’s resistance be represented by R;, and the external
circuit resistance by B, = R — R;, then the quantity of energy I’R. is
dissipated within the generator and the quantity EIr — I?’Rr = I?R.r in
the external circuit. In a simple circuit consisting merely of the generator
in series with a metallic conductor doing no work, but dissipating the
electrical energy I’R,.r, the potential difference E’ across the terminals of
the generator (and of the external conductor) is thus given by

y _ @ I’Ra _ R,

BE=E-—7r=0gTH

where Z is the emf of the generator, or the potential difference across its
terminals when it is running on open circuit (R, — «).

If, in Eq. (2-8), W is measured in joules and g in coulombs or I in amperes
(the latter unit being derived in principle from the metric standards of
mass, length, and time by means of A. M. Ampére’s law governing the
electromagnetic force between two conductors carrying electric currents),
then the emf is expressed by definition in volts; 7.e., 1 volt coulomb = 1
joule. These are so-called absolute units. In practice, however, it has
been convenient to measure electrical quantities without immediate refer-
ence to their mechanical or absolute significance. This situation has
come about because one resistance may be compared with another

(2-11)
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directly and precisely by means of bridge circuits such as the familiar
Wheatstone bridge or the Kelvin bridge, without reference either to other
clectrical standards or to mechanical standards; likewise, one emf may
be compared with another directly and precisely by means of potentiome-
ter circuits, again without refercnce to other electrical or mechanical
standards. For this reason, the various national standardizing labora-
tories, such as the National Bureau of Standards of the U. S. Department
of Commerce, have maintained independent electrical standards of resist-
ance and of emf, based, respectively, on groups of standard wire resistors
and on groups of standard galvanic cells of a special type (the Weston
normal cell). Until Jan. 1, 1948, the so-called international standard of
resistance was based in principle on the international mercury ohm, the
resistance of a column of mercury satisfying certain specifications,! which
had been adopted at the International Conference on Electrical Units and
Standards held in London in 1908; but the working standards actually
used in this country have been for many years the far more convenient
and essentially stable wire resistance coils, which have occasionally been
checked against the actual mercury ohm. Likewise, an International
Technical Committee meeting in Washington in 1910 adopted the con-
ventional value of 1.01830 international volts as the emf at 20°C of
the Weston normal cell; this international standard has been continuously
maintained at the National Bureau of Standards (and similarly at other
standardizing laboratories) by means of a group of such cells, whose
average behavior thus defined the international volt. In 1946, the
International Bureau of Weights and Measures, meeting in Paris, after
extensive preliminary comparisons of a fundamental nature undertaken
by the various national standardizing laboratories, decided that beginning
Jan. 1, 1948, all electrical measures would henceforth be expressed in
terms of the so-called absolute units, derived ultimately from the metric
standards (the International Prototype Meter, the International Proto-
type Kilogram, and the Mean Solar Day) by means of the established
electrodynamic laws.2 'The actual physical standards of resistance (wire

1 These specifications: mass of 14.4521 g with uniform cross-sectional area (of
about 1 mm?), having a length of 106.300 cm, at the ice point, were intended to repro-
duce as accurately as possible at the time the ‘“absolute’ unit of resistance derived
from metric standards by means of Ohm’s law, Ampére’s law, and Faraday’s law of
electromagnetic induction; they now have only historical interest.

2 See H. L. Curtis, Review of Recent Absolute Determinations of the Ohm and the
Ampere, J. Research Natl. Bur. Standards, 88, 235-254 (1944); for a description of
how the size of a rcsistance and the size of an electric current are determined funda-
mentally in mechanical terms, see C. A. Culver, “Theory and Applications of Elec-
tricity and Magnetism,” pp. 398-401, McGraw-Hill Book Company, Inc., New York,
1947,
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coils) and of emf (Weston normal cells) are maintained as heretofore, but
in translating the results, the following conversion factors are now to be
employed:!

1 mean international ohm = 1.00049 (absolute) ohms
1 mean international volt = 1.00034 (absolute) volts

In other words, a resistance coil certified formerly as having a resistance
of 1.00000 int ohm is now assigned a resistance of 1.00049 (abs) ohms;
likewise, the Weston normal cell is now assigned an emf at 20°C of 1.01865
(abs) volts. The unit of current in this system of measurcment, the
ampere, is derived through Ohm’s law, Eq. (2-9); in other words, if the
potential difference E’ across the terminals of a conductor is expressed in
volts and its resistance R in ohms, then the current given by the equation
I = E’/R is expressed directly in amperes.?2

Now, in every case of “dissipation’’ of mechanical or electrical energy,
some other effect invariably appears, equivalent to one that may be pro-
duced by heating. This fact was not plainly recognized until Count
Rumford in 1798 conducted the first experiments on the deliberate and
controlled conversion of mechanical energy into thermal form. Even
then, scientists were slow to grasp the implications, until J. P. Joule dur-
ing the middle of the nineteenth century conducted his classic investiga-
tions of the heating effect produced by an electric current, and the heating
effects produced by mechanical means, such as friction and stirring. Let
us therefore turn to the development of the concept of heat, up to the
time of Joule.

2-2. Heat. We have noted in Sec. 1-1 that when two bodies originally
at different temperatures are exposed to each other, through direct con-

1 The mean.international units to which these conversion factors apply represent
the averages of units as maintained at the six national laboratories that participated
in this work before the war. The units maintained at the National Bureau of Stand-
ards differ slightly from these, so that the conversion factors announced for the
adjustment of the values of the standards used in this country are

1 international ohm (U.8.) = 1.000495 (absolute) ohms

1 international volt (U.S.) = 1.00033 (absolute) volts
See Announcement of Changes in Electrical and Photometric Units, Natl. Bur.
Standards Circ. C459 (1948).

2 One may measure the quantity of electricity flowing through the cireuit directly by
means of a chemical coulometer, based on Faraday’s law. The silver coulometer is
preferred for the most precise work, the quantity of clectricity being calculated from
the mass of silver deposited at the cathode. The calculation depends on the experi-
mentally established electrochemical conversion factor: 96,485 + 10 coulombs/g-eq
(which depends ultimately on the establishment of the ampere in mechanical terms),
and on the atomic weight of silver. See D. A. MaclInnes, ‘‘ The Principles of Electro-
chemistry,” Chap. II, Reinhold Publishing Corporation, New York, 1939.
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tact, through common contact with an intervening medium, or even
through radiation across empty space, there is a tendency for the hotter
body to cool and for the cooler body to warm, until they come ultimately
to thermal equilibrium at a common temperature. From earliest times,
man has imagined that this process takes place through the transfer of
heat from the hotter to the colder body; 7.e., he has called into being a
hypothetical agency, heat, to which may be ascribed the responsibility for
the change in temperature that a body tends to undergo when under the
influence of another body at a different temperature. Following the
invention of the thermometer, which provided a precise means of measur-
ing temperature, it became natural to suppose that a given temperature
change taking place in a particular material body would correspond to a
definite quantity of heat. Although the facts are by no means self-
evident, careful systematic investigations conducted independently by
Brook Taylor about 1725 and by G. W. Richmann about 1748 proved
that the quantity of heat, so conceived, given up by a cooling homo-
geneous body was proportional to its mass and, to a first order of approxi-
mation at least, to the number of degrees through which its temperature
fell. They found, in effect, that when the mass M of hot water at initial
temperature ¢ is mixed with the mass M of cold water at initial tempera-
ture ¢, the final equilibrium temperature ¢ is in close agrecement with the
weighted mean

%tl + M _2_t_2

b= ML T M,

(2-12)

or in other words
Mi(ty — 1) = Ma(t — ) (2-13)

If we interpret the expression on the left of Eq. (2-13) as a measure of the
quantity of heat given up by the hot water, then the expression on the
right measures according to the same principle the quantity of heat
received by the cold water; or in general, the quantity of heat required to
raise the temperature of the mass M from ¢’ to ¢ is given by

Q=TM®@" —-1t) (2-14)

where I' is a numerical proportionality factor whose value is yet to be
determined; an equal quantity of heat is released when the temperature of
the same mass falls from ¢’ to ¢#.! The Taylor-Richmann mixing law

1 This fact, too, is not self-evident, but has been confirmed by later experiments
in which a given mass of water was heated through a particular temperature interval
(1) by clectrical means and (2) by thermal interchange with hot water, whose own
temperature fell during the process; the quantity of electrical energy required to
heat the cold water directly was in exact agreement with the quantity required to
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may thus be interpreted in terms of a definite quantity of heat transferred
from the hot to the cold water, no net heat being generated or lost during
the -process. Modern precise calorimetric measurements have shown
that Eqs. (2-12) and (2-13) are only approximately correct, and it is
necessary to suppose that the ‘“constant” T' in Eq. (2-14) varies slightly
with the particular temperature interval.

If, now, one compares the quantities of heat required to raise the tem-
peratures of equal masses of two differenf homogeneous substances
through the same interval of temperature, one finds in general that the
two quantities are quite different and bear no obvious relation to each
other. Experiments by Joseph Black, about 1760, on the mixing of
mercury and other substances with water showed that the general law of
mixing has the form -

I‘1M1(t1 - t) = rzMz(t - tz) (2-] 5)

where M and ¢, represent the mass and initial temperature of the one
substance, M. and ¢, the mass and initial temperature of the other, and ¢
their final equilibrium temperature, but I'; and I'; are characteristic coeffi-
cients for the two substances, whose values vary slightly with tempera-
ture, but are quite unrelated to each other. This law is supported by all
variations of the mixing experiment with respect to the relative masses
and the initial temperatures of the bodies mixed. The coefficient T' of
Eq. (2-14), which we may now define by the equation

_ Q

is in other words a property of the particular homogeneous substance,
which we call its mean specific heat over the temperature interval ¢’ to ¢/;
the product MT is known as the mean heat capacity over the same tem-
perature interval for the entire body, consisting of mass M of the particu-
lar homogeneous substance. While the value of T' depends on the tem-
perature interval under consideration, we may define a specific heat, c, at
a particular temperature, t', by means of the operation

I Q _1(dQ

CEM o =7 = M\ ) @-17)
where @ represents the quantity of heat required to raise the temperature
of the mass M of the substance from ¢ to ¢'’; that is, if one were to plot
Q/M vs. '’ as the substance is heated from the initial temperature ¢’ to

restore the hot water to its original temperature; compare experiments by H. L.
Callendar and H. T. Barnes, Phys. Rev., 10, 202-214 (1900), and experiments by II. L.
Callendar, Trans. Roy. Soc. (London), (A)212, 1-32 (1912).
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various final temperatures ¢/, then the limiting slope of the resulting
curve (which would be a straight line if I' were strictly independent of ¢)
at the temperature ¢’ would define ¢ precisely at that temperature; the
notation d’ in the diffcrential coefficient defined by Eq. (2-17) indicates,
as we shall explain more fully later, that the value of @ is not altogether
defined by the temperature change, but may depend on certain other
conditions as well, such as on whether the pressure is maintained con-
stant, or on whether the volume is maintained constant.

We have not as yet assigned a numerical scale to either @ or T', which
are clearly interrelated. One may establish such a scale by assigning to
some standard substance an arbitrary value of I' for some particular
temperature interval; Eq. (2-14) then measures in terms of this conven-
tion the quantity of heat received by the standard substance from another
source as its temperature is raised through the standard interval. The
standard for this purpose has been water, to which at constant pressure of
1 atm has been assigned a value of I' = 1.0000 between 14.5 and 15.5°C;
the value of Q computed accordingly, with water as the recipient of the
heat, and with M in Eq. (2-14) represented in grams, is then said to be
represented in 15° calories; with M represented in kilograms, the quantity
of heat computed according to Eq. (2-14) is said to be represented in
15° kilogram calories, or 15° kilocalories; 1 keal;s = 1000 cal;;. In the
American and British system of measurement commonly used in engineer-
ing, the value of I' for water at constant pressure of 1 atm is taken to be
1.0000 between 39°F (its temperature of maximum density) and 40°F;
with M represented in pounds, @ is then represented according to Eq.
(2-14) in Brétish thermal units; 1 Btu = 252.07 calss.

The specific heats of other substances relative to that of water at 15°C,
including the specific heat of water itself at other temperatures, may be
found in principle by the method of mixtures, based on Eq. (2-15). If,
for example, one were to adjust M, of the substance for given initial tem-
perature ¢y, in relation to Al of the water so that with ¢, = 14.5°C, ¢ were
to come out exactly 15.5°C, then since under the circumstances I', would
have the conventional value: 1.0000 cal,s/g°C, T given by Eq. (2-15)
would represent directly the mean specific heat of the substance between
t1and 15.5°C in cali5/g°C; the right-hand member of this equation would
represent the heat given up by the substance between ¢; and 15.5°C
directly in 15° calories, and by plotting Q/M vs. £, the slope for any
value of ¢, would give exactly the value of ¢, in accordance with Eq.
(2-17). In practice, the mean specific heat of water over other tempera-
ture intervals has been established, originally through such fundamental
measurements, but also by means of Joule’s law, to be discussed in Sec.
2-3. Therefore it is not necessary in actual applications of Eq. (2-15)
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with water as standard calorimetric medium that ¢ and ¢; be restricted,
respectively, to 15.5 and 14.5°C; over the range 5 to 90°C, the variation
in the specific heat of water turns out in fact to be less than 0.5 per cent.
One will note that the relative magnitudes of two different quantities of
heat may be established in principle quite independently of the physical
properties of water and the temperature scale; thus, if one were to trans-
mit the two quantities of heat to two different masses of water, adjusted
(after preliminary exploration) so that starting from the same initial
temperature the same temperature rise occurred in each, then the two
masses would be in direct proportion to the two quantitics of heat, quite
independently of the particular temperatures involved; all one would
need for a thermometer would be a sensitive and reproducible tempera-
ture indicator, but the readings could have entirely arbitrary significance;
one could use any other homogeneous substance for the calorimetric
medium in place of water, subject to limitations based only on con-
venience and precision.

Black demonstrated also that certain processes, notably phase transi-
tions such as the melting of ice and the condensation of steam, may
absorb or liberate heat without significant change in the temperature.
He introduced the concept of latent heat, to denote the heat absorbed by a
system undergoing a change at constant tempcerature, in contrast to ‘“sensi-
ble” heat, such as is associated ordinarily with a rise in temperature.
Thus, ice in melting to form water at 0°C takes up 79.40 cals/g; t.e., 1 g
of ice originally at 0°C will cool a correspondingly larger mass of water
from 15.5°C to final equilibrium temperature of 14.5°C than will 1 g of
water originally at 0°C. ' In a similar sense, water at 100°C’ in boiling to
form steam takes up 539.58 cal;s/g, in the sense that 1 g of steam origi-
nally at 100°C will warm a correspondingly larger mass of water from
14.5 to 15.5°C in the mixing experiment than will 1 g of water originally
at 100°C. The heat absorbed by a solid in melting is known as its latent
heat of fusion; the heat absorbed by a solid in vaporizing is known as its
latent heat of sublimation; the heat absorbed by a solid in undergoing
transformation to another allotropic solid form is known as the lalent heat
of transformation; the heat absorbed by a liquid in vaporizing is known as
the latent heat of vaporization. All these latent heats associated with
phase transitions are proportional in magnitude to the mass of substance
undergoing transformation, and are commonly represented either for
1 gram or for 1 mole; their values depend also on the particular equilib-
rium temperature at which the transformation is carried out, ordinarily
taken to be the normal transition temperature at 1 atm pressure.

2-3. The Mechanical Equivalent of Heat. The cxperiments on the
thermal interchange between bodies initially at different temperatures,
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including the latent heats of phasc transitions, and also the original
researches of J. Fourier on thermal conduction, were all consistent with
the supposition that heat was conserved during such processes. In fact,
there arose during the eighteenth century the concept of heat as an
imponderable fluid, which went by the name of caloric; to this concept,
we owe such expressions as heat ‘ capacity,” heat ‘“ content,” heat ‘‘ con-
duction,” “flow” of heat, etc. Those who believed in the phlogiston
theory of G. E. Stahl went so far as to associate the apparent changes in
mass during calcination and combustion with the presumed flow of
caloric; but Lavoisier’s magnificent demonstration of the role played by
oxygen of the air during these changes, and his establishment of conserva-
tion of mass as a guiding principle for chemical transformations in gen-
eral, ruled out the possibility that heat was associated in any way with
sensible changes in mass.

Now, the production of heating effects by friction was surely familiar to
the eightcenth-century scientists. From it, Francis Bacon long before
had concluded that ‘“heat is motion.” A similar conclusion was reached
by Guillaume Amontons at the opening of the cighteenth century from
different evidence, based on his study of the gas thermometer, in quite
remarkable anticipation of the kinetic theory of gases. P. S. Epstein has
pointed out the extremely interesting fact that physicians prior to and
even for several decades after Lavoisier’s work on combustion accounted
for body heat in terms of a theory initiated by A. Haller, author of a well-
known treatise on medicine, that it resulted from friction of the solid
particles in blood against the capillaries within the lungs.! However, the
first scientific study of the production of thermal effects by purely
mechanical means was undertaken in 1798 by Sir Benjamin Thompson,
Count Rumford.

While supervising the boring of cannon at the arsenal of the Bavarian
government in Munich, Rumford’s attention was engaged by the con-
siderable ‘“degree of heat’’ acquired by a brass gun as it was being bored,
and the still more intense degree of heat acquired by the metal chips
separated from it by the boring tool. According to the prevailing caloric
fluid theory of heat, such heat could have appeared only at the expense of
a latent heat possibly associated with the separation of the chips; but
Rumford convinced himself by measuring the specific heats of the chips
and the metal block from which they were separated that no difference
existed between their ‘“heat contents.” Furthermore, a blunt boring
tool, which scparated off less metal, was at least as effective in heating
the block as a sharper tool. To preclude the possibility that heat could

1P. 8. Epstein, ‘“Textbook of Thermodynamics,” Chap II, John Wiley & Sons,
Inc., New York, 1937.
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be entering from the air, Rumford in some of his experiments submerged
the entire block and boring tool under water; the effect was undiminished,
the water undergoing no apparent change except to acquire the heat
developed by the process, as was indicated by a rise in its temperature; in
some of these tests, the surrounding water was actually heated to its
boiling point, to the intense astonishment of the spectators.! The most
significant and remarkable fact, clearly recognized by Rumford, was that
the source of heat, whatever its nature might be, appeared to be inex-
haustible, for through continued motion of the hollowed block against the
borer, the heating effect could be prolonged indefinitely.

A further critical experiment was arranged by Humphry Davy in 1799.
He caused ice blocks to melt merely by rubbing them against a metal
plate; the motion.was maintained by means of a clock-driven machine,
and the entire apparatus was set up in a vessel evacuated to exclude any
material substance that might convey heat. He concluded that the
latent heat of fusion could only have been supplied by the frictional
motion. Neither Rumford nor Davy, however, left accurate measure-
ments of the quantity of mechanical energy expended in relation to the
resulting degree of heating.

During the years 1843 to 1850, J. P. Joule conducted a classic series of
measurements concerning the heating effect of an electric current and the
production of heating by friction and by stirring. These experiments
established beyond any doubt that an exact equivalent of heat could be
produced by electrical or mechanical means, the ratio of the electrical or
mechanical energy expended to the equivalent quantity of heat (as deter-
mined by the rise in temperature produced in a standard body such as
water) being invariant. The best modern estimate of the mechanical
equivalent of heat is?

J1s = 4.1855 + 0.0004 joule/cal;s (2-18)

Joule’s own result, J1s = 4.154 joules/cal;s (expressed in modern units)
stood for many years as a model of precision.

Electrical methods of heating are in particular so sensitive to control
and so precise that they have practically replaced water as the basis for
primary calorimetric standardization. The electrical energy thermally
‘““dissipated” by a current flowing through a resistance coil is given by
Eq. (2-10), and may be measured in terms of any two of the quantities

! Rumford’s account of his experiments, published originally in the Philosophical
Transactions of the Royal Society (1798), has been included by W. F. Magie in “A
Source Book of Physics,” pp. 151-161, McGraw-Hill Book Company, Inc., New
York, 1935.

t R. T. Birge, Rev. Modern Phys., 18, 233-239 (1941).
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E, I, and R, where E is the potential difference, I the current, and R the
resistance through the coil; if £ is measured in volts, I in amperes, R in
ohms, and 7 in seconds, then the equivalent quantity of heat is given in
joules by
B2

Q = EIr = I*Rr = =" (2-19)
Even when water is actually used as the calorimetric medium to receive
the heat being measured, the water equivalent of the calorimeter in
modern high-precision measurements is always established fundamen-
tally by measurement of the electrical energy required to heat it through
the same temperature increase as was produced by the source of heat
under investigation. KEvidently, calorimetric measurements based on
the electrical standards are quite independent both of the physical proper-
ties of water and of the temperature itself; all that is required of the ther-
mometer is that it be sufficiently sensitive to reproduce accurately the
initial and final states of the calorimeter, without the need for actual tem-
perature calibration. Specific heat measurements, of course, depend on
the temperature scale for their definition.

In recognition of the fact that modern calorimetric measurements are
based primarily on electrical standards, rather than on the water calorie,
and in order that the existing thermal and thermochemical data need not
be subject to revision in the event that a change is made in the most prob-
able value of the mechanical equivalent of the 15° calorie (which depends
of course on the physical properties of water), most thermochemists have
followed the lead of F. D. Rossini in expressing their results in terms of
the defined or thermochemical calorie:*

1 cal = 4.1840 joules ~ (2-20)

In other words, one actually measures the electrical equivalent of the
heat in joules, and then uses (2-20) as an arbitrary conversion factor to

1 E. F. Mueller and F. D. Rossini, Am. J. Phys., 12, 1-7 (1944); this value has been
adopted in “‘Sclected Values of Chemical Thermodynamic Properties,” assembled
by the National Bureau of Standards staff under the direction of F. D. Rossini since
Deec. 31, 1947. Rossini’s original proposal was to let 1 cal = 4.1833 int joules, and
this value was in gencral use prior to Jan. 1, 1948. The present value results from
the decision to abandon the old international joule from that date in favor of the
absolute joule (to which we shall refer simply as the joule throughout this book);
thermal data expressed in defined calories arc unaffected by this change. Some
scientists have proposed that we abandon the calorie altogether as a thermal unit,
and express all heat measures in joules directly; the thermochemical data in the
“International Critical Tables” (1929) were so expressed (in international joules); but
by reason of custom and historical associations, the movement has not caught on,
and has been more or less superseded for the present by Rossini’s proposal.
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express the result in conventional heat units. By comparing (2-18) with
(2-20), one sees that most recent evidence has made necessary a slight
revision in the ‘‘absolute’” specific heat of water, but this has had no effect
on recent thermal and thermochemical data represented in defined
calories. We shall hereafter use the unqualified term “calorie” and the
abbreviation ‘““cal”’ in reference to the defined or thermochemical calorie
given by (2-20) ; we shall use the term ‘“kilocalorie’’ and the abbreviation
“kecal” in a similar sense to denote a unit one thousand times larger;
1 cal;s = 1.00036 + 0.00010 cal.

2-4. Generalized Conservation of Energy. We have seen that in cer-
tain ideal mechanical processes a quantity called the fotal energy stays
constant. In real mechanical (and electrical) processes, however, a cer-
tain amount of energy is apparently lost, or ““dissipated,” but invariably
some effect is produced equivalent to that of an exactly proportional
quantity of heat. At the same time, in purely thermal processes, such
as thermal interchange by mixing, heat conduction, radiation, etc.,
heat itself is conserved.

Joule’s law permits us to draw the conclusion that heat may be regarded
as a form of energy. In this generalized sense, then, energy is conserved,
both in “dissipative’’ processes where energy in the restricted purely
mechanical sense (kinetic or potential form) disappears, and also in heat
engines, where mechanical energy is generated at the expense of heat
withdrawn from a high-temperature source. Conservation of mechanical
energy in conservative mechanical systems, and conservation of heat
in purely thermal processes, become special cases of a more general
conservation law that includes thermodynamsic processes, in which mechan-
ical energy and thermal energy are interchanged. This generalized
conception of conservation of energy was recognized and first extensively
applied by Hermann Helmholtz in 1847, and is known as the first law of
thermodynamics.!

The firm establishment of the molecular hypothesig on chemical
grounds, largely through the influence of S. Cannizzaro in 1860, led to
fresh efforts to correlate heat with ordinary mechanical energy of the
molecules, an idea that had been in existence for some time, but without
concrete evidence. Two rather different though related lines of approach
proved to be successful, one the kinetic approach associated with the
work of R. J. E. Clausius, Ludwig Boltzmann, and J. Clerk Maxwell, and

1H, Helmholtz, “Uber die Erhaltung der Kraft,” 1847; this paper was reprinted
as No. 1 of W. Ostwald’s “Klassiker der exakten Wissenschaften.” The principle
had been surmised earlier by R. J. Mayer in 1842; Mayer even cstimated the value of
the mechanical equivalent of heat from the thermal properties of gases, but his argu-
ment lacked the experimental foundation later provided by Joule’s work.
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the other the more general statistical mechanical approach of J. Willard
Gibbs. In either theory, heat is differentiated from ordinary mechanical
energy (kinctic and potential) only in that the coarsencss of our sense
perceptions, and of the methods of mecasurement generally employed in
thermodynamic investigation, prevents us from perceiving the perpetual
random molecular motion. We perceive readily enough the bulk motion
of masses of molecules, but their random motion in an apparently station-
ary material body is ordinarily perceived only indirectly through the
temperature sense. The most striking visible demonstration of the
influence of molecular motion is of course the Brownian motion of parti-
cles in the colloidal size range. With heat thus conceived as kinetic and
potential energy of random molecular motion, Joule’s law implies that
conservation of energy in the thermodynamic sense is simply an extension
of the original idea of conservation in the purely mechanical sense; ¢ dissi-
pation” of mechanical energy consists merely of the randomization of
energy that had previously been associated with average motion in a
particular direction or average location in a particular region. We shall
develop this point of view at length in Chap. 10. Formal thermo-
dynamics can be developed, however, without any reference to the under-
lying structure of material substances, and to this development, it owes
its generality. Let us proceed therefore to the formulation of the first
law of thermodynamics in mathematical terms.

The truly enormous quantities of energy liberated by the spontaneous decom-
positions of the radioactive elements, by nuclear fissions, and by exothermic
nuclear transformations in general, constitute an apparent exception to the
principle of conservation of energy. The origin of this energy has been accounted
for, however, on the basis of a conclusion drawn by Albert Einstein in 1905 from
his special theory of relativity: the release of energy is associated with an exactly
proportional loss of mass, in the ratio Ae/AM = c?, where ¢ represents the
invariant speed of light. Thus, the disappearance of 1 g of nuclear mass cor-
responds to the release of 9 X 10! joules of energy. Radioactive and other
kinds of nuclear transformations are accompanied generally by small but sig-
nificant changes in mass, which represent the differences between the so-called
binding encrgies of the reactant and product nuclei. For example, the atomic
mass of H! on the physical atomic-weight scale (O!'¢ = 16.00000) is 1.00813,
while that of He4 is 4.00389; in the transformation of 4H! to He? 4 28+, there
is thus a net loss of 0.02753 (the mass of the two positrons emitted during the
course of this transformation being 2 X 0.00055 on the atomic-weight scale),
which corresponds to 2.474 X 10'2 joules for every gram-atom of helium pro-
duced. H. A. Bethe and C. von Weizsiicker have shown independently that
this prodigious energy, 5 million times the energy released by the ordinary
chemical combustion of 4 g-atoms of hydrogen to water in which essentially
no mass is lost, is the main source of the sun’s energy, being released through a
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chain reaction involving C*?, which is regenerated during each complete cycle.
The net changes in mass during ordinary chemical transformations are insig-
nificant by comparison, and cannot be detected by chemical analytical means,
as shown, for example, by the classical work of E. W. Morley on the synthesis
of water from oxygen and hydrogen, and H. Landolt’s series of measurements
on several different reactions in sealed vessels, conducted in 1909.

2-5. The Internal Energy. A thermodynamic system may thus
exchange energy with its surroundings in two general forms, thermal and
nonthermal. Heat, or thermal energy, is energy in transition from one
body to another by virtue of a difference between their temperatures;
the net flow of heat is invariably in the direction from the hotter to the
colder body ; this qualification, to which we shall return later, constitutes
the basis of the second law of thermodynamics. Work, or nonthermal
energy, is energy in transition from one body to another by virtue of a
force they exert on each other, in accordance with the fundamental
mechanical definition (2-4) and its implications.

Let Q represent the quantity of heat received by the thermodynamic
system under investigation and W the quantity of work done by it during
some particular interaction with its surroundings; negative values of
these quantities will be used to denote, respectively, heat given up by and
work done on the system; then Q — W will denote algebraically the net
increase in the system’s energy, and at the same time, the net decrease in
the energy of the surroundings. If the kinetic and potential energies of
the system as a whole undergo no change as a consequence, z.e., if no
sensible motion is set up in the system, and no sensible change takes place
in the positions of any of its parts (such as might affeet their potential
energies), then any net gain or loss of energy, whether in thermal or non-
thermal form, or as a combination of both, must necessarily be recognized
by some change in its internal state, by which we mean a change in its
temperature, or a change in its volume, or a change in the relative
amounts of the component parts or in their chemical compositions, ete.
If this were not so, then the energy would apparently disappear (or
appear) without effect of any kind on the system, contrary to the principle
of conservation ; some change has to take place. Therefore it is appropri-
ate for us to define for such a system an internal energy U by means of the
relation

AU = Uz— U1EQ—W (2-21)

Any net increase (algebraic) in the kinetic or potential energies of the
system, in the ordinary mechanical sense, must in general be subtracted
from Q@ — W in order to leave the net gain in internal energy. However,
most of the situations encountered in chemical thermodynamics do not
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in fact involve changes in the system’s ordinary mechanical or ‘‘ external ’’
energy. Such changes, when they are encountered, may in any event be
treated by straightforward extension of the principles derived from
“static’”’ thermodynamics combined with purely mechanical principles;
the hydrodynamic theory of shock waves is a case in point. '

Now, while both @ and W depend in general on the particular process
by which the given change of state (state 1 to state 2) corresponding to
the internal-energy change U:; — U, is brought about (one may, for
example, change a body of water from 20°C and 1 atm to 40°C and 1 atm
either by placing it in contact with a body of hot water, which gives up
heat and cools during the process, or by stirring it mechanically as in
Joule’s experiments), the value of AU itself depends by hypothesis only
on the initial and final states of the system; if this were not so, then the
concept of conservation would be meaningless, for one could proceed to
restore the system to its original state by some other method that would
require less energy than the energy released during the original change;
one would then have two states of the same system indistinguishable in
every respect except for a difference of energy, a situation clearly incom-
patible with the idea of conservation. Energy is conserved only if each
distinctive state of the system has its own characteristic energy, so that a
fixed quantity of energy is associated with the transition from one particu-
lar state to another. We may express this idea in formal mathematical
language by asserting that dU in the differential form of Eq. (2-21) for an
infinitesimal change in the state

dU = d'Q — d'W (2-22)

is a perfect differential in terms of the variables defining the state (whose
precise nature we shall examine in Chap. 3); the notations d’Q and d'W
(instead of the conventional dQ and dW) call attention to the fact that
these quantities are nof perfect differentials corresponding to definite
functions of the variables defining the state. The integral of dU around
any closed path that ultimately restores the system to its original state
must vanish:

de=0 (2-23)

Equations (2-22) and (2-23) express, respectively, the equivalence of
mechanical and thermal energy, and general conservation of energy for
interactions with the environment of a system whose ordinary mechanical
energy (in kinetic and potential form) is fixed; together, they constitute
the mathematical formulation of the first law of thermodynamics.

A process for which @ = 0, that is, one for which no net energy enters
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or leaves the system in thermal form, is called an adiabatic change. For

such a process,
AU = —W Q=0 (2-24)

Any work done by a thermally insulated system is therefore at the
expense of its internal energy; conversely, net work done on the system
by the surroundings in such circumstances is totally conserved in the
form of an increase in the internal energy.

A process for which W = 0,

AU = Q (W = 0) (2-25)

represents a purely thermal process; under this condition, heat itself
appears to be conserved. In general, W -includes a term of the form

Va . - . . .
/V p dV, which represents mechanical work of expansion against the
1

externally applied pressure p; therefore only if either the volume is fixed
or some other compensating change is permitted to take place (such as a
volume change always at the same fixed pressure, as we shall see later)
will heat appear to be conserved as such.

Internal-energy changes may be measured in either thermal or mechan-
ical energy units, provided that @ and W in Eq. (2-21) are represented in
the same way. We shall follow the lead of most American thermochem-
ists in representing internal-energy values in defined or thermochemical
calories, which are based ultimately on mechanical standards and the
metric system through Kq. (2-20), although electrical measuring instru-
ments are generally used in the actual standardization of the calorimeters
now used to measure (). The following set of energy conversion factors
has been adopted by the National Bureau of Standards as of Dec. 31,
1947, for its compilation, ‘“Selected Values of Chemical Thermodynamic
Properties,”’!

1 cal = 4.18400 joules = 4.12917 X 102 liter atm
= 1.16222 X 10=¢ kw hr = 3.96573 X 103 Btu  (2-26)

One will note that no method has been indicated for the establishment
of absolute internal-energy values; the first law of thermodynamics states
merely the principle of conservation of energy, without comment on the
total amount of energy conserved between a given thermodynamic system
and its environment, or for that matter in the universe at large. Our
internal-energy measurements are therefore confined to energy differences

! The watt is a unit of power or time rate of expenditure or generation of energy;
by definition, 1 joule = 1 watt sec; ‘thus, 3.6 X 10° joules = 1 kw hr. The product
of potential difference in volts by current in amperes measures the electrical power in
watts expended by a given conductor.
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between different states of a thermodynamic system, some one of which
may for convenience be selected as a reference state, to be assigned an
arbitrary energy value.
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Problems

2-1. A pile driver weighing 500 kg is suspended at a height of 10 m from the ground;
calculate its potential cnergy in joules. Calculate its velocity after release as it hits
the ground.

2-2. A simple pendulum 3 m long is swinging in an arc making an angle of 10 deg
from the vertical on either side. Calculate the difference in potential energy per unit
mass of the bob between the highest and lowest points of the path described by its
center of mass, and calculate its velocity as it passes through the lowest point.

2-3. A projectile 7.5 cm in diameter, weighing 3 kg, is fired from a gun whose barrel
is 200 cm in length. Calculate the pressure required in order to accelerate the pro-
jectile to 900 m /sec muzzle velocity, assuming that the powder burns at such a rate as
to maintain uniform pressure throughout the projectile’s motion within the gun. If
the combustion of the powder yields 1000 cal /g, what mass of powder is theoretically
required in order to propel the projectile at the given velocity, neglecting heat losses,
recoil of the gun, kinetic energy with which the gaseous combustion products escape,
ete.?

2-4. Assuming the inverse-square law of universal gravitation, F = G MM,

» where

G, the universal gravitation constant, has the value 6.670 X 10~8 dyne cm?/g?, express
the potential energy of a body of mass M, as a function of r, its distance from the
carth’s center, taking the zero of potential energy at infinite distance removed, Com-
paring the universal force with the ordinary force of gravity Mg at the earth’s surface,
where r, the carth’s radius, equals 6380 km, calculate the value of M., the mass of the
earth, using the standard value of g = 980.665 cm /sec?. What vertical velocity must
be given to a body at sea level so that its energy will be just sufficient to enable it to
escape from the earth (neglecting air resistance)?
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2-6. Niagara Falls is 167 ft in height. Calculate the energy in joules potentially
available per kilogram of water reaching the falls. If this energy were entirely ‘‘dis-
sipated’’ by the water going over the falls, what difference in temperature would there
be between the water at the bottom and the water at the top of the falls? On the
average, 20,000 cu ft of water per second (about 7 per cent of the total) is diverted
through the hydroelectric power plant on the American side; to how much electric
power, in kilowatts, is this theoretically equivalent? Another 36,000 cu ft/sec is
diverted on the Canadian side; to how much electric power, in kilowatts, is this
equivalent?

2-8. A river carrying on the average 250,000 gal/min of water is to be dammed;
how high must the dam be in order to provide 10,000 kw of hydroelectric power?

2-7. A bullet weighing 25 g is fired at 500 m /sec velocity into a lead block ballistic
pendulum weighing 10 kg, sufficiently thick to stop it. Calculate the average rise in
temperature, before heat losses. The specific heat of lead is 0.0305 cal/g °C around
room temperature; the kinetic energy acquired by the pendulum may be neglected.

2-8. A steel slug weighing 25 g is traveling at 500 m/sec. If it were suddenly
stopped by a collision, and all its translational kinetic energy ‘‘dissipated” in raising
the temperature of the slug, what temperature would it attain in the absence of heat
losses? (Assume steel to have a mean specific heat of 0.12 cal/g °C, and assume that
the slug is originally at 20°C.)

2-9. A pellet of zinc weighing 9.27 g is heated to 400°C and then dropped into a
cavity drilled in a copper block weighing 1000.0 g and originally at 0°C; the tempera-
ture rise observed in the insulated block is 4.00°C. Taking the specific heat of cop-
per as 0.0919 cal/g °C, calculate the mean specific heat of zinc over the range 4 to
400°C.

2-10. When 100 g of ice at 0°C is mixed in a Dewar flask with 1000 g of water origi-
nally at 25°C, what is the final equilibrium temperature, neglecting heat gains or losses
from outside?

2-11. Distilled water is to be produced at a rate of 10 kg/hr from a water supply
originally at 10°C. The water fed into the still is preheated to an average temperature
of 60°C by being passed through the condenser used to condense the steam. If the
still is electrically heated, what must be its minimum power rating in order to satisfy
this demand, neglecting heat losses through the insulation? What must be the rate
of flow of water through the condenser by-passing the still in order to carry off the heat
given up by the condensing steam (assuming that the distilled water leaves the
condenser at 60°C)?

2-12. A heating coil having a resistance of 200 ohms is connected to the 110-volt
line; at what rate does it dissipate energy? How long would it take to heat 1 kg of
water 1°C by means of this coil, neglecting heat losses by the water? If onc wished to
obtain the same heating rate from a 6-volt source, what current and resistance would
be required?

2-13. What is the charge on the electron, in coulombs? (Note that the Faraday
electrochemical constant represents the quantity of electricity carried by an Avogadro
number of electrons.) If a current of 1 amp is flowing through a wire, how many
electrons pass through any cross section of the wire per second? Assuming that there
is on the average one ‘‘free” electron per metal atom, what is the average electron-
drift velocity through a No. 14 copper wire (0.0252 cm diameter) in which a current of
1 amp is flowing? What is the drift velocity through a No. 24 copper wire (0.0079 cm
diameter) carrying the same current? (Estimate first the number of free electrons per
centimeter length of the wire, taking the density of copper as 8.9 g/cm?.)
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2-14. Water at 100°C absorbs 539.77 cal/g of heat in vaporizing at 1 atm pressure;
the volume of the saturated steam is 1674 ml/g and of the liquid water, 1.043 ml/g.
Calculate the work done per gram of water vaporizing (1 liter atm = 24.2179 cal),
and calculate the difference of internal energy between 1 g of steam at 100°C and 1
atm, and 1 g of water at 100°C and 1 atm.

2-156. The mean heat capacity of water over the range 25 to 100°C is 1.000 cal /g °C;
over this range, it expands at constant atmospheric pressure by 0.0405 ml/g. Calcu-
late the work of expansion per gram when water is heated from 25 to 100°C at 1 atm,
and calculate the difference between the internal energy of water at 100°C and 1 atm,
and at 25°C and 1 atm.

2-16. If all the energy released by 1 kg of steam originally at 100°C in cooling at
atmospheric pressure to become liquid water at 25°C could be obtained in mechanical
form, how high could it lift a 1000-kg load against gravity?

2-17. Calculate the electrostatic potential energy between a Nat ion and a Cl—
ion at the cquilibrium distance: » = 2.814 X 1078 ¢m in the NaCl(e) crystal lattice,
taking the zero of potential energy at infinite separation between the particles.
(Note that in the potential-energy expression, Aeie:/Dr, the potential energy will
be expressed in ergs if r is expressed in centimeters, A is set equal to 1, and e;and e,
are then expressed in so-called electrostatic units; D = 1 in a vacuum, and presumably
also in the case under consideration.) Express this energy in calories per mole (i.e.,
for N, isolated ion pairs).

Calculate the mutual electrostatic potential energy per ion pair of two pairs of
Nat* and Cl~ ions arranged as in the actual crystal lattice in alternation at the corners
of a square in relation to the electrostatic potential energy of a single pair of ions at
the same interionic distance. Calculate likewise the relative electrostatic potential
cnergy per ion pair of four pairs of Na* and Cl- ions arranged as in the actual crystal
Iattice in alternation at the corners of a cube. (Proceeding in this way, one may
calculate the electrostatic potential energy per ion pair of the entire crystal, which for
the NaCl type of lattice turns out to have a limiting value of 1.7476 times the energy
of an isolated pair of ions at the same interionic distance.)



CHAPTER 3
THERMAL BEHAVIOR OF SIMPLE SYSTEMS

In this chapter, we shall apply the first law of thermodynamics to sim-
ple systems consisting of chemical substances undergoing changes that
do not affect their compositions. We shall take up its applications to
chemical changes in Chap. 4.

3-1. The State of a Thermodynamic System. A thermodynamic
system consists of a particular specimen of a recognized material sub-
stance, or an interconnected group of different material substances, in
which we happen to be interested for the purpose of investigation. We
must consider at the outset how we identify the state of such a system.

The physical properties of a material substance, those properties such
as the density, heat capacity, vapor pressure, etc., determined by opera-
tions that do not involve the composition explicitly (though their values
may vary with the composition), are of two general types: extensive
properties whose values are in direct proportion to the mass of the sub-
stance under consideration, and intensive properties whose values are
independent of the mass, and are hence characteristic of the substance
rather than of the particular sample of it under consideration. Examples
of extensive properties are the volume and the heat capacity; examples of
intensive properties are the density, the specific heat, and the specific
resistivity. Evidently, one can construct an intensive property of the
substance from an extensive property of the sample by dividing the value
of the extensive property by the mass of the sample; the adjective
‘““specific”’ prefixed to the name of the extensive property usually indicates
that such a procedure has been followed, as, for example, in the case of
specific volume and the case of specific heat.! If the substance happens
to be a homogeneous chemical substance, having a definite composition
and corresponding chemical formula, then it is convenient for the chemist

1 This usage is not invariably followed, as for example in specific gravity and spe-
cific viscosity, where ‘‘specific”’ means relative to the corresponding value of the prop-
erty for water, and in specific resistivity; electrical resistance is not strictly an exten-
sive property in the sense here defined, but it varies in direct proportion to the length
of the conducting sample and in inverse proportion to its cross-sectional area; one
defines the mass-independent specific resistivity in this case by dividing the resistance
of the particular sample by its length and multiplying by its cross-sectional arca
(supposed to be uniform).

68
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to use its formula weight, to which we shall assign the symbol M, as unit
of mass. The molal volume, the molal heat capacity, the molal latent
heat of vaporization, etc., are thus intensive properties of the substance,
in the same sense as the specific volume, the specific heat, the specific
latent heat of vaporization, etc. We shall use the noun “mole’”” and the
adjective ‘‘molal,” with reference to a definite mass of the substance
represented by its formula weight in grams (the formula in mind being
written explicitly where any possible ambiguity may exist), without
necessarily implying the existence of physical molecules corresponding to
the formula; for example, the molal volume V.o will represent the vol-
ume of 58.454 g of sodium chloride, although there is no evidence for the
existence of NaCl molecules as such in the crystalline or liquid states;
likewise, the molal volume Vcu,coon Will represent the volume of 60.052 g
of acetic acid, although at least in the vapor state, an appreciable fraction
is known to be in the form of dimeric molecules corresponding to the
formula (CH;COOH).;. We shall in general use a bar superscript over
the symbol representing an extensive property of the system, in order to
represent the corresponding intensive molal property; for example,
V = V/n, where n represents the number of moles, n = M /M, corre-
sponding to the mass M and volume V'; this applies only to homogeneous
substances of fixed composition.!

Now, it is with the intensive properties that we are primarily concerned
when we attempt to define the state of a material substance, because we
know from experience that if we examine a larger or a smaller mass of the
same substance under the same general set of conditions, all the intensive
properties are alike. In fact, experience teaches us that for a homogeneous
substance of fixed composition, i.e., a chemical compound or element in a
particular one of its allotropic forms, the state is determined in general by
the values of two independently variable quantities, for example, its tem-
perature and pressure. By this statement, we mean that all its intensive
properties assume characteristic values fixed by nature whenever the
substance is brought to a given temperature and pressure; on the other
hand, unless at least two such independently variable properties are
arbitrarily fixed, the values of other intensive properties are without
meaning. For example, the density of ammonia gas means nothing

1 Chermical engineers express the masses of chemical substances also in pound-moles,
and other units derived from the United States or British systems of measurement;
evidently, 1 pound-mole = 453.5924277 gram-moles, this being the defined ratio of
the avoirdupois pound to the gram. We shall use the term mole throughout in the
sense of gram-mole, this being a unit of mass represented by the formula weight in
grams; but self-consistent relations may obviously be established in terms of other
molal measures of mass. -

&
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unless one specifies both the temperature and the pressure to which the
density value refers; any other two independently variable properties
besides the temperature and the pressure could be used to define the state,
because the values of the temperature and the pressure would then be
fixed by implication; thus, if one were to specify the density and the
coefficient of viscosity of ammonia gas, there would be a unique set of
values of the other intensive properties, including the temperature and
the pressure, corresponding to the specified values of the density and the
viscosity. Generally, however, we find it convenient to regard tempera-
ture and pressure as the independent variables on which the state depends,
these being the properties most easy to control.

A consequence of this basic concept of the variance of a given material
system, by which we mean the number of independently variable proper-
ties on which its state depends, is the equation of state of a homogeneous
substance of fixed composition. Since the variance of such a substance is
two, the volume, temperature, and pressure for given mass must be so
interrelated that the values of any two of these quantities serve to deter-
mine the value of the third. This relationship may be expressed formally
by the equation

f(Vs T, p) =0 (3-1)

where f represents some function of the three variables, whose exact
nature depends on the particular substance, and may be determined in
general only through experimental observation. The particular relation-
ship of the general form (3-1) that applies to a given homogeneous sub-
stance of fixed composition is known as its equation of state. It is usually
convenient, though not always so, for us to solve Eq. (3-1) for V as an
explicit function of 7' and p,

V = V(T, p) (3-2)
Then for a change of state, since the change in V is determined entirely
by the changes in 7' and p, “
v = (‘;IT’) T + ‘W) dp (3-3)
The quantities
_ av
=y (dT , 3-4)
_ 1 {av
p=-7(%). (3-5)

which involve the two differential coefficients appearing in Eq. (3-3), are
known, respectively, as the coeffictent of cubical expansion and the coeffi-
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cient of compressibility; for solids, the value of 1/8 is known also as
Young’s bulk modulus of elasticity.!

Several useful relationships follow from the mathematical properties of
Eq. (3-3). Thus, by settingdV = 0, we may derive an expression for the
relation between T' and p for a change taking place at constant volume:

(di;_)’)v - % (3-6)

Furthermore, since V is completely determined by the values of 7" and p,
we may apply to Eq. (3-3) Euler’s criterion for dV to be a perfect differ-
ential with respect to variations in 7' and p:?

[ (). ).~ 2 (). 3

Thus, it follows that
del _ _(dB
(‘—[7;)7' B (dT)p (3-8)

An example of a simple equation of state is given by the ideal-gas law,
pV = RT, which is applicable approximately to any gas at sufficiently
low pressures; the form corresponding to (3-1) is pV — RT = 0, while
the form corresponding to (3-2) is V = RT/p; one sees that for the ideal
gas, = 1/7 and B = 1/p. The van der Waals equation of state,
(p + a/V?% (V — b) — RT = 0, illustrates a case in which it would be
inconvenient to try to express V explicitly as a function of 7 and p in
the form (3-2), though the functional relationship implied by Eq. (3-2) of
course exists, and Eq. (3-3) is satisfied. For liquids and solids, the state
is rather insensitive to variations in the pressure, and in particular, is
practically independent of such changes as normally take place in the
barometric pressure; the coefficient of compressibility of water at 20°C,
for example, is about 4.3 X 10~%/atm at pressures between 0 and 500
atm, so that one ordinarily does not have to specify the pressure precisely
unless one is concerned with pressure variations of at least several
atmospheres magnitude. For liquids and solids, the state is considerably
more sensitive to variations in the temperature, the coefficient of expan-

1 For isotropic solids, like NaCl, the value of « is three times the coefficient of linear
expansion; for anisotropic crystals, however, the coefficient of linear expansion may
have different values for different directions through the crystal.

2 This criterion is equivalent to the statement that the value of 32V /dp 9T is inde-
pendent of the order of differentiation, a condition implied by the fact that V is com-
pletely determined by T’ and p, without regard to the particular manner in which
the state may be varied (see Appendix 1).
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sion of water at 1 atm and for temperatures between 20 and 100°C having
the average value, 4.8 X 10~*/deg; in other words, a change of 1°K
(or 1°C) in the temperature produces a change in the volume more than
ten times greater than that produced by a change of 1 atm in the pressure,
within the temperature and pressure ranges noted.

In special circumstances, the state of a homogeneous substance of fixed
composition may vary with other quantities besides temperature and
pressure as independent variables. If it is a dielectric, then its state in
an electric field will vary with the intensity of its polarization, and its
properties will therefore not be determined until one has specified the
electric field strength, as well as the temperature and pressure. If it is
diamagnetic or paramagnetic, then its state in a magnetic field will vary
with the intensity of-its magnetization, and its properties will therefore
depend on the magnetic field strength, as well as on temperature and
pressure. If one is interested in light transmission, then one finds that
the optical properties depend on the wavelength of the light, as well as on
temperature and pressure. Unless such special circumstances are
explicitly recognized, however, we shall ordinarily assume that we are
dealing with a system in which they are absent; the physical properties
will then be completely determined when the temperature and pressure
alone are specified.

We have seen in Sec. 2-5 that the internal energy U of a thermodynamic
system has to be determined by its state, in the sense that two states
indistinguishable in all other respects must necessarily also have identical
internal energies. For a homogeneous material substance of fixed com-
position, the internal energy is therefore one of its physical properties,
determined for given mass, along with all the other physical properties,
by the values of any two independently variable properties, such as the
temperature and the pressure. It is furthermore an extensive property,
since experience teaches us that there is no net energy taken in from or
released to the surroundings, either in thermal or in nonthermal form,
when different samples of the same substance at the same temperature
and pressure are combined together; the internal energy of the combined
samples must therefore be simply the sum of the internal energies of the
separate samples, and hence must increase in direct proportion to the
mass.! The specific internal energy, U/M, must therefore be an intensive

1This statement is not entirely accurate when one compares an extremely finely
subdivided solid or liquid with the same mass fused into a single unit; one may then
find a significant difference in energy associated with the larger surface area of the
finely subdivided sample. We shall return to this question in Sec. 6-5, but shall
meanwhile assume that surface effects may be ignored in the problems immediately
to be considered.
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property of such a substance; the molal iniernal energy,

v=U_Up
n

must likewise be an intensive property, and thus may be represented (in
the absence of electric fields, magnetic fields, etc.) as a function of tem-
perature and pressure in the general form

U = U(T, p) (3-10)
- dU dU
aU = ((ﬁ)p dT + (—d—ﬁ r dp (3-11)

The detailed form of (3-10) for a given substance is to be determined by
experiment, based on the fundamental relation, Eq. (2-21); i.e., by meas-
uring the net quantity of heat absorbed and the net quantity of work
done by the substance as it undergoes changes from one temperature and
pressure to another, we may establish empirically how U depends on the
state; such information characterizes the thermodynamic behavior of the
substance within the scope of the first law of thermodynamics. By
means of cquation-of-state data introduced into Eq. (3-3), we may trans-
form Eq. (3-11) so as to express U as a function of V and T, or as a func-
tion of V and p as independent variables, in place of 7" and p, should this
be convenient.

In the case of a homogeneous material substance of conttnuously vari-
able composition, i.e., a solution, the state depends on more independent
variables than in the case of a substance whose composition is fixed by
nature; in addition to temperature and pressure, one must specify the
composition as well. In general, a certain minimum number of compo-
nents, C, is required for the complete specification of the composition.
For example, in a liquid solution of ethyl alcohol and water, the composi-
tion is specified completely by a statement of the proportion in which the
two substances of fixed compositions, alcohol and water, are present; note
that it is not necessary in this case for the proportions of the three differ-
ent elements present, carbon, hydrogen, and oxygen, to be stated, because
in view of the invariant compositions of alcohol and water, not only are
these proportions not independently variable, but they are in fact implied
completely by the proportion of alcohol to water. The intensive proper-
ties of such a solution, e.g., the density, the specific heat, the coefficient
of viscosity, ete., are fixed when the values of any three independently
variable intensive properties, such as the temperature, the pressure, and
the percentage of alcohol, are specified; in other words, the variance of
this system is three. In general, each additional constituent of definite
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composition whose amount in the solution may be varied by continuous
degrees independently of the amounts of the other constituents present
increases the variance by one, so that the variance of a solution containing
C components is in general 2 + (C — 1).

If chemical reactions may take place among the constituents present
in a solution, then the number of components necessary in order to specify
the composition may be smaller than the number of different chemical
species present, because operation of the laws of chemical combination
may fix by nature the amounts of certain constituents in relation to the
amounts of others; the amounts of the different constituents may then
not all be independently variable. Let us reserve the expression number
of components for reference to the least number of chemical constituents
whose masses in the solution may be independently and continuously varied.
For example, in a gas at 250°C and 1 atm containjng PCl;, Cl,, and PCl;,
although three different chemical species are present, their relative
amounts are not all independently variable, for if the proportion of any
two, say that of PCl; to Cl,, is fixed, then the proportion of the third,
PCl;, to either of the other two is also fixed automatically at the given
temperature and pressure through equilibrium of the reversible chemical
reaction: PCl; 4+ Cl: = PCls. Therefore this system has but two compo-
nents defining its state at given temperature and pressure. In fact, if the
proportion of PCl; to Cl; in the mixture happens to be the same as in the
compound PCl;, 7.e., if they are present in 1:1 molal proportion, then the
number of components becomes only one, for in this case the proportion of
PCl; to Cl,, which by itself in the general case was sufficient to determine
also the proportion of PCl; to either, now must remain the same, no mat-
ter to what extent chemical combination or the reverse process of dis-
sociation may take place; in other words, only two independent variables,
temperature and pressure, are alone sufficient under this condition to fix
the state of the system, just as in the case of a single homogeneous sub-
stance of fixed composition. One cannot tell from consideration purely

“of the variance whether PCl; in the gaseous state exists as the pure com-
pound or in the form of dissociation products, PCl; + Cl,, although of
course by introducing the nonthermodynamic idea of comparing the
vapor density with that of other gases, 1.e., by making use of the ideal-gas
law founded on Avogadro’s hypothesis, one may readily enough deduce
the extent of dissociation. In certain cases, the number of components
may depend on the circumstances in which the particular system is
placed. A gas at 100°C and 1 atm consisting of H,, O,, and H;0 in the
absence of a catalyst has three components whose masses may be inde-
pendently varied; at 2000°C, however, where the reversible chemical
reaction 2H,O = 2H,; 4+ O, establishes equilibrium rapidly among the
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amounts of the three constituents, the number of components becomes
two, while if either pure water vapor or a mixture of H; and O, in 2:1
molal proportion is heated to 2000°C, then the number of components is
but one. Clearly, a chemical compound such as NaCl counts as but one
component, notwithstanding the independent chemical behavior of the
ions, Na+ and Cl-, of which this compound consists; because of the
requirement of electrical neutrality in ordinary chemical systems, the
relative amounts of the two ions are not independently variable, but are
fixed by nature. One can vary the amount of CI— independently of the
amount of Na+ by adding another chloride, such as KCIl, but there is then
still a necessary interrelation between the total quantity of Cl— and the
total quantity of the two positive ions, Na+ and K+; such a combination
of NaCl with KCI would thus count as two components toward deter-
mining the variance.

In summary, then, the number of components in a homogeneous sub-
stance of continuously variable composition represents the least number
of chemical constituents of definite composition whose amounts in the
solution may be varied independently of each other. The variance of
such a substance, representing the number of independently variable
intensive properties, is 2 + (C — 1), where C represents the number of
components. The particular constituents recognized as components is
immaterial for our purpose; only their number determines the variance.
We may thus represent the internal energy of such a substance as a func-
tion of T, p, and the numbers of moles of the various components, n,,
ng, . . . , ne formally by means of the equation

aU w1 [(dU
d[] (dT>p.m.nz, e,y NC d[ + (’d—p‘)T,nl,n:, weenC dp

dU dU
+ ((7‘5) T,p,n3, « oo ¢ dn, + ( )T.p.m.na. . e.nC dn2

aU
4 e + ((%"(;)T,p,nl,ng,.-..”c_l dnc (3-12)

where dU satisfies Eq. (2-22). The first two terms on the right represent
how U changes with temperature and pressure so long as the composition
- remains unchanged ; these terms must be related to other properties of the
solution essentially in the same way as for a chemical substance of natu-
rally fixed composition (such relations will be explored in Sec. 3-2). The
remaining terms on the right express formally how U changes with com-
position at fixed temperature and pressure, relations that must be
established empirically for solutions of a particular set of components
through measurements in principle of @ and W for such changes of state.
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As written, Eq. (3-12), which is a generalization of Eq. (3-11), includes
changes such as may result through an increase or decrease in the total
mass. Since U is an extensive property of the solution, then if at given
temperature and pressure one were to increase the amounts of each com-
ponent by the same fraction A so that dny = Ay, dn, = An,, . . .,
dne = Anc, leaving the composition unchanged, U would increase by the
same fraction, dU = AU; such a change would correspond in fact merely
to taking a larger sample, of mass M + AM, at the given temperature,
pressure, and composition. Substituting these conditions in Eq. (3-12),
one draws the conclusion

U=vn+vanes+ -+« +vene (T, pconst) (3-13)

where for short we have introduced the symbols

_ (U
v = a‘;ﬂ T,p,n3, . ..,n¢

_ dU)
v2 =\ 2= Jrpnuns .ine (3-14)

aU
Ve = dn T,p,n1,n3, « .., NC-1

Thus, the quantities vy, vs, . . . , ve, introduced originally by Eq. (3-12)
in a purely formal manner, now acquire the physical interpretation of
representing what the respective molal internal energies of the compo-
nents in the solution would be if at given temperature and pressure the
total internal energy were to be represented as a sum of terms contributed
by the individual components. If @ and W were zero for the process of
forming the solution from its components, at uniform temperature and
pressure, regardless of composition, then the value of U would necessarily
be the same as the sum of the internal energies of the pure components,
and vy, vy . .., ve would then be equal, respectively, to the molal
internal energies Ui, Us, . . . , Uc of the pure components; in general,
however, this is not the case, and we shall return to a discussion of the
internal energy of solution in Sec. 4-5. The quantities vy, v2 . . . , vc are
themselves intensive properties of the solution, varying with temperature,
pressure, and composition; they are known as dzfferential or partial molal
internal energies. Their values are to be determined in principle by
experiment, precisely in accordance with the operations represented by
Eqs. (3-14); thus, the value of v; represents the increase in internal energy
of the solution (as measured by @ — W) per mole of component 7 added,
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when that component is added to the solution without sensible change in
the temperature, pressure, or composition:

u = lim 2=
' Ani—0 AN

(Typ,m1y « « v yMi_g, Nig1, « o « , N const)  (3-15)

It is necessary to take the limit for an infinitesimal quantity of the compo-
nent added, in order to take account of the fact that v; itself would vary
in general with a finite change in the composition. Specification of the
values of vy, vy, . . . , vc as functions of the composition at given tem-
perature and pressure completes the thermodynamic description of a
solution within the scope of the first law of thermodynamics, in the same
scnse that specification of the values of (dU/dT), and (dU/dp)r as func-
tions of temperature and pressure completes the description in the case of
a homogeneous substance of fixed composition. Only (C — 1) of the C
quantities vy, v, . . . , vc need be established independently by measure-
ment, however, because there is then a general mathematical relationship
connecting them by virtue of the fact that they are intensive properties,
dependent on the composition but not on the total mass of all C compo-
nents; this relationship, known as the Gibbs-Duhem equation,' may be
derived by differentiation of Eq. (3-13) at constant temperature and
pressure in the most general manner with respect to changes in the
amounts of the components

dU = nldv1+v1dn1 +n2dv2 + Uzdnz + M +ncdvc+vcdnc
(T, p const)

and comparison with Eq. (3-12) from which we started; thus
nidvy +nadve+ + ¢+ * +nedve =0 (T, pconst) (3-16)

By integration, one may establish the value of any single v; from known
values of all the others, previously established as functions of the com-
position; we shall make use of this equation and analogous equations for
other thermodynamic properties in Sec. 4-5, and particularly throughout
Chap. 7. A precisely similar mathematical treatment may be applied to
express the effect of composition on any other extensive property of the
solution, such as the volume.

The internal energy of a heterogeneous substance consists of the sum of
the internal energies of the separate homogeneous parts or phases. In
general, the physical mixing of different homogeneous substances that do

1 Named after the great American mathematical physicist, J. Willard Gibbs, who
derived it in his monumental paper, On the Equilibrium of IHeterogeneous Substances,
Trans. Conn. Acad. Aris Sci., 3, 108-248 (1876); 8, 343-524 (1878), and the French
physicist, Pierre Duhem, who developed a similar equation applicable in particular
to the partial vapor pressures of solutions, Compt. rend., 102, 1449-1451 (1886).
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not change each other’s form or composition is accompanied by no net
energy change; and, conversely, we consider that the sorting out of differ-
ent kinds of substances that can be distinguished at least by visual meth-
ods (aided by the ordinary microscope, if necessary) calls for no necessary
net expenditure or release of energy, though one may find it convenient to
speed the process by screening, centrifuging, flotation, etc. If the grist is
so fine, however, that the surface area between the phases must be taken
into account, then there may be appreciable surface energy; this energy
merges into true solution energy as the grist approaches molecular dimen-
sions. Some of the distinctive properties of colloidal dispersions are
associated with the existence of a significant surface energy. We shall
discuss the variance of a heterogeneous system later in connection with
the general theory of.equilibrium to be developed in Chap. 7.

3-2. The Internal Energy as Heat Function at Constant Volume. Let
us now turn our attention to the association of the mathematical proper-
ties of the internal-energy function implied by Eq. (3-11) with experi-
mental methods of measuring the internal energy in accordance with Eq.
(2-21) or its equivalent in differential form, Eq. (2-22); we shall suppose
that we are dealing with fixed mass of a homogeneous substance of fixed
composition, fixed either by nature as in the case of a chemical element or
compound or by agreement as in the establishment of the physical proper-
ties of a 25 per cent solution of glycerol in water.

In general, the net work done by a physically stationary thermody-
namic system during an infinitesimal change of state may be separated for
convenience into a term p dV representing mechanical work of expansion
against the external pressure p imposed by the environment! and a term
which we may designate by d'W’, representing all work done in a form
other than mechanical work of expansion, for example, the work that
might be done in electrical form by a change taking place in a galvanic
cell; thus

dW =pdV + dW (3-17)

Therefore Eq. (2-22), which defines dU in experimental terms, may be
recast in the general form '

1 The form of this term follows directly from the basic definition, Eq. (2-4); the
pressure on a surface of the system represents a force normally directed and equal in
magnitude to the pressure multiplied by the surface area on which it acts. If the
system expands in such a way that this surface is displaced normally to itself through
the distance dr, its area being A, then, according to Eq. (2-4), the element of work
done by the system is pA dr. The product A dr, however, represents the volume dV
generated by the moving boundary; therefore d’'W = pdV, an expression which
may be integrated to give the finite amount of work done during a finite expansion,
if p is defined at all stages as a function of V.
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dU = d'Q — p dV — d'W’ (3-18)

Now for most of the situations with which the chemist is concerned,
W’ = 0; a notable exception is the class of electrochemical processes in
general, which we shall consider in detail in Chap. 9; but, ordinarily,
chemical systems are not constituted to do work except incidentally to a
volume change; this is true even of such practical sources of power as the
steam engine and the internal-combustion engine.! Thus, Eq. (3-18)
reduces to

dU =d'Q — pdV (W =0) (3-19)

For a change of state taking place at constant volume,
AU = Q, (W =0) (3-20)

Under this condition, the quantity of heat absorbed by the system meas-
ures directly its increase in internal energy; inasmuch as the value of U
depends only on the state of the system, heat itself must therefore be con-
served under this condition, and will be released as such in the same
amount if the system is restored to its original state. The internal
energy U thus serves as a heat function at constant volume, in the sense that
its value measures the quantity of heat apparently ‘contained’ by the
system; one should note that this concept applies only because we have
imposed conditions making it impossible for any of the energy to appear
in nonthermal form.

Now, the increase in temperature associated with the absorption of
heat by a given homogeneous substance measures its specific heat, in
accordance with the definition (2-17); more generally, for arbitrary mass,
the heat capacity of the system is defined by

_dQ
C =37

This definition is incomplete, however, since we have seen that the quan-
tity of heat depends on the conditions under which the temperature
change is brought about. But, according to Eq. (3-20), the heat capacity

at constant volume
_ (29 _ (4 U) W =
Co = (717'), - (TT‘ o (W' =0 (3-22)

1 For simplicity, we shall count electrically heated systems in this class; even though
the energy expended on such a system comes from the environment originally in
electrical form, we may count the energy received into the system as thermal (if
our system did not absorb it, it would merely raise the temperature of the heating
coil), using Joule’s law to compute the equivalent quantity of heat.

(3-21)
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must be a definite property of the system, since the change of U depends
only on the particular change of state under consideration. The molal
heat capacity at constant volume, C,, represented by

5 aUu
C, = ('ﬁ’), (3-23)

is in fact an inlensive property of the substance, determined along with all
the other intensive properties by the temperature and pressure. Its
value for a given substance cannot be predicted by purely thermodynamic
means, but must be determined either empirically by direct measurement,
or theoretically on the basis of extrathermodynamic conceptions of
molecular structure.

Let us now proceed to expand U as a function of temperature and pres-
sure, in accordance with the formal relationship (3-11). For the effect of
temperature alone, at constant pressure, from Eq. (3-19),

The first term on the right of Eq. (3-24) represents by definition the molal
heat capacity at constant pressure, C,,

C, = (7'?) (W' =0) (3-25)

Since the other terms in Eq. (3-24) are clearly functions only of the state
of the system, it follows that C,, like C,, is an intensive property of the
substance, determined by its state. Thus, introducing the notation of

Eq. 3-4),
(‘%’) = C, — pVa (3-26)

For the effect of pressure alone, at constant temperature, from Eq. (3-19),

() -+, -0

The first term on the right of Eq. (3-27) defines an intensive property
called the molal latent heat of pressure variation:

= d'0 ,
L, = (71;)1- (W' =0) (3-28)
This property is the pressure analogue of the molal heat capacity, repre-

senting the quantity of heat absorbed per unit increase in the pressure,
when the substance is compressed at constant temperature. Introducing
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the notation of Eq. (3-5),

U - .
(%>r —L,+p78 (3-29)
Combining Egs. (3-26) and (3-29),
dU = (C, — pVa)dT + (L, + pVB)dp (3-30)

Equation (3-30) expresses the functional dependence of U on T and p in
terms of physical properties of the substance all subject to direct experi-
mental measurement.

While L, may be directly measured by means of the operation indicated
by Eq. (3-28), the measurement is by no means easy to carry out pre-
cisely. We may, however, anticipate a relationship to be derived from
the second law of thermodynamics [Eq. (6-8)],

L,=—TVa (3-31)

This enables us to calculate the value of L, from pure equation-of-state
data, which are easier to establish at high pressures than direct thermal
data; in this relationship, it is necessary that the temperature be repre-
sented on the absolute thermodynamic scale; in thermodynamic rela-
tionships based purely on the first law of thermodynamies, only tempera-
ture differences enter, so that while for the sake of uniformity we have
been using T’ throughout, the ordinary Celsius temperature scale would
have been equally satisfactory up to this point. Introducing (3-31) in
(3-30), b

dU = (C, — pVa)dT + (p8 — Ta)V dp (3-32)

This equation, upon introduction of the required experimental data,
enables us to represent Ur , at any given temperature 7' and pressure p,
relative to U2, the internal energy in some standard state defined by
temperature 7, and pressure po; thus

Urp = U3, = [or (C3 = poVdT + [7 (8 — T}V dp  (3-33)

where the first integral on the right is evaluated at the constant standard
pressure po, and the second at the constant temperature T'; the order of
integration is immaterial, according to the first law of thermodynamics,
and we could equally well have taken the first integral at the constant
pressure p and the second at the constant temperature T, using the
corresponding thermal and equation-of-state data. As a matter of fact,
we seldom make use of Eq. (3-33) in applied chemical thermodynamics,
because it is generally much more convenient to represent our thermal
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data in terms of a modified energy function called the enthalpy, whose
change is measured directly by the heat absorbed at constant pressure; we
shall discuss the properties of this function in the section immediately
following.

3-3. The Enthalpy as Heat Function at Constant Pressure. Many
thermodynamic processes are carried on at the approximately constant
pressure of the atmosphere. This is particularly likely to be the case for
systems consisting entirely of liquids and solids, where there is usually
little advantage to be gained from changing the pressure, unless one is
ready to consider really high pressures, in excess of 1000 atm. Even
then, one generally finds it more convenient to maintain and measure a
uniform pressure rather than a uniform volume, particularly where more
than a single homogeneous phase is involved.

For a change of state taking place at constant pressure, according to
Eq. (3-18),

d'Qp = d(U + pV) +d'W’ . (3-34)
The expression
H=U-+pV (3-35)

defines a useful function of the state of the system (since both U and pV
are determined solely by the state), having the fundamental property
that for a change of state taking place at constant pressure,

dH = d'Q, — d'W’

AH = Q, (W' =0) (3-36)
More generally, comparing the differential of (3-35) with (3-18),
dH = d'Q + Vdp — dW' (3-37)

The function H, defined by Eq. (3-35), is known as the enthalpy of the
system; it is of course measured in energy units (e.g., defined calories),
just like U.! Its change in value for a change of state taking place at a
given constant pressure may be established by means of straightforward
calorimetry, according to Eq. (3-36) ; unlike the situation in the measure-
ment of AU, it is not necessary for us in the measurement of AH to correct
the directly measured thermal energy absorbed by the system during the
change of state at constant pressure for any volume change that the sys-
tem may undergo (i.e., for any mechanical work done as a consequence of
the volume change). Since the value of H, like the value of U, depends
only on the state of the system, heat must necessarily be conserved by

1If p is measured in atm and V in liters, then an expression of the form pV may be
expressed in calories through the use of the conversion factor: 1 cal = 0.0412917
liter atm.
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the system during changes of state taking place at a uniform fixed pres-
sure, and any heat absorbed during a given change under this condition
will be restored as such in the same amount if the system is returned to its
original state. Thus, the enthalpy I serves as a heat function at constant
pressure, in the sense that its value measures the quantity of heat appar-
ently ‘““contained’’ by the system under that condition; for this reason, H
has also been known as the ‘‘heat content’ and as the ‘‘total heat’’;
these terms have misleading connotations, however, and the neutral
synthetic name enthalpy, or merely the symbol H itself without a name,
is to be preferred.
For the change of temperature at constant pressure,

¢, = (‘fi'_‘T))p - (‘%’,)p W' =0) (338)

where C', represents the heat capacity at constant pressure. 'The molal heat

capacity at constant pressure, Cp, previously defined by Eq. (3-25), thus
satisfies the relationship

Cp = (%{{7—“’), (3-39)

and is like C, an intensive property of the substance. A thermodynamic
connection between C, and C, at given temperature and pressure follows
directly from Egs. (3-23) and (3-30):

(O s oo {4
C, = (37‘1)” = (Cp - pV“) + (Lp + pVB) (d—g Y
Introducing Eq. (3-6) for (dp/dT).,
@—&=—L% (3-40)

If we substitute for L, the equivalent expression (3-31) based on the sec-
ond law of thermodynamics, then

= o~ TVa? A7\ (dp
6- 0 =T (Y (B

This relationship permits us to calculate the value of either heat capacity
from known values of the other by making use of equation-of-state data;
it is particularly useful for the calculation of €, from observed values of
C,, which is generally the easier to measure; on the other hand, theoretical
methods of determining the thermal properties of material substances
generally lead directly to the value of C,, from which C, may then be
calculated by means of Eq. (3-41).
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Let us set up the functional dependence of H on T and p, for a homo-
geneous substance of fixed composition,

H = H(T, p) (3-42)
aft - (47 ar + (dH) (3-43)

Because H is a function of the state of the system, the value of dH for a
change in the state of such a substance is completely determined by Eq.
(3-43). Now from Eq. (3-37), which represents dH in experimental
terms according to the first law of thermodynamics, .

Recalling the definition (3-28),

dA = .
(%)T =L,+7V (3-44)

Introducing (3-39) and (3-44) in Eq. (3-43),
dH = C,dT + (L, + V)dp (3-45)

or, substituting for L, its equivalent (3-31) based on the second law of
thermodynamics,

d = C,dT + (1 — aT)V dp (3-46)

This equation enables us to express Hr , at any given temperature 7' and
pressure p, relative to H3,, the enthalpy at 7', and p,, in terms of C%, the
heat capacity at the constant standard pressure p,, and equation-of-state
data at the constant temperature 7:

A, - A, = fTT G dT + L " (1 = o)V dp (3-47)

The value of the first integral on the right of Eq. (3-47) is of course equal
to the total quantity of heat absorbed by the substance as it is heated at
the constant pressure p, from temperature 7', to temperature 7' (assuming
that it undergoes no phase transition in this interval), and could be
established directly by straightforward calorimetry; it is customary how-
ever to translate the experimental heat measurements in terms of C3 as a
function of 7, rather than of H? itself; the data are then in a form inde-
pendent of the particular reference temperature T, from which AH may

be measured, and, furthermore, C3 varies with 7' mueh less rapidly than
a3, itself.
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The absolute value of the enthalpy of a given thermodynamic system
in any one state has no assigned meaning, any more than has the absolute
value of the internal energy. However, it is possible for us to assign on
the basis of the thermochemical principles to be discussed in Chap. 4
relative values HY, to different chemical substances at the same standard
temperature and pressure, representing their standard molal enthalpies
with respect to the chemical elements. Equation (3-47) then enables us
to extend these so-called enthalpies of formation to other temperatures and
pressures. Indeed, for those problems in which the composition of the
substance under investigation undergoes no change, as in the performance
of a steam engine, the relative value of Hr,, with respect to the standard
state value H?, is all that is required, the value of HY. itself being left
entirely arbitrary. The best choice of a standard reference temperature
in principle would be absolute zero on the thermodynamic scale; we shall
reserve the symbols U and Hj to designate the molal internal energy and
enthalpy in such a standard state; however, this choice is not feasible in
general because of the lack of sufficient heat-capacity data at low tem-
peratures. The practical standard reference temperature favored at
present is 25°C, in line with the recommendations of G. N. Lewis and his
associates,! but much of the older thermochemical data were obtained
with reference to somewhat lower standard temperatures;? fortunately,
the correction to 25°C is small, and can be made through Eq. (3-47) from
knowledge of the value of C;. The standard reference pressure po for
solids and liquids is taken to be 1 atm; in the case of gases, because of
their uniform behavior in the low-pressure range, as represented by
the ideal-gas law, enthalpy values are taken with reference to a hypotheti-
cal ideal-gas state at 1 atm at the given temperature, in which the gas
would have the same enthalpy as in the limit at zero pressure; that is,

1 G. N. Lewis and M. Randall, ¢ Thermodynamics and the Free Energy of Chemical
Substances,”” McGraw-Hill Book Company, Inc., New York, 1923. This choice has
been adopted by the National Bureau of Standardsin its compilations, Selected
Values of Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461 (1947), and
‘‘Selected Values of Chemical Thermodynamic Properties,’”’ which has been distributed
by the National Burcau of Standards in loose-leaf form quarterly since Dec. 31, 1947.

2 For this reason, 20°C was adopted in the ‘‘International Critical Tables,” Vol. V,
McGraw-Hill Book Company, Inec., New York, 1927, where incidentally the data
are all expressed in terms of international joules; 18°C was adopted by F. R. Bichowski
and F. D. Rossini for their compilation, ‘“Thermochemistry of Chemical Substances,”
Reinhold Publishing Corporation, New York, 1936, following the lead of the great
pioneers in the field of thermochemical investigation, Julius Thomsen (‘‘Thermo-
chemische Untersuchungen,” J. A. Barth, Leipzig, 1882-1886; ‘‘ Thermochemistry,”
English translation by K. A. Burke; Longmans, Green & Co., Inc., New York, 1908)
and M. Berthelot (“Thermochimie; données et lois numériques,” Gauthier-Villars
& Cie., Paris, 1897).
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H2, is defined by the relationship: lim Hr,, = H3,. The actual values
p—0

of Hry, , for the gas at other pressures p (including 1 atm as a special case)
are related to Hy, through Eq. (3-47), with the limits of integration in the
second integral taken to be from 0 to p (note that for an ideal gas the
integrand would vanish, since @ would equal 1/7"). The effect of pressure
on the enthalpy is slight for pressure changes of less than several atmos-
pheres magnitude; for ordinary variations in the barometric pressure, it
is altogether negligible.

Phase transitions of a chemical substance of fixed composition ordi-
narily take place at a constant pressure, determined by the temperature;
the so-called normal transition temperature corresponds by definition to a
fixed pressure of 1 atm. The latent heat of the transition thus measures
directly the difference between the enthalpies of the higher temperature
and the lower temperature forms at the given equilibrium temperature
and pressure. For example,

H.0(c, 0°C, 1 atm) = H,0(], 0°C, 1 atm);
AH = L., = 1436.3 cal/mole
H,0(l, 100°C, 1 atm) = H,0(g, 100°C, 1 atm);
AH = L, = 9717.5 cal/mole

The symbol L designates the molal latent heat of fusion (heat absorbed
during the transition: crystal — liquid), and the symbol L;, the molal
latent heat of vaporization (heat absorbed during the transition: liquid — -
gas). Thus, by applying Eq. (3-47) from the standard state conditions
to the transition point, and then adding the enthalpy of the phase transi-
tion so measured by the latent heat, one can relate the enthalpies of differ-
ent phases of the same substance to a common reference state, that, for
example, of the phase stable at the reference temperature 7', and 1 atm.
The latent heat itself varies with the equilibrium temperature and pres-
sure, which are of course correlated. The molal enthalpy of either phase
varies with temperature and pressure according to Eq. (3-46); therefore
the difference AH between the molal enthalpies of the higher temperature
and the lower temperature forms, which equals the molal latent heat of
the transition, varies with the equilibrium temperature and pressure
according to the equation .

dAH = AC, dT + A[(1 — «T)Vidp

where AC, represents the corresponding difference between the molal heat
capacities at constant pressure, and A[(1 — aT)V] the corresponding
difference between the values of (1 — aT)V at constant temperature.
Thus, let AH 7z represent the latent heat at the normal transition tem-
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perature, 7'° at 1 atm; then
. - T = -
Ay, = Al + [To AC,dT + [P Al(L — oT)Vldp  (3-48)

where AC, is taken at constant pressure of 1 atm and the second integral
is evaluated at the constant temperature T, p representing the equilibrium
pressure at that temperature (e.g., the vapor pressure in the case of solid-
vapor or liquid-vapor equilibrium). For pressures below 1 atm (z.e., for
temperatures below the normal boiling point, in the case of liquid-vapor
equilibrium), the pressure integral is practically within experimental
error, but for pressures well above atmospheric, this is not necessarily
true; one then needs extensive equation-of-state data in order to evaluate
this integral. Equation (3-48) is readily generalized for transitions that
do not ordinarily exist at 1 atm (such as the vaporization of liquid CO,);
let AH e in that equation represent the latent heat of the transformation
at some known equilibrium temperature 7° and associated pressure p°,
and let AC, stand for the difference between the molal heat capacities of
the two phases at the constant pressure p°; then the equation is correct,
provided that the range of integration of the second integral extends from
p° to p, instead of from 1 atm to p. Infew cases, however, does one have
sufficient experimental data to apply Eq. (3-48) accurately at pressures
much in excess of atmospheric.

3-4. Heat Capacities of Chemical Substances. The effects of pressure
on the internal energy and enthalpy of a chemical substance, according to
Eqgs. (3-32) and (3-46), may be computed purely from equation-of-state
data, provided one makes implied use of the second law of thermody-
namics through the relation (3-31). The effects of temperature, however,
are represented in terms of the thermal property C,, whose value cannot
be inferred from other nonthermal properties by purely thermodynamic
means. This section is devoted to methods of measuring heat capacities,
and to certain empirical rules for estimating their values when direct
experimental information is wanting.

The relationship between C, and C, has already been derived in Eq.
(3-41) in terms of equation-of-state data; therefore the experimental
establishment of either of these heat capacities at given temperature and
pressure serves, together with nonthermal data for the effects of tempera-
ture and pressure on the volume, to determine the other; the direct
thermal measurement of C, at the practically constant pressure of the
atmosphere is generally far more convenient than that of €,. Further-
more, the effect of pressure itself on the value of C, at a given temperature
may be readily established in terms of equation-of-state data through the
application to Eq. (3-46) of Euler’s criterion for dA to be a complete or



88 ‘ PRINCIPLES OF CHEMICAL THERMODYNAMICS

perfect differential in terms of the two independent variables 7' and p
(see Appendix 1):

dép — d — Yy

(%), = [z o - 7],

Corfe 8]

Therefore all the purely thermal data one must measure in order to
describe the thermal properties of a given homogeneous chemical sub-
stance are summarized in an expression for the value of C, at any one
fixed pressure, such as 1 atm, as a function of the temperature. If to this
information one adds the latent heats of phase transitions, as well as the
C, values for the other phases, then one has characterized the thermal
behavior of the substance in all its phases. We shall use the symbol C9
for pure liquids and solids to denote the molal heat capacity at constant
pressure of 1 atm; we shall use the same symbol for gases to denote

lin}) C,, which is equivalent to the actual C, at 1 atm, corrected for
| and
deviation from the ideal-gas law by means of Eq. (3-49) integrated from

1 atm to 0.

For solids and liquids at low temperatures up to room temperature, the
most convenient method of measuring C, is by means of clectrical heating.
This method was first applied to solids by W. Gaede in 1902, and was per-
fected with particular application to low-temperature measurements by
Walther Nernst and his associates beginning about 1910. In Nernst’s
vacuum calorimeter, the substance if it is itself a sufficiently good heat
conductor, such as a metal, serves as its own calorimeter; it is shaped to
the form of a hollowed block having a plug of the same substance fitted
into the hole; a heating coil of platinum wire is wound on the plug, insu-
lated by means of a paraffin coating, and the plug is then inserted into the
block. If the substance is either a liquid or a poor heat conductor, it is
placed within a hermetically sealed cup of silver or copper, around the
outside of which the heating coil is wound; the calorimeter is protected
from radiation losses by means of a layer of silver foil covering the heating
coil; for measurements down to liquid air temperatures, the cup remains
filled with air, but for measurements at lower temperatures, it must be
previously filled with hydrogen or helium; the gas is needed in order to
equalize the temperature rapidly throughout the vessel by means of its
thermal conductivity and convection. The entire calorimeter, whether
it consists of the substance itself or of the metal cup and contents, is sus-
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pended within a flask having an exit tube through which it may be evacu-
ated. It is brought to the desired initial temperature by immersion of
the flask containing the calorimeter and filled initially with air, hydrogen,
or helium, depending on the temperature range to be investigated, in a
suitable low-temperature bath: ice, liquid air, liquid hydrogen, or liquid
helium. It is then insulated from its surroundings by evacuation of the
flask to a high vacuum. Electrical energy is measured into the heating
coil in successive small amounts, each sufficient to raise the temperature
by about 1°C; after each energy input, the resistance of the coil, which
may serve as the thermometer (though some investigators prefer to use an
independent thermometric resistance coil, separate from the heating coil),
is read at short intervals until it becomes steady, showing that thermal
equilibrium at the new higher temperature has been established ; the ratio
of the quantity of energy put in [measured for example by the coil resist-
ance and the potential difference applied to the terminals in accordance
with Eq. (2-19)], corrected for losses by the leads and for thermal radia-
tion, to the rise in tempcrature gives the heat capacity at the mean tem-
perature involved. For poor thermal conductors, the heat capacity of
the empty calorimeter cup must be determined by a separate blank run,
and the heat capacity of the sample calculated by difference at each mean
temperature. F. Lange! eliminated the radiation correction by suspend-
ing the calorimeter within a brass cylinder inside the evacuated flask,
maintained by means of independent electrical heating always at the
same temperature as the calorimeter within; equality of temperature was
judged by means of a differential thermocouple, with one junction in the
calorimeter and the other in the jacket, a method that lends itself con-
veniently to automatic control over the heating of the jacket; the calorim-
cter then operates under cssentially adiabatic conditions. Detailed
descriptions of typical modern adiabatic calorimeters for the measure-
ment of heat capacities at low temperatures have been given by W. F.
Giauque and R. Wiebe( University of California), J. G. Aston and C. W.
Ziemer (Pennsylvania State College), and H. L. Johnston and E. C. Kerr
(Ohio State University), while H. M. Huffman has recently described the
entire setup for the undertaking of low-temperature calorimetry, as con-
ducted at the Bartlesville Station of the U.S. Bureau of Mines.?2

The same type of calorimeter is used to determine the latent heat of
fusion, or the latent heat of transformation from one solid phase to
another, at low temperatures. The sample is heated electrically from a

1F. Lange, Z. physik. Chem., 110, 343-362 (1924).

1 W. F. Giauque and R. Wicbe, J. Am. Chem. Soc., 50, 106-110 (1928); J. G. Aston

and C. W, Ziemer, tbid., 88, 1405-1406 (1946); H. L. Johnston and E. C. Kerr, ibid.,
72, 473_3—4738 (1950); H. M. Huffman, Chem. Rev., 40, 1-14 (1947).
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temperature somewhat below the transition point to a temperature some-
what above it; by plotting the quantity of energy absorbed against the
temperature attained, and extrapolating from both directions to the
transition point itself, where of course a discontinuity exists, one can
determine the quantity of energy absorbed during the change of phase at
the transition temperature.

High-temperature heat capacities of solids and liquids are most con-
veniently measured by the method of mixtures; electrical heating offers
theoretical advantages, but these are more than offset by the increasing
difficulty at higher temperatures of guarding against radiation and con-
ductive losses. Water itself may be used as the calorimetric medium, but
in order to increase the range of measurement and to eliminate the error
resulting from the evaporation of water, a copper or aluminum block is
commonly used instead. The sample is preheated to the desired initial
temperature in a furnace tube mounted above the calorimeter block, in
which a cavity has been drilled to receive the sample; the sample is then
dropped into the cavity, and the rise in temperature read by means of a
group of thermocouples distributed at various points in the block; the
calorimeter is standardized by means of electrical heating.! This method
gives actually the mean heat capacity of the sample between its initial
temperature ¢ and its final temperature #, (that of the block). The latter
temperature may be kept uniform for a series of measurements on the
same substance by adjustment of the mass of the sample in relation to the
mass of the block as the sample’s initial temperature ¢ is varied; if from
such a series of measurements one then expresses the mean specific heat,
T', as a function of ¢ in the empirical form

T =a4bt—t)+olt — o)+ - -
where ({ — #)T represents the observed total quantity of heat released
per unit mass of sample in cooling from ¢ to ¢, then the instantaneous

specific heat ¢, at the temperature £ is given in terms of the empirical con-
stants a, b, ¢, . . . by the formula

c,=dit[(t-—to)r] — a4 2b(t — o) + Bc(t — 1) + - - -

One could in principle express Q,/M directly as an empirical function of
(t — t), and then differentiate with respect to ¢ in order to obtain ¢,, but

1 For detailed description of this type of calorimeter, see W. P. White, ‘“The Modern
Calorimeter,” Reinhold Publishing Corporation, New York, 1928. An ice calorimeter
for similar purposes has been described by D. C. Ginnings and R. J. Corruccini, J.
Research Natl. Bur. Standards, 38, 583-591 (1947); the quantity of ice melted by the
sample is measured by the weight of mercury taken into the calorimeter to make up
for the volume decrease, the calorimeter being standardized by electrical heating.
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in practice the power series for I' converges more rapidly and is therefore
more convenient for computation; the molal heat capacity C, is of course
obtained from ¢, through multiplication by the substance’s formula
weight _ -
C, = Mc, (3-50)

The heat capacities of gases are difficult to measure directly because of
their low densities at ordinary pressures and the correspondingly large
volumes required in order that the quantities of heat involved may be
measured with adequate precision. The method of mixtures was used by
H. V. Regnault in 1862 to measure C,; he circulated the gas through a
copper-coil heat interchanger surrounded by water, which served as the
calorimetric medium; the gas was preheated to a known temperature, and
the mass flowing through the calorimeter was determined by measure-
ment of its volume as it emerged at the temperature of the calorimeter.
Holborn and Henning used a similar method, in which the preheated gas
was passed through silver tubes packed with silver filings to improve
thermal contact with the calorimetric medium, which consisted of paraffin
oil; in this way, they succeeded in measuring the heat capacities of gases
up to 1400°C.! Continuous flow methods have also been used, in which
the gas flows at a known uniform rate over an electrically heated wire and
the rise in its temperature is measured. The value of C, for hydrogen at
low temperatures was measured directly by A. Eucken in a special investi-
gation,? using essentially a Nernst vacuum calorimeter consisting of a
thin-walled steel vessel containing the gas, with a heating coil wrapped
around it; the method is feasible, however, only at low temperatures,
where the heat capacity of the metal container has fallen off so that it is
not much larger than that of the gas.

Several indirect methods for measuring the heat capacity are based on
direct measurement of the ratio

Il

Cy

= 3-51
T=G (3-51)
This quantity may be measured directly from the temperature change
during adiabatic expansion, according to the theory discussed in Sec.
3-5;% it may be obtained also from measurements of sound velocity in the
gas, which satisfies the well-known Newton relationship

u=qlv g%’)r (3-52)

1 L. Holborn and F. Henning, Ann. Physik, 23, 800-845 (1907).

2 A. Eucken, Sitzber. preuss. Akad. Wiss., Physik.-Math. Klasse, pp. 141-151 (1912).

3 8ce J. R. Partington, Physik Z., 14, 969-973 (1913); Proc. Roy. Soc. (London),
(A)100, 27-49 (1921).
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where p represents the pressure and p the density; for an ideal gas, this

expression reduces to u = 4 /%—.}1 v. By combining the experimentally

established value of C,/C, with the value of ¢, — C, from equation-of-
state data according to Eq. (3-41), which for an ideal gas reduces to

C:—-C=R (ideal gas) (3-53)

one may calculate the value of C,.

The purely thermodynamic methods of measuring the heat capacities
of gases have been supplemented, however, and in most cases superseded
by methods based on statistical molecular theory, the required molccular
properties being derived from analyses of their spectra; the spectra give
us essentially the various possible energy levels of the given kind of mole-
cule, and the statistical molecular theory, to which we shall give our
attention in Chap. 10, provides a general law for the distribution of mole-
cules among energy states. By the introduction of certain generaliza-
tions drawn from quantum mechanics, one may apply the statistical
method approximately even in the absence of detailed knowledge of the
spectrum. It will be useful for us to review briefly at this point some of
the generalizations that result from the statistical molecular theory, bear-
ing in mind that such information is essentially extrathermodynamic in
origin.

From straightforward kinetic theory, which treats the internal energy
of the gas as made up purely of mechanical energy, kinetic and potential,
associated with molecular motion, one may show that for an ideal
monatomic gas, whose energy at temperatures below the range of elec-
tronic excitation must consist entirely of translational kinetic energy,
C° = 3R = 2.981 cal/mole deg. According to Eq. (3-53), then,
C; = 3R = 4.968 cal/mole deg, and v = 1.667. These values represent
the limiting values for real monatomic gases as p — 0, the correction to 1
atm pressure being made in accordance with Eq. (3-49); this correction is,
however, practically negligible for most of the real monatomic gases, par-
ticularly at temperatures above their critical points. Table 3-1 includes
the experimentally determined values of v for several representative
monatomic gases, and one sees that the theoretical values are in excellent
agreement with the experimental values; the theoretical values of C5 and
C’, for these gases are in fact gencrally more reliable than the experimental,
in view of the errors inherent in the experimental methods.

Diatomic gases have, in addition to translational molecular kinetic
energy, rotational kinetic energy in two dimensions about the center of
gravity (there is none in the third dimension, about the line of centers,
because of the comparatively small moment of inertia about this axis),
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which contributes at ordinary temperatures a term R to the molal heat
capacities; there will be, furthermore, a contribution corresponding to
vibrational energy, which at sufficiently high temperatures also approaches
the value R. The temperature region at which the contribution of vibra-
tional energy to the heat capacity begins to be significant depends in a
complex way on the fundamental frequency of vibration, which is a meas-
ure of the restoring force between the atoms as they are displaced from
their relative equilibrium position; the energy difference between succes-
sive vibrational-energy states is proportional to this fundamental vibra-
tion frequency (which appears in the infrared absorption spectrum, unless
the two atoms happen to be identical), so that if the frequency is high
(corresponding to a relatively strong restoring force), then it takes a com-
paratively high temperature to get appreciable numbers of the molecules
into excited vibrational-energy states. For many of the diatomic gases,
particularly those involving the smaller atoms, such as N2, Oz, and CO,
the vibrational heat-capacity term is negligible at ordinary room tem-
perature; for I, vapor, on the other hand, the vibrational-energy levels are
sufficiently closely spaced so that many different states are occupied at
ordinary temperatures, giving rise to a practically continuous distribution
of molecules with respect to vibrational energy and a contribution to the
molal heat capacity correspondingly close to the limiting value R. Thus,
we shall expect to find that for diatomic gases, C3 will fall within the range
TR to %5 R, or 6.96 to 8.94 cal/mole deg, with its value increasing through
this interval with increasing temperature; molecules consisting of the
larger atoms having smaller force constants (ratios of restoring forces to
displacements from equilibrium positions) and comparatively low funda-
mental vibration frequencies will tend to attain the upper limit at lower
temperatures than molecules of the smaller atoms having larger force con-
stants and comparatively high fundamental vibration frequencies. The
value of v will fall in the corresponding range, 1.40 to 1.29. Experimen-
tal results for several representative diatomic gases are included in Table
3-1; Fig. 3-1 shows how C, for oxygen gas varies with temperature over
the range 200 to 1500°K.

One will note that the change of C§ with temperature for a diatomic gas
is entirely the result of the quantization of the vibrational-energy states,
which when the average molecular total energy is sufficiently low (as at
low temperatures) restricts the accessibility of the higher vibrational-
energy states; if the vibrational energy could increase by continuous
degrees, as the translational kinetic energy apparently does at ordinary
temperatures, then we should expect an equalization on the average
of the molecule’s energy among all its degrees of freedom; 7.e., the mean
vibrational kinetic energy, which represents half the mean total vibra-
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TaBrLE 3-1. lIear Caracrries oF GAsks

—o ort 4
Gas C, at 25°C, Ct¢tand 1 atm
cal/mole deg |- — —
i °C Y
A 4.968%* 15 1.65%
— 180 1.69F
He 4.968* 18 1.658%
—183 1.662%1
— 258 1.661%
Ne 4.968* 0 1.666%1
— 183 1.670%1
— 245 1.667%
Kr 4.968* 19 1.68
Xe 4.968* 19 1.66
Hg | ....... 360 1.67
) < 680-1000 1.69
Na | ....... 750— 920 1.68
H. 6.892 0 1.410
— 256 1.661%
HCl 6.95 100 1.40
HI 6.95 100 1.40
N. 6.960 0 1.402
CO 6.965 0 1.402
O, 7.017 0 1.402
NO 7.137 15 1.400
F. 7.52
Cl. 8.06 16 1.35
Br. e . 20— 350 1.32
ICl1 8.46 100 1.31
P 8.78 185 1.30
H,O 8.025 100 1.324
H,.S 8.12 18 1.30
CO. 8.874 0 1.310
N.O 9.251 100 1.28
SO, 9.51 15 1.29
NH; 8.523 15 1.31
C.H: 10.499 15 1.26
CH, 8.536 0 1.307
CH;CI 9.75 16 (0.8 atm) 1.28
CH.Cl., 12.28 18 (0.2 atm) 1.22
CHCIl; 15.73 100 1.15
CCl, 19.96 20 (0.1 atm) 1.13
SiH, 10.24
SiF, 18.2
SiCl, 21.7 14 1.13
C.H, 10.41 100 1.18
C.He 12.585 100 1.19
C;Hs 17.57§ 16 (0.5 atm) 1.13

For footnotes, see page 95,
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tional energy (the other half being potential energy), would equal the
mean translational kinetic energy X4RT (per mole) in any one of the three
spatial dimensions, thus leading to R as the “classical”’ contribution of
any single mode of vibration to the molal heat capacity. Because the
vibrational-energy levels are discrete, however, a molecule must acquire a

90"9/2R
/
/ =

g
2 /
et /
[=]
03; 7.0 /N =) /
1 2R

60G—300 400 600 800 1000 1200 1400 1600

T(°K)
Fic. 3-1, Heat-capacity curve, Tp° vs. T, for O:(g). (Data from “‘Selected Values of

Chemical Thermodynamic Properties,” Series III, National Bureau of Standards, Washing-
ton, D.C., March 31, 1949.)

certain minimum increment of energy in order to get out of the lowest
into the next from the lowest vibrational state, and at sufficiently low
temperatures, few molecules have a chance of acquiring that much extra
energy by means of the collisions that distribute the energy of their ther-
mal motion; most of them must therefore stay in the lowest vibrational
state until such a temperature has been reached that an appreciable frac-

Note: §»° values are taken from * Selected Values of Chemical Thermodynamic Properties,” National
Bureau of Standards, Washington, D.C., 1948, except values for C:H:, C:H4, C:He, and CisHs which
are taken from Selected Values of Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461 (1947);
these values have been derived by critical evaluation of both calorimetric and spectroscopic sources,
and are in general independent of the y values given in the table. The v values are taken from the
compilation by A. Leduc, in the ‘‘International Critical Tables,”” Vol. V pp. 79-84, McGraw-Hill
Book Company, Inc., New York, 1929, except where otherwise noted; most of these values were obtained
directly from sound velocity measurements.

* Nominal value = 3¢ R; direct calorimetric measurements have been made on argon and helium,
but for all the other monatomic gases at temperatures up to several thousand degrees, the theoretical
value, 3¢ R, is believed to be precise within experimental error, as shown by the values of the more
easily measurable v. Mercury, potassium, and sodium vapors contain small proportions of diatomic
molecules, decreasing with increasing temperature and decreasing pressure.

1 Limiting value for p — 0, obtained by Scheel and Heuse, as reported by J. R. Partington and W. G.
Shilling, * The Specific Heats of Gases,”” D. Van Nostrand Company, Inc., New York, 1924,

1 Limiting value for p — 0, obtained by W. H. Keesom e al., as reported in Landolt-Birnstein,
‘Physikalisch-chemische Tabellen,” 5th ed., Supplement IIIe, p. 2323, 1936.

§ Values for higher gaseous homologues of the alkanc series at 25°C increase by approximately 5.760
cal/mole deg per CH: group added; the same increment is found in other homologous series, beyond
the first few members; see Natl. Bur. Standards Circ. C401.
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tion of molecules may have sufficient total energy to get into the second
and higher vibrational-energy states. Now, the rotational energy is also
quantized, but the energy differences between the lower rotational states
are generally much smaller than the differences between vibrational states.
If, however, one can cool the diatomic gas to sufficiently low temperatures,
then the effect of quantization of the rotational energy may make itself
felt in a decrease of the heat capacity. This effect is shown strikingly
in the case of hydrogen (Fig. 3-2), as discovered by A. Fucken in 1912;
here, even at room temperature, C3 is slightly below the lower limit 74R
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F1c. 3-2. Heat-capacity curve, C;° vs. T, for Ha(g). (Data from 298°K up from ‘‘ Selected
Values of Chemical Thermodynamic Properties,”’ Series 111, National Bureau of Standards,
Washington, D.C., March 31, 1949; data below 298°K from work of A. Eucken as reported in
¢ International Critical Tables,”’ Vol. V, p. 82, McGraw-Hill Book Company, Inc., New York,
1929.)

characteristic of other diatomic gases at temperatures below the range of
significant vibrational excitation; but by 60°K, CS for this gas has fallen
to the value of 34 R shown by monatomic gases, and we have the remark-
able result that below this temperature, H, molecules behave physically
like the molecules of a monatomic gas; in other words, the rotational
energy in this range is “frozen,” in the sense that few of the molecules can
acquire sufficient total energy to get into the higher rotational states.
One of the noteworthy achievements of quantum mechanics has been the
quantitative solution of this problem. Certain diatomic gases whose
atoms are identical, including N2, C135CI1%, D,, and particularly H, itself,
show a further complexity in the rotational contribution to the heat
capacity at low temperatures, because of nuclear spin isomerism. Hydro-
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gen, for example, consists of two isomers, parahydrogen, in which the
spins of the two nuclei are paired in opposite directions, and orthohydro-
gen, in which the spins are in the same direction; these two forms can
occupy according to general quantum theory only the even or only the
odd rotational-energy levels, respectively; ordinary hydrogen consists of
an equilibrium mixture (at ordinary temperatures) of three orthohydrogen
molecules to one parahydrogen molecule, but at temperatures of order
60°K, where the molecules tend to get into the lowest or zeroth rotational
state, which is an even state, orthohydrogen becomes metastable with
respect to transformation into parahydrogen, a change that can be
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Fia. 3-3. Heat-capacity curve, Cp° vs. T, for ethylene C:Hi(g). (Data from ‘‘ Selected
Values of Properties of Hydrocarbons,”” Natl. Bur. Standards Circ. C461, 1947.)

accelerated by adsorption of the gas on activated charcoal; in this way,
pure parahydrogen has been prepared, and its contribution to the heat
capacity of ordinary hydrogen (the 3:1 orthohydrogen-parahydrogen
mixture) established. The entire phenomenon has received a satisfactory
theoretical treatment in terms of quantum mechanics.?

The molal heat capacities of polyatomic gases are in general larger and
increase more rapidly with temperature than the heat capacities of dia-
tomic gases (see Table 3-1 and Fig. 3-3). This is the result of additional
fundamental modes of vibration; for nonlinear molecules, there are
(8N — 6) such modes of vibration, each potentially capable when fully
excited by sufficiently high temperature of contributing B to the heat

1 For further details of this remarkable and interesting subject, the reader is referred
to A. Farkas, ‘“Orthohydrogen, Parahydrogen and Heavy Hydrogen,” Cambridge
University Press, New York, 1935.
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capacity, where N is the number of atoms in the molecule; the rotational
energy also contributes 34R instead of R to the molal heat capacity of
nonlinear molecules at ordinary and high temperatures. In general, the
more complex the molecule is, the more likely it is that there will be cer-
tain vibrations relatively easily excited; energy may thus be absorbed in
increasing the mean molecular vibrational energy in several dimensions,
whereas there is vibration possible in but a single dimension in the case of
diatomic molecules. From a detailed knowledge of the infrared and
Raman spectra, one can establish the rotational-vibrational energy levels,
and by the application of the molecular statistical methods to be described
in Chap. 10 one can determine the relative molecular population of each
level at a given temperature; this information can be used to determine
the heat capacity with high precision, though the computation becomes
laborious for the more complex types of molecules. Most of the currently
accepted heat capacities of gases have been obtained by this means.

The molal heat capacities of crystalline solids show certain regularities
first successfully accounted for by a theory proposed by P. Debye.?
L. Boltzmann had previously attacked this problem by assuming that in
a monatomic erystalline solid each atom executed simple harmonic oscilla-
tions about its equilibrium position in the crystal lattice, with kinetic and
potential energies on the average equal; by supposing that the kinetic
energy of this motion had the same mean value as the three-dimensional
kinetic energy of translation of gas molecules at the same temperature,
34RT per mole, he was led to a value of 3RT for the internal energy, and
hence to C3 = 3R. This value, 5.96 cal/mole deg, was in remarkably
good agreement with the empirical rule discovered by P. L. Dulong and
A. T. Petit in 1819, but like that rule, gave no clue to the well-known
exceptions to the rule, such as the heat capacities of carbon and silicon.
Further experimental work on the heat capacities of the metallic elements
at low temperatures showed that the exceptions to the rule of Dulong and
Petit were themselves part of a general pattern, for all the metals show a
falling off of the heat capacity as the temperature is lowered sufficiently,
diamond and silicon merely showing this effect at much higher tempera-
tures than silver or lead. Albert Einstein in 1907 improved greatly on
Boltzmann’s treatment by assuming that the vibrational motion of the
atoms in the crystal had a common fundamental frequency, but that the
energy of the motion was quantized;? he adapted to this purpose the
formula for the energy levels of a harmonic oscillator that had been found
necessary by M. Planck in order to develop a correct theory of thermal
radiation; this formula [see Eq. (10-113)] states essentially that the energy

1P. Debye, Ann. Physik, 89, 789-839 (1912).
1 A. Einstein, Ann. Physik, 22, 180-190 (1907).
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of such an oscillator can increase only by integral multiples of the funda-
mental vibration frequency, which is a fixed property of the particular
kind of oscillating system. Kinstein was thus able to account for the
decrease in € with falling temperature in terms of the same principle we
now use to account for the change with temperature of the vibrational
contribution to the heat capacities of diatomic and polyatomic gases; in
fact, the one-dimensional form of Einstein’s equation is actually used for
this latter purpose, as we shall see in Chap. 10 [Eq. (10-118b)], but his
equation for the heat capacities of solids left much to be desired in the
way of quantitative agreement with experiment, mainly because the
atoms of a crystalline solid are not free to oscillate independently of each
other.

In Debye’s treatment, the internal energy is supposed to consist of
quantized energies of vibrations of the crystal as a whole, taken to be a
continuous elastic solid; there are then 3N (or more precisely, 3N — 6)
fundamental frequencies of vibration, where N represents the number of
oscillating units, 7.e., the number of atoms in the monatomic crystalline
solid body; the number of these fundamental frequencies falling within a
given frequency range can be deduced from straightforward mechanical
theory of an isotropic elastic medium.! The formula that Debye finally
obtained by this treatment is

o)l [T oo

where 0 is a constant for the given monatomic crystalline solid, called its
characteristic temperature, whose value may be computed entirely from
the elastic constants of the crystal (Poisson’s ratio, and the coefficient of
compressibility, together with the density), or may be obtained empiri-
cally from the observed C vs. T relationship (only a single measurement
of C° at some one temperature, preferably near the middle of the range
over which it is changing most rapidly with 7', is theoretically necessary
for the reconstruction of the entire C° vs. T relation). The definite
integral appearing in Eq. (3-54) cannot be represented in terms of familiar
analytical functions, but the values of the entire expression define a
universal function of /7 known as the Debye function, D(6/T), and
have been tabulated through numerical integration (see Appendix 4);

the function (6/T) ﬁ) T”D(o/ T)d(T/6), which represents the value of

(Uy — U3)/T, has also been tabulated for various numerical values of
T/6, as have the values of certain other thermodynamic functions deter-

! An excellent discussion of Debye’s theory is given by J. K. Roberts, ‘‘Heat and
Thermodynamics,” 3d ed., Chap. XXI, Blackie & Son, Ltd., Glasgow, 1940.
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mined by C° by means of the second law of thermodynamics.! In
Fig. 3-4, the Debye function D(8/T) has been plotted against 7/6, and on
the graph values of CJ have been plotted for several monatomic regular
crystalline solids, with appropriate values of 6 assigned; one sees that
the agreement with theory in these cases is very good.

Lewis and Gibson? pointed out that the Debye equation is a special
form of the more general concept that C? is a universal function of the
temperature on a scale 7'/6 characteristic of each monatomic crystalline
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Fra. 3-4. Heat capacities of monatomic crystl'l/lgle solids. The solid curve represents the
Debye function, D(8/T), given by Eq. (3-54).

substance. Thus, if one plots C° against log 7, one should obtain a
family of similar curves for different monatomic crystalline solids, which
can be made to coincide by horizontal displacements measuring the rela-
tive magnitudes of log 8. The empirical fact that this is so is quite inde-
pendent of Debye’s theory. According to the Debye function, 6 repre-
sents the value of T at which C happens to equal 2.856R; a similar
characteristic temperature may be defined, however, in terms of any
other fixed value of C2, and Lewis and Gibson chose to define their 9 as
the temperature at which CJ = 34R [about 140 (Debye)], this being
about the mid-point of the curve, where C?3 is most sensitive to 7. Figure

1 See Landolt-Bornstein, ‘‘Physikalisch-chemische Tabellen,” 5th ed., Supplement
1, pp. 705-707 (1927). These values should be multiplied by 1.00076 to allow for

revision in the value of R.
2 G. N. Lewis and G. E. Gibson, J. Am. Chem. Soc., 39, 2554-2581 (1917).
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3-5 shows their standard heat-capacity curve, C3 vs. log (7'/6), plotted
with appropriate values of 6 for Al, Cu, Pb, and C (diamond) ; from it, one
may construct the entire heat-capacity curve of any regular monatomic
crystalline solid from a single accurate measurement of CS at a tempera-
ture not too distant from 6.
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Fia. 3-6. Standard heat-capacity curve for regular monatomic crystalline solids, C, vs.
log (T'/6). [From G. N. Lewis and G. E. Gibson, J. Am. Chem. Soc., 89, 2560 (1917), with
permission.]

Some of the elements, such as I:(c), erystallize in molecular lattices,
while others, such as graphite, crystallize in lattices showing a certain
degree of complexity; to these, the Debye theory in its original form does
not apply. On the other hand, many ionic compounds consisting of
monatomic ions, such as NaCl and CaF,, satisfy the Debye theory excel-
lently, with appropriately assigned values of 6, provided that one multi-
plies D(6/T) by a factor to take into account the number of ions repre-
sented by the formula, e.g., 2 for NaCl, 3 for CaF,, etc.

The principal results of Debye’s heat-capacity theory may be summa-
rized as follows:

1. C, for crystalline solids consisting of independent monatomic par-
ticles arranged in a regular pattern is represented as a universal function
of /T involving the single parameter 0.
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2. In the limit as 7 — 0 (in practice, when T’ < §/12)
C° = aT® (3-55)

where for regular monatomic crystals the constant a has the theoretical
value 1274R /563, or 464.57 /6% in cal/mole deg; but even for many complex
crystalline solids that do not satisfy Debye’s formula at higher tempera-
tures, it has been found that the law (3-55) is satisfied at sufficiently low
temperatures, with a regarded as an empirically determined constant.

3. At sufficiently high temperatures, C2 approaches the theoretical
value 3R, according to the limiting form

T 207

so that the law of Dulong and Petit is satisfied within 1 per cent when
T > 2.26; actually, C° at high temperatures approaching the melting
point may increase beyond 3R, partly because energy begins to be
absorbed in electronic excitation, and partly because the Debye picture is
oversimplified when one is considering a crystalline solid in which the
vibrational motion is so extreme that the crystal is about to lose its
stability.

In the calculation of €3 from €3 by means of Eq. (3-41), one does not
always have available all the necessary equation-of-state information,
particularly at extreme temperatures. For the metals, one may make
use of a relation established experimentally and on theoretical grounds by
E. Griineisen in 1908: the ratio of « to C3 is approximately constant with
temperature; since furthermore ¥V and 8 vary but slightly with tempera-
ture, we may recast Eq. (3-41) in the form

C, — C, = AC2T (3-57)

where A = Vaz/ﬁ(:’; may be evaluated approximately from data obtained
at any one temperature; e.g., for silver, A = 2.3 X 10~® mole/cal from
above room temperature down to about —200°C (see also Prob. 3-19,
containing data for copper).

Debye’s method has been improved and extended to molecular crystals
by the work of M. Born and T. von K4rm4n, and more recently by the
work of M. Blackman.! Here, account is taken of the interatomic vibra-
tions of the different kinds of atoms with respect to each other, as well as
vibrations of the crystal as -a whole; Blackman has attempted to take
account also of the effect of the discrete structure of the crystal on the

C; =3R (1 L 02) (3-56)

1 There is an excellent review of this work by M. Blackman in Reports on Progress
in Physics, Phys. Soc. (London), 8, 11-30 (1941).
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motion of individual atoms. Such investigation has led to more or less
complex heat-capacity formulas in close agreement with experiment for
certain types of crystalline compounds.

In the absence of experimental data, one may roughly estimate the
molal heat capacities of the simpler crystalline compounds by assigning
independent additive contributions for the various elements present, as
shown by H. Kopp and F. C. Neumann. Thus, for estimating C; ever
the range 18 to 100°C, one may use the following empirical atomic heat
capacities, in cal/mole deg: metals = 6.2; C = 1.8; H = 2.3; B = 2.7;
Si =38; O=4.0; F=50;, S=54; P=254; Cl =54; Br =6.2;
I = 6.2. For example, for CaCQOj;, one estimates a value of

6.2 + 1.8 + 3 X 4.0 = 20.0 cal/mole deg

whereas the observed value of C3 at 25°C is 19.76 cal/mole deg. It
should be emphasized, however, that the additive rule is quite approxi-
mate, and not always dependable.

Heat-capacity data for a variety of inorganic substances have been
compiled by K. K. Kelley.! Xelley has shown that it is possible for one
to represent high-temperature molal heat capacities empirically by means
of three-constant equations of the form

Co=a+bT + cT? . (3-58)
or, even more suitably, of the form
C,=d + 0T —cT? (3-59)

Such equations, with empirically determined constants, can be fitted to
the experimental heat-capacity data in many cases with a precision of
1 per cent over a range of 1000°K or more (from 273°K up); the range
must always be explicitly stated, the equation having no significance out-
side the stated range. Equation (3-59) has an advantage over Eq. (3-58)
in that it integrates giving no power of 7' higher than the second, when
one wishes to represent A2 as a function of T [Eq. (3-47)]. In Kelley’s
valuable compilations, values of the empirical constants fitting either Eq.
(3-58) or Eq. (3-59) to the data are given for all inorganic gases, liquids,
and solids for which sufficiently precise and comprehensive high-tem-
perature heat-capacity data were available at the time of publication.
Low-temperature heat capacxtles are reported at various temperatures

1 Heat capacities at low temperaturcs (below 25°C) are given by K. K. Kelley in
A Revision of the Entropies of Inorganic Substances—1935, U.S. Bur. Mines Bull.
394 (1936); heat capacities at high temperatures (above 0°C) are given in High-
temperature Specific-heat Equations for Inorganic Substances, U.S. Bur. Mines Bull.
371 (1934); the data are represented in 15° calories.
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covering the range from 10 to 298.1°K. This work is being extended by
F. D. Rossini and his staff at the National Bureau of Standards as part
of the project, ‘‘Selected Values of Chemical Thermodynamic Properties.”’
Heat-capacity data for hydrocarbons in particular are to be found in the
compilation, Selected Values of Properties of Hydrocarbons, prepared by
the National Bureau of Standards in cooperation with the American
Petroleum Institute;! some of these data have been cast in the form of
empirical equations such as (3-58) and (3-59) by H. M.. Spencer.?2 Selected
heat-capacity data are included in Appendix 3.

3-6. Thermal Behavior of Gases. The thermal behavior of gases
shows certain general aspects associated with the universal equation of

state _ .
pV = RT (ideal gas) (3-60)

which all normal gases satisfy in the limit as p — 0, and with regularities

in the way in which they deviate from ideal-gas behavior at finite pres-

sures. As we have noted in Sec. 3-1, the equation (3-60) is equivalent to
the conditions

1 1 .

@ = ; B = » (ideal gas) (3-61)

If we introduce these conditions in Iqgs. (3-32) and (3-46), which repre-

sent in general how U and H vary with temperature and pressure, we

obtain _ ) _ _
aU = C, dT; dH = C;dT  (ideal gas) (3-62)

where CJ and Cy are related as in Equation (3-53) by:
C:—-C=R (ideal gas) (3-63)

In other words, U and H for an ideal gas depend only on the temperature,
and are independent of the pressure [note that by applying Eq. (3-49) to
an ideal gas satisfying Eq. (3-60), we may show that C, would itself be
independent of the particular pressure, and by implication through Eq.
(3-63), therefore, so would C,]. The validity of Eqgs. (3-62) depends
on Eq. (3-31), which is based on the second law of thermodynamics; they
cannot be proved by deduction solely from the first law and the ideal-
gas equation of state. Their experimental verification for real gases at
such pressures that Eq. (3-60) more or less exactly describes their p-V-T'
relationships thus constitutes in a sense confirmation of the second law
of thermodynamics, which we shall introduce directly in Chap. 5.

1 Selected Values of Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461
(1947).
2 H. M. Spencer, Ind. Eng. Chem., 40, 2152-2154 (1948).
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The experimental test of Eqs. (3-62) has been put in several different
but equivalent forms. Thus, if one has two vessels connected through a
stopcock, and fills one vessel with gas but evacuates the other, then when
one opens the stopcock between the vessels, the gas can expand and its
pressure fall under conditions such that no work is done on or by the
surroundings (so-called free expansion); any change in internal energy
of the gas under such conditions must necessarily be accompanied either
by an equivalent quantity of heat gained from or lost to the surroundings,
in accordance with Eq. (2-25), or by a change in the temperature of the
gas itself. The first such experiments were conducted by J. L. Gay-
Lussac in 1807 on air; he observed that no net temperature change
occurred in the gas itself, the momentary initial drop on the high-pressure
side being exactly compensated, within experimental error, by an equiva-
lent rise on the other side. This experiment was refined in 1845 by J. P.
Joule, who immersed the entire system in water, so that any net heat
entering or leaving the gas would be indicated by a corresponding change
in the temperature of the water; he could detect no change when air
originally at a pressure of 22 atm was allowed to expand freely into the
initially evacuated receiver. The method is not particularly sensitive,
however, for detecting the small changes in internal energy that we now
know do take place.!

In 1852, J. P. Joule and William Thomson (Lord Kelvin) devised their
famous porous-plug experiment, by means of which the effect of pressure

1 A modification of Joule’s original experiment was proposed by E. W. Washburn,
J. Research Natl. Bur. Standards, 9, 521-528 (1932). He proposed allowing the
compressed gas in a bomb to leak out slowly to the pressure of the atmosphere, main-
taining the temperature constant by means of electrical heating. Thus if  represents
the quantity of energy received from the heating coil,

0= [ ()

= AUT]:. + p. AV (T const)

where the second term on the right denotes the work done by the gas against the
barometric pressure p, as its volume increases by AV. F. D. Rossini and M. Frandsen
J. Research Natl. Bur. Standards, 9, 733-747 (1932), tried the experiment on air,
oxygen, and mixtures of CO; with oxygen, and found that (dU/dp)r was practically
constant between 0 and 40 atm; thus, for air at 28°C,

.(dU/dp)r = (AU/Ap)r = —1.453 cal/mole atm

and for O: at the same temperature, (AU /dp)r = —1.556 cal/mole atm. The method
is feagible only if the value of (dU /dp)r is negative; thus, hydrogen or helium at room
temperature would tend to give up energy themselves as the pressure fell. The
investigation was undertaken for the purpose of obtaining data for the correction
to 1 atm of heats of combustion measured with the oxygen bomb calorimeter.
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on the thermal properties of gases can be detected sensitively, even when
the deviation from ideal-gas behavior is quite small. In this experiment,
a compressed gas maintained at fixed initial pressure po (4.5 atm in the
original experiments of Joule and Thomson, but much higher initial pres-
sures have been employed by later investigators) is allowed to flow
steadily through a porous plug of cotton, or an ordinary throttle valve,
which in effect blocks free expansion but maintains a constant drop in
pressure down to the escaping pressure p (1 atm in the original experi-
ments) ; the temperatures 7o and 7 on either side of the plug are measured,
at distances back sufficiently far from the plug so that the flow is free of
eddies and temperature inhomogeneities; the section of the tube between
the two thermometers, including the plug, is packed in insulation to pre-
vent any exchange of heat with the surroundings; the initial temperature
T, is controlled at will by circulation of the incoming compressed gas
through a coiled tube immersed in a water bath or an air bath maintained
at the desired temperature. Under the conditions of the experiment, a
volume V) of gas is forced into the plug at the pressure p,, while a corre-
sponding volume V comes out on the other side at pressure p; the net
work done by the gas in expanding against the throttling reaction of the
plug is thus
W = pV - poVo

Since the expansion is being carried out under adiabatic conditions, this
work must be at the expense of the internal energy [Eq. (2-24)],

U—-Uy=—-—W = —pV + pVs Q=0)
Thus
U-I—pV= U0+P0Vo

The enthalpy of the gas stays constant as it passes through the plug.
Now, the general relation connecting the enthalpy, the temperature, and
the pressure is Eq. (3-46); let us define the differential Joule-Thomson
coefficient 1 by means of the expression

_{dT
Then, according to Eq. (3-46),
(a7 — 1)V
b=TE (3-65)
4

By starting with given values of 7, and p, and varying p, the pressure at
which the gas escapes on the low-pressure side of the porous plug, one can
measure the corresponding value of 7, and by plotting 7' vs. p, establish
the isenthalp (curve of constant enthalpy) passing through the point
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(To, po) for fixed mass of gas; the value of i at given (7, p), which is an
intensive property of the substance, is equal to the slope of the isenthalp
passing through that point. Figure 3-6 presents isenthalps so constructed
for nitrogen, from experimental work of J. R. Rocbuck and H. Osterberg;
in Fig. 3-7, u, represented by the slopes of the curves appearing in Fig.
3-6, is plotted against temperature at a series of constant pressures. The
integral Joule-Thomson effect represented by the curves in Fig. 3-6 may
be put in the form

fTT., C,dT = [: (aTo — 1)V dp (3-66)
where the integral on the left is to be evaluated at the constant pressure p
at which the gas emerges from the
plug, and the integral on the right o ——
at the constant temperature 7'y at 299
which the gas enters the plug; we

could equally well have expressed 205
this relation by taking the integral 195
on the left at the constant pressure  '*°
po and the integral on the right at (&
the constant temperature 7', except 100

that T is usually the known con- %
trolled temperature in experiments
of this kind. The integral on the
right is completely determined by
the equation of state of the gas, a -4
consequence of our having intro-
duced the second law of thermo-
dynamics implicitly through the re-
lation (3-31); therefore Eq. (3-66),
which is the equation for the isen-
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thalp through the point (7%, po), A
may be solved for T' at given p if
we know in addition to the equation .90
Q 50 100 150 200

of state how C, varies with tem-
perature at the constant pressure p.
For certain purposes, however, it is
useful for us to regard u itself as a
directly measurable property of the

p (otm)
Fia. 3-6. Temperature vs. pressure curves
at constant enthalpy for N2(g) from Joule-
Thomson measurements by J. R. Roebuck
and H. Osterberg. Circled point repre-
sents the critical temperature and pressure.

gas, which we can determine without knowledge of its equation of

state.
Table 3-2.

Typical values for several gases at 1 atm pressure are given in
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By introducing Eq. (3-65) in Eq. (3-46), we may readily express the
dependence of H on the pressure for a real gas in terms of the property g,
di = C,dT — uC, dp (3-67)

This relation constitutes the generalization for real gases of the ideal-gas
relation (3-62); in other words,

di <
22) = — -68
(dp)T F‘CP (3 )
24 .
22 \
20 \ -
18 \
16
\Alafm
14
g |
g 20atm
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~335atm
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[\ 60atm
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02 / AN
//&IOOotm \\
00 (—#L <X 2000tm ——
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1(°C)

F1e. 3-7, Joule-Thomson coefficient of N2(g), from data of J. R. Roebuck and H. Oster-
berg, corrected by Professor Roebuck for a calibration error in the original pressure readings.
Thus, for example, from the data in Table 3-2 and the value of C, for He
at 0°C and 1 atm, 5.004 cal/mole deg, given by Roebuck and Murrell, we
may infer that at that temperature and pressure, Hr is changing with pres-
sure at the rate of —(—0.0616 deg/atm) (5.004 cal/mole deg) = +0.3082
cal/mole atm, and similarly from C, = 6.909 cal/mole deg for N at the
same temperature and pressure,
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(dH /dp)r = —(0.2655 deg/atm)(6.909 cal/mole deg)
= —1.8343 cal/mole atm

One sees that experimental establishment of the value of the Joule-Thom-
son coefficient is indeed an extremely sensitive means of detecting small
effects of pressure on the enthalpy, or what is equivalent, slight deviations
from ideal-gas behavior.

TABLE 3-2. DIFFERENTIAL JOULE-THOMSON COEFFICIENTS AT 1 ATMOSPHERE

PrESSURE*
_ (dT
m= a; H
u, deg/atm
Gas
At 0°C At 100°C
Helium................... —0.0616 —0.0638
Hydrogen................. —0.013 —0.039
Nitrogen.................. +0.2655 +0.1291
Oxygen................... +0.366 +0.193
Argon.....................| +4+0.43 +0.23
Carbon dioxide............. +1.369 +0.729
Ethyl chloride............. +5.22 +2.43
Air........ ... +0.2751 +0.1371

* Data for hydrogen, nitrogen, and air, from J. R. Roebuck and T. A. Murrell, in ‘ Temperature.
Its Measurement and Control in Science and Industry,’”’ pp. 60-73, Reinhold Publishing Corporation,-
New York, 1941; data for argon are from J. R. Roebuck and H. Osterberg, Phys. Rev., 46, 785-790
(1934). The other data are from J. R. Roebuck, in ‘“‘International Critical Tables,”” Vol. V, pp.
144-146, McGraw-Hill Book Company, Inc., New York, 1929.

The sign of the Joule-Thomson coefficient, which is taken by definition
to be positive when the gas cools as its pressure drops, depends on the
relative magnitudes of a and 1/7;if & > 1/T, then the coefficient is posi-
tive and the gas tends to cool as it expands through the plug, but if
a < 1/T, then the coefficient is negative and the gas tends to warm as it
expands through the plug; for an ideal gas, of course,« = 1/7, and u = 0.
For the majority of gases around room temperature and pressure, the
value of u is positive, but for hydrogen it is negative, though it becomes
positive at temperatures below —78°C; for helium, likewise,the value of
u is negative at room temperature and pressure, but it becomes positive
below —228°C. Further investigation shows that every gas has in fact a
characteristic ¢nversion curve, or temperature-pressure relationship across
which the Joule-Thomson coefficient changes its sign; the inversion curve
for nitrogen is shown in Fig. 3-8. One sees that the inversion curve is
closed, the value of u being positive for values of T’ and p falling within the
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curve, but negative elsewhere; the entire curve happens to lie below room
temperature for hydrogen and for helium. To every pressure below a
certain maximum, there corresponds an upper and a lower inversion tem-
perature, of which ordinarily only the upper has any practical importance;

400 below the critical point, the lower
branch of the inversion curve be-
\ longs to the liquid state, and has
300 AN actually been followed experimen-
\ tally for certain condensed gases.
200 ™ The so-called inversion point is
\ taken to be the upper inversion tem-
\ perature in the ideal limit as p — 0

3 (practically equal to the upper in-

t°C)

100

version temperature at p = 1 atm).

o The inversion of the Joule-

/ Thomson coefficient is clearly re-

P lated to the interplay between the

-100 = two opposing van der Waals effects,

T one the longer range effect of inter-

200 molecular attraction, and the other

0 100 p%g?n) 300 400 the shorter range effect of the finite

F1a. 3-8, Inversion curve for the Joule- molecular volumes.! Where the

Thomson effect in Na(g), as established by former effect predominates, as at

data of J. R. Roebuck and H. Osterberg. sufficien tly low tempera tures and

molecular concentrations, a will tend to be larger than the ideal-gas value

1/T; where the latter effect predominates, as at high molecular concen-

trations, a will tend to be smaller than 1/7. It is instructive for us to

examine a simple equation of state in which an attempt has been made to

take these effects into consideration, such as the van der Waals equation
itself:

—-—-/

(p + 7“2) (V —b) = RT (3-69)

Differentiating with respect to V at constant pressure,

20 - a d R

- = V - b + + =] = R -= = =

7 (=0 (p Iz (d;), o7
Substituting_from Eq. (3-69) in the second term on the left, multiplying
through by V, and multiplying numerator and denominator of the right-
! These effects were first proposed by J. D. van der Waals in a paper printed origi-

nally in Dutch, ‘“Essay on the Continuity of the Gaseous and Liquid States,” Leiden,
1873.
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hand term by 7',

20 - |4 RT
— =WV —-=0b) + —+——-RT = =
7 ) (V —b) al
Now, the condition for the inversion curve is that aTi., = 1 [that is,
u = 0 in Eq. (3-65)]; thus, for a van der Waals gas,

2a [V — b\?
Tinv = b_R( V, ) (3.70)

This equation suggests that for the gas in the low-pressure limit, where
V > b, the upper inversion temperature is given by

2
Tinv = B’}% (pinv - 0) (3-71)

If one substitutes the well-known expressions for a and b in terms of the
critical constants, as given by the theory of corresponding states (all
tabulations of van der Waals’ constants are compiled in this way), one
then obtains for the inversion point 7., = 277'./4; this expression, while
not accurate, is indicative of the order of magnitude of the inversion
point; experimentally derived inversion points for several gases are given
in Table 3-3.

Another indicative relationship, connecting the inversion point and the
Boyle point, may be derived from van der Waals’ equation; thus, Eq.
(3-69) may be rearranged in the form

- a ab
pV RT+(b pﬁ)p—{— i
The coefficient of p in the second term on the right of this equation deter-
mines essentially how pV varies with p for relatively low pressures, the
last term not becoming important until higher pressures are reached.
Now, the Boyle point is the temperature at which pV remains exactly
equal to R7T over the low-pressure range; at temperatures below the
Boyle point, pV tends at first to decrease as p increases from 0 up, while
at temperatures above the Boyle point, pV tends to increase as p increases
from O up. Therefore the Boyle point of a van der Waals gas satisfies the
condition

a
b - RTBoyle - 0
Tooye = 5% (3-72)

Thus, the inversion point in the zero-pressure limit should equal twice the
Boyle point on the absolute thermodynamic scale. This relationship can
be regarded only as a rough approximation, as the data included in Table
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3-3 show, but one sees in principle how the behavior of the inversion curve
for a given gas could be deduced exactly from an accurate equation of
state, known in sufficient detail. Since helium, hydrogen, and neon are
the only gases whose Boyle points are below room temperature, one can
readily perceive why all the other gases have positive Joule-Thomson
coefficients from room temperature down to their liquefaction tempera-
tures, at ordinary pressures.

TasLE 3-3. BoYLE PoINTs AND INVERSION PoinTs oF GAses*

(» =0)
Temperatures, °K
Gas
Tc Tnoylo Tinv
Helium................ 5.2 24.1 44.8
Hydrogen.............. 33.2 107.3 195
Nitrogen............... 126.0 324 621
Air....................| 132.5 347 603
Argon................. 150.8 410 723

* Values for helium are calculated by F. G. Keyes from precise equation-of-state data (‘‘ Tempera-
ture. Its Mcasurement and Control in Science and Industry,”” p. 59, Reinhold Publishing Corporation,
New York, 1941); inversion points for the other gases are given by J. R. Roebuck and H. Osterberg,
J. Am. Chem. Soc., 60, 351 (1938) ; Boyle points for the other gases are taken from experimental equation-
of-state data by L. Holborn and J. Otto, Z. Physik, 88, 1-12 (1925); 38, 359-67 (1926).

Equation (3-65) constitutes the second of the two practical methods
that have been used for the precise determination of the absolute ice
point on the ideal-gas or thermodynamic temperature scale, the first being
the limiting-density method of M. Berthelot described in Sec. 1-2. The
method based on the Joule-Thomson coefficient owes its precision to
improvements in the experimental technique of measuring u developed
mainly through the work of J. R. Roebuck and his associates.! The pro-
cedure is essentially as follows: we may rearrange Eq. (3-65) in the form

3 av i}
[JC,,—T(&—T)',—V

uCy _ 1 él") _ ¥ _[a(r
T =~ T\dT), ” T~ [dT\T/ ],

Integrating between limits T and T,

Vv Vv o 1
F-1= J, wea(z) &7

1J. R. Roebuck, Proc. Am. Acad. Arts Sci., 60, 535-596 (1925); see also the reviews
by J. R. Roebuck and T. A. Murrell, pp. 60-73, and by J. A. Beattie, pp. 74-88, in
‘‘Temperature. Its Measurement and Control in Science and Industry,” Reinhold
Publishing Corporation, New York, 1941.
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all terms in this equation referring to a uniform constant pressure. Let
this pressure be 1 atm, and let 7 denote the ice point; then if T represents
the steam point, 7' = T, + 100°K by definition on the absolute centi-
grade scale, we may write

[To(vloo - 70) _

V 100 Vo = 100deg V,

Ty F 100 deg ~ To ~ 100 de8) Vo | —m om0 degy | =1 G4
where I represents the value of the integral on the right of Eq. (3-73),
taken between the steam point and the ice point, to be evaluated directly
from experimental values of u and C, at constant pressure of 1 atm.
Since the values of V10 and Vo, both at 1 atm, can be measured inde-
pendently with high precision, Eq. (3-74) may be solved for Tp. This
equation is quadratic in Ty, but it may be solved readily by successive
approximations in the following manner: let us note that the expression
(V100 — V0)/100 deg Vo would for an ideal gas exactly define 1/T%; its
difference from 1/7 for a real gas will therefore be a small number, whose
exact value depends on the extent to which the particular gas deviates

from ideal behavior at a pressure of 1 atm (see Table 1-2). Let this
difference & be defined by

7100 - VU 1
= e — = -75
(100 deg)Vo To (8-75)
Upon substitution in Equation (3-74),

. 5

Equation (3-76) may now be solved for the small correction &,

4 T
6=—(__1 i
7 (100 dog + 1) (3-77)

from experimentally derived values of I and V,, even though the value of
T, in this equation is known only approximately ; upon substitution of the
value of & so obtained back in Eq. (3-75), that equation can then be used
to compute 7'y precisely; if necessary, successive approximations may be
applicd between Eqs. (3-75) and (3-77), both of which are themselves
exact relations, to obtain the value of T as precisely as is warranted by
the precision with which the quantities Vo, (Vieo — Vo)/Vs, and uC,
(which determines the value of I) are known. The value of the integral I
defined by the right-hand member of Eq. (3-73) apparently also calls for
prior knowledge of T'o; one can evaluate this integral graphically, for
example, by plotting the value of uC, vs. 1/T, and taking the area under
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the curve between the abscissas corresponding to the steam point and the
ice point; but for this purpose, an approximate knowledge of T is suffi-
cient, because the integral is not a large number, and its value is not
sensitive to the precise value assigned to 7' ; in any event, the value of I
too could be refined by the application of successive approximations,
involving the use of Eqs. (3-75) and (3-77). One will note that explicit
knowledge of the molecular weight of the gas is not necessary, even though
for convenience we have written our equations throughout in terms of
molal properties of the gas; for so long as V and C, refer to the same mass
of gas, Eq. (3-73) would stand without regard to the formula weight
assigned.

Let us illustrate the computation of T’y with data obtained by Roebuck
and Osterberg for nitrogen.! The value of V, for this gas at 0°C and 1
atm is 800.0 ml/g, while the value of (V100 — Vo)/V o according to Table
1-2 is 0.36700; the values obtained by Roebuck and Osterberg for u at 1
atm and temperatures between 0 and 100°C are given in Table 3-4,
together with values of C,, from which Roebuck and Murrell have derived
a value of I = 0.001968 ml/g deg. Valuesof 1/7 based on 7y = 273.16°K
are given in the last column of Table 3-4, but one may easily convince one-

TaBLE 3-4. JouLe-THoMsON CoEFFICIENT AND HeAT Caracity oF NITROGEN AT 1
ATMOSPHERE*

t, °C | p, deg/atm | Cp, cal/g deg | uCp, ml/g 1/7, deg™!

0 0.2655 0.2466 2.703 0.0036608
25 0.2216 0.2467 2.257 0.0033539
50 0.1854 0.2469 1.890 0.0030944
75 0.1555 0.2472 1.587 0.0028722

100 0.1291 0.2476 1.320 0.0026798

#*J. R. Roebuck and T. A. Murrell, in *Temperature. Its Measurement and Control in Scicnce
and Industry,” p. 70, Reinhold Publishing Corporation, New York, 1941.
self that use of the approximate value, Ty = 273°K, would displace the
value of I by an insignificant amount. Solving Eq. (3-77) for 3,

5 = 0.001968 ml/g deg (273 deg +1
- 800.0 ml/g 100 deg
= 0.0000092/deg

where again, clearly, the precise value assigned to T in this relationship
does not have a sensitive effect on the result. Substituting back in

1J. R. Roebuck and H. Osterberg, Phys. Rev., 48, 450-457 (1935); see also, Rocbuck
and Murrell, op. cit., p. 70.
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Eq. (3-75),
ZFIT, — 0.0036700/deg — 0.0000092/deg
= 0.0036608 /deg

To = 273.16°K

This method utilizes entirely experimental data obtained at 1 atm pres-
sure, and eliminates the uncertainty introduced in Berthelot’s method by
the extrapolation to zero pressure; similar data have been reported by
Roebuck for helium and for air.!

The Joule-Thomson cooling effect has been of practical value in the
liquefaction of gases. Thus, in the Linde process for liquefying air,
described by C. Linde in 1895, regenerative cooling based on the Joule-
Thomson effect is used to take the gas from room temperature down
ultimately below its critical temperature (132.6°K); in other words, part
of the expanded air, cooled by expanding through the throttle valve, is
used to precool the compressed air as it passes from the compressor to the
throttle valve. Heat interchange between the incoming gas from the
compressor, which is first cooled to —20°C by means of an ice-brine freez-
ing mixture, and the gas issuing from the throttle is effected by circulation
of the gas through a system of concentric tubes; since the Joule-Thomson
cooling becomes more effective as the temperature is lowered, the recycling
of part of the cooled gas through a second-stage compressor and throttle
valve provides sufficient cooling to liquefy it after the machine has run
through a few preliminary cooling cycles. The Joule-Thomson cooling
in a single stage is rather small, about 25 deg for air at an initial tempera-
ture of —20°C, expanding from 100 atm to 1 atm, but regenerative cooling
permits the effect to become cumulative. Hydrogen must first be cooled
below its upper inversion point, —78°C, in some other manner before fur~
ther cooling by means of the Joule-Thomson effect can be obtained ; above
that temperature, the gas warms on expanding through the throttle valve.
By precooling hydrogen with liquid air, James Dewar was able to take
advantage of the Joule-Thomson effect to cool the gas below its critical
point, using the Linde method, and he succeeded in liquefying hydrogen
for the first time in 1898. Helium, the most difficult gas to liquefy, was
first liquefied by H. Kamerlingh Onnes in 1908, using essentially the same
method; he became convinced from a study of the equation of state of
helium at liquid hydrogen temperatures (14 to 33°K) that its inversion
point lay above the normal boiling point of hydrogen (20.39°K), and
therefore he precooled the compressed helium by means of liquid hydrogen
before permitting it to flow through the throttle valve.

1J. R. Roebuck, Phys. Rev., 50, 370-375 (1936).
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The drop in temperature during a single stage of cooling by the Joule-
Thomson effect is given by Eq. (3-66), where p the final pressurc is
ordinarily taken to be 1 atm; under this condition, for given initial tem-
perature T, the greatest degree of cooling is obtained for that particular
initial pressure po making the term on the right a maximum (where one
should bear in mind that the integral comprising this term is to be evalu-
ated at the constant temperature T,). If we set up the condition for this
term to be a maximum by differentiating with respect to p and setting the
result (which is simply the integrand itself) equal to zero, we find on com-
paring with (3-65) that this condition is equivalent to starting with such
a pressure that p at the given temperature 7' is equal to zero; in other
words, the most effective initial pressure is the inversion pressure at the
given initial temperature; a higher initial pressure than this will actually
result in a lesser degree of cooling, because a higher pressure puts the gas
in a region in which  is initially negative. The same condition applies
of course to any particular final pressure, whether it be 1 atm or some
other fixed pressure: the greatest degree of cooling consistent with the
given initial temperature T and final pressure p is always obtained when
the gas has been compressed to the inversion pressure corresponding to
the temperature 7. For air at —20°C, this pressure is about 200 atm.

The cooling of a gas by means of the Joule-Thomson effect, while
technically simple to carry out, is a rather inefficient process, since none
of the work that the compressed gas is potentially capable of delivering is
realized. The temperature can be lowered more efficiently by permitting
the gas to expand under adiabatic conditions against a piston, thereby
delivering back part of the mechanical energy that went into its compres-
sion. While the Joule-Thomson effect depends on deviation of the gas
from ideal behavior, adiabatic expansion against a piston offering mechan-
ical resistance can be used effectively to cool a gas whose behavior is prac-
tically ideal; much lower operating pressures are required than for Joule-
Thomson cooling. The principles, which are of general interest, may be
illustrated with reference to an ideal gas. Let us consider first what
happens as the gas is initially compressed, at essentially constant tem-
perature; under this condition, most of the energy spent on the gas in
compressing it flows off to the surroundings in the form of heat (if the gas
were insulated instead, its temperature would rise). Thus, in general, for
tsothermal changes taking place in a real gas, according to Eq. (3-32),

@)z = (pB — Ta)Vdp = d'Q — pdV (T const)  (3-78)

But we have seen that for an ideal gas satisfying the equation of state
(3-60), U is a function of T only [Eq. (3-62)]; this is a consequence of the
ideal-gas equation of state combined with the second law of thermody-
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namics, and is demonstrated independently by the original Joule experi-
ment on gases at moderate pressures, within the range in which they
satisfy approximately the ideal-gas law. Hence, for an ideal gas,

@'Q)r = (AW)r = pdV = RT%;—, (ideal gas)

Qr=Wr=RTIn —:;—2 (ideal gas) (3-79)
1
= RTIn % (ideal gas) (3-80)

where p; and ¥, denote the initial pressure and volume, and p; and V.
denote the final pressure and volume. We have assumed here that the
gas is expanding or contracting against an external pressure at all times
cqual to its own equilibrium pressure at the instantaneous volume and
temperature, as given by the ideal-gas equation p = RT/V. Equations
(3-79) and (3-80) therefore really provide upper limits (in the algebraic
sense) to the work that can be done by the ideal gas, and to the equivalent
quantity of heat that can be absorbed from the surroundings. For
isothermal changes taking place in a real gas, we must replace Egs. (3-79)
and (3-80) by the general relations

WT = ?,Vﬂde7
Qr = f;’pdv + /:2 (pB — Ta)Vdp

which are derived from Eq. (3-78), where again, the upper limits to the
values of Wr and Qr for a change between given initial and final states are
obtained if one introduces actual equation-of-state data in Eqs. (3-81);
but for an 7deal gas, all the work done by the gas during expansion at con-
stant temperature is at the expense of an exactly equal quantity of heat
taken in from the surroundings, and, likewise, all the work done on the
gas during compression at constant temperature passes on as thermal
energy to the surroundings.

On the other hand, for adiabatic changes taking place in a real gas,
according to Eq. (3-32),

dU = (Cp — pVa)dT + (p8 — Ta)Vdp = —pdV (Q =0) (3-82)

Now, for an ideal gas, the middle member of Eq. (3-82) reduces to C; d7'
[Eq. (3-62)]; thus
v

AW = pdV = RT % = ~C3dT (ideal gas; @ = 0)

(3-81)

W = [Tfl ¢ dr (ideal gas; @ = 0) (3-83)
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where

Ty _ 72 .
Codln T =RIn— (ideal gas; Q = 0)
T Vi

Let us assume that C° is sensibly constant with 7'; this is not necessarily
true for an ideal gas, but it may be approximately true over a temperature
range that is not too large, particularly for the simpler gases whose vibra-
tional energy terms do not contribute greatly to the heat capacity at
ordinary temperatures. This last equation then reduces approximately

to

; Tl = ..V_z 1 M =
C;ln (T;) =RIn (le) (ideal gas; Q = 0)

Bearing in mind that for an ideal gas, according to Eq. (3-63),
R _(C; = C)
¢ ¢

we obtain the following equivalent conditions for adiabatic expansion or

compression:

=7—1,

.g;’ = (Z_l i (ideal gas; @ = 0) (3-84)
1

= (g_j)y—;—l (ideal gas; @ = 0) (3-85)

bz _ (&)7 (ideal gas; @ = 0) (3-86)
D1 Vs

The work done by the gas during adiabatic expansion is entirely at the
expense of its internal energy, and hence if the gas is ideal, its temperature
must necessarily fall. The maximum work of expansion consistent with
given initial and final states, given by Eq. (3-83), is obtained if the pres-
sure on the piston against which the gas works is at all stages equal to
the equilibrium pressure of the gas, p = RT/V, consistent with its
instantaneous temperature and volume; practically, of course, the work
actually obtained will be less than the maximum, since the pressure on
the piston has to be kept somewhat smaller than the equilibrium gas
pressure in order that the gas shall overcome friction and expand at a
finite rate. The upper limit to the adiabatic work (3-83) may also be
expressed in the equivalent form

V2 — ~ r’ndV-
/Vl ? i A

4 1 1 :
-7 [77_1 - 77_1] (ideal gas; @ = 0) (3-87)
1 2
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Thus, for air (y = 1.4) initially at 10 atm and —20°C, adiabatic
expansion to 1 atm may ideally lower the temperature, according to Eq.
(3-85), to

o latm 0.286
T, = 253°K 10 atm
= 253°K (0.517)
= 131°K

whereas Joule-Thomson expansion through a porous plug at an initial
pressure of 100 atm and an initial temperature of —20°C would lower its
temperature at 1 atm only to about —45°C (228°K) in a single stage. In
using essentially isothermal compression, followed by adiabatic expansion
against a piston offering mechanical resistance (e.g., by means of a recipro-
cating engine), to liquefy the gases having low critical temperatures, one
of the major difficulties consists of finding suitable low-temperature lubri-
cants for the pistons; ordinary lubricating oils congeal at liquid-air tem-
peratures. This difficulty was overcome in the case of air by G. Claude,
who in 1909 designed a liquefier in which petroleum ether was used as the
lubricant in the adiabatic expansion cylinder. For liquefying hydrogen
or helium by the adiabatic expansion principle, P. Kapitza designed a
machine in which a small clearance is left between the cylinder and the
piston of the insulated expansion chamber, so that a small quantity of the
gas itself escaping through the clearance serves as the lubricant.! By this
means, helium may be cooled directly from ordinary temperatures down
below its inversion point, without the use of liquid hydrogen; precooling
with liquid air or liquid nitrogen increases the efficiency comparatively
cheaply, but even this is not essential; the final compression, below the
inversion point, is followed by Joule-Thomson expansion, which results in
liquefaction of the helium. Regenerative cooling is used in both Claude’s
and Kapitza's adiabatic expansion engines, part of the cold expanded gas
being diverted to precool the incoming compressed gas.

To describe adiabatic relations between the temperature and the pres-
sure of a real gas, it is more convenient to use the enthalpy function
rather than the internal-energy function, as was done in setting up Eq.
(3-82). Thus, from (3-37) and (3-46),

dl = C,dT + (1 — a«T)Vdp = Vdp (Q =0; W = 0)
This relation is thermodynamically exact, and is entirely equivalent to
(3-82); it follows that, '
arT _alTV _ _ L,
(dp — 0, ¢ Q=0 @38

! P. Kapitza, Proc. Roy. Soc. (London), (A)147, 189-211 (1934); Nature, 188, 708-
709 (1934).
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Before this equation can be integrated, one must be able to separate the
variables T' and p, since in general both €, and aV [=(dV/dT),] depend
on both 7"and p. Thus, it may be possible from an accurate equation of
state or from direct experimental information for one to represent C, as a
function of 7' averaged over the approximate pressure range in question
and oV or L, as a function of p averaged over the approximate tempera-
ture range in question. One will then be able to integrate Eq. (3-88) to
obtain a good second approximation to the exact relationship between 7'
and p during an adiabatic change with p equal throughout to the instan-
taneous equilibrium pressure of the gas; the first approximation is given
by the ideal-gas relationship (3-85).
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Problems

3-1. The linear expansion of a silver bar between —253 and 101°C is represented
from work of W. H. Keesom and A. F. J. Jansen (Landolt-Bornstein, ‘‘ Physikalisch-
chemische Tabellen,” 5th ed., Supplement IIb, p. 1158, 1931) by the empirical equation

I = L[l 4 (17.79066¢ + 0.0034641¢2 4 0.000059343¢% 4 0.00000035754¢4) X 107¢]

where l; is the length at the Celsius temperature ¢, and [, the length at 0°C. Ixpress
the coefficient of cubical expansion a of silver as a function of temperature. [Note

that o = 3 ll (%) ; in computing the value of this expression, one may use I, in place
P

of [, the true length at the particular temperature £, with negligible error over the tem-
perature range in question.] Calculate therefrom the value of o at —200, —100,
0, and 100°C.

8-2. The coefficient of cubical expansion of CCl, at 20°C and 1 atm is 1.236 X 10~3/
deg, and the coefficient of compressibility at 20°C has the mean value 91.6 X 1078 /atm
between 0 and 100 atm. Estimate the change in volume (neglecting changes in the
coefficients themselves) when 200 liters of CCl, originally at 20°C and 1 atm is (a)
heated to 30°C and 1 atm and (b) compressed to 50 atm at 20°C. If the CCl; com-
pletely fills a sealed drum at 20°C and 1 atm, at what temperature will the pressure
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within the drum reach 50 atm, assuming that the drum itself undergoes no significant
change in volume? The density of CCly being 1.595 g/ml at 20°C and 1 atm, estimate
the change in molal enthalpy when CCly is compressed at 20°C from 1 to 100 atm.

3-8. The following data, taken from work of . W. Bridgman (Landolt-Bornstein,
‘‘Physikalisch-chemische Tabellen,” 5th ed., Vol. 11, p. 1226, 1923), give the volume of
methanol, relative to ¥V = 1.0000 at 0°C and 1 kg/cm?:

\ 20°C 50°C 80°C

lkg/em?............ 1.0238 1.0610 1.1005
500 kg/em?............ 0.9823 1.0096 1.0416
1000 kg/cm?............ 0.9530 0.9763 1.0023

Calculate the mean coefficient of expansion between 20 and 50°C, and between 50
and 80°C, at each of the three pressures; calculate also the mean coefficient of com-
pressibility between 1 and 500 kg/cm?, and between 500 and 1000 kg/cm?, at each of
the three temperatures.

3-4. Equation-of-state data for gases are commonly presented in the form of pV
at various temperatures and pressures, relative to its value at some arbitrary tempera-
ture and pressure, e.g., 0°C and 1 atm, or 0°C and 1 m Hg; this form is convenient
because pV varies relatively slowly with p, whereas V itself varies relatively rapidly.
Prove that a = 17117 [d___(th)]p and 8 = ;7 - in [d%’:)]r.

3-6. The following data have been taken for CO from work of E. P. Bartlett, H. C.
Hetherington, H. M. Kvalnes, and T. H. Tremearne [J. Am. Chem. Soc., 62, 1374-1382
(1930)1:

PV (pV = 1.0000 at 0°C and 1 atm)
p t o -] (-} o, O, o

atm -50°C —25°C 0°C 25°C 50°C 100°C
0 0.8173 0.9089 1.0004 1.0920 1.1837 1.3668

1 0.8162 0.9082 1.0000 1.0918 1.1836 1.3671

25 0.7903 0.8938 0.9894 1.0866 1.1822 1.3752

50 0.7622 0.8768 0.9796 1.0831 1.1826 1.3837

75 0.7388 0.8632 0.9740 1.0832 1.1882 1.3946

100 0.7264 0.8592 0.9745 1.0864 1.1955 1.4062

(a) Calculate the coefficient of expansion at 0°C and 1 atm, and at 0°C and 50 atm.
(It is sufficiently precise in this case to take the mean coefficients between —25 and
+25°C, since the differential cocfficients are changing so slowly with temperature.)

() Calculate the coefficient of compressibility at 25 atm and —50°C, and at 25 atm
and +50°C. (Note that at the latter temperature and pressure, [d(pV) /dplr is
sensibly equal to 0.)

(c) Demonstrate that Aa/Ap at 0°C between 1 and 50 atm approximately equals
—(AB/At) at 25 atm between —50 and +50°C. (The relation would become exact if
one were to take limits as Ap and At became infinitesimally small about a common
point, e.g., at 25 atm and 0°C.)
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8-6. An equation of state proposed by M. Berthelot has the form

_ 9 pT. ( T’)]
=RTl1 4 —- == — ==
pV R[’[ + 128 poT 1 -6 T

where 7', and p, represent, respectively, the critical temperature and pressure. Prove
that for a gas satisfying this equation

avy R 108 p T:] (d?) RT
(d_T- ,,mp[l-*-128ch8 and dp/r p?

Show that Eq. (3-7) applies.

NortE: Berthelot’s equation has the advantage over van der Waals’ equation in that
it can be solved conveniently for V as an explicit function of p and T'; it fails, however,
to reproduce the minimum in the pV vs. p isothermals at temiperatures below the

Boyle point, which evidently is assigned the empirical value T'Boyie = \/6_ T. Its
usefulness is therefore confined to moderately low pressure, where it affords a reason-
ably good second approximation to real gas behavior, beyond the first approximation
afforded by the ideal-gas law itself.

3-7. State the variance and number of components in each of the following
homogeneous systems:

(a) Aqueous H;SO, solution.

(b) A gas mixture of SOs, SO, and O,, in arbitrary initial proportions, heated to
350°C and 1 atm.

(¢) A gas mixture of NO;2 and N:0..

(d) An aqueous solution of NaCl and KNQO; in arbitrary proportions.

{¢) An aqueous solution containing NaCl and KNOs; in equimolal proportion.

(f) A gas mixture of N, O, and NO at 25°C and 1 atm, of unspecified composition.

() NH; heated to 1000°C and 1 atm (where it is practically completely dissociated
into nitrogen and hydrogen).

(h) An alloy (solid solution) of Au and Ag.

(¢) Pure crystalline CuSO,-5H0.

() Saturated aqueous CuSO, solution. (Note that the condition of saturation
fixes the composition at whatever temperature and pressure is specified).

8-8. Calculate the mechanical work of expansion when 1 mole of liquid water is
heated at constant pressure of 1 atm from 25°C to 100°C; its specific volume is 1.0029
ml/g at 25°C and 1.0434 ml/g at 100°C, both at 1 atm. What is the value of H° for
water at 100°C, relative to its value at 25°C? (7: = 18.03 cal/mole deg, constant
within 0.5 per cent over the temperature range in question.

3-9. Calculate the mechanical work of expansion when 1 mole of NH;(g) is heated
at constant pressure of 1 atm from 25°C to 100°C; assume the ideal-gas law. What is
the value of A at 100°C and 1 atm, relative to its value at 25°C and 1 atm? (Use the
empirical equation for €, given in Appendix 3.)

3-10. Calculate the value of L, for H;O(1) at 25°C and 1 atm according to Eq. (3-31);
its coefficient of expansion at that temperature and pressure has the value 2.58 X104/
deg, and its density has the value 0.99707 g/ml. Calculate therefrom the heat
absorbed (taken in the algebraic sense) when 1 mole of H;O(l) is compressed at 25°C
from 1 atm to 100 atm (L, does not vary sensibly with pressure over that small a
range). If this quantity of heat were applied to change the temperature of the water
itself (as in adiabatic compression), instead of being transmitted to the surroundings,
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what would be the corresponding rise in temperature? (The effect of pressure on the
heat capacity of liquid water may be neglected in this computation.)

8-11. Calculate the value of Cp, — C, for water at 25°C and 1 atm, using Eq. (3-41)
and the data given in the preceding problem; the value of g for water at the given
temperature and pressure is 43 X 10~%/atm.

8-12. Using the results of Prob. 3-6, show t’hat for a gas satisfying Berthelot'’s equa-

108 p T3
tion of state, C, — C, = R (1 + — 128 7 T' .
the per cent deviation (with proper mgn) of C, — C, from R for NH;(g) at 25°C and
1 atm; at 25°C and 2 atm; for Nz(g) at 25°C and 1 atm.
8-13. Using Eq. (3-46) and Prob. 3-6, show that for a Berthelot gas,

af) _ o rr.( T
. dp/r 128 Pe ™)

Estimate from this equation the change in enthalpy when 1 mole of CO,(g) is com-
pressed at 25°C from 1 to 50 atm. Estimate also the difference between the ideal-gas
enthalpy H7 (at p — 0) and the actual enthalpy Hr,1 atm at 1 atm for CO»(g) at 25°C;
carry out the same calculation for N:(g) at 25°C, for He(g) at 25°C, and for H.O(g)
at 100°C.

8-14. Calculate the molal enthalpy of He(g) at 1200°K and 1 atm, relative to its
value at 298.16°K and 1 atm; the value of C, may be taken to be sensibly constant, and
equal to 4.97 cal/mole deg.

8-16. Show by integration that for a homogeneous substance whose heat capacity
can be represented with sufficient precision by an empirical equation in the form (3-59)
proposed by Kelley:

Oy, — Iy, = (T2 —Ty) (a + b’

Estimate according to this equation

T1 + Tz c’
—a— —Tsz) (p const).

Using the empirical heat-capacity equations given in Appendix 3, calculate the molal
enthalpies of 02(g), CO(g) and CO:(g) at 1200°K and 1 atm, relative to their values at
298.16°K and 1 atm.

8-16. The heat capacity (7: for n-butane in the ideal-gas state has the following

values at various temperatures [Natl. Bur. Standards Circ. C461, Selected Values of
Properties of Hydrocarbons, from work of K. S. Pitzer]:

T, °K C’:, cal/mole deg

300 23.77
400 29.80
500 35.54
600 40.42
700 44.61
800 48.23
900 51.42
1000 54.20

Using the values at 300, 600, and 900°K, calculate suitable values of a’, b, and ¢’ in
the empirical heat-capacity equation (3-59), and then test the equation at 500 and
1000°K. (Note that a somewhat better fit may be obtained by application of the
method of least squares to determine the empirical coefficients from all the data given.)
Calculate Hy at 1000°K relative to its value at 298.16°K, using your empirical heat-
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capacity equation (note Prob. 3-15); compare with the value of 28,935 cal/mole
reported for this quantity in Natl. Bur. Standards Circ. 461.

8-17. When ZnO(c) at 1 atm is cooled from 700 to 0°C, it gives up 8132 cal/mole,
and when it is cooled from 1300 to 0°C, it gives up 16,010 cal/mole, according to work
of W. P. White and A. L. Day recorded by K. K. Kelley (U.S. Bur. Mines Bull. 371).
From low-temperature work, the molal heat capacity at 0°C has the value 9.35 cal/
mole deg. Express C° as a function of T in the form (3-59), and calculate therefrom
the value of C at 1000°K

Nore: If C can be represented with satisfactory precision by means of an equation
of form (3-59), then the mean molal heat capacity between temperatures 7'y (e.g.,
273.16°K in the present instance) and T is given according to the formula in Prob.
3-15 by

y T+ To Hr — Hr,
(G )T.,T = a + b 2 TOTI = T TO (1)

Therefore if in ad@itfon to two mean heat-capacity values, to be computed from
directly measured Hy — Hr, values, we have the instantaneous C: value at the tem-
perature To, which is to correspond to the empirical formula

cl

(Cory =a" +b'To — T ()
0
then we have sufficient data to calculate a’, b’, and ¢’ in a convenient form; thus
= o y (T = T 1
e R AC )
Cror — (Cp)r, Y + ¢ @

(T = To) 2 T T

By setting up the two experimental values of the expression on the left of Eq. (3) at
two different temperatures T', one can readily eliminate b’ between the resulting
simultaneous equations by subtraction, and solve first for ¢’; the value of b’ directly
follows from either set of experimental data in (3), and the value of a’ can then be
computed from the experimental value of (C‘;)r,, according to (2).

8-18. Carry out a similar computation to that of Prob. 3-17 for Fe;0:(c); K. K.
Kelley (U.S. Bur. Mines Bull. 371) reports molal enthalpies relative to 0°C of 12,000
cal/mole at 400°C and 23,180 cal/mole at 700°C (from original calorimetric
work of W. A. Roth and W. W. Bertram) and a value of C at 0°C of 23.42 cal/mole
deg. Using the formula derived in Prob. 3-15, calculate the value of Hr — Hars.ae at
T = 1073.16°K, and compare with the experimental value, 27,060 cal/mole.

8-19. The following data are given for copper by A. Eucken in ‘‘Handbuch der
Experimental Physik,”” Vol. VIII, p. 211, 1929:

t, °C a, deg™! B, atm™! C;, cal/mole deg
-190 27.0 X 10~ 0.71 X 10™¢ 3.18
+ 20 49.2 X 10_° 0.76 X 10°¢ 5.84
500 60.0 X 10-¢ 0.91 X 10°° 6.57
1000 72.0 X 10-¢ 1.06 X 10¢ 7.30
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Test the constancy of (a/é;)’/ﬁ, as called for by Griineisen’s law; and from the
density at 20°C of 8.92 g/ml, calculate the value of A (mole/cal) in Eq. (3-57).

3-20. The molal heat capacity at constant atmospheric pressure of copper, critically
evaluated from several experimental sources by K. K. Kelley (U.S. Bur. Mines Bull.
434), is as follows:

T,°K  C;, cal/mole deg

25 0.24
50 1.50
100 3.86
150 4.91
200 5.42
298.16 5.86

Calculate at each temperature the value of C», using Eq. (3-57) and the value of A
found in Prob. 3-19. From the corresponding value of /7 given by the Debye func-
tion D(8/T) in Appendix 4, compute the value of 8 at cach of the temperatures given.

3-21. The molal heat capacity of silver, as measured by A. Eucken, K. Clusius, and
H. Woitinek (reported in Landolt-Bérnstein, ‘‘Physikalisch-chemische Tabellen,”
5th ed., Supplement IIIc, p. 2230, 1936), has the following values:

T,°K  C;, cal/mole deg

11.43 0.072
13.74 0.127
20.20 0.398
28.56 1.028
43.48 2.333
55.88 3.199
74.56 4.066
124.20 5.165
205.30 5.754

At 20°C, the value of C‘: is 6.05 cal/mole deg, « = 56.7 X 10~¢/deg, 8 = 0.98 X
10-%/atm, p = 10.5 g/ml. Assuming Griinéisen’s law, leading to Eq. (3-57), show
that

C; — €. = (2.3 X 1075 mole/cal)(C;)?T

Calculate at each of the temperatures given the value of C,, and by looking up the
corresponding value of 6/7 for the Debye function, calculate a value of 6 for each
reading.

Measurements of C’; for silver below liquid-hydrogen temperatures have been made
by W. H. Keesom and J. A. Kok, who used liquid helium to precool the samples; their
data, as reported in Landolt-Bérnstein, ‘‘Physikalisch-chemische Tabellen,” 5th ed.,
Supplement IIIc, p. 2230, 1936, arc as follows (selected values):

T,°K  C}, cal/mole deg

1.671 0.0004149
2.535 0.001088
3.452 0.002161
4.020 0.003046

4.920 0.005013
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Using your value of 8 deduced from the higher temperature measurements, calculate
the theoretical value of C‘; according to the Debye limiting law (3-55) at each of these
temperatures, and compare with the experimental values; note that at these low tem-
peratures the difference between é; and C, is negligible. Test the limiting law (3-55)
at the three lowest temperatures given in the preceding table (data of Eucken, Clusius,
and Woitinek).

8-22. Prove that for a substance whose heat capacity below the temperature 1"
satisfies the Debye 1" law (3-55), whether or not it satisfies the Debye theory at higher
temperatures, the enthalpy at temperature 7" relative to the enthalpy at 0°K (neglect-
ing the difference between (7; and C, at the low temperatures necessarily involved) has
the value

By — Hy = ¥i(Cr T

Calculate the quantity of heat one would have to remove in order to cool 10 g of
copper from 25 to 0°K, using the heat-capacity data given in Prob. 3-20.

8-23. The heat capacity of KCl has been measured at low temperatures by W. H.
Keesom and C. W. Clark [Physica, 2, 698-706 (1935)], with the following results:

T,°K  C;, cal/mole deg

2.345 0.000936
2.711 0.001612
3.52 0.00338
4.29 0.00554
5.14 0.01010
6.73 0.01902
7.89 0.0390
9.23 0.0620
10.06 0.0838
13.01 0.214
14.73 0.310
17.09 0.458

By plotting log C’: vs. log T (using logarithmic graph paper) test the Debye 7’3 law
for this substance.

The heat capacity of KCl has been measured at intermediate temperatures by J. C.
Southard and R. A. Nelson [J. Am. Chem. Soc., 55, 4865-4869 (1933)], with the follow-

ing results (selected):
T, °K (,-':, cal/mole °K

16.69 0.427
21.21 0.842
32.41 2.360
44,25 4.189
69.92 7.365
89.28 8.844
116.47 10.03
158.02 11.06
205.23 11.64
246.41 11.98
273.34 12.15

284.68 12.25
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From the four lowest values, calculate a mean value of 6 corresponding to Debye’s
function (note that in principle C, = 2D(6/7T) for this substance); around 0°C,
a =1 0 X 1074/deg, 8 = 5.3 X 107%/atm, and p = 1.99 g/ml; determine the correc-
tion C — C, according to the form (3-57), assuming Griineisen’s law, and calculate
the theoretlcal value of (5 at each of the higher temperatures according to Debye’s
law, using the mean 6 value deduced from the low-temperature data. Compare with
the experimental values.

3-24. The heat capacity of NH;(c) and NH;(l) at 1 atm has been measured at low
and intermediate temperatures by R. Overstreet and W. F. Giauque [J. Am. Chem.
Soc., 69, 254-259 (1937)], with the following smoothed results:

T,°K | C,, cal/mole deg | T, °K | C,, cal/mole deg | T, °K | C;, cal/mole deg
15 0.175 100 6.246 200() 17.58
20 0.368 110 6.877 210 17.75
30 1.033 120 7.497 220 17.90
40 1.841 130 8.102 230 18.03
50 2.663 140 8.699 240 18.12
60 3.474 150 9.272
70 4.232 160 9.846
80 4.954 170 10.42
90 5.612 180 11.03

190 11.71

(a) Plot C’: vs. T', and by graphical integration, determine the difference in enthalpy
for NH;(c) between 15°K and its melting point, 195.42°K.

(b) Estimate according to the equation in Prob. 3-22 the difference in enthalpy for
NH;(c) between 0°K and 15°K, assuming the 7' law. Combining with the result of
part (a), calculate the value of I?;' — I?; for NHj;(c) at its melting point.

(¢) By graphical integration, determine the increase in enthalpy for NHj;(1) between
the freezing point, 195.42°K, and the normal boiling point, 239.74°K. Taking the
heat of fusion as 1351.6 cal/mole at 195.42°K, and the heat of vaporization as 5581
cal/mole at 239.74°K, calculate the value of Hr for NH;(g) at 239.74°K and 1 atm,
relative to 17° for NH;(c) at 0°K and 1 atm.

(d) Using Berthelot s equation of state (Prob. 3-13), calculate the difference between
H) aem and H° for NII1(g) at 239.74°K.

(e) The value of €, for NH;(g) accepted by Kelley is 8.36 cal /mole deg at 239.74°K
and 1 atm, and 8.49 cal/mole deg at 298.16°K and 1 atm. Assuming a linear increase
of C, with temperature, calculate the increase in Hr for NH;(g) between its normal
boiling point and 298.16°K, and determinc the value of Hr for NH;(g) at 298.16°K
and 1 atm, relative to H; of NHs(c).

8-26. Show that for a gas satisfying Berthelot’s equation of state,

gg’_,,) 324 RT’
dp 128 ch’
Use this equation to calculate the value of C, for methane at 25°C and 1 atm, the ideal-
gas value ( ¥ (corresponding to p = 0) being 8.536 cal/mole deg as derived from spec-

troscopic duta, (Nail. Bur. Standards Cire. C461). Perform the same calculation for
NTI4(g), whose 3 value at 25°C 1s 8.523 cal /mole deg.
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G. Waddington and D. R. Douslin [J. Am. Chem. Soc., 89, 2275-2279 (1947)] give
for the heat capacity of n-hexane (g) at 365.15°K:

p, mm Hg Cjy, cal/mole deg

235.7 40.440
479.4 40.685
760.0 40.950

Calculate the value of C": by extrapolation, and compare with the result of applying
Berthelot’s equation of state to the data for 1 atm (look up the necessary critical
constants).

8-26. By applying Euler’s criterion for dH to be a perfect differential in terms of the
independent variables T and p in Eq. (3-67), prove that

The following Joule-Thomson coefficients have been determined experimentally for
methane by R. A. Budenholzer, B. H. Sage, and W. N. Lacey [Ind. Eng. Chem., 31,
369-374 (1939)]; the values given represent the limits at zero pressure from measure-
ments at higher pressures, and are practically equal to the values at 1 atm; the ideal-
gas C values are quoted by them by interpolation from spectroscopic calculatlons by

D Vold [J. Am. Chem. Soc., 67, 1192-1195 (1935)]:

CHyg)atp =0
t, °C
u, deg/atm é’:, cal/mole deg

21.11 0.405 8.511

37.78 0.359 8.668

54.44 0.318 8.837

71.11 0.283 9.022

87.78 0.253 9.227
104.44 0.227 9.439

Calculate the value of (dC,/dp)r for methane at 25°C and at 100°C, in the limit as
2 — 0 (plot uC° vs. t, and take the slopes at the appropriate values of ¢), and determine
therefrom the corrections: Cp, — C° at both temperatures for calculating the real value
of C; at 1 atm from the ideal-gas value C Note that this method is thermodynam-
ically exact, and the calculations are approxxmate only in so far as one treats differ-
ential coefficients as ratios of finite differences; measurement of the Joule-Thomson
coefficient provides essentially the same information as would be given by the actual
equation of state. Compare the result at 25°C with that obtained in Prob. 3-25,
where of course we were using a hypothetical equation of state that has no theoretical
foundation.

8-27. Apply the equation derived in Prob. 3-26 to nitrogen at 25°C and 1 atm, using
the data given in Table 3-4; plot uC, vs. ¢, and take the slope of the resulting curve at
25°C, to determine (dCp/dp)r at 25°C and 1 atm.
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3-28. Show that for a gas satisfying Berthelot’s equation of state (Prob. 3-6)

9 RT. e
m= —i‘z‘spTc-:(l“lsﬁ)

and show also that Eq. (3-66) for the integral Joule-Thomson effect agsumes the form

T . 9 RT. T.\?
To]deT = 1—2—8-—p—'[1 - 18 (T‘;) ](Po—l’)

c

Use the former of these approximate empirical equations to estimate the value of x for
nitrogen at 0°C and 1 atm, at 0°C and 100 atm, and at —150°C and 1 atm; the values
of C, under these conditions are, respectively, 6.909, 8.242, and 6.940 cal/mole deg,
according to J. R. Roebuck and H. Osterberg [Phys. Rev., 48, 450-457 (1935)]. The
experimentally observed values of u under the three conditions are, respectively,
0.2655, 0.1715, and 1.265 deg/atm, according to the data of Roebuck and Osterberg
(corrected for error in their original pressure readings). Note that the only effect of
pressure on the value of u according to Berthelot’s equation of state comes about
through its effect on the value of Cp, which in turn is given by the equation derived in
Prob. 3-25.

Use the integral equation to estimate the drop in temperature when nitrogen at 0°C
and 100 atm is allowed to expand through an insulated throttle valve to 1 atm
pressure; the value of €, at 1 atm may be taken as constant and equal to 6.91
cal/mole deg over the temperature range in question.

3-29. The velocity of sound has been measured in hydrogen at 1 atm pressure and
various tempecratures by R. E. Cornish and E. D. Eastman [J. Am. Chem. Soc., 60,
627-652 (1928)], with the following results, corrected for the confining effect of the
tube in which sound resonance was set up:

T,°K u, cm/sec
372.52 146,630
369.40 146,110
333.31 138,930
308.96 133,770
204.27 130,710
269.02 125,150
238.23 118,170
203.63 109,900
182.41 104,630
165.58 100,160
145.64 94,715
135.71 92,000

81.12 73,800

(a) Assuming that hydrogen can be treated as an ideal gas at 1 atm over the tem-
perature range in question, calculate the value of 4 at each temperature, and demon-
strate that the rotational energy of these diatomic molecules apparently becomes
“frozen” at the lower temperatures. (One must of course express the value of R in
the ideal-gas sound-velocity formula in cgs units, if « is so expressed.)
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(b) Show that for a gas satisfying Berthelot’s equation of state, 1iq. (8-52) assumecs

the form
RT 9 pT. T
= —_ 1 —_— — 00—
“ M”[ +128pnT(1 672

Note: (dp/dp)r = — (V2/M)(dp/dV)r, since p = M/V; apply the result for
(dp/dV)r derived in Prob. 3-6.

Show that for hydrogen at 372.52°K, introduction of Berthelot’s equation of state
is equivalent to reducing u by the factor 1/1.00047 before applying the ideal-gas rela-

mn

tion uideal = STk Calculate the value of v at that temperature accordingly,

using a calculating machine if one is available, or five-place logarithms, in order to
obtain five significant figures in the result.

(¢) Using the formula of Prob. 3-12 derived from Berthelot’s equation of state,
show that for hydrogen at 372.52°K and 1 atm, C, — C, = 1.00005R, within the
degree of approximation afforded by Berthelot’s equation. Combining this result
with the value of C,/C, derived in the preceding section, calculate precise values of
Cp and C, at the given temperature and pressure. (For the introduction of actual
equation-of-state data for hydrogen instead of the Berthelot approximation, consult
the original paper of Cornish and Eastman.)

8-80. To what theoretical pressure must helium he compressed at an initial tem-
perature of 0°C so that on doing work of adiabatic expansion, its temperature may
fall to the inversion point, 44.8°K, at 1 atmm? (Assume the ideal-gas relation.) What
must the initial pressure be if the compressed gas is cooled initially to —20°C by
means of an ice-brine cooling mixture? What must it be if the compressed gas is
precooled to —77°C with solid CO,? What must it be if the compressed gas is pre-
cooled to —190°C with liquid air?

3-31. What temperature will air (y = 1.4) originally at 20°C ideally attain if it is
suddenly compressed to one-fifth its original volume, so rapidly that no heat is at first
lost to the surroundings? What compression ratio will raise the temperature of air
adiabatically from 80°C to 1000°C? (Note that these effects are encountered in
internal-combustion engines, during the stage preliminary to ignition of the fuel.)

8-32. Starting with 1 mole of nitrogen at 0°C and 1 atm, how much work must be.
done, at least, in order to compress it to half its original volume under adiabatic condi-
tions? How much work must be done, at least, in order to compress it to half its
original volume at constant temperature of 0°C? What final temperature is theoreti-
cally attained in the adiabatic compression?

8-33. The equation of state proposed by H. L. Callendar for steam has the form

p(V —b) = RT — 72

where b has physical significance similar to that of b in van der Waals’ equation and
is assigned the value 0.018 liter/mole characteristic of the liquid state at ordinary
temperatures and pressures, A is an empirical constant representing the cffect of
intermolecular attraction, and ¢ = C;/R. For temperatures and pressures not
exceeding the critical values (647.2°K and 218.17 atm), the value of ¢ may be taken
as constant and equal approximately to 194; the value of A, determined empirically,
is about 2.0 X 10° liter deg’/mole. Calculate (dV/dT), in terms of Callendar’s
constants, and show that the enthalpy function for steam has the form
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dﬁ=é,,dT—[("—+T—3)—A —b]dp

Show that the enthalpy.Hr , at temperature T and pressure p relative to IT;I, the
enthalpy at temperature 7', and zero pressure, is therefore given by

Hry— 13, = ¢+ ORI -7y - [ CH24 —3]p
Use this equation, with the given values of A4, b, and ¢, to calculate the difference in
enthalpy between steam at 360°C and 50 atm and steam at 100°C and 1 atm.

Taking C‘; for HyO(l) as practically constant and equal to 18.0 cal /mole deg between
0 and 100°C, and taking the latent heat of vaporization at 100°C as 9717 cal/mole,
what is the molal enthalpy of stecam at 360°C and 50 atm relative to that of liquid
water at 0°C and 1 atm?

NorE: Since the enthalpy difference between liquid water at 0°C and 1 atm and at
0°C and 50 atm is practically negligible, the quantity just calculated represents the
net heat required in order to transform water at constant pressure of 50 atm from
0°C to stecam at 360°C; it does not equal the net heat that would be absorbed if the
water were first heated at constant pressure of 1 atm to 360°C and then compressed.

3-34. In measuring the heat of fusion of ethyl chloride, J. Gordon and W. F.
Giauque [J. Am. Chem. Soc., 70, 1506-1510 (1948)] using a specific heat calorimeter
found in a typical run that 1145.1 cal/mole of energy was required to raise the tem-
perature from 132.242 to 136.095°K, the melting point being at 134.80°K. A cor-
rection of 2.7 cal/mole should be subtracted for a small quantity premelted at the
starting temperature. The heat capacity of the solid being 20.22 cal/mole deg at
130°K, and 21.71 cal/mole deg just below its melting point, and the heat capacity
of the liquid being 23.23 cal/mole deg just above the melting point, calculate the
latent heat of fusion.

3-3b6. Using the table in Landolt-Bérnstein, ‘‘Physikalisch-chemische Tabellen,”
5th ed., Supplement I, p. 706, 1927, find the molal internal energy U — U of Ag(c)
at 298.16°K relative to its value at 0°K, using for 6 the value found in Prob. 3-21.
What further information would be required in order to find the value of H° — H; at
298.16°K and 1 atm? (Compare Prob. 3-1.)



CHAPTER 4
THERMOCHEMISTRY

In this chapter, we shall take up the applications of the first law of
thermodynamics to processes in which changes take place in the composi-
tion of the thermodynamic system. The ultimate composition in terms
of the chemical elements is of course assumed to remain fixed, in accord-
ance with accepted chemical theory; but changes may take place in the
forms in which the chemical elements are combined, each different com-
bination entailing a characteristic quantity of energy. When such
changes satisfy the law of definite proportions, they are regarded as true
chemical changes; energy differences are associated also, however, with
the process of forming a solution from its components, and from the
purely thermodynamic viewpoint, no distinction can be made between
the two cases. We shall discuss the treatment of both cases separately.

4-1. Heat of a Chemical Reaction. The heat of a chemical reaction
is defined in general as the quantity of heat evolved when a given quantity
of the reaction takes place, as represented by its chemical equation. For
example, the combustion of methanol is represented by the thermo-
chemical equation

CH,0H(l) + 340:(g) = 2H:0(1) + CO4(g);  Q%oc = 173.64 keal

The heat of an endothermic reaction would be represented with a negative
sign. One should note that this sign convention for @ in thermochemis-
try is opposite to that used in general chemical thermodynamics. In
this chapter, therefore, following the general practice among thermo-
chemists,! we shall be using the opposite sign convention for @ from that
followed in other chapters. Since the heat of reaction may vary with
the temperatures of the reacting substances, it is generally measured at or
corrected to some particular constant temperature, <.e., with each reactant
originally at and each product finally at the same uniform temperature
throughout. It varies also depending on whether one measures it at
constant volume, as in a gas-combustion bomb, or at constant pressure,
such as at the practically constant pressure of the atmosphere; it is
generally convenient to correct all data, by methods that we shall pres-

1 See, for example, F. R. Bichowski and F. D. Rossini, ¢ Thermochemistry of Chem-
ical Substances,”” Reinhold Publishing Corporation, New York, 1936.
132
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ently describe, to a uniform constant pressure of 1 atm throughout (except
of course when one is deliberately concerned with heats of reactions taking
place at controlled high pressures), and we shall use superseript zero, e.g.,
as in the symbol Q°, to denote that this condition has been satisfied.?
The experimental method used to measure the heat of a chemical reac-
tion depends on the nature of the reaction. The methods that have been
directly applied may be divided into two general classes: isothermal and
adiabatic. In isothermal or essentially constant-temperature calorime-
try, the calorimeter has such a large heat capacity (e.g., it may consist of
a large water bath) that the measured temperature rise from which the
heat of reaction is calculated is relatively small, of order several centigrade
degrees; the surroundings are ordinarily at the approximately constant
temperature of the room. Correction for thermal radiation is one of the
most important sources of difficulty in isothermal calorimetry; such
methods are therefore best adapted to reactions that go to completion
rapidly, inasmuch as the radiation error tends to increase with time. For
fast reactions taking place in liquid solution, such as the neutralization of
a strong acid by a strong base in aqueous solution, the reaction may be
set up conveniently in a Dewar flask, the solution itself then serving as
the bulk of the calorimeter (the flask, stirring equipment, and thermome-
ter also contribute to the total heat capacity, which can be determined
from straightforward electrical heating by means of an immersion heater).
Rapid mixing of the reactants and efficient stirring of the product mixture
are essential in order that the temperature attained by the calorimeter
may become uniform as soon as possible after mixing, before radiation
effects have influenced seriously the total quantity of heat observed.
Combustions may be carried out in an isothermal calorimeter, con-
sisting of a ‘““bomb,”’ or heavy-walled steel tube fitted with a hermetically
tight cover, immersed in a body of water, whose temperature rise indi-
cates the quantity of heat evolved by the reaction taking place within the
bomb. The bomb, containing a weighed sample of the substance under
investigation, is charged with oxygen gas at 20 to 30 atm pressure, and
the reaction started by means of an electrically heated iron fuse wire
dipping into the sample; the combustion reactions are practically instan-
taneous in oxygen under pressure, and the surrounding water is stirred
mechanically in order to distribute the evolved heat rapidly throughout

1 For gaseous reactants and products, it is conventional to correct the heat of reac-
tion at standard atmospheric pressure to what it would be if each gas satisfied the
ideal-gas laws, Eqs. (3-60) and (3-62); however, the correction for deviation from
ideal-gas behavior at 1 atm is practically negligible for most gases; it can be made
from knowledge of (dH/dp)r for each gaseous reactant and product, derived by the
methods described in Chap. 3, and combined as shown in connection with Eq. (4-17).
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its mass. The bomb calorimeter may be standardized fundamentally by
means of electrical heating, the radiation correction being important,
but more commonly it is standardized under actual working conditions
by runs made on standard samples of high purity, whose heats of com-
bustion have been established by fundamental electrical standardization;
the National Bureau of Standards supplies standard samples of benzoic
acid and of certain other combustion standards suitable for this purpose.

In adiabatic calorimetry, the calorimeter is surrounded by an insulated
jacket heated independently at such a rate that its temperature is always
maintained equal to that of the calorimeter. This type of calorimeter
was first proposed by S. W. Holman in 1895, and was perfected largely
through the work of T. W. Richards and his associates at Harvard Uni-
versity during the first quarter of the twentieth century. In the adiabatic
bomb calorimeter, where the reaction is rapid, the temperature of the
jacket may be controlled manually (e.g., by the admission of hot water as
the temperature of the calorimeter proper rises; see, for example, the
operating instructions furnished by the Parr Instrument Co., Moline, Ill.,
for its commercial adiabatic oxygen bomb calorimeters); but for slower
reactions, the jacket temperature may be conveniently maintained by
electrical heating, controlled automatically by means of a differential
thermocouple having one junction set in the calorimeter and the other in
the jacket; the deflection of a spotlight galvanometer, for example, con-
nected to the thermocouple leads may be used in connection with a pair of
photocell relays disposed on either side of the null point to activate or
deactivate the jacket heater.

In the adiabatic calorimeter, thermal losses due to radiation are thus
completely eliminated. Such a technique is essential to the precise
measurement of the heats of comparatively slow reactions, and is well
exemplified by the work of G. B. Kistiakowsky and his associates on the
heats of hydrogenation of unsaturated hydrocarbons.! In this work, the
calorimeter consisted of a tube containing the platinum catalyst on whose
surface the reaction took place; the mixed reactant gases, e.g., ethylene
and hydrogen, preheated to about 82°C, were led into the calorimeter
tube, which was surrounded by an automatically controlled insulated
radiation shield maintained by independent electrical heating at the same
temperature as the calorimeter tube within, and the rate at which heat
was evolved by the reaction was measured by the rate at which the tem-
perature of the tube containing the catalyst increased; the rate of reaction
was simultaneously measured by gas analysis of the product gas issuing
from the calorimeter. The calorimeter itself was equipped with its own

1 G. B. Kistiakowsky, H. Romeyn, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan,
J. Am. Chem. Soc., 67, 65-75 (1935).
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heating coil, so that it could be standardized by means of electrical
heating.

Gas-combustion reactions may be studied either in a constant-volume
gas-combustion bomb, or by means of a constant-pressure flame calorime-
ter. An adiabatic flame calorimeter has been used by F. D. Rossini at
the National Bureau of Standards to measure with high precision the
heats of combustion of hydrogen with oxygen, hydrogen with chlorine,
carbon monoxide with oxygen, and of many gaseous hydrocarbons with
oxygen.! A substitution method is used, in which a measured quantity
of electrical energy raises the temperature of the calorimeter (measured
with a sensitive resistance thermometer) through the same interval as
was observed for a measured quantity of the chemical reaction, the calo-
rimeter itself thus serving merely as a comparator of the two kinds of
energy.

The reader will find descriptions of other types of reaction calorimeters
by A. Eucken? and also by W. P. White.?

One should note that an important indirect source of thermochemical
data is based on measurement of the temperature variation of the equi-
librium constant for the chemical reaction [van’t Hoff’s law, Eq. (8-2-2)];
the theory of this method, which depends on the second law of thermody-
namics, is taken up in Chap. 8.

4-2. Hess’s Law of Constant Heat Summation. In 1840, G. H. Hess
proposed on the basis of available experimental evidence that the net heat
of a chemical transformation was equal to the sum (with proper algebraic
signs) of the heats of any intermediate reactions through which the trans-
formation could be brought about. At the time of its discovery, Hess’s
so-called law of constant heat summation was supposed to provide excellent
confirmation of the caloric fluid theory of heat still prevailing; apparently
each reactant carried into and each product carried out of the reaction
characteristic quantities of heat, the heat of reaction representing the
excess of the heat ‘“‘content’ of the reactants over that of the products.
In view of the first law of thermodynamics, we recognize now that Hess’s
law is true only under certain general restrictions. The heat of reaction
is not independent of the path by which the reacting system passes from
its initial to its final state. Thus, the quantity of heat evolved by the
chemical reaction taking place in a galvanic cell from which energy in

1F. D. Rossini, J. Research Natl. Bur. Standards, 6, 1-35 (1931); 6, 37-49 (1931);
6, 791-806 (1931); 7, 329-330 (1931); 9, 679-702 (1932); etc. The calorimeter is
described in detail in the first of these articles.

2 A, Eucken, ‘“Handhuch der experimental Physik,” Vol. VIII, 1.

3 W. P. White, “The Modern Calorimeter,” Reinhold Publishing Corporation,
New York, 1928,
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electrical form is being withdrawn is invariably smaller than the quantity
of heat evolved when the same quantity of reaction is brought about
directly, without the development of electrical energy.! Furthermore,
the heat of a reaction carried out at constant pressure differs in general
from the heat of the same reaction carried out at constant volume.

J. Thomsen suggested in 1853 that Hess’s law is actually a special
case of the general conservation law based on Joule’s experiments. We
have only to suppose that each reactant carries into and each product
carries out of the reaction characteristic quantities of internal energy and
of enthalpy, which depend solely on the states of the substances as they
participate in the reaction. Thus, let

ad +oB+ - - - =IL+mM+ -+ - (4-1)
represent the equation of a chemical reaction involving the chemical
substances A, B, . . . as reactants, and L, M, . . . as products, each

being in some specified state. The corresponding net changes in internal
energy and enthalpy for the amount of chemical reaction represented by
Eq. (4-1) may be represented by

AU = lﬁL + m(ZM S R aUA - bl_?g - (4-2)
AH=lI_{L+mHM+ s —aﬁA—-bHB—— ¢ .. (4-3)
where (74, [73, e ey l-jL, ﬁM, . .. and I—IA, F[B, e e ey I-IL, ﬁu, [

represent, respectively, the molal internal energies and the molal enthal-
pies of the chemical substances participating in the reaction, each in its
specified state. The infernal energy of reaction, AU, and the enthalpy of
reaction, AH, thus clearly depend only on the initial states of the reactants
and the final states of the products. The heat of reaction, on the other
hand, is related to AU and AH through the general thermodynamic equa-
tions (3-18) and (3-37). Bearing in mind the sign convention for heats
of reaction noted in Sec. 4-1, we find that the heat of reaction Q, at con-
stant volume is given by

Q, = —AU — W' (4-4)
and the heat of reaction Q, at constant pressure by
Qo= —AH — W’ (4-5)

When W’ = 0, therefore, which is usually the case in straightforward
thermochemical measurements by calorimetric means (except in such
measurements as Jahn’s, mentioned in the footnote below),

Q, = —AU (W =0) (4-6)
Q, = —AH (W' =0) (4-7)

1 Such experiments, testing the first law of thermodynamics as applied to galvanic
cells, were actually carried out by H. Jahn, Z. physik. Chem., 18, 399-425 (1895).
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Thus, the conditions either of constant volume or of constant pressure,
with no work possible except in the form of mechanical work of expansion,
are sufficient to ensure that the heat of reaction shall be independent of
the intermediate stages through which the system may pass on its way
from the initial to the final state; under such conditions, therefore, Hess’s
law applies.

The relationship between @, and @, is readily inferred from the rela-
tionship between H and U,

AH — AU = A(pV)
Q — Q= —A(PY) (W =0) (4-8)
Thus, if AV represents the volume of the products less the volume of the
reactants when the reaction takes place at the constant initial pressure p,
then
Q — Q@ = —p(AV) (W =0) (4-9)

The term on the right of Eq. (4-9) is equal to the work done on the system
by the applied pressure p when the reaction takes place at constant pres-
sure. For reactions involving only liquids and solids, the value of this
term is usually so small that it may be neglected except in work of the
highest precision. For reactions involving gases, each gas contributes
to p(AV) a term pV which at sufficiently low pressures is equal to nRT,
where n denotes the number of moles of that substance represented in
Eq. (4-1) for the chemical reaction; thus, if (An), denotes the total number
of moles of gaseous products less the total number of moles of gaseous
reactants, then Eq. (4-9) may be replaced by the approximation

Q—Q =—(an), RT (W =0) (410)

The corresponding approximate relation between the enthalpy and the
internal cnergy of reaction at the constant temperature 7' is

AH — AU = (An), RT (4-11)
Thus, for the reaction,!

CH;0H(l) 4+ 340.(g) = 2H,0(l) + CO:(g); Q%oc = 173.64 keal;
(An), = —14 mole
AH — AU = —Y%RT = —030 keal (T = 298.16°K)

1 The thermodynamic process actually taking place in a combustion bomb at con-
stant volume, with oxygen under pressure, is by no means simple; corrections are
- necessary in order to reduce the observed heat evolved, @ = —AUp, representing
the internal-energy change for the actual bomb process, corrected to a definite tem-
perature, to what the heat would be if each reactant and product were in its standard
state, at 1 atm. To the corrected AU, Eq. (4-11) may then be applied to find AH.
These corrections, which are small but by no means negligible, have been analyzed
in detail by Il. W. Washburn, J. Research Natl. Bur. Standards, 10, 525-558 (1933).
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The heat of reaction at constant volume thus serves to measure directly
the difference between the internal energies of the reactants and products,
and the heat of reaction at constant pressure serves likewise to measure
directly the difference between the enthalpies of the reactants and prod-
ucts. Because of the approximately constant pressure of the atmosphere,
it is convenient for us to measure heats of reaction at or correct them to a
constant standard pressure of 1 atm; they are furthermore always cor-
rected to a constant uniform temperature for reactants and products.
Thus, using the symbol @3 as introduced in Sec. 4-1 to denote the heat of
reaction measured under such conditions, we have

AHS = IA. + m(ADu + + + + — a(@Da — b(HDa — + + + = —@
( '=0) (412)

for the general chemical reaction whose equation is represented by (4-1).
Experimental measurement of Q7 for a given reaction thus provides us
with direct evidence concerning the relative values to be assigned to the
standard molal enthalpies of the reactants and products in their respective
standard states.

The law for the effect of temperature on the enthalpy of reaction (and
by inference on the heat of reaction at constant pressure) is derived by
the application of Eq. (3-39) to Eq. (4-12), after differentiation term by
term,

(‘1’3_;“) = ACS =10z +mCu+ - - - — a(Ca — b
’ (4-13)
This relationship is known as Kirchhoff’s law.! In integral form
AIIS = AHS, + f: ACS dT - (4-14)

This integral may readily be evaluated if C for each reactant and product
has been established as a function of temperature, as, for example,
through empirical equations in the form (3-58) or (3-59) (see Appendix 3);
one may thereby relate the enthalpy of react®#p at any one fixed tempera-
ture T to the enthalpy of reaction at any otRer fixed temperature T,.
The equation may be used, for example, to dedice the enthalpy of reac-
tion at some standard temperature 7', (such as 298.16°K) from the meas-
ured value of AH; determined at an arbitrary experimental temperature
T found convenient for the study of the particular reaction.

1 After Gustav Kirchhoff, brilliant nineteenth-century German physicist, famous
“for his pioneer work in the field of thermal radiation, and in collaboration with Robert
Bunsen, on chemical spectroscopy in general. He also made notable discoveries in
the theory of electrical networks.
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The effect of pressure on the enthalpy of reaction is likewise derived by
the application of Eq. (3-44) to Eq. (4-3), after differentiation term by
term,

‘i‘;‘ﬂ) = AL, + AV (4-15)
D J)r

In view of the relation (3-31) based on the second law of thermodynamics,
Eq. (4-15) may be put in the equivalent form

dAH
7p_)T = Al — aT)V] (4-16)

from which we obtain the integral relationship
AHy,, = AHS + fp " Al(1 — aT)Vidp (4-17)

In this equation, according to our convention regarding the interpretation
of AH3, p, = 1 atm for liquid and solid chemical substances taking part
in the reaction, but p, = 0 for gases. The integral in Eq. (4-17) may be
evaluated term by term from the appropriate equation-of-state data at
the fixed temperature 7' for each reactant and product; its value is prac-
tically negligible unless p is of order several atmospheres or more. By
combining Eq. (4-17) with Eq. (4-14), one sees how to calculate the value
of AHr,, at any arbitrary temperature and pressure from the value AH$,
at some one standard temperature and pressure; it is necessary in principle
for us to have thermochemical measurements for the reaction only at a
single fixed temperature and pressure, for we can then “correct’’ the data
to other temperatures and pressures from further knowledge solely of the
thermodynamic properties of the reactant and product substances taken
separately.

4-3. Standard Enthalpies of Formation. The heat of a chemical
reaction at constant pressure represents the excess of the sum of the
enthalpies of the reactants over the sum of the enthalpies of the products.
Therefore direct calorimetric measurements of heats of reactions at con-
stant pressure provide us with relative values of the molal enthalpies of
the substances participating in the reaction. With the measurements
carried out at or corrected to standard reference conditions p, and T,
(e.g., 1 atm and 298.16°K), we thus obtain values relative to one another
of the hitherto arbitrary standard molal enthalpies A3, which were intro-
duced originally in Eq. (3-47) merely as integration constants for particu-
lar chemical substances. For example, the heat of hydrogenation of
ethylene, 32.824 kcal/mole as measured at 82°C and 1 atm by G. B.
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Kistiakowsky and associates,!
C.Hu(g) + Ha(g) = CoHe(g); AHgpoc = —32.824 keal

tells us that Hcyy, is algebraically smaller than the sum of Hc,x, and Hx, at
82°C and 1 atm by 32.824 kcal; corrected to 25°C by means of Eq. (4-14),
the difference becomes —32.575 keal,

AH;ss.w = (ﬁgss.m)czﬂo - (ﬁgvs.m)czm - (ﬁ ;98.18)H: = —32.575 kecal .

Likewise, the heat of combustion of hydrogen with oxygen to form liquid
water, 68.313 kcal/mole as measured at 25°C and 1 atm by F. D. Rossini,?

Ha(g) + 140.(g) = H:O(1);  AHasec = —68.313 keal

measures directly the difference between the standard molal enthalpy of
liquid water and the sum of the standard molal enthalpy of H.(g) and
14 the standard molal enthalpy of O,(g),

AH 298.18 = (I_Igss.ls)mo(l) - (ﬁgss.m)ﬂz(z) - ]/é(ﬁgss.m)oa(z)
= —68.313 kcal

For a chemical element, the value of the standard molal enthalpy in
some one of its allotropic forms remains arbitrary, because transforma-
tions in the ordinary chemical sense of one element into another do not
occur, and there is therefore no operational basis on which to intercompare
their enthalpies.? The value of Hj, for a chemical compound, however,
relative to the standard molal enthalpies of its elements, whatever fixed
values may be assigned to them, is a perfectly definite and reproducible
quantity, which in some cases may be determined by direct calorimetric

1 G. B. Kistiakowsky, H. Romeyn, J. R. Ruhoff, H. R. Smith, and W. E. Vaughan,
J. Am. Chem. Soc., 6T, 65-75 (1935); these results have not actually been adjusted
for deviation from ideal-gas behavior, but the difference between AH3sec,1atm and
AH3, s amounts only to about —0.004 kecal, whereas the experimental error in AH
is +0.050 keal.

2F. D. Rossini, J. Research Natl. Bur. Standards, 6, 1-35 (1931); 7, 329-330
(1931). This result also has not actually been corrected for deviation of H; and O;
from ideal-gas behavior, because the difference between AH3sec,1atm 8nd AHggq 14 i8
only about +0.0008 kcal in this case.

3 One could in principle accomplish such an intercomparison, of course, through
measurements of the energies of nuclear transformation reactions. Thus, at some
future time, it may become possible and convenient for us to assign to each nuclear
species an enthalpy of formation with respect to its constituent neutrons and protons.
Such a generalization would have no effect, however, on the relative values of the
molal enthalpies of chemical compounds with respect to their constituent chemical
elements, and, furthermore, in most cases the nuclear binding energies are not at
present known with sufficient precision to make such a step feasible, even if it were
advantageous for us to consider it.
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measurements, as in the case of H,O(1), but in other cases may be inferred
from calorimetric data for a series of intermediate reactions; the value of
AH?, for the hypothetical reaction C(graphite) + 2H,(g) = CHu(g), for
example, may be inferred from the heats or the enthalpies of combustion
with O.(g) of graphite, hydrogen, and methane. Therefore it is con-
venient and customary in chemical thermodynamics for us to assign to
each chemical element in its stable modification at standard-state condi-
tions, 25°C and 1 atm, the arbitrary standard molal enthalpy H3gs 16 = 0.
To each chemical compound (and to other metastable allotropic forms of
the clements themselves) there is then assigned a value of Hj,s 14 equal to
its molal enthalpy of formation, or the negative of its heat of formation from
the elements at the standard-state conditions: constant temperature of
25°C (298.16°K) and constant pressure of 1 atm [values for gases being
corrected for deviation from the ideal-gas state at 25°C and 1 atm by
means of Eq. (4-17) or equivalent thermodynamic relations, integrated
between 0 and 1 atm with the aid of suitable equation-of-state datal.
The standard enthalpy of reaction, AH 24 46, for any chemical transforma-
tion for which the standard enthalpies of formation of all reactants and
products have been established may then be represented as in Eq. (4-12)
by the difference between the sum of the standard enthalpies of formation
of the products and the sum of the standard enthalpies of formation of
the reactants. Each independent direct calorimetric measurement of the
heat of a reaction serves as a cross check on the self-consistency of the
H3y 16 values assigned to the participating compounds. Thus, the series
of direct measurements by G. B. Kistiakowsky and his associates on the
heats of hydrogenation of unsaturated hydrocarbons! contributed mate-
rially to the precision and self-consistency of the enthalpies of formation
of the hydrocarbons, which had previously been established only from
their heats of combustion.? Such data afford direct experimental verifi-
cation of the first law of thermodynamics, in the sense that the energy
absorbed or released during a chemical transformation comes within the
scope of that law.

A table of standard molal enthalpies of formation is thus a compact
means of summarizing the standard heats at 25°C and 1 atm of all actual
and even hypothetical chemical transformations that may take place
among the substances included in the table. The present objective of
the thermochemist is to establish a best value of H3g .6 for each chemical

1 G. B. Kistiakowsky, H. Romeyn, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan,
J. Am. Chem. Soc., b7, 65-75 (1935) ; G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith,
and W. E. Vaughan, <bid., 67, 876-882 (1935); 68, 137-145, 146-153 (1936).

2 See, for example, the review by F. D. Rossini and J. W. Knowlton, J. Research
Natl. Bur. Standards, 19, 249-262 (1937).
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substance, consistent with all the experimental data available. Such a
table hinges on the precise establishment of the H3q 4 values for certain
key compounds, such as CO;, H,O, HC], SO,, MgO, etc., whose heats of
formation from the elements themselves can be directly measured;
calorimetric measurements on reactions involving these key compounds
and the chemical elements with a single additional compound can then be
used to establish the H3g, 15 value of the new compound. Thus, the heat
of combustion of CO(g) to form CO,(g), taken in connection with the
H3ys.16 value for COq(g) established from the heat of combustion of
graphite with oxygen, serves to establish the Hjys 16 value of CO(g); like-
wise, the heat of combustion of CH4(g) to form CO.(g) and H2:O(1), taken
in connection with the established H3gs 14 values of COs(g) and H;0(1),
serves to establish the M3, .5 value of CHy(g) relative to its elements.
Reviews of the status of modern thermochemistry, particularly with
reference to organic compounds, have been given by F. D. Rossini;! a
group under his direction at the National Bureau of Standards has been
at work on the compilation of such a table, which involves the revision of
older tables, and the critical evaluation and incorporation of recent data;
tables for the hydrocarbons have already been published in bound form.
Appendix 2 consists of data taken from these sources.?

Standard enthalpies of formation for chemical substances in phases
other than the stable allotrope at standard-state conditions may of course
be inferred from knowledge of the enthalpy of formation of the stable
allotrope, together with the appropriate latent heat of transition, as men-
tioned in connection with Eq. (3-48); thus, while H3g 16 for H:O(1) has
been assigned the value —68.3174 kcal/mole, the value for H,O(g) is
—57.7979 kcal/mole, these two values differing by the latent heat of
vaporization of water at 25°C; likewise, the value of H3y ;6 for diamond
is 0.4532 kcal/mole, this representing the latent heat of transformation

1F. D. Rossini, Chem. Rev., 18, 233-256 (1936); 27, 1-16 (1940); Ind. Eng. Chem.,
29, 1424-1430 (1937).

2 ¢‘Selected Values of Chemical Thermodynamic Properties,” issued quarterly in
loose-leaf form since Dec. 31, 1947, by the National Bureau of Standards, Washington,
D.C. See also Selected Values of Properties of Hydrocarbons, Natl. Bur. Standards
Circ. C461 (1947). The most comprehénsive previous publication is by F. R. Bichow-
sky and F. D. Rossini, ‘‘Thermochemistry of Chemical Substances,” Reinhold Pub-
lishing Corporation, New York, 1936, in which the standard reference temperature
was 18°C, and incidentally, all values for carbon compounds (of which only compounds
containing 1 or 2 carbon atoms per molecule are listed) were taken with reference to
diamond, instead of graphite, as the standard allotrope of carbon. The thermochemi-
cal data in the ‘‘International Critical Tables,” Vol. V, McGraw-Hill Book Company,
Inc., New York, 1929, are based on 20°C as the standard reference temperature, and
the data are recorded in international joules.
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from graphite, the stable allotrope of the element carbon at 25°C and 1
atm (its value has been established experimentally by the difference
between the heats of combustion of diamond and graphite). It is con-
venient for us to include in the table H3 16 values even for substances
that have only a hypothetical existence at the standard-state conditions;
thus, for H(g), the value H34 14 = 52.089 kcal has been assigned; this
value has been established from spectroscopic determination of the dis-
sociation energy of Hs(g), and is in agreement with equilibrium data for
the reaction Hz(g) = 2H(g) obtained at high temperatures. Such hypo-
thetical enthalpies of formation for substances in metastable states con-
stitute a convenient way to include their thermochemical properties in
the table under a uniform set of standard-state conditions; while such
substances may have an actual stable existence only under conditions far
removed from the conventional standard-state conditions, yet it is con-
venient for theoretical and practical purposes to have all the data reduced
to a common standard temperature and pressure. In such cases, the
correction usually calls for an assumed or a theoretical knowledge of the
value of C3, so that Eq. (3-47) may be applied over the metastable range.

4-4. Bond Energies. It has long been recognized that many of the
extensive physical properties of certain classes of chemical compounds
can be represented approximately in terms of additive contributions
characteristic of the particular elements present. The example of the
homologous series encountered among the carbon compounds is a case in
point, where one finds that between successive members of a given series
the value of C; for the gaseous state at given temperature and the value
of V for the liquid at its normal boiling point increase by amounts that are
approximately constant for the series, and therefore apparently represent
the contributions per mole associated with the —CHy— group. Com-
parable additive relationships are found among the physical properties of
the alkali halide group of compounds, where one can ascribe a certain set
of properties to the Cl~ ion, for example, approximately independent of
the particular alkali metal ion with which it may be associated. The
additivity principle extends within certain limitations to the molal
enthalpy of formation, provided that one takes into consideration the
different types of bonds that may exist between atoms. The concept of
bond energies is useful not only as a means of estimating enthalpies of
formation where direct experimental data are not available but also as
a means of measuring the relative strengths of interatomic valence forces.
While this subject is not strictly within the scope of classical thermody-
namics, yet it constitutes an interesting application of purely thermo-
chemical data to a problem of considerable importance to theoretical
chemistry.
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Let us consider first compounds in which the atoms are bonded by
covalent or shared-electron-pair bonds. In a review of heats of combus-
tion of organic compounds prepared by M. S. Kharasch in 1929,! it was
shown that the molal heat of combustion for the liquid state could gen-
erally be estimated with fair accuracy as a sum of empirical terms for each
bond broken in the molecule, the term contributed by a particular bond,
such as the C—H bond, or the C—C bond, being approximately inde-
pendent of the size or shape of the molecule. Since during the combus-
tion of an organic compound, the products are practically always the
same, C atoms ending as CO: molecules, H atoms and O atoms as H,O
molecules, etc., the additivity rule for the heats of combustion implies
more or less definite covalent bond energies, independent of the particular
molecule in which the bond exists. This idea has been elaborated and
extended to all kinds of covalent compounds by Linus Pauling.?2 In
estimating bond energies from ordinary thermochemical data, Pauling
first computed the enthalpy of formation of the appropriate compound in
the gaseous state from its elements in the form of monatomic gases; in
this way, he subtracted out, for example, the energy required to separate
the atoms in gaseous H., and the energy required to separate the mole-
cules of a crystalline compound, which are extraneous to the point under
consideration. In principle, it would be desirable to work with thermo-
chemical data extrapolated to 0°K, in order that the calculated bond
energics should be free also of contributions from molecular thermal
motion, but in practice the extrapolation is unwarranted in view of the
approximate nature of the conclusions and of the fact that the data
required for the extrapolation (low-temperature heat capacities) are in
many cases not available. Table 4-1 presents some standard enthalpies
of formation at 25°C of various elements in the hypothetical form of ideal
monatomic gases at 1 atm; the data, taken from ‘‘Selected Values of
Chemical Thermodynamic Properties,” differ in some respects, particu-
larly in the value assigned to C(g) about which there has been considerable
controversy, from those used by Pauling in the reference cited. They
have been derived in some cases from spectroscopic measures of dissocia-
tion energies and in others from high-temperature thermal equilibrium
data, the results being corrected to 25°C by the assumption of the
theoretical value of C; = 54R for each monatomic gas.

Thus, from the ordinary standard enthalpy of formation of methane,

1 M. 8. Kharasch, J. Research Nail. Bur. Standards, 2, 359430 (1929); this review
was prepared originally in connection with the ‘“International Critical Tables”
project.

2L. Pauling, ‘“The Nature of the Chemical Bond,” 2d ed., Cornell University
Press, Ithaca, New York, 1940.
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C(c,graphite) + 2Hz(g) = CHi(g); AH%4 16 = —17.9 keal
combined with the data

C(c, graphite) = C(g); AH 3 16 = 171.7 keal
2H2(g) = 4H(g); AH;98-18 = 208.4 kcal

we derive for the enthalpy of formation of CH,(g) from gaseous atoms
C(g) + 4H(g) = CHu(g);  AH3e.16 = —398.0 keal

Thus, the average energy per C—H bond is 99.5 kcal; 7.e., this represents
the average quantity of thermal energy required, per mole, to disrupt each
C—H bond and separate the resulting gas atoms, under hypothetical

TaBLE 4-1. STANDARD ENTHALPIES OF FORMATION FOR ELEMENTS As MoNATOMIC
GAsEs*

(H;os. 16, keal/g-atom)
| U 37.07 Fe.............. 96.68 Te.............. 47.6
Na.............. 25.98 Ni.............. 101.61 N............... 85.566
K.......oooooon 21.51 Zn.............. 31.19 P......... ..., 75.18
Rb.............. 20.51 Cd.............. 26.97 As.............. 60 .64
Cs............... 18.83 Hg.............. 14.54 Sb.............. 60.8
Mg.............. 3,9 H............... 52.089 Bi.............. 49.7
Ca.............. 46.04 F............... 32.25 C............... 171.698
S 39.2 Cl.............. 29.012 Si............... 88.04
Ba.............. 41.96 Br.............. 26.71 Ge.............. 78.44
Al 7.0 I................ 25.482 Sn.............. 72
Cu.ooovviiit 81.52 O............... 59.159 Pb.............. 46.34
Ag.............. 69.12 S............ ... 53.25
Mn.............. 68.3¢4 Se.............. 48.37

* From ‘‘Selected Values of Chemical Thermodynamic Properties,” National Bureau of Standards,
Washington, D.C., as of March 31, 1950.
conditions of constant pressure with each gas behaving as an ideal gas.
Proceeding in a similar manner with ethane,

2C(c, graphite) + 3H:(g) = C.He(g); AH3%y5 6 = —20.2 keal
2C(g) + 6H(g) = C.Hs(g); AH;os.m = —676.2 keal

Assuming the average value of 99.5 for each of the six C—H bonds, as
derived from the data for methane, we are left with 79.2 kcal as the bond
energy of the C—C covalent bond. From the data for the hydrocarbons
in general, however, we find that the increment in A3 ;¢ for the gaseous
compounds per —CHz— group has the average value —4.9 keal,

C(e, graphite) + Hy(g) = —CH.— (g); AH3%5.16 = —4.9 keal
C(g) + 2H(g) = —CH:— (g); AH3%.16 = —280.8 keal

Since introduction of an additional —CH,— group into the molecule
involves the net creation of one new C—C bond and two C—H bonds, we



146 PRINCIPLES OF CHEMICAL THERMODYNAMICS

infer for the C—C bond the average bond energy: 81.8 keal, slightly
greater than the value deduced from the data for the single compound,
ethane. This value, incidentally, is only 4 per cent less than the value
inferred directly from the heat of sublimation of diamond:

C(c, diamond) = C(g); AH35. 16 = 171.2 keal

where an average of two tetrahedral covalent bonds (four bonds per atom,
shared by two atoms apiece) have to be broken per C atom liberated from
the crystal lattice.

TaBLE 4-2. CovALENT BonNp ENERGIES* IN KILOCALORIES

H—H 104.2 C—H 99.5 C—=Si 143.2
C—C 81.8 Si—H 77.8 C—N 60.3
Si—Si -44.0 N--—-H 84.3 CcC—0 82.3
Ge—Ge 39.2 P—H 76.4 C—S 60.1
N—N 20.2 As—IH 58.6 C—F 115.8
P—p 47.9 O—H 110.6 C—Cl 78.3
As—As 34.5 S—H 81.1 C—DBr 73.0
0—O0 33.2 Se—H 66.0 C—I 50.1
S—S 50.2 Te—H 57.4 Si—O 104.0
F—F 64.4 H—F 148.5 Si—F 146.7
Cl—Cl 58.0 H—Cl 103.2 Si—Cl 87.4
Br—Br 46.1 H—DBr 87.5 Ge—Cl1 102.6
I—I 36.1 H—I 71.4

Cl—F 86.9 C= 146.6
Br—Cl 52.2 C= 201.9
I—Cl 50.3

I—Br 42 .4

* Calculated essentially according to the methods outlined by L. Pauling, ‘“The Nature of the
Chemical Bond,” 2d ed., pp. 52-58, Cornell University Press, Ithaca, New York, 1940; but the more
recent thermochemical data given in ‘‘Selected Values of Chemical Thermodynamic Properties,”
National Bureau of Standards, Washington, D.C., 1950, have been used in the calculations.

From similar data for alkene hydrocarbons, we may infer an average
bond energy of 146.6 kecal for the C=C bond, and from data for alkyne
hydrocarbons, an average bond energy of 201.9 keal for the C=C bond.
Table 4-2 presents other covalent bond energies derived in similar fashion,
and Table 4-3 shows how well the experimental data are represented by
the empirical bond energies for a number of aliphatic hydrocarbons.!

1L. Gero, J. Chem. Phys., 16, 1011-1013 (1948), has pointed out that the lower
hydrocarbons, such as CH,, C;Hg, C;H,, etc., are ‘‘abnormal’” with respect to the
additivity of bond energies. By basing his calculations on the higher hydrocarbons,
beginning with n-hexane, and 1-hexene, he has derived average bond-energy values
(at 0°K) of [C—C] = 82.59 kecal/mole; [C—H] = 97.02 kecal/mole (in —CH,—
groups); [C—=C] = 145.12 kcal/mole. He has estimated that the sum of the hydrogen
bond energies in a methyl radical exceeds three times the {C—H]cn, bond energy
by 0.34 kcal/mole. See also J. G. Valatin, zbid., 1018-1024.
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TaBLE 4-3. COMPARISON OF EXPERIMENTAL ENTHALPIES OF FORMATION OF ALI-
PHATIC HYDROCARBONS WITH VALUES DERIVED FROM BonNp ENERGIES*

H ;ns.ls from
C(c, graphite)

— Ay, 14 from

Sum of bond-

Formula Compound (gas) and Hy(g), C(g) ind H(g),| energy values,
keal/mole cal keal
CH, Methane —17.889 397.9 398.0
C;Hs | Ethane —20.236 676.2 678.8
C;Hs | Propane —24.820 956.6 959.6
CH,o | n-Butane —29.812 1237.5 1240 .4
" CH;o |2-Methylpropanc —31.452 1239.1 1240.4
CsHi2 | n-Pentane —35.00 1518.6 1521.2
CsHiz | 2-Mcthylbutane —36.92 1520.5 1521.2
CsHi: | 2,2-Dimethylpropane —39.67 1523.2 1521.2
CsHis | n-Hexane —39.96 1799 .4 1802.0
C:His | n-Heptane —44.89 2080.2 2082.8
CsHys | n-Octane —49.82 2361.0 2363.6
C.H, Ethylene +12.496 539.3 544 .6
CsHes | Propene + 4.879 822.7 825.4
CH;s | 1-Butene + 0.280 1103.2 1106.2
C.Hs | cts-2-Butene — 1.362 1104.9 1106.2
C.H;s |trans-2-Butene — 2.405 1105.9 1106.2
C(H;s | 2-Methyl-propene — 3.343 1106.8 1106.2
CsHyo | 1-Pentene — 5.000 1384.4 1387.0
CsHio | cis-2-Pentene — 6.710 1386.1 1387.0
CsHyo | trans-2-Pentene — 7.590 1387.0 1387.0
CsHio | 2-Methyl-1-butene — 8.680 1388.1 1387.0
CsH,o | 3-Methyl-1-butene — 6.920 1386.3 1387.0
CsHio | 2-Methyl-2-butene —10.170 1389.6 1387.0
CeH,: | 1-Hexene — 9.96 1665.2 1667.8
C:Hi. | 1-Heptene —14.89 1946.0 1948.6
CsHye | 1-Octene —19.82 2226.8 2229 .4
C:H: | Acetylene +54.194 393.4 400.9
C;H, | Propyne +44.319 679.1 681.7
CHs |1-Butyne +39.70 959.6 962.5
CHs |2-Butyne +35.374 964.0 962.5
CsHs | 1-Pentyne +34.50 1240.7 1243.3
C:;Hs | 2-Pentyne +30.80 1244 .4 1243.3
CsHs | 3-Methyl-1-butyne +32.60 1242.6 1243.3
CesHio | 1-Hexyne +29.55 1521.5 1524.1
C;H,: |1-Heptyne +24.62 1802.3 1804.9
CsHis | 1-Octyne +19.70 2083.1 2085.7

* The H%qq 4 values for the hydrocarbons in the ideal-gas state are taken from Selected Values of

Properties of Hydrocarbons, N gtl. Bur. Standards Circ. C461 (1947).
derived from them by using the H®,, 4 values for C(g) and H(g) given in Table 4-1.

The —AHC.4,s values are

The C—H, C—C,

C=C, and C==C bond-energy values used in computing the sum of bond energies are those given in

Table 4-2.



148 PRINCIPLES OF CHEMICAL THERMODYNAMICS

The observed standard enthalpies of formation of the hydrocarbons,
given with high precision in the first numerical column of Table 4-3, show
that bond energies can be only approximately additive, so long as no
account is taken of detailed structure. These enthalpies of formation are
derived mainly from highly precise measurements of the heats of com-
bustion by F. D. Rossini and his associates. For the alkane hydrocar-
bons, there appears to be a real decrease (algebraic) in the value of
H34s.16 With increased degree of chain branching; this indicates in a gen-
eral way that the more compact molecules tend to have greater stability
than their straight-chain isomers.! For the unsaturated hydrocarbons,
the position of the unsaturated bond, as well as the general configuration
of the molecule, has a measurable effect on the apparent bond energies;
this is clearly shown, for example, in the precise values obtained by G. B.
Kistiakowsky and his associates for the heats of hydrogenation of the
isomeric butenes:?

CiHs(g) + Ha(g) = CiHio(g)

Isomer, C.H; AHgyeq, keal /mole
1-Butene.................. —30.341
cis-2-Butene............... —28.570
trans-2-Butene............. —27.621
2-Methylpropene........... —28.389

Here, the product is identical for the hydrogenation of the first three
isomers (z.e., n-butane), but nevertheless significant differences exist in
the thermal energy released as the unsaturated bond becomes saturated
by taking up a pair of hydrogen atoms. For this reason, bond energies
cannot be construed as strictly additive; their average values are undoubt-
edly useful, however, as approximate relative measures of chemical
affinity.

Pauling has also discussed in detail the quantum-mechanical concept
of resonance energy and has shown how this quantity may be estimated
from simple thermochemical data. The classic example is provided by
the benzene nucleus; the existence of resonance energy is indicated by a
straightforward examination of the heats of hydrogenation of benzene
and of its intermediate products, 1,3-cyclohexadiene and cyclohexene, as

1 This statement could be put in more precise form in terms of the free energy of
formation, as discussed in Chap. 8, rather than in terms of the enthalpy of formation;
but for closely related members of a homologous series such as this, the enthalpy
values are at any rate indicative, if not definitive measures of relative instability.
One should note also that the relative stabilities of the isomers may vary with the
temperature.

1 G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan, J. Am,
Chem. Soc., BT, 876-882 (1935).
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measured at 82°C by Kistiakowsky and his associates:*

CeHe(g) + 3Ha(g) = CeHia(g);  AHGy = —49.802 keal
CsHa(g) + 2H2(g) = CsH12(g), AH§2oc = —55.367 keal
CsHio(g) + Ha(g) = CeHiz(g); AHgys = —28.592 keal

These data indicate that for the addition of the first pair of hydrogens to
the cyclic benzene nucleus,

CeHo(g) + Ha(g) = CeHs(g);  AHgyo = +5.565 keal
whereas for the addition of the second pair (.e., to 1,3-cyclohexadiene),
CeHs(g) + Ha(g) = CeHio(g); AHgZps = —26.775 keal

Thus, the quantities of heat evolved when the second and the third pair
of hydrogens are added have approximately the ‘‘normal” value for the
addition of H, to the ordinary double bond, the heats of hydrogenation of
the monoalkenes falling in the range 27 to 30 kcal/mole; but they differ
radically, even to the extent of a reversal of sign, from the heat of hydro-
genation for introduction of the first pair of hydrogens. Thus, as is well
known, the conjugate bond system of the benzene ring, first postulated
by A. Kekulé, is far more stable than one would expect from the con-
sideration of ordinary alkene bonds, such as one finds in cyclohexene. In
fact, if one compares the enthalpy of hydrogenation of benzene, —49.802
kecal (at 82°C), with three times the enthalpy of hydrogenation of cyclo-
hexene, 3 X (—28.592) kcal, which is what one would expect for three
independent alkene bonds, one obtains as a measure of the degree of
stabilization in the benzene ring 35.97 kcal/mole. The exceptional
stability of the benzene nucleus is attributed to resonance, involving
mainly the two equivalent Kekulé structures:?

and

t Ibid., 68, 137-145, 146-153 (1936).
2 The three cquivalent Dewar structures

are supposed also to contribute to the normal state of the benzene molecule, but cal-
culation shows that their energies are rather higher than those of the more stable
Kekul$ structures, and their contribution is therefore relatively slight.
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These two structures differ from each other only in the distribution of
certain electrons, but because of symmetry, their energies must be
identical. In a situation like this, according to quantum mechanics, the
actual normal state of the system consists of contributions from each such
state of equal or nearly equal energy (there may in general be more than
two such states), in the sense that if one makes repeated observations on
the system, it will behave part of the times as though it were in one of the
states and part of the times as though it were in the other, the probabilities
being equal in a case such as this where there are two structures having
exactly equal energies. The properties of the actual state, in other words,
must be regarded as averages over such equivalent states contributing to
the average state, but the actual state always possesses a lower energy
than would be characteristic of the independent contributing states.
This energy difference is called the resonance energy of the system; its
existence permits the system to remain stable in a configuration which if
it were not for resonance might have an appreciably higher energy.
Thus, the resonance energy of benzene has the approximate empirical
value 36 kecal/mole; Pauling has shown how a theoretical value in close
agreement with this can be derived by a quantitative treatment of reso-
nance from the point of view of the quantum theory of valence.!

The resonance energy associated with a given molecular structure may
be determined empirically, of course, from bond-energy values. Thus, if
one computes the enthalpy of formation of CsHs(g) from C(g) and H(g)
as in Table 4-3, starting with the experimental standard enthalpy of
formation of C¢He(g) from the elements in their ordinary standard states,
Hoes16 = 19.820 kecal/mole, one obtains —AH34 6 = 1323.0 keal;
whereas if one computes the sum of the bond energies according to
either Kekulé structure, using the bond-energy values of Table 4-2, one
obtains 6 X 99.5 4+ 3 X 81.8 4+ 3 X 146.6 = 1282.2 keal, to which one
must therefore add empirically 40.8 kcal/mole, representing resonance
energy. The sum of the bond-energy values for the three equivalent
Dewar structures, 6 X 99.5 + 5 X 81.8 + 2 X 146.6 = 1299.2 keal, is
slightly closer to the experimental result, and the fact that these struc-
tures contribute slightly to the normal state brings the empirical reso-
nance-energy value down a little from what one would infer on the basis
solely of the Kekulé structures. In applying covalent bond-energy
values to estimate enthalpies of formation, one may therefore be quite in
error if one overlooks the possibility of resonance stabilization; on the
other hand, bond-energy data constitute in connection with empirical
thermochemical data a simple and convenient means of testing proposed
molecular structures and of detecting the existence of resonance energy.

1 Pauling, op. cit., Chap. IV.
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A different approach to the question of bonding energies is called for in
the case of ionic compounds such as NaCl. Here, the electrostatic
Coulomb forces of attraction and repulsion between the ions are of over-
whelming importance. These forces, taken in connection with the
spherical symmetry of the simpler types of ions and their established
regular arrangement with respect to each other in the crystalline ionic
compounds, are susceptible to exact theoretical treatment, leading to a
reasonably satisfactory solution to the problem of the so-called lattice
energy, the energy required to separate the ions from their normal distance
in the crystal to an infinite distance apart [e.g., the energy of the process,
NaCl(c) = Na*(g) 4+ Cl=(g)]l. The theory has been developed through
the work of many investigators, including in particular M. Born and his
associates.! One assumes that the force holding the crystal together is
the resultant of the Coulomb electrostatic forces, whose net effect is
attractive, and a short-range interionic repulsive force, which is analogous
to the van der Waals “b”’ effect, giving rise to finite ionic sizes or normal
distance of closest approach between centers.? The potential energy of
the entire crystal is then calculated by a summation over all ion pairs of
the potential energy between a pair of ions. Now for diatomic crystals
such as NaCl, MgO, CaF,, Al,O;, etc., the total electrostatic potential
energy per mole may always be expressed in the simple form

- Node?z z_
_ +

E, = - (4-18)

where N, represents Avogadro’s number, e the electron charge, z, and z_
the number of charge units on the cation and the anion (1 and 1 in the
case of NaCl), r, the closest distance between centers of oppositely
charged ions in the normal crystal lattice, and 4 a geometrical factor
called the Madelung constant;® all interionic distances in a regular

1 M. Born and A. Landé, Sitzber. preuss. Akad. Wiss., Physik.-Math. Klasse, pp.
1048-1068 (1918); M. Born, Ber. deut. physik. Ges., 20, 224-229 (1918); M. Born
and J. E. Mayer, Z. Physik, 76, 1-18 (1932). The subject is reviewed by J. Sherman,
Chem. Rev., 11, 93-170 (1932); excellent summaries are given by L. Pauling, ‘The
Nature of the Chemical Bond,” 2d ed., Chap. X, Cornell University Press, Ithaca,
New York, 1940; R. C. Evans, ‘“An Introduction to Crystal Chemistry,” Chap. III,
Cambridge University Press, New York, 1946; C. W. Stillwell, ‘‘Crystal Chemistry,”
Chap. VI, McGraw-Hill Book Company, Inc., New York, 1938; F. Seitz, ““The
Modern Theory of Solids,” Chap. II, McGraw-Hill Book Company, Inc., New York,
1940,

2 A more refined treatment by Born and Mayer, loc. cit., takes account also of a
van der Waals “a” effect of attraction between the ions; this, however, is much
smaller than the Coulomb effect resulting directly from the ionic charges.

3 E. Madelung, Physik. Z., 19, 524-532 (1918).



152 PRINCIPLES OF CHEMICAL THERMODYNAMICS

crystal lattice of a given type can be represented as more or less simple
geometric functions of the single characteristic distance ry, and the factor
A arises when one sums the electrostatic potential energy between two
ions over all possible interionic distances that may exist in the erystal.
In the NaCl type of cubic lattice, for example, A has the value 1.7476;
the value of this factor indicates that the average Coulomb electrostatic
potential energy per ion pair in the NaCl type of lattice is about 75 per
cent greater because of the influence of neighboring ions than the cor-
responding energy for an isolated pair of ions the same distance apart.!
Values of A for other types of regular crystal structures are given in
Table 4-4. The repulsive energy per mole, which prevents the crystal
from collapsing altogether under the net attraction of the Coulomb forces,
was originally assumed by Born and Landé to have the form

£ =3 (4-19)

To
where B and n are constants for the particular kind of erystal; if we assume
that only nearest neighboring ions contribute significantly to E,, then
Eq. (4-19) implies that individual ions repel each other with a force pro-
portional to 1/r*+1, The value of n can be inferred from measurements

TABLE 4-4. MApELUNG CONSTANTS*

NoAel,
Btructure 4 102 keal K/mole

NaCl.................. 1.747558 5.8019
CsCl............L. 1.762670 5.8521
Wurtzite............... 1.641 5.448
Fluorite................ 2.51939 8.3644
Cuprite................ 2.05776 6.8318
Rutile................. 2.408 7.995
Corundum.............. 4.17187 13.8506

* Values in the last column are computed with No¢ = 6.0228 X 1023/mole, ¢ = 4.8024 X 10710 esu,
and with the conversion factor (1 kcal/4.1840 X 1010 erg) X IO‘A/cm. The values of A given in
Table 4-4 apply to Eq. (4-21) when ro represents the mean distance between closest ions of opposite
sign; values may also be computed with ro standing for any other convenient geometrical function of
this mean ionic *“diameter,” e.g., the lattice constant itself, for cubic crystals.

of the coefficient of compressibility of the crystal; for most cubic ionic

crystals, its valueisabout 9, but it varies with the size of the ions involved,
being about 7 for ions of the Ne type and about 10 for ions of the Kr type,

1The mathematical methods developed by E. Madelung, P. P. Ewald, M. Born,
and others for the calculation of Madelung constants are briefly described by J.
Sherman, loc. cit.; see also H, M. Evjen, Phys. Rev., 89, 675-687 (1932). See Prob. 2-17.
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as seen in Table 4-5. The value of B can be found through the condition
that the equilibrium distance ro must be such as to make the sum of £,
and E, a minimum with respect to variations in r,; thus

NoAe?z,z. nB

r3 ratl

rn—l
= 0; B = Ner2z+z_——°17-
Therefore the total potential energy per mole has the form
— — 2
B4 = — M(l _ 1) (4-20)
To n

This represents the molal internal energy of the crystal relative to a state
of complete separation of the independent ions (ro — «); thus

2
AU = N_OA___:OZ+Z~ (1 - %) (4-21)

represents the energy required in order to separate the crystal into inde-
pendent gas ions, i.e., in the case of NaCl, the internal-energy change
accompanying the reaction

NaCl(c) = Na+(g) + CI-(g) (4-22)
TABLE 4-5. VALUES oF BorN ExPONENTS n*

Ion Type n

He................. 5

Ne..ooooveviinn.. 7

A, Cut..oooooiillt. 9

Kr, Agt............ 10

Xe, Aut............ 12

* From L. Pauling, ‘‘The Nature of the Chemical Bond,’’ 2d ed., p. 339, Cornell University Press,
Ithaca, New York, 1940. For two ions of different types, the average value of n is taken, e.g., for KF,
n = 8.0.
at 0°K. At ordinary temperatures, a correction should be introduced to
take account of the thermal motion of the ions in the crystal as compared
with the ideal-gas state, but up to 25°C, this correction amounts to but a
few tenths of a kecal.! One sees that with » having a value of order 9, the
Coulomb electrostatic energy accounts for approximately 90 per cent of
the total, the balance being contributed by the interionic repulsive energy.
In the case of NaCl, with r, = 2.814 A and n = 8, the value of the lattice
energy calculated according to Eq. (4-21) from the appropriate value of
the Madelung constant is 180.4 kcal/mole; in the case of KI, with
ro = 3.526 A and n = 10.5, AU = 148.9 keal/mole. Lattice energies

1 The value of 7o introduced in Eq. (4-21) should correspondingly -be the equilibrium

interionic distance between nearest ions of opposite charge at 0°K, but this too differs
but slightly from the value at room temperature.
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computed for a number of other ionic compounds are given in Tables 4-6
to 4-8; one will note that the only information about the crystal one needs
in order to compute the value of AUg by the Born theory is its general
structure and value of ro, as given by X-ray analysis, together with the
value of the Born-Landé repulsive force exponent n, which depends
merely on the sizes of the ions concerned.

The value of AUj cannot be directly measured by thermochemical
means, but it may be computed from thermochemical data available for a
series of intermediate steps, as shown originally by M. Born and by F.
Haber.! In order to work with the enthalpy function, in terms of which
the thermochemical data are generally expressed, let us first write for a
reaction such as (4-22)

AH = AU + A(pV)
= AU + ¢RT

where ¢ represents the number of ions corresponding to the formula; thus,
for NaCl, neglecting the correction of AU3 itself to room temperature, but
taking the 25°C value for the term 2RT,

AH%y.16 = AUS + 1.2 kcal (NaCl, ete.; ¢ = 2)

Now, the reaction (4-22) to which the value of AUj] applies may be
brought about in principle through the following chain of independent
steps:

(1) NaCl(c) = Na(c) + ¥4Cla(g); AH®° = —(H3gs.16) vec10

(2) Na(c) = Na(g); AH® = (Ij_cz)Na = (Hg%.le)Nn(z)
(3) 14Cly(g) = Cl(g); AH® = (H3s.16) 10

4) Na(g) = Nat(g) + e; AH® = Ixa

(5) Cl(g) + e = Cl-(g); AH® = —ea

The first of these steps represents simply the reverse of the formation of
NaCl(c) from its elements in their ordinary standard states; its enthalpy
is equal to the standard heat of formation of the compound, or the
negative of its standard enthalpy of formation. The second step repre-
sents the sublimation of Na(c); its enthalpy at 298.16°K is derived
essentially by means of the Clapeyron equation [Eq. (6-68)] and Eq.
(3-48) from vapor-pressure measurements at higher temperatures. The
third step represents the dissociation of Cl(g) into atoms; its enthalpy at
298.16°K is derived both from spectroscopic indication of the dissociation
energy of Cl, molecules, and from equilibrium data at high temperatures
by extrapolation. The data needed for steps 2 and 3 are included in
Table 4-1, which gives the standard enthalpies of formation of elements

1 M. Born, Ber. deut. physik. Ges., 21, 13-24 (1919); F. Haber, tbid., 750-768 (1919).
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in the form of monatomic gases, as derived from the appropriate experi-
mental evidence. If one adds steps 1, 2, and 3, one obtains, for the dis-
sociation of the crystal into its gaseous atoms,

NaCl(e) = Na(g) + Cl(g); AH®° = —(H3s.16)ma0
+ (A%s.16)ve@ + (Hisa0)aw (4-23)

This quantity has been tabulated in the ninth column of Tables 4-6 and
4-7, and in the eighth column of Table 4-8. Step 4 represents the ioniza-
tion of Na(g), and Ix. the ionization potential of Na(g) (expressed in
thermochemical units); the value of this quantity is known with high pre-
cision, both from analysis of the Na(g) spectrum and from direct reso-
nance potential measurements on sodium vapor. The value of ¢ in step
5 is called the electron affinity of Cl; it represents the energy released per
mole when gas ions are formed out of Cl(g) atoms, or what is equivalent,
the ionization potential of Cl—(g). For most anions, no way has been
found to measure this quantity by direct independent means; in the case
of O=, for example, its value is apparently negative and large in magnitude
(Table 4-7), which means that O=(g) could be produced from O(g) only
with the absorption of a considerable quantity of energy. The theory
has therefore generally been tested by the consistency with which the
theoretical and the thermochemical data can be correlated upon the
assignment of a suitable constant value to ¢ for a given anion throughout
a series of its compounds. Thus, in the case of NaCl, we may compute
the value of e by difference from the equation

AUg + 1.2 keal = —(H 208.16) NaCi(o) + (H 298.16)Na(e) T (H 298.16) CI(e)
+ I Na — €c1 (4—24)

using the Born-Landé theoretical value of AU?g; all the other terms in this
equation are known from experiment. The values of I and e refer to 0°K,
but the correction to 298.16°K may be neglected. In Table 4-6, electron
affinities for the halogen atoms and hydrogen have been so computed by
difference from Born-Landé theoretical lattice energies and thermo-
chemical data for the alkali halides and hydrides; one sees that in view of
the extreme simplicity of the theoretical assumptions, the consistency of
these data is excellent. In Table 4-7, similar data are presented for
various oxides, sulfides, and selenides, leading to electron-affinity values
for O, S, and Se; while there is evidence from other sources that capture of
the first electron by these atoms is an exothermic process, capture of the
second electron is evidently highly endothermic. In Table 4-8, values of
AU} (experimental) for certain other fluorides are computed from thermo-
chemical data with e = 96.3 kcal/g-atom as derived from the data for
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the alkali fluorides, and these values are compared with AU} (theoretical)
computed according to the Born-Landé theory; one sees that the agree-
ment is in general quite good.

In the particular cases of Cl, Br, and I, the electron affinities have been
directly measured by experiments ingeniously conceived by J. E. Mayer
and his associates.! Equilibrium for the reaction

KI(g) = K*(g) + I(g) (4-25)

was determined directly from measurements of the electrical conductivity
of KI vapor at high temperatures (around 1000°K), and from the general
thermodynamic relation between the variation of the equilibrium con-
stant with temperature and the enthalpy of reaction (Chap. 8) the
enthalpy of the gas reaction (4-25) was thus directly measured; by com-
bining this information with the latent heat of sublimation of KI(¢), and
the thermochemical information corresponding to the reaction of the
type (4-23), the value of Ix — € was thereby experimentally established
in terms of straightforward chemical thermodynamic data. The method
was applied also to CsI, NaCl, and RbBr, and from the known ionization
potentials of the metals, the values of € for Cl, Br, and I were determined.
The electron affinity of iodine was also determined independently from
measurements of equilibrium (ratio of electron to negative ion emission
from a W filament at 2000°K in I(g) at low pressure) for the process

I=(g) = I(g) + e(g)
The results of these experimental determinations are as follows:

ec; = 88.3 kecal/g-atom
esr = 84.2 keal/g-atom
a = 72.4 kcal/g-atom

The value for I is rather lower than the value deduced from the Born-
Landé theory in Table 4-6, but improvement in the theory by Born and
Mayer, involving the use of an exponential instead of an inverse nth
power repulsive-energy term and the introduction of a van de Waals term
in addition to the Coulomb attractive energy, has resulted in closer
agreement.?

We may conclude that the theory of ionic crystal lattice energies is in
excellent shape. The theory accounts successfully for the relative stabil-

1J. E. Mayer, Z. Physik, 61, 798-804 (1930); L. Helmholtz and J. E. Mayer, J.
Chem. Phys., 2, 245-251 (1934); P. P. Sutton and J. E. Mayer, #bid., 3, 20-28 (1935).

2 M. Born and J. E. Mayer, Z. Physik, 76, 1-18 (1932); see also J. E. Mayer and
L. Helmholsz, ¢bid., 19-29; J. E. Mayer and M. M. Maltbie, :bid., 748-752; J. E. Mayer,
J. Chem. Phys., 1, 270-279 (1933).
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ity of existing crystal structures and
for the instability of hypothetical
alternative structures.! It has been
applied also in certain cases to demon-
strate that the chemical binding may
be partially covalent in character,
rather than typically ionic; this ap-
pears to be true, for example, of Agl
and Cul.? We shall return to the
lattice energy theory in Chap. 9 (Sec.
9-4) in order to discuss its bearing on
the relative magnitudes of standard
electrode potentials in theoretical elec-
trochemistry.

4-5. Heat and Enthalpy of Solution.
The formation of a solution from its
pure components, like a chemical
transformation in the ordinary sense,
is generally accompanied by exchange
of energy with the surroundings.
Since however, the proportions of the
components can be varied, the quan-
tity of energy released or absorbed is
in general a function of the composi-
tion, whose form cannot be deduced
from purely thermodynamic reasoning
but must be established in particular
cases by empirical observation or per-

1H. G. Grimm and K. F. Herzfeld, Z.
Physik, 19, 141-166 (1923), have accounted
for the nonexistence of such hypothetical
compounds as NeCl, NaCl,, MgCls,, etc., by
showing that they would have large positive
standard enthalpies of formation, based on
reasonably assumed crystal structures; it
turns out that MgCl,(c) is considerably more
stable, by similar reasoning, than the hypo-
thetical compound MgCl(c) would be; sec
also H. G. Grimm, Z. Elektrochem., 34,
430-437 (1928).

2J. E. Mayer, J. Chem. Phys., 1, 327-334
(1933); J. E. Mayer and R. B. Levy, ibid.,
647-648.

TaBLE 4-8. THEORETICAL AND EXPERIMENTAL LATTICE ENERGIES OF FLUORIDES
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haps by theory based on extrathermodynamic evidence. In the case
of binary solutions, particularly where water is one of the components,
it has become the custom to represent the heat of solution, or quantity
of heat evolved when the solution is prepared from its pure components,
with reference to one mole of the one component, A, taken as solute;
the so-called integral molal heat of solution, Q,, is then regarded as a
function of n;, the number of moles of the other component, S (e.g., H:0),
taken as solvent. In other words, one divides the observed quantity of
heat, as obtained by straightforward calorimetry for the mixing of arbi-
trary quantities of the two components, by the number of moles of the
component regarded as the solute, and repeats the observations, varying
the proportion of solvent to solute, so as to obtain a series of @, values
corresponding to various values of n;, the number of moles of solvent per
mole of solute. Since one customarily measures heats of solution at or
corrects them to conditions of uniform temperature and pressure through-
out, the value of —@Q, represents in accordance with the general thermo-
dynamic relation, Eq. (3-36), an enthalpy change corresponding to the
process

A+n8S=A4AnS8); AH =H —n, A} — Hy = —Q, (4-26)

where H represents the enthalpy of the solution, per mole of A present,
and AS and A3 denote, respectively, the molal enthalpies of the pure
solvent and pure solute at the given temperature and pressure. There is
no distinction on purely thermodynamic grounds between solvent and
solute; the choice affects the form in which one represents the experimen-
tal data, but is quite arbitrary, depending merely on one’s point of view.
Essentially, H is an extensive property of the solution, which for fixed
temperature, pressure, and composition can vary only in direct proportion
to the total mass.

In Table 4-9, data are presented for solutions of HaSO4(1) in H,O(1) at
25°C and 1 atm, while in Table 4-10, similar data are presented for solu-
tions of HCI(g) in H,O(1).! With increasing n,, the value of @, generally
approaches asymptotically a terminal limit, @S, called the total molal heat
of solution or heat of solution at infinite dilution of the substance A in the
solvent 8. This quantity is of course a property of the particular solute
and solvent, at given temperature and pressure; its value for H,SO4(1) in
water, derived by extrapolation of the experimental data obtained at
finite solute concentrations, is given in parentheses at the bottom of the
second column in Table 4-9. The range of dilute compositions over
which @, differs insensibly from @Q° depends on the particular pair of

1From “Selected Values of Chemical Thermodynamic Properties,”” National
Bureau of Standards, Washington, D.C., 1947,
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TasLE 4-9. Heat or Sovution, H.S04() in H,O(), aT 25°C anD
1 ATMOSPHERE*
HzSOA(l) + an20(l) = stOA(‘anzO)

nl, Qly @h; Qh - Q:,
mole H,O/ keal/ keal/ keal/
mole H,SO, | mole HSO4 | mole H,SO4 | mole H.SO,

00| ...... —193.91 22.99

0.5 3.76 —197.67 19.23

1.0 6.71 —200.62 16.28

1.5 8.82 —202.73 14.17

2 10.02 —203.93 12.97

3 11.71 —205.62 11.28

4 12.92 —206.83 10.07

5 13.87 —207.78 9.12

6 14.52 —208.43 8.47

7 15.04 —208.95 7.95

8 15.44 —209.35 7.55

10 16.02 —209.93 6.97

12 16.41 —210.32 6.58

15 16.77 —210.68 6.22

20 17.09 —211.00 5.90

25 17.28 —211.19 5.71

30 17.37 —211.28 5.62

410 17.47 —211.38 5.52

50 17.53 —211.44 5.46

75 17.61 —211.52 5.38
100 17.68 —211.59 5.31
200 17.91 —211.82 5.08
300 18.09 —212.00 4.90
400 18.22 —212.13 4.77
500 18.34 —212.25 4.65
600 18.44 —212.35 4.55
700 18.54 —212.45 4.45
800 18.63 —212.54 4.36
900 18.71 —212.62 4.28
1,000 18.78 —212.69 4.21
2,000 19.33 —213.24 3.66
3,000 19.72 —213.63 3.27
4,000 19.99 —213.90 3.00
5,000 20.18 —214.09 2.81
6,000 20.34 —214.25 2.65
7,000 20.47 —214.38 2.52
8,000 20.60 —214.51 2.39
9,000 20.71 —214.62 2.28
10,000 20.81 —214.72 2.18
15,000 21.18 —215.09 1.81
20,000 21.42 —215.33 1.57
30,000 21.73 —215.64 1.26
40,000 21.93 —215.84 1.06
50,000 22.07 —215.98 0.92
70,000 22.24 —216.15 0.75
100,000 22.38 —216.29 0.61
200,000 22.59 —216.50 0.40
500,000 22.78 —216.69 0.21
(% (22.99) —216.90 0.00

* SourcE: “Selected Values of Chemical Thermodynamic Properties,” National Bureau of Standards,
Washington, D.C., Sept. 30, 1947.
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* Sourcn: **Selected Values of Chemical Thermodynamic Properties,” National Bureau of Standards,

TABLE 4-10.

PRINCIPLES OF CHEMICAL THERMODYNAMICS

IIeaT oF Sorurtion, HCl(g) iy I1I,0(1), AT 25°C anD
1 ATMOSPHERE*
HCl(g) + ».H.0(1) = HCl(n,11.0)

N, Q., s, Pn — ‘I’:,
mole HO/ keal/ kecal/ keal/
mole HCl mole HCl mole HCI mole HCI

0 | ........ —22.063 17.960

1 6.268 —28.331 11.692

2 11.668 -33.731 6.292

3 13.588 —35.651 4.372

4 14.628 —36.691 3.332

5 15.308 —37.371 2.652

6 15.748 —37.811 2.212

8 16.308 —38.371 1.652
10 16.608 —38.671 1.352
12 16.784 —38.847 1.176
15 16.967 —39.030 0.993
20 17.155 —39.218 0.805
25 17.272 —39.335 0.688
30 17.350 —39.413 0.610
40 17.453 —39.516 0.507
50 17.514 —39.577 0.446
75 17.602 —39.665 0.358
100 17.650 —39.713 0.310
200 17.735 —39.798 0.225
300 17.774 —39.837 0.186
400 17.796 —39.859 0.164
500 17.811 —39.874 0.149
700 17.832 —39.895 0.128

1,000 17.850 —39.913 0.110

2,000 17.883 —39.946 0.077

3,000 17.897 —39.960 0.063

4,000 17.905 —39.968 0.055

5,000 17.909 —39.972 0.051

7,000 17.919 —39.982 0.041

10,000 17.924 —39.987 0.036

20,000 17.935 —39.998 0.025

50,000 17.944 —40.007 0.016

100,000 17.949 —40.012 0.011
© (17.960) —40.023 0.000

‘Washington, D.C., Mar. 31, 1947.
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components involved. Thus for H,SO, in H;0, a significant difference
persists even at dilutions beyond 7, = 20,000 moles H,0/mole H,SO,,
whereas for HCI in H,0, the difference is less than 0.2 kcal/mole at dilu-
tions beyond n; = 400 moles H:O/mole HCI; the difference in the case of
H,S0; is no doubt associated with the progress of secondary ionization in
the dilute range. We shall see in Sec. 7-3 that @, = Q° so long as the
solvent satisfies Raoult’s law, in the so-called ideal dilute solution; in fact,
if both components satisfy Raoult’s law and form solutions ideal over the
entire composition range, then @, = 0 for all compositions.

Now, aside from being interested in the heat of solution itself, because
of its bearing on problems of heat transfer that may arise in chemical
technology (e.g., the removal of the heat released when sulfuric acid is
diluted with water on a large scale), we are interested also in heats of
chemical reactions involving one or more components present in solution,
e.g., reactions involving H,SO, in aqueous solution. Two special situa-
tions call for our attention. We shall discuss them separately in the
paragraphs immediately following.

In one situation commonly encountered, a substance A in solution,
present originally at concentration 1:#%;, is practically completely removed
as a result of the reaction. If, for example, excess Zn(c) is added to
H,S04(100 H:0), then the H;SO4 disappears practically completely from
the solution, and is replaced by an equivalent quantity of ZnSO,. In
this case, it is evident according to the first law of thermodynamics that
the substance 4 will contribute to the enthalpy of reaction a term equal
to its standard molal enthalpy of formation in the pure state, less its
integral molal heat of solution corresponding to the given initial concen-
tration. Let us denote this term by the symbol &;,

®, = A - Q, (T, p const) (4-27)
Then it follows from Eq. (4-26) that
&, = H — n, M3 (4-28)

that is, &, represents the difference between the enthalpy of the solution,
per mole of solute present, and the enthalpy of the pure solvent; it is
called the apparent molal enthalpy of the solute. In the situation under
consideration, to treat the solvent in solution as though it had the same
enthalpy as in the pure state is an entirely consistent procedure, inasmuch
as the reaction effects a complete separation between the solute (which is
consumed by the reaction) and the solvent. Similar reasoning shows
that &, likewise represents the contribution per mole of A to the enthalpy
of a reaction in which A appears as a product in solution at the ultimate
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concentration 1:n;, no A being originally present. Thus, we may write
for the reaction between excess Zn(c) and H,SO4(100 H,0), bearing in
mind that the standard enthalpies of the elements in their normal allo-
tropic forms are taken by convention to be zero,

Zn(c) + H:S04(100 H,0) = ZnS0,(100 H,0) + H.(g);
AH = (Pn)znsoc — (Pa)mso, (4-29)

where in this case, both ®, values refer to the same stoichiometric concen-
tration, 1:100 H,O. Values of the quantity ®, are commonly tabulated
directly in thermochemical tables, for various values of n,, as the enthalpy
of formation in solution of the substance A in the given solvent S. Such
values are given in the third columns of Tables 4-9 and 4-10.! It is
obvious that in order to construct a table of ®, values, one must have in
addition to the heats of solution, the heat of some chemical transformation
involving the compound, either in the pure state or in solution at a given
concentration, with other substances whose standard enthalpies of forma-
tion have been established. In fact, the direct measurement of the heat
of the reaction (4-29), combined with measurement of the heat of solution
of ZnSO,(c), serves as one experimental method of establishing the value
of Hj 0., in relation to the independently established value of (®1)uss0,.
The terminal value of ®; for a given solute at sufficiently dilute concen-
tration in a given solvent is obtained from the total molal heat of solution,

@2, in accordance with the definition (4-27),
&, = lim &, = H; — Q (4-30)

ni— o

This is a characteristic property of the solute in the particular solvent at
given temperature and pressure, independent of concentration, and is
known as the standard enthalpy of formation tn solution of the solute in the
given solvent. For reasons that we shall discuss at length in Chap. 7,
it is convenient for us to adopt as the standard reference state of a sub-
stance 4 in solution in a given solvent S, a hypothetical ideal dilute solu-

11t is actually in such form, &, values for selected values of n;, that the thermo-
chemical data for solutions, such as are represented in Tables 4-9 and 4-10, appear in
the definitive compilation by the National Bureau of Standards, ‘‘Selected Values of
Chemical Thermodynamic Properties.” We have calculated the @, values given in
Tables 4-9 and 4-10 by difference according to Eq. (4-27), for our purpose, though of
course the original experimental data from which the tables in ‘‘Selected Values”
were compiled consist essentially of Q. measurements. In the older compilation by
F. R. Bichowski and F. D. Rossini, “Thermochemistry of Chemical Substances,”
Reinhold Publishing Corporation, New York, 1936, the thermochemical data for
substances in solution are tabulated in terms of —&;, the molal heat of formation in
solution, for selected values of n..
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tion at some specified finite concentration (generally 1 mole per kg of
solvent, when the solvent happens to be water), in which the substance
would have the same &, value as at infinite dilution, namely, &3; the
solvent is then supposed to have the same enthalpy as in the pure state,
namely, H;. The reason for specifying a finite concentration for the
hypothetical reference state, instead of merely the infinitely dilute solu-
tion itself, is that certain other important thermodynamic properties of
the solute based on the second law of thermodynamics, while satisfying
well-established empirical laws in the ideal dilute range, fail to remain
finite as the solute concentration approaches zero. A similar situation is
encountered in the behavior of pure gases; the values of Hr and Ur, as
well as of C, and C,, approach finite limits as p — 0, but the important
entropy and free-energy functions introduced in Chap. 5 increase and
decrease, respectively, without limit as p — 0; therefore it is convenient
to refer the thermodynamic properties to a hypothetical ideal-gas state
at p = 1 atm, as shown in Sec. 6-1. The standard state of a solute in
aqueous solution is generally indicated by the symbol (aq), e.g., asin
HzSO4(aq).

It is convenient also for us to compute the relative apparent molal
enthalpy with respect to the state of the solute in infinitely dilute solution,

& — & = —(Q — Q) (4-31)

This quantity, tabulated in the fourth columns of Tables 4-9 and 4-10,
clearly represents the negative of the quantity of heat that would be
evolved per mole of solute if the solution of given composition, 1:n,, to
which the value of (&, — ®;) refers were to be diluted with sufficient
solvent until no thermal effect on further dilution would be observed.
In view of the first law of thermodynamics, it is evident that the heat of
dilution per mole of solute corresponding to a change from one concentra-
tion 1:n] to another 1:n7 by the addition of pure solvent, is given by the
difference between the Q, values for the two concentrations, or what
amounts to the same thing, by the negative of the difference between the
corresponding (®, — ®;) values

Q:=Q/ — Q= (8 — &) — (& — &) (4-32)

Thus, from the data in Table 4-9, if sulfuric acid at 1H,S04:2H,0 con-
centration is diluted with pure water to 1H,SO4:10H,0 concentration,
then the quantity of heat liberated per mole of H.SO, at 25°C and 1 atm
is 16.02 — 10.02 = 6.00 kcal. On the other hand, if sulfuric acid at
original concentration of 1H,SO,:10H,O were to be concentrated to
1H,S04:2H,0 by the removal of water through evaporation, then 6.00
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keal of thermal energy per mole of HoSO4 present would be required, in
addition to the latent heat of vaporization of the corresponding quantity
of pure water removed at the given temperature. Practical methods for
deriving the value of @} (or of Q°) precisely from heat-of-dilution data,
combined with an accurate heat-of-solution measurement at some one low
solute concentration, are described in an important paper by F. D.
Rossini, in which results are given for aqueous solutions of a number of
electrolytes.! The interionic attraction theory of P. Debye and E.
Hiickel discussed in Sec. 7-4 provides a theoretical basis for the precise
extrapolation of thermal data for electrolytes to zero solute concentration.

The other situation arising in connection with the thermochemistry of
solutions concerns virtual or infinitesimal transformations that leave the
composition of the solution practically unchanged. Such transformations
are of particular intercst in the study of systems in equilibrium states,
e.g., as in the study of the vaporization of H,O from a sulfuric acid solu-
tion at its own instantaneous partial vapor pressure. The theory is
applicable also to the ‘“differential”’ reaction

Zn(c) + HsS804(niH;0) = ZnS04(nYH:0) + H2(g)
taking place in the galvanic cell
Zn(c)|ZnS04(nyH;0)||HsS04(n H.0)|[H.(g),(Pt)

as a small quantity of electricity is discharged; this reaction differs from
the “integral’ reaction represented by Eq. (4-29) in that H,SO, dis-
appears from the right-hand compartment and ZnSO, appears in the left-
hand compartment at the essentially constant concentrations, 1:n; and
1:nY, respectively, so long as the quantity of electricity discharged
remains small in comparison with the capacity of the cell; a situation
similar with respect to the H,S04 though not with respect to ZnSO,,
would arise if one were to add directly a small quantity of Zn(c) to a rela-
tively large quantity of H,SO, in solution. A knowledge of the differ-
ential enthalpies of the components of a solution may be of direct practical
importance also in the control of continuous flow processes, in which one
of the components is being consumed or produced through some chemical
or physical transformation, but its concentration in the reaction mixture
is maintained constant through continuous addition or removal (e.g., by
extraction or distillation) as the transformation proceeds.? Let us there-
fore define differential or so-called pariial molal enthalpies of the com-

1F. D. Rossini, J. Research Natl. Bur. Standards, 6, 791-806 (1931).
2 See, for example, T. S. Mertes and A. P. Colburn, Ind. Eng. Chem., 39, 787-796
(1947).
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ponents by means of the symbolic operations

dH dH
m= ((Tn—l)m,c; N2 = (71;1,—2 ,p0 (4-33)

While we shall confine the discussion to binary solutions, the treatment
may be generalized to include polycomponent systems, if the necessary
thermochemical data are available. The subscript ¢ following the differ-
ential coefficients in Eqs. (4-33) denotes that the composition is regarded
as essentially constant during the operation by which the increase of H
per mole of either component added is measured; this operation consists
in principle of measuring the heat absorbed in the limit as An, or An,,
respectively, approaches zero (with 7' and p constant and W’ = 0). We
assume in other words that the quantities 5, and 5, themselves vary with
the composition of the solution by infinitesimals of order higher than that
of dn; and dn., an assumption borne out by the nature of the experimental
data concerned. The values of #; and 5, thus represent the terms prop-
erly contributed per mole of solvent S (designated as component 1) or
per mole of solute A (designated as component 2), respectively, to the
instantaneous enthalpy change of any process involving either substance,
if it is carried out in such a way that the composition of the solution
changes only infinitesimally. Thus, for the chemical reaction (4-29) as
carried out in a galvanic cell, with discharge of a relatively small quantity
of electricity, AH = %z.s0 — mmso,; the two quantities nz.s0, and 7m0,
depend on the particular electrolyte concentrations, as well as on tem-
perature and pressure.

Let us develop some of the mathematical properties of the quantities 5,
and 72 and, in particular, devise methods for computing their values from
experimental data in such forms as have been presented in Tables 4-9 and
4-10. To a first order of approximation, we may represent the change
in the total enthalpy of the solution corresponding to changes in the quan-
tities of the components present, at constant temperature and pressure,
by means of the formal expression

dH dH
dH = (%1)1"1,’,, d’n]_ + (d_’n—g)r’p’c d’nz
= n1dny + 12 dng (T, p const) (4-34)

This general functional relationship, which includes possible changes in
the total mass of the solution, has, however, a special character resulting
from the fact that H is necessarily an extensive property of the solution.
No enthalpy change takes place when several portions of the same
solution, all at the same temperature, pressure, and composition, are
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combined; therefore H must equal the sum of the enthalpy values of any
portions of the solution, all having the same temperature, pressure, and
composition, from which the solution may be regarded as made up, 7.e., it
" must increase in direct proportion to the total mass. The quantities 7,
and 7. are equally clearly infensive properties of the solution, which may
vary with temperature, pressure, and composition, but from the nature of
their definition are independent of the total mass. If, then, n; and n, are
increased in the same proportion, dni = Ani, dns = Ans, leaving the com-
position unchanged, 7, and 72 undergo no change, but H must likewise
increase in the same proportion, dH = AH, since the change under con-
sideration is equivalent merely to an increase in the total quantity of the
solution. Substituting these conditions in Equation (4-34), we infer that

H = nim + nane (4-35)

The partial molal enthalpies 7, and »; represent in other words the prop-
erly additive contributions made by the components to the total enthalpy
of the solution. If Q, were zero for all compositions (as is actually the
case for certain ideal mixtures, including in particular most gas mixtures
at sufficiently low pressures), so that

H = n;ﬁ‘l’ + ’nzﬁg (Q. = 0)

then we should have 7, = HS and 5. = HY at all compositions, but in
general, the values of 51 and 7. differ from the standard molal enthalpies
of the pure components.

If we differentiate Eq. (4-35) in the most general manner with respect
to changes in the variables n; and n.,

dH = n1dny + nidn 4+ n2dne + nadna (T, p const)
and then compare the result with Eq. (4-34), we draw the inference that
nydn + nadpe =0 (T, p const) (4-36)

Thus, the two partial molal enthalpies of a binary solution do not vary
independently with composition, but are interrelated in such a way that
if we have determined the value of either as a function of the composition,
then we may calculate the value of the other by graphical or numerical
integration of Eq. (4-36). The integration introduces an additive inte-
gration constant, whose value may be determined from knowledge of the
terminal value of the partial molal enthalpy in question at either end of
the composition scale; for in terms of the concepts embodied in Egs.
(4-27), (4-28), and (4-30), it is clear that

lim n = ﬁg; lim N2 = 77‘2’ = ‘I’:; lim N2 = ﬁg (4‘37)

(n3/n1)—0 (n2/n1)—0 (n2/n1)—
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Equation (4-36) is a special case of the general Gibbs-Duhem equation
(3-16), introduced in Sec. 3-1.

We may proceed to evaluate 7, and 7; from empirical heat-of-solution
data such as are presented in Tables 4-9 and 4-10 according to several
mathematically equivalent forms, to suit our convenience. Thus, from
Eqgs. (4-28) and (4-35), if we bear in mind that the quantity ®s has been
set up with ns = 1 mole by convention,

H =& +nHl} =nm~+ 1 (@6 =1mole) (4-38)
Applying the definition (4-33) of 7, to the first equality in Eq. (4-38),

dq’h + Ho

whereupon, on substitution back in the second equality of Eq. (4-38),

_ dds
72 = P ny — an,

These two equations express 7; and 52 in terms of ®; and its rate of change
with n,; it is of course impossible to derive the values of 5, and 7, at a
given composition from heat-of-solution data obtained only at the one
composition, since by their very nature, they imply a knowledge of how
the enthalpy of solution varies with change in the composition. It is
more convenient for us to work with (®, — ®;) rather than with &,
itself, since the values of (®, — ®5) may be derived directly from heat-of-
solution data [by means of Eq. (4-31)] without explicit knowledge of the
values of HS and Hj; thus
° __ d(q)h - 4>h)
m— B =

72— B = (Bn — D) — g

(4-39)

d(®n — ®3)
dn1

Equations (4-39) and (4-40) express the values of n; and 7%, relative to
their terminal values at infinite dilution in the component regarded as the
solvent (component 1), in terms of (®, — ®;) and its rate of change with n;
at the particular composition in question. The value of d(®, — ®})/dn,
for any given value of n; may be read graphically from a plot of (&, — &})
vs.n;. Thus, from the lower curve in Fig. 4-1, where such a plot has been
constructed for H;SO+H,0 solutions from the data in Table 4-9, one
finds that at n; = 2000 moles H;O/mole H,SO,, the slope is —0.00047
kcal/mole H,O; therefore

m — Hyoq = —0.00047 keal/mole
— (B agores = 3.66 — 2000(—0.00047)
= 4.60 kcal/mole

(4-40)
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The difference is almost insignificant for the solvent H,O; but since
for HoS04, &) — Hiso = —22.99 kecal/mole, one may infer that
n2 — Hygouy = —18.39 keal/mole; thus, 7 differs significantly at the
given concentration both from its value at infinitely dilute solution and
from the value of Hj g0, for the pure solute. Likewise, from the upper

n; (mole HpoO/mole H,S0,)
0 100 200 300 400 500 600 700 800 900 1000

8
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Fig. 4-1. (P — ®1°) vs. ni for solutions of HzS04() in H.O(l) at 25°C (data given in
Table 4-9).

curve in Fig. 4-1, one reads at n, = 400 moles H:O/mole HsS04 the
slope, —0.00128 kcal/mole H;0O; thus

m — Hyon = —0.0013 keal/mole
- (Qz)}{’so‘(nq) = 4.77 - 400(_0-00128)
= 5.28 kecal/mole

Where (&, — ®;) shows significant variation over as wide a range of n:
values as in the case of H,S0,-H:0 solutions, it may be more convenient
for us to plot (@ — ®3) vs. log n4, as in Fig. 4-2; Eqgs. (4—39) and (4-40)
may be put in the equivalent forms

_g° — 1 d(q)h —_ ‘I):)
1 M= n dlnn, (4-41)
7 — &) = (B — B}) — (@ — 2i) (4-42)

dlinn,
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The differential coefficient appearing in this pair of equations may be
read as 0.4343 times the slope of the (®, — ®3) vs. log n; graph. Thus,

n, (mole HyO/mole HyS04)

209! I 10 100
1 (Scale for upper curve
N
N
\

15 \
s
O \
;§ \\\\u
3 10 <
o IN
X
g N
A N

N ‘J\\ Tangent at HH
™~ n;=9mole HoO/mole HoSOq
\N\~~
~
0 (Scale for lower curve) im
100 1000 10,000 100,000

n, (mole Hp O/ mole Hp SO4)
Fig. 4-2. (®n — $°) vs. log 71 for HaS0+H 0 solutions at 25°C (same data as in Fig. 4-1).

from Fig. 4-2, one finds that at n; = 9 moles H;O/mole H,SO,,
d(®, — ®3)/d(log n1) = —6.29 kcal/mole H,SOy;
therefore d(®, — ®3)/d(In n;) = —2.73 keal/mole H2S04, and thus

m — Hypon = ¥6(—2.73) = —0.303 kcal/mole H,0
72 — (B%)msoiay = 7-20 + 2.73 = 9.93 kcal/mole H,SO,

The latter re_s_ault isequivalent ton, — H3 g0,y = —13.06 keal/mole HoSO,,
since ®;, — Hygouy = —Qs = —22.99 kcal/mole H,SO4.!

1 Other functions of the composition may be used as independent variable, or plot-
ting function. Thus, F. D. Rossini, J. Research Natl. Bur. Standards, 6, 791-806
(1931), has used 4/m. when dealing with 1:1 electrolytes such as HCl and NaCl
in aqueous solution. The molality m. represents the number of moles of solute per
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An alternative graphical method for determining the relative partial
molal enthalpies, (1 — H3) and (3. — H3), is based on a plot of the
enthalpy of solution per mole of solution formed vs. the mole fraction of
either component; this graph has certain practical advantages for the
more concentrated solutions. Thus, from Eqs. (4-35) and (4-26), if we
bear in mind that the heat-of-solution data corresponding to Eq. (4-26)
have been expressed with n, = 1 mole throughout,

= (2 — ﬂg) + ni(m — -‘1,)
If we now divide by (1 + n.), the total number of moles of solution corre-
sponding to Q,
—Qc —- 1 o
T~ igm - I+
= Zs(n2 — H3) + z1(m — H°)

where z; and z: denote, respectively, the mole fractions of the solvent
(component 1) and the solute (component 2). Since in a binary solution
z3 = 1 — z;, therefore

(m — HY)

—9 _ AB = (e — B + wil(n — HD — (1 — )] (443)

1 + ni
Thus, if one plots —Q,/(1 + n1) vs. x1, as in Fig. 4-3, then the slope of the
tangent to the curve at any value of ;1 is equal to [(n1 — H?) — (9. — H3)].

kilogram of solvent, so that by definition,
11000 g/kg
ms M, .
where M represents thé solvent’s molecular weight (18.016 g/mole in the case of
H;0). One may thus readily prove that
m,3% M 1

dnl( )=~ 1000g/kgdmz% )
whence Egs. (4-39) and (4-40) assume the forms
% - 0.
-0 ma M, d(q’h - q)h)
—H =—— 4-41
mT 2 1000 g/kg dm.% ,

d(® — ;)
d’mz"é

The difterential coefficient appearing in Eqs. (4-41a) and (4-42a) may be read as the
slope of the graphic plot of (&, — ®;) vs. ms*%. The relationship between (&, — &;)
or &, itself and m,* for strong electrolytes tends to become linear as m; — 0 [see
Eq. (7-4-43c) and the accompanying discussion in Sec. 7-4], in the absence of hydrolysis
or other complications (such as partial secondary ionization in the case of H,SO, in
dilute aqueous solution); this fact permits one to evaluate &, precisely by graphical
extrapolation of the &, vs. m,” plot.

° o 1
n — P, (B — ®,) + 5 mz’6 (4-42a)
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It follows that the intercept of the tangent to the curve on the z; = 0
axis is eqq_al to (n2 — H3), while its intercept on the z;, = 1 axis is equal
to (m — HY}). Applying this method at

z1 = 0.75(n; = 3 moles H;O/mole H,S0,),
we obtain (91 — Hy,on) = —1.46 keal/mole and
(7]2 - —gﬁo‘(n) = _7.34 kcal/mole

(the intercept on the z; = 0 axis is off the diagram, but may easily be
computed from the slope and location of the tangent line).

-40 \ l I

\\ejongent at

/— \ ¥#20=0.75
/ AN

\
B // \ \
J/

[0) Ql 02 03 Q04 05 06 O7 08 09
Xn0
Fia. 4-3. Enthalpy of solution per mole of solutlon formed, plotted against z1, for HzSO«
H 20 solutions at 25°C.

-Z,/(1+n, )k cal/mole)
_—
//

In Table 4-11, partial molal enthalpies relative to the pure liquid com-
ponents are summarized for H,S0,-H:0 solutions at 25°C and 1 atm;
they have been derived from the data in Table 4-9 by means of a com-
bination of these graphic methods. Thus, if one wishes to represent
precisely the differential enthalpy change of the chemical reaction taking
place in the lead storage cell as a relatively small quantity of electricity
is discharged, one will use the expression
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Pb(C) + PbOz(C) + 2H2$O4(1H2804:n1H20)
_ = 2PbSO4(C) + 2H20(1H2804:n1H20)
AH = 2H gbﬂo.(o) + 27,0 — H gbOz(o) — 27nm.s0,

where 7u,0 and 7a,s0, differ from the standard molal enthalpies of forma-
tion of the pure liquid components by the amounts given in Table 4-11.1

TaBLE 4-11. PARTIAL MorLAL ENTHALPIES IN H:SO-H.0 SoruTtions AT 25°C AND
1 ATMOSPHERE

ZH80, ny Wt % NH;0 — H;{zou), MH,804 — H:{,so.(l)»
na H.S0, keal /mole keal/mole
0.00 © . 0.00 0 —22.99
0.01 99.0 5.19 —0.002 —17.48
0.05 19.0 22.27 —0.044 —16.24
0.10 9.0 37.70 —-0.27 —13.06
0.15 5.67 49.00 -0.71 —10.36
0.20 4.0 57.63 —1.09 — 8.54
0.25 3.0 64.48 —1.46 - 7.34
0.30 2.33 70.00 —1.86 - 6.31
0.35 1.86 74.57 —-2.16 - 5.69
0.40 1.50 78.40 -3.17 — 4.06
0.45 1.22 81.67 —4.43 - 2.34
0.50 1.00 84.48 —-5.20 — 1.50
0.55 0.82 86.93 —5.55 - 1.19
0.60 0.67 89.09 —5.78 - 1.00
0.65 0.54 90.99 —6.29 - 0.71
0.70 0.43 92.71 —6.69 — 0.51
0.75 0.33 94.24 -7.12 - 0.32
0.80 0.25 95.61 —7.92 - 0.12
1.00 0 100.00 —10.65 0

The partial molal enthalpies are directly useful in straightforward
thermal calculations involving the mixing or dilution of solutions of the
two components. The basis of such computations is Eq. (4-35), which
represents the total enthalpy of the solution in terms of its composition
and the partial molal enthalpies of the components. If one combines
this equation with the stoichiometric equation for the process under con-
sideration, one has all the information necessary in order to compute the
thermal effect from a table of partial molal enthalpies. Let us compute

1 The thermochemical properties of H,SO,~-H,0 soluticns have been treated com-

prehensively by D. N. Craig and G. W. Vinal, J. Research Natl. Bur. Standards,.
24, 475-490 (1940), with particular reference to the lead storage cell reaction.
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from Table 4-11, for example, the enthalpy change (the negative of the
quantity of heat evolved at constant temperature and pressure) when a
sufficient quantity of 84.48 per cent H,SO, is added to 100 g of 49.00 per
cent H,SO4 so that the final concentration is 70.00 per cent. One readily
calculates that the quantity of the more concentrated acid required is
145 g; thus, the change under consideration may be represented by the
stoichiometric equation

0.50H,S04(z2 = 0.15) + 2.83H;0(z2 = 0.15)

where z, represents the mole fraction of H,SO, in the sulfuric acid solu-
tions. The corresponding enthalpy change, according to Eq. (4-35), has
the form

—0.50n2(z2s = 0.15) — 2.83n1(z2 = 0.15)
—1.25n5(x2 = 0.50) — 1.259;(z2 = 0.50)

We may evidently substitute relative partial molal enthalpies, (n; — H?)
and (g — HY), in place of “absolute” values, n; and 7, since the terms
contributed by introducing H$ and HS cancel out; thus, substituting from
Table 4-11,

AH = 1.75(—6.31) + 4.08(—1.86)
—0.50(—10.36) — 2.83(—0.71)
—1.25(—1.50) — 1.25(—5.20) = —3.07 keal

The data for H,SO4-H20 solutions have been extended by R. A. Morgen
to include oleums containing up to 100 per cent free SO3(1).! For this
purpose, it is convenient to regard SO;(l) and H2O(l) as the components.
Solutions containing less than xzso, = 0.50 are of course identical with
H:S0+H,0 solutions of equivalent concentrations; <.e., a solution con-
taining xso, = 0.100 is identical with a solution containing zm,s0, = 0.111.
The value of 7m0 for a particular composition is evidently the same,
whether we express the composition in terms of SO; or of H,SO4 as the
other component; this follows from the nature of the definition (4-33),
which contains no reference to the manner in which the composition is
defined. The value of 7s0, is, however, equal tothe value of 7w,80, — 780
in a solution of the same actual composition, inasmuch as the addition of
1 mole of HsSO4(1) to a relatively large quantity of the solution, the
process whose enthalpy change defines 7a.s0,, is identical in net effect with

1R. A. Morgen, Ind. Eng. Chem., 34, 571-574 (1942).
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the separate additions of 1 mole of H,O(1) plus 1 mole of SOs(1) to a rela-
tively large quantity of the same solution. The partial molal enthalpies
relative to the standard molal enthalpies of the pure compounds are there-
fore related through the equation

[780, — Hgom)] = [ﬂmsm - Hfmo.m] - [113.0— ﬁ?nom]
+ [H?uso.a) - ﬂgo.u) - H;’noa)]

The last term on the right represents the enthalpy of the reaction
S0s(1) + H.0(1) = HsS04()

which Morgen has shown to have the value AH = —21.18 keal (at 18°C
and 1 atm). For solutions containing more than zso, = 0.50 (%.e., con-
taining free SO;, in excess of that theoretically required in order to form
the compound H.SO, with all the water present), one of course requires
further experimental data beyond that contained in Table 4-9, viz., heats
of dilution with water for oleums of various free SO; concentrations.
From a review of the existing data, Morgen computed the results sum-
marized in Table 4-12. These data refer to 18°C and 1 atm; heat-
capacity data are not known with sufficient accuracy for oleum mixtures
to warrant correction of the data to 25°C. Examples illustrating the use
of these data are given by Morgen in the reference cited (see also Prob.
4-29).

The mathematical treatment just described for the resolution of the
enthalpy of a binary solution into partial molal enthalpy terms contrib-
uted by the components is quite general, and it may be applied to other
extensive properties of the solution, such as its volume, its heat capacity,
etc. The experimental data called for consist of measurements of the
property in question for various compositions of the solution, in relation
to the values of the property for the pure components. If B represents
the extensive property, then the basic relationship involved may be
expressed in the form

B = n181 + nsBs = miBy + n:.B3 + AB (T, p const) (4-44)

where 8; and B; represent the values of the two partial molal quantities

corresponding to the composition n;:7n,, B} and Bj represent the values of

the property for the two pure components in specified states, and AB

represents the net change in the value of the property when the solution

is formed from n; moles of the one component and 7. moles of the other.
One may easily prove as a generalization of Eq. (3-39) that

( ),c dng),., = (1s) (4-45)
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where (v,): represents the partial molal heat capacity at constant pressure
of component 7 in the solution. The partial molal heat capacities may be
derived from measurements of C, for solutions of various compositions
and for the pure components by methods similar to those used for deriving

TABLE 4-12. PARTIAL MorAL ENTHALPIES IN SO;-H;0 SorLuTions* AT 18°C AND

1 ATMOSPHERE

Per cent by weight AH
per mole |nmo0 — Hysoa, | 1808 — Hgosays
T80, Free 8Os, [ of soln, keal /moig() kcal/m‘:)(i:a()
S0s HS04 | based on | ical /mole
H.S0,
0.00 0.0 0.0 | ..... | ....... 0.00 (—43.25)
0.02 8.3 10.2 | ..... —0.78 —0.01 —38.5
0.04 15.6 19.1 | ..... —1.51 —0.02 —-37.5
0.05 19.0 23,2 | ..... —1.89 —0.08 —37.3
0.07 25.1 30.8 | ..... —2.62 —0.21 —36.8
0.10 33.6 40.5 | ..... —3.65 —0.50 —32.11
0.15 44.0 53.8 | ..... —5.15 —0.85 —30.09
0.20 52.6 64.4 | ..... —6.63 —-1.21 —28.11
0.25 59.7 73.1 | ..... —7.80 —2.59 —23.57
0.30 65.6 8.6 | ..... —8.79 —3.98 —19.90
0.35 70.5 8.4 | ..... —9.47 —5.16 —17.50
0.40 74.8 91.6 | ..... —10.00 —6.33 —15.48
0.45 78.4 9.1 | ..... —10.41 —7.80 —13.60
0.50 81.6 100.0 | ..... —10.59 —10.59 —10.59
0.52 8.5 | ..... 6.4 —10.45 —15.92 —5.40
0.55 84.5 | ..... 15.4 —10.10 —-17.17 —4.35
0.60 87.0 | ..... 29.0 - 9.37 —19.50 —2.60
0.65 89.2 | ..... 41.2 — 8.52 —19.50 —2.60
0.70 91.2 | ..... 52.1 — 7.68 —20.28 —2.22
0.75 93.0 | ..... 62.0 — 6.61 —23.35 —1.01
0.80 94.7 | ..... 71.0 — 5.48 —23.56 —0.95
0.85 9.2 | ..... 79.2 — 4.25 —23.95 —0.80
0.90 97.6 | ..... 86.7 — 3.03 —27.21 —-0.39
0.95 98.8 | ..... 93.6 — 1.60 -31.0 —-0.10
1.00{ 100.0 | ..... 100.0 | ....... (—37.0) 0.00

*R. A. Morgen, Ind. Eng. Chem., 84, 571-574 (1942), with permission.

7; values from enthalpy data.

F. D. Rossini has shown that for many 1:1

electrolytes in aqueous solution, the value of (¥, — ®;) is empirically a

linear function of m.%, of the form
b, — B = Amy¥ (4-46)

where A is a constant, at given temperature and pressure, characteristic
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of the particular electrolyte, and ®, represents the apparent molal heat
capacity of the solute, defined analogously to ®s in Eq. (4-28); that is, ®,
is computed from the specific heat c, of the solution and the specific heat
(¢2)1 of the pure solvent (e.g., 0.9989 cal/g deg for H.O(l) at 25°C and 1
atm) by means of the equation

_ (1000 g/kg - _ 1000 g/kg , o
d, = (T + M )e, e (o (4-47)
The first term on the right of Eq. (4-47) represents the total heat capacity
of the solution per mole of solute, at molality m,, and the second term
represents the heat capacity of the corresponding quantity of pure sol-
vent.! If the empirical finding, Eq. (4-46), is substituted in the equations
analogous to (4-41a) and (4-42a), one obtains the semiempirical equations
for the two partial molal heat capacities
~O A M 1
— =2 3
(rp)2 — ®] = 35A(ma)% (4-49)

where ®; represents the terminal value of ®. and of (v,): in infinitely
dilute solution, another empirical property of the particular electrolyte
in the given solvent. These simple equations apply over an astonishingly
wide range of solute concentrations for many electrolytes in aqueous
solution; thus, for HCI solutions at 25°C, Rossini has shown that with
®; = —32.5 and A = 7.2 (in cal/mole deg), they are reasonably accurate
over the range 0 to 16m. If Eq. (4-46) is valid over the composition
range in which one is interested, then it is necessary to have experimental
¢, values at but two different solute concentrations in order to establish
the values of ®] and A for the given electrolyte. Table 4-13 contains best
values of these constants selected by Rossini for a number of 1:1 electro-
lytes at 25°C; the values of A are practically independent of temperature
over the range 18 to 25°C, whereas d®;/dT = d(v,)2/dT has the approxi-
mate value 0.29 cal/mole (deg)2.

The standard enthalpy of formation of a strong electrolyte in aqueous
solution, ®; = 73, may be represented according to Arrhenius’s ionization
theory as a sum of independent terms contributed by the ions. In
general, we cannot so represent &, or 7, at finite solute concentrations,
because of interionic attraction and other more specific interactions
between the ions and ‘with the solvent. The ®; or 53 limit, however,
refers to infinitely dilute solution in the given solvent, where general

1F. D. Rossini, J. Research Natl. Bur. Standards, 4, 313-327 (1930); 7, 47-55
(1931); 9, 679-702 (1932),
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TaBLE 4-13. PARTIAL MorAL HEAT CAPACITIES OF 1:1 ELECTROLYTES IN AQUEOUS
SoLuTiON AT 25°C*
0 . ) « . -
The constants A and &, in the semiempirical equations

o A(mo)%
()1 = (Cplusom — 2(55.50g':n)ole/kg)
(vs)2 = (#) + 35A(m)*

[Equations (4-48) and (4-49)]; over the range 18 to 25°C, A may be taken as constant,
whereas do,/dT = 0.29 cal/mole deg?.

Electrolyte <I>: A
HCIl -32.5 7.2
HBr -33.0 12.4
HI -33.7 15.9
HNO; —21.3 11.5
LiCl —16.2 6.1
LiBr —-16.7 9.2
Lil —17.4 11.8
LINO; - 5.0 9.3
LiOH —21.6 17.9
NaCl —23.8 14.4
NaBr —24.3 13.6
Nal —-25.0 16.6
NaNO; —12.6 20.0
NaOH —29.2 19.0
KCl —29.0 11.2
KBr —-29.5 10.8
KI —-30.2 13.6
KNO; —17.8 19.1
KOH —34.4 16.1

* F. D. Rossini, J. Research Natl. Bur. Standards, T, 47-55 (1931).

electrostatic and specific interionic effects have presumably vanished.
Thus, we may regard nxci.q 88 made up of a sum of independent terms:
Nx+ea) T Mo1-mayy WhETe N+, represents the value of the term contributed
by K* ion to ®; or n; of any strong electrolyte containing that ion, and
No1-a T€Presents similarly the value of the term contributed by Cl~- for
any strong electrolyte containing that ion. The experimental fact that
the ®; values of strong electrolytes in aqueous solution (in particular)
may be so represented in terms of additive contributions of the ions, con-
stituted one of the most impressive pieces of evidence for Arrhenius’s
original theory.

Now, it is at present impossible for us to establish by any known tech-
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nique the 7° or ®; value of any single ion independently in a particular
solvent such as water. To be able to do so would imply that we had
some means of preparing an aqueous solution containing only the single
species of ion, or at any rate, an excess of one kind of ionic charge over the
other. So far, no reliable experimental method has been discovered for
preparing electrolytic solutions that are not electrically neutral. There-
fore in order to construct a table of ionic 4° values in the given solvent
(water), we may begin by assigning an arbitrary #° value to any one
standard ion; we may then construct a self-consistent table of values for
the other ions by difference, relatively to this conventional base. The
conventional standard is the H* ion, to which has been assigned the stand-
ard enthalpy of formation in solution (in any particular solvent, though
most of the thermochemical data for solutions of electrolytes have been
obtained in water as solvent): n3+ = 0. Thus, the observed ®; value for
any strong acid in aqueous solution is taken to define the 4° value of the
corresponding anion, in aqueous solution. For example, from the stand-
ard enthalpy of formation of HCl(g): Hgg, = —22.063 kcal/mole
(as measured directly by F. D. Rossini, using the flame calorimeter),
combined with the total molal enthalpy of solution of HCI(g) in H,O(1),
AH; = —17.960 kcal/mole (Table 4-10), the value of

¢;Cl(sq) = —40.023 kcal/ mOle

has been established at 25°C and 1 atm. Therefore, by convention,
No-eg = —40.023 kecal/mole, t.e.,

14Cla(g) + e = Cl~(aq); AH3g = "Igl-(aq) - %Hgmz) = —40.023 kcal

The electron appearing in this thermochemical equation has only formal
significance, because the n° values for individual ions in solution have
physical significance only when recombined with corresponding 7° values
for appropriate ions of opposite charge, whereupon any presumed thermo-
chemical properties of the electron cancel out of the calculations.!

Likewise, from the limiting value at infinite dilution of the heats of
neutralization of strong acids with strong bases,?

Ht*(aq) + OH-(aq) = H.0(l); AH3; = —13.360 kcal

1 The situation is quite different for such real physical processes as

K(g) = K*(g) + ¢,

whose energy is directly measured by the ionization potential, corresponding to escape

of the electron with zero kinetic energy.
2See R. H. Lambert and L. J. Gillespie, J. Am. Chem. Soc., 63, 2632-2639 (1931).



THERMOCHEMISTRY 181

combined with the standard molal enthalpy of formation of H.O(l),
HY,on = —68.317 kcal/mole, we may infer for OH~(aq) the standard
molal enthalpy of formation: 7oy o,y = —54.957 kcal/mole; z.e.,

1404(g) + }5Ha(g) + ¢ = OH~(aq);  AH3es = —54.957 keal

Proceeding stepwise, we may now infer from the additional thermo-
chemical evidence afforded by the ®; values for NaCl(aq), NaOH(aq),
ete. (the enthalpies of formation of the pure compounds, combined with
their total enthalpies of solution), a value of 7y,+,y = —57.476 kcal/mole,
i.e.,

Na(c) = Nat(aq) + e;  AHg = —57.476 keal

The agreement among the 7° values for a particular cation obtained from
independent thermochemical data for its various salts constitutes a check
on the self-consistency of the data and the general validity of the scheme.
Thus, ®; values for strong electrolytes in solution in a given solvent are
interrelated, in the sense that they may be resolved into additive con-
tributions of the ions concerned. The Debye-Hiickel interionic attrac-
tion theory, discussed in Sec. 7-4, shows how we may take first-order
account of the deviation of &, from &, in dilute solution from general
principles; the thermochemical behavior of concentrated solutions of
electrolytes remains more or less on an empirical basis at the present time.

We may in a similar manner resolve the limiting partial molal heat
capacity of an electrolytic solute in infinitely dilute solution, ®; or (v3)s,
into independent additive contributions of the ions, by first assigning to
H+ the conventional value: (vp)z+ = 0. Thus, from Rossini’s value of
(®uciep given in Table 4-13, we may assign t0 (Yp)a-eg the value
—32.5 cal/mole deg at 25°C and 1 atm. We may then proceed in step-
wise fashion to calculate (v;) values for other jons. Such information is
useful in the correction of %° values for individual ions in solution to
other temperatures; e.g., for the process

14Cly(g) + ¢ = Cl—(aq); AH3, = —40.023 keal

we may write formally

dAHo (-] 1, 5
( dTT),, = AC; = (‘Yp)m-(.q) -3 (C; Cla(g)
= —325 — 5 (8.11) = —36.6 cal/deg

Thus, neglecting the relatively slight variation of AC} itself with tempera-~
ture, we may conclude that at 18°C, 78-., = —39.767 kcal/mole.
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Problems

4-1. The heat of formation of HCl(g) has been measured by F. D. Rossini [J.
Research Natl. Bur. Standards, 9,679-702 (1932)] by direct union of Ha(g) and Cla(g) in
the flame calorimeter, the calorimeter being immersed in water at a mean temperature
of 30°C, and the heat being measured by substitution of an electric heating current to
effect the same temperature rise in the system. In a typical run, the temperature of
the calorimeter system rose by 0.95034 deg (as measured by means of a platinum
resistance thermometer) as 0.159049 mole of HCI was heing produced by the combus-
tion, the electrical equivalent of the calorimeter system being 15,415.3 int joules/deg.
To the total cnergy released during the run, 38.5 int joules representing net kinetic
energy carried by the product gas must be added, and 10.3 int joules representing
energy introduced by the ignition spark must be subtracted, as determined by blank
runs. Calculate from these data the enthalpy of formation of HCl(g) at 30°C and
1 atm. From the heat-capacity data in Table 3-1, estimate the correction to 25°C.
(The correction to the ideal-gas state is negligible in this case.)

4-2. The heat of the addition reaction between C.F4(g) and Cls(g) has been meas-~
ured by J. R. Lacher and his associates [J. Am. Chem. Soc., T1, 1330-1334 (1949)],
using an isothermal constant-flow calorimeter. In a typical run, in which the olefin
flowing at a rate of 6.93 X 10™* mole/min and chlorine flowing at a rate of 6.109 X 10—*
mole/min were mixed and passed over a catalyst at 1 atm and at a mean temperature
of 90°C, energy was released at a rate equivalent to 35.02 cal/min, determined by
electrical standardization of the calorimeter. Calculate AH at 90°C and 1 atm for the
reaction CoF4(g) + Cl:(g) = C.F.Cl:(g). '

4-3. In measuring the heat of combustion of WC(c) in the oxygen bomb calorimeter,
standardized by the combustion of standard benzoic acid, I.. D. McGraw, H. Seltz, and
P. E. Snyder [J. Am. Chem. Soc., 69, 329-331 (1947)] found for the process:

WC(e) + 320:(g, 300.45°K, 35 atm) = WOs(c) 4+ CO.(g, 300.45°K, 2.15 atm)
AU = —284.76 keal
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For 0:(g), (AU /dp)r = —1.56 cal/atm mole, from direct measurements by F. D.
Rossini and M. Frandsen (see footnote 1, page 105), while for CO.(g)

(dU /dp)r = —6.79 cal/atm mole

estimated from the Beattie-Bridgeman cquation of state. Calculate AU for the reac-
tion with each gas in the hypothetical ideal-gas state at 1 atm, and calculate AHg,, ;.
Calculate AHGy, .4, using the (f’; values: O:(g), 6.95 cal/mole deg; WOs(c), 19.55
cal/mole deg; WC(c), 8.63 cal/mole deg; CO2(g), 9.21 cal/mole deg.

From the enthalpies of combustion, C(c, graphite), AH; = —94,051.8 + 10.8
cal/g-atom, and W(c), AHS = —195,700 + 900 cal/g-atom, calculate the standard
enthalpy of formation of WC(c) at 298.16°K.

4-4. Thermochemical data for NaBH,(c) of 99.61 per cent purity have been obtained
by W. D. Davis, L. 8. Mason, and G. Stegeman [J. Am. Chem. Soc., T, 2775-2781
(1949)]. The heat of the reaction

NaBH,(c) + 1.25HC1(20011,0) = (NaCl 4 H;BO; + 0.25HCI)(247H.0) + 4H.(g)

was measured in a constant-volume bomb calorimeter, the mean value of AU at 25°C
being —66.25 + 0.07 kcal. Calculate AH for this reaction.
The heat of mixing

NaCl(60H,0) -+ Hs;BO3(60H:0) + 0.25HCI(508H-0)
= (NaCl + H;BO; + 0.25HCI)(247H.0); AH 395 = 0.057 kcal

and the heat of dilution of boric acid

H:;BO:;(GOIIzO) + WHgO(l) = HaBOs(&q); AHzos = 0.068 kcal
were then also measured. Calculate now the enthalpy of the reaction

NaBH,(c) + 1.25HC1(200 H,0) + 3H.0O(1) + «H.0(l)
= NaCl(60H0) + H;BOs(aq) + 0.25HCI(508H:0) + 4H.(g).

Calculate the standard enthalpy of formation of NaBH,(c):
Na(c) + B(solid, amorphous) + 2H:(g) = NaBH,(c)

using the enthalpies of formation: HCI(200H.0), —39.798; HC1(508H.0), —39.875;
NaCl(60H.0), —97.428; H;BOs(aq), —255.2; H.O(l), —68.317 kcal. (Note that the
enthalpy of formation of boric acid is the most uncertain piece of information entering
these calculations.)

4-5. F. D. Rossini and J. W. Knowlton [J. Research Nail. Bur. Standards, 19,
249-262 (1937)] have measured the heat of combustion of C,H,(g), using the flame
calorimeter., At 25°C and 1 atm, corrected to H,O(l) as product, they obtained
AH = —337,280 + 70 cal/mole. Using Rossini’s values of —68,313 + 10 cal/mole
for the enthalpy of combustion of H.(g), and —372,810 + 110 cal/mole for the
enthalpy of combustion of C;Hs(g), calculate a value of AH at 25°C and 1 atm for the
reaction C.H,(g) 4+ H.(g) = C.Hs(g); estimate its precision, and compare with the
directly observed value of —32,580 + 60 obtained by G. B. Kistiakowsky and
coworkers (corrected from 82°C to 25°C), on a sample that probably contained 0.25
mole per cent C.I originally.

Using also the ““best” value of AH3y ,4 = —94,051.8 + 10.8 cal/mole for the com-
bustion of C(c, graphite), selected by E. J. Prosen, R. S. Jessup and F. D. Rossini
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[J. Research Natl. Bur. Standards, 38, 447-449 (1944)], calculate the standard enthalpy
of formation of C.H,(g) at 25°C.

4-8. The heat of combustion of cyanamide has recently been measured by D. J.
Salley and J. B. Gray [J. Am. Chem. Soc., 70, 26502653 (1948)]. From the result

CH:N.(c) + 340:(g) = CO:(g) + H.0(1) + Na(g); AH3y ¢ = —177.20 keal

calculate the standard enthalpy of formation, and also the standard enthalpy at 25°C
of the reaction

CH:N:(c) + 2H:0() = CO:(g) + 2NHa(g)

using additional data given in Appendix 2.

4-T. The heat of combustion of D:(g), and the heat of vaporization of D,O(1) have
been measured by F. D. Rossini, J. W. Knowlton, and H. L. Johnston [J. Research
Natl. Bur. Standards, 24, 369-388 (1940)], with the following results:

Da(g) + %0.(g) = D.O(1);  AHZ .6 = —70,414 cal
D,0(@) = D:0(g); AH3.,6 = 10,850 cal

Using data for H,O given in Appendix 2, calculate AH3g,4,, for the isotope exchange
reaction

D.(g) + Hi0(®) = D:0(g) + Hi(g)

4-8. Calculate the heating value at 25°C in Btu per cubic foot saturated with water
vapor at 15°C and 1 atm, of a natural gas consisting of 31.8 per cent ethane, 67.7 per
cent propane, and 0.5 per cent nitrogen by volume. Use the standard heats of com-
bustion at 25°C [to COs(g) and H.0(1)]: C.Hs(g), 372.82 keal/mole; C;Hs(g), 530.60
keal/mole [E. J. Prosen and F. D. Rossini, J. Research Naitl. Bur. Standards, 34, 263—
269 (1945)].

Calculate also the heating value under similar conditions of a water gas consisting
of 43.4 per cent CO, 3.5 per cent CO:, 51.8 per cent H,, and 1.3 per cent N; by volume,
using thermochemical data contained in Appendix 2.

4-9. The heats of formation of the four known borates of calcium have been deter-
mined by D. R. Torgeson and C. H. Shomate [J. Am. Chem. Soc., 69, 2103-2105
(1947)] by dissolving them in 1M HCI, the amounts in each case being adjusted to be
equivalent to 1 g CaO per 1845.5 g of 1M HCl. Separate experiments were made on
the heat of solution of boric oxide in the same quantity of HCI containing 1 g of CaO.
The mean results follow:

Enthalpy of Solution, cal/mole,

Compound in 1.000M HCI at 298.16°K
3Ca0-BsOs............ —82,423 + 12
2C80'B203 ............ —50,287 + 20
Ca0-B2Os............ —-20,259 + 8
Ca0-2B:0Os. .......... —10,080 + 10
CaO................. —46,380 + 11
B:0,(0.4139 g in 1845.5 g 1.000M HCI)............. —3286 + 7
B;0:(0.6209 g in 1845.5 g 1.000M HCl)............. —3289 + 7
B:03(1.2418 g in 1845.5 g 1.000M HCl)............. —3208 + 7
B;03(2.4836 g in 1845.5 g 1.000M HCl)............. —3316 + 7

Calculate the enthalpies of the borates relative to the oxides. Using —151,900
cal/mole as the enthalpy of formation of CaO(c) and —302,000 cal/mole as the
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enthalpy of formation of B:0s(c), calculate the enthalpics of formation of the four
calcium borates from the elements.

4-10. The heats of solution of CaSOs4(c) and its hydrates in 2.09m HCI at 25°C
have been measured by E. S. Newman and L. S. Wells [J. Research Natl. Bur. Stand-
ards, 20, 825-836 (1938)], the samples taken being all equivalent to 2.000 g of CaSO,-
2H,0, dissolved in 640.0 g of the acid. The mean results were as follows:

Q.
CaS0,2H0(¢).....onn.t .. —33.01 cal/g
CaS0+ 1 H0(e)........... —11.05 cal/g
CaSO4(e).......ooviiinn. —12.67 cal/g

Furthermore, for the reaction,
H.0(l) = H,0(2.09m HCl); AH3gs.16 = —17 cal/mole

Calculate the enthalpies of hydration of CaSO4(c) and CaSO, L4H,0(c) to CaSO,-
2H20(0).

4-11. Given the heat of solution of Na(c) in H,O(l) at 25°C and 1 atm, devise a
system of thermochemical measurements by which the standard enthalpy of forma-
tion of NaCl(c) may be determined, using this information.

4-12. Suppose you wished to undertake a thermochemical investigation of the
standard enthalpy of formation of Na;COs(c). How would you set up the investiga-
tion? What calorimetric measurements would you undertake to determine, and
upon what established heats of reaction would your final result depend?

4-13. From the standard enthalpies of combustion given by F. D. Rossini [J.
Research Natl. Bur. Standards, 22, 407-414 (1939)]:

Ha(g) + 240:(g) = H.0(g); AH344 14
CO(g) + 240:(g) = CO:(g); AH54 16
C(c, graphite) + O:(g) = CO:(g); AH 3514

—57,798.4 + 10.0 cal
—67,636.1 + 28.7 cal
—94,051.8 + 10.8 cal

mnn

calculate the standard enthalpy of formation of CO(g) at 25°C, and also the standard
enthalpies at 25°C of the water gas reaction

H,(g) + CO2(g) = H.0(g) + CO(g)

and the producer gas reaction
C(c, graphite) + CO:(g) = 2CO(g)

4-14. Using the data in the preceding problem, and the empirical heat-capacity
equations given in Appendix 3, calculate the standard enthalpy of the water gas
reaction

C(c, graphite) + H:0(g) = Hz(g) + CO(g)
at 1000°C.

If the heat of this reaction is supplied by the combustion of C(c, graphite) to CO,(g)
at 1000°C, what proportion of C must be burned to the quantity converted to water
gas in order to obtain a heat balance?

4-16. The heat of combustion of CH;0H(g) has been measured at 25°C and 1 atm
in the flame calorimeter by F. D. Rossini [J. Research Natl. Bur. Standards, 13,
189-202 (1934)], the result corrected to HyO(l) as product being 182.58 + 0.05 kcal/



186 PRINCIPLES OF CHEMICAL THERMODYNAMICS

mole. Calculate AHqs.16 for the methanol synthesis
2H(g) + CO(g) = CH:OH(g)

using other data from Appendix 2.
Using for CH;OH(g) the approximate empirical heat-capacity equation,

¢, = 2.0 + 0.03T,

given by G. 8. Parks and H. M. Huffman (‘“‘Free Energies of Some Organic Com-
pounds,” p. 114, Reinhold Publishing Corporation, New York, 1932) and for H.(g)
and CO(g) the empirical heat-capacity equations given in Appendix 3, calculate
AH for the reaction at 400°C.

Using Berthelot’s equation of state for the three gases, estimate the effect on AH
of increasing the pressure to 50 atm at 400°C (recall Prob. 3-13).

4-16. The internal energy of combustion of isoprene, C;Hs(l), was measured by
R. S. Jessup [J. Research Nail. Bur. Standards, 20, 589-597 (1938)] in an oxygen com-
bustion bomb standardized by the combustion of standard benzoic acid. The mean
result, corrected to 30°C and 1 atm, was

CsHs(1) + 70:(g) = 5CO:(g) + 4H,0(1); AU = —753.28 + 0.38 kcal

(a) Calculate AH at 30°C and 1 atm.

(b) Using for CsHs(l) the heat-capacity value, C-'; = 36.7 cal/mole deg, and for the
other substances the values given in Appendix 2, calculate AH at 25°C.

(¢) The heat of combustion of rubber hydrocarbon (C:;Hs), was measured by
R. 8. Jessup and A. D. Cummings [J. Research Natl. Bur. Standards, 18, 357-369
(1934)], who obtained at 25°C and 1 atm, AH = —(736.76 + 1.44)z kcal/mole.
Calculate the quantity of heat evolved in the reaction

z CsHs(l) = (CsHs)» (rubber hydrocarbon)

4-17. Calculate the theoretical maximum flame temperature when methane origi-
nally at 25°C is burned with the stoichiometric proportion of air containing 21 per cent
Oz and 79 per cent N; by volume. [Express Hr — H2g for the product of combustion
of 1 mole of CH4(g) as a function of T, using the heat-capacity equations for CO:(g),
H,0(g), and N2(g) given in Appendix 3, and equate to the heat of combustion at 25°C
corrected to H:O(g) as product; solve for 7" by trial. The dissociation of CO; and of
H.0 at the flame temperature is neglected in this calculation.]

4-18. G. B. Kistiakowsky and his associates [J. Am. Chem. Soc., b7, 65-75 (1935);
57, 876-882 (1935); 58, 146-153 (1936)] have measured the heats of hydrogenation of
a number of unsaturated hydrocarbons in the gaseous state, including the following
(at 82°C and 1 atm):

Compound —AH 35501
1-Butene................. 30,341 cal
2-Butene (trans) .......... 27,621
2-Butene (ci8) ............ 28,570
1,3-Butadiene ............ 57,087

Show that the reaction C.He(g) 4+ H.(g) = C,Hs(g) is more exothermic when
Thiele addition of 1 H atom to each end of the resonant system of unsaturated bonds
in 1,3-butadiene takes place than when 1 H atom adds to each member of the pair of
adjoining carbons at either end of the chain.
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4-19. The standard enthalpies of formation of CH;Cl(g), CH.Cl:(g), and CHCls(g)
at 25°C are, respectively, —19.58, —21, and —24 kcal/mole. Test these data for
consistency of the bond-energy values given in Table 4-2.

4-20. The heat of vaporization of isoprene, corrected to 25°C, is 6200 cal/mole
[from vapor-pressure data by N. Bekkedahl, L. A. Wood, and M. Wojciechowski,
J. Research Natl. Bur. Standards, 1T, 883-894 (1936)]. (a) Using the results of
Prob. 4-16, calculate the heat of combustion of C;Hs(g) at 25°C and 1 atm, and the
standard enthalpy of formation. (b) Calculate the heat of the reaction

5C(g) + 8H(g) = CsHs(g)

and by comparison with hydrocarbon bond-energy data, estimate the resonance
energy of the isoprene molecule.

4-21. SrCl;(c) has the fluorite structure, and ro = 3.02 K. Calculate the lattice
energy, and using data given in the text, calculate a value for the standard heat of
formation. The observed heat [from Sr(c) and Clz(g)] is 198.0 kcal /mole.

4-22. KCN(c) has the same structure as KCl(c) and the CN~ ion, because of rota-
tion, probably is spherically symmetrical, like the Cl~ ion. Using 3.275 A as the
distance of closest approach between K* and CN-, from X-ray crystallography,
and n = 8 in Eq. (4-21), calculate the lattice energy of the KCN crystal and AH3, ;4
for the reaction

KCN(c) = K*(g) + CN~(g)

The standard enthalpy of formation of KCN(c)
K(c) + C(c, graphite) + }4N2(g) = KCN(c)

is —26.9 kcal/mole, from measurements of the heat of combustion, solution, and
neutralization of HCN, combined with the heat of solution of KCN(c) itself, while
the enthalpy of combustion of C:N3(g) is —260 kcal/mole [F. R. Bichowski and F. D.
Rossini, ‘‘Thermochemistry of Chemical Substances,” Reinhold Publishing Corpora-
tion, New York, 1936]. Calculate the enthalpy of the process

14C:N2(g) 4+ ¢ = CN—(g)

(using data given in the text). Assuming an electron affinity of 84.3 kcal/mole for
the CN(g) molecule, estimate the dissociation energy of the C:N:(g) molecule into
2CN(g) [compare G. Glockler, J. Chem. Phys., 16, 600-601 (1948)].

4-23. NH,Br(c) has the CsCl(c) structure, and NH,I(c) the NaCl(c) structure, at
25°C, the lattice constants being, respectively, 4.047 and 7.244 A. Calculate the
lattice energies, according to Eq. (4-21), selecting n from Table 4-5 on the basis that
NH; is a Ne-type ion (note that for the CsCl structure, ro = (4/3/2)a, and for the
NaCl structure, ro = (}4)a, where a is the lattice constant, or edge of the unit cell).

Using the standard enthalpies of formation, —64.61 kcal/mole for NH,Br(c),
—48.30 kcal/mole for NH,I(c), —11.04 kcal/mole for NHi(g), 367.08 kcal/mole for
H+(g), and other data given in the text, calculate the energy of the reaction

NHi(g) + H*(g) = NH}(g)

from the data for each salt [compare J. Sherman, Chem. Revs., 11, 150-152 (1932)].
4-24. Calculate the lattice energy of the hypothetical compound MgCl(c), assuming

that it would crystallize in the NaCl lattice, and assuming for Mg* the same ionic

radius, 0.65 &, as for Mg+ (the Cl- radius has the value 1.81 A). The first ionization
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potential for Mg(g) = Mg*(g) + e is 7.61 volts; calculate the standard enthalpy of
formation of the hypothetical compound, and compare with that of the actual com-
pound, MgCl:(c), which is —153.40 kcal/mole.

4-26. (a) Using the data in Table 4-10, plot @, vs. m.” for HCI concentrations
below 1:500 H.O and confirm by extrapolation the Q° value given in the table. ’

(b) From your graph, using Egs. (4-4la) and (4-42a), calculate 7m0 — Hy,00, and
nao1 — Hyeyg at me = 0.001, 0.01, and 0.1 mole HCl/kg H;0. [Note that the slope
of your graph is simply the negative of the differential coefficient appearing in Eqgs.
(4-41a) and (4-42a).]

(c) From a plot of & — &5 between n, = 2 and n, = 10 moles H,O/mole HCI,
calculate the values of nmo — Hi,oq 2nd mma — Higy, in HCI-H:O solutions
containing 35 per cent and 20 per cent by weight of HCl. What are the differential
molal heats of vaporization of the two components from these solutions? [Compare,
F. D. Rossini, J. Research Natl. Bur. Standards, 9, 679-702 (1932).]

4-26. Letting AH = —Q,/(1 + n1) in Eq. (4-43) denote the enthalpy of solution
per mole of solution formed, prove with the aid of Eq. (4-36) that for a binary solution

LN o —
b (m — H3) — (12 — H3)
and show that
- - dalH
m — H} = AH + (1 —21)"&?1
o - daH
nz—Hz =AH—xl-d—x1—

4-27. The enthalpy of formation of solid solutions of NaCl and NaBr
zNacINaCl(c) + zn.p:NaBr(c) = znaciNaCl, zn.s:NaBr(c)

was measured at 25°C by M. A. Fineman and W. E. Wallace [J. Am. Chem. Soc.,
70, 4165-4169 (1948)] from the difference between the heats of solution in water of the
solid solutions and of physical mixtures of the two salts having corresponding com-
positions. The following results were obtained:

Znapr  AHaes.16, cal/mole of Solid Solution

0.1018 136.7
0.2019 220.5
0.2982 291.9
0.4029 323.5
0.4927 335.5
0.5977 319.9
0.7007 271.0
0.7922 213.7
0.8947 122.6

The authors showed that the results could be represented by the empirical equation
AH = 1433zN.p: — 1616285, + 182.8z%,5.

(Test this equation at several of the given experimental compositions.) Calculate
(n — HY) for NaBr and (9. — Hj) for NaCl at 0.1 mole-fraction intervals, using the
equations derived in Prob. 4-26.
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4-28. From the data in Table 4-9 and the standard enthalpies of formation

H;DB. 16
PbOz(c). ...t —66.12 kcal/mole
PbSOs()............ —219.50 kecal /mole
HOQ).............. —68.317 kecal /mole

(from ‘““Selected Values of Chemical Thermodynamic Properties,’”” National Bureau of
Standards, Washington, D.C., 1947), calculate the enthalpy of the reaction

Pb(c) + PbOs(e) + 2H:S04(10H,0) = 2PbSO.(c) + 2H,0()

Using the data in Table 4-11, calculate the enthalpy of the actual lead storage-cell
reaction

Pb(c) + PbOa(c) + 211,504(1H:804:10H,0) = 2PbSO04(c) + 2H,O(1Hs504:10H:0)

as an infinitesimal quantity of electricity is discharged.

4-29, Using the data in Table 4-12, calculate the quantity of heat evolved when
96.1 per cent H,SO, is mixed with sufficient oleum containing 29.0 per cent free SO,
to form 1000 g of 100 per cent H,SO, at 18°C.

Taking the specific heat of H:SO4(1) as given approximately by the formula

¢p = 0.32 + 0.0005¢ cal/g deg,

between 20 and 80°C (Landolt-Bérnstein, ‘‘Physikalisch-chemische Tabellen,”” 5th
ed., Supplement Illc, p. 2277, 1936) estimate the maximum temperature rise, in the
absence of heat losses.

4-30. K. S. Pitzer [J. Am. Chem. Soc., 59, 2365-2371 (1937)] measured the heat of
neutralization at 25°C of NaOH-1065.5H.0 with HC1-46.5H,0 to form NaCl-1113H.0,
the quantity of heat evolved being 13,828 + 12 cal per mole of acid and base reacting.
In a separate experiment, he measured the heat of dilution of HCI-46.5H,O to
HCI-1112H,0, the quantity of heat evolved being 352 + 8 cal per mole of HCI
(compare Table 4-10). Calculate the standard enthalpy of ionization of H,O to form
Ht(aq) + OH-(aq) at infinite dilution, using the heats of dilution extrapolated to
zero concentration: for HCI-1112H,0, +100 cal; for NaOH-1065.5H.0, +86 cal;
and for NaCl-1113H,0, +73 cal. Using the standard enthalpy of formation of H.O(l)
at 25°C, —68,313 * 10 cal, as determined by F. D. Rossini from direct combustion of
H,(g) with O:(g) in the flame calorimeter, calculate ngr—(aqy-

4-31. K. S. Pitzer [J. Am. Chem. Soc., 69,2365-2371 (1937)] has measured the heats
of ionization of a number of weak acids and bases by straightforward calorimetry.
Thus, upon mixing exactly 10 ml of 1.162M HCl with 875 ml of 0.015M NaHCO;, he
observed that 26.6 + 0.6 cal of heat was evolved (measured by substitution of an
equivalent quantity of electrical energy to heat the calorimeter and contents through
the same temperature rise). Assuming 452 cal/mole as the heat of dilution of the
HCI to infinite dilution, and neglecting the heats of dilution of the other solutes,
calculate the enthalpy of ionization of H:COs(aq) to H¥(aq) and HCOj; (aq).

In another series of experiments, he found that upon mixing exactly 10 ml of 1.162M
HCl with 875 ml of a solution containing 0.0156M Na,CO; and 0.015M NaHCO,
(added to repress hydrolysis of CO7), the quantity of heat evolved was 46.7 + 0.5 cal.
In this case, part of the HCl reacted with the OH~ present in the buffer mixture; using
4.70 X 101! as the secondary ionization constant of H,COs, correct for the quantity
of HCl consumed and the energy liberated by the reaction with the free OH™~ present,
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as well as for the heat of dilution of HC], and calculate finally the standard enthalpy of
ionization in infinitely dilute solution of HCOj (aq) to H*(aq) 4+ COj (aq).

4-32. The enthalpy of solution of CO;(g) at infinite dilution in water is —4,640
cal/mole at 25°C. Combining this information with the standard enthalpy of forma-
tion of CO.(g), —94,051.8 + 10.8 cal/mole, and the results of the preceding problem,
calculate n° of HCOj3 (aq) and of COj3 (aq).

Using Pitzer's value of 865 + 30 cal/mole as the enthalpy of ionization of
NH,OH(aq) and 13,358 cal /mole as the enthalpy of ionization of H,O(l), calculate the
standard enthalpy of the reaction

CO:(g) + NH,OH(aq) = NH{ (aq) + HCOj(aq)

4-338. B. J. Fontana and W. M. Latimer [J. Am. Chem. Soc., 69, 2598-2599 (1947)]
found that when NaClO:(c) was dissolved in a solution containing HCIO, and KI,
the heat of the reaction between ClO; (aq), I"(aq) and H*(aq) was 105.76 + 0.06 kcal
per mole of ClO;(aq), corrected for the heat of solution of NaClO:(c) in water
(—0.10 % 0.01 kecal/mole). Under the conditions of the calorimetric runs, the
equilibrium between I,(aq) and I (aq) was estimated to be such that 98.6 per cent of
the total iodine produced was in the form of I7(aq). Using the data,

KH.(g) + ¥1.(c) = HI(aq);  AHzs = —13.37 keal
I:(c) = I:(aq); AHys = 5.0 keal
I-(aq) + I:(aq) = I3 (aq); AHys = — 4.22 keal

and also the standard enthalpies of formation of Cl-(aq) and H,O(l) given in
Appendix 2, calculate the enthalpy of formation of ClO; (aq).

4-34. From the data in Table 4-13, calculate the specific heat of 20 per cent HCl
at 25°C. Using the results of Prob. 4-25c, estimate also the values of 1m,0 — Hy,0
and L/): () it H}‘;CKK) at 20°C.

4-36. The specific heat of NaOH solution relative to that of pure water at 25°C is
0.9526 calzs /g deg at m: = 1.00 mole/kg, and 0.9105 calz; /g deg at me = 2.55 mole /kg
[selected from measurements by F. T. Gucker and K. H. Schminke, J. Am. Chem. Soc.,
b6, 1013-1019 (1933)]. Calculate the values of @2 and A according to Eq. (4-46),
and compare with those given in Table 4-13. Calculate therefrom the values of
(vp)us0 and (7vp)naom In 1.00m solution at 25°C.

4-36. The heat of solution of Na(c) in H,O(l) to form NaOH(100 H.0) is given
by F. R. Bichowski and F. D. Rossini (‘Thermochemistry of Chemical Substances,”
Reinhold Publishing Corporation, New York, 1936) as 43.7 kcal/mole at 18°C, and
the heat of dilution to infinitely dilute solution as 0.039 kcal. Using the established
heat of formation of H,O(l) at 18°C, 68.372 kcal/mole, calculate ®; of NaOH(aq)
at 18°C. Using the data in Table 4-13, correct &3 to 25°C, and using the value of
NoH—(aqy &iVeN in the text (from heat-of-neutralization data), calculate gg,+ 4 at 25°C.

4-37. Calculate from the data in Table 4-13 the value of (vp)g+(q), and using the
value of 7+ = —60.270 keal/mole at 18°C and 1 atm given by F. R. Bichowski
and F. D. Rossini (““Thermochemistry of Chemical Substances,” Reinhold Publishing
Corporation, New York, 1936), calculate ng+,,, at 256°Cand 1 atm. [The heat capac-
ity of K(c) is given in Appendix 2.]

Combining this result with ndg-(.,, given in the text, and with the total enthalpy
of solution of KOH(c), AH{ = ~13.20 kcal, calculate the standard enthalpy of forma~-
tion of KOH(c) at 25°C.
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4-38. The partial specific volumes of the components of a binary solution are the
intercepts on the 0 and 100 per cent axes of the tangent to the specific volume (recip-
rocal of the density) vs. weight per cent curve. The partial molal volumes may then
be obtained by multiplying the partial specific volumes by the molecular weights of
the respective components. From the density data for H,SOH:0 solutions at
25°C given in the ‘“‘International Critical Tables,”” Vol. III, pp. 56-57, 1928, plot the
specific volume vs. weight per cent, and determine the partial molal volumes of H,SO,
and H,0 at 10 weight per cent intervals by application of this graphic method.



CHAPTER 5
THE SECOND LAW OF THERMODYNAMICS

The experiments of Rumford, and particularly the quantitative experi-
ments of Joule proved beyond any doubt that energy in mechanical or
electrical form can be converted without limit into thermal form, e.g., into
raising the temperature of a material body, or into effecting some phase
transition that ordinarily requires the absorption of heat, etc. In this
chapter, we shall examine the conditions attending the reverse transfor-
mation, that of energy from a thermal source into energy in nonthermal
forms, such as is accomplished by a heat engine. To such transforma-
tions, Joule’s law of course applies; there is a quantitative relation
between the net quantity of thermal energy consumed and the quantity
of energy appearing in nonthermal forms, 1 cal;s being equivalent accord-
ing to the best modern measurements to 4.1855 + 0.0004 joules of energy
in mechanical or electrical form.! It is well known, however, that the
availability of energy in thermal form is limited ; thus, no heat engine will
operate continuously unless the source of thermal energy is at a higher
temperature than that of the surroundings. This simple general observa-
tion contains as we shall presently see the germ of the principle known as
the second law of thermodynamics. The subject was first explored by the
young French engineer Nicolas Léonard Sadi Carnot in some notes,
““Reflexions sur la puissance motrice du feu,” written in 1824. Carnot
was particularly concerned with how heat was utilized in the steam engine,
which had recently been developed as a practical machine, but whose
principles were but vaguely understood. He perceived, however, that
his treatment of the problem was quite general, within the scope of the
caloric fluid theory of heat then prevailing. The significance of Carnot’s
ideas was not fully comprehended until they were recalled by William
Thomson (Lord Kelvin) in 1848, many years after Carnot’s death.
Kelvin and R. J. E. Clausius generalized Carnot’s treatment to bring it
into accord with the principle of conservation of energy based on Joule’s
work, and thus established the foundations of modern thermodynamics.

6-1. Maximum Work and Thermodynamic Reversibility. Let us con-
sider some devices for transforming thermal energy into energy in non-
thermal forms. A real heat engine always consists of some material sys-

! R. T. Birge, Rev. Modern Phys., 18, 233-239 (1941).
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tem (steam in the steam engine; air mixed with combustion-product gases
in the internal-combustion engine) that undergoes certain changes of
state, during which it absorbs net thermal energy @ (derived from the
combustion of coal or fuel oil under the boiler of the steam engine, or from
the combustion of gasoline or light fuel oil within the cylinder itself of the
internal-combustion engine), and does work W. The net heat absorbed
and the net work done during any sequence of changes always satisfy the
first law of thermodynamics,

AU =Q—-W (5-1)

where AU represents the net change in internal energy of the system
undergoing the changes.! Now, in a practical engine, the working sub-
stance is generally put through a cyclic process that in principle restores
it periodically to the same state; otherwise the engine would run down
before the thermal source had been depleted of its energy. Because
water and air are cheap and so readily available, the particular sample of
water put through the steam-engine cycle and the particular sample of
air put through the internal-combustion engine cycle are generally not
recycled, but_are continually being replaced by fresh samples; this prac-
tical consideration does not, however, affect the general principle that the
water and the air are ultimately resorted to the respective bodies from
which they were originally withdrawn, without having undergone perma-
nent changes of state, except possibly for a gradual thermal change of a
general nature in the state of the entire world, which as we shall presently
see, constitutes the subject proper of the second law of thermodynamies.
A heat engine that is to operate continuously, then, withdrawing energy
from a thermal source and doing work without permanently changing the
state of the working substance, must be designed on a cyclic principle,
such that each complete cycle leaves the working substance in the same
state, ready for the next cycle. Therefore, during each complete cycle
(starting at any particular phase), AU = 0 [compare Eq. (2-23)], and

Q=w (AU = 0) (5-2)

It might appear at first sight that an indefinitely large quantity of work
might be done by the heat engine, simply through some arrangement
whereby the net heat @ absorbed during each cycle is made indefinitely
large. Certainly, energy originally in nonthermal form expended on the
material system and passing to the surroundings in the form of heat (such

1 In a steam turbine or in a jet-propulsion engine, work is done mainly at the expense
of kinetic energy of the gas, whose change must be included with AU on the left of
Eq. (5-1). In the ordinary gas-expansion engine, however, the kinetic energy of the
working substance is inappreciable,
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as through friction, mechanical stirring, effect of an electric-resistance
coil, etc.) can be made indefinitely large in amount [Q and W having
negative values in Eq. (5-2)], as shown by Rumford’s and Joule’s experi-
ments. There is nothing inherent in the first law of thermodynamics
that would imply any restriction on the reverse transformation, that of
thermal into mechanical or electrical energy, beyond equivalence between
the net quantity of heat absorbed and the net quantity of work done, as
embodied in Eqgs. (5-1) and (5-2). Yet, experience shows that every
actual process has natural limitations to its capacity for absorbing ther-
mal energy and releasing an equivalent amount of energy in nonthermal
form.

One general type of limitation arises from our inability to free the proc-
ess completely from dissipative losses. Our process for the generation of
mechanical or electrical energy cannot be utilized with perfect efficiency,
because some of the nonthermal energy developed by the heat engine is
consumed (.e., restored to thermal form) in overcoming friction, electric
resistance of the dynamo and leads, etc.; when, for example, steam
expands in the cylinder of a steam engine, some of the energy potentially
available in mechanical form is expended as heat in overcoming friction
between the piston and the cylinder. This type of limitation raises no
new theoretical questions; it is perfectly comprehended within the scope
of the first law of thermodynamics. There is an ideal upper limit to the
quantity of work that can be produced by a given change of state taking
place in a real system, which is approached as we reduce the effects of dis-
sipative influences. Let us discuss this situation further in terms of
specific examples; in Sec. 5-2, we shall then proceed to consider a different
type of limitation, imposed by the relation of the temperature of our
source of thermal energy to the temperature of the surroundings.

Consider a gas confined in a cylinder by means of a movable piston, to
which an external pressure is applied whose instantaneous value is repre-
sented by the symbol P; then as the gas expands from volume V; to
volume V,, the work done by the gas against the external pressure P is

V:" P dV. Suppose that the expansion is carried out at constant tem-

perature; then since we know that to a first approximation in the low-
pressure range, (AU)r = 0 (the Joule experiment), therefore @ = W; in
other words, the isothermal expansion of an ideal gas constitutes a simple
method of drawing thermal energy from the surroundings (which serve
to maintain the temperature of the gas constant) and doing an equivalent
amount of work. For a real gas at finite pressures, (AU)r would differ
somewhat from zero, and W would then be related to Q by means of the
general relationship, Eq. (5-1); but as we shall see presently, there is no
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loss of generality for our present purpose in considering the gas to be
ideal. Now, the external pressure P applied to the piston confining the
gas may be given any value from 0 up, the quantity of work done for the
given volume change increasing in proportion. If for example P = 0,
as when the gas expands freely into a vacuum (the Joule experiment),
then no work at all is done, and no heat is absorbed from the surroundings
(to a first approximation, at least, for real gases). If the gasisto do work,
then P must be given a finite value, but it cannot be as large as the static
equilibrium pressure p of the gas consistent with its instantaneous volume
V at any stage of the expansion, because a value of P somewhat smaller
than p would be sufficient in view of friction to prevent the piston from
moving at all. In the ideal limiting case of a frictionless piston, however,
there is then clearly an upper limit to the work that can be done by the

expanding gas, given by the value of jVsz dV; for if one attempted

to increase the value of the work done by the gas by making P any larger
than p, the process would actually be reversed, and the gas instead of
expanding would be compressed at the expense of work done on it by the
external applied pressure. In other words, the maximum work that can
theoretically be obtained from the expansion of the gas is obtained when
the gas is permitted to expand with frictional losses reduced to zero
against an external pressure maintained at a value never more than
infinitesimally below the value of its instantaneous static equilibrium
pressure. Now, in compressing the gas from volume V', back to volume
V,, one will observe that the work of compression (the negative of the

work fVY‘P dV done by the gas) may be made to assume a numerical

value as large as one pleases, by the application of a sufficiently high
pressure P; if the temperature is maintained constant, a quantity of heat
equal within a first approximation to the quantity of work done on the
gas then passes on to the surroundings. The high pressure P might be
maintained, for example, if there were considerable friction to overcome
between the piston and the cylinder, or if the gas were compressed
rapidly; in any event, the presence of some degree of friction would make
it necessary that P exceed p, the instantaneous static pressure of the gas,
in order that the piston move at all. In the ideal limiting case of a
frictionless piston, there is thus a lower limit to the work that must be
done in order to compress the gas (upper limit in the algebraic sense to

the work done by the gas), given by the value of f;:l p dV. This quan-

tity is equal in magnitude but opposite in sign to the maximum work that
can be done by the gas during the reverse process of expansion along the
same path connecting the same pair of end states. Thus, we may write
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in general ”
ws [ pdv (5-3)

where V, denotes the initial and V. the final volume of the gas and p
denotes its equilibrium or static pressure corresponding to the instan-
taneous volume V; Eq. (5-3) applies in the algebraic sense along a given
path (assumed relation between p and V during the change of state),
regardless of direction, .e., whether V3 is greater than V, or V; is greater
than V.. The specification of constant temperature fixes exactly in the
case of an ideal gas the form of the relationship between p and V during
a change of state, and Eq. (5-3) then reduces to

. W < nRT In II% (T const; ideal gas) (5-4)

A thermodynamic process carried out under conditions differing insen-
sibly from those of equilibrium throughout is said to be thermodynamically
reversible. This expression implies that infinitesimal changes in appropri-
ate directions of the variables determining the state at any stage of the
process would be sufficient to send the system in exactly the opposite
direction along the same path. In particular, the work done by the sys-
tem during a thermodynamically reversible change is the same in magni-
tude but exactly opposite in sign for the two opposing directions, and sets
an algebraic upper limit to the work that can actually be done by the sys-
tem during a corresponding real change of state. Real changes, of
course, are never reversible in the thermodynamic sense. One cannot in
practice, for example, take full advantage of the energy of a compressed
gas, because if one were to attempt to derive the maximum work by con-
tinually adjusting the external pressure on the confining piston to a value
but infinitesimally lower than the instantaneous value of the equilibrium
pressure as the gas expanded, the process would require an infinitely long
time to be completed. However, the reversible process conceived as the
ideal limit of some real process, whose work may be calculated in opera-
tional terms as precisely as one pleases from a series of data taken under
static or equilibrium conditions (e.g., measurement of p as a function of
V for a gas at given constant temperature), is an idea of the utmost
theoretical importance, as perceived by Carnot.

To take another illustration of the same basic idea, let us consider a
different device for obtaining work at the expense of energy that would
ordinarily appear in thermal form, the galvanic cell. In the Daniell cell,
for example, the chemical reaction taking place during discharge is
essentially

Zn(c) + CuSO4(C: in H;0) = ZnS04(C; in H;0) + Cu(c) (5-5)
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If the concentrations of the two electrolytes are both approximately 0.1
mole/liter, then from straightforward thermochemical measurements,
AH.3 = —51.8 kecal; when the reactants are directly mixed, all this
energy is released in thermal form. In the Daniell cell, however, the
zinc does not come into direct physical contact with the CuSO, solution,
and part of the energy released by the cell reaction can then be made
available in electrical form. Let E’ denote the instantaneous value of
the potential difference across the electrodes as the cell is discharged ; then
the work done by the cell on the external circuit as j g-eq of Zn(c) and

Cut+(C;in H;0) are consumed is equal to /0 g dj, the direction of spon-

taneous flow of negative electricity (electrons) in the external circuit
being from the zinc to the copper electrode. If E’ is measured in volts
and j in coulombs through Faraday’s law, 1 g-eq = 96,485 + 10 cou-
lombs, then the quantity of electrical energy sent into the external cir-
cuit, given by the value of this integral, is measured in joules; we may
also replace dj by I dr, where I represents the instantaneous value of the
current (in amperes) and 7 represents time (in seconds). Now, E’ may
be made to assume any value, from 0 up, the quantity of energy sent in
electrical form into the external circuit increasing in proportion. Thus,
one may short-circuit the cell by means of a heavy copper bar, whose
electric resistance is negligible compared with the internal electric resist-
ance of the cell itself; the value of E’ is then zero, and no work at all is
done by the cell; a quantity of heat equal to —AH for the cell reaction is
released within the cell, just as though the reactants had been brought
into direct contact with each other. If the external circuit consists sim-
ply of a metallic conductor of resistance R., while the internal resistance
is R;, then, in general, £’ = ER,/(R, + R;), where E is a property of the
cell, its so-called emf, or potential difference on open circuit [Eq. (2-11)].
The value of E is determined by the cell reaction, and it varies with the
states of the reactants and products, as determined by temperature,
pressure, and the concentrations of the electrolytes; its value for the
Daniell cell at room temperature and pressure, when the Zn++ and the
Cutt concentrations are equal, is about 1.08 volts. The maximum quan-
tity of energy in electrical form is sent into the external circuit, therefore,
when R, is very large in comparison with R;, so that E’ approaches in
value its uppermost limit, £; thus

W = L’E'djg /;jEdj (5-6)

When the external circuit consists simply of a metallic conductor, all this
energy is dissipated as heat in the external circuit; discharge of the cell in
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such circumstances, even when R, is extremely large, cannot be regarded
as thermodynamically reversible. We may, however, connect the cell to
an external circuit that includes another source of electrical energy, e.g., a
different cell set up in a potentiometer circuit, by which means a potential
difference E’ either smaller or larger than £ may be impressed on the
electrodes. Then it becomes clear that Eq. (5-6) is valid in general; for
if we increase E’ beyond E, we find that the direction of the current is
reversed, so that instead of withdrawing a greater quantity of electrical
energy from our cell, we are putting energy into it, charging it at the
expense of electrical energy withdrawn from the external circuit (z.e.,
from the battery of the potentiometer). The upper limit to the quantity

of work in electrical form that can be done by our cell is therefore /; 'E dj;

this maximum work would be attained if the cell were allowed to discharge
against a potential difference maintained not more than infinitesimally
below the potential difference on open circuit. Now, Eq. (5-6) continues
to apply in the algebraic sense when E’ exceeds E, the signs of dj and W’

then being reversed; in other words, the value of — /(; 'R dj (with dj

negative) represents the lower limit to the work in electrical form — W’
that must be done on the cell in order to charge it, the cell reaction being
driven backward. If E’ exceeds E, then the energy difference between

—W’ and — ﬁ)’ E dj (both of these quantities having positive values, in

accordance with our sign conventions) appears in the form of Joule heat
generated in overcoming the electric resistance of the cell.

Thus, when the galvanic cell is coupled to a potentiometer, adjusted
close to the potential difference of the cell on open circuit, so that current
practically ceases to flow through the cell (precisely the condition sought
when one uses the potentiometer in the ordinary way to measure the emf
of the cell), one is then in effect setting up the chemical reaction from
which the cell derives its energy under conditions closely approaching
thermodynamic reversibility. A slight displacement of the applied
potential difference up or down from the equilibrium potential difference
E is sufficient to drive the chemical reaction in either of the two opposite
directions, in circumstances such that the work done by the cell for either
direction is practically the same in magnitude, but exactly opposite in
sign; a larger displacement from £ would of course destroy the condition
of thermodynamic reversibility, in accordance with the general relation
(5-6). Not every galvanic cell can be set up to operate in a strictly
reversible manner; in fact, the types available are severely limited, as we
shall see in Chap. 9. One must be sure that the chemical change taking
place as the cell is charged by the application of a higher potential differ-
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ence is the exact reverse in every detail of the spontaneous reaction taking
place as the cell is discharged. This is not quite true of the ordinary
Daniell cell, because of irreversible migration of ions across the liquid
junction between the two electrolytes; thus, during discharge, Zn*+ ions
migrate into the CuSO, electrolyte, while when the direction of the cur-
rent is reversed, Cu* ions migrate instead into the ZnSO, electrolyte;
these processes, which tend to take place slowly even in the absence of an
electric current, through ordinary' thermal diffusion, are not included in
the simple chemical equation (5-5), which therefore does not quite accur-
ately represent the true change taking place in the cell. It is sufficient
for our present purpose, however, to note that of the 51.8 kcal decrease in
enthalpy that accompanies the chemical reaction (5-5), a maximum of
but 49.8 keal [= (1.08 volts) (2 g-eq) (96,485 coulombs/g-eq) (1 kcal/4184
volt-coulombs)] is available in electrical form; at least 2.0 keal must still
be released directly in thermal form. Conversely, at the same tempera-
ture, pressure, and electrolyte concentrations, one must expend a minimum
of 49.8 kcal of energy in electrical form in order to drive the chemical
reaction (5-5) in the reverse direction (to cause Cu to displace Zn from a
solution of its sulfate), and only the balance, 2.0 kecal, required by the
conservation principle can at most be taken in from the surroundings in
thermal form.

5-2. The Second Law of Thermodynamics. Equations (5-4) and (5-6)
express limitations imposed by nature on the quantities of energy in non-
thermal form that can be derived from two particular kinds of processes,
one involving changes in the state of an ideal gas, and the other involving
a chemical oxidation-reduction reaction. In either case, we have seen
that the maximum work is derived when the system is maintained
throughout in a state differing but infinitesimally from the equilibrium
state characteristic of the external conditions instantaneously prevailing.
A slight shift in the appropriate direction of these conditions is then suffi-
cient to reverse exactly the direction in which the system’s state tends to
change, changing the sign of W,; a change of state executed hypotheti-
cally under such conditions is said to be executed reversibly.

These equations suggest, however, a far more general limitation on the
utilization of thermal energy, first perceived by Carnot; for so long as the
temperature is fixed, they imply that at least as much energy in non-
thermal form must be expended on the respective systems in order to
restore them to their original states as they are capable of producing.
Suppose, for example, we attempt to base a heat engine on the cyclic
expansion and compression of a gas, as in the ordinary steam engine or
the internal-combustion engine; for simplicity, we shall treat the gas as
ideal, but this involves no real loss of generality, as we shall presently see.
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So long as the temperature of the gas remains constant (e.g., at the tem-
perature of the potential source of thermal energy), Eq. (5-4) implies that
the net work W done by the gas during a complete cycle that restores it to
its original state must necessarily satisfy the condition

W=0 (T const) (5-7)

For Eq. (5-4) applies in the algebraic sense both as the gas expands (the
expression on the right then having a positive value) and as it is com-
pressed (the expression on the left then being negative). The equality
sign in Eq. (5-7) applies in fact only if both the expansion and the restor-
ing compression are executed under thermodynamically reversible condi-
tions. Otherwise, an irreversible or permanent transfer of energy from
mechanical to thermal form takes place during each cycle. The transfer
may be effected in the present instance through mechanical friction,
temporary eddy currents set up in the gas, etc., but whatever the mecha-
nism, it tends to make W algebraically smaller (more negative) than the
ideal value for reversible change, whether during expansion or compression.
If, however, the gas can be compressed at some lower temperature than
the temperature at which it is permitted to expand, then within the limita-
tion represented by Eq. (5-4), it is possible for the gas to do a positive
quantity of net work during each cycle. To be explicit, let W’ denote the
quantity of work done by n moles of an ideal gas as it expands from vol-
ume V; to volume V; at the constant (higher) temperature 7"; then

W’ < nRT" In 2

V.
Likewise, let W'’ denote the quantity of work done by the same quantity
of gas as it is compressed from volume V', back to volume V; at the con-

stant (lower) temperature 7"’ (its value will of course be negative); then

W < aRT" In V1

V2
The cycle may be completed by means of intermediate steps in which the
gas at constant volume V', is cooled from 7” to 7"/, and at constant volume
V1is heated from 7"’ back to 7"; neither of these steps involves work, and
for an ideal gas, the heat given up during the one exactly counterbalances
the heat absorbed during the other, since C, is independent of the pres-
sure, as shown by the application of the general thermodynamic relations,
(3-49) and (341), to a gas satisfying the ideal-gas equation of state, Eq.
(3-60). Thus, for the net work done by the gas during one complete

11n the cycle we have just described, if the gas is cooled at the constant volume V2
from T’ to T" by direct contact with the lower temperature medium and later is
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cycle,

V2
Vi
which may have a positive value, so long as 7" > 71"’ (on the assumption
by hypothesis that V2 > V). Now, the quantity of heat Q' absorbed
from the source of thermal energy at the constant temperature 7" is equal
to W', inasmuch as for an ideal gas, (AU)r = Q' — W’ = 0 [see Eq.
(3-62)]; therefore only the fraction

w _T1T-T"
67 = T (5-9)

W=W+ W =aR(T' —T")In (5-8)

is converted into mechanical form, the balance [1 — (W/Q’)] representing
the fraction passed on to the surroundings at the temperature 7" still in
thermal form. Since W = Q' 4 @'/, where —Q'’ represents the quantity
of thermal energy transferred to the lower temperature part of the sur-
roundings, at the constant temperature 7', Eq. (5-9) may be put in the
equivalent form

144 144
Thus, the utilization of the thermal energy absorbed by the gas at the
higher temperature is necessarily incomplete, ¢ven when the gas is put
through a cycle of reversible changes of state. Equation (5-9) represents
the efficiency with which the cyclic heat engine transforms thermal into
mechanical energy, without itself undergoing permanent change. The
efficiency of such an engine, operating between two fixed temperatures,
thus has as an upper limit the function of the two temperatures given by
the right-hand member of Eq. (5-9). TUnless provision is made for com-

(5-10)

warmed at the constant volume V; from T’ back to T’ by direct contact with the
higher temperature thermal source, then at least the quantity of thermal energy,

™ -
n / CSdT, would be irreversibly transferred from 7” to T” during each cycle.

This irreversibility could be eliminated, in principle, if a series of intermediate bodies
were available, at temperatures differing by infinitesimal degrees between 7’ and T"’;
the thermal energy released by the gas as it cooled from 7”7 to T, by successive con-
tacts with the intermediate bodies, could then be stored reversibly, available for
restoring the gas back through the reverse sequence of stages to the initial tempera-
ture 7”. In Carnot’s original treatment, he conceived the idea of cooling the gas from
T’ to T" by means of a further expansion under adiabatic conditions and likewise of
restoring the gas to its original temperature by an adiabatic compression. No heat
leaves or enters the system during these adiabatic stages; one may prove through
Eqgs. (3-83) and (3-84) that if the entire cycle is carried out reversibly, the work of
the two adiabatic steps cancels (since C? is a function only of temperature for an ideal
gas), and the net work satisfies the equalities represented in Egs. (5-8) and (5-9).
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pressing the gas at a lower temperature than the temperature at which
it was allowed to expand, there is no way to restore it to its original state
without the expenditure of at least as much energy from the surroundings
in nonthermal form as was yielded by the gas in expanding.

Carnot perceived that what is true of the expansion and compression
of an ideal gas' is but a special case of a far-reaching principle, which has
come to be known as the second law of thermodynamics. Every real
thermodynamic process leaves a permanent change in the world, either
immediate or deferred in character, the deferred change (which may be
used to counteract the immediate change that has taken place in the
system itself) being equivalent ultimately either to the transformation of
energy from nonthermal to thermal form or to the transfer of thermal
energy from a higher-temperature to a lower temperature level. No
process has ever been discovered whose sole result is the transfer of energy from
thermal to nonthermal forms. In the cyclic heat engine, which transforms
thermal energy to nonthermal energy without itself undergoing perma-
nent change, the permanent change in the world at large consists invari-
ably of the transfer during each cycle of a certain quantity of unutilized
thermal energy from the source to surroundings at a lower temperature
than the source; this is fundamentally an irreversible or one-directional
change, which would tend to take place of its own accord if the thermal
source and the lower temperature surroundings were to be exposed to each
other’s influence directly (compare Sec. 1-1) instead of through the inter-
mediate agency of the heat engine. In the absence of lower temperature
surroundings, however, the energy of the thermal source is completely
unavailable for the continued production of work, even if the heat engine
is supposed to operate reversibly [compare Eq. (5-9)]. To be sure, one
may transfer thermal energy back from the lower temperature to the
higher temperature level by means of a cyclic refrigerating engine, or heat
engine driven in reverse, but this can be accomplished only through the
expenditure of additional energy in nonthermal form, passed on ultimately
to the surroundings in the form of heat. As we shall note in the following
section, the second law of thermodynamics implies that we cannot so
counteract the “permanent’’ change effected by the operation of the heat
engine without expending at least as much work on the refrigerating
engine as the output of the heat engine; thus, in attempting to do so, we
should merely be substituting a different and even more permanent

1 The behavior of steam in an actual steam engine is only slightly more complex,
involving the phase transition between liquid water and steam, as well as changes in
state of the real gas, steam; in the internal-combustion engine, there is the added com-
plexity of a chemical reaction taking place within the cylinder, whereby thermal
energy is made available during each cycle.
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irreversible change (one requiring the expenditure of a still greater quan-
tity of nonthermal energy for its compensation) in place of the change we
had succeeded in counteracting.

The second law of thermodynamics is expressed in the form of a nega~
tive statement, or denial. We obviously cannot produce for such a
statement direct experimental proof, such as corresponds to Joule’s law
in relation to the first law of thermodynamics. Its generality rests
rather on the failure of all attempts to disprove it. Such attempts are
always equivalent to the construction of a so-called *‘perpetual motion”
machine of the second class (a perpetual motion machine of the first
class being one that would violate the principle of conservation of energy),
which might operate for example by drawing upon thermal energy from
a source originally at the same temperature as its surroundings (such as a
portion of the ocean, or the atmosphere), doing work without itself under-
going permanent change (z.e., by means of a cyclic process), and ulti-
mately lowering thereby the temperature of the source in relation to the
surroundings; ordinary thermal interchange between the source and sur-
roundings could then be relied on to restore thermal energy to the
depleted source, and thereby keep the machine in operation indefinitely,
transforming thermal energy drawn ultimately from the surroundings
into mechanical form without the need of an elevated temperature.
Experience teaches us that every device considered potentially suitable
for this purpose has failed. Upon the hypothesis that all such devices
are necessarily doomed to failure, we may of course construct a set of
logical implications, applying in particular to relationships among the
states of a thermodynamic system; for any thermodynamic system is
potentially a device for transforming thermal into nonthermal energy.
Such thermodynamic relationships are subject to direct experimental
verification; the truth of such relationships then constitutes indirect proof
of the second law of thermodynamics as the coordinating principle. The
importance of the second law of thermodynamics to chemistry rests in
the fact that every chemical transformation is potentially a means for
transforming thermal energy into mechanical or electrical energy, and the
general limitation imposed by the second law constitutes, as we shall
presently see, the foundation for the entire theory of chemical equilib-
rium. Our faith in the second law is based in part on the precision and
logical consistency of the results that have been accomplished in this
field.

6-3. Carnot’s Principle. An immediate inference from the second law
of thermodynamics is that any reversible cyclic process operating between
two given fixed temperatures must yield the same net quantity of work
W, from a given quantity of heat Q' drawn from the higher temperature
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source. For let us first compare the behavior of a reversible eyclic heat
engine with that of any nonreversible one, doing net work W from heat
@’ drawn from the higher temperature source. If W were greater than
W,, we could then use the nonreversible engine to drive the reversible one
backward so that it would function as a refrigerating engine, transmitting
the quantity of heat —@Q’ to the higher temperature source as the quantity
of work —W, is expended in running it; by hypothesis, the reversible
engine would require exactly the same quantity of work to drive it back-
ward, for a given quantity of heat then delivered to the higher tempera-
ture source, as it would do in running normally as a heat engine upon
absorbing that same quantity of heat; on the other hand, the nonreversi-
ble engine, as we have already noted in Sec. 5-1, in general would require
a greater expenditure of nonthermal energy to drive it in reverse than it
delivers when running in the forward direction. Now, the net result
would be that for each complete compound cycle of both engines, the net
quantity of work W — W, would be done, at the expense of thermal
cnergy (the difference between Q" — W, taken up from the lower tem-
perature body by the reversible engine running in reverse, and Q' — W
delivered to that body by the nonreversible engine) drawn from the lower
temperature surroundings; this would be the sole result, since the reversi-
ble engine would have restored to the higher temperature body all the
thermal energy withdrawn from it by the nonreversible engine. Such a
possibility is denied by the second law of thermodynamics; it follows
therefore that
WwW-Ww.,=0

W =W, (5-11)
No heat engine operating between two given fixed temperatures can be
more efficient than one operating reversibly. If, however, we compare
any two reversible cyclic processes operating between the same two tem-
peratures, one doing net work W! and the other W? upon drawing the
same quantity of heat @’ from the higher temperature source, then by
similar reasoning we can show that

Wi < W2 and w2 Wt
Both of these conditions can be satisfied only if
W= W2 (5-12)
In other words, any reversible cyclic process operating between two given
fixed temperatures is equally efficient in transforming thermal energy
drawn from the higher temperature source into work.

The value of W,/Q’ is therefore a universal function of the two fixed
temperatures concerned, entirely independent of the particular material
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system undergoing the cyclic change. This important generalization is
known as Carnot’s principle. 1t follows that we can establish the form
of this universal function by studying empirically the limiting behavior
as one approaches thermodynamically reversible conditions of any par-
ticular system. We have already found in Eq. (5-9) that for a system
consisting of an ideal gas (whose behavior has been inferred from the
behavior of real gases in the limit as p — 0, as shown in Sec. 1-2), the
upper limit to the efficiency of the cyclic process, attained by thermo-
dynamically reversible changes of state, is given by

_W:f _ T — T
Q/ - T’

where T represents the temperature measured on the absolute ideal-gas
temperature scale, as defined by Eq. (1-3). Equation (5-13) therefore
applies to any material system whatever, undergoing in principle a cycle
of reversible changes of state between the two fixed temperatures 7"
and 7.

6-4. The Thermodynamic Temperature and the Entropy. We may
treat Carnot’s principle in a more elegant way, first conceived by William
Thomson, Lord Kelvin, in 1852. Kelvin noted that Carnot’s principle in
effect defines a universal temperature scale independent of the particular
material system used as the thermometer. For let us consider two differ-
ent bodies, each momentarily at some fixed temperature (such as might
be maintained by ice melting at normal atmospheric pressure, or by
liquid oxygen boiling at normal atmospheric pressure), and let 6’ and 6"’
be their temperature measures derived naively as by means of Eq. (1-1)
from any appropriate thermometric property, such as the length of a
copper bar or the resistance of a platinum coil. Now, up to this point, at
which we introduce the second law of thermodynamics, the temperature
scale has had no numerical significance beyond that of ordering different
systems in relation to each other. A scale sufficient for coping with all
problems arising in relation purely to the first law of thermodynamics
could have been derived in terms of any measure 6, single-valued, con-
tinuously defined, and increasing in regular sequence as the body whose
temperature is being measured is made hotter,! without the need for
attaching any meaning to the quantitative relationships among the
temperature measures of different systems; thus, the numbers 0, 100, and
444.6°C assigned, respectively, to the ice point, the steam point, and the

(5-13)

1 The direction of increase here is purely conventional; an equally practical scale
would be obtained if the value of 0 decreased steadily as the body became qualita-
tively hotter; one would then discover by experience that the senses of the inequalities
between the 0 values in expression (5-14) would have to be reversed.
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sulfur point order these systems in relation to each other, and in relation
to other bodies whose temperature measures may be similarly assigned,
but we have had no occasion to attach physical significance to the concept
of precisely how much hotter a substance at the boiling point of sulfur is
than a substance at the boiling point of water. The absolute ideal-gas
temperature scale has had such special significance in relation to certain
physical properties of gases, but this has been a rather narrow field of
application. We are now prepared to assign a temperature scale on
which the numerical values have quantitative significance in general, in
relation to the second law of thermodynamics. For let us use as the
thermometer, in principle, any material system that could be put through
a reversible cycle, during which it absorbs thermal. energy Q. from the
one body, @ from the other body (under the sign convention that when
heat is actually given up by the system, Q, will be assigned a negative
value), and does net work: W, = Q. + Q!’. Then the general content
of Carnot’s principle is summarized qualitatively in the form of the follow-
ing statements:

If & > 6", then W, is positive , that is, Q. > —Q
If ¢ = ¢, then W, =0, that is, Q. = —Q.) } (5-14)
If @ < 6, then W, is negative, that is, Q. < —Q/'

Thus, we see that the absolute value of @, has the same qualitative numer-
ical properties as the temperature measure 6 itself; the relative magnitudes
of the quantities of heat exchanged by the system with the two bodies, as
the system goes through one complete reversible cycle, could be used to
place the two bodies, and any others by extension of the scheme of meas-
urement, in qualitative temperature order. But according to Carnot’s
principle, the value of the ratio W,/Q. =1 + (Q)/Q.) is determined
solely by the temperatures of the two bodies, however they may be meas-
ured, and independently of the particular material system undergoing the
reversible cycle of changes between them. Therefore we may use the
ratio —Q,’/Q., as measured empirically using any material system what-
soever, to define the relative temperature measures of the two bodies,
according to the quantitative law,

9" "

i _QI: (5-15)
(the negative sign in this equation merely ensures a positive value of the
ratio 0”7/, since @]’ and Q. will themselves have opposite signs). The
temperature scale © so defined is known as the absolute thermodynamic
temperature scale. Such a scale has all the essential qualitative features
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of ordinary temperature scales, but has in addition the universal property
that any system used to measure the values of Q. and Q;, and thereby
serving as an empirical thermometer through Eq. (5-15), will yield the
same value of ©/6’. We have already seen in Eq. (5-10) that if we
choose as our thermodynamic thermometer an ideal gas (whose behavior
has been inferred from empirical observation of the limiting behavior of
actual gases as p — 0), then

" TII
where T’ and 7" represent the absolute ideal-gas temperatures, as meas-
ured independently of thermodynamics by means of an ordinary gas
thermometer corrected for deviation from Boyle’s law at finite pressures
[compare Eq. (1-3)]; therefore we conclude in general that

0 =CT (5-17)

where the proportionality factor C may be set equal to 1 merely through
assignment of the same numerical scale to O as has already been assigned
to T. Equations (5-9) and (5-10), to which we were led by empirical
observations based on the properties of gases at sufficiently low pressures,
therefore apply generally to any thermodynamic system whatever, where
T stands for the absolute ideal-gas temperature.

Equation (5-15) is evidently not the only way in which one might pro-
ceed to define a universal temperature scale based on the second law of
thermodynamics. Kelvin in fact first proposed a scale essentially defined
by the relation

24
E'—E =In (— %L,) (5-18)
This so-called “first’” scale of Kelvin evidently satisfies the qualitative
requirements of ordinary scales, as embodied in relations (5-14), and, like
any other function of —@Q)'/Q!, must be universal in view of Carnot’s
principle. If we apply the definition (5-18) to some particular material
system, such as an ideal gas, we evidently obtain

E=%+InT (5-19)

where T represents the absolute ideal-gas temperature, and =, is a con-
stant merely locating the zero point on the = scale in relation to the zero
point on the T scale. The © scale defined by Eq. (5-15), however, to
which 7' is proportional, has one important property not possessed by
other “thermodynamic’” scales. If we transpose terms in Ed. (5-15),
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then
’ Q"
—6—7 +=5=0 (5-20)

In other words, the quantity Q,/6, where Q. denotes in the algebraic sense
the quantity of heat absorbed by the system during a reversible change of
state at the constant thermodynamic temperature 6, when summed over
a complete cycle of changes that restores the system ultimately to its
original state, vanishes. Equation (5-20) applies to a system absorbing
heat reversibly only at the two fixed temperatures @’ and 6"’; we may
generalize to take account of reversible changes of state during which the
temperature of the system undergoes change by invoking the methods of
the calculus. Thus, let us define a function S by means of the equation

ds = df’ (5-21)

Then we may infer from the second law of thermodynamics that the
integral of dS around any closed reversible path that ultimately restores
the system to its original state vanishes; this statement is merely a gen-
eralization of Eq. (5-20). In other words, the value of S itself, except
possibly for a constant of integration for the particular system, must be
determined completely by the state, and is therefore an extensive property
of the system (extensive because the value of @, for a given kind of mate-
rial substance will evidently be proportional to the total mass of it under
consideration).

We may in fact set up the temperature scale O originally in such a way
as to ensure that dS defined by Eq. (5-21) is determined completely by
the changes taking place in the variables fixing the state, independently
of the particular path along which they vary. Let us forget for the
moment our previous definition of © [Eq. (5-15)], and concentrate on this
new aspect, since the creation of a physical property of the system in
terms of which the second law of thermodynamics can be expressed in
mathematical form would be an achievement equivalent in value to the
creation of U and H in relation to the first law. The value of Q, is clearly
not determined solely by the initial and final states of the system, as
we have indicated by using the notation d’Q, for its differential. Equa-
tion (5-21) suggests, however, that by dividing the value of d’Q, by some
particular temperature measure ©, whose relation to any ordinary (i.e.,
nonthermodynamic) method of measuring the temperature, such as by
means of a platinum resistance thermometer, or a constant-volume nitro-
gen thermometer, is to be determined by empirical observation. The
quantity 1/ is thus to serve in the capacity of an integrating factor (to
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use the language of differential equations) of the differential expression
represented by d’'Q,. Now, according to Carnot’s principle, the relation-
ship between © and any particular ordinary temperature scale, based
on some thermometric property of a particular type of thermometric
system, must be a universal one; in other words, the temperature scale
© which transforms d’Q,/6 into a perfect differential in terms of the
variables determining the state for any one system will serve in the same
capacity for any other system. We can therefore discover the form of
the general relationship between © and any ordinary temperature meas-
ure by studying empirically the behavior of any particular material
system. We can express in detail, for example, the behavior of an ideal
gas by means of the empirical equations

_nRT (from equation-of-state data for real gases at
TV low pressures) (5-22a)

dU = nC, dT (from Joule-Thomson experiments on real gases
at low pressures) (5-220)

where T represents the absolute ideal-gas temperature defined by Eq.
(1-3) independently of thermodynamic considerations. Now, in general,
for any system,

d'Q =dU 4+ pdV (W' = 0; first law)

Let us divide by 6, a function as yet unspecified of the ordinary tempera-
ture as represented, for example, by the absolute ideal-gas temperature T,

_d'Q. _dU+ (pdV),
s = o %)

W =0 (523)

and introduce the ideal-gas data, noting that for reversible changes of
state, the gas is maintained throughout at a pressure equal to its equi-
librium static pressure, as represented by Eq. (5-22a). Thus

ds = "C" ar + 2L . Gdealgas)  (524)
One sees at a glance that in order for dS to be a perfect differential in

terms of the variables 7' and V, it is necessary and sufficient that
e =CT (5-25)

where C is a universal constant, which merely fixes the size of the degree
on the O scale in terms of the arbitrary degree fixed by convention on the
T scale. Equation (5-25) follows rigorously from Eq. (5-24) if one
applies Euler’s criterion
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d (nRT _i(_fz@)
dT\ev /), dv\ e /:

R _RTdo_
eV ewdT

dlno 1

aT T

0 =CT

[Egs. (5-22a) and (5-22b) are sufficient, taken in connection with the
first law of thermodynamics, to ensure that C, is independent of V and
of p.] Equation (5-25) represents of course the same conclusion we pre-
viously reached by a different approach in Eq. (5-17). In other words,
1/T, where T represeats the absolute ideal-gas temperature, is itself an
integrating factor for d’Q,, and the function 8, hereafter defined by

_ 4'Q,
s = =5 (5-26)

is for a particular thermodynamic system an extensive property deter-
mined entirely by its state

state 2 3/
AS = Sz - Sl = / (!“‘Q“r

state 1

(5-27)

This completes the identification of the absolute thermodynamic tem-
perature scale with the absolute ideal-gas temperature scale, to which we
referred in Sec. 1-2; the gas thermometer, corrected for deviation of the
particular gas from Boyle’s law, thus constitutes an experimental method
of realizing temperature measures on the thermodynamic scale, which
has the properties implied by Eq. (5-27).

The function S defined by Eq. (5-26) or Eq. (5-27) is known as the
entropy function, and was first introduced by R. J. E. Clausius in 1865.
It is important for one to realize that while the defining equations, (5-26)
and (5-27), apply only to thermodynamically reversible changes of state,
the value of AS is a property solely of the initial and final states of the
system. Therefore if the value of AS between two given states can be
established, for example by applying Eq. (5-27) to any reversible path
connecting the states, then the entropy of the system undergoes that same
change whenever the same change of state is brought about, by whatever
process, reversible or nonreversible. The accompanying entropy change
taking place in the surroundings is another matter, which we shall discuss
at further length in the following section. For changes of state taking
place in an ideal gas, from Eq. (5-24), neglecting change of € with
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temperature,
8 —8i=CmI 4RI Y2 (dealgas) (5-280)
T, Vi
or, in terms of 7T and p as state variables,
8 — 8 =CMh %3 —RInP (ideal gas) (5-28b)
1 P1

While the ratio of the absolute thermodynamic temperatures of two
bodies, 7"//1", is thus given general quantitative significance in the light
of the second law of thermodynamics, represented, for example, by Eq.
(5-16), the number assigned to any one fixed temperature point remains
arbitrary, as seen in Eq. (5-25); the absolute thermodynamic tempera-
ture measures could be multiplied throughout by a constant scale factor,
without effect of any kind on the thermodynamic relations involved,
although of course the choice of scale would affect the numerical values
assigned to S. As explained in Sec. 1-2, the Kelvin or absolute thermo-
dynamic centigrade scale has been defined since Kelvin’s time by the
arbitrary assignment of 100°K to the difference between the steam-point
and the ice-point temperatures; the Rankine or absolute thermodynamic
Fahrenheit scale in use by chemical and mechanical engineers has been
defined similarly by the arbitrary assignment of 180°R to the difference
between the steam-point and the ice-point temperatures. It then fol-
lows from experiment that 7', the absolute thermodynamic ice-point
temperature, has the value 273.16 + 0.01°K on the Kelvin scale and
491.69 + 0.02°R on the Rankine scale. A movement is under way to
redefine the Kelvin scale by the arbitrary assignment of the number
273.16°K (or whatever number may be agreed upon by convention) to
the ice point, or possibly by the assignment of a suitable conventional
number to the triple point of water, which is perhaps more reproducible
than the ordinary ice point. This change would of course have no imme-
diate practical effect on absolute temperature measures now in use.

If in Eqs. (5-26) and (5-27) defining dS and AS, d'Q, is represented in
calories and 7' in degrees Kelvin, then dS and AS are measured in calories
per degree, or so-called entropy units (eu). The second law of thermo-
dynamics defines only changes in the value of S; the entropy of a given
thermodynamic system, like the internal energy and the enthalpy, is
therefore indeterminate to the extent of an arbitrary additive constant
of integration, concerning which, however, we shall have more to say in
Sec. 8-3.

6-6. Thermodynamic Measures of Irreversibility and Criteria of
Equilibrium. We have discussed the entropy function so far only in
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relation to reversible changes of state, by means of which changes in its
value can be directly established experimentally according to Eq. (5-26),
or its integral form, Eq. (5-27). The second law of thermodynamics
implies, however, that its difference, AS, between two given states does
not depend on how the change of state is brought about, although Eq.
(5-27) itself is valid only along a reversible path. Let us now see what
kind of information we can derive from the entropy function concerning
real changes of state, which in general are not thermodynamically
reversible.

From the general discussion given in Secs. 5-2 and 5-3, it is clear that
for any real change taking place in the state of the system af constant
temperature, the following condition is always satisfied:

Q < TAS (T const) (5-29)

For if @ represents the quantity of heat absorbed and W the quantity
of work done by the system during the actual change of state, and if
Q. and W, represent the quantity of heat absorbed and the quantity of
work done if the same net change of state were brought about by means
of any thermodynamically reversible process, then in principle one could
always restore the system to its original state by putting it through the
reversible process in the reverse direction; the net work W — W, done
by the system during the complete cycle must then satisfy the general
second-law condition

W-WwW,=0 (T const) (5-30)

Since, however, in view of the first law of thermodynamics,
Q—W=AU=Q, - W,
it follows therefore from Eq. (5-30) that
Q—Q-=0 (T const) (5-31)

But at constant temperature 7', according to Eq. (5-27) defining AS in

general,
Q. =TAS (T const) (5-32)

Therefore condition (5-29), which is actually a generalization of Eq.
(5-32), follows; the equality sign in (5-29) applies to the special case in
which the change of state under consideration happens to be carried out
reversibly.

The generalization of condition (5-29) for real changes of state during
which the temperature of the system changes is

d'Q = TdS (5-33)
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or
state 2

Q= T ds (6-34)

state 1

where the integral is evaluated along the actual path followed by the
system. For we may conceive the actual path to be approximately
equivalent to a path made up of a sequence of changes at successive con-
stant temperatures, connected by intermediate steps during which the
temperature is changed to the next value under adiabatic conditions;
during the adiabatic connecting steps, d'Q = d'Q, = T dS = 0, while
during the isothermal steps, condition (5-29) or its limiting form (5-33)
for infinitesimal changes applies. In the limit as the steps are shortened
and their number correspondingly increased, the approximation to the
actual path can be made as close as one pleases, always under the assump-
tion that below the limit of experimental error in the measurement of
quantities such as T and @ there is still some distance to go before the
discrete ultimate structure of the material system causes these quantities
to lose the precision with which they may ordinarily be defined (we shall
presently see that when one takes into account the molecular constitution
of material substances, one must assume that the second law of thermo-
dynamics has a statistical foundation, as have such concepts as tempera~
ture itself and the distinction between thermal and mechanical energy).

In general, both terms involved in Eq. (5-34) depend on the path
actually followed by the system during the change of state under con-
sideration. We may, however, rearrange Eq. (5-33) before integrating,
so that the condition it imposes on real changes of state may be expressed
in terms of the quantity AS, whose value depends only on the initial and
final states,

state 2 d/Q
/ 99 < as = 5. - 8 (5-35)
state 1
This relation is the generalization of Eq. (5-27), which defines AS; the
equality sign in condition (5-35) applies to the special case of a thermo-
dynamically reversible process.

Condition (5-35) is a concise statement in elegant mathematical form
of the second law of thermodynamics. It expresses the general limitation
on the utilization of thermal energy embodied in that law by setting an
upper limit to the quantity of heat any given material system may take
in during a change of state (by means of which some or all of the thermal
energy might conceivably be converted to mechanical or other nonthermal
form); this limit is set through the abstract relation (5-35) in terms of a
function of the state of the system, whose change, AS, depends only on
the initial and final states of the system for the change of state under
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contemplation. In particular, if the system goes through a cycle of
changes, which restores it ultimately to its original state, so that

AS = AU =0,
then
W= Slid'Q (first law) (5-36a)
where
' 95de =0 (second 1
= ond law) (5-36b)

Carnot’s equation, (5-13), and the various relations for cyclic heat engines
developed in Sec. 5-2, are merely special cases of the general relation
represented by Eqgs. (5-36). More generally, condition (5-35) sets
bounds to the thermodynamic feasibility of conceivable changes of state;
only such changes as satisfy (5-35) are consistent with the second law
of thermodynamics. If, for example, one has established the value of
AS between two given states, then the system can get from one state to
the other only along such paths as satisfy (5-35), ¢.e., paths over which
fd’Q/T does not exceed the value of AS. This condition evidently
determines the direction in which the system will tend to move, or can
move, under a given set of constraints imposed on it. This powerful
criterion may be applied in particular to determine the direction in which
a chemical reaction tends to take place under a given set of constraints,
as we shall see later; it is evident, for example, that an endothermic
reaction at constant temperature demands a positive entropy of reaction,
but this condition is evidently not sufficient to ensure that the reaction
tends to take place in the endothermic direction.

The case of the thermally insulated system is particularly significant.
If the system is constrained to changes of state such that d’'Q = 0, then
the general condition (5-35) reduces to

AS =20 Q=0 (5-37)

Therefore during real adiabatic changes of state, the entropy of the
system cannot decrease; it must increase, or for hypothetical reversible
changes of state, remain stationary. Condition (5-37) applies a fortiori
to changes taking place in an isolated system, which exchanges no energy
in any form with the outside world; in this case, since, in general,

dQ =dU + pdV +d'W

we may write explicitly
(AS)u,y 2 0 (W' =0) (5-38)



THE SECOND LAW OF THERMODYNAMICS 215

Since according to Eq. (5-38), the entropy of an isolated system cannot
decrease, the ultimate state of such a system must tend to be the one of
maximum entropy consistent with its fixed total energy and volume.
When the system has reached such a state, no further changes can take
place consistently with the second law of thermodynamics; the system
will be in a state of stable equilibrium, with all its energy completely
unavailable for effecting further change.

Consider, for example, the simple case of a heated piece of iron that
has just been dropped into a Dewar flask containing water originally
at room temperature. The iron cools down and the water warms up
until ultimately both have reached a common temperature (compare
Secs. 1-1 and 2-2), from which no further change takes place except for
gradual loss of heat from the Dewar flask to the surroundings. Now,
all the energy, both thermal and mechanical, introduced with the iron
is still present in the flask, and there would be no contradiction of the
conservation principle if the iron and the water were to return of their
own accord to their respective original temperatures, or for that matter,
if the iron were to gather together energy in mechanical form and jump
back out of the flask. Experience tells us, however, that such changes
never take place. Condition (5-38) is an abstract means of putting
such experience in the form of a mathematical statement; once the iron
has entered the flask, the entropy of the resulting ‘‘isolated” system
can only increase or remain stationary, and as it increases, the energy of
the system becomes increasingly unavailable for effecting further changes.

The entropy change as the iron cools and the water warms may be analyzed
in detail as follows: let the total heat capacity of the iron body be represented
by C, and its instantaneous temperature by T, and let the total heat capacity
of the water (neglecting that of the container itself) be represented by C. and its
instantaneous temperature by 7';. Then if the temperature of the iron were to
change by dT', and the temperature of the water correspondingly by dT',, subject
to the conservation condition

CidT 4+ C2dT: =0
the total entropy change would be given by

G C,
dS—TldT1+-ﬁde

1 1 )
= (Tl - E 01 dTl
Thus, so long as Ty > T, dS can be positive only if dT, is negative, t.e., if the

iron cools, which is of course what actually happens. Had T, been smaller
than T, that is, the iron body initially colder than the water, then dS would be
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positive only for a change such that dT, would be positive. Now when ulti-
mately T, = T,, then for further small change of state represented by d7T',, the
value of dS would be zero, but the second-order effect if T'; were to be increased
sufficiently (and T, correspondingly decreased) would be to make the coeffi-
cient of C, dT'; in the above expression for dS become negative; t.e., a small but
finite increase in T'; would be accompanied by negative AS. A precisely similar
argument shows that a small but finite increase in 7'y, starting with the condition
T, = T,, would likewise be accompanied by negative AS. Neither change can
actually take place so long as the system remains isolated. Thus, the statement
that the entropy of an isolated system cannot decrease symbolizes in general
what experience teaches us in detail about this particular situation: that the
temperatures of the two bodies tend to become equal and to remain equal there-
after. This idea is implicit, of course, in the use of a thermometer to measure
the temperature of a body with which it has come to thermal equilibrium, free
from the influence of other external bodies.

The “dissipation’’ of mechanical energy associated with the motion of the iron
body as it drops into the insulated flask also corresponds to an entropy increase.
In order to consider this question, let us suppose for simplicity that the iron
body and the water are initially at the same temperature T, and let E then
represent the kinetic energy with which the iron drops into the water. This
energy is transformed into internal energy of the combined system, and neglecting
the small volume change associated with the rise in temperature,

Now, since the entropy change of the system depends only on the initial and final
thermodynamic states, we can compute its value from the moment the kinetic
energy of the iron body vanishes until the combined system has come to thermal
equilibrium by calculating what the value of [d’Q,/T would be if the same change
of state were brought about through any reversible process, such as by reversible
heating (z.e., by means of heat supplied by an external body whose instantaneous
temperature is maintained only infinitesimally higher than the instantaneous
internal equilibrium temperature of the system itself); thus

To+aTd'Q, [ To+aTdU

AS = To T To T~

AT
(Ci+ Cy) T,
to a first approximation, under the assumption that AT is small compared with
To. In other words
E
AS ~ Ty
So long as the content of the flask remains isolated, all the energy E becomes
unavailable through temperature equalization, just as in the case of energy
introduced directly in thermal form (as when the iron body was introduced at an
original temperature higher than that of the water). What physical significance
may we attach to the value of AS itself in the present instance? Suppose that
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lower temperature external surroundings exist, at some temperature 7*. Then
through a Carnot process, the fraction (79 — T*)/T, of the assimilated energy E
(and of any other thermal energy withdrawn from the combined iron-water
system, so long as it remains essentially at the temperature T's) might be con-
verted back to mechanical form; but the balance E(7*/T,) would remain unavail-
able, and even under the most efficient conditions consistent with the second
law of thermodynamics would be passed on to the low-temperature surroundings
still in thermal form. Thus, the quantity
T*
T*AS = E Ty

represents energy rendered ‘‘permanently’” unavailable when the mechanical
energy of the falling body is ‘“dissipated’” within the flask in thermal form.
This interpretation of AS as a measure of the extent to which energy, thermal or
mechanical, has been made unavailable is quite general. The unavailability
depends on the lowest available temperature to which one can divert the unuti-
lized thermal energy; in a closed system, such that all parts are ultimately at the
same temperature, all the thermal energy is unavailable. We have supposed in
the example under consideration that AT was sufficiently small to leave T,
sensibly unchanged; if the temperature within the flask is increased significantly
through accretion of the energy introduced by the iron body, then the value of
AS is correspondingly smaller, indicating that the extent to which this energy
has been made unavailable (which depends on the ratio of the lowest available
external temperature to the temperature finally prevailing within the system that
has acquired the energy) is likewise smaller.

Now, thermodynamic changes taking place in the world at large may
be regarded ultimately as changes taking place within an isolated or
self-contained system; for any change occurring in a system that is not
itself isolated consists of an interaction between the system and its envi-
ronment, during which energy may be exchanged (in thermal and non-
thermal forms) but according to the first law of thermodynamics is
never created or destroyed. Therefore by the inclusion of enough of the
environment to encompass all parts influenced by the energy transfer,
the system plus environment constitutes a supersystem that is in effect
isolated; its total energy and its total volume are both constant. The
classic expression of this viewpoint was given by R. J. E. Clausius in
1865 and was quoted by J. Willard Gibbs at the outset of his monumental
treatise, ‘“On the Equilibrium of Heterogeneous Substances,”’” published
10 years later:

“Die Energie der Welt ist constant.
Die Entropie der Welt strebt einem Maximum zu.”

In Sec. 5-2, we introduced the second law of thermodynamics in the form
of a statement expressed in terms of ordinary experience: no process
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has ever been discovered whose sole result is the transformation of energy
Sfrom thermal to nonthermal form. We may now replace that statement by
the mathematically equivalent abstract but more powerful generaliza-
tion: the entropy of a closed thermodynamic system never decreases. The
entropy of any nonisolated portion of the system may decrease (just as
thermal energy may be transformed into nonthermal energy by means of a
heat engine, which itself undergoes no permanent change as a result of
the operation), but only when the decrease is compensated by an at
least equal increase in the entropy of the surroundings. So far as we
know, this law applies universally to all physical and chemical transforma-
tions involving matter in bulk.

When the entropy of a closed thermodynamic system has reached a
maximum value consistent with its fixed total energy and volume, then
no further changes in it can take place, without violating the second law
of thermodynamics; the system will have attained a state of equilibrium.
All thermodynamic changes may thus be regarded as steps on the way
toward ultimate equilibrium of the world in general. This aspect of
the second law has of course influenced cosmology, and man’s outlook
on his place in the universe. We are concerned here, however, only with
the modest aim of studying its implications with respect to equilibrium
in chemical systems. The main lesson we learn is how to take advantage
of nature so as to benefit by changes that tend to take place of their
own accord, and to assess the cost, in terms of an immediate or a deferred
change of a permanent nature in the environment, of effecting a desired
transformation that ordinarily does not take place of its own accord.
But one is always faced with the necessity of working within the limita-
tions imposed by the second law. Thus, the criterion for stable equi-
librium in an isolated system is that for all conceivable changes the
system may undergo, consistent with general chemical and physical
principles (conservation of mass, conservation of the chemical elements,
general stoichiometry, mechanical principles governing motion, ete.),

(A8)vy =0 (W =0) (5-39)

When in particular we are dealing with a system in dynamic equilibrium,
such that the same equilibrium state may be approached from either of
two opposite directions (as in the equilibrium between liquid water and
steam, or in the gas-phase equilibrium for the reaction N. + 3H, = 2NH;
at sufficiently high temperatures), then since the entropy change that
would be associated with a virtual displacement of the system in the one
direction from the equilibrium state is in general equal in magnitude but
exactly opposite in sign to the entropy change for a virtual displacement
in the opposite direction, the general equilibrium condition (5-39)
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reduces to
(AS)u,y =0 (W' =0) (5-40)

The inequality sign in (5-39) merely implies that there may be other con-
ceivable changes of state, denied by the second law of thermodynamics,
other than the particular reversible change in which we are interested to
which the equality (5-40) applies. Thus, if we can establish conditions
under which for a given thermodynamic system Eq. (5-40) applies, then
we shall have established ultimate equilibrium conditions in that system,
consistent with given values of U and V.1

Before discussing Eq. (5-40) and its implications in detail, it is impor-
tant for us to note two serious limitations on its usefulness. In the first
place, while the general condition (5-35) [of which (5-38) is a special case]
is a necessary condition satisfied by every real change of state, it is not a
sufficient condition; the second law denies the existence of changes con-
tradicting (5-35), but it does not ensure that a thermodynamically feasible
change will in fact take place under a given set of conditions or under any
set of conditions. We are familiar with many examples of metastable
states in which the system may remain indefinitely, even though more
stable states are known to exist to which the system could conceivably
pass by means of a change of state satisfying (5-35). Thus, we may show
that (5-35) is satisfied by the transformation of water into ice at atmos-
pheric pressure and all temperatures below 0°C; nevertheless, it is entirely
possible for one to supercool liquid water below 0°C and to maintain it in
that metastable state for an indefinitely long period of time. However,
the change at atmospheric pressure and temperatures below 0°C will go
only in the one direction, from water into ice; no one has ever succeeded
in transforming ice into water under such conditions. In the same sense,
diamond at room tcmperature and pressure is metastable toward trans-
formation into graphite, although here the evidence is more indirect,
since we cannot actually induce the transformation to take place in either
direction at ordinary temperatures and pressures. TNT and many other
explosives are metastable with respect to their decomposition products;
the decomposition can be initiated by an effect small out of all proportion
to the over-all result. Likewise, a mixture of CO and H, at atmospheric
pressure and room temperature is in a metastable state with respect to

1 A steady state differing in important aspects from the stable equilibrium states
discussed in this book may be maintained through a balance between incoming and
outgoing energy and material substances. The thermodynamies of such open systems,
which may have significant biological applications, has been explored by I. Prigogine,
“Btude thermodynamique des phénoménes irréversibles,” Editions Desoer, Liége,
1947,
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chemical combination to form methanol, although no reaction takes place
in the absence of a suitable catalyst. In some of these cases, there may
be an energy barrier to be overcome as a preliminary to the over-all
change of state satisfying condition (5-35); for example, in the methanol
synthesis, H; molecules may have to be disassociated, partially or com-
pletely, in order for reaction to take place; in the freezing of supercooled
water, crystal nuclei below a certain critical submicroscopic size may have
higher energy than larger crystals, because of the relatively larger propor-
tion of surface molecules. In other cases, one might regard the trans-
formation to the more stable state as under way, but proceeding with
extreme slowness. Certain explosives, such as PETN (pentaerythritol
tetranitrate), might be put in this class, for here the decomposition takes
place at a measurable rate, at a slightly elevated temperature such as
120°C; the rate increases rapidly with increasing temperature until one
reaches a point at which it becomes self-accelerating because heat cannot
be conducted away as fast as it is being released by the decomposition.
The distinction between an extremely slow rate of change and a change
hindered by an energy barrier is perhaps artificial, but in any event the
information given by the second law of thermodynamics is essentially
negative in character.

The other limitation on (5-35) and its various special forms such as
(5-38) is that even when the system is known to be actually moving
toward a stable equilibrium state and is not resting in a metastable or
suspended state the magnitude of the inequality represented by (5-35)
for the change actually occurring gives no clue to the speed with which
equilibrium will be attained. Certain spontaneous changes take place
with explosive speed under suitable conditions, such as the reaction
between H; and O, to form H,0, while others, such as the polymerization
of styrene, may take days. Many chemical reactions are speeded up, or
even initiated altogether, by specific catalytic agents, which have no
effect on the ultimate equilibrium state. Within these limitations, how-
ever, the information to be derived from thermodynamic criteria of
equilibrium, such as Eq. (5-40) and other related equations, is of the
utmost theoretical and practical value. Entire chemical industries, such
as the Haber process for synthetic am