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PREFACE

It has been the author's experience in the teaching of physical chemis-

try that one can no longer do justice to the principles of chemical thermo-

dynamics in the conventional introductory physical chemistry course

without taking time from much descriptive and theoretical material that

does not actually require the use of thermodynamic methods for its inter-

pretation. At the same time, the scope of chemical thermodynamics
itself has expanded so greatly during the past twenty-five years that a

thorough foundation in this subject is indispensable to the modern

chemist, in whatever field of chemistry his efforts may be directed.

This book is intended to serve a course in chemical thermodynamics
which may accompany or immediately follow the introductory course in

physical chemistry, at either the senior undergraduate or the first-year

graduate level. The emphasis throughout is on general principles and

their origins, with specific applications to a limited number of fields

which are primarily the concern of the chemist. While mathematical

formulations are employed freely throughout, no mathematics beyond
calculus is required; special mathematical techniques are explained as the

need arises. No prior knowledge of thermodynamics is assumed, since

this course is designed to replace the ordinary thermodynamics course

for chemistry students. The problems given at the end of each chapter
constitute an integral part of the presentation. Most of these problems
have been selected from the chemical research literature; "answers" may
therefore be checked in these cases by consulting the original references.

The fact that so many of the problems have been taken from papers

appearing within the past few years offers convincing evidence, if such is

needed, that chemical thermodynamics is decidedly a living subject. The
book has not been planned as a reference source for chemical thermo-

dynamic data, since extensive critical compilations exist elsewhere,

notably in the definitive project, "Selected Values of Chemical Thermo-

dynamic Properties," issued by the National Bureau of Standards under

the direction of Dr. Frederick D. Rossini.

In keeping with our limited objective, which has been to present the

theoretical structure of the science and its applications to chemistry
without becoming extensively engaged in side issues of extrathermo-

dynamic origin, certain related matters have not been discussed in detail,

particularly where other sources of information are readily available.
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Thus, the Debye monatomic heat-capacity formula and the Debye-
Hiickel limiting law for the activity coefficients of strong electrolytes

have been introduced for our present purposes as ad hoc results of extra-

thermodynamic theoretical investigations. Their origins and the general

assumptions underlying their derivations have been briefly indicated,

but the reader is referred elsewhere for the actual derivations on the

ground that these have little to do with essential thermodynamic theory.

Likewise, no discussion except in most general terms has been given of

recent theories of nonideal solutions on the ground that, while the tests

of such theories rest mainly on thermodynamic data, the theories them-

selves transcend purely thermodynamic methods of investigation and in

a sense constitute a sequel to the material considered to fall within the

scope of this book. The Gibbs' surface-concentration theory has not

been included for discussion on the ground that, in the author's opinion,

much more spectacular progress has been made in this field through

applications of Langmuir's oriented monomolecular surface film hypoth-
esis than through quantitative applications of Gibbs' law. With the

aid of the references cited throughout the book, it should be possible

for the enterprising student to follow up further details of many special

applications that may interest him. If time permits, some .of these

special topics may be explored at greater length in class by means of

seminar assignments, a valuable method of instruction at the level

indicated.

It has been the author's good fortune to have studied with a great
scientist and teacher, Professor Louis P. Hammett. His boldness of

enterprise, combined with a passion for accurate knowledge and an

impatience with cloudy ideas, has been a source of inspiration through

many years. It is a pleasure to acknowledge personal indebtedness to

him for advice, criticism, and encouragement in the completion of this

work. Any errors are the responsibility of the author, and he will be

glad to receive criticism that may improve the book's usefulness.

MARTIN A. PAUL
ENDICOTT, N.Y.

January^ 1951
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CHAPTER 1

TEMPERATURE

In all measurements involving heat, and in many other kinds of physi-
cal and chemical investigations, the concept of temperature is of para-
mount importance. It is therefore appropriate for us to begin the study
of chemical thermodynamics by reviewing how temperature is measured,
even though the full theoretical import of the temperature concept can be

appreciated only after we have discussed the second law of thermody-
namics in Chap. 5.

1-1. Principles of Thermometry. We are endowed by nature with a

temperature sense that enables us to distinguish the relative hotness or

coldness of objects we touch or are otherwise exposed to (as through
thermal radiation). This sense is, however, too crude and limited in

range to be directly useful in precise scientific investigations. Therefore

various types of thermometers have been developed to measure tempera-
ture precisely and to extend the range of measurements far beyond that

directly accessible to our physiological temperature sense.

The ordinary thermometer is based on some conveniently measured

physical property of a standard substance or system, the so-called

"thermometric medium," that varies in a single-valued, continuous way
as the medium is made hotter. The most familiar type of thermometer

is based on the expansion of a liquid, such as mercury, confined within a

glass tube. Other types of thermometers are based on the differential

expansion of two strips of different metals joined at their extremities, the

pressure of a gas confined within a glass or metal tube at fixed volume, the

vapor pressure of a liquid, the electric resistance of a metal, the electro-

motive force set up in a circuit composed of two different metals when
their junctions are at different temperatures, the rate of total radiation

and also the spectral distribution of the energy radiated by a black body,
and certain other thermometric properties that have been found useful in

special applications.

In reading a thermometer, we are generally observing directly the

temperature of the thermometric medium rather than that of the sys-

tem to which it is applied. The usefulness of the thermometer for meas-

uring the temperatures of other bodies depends on the following funda-
1
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mental thermal principle,
1 which represents a generalization drawn from

experience :

Whenever two or more bodies at different temperatures are exposed to each

other, whether by direct physical contact, by indirect contact through an

intervening material medium, or even at a distance across empty space, they

influence each other in the sense that they tend to undergo changes, until ulti-

mately a state of equilibrium has been established from which no further

changes take place; such a state of equilibrium is reached only when all the

bodies have come to a common temperature.

This fundamental principle is in effect a definition of temperature

equality; two bodies that have come to equilibrium with each other (by
this expression we mean that while they are potentially exposed to each

other's influence, no sensible change is taking place in either) must be at

the same temperature. The criterion of temperature equality thereby
set up is a sufficient, though evidently not a necessary one, for two bodies

may be at the same temperature without having come to a state of equi-

librium in other respects. The general problem in thermometry, then,

is to bring the thermometer to equilibrium with the system whose tem-

perature is to be measured.

Three distinct mechanisms have been recognized whereby tempera-
ture equalization may be brought about: thermal conduction, thermal

convection, and thermal radiation. A detailed discussion of these

mechanisms would involve the concept of heat itself, which we propose to

discuss in Chap. 2, as distinguished from that of temperature. The

following remarks are therefore intended merely as a brief introductory
review.

When temperature equalization takes place directly across the bound-

ary between two bodies, or when it takes place through an intervening
material medium that itself undergoes no sensible motion during the

process, it is said to take place through thermal conduction. The mathe-

matical theory of thermal conduction was established by J. Fourier in

his "La Th6orie analytique de la chaleur," published in 1822;
2 in this

work, Fourier gave the first rational definition of that property of a mate-

1 A. G. Worthing and IX Halliday, in their textbook, "Heat," John Wiley & Sons,

Inc., New York, 1948, refer to the content of this principle, stated by them, however,
in a slightly different form ("two systems in thermal equilibrium with a third are

in thermal equilibrium with each other "), as the zeroth law of thermodynamics.
The author believes, however, that it is implied by the second law of thermodynamics
in its most general form (see Chap. 5). We assume it here temporarily as a starting

point, since the second law itself is too abstract to constitute a satisfactory introduc-

tion to the subject.
2 An English translation by A. Freeman of this great classic has been published by

G. E. Stechert & Company, New York.
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rial substance known as its thermal conductivity. The metals have rela-

tively high thermal conductivities, copper and silver being among the

best conductors; glass, wood, and many ceramics have relatively low

thermal conductivities. There is a general correlation between thermal

and electrical conductivities (the Wiedemann-Franz law, discovered in

1853), which has received a satisfactory explanation in terms of the

modern electronic theory of atomic structure.

Gases and liquids, in addition to showing thermal conduction, may
promote temperature equalization also by means of thermal convection,

associated with sensible motion of the material fluid substance. When
the fluid is unevenly heated by being in contact with a hotter and a colder

body, the temperature inhomogeneity set up in the fluid is accompanied
in general by an inhomogeneity in its density; under the influence of

gravity, therefore, the fluid becomes mechanically unstable, and convec-

tion currents are set up that tend to restore mechanical, and with it,

thermal equilibrium. The process may be accelerated by means of

forced circulation of the fluid (e.g., by means of a pump or a fan). Many
of the thermal insulators used in the building industries consist of porous
solids entraining relatively large volumes of air; the solid network inter-

feres with convection of the air, and thus reduces its rate of thermal

exchange to that characteristic only of its thermal conductivity, which is

low in comparison with the ordinary convective conductivity of free air.

The net thermal conductivity of the insulator will of course be a mean
between the thermal conductivities of the entrained air and of the solid

material itself
;
air at atmospheric pressure is, however, a poorer thermal

conductor than most solids (for this reason, cork is a better insulator than

solid wood of the same thickness).

Temperature equalization between a hotter and a colder body may pro-

ceed even in the absence of any material connection between them by
means of thermal radiation. This is of course the mechanism by which

the sun heats the earth. According to the generally accepted theory of

exchanges, first proposed by Pierre Provost of Geneva in 1792, we believe

that all bodies are continually emitting radiation, at a rate that increases

with temperature, but is independent of the surroundings ;
the rise or fall

of a body's temperature associated with thermal radiation thus represents

the net effect of its own radiation and the radiation it receives from the

surroundings. In ordinary thermometry, thermal radiation may intro-

duce an important source of error if the thermometer happens to be

exposed to radiation from a source at a different temperature outside the

system whose temperature is being measured, for the thermometer may
then come to an apparently steady state (while it is actually transmitting

heat to or from the system) at a temperature some degrees removed from
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that of the system with which it is in contact. For example, the tem-

perature registered by a meteorological thermometer exposed directly to

the sun may be considerably higher than the air temperature as registered

by a thermometer standing nearby in the shade. Since thermal radia-

tion, like ordinary light, of which it is a special form, tends to travel in

straight lines and is efficiently reflected by a polished metal surface, the

thermometer may be protected from radiation, when necessary, by means
of a surrounding metal shield, whose own temperature is maintained close

to that of the system under investigation. Thermal radiation is a form

of electromagnetic radiation in general; the radiation from a body at

relatively low temperatures is confined to the infrared region of the

spectrum, but as the body's temperature is increased, the region of

greatest intensity shifts into the visible range, and the thermal radiation

is then perceived in part as ordinary visible light; at still higher tempera-

tures, the region of greatest intensity shifts on into the ultraviolet, but

since the total radiation at the same time increases, the intensity of

the visible part of the radiation, which then appears as dazzling white

light, continues to increase. The laws of thermal radiation have been

well established, theoretically and experimentally, and both the total

intensity and the "color" or spectral distribution of the thermal radiation

from a "
black

"
body, or total radiator, are used independently to measure

high temperatures, as we shall see in Sec. 1-7. Thermal radiation pro-

vides us with a method for measuring the temperatures of objects at a

distance; thus, it is the only direct source of information we have con-

cerning the surface temperatures of the heavenly bodies.

Now, in a general sense, all bodies in the universe are more or less

directly exposed to each other, through conduction, convection, radiation,

or some combination- of these independent mechanisms. Our funda-

mental thermal principle would therefore imply that they are all influenc-

ing each other, undergoing changes that would tend ultimately to equalize
their temperatures; strictly construed, thermal equilibrium must be an

abstraction never actually realized. Nevertheless, the principle is based

on the fact that we recognize and can produce in practice local systems
that satisfy it, in the sense that they are relatively self-contained or insu-

lated with respect to thermal changes. Thus, a localized system con-

sisting of a finite number of contiguous material bodies may be so well

enclosed by a combination of insulating materials and radiation shields

that it comes to an internal state of equilibrium maintained over a period

of time long by ordinary laboratory standards of observation, inde-

pendently of what is going on outside. Changes taking place within a

system so insulated are called adidbatic. Rapid changes, even when the

system is not particularly well insulated, may be effectively adiabatic, if
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they take place during times short in comparison with the time taken by
the system to readjust itself to thermal equilibrium with its surroundings.

Another type of situation that may be realized in practice is for the

system to be immersed in a thermostat, a comparatively large body (of

air, water, transformer oil, copper, etc.) which serves to screen the sys-

tem under observation from direct interaction with the world outside.

In such a situation, the thermal behavior of the system is determined

primarily by its interaction with the thermostat, whose temperature it

tends to assume, and only secondarily, or over a long period of time, by
the comparatively slow interaction between the thermostat and the

external world. The atmosphere of the room, for example, serves ordi-

narily as a crude kind of thermostat; but thermostats of much higher pre-

cision, covering a broad range of working temperatures, and automatically

controlled to maintain constant temperatures for weeks at a time without

attention, have been developed for specific laboratory and industrial

applications. Changes taking place within a system whose temperature
is maintained constant are called isothermal.

The possibility of measuring temperature at all depends on the possi-

bility of establishing equilibrium between the thermometer and the sys-

tem under observation rapidly in comparison with the rate at which the

properties of the system are undergoing change as it reacts with its

environment. The general changes taking place in the system as it

approaches ultimate equilibrium in the world at large may, however, be

greatly retarded by means of thermal insulation or thermostating. The

study of thermally isolated systems and of systems maintained at con-

stant temperature has therefore come to occupy a prominent place in

thermodynamic investigation. Following up the same train of thought,
the temperature of a system that has not attained a state of internal

thermal equilibrium (which would be characterized according to the

fundamental thermal principle by uniform temperature throughout all

its parts) is in a strict sense undefined. If, however, such a system is

explored by means of a thermometer sufficiently sensitive and rapid in

response so that it comes to equilibrium with a local element of the sys-

tem within a time short compared with the rate at which the element is

undergoing change as it approaches equilibrium with the rest of the sys-

tem, then we can measure its instantaneous local temperature, in much
the same sense as we measure the temperature of an "

isolated
"
system,

which is in reality interacting slowly with its surroundings. In the

mathematical theory of thermal conduction, this idea is extended so far

as to include the concept of a temperature that may vary continuously
from point to point within a material medium as a function of the space
coordinates. In chemical thermodynamics, however, we shall be inter-
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ested primarily in equilibrium states, in which the temperature is uniform

throughout the system under investigation.

1-2. Establishment of a Temperature Scale. The thermometer, when
used with corrections appropriate to its inherent experimental errors (the

nature of which depends on the particular type of thermometer and the

manner in which it is applied), thus fundamentally enables us to judge
whether two different bodies are at the same temperature, or if they are

not, to obtain an objective numerical measure of their relative tempera-
tures. It provides us in general with a sequence of readings of some

particular thermometric property, such as the length of a copper bar, the

pressure of a gas, the electric resistance of a platinum wire, the emf of a

bimetallic circuit, etc., correlated with various degrees of temperature.

Before we can assign numerical values to the temperature itself, we must

adopt a convention concerning the number that is to represent some
standard reproducible difference of temperature. This choice of numerical

scale is entirely arbitrary, since only the relative magnitude of one temper-
ature with respect to another, and not the value assigned to any one

temperature taken by itself, has physical meaning.

The standard interval on all modern temperature scales is in principle

the difference between the ice point and the steam point; these are the con-

stant temperatures at which ice and steam, respectively, are in equilib-

rium with water at standard atmospheric pressure (a pressure equal by
convention to 1,013,250 dynes/cm

2
;
this represents the pressure at the

base of a mercury column 760 mm in height at the ice point under the

influence of standard gravity, 0o
= 980.665 cm/sec

2
).

1 The difference

between the readings of the thermometer (corrected for the various

1 Much work has been done at the National Bureau of Standards and elsewhere

on the triple point of water as a primary fixed thermometric point, in place of the

ordinary ice point. While the triple point is somewhat less convenient to set up,

requiring the use of a special cell operating at reduced pressure, any uncertainty that

may be introduced by the presence of a variable amount of air dissolved in the water

at the ice point is eliminated, as well as all reference to the pressure, which at the

triple point is fixed by nature (about 4.7mm Hg). At the Ninth General Conference

on Weights and Measures, in October, 1948 (the General Conference is a diplomatic

body representing 33 participating nations, established under the terms of an inter-

national treaty of 1875, and charged with the power to adopt recommendations con-

cerning standards of weights and measures for international use), a resolution was
therefore adopted defining the zero of the centigrade scale as being the temperature
0.0100 deg below that of the triple point of pure water [H. F. Stimson, Natl. Bur.

Standards J. Research, 42, 209-217 (1949)]. This change of course has had no
immediate practical effect, and will bear anyhow only on work of the highest precision.

In order to avoid circumlocution, therefore, we shall continue throughout this chapter
to regard zero as identified with the ordinary melting point of ice at atmospheric

pressure.
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experimental errors) at these two arbitrarily selected fixed points is called

the fundamental interval of the thermometer. In order to convert read-

ings of the particular thermometric property into temperatures and so to

establish a temperature scale, an arbitrary number of degrees is assigned

to the temperature difference represented by the fundamental interval,

i.e., to the difference between the steam point and the ice point. On the

Celsius or so-called centigrade scale this number is 100C; on the modern
Fahrenheit scale, it is 180F; on the French Reaumur scale, it is 80R6.

Let A denote this conventional number of degrees assigned between the

steam point and the ice point on any of these scales, and let A' denote the

fundamental interval of some particular thermometer whose readings (of

length, pressure, resistance, etc., as the case may be) are represented by
the symbol r'; then for any thermometer of the same type a unique tem-

perature scale could be established most simply by means of a linear rela-

tion of the form

*'
-

to -
tf (r'

~ fQ (1-1)

where <o denotes some standard initial temperature such as the ice point

(by convention, 0C on the Celsius scale, 32F on the Fahrenheit scale,

0R6 on the Reaumur scale), at which the instrument reading is rj, and t'

is the temperature measure defined by the new reading r'. In other words,
such a temperature measure t' would be defined as increasing in direct

proportion to the increase in the thermometric property r', the propor-

tionality constant A/A' being merely a conversion factor for converting
instrument readings (in centimeters, atmospheres, ohms, etc.) into con-

ventional degrees. Such a temperature scale is in fact set up by the

ordinary mercury-in-glass thermometer, whose graduations, constituting

actually a linear scale, are marked off on the capillary directly as tem-

perature degrees. A naive procedure such as this would be entirely

adequate for setting up the temperature scale in the absence of other

methods of measuring temperature. If, however, one makes measure-

ments with a different type of thermometer, whose readings are repre-
sented by r

1 ' and whose fundamental interval is A", then in general the

temperature measure t" given by this second type of thermometer, accord-

ing to a similar linear equation,

differs, except at the defined ice point and steam point, from the tempera-
ture measure t

9

given by the first (see Table 1-1). In other words, the

electric resistance of a platinum wire does not increase linearly with the
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temperature as measured by a mercury-in-glass thermometer, and the

coefficient of expansion of mercury in glass is not uniform on the tempera-
ture scale defined by a constant-volume nitrogen-gas thermometer, etc.

Therefore one must in general qualify temperature measurements so

TABLE 1-1. APPARENT TEMPERATURES AS REGISTERED BY VARIOUS TYPES OP
THERMOMETERS ACCORDING TO EQUATION (1-1)*

* The values of ti and tz are the same for all the thermometers (50.000C and 200.000C, respectively,

on the ideal-gas temperature scale). The results for the gas thermometers, standardized with an initial

pressure of 1 m Hg at the ice point, are taken with permission from M. W. Zemansky, "Heat and
Thermodynamics," 2d ed., p. 12, McGraw-Hill Book Company, Inc., New York, 1943. The data for

the other types of thermometers are computed from information found in Landolt-Bornstein,
"
Phys-

ikalisch-chemische Tabellen," 5th ed.

obtained, simply by the application of Eq. (1-1), as mercury-in-glass

temperatures (in high-precision thermometry, even the type of glass must
be specified, because different thermometric glasses, having different

coefficients of expansion, give slightly different temperature scales), or as

constant-volume hydrogen temperatures, or as platinum resistance tempera-

tures, etc., as the case may be.
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Now, there is one temperature scale based on the linear equation (1-1)

that has greater generality than other scales. One will note in the data

of Table 1-1 that if one takes as the thermometric property r
1
either the

pressure at constant volume or the volume at constant pressure for fixed

mass of any gas, then the temperature t' is found to be almost independent
of the particular gas. Such deviations as do exist among the different

gases (barring those cases in which the gas is known to undergo some

kind of chemical change, such as dissociation or association) are entirely

the result of deviations from Boyle's law at finite pressures, for if instead

of the pressure at constant volume or the volume at constant pressure,

one takes the pressure-volume product for fixed mass of gas, and at each

temperature determines by extrapolation from a series of measurements

at different pressures its limiting value as p > 0, then the temperature
measure t defined by the linear equation

-
Jo e [Km (pV)i

~ lim (p7) ] (1-2)

is entirely independent within experimental error of the particular gas

employed. The fundamental interval A in Eq. (1-2), which represents

the increase in the value of lim (pV) between the ice point and the steam
p-0

point, depends of course on the particular gas, as well as on the mass of it

contained in the thermometer; but the ratio A/lim (pF)o, representing

the relative increase in the value of lim (pV) between the ice point and

the steam point, is a universal constant, whose accepted value according
to the most precise experimental measurements is 0.36608 + 0.00002

(see Table 1-2).

Equation (1-2), which defines the ideal-gas temperature t, may therefore

be put in the form

. .

t CO
=

7

lim (pV) t

0.36608 lim (pF) 0.36608
P-+Q

If now we assign to the ice point in place of the arbitrary number repre-

sented by f (e.g., to = 0C on the Celsius scale), the number A/0.36608,
then temperature measures on the new scale, which we shall represent by
the symbol T, are given by

lim

T =
0.36608 lim (pF)
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The number

0.36608
(1-4)

which represents the ice point on the new or absolute ideal-gas temperature

scale, thus has the value 273.16 0.01 in terms of centigrade degrees

(A = 100C), or 491.69 0.02 in terms of Fahrenheit degrees (A = ISO /*
1

).

One of the important practical methods of determining the value of the

TABLE 1-2. RELATIVE INCREASE OF PRESSURE AT CONSTANT VOLUME, OF VOLUME
AT CONSTANT PRESSURE, AND OF IDEAL LIMITING pV, BETWEEN THE ICE POINT

AND THE STEAM POINT FOR VARIOUS GASES*

* The value of po in the second and third columns is 1 atm; the data in these columns are taken from
the compilation by J. B. M. Coppock, Phil. Mag., (7) 19, 446-457 (1935). The limiting values in the

last column are derived from the following sources:

Air, fargon, neon, oxygen: L. Holborn in Landolt-Bornstein, "Physikalisch-chcmische Tabellen,"
6th ed., Supplement I, pp. 64-67, 1927.

Carbon dioxide, ethylene: J. B. M. Coppock and R. Whytlaw-Gray, Proc. Roy. Soc. (London), (A)

143, 487-505 (1934).

Carbon monoxide: E. P. Bartlett, H. C. Hetherington, H. M. Kvalnes, and T. H. Tremearne, J.

Am. Chem. Soc., 52, 1374-1382 (1930).

Helium: W. Heuse and J. Otto, Ann. Physik, (5) 2, 1012-1030 (1929).

Hydrogen: J. Otto in Landolt-Bornstein, "Physikalisch-chemische Tabellen," 5th ed., Supplement
Ha, p. 52, 1931.

Methane: H. M. Kvalnes and V. L. Gaddy, J. Am. Chem. Soc., 53, 394-399 (1931).

Nitrogen: J. Otto, A. Michels, and H. Wouters, Physik. Z. t 35, 97-100 (1934).

The mean, 0.36608 0.00002, represents the result of a critical evaluation of all the data, as given

by J. A. Beattie in the symposium, "Temperature. Its Measurement and Control in Science and
Industry," pp. 74-88, Reinhold Publishing Corporation, New York, 1941. See also, W. Heuse and
J. Otto, Ann. Physik, (5) 2, 1012-1030 (1929); R. T. Birge, Rev. Modern Phys. t 13, 233-239 (1941).

absolute ice point thus consists of precise measurements of lim (pV) for
p->0

hydrogen, nitrogen, helium, etc., at the steam point and at the ice point.
The extrapolation may be most precisely carried out for gases that deviate

least from Boyle's law at those temperatures around atmospheric pressure ;

for this reason, hydrogen, helium, and nitrogen are better thermometric
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gases than carbon dioxide or ammonia. 1
Temperatures on the absolute

scale are related to temperatures on the ordinary scale, having the same

number of degrees assigned to the fundamental interval but an arbitrary

number to assigned to the ice point itself, through the equation

T = t
-

to + ^o (1-5)

Thus, temperatures on the absolute centigrade or Kelvin temperature

scale 2 are derived from ordinary centigrade or Celsius temperatures (for

which to s= 0C) simply by the addition of 273.16; such temperature
measures are designated by the suffix K; for example, 7

7 = 273.16K.

Temperatures on the absolute Fahrenheit or Rankine temperature scale*

are derived from ordinary Fahrenheit temperatures (for which tQ = 32F)
by the addition of 459.69; such temperature measures, which are occa-

sionally used by chemical and mechanical engineers, are designated by
the suffix R; for example, T = 491.69R.

Now, according to Avogadro's hypothesis, the value of lim (pF),
p-0

where V represents the volume per mole, is at any given temperature the

same for all gases; the accepted value at the ice point is 22.4140 + 0.0004

liter atm/mole, derived from measurements on oxygen, whose chemical

molecular weight has the conventional value 32.0000. 4 The combination

of factors

B - - lim (pF) = Um (pf). (1-6)
L p->Q A p-0

occurring in Eq. (1-3) applied to 1 mole of any gas therefore defines a

universal constant, known as the ideal gas constant R, such that at any
temperature

lim (pV) T = RT (1-7)

1 The only other method that has been found practicable and sufficiently precise to

date is based on the Joule-Thomson effect, to be discussed in Chap. 3. J. R. Roebuck
and T. A. Murrell have given the best estimate of To = 273.17 0.02K by this inde-

pendent method in the symposium "Temperature. Its Measurement and Control

in Science and Industry," pp. 60-73, Reinhold Publishing Corporation, New York,

1941; see also J. R. Roebuck, Phys. Rev., 50, 370-375 (1936).
2 Named after Sir William Thomson, Lord Kelvin, who derived such a scale in

1852 from the second law of thermodynamics, as we shall see in Chap. 5.

8 Named after W. J. M. Rankine, nineteenth century British engineer and physicist.
4 C. S. Cragoe, /. Research Natl. Bur. Standards, 26, 495-536 (1941); see also

C. S. Cragoe, in "Temperature. Its Measurement and Control in Science and

Industry," pp. 89-126, Reinhold Publishing Corporation, New York, 1941; this value

recommended by Cragoe has been adopted by F. D. Rossini and his staff for the

critically evaluated compilation, "Selected Values of Chemical Thermodynamic
Properties," National Bureau of Standards, Washington, D. C., Dec. 31, 1947.
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This equation is commonly written in the approximate form

pV = RT (1-8)

which may be applied to any gas at pressures sufficiently low so that

deviation from Boyle's law does not introduce a significant error; Eq.

(1-8) is the familiar ideal-gas equation of state. It was not necessary to

introduce Avogadro's hypothesis in order to establish the ideal-gas tem-

perature scale, but we have introduced it at this point because the experi-

mental determination of R is so intimately related to the quantities meas-

ured in the setting up of the absolute temperature scale. The numerical

value of R depends of course on the system of measurement used to repre-

sent p and V, as well as on the number of degrees A assigned to the funda-

mental interval; thus, R = 0.0820544 0.0000034 liter atm/mole K;
with p and V represented in mks units, R = 8.31439 0.00034 joule/

mole K. Other equivalent values may be computed by means of the

appropriate conversion factors. 1

In Chap. 5, we shall find that a temperature scale of even greater

generality than the ideal-gas temperature scale can be founded on the

second law of thermodynamics. This so-called thermodynamic tempera-
ture scale is entirely independent of the particular material system used

as the thermometer. Its form, however, turns out to be identical with

that of the ideal-gas temperature scale, which constitutes therefore an

experimental method of measuring temperatures on the thermodynamic
scale. We shall accordingly refer to temperatures measured on the ideal-

gas temperature scale as thermodynamic temperatures, and shall use the

symbol t to represent the thermodynamic temperature based on an

arbitrarily assigned ice point and fundamental interval (as on the Celsius

scale) ; we shall use the symbol T to represent the absolute thermodynamic

temperature, based on an ice point defined in relation to the fundamental

interval by means of Eq. (1-4), or other equivalent expressions.

Although the adjective "absolute" is customarily applied to the tem-

perature scale given by Eq. (1-3), one should recognize nevertheless that

only the relative value of one temperature with respect to another has

physical meaning, and not the individual value assigned to any one tem-

perature by itself. A somewhat different method of setting up the
"
absolute

"
scale from the one now in use would be to assign instead of an

arbitrary number A to the difference between the steam point and the

1 Throughout this book, we use the expression mole without qualification to mean
gram-mole, or unit of mass represented by the substance's chemical formula weight in

grams. In chemical engineering, other chemical units of mass, such as the pound-
mole, are also in use; compare O. A. Hougen and K. M. Watson, "Chemical Process

Principles/' John Wiley & Sons, Inc., New York, 1947.
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ice point an arbitrary number TQ to the absolute ice point itself. This

possibility was in fact pointed out in 1854 by J. P. Joule and W. Thomson

(Lord Kelvin), i.e., of assigning to T in the equation

Km (pT),

T^Tip<>-- (1-9)hm

a conventional numerical value, which in the interest of continuity (though
not necessarily in principle) should agree with the best accepted experi-

mental value of TQ based on the existing scale convention at the time the

change should be made; thereafter, any revision made necessary by
greater refinement in the measurement of T would go into revision of the

interval between the ice point and the steam point, rather than into

revision of the value of TQ. Joule and Thomson at the time rejected this

method of establishing the absolute temperature scale in favor of the one

we use today; but the proposal to assign a permanent conventional value

to the absolute ice point has recently been revived by W. F. Giauque,
1

and has received serious consideration by the Advisory Committee on

Thermometry of the International Bureau of Weights and Measures, and

also by the International Union of Pure and Applied Physics.
2

Giauque's

proposal has the advantages that the relation between ordinary tempera-
tures and corresponding "absolute" temperatures would no longer be

subject to experimental error, and that in the establishment of "absolute"

temperatures directly by means of gas thermometry, the experimental
error introduced by the present necessity of measuring lim (pV) at the

steam point would be eliminated. It has the disadvantage that in the

standardization of other kinds of thermometers, such as platinum resist-

ance thermometers, the steam point would lose its present status as a

defined thermometric fixed point, and any experimental error in its

establishment (at present thrown into the value of the absolute ice point)

would enter the calibration of the thermometer. 3 Of course, no immedi-

ate practical effect of such a change in thermometric standards would be

noted. For our present purpose, we need only observe further that no

1 W. F. Giauque, Nature, 143, 623-626 (1939).
2 F. G. Brickwedde, Bull. Am. Phys. Soc., 23, No. 3, 23, (1948) (abstract of a paper

presented before the meeting of the American Physical Society in Washington, D.C.,

April 29 to May 1, 1948). The proposal was put before the Ninth General Conference

on Weights and Measures in 1948, and a resolution was adopted recognizing the

principle, but deferring the assignment of a definite value to To] see Stimson, op. cit.,

p. 215.
3 H. T. Wensel, in "Temperature. Its Measurement and Control in Science and

Industry," p. 10, Reinhold Publishing Corporation, New York, 1941.
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change in our understanding of the essentially comparative nature of the

temperature concept is involved, but merely a change in our attitude con-

cerning the most convenient method of realizing the temperature scale in

practice.

Having thus briefly reviewed the principles on which the measurement

of temperature is based, we shall devote the rest of this chapter to descrip-

tions of several kinds of thermometers used to establish the temperature
scale in practice, concluding with a description of the present Inter-

national Temperature Scale. We shall return to a general discussion of

the thermodynamic temperature concept in Chap. 5.

1-3. Liquid-in-glass Thermometers. The earliest known thermom-

eter was invented by Galileo about 1592. It was actually an air thermo-

scope, consisting of air within a glass bulb, confined over wine in a glass

tube leading down into an open cistern or reservoir; as the air expanded
or contracted with rising or falling temperature, its volume was indicated

by the level of the confining liquid within the connecting tube. A scale

was marked on the tube, whose intervals corresponded approximately to

one-thousandth the volume of the bulb. Upon the discovery in 1643 of

atmospheric pressure and the invention of the mercury barometer by
Galileo's former assistant, E. Torricelli, it became evident that the air

thermoscope was sensitive to changes in the external pressure of the

atmosphere, as well as to temperature changes.

The first hermetically sealed liquid-in-glass thermometer was designed

by Grand Duke Ferdinand II of Tuscany, about 1660. It was much like

a modern alcohol thermometer, consisting of a glass bulb containing wine

or alcohol, sealed to a glass capillary tube, which was sealed off at the

opposite end. Thermometers of this type were put to use by scientists at

the famous Academica del Cimento, founded by Grand Duke Ferdinand

in Florence, and they were long known as Florentine thermometers.

Those used for weather observations were commonly standardized by
marks placed on the capillary tube denoting the extreme positions reached

by the liquid boundary on the hottest day in summer and the coldest day
in winter; intermediate temperatures were judged accordingly, on a scale

subdividing the interval between these extreme "fixed" points. The
Florentine scientists applied the thermometer also to the earliest measure-

ments of human body temperature. Isaac Newton in 1701 used a

liquid-in-glass thermometer filled with linseed oil to establish a numerical

temperature scale of extended range; using as thermometric fixed points
the melting point of packed snow, to which he assigned the number 0, and

human body temperature, to which he assigned the number 12, he deter-

mined the boiling point of water (34), and the melting points of several
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metals (e.g., tin 72, bismuth 81, lead 96, etc.) ; by placing small quantities

of these molten metals on a block of heated iron, and observing the time

required for each in turn to reach the point of solidification as the block

cooled, he was able to establish the well-known cooling law that bears his

name. 1

Mercury thermometers were first introduced about 1724 by Daniel

Gabriel Fahrenheit, who made many improvements in the design and

reproducibility of liquid-in-glass thermometers. Mercury has several

advantages over other available thermometric liquids: it is easily purified,

and does not wet clean glass; its low specific heat and high thermal con-

ductivity result in comparatively rapid attainment of equilibrium with

its surroundings; it is available in liquid form over quite a wide range of

temperatures, from its freezing point at 38.87C to its normal boiling

point at 356.7C. In ordinary thermometers, the upper part of the

capillary may be evacuated before the end is sealed off, so that only

mercury vapor is present above the liquid, at its own vapor pressure; but

special thermometers are made in which this space is filled with nitrogen

gas under pressure, permitting extension of the range up to about 500C
;

if the gas were not present, the mercury at high temperatures would tend

to distill readily from the lower into the upper part of the capillary. The
chief disadvantages of mercury compared with other liquids are its high

density, high surface tension, and tendency to stick because of a difference

between the contact angles with glass for an advancing and for a retreat-

ing interface.

Fahrenheit used his thermometers to establish many thermometric

fixed points; he showed, for example, that the variations previously

reported in the boiling points of purified liquids were associated with

variations in the barometric pressure and that at a given pressure the

boiling points were constant and reproducible; he showed also that the

freezing point of water was constant and reproducible, once ice crystals

had formed; previous observers had been misled by the occurrence of

supercooling. By experimenting with so-called freezing mixtures (mix-

tures of various salts with ice), he discovered reproducible fixed tempera-
tures well below the melting point of ice. His original temperature scale,

proposed in 1714, was based on a freezing mixture of ammonium chloride

and ice, to which he assigned the number (this was the lowest tempera-
ture he was able to produce at that time), and normal human body tem-

perature, to which he first assigned the number 12, but later the number

1 Newton's own account of these experiments, originally published anonymously,
is given by W. F. Magie, "A Source Book of Physics," pp. 125-128, McGraw-Hill

Book Company, Inc., New York, 1935.
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96. * The latter "fixed" point was clearly unsatisfactory as a primary
standard. The modern method of basing the temperature scale on the

ice point and steam point as defined standards was proposed in 1742 by
Andreas Celsius, astronomer and mathematician at the University of

Upsala; Celsius proposed originally to assign the number to the steam

point, and the number 100 to the ice point, but at the suggestion of his

colleague, M. Stromer, these numbers were later reversed, giving rise to

the modern Celsius or centigrade scale. The modern Fahrenheit scale,

redefined since Fahrenheit's time, is based on the same two fixed points

as the Celsius scale, but the ice point is assigned the number 32F and the

steam point the number 212F, these numbers corresponding to the

approximate temperatures actually found for the two systems on Fahren-

heit's original scale. .The temperature scale founded by the eighteenth-

century physician and zoologist, R. A. de Reaumur, was originally

planned so that 1 deg rise should correspond to an increase of one one-

thousandth in the volume of the thermometric liquid (an alcohol-water

solution) ;
the modern Reaumur scale is, however, based on the arbitrary

assignment of 0R6 to the ice point and 80R6 to the steam point.

For many years, mercury-in-glass thermometers were the principal

instruments available to scientists for the measurement of temperature.

The temperature scale was of course established merely by the setting of a

linear scale on the capillary tube to subdivide and extend the interval

defined by the difference between the ice-point and steam-point readings ;

modern mercury thermometers are in fact graduated in precisely this

way. Aside, however, from the general difficulties that may arise with

any kind of thermometer, such as error from exposure to direct thermal

radiation, and misleading indications from local temperature inhomo-

geneities or failure of the system under observation to have reached a

state of internal equilibrium, all liquid-in-glass thermometers are subject

to a number of specific errors (including deviation from the thermo-

dynamic or ideal-gas temperature scale), the corrections for which are

sufficiently large and uncertain so that thermometers of this type are no

longer regarded as high-precision instruments. To begin with, there is a

parallax error that limits the precision with which the scale may be read,

and also an error resulting from sticking of the mercury (other thermo-

1 The decimal system of notation was not widely used in Europe until well into the

eighteenth century; nonintcgral numbers were expressed as rational fractions, e.g.,

1*%2 (this custom is by no means obsolete today, in commercial transactions).

All the earlier temperature scales were therefore based on a standard interval between

two primary fixed points represented by a number having many integral factors, so

that the scale could be conveniently subdivided by means of rational fractions (halves,

thirds, quarters, sixths, etc.)
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metric liquids that wet glass, such as alcohol and toluene, may have com-

parable drainage errors) which may be reduced by averaging the readings
taken with a rising and with a falling thread. Then, among the more

important of the specific corrections are the following:
1

1. Correction for nonuniformity of the capillary bore. Since the ther-

mometer bears a linear scale, any variation in the cross-sectional area of

the tube results in error. It is difficult to check the cross-sectional area

precisely in the finished thermometer, so it is most practical to have the

thermometer standardized by a comparison of its readings at tempera-
tures other than the two primary fixed points with those of a standard

thermometer of a different type; the National Bureau of Standards will

perform this service for a nominal fee, provided that the thermometer

satisfies certain specifications with regard to construction; the Bureau

also sells standard samples of highly purified chemicals whose melting

points have been certified.

2. Corrections for ice-point shift, a. A temporary depression of the

ice-point reading will follow every exposure to a higher temperature,
because there is hysteresis in the adjustment of the glass bulb to the

"normal 7 '

volume; at the ice point itself, it may take several days for the

bulb to return to its true equilibrium volume. For this reason, mercury-

in-glass temperatures are taken with respect to a variable temporary

zero, determined for each reading by immersing the thermometer in an

ice bath immediately after the high-temperature exposure; the ice-point

reading so obtained, which if the high-temperature exposure was at 100C
may be 0.04 to 0.08C lower than the reading that would ultimately be

obtained if the thermometer were kept for several days at the ice point,

is taken to be the temporary zero of the scale, and the high-temperature

reading corrected accordingly.

6. There may also be a secular or gradual drift in the ice-point reading
of a more permanent nature, resulting from slow changes taking place in

the glass ; permanent displacement of the ice-point reading can be detected

by exposure of the thermometer to the ice-point temperature for several

days, in order to overcome the temporary lag.

c. If the thermometer has not been properly annealed, the bulb will

undergo permanent contraction when the thermometer is exposed to a

high temperature, with the result that the ice-point reading may rise by
as much as 20C on the scale. This should not happen if the thermome-

1
Testing of Thermometers, Nail. Bur. Standards Circ. C8, (1926); "International

Critical Tables," Vol. I, pp. 54-56, McGraw-Hill Book Company, Inc., New York,

1926; J. Busse, Liquid-in-glass Thermometers, in "Temperature. Its Measurement
and Control in Science and Industry/' pp. 228-255, Reinhold Publishing Corporation,
New York, 1941.
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ter has been constructed from a good grade of thermometric glass, and

been carefully annealed; permanent displacement of the ice-point reading
should then not exceed 0.1 C so long as the thermometer is never exposed
to temperatures higher than 150C.

3. Correction for the mean scale degree. One must check the fundamen-

tal interval of the thermometer periodically (once or twice a year) by a

redetermination of the steam-point reading, and correct the entire scale

accordingly; changes in the fundamental interval may result from secular

changes in the volume of the bulb and the length of the glass scale.

4. Correction for exposed stem. Liquid-in-glass thermometers are

ordinarily calibrated for total immersion. If the thermometer should be

used under conditions such that part of the liquid in the capillary is

exposed at a different temperature from that of the system in which the

bulb rests, then a correction is necessary to the reading which would have

been obtained if the entire stem had been at the same temperature as the

bulb. This correction is generally given in the form

8 = ad(t
-

ts)

where S is the correction, expressed in scale degrees, a the coefficient of

cubical expansion of mercury in glass (0.000158/C for the typical Jena

16IU and Corning normal thermometric glasses), d the number of scale

degrees exposed, t the true bulb temperature (the uncorrected reading is

generally sufficiently close for this purpose), and t8 the mean temperature
of the exposed stem; this latter quantity is difficult to ascertain precisely,

because of thermal conduction and radiation
;
it is usually estimated by

means of a second thermometer placed alongside the first, with its bulb

near the middle of the exposed stem. For special applications in which

the working conditions can be maintained uniform, such as in routine

melting-point determinations, partial-immersion thermometers are manu-

factured, calibrated for a certain depth of immersion (e.g., 75 mm, or

3 in.) ;
if the stem is exposed to air at "normal" laboratory conditions, no

stem correction is then necessary, but obviously such thermometers

cannot be regarded as high-precision instruments.

5. Corrections for external and internal pressure. The bulb of a modern

centigrade thermometer has a volume equivalent to about 6000 scale

degrees; therefore a change in the volume either of the mercury or of the

glass bulb, or the net effect of a change in both, amounting to as much as

0.02 per cent, besides the normal changes with temperature, will result in

an apparent difference of 1C in the temperature readings.

a. External pressure on the bulb will decrease its volume at a rate pro-

portional to its diameter and inversely proportional to the wall thickness.

The typical mean effect on a thermometer whose bulb has a diameter
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within the range 5 to 7 mm is +0.1C/atm. This effect works in the

opposite direction when the thermometer is introduced into an evacuated

system.
b. Internal pressure from the weight of the mercury itself tends to

enlarge the bulb arid at the same time decrease the volume of the mercury,
so the coefficient for this effect is about 10 per cent greater than for the

external pressure effect. The thermometer is intended to be used nor-

mally in a horizontal position ;
the internal pressure correction applies to

readings taken with the thermometer in a vertical or an inclined position,

when the readings tend to be too low.

6. Correction to the thermodynamic scale. At all temperatures except
the defined ice point and steam point, a correction must be applied to the

mercury-in-glass temperature, after the thermometer has been corrected

for all other experimental errors, in order to reduce the readings to the

thermodynamic temperature scale
;
the coefficient of expansion of mercury

in glass is not uniform on this scale. The corrections have been estab-

lished through fundamental comparison of mercury-in-glass thermometers

with gas thermometers, whose readings have been corrected to the ideal-

gas state by extrapolation to zero pressure; this comparison was first

undertaken by P. Chappuis in 1884, working under the auspices of the

newly constituted International Bureau of Weights and Measures. Cor-

rections for several kinds of thermometric glasses are given in Table 1-3.

Liquid-in-glass thermometers for measurements at low temperatures,
below the freezing point of mercury, are commonly filled with pentane,

alcohol, or toluene. It is customary to calibrate them with respect to a

secondary "fundamental" interval, defined by the ice point and the car-

bon dioxide sublimation point at normal atmospheric pressure, 78.51C
on the thermodynamic temperature scale. The corrections to the

thermodynamic temperature scale for a pentane-in-glass thermometer

are included in Table 1-3.

1-4. Gas Thermometers. The first true gas thermometer was con-

structed by Guillaume Amontons in 1702. This thermometer contained

air maintained at constant volume by means of a manometer, the pressure

being used as a measure of the temperature. Amontons drew the quite

modern conclusion that heat represented a form of motion, and estimated

the location of the absolute zero point by extrapolating his temperature
scale to the point at which the pressure of the gas, at constant volume,
would vanish. The skillful experimental work of Joseph Louis Gay-
Lussac during the early part of the nineteenth century proved that all

gases expanded at approximately the same relative rate as the tempera-
ture was increased at constant pressure; this work laid the foundations

of the universal ideal-gas temperature scale. The researches of H. V,
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TABLE 1-3. CORRECTIONS TO THE THERMODYNAMIC TEMPERATURE SCALE FOR

LiQUID-IN-GLASS THERMOMETERS*

Mercury-in-glass Corrections, C

Pentane-in-glass Corrections, C

* "
International Critical Tables," Vol. I, pp. 54-56, McGraw-Hill Book Company, Inc., New York,

1926.

Regnault during the middle of the nineteenth century contributed greatly

to the precision of gas measurements, and demonstrated the approximate
nature of Boyle's law at finite pressures ;

the idea of extrapolating to zero

pressure in order to establish the corrections from real to ideal-gas

behavior was conceived by Regnault in 1847, but was first applied experi-
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mentally by M. Berthelot in 1898. Modern research on thermometric

gases (those gases having the lowest critical temperatures) is being

actively pursued, because of its bearing on the determination of the

o bully

Mercury seal

Leveling
-

bulb

Barometer

Gas pressure Dead space

manometer

FIG. 1-1. Schematic diagram of constant-volume gas thermometer developed by P.

Chappuis at the International Bureau of Weights and Measures.

absolute ice point, and on the precise establishment of thermodynamic

temperatures in general.
1

A close approach to the ideal-gas temperature scale is realized experi-

mentally in the modern constant-volume gas thermometer (Fig. 1-1).

1 For reviews, see F. Henning, Temperaturmessung, in "Handbuch der Physik,"
Vol. IX, Chap. VIII, Springer-Verlag, Berlin, 1926; F. G. Keyes, in "Temperature.
Its Measurement and Control in Science and Industry," pp. 45-59, Reinhold Pub-

lishing Corporation, New York, 1941; J. A. Beattie, ibid., pp. 74-88; C. S. Cragoe,

ibid., pp. 80-126; C. S. Cragoe, /. Research Nail. Bur. Standards, 26, 495-536 (1941).
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With hydrogen as the thermometric gas, this thermometer was in fact for

many years (1887 to 1927) the standard instrument defining the Inter-

national Temperature Scale. Because hydrogen leaks through the walls

of the bulb at temperatures higher than 500C, the tendency in recent

years has been to replace hydrogen altogether by nitrogen for measure-

ments above room temperature, and because helium has a lower critical

point, to replace hydrogen by helium for measurements below room tem-

perature. The gas, ordinarily sufficient in amount to produce a pressure

of 1 m Hg at the ice point (the precise correction to the ideal-gas scale

obviously depends on the value of this initial pressure), is confined in

a platinum-iridium tube about 1 m in length and 36 mm in internal

diameter, having a capacity of about 1 liter. It is attached through a

platinum capillary tube about 1 m in length to a mercury manometer;
the tip of a fine platinum needle projecting just beyond the opening of

the connecting capillary tube into the manometer defines a fixed volume
of the gas, not counting the bulb's own expansion and contraction with

changes in its temperature.

Many corrections which are tedious and difficult to apply are necessary
before the temperature can be determined from the pressure readings.

These include a "dead space" correction for the gas in the connecting
tube and in the small space surrounding the platinum point, correction

for change in the volume of the bulb with temperature, and with internal

and external pressure, correction for the effects of temperature and pres-

sure on the height of the mercury column, etc. When all these experi-

mental errors have been corrected for, there remains the final correction

from the constant volume, pQ = 1 m Hg scale, to the ideal-gas scale; such

corrections for several thermometric gases are given in Table 1-4, as deter-

mined by F. G. Keyes from a critical analysis of their behavior at various

pressures.

With nitrogen gas confined in a platinum-rhodium bulb, temperatures
as high as 1600C have been directly measured by means of gas thermome-

try. The classic research in this range was conducted by Day and Sos-

man,
1 who determined the melting point of palladium to be 1549.2 + 2C

on a constant-volume nitrogen scale; by the use of an ice-point pressure of

350 mm Hg instead of the conventional 1 m Hg, their high-temperature
scale became practically identical with the ideal-gas scale, since at the

resulting lower pressures, the deviation of nitrogen from Boyle's law was

negligible in comparison with other experimental errors. This particular

investigation was of the utmost practical and theoretical importance,
because it served to verify the thermal radiation laws, which are the only

1 A. L. Day and R. B. Sosman, High Temperature Gas Thermometry, Carnegie
Inst. Wash., Pub. 157, 1911.
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means of carrying on the temperature scale beyond this point with satis-

factory precision.

At the other end of the temperature scale, the constant-volume helium-

gas thermometer may be used without special difficulty down to about

5K. By means of a special low-pressure helium-gas thermometer, hav-

ing an ice-point pressure of but 0.20 cm Hg, Keesom and his coworkers

succeeded in measuring directly temperatures down to 0.71 K, at which

point the vapor pressure of liquid helium is but 0.00036 cm Hg; they used

TABLE 1-4. CORRECTIONS OF GAS-THERMOMETER READINGS TO THE THERMODYNAMIC
TEMPERATURE SCALE*

* F. G. Keyes, in "Temperature. Its Measurement and Control in Science and Industry," pp
45-59, Reinhold Publishing Corporation, New York, 1941, with permission.

this special gas thermometer to standardize the liquid-helium vapor-

pressure thermometer, which is more sensitive and convenient to use in

the range below 5K. 1

Gas thermometers are obviously not practicable for ordinary tempera-
ture measurements. Their most important function has been the precise

establishment on the thermodynamic temperature scale of a number of

secondary fixed temperatures, which are used for the standardization of

other working thermometers.

1 W. H. Keesom, S. Weber, and G. N0rgaard, Communs. Kamerlingh Onnes Lab.

Univ. Leiden 202b (1929); W. H. Keesom, S. Weber, and G. Schmidt, ibid., 202c

(1929); see also, W. H. Keesom, "Helium," Elsevier, Amsterdam, 1942.
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1-5. Resistance Thermometers. The electrical resistivity of many
metals increases with temperature, and several metals, including platinum
and nickel, that undergo no phase transitions or other singularities in

behavior over a wide range of temperatures, and that can be obtained in

sufficiently pure condition, have been found satisfactory for the construc-

tion of resistance thermometers. The first platinum resistance thermom-

eter was constructed by C. William Siemens in 1871, but because of

FIG. 1-2. Platinum resistance thermometer of high precision, such as is used to define the
International Temperature Scale between 190 and 630.5C. The thermometer is

housed in a glass tube and has four leads for connection to the resistance bridge (see

Fig. 1-3). The sensitive element at the tip, a close-up of which is shown in the inset, con-

sists of a coil of fine platinum wire wound on a mica form. The entire assembly is thor-

oughly aged and adjusted. (Courtesy of Leeds & Northrup Company, Philadelphia.)

inadequate testing on the part of a special committee of the British

Association appointed to report on the new instrument, its further devel-

opment was retarded for a number of years. It was brought to its

present state of perfection mainly through the work of H. L. Callendar,

beginning in 1887. l

The coil of a modern platinum resistance thermometer is wound on a

1 This work has been described by Callendar's associate, E. H. Griffiths,
" Methods

of Measuring Temperature," Charles Griffin & Co., Ltd., London, 1925.
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mica form from pure platinum wire having a diameter within the limits

0.05 to 0.2 mm and doubled on itself to eliminate induction effects. The

purity must be such that the ratio of the resistance at the steam point to

the resistance at the ice point is not less than 1.390. The coil is generally

made of such a length that the resistance at the ice point is 2.56 ohms for

thermometers designed to be used at higher temperatures, or 25.6 ohms
for thermometers designed to be used at lower temperatures; the funda-

mental interval is then 1 ohm or 10 ohms, respectively, but in high-pre-

cision thermometry it is always necessary to determine the ice-point and

steam-jjoint resistances by direct measurement for each individual ther-

mometer. If the platinum wire has been properly annealed, and if it is

never thereafter exposed to temperatures in excess of 1200C, its resistance

at a given temperature will remain stable and reproducible indefinitely.

Compensating
dummy leads

Thermometer
coil and leads

Measuring
resistance

FIG. 1-3. Diagram of thermometer resistance bridge, showing use of compensating leads

(details of adjustment for slight inequality of the ratio arm resistances not shown).

Comparatively heavy platinum leads are sealed to the ends of the coil

and threaded through a series of mica disks, which serve as insulating

supports, and also as baffles to retard air convection currents within the

thermometer (Fig. 1-2). Coil and leads are hermetically sealed within a

hard-glass or porcelain tube, the entire thermometer being not much

larger than an ordinary mercury-in-glass thermometer. The platinum
leads end at terminals, to which ordinary copper external leads from the

resistance bridge are attached. There are several different methods of

eliminating the effect of the lead resistance; one method developed by
Callendar consists of including a pair of dummy leads in the thermometer,
similar to the coil leads and lying parallel with them throughout their

length, but simply joined to each other at the base, just above the coil;

the compensating lead system, including a pair of external leads similar

to those connected to the coil leads, is put in series with the standard

adjustable resistance, in the bridge arm opposite to the one that includes

the coil and its lead system (Fig. 1-3). Since resistance-thermometer
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bridges are always designed with the other two balance arms equal, the

measuring resistance thus balances the true coil resistance, the dummy
lead resistance canceling out the lead resistance of the coil. The bridge

connections must be specially designed so as to keep contact resistances

to a minimum, since the changes of resistance that one wishes to measure

are quite small by ordinary electrical standards of measurement, of order

only 0.01 ohm per 1C. One of the most convenient and precise resist-

ance bridges designed for this special purpose is that of E. F. Mueller;
1

the Mueller bridge permits one to measure temperatures in the range to

660C within a precision of 0.01C.

Callendar and Griffiths showed that if the platinum is sufficiently pure
and properly annealed, the resistance over a temperature range from 0C
to at least 500C is given accurately by the empirical equation

R t
= B (l + At + Bt^ (1-10)

where RQ denotes the resistance at the ice point and A and B are empirical

constants for the individual thermometer. Equation (1-10) is not in a

form convenient for calculating the temperature from Rh even after A
and B have been determined; if, however, I' represents the platinum
resistance temperature, as defined by the linear equation

t = 100 p
g| " ^ (1-11)
t 100

[compare Eq. (1-1)], then one may readily prove by substituting in Eq.

(1-10) that

where 5 is a constant for the particular thermometer related to A and

Bby
(100)

2B
A + 1005 (1-13)

Therefore, instead of determining A and B, it is more convenient to meas-

ure 5 directly by observing the value of t
r

[i.e., from that of R t by means of

Eq. (1-11)] at some third thermometric fixed point. The sulfur point, or

normal boiling point of sulfur, 444.600C on the present International

Temperature Scale (see Sec. 1-8), is convenient for this purpose. Once

the value of 5 has been established by this means, then the correction

*E. F. Mueller, NaU. Bur. Standards, Tech. News Bull. 13, 547-561 (1916); see

also, the review by E. F. Mueller in "Temperature. Its Measurement and Control

in Science and Industry," pp. 162-179, Reinhold Publishing Corporation, New York,
1941.
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from the platinum resistance temperature given by Eq. (1-11) to the

International Temperature Scale or to the thermodynamic temperature

(conditioned by the value one uses for the sulfur point, concerning which

some slight degree of uncertainty has existed) is conveniently made

through Eq. (1-12) ;
in applying this equation, the value of t on the right

need be known only approximately, since the value of the entire correc-

tion is not large; in any event, the equation may be rapidly solved by
successive approximations. This procedure was developed originally by
Callendar. Later work by Heycock and Neville showed that Eq. (1-12),

with the value of 5 established by calibration at the sulfur point, is accu-

rate from 0C to the melting point of copper, 1082C. 1

For temperatures below the ice point, the procedure has to be modified,

because the quadratic relation (1-10) fails when the temperature range is

extended below 40 C. By the addition of another empirically deter-

mined constant, in the form

Rt
= B [l + At + Bt2 + C(t

-
100) *

3
] (1-14)

satisfactory agreement is obtained down to 190C; Eq. (1-14) is

equivalent to

1 " * = 5

VJOO
~

/ 100
+ ft

\100
"
V \100/

(

where t' and 6 have the same significance as before, but ft is another con-

stant for the particular thermometer, related to A, B, and C of Eq.

(1-14) by
(100)

4
C'

P A + 100B

In applying Eq. (1-15), which was proposed originally by M. S. Van

Dusen,
2 one first determines the value of 5 for the particular thermometer

by calibration at the sulfur point, using Eq. (1-12), which applies from

0C up; one then determines the value of ft in Eq. (1-15), which applies

from 0C down, by calibration at a fourth thermometric fixed point, the

oxygen point (normal boiling point of oxygen), 182.970C, retaining

the previously determined value of 5. From the values of 5 and ft so

determined, one may use Eq. (1-15) conveniently to correct platinum

1 C. T. Heycock and F. H. Neville, J. Chem. Soc., 67, 160-199 (1895). See, how-

ever, the more recent discussion by B. E. Blaisdell and J. Kaye, in "Temperature.
Its Measurement and Control in Science and Industry,

"
pp. 127-140, Reinhold

Publishing Corporation, New York, 1941; they recommend a cubic rather than a

quadratic empirical relation between Rt and t, for sufficiently high precision even

over the range to 660C.
2 M. S. Van Dusen, /. Am. Chem. Soc., 47, 326-332 (1925).
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resistance temperatures t
r

[as given by Eq. (1-11)] to International or

thermodynamic temperatures t. Table 1-5 gives typically the value of

Rt/Ro for platinum over a wide range of temperatures, as reported by
W. F. Roeser and H. T. Wensel, of the National Bureau of Standards.

Below 190C, the platinum resistance thermometer becomes rather

insensitive for precise temperature measurement; lead resistance ther-

mometers have been found useful down to 259C, which represents

approximately the triple point of hydrogen. No general agreement
exists concerning the standardization of resistance thermometers in this

TABLE 1-5. PLATINUM RESISTANCE AT VARIOUS TEMPERATURES*

Industry," p. 1312, Reinhold Publishing Corporation, New York, 1941. The specific resistivity of

platinum at 0C is 9.83 X 10~8 ohm cm.

range, but a provisional temperature scale between 14 and 83K, based

on several thermometric fixed points established by means of the con-

stant-volume helium thermometer, has been proposed by scientists at the

National Bureau of Standards. 1

1-6. Thermocouples. If two wires of different metals are joined at

their ends, then if the two junctions are at different temperatures, an

electromotive force (emf) is developed in the circuit, which can be meas-

ured by the introduction of a millivoltmeter or a potentiometer. This

effect was discovered by T. J. Seebeck in 1821. Since the emf increases

continuously with the difference between the temperatures of the junc-

tions, its value for a particular pair of metals may be used to measure the

1 H. J. Hoge and P. G. Brickwedde, /. Research Nail. Bur. Standards, 22, 351-373

(1939).
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temperature of the one junction relatively to that of the other. In

precise measurements, the reference junction is ordinarily maintained at

the ice point, while the other exploring junction, the so-called "hot"

junction, is inserted in the system whose temperature is being observed.

Since a thermocouple junction can be quite small in size, with a corre-

spondingly low heat capacity, thermocouples are convenient to use, and
are particularly valuable for following a changing temperature. When
there is risk of contamination, the junction is ordinarily protected by a

porcelain sheath, which necessarily increases the heat capacity and
time lag.

Several different combinations of metals have come into common use.

For temperatures below 350C, the base-metal copper-constantan and
iron-constantan thermocouples are satisfactory. Constantan itself is an

alloy consisting of 60 per cent copper with 40 per cent nickel, developed

originally as a metal having a low temperature coefficient of resistance.

The emf of a thermocouple whose junctions are only a few hundred

centigrade degrees apart, such as over the range to 350C when the

reference junction is at the ice point, is represented empirically by a

rather complex equation of the form

E = At - B(l - e~ct
) (1-16)

where A, B, and C are supposedly constant over the given range for the

particular pair of metals, but actually vary slightly from one individual

thermocouple to another of the same type. In practice, the individual

thermocouple is most conveniently standardized by a check of its readings

at various fixed temperatures against the values given by standard tables

that have been prepared on the basis of Eq. (1-16) from average values of

A, B, and (7, obtained for a number of samples of the particular metals

(see Table 1-6); the deviations from the standard tables are plotted

graphically against E as corrections for the individual thermocouple, and

since such corrections are usually small, they are recorded with ample pre-

cision by this means. 1

Above 350C, copper-constantan thermocouples deteriorate rapidly

because of air oxidation
;
iron-constantan thermocouples begin to deterio-

rate at somewhat higher temperatures, the life of No, 8 gauge wires in air

at 760C being on the average about 1000 hr. 2 The chromel-alumel

1
See, for example, W. F. lloeser and H. T. Wensel, J. Research Nail. Bur. Standards,

14, 247-282 (1935); see also their tables in the Appendix to "Temperature. Its

Measurement and Control in Science and Industry," Reinhold Publishing Corpora-

tion, New York, 1941.
2 W. F. Roeser, in "Temperature. Its Measurement and Control in Science and

Industry/
1

pp. 180-205, Reinhold Publishing Corporation, 1941.
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thermocouple is useful up to 1200C; chromel-P consists of 90 per cent

nickel with 10 per cent chromium, while alumel consists of 95 per cent

nickel alloyed with 5 per cent aluminum, silicon, and manganese; the life

of a No. 8 gauge chromel-alumel thermocouple in air at 1150C is about

1000 hr.

In high-precision work at elevated temperatures, the most satisfactory

thermocouple is the platinum-rhodium thermocouple, first introduced by
H. L. Le Ch&telier in 1886; this thermocouple serves to define the present

International Temperature Scale over the range 630.5 to 1063C. It

consists of a pure platinum wire, coupled with an alloy wire consisting of

90 per cent platinum and 10 per cent rhodium. With the cold junction

at the ice point, the emf is related to the temperature of the hot junction

over the range 630.5 to 1063C by means of the empirical equation

E = a + to + ct* (1-17)

where a, &, and c are constants for the individual thermocouple, whose

values vary slightly from one thermocouple to another of the same type.

In fundamental work, it is therefore necessary to standardize the indi-

vidual thermocouple by taking readings at at least three thermometric

fixed points established on the International Temperature Scale or on the

thermodynamic temperature scale; for this purpose, the freezing points of

antimony, silver, and gold are available. Here, too, standard tables of E
vs. t have been prepared, based on Eq. (1-17) using average values of a, &,

and c obtained from a number of samples of the wires; one conveniently

corrects the individual thermocouple therefore by plotting the deviations

of its readings from those given by the standard tables, at various stand-

ard thermometric fixed points. One may use the platinum-rhodium

thermocouple at temperatures up to 1600C, but in the range above

1063C, it is necessary that one redetermine the constants in the empirical

relationship (1-17); in other words, over the range 1063 to 1600C, the

emf is related to the temperature by

E = a' + Vt + c't

but the constants a', &', c' are different from the constants a, &, c that fit

the data over the lower temperature range. The thermocouple must

therefore be restandardized by checking its readings at at least three

thermometric fixed points in the new temperature range. Table 1-6

includes standard mean values of platinum-rhodium thermocouple read-

ings over an extended range of temperatures.

For approximate temperature measurements, the emf may be measured

by means of a millivoltmeter. In fact, industrial thermoelectric pyrome-
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ters are manufactured, which consist essentially of millivoltmeters con-

structed with scales graduated directly in temperature degrees, to be used

with a particular type of thermocouple. For precise measurements,

however, a potentiometer is essential; Table 1-6 shows, for example, that

the platinum-rhodium thermocouple around 900C has a sensitivity of

TABLE 1-6. CORRESPONDING VALUES OF TEMPERATURE AND EMF FOR VARIOUS
TYPES OF THERMOCOUPLES

* Platinum-rhodium: W. F. Roeser and H. T. Wensel, J. Research Natl. Bur. Standards, 10, 275-287

(1933).

t Chromel-alumel: W. F. Roeser, A. I. Dahl, and G. J. Gowens, ibid. 14, 239-246 (1935).

J Iron-constantan: W. F. Roeser and A. I. Dahl, ibid., 20, 337-355 (1938).

Copper-constantan : L. H. Adams, "International Critical Tables," Vol. I, p. 58, McGraw-Hill
Book Company, Inc., New York, 1926.

These tables are given in greater detail by W. F. Roeser and H. T. Wensel in the Appendix to the

symposium, "Temperature. Its Measurement and Control in Science and Industry," Reinhold

Publishing Corporation, New York, 1941.

about 0.011 mv/C; therefore in order to obtain temperature readings

precise to within +0.1C, one must be able to measure the emf within

+ 1 MV. This precision is readily attained by means of a high-precision

potentiometer coupled with a sensitive low-resistance galvanometer;

special potentiometers have been designed in which the slide-wire is

eliminated in favor of fixed resistance coils and a selector switch, and
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other features are introduced to improve the sensitivity and decrease the

effects of parasitic emfs. 1

If one is interested in measuring small temperature differences, without

regard to the actual temperature value being measured, the thermocouple
is particularly convenient; a sensitive galvanometer may be used directly

to measure the thermoelectric current between the two junctions. The
thermal sensitivity may be further increased by combining the electrically

insulated hot junctions and cold junctions of several thermocouples
hooked up in series; such a combination is known as a thermopile.

Thermocouples may be used also at low temperatures, but it is neces-

sary of course that they be standardized, preferably through comparison
with a standard platinum resistance thermometer or with a helium-gas
thermometer. The copper-constantan thermocouple, with the "cold"

junction at the ice point, is a quite satisfactory thermometer down to

liquid air temperatures (85K), and with precautions, may be used down
as far as 11K, which is below the triple point of hydrogen.

2

Among the principal sources of error in thermocouple temperature

measurements, aside from the ordinary calibration errors of the electrical

measuring instruments, are insulation leaks and stray thermoelectric

effects developed in the circuit. The latter effects are attributable to

three sources: (1) the Thomson effect, or emf resulting from temperature
differences along either wire; (2) the Peltier effect, or emf resulting from

temperature differences between bimetallic contacts at other parts of the

circuit besides the thermocouple junctions, such as at binding-post con-

nections, switch points, etc.; (3) the Becquerel effect, or emf resulting

from strains or inhomogeneities within a single wire.

1-7. Radiation Pyrometers. When a body is at a temperature differ-

ent from that of the surroundings, it tends to equalize its temperature
with that of the surroundings by means of thermal radiation. Unlike

thermal conduction and convection, thermal radiation requires no mate-

rial medium for its transmission; in fact, a material medium between the

source and the receiver of the thermal radiation may even absorb or

reflect some of the radiation. The thermal energy
3 radiated by a hot

body depends not only on its temperature but also on the nature of the

radiating surface. G. R. Kirchhoff proved in 1858 that at a given tem-

1 See W. P. White, in "Temperature. Its Measurement and Control in Science

and Industry," pp. 265-278, Reinhold Publishing Corporation, New York, 1941.
2 J. G. Aston, in "Temperature. Its Measurement and Control in Science and

Industry," pp. 219-227, Reinhold Publishing Corporation, New York, 1941; see also,

R. B. Scott, ibid., pp. 206-218.
8 A precise discussion of the energy concept, and of heat as a form of energy, is

given in Chap. 2.
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perature, all bodies necessarily have the same ratio of thermal emissive

power, or rate of energy radiated per unit of surface area, to absorptive

power, or fraction absorbed of the thermal radiation falling on the surface,

for radiation of a given wavelength. This ratio is evidently equal to the

emissive power of a perfectly black body, for which by definition the

absorptive power equals 1 for all wavelengths; a black body or perfect

radiator is in other words a body which completely absorbs the thermal

radiation falling on it, none being reflected at the surface or transmitted

through it. For a black body, therefore, according to Kirchhoff's law,

the rate of thermal radiation per unit surface area must be a function of

the temperature only, and, conversely, black-body radiation may be used

as a measure of the temperature.

FIG. 1-4. Diagram of a standard experimental black body as designed by W. E. Foraythe.
Tubes A, B, and D are of alundum or porcelain. Tube A is wound uniformly with platinum
ribbon 2 cm wide and 0.01 mm thick. Tube B is wound with the same kind of ribbon but

with a space between windings uniformly increasing on going from the ends toward the

center. C is the blackbody. To heat this black-body to the palladium point a current

of about 8 to 10 amp at 115 volts is required in the winding of tube A and 5 to 10 amp in the

winding of tube B. The space around tube D is packed with some good heat insulator.

(Taken with permission from "Measurement of Radiant Energy" W. E. Forsythe, Ed.,

McGraw-Hill Book Company, Inc., New York, 1937.)

We may therefore measure temperature by observing the thermal radia-

tion of a black body in thermal equilibrium with the system under obser-

vation. A practical black body may consist of a hollow tube or enclosure

having a small viewing aperture and blackened inner walls (see Fig. 1-4) ;

in use, this body is immersed in the system whose temperature is to be

measured, and the radiation measuring instrument is sighted on the

aperture. Since practically all incident radiation falling on the aperture

is absorbed by internal reflections and scattering within the enclosure, the

thermal radiation issuing from the aperture is characteristic of that of a

black body at the temperature of the enclosure.

Two general types of radiation pyrometers are in use. One type meas-

ures the rate of emission of total energy, without regard to its spectral

distribution, and is therefore known as a total-radiation pyrometer. The

other type measures the spectral distribution of the energy radiated, and

is known as an optical pyrometer.
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Total-radiation pyrometers are based on the law

6 = cr(2
T4 -

rj) (1-18)

where e represents the net rate of transfer of energy per unit area by a

black body at absolute thermodynamic temperature T
7
to a black body at

absolute thermodynamic temperature Ts . This law was first proposed on

the basis of empirical evidence by J. Stefan in 1879 but was later deduced

theoretically from thermodynamic reasoning by L. Boltzmann in 1884;

the accepted value of the proportionality constant <r, known as Stefan's

Golvanometer-

Eyeplece

FIG. 1-5. Diagram of a F6ry total-radiation pyrometer. (Taken with permission from
A. G. Worthing and D. Halliday, "Heat," John Wiley & Sons, Inc., New York, 1948.)

constant, is (5.673 0.004) X 10~5
erg/cm

2 sec deg
4
.
1 In the total-

radiation pyrometer as designed originally by C. F6ry in 1904 (see Fig.

1-5), the radiation from the source is focused by means of a concave

mirror on the "hot" junction of a thermopile, whose emf is read by means

of a voltmeter; a collimating hole admits radiation only from a part of the

radiating surface, whose image on the "hot" junction of the thermopile

is thus reduced in area as the distance between source and mirror is

increased, in direct proportion to the quantity of radiation admitted;

therefore, so long as the field defined by the collimator does not take in

1 R. T. Birge, Rev. Modern Phys., 13, 233-239 (1941) ;
this represents a value derived

in terms of Planck's constant from the quantum theory of radiation; it is in excellent

agreement, however, with the results of direct measurement of total thermal radiation.
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more area than that of the source, the intensity of the radiation incident

on the thermopile, and hence the readings of the pyrometer, are inde-

pendent of the distance from the source. Since the emf developed by the

thermopile is approximately proportional to the relatively small difference

of temperature between its "hot" and "cold" junctions, and since this in

turn is approximately proportional to the intensity of the net radiation

received by the "hot" junction, the emf is given directly by the relation

E = a(Tb - T

where the constant a includes Stefan's constant and also the particular

combination of proportionality factors characteristic of the individual

pyrometer; the constant 6 is close to the theoretical value of 4, but may
differ slightly from 4 for the individual pyrometer because the propor-
tionalities between E and the intensity of the net radiation received are

not exact, and because of other small thermal corrections. If 6 were

exactly equal to 4, the value of a for the individual pyrometer could be

established, and the pyrometer thereby standardized, by means of a

reading taken at a single thermometric fixed point, such as the freezing

point of gold (1336K) ;
for temperatures this high, the temperature T8 of

the receiver (i.e., the "hot" junction of the thermopile) can be neglected

in the equation for the instrument, because of the high power to which

both T and T8 are raised. In practice, however, the values of a and 6 for

the individual pyrometer are best determined from a series of readings
over a range of temperatures up to the gold point, in comparison with

those of a standardized thermometer of a different type, such as the

platinum-rhodium thermocouple. For extension of the range to higher

temperatures, beyond the range of other types of thermometers, the

pyrometer may then be used with a rapidly rotating sectored disk before

the collimator; by this means, the intensity of the incident radiation may
be cut down by a known fraction of its true value, and correction from the

apparent reading to the true temperature made accordingly.

The total-radiation pyrometers used in industry are essentially like

that of Fig. 1-5, except that the opening admitting the radiation is usually
covered by a protecting plate of glass or quartz. For approximate or

comparative purposes, particularly of a control nature, one may dispense
with the black body and view the system under investigation directly.

One obtains in this way the equivalent black-body temperature, i.e., the

temperature at which a black body would show the same intensity of

radiation as that actually shown by the system; since ordinary bodies are

less efficient radiators than black bodies, the true thermodynamic tem-

perature cannot be lower than the equivalent black-body temperature.
One would have to know the absorptive power of the emitting surface in
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order to estimate the true temperature from the equivalent black-body

temperature, but for certain purposes, the equivalent black-body tem-

perature itself may serve as a sufficient indicator.

Optical pyrometers are based practically on Wien's law,

(1-19)

where Jx d\ represents the rate of emission of thermal radiation within

the wavelength range X to X + d\ per unit area of radiating surface by a

black body at the absolute thermodynamic temperature J
7

,
and ci and c 2

are universal constants independent of T and X, known, respectively, as

the first and second radiation constants. This law was first derived in

1893 by Wilhelm Wien from thermodynamic reasoning based on the

classical electromagnetic theory of radiation; it was shown by Max
Planck in 1900 to be a special case for sufficiently short wavelengths or

sufficiently low temperatures of a more general radiation law,

for whose derivation Planck was compelled to assume a quantum theory
of radiation, the first step on the path leading to modern quantum
mechanics. Planck's law has been thoroughly verified by experiment;
Wien's law is a sufficiently accurate approximation, however, for visible

thermal radiation at temperatures up to about 4000K. If one com-

pares the intensity of black-body radiation at the same wavelength for

two different temperatures, T and T, Eq. (1-19) reduces to

ln = ~2
o
-

(e
c^T and e^ 1) (1-21)

Planck's generalization of this relation is

T. pCt/\T _ 1

The value of 02 used in defining the present International Temperature
Scale above 1063C is 1.438 cm deg.

1
Thus, if in Eq. (1-21), or more

generally, in Eq. (1-22), T represents the gold point, 1336K,.then meas-

urement of the relative intensity J\/J\ of monochromatic black-body
1
Birge (ibid.) gives 1 .4385 0.0003 cm deg, as derived by calculation based on

Planck's radiation theory from the values of other natural constants; this value is in

excellent agreement, however, with the results of direct applications of Planck's law

(1-22).



TEMPERATURE 37

radiation of given wavelength at another temperature compared with

that at the gold point serves to measure the other temperature.

The first optical pyrometer was designed by II. L. Le Chatelier in 1892;

the object whose temperature was being determined was viewed against

the superimposed image of the flame of a standard amyl acetate lamp.
The modern disappearing-filament pyrometer, in which the field is viewed

against the superimposed image of the filament of an electrically heated

incandescent lamp, was introduced by F. L. Morse in 1906. This type
of pyrometer is extremely convenient to use; the temperature of the

filament is controlled by means of a variable resistance, and the current

at which the filament just disappears against the background is measured,
a filter being used to ensure approximately monochromatic radiation.

When the filament current is too small, the filament stands out dark

against the lighter background; when the filament current is too large,

the filament stands out bright against the darker background. The

pyrometer is standardized either by observations of the current for black-

body radiation at several standard thermometric fixed points or by com-

parison of the readings with those of a standardized thermocouple.
Standard radiation sources are commercially available, also, consisting of

tungsten ribbon-filament lamps, whose equivalent black-body tempera-
tures have been calibrated as functions of the filament current. For

temperatures higher than the freezing point of gold (1336K), the pyrome-
ter is commonly used in connection with a rotating sectored disk to cut

down the incident radiation; thus, if Tf

represents the apparent tempera-
ture reading given by the pyrometer (standardized by means of readings
at lower temperatures) when the sector openings constitute an angular

aperture of radians, then the value of J\/J\ to be substituted in Eqs.

(1-21) or (1-22) will be 2ir/0, whence from the known wavelength and the

value of c 2j one may readily compute the equivalent black-body tempera-
ture T of the source.

In another research type of optical pyrometer, described by H. Wanner
in 1902, the lamp filament is heated electrically at constant temperature,
but the radiation from the filament and the radiation from the source

under observation are both plane-polarized by being passed through
Nicol prisms so oriented that the two planes of polarization are at right

angles to each other; the two fields are then viewed through a Nicol

analyzing prism, which is rotated until they appear to be equal in inten-

sity. The setting of the analyzer thus measures the relative intensity

from the filament and from the source, and, by substitution in Eqs. (1-21)

or (1-22), the temperature of the source (the equivalent black-body tem-

perature if the source is not itself a black body) may be calculated rela-

tively to the established equivalent black-body temperature of the
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filament; a red filter is generally used to ensure approximately mono-
chromatic radiation. Another similar type of pyrometer makes use

actually of a spectrometer to obtain true monochromatic radiation. 1

If one integrates J\ d\ from X = to X = oo
,
where J\ is given approxi-

mately by Eq. (1-19), or in general by Eq. (1-20), one of course obtains

the Boltzmann total radiation law, Eq. (1-18). An important series of

measurements was undertaken by C. E. Mendenhall and W. E. Forsythe
in 1914 to intercompare the temperature scales given by the total-radia-

tion pyrometer and by the disappearing-filament optical pyrometer.
2

Over the temperature range between 1750 and 2820C, the agreement
was within experimental error, thus affording excellent confirmation of

the theory of thermal radiation in general, and of radiation thermometry
in particular. So far as we know, the black-body radiation laws based

on Planck's quantum theory are exact, and we may use radiation pyrome-
ters with confidence to extend the temperature scale to indefinitely high

temperatures.
1-8. The International Temperature Scale. Everyone recognizes the

thermodynamic temperature scale, or its equivalent, the ideal-gas tem-

perature scale, as the fundamental scale to which all temperature meas-

urements should in principle be ultimately referred. In practice, it is

expedient to set up a working scale, based on instruments less cumber-

some to use than the gas thermometer, and hedged by such conventions

that all scientists shall mean the same thing when they report precise

temperature measures, and shall not be basing their temperature meas-

ures on different conceptions of the best values for such natural constants

as the normal boiling point of sulfur, or the second radiation constant.

This point of view Avas originally presented by H. L. Callendar, and ulti-

mately won acceptance in the modern International Temperature Scale,

in use since 1927. This scale has been designed to conform as closely as

practicable to the thermodynamic temperature scale, in view of the

information available at the time of its adoption. In recognition of the

fact that no single type of thermometer is satisfactory for measuring

temperatures over the entire range that now interests us, the scale is

based on a set of thermometric fixed points in addition to the theoretically

sufficient ice point and steam point; to each of these fixed points, a tem-

perature has been assigned by convention, representing at the time of the

scale's adoption the consensus of opinion, as accepted by the General

Conference on Weights and Measures, concerning the "best" experi-

mental value on the thermodynamic scale; the number of these defined

1 This spectral pyrometer and other types of optical pyrometers are described in

detail by Worthing and Halliday, op. cit., pp. 456-466.
2 C. E. Mendenhall and W. E. Forsythe, Phys. Rev., 4, 62-70 (1914).
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fixed points has been chosen to be sufficient for precise calibration of the

standard working thermometers defining the temperature in various parts
of the scale, but their values are not to be changed, except as revision is

authorized by a future General Conference on Weights and Measures.

The present International Temperature Scale (1948) was adopted by the

Ninth General Conference in October, 1948, and represents the first

revision (all the changes being quite minor in effect) of the scale originally

adopted by the Seventh General Conference in 1927. 1

The standard fixed points, all of which represent phase equilibrium

conditions of simple substances, are given in Table 1-7. The oxygen

point, the steam point, and the sulfur point are sensitive to variations in

the barometric pressure; therefore empirical formulas are given, derived

from vapor-pressure data, correcting the temperature for departure of

the pressure from the standard value: po = 1 atm. The freezing point of

antimony is less reproducible than that of the other fixed points, so

instead of having an assigned value, the freezing point of the particular

sample is determined for the purpose of thermocouple standardization at

the higher temperatures by direct measurement with the platinum
resistance thermometer, previously standardized in the usual way at the

ice point, steam point, and sulfur point. The standard working instru-

ments, and their ranges, are also included in Table 1-7.

Temperatures below the oxygen point have not yet been defined on the

International Temperature Scale, because of the uncertainty concerning
the values of the fixed points available in that range. This region has,

however, become increasingly important because of the practical and

theoretical value of thermodynamic measurements extending down to

the lowest attainable temperatures. For such purposes, it is desirable

that the data extend down at least to the liquid-hydrogen region (normal

boiling point, 20.39K, to the triple point, 13.96K), and preferably into

the liquid-helium region (normal boiling point, 4.22K). A provisional

temperature scale covering the range 14 to 83K has been described by
Hoge and Brickwedde, based on platinum resistance thermometers

calibrated fundamentally against the constant-volume helium-gas ther-

mometer; Hoge has also made a survey of possible fixed points that could

be used for the standardization of resistance or thermoelectric thermome-

ters in the range below 183C. 2

1 A translation of the text of the official 1948 report is given by Stimson, loc. cit.

The original International Temperature Scale (1927) has been described by G. K.

Burgess, J. Research Natl. Bur. Standards, 1, 635-642 (1928).
2 Hoge and Brickwedde, loc. cit.; H. J. Hoge, in "Temperature. Its Measurement

and Control in Science and Industry," pp. 141-156, Reinhold Publishing Cor-

poration, New York, 1941.
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TABLE 1-7. THE INTERNATIONAL TEMPERATUKE SCALE (1948)

Standard Fixed Points

Standard Measuring Instruments

Range
Ice point to freezing

point of antimony

Oxygen point to ice

point

Freezing point of

antimony to gold

point

Instrument

Platinum resistance

thermometer

Platinum resistance

thermometer

Platinum-rhodium

thermocouple

(platinum vs. 90-

10 platinum-rho-
dium alloy)

Conditions

Rt = R (l + At + BP), where R (] , A,
and B are determined by calibration at

the ice point, the steam point, and the

sulfur point; the platinum should be of

such purity that Riw/Ro is greater than

1.3910

Rt = Bo(l + At + Bt* + C(t
-

100)J
3
),

where RQ, A and B are determined as

above, but the additional constant C is

then determined by calibration at the

oxygen point

Et = a + bt + c 2
, where one junction is

maintained at the ice point; a, 6, and
c are determined by calibration at the

antimony point (630.5C, measured

precisely with a standard platinum
resistance thermometer), the silver

point, and the gold point
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TABLE 1-7. THE INTERNATIONAL TEMPERATURE SCALE (1948). (Continued)

Range

Above gold point. . .

Instrument

Optical pyrometer

Conditions

Planck's law:

where /*//AU represents ratio of inten-

sities of monochromatic radiation of

wavelength X emitted by a black body
at temperature t and at the gold point;

To represents the absolute ice point;

Cz = 1.438 cm deg

The lowest temperatures of all (below 1K, and as low as 0.005K) have

been attained by the adiabatic demagnetization method described in

Sec. 6-6. The problems of establishing a temperature scale in this region

have been described by C. F. Squire.
1

The highest man-made temperatures are undoubtedly those that have

been attained in the explosions of atomic bombs. The surface tempera-

ture of the sun, according to radiation pyrometry, is about 6000K, but

considerable uncertainty exists concerning the relationship of the sun's

radiation to that of a black body, the only kind of body for which the

radiation laws are known precisely. Within a similar limitation, the

surface temperatures of the other stars have estimated values ranging

between 3500 and 25,000K. No direct experimental methods exist as

yet for determining the interior temperatures of stellar bodies, but studies

of atomic energy explosions will no doubt yield pertinent information.
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Problems

1-1. Calculate the value of the gold point on the Fahrenheit and on the Rankine

temperature scales.

1-2. List the possible advantages and disadvantages of water and of dibutyl

phthalate as thermometric liquids for liquid-in-glass thermometers.

1-3. Calculate the emergent stem correction for a mercury thermometer made of

Corning normal glass when the reading is 200.0C, and the thermometer is immersed

to the 0C mark; assume an average exposed stem temperature of 25C.
1-4. According to L. Holborn (Landolt-Bornstein,

"
Physikalisch-chemischc Tabel-

len," 5th ed., Supplement I, p. 6G, 1927) the pV product for hydrogen is represented at

moderate pressures by the empirical formulas :

0C: pV = 0.99918 + 0.00082094? + 0.0000003745?
2

100C: pV 1.36506 + 0.00091400?

where p is represented in meters of mercury and the values of pV are relative to the

arbitrary standard, pV = 1.00000 at 0C and p = 1 m Hg. Calculate the relative

increase in volume, (Fioo Fo)/Fo, for hydrogen gas at 1 atm (0.76 m Hg) pressure

in going from the ice point to the steam point. Calculate also the relative increase in

the quantity lim (pV).

1-6. According to, Holborn, the pV product for helium, relative to pV 1.00000 at

0C and 1 m Hg, and with p expressed in meters of mercury is given by the following

empirical formulas:

-183C: pV = 0.32992 + 0.00062286? + 0.000000735?
2

0C: pV = 0.99930 + 0.00069543?

+100C: pV = 1.36518 + 0.00066804?

Calculate the apparent temperature at the oxygen point given by a constant-pressure

helium-gas thermometer having a pressure of 1 m Hg. Calculate the ideal-gas tem-

perature at the oxygen point, from the limiting behavior of helium at zero pressure.

Calculate by difference the correction to the constant-pressure helium temperature
for obtaining the ideal-gas temperature at the boiling point of oxygen.

1-6. A platinum resistance thermometer reading 2.5602 ohms at the ice point and

3.5614 ohms at the steam point (corrected to standard atmospheric pressure) reads

6.7795 ohms at the sulfur point. Calculate the platinum resistance temperature at

the sulfur point, and calculate the value of 5 in Callcndar's equation for this thermome-

ter. What is the temperature on the International Temperature Scale when this

thermometer reads 4.5626 ohms?
1-7. What will be the reading of the thermometer of Prob. 1-6 at the equilibrium

temperature of condensing steam on a day on which the barometer reads 750.0 mm
Hg (corrected to 0C and standard gravity)?

1-8. The reading of the platinum resistance thermometer of Prob. 1-6 at the oxygen
point (corrected to standard atmospheric pressure) is 0.6400 ohm. Calculate the



TEMPERATURE 43

value of ft in Van Dusen's equation for this thermometer, and calculate the tempera-
ture on the International Temperature Scale when it reads 1.7501 ohms.

1-9. The readings of a platinum-rhodium thermocouple with the reference junction
at the ice point are 5.535 mv at the antimony point (established at 630.5C for the

particular sample of antimony by calibration with a standardized platinum resistance

thermometer), 9.119 mv at the silver point, and 10.301 mv at the gold point. Calcu-

late the empirical constants a, &, and c in the equation

E = a + bt + ct*

and then calculate what value of E may be expected at 1000C. (Compare with
Table 1-6, which corresponds to the data given in this problem.)

1-10. Using a low-resistance lamp-and-scale galvanometer whose microvolt sensi-

tivity is 0.1 /iV/mm scale division at 1 m distance from the mirror, what is the approxi-
mate difference of temperature between the junctions of a copper-constantan thermo-

couple (both junctions being around the ice point) that can just be detected by a

galvanometer deflection of 1 mm? How many copper-constantan thermocouples
must one hook in series so that one could detect by means of this galvanometer a
difference of 0.0001C between the united "hot" and "cold" junctions?

1-11. The solar constant (rate of reception of solar radiation per unit area of the

earth's surface normal to the radiation, corrected for atmospheric absorption and

reflection) has been estimated by measurement to have the mean value, 1.351 X 10*

erg/cm2 sec. The mean distance to the sun is 149.5 X 106 km, and its radius is

6.96 X 105 km. Calculate the rate at which energy is being radiated per square
centimeter of the sun's surface. Calculate therefrom according to the Stefan-Boltz-

mann law the equivalent black-body temperature at the sun's surface (the temperature
of the receiving surface of the earth may be neglected in this calculation, because its

fourth power is so much smaller than the fourth power of the sun's surface tempera-

ture; verify that this is so).

1-12. Prove that according to Wien's law in the form (1-19), the wavelength cor-

responding to maximum intensity of black-body radiation at a given temperature

always satisfies the formula

where c* represents the second radiation constant. Using Birge's recommendation
of c2 1.4385 cm K, calculate the value of Xmax in angstrom units corresponding
to t - 600, 800, 1063, and 1600C. Calculate the value of T when X^x is at the

middle of the visible range, 5500 A.

1-13. The maximum intensity of the sun's radiation occurs at about 4740 A; using
the equation derived in Prob. 1-12, estimate the equivalent black-body temperature
of the sun's surface from this independent experimental source, and compare the

result with that of Prob. 1-11. (The discrepancy arises from the fact that solar

radiation is not true black-body radiation.)

1-14. The spectral emissivity (ratio of the intensity of radiation of given wave-

length emitted by the surface to that emitted by a black body at the same tempera-

ture) of molten steel is estimated to be 0.37 for radiation at 6500 A. If the equivalent

black-body temperature of a sample of molten steel is 1800K as measured by an opti-

cal pyrometer, what is its true temperature on the International Temperature Scale?

1-16. Tungsten has a spectral emissivity at 6500 A of 0.44. If a tungsten ribbon

is at 2000K, what will be its apparent temperature, if read with a standardized

optical pyrometer?



CHAPTER 2

THE FIRST LAW OF THERMODYNAMICS

Before we are prepared to discuss thermodynamic behavior, we must

trace the development of the energy concept, which had its origin in the

study of mechanical systems. We shall then take up the origin of the

heat concept, and show how J. P. Joule's magnificent experiments during
the middle of the nineteenth century effected a fusion between these two

apparently diverse concepts, culminating in the great generalization

known as the first law of thermodynamics.
2-1. Energy. There is a principle of mechanics, apparently first

recognized by Gottfried Wilhelm Leibnitz about 1693 on the basis of

Galileo's earlier experiments with falling bodies and the pendulum, which

states that as an ideal limit for certain types of mechanical systems, their

motions are executed in such ways that a certain quantity we call the

total energy, sum of the kinetic energy and the potential energy, remains

constant with time. 1 This principle of conservation of energy in mechani-

cal systems is one of the ways of stating Newton's laws of motion for sys-

tems whose forces depend explicitly only on the positions of the moving
elements, and not on their velocities or the time; such systems are there-

fore called conservative.

For example, let us consider the motion of a point mass, a body of mass
M whose dimensions are sufficiently small in comparison with the dis-

tances through which its motion is followed so that its location at any
moment can be described adequately by the coordinates of a point; the

center of mass of a complex body behaves under certain conditions like a

point mass in which is concentrated the entire mass of the body. Accord-

ing to Newton's second law of motion,

f= *(M ^) (2-i)
dr\ drj

^ '

where F denotes the net force acting on the point mass, and r denotes its

position with respect to an arbitrary origin; dr/dr = u denotes the veloc-

ity. Equation (2-1) is, in general, a three-dimensional vector equation,
which includes in compact form the three one-dimensional equations

1 Leibnitz's so-called vis viva and vis mortua were, respectively, twice our modern
kinetic and potential energies.

44
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where Fx,
FVJ and Fz denote, respectively, the x, y, and z components of

the force, and x, y, and z themselves denote the ordinary Cartesian coordi-

nates of the point mass at the time r. If we take the so-called scalar

product of both sides of Eq. (2-1) with the velocity vector dr/dr [this

operation is equivalent merely to multiplying each component equation
(2-2) by the respective velocity component, and then adding the three

resulting equations],

dr d ( * f di\ dx d fl fdi
j\ -= -r

and integrate with respect to time between limits ra and T, then

(2-3)

where u represents the magnitude of the velocity (without regard to

direction; u
2 = u* + u\ + ul) at the time r and corresponding location r,

while UQ represents the magnitude of the velocity at the time TO and cor-

responding location r . Now, in general, the integral on the left of Eq.

(2-3) is undefined, because the integrand may depend in some way as yet

unspecified on the time. In the special case, however, in which F is an

explicit function only of r, varying perhaps implicitly with r as r varies

with T, but having always a definite value associated with each value of

r, defined without regard to the value of r, then the integral reduces sim-

ply to a line integral in the position variable r, whose value

W = F(r) - dT s F cos dr (2-4)

defines the work W done by the force on the point mass during its motion

from position r to position r
;
6 in Eq. (2-4) represents the angle between

the direction of the force and the direction of the element of displacement,

and (F cos d) therefore represents the component of the vector force F

along the direction of the path that the point mass is momentarily describ-

ing; the value of W may be positive or negative, depending on the sign of

cos during the displacement (i.e., on whether 8 is less than or greater

than 90). If furthermore F(r) satisfies certain necessary conditions of

continuity, then the indefinite form of the integral always corresponds to

some particular scalar function of r, whose negative is called the potential

energy of the point mass in the particular force field (i.e., region where F
is defined everywhere as a function of f). The definite integral appearing
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in Eq. (2-4) may therefore be represented as the algebraic difference

between the values of this potential-energy function V(r) at the points

r and r, independently of the particular trajectory described by the point

mass, in the form

F(r)
. dr = -

[F(r)
- F(r )] (2-5)

This integral relationship defining the potential-energy function [whose
zero point is left arbitrary, depending on the assignment of an integration

constant in Eq. (2-5)] may be represented symbolically also by the differ-

ential vector equation
F = -VF (2-6)

which is shorthand for the three simultaneous one-dimensional equations

v _ dV
j? - dV v - dV

* x -~~te>
* y -~~"^ ]

* z -~~te

In the special case under consideration, therefore, Eq. (2-3) reduces to

the form

%Mu* + F(r) = y2Mul + 7(r )
= e (2-7)

The expression %Mu* is called the kinetic energy of the point mass.

Equation (2-7) thus expresses the fact that motion under the influence of

a conservative force (a force whose value everywhere depends only on the

spatial coordinates of the point mass) is so executed that the sum of the

kinetic and potential energies remains constant with time, equal in particular

to whatever value it happened to have at the start of the motion (TO
=

0).

The sum
,
called the total energy of the point mass, thus appears as an

integration constant to a first integral of Newton's second-order differ-

ential equations of motion. 1

A simple example of a potential-energy function is afforded by the

motion of a body falling in a vacuum under the influence of gravity; in

this case, V = Mgz, where z denotes the height above the earth's surface,

arbitrarily taken as the zero of potential energy; if one were to take into

consideration sufficiently large changes in altitude, one would have to

represent the gravity
"
constant

"
g as itself a function of z in the force

relationship, F = Mg, before integrating Eq. (2-5) to find F; but this

force is essentially one-dimensional, being directed always toward the

center of the earth. Equation (2-7) thus affords an immediate solution

of the equation of motion, in the form

YiMu* + Mgz =
1 A different but mathematically equivalent first integral, not so useful for our

present purpose, is obtained by integrating Eq. (2-1) directly with respect to time;
the resulting equation relates impulse to momentum.
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where c denotes the sum of the kinetic and potential energies at any stage
of the motion; for a body starting from rest at height z

,
for example, the

speed acquired at any height z during the free fall is given by

+ Mgz = e = Mgz

leading to the familiar relationship

u = \/200o ~ z)

Another example of a potential-energy function is that of a body with

charge e under the influence of another body with charge CQ ;
if r represents

the distance between them, then their electrostatic potential energy has

the form V = A(eeQ/Dr), where D denotes the dielectric constant of the

medium (assumed homogeneous) between the charged bodies and A is a

numerical proportionality constant whose value depends on the system
of measurement followed

;
the form of this potential-energy function fol-

lows by direct application of Eq. (2-5) to C. A. Coulomb's inverse-square
electrostatic force law, taking as the zero of potential energy a state in

which the charges are an infinite distance apart.

The concept of conservative forces is readily extended to systems of

independent point masses, interconnected point masses in the form of a

rigid body or an elastic body, idealized fluid bodies, etc. In each case,

the motion is characterized by a constant total energy, which appears as

an integration constant when the differential equations of motion are

integrated. Different states of motion that may be assumed by the

same type of system under different starting conditions are characterized

simply by different values of the constant
,
which appears therefore as a

parameter in the integral equation of motion for the system.

Real mechanical systems, however, are more or less nonconservative.

A projectile traveling through air, for example, encounters in addition to

the conservative force of gravity a force attributed to air resistance,

which increases in a complex manner with the projectile's velocity. In

such a case, the potential-energy function in its original sense is unde-

fined, and the method of integrating the differential equations of motion

leading to Eq. (2-7) is invalid. It is convenient, however, for us to

extend the original interpretation of the potential-energy concept, so that

it may be applied to the conservative component of the resultant noncon-

servative force. In the case of the projectile traveling through air, for

example, we define its potential energy in the earth's field of gravity

exactly as for a projectile traveling in a vacuum, treating the noncon-

servative force of air resistance, which depends explicitly on the pro-

jectile's relative velocity through the air, as an independent component
of the resultant force. This procedure supposes that it is legitimate to



48 PRINCIPLES OF CHEMICAL THERMODYNAMICS

resolve the net force in such a manner into independently effective com-

ponents, a supposition justified by general experiments on the compound-

ing of forces. We find then that the total energy, defined as before by
the sum of the kinetic and potential energies, instead of being a constant

of the motion, decreases with time. It is said to be dissipated by the

nonconservative force of air resistance. If, for example, the dissipative

force has the form * = & -r-> that is, if it increases in direct proportion

to the first power of the velocity (as it actually does in the case of stream-

lined flow at sufficiently low velocities), then it follows from Eq. (2-3) that

/
T
ku2 dr = Q

o

or
de 7 9
j-
= ku2

dr

where for a body moving under the influence of gravity, e = J^Mw2 + Mgz.
Several distinct types of dissipative processes are recognized besides air

resistance: friction in general, viscous resistance to flow of a fluid, electric

resistance, the attenuation of a shock wave set up in a material medium,
inelastic collisions, etc.

We thus come to regard the mechanical system as possessing a definite

quantity of energy, which remains constant so long as purely conservative

forces are in effect, but may decrease through the action of dissipative

forces. We have seen that for conservative forces, the definite integral

(2-4) representing the work done by the force F during the displacement
of the moving body from position r to position r is equal on the one hand

to the increase in the kinetic energy [Eq. (2-3)] and on the other to the

decrease in the potential energy [Eq. (2-6)], both taken in their algebraic

senses with regard to sign. The value of W therefore represents the

measure of a quantity of energy in transfer from potential to kinetic

form (a negative value of W represents a transfer of energy in the oppo-
site direction). If, in Eq. (2-4), F is measured in dynes and r in centi-

meters,
1 then the energy represented by W is said to be measured in ergs

(1 erg 5= 1 dyne cm = 1 g cm2
/sec

2
) ;

if F is measured in newtons and r in

1 Forces themselves are measured fundamentally by the accelerations they produce
in standard bodies, according to Eq. (2-1) ; if in that equation M is measured in grams
and (d*r/dr*) = d/dr(dr/dr) in centimeters per second per second, then their product
for a given situation will represent by definition the net force acting on the point
mass in dynes; 1 dyne ss 1 g cm/sec2

. If M is measured in kilograms and (d
2
r/dr

2
)

in meters per second per second, then their product measures the force in newtons;
1 newton s 105

dynes. The ultimate standards of the International Metric System
are of course the International Prototype Kilogram, which represents the mass of a

certain cylinder of platinum-indium alloy, and the International Prototype Meter,
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meters, thenW calculated by Eq. (2-4) is given in joules (1 joule ss 107
ergs) ;

it is to be understood that in all relationships such as (2-1), (2-3), (2-4),

(2-5), etc., there is implied a numerical proportionality factor on either

side of the equation, which may be conveniently set equal to 1 if the units

in which the various quantities entering the equation are expressed have

been chosen with this end in view; the numerical equality is valid only
when consistent units have been employed throughout. In the case of a

purely dissipative force or force component, we continue to call W as

defined by Eq. (2-4) the work done by the force on the moving body, but
in this case, there is no balance between loss of potential energy and gain
of kinetic energy; if the force is a purely dissipative one, the total energy

decreases, and W then represents the quantity of energy dissipated

during the motion of the body from r to r.

The energy concept is readily extended to electrical circuits through
direct observation of their properties. In order to maintain an electric

current through a given circuit, one must introduce energy in some ele-

ment of the circuit; this may be accomplished mechanically by means of

an electric dynamo or generator, which operates on the principle dis-

covered in 1831 by Michael Faraday that when a metallic conductor

moves across a magnetic field an electric current is induced in the circuit

of which the conductor happens to form a part. This principle affords a

direct means of measuring electrical energy fundamentally in mechanical

terms; thus, the ratio of the mechanical work W required in order to turn

the dynamo (corrected for purely mechanical dissipative losses, such as

through friction and air resistance) to the quantity of electricity q sent

through it defines the electromotive force of the generating unit,

W W
*-f-

where / represents the average current flowing during the time r. When
the dynamo is on open circuit, this emf is equal to the potential difference

which represents the distance at the ice point between two marks engraved on a
certain bar of the same alloy. These standards, adopted in 1889, have been preserved
in the vaults of the International Bureau of Weights and Measures, near Paris, and
the various nations subscribing to the upkeep of the Bureau have certified copies,

which serve as national standards. The international standard of time is the Mean
Solar Day, representing the interval, averaged throughout the year, between succes-

sive transits of the sun across the meridian at the equator; working standards of time

are at present maintained by means of pendulum clocks, corrected periodically

through astronomical observations. There is a possibility that future time standards

may be based on atomic or molecular vibration frequencies; the National Bureau

of Standards has announced an experimental clock synchronized to a microwave

absorption frequency of the ammonia molecule.
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between the terminals, the potential difference between two points of a

circuit measuring in general the net energy per unit charge expended in

transfering electricity from one point to the other. If the generator be

connected to an electric motor, then electrical energy may be reconverted

to mechanical form as work done by the motor; in an ideal circuit of con-

ductors having no electric resistance, energy would in fact be conserved

during such a transfer from dynamo to motor. In real conductors, how-

ever, some of the energy is always dissipated in overcoming electric

resistance. According to G. S. Ohm's law, discovered in 1826, if E repre-

sents the emf in a circuit through which the current /is flowing, then

E = IR (2-9)

where R is a property of the circuit called its electric resistance; in a circuit

consisting of several conductors in series, the circuit resistance is made up
of the sum of the separate resistances of the conducting elements. Since

according' to Eq. (2-8), Elr represents the energy introduced into the cir-

cuit in electrical form by the generator, therefore if no work is done else-

where in the circuit, all this energy,

= Elr = PRr (2-10)

is dissipated by the circuit's electric resistance. Some of the energy may
be dissipated within the generator through its own internal electric resist-

ance
;
if the generator's resistance be represented by 72t ,

and the external

circuit resistance by Re
= R Ri, then the quantity of energy PR^r is

dissipated within the generator and the quantity Elr PRjr = I2Rer in

the external circuit. In a simple circuit consisting merely of the generator
in series with a metallic conductor doing no work, but dissipating the

electrical energy PRer, the potential difference Ef
across the terminals of

the generator (and of the external conductor) is thus given by

B'- B-^ = EOT (2
-n)

where E is the emf of the generator, or the potential difference across its

terminals when it is running on open circuit (R e *
).

If, in Eq. (2-8), W is measured in joules and q in coulombs or 7 in amperes

(the latter unit being derived in principle from the metric standards of

mass, length, and time by means of A. M. Ampere's law governing the

electromagnetic force between two conductors carrying electric currents),

then the emf is expressed by definition in volts; i.e., 1 volt coulomb s= 1

joule. These are so-called absolute units. In practice, however, it has

been convenient to measure electrical quantities without immediate refer-

ence to their mechanical or absolute significance. This situation has

come about because one resistance may be compared with another
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directly and precisely by means of bridge circuits such as the familiar

Whcatstone bridge or the Kelvin bridge, without reference either to other

electrical standards or to mechanical standards; likewise, one emf may
be compared with another directly and precisely by means of potentiome-
ter circuits, again without reference to other electrical or mechanical

standards. For this reason, the various national standardizing labora-

tories, such as the National Bureau of Standards of the U. S. Department
of Commerce, have maintained independent electrical standards of resist-

ance and of emf, based, respectively, on groups of standard wire resistors

and on groups of standard galvanic cells of a special type (the Weston
normal cell). Until Jan. 1, 1948, the so-called international standard of

resistance was based in principle on the international mercury ohm, the

resistance of a column of mercury satisfying certain specifications,
1 which

had been adopted at the International Conference on Electrical Units and

Standards held in London in 1908; but the working standards actually

used in this country have been for many years the far more convenient

and essentially stable wire resistance coils, which have occasionally been

checked against the actual mercury ohm. Likewise, an International

Technical Committee meeting in Washington in 1910 adopted the con-

ventional value of 1.01830 international volts as the emf at 20C of

the Weston normal cell; this international standard has been continuously
maintained at the National Bureau of Standards (and similarly at other

standardizing laboratories) by means of a group of such cells, whose

average behavior thus defined the international volt. In 1946, the

International Bureau of Weights and Measures, meeting in Paris, after

extensive preliminary comparisons of a fundamental nature undertaken

by the various national standardizing laboratories, decided that beginning
Jan. 1, 1948, all electrical measures would henceforth be expressed in

terms of the so-called absolute units, derived ultimately from the metric

standards (the International Prototype Meter, the International Proto-

type Kilogram, and the Mean Solar Day) by means of the established

electrodynamic laws. 2 The actual physical standards of resistance (wire

1 These specifications: mass of 14.4521 g with uniform cross-sectional area (of

about 1 mm 2
), having a length of 106.300 cm, at the ice point, were intended to repro-

duce as accurately as possible at the time the "absolute" unit of resistance derived

from metric standards by means of Ohm's law, Amp&re's law, and Faraday's law of

electromagnetic induction; they now have only historical interest.

2 See II. L. Curtis, Review of Recent Absolute Determinations of the Ohm and the

Ampere, /. Research Natl. Bur. Standards, 33, 235-254 (1944); for a description of

how the size of a resistance and the size of an electric current are determined funda-

mentally in mechanical terms, see C. A. Culver,
"
Theory and Applications of Elec-

tricity and Magnetism," pp. 398-401, McGraw-Hill Book Company, Inc., New York,
1947.
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coils) and of emf (Weston normal cells) are maintained as heretofore, but

in translating the results, the following conversion factors are now to be

employed:
1

1 mean international ohm = 1.00049 (absolute) ohms
1 mean international volt = 1.00034 (absolute) volts

In other words, a resistance coil certified formerly as having a resistance

of 1.00000 int ohm is now assigned a resistance of 1.00049 (abs) ohms;

likewise, the Weston normal cell is now assigned an emf at 20C of 1.01865

(abs) volts. The unit of current in this system of measurement, the

ampere, is derived through Ohm's law, Eq. (2-9) ;
in other words, if the

potential difference E' across the terminals of a conductor is expressed in

volts and its resistance R in ohms, then the current given by the equation
/ = E'/R is expressed directly in amperes.

2

Now, in every case of
"
dissipation" of mechanical or electrical energy,

some other effect invariably appears, equivalent to one that may be pro-
duced by heating. This fact was not plainly recognized until Count

Rumford in 1798 conducted the first experiments on the deliberate and

controlled conversion of mechanical energy into thermal form. Even

then, scientists were slow to grasp the implications, until J. P. Joule dur-

ing the middle of the nineteenth century conducted his classic investiga-

tions of the heating effect produced by an electric current, and the heating
effects produced by mechanical means, such as friction and stirring. Let

us therefore turn to the development of the concept of heat, up to the

time of Joule.

2-2. Heat. We have noted in Sec. 1-1 that when two bodies originally

at different temperatures are exposed to each other, through direct con-

x The mean- international units to which these conversion factors apply represent
the averages of units as maintained at the six national laboratories that participated
in this work before the war. The units maintained at the National Bureau of Stand-

ards differ slightly from these, so that the conversion factors announced for the

adjustment of the values of the standards used in this country are

1 international ohm (U.S.) = 1.000495 (absolute) ohms
1 international volt (U.S.) 1.00033 (absolute) volts

See Announcement of Changes in Electrical and Photometric Units, Nail. Bur.

Standards Circ. C459 (1948).
2 One may measure the quantity of electricity flowing through the circuit directly by

means of a chemical coulometer, based on Faraday's law. The silver coulometer is

preferred for the most precise work, the quantity of electricity being calculated from
the mass of silver deposited at the cathode. The calculation depends on the experi-

mentally established electrochemical conversion factor: 96,485 10 coulombs/g-eq
(which depends ultimately on the establishment of the ampere in mechanical terms),
and on the atomic weight of silver. See D. A. Maclnnes, "The Principles of Electro-

chemistry," Chap. II, Reinhold Publishing Corporation, New York, 1939.
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tact, through common contact with an intervening medium, or even

through radiation across empty space, there is a tendency for the hotter

body to cool and for the cooler body to warm, until they come ultimately
to thermal equilibrium at a common temperature. From earliest times,
man has imagined that this process takes place through the transfer of

heat from the hotter to the colder body; i.e., he has called into being a

hypothetical agency, heat, to which may be ascribed the responsibility for

the change in temperature that a body tends to undergo when under the

influence of another body at a different temperature. Following the

invention of the thermometer, which provided a precise means of measur-

ing temperature, it became natural to suppose that a given temperature

change taking place in a particular material body would correspond to a

definite quantity of heat. Although the facts are by no means self-

evident, careful systematic investigations conducted independently by
Brook Taylor about 1725 and by G. W. Richmann about 1748 proved
that the quantity of heat, so conceived, given up by a cooling homo-

geneous body was proportional to its mass and, to a first order of approxi-
mation at least, to the number of degrees through which its temperature
fell. They found, in effect, that when the mass Mi of hot water at initial

temperature ti is mixed with the massM2 of cold water at initial tempera-
ture t* the final equilibrium temperature t is in close agreement with the

weighted mean

or in other words

Mi(ti
- = M*(t

-
<*) (2-13)

If we interpret the expression on the left of Eq. (2-13) as a measure of the

quantity of heat given up by the hot water, then the expression on the

right measures according to the same principle the quantity of heat

received by the cold water; or in general, the quantity of heat required to

raise the temperature of the mass M from t
r
to t

11
is given by

Q = rar (*"
-

1') (2-H)

where T is a numerical proportionality factor whose value is yet to be

determined; an equal quantity of heat is released when the temperature of

the same mass falls from f" to t'.
1 The Taylor-Richmann mixing law

1 This fact, too, is not self-evident, but has been confirmed by later experiments
in which a given mass of water was heated through a particular temperature interval

(1) by electrical means and (2) by thermal interchange with hot water, whose own

temperature fell during the process; the quantity of electrical energy required to

heat the cold water directly was in exact agreement with the quantity required to
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may thus be interpreted in terms of a definite quantity of heat transferred

from the hot to the cold water, no net heat being generated or lost during
the process. Modern precise calorimetric measurements have shown

that Eqs. (2-12) and (2-13) are only approximately correct, and it is

necessary to suppose that the "constant" F in Eq. (2-14) varies slightly

with the particular temperature interval.

If, now, one compares the quantities of heat required to raise the tem-

peratures of equal masses of two different homogeneous substances

through the same interval of temperature, one finds in general that the

two quantities are quite different and bear no obvious relation to each

other. Experiments by Joseph Black, about 1760, on the mixing of

mercury and other substances with water showed that the general law of

mixing has the form

- = T 2Mz(t
- *2) (2-15)

where Mi and t\ represent the mass and initial temperature of the one

substance, M2 and fa the mass and initial temperature of the other, and t

their final equilibrium temperature, but Fi and T% are characteristic coeffi-

cients for the two substances, whose values vary slightly with tempera-

ture, but are quite unrelated to each other. This law is supported by all

variations of the mixing experiment with respect to the relative masses

and the initial temperatures of the bodies mixed. The coefficient F of

Eq. (2-14), which we may now define by the equation

r ^
M(t" - O

is in other words a property of the particular homogeneous substance,
which we call its mean specific heat over the temperature interval t

r
to t"

;

the product MF is known as the mean heat capacity over the same tem-

perature interval for the entire body, consisting of massM of the particu-

lar homogeneous substance. While the value of F depends on the tem-

perature interval under consideration, we may define a specific heat, c, at

a particular temperature, t', by means of the operation

r ,01 _c SB -= lim
.,, .,

m
j-fi

- 1 (2-17)M t-+t' t

where Q represents the quantity of heat required to raise the temperature
of the mass M of the substance from t' to /"; that is, if one were to plot

Q/M vs. I" as the substance is heated from the initial temperature V to

restore the hot water to its original temperature; compare experiments by II. L.

Callendar and H. T. Barnes, Phys. Rev., 10, 202-214 (1900), and experiments by II. L.

Callendar, Trans. Roy. 8oc. (London), (A)212, 1-32 (1912).
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various final temperatures /", then the limiting slope of the resulting
curve (which would be a straight line if T were strictly independent of <)

at the temperature t' would define c precisely at that temperature; the
notation df

in the differential coefficient defined by Eq. (2-17) indicates,
as we shall explain more fully later, that the value of Q is not altogether
defined by the temperature change, but may depend on certain other

conditions as well, such as on whether the pressure is maintained con-

stant, or on whether the volume is maintained constant.

We have not as yet assigned a numerical scale to either Q or T, which
are clearly interrelated. One may establish such a scale by assigning to

some standard substance an arbitrary value of T for some particular

temperature interval; Eq. (2-14) then measures in terms of this conven-
tion the quantity of heat received by the standard substance from another
source as its temperature is raised through the standard interval. The
standard for this purpose has been water, to which at constant pressure of

1 atm has been assigned a value of T = 1.0000 between 14.5 and 15.5C;
the value of Q computed accordingly, with water as the recipient of the

heat, and with M in Eq. (2-14) represented in grams, is then said to be

represented in 15 calories; withM represented in kilograms, the quantity
of heat computed according to Eq. (2-14) is said to be represented in

15 kilogram calories, or 15 kilocalories; 1 kcali 5 = 1000 cali 6 . In the
American and British system of measurement commonly used in engineer-

ing, the value of T for water at constant pressure of 1 atm is taken to be
1.0000 between 39F (its temperature of maximum density) and 40F;
with M represented in pounds, Q is then represented according to Eq.
(2-14) in British thermal units; 1 Btu = 252.07 cali 6 .

The specific heats of other substances relative to that of water at 15C,
including the specific heat of water itself at other temperatures, may be
found in principle by the method of mixtures, based on Eq. (2-15). If,

for example, one were to adjust Mi of the substance for given initial tem-

perature ti, in relation to AT2 of the water so that with U = 14.5C, t were
to come out exactly 15.5C, then since under the circumstances T 2 would
have the conventional value: 1.0000 cali 5/gC, Ti given by Eq. (2-15)
would represent directly the mean specific heat of the substance between
ti and 15.5C in cali6/gC; the right-hand member of this equation would
represent the heat given up by the substance between ti and 15.5C
directly in 15 calories, and by plotting Q/M i vs. ti, the slope for any
value of ti would give exactly the value of ci, in accordance with Eq.
(2-17). In practice, the mean specific heat of water over other tempera-
ture intervals has been established, originally through such fundamental

measurements, but also by means of Joule's law, to be discussed in Sec.

2-3. Therefore it is not necessary in actual applications of Eq. (2-15)
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with water as standard calorimetric medium that t and t% be restricted,

respectively, to 15.5 and 14.5C; over the range 5 to 90C, the variation

in the specific heat of water turns out in fact to be less than 0.5 per cent.

One will note that the relative magnitudes of two different quantities of

heat may be established in principle quite independently of the physical

properties of water and the temperature scale; thus, if one were to trans-

mit the two quantities of heat to two different masses of water, adjusted

(after preliminary exploration) so that starting from the same initial

temperature the same temperature rise occurred in each, then the two

masses would be in direct proportion to the two quantities of heat, quite

independently of the particular temperatures involved; all one would

need for a thermometer would be a sensitive and reproducible tempera-
ture indicator, but the readings could have entirely arbitrary significance;

one could use any other homogeneous substance for the calorimetric

medium in place of water, subject to limitations based only on con-

venience and precision.

Black demonstrated also that certain processes, notably phase transi-

tions such as the melting of ice and the condensation of steam, may
absorb or liberate heat without significant change in the temperature.
He introduced the concept of latent heat, to denote the heat absorbed by a

system undergoing a change at constant temperature, in contrast to
"
sensi-

ble
"

heat, such as is associated ordinarily with a rise in temperature.

Thus, ice in melting to form water at 0C takes up 79.40 cahs/g; i.e., 1 g
of ice originally at 0C will cool a correspondingly larger mass of water

from 15.5C to 'final equilibrium temperature of 14.5C than will 1 g of

water originally at 0C. * In a similar sense, water at 100O in boiling to

form steam takes up 539.58 calis/g, in the sense that 1 g of steam origi-

nally at 100C will warm a correspondingly larger mass of water from

14.5 to 15.5C in the mixing experiment than will 1 g of water originally

at 100C. The heat absorbed by a solid in melting is known as its latent

heat offusion; the heat absorbed by a solid in vaporizing is known as its

latent heat of sublimation; the heat absorbed by a solid in undergoing
transformation to another allotropic solid form is known as the latent heat

of transformation; the heat absorbed by a liquid in vaporizing is known as

the latent heat of vaporization. All these latent heats associated with

phase transitions are proportional in magnitude to the mass of substance

undergoing transformation, and are commonly represented either for

1 gram or for 1 mole; their values depend also on the particular equilib-

rium temperature at which the transformation is carried out, ordinarily

taken to be the normal transition temperature at 1 atm pressure.

2-3. The Mechanical Equivalent of Heat. The experiments on the

thermal interchange between bodies initially at different temperatures,
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including the latent heats of phase transitions, and also the original

researches of J. Fourier on thermal conduction, were all consistent with

the supposition that heat was conserved during such processes. In fact,

there arose during the eighteenth century the concept of heat as an

imponderable fluid, which went by the name of caloric; to this concept,

we owe such expressions as heat "
capacity," heat "content," heat "

con-

duction," "flow" of heat, etc. Those who believed in the phlogiston

theory of G. E. Stahl went so far as to associate the apparent changes in

mass during calcination and combustion with the presumed flow of

caloric; but Lavoisier's magnificent demonstration of the role played by

oxygen of the air during these changes, and his establishment of conserva-

tion of mass as a guiding principle for chemical transformations in gen-

eral, ruled out the possibility that heat was associated in any way with

sensible changes in mass.

Now, the production of heating effects by friction was surely familiar to

the eighteenth-century scientists. From it, Francis Bacon long before

had concluded that "heat is motion." A similar conclusion was reached

by Guillaume Amontons at the opening of the eighteenth century from

different evidence, based on his study of the gas thermometer, in quite

remarkable anticipation of the kinetic theory of gases. P. S. Epstein has

pointed out the extremely interesting fact that physicians prior to and

even for several decades after Lavoisier's work on combustion accounted

for body heat in terms of a theory initiated by A. Haller, author of a well-

known treatise on medicine, that it resulted from friction of the solid

particles in blood against the capillaries within the lungs.
1

However, the

first scientific study of the production of thermal effects by purely
mechanical means was undertaken in 1798 by Sir Benjamin Thompson,
Count Rumford.
While supervising the boring of cannon at the arsenal of the Bavarian

government in Munich, Rumford's attention was engaged by the con-

siderable "degree of heat" acquired by a brass gun as it was being bored,

and the still more intense degree of heat acquired by the metal chips

separated from it by the boring tool. According to the prevailing caloric

fluid theory of heat, such heat could have appeared only at the expense of

a latent heat possibly associated with the separation of the chips; but

Rumford convinced himself by measuring the specific heats of the chips
and the metal block from which they were separated that no difference

existed between their "heat contents." Furthermore, a blunt boring

tool, which separated off less metal, was at least as effective in heating
the block as a sharper tool. To preclude the possibility that heat could

1 P. S. Epstein, "Textbook of Thermodynamics,
"
Chap II, John Wiley & Sons,

Inc., New York, 1937.
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be entering from the air, Rumford in some of his experiments submerged
the entire block and boring tool under water; the effect was undiminished,
the water undergoing no apparent change except to acquire the heat

developed by the process, as was indicated by a rise in its temperature; in

some of these tests, the surrounding water was actually heated to its

boiling point, to the intense astonishment of the spectators.
1 The most

significant and remarkable fact, clearly recognized by Rumford, was that

the source of heat, whatever its nature might be, appeared to be inex-

haustible, for through continued motion of the hollowed block against the

borer, the heating effect could be prolonged indefinitely.

A further critical experiment was arranged by Humphry Davy in 1799.

He caused ice blocks to melt merely by rubbing them against a metal

plate; the motion-was maintained by means of a clock-driven machine,
and the entire apparatus was set up in a vessel evacuated to exclude any
material substance that might convey heat. He concluded that the

latent heat of fusion could only have been supplied by the frictional

motion. Neither Rumford nor Davy, however, left accurate measure-

ments of the quantity of mechanical energy expended in relation to the

resulting degree of heating.

During the years 1843 to 1850, J. P. Joule conducted a classic series of

measurements concerning the heating effect of an electric current and the

production of heating by friction and by stirring. These experiments
established beyond any doubt that an exact equivalent of heat could be

produced by electrical or mechanical means, the ratio of the electrical or

mechanical energy expended to the equivalent quantity of heat (as deter-

mined by the rise in temperature produced in a standard body such as

water) being invariant. The best modern estimate of the mechanical

equivalent of heat is
2

Ji5 = 4.1855 0.0004 joule/calls (2-18)

Joule's own result, Ji 6
= 4.154 joules/cali5 (expressed in modern units)

stood for many years as a model of precision.

Electrical methods of heating are in particular so sensitive to control

and so precise that they have practically replaced water as the basis for

primary calorimetric standardization. The electrical energy thermally

"dissipated" by a current flowing through a resistance coil is given by

Eq. (2-10), and may be measured in terms of any two of the quantities

1 Rumford's account of his experiments, published originally in the Philosophical

Transactions of the Royal Society (1798), has been included by W. F. Magie in "A
Source Book of Physics," pp. 151-161, McGraw-Hill Book Company, Inc., New
York, 1935.

* R. T. Birge, Rev. Modern Phys., 13, 233-239 (1941).



THE FIRST LAW OF THERMODYNAMICS 59

E, 7, and R, where E is the potential difference, I the current, and R the

resistance through the coil; if E is measured in volts, I in amperes, R in

ohms, and r in seconds, then the equivalent quantity of heat is given in

joules by

Q = EIr = 72#r -
^r (2-19)

Even when water is actually used as the calorimetric medium to receive

the heat being measured, the water equivalent of the calorimeter in

modern high-precision measurements is always established fundamen-

tally by measurement of the electrical energy required to heat it through
the same temperature increase as was produced by the source of heat

under investigation. Evidently, calorimetric measurements based on

the electrical standards are quite independent both of the physical proper-
ties of water and of the temperature itself; all that is required of the ther-

mometer is that it be sufficiently sensitive to reproduce accurately the

initial and final states of the calorimeter, without the need for actual tem-

perature calibration. Specific heat measurements, of course, depend on

the temperature scale for their definition.

In recognition of the fact that modern calorimetric measurements are

based primarily on electrical standards, rather than on the water calorie,

and in order that the existing thermal and thermochemical data need not

be subject to revision in the event that a change is made in the most prob-
able value of the mechanical equivalent of the 15 calorie (which depends
of course on the physical properties of water), most thermochemists have

followed the lead of F. D. Rossini in expressing their results in terms of

the defined or thermochemical calorie: 1

1 cal s 4.1840 joules (2-20)

In other words, one actually measures the electrical equivalent of the

heat in joules, and then uses (2-20) as an arbitrary conversion factor to

1 E. F. Mueller and F. D. Rossini, Am. J. Phys., 12, 1-7 (1944); this value has been

adopted in "Selected Values of Chemical Thermodynamic Properties," assembled

by the National Bureau of Standards staff under the direction of F. D. Rossini since

Dec. 31, 1947. Rossini's original proposal was to let 1 cal = 4.1833 int joules, and
this value was in general use prior to Jan. 1, 1948. The present value results from
the decision to abandon the old international joule from that date in favor of the

absolute joule (to which we shall refer simply as the joule throughout this book);
thermal data expressed in defined calories are unaffected by this change. Some
scientists have proposed that we abandon the calorie altogether as a thermal unit,

and express all heat measures in joules directly; the thermochemical data in the

"International Critical Tables" (1929) were so expressed (in international joules); but

by reason of custom and historical associations, the movement has not caught on,

and has been more or less superseded for the present by Rossini's proposal.
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express the result in conventional heat units. By comparing (2-18) with

(2-20), one sees that most recent evidence has made necessary a slight

revision in the
"
absolute

"
specific heat of water, but this has had no effect

on recent thermal and thermochemical data represented in defined

calories. We shall hereafter use the unqualified term "calorie" and the

abbreviation "cal" in reference to the defined or thermochemical calorie

given by (2-20) ;
we shall use the term "

kilocalorie
" and the abbreviation

"kcal" in a similar sense to denote a unit one thousand times larger;

1 calis = 1.00036 0.00010 cal.

2-4. Generalized Conservation of Energy. We have seen that in cer-

tain ideal mechanical processes a quantity called the total energy stays

constant. In real mechanical (and electrical) processes, however, a cer-

tain amount of energy is apparently lost, or "dissipated," but invariably

some effect is produced equivalent to that of an exactly proportional

quantity of heat. At the same time, in purely thermal processes, such

as thermal interchange by mixing, heat conduction, radiation, etc.,

heat itself is conserved.

Joule's law permits us to draw the conclusion that heat may be regarded

as a form of energy. In this generalized sense, then, energy is conserved,

both in "dissipative" processes where energy in the restricted purely
mechanical sense (kinetic or potential form) disappears, and also in heat

engines, where mechanical energy is generated at the expense of heat

withdrawn from a high-temperature source. Conservation of mechanical

energy in conservative mechanical systems, and conservation of heat

in purely thermal processes, become special cases of a more general
conservation law that includes thermodynamic processes, in which mechan-

ical energy and thermal energy are interchanged. This generalized

conception of conservation of energy was recognized and first extensively

applied by Hermann Helmholtz in 1847, and is known as the first law of

thermodynamics.
1

The firm establishment of the molecular hypothesi on chemical

grounds, largely through the influence of S. Cannizzaro in 1860, led to

fresh efforts to correlate heat with ordinary mechanical energy of the

molecules, an idea that had been in existence for some time, but without

concrete evidence. Two rather different though related lines of approach

proved to be successful, one the kinetic approach associated with the

work of R. J. E. Clausius, Ludwig Boltzmann, and J. Clerk Maxwell, and

1 II. Helmholtz, "t)ber die Erhaltung der Kraft," 1847; this paper was reprinted
as No. 1 of W. OstwakTs "Klassiker der exakten Wissenschaften." The principle

had been surmised earlier by R. J. Mayer in 1842; Mayer even estimated the value of

the mechanical equivalent of heat from the thermal properties of gases, but his argu-
ment lacked the experimental foundation later provided by Joule's work.
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the other the more general statistical mechanical approach of J. Willard

Gibbs. In either theory, heat is differentiated from ordinary mechanical

energy (kinetic and potential) only in that the coarseness of our sense

perceptions, and of the methods of measurement generally employed in

thermodynamic investigation, prevents us from perceiving the perpetual
random molecular motion. We perceive readily enough the bulk motion

of masses of molecules, but their random motion in an apparently station-

ary material body is ordinarily perceived only indirectly through the

temperature sense. The most striking visible demonstration of the

influence of molecular motion is of course the Brownian motion of parti-

cles in the colloidal size range. With heat thus conceived as kinetic and

potential energy of random molecular motion, Joule's law implies that

conservation of energy in the thermodynamic sense is simply an extension

of the original idea of conservation in the purely mechanical sense;
"
dissi-

pation
"

of mechanical energy consists merely of the randomization of

energy that had previously been associated with average motion in a

particular direction or average location in a particular region. We shall

develop this point of view at length in Chap. 10. Formal thermo-

dynamics can be developed, however, without any reference to the under-

lying structure of material substances, and to this development, it owes

its generality. Let us proceed therefore to the formulation of the first

law of thermodynamics in mathematical terms.

The truly enormous quantities of energy liberated by the spontaneous decom-

positions of the radioactive elements, by nuclear fissions, and by exothermic

nuclear transformations in general, constitute an apparent exception to the

principle of conservation of energy. The origin of this energy has been accounted

for, however, on the basis of a conclusion drawn by Albert Einstein in 1905 from

his special theory of relativity: the release of energy is associated with an exactly

proportional loss of mass, in the ratio Ae/AAf = c2
,
where c represents the

invariant speed of light. Thus, the disappearance of 1 g of nuclear mass cor-

responds to the release of 9 X 1013
joules of energy. Radioactive and other

kinds of nuclear transformations are accompanied generally by small but sig-

nificant changes in mass, which represent the differences between the so-called

binding energies of the reactant and product nuclei. For example, the atomic

mass of H 1 on the physical atomic-weight scale (O16 = 16.00000) is 1.00813,

while that of He4 is 4.00389; in the transformation of 4H1 to He4 + 2/3+, there

is thus a net loss of 0.02753 (the mass of the two positrons emitted during the

course of this transformation being 2 X 0.00055 on the atomic-weight scale),

which corresponds to 2.474 X 1012
joules for every gram-atom of helium pro-

duced. H. A. Bethe and C. von Weizsacker have shown independently that

this prodigious energy, 5 million times the energy released by the ordinary

chemical combustion of 4 g-atoms of hydrogen to water in which essentially

no mass is lost, is the main source of the sun's energy, being released through a
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chain reaction involving C12
, which is regenerated during each complete cycle.

The net changes in mass during ordinary chemical transformations are insig-

nificant by comparison, and cannot be detected by chemical analytical means,
as shown, for example, by the classical work of E. W. Morley on the synthesis

of water from oxygen and hydrogen, and H. Landolt's series of measurements

on several different reactions in sealed vessels, conducted in 1909.

2-5. The Internal Energy. A thermodynamic system may thus

exchange energy with its surroundings in two general forms, thermal and
nonthermal. Heat, or thermal energy, is energy in transition from one

body to another by virtue of a difference between their temperatures;
the net flow of heat is invariably in the direction from the hotter to the

colder body ;
this qualification, to which we shall return later, constitutes

the basis of the second law of thermodynamics. Work, or nonthermal

energy, is energy in transition from one body to another by virtue of a

force they exert on each other, in accordance with the fundamental

mechanical definition (2-4) and its implications.

Let Q represent the quantity of heat received by the thermodynamic
system under investigation and W the quantity of work done by it during
some particular interaction with its surroundings; negative values of

these quantities will be used to denote, respectively, heat given up by and
work done on the system; then Q W will denote algebraically the net

increase in the system's energy, and at the same time, the net decrease in

the energy of the surroundings. If the kinetic and potential energies of

the system as a whole undergo no change as a consequence, i.e., if no
sensible motion is set up in the system, and no sensible change takes place
in the positions of any of its parts (such as might affeet their potential

energies), then any net gain or loss of energy, whether in thermal or non-

thermal form, or as a combination of both, must necessarily be recognized

by some change in its internal state, by which we mean a change in its

temperature, or a change in its volume, or a change in the relative

amounts of the component parts or in their chemical compositions, etc.

If this were not so, then the energy would apparently disappear (or

appear) without effect of any kind on the system, contrary to the principle
of conservation; some change has to take place. Therefore it is appropri-
ate for us to define for such a system an internal energy U by means of the

relation

At/ ^ 1/2
- Ui H Q - W (2-21)

Any net increase (algebraic) in the kinetic or potential energies of the

system, in the ordinary mechanical sense, must in general be subtracted

from Q W in order to leave the net gain in internal energy. However,
most of the situations encountered in chemical thermodynamics do not
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in fact involve changes in the system's ordinary mechanical or "external"

energy. Such changes, when they are encountered, may in any event be

treated by straightforward extension of the principles derived from

"static" thermodynamics combined with purely mechanical principles;

the hydrodynamic theory of shock waves is a case in point.

Now, while both Q and W depend in general on the particular process

by which the given change of state (state 1 to state 2) corresponding to

the internal-energy change C/2 Ui is brought about (one may, for

example, change a body of water from 20C and 1 atm to 40C and 1 atm
either by placing it in contact with a body of hot water, which gives up
heat and cools during the process, or by stirring it mechanically as in

Joule's experiments), the value of AC/ itself depends by hypothesis only
on the initial and final states of the system ;

if this were not so, then the

concept of conservation would be meaningless, for one could proceed to

restore the system to its original state by some other method that would

require less energy than the energy released during the original change;
one would then have two states of the same system indistinguishable in

every respect except for a difference of energy, a situation clearly incom-

patible with the idea of conservation. Energy is conserved only if each

distinctive state of the system has its own characteristic energy, so that a

fixed quantity of energy is associated with the transition from one particu-

lar state to another. We may express this idea in formal mathematical

language by asserting that dU in the differential form of Eq. (2-21) for an
infinitesimal change in the state

dU = d'Q - d'W (2-22)

is a perfect differential in terms of the variables defining the state (whose

precise nature we shall examine in Chap. 3); the notations d'Q and d'W
(instead of the conventional dQ and dW} call attention to the fact that

these quantities are not perfect differentials corresponding to definite

functions of the variables defining the state. The integral of dU around

any closed path that ultimately restores the system to its original state

must vanish:
~

dU = (2-23)

Equations (2-22) and (2-23) express, respectively, the equivalence of

mechanical and thermal energy, and general conservation of energy for

interactions with the environment of a system whose ordinary mechanical

energy (in kinetic and potential form) is fixed; together, they constitute

the mathematical formulation of the first law of thermodynamics.
A process for which Q =

0, that is, one for which no net energy enters
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or leaves the system in thermal form, is called an adiabatic change. For

such a process,

AC7= -T7 (Q =
0) (2-24)

Any work done by a thermally insulated system is therefore at the

expense of its internal energy; conversely, net work done on the system

by the surroundings in such circumstances is totally conserved in the

form of an increase in the internal energy.

A process for which W =
0,

AC7 = Q (W = 0) (2-25)

represents a purely thermal process; under this condition, heat itself

appears to be conserved. In general, W -includes a term of the form

I

*

p dV, which represents mechanical work of expansion against the

externally applied pressure p ;
therefore only if either the volume is fixed

or some other compensating change is permitted to take place (such as a

volume change always at the same fixed pressure, as we shall see later)

will heat appear to be conserved as such.

Internal-energy changes may be measured in either thermal or mechan-

ical energy units, provided that Q and W in Eq. (2-21) are represented in

the same way. We shall follow the lead of most American thermochem-

ists in representing internal-energy values in defined or thermochemical

calories, which are based ultimately on mechanical standards and the

metric system through Eq. (2-20), although electrical measuring instru-

ments are generally used in the actual standardization of the calorimeters

now used to measure Q. The following set of energy conversion factors

has been adopted by the National Bureau of Standards as of Dec. 31,

1947, for its compilation, "Selected Values of Chemical Thermodynamic
Properties/'

1

1 cal == 4.18400 joules = 4.12917 X 10~ 2
liter atm

= 1.16222 X 10~6 kw hr - 3.96573 X 10~3 Btu (2-26)

One will note that no method has been indicated for the establishment

of absolute internal-energy values
;
the first law of thermodynamics states

merely the principle of conservation of energy, without comment on the

total amount of energy conserved between a given thermodynamic system
and its environment, or for that matter in the universe at large. Our

internal-energy measurements are therefore confined to energy differences

1 The watt is a unit of power or time rate of expenditure or generation of energy;

by definition, 1 joule s 1 watt sec; 'thus, 3.6 X 106
joules = 1 kw hr. The product

of potential difference in volts by current in amperes measures the electrical power in

watts expended by a given conductor.
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between different states of a thermodynamic system, some one of which

may for convenience be selected as a reference state, to be assigned an

arbitrary energy value.
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Problems

2-1. A pile driver weighing 500 kg is suspended at a height of 10m from the ground ;

calculate its potential energy in joules. Calculate its velocity after release as it hits

the ground.
2-2. A simple pendulum 3 m long is swinging in an arc making an angle of 10 deg

from the vertical on either side. Calculate the difference in potential energy per unit

mass of the bob between the highest and lowest points of the path described by its

center of mass, and calculate its velocity as it passes through the lowest point.

2-3. A projectile 7.5 cm in diameter, weighing 3 kg, is fired from a gun whose barrel

is 200 cm in length. Calculate the pressure required in order to accelerate the pro-

jectile to 900 m/sec muzzle velocity, assuming that the powder burns at such a rate as

to maintain uniform pressure throughout the projectile's motion within the gun. If

the combustion of the powder yields 1000 cal/g, what mass of powder is theoretically

required in order to propel the projectile at the given velocity, neglecting heat losses,

recoil of the gun, kinetic energy with which the gaseous combustion products escape,
etc.?

2-4. Assuming the inverse-square law of universal gravitation, F G - - where

G, the universal gravitation constant, has the value 6.670 X 10~8 dyne cm2
/g

2
, express

the potential energy of a body of mass Mi as a function of r, its distance from the

earth's center, taking the zero of potential energy at infinite distance removed. Com-

paring the universal force with the ordinary force of gravity M\g at the earth's surface,

where r, the earth's radius, equals 6380 km, calculate the value of M2 ,
the mass of the

earth, using the standard value of g = 980.665 cm/sec
2

. What vertical velocity must
be given to a body at sea level so that its energy will be just sufficient to enable it to

escape from the earth (neglecting air resistance)?
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2-5. Niagara Falls is 167 ft in height. Calculate the energy in joules potentially

available per kilogram of water reaching the falls. If this energy were entirely
"
dis-

sipated
"
by the water going over the falls, what difference in temperature would there

be between the water at the bottom and the water at the top of the falls? On the

average, 20,000 cu ft of water per second (about 7 per cent of the total) is diverted

through the hydroelectric power plant on the American side; to how much electric

power, in kilowatts, is this theoretically equivalent? Another 36,000 cu ft/sec is

diverted on the Canadian side; to how much electric power, in kilowatts, is this

equivalent?
2-6. A river carrying on the average 250,000 gal/min of water is to be dammed;

how high must the dam be in order to provide 10,000 kw of hydroelectric power?
2-7. A bullet weighing 25 g is fired at 500 m/sec velocity into a lead block ballistic

pendulum weighing 10 kg, sufficiently thick to stop it. Calculate the average rise in

temperature, before heat losses. The specific heat of lead is 0.0305 cal/g C around

room temperature; the kinetic energy acquired by the pendulum may be neglected.

2-8. A steel slug weighing 25 g is traveling at 500 m/sec. If it were suddenly

stopped by a collision, and all its translational kinetic energy
"
dissipated

"
in raising

the temperature of the slug, what temperature would it attain in the absence of heat

losses? (Assume steel to have a mean specific heat of 0.12 cal/g C, and assume that

the slug is originally at 20C.)
2-9. A pellet of zinc weighing 9.27 g is heated to 400C and then dropped into a

cavity drilled in a copper block weighing 1000.0 g and originally at 0C; the tempera-
ture rise observed in the insulated block is 4.00C. Taking the specific heat of cop-

per as 0.0919 cal/g C, calculate the mean specific heat of zinc over the range 4 to

400C.
2-10. When 100 g of ice at 0C is mixed in a Dewar flask with 1000 g of water origi-

nally at 25C, what is the final equilibrium temperature, neglecting heat gains or losses

from outside?

2-11. Distilled water is to be produced at a rate of 10 kg/hr from a water supply

originally at 10C. The water fed into the still is preheated to an average temperature
of 60C by being passed through the condenser used to condense the steam. If the

still is electrically heated, what must be its minimum power rating in order to satisfy

this demand, neglecting heat losses through the insulation? What must be the rate

of flow of water through the condenser by-passing the still in order to carry off the heat

given up by the condensing steam (assuming that the distilled water leaves the

condenser at 60C)?
2-12. A heating coil having a resistance of 200 ohms is connected to the 110-volt

line; at what rate does it dissipate energy? How long would it take to heat 1 kg of

water 1C by means of this coil, neglecting heat losses by the water? If one wished to

obtain the same heating rate from a 6-volt source, what current and resistance would

be required?
2-13. What is the charge on the electron, in coulombs? (Note that the Faraday

electrochemical constant represents the quantity of electricity carried by an Avogadro
number of electrons.) If a current of 1 amp is flowing through a wire, how many
electrons pass through any cross section of the wire per second? Assuming that there

is on the average one "free" electron per metal atom, what is the average electron-

drift velocity through a No. 14 copper wire (0.0252 cm diameter) in which a current of

1 amp is flowing? What is the drift velocity through a No. 24 copper wire (0.0079 cm
diameter) carrying the same current? (Estimate first the number of free electrons per
centimeter length of the wire, taking the density of copper as 8.9 g/cm 8

.)
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2-14. Water at 100C absorbs 539.77 cal/g of heat in vaporizing at 1 atm pressure;
the volume of the saturated steam is 1674 ml/g and of the liquid water, 1.043 ml/g.
Calculate the work done per gram of water vaporizing (1 liter atm == 24.2179 cal),

and calculate the difference of internal energy between 1 g of steam at 100C and 1

atm, and 1 g of water at 100C and 1 atm.

2-16. The mean heat capacity of water over the range 25 to 100C is 1.000 cal/g C;
over this range, it expands at constant atmospheric pressure by 0.0405 ml/g. Calcu-

late the work of expansion per gram when water is heated from 25 to 100C at 1 atm,
and calculate the difference between the internal energy of water at 100C and 1 atm,
and at 25C and 1 atm.

2-16. If all the energy released by 1 kg of steam originally at 100C in cooling at

atmospheric pressure to become liquid water at 25C could be obtained in mechanical

form, how high could it lift a 1000-kg load against gravity?
2-17. Calculate the electrostatic potential energy between a Na+ ion and a Cl~

ion at the equilibrium distance: r = 2.814 X 10~8 cm in the NaCl(c) crystal lattice,

taking the zero of potential energy at infinite separation between the particles.

(Note that in the potential-energy expression, Ae\ez/Dr, the potential energy will

be expressed in ergs if r is expressed in centimeters, A is set equal to 1, and e\ and e*

are then expressed in so-called electrostatic units; D = 1 in a vacuum, and presumably
also in the case under consideration.) Express this energy in calories per mole (i.e.,

for No isolated ion pairs).

Calculate the mutual electrostatic potential energy per ion pair of two pairs of

Na+ and Cl~~ ions arranged as in the actual crystal lattice in alternation at the corners

of a square in relation to the electrostatic potential energy of a single pair of ions at

the same interionic distance. Calculate likewise the relative electrostatic potential

energy per ion pair of four pairs of Na+ and Cl~ ions arranged as in the actual crystal

lattice in alternation at the corners of a cube. (Proceeding in this way, one may
calculate the electrostatic potential energy per ion pair of the entire crystal, which for

the NaCl type of lattice turns out to have a limiting value of 1.7476 times the energy
of an isolated pair of ions at the same interionic distance.)



CHAPTER 3

THERMAL BEHAVIOR OF SIMPLE SYSTEMS

In this chapter, we shall apply the first law of thermodynamics to sim-

ple systems consisting of chemical substances undergoing changes that

do not affect their compositions. We shall take up its applications to

chemical changes in Chap. 4.

3-1. The State of a Thermodynamic System. A thermodynamic

system consists of a particular specimen of a recognized material sub-

stance, or an interconnected group of different material substances, in

which we happen to be interested for the purpose of investigation. We
must consider at the outset how we identify the state of such a system.

The physical properties of a material substance, those properties such

as the density, heat capacity, vapor pressure, etc., determined by opera-

tions that do not involve the composition explicitly (though their values

may vary with the composition), are of two general types: extensive

properties whose values are in direct proportion to the mass of the sub-

stance under consideration, and intensive properties whose values are

independent of the mass, and are hence characteristic of the substance

rather than of the particular sample of it under consideration. Examples
of extensive properties are the volume and the heat capacity ; examples of

intensive properties are the density, the specific heat, and the specific

resistivity. Evidently, one can construct an intensive property of the

substance from an extensive property of the sample by dividing the value

of the extensive property by the mass of the sample; the adjective
"
specific

"
prefixed to the name of the extensive property usually indicates

that such a procedure has been followed, as, for example, in the case of

specific volume and the case of specific heat. 1 If the substance happens
to be a homogeneous chemical substance, having a definite composition
and corresponding chemical formula, then it is convenient for the chemist

1 This usage is not invariably followed, as for example in specific gravity and spe-
cific viscosity, where "specific" means relative to the corresponding value of the prop-

erty for water, and in specific resistivity; electrical resistance is not strictly an exten-

sive property in the sense here defined, but it varies in direct proportion to the length
of the conducting sample and in inverse proportion to its cross-sectional area; one

defines the mass-independent specific resistivity in this case by dividing the resistance

of the particular sample by its length and multiplying by its cross-sectional area

(supposed to be uniform).

68
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to use its formula weight, to which we shall assign the symbol M, as unit

of mass. The molal volume, the molal heat capacity, the molal latent

heat of vaporization, etc., are thus intensive properties of the substance,

in the same sense as the specific volume, the specific heat, the specific

latent heat of vaporization, etc. We shall use the noun "mole" and the

adjective "molal," with reference to a definite mass of the substance

represented by its formula weight in grams (the formula in mind being
written explicitly where any possible ambiguity may exist), without

necessarily implying the existence of physical molecules corresponding to

the formula
;
for example, the molal volume t^aci will represent the vol-

ume of 58.454 g of sodium chloride, although there is no evidence for the

existence of NaCl molecules as such in the crystalline or liquid states;

likewise, the molal volume FcH3cooH will represent the volume of 60.052 g
of acetic acid, although at least in the vapor state, an appreciable fraction

is known to be in the form of dimeric molecules corresponding to the

formula (CH 3COOH) 2 . We shall in general use a bar superscript over

the symbol representing an extensive property of the system, in order to

represent the corresponding intensive molal property; for example,
V = V/n, where n represents the number of moles, n = M/M, corre-

sponding to the mass M and volume F; this applied only to homogeneous
substances of fixed composition.

1

Now, it is with the intensive properties that we are primarily concerned

when we attempt to define the state of a material substance, because we
know from experience that if we examine a larger or a smaller mass of the

same substance under the same general set of conditions, all the intensive

properties are alike. In fact, experience teaches us that for a homogeneous
substance of fixed composition, i.e., a chemical compound or element in a

particular one of its allotropic forms, the state is determined in general by
the values of two independently variable quantities, for example, its tem-

perature and pressure. By this statement, we mean that all its intensive

properties assume characteristic values fixed by nature whenever the

substance is brought to a given temperature and pressure; on the other

hand, unless at least two such independently variable properties are

arbitrarily fixed, the values of other intensive properties are without

meaning. For example, the density of ammonia gas means nothing

1 Chemical engineers express the masses of chemical substances also in pound-moles,
and other units derived from the United States or British systems of measurement;

evidently, 1 pound-mole = 453.5924277 gram-moles, this being the defined ratio of

the avoirdupois pound to the gram. We shall use the term mole throughout in the

sense of gram-mole, this being a unit of mass represented by the formula weight in

grams; but self-consistent relations may obviously be established in terms of other

molal measures of mass. ~
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unless one specifies both the temperature and the pressure to which the

density value refers; any other two independently variable properties

besides the temperature and the pressure could be used to define the state,

because the values of the temperature and the pressure would then be

fixed by implication; thus, if one were to specify the density and the

coefficient of viscosity of ammonia gas, there would be a unique set of

values of the other intensive properties, including the temperature and
the pressure, corresponding to the specified values of the density and the

viscosity. Generally, however, we find it convenient to regard tempera-
ture and pressure as the independent variables on which the state depends,
these being the properties most easy to control.

A consequence of this basic concept of the variance of a given material

system, by which we mean the number of independently variable proper-
ties on which its state depends, is the equation of state of a homogeneous
substance of fixed composition. Since the variance of such a substance is

two, the volume, temperature, and pressure for given mass must be so

interrelated that the values of any two of these quantities serve to deter-

mine the value of the third. This relationship may be expressed formally

by the equation

/(F, JT, p) -
(3-1)

where / represents some function of the three variables, whose exact

nature depends on the particular substance, and may be determined in

general only through experimental observation. The particular relation-

ship of the general form (3-1) that applies to a given homogeneous sub-

stance of fixed composition is known as its equation of state. It is usually

convenient, though not always so, for us to solve Eq. (3-1) for V as an

explicit function of T and p,

V - FCT, p) (3-2)

Then for a change of state, since the change in V is determined entirely

by the changes in T and p, *<

The quantities

which involve the two differential coefficients appearing in Eq. (3-3), are

known, respectively, as the coefficient of cubical expansion and the coeffi-
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dent of compressibility; for solids, the value of I//? is known also as

Young
1

s bulk modulus of elasticity.
1

Several useful relationships follow from the mathematical properties of

Eq. (3-3). Thus, by setting dV =
0, we may derive an expression for the

relation between T and p for a change taking place at constant volume:

(dp\ =
\dTjv ft

(3-6)

Furthermore, since F is completely determined by the values of T and p,

we may apply to Eq. (3-3) Euler's criterion for dV to be a perfect differ-

ential with respect to variations in T and p:
2

r a dv\ i r d dv
[Tp

Thus, it follows that

(D,
- -

An example of a simple equation of state is given by the ideal-gas law,

pV = RTj which is applicable approximately to any gas at sufficiently

low pressures; the form corresponding to (3-1) is pV RT =
0, while

the form corresponding to (3-2) is V = RT/p; one sees that for the ideal

gas, a = 1/T and j8
= 1/p. The van der Waals equation of state,

(p + a/V*) (V 6) 72T
7 =

0, illustrates a case in which it would be

inconvenient to try to express V explicitly as a function of T and p in

the form (3-2), though the functional relationship implied by Eq. (3-2) of

course exists, and Eq. (3-3) is satisfied. For liquids and solids, the state

is rather insensitive to variations in the pressure, and in particular, is

practically independent of such changes as normally take place in the

barometric pressure; the coefficient of compressibility of water at 20C,
for example, is about 4.3 X 10~6/atm at pressures between and 500

atm, so that one ordinarily does not have to specify the pressure precisely

unless one is concerned with pressure variations of at least several

atmospheres magnitude. For liquids and solids, the state is considerably
more sensitive to variations in the temperature, the coefficient of expan-

1 For isotropic solids, like NaCl, the value of a is three times the coefficient of linear

expansion; for anisotropic crystals, however, the coefficient of linear expansion may
have different values for different directions through the crystal.

2 This criterion is equivalent to the statement that the value of d*V/dp dT is inde-

pendent of the order of differentiation, a condition implied by the fact that Fis com-

pletely determined by T and p, without regard to the particular manner in which
the state may be varied (see Appendix 1).
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sion of water at 1 atm and for temperatures between 20 and 100C having
the average value, 4.8 X 10~4

/deg; in other words, a change of 1K
(or 1C) in the temperature produces a change in the volume more than

ten times greater than that produced by a change of 1 atm in the pressure,

within the temperature and pressure ranges noted.

In special circumstances, the state of a homogeneous substance of fixed

composition may vary with other quantities besides temperature and

pressure as independent variables. If it is a dielectric, then its state in

an electric field will vary with the intensity of its polarization, and its

properties will therefore not be determined until one has specified the

electric field strength, as well as the temperature and pressure. If it is

diamagnetic or paramagnetic, then its state in a magnetic field will vary
with the intensity of

-
its magnetization, and its properties will therefore

depend on the magnetic field strength, as well as on temperature and

pressure. If one is interested in light transmission, then one finds that

the optical properties depend on the wavelength of the light, as well as on

temperature and pressure. Unless such special circumstances are

explicitly recognized, however, we shall ordinarily assume that we are

dealing with a system in which they are absent; the physical properties

will then be completely determined when the temperature and pressure

alone are specified.

We have seen in Sec. 2-5 that the internal energy U of a thermodynamic

system has to be determined by its state, in the sense that two states

indistinguishable in all other respects must necessarily also have identical

internal energies. For a homogeneous material substance of fixed com-

position, the internal energy is therefore one of its physical properties,

determined for given mass, along with all the other physical properties,

by the values of any two independently variable properties, such as the

temperature and the pressure. It is furthermore an extensive property,

since experience teaches us that there is no net energy taken in from or

released to the surroundings, either in thermal or in nonthermal form,

when different samples of the same substance at the same temperature
and pressure are combined together; the internal energy of the combined

samples must therefore be simply the sum of the internal energies of the

separate samples, and hence must increase in direct proportion to the

mass. 1 The specific internal energy, U/M, must therefore be an intensive

1 This statement is not entirely accurate when one compares an extremely finely

subdivided solid or liquid with the same mass fused into a single unit; one may then

find a significant difference in energy associated with the larger surface area of the

finely subdivided sample. We shall return to this question in Sec. 6-5, but shall

meanwhile assume that surface effects may be ignored in the problems immediately
to be considered.
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property of such a substance; the molal internal energy,

must likewise be an intensive property, and thus may be represented (in

the absence of electric fields, magnetic fields, etc.) as a function of tem-

perature and pressure in the general form

U = U(T, p) (3-10)

The detailed form of (3-10) for a given substance is to be determined by
experiment, based on the fundamental relation, Eq. (2-21); i.e., by meas-

uring the net quantity of heat absorbed and the net quantity of work
done by the substance as it undergoes changes from one temperature and

pressure to another, we may establish empirically how U depends on the

state; such information characterizes the thermodynamic behavior of the

substance within the scope of the first law of thermodynamics. By
means of equation-of-state data introduced into Eq. (3-3), we may trans-

form Eq. (3-11) so as to express U as a function of V and T, or as a func-

tion of V and p as independent variables, in place of T and p, should this

be convenient.

In the case of a homogeneous material substance of continuously vari-

able composition, i.e., a solution, the state depends on more independent
variables than in the case of a substance whose composition is fixed by
nature; in addition to temperature and pressure, one must specify the

composition as well. In general, a certain minimum number of compo-

nents, C, is required for the complete specification of the composition.

For example, in a liquid solution of ethyl alcohol and water, the composi-
tion is specified completely by a statement of the proportion in which the

two substances of fixed compositions, alcohol and water, are present; note

that it is not necessary in this case for the proportions of the three differ-

ent elements present, carbon, hydrogen, and oxygen, to be stated, because

in view of the invariant compositions of alcohol and water, not only are

these proportions not independently variable, but they are in fact implied

completely by the proportion of alcohol to water. The intensive proper-

ties of such a solution, e.g., the density, the specific heat, the coefficient

of viscosity, etc., are fixed when the values of any three independently
variable intensive properties, such as the temperature, the pressure, and

the percentage of alcohol, are specified; in other words, the variance of

this system is three. In general, each additional constituent of definite
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composition whose amount in the solution may be varied by continuous

degrees independently of the amounts of the other constituents present

increases the variance by one, so that the variance of a solution containing

C components is in general 2 + (C 1).

If chemical reactions may take place among the constituents present

in a solution, then the number of components necessary in order to specify

the composition may be smaller than the number of different chemical

species present, because operation of the laws of chemical combination

may fix by nature the amounts of certain constituents in relation to the

amounts of others; the amounts of the different constituents may then

not all be independently variable. Let us reserve the expression number

of components for reference to the least number of chemical constituents

whose masses in the solution may be independently and continuously varied.

For example, in a gas at 250C and 1 atm containing PCla, CU, and PCU,
although three different chemical species are present, their relative

amounts are not all independently variable, for if the proportion of any

two, say that of PC13 to Cl2, is fixed, then the proportion of the third,

PCU, to either of the other two is also fixed automatically at the given

temperature and pressure through equilibrium of the reversible chemical

reaction: PCls + C12
= PCU. Therefore this system has but two compo-

nents defining its state at given temperature and pressure. In fact, if the

proportion of PCla to C12 in the mixture happens to be the same as in the

compound PCU, i.e., if they are present in 1 : 1 molal proportion, then the

number of components becomes only one, for in this case the proportion of

PCla to CU, which by itself in the general case was sufficient to determine

also the proportion of PCI 5 to either, now must remain the same, no mat-

ter to what extent chemical combination or the reverse process of dis-

sociation may take place; in other words, only two independent variables,

temperature and pressure, are alone sufficient under this condition to fix

the state of the system, just as in the case of a single homogeneous sub-

stance of fixed composition. One cannot tell from consideration purely
of the variance whether PC1 5 in the gaseous state exists as the pure com-

pound or in the form of dissociation products, PC13 + C1 2 , although of

course by introducing the nonthermodynamic idea of comparing the

vapor density with that of other gases, i.e., by making use of the ideal-gas

law founded on Avogadro's hypothesis, one may readily enough deduce

the extent of dissociation. In certain cases, the number of components

may depend on the circumstances in which the particular system is

placed. A gas at 100C and 1 atm consisting of H2 , 02, and H2O in the

absence of a catalyst has three components whose masses may be inde-

pendently varied; at 2000C, however, where the reversible chemical

reaction 2H2O = 2H2 + O2 establishes equilibrium rapidly among the
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amounts of the three constituents, the number of components becomes

two, while if either pure water vapor or a mixture of H2 and 2 in 2:1

molal proportion is heated to 2000C, then the number of components is

but one. Clearly, a chemical compound such as NaCl counts as but one

component, notwithstanding the independent chemical behavior of the

ions, Na+ and Cl~~, of which this compound consists; because of the

requirement of electrical neutrality in ordinary chemical systems, the

relative amounts of the two ions are not independently variable, but are

fixed by nature. One can vary the amount of Cl~ independently of the

amount of Na+ by adding another chloride, such as KC1, but there is then

still a necessary interrelation between the total quantity of Cl~~ and the

total quantity of the two positive ions, Na+ and K+; such a combination

of NaCl with KC1 would thus count as two components toward deter-

mining the variance.

In summary, then, the number of components in a homogeneous sub-

stance of continuously variable composition represents the least number
of chemical constituents of definite composition whose amounts in the

solution may be varied independently of each other. The variance of

such a substance, representing the number of independently variable

intensive properties, is 2 + (C 1), where C represents the number of

components. The particular constituents recognized as components is

immaterial for our purpose; only their number determines the variance.

We may thus represent the internal energy of such a substance as a func-

tion of T
y p, and the numbers of moles of the various components, n\ 9

^2, . . .
,
nc formally by means of the equation

dT p ' ni ' nt.....nc

dU

+ r *'' ni ' n *.....nc-idnc (3-12)

where dU satisfies Eq. (2-22). The first two terms on the right represent

how U changes with temperature and pressure so long as the composition
remains unchanged ;

these terms must be related to other properties of the

solution essentially in the same way as for a chemical substance of natu-

rally fixed composition (such relations will be explored in Sec. 3-2). The

remaining terms on the right express formally how U changes with com-

position at fixed temperature and pressure, relations that must be

established empirically for solutions of a particular set of components

through measurements in principle of Q and W for such changes of state.
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As written, Eq. (3-12), which is a generalization of Eq. (3-11), includes

changes such as may result through an increase or decrease in the total

mass. Since U is an extensive property of the solution, then if at given

temperature and pressure one were to increase the amounts of each com-

ponent by the same fraction X so that dn\ = Xni, tin* = \n*, . . .
,

due = Xnc, leaving the composition unchanged, U would increase by the

same fraction, dU = XJ7; such a change would correspond in fact merely

to taking a larger sample, of mass M + XM, at the given temperature,

pressure, and composition. Substituting these conditions in Eq. (3-12),

one draws the conclusion

U = VlUl + V2n2 + + vcnc (T, p const) (3-13)

where for short we have introduced the symbols

fdU^
T,P,n*, . . ,*

dU^
,nc

=Vc ~

(3-14)

Thus, the quantities ui, V2, . .
, vc, introduced originally by Eq. (3-12)

in a purely formal manner, now acquire the physical interpretation of

representing what the respective molal internal energies of the compo-
nents in the solution would be if at given temperature and pressure the

total internal energy were to be represented as a sum of terms contributed

by the individual components. If Q and W were zero for the process of

forming the solution from its components, at uniform temperature and

pressure, regardless of composition, then the value of U would necessarily

be the same as the sum of the internal energies of the pure components,
and vi, V2, . . .

, vc would then be equal, respectively, to the molal

internal energies J7i, t/2, . . .
, Uc of the pure components; in general,

however, this is not the case, and we shall return to a discussion of the

internal energy of solution in Sec. 4-5. The quantities vi, vi . . .
,
vc are

themselves intensive properties of the solution, varying with temperature,

pressure, and composition; they are known as differential or partial molal

internal energies. Their values are to be determined in principle by
experiment, precisely in accordance with the operations represented by
Eqs. (3-14) ; thus, the value of u* represents the increase in internal energy
of the solution (as measured by Q TF) per mole of component i added,
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when that component is added to the solution without sensible change in

the temperature, pressure, or composition:

Q W
Vi
= lim -2-r- (T, p. HI, . . .

, Uir-i, rii+i, . . . ,nc const) (3-15)

It is necessary to take the limit for an infinitesimal quantity of the compo-
nent added, in order to take account of the fact that Vi itself would vary
in general with a finite change in the composition. Specification of the

values of ui, 1/2, . . .
, v<? as functions of the composition at given tem-

perature and pressure completes the thermodynamic description of a

solution within the scope of the first law of thermodynamics, in the same
sense that specification of the values of (dU/dT) p and (dU/dp)T as func-

tions of temperature and pressure completes the description in the case of

a homogeneous substance of fixed composition. Only (C 1) of the C
quantities ui, V2> > i>c need be established independently by measure-

ment, however, because there is then a general mathematical relationship

connecting them by virtue of the fact that they are intensive properties,

dependent on the composition but not on the total mass of all C compo-

nents; this relationship, known as the Gibbs-Duhem equation,
1 may be

derived by differentiation of Eq. (3-13) at constant temperature and

pressure in the most general manner with respect to changes in the

amounts of the components

dU = HI dvi + vi dn\ + n% du2 + i>2 dn* + + nc dvc + vc dnc

(T, p const)

and comparison with Eq. (3-12) from which we started; thus

ni dvi + nz du2 + + nc dvc = (T, p const) (3-16)

By integration, one may establish the value of any single ut
- from known

values of all the others, previously established as functions of the com-

position; we shall make use of this equation and analogous equations for

other thermodynamic properties in Sec. 4-5, and particularly throughout

Chap. 7. A precisely similar mathematical treatment may be applied to

express the effect of composition on any other extensive property of the

solution, such as the volume.

The internal energy of a heterogeneous substance consists of the sum of

the internal energies of the separate homogeneous parts or phases. In

general, the physical mixing of different homogeneous substances that do

1 Named after the great American mathematical physicist, J. Willard Gibbs, who
derived it in his monumental paper, On the Equilibrium of Heterogeneous Substances,

Trans. Conn. Acad. Arts Sri., 3, 108-248 (1876); 3, 343-524 (1878), and the French

physicist, Pierre Duhem, who developed a similar equation applicable in particular

to the partial vapor pressures of solutions, Compt. rend., 102, 1449-1451 (1886).
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not change each other's form or composition is accompanied by no net

energy change; and, conversely, we consider that the sorting out of differ-

ent kinds of substances that can be distinguished at least by visual meth-

ods (aided by the ordinary microscope, if necessary) calls for no necessary

net expenditure or release of energy, though one may find it convenient to

speed the process by screening, centrifuging, flotation, etc. If the grist is

so fine, however, that the surface area between the phases must be taken

into account, then there may be appreciable surface energy; this energy

merges into true solution energy as the grist approaches molecular dimen-

sions. Some of the distinctive properties of colloidal dispersions are

associated with the existence of a significant surface energy. We shall

discuss the variance of a heterogeneous system later in connection with

the general theory of- equilibrium to be developed in Chap. 7.

3-2. The Internal Energy as Heat Function at Constant Volume. Let

us now turn our attention to the association of the mathematical proper-

ties of the internal-energy function implied by Eq. (3-11) with experi-

mental methods of measuring the internal energy in accordance with Eq.

(2-21) or its equivalent in differential form, Eq. (2-22); we shall suppose
that we are dealing with fixed mass of a homogeneous substance of fixed

composition, fixed either by nature as in the case of a chemical element or

compound or by agreement as in the establishment of the physical proper-

ties of a 25 per cent solution of glycerol in water.

In general, the net work done by a physically stationary thermody-
namic system during an infinitesimal change of state may be separated for

convenience into a term p dV representing mechanical work of expansion

against the external pressure p imposed by the environment 1 and a term

which we may designate by d'W, representing all work done in a form

other than mechanical work of expansion, for example, the work that

might be done in electrical form by a change taking place in a galvanic

cell; thus

d'W = pdV + d'W (3-17)

Therefore Eq. (2-22), which defines dU in experimental terms, may be

recast in the general form

1 The form of this term follows directly from the basic definition, Eq. (2-4); tho

pressure on a surface of the system represents a force normally directed and equal in

magnitude to the pressure multiplied by the surface area on which it acts. If the

system expands in such a way that this surface is displaced normally to itself through
the distance dr, its area being A, then, according to Eq. (2-4), the element of work
done by the system is pA dr. The product A dr, however, represents the volume dV
generated by the moving boundary; therefore d'W = pdV, an expression which

may be integrated to give the finite amount of work done during a finite expansion,
if p is defined at all stages as a function of V.
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dU = d'Q - p dV - d'W (3-18)

Now for most of the situations with which the chemist is concerned,

Wf = 0; a notable exception is the class of electrochemical processes in

general, which we shall consider in detail in Chap. 9; but, ordinarily,

chemical systems are not constituted to do work except incidentally to a

volume change; this is true even of such practical sources of power as the

steam engine and the internal-combustion engine.
1

Thus, Eq. (3-18)

reduces to

dU = d'Q - p dV (W - 0) (3-19)

For a change of state taking place at constant volume,

Atf = Qv (W = 0) (3-20)

Under this condition, the quantity of heat absorbed by the system meas-

ures directly its increase in internal energy; inasmuch as the value of U
depends only on the state of the system, heat itself must therefore be con-

served under this condition, and will be released as such in the same
amount if the system is restored to its original state. The internal

energy U thus serves as a heatfunction at constant volume, in the sense that

its value measures the quantity of heat apparently "contained" by the

system; one should note that this concept applies only because we have

imposed conditions making it impossible for any of the energy to appear
in nonthermal form.

Now, the increase in temperature associated with the absorption of

heat by a given homogeneous substance measures its specific heat, in

accordance with the definition (2-17) ;
more generally, for arbitrary mass,

the heat capacity of the system is defined by

c- d'Q 2nC = (3-21)

This definition is incomplete, however, since we have seen that the quan-

tity of heat depends on the conditions under which the temperature

change is brought about. But, according to Eq. (3-20), the heat capacity

at constant volume

1 For simplicity, we shall count electrically heated systems in this class; even though
the energy expended on such a system comes from the environment originally in

electrical form, we may count the energy received into the system as thermal (if

our system did not absorb it, it would merely raise the temperature of the heating

coil), using Joule's law to compute the equivalent quantity of heat.
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must be a definite property of the system, since the change of U depends

only on the particular change of state under consideration. The molal

heat capacity at constant volume, CVJ represented by

=

is in fact an intensive property of the substance, determined along with all

the other intensive properties by the temperature and pressure. Its

value for a given substance cannot be predicted by purely thermodynamic

means, but must be determined either empirically by direct measurement,
or theoretically on the basis of extrathermodynamic conceptions of

molecular structure.

Let us now proceed to expand U as a function of temperature and pres-

sure, in accordance with the formal relationship (3-11). For the effect of

temperature alone, at constant pressure, from Eq. (3-19),

The first term on the right of Eq. (3-24) represents by definition the molal

heat capacity at constant pressure, Cp ,

a (W = 0) (3-25)

Since the other terms in Eq. (3-24) are clearly functions only of the state

of the system, it follows that Cp ,
like <? is an intensive property of the

substance, determined by its state. Thus, introducing the notation of

Eq. (3-4),

() " C'
~ '*" (3-26>

For the effect of pressure alone, at constant temperature, from Eq. (3-19),

\ = 1^1
- p I^ 1 (Wf =

0) (;

The first term on the right of Eq. (3-27) defines an intensive property
called the molal latent heat of pressure variation:

Lp m
(jftyT

(W =
0) (3-28)

This property is the pressure analogue of the molal heat capacity, repre-

senting the quantity of heat absorbed per unit increase in the pressure,

when the substance is compressed at constant temperature. Introducing
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the notation of Eq. (3-5),

Combining Eqs. (3-26) and (3-29),

dU = (Cp
- pVojdT + (Lp + pV0)dp (3-30)

Equation (3-30) expresses the functional dependence of U on T and p in

terms of physical properties of the substance all subject to direct experi-

mental measurement.

While Lp may be directly measured by means of the operation indicated

by Eq. (3-28), the measurement is by no means easy to carry out pre-

cisely. We may, however, anticipate a relationship to be derived from

the second law of thermodynamics [Eq. (6-8)],

Lp
= - TVa (3-31)

This enables us to calculate the value of Lp from pure equation-of-state

data, which are easier to establish at high pressures than direct thermal

data; in this relationship, it is necessary that the temperature be repre-

sented on the absolute thermodynamic scale; in thermodynamic rela-

tionships based purely on the first law of thermodynamics, only tempera-
ture differences enter, so that while for the sake of uniformity we have

been using T throughout, the ordinary Celsius temperature scale would

have been equally satisfactory up to this point. Introducing (3-31) in

(3-30),

dU = (Cp
- pVa)dT + (p/3

- Tot)Vdp (3-32)

This equation, upon introduction of the required experimental data,

enables us to represent UT,P at any given temperature T and pressure p,

relative to Z7
s ,

the internal energy in some standard state defined by
temperature T8 and pressure po] thus

UT, P
- UT

= [* (Cp
- pQVa)dT + f

P
(pp

- Ta)V dp (3-33)
JTt Jpo

where the first integral on the right is evaluated at the constant standard

pressure p ,
and the second at the constant temperature T

7

;
the order of

integration is immaterial, according to the first law of thermodynamics,
and we could equally well have taken the first integral at the constant

pressure p and the second at the constant temperature Ts, using the

corresponding thermal and equation-of-state data. As a matter of fact,

we seldom make use of Eq. (3-33) in applied chemical thermodynamics,
because it is generally much more convenient to represent our thermal
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data in terms of a modified energy function called the enthalpy, whose

change is measured directly by the heat absorbed at constant pressure; we
shall discuss the properties of this function in the section immediately

following.

3-3. The Enthalpy as Heat Function at Constant Pressure. Many
thermodynamic processes are carried on at the approximately constant

pressure of the atmosphere. This is particularly likely to be the case for

systems consisting entirely of liquids and solids, where there is usually

little advantage to be gained from changing the pressure, unless one is

ready to consider really high pressures, in excess of 1000 atm. Even

then, one generally finds it more convenient to maintain and measure a

uniform pressure rather than a uniform volume, particularly where more

than a single homogeneous phase is involved.

For a change of state taking place at constant pressure, according to

Eq. (3-18),

d'Qp = d(U + pV) + d'W
. (3-34)

The expression
H s U + pV (3-35)

defines a useful function of the state of the system (since both U and pV
are determined solely by the state), having the fundamental property
that for a change of state taking place at constant pressure,

dH = d'Qp
- d'W

Aff = Qp (W = 0) (3-36)

More generally, comparing the differential of (3-35) with (3-18),

dH = d'Q + V dp - d'W' (3-37)

The function //, defined by Eq. (3-35), is known as the enthalpy of the

system; it is of course measured in energy units (e.g., defined calories),

just like U. 1 Its change in value for a change of state taking place at a

given constant pressure may be established by means of straightforward

calorimetry, according to Eq. (3-36) ;
unlike the situation in the measure-

ment of A 7, it is not necessary for us in the measurement of A# to correct

the directly measured thermal energy absorbed by the system during the

change of state at constant pressure for any volume change that the sys-

tem may undergo (i.e., for any mechanical work done as a consequence of

the volume change). Since the value of H, like the value of U, depends

only on the state of the system, heat must necessarily be conserved by

1 If p is measured in atm and V in liters, then an expression of the form pV may be

expressed in calories through the use of the conversion factor: 1 cal = 0.0412917

liter atm.
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the system during changes of state taking place at a uniform fixed pres-

sure, and any heat absorbed during a given change under this condition

will be restored as such in the same amount if the system is returned to its

original state. Thus, the enthalpy // serves as a heat function at constant

pressure, in the sense that its value measures the quantity of heat appar-

ently "contained" by the system under that condition; for this reason, H
has also been known as the "heat content" and as the "total heat";
these terms have misleading connotations, however, and the neutral

synthetic name enthalpy, or merely the symbol H itself without a name,
is to be preferred.

For the change of temperature at constant pressure,

where Cp represents the heat capacity at constant pressure. The molal heat

capacity at constant pressure, CPJ previously defined by Eq. (3-25), thus

satisfies the relationship

and is like C9 an intensive property of the substance. A thermodynamic
connection between Cp and Cv at given temperature and pressure follows

directly from Eqs. (3-23) and (3-30) :

Introducing Eq. (3-6) for (dp/dT) 9,

(3-40)

If we substitute for Lp the equivalent expression (3-31) based on the sec-

ond law of thermodynamics, then

''
This relationship permits us to calculate the value of either heat capacity
from known values of the other by making use of equation-of-state data;

it is particularly useful for the calculation of Cv from observed values of

Cp ,
which is generally the easier to measure; on the other hand, theoretical

methods of determining the thermal properties of material substances

generally lead directly to the value of CV) from which Cp may then be

calculated by means of Eq. (3-41).
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Let us set up the functional dependence of It on T and p, for a homo-

geneous substance of fixed composition,

H - H(T, p) (3-42)

dp (3-43)

Because ff is a function of the state of the system, the value of dH for a

change in the state of such a substance is completely determined by Eq.

(3-43). Now from Eq. (3-37), which represents dH in experimental

terms according to the first law of thermodynamics, *

Recalling the definition (3-28),

/\
= L>

Introducing (3-39) and (3-44) in Eq. (3-43),

dH = Cp dT + (Lp + V)dp (3-45)

or, substituting for Lp its equivalent (3-31) based on the second law of

thermodynamics,

dH = Cp dT + (1
- <*T}V dp (3-46)

This equation enables us to express //r
, p at any given temperature T and

pressure p, relative to H
TtJ the enthalpy at T8 and p ,

in terms of (7, the

heat capacity at the constant standard pressure po, and equation-of-state

data at the constant temperature T:

HT
, P
- H Tt

= r Cp dT + f
P
(l- aT)V dp (3-47)

JT, Jpo

The value of the first integral on the right of Eq. (3-47) is of course equal
to the total quantity of heat absorbed by the substance as it is heated at

the constant pressure po from temperature T8 to temperature T (assuming
that it undergoes no phase transition in this interval), and could be

established directly by straightforward calorimetry ;
it is customary how-

ever to translate the experimental heat measurements in terms of C as a

function of T
7

,
rather than of HQ

T itself
;
the data are then ia a form inde-

pendent of the particular reference temperature T8 from which AH may
be measured, and, furthermore, C varies with T much less rapidly than

Bl itself.
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The absolute value of the enthalpy of a given thermodynamic system
in any one state has no assigned meaning, any more than has the absolute

value of the internal energy. However, it is possible for us to assign on

the basis of the thermochemical principles to be discussed in Chap. 4

relative values H
a
to different chemical substances at the same standard

temperature and pressure, representing their standard molal enthalpies

with respect to the chemical elements. Equation (3-47) then enables us

to extend these so-called enthalpies offormation to other temperatures and

pressures. Indeed, for those problems in which the composition of the

substance under investigation undergoes no change, as in the performance
of a steam engine, the relative value of HT

,P with respect to the standard

state value H^a
is all that is required, the value of H

s
itself being left

entirely arbitrary. The best choice of a standard reference temperature
in principle would be absolute zero on the thermodynamic scale; we shall

reserve the symbols UQ and HQ to designate the molal internal energy and

enthalpy in such a standard state; however, this choice is not feasible in

general because of the lack of sufficient heat-capacity data at low tem-

peratures. The practical standard reference temperature favored at

present is 25C, in line with the recommendations of G. N. Lewis and his

associates,
1 but much of the older thermochemical data were obtained

with reference to somewhat lower standard temperatures;
2
fortunately,

the correction to 25C is small, and can be made through Eq. (3-47) from

knowledge of the value of C. The standard reference pressure po for

solids and liquids is taken to be 1 atm; in the case of gases, because of

their uniform behavior in the low-pressure range, as represented by
the ideal-gas law, enthalpy values are taken with reference to a hypotheti-
cal ideal-gas state at 1 atm at the given temperature, in which the gas
would have the same enthalpy as in the limit at zero pressure; that is,

1 G. N. Lewis and M. Randall,
"
Thermodynamics and the Free Energy of Chemical

Substances,
" McGraw-Hill Book Company, Inc., New York, 1923. This choice has

been adopted by the National Bureau of Standards in its compilations, Selected

Values of Properties of Hydrocarbons, Nail. Bur. Standards Circ. C461 (1947), and
"Selected Values of Chemical Thermodynamic Properties," which has been distributed

by the National Bureau of Standards in loose-leaf form quarterly since Dec. 31, 1947.
2 For this reason, 20C was adopted in the "

International Critical Tables," Vol. V,
McGraw-Hill Book Company, Inc., New York, 1927, where incidentally the data

are all expressed in terms of international joules; 18C was adopted by F. R. Bichowski

and F. D. Rossini for their compilation,
"
Thermochemistry of Chemical Substances,"

Reinhold Publishing Corporation, New York, 1936, following the lead of the great

pioneers in the field of thermochemical investigation, Julius Thomsen ("Thermo-
chemische Untersuchungen," J. A. Barth, Leipzig, 1882-1886; "Thermochemistry,"

English translation by K. A. Burke; Longmans, Green & Co., Inc., New York, 1908)

and M. Berthelot ("Thermochimie; donn6es et lois num&iques," Gauthier-Villars

& Cie., Paris, 1897).
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HT is defined by the relationship: lim BT.,P
= RT,.

The actual values
p->0

of HT,,P for the gas at other pressures p (including 1 atm as a special case)

are related to HTt through Eq. (3-47), with the limits of integration in the

second integral taken to be from to p (note that for an ideal gas the

integrand would vanish, since a would equal 1/7
7

). The effect of pressure

on the enthalpy is slight for pressure changes of less than several atmos-

pheres magnitude; for ordinary variations in the barometric pressure, it

is altogether negligible.

Phase transitions of a chemical substance of fixed composition ordi-

narily take place at a constant pressure, determined by the temperature;
the so-called normal transition temperature corresponds by definition to a

fixed pressure of 1 atm. The latent heat of the transition thus measures

directly the difference between the enthalpies of the higher temperature
and the lower temperature forms at the given equilibrium temperature
and pressure. For example,

H2O(c, 0C, 1 atm) = H2O(1, 0C, 1 atm);
A# = Lei = 1436.3 cal/mole

H2O(1, 100C, 1 atm) = H2O(g, 100C, 1 atm);
AH = Ltg

- 9717.5 cal/mole

The symbol Lci designates the molal latent heat of fusion (heat absorbed

during the transition: crystal liquid), and the symbol LIO the molal

latent heat of vaporization (heat absorbed during the transition: liquid >

gas). Thus, by applying Eq. (3-47) from the standard state conditions

to the transition point, and then adding the enthalpy of the phase transi-

tion so measured by the latent heat, one can relate the enthalpies of differ-

ent phases of the same substance to a common reference state, that, for

example, of the phase stable at the reference temperature T8 and 1 atm.

The latent heat itself varies with the equilibrium temperature and pres-

sure, which are of course correlated. The molal enthalpy of either phase
varies with temperature and pressure according to Eq. (3-46) ;

therefore

the difference AH between the molal enthalpies of the higher temperature
and the lower temperature forms, which equals the molal latent heat of

the transition, varies with the equilibrium temperature and pressure

according to the equation

dT + A[(l
- aT)V]dp

where A(7P represents the corresponding difference between the molal heat

capacities at constant pressure, and A[(l aT}V] the corresponding
difference between the values of (1 aT)V at constant temperature.

Thus, let A//r represent the latent heat at the normal transition tern-
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perature, T at 1 atm; then

(7P dT +
*

A[(l
- a2T

)7]dp (3-48)

where A(7P is taken at constant pressure of 1 atm and the second integral

is evaluated at the constant temperature T, p representing the equilibrium

pressure at that temperature (e.g., the vapor pressure in the case of solid-

vapor or liquid-vapor equilibrium). For pressures below 1 atm (i.e., for

temperatures below the normal boiling point, in the case of liquid-vapor

equilibrium), the pressure integral is practically within experimental

error, but for pressures well above atmospheric, this is not necessarily

true; one then needs extensive equation-of-state data in order to evaluate

this integral. Equation (3-48) is readily generalized for transitions that

do not ordinarily exist at 1 atm (such as the vaporization of liquid COz) ;

let A/?T in that equation represent the latent heat of the transformation

at some known equilibrium temperature T and associated pressure p,
and let A(7P stand for the difference between the molal heat capacities of

the two phases at the constant pressure p ;
then the equation is correct,

provided that the range of integration of the second integral extends from

p to p, instead of from 1 atm to p. In few cases, however, does one have
sufficient experimental data to apply Eq. (3-48) accurately at pressures
much in excess of atmospheric.

3-4. Heat Capacities of Chemical Substances. The effects of pressure
on the internal energy and enthalpy of a chemical substance, according to

Eqs. (3-32) and (3-46), may be computed purely from equation-of-state

data, provided one makes implied use of the second law of thermody-
namics through the relation (3-31). The effects of temperature, however,
are represented in terms of the thermal property Cp ,

whose value cannot

be inferred from other nonthermal properties by purely thermodynamic
means. This section is devoted to methods of measuring heat capacities,

and to certain empirical rules for estimating their values when direct

experimental information is wanting.
The relationship between Cp and Cv has already been derived in Eq.

(3-41) in terms of equation-of-state data; therefore the experimental
establishment of either of these heat capacities at given temperature and

pressure serves, together with nonthermal data for the effects of tempera-
ture and pressure on the volume, to determine the other; the direct

thermal measurement of Cp at the practically constant pressure of the

atmosphere is generally far more convenient than that of (7V . Further-

more, the effect of pressure itself on the value of Cp at a given temperature

may be readily established in terms of equation-of-state data through the

application to Eq. (3-46) of Euler's criterion for dff to be a complete or
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perfect differential in terms of the two independent variables T and p

(see Appendix 1) :

dT^ p
(3-49)

Therefore all the purely thermal data one must measure in order to

describe the thermal properties of a given homogeneous chemical sub-

stance are summarized in an expression for the value of Cp at any one

fixed pressure, such as 1 atm, as a function of the temperature. If to this

information one adds the latent heats of phase transitions, as well as the

Cp values for the other phases, then one has characterized the thermal

behavior of the substance in all its phases. We shall use the symbol Cp

for pure liquids and solids to denote the molal heat capacity at constant

pressure of 1 atm; we shall use the same symbol for gases to denote

lim Cp,
which is equivalent to the actual Cp at 1 atm, corrected for

P-+O

deviation from the ideal-gas law by means of Eq. (3-49) integrated from

1 atm to 0.

For solids and liquids at low temperatures up to room temperature, the

most convenient method of measuring Cp is by means of electrical heating.

This method was first applied to solids by W. Gaede in 1902, and was per-

fected with particular application to low-temperature measurements by
Walther Nernst and his associates beginning about 1910. In Nernst's

vacuum calorimeter, the substance if it is itself a sufficiently good heat

conductor, such as a metal, serves as its own calorimeter; it is shaped to

the form of a hollowed block having a plug of the same substance fitted

into the hole; a heating coil of platinum wire is wound on the plug, insu-

lated by means of a paraffin coating, and the plug is then inserted into the

block. If the substance is either a liquid or a poor heat conductor, it is

placed within a hermetically sealed cup of silver or copper, around the

outside of which the heating coil is wound; the calorimeter is protected
from radiation losses by means of a layer of silver foil covering the heating

coil; for measurements down to liquid air temperatures, the cup remains

filled with air, but for measurements at lower temperatures, it must be

previously filled with hydrogen or helium; the gas is needed in order to

equalize the temperature rapidly throughout the vessel by means of its

thermal conductivity and convection. The entire calorimeter, whether

it consists of the substance itself or of the metal cup and contents, is sus-
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pended within a flask having an exit tube through which it may be evacu-

ated. It is brought to the desired initial temperature by immersion of

the flask containing the calorimeter and filled initially with air, hydrogen,
or helium, depending on the temperature range to be investigated, in a

suitable low-temperature bath: ice, liquid air, liquid hydrogen, or liquid

helium. It is then insulated from its surroundings by evacuation of the

flask to a high vacuum. Electrical energy is measured into the heating
coil in successive small amounts, each sufficient to raise the temperature

by about 1C; after each energy input, the resistance of the coil, which

may serve as the thermometer (though some investigators prefer to use an

independent thermometric resistance coil, separate from the heating coil),

is read at short intervals until it becomes steady, showing that thermal

equilibrium at the new higher temperature has been established; the ratio

of the quantity of energy put in [measured for example by the coil resist-

ance and the potential difference applied to the terminals in accordance

with Eq. (2-19)], corrected for losses by the leads and for thermal radia-

tion, to the rise in temperature gives the heat capacity at the mean tem-

perature involved. For poor thermal conductors, the heat capacity of

the empty calorimeter cup must be determined by a separate blank run,

and the heat capacity of the sample calculated by difference at each mean

temperature. F. Lange
1 eliminated the radiation correction by suspend-

ing the calorimeter within a brass cylinder inside the evacuated flask,

maintained by means of independent electrical heating always at the

same temperature as the calorimeter within; equality of temperature was

judged by means of a differential thermocouple, with one junction in the

calorimeter and the other in the jacket, a method that lends itself con-

veniently to automatic control over the heating of the jacket; the calorim-

eter then operates under essentially adiabatic conditions. Detailed

descriptions of typical modern adiabatic calorimeters for the measure-

ment of heat capacities at low temperatures have been given by W. F.

Giauque and R. Wiebe( University of California), J. G. Aston and C. W.
Ziemer (Pennsylvania State College), and H. L. Johnston and E. C. Kerr

(Ohio State University), while H. M. Huffman has recently described the

entire setup for the undertaking of low-temperature calorimetry, as con-

ducted at the Bartlesville Station of the U.S. Bureau of Mines. 2

The same type of calorimeter is used to determine the latent heat of

fusion, or the latent heat of transformation from one solid phase to

another, at low temperatures. The sample is heated electrically from a

1 F. Lange, Z. physik. Chem., 110, 343-362 (1924).

W. F. Giauque and R. Wicbe, J. Am. Chem. Soc., 50, 106-110 (1928); J. G. Aston

and C. W. Ziemer, ibid., 68, 1405-1406 (1946); H. L. Johnston and E. C. Kerr, ibid.,

72, 4733-4738 (1950); H. M. Huffman, Chem. Rev., 40, 1-14 (1947).
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temperature somewhat below the transition point to a temperature some-

what above it; by plotting the quantity of energy absorbed against the

temperature attained, and extrapolating from both directions to the

transition point itself, where of course a discontinuity exists, one can

determine the quantity of energy absorbed during the change of phase at

the transition temperature.

High-temperature heat capacities of solids and liquids are most con-

veniently measured by the method of mixtures; electrical heating offers

theoretical advantages, but these are more than offset by the increasing

difficulty at higher temperatures of guarding against radiation and con-

ductive losses. Water itself may be used as the calorimetric medium, but

in order to increase the range of measurement and to eliminate the error

resulting from the evaporation of water, a copper or aluminum block is

commonly used instead. The sample is preheated to the desired initial

temperature in a furnace tube mounted above the calorimeter block, in

which a cavity has been drilled to receive the sample; the sample is then

dropped into the cavity, and the rise in temperature read by means of a

group of thermocouples distributed at various points in the block; the

calorimeter is standardized by means of electrical heating.
1 This method

gives actually the mean heat capacity of the sample between its initial

temperature t and its final temperature to (that of the block). The latter

temperature may be kept uniform for a series of measurements on the

same substance by adjustment of the mass of the sample in relation to the

mass of the block as the sample's initial temperature t is varied; if from

such a series of measurements one then expresses the mean specific heat,

T, as a function of t in the empirical form

r = a + b(t
-

to) + c(t
- uy + . .

where (t to)T represents the observed total quantity of heat released

per unit mass of sample in cooling from t to to, then the instantaneous

specific heat cp at the temperature t is given in terms of the empirical con-

stants a, 6, c, ... by the formula

Tt
o " a

One could in principle express QP/M directly as an empirical function of

(t to), and then differentiate with respect to t in order to obtain cp,
but

1 Por detailed description of this type of calorimeter, see W. P. White, "The Modern

Calorimeter," Reinhold Publishing Corporation, New York, 1928. An ice calorimeter

for similar purposes has been described by D. C. Ginnings and II. J. Corruccini, J.

Research Natl. Bur. Standards, 38, 58&-591 (1947); the quantity of ice melted by the

sample is measured by the weight of mercury taken into the calorimeter to make up
for the volume decrease, the calorimeter being standardized by electrical heating.
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in practice the power series for T converges more rapidly and is therefore

more convenient for computation; the molal heat capacity Cp is of course

obtained from cp through multiplication by the substance's formula

weight
Cp

= Mcp (3-50)

The heat capacities of gases are difficult to measure directly because of

their low densities at ordinary pressures and the correspondingly large

volumes required in order that the quantities of heat involved may be

measured with adequate precision. The method of mixtures was used by
H. V. Regnault in 1862 to measure Cp \

he circulated the gas through a

copper-coil heat interchanger surrounded by water, which served as the

calorimetric medium; the gas was preheated to a known temperature, and
the mass flowing through the calorimeter was determined by measure-

ment of its volume as it emerged at the temperature of the calorimeter.

Holborn and Henning used a similar method, in which the preheated gas
was passed through silver tubes packed with silver filings to improve
thermal contact with the calorimetric medium, which consisted of paraffin

oil; in this way, they succeeded in measuring the heat capacities of gases

up to 1400C. 1 Continuous flow methods have also been used, in which
the gas flows at a known uniform rate over an electrically heated wire and
the rise in its temperature is measured. The value of Cv for hydrogen at

low temperatures was measured directly by A. Eucken in a special investi-

gation,
2
using essentially a Nernst vacuum calorimeter consisting of a

thin-walled steel vessel containing the gas, with a heating coil wrapped
around it; the method is feasible, however, only at low temperatures,
where the heat capacity of the metal container has fallen off so that it is

not much larger than that of the gas.

Several indirect methods for measuring the heat capacity are based on
direct measurement of the ratio

7 "
if

(3
~51)

This quantity may be measured directly from the temperature change

during adiabatic expansion, according to the theory discussed in Sec.

3-5
;

3
it may be obtained also from measurements of sound velocity in the

gas, which satisfies the well-known Newton relationship

(3-52)

1 L. Holborn and F. Henning, Ann. Physik, 23, 809-845 (1907).
2 A. Eucken, Sitzber. preusa. Akod. Wiss., Physik.-Math. Klasse, pp. 141-151 (1912).
8 See J. R. Partington, Physik Z., 14, 969-973 (1913); Proc. Roy. Soc. (London),

(A)100, 27-49 (1921).
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where p represents the pressure and p the density; for an ideal gas, this

[RT
expression reduces to u =

+1-^- 7- By combining the experimentally

established value of CP/CV with the value of Cp Cv from equation-of-

state data according to Eq. (3-41), which for an ideal gas reduces to

Cp
- Cl = R (ideal gas) (3-53)

one may calculate the value of Cp .

The purely thermodynamic methods of measuring the heat capacities

of gases have been supplemented, however, and in most cases superseded

by methods based on statistical molecular theory, the required molecular

properties being derived from analyses of their spectra; the spectra give

us essentially the various possible energy levels of the given kind of mole-

cule, and the statistical molecular theory, to which we shall give our

attention in Chap. 10, provides a general law for the distribution of mole-

cules among energy states. By the introduction of certain generaliza-

tions drawn from quantum mechanics, one may apply the statistical

method approximately even in the absence of detailed knowledge of the

spectrum. It will be useful for us to review briefly at this point some of

the generalizations that result from the statistical molecular theory, bear-

ing in mind that such information is essentially extrathermodynamic in

origin.

From straightforward kinetic theory, which treats the internal energy
of the gas as made up purely of mechanical energy, kinetic and potential,

associated with molecular motion, one may show that for an ideal

monatomic gas, whose energy at temperatures below the range of elec-

tronic excitation must consist entirely of translational kinetic energy,
2.981 cal/mole deg. According to Eq. (3-53), then,

4.968 cal/mole deg, and 7 = 1.667. These values represent
the limiting values for real monatomic gases as p > 0, the correction to 1

atm pressure being made in accordance with Eq. (3-49); this correction is,

however, practically negligible for most of the real monatomic gases, par-

ticularly at temperatures above their critical points. Table 3-1 includes

the experimentally determined values of 7 for several representative

monatomic gases, and one sees that the theoretical values are in excellent

agreement with the experimental values; the theoretical values of C and

(7 for these gases are in fact generally more reliable than the experimental,
in view of the errors inherent in the experimental methods.

Diatomic gases have, in addition to translational molecular kinetic

energy, rotational kinetic energy in two dimensions about the center of

gravity (there is none in the third dimension, about the line of centers,

because of the comparatively small moment of inertia about this axis),
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which contributes at ordinary temperatures a term R to the molal heat

capacities; there will be, furthermore, a contribution corresponding to

vibrational energy, which at sufficiently high temperatures also approaches
the value R. The temperature region at which the contribution of vibra-

tional energy to the heat capacity begins to be significant depends in a

complex way on the fundamental frequency of vibration, which is a meas-

ure of the restoring force between the atoms as they are displaced from

their relative equilibrium position; the energy difference between succes-

sive vibrational-energy states is proportional to this fundamental vibra-

tion frequency (which appears in the infrared absorption spectrum, unless

the two atoms happen to be identical), so that if the frequency is high

(corresponding to a relatively strong restoring force), then it takes a com-

paratively high temperature to get appreciable numbers of the molecules

into excited vibrational-energy states. For many of the diatomic gases,

particularly those involving the smaller atoms, such as N2, C>2, and CO,
the vibrational heat-capacity term is negligible at ordinary room tem-

perature; for I 2 vapor, on the other hand, the vibrational-energy levels are

sufficiently closely spaced so that many different states are occupied at

ordinary temperatures, giving rise to a practically continuous distribution

of molecules with respect to vibrational energy and a contribution to the

molal heat capacity correspondingly close to the limiting value R. Thus,
we shall expect to find that for diatomic gases, (7 will fall within the range

7/iR to %R, or 6.96 to 8.94 cal/mole deg, with its value increasing through
this interval with increasing temperature; molecules consisting of the

larger atoms having smaller force constants (ratios of restoring forces to

displacements from equilibrium positions) and comparatively low funda-

mental vibration frequencies will tend to attain the upper limit at lower

temperatures than molecules of the smaller atoms having larger force con-

stants and comparatively high fundamental vibration frequencies. The
value of 7 will fall in the corresponding range, 1.40 to 1.29. Experimen-
tal results for several representative diatomic gases are included in Table

3-1
; Fig. 3-1 shows how C for oxygen gas varies with temperature over

the range 200 to 1500K
One will note that the change of CQ

P with temperature for a diatomic gas
is entirely the result of the quantization of the vibrational-energy states,

which when the average molecular total energy is sufficiently low (as at

low temperatures) restricts the accessibility of the higher vibrational-

energy states; if the vibrational energy could increase by continuous

degrees, as the translational kinetic energy apparently does at ordinary

temperatures, then we should expect an equalization on the average
of the molecule's energy among all its degrees of freedom; i.e., the mean
vibrational kinetic energy, which represents half the mean total vibra-
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TABU-: 3-1. HEAT CAPACITIES OF GASES

For footnotes, see page 95.
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tional energy (the other half being potential energy), would equal the

mean translational kinetic energy %RT (per mole) in any one of the three

spatial dimensions, thus leading to R as the "classical" contribution of

any single mode of vibration to the molal heat capacity. Because the

vibrational-energy levels are discrete, however, a molecule must acquire a

T(K)
FIG. 3-1. Heat-capacity curve, &p vs. T, for Os(g). (Data from "Selected Values of
Chemical Thermodynamic Properties," Series III, National Bureau of Standards, Washing-
ton, D.C., March 31, 1949.)

certain minimum increment of energy in order to get out of the lowest

into the next from the lowest vibrational state, and at sufficiently low

temperatures, few molecules have a chance of acquiring that much extra

energy by means of the collisions that distribute the energy of their ther-

mal i^otion; most of them must therefore stay in the lowest vibrational

state until such a temperature has been reached that an appreciable frac-

NOTE: &P values are taken from "
Selected Values of Chemical Thermodynamic Properties," National

Bureau of Standards, Washington, D.C., 1948, except values for 0x112, CzH*, CsHu, and CsHg which

are taken from Selected Values of Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461 (1947);

these values have been derived by critical evaluation of both calorimetric and spectroscopic sources,

and are in general independent of the 7 values given in the table. The 7 values are taken from the

compilation by A. Leduc, in the "International Critical Tables," Vol. V pp. 7^-84, McGraw-Hill
Book Company, Inc., New York, 1929, except where otherwise noted; most of these values were obtained

directly from sound velocity measurements.
* Nominal value = %R\ direct calorimetric measurements have been made on argon and helium,

but for all the other monatomic gases at temperatures up to several thousand degrees, the theoretical

value, %R, is believed to be precise within experimental error, as shown by the values of the more

easily measurable 7. Mercury, potassium, and sodium vapors contain small proportions of diatomic

molecules, decreasing with increasing temperature and decreasing pressure.

t Limiting value for p*Q, obtained by Scheel and Heuse, as reported by J. R. Partington and W. G.

Shilling, "The Specific Heats of Gases," D. Van Nostrand Company, Inc., New York, 1924.

t Limiting value for p > 0, obtained by W. H. Keesom et aZ., as reported in Landolt-Bornstein,
"
Physikalisch-chemische Tabellen," 5th ed., Supplement IIIc, p. 2323, 1936.

Values for higher gaseous homologues of the alkano series at 25C increase by approximately 5.760

cal/mole deg per CHs group added; the same increment is found in other homologous series, beyond
the first few members; see Natl. Bur. Standards Circ. C461.
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tion of molecules may have sufficient total energy to get into the second

and higher vibrational-energy states. Now, the rotational energy is also

quantized, but the energy differences between the lower rotational states

are generally much smaller than the differences between vibrational states.

If, however, one can cool the diatomic gas to sufficiently low temperatures,

then the effect of quantization of the rotational energy may make itself

felt in a decrease of the heat capacity. This effect is shown strikingly

in the case of hydrogen (Fig. 3-2), as discovered by A. Eucken in 1912;

here, even at room temperature, (7 is slightly below the lower limit

8 6.0
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FIG. 3-2. Heat-capacity curve, <V vs. T, for H 2(g). (Data from 298^ up from
"
Selected

Values of Chemical Thermodynamic Properties," Series III, National Bureau of Standards,

Washington, D.C., March 31, 1949; data below 298 K from work of A. Eucken as reported in

"International Critical Tables," VoL V, p. 82, McGraw-Hill Book Company, Inc., New York,

1929.)

characteristic of other diatomic gases at temperatures below the range of

significant vibrational excitation; but by 60K, C for this gas has fallen

to the value of %JR shown by monatomic gases, and we have the remark-

able result that below this temperature, H2 molecules behave physically

like the molecules of a monatomic gas; in other words, the rotational

energy in this range is "frozen," in the sense that few of the molecules can

acquire sufficient total energy to get into the higher rotational states.

One of the noteworthy achievements of quantum mechanics has been the

quantitative solution of this problem. Certain diatomic gases whose

atoms are identical, including N*, C1 35C1 35
,
D2 ,

and particularly H 2 itself,

show a further complexity in the rotational contribution to the heat

capacity at low temperatures, because of nuclear spin isomerism. Hydro-
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gen, for example, consists of two isomers, parahydrogen, in which the

spins of the two nuclei are paired in opposite directions, and orthohydro-

gen, in which the spins are in the same direction; these two forms can

occupy according to general quantum theory only the even or only the

odd rotational-energy levels, respectively; ordinary hydrogen consists of

an equilibrium mixture (at ordinary temperatures) of three orthohydrogen
molecules to one parahydrogen molecule, but at temperatures of order

60K, where the molecules tend to get into the lowest or zeroth rotational

state, which is an even state, orthohydrogen becomes metastable with

respect to transformation into parahydrogen, a change that can be

"0 200 400 600 800 1000 1200 1400 1600

T(K)

FIG. 3-3. Heat-capacity curve, Cp va. T, for ethylene C2H4(g). (Data from "Selected

Values of Properties of Hydrocarbons," Nad. Bur. Standards Circ. C461, 1947.)

accelerated by adsorption of the gas on activated charcoal; in this way,

pure parahydrogen has been prepared, and its contribution to the heat

capacity of ordinary hydrogen (the 3:1 orthohydrogen-parahydrogen

mixture) established. The entire phenomenon has received a satisfactory

theoretical treatment in terms of quantum mechanics. 1

The molal heat capacities of polyatomic gases are in general larger and

increase more rapidly with temperature than the heat capacities of dia-

tomic gases (see Table 3-1 and Fig. 3-3). This is the result of additional

fundamental modes of vibration; for nonlinear molecules, there are

(3N 6) such modes of vibration, each potentially capable when fully

excited by sufficiently high temperature of contributing R to the heat

1 For further details of this remarkable and interesting subject, the reader is referred

to A. Farkas, "Orthohydrogen, Parahydrogen and Heavy Hydrogen," Cambridge

University Press, New York, 1935.
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capacity, where N is the number of atoms in the molecule; the rotational

energy also contributes %R instead of R to the molal heat capacity of

nonlinear molecules at ordinary and high temperatures. In general, the

more complex the molecule is, the more likely it is that there will be cer-

tain vibrations relatively easily excited; energy may thus be absorbed in

increasing the mean molecular vibrational energy in several dimensions,

whereas there is vibration possible in but a single dimension in the case of

diatomic molecules. From a detailed knowledge of the infrared and

Raman spectra, one can establish the rotational-vibrational energy levels,

and by the application of the molecular statistical methods to be described

in Chap. 10 one can determine the relative molecular population of each

level at a given temperature; this information can be used to determine

the heat capacity with high precision, though the computation becomes

laborious for the more complex types of molecules. Most of the currently

accepted heat capacities of gases have been obtained by this means.

The molal heat capacities of crystalline solids show certain regularities

first successfully accounted for by a theory proposed by P. Debye.
1

L. Boltzmann had previously attacked this problem by assuming that in

a monatomic crystalline solid each atom executed simple harmonic oscilla-

tions about its equilibrium position in the crystal lattice, with kinetic and

potential energies on the average equal; by supposing that the kinetic

energy of this motion had the same mean value as the three-dimensional

kinetic energy of translation of gas molecules at the same temperature,

%RT Per mole, he was led to a value of 3RT for the internal energy, and

hence to C = 3/2. This value, 5.96 cal/mole deg, was in remarkably

good agreement with the empirical rule discovered by P. L. Dulong and

A. T. Petit in 1819, but like that rule, gave no clue to the well-known

exceptions to the rule, such as the heat capacities of carbon and silicon.

Further experimental work on the heat capacities of the metallic elements

at low temperatures showed that the exceptions to the rule of Dulong and

Petit were themselves part of a general pattern, for all the metals show a

falling off of the heat capacity as the temperature is lowered sufficiently,

diamond and silicon merely showing this effect at much higher tempera-
tures than silver or lead. Albert Einstein in 1907 improved greatly on

Boltzmann's treatment by assuming that the vibrational motion of the

atoms in the crystal had a common fundamental frequency, but that the

energy of the motion was quantized;
2 he adapted to this purpose the

formula for the energy levels of a harmonic oscillator that had been found

necessary by M. Planck in order to develop a correct theory of thermal

radiation; this formula [see Eq. (10-113)] states essentially that the energy
1 P. Debye, Ann. Physik, 39, 789-839 (1912).
2 A. Einstein, Ann. Physik, 22, 180-190 (1907).
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of such an oscillator can increase only by integral multiples of the funda-

mental vibration frequency, which is a fixed property of the particular

kind of oscillating system. Einstein was thus able to account for the

decrease in C with falling temperature in terms of the same principle we
now use to account for the change with temperature of the vibrational

contribution to the heat capacities of diatomic and polyatomic gases; in

fact, the one-dimensional form of Einstein's equation is actually used for

this latter purpose, as we shall see in Chap. 10 [Eq. (10-1 18&)], but his

equation for the heat capacities of solids left much to be desired in the

way of quantitative agreement with experiment, mainly because the

atoms of a crystalline solid are not free to oscillate independently of each

other.

In Debye's treatment, the internal energy is supposed to consist of

quantized energies of vibrations of the crystal as a whole, taken to be a

continuous elastic solid; there are then 3N (or more precisely, 3N 6)

fundamental frequencies of vibration, where N represents the number of

oscillating units, i.e., the number of atoms in the monatomic crystalline

solid body; the number of these fundamental frequencies falling within a

given frequency range can be deduced from straightforward mechanical

theory of an isotropic elastic medium. 1 The formula that Debye finally

obtained by this treatment is

where is a constant for the given monatomic crystalline solid, called its

characteristic temperature, whose value may be computed entirely from

the elastic constants of the crystal (Poisson's ratio, and the coefficient of

compressibility, together with the density), or may be obtained empiri-

cally from the observed C vs. T relationship (only a single measurement

of dl at some one temperature, preferably near the middle of the range
over which it is changing most rapidly with T

7

,
is theoretically necessary

for the reconstruction of the entire C vs. T relation). The definite

integral appearing in Eq. (3-54) cannot be represented in terms of familiar

analytical functions, but the values of the entire expression define a

universal function of 0/T known as the Debye function, D(0/T) }
and

have been tabulated through numerical integration (see Appendix 4);

the function (0/T) f
T/*

D(0/T)d(T/0), which represents the value of

(J7J V^)/Ty
has also been tabulated for various numerical values of

T/0, as have the values of certain other thermodynamic functions deter-

1 An excellent discussion of Debye's theory is given by J. K. Roberts, "Heat and

Thermodynamics/' 3d ed., Chap. XXI, Blackie & Son, Ltd., Glasgow, 1940.
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mined by C by means of the second law of thermodynamics.
1 In

Fig. 3-4, the Debye function D(0/T) has been plotted against T/0, and on

the graph values of C have been plotted for several monatomic regular

crystalline solids, with appropriate values of 6 assigned; one sees that

the agreement with theory in these cases is very good.

Lewis and Gibson2
pointed out that the Debye equation is a special

form of the more general concept that C is a universal function of the

temperature on a scale T/0 characteristic of each monatomic crystalline

FIG. 3-4. Heat capacities of monatomic crystalline solids. The solid curve represents the

Debye function, D(d/T) t given by Eq. (3-54).

substance. Thus, if one plots Cv against log T, one should obtain a

family of similar curves for different monatomic crystalline solids, which

can be made to coincide by horizontal displacements measuring the rela-

tive magnitudes of log 0. The empiricalfact that this is so is quite inde-

pendent of Debye's theory. According to the Debye function, 8 repre-

sents the value of T at which C happens to equal 2.856JB; a similar

characteristic temperature may be defined, however, in terms of any
other fixed value of C, and Lewis and Gibson chose to define their 8 as

the temperature at which C = %R [about YQ (Debye)], this being

about the mid-point of the curve, where C is most sensitive to T. Figure

1 See Landolt-Bornstein, "Physikalisch-chemische Tabellen," 5th ed., Supplement

I, pp. 705-707 (1927). These values should be multiplied by 1.00076 to allow for

revision in the value of R.
2 G. N. Lewis and G. E. Gibson, J. Am. Chem. Soc., 39, 2554-2581 (1917).
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3-5 shows their standard heat-capacity curve, C vs. log (T/0), plotted
with appropriate values of 6 for Al, Cu, Pb, and C (diamond) ;

from it, one

may construct the entire heat-capacity curve of any regular monatomic

crystalline solid from a single accurate measurement of C at a tempera-
ture not too distant from 0.

Al* Cub PbQ, Co
FIG. 3-5. Standard heat-capacity curve for regular monatomic crystalline solids, Cv vs.

log (T/0). [From G. N. Lewis and G. E. Gibson, J. Am. Chem. Soc., 39, 2560 (1917), with

permission.]

Some of the elements, such as I2(c), crystallize in molecular lattices,

while others, such as graphite, crystallize in lattices showing a certain

degree of complexity; to these, the Debye theory in its original form does
not apply. On the other hand, many ionic compounds consisting of

monatomic ions, such as NaCl and CaF2, satisfy the Debye theory excel-

lently, with appropriately assigned values of 0, provided that one multi-

plies D(6/T) by a factor to take into account the number of ions repre-
sented by the formula, e.g., 2 for NaCl, 3 for CaF2 ,

etc.

The principal results of Debye's heat-capacity theory may be summa-
rized as follows:

1. Cv for crystalline solids consisting of independent monatomic par-
ticles arranged in a regular pattern is represented as a universal function

of 6IT involving the single parameter 9.



102 PRINCIPLES OF CHEMICAL THERMODYNAMICS

2. In the limit as T - (in practice, when T < 0/12)

Cl = aT* (3-55)

where for regular monatomic crystals the constant a has the theoretical

value 127r4
jR/50

3
,
or 464.S7/0

3 in cal/mole deg; but even for many complex

crystalline solids that do not satisfy Debye's formula at higher tempera-

tures, it has been found that the law (3-55) is satisfied at sufficiently low

temperatures, with a regarded as an empirically determined constant.

3. At sufficiently high temperatures, C approaches the theoretical

value 3/2, according to the limiting form

(t = 3R l - (3-56)

so that the law of Dulong and Petit is satisfied within 1 per cent when
T > 2.20; actually, C at high temperatures approaching the melting

point may increase beyond 3/2, partly because energy begins to be

absorbed in electronic excitation, and partly because the Debye picture is

oversimplified when one is considering a crystalline solid in which the

vibrational motion is so extreme that the crystal is about to lose its

stability.

In the calculation of Cp from C by means of Eq. (3-41), one does not

always have available all the necessary equation-of-state information,

particularly at extreme temperatures. For the metals, one may make
use of a relation established experimentally and on theoretical grounds by
E. Griineisen in 1908: the ratio of a to C is approximately constant with

temperature ;
since furthermore V and /? vary but slightly with tempera-

ture, we may recast Eq. (3-41) in the form

Cp
- Cv = AC\T (3-57)

where A = Va?/&C*> may be evaluated approximately from data obtained

at any one temperature; e.g., for silver, A = 2.3 X 10~~ 5
mole/cal from

above room temperature down to about 200C (see also Prob. 3-19,

containing data for copper).

Debye's method has been improved and extended to molecular crystals

by the work of M. Born and T. von Kdrmdn, and more recently by the

work of M. Blackman. 1
Here, account is taken of the interatomic vibra-

tions of the different kinds of atoms with respect to each other, as well as

vibrations of the crystal as a whole; Blackman has attempted to take

account also of the effect of the discrete structure of the crystal on the

1 There is an excellent review of this work by M. Blackman in Reports on Progress
in Physics, Phys. Soc. (London), 8, 11-30 (1941).
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motion of individual atoms. Such investigation has led to more or less

complex heat-capacity formulas in close agreement with experiment for

certain types of crystalline compounds.
In the absence of experimental data, one may roughly estimate the

molal heat capacities of the simpler crystalline compounds by assigning

independent additive contributions for the various elements present, as

shown by H. Kopp and F. C. Neumann. Thus, for estimating C over

the range 18 to 100C, one may use the following empirical atomic heat

capacities, in cal/mole deg: metals =
6,2; C =

1.8; H =
2.3; B =

2.7;

Si = 3.8; O = 4.0; F = 5.0; S =
5.4; P =

5.4; Cl =
5.4; Br =

6.2;

I = 6.2. For example, for CaC0 3,
one estimates a value of

6.2 + 1.8 + 3 X 4.0 = 20.0 cal/mole deg

whereas the observed value of Cp at 25C is 19.76 cal/mole deg. It

should be emphasized, however, that the additive rule is quite approxi-

mate, and not always dependable.

Heat-capacity data for a variety of inorganic substances have been

compiled by K. K. Kelley.
1

Kelley has shown that it is possible for one

to represent high-temperature molal heat capacities empirically by means
of three-constant equations of the form

Cl = a + bT + cT* . (3-58)

or, even more suitably, of the form

Cp
= a' + VT - cT-2

(3-59)

Such equations, with empirically determined constants, can be fitted to

the experimental heat-capacity data in many cases with a precision of

1 per cent over a range of 1000K or more (from 273K up); the range
must always be explicitly stated, the equation having no significance out-

side the stated range. Equation (3-59) has an advantage over Eq. (3-58)

in that it integrates giving no power of T higher than the second, when
one wishes to represent RT as a function of T [Eq. (3-47)]. In Kelley's

valuable compilations, values of the empirical constants fitting either Eq.

(3-58) or Eq. (3-59) to the data are given for all inorganic gases, liquids,

and solids for which sufficiently precise and comprehensive high-tem-

perature heat-capacity data were available at the time of publication.

Low-temperature heat capacities are reported at various temperaturesw
1 Heat capacities at low temperatures (below 25C) are given by K. K. Kelley in

A Revision of the Entropies of Inorganic Substances 1935, U.S. Bur. Mines Butt.

394 (1930); heat capacities at high temperatures (above 0C) are given in High-

temperature Specific-heat Equations for Inorganic Substances, U.S. Bur. Mines Butt.

371 (1934); the data are represented in 15 calories.
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covering the range from 10 to 298.1K. This work is being extended by
F. D. Rossini and his staff at the National Bureau of Standards as part
of the project,

"
Selected Values of Chemical Thermodynamic Properties."

Heat-capacity data for hydrocarbons in particular are to be found in the

compilation, Selected Values of Properties of Hydrocarbons, prepared by
the National Bureau of Standards in cooperation with the American
Petroleum Institute;

1 some of these data have been cast in the form of

empirical equations such as (3-58) and (3-59) by H. M. Spencer.
2 Selected

heat-capacity data are included in Appendix 3.

3-6. Thermal Behavior of Gases. The thermal behavior of gases

shows certain general aspects associated with the universal equation of

state

pV = RT (ideal gas) (3-60)

which all normal gases satisfy in the limit as p > 0, and with regularities

in the way in which they deviate from ideal-gas behavior at finite pres-

sures. As we have noted in Sec. 3-1, the equation (3-60) is equivalent to

the conditions

a = i; /3
= i

(ideal gas) (3-61)

If we introduce these conditions in Eqs. (3-32) and (3-46), which repre-

sent in general how U and H vary with temperature and pressure, we
obtain

dU = Cv dT; dH = Cp dT (ideal gas) (3-62)

where C and C are related as in Equation (3-53) by:

Cp
- Cv

= R (ideal gas) (3-63)

In other words, U and H for an ideal gas depend only on the temperature,
and are independent of the pressure [note that by applying Eq. (3-49) to

an ideal gas satisfying Eq. (3-60), we may show that Cp would itself be

independent of the particular pressure, and by implication through Eq.

(3-63), therefore, so would CJ. The validity of Eqs. (3-62) depends
on Eq. (3-31), which is based on the second law of thermodynamics; they
cannot be proved by deduction solely from the first law and the ideal-

gas equation of state. Their experimental verification for real gases at

such pressures that Eq. (3-60) more or less exactly describes their p-V-T
relationships thus constitutes in a sense confirmation of the second law

of thermodynamics, which we shall introduce directly in Chap. 5.

1 Selected Values of Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461

(1947).
2 H. M. Spencer, Ind. Eng. Chem., 40, 2152-2154 (1948).
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The experimental test of Eqs. (3-62) has been put in several different

but equivalent forms. Thus, if one has two vessels connected through a

stopcock, and fills one vessel with gas but evacuates the other, then when
one opens the stopcock between the vessels, the gas can expand and its

pressure fall under conditions such that no work is done on or by the

surroundings (so-called free expansion) ; any change in internal energy
of the gas under such conditions must necessarily be accompanied either

by an equivalent quantity of heat gained from or lost to the surroundings,
in accordance with Eq. (2-25), or by a change in the temperature of the

gas itself. The first such experiments were conducted by J. L. Gay-
Lussac in 1807 on air; he observed that no net temperature change
occurred in the gas itself, the momentary initial drop on the high-pressure
side being exactly compensated, within experimental error, by an equiva-
lent rise on the other side. This experiment was refined in 1845 by J. P.

Joule, who immersed the entire system in water, so that any net heat

entering or leaving the gas would be indicated by a corresponding change
in the temperature of the water; he could detect no change when air

originally at a pressure of 22 atm was allowed to expand freely into the

initially evacuated receiver. The method is not particularly sensitive,

however, for detecting the small changes in internal energy that we now
know do take place.

1

In 1852, J. P. Joule and William Thomson (Lord Kelvin) devised their

famous porous-plug experiment, by means of which the effect of pressure

1 A modification of Joule's original experiment was proposed by E. W. Washburn,
J. Research Nail. Bur. Standards, 9, 521-528 (1932). He proposed allowing the

compressed gas in a bomb to leak out slowly to the pressure of the atmosphere, main-

taining the temperature constant by means of electrical heating. Thus if Q represents
the quantity of energy received from the heating coil,

+ p9 A7 (T const)

where the second term on the right denotes the work done by the gas against the

barometric pressure p8 as its volume increases by AV. F. D. Rossini and M. Frandsen

/. Research Nail. Bur. Standards, 9, 733-747 (1932), tried the experiment on air,

oxygen, and mixtures of C(>2 with oxygen, and found that (dU/dp)T was practically

constant between and 40 atm; thus, for air at 28C,

. (dU/dp) T - (At7/Ap)r * -1.453 cal/mole atm

and for O 2 at the same temperature, (dU/dp^T = 1.556 cal/mole atm. The method
is feasible only if the value of (dU/dp)r is negative; thus, hydrogen or helium at room

temperature would tend to give up energy themselves as the pressure fell. The

investigation was undertaken for the purpose of obtaining data for the correction

to 1 atm of heats of combustion measured with the oxygen bomb calorimeter.
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on the thermal properties of gases can be detected sensitively, even when
the deviation from ideal-gas behavior is quite small. In this experiment,
a compressed gas maintained at fixed initial pressure po (4.5 atm in the

original experiments of Joule and Thomson, but much higher initial pres-

sures have been employed by later investigators) is allowed to flow

steadily through a porous plug of cotton, or an ordinary throttle valve,

which in effect blocks free expansion but maintains a constant drop in

pressure down to the escaping pressure p (1 atm in the original experi-

ments) ;
the temperatures To and T on either side of the plug are measured,

at distances back sufficiently far from the plug so that the flow is free of

eddies and temperature inhomogeneities; the section of the tube between

the two thermometers, including the plug, is packed in insulation to pre-

vent any exchange of heat with the surroundings; the initial temperature

To is controlled at will by circulation of the incoming compressed gas

through a coiled tube immersed in a water bath or an air bath maintained

at the desired temperature. Under the conditions of the experiment, a

volume VQ of gas is forced into the plug at the pressure po, while a corre-

sponding volume V comes out on the other side at pressure p; the net

work done by the gas in expanding against the throttling reaction of the

plug is thus

W = pV - p Vo

Since the expansion is being carried out under adiabatic conditions, this

work must be at the expense of the internal energy [Eq. (2-24)],

U - Uo = -W = -pV + poVo (Q = 0)

Thus
U + pV = Uo + PoVo

The enthalpy of the gas stays constant as it passes through the plug.

Now, the general relation connecting the enthalpy, the temperature, and
the pressure is Eq. (3-46); let us define the differential Joule-Thomson

coefficient /* by means of the expression

Then, according to Eq. (3-46),

(aT -
M =-

^
-'

(3-65)
^2>

By starting with given values of To and pQ and varying p, the pressure at

which the gas escapes on the low-pressure side of the porous plug, one can

measure the corresponding value of T, and by plotting T vs. p, establish

the isenthalp (curve of constant enthalpy) passing through the point
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(To, po) for fixed mass of gas; the value of M at given (T
f

, p), which is an

intensive property of the substance, is equal to the slope of the isenthalp

passing through that point. Figure 3-6 presents isenthalps so constructed

for nitrogen, from experimental work of J. R. Roebuck and H. Osterberg;

in Fig. 3-7, /x, represented by the slopes of the curves appearing in Fig.

3-6, is plotted against temperature at a series of constant pressures. The

integral Joule-Thomson effect represented by the curves in Fig. 3-6 may
be put in the form

\p (3-66)

where the integral on the left is to be evaluated at the constant pressure p
at which the gas emerges from the

plug, and the integral on the right

at the constant temperature T at

which the gas enters the plug; we
could equally well have expressed

this relation by taking the integral

on the left at the constant pressure

po and the integral on the right at

the constant temperature T, except
that TO is usually the known con-

trolled temperature in experiments
of this kind. The integral on the

right is completely determined by
the equation of state of the gas, a

consequence of our having intro-

duced the second law of thermo-

dynamics implicitly through the re-

lation (3-31); therefore Eq. (3-66),

which is the equation for the isen-

thalp through the point (To, po),

may be solved for T at given p if

we know in addition to the equation
of state how Cp varies with tem-

perature at the constant pressure p.

For certain purposes, however, it is

useful for us to regard /z itself as a

directly measurable property of the

gas, which we can determine without knowledge of its equation of

state. Typical values for several gases at 1 atm pressure are given in

Table 3-2.

50 150 200100

p (otm)

FIG. 3-6. Temperature vs. pressure curves
at constant enthalpy for N2(g) from Joule-
Thomson measurements by J. R. Roebuck
and H. Osterberg. Circled point repre-
sents the critical temperature and pressure.
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By introducing Eq. (3-65) in Eq. (3-46), we may readily express the

dependence of H on the pressure for a real gas in terms of the property M>

dH = Cp dT - MCP dp (3-67)

This relation constitutes the generalization for real gases of the ideal-gas

relation (3-62) ;
in other words,

(3-68)
dp

FIG. 3-7. Joule-Thomson coefficient of N2(g), from data of J. R. Roebuck and H. Oster-

berg, corrected by Professor Roebuck for a calibration error in the original pressure readings.

Thus, for example, from the data in Table 3-2 and the value of Cp for He
at 0C and 1 atm, 5.004 cal/mole deg, given by Roebuck and Murrell, we

may infer that at that temperature and pressure, BT is changing with pres-

sure at the rate of -(-0.061 6 deg/atm) (5.004 cal/mole deg) = +0.3082

cal/mole atm, and similarly from Cp
= 6.909 cal/mole deg for N 2 at the

same temperature and pressure,
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(dH/dp) T = -(0.2655 deg/atm) (6.909 cal/mole deg)
= -1.8343 cal/mole atm

One sees that experimental establishment of the value of the Joule-Thom-

son coefficient is indeed an extremely sensitive means of detecting small

effects of pressure on the enthalpy, or what is equivalent, slight deviations

from ideal-gas behavior.

TABLE 3-2. DIFFERENTIAL JOULE-THOMSON COEFFICIENTS AT 1 ATMOSPHERE
PRESSURE*

dp )n

* Data for hydrogen, nitrogen, and air, from J. R. Roebuck and T. A. Murrell, in "Temperature.
Its Measurement and Control in Science and Industry," pp. 60-73, Reinhold Publishing Corporation,-

New York, 1941; data for argon are from J. R. Roebuck and H. Osterberg, Phys. Rev., 46, 785-790

(1934). The other data are from J. R. Roebuck, in "International Critical Tables," Vol. V, pp.

144-146, McGraw-Hill Book Company, Inc., New York, 1929.

The sign of the Joule-Thomson coefficient, which is taken by definition

to be positive when the gas cools as its pressure drops, depends on the

relative magnitudes of a and l/T
7

;
if a > l/T, then the coefficient is posi-

tive and the gas tends to cool as it expands through the plug, but if

a < l/T, then the coefficient is negative and the gas tends to warm as it

expands through the plug; for an ideal gas, of course, a = l/T
7

,
and /*

= 0.

For the majority of gases around room temperature and pressure, the

value of /x is positive, but for hydrogen it is negative, though it becomes

positive at temperatures below 78C; for helium, likewise,the value of

M is negative at room temperature and pressure, but it becomes positive

below 228C. Further investigation shows that every gas has in fact a

characteristic inversion curve, or temperature-pressure relationship across

which the Joule-Thomson coefficient changes its sign; the inversion curve

for nitrogen is shown in Fig. 3-8. One sees that the inversion curve is

closed, the value of M being positive for values of T and p falling within the
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400

300

curve, but negative elsewhere; the entire curve happens to lie below room

temperature for hydrogen and for helium. To every pressure below a

certain maximum, there corresponds an upper and a lower inversion tem-

perature, of which ordinarily only the upper has any practical importance;
below the critical point, the lower

branch of the inversion curve be-

longs to the liquid state, and has

actually been followed experimen-

tally for certain condensed gases.

The so-called inversion point is

taken to be the upper inversion tem-

perature in the ideal limit as p >

(practically equal to the upper in-

version temperature at p = 1 atm).

The inversion of the Joule-

Thomson coefficient is clearly re-

lated to the interplay between the

two opposing van der Waals effects,

one the longer range effect of inter-

molecular attraction, and the other

200

ICC)

100

-200,
100 300 400200

p(otm)

FIG. 3-8. Inversion curve for the Joule-
Thomson effect in N2(g), as established by
data of J. R. Roebuck and H. Osterberg.

the shorter range effect of the finite

molecular volumes. 1 Where the

former effect predominates, as at

sufficiently low temperatures and
molecular concentrations, a will tend to be larger than the ideal-gas value

1/T; where the latter effect predominates, as at high molecular concen-

trations, a will tend to be smaller than 1/7
7

. It is instructive for us to

examine a simple equation of state in which an attempt has been made to

take these effects into consideration, such as the van der Waals equation
itself:

(3-69)

R
Differentiating with respect to V at constant pressure,

2a

Substituting from Eq. (3-69) in the second term on the left, multiplying

through by F, and multiplying numerator and denominator of the right-

1 These effects were first proposed by J. D. van der Waals in a paper printed origi-

nally in Dutch, "Essay on the Continuity of the Gaseous and Liquid States," Leiden,
1873.
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hand term by T
9

2a
(V 6) I

? RT- RT
V*

(V b> +
(V-V

K
T

Now, the condition for the inversion curve is that <xT'lnv = 1 [that is,

H = in Eq. (3-65)]; thus, for a van der Waals gas,

2o/F-6
Tim ~~

This equation suggests that for the gas in the low-pressure limit, where

V 6, the upper inversion temperature is given by

T** =
ffi

(Pinv-0) (3-71)

If one substitutes the well-known expressions for a and b in terms of the

critical constants, as given by the theory of corresponding states (all

tabulations of van der Waals' constants are compiled in this way), one

then obtains for the inversion point Tinv = 277V4; this expression, while

not accurate, is indicative of the order of magnitude of the inversion

point ; experimentally derived inversion points for several gases are given
in Table 3-3.

Another indicative relationship, connecting the inversion point and the

Boyle point, may be derived from van der Waals' equation; thus, Eq.

(3-69) may be rearranged in the form

The coefficient of p in the second term on the right of this equation deter-

mines essentially how pV varies with p for relatively low pressures, the

last term not becoming important until higher pressures are reached.

Now, the Boyle point is the temperature at which pV remains exactly

equal to RT over the low-pressure range; at temperatures below the

Boyle point, pV tends at first to decrease as p increases from up, while

at temperatures above the Boyle point, pV tends to increase as p increases

from up. Therefore the Boyle point of a van der Waals gas satisfies the

condition

jTrj
(3-72)

Thus, the inversion point in the zero-pressure limit should equal twice the

Boyle point on the absolute thermodynamic scale. This relationship can

be regarded only as a rough approximation, as the data included in Table
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3-3 show, but one sees in principle how the behavior of the inversion curve

for a given gas could be deduced exactly from an accurate equation of

state, known in sufficient detail. Since helium, hydrogen, and neon are

the only gases whose Boyle points are below room temperature, one can

readily perceive why all the other gases have positive Joule-Thomson

coefficients from room temperature down to their liquefaction tempera-

tures, at ordinary pressures.

TABLE 3-3. BOYLE POINTS AND INVERSION POINTS OF GASES*

(P -0)

* Values for helium are calculated by F. G. Keyes from precise equation-of-state data (" Tempera-
ture. Its Measurement and Control in Science and Industry/' p. 59, Reinhold Publishing Corporation,
New York, 1941); inversion points for the other gases are given by J. R. Roebuck and H. Osterberg,
J. Am. Chem. Soc,, 60, 351 (1938) ; Boyle points for the other gases are taken from experimental equation-
of-state data by L. Holborn and J. Otto, Z. Physik, S3, 1-12 (1925); 38, 359-67 (1926).

Equation (3-65) constitutes the second of the two practical methods

that have been used for the precise determination of the absolute ice

point on the ideal-gas or thermodynamic temperature scale, the first being
the limiting-density method of M. Berthelot described in Sec. 1-2. The
method based on the Joule-Thomson coefficient owes its precision to

improvements in the experimental technique of measuring /* developed

mainly through the work of J. R. Roebuck and his associates. 1 The pro-

cedure is essentially as follows : we may rearrange Eq. (3-65) in the form

-T -v- i v

'/
12 nn \/7'7

7 / '77 2

Integrating between limits To and T,

v FO r
2"

- /i\
T
~

To
=

JT
MCp ^W (3-73)

1 J. R. Roebuck, Proc. Am. Acad. Arts Sci., 60, 535-596 (1925); see also the reviews

by J. R. Roebuck and T. A. Murrell, pp. 60-73, and by J. A. Beattie, pp. 74-88, in

"Temperature. Its Measurement and Control in Science and Industry," Reinhold

Publishing Corporation, New York, 1941.
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all terms in this equation referring to a uniform constant pressure. Let

this pressure be 1 atm, and let TO denote the ice point; then if T represents

the steam point, T = To + 100K by definition on the absolute centi-

grade scale, we may write

To + 100 deg
-

rj
=

(1 deg)
\100degF

-1

L To(T + 100 deg) J

= / (3-74)

where / represents the value of the integral on the right of Eq. (3-73),

taken between the steam point and the ice point, to be evaluated directly

from experimental values of ju and Cp at constant pressure of 1 atm.

Since the values of Fioo and F
,
both at 1 atm, can be measured inde-

pendently with high precision, Eq. (3-74) may be solved for To. This

equation is quadratic in To, but it may be solved readily by successive

approximations in the following manner: let us note that the expression

(Vioo F )/100 deg VQ would for an ideal gas exactly define 1/T ;
its

difference from I/To for a real gas will therefore be a small number, whose

exact value depends on the extent to which the particular gas deviates

from ideal behavior at a pressure of 1 atm (see Table 1-2). Let this

difference 5 be defined by

* rioo Vo 1 , f?^8 -
(100 dcg)F

"
F.

(3
'75)

Upon substitution in Equation (3-74),

n + ioodeg-

Equation (3-76) may now be solved for the small correction 8,

from experimentally derived values of / and Vo, even though the value of

To in this equation is known only approximately; upon substitution of the

value of 6 so obtained back in Eq. (3-75), that equation can then be used

to compute T precisely; if necessary, successive approximations may be

applied between Eqs. (3-75) and (3-77), both of which are themselves

exact relations, to obtain the value of To as precisely as is warranted by
the precision with which the quantities F

, (Fioo VQ)/Vo, and nCp
(which determines the value of /) are known. The value of the integral /
defined by the right-hand member of Eq. (3-73) apparently also calls for

prior knowledge of To] one can evaluate this integral graphically, for

example, by plotting the value of /*CP vs. 1/T, and taking the area under



114 PRINCIPLES OF CHEMICAL THERMODYNAMICS

the curve between the abscissas corresponding to the steam point and the

ice point ;
but for this purpose, an approximate knowledge of TQ is suffi-

cient, because the integral is not a large number, and its value is not

sensitive to the precise value assigned to TQ; in any event, the value of /

too could be refined by the application of successive approximations,

involving the use of Eqs. (3-75) and (3-77). One will note that explicit

knowledge of the molecular weight of the gas is not necessary, even though
for convenience we have written our equations throughout in terms of

molal properties of the gas ;
for so long as V and Cp refer to the same mass

of gas, Eq. (3-73) would stand without regard to the formula weight

assigned.

Let us illustrate the computation of To with data obtained by Roebuck
and Osterberg for nitrogen.

1 The value of F for this gas at 0C and 1

atm is 800.0 ml/g, while the value of (Fioo F )/F according to Table

1-2 is 0.36700; the values obtained by Roebuck and Osterberg for /z at 1

atm and temperatures between and 100C are given in Table 3-4,

together with values of Cp ,
from which Roebuck and Murrell have derived

avalueof / = 0.001968 ml/g deg. Values of 1 /Abased on TQ
= 273.16K

are given in the last column of Table 3-4, but one may easily convince one-

TABLE 3-4. JOULE-THOMSON COEFFICIENT AND HEAT CAPACITY OF NITROGEN AT 1

ATMOSPHERE *

* J. R. Roebuck and T. A. Murrell, in "Temperature. Its Measurement and Control in Science

and Industry," p. 70, Reinhold Publishing Corporation, New York, 1941.

self that use of the approximate value, TQ
= 273K, would displace the

value of 7 by an insignificant amount. Solving Eq. (3-77) for 5,

0.001968 ml/g deg /273 deg
800.0 ml/g

0.0000092/deg

\100 deg
I *

where again, clearly, the precise value assigned to To in this relationship

does not have a sensitive effect on the result. Substituting back in

1 J. R. Roebuck and II. Osterberg, Phys. Rev., 48, 450-457 (1935); see also, Roebuck
and Murrell, op. cit., p. 70.
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Eq. (3-75),

7^-
= 0.0036700/deg - 0.0000092/deg

1 o

= 0.0036608/deg

To = 273.16K

This method utilizes entirely experimental data obtained at 1 atm pres-

sure, and eliminates the uncertainty introduced in Berthelot's method by
the extrapolation to zero pressure; similar data have been reported by
Roebuck for helium and for air. 1

The Joule-Thomson cooling effect has been of practical value in the

liquefaction of gases. Thus, in the Linde process for liquefying air,

described by C. Linde in 1895, regenerative cooling based on the Joule-

Thomson effect is used to take the gas from room temperature down

ultimately below its critical temperature (132.6K) ;
in other words, part

of the expanded air, cooled by expanding through the throttle valve, is

used to precool the compressed air as it passes from the compressor to the

throttle valve. Heat interchange between the incoming gas from the

compressor, which is first cooled to 20C by means of an ice-brine freez-

ing mixture, and the gas issuing from the throttle is effected by circulation

of the gas through a system of concentric tubes; since the Joule-Thomson

cooling becomes more effective as the temperature is lowered, the recycling

of part of the cooled gas through a second-stage compressor and throttle

valve provides sufficient cooling to liquefy it after the machine has run

through a few preliminary cooling cycles. The Joule-Thomson cooling

in a single stage is rather small, about 25 deg for air at an initial tempera-
ture of 20C, expanding from 100 atm to 1 atm, but regenerative cooling

permits the effect to become cumulative. Hydrogen must first be cooled

below its upper inversion point, 78C, in some other manner before fur*

ther cooling by means of the Joule-Thomson effect can be obtained
;
above

that temperature, the gas warms on expanding through the throttle valve.

By precooling hydrogen with liquid air, James Dewar was able to take

advantage of the Joule-Thomson effect to cool the gas below its critical

point, using the Linde method, and he succeeded in liquefying hydrogen
for the first time in 1898. Helium, the most difficult gas to liquefy, was

first liquefied by H. Kamerlingh Onnes in 1908, using essentially the same

method; he became convinced from a study of the equation of state of

helium at liquid hydrogen temperatures (14 to 33K) that its inversion

point lay above the normal boiling point of hydrogen (20.39K), and

therefore he precooled the compressed helium by means of liquid hydrogen
before permitting it to flow through the throttle valve.

1 J. R. Roebuck, Phys. Rev., 50, 370-375 (1936).
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The drop in temperature during a single stage of cooling by the Joule-

Thomson effect is given by Eq. (3-66), where p the final pressure is

ordinarily taken to be 1 atm; under this condition, for given initial tem-

perature To, the greatest degree of cooling is obtained for that particular

initial pressure po making the term on the right a maximum (where one

should bear in mind that the integral comprising this term is to be evalu-

ated at the constant temperature To). If we set up the condition for this

term to be a maximum by differentiating with respect to p and setting the

result (which is simply the integrand itself) equal to zero, we find on com-

paring with (3-65) that this condition is equivalent to starting with such

a pressure that p at the given temperature To is equal to zero; in other

words, the most effective initial pressure is the inversion pressure at the

given initial temperature; a higher initial pressure than this will actually

result in a lesser degree of cooling, because a higher pressure puts the gas

in a region in which /z is initially negative. The same condition applies

of course to any particular final pressure, whether it be 1 atm or some

other fixed pressure: the greatest degree of cooling consistent with the

given initial temperature To and final pressure p is always obtained when
the gas has been compressed to the inversion pressure corresponding to

the temperature To. For air at 20C, this pressure is about 200 atm.

The cooling of a gas by means of the Joule-Thomson effect, while

technically simple to carry out, is a rather inefficient process, since none

of the work that the compressed gas is potentially capable of delivering is

realized. The temperature can be lowered more efficiently by permitting

the gas to expand under adiabatic conditions against a piston, thereby

delivering back part of the mechanical energy that went into its compres-
sion. While the Joule-Thomson effect depends on deviation of the gas
from ideal behavior, adiabatic expansion against a piston offering mechan-
ical resistance can be used effectively to cool a gas whose behavior is prac-

tically ideal; much lower operating pressures are required than for Joule-

Thomson cooling. The principles, which are of general interest, may be

illustrated with reference to an ideal gas. Let us consider first what

happens as the gas is initially compressed, at essentially constant tem-

perature; under this condition, most of the energy spent on the gas in

compressing it flows off to the surroundings in the form of heat (if the gas
were insulated instead, its temperature would rise). Thus, in general, for

isothermal changes taking place in a real gas, according to Eq. (3-32),

(dU) T = (p/3
- Ta)V dp = d'Q-p dV (T const) (3-78)

But we have seen that for an ideal gas satisfying the equation of state

(3-60), U is a function of T only [Eq. (3-62)]; this is a consequence of the

ideal-gas equation of state combined with the second law of thermody-
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namics, and is demonstrated independently by the original Joule experi-

ment on gases at moderate pressures, within the range in which they

satisfy approximately the ideal-gas law. Hence, for an ideal gas,

(d'Q) T = (d'W) T = p dV = RT (ideal gas)

QT = WT = RT In S (ideal gas) (3-79)
Vi

= RT In l
(ideal gas) (3-80)

where p\ and 7i denote the initial pressure and volume, and p2 and F 2

denote the final pressure and volume. We have assumed here that the

gas is expanding or contracting against an external pressure at all times

equal to its own equilibrium pressure at the instantaneous volume and

temperature, as given by the ideal-gas equation p = RT/V. Equations

(3-79) and (3-80)' therefore really provide upper limits (in the algebraic

sense) to the work that can be done by the ideal gas, and to the equivalent

quantity of heat that can be absorbed from the surroundings. For

isothermal changes taking place in a real gas, we must replace Eqs. (3-79)

and (3-80) by the general relations

(3-81)

QT = //' p dV + I*" (pj8
- Ta)V dp

'

which are derived from Eq. (3-78), where again, the upper limits to the

values of WT and QT for a change between given initial and final states are

obtained if one introduces actual equation-of-state data in Eqs. (3-81);

but for an ideal gas, all the work done by the gas during expansion at con-

stant temperature is at the expense of an exactly equal quantity of heat

taken in from the surroundings, and, likewise, all the work done on the

gas during compression at constant temperature passes on as thermal

energy to the surroundings.

On the other hand, for adiabatic changes taking place in a real gas,

according to Eq. (3-32),

dU = (CP
- pVa)dT + (p/S

- Ta)V dp = -p dV (Q = 0) (3-82)

Now, for an ideal gas, the middle member of Eq. (3-82) reduces to C^dT
[Eq. (3-62)]; thus

d'W = p dV = RT~ = -C dT (ideal gas; Q = 0)

W = 1

Gl dT (ideal gas; Q - 0) (3-83)
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where

[
7

Tl

Cv d In T = R In J? (ideal gas; Q = 0)
t r i

Let us assume that Cl is sensibly constant with T; this is not necessarily

true for an ideal gas, but it may be approximately true over a temperature

range that is not too large, particularly for the simpler gases whose vibra-

tional energy terms do not contribute greatly to the heat capacity at

ordinary temperatures. This last equation then reduces approximately
to

Cl In H\ = R In fA (ideal gas; Q = 0)

Bearing in mind that for an ideal gas, according to Eq. (3-63),

R _

we obtain the following equivalent conditions for adiabatic expansion or

compression:

?r
= (^T

l

(ideal gas; Q = 0) (3-84)

-
(^}

i (ideal gas; Q = 0) (3-85)

? = ftV (ideal sas ; <3 = ) (3-86)

The work done by the gas during adiabatic expansion is entirely at the

expense of its internal energy, and hence if the gas is ideal, its temperature
must necessarily fall. The maximum work of expansion consistent with

given initial and final states, given by Eq. (3-83), is obtained if the pres-

sure on the piston against which the gas works is at all stages equal to

the equilibrium pressure of the gas, p = RT/V, consistent with its

instantaneous temperature and volume; practically, of course, the work

actually obtained will be less than the maximum, since the pressure on

the piston has to be kept somewhat smaller than the equilibrium gas

pressure in order that the gas shall overcome friction and expand at a

finite rate. The upper limit to the adiabatic work (3-83) may also be

expressed in the equivalent form
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Thus, for air (7 = 1.4) initially at 10 atm and 20C, adiabatic

expansion to 1 atm may ideally lower the temperature, according to Eq.
(3-85), to

T2
= 253K

= 253K (0.517)
= 131K

whereas Joule-Thomson expansion through a porous plug at an initial

pressure of 100 atm and an initial temperature of 20C would lower its

temperature at 1 atm only to about 45C (228K) in a single stage. In

using essentially isothermal compression, followed by adiabatic expansion
against a piston offering mechanical resistance (e.g., by means of a recipro-

cating engine), to liquefy the gases having low critical temperatures, one
of the major difficulties consists of finding suitable low-temperature lubri-

cants for the pistons; ordinary lubricating oils congeal at liquid-air tem-

peratures. This difficulty was overcome in the case of air by G. Claude,
who in 1909 designed a liquefier in which petroleum ether was used as the

lubricant in the adiabatic expansion cylinder. For liquefying hydrogen
or helium by the adiabatic expansion principle, P. Kapitza designed a
machine in which a small clearance is left between the cylinder and the

piston of the insulated expansion chamber, so that a small quantity of the

gas itself escaping through the clearance serves as the lubricant. 1 By this

means, helium may be cooled directly from ordinary temperatures down
below its inversion point, without the use of liquid hydrogen; precooling
with liquid air or liquid nitrogen increases the efficiency comparatively
cheaply, but even this is not essential; the final compression, below the
inversion point, is followed by Joule-Thomson expansion, which results in

liquefaction of the helium. Regenerative cooling is used in both Claude's
and Kapitza

J

s adiabatic expansion engines, part of the cold expanded gas
being diverted to precool the incoming compressed gas.
To describe adiabatic relations between the temperature and the pres-

sure of a real gas, it is more convenient to use the enthalpy function
rather than the internal-energy function, as was done in setting up Eq.
(3-82). Thus, from (3-37) and (3-46),

dH = CpdT + (1
- aT)Vdp = V dp (Q = 0; W = 0)

This relation is thermodynamically exact, and is entirely equivalent to

(3-82); it follows that,

fdT\ aTV Lp1 . . _ ^ (Q = Q) (3_g8)
/ Q~>0 v/ p O p

1 P. Kapitza, Proc. Roy. Soc. (London), (A)147, 189-211 (1934); Nature. 133. 708-
709 (1934).
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Before this equation can be integrated, one must be able to separate the

variables T and p, since in general both Cp and aV [
= (dV/dT) p] depend

on both T and p. Thus, it may be possible from an accurate equation of

state or from direct experimental information for one to represent Cp as a

function of T averaged over the approximate pressure range in question

and aV or Lp as a function of p averaged over the approximate tempera-
ture range in question. One will then be able to integrate Eq. (3-88) to

obtain a good second approximation to the exact relationship between T
and p during an adiabatic change with p equal throughout to the instan-

taneous equilibrium pressure of the gas; the first approximation is given

by the ideal-gas relationship (3-85).
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Problems

3-1. The linear expansion of a silver bar between 253 and 101 C is represented
from work of W. H. Keesom and A. F. J. Jansen (Landolt-Bornstein,

"
Physikalisch-

chemische Tabellen," 5th ed., Supplement lib, p. 1158, 1931) by the empirical equation

It
= Ml + (17.79066* + 0.0034641*2 + 0.000059343* 3 + 0.00000035754*4

) X 10~6
]

where It is the length at the Celsius temperature ,
and lo the length at 0C. Express

the coefficient of cubical expansion a of silver as a function of temperature. [Note

that a. ^ 3 r (
iy ) ; in computing the value of this expression, one may use Z in place

of Z, the true length at the particular temperature t, with negligible error over the tem-

perature range in question.] Calculate therefrom the value of a at 200, 100,

0, and 100C.
3-2. The coefficient of cubical expansion of CC1 4 at 20C and 1 atm is 1.236 X 10~3

/

deg, and the coefficient of compressibility at 20C has the mean value 91.6 X 10~6/atm
between and 100 atm. Estimate the change in volume (neglecting changes in the

coefficients themselves) when 200 liters of CCU originally at 20C and 1 atm is (a)

heated to 30C and 1 atm and (6) compressed to 50 atm at 20C. If the CC1 4 com-

pletely fills a sealed drum at 20C and 1 atm, at what temperature will the pressure
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within the drum reach 50 atm, assuming that the drum itself undergoes no significant

change in volume? The density of CC1 4 being 1 .595 g/ml at 20C and 1 atm, estimate
the change in molal enthalpy when CC1 4 is compressed at 20C from 1 to 100 atm.

3-3. The following data, taken from work of P. W. Bridgman (Landolt-Bornstein,
"Physikalisch-chemisehe Tabellen," 5th ed., Vol. II, p. 1226, 1923), give the volume of

methanol, relative to V 1.0000 at 0C and 1 kg/cm 2
:

Calculate the mean coefficient of expansion between 20 and 50C, and between 50
and 80C, at each of the three pressures; calculate also the mean coefficient of com-
pressibility between 1 and 500 kg/cm2

, and between 500 and 1000 kg/cm2
, at each of

the three temperatures.
3-4. Equation-of-state data for gases are commonly presented in the form of pV

at various temperatures and pressures, relative to its value at some arbitrary tempera-
ture and pressure, e.g., 0C and 1 atm, or 0C and 1 m Hg; this form is convenient
because pV varies relatively slowly with p, whereas V itself varies relatively rapidly.

Prove that . -4[^P1 and ft
= I - ' [^l .pVl dt Jp

^
p pVl dp J r

3-6. The following data have been taken for CO from work of E. P. Bartlett, H. C.

Hetherington, H. M. Kvalnes, and T. H. Tremearne [/. Am. Chem. Soc., 52, 1374-1382

(1930)]:

(a) Calculate the coefficient of expansion at 0C and 1 atm, and at 0C and 50 atm.
(It is sufficiently precise in this case to take the mean coefficients between -25 and
+25C, since the differential coefficients are changing so slowly with temperature.)

(6) Calculate the coefficient of compressibility at 25 atm and 50C, and at 25 atm
and +50C. (Note that at the latter temperature and pressure, [d(pV)/dp]T is

sensibly equal to 0.)

(c) Demonstrate that A/Ap at 0C between 1 and 50 atm approximately equals-
(A0/AJ) at 25 atm between -50 and +50C. (The relation would become exact if

one were to take limits as Ap and AJ became mfinitesimally small about a common
point, e.g., at 25 atm and 0C.)
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3-6. An equation of state proposed by M. Bcrthelot has the form

where Tc and pc represent, respectively, the critical temperature and pressure. Prove

that for a gas satisfying this equation

dpr &
Show that Eq. (3-7) applies.

NOTE: Berthelot's equation has the advantage over van der Waals* equation in that

it can be solved conveniently for V as an explicit function of p and T] it fails, however,
to reproduce the minimum in the pV vs. p isothermals at terriperatures below the

Boyle point, which evidently is assigned the empirical value jPsoyie
= V Tc. Its

usefulness is therefore confined to moderately low pressure, where it affords a reason-

ably good second approximation to real gas behavior, beyond the first approximation
afforded by the ideal-gas law itself.

3-7. State the variance and number of components in each of the following

homogeneous systems:

(a) Aqueous H 2SO4 solution.

(6) A gas mixture of SO 3, SO2, and O2, in arbitrary initial proportions, heated to

350C and 1 atm.

(c) A gas mixture of NO2 and N 2C>4.

(d) An aqueous solution of NaCl and KNO 3 in arbitrary proportions.

(e) An aqueous solution containing NaCl and KNO 3 in equimolal proportion.

(/) A gas mixture of N 2 ,
O 2 ,

and NO at 25C and 1 atm, of unspecified composition.

(g) NH 3 heated to 1000C and 1 atm (where it is practically completely dissociated

into nitrogen and hydrogen).

(A) An alloy (solid solution) of Au and Ag.

(t) Pure crystalline CuSO4-5H 2O.

(j) Saturated aqueous CuSCU solution. (Note that the condition of saturation

fixes the composition at whatever temperature and pressure is specified).

3-8. Calculate the mechanical work of expansion when 1 mole of liquid water is

heated at constant pressure of 1 atm from 25C to 100C; its specific volume is 1.0029

ml/g at 25C and 1.0434 ml/g at 100C, both at 1 atm. What is the value of H for

water at 100C, relative to its value at 25C? (Tp
= 18.03 cal/mole deg, constant

within 0.5 per cent over the temperature range in question.

3-9. Calculate the mechanical work of expansion when 1 mole of NH 3 (g) is heated

at constant pressure of 1 atm from 25C to 100C; assume the ideal-gas law. What is

the value of at 100C and 1 atm, relative to its value at 25C and 1 atm? (Use the

empirical equation for CP given in Appendix 3.)

3-10. Calculate the value of Lp for H 2O (1) at 25C and 1 atm according to Eq. (3-31) ;

its coefficient of expansion at that temperature and pressure has the value 2.58 X 10~4
/

deg, and its density has the value 0.99707 g/ml. Calculate therefrom the heat

absorbed (taken in the algebraic sense) when 1 mole of H2O(1) is compressed at 25C
from 1 atm to 100 atm (Lp does not vary sensibly with pressure over that small a

range). If this quantity of heat were applied to change the temperature of the water

itself (as in adiabatic compression), instead of being transmitted to the surroundings,
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what would be the corresponding rise in temperature? (The effect of pressure on the

heat capacity of liquid water may be neglected in this computation.)

3-11. Calculate the value of Cp Cv for water at 25C and 1 atm, using Eq. (3-41)

and the data given in the preceding problem; the value of for water at the given

temperature and pressure is 43 X 10- fl/atm.

3-12. Using the results of Prob. 3-6, show that for a gas satisfying Berthelot's equa-

/ 108 p TjY
tion of state, Cp Cv R [ 1 + -^- I . Estimate according to this equation

\ 128 PC J. */
the per cent deviation (with proper sign) of Cp Cv from R for NH 3 (g) at 25C and
1 atm; at 25C and 2 atm; for N2(g) at 25C and 1 atm.

3-13. Using Eq. (3-46) and Prob. 3-6, show that for a Berthelot gas,

^n i i_
~- p

i __ 10 :L?

dp/r
"

128 p<
{ l 18 ~

Estimate from this equation the change in enthalpy when 1 mole of CO2(g) is com-

pressed at 25C from 1 to 50 atm. Estimate also the difference between the ideal-gas

enthalpy H% (at p -+ 0) and the actual enthalpy HT.I atm at 1 atm for CO2(g) at 25C;
carry out the same calculation for N 2(g) at 25C, for He(g) at 25C, and for H2O(g)
at 100C.

3-14. Calculate the molal enthalpy of He(g) at 1200K and 1 atm, relative to its

value at 298.16K and 1 atm; the value of Cp may be taken to be sensibly constant, and

equal to 4.97 cal/molc deg.

3-15. Show by integration that for a homogeneous substance whose heat capacity
can be represented with sufficient precision by an empirical equation in the form (3-59)

proposed by Kelley:

fir, - //n = (7,
-

fi)
(a'

+ b'
Tl

2

T* -
y^r) (p const)

Using the empirical heat-capacity equations given in Appendix 3, calculate the molal

enthalpies of O2(g), CO(g) and CO2(g) at 1200K and 1 atm, relative to their values at

298.16K and 1 atm.

3-16. The heat capacity C for n-butane in the ideal-gas state has the following
values at various temperatures [Nail. Bur. Standards Circ. C461, Selected Values of

Properties of Hydrocarbons, from work of K. S. Pitzer]:

5T, K C, cal/mole deg
300 23.77

400 29.80

500 35.54

600 40.42

700 44.61

800 48.23

900 51.42

1000 54.20

Using the values at 300, 600, and 900K, calculate suitable values of a', &', and c' in

the empirical heat-capacity equation (3-59), and then test the equation at 500 and
1000K. (Note that a somewhat better fit may be obtained by application of the

method of least squares to determine the empirical coefficients from all the data given.)

Calculate HT at 1000K relative to its value at 298.16K, using your empirical heat-



124 PRINCIPLES OF CHEMICAL THERMODYNAMICS

capacity equation (note Prob. 3-15); compare with the value of 28,935 cal/mole

reported for this quantity in Natl. Bur. Standards Circ. 461.

3-17. When ZnO(c) at 1 atm is cooled from 700 to 0C, it gives up 8132 cal/mole,

and when it is cooled from 1300 to 0C, it gives up 16,010 cal/mole, according to work

of W. P. White and A. L. Day recorded by K. K. Kelley (U.S. Bur. Mines Bull. 371).

From low-temperature work, the molal heat capacity at 0C has the value 9.35 cal/

mole deg. Express C as a function of T in the form (3-59), and calculate therefrom

the value of C at 1000K.
NOTE: If C can be represented with satisfactory precision by means of an equation

of form (3-59), then the mean molal heat capacity between temperatures TQ (e.g.,

273.16K in the present instance) and T is given according to the formula in Prob.

3-15 by
775o~x ^ , u T + To c' HT

2 T T T - (1)

Therefore if in addition to two mean heat-capacity values, to be computed from

directly measured HT HTQ values, we have the instantaneous Cp value at the tem-

perature TQ, which is to correspond to the empirical formula

c^
rn2
J- o

(2)

then we have sufficient data to calculate a', b', and c' in a convenient form; thus

(T -
(3)

By setting up the two experimental values of the expression on the left of Eq. (3) at

two different temperatures T
7

, one can readily eliminate b' between the resulting

simultaneous equations by subtraction, and solve first for c'; the value of b' directly

follows from either set of experimental data in (3), and the value of a' can then be

computed from the experimental value of (C)r according to (2).

3-18. Carry out a similar computation to that of Prob. 3-17 for Fe 2Os(c); K. K.

Kelley (U.S. Bur. Mines Bull. 371) reports molal enthalpies relative to 0C of 12,000

cal/mole at 400C and 23,180 cal/mole at 700C (from original calorimetric

work of W. A. Roth and W. W. Bertram) and a value of C at 0C of 23.42 cai/mole

deg. Using the formula derived in Prob. 3-15, calculate the value of HT //273.ie at

T = 1073.16K, and compare with the experimental value, 27,060 cal/mole.

3-19. The following data are given for copper by A. Eucken in "Handbuch der

Experimental Physik," Vol. VIII, p. 211, 1929:
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Test the constancy of (a/C) 2
/ft as called for by Griineisen's law; and from the

density at 20C of 8.92 g/ml, calculate the value of A (mole/cal) in Eq. (3-57).

3-20. The molal heat capacity at constant atmospheric pressure of copper, critically

evaluated from several experimental sources by K. K. Kelley (U.S. Bur. Mines Bull.

434), is as follows:

T, K C, cal/mole deg
25 0.24

50 1.50

100 3.86

150 4.91

200 5.42

298.16 5.86

Calculate at each temperature the value of Cv, using Eq. (3-57) and the value of A
found in Prob. 3-19. From the corresponding value of 0/T given by the Debye func-

tion D(0/T) in Appendix 4, compute the value of at each of the temperatures given.

3-21. The molal heat capacity of silver, as measured by A. Eucken, K. Clusius, and

H. Woitinek (reported in Landolt-Bornstein, "Physikalisch-chemische Tabellen,"

5th ed., Supplement IIIc, p. 2230, 1936), has the following values:

T, K C, cal/mole deg
11.43 0.072

13.74 0.127

20.20 0.398

28.56 1.028

43.48 2.333

55.88 3.199

74.56 4.066

124.20 5.165

205.30 5.754

At 20C, the value of C is 6.05 cal/mole deg, a - 56.7 X 10-6
/<teg, p = 0.98 X

10~6
/atm, p = 10.5 g/ml. Assuming Griineisen's law, leading to Eq. (3-57), show

that

C - c, = (2.3 X lO-5
mole/cal)(G^T

Calculate at each of the temperatures given the value of Cv, and by looking up the

corresponding value of 0/T for the Debye function, calculate a value of 6 for each

reading.

Measurements of C for silver below liquid-hydrogen temperatures have been made

by W. H. Keesom and J. A. Kok, who used liquid helium to precool the samples; their

data, as reported in Landolt-Bornstein, "Physikalisch-chemische Tabellen," 5th ed.,

Supplement IIIc, p. 2230, 1936, are as follows (selected values):

T, K C, cal/mole deg
1.671 0.0004149

2.535 0.001088

3.452 0.002161

4.020 0.003046

4.920 0.005013
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Using your value of deduced from the higher temperature measurements, calculate

the theoretical value of C according to the Debye limiting law (3-55) at each of these

temperatures, and compare with the experimental values; note that at these low tem-

peratures the difference between <? and C9 is negligible. Test the limiting law (3-55)

at the three lowest temperatures given in the preceding table (data of Eucken, Clusius,

and Woitinek).

3-22. Prove that for a substance whose heat capacity below the temperature T'

satisfies the Debye T3 law (3-55), whether or not it satisfies the Debye theory at higher

temperatures, the enthalpy at temperature T' relative to the enthalpy at0K (neglect-

ing the difference between C and Cv at the low temperatures necessarily involved) has

the value

Calculate the quantity of heat one would have to remove in order to cool 10 g of

copper from 25 to 0K, using the heat-capacity data given in Prob. 3-20.

3-23. The heat capacity of KC1 has been measured at low temperatures by W. H.

Keesom and C. W. dark [Physica, 2, 698-706 (1935)], with the following results:

T, K C, cal/mole deg
2.345 0.000936

2.71 0.001612

3.52 0.00338

4.29 0.00554

5.14 0.01010

6.73 0.01902

7.89 0.0390

9.23 0.0620

10.06 0.0838

13.01 0.214

14.73 0.310

17.09 0.458

By plotting log C vs. log T (using logarithmic graph paper) test the Debye T3 law

for this substance.

The heat capacity of KC1 has been measured at intermediate temperatures by J. C.

Southard and R. A. Nelson [J. Am. Chem. Soc., 55, 4865-4869 (1933)], with the follow-

ing results (selected) :

T, K
(?;, cal/mole K

16.69 0.427

21.21 0.842

32.41 2.360

44.25 4.189

69.92 7.365

89.28 8.844

116.47 10.03

158.02 11.06

205.23 11.64

246.41 11.98

273.34 12.15

284.68 12.25
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From the four lowest values, calculate a mean value of corresponding to Debye's
function (note that in principle Cv = 2D(6/T) for this substance); around 0C,
- 1.0 X 10-Vdeg, - 5.3 X 10~6

/atm, and p = 1.99 g/ml; determine the correc-

tion C Cv according to the form (3-57), assuming Griineisen's law, and calculate

the theoretical value of C at each of the higher temperatures according to Debye's

law, using the mean 6 value deduced from the low-temperature data. Compare with

the experimental values.

3-24. The heat capacity of NH 3 (c) and NH 3 (1) at 1 atm has been measured at low

and intermediate temperatures by R. Overstreet and W. F. Giauque [/. Am. Ckem.

Soc.j 69, 254-259 (1937)], with the following smoothed results:

(a) Plot C vs. T, and by graphical integration, determine the difference in enthalpy
for NH 3 (c) between 15K and its melting point, 195.42K.

(b) Estimate according to the equation in Prob. 3-22 the difference in enthalpy for

NH 3 (c) between 0K and 15K, assuming the T* law. Combining with the result of

part (a), calculate the value of HT 7? for NH 3 (c) at its melting point.

(c) By graphical integration, determine the increase in enthalpy for NH 3 (1) between

the freezing point, 195.42K, and the normal boiling point, 239.74K. Taking the

heat of fusion as 1351.6 cal/mole at 195.42K, and the heat of vaporization as 5581

cal/mole at 239.74K, calculate the value of HT for NH 8 (g) at 239.74K and 1 atm,
relative to H Q for NH 3 (c) at 0K and 1 atm.

(d) Using Berthelot's equation of state (Prob. 3-13), calculate the difference between

//i atm and H for NII 8 (g) at 239.74K.

(e) The value of CP for NH 3 (g) accepted by Kelley is 8.36 cal/mole deg at 239.74K
and 1 atm, and 8.49 cal/mole deg at 298.16K and 1 atm. Assuming a linear increase

of Cp with temperature, calculate the increase in HT for NH 3 (g) between its normal

boiling point and 298.16K, and determine the value of HT for NH 3 (g) at 298.16K
and 1 atm, relative to H Q of NH 3 (c),

3-26. Show that for a gas satisfying Berthelot's equation of state,

f
\

dCP\ =
dp) T 128

Use this equation to calculate the value of Cp for methane at 25C and 1 atm, the ideal-

gas value C (corresponding to p = 0) being 8.536 cal/mole deg as derived from spec-

troscopic data (Nail. Bur. Standards Circ. C461). Perform the same calculation for

NII 3 (g), whoso Cp value at 25C is 8.523 cal/mole deg.
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G. Waddington and D. R. Douslin [/. Am. Chem. Soc., 69, 2275-2279 (1947)] give

for the heat capacity of n-hexane (g) at 365.15K:

p, mm Hg
236.7

479.4

760.0

cal/mole deg
40.440

40.685

40.950

Calculate the value of C by extrapolation, and compare with the result of applying

Berthelot's equation of state to the data for 1 atm (look up the necessary critical

constants).

3-26. By applying Euler's criterion for dH to be a perfect differential in terms of the

independent variables T and p in Eq. (3-67), prove that

dp L dT

The following Joule-Thomson coefficients have been determined experimentally for

methane by R. A. Budenholzer, B. H. Sage, and W. N. Lacey [Ind. Eng. Chem., 31,

369-374 (1939)]; the values given represent the limits at zero pressure from measure-

ments at higher pressures, and are practically equal to the values at 1 atm
;
the ideal-

gas C values are quoted by them by interpolation from spectroscopic calculations by
R. D. Void [/. Am. Chem. Soc., 67, 1192-1195 (1935)]:

Calculate the value of (dCp/dp)r for methane at 25C and at 100C, in the limit as

p > (plot /*C vs. t, and take the slopes at the appropriate values of t), and determine

therefrom the corrections: Cp 'C at both temperatures for calculating the real value

of Cp at 1 atm from the ideal-gas value Cp. Note that this method is thermodynam-
ically exact, and the calculations are approximate only in so far as one treats differ-

ential coefficients as ratios of finite differences; measurement of the Joule-Thomson

coefficient provides essentially the same information as would be given by the actual

equation of state. Compare the result at 25C with that obtained in Prob. 3-25,

where of course we were using a hypothetical equation of state that has no theoretical

foundation.

3-27. Apply the equation derived in Prob. 3-26 to nitrogen at 25C and 1 atm, using
the data given in Table 3-4; plot /*CP vs. t, and take the slope of the resulting curve at

25C, to determine (dCP/dp) T at 25C and 1 atm.
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3-28. Show that for a gas satisfying Berthelot's equation of state (Prob. 3-6)

9 RT
(^ is

T---~ II lO-
128 pcCP \ T*

and show also that Eq. (3-66) for the integral Joule-Thomson effect assumes the form

Use the former of these approximate empirical equations to estimate the value of /x for

nitrogen at 0C and 1 atm, at
3C and 100 atm, and at 150C and 1 atm; the values

of Cp under these conditions are, respectively, 6.909, 8.242, and 6.940 cal/mole deg,

according to J. R. Roebuck and H. Osterberg [Phys. Rev., 48, 450-457 (1935)J. The

experimentally observed values of /* under the three conditions are, respectively,

0.2655, 0.1715, and 1.265 deg/atm, according to the data of Roebuck and Osterberg

(corrected for error in their original pressure readings). Note that the only effect of

pressure on the value of /u according to Berthelot's equation of state comes about

through its effect on the value of CP ,
which in turn is given by the equation derived in

Prob. 3-25.

Use the integral equation to estimate the drop in temperature when nitrogen at 0C
and 100 atm is allowed to expand through an insulated throttle valve to 1 atm

pressure; the value of Cp at 1 atm may be taken as constant and equal to 6.91

cal/mole deg over the temperature range in question.

3-29. The velocity of sound has been measured in hydrogen at 1 atm pressure and
various temperatures by R. E. Cornish and E. D. Eastman [/. Am. Chem. Soc., 60,

627-652 (1928)], with the following results, corrected for the confining effect of the

tube in which sound resonance was set up:

(a) Assuming that hydrogen can be treated as an ideal gas at 1 atm over the tem-

perature range in question, calculate the value of y at each temperature, and demon-
strate that the rotational energy of these diatomic molecules apparently becomes

"frozen" at the lower temperatures. (One must of course express the value of R in

the ideal-gas sound-velocity formula in cgs units, if u is so expressed.)
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(b) Show that for a gas satisfying Berthelot's equation of state, Eq. (3-52) assumes

the form

&(l e^YIM WJ
NOTE: (dp/dp) T = (V2/M)(dp/dV)r, since p = M/V, apply the result for

(dp/dV)T derived in Prob. 3-6.

Show that for hydrogen at 372.52K, introduction of Berthelot's equation of state

is equivalent to reducing u by the factor 1/1.00047 before applying the ideal-gas rela-

IRT
tion Wideai = %/~~=~T- Calculate the value of 7 at that temperature accordingly,

\ M
using a calculating machine if one is available, or five-place logarithms, in order to

obtain five significant figures in the result.

(c) Using the formula of Prob. 3-12 derived from Berthelot's equation of state,

show that for hydrogen at 372.52K and 1 atm, Cp
- Cv = 1.0000572, within the

degree of approximation afforded by Berthelot's equation. Combining this result

with the value of CP/CV derived in the preceding section, calculate precise values of

Cp and Cv at the given temperature and pressure. (For the introduction of actual

equation-of-state data for hydrogen instead of the Berthelot approximation, consult

the original paper of Cornish and Eastman.)
3-30. To what theoretical pressure must helium be compressed at an initial tem-

perature of 0C so that on doing work of adiabatic expansion, its temperature may
fall to the inversion point, 44.8K, at 1 atin? (Assume the ideal-gas relation.) What
must the initial pressure be if the compressed gas is cooled initially to 20C by
means of an ice-brine cooling mixture? What must it be if the compressed gas is

precooled to 77C with solid CO 2 ? What must it be if the compressed gas is prc-

cooled to -190C with liquid air?

3-31. What temperature will air (7 = 1.4) originally at 20C ideally attain if it is

suddenly compressed to one-fifth its original volume, so rapidly that no heat is at first

lost to the surroundings? What compression ratio will raise the temperature of air

adiabatically from 80C to 1000C? (Note that these effects are encountered in

internal-combustion engines, during the stage preliminary to ignition of the fuel.)

3-32. Starting with 1 mole of nitrogen at 0C and 1 atm, how much work must be.

done, at least, in order to compress it to half its original volume under adiabatic condi-

tions? How much work must be done, at least, in order to compress it to half its

original volume at constant temperature of 0C? What final temperature is theoreti-

cally attained in the adiabatic compression?
3-33. The equation of state proposed by H. L. Callendar for steam has the form

p(V -
b)

- RT -
3g

where b has physical significance similar to that of b in van der Waals' equation and
is assigned the value 0.018 liter/mole characteristic of the liquid state at ordinary

temperatures and pressures, A is an empirical constant representing the effect of

intermolecular attraction, and c = C^/R. For temperatures and pressures not

exceeding the critical values (647.2K and 218.17 atm), the value of c may be taken

as constant and equal approximately to l
%', the value of A, determined empirically,

is about 2.0 X 108 liter deg
c
/mole. Calculate (dV/dT)p in terms of Calendar's

constants, and show that the enthalpy function for steam has the form
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Show that the enthalpy UT,P at temperature T and pressure p relative to JF/^, the

enthalpy at temperature T8 and zero pressure, is therefore given by

BTtp
- aTa

-
(c

Use this equation, with the given values of A, b, and c, to calculate the difference in

enthalpy between steam at 360C and 50 atm and steam at 100C and 1 atm.

Taking Cp for H2O(1) as practically constant and equal to 18.0 cal/mole deg between

and 100C, and taking the latent heat of vaporization at 100C as 9717 cal/mole,

what is the molal enthalpy of steam at 360C and 50 atm relative to that of liquid

water at 0C and 1 atm?
NOTE: Since the enthalpy difference between liquid water at 0C and 1 atm and at

0C and 50 atm is practically negligible, the quantity just calculated represents the

net heat required in order to transform water at constant pressure of 50 atm from

0C to steam at 360C; it does not equal the net heat that would be absorbed if the

water were first heated at constant pressure of 1 atm to 360C and then compressed.
3-34. In measuring the heat of fusion of ethyl chloride, J. Gordon and W. F.

Giauque [J. Am. Chem. Soc., 70, 1506-1510 (1948)] using a specific heat calorimeter

found in a typical run that 1145.1 cal/mole of energy was required to raise the tem-

perature from 132.242 to 136.095K, the melting point being at 134.80K. A cor-

rection of 2.7 cal/mole should be subtracted for a small quantity premelted at the

starting temperature. The heat capacity of the solid being 20.22 cal/mole deg at

130K, and 21.71 cal/mole deg just below its melting point, and the heat capacity
of the liquid being 23.23 cal/mole deg just above the melting point, calculate the

latent heat of fusion.

3-35. Using the table in Landolt-Bornstein, "Physikalisch-chemische Tabellen,"
5th ed., Supplement I, p. 706, 1927, find the molal internal energy U U of Ag(c)
at 298.16K relative to its value at 0K, using for the value found in Prob. 3-21.

What further information would be required in order to find the value of H ff^ at

298.16K and 1 atm? (Compare Prob. 3-1.)



CHAPTER 4

THERMOCHEMISTRY

In this chapter, we shall take up the applications of the first law of

thermodynamics to processes in which changes take place in the composi-
tion of the thermodynamic system. The ultimate composition in terms

of the chemical elements is of course assumed to remain fixed, in accord-

ance with accepted chemical theory; but changes may take place in the

forms in which the chemical elements are combined, each different com-

bination entailing a characteristic quantity of energy. When such

changes satisfy the law of definite proportions, they are regarded as true

chemical changes; energy differences are associated also, however, with

the process of forming a solution from its components, and from the

purely thermodynamic viewpoint, no distinction can be made between

the two cases. We shall discuss the treatment of both cases separately.

4-1. Heat of a Chemical Reaction. The heat of a chemical reaction

is defined in general as the quantity of heat evolved when a given quantity
of the reaction takes place, as represented by its chemical equation. For

example, the combustion of methanol is represented by the thermo-

chemical equation

CHsOH(l) + %0,(g) = 2H20(1) + C02(g); Q^c = 173.64 kcal

The heat of an endothermic reaction would be represented with a negative

sign. One should note that this sign convention for Q in thermochemis-

try is opposite to that used in general chemical thermodynamics. In

this chapter, therefore, following the general practice among thermo-

chemists,
1 we shall be using the opposite sign convention for Q from that

followed in other chapters. Since the heat of reaction may vary with

the temperatures of the reacting substances, it is generally measured at or

corrected to some particular constant temperature, i.e., with each reactant

originally at and each product finally at the same uniform temperature

throughout. It varies also depending on whether one measures it at

constant volume, as in a gas-combustion bomb, or at constant pressure,

such as at the practically constant pressure of the atmosphere; it is

generally convenient to correct all data, by methods that we shall pres-

1
See, for example, F. R. Bichowski and F. D. Rossini, 1* Thermochemistry of Chem-

ical Substances," Reinhold Publishing Corporation, New York, 1936.
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ently describe, to a uniform constant pressure of 1 atm throughout (except
of course when one is deliberately concerned with heats of reactions taking

place at controlled high pressures), and we shall use superscript zero,e.gr.,

as in the symbol Q, to denote that this condition has been satisfied. 1

The experimental method used to measure the heat of a chemical reac-

tion depends on the nature of the reaction. The methods that have been

directly applied may be divided into two general classes: isothermal and
adiabatic. In isothermal or essentially constant-temperature calorime-

try, the calorimeter has such a large heat capacity (e.g. y
it may consist of

a large water bath) that the measured temperature rise from which the

heat of reaction is calculated is relatively small, of order several centigrade

degrees; the surroundings are ordinarily at the approximately constant

temperature of the room. Correction for thermal radiation is one of the

most important sources of difficulty in isothermal calorimetry; such

methods are therefore best adapted to reactions that go to completion

rapidly, inasmuch as the radiation error tends to increase with time. For

fast reactions taking place in liquid solution, such as the neutralization of

a strong acid by a strong base in aqueous solution, the reaction may be

set up conveniently in a Dewar flask, the solution itself then serving as

the bulk of the calorimeter (the flask, stirring equipment, and thermome-
ter also contribute to the total heat capacity, which can be determined

from straightforward electrical heating by means of an immersion heater).

Rapid mixing of the reactants and efficient stirring of the product mixture

are essential in order that the temperature attained by the calorimeter

may become uniform as soon as possible after mixing, before radiation

effects have influenced seriously the total quantity of heat observed.

Combustions may be carried out in an isothermal calorimeter, con-

sisting of a "bomb," or heavy-walled steel tube fitted with a hermetically

tight cover, immersed in a body of water, whose temperature rise indi-

cates the quantity of heat evolved by the reaction taking place within the

bomb. The bomb, containing a weighed sample of the substance under

investigation, is charged with oxygen gas at 20 to 30 atm pressure, and

the reaction started by means of an electrically heated iron fuse wire

dipping into the sample ;
the combustion reactions are practically instan-

taneous in oxygen under pressure, and the surrounding water is stirred

mechanically in order to distribute the evolved heat rapidly throughout

1 For gaseous reactants and products, it is conventional to correct the heat of reac-

tion at standard atmospheric pressure to what it would be if each gas satisfied the

ideal-gas laws, Eqs. (3-60) and (3-62); however, the correction for deviation from

ideal-gas behavior at 1 atm is practically negligible for most gases; it can be made
from knowledge of (dH/dp)T for each gaseous reactant and product, derived by the

methods described in Chap. 3, and combined as shown in connection with Eq. (4-17).
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its mass. The bomb calorimeter may be standardized fundamentally by
means of electrical heating, the radiation correction being important,
but more commonly it is standardized under actual working conditions

by runs made on standard samples of high purity, whose heats of com-

bustion have been established by fundamental electrical standardization;

the National Bureau of Standards supplies standard samples of benzoic

acid and of certain other combustion standards suitable for this purpose.

In adiabatic calorimetry, the calorimeter is surrounded by an insulated

jacket heated independently at such a rate that its temperature is always
maintained equal to that of the calorimeter. This type of calorimeter

was first proposed by S. W. Ilolman in 1895, and was perfected largely

through the work of T. W. Richards and his associates at Harvard Uni-

versity during the first quarter of the twentieth century. In the adiabatic

bomb calorimeter, where the reaction is rapid, the temperature of the

jacket may be controlled manually (e.g., by the admission of hot water as

the temperature of the calorimeter proper rises; see, for example, the

operating instructions furnished by the Parr Instrument Co., Moline, 111.,

for its commercial adiabatic oxygen bomb calorimeters) ;
but for slower

reactions, the jacket temperature may be conveniently maintained by
electrical heating, controlled automatically by means of a differential

thermocouple having one junction set in the calorimeter and the other in

the jacket; the deflection of a spotlight galvanometer, for example, con-

nected to the thermocouple leads may be used in connection with a pair of

photocell relays disposed on either side of the null point to activate or

deactivate the jacket heater.

In the adiabatic calorimeter, thermal losses due to radiation are thus

completely eliminated. Such a technique is essential to the precise

measurement of the heats of comparatively slow reactions, and is well

exemplified by the work of G. B. Kistiakowsky and his associates on the

heats of hydrogenation of unsaturated hydrocarbons.
1 In this work, the

calorimeter consisted of a tube containing the platinum catalyst on whose
surface the reaction took place; the mixed reactant gases, e.g., ethylene
and hydrogen, preheated to about 82C, were led into the calorimeter

tube, which was surrounded by an automatically controlled insulated

radiation shield maintained by independent electrical heating at the same

temperature as the calorimeter tube within, and the rate at which heat

was evolved by the reaction was measured by the rate at which the tem-

perature of the tube containing the catalyst increased; the rate of reaction

was simultaneously measured by gas analysis of the product gas issuing
from the calorimeter. The calorimeter itself was equipped with its own

1 G. B. Kistiakowsky, H. Romeyn, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan,
/. Am. Chem. Soc., 67, 65-75 (1935).
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heating coil, so that it could be standardized by means of electrical

heating.

Gas-cotabustion reactions may be studied either in a constant-volume

gas-combustion bomb, or by means of a constant-pressure flame calorime-

ter. An adiabatic flame calorimeter has been used by F. D. Rossini at

the National Bureau of Standards to measure with high precision the

heats of combustion of hydrogen with oxygen, hydrogen with chlorine,

carbon monoxide with oxygen, and of many gaseous hydrocarbons with

oxygen.
1 A substitution method is used, in which a measured quantity

of electrical energy raises the temperature of the calorimeter (measured
with a sensitive resistance thermometer) through the same interval as

was observed for a measured quantity of the chemical reaction, the calo-

rimeter itself thus serving merely as a comparator of the two kinds of

energy.
The reader will find descriptions of other types of reaction calorimeters

by A. Eucken 2 and also by W. P. White. 8

One should note that an important indirect source of thermochemical

data is based on measurement of the temperature variation of the equi-

librium constant for the chemical reaction [van't Hoff's law, Eq. (8-2-2)] ;

the theory of this method, which depends on the second law of thermody-

namics, is taken up in Chap. 8.

4-2. Hess's Law of Constant Heat Summation. In 1840, G. H. Hess

proposed on the basis of available experimental evidence that the net heat

of a chemical transformation was equal to the sum (with proper algebraic

signs) of the heats of any intermediate reactions through which the trans-

formation could be brought about. At the time of its discovery, Hess's

so-called law of constant heat summation was supposed to provide excellent

confirmation of the caloric fluid theory of heat still prevailing; apparently
each reactant carried into and each product carried out of the reaction

characteristic quantities of heat, the heat of reaction representing the

excess of the heat " content " of the reactants over that of the products.

In view of the first law of thermodynamics, we recognize now that Hess's

law is true only under certain general restrictions. The heat of reaction

is not independent of the path by which the reacting system passes from

its initial to its final state. Thus, the quantity of heat evolved by the

chemical reaction taking place in a galvanic cell from which energy in

1 F. D. Rossini, J. Research Natl. Bur. Standards, 6, 1-35 (1931); 6, 37-49 (1931);

6, 791-806 (1931); 7, 329-330 (1931); 9, 679-702 (1932); etc. The calorimeter is

described in detail in the first of these articles.

2 A. Eucken, "Handbuch der experimental Physik," Vol. VIII, I.

8 W. P. White, "The Modern Calorimeter," Reinhold Publishing Corporation,
New York, 1928.
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electrical form is being withdrawn is invariably smaller than the quantity
of heat evolved when the same quantity of reaction is brought about

directly, without the development of electrical energy.
1

Furthermore,
the heat of a reaction carried out at constant pressure differs in general

from the heat of the same reaction carried out at constant volume.

J. Thomsen suggested in 1853 that Hess's law is actually a special

case of the general conservation law based on Joule's experiments. We
have only to suppose that each reactant carries into and each product
carries out of the reaction characteristic quantities of internal energy and

of enthalpy, which depend solely on the states of the substances as they

participate in the reaction. Thus, let

aA + bB + = IL + mM + (4-1)

represent the equation of a chemical reaction involving the chemical

substances A, B, ... as reactants, and L, M, . . . as products, each

being in some specified state. The corresponding net changes in internal

energy and enthalpy for the amount of chemical reaction represented by

Eq. (4-1) may be represented by

AC/ = IUL + mUM + - aUA - bUB - (4-2)

AH = IHL + mHM + - - aHA
- bHB - (4-3)

where UA , Us, . . .
,
UL

, UM, . . . and BA ,
HB ,

. . .
,
HL ,

HM ,
. . .

represent, respectively, the molal internal energies and the molal enthal-

pies of the chemical substances participating in the reaction, each in its

specified state. The internal energy of reaction, AC/, and the enthalpy of

reaction, AH, thus clearly depend only on the initial states of the reactants

and the final states of the products. The heat of reaction, on the other

hand, is related to AC/ and A// through the general thermodynamic equa-
tions (3-18) and (3-37). Bearing in mind the sign convention for heats

of reaction noted in Sec. 4-1, we find that the heat of reaction Qv at con-

stant volume is given by
Qv

= -AC/ - W (4-4)

and the heat of reaction Qp at constant pressure by

Qp
= -Atf - W (4-5)

When W =
0, therefore, which is usually the case in straightforward

thermochemical measurements by calorimetric means (except in such

measurements as Jahn's, mentioned in the footnote below),

Qv = -AC/ (W = 0) (4-6)

Qp
= -Aff (W = 0) (4-7)

1 Such experiments, testing the first law of thermodynamics as applied to galvanic

cells, were actually carried out by H. Jahn, Z. physik. Chem., 18, 399-425 (1895).
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Thus, the conditions either of constant volume or of constant pressure,

with no work possible except in the form of mechanical work of expansion,
are sufficient to ensure that the heat of reaction shall be independent of

the intermediate stages through which the system may pass on its way
from the initial to the final state; under such conditions, therefore, Hess's

law applies.

The relationship between Qp and Qv is readily inferred from the rela-

tionship between H and 7,

Atf - AJ7 = A(p7)
Qp

- Q = -A(pF) (W = 0) (4-8)

Thus, if AF represents the volume of the products less the volume of the

reactants when the reaction takes place at the constant initial pressure p,

then

QP
- Qv

= -p(A7) (W = 0) (4-9)

The term on the right of Eq. (4-9) is equal to the work done on the system

by the applied pressure p when the reaction takes place at constant pres-

sure. For reactions involving only liquids and solids, the value of this

term is usually so small that it may be neglected except in work of the

highest precision. For reactions involving gases, each gas contributes

to p(AF) a term pV which at sufficiently low pressures is equal to nRT,
where n denotes the number of moles of that substance represented in

Eq. (4-1) for the chemical reaction; thus, if (An),, denotes the total number
of moles of gaseous products less the total number of moles of gaseous

reactants, then Eq. (4-9) may be replaced by the approximation

Qp-Qv
= -(An), RT (W = 0) (4-10)

The corresponding approximate relation between the enthalpy and the

internal energy of reaction at the constant temperature T is

A# - AC/ = (An), RT (4-11)

Thus, for the reaction,
1

CH 3OH(1) + ^0 2 (g)
= 2H,0(1) + C0 2(g); Q 5oC

= 173.64 kcal;

(An)^ = % mole

A// - AC7 = -y2RT = -0.30 kcal (T = 298.16K)

1 The thermodynamic process actually taking place in a combustion bomb at con-

stant volume, with oxygen under pressure, is by no means simple; corrections are

necessary in order to reduce the observed heat evolved, Q =
Af/j?, representing

the internal-energy change for the actual bomb process, corrected to a definite tem-

perature, to what the heat would be if each reactant and product were in its standard

state, at 1 atm. To the corrected At/, Eq. (4-11) may then be applied to find AH.
These corrections, which are small but by no means negligible, have been analyzed
in detail by E. W. Washburn, /. Research Natl. Bur. Standards, 10, 525-558 (1933).
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The heat of reaction at constant volume thus serves to measure directly

the difference between the internal energies of the reactants and products,

and the heat of reaction at constant pressure serves likewise to measure

directly the difference between the enthalpies of the reactants and prod-

ucts. Because of the approximately constant pressure of the atmosphere,
it is convenient for us to measure heats of reaction at or correct them to a

constant standard pressure of 1 atm; they are furthermore always cor-

rected to a constant uniform temperature for reactants and products.

Thus, using the symbol Q
Q
T as introduced in Sec. 4-1 to denote the heat of

reaction measured under such conditions, we have

AHT
= l(BT) L + m(BT)x + - a(BT)A

- &(#J)* - - = -Q
(W = 0) (4-12)

for the general chemical reaction whose equation is represented by (4-1).

Experimental measurement of Q for a given reaction thus provides us

with direct evidence concerning the relative values to be assigned to the

standard molal enthalpies of the reactants and products in their respective

standard states.

The law for the effect of temperature on the enthalpy of reaction (and

by inference on the heat of reaction at constant pressure) is derived by
the application of Eq. (3-39) to Eq. (4-12), after differentiation term by
term,

(4-13)

This relationship is known as Kirchhoff's law. 1 In integral form

A//T -
A//J. + AC* dT (4-14)

This integral may readily be evaluated if C for each reactant and product
has been established as a function of temperature, as, for example,

through empirical equations in the form (3-58) or (3-59) (see Appendix 3);

one may thereby relate the enthalpy of reacfi&i at any one fixed tempera-
ture T to the enthalpy of reaction at any otner fixed temperature T9.

The equation may be used, for example, to deduce the enthalpy of reac-

tion at some standard temperature Ta (such as 298.16K) from the meas-

ured value of ATy determined at an arbitrary experimental temperature

T found convenient for the study of the particular reaction.

1 After Gustav Kirchhoff, brilliant nineteenth-century German physicist, famous
'for his pioneer work in the field of thermal radiation, and in collaboration with Robert

Bunsen, on chemical spectroscopy in general. He also made notable discoveries in

the theory of electrical networks.
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The effect of pressure on the enthalpy of reaction is likewise derived by
the application of Eq. (3-44) to Eq. (4-3), after differentiation term by

term,

In view of the relation (3-31) based on the second law of thermodynamics,

Eq. (4-15) may be put in the equivalent form

from which we obtain the integral relationship

AH,.., = AHJ + PA[(1 - aT)V]dp (4-17)
Jp

In this equation, according to our convention regarding the interpretation

of AffJ, pa
= 1 atm for liquid and solid chemical substances taking part

in the reaction, but p*
= for gases. The integral in Eq. (4-17) may be

evaluated term by term from the appropriate equation-of-state data at

the fixed temperature T for each reactant and product; its value is prac-

tically negligible unless p is of order several atmospheres or more. By
combining Eq. (4-17) with Eq. (4-14), one sees how to calculate the value

of Affr.p at any arbitrary temperature and pressure from the value A#
.

at some one standard temperature and pressure; it is necessary in principle

for us to have thermochemical measurements for the reaction only at a

single fixed temperature and pressure, for we can then "correct" the data

to other temperatures and pressures from further knowledge solely of the

thermodynamic properties of the reactant and product substances taken

separately.

4-3. Standard Enthalpies of Formation. The heat of a chemical

reaction at constant pressure represents the excess of the sum of the

enthalpies of the reactants over the sum of the enthalpies of the products.
Therefore direct calorimetric measurements of heats of reactions at con-

stant pressure provide us with relative values of the molal enthalpies of

the substances participating in the reaction. With the measurements

carried out at or corrected to standard reference conditions pa and T
(e.g., 1 atm and 298.16K), we thus obtain values relative to one another

of the hitherto arbitrary standard molal enthalpies #5v which were intro-

duced originally in Eq. (3-47) merely as integration constants for particu-

lar chemical substances. For example, the heat of hydrogenation of

ethylene, 32.824 kcal/mole as measured at 82C and 1 atm by G. B.
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Kistiakowsky and associates,
1

C 2H 4(g) + H 2 (g)
= C 2H6(g); AH 82 c = -32.824 kcal

tells us that HC2H6
is algebraically smaller than the sum of jSc 2H4 and H^ at

82C and 1 atm by 32.824 kcal; corrected to 25C by means of Eq. (4-14),

the difference becomes 32.575 kcal,

A-ff^s.iG
=

(#298.i6)c2H6 (fi^s-ie^H, (/ZSU.IG)^
= 32.575 kcal .

Likewise, the heat of combustion of hydrogen with oxygen to form liquid

water, 68.313 kcal/mole as measured at 25C and 1 atm by F. D. Rossini,
2

H2(g) + M0a(g) = H 20(l); A#25 c = -68.313 kcal

measures directly the difference between the standard molal enthalpy of

liquid water and the sum of the standard molal enthalpy of H 2(g) and

3^ the standard molal enthalpy of 2 (g),

98 . 16) O 2 (K)

= -68.313 kcal

For a chemical element, the value of the standard molal enthalpy in

some one of its allotropic forms remains arbitrary, because transforma-

tions in the ordinary chemical sense of one element into another do not

occur, and there is therefore no operational basis on which to intercompare
their enthalpies.

3 The value of HTa for a chemical compound, however,
relative to the standard molal enthalpies of its elements, whatever fixed

values may be assigned to them, is a perfectly definite and reproducible

quantity, which in some cases may be determined by direct calorimetric

1 G. B. Kistiakowsky, H. Romeyn, J. R. Ruhoff, H. R. Smith, and W. E. Vaughan,
J. Am. Chem. Soc., 67, 65-75 (1935); these results have not actually been adjusted
for deviation from ideal-gas behavior, but the difference between A//26 >c,i atm and

AT/298. IB amounts only to about 0.004 kcal, whereas the experimental error in AH
is 0.050 kcal.

2 F. D. Rossini, J. Research Natl. Bur. Standards, 6, 1-35 (1931); 7, 329-330

(1931). This result also has not actually been corrected for deviation of H 2 and C>2

from ideal-gas behavior, because the difference between A#26oc,i atm and A#298>1G is

only about +0.0008 kcal in this case.

8 One could in principle accomplish such an intercomparison, of course, through
measurements of the energies of nuclear transformation reactions. Thus, at some
future time, it may become possible and convenient for us to assign to each nuclear

species an enthalpy of formation with respect to its constituent neutrons and protons.
Such a generalization would have no effect, however, on the relative values of the

molal enthalpies of chemical compounds with respect to their constituent chemical

elements, and, furthermore, in most cases the nuclear binding energies are not at

present known with sufficient precision to make such a step feasible, even if it were

advantageous for us to consider it.



THERMOCHEMISTRY 141

measurements, as in the case of H 20(l) ;
but in other cases may be inferred

from calorimetric data for a series of intermediate reactions; the value of

Affr for the hypothetical reaction C(graphite) + 2H 2 (g)
= CH4(g), for

example, may be inferred from the heats or the enthalpies of combustion

with OaCg) of graphite, hydrogen, and methane. Therefore it is con-

venient and customary in chemical thermodynamics for us to assign to

each chemical element in its stable modification at standard-state condi-

tions, 25C and 1 atm, the arbitrary standard molal enthalpy #298.i6
s 0.

To each chemical compound (and to other metastable allotropic forms of

the elements themselves) there is then assigned a value of //298.16 equal to

its molal enthalpy offormation, or the negative of its heat offormationfrom
the elements at the standard-state conditions: constant temperature of

25C (298.16K) and constant pressure of 1 atm [values for gases being
corrected for deviation from the ideal-gas state at 25C and 1 atm by
means of Eq. (4-17) or equivalent thermodynamic relations, integrated

between and 1 atm with the aid of suitable equation-of-state data].

The standard enthalpy of reaction, A// 293.16? f r anY chemical transforma-

tion for which the standard enthalpies of formation of all reactants and

products have been established may then be represented as in Eq. (4-12)

by the difference between the sum of the standard enthalpies of formation

of the products and the sum of the standard enthalpies of formation of

the reactants. Each independent direct calorimetric measurement of the

heat of a reaction serves as a cross check on the self-consistency of the

#298.16 values assigned to the participating compounds. Thus, the series

of direct measurements by G. B. Kistiakowsky and his associates on the

heats of hydrogenation of unsaturated hydrocarbons
1 contributed mate-

rially to the precision and self-consistency of the enthalpies of formation

of the hydrocarbons, which had previously been established only from

their heats of combustion. 2 Such data afford direct experimental verifi-

cation of the first law of thermodynamics, in the sense that the energy
absorbed or released during a chemical transformation comes within the

scope of that law.

A table of standard molal enthalpies of formation is thus a compact
means of summarizing the standard heats at 25C and 1 atm of all actual

and even hypothetical chemical transformations that may take place

among the substances included in the table. The present objective of

the thermochemist is to establish a best value of #298.16 f r ea h chemical

1 G. B. Kistiakowsky, H. Romeyn, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan,
J. Am. Chem. Soc., 67, 65-75 (1935); G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith,
and W. E. Vaughan, ibid., 67, 876-882 (1935); 68, 137-145, 146-153 (1936).

2
See, for example, the review by F. D. Rossini and J. W. Knowlton, /. Research

Natl. Bur. Standards, 19, 249-262 (1937).
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substance, consistent with all the experimental data available. Such a

table hinges on the precise establishment of the fl^s.ie values for certain

key compounds, such as CC>2, H 2O, HC1, SC>2, MgO, etc., whose heats of

formation from the elements themselves can be directly measured;
calorimetric measurements on reactions involving these key compounds
and the chemical elements with a single additional compound can then be

used to establish the #298. ie value of the new compound. Thus, the heat

of combustion of CO(g) to form CO 2 (g), taken in connection with the

#298.10 value for CC>2(g) established from the heat of combustion of

graphite with oxygen, serves to establish the fl^ie value of C0(g); like-

wise, the heat of combustion of CH 4(g) to form C02(g) and H20(l), taken

in connection with the established /? 98.i6 values of C02(g) and !I20(1),

serves to establish the ff^s.ie value of CH 4(g) relative to its elements.

Reviews of the status of modern thermochemistry, particularly with

reference to organic compounds, have been given by F. D. Rossini;
1 a

group under his direction at the National Bureau of Standards has been

at work on the compilation of such a table, which involves the revision of

older tables, and the critical evaluation and incorporation of recent data;

tables for the hydrocarbons have already been published in bound form.

Appendix 2 consists of data taken from these sources. 2

Standard enthalpies of formation for chemical substances in phases
other than the stable allotrope at standard-state conditions may of course

be inferred from knowledge of the enthalpy of formation of the stable

allotrope, together with the appropriate latent heat of transition, as men-
tioned in connection with Eq. (3-48); thus, while 5 98.i6 for EbOfl) has

been assigned the value 68.3174 kcal/mole, the value for H2O(g) is

57.7979 kcal/mole, these two values differing by the latent heat of

vaporization of water at 25C; likewise, the value of -ff293.16 f r diamond
is 0.4532 kcal/mole, this representing the latent heat of transformation

1 F. D. Rossini, Chem. Rev., 18, 233-256 (1936); 27, 1-16 (1940); Ind. Eng. Chem.,

29, 1424-1430 (1937).
2 "Selected Values of Chemical Thermodynamic Properties," issued quarterly in

loose-leaf form since Dec. 31, 1947, by the National Bureau of Standards, Washington,
D.C. See also Selected Values of Properties of Hydrocarbons, Nail. Bur. Standards

Circ. C461 (1947). The most comprehensive previous publication is by F. R. Bichow-

sky and F. D. Rossini,
"
Thermochemistry of Chemical Substances," Reinhold Pub-

lishing Corporation, New York, 1936, in which the standard reference temperature
was 18C, and incidentally, all values for carbon compounds (of which only compounds
containing 1 or 2 carbon atoms per molecule are listed) were taken with reference to

diamond, instead of graphite, as the standard aliotrope of carbon. The thermochemi-

cal data in the "International Critical Tables," Vol. V, McGraw-Hill Book Company,
Inc., New York, 1929, are based on 20C as the standard reference temperature; and
the data are recorded in international joules.
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from graphite, the stable allotrope of the element carbon at 25C and 1

atm (its value has been established experimentally by the difference

between the heats of combustion of diamond and graphite). It is con-

venient for us to include in the table Jff^s.ie values even for substances

that have only a hypothetical existence at the standard-state conditions;

thus, for H(g), the value -ff^s.ia
= 52.089 kcal has been assigned; this

value has been established from spectroscopic determination of the dis-

sociation energy of H2 (g), and is in agreement with equilibrium data for

the reaction H 2 (g)
= 2H(g) obtained at high temperatures. Such hypo-

thetical enthalpies of formation for substances in metastable states con-

stitute a convenient way to include their thermochemical properties in

the table under a uniform set of standard-state conditions; while such

substances may have an actual stable existence only under conditions far

removed from the conventional standard-state conditions, yet it is con-

venient for theoretical and practical purposes to have all the data reduced

to a common standard temperature and pressure. In such cases, the

correction usually calls for an assumed or a theoretical knowledge of the

value of Cp, so that Eq. (3-47) may be applied over the metastable range.

4-4. Bond Energies. It has long been recognized that many of the

extensive physical properties of certain classes of chemical compounds
can be represented approximately in terms of additive contributions

characteristic of the particular elements present. The example of the

homologous series encountered among the carbon compounds is a case in

point, where one finds that between successive members of a given series

the value of C for the gaseous state at given temperature and the value

of V for the liquid at its normal boiling point increase by amounts that are

approximately constant for the series, and therefore apparently represent

the contributions per mole associated with the CH2 group. Com-

parable additive relationships are found among the physical properties of

the alkali halide group of compounds, where one can ascribe a certain set

of properties to the Cl~ ion, for example, approximately independent of

the particular alkali metal ion with which it may be associated. The

additivity principle extends within certain limitations to the molal

enthalpy of formation, provided that one takes into consideration the

different types of bonds that may exist between atoms. The concept of

bond energies is useful not only as a means of estimating enthalpies of

formation where direct experimental data are not available but also as

a means of measuring the relative strengths, of interatomic valence forces.

While this subject is not strictly within the scope of classical thermody-

namics, yet it constitutes an interesting application of purely thermo-

chemical data to a problem of considerable importance to theoretical

chemistry.
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Let us consider first compounds in which the atoms are bonded by
covalent or shared-electron-pair bonds. In a review of heats of combus-

tion of organic compounds prepared by M. S. Kharasch in 1929,
l it was

shown that the molal heat of combustion for the liquid state could gen-

erally be estimated with fair accuracy as a sum of empirical terms for each

bond broken in the molecule, the term contributed by a particular bond,
such as the C H bond, or the C C bond, being approximately inde-

pendent of the size or shape of the molecule. Since during the combus-

tion of an organic compound, the products are practically always the

same, C atoms ending as CC>2 molecules, H atoms and atoms as H^O
molecules, etc., the additivity rule for the heats of combustion implies

more or less definite covalent bond energies, independent of the particular

molecule in which the bond exists. This idea has been elaborated and
extended to all kinds of covalent compounds by Linus Pauling.

2 In

estimating bond energies from ordinary thermochemical data, Pauling
first computed the enthalpy of formation of the appropriate compound in

the gaseous state from its elements in the form of monatomic gases; in

this way, he subtracted out, for example, the energy required to separate
the atoms in gaseous H2, and the energy required to separate the mole-

cules of a crystalline compound, which are extraneous to the point under

consideration. In principle, it would be desirable to work with thermo-

chemical data extrapolated to 0K, in order that the calculated bond

energies should be free also of contributions from molecular thermal

motion, but in practice the extrapolation is unwarranted in view of the

approximate nature of the conclusions and of the fact that the data

required for the extrapolation (low-temperature heat capacities) are in

many cases not available. Table 4-1 presents some standard enthalpies

of formation at 25C of various elements in the hypothetical form of ideal

monatomic gases at 1 atm; the data, taken from "Selected Values of

Chemical Thermodynamic Properties,
"

differ in some respects, particu-

larly in the value assigned to C(g) about which there has been considerable

controversy, from those used by Pauling in the reference cited. They
have been derived in some cases from spectroscopic measures of dissocia-

tion energies and in others from high-temperature thermal equilibrium

data, the results being corrected to 25C by the assumption of the

theoretical value of C = %R for each monatomic gas.

Thus, from the ordinary standard enthalpy of formation of methane,

1 M. S. Kharasch, /. Research Nail. Bur. Standards, 2, 359-430 (1929); this review

was prepared originally in connection with the "International Critical Tables"

project.
2 L. Pauling, "The Nature of the Chemical Bond," 2d ed., Cornell University

Press, Ithaca, New York, 1940.
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C(c,graphite) + 2H2(g)
= CH 4 (g); Aff*98 . 16

= -17.9 kcal

combined with the data

C(c, graphite) == C(g); Aff?98 . 16
= 171.7 kcal

2H 2(g)
- 4H(g); Aff 98. 16

= 208.4 kcal

we derive for the enthalpy of formation of CH^g) from gaseous atoms

C(g) + 4H(g) = CH 4 (g); AffS98 . 16
- -398.0 kcal

Thus, the average energy per C H bond is 99.5 kcal; i.e., this represents

the average quantity of thermal energy required, per mole, to disrupt each

C H bond and separate the resulting gas atoms, under hypothetical

TABLE 4-1. STANDARD ENTHALPIES OF FORMATION FOR ELEMENTS AS MONATOMIC
GASES*

(#298. ie kcal/g-atom)
Li ............... 37.07 Fe .............. 96.68 Te .............. 47.6

Na .............. 25.98 Ni .............. 101.61 N ............... 85.566

K ............... 21.51 Zn .............. 31.19 P ............... 75.18

Rb .............. 20.51 Cd .............. 26.97 As .............. 60.64

Cs ............... 18.83 Hg .............. 14.54 Sb .............. 60.8

Mg .............. 35.9 H ............... 52.089 Bi .............. 49.7
Ca .............. 46.04 F ............... 32.25 C ............... 171.698

Sr ............... 39.2 Cl .............. 29.012 Si ............... 88.04
Ba .............. 41.96 Br .............. 26.71 Ge .............. 78.44

Al ............... 75.0 1 ................ 25.482 Sn .............. 72

Cu .............. 81.52 ............... 59.159 Pb .............. 46.34

Ag .............. 69.12 S ............... 53.25

Mn .............. 68.34 Se .............. 48.37
* From "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards,

Washington, D.C., as of March 31, 1950.

conditions of constant pressure with each gas behaving as an ideal gas.

Proceeding in a similar manner with ethane,

2C(c ; graphite) + 3H2(g)
= C 2H 6(g); Aff^8 . 16

= -20.2 kcal

2C(g) + 6H(g) = C 2H 6(g); Aff?98 . 16
= -676.2 kcal

Assuming the average value of 99.5 for each of the six C H bonds, as

derived from the data for methane, we are left with 79.2 kcal as the bond

energy of the C C covalent bond. From the data for the hydrocarbons
in general, however, we find that the increment in -ff293.16 for the gaseous

compounds per CH 2 group has the average value 4.9 kcal,

C(c, graphite) + H 2(g)
= CH 2 (g); AT?98 . 16

= -4.9 kcal

C(g) + 2H(g) = CH 2 (g); Aff 98. 16
- -280.8 kcal

Since introduction of an additional CH 2 group into the molecule

involves the net creation of one new C C bond and two C H bonds, we
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infer for the C C bond the average bond energy: 81.8 kcal, slightly

greater than the value deduced from the data for the single compound,
ethane. This value, incidentally, is only 4 per cent less than the value

inferred directly from the heat of sublimation of diamond:

C(c, diamond) = C(g); A#298.i6
= 171.2 kcal

where an average of two tetrahedral covalent bonds (four bonds per atom,
shared by two atoms apiece) have to be broken per C atom liberated from

the crystal lattice.

TABLE 4-2. COVALENT BOND ENERGIES* IN KILOCALORIES

* Calculated essentially according to the methods outlined by L. Pauling,
" The Nature of tho

Chemical Bond," 2d ed., pp. 52-58, Cornell University Press, Ithaca, New York, 1940; but the more
recent thermochemical data given in "Selected Values of Chemical Thermodynamic Properties,"

National Bureau of Standards, Washington, D.C., 1950, have been used in the calculations.

From similar data for alkene hydrocarbons, we may infer an average
bond energy of 146.6 kcal for the C=C bond, and from data for alkyne

hydrocarbons, an average bond energy of 201.9 kcal for the C=C bond.

Table 4-2 presents other covalent bond energies derived in similar fashion,

and Table 4-3 shows how well the experimental data are represented by
the empirical bond energies for a number of aliphatic hydrocarbons.

1

!L. Gero, /. Chem. Phys., 16, 1011-1013 (1948), has pointed out that the lower

hydrocarbons, such as CHU, C2He, CJH.4, etc., are "abnormal" with respect to the

additivity of bond energies. By basing his calculations on the higher hydrocarbons,

beginning with n-hexane, and 1-hexene, he has derived average bond-energy values

(at 0K) of [C C] = 82.59 keal/mole; [C II] - 97.02 kcal/mole (in CH 2

groups) ; [C=C] = 145.12 kcal/mole. He has estimated that the sum of the hydrogen
bond energies in a methyl radical exceeds three times the [C H]cii 2 bond energy

by 0.34 kcal/mole. See also J. G. Valatin, ibid., 1018-1024.
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TABLE 4-3. COMPARISON OF EXPERIMENTAL ENTHALPIES OF FORMATION OF ALI-

PHATIC HYDROCARBONS WITH VALUES DERIVED FROM BOND ENERGIES*

* The /f28.i8 values for the hydrocarbons in the ideal-gas state are taken from Selected Values of

Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461 (1947). The A# 29 8. 16 values are

derived from them by using the S W8 . M values for C(g) and H(g) given in Table 4-1. The C H, C C,
C=C f and C^C bond-energy values used in computing the sum of bond energies are those given in

Table 4-2.
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The observed standard enthalpies of formation of the hydrocarbons,

given with high precision in the first numerical column of Table 4-3, show

that bond energies can be only approximately additive, so long as no

account is taken of detailed structure. These enthalpies of formation are

derived mainly from highly precise measurements of the heats of com-

bustion by F. D. Rossini and his associates. For the alkane hydrocar-

bons, there appears to be a real decrease (algebraic) in the value of

#?98.i6 with increased degree of chain branching; this indicates in a gen-

eral way that the more compact molecules tend to have greater stability

than their straight-chain isomers. 1 For the unsaturated hydrocarbons,
the position of the unsaturated bond, as well as the general configuration

of the molecule, has a measurable effect on the apparent bond energies;

this is clearly shown,Jor example, in the precise values obtained by G. B.

Kistiakowsky and his associates for the heats of hydrogenation of the

isomeric butenes:2

C 4H 8(g) + H 2(g)
- C 4H 10(g)

Isomer, CJIg AHJ2
oc , kcal/molc

1-Buteno -30.341
cw-2-Butene -28.570
frans-2-Butene -27 . 621

2-Mcthylpropene -28 . 389

Here, the product is identical for the hydrogenation of the first three

isomers (i.e., n-butane), but nevertheless significant differences exist in

the thermal energy released as the unsaturated bond becomes saturated

by taking up a pair of hydrogen atoms. For this reason, bond energies

cannot be construed as strictly additive; their average values are undoubt-

edly useful, however, as approximate relative measures of chemical

affinity.

Pauling has also discussed in detail the quantum-mechanical concept
of resonance energy and has shown how this quantity may be estimated

from simple thermochemical data. The classic example is provided by
the benzene nucleus; the existence of resonance energy is indicated by a

straightforward examination of the heats of hydrogenation of benzene

and of its intermediate products, 1,3-cyclohexadiene and cyclohexene, as

1 This statement could be put in more precise form in terms of the free energy of

formation, as discussed in Chap. 8, rather than in terms of the enthalpy of formation;
but for closely related members of a homologous series such as this, the enthalpy
values are at any rate indicative, if not definitive measures of relative instability.

One should note also that the relative stabilities of the isomers may vary with the

temperature.
* G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan, /. Am.

Chem. Soc., 67, 876-882 (1936).
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measured at 82C by Kistiakowsky and his associates: 1

C 6H 6 (g) + 3H 2(g)
= C 6H 12 (g);

C 6H 8(g) + 2H 2 (g)
= C 6H 12 (g);

C 6H 10 (g) + H,(g) - C 6H 12 (g);

- -49.802 kcal

= -55.367 kcal

= -28.592 kcal

These data indicate that for the addition of the first pair of hydrogens to

the cyclic benzene nucleus,

C 6H 6 (g) + H 2(g)
= C 6H 8(g);

= +5.565 kcal

whereas for the addition of the second pair (i.e. y
to 1,3-cyclohexadiene),

C 6H 8(g) + H 2 (g)
= C 6H 10 (g); Aff^ = -26.775 kcal

Thus, the quantities of heat evolved when the second and the third pair

of hydrogens are added have approximately the
" normal "

value for the

addition of H2 to the ordinary double bond, the heats of hydrogenation of

the monoalkenes falling in the range 27 to 30 kcal/mole; but they differ

radically, even to the extent of a reversal of sign, from the heat of hydro-

genation for introduction of the first pair of hydrogens. Thus, as is well

known, the conjugate bond system of the benzene ring, first postulated

by A. Kekul6, is far more stable than one would expect from the con-

sideration of ordinary alkene bonds, such as one finds in cyclohexene. In

fact, if one compares the enthalpy of hydrogenation of benzene, 49.802

kcal (at 82C), with three times the enthalpy of hydrogenation of cyclo-

hexene, 3 X (28.592) kcal, which is what one would expect for three

independent alkene bonds, one obtains as a measure of the degree of

stabilization in the benzene ring 35.97 kcal/mole. The exceptional

stability of the benzene nucleus is attributed to resonance, involving

mainly the two equivalent Kekul6 structures: 2

and

1
Ibid., 58, 137-145, 146-153 (1936).

2 The three equivalent Dewar structures

are supposed also to contribute to the normal state of the benzene molecule, but cal-

culation shows that their energies are rather higher than those of the more stable

Kekule" structures, and their contribution is therefore relatively slight.
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These two structures differ from each other only in the distribution of

certain electrons, but because of symmetry, their energies must be

identical. In a situation like this, according to quantum mechanics, the

actual normal state of the system consists of contributions from each such

state of equal or nearly equal energy (there may in general be more than

two such states), in the sense that if one makes repeated observations on

the system, it will behave part of the times as though it were in one of the

states and part of the times as though it were in the other, the probabilities

being equal in a case such as this where there are two structures having

exactly equal energies. The properties of the actual state, in other words,
must be regarded as averages over such equivalent states contributing to

the average state, but the actual state always possesses a lower energy
than would be characteristic of the independent contributing states.

This energy difference is called the resonance energy of the system; its

existence permits the system to remain stable in a configuration which if

it were not for resonance might have an appreciably higher energy.

Thus, the resonance energy of benzene has the approximate empirical

value 36 kcal/mole; Pauling has shown how a theoretical value in close

agreement with this can be derived by a quantitative treatment of reso-

nance from the point of view of the quantum theory of valence. 1

The resonance energy associated with a given molecular structure may
be determined empirically, of course, from bond-energy values. Thus, if

one computes the enthalpy of formation of CeH 6 (g) from C(g) and H(g)
as in Table 4-3, starting with the experimental standard enthalpy of

formation of CeHeCg) from the elements in their ordinary standard states,

#298.ie = 19.820 kcal/mole, one obtains Afl|g8. 16
= 1323.0 kcal;

whereas if one computes the sum of the bond energies according to

either Kekul6 structure, using the bond-energy values of Table 4-2, one

obtains 6 X 99.5 + 3 X 81.8 + 3 X 146.6 = 1282.2 kcal, to which one

must therefore add empirically 40.8 kcal/mole, representing resonance

energy. The sum of the bond-energy values for the three equivalent

Dewar structures, 6 X 99.5 + 5 X 81.8 + 2 X 146.6 = 1299.2 kcal, is

slightly closer to the experimental result, and the fact that these struc-

tures contribute slightly to the normal state brings the empirical reso-

nance-energy value down a little from what one would infer on the basis

solely of the Kekul6 structures. In applying covalent bond-energy
values to estimate enthalpies of formation, one may therefore be quite in

error if one overlooks the possibility of resonance stabilization; on the

other hand, bond-energy data constitute in connection with empirical

thermochemical data a simple and convenient means of testing proposed
molecular structures and of detecting the existence of resonance energy.

1
Pauling, op. cti., Chap. IV.
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A different approach to the question of bonding energies is called for in

the case of ionic compounds such as NaCl. Here, the electrostatic

Coulomb forces of attraction and repulsion between the ions are of over-

whelming importance. These forces, taken in connection with the

spherical symmetry of the simpler types of ions and their established

regular arrangement with respect to each other in the crystalline ionic

compounds, are susceptible to exact theoretical treatment, leading to a

reasonably satisfactory solution to the problem of the so-called lattice

energy, the energy required to separate the ions from their normal distance

in the crystal to an infinite distance apart [e.g., the energy of the process,

NaCl(c) = Na+(g) + Cl~(g)]. The theory has been developed through
the work of many investigators, including in particular M. Born and his

associates. 1 One assumes that the force holding the crystal together is

the resultant of the Coulomb electrostatic forces, whose net effect is

attractive, and a short-range interionic repulsive force, which is analogous
to the van der Waals "b" effect, giving rise to finite ionic sizes or normal

distance of closest approach between centers. 2 The potential energy of

the entire crystal is then calculated by a summation over all ion pairs of

the potential energy between a pair of ions. Now for diatomic crystals

such as NaCl, MgO, CaF2,
A1 2O3, etc., the total electrostatic potential

energy per mole may always be expressed in the simple form

E. = - + -
(4-18)

PO

where No represents Avogadro's number, e the electron charge, z+ and z_

the number of charge units on the cation and the anion (1 and 1 in the

case of NaCl), r the closest distance between centers of oppositely

charged ions in the normal crystal lattice, and A a geometrical factor

called the Madelung constant;
3

all interionic distances in a regular

1 M. Born and A. Lande*, Sttzber. preuss. Akad. Wiss., Physik.-Math. Klasse, pp.

1048-1068 (1918); M. Born, Ber. deut. physik.Ges., 20, 224r-229 (1918); M. Bom
and J. E. Mayer, Z. Physik, 76, 1-18 (1932). The subject is reviewed by J. Sherman,
Chem. Rev., 11, 93-170 (1932); excellent summaries are given by L. Pauling, "The
Nature of the Chemical Bond," 2d ed., Chap. X, Cornell University Press, Ithaca,

New York, 1940; R. C. Evans, "An Introduction to Crystal Chemistry," Chap. Ill,

Cambridge University Press, New York, 1946; C. W. Stillwell, "Crystal Chemistry,"

Chap. VI, McGraw-Hill Book Company, Inc., New York, 1938; F. Seitz, "The
Modern Theory of Solids," Chap. II, McGraw-Hill Book Company, Inc., New York,
1940.

2 A more refined treatment by Born and Mayer, loc. rit., takes account also of a

van der Waals "a" effect of attraction between the ions; this, however, is much
smaller than the Coulomb effect resulting directly from the ionic charges.

E. Madelung, Physik. Z., 19, 524-532 (1918).
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crystal lattice of a given type can be represented as more or less simple

geometric functions of the single characteristic distance r
,
and the factor

A arises when one sums the electrostatic potential energy between two

ions over all possible interionic distances that may exist in the crystal.

In the NaCl type of cubic lattice, for example, A has the value 1.7476;

the value of this factor indicates that the average Coulomb electrostatic

potential energy per ion pair in the NaCl type of lattice is about 75 per
cent greater because of the influence of neighboring ions than the cor-

responding energy for an isolated pair of ions the same distance apart.
1

Values of A for other types of regular crystal structures are given in

Table 4-4. The repulsive energy per mole, which prevents the crystal

from collapsing altogether under the net attraction of the Coulomb forces,

was originally assumed by Born and Landg to have the form

B
(4-19)

whereB and n are constants for the particular kind of crystal ;
if we assume

that only nearest neighboring ions contribute significantly to Er>
then

Eq. (4-19) implies that individual ions repel each other with a force pro-

portional to l/r
n+1

. The value of n can be inferred from measurements

TABLE 4-4. MADELUNQ CONSTANTS*

* Values in the last column are computed with No - 6.0228 X 102Ymole, e = 4.8024 X 10" 10 esu,

and with the conversion factor (1 kcal/4.1840 X 10" erg) X 10A/cm. The values of A given in

Table 4-4 apply to Eq. (4-21) when ro represents the mean distance between closest ions of opposite

sign; values may also be computed with ro standing for any other convenient geometrical function of

this mean ionic "diameter," e.g., the lattice constant itself, for cubic crystals.

of the coefficient of compressibility of the crystal; for most cubic ionic

crystals, itsvalue is about 9, but it varies with the size of the ions involved,

being about 7 for ions of the Ne type and about 10 for ions of the Kr type,

1 The mathematical methods developed by E. Madelung, P. P. Ewald, M. Born,
and others for the calculation of Madelung constants are briefly described by J.

Sherman, loc. dt.; see also H. M. Evjen, Phya. Rev., 39, 675-687 (1932). See Prob. 2-17.
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as seen in Table 4-5. The value of B can be found through the condition

that the equilibrium distance TQ must be such as to make the sum of Ee

and Er a minimum with respect to variations in r
; thus

Therefore the total potential energy per mole has the form

(4-20)

This represents the molal internal energy of the crystal relative to a state

of complete separation of the independent ions (r > <*>
) ;

thus

= A A
\ n/

represents the energy required in order to separate the crystal into inde-

pendent gas ions, i.e., in the case of NaCl, the internal-energy change

accompanying the reaction

NaCl(c) = Na+(g) + Cl~(g) (4-22)

TABLE 4-5. VALUES OF BORN EXPONENTS n*
Ion Type n
He ................. 5

Ne ................. 7

A, Cu+ ............. 9

Kr, Ag+ ............ 10

Xe, Au+ ............ 12
* From L. Pauling, "The Nature of the Chemical Bond," 2d ed., p. 339, Cornell University Press,

Ithaca, New York, 1940. For two ions of different types, the average value of n is taken, e.g., for KF,
n - 8.0.

at 0K. At ordinary temperatures, a correction should be introduced to

take account of the thermal motion of the ions in the crystal as compared
with the ideal-gas state, but up to 25C, this correction amounts to but a

few tenths of a kcal. 1 One sees that with n having a value of order 9, the

Coulomb electrostatic energy accounts for approximately 90 per cent of

the total, the balance being contributed by the interionic repulsive energy.

In the case of NaCl, with r = 2.814 A and n =
8, the value of the lattice

energy calculated according to Eq. (4-21) from the appropriate value of

the Madelung constant is 180.4 kcal/mole; in the case of KI, with

r = 3.526 A and W =
10.5, AC/g = 148.9 kcal/mole. Lattice energies

1 The value of ro introduced in Eq. (4-21) should correspondingly be the equilibrium
interionic distance between nearest ions of opposite charge at 0K, but this too differs

but slightly from the value at room temperature.
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computed for a number of other ionic compounds are given in Tables 4-6

to 4-8; one will note that the only information about the crystal one needs

in order to compute the value of At/JJ by the Born theory is its general

structure and value of r
,
as given by X-ray analysis, together with the

value of the Born-Lande repulsive force exponent n, which depends

merely on the sizes of the ions concerned.

The value of AC7JJ cannot be directly measured by thermochemical

means, but it may be computed from thermochemical data available for a

series of intermediate steps, as shown originally by M. Born and by F.

Haber. 1 In order to work with the enthalpy function, in terms of which

the thermochemical data are generally expressed, let us first write for a

reaction such as (4-22)

AH = A 7 + A(pF)

where f represents the number of ions corresponding to the formula; thus,

for NaCl, neglecting the correction of At7 itself to room temperature, but

taking the 25C value for the term 2RT,

+ 1.2 kcal (NaCl, etc.; f = 2)

Now, the reaction (4-22) to which the value of AC/S applies may be

brought about in principle through the following chain of independent

steps:

(1) NaCl(c) = Na(c)

(2) Na(c) = Na(g); Aff = (Lcg) Na

(3) ^Cl 2 (g)
= Cl(g); A// = (#?98 . 16)ci(g>

(4) Na(g) = Na+(g) + e; A/P = /Na

(5) Cl(g) + e = Cl-(g); Aff = -eci

The first of these steps represents simply the reverse of the formation of

NaCl(c) from its elements in their ordinary standard states; its enthalpy
is equal to the standard heat of formation of the compound, or the

negative of its standard enthalpy of formation. The second step repre-

sents the sublimation of Na(c); its enthalpy at 298.16K is derived

essentially by means of the Clapeyron equation [Eq. (6-68)] and Eq.

(3-48) from vapor-pressure measurements at higher temperatures. The
third step represents the dissociation of Cl2(g) into atoms; its enthalpy at

298.16K is derived both from spectroscopic indication of the dissociation

energy of C12 molecules, and from equilibrium data at high temperatures

by extrapolation. The data needed for steps 2 and 3 are included in

Table 4-1, which gives the standard enthalpies of formation of elements

1 M. Born, Ber. deut. physik. Ges., 21, 13-24 (1919); F. Haber, ibid., 750-768 (1919).
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in the form of monatomic gases, as derived from the appropriate experi-

mental evidence. If one adds steps 1, 2, and 3, one obtains, for the dis-

sociation of the crystal into its gaseous atoms,

NaCl(c) = Na(g)

(4-23)

This quantity has been tabulated in the ninth column of Tables 4-6 and

4-7, and in the eighth column of Table 4-8. Step 4 represents the ioniza-

tion of Na(g), and /Na the ionization potential of Na(g) (expressed in

thermochemical units) ;
the value of this quantity is known with high pre-

cision, both from analysis of the Na(g) spectrum and from direct reso-

nance potential measurements on sodium vapor. The value of ci in step

5 is called the electron affinity of Cl; it represents the energy released per
mole when gas ions are formed out of Cl(g) atoms, or what is equivalent,

the ionization potential of Cl~(g). For most anions, no way has been

found to measure this quantity by direct independent means; in the case

of O", for example, its value is apparently negative and large in magnitude

(Table 4-7), which means that (^(g) could be produced from O(g) only

with the absorption of a considerable quantity of energy. The theory
has therefore generally been tested by the consistency with which the

theoretical and the thermochemical data can be correlated upon the

assignment of a suitable constant value to e for a given anion throughout
a series of its compounds. Thus, in the case of NaCl, we may compute
the value of Ci by difference from the equation

+ 1.2 fccal = (ff?98.16)NaCl(o) + (^298.16)Na(g) + (^298.ie)ci(g)

+ /Na-Cl (4-24)

using the Born-Land6 theoretical value of AC7J; all the other terms in this

equation are known from experiment. The values of / and e refer to 0K,
but the correction to 298.16K may be neglected. In Table 4-6, electron

affinities for the halogen atoms and hydrogen have been so computed by
difference from Born-Land6 theoretical lattice energies and thermo-

chemical data for the alkali halides and hydrides; one sees that in view of

the extreme simplicity of the theoretical assumptions, the consistency of

these data is excellent. In Table 4-7, similar data are presented for

various oxides, sulfides, and selenides, leading to electron-affinity values

for O, S, and Se; while there is evidence from other sources that capture of

the first electron by these atoms is an exothermic process, capture of the

second electron is evidently highly endothermic. In Table 4-8, values of

A I/o (experimental) for certain other fluorides are computed from thermo-
chemical data with eF = 96.3 kcal/g-atom as derived from the data for
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the alkali fluorides, and these values are compared with AU% (theoretical)

computed according to the Born-Land6 theory; one sees that the agree-

ment is in general quite good.

In the particular cases of Cl, Br, and I, the electron affinities have been

directly measured by experiments ingeniously conceived by J. E. Mayer
and his associates. 1

Equilibrium for the reaction

KI(g) = K+(g) + I-(g) (4-25)

was determined directly from measurements of the electrical conductivity

of KI vapor at high temperatures (around 1000K), and from the general

thermodynamic relation between the variation of the equilibrium con-

stant with temperature and the enthalpy of reaction (Chap. 8) the

enthalpy of the gas reaction (4-25) was thus directly measured; by com-

bining this information with the latent heat of sublimation of KI(c), and

the thermochemical information corresponding to the reaction of the

type (4-23), the value of IK ci was thereby experimentally established

in terms of straightforward chemical thermodynamic data. The method
was applied also to Csl, NaCl, and RbBr, and from the known ionization

potentials of the metals, the values of c for Cl, Br, and I were determined.

The electron affinity of iodine was also determined independently from

measurements of equilibrium (ratio of electron to negative ion emission

from a W filament at 2000K in I(g) at low pressure) for the process

I-(g) -
I(g) + e(g)

The results of these experimental determinations are as follows:

cz
= 88.3 kcal/g-atom

cBr = 84.2 kcal/g-atom
i
= 72.4 kcal/g-atom

The value for I is rather lower than the value deduced from the Born-

Land6 theory in Table 4-6, but improvement in the theory by Born and

Mayer, involving the use of an exponential instead of an inverse nth

power repulsive-energy term and the introduction of a van de Waals term

in addition to the Coulomb attractive energy, has resulted in closer

agreement.
2

We may conclude that the theory of ionic crystal lattice energies is in

excellent shape. The theory accounts successfully for the relative stabil-

1 J. E. Mayer, Z. Physik, 61, 798-804 (1930); L. Helmholtz and J. E. Mayer,/.
Chem. Phys., 2, 245-251 (1934); P. P. Button and J. E. Mayer, ibid., 3, 20-28 (1935).

* M. Born and J. E. Mayer, Z. Physik, 76, 1-18 (1932); see also J. E. Mayer and
L. Helmholz, ibid., 19-29; J. E. Mayer and M. M. Maltbie, ibid., 748-752; J. E. Mayer,
/. Chem. Phys., 1, 270-279 (1933).
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ity of existing crystal structures and

for the instability of hypothetical

alternative structures. 1 It has been

applied also in certain cases to demon-

strate that the chemical binding may
be partially covalent in character,

rather than typically ionic; this ap-

pears to be true, for example, of Agl
and Cul. 2 We shall return to the

lattice energy theory in Chap. 9 (Sec.

9-4) in order to discuss its bearing on

the relative magnitudes of standard

electrode potentials in theoretical elec-

trochemistry.

4-5. Heat and Enthalpy of Solution.

The formation of a solution from its

pure components, like a chemical

transformation in the ordinary sense,

is generally accompanied by exchange
of energy with the surroundings.
Since however, the proportions of the

components can be varied, the quan-

tity of energy released or absorbed is

in general a function of the composi-

tion, whose form cannot be deduced

from purely thermodynamic reasoning
but must be established in particular

cases by empirical observation or per-

'H. G. Grimm and K. F. Herzfeld, Z.

Physik, 19, 141-166 (1923), have accounted

for the nonexistence of such hypothetical

compounds as NeCl, NaCl 2, MgCl3 , etc., by
showing that they would have large positive
standard enthalpies of formation, based on

reasonably assumed crystal structures; it

turns out that MgCUfc) is considerably more

stable, by similar reasoning, than the hypo-
thetical compound MgCl(c) would be; see

also IT. G. Grimm, Z. Elektrochem., 34,

430-437 (1928).
2 J. E. Mayer, /. Chem. Phys., 1, 327-334

(1933); J. E. Mayer and R. B. Levy, ibid.,

647-648.
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haps by theory based on extrathermodynamic evidence. In the case

of binary solutions, particularly where water is one of the components,
it has become the custom to represent the heat of solution, or quantity
of heat evolved when the solution is prepared from its pure components,
with reference to one mole of the one component, A, taken as solute;

the so-called integral molal heat of solution, Qs, is then regarded as a

function of rii, the number of moles of the other component, S (e.g., H 20),

taken as solvent. In other words, one divides the observed quantity of

heat, as obtained by straightforward calorimetry for the mixing of arbi-

trary quantities of the two components, by the number of moles of the

component regarded as the solute, and repeats the observations, varying
the proportion of solvent to solute, so as to obtain a series of Qs values

corresponding to various values of ni, the number of moles of solvent per

mole of solute. Since one customarily measures heats of solution at or

corrects them to conditions of uniform temperature and pressure through-

out, the value of Q8 represents in accordance with the general thermo-

dynamic relation, Eq. (3-36), an enthalpy change corresponding to the

process

A + ntS = A(ttiS); AH = H - mfl? - H\ = -Q. (4-26)

where H represents the enthalpy of the solution, per mole of A present,

and Hi and Hi denote, respectively, the molal enthalpies of the pure
solvent and pure solute at the given temperature and pressure. There is

no distinction on purely thermodynamic grounds between solvent and

solute; the choice affects the form in which one represents the experimen-
tal data, but is quite arbitrary, depending merely on one's point of view.

Essentially, H is an extensive property of the solution, which for fixed

temperature, pressure, and composition can vary only in direct proportion
to the total mass.

In Table 4-9, data are presented for solutions of H 2SO4(1) in H 2O(1) at

25C and 1 atm, while in Table 4-10, similar data are presented for solu-

tions of HCl(g) in H20(l).
1 With increasing n iy the value of Qs generally

approaches asymptotically a terminal limit, Q, called the total molal heat

of solution or heat of solution at infinite dilution of the substance A in the

solvent S. This quantity is of course a property of the particular solute

and solvent, at given temperature and pressure; its value for H 2SO4(1) in

water, derived by extrapolation of the experimental data obtained at

finite solute concentrations, is given in parentheses at the bottom of the

second column in Table 4-9. The range of dilute compositions over

which Q8 differs insensibly from Q depends on the particular pair of

1 From "Selected Values of Chemical Thermodynamic Properties," National

Bureau of Standards, Washington, D.C., 1947.
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TABLE 4-9. HEAT OF SOLUTION, H 2SO 4 (1) IN H 2O(1), AT 25C AND
1 ATMOSPHERE*

H 2S04 (1) + niH 2O(l) - H 2SO4 (rnH 2O)

* SOURCE: "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards,

Washington, D.C., Sept. 30, 1947.
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TABLE 4-10. HEAT OF SOLUTION, HCl(g) IN H 2O(1), AT 25C AND
1 ATMOSPHERE*

HCl(g) + wiH,0(l) = HCl(nJI 20)

* SOURCE: "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards,
Washington, D.C., Mar. 31. 1947.
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components involved. Thus for H2SO4 in H 2O, a significant difference

persists even at dilutions beyond HI = 20,000 moles H2O/mole H 2SO4j

whereas for HC1 in H2O, the difference is less than 0.2 kcal/mole at dilu-

tions beyond HI = 400 moles H2O/mole HC1; the difference in the case of

H2SO4 is no doubt associated with the progress of secondary ionization in

the dilute range. We shall see in Sec. 7-3 that Q8
= Q% so long as the

solvent satisfies Raoult's law, in the so-called ideal dilute solution; in fact,

if both components satisfy Raoult's law and form solutions ideal over the

entire composition range, then Q8
= for all compositions.

Now, aside from being interested in the heat of solution itself, because

of its bearing on problems of heat transfer that may arise in chemical

technology (e.g., the removal of the heat released when sulfuric acid is

diluted with water on a large scale), we are interested also in heats of

chemical reactions involving one or more components present in solution,

e.g., reactions involving H2SO4 in aqueous solution. Two special situa-

tions call for our attention. We shall discuss them separately in the

paragraphs immediately following.

In one situation commonly encountered, a substance A in solution,

present originally at concentration 1 :ni, is practically completely removed
as a result of the reaction. If, for example, excess Zn(c) is added to

H 2SO4(100 H2O), then the H2SO4 disappears practically completely from

the solution, and is replaced by an equivalent quantity of ZnSO4 . In

this case, it is evident according to the first law of thermodynamics that

the substance A will contribute to the enthalpy of reaction a term equal
to its standard molal enthalpy of formation in the pure state, less its

integral molal heat of solution corresponding to the given initial concen-

tration. Let us denote this term by the symbol $A,

** ^ HI - Q, (T, p const) (4-27)

Then it follows from Eq. (4-26) that

*h = H - ntfl (4-28)

that is, ** represents the difference between the enthalpy of the solution,

per mole of solute present, and the enthalpy of the pure solvent; it is

called the apparent molal enthalpy of the solute. In the situation under

consideration, to treat the solvent in solution as though it had the same

enthalpy as in the pure state is an entirely consistent procedure, inasmuch

as the reaction effects a complete separation between the solute (which is

consumed by the reaction) and the solvent. Similar reasoning shows

that ** likewise represents the contribution per mole of A to the enthalpy
of a reaction in which A appears as a product in solution at the ultimate
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concentration l:ni, no A being originally present. Thus, we may write

for the reaction between excess Zn(c) and E^SO^lOO H 20), bearing in

mind that the standard enthalpies of the elements in their normal allo-

tropic forms are taken by convention to be zero,

Zn(c) + H 2SO4(100 H 20) = ZnSO4(100 H 2O) + H 2 (g);

AH = (^)znso4
-

(*0n*04 (4-29)

where in this case, both $h values refer to the same stoichiometric concen-

tration, 1 : 100 H 2O. Values of the quantity <& are commonly tabulated

directly in thermochemical tables, for various values of n\, as the enthalpy

offormation in solution of the substance A in the given solvent S. Such

values are given in the third columns of Tables 4-9 and 4-10. l It is

obvious that in order to construct a table of <$>/ values, one must have in

addition to the heats of solution, the heat of some chemical transformation

involving the compound, either in the pure state or in solution at a given

concentration, with other substances whose standard enthalpies of forma-

tion have been established. In fact, the direct measurement of the heat

of the reaction (4-29), combined with measurement of the heat of solution

of ZnS0 4 (c), serves as one experimental method of establishing the value

of //znso4<o> in relation to the independently established value of ($*)Ho4 .

The terminal value of $h for a given solute at sufficiently dilute concen-

tration in a given solvent is obtained from the total molal heat of solution,

Q, in accordance with the definition (4-27),

*2 = Km ** = HI -
QT. (4-30)

ni >

This is a characteristic property of the solute in the particular solvent at

given temperature and pressure, independent of concentration, and is

known as the standard enthalpy offormation in solution of the solute in the

given solvent. For reasons that we shall discuss at length in Chap. 7,

it is convenient for us to adopt as the standard reference state of a sub-

stance A in solution in a given solvent S, a hypothetical ideal dilute solu-

1 It is actually in such form, <&h values for selected values of ni, that the thermo-

chemical data for solutions, such as are represented in Tables 4-9 and 4-10, appear in

the definitive compilation by the National Bureau of Standards, "Selected Values of

Chemical Thermodynamic Properties." We have calculated the Q8 values given in

Tables 4-9 and 4-10 by difference according to Eq. (4-27), for our purpose, though of

course the original experimental data from which the tables in "Selected Values"

were compiled consist essentially of Q 8 measurements. In the older compilation by
F. R. Bichowski and F. D. Rossini, "Thermochemistry of Chemical Substances,"
Reinhold Publishing Corporation, New York, 1936, the thermochemical data for

substances in solution are tabulated in terms of <&, the molal heat of formation in

solution, for selected values of HI.
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tion at some specified finite concentration (generally 1 mole per kg of

solvent, when the solvent happens to be water), in which the substance

would have the same $H value as at infinite dilution, namely, $2; the

solvent is then supposed to have the same enthalpy as in the pure state,

namely, Bl. The reason for specifying a finite concentration for the

hypothetical reference state, instead of merely the infinitely dilute solu-

tion itself, is that certain other important thermodynamic properties of

the solute based on the second law of thermodynamics, while satisfying

well-established empirical laws in the ideal dilute range, fail to remain

finite as the solute concentration approaches zero. A similar situation is

encountered in the behavior of pure gases; the values of HT and J7r, as

well as of Cp and Cv , approach finite limits as p > 0, but the important

entropy and free-energy functions introduced in Chap. 5 increase and

decrease, respectively, without limit as p 0; therefore it is convenient

to refer the thermodynamic properties to a hypothetical ideal-gas state

at p = 1 atm, as shown in Sec. 6-1. The standard state of a solute in

aqueous solution is generally indicated by the symbol (aq), e.g., as in

H 2SO 4(aq).

It is convenient also for us to compute the relative apparent molal

enthalpy with respect to the state of the solute in infinitely dilute solution,

**-*= -(&-#) (4-31)

This quantity, tabulated in the fourth columns of Tables 4-9 and 4-10,

clearly represents the negative of the quantity of heat that would be

evolved per mole of solute if the solution of given composition, 1 :ni, to

which the value of ($h $2) refers were to be diluted with sufficient

solvent until no thermal effect on further dilution would be observed.

In view of the first law of thermodynamics, it is evident that the heat of

dilution per mole of solute corresponding to a change from one concentra-

tion 1 :n( to another 1 :n" by the addition of pure solvent, is given by the

difference between the Q8 values for the two concentrations, or what
amounts to the same thing, by the negative of the difference between the

corresponding (4>A <>) values

Qd = #' - # .. (f -
#J)

- tf[ - *) (4-32)

Thus, from the data in Table 4-9, if sulfuric acid at 1H2SO4:2H2O con-

centration is diluted with pure water to 1H2SO4 : 10H2O concentration,

then the quantity of heat liberated per mole of H 2S04 at 25C and 1 atm
is 16.02 - 10.02 = 6.00 kcal. On the other hand, if sulfuric acid at

original concentration of 1H 2SO4 :10H 2O were to be concentrated to

1H 2SO4:2H 2O by the removal of water through evaporation, then 6.00
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kcal of thermal energy per mole of H2S04 present would be required, in

addition to the latent heat of vaporization of the corresponding quantity

of pure water removed at the given temperature. Practical methods for

deriving the value of * (or of Q) precisely from heat-of-dilution data,

combined with an accurate heat-of-solution measurement at some one low

solute concentration, are described in an important paper by F. D.

Rossini, in which results are given for aqueous solutions of a number of

electrolytes.
1 The interionic attraction theory of P. Debye and E.

Hiickel discussed in Sec. 7-4 provides a theoretical basis for the precise

extrapolation of thermal data for electrolytes to zero solute concentration.

The other situation arising in connection with the thermochemistry of

solutions concerns virtual or infinitesimal transformations that leave the

composition of the solution practically unchanged. Such transformations

are of particular interest in the study of systems in equilibrium states,

e.g., as in the study of the vaporization of H 2O from a sulfuric acid solu-

tion at its own instantaneous partial vapor pressure. The theory is

applicable also to the
"
differential

7 '

reaction

Zn(c) + HjSOiCnjHaO) = ZnS0 4KH 20) + H2(g)

taking place in the galvanic cell

Zn(c)|ZnS04KH20)||H 2S04(n
/

1H 20)|H 2(g),(Pt)

as a small quantity of electricity is discharged; this reaction differs from

the "integral" reaction represented by Eq. (4-29) in that H 2SC>4 dis-

appears from the right-hand compartment and ZnSCh appears in the left-

hand compartment at the essentially constant concentrations, l:nj and

l:n", respectively, so long as the quantity of electricity discharged
remains small in comparison with the capacity of the cell; a situation

similar with respect to the H 2SC>4, though not with respect to ZnSO 4 ,

would arise if one were to add directly a small quantity of Zn(c) to a rela-

tively large quantity of H 2SO4 in solution. A knowledge of the differ-

ential enthalpies of the components of a solution may be of direct practical

importance also in the control of continuous flow processes, in which one

of the components is being consumed or produced through some chemical

or physical transformation, but its concentration in the reaction mixture

is maintained constant through continuous addition or removal (e.g., by
extraction or distillation) as the transformation proceeds.

2 Let us there-

fore define differential or so-called partial molal enthalpies of the com-

1 F. D. Rossini, J. Research Nail. Bur. Standards, 6, 791-806 (1931).
2
See, for example, T. S. Mertes and A. P. Colburn, Ind. Eng. Chem., 39, 787-796

(1947).
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ponents by means of the symbolic operations

r7U\

(4^3)

While we shall confine the discussion to binary solutions, the treatment

may be generalized to include polycomponent systems, if the necessary

thermochemical data are available. The subscript c following the differ-

ential coefficients in Eqs. (4-33) denotes that the composition is regarded

as essentially constant during the operation by which the increase of //

per mole of either component added is measured; this operation consists

in principle of measuring the heat absorbed in the limit as Ani or An2 ,

respectively, approaches zero (with T and p constant and W =
0). We

assume in other words that the quantities 171 and 772 themselves vary with

the composition of the solution by infinitesimals of order higher than that

of dni and dn^ an assumption borne out by the nature of the experimental

data concerned. The values of 771 and 772 thus represent the terms prop-

erly contributed per mole of solvent S (designated as component 1) or

per mole of solute A (designated as component 2), respectively, to the

instantaneous enthalpy change of any process involving either substance,

if it is carried out in such a way that the composition of the solution

changes only infinitesimally. Thus, for the chemical reaction (4-29) as

carried out in a galvanic cell, with discharge of a relatively small quantity
of electricity, AH =

Tjznso i?n8o4 ;
the two quantities 77znso4 and 77112804

depend on the particular electrolyte concentrations, as well as on tem-

perature and pressure.

Let us develop some of the mathematical properties of the quantities 771

and 772 and, in particular, devise methods for computing their values from

experimental data in such forms as have been presented in Tables 4-9 and

4-10. To a first order of approximation, we may represent the change
in the total enthalpy of the solution corresponding to changes in the quan-
tities of the components present, at constant temperature and pressure,

by means of the formal expression

JIT (dH\ ,
, (dH\ ,dH = I -y I dni + I -T I dnz

\dni/T,P ,c \dn2/T,P,c

=
771 dni + 772 dni (T, p const) (4-34)

This general functional relationship, which includes possible changes in

the total mass of the solution, has, however, a special character resulting

from the fact that H is necessarily an extensive property of the solution.

No enthalpy change takes place when several portions of the same

solution, all at the same temperature, pressure, and composition, are
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combined; therefore H must equal the sum of the enthalpy values of any

portions of the solution, all having the same temperature, pressure, and

composition, from which the solution may be regarded as made up, i.e., it

must increase in direct proportion to the total mass. The quantities 771

and 772 are equally clearly intensive properties of the solution, which may
vary with temperature, pressure, and composition, but from the nature of

their definition are independent of the total mass. If, then, n\ and n% are

increased in the same proportion, dn\ = Xni, dn* = Xn 2 , leaving the com-

position unchanged, 771 and 772 undergo no change, but H must likewise

increase in the same proportion, dH =
A/7, since the change under con-

sideration is equivalent merely to an increase in the total quantity of the

solution. Substituting these conditions in Equation (4-34), we infer that

H =
fti77i + 712772 (4-35)

The partial molal enthalpies 771 and 7/2 represent in other words the prop-

erly additive contributions made by the components to the total enthalpy
of the solution. If Q8 were zero for all compositions (as is actually the

case for certain ideal mixtures, including in particular most gas mixtures

at sufficiently low pressures), so that

H = njll + n,H2 (Q. = 0)

then we should have 771
= H\ and 772

= B\ at all compositions, but in

general, the values of 771 and 772 differ from the standard molal enthalpies

of the pure components.
If we differentiate Eq. (4-35) in the most general manner with respect

to changes in the variables n\ and n 2,

dH =
771 dn\ + ni drji + 772 rfn 2 + n 2 ^772 (T, p const)

and then compare the result with Eq. (4-34), we draw the inference that

ni drji + n 2 driz
= (T, p const) (4-36)

Thus, the two partial molal enthalpies of a binary solution do not vary

independently with composition, but are interrelated in such a way that

if we have determined the value of either as a function of the composition,

then we may calculate the value of the other by graphical or numerical

integration of Eq. (4-36). The integration introduces an additive inte-

gration constant, whose value may be determined from knowledge of the

terminal value of the partial molal enthalpy in question at either end of

the composition scale; for in terms of the concepts embodied in Eqs.

(4-27), (4-28), and (4-30), it is clear that

lim 77!
= H\] lim 772

s
17?

= 3>h ;
lim 772

- Hi (4-37)
(nz/ni) *0



THERMOCHEMISTRY 169

Equation (4-36) is a special case of the general Gibbs-Duhem equation

(3-16), introduced in Sec. 3-1.

We may proceed to evaluate 771 and 172 from empirical heat-of-solution

data such as are presented in Tables 4-9 and 4-10 according to several

mathematically equivalent forms, to suit our convenience. Thus, from

Eqs. (4-28) and (4-35), if we bear in mind that the quantity $h has been

set up with nz = 1 mole by convention,

H = *A + niHl = nun + 12 (n2 = 1 mole) (4-38)

Applying the definition (4-33) of 171 to the first equality in Eq. (4-38),

whereupon, on substitution back in the second equality of Eq. (4-38),

These two equations express rji and 172 in terms of $h and its rate of change
with wij it is of course impossible to derive the values of iji and 172 at a

given composition from heat-of-solution data obtained only at the one

composition, since by their very nature, they imply a knowledge of how
the enthalpy of solution varies with change in the composition. It is

more convenient for us to work with ($h *D rather than with 4>^

itself, since the values of (** $) may be derived directly from heat-of-

solution data [by means of Eq. (4-31)] without explicit knowledge of the

values of H\ and H\] thus

Equations (4-39) and (4-40) express the values of 771 and 972, relative to

their terminal values at infinite dilution in the component regarded as the

solvent (component 1), in terms of (&h $2) and its rate of change with HI

at the particular composition in question. The value of d(<bh

for any given value of n\ may be read graphically from a plot of

vs. HI. Thus, from the lower curve in Fig. 4-1, where such a plot has been

constructed for H 2S04-H 2O solutions from the data in Table 4-9, one

finds that at HI = 2000 moles H 26/mole H2SO 4, the slope is -0.00047

kcal/mole H 2O; therefore

- 0.00047 kcal/mole
= 3.66 - 2000(-0.00047)
= 4.60 kcal/mole
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The difference is almost insignificant for the solvent H2O; but since

for H 2S0 4 , $1
-

#2*o<i)
= -22.99 kcal/mole, one may infer that

172
~ #H 2so4(D

= 18.39 kcal/mole; thus, 172 differs significantly at the

given concentration both from its value at infinitely dilute solution and

from the value of #^04(1) for the pure solute. Likewise, from the upper

n, (mole H20/mole H2S04 )

100 200 300 400 500 600 700 800 900 1000

Mbngent at

n,
= 400 mole H20/mole H2S04

Tangent at

r>, =2000 mole H20/mole H2S04

2000 4000 6000

HI (mole H20/mole H2S04 )

8000 10,000

vs. m for solutions of in H 2O(1) at 25C (data given inFIQ. 4-1. (4>A
-

Table 4-9).

curve in Fig. 4-1, one reads at HI = 400 moles H 2O/mole H 2SO 4 the

slope, -0.00128 kcal/mole H 2O; thus

= -0.0013 kcal/mole
= 4.77 - 400(-0.00128)
= 5.28 kcal/mole

Where (<& $) shows significant variation over as wide a range of n\

values as in the case of H 2SO 4-H 2O solutions, it may be more convenient

for us to plot (<!>*
-

*jj) vs. log ni, as in Fig. 4-2; Eqs. (4-39) and (4-40)

may be put in the equivalent forms

(4-41)

T^ (4
-42)

71
a In
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100 1,000 10,000 100,000

n,(mole H20/mole HgSO^
FIG. 4-2. (*A ^) vs. log n\ for HaSO^HaO solutions at 25C (same data as in Fig. 4-1).

from Fig. 4-2, one finds that at n\ == 9 moles H2O/mole H^SOi,

d(&h
-~

&h)/d(\og HI) = 6.29 kcal/mole H 2S04;

therefore d($>h
-

*D/^(ln Ui) = 2.73 kcal/mole H 2S04,
and thus

^(-2.73) = -0.303 kcal/mole H 2O
= 7.20 + 2.73 = 9.93 kcal/mole H 2S0 4

The latter result is equivalent to iy2 S^0t(l)
= 13.06 kcal/moleH 2SO 4 ,

since 3>h
- B^ ^ = -Q^ = -22.99 kcal/mole

1 Other functions of the composition may be used as independent variable, or plot-

ting function. Thus, F. D. Rossini, /. Research Natl. Bur. Standards, 6, 791-806

(1931), has used \/ntz when dealing with 1:1 electrolytes such as HC1 and NaCl
in aqueous solution. The molality m z represents the number of moles of solute per



172 PRINCIPLES OF CHEMICAL THERMODYNAMICS

An alternative graphical method for determining the relative partial

molal enthalpies, fa 5) and (772 Hi), is based on a plot of the

enthalpy of solution per mole of solution formed vs. the mole fraction of

either component; this graph has certain practical advantages for the

more concentrated solutions. Thus, from Eqs. (4-35) and (4-26), if we
bear in mind that the heat-of-solution data corresponding to Eq. (4-26)

have been expressed with n2
= 1 mole throughout,

-Q, - fa - HI) + mfa - 5?)

If we now divide by (1 + ni), the total number of moles of solution corre-

sponding to Qs,

= x*fa - HI) + xifa - HI)

where Xi and #2 denote, respectively, the mole fractions of the solvent

(component 1) and the solute (component 2). Since in a binary solution

#2 = 1 %i, therefore

(
- H2)} (4-43)

Thus, if one plots Q,/(l + ni) vs. x\9
as in Fig. 4-3, then the slope of the

tangent to the curve at any value of x\ is equal to [(771 H) fa Hi)].

kilogram of solvent, so that by definition,

1 1000 g/kff
ft S- - ,-_-

m2 MI

where iff i represents the solvent's molecular weight (18.016 g/mole in the case of

H2O). One may thus readily prove that

d . . m2H Mi d .

dni 2 1000 g/kg dmjt

whence Eqs. (4-39) and (4-40) assume the forms

The differential coefficient appearing in Eqs. (4-41a) and (4-42o) may be read as the

slope of the graphic plot of (</ $) vs. m^. The relationship between (<f& #)
or &h itself and m^ for strong electrolytes tends to become linear as w 2 > [see

Eq. (7-4-43c) and the accompanying discussion in Sec. 7-4], in the absence of hydrolysis
or other complications (such as partial secondary ionization in the case of H2SO4 in

dilute aqueous solution) ;
this fact permits one to evaluate &h precisely by graphical

extrapolation of the &h vs. m^ plot.
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It follows that the intercept of the tangent to the curve on the x\ =

axis is equal to (772 H\), while its intercept on the Xi = 1 axis is equal

to (iji Hi). Applying this method at

Xl = 0.75 (HI = 3 moles H20/mole H2SO4),

we obtain (171 SH^CD) = 1-46 kcal/mole and

Olt
-

5^04(1))
- ~7.34 kcal/mole

(the intercept on the Xi = axis is off the diagram, but may easily be

computed from the slope and location of the tangent line).

-4.0

-3.0

-2.0

-1.0

0.1 0.2 0.3 O4 0.5 0.6 0.7 0.8 0.9 1.0

XH20

FIG. 4-3. Enthalpy of solution per mole of solution formed, plotted against xi 9 for H2SO*-
H 2O solutions at 25C.

In Table 4-11, partial molal enthalpies relative to the pure liquid com-

ponents are summarized for H2SO4-H2 solutions at 25C and 1 atm;

they have been derived from the data in Table 4-9 by means of a com-

bination of these graphic methods. Thus, if one wishes to represent

precisely the differential enthalpy change of the chemical reaction taking

place in the lead storage cell as a relatively small quantity of electricity

is discharged, one will use the expression
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Pb(c) + Pb0 2(c) + 2H2S04(lH2S04 :niH 20)
= 2PbSO 4(c) + 2H 20(lH 2S0 4 :niH 2O)

AH = 2/7pb804(0) + 2i7n2o -Hpb<>2(c) 2i7H 2so4

where T/HJO and 7?H 2so4
differ from the standard molal enthalpies of forma-

tion of the pure liquid components by the amounts given in Table 4-1 1.
1

TABLE 4-11. PARTIAL MOLAL ENTHALPIES IN H 2SO4-H 2O SOLUTIONS AT 25C AND
1 ATMOSPHERE

The partial molal enthalpies are directly useful in straightforward

thermal calculations involving the mixing or dilution of solutions of the

two components. The basis of such computations is Eq. (4-35), which

represents the total enthalpy of the solution in terms of its composition
and the partial molal enthalpies of the components. If one combines

this equation with the stoichiometric equation for the process under con-

sideration, one has all the information necessary in order to compute the

thermal effect from a table of partial molal enthalpies. Let us compute
1 The thermochemical properties of H 2SO4-H2O solutions have been treated com-

prehensively by D. N. Craig and G. W. Vinal, J. Research NatL Bur. Standards,.

24, 475-490 (1940), with particular reference to the lead storage cell reaction.



THERMOCHEMISTRY 175

from Table 4-11, for example, the enthalpy change (the negative of the

quantity of heat evolved at constant temperature and pressure) when a

sufficient quantity of 84.48 per cent H 2SO4 is added to 100 g of 49.00 per
cent [2864 so that the final concentration is 70.00 per cent. One readily

calculates that the quantity of the more concentrated acid required is

145 g; thus, the change under consideration may be represented by the

stoichiometric equation

0.50H 2S0 4 (o: 2
= 0.15) + 2.83H2O(o:2

- 0.15)

+ 1.25H 2S04 (o: 2
= 0.50) + 1.25H 20(z2

= 0.50)
= 1.75H 2SO 4(z 2

= 0.30) + 4.08H 2O(z 2
= 0.30)

where # 2 represents the mole fraction of H2SO 4 in the sulfuric acid solu-

tions. The corresponding enthalpy change, according to Eq. (4-35), has

the form

AH =
1.75772(0:2

= 0.30) + 4.08771(0:2
= 0.30)

-0.50*72(0:2 = 0.15)
-

2.88771(0:2
= 0.15)

-1.25172(0:2
= 0.50)

-
1.25771(0:2

= 0.50)

We may evidently substitute relative partial molal enthalpies, (771

and (772 #), in place of "absolute" values, 771 and 772, since the terms

contributed by introducing H\ and HI cancel out; thus, substituting from

Table 4-11,

AH = 1.75(^6.31) + 4.08(-1.86)

-0.50(- 10.36)
- 2.83(-0.71)

-1.25(-1.50) -
1.25(-5.20) = -3.07 kcal

The data for H 2S0 4-H 2O solutions have been extended by R. A. Morgen
to include oleums containing up to 100 per cent free SOaO).

1 For this

purpose, it is convenient to regard SOs(l) and H2O(1) as the components.
Solutions containing less than o:8o8

= 0.50 are of course identical with

H2SO4-H2O solutions of equivalent concentrations; i.e., a solution con-

taining o:So8
= 0.100 is identical with a solution containing o:H2so 4

= 0.111.

The value of 77Hao for a particular composition is evidently the same,
whether we express the composition in terms of SO 3 or of H2SO 4 as the

other component; this follows from the nature of the definition (4-33),

which contains no reference to the manner in which the composition is

defined. The value of 77so a is, however, equal to the value of 77H2so4 i7Ho

in a solution of the same actual composition, inasmuch as the addition of

1 mole of H 2S0 4 (1) to a relatively large quantity of the solution, the

process whose enthalpy change defines 77H2so4 ,
is identical in net effect with

1 R. A. Morgen, Ind. Eng. Chem., 34, 571-574 (1942).
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the separate additions of 1 mole of H2O(1) plus 1 mole of SO 3(1) to a rela-

tively large quantity of the same solution. The partial molal enthalpies
relative to the standard molal enthalpies of the pure compounds are there-

fore related through the equation

~"
-"80|(1)

~~~

The last term on the right represents the enthalpy of the reaction

80.0) + H20(l) H2S04 (1)

which Morgen has shown to have the value Ajff = 21.18 kcal (at 18C
and 1 atm). For solutions containing more than x&o %

=
Q.5Qj(i.e. 9

con-

taining free 80s, in excess of that theoretically required in order to form

the compound [2804 with all the water present), one of course requires

further experimental data beyond that contained in Table 4-9, viz., heats

of dilution with water for oleums of various free SO. concentrations.

From a review of the existing data, Morgen computed the results sum-

marized in Table 4-12. These data refer to 18C and 1 atm; heat-

capacity data are not known with sufficient accuracy for oleum mixtures

to warrant correction of the data to 25C. Examples illustrating the use

of these data are given by Morgen in the reference cited (see also Prob.

4-29).

The mathematical treatment just described for the resolution of the

enthalpy of a binary solution into partial molal enthalpy terms contrib-

uted by the components is quite general, and it may be applied to other

extensive properties of the solution, such as its volume, its heat capacity,

etc. The experimental data called for consist of measurements of the

property in question for various compositions of the solution, in relation

to the values of the property for the pure components. If B represents

the extensive property, then the basic relationship involved may be

expressed in the form

B =
nifti + 712)82

* niBl + ntBl + AJS (T, p const) (4-44)

where )8i and 182 represent the values of the two partial molal quantities

corresponding to the composition n\\n^ E\ and B\ represent the values of

the property for the two pure components in specified states, and A#
represents the net change in the value of the property when the solution

is formed from n\ moles of the one component and n2 moles of the other.

One may easily prove as a generalization of Eq. (3-39) that

fdcA ,
,

I

_2 I =5 (y)i
\dni/Ttp.c
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where (yp)i represents the partial molal heat capacity at constant pressure

of component i in the solution. The partial molal heat capacities may be

derived from measurements of Cp for solutions of various compositions
and for the pure components by methods similar to those used for deriving

TABLE 4-12. PARTIAL MOLAL ENTHALPIES IN SO3-H 2O SOLUTIONS* AT 18C AND
1 ATMOSPHERE

*R. A. Morgen, Ind. En&. Chem., 34, 571-574 (1942), with permission.

rji values from enthalpy data. F. D. Rossini has shown that for many 1 : 1

electrolytes in aqueous solution, the value of ($c $c) is empirically a

linear function of w2^, of the form

$>c $c = Am^ (4-46)

where A is a constant, at given temperature and pressure, characteristic
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of the particular electrolyte, and *c represents the apparent molal heat

capacity of the solute, defined analogously to <& in Eq. (4-28) ;
that is, $

is computed from the specific heat cp of the solution and the specific heat

(c)i of the pure solvent (e.g., 0.9989 cal/g deg for H 2O(1) at 25C and 1

atm) by means of the equation

The first term on the right of Eq. (4-47) represents the total heat capacity

of the solution per mole of solute, at molality m*, and the second term

represents the heat capacity of the corresponding quantity of pure sol-

vent. 1 If the empirical finding, Eq. (4-46), is substituted in the equations

analogous to (4-41a) and (4-42a), one obtains the semiempirical equations

for the two partial molal heat capacities

(4-49)

where $ represents the terminal value of <<. and of (7^)2 in infinitely

dilute solution, another empirical property of the particular electrolyte

in the given solvent. These simple equations apply over an astonishingly

wide range of solute concentrations for many electrolytes in aqueous

solution; thus, for HC1 solutions at 25C, Rossini has shown that with

$> = 32.5 and A = 7.2 (in cal/molc deg), they^are reasonably accurate

over the range to 16m. If Eq. (4-46) is valid over the composition

range in which one is interested, then it is necessary to have experimental

cp values at but two different solute concentrations in order to establish

the values of # and A for the given electrolyte. Table 4-13 contains best

values of these constants selected by Rossini for a number of 1 : 1 electro-

lytes at 25C; the values of A are practically independent of temperature
over the range 18 to 25C, whereas d$/dT =s d(yp}^/dT has the approxi-

mate value 0.29 cal/mole (deg)
2
.

The standard enthalpy of formation of a strong electrolyte in aqueous

solution, * =
7/2, may be represented according to Arrhenius's ionization

theory as a sum of independent terms contributed by the ions. In

general, we cannot so represent $>& or rj 2 at finite solute concentrations,

because of interionic attraction and other more specific interactions

between the ions and with the solvent. The 3>l or n\ limit, however,
refers to infinitely dilute solution in the given solvent, where general

J F. D. Rossini, /. Research Nail. Bur. Standards, 4, 313-327 (1030); 7, 47-55

(1931); 9, 679-702 (1932).
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TABLE 4-13. PARTIAL MOLAL HEAT CAPACITIES OF 1:1 ELECTROLYTES IN AQUEOUS
SOLUTION AT 25C*

The constants A and < in the semiempirical equations

f v _ ,//>
(TiOi

- (tp)Hrf><i>
-

2(55.508 mole/kg)

(7^)2 - (O + A(ro,)*

[Equations (4-48) and (4-49)]; over the range 18 to 25C, A may be taken as constant,
whereas d<P/dT = 0.29 cal/mole deg

2
.

* F. D. Rossini, J. Research Natl. Bur. Standards, 7, 47-55 (1931).

electrostatic and specific interionic effects have presumably vanished.

Thus, we may regard r?Kci<aq) as mac^e UP f a sum f independent terms:

iJiUaq) + *?ci-(aq)>
where i?K+<aq) represents the value of the term contributed

by K+ ion to 4> or rjl of any strong electrolyte containing that ion, and

?7ci-(aq) represents similarly the value of the term contributed by Cl~ for

any strong electrolyte containing that ion. The experimental fact that

the $> values of strong electrolytes in aqueous solution (in particular)

may be so represented in terms of additive contributions of the ions, con-

stituted one of the most impressive pieces of evidence for Arrhenius's

original theory.

Now, it is at present impossible for us to establish by any known tech-
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nique the 17 or 3> value of any single ion independently in a particular

solvent such as water. To be able to do so would imply that we had

some means of preparing an aqueous solution containing only the single

species of ion, or at any rate, an excess of one kind of ionic charge over the

other. So far, no reliable experimental method has been discovered for

preparing electrolytic solutions that are not electrically neutral. There-

fore in order to construct a table of ionic 17 values in the given solvent

(water), we may begin by assigning an arbitrary 77 value to any one

standard ion; we may then construct a self-consistent table of values for

the other ions by difference, relatively to this conventional base. The
conventional standard is the H+ ion, to which has been assigned the stand-

ard enthalpy of formation in solution (in any particular solvent, though
most of the thermochemical data for solutions of electrolytes have been

obtained in water as solvent) : T/H+ = 0. Thus, the observed $2 value for

any strong acid in aqueous solution is taken to define the 77 value of the

corresponding anion, in aqueous solution. For example, from the stand-

ard enthalpy of formation of HCl(g): #Hci(g)
^ 22.063 kcal/mole

(as measured directly by F. D. Rossini, using the flame calorimeter),

combined with the total molal enthalpy of solution of HCl(g) in H 20(l),

Aff? = -17.960 kcal/mole (Table 4-10), the value of

$Hci(aq)
= -40.023 kcal/mole

has been established at 25C and 1 atm. Therefore, by convention,

*7ci-<aq)
= 40.023 kcal/mole, i.e.,

MCl 2(g) + e = Cl-(aq); Aff 98
- ri-(aq>

- M#ci 2cg>
= -40.023 kcal

The electron appearing in this thermochemical equation has only formal

significance, because the rj values for individual ions in solution have

physical significance only when recombined with corresponding 77 values

for appropriate ions of opposite charge, whereupon any presumed thermo-

chemical properties of the electron cancel out of the calculations. 1

Likewise, from the limiting value at infinite dilution of the heats of

neutralization of strong acids with strong bases,
2

H+(aq) + OH-(aq) = H 2O(1); Aff 98
= -13.360 kcal

1 The situation is quite different for such real physical processes as

K(g)

whose energy is directly measured by the ionization potential, corresponding to escape
of the electron with zero kinetic energy.

2 See R. H. Lambert and L. J. Gillespie, J. Am. Chem. Soc., 63, 2632-2639 (1931).
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combined with the standard molal enthalpy of formation of H20(l),

#1120(1)
= 68.317 kcal/mole, we may infer for OH~(aq) the standard

molal enthalpy of formation: I?OH (aq)

= 54.957 kcal/mole; i.e.,

H0i(g) + KH 2(g) + e = OH-(aq); Aff 98
= -54.957 kcal

Proceeding stepwise, we may now infer from the additional thermo-

chemical evidence afforded by the <f values for NaCl(aq), NaOH(aq),
etc. (the enthalpies of formation of the pure compounds, combined with

their total enthalpies of solution), a value of%a+(aq)
= 57.476 kcal/mole,

i.e.,

Na(c) = Na+(aq) + e] Aff 98
= -57.476 kcal

The agreement among the TJ values for a particular cation obtained from

independent thermochemical data for its various salts constitutes a check

on the self-consistency of the data and the general validity of the scheme.

Thus, <J> values for strong electrolytes in solution in a given solvent are

interrelated, in the sense that they may be resolved into additive con-

tributions of the ions concerned. The Debye-Hiickel interionic attrac-

tion theory, discussed in Sec. 7-4, shows how we may take first-order

account of the deviation of <&h from $ in dilute solution from general

principles; the thermochemical behavior of concentrated solutions of

electrolytes remains more or less on an empirical basis at the present time.

We may in a similar manner resolve the limiting partial molal heat

capacity of an electrolytic solute in infinitely dilute solution,
< or (7^)2,

into independent additive contributions of the ions, by first assigning to

H+ the conventional value: (jp)n + = 0. Thus, from Rossini's value of

(*)HCI<I) given in Table 4-13, we may assign to (Tp)ci-(aq) the value

32.5 cal/mole deg at 25C and 1 atm. We may then proceed in step-

wise fashion to calculate (7?) values for other ions. Such information is

useful in the correction of r? values for individual ions in solution to

other temperatures; e.g., for the process

KCl 2 (g) + e = Cl-(aq); Aff 98
= -40.023 kcal

we may write formally

f
I

= -32.5 - (8.11) = -36.6 cal/deg
z

Thus, neglecting the relatively slight variation of AC itself with tempera-

ture, we may conclude that at 18C, i^i-to) 39.767 kcal/mole.
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Problems

4-1. The heat of formation of HCl(g) has been measured by F. D. Rossini [J.

Research Natl. Bur. Standards, 9, 679-702 (1932)] by direct union of H 2 (g) and Cl 2 (g) in

the flame calorimeter, the calorimeter being immersed in water at a mean temperature
of 30C, and the heat being measured by substitution of an electric heating current to

effect the same temperature rise in the system. In a typical run, the temperature of

the calorimeter system rose by 0.95034 deg (as measured by means of a platinum
resistance thermometer) as 0.159049 mole of HC1 was being produced by the combus-

tion, the electrical equivalent of the calorimeter system being 15,415.3 int joules/deg.

To the total energy released during the run, 38.5 int joules representing net kinetic

energy carried by the product gas must be added, and 10.3 int joules representing

energy introduced by the ignition spark must be subtracted, as determined by blank

runs. Calculate from these data the enthalpy of formation of HCl(g) at 30C and
1 atm. From the heat-capacity data in Table 3-1, estimate the correction to 25C.

(The correction to the ideal-gas state is negligible in this case.)

4-2. The heat of the addition reaction between C2F 4 (g) and Cl 2(g) has been meas-

ured by J. R. Lacher and his associates [J. Am. Chem. Soc., 71, 1330-1334 (1949)],

using an isothermal constant-flow calorimeter. In a typical run, in which the olefin

flowing at a rate of 6.93 X 10~4 mole/min and chlorine flowing at a rate of 6.109 X 10~4

mole/min were mixed and passed over a catalyst at 1 atm and at a mean temperature
of 90C, energy was released at a rate equivalent to 35.02 cal/min, determined by
electrical standardization of the calorimeter. Calculate AH at 90 C and 1 atm for the

reaction C2F 4 (g) + Cl 2(g)
= C2F 4Cl 2 (g).

4-3. In measuring the heat of combustion of WC(c) in the oxygen bomb calorimeter,

standardized by the combustion of standard benzoic acid, L. D. McGraw, H. Seltz, and
P. E. Snyder [/. Am. Chem. Soc., 69, 329-331 (1947)] found for the process:

WC(c) + ^0 2 (g, 300.45K, 35 atm) - W0 3 (c) + C02 (g, 300.45K, 2.15 atm)
AC/ - -284.76 kcal
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For O 2 (g), (dU/dp)r = 1.56 cal/atm mole, from direct measurements by F. D.
Rossini and M. Frandsen (see footnote 1, page 105), while for CO 2 (g)

(dU /dp)T 6.79 cal/atm mole

estimated from the Beattie-Bridgeman equation of state. Calculate At/ for the reac-

tion with each gas in the hypothetical ideal-gas state at 1 atm, and calculate A/fJ00 46 .

Calculate A#|98 . 16 , using the C values: O 2(g), 6.95 cal/mole deg; WO 3 (c), 19.55

cal/mole deg; WC(c), 8.63 cal/mole deg; C0 2 (g), 9.21 cal/mole deg.

From the enthalpies of combustion, C(c, graphite), A# = 94,051J3 10.8

cal/g-atom, and W(c), AH =* 195,700 900 cal/g-atom, calculate the standard

enthalpy of formation of WC(c) at 298.16K.
4-4. Thermochemical data for NaBH4 (c) of 99.61 per cent purity have been obtained

by W. D. Davis, L. S. Mason, and G. Stegeman [/. Am. Chem. Soc., 71, 2775-2781

(1949)]. The heat of the reaction

NaBH 4 (c) + 1.25HC1(200H 20) = (NaCl + H 3B0 3 + 0.25HC1)(247H 2O) + 4H 2(g)

was measured in a constant-volume bomb calorimeter, the mean value of AC/ at 25C
being -66.25 0.07 kcal. Calculate A# for this reaction.

The heat of mixing

NaCl(60H 20) + H 3BO 3(60H2O) + 0.25HC1(508H2O)
= (NaCl + H 3BO 3 + 0.25HC1)(247H 2O); A#298 - 0.057 kcal

and the heat of dilution of boric acid

H 3BO 3(60H 2O) + ooH 2O(l) = H 3BO 3(aq); A#298 = 0.068 kcal

were then also measured. Calculate now the enthalpy of the reaction

NaBH 4 (c) + 1.25HC1(200 H 2O) + 3H 2O(1) + ooH 2O(l)
= NaCl(60H 2O) + H 3BO 3(aq) + 0.25HC1(508H 2O) + 4H 2 (g).

Calculate the standard enthalpy of formation of NaBH 4 (c):

Na(c) + B(solid, amorphous) + 2H 2(g)
= NaBH4(c)

using the enthalpies of formation: HC1(200H 2O), -39.798; HC1(508H 2O), -39.875;

NaCl(60H 2O), -97.428; H 3BO 3(aq), -255.2; H 2O(1), -68.317 kcal. (Note that the

enthalpy of formation of boric acid is the most uncertain piece of information entering

these calculations.)

4-6. F. D. Rossini and J. W. Knowlton [/. Research Natl. Bur. Standards, 19,

249-262 (1937)] have measured the heat of combustion of C2H4 (g), using the flame

calorimeter. At 25C and 1 atm, corrected to H 20(l) as product, they obtained

AH = -337,280 70 cal/mole. Using Rossini's values of -68,313 10 cal/mole
for the enthalpy of combustion of H 2 (g), and 372,810 110 cal/mole for the

enthalpy of combustion of CJIefe), calculate a value of A# at 25C and 1 atm for the

reaction C 2H 4 (g) + H 2 (g)
= C 2H6 (g); estimate its precision, and compare with the

directly observed value of 32,580 60 obtained by G. B. Kistiakowsky and
coworkers (corrected from 82C to 25C), on a sample that probably contained 0.25

mole per cent C 2He originally.

Using also the "best" value of A# 98 . 16
- -94,051.8 10.8 cal/mole for the com-

bustion of C(c, graphite), selected by E. J. Prosen, R. S. Jessup and F. D. Rossini
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[J. Research Nail. Bur. Standards, 33, 447-449 (1944)], calculate the standard enthalpy
of formation of C2H4(g) at 25C.

4-6. The heat of combustion of cyaiiamide has recently been measured by D. J.

Salley and J. B. Gray [/. Am. Chem. Soc., 70, 2650-2653 (1948)]. From the result

CH2N2(c) + %02(g)
= C02(g) + H20(l) + N 2(g); A#J98 . 16

- - 177.20 kcal

calculate the standard enthalpy of formation, and also the standard enthalpy at 25C
of the reaction

CH2N 2 (c) + 2H 20(1) - C02(g) + 2NH,(g)

using additional data given in Appendix 2.

4-7. The heat of combustion of D 2 (g), and the heat of vaporization of D 2O(1) have

been measured by F. D. Rossini, J. W. Knowlton, and H. L. Johnston [J. Research

Natl. Bur. Standards, 24, 369-388 (1940)], with the following results:

D2(g) + ^02(g)
- D 20(l); Aff?98. 16

= -70,414 cal

D 20(l) - D 20(g); A#298>1 6
- 10,850 cal

Using data for H2O given in Appendix 2, calculate A17 98.16 for the isotope exchange
reaction

D.(g) + HjO(g) - D 20(g) + HJ(g)

4-8. Calculate the heating value at 25C in Btu per cubic foot saturated with water

vapor at 15C and 1 atm, of a natural gas consisting of 31.8 per cent ethane, 67.7 per

cent propane, and 0.5 per cent nitrogen by volume. Use the standard heats of com-

bustion at 25C [to CO2(g) and H 20(l)]: C2H6 (g), 372.82 kcal/mole; C3H8 (g), 530.60

kcal/mole [E. J. Prosen and F. D. Rossini, J. Research Natl. Bur. Standards, 34, 263-

269 (1945)].

Calculate also the heating value under similar conditions of a water gas consisting

of 43.4 per cent CO, 3.5 per cent CO2 ,
51.8 per cent H2 ,

and 1.3 per cent N 2 by volume,

using thermochemical data contained in Appendix 2.

4-9. The heats of formation of the four known borates of calcium have been deter-

mined by D. R. Torgeson and C. H. Shomate [/. Am. Chem. Soc., 69, 2103-2105

(1947)] by dissolving them in IM HC1, the amounts in each case being adjusted to be

equivalent to 1 g CaO per 1845.5 g of IM HC1. Separate experiments were made on.

the heat of solution of boric oxide in the same quantity of HC1 containing 1 g of CaO.

The mean results follow:

Enthalpy of Solution, cal/mole,

Compound in l.OOOM HC1 at 298.16K
3CaO-B 2O8 ............ -82,423 12

2CaO-B2Oa ............ -50,287 20

CaO-B2O, ............ -20,259 8

CaO-2B2O8 ........... -10,080 10

CaO ................. -46,380 11

B20j(0.4139 g in 1845.5 g l.OOOM HC1) ............. -3286 7

B2Os(0.6209 g in 1845.5 g l.OOOM HC1) ............. -3289 7

B2O8(1.2418 g in 1845.5 g l.OOOM HC1) ............. -3298 7

B20a(2.4836 g in 1845.5 g l.OOOM HC1) ............. -3316 7

Calculate the enthalpies of the borates relative to the oxides. Using 151,900

cal/mole as the enthalpy of formation of CaO(c) and 302,000 cal/mole as the
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enthalpy of formation of 6263(0), calculate the enthalpies of formation of the four

calcium borates from the elements.

4-10. The heats of solution of CaSO4 (c) and its hydrates in 2.09m HC1 at 25C
have been measured by E. S. Newman and L. S. Wells [/. Research Natl. Bur. Stand-

ards, 20, 825-836 (1938)], the samples taken being all equivalent to 2.000 g of CaSO4
-

2H2O, dissolved in 640.0 g of the acid. The mean results were as follows:

Q.

CaSO4-2H 2O(c) ............ -33.01 cal/g

CaS04-MH 20(c) ........... -11 .05 cal/g

CaSO4 (c) ................. -12.67 cal/g

Furthermore, for the reaction,

H2O(1) = H2O(2.09w HC1); A#298.i6 - -17 cal/mole

Calculate the enthalpies of hydration of CaSO4 (c) and CaSO4 MH 20(c) to CaSO4
-

2H2O(c).

4-11. Given the heat of solution of Na(c) in H2O(1) at 25C and 1 atm, devise a

system of thermochemical measurements by which the standard enthalpy of forma-

tion of NaCl(c) may be determined, using this information.

4-12. Suppose you wished to undertake a thermochemical investigation of the

standard enthalpy of formation of Na 2COs(c). How would you set up the investiga-

tion? What calorimetric measurements would you undertake to determine, and

upon what established heats of reaction would your final result depend?
4-13. From the standard enthalpies of combustion given by F. D. Rossini [J.

Research Nail Bur. Standards, 22, 407-414 (1939)]:

H a (g) + M0 2(g)
- H20(g); A#?98. 16

- -57,798.4 10.0 cal

C0(g) + ^0 2 (g)
- C02(g); A#J98. 16

- -67,636.1 28.7 cal

C(c, graphite) + O2 (g)
= CO 2(g); A# 98. 16

- -94,051.8 10.8 cai

calculate the standard enthalpy of formation of CO(g) at 25C, and also the standard

enthalpies at 25C of the water gas reaction

H 2 (g) + C0 2 (g)
= H 20(g) + C0(g)

and the producer gas reaction

C(o f graphite) + CO 2(g)
= 2CO(g)

4-14. Using the data in the preceding problem, and the empirical heat-capacity

equations given in Appendix 3, calculate the standard enthalpy of the water gas
reaction

C(c, graphite) + H2O(g) - H2(g) + CO(g)
at 1000C.

If the heat of this reaction is supplied by the combustion of C(c, graphite) to CO 2(g)

at 1000C, what proportion of C must be burned to the quantity converted to water

gas in order to obtain a heat balance?

4-16. The heat of combustion of CH 3OH(g) has been measured at 25C and 1 atm
in the flame calorimeter by F. D. Rossini [/. Research Natl. Bur. Standards, 13,

189-202 (1934)], the result corrected to H2O(1) as product being 182.58 0.05 kcal/
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mole. Calculate A#298.i6 for the methanol synthesis

2H 2(g) + C0(g) - CH 3OH(g)

using other data from Appendix 2.

Using for CH 8OH(g) the approximate empirical heat-capacity equation,

Cp
- 2.0 + 0.032

7

,

given by G. S. Parks and H. M. Huffman ("Free Energies of Some Organic Com-

pounds," p. 114, Reinhold Publishing Corporation, New York, 1932) and for H 2(g)

and CO(g) the empirical heat-capacity equations given in Appendix 3, calculate

A# for the reaction at 400C.

Using Berthelot's equation of state for the three gases, estimate the effect on AH
of increasing the pressure to 50 atm at 400 C (recall Prob. 3-13).

4-16. The internal energy of combustion of isoprene, Calls (1), was measured by
R. S. Jessup [/. Research Natl. Bur. Standards, 20, 589-597 (1938)] in an oxygen com-
bustion bomb standardized by the combustion of standard benzoic acid. The mean

result, corrected to 30C and 1 atm, was

CsH.0) + 7O 2 (g)
- 5C0 2 (g) + 4H2O(1); At/ -753.28 0.38 kcal

(a) Calculate A# at 30C and 1 atm.

(b) Using for CsHgO) the heat-capacity value, C = 36.7 cal/mole deg, and for the

other substances the values given in Appendix 2, calculate A# at 25C.

(c) The heat of combustion of rubber hydrocarbon (CsIIg)* was measured by
R. S. Jessup and A. D. Cummings [/. Research Natl. Bur. Standards, 13, 357-369

(1934)], who obtained at 25C and 1 atm, AH = -(736.76 1.44)z kcal/mole.

Calculate the quantity of heat evolved in the reaction

x C5H8 (1)
= (C6H8) X (rubber hydrocarbon)

4-17. Calculate the theoretical maximum flame temperature when methane origi-

nally at 25C is burned with the stoichiometric proportion of air containing 21 per cent

O2 and 79 per cent N 2 by volume. [Express HT #293 for the product of combustion

of 1 mole of CH4 (g) as a function of T
y using the heat-capacity equations for CO 2(g),

H 2O(g), and N2 (g) given in Appendix 3, and equate to the heat of combustion at 25C
corrected to H 2O(g) as product; solve for T by trial. The dissociation of CO 2 and of

H 2O at the flame temperature is neglected in this calculation.]

4-18. G. B. Kistiakowsky and his associates [/. Am. Chem. Soc., 67, 65-75 (1935);

67, 876-882 (1935); 68, 146-153 (1936)] have measured the heats of hydrogenation of

a number of unsaturated hydrocarbons in the gaseous state, including the following

(at82Cand 1 atm):

Compound
1-Butene ................. 30,341 cal

2-Butene (trans) .......... 27,621

2-Butene (cis) ............ 28,570

1,3-Butadiene ............ 57,067

Show that the reaction C4H6(g) + H2(g)
= C4H8 (g) is more exothermic when

Thiele addition of 1 H atom to each end of the resonant system of unsaturated bonds

in 1,3-butadiene takes place than when 1 H atom adds to each member of the pair of

adjoining carbons at either end of the chain.
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4-19. The standard enthalpies of formation of CH 8Cl(g), CH2Cl 2(g), and CHCl 8(g)

at 25C are, respectively, -19.58, -21, and -24 kcal/mole. Test these data for

consistency of the bond-energy values given in Table 4-2.

4-20. The heat of vaporization of isoprene, corrected to 25C, is 6200 cal/mole

[from vapor-pressure data by N. Bekkedahl, L. A. Wood, and M. Wojciechowski,
J. Research Natl. Bur. Standards, 17, 883-894 (1936)]. (a) Using the results of

Prob. 4-16, calculate the heat of combustion of C6H8 (g) at 25C and 1 atm, and the

standard enthalpy of formation. (6) Calculate the heat of the reaction

5C(g) + 8H(g) - C5H8 (g)

and by comparison with hydrocarbon bond-energy data, estimate the resonance

energy of the isoprene molecule.

4-21. SrCl 2 (c) has the fluorite structure, and r = 3.02 A. Calculate the lattice

energy, and using data given in the text, calculate a value for the standard heat of

formation. The observed heat [from Sr(c) and Cl 2 (g)] is 198.0 kcal/mole.

4-22. KCN(c) has the same structure as KCl(c) and the CN~ ion, because of rota-

tion, probably is spherically symmetrical, like the Cl~ ion. Using 3.275 A as the

distance of closest approach between K+ and CN~, from X-ray crystallography,

and n = 8 in Eq. (4-21), calculate the lattice energy of the KCN crystal and AFJ98>16

for the reaction

KCN(c) - K+(g) + CN-(g)

The standard enthalpy of formation of KCN(c)

K(c) + C(c, graphite) + MN 2(g)
- KCN(c)

is 26.9 kcal/mole, from measurements of the heat of combustion, solution, and

neutralization of HCN, combined with the heat of solution of KCN(c) itself, while

the enthalpy of combustion of C 2N 2 (g) is 260 kcal/mole [F. R. Bichowski and F. D.

Rossini, "Thermochemistry of Chemical Substances," Reinhold Publishing Corpora-

tion, New York, 1936]. Calculate the enthalpy of the process

HC 2N 2(g) + e - CN-(g)

(using data given in the text). Assuming an electron affinity of 84.3 kcal/mole for

the CN(g) molecule, estimate the dissociation energy of the C2N 2(g) molecule into

2CN(g) [compare G. Glockler, /. Chem. Phys., 16, 600-601 (1948)].

4-23. NH 4Br(c) has the CsCl(c) structure, and NHJ(c) the NaCl(c) structure, at

25C, the lattice constants being, respectively, 4.047 and 7.244 A. Calculate the

lattice energies, according to Eq. (4-21), selecting n from Table 4-5 on the basis that

NHJ is a Ne-type ion (note that for the CsCl structure, ro = (\/3/2)a, and for the

NaCl structure, ro (M)^> where a is the lattice constant, or edge of the unit cell).

Using the standard enthalpies of formation, 64.61 kcal/mole for NH4Br(c),

-48.30 kcal/mole for NHJ(c), -11.04 kcal/mole for NH 8(g), 367.08 kcal/mole for

H+(g), and other data given in the text, calculate the energy of the reaction

NH 8(g) + H+(g) - NH+(g)

from the data for each salt [compare J. Sherman, Chem. Revs., 11, 150-152 (1932)].

4-24. Calculate the lattice energy of the hypothetical compound MgCl(c), assuming
that it would crystallize in the NaCl lattice, and assuming for Mg+ the same ionic

radius, 0.65 A, as for Mg++ (the Cl"~ radius has the value 1.81 A). The first ionization
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potential for Mg(g) Mg+
(g) + e is 7.61 volts; calculate the standard enthalpy of

formation of the hypothetical compound, and compare with that of the actual com-

pound, MgCl 2(c), which is 153.40 kcal/mole.

4-26. (a) Using the data in Table 4-10, plot Q8 vs. w2
^ for HC1 concentrations

below 1 : 500 H2O and confirm by extrapolation the Q value given in the table.

(6) From your graph, using Eqs. (4-41a) and (4-42a), calculate ^H2o HSiOd) and

IJHCI
-

#HCi(g) at m = 0.001, 0.01, and 0.1 mole HCl/kg H2O. [Note that the slope

of your graph is simply the negative of the differential coefficient appearing in Eqs.

(4-41a) and (4-42a).]

(c) From a plot of $* <f between n\ = 2 and n\ = 10 moles H 2O/mole HC1,
calculate the values of i?H2o HHZOCD an(J ^HCI #HCi(g) m HC1-H 2O solutions

containing 35 per cent and 20 per cent by weight of HC1. What are the differential

molal heats of vaporization of the two components from these solutions? [Compare,
F. D. Rossini, /. Research Nail. Bur. Standards, 9, 679-702 (1932).]

4-26. Letting AH == Qa/(l + n\) in Eq. (4-43) denote the enthalpy of solution

per mole of solution formed, prove with the aid of Eq. (4-36) that for a binary solution

and show that

4-27. The enthalpy of formation of solid solutions of NaCl and NaBr

+ ZNaBrNaBr(c) = SNaClNaCl, ZNa

was measured at 25C by M. A. Fineman and W. E. Wallace [/. Am. Ghent. Soc.,

70, 4165-4169 (1948)] from the difference between the heats of solution in water of the

solid solutions and of physical mixtures of the two salts having corresponding com-

positions. The following results were obtained:

#NaBr Afl298.i6, cal/mole of Solid Solution

0.1018 136.7

0.2019 220.5

0.2982 291.9

0.4029 323.5

0.4927 335.5

0.5977 319.9

0.7007 271.0

0.7922 213.7

0.8947 122.6

The authors showed that the results could be represented by the empirical equation

AH = 1433xNaBr - 16164aBr + 182.84aBr

(Test this equation at several of the given experimental compositions.) Calculate

(m HI) for NaBr and (172 //) for NaCl at 0.1 mole-fraction intervals, using the

equations derived in Prob. 4-26.
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4-28. From the data in Table 4-9 and the standard enthalpies of formation

fro
"298.16

PbO 2 (c) -66. 12 kcal/mole
PbSO 4 (c) -219.50 kcal/mole
H 2O(1) -68.317 kcal/mole

(from "Selected Values of Chemical Thermodynamic Properties," National Bureau of

Standards, Washington, D.C., 1947), calculate the enthalpy of the reaction

Pb(c) + PbO 2 (c) + 2H 2SO 4(10H 2O) - 2PbSO 4(c) + 2H 2O(1)

Using the data in Table 4-11, calculate the enthalpy of the actual lead storage-cell
reaction

Pb(c) + PbO 2 (c) + 2II 2SO 4(1H 2SO 4:10H 20) = 2PbSO 4(c) + 2H 2O(1H2SO 4:10H2O)

as an infinitesimal quantity of electricity is discharged.

4-29. Using the data in Table 4-12, calculate the quantity of heat evolved when
96.1 per cent H2SO 4 is mixed with sufficient oleum containing 29.0 per cent free SOs
to form 1000 g of 100 per cent H 2SO 4 at 18C.

Taking the specific heat of H2SO 4(1) as given approximately by the formula

cp
= 0.32 + 0.0005J cal/g deg,

between 20 and 80C (Landolt-Bornstein,
"
Physikalisch-chemische Tabellen," 5th

ed., Supplement IIIc, p. 2277, 1936) estimate the maximum temperature rise, in the

absence of heat losses.

4-30. K. S. Pitzer [J. Am. Ghent. Soc., 59, 2365-2371 (1937)] measured the heat of

neutralization at 25C of NaOIM065.5H 2O with HC1-46.5H 2O to form NaCM113H 2O,
the quantity of heat evolved being 13,828 12 cal per mole of acid and base reacting.

In a separate experiment, he measured the heat of dilution of HC1-46.5H 2O to

HCM112H 2O, the quantity of heat evolved being 352 8 cal per mole of HCi
(compare Table 4-10). Calculate the standard enthalpy of ionization of H2O to form

H+(aq) + OH~(aq) at infinite dilution, using the heats of dilution extrapolated to

zero concentration: for HCM112H 2O, +100 cal; for NaOH-1065.5H 2O, +86 cal;

and for NaCM113H 2O, +73 cal. Using the standard enthalpy of formation of H 2O(1)

at 25C, 68,313 10 cal, as determined by F. D. Rossini from direct combustion of

H 2(g) with O 2 (g) in the flame calorimeter, calculate i?oH-(aq)-

4-31. K. S. Pitzer [/. Am. Chem. Soc., 69,2365-2371 (1937)] has measured the heats

of ionization of a number of weak acids and bases by straightforward calorimetry.

Thus, upon mixing exactly 10 ml of 1.162M HCI with 875 ml of 0.015M NaHCO3,
he

observed that 26.6 0.6 cal of heat was evolved (measured by substitution of an

equivalent quantity of electrical energy to heat the calorimeter and contents through
the same temperature rise). Assuming 452 cal/mole as the heat of dilution of the

HCI to infinite dilution, and neglecting the heats of dilution of the other solutes,

calculate the enthalpy of ionization of H 2COs(aq) to H+
(aq) and HCO^"(aq).

In another series of experiments, he found that upon mixing exactly 10 ml of 1.162Af

HCI with 875 ml of a solution containing 0.015M Na2CO 3 and 0.015M NaHCOa
(added to repress hydrolysis of COj

1

), the quantity of heat evolved was 46.7 0.5 cal.

In this case, part of the HCI reacted with the OH" present in the buffer mixture; using

4.70 X 10~n as the secondary ionization constant of H2CO3, correct for the quantity
of HCI consumed and the energy liberated by the reaction with the free OH~ present,
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as well as for the heat of dilution of HC1, and calculate finally the standard enthalpy of

ionization in infinitely dilute solution of HCO^(aq) to H+(aq) + COj"(aq).

4-32. The enthalpy of solution of CO 2 (g) at infinite dilution in water is 4,640

cal/mole at 25C. Combining this information with the standard enthalpy of forma-

tion of COo(g), 94,051.8 10.8 cal/mole, and the results of the preceding problem,

calculate 1 of HCOj-(aq) and of COj"(aq).

Using Pitzer's value of 865 30 cal/mole as the enthalpy of ionization of

NH 4OH(aq) and 13,358 cal/mole as the enthalpy of ionization of H 2O(1), calculate the

standard enthalpy of the reaction

C0 2 (g) + NH4OH(aq) - NHf (aq) + HCOj-(aq)

4-33. B. J. Fontana and W. M. Latimer [J. Am. Chem. Soc., 69, 2598-2599 (1947)]

found that when NaClO 2 (c) was dissolved in a solution containing HClOi and KI,
the heat of the reaction between ClO^(aq), I~~(aq) and H+(aq) was 105.76 0.06 kcal

per mole of ClOj(aq), corrected for the heat of solution of NaClO 2 (c) in water

(0.10 0.01 kcal/mole). Under the conditions of the calorimetric runs, the

equilibrium between I2(aq) and I5~(aq) was estimated to be such that 98.6 per cent of

the total iodine produced was in the form of Ijf(aq). Using the data,

KH2(g) + MWc) = HI(aq); Aff298 - -13. 37 kcal

I 2 (e) I 2(aq); A#298 - 5.0 kcal

I~(aq) + I 2(aq)
=

IjT(aq); Atf298 = - 4. 22 kcal

and also the standard enthalpies of formation of Cl~~(aq) and H 2O(1) given in

Appendix 2, calculate the enthalpy of formation of ClO^aq).
4-34. From the data hi Table 4-13, calculate the specific heat of 20 per cent HC1

at 25C. Using the results of Prob. 4-25c, estimate also the values of im 2o
~ #H 2oa)

and i7Hci
-

#Scicg) at 20C.
4-35. The specific heat of NaOH solution relative to that of pure water at 25C is

0.9526 caWgdeg atmz
= 1.00 mole/kg, and 0.9105 ca! 26/gdeg at m2

= 2.55 mole/kg
[selected from measurements by F. T. Gucker and K. H. Schminke, /. Am. Chem. Soc.,

56, 1013-1019 (1933)]. Calculate the values of 3> and A according to Eq. (4-46),

and compare with those given in Table 4-13. Calculate therefrom the values of

(TP)HJO and (7P)NaOH in 1.00m solution at 25C.
4-36. The heat of solution of Na(c) in H 2O(1) to form NaOH(100 H2O) is given

by F. R. Bichowski and F. D. Rossini (" Thermochemistry of Chemical Substances,
"

Reinhold Publishing Corporation, New York, 1936) as 43.7 kcal/mole at 18C, and
the heat of dilution to infinitely dilute solution as 0.039 kcal. Using the established

heat of formation of H 2O(1) at 18C, 68.372 kcal/mole, calculate 4> of NaOH(aq)
at 18C. Using the data in Table 4-13, correct $>% to 25C, and using the value of

^oH-caq) given in the text (from heat-of-neutralization data), calculate i?Na+(ftq)
a^ 25C.

4-37. Calculate from the data in Table 4-13 the value of (7p)K+(aq) and using the

value of i?K+ (aq)
*= -60.270 kcal/mole at 18C and 1 atm given by F. R. Bichowski

and F. D. Rossini ("Thermochemistry of Chemical Substances/' Reinhold Publishing

Corporation, New York, 1936), calculate i/K+(aq) at 25C an(i 1 atm - lTfte neat capac-

ity of K(c) is given in Appendix 2.]

Combining this result with ijQH-
(aq) given in the text, and with the total enthalpy

of solution of KOH(c), A#J 13.20 kcal, calculate the standard enthalpy of forma-

tion of KOH(c) at 25C.
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4-38. The partial specific volumes of the components of a binary solution are the

intercepts on the and 100 per cent axes of the tangent to the specific volume (recip-

rocal of the density) vs. weight per cent curve. The partial molal volumes may then

be obtained by multiplying the partial specific volumes by the molecular weights of

the respective components. From the density data for H 2SO4-H 2O solutions at

25C given in the " International Critical Tables," Vol. Ill, pp. 56-57, 1928, plot the

specific volume vs. weight per cent, and determine the partial molal volumes of H 2SO4
and H 2O at 10 weight per cent intervals by application of this graphic method.



CHAPTER 5

THE SECOND LAW OF THERMODYNAMICS

The experiments of Rumford, and particularly the quantitative experi-

ments of Joule proved beyond any doubt that energy in mechanical or

electrical form can be converted without limit into thermal form, e.g., into

raising the temperature of a material body, or into effecting some phase
transition that ordinarily requires the absorption of heat, etc. In this

chapter, we shall examine the conditions attending the reverse transfor-

mation, that of energy from a thermal source into energy in nonthermal

forms, such as is accomplished by a heat engine. To such transforma-

tions, Joule's law of course applies; there is a quantitative relation

between the net quantity of thermal energy consumed and the quantity
of energy appearing in nonthermal forms, 1 calis being equivalent accord-

ing to the best modern measurements to 4.1855 0.0004 joules of energy
in mechanical or electrical form. 1 It is well known, however, that the

availability of energy in thermal form is limited; thus, no heat engine will

operate continuously unless the source of thermal energy is at a higher

temperature than that of the surroundings. This simple general observa-

tion contains as we shall presently see the germ of the principle known as

the second law of thermodynamics. The subject was first explored by the

young French engineer Nicolas Leonard Sadi Carnot in some notes,

"Reflexions sur la puissance motrice du feu," written in 1824. Carnot

was particularly concerned with how heat was utilized in the steam engine,

which had recently been developed as a practical machine, but whose

principles were but vaguely understood. He perceived, however, that

his treatment of the problem was quite general, within the scope of the

caloric fluid theory of heat then prevailing. The significance of Carnot's

ideas was not fully comprehended until they were recalled by William

Thomson (Lord Kelvin) in 1848, many years after Carnot's death.

Kelvin and R. J. E. Clausius generalized Carnot's treatment to bring it

into accord with the principle of conservation of energy based on Joule's

work, and thus established the foundations of modern thermodynamics.
5-1. Maximum Work and Thermodynamic Reversibility. Let us con-

sider some devices for transforming thermal energy into energy in non-

thermal forms. A real heat engine always consists of some material sys-
1 R. T. Birge, Rev. Modern Phya., 13, 233-239 (1941).

192
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tern (steam in the steam engine; air mixed with combustion-product gases
in the internal-combustion engine) that undergoes certain changes of

state, during which it absorbs net thermal energy Q (derived from the

combustion of coal or fuel oil under the boiler of the steam engine, or from

the combustion of gasoline pr light fuel oil within the cylinder itself of the

internal-combustion engine), and does work W. The net heat absorbed

and the net work done during any sequence of changes always satisfy the

first law of thermodynamics,
At/ = Q - W (5-1)

where A 7 represents the net change in internal energy of the system

undergoing the changes.
1 Now, in a practical engine, the working sub-

stance is generally put through a cyclic process that in principle restores

it periodically to the same state; otherwise the engine would run down
before the thermal source had been depleted of its energy. Because

water and air are cheap and so readily available, the particular sample of

water put through the steam-engine cycle and the particular sample of

air put through the internal-combustion engine cycle are generally not

recycled, but^are continually being replaced by fresh samples; this prac-

tical consideration does not, however, affect the general principle that the

water and the air are ultimately resorted to the respective bodies from

which they were originally withdrawn, without having undergone perma-
nent changes of state, except possibly for a gradual thermal change of a

general nature in the state of the entire world, which as we shall presently

see, constitutes the subject proper of the second law of thermodynamics.
A heat engine that is to operate continuously, then, withdrawing energy

from a thermal source and doing work without permanently changing the

state of the working substance, must be designed on a cyclic principle,

such that each complete cycle leaves the working substance in the same

state, ready for the next cycle. Therefore, during each complete cycle

(starting at any particular phase), SC7 = [compare Eq. (2-23)], and

Q = w (AC/ = 0) (5-2)

It might appear at first sight that an indefinitely large quantity of work

might be done by the heat engine, simply through some arrangement

whereby the net heat Q absorbed during each cycle is made indefinitely

large. Certainly, energy originally in nonthermal form expended on the

material system and passing to the surroundings in the form of heat (such

1 In a steam turbine or in a jet-propulsion engine, work is done mainly at the expense
of kinetic energy of the gas, whose change must be included with AC7 on the left of

Eq. (5-1). In the ordinary gas-expansion engine, however, the kinetic energy of the

working substance is inappreciable.
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as through friction, mechanical stirring, effect of an electric-resistance

coil, etc.) can be made indefinitely large in amount [Q and W having

negative values in Eq. (5-2)], as shown by Rumford's and Joule's experi-

ments. There is nothing inherent in the first law of thermodynamics
that would imply any restriction on the reverse transformation, that of

thermal into mechanical or electrical energy, beyond equivalence between

the net quantity of heat absorbed and the net quantity of work done, as

embodied in Eqs. (5-1) and (5-2). Yet, experience shows that every

actual process has natural limitations to its capacity for absorbing ther-

mal energy and releasing an equivalent amount of energy in nonthermal

form.

One general type of limitation arises from our inability to free the proc-

ess completely from dissipative losses. Our process for the generation of

mechanical or electrical energy cannot be utilized with perfect efficiency,

because some of the nonthermal energy developed by the heat engine is

consumed (i.e., restored to thermal form) in overcoming friction, electric

resistance of the dynamo and leads, etc.; when, for example, steam

expands in the cylinder of a steam engine, some of the energy potentially

available in mechanical form is expended as heat in overcoming friction

between the piston and the cylinder. This type of limitation raises no

new theoretical questions; it is perfectly comprehended within the scope
of the first law of thermodynamics. There is an ideal upper limit to the

quantity of work that can be produced by a given change of state taking

place in a real system, which is approached as we reduce the effects of dis-

sipative influences. Let us discuss this situation further in terms of

specific examples; in Sec. 5-2, we shall then proceed to consider a different

type of limitation, imposed by the relation of the temperature of our

source of thermal energy to the temperature of the surroundings.

Consider a gas confined in a cylinder by means of a movable piston, to

which an external pressure is applied whose instantaneous value is repre-

sented by the symbol P; then as the gas expands from volume V\ to

volume F2, the work done by the gas against the external pressure P is

I

* P dV. Suppose that the expansion is carried out at constant tem-

perature; then since we know that to a first approximation in the low-

pressure range, (AE7)r = (the Joule experiment), therefore Q = TF; in

other words, the isothermal expansion of an ideal gas constitutes a simple
method of drawing thermal energy from the surroundings (which serve

to maintain the temperature of the gas constant) and doing an equivalent
amount of work. For a real gas at finite pressures, (AC7) r would differ

somewhat from zero, and W would then be related to Q by means of the

general relationship, Eq. (5-1); but as we shall see presently, there is no
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loss of generality for our present purpose in considering the gas to be

ideal. Now, the external pressure P applied to the piston confining the

gas may be given any value from up, the quantity of work done for the

given volume change increasing in proportion. If for example P =
0,

as when the gas expands freely into a vacuum (the Joule experiment),

then no work at all is done, and no heat is absorbed from the surroundings

(to a first approximation, at least, for real gases). If the gas is to do work,
then P must be given a finite value, but it cannot be as large as the static

equilibrium pressure p of the gas consistent with its instantaneous volume

V at any stage of the expansion, because a value of P somewhat smaller

than p would be sufficient in view of friction to prevent the piston from

moving at all. In the ideal limiting case of a frictionless piston, however,
there is then clearly an upper limit to the work that can be done by the

expanding gas, given by the value of I

*

p dV; for if one attempted

to increase the value of the work done by the gas by making P any larger

than p, the process would actually be reversed, and the gas instead of

expanding would be compressed at the expense of work done on it by the

external applied pressure. In other words, the maximum work that can

theoretically be obtained from the expansion of the gas is obtained when
the gas is permitted to expand with frictional losses reduced to zero

against an external pressure maintained at a value never more than

infinitesimally below the value of its instantaneous static equilibrium

pressure. Now, in compressing the gas from volume V* back to volume

Fi, one will observe that the work of compression (the negative of the

work I
1P dV done by the gas) may be made to assume a numerical

value as large as one pleases, by the application of a sufficiently high

pressure P ;
if the temperature is maintained constant, a quantity of heat

equal within a first approximation to the quantity of work done on the

gas then passes on to the surroundings. The high pressure P might be

maintained, for example, if there were considerable friction to overcome

between the piston and the cylinder, or if the gas were compressed

rapidly ;
in any event, the presence of some degree of friction would make

it necessary that P exceed p, the instantaneous static pressure of the gas,

in order that the piston move at all. In the ideal limiting case of a

frictionless piston, there is thus a lower limit to the work that must be

done in order to compress the gas (upper limit in the algebraic sense to

/Vi p dV. This quan-

tity is equal in magnitude but opposite in sign to the maximum work that

can be done by the gas during the reverse process of expansion along the

same path connecting the same pair of end states. Thus, we may write
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in general

W f p dV (5-3)

where V\ denotes the initial and V* the final volume of the gas and p
denotes its equilibrium or static pressure corresponding to the instan-

taneous volume V] Eq. (5-3) applies in the algebraic sense along a given

path (assumed relation between p and V during the change of state),

regardless of direction, i.e., whether V% is greater than Vi, or Vi is greater

than W The specification of constant temperature fixes exactly in the

case of an ideal gas the form of the relationship between p and V during

a change of state, and Eq. (5-3) then reduces to

W ^ nRT In J? (T const; ideal gas) (5-4)
V i

A thermodynamic process carried out under conditions differing insen-

sibly from those of equilibrium throughout is said to be thermodynamically

reversible. This expression implies that infinitesimal changes in appropri-

ate directions of the variables determining the state at any stage of the

process would be sufficient to send the system in exactly the opposite

direction along the same path. In particular, the work done by the sys-

tem during a thermodynamically reversible change is the same in magni-
tude but exactly opposite in sign for the two opposing directions, and sets

an algebraic upper limit to the work that can actually be done by the sys-

tem during a corresponding real change of state. Real changes, of

course, are never reversible in the thermodynamic sense. One cannot in

practice, for example, take full advantage of the energy of a compressed

gas, because if one were to attempt to derive the maximum work by con-

tinually adjusting the external pressure on the confining piston to a value

but infinitesimally lower than the instantaneous value of the equilibrium

pressure as the gas expanded, the process would require an infinitely long

time to be completed. However, the reversible process conceived as the

ideal limit of some real process, whose work may be calculated in opera-

tional terms as precisely as one pleases from a series of data taken under

static or equilibrium conditions (e.g., measurement of p as a function of

V for a gas at given constant temperature), is an idea of the utmost

theoretical importance, as perceived by Carnot.

To take another illustration of the same basic idea, let us consider a

different device for obtaining work at the expense of energy that would

ordinarily appear in thermal form, the galvanic cell. In the Daniell cell,

for example, the chemical reaction taking place during discharge is

essentially

Zn(c) + CuSO 4(Ci in H 20) = ZnSO 4(C2 in H 2O) + Cu(c) (5-5)



THE SECOND LAW OF THERMODYNAMICS 197

If the concentrations of the two electrolytes are both approximately 0.1

mole/liter, then from straightforward thermochemical measurements,
AH2w = 51.8 kcal; when the reactants are directly mixed, all this

energy is released in thermal form. In the Daniell cell, however, the

zinc does not come into direct physical contact with the CuSO4 solution,

and part of the energy released by the cell reaction can then be made
available in electrical form. Let E f

denote the instantaneous value of

the potential difference across the electrodes as the cell is discharged ;
then

the work done by the cell on the external circuit as j g-eq of Zn(c) and

Cu++(Ci in H 2O) are consumed is equal to / E f

dj}
the direction of spon-

taneous flow of negative electricity (electrons) in the external circuit

being from the zinc to the copper electrode. If E f
is measured in volts

and j in coulombs through Faraday's law, 1 g-eq = 96,485 + 10 cou-

lombs, then the quantity of electrical energy sent into the external cir-

cuit, given by the value of this integral, is measured in joules; we may
also replace dj by I dr, where I represents the instantaneous value of the

current (in amperes) and r represents time (in seconds). Now, E' may
be made to assume any value, from up, the quantity of energy sent in

electrical form into the external circuit increasing in proportion. Thus,
one may short-circuit the cell by means of a heavy copper bar, whose

electric resistance is negligible compared with the internal electric resist-

ance of the cell itself; the value of E f
is then zero, and no work at all is

done by the cell; a quantity of heat equal to AH for the cell reaction is

released within the cell, just as though the reactants had been brought
into direct contact with each other. If the external circuit consists sim-

ply of a metallic conductor of resistance Re,
while the internal resistance

is Ri, then, in general, E' = ERe/(Re + Ri), where E is a property of the

cell, its so-called emf, or potential difference on open circuit [Eq. (2-11)].

The value of E is determined by the cell reaction, and it varies with the

states of the reactants and products, as determined by temperature,

pressure, and the concentrations of the electrolytes; its value for the

Daniell cell at room temperature and pressure, when the Zn++ and the

Cu++ concentrations are equal, is about 1.08 volts. The maximum quan-

tity of energy in electrical form is sent into the external circuit, therefore,

when Re is very large in comparison with Rf, so that E' approaches in

value its uppermost limit, E] thus

W = E' dj ^ E dj (5-6)

When the external circuit consists simply of a metallic conductor, all this

energy is dissipated as heat in the external circuit; discharge of the cell in
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such circumstances, even when Re is extremely large, cannot be regarded

as thermodynamically reversible. We may, however, connect the cell to

an external circuit that includes another source of electrical energy, e.g., a

different cell set up in a potentiometer circuit, by which means a potential

difference E r
either smaller or larger than E may be impressed on the

electrodes. Then it becomes clear that Eq. (5-6) is valid in general; for

if we increase E' beyond E, we find that the direction of the current is

reversed, so that instead of withdrawing a greater quantity of electrical

energy from our cell, we are putting energy into it, charging it at the

expense of electrical energy withdrawn from the external circuit (i.e.,

from the battery of the potentiometer). The upper limit to the quantity

of work in electrical form that can be done by our cell is therefore / E dj ;

this maximum work"would be attained if the cell were allowed to discharge

against a potential difference maintained not more than infinitesimally

below the potential difference on open circuit. Now, Eq. (5-6) continues

to apply in the algebraic sense when E' exceeds E, the signs of dj and W
then being reversed; in other words, the value of \' E dj (with dj

negative) represents the lower limit to the work in electrical form W
that must be done on the cell in order to charge it, the cell reaction being
driven backward. If E' exceeds E, then the energy difference between

Wf and I E dj (both of these quantities having positive values, in

accordance with our sign conventions) appears in the form of Joule heat

generated in overcoming the electric resistance of the cell.

Thus, when the galvanic cell is coupled to a potentiometer, adjusted
close to the potential difference of the cell on open circuit, so that current

practically ceases to flow through the cell (precisely the condition sought
when one uses the potentiometer in the ordinary way to measure the emf
of the cell), one is then in effect setting up the chemical reaction from
which the cell derives its energy under conditions closely approaching

thermodynamic reversibility. A slight displacement of the applied

potential difference up or down from the equilibrium potential difference

E is sufficient to drive the chemical reaction in either of the two opposite

directions, in circumstances such that the work done by the cell for either

direction is practically the same in magnitude, but exactly opposite in

sign; a larger displacement from E would of course destroy the condition

of thermodynamic reversibility, in accordance with the general relation

(5-6). Not every galvanic cell can be set up to operate in a strictly

reversible manner; in fact, the types available are severely limited, as we
shall see in Chap. 9. One must be sure that the chemical change taking

place as the cell is charged by the application of a higher potential differ-
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ence is the exact reverse in every detail of the spontaneous reaction taking

place as the cell is discharged. This is not quite true of the ordinary
Daniell cell, because of irreversible migration of ions across the liquid

junction between the two electrolytes; thus, during discharge, Zn++ ions

migrate into the CuS04 electrolyte, while when the direction of the cur-

rent is reversed, Cu++ ions migrate instead into the ZnSC>4 electrolyte;

these processes, which tend to take place slowly even in the absence of an

electric current, through ordinary'thermal diffusion, are not included in

the simple chemical equation (5-5), which therefore does not quite accur-

ately represent the true change taking place in the cell. It is sufficient

for our present purpose, however, to note that of the 51.8 kcal decrease in

enthalpy that accompanies the chemical reaction (5-5), a maximum of

but 49.8 kcal [= (1.08 volts) (2 g-eq) (96,485 coulombs/g-eq)(l kcal/4184

volt-coulombs)] is available in electrical form; at least 2.0 kcal must still

be released directly in thermal form. Conversely, at the same tempera-

ture, pressure, and electrolyte concentrations, one must expend a minimum
of 49.8 kcal of energy in electrical form in order to drive the chemical

reaction (5-5) in the reverse direction (to cause Cu to displace Zn from a

solution of its sulfate), and only the balance, 2.0 kcal, required by the

conservation principle can at most be taken in from the surroundings in

thermal form.

5-2. The Second Law of Thermodynamics. Equations (5-4) and (5-6)

express limitations imposed by nature on the quantities of energy in non-

thermal form that can be derived from two particular kinds of processes,

one involving changes in the state of an ideal gas, and the other involving

a chemical oxidation-reduction reaction. In either case, we have seen

that the maximum work is derived when the system is maintained

throughout in a state differing but infinitesimally from the equilibrium

state characteristic of the external conditions instantaneously prevailing.

A slight shift in the appropriate direction of these conditions is then suffi-

cient to reverse exactly the direction in which the system's state tends to

change, changing the sign of Wr ]
a change of state executed hypotheti-

cally under such conditions is said to be executed reversibly.

These equations suggest, however, a far more general limitation on the

utilization of thermal energy, first perceived by Carnot
;
for so long as the

temperature is fixed, they imply that at least as much energy in non-

thermal form must be expended on the respective systems in order to

restore them to their original states as they are capable of producing.

Suppose, for example, we attempt to base a heat engine on the cyclic

expansion and compression of a gas, as in the ordinary steam engine or

the internal-combustion engine; for simplicity, we shall treat the gas as

ideal, but this involves no real loss of generality, as we shall presently see.
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So long as the temperature of the gas remains constant (e.g., at the tem-

perature of the potential source of thermal energy), Eq. (5-4) implies that

the net work W done by the gas during a complete cycle that restores it to

its original state must necessarily satisfy the condition

W (T const) (5-7)

For Eq. (5-4) applies in the algebraic sense both as the gas expands (the

expression on the right then having a positive value) and as it is com-

pressed (the expression on the left then being negative). The equality

sign in Eq. (5-7) applies in fact only if both the expansion and the restor-

ing compression are executed under thermodynamically reversible condi-

tions. Otherwise, an irreversible or permanent transfer of energy from

mechanical to thermal form takes place during each cycle. The transfer

may be effected inHhe present instance through mechanical friction,

temporary eddy currents set up in the gas, etc., but whatever the mecha-

nism, it tends to make W algebraically smaller (more negative) than the

ideal value for reversible change, whether during expansion or compression.

If, however, the gas can be compressed at some lower temperature than

the temperature at which it is permitted to expand, then within the limita-

tion represented by Eq. (5-4), it is possible for the gas to do a positive

quantity of net work during each cycle. To be explicit, letW denote the

quantity of work done by n moles of an ideal gas as it expands from vol-

ume Vi to volume V* at the constant (higher) temperature I
7

'; then

**

Likewise, let W" denote the quantity of work done by the same quantity
of gas as it is compressed from volume V* back to volume Vi at the con-

stant (lower) temperature T" (its value will of course be negative) ;
then

W" nRT" In
V̂*

The cycle may be completed by means of intermediate steps in which the

gas at constant volume V* is cooled from T' to T", and at constant volume

Vi is heated from T" back to T
7

'; neither of these steps involves work, and

for an ideal gas, the heat given up during the one exactly counterbalances

the heat absorbed during the other, since Cv is independent of the pres-

sure, as shown by the application of the general thermodynamic relations,

(3-49) and (3-41), to a gas satisfying the ideal-gas equation of state, Eq.

(3-60).
l

Thus, for the net work done by the gas during one complete

1 In the cycl6 we have just described, if the gas is cooled at the constant volume V*
from Tf

to T" by direct contact with the lower temperature medium and later is
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cycle,

W = W + W" ^ nR(T' -
3P") In p (5-8)

V i

which may have a positive value, so long as Tf > T" (on the assumption

by hypothesis that F2 > V\}. Now, the quantity of heat Q' absorbed

from the source of thermal energy at the constant temperature I" is equal

to W
9
inasmuch as for an ideal gas, (At7)r = Q r Wf =

[see Eq.

(3-62)]; therefore only the fraction

rrr Tf T"

W = T^- <W

is converted into mechanical form, the balance [1 (W/Q')] representing

the fraction passed on to the surroundings at the temperature T" still in

thermal form. Since W ~ Q
r + Q", where Q" represents the quantity

of thermal energy transferred to the lower temperature part of the sur-

roundings, at the constant temperature T", Eq. (5-9) may be put in the

equivalent form

Thus, the utilization of the thermal energy absorbed by the gas at the

higher temperature is necessarily incomplete, Qven when the gas is put

through a cycle of reversible changes of state. Equation (5-9) represents

the efficiency with which the cyclic heat engine transforms thermal into

mechanical energy, without itself undergoing permanent change. The

efficiency of such an engine, operating between two fixed temperatures,
thus has as an upper limit the function of the two temperatures given by
the right-hand member of Eq. (5-9). Unless provision is made for corn-

warmed at the constant volume Vi from T" back to T' by direct contact with the

higher temperature thermal source, then at least the quantity of thermal energy,
fTr

n I
f Gl dTj would be irreversibly transferred from Tf

to T" during each cycle.

This irreversibility could be eliminated, in principle, if a series of intermediate bodies

were available, at temperatures differing by infinitesimal degrees between T' and T"\
the thermal energy released by the gas as it cooled from Tr

to T", by successive con-

tacts with the intermediate bodies, could then be stored reversibly, available for

restoring the gas back through the reverse sequence of stages to the initial tempera-
ture T'. In Carnot's original treatment, he conceived the idea of cooling the gas from

T' to T" by means of a further expansion under adiabatic conditions and likewise of

restoring the gas to its original temperature by an adiabatic compression. No heat

leaves or enters the system during these adiabatic stages; one may prove through

Eqs. (3-83) and (3-84) that if the entire cycle is carried out reversibly, the work of

the two adiabatic steps cancels (since CJ is a function only of temperature for an ideal

gas), and the net work satisfies the equalities represented in Eqs. (5-8) and (5-9).
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pressing the gas at a lower temperature than the temperature at which

it was allowed to expand, there is no way to restore it to its original state

without the expenditure of at least as much energy from the surroundings
in nonthermal form as was yielded by the gas in expanding.

Carnot perceived that what is true of the expansion and compression
of an ideal gas

1
is but a special case of a far-reaching principle, which has

come to be known as the second law of thermodynamics. Every real

thermodynamic process leaves a permanent change in the world, either

immediate or deferred in character, the deferred change (which may be

used to counteract the immediate change that has taken place in the

system itself) being equivalent ultimately either to the transformation of

energy from nonthermal to thermal form or to the transfer of thermal

energy from a higher temperature to a lower temperature level. No
process has ever been discovered whose sole result is the transfer of energyfrom
thermal to nonthermal forms. In the cyclic heat engine, which transforms

thermal energy to nonthermal energy without itself undergoing perma-
nent change, the permanent change in the world at large consists invari-

ably of the transfer during each cycle of a certain quantity of unutilized

thermal energy from the source to surroundings at a lower temperature
than the source; this is fundamentally an irreversible or one-directional

change, which would tend to take place of its own accord if the thermal

source and the lower temperature surroundings were to be exposed to each

other's influence directly (compare Sec. 1-1) instead of through the inter-

mediate agency of the heat engine. In the absence of lower temperature

surroundings, however, the energy of the thermal source is completely
unavailable for the continued production of work, even if the heat engine
is supposed to operate reversibly [compare Eq. (5-9)]. To be sure, one

may transfer thermal energy back from the lower temperature to the

higher temperature level by means of a cyclic refrigerating engine, or heat

engine driven in reverse, but this can be accomplished only through the

expenditure of additional energy in nonthermal form, passed on ultimately
to the surroundings in the form of heat. As we shall note in the following

section, the second law of thermodynamics implies that we cannot so

counteract the
"
permanent" change effected by the operation of the heat

engine without expending at least as much work on the refrigerating

engine as the output of the heat engine; thus, in attempting to do so, we
should merely be substituting a different and even more permanent

1 The behavior of steam in an actual steam engine is only slightly more complex,

involving the phase transition between liquid water and steam, as well as changes in

state of the real gas, steam ; in the internal-combustion engine, there is the added com-

plexity of a chemical reaction taking place within the cylinder, whereby thermal

energy is made available during each cycle.



THE SECOND LAW OF THERMODYNAMICS 203

irreversible change (one requiring the expenditure of a still greater quan-

tity of nonthermal energy for its compensation) in place of the change we
had succeeded in counteracting.

The second law of thermodynamics is expressed in the form of a nega-
tive statement, or denial. We obviously cannot produce for such a

statement direct experimental proof, such as corresponds to Joule's law

in relation to the first law of thermodynamics. Its generality rests

rather on the failure of all attempts to disprove it. Such attempts are

always equivalent to the construction of a so-called
"
perpetual motion"

machine of the second class (a perpetual motion machine of the first

class being one that would violate the principle of conservation of energy),
which might operate for example by drawing upon thermal energy from

a source originally at the same temperature as its surroundings (such as a

portion of the ocean, or the atmosphere), doing work without itself under-

going permanent change (i.e., by means of a cyclic process), and ulti-

mately lowering thereby the temperature of the source in relation to the

surroundings; ordinary thermal interchange between the source and sur-

roundings could then be relied on to restore thermal energy to the

depleted source, and thereby keep the machine in operation indefinitely

transforming thermal energy drawn ultimately from the surroundings
into mechanical form without the need of an elevated temperature.

Experience teaches us that every device considered potentially suitable

for this purpose has failed. Upon the hypothesis that all such devices

are necessarily doomed to failure, we may of course construct a set of

logical implications, applying in particular to relationships among the

states of a thermodynamic system; for any thermodynamic system is

potentially a device for transforming thermal into nonthermal energy.
Such thermodynamic relationships are subject to direct experimental
verification

;
the truth of such relationships then constitutes indirect proof

of the second law of thermodynamics as the coordinating principle. The

importance of the second law of thermodynamics to chemistry rests in

the fact that every chemical transformation is potentially a means for

transforming thermal energy into mechanical or electrical energy, and the

general limitation imposed by the second law constitutes, as we shall

presently see, the foundation for the entire theory of chemical equilib-

rium. Our faith in the second law is based in part on the precision and

logical consistency of the results that have been accomplished in this

field.

5-3. Carnot's Principle. An immediate inference from the second law

of thermodynamics is that any reversible cyclic process operating between

two given fixed temperatures must yield the same net quantity of work
Wr from a given quantity of heat Q' drawn from the higher temperature
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source. For let us first compare the behavior of a reversible cyclic heat

engine with that of any nonreversible one, doing net work W from heat

Q
f drawn from the higher temperature source. If W were greater than

Wrj we could then use the nonreversible engine to drive the reversible one

backward so that it would function as a refrigerating engine, transmitting

the quantity of heat Q
f
to the higher temperature source as the quantity

of work Wr is expended in running it; by hypothesis, the reversible

engine would require exactly the same quantity of work to drive it back-

ward, for a given quantity of heat then delivered to the higher tempera-
ture source, as it would do in running normally as a heat engine upon
absorbing that same quantity of heat; on the other hand, the nonreversi-

ble engine, as we have already noted in Sec. 5-1, in general would require

a greater expenditure of nonthermal energy to drive it in reverse than it

delivers when running in the forward direction. Now, the net result

would be that for each complete compound cycle of both engines, the net

quantity of work W Wr would be done, at the expense of thermal

energy (the difference between Q' Wr taken up from the lower tem-

perature body by the reversible engine running in reverse, and Q' W
delivered to that body by the nonreversible engine) drawn from the lower

temperature surroundings; this would be the sole result, since the reversi-

ble engine would have restored to the higher temperature body all the

thermal energy withdrawn from it by the nonreversible engine. Such a

possibility is denied by the second law of thermodynamics; it follows

therefore that

W - Wr ^
W ^ Wr (5-11)

No heat engine operating between two given fixed temperatures can be

more efficient than one operating reversibly. If, however, we compare

any two reversible cyclic processes operating between the same two tem-

peratures, one doing net work W\ and the other W, upon drawing the

same quantity of heat Q' from the higher temperature source, then by
similar reasoning we can show that

W\ ^ W\ and W* ^ W\

Both of these conditions can be satisfied only if

W\ = W* (5-12)

In other words, any reversible cyclic process operating between two given

fixed temperatures is equally efficient in transforming thermal energy
drawn from the higher temperature source into work.

The value of Wr/Q' is therefore a universal function of the two fixed

temperatures concerned, entirely independent of the particular material
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system undergoing the cyclic change. This important generalization is

known as CarnoVs principle. It follows that we can establish the form

of this universal function by studying empirically the limiting behavior

as one approaches thermodynamically reversible conditions of any par-
ticular system. We have already found in Eq. (5-9) that for a system

consisting of an ideal gas (whose behavior has been inferred from the

behavior of real gases in the limit as p > 0, as shown in Sec. 1-2), the

upper limit to the efficiency of the cyclic process, attained by thermo-

dynamically reversible changes of state, is given by

Wr Tf - T"

Q' T' (5-13)

where T represents the temperature measured on the absolute ideal-gas

temperature scale, as defined by Eq. (1-3). Equation (5-13) therefore

applies to any material system whatever, undergoing in principle a cycle

of reversible changes of state between the two fixed temperatures T'

and T".

6-4. The Thermodynamic Temperature and the Entropy. We may
treat Carnot's principle in a more elegant way, first conceived by William

Thomson, Lord Kelvin, in 1852. Kelvin noted that Carnot's principle in

effect defines a universal temperature scale independent of the particular

material system used as the thermometer. For let us consider two differ-

ent bodies, each momentarily at some fixed temperature (such as might
be maintained by ice melting at normal atmospheric pressure, or by

liquid oxygen boiling at normal atmospheric pressure), and let 0' and Q"

be their temperature measures derived naively as by means of Eq. (1-1)

from any appropriate thermometric property, such as the length of a

copper bar or the resistance of a platinum coil. Now, up to this point, at

which we introduce the second law of thermodynamics, the temperature
scale has had no numerical significance beyond that of ordering different

systems in relation to each other. A scale sufficient for coping with all

problems arising in relation purely to the first law of thermodynamics
could have been derived in terms of any measure 0, single-valued, con-

tinuously defined, and increasing in regular sequence as the body whose

temperature is being measured is made hotter,
1 without the need for

attaching any meaning to the quantitative relationships among the

temperature measures of different systems; thus, the numbers 0, 100, and

444.6C assigned, respectively, to the ice point, the steam point, and the

1 The direction of increase here is purely conventional; an equally practical scale

would be obtained if the value of decreased steadily as the body became qualita-

tively hotter; one would then discover by experience that the senses of the inequalities

between the values in expression (5-14) would have to be reversed.
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sulfur point order these systems in relation to each other, and in relation

to other bodies whose temperature measures may be similarly assigned,

but we have had no occasion to attach physical significance to the concept
of precisely how much hotter a substance at the boiling point of sulfur is

than a substance at the boiling point of water. The absolute ideal-gas

temperature scale has had such special significance in relation to certain

physical properties of gases, but this has been a rather narrow field of

application. We are now prepared to assign a temperature scale on

which the numerical values have quantitative significance in general, in

relation to the second law of thermodynamics. For let us use as the

thermometer, in principle, any material system that could be put through
a reversible cycle, during which it absorbs thermal, energy Q'r from the

one body, Q" from the other body (under the sign convention that when
heat is actually given up by the system, Qr will be assigned a negative

value), and does net work: Wr
= Qr + Q" Then the general content

of Carnot's principle is summarized qualitatively in the form of the follow-

ing statements:

If 6' > 0", then Wr is positive ,
that is, Q'r > -Q'r

'
\

If 0' = 0", then Wr
=

0, that is, Q'r = -Q'/ I (5-14)

If 0' < 0", then Wr is negative, that is, Q'r < -Q" )

Thus, we see that the absolute value of Qr has the same qualitative numer-

ical properties as the temperature measure itself; the relative magnitudes
of the quantities of heat exchanged by the system with the two bodies, as

the system goes through one complete reversible cycle, could be used to

place the two bodies, and any others by extension of the scheme of meas-

urement, in qualitative temperature order. But according to Carnot's

principle, the value of the ratio Wr/Q'r = 1 + (Q'r /Q'r} is determined

solely by the temperatures of the two bodies, however they may be meas-

ured, and independently of the particular material system undergoing the

reversible cycle of changes between them. Therefore we may use the

ratio Q"/Q'TJ as measured empirically using any material system what-

soever, to define the relative temperature measures of the two bodies,

according to the quantitative law,

c\/f f\n~

(the negative sign in this equation merely ensures a positive value of the

ratio e'VG
7

,
since Q" and Q'r will themselves have opposite signs). The

temperature scale 6 so defined is known as the absolute thermodynamic

temperature scale. Such a scale has all the essential qualitative features
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of ordinary temperature scales, but has in addition the universal property
that any system used to measure the values of Q" and Q'r ,

and thereby

serving as an empirical thermometer through Eq. (5-15), will yield the

same value of 0"/e/ - We have already seen in Eq. (5-10) that if we
choose as our thermodynamic thermometer an ideal gas (whose behavior

has been inferred from empirical observation of the limiting behavior of

actual gases as p > 0), then

Q" T"" =

where T' and T" represent the absolute ideal-gas temperatures, as meas-

ured independently of thermodynamics by means of an ordinary gas
thermometer corrected for deviation from Boyle's law at finite pressures

[compare Eq. (1-3)]; therefore we conclude in general that

= CT (5-17)

where the proportionality factor C may be set equal to 1 merely through

assignment of the same numerical scale to 6 as has already been assigned

to T. Equations (5-9) and (5-10), to which we were led by empirical

observations based on the properties of gases at sufficiently low pressures,

therefore apply generally to any thermodynamic system whatever, where

T stands for the absolute ideal-gas temperature.

liquation (5-15) is evidently not the only way in which one might pro-

ceed to define a universal temperature scale based on the second law of

thermodynamics. Kelvin in fact first proposed a scale essentially defined

by the relation

S" - H' e In f- (5-18)

This so-called "first
11

scale of Kelvin evidently satisfies the qualitative

requirements of ordinary scales, as embodied in relations (5-14), and, like

any other function of Q"/Q'r ,
must be universal in view of Carnot's

principle. If we apply the definition (5-18) to some particular material

system, such as an ideal gas, we evidently obtain

E = So + In T (5-19)

where T represents the absolute ideal-gas temperature, and So is a con-

stant merely locating the zero point on the S scale in relation to the zero

point on the T scale. The scale defined by Eq. (5-15), however, to

which T is proportional, has one important property not possessed by
other "thermodynamic" scales. If we transpose terms in Eq. (5-15),
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then

f + |
-

(5-20)

In other words, the quantity Qr/Q, where Qr denotes in the algebraic sense

the quantity of heat absorbed by the system during a reversible change of

state at the constant thermodynamic temperature 6, when summed over
a complete cycle of changes that restores the system ultimately to its

original state, vanishes. Equation (5-20) applies to a system absorbing
heat reversibly only at the two fixed temperatures 0' and 0"; we may
generalize to take account of reversible changes of state during which the

temperature of the system undergoes change by invoking the methods of

the calculus. Thus, let us define a function S by means of the equation

dS m *L

Then we may infer from the second law of thermodynamics that the

integral of dS around any closed reversible path that ultimately restores

the system to its original state vanishes; this statement is merely a gen-
eralization of Eq. (5-20). In other words, the value of S itself, except
possibly for a constant of integration for the particular system, must be
determined completely by the state, and is therefore an extensive property
of the system (extensive because the value of Qr for a given kind of mate-
rial substance will evidently be proportional to the total mass of it under

consideration).

We may in fact set up the temperature scale originally in such a way
as to ensure that dS defined by Eq. (5-21) is determined completely by
the changes taking place in the variables fixing the state, independently
of the particular path along which they vary. Let us forget for the
moment our previous definition of [Eq. (5-15)], and concentrate on this

new aspect, since the creation of a physical property of the system in

terms of which the second law of thermodynamics can be expressed in

mathematical form would be an achievement equivalent in value to the
creation of U and H in relation to the first law. The value of Qr is clearly
not determined solely by the initial and final states of the system, as
we have indicated by using the notation d'Qr for its differential. Equa-
tion (5-21) suggests, however, that by dividing the value of d'Qr by some
particular temperature measure 0, whose relation to any ordinary (i.e.,

nonthermodynamic) method of measuring the temperature, such as by
means of a platinum resistance thermometer, or a constant-volume nitro-

gen thermometer, is to be determined by empirical observation. The
quantity 1/0 is thus to serve in the capacity of an integrating factor (to
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use the language of differential equations) of the differential expression

represented by d'Qr . Now, according to Carnot's principle, the relation-

ship between and any particular ordinary temperature scale, based

on some thermometric property of a particular type of thermometric

system, must be a universal one; in other words, the temperature scale

which transforms d'Qr/Q into a perfect differential in terms of the

variables determining the state for any one system will serve in the same

capacity for any other system. We can therefore discover the form of

the general relationship between and any ordinary temperature meas-

ure by studying empirically the behavior of any particular material

system. We can express in detail, for example, the behavior of an ideal

gas by means of the empirical equations

URT_ (from equation-of-state data for real gases at
P ~~

V low pressures) (5-22a)

dU = nCv dT (from Joule-Thomson experiments on real gases

at low pressures) (5-226)

where T represents the absolute ideal-gas temperature defined by Eq.

(1-3) independently of thermodynamic considerations. Now, in general,

for any system,

d'Q = dU + p dV (W = 0; first law)

Let us divide by 0, a function as yet unspecified of the ordinary tempera-
ture as represented, for example, by the absolute ideal-gas temperature T,

ia-*.l&& 0P= ) (5-23)
\J \J

and introduce the ideal-gas data, noting that for reversible changes of

state, the gas is maintained throughout at a pressure equal to its equi-

librium static pressure, as represented by Eq. (5-22a). Thus

dS = dT + (ideal gas) (5-24)

One sees at a glance that in order for dS to be a perfect differential in

terms of the variables T and F, it is necessary and sufficient that

= CT (5-25)

where C is a universal constant, which merely fixes the size of the degree

on the scale in terms of the arbitrary degree fixed by convention on the

T scale. Equation (5-25) follows rigorously from Eq. (5-24) if one

applies Euler's criterion
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^ fnRT\
dT\QV )v

R RT de _
6V 62F dT

d_ /nCA
dV\Q )

dT T
G = CT

[Eqs. (5-22a) and (5-226) are sufficient, taken in connection with the

first law of thermodynamics, to ensure that Cv is independent of V and

of p.] Equation (5-25) represents of course the same conclusion we pre-

viously reached by a different approach in Eq. (5-17). In other words,

l/T, where T represents the absolute ideal-gas temperature, is itself an

integrating factor for d'Qr,
and the function S, hereafter defined by

dS = *Q (5-26)

is for a particular thermodynamie system an extensive property deter-

mined entirely by its state

/state

2 ,,o
*7r

tate 1 *

This completes the identification of the absolute thermodynamie tem-

perature scale with the absolute ideal-gas temperature scale, to which we
referred in Sec. 1-2; the gas thermometer, corrected for deviation of the

particular gas from Boyle's law, thus constitutes an experimental method
of realizing temperature measures on the thermodynamie scale, which

has the properties implied by Eq. (5-27).

The function $ defined by Eq. (5-26) or Eq. (5-27) is known as the

entropy function, and was first introduced by R. J. E. Clausius in 1865.

It is important for one to realize that while the defining equations, (5-26)

and (5-27), apply only to thermodynamically reversible changes of state,

the value of A/S is a property solely of the initial and final states of the

system. Therefore if the value of AS between two given states can be

established, for example by applying Eq. (5-27) to any reversible path

connecting the states, then the entropy of the system undergoes that same

change whenever the same change of state is brought about, by whatever

process, reversible or nonreversible. The accompanying entropy change

taking place in the surroundings is another matter, which we shall discuss

at further length in the following section. For changes of state taking

place in an ideal gas, from Eq. (5-24), neglecting change of C% with
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temperature,

& - Si = Cl In ~2 + R In
^-

2

(ideal gas) (5-28a)

or, in terms of T and p as state variables,

g, - & = < In ~? ~ 72 In 2?
(ideal gas) (5-285)

While the ratio of the absolute thermodynamic temperatures of two

bodies, T"/T', is thus given general quantitative significance in the light

of the second law of thermodynamics, represented, for example, by Eq.

(5-16), the number assigned to any one fixed temperature point remains

arbitrary, as seen in Eq. (5-25) ;
the absolute thermodynamic tempera-

ture measures could be multiplied throughout by a constant scale factor,

without effect of any kind on the thermodynamic relations involved,

although of course the choice of scale would affect the numerical values

assigned to S. As explained in Sec. 1-2, the Kelvin or absolute thermo-

dynamic centigrade scale has been defined since Kelvin's time by the

arbitrary assignment of 100K to the difference between the steam-point
and the ice-point temperatures; the Rankine or absolute thermodynamic
Fahrenheit scale in use by chemical and mechanical engineers has been

defined similarly by the arbitrary assignment of 180R to the difference

between the steam-point and the ice-point temperatures. It then fol-

lows from experiment that TQ, the absolute thermodynamic ice-point

temperature, has the value 273.16 0.01K on the Kelvin scale and

491.69 0.02R on the Rankine scale. A movement is under way to

redefine the Kelvin scale by the arbitrary assignment of the number
273.16K (or whatever number may be agreed upon by convention) to

the ice point, or possibly by the assignment of a suitable conventional

number to the triple point of water, which is perhaps more reproducible

than the ordinary ice point. This change would of course have no imme-

diate practical effect on absolute temperature measures now in use.

If in Eqs. (5-26) and (5-27) defining dS and AS, d'Qr is represented in

calories and T in degrees Kelvin, then dS and AS are measured in calories

per degree, or so-called entropy units (eu). The second law of thermo-

dynamics defines only changes in the value of /S; the entropy of a given

thermodynamic system, like the internal energy and the enthalpy, is

therefore indeterminate to the extent of an arbitrary additive constant

of integration, concerning which, however, we shall have more to say in

Sec. 8-3.

5-5. Thermodynamic Measures of Irreversibility and Criteria of

Equilibrium. We have discussed the entropy function so far only in
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relation to reversible changes of state, by means of which changes in its

value can be directly established experimentally according to Eq. (5-26),

or its integral form, Eq. (5-27). The second law of thermodynamics

implies, however, that its difference, AS, between two given states does

not depend on how the change of state is brought about, although Eq.

(5-27) itself is valid only along a reversible path. Let us now see what

kind of information we can derive from the entropy function concerning

real changes of state, which in general are not thermodynamically
reversible.

From the general discussion given in Sees. 5-2 and 5-3, it is clear that

for any real change taking place in the state of the system at constant

temperature, the following condition is always satisfied :

Q ^ T AS (T const) (5-29)

For if Q represents the quantity of heat absorbed and W the quantity

of work done by the system during the actual change of state, and if

Qr and Wr represent the quantity of heat absorbed and the quantity of

work done if the same net change of state were brought about by means

of any thermodynamically reversible process, then in principle one could

always restore the system to its original state by putting it through the

reversible process in the reverse direction; the net work W Wr done

by the system during the complete cycle must then satisfy the general

second-law condition

W - Wr ^ (T const) (5-30)

Since, however, in view of the first law of thermodynamics,

Q - W = At/ = Qr
- Wr

it follows therefore from Eq. (5-30) that

Q - Qr ^ (T const) (5-31)

But at constant temperature T
7

, according to Eq. (5-27) defining AS in

general,

Qr
= T AS (T const) (5-32)

Therefore condition (5-29), which is actually a generalization of Eq.

(5-32), follows; the equality sign in (5-29) applies to the special case in

which the change of state under consideration happens to be carried out

reversibly.

The generalization of condition (5-29) for real changes of state during
which the temperature of the system changes is

d'Q TdS (5-33)
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or
/"state 2

Q g /**" 2* dS (5-34)
./state 1

where the integral is evaluated along the actual path followed by the

system. For we may conceive the actual path to be approximately

equivalent to a path made up of a sequence of changes at successive con-

stant temperatures, connected by intermediate steps during which the

temperature is changed to the next value under adiabatic conditions;

during the adiabatic connecting steps, d'Q = d'Qr = T dS =
0, while

during the isothermal steps, condition (5-29) or its limiting form (5-33)

for infinitesimal changes applies. In the limit as the steps are shortened

and their number correspondingly increased, the approximation to the

actual path can be made as close as one pleases, always under the assump-
tion that below the limit of experimental error in the measurement of

quantities such as T and Q there is still some distance to go before the

discrete ultimate structure of the material system causes these quantities

to lose the precision with which they may ordinarily be defined (we shall

presently see that when one takes into account the molecular constitution

of material substances, one must assume that the second law of thermo-

dynamics has a statistical foundation, as have such concepts as tempera-
ture itself and the distinction between thermal and mechanical energy).

In general, both terms involved in Eq. (5-34) depend on the path

actually followed by the system during the change of state under con-

sideration. We may, however, rearrange Eq. (5-33) before integrating,

so that the condition it imposes on real changes of state may be expressed
in terms of the quantity AS, whose value depends only on the initial and

final states,
'state 2

T//}^ ^ AS = S2
- Si (5-35)

state 1 J-

This relation is the generalization of Eq. (5-27), which defines AS; the

equality sign in condition (5-35) applies to the special case of a thermo-

dynamically reversible process.

Condition (5-35) is a concise statement in elegant mathematical form

of the second law of thermodynamics. It expresses the general limitation

on the utilization of thermal energy embodied in that law by setting an

upper limit to the quantity of heat any given material system may take

in during a change of state (by means of which some or all of the thermal

energy might conceivably be converted to mechanical or other nonthermal

form) ;
this limit is set through the abstract relation (5-35) in terms of a

function of the state of the system, whose change, AS, depends only on

the initial and final states of the system for the change of state under
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contemplation. In particular, if the system goes through a cycle of

changes, which restores it ultimately to its original state, so that

0,

then

where

W =
<f)

d'Q (first law) (5-36a)

'

<f)

~ ^ (second law) (5-366)

Carnot's equation, (5-13), and the various relations for cyclic heat engines

developed in Sec. 5-2, are merely special cases of the general relation

represented by Eqs. _(5-36). More generally, condition (5-35) sets

bounds to the thermodynamic feasibility of conceivable changes of state;

only such changes as satisfy (5-35) are consistent with the second law

of thermodynamics. If, for example, one has established the value of

AS between two given states, then the system can get from one state to

the other only along such paths as satisfy (5-35), i.e., paths over which

fd'Q/T does not exceed the value of AS. This condition evidently
determines the direction in which the system will tend to move, or can

move, under a given set of constraints imposed on it. This powerful
criterion may be applied in particular to determine the direction in which

a chemical reaction tends to take place under a given set of constraints,

as we shall see later; it is evident, for example, that an endothermic

reaction at constant temperature demands a positive entropy of reaction,

but this condition is evidently not sufficient to ensure that the reaction

tends to take place in the endothermic direction.

The case of the thermally insulated system is particularly significant.

If the system is constrained to changes of state such that d'Q =
0, then

the general condition (5-35) reduces to

AS ^ (Q =
0) (5-37)

Therefore during real adiabatic changes of state, the entropy of the

system cannot decrease; it must increase, or for hypothetical reversible

changes of state, remain stationary. Condition (5-37) applies a fortiori

to changes taking place in an isolated system, which exchanges no energy
in any form with the outside world; in this case, since, in general,

d'Q = dU + pdV + d'W

we may write explicitly

(W - 0) (5-38)
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Since according to Eq. (5-38), the entropy of an isolated system cannot

decrease, the ultimate state of such a system must tend to be the one of

maximum entropy consistent with its fixed total energy and volume.

When the system has reached such a state, no further changes can take

place consistently with the second law of thermodynamics; the system
will be in a state of stable equilibrium, with all its energy completely
unavailable for effecting further change.

Consider, for example, the simple case of a heated piece of iron that

has just been dropped into a Dewar flask containing water originally

at room temperature. The iron cools down and the water warms up
until ultimately both have reached a common temperature (compare
Sees. 1-1 and 2-2), from which no further change takes place except for

gradual loss of heat from the Dewar flask to the surroundings. Now,
all the energy, both thermal and mechanical, introduced with the iron

is still present in the flask, and there would be no contradiction of the

conservation principle if the iron and the water were to return of their

own accord to their respective original temperatures, or for that matter,
if the iron were to gather together energy in mechanical form and jump
back out of the flask. Experience tells us, however, that such changes
never take place. Condition (5-38) is an abstract means of putting
such experience in the form of a mathematical statement; once the iron

has entered the flask, the entropy of the resulting "isolated" system
can only increase or remain stationary, and as it increases, the energy of

the system becomes increasingly unavailable for effecting further changes.

The entropy change as the iron cools and the water warms may be analyzed
in detail as follows: let the total heat capacity of the iron body be represented

by Ci and its instantaneous temperature by TI, and let the total heat capacity
of the water (neglecting that of the container itself) be represented by C2 and its

instantaneous temperature by Tz . Then if the temperature of the iron were to

change by dT\ and the temperature of the water correspondingly by dT% subject
to the conservation condition

the total entropy change would be given by

Thus, so long as TI > Tt,
dS can be positive only if dT\ is negative, i.e., if the

iron cools, which is of course what actually happens. Had TI been smaller

than Tt,
that is, the iron body initially colder than the water, then dS would be
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positive only for a change such that dTi would be positive. Now when ulti-

mately TI = Tz, then for further small change of state represented by dTlt the

value of dS would be zero, but the second-order effect if TI were to be increased

sufficiently (and T2 correspondingly decreased) would be to make the coeffi-

cient of C\ dTi in the above expression for dS become negative; i.e., a small but

finite increase in TI would be accompanied by negative A/S. A precisely similar

argument shows that a small but finite increase in 3T2, starting with the condition

TI = Tz, would likewise be accompanied by negative AS. Neither change can

actually take place so long as the system remains isolated. Thus, the statement

that the entropy of an isolated system cannot decrease symbolizes in general

what experience teaches us in detail about this particular situation: that the

temperatures of the two bodies tend to become equal and to remain equal there-

after. This idea is implicit, of course, in the use of a thermometer to measure

the temperature of a body with which it has come to thermal equilibrium, free

from the influence of other external bodies.

The "dissipation" of mechanical energy associated with the motion of the iron

body as it drops into the insulated flask also corresponds to an entropy increase.

In order to consider this question, let us suppose for simplicity that the iron

body and the water are initially at the same temperature To, and let E then

represent the kinetic energy with which the iron drops into the water. This

energy is transformed into internal energy of the combined system, and neglecting

the small volume change associated with the rise in temperature,

At/ = E = (Ci + Ci)Ar

Now, since the entropy change of the system depends only on the initial and final

thermodynamic states, we can compute its value from the moment the kinetic

energy of the iron body vanishes until the combined system has come to thermal

equilibrium by calculating what the value of fd'Qr/T would be if the same change
of state were brought about through any reversible process, such as by reversible

heating (i.e., by means of heat supplied by an external body whose instantaneous

temperature is maintained only infinitesimally higher than the instantaneous

internal equilibrium temperature of the system itself) ;
thus

fTo+ATdU JL C }
AT

IT* T" (Cl + Ca)
To"

to a first approximation, under the assumption that AT7
is small compared with

TV In other words

E

So long as the content of the flask remains isolated, all the energy E becomes

unavailable through temperature equalization, just as in the case of energy
introduced directly in thermal form (as when the iron body was introduced at an

original temperature higher than that of the water). What physical significance

may we attach to the value of AS itself in the present instance? Suppose that
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lower temperature external surroundings exist, at some temperature T*. Then

through a Carnot process, the fraction (jP T*)/TQ of the assimilated energyE
(and of any other thermal energy withdrawn from the combined iron-water

system, so long as it remains essentially at the temperature To) might be con-

verted back to mechanical form; but the balance E(T*/TQ) would remain unavail-

able, and even under the most efficient conditions consistent with the second

law of thermodynamics would be passed on to the low-temperature surroundings
still in thermal form. Thus, the quantity

represents energy rendered "permanently" unavailable when the mechanical

energy of the falling body is "dissipated" within the flask in thermal form.

This interpretation of AS as a measure of the extent to which energy, thermal or

mechanical, has been made unavailable is quite general. The unavailability

depends on the lowest available temperature to which one can divert the unuti-

lized thermal energy; in a closed system, such that all parts are ultimately at the

same temperature, all the thermal energy is unavailable. We have supposed in

the example under consideration that AT was sufficiently small to leave TQ

sensibly unchanged; if the temperature within the flask is increased significantly

through accretion of the energy introduced by the iron body, then the value of

A/S is correspondingly smaller, indicating that the extent to which this energy
has been made unavailable (which depends on the ratio of the lowest available

external temperature to the temperature finally prevailing within the system that

has acquired the energy) is likewise smaller.

Now, thermodynamic changes taking place in the world at large may
be regarded ultimately as changes taking place within an isolated or

self-contained system; for any change occurring in a system that is not

itself isolated consists of an interaction between the system and its envi-

ronment, during which energy may be exchanged (in thermal and non-

thermal forms) but according to the first law of thermodynamics is

never created or destroyed. Therefore by the inclusion of enough of the

environment to encompass all parts influenced by the energy transfer,

the system plus environment constitutes a supersystem that is in effect

isolated; its total energy and its total volume are both constant. The
classic expression of this viewpoint was given by R. J. E. Clausius in

1865 and was quoted by J. Willard Gibbs at the outset of his monumental

treatise, "On the Equilibrium of Heterogeneous Substances," published
10 years later:

"Die Energie der Welt ist constant.

Die Entropie der Welt strebt einem Maximum zu."

In Sec. 5-2, we introduced the second law of thermodynamics in the form

of a statement expressed in terms of ordinary experience: no process
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has ever been discovered whose sole result is the transformation of energy

from thermal to nonthermal form. We may now replace that statement by
the mathematically equivalent abstract but more powerful generaliza-

tion: the entropy of a closed thermodynamic system never decreases. The

entropy of any nonisolated portion of the system may decrease (just as

thermal energy may be transformed into nonthermal energy by means of a

heat engine, which itself undergoes no permanent change as a result of

the operation), but only when the decrease is compensated by an at

least equal increase in the entropy of the surroundings. So far as we

know, this law applies universally to all physical and chemical transforma-

tions involving matter in bulk.

When the entropy of a closed thermodynamic system has reached a

maximum value consistent with its fixed total energy and volume, then

no further changes in it can take place, without violating the second law

of thermodynamics; the system will have attained a state of equilibrium.

All thermodynamic changes may thus be regarded as steps on the way
toward ultimate equilibrium of the world in general. This aspect of

the second law has of course influenced cosmology, and man's outlook

on his place in the universe. We are concerned here, however, only with

the modest aim of studying its implications with respect to equilibrium
in chemical systems. The main lesson we learn is how to take advantage
of nature so as to benefit by changes that tend to take place of their

own accord, and to assess the cost, in terms of an immediate or a deferred

change of a permanent nature in the environment, of effecting a desired

transformation that ordinarily does not take place of its own accord.

But one is always faced with the necessity of working within the limita-

tions imposed by the second law. Thus, the criterion for stable equi-

librium in an isolated system is that for all conceivable changes the

system may undergo, consistent with general chemical and physical

principles (conservation of mass, conservation of the chemical elements,

general stoichiometry, mechanical principles governing motion, etc.),

(AS)i; fF ^ (W = 0) (5-39)

When in particular we are dealing with a system in dynamic equilibrium,

such that the same equilibrium state may be approached from either of

two opposite directions (as in the equilibrium between liquid water and

steam, or in the gas-phase equilibrium for the reaction N2 + 3H2 = 2NHs
at sufficiently high temperatures), then since the entropy change that

would be associated with a virtual displacement of the system in the one

direction from the equilibrium state is in general equal in magnitude but

exactly opposite in sign to the entropy change for a virtual displacement
in the opposite direction, the general equilibrium condition (5-39)
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reduces to

(AS)u,v = (W =
0) (5-40)

The inequality sign in (5-39) merely implies that there may be other con-

ceivable changes of state, denied by the second law of thermodynamics,
other than the particular reversible change in which we are interested to

which the equality (5-40) applies. Thus, if we can establish conditions

under which for a given thermodynamic system Eq. (5-40) applies, then

we shall have established ultimate equilibrium conditions in that system,

consistent with given values of U and V. 1

Before discussing Eq. (5-40) and its implications in detail, it is impor-
tant for us to note two serious limitations on its usefulness. In the first

place, while the general condition (5-35) [of which (5-38) is a special case]

is a necessary condition satisfied by every real change of state, it is not a

sufficient condition; the second law denies the existence of changes con-

tradicting (5-35), but it does not ensure that a thermodynamically feasible

change will in fact take place under a given set of conditions or under any
set of conditions. We are familiar with many examples of metastable

states in which the system may remain indefinitely, even though more

stable states are known to exist to which the system could conceivably

pass by means of a change of state satisfying (5-35). Thus, we may show

that (5-35) is satisfied by the transformation of water into ice at atmos-

pheric pressure and all temperatures below 0C; nevertheless, it is entirely

possible for one to supercool liquid water below 0C and to maintain it in

that metastable state for an indefinitely long period of time. However,
the change at atmospheric pressure and temperatures below 0C will go

only in the one direction, from water into ice; no one has ever succeeded

in transforming ice into water under such conditions. In the same sense,

diamond at room temperature and pressure is metastable toward trans-

formation into graphite, although here the evidence is more indirect,

since we cannot actually induce the transformation to take place in either

direction at ordinary temperatures and pressures. TNT and many other

explosives are metastable with respect to their decomposition products;
the decomposition can be initiated by an effect small out of all proportion
to the over-all result. Likewise, a mixture of CO and H 2 at atmospheric

pressure and room temperature is in a metastable state with respect to

1 A steady state differing in important aspects from the stable equilibrium states

discussed in this book may be maintained through a balance between incoming and

outgoing energy and material substances. The thermodynamics of such open systems,
which may have significant biological applications, has been explored by I. Prigogine,

"fitude thermodynamique des ph6nomnes irr6versibles," fiditions Desoer, Li6ge,

1947.
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chemical combination to form methanol, although no reaction takes place

in the absence of a suitable catalyst. In some of these cases, there may
be an energy barrier to be overcome as a preliminary to the over-all

change of state satisfying condition (5-35) ;
for example, in the methanol

synthesis, H 2 molecules may have to be disassociated, partially or com-

pletely, in order for reaction to take place; in the freezing of supercooled

water, crystal nuclei below a certain critical submicroscopic size may have

higher energy than larger crystals, because of the relatively larger propor-

tion of surface molecules. In other cases, one might regard the trans-

formation to the more stable state as under way, but proceeding with

extreme slowness. Certain explosives, such as PETN (pentaerythritol

tetranitrate), might be put in this class, for here the decomposition takes

place at a measurable rate, at a slightly elevated temperature such as

120C; the rate increases rapidly with increasing temperature until one

reaches a point at which it becomes self-accelerating because heat cannot

be conducted away as fast as it is being released by the decomposition.
The distinction between an extremely slow rate of change and a change
hindered by an energy barrier is perhaps artificial, but in any event the

information given by the second law of thermodynamics is essentially

negative in character.

The other limitation on (5-35) and its various special forms such as

(5-38) is that even when the system is known to be actually moving
toward a stable equilibrium state and is not resting in a metastable or

suspended state the magnitude of the inequality represented by (5-35)

for the change actually occurring gives no clue to the speed with which

equilibrium will be attained. Certain spontaneous changes take place

with explosive speed under suitable conditions, such as the reaction

between H2 and O2 to form H2O, while others, such as the polymerization
of styrene, may take days. Many chemical reactions are speeded up, or

even initiated altogether, by specific catalytic agents, which have no

effect on the ultimate equilibrium state. Within these limitations, how-

ever, the information to be derived from thermodynamic criteria of

equilibrium, such as Eq. (5-40) and other related equations, is of the

utmost theoretical and practical value. Entire chemical industries, such

as the Haber process for synthetic ammonia and the synthetic methanol

process, have been founded on such information.

Now, if we introduce the general second-law condition (5-33) for real

changes of state into Eq. (2-20) representing the first law, we may derive

the conditions for thermodynamic change in terms of the internal-energy

function

dU ^ T dS - p dV - d'W (5-41)
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Thus

(AC7)a.F ^ ~W (5-42)

gO (TF = 0) (5-43)

The internal energy of a thermodynamic system thus tends to be a

minimum consistent with its total entropy and volume. The condition

for stable thermodynamic equilibrium at fixed entropy and volume is

therefore that for all conceivable changes

(At/)*F ^ (W = 0) (5-44)

This criterion for stable equilibrium is entirely equivalent to (5-39). For

a reversible process in a state of equilibrium, we may apply (5-44) to

either direction, and therefore the equilibrium criterion reduces to

(AE/Kr = (W = 0) (5-45)

The general condition (5-41) for thermodynamic change provides fur-

ther insight into the significance of the entropy function. Let us rear-

range that equation in the form

d'W g TdS-dU (5-46)

where d'W includes both work of expansion and any other work done by
the system. The value of (T dS dU) therefore sets an upper limit to

the work that can be done by the system during a given infinitesimal

change of state. Consider a process for which dS = 0; then d'W g dU,
or W g AC7. Any work done by the system under this condition can

at most equal the decrease in the system's own internal energy, i.e., it

cannot be at the expense of energy drawn from the surroundings in

thermal form. Therefore whenever the system receives net energy from

a thermal source, its entropy necessarily increases [this is not necessarily

true when it receives energy from a nonthermal source; for example, if

one compresses a gas by doing work on it mechanically through a piston,

say at constant temperature, then its entropy actually decreases, as

shown by Eq. (5-28) ;
but if one increases its pressure by heating it, say

at constant volume, then its entropy increases]. Now, the value of

T dS, according to (5-33), sets algebraically an upper limit to the quan-

tity of heat that the system may take in during the change of state under

consideration. Therefore if the system undergoes the change in such a

manner that the actual quantity of heat it absorbs, d'Q, is algebraically

smaller than the value of T dS, then an opportunity for the potential

utilization of thermal energy in the amount (T dS d'Q) has been lost.

In this sense, the change has been irreversible, and the essentially positive

quantity
TdS - d'Q = TdS - dU - d'W ^ (5-47)
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therefore serves as a measure, in energy units, of the degree of irreversi-

bility with which the particular change of state has been brought about.

In general, the integral of T dS for a finite change of state depends on the

particular path followed by the system; for a change of state taking place

at constant temperature, however, its value depends only on the initial

and final states; this condition greatly increases the usefulness of (5-47),

as we shall see in the following section.

6-6. The Free-energy Functions. In practical thermodynamic inves-

tigation, we are more often concerned with systems maintained at con-

stant temperature than with isolated systems. It is generally easier for

us to let the system interact with surroundings at a controlled tempera-
ture (e.g., a thermostatic air bath, or liquid bath) than to free it com-

pletely, even for a short time, from interaction with its surroundings.

At constant temperature, the general condition (5-46) satisfied by real

thermodynamic changes assumes the form

W ^ T AS - AC7 (T const) (5-48)

Let

A = U - TS (5-49)

Then condition (5-48) may be put in the form

W -AA (T const) (5-50)

The quantity A so defined is evidently like U and S an extensive property
of the system, whose value for given total mass is determined completely

by the state; it is known as the Helmholtz free-energy function, or as the

maximum-work function. 1 At constant temperature, only those changes
of state can take place for which any work done by the system does not

exceed in the algebraic sense the decrease in its Helmholtz free energy.

The decrease in the value of A between two states at the same tempera-
ture thus sets an upper limit to the quantity of work that may be done by
the system in passing from the one state to the other; the limit, repre-

sented by the equality sign in (5-50), is attained when the system passes
from one state to the other by means of a thermodynamically reversible

process. One will note that the reversible work Wr thus becomes a func-

tion only of the initial and final states under the restriction of constant

temperature, although this is not true in general when the temperature is

1 G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances," McGraw-Hill Book Company, Inc., New York, 1923; the letter A is

based on the German word Arbeit. Some authors have used the letter F for this

function, but this practice should not be encouraged, because of possible confusion

with the Gibbs free-energy function, defined by Eq. (6-59).
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permitted to change. This fact, of course, we recognized in Sec. 5-2; it

now appears as a special case of the second law of thermodynamics.
It is convenient for us to separate W into mechanical work of expansion,

and W representing all work done in a form other than mechanical work

of expansion [Eq. (3-17)]; then (5-50) assumes the form

W' -AA - p dV (T const) (5-51)

Therefore for changes of state taking place at constant temperature and

constant volume,

(AA)r, F ^ -W (5-52)

^ (W =
0) (5-53)

Condition (5-53) is entirely equivalent to condition (5-38), or to condition

(5-43). For a system maintained at constant temperature and volume,
and so constituted that no energy enters or leaves the system in non-

thermal form, A can only decrease, or ultimately, when equilibrium has

been attained, remain stationary. For stable equilibrium in a process at

constant temperature and volume that may go in either of two opposite

directions,

(AA)r,v = (W = 0) (5-54)

or, more generally,

(AA)r,r = -W (5-55)

These criteria of equilibrium are the equivalent of (5-40) and of (5-45).

If instead of constant temperature and constant volume, we have the

generally more convenient conditions of constant temperature and con-

stant pressure, then Eq. (5-51) assumes the form

W ^ -AA - p AF (T, p const) (5-56)

Let

F s A + pV (5-57)

We may then Xvrite the condition (5-56) for thermodynamic change in the

simple form

W -AF (r, p const) (5-58)

The quantity F, like A, is another extensive property of the system,
whose value is determined completely by the thermodynamic state; it is

known as the Gibbs free-energy function, or simply as the free energy. It

bears to A the same relation that H bears to (7; in fact, Eq. (5-57) defining

F could have been put in the form

F m U - TS + pV a H - TS (5-59)

One sees that F bears to H the same relation that A bears to U. Thus,
at constant temperature and pressure, only those changes of state can
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take place for which any work done by the system in forms other than

mechanical work of expansion does not exceed algebraically the decrease

in its Gibbs free energy. The decrease in the value of F between two

states at the same temperature and pressure thus sets an upper limit to

the quantity of energy theoretically available, consistently with the

second law of thermodynamics, in nonthermal forms other than mechani-

cal work of expansion. Chemical reactions, however, excluding electro-

chemical processes, are generally carried out under such conditions that

no such energy is actually expended, either by the system or on it.

Therefore the condition for thermodynamic change at constant tempera-

ture and pressure has the form

(AF)r., ^ (W =
0) (5-60)

This condition is entirely equivalent to (5-38) or to (5-43) or to (5-53).

Thus, for a system maintained at constant temperature and pressure, and

so constituted that no energy enters or leaves the system in nonthermal

form excepting as work of expansion associated with change in its volume,
the value of F can only decrease, or ultimately, when equilibrium has been

attained, remain thereafter stationary. The condition for stable equi-

librium in a reversible process at constant temperature and pressure is

therefore

(AF)r, P
= (W = 0) (5-61)

or, more generally,

(*F)T. P
= -W (5-62)

The latter condition finds special application in the equilibrium theory of

galvanic cells, as we shall see in Chap. 9. The fact that constant tem-

perature and constant pressure are such convenient working conditions

to set up in the chemical laboratory and in the chemical plant endows F
with particular usefulness in the theory of chemical equilibrium; we
encountered a similar situation in thermochemical theory, where for

practical experimental reasons H proved to be more useful in many situa-

tions than 7, which is perhaps the more fundamental quantity from the

purely theoretical point of view.

Further insight into the significance of AF and AS for changes of state

taking place at constant temperature and pressure may be obtained from

the application of the general definition (5-59) to such a change

AF = Aff - T AS (r, p const)
= Q - W - T&S (T,p const)

Thus
Q - Wf T AS + AF (T, p const) (5-63)

Now, the terms on the left of Eq. (5-63) depend on how the change of

state is brought about, but, according to Eq. (5-58), the maximum value
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W may assume is equal to AF, while at the same time the maximum
value assumed by Q is equal to T AS. These limits represent the case of

a reversible change of state; for real changes, W may be as much smaller

algebraically than AF as one pleases, Q being correspondingly smaller

algebraically than T AS. The difference, Q W', is of course deter-

mined solely by the initial and final states; in fact

Q - W' = T AS + AF = AH (T,p const) (5-64)

The Daniell cell reaction (5-5) already discussed in Sec. 5-1 is a case in

point. The value of AH for that reaction has been found to be 51.8

kcal at 25C and 1 atm, from straightforward calorimetry (withW =
0).

Of this net quantity of energy released (which excludes energy expended
or absorbed in the form of work of expansion, negligible anyhow in the

present instance), we found that a maximum of W'r = 49.8 kcal was

available in electrical form, this being the amount hypothetically derived

when the cell is discharged under reversible conditions (i.e., at a potential

difference equal to that of the cell's on open circuit) ;
this quantity there-

fore represents the value of AF for the cell reaction. At least the bal-

ance, 2.0 kcal, is necessarily released in thermal form (although it is possi-

ble for as much as the entire magnitude of AH to be so released, if the

reaction is permitted to take place with W = 0); this quantity rep-

resents the value of T AS for the cell reaction, and with T = 298K,
AS = -6.7eu.

According to Eq. (5-64), we may regard AH, the net energy released

during a change of state at constant temperature and pressure, excluding
work of expansion, as made up of two terms: AF, representing available

energy, and T AS, unavailable energy. By available energy, we mean

energy potentially available in nonthermal form (excluding mechanical

work of expansion associated merely with the volume change taking place
in the system), even though in a particular application, it may not so

appear; by unavailable energy, we mean energy that even under ideal

conditions can appear only in thermal form. Now, the equality sign in

condition (5-58) applies only to thermodynamically reversible processes;

we may therefore regard the essentially positive quantity

-AF - W ^ (T, p const) (5-65)

as a numerical measure of the degree of thermodynamic irreversibility

with which a given change of state at constant temperature and pressure
has been carried out; this replaces the more general measure, (5-47).

For a change in which the value of AF is negative, the expression on the

left of (5-65) measures the quantity of available energy that was not

actually utilized in nonthermal form as the change was carried out; for a
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change in which the value of AF is positive, (5-65) measures the excess

energy in nonthermal form (available energy drawn from some other sys-

tem in the surroundings) expended on the system over the least quantity

theoretically needed to effect the change. In either case, the total avail-

able energy in the world has gone down (i.e., has been converted to ther-

mal energy released to the surroundings at the constant temperature T)

by the amount represented by (5-65), and this represents the irreversible

effect of the change as carried out. If for example one discharges a

Daniell cell by short-circuiting the electrodes by means of a heavy copper

bar, or if one merely dips the zinc electrode directly into the CuSO4 elec-

trolyte, then AjF = 49.8 kcal, just as in reversible discharge of the cell,

but all this energy is now "dissipated" as heat, along with T AS = 2.0

kcal. The chemical reaction has then been carried out irreversibly, to the

extent of 49.8 kcal. Thismuch energy (per mole of Zn and Cu++ reacting)

previously available has passed on to the surroundings in thermal form,
where it is no longer available unless one can produce a heat engine and a

lower temperature body to serve as condenser. If one wishes to restore

the resulting chemical system, Cu + Zn4"4
",
to its original state without

changing the temperature and pressure, one can do this only by the

expenditure of "available" energy to the extent of at least 49.8 kcal in

electrical form from some other source; the balance, 2.0 kcal, can then be

taken in from the surroundings in thermal form, but this represents the

upper limit to the quantity of thermal energy that can be taken back in

this form.

For a reaction taking place in a chemical system so constituted that

W =
0, the sign of AF, and not the sign of AH or of A 7, evidently deter-

mines the direction of change at constant temperature and pressure ; only
those reactions for which AF is negative can take place. The value of

AF depends of course on the states of the reactants and products. Since

AF differs from AH by the value of T AS [Eq. (5-64)], endothermic

reactions may occur, provided that they have sufficiently large entropies

of reaction. On the other hand, a reaction such as the decomposition of

H2O(1) into H2(g) and (Mg), for which at room temperature and all

finite pressures the value of AF is positive and large in magnitude, can be

made to take place only through the application of nonthermal energy in

forms other than work of compression, in accordance with (5-65) (withW negative) ; thus, one may decompose water by the expenditure of elec-

trical energy. Now, electrical energy, in particular, is measured by the

product of the potential difference across the electrodes by the quantity
of electricity passing through the system; the quantity of electricity for

electrochemical processes in general, including the action of galvanic cells,

is measured by the quantity of chemical reaction according to Faraday's
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law, and has a fixed value for the quantity of reaction represented, for

example, by the conventional chemical equation for the reaction. There

is therefore a general connection between the value of AF and the smallest

applied potential difference theoretically sufficient to make the reaction

(such as the electrolysis of water) take place; or, in the case of a galvanic

cell, between the value of AF and the cell emf. This connection will be

developed at length in Chap. 9.

In the two chapters immediately following, we shall develop some of

the properties of the free-energy function for simple chemical substances

and for mixtures. In Chap. 8, we shall then apply the results to the

general theory of chemical equilibrium.
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Problems

6-1. The enthalpy of the lead storage cell reaction at 25C and 1 atm for 1H 2SO4 :

10H2O electrolyte concentration was calculated in Prob. 4-28. The emf of the cell

is 2.11 volts under the same conditions [D. N. Craig and G. W. Vinal, /. Research

Natl. Bur. Standards, 24, 475-490 (1940)]. If the cell is discharged through a resist-

ance relatively high compared with its own internal resistance, at such a rate that a

current of 1 amp is flowing, what is the rate at which heat is evolved within the cell

in calories per second?

6-2. Compare the ideal thermodynamic efficiencies with which the combustion

energy of fuel oil may be utilized for the production of work: (a) by using it to drive

a steam engine operating at boiler pressure of 39.18 psi (130C) and condenser tem-

perature of 25C, and (6) by burning it in a diesel engine, the temperature of the

combustion products reaching 1800C and the cylinder block being cooled to 80C.
6-3. Compare the ideal thermodynamic efficiencies of a cyclic mercury-vapor engine

operating at boiler pressure of 1 atm and condenser temperature of 25C and of a

steam engine operating under the same conditions.

6-4. Calculate the net work done on 1 kg of ammonia in the following ideal refrigera-

tion cycle: the ammonia at 10C under 1 atm is compressed isothermally and reversibly

to its vapor pressure, 6.06 atm, the equation of state for the gas at 10C being
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pV = (1364 20p) ml atm/g, and condensed to the liquid state, whose specific

volume is 1.61 ml/g; within the refrigerating unit, the liquid is reduced to 1 atm by
passing through a throttle valve, whereupon its temperature drops to the normal

boiling point, 33.35C, and the liquid evaporates; the specific volume of the liquid

under this condition is 1.46 ml/g, and that of the gas is 1124 ml/g; the cold gas is

now led out of the refrigerating unit, where it picks up thermal energy from the room
at 10C, and returns to its original state, at constant pressure of 1 atm. Which of the

steps in this cycle are not carried out under thermodynamically reversible conditions?

Calculate the net quantity of heat Q" removed from the refrigerator during each

cycle, using the following information: the latent heat of vaporization at the normal

boiling point is 327.5 cal/g, and the mean specific heat of the equilibrium liquid phase
between 10C and 33.35C is 1.09 cal/g dcg. Compare the coefficient of perform-

ance, Q"/W (W being negative), with that of a reversible Carnot engine operating
between the same two temperatures.

6-5. If a self-contained household electric refrigerator were left running with the

door open, what would happen to the temperature of the room?
6-6. Calculate the theoretical least quantity of nonthermal energy that must be

expended in order to quick-freeze 10 kg of green peas. Assume that the peas con-

tain 25 per cent of solids, having a mean specific heat of 0.35 cal/g deg, and 75 per
cent water; the heat given up by the freezing peas, originally at 25C, is removed from

the freezer at the constant temperature of 25C and transferred by the refrigerator

to the room at 20C. Neglect thermal leakage through the refrigerator.

6-7. Describe a series of reversible steps by which supercooled water at 5C
could be transformed into ice at 5C, and looking up the necessary experimental

information, calculate the entropy change for the process. Compare with the value

of Q/T for the actual transformation at 5C.
6-8. Construct to scale a temperature vs. entropy diagram for an ideal reversible

heat engine based on the cyclic process described in Sec. 5-2, using 1 mole of air

(C = 5.0 cal/mole deg) as the working substance, operating between temperatures
of and 100C, and at a maximum pressure of 10 atm (the air may be regarded as an

ideal gas). Note that the area enclosed by the curve traced by the gas during one

complete cycle represents the net reversible heat absorbed, i.e., the maximum work
done per cycle. What graphical feature represents the quantity of heat absorbed

from the high-temperature source?

6-9. Plants are able to synthesize carbohydrates and starches from CCMg) and
H2O(1), the by-product being O 2 (g). The reaction clearly tends to go ordinarily in

the opposite direction, as shown by the combustion of these materials. Do these

facts constitute a violation of the second law of thermodynamics? Explain.
6-10. The rusting of iron is evidently a thermodynamically irreversible process.

What irreversible changes ordinarily accompany the manufacture of iron from iron

oxide?

6-11. Do U235 fission and plutonium manufacture constitute violations of the second

law of thermodynamics? Explain.
6-12. What is the change in free energy of the lead storage cell reaction under the

conditions given in Prob. 5-1? If 1 mole of PbO2 (c) is consumed, while the electrical

energy at 2.11 volts is used to heat 10 kg of water originally at 25C in a thermally
insulated flask, what is the change of entropy within the cell (neglecting change of

emf with the electrolyte concentration), and what is the change of entropy of the

water within the flask? What fraction of the total energy received by the water
in the flask could be recovered in nonthermal form by means of a cyclic heat engine

operating between its temperature and that of the room, 25C?



CHAPTER 6

THERMODYNAMIC BEHAVIOR OF SIMPLE SYSTEMS

In this chapter, we consider the thermodynamic properties of a simple

system consisting of a pure chemical substance of fixed composition. We
shall discuss in particular how its free energy depends on its state, and
shall derive the special conditions for equilibrium during phase transitions

and for the equilibrium of the interface between the phases.

6-1. Free Energy of a Chemical Substance. The molal free energy of

a homogeneous chemical substance of fixed composition, defined
'

in

accordance with Eq. (5-59) by

F = H - TS (6-1)

is evidently one of its intensive properties, and therefore in the absence of

special influence of gravity, electric fields, magnetic fields, etc., on the

state of the substance it may be represented formally as a function of

temperature and pressure by

P = F(T, p) (6-2)

*-$)," +().* **>

We may proceed to develop this form as follows; from (6-1),

dF = dH -
T_dS

- SdT
= d'Q + V dp - d'W - TdS - SdT

Now, if the system is supposed to follow a reversible path, for which by
definition,

dU = TdS
then

dF = -/ dT + V dp - d'W' (6-4)

If furthermore the path is of such a nature that W =
0, then

dF = - SdT + V dp (W' = 0) (6-5)

The reversibility of the path will be ensured if we substitute in Eq. (6-5)

for S and V their equilibrium values, established in principle from a series

of data obtained under static equilibrium conditions, represented as func-

tions of T and p. The value of AF for a given change of state may then
229
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be calculated by the integration of Eq. (6-5) between the initial and final

state along such a path, as will be shown presently; but its value, thereby

established, will of course be a function only of the end states, and will be

the same for any path by which the change is brought about, though Eq.

(6-5) itself would not be valid for the irreversible path.

Taking advantage of the fact that F is determined solely by the state

(i.e., by T and p, except for a disposable additive constant of integration

for the particular system), we may derive an important thermodynamic
relationship from Eq. (6-5) by applying Euler's criterion for dF to be a

perfect differential in terms of the independent variables T and p [compare

Eq. (3-7)]:

Tpr
-

df

This is known as one of J. C. Maxwell's relations, the other three analo-

gous relations being given in Sec. -6-3. Since we may write

tdp T T\dp T

where Lp represents the molal latent heat of pressure variation, introduced

in Eq. (3-28), therefore Eq. (6-6) leads to

f Til TTT"^ (G. Q'\Lp -- T
(df)p

-- TVa (6
-
8)

where a. represents the coefficient of cubical expansion, introduced in Eq.

(3-4). This establishes the proof of Eq. (3-31), which we used throughout

Chap. 3.

Two other important relationships follow from a comparison of Eq.

(6-5) with Eq. (6-3):
/ ,-\

= -8 (6-9)

= f (6-10)

We may use Eq. (6-9) to eliminate from Eq. (6-1), and thus obtain the

temperature coefficient of P expressed in a different form

This equation may be reduced to either of the equivalent forms
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(6-12)

(6-13)

Thus, whether Eq. (6-9), or one of the equations (6-12) or (6-13) is the

more suitable for integration to find the value of F at one temperature
relative to its value at another temperature, both at the same constant

pressure, depends on whether one has experimental data for the entropy
S or for the enthalpy /?. On the other hand, the experimental measure-

ment of (dP/dT} p serves as one means of establishing directly the value

of S, according to Eq. (6-9) ;
and one may combine such information with

experimental measurement of F itself in one of the forms (6-11), (6-12), or

(6-13) to establish indirectly the value of H. The value of F for a homo-

geneous chemical substance of fixed composition has no particular signifi-

cance in itself, since the principal use of the free-energy function is in con-

nection with the equilibrium criteria represented by Eqs. (5-61) and

(5-62). We shall therefore find that Eqs. (6-9) to (6-13) are primarily
useful when applied to two or more different substances (including differ-

ent phases of the same chemical substance) in equilibrium with each

other. We can then use these general thermodynamic equations, applied

term by term to the expression for AF of the chemical or physical process

under consideration, to derive the effects of temperature and pressure on

the equilibrium conditions. For the moment, however, let us continue

to develop their integral forms for individual homogeneous chemical

substances.

Since the second law of thermodynamics, like the first law, contains

information applicable only to changes of state [each law sets up in mathe-

matical form a difference equation, or first-order differential equation,

(2-22) and (2-23) for the first law and (5-33) and (5-36&) for the second

law], the value of F for a particular material system, like the value of H,
is indeterminate to the extent of an arbitrary additive constant inde-

pendent of the state (an integration constant). Extending the notation

introduced in Chap. 3, let F%9
denote the standard molal free energy of a

given homogeneous chemical substance of fixed composition at standard

temperature T8 (by convention, taken to be 25C or 298.16K) and
standard pressure po (by convention, 1 atm for liquids and solids; for

gases, however, we adopt a hypothetical ideal-gas standard state at 1

atm, in which the free energy has been corrected for deviation from

Boyle's law at that pressure, as will be shown presently). In Chap. 8,

we shall identify this standard molal free-energy constant with the stand-

ard molal free energy of formation from the chemical elements, just as we
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identified H%t
with the standard molal enthalpy of formation from the

chemical elements in Chap. 4. Then, according to Eq. (6-12), the molal

free energy FJ at standard pressure and temperature T is given by the

equation

The integral in Eq. (6-14) may be evaluated from purely thermal data at

standard pressure, in the form of fi% expressed as a function of T [Eq.

(3-47)]:

fo-po) (6-15)

where B%9 represents the standard molal enthalpy constant (the standard

molal enthalpy of formation) of the chemical substance at T, and p fl,

derived from thermochemical data by the means discussed in Chap. 4.

As has already been indicated, Eq. (6-14) is seldom applied directly to an

individual pure substance, but if, for example, F*
t
stands for the standard

free energy of the chemical reaction of forming the substance from its

elements, then Eq. (6-14) describes in terms of the enthalpy of formation

how the free energy of formation varies with temperature.

Equation (6-10) describes how the molal free energy of a homogeneous
chemical substance varies with pressure at given constant temperature.

Therefore if FT,* denotes the molal free energy in general at T and p, then

PT.P = FT + I
P V dp (T const) (6-16)

po

The integral in this equation may be evaluated from equation-of-state

data for the substance at the fixed temperature T. If we combine Eqs.

(6-14) and (6-16), we may then calculate the value of FT,P relative to that

of FJ, from purely thermal data obtained at the constant pressure pa

(i.e., 1 atm), and equation-of-state data at the temperature T.

In the case of a pure liquid or solid phase, the value of the pressure

integral in Eq. (6-16) is insignificant for ordinary variations in the

barometric pressure, and is quite small up to pressures even of several

hundred atmospheres; thus, forH20(l) at 25C, with V = 0.018 liter/mole,

its value between 1 and 100 atm is only 0.043 kcal/mole. Therefore at

moderate pressures, we may take FTtP
= F? as a satisfactory approxima-

tion for such substances, regardless of the exact value of p. For gases,

however, the effect of pressure on the value of FT,P is significant, even for

rather small changes. In the low-pressure range, we may assume as a

first approximation the ideal-gas law
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P
Thus

PT,P
= FT + RTlup (p in atm; ideal gas) (6-17)

This equation is generally satisfactory for gases up to several atmospheres

pressure, except for the most precise purposes, where it becomes necessary

to introduce actual equation-of-state data. At higher pressures, of

course, it is always necessary to introduce actual equation-of-state data,

or a more accurate equation of state for the gas in Eq. (6-16).

Actual equation-of-state data for gases are conveniently represented

by means of a power series in p with empirical coefficients, of the form

pV = ci + c 2p + c*p* + c4p
3 + (T const) (6-18)

This form of equation is known as the virial equation of state, and was first

introduced by H. K. Onnes in 1901
;
the numbers Ci, c2 , 03, . . .

,
which

vary with temperature, are known as first, second, third, . . . virial

coefficients. If they were represented for 1 mole of gas, then the value of

Ci would be simply equal to RT. More commonly, however, the data are

expressed relatively to an arbitrary quantity of the particular gas,

usually such that pV = 1.0000 at 0C and 1 atm; if the data happen to

be so represented, then

pV = y (ci + c2p + c 3p
2 + c4p

3 + ) (T const) (6-19)

where Fo represents the standard molal volume of the gas, at 0C and 1

atm, and CiFo = RT. Special interest attaches to the second virial

coefficient, which determines the course of pV over the low-pressure

range ;
it changes sign at the Boyle point for the particular gas, being

negative below and positive above. By the use of four or five terms in

the series, (6-18) or (6-19), the behaviors of many gases can be repre-
sented with high accuracy over a range of several hundred atmospheres,
at temperatures and pressures not too close to the region of liquefaction.

Table 6-1 gives, for example, virial coefficients for N2(g) at temperatures
between and 150C. If the experimental equation-of-state data have

been summarized in such a form, then the integral in Eq. (6-16) is readily

evaluated analytically by the substitution for V of the appropriate func-

tion in terms of p, given by (6-18) or (6-19). Even when virial coefficients

have not been explicitly worked out, however, p-7-7
7 data for gases are

commonly given in the form of the pressure-volume product, pV> meas-

ured at various pressures for given temperatures; a particularly con-

venient form consists of the experimentally determined compressibility
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factor

z = RT (6-20)

whose value approaches 1 in the low-pressure range as p 0. If z has

been determined at various pressures for a given uniform temperature,
then the integral in Eq. (6-16) is conveniently evaluated graphically from

a plot of 2 vs. log p:

FT,P =FT + 2.3026 RT [
P
z d log p (6-21)

JP*

The area under the curve between the abscissas p and p represents the

value of the integral in Eq. (6-21).
l Now, where direct experimental

data are lacking for a particular gas, an excellent approximation may be

TABLE 6-1. COMPRESSIBILITY DATA FOB NITROGEN*

pV ea Ci + c*p + Csp
2 + c*p

3 + c6p
4 + d>p* (p in atm)

(pV = 1.00000 at 0C and 1 atm; F = 22.4040 liter/mole)

* From measurements up to 400 atm by J. Otto, A. Michels, and H. Wouters, Phyaik. Z., 35, 97-100

(1934).

obtained in many cases through application of the theory of corresponding
states. B. F. Dodge has shown that if one plots the value of z against
the reduced pressure of the gas, p/pc, for various values of the reduced

temperature, T/TC,
then the resulting curves are nearly identical for many

gases over a wide range of pressures.
2

Figures 6-la and 6 show a mas-

ter plot, based on the average behavior
1

]
of several gases. This general-

ized graphical form of the real-gas equation of state is very useful where

exact data for the particular gas are not available; one must of course

know the values of the critical temperature and the critical pressure.

1 When the experimental data happen to be given in the form of pV relative

to pV = 1.0000 at standard conditions, such as 0C and 1 atm, one can see that

z = (pV)/\im (pV), where both numerator and denominator refer to the same

temperature.
2 B. F. Dodge, Ind. Eng. Chem., 24, 1353-1363 (1932).
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FIG. 6-1. Compressibility factor for gases as a function of reduced temperature and pres-
sure: (a) intermediate-pressure region; (b) high-pressure region. [B. F. Dodge, Ind. Eng.
Chem., 24, 1355 (1932), with permission.]
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Now, the value of FT
,P for a gas approaches <*> as p 0, which is

unfortunate, since we know most about the general behavior of gases in

this range. Because of the universal form of the relationship between

FT,P and p in this range, Eq. (6-17), it is convenient for us to represent the

thermodynamic properties of real gases in terms of the so-called fugacity

function, /, introduced originally by G. N. Lewis;
1 this function is defined

by the equation
FT ,P =F$ + RTlnf (6-22)

Thus, / is by definition related to PT,P at all pressures in the same way
that p itself is related in the ideal-gas limit. In other words, the experi-

mental value of / is equal to the value of p at which an ideal gas would

have the same relative molal free energy as the actual gas. The ratio

v m 1-
(6-23)

is called the fugacity coefficient of the gas.
2 It is convenient for us to set

the numerical scale of / values in accordance with the convention

lim = 1 (T const) (6-24)
P

Then /is measured in the same unit as p (e.gr., atm), and v is a dimension-

less number, whose deviation from 1 thus measures the effect of the

deviation of the gas from ideal-gas behavior on its thermodynamic proper-

ties [the deviation of the compressibility factor z from 1 measures directly

its deviation from Boyle's law, but this only indirectly influences its

thermodynamic behavior, as we shall see presently, in Eq. (6-29)].

We may calculate the value of v directly from equation-of-state data

by introducing the definitions (6-22) and (6-23) in the general thermody-
namic relation (6-16)

RT In f =
/ V dp (T const)

Jo Jp,

= [*

Po

dp (T const) (6-25)

1 G. N. Lewis, Proc. Am. Acad. Arts Sci., 37, 49-69 (1901); Z. physik. Chem., 38,

205-226 (1901).
2 R. H. Newton, Ind. Eng. Chem., 27, 302-306 (1935), has proposed to call this

quantity the activity coefficient of the gas, but this term is perhaps better reserved

for its original purpose, in connection with the thermodynamic properties of solutions,
as described in Chap. 7.
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where /o and v denote the values of the fugacity and fugacity coefficient

at the pressure po. In accordance with the convention (6-24), we let

v 1 as po > 0; thus

RT In v - I\J- ) <*P (r const) (6-26)

In p (7
1

const) (6-27)

The value of the integral in Eq. (6-27), which always converges if the gas
does not undergo dissociation or other chemical change with changing

pressure (it would vanish altogether for an ideal gas), may be evaluated

from equation-of-state data for the gas at the given temperature T. The
evaluation is particularly convenient if the experimental data have been

expressed in terms of virial coefficients, as in Eq. (6-19),

RT In v = Fo I

P

(c2p + c3p
2 + c4p

3 +...)

= Fo
(c

2p + |p
2 + JV +

)
(6-28)

Or, if the experimental data have been given in the form of z, defined by
Eq. (6-20), at various values of p, then we may write

log v =
fj (z

-
l)d log p (6-29)

and thus evaluate the integral by taking the area under the graphical plot

of z 1 vs. log p between the abscissas and p, for the given value of T.

The exact relationship between FT,P and p may then be put in the form

Pr.p = FT + RT In pv (6-30)

No new thermodynamic information has been introduced by the use of

v] v is merely a mathematically convenient alternative means of repre-

senting free-energy data for gases, in place of Fr,P itself. It has three

advantages over FT,P as a means of recording experimental free-energy

data, such as are implied by Eq. (6-16) : (1) while the value of FT,P at each

temperature approaches oo as p > 0, the value of v remains finite, and

approaches in fact the value 1
; (2) while Fr,p varies to a first order as a

logarithmic function of p, the value of v varies much less rapidly with p,

and is therefore a sensitive means, particularly convenient for graphical

representation, of describing accurately the actual thermodynamic prop-

erties of the gas; and (3) we shall discover in Chap. 8 that/, or its equiva-

lent, pv, is the exact term appearing for each mole of gaseous reactant or
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product in the familiar law-of-masa-action expression for the equilibrium

state of a chemical reaction.

In view of our convention (6-24), the value of the molal free-energy

constant FJ for a pure gas in Eq. (6-30) has a slightly different significance,

depending on the extent to which the gas deviates from ideality, from the

value for a pure liquid or solid, where by convention it represents the

value of F at T and 1 atm, and is in fact but slightly dependent on the

particular standard pressure chosen. According to Eq. (6-30), F repre-

sents the value of F for a state of the gas at temperature T in which /,

rather than p, equals 1 atm, or what amounts to the same thing, a hypo-
thetical ideal-gas state (that is, v = 1) at p = 1 atm. With this under-

standing, F then varies with temperature according to Eq. (6-14), with

#r representing the limiting value of the molal enthalpy as p* 0; the

value of HT,P ,
of course, remains finite as p > 0, being independent of p

for an ideal gas, as we have noted in Chap. 3. From precise equation-of-

state data for the gas, it is quite simple for us to relate the value of F to

the actual value of FTtP at p = 1 atm; for example, if the virial coefficients

in Eq. (6-28) have been represented with p in atmospheres (based on an

arbitrary quantity of the gas such that pV = 1.0000 at 0C and 1 atm),
then the value of v at 1 atm is given by

RTlnn>im = V

Since the values of the higher virial coefficients are generally much smaller

than the value of the second virial coefficient (their contributions becom-

ing important only at the higher pressures), this formula reduces to

RT In j>i atm ~ Voc2
~ RT(z 1&im

-
1) (6-31)

and FT, i fttm may be related to F by the substitution of the value of vi*im

so derived in Eq. (6-30)

Fr.lntm = F? + VQC2 (6-32)

The correction is generally quite small, as one can perceive from the values

of c2 in the case of nitrogen, given in Table 6-1
; thus, at 25C, the differ-

ence between Fi atm and F is only

(-0.221 X 10~3
) X (22.4) liter atm/mole = -0.00012 kcal/mole

It would be rather larger in magnitude for a gas well below its critical

point.

Just as the value of z may be estimated from the theory of correspond-

ing states (Fig. 6-1), so in view of Eq, (6-29) must a similar situation exist



THERMODYNAMIC BEHAVIOR OF SIMPLE SYSTEMS 239

O.I 0.2 0.8 0.9 1.000.3 0.4 0.5 0.6 0.7

Reduced Pressure-p/pc
FIG. 6-2. Fugacity coefficient for gases below the critical temperature. [#. H. Newton,
Ind. Eng. Ckem., 27, 302-306 (1935), with permission.]
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FIQ. 6-3. Fugacity coefficient for gases at intermediate temperatures. [R. H. Newton,
Ind. Eng. Chem., 27, 302-306 (1935), with permission.]

with regard to v. By applying Eq. (6-29) to the generalized equation-of-
state data represented by Fig. 6-1, one may construct generalized values

of v as a function of p/pc for various values of T/TC . This work has been
done by R. H. Newton, and Figs. 6-2 to 6-4 represent his results. 1 These
curves fit the experimental data for many gases with astonishing accuracy,
and may be used to estimate fugacity coefficients of gases for which pre-

1 Ibid.
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cise equation-of-state data are not available. Their application to gas

mixtures will be discussed in Sec. 7-2.

6-2. Entropy of a Chemical Substance. The entropy of a chemical

substance of fixed composition may always be calculated except for an

10 20 30 40 50 60

Reduced Pressure -p/pe

FIG. 6-4. Fugacity coefficient for gases at high temperatures. [R. H. Newton, Ind. Eng.
Chem., 27, 302-306 (1935), with permission.]

arbitrary additive constant from its free energy and enthalpy by means

of Eq. (6-1) defining F,

S = 5^? (6-33)

If in this equation ft and F represent the molal enthalpy of formation and

the molal free energy of formation with respect to the chemical elements,

then S will likewise represent the molal entropy of formation with respect

to the chemical elements, as we shall see in Chap. 8. In Sec. 8-3, how-
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ever, we shall examine a method based on the so-called third law of

thermodynamics whereby the value of S may be determined independ-

ently from purely thermal data. For this and other reasons to be dis-

cussed presently, the entropy function has a primary physical significance

in its own right, and we wish now to express its dependence on the state

in terms of familiar properties of the substance. Formally, we may
write

S = S(T, p) (6-34)

If the state depends on other independent variables, such as height above
the earth's surface, magnetic field strength, etc., then corresponding
additional terms would have to appear in Eq. (6-35), but we shall assume

that such effects are not present.

Now, for changes of state carried out reversibly,

dS = d

-^ (6-36)

We may therefore write

(ds\ _!/OA _
\dT}p

~
T\dT)p

~
T

d'Q\ _ LP

^)r~'T (6"38)

where CP and Lp represent, respectively, the instantaneous values of the

molal heat capacity at constant pressure and the molal latent heat of

pressure variation, as introduced originally in Chap. 3. Therefore,

introducing our conventional notation and taking into account the value

of Lp given by the general thermodynamic relationship (6-8) [or introduc-

ing Eq. (6-6) directly in place of (6-38)],

S = S. + I
QdT (p = po) (6-39)

J J. a

fP
ST,P = ST

- / oV dp (T const)
JPO

(6-40)

These equations permit us to calculate the molal entropy ST
,P at any tem-

perature and pressure relative to the standard-state value S^ at T9 and

po, from heat-capacity data at the constant pressure p8 and equation-of-

state data at the constant temperature T.

If the homogeneous chemical substance with which we are dealing

happens to be a liquid or a solid, then the values of a and V in Eq. (6-40)
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are relatively small, and the effect of pressure on the value of S is com-

paratively slight. Therefore at ordinary pressures, we may take ST, P

as equal to /S, its value at p = 1 atm. For gases at moderate pressures,

satisfying approximately the ideal-gas equation of state, Eq. (6-40)

reduces to

ST,P = ST
- R In (ideal gas) (6-41)

Thus, S for a gas is quite sensitive to the pressure, and it increases without

limit as p > 0. If in Eq. (6-41) we took po = 1 atm as our standard

pressure, then the value of S% would refer likewise to the state (T, 1 atm).

It is convenient, however, for us to use the same hypothetical reference

state to which the value of F refers, viz., a state in which the gas at a

hypothetical pressure of 1 atm would still conform precisely to the thermo-

dynamic laws that it satisfies in the limit as p > 0, as represented by the

ideal-gas equation of state. Now according to Eqs. (6-9) and (6-30), we

may express ST,P for a real gas in terms of the fugacity coefficient by
means of the general equation

If the gas continued to satisfy the ideal-gas equation of state exactly from

to 1 atm at all temperatures, then the value of v in Eq. (6-42), which is

an exact thermodynamic relation, would equal 1, and therefore the value

of S in the hypothetical ideal-gas state at 1 atm satisfies the relationship

(6-43)

The precise relationship between ST,P and SJ at p = 1 atm, or any other

pressure, is then given by

= ST
- R In pv - RT (6-44)

where the derivative in the last term on the right is taken at the particular

constant pressure p to which the value of ST,P refers. By comparing with

Eq. (6-31), one may easily convince oneself that

(6-45)

where 02 represents the second virial coefficient in the empirical equation
of state having the form (6-19) [assuming as in Eq. (6-31) itself that the
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higher virial coefficients may be neglected for this purpose in comparison
with c2]; thus, for N 2(g) at 25C, from the data in Table 6-1,

Si.tm - S = -(22.4) X (0.009 X 10~ 3
) liter atm/mole deg

= -0.0048 eu/mole

This correction is always small, the more so the closer the gas approxi-
mates ideal-gas behavior at p = 1 atm; and one may estimate the

value of c2 with sufficient accuracy for the purpose, when its value is not

explicitly given, by means of the approximation c2~ (pTOiatm lim (pV).
*"*L

With this understanding concerning the physical significance of S, we
may then use in Eq. (6-39) for gases the ideal-gas value of C, which

represents lim CP,
as described in Chap. 3. One may of course apply

P >o

Eq. (6-37) directly to data for a gas at the actual constant pressure of 1

atm, or for that matter at any other constant pressure.
The ideal-gas result, Eq. (6-41), which we may put in the equivalent

form

S2
- & = nR In ^ (T const; ideal gas) (6-46)

provides us with further valuable insight into the physical significance of

the entropy function, particularly in relation to the kinetic molecular

theory. Let us reexamine the Joule experiment, in which a gas, confined

originally in a flask joined by means of a stopcock to another previously
evacuated flask, is permitted to expand freely, without doing work, as the

stopcock is opened. To a first approximation, one finds that practically
no net change in temperature tends to occur in this experiment, or, if one
ensures that the temperature remains essentially constant by immersing
the flasks in a body of water, then it turns out that practically no heat is

actually exchanged with the surrounding medium. From this fact, we
have already concluded empirically that for an ideal gas (which merely
represents any actual gas at sufficiently low pressures), the internal energy
is determined solely by the temperature, independently of pressure or
volume [compare Eq. (3-62)]. Thus, so far as the surroundings are con-

cerned, no immediate effect of any kind is perceived by which one could
infer without actually opening the system (e.g., by introducing a manom-
eter) that a change has taken place upon the opening of the connecting
stopcock. The first law of thermodynamics is powerless in this case to
define precisely in what respect the system differs in its relationship to the
external world, before and after the stopcock has been opened.
Now, the entropy function affords a quantitative measure of the differ-

ence that we intuitively know must exist between the states of the system
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before and after the change, even though this difference is reflected in no

way by the energy. For according to Eq. (6-46), if the gas is allowed to

expand at constant temperature into a total volume twice as large as the

original volume, then its entropy increases by the amount R In 2 per mole.

If it should be allowed to expand into a total volume four times as large

as the original, then the entropy increase would be R In 4 per mole, the

larger value reflecting the fact that if the gas is first expanded to twice its

original volume, it will expand irreversibly still further if the doubled

container is then connected to another evacuated receiver. The entropy
in fact increases without limit as the gas becomes more and more attenu-

ated at the given temperature.
The irreversible nature of the change taking place in the Joule experi-

ment, and its deferred effect upon the surroundings, is appreciated when
one begins to consider how the gas may be restored to its original state.

It is not sufficient merely to leave the stopcock open and wait for the gas
to accumulate again on the original side; one must, for example, introduce

a piston into the second flask, and force the gas back through the stopcock

against its own pressure, doing work on it at the expense of some non-

thermal source of energy outside the system (e.g., a falling weight, which

some external agency had previously lifted into position, etc.). One
could effect a partial restoration alternatively by cooling the first flask

well below the temperature of the second; reflection shows, however, that

such an operation would not obviate but would only defer the ultimate con-

sumption of
"
available

"
energy (either nonthermal energy, or thermal

energy drawn from a higher temperature level, as by means of a heat

engine), e.g., to run the refrigerating engine providing the lower tempera-
ture. Now, the quantity of nonthermal energy one must so expend is at

least equal to I
7*

A/S, where T* represents the temperature (assumed con-

stant for simplicity) at which one compresses the gas [Eqs. (6-46) and

(5-4) ; compare also the discussion of the entropy increase accompanying
simple thermal exchange, on page 215]. In this sense, the entropy
increase taking place in the temporarily effectively isolated system con-

sisting of the two flasks and the gas contained within, during the free

expansion, constitutes a deferred charge against the available energy of

the outside world, the system's own available energy having decreasedby
the amount AF = nRT In (Vz/Vi) without having been utilized.

Now, according to the kinetic theory of gases, the mean translational

kinetic energy of the molecules does not change when the gas expands at

constant temperature. When the stopcock is first opened, however,
there is an overwhelming probability on the basis of pure chance that gas
molecules will move into the evacuated flask, against an overwhelming

improbability of their returning. Only when the concentrations on
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either side have become almost equal will the probability of an individual

molecule's returning to the original flask become almost equal to its

probability of leaving that flask. The opening of the stopcock opens the

way to a greater randomness in the molecular distribution, and renders

the original distribution highly improbable in comparison. In fact, if

one assumes that with the stopcock open, and with both flasks having

equal capacities, the chance of an individual molecule's being in the origi-

nal flask becomes ultimately % (after sufficient time has elapsed so that

the random molecular motion will have given all the molecules the oppor-

tunity of access to either half of the joined containers), then the prob-

ability that all the molecules will simultaneously be back in the original

half of the container will be (J)y,
on the basis of the probability 1 (the

certainty) that they will be somewhere within both halves of the con-

tainer. With N of order 1023
,
this relative probability of the system's

being in its original state, out of all the states made available to it by the

opening of the stopcock, becomes a fantastically small number, though
it is not quite zero.

For the point of view of molecular theory, the second law of thermody-
namics is thus a statistical law, resulting from the randomness of ordinary

molecular motion, combined with the relative coarseness of our percep-

tions and instruments. We cannot harness the energy of random molecu-

lar motion (heat) in the same way that we can harness the energy of a

massive moving body (mechanical or nonthermal energy), in which pre-

sumably all the molecules have superimposed on their random thermal

motion a drift motion in a common direction. Irreversible changes con-

sist of changes from states of relatively ordered molecular motion to

states of greater randomness. Such changes are irreversible in the sense

that an enormously improbable coincidence would be required in order

that on the basis of pure chance, unaided by energy directed from an out-

side agency, the enormous numbers of molecules present in the thermody-
namic system should recapture the relatively greater degree of order

characteristic of the original state once they have been permitted to

spread.
The fact that the entropy change for an ideal gas at constant tempera-

ture depends for a given quantity of the gas only on the ratio of the final

to the initial volume is highly suggestive. Generalizing the preceding

argument, we may say that Vz/Vi represents the relative probability of

an individual molecule's being anywhere throughout the volume V% to its

probability of being confined within a particular region of volume Vi 9

representing the volume in which all the molecules were confined before

the expansion. Therefore if the molecules behave completely independ-

ently of each other (ideal-gas hypothesis), (Vz/Vi)
N
represents the rela-
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tive probability of a state in which the N molecules are distributed at

random throughout the volume F2 compared with a state in which all N
are confined within the volume Vi (this argument assumes that volume

elements of equal size are equally probable to individual molecules).

Let Pt/Pi represent the probability ratio for the two states of the gas in

this particular type of problem

?i
"
($f (6~47)

Comparing with the thermodynamic equation (6-46), we may infer the

relationship

5,- Si =
fcln^ (6-48)

where k = R/No. We thus perceive the entropy as a measure of the

probability of the state in question, when the state is viewed from the

standpoint of the variety of changing molecular configurations that con-

stitute it. This concept was first developed by the genius of Ludwig
Boltzmann in 1877, and k is known as Boltzmann's constant. The

meaning of the probability of a thermodynamic state, in general, with

regard to changes more complex than the one considered here, raises

several subtle questions, which we shall explore at length in Chap. 10.

Meanwhile, let us note that the tendency for the entropy of an isolated

system to increase, which we found in Sec. 5-5 to contain the essence of

the second law of thermodynamics, turns out to be purely a statistical

effect, resulting from the completely random nature of molecular motion

and the enormous numbers of molecules present in ordinary material sys-

tems; the enormous numbers of individuals give the statistical laws for

the assembly overwhelming reliability hence the great generality of the

second law. Needless to say, the second law rests on a firm experimental

basis, quite independent of its statistical molecular interpretation; never-

theless, this interpretation has been of immense value in supplementing
formal thermodynamics with data derived from molecular structure, as

we shall see in Chap. 10.

Before passing on to the next section, let us note two useful relation-

ships that may be derived from the general equations (6-35), (6-37), and

(6-38) for reversible adiabatic changes of state (dS =
0). Thus

(6-50)
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Equations (G-49) and (6-50) find particular application to the theory of

sound, which consists of compression waves propagated under essentially

adiabatic conditions through a material medium.

6-3. General Thermodynamic Relationships for a Homogeneous
Chemical Substance. Let us now reexamine the forms of the internal

energy and the enthalpy functions for fixed mass (e.g., 1 mole) of a

homogeneous chemical substance of fixed composition, in view of the

further information furnished by the second law of thermodynamics.
The first law resulted in the equation

dU = d'Q - d'W
= d'Q - p dV - d'W'

where certain general restrictions were imposed on the kinds of energy

changes taken into consideration (for example, changes in the kinetic and

potential mechanical energy of the system as a whole were not included).

The second law results in the equation

Therefore for thermodynamically reversible changes of state

dU = T dS - p dV - d'W (6-51)

If we confine our attention to changes of state for which W =
0, so that

the only nonthermal energy exchanged with the surroundings is in the

form of mechanical work of expansion, then Eq. (6-51) sets up for us the

differential equation for U as a function of S and V as state-determining

independent variables. We may recall from the discussion in Sec. 3-1

that for a homogeneous substance of fixed composition, the values of any
two independently variable properties serve to determine the state (in the

absence of special influences, such as that of a magnetic field, etc.).

Thus, for 1 mole of the substance,

dU - T dS - pdV (W = 0) (6-52)

The companion equation for dH, from Eq. (3-57), is easily shown to have

the form

dff = T dS + V dp (W = 0) (6-53)

From these general thermodynamic relationships, we draw the conclusions

0) (6-54)
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By the application of Eqs. (6-52) and (6-53) to Eqs. (5-49) and (5-59)

defining the functions A and JP, complementary equations follow for dA
and dF:

dA=-SdT-p dV (W = 0) (6-56)

dF = -S dT + V dp (W = 0) (6-57)

The second of these equations has already been introduced in Sec. 6-1 as

Eq. (6-5).

We may apply Euler's criterion to Eqs. (6-52), (6-53), (6-56), and

(6-57), for dU, dB, dA, and dF to be perfect differentials in terms of the

respective pairs of independent variables, any of which serves to deter-

mine the state; in this way we obtain a set of four useful thermodynamic
relationships known a~Maxwett's equations:

1

(IX"^
/JT<\

(0-69)

(6-60)

(6-61)

Maxwell's equations provide a compact and flexible scheme for trans-

posing from one pair of independent variables to another. As an illus-

tration, let us transpose Eq. (6-53) from S and p to T and V as independ-
ent variables defining the state; thus

[according to (3-23) and (3-6)]. At the same time, from (6-53) and (6-60),

= T
\7Fr) -5- rS-5 t6"63)
\al /v P p p

1 Named alter the brilliant nineteenth-century physicist James Clerk Maxwell,
who among many great achievements contributed with Ludwig Boltzmann to the

creation of the statistical molecular theory of thermodynamics.
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Therefore, for B in the form

H = R(T, V)

249

(6-64)

Equation (6-64) thus provides the differential equation satisfied by
H = H(Tj V)j in terms of familiar thermal and equation-of-state data

for the substance.

T 900

7^374.1
^300

Critical point

374.1 C
217.72 atm

100

O2 0.4 O6 Q8 TO 12 \A J.6 18 2JO 22 2.4 2L6

Situ*)

Fia. 6-5. Moilier diagram for steam.

A convenient form of graphical representation of the thermodynamic

properties of a fluid substance, whether gas, or liquid, or equilibrium
mixture of both phases, is the Mollier diagram, introduced by R. Mollier

in 1904, and widely used in engineering practice. In this diagram, H is

plotted against S. Figure 6-5 shows on a small scale the Mollier diagram
for steam; larger charts showing much greater detail are available, from

which the thermodynamic properties may be read with high precision.

The boundary curve shown in the diagram separates the region of dry
steam from the region of heterogeneous mixtures of steam with liquid

water (whose equilibrium we shall discuss in the following section).

According to Eq. (6-53), the slopes of the isopiestics (lines of constant
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pressure) in the Mollier diagram, (dH/dS) p ,
are everywhere equal to T;

in the "wet" region, therefore, below the boundary curve, the isopiestics

are straight lines, inasmuch as in this region, a unique temperature cor-

responds to each value of the pressure (the vapor pressure at the given

temperature). Furthermore, the slopes of isothermals (lines of constant

temperature), (dH/dS) T , according to (6-53) and (6-61), are everywhere

equal to T I/a; at the lower pressures and higher temperatures, where

steam behaves approximately as an ideal gas, these isothermals become

straight lines parallel to the S axis. Since the diagram is drawn for a

fixed mass of the substance under consideration, each point within the

"wet" or two-phase region corresponds to some particular ratio of vapor
to liquid; it is customary in this region to connect up points of equal "dry-
ness" (expressed as a percentage of the total mass in the vapor state), as

shown in Fig. 6-5. As one follows an isopiestic down from the boundary
curve in this region, the change in H represents the latent heat of vapor-

ization for the particular quantity of vapor condensing to liquid between

the corresponding pair of points on the curve; e.g., between the lines cor-

responding to 90 per cent and 80 per cent dryness, the difference in H
values along any isopiestic (isothermal, in this region) corresponds to

the latent heat of vaporization for 0.1 mole at the given pressure and

temperature; the change in S along an isopiestic in this region represents

the proportional entropy of vaporization (A/S
= AJ?/?') for the particular

quantity of vapor condensing to liquid between the corresponding pair of

points on the curve. A reversible adiabatic change of state is represented

on the diagram by a line parallel to the H axis (AS =
0), passing through

the point representing the initial state (or any other state through which

the system may pass during the change). Joule-Thomson expansion

(A/? = 0) is represented by a line parallel to the S axis, running to the

right from the point representing the initial state of the fluid.

One may show that the decrease in H along an adiabatic (line of con-

stant S) between two states of the fluid represents the reversible work
that may be done per mole of the substance when it enters the cylinder

in the first state and leaves the cylinder in the second state during the

so-called Rankine cycle, for the conversion of thermal into mechanical

energy. The Carnot cycle described in Sec. 5-2, in which a gas is alter-

nately expanded within a cylinder at a higher temperature and com-

pressed again at a lower temperature, is not technically feasible for the

design of an actual heat engine, because too much energy would be

wasted in heating and cooling the cylinder.
1 In actual steam engines,

1 This problem is solved in the internal-combustion engine by the fact that combus-
tion takes place extremely rapidly in relation to the thermal conductivity of the

product gases; the expansion is therefore practically adiabatic, and the gas immediately
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steam is generated from water heated in a separate boiler, and after it

passes into the cylinder, where it works against the piston and cools, it is

then expelled into a separate condenser, from which the water may be

returned to the boiler. The Rankine cycle is an idealized cycle of this

nature, conceived as follows. Let steam be generated in a boiler, and

let it pass into the cylinder at the constant pressure p\\ this boiler pressure

represents the vapor pressure of water at the boiler temperature, but the

steam may be superheated to a higher temperature without change in the

pressure by further heating of the pipes that convey it to the cylinder.

The reversible work done by the steam in entering the cylinder and dis-

placing the piston is p\V\ per mole, where Vi is its molal volume in the

state in which it enters the cylinder. At a certain stage of the piston's

forward stroke, the steam entering the cylinder is cut off, but it continues

to expand the rest of the way under practically adiabatic conditions,

which reduce its temperature at the end of the stroke practically to that

of the condenser. During the adiabatic expansion, the work done per
mole is equal to U\ t/2 [Eq. (2-24)], where Ui represents the molal

internal energy in the state in which the substance enters the cylinder,

and C72 represents its molal internal energy in the state in which it leaves

the cylinder; in the latter state, it may be partially condensed to the

liquid form, but t/2 is taken to represent its total molal internal energy,

in whatever manner in which it may be distributed between the liquid

and the gas phases. If V"2 denotes the total molal volume in the condition

in which the substance leaves the cylinder, and p 2 the pressure (generally

speaking, the vapor pressure at the temperature of the condenser, into

which the spent steam passes), then the work done by the piston on the

spent steam in forcing it from the cylinder on the return stroke is p 2y2 .

A small additional term, (pi p 2)Fi, should be subtracted from the

total work, representing the work that must be done by the feed pump in

order to transfer the cold water, at molal volume Fi, from the condenser

into the boiler, thereby completing the cycle. Thus, the total work, per
mole per cycle, is

W = piFi + tfi
- f?2

- p 2F2
-

(Pi
- p 2)Fi

where Ui, pi, and t^i are connected with t72, p2 ,
and F2 through an

adiabatic change. Therefore, neglecting the work done by the boiler

feed pump,
W = #1 - #2 OS const)

after the combustion, before it begins to expand, may attain a temperature much

higher (about 2000C) than the temperature of the cylinder block, which is generally

cooled by a current of water, oil, or air.
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This applies, whether the steam is dry, saturated, or wet, where HI
denotes the total molal enthalpy for the state in which it enters the cylin-

der and Hz the total molal enthalpy for the state in which it leaves the

cylinder. For given operating conditions, the value of HI Hz at con-

stant S is easily read from the Mollier diagram, which therefore serves as

a particularly convenient form for analyzing the ideal behavior of a

steam engine, or other heat or refrigerating engine operating on similar

principles.

6-4. Equilibrium in Phase Transitions. When a chemical substance

of fixed composition undergoes a phase transition, then in general, if both

phases are at the same temperature and pressure, a change in free energy

satisfying Eq. (5-60) takes place, as well as changes in the internal energy

and the enthalpy; For example,

S(I, monoclinic, 25C, 1 atm) = 8(11, rhombic, 25C, 1 atm);
AF = -0.016 kcal

(How AF for this transformation is measured will be explained presently.)

Since the sign of AF is determined solely by the thermodynamic states of

the two phases, therefore at an arbitrary temperature and pressure, in

general, only one of the states is thermodynamically stable, though other

phases may exist in metastable states. Now, for reversible equilibrium

between the two phases (not metastatic equilibrium, such as exists

between diamond and graphite at room temperature and pressure), the

general equilibrium condition (5-61) must apply; for example,

H 20(l, 100C, 1 atm) = H 20(g, 100C, 1 atm); AF =

This condition sets up a restriction on the possible equilibrium states,

because while the molal free energies, FI and F2 ,
of the substance in the

two phases vary independently with temperature and pressure, yet the

equilibrium condition

Pi = f\ (Ti = 5P2 ; pi = p2) (6-65)

sets up a thermodynamic relation between the pair of variables T and p
(which are by hypothesis respectively equal for the two phases). Thus,
to each value of T, there corresponds a unique value of p at which the two

phases may be in equilibrium, or what amounts to the same thing, to each

value of p there corresponds a unique value of T at which the two phases

may be in equilibrium. The variance of the two-phase equilibrium sys-

tem is 1, instead of 2, such as would characterize the behavior of a single

homogeneous phase of fixed composition (compare Sec. 3-1).

We may discover the relationship between T and p for reversible equi-
librium between the two phases by equating the changes in F\ and Ft
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with T and p as we follow the system from one equilibrium state to

another; thus, according to Eq. (6-5),

df\ = df\

-3i dT + Vi dp = -3, dT + f2 dp

So long as this condition is maintained, then if FI = f\ at any one tem-

perature and pressure, Eq. (6-65) will continue to be satisfied at other

temperatures and pressures. The equilibrium temperature and pressure
therefore satisfy the equation

dp __ 2
- Si

dT
~~

f2
- Vi

Now, the transformation from one phase to the other at the equilibrium

temperature and pressure is a thermodynamically reversible process, for

which

where Li 2 represents the molal latent heat of the transition from phase 1

to phase 2 (
= H* H\; its value is taken to be positive in the sense that

heat is absorbed by the substance in passing from phase 1 to phase 2).

Therefore

dp Liz=

This is the well-known Clapeyron-Clausius equation.
1

Equation (6-68) is entirely general, applying to equilibrium between

any two phases of a chemical substance of fixed composition. Charac-

teristically, it gives only the rate of change of the equilibrium pressure

with temperature, but not the equilibrium pressure itself at any one tem-

perature; this latter information has to be introduced empirically, as an

integration constant to the integral form of Eq. (6-68). If, for example,
we have determined the so-called

" normal'
'

transition temperature (at

p = 1 atm, by convention), then Eq. (6-68) upon introduction of the

necessary thermal and equation-of-state data may be used to deduce the

transition temperature at other pressures, or the equilibrium pressure at

other temperatures. Thus, for the transition between rhombic and

monoclinic sulfur at the normal transition temperature, 95.5C, the latent

1 It was first deduced by the French engineer B. P. E. Clapeyron in 1832 from

Carnot's theory. A rigorous derivation was later given by the German physicist

R. J. E. Clausius in the light of the first law of thermodynamics.
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heat of transformation as determined by J. N. Br0nsted is 0.095 kcal/

g-atom;
1

i.e.,

S(II, rhombic) = S(I, monoclinic); A# 68.7
= 0.095 kcal

while AF = 0.442 cm3
/g-atom; therefore at the normal transition

temperature

X 41.3 X lO'cm'atm/kcal'Qpg A 8 tdT 368.7 deg X 0.442 cm 3
/g-atom

= 24.1 atm/deg

This result agrees well with the experimental value of 26.4 atm/deg
obtained by G. Tammann, who followed the transition equilibrium up to

the rhombic-monoclinic-liquid triple point at 151C and 1288 atm. 2 The
value of dp/dT of course varies in general with the particular equilibrium

temperature and pressure at which it is determined. Its sign is fixed by
the sign of V% Fi, in accordance with the sign convention for I/i 2 ,

being positive when V* exceeds Fi, as in the equilibrium between rhombic

and monoclinic sulfur, and negative when V% is smaller than Fi, as in the

ice-water equilibrium.

Equation (6-68) may be used conversely to determine the value of Li2

from purely nonthermal data. For example, ordinary ice (ice I) at

30C undergoes a transition at 2087 atm to a different allotropic form,

ice III, the volume decreasing by 3.46 cm 3
/mole. The system has been

studied by G. Tammann and by P. W. Bridgman
3 who found that at that

temperature dp/dT = 3.1 atm/deg, this being the slope of the transi-

tion curve at the given point on the phase diagram. Thus, for the trans-

formation, ice I = ice III, at -30C and 2087 atm,

Li.ni = (-3.1 atm/deg) X (243 deg) X (-3.46 cm 3
/mole)

X A + o xtni a 4.

= 0-063 kcal/mole
41.3 X 10 3 cm 3 atm '

When one of the phases is a gas, at equilibrium pressures not greater

than several atmospheres, we may introduce certain approximations that

improve the usefulness of Eq. (6-68). Thus, F2
~ RT/p Fi; intro-

ducing these approximations in (6-68), we obtain

(vapor-phase ideal gas) (6-69)

1 J. N. Br0nsted, Z. physik. Chem., 65, 371-382 (1906).
2 G. Tammann, Ann. Physik u. Chem., (3) 68, 629-657 (1899).

'See "
International Critical Tables/' Vol. IV, pp. 11, 17, McGraw-Hill Book

Company, Inc., New York, 1928.



THERMODYNAMIC BEHAVIOR OF SIMPLE SYSTEMS 255

In this equation, p stands for the vapor pressure, and L\g for the molal

latent heat of vaporization or sublimation, depending on whether the

first phase is a liquid or a solid. Over a range of temperatures sufficiently

narrow so that L\ may be regarded as sensibly constant (the heat of

vaporization of water, for example, decreases by about 0.1 per cent per

degree Kelvin between its freezing point and its normal boiling point),

we may integrate Eq. (6-69) immediately, to obtain a familiar vapor-

pressure equation *

whose empirical form

log p = ~
^ + B (6-70a)

is known as Young's equation; B is an integration constant, whose value

can be determined only by extrathermodynamic means; its value for a

liquid can be calculated, for example, from knowledge of its normal boiling

point, i.e., the value of T for which p = 1 atm. One may put Eq. (6-70)

alternatively in the form

W P. - LIO (
1 1

10g
po

"
2.303/2 \To

where po denotes the vapor pressure at the temperature TV These

equations are extremely useful for the approximate correlation of vapor-

pressure data; they suggest that if one plots log p vs. 1/7", an approxi-

mately straight line will result (depending on how much L\g x
varies with

temperature over the range in question) ;
its slope may be used to calculate

the value of L\g . This constitutes in fact an important method of deter-

mining latent heats of vaporization and latent heats of sublimation,

though higher precision in the integral form of the vapor pressure equa-
tion is obtained if one takes account of the change of Lig with temperature.

Now, the general equation for the change of Lia with the equilibrium

temperature and pressure is Eq. (3-48). If we confine our attention to

pressures not greater than several atmospheres, a necessary restriction if

Eq. (6-69) itself is to be valid, then Eq. (3-48) reduces to

L lg
= (L 1(7) + AC dT (low p) (6-72)

where AC =
(C^) g (C)i represents the difference between the molal

heat capacity of the gas and that of the liquid or solid phase at constant

pressure of 1 atm; the explicit effect of changing pressure on the value of

Lig may be neglected for all practical purposes at pressures of order 1 atm
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or lower, though this would not be true at high pressures. We may intro-

duce empirical heat-capacity equations of the form (3-58) or (3-59) for

the two phases, and thus express L\g as an empirical function of T by means
of Eq. (6-72), from a knowledge of its value (Ia fl)o at any one temperature

To [obtained either by thermal measurement, or by the application

of Eq. (6-69) itself to vapor-pressure measurements around the tem-

perature To]. Since the heat capacities do not vary rapidly with tem-

perature, however, a good approximation may be obtained by treating

them as constant, and using their mean values over the temperature

range for which one wishes to represent the vapor pressure. Thus, we

may put Eq. (6-72) in the approximate form

(T - 3Po)

Introducing this form in Eq. (6-69) and integrating, we obtain

1. ^ (Igg)o (AC)7
7

o
, (AC) , , n

log p - --
2.3Q3RT

+ ~RT l^ T + C

This vapor-pressure equation, with C an integration constant, has the

form of the empirical Kirchhoff-Rankine equation

log P = - Y + B '

log T + C (6"73a)

but it provides theoretical values for the constants A' and B'. Let us

apply it to water, using the data LiQ
= 9717 cal/mole at TQ

= 373.16K,
(CP)i

= 18.03 cal/mole deg, (C) a
= 8.05 cal/mole deg. Substituting in

Eq. (6-73) and solving for C by making use of the information po = 1 atm
when To = 373.16K, we obtain

log p - - - 5.022 log T + 20.788 (p in atm)

Testing this equation at 25C (T = 298.16K), we obtain

logp = 1.491

p = 0.0323 atm = 24.5 mm Hg

This result may be compared with the experimental value, p = 23.8 mm
Hg; part of the small deviation is a consequence of the deviation of steam
from ideal-gas behavior at 100C and 1 atm; the rest follows from varia-

tion of the heat capacities with temperature.
We may treat vaporization equilibrium in a more rigorous manner

that includes the effect of significant deviation of the gas phase from

ideal-gas behavior. The free-energy change in general for the process
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A (liquid)
=

^.(gas), or for the comparable solid-gas transition, is given

at a particular temperature T and pressure p by

AF = (FTtp)
- (FT^ (6-74)

where subscript 1 stands for either the liquid or the solid, as the case may
be. Now, up to moderately high pressures, well beyond the ideal-gas

range for the vapor phase, we may assume that pressure has compara-

tively little effect on the value of (FTlP)i of the liquid or solid phase

[compare Eq. (6-16)]; we may therefore assume that (FTtP)i is practically

equal to (F%)i, the 1 atm value, regardless of the exact value of p. For the

vapor phase, however, we may use Eq. (6-30), where v represents the

fugacity coefficient of the gas at temperature T and pressure p, measured

by the methods described in Sec. 6-1. Thus

AF = AFJ + RT In pv (p = any pressure) (6-75)

where the only assumption introduced has been the independence of

(FT,p) i for the liquid or solid phase of the value of p. Thus, for equilibrium,

AF
In pv =

-p (p = vapor pressure) (6-76)

Measurement of the vapor pressure at a given temperature thus serves

essentially to determine the value of AFJ, the standard free-energy change
for the vaporization process (liquid or solid phase at 1 atm, and vapor

phase in the hypothetical ideal-gas state at 1 atm, at the given tempera-

ture). At sufficiently low values of the vapor pressure, one may assume

that v = 1 in Eq. (6-76), but in general, this assumption is not warranted.

If we make use of Eq. (6-12), then

din (pi/) __ Aff

dT
~"

2 ^ }

where Aff represents the standard enthalpy of vaporization at the given

temperature; Eq. (6-77) constitutes a generalization of Eq. (6-69), but of

course, it contains the empirically determined quantity v, whose value

cannot be deduced from theory. One may use this equation, however,
to determine the value of &H precisely from precise vapor-pressure meas-

urements; for this purpose, one may write it in the equivalent form

In (pv) _ Atf~ ~~

from which one sees that by plotting log pv instead of log p itself against

1/T, the slope of the resulting curve gives the instantaneous value of
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Afl^/2.303/2, where A# represents the molal heat absorbed in the

transition from liquid or solid at 1 atm to ideal gas.

Many empirical rules have been developed for the estimation of the

vapor-pressure curve of a liquid from scant data. One of the simplest of

these rules is that of Ramsay and Young 1 who found that the ratio of the

absolute temperatures at which two liquids have the same vapor pressures

is approximately constant, the more so the closer the relationship between

the two substances compared. Thus, letting T{ and T" denote the

respective temperatures at which the two liquids have the common vapor

pressure pi, and T% and T% the respective temperatures at which the

same two liquids have the common vapor pressure p%, then according to

the empirical rule of Ramsay and Young

2
(Pi

= Pi = Pi; P2 =
P','

= Pi) (6-79)

The following example serves to illustrate how the rule may be applied:

the normal boiling points (p\
= 1 atm) of benzene and bromobenzene are,

respectively, 80.2C and 156.2C; let us estimate the vapor pressure of

bromobenzene at 100C, from complete empirical knowledge of the vapor-

pressure curve for benzene. Now, T[/T(' = 353K/430K, from which

one concludes according to Eq. (6-79) that if T'2
' = 373K, then

T'z
= 306K; in other words, bromobenzene at 100C should have the

same vapor pressure as benzene at 33C, viz., 135 mm Hg. Its actual

vapor pressure turns out to be 141 mm Hg.
If we compare Eq. (6-79) with the approximate vapor-pressure equa-

tion (6-71), which we may put in the form

- TS\ = On.)" L _ n:
T'J 2.303W \ T"po 2.303/ZTJ

we must draw the conclusion that for substances satisfying both the

empirical rule of Ramsay and Young and the nonthermodynamic assump-
tions involved in the derivation of Equation (6-71),

(Llgy _ (Llar
rpf

--mTT-
*0 -*

In other words, the value of Lig/To must be approximately the same for

many substances, where To represents a temperature at which the given
substance has some particular vapor pressure, the same throughout.
This vapor pressure may be selected as 1 atm, in which case To represents
the normal boiling point, and L^/To the molal entropy of vaporization

1 W. Ramsay and S. Young, Phil. Mag., (5) 21, 3&-51 (1886).
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at the normal boiling point. The rule represented by Eq. (6-80) turns

out to be approximately satisfied by many liquids, and when the tem-

perature is taken to be the normal boiling point (p Q
= 1 atm), it is known

as Trouton's rule;
1 the value of the Trouton constant, Lig/TQ ,

is approxi-

mately 21 eu/mole. For liquids whose molecules are strongly polar and

tend to associate, the value of the Trouton ratio tends to be larger; e.g.
y

for water, it is 26.0 eu/mole, and for ammonia, 23.2 eu/mole; such sub-

stances generally have exceptionally high molal heats of vaporization and

boiling points in relation to their molecular weights.
2 On the other hand,

those substances having the lowest boiling points and critical points show

lower values of the Trouton ratio; e.g., for He it is only 5.2 eu/mole; for

H 2 ,
10.6 eu/mole; for N 2 ,

17.3 eu/mole; and for O 2 ,
18.1 eu/mole. Many

attempts have been made to provide a theoretical foundation for the

regularities implied by the rule of Ramsay and Young and the rule of

Trouton. In particular, one can derive more consistent values for the

Trouton ratio by means of a semiempirical adaptation of the theory of

corresponding states. An empirical generalization proposed by H. von

Wartenberg:

^ = 7.4 log r,
1 o

gives good results for nonpolar liquids,
3 while an equation of similar form

involving only the natural constant R has been derived on semiempirical

grounds by V. A. Kistyakovskii:
4

1 F. T. Trouton, Phil. Mag., <5) 18, 54-57 (1884).
2 From the statistical molecular viewpoint developed in Chap. 10, the tendency of

polar molecules to organize into polymolecular aggregates introduces relatively

greater order in the liquid state as compared with the more completely random orienta-

tion of the molecules in a nonpolar liquid. Therefore, aside from other considerations

such as entropy terms contributed by the molecular internal configuration, which is

essentially the same for the liquid as for the equilibrium vapor state, the entropy of the

polar liquid substance tends to be relatively lower than that of a nonpolar liquid sub-

stance in comparable circumstances, leading to a larger entropy change on vaporization
when the corresponding vapor phases are in states of equivalent degrees of disorder.

a H. von Wartenberg, Z. Elektrochem., 20, 444 (1914).
4 V. A. Kistyakovskii, /. Russ. Phys. Ghent. Soc., 53, 256-264 (1921); Z. physik.

Chem., 107, 65-73 (1923). In his argument, RT<> stands for the molal volume of the

equilibrium vapor phase at TQ (the normal boiling point) and 1 atm; therefore the

value of the R after the logarithm sign is expressed in ml atm/mole deg, whereas the

R before the logarithm sign is expressed in cal/mole deg, if LIO/TQ is to be so expressed.

Kistyakovskii's equation is not as inconsistent with Wartenberg's as one might at

first suppose; neither is particularly sensitive to the value of TQ in the range of most

general applicability, 300 to 2000K, and over this range, the two equations give

LIQ/TQ values differing by at most 9 per cent.
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-fjf R In RT$
IQ

= 8.76 + 4.576 log TQ

J. H. Hildebrand has modified Trouton's rule by taking the entropy of

vaporization not at the normal boiling point, where the various liquids

have the same vapor pressure, but at corresponding temperatures at

which the concentration of the equilibrium vapor phase is the same (e.g.,

0.005 mole/liter).
1 None of these rules, however, is much better for

liquids consisting of polar molecules than Trouton's original rule, and

while such attempts have had practical value, they have not been suffi-

ciently general to have much theoretical significance. A similar interest-

ing empirical rule, for which no theoretical explanation has been found to

date, is that of C. M. Guldberg concerning the relationship between the

normal boiling point and the critical point on the absolute thermodynamic
scale: he pointed out that for many liquids, T$ is approximately two-

thirds of Tc .
2

Actual vapor-pressure data for inorganic compounds have been reviewed

critically by K. K. Kelley.
3 More recently, a comprehensive tabulation

for more than 1500 organic and inorganic substances has been published

by D. R. Stull. 4 These tables give the temperatures at which the various

substances attain certain arbitrarily selected values of the vapor pressure,

and they include all the references to the original literature consulted.

They are of inestimable value in practical applications of liquid-vapor or

solid-vapor equilibrium theory.

In considering equilibrium between two phases of a chemical substance,

we have so far confined our attention to the ordinary situation in which

both phases are in mechanical contact with each other, at the same pres-

sure. It is possible, however, to establish equilibrium across a semiper-

meable barrier, which permits diffusion but does not transmit pressure.

Under this condition, one phase may be subjected to a higher pressure

than the other, and we seek then the condition for stable reversible

thermodynamic equilibrium. Since at equilibrium, we may conceive the

hypothetical transfer of the substance through the semipermeable barrier

to take place with essentially no change in pressure on either side, we may
apply the general equilibrium condition (5-61), in the form

* J. H. Hildebrand, /. Am. Chem. Soc., 37, 970-978 (1915).

20. M. Guldberg, Z. physik. Chem., 6, 374-382 (1890).

*K. K. Kelley, Contributions to the Data on Theoretical Metallurgy. III. The
Free Energies of Vaporization and Vapor Pressures of Inorganic Substances, U.S.

Bur. Mines Bull. 383 (1935).
4 D. R. Stull, Ind. Eng. Chem., 39, 517-550 (1947).
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As we follow the system from one equilibrium state to another with

changing pi and p2 ,
both phases being maintained at the same constant

temperature,

whence according to Eq. (6-5), applied to each phase,

Vi dpi = 72 dp 2 (Ti = T2
- const)

Thus

A -IS
(6-81)

dPi/.

This general thermodynamic relationship is known as the Gibbs-Poynting

equation}
1 it applies to equilibrium between any two phases of the sub-

stance, separated by a mechanism that prevents the transmission of pres-

sure but does not interfere with the transfer of material from one region to

the other. A case of special interest arises when one of the phases is the

gas phase and the other is the liquid phase subjected to a pressure different

from the equilibrium vapor pressure; let us assume that the gas phase,

phase 2 in Eq. (6-81), is at a sufficiently low equilibrium pressure p so

that it satisfies the ideal-gas law, Y2
= RT/p; then

m (6-*2)

This equation is the analogue of Eq. (6-69), which gave the effect of tem-

perature of the liquid phase on the equilibrium vapor pressure (on the

assumption, however, that both phases were at the same temperature).

Since the compressibility of the liquid phase is generally quite small, we

may treat the right-hand member of Eq. (6-82) as sensibly constant with

pi, up to rather high pressures, and so integrate, starting from the limit

p l
= p = p y

where p represents the ordinary vapor pressure, when the

liquid is subjected directly to the pressure of its own equilibrium vapor,

(6-83)

Thus, the equilibrium vapor pressure increases with the pressure applied

to the liquid phase (a precisely similar equation applies of course to solid-

1 Named after J. Willard Gibbs, who first established the general conditions for

equilibrium among several phases separated by semipermeable barriers in his classic

work, "On the Equilibrium of Heterogeneous Substances," 1876-1878, and J. H.

Poynting, who derived Eq. (6-81) for the special case of liquid-vapor equilibrium,

Phil. Mag., (5) 12, 32-48 (1881).
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vapor equilibrium under similar conditions), but since the value of t^i is

comparatively small in relation to RT at ordinary temperatures, the

effect is slight. For H 2O(1) at 25C, with Vi = 18.069 ml/mole,

p^ _ 18.069 ml/mole
f _ .

10g
p

"
(2.303) (82.05ml atm/mole deg) (298.16 deg)

(J>1 P }

= 0.0003208 atm- 1
(pi

- p)

In order to effect an increase of 1 per cent in the vapor pressure, corre-

sponding to log (P/PQ)
= 0.00432, it would be necessary for p\ to equal

13.47 atm.

It would be extremely difficult to test Eq. (6-83) by direct experiment,

in view of the slowness with which equilibrium would be attained through
the materials available to serve as semipermeable barriers and the small-

ness of the effect. This equation finds a useful application, however,
to the estimation of the vapor pressures of tiny droplets, where, as we
shall see in Sec. 6-5, the curvature of the surface is correlated with higher

pressure on the liquid within than the pressure under a plane surface,

from which the vapor pressure is ordinarily measured. A modification

of Eq. (6-81), applicable to equilibrium across a semipermeable membrane
between a liquid solution and the pure liquid solvent, constitutes also the

basis of the thermodynamic theory of osmotic pressure, as we shall see in

Sec. 7-5.

We may compute the standard free-energy change for a phase transi-

tion taking place at conditions other than the equilibrium ones by apply-

ing Eq. (6-14) to each phase and taking the difference, making use of the

fact that AFJ = at the normal transition temperature, or other equi-

librium state. We may establish the value of A//J either by direct calo-

rimetric means or indirectly by the application of Eq. (6-68) or Eq. (6-69)

to equilibrium data obtained at temperatures and pressures beyond the

normal (1 atm) values. Thus, for the transition,

S(I, monoclinic) = S(II, rhombic)

we have the equilibrium condition AFJ68>7
=

0, together with Br0nsted's

value A//S68 .7
= 95 cal for the latent heat of transformation. In addi-

tion, the following empirical equations represent the two heat capacities

over the range 250 to 368.7K, from experimental data of Eastman and

McGavock,
1

Cp (rhombic) = 3.493 + 0.0063677

cal/mole deg

Cp (monoclinic) 3.556 + 0.00698T cal/mole deg

1 E. D. Eastman and W. C. McGavock, /. Am. Chem. Sac., 59, 145-151 (1937).
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Expressing AJffJ as a function of T by means of Eq. (6-15) applied to each

phase,

Aff = -95 cal + /J870K (-0.063 - 0.00062T)dr

= _3Q - 0.063T - 0.00031 T2

Substituting in Eq. (6-14), we may now calculate the value of AFJf
at

standard temperature of 298.16K,

/-368.7K 7m

^ - +
/ (-30 - 0.0637 - O.OOOSir*)^.1b deg J 298.i6K 1

[OA

"1368.7

^ - 0.063 In T - 0.00031 T
1 J298.16

= -0.0544 cal/deg

8.i6
= 16 cal/mole

Alternatively, we may compute the standard free-energy change at a

given temperature by applying Eq. (6-16) to each phase, if we know the

equilibrium pressure at that temperature; thus, for the transition,

H 20(l)
= H20(g)

we know from experiment that at 25C, AF = if p = 23.756 mm Hg
= 0.031258 atm. In this case, Eq. (6-16) reduces to (6-75), where at

the low pressure involved, v = 1. Thus

AF 98 . 16
= -RT In 0.031258
= (-1364.3 cal/mole) (log 0.031258)
= 2053.3 cal/mole

This represents the free-energy change for the hypothetical transition

from H 2O(1, 25C, 1 atm) to H2O(g, 25C, 1 atm), with H 20(g) behaving
as an ideal gas. We could equally well have derived the value of this

constant by applying Eq. (6-14), integrating down from 100C where AF
at 1 atm is zero. In order to calculate AjF 73 . 16 precisely at that tempera-

ture, one would have to introduce the value of v for steam at 100C and 1

atm in Eq. (6-75) ;
from the observed molal volume of steam at 100C and

1 atm, V = 30.149 liters/mole, one finds that z == 0.9846, whence accord-

ing to the approximation (6-31), In ?373K t iatm = 0.0154; therefore,

according to Eq. (6-76), AF?73 . 16
= -RT(- 0.0154) 11.4 cal/mole, the

difference from zero reflecting the effect of deviation of steam from ideal-

gas behavior at 100C and 1 atm.

By suitable modifications of these procedures, we may thus derive FJa

values at standard-state conditions for the various phases of a chemical



264 PRINCIPLES OF CHEMICAL THERMODYNAMICS

substance, relative to the value assigned to some one phase, the phase
stable at T, and 1 atm. When one is dealing with a phase whose range
of existence is far removed from standard-state conditions, this may be

impractical in view of the doubtful extrapolation one would have to make
of the experimental data for the phase in question. We shall see in

Chap. 10 that an independent method exists for the calculation of solid-

vapor or liquid-vapor equilibrium, based on statistical molecular analysis

of the spectrum for the gas phase, combined with third-law treatment of

the condensed phase (Sec. 8-3).

6-6. Surface Tension Effects. When two different phases are in

equilibrium, certain effects may be observed that are associated with the

boundary region separating the phases. These effects are particularly

noticeable when the two phases are fluid, so that their boundary is

mobile, i.e., when one phase is a liquid and the other a gas, or when both

phases are liquids. The boundary in such cases (unless one is working
close to the critical temperature and pressure, or the critical solution tem-

perature, as the case may be) is extremely sharp. Optical methods based

on the polarization of light reflected from the interface show that for a

clean air-water interface the transition region is of order one molecule

deep.
1 Therefore the region of heterogeneity over which the properties

of the two phases differ significantly from those they show separately in

bulk cannot extend over more than a few molecular diameters.

The most striking property of a mobile interface is its tendency to

shrink to minimum area consistent with the mechanical constraints

imposed on it (such as by gravity, adhesion to solid surfaces, incompressi-

bility of liquid phases, etc.). This tendency was demonstrated in an

elaborate investigation by J. A. F. Plateau in 1873; Plateau experimented
with drops of olive oil suspended in alcohol-water solutions adjusted to

the same density, so as to eliminate the effect of gravity; he used wire

frames to establish contours of various shapes, and the surface of the oil

drop was found invariably to assume minimum area consistent with its

volume, as constrained by the frame. 2

The spontaneous tendency for the interface between two fluid phases
to contract may be represented mathematically by means of a surface-

energy term increasing with the area <r of the interface. We may thus

represent the internal energy of the system consisting of two fluid phases

and their interface by means of the equation

1 N. K. Adam, "The Physics and Chemistry of Surfaces," 3d ed., p. 5, Oxford

University Press, New York, 1941.
* For a brilliant exposition of this simple principle as applied to the shapes assumed

by growing cells and cell aggregates, see D'Arcy Wentworth Thompson, "On Growth
and Form," Chaps. V, VII, and VIII, The Macmillan Company, New York, 1942.
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dU - d'Q - d'W
T dS - pi dVi - p2 dV* + yd<r (6-84)

The presence of the interface between the phases apparently does not dis-

turb the condition of thermal equilibrium, and we shall suppose therefore

that both phases, including the boundary region, are at a common tem-

perature; dS in Eq. (6-84) then represents the change in the total entropy
of the system, which will in general include entropy associated with the

presence of the interface over and above the sum of the entropies of the

two separate phases. The pressures of the two phases, however, will not

necessarily be equal, but may be influenced by the shape of the interface,

as we shall presently discover. The quantity 7, defined in accordance

with Eq. (6-84) by

7 -
\%)SViVt

(6-85)

is a property of the interface, and represents the energy required per unit

increase in the interfacial area in order to increase the surface against its

spontaneous tendency to contract. We may readily show that Eq.

(6-84), with both phases and the boundary region all at the same tem-

perature, is equivalent to

dF = -S dT + Vi dpi + 72 dp* + 7 d<r (6-86)

Hence a definition of 7 equivalent to Eq. (6-85) is given by

7 =
IT-) (6-87)
Vkr/T.pw

In the case of a gas-liquid interface, 7 is called the surface tension; the gas
is generally air at atmospheric pressure, but for a few liquids, data have

been obtained for the liquid against its own equilibrium vapor.
1 In the

case of a liquid-liquid interface, 7 is called the interfacial tension. The
value of 7 is generally expressed in ergs per square centimeter; thus, for

the air-water interface at 20C and 1 atm, 7 = 72.73 erg/cm
2
,
as deter-

mined by the capillary height method whose theory we shall presently

describe. 2

1 The surface tension of a liquid against its own equilibrium vapor at pressures
below atmospheric pressure is slightly, almost imperceptibly, higher than its surface

tension against air; the difference is partly the result of the difference in pressure,

but may also result from air solubility in the liquid. See T. W. Richards and E. K.

Carver, J. Am. Chem. Soc., 43, 847 (1921).
2
Ibid., pp. 827-847.
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The physical meaning of the term y d<r is brought out by a model sug-

gested by P. Dupr6 in 1869 (Fig. 6-6). Imagine a thin liquid film occupy-

ing a rectangular frame consisting of three fixed sides, and a movable edge
that can slide in a direction normal to its own length along the adjacent

parallel fixed sides. The film may be surrounded by a gas, or if one

wishes to study interfacial tension, by another liquid phase with which it

is immiscible. Because of the spontaneous tendency for the interface

between the liquid film and the surrounding medium to contract, work
must be done on the system in order to enlarge the surface area. Thus,
one could pull on the sliding wire edge by means of weights under the

influence of gravity, and by measur-
""

ing their descent determine directly

the work required to increase the sur-

> face area by a given amount (since

there is a surface on either side of the

_m frame, the increase in the surface area

^_ * ^ , . .
would be twice the area generated by

IIG. 6-6. Dupr6 balance illustrating Jt . . f M * * \ mi
the concept of surface energy. the moving edge of the frame). The

ratio of the work thus done reversibly
on the system to the increase in the surface area would measure the value

of 7. While the Dupr6 balance serves most simply in principle to bring
out the physical operations implied by the surface tension concept, it is

not a practical device for the precise study of surface properties.

Characteristically, the value of 7 does not depend on the area of the

surface. 1 In this respect, the surface between two fluids differs radically

from a stretched membrane, to which it otherwise bears a formal resem-

blance. The tension in an elastic membrane, such as a rubber balloon,

increases as the surface is stretched; there is no such effect when the sur-

face area between two fluid phases is enlarged.
2 The reason for the

difference is of course inherent in the molecular origin of the surface ten-

sion effect. We may picture a typical gas-liquid interface as in Fig. 6-7a,

or a liquid-liquid interface as in Fig. 6-76. In either case a molecule that

happens to be in the surface layer will presumably be subject to a result-

ant van der Waals force tending to draw it into the body of the liquid. In

the case of the gas-liquid interface, the comparatively large distances to

1 For a discussion, however, of the effect of droplet size on the surface tension of

small droplets, see R. C. Tolman, J. Chem. Phys., 17, 339-337 (1949).
2 One can easily demonstrate that the pressure within a large soap bubble is actually

smaller than the pressure within a small one [in accordance with Eq. (6-88) following].

Thus, if one connects a larger to a smaller soap bubble blown at the ends of a T tube,

having a central two-way stopcock to facilitate the operation, one will observe that

the larger bubble expands at the expense of the smaller one.
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the nearest neighbors on the gas side of the boundary will dimmish the

relative attraction of these molecules for the surface molecules. In the

case of the liquid-liquid interface, we must suppose that van der Waals'

attraction between the two different kinds of molecules is weaker than the

attractions between like molecules; otherwise the two phases would mix

with each other; therefore the molecules that happen to be in the surface

layer on either side of the boundary will likewise be subject to a resultant

(a)
~

(b)

Fia. 6-7. Diagram showing the molecular origin of the tendency for the interface between
two fluid phases to contract to minimum area consistent with the volumes of the phases
and other constraints imposed, (a) Case of a liquid against a gas phase, (b) Case of two
slightly miscible liquid phases.

attractive force tending to draw them back into the body of the liquid on

their respective sides. The tendency for the interface to contract to

minimum area consistent with the imposed constraints thus follows auto-

matically from the tendency of molecules comprising the surface layer to

retreat back into the body of the liquid; but the size of the surface area

does not affect in any way the nature of the surface region, or the tendency
for molecules to retreat out of it.

In order for us to develop the thermodynamic theory of surface behav-

ior, however, it is not necessary that we form a molecular picture of its

origin. Equation (6-84), together with empirical knowledge that y is an
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intensive property of the interface, independent of <r, is sufficient for our

purpose. Let us apply to Eq. (6-84) the general thermodynamic criterion

(5-45) for stable reversible equilibrium: U shall be a minimum consistent

with given total entropy and volume. Since under these conditions

dVi = -dF2,

(Pi
- p^dVl --yd* (6-88)

This equilibrium criterion applies to any virtual displacement of the

interface, which might change its area but would at the same time alter

the relative volumes of the two phases. In other words, the interface

tends to assume such a shape and position that any work done by virtue

of the pressure difference existing across it, if it were to be displaced in

such a way as to generate the volume dV\ on the one side at the expense
of the other [left-hand member of Eq. (6-88)], would be exactly counter-

balanced by the work required in order to increase the surface area corre-

spondingly, against its spontaneous tendency to contract [right-hand

member of Eq. (6-88)].

Let us apply Eq. (6-88) to the equilibrium of a spherical drop or bubble

suspended in another fluid medium (ignoring for the moment the distort-

ing effect of gravity, which would increase with the size of the drop and

with the difference between its own density and that of the surrounding

medium). Let the equilibrium radius be denoted by r; then for a virtual

displacement of the surface normal to itself through the distance dr [any

other kind of displacement changing the spherical shape would increase

the ratio of surface area to volume, and hence could not satisfy Eq. (6-88)

for given instantaneous values of (pi p 2) and 7]

dVi = 47rr2 dr

dv = Sirr dr

Substituting these relations in Eq. (6-88), we have as the equilibrium

situation

Pi
-

P2 = ^ (6-89)

The generalization of Eq. (6-89) for a surface of any shape is readily

derived. Let r\ and r2 denote the two principal radii of curvature at a

given point on the surface, and consider an element of area about the

point, subtending the small angle c at the two centers of curvature, so that

its edges are to a first order of approximation arcs of length r& and r*.

Imagine the surface to be displaced parallel to itself through the distance

dr (Fig. 6-8). Note that da in Eq. (6-88) will have the same sign as dVi,

provided that p\ and dV\ refer to the phase on the more concave side of
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the surface; in other words, the pressure is necessarily greater on the more
concave side of the interface. Neglecting infinitesimals of order higher
than that of e

2
dr,

= (ri)(r2e)dr

(ri + r2)c
2 dr

Hence

(6-90)

Equation (6-90) is known as Laplace
1

sfundamental equation of capillarity.
1

It reduces to Eq. (6-89) wherever the two principal radii of curvature are

equal, as in the case of a spherical sur-

face, or in general, at the center of any
surface of revolution. For a plane mo-
bile surface, one sees that the pressure

difference across the interface vanishes.

Prom Eq. (6-90), we may derive ideal

equations for all the static equilibrium

methods of measuring surface or inter-

facial tension. One method, for ex-

ample, consists of measuring the maxi-

mum bubble pressure that can just be

maintained in a vertical tube of known
radius dipping to a known depth below

the surface of the liquid (the method

could be adapted to the measurement of

interfacial tension, but it is more feasible

for air-liquid surface tensions). If the internal radius of the tube is suffi-

ciently small, we may assume that the bubble surface at the end of the tube

will tend to be spherical (Fig. 6-9), and we may apply Eq. (6-89). A more

rigorous calculation would make use of Eq. (6-90), and would take into

account the variation of the external hydrostatic pressure p 2 with increas-

ing depth from the tip of the tube to the bottom of the bubble; the greater

hydrostatic pressure at the bottom tends to flatten the bubble to an oblate

hemispheroid shape. As one increases the pressure p\ within the tube,

the radius of curvature of the bubble decreases, according to Eq. (6-89),

until ultimately it becomes no larger than that of the tube itself; the bub-

ble is then hemispherical in shape, provided that the radius is sufficiently

1 It was given by Pierre Simon de Laplace in his celebrated "M6canique c&este,"

published in 1806, but was also known in nonmathematical form by Thomas Young,
Trans. Roy. Soc. (London), (A) 1, 65 (1805).

FIG. 6-8. Displacement of a surface

element having two different principal
radii of curvature.
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small so that gravity distortion arising from the difference in hydrostatic

pressure between the end of the tube and the bottom of the bubble is

negligible. If one further decreases the radius of the bubble by increasing

pi, the bubble becomes unstable since it now tends to be slightly smaller

than the tube, and it therefore detaches itself from the end of the tube.

FIG. 6-9. Diagram illustrating the maximum-bubble-pressure method of measuring sur-

face tension.

Thus, applying Eq. (6-89) to the situation just as the bubble is about to

become unstable,

i

where R represents the internal radius of the tube, d* the density of the

liquid, di the density of the gas, and h the mean distance of the bubble

below the plane surface of the liquid.

Another common method for measuring surface tension consists of

measuring the capillary rise (Fig. 6-10). Here, the determining factor is

the limiting angle at which the gas-liquid interface meets the surface of
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the capillary. For many liquids against glass in air, this contact angle
has been shown to be deg;

1 this condition is generally satisfied by those

liquids that "wet" glass, i.e., that tend to spread to an unlimited extent

over a horizontal clean glass surface. For mercury against glass in air,

however, the contact angle is about 130 deg. Let us denote the contact

angle by 0; then if the internal radius of the tube is sufficiently small so

FIG. 6-10. Diagram illustrating capillary rise, general case of a nonzero contact angle.

that the hydrostatic pressure p* is necessarily practically uniform over the

entire gas-liquid interface and if the tube is perfectly circular in cross

section, the gas-liquid interface will assume a spherical shape with radius

r determined by the tube radius R and the contact angle 6 through the

relation

R
r

cos

Otherwise, one must calculate the shape of the surface by means of Eq.

(6-90), taking into account the variation of p2 with height.
2

Substituting

1 Richards and Carver, loc. cit.

8 The exact solution cannot be obtained in finite terms consisting of familiar func-

tions. For deg in a tube of circular cross section, Rayleigh gave as an appioxi-
mation the solution

R(dt
- 1+1 J- 0.1288;

3 flQ

+ 0.1312

which reduces to the familiar form as R/ho > 0, Ao representing the height of the lowest

point of the meniscus above the plane surface outside the tube. Numerical tables

have been prepared by S. Sugden, /. Chem. Soc., 119, 1483-1492 (1921), by means
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in Eq. (6-89),

Pi
-

P2
2? cos 6

R

Now, the pressure p\ of the gas phase is essentially the same as the pres-

sure in the liquid just below the plane surface outside the tube; hence if

is smaller than 90 deg, p2 will necessarily be smaller than pi, and the liquid

will rise in the capillary until its hydrostatic pressure within the tube at

the level of the plane surface outside counterbalances the difference

(pi 2) imposed by the curvature of the surface within the tube.

Thus, for equilibrium of the column,

, N 2? cos-
di)g = -

where in this case, d* represents the density of the lower phase (the liquid),

di the density of the upper phase (the gas), and h the mean height of the

meniscus above the plane surface outside; if one measures hQ to the lowest

point of the meniscus, then one may easily show that

for 6 = deg, h = hQ + %R, the correction J^JB repre-

senting the mean height of the liquid contained within

the meniscus itself above the plane tangent to its low-

est point. In the case of a liquid like mercury within

a glass capillary, with greater than 90 deg, the surface

becomes concave on the mercury side of the interface,-

and the mercury is accordingly depressed below the

level of the plane surface outside.

The fundamental equation (6-90) may be used to

calculate the shapes of sessile and pendant drops in

terms of surface or interfacial tension and the influence

of gravity. We may apply Eq. (6-89) naively to

calculate also "ideal" formulas for falling drops, and

for the ring-balance method of measuring surface ten-

sion. These equations are instructive in showing how
surface tension influences the phenomena, but they

cannot be taken seriously, because of complicating circumstances; the very
derivations show, however, the respects in which the formulas fail to repre-

sent the facts. If a drop is permitted to grow slowly at the end of a vertical

capillary tube (Fig. 6-11), then at any instant, equilibrium would be main-

tained between the weight of the pendant drop and the force it eJferts

of which one may calculate y accurately from A in a tube of any radius, using succes-

sive approximations; the use of these tables is described completely by Adam, op. tit.,

Chap. IX.

.Flo. 6-11. Dia-
gram showing the

growth of a drop at

the tip of a capillary
tube.
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against the end of the tube as a result of the higher pressure pi within the

drop over the pressure p* outside. If the instantaneous weight of the

drop is Mg (corrected for the weight of air displaced) and if the external

radius of the tube from which it is hanging is R, then the excess pressure

within the drop is equivalent to a force, (pi p^irR
2
,
which is exactly

countered by the weight Mg. Now, as the drop increases in weight, its

radius of curvature must decrease approximately according to Eq. (6-89)

[a more rigorous treatment of the hanging drop would take into account

the varying hydrostatic pressure over the depth of the drop itself, and

would make use of Eq. (6-90) in determining the shape]. When the

radius of curvature has become no larger than that of the tube from

which it is suspended, then further growth in the weight can only result

in destroying the stability of the drop, and thus the "ideal" weight
of the falling drop should be given by the formula

This argument explains in a general way why the drop ultimately loses

its stability and falls. The dynamic act of detachment is, however, far

more complicated, as has been shown by high-speed photography;
1 the

drop invariably "necks down" before falling off, and a secondary droplet,

formed by the breaking up of the drawn-out neck, invariably follows the

main drop after it has finally become detached. Therefore the "ideal"

formula does not give correctly the true weight of the falling "drop." A
most thorough experimental study has been made of the drop-weight
method by W. D. Harkins and F. E. Brown; they established an empirical
function relating the size of the actual drop delivered by a tube of given
radius to the surface tension. 2 When their table is applied, the drop-

weight method becomes a highly precise means of establishing surface

tensions; it is not a fundamental method, however, inasmuch as Harkins

and Brown had to determine their function empirically by the use of

standard liquids whose surface tensions had been established by other

methods (in particular, the capillary-rise method).
In the ring-balance method (Fig. 6-12), a circular platinum ring of

0.5 to 1 cm radius is pulled against the surface by means of a load that is

gradually increased, and the weight that is just sufficient to pull the ring

through the surface is measured. As one starts to pull on the ring, the

1 P. A. Guye and F. L. Perrot, Arch. sci. phys. et not. (Geneva), 16, 132-188 (1903);
E. A. Hauser, H. E. Edgerton, B. M. Holt, and J. T. Cox, J. Phys. Chem., 40, 973-988

(1936).
2 W. D. Harkins and F. E. Brown, /. Am. Chem. Soc., 41, 499-524 (1919) ;

their table

is reproduced in the "International Critical Tables," Vol. IV, p. 435, McGraw-Hill
Book Company, Inc., New York, 1928.
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surface within the ring tends to be constrained to an approximately

spherical shape, to which we may apply Eq. (6-89); actually, however,
one should apply Eq. (6-90), taking into account the variation of the

hydrostatic pressure p2 with depth, which tends to flatten the bottom of

the meniscus. 1 One sees that the air pressure pi acts against the lowered

pressure p% beneath the surface within the ring, the resultant force

required to maintain equilibrium at any stage being equal to (p\ p%)

multiplied by the area of the surface. As one increases the pull, the

FIG. 6-12. Diagram showing ideal development of maximum pull on a ring about to be
drawn through the surface of a liquid.

increased pressure difference (pi p 2) is accompanied by a reduction in

the radius of curvature of the surface, until ultimately, if it were not for

distortion resulting from the variation of p 2 with depth, the surface

within the ring would become hemispherical in shape, with radius no

larger than that of the ring itself. Further increase in the pull on the

ring could then result only in decreasing the radius of curvature below

that of the ring, with consequent instability and rupture of the surface.

According to Eq. (6-89), therefore, the "
ideal

" maximum weight WQ that

can be applied before the ring breaks through the surface is given by

= 477T/2

1 See B. B. Freud and H. Z. Freud, /. Am. Chem. Soc., 62, 1772-1782 (1930).
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where R represents the internal radius of the ring. Again, the actual

dynamics of the process is more complicated than this simple picture

would indicate;
1
furthermore, the shape of the surface just before rupture

is modified not only by the variation in hydrostatic pressure of the liquid

over the surface's depth but also by the finite thickness of the wire ring in

comparison with the ring's radius. W. D. Harkins and H. F. Jordan

have made an experimental study of this method, resulting in an empirical

correction factor to the observed maximum pull, varying with the size and

shape of the ring.
2 By the application of the proper value of the correc-

tion factor, the surface tension may then be computed with reasonable

accuracy. It was necessary, of course, to use standard liquids whose

surface tensions had been established by other methods, in order to

establish the form of the correction factor.

We may combine Eq. (6-89) with Eq. (6-83) to derive a significant

relationship between the vapor pressure and the radius of a small liquid

droplet. The pressure within the small droplet is higher than the pres-

sure outside, in accordance with Eq. (6-89), but according to Eq. (6-83),

the effect of greater pressure on a liquid is to increase its equilibrium vapor

pressure. Thus

where p represents the vapor pressure of the droplet, whose radius is r,

and p represents the ordinary vapor pressure, from a plane surface.

Introducing data for water at 25C, 2yVi/RT = 1.05 X 10~7
cm, we

obtain from Eq. (6-91) the results shown in Table 6-2.

TABLE 6-2. CALCULATED VAPOR PRESSURES OF WATER DROPLETS

r, cm p/p, at 25C
10~3 1.0001

10-* 1.001

10-5 1.01

10~6 1.11

10~7 2.86

These results show why it is quite easy to produce supersaturation in

dust-free water vapor. An aggregation of about 150,000 molecules is

required to produce a droplet of water having a radius of only 10~6
cm,

but even a submicroscopic droplet as large as this has a vapor pressure
11 per cent higher than the ordinary vapor pressure as measured with

respect to a plane surface. The influence of dust particles as nuclei pro-

moting condensation may well result from the irregular shapes of the

1 See Hauser, Edgerton, Holt, and Cox, loc. cit.

2 W. D. Harkins and H. F. Jordan, J. Am. Chem. Soc., 52, 1751-1772 (1930).
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surfaces they present, reducing the curvatures of the incipient droplets

that chance to form on them. Soluble dust particles may of course func-

tion as nuclei also by lowering the vapor pressure sufficiently to make up
for the surface tension effect. On the other hand, from a concave sur-

face, as in a small bubble of vapor within the liquid, the vapor pressure is

correspondingly lower than from a plane surface,

This equation has been verified experimentally by M. Thoma, 1 who used

a differential method to compare the vapor pressures of various liquids

over plane surfaces and over curved surfaces in capillary tubes. The
lowered vapor pressure from a concave surface accounts for the ease with

which superheating may be induced in a liquid; one must raise the tem-

perature above the ordinary boiling point in order to permit the first

small bubbles to develop (in a deep column of the liquid, there will also be

a greater hydrostatic pressure at the bottom as compared with the top).

As the bubbles grow in size, of course, the vapor pressure of the liquid at

their surfaces increases, approaching the ordinary value for a plane sur-

face at the same temperature. The boiling liquid thus has a tendency to

"bump" more or less violently, with corresponding fluctuations in its

temperature. By introducing boiling stones having plane or irregular

surfaces, or by drawing a stream of comparatively large air bubbles

through the liquid, superheating with its attendant violent fluctuations

during the boiling of the liquid may be greatly reduced. As an illustra-

tion, for water at 100C, Vi = 18.8 ml/mole and 7 = 58.9 erg/cm
2

; by

applying Eq. (6-92), one finds that the equilibrium pressure within a

vapor bubble of 10~6 cm radius is only 747.4 mm Hg, insufficient to main-

tain the bubble against normal atmospheric pressure acting on the liquid.

Now, the vapor pressure of water around its normal boiling point increases

by about 27 mm Hg/deg; therefore, a bubble of 10~~
6 cm radius would

become stable if the liquid were superheated to 100.47C at normal

atmospheric pressure. But as such a bubble begins to grow in size,

through evaporation into it from the liquid phase, its vapor pressure

rapidly approaches the value characteristic of a plane surface, e.g.,

772.6 mm Hg at 100.47C. Since the pressure within the enlarged bubble

is thus appreciably greater than the pressure over the plane surface of the

liquid, it is not surprising that the pure air-free liquid boils in violent

spurts, the temperature fluctuating by as much as half a degree between

spurts, when no provision is made to reduce superheating.

1 M. Thoma, Z. Physik, 64, 224-236 (1930).
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6-6. Magnetization Effects. When a homogeneous chemical sub-

stance of fixed composition is in the field of a magnet, then, in general, its

properties depend on the magnetic field strength, 3C, as well as on tem-

perature and pressure. Let J represent its intensity of magnetization, as

measured by the magnetic moment per mole; then by straightforward

extension of the mechanical energy concept to magnetic behavior, the

work d'W done on the substance by a magnetic field of instantaneous

strength 3C in changing its intensity of magnetization by the amount dJ is

measured by 3C dJ. 1 No special name has been given to the unit in which

J is commonly represented, but it is so chosen that if 3C is in gauss, then

the expression 3C dJ is given in ergs per mole. Thus, we may write as the

general expression for the internal energy

dU = d'Q - d'W
= T dS - p dV + 5C dJ (6-93)

for thermodynamically reversible changes of state. Now, in general, 3C

and J are vectorial quantities whose relative directions depend on the

orientation of the substance with respect to the magnetic field; for iso-

tropic substances, however, whose properties are uniform in all directions,

such as a gas, a liquid, or a cubic crystalline solid, J tends to assume

either the same or exactly the opposite direction to that of 3C. In the

former case, the substance is said to be paramagnetic, and the term 3C dJ
in Eq. (6-93) is positive in sign; a magnetic moment is induced in the sub-

stance in such a sense that it is attracted by the applied magnet, and tends

to be drawn deeper into its field (measurement of the strength of this

attraction by means of a balance constitutes one of the methods of meas-

uring J). In the latter case, the substance is said to be diamagnetic, and
the term 3C dJ is negative in sign ;

the induced magnetic moment in this

case is usually quite small, and has such a sense that the substance is

repelled by the applied magnet, and tends to be ejected from its field.

For anisotropic crystalline solids, the magnitude of J for given field

1 A uniformly magnetized body is formally equivalent to a magnet with poles of

strength +m and m separated by distance /, though only the magnetic moment
ml (not the separate factors) has immediate physical significance; i.e., the magnetic
moment J per mole can be directly measured by observation of the substance's inter-

action with an applied magnetic field, but how one might choose to represent it as

made up of separate factors m and I is quite arbitrary, if not meaningless. Now,
if the intensity of magnetization is changed by the amount dJ, then formally the

change is equivalent to a change dl in the displacement between poles; since the force

acting on the one pole (+w), the other being regarded as stationary, is3Cw, therefore

3Cm dl = 3C dJ represents the work of magnetization, in accordance with the general
definition (2-4), assuming that 3C and dJ have the same direction.
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strength is generally different for different directions through the crystal;

the behavior of an aggregation of such crystals is accordingly complex.

For ordinary diamagnetic or paramagnetic substances, the induced

magnetic moment disappears as soon as the exciting magnetic field is

removed, but ferromagnetic substances, such as iron itself, show not only

extraordinarily strong paramagnetism but also saturation and hysteresis

effects; thus, a comparatively weak magnetic field can induce in iron a

high value of J practically independent of 3C, which if the iron has been

suitably prepared may persist after the external field has been removed.

We shall not be concerned in this section with ferromagnetic materials,

but one should note that if a "permanent" magnet is introduced into a

magnetic field, then it may have ordinary mechanical potential energy

depending on its orientation with respect to the field, as well as internal

energy satisfying Eq. (6-93).

According to the atomic-molecular theory of magnetism, developed

during the nineteenth century by the work of A. M. Ampere, W. Weber,
M. Faraday, J. C. Maxwell, J. A. Ewing, P. Curie, and others, diamag-
netic substances consist of atoms or molecules having no net magnetic
moments in the undisturbed state; the diamagnetism results from the

interaction of the applied magnetic field on the electronic
"
currents

"

within the atom or molecule, disturbing their normal state of symmetry

(for example, as in the case of paired electrons constituting a covalent

bond).
*

Paramagnetic substances, on the other hand, consist of atoms or

molecules having permanent individual magnetic moments; superimposed
on their diamagnetism, therefore, is a tendency for the individual atomic

or molecular magnets to orient themselves with respect to the exciting

field, against the tendency of their thermal motion to disorient them at

random; in true paramagnetic substances, the paramagnetic effect pre-

vails over the relatively weak diamagnetic effect, which is always present.

In ferromagnetic substances, according to the domain theory first pro-

posed by P. Weiss, the individual atomic magnets give rise to a magnetic
field capable of orienting their neighbors in the same direction over a

limited domain. Quantum mechanics has of course played an increas-

ingly important role in the modern development of atomic-molecular

magnetic theory, particularly in the quantitative calculation of magnetic

1 Many of the metals, notably bismuth, exhibit a structural diamagnetism associated

with the collective susceptibility of the "free" electrons shared by the metal atoms

and serving to bind them together in the crystalline state
;
this structural diamagnetism

decreases with increasing temperature, and disappears if the metal is melted. Other

metals show similarly a structural paramagnetism, independent of the atomic magnetic

properties.
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properties in terms of atomic structure, but we do not need such informa-

tion for our immediate purpose.
1

Now, for isotropic diamagnetic and paramagnetic substances at moder-

ate field strengths (low intensities of magnetization), the value of J turns

out empirically to be proportional to 3C,

J = X3C (T, p const) (6-94)

where X is a characteristic property of the substance known as its molal

magnetic susceptibility;
2
its sign is generally written as positive for para-

magnetic substances, and negative for diamagnetic substances. Thus,
for chrome alum (K 2S04-Cr2(S04)3-24H 20) at 20C and 1 atm,

X = 12,500 X 10~8
erg/mole gauss

2

whereas for water at 20C and 1 atm, X = -13.005 X 10~6
erg/mole

gauss
2

. In order to take advantage of the empirical relationship (6-94),

let us define a generalized Gibbs free-energy function

F s U - TS + pV - 5CJ (6-95)

where clearly F, like U, is a function of the state of the substance, whether

determined by S, V, and J as independent variables, or by 5T, p, and 3C.

Differentiating (6-95) in the most general manner, and introducing Eq.

(6-93),

dP = -S AT + V dp - J dSC (6-96)

Let us now introduce the empirical relationship (6-94), where X depends
on T and p but not on 3C,

dF = -SdT + V dp - XdJ (6-97)

This equation does not apply to ferromagnetic substances, nor does it

apply to anisotropic crystalline solids without reservations; but it is

extremely useful for isotropic diamagnetic or paramagnetic substances.

Thus, let us apply to Eq. (6-97) Euler's criterion for F to be a function of

1
See, for example, J. H. VanVleck, "The Theory of Electric and Magnetic Sus-

ceptibilities," Oxford University Press, New York, 1932; E. C. Stoner,
"
Magnetism

and Matter/' Methuen & Co., Ltd., London, 1934. For experimental methods of

measuring magnetic properties, with particular application to chemistry, see P. W.
Selwood,

"
Magnetochemistry," Interscience Publishers, Inc., New York, 1943.

2 It is equal to the specific susceptibility (or magnetic susceptibility per unit volume
divided by the density), as commonly reported in tables of magnetic properties, multi-

plied by the molecular weight.
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the state, as defined by the values of T, p, and3C as independent variables,

Since X is supposedly independent of 3C for the substances with which we
are presently concerned, it is not necessary for us to indicate explicitly

that 3C is constant in taking the left-hand derivative in Eq. (6-98) ;
this

equation thus gives us a thermodynamic equation for the temperature
coefficient of X

, subject to the empirical condition (6-94) defining X.

Now, the magnetic susceptibility of most diamagnetic substances is

practically constant with temperature; there are reasons why this should

be so from the atomic theory of magnetism, which we need not discuss. l

It follows, according to Eq. (6-98), that for such substances no change in

entropy takes place when the substance is magnetized at constant tem-

perature and pressure. But for paramagnetic substances, X generally

decreases with T in accordance with P. Curie's law,

X =
^ (p const) (6-99)

where A is the molal Curie constant for the particular substance; this

approximate empirical law, which also has a foundation in atomic-molecu-

lar theory, has been tested over a wide range of temperatures, and in

particular cases, has been found valid down to 1K; according to the

atomic-molecular theory, its validity depends on the assumptions that

the diamagnetic effect is comparatively negligible and that the individual

atomic magnets have little interaction with each other. Both assump-
tions are apparently satisfied by the more strongly paramagnetic sub-

stances even in the crystalline state, down to extremely low temperatures.
The fact thatX for isotropic paramagnetic substances invariably decreases

with rising temperature implies according to Eq. (6-98) that the entropy
of such a substance decreases if one magnetizes it at constant temperature
and pressure.

2
Suppose one has magnetized such a substance, allowing

any energy put in over and above A [7 + p AF to pass on to the constant-

temperature surroundings in thermal form; if one now thermally insulates

it and removes the exciting magnetic field, then its entropy cannot change

during the ensuing adiabatic demagnetization. The substance will

thereby end in a state at zero field strength characteristic of its lowered

1
See, however, the footnote on page 278.

2 From the statistical molecular viewpoint, this entropy decrease corresponds to the

degree of order introduced by the partial alignment of the atomic magnets induced by
the application of the magnetic field, against the tendency for thermal motion to pro-
duce completely random orientations.
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entropy value; in general, this state, at constant pressure throughout,
will be one of lower temperature (barring a phase transition, or some other
"
latent

" means by which the loss of energy associated with demagnetiza-
tion might make itself manifest without a change in temperature).

Specifically, if the substance satisfies Curie's law (6-99) at the original

constant temperature To at which it is magnetized, then, according to

Eq. (6-98),
A /TP2

AS = ~
^ IT (n ' p const) (6

"100)

If the substance is now adiabatically demagnetized so that its entropy

undergoes no further change, its final state at zero field strength will be

the same as though it had undergone the same entropy change at zero

field strength and constant pressure throughout. But the entropy change
for a homogeneous substance of fixed composition at constant pressure in

the absence of the magnetic field is given by

(
T C=

/ ^dT (p const; 3C = 0) (6-101)
JTo 1

Therefore

where 3C represents the magnetic field strength applied at the constant

initial temperature T and T represents the ultimate temperature ideally

attained under thermodynamically reversible conditions after adiabatic

demagnetization.

At ordinary initial temperatures, the degree of cooling that can be

attained by adiabatic demagnetization is insignificant. Thus, for chrome

alum, the Curie constant has the value 3.66 erg deg/mole gauss
2

;
therefore

at 20C, even if one had available a field strength as high as 50,000 gauss

(which would call for an electromagnet of huge size), the value of AS

according to Eq. (6-100) would be only 53,300 ergs/mole deg, or 0.0013

eu/mole. Compared with a molal heat capacity of about 324 cal/mole

deg, one sees that the degree of cooling according to Eq. (6-102) would be

less than 0.0012K. At extremely low temperatures, however, such as

may be attained initially with liquid helium, the degree of cooling by
means of adiabatic demagnetization may become quite appreciable,

because of both the larger paramagnetic susceptibility and the lower heat

capacity of the sample. For example, if chrome alum is magnetized at

the normal boiling point of helium (4.2K; still lower starting tempera-

tures, of order 1K, are available with liquid helium boiling under reduced
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pressure), then even with a field strength of only 8000 gauss (such as has

actually been used in this type of work by Giauque and MacDougall),
the value of AS according to Eq. (6-100) is 6.64 X 106

ergs/mole, or

0.159 eu/mole; since the molal heat capacity is only of order several tenths

cal/mole deg in this temperature range, adiabatic demagnetization may
be accompanied by an appreciable decrease in the temperature.

The principles of adiabatic demagnetization of an isotropic paramag-
netic crystalline solid to produce temperatures below those attainable

with liquid helium were first outlined independently by W. F. Giauque
and by P. Debye.

1 The experimental difficulties, which are formidable,

were first overcome by W. F. Giauque and D. P. MacDougall at the Uni-

versity of California;
2
they succeeded in attaining a temperature of

0.25K, starting with Gd 2(SO4)3-8H2O magnetized in a field of about

8000 gauss at an initial temperature of about 1.4K. The method has

since been taken up by W. J. deHaas and E. C. Wiersma at the University

of Leiden and by N. Kiirti, F. Simon, and their associates at Oxford Uni-

versity and at the Academy of Science in Paris; temperatures of order as

low as 0.005K have been reported.
3 In these experiments, the sample

is suspended by means of a thread within a tube filled originally with

helium gas, which serves as heat exchanger, and surrounded by a jacket

containing helium boiling under reduced pressure. The sample tube and

jacket lie between the pole pieces of a large electromagnet; field strengths

of 8000 to 40,000 gauss have been used by the different investigators.

After the sample has been magnetized and has returned to thermal equi-

librium at the temperature of the liquid helium boiling in the outer jacket,

it is insulated by. the withdrawal of the helium gas from its immediate

container, and the electromagnet is then switched off. The entire opera-
tion takes about twenty minutes. Since the temperatures attained by
adiabatic demagnetization run below the range in which any other kind

of thermometer has so far been standardized, the temperatures are calcu-

lated from measurements of the magnetic susceptibility itself. For this

purpose, an induction coil is wound around the tube containing the sam-

ple and is put in series with a similar coil wound in the opposite direction

but not surrounding the sample; with the circuit completed by means of a

1 W. F. Giauque, J. Am. Chem. Soc., 49, 1864-1870 (1927); P. Debye, Ann. Physik,

81, 1154-1160 (1926).
2 W. F. Giauque and D. P. MacDougall, Phys. Rev., 43, 768 (1933); /. Am. Chem.

Soc., 57, 1175-1185 (1935).
8 W. J. deHaas and E. C. Wiersma, Physica, 1, 779-780 (1934); 2, 81-86, 335-340,

438 (1935); etc.

N. Kurti and F. Simon, Proc. Roy. Soc. (London), (A)149, 152-176 (1935); 161,
610-623 (1935); N. Kurti, P. Lain6, B. V. Rollin, and F. Simon, Compt. rend., 202,
1576-1578 (1936); etc.
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galvanometer, the two coils serve as the secondary to a primary coil to

which an exciting potential is applied. In the absence of the sample, the

emfs induced in the two secondary coils would exactly cancel each other,

but the presence of the paramagnetic salt within the one coil increases its

electromagnetic induction sufficiently so that the galvanometer deflection

serves as a measure of the paramagnetic susceptibility.

Having ascertained the state attained by the substance in terms of its

paramagnetic susceptibility as thermometric property, one must then

correlate this property with the thermodynamic temperature. Curie's

law, (6-99), cannot be relied upon at temperatures below 1K, even when
it has been shown to be valid for the particular substance at higher tem-

peratures. The method used by the various investigators has been based

on the general thermodynamic relationship

(6-103)

[compare Eq. (6-93)]. The condition of constant J applies to the unmag-
netized state (J =

0), provided that the substance has no residual mag-
netism at zero field strength; there is furthermore no significant difference

between the conditions of constant volume and of constant pressure at

the extremely low temperatures involved in these measurements. Now,
the values of S at each low-temperature state attained (specified so far

only by the observed value ofX attained after the adiabatic demagnetiza-

tion), relative to the value of S at the initial unmagnetized state at tem-

perature To, are known through Eq. (6-100), since they are equal, respec-

tively, to the corresponding values of S in the magnetized states at To]

each is determined in other words by the value of 5C used during the mag-
netization. 1 The values of U may be determined calorimetrically by
heating the demagnetized sample back from its lowest attained tempera-
ture through the states of intermediate temperatures (each characterized

by the value of X) to the original temperature To. Giauque and Mac-

Dougall have accomplished this by means of an induction heater; Kurti,

Lain6, and Simon used the ingenious method of heating the sample by
bombarding it with 7 rays from a radium salt. 2 In either case, the

1 In Eq. (6-100), it is assumed that the substance satisfies Curie's law down to the

temperature TQ at which the magnetization is brought about; if this assumption is not

correct, one may go back to Eq. (6-98), using the empirical relationship between <

and T for the particular substance at the temperature To, whatever this relationship

may be.
2 W. F. Giauque and D. P. MacDougall, Phys. Rev., 47, 885-886 (1935); /. Am.

Chem. Soc., 58, 1032-1037 (1936); ibid., 60, 376-388 (1938); W. F. Giauque and J. W.
Stout, ibid., 60, 388-393 (1938). N. Kttrti, P. Lain6, and F. Simon, Compt. rend.,

204, 675-677, 754-756 (1937).
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quantity of energy received by the sample in given time was determined

by calibration at around 1K, where T can be measured on the thermody-
namic temperature scale by ultimate reference to the low-pressure helium-

gas thermometer (compare Sec. 1-4). Having thus established relative

U and S values for the various thermodynamic states of the substance

corresponding to observed X values in the region below 1K attained by
means of adiabatic demagnetization, the investigators could then deter-

mine the absolute thermodynamic temperature of any state according to

Eq. (6-103) as the slope of the U vs. S relationship for that state.

These thermal measurements served incidentally to establish experi-

mental heat-capacity values in the region below 1K. If the substance

followed the Debye T3 law [Eq. (3-55)] throughout this region, then

one could express the left-hand member of Eq. (6-102) in the form

(a/3)(T
3 -

TJ)
= H(Cp)o[(T*/T$

-
1], where (Cp) represents its heat

capacity at the initial temperature To. Therefore the ideal relationship

between T and 3C would have the form

Giauque and MacDougall found, however, that the first substance they

tested, Gd2(SO4)3-8H 2O, showed an anomaly in its Cp vs. T relationship,

the value of Cp increasing as the temperature was lowered, from a mini-

mum of 0.10 cal/mole deg at about 5.0K to more than 1.0 cal/mole deg
below O^K. 1 This fact, which prevented the temperature from falling

as far as was later observed with other paramagnetic salts, is attributed

to the doublet structure of the lowest energy level of the Cd"1
"
4"*" ion in the

crystalline state; energy is absorbed at extremely low temperatures as

ions pass from exclusive occupancy of the lower state (at 0K) to a dis-

tribution between the two states, whose energies are slightly different; at

temperatures sufficiently high for this redistribution to have been effected

(5K and higher), the heat capacity then behaves "normally."
We have discussed the thermodynamic theory of magnetization at some

length, not only because of its bearing on the attainment of the lowest

temperatures so far available, but also because it illustrates in a general

way how we may treat a situation in which the state of a homogeneous
substance of fixed composition depends on other independent variables

besides temperature and pressure. A formally similar treatment may be

applied to the polarization of a dielectric substance in an electric field;

thus, for a homogeneous isotropic dielectric medium, the work of polariza-

tion has the form d'W ~ S dP, where 8 is the electric field strength and

1 W. F. Giauque and D. P. MacDougall, Phys. Rev., 44, 235-236 (1933).
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P the molal intensity of polarization, or induced electric moment per

mole. Now, for moderate field strengths, P is proportional to 8, the

proportionality relation having the form

p = Z. (D - 1)8 (T, p const) (6-105)

where V represents the molal volume and D the dielectric constant.

This relationship, analogous to (6-94), has its particular form because of

the way in which D is defined; thus 1/D represents the factor by which

electrostatic forces between free charges in the medium are multiplied

as a consequence of the medium's polarizability (D = 1 for a vacuum).
The entire factor multiplying 8 on the right of Eq. (6-105) is known as the

molal polarizability; it is strictly analogous to the magnetic susceptibility,

but is less commonly used than the dielectric constant, which is obtained

directly by experimental measurement. For obvious reasons in terms of

atomic-molecular theory, there is no electric analogue of diamagnetism
and paramagnetism; the induced electric moment in an isotropic dielectric

medium always has the same direction as the electric field, whether it

results entirely from the polarization of nonpolar molecules or in part
from the orientation of polar molecules against the tendency of their

thermal motion to orient them at random. 1 By the same kind of argu-
ment that led to Eq. (6-98), we may evidently derive an analogous rela-

tionship between the temperature coefficient of the dielectric constant

and the rate of change of S with 8,

(W06)

We do not have a relationship analogous to Curie's law for dielectrics,
2

but Eq. (6-106), with appropriate experimental data either for the terms

on the left or the term on the right, may be used as the foundation for

setting up the thermodynamic properties of a homogeneous isotropic

dielectric in the presence of an electric field. The internal energy, of

course, satisfies the general relationship

dU = T dS - p dV + 8 dP (6-107)

1 See P. Debye, "Polar Molecules/' Reinhold Publishing Corporation, New York,

1929; reprinted by Dover Publications, Inc., New York, 1945.
2 Ibid. Debye has shown that the expression V(D !)/(> + 2) is independent of

temperature for substances consisting of nonpolar molecules, but tends to decrease

with increasing temperature for substances consisting of polar molecules. In the

gaseous state, where dipole interaction is negligible, the temperature coefficient of this

expression depends on the dipole moment of the molecules, whose value may be calcu-

lated from such experimental information.
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and the "generalized" free energy, P m (7 - T$ + pf - eP, the

relationship

dP - -5 dT + 7 dp - d& (6-108)

where, according to Eq. (6-105),

Note that in all these relationships if V is expressed in cm 8
/mole and 8

in dynes/esu (1 dyne/esu = 299.776 volts), then energies are expressed
in ergs/mole.
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Problems

6-1. Calculate the change in free energy when 1 mole of an ideal gas is compressed
at constant temperature of 0C from 1 atm to 10 atm. What is the physical signifi-

cance of this quantity? (Can the change be induced without the expenditure on the

gas of energy in nonthermal form?)
6-2. Calculate the change in enthalpy and the change in entropy when 1 mole of

an ideal monatomic gas (C = %R) is heated at constant pressure of 1 atm from to

100C.
Note that the change in free energy cannot be evaluated except with reference to

the value assigned to H or to S at some one temperature. Letting # 73 represent

the arbitrary value assigned to H at the temperature 273K, express HT as a func-

tion of T for the ideal monatomic gas, and calculate the change in the quantity

(FT
- Hl^/T when the gas is heated from to 100C at 1 atm.

6-3. For N 2(g), the heat capacity at 1 atm is represented between 300 and 3000K
within 3 per cent by the empirical equation

Cl
- 6.60 + 0.001005T

[K. K. Kelley, U.8. Bur. Mines Bull. 371, (1934)]. Express ST
- 5800 as a function

of T, and calculate the change in the quantity (F% B^/T when N 2(g) is heated at

1 atm from 300 to 2000K.
6-4. Using the data given in Table 6-1, together with Eq. (6-28), calculate precisely

the fugacity coefficient of N 2(g) at 25C and 100 atm.

6-6. Estimating the temperature coefficient of the second virial coefficient of N2(g)

from the data in Table 6-1, calculate the difference between the actual entropy S of

N 2(g) at 1 atm and the ideal-gas entropy 5 at 25C.



THERMODYNAMIC BEHAVIOR OF SIMPLE SYSTEMS 287

6-6. From gas-density measurements on acetylene by J. Sameshima (Landolt-

Bornstein,
"
Physikalisch-chemische Tabellen," 5th ed., Supplement Ila, p. 61, 1931),

the following values of (pF)/(pF)oc,iatm have been established, the density at 0C
and 1 atm being 1.173 g/liter:

Determine by graphical extrapolation the limiting value of pV at zero pressure at

each temperature, and assuming an approximately linear change of pV with p between

and 1 atm, calculate the fugacity coefficient at 1 atm for each temperature. From
a plot of [pV lim (pV)] vs. log p, calculate at each temperature the fugacity coeffi-

cient also at 10.0 atm [see Eq. (6-27)].

Assuming to a first order of approximation a linear relationship between In v

and T over the temperature range under consideration, calculate (Sr.p 5y) *or

C2H2 (g) at 298.16K, for both 1 atm and 10 atm pressure.

6-7. The compressibility of n-pentane (1) at high pressures has been studied by
P. W. Bridgman (Landolt-Bornstein,

"
Physikalisch-chemische Tabellen," 5th ed.,

Supplement Ilia, p. 89, 1935), with the following results at 0C:

Pressure, kg/cm 2

1,000

3,000

6,000

10,000

Relative Volume

(1.0000)
0.9021

0.8229

0.7647

0.7192

From a plot of V vs. p, determine by graphical integration the free-energy change per

unit volume of pentane when the liquid is compressed from 1 atm to 5000 atm and to

10,000 atm (10,332 kg/cm2
) at 0C. The molal volume of liquid pentane being 111.6

ml/mole at 0C and 1 atm, calculate the free-energy changes per mole of pentane.
6-8. From the following compressibility data for CO 2 (g) at 100C, the standard

density at 0C and 1 atm being 1.9769 g/liter (" International Critical Tables,"

Vol. Ill, pp. 3, 11, 1928), calculate by graphical integration the fugacity coefficient

at 200 atm, at 600 atm, and at 1000 atm at that temperature. Compare with the

results estimated from Fig. 6-3.
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pV
0*0,1 atm

for CO2(g) at 100C

6-9. The density of CH 3NH 2 (g) has been measured at low pressures at 0C by J. C.

Arthur and W. A. Felsing [/. Am. Chem. Sac., 68, 1883-1885 (1946)] with the following

results:

p, atm p, g/liter

0.2 0.2796

0.5 0.7080

0.8 1.1476

Assuming a linear relationship between pV and p over the range to 1 atm, determine

graphically the "best" value of the second virial coefficient, and calculate the fugacity

coefficient of CH3NH 2(g) at 0C and 1 atm.

6-10. (a.) Show that for a gas satisfying Berthelot's equation of state (Prob. 3-6),

the fugacity coefficient satisfies the equation

"-m^;? 11 - 6 -

Test this equation on N 2(g) at 25C and 1 atm, C 2H 2(g) at 25C and 1 atm and

10 atm, and CHaNH 2 (g) at 0C and 1 atm, comparing with the results of Probs. 6-4,

6-6, and 6-9.

Construct according to this equation a graph of the In v vs. p/pc relationship at

the reduced temperature T/TC
=

1.5, and compare with the results expressed in Fig.

6-3.

(fc.) Show that for a Berthelot gas,

Calculate by means of this equation the difference ST.I atm BT f r N 2(g) at 25C,
and compare with the result of Prob. 6-5. Estimate also the difference between ST,P

and ST for C 2H 2 (g) at 25C for p 1 atm and p = 10 atm, and compare with the

results of Prob. 6-6.

6-11. Using the generalized fugacity-coefficient chart (Fig. 6-3) estimate the differ-

ence between the actual entropy ST,P ,
and the ideal-gas entropy (5? R In p) for a

gas at reduced temperature 1.3 and reduced pressure 5.0 [see Eq. (6-44)].

6-12. The latent heat of vaporization of ethyl chloride has been measured at its

normal boiling point, 285.37K, by J. Gordon and W. F. Giauque [J. Am. Chem.
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Soc., 70, 1506-1510 (1948)], using electrical heating. They obtained the mean value

Lig = 5892 6 cal/mole. They also measured the vapor pressure, obtaining at

1 atm, dp/dT = 28.591 mm Hg/deg. Calculate a value of Lig from the vapor-

pressure data, and compare with the calorimetric value.

Calculate the entropy of vaporization at 285.37K and 1 atm. Calculate also the

correction to the hypothetical ideal-gas state at 1 atm, using Berthelot's equation of

state (Prob. 6-10), and thereby determine A>S 86>37 for the process

C 2H6C1(1) - C 2H6Cl(g)

6-13. The vapor pressure of methanol has been measured by E. F. Fiock, D. C.

Ginnings, and W. B. Holton [/. Research Natl. Bur. Standards, 6, 881-900 (1931)]

with the following results:

t, C p, atm
0.0389

10 0.0713

20 0.1251

25 0.1632

30 0.2109

40 0.3427

50 0.5388

From a plot of log p vs. 1/7
7

,
calculate the value of LIO at 25C, and calculate also the

entropy of vaporization at the equilibrium pressure.

Calculate AS and &F at 298.16K for the hypothetical process

CH 3OHQ, 1 atm) = CH 3OH(g, 1 atm)

(the methanol vapor may be treated as an ideal gas at the saturation pressure, which
is sufficiently low at the given temperature).

6-14. The vapor pressure of Hg(l) at 400K is 0.001364 atm, and its latent heat of

vaporization at that temperature is Lia
= 14,368 cal/mole. The heat capacity of the

gas, which is practically entirely monatomic at that temperature and low pressure,

has the value C = 4.97 cal/mole deg, while that of the liquid is 6.61 cal/mole deg
from 0C to the boiling point. Express the latent heat of vaporization and the vapor

pressure as functions of T, and compute the vapor pressure of mercury at 298.16K.

Compute also the values of A/P, A/*
70

,
and A/S for the hypothetical process

HgQ, 1 atm) - Hg(g, 1 atm)

at T - 298.16K. [Compare K. K. Kelley, U.S. Bur. Mines Bull. 383, pp. 68-69

(1935)].

Use your vapor-pressure equation to calculate pag at the normal boiling point of

mercury, 630K. The difference from 1 atm represents pHgl of Hg 2(g) molecules

present in the gas phase. Estimate the per cent of the mercury vapor in this state at

630K and 1 atm.

6-16. The vapor pressures of several of the alkali halides have been measured by
B. H. Zimm and J, E. Mayer [/. Chem. Phys., 12, 362-369 (1944)], using a surface

ionization method, in which the concentration of the vapor was measured by complete
dissociation and ionization of the alkali metal on the surface of an incandescent tung-
sten filament, the escaping metal ions being collected and measured electrically. The

following (selected) results were obtained between 600 and 1000K in the case of

KCl(c):
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The difference between the molal heat capacities of the gas and the crystalline solid

has the approximate value 2R over the temperature range in question (%R for the

diatomic gas, and 6R to 7R for the crystalline solid). Plot [log p (A<7/#) log T] vs.

1/jP. Noting that according to Eq. (6-73), the slope of this line equals [(<*) o

(AC)2
7

]/2.303 JR, where (Lcg)o represents the latent heat of sublimation at the

temperature 2
7

o, calculate the value of (Lcg ) at 800K, and also express log p as a func-

tion of T over the given range.

Extrapolating to 298.16K (neglecting departure of the heat capacities from the

high-temperature values), calculate A/yjw>16 and AFJ98>16 for the process

KCl(c) - KCl(g)

What is the corresponding vapor pressure of KCl(c) at that temperature?
6-16. Using the results of the preceding problem, calculate the vapor pressure of

KCl(c) at its melting point, 1043K. The latent heat of fusion at the melting point

being 6410 cal/mole, calculate the latent heat of vaporization, and express it as a

function of T, using for KC1(1) the heat capacity 16.0 cal/inole deg. Express the

vapor pressure of KC1(1) as a function of T, and test whether this equation agrees
with the experimental value of the normal boiling point, 1680K. [Compare K. K.

Kelley, UJ3. Bur. Mines Bull. 383, pp. 85-86 (1935); see also E. F. Fiock and W. H.

Rodebush, /. Am. Chem. Soc., 48, 2522-2528 (1926), who measured directly the vapor

pressure of liquid KC1 between 1179 and 1378K.]
6-17. Using the data in the text, calculate AJET^g-iG an(i AJ98>16 f r the process

S(I, monoclinic) = S(II, rhombic)

and show that condition (5-29) is satisfied for the transformation of monoclinic to

rhombic sulfur at that temperature, but not for the reverse transformation.

6-18. Using the Mollier diagram for steam presented in Fig. 6-5, estimate the ideal

work done per gram of steam in the Rankine cycle, if saturated steam enters the cylin-

der at 5 atm boiler pressure and leaves at 100C. What per cent increase in the ideal

work is obtained if the steam at 5 atm is superheated to 400C before it enters the

cylinder? What further increase is obtained if the spent steam leaves the cylinder at

50C? Estimate the percentage of the steam leaving the cylinder in the condensed

state under the latter condition.

6-19. Using Callendar's equation of state for steam given in Prob. 3-33, derive an

expression for (dS/dp)r9
and an equation for the entropy of steam relative to 5^, its

entropy as a hypothetical ideal gas at the same temperature and 1 atm. Using this

equation, calculate 0r,p S%) at 100C and 1 atm, and also at 300C and 30 atm.
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Derive also according to Callendar's equation an expression for the fugacity coeffi-

cient of steam, and calculate its value at the same two sets of conditions. Compare
the value at 300C and 30 atm with that estimated from Fig. 6-2.

6-20. Show how Eq. (6-73) is modified when one takes into account deviation of the

vapor phase from ideal-gas behavior in terms of a fugacity coefficient, and using the

value of v for H 2O(g) at 373.16K and 1 atm given in the text, derive a formula for log

p as a function of T. Use this formula to calculate the vapor pressure of water at

25C, deviation of the vapor phase from ideal-gas behavior being negligible at the low

pressure concerned. What assumptions remain involved in your formula that may
still introduce error?

6-21. Derive a general expression for the vapor pressure of a liquid satisfying

Trouton's law, assuming that the vapor phase satisfies the ideal-gas law, and neglecting
the variation of Li itself with temperature; use the normal boiling point as the

adjustable parameter in terms of which to fix the integration constant in the equa-
tion. Test the equation by computing the vapor pressure of carbon tetrachloride

at 60C, its normal boiling point being 76.75C. (Ix>ok up the experimental value for

comparison.)
6-22. The second law of thermodynamics may be applied to thermal radiation, pro-

vided that we can devise a thermodynamically reversible means of deriving non-

thermal energy from thermal radiation energy, i.e., provided that we have some means
of establishing equilibrium between thermal radiation and an ordinary mechanical

force. We may accomplish this in principle through the agency of radiation pressure,

predicted originally on theoretical grounds by J. C. Maxwell in 1873, and confirmed

experimentally by the work of P. Lebedew [/. Russ. Phys. Chem. Soc., 32, 211-217

(1900); 33, 53-75 (1901)], and of E. F. Nichols and G. F. Hull [Phys. Rev., 13, 307-320

(1901)]. The pressure exerted by radiation of energy density, u = U/V, has the

theoretical value p u/3. Assuming that u inside a black-body enclosure is a func-

tion of the temperature only, proportional to the rate per unit area at which radiant

energy is being emitted by the walls, prove by means of Eqs. (6-52) and (6-60) (noting

that for the case under consideration, (dU/dV)T U/V = u) that p and u are pro-

portional to the fourth power of the absolute thermodynamic temperature, and so

derive the Stefan-Boltzmann black-body radiation law (1-18). (In this thermody-
namic derivation due to Boltzmann, the proportionality constant enters as an empiri-
cal integration constant; Planck's radiation theory provides a theoretical connection

between this constant and other natural constants, from which its value may then be

derived.)



CHAPTER 7

THERMODYNAMIC BEHAVIOR OF SOLUTIONS AND
HETEROGENEOUS MIXTURES

The general thermodynamic treatment of mixtures of chemical sub-

stances was first systematically explored by J. Willard Gibbs in his monu-
mental paper, "On the Equilibrium of Heterogeneous Substances/' pub-
lished originally in the Transactions of the Connecticut Academy, 1876-

1878. l Gibbs's methods were applied with brilliant success to a variety

of chemical problems by W. Ostwald, J. H. van't Hoff, P. Duhem, B.

Roozeboom, and other scientists during the latter part of the nineteenth

century; this work established the foundations of modern physical

chemistry.
2 Distinctive contributions were made during the early part

of the twentieth century by W. Nernst, M. Planck, and F. Haber. 3

Haber's work in particular demonstrated the value of precise, systematic

thermodynamic data to chemical industry. Modern chemical thermody-

1 This great classic appears in "The Collected Works of J. Willard Gibbs," Vol. I,

pp. 55-353, Longmans, Green & Co., Inc., New York, 1928.
2
See, for example, W. Ostwald, "Lehrbuch der allgemeinen Chemie," W. Engel-

mann, Leipzig, 1893; J. H. van't Hoff, Z. physik. Chem., 1, 481-508 (1887) (a transla-

tion of this famous paper appears in Alembic Club Reprint 19, published for the

Alembic Club by Oliver & Boyd, Ltd., Edinburgh and London, 1929); also, "Zur

Bildung der ozeanischen Salzablagerungen," Friedrich Vieweg & Sohn, Brunswick,

1905-1909; P. Duhem, "Le Potentiel thermodynamique et ses applications," Her-

mann & Cie, Paris, 1886; also, "Trait6 616mentaire de m^canique chimique," Hermann
& Cie, Paris, 1897; B. Roozeboom, "Die heterogenen Gleichgewichte," Friedrich

Vieweg & Sohn, Brunswick, 1901-1904.
3 Summarized in the following works:

W. Nernst, "Theoretische Chemie," 6th ed., F. Enke, Stuttgart, 1909; "Die
theoretischen und experimentellen Grundlagen des neuen Warmesatzes," 2d ed.,

W. Knapp, Halle, 1924, English translation by G. Barr, "The New Heat Theorem,"
E. P. Dutton & Co., Inc., New York, 1926.

M. Planck, "Vorlesungen iiber Thermodynamik," Veit, Leipzig, 1897, English
translation by A. Ogg, Longmans, Green & Co., Inc., 1926 (reprinted by Dover Pub-

lications, New York, 1945); for particular application to thermal radiation, see
"
Warmestrahlung," 5th ed., J. A. Barth, Leipzig, 1923.

F. Haber, "Thermodynamik der technischen Gasreactionen," R. Oldenbourg,

Munich, 1905, English translation by A. B. Lamb, Longmans, Green & Co., Inc.,

New York, 1908.
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namics has been profoundly influenced by the original work of G. N.
Lewis and his associates, whose methods have left a permanent imprint
on the very terminology of the subject.

1

The thermodynamic properties of solutions (homogeneous substances

consisting of two or more chemical constituents of definite compositions
whose proportions may be continuously varied without the appearance of

a new phase) are important not only in themselves, as guides to our

understanding of problems arising in connection with distillation, solu-

bility, heat effects on mixing or separating the components, etc., but also

because many chemical processes, in the laboratory and in industry, are

actually carried out in gaseous or liquid solution. In this chapter, we
shall pursue discussion of the equilibrium behavior of solutions in the

absence of chemical reactions among the constituents. This study,

valuable for certain applications in itself, provides the necessary experi-

mental and theoretical foundation on which the general study of chemical

equilibrium for reactions in solution may be based, as will be shown in

Chap. 8.

7-1. Thermodynamic Potentials. In the case we have previously

been discussing in Chap. 6 of a homogeneous substance whose mass and

composition prefixed, either by nature or by the conditions of the particu-

lar investigation, we have seen that the internal energy for thermody-

namically reversible changes of state (changes during which the system is

at all successive stages but infinitesimally displaced from a state of equi-

librium under the external constraints instantaneously prevailing) satis-

fies the fundamental equation

dU = T dS - p dV (W =
0) (7-1-1)

This equation represents a mathematical implication of the first and sec-

ond laws of thermodynamics, under the supposition that the substance is

restricted to changes of state during which the only nonthermal energy

exchanged with the surroundings is in the form of mechanical work of

expansion or compression, associated with changes in its volume; we
reserve for special treatment those cases (W j* 0) in which the internal

energy may be influenced also by the effects of gravity, surfaces bounding
the phase in question, electric fields, magnetic fields, etc. In the circum-

stances, the so-called variance of the system is two, as we have observed in

Sec. 3-1. Equation (7-1-1) is then a complete differential equation repre-

senting U as a function of the two independent state-determining varia-

1 G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances,
" McGraw-Hill Book Company, Inc., New York, 1923.
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bles, S and V. By means of suitable transformations, based on experi-

mentally established connections between S and V and other properties

of the particular substance, it may be used as the logical starting point in

the representation of U as a function of any other pair of independent

thermodynamic variables characterizing the state, such as T and p (com-

pare Sec. 6-3), though, in general, such other representations are not as

simple in form as Eq. (7-1-1).

Although Eq. (7-1-1) does not explicitly say so, it is to be understood

that the internal energy for a substance of given composition (whether
fixed by nature, as in the case of a chemical compound or element, or held

constant by the terms of the particular investigation, as when one meas-

ures the thermodynamic properties of 10 per cent aqueous sucrose solu-

tion) depends also on the total mass, but it does so in a special way: other

conditions such as temperature and pressure being constant (as well as

the composition), the internal energy is directly proportional to the total

mass. The internal energy is in other words what we have called an

extensive property of the substance or thermodynamic system. We infer

this to be true from the fact that when two or more different samples of

the same substance, all alike in composition, are combined at the same

temperature and pressure into one, there is no net energy change: the

heat of mixing is zero, and the net difference between the volumes of the

combined and the separate samples is also zero; consequently the internal

energy of the combined samples must be equal to the sum of the internal

energies of the separate samples, and therefore must be in proportion to

the total mass. 1

Now, if the composition may be continuously varied, as is the case for

solutions, then the internal energy instead of being determined by the

entropy, volume, and total mass, may depend explicitly on the composi-
tion as well. This is indicated experimentally by a net heat effect (heat

of solution) and a net volume change that vary with the proportions in

which the components are mixed. In this case, we may represent the

change in internal energy for a general reversible change of state, which

we shall suppose may include gain or loss of any component and of total

mass through exchange with neighboring phases, by means of the

equation

dU = T dS - p dV + 0i dni + fa dn* + + *c dnc (7-1-2)

where, by definition,

1
See, however, footnote 1 on page 72. We are assuming throughout this discus-

sion that surface effects are negligible. Energy is not strictly proportional to mass

without this restriction. See also Eq. (6-84).
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(f\
\dUiJs,V,m,m ,ne

(7-1-3)
6 ~
<P2
=

I "5

<t>
= 1-7

In these equations, C represents the number of components of the phase in

question, in the sense in which this expression was introduced in Sec. 3-1.

For we may always write formally [compare Eq. (3-12)],

U = U(8, V, m, n,f
. . .

,
nc]

dU = (^] dS H
\aO/F,ni,n 2 n c

where <i, 02, . . .
, <t>c are defined by Eq. (7-1-3); but from'Eq. (7-1-1),

which applies to any homogeneous body for a change of state at fixed

mass and composition,

f dL \ = T (7-l-4a)

($)'Z.I
- -- (7

-M6>

Therefore Eq. (7-1-2), which is a generalization of Eq. (7-1-1), follows.

The quantities <i, < 2 ,
. . .

, 4>c,
which were first conceived by Gibbs,

are known as thermodynamic potentials of the respective components.
1

Their immediate physical significance is precisely as represented by the

defining equations, (7-1-3). Thus, suppose one were to measure AC7, by
the experimental operation of measuring Q W, for the process of adding
Ant

- moles of component i to the solution, under such conditions that the

total entropy, the total volume, and the numbers of moles of all the other com-

ponents of the solution underwent no change; then <t>i would be found by

taking lim (AC7/Ani) f r a series of observations conducted under those
w *0

conditions. Taking the limit as An* > allows for the second-order

change in the quantity <fc itself (as well as in all the other thermodynamic

potentials) as the composition changes; if one were merely to take

1 Gibbs originally used the masses of the components, rather the numbers of moles,

as variables defining the total mass and composition; the advantage in chemical

applications of using molal units of mass is obvious, provided that all required mole-

cular weights are known, or conventional formula weights agreed upon.
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(Ai7/Ani) for a, finite change An* in the amount of component i, subject to

constant S, constant V, and constant amounts of all the other compo-

nents, one would obtain the mean value of fa between the initial and final

compositions, but not the instantaneous value at the given (initial) com-

position. The quantities <i, fa, . . .
, 4>c thus have the character of

differential molal internal energies at fixed total entropy, total volume, and

composition. This, however, is not the character most convenient for

their experimental establishment, as we shall see presently. One should

note that the thermodynamic potentials are not equal to the partial molal

internal energies ui, v*, . . .
,
vc introduced by Eqs. (3-12) and (3-14);

those quantities were defined as differential molal internal energies of

solution under conditions of constant temperature and pressure. No such

simple thermodynamic functional relationship as Eq. (7-1-1) exists, how-

ever, between the internal energy and the temperature and pressure as

state-determining independent variables at fixed composition; the rela-

tionship between U and T and p is far more involved [Eq. (3-32)], bring-

ing in specific thermodynamic properties of the substance, and is not well

adapted to general theoretical development.
Let us examine some of the properties of the thermodynamic poten-

tials. Experience teaches us that S and V, like U, are extensive properties

of the solution; there is neither a net heat effect nor a net volume change
when different samples of the same substance, all at the same temperature,

pressure, and composition, are combined into one. Therefore if we con-

sider a change in which each of the quantities n\, n2 ,
. . .

,
nc is multiplied

by a common factor, X, but without change in the temperature or pres-

sure, then since no change in composition is involved but merely an

increase in the total mass of solution by the factor X, the quantities S,

V, and U all likewise increase by the same factor. Equation (7-1-2)

thereby implies that the thermodynamic potentials fa, fa, . . .
, 4>c are

themselves intensive properties of the solution, varying perhaps with tem-

perature, pressure, and composition, but independent of the total mass.

In fact, if we let dn\ = Xni, dn2
= Xn2,

. . .
,
dnc

= Xnc in Eq. (7-1-2)

with T and p fixed, then experiment leads us to suppose that dS = \S,

dV = \V, and dU = XC7; upon substituting these values in Eq. (7-1-2),

we draw the conclusion that

U = TS - pV + fam + fan2 + + <Mc (7-1-5)

In this integral equation, U may of course include an arbitrary integration

constant, whose value is independent of S, V, and n\, n2,
. . .

,
nc .

1

1 The student of differential equations will recognize Eq. (7-1-2), granted the linear

dependence of U, S, and V on the total mass at fixed temperature, pressure, and
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Now let us compare the general differential of U, as derived from Eq.

(7-1-5),

dU - TdS + SdT-pdV - V dp + fadni + mdfa
-f- 02 dn% + ^2 d^2 4" "t-

with Eq. (7-1-2) from which we began; thus

8 dT - V dp + HI d^i + n2 dfa + + ne dfa =
(7-1-6)

Equation (7-1-6) must therefore likewise be satisfied for all reversible

changes of state, including changes during which the entire mass of the

homogeneous phase in question may undergo change, as well as the

amounts of the individual components present. This equation is the

most general form of the Gibbs-Duhem relation [compare Eqs. (3-16) and

(4-36)]. In particular, for changes taking place in the composition at

fixed temperature and pressure:

HI d<l>i + n2 dfa + + nc dfa =
(T, p const) (7-1-7)

Equation (7-1-7) implies that if at given temperature and pressure, the

thermodynamic potentials of all but one of the components have been

determined at all compositions, then the thermodynamic potential of the

remaining component is also determined, except for an additive integra-

tion constant independent of the composition. The existence of some
such relationship among the C thermodynamic potentials is of course

implied by the fact that while the extensive property U at given S
and V or at given T and p depends on as many composition variables

as there are components, the intensive properties <i, < 2,
.

, <k> are

each determined by the composition, independently of the total mass; at

given temperature and pressure, there can therefore be only as many
independently varying thermodynamic potentials as the number of

independent variables required to define the composition, namely,
C 1. If we divide Eq. (7-1-7) through by the total number of moles:

n = n\ + n2 + + nc, we may express this important relationship

entirely in terms of intensive properties of the solution, without reference

to the total mass; thus

xi ctyi + z2 dfa + + xe dfa = (T, p const) (7-1-8)

where xi, rr2,
. . .

,
xe represent the respective mole fractions of the corn-

composition, as a homogeneous differential equation of first order for U in terms of the

independent variables S, V,n\, n2 ,
. . .

,
nc;Eq. (7-1-5) then follows as a consequence

of Euler's theorem for such equations. Compare the general treatment here given to

Eq. (7-1-2) with that previously given on a less general basis to Eq. (3-12), Sec. 3-1,

and to Eq. (4-34), Sec. 4-5.
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ponents. Equation (7-1-8) is particularly useful when applied to a two-

component solution, where we have determined by experiment (as we
shall presently describe) the value of one thermodynamic potential <i at

various values of the composition, and wish to calculate the value of the

other; thus

dfa = ~ dfa as dfa (T, p const)

*i'
- * - - i-V^ 1 (T, P const) (7-1-9)

J xi
f i Xi

The integral in Eq. (7-1-9) may be evaluated numerically or graphically

from the experimental data (e.g., from a plot of xi/x* vs. <i) to determine

02 at any one composition relative to its value at any other.

One should note that it is possible by means of an expression such as

those of Eqs. (7-1-3) to define formally a thermodynamic potential with

respect to any chemical constituent of fixed composition present in the

solution, whether or not it has been counted as one of the components in

the sense of Sec. 3-1. The number of components, however, represents

the least number of chemical constituents in terms of which the internal

energy may be represented completely as a function of the state by
means of an equation such as (7-1-2). This number, C, is characteristic

of the system under investigation (and its circumstances with respect to

possible chemical reactions among the constituents, as noted in Sec. 3-1),

but does not depend on which particular constituents are regarded as

"the" components. These may be chosen to suit the convenience of the

investigator, in the same sense that a chemical analyst might choose to

report the aluminum content of a clay in terms of the percentage of

A12O3, even though aluminum does not actually exist in the sample in

that form, or to report the composition of an aqueous sulfuric acid solu-

tion in terms of the percentage of H 2SO4, disregarding the fact that this

compound is undoubtedly ionized in aqueous solution. Now, in an

aqueous solution of sulfuric acid, there is nothing to prevent us from defin-

ing and measuring thermodynamic potentials with respect to H 2SO4,

H2O, SOs (compare Tables 4-11 and 4-12, where partial molal enthalpies

were computed with respect to these three constituents), or even with

respect to the ions, H 3O+, HSO4~, and SO4~, after we have introduced

certain preliminary conventions to take account of the experimental

requirement of electrical neutrality, of the solution as a whole (discussed

in Sec. 7-4). Obviously, however, all these thermodynamic potentials

cannot be unrelated; this system has but two components, on whatever

basis they may be selected. Thus, a solution prepared by the addition

of 1 mole of H 2SO4 to 15 moles of H2O is identical with one prepared by
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the addition of 1 mole of SOa to 16 moles of H 2 (allowing for technical

difficulty of getting 80s to dissolve directly in the water), or with one pre-

pared by the removal of 15 moles of SOs from 16 moles of H2SO4 (again

allowing for the technical difficulty that would be encountered in the

actual carrying out of this operation). The chemical species actually

present in the solution may be quite different from the two components
in terms of which the composition is in this case defined. It is immaterial

for general theoretical purposes which particular two substances are

regarded as the components, provided only that their relative amounts

completely specify the composition; one could not, for example, regard

HsO+ and HSO4~ as the components, because on account of the require-

ment of electrical neutrality, the amounts of these ions in aqueous sulfuric

acid solutions are not independently variable. Thus, while Eqs. (7-1-3)

may be applied to define thermodynamic potentials with respect to any
individual chemical constituents of the solution, Eqs. (7-1-2) and (7-1-7)

apply to any set of C constituents whose amounts in the phase in ques-

tion are independently variable under the conditions of the particular

investigation.

We may obtain further insight into the nature of the thermodynamic

potentials by introducing into Eq. (7-1-5) the Gibbs free-energy function

F == U - TS + pV

whose general significance was elaborated in Sec. 5-6. Thus

F ni0i + ntfa + + nc<f>e (7-1-10)

Therefore the quantities <i, #2, . . .
, <t>c have precisely the values one

would ascribe to the molal free energies of the components in solution if

one were to represent the total free energy as a sum of terms contributed

by the several components; in general, however, they are not equal to the

molal free energies of the pure components at the same temperature and

pressure. If we differentiate Eq. (7-1-10) in the most general manner,

dF = n\ dfa + 0i dn\ + n* dfa + < 2 dn% + + nc d<f>e + <Ac dnc

and introduce Eq. (7-1-6), we then obtain

dF = -S dT + V dp + 4>i dni + < 2 dn* + + <k dnc (7-1-11)

Equation (7-1-11) is clearly a generalization for phases of variable com-

position of Eq. (6-5), which applied to homogeneous substances of fixed

composition and mass. From Eq. (7-1-11), it is evident that
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(7-1-12)

In other words, the thermodynamic potentials <i, #2, . , <c are identi-

cal with partial molal free energies of the respective components, where

this expression is applied in the same sense in which partial molal internal

energies applied to the quantities defined by Eq. (3-14) and partial molal

enthalpies to the quantities defined by Eq. (4-33); they represent the

respective increases in the free energy of the solution per mole of compo-
nent added, when the particular component is added to the solution at

constant temperature and pressure without changing sensibly the composi-
tion. We could indeed have started with Eqs. (7-1-11) and (7-1-12) as

primary definitions of <i, < 2,
. . .

,
< c . From the standpoint of the

general logical structure of thermodynamics, however, it is preferable to

introduce them by means of Eq. (7-1-2), which relates them fundamen-

tally to the internal-energy function given immediately by the first law

of thermodynamics; relationships similar in form to Eqs. (7-1-3) and

(7-1-12) may be derived connecting the thermodynamic potentials with

the enthalpy at constant entropy and pressure and with the Helmholtz

free energy [defined by Eq. (5-49)] at constant temperature and volume.

From the standpoint of experimental procedure, the relationship of the

thermodynamic potentials to the Gibbs free-energy function at constant

temperature and pressure has proved to be their most useful property,

both because of the comparative ease with which constant temperature
and pressure may be maintained in laboratory and industrial operations

and because of the general equilibrium condition, Eq. (5-61). For let us

consider a situation in which our solution is in equilibrium with some

other phase; the general equilibrium criterion (5-61) expressed in differ-

ential notation has the form

dF = (T, p const) (7-1-13)

We may state at the outset that the two phases cannot be in equilibrium

thermally unless both are at the same temperature; otherwise irreversible

changes associated with heat exchange between them can take place (as

described on page 215, Sec. 5-5); likewise, they cannot be in equilibrium

mechanically unless both are at the same pressure, in the absence of semi-

permeable diaphragms or surface forces interfering with the transmission
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of pressure but not with the exchange of material substances between the

two phases. The kind of change to which the general equilibrium condi-

tion (7-1-13) applies in this case therefore reduces to one involving the

transfer of small amounts of the components from one phase to the other

at uniform temperature and pressure, the total quantity of each compo-
nent between the two phases being constant (we shall discuss in Chap. 8

how the conclusions are modified when the amounts of the components

may change through chemical reactions taking place in either phase).

The conditions of conservation may be put in the form

dn'2 =

dn' - -dn" I

(7-1-14)

where '

designates quantities belonging to the one phase, and "
quantities

belonging to the other. Now, according to Eq. (7-1-11), we may write

for either phase

W =
<t>(dn( + tidn', + - + fan'.

dF" =
<*>'/ dni' + tf dn'i + + tf dn'c

'

c

These equations express how the free energy of either phase varies sepa-

rately with changes in the amounts of the various components present,

the temperature and pressure being fixed. Therefore the net free-energy

change for both phases corresponding to the virtual exchange of small

quantities of the components between them is given by

dF = dF' + dF" =
<t>( dn( + ^ dn'2 + + <* <K

(T
7

, p const)

Introducing the condition for equilibrium (7-1-13), and also the conserva-

tion conditions (7-1-14),
l

Since the quantity of each component in the one phase is by hypothesis

independently variable, the unconditional equilibrium equation (7-1-15)

can be satisfied in general only if

1 One may compare the treatment of the present situation to that leading to the

Clapeyron-Clausius equation, Eq. (6-68), where it was assumed that the compositions

of the two phases were identical, but the general equilibrium condition (5-61) then

led to a relation between the equilibrium temperature and pressure for the two phases.
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A'
9,
n (7-1-16)

The argument is but slightly modified if the second phase contains certain

of the components, but not the others [e.g., as in the case of a saturated

solution of KC1 in water, in equilibrium with KCl(c), where the crystalline

KC1 phase would contain no water]; for thenwe should have dn'/
=

dn'j
=

for each component, j, that is confined by nature to but a single one of the

two phases; but Eqs. (7-1-15) and (7-1-16) would continue to apply to all

other components that can coexist in both phases. Thus, the thermody-

namic potential of any component present in two homogeneous phases in

equilibrium with each other has the same value in both phases.

The usefulness of the equilibrium law (7-1-16) becomes further evident

when one observes that for the special case of a homogeneous chemical

substance of definite composition, since for such a substance, FTtP
= nFTtP,

Eq. (7-1-12) defining the thermodynamic potential in general reduces to

=
FT.P', the thermodynamic potential of a pure chemical substance is

equal to its molalfree energy at the given temperature and pressure.
1 There-

fore equilibrium data between the solution and its pure components, when
such equilibrium can be established, serve most directly to relate the

thermodynamic potentials in solution to the molal free energies of the

respective pure components. For example, the solubility of KC1 in

water at 25C and 1 atm (more precisely, in water saturated with air at 1

atm) is 4.81 mole/kg H 2O; therefore </>Kci in 4.81 molal aqueous solution

at 25 C and 1 atm is equal to F%gSfU for KCl(c). At the same time, the

vapor pressure of this solution at 25C is 20.021 mm Hg,
2 the equilibrium

vapor phase consisting of practically pure water vapor; therefore < H2o in

4.81 molal aqueous KC1 solution at 25C and 20.021 mm Hg is equal to

^H2o(g) at 25C and 20.021 mm Hg; by the methods of Chap. 6, this quan-

tity is equal approximately to

1 For this reason, certain authors have referred to the Gibbs free-energy function

U TS + pV itself as the thermodynamic potential (P. Duhem, "Le Potentiel

thermodynamique et ses applications," Hermann & Cie, Paris, 1886; P. S. Epstein,
"Textbook of Thermodynamics," John Wiley & Sons, Inc., New York, 1937). Gibbs

characteristically never gave a name to this function, to which he referred merely by
the symbol . It is useful, however, for us to reserve the expression "thermodynamic
potential" generally for the quantities <f>i, fa, . . .

,
< c ,

related to F by means of

Eqs. (7-1-12) ; for the special case of a homogeneous chemical element or compound,
whose composition is determined by nature, the value of the thermodynamic potential
then reduces to the molal free energy at the given temperature and pressure.

2 J. N. Pearce and R. D. Snow, /. Phys. Chem., 81, 231-245 (1927).
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- 0.1013 kcal/mole,

the approximations consisting of the assumptions that H 20(g) may be

treated as an ideal gas and that the change of /^oo) between 1 atm and

the vapor pressure of pure water at the given temperature, 23.756 mm Hg,

may be neglected. One readily perceives how from further vapor-pres-

sure measurements at lower KC1 concentrations in this particular case

(where the equilibrium vapor phase consists essentially of one of the pure

components) one could establish experimentally the value of 0H2o as a

function of KC1 or H 2 concentration and how by the application of Eq.

(7-1-9) to these results one could proceed to calculate < Kci through

graphical or numerical integration; the integration constant required in

order to fix the scale of < Kci values relatively to F 98 .i 6 for pure KCl(c)
would be determined by the data for the saturated solution. Details of

such calculations will be taken up in later sections of this chapter.

The equilibrium law (7-1-16) may be readily generalized for systems

consisting of more than two different homogeneous phases in equilibrium.

Thus, equilibrium condition (7-1-13) applied to the virtual exchange of

small quantities of the components among the several phases in equilib-

rium at uniform temperature and pressure takes the form

0[ dn{ + dn'2 + + # dric

(' dn(' + <' dn'1 +-+#' dn'

+ ...................... =0 (7-1-17)

subject to the conservation conditions

dn{ + dn'{ + dn{" + - - =

dn't + An'{ + dn'2
" + - - =

An9

. + An99 + dn'c
" + - =

(7-1-18)

. c

Equations (7-1-17) and (7-1-18) may be solved generally by means of

Lagrange's method of undetermined multipliers. Let us multiply the

first of Eqs. (7-1-18) by a constant Xi, the second by a constant \2, . . .
,

and the Cth by a constant Xc ,
whose values are to be subsequently deter-

mined, and add the resulting equations to Eq. (7-1-17); thus

(tf + XOdni + (<#>'/ + Ai)dni' + (*!" +XW +
A2)dn'2

" +

\c}dn'c + (^
= (7-1-19)
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Equation (7-1-19) represents the unconditional criterion for equilibrium

among the different phases at the given temperature and pressure, taking
into account the restrictions imposed by Eqs. (7-1-18), which represent

conservation of the total mass of each component throughout the system

(the more general situation in which chemical reactions may change the

masses of the components is to be discussed in Chap. 8). Now, the quan-
tities of any particular component in all but one of the different phases

may be varied independently in any arbitrary manner, so that for example
it should be possible in Eq. (7-1-19) to assign dn", dn"', . . . any values

whatever independently of the values assigned to the other dn's, the

value of dn{ then being left determinate so as to satisfy the first of condi-

tions (7-1-18). Therefore in order that Eq. (7-1-19) may be satisfied

unconditionally, no matter what virtual changes in the distribution of

component 1 among the several phases may be considered, it is first of all

necessary that

*" + Xx =

*i" + Xx =

Similarly, for each of the other components, it is necessary that

2 + X2 =
/7 + X2 =

*'/ + X =

ti" + Xc =

But Eq. (7-1-19) then reduces to

...+(# + \c)dn'c =

where the variations dn(, dn'2 ,
. . .

,
dn'c are no longer arbitrary, since

each is determined in accordance with one of Eqs. (7-1-18), but they are

none the less independent of each other. Therefore this equation is

satisfied in general only if we assign to the constants Xi, Xa, . . .
,
Xc ,

whose values have so far been undetermined, values satisfying the

equations

*i + Xi =

02 + X 2
=

*: + xc
- o
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Thus, the conditions necessary for equilibrium among the various phases

are

4>i
=

0'ii <fr'i
= (= Xi

=
*','

= *'" =(= -X2) (7-1-20)

thermodynamic potential of any component throughout a system in a

state of equilibrium necessarily has the same value in each phase in which it

may be present. For the reasons previously indicated, this law applies to

any chemical constituent of fixed composition present, regardless of

whether or not it happens to be convenient for the purpose of the particu-

lar investigation to consider it as one of "the" components; for one could

always select the components in such a way as to include among them any
one individual constituent, together with such others as would then

satisfy the requirements of Eq. (7-1-11), on which the proof of Eq.

(7-1-20) ultimately depends. Furthermore, the presence of phases in

which certain of the components do not appear at all, and in which their

thermodynamic potentials are therefore undefined, does not affect the

validity of Eqs. (7-1-20) as applied to all phases at equilibrium in which

the particular component does appear, as one can easily demonstrate by

generalizing the argument previously given in connection with two-phase

equilibrium.

The equilibrium law (7-1-20) is a special case of the general thermody-
namic proposition, (5-60),

(AF)r., ^ (W = 0)

Spontaneous changes (changes taking place in the absence of applied non-

thermal energy W) in a system maintained at constant temperature
and pressure tend invariably in a direction such that the total free energy
decreases toward an ultimate minimum consistent with the given tem-

perature and pressure. Now, according to Eq. (7-1-10), each component
of a homogeneous phase contributes to the free energy of that phase a

term of the form n^-; therefore the net free-energy change associated

with a change of state involving solely the transfer of a small quantity

An; of component i from one phase to another, not necessarily in equilib-

rium with it, has the general form

AF = Arc* ('<'
-

*{)

to a first order of approximation, assuming that the quantity An* trans-

ferred is sufficiently small so that the thermodynamic potentials & and

<'/ of the particular component in the first and second phases, respec-
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tively, are not significantly altered by the attendant changes in composi-
tions. According to (5-60), therefore, any component of a thermody-
namic system at constant temperature and pressure tends to move from
a phase in which its thermodynamic potential is higher to a phase in

which its thermodynamic potential is lower. Thus, we may infer that

KC1 in aqueous solutions at all concentrations lower than 4.81 moles/kg
HaO at 25C and 1 atm must have a lower thermodynamic potential than

that of pure KCl(c) at the same temperature and pressure, and likewise,

at all concentrations higher than 4.81 moles/kg H20, its thermodynamic

potential in aqueous solution at the given temperature and pressure must
be higher than that of pure KCl(c). The thermodynamic potential

serves as a measure of the substance's tendency to escape from the phase
in question.

1 The^ analogy between the thermodynamic potential of a

chemical substance and the potential functions encountered in mechanics,
such as the hydrostatic potential, the gravitational potential, the electro-

static potential, etc., was pointed out by Gibbs, to whom we owe its name.

The potentials of mechanics are characteristically determined solely by

position with respect to other bodies; the thermodynamic potential of a

material substance is determined analogously solely by the thermody-
namic state of the phase in question, as represented by its temperature,

pressure, and composition. We shall observe in Chap. 8 how the thermo-

dynamic potential measures the tendency of the chemical substance to

participate in chemical reactions at constant temperature and pressure,

chemical reaction being in this respect a means whereby the substance

may disappear from a phase in which its thermodynamic potential is

sufficiently high or appear in a phase in which its thermodynamic poten-

tial is sufficiently low.

If the number of components has been correctly assigned, then the

total free energy of a solution is completely determined, except possibly

for an arbitrary additive constant, by the temperature, the pressure,

and the quantities of the components present; expressed formally:

F = F(T, p, ni, n2, . . . , We), where F satisfies the differential equation

(7-1-11). The change of the thermodynamic potentials fa, fa, . . .
, fa

themselves with composition at given temperature and pressure is

described in general by Eq. (7-1-7). We may derive equations for the

change of any thermodynamic potential with temperature or pressure at

fixed composition by applying to Eq. (7-1-11) Euler's criterion for dF to

be a perfect differential in terms of the independent state-determining

variables T, p> n\, n% . . . ,
nc ; thus

1 Lewis and Randall, op. cit., coined the perspicuous expression "escaping tendency"
in this connection.
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p,n

TtP,n'

where for short we have used the subscript n to denote that each of the

quantities HI, n 2,
. . .

,
nc is held constant during the one differentiation,

and the subscript nf
to denote that each of them except the one with

respect to which the differentiation is being carried out is held constant in

the other. The quantity on the right of Eq. (7-1-21) we recognize as the

negative of the partial molal entropy, n, of component i, and the quantity
on the right of Eq. (7-1-22) as the partial molal volume, v*, of component i,

[d<f>i

P,n

= Vi (7-1-24)

The partial molal volumes of the components may be evaluated from

experimental data for the volume changes on combining the components
in various proportions by essentially the same mathematical techniques

that were described in Sec. 4-5 for the evaluation of partial molal enthal-

pies from heats of solution. For liquid and solid solutions generally, the

relatively small magnitudes of the partial molal volumes imply that the

thermodynamic potentials of the components are relatively insensitive to

the pressure, just as the molal free energy of a pure liquid or solid is insen-

sitive to variations in the pressure; for pressure variations of order 1 atm
or less, one may ordinarily disregard the effect of pressure on the thermo-

dynamic potentials in liquid or solid solutions (see footnote on page 337,

Sec. 7-3).

Equation (7-1-23) may be conveniently transformed by a method

similar to that used on Eq. (6-9) ; thus, by applying the definitions of the

partial molal quantities to the general relationship defining F,

O =
fp

it follows that for a solution

-,< =
*L^J (7-1-25)

where ijt
-

represents the partial molal enthalpy of component i at the given

temperature, pressure, and composition, as introduced in Sec. 4-5. Sub-
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stituting in Eq. (7-1-23) and rearranging terms,

1 m
n ~T- T

This equation reduces to the forms

I -ST
= ~ % (7-l-26a)

L UI JP.W *

or

= K (7-1-266)

Thus, the change of any fa with temperature depends on 17; for the particu-

lar component in the same way that the change of F for a substance of

fixed composition depends on H [compare Eqs. (6-12) and (6-13)]; and in

the same sense, the change of any fa with pressure, according to Eq.

(7-1-24), depends on i;t
- in the same way that the change of F for a sub-

stance of fixed composition depends on V [compare Eq. (6-10)]. Equa-
tions (7-1-24) and (7-1-23) or (7-1-26) serve when the necessary thermal

and equation-of-state data for the solution are available to determine each

fa at other temperatures and pressures, once its value for the particular

composition has been established at some standard reference temperature
and pressure; conversely, measurement of the temperature or pressure

coefficient of any fa for a particular composition serves as an indirect

means of establishing the value of rji or y,-, respectively.

In the following sections, we take up specific methods of establishing

the values of the thermodynamic potentials in various types of solutions

important to chemical thermodynamics. One should recognize that

from the standpoint of general theory the possibility of change of com-

position has introduced new variables into the problem, whose effects on

the thermodynamic properties cannot be foreseen by purely thermody-
namic reasoning. There is no purely thermodynamic connection between

the properties of the solution and the properties of the pure components;

rather, our objective in the study of solutions must be to establish by
experimental observation, guided possibly by empirical or theoretical

generalizations of nonthermodynamic origin (analogous for example to

the ideal-gas equation of state), how the properties of a particular solution

actually are related to the properties of the components and the composi-
tion. Thermodynamic reasoning then interrelates the properties in a

manner conducive to systematic economy, so that, for example, from

measurements of the partial vapor pressure of H 2S in aqueous solution,

one can predict the effect of HjS concentration on the equilibrium state
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of a chemical reaction involving H 2S in aqueous solution, or from meas-

urements of the vapor pressure of B^O from aqueous sucrose solutions,

one can predict the osmotic pressures of those solutions. Empirical
establishment of the values of the thermodynamic potentials 0i, 2,

. . .
,

C (or of appropriate functions of these fundamental quantities) as func-

tions of the composition at given temperature and pressure, relative to the

molal free energies JP\, F2,
. . .

,
Fc of the pure components, constitutes

the experimental problem whose answer comprehends the general thermo-

dynamic behavior of the solution in the systematically most simple form.

7-2. Gaseous Solutions. In order to establish the values of the

thermodynamic potentials of the components in a gas mixture, it would
be convenient according to the principle established in Sec. 7-1 if we could

determine the conditions under which the respective pure components
would be in equilibrium with the mixture; for then the thermodynamic

potentials would be equal, respectively, to the molal free energies of the

pure components, and we have already seen in Sec. 6-1 how to calculate

the molal free energy of a pure gaseous substance (characterized by
invariant composition) at various temperatures and pressures relative to

its value in some arbitrary reference state. Now, equilibrium with the

mixture could be established with respect to any single pure component
if we had a semipermeable diaphragm serving as a window of the con-

tainer which would permit the free transfusion of the one gas but not that

of the others. In a few cases, this technically difficult experiment has

actually been carried out; thus, by making use of a palladium window,
which at temperatures around 300C is permeable to hydrogen but not to

nitrogen, Sir William Ramsay was able to establish equilibrium between

pure hydrogen gas on the one side and a mixture of hydrogen with

nitrogen (and with certain other gases, such as CO and CO2, to which

palladium is also impermeable at the given temperature and sufficiently

low pressures) on the other. 1
Experiments of this nature, while not pre-

cise, on account of the slowness with which equilibrium is attained, have

afforded direct confirmation in the low-pressure range of the concept pro-

posed originally by John Dalton that to a first approximation, the con-

stituents of a gas mixture behave independently of each other, contributing
to the total pressure, for example, terms equal to the pressures each would

exert in the absence of the other constituents. 2
Thus, in Ramsay's

experiments, the increase of pressure observed on the nitrogen side of the

palladium septum upon exposure to pure hydrogen on the other side was
1 W. Ramsay, Phil. Mag., (5) 38, 206-218 (1894).
2 J. Dalton, Mem. Manchester Lit. & Phil. Soc., (2) 1, 244-258 (1805) ;

this paper

appears in Alembic Club Reprint 2, published for the Alembic Club by Oliver & Boyd,
Ltd., Edinburgh and London, 1923.
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found to be approximately equal to the pure hydrogen pressure, so that

one is justified in supposing that at sufficiently low total pressures (of

order 2 atm or less in Ramsay's experiments), nitrogen and hydrogen in

each other's presence continue to exert the same pressures as though the

other component were not there. Because of mechanical difficulties,

unfortunately, such direct equilibrium measurements have not been

feasible at high pressures, where one would surely expect to find that, in

general, the increase of total pressure resulting from the presence of the

second component would influence the equilibrium pressure of the first.

In most cases, we do not have experimental means by which the true

equilibrium pressures of the pure components can be observed directly at

all, much less measured precisely, and we are therefore compelled to rely

on more or less indirect evidence. Many gas mixtures can be treated

with sufficient accuracy, particularly in the low-pressure range, by means

of Dalton
9

s law of partial pressures: Each constituent contributes to the total

pressure a partial pressure (Dalton pressure) equal to the pressure it would

exert if it alone were present at the given temperature in the volume occupied

by the mixture. We may put Dalton's law in precise mathematical form

as follows, bearing in mind that experimental p-V-T data for gases are

commonly represented in terms of the compressibility factor z = pV/RT
(or alternatively in terms of pV/(pV)^ where (pF)o represents the pres-

sure-volume product of an arbitrary reference quantity of the gas at some
standard temperature and pressure, such as 0C and 1 atm). Let V rep-

resent the volume per mole of gas mixture, V = V/(HI + rc 2 + + nc )

at the given temperature T and pressure p; then F/r/ will represent the

volume per mole of component i, where y* is its mole fraction. 1 In other

words, if component i alone were to occupy the volume of the mixture at

the given temperature, then its molal volume would be V/y*. Let pi rep-

resent the Dalton partial pressure of component t; then, by definition:

where V, is the molal volume of pure component i at temperature T and

pressure p; thus

Multiplying numerator and denominator of the term on the right by p,

(Dait np<) (

1 In this chapter, where we shall have occasion to discuss liquid-vapor equilibrium,
we use yi to denote the mole fraction of component i in the gas phase, retaining x% to

denote its mole fraction in particular in a liquid or a solid phase.
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where Zi(T, p^ represents the compressibility factor of pure component i

at T and p, and z(T, p) represents the compressibility factor of the mix-

ture at T and p. Equation (7-2-1) may be solved for p* by means of suc-

cessive approximations, given the value of z (or of pV) for the mixture,

and experimental data for Zi (or piVi) at the given temperature expressed

as a function of p^ The experimental test of Dalton's law consists of

comparing the sum of the Dalton partial pressures so derived from equa-

tion-of-state data for the pure constituents with the actual pressure of the

mixture. Table 7-1.presents data for a mixture of hydrogen and nitrogen,

selected from the extensive work of E. P. Bartlett and his associates; for a

mixture of hydrogen and carbon monoxide, selected from the work of

Townend and Bhatt; and for a mixture of argon and ethylene, selected

from the work of Masson and Dolley. The Dalton partial pressures

satisfying Eq. (7-2-1) are given in the fifth and sixth columns of this

table, and their sums in the seventh column; one sees that Dalton's law

is quite satisfactory for these gas mixtures at pressures of order 50 atm or

less, but at pressures beyond 100 atm, it becomes increasingly unreliable

as the total pressure is further increased.

Some gas mixtures, including the H 2-N2 and the H 2-CO mixtures under

the conditions of Table 7-1, show better agreement in the high-pressure

range with Amagat's law of additive volumes: 1 The volume occupied by
the gas is equal to the sum of the volumes each pure constituent would

occupy if it were separately at the temperature and pressure of the mixture.

Amagat's law is equivalent to the supposition that each constituent

contributes to the total pressure a term equal to the pressure it would

exert if it alone occupied the volume of the mixture, but if its compressi-

bility factor corresponded to the pressure p of the mixture instead of to

its own partial pressure. For according to Amagat's law,

V yc

where the molal volume of the mixture V and the molal volumes of the

pure constituents Fi, Vz, . . .
,
Vc are all taken at the temperature T

and pressure p of the mixture; therefore

pV
(pVi) , (pV*) , , (pVc)

p =
2/ip ^rf + y*pf^ + - + ycpc

(pV) (pV) (pV)

1 Named after the French physicist E. H. Amagat who during the latter part of the

nineteenth century extended H. V. Regnault's pioneer work on the physical properties

of gases to really high pressures (as high as 3000 atm). The law is also known as

Leduc's law of partial volumes; see A. Leduc, Compt. rend:, 126, 218-220 (1898).
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TABLE 7-1. COMPRESSIBILITIES AND PARTIAL PRESSURES OF GAS MIXTURES

Hydrogen-Nitrogen at 0C*

Hydrogen-Carbon Monoxide at 25Cf

Argon-Ethylene at 24.95Ct

* Compressibility data of E. P. Bartlett, H. L. Cupples, and T. H. Tremearne, J. Am. Chem. Soc.,
00, 1275-1288 (1928). For each gas, pV = 1.0000 at 0C and 1 atm; therefore the compressibility
factor ratios appearing in Eqs. (7-2-1) and (7-2-2) for yN2 0.25 and 3/H2

= 0.75 have been computed
as follows;

*N2 _ 1.0005 (pV) for N*
z

0.9994 (pV) for Hi
0.9995 (pV) for mixture* z 0.9995 (pV) for mixture

(the factors 1.0005/0.9995 and 0.9994/0.9995 correct for slight deviations from ideal-gas behavior at
standard conditions, 0C and 1 atm).

t Compressibility data of D. T. A. Townend and L. A. Bhatt, Proc. Roy. Soc. (London), (A) 134,
502-512 (1931). For each gas, pV 1.0000 at 0C and 1 atm; the compressibility factor ratios appear-
ing in Eqs. (7-2-1) and (7-2-2) for yco 0.3333 and i/H2 0.6667 have been computed as follows:

*CO _ 1.0918 (pV) for CO fnz m 1.0909 (pV) for ff2

z
*

1.0909 (pF) for mixture* z
""

1.0909 (pV) for mixture

% Gas-density data of I. Masson and L. G. F. Dolley, Proc. Roy. Soc. (London), (A) 103, 524-538
(1923)

%
. For each gas, pV - 1.0000 at 24.95C and 1 atm; correction for deviation from ideal-gas

behavior at 1 atm has been neglected in the above computations.
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We may therefore define Amagat partial pressures by expressions of the

form

where z(T, p) represents the compressibility factor of the mixture at the

temperature T and the pressure p and Zi(T, p) represents the compressi-

bility factor of pure component i at the same temperature and pressure.

In the eighth and ninth columns of Table 7-1, Amagat partial pressures

have been computed according to Eq. (7-2-2) from the experimental data;

their sums, given in the last column of the table, show that Amagat's law

is in excellent agreement with the data for the H 2-N2 and the H 2-CO mix-

tures, even at the highest pressures recorded. That this is not univer-

sally true is shown by the comparatively poor agreement in the case of the

argon-ethylene mixture.

From the kinetic molecular point of view, Dalton's law corresponds to

the supposition that the molecules of each constituent gas behave entirely

independently of those of the other constituents, though not necessarily

of each other. Amagat's law, on the other hand, corresponds to the sup-

position that the molecules of all the constituents exert the same effects

on each other, including molecules of the same and of different kinds, as

they would exert in the pure state at the same total pressure. Now, for

the H2-N2 and the H2-CO mixtures represented in Table 7-1, at the

respective temperatures 0C and 25C, both pure components in either

case at pressures exceeding 100 atm are in regions where the compressi-

bility factor is increasing with pressure ;
in other words, the van der Waals

"b" effect (finite molecular dimensions) predominates in this region over

the "a" effect (intermolecular attraction). This is evident in Fig. 7-1,

where the compressibility factors of H 2 ,
N 2 ,

and the 3H 2-N2 mixture have

been plotted at 0C against the pressure; one sees that between 250 atm
and 1000 atm, zN2 increases from 1.086 to 2.069, while over the same pres-

sure range, 2Ha increases from 1.176 to 1.715. It is therefore not sur-

prising to find that if one were to start with pure N 2 at 0C and 250 atm,
and increase the total pressure by adding hydrogen, the contribution of

N 2 to the total pressure would increase, while likewise, the contribution

of H 2 to the total pressure of the mixture would be greater than its pres-

sure in the pure state at the temperature and volume of the mixture; in

other words, we find that the compressibility of N 2 in the mixture is

reduced on account of the finite space occupied by the H 2 molecules to

about the same extent to which it would be reduced if one were to com-

press additional N 2 molecules (instead of the H 2 molecules) into the con-

tainer until the pressure reached the same value. A similar conclusion
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may be drawn from Fig. 7-2, where the compressibility factors of H2, CO,
and the 2H 2:1CO mixture at 25C have been plotted against pressure.

The case of argon-ethylene mixtures is rather different (Fig. 7-3) ; ethylene

at 25C is still far below its Boyle point, and at pressures up to 80 atm,

the effect of intermolecular attraction evidently predominates greatly

over the effect of finite molecular size on the compressibility; for argon,

2.1.
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FIG. 7-1. Compressibility factors of N2, H 2 ,
and N2.*3H 2 mixture at 0C. (From data of

E. P. Bartlett, H. L. Cupples, and T. H. Tremearne.)

on the other hand, the effect of intermolecular attraction at 25 C must be

relatively insignificant. In these circumstances, it is not surprising to

find that, at least up to 100 atm, the presence of the argon molecules has

comparatively little effect on the behavior of the ethylene molecules, as

shown by the better agreement of the mixture with Dalton's law rather

than with Amagat's law. There is, however, some indication from the

trend of the data that at pressures beyond 125 atm, Amagat's law might
come to fit the data better than Dalton's law.
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FIG. 7-2. Compressibilities of H 2, CO, and CO : 2H 2 mixture at 25C. (From data of D. T.

A. Townend and L. A. Bhatt.)
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FIG. 7-3. Compressibilities of argon, ethylene, and 50.05 mole per cent argon-ethylene
mixture at 24.95C. (From data of I. Masson and L. G. F. Ddley.)
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If we had a mixture at moderately high pressure of two gases both well

below their Boyle points, so that intermolecular attraction would be a

dominant influence over its behavior, then the specific intermolecular

attraction between the two different kinds of molecules might be quite

different in magnitude from the attractions between like molecules; in

such a situation, neither Dalton's law nor Amagat's law could be expected

to give a satisfactory description of the behavior at pressures beyond the

ideal-gas-law range. H. A. Lorentz carried out an extension of van der

Waals' theory to binary gas mixtures,
1
obtaining an equation of state

similar in form to van der Waals' original equation, but with constants a

and 6 dependent on the composition in the form (per mole of gas mixture)

a = any
b = bnyl + 26i 2j/i2/2 + 6222/2

In these equations, an and 6n represent the van der Waals constants of

the one pure component gas, and a22 and 6 22 the corresponding constants

for the other; a^ and 612 represent additional empirical constants allowing

for the mutual interaction between the two different kinds of molecules.

Since van der Waals' equation is itself too crude to be of practical value,

the form assumed by this extension to binary mixtures is indicative,

rather than actually useful. W. B. Kay has shown that the generalized

compressibility factor chart shown in Fig. 6-1, based on the theory of cor-

responding states, may be applied with some degree of satisfaction to gas

mixtures, provided that one assigns a pseudocritical temperature and

pressure for the purpose of computing the reduced temperature and pres-

sure of the mixture; these pseudocritical constants may be estimated by

averaging the values for the pure components, in the forms

T'c = y l(Tc) l

PC
=

2/l(Pc)l

and they are generally lower than the actual critical constants for the mix-

ture; the compressibility factor z of the mixture may then be estimated

from the chart as in the case of a pure gas having critical constants equal to

the pseudocritical values. 2 Direct experimental p-F-7
7 data for gas mix-

tures at high pressures are still comparatively scarce, although there is a

steadily growing body of such information. 3

1 H. A. Lorentz, Ann. Physik u. Chem., 12, 127-136 (1881).
2 W. B. Kay, Ind. Eng. Chem., 28, 1014-1019 (1936).
8 Attention is called to the work of B. H. Sage and W. N. Lacey with their associates

at California Institute of Technology on hydrocarbon mixtures; for a complete list of

the published papers hi this important series covering 1934 through March, 1949, see
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Now, in the low-pressure ideal-gas range, both Dalton's law (7-2-1) and

Amagat's law (7-2-2) reduce to

pi
= yip (ideal gas p^ (7-2-3)

where, for each component,

(ideal gas p<) (7-2-4)

If over the pressure range under consideration, the pure components

satisfy the ideal-gas law within sufficient accuracy for one's purpose, then

their partial pressures in the mixture, whether defined in the Dalton or the

Amagat sense, are given by Eq. (7-2-4), where Ui denotes the number of

moles of component i present in the volume V of the mixture. Certainly
in this case, the partial pressures calculated according to either Eq. (7-2-3)

or Eq. (7-2-4) must agree with the pressures at which the respective pure

component gases would be in equilibrium with the mixture through hypo-
thetical semipermeable diaphragms appropriate to each gas (as has

actually been demonstrated in certain cases by the experiments of Ramsay
previously described). Therefore in accordance with the equilibrium

principle outlined in Sec. 7-1, together with Eq. (6-17) which relates the

molal free energy of a pure ideal gas of fixed composition to its pressure at

given temperature, the thermodynamic potential of each component of an

ideal-gas mixture at given temperature T must be given by an expression
of the form

=
(Ffii + RT In p + RT In yi (ideal gas) (7-2-5)

where (F); represents the standard molal free energy of pure component
i as a gas at the temperature T (and at 1 atm, within the accuracy of the

ideal-gas-law approximation) .

The total free energy per mole of ideal-gas mixture, in view of Eq.

(7-1-10) and Eqs. (7-2-5), is given by

+ RT In p] + 2/ 2[(F?) 2 + RT In p] +
+ RT In p] + VlRT In Vl + y*RT In y, +

In ye

Ind. Eng. Chem., 41, 474 (1949). Masson and his associates have reported work on

oxygen-ethylene, argon-oxygen, argon-hydrogen, and argon-helium mixtures, as well

as the argon-ethylenc mixtures referred to in Table 7-1 [I. Masson and L. G. F. Dolley,

Proc. Roy. Soc. (London), (A) 103, 524-538 (1923); C. C. Tanner and I. Masson,

ibid., (A) 126, 268-288 (1930)]. Data for Nz-CEU mixtures are given by F. G. Keyes
and H. G. Burks, /. Am. Chem. Soc., 50, 1100-1106 (1928).
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This equation may be rearranged in the form

FT,,
-

yi[(P$i + RT In p]
-

yJt(F*)i + RT In p]
-

e + RT In p]
= RT(y l In y 1 + y2 In y* +

+ yc In T/C)

The expression on the left represents the difference between the free

energy of the mixture and the sum of the free energies of the pure com-

ponent gases, each at the same temperature T and pressure p as the mix-

ture; the expression on the right must therefore correspond to the ideal

free energy of mixing, when each pure component is originally at uniform

temperature T and pressure p, and the mixture is finally at the same tem-

perature T and pressure p,

A/V.p = RT(yi In y l + y, In y, + + yc In yc) (7-2-6)

This ideal-gas free energy of solution is independent of the particular uni-

form pressure at which the gases are permitted to mix. The entropy of

mixing is related to the free energy of mixing in general by the equation

Therefore over a temperature range in which the gas mixture continues to

satisfy the ideal-gas law at the given pressure:

ASr.p = -R(yi In y + y 2 In y 2 + + yc In ye) (7-2-7)

This ideal-gas entropy of solution is independent of the particular uniform

temperature as well as of the particular uniform pressure at which the

mixture and the pure components are compared. Since the mole frac-

tions yi, y*, . . .
9 y are all necessarily positive numbers smaller than 1,

the value of A/Sr,P is essentially positive, corresponding to the fact that

interdiffusion of the component gases is a thermodynamically irreversible

process. The enthalpy of mixing is related to AFr.p and ASr ,p in general

by
p + T

Therefore, according to Eqs. (7-2-6) and (7-2-7), the enthalpy of solution

in the case of an ideal-gas mixture is zero
;
in other words, the free diffusion

of one gas into another at uniform temperature and pressure is accom-

panied by no net exchange of thermal energy with the surroundings. If,

for example, one conducts a Joule experiment (compare Sec. 3-5) with

different gases at the same pressure on either side of the stopcock, instead

of with a gas on one side and a vacuum on the other, then when the stop-
cock is opened the two gases intermix, exchanging no net heat with the
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surroundings, provided that the original pressure is sufficiently low so

that the ideal-gas law is satisfied. One will note that in this experiment,
the total entropy increases by the same amount as though each compo-
nent gas had separately expanded at the given temperature from its

initial to the final volume; for if Vi represents the initial volume of the one

gas and F2 the initial volume of the other, and if V represents their final

combined volume (
= Vi + F2), then for an ideal-gas mixture, yi = Fi/F

land 2/2
= F2/F, whence according to Eq. (7-2-7) the entropy change per

mole of gas mixture is given by AS R[yi In (Fi/F) + yz In (F2/F)];

but the terms Ryiln (Fi/F) and Ryzln (F2/F) according to Eq.

(6-46) represent, respectively, the entropy changes per yi mole of compo-
nent 1 in expanding from FI into F and per y 2 mole of component 2 in

expanding from F2 into F. A similar conclusion evidently applies to

the mixing of more than two ideal gases.

Equation (7-2-7) raises a significant issue discussed by Gibbs, which

gives us further insight into the nature of thermodynamic investigation.
1

Suppose we conduct a Joule experiment such as has just been described,

using two different gases at equal initial pressures on either side of the

stopcock; then, supposing for concreteness that the two halves of the con-

tainer have exactly equal volumes, the change of entropy taking place

after the connecting stopcock has been opened allowing the gases to inter-

diffuse is equal to R In 2 per mole of gas in the mixture. We recognize

this calculated value of the entropy change as a measure of deferred
"
degradation

"
of energy. Since in this experiment no work is done and

no heat is exchanged with the surroundings, there has been no immediate

change in the relationship of the system to its surroundings to correspond
to the obvious change that has taken place in the state of the gas. Our

experience summarized in the second law of thermodynamics leads us,

however, to the discovery that if at some future time we wish to separate
the two gases, restoring the system to its original state, then this can be

accomplished only to the accompaniment of certain inevitable changes in

the surroundings, changes equivalent to the conversion of a certain quan-

tity of energy in nonthermal form to energy in thermal form; the entropy

change that has taken place measures how large this quantity of energy
has to be, in the sense that it will be at least equal to T* AS (RT* In 2 per
mole of gas mixture, in the particular example under discussion), where

T* represents the temperature of the coldest part of the surroundings
available to receive the expended thermal energy at the time the transac-

tion is completed. Now, suppose we conduct a similar experiment, using
instead two samples of the same gas at equal pressures on either side of the

stopcock. When the stopcock is opened, again no exchange in any form
1
Gibbs, op. cit., pp. 165-168.
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of energy with the surroundings takes place, but now we say that neither

is there a change of entropy. If one could conduct a detailed examination

that would distinguish the individual molecules, one would undoubtedly
have to conclude that the gas could not be separated again into identically

the same two portions without leaving a "permanent" change in the sur-

roundings, just as in the case of the two different gases. It is precisely

because we do not distinguish such differences in thermodynamic investi-

gation that we assign no entropy change to the self-diffusion of the one

gas; we say that the entropy of the two portions when " mixed " is the

same as it was before the stopcock was opened, not necessarily to imply
that no change whatever has taken place in the gas occupying either half

of the container, but in the sense that we are unable to perceive any such

change by the relatively insensitive methods of thermodynamic experi-

mentation, where we are always observing average properties of huge
assemblies of molecules. Quantum mechanics, indeed, goes so far as to

deny altogether any distinction between states of a molecular system

differing only by the interchange of identical particles (such a distinction,

if it existed, would serve of itself as a means of discriminating between the

supposedly identical particles). It is therefore meaningless to speak of a

hypothetical change that might restore the individual molecules of the

gas to the respective halves of the container in which they were originally

confined, because no operation exists by which such a state could be dis-

tinguished from other states in which the same numbers of molecules

(regardless of individuality) are present on either side (including the

state produced merely by the reclosing of the stopcock at any arbitrary

time after it has been opened).
A pertinent question arises in regard to isotopic composition of the

chemical elements. Chlorine, for example, consists of Ci 35 and Cl 37 in

0.754:0.246 proportion, so that the entropy of the normal isotopic mix-

ture is greater by #(0.754 In 0.754 + 0.246 In 0.246) units per gram-
atom than the entropy of the separated pure isotopes. Which is the

proper reference base for the thermodynamic properties of chlorine and

its compounds? It all depends on our purpose. So long as we are deal-

ing exclusively with ordinary physical or chemical transformations that

leave the isotopic ratio sensibly unchanged, there is no point in carrying
the entropy of isotope mixing, because this term would only cancel out of

all calculations; ordinary physical and chemical transformations do not

in fact discriminate between the two isotopes, and therefore the existence

of the two kinds of isotopes has no bearing on the ordinary thermody-
namic properties of chlorine. But in problems of the enrichment of

isotopes, or in other situations where the isotopes are distinguished from

each other by some significant difference in behavior (e.g., in tracer
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studies, where the tracer is distinguished either by means of the mass

spectrograph or by means of its radioactivity), then the entropy of mixing
becomes significant.

At first sight, it may appear strange that the ideal entropy of mixing
does not depend in any way on the particular nature of the substances

involved. It is just as large for two substances such as the chlorine

isotopes, that are all but indistinguishable by ordinary methods of investi-

gation, as for substances that are easily distinguished, such as oxygen and

nitrogen. On reflection, however, one realizes that one either has a

method by which the constituent substances can be distinguished (and
which could always be extended in principle to provide a means of sepa-

rating them), or has not. So long as one has not, the question of a possi-

ble separation never arises, and the question of a possible entropy of mix-

ing has no meaning; as soon as one has such a method, then it becomes

obvious that a mixture such as the chlorine isotopes is just as thoroughly

scrambled, no more nor less, as a mixture in similar relative proportion of

oxygen with nitrogen. The entropy of mixing measures precisely this

degree of "mixed-up-ness," which is recognized as soon as one has dis-

covered a means of distinguishing the constituents, however slight the

distinction may be, and however technically difficult the means of

separation.

Equation (7-2-5) contains the answer to our problem of how the thermo-

dynamic potentials of the components are determined in an ideal gas mix-

ture. In a gas mixture at high pressure, outside the ideal-gas range, the

partial pressures of the components have no clearly defined significance.

As we have noted, the partial pressures defined by Dalton's law are in

general not equal to the partial pressures defined by Amagat's law, nor

have we reason to believe that either of these partial pressures would be

equal to the pressure at which the particular pure component would be in

equilibrium with the mixture through a hypothetical selective diaphragm
suitable for the purpose. Furthermore, the sums of these three differ-

ently defined sets of partial pressures do not necessarily equal the actual

total pressure. For thermodynamic purposes, the partial pressures are

of no consequence in themselves, however they may be defined, but serve

merely as convenient reference bases in relation to the thermodynamic
potentials, which are the truly significant and rigorously defined thermo-

dynamic properties of the mixture. It is customary therefore tor formal

partial pressures to be defined by means of equations formally identical

with (7-2-3):

Pi = y^P (formal p^ (7-2-8)

In the low-pressure range, where the ideal-gas law is applicable, partial

pressures so defined are identical with the experimentally determined
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Dalton and Amagat partial pressures, and presumably also with the

thermodynamic equilibrium pressures of the respective pure components

(as conceived through the agency of appropriate selective diaphragms) ;

but at high pressures, they have purely formal significance, bearing no

special relation to the behavior of the gas except as conventional forms

for representing its composition.
1 The thermodynamic potentials are

then conventionally translated into fugacity coefficients by means of

expressions of the form

+ RT\np + RT In y< + RT In < (7-2-9)

where (/*),- represents the standard molal free energy of pure component i

as a gas at T and j>< represents its fugacity coefficient in the mixture,

defined by Eq. (7-2-9). In view of the ideal limiting form (7-2-5), we may
take

lim vi = 1 (7, 2/1, 2/2, . . .
, yc const) (7-2-10)

for each component at any composition. The mathematical advantages

gained by the introduction of fugacity coefficients for gas mixtures are

similar to those gained by the introduction of fugacity coefficients for pure

gases (compare Sec. 6-1); they vary much less rapidly with p than the

thermodynamic potentials themselves, and in particular remain finite,

satisfying Eq. (7-2-10), in the ideal-gas limit as p > 0; furthermore, as we
shall see in Chap. 8, they represent factors by which each formal partial

pressure must be multiplied in the thermodynamically exact form of the

familiar law of mass action for gas reactions. The first three terms on the

right of Eq. (7-2-9) represent the "ideal" part of fa, while the last term

represents the effect on fa of deviation of the gas mixture from ideal

limiting behavior, as represented by the ideal-gas law combined with

Dalton's law of partial pressures. The different fugacity coefficients at

given temperature and pressure vary with composition in ways that are

related through the Gibbs-Duhem equation (7-1-8), which assumes the

1 One occasionally finds references to Eq. (7-2-8) itself as Dalton's'law. This usage
is correct only when the compressibility factors of the pure components at the respec-
tive pressures pi, p 2 , . . .

, pe given by Eq. (7-2-8) happen to be equal to the com-

pressibility factor of the mixture at the pressure p [compare Eq. (7-2-1)]. This is

generally not the case at high pressures, even for a mixture satisfying Dalton's law

in the sense that the sum of the Dalton partial pressures given correctly by Eq.

(7-2-1) agrees with the actual total pressure. For kinetic as opposed to equilibrium
studies of gases at high pressures, the question of what constitutes the true contribu-

tion of each component to the total pressure may be of considerable importance in

itself.
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form

yi d In vi + 2/2 d In *>2 + + yc d In vc = (T
7

, p const) (7-2-11)

We may measure the fugacity coefficients (or the equivalent thermody-
namic potentials) exactly from detailed equation-of-state data for the

mixtures at various compositions and pressures, at the given temperature.

Thus, according to the basic equation (7-1-24),

= Vi
r,n)

From the partial molal volume v of any component, established from the

experimental data at any particular composition as a function of the

pressure, we could integrate this equation, and thus derive the value of fa

directly at the given composition and various values of the pressure. It

is convenient, however, for us to express this relationship in terms of the

fugacity coefficient Vi and the compressibility factor z s= pV/nRT of the

mixture, both of which vary much less rapidly with p than fa or v; intro-

ducing Eq. (7-2-9), which defines Vi in relation to fa,

(d In v\

\ dp /T,n

RT
P

In v\ = pvj _
RT

Now, from the nature of their definitions, the partial molal volumes are

related to the molal volume V of the mixture at given temperature and

pressure by the equation

Therefore

RT

In other words, the quantities

f< - H (*
-

1, 2, . . .
, c) (7-2-13)

are related to z in the same way that v\, v%, . . .
,
vc are related to V

;
we

may call them partial molal compressibility factors. In the case of a

binary mixture, for example, we may calculate their values at given tem-

perature and pressure from experimental values of z expressed as a func-

tion of composition by the same graphical techniques that were described

in Sec. 4-5 for the calculation of partial molal enthalpies from B values
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for the solution expressed as a function of composition; thus, if we plot z

vs. t/2, as in Fig. 7-4 where Bartlett's data for N 2-H 2 mixtures at 0C are

given and Fig. 7-5 where the data of Masson and Dolley for argon-

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 I.Q

FIG. 7-4. Compressibility factors of N2-H2 mixtures for various fixed pressures at 0C.
[From data ofE. P. Bartlett, J. Am. Chem. Soc., 49, 687, 1955 (1927).]

ethylene mixtures at 24.95C are given, then the tangent to any of these

isopiestic curves at a given value of the composition intercepts the y* =

and the 2/2
= 1 axis, respectively, at the values of f i and f 2 corresponding to

the given pressure and composition.
1 Having established the value of

1 Where the experimental data have been reported in the form of pV/(pV)o relative

to an arbitrary quantity of gas for which pV = (pV)o = 1.0000 at some standard

reference condition, such as 0C and 1 atm (as in Table 7-1), then since at any tem-

perature lim (pV)r = nRT, therefore z = (pF)r/lim(p7)r; one may readily compute

the z values by dividing the tabulated values of pV/(pV)o at the given temperature by
the limiting value for p > at the same temperature. The error will generally not



THERMODYNAMIC BEHAVIOR OF MIXTURES 325

any f,- by such means at various values of the pressure for a particular

value of the composition, one may then evaluate Vi at that composition

for various values of the pressure by integrating Eq. (7-2-12) in the form

log Vi = I
P=P

(Si
-

l)d log p (T, yi , yt,
. . .

, yc const) (7-2-14)
Jp=*0

the value of log ^ vanishing at the lower limit of integration, p =
0, in

f.Or

FIG. 7-5. Compressibility factors of argon-ethylene mixtures for various fixed pressures at

24.95C. (From data of I. Masson and L. G. F. Dolley.)

accordance with (7-2-10) ;
the value of the integral may be conveniently

determined graphically from a plot of the quantity (ft 1) vs. log p.

In Figs. 7-6 and 7-7, fugacity coefficients for N2 and H 2 in their mixtures

at 0C are presented, from calculations made by Merz and Whittaker

based on the experimental data of Bartlett summarized in Fig. 7-4
j

1

Fig. 7-6 presents the fugacity coefficients for various values of the com-

position plotted as functions of the pressure; Fig. 7-7 presents the same

data plotted at three selected values of the pressure as functions of the

composition (i.e., of yN^) . Figures 7-8 and 7-9 present similarly the fugac-

ity coefficients of argon and ethylene in their mixtures at 24.95C, as

be appreciable if one divides by the value of pV/(pV)v at 1 atm, in place of the true

limiting value as p (which would correct for the deviation from ideal-gas behavior

at 1 atm itself); thus, if the data are tabulated with pV/(pV) Q
- 1.0000 at 0C and

1 atm, the error will be slight if one takes the tabulated values of pV/(pV)o themselves

as equal to z at 0C, and of pV/(pV) multiplied by 273.16 deg/2
7
for z at other

temperatures T.
i A. R. Merz and C. W. Whittaker, /. Am. Chem. Soc., 60, 1522-1526 (1928).
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1000

200 800 1000400 600
p (atm)

(b)

FIG. 7-6. (a) Fugacity coefficient of hydrogen in N2-H2 mixtures at 0C. (6) Fugacity
coefficient of nitrogen in N2-EU mixtures at 0C. (As calculated by Merz and Whittaker

from measurements of compressibility by Bartlett.)
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calculated by Gibson and Sosnick from the experimental data of Masson
and Dolley summarized in Fig. 7-5. *

If one has already measured the fugacity coefficients of the pure compo-

nents, then the precision in the evaluation of the pressure integral required

FIG. 7-7. Fugacity coefficients of N2 and H2 in their mixtures at 0C and fixed pressures of

200, 600, and 1000 atm. (As calculated by Merz and Whittaker from measurements of

compressibility by Bartlett.)

in Eq. (7-2-14) may be increased by the introduction of Eq. (6-29), by
which the fugacity coefficients of the pure components are determined;

thus, letting v denote the fugacity coefficient of pure component i at the

temperature T and pressure p of the mixture

P-J

(f<
- zdd log p (T, y ly 2/ 2 ,

. . .
, ye const) (7-2-15)

> G. E. Gibson and B. Sosnick, ibid., 49, 2172-2179 (1927).
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This equation enables us to calculate by graphical integration the value

of Vi relative to the fugacity coefficient of the pure component at the same

pressure, Zi representing the compressibility factor of the pure component
at the pressure p of the mixture; since the difference (ft zt) will generally

be smaller than (ft 1), the value of the integral appearing in Eq.

(7-2-15) will generally be smaller than the value of the integral appearing

in Eq. (7-2-14), and the value of Vi calculated by means of Eq. (7-2-15)

will therefore be less sensitive to inaccuracy in the evaluation of the pres-

p(otm.)

FIG. 7-8. Fugacity coefficients of argon and ethylene in their mixtures at 24.95C. (As
calculated by Gibson and Sosnickfrom measurements of compressibility by Masson and Dolley.)

sure integral, though it will of course be sensitive to error in the original

evaluation of v. 1

The exact establishment of fugacity coefficients or the equivalent

thermodynamic potentials in gas mixtures at high pressures is evidently
a tedious and laborious assignment, even when the mixture contains but

two components. The labor of computation and the experimental data

required are greatly multiplied when there are more than two components.
One will have observed that p-F-T data merely for a particular tempera-

ture, pressure, and composition are not sufficient to determine the values

1 P. Bolshakov, Ada Physicochim. U.R.S.S., 20, 259-267 (1945), has computed
such relative fugacity coefficients for N2 and H 2 in their 'mixtures at various tempera-
tures and pressures, using the extended experimental p-V-T data of E. P. Bartlett

and his associates, and of R. Wiebe and V. L. Gaddy, /. Am. Chem. Soc., 60, 2300-2303

(1938).
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of the fugacity coefficients in that state; one needs such data over the

entire composition range (at least sufficient to establish the rate of change of

z with composition over that part of the range in which one is interested),

for all pressures up to the desired pressure, before one can apply the basic

equation (7-2-14). This comes about because we have no generally valid

theoretical or empirical principle (necessarily of nonthermodynamic

FIG. 7-9. Fugacity coefficients of argon and ethylene in their mixtures at 24.95C and
fixed pressures of 50 and 125 atm. (As calculated by Gibson and Sosnick from measurements

of compressibility by Masson and Dolley.)

origin) relating the behavior of the mixture to the behavior of the pure

components outside the low-pressure ideal-gas range, nor do we have

experimental means of applying the equilibrium principle outlined in Sec.

7-1 to measure thermodynamic potentials directly in a gas mixture at high

pressure. The growing importance of high-pressure catalytic gas reac-

tions in industry has, however, emphasized the value of such information.

When insufficient experimental p-V-T data are available for a particu-

lar mixture of gases to admit of an exact computation of the fugacity

coefficients, certain approximate methods may be applied. If, for exam-
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pie, from the limited data at one's command, one can assume that the

mixture satisfies Amagat's law at all pressures up to the range in which

one is interested, then since this assumption is equivalent to the vanishing

of the integrand in Eq. (7-2-15) [compare the discussion leading to Eq.

(7-2-2)], one may assign to each component a fugacity coefficient in the

mixture equal to its fugacity coefficient in the pure state at the temperature

and pressure of the mixture. That N2 and H2 in their mixtures at 0C
satisfy approximately this law is evident from Fig. 7-4, where z has been

plotted against #N, for several values of the pressure; perfect conformity
would call for straight-line relationships in this type of plot. One can

even tell from qualitative examination of the form of the curvatures at a

particular composition [bearing in mind that the values of fH, and fNa for

use in Eq. (7-2-15) are determined by the intercepts, respectively, on the

yNj
= and the yN,

= 1 abscissas of the tangents to these curves at the

particular value of the composition], what qualitative relationship the

actual values of ?H, and VNS will bear to the respective fugacity coefficients

of the pure component gases; thus, at yNj = 0.25, one can see that fH, at

all pressures up to 1000 atm is almost identical with zHl for pure H2 at the

same pressure, whereas fN, at all pressures up to 1000 atm is slightly

higher than 2N,J therefore the actual values of VH , at that composition
must be in close agreement with the values of i, at the same pressures,

whereas the actual values of ?N, must be slightly higher than the values of

?N, at the same pressures. These conclusions are corroborated by actual

computation of the fugacity coefficients, as shown in Figs. 7-6 and

7-7, where one sees that even at 1000 atm, the greatest deviation of

either fugacity coefficient from that of the corresponding pure component
is but 20 per cent.

The approximation we have just considered, viz., the assumption that

each component of a gas mixture may be assigned a fugacity coefficient

equal to that of the pure component at the temperature and pressure of

the mixture, was proposed as a general rule by Lewis and Randall, in the

absence at that time of much precise data on gas mixtures at high pres-

sures, though they recognized the need for further theoretical and experi-
mental investigation.

1 The assumption is tenable, however, only for gas
mixtures satisfying Amagat's law. Argon-ethylene mixtures at 24.95C,
for example, are far from satisfying Amagat's law, particularly at pres-

sures near 85 atm, where z for pure ethylene passes through a minimum
(Fig. 7-5; compare Fig. 7-3). From qualitative examination of Fig. 7-5,

one perceives that the values of fA and fo H4 at all intermediate composi-
tions are greater than the values of ZA and 2C2H4, respectively, at the same

pressures and that therefore the application of Eq. (7-2-15) necessarily
1 Lewis and Randall, op. cit., pp. 225-227.
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yields values of PA and vc2H 4 appreciably greater than the respective values

of the fugacity coefficients of the pure components at the pressure of the

mixture, particularly for A at low concentration in C 2H4 where the z vs.

2/A curves deviate most markedly from the Amagat straight lines. These

conclusions are corroborated by actual computation of the fugacity coeffi-

cients, plotted in Figs. 7-8 and 7-9; one sees that for argon at low con-

centration in ethylene, the value of VA. around 100 atm becomes as much
as 100 per cent greater than the value of j at the same pressure.

Where insufficient data are available for calculating precisely the ther-

modynamic properties of the pure components themselves, one may use

the approximations based on the theory of corresponding states, described

in Sec. 6-1. Thus, from the generalized fugacity-coefficient charts, Figs.

6-2 to 6-4, one may estimate the value of v for each pure component gas

from a knowledge of its critical temperature and pressure. How one

would apply such information to estimate fugacity coefficients in a gas

mixture would depend on one's surmise concerning the general behavior

of the mixture; if one had reason to suppose that Amagat's law applied,

one would then read from the charts fugacity coefficients for each com-

ponent corresponding to the temperature and pressure of the mixture

(reduced in accordance with the pure component's own critical tempera-
ture and pressure). Newton and Dodge 1 have shown that fugacity

coefficients estimated in this way for H2, N, and NH 3 in their equilibrium
mixtures are in excellent agreement with experimental observations on the

deviation of the ideal law-of-mass-action equilibrium constant Kp from

its limiting value at p > (Chap. 8). Much experimental work remains

to be done, however, before the thermodynamic properties of gas mixtures

at high pressures can be put on a sound theoretical basis.

7-3. Liquid Solutions, a. General Thermodynamic Theory. In a

liquid solution, according to the general argument advanced in Sec. 7-1,

the thermodynamic potential of any component is equal in particular to

its thermodynamic potential in the equilibrium vapor phase. We have

just studied in Sec. 7-2 how to measure the thermodynamic potentials in

gas mixtures; equilibrium data between the solution and its vapor phase
therefore constitute a primary experimental means of establishing the

thermodynamic potentials in liquid solutions.

Now, in a binary solution, the thermodynamic potentials of the two

components in the liquid phase are related to each other through the

Gibbs-Duhem equation (7-1-8), so that only one is independently varia-

ble; both thermodynamic potentials are determined, for example, by the

composition at given temperature and pressure. Let us express this rela-

tionship symbolically in the form fa = fa(<f>i, T, p). The thermody-
i R. H. Newton and B. F. Dodge, Ind. Eng. Chem., 27, 577-581 (1935).
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namic potentials of the two components in the corresponding vapor phase
are likewise related to each other through a Gibbs-Duhem equation of the

general form (7-1-8), but of course the particular manner in which either

potential depends on temperature, pressure, and composition is in general

different from that for the liquid phase. Let us express the interdepend-
ence of the two vapor-phase thermodynamic potentials symbolically in

the form <* = <*(<*, T*, p*), where * denotes properties referring to the

vapor phase. Therefore the requirement that at equilibrium between the

two phases, not only must they be at the same temperature (T = T* for

thermal equilibrium), and at the same pressure (p = p* for mechanical

equilibrium, in the absence of a mechanical barrier between the phases),

but also the thermodynamic potential of component 1 in the liquid phase
must be equal to the thermodynamic potential of component 1 in the

vapor phase (<i = ^*) and at the same time, the thermodynamic potential

of component 2 in the liquid phase must be equal to the thermodynamic

potential of component 2 in the vapor phase (< 2
= <*), implies four in-

dependent relations among the six otherwise independent thermodynamic
variables: T

7

, p, <i, T*, p*, and <j. Hence the equilibrium state is deter-

mined by the values of any two of these six variables characterizing the

states of the two phases. Thus, to each composition and temperature
of the liquid phase, there corresponds a unique pressure and composition of

the vapor phase at which equilibrium may be maintained; a liquid solution

of specified composition has at each temperature not only a characteristic

vapor pressure but also a characteristic composition of the equilibrium vapor

phase, which is generally different, however, from that of the liquid, and

cannot be computed from it on purely thermodynamic grounds. The
extension of the argument io solutions containing more than two compo-
nents is straightforward, but will be deferred to Sec. 7-6, in which the

problem of heterogeneous equilibrium in general is discussed.

b. Liquid-Vapor Equilibrium in General at Uniform Temperature. It is

customary, following the extensive original experimental work of Zawid-

ski,
1 to represent the composition of the equilibrium vapor phase of a

liquid solution in terms of so-called partial vapor pressures of the compo-

nents, defined by
Pi = y*p (7-3-1)

where p represents the vapor pressure of the solution (at specified tem-

perature and composition), and yf the mole fraction of component i in

the equilibrium vapor phase [compare Eq. (7-2-8)]. For a binary liquid

solution, the experimentally determined equilibrium data between the

liquid and vapor phases at a specified uniform temperature are then con-

1 J. von Zawidski, Z. physik. Chem., 36, 129-203 (1900).
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veniently represented by means of a graph of pi and p 2 (together with

p = Pi + p%) vs. #2, the mole fraction of one of the components in the

liquid phase. Figure 7-10 presents typical results for several binary sys-

tems, plotted in this way. While the values of p and the composition of

the equilibrium vapor phase prefixed by the temperature and composition
of the liquid phase, in the sense that their values are uniquely determined

by general thermodynamic laws, there is no general rule by which these

uniquely determined values can be calculated from the composition of the

liquid phase and the properties of the ; pure components. Therefore

extensive research has been carried out on the direct experimental meas-

urement of liquid-vapor equilibrium conditions for a wide variety of

solutions; this information has great practical value in connection with

distillation problems. The data presented in Fig. 7-10, while illustrating

the variety of relationships encountered, do show certain general regulari-

ties whose nature will be discussed at length in Sec. 7-3c.

The partial vapor pressures in general have no ulterior physical signifi-

cance beyond representing in a convenient form the composition of the

equilibrium vapor phase ; they cannot be directly measured independently
of the defining equation (7-3-1). If, however, the equilibrium vapor

phase can be regarded as an ideal gas, then in the vapor phase, according
to Eq. (7-2-5),

where (/*?)*< represents the standard molal free energy of pure compo-
nent i as a gas at the temperature T. Since by the equilibrium principle

developed in Sec. 7-1, fa = <*, where <fo represents the thermodynamic

potential of component i in the liquid phase at temperature T and pres-

sure p (the total equilibrium vapor pressure of the solution), we have here

a straightforward connection between thermodynamic potentials in

liquid solutions and vapor-pressure data. If the pure component is

itself a liquid or a solid at the standard conditions T and 1 atm, then it is

convenient for us to replace (F^w in terms of (F)w or (F?) t-(c), repre-

senting the standard molal free energy in the respective normal state; we

may do this by taking note that for pure component i in equilibrium with

its own pure vapor phase at the temperature T9

where p represents the vapor pressure of pure component i\ therefore,

according to Eqs. (6-16) and (6-17),

(FT)t + r Vi dp = (F)lW + RT In p?
./I atm
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(o) Oxygen and nitrogen at 74.7K [J. K.
H. Inglis, PhU. Mag., (6) 11, 640-658

(1906)]; nearly ideal liquid solutions.
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Benzene and chlorobenzene at 70C
[A. R. Martin and B. Cdlie, J. Chem.

Soc., 2658-2665 (1932)]; nearly ideal

liquid solutions.
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(c) Benzene and toluene at 280C [W. v.

Huhn, as reported inLandolt-Bdrnstein,

"Physikalisch-chemische Tabellen," 5th

ed. t Suppl. IIIc, p. 2483, 1936]; nearly
ideal liquid solutions at high pressures.

0.6 1.0Q4 0.6

*CH,OH

(d) Methanol and water at 59.4C [M. 8.

Vrevskii, Z. physik. Chem., 81, 1-29

(1912)]; positive deviations from
Raoult's law.

Fia. 7-10. Vapor pressures and partial vapor pressures of binary liquid solutions .
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(e) Carbon disulfide and acetone at 29.2C
[J. Hirahberg, as reported in Landolt-

B&rnstein,
' '

Physikalisch-chemische
Tabdlen," 5th ed., Suppl. IIIc, p. 2466,

1936]; large positive deviations from
Raoult's law.
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Q2 0.8 100.4 0.6
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(/) Chloroform and acetone at 35.17C
[J. von Zawidaki, Z. physik. Chern.,

35, 129-203 (1900)]; negative devia-

tions from Raoult's law.
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06
XHCX)OH

(g) Formic acid and water at 50C [A. N.

Campbell and A. J. R. Campbell,
Trans. Faraday Soc. t 30, 1109-1114

( 1934) ] ; large negative deviations from
Raoult's law, complicated by partial
association of HCOOH in the vapor
phase.

FIG. 7-10. Vapor pressures and partial vapor pressures of binary liquid solutions (continued) .

(h) Pyridine and water at 80.05C [/. von

Zawidaki, Z. physik. Chem., 35, 129-
203 (1900)]; pathological deviations
from ideal behavior.
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Thus

ft
-

ft*
-

(*r)< + P* Vidp + RT\n2*
J 1 atm Pi

This represents the thermodynamic potential of component i in the liquid

solution at temperature T and pressure p; if we wish to represent the

value of fa at T and standard pressure of I atm, we may make use of the

general thermodynamic relation (7-1-24)

p

where v^ stands for the partial molal volume of component i in the liquid

solution; thus, finally,

rpt riatm

fa = (FT)i + RT\nPi + Vidp + t>< dp (7-3-2)
Pi yiatm Jp

If we had wished to relate fa to F\ at some other pressure P, we could have

done so by replacing the 1 atm limit in the two integrals by P. We may
extend Eq. (7-3-2) formally to include components that happen to be

gases in the pure state at standard conditions, T and 1 atm, if we adopt
the convention that in such cases, p s 1 atm, the value of (/*?)* then

referring to the standard molal free energy of the pure gas.

Now, for pressures of order 1 atm or less, the two integrals on the right

of Eq. (7-3-2) are generally negligibly small in magnitude; they can

certainly be replaced by the approximations Vi(p 1 atm) and

Vi(l atm p), respectively, in view of the relative incompressibility of

liquids and solids, but since Vi and Vi are relatively small (Vi would be

large for a gaseous solute, but in such cases, we have agreed to let p rep-

resent 1 atm), the two terms may usually be neglected altogether, except

in work of the highest precision. Therefore Eq. (7-3-2) may be used

practically in the form

ft = GF?)< + RT In ^ (vapor-phase ideal) (7-3-3)

The value of fa so obtained is not particularly sensitive to the pressure

[compare the last term in Eq. (7-3-2)], and may be regarded as sensibly

constant for liquid solutions between and 2 atm. The ideal-gas law

assumption is usually sufficiently precise for all purposes at vapor pres-

sures not greatly exceeding 1 atm, i.e., at temperatures not greatly above

the normal boiling point of the solution (provided that the components
do not show obviously "abnormal" behavior, such as the association of

acetic acid molecules in the vapor state) ;
but at high pressures, or gener-

ally where extra precision is warranted, we may introduce empirically
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determined fugacity coefficients, as shown in Sec. 7-2. Equation (7-3-2)

then takes the general form

fpi ri&tm

In J +
/ Vidp + v< dp (7-3-4)

Pi *i Jl&tm Jp

where ?,- represents the fugacity coefficient of component i in the equilib-

rium gas phase, and v its fugacity coefficient as a pure gas at pressure p

(its vapor pressure at the temperature T) ; Vi represents the molal volume

of the pure component, and Vi represents its partial molal volume in the

solution at the given composition. It may be convenient for some pur-

poses to refer fa to the standard molal free energy of pure component i as

a gas at the temperature T; in that case, Eq. (7-3-4) may be replaced by
its exact equivalent

pn (7-3-5)

In the case of a binary solution, the Gibbs-Duhem relation in the form

(7-1-8)

xi dfa + Xz dfa = (T, p const) (7-3-6)

when Eq. (7-3-3) is valid for both components, implies a simple connec-

tion between the two partial vapor pressures for different compositions at

the same temperature ; strictly, of course, we cannot vary the composition
of the liquid phase at constant temperature without changing also the

total equilibrium (vapor) pressure, but since the thermodynamic poten-
tials in liquid solutions are relatively insensitive to changes in the pres-

sure, we may apply (7-3-6) to (7-3-3) over the entire composition range
without restriction on the pressure, provided that the difference between

the vapor pressures of the components is not extremely large in magnitude.
Thus

xi d In pi + #2 d In p 2
= (T const) (7-3-7)

l

1 The exact form of Eq. (7-3-7), taking into account the variations of 0i and fa

with the total (vapor) pressure, may be derived as follows: for a general change of

state at constant temperature (but not necessarily at constant pressure), according to

Eq. (7-1-6),

x\ dfa + Xz dfa = V dp (T const)

where V represents the volume per mole of liquid solution. Introducing (7-3-3) on
the assumption that the equilibrium vapor phase may be treated as an ideal gas,

V
Xi d In pi + x2 d In p2 = dp (T const) (7-3-7a)

This represents the generalization of Eq. (7-3-7), to which (7-3-7a) reduces if we may
assume that the term on the right is negligible in comparison with the other terms,
when integrated over the pressure range under consideration. For example, in the

system chloroform-acetone at 35.17C, as studied by Zawidski (Fig. 7-10/), V is at
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or, in view of the fact that d/dxi = d/dx*,

i

Relation (7-3-8) is attributed to P. Duhem; its alternative form

is known as the Duhem-Margules equation.
1

Equation (7-3-8) implies a direct connection between the slopes of the

two partial vapor-pressure curves at any composition, when the experi-

mental data are plotted as in Fig. 7-10; this connection was first tested and

verified in precise detail by the fine experimental work of Zawidski. 2 In

Fig. 7-11, similar data for several binary systems have been plotted in the

form of log pi vs. log Xi and log p% vs. log #2 (Fig. 7-1 la corresponds to the

same data as in Fig. 7-10/) ;
in this kind of plot, according to Eq. (7-3-8a),

the slopes of the two curves are identical at corresponding values of Xi and

z 2 (e.g., at x\ = 0.7 for the one component and at x 2
= 0.3 for the other) ;

in particular, the slopes are equal at Xi = #2 = 0.5, and the limiting slope

of the one curve as Xi * I or as x% * 1, respectively, is equal to the limit-

ing slope of the other as #2 or as Xi 0, respectively.
3

The same connection may be expressed in terms of the total vapor pres-

sure and the composition of the equilibrium vapor phase by the introduc-

most 81.5 ml/mole (the value for pure chloroform), and the extreme range of pressures

lies between 148 and 345 mm Hg; therefore the value of (V/RT)Ap over the entire

composition range cannot exceed 0.0009. Since each of the terms on the left of

(7-3-7a) integrated over the entire composition range is of order +1 or 1, respec-

tively, Eq. (7-3-7) is in this case a valid approximation to Eq. (7-3-7a) within a preci-

sion of 0.1 per cent.

1 P. Duhem, Compt. rend., 102, 1449-1451 (1886); M. Margules, Sitzber. Akad. Wiss.

Wien, Math.-Naturw. Klasse, (2) 104, 1243-1278 (1895).
2
Zawidski, loc. cit.

3 One will note that the limiting slopes of the two curves as x\ > 1 and z2 -* 1,

respectively, in Fig. 7-11 are equal, having the common value 1 (the dashed straight

lines indicated in the graphs have been so drawn) ;
this empirical fact (Raoult's law) is

not a necessary consequence of thermodynamics, and indeed is not universally true,

as we shall see in the case of electrolytes. We shall discuss this point at length in

Sec. 7-3c. If, however, it is a fact that the two slopes in the respective limits x\ > 1

and 2 1 are both equal to 1, then thermodynamic reasoning through Eq. (7-3-8o)

implies that the two curves also become parallel with slopes 1 in the respective

limits Xi * and X2 > 0; that this is true for the data presented in Fig. 7-11 is con-

firmed by the corresponding dashed lines shown on the graphs, which have been so

drawn.
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tion of Eq. (7-3-1) in Eq. (7-3-7) [or more rigorously, within the ideal-gas

law approximation, in Eq. (7-3-7a)]:

Xi d In j/f + #2 d In y\ + d In p = (T const)

Thus, since x2
= 1 x\ and y* = 1 Vi >

yf ^/i\ = (d In p

dxijT \ ctei
(7-3-9)

The practical usefulness of (7-3-9) as a quantitative relation is limited,

because it involves the three quantities Xi y y*, and p; while at given tern-

x
ocetone

FIG. 7-1 la. Log pi vs. log xi and log pz vs. log 0:2 for solutions of acetone and chloroform at

35.17C. [/. von Zawidaki, Z. physik. Chem., 35, 129-203 (1900).]

perature, only one of these quantities is independently variable, thermo-

dynamics gives no information concerning the relationship between p and

Xi, or the relationship between y* and xi, beyond the interrelationship

expressed by Eq. (7-3-9) itself. In principle, if one knew empirically how

p varied with x\ in a given case, one could introduce this information in

Eq. (7-3-9) and solve for yf as a function of xi, although since the varia-

bles of this differential equation are not generally separable, one could not

always express the result in simple analytical form. In particular, if one
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has measured the value of ?/* empirically for a given value of x\, and also

knows from empirical measurement how p varies with x\ at that composi-

tion and temperature, one may apply Eq. (7-3-9) to calculate the effect of

100

50

I
E

10

A

H2

0.01 1.000.10

or x
H20>resp.

FIG. 7-116. Log pi vs. log x\ and log p* vs. log x* for solutions of methanol and water at

25C. [J. A. V. Butler, D. W. Thomson, and W. H. Maclennan, J. Chem. Soc., 674-686

(1933).]

a small change in the liquid composition on the composition of the equilib-

rium vapor phase

At/*
yfd -

I dp

L y*
- EX> (T

7
const

; 0) (7-3-9a)

Now, the expression (dy^/dxi) T occurring in Eq. (7-3-9) is necessarily

confined by nature to nonnegative values (positive or zero) ;
a situation in

which decrease in the concentration of the given component in the liquid

phase resulted in increase of its relative concentration in the equilibrium

vapor phase would surely be unstable, since the loss of that component to

the vapor phase would then be self-sustaining. The two factors in the

denominator of the left-hand member of Eq. (7-3-9) are likewise essen-

tially positive numbers. Therefore the sign of the expression (y% a?i)
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is determined by the sign of (d In p/dxi) T, or, what amounts to the same

thing, by the sign of (dp/dxi)T. Thus if at given temperature and com-

position p tends to increase with xif
then the equilibrium vapor phase can-

not be poorer with respect to component 1 than the liquid phase; if on the

other hand p tends to decrease with Xi 9
then the equilibrium vapor phase

cannot be richer with respect to component 1 than the liquid phase.

This well-known constant-temperature distillation rule of Konowalow 1 is

thus embodied in quantitative form in Eq. (7-3-9). Furthermore, if p

30

- 20

10

FIG. 7-1 Ic. Log pi vs. log xi and log 372 vs. log xi for solutions of ft-propanol and water at

25C. [J. A. 7. flutfer, 2>. FT. Thomson, and W. H. Madennan, J. Chem. Soc., 674-686
(1933).]

passes through either a maximum or a minimum with change in the com-

position of the liquid phase, then at the extremum, according to Eq.

(7-3-9), either j/f
=

xi, or (dy*/dx^T = 0. The latter situation arises

when there is a halt in the vapor-pressure-composition relationship (not

necessarily a maximum or a minimum, though a maximum is common in

this situation), associated with the separation of the liquid into two

mutually saturated liquid phases, i.e., when the two components show

limited miscibility at the given temperature. The situation yf = x\

arises of course in the case of ordinary azeotropic mixtures, where a maxi-

mum or a minimum exists in the vapor-pressure-composition relationship

for a homogeneous liquid phase (Figs. 7-10e to h) ;
the equilibrium vapor

1 D. Konowalow, Ann. Physik u. Chem., 14, 34-52 (1881).
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phase corresponding to the liquid having the maximum or the minimum
vapor pressure has the same composition as the liquid phase. For liquid

pairs forming an azeotropic mixture with maximum vapor pressure, then
since p increases with xi so long as Xi is below the azeotropic composition
but decreases with xi when Xi is above the azeotropic composition, it fol-

lows from Eq. (7-3-9) that t/f > x\ so long as xi is below the azeotropic

composition, but yf < x\ when x\ exceeds the azeotropic composition.
In other words, the plot of y* vs. Xi has the general form shown in Fig.

7-12a, where the data for CSr-acetone solutions presented in Fig. 7-10e

have been replotted; in this diagram, the azeotropic composition evidently

corresponds to the point at which the curve crosses the 45 deg line repre-

1.0

I 0.5

1.0

{a.

*'
1.00.5 1.0 ~~0.0 0~5~

xocetone ^acetone
FIG. 7-12. Equilibrium vapor vs. liquid composition, (a) Carbon disulfide-acetone solu-
tions at 29.2C, showing an azeotrope with maximum vapor pressure. (/. Hirshberg, as
reported in Landok-Bdrnatein,

"
Phyaikaliachrchemiache Tabellen,

19
5th ed. 9 Suppl. IIIc, p.

2466, 1936.) (6) Chloroform-acetone solutions at 35.17C, showing an azeotrope with
minimum vapor pressure. [J. von Zawidaki, Z. phyaik. Chem., 35, 129-203 (1900).]

senting equal liquid and vapor compositions (the dashed line drawn in the

graph). On the other hand, for liquid pairs forming an azeotropic mix-
ture with minimum vapor pressure, by similar reasoning, yf < x\ so long
as Xi is below the azeotropic composition, but y* > x\ when x\ exceeds the

azeotropic composition; the plot of yf vs. x\ has the general form of Fig.

7-126, where the data for CHCl 3-acetone solutions presented in Fig. 7-10/
have been replotted. When the vapor pressures for all compositions lie

between those of the pure components, so that neither a maximum nor a
minimum appears in the vapor-pressure-composition relationship, then
all values of y? in a plot such as those of Fig. 7-12 lie either above or below
the 45 deg line, depending on whether p increases or decreases continually
with *!, the composition in terms of the particular component, 1.
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A companion equation for the relation between the compositions of

liquid and equilibrium vapor phases and the boiling point at constant

pressure may be derived as follows. For equilibrium between the liquid

and vapor phases of a binary solution at constant pressure, conditions

(7-1-16) must apply at each liquid composition and its corresponding

equilibrium temperature, or boiling point under the given pressure.

Therefore for a change from one composition to another slightly different

one, the change in boiling point is determined by the conditions

In view of Eq. (7-l-26a), which we shall want to use, we may put these

general equilibrium conditions in the more convenient form

(*)"(*)

:(!?)-<($)

(p const) (7-3-10)

This procedure is legitimate, since the temperatures of the two phases are

equal to each other in all equilibrium states throughout. Now, we may
write in general,

where for a binary solution, only one of the two mole fractions x\ and x*

has been considered as composition variable determining the values of the

intensive properties <i/T and fa/T. Introducing Eq. (7-l-26a), this

equation assumes the form

Similarly,

which, in view of Eq. (7-2-5), we may put in the form

-dy1 (p const)

assuming that we may treat the equilibrium vapor phase as an ideal gas.

Introducing now the general equilibrium condition (7-3-10),
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dT\ _ R
(dy*\ rd(i/Dl

,7 o m
siA

"
iff \&r/, L~sr~ >,

(7
~3"n)

A corresponding equation in terms of component 2 is derived from the

second of conditions (7-3-10), which, in view of the fact that x^ = 1 Xi

and y* = 1 y*, we may put in the form

i p

If we multiply Eq. (7-3-11) by Xi and Eq. (7-3-12) by #2, and add the

resulting equations, then, according to the Gibbs-Duhem equation (7-1-8),

the contributions of the last terms on the right of Eqs. (7-3-11) and

(7-3-12) cancel each other, leaving

dT

The expressions (17* 77!) and (ry* ^72) evidently represent partial molal

heats of vaporization of the respective components, and the entire numer-

ator of the factor on the left of this equation represents the total latent

heat of vaporization per mole of solution, corresponding to the particular

liquid composition and equilibrium temperature; let us designate this

quantity for short by the symbol Lig ;
thus

dT\ _ RT* fa - yf) (dy*\-
if?) VST/,

Equation (7-3-13) is the counterpart to Eq. (7-3-9), and is thermody-

namically exact within the ideal-gas-law approximation for the equilib-

rium vapor phase. Its practical utility is limited, however, because it

involves too many quantities whose relationships to each other can be

established independently only through empirical measurement; it is

perhaps most useful for the purpose of calculating latent heats of

vaporization of solutions from precise T-y*-Xi experimental data. One

may easily derive Konowalow's rule for constant-pressure distillation,

bearing in mind that (dy*/dxi)p is necessarily confined to nonnegative
values (otherwise the distillation would be self-sustaining) : if the boiling

point rises with increase in the value of xi, then yf cannot be greater than

Xi, whereas if the boiling point falls with increase in the value of Xi 9
then

y* cannot be less than xi. Furthermore, one sees that if T goes through
either a minimum or a maximum with change in the value of Xi 9

then at

the extremum either y* = Xi (as in the case of an azeotropic mixture) or

(dy*/dxi) p
= (as may happen if the liquid phase separates into two
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mutually saturated liquids over part of the composition range, corre-

sponding to limited miscibility of the components at the given pressure).

c. Raoult's Law: the Ideal Dilute Solution. While Eq. (7-3-3), or its

generalizations that take into account deviation from the ideal-gas law of

the equilibrium vapor phase, always enables one to determine thermody-
namic potentials in liquid or solid solutions accurately from measure-

ments of the vapor pressure and the composition of the equilibrium vapor

phase, we should like if possible to relate them directly to the composition

of the phase in question. In general, such relations can never be estab-

lished by purely thermodynamic reasoning. Thermodynamics consists

essentially of a system of differential equations; the functions on which

these equations operate can be established only through empirical obser-

vation, guided perhaps by theoretical generalizations of nonthermody-
namic origin.

While no relation of a universal form has been discovered between the

vapor pressure and the composition of a liquid solution valid over the

entire composition range (as one can well understand by observing the

wide variety of relationships shown by the data assembled in Fig. 7-10),

many solutions do show a certain type of regularity when the concentra-

tions of all but one of the components are sufficiently small. Let sub-

script 1 denote the solvent, or component present at relatively high con-

centration; then at sufficiently low solute concentration

Pi = xipl (T const; Xi -> 1) (7-3-14)

where pi represents the vapor pressure of the pure solvent. This

empirical limiting law for the so-called ideal dilute solution has come to be

known as Raoult's law. 1 An important class of apparent exceptions,

noted by Raoult, and incorporated by Arrhenius as one of the bases of his

i F. M. Raoult, Compt. rend., 103, 1125-1127 (1886); Z. physik. Ghent., 2, 353-373

(1888). Raoult experimented originally with the lowering of the vapor pressure

of a volatile solvent resulting from the presence of a nonvolatile solute at various con-

centrations. In this special case, the directly observed vapor pressure of the solution

is the same as the partial vapor pressure of the solvent. From extensive measure-

ments with solutes of known molecular weights, Raoult established the generality of

the law

const .

Pi Pi

which for binary solutions is equivalent to (7-3-14). He then applied this empirical
relation to measure the molecular weights of solutes such as the sugars, to which

Avogadro's method based on density in the gaseous state could not be applied. The

importance of this work to the systematic development of chemistry cannot be

overemphasized.
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ionization theory,
1 consists of the electrolytes, which we shall discuss in

Sec. 7-4.

Raoult's law implies that the limiting slopes of the partial vapor-pres-
sure curves plotted in Fig. 7-10 as the mole fractions of the respective

components approach 1 are the same as those of the straight lines con-

necting the vapor pressures of the pure components with the correspond-

ing origins (the dashed lines shown on the graphs). In these binary

liquid solutions, in which the components are miscible over the entire

composition range, the distinction between solvent and solute is purely

formal, depending merely on which end of the composition range one

wishes to consider. One sees in Fig. 7-10 that even though the shapes of

the complete partial vapor-pressure curves vary widely, nevertheless

Raoult's law is satisfied by each component as its own mole fraction

approaches sufficiently close to 1. The same point is illustrated in Fig.

7-11, where Raoult's law implies that the limiting slopes of the log pi vs.

log Xi graphs equal 1 as Xi > 1. Other apparent exceptions to Raoult's

limiting law besides the electrolytes have been recognized, such as the

behavior of acetic acid and of benzoic acid dissolved in benzene, the

behavior of acetic acid dissolved in water, etc. Generally, these have

received rational explanations in terms of polymerization of the solute,

reaction of the solute with the solvent, or other unusual behavior affecting

the true mole fractions of the components. Indeed, the very extent of

deviation from Raoult's law in such cases has commonly been used to

reveal the true nature of the solution, and the kinds of chemical species

present. We may regard the law as having a sound though not com-

pletely general empirical foundation.

Over the ideal dilute-solution range, however wide it may happen to be

in a particular case, the thermodynamic potential of the solvent must be

given according to Eqs. (7-3-3) and (7-3-14) by

*i = (Ffii + RT In xt (T const; xl -> 1) (7-3-15)

assuming that the pressure is sufficiently close to 1 atm so that one may
use (FT) i as the molal free energy of the pure solvent at the given tem-

perature and pressure [otherwise one must use (PTtP)i, related to (F%)i by
Eq. (6-16)]. Equation (7-3-15) constitutes in fact a thermodynamic

generalization of Raoult's law, for we may suppose in the absence of suffi-

cient reason to the contrary that this equation continues to represent the

ideal limiting behavior at low solute concentration for a solvent whose

vapor pressure at the given temperature happens to be too low to be

measured precisely. This supposition may of course be confirmed by

1 S. Arrhenius, Z. physik. Chem., 1, 631-648 (1887).
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experimental test of the thermodynamic implications of Eq. (7-3-15),

assumed as an empirical principle, as we shall see in subsequent sections

of this chapter.

Now, in the case of a binary solution, according to the Gibbs-Duhem

equation (7-1-8), the thermodynamic potential of the solute is related to

that of the solvent by

d<t>2
= ---

d<f>i (Tj p const)
#2

Therefore over the ideal dilute range in which the thermodynamic poten-
tial of the solvent is given by Eq. (7-3-15), the thermodynamic potential

of the solute satisfies the equation

= RT d In x2

<t>2
=

<t>l + RT to x2 (T const; x 2
-

0) (7-3-16)

In Eq. (7-3-16), $% represents an integration constant, by hypothesis

independent of # 2 ,
but in general not equal to the standard molal free

energy of the pure solute. Its value at given temperature and pressure
1

depends on the particular solute and solvent, and can be determined only

by empirical measurement of #2 at some composition #2 falling within the

ideal dilute range; more precisely, its value may be established as the

limit

<& = lim (< 2
- RT In x2) (7-3-17)

from a series of measurements of #2 at low values of x2 .

If the solute happens to be sufficiently volatile for its partial vapor

pressure to be measured in the equilibrium vapor phase (i.e., for its con-

centration to be measured in the equilibrium vapor phase, or distillate),

then Eq. (7-3-3), which applies to any volatile component within the

precision of the ideal-gas-law approximation, constitutes a direct inde-

pendent means of measuring ^2. Comparing with the ideal limiting law

(7-3-16), we may draw the conclusion

(T const; x* - 0) (7-3-18)

where the proportionality constant k% is related to < by means of the

equation

<t>l
= (^2 + RT In ^ (T const) (7-3-19)

P2

1 Taken to be 1 aim unless otherwise specified; we have seen that the thermodynamic

properties of liquid solutions are not particularly sensitive to changes in the pressure.
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Equation (7-3-18), known as Henry's law,
1
necessarily applies to the

solute over the composition range in which the solvent satisfies Raoult's

law (7-3-14). This conclusion implies that in Fig. 7-10, so long as the

partial vapor-pressure curve of the one component coincides with the

Raoult straight line as its mole fraction approaches 1, the partial vapor

pressure of the other component approaches also along a straight line,

whose slope (
=

^2), however, has no necessary connection with that of the

Raoult line for that component. Measurement of fa by the application

of Eq. (7-3-18) to experimental liquid-vapor equilibrium data constitutes

a straightforward method of relating the integration constant $2 of Eq.

(7-3-16) to the thermodynamic properties of the pure solute through Eq.

(7-3-19) ;
there is no general connection of a purely thermodynamic nature

between <t>% and (F) 2 . For example, from the data for chloroform-acetone

solutions at 35.17C presented in Figs. 7-10/and 7-1 la, one concludes that

for dilute solutions of acetone in chloroform,

& 2
= Km PZ/XZ = 193 mm Hg

Since at the given temperature, p cetone
= 345 mm Hg, therefore

Acetone an CHCI,)
~

Acetone
= RT I* (193 mm Hg/345 mm Hg)

= 356 cal/mole

Similarly, for dilute solutions of chloroform in acetone,

^Hci,
= RT In (156 mm Hg/293 mm Hg)

= - 387 cal/mole

On the other hand, for dilute solutions of n-propanol in water at 25C,
according to the data presented in Fig. 7-1 Ic, k% = 260 mm Hg, whence,

Cpropanoic,,)
-

^n-propanoi
= RT In (263 mm Hg/21.76 mm Hg)

= 1470 cal/mole

Equation (7-3-16) is, however, more general than Eq. (7-3-18), because

it applies equally well to solutes insufficiently volatile under the given
conditions of investigation for their concentrations in the equilibrium

1 Named after William Henry, who in 1803 first stated the empirical law that the

solubility of a gas in a liquid with which it undergoes no chemical reaction is approxi-

mately proportional to the pressure of the gas. Equation (7-3-18) is of course more

general than Henry's original law. Since at low solute concentrations, the mole
fraction 2 for a given solute and solvent is approximately proportional to other con-

centration measures, such as the molality ra2 and the molar concentration C2, Henry's
law (7-3-18) may be expressed in the equivalent forms p 2

= &2ra2 or p2
= &2'C2 ,

where
the proportionality constants k'2 and A' differ from but are numerically related to

fo; see Sec. 7-30.
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vapor phase to be measured. We may therefore regard Eq. (7-3-16) as a

thermodynamic generalization of Henry's law for the solute, in the same

sense as we may regard Eq. (7-3-15) as a thermodynamic generalization

of Raoult's law for the solvent. Other methods of measuring < 2 rela-

tively to (FT) 2, when the solute happens not to be volatile, will be dis-

cussed later.

As we have previously mentioned, Eq. (7-3-15) represents an empirical

law, which cannot be inferred from purely thermodynamic principles.

Equation (7-3-16) is, however, a logically entailed consequence of (7-3-15),

derived by means of the Gibbs-Duhem relation. Equations (7-3-15) and

(7-3-16) together, provided that one has measured the value of <t>\ for

each individual case, constitute empirically a complete thermodynamic

description of most binary liquid solutions (excluding electrolytes, which

require further empirical study, as shown in Sec. 7-4) when the concentra-

tion of either component is sufficiently low. Applying to them the

general thermodynamic relation (7-1-266),

_ "dfri/Dl _ \dUF$

172
=

JP.n

one finds that the partial molal enthalpies in the ideal dilute range are

given by

lim * = lim = (7-3-20)

Thus, over the composition range in which the solvent satisfies approxi-

mately Raoult's law, its partial molal enthalpy in solution is equal within

the same order of approximation to its standard molal enthalpy as a pure

liquid (or solid, as the case may be), at the given temperature; but the

partial molal enthalpy of the solute over the same range assumes a con-

stant value, determined by the temperature coefficient of <. Recalling

Eq. (4-30), one sees that the total molal heat of solution of component 2

as solute in component 1 as solvent is given by

Q. - (r,p const) (7-3-21)

These equations serve either to establish the temperature coefficient of

the quantity #2 from calorimetric heat-of-solution data, or to establish
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Q indirectly from equilibrium data (e.g., vapor pressure data) obtained

for the solution at various temperatures. Of course, in the case of a

binary solution consisting of two liquids miscible over the entire composi-

tion range, the value of Q for component 2 in component 1 differs in

general from the value of Q for component 1 in component 2, even though
both are computed from essentially the same set of basic measurements

(by extrapolations in opposite directions of thermal data obtained for

the mixing of the two components in various finite proportions).

Similarly, by application of the thermodynamic relation (7-1-24) to the

general forms of Raoult's and Henry's laws,

which we may suppose apply at pressures other than 1 atm, we obtain

=

v =
2

Therefore the partial molal volumes in the ideal dilute range are given by

lim !
= 7i; lim v 2

= (^ J (7-3-24)
\dp/T

as we

Over the composition range in which the solvent satisfies Raoult's law, in

the general sense of Eq. (7-3-23), its partial molal volume in solution is

equal to its molal volume in the pure state at the same temperature and

pressure; but the partial molal volume of the solute over the same com-

position range has a constant value, in general not equal to the molal

volume of the pure solute. There will thus be a net volume change on

mixing the components, whose limiting value per mole of solute in the

ideal dilute-solution range is represented by (
-~^

) V<t. Since,
\ap/T

have already noted, the value of v% in liquid or solid solutions is numeri-

cally small, even when the pure solute is itself a gas, the value of <S is

relatively insensitive to small changes in the pressure, of order 1 atm; but

Eq. (7-3-24) may always be used to calculate precisely the pressure effect.

While Eqs. (7-3-15) and (7-3-16) correctly describe the behavior of

most binary solutions at sufficiently low concentrations of either compo-
nent, provided that the solute is not an electrolyte in the given solvent

and that no other unusual chemical effect tends to alter the significance
of the conventional mole-fraction composition measures, the extent of the
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ideal dilute-solution range (which of course is not sharply defined)

depends altogether on the particular pair of components present. In the

majority of cases, one would be justified in assuming that the ideal dilute-

solution laws apply without significant error when x% ^ 0.02 (compare

Fig. 7-10) ;
the noteworthy fact is that in this range, the thermodynamic

potential and other partial molal properties attributed to the solvent do

not depend at all on the nature of the solute but only on its molecular

concentration; on the other hand, the corresponding properties of the

solute, while satisfying uniform laws with regard to the effect of concen-

tration, each involve specific constants ($%, $, etc.) that vary from one

solvent to another. In many cases, one will observe significant departure
from ideal dilute behavior at solute concentrations as low as #2

= 0.1.

There are certain liquid pairs, however, that conform closely to Raoult's

law over the entire composition range (compare Fig. 7-10a to c). In such

cases, it necessarily follows from the Gibbs-Duhem relation that if one

component satisfies Raoult's law (more or less approximately) over the

entire composition range, then the other component must likewise satisfy

Raoult's law over the entire composition range; i.e., the value of the

integration constant <a in Eq. (7-3-16) for the "
solute" in this special

case must be equal to (F^)^ Experience indicates that we are most

likely to encounter such ideal behavior over the entire composition range
when the two components happen to consist of molecules showing close

structural similarity, particularly with regard to degree of polarity and

molecular size. Thus, solutions practically ideal over the entire com-

position range are formed by the following liquid pairs (among many
others that have been studied) : D 2 and H^O,

1
2 and N 2 ,

2 benzene and

toluene,
3 benzene and chlorobenzene,

4 n-hexane and n-heptane,
5
ethyl

bromide and ethyl iodide,
5
ethylene bromide and propylene bromide. 6

A general appreciation of the factors influencing the ideality or the non-

ideality of liquid solutions may be derived from the molecular theory of

their structure, which is of course beyond the scope of thermodynamics

proper.
7 The behavior of molecules in the liquid state is strongly influ-

1 G. N. Lewis and W. T. Hanson, J. Am. Chem. Soc., 66, 1000-1001 (1934).
2 J. K. H. Inglis, Phil. Mag., (6) 11, 640-658 (1906); see Fig. 7-10a.

*G. C. Schmidt, Z. physik. Chem., 99, 71-86 (1921); also W. von Huhn, Disserta-

tion, Munich, 1931 (see Fig. 7-10c).
4 A. R. Martin and B. Collie, /. Chem. Soc., 2658-2665 (1932) ;

see Fig. 7-106.

' C. P. Smyth and E. W. Engel, J. Am. Chem. Soc., 51, 2646-2660 (1929).
6
Zawidski, loc. cit.

7 An excellent comprehensive discussion of the theory of solutions is given by
J. H. Hildebrand and R. L. Scott, "The Solubility of Non-electrolytes," 3d ed., Rein-

hold Publishing Corporation, New York, 1950.
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enced by van der Waals' attractive forces, whose origin appears to be

electrostatic, whether arising from the interaction of permanent electric

dipoles existing in the molecules or of temporary dipoles induced by
mutual polarization of neighboring molecules. In the ideal dilute solu-

tion, we may suppose that solute molecules are thinly dispersed through-
out a medium essentially like the pure solvent, in that the neighbors of a

given molecule of either kind are predominantly solvent molecules. The
effect of the solute in this range is therefore primarily one of pure dilution,

without specific influence on the behavior of the solvent molecules. No
specific property of the solute enters Eqs. (7-3-14) and (7-3-15) ;

it is note-

worthy that in the ideal dilute range, the partial vapor pressure of the

solvent is lowered to the same extent by a volatile as by a nonvolatile

solute at the same molecular concentration. From the standpoint of the

solute, however, the situation in the ideal dilute range is in general differ-

ent from that encountered in the pure solute; the behavior of the solute

molecules is determined by the interaction between solute and solvent

molecules, which may be quite different from the interaction between the

solute molecules themselves in the pure state. Thus, we find that while

p2 increases in direct proportion to z 2 over the ideal dilute range, the

proportionality factor, fc 2 in Eq. (7-3-18), is in general unrelated to the

vapor pressure of pure component 2, and varies from one solvent to

another. If the van der Waals attraction between solute and solvent

molecules tends to be weaker than the normal attraction between solute

molecules in the pure state, resulting in a relatively higher potential

energy of intermolecular attraction per solute molecule in the solution as

compared with the pure state, then we can expect that p 2 will increase

with z2 more rapidly than one would be led to expect from its vapor pres-

sure in the pure state; that is, fc 2 in Eq. (7-3-18) will be greater than p%, or

what amounts to the same thing, <f>l
in Eq. (7-3-16) will exceed (/*) 2 .

This type of behavior, so-called positive deviation from Raoult's law (com-

pare Fig. 7-10d, e, ti), is likely to be encountered when there is a marked
difference in the polarities of the two kinds of molecules, as when one dis-

solves a polar solute in a nonpolar solvent (e.g., acetone in CS 2 ,
n-butanol

in CCU, ethanol in n-heptane, etc.). Negative deviation from Raoult's law

(compare Fig. 7-10/, g) may imply that van der Waals' attraction between

solute and solvent molecules is stronger than the normal attraction

between solute molecules in the pure state; in some such cases, there is

clear evidence of a tendency for actual chemical reaction to take place

between the solute and solvent (e.g., NH 3 in H 2O). It may also

be a consequence, however, of the influence of the shapes and relative

sizes of the molecules on the degree of order with which they may pack
in the liquid state; this effect has been observed particularly in solutions
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of high polymers.
1 Positive deviation from Raoult's law is, however,

far more common than negative deviation (if one reserves for special

consideration the behavior of electrolytes). If it happens that both

solute and solvent molecules are nonpolar, or if they are both polar and
have similar general shapes and sizes, so that Van der Waals' forces

between the different kinds of molecules are approximately the same in

character as the forces between like molecules, then conditions are most

favorable for the formation of solutions ideal over the entire composi-
tion range.

The difference, </>$ (F)2, serves as a measure of the influences we
have been discussing. If the solute is similar to the solvent in molecular

configuration and polarizability, we may expect a zero or at most a small

positive value for this difference; if the solute and solvent differ consider-

ably in molecular configuration, particularly when one type of molecule

is strongly polar (as indicated by a comparatively large dipole moment)
and the other nonpolar, then we may expect a relatively large positive

value for this difference; in those relatively uncommon cases in which

solute and solvent are exceptionally strongly attracted to each other,

possibly with a tendency toward compound formation, or in which the two

kinds of molecules differ considerably in size, then the difference may be

negative in value.

Since in sufficiently dilute solution, the particular nature of the solute

appears to have no effect on the thermodynamic potential of the solvent,

we should expect that if several independent solutes were present, each

at a sufficiently low concentration, then the solvent would continue to

satisfy the empirical law (7-3-15) ;
or what amounts to approximately the

same thing, the partial vapor pressure of the solvent would decrease

according to the empirical generalization

p l
~

PI = x* + x z + (T const; z2 , Si,
-

0) (7-3-25)
Pi

This equation and its thermodynamic implications (e.g., effect on the

boiling point, freezing point, etc., as we shall show later) have been tested

experimentally and found to be generally correct. Now, according to the

general Gibbs-Duhem equation in the form (7-1-8)

X2 d<t>2 + #3 d<a + = ~ #1 dfa (T, p const)

which if the solvent satisfies Raoult's law in the form (7-3-15), reduces to

= RT(dx2 + dxs + ) (T const; Xi - 1)

(7-3-26)

1 Hildebrand and Scott, op. cit., Chaps. VI and XX.
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Equation (7-3-26) is not sufficient to enable us to separate in a rigorous

manner the effects of the different composition variables # 2 , #3, . . . on

the thermodynamic potentials 02, 3 ,
. It seems reasonable for us

to suppose, however, that at sufficiently low total solute concentration,

in the absence of specific chemical reactions among the solutes masking
their true concentrations, the behavior of each solute will be independent
of the presence of the others, and will be essentially the same as though it

alone were present in the solvent at the same concentration. In other

words, let us suppose that in sufficiently dilute solution in the given sol-

vent, 02 does not depend explicitly on # 3, #4, .
,
but only on #2 ,

and 3

likewise does not depend explicitly on #2, #4, . . .
,
but only on 0:3, ... ;

then we may separate terms in Eq. (7-3-26) that depend, respectively,

only on x2 ,
on # 3 , ,

and thus draw the conclusions

02 = 02 + RT In x 2

0o = 03 + RT In x* } (T const; x*, xz,
. . . -> 0) (7-3-27)

where by supposition, the constants 0f, 0?, ... have the same values

one would obtain for the respective solutes dissolved separately in the

same solvent. The essential correctness of this idea is substantiated by
equilibrium data for chemical reactions taking place in dilute solution in a

given solvent, as we shall see in Chap. 8.

If we have a third component dissolved at relatively low concentration

in a liquid (or solid) medium consisting of two other components at rela-

tively high concentrations, then presumably 3 for the third component
(the "solute") may satisfy an equation of the form (7-3-27), but with 02 a

"'constant" dependent on the relative proportions of the other two compo-
nents. In other words, the medium consisting of the other two compo-
nents in fixed relative proportion may be regarded as itself the "solvent" ;

but the value of in this case will in general not be simply related to the

03 values obtained for component 3 as solute in the other two components

separately as solvents. This problem of the thermodynamics of solutions

in "mixed" solvents is technically important, but too complex for further

discussion here.

d. The Ideal Concentrated Solution. While the properties of ideal con-

centrated solutions have limited practical value, there is considerable

interest in the ideal solution as a theoretical concept, and as a reference

base from which to study the properties of real solutions. Whereas real

binary solutions satisfy the limiting Eqs. (7-3-15) and (7-3-16) in the ideal

dilute range only, with 0$ an empirical constant whose value cannot be

deduced by purely thermodynamic means from the properties of the pure
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solute, we may define ideal concentrated solutions as solutions satisfying

at all temperatures, pressures, and compositions the pair of equations

in*,

The thermodynamic potentials of the components are in other words com-

pletely defined by the molal free energies (FT,p)i and (FTtP)2 of the pure

components at the particular temperature and pressure, together with the

composition. Comparing with Eq. (7-2-5), one perceives that a binary

ideal-gas solution essentially satisfies Eqs. (7-3-28). In applying Eqs.

(7-3-28) to liquid or solid solutions, the terms (^r,P)i and (FTtp) 2 refer,

however, to the two pure components in the liquid state, or in the solid

state, as the case may be, just as in Eq. (7-2-5) the corresponding terms

((F%)i + RTlnp) refer to the gaseous state; obviously, there must be a

limit to the composition range over which the solution exists unless both

components in the pure state are in similar states of aggregation (gas,

liquid, or crystalline solid). For a liquid or a solid solution satisfying

Eqs. (7-3-28), if we may assume that the equilibrium vapor phase satisfies

the ideal-gas law and that the changes of (FTtP)i and (FT ,P)2 with pressure
between the vapor pressures of the pure components may be neglected,

then these equations are equivalent to

Pi =

p = Pi + Pz = xipl +
(T const) (7-3-29)

for all compositions.

By the same argument that led to Eqs. (7-3-20) and (7-3-24), we may
easily show that for a solution satisfying Eqs. (7-3-28)

ryi
=

(//r,P)i; 172
= (Hr.p)* \ ,7 o OA\

i
=

(?r,,)i; o. - <?.-), I
(7

'3'30)

The partial molal enthalpies and the partial molal volumes are equal,

respectively, to the molal enthalpies and the molal volumes of the pure

components at the same temperature and pressure. Therefore for an

ideal concentrated solution, the heat of solution and the net volume

change on mixing the components in any proportion are both zero.

Just as in the case of an ideal-gas mixture, the free energy of solution

per mole of solution formed, given in general by the expression

AF =
Xi<t>i + x#t>2 Xi(FTtP)i V2(FT,p)<2 (T, p const)
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assumes the ideal form

AF = RT(xi In xi + xz In x2) (T, p const) (7-3-31)

Likewise, the entropy of solution per mole of solution formed, given in

general by

AS =AA**

(T, p const)

assumes the ideal form (since A/? = 0)

AS = -R(xi In Xi + xt In x$ (T, p const) (7-3-32)

Equation (7-3-32) and the corresponding identical equation for ideal-

gas mixtures, Eq. (7-2-7), have a simple interpretation in terms of molecu-

lar statistical theory (which we shall discuss in detail in Chap. 10). Let

us suppose that in 1 mole of ideal solution, there are No completely equiva-
lent places occupied by XiNo molecules of component 1 and x^No molecules

of component 2
;
in an ideal gas, each place is considered to be equivalent

because intermolecular forces between the molecules at the comparatively

large intermolecular distances involved are supposed to be completely

negligible; in an ideal liquid or solid solution, each place is equivalent not

because intermolecular forces are negligible, but because we suppose that

the forces between neighboring molecules are similar, regardless of

which type of molecule happens to occupy the adjacent positions. Now,
if the ATo places are filled completely at random, then corresponding to any

composition x\ 9 x<t there will be a certain number Q of different ways in

which the places could be filled, all of which are presumably equally

likely if the distribution is governed by chance; there is of course no

means of finding out which particular way prevails at any instant, in

view of the relative coarseness of the methods of thermodynamic investi-

gation, but all are equivalent. The number of ways of filling No different

places so that XiNQ are occupied by the one kind of molecule, and XzNQ by
the other, is given by

Let us take logarithms, for mathematical convenience; thus

In fl = In N l
- In (rfo) !

- In (x2N ) !

Since the number N (Avogadro's number) is enormous, we may without

significant error apply Stirling's approximation

In N\ ~ N In N - N (N large)
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Therefore

In S2 = No In #0 - NQ
-

(xiNo) In (zi# ) + &i#o - (#2#o) In

+ zaJYo

= NQ(XI In Xi + Xz In 2)

(in view of the fact that x\ + x% = 1). Comparing with Eq. (7-3-32),

one sees that AS is proportional to the logarithm of the total number of

ways in which the two kinds of molecules may be distributed among the

NQ equivalent places:

AS =
^-

In Q (7-3-33)

In molecular statistical theory, we interpret this identification to mean
that the value of AS given by Eq. (7-3-32) corresponds simply to complete
randomization when the two components are mixed. The irreversibility

of the solution process measured by the value of AS is thus a statistical

effect, representing the unlikelihood that if chance alone rules, the solu-

tion will ever separate again into the two pure components. Such a

separation would be equivalent to a configuration in which all x\No mole-

cules of Type 1 occupied, say, the first XiNQ positions, while all x^No mole-

cules of Type 2 occupied the remaining positions, i.e., to a particular one

of the various ways in which the places could be occupied by both kinds

of molecules; the chance of such an event, 1 : Q, is given according to Eq.

(7-3-33) by the number exp (
^-
AS 1, which for a 50 mole per cent

solution assumes the vanishingly small value e~~
4 -2X1 M

. Equation

(7-3-33) is a special case of a general relation between entropy and proba-

bility postulated by L. Boltzmann.

In real solutions, the entropy of solution may have a value different

from that represented by Eq. (7-3-32) ;
in such cases, other influences are

present besides purely random intermixture of the component molecules. 1

On the other hand, we may have completely random dispersion of the

molecules, but interaction energy that results in failure of the solution to

be ideal in other respects. J. H. Hildebrand has proposed to call such

solutions, satisfying Eq. (7-3-32) but not necessarily satisfying Eqs.

1 This is particularly the case for solutions of high polymers, where some degree of

order [corresponding to an entropy of solution smaller than the ideal value given by
Eq. (7-3-32)] may exist even in quite dilute solutions as a result of certain preferred

orientations of the macromolecules with respect to each other. For a treatment of this

important subject, see A. R. Miller, "The Theory of Solutions of High Polymers,"
Oxford University Press, London, 1948; see also Hildebrand and Scott, op. cit.,

Chap. XX.
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(7-3-28), "regular
"
solutions. 1

Equation (7-3-31) represents likewise the

free energy of purely random mixing; the value of AF given by Eq.

(7-3-31) represents the least quantity of energy in principle that must be

expended on the solution in nonthermal form, other than work of com-

pression, in order to separate the components at the fixed temperature T
and pressure p in the absence of specific interaction between them. If

specific effects beyond those of purely random mixing are present, as is

generally true of nonideal solutions, then AF differs from the ideal value

given by Eq. (7-3-31), and the difference is called the excess free energy of

solution. 2 It is the object of theories of solution to derive the value of

this quantity from suitable assumptions concerning the sources of

deviation from ideal behavior.

Solutions ideal at high solute concentrations need not be confined to

liquid pairs, or solid pairs, but may include solutions of solids in liquids

whose molecules are structurally similar, such as naphthalene in benzene.

The difference from ordinary ideal behavior is that beyond a certain fixed

proportion of solute to solvent at given temperature and pressure, the

solute separates out of solution as a solid phase. The condition for equi-

librium between the pure crystalline solute and the saturated solution is

given in general by
#2 = (Fr,p)2(o)

which in the case of the ideal concentrated solution [Eqs. (7-3-28)] assumes

the form

(*Vp)2<o + RT In x* = (Fr ,P) 2 (c) (ideal soln) (7-3-34)

where xf represents the solubility at T and p. We must evidently inter-

pret the term (/VP)2(i) introduced by Eqs. (7-3-28) as the molal free energy
of pure component 2 in the form of a supercooled liquid at the given tem-

perature and pressure. Since both (FTtp)^i) and (Fr,P)2(c) are properties

of the pure solute, independent of the particular solvent, Eq. (7-3-34)

implies that the solubility of the particular solid in any liquid solvent with

which it happens to form ideal concentrated solutions is the same, when

expressed in terms of x2,
at the same temperature and pressure through-

out. Since furthermore we have observed that in nonideal solutions,

positive deviations from Raoult's law are much more common than nega-
tive deviations (particularly when one excludes known cases of chemical

interaction between the components, dissociation of the solute, etc.), we

may expect fa in the nonideal saturated solution to be generally larger

1 J. H. Hildebrand, J. Am. Chem. Soc., 61, 66-80 (1929) ;
sec also Hildebrand and

Scott, op. cit. The same concept has been discussed from a somewhat different point
of view by E. A. Guggenheim, Proc. Roy. Soc. (London), (A) 148, 304-312 (1935).

2 G. Scatchard and W. J. Hamer, J. Am. Chem. Soc., 57, 1805-1809 (1935).
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than the ideal value given by Eq. (7-3-34),. and x$ therefore to be gener-

ally smaller than the ideal value. These ideas are substantiated by

experiment; thus, in Table 7-2, one sees that the solubility of naphthalene
at 25C and 1 atm in many solvents is practically uniform, between the

values: x* = 0.28 to 0.32, but for several others, the solubility is con-

siderably less than the ideal value.

By applying Eq. (6-12) to Eq. (7-3-34), we may derive an expression

for the effect of temperature on the ideal solubility

id In xf\ _ (flV.P)2(i) (/?rtP)2(o)

V dT L RT*

The numerator of the right-hand term is simply the latent heat *of fusion

of pure component 2; thus

fdlnx}\(
\

(ideal soln) (7-3-35)dT Jp RT*

The latent heat of fusion varies generally with temperature, according to

TABLE 7-2. SOLUBILITY OF NAPHTHALENE IN VARIOUS SOLVENTS AT 25C*
Solvent x*

Chloroform 0.331

Chlorobenzene 0.317

Ethylcnc chloride 0.317

Pyridine 0.314

Ethylene bromide 0.311

Nitrobenzene 0.298

Benzene 0.296

Toluene 0.286

Carbon tetrachloride . 260

Ethyl ether 0.242

Acetone 0.224

Hexane 0. 125
* Solubilities are taken from the

"
International Critical Tables," Vol. IV, McGraw-Hill Book Com-

pany, Inc., New York, 1928; Lei for naphthalene is taken from the critical review by G. 8. Parks and
H. M. Huffman, Ind. Eng. Chem., 23, 1138-1139 (1931).

The ideal solubility according to Eq. (7-3-36), with Lei 4610 cal/mole at the normal melting point,

80C, is 2* 0.298; a slightly higher value is obtained if one attempts to take account of the change
of Ld with temperature.

an equation analogous to Eq. (6-72). One would find it difficult to

determine Cp precisely for the supercooled liquid at temperatures well

below the normal freezing point. Over a sufficiently small range of tem-

peratures, however, we may integrate Eq. (7-3-35), treating (1/^)2 as con-

stant; thus, starting from the normal freezing point of pure component 2,

jPa, where by supposition x* = 1 in the liquid phase:

(ideal soln)
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Table 7-2 includes the ideal value of x for naphthalene at 25C, as derived

from Eq. (7-3-36) ;
one sees that it is in good agreement with the group of

higher experimental values of x* . Clearly, the effect of temperature on

the ideal solubility of the given solid is merely the obverse aspect of the

lowering of its freezing point by the presence of component 1 as ideal

"solute" in the liquid phase; any ideal solute at the same concentration,

1 x*j would produce the same lowering of the freezing point. The

freezing out of either pure component and the solubility of that compo-
nent in the liquid phase at the given temperature are but two ways of

looking at the same equilibrium state; we shall discuss the freezing points

of liquid solutions generally in Sec. 7-5.

By applying Eq. (6-10) to Eq. (7-3-34), we may readily derive an equa-
tion analogous to (7-3-35) for the effect of pressure on the ideal solubility

at constant temperature.

We may comment briefly on the relation between the boiling point and

the composition of a binary liquid solution ideal over the entire composi-
tion range. According to (7-3-29),

xipl + x*pl = p (T const) (7-3-37)

For a change in composition at fixed total pressure (e.g., atmospheric

pressure), the equilibrium temperature between the liquid and vapor

phases must therefore satisfy the relationship

Thus

The Clausius-Clapeyron equation (6-69) may be introduced, with appro-

priate assumptions, in the two terms on the right

(Pi
-

where (Li )i and (L^) 2 represent the molal latent heats of vaporization of

the respective pure components. Thus

(P
-

Pi)

x lp1 (Llg) 1

Equation (7-3-38) represents a special case of Eq. (7-3-13). The equa-
tion as it stands is not particularly useful, because the vapor pressures and
heats of vaporization of the pure components vary in complex ways with
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the temperature; therefore the equation cannot be readily integrated. A
more practical approach to the construction of the boiling point vs. com-

position relation is to solve Eq. (7-3-37) for Xi (noting that x2
= 1 Xi),

at various values of T intermediate between the boiling points TI and T2

of the pure components at the given pressure p, using the experimental or

calculated values of pi and pi at each temperature; in this way, the entire

T vs. Xi relationship can be constructed for an ideal liquid pair, from

knowledge of the vapor pressure vs. temperature relationships for both

pure components. Equation (7-3-38) may be conveniently applied,

however, to the calculation of the terminal slopes (as #1 and as

Xi 1, respectively) of the T vs. Xi curve; thus

(p
~

(7-3-39)

These equations may be used to estimate the effect of a small concentra-
tion of either component on the boiling point. For example, CC1 4 boils

at 76.6C (349.8K) under normal atmospheric pressure, and its molal
latent heat of vaporization is 7283 cal/mole; the vapor pressure of TiCl4

at the same temperature is 120 mm Hg; therefore in TiCU-CCU solutions

rhm dT \- 1

^ 1.987 cal/mole deg (349.8 deg)
2
(760 - 120) mm Hg

7283 cal/mole 760 mm Hg
= 28.2 deg

The actual boiling point of a solution containing 9.76 mole per cent TiCU
in CC1 4 ,

as measured by N. Nasu,
1 is 79.2C, in good agreement with the

calculated increase of 0.0976 X 28.2 deg = 2.75 deg as estimated from
the theoretical terminal slope of the T vs. Xi relationship. It should be

emphasized that the limiting equations (7-3-39) do not apply unless the

two components form solutions ideal over the entire composition range.
e. Thermodynamic Description of Nonideal Solutions; the Activity

Functions. The pair of equations (7-3-28), with their thermodynamic
implications, tells us all we need to know concerning the behavior of a

binary liquid solution ideal over the entire composition range; in this

special case, the thermodynamic properties are completely determined by
the properties of the pure components and the composition. For solu-

1 N. Nasu, as reported in Landolt-Bornstein, "PhysikaJisch-chemische Tabellen,"
5th ed., Supplement IIIc, p. 2478, 1936.
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tions that are not ideal in this sense, it is necessary for us to determine

^i and fa at various compositions by empirical measurement. There is

no known theoretical connection of general validity relating the thermo-

dynamically significant properties fa and fa to the composition. Even
in the ideal dilute range, where the value of fa for the solvent is deter-

mined completely by the properties of the pure solvent and the composi-
tion [Eq. (7-3-15)], it is still necessary for us to measure fa empirically at

at least one composition in order to establish the value of the constant $%

[Eq. (7-3-16)].

In view of the ideal forms empirically relating fa and fa to the composi-
tion in special cases, Eqs. (7-3-28) in the case of solutions ideal over the

entire composition range, and Eqs. (7-3-15) and (7-3-16) more generally

for solutions sufficiently dilute with respect to either component, it is

convenient for us to express thermodynamic data for real solutions in

terms of functions of the thermodynamic potentials related to them by
definition in the same way that the concentrations of the components are

related empirically in the ideal limits. Thus, these functions, known as

activities of the respective components, are defined generically by the

equations

d<j)i

(T, p const) (7-3-40)
dfa s RT din a*

d<t>c
= R 1

J d In ac

They were first introduced in thermodynamic investigation by G. N.

Lewis;
1
they bear to the thermodynamic potentials in liquid (or solid)

solution a relationship similar to that between the fugacity and the molal

free energy of a gas. According to the Gibbs-Duhem relation (7-1-8),

the activities of the various components must satisfy the general condition

Xi d In ai + #2 d In a2 + * + %c d In ac
=

(T, p const) (7-3-41)

Since the behavior of the ideal concentrated solution, as represented by
Eqs. (7-3-28), is rather different from that of the ideal dilute solution, as

represented by Eqs. (7-3-15) and (7-3-16), in that the properties of the

former are completely determined in terms of the properties of the pure

components down to the values of the integration constants [the terms

(^W)i and (FT,p)<i\ whereas the properties of the latter involve the empiri-

cal integration constant <t>%, the assignment of absolute numerical values

to the activities [i.e., the assignment of integration constants to the inte-

1 G. N. Lewis, Proc. Am. Acad. Arts Sci., 43, 259-293 (1907); Z. physik. Chem., 81,

129-165 (1907); see also Lewis and Randall, op. cit.
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gral form of Eqs. (7-3-40)] is subject entirely to our convenience, depend-

ing on whether we choose to regard (7-3-28) as the ideal form at all com-

positions, or whether we choose to regard Eqs. (7-3-15) and (7-3-16) as

the ideal limit, as actually attained in the sufficiently dilute range. The
former choice has proved to be the more useful for the study of liquid-

vapor equilibrium in general for binary and multicomponent liquid solu-

tions, where each component in turn satisfies Raoult's law (7-3-15) as its

own mole fraction approaches 1. The latter choice is the more useful

when one wishes to correlate the thermodynamic properties of various

solutes in a common solvent (e.g., aqueous solutions, solutions in the

solvent methanol, etc.), where at sufficiently low concentrations all

solutes satisfy the same limiting law (7-3-16) (of course with different

values of <). We shall discuss these two problems separately in Sees.

7-3/ and 7-3gr.

/. Activity Coefficients in the Study ofLiquid-Vapor Equilibrium. Sup-

pose we assign numerical values to the activities in accordance with the

integral equations

P

(FT,P) C + RT In a

In these equations, (FT,p)i, (FT,P)<I, . . .
, (FT,P)C stand, respectively, for

the molal free energies of the pure components as liquids (or as solids, if

we are dealing with a solid solution) at the temperature and pressure of

the solution. Over the comparatively small pressure ranges one is likely

to encounter in the study of liquid-vapor equilibrium at temperatures not

greatly exceeding the normal boiling point of the solution, (FTtp)i for any

pure component, i, may be replaced by the standard value (F%)* at 1 atm
without significant error; furthermore, by the application of (7-1-24) and

(6-10) to (7-3-42),

d In aA Vj
- (VT,p)i=-

one sees that in view of the relatively small numerical value of the differ-

ence between the partial molal volume Vi in liquid solution and the molal

volume (VT,P)I of the pure liquid component, the activities themselves in

liquid solutions can be only slightly sensitive to variations in the pressure;

at any rate, one can always correct all data to a common standard pres-

sure by the application of Eq. (7-3-43). In the following discussion, we
shall suppose that such pressure correction may be neglected, and that

Eq. (7-3-42) refers to data at essentially 1 atm pressure.



364 PRINCIPLES OF CHEMICAL THERMODYNAMICS

For activities defined in accordance with the convention (7-3-42), it is

then generally empirically true that for each component

lim a,i
= Xi (T,p const; i = 1, 2, . . .

, c) (7-3-44)

This statement merely represents Raoult's law in the respective ideal

dilute-solution limits as each component in turn is regarded as the

"solvent." For the ideal concentrated solution, of course, a would

equal Xi for each component at all compositions [compare Eqs. (7-3-42)

and (7-3-28)]. The apparent exceptions to (7-3-44) (e.g., electrolytes,

benzoic acid in benzene, etc.) usually have a more or less definite chemical

significance.

If the pressure under consideration is sufficiently low so that the equi-

librium vapor phase satisfies the ideal-gas law with sufficient accuracy for

our purpose, then from comparison of (7-3-42) with (7-3-3), which applies

to any component whether the liquid solution is ideal or not,

* = =$ (T, p const; i = 1, 2, . . .
, c) (7-3-45)

Pi Pi

By this relationship, any activity may be calculated directly from the

vapor pressure and equilibrium vapor composition of the solution; the

calculation is rigorous, within experimental error and the precision of the

ideal-gas law assumption. If the vapor phase fails to satisfy the ideal-

gas law, then we may replace Eq. (7-3-45) by

di = ^? ^ (T
7

, p const; i = 1, 2, . . .
, c) (7-3-46)

Pi v
i

where *> represents the fugacity coefficient of component i in the equilib-

rium vapor at the pressure p (as determined by the methods of Sec. 7-2),

and v represents the fugacity coefficient of pure component i in the

gaseous state at its own vapor pressure p? at the given temperature T.

We shall assume hereafter that the equilibrium vapor phase may be

treated approximately as an ideal gas, for pressures of order 1 atm or less,

bearing in mind, however, that at higher pressures, or where higher pre-
cision is warranted, the equations that follow may be readily generalized

by the use of Eq. (7-3-46) throughout in place of Eq. (7-3-45).

It is convenient for us to introduce activity coefficients, defined in this

case by

7,
== 5 (T,p const; i = 1, 2, . . .

, c) (7-3-47)
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Equations (7-3-42) then take the form

i
- ^ri + RT In Xi + RT In Tl

+?T!V?
+*^T

: <r,P const)

+ RT In ze + #2' hi 7e ,

These equations themselves may be taken as defining the quantities

7i> 72, .
> 7c. In terms of direct experimental data, according to Eq.

(7-3-45),

(T> p const; < - 1, 2, . . .
, e) (7-3-49)

In the ideal dilute range, with the particular component i regarded as

solvent, Eq. (7-3-44) is equivalent to

lim 7; = 1 (T, p const; i = 1, 2, . . .
, c) (7-3-50)

The deviation of 7,- from 1 outside this range measures the extent to which

this component deviates from ideal behavior, with Raoult's law taken as

the norm. At the other end of the composition scale, by comparison of

Eq. (7-3-49) with Eq. (7-3-18),

lim 7* =
k

(T, p const; i = 1, 2, . . . , c) (7-3-51)
Pi

where /k represents the mole fraction Henry's law constant for component
i as solute in ideal dilute solution; in a binary solution, the value of fc for

either component depends only on the temperature, but in a solution con-

taining several components, the value of /b for component i may vary also

with the relative proportions of the other components.
The activity coefficients of the different components at given tempera-

ture and pressure are related through the Gibbs-Duhem equation, which

assumes the form [compare Eq. (7-3-41)]

xi d In 71 -f x* d In 72 + + xc d In ye
= (T, p const) (7-3-52)

In the case of a binary solution, Eq. (7-3-52) implies that if one of the

activity coefficients has been measured over the entire composition range,

such as through the application of Eq. (7-3-49) to liquid-vapor equilibrium

data, then the other may be determined by numerical or graphical inte-

gration of the data in the form

In 72 = -
\

^

t

Xl
d In 71 (T, p const) (7-3-53)

i/x 1 -0 1 #1
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condition (7-3-50) being used to fix the value of the implied integration

constant.

From experimental liquid-vapor equilibrium data, in the form of p, y\,

y*> . . .
, yc measured for various liquid compositions (x\, x2 ,

. . .
,
xc)

at the given temperature, one may construct a table of 71, 72, -
, TC

values for the various compositions, and thus characterize completely the

exact thermodynamic properties of the solution through Eqs. (7-3-48),

which constitute generalizations of the ideal equations, (7-3-28). Figure

7-13 shows, for example, graphic plots of log 71 and log 72 vs. #2 for several

representative binary liquid solutions, computed from data previously

presented in Figs. 7-10 and 7-11. This procedure results in no new

information that could not have been represented directly in terms of the

FIG. 7-13a. Activity coefficients in acetone-chloroform solutions at 35.17C [from vapor

pressure data of J. von Zawidski, Z. physik. Chem., 35, 129-203 (1900)]; solid curves repre-
sent van Laar equations with Ai = 0.46 and A 2 = 0.34.

experimentally determined values of fa, faj . . .
, <f>c themselves; but the

mathematical convenience with which the empirical data may be repre-

sented when in the form of comparatively small deviations from an ideal

standard of behavior is manifest. A particular advantage is that the

value of 7i remains finite as x* [Eq. (7-3-51)], whereas the value of fa

approaches QO .

It would be even more useful, however, if we could discover empirical

rules or generalizations that would guide us in setting up activity coeffi-

cient values over the entire composition range from measurements con-

ducted at but a few compositions. Such empirical equations of state,

containing a small number of parameters adjusted to fit each individual

case, would serve as second-order approximations to the actual data,

beyond the first-order approximation represented by Eqs. (7-3-28)

(TI = 72 = = 7c = 1), which is valid only when the solution is

practically ideal over the entire composition range. Any such system of
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FIG. 7-135. Activity coefficients in acetone-carbon disulfide solutions at 29.2C (from vapor
pressure data of J. Hirshberg, as reported in Landolt-Bornstein,

"
Physikalisch-chemische Tab-

dlen" 5th edt Suppl. IIIc, p. 2466, 1936); dashed curves represent van Laar equations with
Ai = 0.76 and A 2 = 0.62.
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FIG. 7-13c. Activity coefficients in n-propanol-water solutions at 25C [from vapor pres-

sure data of J. A. V. Butler, Z>. W. Thomson, and W. H. Maclennan, J. Chem. Soc. t 674-686

(1933)1; solid curves represent van Laar equations with A\ * 0.57 and Aa = 1.11.
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empirical equations must of course satisfy reciprocal symmetry relations

of a form imposed by Eq. (7-3-52). This problem was first investigated

by M. Margules, but its status has recently been critically reviewed by
H. C. Carlson and A. P. Colburn, and by K. Wohl, who have developed

several valuable practical applications.
1

Perhaps the most convenient

set of empirical equations for binary solutions is one proposed originally

by J. J. van Laar,
2 as revised by Carlson and Colburn,

log 71 -

It
*! I**'! I

% ~T 1 I~

(7-3-54)
i -^2
log 72 =

The constants AI and ^1 2 are characteristic of the particular liquid pair at

the given temperature. Rearranging terms,

!+" ;"*")' log 7l"
l m>

(7-3-55)

In the form (7-3-55), the van Laar constants A\ and A 2 may be readily

calculated from measurements of 71 and 72 at any one liquid composition

[e.g., from liquid-vapor equilibrium data through Eq. (7-3-49)]; then, if

the van Laar equations fit the data sufficiently well, Eqs. (7-3-54) may be

used to calculate 71 and 72 approximately at other compositions. The
values of 71 and 72 so obtained permit one by implication to calculate the

vapor pressure and composition of the equilibrium vapor phase for other

liquid compositions than the one used in determining the values of AI and

A2j Eqs. (7-3-54), in other words, happen to be a comparatively simple
form for expressing what would otherwise be an extremely complicated

empirical connection between the liquid and equilibrium vapor composi-
tions. The curves drawn in Fig. 7-13 have actually been constructed by
means of Eqs. (7-3-54), using appropriate values of AI and A 2 as indicated

on the graphs; for n-propanol-water (Fig. 7-13c), the fit is particularly

good, considering how far from ideal these solutions are in the interme-

diate composition range (compare Fig. 7-llc); for acetone-CS 2 (Fig.

7-136), the van Laar equations cannot be made to fit the data much better

1
Margules, loc. cit.; H. C. Carlson and A. P. Colburn, Ind. Eng. Chem., 34, 581-589

(1942); K. Wohl, Trans. Am. Inst. Chem. Eng., 42, 215-249 (1946).
* J. J. van Laar, Z. physik. Chem., 72, 723-751 (1910) ; 83, 599-608 (1913).
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than the dashed curves indicate, but the agreement is not bad. Other

empirical equations are discussed by Carlson and Colburn, which fit the

data better in certain cases, but the van Laar equations appear to be the

simplest in application.

The estimation of A\ and A 2 is particularly simple if the two liquids

happen to form an azeotropic mixture, for in this case, an independent

analysis of the composition of the equilibrium vapor phase at the azeo-

tropic liquid composition is not required; in fact, according to (7-3-49),

7i = Pm/Pi and 72 = pm/pl (within the ideal-gas-law approximation) at

the azeotropic composition, pm representing the azeotropic pressure

(maximum or minimum, as the case may be), and pi and p% the vapor

pressures of the pure components at the same temperature. If the deter-

mination of A i and A 2 by this method is to be precise, the azeotropic com-

position should not be too close to either end of the composition range.

One can easily see from Eq. (7-3-54) that

lim log 71 \
'

, \ (7-3-56)
log 72 I

Therefore the van Laar constants may be estimated also from precise

data in the dilute composition ranges [see, for example, Eq. (7-3-51)].

As shown by Carlson and Colburn,
1 this need not necessarily call for

actual measurement of the equilibrium vapor composition, for in the

ideal dilute limit, Xi > 0, one may assume that component 2 (the
"
sol-

vent
7 '

in this range) satisfies Raoult's law, p% = x<tp\, while in the other

ideal dilute limit, x2 0, one may assume that component 1 satisfies

Raoult's law, pi =
Xipl. Therefore one may replace Eq. (7-3-49) (which

is exact within the ideal-gas-law approximation for the equilibrium vapor

phase) by the approximations

_ P -lim 71 =

""-~, c7-3-57 )

lim 72

From precise measurements of the vapor pressure p for compositions near

both ends of the composition range, one may thus estimate by means of

Eqs. (7-3-57) the terminal values of 71 and 72, and, by taking their log-

arithms, determine AI and A 2 in accordance with Eqs. (7-3-56).

The general effect of temperature on the activity coefficients may be

deduced by the application of Eqs. (7-l-26a) and (6-12) to (7-3-48),

1 Carlson and Colburn, loc. dt.
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The numerator of the term on the right of Eq. (7-3-58) evidently repre-

sents the differential or partial molal heat of solution of component i, the

heat evolved per mole of component i at constant temperature and pres-

sure when the pure component is dissolved in a relatively large quantity

of the solution, so that the composition (and with it, the value of rn

itself) undergoes no significant change. A knowledge of the value of this

quantity for each component is important in the operation of extractive

distillation columns, and other continuous-flow methods of separating

the components. It may be derived from straightforward calorimetric

measurements, as in Sec. 4-5; but Eq. (7-3-58), which we may rearrange

in the form

-
(Rr.P)i = 2.303/2 (7-3-59)

provides a means of determining it from equilibrium data obtained at

several temperatures, expressed in the form of activity-coefficient values

for the given composition to which in refers. 1

If we apply Eq. (7-3-59) to the terminal values of log 71 and log 72 of a

binary solution satisfying the van Laar equations, then, in view of Eqs.

(7-3-56), we obtain equations for the temperature coefficients of AI and

At in terms of thermal data; since the difference (Hr^i in becomes

equal in the limit Xi > to the total molal heat of solution of component i

in the other component, as defined in Sec. 4-5, therefore

2.303/2
T dAl

-(Q?)i = 2.303/2

where (Q?)i and (Q?)2 represent, respectively, the total molal heat of

solution of component 1 in component 2 as solvent, and the total molal

heat of solution of component 2 in component 1 as solvent. According
to Carlson and Colburn, the values of (Q?) for organic liquid pairs run as

high as 2000 cal/mole, and for mixtures of various alcohols with water, as

high as 5000 cal/mole. Unfortunately, most of the direct calorimetric

data for solutions have been obtained only at room temperature, and there

are indications that differential heats of solution may change quite

1
See, for example, T. S. Merles and A. P. Colburn, Ind. Eng. Chem., 39, 787-796

(1947).
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rapidly with temperature.
1 Over a sufficiently narrow range of tempera-

ture, however, we may treat the activity coefficients at given composition
as approximately constant

; thus, if (Hi ry t) in Eq. (7-3-58) were of order

1000 cal/mole, a change of 10 deg in T around 298K would be accom-

panied by a change of order 2.5 per cent in 7;.

Empirical equations of state for ternary liquid solutions have been

analyzed by K. Wohl
;
an example of their use is found in a recent paper

by Gerster, Mertes, and Colburn. 2

Essentially the same method outlined in this section for the empirical

representation of the thermodynamic potentials in liquid solutions as

functions of the composition is applied also to solid solutions, with the

difference of course that the reference states of the pure components are

taken to be the crystalline solid rather than the liquid states of aggregation.

Thus, activity coefficients in binary solid solutions are commonly defined

by the equations

+i - (r,),w + RT In Xl + RT In 7

From such data as are available, a generalization of Raoult's law appar-

ently applies, in that the results satisfy empirically the limiting laws

lim 71 =
1; lim 72 = 1 (T, p const) (7-3-62)

XI 1 Xt-+ I

Most of the experimental data are based on emf measurements of cells

with solid-solution alloys as electrodes, according to the theory to be

developed in Chap. 9. Figure 7-14 presents activity coefficients satisfy-

ing Eqs. (7-3-61) for Au-Ag solid solutions at 200C, as obtained by A.

Wachter from such emf measurements. 3 One could presumably measure

<J>i and </>2 in solid solutions relatively to their corresponding values in the

equilibrium liquid state by precise freezing-point measurements, including

analysis of both the solid and equilibrium liquid phases; few solid solu-

tions are sufficiently volatile for their thermodynamic properties to be

evaluated from vapor-pressure data, such as by means of Eq. (7-3-49).

One could also measure 4>i and < 2 in binary solid solutions relatively to

1 The change is represented formally by the equation

Compare Eq. (4-45), where (yp)t represents the partial molal heat capacity of com-

ponent i in the solution.

K. Wohl, Trans. Am. Inst. Chem. Eng., 42, 215-249 (1946); J. A. Gerster, T. S.

Mertes, and A. P. Colburn, Ind. Eng. Chem., 39, 787-804 (1947).
8 A. Wachter, /. Am. Chem. Soc.

t 64, 4609-4617 (1932).



372 PRINCIPLES OF CHEMICAL THERMODYNAMICS

their corresponding values in a suitable liquid solvent from solubility

data; the solubilities of the two components in the liquid solvent would

have to be comparatively low, as otherwise the analysis of the thermody-

namic properties of the resulting ternary liquid solution would present

formidable technical difficulties.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

r

O.I

0.09

0.08

0.07

0.06

0.05

0.04

0.03

\

0.2 0.4 0.6 0.8 1,0

Fio. 7-14. Activity coefficients in gold-silver solid solutions at 200C (from emf data of A.

Wackier); the curves have been drawn according to van Laar's equations (7-3-54), with

Ai - -1.45 and A* - -1.52.

g. Activity Coefficients for the Correlation of Thermodynamic Data in a

Particular Solvent. When one wishes to compare the behaviors of differ-

ent solutes in a common solvent, then activities and activity coefficients

set up according to the convention represented by Eqs. (7-3-42) and

(7-3-48) are in general not particularly satisfactory. In sufficiently

dilute solution, where each solute tends to satisfy empirically the same

limiting law (7-3-16) (each of course with a different characteristic value

of 0|), this significant fact is obscured when the data are represented in
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terms of activity coefficients defined by Eq. (7-3-48), because each solute,

with the exception of those forming ideal concentrated solutions with the

given solvent, then has a different terminal value of 72 in that range.

Furthermore, if the pure solute happens to be a solid or a gas at the tem-

perature and pressure under consideration, then we may have difficulty

in assigning correctly the value of (PT.p)*, which in the application of Eq.

(7-3-48) to liquid solutions, should represent the molal free energy of the

pure solute in the liquid state. 1
If, however, we assign numerical values

to the activities of the solvent and the solute (confining our attention for

the moment to binary liquid solutions) in accordance with the equations

*i s (Fr ,P)i + RT In ai
\ (T

frmfi + RTlnal }
(T > P

where, by hypothesis, < is defined in accordance with the convention

lira af = x2 (T,p const) (7-3-64)

then in the ideal dilute range, so long as the solvent satisfies Raoult's

law (as represented by the empirical condition ai =
#1), the activity

a\ of any solute at given concentration has the same value, namely, x*.

According to such a scheme of representation, the differences in the values

of fa for different solutes are thrown into the empirical constants <t>\

[so-called standard free energies of formation in solution in the given sol-

vent, relative to the particular convention (7-3-64)], but in sufficiently

dilute solution, the specific effect of concentration is given by the same

law (7-3-16) for all solutes. That the expression

lim (fa
- RT In a? t)

= <& (T, p const) (7-3-65)

used in the definition of <t>% actually converges to a finite limit is implied by
the empirical observation that the solvent in the ideal dilute range satisfies

Raoult's law (7-3-15), as shown in Sec. 7-3c; Eq. (7-3-64) is equivalent to

Henry's law (7-3-16) for the solute.

1 For a solid solute, one could write for the saturated solution at the given temper-
ature and pressure

(Pr.9)*M - GPr.,)t + RT In x\ + RT In 7?

and thus relate (FT,p)t for the hypothetical supercooled liquid state to (Fr,p)*<c) for the

pure solid solute, provided that one had independent means of measuring 7^ for the

saturated liquid solution
;
for a solute that happened to form ideal concentrated solu-

tions with the solvent, one could set yl - 1 [compare Eq. (7-3-34)], but in general

this is not the case.
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Let us introduce activity coefficients defined by

Then Eqs. (7-3-63) take the form

fa =E (FTtp) l + RT In xi + 72SP In 71 ,m . . _ _
T V? z>/iii I r>mi o I OP, p const) (7-3-67)
02 SB 05 -f 723P In 2 + fi?

7
In 7?

v ' ^ ' v '

where

lim ^i ==: 1 O const) (MMHQ

The first of Eqs, (7-3-68) is valid if the solvent satisfies Raoult's law in the

ideal dilute-solution limit; the second then follows as a consequence of the

first, combined with the definitions. Thus, the activity coefficient of the

solvent is defined precisely as before [Eq. (7-3-48)], and its deviation from

1 measures the extent to which the solvent deviates from ideal behavior as

represented by RaouWs law; but the activity coefficient 72 of the solute is

now defined in such a way that its deviation from 1 measures the extent to

which the solute deviates from ideal behavior as a solute in dilute solution

in the given solvent, i.e., ideal behavior as represented by Henry's law,

rather than by Raoult's law. In other words, we are using the ideal

dilute solution, instead of the ideal concentrated solution, as the standard

of behavior for both solvent and solute. It should be emphasized that

this treatment does not alter in the slightest respect the fundamental

thermodynamic relations connecting 4>i and #2 directly to the experimen-

tal data used in their measurement ;
it affects merely the formal method of

expressing <i and < 2 as functions of the composition, to which they bear

no a priori relation given by thermodynamics.

By comparing Eq. (7-3-67) defining 72 with Eq. (7-3-48), which defined

72, we may easily derive the connection between these alternative scales

for representing the same experimental information,

tf = 72 exp
r',~ *

(7-3-69)

Since the values of (Fr,p)w) (the standard molal free energy of pure com-

ponent 2 as a liquid at the given temperature and pressure) and <$ are

independent of the composition, it follows that over the entire composition

range, 7? is directly proportional to 72; in fact, if we introduce Eq. (7-3-19)

(assuming that the equilibrium gas phase may be treated as an ideal gas),
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and also take into consideration Eq. (7-3-51), then

P2

lim 72
JC2->0

, p const) (7-3-70)

In Table 7-3, both kinds of activity coefficients are given for solutions of

n-propanol in water, as computed from the partial-vapor-pressure data in

Fig. 7-1 Ic (see also Fig. 7-13c). The activity and activity coefficient of

the solvent may be determined from vapor-pressure data exactly as before

[Eqs. (7-3-45), (7-3-46), and (7-3.-49)]; these equations are particularly

simple to apply if the solute happens to be insignificantly volatile com-

pared with the solvent, because then an analysis of the equilibrium vapor

phase is not necessary. If the solute is sufficiently volatile, then its own

activity coefficient may be computed directly from measurement of its

partial vapor pressure, in accordance with the relation [compare Eqs.

(7-3-49) and (7-3-70)],

(T const) (7-3-71)lim

One will note that a single measurement of p% at the particular composi-
tion #2 in which one is interested is not sufficient; one must also carry out

sufficient measurements in the dilute-solution range to establish essentially

the value of the Henry's law constant & 2 ;
for this purpose, the analysis of

the equilibrium vapor phase is not strictly necessary, for as one approaches

TABLE 7-3. PARTIAL VAPOR PRESSURES AND ACTIVITY COEFFICIENTS IN n-PROPANOL-
WATER SOLUTIONS AT 25C*

* Data of J. A. V. Butler, D. W. Thomson, and W. H. Maclennan, JT. Chem. Soc., 674-686 (1933).
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the region in which the solvent may be presumed to satisfy Raoult's law,

iim (T const) (7-3-72)
#2

[compare Eqs. (7-3-57)]. While the vapor-pressure method thus con-

stitutes a simple primary means of establishing activity coefficients (or

fundamentally, the thermodynamic potentials themselves), other methods

are commonly employed, because of the experimental difficulty of measur-

ing vapor pressures and equilibrium vapor compositions with sufficient

precision; several of these methods are discussed in Sees. 7-5 and 7-6,

whereas special methods available for electrolytes, based on electrochemi-

cal measurements, are discussed in Chap. 9.

Since In 7? and In 72 differ merely by an integration constant inde-

pendent of composition, it follows that 72 and 71 are related through a

Gibbs-Duhem differential equation of precisely the same form as that of

Eq. (7-3-52) relating 72 and 71:

x\ d In 71 + #2 d In y\ = (T, p const)

Values of 7? may therefore be computed from experimental values of 71

by means of numerical or graphical integration, in the form

In 75= -
/

''-1 din 71
7x2=0 #2

(7-3-73)

Equation (7-3-73) differs from Eq. (7-3-53) for 72 merely in that the inte-

gration extends from the opposite end of the composition scale.

The relationship between <$. and the molal free energy of the pure
solute may be established experimentally in one of several ways, depend-

ing on the nature of the solute. Thus, if the pure solute is a volatile

liquid or solid with vapor pressure pi at the given temperature, then by
comparison of the defining equation (7-3-67) with the thermodynamic

equation (7-3-3)
l

....... i O
I ftf ]f\ /v. /v -- (JO

10
} I JP77 ]n *_*

?2

Introducing (7-3-71),

<*>
=

(^?)i + RT In ^| (7-3-74)
p2

1 Exact within the ideal-gas law approximation for the equilibrium vapor phase,

neglecting corrections for deviation of the pressure from 1 atm; the generalization
and the kind of data required to implement it when these approximations are inade-

quate are obvious from previous discussion [see Eq. (7-3-4)].
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Thus, the difference between <$> and (P^z may be determined from experi-

mental establishment of the Henry's law constant fc 2
= lim (p 2/ 2) for

Z2-0

the solute in the particular solvent, together with its own vapor pressure;

(jp) 2 here represents the standard molal free energy of the pure solute in

the liquid or solid state, as the case may be [compare Eq. (7-3-19)]; the

equation may be applied also to a gaseous solute, provided that one

formally lets pi = 1 atm [or whatever pressure to which the standard

free-energy value (^) 2 for the pure gas refers; see the statement following

Eq. (7-3-3)]. If the solute happens to be a liquid miscible with the sol-

vent over the entire composition range, then taking Eq. (7-3-67) in the

limit as 2 1,

lim < 2
= (Fr ,p) 2

= <? + RT lim In 7?
xt > 1 xt- 1

Therefore

<ti
=

(Fr.p)*
- RT lim In 7? (7-3-75)

We may thus relate <t>l to (^V,P) 2 for the pure liquid solute by experimental

establishment of the terminal value of In 7 2 ;
for example, for n-propanol

in H 2O, from the data presented in Table 7-3,

^n-propanoKacO
"

(/
?
?98.16)n-p,opanol

= -RT fa (0.0775) = 1514 Cal/mote

Equation (7-3-75) is of course exactly equivalent to Eq. (7-3-69), since at

the #2 > 1 end of the composition scale, component 2 (the "solute") pre-

sumably conforms to Raoult's law, 7 2 1. If the pure solute happens
to be a solid that forms a saturated liquid solution of composition #* with

the particular solvent at the given temperature, then provided that the

phase in equilibrium with the saturated solution is actually the pure

crystalline solute, and not a solid solution or compound with the solvent,

xt + RTfa (7S)*

Therefore

<ti
=

(^r)2(c)
- RT In x^

- RT In (7?)* (7-3-76)

[compare Eq. (7-3-34), which is a special case of (7-3-76)]. We may thus

relate < 2 to (F%) 2 for the pure solid solute by experimental establishment

of the value of 7 2 in the saturated solution; it may be possible to do this,

for example, from measurements of ai or 71 for the solvent [see Eq.

(7-3-49)], followed by numerical or graphical integration of the data in the

form of Eq. (7-3-73) from a: 2
= up to x* = x$. This method could be

applied also to a slightly soluble liquid solute, provided that the solvent

is not sufficiently soluble in the liquid "solute" phase to affect its thermo-

dynamic potential significantly. The value of the constant $\ may be
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determined also from chemical equilibrium data for certain types of reac-

tions taking place in the solvent, as we shall see in Chap. 8.

Besides the activity scale a defined by Eqs. (7-3-63) and (7-3-G4),

there are two other related activity scales in common use also based on a

reference state for the solute in ideal dilute solution in the given solvent,

but differing in the composition measures employed. One is tied to the

molality of the solute as composition measure, and the other to the

molarity, or its molar concentration by volume. It is indeed unfortunate

that so many different ways of representing essentially the same kind of

information have become accepted, because this complexity of conven-

tions, which results merely from the different methods that have been

found convenient for representing the composition for various purposes,

has nothing to do~ with the underlying thermodynamic principles, which

are basically simple enough.

The molality of the solute, m 2 ,
is defined as the number of moles of solute

per kilogram of solvent; therefore the exact relationship between m2 and z 2

in a given solvent of formula weight M\ is

* =
<7

-3-
77)

For aqueous solutions in particular,

m 2

m 2 + 55.51 moles/kg H 2O (7-3-77a)

Now, in sufficiently dilute solution, where the ideal dilute-solution laws,

Eqs. (7-3-15) and (7-3-16), presumably apply, m 2 becomes small in com-

parison with the other term in the denominator of (7-3-77); in this

region, therefore, o: 2 is practically proportional to ra2 :

(7
-3-78)

In water as solvent, for example, the value of #2 for a 1m solution given by
the approximation represented by the right-hand member of (7-3-78)

exceeds the exact value given by (7-3-77) by 1.8 per cent, and for a O.lm

solution, the difference is only 0.2 per cent. Therefore the ideal limiting

law (7-3-16) for the solute may be equally well put in the form

#2 = 4>2 + RT In m2 (T, p const; m 2
-

0) (7-3-79)

where the empirical integration constant <^4 is related to < 2 defined in

Eqs. (7-3-63) and (7-3-64) by
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If corresponding to the ideal limiting form (7-3-79) we now define the

activity and the activity coefficient of the solute by the equations

2 == 44 + RT In a'2 (T, p const) (7-3-81)

23
4/2 + RT In ra 2 + RT In 73 (I

7

, p const) (7-3-82)

then these definitions of the quantities a and 73 are tantamount to letting

lim c4
= w 2 ;

lim 7$ = 1 (T
7

, p const) (7-3-83)

The value of the constant $% may be determined directly from experi-

mentally determined values of fa (precisely the same experimental data

required for the determination of <!>%, but expressed now in terms of ra2 as

composition measure, instead of # 2) in the form

<t>'2
= lim (02

- RT In w2) (7-3-84)
mz-

Thus, while < 2 and <| are formally interrelated through Eq. (7-3-80), we

may determine < 2 directly from the experimental data, without explicitly

calculating < 2 first.

The values of a2 are evidently directly proportional to the values of a 2

over the entire composition range

n' n
100

,7 o o^a2
= a2
-

-^
-

(7-3-85)
Mi

but the relation between the molal activity coefficient 72 and the mole-

fraction activity coefficient 72 is more complex, varying with the com-

position,
1

72 = y2
-1

ff
= yfri (7-3-86)

1 4.
^2^1

"*"
1000 g/kg

The definition of the activity ai of the solvent remains unaffected by this

maneuver

0i = (PT>P)i + RT In ai (T, p const) (7-3-87)

1 D. A. Maclnncs, in "The Principles of Electrochemistry," Chap. VI, Reinhold

Publishing Corporation, New York, 1939, calls the activity coefficient here designated

by 72 and defined by Eqs. (7-3-66) and (7-3-67) a "rational" activity coefficient, as

distinguished from yz ,
the molal activity coefficient. The latter is more widely used,

particularly for representing the thermodynamic properties of aqueous solutions.

The distinction may become important, however, in solvents of relatively high molec-

ular weights, where even in quite dilute solutions, y'2 may differ significantly from y ?.

Maclnnes uses f for our 7^ 7 ^or our 72> and /for our y'J [Eqs. (7-3-102) and (7-3-103)1.
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but in this case, one generally does not attempt to define an activity

coefficient for the solvent. The relation of a\ to experimentally deter-

mined properties of the solution, such as the partial vapor pressure of the

solvent [Eq. (7-3-45) or Eq. (7-3-46)], remains of course precisely the

same as before.

One may readily derive relations between o or y'2 and the experimen-

tally determined properties of the solution. Thus, if the solute is suffi-

ciently volatile so that its own partial vapor pressure can be measured

with precision, then

(T const) (7-3-88)..

lim
ma *0

[compare Eq. (7-3-71)]. Here, k'% represents the molal Henry's law con-

stant
;
for if it is true that p 2

= fc 2x 2 in the ideal dilute range [Eq. (7-3-18)],

then this relationship may certainly be expressed in the form p 2
= &2ra 2 ,

where the relationship between k'2 and & 2 is determined by Eq. (7-3-78).

Equation (7-3-88) is based on the supposition that the equilibrium vapor

phase may be treated as an ideal gas; the generalization, taking into

account the fugacity coefficient of the solute in the vapor phase, is

evident.

Whether the solute is volatile or not, its activity a2 may be computed

by integration of the Gibbs-Duhem equation from experimentally deter-

mined values of the activity ai of the solvent; since In a2 ,
In a2 ,

and In a 2

differ from each other merely by constants independent of the composi-

tion, this equation [compare Eq. (7-3-41)] assumes the form

1000 g/kg d ln ai + m2 d ln aj
= o (T, p const) (7-3-89)

Mi

Since a2
= w27 2, Eq. (7-3-89) may be rearranged in the form

,, , 1 /1000g/kg .

d In 70 = --
I
-- d In ai +

>2 \ Mi

whence, from integration by parts betweenm2
= (72

=
1) and ra 2

= ra 2 ,

/WlOOOg/kglnai

.
A

Lj*!_2-L dm,m2

(7-3-90)
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As shown by Lewis and Randall,
1 the integral in Eq. (7-3-90) converges

rapidly at low solute concentrations, and may be evaluated graphically

with ease from a comparatively rough plot of its integrand vs. w2 . In

Table 7-4, ai and 73 are given for solutions of sucrose in water at 25C, as

derived from vapor-pressure measurements; the data from to 1.4m are

taken from work of D. A. Sinclair, while the data at the higher concentra-

tions represent older work, as reported in the "International Critical

Tables" by J. C. W. Frazer, R. K. Taylor, and A. Grollman. The a l

values have been calculated by means of Eq. (7-3-45), which in the case of

a nonvolatile solute assumes the form ai = 1 (Api/p), and the 73

values have then been calculated by means of Eq. (7-3-90); Fig. 7-15

shows the graph of (
55.51-- + 1

) / w 2 vs. w2 used in computing the
\ ^2 //

integral in Eq. (7-3-90).

The value of the constant <f>'2 defined by Eq. (7-3-84) is known as the

standard molalfree energy offormation in solution, of the particular solute,

component 2, in the given solvent, component 1. It represents the ther-

modynamic potential of the solute in a hypothetical ideal dilute solution

at 1m concentration in the given solvent; i.e., it represents what the value

of </>2 would be at Im concentration if the solute continued to satisfy the

ideal limiting law (7-3-79) up to that concentration. The effect of tem-

perature on $2 may be derived by the application of (7-1-266) to (7-3-82) ;

1 Lewis and Randall, op. cit.
t pp. 273-275. They have shown that in many cases,

the expression (
-~ --- + 1

)
turns out empirically to be approximately

V Mi *
'

proportional to w2 in dilute solutions, in which event the entire Eq. (7-3-90) reduces

ln Y;~-2(^Jr +
l) (7-3-90)

V M\ rn * /

One may compute (In ai)/mz directly from precise measurements of the lowering of

the solvent's vapor pressure (among other experimental methods) by means of the

series approximation

where in sufficiently dilute solution (not necessarily ideal), only the first, or the first

two terms of the series need be taken into consideration; in Eq. (7-3-906), it is assumed
that the equilibrium vapor phase may be treated as an ideal gas; otherwise the series

approximation is exact, if one uses a number of terms consistent with the precision

of the experimental data. It is actually in the form of the expression Api/m 2pJ that

vapor-pressure data for solutions of nonvolatile solutes are generally tabulated; see,

for example, the "International Critical Tables," Vol. Ill, pp. 292-300, McGraw-
Hill Book Company, Inc., New York, 1928.
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in view of (7-3-83) and (4-37),

rw./r)1
L d(\/T) J,

where 3> = #1 Q? [see Eq. (4-30)]; the same equation is evidently

satisfied by in place of 0J, since &/T and <t>\/T differ merely by a con-

lim 172
=

ma
(7-3-91)
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FIG. 7-15. Plot of the quantity f

''

345
m2 (mole/kg)

4- 1
j
/ m2 vs. mi for solutions of sucrose in

water at 25C (data of Table 7-4) . The area enclosed by the curve above the 0.000 ordinate

between the mz = and the mt = W2 abscissas represents the value of the integral in Eq.

(7-3-90) for the evaluation of In 72' from experimentally established values of ai.

stant [Eq. (7-3-80)]. Likewise, the effect of pressure on $% may be derived

by the application of (7-1-24) to (7-3-82),

(7-3-92)^P = lim v 2
=

dp/T n2-*o

where * represents the limiting apparent molal volume of the solute at

infinite dilution in the given solvent, defined in a manner analogous to the

definition of $2; since <J> ^s generally relatively small in magnitude for

liquid solutions, we may ordinarily neglect the effect of pressure on # for

pressure variations of order 1 atm. The effect of temperature on y'2

itself at given composition is evidently given by
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The quantity <t>'2 (F?) 2, relating <t>'2 to the standard molal free energy
of the pure solute, and representing the standard free energy of solution of

component 2 in component 1 relatively to the convention represented by

Eqs. (7-3-82) and (7-3-83), may be measured by essentially the same

methods described for the measurement of 4>% relatively to (F) 2 . If the

pure solute happens to be a volatile liquid or solid with vapor pressure p?

at the given temperature, then

(7-3-94)
P%

where k'2 represents the molal Henry's law constant: k'2
= lim (p 2/m 2)

[compare Eq. (7-3-74)]. This equation may be applied also to a gaseous

solute, if one formally sets p\ = 1 atm [or any other standard pressure to

which the term (F) 2 then refers]. For example, the solubility of H 2S at

a partial pressure of 1 atm in water at 25C is 0.102 mole/kg;
1 since the

solution at this low concentration is known to satisfy Henry's law closely,

and since the deviation of H2S from ideal-gas behavior is negligible at the

given pressure, we may take fc == 1 atm/0.102 mole/kg, and hence,

H2S(g) = H2S(aq);

"

AFJ9a . 16
= 0^ - ?*+ = -RT In 0.102

= 1350 cal/mole

This quantity represents what the change in free energy would be if 1 mole

of H2S(g) at an original pressure of 1 atm were to be dissolved in water in

a hypothetical ideal dilute solution at 1m concentration (at that actual

concentration, the solution would probably deviate to some extent from

the ideal dilute-solution laws) ; having found in this way the value of < 2,

we may then calculate the value of fa at other concentrations approxi-

mately by means of Eq. (7-3-39), or exactly, with the aid of additional

experimental information, by means of Eq. (7-3-82). If the pure solute

happens to be a solid, whose solubility in the given solvent at the tem-

perature T and pressure p is represented by m*
,
then evidently

<t>2
= (*Vp) 2(c)

- /erinm(72)* (7-3-95)

[compare Eq. (7-3-76)]. Thus, from the data for aqueous sucrose solu-

tions presented in Table 7-4:

C 12H 22On(c) - C 12H22On(aq); AF?98. 16
= ^U0ro8e(aq)

-
ûorofle(0)

= -RT In (6.12) (2.81)
= -1686cal/mol

This quantity, too, represents what the change in free energy would be if 1

mole of crystalline sucrose were to be dissolved in a hypothetical ideal

1 As quoted by Lewis and Randall, op. tit., p. 543. (Sen also Prob. 7-12.)
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dilute solution at finite concentration Ira; one sees in Table 7-4 that at an

actual concentration of Ira, this solute deviates from ideal dilute-solution

behavior [as represented by Eq. (7-3-79)] to the extent of 13 per cent; i.e.,

its activity satisfying Eq. (7-3-81) is 13 per cent higher than its molal con-

centration. One will note that in this case, where the thermodynamic
properties of the solute have been calculated from those of the solvent (as

given by vapor-pressure measurements) through integration of the Gibbs-

Duhem equation, it is not sufficient for the determination of ^ (^r) 2 to

measure the vapor pressure of the solvent merely for the saturated solu-

tion; while we know that $2 = (F%)z in the saturated solution, it is neces-

sary for us to have a\ data over the entire composition range, down to the

Raoult-IIenry law region, in order for us to evaluate the extent of devia-

tion from those laws in the saturated solution, as represented by the value

of (72)
* It is also necessary for us to know in applying Eq. (7-3-95) that

the equilibrium solid phase consists of the pure solute, and not a solid

solution or a compound between the supposed solute and the solvent.

According to the scheme represented by Eqs. (7-3-82) and (7-3-83), we
thus set up in the given solvent a standard state for each solute repre-

sented by a hypothetical ideal dilute solution conforming to Raoult's and

Henry's laws, with the solute assigned a standard concentration of 1

mole/kg of solvent; the specific effect of concentration on the solute's

thermodynamic potential is then represented empirically in terms of the

activity coefficient y'2 ,
whose value is to be determined by appropriate

experiments over the composition range with which one is concerned.

We thus conceive of a separation of 0, artificial but none the less useful,

into three contributing terms: a term
<t>'%

constant for the particular solute

in the particular solvent at given temperature and pressure, differing from

the molal free energy of the pure solute by a characteristic amount, the

so-called "standard free energy of solution";
1 a general term RT In m 2,

representing the ideal (modified Henry's law) effect of the solute's con-

centration; and a term of the form RT In 7^ representing specifically the

effect of deviation from the ideal dilute-solution laws [as represented by Eq.

(7-3-79)] at finite solute concentrations.

The molality would appear to be a rather capricious choice for repre-

senting the composition, when we have seen that the mole fraction is more

1 For a liquid solute that happened to form solutions ideal over the entire composi-
tion range with the liquid solvent, the difference would degenerate to

(1000 g/kg)

#1

a formal quantity depending merely on our choice of composition measure; compare

Eq. (7-3-80).
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immediately related to the physical properties of the solution (as shown

particularly by the behavior of those solutions that happen to be ideal in

the sense of Raoult's law for both components over the entire composition

range). It was introduced at a time when the empirical laws of dilute

solutions were first being established
;
Raoult originally expressed his con-

centrations, for example, in terms of grams of solute per 100 g of solvent.

Such a measure has clear advantages from the point of view of precision

over the otherwise convenient volumetric measures (e.g., grams of solute

per 100 ml of solution, moles of solute per liter of solution, etc.), in that

the composition of a liquid solution can be determined by weight more

precisely than by volume, and is at the same time independent of tem-

perature. Randall has called attention to these advantages.
1 When we

base the composition on the mole fractions, however, it is always neces-

sary for us to assume some particular formula for the solvent; in the case

of a solvent such as water, we are by no means sure of the actual molecu-

lar configuration in the liquid state, and in the case of a solvent such as

acetic acid, the situation is worse, because even in the vapor state both

monomeric and dimeric molecules are known to be present. When we

represent the composition in terms of the molality of the solute (or other

proportional measure based on the same general principle), we are

relieved of the necessity of assigning a physically significant molecular

weight to the solvent; indeed, as the empirical limiting form (7-3-79)

shows, the molecular weight of the solvent is quite immaterial for the

representation of the dependence of <fo on the solute's concentration over

the ideal dilute range. Even in an equation such as (7-3-90), the value

assigned to Mi has purely formal significance. Furthermore, in the case

of an electrolytic solute, such as NaCl, the values assigned to the mole
fractions of both solute and solvent at high solute concentrations are

influenced by one's decision whether or not to count the ions as inde-

pendent solutes; when we compute the so-called stoichiometric molality,

however, we merely adopt the definite convention that the number of
" moles" of solute is determined in accordance with its conventional

formula weight, the formula being explicitly stated when necessary (e.g.,

58.454 for NaCl). The empirical relation between </>2 and ra2 in the ideal

dilute-solution limit is then of course different for an electrolyte from that

for a nonelectrolyte, but it continues to have a quite simple form, as we
shall see in Sec. 7-4. One should realize that the value of ^2 does not

depend in any way on the real or assumed structure of the substance to

which it refers. The fundamental definitions (7-1-3) imply of course that

we have in mind for each substance a definite unit of mass, represented

generally in relation to its conventional chemical formula; the actual
1 M. Randall, Trans. Faraday Sac., 23, 498-502 (1927).
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numerical magnitude of <fo will be proportional to the size of this unit

assigned to the particular component, but we could equally well measure

physically significant <fa values with respect to a quite arbitrary or capri-

cious formula for the substance. It is only when we come to consider

essentially nonthermodynamic generalizations such as are represented by
Eqs. (7-3-16) and (7-3-79) that the advantage of assigning

"
proper

"

formula weights becomes evident; for these laws are correct only when we

assign to each solute a formula weight that in general agrees empirically

with its ordinary chemical formula weight, as deduced from other

evidence. Raoult's law was used originally, of course, precisely to deter-

mine such chemical formula weights, or molecular weights, of solutes in

solution, particularly of substances such as the sugars, whose molecular

weights could not be determined by other methods available at the time.

The generalization has to be modified in the case of electrolytes, as shown

originally by Arrhenius; in certain special cases, the chemical formula of

the substance in solution has to be modified (benzoic acid dissolved in

benzene; formaldehyde dissolved in water, etc.).

At any rate, most of the thermodynamic data for aqueous solutions,

and much of the data for other solvents as well, will be found in the chemi-

cal literature of recent years expressed in terms of the molal activity coeffi-

cient, that we have here represented by the symbol 7$ defined by Eqs.

(7-3-82) and (7-3-83) (modified for electrolytes, as we shall show in Sec.

7-4). The mole-fraction activity coefficient that we have represented by
the symbol y% in Eqs. (7-3-67) and (7-3-68) is in fact seldom employed,

despite its theoretical simplicity. On the other hand, the mole-fraction

activity coefficients 71 and 72 based on the pure (liquid) components as

respective states of reference [Eqs. (7-3-48)], are used extensively in the

correlation of liquid-vapor equilibrium data, as we have described in Sec.

7-3/; and analogously defined mole-fraction activity coefficients based on

the pure solid components are used in the description of the thermody-
namic properties of solid solutions, as mentioned in connection with Eqs.

(7-3-61). In certain cases, it may be convenient for one to define activity

coefficients in liquid solutions with respect to some special standard state;

for example, if one of the components happens to be a solid in the pure
state at the temperature and pressure under consideration, and if one

lacks sufficient data in the dilute-solution range to carry out precisely the

extrapolation required for establishment of the standard state in ideal

dilute solution, then it may be convenient to represent 02 in the form

2 + RT In 72,

but under the convention a* = z*7* = 1 in the saturated solution [where

according to general theory, < 2
=

(Pr.p) *()] Such a procedure intro-
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duces no complication, so long as the reference state is always clearly

specified.
1

Finally, for certain purposes it is desirable for us to be able to represent

the thermodytiamic potential of the solute as a function of its volume con-

centration. Activity coefficients are seldom tabulated in this form, on

account of the relatively poor precision with which the solute concentra-

tion may be established experimentally by volume, as compared with its

establishment by weight; however, it is useful for us to know how to relate

02 to the molar concentration by volume, when we have available the

necessary thermodynamic data expressed according to custom in some

other form, as in terms of < 2 and 7%. The molarity of the solute, C^ is

defined as the number of moles of solute per liter of solution. Thus

C* = y (1000 ml/liter) (7-3-96)

where V represents the volume (in milliliters) of solution containing n 2

moles of solute. The molarity of a given solution evidently varies in

general with temperature (and also slightly with pressure, generally

understood to be 1 atm unless otherwise specified). In sufficiently dilute

solution, however, it becomes proportional to ra2 ,
and therefore also to x*

[in view of Eq. (7-3-78)] ; thus, the exact relation between C2 and w 2 at all

concentrations is

m2 =-^- (7-3-97)

p 1000 g/kg

where p represents the density of the solution and M* the molecular

weight or formula weight of the solute; therefore,

lim m 2
= 2

(7-3-98)
CV-0 Pi

1 In the correlation of liquid-vapor equilibrium data for nonideal solutions according

to the methods of Sec. 7-3f, we may have occasion to deal with a liquid solution one of

whose components in the pure state is a gas at the temperature and pressure under

consideration. In this event, it is convenient for us to retain Eqs. (7-3-48), but with

the term (Fr,p)2 for the particular component referring to it in a hypothetical liquid

state; the value of this constant is defined through extrapolation of the experimental

data, in the form lim (fa RT In x* RT In 72)
=

(FT,p)2. The relation between

the constant (FT,P)Z and the standard molal free energy of the pure gas, (F) 2 (K), may
then be established experimentally in the usual way, through the relation <j>2

= <* f r

any liquid composition at which the value of 72 in the liquid phase has been deter-

mined, and also p2 (that is, y*p) and v* in the equilibrium vapor phase; compare

Eq. (7-2-9) for the gas phase.
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where pi represents the density of the pure solvent at the given tempera-
ture and pressure. Thus, in the ideal dilute range, the value of < 2 satisfies

the' empirical limiting law [Henry's law, Eq. (7-3-16), expressed merely
in a different composition measure] :

</> 2
=

<j>y + RT In C2 (T, p const; C2 -> 0) (7-3-99)

where, by definition,

<l>y
= <'2

- RT In pi (7-3-100)

We could therefore conveniently define a molar activity function a", and a

corresponding molar activity coefficient 7" for the solute, in accordance

with the equations

4>2
55

<i>y + RT In ay (T, p const) (7-3-101)
s < 2

' + RT In C2 + RT In 72

'

(Z
1

, p const) (7-3-102)

which in the ideal dilute limit, where the solvent satisfied empirically

Raoult 7

s law (7-3-15), would satisfy the conditions

lim ay = C2 ;
lim 7^ == 1 (7-3-103)

One readily sees that

ay = a'2 exp
^2

1"^
2 = a2pi (7-3-104)

so that over the entire composition range, the value of a" would be

directly proportional to a2 ,
and hence also to a2 and a 2 as previously

defined. The relation between 7" and 73, however, would be more com-

plex, varying with composition according to the equations

1

P
-

1000 ml/l_

^

Thus, in sufficiently dilute solution (not necessarily ideal), 7$' would

become identical with 72, but this identity would in general not be main-

tained at high solute concentrations.

Equations (7-3-100) and (7-3-105) permit us to translate ^ and 72

values, as ordinarily presented in thermodynamic tables (with m2 as

composition measure), into </>2
' and 7^ values, and so by means of Eq.

(7-3-102) to represent < 2 accurately as an empirical function of (72 . It

should be emphasized that no new information is created in this way, but

merely a rearrangement of the experimental information already at hand.

In aqueous solutions^ since the value of pi is so close to 1 g/ml at room tem-

perature (within 0.3 per cent at 25C), we may generally use <f/2 values in
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place of ^2' directly, without significant error except in work of the highest

precision; likewise, in sufficiently dilute solution, we may use 72 values in

place of y'z, but one should bear in mind the exact connection, Eq.

(7-3-105), at higher solute concentrations.

Let us now summarize the results of this long discussion of the mechan-

ics of relating the thermodynamic potential of the solute, in solution in a

given solvent, to its concentration. There are three general methods in

use for representing the composition of a liquid solution: the mole fraction

of the solute z2,
the molality m 2,

and the molar concentration Cz . It is an

empirical fact that in sufficiently dilute solution, the thermodynamic

potential of the solute < 2 may be represented by any of the following

formulas :

<J>2
=

4>2 + RT In x z (T, p const; z2 ~> 0) (7-3-1060)
= 4/2 + RT In m 2 (T, p const; m 2 -> 0) (7-3-1066)
= tf + RT In C2 (T, p const; C 2

-
0) (7-3-106c)

where the empirical constants #2? < 2 >
and < 2

'

are interrelated through Eqs.

(7-3-80) and (7-3-100). These equations are implied by Raoult's

empirical vapor-pressure law (7-3-14) for the solvent, but follow more

generally from Eq. (7-3-15), which probably applies even to solvents

whose volatilities are too low for Raoult's vapor-pressure law to be put to

direct experimental test. Exceptions noted are electrolytic solutes as a

class (to be discussed in Sec. 7-4) and certain special cases where other

types of dissociation, association, or chemical reaction between solute and

solvent are known or believed to take place. Equations retaining the

general form of Eqs. (7-3-106) may be set up outside the ideal dilute

region if one introduces appropriately defined activity coefficients as meas-

ures of deviation from ideal dilute-solution behavior:

4>2
= 4i + RT In xtf\ (T, p const) (7-3-107a)
=

<t>'2 + RT In m2T2 (T, p const) (7-3-1076)
=

<'/ + RT In C27'2
'

(T, p const) (7-3-107c)
o

These equations are entirely equivalent. The solute activity coefficients,

of which y'2 is the one most commonly in use, are merely convenient

empirical measures describing how < 2 varies actually with solute concen-

tration, as determined in each individual case by experimental measure-

ments of various interrelated kinds; the ideal equations (7-3-106) are in

general valid only in the low-concentration limit. The value of < 2 repre-

sents what the standard molal free energy of the pure (liquid) solute

would be if the solute's thermodynamic potential showed the same

dependence on composition over the entire composition range that it

actually shows in the ideal dilute solution; the value of < 2 represents the
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thermodynamic potential of the solute in a hypothetical ideal dilute solu-

tion at formal concentration, 1 mole/kg of solvent; the value of ^ repre-

sents the thermodynamic potential of the solute in a hypothetical ideal

dilute solution at formal concentration, 1 mole/liter. No general theo-

retical law has been discovered relating the actual value of #2 to the com-

position at high solute concentrations, except in the special case of ideal

concentrated solutions.

The problem of several solutes in solution in a given solvent is extremely

complex, because of the greater number of composition variables involved.

In sufficiently dilute solution, we may suppose that each solute satisfies

independently a law of the form of (7-3-106), where for example the <t>'2

value for each solute is the same as in a binary solution with the given
solvent [compare Eqs. (7-3-27)]. Most of the experimental work at

higher solute concentrations has been done with electrolytes, in order to

test the theoretical dilute solution laws proposed by Debye and Hiickel

(see Sec. 7-4).

7-4. Solutions of Electrolytes. An electrolyte, such as KC1 dissolved

in water, consists of at least two different kinds of charged material par-

ticles or ions, in this case K+ and Cl~ (undoubtedly hydrated to some

extent). The migrations of these ions in opposite directions in an electric

field, superimposed on their ordinary random thermal motion, is supposed
to account for the electrical conductivity, which is thus fundamentally
different in character from the purely electronic type of conductivity that

occurs in metals. The charge on an individual ion is always some fixed

multiple of the electron charge, but the numbers of ions of opposite sign

are always so related that the solution as a whole is electrically neutral.

For this reason, a single electrolyte, such as KC1, counts as but one compo-
nent toward determining the variance of the phase in question, inasmuch

as the concentrations of the two ions are not independently variable;

for the same reason, a mixture of NaCl and KC1 counts as two com-

ponents, and a mixture of NaCl and KNO 3 also as two, but a mixture of

NaCl, KN0 3 ,
and KC1 in arbitrary proportions counts as three. Because

of this basic fact, the theory of ionization in solution was slow in gaining

recognition.

Many electrolytes, including KC1 itself, apparently consist of ions in

the pure crystalline state, and also in the pure liquid state, as well as in

solution. Others, however, such as HC1, apparently give rise to ions

only through reaction with a suitable solvent (or possibly with other

solutes that may be present). Thus, KC1 is an electrolyte in any liquid

medium that will dissolve it, as well as in the pure liquid state, whereas

HC1 is an electrolyte in certain media, including water and liquid ammonia,
but a nonelectrolyte in others, such as benzene, and in the pure liquid
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state. We speak of
"
strong

"
electrolytes and "weak" electrolytes;

strong electrolytes are substances that in the particular liquid medium
under investigation are apparently entirely in the form of ions, showing

relatively high electrical conductivity in relation to their concentration;

weak electrolytes are substances that are apparently only partially in the

ionized state. There may evidently be various degrees of "weakness." 1

Thus, KC1 in any liquid medium is a strong electrolyte, and so is BaSCh,
even though its solubility in the particular solvent water happens to be

low; EUS and NHs on the other hand are weak electrolytes in water; HC1
is a strong electrolyte in water (at least at sufficiently low concentrations,

say below 6m), but in glacial acetic acid it is a weak electrolyte, and in

benzene it is a nonelectrolyte. In this section, we shall be concerned

primarily with developing methods of treating the thermodynamic prop-

erties of strong electrolytes in solution; we shall discuss weak electrolytes

in relation to the general theory of chemical equilibrium, in Chap. 8.

In general thermodynamic theory, we define the thermodynamic poten-
tial of an electrolyte in precisely the same way as for a nonelectrolyte,

viz., through the equivalent relations (7-1-3) or (7-1-12),

(dU= I T
\dn2

dF\ , A ^
-j ) (7-4-1)
dn2/T,p,n

'

If, for example, we can measure by how much the free energy of the solu-

tion changes per "mole" of electrolytic solute added (determined in rela-

tion to the conventional formula weight, e.g., 74.553 for KC1) when that

solute is introduced into the solution at constant temperature and pres-

sure on such a scale that the composition of the solution is not significantly

altered, then we have directly established the value of $2- According to

the theory developed in the preceding sections of this chapter, measure-

ment of the vapor pressure and composition of the equilibrium vapor

phase for various liquid compositions gives us essentially this information

(among other more precise methods to be discussed later). The problem
is simplified generally by the fact that most electrolytic solutes are rela-

tively involatile at ordinary temperatures compared with the solvent, so

that the equilibrium vapor phase consists practically of the pure solvent.

Thus, in principle, we can measure <KCI in aqueous solution by first meas-

uring <f>H2o from measurement of the vapor pressure (p = pu to in this case)

at various solute concentrations according to Eqs. (7-3-3) or (7-3-4) and

then integrating the Gibbs-Duhem equation (7-1-7). If we express Eq.

1 The situation may be complicated in certain cases because of complex ion forma-

tion; e.g., Cdl4~ between Cd++ and I~, HgCl 4
~ between Hg++ and Cl~. This has the

effect of reducing the apparent degree of ionization of such electrolytes as Cdl2 and

HgCl 2 in solution.
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(7-1-7) in terms of the molality of the solute as composition measure,

according to custom for solutions of electrolytes,

1000_g/kg
Mi

therefore

100 g/kg= const - - f dfr (r, p const)
MI J >*

We may eliminate the integration constant from this equation by inte-

grating down from the value of ra2 corresponding to the saturated solu-

tion, m*, where < 2
= (Fr^z for the pure solute; thus 1

- 1OOO cr/lrcr /*wi2 = m2 1

*2
=

(Fr.,)i
-

,-T
*

/ d*i (r, p const) (7-4-3)
Mi Jm* = m**

m *

We may express Eq. (7-4-3) directly in terms of vapor-pressure data by
means of Eq. (7-3-3), assuming that the vapor phase may be treated as an

ideal gas, and neglecting the effect of small variations in the pressure on

(FT.)*; thus

BT - t , (7-4-4)

Equation (7-4-4) constitutes in fact an important though not the most

precise method of determining < 2 for a nonvolatile solute, whether or not

it happens to be an electrolyte. The data in Table 7-5 illustrate its

application to the determination of <KCI in aqueous KC1 solutions at 25C,

1 The value of (/V, P)2 in Eq. (7-4-3) corresponds of course to the solute phase actually

in equilibrium with the saturated solution. For example, in an aqueous solution

saturated with CuSO 4-5H 2O, one could say that <cuso4-6H2o = ^cuso 4-6H 2o(c)
= 0* + 5<t>*,

where <* and </>* stand, respectively, for the thermodynamic potentials of CuSCh as

solute and H 2O as solvent in the saturated solution, since presumably the reaction

CuSO4-5H 20(aq) = CuSO4 (aq) + 5H 2O in the liquid phase is in a state of equilib-

rium; in this case, one would therefore substitute ^cuso4-5H 2o(c) 50J in place of

(F'rtP)z (at p = 1 atm) in Eq. (7-4-3). The relation between F uso4-5H20(c) and

Fgu8O4(c) may be established by methods discussed in Chap. 8. In the case of a

gaseous solute such as HC1, Eq. (7-4-3) is correct, provided that we substitute for

(FT,P)Z the thermodynamic potential of HC1 in the gas phase in equilibrium with the

liquid solution at solute concentration w2 ;
for example, if one may treat the equilib-

rium vapor phase as an ideal gas, then we may replace (/V,P)2 by ^ci(g provided
that m* stands for the HC1 molality in a solution for which pnci = 1 atm; in this case,

of course, we must use the partial vapor pressure of H 2O instead of the total vapor

pressure in computing 0H 2o according to Eq. (7-3-3). For a liquid solute such as

HNOs miscible with the solvent over the entire composition range, we may replace

by FfiNOadji provided that we let m* > o.
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from vapor-pressure measurements by Pearce and Snow; 1
Fig. 7-16 shows

l/w2 plotted against log (pi/p?) (one could just as well use log pi itself,

since pi is constant), from which the integral required in Eq. (7-4-4) has

been computed by graphical integration, column (5) ;
the values of <KCI

relative to F|C1(0) are tabulated in column (6). Thus, in Ira solution, the

5.0

40

3.0

i.O

-0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01

Log(p,/p,)

FIG. 7-16. Plot of l/m2 vs. log (pi/pi) for aqueous KC1 solutions at 25C. [Vapor pres-
sure data ofJ. N. Pearce and R. D. Snow, J. Phys. Qhem., 31, 231-245 (1927).]

thermodynamic potential of KC1 is lower than the standard molal free

energy of pure KCl(c) by 1842 cal/mole,

KCl(c) = KCl(lm, aq) AF298.i6 1842 cal/mole

The method cannot be applied at solute concentrations much below 0.2m

because of experimental difficulty in measuring the vapor pressures with

sufficient precision.
2

1 Pearce and Snow, loc. cit.

2 In Eq. (7-4-2), there is nothing to suggest what the value of Mi should be; we
could use for water the formula (H 2O)a, or for that matter, any arbitrary formula

unrelated to the composition, so long as we used it consistently. Equation (7-3-3),

however, is based ultimately on the ideal-gas law, and is correct only if one assigns to
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We have so far introduced no new concepts. We measure fa experi-

mentally for electrolytes according to essentially the same theory as for

nonelectrolytes. In so far as fa is related to other observable properties

of the system through purely thermodynamic equations [Eq. (7-4-4)

involves also the nonthermodynamic ideal-gas approximation, which may
be removed by the experimental methods described in Sec. 7-2, without

reference to the properties of the liquid solution], electrolytes cannot be

distinguished in any way from nonelectrolytes. It is when we compare
such observed values of < 2 , empirically determined, with the ideal limiting

law (7-3-79) (or its congeners in terms of other composition measures)

that the difference becomes manifest. For instead of satisfying (7-3-39),

which we may put conveniently in the form

lim l = i (nonelectrolytes) (7-4-5)

the thermodynamic potential of a 1 : 1 electrolyte such as KC1 in suffi-

ciently dilute aqueous solution conforms to the rule

lim =2 (1:1 electrolyte) (7-4-6)

The limiting law (7-4-6) is demonstrated most precisely by electrochemi-

cal methods of measuring fa discussed in Chap. 9, which may be carried

on at electrolyte concentrations well below O.lm, or by the freezing-point

method discussed in Sec. 7-5; but it is shown approximately by the vapor-

pressure data in Table 7-5. Thus, Fig. 7-17 shows that when one plots

fa RT In ra2 against m2 for aqueous KC1 solutions [column (8), Table

7-5], the resulting curve fails to approach a finite limit as w 2 > 0, but

when one plots fa 2RT In ra 2 [column (9), Table 7-5], the results con-

verge. Expressed in terms of the solvent's partial vapor pressure

through Eq. (7-4-2) and (7-3-3), Eq. (7-4-5) (Henry's law for the solute)

is equivalent to

the solvent a molecular weight appropriate to its behavior in the gaseous state at the

given temperature and pressure. Therefore in Eq. (7-4-4), one must use for Mi the

solvent's molecular weight in the gaseous state as derived according to Avogadro's

hypothesis, e.g., 18.016 g/mole for water. No speculation or commitment is involved

concerning the significance of Mi in the liquid state. It is impossible by purely

thermodynamic reasoning to find out anything concerning Mi or M^ which are

essentially extrathermodynamic concepts. M2 values for nonelectrolytes in liquid

solution are established ultimately in accordance with the empirical generalization
known as Raoult's law, the values so obtained being generally consistent with purely
chemical evidence based on chemical analysis, and with other types of physical
evidence. Arrhenius's great contribution, as we shall presently see, was the recon-

ciliation of Raoult's law with the behavior of electrolytes.
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397

1000 g/kg

or if Api represents the lowering of the solvent's vapor pressure associated

with the solute concentration w 2 :

lim 1 = ^f
1

p\ (nonelectrolytes) (7-4-7)1000 g/kg
ri j / \ /

This of course represents Raoult 's law for the solvent in the form (7-3-14a) ,

with m2 as composition measure in place of #2 [see Eq. (7-3-78)]. Equa-

-2,400

-1,400

-1,200

FIG. 7-17. Thermodynamic potential $2 of KC1 in aqueous solutions at 25C, relative to

that of KCl(c).

tion (7-4-6) then implies that the 1 : 1 electrolyte tends in the m 2 >

limit to lower the solvent's vapor pressure twice as much as a nonelectro-

lyte at the same molal concentration.

Recognition of the fact that electrolytic conductivity of liquid solutions

is invariably associated with "abnormal" dependence of other physical

properties on the composition, viewed from the standpoint afforded by
the empirical laws established for nonelectrolytes, was of course the

brilliant achievement of Svante Arrhenius, who invented the concept of

ions in solution to correlate both groups of effects. 1 The theory of ioniza-

1 S. Arrhenius, Z. physik. Chem., 1, 631-648 (1887); this paper has been translated

in Alembic Club Reprint 19, published for the Alembic Club by Oliver & Boyd, Ltd.,

Edinburgh and London, 1929. The evidence and reasoning that led Arrhenius to

propose the ionization theory is delightfully recounted in his Gibbs Address, /. Am.
Chem. Soc., 34, 353-364 (1912) ;

see also his Faraday Lecture, /. Chem. Soc., 106, 1414-

1426 (1914).
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tion is outside the scope of thermodynamics proper, in that it can be intro-

duced only by ad hoc assumptions of a special nature which have nothing
to do with the laws of thermodynamics. In this respect, however, its

logical status is not greatly different from that of the ideal-gas law, or of

Raoult's law, although it is less general in the sense that many complex
situations arise calling for special treatment unpredictable by general

theory (e.g., hydrolysis of BI+-H- salts, complex ion formation between

Hg++ and Cl~", etc.). Modern evidence, particularly derived from the

X-ray analysis of crystalline solids and the electronic theory of valence,

leaves little doubt concerning its essential correctness and value. There-

fore it has been worth while to adapt our methods of describing the rela-

tions between the thermodynamic properties and the composition,

including modification of our concept of the ideal dilute solution, to take

account of this important class of solutions.

The essential point of Arrhenius's theory is the additivity of ionic prop-

erties; in sufficiently dilute solution, the different kinds of ions present

behave to a first order of approximation as independent solutes. Appar-
ent exceptions to this rule may arise when complex ion formation or chem-

ical reaction with the solvent takes place, but, in general, the concept of

the independent behavior of the different kinds of ions is substantiated

by a wealth of chemical and physical evidence. In place of the ideal

dilute-solution law (7-3-79), we should expect therefore that the thermo-

dynamic potential of a 1 : 1 electrolyte like KC1 in aqueous solution would

satisfy a limiting law of the form

+ RT In mK+ + <ci-(a> + RT In wci- (T, p const; w 2 -> 0)

(7-4-8)

or, since in this case WK+ = WGI- = ?n 2,
where w 2 represents the formal

solute molality,

4>K+(aq) + 4>ci-<aq> + ^RT In m2 (T, p const; m2 -> 0) (7-4-9)

Equation (7-4-9) follows in fact from integration of the empirical limiting

law (7-4-6), though one should take note at the outset that the extent of

the ideal dilute region over which Eq. (7-4-9) serves as a good approxi-

mation is much smaller, for reasons to be discussed presently, than would

be typical for a nonelectrolyte (in Table 7-5, the deviation of < 2 2RT In

w 2 from the ideal limiting value at w2 amounts to 20 per cent at

w2
= 0.2 mole/kg; it is much greater for electrolytes whose ions bear

multiple charges). The separate terms of the integration constant,

44+0*) + 4>ci-<aq)> cannot be independently evaluated, but their sum, which

we may represent also by the symbol 0Kcicaq is established in a straight-
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forward manner by extrapolation of the experimental fa data in the form

lim (fa
- 2RT\nm 2)

= $J = *+ + *L (1:1 electrolyte) (7-4-10)

The generalization of the ideal dilute-solution law (7-4-8) for a strong

electrolyte having the type formula At+Bt_, giving rise to f+ moles of

positively charged A ions and f_ moles of negatively charged B ions per
"mole" (gram-formula-weight) of solute, should evidently have the form

i + RT In mA] + f-[*i + fl?
1
In m*] (T, p const; m 2

-
0)

(7-4-11)

or, since in this case mA = +m 2 and m* = f_w 2,

+ f_0; + fBr In m, + flr In #fL- (T
7

, p const
;
m 2 -> 0)

(7-4-12)

where =
$"+ + ?- represents the total number of ions corresponding to

the chemical formula of the compound. For example, in the case of

Ca(NOa)2 in water,

<ca(NO a)j
=

0Ca++(aq) + 2<^O s-(aq) + 3/?jP In 7tt 2 + RT In 4

Thus, we assume that each ion represented in the formula contributes

ideally a term of the form RTln ra 2 to the composition-dependent part of

the solute's thermodynamic potential at the given temperature and pres-

sure. The last term in Eq. (7-4-12) is a constant for the particular elec-

trolyte, depending on its charge type [it is zero for a 1 : 1 electrolyte like

KC1, and a 2 :2 electrolyte like CuSO 4 ,
but it is equal to RT In 4 for a 2 : 1

electrolyte like Ca(NOa) 2]; it has purely formal significance, bringing

(7-4-12) in accord with (7-4-11), for experimentally, one would be unable

to distinguish it from the rest of the constant part of fa in (7-4-12), here

defined in general by

+ f_#, = lim (fa
- RT In m2

- RT In ft+fL") (7-4-13)

Whether or not an equation having the form of (7r4-13) is actually

satisfied by a given electrolyte (in the sense that the expression on the

right actually approaches a finite limit as ra2 > 0) remains to be tested by

experiment in individual cases. It is apparently satisfied by most of the

common strong electrolytes in aqueous solution. In such cases, the con-

cept of Eqs. (7-4-11) and (7-4-12) as the ideal limiting forms in sufficiently

dilute solution is well worth while. As we have already noted, however,

deviation from ideal behavior in this sense is generally significant at
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solute concentrations much lower than in the case of nonelectrolytes, so

that one may seldom use Eqs. (7-4-11) or (7-4-12) at finite solute concen-

trations except for the roughest kind of approximation. Furthermore,

complexities arising from specific chemical reactions of the ions in dilute

solution are much more common than similar complexities in the case of

nonelectrolytes. For example, many ions (Bi^**, Fe"14
"4

", S", GOs", etc.)

show hydrolytic reactions with water in dilute aqueous solution that may
interfere with the applicability of (7-4-13) in the ideal dilute-solution

limit; we also have such difficulties to negotiate as partial secondary
ionization in the case of aqueous H2SO4, complex ion formation in the

case of HgCl2 ,
etc. Some of these difficulties may be handled by exten-

sion of the theory to include equilibrium in chemical reactions, as we shall

see in Chap. 8; in many cases, however, it is by no means easy to discover

a rigorous and unequivocal method of interpreting the experimental data.

These difficulties, it should be noted, are entirely extrathermodynamic in

character, having to do with the success or failure of (7-4-11) or (7-4-12)

as empirical limiting laws relating < 2 to the composition in sufficiently

dilute solution; there is no difficulty whatever, beyond the purely experi-

mental, in measuring #2 by means of such relations as (7-4-3) or (7-4-4)

and their thermodynamic implications, without regard to the form of the

dependence of <t>2 on the composition.
While Eq. (7-4-13) constitutes a set of directions for measuring the

empirical integration constant f+<^ + ?-</>* appearing in Eq. (7-4-12)

[compare Eq. (7-3-84) for nonelectrolytes], where that equation is the

correct limiting form, there is no method for determining independently
the contributions of the two ions, that is, </ and <f>'B . To be able to do so

would imply that one knew of some operation whereby a solution contain-

ing only the one type of ion could be prepared; in view of the empirical

fact that solutions of electrolytes are always electrically neutral, no such

operation is known, according to presently available experimental tech-

niques. Nevertheless, the additivity hypothesis for ions in sufficiently

dilute solution implies that <' values for individual ions in a particular

solvent have real physical significance, in the sense that when recombined

in the form f+<l + f-</>i, they reproduce exactly the <f4 value for any

strong electrolyte A^+B^ in that solvent, regardless of the particular anion

with which a given cation is combined. The crux of Arrhenius's theory,

in so far as it bears on the thermodynamic properties of strong electro-

lytes in dilute solution, is the experimental fact that in a particular solvent

such as water, the <t>% values of KC1 and NaCl [as determined by the appli-

cation of Eq. (7-4-10) to experimentally determined 2 values] differ by
the same amount as the < 2 values of KNO3 and NaNOs, and by the same
amount as the

</>
values of KBr and NaBr, etc.

; likewise, the ^2 values of



THERMODYNAMIC BEHAVIOR OF MIXTURES 401

KC1 and KNOs differ by the same amount as the values of Nad and
NaNO 3,

etc. The former difference measures experimentally 4>K+iaq>

tfwcaq)* and the latter difference measures 44-(aq)
~

</>No 3-(aq)-
In other

words, a self-consistent set of constants for the various ions in the particu-

lar solvent may be obtained by difference from the experimental ^ values

for strong electrolytes after we have once assigned an arbitrary value to

any single species of ion. By general agreement, the standard ion chosen

for this purpose has been H+, to which has been assigned the conventional

value

4>U> = (7-4-14)

This applies at standard conditions of 25C and 1 atm, but it is generally

convenient to retain the same convention for other temperatures and

pressures. A similar convention would be required in each different sol-

vent, but comparatively few data are available for nonaqueous solvents.

Thus, one determines <^i-(aq) by equating it to 0HCKaq as found by the

application of Eq. (7-4-10) to experimental measurements of fa in aqueous
HC1 solutions; in a similar manner, the values of </>' for the anions of other

strong acids in aqueous solution may be directly determined. Having
determined the value of <ci-(aq)

*n this manner relatively to the convention

represented by (7-4-14), one may then determine 4>K+(aQ) by difference,

from the experimentally established value of ^KCIW given by the applica-

tion of (7-4-10) to fa data for aqueous KC1 solutions, etc. Since 0K+<aq >

may be determined independently from experimental fa data for HNOs
and KNOa aqueous solutions, or from experimental fa data for HBr and

KBr aqueous solutions, etc., such independent sources of information

serve as cross checks on the self-consistency of the ionic <' values. The

<!>' values established in this way are known as standard free energies of

formation of the ions in solution in the particular solvent; representative

values are included in Appendix 2. 1 The electrochemical methods dis-

cussed in Chap. 9 constitute a particularly valuable source of fa data for

the establishment of ionic <f>' constants.

In order to represent the thermodynamic potential of an electrolyte in

solution as a function of the composition outside the ideal dilute range, it

is appropriate for us to extend the methods outlined in Sec. 7-3<7. Thus,

taking (7-4-11) as the ideal limiting form, we may in principle introduce

ionic activities and ionic activity coefficients by means of the defining

1 The most comprehensive collection of such data for ions in aqueous solution is by
W. M. Latimcr, "The Oxidation States of the Elements and Their Potentials in

Aqueous Solutions/' Prentice-Hall, Inc., New York, 1938. More recent data will be

included in the critical compilation by the National Bureau of Standards under the

editorship of F. D. Rossini, "Selected Values of Chemical Thermodynamic Properties/'
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equations

In a+) + f_(<^ + flT
1
In a_) (7-4-15)

In mfl + Z27
7

In T-) (7-4-16)

(7
-4-17'

The definitions (7-4-15) and (7-4-16), which correspond formally to the

assignment of thermodynamic potentials <t>A and <t>s

In cu =
4>'A + RT In m^ + RT In 7^

)
/-

4
In aB = <t>B

V
" "

where

to the individual ions A and 5, are, however, insufficient to permit one

actually to measure a+ and a_, or y+ and 7_, independently of each other.

This is of course a matter of principle, inasmuch as there is at present no

known operation whereby a liquid solution of an electrolyte may be pre-

pared containing an excess of cationic over anionic charge, or of anionic

over cationic charge; the possibility of preparing such a solution would be

a necessary condition for the experimental study of the contributions of

the individual ionic species to the thermodynamic properties of the solu-

tion. We may, however, rewrite (7-4-15) and (7-4-16) in the more com-

pact forms:

oaL- (7-4-19)

RT In mj>ro- + RT In 7^7^ (7-4-20)

If no other electrolyte is present in the solution besides the one electrolyte

Af+Bf,j then mA =
f+wi2 and mB = f~w 2,

where ra 2 represents the formal

molality; thus

4>A^*{

= f+01 + f-*; + r RT In m2 + RT In 7 7 r + ^^ In ftft:

(7-4-21)

Equation (7-4-21) represents the generalization of (7-4-12). Now,
whereas the individual ionic activity coefficients 7+ and 7_ have only a

formal existence and cannot be measured independently of each other,

the product 7^7!" is evidently directly measurable, since all the other

terms entering (7-4-21) are measurable. The quantity

7 - OyfrL-)
1"

(7-4-22)

is known as the mean ionic activity coefficient of the electrolyte. It repre-
sents the geometric mean of the hypothetical individual ionic activity
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coefficients, or in other words, what their common value would be if they
were equal. In terms of Eq. (7-4-21),

4>A
tA = r+*i + r-*i + &T in 2 + j- RT in 7 + #r in #$*-

(7-4-23)

an equation we may take as defining y directly in experimental terms;
for since the constant part of faf+Bt- or < 2 is determined by Eq. (7-4-13)

(assuming that our analysis of the electrolyte's behavior is justified

empirically by the convergence of the expression on the right of that

equation, which represents Henry's law for strong electrolytes), we may
express (7-4-23) in the equivalent form

T In ra2)
- lim (0,

- firinma) (7-4-24)

from which we may compute 7 readily from empirical measurements of

02 as a function of m2 . It has become customary to tabulate the thermo-

dynamic properties of real solutions of electrolytes in terms of ionic <'

values and the associated 7 values so defined
;
the <' values are of course

constants for the particular ions in the given solvent, at the given tem-

perature and pressure; by representing y empirically as a function of ra2

for the particular electrolyte, we have then completed the description of

its thermodynamic behavior. Comparing Eq. (7-4-23) with (7-4-12),

one sees that < 2 is related to ra^^ at finite solute concentrations according
to the same form by which it is related to w2 in the ideal dilute-solution

limit; in other words, m 2y is numerically equal to the molality at which

the solute would have the same thermodynamic potential if it continued

to satisfy the ideal dilute-solution law as a completely ionized strong

electrolyte at the finite concentration w 2 . The deviation of 7 from 1

measures the extent to which < 2 deviates from the ideal value in this

sense.

This procedure for representing < 2 as a function of w2 in the case of an

electrolytic solute does not affect our conventional method of representing

<i for the solvent in terms of the activity function ai, which we continue

to define exactly as in Eq. (7-3-87),

0! ss (FTtP)i + RT In <*! (7-4-25)

Thus, a\ may be obtained directly from the solvent's partial vapor pres-

sure through Eqs. (7-3-45) or (7-3-40), just as in the case of a nonelectro-

lyte, though of course 01 now varies with w 2 in a different way in the ideal

dilute-solution limit. We may put the Gibbs-Duhem relation (7-4-2) in

the form

+ ^m^dlny^^O (7-4-26)
Mi
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or

,. 1000 g/kg 1 dm 2
d In 7 = --. - d In ai --

Mi fm 2 m 2

This equation may be integrated in a manner analogous to that leading to

Eq. (7-3-90):

g/ks ln a * + A
' fm' '

(7-4-27)

Equation (7-4-27) thus enables us to compute y from experimental meas-

urements of ai for the solvent, such as one may obtain from vapor-pres-

sure data, and other methods to be considered in Sec. 7-5. It is of course

precisely equivalent in content to Eq. (7-4-3), except that in (7-4-27), one

is operating from the opposite end of the composition scale. If the range
of the experimental data permit, one may evaluate the integral in Eq.

(7-4-27) over the entire composition range up to m* corresponding to the

saturated solution; in this way, one may measure 7 for the saturated

solution, where fa = (Fr,P)2 (within the limitations mentioned in the

footnote on page 393), and thus relate the constant f+<^ + f_^ appear-

ing in Eq. (7-4-23) to the standard molal free energy of the pure solute,

entirely from direct experimental measurements of ai.

Figure 7-18 shows experimental values of y plotted against m 2 for

typical strong electrolytes in aqueous solution. Some of these results are

based on vapor-pressure measurements, essentially according to the

method just described; others are based on the related freezing-point

method, to be described in Sec. 7-5, while still others come from emf

measurements (Chap. 9). One sees that there is marked but systematic

deviation from ideal behavior (as strong electrolytes with completely

independent ions), even at concentrations well below O.lm. In general,

the deviation at low solute concentrations is negative, [that is, fa increases

with m2 less rapidly than one would expect from the ideal Henry's law

equation (7-4-12)] and tends to be more extreme the greater the numbers

of charges on the ions concerned; thus, a 2:2 electrolyte like CuSO4
deviates more markedly from ideal behavior at concentrations below

O.lm than a 2: 1 electrolyte like CaCl 2,
and this in turn deviates to a con-

siderably greater extent than a 1 : 1 electrolyte like KC1. These facts are

satisfactorily explained by the interionic attraction theory of Debye and
Hiickel.

The idea that one may account for the deviations of electrolytes from

ideal behavior in dilute solution simply in terms of the electrostatic
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Coulomb forces between the ions was first proposed by S. R. Milner,
1 but

he was unable to overcome the mathematical difficulties in the way of

obtaining a quantitative solution to the problem. These difficulties were

overcome, within certain limitations, by P. Debye and E. Hiickel in 1923. 2

0.

O.Q.

Na2S04

CuS04

0.0 O.I 0.2 0.3 07 0.8 0,9 1.04 0.5 0.6

m
2 (mole /kg H

20)

FIG. 7-18. Mean ionic activity coefficients of strong electrolytes in aqueous solutions at

25C. (From data compiled by W. M. Latimer,
" The Oxidation States of the Elements and

Their Potentials in Aqueous Solutions," Prentice-Hall, Inc., New York, 1938.)

Since their theory has been discussed in detail elsewhere and is essentially

extrathermodynamic in nature, we shall not reproduce its formal deriva-

tion here. The argument runs as follows: ions in solution are supposed
to be in random thermal motion, but because of their charges, the neigh-

1 S. R. Milner, Phil. Mag., (6) 23, 551-578 (1912); 26, 742-751 (1913).
2 P. Debyc and E. Hiickel, Physik. Z., 24, 185-206 (1923). For detailed discussion,

see R. H. Fowler, "Statistical Mechanics/' 2d ed., Chaps. VIII and XIII, Cambridge

University Press, New York, 1936, and Maclnnes, op. cit., Chap. VII.
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borhood immediately surrounding an ion of a particular species will be

richer on the average in ions of opposite sign than in ions of the same sign,

even though throughout the solution as a whole the total number of posi-

tive ionic charge units and the total number of negative ionic charge units

are equal.
1 As a consequence, each ion is subject to an average net elec-

trostatic attraction by all the other ions, which depends on the product of

their charges and the mean distance between ions; the latter quantity, in

turn, depends on the concentration of the electrolyte. The ion's potential

energy in the solution is therefore lower than would be the case if it bore

no charge ; consequently, the thermodynamic potential of the ion, which

measures the theoretically least quantity of nonthermal energy per mole

required to transfer it from the solution to some conventional standard

state at the same temperature and pressure, is correspondingly more

negative than it would be for otherwise identical uncharged solute par-

ticles at the same concentration. In concentrated solutions, this com-

paratively simple picture is no doubt inadequate, because even nonelec-

trolytes then show deviation from dilute-solution behavior. One would

have to take into account the sizes, shapes, and polarizabilities of the

ions, as well as their specific interactions with each other and with the

solvent; no comprehensive theory for concentrated solutions as yet exists.

But in sufficiently dilute solutions, we may ascribe the entire deviation for

strong electrolytes to the effect of electrostatic interionic attraction

associated with the ionic charges. Debye and Hiickel succeeded in over-

coming the formidable mathematical difficulties arising in the solution of

this essentially statistical molecular problem by introducing certain

approximations that presumably become valid at sufficiently low ionic

concentrations (the exact range of validity being dependent on the par-

ticular solvent and the size of the ions concerned). Their limiting law

for a strong electrolyte consisting of two ions bearing, respectively, z+ and

z- units of charge (multiples of the electron charge e), in a solution whose
ionic strength is represented by /*, assumes the form

-log 7 = z+z-A VM G* -> 0) (7-4-28)

1 A similar geometrical situation exists in the ionic crystalline state, where in the

case of NaCl, for example, each Na+ ion has six equivalent Cl" ions as nearest neigh-

bors, closer than the nearest Na+ ions, and each Cl~ ion likewise has six equivalent
Na+ ions as nearest neighbors; a sphere of several ionic diameters radius drawn about

any ion as center would include more ions of the opposite kind than ions of the same

kind, the disproportion decreasing, of course, as the radius of the sphere is increased.

The regular permanent order that exists in the crystalline state would, however, bo

absent in liquid solution, but the tendency for such order to be set up, in opposition
to the disruptive random thermal motion, is treated statistically as the foundation on
which the interionic attraction theory is based.
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where A is a universal constant for the particular solvent at given tem-

perature, having the theoretical value

(7.4.29)v 1 ^1 ^ 7;cm 3
/liter2.3026 (DRTY

D representing the dielectric constant of the medium (i.e., of t

solvent, in sufficiently dilute solutions).
1 The ionic strength is a

tration measure defined by

of the pure
concen-

(7-4-30)

the sum extending over all ionic species present ;
it is thus a peculiar con-

centration measure in which each ionic species is weighted in proportion

to the square of its charge. This weighting takes theoretical account of

the fact that a multiply charged ion at given interionic distance (the mean
distances being determined inversely by the concentration) contributes

more to the net interionic attraction than a singly charged ion. 2
Equa-

tion (7-4-28) implies no restriction on the number of electrolytes that may
be present (contributing to M) besides the one to which the equation is

applied, but in the case of a single electrolytic solute, the value of M is

related to the formal molar concentration C2 as follows:

The value of the constant A for water at various temperatures is as

follows: 3

1 See footnote on page 408.
2 It is interesting to note that Lewis and Randall had called attention to the empiri-

cal dependence of y on /*, particularly in mixtures of electrolytes in dilute solution,

before the Debye-Hiickel theory was announced; Lewis and Randall, op. dt.
t pp.

373-374.
8 These values are based on the dielectric constant measurements of J. Wyman,

Phys. Rev., 35, 623-634 (1930), which may be represented by the empirical equation

D = 78.54[1 - 0.004600 - 25) + 0.00000880 - 25)
2
]

The values used for the natural constants are as follows: e = 4.8024 X 10~10
esu;

NQ = 6.0228 X 1023 mole" 1
;
R - 8.3144 X 107

ergs/mole deg; T - * + 273.16 deg.
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Temperature, A for H 2O,
C (mole/liter)-^

0.4895

25 0.5091

100 0.6149

Thus, the Debye-Hiickel limiting law (7-4-28) in water at 25C has the

form

-log 7 = 0.5091 z+z- VM (/*
-> in H 2 at 25C) (7-4-31)

For solutions of single electrolytes of various charge types, this limiting

equation in extremely dilute aqueous solutions at 25C assumes the forms

(7-4-31a)

It is easy to see from these theoretical equations why strong electrolytes,

particularly of the higher charge types, show marked deviation from ideal

behavior [which would be represented by 7^ = 1 in Eq. (7-4-23)], even at

concentrations as low as Q.OIM. At that, water happens to have an

exceptionally high dielectric constant; in a nonaqueous medium having a

lower dielectric constant, the value of A given by Eq. (7-4-29) would be

larger, reflecting the stronger influence of interionic attraction at given

mean interionic separation, and significant deviation from the hypotheti-
cal ideal dilute-solution behavior as completely independent ions would

show up at still lower ionic concentrations. The failure of Henry's law

at low solute concentrations had long been a stumbling block in the

development of the theory of strong electrolytes, from the time of

Arrhenius's original contribution; the outstanding merit of the Debye-
Huckel theory has been the reconciliation of this failure of Henry's law

with assumed properties of the ions no more complicated than their

charges and Coulomb's inverse-square law of force.

The numerical coefficients appearing in Eq. (7-4-3 la) represent accord-

ing to the Debye-Hiickel theory the terminal slopes of the log 7^ vs.

\/(Jl relationships for strong electrolytes in aqueous solution at 25C. In

Fig. 7-19, log 7 has been plotted against \/rn^ for electrolytes of various

charge types (compare Fig. 7-18) j

1 the dashed lines correspond to the

l The Debye-Hiickel formula (7-4-28) gives technically the value of the molar

concentration activity coefficient, which to be consistent with the terminology for

nonelectrolytes introduced in Sec. 7-30 we have represented by the symbol 7; the
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asymptotic straight lines predicted by Eqs. (7-4-3 la). One sees that the

agreement of theory with experiment is indeed excellent, though the prac-

tical range of usefulness of Eqs. (7-4-3 la), or, more generally, the parent

equation (7-4-28), is confined to exceedingly dilute solutions. These

O.I

0.1 0.2 0.3 0.4 Q5 0.6 0.7 0.8 0.9 LO

FIG. 7-19. Plot of log 7* vs. m^ for electrolytes in aqueous solutions at 25C; dashed lines

drawn with Debye-Hiiekel limiting slopes, Eqa. (7-4-3 la).

equations have proved valuable, however, in the extrapolation of experi-

mental #2 or 7 data at low solute concentrations, below the region in

which precise measurements are feasible. If, for example, one can meas-

ure 02 down to some concentration w 2 at which Eq. (7-4-28) is valid, then

substitution in Eq. (7-4-24) permits one to evaluate lim (< 2 fRT In w2)

mean ionic activity coefficient y defined by Eq. (7-4-23) is a molal activity coefficient,

which by analogy with Eq. (7-3-82) we might have represented by the symbol y'.

We have omitted the distinguishing
'

sign to simplify the notation, on the ground

that no other kind of activity coefficient for electrolytes is in common use, at least

for aqueous solutions. In dilute solutions, of course, to which the Debye-Hiickel

limiting law (7-4-28) may be applied, the distinction between 7 and 7^ (that is, y)
is of no practical consequence [compare Eq. (7-3-105)], and in dilute aqueous solutions

particularly, C^ ~ ^2; for nonaqueous solutions, one would have to replace C* by
in the dilute range [compare Eq. (7-3-98)].
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precisely, without the uncertainty inherent in graphic methods of extra-

polation, and thus to determine the important constant for the electrolyte

in the given solvent, <t>'2
= f+^ + f-<^. Or, if one wishes to use the

graphic method, the form of Eq. (7-4-28) suggests that (< 2 KT In ra 2)

be plotted against \/M> rather than any other function of the concentra-

tion, since the graph then tends to approach linearity as /*
> 0.

Equation (7-4-28) is itself the limiting form of the more general equa-
tion derived by Debye and Hiickel

-logy^^z^AVH
*

(M -0) (7-4-32)
1 + Bdi VM

where according to the theory, dt represents the mean ionic "diameter,"
or distance of closest approach between the particular pair of ions in the

solution, and B is another universal constant for the solvent at the given

temperature, having the form

1 \

m'/liter/DRT 1000 cm'

The value of B for water at various temperatures is as follows:

Temperature, C B for H 2O,
cm" 1

(mole/liter)""^

0.3244X108

25 0.3286 X 108

100 0.3500 X 108

There are at present no satisfactory methods of measuring di inde-

pendently in solution; the ions are no doubt generally solvated to some

extent, and their apparent diameters in solution may bear little relation

to their diameters in crystalline compounds, as deduced from X-ray

crystallography. Therefore di is treated practically as an empirical con-

stant for the particular electrolyte in the given solvent, whose value has

to be determined from at least one measurement of 7^ at some concentra-

tion in the dilute range [but not so dilute that Eq. (7-4-32) reduces prac-

tically to Eq. (7-4-28)] ;
the theory is supported obliquely by the fact that

empirical di values so obtained, at least in aqueous solutions, are of the

proper order of magnitude to represent mean ionic diameters (e.g.,

5 X 10~8
cm). Equation (7-4-32) may be rearranged for sufficiently

small values of /* in a convenient form proposed by D. I. Hitchcock;
1 the

factor 1/(1 + Bdi \/M) may be expanded as the series

t r
1 + Bdi V M

1 D. I. Hitchcock, /. Am. Chem. Soc., 60, 2076-2079 (1928).
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in which at sufficiently low values of /*, only the first two terms need be

retained (the coefficient Bdi being of order 1) ; thus, Eq. (7-4-32) assumes

the approximate form
~

log 7 = ***-A VM - B'M 0* -> 0) (7-4-34)

which may be regarded as the second-order approximation to the first-

order Debye-Hiickel approximation (7-4-28). The constant B' is theo-

retically equal to z+Z-ABdi, but since di has to be determined empirically

anyhow, we may regard B f
itself in Eq. (7-4-34) as an empirical constant

for the particular electrolyte in the particular solvent, A being a property

only of the solvent. By means of the single empirical constant J3', Eq.

(7-4-34) may be fitted to the data for aqueous solutions of most strong

1 : 1 or 2 : 1 electrolytes at ionic strengths up to M = 0.1
;
at higher concen-

trations, specific interionic effects neglected in the theory become impor-

tant, and also the simplifying approximations introduced in the derivation

of Eq. (7-4-32) become invalid. Qualitatively, it is noteworthy that

while the first term on the right of Eq. (7-4-34), which represents essen-

tially the effect of interionic attraction for point charges (i.e., for ions at

mean interionic distances large compared with their diameters), results

in a tendency for 7 to decrease with increasing ionic concentration, the

second term, which represents essentially the effect of the finite sizes of

the ions, results in an over-all tendency for y to decrease less and less

rapidly as the concentration is increased; thus, the graphs of log y vs.

Vmi (and of 7 vs. w 2) all show positive curvatures over the dilute-solu-

tion range.

A serious theoretical limitation to the method originally presented by

Debye and Hiickel is that in order to obtain a solution in simple mathe-

matical form, they were compelled to make assumptions equivalent to

,

di ~2DRT~

which for water as solvent at 25C reduces to

z_ 4.372 X 10-8 cm

This implies that Eqs. (7-4-32) and (7-4-28) are restricted to the larger

ions and to the lower charge types. An even more drastic restriction

arising from the same source is that in a medium whose dielectric constant

is much lower than that of water (which happens to have an exceptionally

high dielectric constant, 78.54 at 25C), condition (7-4-35) may fail to be

satisfied even by the largest ions. The elimination of this assumption
has been successfully undertaken by H. Miiller, and by T. H. Gronwall

and his associates, but the resulting equations for Y are unfortunately
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complex and unwieldy.
l There are furthermore other physical difficulties

standing in the way of attempts to refine the theory from the same general

line of approach. Thus, no account is taken of statistical fluctuations in

the charge distribution about a given ion; furthermore, the shapes, proba-

ble orientations, and polarizabilities of the more complex ions no doubt

influence their behavior at the higher concentrations; there is also the

question of the significance of the dielectric constant in a medium con-

taining an appreciable concentration of mobile ions. Some of these diffi-

culties, and the attempts to overcome them, have been reviewed by
Fowler. 2

Meanwhile, the Debye-Huckel theory has given us not only

the simple quantitative limiting laws (7-4-32) and (7-4-28), which have

been verified experimentally for the simpler strong electrolytes in aqueous

solution, but also-general insight into the nature of the regularities that

attend the deviations of electrolytic solutes from ideal behavior in dilute

solution. It has met with similar success in describing the effect of con-

centration on the conductivities of electrolytes in dilute solution, but this

subject is outside the scope of thermodynamics. An important field of

application of Eqs. (7-4-32) or (7-4-28) consists of the thermodynamic
behavior of the ionic constituents in solutions of weak electrolytes, as we
shall note in Chap. 8.

We may define a mean ionic activity coefficient y by means of Eqs.

(7-4-23) or (7-4-24), and proceed accordingly to measure it, on the basis

of a quite incorrect concept of how the electrolyte is really ionized at con-

centrations outside the extremely dilute range. The value of #2, which

is essentially what one actually measures, is of course related directly to

physical properties of the solution by means of thermodynamic equations

quite independent of assumptions concerning the ultimate structure of

the solute [compare, for example, Eq. (7-4-4), which is based on the sup-

position that the equilibrium vapor phase satisfies empirically the ideal-

gas law, but involves no assumptions concerning the thermodynamic
properties of the liquid solution itself]. But when we attempt to fit < 2 to

the composition by means of an equation such as (7-4-23), which repre-

sents a generalization of the hypothetical empirical limiting law (7-4-12),

then it is necessary for us to assume a particular mode of ionization, i.e.,

essentially to select the value of f . For the simpler strong electrolytes,

such as KC1, CaCl 2 ,
CuS0 4 , etc., the choice presents no difficulty; but in

'H. Miiller, Physik. Z., 28, 324-333 (1927); 29, 78-82 (1928); T. H. Gronwall,
Proc. Nat. Acad. Arts Sci., 13, 198-202 (1927); T. IT. Gronwall, V. K. LaMer, and
K. Sandved, Physik. Z., 29, 358-393 (1928); V. K. LaMer, T. H. Gronwall, arid I,. J.

Greiff, /. Phys. Chem., 36, 2245-2288 (1931).
2
Fowler, op. cit., Chap. XIII; see also R. H. Fowler and E. A. Guggenheim,

"
Sta-

tistical Thermodynamics," Chap. IX, Cambridge University Press, New York, 1939.
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the case of H 2SO4, for example, the picture is obscured by the fact that

secondary ionization is by no means complete, even at the lowest solute

concentrations feasible for experimental operations (of order ra2 = 0.0005

mole/kg).
1

Here, the Debye-Hiickel generalization is of great value in

calling immediate attention to the existence of such irregularities (which
fall outside the scope of purely thermodynamic reasoning) and in suggest-

ing quantitative methods for dealing with them. Thus, when one treats

[2804 as though it were a 1 :2 electrolyte at finite concentrations in water

[by setting f in Eq. (7-4-24) equal to 3], then y runs significantly below

the values typical of other true 1:2 electrolytes, such as Na2SC>4 (Fig.

7-18). By ascribing to the true mean ionic activity coefficient of H+ and

SC^ in the solution a value equal to that of other 1 : 2 electrolytes at the

same ionic strength, and to the mean ionic activity coefficient of H"1
"

and HSC>4~~ a value equal to that of other 1 : 1 electrolytes, Sherrill and

Noyes were able to infer the extent to which secondary ionization,

HSO4~~ = H+ + 804*, must actually take place, assuming that primary
ionization in dilute solution is practically complete. Hamer later meas-

ured the secondary ionization constant directly, and showed that second-

ary ionization is by no means complete, even in quite dilute sulfuric acid

solutions. 2
Likewise, the values of 7 for CdCl 2,

CdBr2,
and CdI 2 solu-

tions in water, calculated on the supposition that these substances are 2 : 1

electrolytes, run far below the values for other 2 : 1 electrolytes (Fig. 7-18),

evidence either that these compounds are incompletely ionized or, as

appears more likely from other evidence, that Cd++ tends to form com-

plex ions with Cl~, Br~, and I"" at sufficiently high halide-ion concentra-

tions. 3
Purely thermodynamic reasoning, in the absence of generaliza-

tions essentially extrathermodynamic in nature concerning the behavior

of electrolytes, would of course be incapable of suggesting such ideas. At
the same time, one must recognize that such ideas are bound to include

an element of speculation, whereas the direct interconnections between

the properties of the solution that are based on thermodynamic relation-

ships are independent of the supposed structure of the substance under

consideration; thus, fa of H 2SO4 in aqueous sulfuric acid solutions is

1 M. S. Sherrill and A. A. Noyes, J. Am. Chem. Sac., 48, 1861-1873 (1926); W. J.

Hamer, ibid., 67, 9-15 (1935); H. S. Harned and W. J. Hamer, ibid., 27-33.
2 W. J. Hamer, ibid., 66, 860-864 (1934) ;

he obtained for the secondary ionization

constant: K* = 0.0122 at 25C, essentially by a potentiometric determination of pH
in NaHSO4-Na 2SO4 "buffer" solutions. The unusual circumstance in sulfuric acid

solutions is that the relatively high ionic strength resulting from primary ionization

produces a strong primary "salt" effect on the secondary ionization at all finite con-

centrations; see W. J. Hamer, ibid., 67, 9-15 (1935).
8 CdSO 4 behaves as a "normal" 2:2 electrolyte, with a mean ionic activity coeffi-

cient closely paralleling that of CuSCh at the same concentration.
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defined by straightforward experimental operations that take no cogni-

zance of the state of ionization, or of the concentration itself except as a

state-determining variable (like T and p) on which the value of fa happens
to depend.

In Eqs. (7-4-15) to (7-4-17), we formally introduced the idea of indi-

vidual ion activities and activity coefficients, even though we found it

necessary to point out that only mean ionic activities and mean ionic

activity coefficients, such as appear in Eqs. (7-4-19) to (7-4-24), are sus-

ceptible to experimental measurement. In order to measure individual

ionic activity coefficients, we should have to conceive some method of

preparing a solution containing only the one ion, unaccompanied by
others, or at least, containing an excess of positive or negative ionic

charge. At present, we do not know how to set up such an experiment;
when we attempt to add to or remove from the solution the ion in which

we are interested, we are constrained to add or remove a proportional

quantity of some other ion of opposite charge, and there is no way in

which we can disentangle the separate contributions of the two kinds of

ions to the thermodynamic properties of the electrolyte outside the ideal

dilute region. It is nevertheless convenient for us to use the concept of

individual ionic activity coefficients for theoretical purposes, particularly

when we are dealing with mixtures of several electrolytes, in which the

concentrations of individual cations and anions may be varied inde-

pendently of each other within the requirement of over-all electrical

neutrality. Provided that we observe certain precautions in the inter-

pretation of such quantities, no harm will be done. The basic require-

ment is that in any equation connecting individual ionic activity coeffi-

cients (or activities) with measurable properties of the solution, they
must appear recombined in forms that do not conflict with the condition

of electrical neutrality of the solution as a whole. In other words, while

individual ionic activities and ionic activity coefficients corresponding to

an equation such as (7-4-18) have only paper significance, their combina-

tions for any pair of ions in the solution in the forms a$.+or and
7$.+7JL~,

where z+ and z_ denote the respective ionic charges and f+z+ + f-2- =
0,

do have real physical significance, in the sense that they can be measured

in principle in terms of observable properties of the solution. 1 For exam-

ple, the activity coefficient of a singly charged cation such as Na+ and the

activity coefficient of a singly charged anion such as Cl~ do not individ-

ually have physical significance in solution in a given medium, but an

expression of the form 7Na+7ci-, where both activity coefficients refer to

the same solvent, does have physical significance; in the same sense, an
1 See P. B. Taylor, /. Phys. Ckem., 31, 1478-1500 (1927); E. A. Guggenheim, ibid.,

33, 842-849 (1929).
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expression of the form 7ca++7cr has physical significance and can in prin-

ciple be measured for a solution in which both ions are present, but no

operation is at present known whereby we could measure 7ca++ or 701-

separately. The mean ionic activity coefficient (7-4-22) has of course the

proper form in relation to the hypothetical individual ionic activity

coefficients to be measurable. Furthermore, expressions of the forms

7cu++/72n++ and 7cu++/7ig+ j
such as turn up in the theory of equilibrium in

ionic reactions and in the theory of galvanic cells (Chap. 9), have real

physical significance, and can be measured, because they are equivalent

actually to expressions such as 7cu++7so4-/7zn++7so4
-

(if SOf happens to be

the particular anion present) or 7cu++7N03-/7Ag+7No 8
-

(ft in, this case NOj
represents the particular anion, some anion necessarily being present at a

concentration equivalent to that of the cations) ; the numerator and the

denominator of each of these expressions, from which one may cancel out

the hypothetical anion contribution if both cations are present in the same

solution, are both measurable properties of the solution. On the other

hand, an expression of the form 7cu +*/7Ag+ could not be measured. In this

connection, it should be noted that one cannot measure such a quantity
as aH + without making imverifiable assumptions concerning the activity

coefficient of the accompanying anion
;
this fact has a bearing on the inter-

pretation of potentiometric measurements of "pH" at high ionic concen-

trations and in nonaqueous media (Chap. 9); in dilute solutions, one

generally assumes either tacitly or openly that the activity coefficients of

the cation and the anion are equal [i.e., each equal to the mean ionic

activity coefficient; compare (7-4-22)].
l This discussion has merely

taken cognizance of the fact that a given ion cannot enter or leave the

liquid phase in question without the accompaniment of an electrically

equivalent number of some kind of ion having opposite charge.

We are now in a position to restate the thermodynamic condition for

equilibrium between a crystalline electrolyte and its saturated solution,

in a form which in special cases reduces to the solubility product principle.

For in general, without regard to the actual solubility of the electrolyte,

or the possible presence of other ions in the solution, we may write as the

condition for equilibrium at fixed temperature and pressure

- (^r)4f+i?t_(0)
=

Introducing (7-4-20),

B(o -

1 Note the discussion of indicator "acidity functions" given by L P. Hammett,
J. Am. Chem. Soc., 50, 2666-2673 (1928).
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Therefore in the solution in equilibrium with the pure crystalline ionic

compound, A^B^(e) 9 we have

r = exp- f "

- K'9 (7-4-36)

The constant K'8 at given temperature and pressure (ordinarily 1 atm),

having the form

RT In K'9 m (f?)*rA_w
-

f+^ -
r_*; (7-4-37)

we may call the thermodynamic solubility product of the electrolyte in the

given medium. In view of (7-4-22), we may express (7-4-36) in the form

(mS+mfrOTfb
= #i (7-4-38)

where y represents the mean ionic activity coefficient of the particular

pair of ions A and B in the saturated solution.

Condition (7-4-38) applies to the saturated equilibrium solution for any
electrolyte, regardless of its solubility, and regardless of any other ions

that may be present in the solution. 1 For rather soluble electrolytes, the

hitch in its application is the measurement of T. If we are dealing with

solutions containing only the single electrolyte Af+J5f_, then we may meas-

ure- T independently by straightforward experimental operations [e.g.,

by application of Eq. (7-4-27) to activity data for the solvent]; since in

that case we may usually assume that mA = f+w* and mB = f-w,
where m* represents the stoichiometric solute molality in the saturated

solution, the measurement of the solubility m$ and the independent
measurement of y serve to determine the value of the constant K'8 ,

and
so through Eq. (7-4-37) to determine the value of +<^ + f_<^ relatively

to the value of (^J)^+
B
f (C>.

2 This idea is in no respect different from that

expressed in the discussion following Eq. (7-4-27). If the electrolyte is

appreciably soluble, however, one can make no general theoretical pre-

1
Recall, however, the footnote on page 393 concerning the interpretation of 7C

according to (7-4-37), if the equilibrium crystalline phase happens to be solvated,

or if its composition differs in any other way from that of a simple compound of the

two ions concerned.
2 This assumption is not always sound. One must be on guard against the possi-

bility of reaction of either or both ions with the solvent (e.g., hydrolysis), or with each

other (complex ion formation), for then VIA may be quite different from f+ra2 and

ma from f_W2. See, for example, the critical analysis by I. M. Kolthoff, /. Phys.

Chem., 36, 2711-2721 (1931), of metal sulfide solubility data. One must also be

certain that equilibrium has been established, which may take a long time in the

case of some of the less soluble compounds (e.g., NiS, CoS).
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TABLE 7-6. SOLUBILITY OF AgCl IN AQUEOUS SOLUTIONS OF ELECTROLYTES AT25C*

* Data of S. Popoff and E. W. Neumann, J. Phya. Chem., 34, 1853-1860 (1930); E. W. Neumann,
/. Am. Chem. Soc. t 54, 2195-2207 (1932).

diction concerning how y may be affected by the presence of other elec-

trolytes; for as one sees in Fig. 7-18, there is little regularity in the effect

of ionic concentration on y even for single electrolytes, at concentrations

of order 1m and higher. Therefore the usefulness of condition (7-4-38) is

extremely limited in the case of a moderately or highly soluble electrolyte.
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In fact, one can perhaps use this equation best for the purpose of measur-

ing 7 as affected by the presence of other electrolytes, from measure-

ments of how they affect the solubility, the value of Kf

8 having been pre-

viously established from independent measurements of m% and y in the

saturated solution of the single pure electrolyte.

If the solubility of the electrolyte is sufficiently slight, however, then

the ionic strength of the solution is almost entirely determined by the

concentrations of other electrolytes that may be present, and this in turn

is then the primary factor determining the value of y . If to a first order

of approximation we assume that at sufficiently low total electrolyte con-

centration 7 ~
1, then Eq. (7-4-38) reduces to the familiar solubility

product principle. More generally, we may express (7-4-38) for aqueous
solutions in the form

C^Cfi- = K8
= (7-4-39)

where K" and 7^ have approximately the same significance as before,
1

but K8 represents the ordinary or stoichiometric solubility product, which

we see therefore is only approximately constant; its value varies with 7^,
which is determined primarily by the total ionic strength of the solution.

We have seen in Figs. 7-18 and 7-19 that the value of 7 for any electro-

lyte decreases with increasing electrolyte concentration over the dilute

range (up to at least 0.5m in most cases), the decreases representing

largely the general effect of increasing interionic attraction. Therefore

we should expect that in dilute solution, the value of K8 would tend to

increase as the total electrolyte concentration is increased. This is

indeed actually the case, as shown, for example, by the solubility data for

AgCl in aqueous solutions containing various electrolytes, presented in

Table 7-6, from work of Popoff and Neumann. 2 In cases such as this,

where the added electrolyte has no ion in common with the slightly

soluble electrolyte under investigation, the value of K8 is given by

f$-
+
fL~(C* )

r
[i.e., in the case of AgCl, simply by (C*)

2
], where C* represents

the molar solubility.
3

1
See, however, Eqs. (7-3-97), (7-3-100), and (7-3-105).

2 S. Popoff and E. W. Neumann, J. Phys. Chem., 34, 1853-1860 (1930); E. W.
Neumann, J. Am. Chem. Soc., 64, 2195-2207 (1932); a nephelometric method was
used.

8
See, however, footnote 2 on page 416 concerning possible reactions of the ions

with the solvent, or with each other. As a matter of fact, at sufficiently high Cl"

concentration, the formation of complex ions between Ag+ and Cl" results in a much
higher solubility of AgCl than one would predict from Eq. (7-4-39) on the assumption
that all the silver in solution were present as free Ag+. A. Pinkus and N. Berkolai'ko,

/. chim. phys., 27, 364-385 (1930), have shown that in the presence of KC1, the solu-
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Equation (7-4-39) permits us to measure directly from solubility data

the mean ionic activity coefficient y of the slightly soluble electrolyte in

the presence of other electrolytes. It thereby provides a sensitive means

of testing the Debye-Hiickel limiting law in this case, if the solubility can

be measured with sufficient precision. In water at 25C, making use of

-9.60

-9.62

AgCI(c) in pure water

KN03 solutions

Ba(N03)2 solutions

La (NO ) solutions

-9.80

-9.82
0.2

FIG. 7-20. Plot of log K8 vs. /*H for AgCl in solutions of electrolytes at 25C [solubility

data of S. Popoff and E. W. Neumann, J. Phys. Chern., 34, 1853-1860 (1930)]; straight lino

drawn with Debye-Hiickel limiting slope, 1.0182.

the Debye-Hiickel limiting law in the form (7-4-31), we may put Eq.

(7-4-39) in the approximate limiting form

log K8
= log K'J + f(0.5091 z+z^W) (M _> o in H2O at 25C) (7-4-40)

Therefore if we plot log K8 vs. /^S the data should approach log K"
as

M _> o along a straight line having slope 0.5091 z+z_? (1.0182 in the case of

a 1:1 electrolyte such as AgCl). In Fig. 7-20, the data from Table 7-6

bility of AgCl goes through a minimum at about 0.02M KC1, and thereafter increases

with further increase in the KC1 concentration; they estimate that at 0.0001M KC1,

half the silver is already in forms other than Ag+ ion.
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have been plotted in this form; the straight line in the plot has been

drawn with the theoretical Debye-Hiickel limiting slope. While the data

cover a wide variation in concentrations and charge types of the electro-

lytes added, one can see that there is general agreement with the Debye-
Hiickel theory.

1

The data in Table 7-6 and Fig. 7-20 lead to the conclusion:

AgCl(c) - Ag+(aq) + Cl-(aq); log#i = -9.791 (T = 298.16K)

If we substitute in Eq. (7-4-37), we may express this experimental result

in the form

*Ag+<W> + 4>Cl-(aa)
-

(^298.16) ABCl(c)
= ~RT In K'9 = 5801

If any two of the quantities on the left have been established independ-

ently, then the measurement of K'

8 in this case serves to determine the

third; in this sense, precise solubility product data constitute an impor-
tant experimental method of relating the standard free energies of forma-

tion of the ions in solution to the standard molal free energies of their pure

compounds. Conversely, since the quantities (P^A^ B^ oo, <I>'A ,
and

<t>

f

B

are in principle all independently measurable [e.g., we may determine

^Ag+(aq> in principle from experimental <fo data for AgNO 3(aq) and for

HNO 3(aq) solutions by means of Eqs. (7-4-13) and (7-4-14), and we may
similarly determine <ci-(aq) from #2 data for HC1 (aq) solutions], we may
predict the value of K'8f and with the aid of the Debye-Hiickel approxima-
tion (7-4-40) the corresponding solubility of the slightly soluble electro-

lyte, from thermodynamic data that are obtainable from other experi-

mental sources.

Finally, we may use the Debye-Hiickel limiting law conveniently for

the precise extrapolation of thermal data in dilute solutions of electro-

lytes. For, in general, applying the thermodynamic relation (7-1-266) to

(7-4-23), which essentially defines y,

[compare Eq. (7-3-93) for nonelectrolytes]. This equation permits us to

calculate the temperature coefficient of 7 for given composition from

experimental heat-of-dilution data expressed in terms of 172 1??. In

sufficiently dilute solution, however, we may introduce the Debye-Hiickel

1 Neumann has called attention, however, to small but apparently systematic

deviations, which are more prominent when sulfates (not included in Table 7-6 or

Fig. 7-20) instead of the nitrates are used as the added electrolyte.
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approximation (7-4-28),

J (^)J (7-4-42)

Now in water at 25C, from the data of Wyman (see footnote 3 page 407),

D = 78.54;
-^

f
j
= -0.00460. Therefore Eq. (7-4-42) reduces to

-
, = 774 = n* G - in H2O at 25C) (7-4-43)A

or in particular for a 1:1 electrolyte

172
-

ril
= 774 m2

^ cal/mole (1 : 1 electrolyte) (7-4-43a)

The partial molal enthalpy of the solvent is related to that of the solute

by a general Gibbs-Duhem equation, which we may put in the form

1000 g/kg, . , A-, d?7i + ra2 di?2
=

Mi

Introducing (7-4-43a) in the case of a dilute solution of a 1:1 electrolyte

in water at 25C, and integrating from ra 2
=

0,

f/o _ 1 774 cal/mole H
r/l ti\ = TT

-

r r g ^
-

;
-

Tjj 7^2^1
3 55.51 moles/kg

= -4.65m 2
*
cal/mole H 2 (1 : 1 electrolyte) (7-4-436)

The theoretical limiting expressions (7-4-43a) and (7-4-436) may be put
in terms of the apparent molal enthalpy of the solute, $>*; thus, from (4-28)

and (4-35),

m.g>h = 55.51 (moles/kg H 2O))7i + m2Ty 2 55.51 (moles/kg H 2O)J?J
=

55.51(77!
- HI) + mm

Introducing (7-4-43a) and (7-4-436),

<$>A $o _ ^ 774m2
^ cal/mole solute

= 516m2
^ cal/mole solute (1:1 electrolyte;

m2 -> in H 2O at 25C) (7-4-43c)

Since (** $) simply measures (Q, Q), where Q8 represents the

experimentally determined integral molal heat of solution, introduced in

Sec. 4-5 [see Eq. (4-31)], therefore Q, itself when plotted against w2
**

should approach Q along a straight line as w 2 > 0, with theoretical slope



422 PRINCIPLES OF CHEMICAL THERMODYNAMICS

516 (Qa being expressed in cal/mole solute, and w 2 in mole solute/kg
H 20). This theoretical result, given by the Debye-Hlickel approxima-

tion, has been useful for the precise extrapolation of thermal data in dilute

solutions to find Q or the equivalent * for the particular electrolyte.
1

Corresponding limiting forms for electrolytes of higher charge types may
be derived by replacing p in Eq. (7-4-43) by the appropriate multiple of

ra2 (m2 and <72 being practically equal in dilute aqueous solutions).

7-5. The Colligative Properties of Liquid Solutions. It is well known
that certain physical properties of liquid solutions are interrelated, in the

sense that without regard to the particular solute or its concentration, the

value of any one of these properties may be estimated under certain con-

ditions with a high degree of accuracy from the observed value of any one

of the others. The properties so interrelated are known as the colligative

properties of the solution; they include the vapor-pressure depression and

boiling-point elevation associated with the presence of a relatively non-

volatile solute, the freezing-point depression associated with the presence
of a solute that does not enter into solid solution or solid compound forma-

tion with the solvent, and the osmotic pressure. These properties have

been commonly used in approximate forms for the purpose of estimating

the molecular weight of the solute, since it turns out that in sufficiently

dilute solution, each is proportional to the molal concentration of the

solute; but when the molecular weight of the solute is already known,

they may be used more precisely to measure thermodynamic potentials

or activity coefficients outside the ideal dilute range.

The colligative properties have in common the establishment of equi-

librium between the liquid solution and the pure solvent, in some one of its

phases. Thus, the basic thermodynamic requirements may be summar-
ized as follows:

0i ^ ^i(g) (Vapor pressure and boiling-point equilibrium) \

0i =
JPi(0 (Osmotic equilibrium) \ (7-5-1)

0i = Fi(c) (Freezing-point equilibrium) J

Since A(8), ^KO, and Fi(C) are properties solely of the pure solvent, the con-

ditions under which 0i will satisfy, respectively, the three equations

(7-5-1) must be closely interrelated. The interrelationships will depend
on the particular solute and its concentration [assuming that the solute

satisfies the general requirements implied, respectively, by conditions

(7-5-1)] only to the extent that since the different colligative properties

are normally measured at different temperatures and pressures, one must

1
See, for example, F. D. Rossini, J. Research Nail. Bur. Standards, 6, 791-806

(1931).



THERMODYNAMIC BEHAVIOR OF MIXTURES 423

take into account the effect of the solute on the variation of <t>i with tem-

perature and pressure; this effect tends to disappear as the solute concen-

tration is decreased, but in certain situations it may remain quite small

at solute concentrations well beyond the ideal dilute range, as we shall

presently see. Let us review separately the different equilibrium situa-

tions represented by Eqs. (7-5-1).

a. Vapor-pressure Depression and Boiling-point Elevation. In measur-

ing the vapor pressure or the boiling point of a solution containing a relar

lively nonvolatile solute
y
we are essentially measuring equilibrium condi-

tions between the liquid solution and the pure solvent in the gaseous state.

The thermodynamic conditions for equilibrium are therefore represented

by the first of Eqs. (7-5-1),

0i = ftw (7-5-2)

These conditions are much simpler, both theoretically and experimentally,
than the corresponding conditions <f>i

= <* and < 2
=

</>*> when the solute

also is appreciably volatile, such as we considered in general in Sec. 7-3
;

the term on the right of (7-5-2) is a property solely of the pure solvent,

varying with temperature and pressure according to the equations devel-

oped in Sec. 6-1, whereas <* and </>* when the solute is volatile depend on

the composition of the equilibrium vapor phase, which then has to be

analyzed empirically, in view of the lack of any general relationship

between the liquid and vapor compositions (other than the formal one

implied by the conditions <i = <* and < 2
=

</>* themselves).

Thus, the vapor-pressure depression associated with the presence of a

nonvolatile solute represents the amount by which the pressure of the

pure solvent vapor has to be lowered in order that its molal free energy at

the given temperature may remain equal to the thermodynamic potential

of the solvent in the solution; it measures primarily therefore the lowering
of the solvent's thermodynamic potential. Now, for a shift in the equi-

librium conditions resulting from a small change in the composition of the

liquid phase at the given temperature, according to (7-5-2),

dfa =
(d<t>i) T .P + \ n

dP = rfF1(g) (T const)

where (d<i)r,u represents the explicit change of <i with the change in

composition, and the following term represents the change of <i associated

with the change in the equilibrium pressure. Introducing (6-10) and

(7-1-24),

(d<i)r,P
= (Fi(g)

-
vi)dp (T const) (7-5-3)

The only Way in which this relationship depends on the specific properties

of the solution is through the term vi, the partial molal volume of the sol-
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vent in the liquid phase; but at vapor pressures of order 1 atm or less, we

may neglect this term altogether in comparison with Fi(g> (this assump-
tion might not be warranted, however, at high pressures approaching the

critical state). If we assume furthermore that at moderate pressures,

the pure solvent vapor may be treated as an ideal gas, then (7-5-3) may
be put in the form

(d0i)r,P
= RT d In p (T const)

which integrates to

+ RT In 5 (T const)

since in the limit as Xi > 1, <f>i approaches the molal free energy of the

pure liquid solvent at its own vapor pressure, pj. For vapor pressures

not greatly in excess of 1 atm, we may generally replace (Fr.^id) by the

standard molal free energy, (^r)i(o> without significant error [the error

would have the magnitude, \

l

FKD dp, but would be partially canceled
J 1 atm

by the error introduced when we dropped Vi from Eq. (7-5-3) in compari-

son with Fug); compare Eq. (7-3-2)]; thus

0i = (^r)id) + RT In (T const) (7-5-4)

This equation applies quite independently of the nature of the solute or

its concentration, within the restrictions we have noted; there may even

be several different solutes present, provided that they are all relatively

nonvolatile. The error introduced by the assumption that the solvent

vapor satisfies the ideal-gas law is in most cases inappreciable at pressures

below 1 atm, and in any event, a correction for nonideality may be intro-

duced in the form of fugacity coefficients, derived by the methods out-

lined in Sec. 6-1. Equation (7-5-4) differs from the more general equa-
tion (7-3-3) only in that for nonvolatile solutes, we have replaced the

partial vapor pressure of the solvent by the directly measured vapor

pressure of the solution.

Equation (7-5-4), which we may put in the equivalent form

In ( 1 - ^ )
\ Pi /

RT In 1 - (T const) (7-5-4a)
/ \ Pi /

where Ap s pj p represents the vapor-pressure depression, thus per-

mits us to measure 0i relatively to (/*r)i(i) directly from vapor-pressure-

depression measurements, without regard to the particular nature of the

solute. For a binary solution, from 0i values so derived, we may calcu-

late 02 values by integrating the Gibbs-Duhem equation [e.g., in the form

(7-1-9)]; this of course calls for a knowledge of the solute's concentration.
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Now, in sufficiently dilute solutions, we have Raoult's empirical gen-

eralization (7-3-14a), which for nonelectrolytes assumes the form

^ = z2 (T const; x2
-

0) (7-5-5)
Pi

If W2 represents the molality of the solute, this law may be expressed in

the approximate form [compare Eq. (7-3-78)]

<r const; M,-0) (7-5-6)

Vapor-pressure-depression data are commonly expressed in terms of

Ap/m2pl at given values of m* 1
Historically, Raoult's law constituted

one of the first methods for determining the molecular weights of non-

volatile substances; the vapor-pressure method is not particularly precise

for this purpose, because at low solute concentrations, where the general-

ization (7-5-5) or (7-5-6) is valid, Ap is a small difference, not easily meas-

ured with precision, whereas at higher solute concentrations, where Ap can

be measured more precisely, the ideal limiting law fails. In the ideal

dilute range, Eq. (7-5-5) or Eq. (7-5-6) when substituted in Eq. (7-5-4a)

permits us to calculate the precise value of the thermodynamic property

^i (Ftyiw simply from the composition. Outside the ideal dilute

range, however, Ap/pJ continues to measure the true thermodynamic

properties, and thus serves as an experimental means of relating them

empirically to the composition. This empirical relationship in the case

of the solute is represented conveniently in terms of the activity coefficient

-y'2 for nonelectrolytes [Eq. (7-3-82)] or y for electrolytes [Eq. (7-4-23)].

Application of the Gibbs-Duhem equation has given us, respectively,

Eqs. (7-3-90) and (7-4-27) for these quantities in terms of (In ai)/w2,

which in view of (7-5-4a) and the definition. (7-3-87) or (7-4-25) of ai, we

may compute readily from the vapor-pressure depression data in the form

7712

By evaluating the integral in Eq. (7-3-90) or in Eq. (7-4-27) graphically

for values of w 2 up to the saturated solution, we may relate the constant

1 It was in this form that Raoult actually first stated his vapor-pressure law; i.e.,

he showed that with solutes of known molecular weights, Ap/W2?>? in dilute solution

was a constant for the given solvent [F. M. Raoult, Compt. rend;, 103, 1125-1127

(1886)].
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<f>z
in Eq. (7-3-82) for a nonelectrolyte or the constant < 2

= f+</ + f^'B
in Eq. (7-4-23) for an electrolyte A f+B^y

to the standard molal free energy
of the pure solute, as we have already shown in the preceding sections.

If we have measured the activity coefficient of the solute from some

other experimental source, then if we combine the appropriate equation

(7-3-107) or (7-4-23) for < 2 with Eq. (7-5-4) for <i in the general Gibbs-

Duhem equation (7-1-7), we may express the exact relation between the

vapor pressure and the solute concentration (within the scope of the

ideal-gas-law approximation for the solvent vapor) in the forms

id In p\
\ dm2 )T

/rflnp\

\ dm2 )T

1000 g/kg

1000 g/kg

,]

J
(7-5-86)

If the activity coefficient of the solute were expressed empirically as an

analytic function of the concentration, we could express the appropriate

relationship (7-5-8) in integral form; the first term on the right of Eq.

(7-5-8a) or Eq. (7-5-86) when integrated leads in dilute solution to the

ideal limiting form, (7-5-5) or (7-5-6), respectively. It is instructive for

us to introduce the Debye-Hiickel limiting law for log y in Eq. (7-5-8c) ;

using the expressions (7-4-31a) for water at 25C, and assuming as an

approximation in dilute solution that C% ~ w2

r L
, fd\iiy\ 1

,
2.303 ,, Mlim 1 + m2 (

f =1 A!m^

where A' represents the appropriate charge-type factor listed in Eq.

(7-4-3 la) (including the factor for converting ra2 to ionic strength).

Substituting in Eq. (7-5-8c) and integrating,

p = - 2.303

or at sufficiently small values of Ap

(Tconst;

The first term on the right represents the ideal Raoult's law result for a

strong electrolyte [the expression on the right of Eq. (7-5-6), multiplied

by f]; the second term represents the first-order effect of interionic
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attraction. One sees that at w 2
== 0.01 mole/kg, the interionic-attraction

effect accounts for a deviation of 4 per cent from the ideal value of Ap
for a 1:1 electrolyte, but 31 per cent from the ideal value for a 2:2

electrolyte (f having the same value, 2, in both of these cases) ;
for a non-

aqueous solvent having a dielectric constant lower than that of water, the

M

X

sft

1.0

m2(mole/kg)

FIG. 7-21. Vapor-pressure depressions for aqueous solutions of various nonvolatile

solutes. (Data from "International Critical Tables," Vol. 3, 1928, McGraw-Hill Book
Company, Inc., and from Landolt-Bdrnstein,

"
Physikalisch-chemische Tabellen," 5th ed.,

Suppl. IIIc, 1936.)

deviations would tend to be even greater. For aqueous solutions, one

cannot measure the vapor-pressure depression precisely at concentrations

much below O.lm, because it becomes too small in relation to experimental

error. Therefore over the entire concentration range in which significant

vapor-pressure data may be obtained, the electrolytes of higher charge

types depart greatly from ideal dilute-solution behavior, as shown by the

data for typical solutes presented in Fig. 7-21. This fact seriously
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retarded the development of the theory of strong electrolytes from the

time of Arrhenius' original discovery until its significance was made clear

by the work of Debye and Huckel. We do not mean to imply that the

Debye-Hilckel limiting law may be applied in a quantitative sense even

at the lowest ionic concentrations for which precise vapor-pressure-

depression data may be obtained, but the interionic-attraction hypothesis

goes far to account for the apparent confusion evident in the vapor-pres-

sure results for electrolytes at concentrations one would ordinarily regard

as quite low if one did not have the point of view provided by the theory.

Thus, while vapor-pressure data for solutions of electrolytes are quite

satisfactory for extending basic free-energy data to high solute concentra-

tions, and are particularly satisfactory for the establishment of the

thermodynamic potential of the solvent, they are not capable of sufficient

precision for the complete establishment of the solute's activity coefficient,

which calls for an extrapolation to zero concentration [the lower limit of

the integral in Eq. (7-4-27)].

Let us turn now to the boiling point of a solution containing a relatively

nonvolatile solute. We may maintain the general equilibrium condition

(7-5-2) not only by lowering the pressure of the pure solvent vapor at

the given temperature, in order to make up for the lowering of <i associ-

ated with the presence of the solute, but also by raising the temperature

at the given pressure. For according to Eq. (6-12), the decrease (alge-

braic) of Fi(g) with increasing temperature is in proportion to #i<g), while

according to Eq. (7-l-26a), the decrease of <i with increasing tempera-

ture is in proportion to 171 ;
sinceH i(g) is bound to exceed in [their difference,

Xj = /?i(g) qif representing the partial molal latent heat of vaporization

of the solvent from the solution], there must be some temperature above

the boiling point of the pure solvent at which <i overtakes Fi^. In

order to derive the boiling-point law, it is convenient for us to express

condition (7-5-2) in the form

#1
*

l(g) /7 c Q\

-y
-

-jT (7-5-9)

an entirely proper procedure, since for all equilibrium states of the two

phases, their temperatures will be equal. For a small change in the

composition of the liquid phase at the given pressure, we may write

where as before, d(<t>i/T) TtP stands for the explicit change of (<i/3P) with

the change in composition, and now the following term stands for the

change in (<i/T) associated with the accompanying change in the equilib-
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rium temperature. Thus, introducing (6-12) and (7-l-26a),

d f )
= 1(8

y2

Tyi dT

= -Aidr (p const) (7-5-10)

i.e.,

|_ cfa/i JT,P ^

If we may assume that the pure solvent vapor satisfies approximately
the ideal-gas law, then <i at constant temperature, say at !T, the boiling

point of the pure solvent, satisfies Eq. (7-5-4) ;
therefore 1

/djnpA = _ Xx
(dT\\ dxi )T RT2
\dxi/p

^

If we integrate (7-5-12) down from Xi = 1, where the pure solvent is at

its own boiling point, T, at the given pressure pi, then we may obtain a

relationship between the boiling-point elevation at the pressure pi and

the vapor-pressure depression at the temperature T|:

^-'-0-15)
This relationship depends on the particular nature of the solution only to

the extent that rji depends on the particular solute and its concentration

[the value of Xi = 771 HIM evidently approaches (Lig)i as x\ >
1]. The

extent of this dependence is indicated in a general way by the magnitude
of the heat of dilution down to infinitely dilute solution, and may be quite

small even when the solution deviates considerably from ideal dilute

behavior. Thus, Table 4-11 has shown that in Ira H2SO4, for example,

rji differs from SH^D (at 25C) by only 5 cal/mole; this happens

1 It may seem odd for us to be replacing <i in Eq. (7-5-11) by an expression that

apparently varies with pressure, in view of the fact that p is to be regarded as con-

stant in the derivatives represented in (7-5-11). Actually, of course, <i is quite insen-

sitive to explicit changes in the pressure, so that the condition of constant pressure on

the left-hand member of (7-5-11) hardly needs to be explicitly stated; but the vapor

pressure varies with composition in a manner related to that by which #1 varies with

composition, i.e. y according to (7-5-4) when the solvent vapor satisfies the ideal-gas

law. Therefore over pressure ranges sufficiently small so that the explicit variation of

#1 with pressure, as given by Eq. (7-1-24), need not be taken into account, we may
replace the change of fa with composition at constant temperature by the equal

change of RT In pi with composition at the same temperature, pi being equal to the

total vapor pressure when as in the case under consideration, the solute is nonvolatile.
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actually to be a rather extreme example of dependence, and in many
other cases, Xi will remain practically equal to (L^)i at even higher solute

concentrations. Equation (7-5-13) then relates ATB to Ap in a manner

practically independent of the particular solute and its concentration,

provided only that it is not significantly volatile.

If we are dealing with an ideal solution satisfying Eq. (7-5-5), we have

seen that the condition rji
=

/7i(i> is necessarily satisfied [Eq. (7-3-20)],

and Eq. (7-5-13) then takes the form

= - In (1
-

#2) (ideal soln) (7-5-14)

At sufficiently small values of x% and A2
7

/?, this equation may be put in the

approximate limiting form
T> /mQ \ O

r2 (X*
-

0) (7-5-15)

Equation (7-5-15) represents Raoult's well-known boiling-point law; the

factor

is a property of the pure solvent known as its mole-fraction boiling-point

constant; thus, its value for water (at 1 atm) is 28.9 deg, and for benzene,
33.6 deg. The equivalent relationship expressed in terms of the molality
of the solute [compare Eq. (7-3-78)] is

TB = k'Bm<i (m 2
-

0)
'

fclsfc,
1000 g/kg

(7-5-17)

where k'B is known as the molal boiling-point constant; its value for water

is 0.521 deg kg/mole. Equations (7-5-14), (7-5-15), and (7-5-17) apply
of course only to ideal solutions of nonelectrolytes.

In general, these ideal limiting equations do not apply to concentrated

solutions of nonelectrolytes, and even if modification is introduced to take

into account the ionization of strong electrolytes [e.g., multiplication of

the right-hand member of (7-5-17) by ], interionic attraction results in

significant departure from ideal behavior at quite low ionic concentration.

If we have measured the extent of deviation from ideal dilute behavior by
some other experimental means, and have expressed the results in terms

of an activity coefficient for the solute, then in the same manner in which

we derived Eqs. (7-5-8) we may derive corresponding equations for the
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boiling-point elevation
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/a\ _ i r
\dxijp Xi 1 - x 2 L

RT2 Mi
Xi 1000 g/kg

(dT\ = RT*
1000 g/kg [

(7-5-186)

(7-5-18c)

The last of these equations, in particular, reduces in dilute solutions of

strong electrolytes to the approximate form

(7-5-19)
p

The factor multiplying the ideal molal boiling-point elevation: k'B in Eq.

(7-5-19) is the same as the factor entering Eq. (7-5-8c), except for the

0.0! 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O.IC

m2(mole/kg)

FIG. 7-22. Molal boiling-point elevations for aqueous solutions of various nonvolatile

solutes. [Data ofE t Plake, Z. physik. Chem., (A)172, 113-128 (1935), and of B. Saxton and
R. P. Smith, J. Am. Chem. Soc., 54, 2626-2636 (1932).]

difference in the temperatures at which the two equations are applied.

If we introduce the Debye-Hiickel limiting law [compare Eq. (7-5-8d)],

then it becomes evident that for electrolytes of the higher charge types,

one may expect significant deviation from ideal dilute behavior even at

concentrations of only 0.01m in water. In Fig. 7-22, boiling-point eleva-

tions for some extremely dilute aqueous solutions have been plotted,

mostly taken from an investigation by E. Plake. 1 One sees that at con-

1 E. Plake, Z. physik. Chem., (A) 172, 113-128 (1935).
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centrations below 0.01m, the curves for the electrolytes show the expected
trend. Had one confined one's attention, however, to concentrations

exceeding 0.05m, one might have been puzzled to find that CuS04 raises

the boiling point of water hardl^any more than the nonelectrolyte,

sucrose, at the same molal concentration; in fact, at higher concentrations

(0.3m), the molal boiling-point elevation for CuSO4 becomes actually less

than that for sucrose.

One could in principle develop Eqs. (7-5-18) in forms suitable for inte-

gration and the calculation of solute activity coefficients from boiling-

point elevation data, just as we shall presently do for the analogous

freezing-point equations. In practice, however, boiling points are quite

troublesome to measure precisely, and have not constituted an important
source of information concerning the thermodynamic properties of

solutions.

b. Osmotic Pressure. The discovery of osmosis is attributed to Abb6

Nollet, who in 1748 observed that if a sugar solution enclosed in a parch-
ment container is lowered into a vessel of pure water, the water tends to

diffuse through the parchment, building up a considerable pressure inside.

The cue to this remarkable behavior rests in the selective action of the

membrane, which permits water to transfuse freely, but not sugar.

Since the thermodynamic potential of the pure water, FKV, is higher than

the thermodynamic potential of the water originally in the solution, the

water tends to flow in the one direction until a sufficient hydrostatic pres-

sure has been built up to raise <i [in accordance with Eq. (7-1-24)] enough
to satisfy the equilibrium requirement

<i = ^KI) (7-5-20)

[the second of Eqs. (7-5-1)]. The osmotic pressure is defined as the excess

pressure that must be applied to the solution in order to maintain equilib-

rium with the pure solvent, separated from it by a semipermeable dia-

phragm impervious to the solute.

From this brief description, it is clear that the magnitude of the osmotic

pressure is a thermodynamic equilibrium property of the solution and

solvent, independent of the nature of the membrane and the mechanism
of transfusion of the solvent. This fact was pointed out by J. H. van't

Hoff, who gave the first theoretical analysis of the problem,
1
although its

general nature had previously been described by J. Willard Gibbs, before

any quantitative experimental data existed. The nature of the mem-
brane may well influence the rate of attainment of equilibrium, however,
and the mechanism of transfusion presents a number of problems that

* J. H. van't Hoff, Z. physik. Chem., 1, 481-508 (1887).
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have not yet received generally satisfactory answers. 1 Artificial semi-

permeable membranes based on certain colloidal inorganic precipitates

were first introduced by M. Traube in 1867, and the first reliable measure-

ments of osmotic pressure were mad6 by W. Pfeffer in 1877, using mem-
branes of Cu 2Fe(CN)6 prepared by precipitation within the pores of

porous clay cells. The measurement of osmotic pressure has been

brought to a high degree of refinement through the work of H. N. Morse
and J. C. W. Frazer and their students in this country, and of Lord

Berkeley and E. G. J. Hartley in England.
2

Let us represent by (<i) the thermodynamic potential of the solvent

in the solution when the solution is at the pressure P applied during the

measurements to the pure solvent (ordinarily the pressure of the atmos-

phere). If sufficient pressure P is now applied to the solution until fa

becomes equal to ACD, then according to Eq. (7-1-24),

(fa) + /^ fi& =
(^r,F-)i(i> (7-5-21)

The value of P P satisfying Eq. (7-5-21) becomes by hypothesis equal

to the osmotic pressure, TT, under the given conditions (with the pure sol-

vent at T and P) ;
in this equation, vi represents the partial molal volume

of the solvent corresponding to the given composition, to be expressed as

a function of P. Now, as an excellent approximation for most liquid

solutions under moderate pressures, we may treat v\ as sensibly inde-

pendent of pressure. Thus, in the case of water itself, the total compressi-

bility between and 1000 atm at room temperature is less than 5 per cent,

and in case we should have to deal with pressures exceeding several hun-

dred atmospheres, we could reduce the error resulting from the compressi-

bility of the liquid to negligible proportions by regarding v\ as representing

the average value over the pressure range in question, rather than the

ordinary value at 1 atm. Therefore we may reduce Eq. (7-5-21) to the

general form

7rVl = (Fr,po) 1(1)
-

(fa) (T const) (7-5-22)

Now, if we may assume that the equilibrium vapor phase of the solution

at the temperature T satisfies the ideal-gas law, then we may relate (fa)

to (FT,P)I(\) through the partial vapor pressure of the solvent, in the form

/ \ C PI f**
(fay = (*Vo) 1(1) + RT In

(
i
) + / Vi dp + / vi dp (T const)

\Pi/ JP9 JP

(7-5-23)

1 For discussion, see W. M. Clark,
"
Topics in Physical Chemistry," Chap. XI, The

Williams & Wilkins Company, Baltimore, 1948.
2 A review of this work has been given by J. C. W. Frazer in H. S. Taylor's

"A
Treatise on Physical Chemistry," 2d ed., Chap. VII, D. Van Nostrand Company,
Inc., New York, 1931.
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[compare Eq. (7-3-2), where the pressureP was taken to be 1 atm]. The

last two terms represent, respectively, the change in FKI> for the pure sol-

vent between the pressure P and its own vapor pressure p?, and the

change in <i between the vapor pressure of the solution p (which need not

necessarily be the same as pi if the solute happens to be volatile) and the

reference pressure P. When P is of order 1 atm, these two terms may
generally be ignored as insignificantly small. Then, introducing Eq.

(7-5-23) in (7-5-22),
7?T <n

* = LL in PI
(T const) (7-5-24)

Vl Pl
^ / V /

This equation, first derived by A. W. Porter,
1
provides an exact thermo-

dynamic connection, within the reasonably legitimate assumptions we
have noted, between the osmotic pressure and the lowering of the solvent's

partial vapor pressure. It involves the particular nature of the solute

and its concentration only through their influence on the value of v\\ in

sufficiently dilute solutions, in fact, we may replace v\ generally by VKD
[compare Eq. (7-3-24)], and in many cases, such as that of sucrose in

water, this approximation may be extended to high solute concentrations

with little error. Experimental data testing Eq. (7-5-24) are presented

in Table 7-7.

We may express In (pi/Pi) = In [1 (Api/pJ)] as a power series in

terms of (Api/p?), and thus put (7-5-24) in the form

In sufficiently dilute solutions, we need retain only the leading term of the

series, and may at the same time replace v by the approximation FKI> ;

thus

Kl(l) /'I

The error in this approximation has nothing to do with the ideality of the

solution, but may be estimated from a comparison of the first and second

terms of the series in (7-5-25) ; e.g., the error is within 1 per cent if Api/pJ
does not exceed 0.02. Equation (7-5-26) shows that in sufficiently dilute

solution the osmotic pressure is directly proportional to the vapor-pressure

depression of the solvent. The relatively small magnitude of FKO
results in a huge magnification factor for TT as compared with (Api/p?) ;

thus, the factor RT/lfiw for water at 25C has the value 1354.0 atm, and
a Im sucrose solution has an osmotic pressure exceeding 25 atm.

1 A. W. Porter, Proc. Roy. Soc. (London), (A)79, 519-528 (1907).
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TABL.E 7-7. OSMOTIC-PRESSURE DATA
Ca 2Pe(CN)e in H 2O at 0C*

Sucrose in H 2O at 30Ct

* Osmotic pressures and vapor pressures by the Earl of Berkeley, E. G. J. Hartley, and C. V. Burton,

Trans. Roy. Soc. (London), (A)209, 177-203, 319-336 (1909). Values of vi were computed from density

measurements by Berkeley, Hartley, arid Burton, given in the "International Critical Tables," Vol.

Ill, p. 74, 1928.

t Osmotic pressures taken from smoothed data of J. C. W. Frazer and R. T. Myrick, J. Am. Chem.

Soc., 38, 1907-1922 (1916), and of P. Lotz and J. C. W. Frazer, ibid., 48, 2501-2507 (1921). Vapor

pressures from work of Berkeley, Hartley, and Burton, given in the "International Critical Tables,"

Vol. Ill, p. 293, 1928. The value of yi is constant at 18.094 ml/mole, the solution volume being prac-

tically additive.

Now, for an ideal dilute solution, satisfying Raoult's law (7-5-5), Eq.

(7-5-26) may be put in the form

2 (*,->0) (7-5-27)

Equation (7-5-27) relates the osmotic pressure to the solute concentra-

tion, for all concentrations at which the solvent satisfies Raoult's law.

It is therefore generally valid for sufficiently dilute solutions of non-

electrolytes. As an approximation in dilute solution, we may replace

#2 n*/(ni + ^2) by n^/n^ with the result

RT n2RT
(7-5-28)
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where Fi represents the volume of pure solvent containing n2 moles of

solute. 1 Or finally, since at the lowest solute concentrations the volume

of the solvent will not differ significantly from the volume of the solution

(C2 _> ) (7-5-29)

Equation (7-5-29) is known as van't HofTs osmotic-pressure equation.
2

Because of the similarity in form between Eq. (7-5-29) and the ideal-gas

equation of state, van't Hoff was led to draw an analogy between the

behavior of the osmotic pressure of a solute in liquid solution and the

behavior of the pressure of a gas; in fact, he based his entire theory of solu-

tions on this analogy, and W. Nernst later based his theory of the emfs of

galvanic cells on similar reasoning. We see, however, that Eq, (7-5-29)

is merely the limiting form of the more general ideal dilute-solution equa-
tion (7-5-27), and that the problem of deviations from Eqs. (7-5-29) or

(7-5-27) at high solute concentrations is but another aspect of the general

problem of deviations from Raoult's law. In other words, osmotic-

pressure data give us no new kind of information not readily obtainable

from other thermodynamic sources (except possibly the effect of high

pressures on Vi) ; Eq. (7-5-29) is logically implied by Raoult's vapor-pres-

sure law (7-3-14) (with appropriate simplifying assumptions valid in

dilute solution), which in the thermodynamic form (7-3-15) constitutes a

much more general empirical starting point for the construction of a

theory of solutions.

We could of course use osmotic-pressure data directly to measure the

thermodynamic properties of the solution, as a substitute for or as a

supplement to other methods of investigation. Thus, Eq. (7-5-22) meas-

ures directly the thermodynamic potential (<i) of the solvent in the

solution, at T and P, relatively to the molal free energy (Fr,p*)i(i) of the

pure solvent; in terms of the solvent's activity function,

- In a! = (at T and P) (7-5-30)

From measurements of In a\ thus obtained for various solute concentra-

tions, we could by integrating the Gibbs-Duhem equation in one of the

forms, (7-3-73), (7-3-90), or (7-4-27), determine the activity coefficient of

the solute. The method is favored particularly at low solute concentra-

tions by the fact that the osmotic pressure is comparatively large in

1 This modification of van't Hoff 's equation (7-5-29) was proposed originally by
H. N. Morse and J. C. W. Frazer, J. Am. Chem. Soc., 34, 1-99 (1905).

2 J. H. van't Hoff, loc. cit.
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magnitude; thus, ?r for a 0.005m KC1 solution in water at 25C is about

0.25 atm. 1
Unfortunately, the technique of high-precision osmotic-

pressure measurements is rather difficult, and relatively few investigators

have used it for this purpose in ordinary thermodynamic investigation.

It has served a very useful purpose, however, in the study of high poly-

mers, both because of the ease with which semipermeable membranes may
be obtained for this class of solutes and because of the necessity of working
at low solute mole fractions. 2

For solutions of strong electrolytes, we may show by introducing

(7-5-30) in the Gibbs-Duhem equation in the form (7-4-26) that in general

"
(7

"5"31)

subject to the assumption only that Vi is practically independent of pres-

sure. In dilute solution, we may express this relationship in the approxi-

mate form

TT = fCtRT [ 1 + f

m2

m2 (^-^] dm2] (7-5-32)

from which, given the theoretical or empirical limiting form of the

In y vs. mz relationship as m2 > 0, we may compute the extent of devia-

tion from van't Hoff's ideal equation (7-5-29) in the modified form for

strong electrolytes

(<72 -0) (7-5-33)

From the discussion leading to Eq. (7-5-8d), it is evident that deviation

from (7-5-33) will be appreciable for electrolytes of the higher charge

types, even at solute concentrations as low as 0.01 mole/liter in water.

c. Freezing-point Depression. When the solution begins to freeze, pro-

vided that the solid phase consists of the pure crystalline solvent, and not a

solid solution or compound with the solute, then at equilibrium; the third

of conditions (7-5-1) must be satisfied,

0i = FKO (7-5-34)

1 J. C. W. Frazer and W. A. Patrick, Z. phy*ik. Chem., (A)130, 691-698 (1927);

F. T. Martin and L. H. Schultz, /. Phys. Chem., 36, 638-648 (1931).
2 For detailed discussion of the theory of solutions of high polymers, see, for example,

II. Mark, "Physical Chemistry of High Polymeric Systems," Interscience Publishers,

Inc., New York, 1940; C. E. H. Bawn, "The Chemistry of High Polymers," Inter-

science Publishers, Inc., New York, 1948; A. R. Miller, "The Theory of Solutions of

High Polymers," Oxford University Press, New York, 1948. For an example of

osmotic-pressure measurements applied to a high polymeric system, see the paper by
P. J. Flory to which reference is made in Prob. 7-31.
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The relative volatility of the solute has no effect on this equilibrium condi-

tion, and thus the following freezing-point laws are valid for volatile as

well as for nonvolatile solutes. The theory of freezing-point equilibrium
is entirely similar to the theory of solubility equilibrium for a solid solute,

except for the difference in point of view. For a sufficiently concentrated

solution, in many cases, a small shift in the composition of the liquid

phase may determine whether the crystalline solvent or the crystalline

solute separates out first on cooling. In the former situation, we should

say that the solution has begun to freeze, whereas in the latter, we should

say that the solution has become saturated with respect to the solute, but

this is merely a manner of speaking, which does not detract from the

essential similarity of the two processes; in either situation, we should

have a state of equilibrium between the liquid solution and one of its pure

components in the crystalline state. We must not overlook the possi-

bility that solid solutions or compounds of the components may separate

out, but in such cases, the theory to be developed in this section does not

apply.

Now, at the normal freezing point of the pure solvent, T%, fa is invaria-

bly smaller (in the algebraic sense) than /\(C)
= Aco, on account of the

presence of the dissolved solute. Since <t>i at given composition increases

(algebraically) with decreasing T in proportion to the value of r)i [Eq.

(7-l-26a)], whereas JPi(c) increases with decreasing T in proportion to the

value of 5i(c), and since rji is necessarily larger than 5i( ) [their difference,

fli #KC), representing the partial molal latent heat of fusion, (Xc*)i, for

the crystalline solvent into the solution], it follows that condition (7-5-34)

may be maintained if the temperature of the two phases is lowered suffi-

ciently far below the normal freezing point of the pure solvent. In other

words, the freezing point of the solution will be that temperature at which

$i just overtakes Fi(C), the pressure generally being held constant [i.e., at

1 atm, though neither fa nor FI (C) depends sensitively on the pressure].

The freezing point is always defined as the temperature at which crystal-

line solvent would first begin to appear on cooling, for if the solvent con-

tinued to freeze out, the composition of the liquid solution remaining
would undergo change, and with it, the instantaneous equilibrium tem-

perature would continue to fall. 1

Let us express the equilibrium condition (7-5-34) in the more convenient

form

fa __ ft l(e)

T T
1 In precise freezing-point determinations, particularly with water as solvent, a

sample of the solution is generally withdrawn for analysis after thermal equilibrium
has been established with excess of the solid phase.
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which is permissible since the temperatures of the two phases are neces-

sarily equal in all equilibrium states of the system, and let us consider the

effect of a small change in composition

Introducing (6-12) and (7-l-26a),

- ** ~JF1(C) dT

dT (p const) (7-5-35)

In the case of a binary solution, for example, we may put this exact

thermodynamic relationship in the form

dT\ _ _ Z*
[d(i/D]

*~ WiL fci Jr.,

Thermodynamics provides no clue to the relationship between <i and #1,

but if we may assume that the equilibrium vapor phase of the solution at

the freezing point of the pure solvent satisfies the ideal-gas law (an excel-

lent approximation in most cases, because the vapor pressure is generally

so low), then we may establish a direct relationship between the freezing-

point depression and the lowering of the partial vapor pressure of the sol-

vent at the pure solvent's normal freezing point, !F; for, according to Eq.

(7-3-3) [see also (7-5-23)],

R (dln
Pl\

\ dx* )T

Therefore upon substitution in (7-5-36),

(!) -J^toe) (7-5-37)
\dxtjp (Xci)i\ dx2 /T

or integrating from x% = 0, where the pure solvent is at its own freezing

point, Ty, and has vapor pressure pj,

TF-ATr

The term on the left refers to constant pressure (i.e., 1 atm), with (Xcj)i

equal to the instantaneous partial molal heat of fusion associated with the

particular liquid composition having the freezing point J
7

,
but the term on
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the right refers to the constant temperature, TJ. The only way in which

the properties of the particular solute or its concentration influence the

relationship (7-5-38) is through the term (\ci)i, i.e., through T;I. In suffi-

ciently dilute solutions, the value of (\ci)i clearly approaches (Lcj)i, the

molal latent heat of fusion of the pure solvent, but even in fairly concen-

trated solutions, in many cases, the difference between rji and HK\) may
remain quite small.

Now, for an ideal solution, in which the solvent empirically satisfies

Raoult's law [Eq. (7-3-15)], and by implication, therefore, Eq. (7-3-20) as

well, Eq. (7-5-36) reduces to

fdT\ RT* 1 RT* 1 ,-, , , N
I i = = = (ideal soln)

^ \dX2/p (Lc{)iXi (Lci)i 1 ~ #2

which assumes the integral form

= In (1
- z2) (ideal soln) (7-5-40)fJTi

The latent heat of fusion varies with temperature according to (3-48),

(7-5-41)

but to a first order of approximation, in solutions sufficiently dilute so

that ATV is not large, we may neglect this variation, and regard (Lci)i as

approximately constant, equal to its value at the freezing point of the

pure solvent; thus, (7-5-40) assumes the limiting form

Ina-^) (ideal soln) (7-$-42)

[compare Eq. (7-3-36)]. We could readily derive a second-order approxi-
mation to (Lci)i in Eq. (7-5-40) by assuming a linear dependence on T
[introducing constant mean heat-capacity values in (7-5-41)], but in

general, Raoult's law does not apply accurately at solute concentrations

so high that this factor need be given serious consideration in applications

of (7-5-42). In fact, in sufficiently dilute ideal solutions, we may neglect

#2 altogether in the denominator of the right-hand member of Eq.

(7-5-39), in comparison with 1, and thus obtain the integral equation in

the approximate limiting form

2

x, (x2 -> 0) (7-5-43)

This well-known freezing-point law is therefore a thermodynamic implica-
tion of the solvent's conforming to Raoult's empirical dilute-solution law,
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in the general form (7-3-15). The factor

(Ltd) i

is a property of the pure solvent, known as its mole-fraction freezing-point

constant; thus, its value for water is 103.24 deg. The ideal limiting law

(7-5-43) is also commonly expressed in terms of the molality of the solute,

in the form
= k'Fm2

_ (w2 -> 0) (7-5-45)

where the factor k'F [see Eq. (7-3-78)] is known as the molal freezing-point

constant; its value for water is 1.860 deg kg/mole.

Equation (7-5-45) has of course been used extensively for the measure-

ment of molecular weights of substances dissolved in appropriate solvents.

Since, however, the freezing-point depression can be measured with

extremely high precision,
1 much higher than is ordinarily necessary for

molecular weight determinations, the freezing-point method has con-

stituted an important source of experimental information concerning the

precise thermodynamic properties of solutions. The theory, and prac-

tical graphical methods of computation, have been extensively developed

by Lewis and Randall, along the following lines. 2 The fundamental

freezing-point equilibrium relation (7-5-35) may be expressed in terms of

the solvent's activity function a\ in the form

(7-5-47)

By integrating down from the freezing point of the pure solvent, TFJ where

a\ = 1 (xi
=

1), we could correlate the freezing point TF = TF A2V

corresponding to each composition with an activity value ai at the con-

stant temperature T# [we could obtain the same result by substituting

0,1
= pi/Pi in Eq. (7-5-38)]. By introducing these solvent activity values

in the Gibbs-Duhem equation and integrating, we could then compute

activity or activity-coefficient values for the solute. A more sensitive

method, however, is to compute the activity coefficient of the solute

directly by application of the Gibbs-Duhem relation to (7-5-47) ;
for this

purpose, it is convenient at temperatures near the freezing point of the

pure solvent to replace the variable part of T by the variable = Tp T,

1 For a description of the experimental technique, see G. Scatchard, P. T. Jones, and

S. S. Prentiss, /. Am. Chem. Soc., 64, 2676-2690 (1932).
2 Lewis and Randall, op. cit., Chaps. XXIII and XXVII.
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where represents the freezing-point depression. Thus, introducing the

molal activity coefficient T for a nonelectrolytic solute by means of Eq.

(7-3-89),

Hence

MI

Let us first apply this equation to small values of ra2 and 8 (though not

necessarily so small that the solvent satisfies Raoult's law), assuming that

(Xcj)i may be replaced by (Lcz)i, and regarding the entire coefficient of

(d0/w2) in the first term on the right of Eq. (7-5-48) as sensibly constant

for small changes of temperature; the value of this coefficient is then equal
to k'F ,

defined by Eq. (7-5-46),

d In y'2 = -
(
dw2 -

77 d8] (0 -> Q)
7712 \ "*F /

Integrating by parts,

/m*

/
g

\

\
"~

mzk'J j_ (7-5-50)

Equation (7-5-50) is quite analogous in form to Eq. (7-3-90) ;
the integral,

whose integrand would vanish if the solution satisfied the ideal limiting
law (7-5-45), may be easily evaluated by graphical means from sufficiently

precise freezing-point data.

Table 7-8 presents freezing-point data for dilute solutions of n-propanol
in water, taken from work of T. J. Webb and C. H. Lindsley.

1 One sees

that even at a concentration as low as 0.01m, there is in this case a small

but detectable deviation from ideal behavior as represented by Eq.

(7-5-45). In Fig. 7-23, the quantity ( 1 - ^~) has been plotted

against w2 ,
and from the smoothed values represented by the curve,

values of f 1
p- J

/ m2 have been plotted against w2 in Fig. 7-24.

Both curves have been plotted on a large scale, and from Fig. 7-24, one

may readily estimate the value of the integral appearing in Eq. (7-5-50)

by graphical integration. The lower part of Table 7-8 shows the compu-

1 T. J. Webb and C. H. Lindsley, /. Am. Chem. /Sac., 56, 874-878 (1934).
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tation of y'2 for n-propanol in water at 0C at various molalities, according
to Eq. (7-5-50).

We may easily demonstrate that the companion equation to (7-5-50)

in the case of an electrolytic solute has the form

In 7 = -
(l

-

[compare Eq. (7-4-27)].

/""YiMl V
jsssy

-
Jo

\

dm*
(7-5-51)
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m2(mOIeAg)

FIG. 7-23. Freezing-point-depression data for solutions of n-propanol in water: plot of

V
1

jp) vs * m>z ' ^Daia * T ' J ' Webb and C' H ' LindsleV' J * Am' Chem - Soc-> 56 874-

878 (1934).]
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Fia. 7-24. Freezing-point-depression function : I 1 1 / m2 plotted against mz for
\ mdcp / 1

solutions of n-propanol in water. (From smoothed data of Fig. 7-23.)

We may take approximate account of the variation with temperature

of the coefficient of (dO/m2) in Eq. (7-5-48) for comparatively large values

of 6 by ignoring at the outset the heat of dilution, and assuming that
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(Xd)i may be replaced by (Ld)i', this is generally a fair approximation; in

the case of 1m H2S04, for example, where according to Table 4-11 (at

25C), in finjoo)
~ 5 cal/mole, the error in replacing (Xcj)i by

(Lei)i
= 1436.3 cal/mole (at 0C) would be only of order 0.35 per cent,

but in many other cases, the error would be smaller, even at higher solute

concentrations. Now, (Ld)i for the pure solvent varies with temperature

according to the Kirchhoffformula, (7-5-41). Let us suppose that we may
neglect the comparatively small variation of (ACP)i = (CP)ia) (Cp)i(o)
itself with temperature, over the freezing-point range in which we are

interested; then, as a good approximation,

(Lc,)!
= (L,)i

-
(A0,)i (7-5-52)

where (Z&)i represents the molal latent heat of fusion at the normal freez-

ing point of the pure solvent. Upon substitution in Eq. (7-5-48),

/1000g/kg\ d6 dm,~" IUT2
R(TF -ey \

We may expand the coeflBcient of (d0/m2) in the form

(L,)i
- (ACP)i0 1000 g/kg (Z&)i 1000 g/kg

2g so2 i

^ (^T2 ." J

neglecting terms in the series of order higher than that of 0/T%. Thus

If we compare Eq. (7-5-54) with Eq. (7-5-49), we see that the last term on

the right of (7-5-54) amounts to a correction added to the right of (7-5-49),

in which no account was taken of the variation of (Lci)i/T
2 with tempera-

ture. Thus, integrating the first term on the right of (7-5-54) just as

before, we obtain
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TABLE 7-8. FBBEZING-POINT-DEPBESBION DATA FOB W-PBOPANOL m HZO*

* Freezing-point data of T. J. Webb and C. II. Lindsley, J. Am. Chem. Soc., 56, 874-878 (1934).

f (Let)i / o

The corresponding equation for a strong electrolyte is:

A e \ I V
^--V-fSZj-J*

(7-5-55)v ;

The coefficient of the integral appearing in the last terms of Eqs. (7-5-55)

and (7-5-56) is a property of the pure solvent; for water, it has the value
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+0.001 12/deg. The entire correction term is small except at relatively

high solute concentrations, and the integral itself may be evaluated

easily by means of graphical integration. Lewis and Randall have

developed further empirical methods for corrections when it becomes

necessary to take account of the deviation of (Xcz)i from (Lci)i at high

solute concentrations.

In the case of an electrolytic solute, the extrapolation to zero concen-

tration called for by the integral appearing in Eq. (7-5-51) [the second

term on the right of Eq. (7-5-56)] may be carried out precisely by intro-

<*

0.001 0.01 0.1

m2 ( Logarithmic scale)

FIG. 7-25. Freezing-point-depression data for solutions of KC1 in water: plot of

j = ( \ --
J
vs. log m2. [Data oJG. Scatchard and S. S. Prentiss, J. Am. Chem. Soc. t

55, 4355-4362 (1933).]

duction of the Debye-Huckel limiting law as approximation function.

In order to simplify the notation, let

Then Eq. (7-5-56) assumes the form

ta >*
- -i -r ** +

(
-sr (i

-

In Fig. 7-25, j has been plotted against log m2 for aqueous KC1 solutions,

from work of G. Scatchard and S. S. Prentiss. 1 It is evident that even at

concentrations below 0.01m, there is significant deviation from ideal

strong electrolyte behavior, which would call for j = 0. One will note

that the area under the curve in Fig. 7-25 between any two values of ma

1 O. Scatchard and S. 8. Prentiss, J. Am. Chem. Soc., 65, 4355-4362 (1933).
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/Ja" (j/>2)dni2, so that onemay use this figure for graphi-
na'

cally computing the contribution to the second term on the right of Eq.

(7-5-58) from some low concentration, such as w2 = 0.1 mole/kg, up to

the higher concentrations; the figure is not suitable, however, for extra-

polation to w2
=

0, since j remains significantly different from even at

the lowest solute concentrations for which experimental measurements

are feasible. Now, if we substitute the general thermodynamic relation

(7-5-47) in the Gibbs-Duhem equation (7-4-26) for electrolytes, we may
readily show that

/#r\ _(d0\ __ RT* M
[ (dl*y

\ 1

\dmjp

-
\dmjp

~
(Xcz)! lOOOg/kgl/

+ "H dm, )T ,P \
(

[compare Eqs. (7-5-8c) and (7-5-19)]. This equation reduces in dilute

solution, where we may assume that (Xcz)i
= (Lci)i 9

and may neglect the

variation of (Lci)i with temperature, to

If we introduce the Debye-Hiickel limiting law (7-4-28) in the form

- In 7 = 2.303A

where A f

equals z+z^A, multiplied by the numerical fact(^appropriate to

the particular type of electrolyte for converting \/V to \/m,2 [see (7-4-3 la) ;

the factors given there should be multiplied by 0.9615 for correction to

H 2O at 0C], then

r de\ .
?/ A 2.303 AfInn ( =f(l --^A'2

T 6 >T (\ 2 '303 Af Uhm =
ffc; 1 1 --s~- A'm

mr-+Q m2 \ O

Integrating,

or, expressed in terms of j [Eq. (7-5-57)],

9 **fY*

lim j = ^^ A'mP (7-5-61)
W12->0

Let us introduce the variable

9
i
= j

- -~ A'm^ (7-5-62)
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Then Eq. (7-5-58) may be put in the form

?' 9 fm* x r f e

- *** - 2m +
l
A 'm>* + A sak*- - a / (1

-

(7-5-63)

where C represents the constant multiplying the integral in the last mem-
ber of (7-5-58) ;

for example, for a 1 : 1 electrolyte in aqueous solution,

- "* >*
- + a3263""K

- 0.00049 (1
-

j)d$ (7-5-63a)

u
J *

where

dj
= j

- 0.3757m2
^

We are not assuming that the electrolyte actually satisfies the Debye-
Huckel approximation at any of the finite concentrations for which

experimental data can be obtained; Eq. (7-5-63) remains in fact an exact

formula, within the assumptions involved in Eqs. (7-5-56) or (7-5-58) them-

selves; but we have replaced the integral appearing in the second member
of Eq. (7-5-58) by an integral involving the deviation measure 5y, which

if the electrolyte ultimately conforms to the Debye-Hiickel limiting law,

should converge more rapidly as 7712 > than the original integral involv-

ing j itself. In Table 7-9, smoothed values of j, taken from the data of

Scatchard and Prentiss shown in Fig. 7-25, are presented for dilute

aqueous KC1 solutions, together with 5
; values calculated according to

Eq. (7-5-62) j

1 in Fig. 7-26, 5y/2.303w2 has been plotted against ^2 ,
and

since the scale of the plot is comparatively large, one has little difficulty

in estimating by graphical integration the value of
j

*

(Sy/2.303w2)dw2,

recorded in the sixth column of Table 7-9. At concentrations below

0.05m, the value of the last term in Eq. (7-5-63) or Eq. (7-5-63a) is alto-

gether negligible. The lower part of Table 7-9 contains j values and

log 7 values for KC1 at concentrations from 0.1 to 1.0m, as given by
Scatchard and Prentiss. The results may be compared with those of the

vapor-pressure measurements (at 25C) recorded in Table 7-5.

1 Scatchard and Prentiss, ibid. Their
,; values are reported in terms of older values

of the natural constants, for example, k'F = 1.858 deg kg/mole. We have retained

their older value of A 1 = 0.4870 in the computations entering Table 7-9. Scatchard

and Prentiss used a more elaborate extrapolation function than (7-5-62), based on the

more general form of the Debye-Hlickel limiting law, (7-4-32), with an added empiri-
cal term linear in ju. Equations (7-5-62) and (7-5-63) serve adequately, however, to

illustrate the method.
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FIG. 7-26. Freezing-point-depression function S//2.303?W2 plotted against mz for dilute

aqueous solutions of KC1. (Data of Table 7-9.)

TABLE 7-9. FREEZING-POINT DATA FOR AQUEOUS KC1 SOLUTIONS*

Dilute Solutions

Concentrated Solutions

* Data of G. Scatchard and S. S. Prentiss, J. Am. Chem. Soc. t 50, 4355-4362 (1933).
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In order to correlate thermodynamic data obtained in this way at the

freezing point of the solvent with corresponding data obtained by other

methods at higher temperatures, one must have information concerning
the heat of solution. The equation for the change of In 7 with tempera-
ture for given composition has been discussed previously [Eq. (7-4-41)].

7-6. Heterogeneous Equilibrium in General. We have seen that the

variance of a homogeneous phase or solution containing C components is

by nature C + 1. Thus, the variance of a homogeneous substance of

fixed composition is 2, and for each dimension in which the composition
can be independently and continuously varied, the variance increases

by 1. This means, for example, that the intensive properties of a

CO 2-N2 gas mixture are completely fixed and reproducible at a given

temperature, pressure, and composition (as specified for example by
either mole fraction, t/co 2 or J/N Z) J any three of the independently variable

intensive properties of the system serve in this case to define its state; if

there were given, for example, the temperature, pressure, and density of

the gas, and one knew that it consisted of the two components, CO2 and

N 2 ,
then the composition and all the other intensive properties would be

implied, so that in this case, one could actually use the density at the

given temperature and pressure to measure the composition. The exten-

sive properties, such as the total volume, the total heat capacity, etc.,

depend also on the total mass, but as we have previously noted, when one

has specified the values of as many of the independently variable intensive

properties as correspond to the variance, (7+1, then each extensive

property is fixed in relation to the others, in the sense that all are then in

direct proportion to the total mass. If one has a homogeneous mixture

containing three substances of fixed composition, with respect to each of

which the composition may be continuously varied (perhaps within cer-

tain solubility limits), then it is a fact of experience that it takes four of

the independently variable properties of the system to determine its

state. For example, an aqueous solution containing 5 per cent by weight
of NaCl and 12 per cent by weight of KC1 would have a perfectly definite

density, viscosity, specific heat, etc., at a specified temperature and pres-

sure, but the properties at fixed temperature and pressure for a specified

percentage of NaCl could still vary with the KC1 concentration, and for

fixed composition, they would depend on temperature and pressure (just

as for a pure chemical substance, whose composition is inherently fixed).

We use the term number of components in the sense of Sees. 7-1 and 3-1.

In a mixture of NO2 and N2O4 at ordinary temperatures and pressures, for

example, since one cannot vary independently the amounts of N02 and
of N 2C>4 present, the system has but one component, in agreement with

its observed variance of 2; in doubtful cases, in fact, one might define the
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correct number of components of a given homogeneous phase by v 1,

where v represents its observed variance. We are furthermore excluding

from consideration effects such as that of a strong magnetic or electric

field, or of large variations in altitude, or of surfaces bounding the phase,

etc., which may also influence the variance in special circumstances.

Now, if the C components are distributed among P different homogene-
ous phases, then in general the total variance of all P independent phases
is represented by P(C +1). If the system of P phases is in a state of

equilibrium, however, then the equilibrium conditions impose certain

restrictions on the variance. One of these sets of restrictions is repre-

sented by the condition for thermal stability

T' = T" = T" r = = TM (7-6-1)

If the temperatures of the phases were not equal, they could not be at

equilibrium with each other; this condition is equivalent to our original

concept of what is meant by temperature equality. A second independ-
ent set of restrictions is represented by the condition for mechanical

stability

p' = p
" = p' = = p (p)

(7-6-2)

In the absence of mechanical barriers that would prevent free access to

all parts of the system by any of the phases, the pressure has to be uniform

throughout; otherwise the pressure differences would tend to set up rela-

tive motions among the phases.
1

Finally, there are C conditions (7-1-20) governing the distribution of

the different independent components among the phases

1 Variations due to hydrostatic pressure, such as one may encounter in a fluid phase
at different heights, do not disturb the argument, because while the equilibrium

pressure on some phase that may be at the bottom of the fluid column would be

greater than the equilibrium pressure on some phase that may be near the top, there

would still be an explicit relation between the two pressures, determined solely by the

density of the fluid and the difference in height; the existence of such a relation,

independent of conditions (7-6-1) and (7-6-3) is all that is required for the argument
that follows. The thermodynamic potentials in the fluid phase would also vary
with height, but in such a way that at equilibrium fa + ghM% would be constant

for each component throughout the column. Therefore, while Eqs. (7-6-3) would

not be quite true in this case, nevertheless at equilibrium, the thermodynamic poten-
tial of a given component in some phase at height h would differ from the thermo-

dynamic potential of the same component in some other phase at height ho only by
the amount g(h h^Mi, independently of temperature and pressure; the existence of

such a relation is all that is required of Eqs. (7-6-3) in the argument that follows.

See J. Willard Gibbs, "Collected Works," Vol. I, pp. 1440"., Longmans, Green & Co.,

Inc., New York, 1928.
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/// = = m
(7-6-3)

f itr ifj

<f>2
== 02 ~ 92

0C == #C ==

because each component otherwise would tend to move from any phase
in which its thermodynamic potential were higher to another phase in

which its thermodynamic potential were lower at the same temperature

and pressure.

The restrictions (7-6-1), (7-6-2), and (7-6-3) amount to (P - 1) (C + 2)

independent relations at equilibrium among the P(C + 1) otherwise inde-

pendent variables that determine the states of all P phases; thus, instead

of C different temperatures, there is but one common temperature

throughout the system when the different phases are in equilibrium with

each other; likewise, there is but one common pressure, and but one com-

mon value of the thermodynamic potential of component 1, one common
value of the thermodynamic potential of component 2, . . .

,
and one

common value of the thermodynamic potential of component C. There-

fore the net variance in the equilibrium conditions for a particular number
of components, C, and a particular number of phases, P, is

v = C - P + 2 (7-6-4)

Relation (7-6-4) is the famous phase rule of J. Willard Gibbs. It implies

restrictions of a quite general nature on the number of different phases
that can coexist under externally imposed conditions of various sorts;

otherwise expressed, it implies general restrictions on the number of inde-

pendently variable properties of a system consisting of several different

phases at equilibrium.

The applications of the phase rule are so extensive that many excellent

treatises have been written, solely devoted to work in this field.
1 Its

1 The significance of the phase rule was first appreciated, following Gibbs's original

deduction, by J. H. van't Hoff
,
who used it as a classifying principle hi his great work

on the analysis of the Stassfurt salt deposits, "Zur Bildung der ozeanischen Salzablage-

rungen," Friedrich Vieweg & Sohn, Brunswick, 1905-1909. At van't HofPs sugges-

tion, it was used by B. Roozeboom in experimental studies summarized in his monu-
mental treatise, "Die Heterogenen Gleichgewichte," Friedrich Vieweg & Sohn,

Brunswick, 1901-1904. Among recent works, we may mention W. C. Blasdale,

"Equilibria in Saturated Salt Solutions," Reinhold Publishing Corporation, New
York, 1927; S. T. Bowden, "Phase Rule and Phase Reactions," The Macmillan

Company, New York, 1938; A. Findlay, "The Phase Rule and Its Applications,"
8th ed., Longmans, Green & Co., Inc., New York, 1939; F. F. Purdon and V. W.
Slater, "Aqueous Solution and the Phase Diagram," Edward Arnold & Co,, London,
1946. The use of the phase rule is implicit, however, in many other works dealing
with phase transitions at high pressures, distillation, metallography, solubility, etc.
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main value has been as a classifying principle. For example, it makes

clear the essential similarity between the behavior on boiling and the

behavior on freezing of such a simple system as a solution of NaCl in

water. When this solution is boiled at constant pressure, the two-compo-
nent system, whose variance in general is equal to (4 P), has a variance

of 1 (P = 2, with imposition of the additional condition of constant pres-

sure) ;
to each composition, there corresponds a particular boiling point,

the boiling point rising as the water boils off. But when the solution has

become so concentrated that a third phase, solid NaCl, begins to appear,
then the system becomes invariant; the saturated NaCl solution has a

constant boiling point, just like pure water, at the given pressure, and it

continues to boil without further change in its composition (i.e., the water

boils off and the NaCl crystallizes out at such relative rates as to leave the

liquid composition unchanged until the liquid has all boiled away). On
the other hand, when the solution begins to freeze, we again have two

phases at constant pressure,
1 and to each composition, there corresponds

a particular freezing point, which falls as the water freezes out. Again,
when the solution has become so concentrated that a third phase, solid

NaCl, appears, the system becomes invariant, and the saturated NaCl
solution has a constant freezing point, just like pure water. In this case,

the ice and the NaCl then continue to crystallize out together in the

characteristic form known as the eutectic mixture, in the same proportions
as in the equilibrium liquid solution, until the liquid has all disappeared;
the eutectic composition is of course generally unrelated to the composi-
tion of the saturated solution at the boiling point. As another example,
if one evaporates at constant temperature a solution of NaNO 3 and KC1
in water, then this three-component two-phase system (consisting of

liquid and vapor phases) under the restriction of constant temperature
has a variance of 2; one may have within certain limits any concentration

of NaNO 3 and any concentration of KC1, the vapor pressure then being
determined by the values of these two independent variables. When
through evaporation of the water, the solution has become so concen-

trated that some one of the four possible salts, NaNOs, KC1, KNOs, or

NaCl, begins to crystallize out (the particular one depending on the

original concentrations and relative solubilities), the concentration of the

liquid may still continue to undergo change with continued evaporation
of the water. But when the solution has become so further concentrated

that a second solid phase begins to appear (again, regardless of which

particular one it happens to be, as determined by the original composi-
1 If one counts the atmosphere as a third phase in this case, then one must also

count air as a third component, leaving the variance unchanged except in so far as air

dissolved in the water affects its state slightly.
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tion), then the system becomes invariant, behaving like the saturated

NaCl solution in equilibrium with the one solid phase at the boiling point;

it will have a unique vapor pressure, and further loss of water by evapora-
tion from the liquid phase can take place only along with deposition of the

two crystalline phases in such relative proportions as to leave the liquid

composition unchanged until one of the phases (the liquid solution itself

in this case) has disappeared. The value of such a classifying principle

in the study of the variety of reactions that may take place during the

crystallization of complex salt solutions is manifest.

The phase rule is used directly also in the analysis of experimental

phase equilibrium data. Thus, a common method of determining the

nature of alloys, minerals, and other solid mixtures of various kinds con-

sists of so-called thermal analysis; molten samples of various compositions
are allowed to cool more or less uniformly at constant (atmospheric)

pressure, and the temperature followed as a function of time; the appear-
ance of each new phase is indicated by a temporary decrease in the slope

of the cooling curve, and when in particular a sufficient number of phases
has appeared to cancel the variance, the temperature then halts until

some one of the phases disappears. By correlating the temperatures at

which each new phase first puts in its appearance, for various values of

the original composition, one may put together the phase diagram for the

system, and in the simpler cases, even infer the nature and composition
of the various solid phases, without further chemical analysis. A similar

technique is used in high-pressure analysis, where the sample is subjected to

compression at various constant temperatures, and the volume noted for

successive values of the pressure; at each invariant state, there isa halt in

the p vs. V curve, the volume change at such values of the pressure corre-

sponding evidently to phase transitions. In this way, for example, the

various phases of solid water at high pressures were discovered, and also

the effects of high pressures on the melting points and transitions points

of many other solid substances. 1

For our present purpose, let us discuss briefly one special case of

heterogeneous equilibrium, that of the distribution of a third component
between two slightly miscible liquids, e.g., I 2 between 082 and H 2O. For

such a three-component two-phase system, the variance in general is 3,

but if the temperature and pressure are held constant, then the variance

becomes 1. This means that at constant temperature and pressure, the

1
See, for example, G. Tammann,

"
States of Aggregation," English translation by

R. F. Mehl, D. Van Nostrand Company, Inc., New York, 1925; E. Cohen, "Physico-
chemical Metamorphosis and Problems in Piezochemistry," McGraw-Hill Book

Company, Inc., New York, 1926; P. W. Bridgman, "The Physics of High Pressure,"
The Macmillan Company, New York, 1931.
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concentration of the third component (the
"
solute") is independently

variable in but one of the two liquid phases, the equilibrium concentration

in the other phase being determined by the concentration in the first

phase. The quantity m2(4)/^2(B), or C2(A)/C
r

2(.B) (these quantities having
different though related numerical values), is known as the distribution

coefficient of the solute, component 2, between the solvents A and B.

From what has just been stated, the distribution coefficient at given pres-

sure will be a function of the temperature, and of either w2(A> or ra2(*),

whichever one chooses to regard as independently variable. Measure-

ment of the distribution ratio is of great practical importance in the opera-

tion of extraction, whether for the purpose of removing an undesired

solute by washing the solution with a second solvent immiscible with the

first, or for the purpose of concentrating a desired solute in a different

solvent, from which it may be more conveniently recovered in the pure
state.

The basic equilibrium condition that applies in this case, assuming that

temperature and pressure have been equalized between the two phases, is

02(A)
=

$2(B) (7-6-5)

Assuming that the solute is a nonelectrolyte in both phases, we may
express (7-6-5) in terms of activity coefficient notation by means of Eqs.

(7-3-107); thus

<^ + RT In m2W + RT In 7 A
= ^ + RT In m*w + RT In

from which we may derive as the thermodynamic expression for the molal

distribution coefficient, K 1

',

*2(

In this equation, 2(5) and < 2u) technically represent
"
constants

"
for

component 2 in the two liquid media consisting, respectively, of compo-
nent B saturated with component A and of component A saturated with

component B, but they will actually be independent of the values of w2(5)

and w2(A), respectively, only if the presence of the solute, component 2,

does not significantly alter the mutual solubilities of the two liquid sol-

vents. This condition is by no means universally satisfied; for example,

by adding sufficient acetic acid to water and chloroform, one may increase

the mutual solubilities of the two liquid phases to such an extent that they

ultimately become completely miscible with each other. Let us, however,
confine our attention to situations in which the solute does not signifi-

cantly alter the mutual solubilities of the two liquid solvents. In that
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case, we may express (7-6-6) in the form

K' ^ = K'Q (7-6-7)
7201)

where K'Q denotes a constant for the system, whose value is theoretically

given by
(7-6-8)

The values of y'2(B)
and 7gU) in Eq. (7-6-7) still refer to liquid B saturated

with A, and liquid A saturated with 5, respectively, rather than to the

pure liquids, B and A, but if they are but slightly miscible, this distinction

will generally not be significant. Now, as the solute concentrations in

both phases are decreased, we may suppose that ultimately either or both

approach ideal behavior, in the sense that

lim 72U)
=

1; Mm 7Jaw
= 1 (7-6-9)

This will not necessarily be so if the solute undergoes some special trans-

formation, such as dissociation, polymerization, or reaction with the

solvent, in either phase; distribution data in such cases constitute actually

a quantitative means of studying the reaction. Assuming, however, that

both solutions conform to Raoult's law in the ordinary sense as the solute

concentration in either is made sufficiently small, then we may determine

precisely the value of the so-called
"
thermodynamic distribution coeffi-

cient" KQ by extrapolating actual values of K' measured at finite concen-

trations, to zero solute concentration:

lim ^ (T,p const) (7-6-10)

In this way, we may obtain the difference between the <j values of the

solute in the two solvents through Eq. (7-6-8), this difference representing
the difference between the thermodynamic potentials of component 2 in

hypothetical ideal dilute solutions at m* = 1 mole/kg in either solvent,
or the so-called "standard" free-energy change for the transfer of 1 mole
of the solute from ideal 1m solution in A to ideal 1m solution in B.

Equation (7-6-10) serves itself as an approximation at sufficiently low
solute concentrations, but does not necessarily continue to apply for con-

centrated solutions. A comparison of K' with K'Q , however, gives us the

ratio of the activity coefficients in the two solvents [Eq. (7-6-7)]; if the

activity coefficient values have been determined in the one solvent, or

better still, if one of the two liquid solutions remains ideal over the com-

position ranges under investigation, then one may use precisely deter-.
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mined values of K', together with (7-6-10), to establish activity coefficient

values in the other.

We could equally well write Eqs. (7-6-7) and (7-6-8) in terms of the

molar concentrations, C2u> and (72(/o [compare Eqs. (7-3-96) to (7-3-105)],

, , _
-77
72U)

where K" satisfies the relation

RTln

(7-6-11)

(7-6-12)

and, provided that both solutions conform to Raoult's law at sufficiently

low solute concentrations,

K" lim (T, p const) (7-6-13)

The relationship between K" and K' is evidently a purely formal

one, depending on the relation (7-3-97) between m2 and C2 in the two

solvents.

Examples of distribution coefficient data are given in Tables 7-10 and

7-11. Table 7-10 presents data for I 2 distributed between CS 2 and H 20,

TABLE 7-10. DISTRIBUTION OF I 2 BETWEEN 082 AND H 2O AT 25C*

* From data of G. Herrero, reported in Landolt-Bornstein,
"
Physikalisch-chemiscke Tabellen,"

5th ed., Supplement Ilia, p. 659, 1935.

from work of G. Herrero;
1
Fig. 7-27 shows K" plotted against (Ci 2)n 2o,

from which one obtains K" = 568. Substituting in (7-6-11),

I 2(a'2
' = 1 in CS2)

= 12(4' - 1 in H2O);
AF298.16

=
<^I2(H20)

""
^I 2(CS2)

= RT In 568 = 3758 cal/mole

Landolt-Bornstein, "Physikalisch-chemischc Tabellen," 5th ed., Supplement Ilia,

p. 659, 1935.
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FIG. 7-27. Distribution of 12 between carbon disulfide and water at 25C. (Data of
O. Herrero.)
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FIG. 7-28. Distribution of NH3 between water and chloroform at 25C.
Matthews and C. W. Dames.)

(Data of H. E.

Table 7-11 presents data for NH8 distributed between water and chloro-

form, from work of H. E. Matthews and C. W. Davies. 1 In this case, a

correction has to be made for ionization of NHs in the aqueous solution;

condition (7-6-5) presumably applies only to the free NHs, since the ions,

NHJ and OH"", apparently do not enter the CHCls phase. The figures

given in the fifth column representK1
for the freeNH 3 in both phases, and

in Fig. 7-28, Kf has been plotted against (WNH,)CHCI,, yielding as WNH, > 0,

XS = 35.637. Thus

1 H. E. Matthews and C. W. Davies, J. Chem. Soc., 1435-1439 (1933).
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NH 3(<4
= 1 in H 2O) = NH 3(<4

= 1 in CHC1 3);

= RT\n 35.637 = 2117.2 cal/mole

TABLE 7-11. DISTRIBUTION OF NH 8 BETWEEN H2O AND CHC13 AT 25C*

* Data of H. E. Matthews and C. W. Davies, J. Chem. Soc. t 1435-1439 (1933).

7-7. Donnan Equilibrium. In Sec. 7-66, we considered the equilibrium
of a solution separated from pure solvent by means of a semipermeable
membrane that freely transmits the solvent but not the solute. This

situation gives rise to the familiar phenomenon of osmosis, and we found

that pressure had to be applied to the solution in order to maintain equi-

librium; the effect of the applied pressure is to restore the thermodynamic

potential of the solvent in the solution back to its value for the pure sol-

vent at the given temperature and ordinary pressure.

There is another type of membrane, useful in colloid chemistry, known
as a dialyzing membrane. This type of membrane, which may consist,

for example, of a thin film of collodion or of cellophane, transmits not only
the solvent, which is generally water, but also the smaller types of solute

particles, including ions of the simpler inorganic salts. They are imper-

meable, however, to the macromolecules encountered in colloid chemistry,

such as gelatin, albumen, rubber latex, colloidal iron hydroxide, etc.

They are commonly used in the freeing by elution of a colloidal dispersion

from solute impurities of lower molecular weight.

Now, most colloids bear charges in solution, and behave generally as

electrolytes; the mobility of the colloidal ion is of course much lower than

that of ordinary ions, because of its much greater size, and this accounts

in part for the distinctive properties of colloidal dispersions. Gelatin and

many other proteins are actually amphoteric; in aqueous solutions more

acid than pH =
4.7, gelatin behaves as a cation, while in solutions more

basic than pH =
4.7, it behaves as an anion. The simpler proteins are

high copolymers of certain amino acids, and apparently the presence of
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free carboxyl and free amino groups in the structure accounts for the acid

and basic properties, as shown by the pioneer work of Jacques Loeb. 1

It occurred to F. G. Donnan,
2 in 1911, that if one had a membrane

transmitting certain kinds of ions, but not others, then an unequal dis-

tribution of the ions that can pass through the membrane must be set up
on either side at equilibrium, as a result of the requirement of electrical

neutrality on both sides. To be specific, let us consider the distribution

of the ions of NaCl across a dialyzing membrane on one side of which there

is present the compound NaR, the ion R~ being unable to pass through
the membrane; thus, in Donnan's original experimental work, he chose

the relatively simple compound, congo red, the sodium salt of tetraazodi-

phenylnaphthionic acid, whose molecular weight is about 620, and

in a later investigation, he used KC1 in the presence of K4Fe(CN) 6 ,

the Fe(CN)6"
3==l

ion being unable to pass through a suitably prepared
Cu 2Fe(CN 6) membrane (precipitated in parchment), permeable to KCI
in aqueous solution. 3 Since NaCl and the solvent H 2 can both trans-

fuse through the membrane, the general requirement for equilibrium is

that

(0n 2o);
= (<n 2o)0 I

(7-7-1}
(0NaCl)i

=
(<^NaCl)o J

subscript i representing conditions inside the membrane, where NaR is

also present, and subscript o representing conditions outside, where only
NaCl is present. For mathematical simplicity, let us suppose that we
are dealing with 1 kg of solvent on either side. Since the thermodynamic

potential of the strong electrolyte, NaCl, is given in general, by Eq.

(7-4-20), in the form

the second of the equilibrium conditions (7-7-1) reduces to

(7-7-2)

assuming that the presence of the other solute, NaR, on the inside does

not significantly affect the value of 4>Naci(aq). No such condition as (7-7-2)

applies to NaR, because this substance cannot get through the membrane.
There remains, however, the requirement of electrical neutrality on both

sides of the membrane:

1 J. Loeb, "Proteins and the Theory of Colloidal Behavior," McGraw-Hill Book

Company, Inc., New York, 1922.
2 F. G. Donnan, Z. Elektrochem., 17, 572-581 (1911); also, Chem. Revs., 1, 73-90

(1924).

F. G. Donnan and A. B. Harris, /. Chem. Soc., 99, 1554-1577 (1911) ; F. G. Donnan
and A. J. Allmand, ibid., 106, 1941-1963 (1914).
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(wNa+)o = (wci-)o J
\

~ ~
)

Let us obtain an approximate solution of the system of equations (7-7-2)

and (7-7-3) by supposing that at reasonably low concentrations of NaR,
the mean ionic activity coefficient of NaCl will be the same on either side

of the membrane; then, combining (7-7-3) with (7-7-2),

[(wci-)i + (rriR )i](mci-)t = (wci-)o (7-7-4)

Let RQ represent the total number of moles of NaR, and C the total num-
ber of moles of NaCl introduced originally in the system; then

-); +

in view of our assumption that there is 1 kg of the solvent on either side

(this assumption is not necessary, but eliminates circumlocution in the

argument). Substituting in (7-7-4) and solving for

[Ro + Co - (mci-)o][C
-

(mci-)o]
- (mci-)*

. CQ(RQ + Co)
o 2C + R

--

Substituting back in the second of Eqs. (7-7-5), and solving for (raci-);

Combining (7-7-6) with (7-7-7), we finally obtain

The distribution of Cl"" on the two sides of the membrane is thus deter-

mined by the ratio of NaR to NaCl present in the entire system, assuming
that we are dealing with equal quantities of solvent on both sides. For

example, if JSo/Co is but Ko, there will tend to be a 10 per cent higher

concentration of Cl"" outside than inside the membrane, and there will

consequently be a considerable difference in the behavior of the system
from what we might expect if the diffusion of Cl~ were totally uninhibited.

The data in Table 7-12, obtained by Donnan and Allmand for K4Fe-

(CN) 6-KC1 solutions separated from KC1 solutions by means of Cu2Fe-

(CN) 6 membranes, illustrate the working of the theory. The Donnan

distribution equation (7-7-8) has been abundantly confirmed in many
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other cases, and in particular in the case of the proteins. Thus, Jacques
Loeb demonstrated that in the analogous case of cationic gelatin in dilute

HC1 solution, separated by a collodion dialyzing membrane from a dilute

HC1 solution containing no gelatin, the H+ concentration at equilibrium

was lower on the gelatin side than on the gelatin-free side of the mem-

brane, the ratio being governed by a relationship similar to that of (7-7-8) ;

in fact, he used the Donnan equilibrium as one of the central pieces of

evidence in his brilliant exposition of the essential similarity between the

TABLE 7-12. DONNAN EQUIIJBBIUM FOB K4Fe(CN)i-KCl*

* Data of F. G. Donnan and A. J. Allmand, J. Chem. Soc., 105, 1941-1963 (1914).

physical chemical properties of the proteins and those of ordinary chemi-

cal substances, allowing merely for the difference in molecular gize and

complexity.
1 Donnan and Guggenheim have extended the theoretical

analysis of Donnan equilibria to include the effect of deviations from ideal

behavior, as represented by the activity coefficients which in the approxi-

mate treatment we canceled out of Eq. (7-7-2), and to include also more

complex types of equilibria, involving more than three different kinds of

ions. 2 The essential characteristics are illustrated, however, by the sim-

ple case we have described.

Because of the Donnan distribution, the osmotic pressure of NaR
within the membrane may be significantly lowered when a diffusing elec-

trolyte such as NaCl is also present. In order to show this, let us calcu-

late the excess of total ionic concentration inside over total ionic concen-

tration outside after equilibrium has been established:

mi m *=
(Wjz-) t

- + (WNa+) "4" (#kll-)i (WNa+)0 (^cr)o

1 Loeb, op. dt., Chap. VIII.

*F. G. Donnan and E. A. Guggenheim, Z. physik. Chem., (A) 162, 346-360(1932);
F. G. Donnan, ibid., (A) 168, 369-380 (1934).
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Introducing Eqs. (7-7-3), (7-7-6), and (7-7-7),

nii m = 2R

463

= 4lQ

f 2(mCi-)<
Co + R
2C + I

i - 1

(7-7-9)

If the NaCl were not present, the osmotic pressure in dilute solution

would ideally be proportional to 2R [Eq. (7-5-33)]; as C is increased in

relation to .Ro, however, the factor multiplying 2/2 in Eq. (7-7-9) decreases

from 1 ultimately to 0.5, as shown in Table 7-13. The presence of the

diffusing electrolyte has in other words the same net effect as though it had

repressed the ionization of the nondiffusing electrolyte. This effect on

the osmotic pressure has been confirmed experimentally.

TABLE 7-13. IDEAL DONNAN EQUILIBRIUM DISTRIBUTION

Since the molecular weights of typical colloids such as the proteins and

starches are much larger than those of ordinary inorganic salts, it takes a

comparatively small quantity of a diffusing electrolyte such as NaCl, con-

sidered on a weight basis, to produce a low value of Ro/CQ . Equation

(7-7-9) thereby implies that a small proportion by weight of a diffusing

electrolyte may have a marked effect in lowering the osmotic pressure of

a nondiffusing electrolyte with respect to a dialyzing membrane. This

effect undoubtedly has physiological implications in relation to the trans-

fusion of water through living tissues, which are not, however, our present
concern. The magnitude of the effect, like the magnitude of osmotic

pressure itself, depends in no way on the mechanism of transfusion through
the membrane (an interesting problem in itself), but is governed solely by
thermodynamic equilibrium principles.

General References for Chapter 7

EPSTEIN, P. S.: "Textbook of Thermodynamics," Chaps. VI, VIII-XI, John Wiley &
Sons, Inc., New York, 1937.



464 PRINCIPLES OF CHEMICAL THERMODYNAMICS

HABNED, H. E., and B. B. OWEN: "The Physical Chemistry of Electrolytic Solu-

tions," 2d ed., Reinhold Publishing Corporation, New York, 1950.

HIL.DEBRAND, J. II., and R. L. SCOTT: "Solubility of Nonelectrolytes," 3d ed., Reiii-

hold Publishing Corporation, New York, 1950.

LEWIS, G. N., and M. RANDALL: "Thermodynamics and the Free Energy of Chemical

Substances/' Chaps. XVI-XX, XXII, XXIII, XXV-XXVIII, McGraw-Hill
Book Company, Inc., New York, 1923.

MAC!NNES, D. A.: "The Principles of Electrochemistry," Chaps. VI and VII, Rein-

hold Publishing Corporation, New York, 1939.

MILLER, A. R.: "The Theory of Solutions of High Polymers," Oxford University

Press, New York, 1948.

Problems

7-1. From Fig. 7-5, estimate by the tangent-intercept method fc2H4 in a mixture

containing T/A ^ 0.25 at each of the four pressures represented, and using Eq. (7-2-14),

determine by graphical integration the value of yc2n4 for the given mixture at each

pressure. (Check your results against Fig. 7-9.)

7-2. (a) Using Figs. 6-2 to 6-4, estimate fugacity coefficients of N2 and H 2 in a

1N 2:3H 2 gas mixture at 0C under total pressures of 200, 600, and 1000 atm, assuming

Amagat's law, and compare with the actual values represented in Fig. 7-7.

(b) Do the same for a 1:1 mixture of argon and ethylene at 24.95C under total

pressures of 50 and 125 atm, comparing with the actual values given in Fig. 7-9.

7-3. Test the Duhem-Margules relationship (7-3-8) on the data for CS 2-acetone

solutions presented in Fig. 7-10e at xcs2
= 0.25, 0.50, and 0.75.

7-4. Given the following information for zcH 8OH = 0.50 methanol-water solution

at 59.4C: p = 433 mm Ilg, (dp/dzcH8oH)r = 360 mm Hg, 2/cHsOH = 0.81, estimate

by means of Eq. (7-3-9a) the effect on the equilibrium vapor composition of a change
from #CH3OH = 0.50 to cH 3OH = 0.60 in the liquid composition (compare Fig. 7-10d).

7-6. From Fig. 7-116, estimate the Henry's law constant for CH 3OH(1) in H 2O(1) at

25C, and calculate the value of ^Haoncaq)
~~ ^CH8oH<iv Calculate also tfie thermo-

dynamic potentials of CH3OH and H 2O at a?cH3oH = 0.10 relative to their values at

infinitely dilute solution in H2O(1).

7-6. From the data presented in Fig. 7-10e, calculate thermodynamic potentials

relative to the pure liquids for CS2 and acetone at 29.2C in solutions containing

#cs2 0.20, 0.40, 0.60, and D.80, and compute the "excess" free energy of solution

per mole of solution formed, over the ideal value given by Eq. (7-3-31), at each

composition.
7-7. Using the ideal-solution equation (7-3-39), estimate the effect on the boiling

point of adding 10 mole per cent of chlorobenzene to benzene, whose normal boiling

point is 80.10C and latent heat of vaporization is 7353 cal/mole. The vapor pres-

sure of pure chlorobenzene at 80.10C is 149.5 mm Hg.
7-8. Using smoothed data from the curves in Fig. 7-10d, calculate activity coeffi-

cients relative to the pure liquids for CII 3OH and H2O in their solutions at 59.4C for

cH8oH = 0.2, 0.4, 0.6, and 0.8, and compute van Laar constants from the data at

each composition. Using the mean values of the constants, estimate 7CH 3on and

7H2o, and also PCHJ,OH and PH20| at O?CH,OH
=

0.5, and compare with the actual data

given by Fig. 7-10d.

7-9. Calculate van Laar constants for solutions of n-propanol and water at 87.7C
(the azeotropic boiling point at 1 atm) from the azeotropic composition: 56.83 mole

per cent H 2O (the "International Critical Tables," Vol. 3, p. 318, 1928); the vapor
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pressures of the pure components at the given temperature are respectively 0.688 and
0.634 atm.

Using Eqs. (7-3-56) and (7-3-57), estimate the vapor pressure at 87.7C of a solu-

tion containing 5.0 mole per cent propanol.
The best values of the van Laar constants at 25C are given in Fig. 7-13c. With

the aid of Eq. (7-3-60), estimate from your values at 87.7C the total molal heat of

solution of n-propanol (1) in H 2O(1), and of H 2O(1) hi n-propanol (1).

7-10. From the following data for the ethyl alcohol-ethyl acetate azeotrope at

various pressures, calculate van Laar constants at each temperature, neglecting the

specific effect of the pressure differences on the activity coefficients in the liquid state:

(" International Critical Tables," Vol. Ill, p. 323, 1928; look up the necessary vapo

pressures of the pure components).
From plots of Ai and A 2, vs. 1/T, estimate the mean total heats of solution of ethyl

alcohol (1) in ethyl acetate (1) and of ethyl acetate (1) in ethyl alcohol (1), and estimate

also the partial vapor pressures and total vapor pressure of the 50 mole per cent

solution at 60C.
7-11. The following solubility data have been reported for NH 3 (g) in H 2O(1) at

25C (F. E. C. Scheffer and H. J. de Wijs, in Landolt-Bornstein, "Physikalisch-
chemische Tabellen," 5th ed., Supplement I, p. 303, 1927):

,
moles/liter

0.0618

0.1883

0.339

0.601

1.005

1.242

1.618

Hg
0.791

2.41

4.41

7.96

13.46

16.94

22.38

Correcting CNHJ for ionization at the lower concentrations, calculate

at each concentration, and calculate the Henry's law constant for NH8(g) in H 2O(1).

From this value, calculate the standard free energy of solution: </>NH 8(aq)
~" ^NH 3(g)

The partial pressure of NH 3 (g) in equilibrium with a solution containing 10.35

moles/liter at 25C is 173.9 mm Hg (Landolt-Bornstein, "Physikalisch-chemische

Tabellen," 5th ed., Supplement I, p. 304, 1927). Calculate 7^3 *& this solution.

Calculate also 7NH ,>
the solution containing 10.34 moles/kg H 2O.

7-12. The following data have been obtained by R. H. Wright and O. Maass

(Landolt-Bornstein,
"
Physikalisch-chemische Tabellen," 5th ed., Supplement IIIc,

p. 2527, 1936) for the solubility of H 2S(g) in water at 10, 25, and 40C:
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(a) Calculate lim (pz/C*) at each temperature, and determine therefrom the
CV-0

standard free energy- of solution, </>H 2s(aq)

~~ ^H 2s(go> a^ 25C, and the mean standard

enthalpy of solution, ?H 2s(aq)
"" #H 2s(g)- Compare the latter result with

AH, = -4.52 kcal

at 20C obtained by H. Zeumer and W. A. Roth (Landolt-Bornstein, "Physikalisch-
chemische Tabellen," 5th ed., Supplement IIIc, p. 2747, 1936) from direct calorimetric

measurements. (In this case, most of the heat of solution represents heat evolved on
condensation of H 2S from the gaseous to the liquid state; the latent heat of vaporiza-
tion of H 2S(1) at its normal boiling point, 212.85K, is 4.463 kcal/mole.)

(b) Calculate imZB at the highest pressure given in the table at 25C, using Berthe-

lot's equation of state (Prob. 6-10), and calculate accordingly the value of 7^28 m the

corresponding aqiieous solution.

7-13. The partial pressures of Br 2 from its solutions in CC1 4 (1) were measured at

25C by G. N. Lewis and H. Storch [J. Am. Chem. Soc., 39, 2544-2554 (1917)], with

the foliowhig results:
'

0.00394

0.00420

0.00599

0.0102

0.0130

0.0236

0.0238

0.0250

r2 ,
mm Hg
1.52

1.60

2.39

4.27

5.43

9.57

9.83

10.27

By plotting pBrz/ZBr* vs. ZBr2, show that Br 2 in CC14 (1) satisfies Henry's law over

the dilute composition range, and evaluate the Henry's law constant, kz .

They found also that when Br 2 was distributed between CC1 4 (1) and H 2O(1) con-

taining 0.001m HC1 or H 2SO4 to repress hydrolysis, the distribution ratio in dilute

solution had the constant value mBr2(n 2o)/^Br2(cci4)
= 0.371. Furthermore the vapor

pressure of pure Br 2 (l) at 25C is 213 mm Hg. Calculate </4r2 (aq i'e*> the standard

free-energy change for the process

- Br2(aq)
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Calculate also the activity coefficient 7' of Br2 in the saturated aqueous solution, in

which WBr2
= 0.207 mole/kg, assuming that the thermodynamic potential of Br2

in the saturating liquid phase [Br 2 (l) saturated with H 2O] is practically the same as in

pure Br 2 (l).

7-14. Using the data in Fig. 7-116 and the result of Prob. 7-5, calculate mole-frac-

tion activity coefficients 7 for CH 3OH relatively to the infinitely dilute solution in

water at ZCHJOH - 0.20, 0.40, 0.60, 0.80, and 1.00. Calculate also the value of

*CH80H(q)
~ ^CH 3oHci)> tne standard free energy of solution to form the hypothetical

ideal dilute solution at 1m concentration.

7-16. The solubility of Ba(OH) 2-8H 2O(c) in water at 25C is 0.2296 moleAg H 2O,
and the activity coefficient in the saturated solution, from emf data by H. S. Harned
and C. M. Mason [J. Am. Chem. Soc., 64, 1439-1442 (1932)] is y = 0.358. Calculate

the standard free energy of solution.

One may assume in this case that <n2o in the saturated solution is practically equal
to /*H 2od) f Pure water.

7-16. The solubility of Al(NO 3)3'9H2O(c) hi water at 25C is 3.161 moles/kg;
the mean ionic activity coefficient in the saturated solution, whose vapor pressure is

14.370 mm Hg, is 7^.
= 1.16 (as a 3:1 electrolyte), from vapor-pressure measure-

ments by J. N. Pearce and L. E. Blackman [/. Am. Chem. Soc., 67, 24r-27 (1935)].

Calculate the standard free energy of solution: Âl(No 3)3(aq)
~

^Ai(No 3) s-9H20(c)-

7-17. Given from a variety of experimental sources that the mean ionic activity

coefficient of KC1 in Im aqueous solution at 25C has the value y = 0.606 (W. M.

Latimer, "The Oxidation States of the Elements and Their Potentials in Aqueous

Solutions/' pp. 318-327, Prentice-Hall, Inc., New York, 1938), calculate from the

data in Table 7-5 the mean ionic activity coefficient in the saturated solution, and

calculate the standard free energy of solution: 4>Kci(aq)
~~

^KCI(C)- Estimate by inter-

polation the value of w2 at which the thermodynamic potential of KC1 in aqueous
solution is actually equal to

tf>KCi(aq) (that is, ra27.j.
= 1).

7-18. The following vapor-pressure data have been obtained for aqueous solutions

of HC1O4 at 25C by J. N. Pearce and A. F. Nelson [/. Am. Chem. Soc., 65, 3075-3081

(1933)]:

Osing (7-4-27), evaluate 7 at integral values of m from 1 to 12 moles/kg H2O.

The integral may be evaluated from m =* to m = 0.5 mole/kg by taking note of the

fact that 7 for HC1O4 is practically identical with that of HC1 up to that concentra-

tion; therefore set 7^. at m = 0.5 mole/kg in Eq. (7-4-27) equal to that of HC1, as

read from Fig. 7-18. Evaluate the integral from m = 0.5 mole/kg up by graphical

means.
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7-19. R. A. Robinson and D. A. Sinclair [J. Am. Chem. Soc., 66, 1830-1835 (1934)]

have worked out a clever isopiestic vapor-pressure method for measuring activity

coefficients of nonvolatile solutes by equilibrating their solutions through the vapor

phase with solutions of a standard nonvolatile solute (e.g., KC1 or H 2SO 4 ) whose

activity coefficient has been established precisely as a function of solute concentra-

tion. In this way, the concentration m* at which the "unknown" solute gives rise

to the same solvent partial vapor pressure, or thermodynamic potential <i, as the

concentration m of the standard solute is determined by analysis of the two solutions

after equilibrium has been established between them. Prove that for two 1 : 1 electro-

lytes, where m* and m represent respective molalities satisfying the isopiestic

condition,

/"

fr^.lnfL + 2 /(7)o w>2 Jo

where ao ss
wiofrj-Jo. (The relationship is put hi this form, in terms of ao^, because

the integral then converges particularly rapidly as a > 0.)

7-20. The following (selected) pairs of solute concentrations giving rise to the

same water vapor pressure were determined at 25C for KC1 and Lil by R. A. Robin-

son and D. A. Sinclair [J. Am. Chem. Soc., 66, 1830-1835 (1934)]:

Plot ( 1 ) / OKCI^ vs. OKCI^, using for Oy)Kci the results summarized in the
\WlLiI / /

following table (draw a large-scale graph for interpolation),

and evaluating the integral called for by the equation derived hi the preceding problem
by graphical means, compute Oy)Lii at w2 0.5, 1.0, 2.0, and 3.0 moles/kg H 2O.
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What further information is required for the establishment of
<foii(aq) relatively to

7-21. The partial pressure of HCl(g) from the more concentrated aqueous solutions

has been measured at 25C by S. J. Bates and H. D. Kirschman [/. Am. Chem. Soc.,

41, 1991-2001 (1919)], with the following (selected) results:

WHCI, moles/kg PHCI, mm Hg
3.240 0.00780

5.041 0.0557

6.018 0.1487

7.148 0.385

8.950 1.819

9.990 4.260

Calculate the thermodynamic potential of HC1 at each concentration, relative to

^Hci(g)- Given that y = 1.759 at m = 4 mole/kg, from emf data by H. S. Harned

and R. W. Ehlers [/. Am. Chem. Soc., 66, 2179-2193 (1933)] (see Chap. 9), calculate

7 at each of the above concentrations (plot log PHCI vs. WHCI for interpolating to find

the value of PHCI at WHCI = 4 moles/kg.) From the fact that 7^ = 0.796 at m = 0.1

mole/kg (emf data), calculate also the partial pressure of IIC1 at that concentration.

7-22. From the following freezing-point-depression data obtained by T. J. Webb
and C. H. Lindsley [/. Am. Chem. Soc., 66, 874-878 (1934)], for solutions of ethanol in

water, calculate 7' of C 2H6OH at w2
=

0.1, 0.2, and 0.5 mole/kg H 20:

w2,
moles/kg H 2O 8, deg
0.009815 0.01833

0.01879 0.03493

0.03503 0.06522

0.07423 0.13706

0.13477 0.24821

0.18263 0.33535

0.3092 0.5666

0.4150 0.7579

0.5160 0.9396

From the following additional data by A. Lalande (Landolt-Bornstein, "Physi-
kaliseh-chemischc Tabellen," 5th ed., Supplement IIIc, p. 2679, 1936), calculate

7' at ra 2
= 5 moles/kg H 2O:

m2 , moles/kg H 2O 6, deg
1.038 1.92

2.137 4.00

4.174 8.06

6.888 14.66

7-23. From the following freezing-point-depression data obtained by G. Scatchard,

S. S. Prentiss, and P. T. Jones [J. Am. Chem. Soc., 66, 805-807 (1934)], for solutions

of KClOs in H 2O(1), determine the mean ionic activity coefficient 7.^ of KClOs in the

saturated solution at the eutectic point, and calculate therefrom the value of

j?" r KClOa(c)
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at the eutectic temperature:

m2, moles/kg H 2O j, Eq. (7-5-57)

0.001 0.0105

0.002 0.0144

0.005 0.0221

0.01 0.0308

0.02 0.0435

0.05 0.0686

0.10 0.0960

0.20 0.1325

0.2515 0.1481 (eutectic; J = -0.7955C)

7-24. The following freezing-point data were obtained by G. Scatchard, S. S.

Prentiss, and P. T. Jones [/. Am. Chem. Soc., 66, 805-807 (1934)], for solutions of

KClO4 inH 20(l):

w2 , moles/kg H 2 0, deg
0.003612 0.01316

0.006690 0.02421

0.009872 0.03509

0.016215 0.05712

0.030369 0.10541

. 048335 . 16359 (eutectic)

Determine the mean ionic activity coefficient y of KC1O4 in the saturated solution,

and calculate therefrom the value of 4>Kci04(aq)
"~~

^Kcio 4 (c)
The enthalpy of solution at

18C is 11,740 cal/mole (1 in 400 H 2O); neglecting the variation of this quantity with

temperature, estimate the correction of 4>Kcio4(aq)
"~

^Kci04(c> from to 25C.
7-25. Plot the data for HC1 and for CsCl shown in Figs. 7-18 and 7-19 in the form of

log 7 + A \//x vs. /x, and from the limiting slope in dilute solution, determine B1
for

each electrolyte in Eq. (7-4-34). Calculate therefrom the respective values of d,
and test how well Eq. (7-4-32) reproduces the data at the higher concentrations.

Repeat, using the data for CaGU.
7-26. Introducing the Debye-Hiickel limiting law (7-4-31) in the limiting boiling-

point-elevation law (7-5-19), derive a formula for the molal boiling-point elevation

A7Vw2 for a strong 2 : 1 electrolyte in sufficiently dilute solution. Test the formula

by plotting ATi/m^ against mft from the following data for K 2SO4 solutions [E. Plakc,

Z. physik. Chem., (A)172, 113-128 (1935)], noting the ra 2
= intercept and the value

of the limiting slope:

ra2 , moles/kg &Tb , deg
0.000809 0.00123

0.00162 0.00242

0.00324 0.00467

0.00647 0.00915

0.0158 0.0214

0.0348 0.0446

0.0654 0.0808

0.164 0.191

0.327 0.363
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7-27. Introducing tho Debye-Hlickel limiting law (7-4-31) in the osmotic-pressure

equation (7-5-32), derive a limiting expression in dilute solution for the osmotic pres-

sure of a strong 1 : 1 electrolyte. Test the formula by plotting ir/fC^RT vs. m2
^ for

the following data obtained by J. C. W. Frazer and W. A. Patrick [Z. physik. Chem.,

(A) 130, 691-698 (1927)1 in the case of dilute aqueous KC1 solutions at 24.85C:

W2, moles/kg
0.00836

0.00539

0.00175

0.00047

,
mm Hg
278.7

186.0

62.8

17.4

By what per cent does the observed osmotic pressure deviate from the ideal van't

Hoff expression for a strong 1 : 1 electrolyte at the highest concentration represented
in the table?

7-28. R. H. Stokes and R. A. Robinson [J. Am. Chem. Soc., 70, 1870-1878 (1948)]

have modified the Debye-Hiickel limiting law to take into account the presumed
hydration of the ions. They have obtained as a result the formula (at 25C) :

og
0.5092ziZ2

x + .3286d
- -

log ai - log [1
-

0.018(n - )m2]

where d is an empirical parameter representing the mean ionic diameter (in angstrom

units) of the hydrated ions (generally larger than the value in the corresponding

Debye-IIiickel formula), and n is another parameter representing the number of water

molecules "bound" by the f ions produced by each "molecule" of electrolyte. For

KC1, they have proposed n = 1.9 and d = 3.63 between w2 = 0.1 and 4.0 mole/kg.
Test this formula at m =

1, 2, 3, and 4 mole/kg, against the following experimental
data (compare Table 7-5), noting that ju is equal to the molar volume concentration

for the 1 : 1 electrolyte :

For BaCl2 , they have proposed n = 7.7 and d ~
4.45, between m = 0.1 and 1.8

moles/kg. Test their formula at m =* 1.0 mole/kg, where ^(obs) = 0.395; the

vapor pressure of the solution (for computing log ai) is 22.77 mm Hg, and the density

may be found (by interpolation) in the "International Critical Tables."

7-29. Using the thermal data for HC1-H 2 solutions given in Table 4-10, plot

Q8 vs. mft* for selected values of the concentration up to 1HC1: 100H 2O, and test the

validity of the theoretical limiting slope given by Eq. (7-4-43c) (note that the change of

Q9 with concentration is equal in magnitude but opposite in sign to the change of $*).

Confirm the value of Q? given in Table 4-10 by extrapolation of your graph to w2 0.
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7-30. F. H. MacDougall [J. Am. Ghent. Soc., 52, 1390-1393 (1930)], obtained the

following (selected) data for the solubility of silver acetate in water and in aqueous
KNO3 solutions at 25C:

Assuming the Debye-Hiickel limiting law in the form (7-4-32), where for the satu-

rated solution

use the first two sets of data to obtain the two constants: Kc (the thermodynamic
molar concentration solubility product) and Bdi. From the value of KQ

e so derived,

calculate from the data experimental values of (-y)AgAo at each set of conditions given,

and determine the range of validity of Eq. (7-4-32). (Compare also F. H. MacDougall
and J. Rehner, /. Am. Chem. Soc., 56, 369-372 (1934).]

7-31. The osmotic pressure of a polyisobutylene sample in cyclohexane and in

benzene has been measured by P. J. Flory [J. Am. Chem. Soc., 66, 372-382 (1943)],

using a collodion type of membrane. The results at 25C are given in the following

table:

Concentration,

Osmotic pressure,

g/cm 2

Plot TT/CZ for both solvents against 02, and by extrapolating to c2 0, calculate the

molecular weight of the high polymer in both solvents. Estimate the per cent of

deviation of the observed osmotic pressure from the ideal van't Hoflf value at the

highest solute concentration given in the table for both solvents.



CHAPTER 8

CHEMICAL EQUILIBRIUM

In this chapter, we shall explore the thermodynamic conditions for

equilibrium of a chemical transformation. Since chemical equilibria are

usually studied under conditions of constant specified temperature and

pressure, the equilibrium conditions are most conveniently represented

in terms of the Gibbs free-energy function. Extensive free-energy

tables have been compiled, bearing to equilibrium data a relationship

analogous to the relationship between enthalpy tables and thermochem-

ical data. Such free-energy tables have been of inestimable value in the

correlation of equilibrium data for diverse reactions and in the prediction
of the courses of chemical transformations under hitherto untested

conditions.

8-1. Free Energy and Equilibrium of a Chemical Transformation.

Let us consider a general chemical transformation, whose chemical equa-
tion is represented by

aA + bB + = IL + mM + (8-1-1)

The associated free-energy change has the form

A/*
1 = I$L + m<t>M + -

a<t>A b<i>B
-

(8-1-2)

where for substances participating as pure phases, the thermodynamic

potential </> may be replaced by the corresponding molal free energy, deter-

mined solely by temperature and pressure, but for constituents of solu-

tions, may depend on the composition as well. At any rate, the value

of AF is determined solely by the initial states of the reactants and the

final states of the products. According to the general thermodynamic
condition (5-61) for equilibrium,

l<t>L + m$M + a<t>A + b<t>B + (T, p const)

Whenever the reactants and products are in equilibrium, they will be in

states satisfying this relationship.

Equation (8-1-3) represents in most general form the law of mass action,

as we shall observe in the development of the following applications.
1

1 This law was first stated as an empirical principle by C. M. Guldberg and P.

Waage, "Etudes sur les affinite's chimiques," Brogger and Christie, Christiania, 1867.

473
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a. Reactions Involving Pure Liquids and Pure Crystalline Phases Only

Example :

Ag(c) + %Hg2Cl 2(c) AgCl(c) + Hg(l)

At given temperature and pressure:

AF = FAgCl(o) + ^Hg(l)
~

^A(o) J'^T H 2Cl2(c)

Since the molal free energies of the individual pure chemical substances

are completely determined by T and p, it follows that the value of AF is

fixed at given temperature and pressure, independently of any effect

of the masses of the participating substances present. At given tempera-
ture and pressure, the reaction can go only in the one direction or in the

other (whichever corresponds to the negative value of AF), so long as one

does not expend energy in nonthermal form on the system [compare Eq.

(5-58) in general]. At 25C and 1 atm, A/^98 . 16
= -1065 cal.

1

The effect of pressure on AF may be estimated from Eq. (6-10), applied

term by term,

Since at 25C and 1 atm, AF = 2.7 ml, AF changes with pressure at the

rate of 0.065 cal/atm for this reaction. The effect of temperature fol-

lows from the application of Eq. (6-12) term by term to AF:

AH
~~dT T*"

Equation (8-1-5) represents a special case of van't Hoff's law, of which

further applications will be given presently. According to this equation,

there could conceivably be some temperature at the given pressure

(1 atm) at which AF might undergo a change of sign; only at such a

unique transition temperature, where AF =
0, could a system of the

type under consideration be in a state of equilibrium at 1 atm pressure.

In the present example, it happens that AH%98 . 16
= 1276 cal;

2 therefore

according to (8-1-5), AF changes with temperature at a rate of about

0.8 cal/deg. As a matter of fact, AF remains negative for the reaction

down at least as far as the freezing point of the mercury.

However, in the closely related system,

Na2S04-10H 20(c) = Na2SO4 (c) + 10H 20(1, satd Na2SO4)

1 From data compiled by W. M. Latimer,
" Oxidation States of the Elements and

Their Potentials in Aqueous Solutions," Prentice-Hall, Inc., New York, 1938. The
value of AF for this reaction has been measured directly by electrochemical means,
to be discussed in Chap. 9 [see Eq. (9-2-5)].

2 F. D. Rossini, /. Research Nail. Bur. Standards, 9, 679-702 (1932).
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which differs from the preceding system in that the liquid phase here con-

tains both components at relatively high concentrations, there actually is

such a transition point, at 32.38C (the transition temperature varies

slightly with pressure); at higher temperatures, Na2SO4-10H 2O(c) tends

to go out of existence, while at lower temperatures, Na2SO4(c) in contact

with the saturated solution tends to take up water to form the crystalline

hydrate. We may represent the free-energy change at 1 atm in general

by the equation

AF = F2ftas(>4<c) + lO^HtO ^NazSOi-lOHzOCc)

+ lOfeoa) + 10 Z
7
In a?

-

where a* represents the activity of H 2 in the saturated solution. The

vapor pressure of the saturated solution at the transition temperature has

been measured, and has the value 0.0405 atm;
1 the vapor pressure of pure

water at the same temperature is 0.0480 atm; therefore according to

(7-3-45) [compare also (7-5-4)], a? = 0.0405/0.0480 = 0.844. With AF
known to be zero at the transition point, we thus obtain the following

experimental relationship among the standard molal free energies of the

pure compounds

In 0.844

= 1030 cal (T = 305.54K)

from which the value of any one ^? 5.54 could be calculated from estab-

lished values of the other two.

&. Reactions between Pure Liquid or Crystalline Phases and a Pure Gas

Phase

Example :

CaCO 3(c)
- CaO(c) + C02(g)

At given temperature:

AF - Fga0 (c) + (fl&w + RT In pco,) - F^co
= AFJ + RT In pco,

assuming that C0 2 satisfies the ideal-gas law at the pressures under con-

sideration. Therefore, from the equilibrium condition (8-1-3),

-AF? (8-1-6)

At high C02 pressures, we could write

RT In pco^co, = -AFJ (8-l-6a)

1 "International Critical Tables/' Vol. VII, p. 305, McGraw-Hill Book Company,

Inc., New York, 1930.
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where PCO represents the fugacity coefficient of CO2 at the temperature T
and pressure pcoi, neglecting the relatively small effect of pressure on the

free energies of the solid phases. Thus, we conclude that at each tem-

perature, there is a particular value of pcoa [the so-called dissociation pres-

sure of CaCOa(c)] at which equilibrium may be maintained; at lower C02

pressures, CaCOsCc) tends to decompose, whereas at higher pressures,

CaO(c) tends to take up CO2 . The dissociation pressures for this system
at temperatures up to the eutectic point of CaO-CaCOs are presented in

Table 8-1, from work of F. H. Smyth and L. H. Adams. 1 At these tem-

peratures and pressures, the deviation of CO2 from ideal-gas behavior

TABLE 8-1. DISSOCIATION PRESSURE OF CaCOs(c)*
CaC0 3 (c) - CaO(c) + CO 2 (g)

* F. H. Smyth and L. H. Adams, J. Am. Chem. Soc., 45, 1167-1184 (1923).

is inappreciable. The constant AFJ for the reaction at each temperature
is called the standard free energy of reaction; it represents what the change
in free energy would be if each substance were in its standard state, i.e., in

this case as a pure phase at 1 atm. Its value at each temperature is listed

in the third column of Table 8-1. Evidently, if we had independent infor-

mation concerning the F% values for any two of the three chemical sub-

stances, we could use the present data to calculate /*? for the third. In

examples of this type, a large negative value of AF% evidently represents a

high dissociation pressure, greater than 1 atm, whereas a large positive

value represents a low dissociation pressure, lower than 1 atm.

The effect of temperature on the dissociation pressure may be deduced

by application of Eq. (8-1-5) :

1 F. H. Smyth and L. H. Adams, J. Am. Chem. Soc., 46, 1167-1184 (1923); see also

the "International Critical Tables," Vol. VII, p. 297, McGraw-Hill Book Company,
Inc., New York, 1930.
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d(AFT/T) ^dln
dT

-R Atff
dT

Thus
d In
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(8-1-7)

(8-1-8)

This equation also is a special case of the more general van't Hoff relation,

and bears a close resemblance to the Clausius-Clapeyron equation for the

vapor pressure of a pure liquid or solid, in the form (6-69). In Eq.

(8-1-8), AH% represents the standard enthalpy of reaction, and varies with

T according to KirchhofFs law (4-14). We may therefore use the

observed values of pco2 taken over a range of temperatures to establish the

value of AH . For this purpose, let us put Eq. (8-1-8) in the convenient

equivalent form

dlog
2.3026# (8-1-9)

which shows that if we plot log pco, vs. 1/T, then the slope at any value of

T will represent A///2.3026#; over temperature ranges sufficiently
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FIG. 8-1. Log pco2 vs. l/T for equilibrium of the reaction CaCOaCc) CaO(c) H- CChfe).

(Data of F. H. Smyth and L. H. Adams.)

small so that the variation of A// with temperature is inappreciable, the

curve will be practically a straight line. The data of Table 8-1 have been

plotted in this way in Fig. 8-1. Smyth and Adams have given an
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empirical equation that fits their data closely; with p in atm,

1 1 QKK

log pco,
= -

^jr^
- 5.388 log T + 26.238 (8-1-10)

We may therefore calculate the value of AH^, analytically by applying

(8-1-9) to (8-1-10),

d log poo, _ t1 Q KK ,
5.388 ^

d(l/T)
" - X1^55 +

3026
1

All} = 51,957
- 10.707T (1100-1500K) (8-1-11)

Now, the heat of this reaction has been measured thermochemically

at room temperature by H. L. J. Backstrom, from the difference between

the heats of solution of CaO(c) and of CaCOs(c, calcite) in dilute HC1;
1

thus

Atf?98.i6 = 42,600 + 200 cal

Let us use K. K. Kelley's heat-capacity equations to calculate thermo-

chemical values of AHJ at the high temperatures :
2

o A7fi v in5

CaCOs(c): C = 19.68 + 11.89 X W~ 3T - V (273-1033K)

i nofi v in6

CaO(c): C = 10.00 + 4.84 X 10~ 3T - f (273-1173K)

i QKK v in 5

CO 2 (g): Cp
= 10.34 + 2.74 X 1Q~*T -

yf (273~1200K)

Thus, the value of AC for the reaction is represented by

105

ACP
= 0.66 - 4.31 X 10- 37

7 + 0.041 X ~J> (273-1033K)

We shall ignore the contribution of the last term, which is relatively small

in this case, and thus we may derive a purely thermochemical equation
for AffJ in the form

AHT = 42,600 + gi6 (0.66
- 4.31 X lQ~*T)dT

= 42,595 + 0.66Z
7 - 2.16 X 1Q-*T* (273-1033K) (8-1-12)

The ranges of Eqs. (8-1-11) and (8-1-12) do not quite overlap, but let us

compare them at 900, 1000, 1100, and 1170K (the latter temperature

corresponding to pco, = 1 atm) :

1 H. L. J. Backstrom, J. Am. Chem. Soc., 47, 2437-2442, 2443-2449 (1925).
2 K. K. Kelley, U.S. Bur. Mines Bull. 371 (1934).
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The agreement at 900 and 1000K is excellent; the discrepancy at

higher temperatures results at least in part from failure of the simple

empirical heat-capacity equations over the extended temperature range.

Let us now use Eq. (8-1-12) in order to integrate Eq. (8-1-7) down to

298.16K, using the empirical equation (8-1-10) in order to extrapolate

the equilibrium data slightly until they come within the proper range of

(8-1-12); thus, at T - 1000K
; log pGOs = -1.281, (AFJ/T) = 5.860.

Hence

c cal f 298 /42595
,
0.66 1fl ^- 5 '860 - -

J1000 VT*~
+ "IT

- 2 ' 16 x

= -42595 (Kooo - ^98) - 0.66 In 29Kooo
+ 2.16 X 10~3

(298
-

1000)
= 99.40 cal/deg

8.i6
= 31,380 cal

This figure is slightly uncertain, because the heat-capacity equations and

the equilibrium data do not quite overlap. Backstrom, using the heat-

capacity equation,

AC = -3.34 + 1.378 X

derived the result

- 4.13 X

8 . 16
= 31,258 cal

If we apply Eq. (8-1-6), we may now calculate formally the value of

,

at 25C; it turns out to be 0.973 X 10~23 atm. This minute number

has of course no practical significance. Theoretically it is important
because of its implication that even though the reaction

CaCO 3(c)
= CaO(c) + CO 2(g)

apparently goes completely to the left at room temperature, nevertheless

it is in principle reversible, and we can even calculate a CO 2 pressure below

which the reaction would tend to go to the right; this hypothetical pco 2is,

of course, merely another unit for measuring AFJ, until we attain tempera-
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tares high enough for the pressure to come within the range of direct

physical observation.

An exactly comparable situation exists in the equilibrium of many
crystalline hydrates with their anhydrous forms, or lower hydrates.

Example :

Na2SO4-10H 2O(c) = Na 2S04(c) + 10H 2O(g)

At given temperature:

4(o) + lOJlow +

where, however, the standard free energy of reaction AF, as represented

here, contains a term for water in the gaseous not the normal liquid state

at ordinary temperatures. Thus, for equilibrium,

RT In (Pn 2o)
10 = -AF (8-1-13)

and therefore the equilibrium value of pn 2o is fixed at each temperature.
Table 8-2 presents the dissociation pressure for this system at various

temperatures. At higher partial water-vapor pressures than the equilib-

rium values given in the table, the anhydrous salt tends to take on water

to form the hydrate, while at lower partial water-vapor pressures, the

hydrate tends to dissociate to form the anhydrous salt. These tendencies

are completely independent of the quantities of the two solid phases

present, so long as both are there; a mixture of the two solids, in sufficient

bulk so that neither runs the risk of being completely consumed, may be

used as a means of maintaining an atmosphere of constant humidity,
within an enclosure.

In this case, Eq. (8-1-7) takes the form

d In H2o Aff

dT
or

d log PH ZO _ Aff

d(\/T) 10 X 2.303/2
^ ;

Applying Eq. (8-1-13) in particular at 25C, we may calculate the value

of the standard free energy of the reaction at that temperature :

= -10RT In 0.0252 = 21,800 cal

From this result, the value of any one of the three standard molal free

energies can be determined from the values of the other two, obtained

from other sources. The value of AF 98 . 16 so measured represents the free-
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energy change that would take place if 1 mole of Na2S04-10H20(c) were

to decompose completely into Na2S(>4(c) and H20(g) at a hypothetical

pressure of 1 atm at 25C.

TABLE 8-2. DISSOCIATION PRESSURE OF Na 2SO4-10H 2O(c)*

t, C pH2o, atm
0.0050

5 0.0068

10 0.0092

15 0.0128

20 0.0183

25 0.0252

27 0.0276

29 0.0316

31 0.0367

32.4 0.0405
* Selected from the

"
International Critical Tables," Vol. VII, p. 304, McGraw-Hill Book Company,

Inc., New York, 1930.

In cases of this kind, the water-vapor dissociation pressure has to be

smaller than the vapor pressure of water from the saturated aqueous
solution of the compound, or more precisely, the thermodynamic poten-
tial of water in the equilibrium gas phase in the presence of the two

crystalline phases has to be smaller than its thermodynamic potential in

the saturated aqueous solution at the same temperature; otherwise the

hydrate will tend to "melt," or dissolve in its own water of hydration.
This actually happens to Na2SO4-10H 20(c) at temperatures above

32.4C; above this temperature, the hydrate decomposes into a mixture

of anhydrous salt and saturated aqueous solution, while the dry anhydrous

salt, on the other hand, instead of taking up water vapor to form the

hydrate, deliquesces when the partial pressure of water vapor in the sur-

rounding atmosphere becomes greater than the vapor pressure of the

saturated solution. At the transition temperature itself, the dissociation

pressure is just equal to the partial vapor pressure of water from the

saturated aqueous solution, as we saw in a preceding example.
It would be conceivable on purely thermodynamic grounds that there

might exist a reaction of this general type, in which a solid compound
decomposed to give rise to some gaseous constituent, for which AH%
might be negative and for which the dissociation pressure would therefore

decrease with rising temperature. No such case is known, however.

The decomposition is invariably endothermic, no doubt for the same

reason that the sublimation of a pure chemical substance is endothermic
;

it is always necessary to supply energy in order to overcome the inter-

molecular attraction holding the potential gas molecules in the crystalline

lattice, whether this attraction is of the van der Waals type that exists
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even among similar molecules or whether it shows the saturation char-

acteristics that we associate with chemical compound formation.

c. Gas Reactions

Example :

g)
- NH 3 (g)

This reaction was first systematically studied by F. Haber, who thereby

founded a new chemical industry of incalculable value. 1
Applying Eqs.

(8-1-2) and (7-2-5), we obtain at sufficiently low pressures (ideal-gas

range)

+ RT In PNH,
- K fSiW

- H RT In PN,
-

-- % fi?
7
In pH8 (r const)

+ fir In

Therefore at equilibrium, according to (8-1-3),

In
p*Ht

/ = -AFT (8-1-15)* V '

Since the value of AF% is determined solely by the properties of the pure

gases and is a constant at given temperature, therefore so long as the gas
mixture behaves as an ideal gas, the expression

K' -

remains constant, and constitutes the familiar law-of-mass-action or

equilibrium constant for the reaction, expressed in terms of partial pres-

sures. At pressures outside the ideal-gas region, we may use Eq. (7-2-9)

for the thermodynamic potentials of the gases, in place of the ideal

expression (7-2-5), and the general equilibrium condition (8-1-3) then

leads to the equation

PT In (pNH,PNHg) _ A;-TOHI in -
f
-

TTTT
-

TOT = Ar T
(PN^N2)^(PH^H2)

%

or introducing Kp defined as before [Eq. (8-1-16)],

RT In Kp + RT In
v * = -AFT (8-1-17)

VM^VH

Thus, the equilibrium
" constant" Kp actually varies with pressure, in a

manner that could be predicted if we had sufficient information concern-

ing the deviation of the mixture from ideal-gas behavior, translated in

1 F. Haber, Z. Elektrochem., 20, 597-604 (1914).
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terms of the fugacity coefficients J>NHS , VN*> and Pm (Sec. 7-2). Table 8-3

presents selected values of Kp at various temperatures and pressures,

from experimental work of A. T. Larson and R. L. Dodge.
1 The partial

TABLE 8-3. EQUILIBRIUM DATA FOB THE AMMONIA SYNTHESIS*

)
= NH 8(g)

2/NHa 1

* A. T. Larson and R. L. Dodge, J. Am. Chem. Soc., 45, 2918-2930 (1923); Larson, ibid., 46, 367-372

(1924).

pressures in the expression for Kp are of course conventional partial

pressures, defined in accordance with Eq. (7-2-8); in other words, the

value of Kp for this particular reaction is calculated from the equilibrium

composition of the gas mixture by means of the expression

P
(8-1-18)

Figure 8-2 shows the equilibrium value of J/NHS from a mixture containing

N2 and H 2 originally in 1 :3 molal proportion, plotted against p for several

values of T; increase of pressure has a marked effect on the equilibrium

yield of NH 3 , particularly at the lower temperatures where Kp is larger.

One may determine the value of the fugacity coefficient factor

Kr = (8-1-19)

from the experimental Kp values at given temperature by taking

KPKV
= lim Kp

= Kp (T const) (8-l-19a)

We should like, however, to be able to estimate the value of this factor

from other data unrelated to the reaction itself for the purpose of making

1 A. T. Larson and R. L. Dodge, /. Am. Chem. /Soc., 46, 2918-2930 (1923) ; Larson,

ibid., 46, 367-372 (1924).
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thermodynamic predictions of the equilibrium conditions at high pres-

sures from observed values of the equilibrium conditions at low pressures.

Now, the actual measurement of individual fugacity coefficients in mix-

tures containing more than two chemical substances is an extremely diffi-

cult assignment; in this particular reaction the deviation from ideal-gas

behavior at the lower pressures is no doubt mainly the result of the

presence of the ammonia, rather than of the other two components, but

as we saw in Sec. 7-2, even nitrogen and hydrogen deviate significantly

from ideal behavior in mixtures at pressures of order 100 atm or more.

100 200 300 400 500^ 600 700 800 900 1,000

p (otm)
FIG. 8-2. Equilibrium mole per cent NH3 in a 1N2:3H2 gas mixture at various temper-
atures and pressures. [A. T. Larson, J. Am. Chem. Soc., 46, 371 (1924), with permission.]

This general problem has been attacked by R. H. Newton and B. F.

Dodge in the following way.
1 As we have seen in Sec. 6-1, the fugacity

coefficients of many gases may be represented quite accurately as gen-

eralized functions of their reduced temperatures and pressures (theory of

corresponding states); Figs. 6-2 to 6-4 were so constructed by Newton
from experimental equation-of-state data for a number of different gases.

Newton and Dodge have proposed that the fugacity coefficients of the

constituents in a gas mixture may be estimated from such charts by
assuming reduced temperatures and reduced pressures based on the tem-

perature and pressure of the mixture; as we have noted in Sec. 7-2, this

idea is based essentially on the supposition that the gas mixture satisfies

Amagat's law. The following table was prepared by them to represent

1 B. H. Newton and B. F. Dodge, Ind. Eng. Chem., 27, 577-581 (1935); R. H. New-

ton, ibid., 302-306 (1935).
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conditions in a Nz-Hj-NHa equilibrium mixture at 450C and 300 atm: 1

Thus, for the ammonia synthesis,

0.91Kr
= = 0.750 (723K, 300 atm)

Now, K has an estimated experimental value of 0.00664 at 450C
;
there-

fore the observed value of Kr from the equilibrium data is

0.00664

000884
_-

'751

in excellent agreement with the value estimated by the theory of corre-

sponding states and Amagat's law. One will observe that for this par-
ticular reaction, at 450C, the estimated thermodynamic potential of

NH 3 up to quite high pressures is less than the value given by the ideal-

gas law (or Dalton's law), this temperature being below the Boyle point
for ammonia; but for N2 and H2,

the thermodynamic potential is greater
at all pressures than the value given by the ideal-gas law. Each of these

ideal-gas-law deviations thus happens to operate in the same direction,

tending to make ammonia relatively more stable at high pressures than
one would expect according to the ideal-gas law from its stability at low

pressures; thus, there is a nearly fourfold increase in the value of Kp itself

from 1 atm to 1000 atm at 450C, which combined with the ordinary
mass-action effect of pressure as represented in Eq. (8-1-18) results in a
substantial improvement in the equilibrium yield of ammonia at super-

high pressures (1000 atm) as compared with ordinary industrial high

pressures (e.g., of order 200 atm).

1 For the gases having the lowest critical temperatures, H2, He, and Ne, Newton
found that the charts fit the data better if one empirically assigns them reduced tem-

peratures defined by Tr T/(TC +*8) and reduced pressures defined by

(PC + 8)
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The quantity Kp satisfying the relationships

Kl = KPK V
= limlim Kp }^o 1

)

(8-1-20)
RTlnK* = -AF?

is called the thermodynamic equilibrium constant for the gas reaction. It

is a true constant at given temperature, and at sufficiently low pressures

is equal to the ordinary law-of-mass-action equilibrium constant expressed

in terms of partial pressures. But our discussion has shown that the

ordinary "constant" Kp is really constant only in so far as the mixture

behaves as an ideal gas. When we are able to measure or estimate the

extent of deviation from ideal-gas behavior by means of other informa-

tion, independent of the equilibrium data themselves, then we may pre-

dict the effect of such deviation at high pressures on the equilibrium con-

ditions, in terms of the factor K v .

The effect of temperature on K is determined by the application of

Eq. (8-1-5) to (8-1-20):

dlnKP _ 1 d(AF*/T) AH*^ " "
R df RT*

Equation (8-1-21) constitutes a general relationship between the equilib-

rium constant, Kp,
and the enthalpy of the reaction, A//, known as van't

Hoff's law. It may be put also in the equivalent form

AH*

_

d(l/T) 2.3026/2

from which it is evident that if one plots log Kp vs. 1/7
7

,
the slope will

represent AH%/2.3Q26R. Since A/7? changes comparatively slowly

with r, the curve will not deviate greatly from a straight line. In Fig.

8-3, log Kp has been plotted against l/T for the ammonia synthesis.

Equation (8-1-22) constitutes an important indirect method for the

determination of enthalpies of reaction, particularly for reactions at high

temperatures, or for relatively slow reactions, where direct thermal meas-

urement may be out of the question. If we have precise heat-capacity
data for the participating substances, then both AH% and AF^ may be

extrapolated beyond the range of direct equilibrium measurements.

Thus, from the equilibrium data plotted in Fig. 8-3, we may deduce for

the ammonia synthesis a value of AH*n ~ 12,740 cal (at 450C). Let

us use Kelley's approximate heat-capacity equations in order to represent

&HT as a function of 2V
i K. K. Kelley, U.S. Bur. Mines Bull. 371 (1934).
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NH 8(g) : <$
= 6.70 + 6.30 X 10~3T (300

- 800K)
N(g): C = 6.50 + 1.00 X 10r*T (300

- 3000K)
H2(g): C = 6.62 + 0.81 X 10~3T (273

- 2500K)
Thus

AC = -6.48 + 4.58 X IQr'T

Substituting in the Kirchhoff equation (4-14), and integrating from

T = 723%
AH = -12,740 - 6.48(7'

- 723) + 2.29 X W~S(T
2 - 723 2

)

= -9,252
- 6.48r + 2.29 X 10-8r2

This equation leads to a value of &HT at 20C (293K) of -10,950 cal;

Haber's more precise heat-capacity equation for NHs(g) leads to 11,080

cal. Direct thermochemical measurements by G. Becker and W. A.

FIG. 8-3. Log Kp vs. l/T at constant pressure of 10 atrn for the ammonia synthesis

) + %H*() - NHi(g). (Data of A. T. Larson and R. L. Dodge.)

Roth, based on the heats of combustion of ammonium oxalate and oxalic

acid, combined with their heats of solution and the heat of neutral-

ization of oxalic acid with ammonia in aqueous solution, have led to

A//293 == 11,010 cal,
1 in excellent agreement with the high-temperature

equilibrium data.

We may now substitute the empirical equation for AH% in the general

equation for AFJ, obtained by integrating (8-1-21),

(8-1-23)

1 Landolt-B6rnstein,
"
Physikalisch-chemische Tabellen," 5th ed., Supplement IIIc,

p. 2747, 1936.
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to derive the value of AF 98 .16, selecting the high-temperature equilibrium

result Kl = 0.00664 atm^'at T = 723.16K,

= -R In K = 9.962 (T = 723.16K)

Thus

1 723 ' 16__
723.16 2986;

'

298.16
- 2.29 X 10~3

(723.16
-

298.16)
= 22.946
= -3870 cal (8-1-24)

Using the more precise data of molecular spectroscopy, according to the

methods outlined in Chap. 10, F. D. Rossini has adopted for this impor-
tant natural constant the value 1

NH 3(g); An8.ie
= -3976 cal (8-l-24a)

It represents the standard free energy offormation of NH 3 (g) from its ele-

ments. The corresponding value of K at 25C, calculated from A/^98 . 16

by means of Eq. (8-1-20), is 821 atmr1
. The thermodynamic equilibrium

conditions are therefore much more favorable at 25C than at 450C, but

the reaction proceeds immeasurably slowly at room temperature. On
the other hand, one may readily show by means of Eq. (8-1-23) that at

temperatures of order 1000K or higher, ammonia is almost completely

dissociated into its elements, even at pressures of several hundred

atmospheres.
The principles outlined in this and the preceding subsection are easily

generalized for any kind of reaction involving pure solids and liquids with

a gas phase that may contain several constituents; thus, in general,

lim RT In Kp
- RT In Kp

= -AFT (T const) (8-1-25)

f t
,

(8
"1"26)

The term Kp contains in the numerator the equilibrium partial pressure

of each gaseous product and in the denominator the equilibrium partial

pressure of each gaseous reactant, raised to powers equal to the coeffi-

cients appearing in the chemical equation for the reaction. The con-

1 "Selected Values of Chemical Thermodynamic Properties/' National Bureau of

Standards, Washington, D.C., Dec. 31, 1947.
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stant, AFJ, consists of the difference between the standard molal free

energies of all the products and the standard molal free energies of all the

reactants, each multiplied by the appropriate coefficient as it appears in

the chemical equation for the reaction; this standard free energy of reac-

tion thus represents what the free-energy change would be for the amount

of reaction represented by the chemical equation, if each reactant and

product were at 1 atm, but of course it is generally actually measured

through the measurement of Kp (with all partial pressures expressed in

atm) and the application of Eq. (8-1-25). Thus, pure solid and liquid

substances influence the values of AF% and of Kp ,
but their effect on the

equilibrium conditions is practically constant with pressure unless one

goes to pressures so high that I VT,P dp becomes significant in com-
yi atm

parison with F%. How we choose to represent the chemical equation for

the reaction is to some extent arbitrary; the relative proportions of the

reactants and products are fixed by nature, but the entire equation could

be multiplied through by a constant factor; the value of AFJ would then

be multiplied by the same factor, and the value of Kp would be raised by
a power equal to that factor; we could also write the reaction in the

opposite sense, so that the former reactants would appear as products and

the former products as reactants; this would merely change the sign of

and would invert Kp . Let us consider one further example.

Example :

HgO(c,red) = Hg(g) + H02(g)

In PH< + WfcM + V*RT In p0i

-*HgO(c,red)

assuming that the vapor phase may be treated as a mixture of ideal gases.

Thus, at equilibrium,

RT In PH.PO.M

In this case,

= Kp ]
Km RT In Kp

= RT In K -AFp

If we are dealing with an equilibrium vapor phase that is made up entirely

of evaporated solid, so that its composition is the same as that of the solid

(that is, i/Hg
= M; 2/oa

=
-HO? then p itself is fixed at each temperature,

just as in the case of CaCOsJ for approximately (within the ideal-gas-law

assumption, which will be entirely satisfactory in this case for pressures

not greatly in excess of 1 atm)

po, =
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therefore

This relation of course does not apply in general if one should introduce an

excess of either Hg(g) or (Mg) into the mixture. Table 8-4 presents the
"
dissociation pressure" of HgO(c,red) at various temperatures, together

9.0

8.0

r.o

6.0

5.0

2 4.0

Q.

c 3.0

2.0

1.0

0.0

-1.0
1.3 1.61.4 1.5

l/T(IO"
3
deg

-l
)

FIG. 8-4. -R In KP vs. l/T for the reaction HgO(c) - Hg(g) + KO 2(g). (Data of

G. B. Taylor and G. A. Hulett.)

with the calculated value of R In Kp,
from data of Taylor and Hulett,

as presented by Randall and Langford in the "International Critical

Tables." 1 In Fig. 8-4, R In Kp is plotted against l/T; according to

Eqs. (8-1-25) and (8-1-26), the slope represents the value of AH%. By
1 "International Critical Tables," Vol. VII, p. 259, McGraw-Hill Book Company,

Inc., New York, 1930; G. B. Taylor and G. A. Hulett, /. Phys. Chem., 17, 565-592

(1913).
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introducing the corresponding heat-capacity data to represent how AH%
varies with T, the data may be extrapolated down to 25C; thus, M.
Randall in the "International Critical Tables" gives the values

(8-1-27)

These values represent the hypothetical enthalpy and free energy of reac-

tion if each gas were produced as an ideal gas at a partial pressure of 1

TABLE 8-4. EQUILIBRIUM PRESSURE OP HgO*
HgO(c, red) = Hg(g)

HgO(c,red) = Hg(g)

A#?98.i
= 36,290 cal 1

'i
= 21,582 cal j

* "International Critical Tables," Vol. VII, p. 259, McGraw-Hill Book Company, Inc., New York,
1930.

atm at 25C. If we wish to apply these results to Hg(l), we may intro-

duce the value given by K. K. Kelley for the free energy of vaporization:
1

Hg(l) = Hg(g); AF298.i
= 7590 cal

Thus, we obtain for the standard free energy of formation of HgO(c)

Hg(l) + K02 (g)
= HgO(c,red); A^98>1

= -13,990 cal (8-l-27a)

Equation (8-1-6), which represented equilibrium conditions for the

dissociation of CaCO 3(c), and Eq. (8-1-13), which represented similarly

1 K. K. Kelley, U.S. Bur. Mines Bull. 383 (1935), from spectroscopic data for the

gas and vapor-pressure data. Mercury vapor contains a small proportion of Hg2
molecules, about 7 per cent at the normal boiling point, 630K and 1 atm. This

effect has not been taken into consideration in the data of Table 8-4, but should

introduce little error at the relatively low pressures concerned, except possibly at the

higher temperatures.



492 PRINCIPLES OF CHEMICAL THERMODYNAMICS

equilibrium conditions for the dissociation of Na2S04*10H20(c), are

evidently special cases of the general equilibrium law (8-1-25). The

Clausius-Clapeyron equation in the ideal-gas form (6-69) may also be

regarded as a special case of the general equilibrium law (8-l-25)-(8-l-26).

All follow from application of the same basic principle, represented by

Eq. (8-1-3), or ultimately, by Eq. (5-61).

d. Reactions in Liquid Solution

Example :

CHsCOOH + C 2H 5OH = CH 3CO OC 2H 5 + H 2O

The esterification of acetic acid with ethyl alcohol is one of the first reac-

tions to be studied quantitatively from the point of view of establishing

the equilibrium conditions. This reaction in the liquid state was first

studied by Berthelot and St. Gilles, who showed that the reaction was

reversible and that the equilibrium concentrations were related according

to a law essentially similar to the one formulated several years later by
Guldberg and Waage.

1 Now, on the basis of Eq. (7-3-28) we may pro-

pose that if the four liquids form a solution that is not far from ideal over

the entire range of compositions, then at given temperature, practically

independently of pressure at moderate pressures,

+ RT In Z*,OAC + F^ + RT In zH2o - nAo
- RT In

RT

Therefore as an approximation at equilibrium, applying condition (8-1-3),

RT In ?*? = -(/^ + F^ - fo. - n<OH)
= -AF

Since the terms on the right are constant at the given temperature, being

properties of the four pure liquids, therefore the expression on the left

must also be constant, within the assumption that each constituent

satisfies Raoult's law,

Kx s
*g*QAcXH *Q

;
RT In K, = -AF? (ideal concentrated soln)

#HAc##*OH

(8-1-28)

We cannot expect Eq. (8-1-28) to be valid in general, but as a matter of

1 M. Berthelot and L. P6an de St. Gilles, Ann. chim. et phys., (3) 66, 385-422 (1862) ;

(3) 66, 5-110 (1862); (3) 68, 225-359 (1863); Berthelot, ibid., (5) 14, 437-441 (1878).

See also the discussion of this reaction by G. Edgar in H. S. Taylor's "A Treatise

on Physical Chemistry," 2d ed., Chap. VIII, D. Van Nostrand Company, Inc.,

New York, 1931, and by G. S. Parks and H. M. Huffman, "The Free Energies of

Some Organic Compounds," pp. 173-176, Reinhold Publishing Corporation, New
York, 1932.
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fact, Berthelot and St. Gilles found that the quantity we have represented

by Kx in Eq. (8-1-28) was indeed constant for this particular reaction over

a wide range of initial conditions, its value being about 4. Furthermore,

they found that the value of this so-called mole-fraction equilibrium con-

stant was practically independent of temperature over the range of investi-

gation. Since by the application of the general thermodynamic relation

(8-1-5) to (8-1-28)

dlnKx ^ 1 d(AFT/T) = Aff?
JOT T> WT* J?T'2al K> ai t\,L

[another form of van't Hoff's law; compare Eq. (8-1-21)], we may there-

fore conclude that the heat of this particular reaction is practically zero;

this conclusion is in general agreement with thermal calculation based on

the known heats of combustion of acetic acid, ethyl alcohol, and ethyl

acetate. Substituting the experimental value of Kx in Eq. (8-1-28), we

may compute for the standard free-energy change,

CH3COOH(1) + C 2H6OH(1) = CH3COOC 2H 6 (1) + H2O(1);

,= -JR21
In 4 = -820 cal

Because of the form of AF598 in this particular case, its value represents

what the net free-energy change would be per mole of acetic acid or

ethanol reacting, if each reactant started as a pure liquid at 25C and 1

atm and if each product ended as a pure liquid at 25C and 1 atm.

Example :

CHaCOOH(aq) = CH3COO-(aq) + H+(aq) (8-1-30)

This classic reaction is perhaps not a chemical transformation in the

ordinary sense, and yet its equilibrium conditions may be treated formally

by the same general methods. In fact, the success of this procedure for

the ionization of weak electrolytes was one of the strong points that con-

vinced W. Ostwald originally of the essential correctness of Arrhenius's

ionization theory.
1 There is excellent reason for us to express the equa-

tion for the ionization of acetic acid in water in the Br0nsted-Lowry form

HAc(aq) + H 2O = H 30+(aq) + Ac~(aq) (8-1-31)

So long, however, as we regard the standard states of the participating

substances as one of infinite dilution in water, we cannot distinguish

between the two equations (8-1-30) and (8-1-31) by any physical measure-

ments based ultimately only on Raoult's law and its thermodynamic

implications.

1 S. Arrhenius, /. Am. Chem. Soc., 34, 353-364 (1912).
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We may represent the free energy of the reaction (8-1-30) formally by
means of the equation

In CAC-TAO- + 0H+OMO + RT In CH+TH+ -
In CHACTH'AC (T, p const) (8-1-32)

where we have expressed all concentrations in moles per liter [compare

Eq. (7-3-107c)]. The quantitites entering this equation are related to

their molal counterparts through Eqs. (7-3-97) to (7-3-105). Let us

write

(8-1-33)

Therefore introducing the general equilibrium condition (8-1-3) in

(8-1-32),

RT In
C*+C*~

i*$. = -
(AFJ) a (8-1-34)OHAC THAO

Since the expression (AFJ)c is a constant for the reaction at the particular

temperature, the expression on the left of Eq. (8-1-34) is constant for all

equilibrium states of the reaction at the given temperature. Let

Kc -

where

RT In K s - (AF?)c (8-1-37)

The quantity Kc represents the familiar law-of-mass-action expression or

ionization constant for the reaction, which turns out therefore to be not

actually constant with concentration; the quantity K% is called the

thermodynamic ionization constant of HAc, and is by definition constant

at the given temperature. If each of the
" substances

"
H+, Ac", and

HAc behaves as an independent ideal solute in sufficiently dilute solution,

then

Kl = lim Kc (8-1-38)

where C% represents the stoichiometric concentration of the acetic acid,

without regard to its state in solution.

Now, Kc may be measured by a variety of methods, of which one of

the most precise is the conductimetric method. 1 These methods measure

1 See D. A. Maclnnes, "The Principles of Electrochemistry/' pp. 342jf., Reinhold

Publishing Corporation, New York, 1939, for methods of interpreting the electrical

conductivity of weak electrolytes to determine the degree of ionization.
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essentially the degree of ionization of the solute at various values of the

concentration; thus, letting a represent this quantity in the present

example,

-L-i
(8-1-39)

Equation (8-1-39) represents Ostwald's ideal dilution law, neglecting

deviations from ideal dilute-solution behavior. In Table 8-5 are pre-

sented the values of a, as determined by D. A. Maclnnes and T. Shedlov-

sky from conductivity measurements at various acetic acid concentra-

tions (taken in comparison with the conductivities of NaAc, NaCl, and

TABLE 8-5. IONIZATION OF ACETIC ACID IN WATER AT 25C*

* D. A. Maclnnes and T. Shedlovsky, J. Am. Chem. Soc., 54, 1429-1438 (1932).

HC1 at the same ionic concentration), and the values of Kc computed
therefrom according to Eq. (8-1-39).

1 One sees that while the variation

of Kc with concentration over the given range is small, it is nevertheless

regular and significant.

Now, according to Eq. (8-1-36), the ratio of K% to Kc depends on the

quantity (y) 2/y^ . At the very low concentrations represented in

Table 8-5, one may surely assume that the undissociated acetic acid

behaves like an ideal solute; therefore the change of Kc with concentra-

1 D. A. Maclnnes and T. Shedlovsky, J. Am. Chem. Soc., 64, 1429-1438 (1932);
this work is reviewed by Maclnnes in "The Principles of Electrochemistry."



496 PRINCIPLES OF CHEMICAL THERMODYNAMICS

tion in this dilute range must be practically entirely attributable to the

term 7, representing the mean ionic activity coefficient of the two singly

charged ions, H+ and Ac~. At the low ionic concentrations involved

(much lower than in the case of a strong electrolyte at the same stoichio-

metric concentration), one may look to the Debye-Hiickel limiting law,

Eq. (7-4-31), for calculating the value of 7^, assuming that departure of

the ions of acetic acid from ideal behavior as independent solutes may be

attributed entirely to interionic attraction, at least at the lower concen-

trations in Table 8-5. Thus

log fr;')
2 = -1.018 -v/^2 (8-1-40)

(noting that only the concentration of the ionized part of the acetic acid,

represented by C2a, contributes to the ionic strength). In the last

column of Table 8-5 are given the values of Kc multiplied by the value of

(7) 2
given by Eq. (8-1-40). One sees that over the lowest concentra-

tions, this quantity is quite constant, within experimental error, providing
a sensitive test and confirmation of the Debye-Hiickel approximation.
In this way, Maclnnes and Shedlovsky obtained

Kc
= 1.753 X 10~6

mole/liter

as the thermodynamic ionization constant of acetic acid at 25C. At the

higher acetic acid concentrations the Debye-Hiickel approximation is no

doubt faulty, largely because the presence of the undissociated acetic acid

begins to change the nature of the liquid medium, in particular, to lower

its dielectric constant.

The molal thermodynamic ionization constant K^ is related to K% by
[compare Eq. (7-3-100)]

= K* = L753X10~5
mole/liter

lo-'mole/ks (8-1-X 1U mole/KS & l
Pl 0.99707 kg/liter

Using this value of K% let us translate in terms of

(AF*)m - <&+> + 01c
-
(aq)
- ^Ac(aq)

= -RT In Km = 6485 cal (8-1-42)

The value of (AFJ)m represents what the free-energy change would be if

1 mole of HAc in a hypothetical ideal solution at 1m concentration were

to ionize completely into H4" and Ac~, as hypothetically ideal solutes, both

at 1m concentration. Since we have agreed to let <H+<IW,)
= by conven-

tion, the result, Eq. (8-1-42), therefore measures the difference between

1 This value for K^ is in excellent agreement with K^ = 1.754 X 10~~B mole/kg
obtained by H. S. Harned and R. W. Ehlers, /. Am. Chem. Soc., 64, 1350-1357

(1932), from emf measurements, using the theory to be described in Chap. 9.
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<^Ao-(aq) and <^HAc(aq). The value of </>HAC(aq) niay be measured independently
from partial vapor-pressure measurements of HAc from aqueous solutions

at higher concentrations, where ionization is slight and easily corrected

for [one must, however, take into consideration equilibrium between HAc
and (HAc) 2 in the vapor phase]. Similar data may be used to determine

<' values for the anions of other weak acids in aqueous solution, relative

ultimately to the standard free energies of the chemical elements.

By applying Eq. (7-3-91) term by term to Eq. (8-1-42), we may derive

the expression for the variation of K^ with temperature

= - 1 d[(AFT)m/T] _ V
d(l/T) R d(l/T) R

where Arj represents the enthalpy of reaction (i.e., of ionization) in

infinitely dilute solution. Table 8-6 represents the value of K^ for the

ionization of acetic acid at various temperatures, as determined by H. S.

Harned and R. W. Ehlers from emf measurements. 1 From these data,

one sees that at 25C the enthalpy of ionization of acetic acid must be

close to zero, in agreement with the fact that the heat of neutralization of

acetic acid, by direct thermochemical measurement, is practically the

same as that of a strong acid. 2

TABLE 8-6. THEBMODYNAMIC IONIZATION CONSTANT KJJ> OF ACETIC ACID IN AQUEOUS
SOLUTION

t, C Km ,
10-5

mole/kg
1.657

10 1.729

20 1.753

25 1.754

30 1.750

40 1.703

50 1.633

60 1.542
* H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc. t 55, 652-656 (1933).

The foregoing treatment is readily generalized to include more complex

types of equilibria, involving solids, other liquid phases, or gases in equi-

librium with a liquid solution. Let us consider one further example.

Example :

AgBr(c) + 2NH 3(aq) = Ag(NH 3) 2
+
(aq) + Br(aq)

1 H. S. Harned and R. W. Ehlers, ibid., 65, 652-656 (1933).
2 T. W. Richards and B. J. Mair, ibid., 61, 737-740 (1929), obtained 13,544 cal/mole

as the heat of neutralization of IIAc(400 II 2O) with NaOH(400 H 2O) at 20C, while

T. W. Richards and L. P. Hall, ibid., 731-736, obtained 13,786 cal/mole as the heat

of neutralization of HC1 (400 H 2O) with NaOH(400 H 2O) at 20C.
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For this reaction in general, at given temperature and pressure,

Thus, introducing the general condition for equilibrium (8-1-3),

RT In KmKy
> = - (AF*T)m (8-1-44)

where, by definition,

Thus, if the solution were ideal, Km would be constant for the reaction.

In fact, however, Km departs from the ideal limiting value, J
,
to the

extent that the quantity we have represented by Ky deviates from 1. It

is known that NH 3 in aqueous solution satisfies Henry's law quite well at

least up to 1m concentration; therefore the change of Ky
> with solute con-

centration in dilute solution is due almost entirely to the deviation of 7,
the mean ionic activity coefficient of Ag(NH 3)2Br, from 1. We may
therefore express (8-1-44) in the form

xVmA.'y' **

log Km* log Y = ^ log J

assuming that 7^ 1 in the more dilute solutions. We may estimate

the value of log y at low ionic strength by means of the Debye-Hiickel

limiting law (7-4-31) for strong 1: 1 electrolytes; it is of course necessary

to take into account the ionization of NHUOH in computing the ionic

strength.

Table 8-7 presents experimental data for the reaction, as compiled by
M. Randall and J. O. Halford for the "International Critical Tables." 1

The sixth column presents log KmW + 0.509/z^, which according to the

Debye-Hiickel approximation in the limiting form (7-4-31), with 7^111

assumed equal to 1, should represent K log ^m- By means of an actual

graphical extrapolation of logKJ* vs.^ to /*
=

0, Randall and Halford

obtained for this quantity the value

1 "International Critical Tables," Vol. VII, p. 270, McGraw-Hill Book Company,
Inc., New York, 1930; see also M. Randall and J. O. Halford, J. Am. Chem. Soc.,

62, 192-194 (1930), for calculations involving equilibria of other complex ions of silver.
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Since the values of 4>zt-

-\4\ogKm = 2.537

Km = 8.4 X 10-"

= ~RT In K = 6922 cal (T.
= 298.16K)

(<i)t
and are obtainable from other

sources, this piece of information provides us with a value of

TABLE 8-7. EQUILIBRIUM OF AgBr(c) WITH AQUEOUS AMMONIA*

AgBr(c) + NH 3(aq) - Ag(NH,) 2
+

(aq) + Br- (aq)

* "International Critical Tables," Vol. VII, p. 270, McGraw-Hill Book Company, Inc., New York,
1930.

8-2. Free Energies of Formation. Equilibrium data, then, provide us

with information concerning the relative values of the standard molal free

energies of chemical substances in conventionally chosen reference states.

Thus, by means of the general formula,

AFT
= -RTlnK (8-2-1)

equilibrium constants expressed in the conventional forms outlined in

Sec. 8-1 may be translated into differences between the free energies of

the products and reactants of the chemical reaction, in corresponding

reference states. The significance of Eq. (8-2-1) is that since the free

energy of a given substance is one of its properties, determined solely by
its state, the contribution of the given substance to A/^> ai*d hence to the

value of K, of any reaction in which it may take part is determined solely

by its state, independently of the other substances that may be involved

in the reaction. It is therefore possible for us to assign to each chemical

substance a relative value of F^, at a given temperature, that will corre-

late in the form of a single number all information concerning the equilib-

rium behavior of the substance with respect to other substances, in much
the same manner that its standard enthalpy of formation correlates its

thermochemical behavior.

Now, just as in the case of standard enthalpies, the standard molal free

energy of each chemical element in any one allotropic form at a given
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standard temperature and pressure remains quite arbitrary for ordinary

chemical purposes, since we have no way of intercomparing the free

energies of the elements, short of transmutation experiments. Therefore

we conventionally assign to each chemical element in its most stable allo-

tropic form at standard conditions of 25C and 1 atm a zero molal free

energy: F?g8.i6
^ 0. To each pure chemical compound (and to other

metastable allotropes of the elements) we then assign a value of /^98 . 16

equal to its standard molal free energy of formation from the elements, in

their most stable allotropic forms, at 25C and 1 atm.

Thus, the equilibrium data for the Haber reaction, summarized in Eq.

(8-1-24),

g) - NH3 (g); AF5 - -3976 cal

give us immediately the free energy of formation of NH 3 (g):

^198.16
=* -3976 cal

In a similar manner, the free energies of formation of certain other com-

pounds may be determined, if they can be brought directly to equilibrium

with their elements; data obtained at temperatures other than the stand-

ard temperature, 25C, may be corrected to that temperature through

application of the van't Hoff equation

,o o ^(8
"2"2)

In this equation, AH% may be measured either by direct thermochemical

means, or by the application of Eq. (8-2-2) itself to equilibrium data

obtained over a series of temperatures; it may be represented as a func-

tion of T through heat-capacity data for the reactants and products, by
means of the Kirchhoff equation

A# = Atf, + [
T
AC* dT (8-2-3)

JTo

where A/7J, represents the known value ofAH at any one temperature, TV
Proceeding stepwise from those compounds for which direct equilib-

rium data are available with respect to their elements, new equilibrium
data for reactions involving such compounds or the chemical elements

With a single new compound provide us with the free energy of formation

of the new compound. Each independent reaction for which equilibrium
data can be measured among substances whose standard free energies of

formation have already been determined serves as a cross check on the

accuracy of the previous data. In this way (along with additional infor-
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mation to be discussed in Sec. 8-3), tables containing standard free

energies of formation of many compounds have been compiled, which

essentially summarize equilibrium data for all conceivable chemical reac-

tions among the substances included. The extension of such tables to

include additional compounds, and refinement in the self-consistency and

precision of the information they contain, is one of the primary objectives

of chemical thermodynamics.

The first systematic study of the thermodynamic data needed in the investiga-

tion of equilibrium conditions for a group of important reactions was by F. Haber,

"Thermodynamik der technischen Gas Reaktionen," R. Oldenbourg, Munich,
1905. The outstanding compilation prior to 1930 was by G. N. Lewis and
M. Randall,

"
Thermodynamics and the Free Energy of Chemical Substances,"

McGraw-Hill Book Company, Inc., New York, 1923; this book summarized

many of the authors' original contributions in this field. In 1930, existing free-

energy data were critically reviewed by M. Randall, as special editor, in the

"International Critical Tables/' Vol. VII, pp. 224-353, 1930, published by the

McGraw-Hill Book Company for the National Research Council. Extensive

free-energy data, not critically evaluated, are compiled in Landolt-Bornstein,

"Physikalisch-chemische Tabellen," 5th ed., Supplement lib, pp. 1591-1602,
1931 and Supplement IIIc, pp. 2836-2852, 1936, published originally by Springer-

Verlag, Berlin; one should note in using these tables that the data in Supplement
lib have signs opposite to the usual American and present international custom.

The free energies of organic compounds were critically reviewed by G. S. Parks

and H. M. Huffman, "The Free Energies of Some Organic Compounds," Rein-

hold Publishing Corporation, New York, 1932. The free energies of inorganic

compounds and of ions in aqueous solution were critically reviewed by W. M.

Latimer, "The Oxidation States of the Elements and Their Potentials in Aqueous

Solutions," Prentice-Hall, Inc., New York, 1938. In 1947, the National Bureau

of Standards published an extensive summary of properties of the hydrocarbons,

including their free energies and enthalpies of formation, Selected Values of

Properties of Hydrocarbons, Natl. Bur. Standards Circ. C461 (1947). The
National Bureau of Standards is at present compiling an extensive table of

"Selected Values of Chemical Thermodynamic Properties," F. D. Rossini,

project director, which is being issued quarterly in loose-leaf form; this is a very
ambitious project, and should ultimately supersede previous compilations.

During the last 20 years, many new data on the thermodynamic properties of

gases have been obtained from molecular-spectroscopic sources (Chap. 10) ;
these

data are being assimilated with the data obtained from equilibrium and thermal

studies; critical compilations of molecular-spectroscopic data are included in

G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," D. Van
Nostrand Company, Inc., New York, 1945;

"
Molecular Spectra and Molecular

Structure. I. Spectra of Diatomic Molecules," D. Van Nostrand Company,
Inc., New York, 1950; A. G. Gaydon, "Dissociation Energies and Spectra of

Diatomic Molecules," John Wiley & Sons, Inc., New York, 1947.
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For substances in liquid solution in a particular solvent, the application

of Eq. (8-2-1) involves in the term on the left, not the standard molal free

energy of the substance in the pure state, but a special standard molal

free energy of formation in solution in the given solvent, <'; this will be so

if the term K on the right has been set up formally in the conventional

law-of-mass-action manner in terms of molalities and molal activity coeffi-

cients, i.e., with each mole of reactant in the solution represented by a

factor in the denominator of K equal to its molality (multiplied by an

appropriate activity coefficient) and with each mole of product in the

solution represented by a similar factor in the numerator of K. While it

would be technically possible to eliminate the quantities <' and express

the conditions for equilibrium in a reaction in liquid solution directly in

terms of F's for the pure reactants and products, we could do this in

general only by abandoning the law of mass action, which has a mathe-

matically convenient form, and is in fact approximately valid in suffi-

ciently dilute solution. Therefore it is convenient to include in our

tables, wherever the necessary data are available, not only the value of

^298.16 f r the pure compound but also the value of 0298.16 in various liquid

solvents, particularly in water. The value of <' may be related to the

value of F directly from equilibrium data between the pure compound
and the solution, through the methods described in Chap. 7; thus, for

equilibrium between NH 3(g) and NH 3(aq),

NH 3(g)
= NH 3(aq)

+ RT In PNHS = <^H ,(aq) + RT In

From measured values of the partial pressure of NH 3 in equilibrium with

solutions of various molalities at 25C, which actually satisfy Henry's law

rather well, limmNH,/pNHa 56.7 (mole/kg H20)/atm (according to Lewis
m-0

and Randall). Thus

4U<M - ftn* = -2390 cal

Combining this result with the value of F^HM as established directly

from equilibrium measurements with N2 and H2 at high temperatures

(-3976 cal/mole), <^H ,(aq)
= 6366 cal/mole; i.e.,

g) = NH 3(aq); AF?98 .16
- -6366 cal

If one sets up the law-of-mass-action expression K with molar concen-

trations C instead of molalities ra, then the term AFJ on the left of Eq.

(8-2-1) will involve slightly different terms, <", for the reactants and
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products in solution, where each <" is related to the corresponding <' by
means of Eq. (7-1 17a),

<" = tf
- RT In Pl

where pi represents the density of the pure solvent; for aqueous solutions

at 25C, <t>"
=

4>' + 1.7 cal.

The general modifications for electrolytes have been noted in Sec. 7-4,

and also in some of the examples considered in Sec. 8-ld. We may treat

each ionic reactant and product formally as an independent solute, so

long as every thermodynamic operation is consistent with the over-all

electrical neutrality of each phase in which the ions may be present. In

order to assign values of 0' to individual ions in a particular medium, it

has become the custom to assign ^ =
0, at least in aqueous solutions,

and a similar convention would be needed in other solvents if the experi-

mental data were sufficiently extensive to warrant systematic analysis.

Appendix 2 includes standard free energies of formation for a selected

group of chemical substances. From such a table, one may reconstruct

the value of AF 98tl6 for any reaction among the substances included.

Even more significantly, one may predict the value of A/^gg.ie for hitherto

untested reactions among them. Such a compilation evidently intro-

duces the utmost economy in the correlation of equilibrium data. By
working back through Eqs. (8-2-3), (8-2-2), and (8-2-1), one may trans-

late this information into theoretical equilibrium yields under various

conditions of temperature, pressure, and composition.

The standard free energy of formation is thus a quantitative measure

of the relative tendency of a chemical substance to enter into chemical

transformations with other substances. The higher its value, in the

algebraic sense, the greater is the extent to which it tends to undergo
transformation from its standard state, though of course the over-all

tendency of a particular transformation is determined by the net free-

energy difference between all the reactants and all the products. A sub-

stance whose standard free energy of formation happens to be positive at

a given temperature is thermodynamically metastable toward decom-

position into its own elements; when the decomposition would be accom-

panied by a large volume increase (e.g., gas evolution), together with

evolution of heat to raise the temperature locally and speed up the reac-

tion, the situation may be fraught with disastrous possibilities, as Lewis

and Randall noted in the case of NH4N0 3(c), ordinarily regarded as a

reasonably stable compound.
1

It should be emphasized throughout that the second law of thermody-

1 G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances," p. 606, McGraw-Hill Book Company, Inc., New York, 1923.
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namics is essentially negative in character
;
it denies the possibility of certain

transformations [e.g., of any transformation for which (AF)T,P > W],
but it does not guarantee that any change shown to be thermodynamically
feasible will in fact take place. Otherwise diamonds would not exist, and

ammonia could be synthesized at room temperature. The second law

gives us no information concerning the rate at which equilibrium will be

attained, though thermodynamic data may be extremely helpful in the

elucidation of reaction mechanisms. Situations may arise also in which

competing processes take place, which one did not take into account.

8-3. The Entropy of Reaction and the Third Law of Thermodynamics.
We have seen in Sec. 6-2 that the entropy of a chemical substance in any
state at temperature T and pressure p may be related to its value S^,, in

some standard reference state at temperature Ts and pressure po through
the general equation

d In T - dp (8-3-1)

The second term on the right of Eq. (8-3-1) represents the change of S
with temperature at the constant pressure po, while the third term repre-

sents the change of S with pressure at the constant temperature T. For

pure liquids and solids, po is taken to be 1 atm, and for moderate pressures,

the third term on the right of (8-3-1) may usually be neglected; for an

ideal gas, this term would reduce to R In (p/po), but for a real gas at

finite pressures, it may be evaluated from actual equation-of-state data

[compare Eq. (6-44)]; for gases, the standard reference state is taken to be

that of a hypothetical ideal gas at po = 1 atm, as explained in Sec. 6-2.

Furthermore, for a constituent of a solution at given temperature, as

shown in Chap. 7, we may write in general

rg <fc
f

.

ffi
-- (X-6-Z)

or, introducing Eq. (7-3-82) for a solute in liquid solution in a given

medium,

(8-3-3)

This relation may be put also in the form [compare Eqs. (7-l-26a),

(7-3-82), and (4-37)]

<r;
=

a',
- R In mri - RT r

n
(8-3-4)

where

*'<
- % (8-3-5)
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The equation corresponding to (8-3-4) for a strong electrolyte,

would be

= a'i -R In m*m- + &T In T -
ffl?

1

jr* (8-3-6)

where we could regard <rj as a sum of ionic entropies, if in the given

medium, such as water, we adopt the preliminary convention,

<rUq)
=

(8-3-7)

[compare Eq. (7-4-14)].

Now, the entropy of a chemical transformation

aA + bB + = IL + mM + (8-3-8)

AS = ISL + mSM + - aSA - bSB - (8-3-9)

(where it is understood that for any constituent of a solution, we sub-

stitute the partial molal entropy <n in place of the molal entropy Si of the

pure component), may be calculated from reversible equilibrium data

establishing the value of &F and calorimetric data establishing the value

of AT?, adjusted to the same temperature and pressure, through the

general relationship

AS = (T const) (8-3-10)

Equation (8-3-10) is actually nothing more than a definition of the rela-

tionship among the three quantities, AS, A#, and AF. Or, we could cal-

culate AS directly from reversible equilibrium data at several tempera-
tures in the form

AS-- fd^

The explicit calculation of AS by means of Eqs. (8-3-10) or (8-3-11) would
in fact produce no new information not already implied by knowledge of

A/I and AF, if it were not for the further empirical observations to be dis-

cussed in this section. In fact, we have so far been eliminating all explicit

reference to AS by combining Eqs. (8-3-10) and (8-3-11) in the form of

van't Hoff's relation

_ n (
.~ " ( 3 }

and AH being more immediately related to familiar experimental

properties of the reaction (the equilibrium constant and the heat of reac-

tion, respectively) than AS. In this section, we shall now discuss an

independent method of measuring AS directly from purely thermal data,
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which lends to A/S important physical significance in its own right; this

method of establishing AS, combined with standard thermochemical

measurement of A//, serves through Eq. (8-3-10) to determine the value

of AF and by implication the thermodynamic equilibrium constant for

the reaction, without the need for setting up a single reversible or equilib-

rium state of the reaction itself. The value of such a principle is mani-

fest, and its importance in modern chemical technology can hardly be

overestimated.

Let us consider a reaction among pure crystalline solids at standard

pressure of 1 atm; then, according to Eq. (8-3-1),

(8-3-13)= AS. + f*
AC ^

Suppose we examine what happens as T 0. We have seen in Sec. 3-4

that the molal heat capacities of crystalline solids in general approach
zero as T 0; they do so, when sufficiently low temperatures have been

reached, according to the empirical law C = aT73
[Eq. (3-55)], where for

the simpler types of crystals the value of a can be evaluated theoretically

from heat-capacity data at higher temperatures or from the elastic con-

stants of the crystal, according to the theory of Debye or the extended

treatment given by Born and von Kdrmdn and by Blackman. For our

present purpose, however, we need merely note that A$ for reactions

among pure crystalline solids evidently approaches in each case a finite

limit as T > 0, whose value we may represent by the symbol A$2- If

A/SJJ
= lim A$J remains finite, then, according to Eq. (8-3-10), the values

of AHJ and AF% for such reactions must approach each other as T > 0.

This was indeed noted as an empirical fact by T. W. Richards in 1903,

from the trend of free-energy data obtained over a range of temperatures

by means of galvanic cells (by methods discussed in Chap. 9).
1 The

question arose: Do they approach each other asymptotically, so that in

the limit as T ->

r SdAHhm I

T-+Q \ dl

. r ,001^hm I ^ ]
= hm I ^ } (8-3-14)

or does a finite difference persist between the limiting slopes of the AFJ vs.

T and the A# vs. T relationships? The answer to this question, while

not implied by the first and second laws of thermodynamics, is of con-

siderable theoretical and practical importance, because if Eq. (8-3-14) is

empirically true, then in view of empirical and theoretical heat-capacity

information, which indicates that

1 T. W. Richards, Z. physik. Chem., 42, 129-154 (1902).
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l
im
o(l^)

=
r
m (AC^ =

(8-3-15)

Eq. (8-3-10) implies that

lim AS? =
A/S?

=
(8-3-16)

On the basis of the experimental evidence available at the time, Walther

Nernst,
1 in an important paper published in 1906, came to the conclusion

that condition (8-3-16) was indeed satisfied by many reactions involving

pure crystalline phases. A wealth of additional evidence has since been

accumulated, and also a few exceptions discovered, whose general nature

we shall discuss in Chap. 10.

It follows that we may assign to all substances satisfying Nernst's heat

theorem (8-3-16), or the so-called third law of thermodynamics, for all reac-

tions in which they participate, a common value of the standard molal

entropy S% in the pure crystalline state at 0K. It is convenient and

sensible for us to let this common zero-point entropy have the conven-

tional value, zero, as suggested originally by Max Planck: 2

1 W. Nernst, Nachr. kgl Ges. Wiss. Gottingen, Math.-physik. Klasse, (1906), pp. 1-40.

Nernst later summarized his work in "Die theoretischen und experimentellen Grund-

lagen des neuen Warmesatzes," W. Knapp, Halle, 1918, translated by G. Barr as

"The New Heat Theorem," E. P. Button & Co., Inc., New York, 1926.
2 M. Planck, Ber. deut. chem. Ges., 46, 5-23 (1912). In view of the formal thermo-

dynamic relationship F = H TS, which essentially defines F [Eq. (5-59)], one might
at first suppose that convention (8-3-17), which applies alike to elements and com-

pounds, might clash with our previous conventions to let 3%, and F. represent

standard enthalpies and free energies of formation from the elements at T8 = 298.16K.
Reflection shows, however, that the formal relationship F% = By TS^ has no

physical significance except in connection with changes of state; the first and second

laws of thermodynamics, as well as the third law, Eq. (8-3-16), are statements con-

cerning changes taking place in thermodynamic systems. For changes involving only
the pure chemical substance itself, the "absolute" values assigned to F and H in any
one reference state are entirely immaterial, and, likewise, only differences in the

value of S between two different states have any meaning; the convention (8-3-17)

has in fact no bearing at all on such changes. For chemical changes, likewise, only

AF, AH, and AS values have direct physical significance, and therefore it is not

inconsistent for us to assign to a chemical element a zero 5ja ,
a zero FJ., but a finite

8%,, [on the basis of convention (8-3-17)], with the understanding that such values

have significance only when recombined with corresponding values for other chemical

substances in the form of A#
a, AFJ3,

and ASJ, for some chemical transformation,

including in particular transformations representing the formations of chemical

compounds from their elements in standard reference states. In other words, the

new physical principle represented by Eq. (8-3-16) implies that S^9
values determined

by experiment on the pure chemical substance in relation to the convention (8-3-17)

(or any other convention that would assign a uniform value, not necessarily 0, to

8% for pure crystalline solids), will satisfy the relationship AFJt
= AHJa

T
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lim S% = SQ = (most pure crystalline solids) (8-3-17)

Let us examine how the convention (8-3-17) is actually applied and

how the principle (8-3-16) is tested. For a chemical substance in the

crystalline state that undergoes no phase transition and shows no other

irregularity in thermal behavior between 0K and T
y Eq. (8-3-1) upon

introduction of (8-3-17) may be put in the form

ST
= Cp d\nT (8-3-18)

In particular, with T = T8 (e.g., 298.16K), the evaluation of this integral

gives us a standard value ST. of the molal entropy at the standard refer*

ence temperature T8 . The integral is generally evaluated in two parts;

its value up from the lowest temperature at which C has actually been

measured may be determined by graphical integration from a plot of

C vs. log T] the balance, from0K to the temperature at which the meas-

urements begin, is determined by means of an extrapolation. The more

reliable series of measurements for the purpose extend down at least to

liquid hydrogen temperatures (about 14K) ; some investigations have

extended down to liquid helium temperatures. The extrapolation may
consist either of the simple approximation ^C', where (?' represents the

observed heat capacity at a sufficiently low temperature, within the range
of the T3

law,
1 or more precisely of the fitting of a modified Debye func-

tion to the observed data, with an appropriate empirically determined

value of the parameter 0.
2 A detailed discussion of the extrapolation

has been given by K. K. Kelley.
3

Figure 8-5a shows, for example, C

plotted against T for AgCl(c) from measurements by K. Clusius and P.

Harteck (10 to 126K) and by E. D. Eastman and R. T. Milner (15 to

293K) ;
in Fig. 8-5&, the same data have been plotted in the form of C

vs. log J
7
.
4

Graphical integration between 10K and 298.16K has

for any chemical transformation involving other chemical substances whose $J,a

values have been determined on the basis of the same convention. This relationship

applies in particular to the formation of a chemical compound from its elements.

* If C;
- a!P at sufficiently low values of T, then

fj (C
Q
p/T)dT - aT' /8 - C^/3.

In principle, the T9 law applies to Cv , but at liquid hydrogen temperatures the differ-

ence between C and Cv [Eq. (3-41); see also Eq. (3-57)] has usually become negligible.
2 The entropy integral (8-3-18) where C is represented by the Debye function

D(6/T), Eq. (3-54), has been tabulated as a function of 0/T; see Landolt-Bornstein,

"Physikalisch-chemische Tabellen," 5th ed., Supplement I, p. 707, 1927.

K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941).

K. Clusius and P. Harteck, Z. physik. Ghent., 134, 243-263 (1928); E. D. East-

man and R. T. Milner, /. Chem. Phys., 1, 444-456 (1933),
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Fia. 8-5a. CP vs. !T for AgCl(c). (Data of E. D. Eastman and R. T. MUner.)

i
8

10

FIG. 8-56. CP plotted against log T for AgCl(c). (Smoothed data of Fig. 8-5a.)
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yielded S 98 . 16 S Q
= 22.83 eu/mole, while the extrapolation from 10K

to 0K has yielded SIQ
- SQ

= 0.14 eu/mole. Thus, in view of (8-3-17),

OSiM-ieW) = 22.97 0.10 eu/mole (8-3-19)

From similar data for Ag(c), which in this case extend down to 1.35K

(below which the entropy extrapolation to0K is negligible), K. K. Kelley

has compiled a best value: 1

OS?98.i6)Ag (c)
= 10.20 0.05 eu/mole (8-3-20)

For the slightly more involved case of a substance that melts at tem-

perature Tp with latent heat of fusion L^ and boils at normal boiling point

TB with latent heat of vaporization L^, within the temperature range,

to T, the standard molal entropy of the gas at T, based on the supposition

that the 0K crystalline phase satisfies the third law, is given by the

generalization of (8-3-18)

/TF
fo rW fo fT

(Cp) c dlnT +^ + / (C
Q
p ) l dlnT +

J

$+ / (Cp) dfoT
I

* F J -* B J TB

(8-3-21)

To this expression, one must add a correction to reduce to the ideal-gas

entropy at T% and 1 atm [e.g., through Eq. (6-45) ;
see also Prob. 6-10].

The first integral on the right of (8-3-21) is evaluated in the same man-
ner as before: graphical integration between Tp and the lowest tempera-
ture to which the actual measurements of (C) c reach, combined with an

extrapolation below. The generalization of (8-3-21) to include possible

reversible phase transitions between different crystalline phases below

the melting point is sufficiently obvious.

In Fig. 8-6a, Cp has been plotted against T for Cl2, from measurements

by W. F. Giauque and T. M. Powell,
2 and in Fig. 8-66, the same data,

taken from their smoothed results, have been plotted in the form of Cp vs.

log T. Table 8-8 presents the summary of their calculations; their cor-

rection for deviation of Cl 2(g) from ideal-gas behavior at its normal boiling

point at 1 atm was made by means of Berthelot's equation (see Prob.

6-10). Their evaluation of the last term in Eq. (8-3-21) for Cl2(g)

between its normal boiling point and 298.16K was based not on actual

calorimetric data but on the considerably more precise molecular spectro-

scopic method, which we shall consider in Chap. 10.

Combining the result summarized in Table 8-8 with the previous

results, (8-3-19) and (8-3-20), we may infer on the basis of the third law

1 K. K. Kelley, U.S. Bur. Mines Bull 434 (1941.)
2 W. F. Giauque and T. M. Powell, /. Am. Ghent. Soc., 61, 1970-1974 (1939).
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FIG. 8-6a. Cp vs. T for C1 2 . (Data of W. F. Giauque and T. M. Powell; values for Ch(g)
derived by calculation from spectroscopic data as described in Chap. 10.)

FIG. 8-66. CP plotted against log T for Cl. (Smoothed data of Fig. 8-6a.)
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(8-3-17) for the formation of AgCl(c) from its elements

Ag(c) + ^Cl2(g)
- AgCl(c); AS 98 . 16

- 22.97 - 10.20 - ^ (53.32)
= -13.89 0.15 eu (8-3-22)

TABLE 8-8. CALCULATION OP THE ENTROPY OF Cl 2(g)*

Eu/mole
Crystals, 0-15K, Debye function, with = 115 deg 0.331

Crystals, 15-172.12K, graphical 16.573

Fusion, TF = 172.12K, Lci
- 1531 cal/mole 8.895

Liquid, 172.12-239.05K, graphical 5.231

Vaporization, TB = 239.05K, L tff
- 4878 cal/mole 20.406

Correction to ideal gas at 239.05K and 1 atm 0. 12

Ideal gas, 239.05-298.16K, spectroscopic 1.76

OS2 98.i6)ci 2<*) -53.32 0.10
* W. F. Giauque andT. M. Powell, J. Am. Chem. Soc., 61, 1970-1974 (1939).

This result may be compared with the experimental value of

A/S?98 . 16
= -13.76 0.10 eu

obtained for this reaction by R. H. Gerke, from direct measurement of

the temperature coefficient of AF [Eq. (8-3-11)] given by emf data, as

described in Chap. 9
;
the agreement is excellent. 1 One may test the third

law independently for this reaction by taking into consideration W. A.

Roth's and A. Bertram's direct calorimetric determination of

Aff298.16
= -30,800 calf

Introducing this result with the third-law value of A$298 . 16 in Eq. (8-3-10),

we obtain for AF 98a6

A/^98.i6
= -30,800 cal - 298.16 deg (-13.89 eu)
== -25,980 cal

as compared with Gerke's direct experimental value for AF 98 . 16 itself of

-26,210 cal.

The number of such examples of the power of the third law could be

multiplied indefinitely. By implication, the third law enables us to calcu-

late equilibrium conditions for reactions at ordinary and high tempera-

tures from purely thermal data in the form

AFJ = -RT In K = A#? - T AS? (8-3-23)

1 R. H. Gerke, J. Am. Chem. Soc., 44, 1684-1704 (1922); his result of

A/S.298.16
= - 13.73 eu

with Cl2(g) at a pressure of 1 atm, has been corrected for deviation of Cl 2(g) from

ideal-gas behavior at 298.16K and 1 atm according to Berthclot's equation of state,

t Reported by W. A. Roth in Landolt-Bornstein, "Physikalisch-chemische Tabellen,"

5th ed., Supplement IIIc, p. 2760, 1936, and corrected from 18C to 25C.
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without the necessity for setting up a single preliminary equilibrium

experiment. Thus, the entropies of the chemical substances CaCOs
(calcite), CaO(c), and CO2(g) have all been determined from low-tem-

perature heat-capacity measurements; K. K. Kelley's excellent critical

compilation gives the results: 1

CaC0 3(calcite): S 98
= 22.2 0.2 eu/mole

CaO(c): $298
= 9.5 0.2 eu/mole

C0 2 (g): SJ98
= 51.1 0.1 eu/mole

Therefore for the reaction,

CaCO 3(calcite)
= CaO(c) + CO 2 (g); AS 98

= +38.4 eu

Combining this third-law entropy of reaction, deduced entirely from

measurements conducted on the separate pure chemical substances, with

the enthalpy of reaction recorded in Sec. 8-16, A// 98
= 42,600 cal, as

derived from thermochemical measurements of the heats of solution of

CaCO 3(calcite) and CaO(c) in dilute hydrochloric acid, we obtain

AF 98
= 42,600 cal - (298 deg)(38.4 eu)
= 31,150 200 cal

We could easily extend the calculations to higher temperatures, from

further knowledge only of the heat capacities of the separate substances,

and thus predict the dissociation pressure at any temperature from purely
thermal data. We may compare the value of AF298 just calculated on the

basis of the third law with the value of 31,260 derived by Backstrom from

the extrapolation down to 298K of actual equilibrium data obtained at

high temperatures; the agreement is indeed excellent.

As one further illustration, let us consider the third-law entropies of

N 2(g), H 2 (g), and NH 3(g), for which Kelley has compiled the following

values:

N2 (g): S 98
= 45.9 0.1 eu/mole

H 2(g): S%9S = 31.3 0.1 eu/mole
NH 3 (g): S 98

= 45.9 + 0.1 eu/mole

These values have all been supplanted by the more precise values obtain-

able from a statistical molecular analysis of the spectra of the three gases,

as we shall observe in Chap. 10; but they serve to illustrate the usefulness

and essential validity of the third law. Thus, for the ammonia synthesis

(hypothetical) at 298K,

g)
= NH 3(g); AS?98

- -24.0 eu

1 K. K. Kelley, Contribution to the Data on Theoretical Metallurgy. IX. The

Entropies of Inorganic Substances. Revision (1940) of Data and Methods of Calcu-

lation. U.S. Bur. Mines Bull. 434 (1941).
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Let us combine this value of A/S 98 with the thermochemical value of

A//298
= 11,040, from the work of Becker and Roth, quoted in Sec.

8-lc,

-11,040 cal - (298 deg)(-24.0 eu)
== 3880 60 cal

This result agrees within experimental error with the value of

derived by extrapolation (based on heat-capacity data) from high-tem-

perature equilibrium measurements [compare Eq. (8-1-24)].

The third law of thermodynamics has been used extensively by W. M.
Latimer and his associates in the establishment of standard ionic entropies

in aqueous solution. 1 For many electrolytes, the enthalpies of formation

in solution (*J, or lim 172) are known, but the free energies of formation in

solution (0J) cannot be measured directly by equilibrium or emf methods,

because of the slowness or irreversibility of the available reactions. In

such cases, the establishment of <r independently from thermal data has

permitted the calculation of <t>'2 through the general relation (8-3-5). A
specific example will illustrate the method, and the types of experimental

information required.

For KlOsfa), from heat-capacity measurements between 17.30 and

298.16K, together with a Debye function extrapolation between and

17.30K, J. E. Ahlberg and W. M. Latimer found that

OS298.ie)Kios<o
- 36.20 eu/molef

The solubility of this salt in water at 25C is 0.43 mole/kg; while the value

of 7^ for tlie saturated solution has not been directly measured, Ahlberg

and Latimer assigned the value 7^ = 0.52, by analogy with AgN0 3 at the

same concentration (compare also Fig. 7-19). Therefore

from which we obtain for the standard free energy of solution

KIOs(c) - KI0 3(aq); AF - <&IOl(aq)
- few - 1770 cal

This quantity represents the free-energy change that would take place if

1 mole of KIO 3(c) were to be dissolved in a hypothetical ideal dilute solu-

tion of KI03 (completely ionized) at 1m concentration. In this case,

^Kio 3(o is not independently known. Now, the total heat of solution at

infinite dilution has been measured by F. D. Rossini, leading to the

1 W. M. Latimer, P. W. Schutz, and J. F. G. Hicks, /. Chem. Phys., 2, 82-84 (1934) ;

W. M. Latimer, Chem. Rev., 18, 349-358 (1936); many subsequent papers published

in the Journal of the American Chemical Society.

t J. E. Ahlberg and W. M. Latimer, J. Am. Chem. Soc., 66, 856-858 (1934).
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conclusion

KIO 3(c)
= KlOa(aq) ;

AH = (S^KtoaU)
- H^IO>(C)

- 6340 cal

Therefore, according to the general thermodynamic relationship (8-3-10),

T^ / x TTT^ , ^ A oo So 6340 - 1770
KIO 3(c)

= KIO 3(aq) ;
A/S = ff^^) - ^KIO,(O

=
9Qo 1fi

eu
^yo.io

= 15.3 eu

This quantity represents the entropy change that would take place if 1

mole of KIO 3 (c) were to be dissolved in a hypothetical ideal dilute solu-

tion of KI0 3 at Im concentration. Combining with the third-law

entropy value for KIO 3 (c),

^Kioacaa)
= 36.2 + 15.3 = 51.5 eu/mole

The value of (TKIO, at finite concentrations in real solutions is of course

represented by Eq. (8-3-6). From 0K+(aq)
= 24.6 eu/mole calculated by

Latimer, Schutz, and Hicks from similar data for other potassium salts,

with ultimate reference to the convention (8-3-7), Ahlberg and Latimer

thereupon drew the conclusion that for IO 3~(aq) at 298.16K,

<r'io 8-(aq)
= 26.9 eu/mole

This standard ionic entropy of IO 3~(aq) could now be combined with the

value derived for some other cation, together with the heat of solution,

solubility, and activity coefficient in the saturated solution of the corre-

sponding salt, to determine S 98 .i6 for the pure crystalline iodate, without

the need for low-temperature heat-capacity data; or, if one had the stand-

ard enthalpy of formation of the pure compound, as well as the enthalpy
of solution, so that the value of $> itself could be computed, then the

ionic entropies relative to the elements in their standard states (at 25C and
1 atm), introduced in Eq. (8-3-6), would provide the value of <', the stand-

ard free energy of formation of the strong electrolyte in aqueous solution.

One should note that Latimer's ionic entropies, like the entropies of

ordinary chemical substances, refer to the third-law convention (8-3-17),

as well as to (8-3-7), so that one would write formally for the standard

entropy of formation of IO 3~(aq) at 298.16K:

- e = I0,-(aq)

5 . 16
= 26.9 - H(27.9)

- % (49.03) eu
= -60.6 eu

(The symbol for the electron included in this equation has purely formal

significance, since one can carry out a reaction leading to the formation
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of an ion in solution only to the accompaniment of some other reaction

leading to the formation of other ions of equivalent opposite charge.)

The apparent exceptions to the third law, as well as its general theoreti-

cal import, can be understood only in terms of the statistical molecular

interpretation of thermodynamics, to which we shall turn in Chap. 10 [see

in particular the discussion following Eq. (10-36)]. Its practical value,

when due allowance is made for exceptional cases, stands unquestioned.
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Problems

8-1. The pressure of water vapor required to maintain equilibrium between CaSO 4
-

2H2O(c) and CaSO4-JH 2O(c) at various temperatures is as follows ("International

Critical Tables," Vol. VII, p. 296, 1930):

t, C pH,o, atm
17 0.00661

25 0.0120

48 0.0617

60 0.1180

72 0.2366

Plot log PH,O vs. 1/T, and calculate AF and A/f for the reaction

CaSO4-2H2O(c) CaSO4-MH2O(c) + %H2O(g)
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at 25C. Compare your A# value with that determined in Prob. 4-10 from heats of

solution of the two hydrates in water.

NOTE: #n 2o(g)

-
#HO<O = 10.514 kcal/mole at 25C.

8-2. The dissociation pressure of CaSO4-2H 2O(c) in equilibrium with CaSO4 (e,

soluble anhydrite) has also been measured and found to be ^H 2o = 0.0188 atm at 25C.
Calculate AF for the dissociation reaction at that temperature, and calculate also

the dissociation pressure of CaSO4'HH 20(c), using the data from the preceding

problem.
8-3. The equilibrium pressure of water vapor for the reaction

Ca(OH 2)(c)
- CaO(c) + II 2O(g)

has been measured by S. Tamaru and K. Siomi (Landolt-Bornstein,
"
Physikalisch-

chemische Tabellen," 5th ed., Supplement IHe, p. 2578, 1936), who approached

equilibrium from both directions. The following are typical results:

t, C
420.9

461.8

482.9

503.4

pn 2o, mm Hg
94.0

245.6

402.8

618.1

Determine the mean value of (d log p)/dT over the given temperature range, and
calculate the value of AH at 700K.
The heat capacity of Ca(OH) 2 (c) at high temperatures is not known precisely, but

AJEP 15.43 0.09 kcal for the reaction

Ca(OH) 2 (c) = CaO(c) + H 2O(1)

at 25C from straightforward calorimetry. Using the latent heat of vaporization of

H 2Oat 298.16K, 10.514 kcal/mole, assume thatA# for the dissociation of Ca(OH) 2 (c)

may be represented as a linear function of T between 298.16 and 700K, and calculate

AF for the reaction at 25C.
8-4. Using the free-energy data given in Appendix 2, calculate the ranges of

H 2O(g) partial pressures over which each of the CuSO 4 hydrates, CuSO 4-5H 2O(c),

CuSO 4-3H 2O(c), and CuSO 4-H 2O(c), and CuSO 4 (c) itself, is thermodynamically stable

at 25C.
8-6. The equilibrium between NH 3 (g) and H 2Se(g) over NH 4HSe(c) has been

studied over the temperature range 15 to 30C by F. F. Mikus and F. J. Poss [J. Am.
Chem. Soc., 71, 429-431 (1949)]. Following are the mean dissociation pressures of the

solid :
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Plot log Kp vs. t, and calculate AF, AH, and AS at 25C for the reaction

NH 4HSe(c) = NH.(g) + H 2Se(g)

The spectroscopically determined entropies of NH 3 (g) and H 2Se(g) are, respectively,

46.03 and 52.9 eu/mole [K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941)]. Calculate

<S?98.i of NH4HSe(c).
8-6. The dissociation pressure of NaHCOa(c) for the reaction

2NaHCO 8 (c)
= Na 2CO 3 (c) + H 2O(g) + CO 2(g)

has the following values, according to the " International Critical Tables," Vol. VII,

p. 305, 1930:

t, C p, atm
30 0.0082

50 0.0395

70 0.1584

90 0.5451

110 1.6481

Plot log p vs. 1/r, and from the slope and the intercept on the 298.16K abscissa (by
a slight extrapolation), calculate AF, Atf, and A at 298.16K.
What would be the equilibrium pH 2o if NaHCO 3 (c) were heated in an atmosphere of

CO 2(g) to 90C at a total pressure of 1 atm?
8-7. J. McMorris and D. M. Yost [/. Am. Chem. Soc., 63, 2625-2631 (1931)] studied

the equilibrium in the reaction

HIi(g) + MBr2 (g)
- IBr(g)

by heating weighed quantities of I 2 in sealed flasks with CuBr 2 (c). The partial pres-

sure of Br 2 (g) is known for the dissociation reaction

CuBr2 (c)
- ^Br 2(g) + CuBr(c)

and satisfies the equation
4Q91 9

log pBr2 (atm) - - -^ + 8.7874

over the temperature range in question. The extent of reaction was determined by
freezing the vapor phase rapidly with liquid air and measuring the total halogen con-

tent (ttBr2 + ni, + niBr) by iodimetric titration. The following typical results were

obtained at 115C:

Noting that for this reaction, K = K, independently of the particular unit of

pressure or concentration, calculate K for both sets of conditions, assuming that the

equilibrium vapor may be regarded as an ideal-gas mixture.

At 151.2C, they obtained K = 10.83, and at 176.0C, Kp
- 9.99. The value of
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AC for the reaction is practically zero. Calculate A# from the results at the three

temperatures, and calculate the value of &F at 298.16K; calculate also the value

of AS . What further data would be needed for the determination of the standard

free energy of formation of IBr(c)?
8-8. (a) The vapor density of acetic acid has been studied by T. M. Fenton and

W. E. Garner (/. Chem. Soc., 1930, pp. 694-700) who found in typical runs at 132C
the following ratios of apparent molecular weights to formula weight

Mapparent/-fl?CHgCOOH

0.4862 1.301

0.6056 1.341

Calculate from each result a value of Kp for the assumed reaction:

2HAc(g) - (HAc) 2 (g).

(6) They obtained the following average results at several different temperatures:

t, C Kp,

110 3.72

132 1.329

156 0.479

184 0.168

From a graphic plot of log Kp vs. 1/7, obtain by extrapolation the value of Kp at

25C, and calculate also the mean value of the enthalpy of dissociation of the dimer.

(c) The vapor pressure of liquid acetic acid at 25 C is 0.0200 atm. From the result

of part (6), calculate the fraction of monomeric molecules in the equilibrium vapor

phase, and calculate AF for the process HAc(l) = HAc(g).

(d) W. A. Kaye and G. S. Parks [/. Chem. Phys., 2, 141-142 (1934)] found for the

partial vapor pressure of acetic acid (mixture of monomer and dimer) over a 1.316m

aqueous solution, 0.000290 atm, and over a 2.890m solution, 0.000635 atm, both at

25C. Calculate the equilibrium partial pressure of monomeric molecules for each

concentration, and estimate lim PHAC/WIHAC, correcting for the slight degree of ioniza-
m-0

tion at both concentrations. Calculate accordingly the standard free energy of solu-

tion <nAc(aq) ^HAc(i)- [S66 also K. Fredenhagen and H. Liebster, Z. physik. Chem.,

(A)162, 449-453 (1932).]

8-9. (a) From the following selected data of M. Bodenstein and W. Pohl \Z.

Elektrochem., 11, 373-384 (1905)] for the reaction

S0 3 (g)
- S0 2 (g) + ^02 (g)

T, K -# In KP9 cal/mole deg
801 6.84

852 5.21

900 3.73

953 2.33

1000 1.23

calculate AF and A# at 900K.

(6) The heat capacities of the three gases, calculated from molecular spectroscopic

constants by the method described in Chap. 10, are as follows:
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Express AC* as a function of T in the form AC - a + IT + cT\ and calculate

, AF, and AS for the reaction at 298.16K. [Compare W. H. Stockmayer, G.

M. Kavanagh, and H. S. Mickley, /. Chem. Phys., 12, 408-412 (1944).]

(c) Using the data in the preceding problem, calculate the equilibrium ratio

Psoi/Psoa in a gas mixture containing originally 2SO 2 : 1O2 when heated to 900K at 1

atm. If instead the SO 2 is prepared by burning sulfur in an excess of air such that

the equilibrium pot is maintained at 0.15 atm, calculate pao3/pBOt at 900K under such

conditions.

(d) The dissociation pressure of Fe 2 (SC>4)3(c) into Fe 2O 8 (c) and the equilibrium
mixture of SO8 (g), SO 2 (g), and O 2 (g) at 953K is 0.333 atm (" International Critical

Tables," Vol. 7, p. 279, 1930). Using the data in part (a), calculate pso t in the equi-

librium gas phase, and calculate AFJM for the reaction

Fe2(S04) 8 (c) - Fe 2 3 (c) + 3SO8(g)

What further information would one have to obtain in order to use this result for calcu-

lating the standard free energy of formation of Fe 2(SO 4) 3 (c) at 298.16K relative to

that of Fe 2O 3 (c)?

8-10. (a) H. Flood and O. J. Kleppa [/. Am. Chem. Soc., 69, 998-1002 (1947)] have

measured the equilibrium hi the reaction

V2 6 (c) + S0 2 (g)

with the following (selected) results:

T, K
831

857

878

906

918

V2 4 (c) + S03 (g)

-
log (psO,/?>SOi)

1.813

1.770

1.740

1.695

1.668

The value of A(7 is practically negligible [heat-capacity data for the oxides of

vanadium have been measured by O. A. Cook, /. Am. Chem. Soc., 69, 331-333 (1947)].

Calculate the value of A#, and the value of AF 98<16 .

(6) The form of V2O4 (c) in the above experiments is the ft modification, stable above

345K, the normal form at 298.16K being the a modification. The latent heat of

transformation at the normal transition point being 2050 cal/mole, and the difference

between the heat capacities of the two forms being negligible [O. A. Cook, J. Am.
Chem. Soc., 69, 331-333 (1947)], calculate AFJ98. 16 for the transformation

V2 4 (c, <*)
- V2 4 (c,
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and calculate A# and AF at 298.16K for the reaction

V2 6 (c) + S0 2 (g)
- V 2 4 (c, a) + S0 3 (g)

8-11. (a) Combining the data given in Probs. 8-9 and 8-10, calculate the dissocia-

tion pressure

V2 B (c)
- V 2 4 (c, 0) + M02 (g)

for the dissociation of V2O 8 (c) at 900K. Using the results of Probs. 8-9 and 8-10,

calculate also AF and A# at 298.16K for the reaction

V2O 6 (c)
= V2O4 (c, a) + MO 2 (g)

(b) The third-law entropies of V2C>6(c) and V2O 4 (c, ), from low-temperature calo-

rimctry, are, respectively, 31.3 0.5 and 24.5 0.3 eu/mole, at 298.16K. Using
the entropy value of O 2 (g) given in Appendix 2, compare the consistency of these

results with the result of part (a).

8-12. The equilibrium for the dehydrogenation of benzyl alcohol to benzaldehyde
over a Cu-MgO catalyst has been studied by A. H. Cubberley and M. B. Mueller

[J. Am. Chem. Soc., 68, 1149-1151 (1946)]. For the reaction

C 6H 6CH 2OH(g) = C6H 6CHO(g) + H 2 (g)

they obtained for Kp at 1 atm the following (selected) results:

t, C Kp, atm
200 0.177

225 0.264

250 0.558

275 1.09

300 2.14

By plotting log Kp vs. 1/T, determine the value of A# at 250C. Using the esti-

mated heat-capacity equations,

C 6H 6CH2OH(g): C 4.59 + 0.0801IT

C 6H 5CHO(g): C;
= 4.65 + 0.07157

7

Hi(g): C* - 6.50 + 0.00092
7

express AH and AF as functions of T, and calculate A#, AF, and AS at 298.16K.

8-13. E. D. Eastman and P. Robinson [J. Am. Chem. Soc., 60, 1106-1114 (1928)]

studied the equilibrium between tin and water vapor at elevated temperatures

find) + 2H 20(g) - SnO(c) + 2H 2 (g)

One method they used was to saturate H 2 (g) with water by passing it through liquid

water in a thermostat and then passing the gas mixture over tin heated in a bulb of

silica glass. The tin was heated to a temperature at which it came to equilibrium with

the gas mixture of such predetermined composition, the appearance of the tin showing
whether it was in an oxidizing or a reducing atmosphere. In one such experiment,
with the total (barometric) pressure at 751.6 mm Hg, hydrogen saturated with water

vapor at 89.92C was in equilibrium with Sn(l) and SnO(c) at a temperature of 655C.
Calculate the value of Kp for that temperature.
From extended measurements, they obtained the following "best" equilibrium data

at various temperatures:
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*, C
650 0.456

700 0.340

750 0.266

800 0.213

850 0.174

900 0.144

From a plot of log Kp vs. 1/7
7

,
determine AF, A#, and AS at 1000K.

8-14, The thermodynamic properties of H2O(g) and of H 2 (g) at high temperatures
are well known. Thus, from data summarized in "Selected Values of Chemical

Thermodynamic Properties," Series III, National Bureau of Standards, Washington,
D. C., 1948-1949 (see also E. W. Geyer and E. A. Bruges, "Tables of Properties of

Gases," Longmans, Green & Co., Inc., New York, 1948):

The existence of such tables makes it unnecessary for us to be repeatedly integrating

heat-capacity equations, where these substances are involved. Using the following

empirical heat-capacity equations [K. K. Kelley, U.S. Bur. Mines Bull. 371 (1934)]:

SnO(c): G;
= 9.40 + 3.62 X W~*T (273-1273K)

Sn(l): C = 6.6 (504.9-1273K)

Sn(c): Cp = 5.05 + 4.80 X 10-T (273-504.9K)

the latent heat of fusion of tin being 1720 cal/mole at the normal melting point,

504.9K, calculate # 000
- # 98 and S 000

-
98 for SnO(c) and for Sn(c, 1), and calcu-

late the changes hi A# and A/S of the reaction in Prob. 8-13 between 1000 and
298.16K. Calculate finally A#, AS

,
and AF at 298.16K for the reaction

Sn(c) + 2H 20(g) = SnO(c) + 2H 2 (g)

What further information is necessary in order to be able to compute the standard

enthalpy and free energy of formation of SnO(c) from these results?

8-15. The equilibrium in the reduction of NiO(c) by CO(g)

NiO(c) + C0(g) - Ni(c) + C0 2(g)

has been studied by M. Watanabe, with the following (selected) results (Landolt,

Bornstein,
"
Physikalisch-chemische Tabellen," 5th ed., Supplement IIIc, p. 2558-

1936):

tC pcot/Pco
663 453.5

716 332.3

754 255.4

793 207.3

852 157.7
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From a plot of log Kp vs. l/T, determine AF, Atf
,
and AS at 1000K.

Using the following information for CO 2(g) and CO(g), taken from "
Selected Values

of Chemical Thermodynamic Properties," Series III,

together with the following thermal data for Ni(c) and NiO(c) [K. K. Kelley, U.S.

Bur. Mines Bull. 371 (1934)]:

Ni(c, ):<- 4.26 + 0.0064027

(273-626K)
Ni(c, a) = Ni(c, 0); A#?26

- 92 cal/mole

Ni(c, ft): C = 6.99 + 0.000905T (626-1725K)

NiO(c): C; 11.3 + 0.0021527

(273-1273K)

calculate the corrections to A# and AS from 1000 to 298.16K, and calculate AH,
A$, and AF for the reaction

NiO(c) + C0(g) - Ni(c, ) + C0 2(g)

at 298.16K.
8-16. From the equilibrium constants at 1000K of the reactions

C(c, graphite) + CO 2 (g)
= 2CO(g); (*>ooo - 1-900 atm

C0(g) + H 20(g) - C0 2 (g) + H,(g); (KJ)iooo
- 1-374

as calculated by D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D.

Rossini [/. Research NatL Bur. Standards, 34, 143-161 (1945)], calculate from the data

in Prob. 8-15 the equilibrium pco and the equilibrium pn2o/pH2 at 1000K for the

respective reactions

NiO(c) + C(c, graphite) = Ni(c) + CO(g)
NiO(c) + H,(g) = Ni(c) + H 20(g)

From the calculated equilibrium constant,

C0(g) + M0 2(g) - C0 2 (g); (tfpiooo
- 1.582 X 10^ atm-**

(Wagman et al., loc. cit.), calculate also the dissociation pressure of NiO(c):

NiO(c) - Ni(o)

at 1000K.
8-17. The equilibrium of austenite (and of other iron-carbon alloys) with gas mix-

tures of CO and CO 2 has been investigated by R. P. Smith [/. Am. Chem. Soc.
9 68,

1163-1175 (1946)]. For the reaction

CO 2 (g) + C(dissolved in y iron) - 2CO(g)

he obtained at 1000C and 1 atm total pressure the following (selected) results for the

per cent by weight of C taken up by electrolytic iron at various values of the Pco/Pcoa

ratio:



524 PRINCIPLES OF CHEMICAL THERMODYNAMICS

Pco/Pcou atm per cent C, by weight
1.98 0.0360

2.49 0.0487

3.12 0.0563

4.21 0.0740

7.29 0.133

13.8 0.242

43.4 0.655

84.1 1.081

130.2 1.462

From direct measurement of the equilibrium between graphite and gas mixtures of

CO and CO2 at the same temperature, he obtained for the reaction

C0 2 (g) + C(c, graphite) = 2CO(g); Kp 138.6 atm

Estimate by graphical extrapolation of the austenite equilibrium data the solu-

bility of graphite in y iron at 1000C, and calculate the activity of C in austenite

relative to pure graphite at each of the above compositions. Prepare a graph of ac

vs. xc, and determine whether as XG 0, carbon dissolved in 7 iron satisfies Henry's
law (CLC/XQ k). (Consult the original paper for further details of this extremely

interesting investigation.)

8-18. (a) Equilibrium in the methanol synthesis from CO(g) and H2(g) was
studied by R. H. Newton and B. F. Dodge [J. Am. Chem. Soc., 56, 1287-1291 (1934)],

who approached equilibrium from both directions by passing the gas mixture over a

copper-zinc catalyst at 3 atm; methanol was determined by condensing it out of the

equilibrium mixture by rapid cooling with liquid air. Following are the average
results obtained at three temperatures:

'

C0(g) + 2H 2(g)
- CH 3OH(g)

*, C Kp,
atm-*

225 0.00608

250 0.00232

276 0.00088

The enthalpy of the reaction at 25C may be computed from the precisely estab-

lished heats of combustion [to CO 2(g) and H 2O(1)] determined by F. D. Rossini:

Gas A# (combustion)
CH 3OH(g) ............ - 182,550 cal/mole
H 2 (g) ................ - 68,313 cal/mole

CO(g) ................ - 67,623 cal/mole

Using the heat-capacity equations,

CH3OH(g): C;
- 2.0 + 0.03T

H 2(g): Q - 6.62 + O.OOQ81Z1

CO(g): C; - 6.60 + 0.001202
7

express Aff as a function of T, and calculate its value at 250C (523K); compare
with the value deduced from the equilibrium data of Newton and Dodge.
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(6) Integrate your thermochemical expression for A#/r2 with respect to 5T, and
calculate a value of (AF/T) at 298.16K from each of the above equilibrium results.

From the average, compute AF and also A = (A# - &F)/T at 298.16K.

(c) From low-temperature heat-capacity measurements by K. K. Kelley [J. Am.
Ghent. Soc., 51, 180-187 (1929)], the third-law entropy of CH 3OH(g) at 298.16K is

56.8 eu/mole (compare Prob. 6-13 for correlation of the ideal-gas entropy with the

liquid entropy at that temperature). Using the entropies for CO(g) and H 2 (g) given
in Appendix 2, compare the third-law value of A/S 98016 with the value derived from the

actual equilibrium data.

8-19. Using Newton's method to estimate the fugacity coefficients of the gases in

the equilibrium mixture, estimate the value of Kp for the methanol synthesis of the

preceding problem at 250C and 100 atm (look up the necessary critical constants).

Estimate the per cent conversion of a 1CO:2H2 gas mixture under these conditions.

From the data given in the preceding problem, calculate K at 350 C, where the

rate of attainment of equilibrium is much greater. What is the per cent conversion

of a 1CO:2H2 mixture at that temperature at 1 atm total pressure? Estimate the

effect on Kp of increasing the pressure to 100 atm (using Newton's method), and
estimate the per cent conversion of a 1CO:2H2 gas mixture under these conditions.

8-20. The following equilibrium conditions have been established at 25 C for the

reaction

CaCO 8 (c, calcite) + H 2CO 8(aq) Ca++(aq) + 2HCO 8~(aq)

(M. Randall, in the "International Critical Tables," Vol. 7, pp. 296-297, 1930):

[for the last measurement, the solid phase is Ca(HCO 3) 2 (c)]. The ionic strength in

the third column has been computed from the equilibrium ionic concentrations. Cal-

culate log Kc at each condition, and from a plot of log Ke vs. ju

1

^, determine the value

of log K. Note that log Kc log Ke
= 3 log y + log TH^OI- Assuming that

the last term is negligible at the lower solute concentrations, does the limiting slope of

the log Kc vs. jifi relationship satisfy the Debye-Hiickel limiting law for the 1 : 2 elec-

trolyte, Ca(HCO3) 2?

Using for the established standard free energies of formation of CaCOs(c) and
H 2CO 3 (aq) the values ^gacoaco

" 207,430 cal and ^H 2cog( q)
** -149,170 cal

(W. M. Latimer, "Oxidation Potentials," Prentice-Hall, Inc., New York, 1938),

calculate the value of (0Ca-n-(aq) + 2<*>Hco s-(q))-

Calculate the value of 7^ f r the last condition given in the table, assuming that

7H2COi still remains equal to 1 (this assumption is not necessarily correct) ;
if the equi-

librium solid phase is actually Ca(HCO 8)2(c) for that condition, calculate its thermo-

dynamic solubility product accordingly.
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8-21. The first and second thermodynamic dissociation constants of carbonic acid

have the following values at 25C: (K)i - 4.52 X 10"* and (#) 2 = 5.59 X 10~n

(D. A. Maclnnes, "The Principles of Electrochemistry,
"
p. 211, Reinhold Publishing

Corporation, New York, 1939). Combining with the results of the preceding prob-

lem, calculate the thermodynamic solubility product of CaCOsCc).
8-22. From the data for carbonic acid given in the two preceding problems, calcu-

late the values of </4cot-(aq) and
</>cos-(aq)

a^ 25C. Combining with the result of

Prob. 8-20, calculate the value of 4>ca++(aq>- Describe fundamental measurements

that would serve to determine the independent values of the standard free energies of

formation of CaCO 3 (c) and of H 2CO 3 (aq) given in Prob. 8-20.

8-23. (a) The thermodynamic secondary ionization constant of sulfuric acid has

been determined by W. J. Hamer [J. Am. Chem. Soc., 66, 860-864 (1934)], essentially

by an emf method based on buffer mixtures of NaHSO 4 and Na 2SC>4. Following are

selected results:

HSOrCaq) = H+(aq) + SOr(aq)
t, C K*m

0.0145

10 0.0140

20 0.0129

25 0.0122

30 0.0114

40 0.00961

50 0.00781

Calculate <sO4"(aq)
~~

^HSO|"(aq)> fSOi'ta)
~~

^H8O4 "(aq) >
an(^ <rSO4*(aq)

"~
^HSOi-Caq) a^ 25C.

(b) Assuming that Ky
* for this reaction may be estimated in dilute solution as the

ratio of
-yj.

for a typical 2:1 electrolyte such as Na 2SO4 to that for a typical 1 : 1 electro-

lyte such as NaCl (see Fig. 7-19), estimate the degree of secondary ionization of H 2S(>4

in O.lm and in 0.001m aqueous solution (determine the total ionic strength by succes-

sive approximations). [Compare M. S. Sherrill and A. A. Noyes, J. Am. Chem. Soc.,

48, 1861-1873 (1926).] Estimate the quantity of heat evolved from the progress of

this ionization alone as 1 mole of H 2SC>4 is diluted from O.lm to 0.001m concentration.

8-24. (a) The standard enthalpy of formation of H 2S(g), from calorimetric meas-

urement of its heat of combustion, is 4800 cal/mole, and its enthalpy of solution in

water is 4520 cal/mole, according to measurements at 20C by H. Zeumer and W. A.

Roth [Z. Elektrochem., 40, 777-783 (1934)] (compare also Prob. 7-12). The correction

to 25C may be neglected in comparison with the experimental error, which is about

200 cal/mole for each determination. The entropy of H 2S(g) at 298.16K, from

low-temperature thermal measurements by W. F. Giauque and R. W. Blue [J. Am.
Chem. Soc., 68, 831-837 (1936)], is 49.10 0.10 eu/mole. From solubility measure-

ments by R. H. Wright and O. Maass [Can. J. Research, 6, 94-101 (1932)], the limiting

value of CH28/PH 28 at 25C is 0.103 mole/liter atm. Using for H 2 (g) the entropy
value: 31.21 eu/mole, and for S(c, rhombic) the value 7.62 eu/mole at 25C, calculate

the standard enthalpy and free energy of formation of H 2S(aq), and also
o"HaS(aq)>

a*

that temperature.

(6) The heat of neutralization of H 2S(aq) by the addition of 1 mole NaOH(aq)/mole
H 2S(aq) is 8180 cal/mole, as determined by Zeumer and Roth, while the heat of

neutralization of a strong acid by a strong base has the value 13,360 cal/mole H 2

(at 25C). The primary ionization constant of H 2S(aq) has the value 1.15 X 10~7

(D. M. Yost and H. Russell, "Systematic Inorganic Chemistry," Prentice-Hall, Inc.,
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New York, 1944). Using the results of part (a), calculate the enthalpy and free

energy of formation of HS~(aq), and also its entropy at 25C.
8-25. (a) The secondary ionization constant of H2S(aq) is about 1.0 X 10"1K at

25C. Using the results of the preceding problem, calculate </>8-(aq). What further

information is required in order to determine the entropy of S"(aq)?

(6) The enthalpy of formation of ZnS(c) has been measured at 20C by H. Zeumer
and W. A. Roth by combustion with Na2<32 of ZnS(c) and of an equivalent mixture of

Zn(c) with S(c, rhombic). They obtained Atf = -41,500 900 cal/mole, the

correction to 25C being negligible (Landolt-Bornstein,
"
Physikalisch-chemische

Tabellen," 5th ed., Supplement IIIc, p. 2764, 1936). Using the third-law entropies:
13.8 0.2 eu/mole for ZnS(c), and 9.95 0.05 for Zn(c), together with the value for

S(c, rhombic) given in Prob. 8-24 [K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941)],

calculate the standard free energy of formation of ZnS(c), and using for Zn++(aq):

^zn+^aq) 35,176 cal/mole (from emf data, as described in Chap. 9), calculate the

thermodynamic solubility product of ZnS(c).

Note: The actual solubility of this and other sulfides in water is influenced by the

extensive hydrolysis of S""(aq) to HS~~(aq), as well as by slow attainment of equilibrium
in some cases [see I. M. Kolthoff, J. Phijs. Chem., 36, 2711-2721 (1931)].

8-26. Using the thermal data for NH 3 given in Prob. 3-24, plot Gp/T vs. T, and by
graphical integration, using below 15K, the Debye extrapolation,.^ =5 K(C)i5,
determine for NH 3 (g) at its normal boiling point, 239.7K and 1 atm. Using
Berthelot's equation of state, find S at that temperature (Prob. 6-10). The differ-

NH 3 (g) being 1.81 eu/mole, calculate [Compareence, 98.16 $239.7

R. Overstreet and W. F. Giauque, J. Am. Chem. Soc., 69, 254-259 (1937).]

8-27. (a) The heat capacity of benzene has been measured by G. D. Oliver, M.

Eaton, and H. M. Huffman [J. Am. Chem. Soc.
t 70, 1502-1505 (1948)], with the

following (smoothed and selected) results:

From a plot of (C/T) vs. T, or of C vs. log T, determine by graphical integration

^298.16 f C 6H 6 (1); the latent heat of fusion at the melting point, 278.69K, is 2358.1

cal/mole; it is sufficiently precise to assume that below 13K, the solid satisfies the T8

law, and that S^ - K(C)i3.

(6) The vapor pressure of C 6H 6 (1) at 298.16K is 95.13 mm Hg, and the latent heat
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of vaporization at that temperature, 8090 cal/mole. Calculate < 98. 16 for CeHUfe),

assuming that the saturated vapor satisfies the ideal-gas law. What further informa-

tion is required in order to use these results to calculate the standard free energies of

formation of C6H 6 (1) and C6H 6(g)?

8-28. The entropy of crystalline urea has been measured according to the third law

from low-temperature heat-capacity data by R. A. Ruehrwein and H. M. Huffman

[J. Am. Chem. Soc., 68, 1759-1761 (1946)], who obtained: S|98. 16
- 25.00 0.05 eu/mole.

The heat of combustion has been measured by H. M. Huffman [/. Am. Chem. Soc., 62,

1009-1011 (1940)], who obtained A#f98. 16
= 151,053 cal/mole [the products being

CO 2 (g), N2 (g), and H 2O(1)]. Using data found in Appendix 2, calculate the standard

enthalpy, entropy, and free energy of formation of CO(NH 2)2(c) at 298.16K. Calcu-

late also the equilibrium constant of the reaction

C0 2(g) + 2NH,(g) - H 20(g) + CO(NH 2) 2 (c)

and compare with the experimental value: Kp
= 0.615 atm~2 obtained by G. N. Lewis

and G. H. Burrows [J. Am. Chem. Soc., 34, 1515-1529 (1912)].

8-29. The entropy of n-butane(l) at 298.16K has been determined from low-tem-

perature thermal measurements by J. G. Aston and G. H. Messerly [/. Am. Chem.Soc.,

62, 1917-1923 (1940)], and is 55.2 eu/mole (by a relatively small extrapolation above

the normal boiling point, 0.50C); the entropy of tso-butane(l) at 298.16K has also

been determined, by J. G. Aston, R. M. Kennedy, and S. C. Schumann [J. Am. Chem.

Soc., 62, 2059-2063 (1940)], the value for the liquid under its own vapor pressure being
52.09 eu/mole. The heats of combustion for the liquid state at 25C are, respectively,

682,840 and 681,620 cal/mole, as determined by F. D. Rossini, /. Research Natl. Bur.

Standards, 12, 735-750 (1934); 16, 357-361 (1935). Calculate AF298. 16 for the

isomerization

n-C 4Hio(l) - wo-C4Hio(l)

and assuming an ideal concentrated solution, calculate the theoretical equilibrium
mole fractions of the two isomers in the liquid phase. [Compare C. W. Montgomery,
J. H. McAteer, and N. W. Franke, /. Am. Chem. Soc., 69, 1768-1769 (1937), who
found 78 to 82 per cent isobutane in the liquid phase, after 2 months over an AlBr3

catalyst at 27C; see also F. D. Rossini, E. J. R Prosen, and K. S. Pitzer, J. Research

Natl. Bur. Standards, 27, 529-541 (1941), for calculations of the isomerization equilib-

rium in the gas phase at higher temperatures.]
8-30. R. R. Wenner ("Thermochemical Calculations," Chap. VIII, McGraw-Hill

Book Company, Inc., New York, 1941) has shown that the entropies of many inorganic

compounds of a given structure and charge type may be estimated with a fair degree
of accuracy from a plot of log M vs. S%9%, which turns out to be approximately linear.

Construct such a plot for salts of the type M+X~, using the following /S 98 values taken

from the compilation by K. K. Kelley [U.S. Bur. Mines Bull. 434 (1941)]:

LiF(c) : 9 . 7 . 5 eu/mole Agl(c) : 27 . 6 . 4 eu/mole

KBr(c): 22.6 0.5 NaCl(c): 17.3 0.5

KCl(c): 19.8 0.1 NaF(c): 13.1 0.5

KI(c):24.1 0.5 TlBr(c):26.8 1.0

RbCl(c):21.2 1.0 TlCl(c):25.6 1.5

AgBr(c): 25.6 0.1 Tll(c): 29.9 1.0

AgCl(c):23.0 0.1
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Use the plot to predict the entropy of LiH(c) (experimental value from low-tempera-
ture thermal data: 5.9 0.5 eu/mole). Estimate also the entropy of Nal(c).

(Consult the reference cited for other useful semiempirical correlations.)

8-31. The following experimental third-law entropies have been obtained for

straight-chain alkane hydrocarbons at 298.16K by various investigators [see H. M.
Huffman, G. S. Parks, and M. Barmore, J. Am. Chem. Soc., 63, 3876-3888 (1931);

K. S. Pitzer, Chem. Rev., 27, 39-57 (1940); Ind. Eng. Chem., 36, 829-831 (1944)]:

Plot ?98.ie for the liquid and the ideal-gas states against the number of carbon atoms
in the chain. Estimate the values of $298.16 f r tt-Ci H22 (g), and for n-C 22H46(l).

[Compare H. M. Huffman, G. S. Parks, and M. Barmore, /. Am. Chem. Soc., 53,

3876-3888 (1931)]. Chain branching invariably tends to lower the entropy, to an

extent depending more or less on the extent of branching; see H. M. Huffman, G. S.

Parks, and S. B. Thomas, J. Am. Chem. Soc., 62, 3241-3251 (1930) for data on the

isomeric heptanes; D. R. Douslin and H. M. Huffman, J. Am. Chem. Soc. 9 68, 1704-

1708 (1946), for data on the isomeric hexanes; etc.]



CHAPTER 9

THERMODYNAMICS OF GALVANIC CELLS

We have confined our attention so far mainly to processes for which no
nonthermal energy is exchanged by the thermodynamic system with its

environment except in the form of mechanical work of expansion or com-

pression, associated with changes in its volume. The galvanic cell con-

stitutes a mechanism whereby all or part of the free-energy change taking

place in the system may be diverted into electrical form. Since the elec-

trical measurements may be conducted with high precision, and what is

even more important, since a relatively small potential difference corre-

sponds to a large free-energy change, so that we may conveniently study
chemical systems in states far from their ordinary chemical equilibrium
states simply by applying moderate potential differences to the corre-

sponding galvanic cells, emf data for carefully selected types of galvanic
cells have constituted an important source of thermodynamic information.

In this chapter, we shall review the principles underlying their use for this

purpose.

9-1. General Theory of Reversible Galvanic Cells. Let us review

briefly the terminology used in describing galvanic cells, most of which
was originated by Michael Faraday. Every galvanic cell consists of two
metallic conductors, or electrodes, separated by one or more electrolyti-

cally conducting liquids in series called electrolytes. We know that the

flow of electricity through the electrodes is electronic, whereas electricity

is transported through the' electrolyte by means of charged material

particles, or ions. Therefore it follows that at one of the electrodes, some
material particle (not necessarily the conducting ion itself) gives up elec-

trons to the electrode, a type of chemical change known generally as an

oxidation, whereas at the other, some material particle accepts electrons

from the electrode, a chemical change known generally as a reduction.

Every galvanic cell, and every electrolytic cell as well, operates by means
of an oxidation taking place at the one electrode, called by definition the

anode, and a reduction simultaneously taking place at the other, called by
definition the cathode. These electrode reactions proceed at such rates

as to satisfy Faraday
9
s law:

I gram-equiualent = 1 faraday (fr)
= 90,485.3 10.0 coulombs (9-1-1)

530
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The term anion is applied to any ion that tends to migrate within the cell

toward the anode, while the term cation is applied to any ion that tends to

migrate within the cell toward the cathode; anions are negatively charged

ions, and cations are positively charged ions. Following the customary

sign convention, we label that electrode negative ( ) which serves as a

source of negative electricity (electrons) to the external circuit, and that

electrode positive (+) which serves as a source of positive electricity (i.e.,

accepts electrons from the external circuit). Thus, the anode of a gal-

vanic cell is its ( ) terminal, and the cathode is its (+) terminal.

Let E' denote the instantaneous potential difference across the electrodes

as the quantity of electricity dj flows through the cell and the external cir-

cuit. Then according to straightforward electrical principles (essentially,

the definition of E'\ the quantity of electrical energy spent by the cell on

the external circuit is measured by E' dj. If the cell is regarded as a

thermodynamic system, then this quantity represents work W done by
the system on its environment in a nonthermal form other than mechani-

cal work of expansion [compare Eqs. (3-17) and (3-18)], i.e.,

d'W - E' dj (9-1-2)

In this equation, if E' is measured in volts and j in coulombs, thenW is to

be represented in joules. In view of Faraday's law (9-1-1), however, it is

convenient in working with galvanic cells for us to measure j in faradays;
with E' in volts, Wf

is then represented according to Eq. (9-1-2) in volt

gram-equivalents (volt-eq). In order to transform volt gram-equivalents
to defined calories [Eq. (2-24)], we may make use of the conversion factor1

1 volt-eq = 96,485.3 10.0 joules = 23,060.5 2.4 cal (9-1-3)

Ordinarily, we shall not enter this conversion factor explicitly in our equa-

tions, for one could just as well represent W and other energy measures

directly in volt gram-equivalents, or in joules; but in numerical calcula-

tions involving Eq. (9-1-2) and other similar relations, it is to be under-

stood that the numerical relationship implied calls for a self-consistent set

of units.

Now, the value of E', as we have noted in Sec. 5-1, depends not only on

our cell but also on the nature of the external circuit. Thus, if the exter-

nal circuit consists simply of a metallic conductor of resistance Re,
so that

all of the electrical energy received from the cell is thermally dissipated

there, then

'

1 Emf values reported prior to Jan. 1, 1948, in international veils should, however, be

multiplied by the old conversion factor: 23,068.1 2.4 cal/int volt-eq. This factor

has been used generally on the older emf data reported throughout this chapter.
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where Rt represents the internal resistance of the cell and E the electro-

motive force of the circuit, which represents by definition the net quantity
of energy expended per unit quantity of electricity sent completely around

the circuit; in this case, the quantity of energy expended per quantity of

electricity dj is E' dj in the external circuit, and (E E')dj within the

cell itself. For this simple circuit, the value of E is evidently a true

property of the cell, for it represents the potential difference between the

electrodes when the cell is on open circuit:? = lim E'. It is commonly
.-

called the emf of the cell.
1 The cell emf, E, may be measured approxi-

mately by means of a voltmeter; this is essentially a current-measuring
instrument having a high resistance, Rv ; according to Ohms' law, the cur-

rent flowing through the complete circuit of voltmeter and cell in series is

equal to E/(RV + #), so that if Rv is considerably larger than Ri for any
cell to which the meter may be applied, then the current is approximately

proportional to E
t
and the instrument may be calibrated to read E directly

in volts. It may be measured far more precisely, however, by means of a

potentiometer. In the potentiometer circuit, a sensitively and precisely

controlled potential difference, derived ultimately with reference to a

specially designed standard cell (the Weston normal cell) having an

extremely stable and reproducible emf, is impressed on the electrodes of

the "unknown " cell through a galvanometer in series with the cell. The

setting of the potentiometer is adjusted until the applied potential differ-

ence is just sufficient to balance that of the cell, the sensitivity of the

adjustment being determined by the galvanometer sensitivity and the

internal resistance of the cell. With the current actually flowing through
the cell thereby reduced practically to zero, the applied potential differ-

ence, which may be read directly from the setting of the potentiometer, is

practically equal to the potential difference across the cell's electrodes on

open circuit, and therefore measures the emf of the cell. Since the poten-
tiometer measures the cell emf without discharging it to any appreciable

extent, the measurement therefore does not change significantly the state

of the cell reaction; it measures in other words the differential or instan-

taneous value of E. The upper limit to the energy the cell could theo-

retically deliver to the environment (in the form of the external circuit)

in electrical form while it is in a given state with emf E is determined by
the relation W = JE (9-1-5)

wherej represents the quantity of electricity flowing through the cell.

1 Some authors prefer to call this quantity the potential difference of the cell, since

the electromotive force (which is not really a force at all) is technically defined as a

property of a circuit only.
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The electrical energy produced by a galvanic cell always appears at the

expense of the energy of some spontaneous change taking place in the cell,

representing the net effect of the two electrode reactions, together with

any change that may result from the ionic migration by which electricity

is transported through the cell. This change necessarily satisfies the

general limitation (5-58) imposed by the second law of thermodynamics:

W ^ -(A*
1

)*, (9-1-6)

Since galvanic cells are usually studied at constant temperature and pres-

sure throughout the cell, Eq. (9-1-6) represents the most convenient form

in which to apply the second law. 1 In view of (9-1-5), we may express

this limitation in the form

E ^ - =;- (T, p const) (9-1-7)

Since j merely depends on the amount of change, in accordance with

Faraday's law, the relation (9-1-7) shows in general how E is determined

by the initial and final states of the thermodynamic system, before and

after the quantity of change corresponding to the free-energy change AF
has taken place.

The distinction between the so-called free-energy decrease and the total

energy released by the process taking place in the cell has been noted in

Chap. 5. Thus, for a change taking place at constant temperature and

pressure, in the absence of changes in ordinary mechanical energy, such

as might for example be associated with the influence of gravity, we may
write

-AF = -AU - p AV + T AS (T, p const) (9-1-8)

Here, AC7 represents the total energy released by the thermodynamic

system constituting the cell, and AC/ p AV the net energy excluding

the effect of volume changes admitted under the condition of constant

pressure; thus, the term T AS represents in formal mathematical language
the limitation on utilization of energy embodied in the second law of

thermodynamics, and through (9-1-7), the implied limitation on the emf

of a galvanic cell that may be based on the process under consideration.

Equation (9-1-8) may be expressed also in the form

-AF = -AH + T AS (T, p const) (9-1-9)

where AH represents the quantity of energy released in thermal form

when W' = 0.

1 For an experimental study of cells with the electrodes at two different temperatures,
see J. C. Goodrich, F. M. Goyan, E. E. Morse, R. G. Preston, and M. B. Young, /.

Am. Chem. Soc., 72, 4411-4418 (1950), based on earlier theoretical studies by E. D.

Eastman.



534 PRINCIPLES OF CHEMICAL THERMODYNAMICS

Certain types of cells have been discovered for which the ideal limit

A El

E - tL
(T, p const) (9-1-10)

is actually closely attained. These are cells in which the process taking

place in the cell and giving rise to the electrical energy is reversed in exact

detail when one applies to the electrodes a potential difference Er

slightly

greater than the cell's own emf, E. For if AF merely changes its sign

when electricity flows through the cell either in the one direction or in the

other, then taking E in (9-1-7) as positive in the one sense (when elec-

tricity is flowing in the "spontaneous" direction, corresponding to nega-

tive A/*
7

) and negative in the other, E can satisfy (9-1-7) generally only by

satisfying Eq. (9-1-10). An example of such a cell is the following:

Ag(c), AgCl(c)|KCl(aq, lm)|Hg2C!2 (c), Hg(l) (9-1-11)

for which the emf at 25C and 1 atm has the value 0.0455 volt. Following
the custom of American theoretical electrochemists, we associate a posi-

tive value of E with the symbolic representation of the cell in the form

(9-1-11) in which the left-hand electrode tends to be the negative terminal,

i.e., in which negative electricity tends to flow spontaneously within the

cell from right to left; then the corresponding change taking place in the

cell has a free-energy change whose sign, as well as magnitude, is given by
Eq. (9-1-10), in the sense that if E is assigned a positive value, then the

spontaneous direction of the cell process is the one associated with flow of

negative electricity within the cell from right to left.
1 When the cell

(9-1-11) is being discharged, the following reversible reactions take place

at the two electrodes:

Anode reaction: Ag(c) + d-(lm KC1) = AgCl(c) + e

Cathode reaction: MHg2Cl2(c) + e = Hg(l) + Cl-(lm KC1)

One will note that if the cell were steadily discharged for a long period of

time, a concentration polarization effect would take place, i.e., a local

depletion of KC1 around the anode, and a local increase in the concentra-

tion of KC1 around the cathode, which thermal diffusion would tend to

counteract ;
such polarization would tend in fact to lower the emf. Other-

wise, however, the net cell reaction corresponding to j = Iff is

Ag(c) + ^Hg2Cl 2 (c)
= AgCl(c) + Ilg(l) (9-1-12)

and it is the free energy of this chemical transformation that is being

1 The reader should be cautioned against the opposite European custom, e.g., in

Landolt-Bornstein,
"
Physikalisch-chemische Tabellen," in which the emf associated

with the cell (9-1-11) would be written as 0.0455 volt.
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measured by E, in accordance with Eq. (9-1-10), as we shall show in detail

in the following section. The reversible or irreversible character of the

cell's behavior is in part determined by the nature of the two electrode

reactions, and by the chemical and physical form of the electrodes them-

selves. It is generally necessary, however, to eliminate liquid-liquid

junctions in order to ensure thermodynamic reversibility, for as we have
indicated in Sec. 5-1, and as we shall consider at greater length in Sec. 9-3,

the electrical migration of ions across a boundary separating two different

electrolytes is more or less irreversible, to an extent depending on circum-

stances. The cell (9-1-11) has only the one electrolyte, whose concentra-

tion in this particular instance undergoes no net change as a result of the

cell reaction. 1

Because of Eq. (9-1-10), the study of reversible galvanic cells affords a

singularly valuable source of chemical thermodynamic data. The large

magnitude of the conversion factor (9-1-3) implies that we may study in

this way chemical reactions having large negative free-energy changes, in

states far from those of ordinary chemical equilibrium. One will perceive

from the value of this conversion factor that for j = 1 g-eq, a precision of

0.1 mv in the determination of E, which is comparatively easy to attain,

corresponds to a precision of 2.3 cal in AF.

The general thermodynamic relations (6-9) and (6-10), applied term by
term to the components of AF in Eq. (9-1-7), permit us to derive relation-

ships for the temperature and the pressure coefficients of E for a thermo-

dynamically reversible galvanic cell

irThe cell (9-1-11) contains actually three electrolytes, AgCl, KC1, and Hg 2Cl 2,

and we should properly represent it symbolically by

Ag(c), AgCl(c)
KC1 (aq) satdH^,^J|KCl(aq) satd

with AgCl
Hg2Cl 2(c), Hg(l) (9-1-lla)

Its behavior is irreversible to the extent that during discharge, Ag+ ions migrate from

the anode region into the middle region of the cell, whereas when a potential difference

is applied exceeding that of the cell, so that reaction (9-1-12) is reversed, then Hg2
++

ions migrate from the region surrounding the mercury electrode into the middle region.

These two processes are clearly irreversible in the thermodynamic sense. Because

of the low solubilities of AgCl(c) and ng 2Cl2 (c), however, the overwhelming fraction

of the current through the cell is transported by the ions of KC1, so that the junction

effects can be neglected; the net transfer of approximately t+ mole of KC1 per faraday
from the anode compartment to the cathode compartment as the cell is discharged

(where t+ represents the transference number of the cation) evidently involves no

differential change of free energy, if the solubilities of AgCl(c) and Hg 2Cl 2 (c) are so

low that their presence does not significantly affect <KCI- We shall study liquid-

junction processes at greater length in Sec. 9-3, but we shall suppose that for the cells

under consideration in this and the following section, liquid-junction effects are

negligible, if not actually zero in principle.
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-* (9-1-13)

Equation (9-1-13) is particularly important, because it permits us to

measure entropy changes of chemical reactions directly from emf data;

this has been a valuable method of verifying third-law entropy values.

If we substitute (9-1-13) in (9-1-9), we may derive an expression for the

enthalpy of the cell reaction in terms of the temperature coefficient of the

emf, in the form

AH = -JE + Tj (9-1-15)

Equation (9-1-15), known as the Gibbs-Helmholtz relation, may be put also

in the equivalent form, convenient for graphical computation of A77,

_" J
d(l/T)

9-2. Cells without Liquid Junctions. We shall review in this section

several types of reversible galvanic cells that have yielded important

thermodynamic information. As we have already seen, no truly reversi-

ble cell can be set up having a liquid-liquid junction between two different

electrolytes. Therefore all the cells considered in this section are without

liquid-liquid junctions. It is convenient for us to discuss such cells in two

general categories, depending on whether the emf is insensitive or sensi-

tive to the concentration of the electrolyte.

a. Electrode Cells. These are cells whose emfs are determined entirely

by the states of substances present at the electrodes, in phases distinct

from the electrolyte itself.

Example :

Ag(c), AgCl(c)|M+Cl-(aq, m)|Hg2Cl2 (c), Hg(l) (9-2-1)

where M+
represents K+,

Na+
,
H+

,
etc. The electrode reactions of this

cell have been discussed in Sec. 9-1. Reproducible Hg(l), Hg2Cl2(c)

electrodes are relatively easy to prepare, purification of the materials

being the principal concern. Reproducible Ag(c), AgCl(c) electrodes call

for metallic silver free of mechanical strains; the silver is usually prepared

by electrolytic or chemical deposition of fresh silver on a platinum base,

followed by electrolytic deposition of AgCl from aqueous HC1 with the
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silver electrode as anode. 1
According to the net cell reaction (9-1-12) at 1

atm,

Ag(c) + KHgiCl,(c) = AgCl(c) + Hg(l) (T, 1 atm) (9-2-2)

the free-energy change involves only pure chemical substances (liquid and

solid) in standard states

AF - ^gC1(0> + P*^ - Pin - Hng2ci 2(o (9-2-3)

(compare Sec. 8-la). Therefore, according to (9-1-10);

E = E = - ! AF (9-2-4)
1 g-eq

v

The emf at given temperature is therefore fixed, independently of the

composition of the electrolyte and even of the particular cation, provided

only that the cation be one showing no particular chemical or electro-

chemical interaction with the electrode materials. 2 The cell has been

studied by R. H. Gerke, using 1m KC1 and also 1m HC1 as the electrolyte.
3

He obtained at 25C a mean value of E = 0.0455 int volt. Thus, using

the conversion factor (9-1-3) ;

A/^98 = -1 g-eq X 0,0455 volt

= -1050cal (9-2-5)

We saw in Sec. 8-la that the chemical reaction (9-2-3) cannot be brought
to a state of chemical equilibrium at any known temperature or pressure;

nevertheless its free energy may be measured with convenience and pre-

cision by means of the galvanic cell (9-2-1). The value of AF in this

case measures essentially the difference between the standard free energies

of formation of AgCl(c) and 3^Hg2Cl 2(c); an independent measurement

of either F^cm or FH 2ci 2(o> taken in connection with the experimental
result (9-2-5), serves to determine the other.

Gerke determined also the temperature coefficient of E\ this was in fact

his primary purpose in the investigation. From the mean result at 25C,
(dE/dT) p

= 0.000338 volt/deg, we may obtain, from Eq. (9-1-13),

A/S^s 1 g-eq X 0.000338 volt/deg 7.80 eu (emf) (9-2-6)

This result may be compared directly with that deduced from the third

1 Directions for preparing Ag(c), AgCl(c) electrodes have been given by A. S.

Brown, J. Am. Chem. Soc., 56, 646-649 (1934). We should distinguish between

reversible and reproducible behavior. An impure or a strained silver electrode may
behave reversibly in a cell such as (9-2-1), but of course it may give different results

from those of a pure silver electrode, free of strain. The presence of a less "noble"

impurity, such as Pb, may introduce irreversible behavior as well.
2
See, however, footnote on page 535.

3 R. H. Gerke, /. Am. Chem. Soc., 44, 1684-1704 (1922).
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law of thermodynamics; using the third-law entropies compiled by K. K.

Kelley:
1

A Q0 00 I OO 00 1 / O OA02Q8 >ACl(c) "T ^Hg(l) ^Ag(o)
""

72 Ug2Cla(o)

= 23.0 + 18.5 - 10.2 - 23.0

- 8.3 0.8 eu (third law) (9-2-7)

the most uncertain individual third-law entropy being that of Hg2Cl2 (c).

The agreement is within experimental error, the value obtained from

Gerke's measurements in this case being probably the more precise.

Combining (9-2-5) with (9-2-6) according to (9-1-9), we may compute
the standard enthalpy of the cell reaction (9-2-2)

Aff>8
= -1050 cal + (298.16 deg)(7.80 eu) = +1276 cal (9-2-8)

The effect of pressure on the emf of the cell (9-2-1) has been measured by
G. Timofeev, who obtained (dE/dp) T = (2.66 + 0.20) X 10~6

volt/atm,

using 0.1M KC1 as the electrolyte and pressures up to 1500 atm. 2 We
may compare this experimental result with that calculated by the applica-

tion of Eq. (9-1-14); with AF = -2.7 ml,

(dE\
= 2.7ml 0.1013 joule 1 volt g-eq

dp )T
~

1 g-eq ml atm
X

96,485 joules
= 2.8 X 10~6

volt/atm

The agreement between the observed and the theoretical values is

excellent.

The cell (9-2-1) has been set up also with O.lm NaCl in methanol as the

electrolyte; P. S. Buckley and H. Hartley thereby obtained E = 0.0496

volt at 25C. 3

Example :

Hg(l), Hg2Cl 2(c)|HCl(aq, m)|Cl2(g), (Pt-Ir) (9-2-9)

The electrode reactions are

Anode reaction: Hg(l) + C1-(HC1, aq) = HHg2Cl 2 (c) + e

Cathode reaction: KCl 2 (g) + e = C1~(HC1, aq)

giving rise to the net reaction, for j = Iff,

Hg(l) + MCl 2 (g)
= HHg2Cl 2 (c) (9-2-10)

The reversible chlorine electrode was first used by E. Miiller, who found

that an inert metal, such as platinum-iridium alloy, could serve as a

1 K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941).
2 G. Timofeev, Z. physik. Chem., 86, 113-128 (1913).
8 P. S. Buckley and H. Hartley, Phil. Mag., (7) 8, 320-324 (1929).
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carrier for Cl2(g) in a solution containing Cl~. x The free energy of the

cell reaction (9-2-10) has the form

AF = ^Hci2(c)

-
*5w)

- H*, (9-2-11)

where <cia represents the thermodynamic potential of CU in the gas phase

(a mixture of CU with N2) over the cathode. If we assume that the gas

satisfies the ideal-gas law,

where pcia represents the partial pressure of the chlorine, then Eq. (9-2-11)

assumes the form

AF = AF - VtftT In pcia

This equation may be corrected for deviation from ideality by multiplica-

tion of pci2 by an experimentally determined fugacity coefficient, whose

value will differ but little from unity at pressures below 1 atm. Thus,

according to the fundamental relationship (9-1-10),

J>rp

E = E +^ In (pc,,)* (9-2-12)
i g-eq

In other words, the emf should vary with pCia in such a way that the

expression

E - -ln (pclt)* = E (9-2-13)

stays constant at given temperature. The value of the constant E
measures the standard free-energy change of the cell reaction, in accord-

ance with the definition

E = - i AF (9-2-14)

It represents what the emf of the cell would be if each substance were

present in its standard state, which in this case would be the pure states

at 1 atm for Hg(l) and Hg2Cl 2 (c), and a hypothetical ideal-gas state at 1

atm for C\z(g).

In Miiller's original work, condition (9-2-13) was not at all satisfied, a

result which he attributed to the possible hydrolysis of chlorine in aqueous
solution. G. N. Lewis and F. F. Rupert were able to obtain consistent

results by using chlorine at low partial pressures mixed with air. 2
Later,

N. Kameyama, H. Yamamoto, and S. Oka succeeded in obtaining con-

sistent results even at chlorine partial pressures approaching 1 atm, by
1 E. MUller, Z. phyaik. Chem., 40, 158-168 (1902).
2 G N. Lewis and F. F. Rupert, /. Am. Chem. Soc., 33, 299-307 (1911).
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using chlorine diluted with nitrogen, and saturated KC1 as the electrolyte.
1

Both sets of data are given in Table 9-1. The values of E from the work

of Lewis and Rupert run slightly lower than those from the work of

TABLE 9-1. EMF OP THE REACTION: Hg(l) + KCl2(g)
= KHg 2Cl 2(c)

Hg(l), Hg 2Cl 2(c)|HCl (aq, 0.1m)|Cl 2 (pC i2
in air), (Pt-Ir)*

Hg(l), Hg 2Cl2(c)|KCl (aq, satd)|CI 2 (Pciz in N,), (Pt-Ir)f

* Data of G. N. Lewis and F. F. Rupert, J. Am. Chem. Soc., 33, 299-307 (1911).

f Data of N. Kameyama, H. Yamamoto, and S. Oka, J. Soc. Chem. Ind., Japan, 29, 679-686 (1926);
Proc. Imp. Acad. (Tokyo), 3, 41-43 (1927).

Kameyama, Yamamoto, and Oka, but the general average for the two

sets, E = 1.0903 volts, is in close agreement with independent measure-

ments by R. H. Gerke, who also measured the temperature coefficient,

1 N. Kameyama, H. Yamamoto, and S. Oka, /. Soc. Chem. Ind., Japan, 29, 679-
686 (1926); Proc. Imp. Acad. (Tokyo), 3, 41-43 (1927).
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(dE/dT) = -0.000945 volt/deg.
1 The effect of the chlorine pressure

(9-2-12) on the emf of this cell is of course a special case of the general law

(9-1-14) for the effect of pressure on the emf, the value of AF for the reac-

tion (9-2-10) being practically equal to H^ci2 (g). The expression

(RT/j) In ( ), which recurs throughout the thermodynamic theory of

galvanic cells, gives rise to a numerical factor having the equivalent

values at 25C

RT ,
, , 1364.28 + 0.09 cal .

,
,

-j-ln(
)
=--,
- log( )

V__j (9-2-15)

0.059161 + 0.000004 volt-eq" , N=-z^----
log ( )

The particular cell under consideration measures the standard molal

free energy of formation of Hg2Cl2(c); for rewriting the cell equation

(9-2-10) withj =
2JF,

2Hg(l) + Cl2 (g)
= Hg2Cl2 (c)

and introducing the experimental value of E in (9-2-14), we obtain

AF 98
= -2 g-eq X 1.0903 volts = -50,302 cal (9-2-16)

Likewise, from Gerke's measurements of the temperature coefficient of

E, we may obtain as the standard entropy of formation of Hg2Cl 2 (c)

A/S 98
= -2 g-eq X 0.000945 volt/deg = -43.6 eu (9-2-17)

From Kelley's critical compilation, the third-law entropies of Hg(l) and

Cl2 (g) at 298K are, respectively, 18.5 0.2 and 53.3 0.1 eu/mole;

combining these values with the result (9-2-17), we may derive for

Hg2Cl2 (c) : /S?98
= 46.7 eu/mole. The directly established third-law

entropy of Hg2Cl2 (c) is S%gB
= 46.0 + 1.4 eu/mole.

2 We may compute
the standard enthalpy of formation of Hg2Cl 2 (c) by combining (9-2-16)

and (9-2-17) in Eq. (9-1-9),

8
= -50,302 cal - (298.16 deg)(43.6 eu) = -63,300 cal

These experimental results for the cell (9-2-9), taken in connection

with the results obtained for the previously considered cell, (9-2-1), serve

to determine the thermodynamic properties of AgCl(c); for taking

(9-2-16) and (9-2-5) in the forms

Hg(l) + KCl2(g)
- ^Hg,Cl,(c); AF 98

= -25,151 cal

A'g(c) + HHg2Cl2(c) Hg(l) + AgCl(c); AFg98 - -1,050 cal

1
Gerke, loc. cit.

* K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941).
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we may compute for the reaction

Ag(c) + ^Cla(g) - AgCl(c); AF?98
- -26,201 cal (9-2-18)

Now, the emf of the cell

Ag(c), AgCl(c)|HCl(aq, l7rc)|Cl2(g), (Pt-Ir) (9-2-19)

whose cell reaction is represented by Eq. (9-2-18), has been measured

directly by Gerke, who obtained E%gs
= 1.1362 volts;

1
substituting in

(9-2-14),

= -1 g-eq X 1.1362 volts = -26,210 cal (9-2-20)

The excellent agreement between (9-2-18) and (9-2-20) constitutes direct

experimental confirmation of the principles embodied in the second law of

thermodynamics. Gerke measured also the temperature coefficient of E
for this cell, obtaining (dE/dT) = -0.000595 volt/deg; from this result,

one may compute directly the standard entropy of the reaction (9-2-18)

AS298
= -1 g-eq X 0.000595 volt/deg = -13.73 eu (9-2-21)

We have compared this experimental result with the third-law calculation

in Sec. 8-3.

Example :

(Pt), H2(g)|NaOH(aq, m)|HgO(c), Hg(l) (9-2-22)

This cell is not strictly an electrode cell, since H 2O is one of the products

of the cell reaction. Since, however, < H2o does not depend sensitively on

the electrolyte concentration, the behavior of the cell at low electrolyte

concentrations resembles in many respects that of the cell (9-2-9). The
two electrode reactions are

Anode reaction: H2(g) + 2OH~(NaOH, aq, ra)

= 2H 2O(NaOH, aq, m) + 2e

Cathode reaction: HgO(c) + H 20(NaOH, aq, m) + 2e

= Hg(l) + 20H-(NaOH, aq, m)

The net cell reaction corresponding to j = 25 is

H 2 (g) + HgO(c) = Hg(l) + H20(NaOH, aq, m) (9-2-23)

The Hg(l),HgO(c) electrode was shown to be reversible with respect to

OH-(aq) by J. N. Br0nsted, who first studied the cell (9-2-22).
2 This

electrode is one of the closest approaches we have to a reversible oxygen

electrode; no one has succeeded in preparing a reversible electrode in

which O2(g) itself is one of the reacting substances. The reversible

1
Gerke, loc. eit.

* J. N. Br0nsted, Z. physik. Chem., 65, 84-92, 744 (1909).
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hydrogen electrodes in modern use are variants of the hydrogen electrode

described originally by J. H. Hildebrand. 1 A stream of pure hydrogen is

bubbled slowly through the electrolyte surrounding a platinum-foil elec-

trode, on which has been deposited by electrolysis a film of finely divided

platinum black, capable of adsorbing many times its volume of hydrogen..

Directions for platinizing electrodes, and for protecting them from "poi-

soning/' have been described by several investigators.
2 In ordinary use,

the hydrogen gas becomes saturated with solvent vapor (usually water),

and its partial pressure is equal to the barometric pressure less the partial

vapor pressure of the solvent in the electrolyte.

The free-energy change corresponding to the reaction (9-2-23) has the

form

AF = PHK(I) + 0H2 <t>U2 ^HgO(o)

= AF + RT In aH2o - RT In pH2 (9-2-24)

where

(9-2-25)

We may therefore represent the cell's emf according to Eq. (9-1-10) in the

form

In 529
(9-2-26)v '

2g-eq

where, as before,

E = -
-. AF (9-2-27)

Equation (9-2-26) may be expressed in the equivalent form

[compare Eq. (9-2-13)], from which one sees that by extrapolating the

value of the expression on the left (E
"
corrected

77
to pn2

= 1 atm) to zero

electrolyte concentration, where aH2o >
1, one obtains the value of E.

Y. Kobayashi and H, Wang showed that at 25C this value of E corrected

to pna
= 1 atm could be represented by the empirical equation

#<PHa-i*tm)
= 0.92550 + 0.00005792m + 0.00036421m8

(volts)

1 J. H. Hildebrand, /. Am. Chem. Soc., 36, 847-871 (1913); in this paper, Hildebrand
demonstrated the application of the hydrogen electrode to the potentiometric titra-

tion of acids and bases.
2
See, for example, W. M. Clark, "The Determination of Hydrogen Ions," 3d ed.,

The Williams & Wilkins Company, Baltimore, 1928; S. Popoff, A. H. Kunz, and
R. D. Snow, J. Phys. Chem., 32, 1056-1060 (1928).
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from which is derived the value of E%9B
= 0.9255 volt. 1

Substituting this

value in Eq. (9-2-27), we obtain for the standard free energy of the reac-

tion (9-2-23)

AF?98
= -2 g-eq X 0.9255 volt

= -42,700 cal (9-2-29)

According to (9-2-25), this quantity measures the difference between the

standard free energies of formation of H2O(1) and HgO(c).

Now, by introducing the value of ^Sgoco derived from high-temperature

thermal-equilibrium data, 13,990 cal, as shown in Eq. (8-l-27a), Sec.

8-lc, we may derive from the experimental result (9-2-29) a value for the

important natural constant FK&(> the standard molal free energy of

formation of H2O(1) at 298.16K; thus F
20(1)

= -56,690 cal/mole.

This result is in perfect agreement with the value of 56,689.9 cal/mole

accepted by F. D. Rossini for
"
Selected Values of Chemical Thermody-

namic Properties" from a critical survey of other methods, including

spectroscopic data for H2O(g), according to the method outlined in Chap.
10. 2

Kobayashi and Wang also determined the temperature coefficient of E
for the cell (9-2-22), obtaining (dE/dT) = -0.000285 volt/deg, from

which the standard entropy of reaction has the value

AS 98
= SSw, + SS - S$M - SSgo(o

= -13.15 eu (9-2-30)

Example :

Ag(l)|AgCl (in KCl)|Ag,Au^(l) (9-2-31)

This interesting cell has been studied at high temperatures by C. Wagner
and G. Engelhardt, the electrolyte consisting of AgCl dissolved in molten

KC1; electrical contact with the molten-metal electrodes was made

through graphite leads. 3 One electrode consists of pure silver, and the

other, of silver at mole fraction x alloyed with gold. The electrode reac-

tions corresponding to j = 1$F are

Anode reaction: Ag(l) = Ag+(AgCl in KC1) + e

Cathode reaction: Ag+(AgCl in KC1) + e = Ag(l, x^ in Au)

The electrical energy is therefore derived from the free energy of the net

change:

Ag(l) = Ag(l, XAB in Au) (9-2-32)

This is normally a spontaneous process, as shown by the fact that Ag(l)

1 Y. Kobayashi and H. Wang, /. Sci. Hiroshima Univ., (A) 5, 71-82 (1934).
2 "Selected Values of Chemical Thermodynamic Properties," National Bureau of

Standards, Washington, D.C., June 30, 1947.
8 C. Wagner and G. Engelhardt, Z. physik. Ghent., (A) 169, 241-267 (1931).
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will readily dissolve in the molten alloy. The cell (9-2-31) constitutes a

thermodynamically reversible method of setting up this ordinarily irre-

versible transformation.

The free-energy change corresponding to (9-2-32) has the form

AF = 0Ag ^Ag(l)

Introducing the mole-fraction activity coefficient 7Ag based on pure Ag(l)

as the reference state, in accordance with Eq. (7-3-48),

where 7Ag, the activity coefficient of Ag in the liquid alloy, would equal 1

if the liquid were ideal, in the sense that both components satisfied

Raoult's law. Thus, according to (9-1-10), the cell emf should satisfy

the equation

E = - AF = - - In *Ag7Ag (9-2-33)
3 1 g-eq

v

The value of 7Ag may be computed from the observed value of E according

to the equivalent relationship,

log 7A. - - E -
log *Ag (9-2-34)

and according to the ideal dilute-solution generalization, should at least

approach 1 as x\g > 1.

Actual data for the cell at 1087C (1360K) are presented in Table 9-2.

The values of log 7Ag and of 7Ag computed according to Eq. (9-2-34) are

given in the fifth and sixth columns. One sees that the solution deviates

to some extent from ideality as the concentration of Au in the alloy is

increased, but the deviation is much less than for the solid alloy at lower

temperatures (compare Fig. 7-14; the data plotted there, at 200C, were

obtained by a similar method).
A noteworthy feature in the behavior of a cell such as (9-2-31) is that a

finite emf, given by Eq. (9-2-33), would exist even if the liquid (or solid)

alloy were an ideal concentrated solution (7Ag = 1), so that no net energy

change was involved in the solution process. The entire electrical energy
delivered by the cell at constant temperature would then be derived from

the surroundings in thermal form. This result illustrates graphically the

impact of the second law of thermodynamics, for from the first law only,

we should have no reason to look for electrical energy from a process that

ordinarily takes place without releasing any energy. The tendency for

pure silver to diffuse into the alloy is governed ideally, however, by an

extraenergetic effect: the overwhelmingly greater random chance that
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silver molecules will diffuse throughout the alloy rather than segregate,

when no specific orienting influence is present (as in the case of two
immiscible liquids). The cell (9-2-31) takes advantage of this more or

less purely random tendency on the part of the silver molecules [measured

TABLE 9-2. EMF DATA FOR THE CELL: Ag(l)|AgCl(in KCl)|AgxAui^(l)*
T - 1360K

* C. Wagner and G. Engelhardt, Z. physik. Chem., (A)159, 241-267 (1931).

by the ideal entropy of mixing, AS = R In rcAg,
for the process (9-2-32)],

and the cell reaction (9-2-32) proceeds, even though it follows that most

of the electrical energy developed by the cell at constant temperature has

to be taken in thermally from the surroundings. An analogy may be

drawn with the production of work by an ideal gas expanding at constant

temperature.
Cells similar in structure to (9-2-31), but based on liquid mercury

amalgam electrodes, have been studied extensively. For example, the

cell

(z' in Hg)|Tl2SO 4(aq)|Tl(z" in Hg)

was studied by T. W. Richards and F. Daniels at 20C. 1 Its emf is inde-

pendent of the electrolyte concentration, and depends only on the thallium

concentrations in the two electrodes. The electrical energy results from

the tendency for the thallium to distribute itself at equal concentrations

(equal <n) between the two solutions. The results establish directly the

relative values of fai between the two amalgam concentrations.

b. Concentration Cells; Standard Electrode Potentials. These are cells

for which the emf depends on the concentration of the electrolyte.

Example :

(Pt), H2(g)|HCl(aq, m)|AgCl(c), Ag(c) (9-2-35)

This cell has been thoroughly studied by many investigators. The

reversible electrode reactions are

1 T. W. Richards and F. Daniels, J. Am. Chem. Soc., 41, 1732-1768 (1919) ;
see also

G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances," pp. 265-270, McGraw-Hill Book Company, Inc., New York, 1923.
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Anode reaction: ^H 2(g)
= H+(HC1, aq, m) + e

Cathode reaction: AgCl(c) + e = Ag(c) + C1""(HC1, aq, m)

and the net cell reaction for j = Iff is

HH 2(g) + AgCl(c) = Ag(c) + HCl(aq, m) (9-2-36)

We may represent the free energy of the reaction (9-2-36) in the form

AF =
^Ag(c) + 0HC1 J^Hi ^AgCKc)

Now for the strong electrolyte HCl(aq), we may represent <HCI according
to the principles of Eq. (7-4-23), Sec. 7-4, in the form

In

where <^HCKaq) is a constant for IIC1 in the particular solvent, water, at

given temperature. Furthermore, we may assume that H 2(g) over the

anode satisfies the ideal-gas law

Therefore

+ 2RT In my - RT In

where

AF = -JE = ng(0) + ^C1(aq)
- ltfZM - ^Ko (9-2-38)

Let us express Eq. (9-2-37) in the form

W = E -
^-

In (pH2)^ = E - In m7 (9-2-39)
1 g-eq

^
1 g-eq

* v y

Thus, E' represents the cell emf corrected to pH,
= 1 atm; unless one is

deliberately investigating the effect of the hydrogen partial pressure on

the results, one usually reports E', rather than E itself, thus eliminating

the variable pH2 from further consideration. 1
Equation (9-2-39) may be

expressed rather more generally in the form

- 7^- In 7^ (9-2-40)
1 g-eq

r ^ '

which presumably would apply if KC1 or HN0 3 were also present, so that

WH+ would differ from mci-.

1 The similar cell, (Pt), H 2(g, pH2)|HCl (aq, O.Uf)|Hg 2Cl 2(c), Hg(l), has actually
been studied at hydrogen pressures up to more than 1000 atm; see W. R. Hainsworth,
H. J. Rowley, and D. A. Maclnnes, /. Am. Chem. Soc., 46, 1437-1443 (1924). Beyond
100 atm, one must correct Eq. (9-2-37) for deviation of H 2(g) from ideal-gas behavior

(see Prob. 9-1).
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If it were not for interionic attraction, Eq. (9-2-39) with y = 1 would

quite simply represent the dependence of Ef on the HC1 concentration in

dilute solution; thus, approximately, E' would decrease by about 0.118

volt for every factor of 10 by which m is increased. We may use the

observed value of E', however, to measure 7 precisely and, at the same

time, to measure the value of the important constant E. Let us rewrite

Eq. (9-2-39) in the form

m = E --- In y (9-2-41)
g-eq 1 g-eq

f ^

from which it is evident that the value of E may be determined in prin-

ciple by the extrapolation

lim ( E' +^ In m\ = E (9-2-42)
m->o\ lg-eq /

Having found E in this way, one may then substitute back in Eq.

(9-2-41) to find y at each concentration.

Table 9-3 contains experimental data for the cell (9-2-35), selected from

work of H. S. Harned and R. W. Ehlers at low HC1 concentrations and
from work of G. Scatchard at higher HC1 concentrations. The third

column contains the values of the expression on the left of Eq. (9-2-41).

One sees that in this case, the deviation from ideal dilute-solution behavior

(which would be represented by a constant value of E' + 0.11832 log m)
is significant even at concentrations below 0.01m. The precision with

which the data may be extrapolated to find E may be considerably

improved with the help of the Debye-Hiickel limiting law (7-4-28),

lim log T = ~0.5082m^ (1:1 electrolyte in H 2 at 25) (9-2-43)
l

m >0

For if instead of extrapolating (E* + 0.11832 log m) itself, we extrapolate
the value of the expression

E' + 0.11832 log m - 0.11832 X 0.5082m^ (volts)

which would exactly equal E if the electrolyte conformed to the Debye-
Hiickel limiting law, then we may expect a more rapid convergence as

m > [compare the treatment of freezing-point data for electrolytes,

according to Eq. (7-5-63)], The value of this expression has been com-

puted for the lower electrolyte concentrations in the fourth column of

1 The value of the universal constant appearing in Eq. (7-4-31) has been multiplied

by VpT, where pi, the density of pure water, has the value 0.99707 g/ml at 25C.
This conversion factor is required for transferring from molar concentration to molality

[Eq. (7-3-98)].
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Table 9-3. If one uses the extended Debye-Hiickel formula (7-4-32),

then one may construct a still closer approximation function to #, as

shown by A. S. Brown and D. A. Maclnnes. 1 On the other hand, if one

is using the cell solely for the determination of E (and by implication,

AF for the cell reaction), and has determined y by other independent

TABLE 9-3. EMP DATA FOR THE CELL: (Pt),H 2 (g, 1 atm)|HCl(aq, m)|AgCl(c), Ag(c)*
T = 298.16K

* Values for 0.003215 to 0.1238m from H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc., 54, 1350-

1357 (1932). Values for 0.2030 to 1.5346m from G. Scatchard, ibid., 47, 641-648 (1925).

means, such as by vapor-pressure or freezing-point measurements (Sec.

7-5), or by the transference method to be described in Sec. 9-3a, then one

may substitute directly the value of 7 in (9-2-41) at given m to calculate

E from the observed value of E at relatively high solute concentrations.

From a critical review of all the evidence, Maclnnes has accepted the

value #93 SB 0.2225 volt. 2 From this value, substituted in Eq. (9-2-41),

1 A. S. Brown and D. A. Maclnnes, /. Am. Chem. Soc., 67, 1356-1362 (1935); see

also D. A. Maclnnes, "The Principles of Electrochemistry," pp. 184-187, Reinhold

Publishing Corporation, New York, 1939.
2
Maclnnes, loc. cit.
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the values of log 7^ and of y given in the fifth and sixth columns of Table

9-3 have been computed from the observed emf data.

The value of E is known as the standard emf of the cell. It represents

what the value of E would be if each chemical reactant and product were

present in its standard state at the given temperature. For HCl(aq),
this standard state is that of a hypothetical ideal dilute solution at

m = 1 mole/kg H 20, i.e., a state for which my = I.
1 Now, according

to Eq. (9-2-38), E for the cell under consideration measures directly the

value of the important natural constant
<t>'nci(*q)

*n relation to the value of

^AgCKo ; thus, introducing the accepted value of E derived from the emf

measurements,

AF?98
= -1 g-eq X 0.2225 volt

= -5133 cal (9-2-44)

We have already reviewed three independent measurements^of FlgCl(0}
:

25,980 cal/mole from third law and thermochemical data (Sec. 8-3),

-26,201 cal/mole from the combined emfs of the cells (9-2-1) and (9-2-9)

[Eq. (9-2-18)], and 26,210 cal/mole from direct emf measurements on

the cell (9-2-19) [Eq. (9-2-20)]. If we accept F2gC1(c)
= -26,200 10 cal/

mole as the probable value of the standard molal free energy of formation

of AgCl(c) at 298.16K, then the experimental result (9-2-44) leads to

0Hci(aq) 31,330 cal/mole. From a critical review of all the informa-

tion, including spectroscopic data for HCl(g), F. D. Rossini has accepted
for

"
Selected Values of Chemical Thermodynamic Properties"

2 the value

31,350 cal/mole; i.e.:

g)
= H+(aq) + Cl-(aq);

= -31,350 cal (9-2-45)

In accordance with the general convention (7-4-14),

MH 2(g)
= H+(aq) + e; AF = ^+(aq)

** (9-2-46)

1 This rather clumsy terminology is necessary because the value of 0nci decreases

without limit, and with it, the value of E increases without limit, as m > 0. But the

value of (<HCI 2RT In m) approaches a finite limit (represented by 0HCi(aq)) as

m > 0, which represents what the value of #HCI would be at m = 1 if the solution

continued to satisfy the ideal limiting law <HCI = 2RT In m at finite solute concentra-

tions. Therefore we accept this 4>HCi(aq) constant as a standard-state measure of

the thermodynamic potential of HC1 in aqueous solution. Such a measure obviously

depends on the concentration measure employed. No such procedure is required in

the case of TJHCI, the enthalpy in solution, since TJHCI itself approaches a finite limit in

the given solvent, as m > 0; therefore 17^01 (
= **) m ideal dilute solution need imply

no reference to the concentration measure.
2 "Selected Values of Chemical Thermodynamic Properties," National Bureau of

Standards, Washington, D.C., June 30, 1948.
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the result (9-2-45) is equivalent to

^Clf(g) + e = Cl-(aq); AF?M = <^-(aq)
= -31,350 cal (9-2-47)

In a cell of the type (9-2-35), it is assumed that the so-called
"
depolarizer/'

AgCl(c) in this case, is sufficiently insoluble so that its presence in the

electrolyte does not significantly influence the thermodynamic properties.
1

Earned and Ehlers also measured the emf of the cell (9-2-35) at a series

of different temperatures, obtaining

^J - -0.00064 volt/deg

From this result, we may compute the standard entropy of the cell

reaction (9-2-36)

HCl(q)

= -1 g-eq X 0.00064 volt/deg = -14.8 eu

Introducing third-law entropies for Ag(c) and AgCl(c), and the spectro-

scopically determined entropy of H 2(g) from Kelley's critical compila-

tion,
2 we thus obtain

^Hcuaq)
= 13.6 eu/mole (T = 298.16K)

This value may be independently cross-checked by the spectroscopically

determined value of $0100 (see Table 10-4, Chap. 10), combined with the

entropy of solution, which may be calculated from the heat of solution and

partial-vapor-pressure data for HC1 from concentrated solutions. 3 The
value accepted for

"
Selected Values of Chemical Thermodynamic

Properties'' is

13.17 eu/mole (T = 298.16K) (9-2-48)

In view of the convention (8-3-7), this quantity measures the value of

ci-(aq)-
One can readily understand how chemical thermodynamic data

derived from ordinary equilibrium and thermochemical sources, including

third-law entropy data, could be applied to calculate the electrochemical

properties of reversible galvanic cells. Taken together, both types of

information obtained experimentally serve as cross checks on the reliabil-

ity and self-consistency of our chemical thermodynamic data.

Following up the implications of the convention (9-2-46), it has become

customary to summarize standard emf data in the form of standard elec-

trode potentials, corresponding to the two independent electrode reactions

1 Recall footnote on page 535.
2

g(c)
. 10.20 0.05 eu/mole; SAgplM 23.0 0.1 eu/mole; 8&M - 31.23

0.01 eu/mole; K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941).
8 M. Randall and L. E. Young, J. Am. Chem. Soc., 60, 989-1004 (1928).
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taking place in each half of the cell. American theoretical electrochem-

ists write the electrode reactions as oxidations, the sign of E then being

represented correctly for a given cell reaction by algebraic addition of the

electrode reactions and their corresponding standard electrode potentials,

in the sense that a reaction that tends to proceed spontaneously when each

reactant and product is in its standard state then has a positive value of

E. Starting with the arbitrary convention,

^H 2(g)
= H+(aq) + e; E = 0.0000 volt (9-2-49)

the result # 98
= 0.2225 volt for the cell (9-2-35) thus leads to the Ag(c),

AgCl(c), Cl"*(aq) standard electrode potential:

Ag(c) + Cl-(aq) = AgCl(c) + e; E^ = -0.2225 volt (9-2-50)

If this result is combined with the experimental result, 1? 98
= 0.0455 volt

for the cell (9-2-1), we thus obtain

Hg(l) + Cl-(aq) = HHg2Cl 2 (c) + e] # 98
= -0.2680 volt (9-2-51)

Or if it is combined with the experimental result, #298
= 1-1362 volt for

the cell (9-2-19), we obtain

Cl-(aq) = KCl 2(g) + e; # 98
= -1.3587 volts (9-2-52)

The value of each standard electrode potential is equivalent to the stand-

ard free energy of the corresponding electrode reaction, by virtue of the

general relationship

AF = -jE (9-2-53)

The possibility of constructing a self-consistent table of standard electrode

potentials rests in the independence of ionic thermodynamic properties at

infinite dilution in the solvent, water. The numerical values are of course

based on the convention represented by (9-2-46) and (9-2-49), and have

no significance except in relation to each other, i.e., except when recom-

bined in the form of E for a complete oxidation-reduction reaction.

Comprehensive and critical summaries of standard electrode potentials,

or so-called "oxidation potentials/' have been given by W. M. Latimer

and by D. A. Maclnnes; such information is implicit also in the extensive

free-energy data being compiled by the National Bureau of Standards,
under the direction of F. D. Rossini and his associates. 1

1 W. M. Latimer, "The Oxidation States of the Elements and Their Potentials in

Aqueous Solutions," Prentice-Hall, Inc., New York, 1938; D. A. Maclnnes, "The

Principles of Electrochemistry," Reinhold Publishing Corporation, New York, 1939 ;

F. D. Rossini et al., "Selected Values of Chemical Thermodynamic Properties,"
National Bureau of Standards, Washingon, D.C. (issued quarterly since Dec. 31, 1947).
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Example :

Pb(Hg)|PbCl 2(aq, m)|AgCl(c), Ag(c) (9-2-54)

The thermodynamics of this cell, studied by W. R. Carmody, is essentially

similar to that of the cell (9-2-35).
l The electrode reactions are

Anode reaction: Pb(Hg) = Pb++(aq) + 2e

Cathode reaction: AgCl(c) + e Ag(c) + Cl""(aq)

so that the net cell reaction for j = 2ff is

Pb(Hg) + 2AgCl(c) Ag(c) + PbCl 2(aq, m)

The corresponding free-energy change has the form [compare Eq. (7-4-23)

for <pt>cij

&F = AF + 3RT\nmy + RTln*
Therefore

E = E - - In my - - In 4 (9-2-55)2 g-eq
l

2 g-eq
v '

where

It has been found that saturated or two-phase amalgams of the metals

lead, cadmium, zinc, copper, etc., give more reproducible results than

sticks or sheets of the pure metals, which are subject to strains and gas
occlusions. From measurements at PbCl2 concentrations between

0.0002m and the saturated solution, 0.03905m, at 25C, Carmody found for

E the value E%9S
= 0.3426 volt. From the value of E for the saturated

solution, 0.4842 volt, y = 0.408.

Now, there is a small but significant potential difference between pure

crystalline lead, and the two-phase lead amalgam, which Carmody meas-

ured by setting up the cell

Pb(c)|PbCl 2(aq)|Pb(Hg); #298 = # 98
= 0.0058 volt (9-2-56)

Therefore for the reaction

Pb(c) + 2AgCl(c) = 2Ag(c) + Pb++(aq) + 2Cl-(aq)

#293
- 0.3484 volt

Combining this result with the standard potential (9-2-50) of the Ag(c),

AgCl(c), Cl~(aq) electrode,

Pb(c) = Pb++(aq) + 2e; #?98
= 0.1259 volt (9-2-57)

This statement is equivalent to

<&>++(q>
= -2 g-eq X 0.1259 volt

= -5810 cal/mole (9-2-58)

1 W. R. Carmody, /. Am. Chem. Soc., 61, 2905-2909 (1929); see Prob. 9-3.
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In a similar manner, the standard electrode potentials of many other

metals have been determined.

Example :

(Pt), H2(g, 1 atm)|H 2SO 4(aq, m)|PbSO4(c), Pb(Hg) (9-2-59)

This cell gives the thermodynamic potential of H280)4 in aqueous solution,

and also the standard potential of the Pb(Hg), PbSO^c), SO4""(aq) elec-

trode. The cell reaction for j = 25 is

H 2(g) + PbS04(c)
= Pb(Hg) + H 2S0 4(aq, m) (9-2-60)

The emf has been measured over a wide range of concentrations and

temperatures by J. Shrawder and I. A. Cowperthwaite; at 25C,

#298 = -0.3505 volt 1

Combining with (9-2-56),

H2(g) + PbSO 4(c)
= Pb(c) + H 2SO 4(aq); #298

= -0.3563 volt

(9-2-61)

Pb(c) + SOr(aq) = PbSO 4 (c) + 2e; E n = 0.3563 volt (9-2-62)

The result (9-2-62) combined with (9-2-57) implies the thermodynamic

solubility product of PbSO 4 , for, by difference,

PbS0 4(c) Pb++(aq) + SOr(aq); Em = -0.2304 volt

This corresponds to the standard free-energy change

g
= -2 g-eq X (-0.2304 volt) = 10,630 cal

According to Eq. (7-4-37), AF measures the thermodynamic solubility

productK9 through the relationship

RT In Ks
= -AF (9-2-63)

Thus
loS K8

= -7.792

K9
= 1.61 X 10~ 8

This method of measuring solubility products is quite general, and its

physical basis may perhaps be made clearer by the following remarks.

The actual contribution of the lead electrode (9-2-57) to the emf of a cell

of which it forms a part may be expressed in the form

1 J. Shrawder and I. A. Cowperthwaite, /. Am. Chem. Soc., 66, 2340-2345 (1934) ;
the

data have been analyzed critically by D. A. Maclnnes, "The Principles of Electro-

chemistry," pp. 191-193, Reinhold Publishing Corporation, New York, 1939. See

also II. S. Ilarncd and W. J. Hamcr, /. Am. Chem. Soc., 67, 27-33 (1935), for the

analogous cell based on Hg(l), Hg 2SO4 (c) instead of Pb(Hg), PbSO 4 (c).
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RT
#pb(C).pb++(q)

=* 0.1259 -
2

In mPb++7Pb+* (9-2-64)

where it is understood that this relationship has significance only in con-

nection with some process taking place at the other electrode completing

the cell. However, the lead electrode potential depends on the Pb++

concentration around the electrode, in the manner represented in general

by (9-2-64). When this electrode is immersed in a solution saturated

with PbSC>4, its potential then assumes a value determined in accordance

with (9-2-64) by the Pb++ concentration in the saturated solution, and the

difference between (9-2-57) and (9-2-62) is thus a measure of that concen-

tration. The fact that the E values have been derived by extrapolations

to infinitely dilute solution implies that deviation from ideal dilute-solu-

tion behavior has been taken into account. Thus, if one substitutes the

result (9-2-62) in (9-2-64) in the ideal dilute-solution form,

0.3563 volt = 0.1259 volt - ' volt
iog

and solves for wPb++, one will obtain the Pb** concentration in a hypo-
thetical ideal dilute solution in which mso4

- = 1 mole/kg [the SO-f
3

state

to which (9-2-62) applies] ;
this is the same as the thermodynamic solu-

bility product of PbSO4. A similar principle is used in the study of com-

plex ion equilibria by emf measurements, except that it is usually more

troublesome in a complex mixture to carry out the extrapolation to ideal

dilute-solution behavior.

Example :

Zn(c)|ZnS04(aq,m
/

)lHg2S04(c),Hg(l),Hg2SO 4(c)|CuSO4(aq,m
//

)|Cu(c)

(9-2-65)

If we were to set up such a cell, then the net cell reaction accompanying
the flow of 2$ through the cell would be

Zn(c) + CuS0 4(aq, m") = Cu(c) + ZnSO 4(aq, m') (9-2-66)

At the Zn anode, Zn++ ions would go into solution reversibly and would

be accompanied by S04" ions from the Hg2S04(c) in the intermediate

compartment of the cell, while simultaneously Cu++ ions would be

reduced reversibly to Cu at the Cu cathode, the corresponding 804"* ions

combining with Hg(l) in the intermediate compartment to formHg2SO4(c) .

Exactly as much Hg2SO 4 (c) would be formed by the process taking place
in the right-hand half of the cell as would be consumed by the process

taking place in the left-hand half of the cell. The cell reaction (9-2-66) is

similar to the Daniell cell reaction (5-5) considered in Sec. 5-1, except that
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by the device of introducing the intermediate compartment containing

materials behaving reversibly toward the deposition and liberation of

the anion, SO4"", we have eliminated the irreversible feature of the actual

Daniell cell associated with the migration of ions across the liquid junction

between the two electrolytes.

It is not actually necessary for us to set up such a cell as (9-2-65),

except in thought, because it consists merely of the two simple cells

Zn(c)|ZnS0 4(aq, m')|Hg2SO4(c), Hg(l) (9-2-67)

Cu(c)|CuS04(aq, m")|Hg2SO4(c), Hg(l) (9-2-68)

connected in series, in opposition to each other. 1 Therefore if we merely
subtract (algebraically) the emf of the cell (9-2-68) from that of the cell

(9-2-67), we shall obtain the desired emf of the cell (9-2-65). The free

energy of the reaction (9-2-66) has the form

Thus

(9_2_69)
g-eq

where

q) (9-2-70)

The value of E" may be computed from the two standard electrode

potentials

Zn(c) = Zn++(aq); E%9S = 0.7G11 volt (9-2-71)

Cu(c) = Cu++(aq); #?98
= -0.339 volt (9-2-72)

Thus

Elw = 1.100 volts (9-2-73)

Therefore the emf equation (9-2-69) has the form at 25C

E = 1.100 - 0.05916 log
Wzn80<

i

T) 'D904
(9-2-74)

It happens that when the concentrations of ZnSO4 and CuS04 are equal,

the mean ionic activity coefficients of these quite similar electrolytes are

nearly equal; in that case, E = 1.100 volts. In a real Daniell cell, as

ordinarily set up, the CuS04 concentration is usually made higher than

1 Compound cells similar to (9-2-65), containing a flowing amalgam in the center

compartment, have been useful in the study of thermodynamic properties of the alkali

metals and their compounds; see, for example, H. S. Harned, /. Am. Ghent. Soc.. 47,

676-684 (1925).
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the ZnSC>4 concentration, but the emf is generally somewhat less than 1.10

volts.

The information (9-2-73) gives us essentially the equilibrium constant

of the cell reaction (9-2-66) ;
for if the concentrations of the two electrolytes

were such that the system would be in a state of chemical equilibrium,
then there would be no source of chemical free energy, and E would
vanish. This condition implies that

In ^*><- "-
(# =

) (9-2-75)V ' k '
2g-eq

Therefore the expression on the right of Eq. (9-2-75) assumes a constant

value for all equilibrium states of the chemical reaction

- 7zn++7flQ4-

4- 7CU++7804-

where, by definition,

(9-2-77)

This relationship is quite general; for the cells we have previously con-

sidered, where the thermodynamic potential of only a single reactant or

product depended on the electrolyte concentration, there was but a

single concentration in principle (not necessarily an attainable one) at

which the reaction would be in a state of equilibrium; e.g., for the cell

(9-2-35), and reaction (9-2-36), the equilibrium constant has the general

form

,Q 9 7Qx

(9
"2"78)

so that at PHS
= 1 atm, there is in principle a unique concentration of

HC1 at which the reaction would be in a state of equilibrium. At lower

concentrations, H^g) tends to reduce AgCl(c), but at higher concentra-

tions, Ag(c) would tend to reduce HCl(aq). Calculation according to

Eq. (9-2-77) from the observed value of E shows thatKm in Eq. (9-2-78)

has the value 5.75 X 10 3
;
therefore it is impossible to attain a concentra-

tion of HC1 high enough to attack silver (though complex ion formation

between AgCl and Cl~ tends to favor this outcome). From the standard

value of E for the reaction (9-2-66), log Km = 37.19, K% = 1.6 X 1037
.

This appears to be an astronomically large number, but it is measured

quite precisely by Eq. (9-2-77) from the emf data. It implies that Zn

will tend to displace Cu from aqueous Cu++ solution so long asmZn++/wiCu++

< 1.6 X 1037
(disregarding the effect of the two activity coefficients,

which in this case practically cancel each other). It is quite possible,



558 PRINCIPLES OF CHEMICAL THERMODYNAMICS

however, to reduce the free Cir1
"4"

concentration to such a low value

through complex ion formation [e.g., as Cu(CN)J] that Zn cannot dis-

place Cu from the solution; this principle is utilized in the electroplating

of brass.

9-3. Cells with Liquid Junctions. It is not always possible for us to

set up electrochemical reactions in which we are interested, in the form of

galvanic cells without liquid junctions. For example, we cannot deter-

mine the important Ag(c), Ag+(aq) standard electrode potential directly

by means of cells without liquid junctions, because there are no sufficiently

soluble silver salts for whose anions we have reversible electrodes. There-

fore it is necessary for us to study liquid-junction effects, in order to

understand how they may influence thermodynamic data based on cells

with liquid junctions. Furthermore, the study of liquid-junction proc-

esses has proved to be extremely interesting in itself.

a. Transference Cells. Most of the cells we have considered in the pre-

ceding section have been based on chemical oxidation-reduction reactions,

with the exception of (9-2-31) which was based on diffusion between the

electrodes. We may construct cells comparable to (9-2-31), but based on

diffusion of the electrolyte. Thus, the process

HCl(aq, mi) = HCl(aq, m2) (9-3-1)

involves a free-energy change having the form

which may be converted reversibly into electrical energy by means of such

a compound cell as

Ag(c), AgCl(c)|HCl(aq, m 1)|H 2(g), (Pt),H 2(g)|HCl(aq, m 2)|AgCl(c), Ag(c)

(9-3-3)

The passage of 1$ of negative electricity through this cell from right to

left results in the transfer of 1 mole of HC1 from the left-hand compart-
ment to the right, as represented by Eq. (9-3-1); it also results in the

transfer of 1 mole of AgCl(c) from the right-hand electrode to the left-

hand electrode, and the net gain of 1 mole of Ag(c) at the right and loss of

1 mole of Ag(c) at the left, but since no change of state of these substances

is involved, these accompanying effects do not represent thermodynamic

changes. We do not actually have to set up the cell (9-3-3), since it con-

sists merely of two cells (9-2-35) coupled in series, back to back, and the

emf will simply be the algebraic difference between the emf of (9-2-35) for
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ra2 and the emf for mi; if mi exceeds m2,
then the process (9-3-1) will tend

spontaneously to take place as indicated, from left to right, and the left-

hand electrode of the cell (9-3-3) will be the negative electrode (corre-

sponding to a positive value of E). Thus, by interpolation of the data in

Table 9-3, we find for w2
= 0.01 mole/kg, E2

= 0.4643 volt, and for

mi = 0.1 mole/kg, E\ = 0.3525 volt; therefore for the corresponding cell

(9-3-3), E = 0.1118 volt.

Let us consider the cell

Ag(c), AgCl(c)|HCl(aq, mi)||HCl(aq, m,)|AgCl(c), Ag(c) (9-3-4)

in which the two electrolytes make direct physical contact with each

other. Its electrical energy is derived basically from the same change of

state (9-3-1) as that of the cell (9-3-3), but with m x
= 0.1 mole/kg and

m 2
= 0.01 mole/kg, we find at 25C that E is only 0.0925 volt. 1 The

reason for the difference rests in the fact that as the cell (9-3-4) is dis-

charged, Cl~ ions can migrate across the boundary of the two electrolytes,

from the right-hand compartment into the left. This cannot happen in

the cell (9-3-3) . Therefore the net quantity of HC1 transferred by 1J from

the left compartment of cell (9-3-4) to the right is less than 1 g-eq, by the

number of gram-equivalents of Cl~* migrating across the liquid junction.

The ionic migration is in this case a thermodynamically reversible proc-

ess; it could be exactly reversed by the application to the cell (9-3-4) of a

potential difference slightly greater than the cell's own emf.

Let t+ represent the transference number of the cation, H+
,
and t~, the

transference number of the anion, Cl~; these numbers represent the

respective fractions of the electricity transported through the electrolyte

by the cation and by the anion, respectively, and they are determined by
the relative rates of migration under a given potential gradient. They
may be measured by methods independent of emf studies, such as by the

original Hittorf method, based on straightforward analysis of the chemi-

cal changes taking place around the two electrodes during electrolysis, or

by the elegant moving-boundary method, perfected by D. A. Maclnnes,
L. G. Longsworth, and their associates. 2 In general, the transference

numbers vary slightly with concentration, so that they will differ on the

two sides of the cell (9-3-4). In the present elementary treatment, we

1 Selected from a detailed investigation by T. Shedlovsky and D. A. Maclnnes,
J. Am. Chem. Soc., 68, 1970-1972 (1936). Their concentrations are expressed in

moles per iter, but the difference is insignificant for our present purpose.
2 J. W. Hittorf, Pogg. Ann., 89, 177 (1853), etc.

D. A. Maclnnes and L. G. Longsworth, Chem. Revs., 11, 171-230 (1932) ;
see also

D. A. Maclnnes, "The Principles of Electrochemistry," Chap. IV, Reinhold Publish-

ing Corporation, New York, 1939.
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shall assume that they are practically constant. 1

Thus, when Iff passes

through the cell, the net quantity of HC1 transferred from the more con-

centrated (left) to the less concentrated (right) solution is 1 <_, or

t+ g-eq. Therefore in order to bring about the transfer of 1 mole, corre-

sponding to the chemical equation (9-3-1) and the net free-energy change

(9-3-2), it is necessary that (1/2+) # pass through the cell. Let E' repre-

sent the emf of the cell, which for thermodynamically reversible behavior

will be related to AF by the general equation (9-1-10),

W = - 1 AF
J

Thus

E' = -2RTt+ In
m*h*>* = t+E (9-3-5)+ v '

where E represents the emf of the corresponding cell (9-3-3) without the

liquid junction. Thus, from the given data for the two cells,

0.0925 volt
t+

0.1118 volt

= 0.828

This result is in perfect agreement with the mean of + = 0.8251 in

0.01M HC1 and <+
= 0.8314 in Q.IM HC1, found by Longsworth by the

moving-boundary method. 2 If we were to set up the cell

(Pt), H2 (g)|HCl(aq, m2)||HCl(aq, nn)|H,(g), (Pt) (9-3-6)

then we may show by similar reasoning that its emf, E", is given approxi-

mately (ignoring the change of transference numbers with concentration)

by the equation

E" = -2RTt^ln
m
^
y

l

2 = tJS (9-3-7)
mi(y )i

v

Since the transference numbers of many electrolytes may be measured

independently with high precision, one may use cells such as (9-3-4) or

(9-3-6) to measure the relative values of 7 at the two electrolyte concen-

trations; it is necessary for this purpose that one take into account the

modification of the simple equations (9-3-5) and (9-3-7) resulting from the

variation of the transference numbers with concentration. This method
has been explored by Maclnnes and his associates. 1

1 For the exact treatment, in which one assumes that the transference number of the

given ion changes continuously as one crosses the boundary, see D. A. Maclnnes,
"The Principles of Electrochemistry," pp. 156-165; see also Prob. 9-19.

2 L. G. Longsworth, /. Am. Chem. Soc., 54, 2741-2758 (1932).
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The differences: E E' and E E", constitute the so-called liquid-

junction potentials of the cells (9-3-4) and (9-3-6), respectively.

b. Liquid-junction Potentials in General The cells considered in Sec.

9-3a involved a comparatively simple process at the liquid-liquid bound-

ary between the two electrolytes, because the ions involved were the same

on either side. Even then, we neglected in the simple treatment to take

into account the change of transference numbers with the concentration.

Far more complicated changes may take place when different ions are

present on either side of the boundary, and for this reason, one tries to

eliminate liquid junctions altogether, wherever possible in precise thermo-

dynamic investigation, by using cells of the types described in Sec. 9-2.

This is not always possible, however, and furthermore the study of liquid

junction processes is interesting in itself. We shall consider here only a

single example, using certain drastic simplifications in order to effect a

solution. For further discussion, the reader is referred to the excellent

treatment given by D. A. Maclnnes. 1

Let us take the cell

Ag(c), AgCl(c)|HCl(aq, 0.1M)||KCl(aq, 0.11f)|AgCl(c), Ag(c) (9-3-8)

This cell, and many others similar to it, has been studied by Maclnnes
and Yeh, who found for the particular concentrations given, at 25C,
E = 0.02678 volt. 2 They found incidentally that the emf depended on

how the boundary was set up physically; this value was obtained by a

"flowing-boundary" method, which ensures against changes in the bound-

ary concentrations that may result from thermal diffusion, or from actual

polarization of the cell as the emf is being measured. Presumably, the

net change whose free energy gives rise to the electrical energy delivered

by the cell is the migration of H+ ions from the HC1 into the boundary,
and the migration of K+ ions out of the boundary into the KC1; with the

total ionic concentrations uniform throughout, and with the mean ionic

activity coefficients for the two similar electrolytes at the given low ionic

concentration practically the same on both sides, the production of Cl~~ in

the KC1 electrolyte around the cathode and the disappearance of Cl~ from

the HC1 electrolyte around the anode must involve free-energy changes
that practically cancel each other. If the process were to be continued

indefinitely, then presumably the HC1 would begin to diffuse throughout
the KC1 until ultimately the increase in Cl~ concentration in the right

half of the cell and the decrease in the left half would compensate for the

so-called liquid-junction potential at the boundary between them.

The precise nature and composition of the boundary region are of course

1 D. A. Maclnnes, "The Principles of Electrochemistry," Chap. XIII.
2 D. A, Maclnnes and Y. L. Yeh, /. Am. Chem. Soc., 43, 2563-2573 (1921).
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difficult if not impossible to describe exactly. Let us, however, introduce

a simplifying assumption made originally by Henderson. 1 We shall sup-

pose that the boundary consists of a region of finite width, over which

there is a continuous and constant concentration gradient from one side

to the other. If, therefore, we consider a layer of thickness dx located x

fraction of the distance from one side of the boundary to the other, then

we may assume that in this layer

= z^o
} (9-3-9)

C n
ci Co

where (7 represents the uniform HC1 and KC1 concentration on either

side of the boundary. The precise limits to the boundary region cannot

of course be as sharply specified as these equations might imply; but it

will be sufficient for our purpose if when x =
0, we are in a region essen-

tially having the same composition as the bulk of the electrolyte in the

anode half of the cell, and if when x =
1, we are in a region having

the same composition as the bulk of the electrolyte in the cathode half

of the cell. We need only suppose that the total distance represented

by the range x = to 1 is small in comparison with the dimensions of

the cell, but yet large in comparison with molecular or ionic dimensions.

Now, within the region dx, the transference numbers of the three ions,

representing the fractions of the electricity transported by them across

this region as the cell discharges, will have the form

CR+UH+ (1 X)UH +

JH+ =~ """

+ CK+UK+

_ CK+UK+ XUK+
K* ~~

01
XUK+

(9-3-10)

where MH+, ^K+, and UQ\- denote, respectively, the ionic mobilities of H+
,

K+
,
and Cl~~. According to conductivity theory, we may suppose that

these quantities are constant throughout the cell under the given condi-

tions of uniform ionic strength throughout. Thus, when 1 faraday of

electricity passes through the cell (the left-hand electrode, in the HC1

solution, being the anode), the net free-energy change taking place in the

region dx will be the result of <H+ g-eq of H+ migrating through a region in

which its thermodynamic potential is falling with increasing x at the rate

1 P. Henderson, Z. physik. Chem., 59, 118-127 (1907); 63, 325-345 (1908).
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'^
= RT I

dx

fd In CHA
\ dx )

<K+ g-eq of K+ migrating through a region in which its thermodynamic

potential is rising with increasing x at the rate

dx

and t~ g-eq of Cl~ migrating in the opposite direction, in which its thermo-

dynamic potential is presumably undergoing no change. We may
assume that for these 1 : 1 electrolytes at uniform total electrolyte concen-

tration throughout, the mean ionic activity coefficients are practically the

same throughout. Thus, the net free-energy change through the element

dx will have the form

Introducing (9-3-9) and (9-3-10),

dF (1
-

+
dx (1 x)un + + XUK + + UGI- L 1 "~ x J (1

-~
%.

In i . \ n i . _ \ I /v. I n i . n i .1 ^ '

The net free-energy change taking place as a result of migration of the

ions throughout the entire boundary is to be obtained by integrating the

expression (9-3-11) from x = to x =
1,

~/0
BT

^ci-)

Now, the ratio of the sums, (UK+ + uci-) and (UH+ + MCI-), represents sim-

ply the ratio of the equivalent conductivities, AKCI and AHci, of the two

electrolytes at the given concentration. Thus

(9-3-13)
AHCI

This represents the net free-energy change taking place when 1 faraday of

electricity passes through the cell, the left-hand electrode in (9-3-8) being

regarded as the anode. The cell emf therefore results from the difference

in the equivalent conductivities of the two electrolytes having the com-
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mon ion, Cl~, according to the equation

E = _ ?Lin! (9-3-14)
1 g-eq AHCI

At 25C and 0.1M concentration, the equivalent conductivities of KC1
and HC1 are, respectively,

1

AKCI = 128.96 ohnr^cmVg-eq and AHC i
= 391.32 ohnr^cmYg-eq

Therefore the value of E for the cell (9-3-8) according to Eq. (9-3-14)

should be 0.02852 volt. This value is in reasonably good agreement
with the observed value of 0.02678 volt, considering the simplifying

assumptions made in the derivation. In Henderson's original treatment,
he used the limiting equivalent conductivities at infinite dilution; the

form (9-3-14) was proposed by Lewis and Sargent.
2

Equation (9-3-14),

and the more general Henderson equation for electrolytes consisting of

different pairs of ions at different concentrations on the two sides of the

boundary, have been used in making approximate corrections for liquid-

junction effects, for the purpose of drawing thermodynamic information

from the study of galvanic cells with liquid junctions. The important

thing to note is that the emf of a galvanic cell is a property of the actual

chemical or physical change taking place in the cell, and unless we know

precisely what the change is, the thermodynamic interpretation of the

emf is quite uncertain; we are seldom in a position to define precisely what

goes on at the interface between two different electrolytes at different

concentrations when an electric current is flowing across the boundary,
and to that extent, the interpretation of and correction for liquid-junction

processes are uncertain.

In Jacques Loeb's famous controversial measurements of "membrane poten-

tials/' in which he obtained a potential difference between two identical Hg(l),

Hg2Cl2(c),KCl(aq, satd) electrodes immersed on either side of a Donnan system
at equilibrium (Sec. 7-7), he was surely measuring a difference between the two

liquid-junction potentials, where the saturated KC1 of either electrode made
contact with the respective "inside" or "outside" solution of the Donnan system.
When Ag(c),AgCl(c) electrodes were introduced directly on either side, so that

no liquid-liquid junctions were present except through the membrane itself

(Cl~ being one of the ions unequally distributed as a consequence of the Donnan

effect), no difference of potential could be detected, as one would expect for a

system in a state of equilibrium, even though the equilibrium conditions in this

case call for a difference between the concentrations of the diffusing electrolyte

on either side. Equilibrium is not necessarily maintained, however, when a

1 D. A. Maclnnes, "The Principles of Electrochemistry," p. 339, from measure-

ments by T. Shedlovsky, A. S. Brown and D. A. Maclnnes.
2 G. N. Lewis and L. W. Sargent, /. Am. Chem. Soc., 31, 363-367 (1909).
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saturated KC1 salt bridge is introduced on either side, because there is then no
barrier to prevent the giant ion that cannot pass through the membrane from

migrating into the KC1 solution on that side, while no comparable transference

effect is present across the other liquid junction "outside" the membrane; this

would remain true even if the thermodynamic potential of KC1 were the same
on either side of the membrane, so that there would be no difference between the

diffusion tendencies of the KC1 itself across the liquid junctions on either side.

The physical interpretation of Loeb's "membrane potentials" is therefore

probably much more complex than he realized. An interesting discussion of

this problem is given by D. I. Hitchcock in R. Hober's "
Physical Chemistry of

Cells and Tissues," pp. 68ff., The Blakiston Company, Philadelphia, 1945.

c. Cells with Reference Electrode and Salt Bridge. Certain important

applications of emf methods cannot be conveniently set up in galvanic

cells without liquid junctions. This is the situation in the potentiometric

measurement of pH, and in potentiometric titrations in general. It is

common practice in such cases to use a standard reference electrode,

coupled by means of a salt bridge to the "unknown" half of the cell where

there is set up the electrode reaction in which we are interested.

Example :

(Pt),H,(g)|H+(aq, m)||KCl(aq, satd)||KCl(aq, C)|Hg2Cl 2(c),Hg(l)

(9-3-15)

This familiar cell is used in the measurement of pH. There will of course

be some anion, and possibly other nonreacting cations, accompanying H>
in the left-hand compartment. The main cell reaction, if we neglect for

the moment the liquid-junction processes, may be expressed as follows:

l2(c)
= H+(aq, m) + Cl-(aq, C) + Hg(l) (9-3-16)

from whose free-energy change we may infer an emf of the form

E - * -
ifs5

ln "-'" ~
rf^i

ln - +
if;*

ln <**>"

(9-3-17)

If it were not for liquid-junction effects, the value of E in Eq. (9-3-17)

would be the same as for the superficially similar cell without liquid

junction

(Pt), H2(g)|HCl(aq, m)|Hg2C! 2 (c), Hg(l) ;
E*9B

= 0.2680 volt (9-3-18)

The cell (9-3-18) is analogous to the cell (9-2-35), and its emf is given by

Eq. (9-2-37), with the appropriate value of E inserted [Eq. (9-2-51)].

The cell (9-3-15) thus differs materially from the cell (9-3-18) in several

important respects; in the cell (9-3-15), Cl~ appears at the cathode always

at the fixed concentration C, regardless of the composition of the electro-
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lyte in the left-hand compartment, and independently of the anion present

accompanying H+, whereas in the cell (9-3-18), H4" and Cl~~ are formed

simultaneously in the electrolyte at the same concentration, as the cell is

discharged. For this reason, the emf of the cell (9-3-18) varies as

(2RT/1 g-eq) In my, whereas the emf of the cell (9-3-15), if it happened
to contain only HCl(aq) in the left-hand compartment, would vary only
as (RT/1 g-eq) In wy . There are, furthermore, changes taking place at

the liquid junctions of the cell (9-3-15), which are not taken into account

by the chemical equation (9-3-16) and the associated electrochemical

equation (9-3-17).

There are three KC1 concentrations commonly used for the setting up
of calomel reference electrodes: tenth-normal (C = 0.1 mole/liter), normal

(C = 1 mole/liter), and saturated (m = 4.81 mole/kg at 25C). If we
combine the first and third terms on the right of Eq. (9-3-17) into a single

constant E0/
characteristic of the particular KC1 concentration employed

in the reference electrode
, then, still with neglect of liquid-junction effects,

E = E ' + RT RT
1 g-eq

In mH+7m- (9-3-19)

where the term EQ' may be determined from the value of E given by

(9-3-18), and the following data for KC1 solutions, assuming that we may
equate 701- to y:

Equation (9-3-19) is presumably correct, with the appropriate value of

E', provided that we correct E separately for the liquid-junction poten-

tials, according to the extended theory that we touched upon in Sec. 9-36.

As has been indicated, the correction is none too reliable, particularly

when we are dealing with a complex electrolyte. Therefore a somewhat

different procedure is generally employed, first proposed by S. P. L.

S0rensen in 1909. Let us assume that within reasonable limits, the

liquid-junction potentials of the cell (9-3-15) are independent of the exact

composition of the electrolyte present in the left-hand compartment, so

that they may be regarded as a property of the calomel electrode. This

assumption appears to be fairly well supported by experiment. Then
we may write Eq. (9-3-19) in the form
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ln (PH>)
* ~ ln m"w (9~3'20)

where the value of E" is determined empirically by observations with

solutions of strong simple acids, such as HC1, IINOa, HCICX, etc., for

which 7 has been determined independently, assuming that we may in

such cases replace the expression WH+TH+ by nty J
where m is the stoichio-

metric concentration. In this way, the following practical values of

#298 have been established:

Calomel Electrode EQ" at 25C, Volts

AT/10 ................... 0.3378

N ...................... 0.2847

Saturated ............... 0.2458

Thus, assuming that E has been corrected to pna
= 1 atm by means of

Eq. (9-3-20), we may then write

E = E" + 0.05916 pH (t
= 25C) (9-3-21)

where, by definition,

pH s -
log WH+TH+ (9-3-22)

Equation (9-3-21) thus defines pH directly in terms of experimental

operations, whatever its precise physical significance may be, with the

understanding that no further attention is to be paid to liquid-junction

effects. For such purposes as potentiometric titrations, where only the

inflection point of E against the quantity of standard reagent added is

required, this definition is of course entirely adequate.

We have expressed Eqs. (9-3-19) to (9-3-22) formally in terms of a

hypothetical H+-ion activity coefficient, which, as we have observed in

Sec. 7-4, cannot be independently established except in relation to some

particular anion. As a matter of fact, the relationship between pH,
defined by the experimental operation (9-3-21), and the H+-ion concentra-

tion, represented formally by Eq. (9-3-22), is not uniquely defined; i.e., if

one substitutes a mean ionic activity coefficient (which is the only kind of

ionic activity coefficient one can actually measure independently by
thermodynamic means) in place of the hypothetical factor 7n+, and meas-

ures WH + by some other independent chemical or physical method (e.g.,

indicator equilibrium, acid or base catalysis, electrical conductivity, etc.),

then the pH computed according to the assumed relationship (9-3-22)

does not invariably agree precisely with the experimental value found by
emf measurements according to (9-3-21), without regard to the anion or

other presumably inert constituents of the solution. In other words,

the thermodynamic basis of S0rensen's original procedure for evaluating
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the standard potentials of the calomel reference electrodes is not entirely

sound, particularly for buffer mixtures which may contain high ionic

strengths. For ordinary purposes, the discrepancies, which are of order

0.03 pH unit (2 mv), are not serious, but they become troublesome in

work of high precision, particularly when one wishes to evaluate potentio-

metric pH data precisely for application to other types of investigation.

The source of the difficulty rests of course in the method used to dispose

of the liquid-junction potentials, which are not completely independent
of the electrolyte whose pH is being measured. A method of standard-

izing the pH scale so that the pH agrees closely with the quantity WH+T

has been proposed by E. J. Cohn, F. F. Heyroth, and M. F. Menkin;
1 the

reference electrode is standardized by pH measurements on buffer solu-

tions, instead of on strong acids, the buffers consisting of weak acids and

their salts, for which the thermodynamic ionization constants have been

precisely established by means of cells without liquid junctions.
2

Thus,
for the weak acid HA,

HA = H+ + Ac~
- (T) 2

THA

[compare Eq. (8-1-36)1; therefore the quantity m^y may be computed
from the buffer composition in the form

(9-3-220)
f'l>A- Tdb

The value of THA m&Y be assumed to be practically equal to 1 in dilute

solution, and the value of y in the term on the right may be estimated by
a Debye-Hiickel approximation. The value of E" in Eq. (9-3-21) has

then been adjusted until the pH given by that equation agrees with

log niu+y 9
as computed by Eq. (9-3-22a). In this way, Maclnnes has

derived a value of E" = 0.3358 volt, instead of S0rensen's value of

0.3378 volt, for pH determinations with the hydrogen electrode against

the N/10 calomel electrode at 25C.

J. Cohn, F. F. Heyroth, and M. F. Menkin, J. Am. Chem. Soc., 60, 696-714

(1928); see also D. A. Maclnnes, "The Principles of Electrochemistry," pp. 271-275.
2 Such data have been obtained in the case of acetic acid, for example, by H. S.

Earned and R. W. Ehlers, /. Am. Ch&m. Soc., 64, 1350-1357 (1932); 66, 652-656

(1933), using the cell

(Pt),H 2(g)|HAc(aq, m),NaAc(aq, ra),NaCl(aq, m)|AgCl(c), Ag(c)

the concentrations of all three solutes being kept equal, and the data being extra-

polated to m = (see Prob. 9-14).
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Example :

(Au), Q.QH 2(c)|H+(aq, m)||KCl(aq, satd)||KCl(aq, C)|Hg2Cl 2(c), Hg(l)

(9-3-23)

The quinhydrone electrode is often used in combination with the calomel

reference electrode for pH determinations; in a buffer solution at fixed pH,
it may itself serve as a convenient reference electrode. Quinhydrone is a

compound of quinone and hydroquinone in equimolal proportions. In

an aqueous solution saturated with quinhydrone,

Q.QH 2 (c)
= Q(aq) + QH 2(aq)

AF = 0Q(aq) + 0QH2(aq)
""

^Q-QH 2(c)
= RT III fl^n,

therefore

#m (9-3-24)

In dilute solutions, where each activity coefficient approaches 1, since

WQ = wQH 2,
therefore mQ and mQH2 are each separately constant. The

oxidation potential

QH 2 (aq) = Q(aq) -f 2H+(aq) + 2e; E%98
= -0.6994 volt

has been measured precisely by F. Hovorka and W. C. Bearing.
1

The reaction taking place in the cell (9-3-23) forj = 2^, with neglect of

liquid-junction potentials [which are the same as for the cell (9-3-15)], is

QH 2(aq) + Hg2Cl 2(c)
= 2H+(aq, m) + Q(aq) + 2Cl~(aq, C) + 2Hg(l)

corresponding to the emf equation

E = E - ^- In (CTci-)
2 - o^- In -^- - J^- In (m*^*

2 g-eq
' 2 g-eq <H3 2 g-eq

(9-3-25)

Combining the first three constant terms on the right (for given (7),

73/77

E = E0/ -^ In mH+7H+ (9-3-26)

where if liquid-junction effects could be ignored, E '
for the AT/10 calomel

electrode would have the following value: -0.6994 + 0.3337 = -0.3657

volt at 25C. Using the same treatment as in the case of the hydrogen

electrode, however, we may write

E = E" + 0.05916 pH (9-3-27)

1 F. Hovorka and W. C. Bearing, J. Am. Chem. Soc., 57, 446-453 (1935). For dis-

cussion of the mechanism of hydroquinone oxidations, see L. Michaelis, Chem. Revs.,

16, 243-286 (1935).
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where Maclnnes has shown that #293
~"0.3636 volt, using buffer mix-

tures to define the pH scale. 1

At high electrolyte concentrations, there is a slight "salt" effect on the

value of E", which results from deviation of the ratio aQ/aQHa in the third

term on the right of Eq. (9-3-25) from 1
; thus, in IM HC1, the error in Eq.

(9-3-27) amounts to 0.06 pH unit. The reason for the effect is evident in

the solubility equilibrium relationship (9-3-24) ;
at high solute concentra-

tions, the values of YQ and y'Wz may deviate from 1 to different extents, so

that while WQ and WQHa necessarily remain equal to each other CQ and aQH2

may differ. The salt effect disappears if one saturates the solution with

either quinone or hydroquinone, in addition to quinhydrone, the standard

electrode potential shifting by about 0.07 volt in either direction; a'Q and

0QHi are then no longer equal to each other, but fixing one by saturating

the solution with the respective compound serves through the relationship

(9-3-24) to fix the other. One may also eliminate the salt effect by using

a quinone-hydroquinone couple that does not form a "quinhydrone" and

then saturating the solution with both components. J. B. Conant and

L. F. Fieser have shown, for example, that the quinone chloranil (2,3,5,6-

tetrachloroquinone) and tetrachlorohydroquinone constitute such a

couple; this couple is not practical for work in aqueous solutions, because

of the low solubilities of the components and the slow rate of attainment

of solubility equilibrium, but it has been used by N. F. Hall and J. B.

Conant for pH measurements in the medium, glacial acetic acid. 2

Example :

(Pt)|Fe
++

(aq, mFe++),Fe+++(aq, mPe+++)||KCl(aq, satd)||KCl(aq, 0.1M)\
Hg2Cl 2 (c), Hg(l) (9-3-28)

A cell of this general type is used in potentiometric oxidation-reduction

titrations, and may be used also for the approximate measurement of

oxidation potentials. The cell reaction for j = Iff is

Fe++(aq, WFC++) + ^Hg2Cl 2(c)
= Fe+++(aq, 7nFe+++) + C\~(Q.IM KC1)

+ Hg(l) (9-3-29)

from which we may infer a reversible emf of the form

in (O.lTci-)
- - In

***
(9.3-30)

or combining the first two terms on the right and assuming a constant

liquid-junction effect by using S0rensen's value for the electrode potential
1 D. A. Maclnnes, "The Principles of Electrochemistry," p. 274.
2 J. B. Conant and L. F. Fieser, /. Am. Chem. Soc., 45, 2194-2218 (1923); N. F.

Hall and J. B. Conant, ibid., 49, 3047-3061 (1927).
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of the N/10 calomel electrode,

In
mFe+"TFe"+

(9-3-31)
g-eq

Thus, from the standard electrode potential,

Fe++(aq) Fe+++(aq) + c; # -0.783 volt (9-3-32)

combined with

Hg(l) + C1~(0.1M KC1) = HHg2Cl2(c) + e] E" = -0.3378 volt

we obtain

E = -0.445 - 0.0592 log
m*<+++V**+++

( t = 25C) (9-3-33)mFeH-+yFe++

The cell emf thus serves to measure the ratio of the Fe4"*"1" to the Fe++

activity.

This property is utilized in potentiometric titration of Fe++ . Thus,

suppose that we begin with a Fe++ solution in the left-hand compartment
of the cell and add standardized Ce(SO4)2. Before any 06++++ has been

added, the emf will assume some unpredictable value, depending both on

the total ionic strength, which determines the values of the activity

coefficients, but also on the Fe^"** concentration that is always present,

even though at low concentration, In any solution containing Fe**. Let

us assume that initially, m*,*** < 0.001 raFe++, a condition that would be

required if one is to determine iron analytically within a precision of 0.1

per cent by this method; then: E > 0.267 volt, in the algebraic sense,

not including the effect of the activity coefficient ratio. As one adds

Ce+++-^ which oxidizes Fe++ in accordance with the chemical equation

Ce+-H+ + Fe++ = Ce+++ + Fe+++ (9-3-34)

the changing proportion of Fe++
"f to Fe++ is reflected by a change in E, in

accordance with Eq. (9-3-33); in other words, E becomes increasingly

negative.

At the same time, addition of Ce"H"H
",

and production of

results in the possibility of the cell reaction

Ce+++(aq, mCe ) + HHg2Cl2(c)
= Ce++++(aq,
+ C1-(0.1M KC1) + Hg(l) (9-3-35)

whose emf, in view of the standard oxidation potential,

Ce+++(aq) = Ce+^aq) + e', E = -1.609 volts (9-3-36)
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may be shown to have the form

B-- 1.271 - 0.0592 log
m "**'""

(9-3-37)

Of course, the value of E given by Eq. (9-3-37) is identical at all stages of

the titration with the value of E given by Eq. (9-3-33), since the reaction,

Eq. (9-3-34), taking place in the left-hand compartment of the cell comes

rapidly to a state of equilibrium. We may readily infer the equilibrium

conditions from the two standard electrode potentials, (9-3-32) and

(9-3-36) ;
thus

Ce-(-+++
(aq) + Fe++(aq) - Ce^+Caq) + Fe+++(aq); E = 0.826 volt

E = - Af = In K
3 3

m

. VQ 0.826 volt
log^ -

0.05Q2 volt
= 13 '95

Thus
mFe **

r 7oe^7re^ = g Q

When precisely the equivalent quantity of Ce^+++ has been added to

correspond to the quantity of "Fe++ originally present, let x represent the

fraction of the iron still remaining in the Fe++ state; then x will represent

also the fraction at that point of cerium remaining in the Ce"f
~H"f state.

Thus approximately, with neglect of the activity coefficient terms,

(1 ~/)2 = 8-9 X 1013

x = 1 X 10-7

With either wFe++VmFe++ ~ 107 in (9-3-33), or mce++++/#tae+++ ~ 10~7 in

(9-3-37), we may infer an approximate value of E = 0.859 volt at the

stoichiometric end point. The possibility of gauging the end point pre-

cisely depends on the sharpness with which E changes near the end point ;

thus, when all but 0.1 per cent of the stoichiometric quantity of Ce(S04)2

has been added, so that, approximately, mFe+++/mFe++~ 10 3
,
the emf of

the cell according to Eq. (9-3-33) has the approximate value 0.623 volt,

whereas when one has added an excess of 0.1 per cent, so that wCe+++V

#&ce+++ jumps from 10~7 at the end point to 10~ 3
, then, according to Eq.

(9-3-37), E assumes the approximate value - 1.093 volts. The sharpness

of the change depends on the magnitude of K^, that is, on the difference

between the two standard electrode potentials, (9-3-32) and (9-3-36).

9-4. Theoretical Calculation of Electrode Potentials. Since the

emf of a reversible galvanic cell represents the free-energy change of the



THERMODYNAMICS OF GALVANIC CELLS 573

cell reaction, it may be computed entirely from thermal data by means of

the third law of thermodynamics, in accordance with the general princi-

ples outlined in Sec. 8-3. For the purpose of computing standard elec-

trode potentials, the standard ionic entropies based on the convention

(8-3-7), as developed by W. M. Latimer and his associates, are particu-

larly valuable. 1
Thus, we may compute the standard potential of the

Na(c), Na+(aq) electrode from the following information. The third-law

standard entropy of Na(c) at 25C is 12.2 0.1 eu/mole,
2 while that of

Na+(aq) is 14.0 0.4 eu/mole; the latter result was computed from third-

law entropies for NaCl(c) and NaNO3(c), combined with their total heats

and standard free energies of solution (solubilities and mean ionic activity

coefficients in the saturated solutions), together of course with the ionic

entropies of the corresponding anions, referred ultimately to the conven-

tion (8-3-7).
3

Using for H 2 (g) the standard entropy, S%9S = 31.23 0.01

eu/mole, based on molecular spectroscopic data in relation to the third-

law convention (Chap. 10),
4 we obtain as the standard entropy of the

reaction

Na(c) + H+(aq) = Na+(aq) + MH 2(g); AS?98
- 17.4 eu

The calorimetrically determined standard enthalpy of this reaction has

the value A#298
= 57,479 cal; therefore

= -57,479 cal - (298. 16) (17.4) cal

= -62,670 cal

In view of the convention (9-2-49), this quantity measures the standard

electrode potential

Na(c) = Na+(aq) + e; J% 8
= 62

j

6 cal = 2.718 volts

in excellent agreement with the experimental value5

1 See Latimer, op. cit.

2 K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941), from data by F. Simon and
W. Zeidler, Z. physik. Chem., 123, 383-404 (1926).

3 W. M. Latimer, K. S. Pitzer, and W. V. Smith, /. Am. Chem. Soc., 60, 1829-1831

(1938).
4 W. F. Giauque, ibid., 52, 4816-4831 (1930).
6 The potentials of the alkali metal electrodes, which of course cannot be studied

directly in aqueous solutions, were first measured by an ingenious method devised by
G. N. Lewis. A sufficiently dilute sodium amalgam reacts slowly enough with water

so that its potential in a solution containing Na+ ions can be determined by ordinary



574 PRINCIPLES OF CHEMICAL THERMODYNAMICS

Na(c) = Na+(aq) + e\ #?98
= 2.712 volts (9-4-1)

Such agreement constitutes experimental confirmation of the third law,

as well as of the various assumptions underlying the concept of the inde-

pendent behavior of the ions in ideal dilute solutions of electrolytes. It

casts no new light, however, on the fundamental question of why the

standard potential of the sodium electrode is so much higher than that,

say, of the silver electrode in aqueous solution

Ag(c) = Ag+(aq) + e; #298
= -0.800 volt (9-4-2)

The difference, 3.512 volts, measures of course the difference between the

chemical "
reactivities" of Na(c) and Ag(c) as reducing agents in aqueous

solutions, in the sense that reactions in which Na(c) is a reactant have

equilibrium points displaced correspondingly farther to the right than

similar reactions in which Ag(c) is a reactant in place of Na(c). A table

of standard electrode potentials, such as are represented by (9-4-1) and

(9-4-2), is equivalent to a table of standard free energies of the correspond-

ing electrode reactions, and this in turn is equivalent to a table of standard

free energies and thermodynamic equilibrium constants of all conceivable

oxidation-reduction reactions satisfying the requirement of conservation

of electric charge that can be described by suitable combinations of the

data included in the table, the quantitative relationship having the form

*=--- In J (9-4-3)
J J

Provided that the experimental data have been obtained according to

correct thermodynamic principles (e.g., reversible galvanic cells, third-

law data verified by independent thermodynamic measurements, etc.),

Eq. (9-4-3) is entirely general, and is quite independent of the mechanism

by which the electrical energy of the corresponding galvanic cell may be

means, for example, from the standard emf of the reversible cell without liquid

junctions

Na(Hg)|NaCS(m, in H 2O)|Hg 2Cl 2 (c), Hg(l)

The potential of the same amalgam against pure Na(c) may then be measured in a

nonaqueous solution of a sodium salt, such as Nal in liquid ethyl amine, which does

not react with the alkali metals,

Na(c)|NaI(m2 in C2H 6NH 2)|Na(Hg)

By combining the data for the two cells, one may determine the standard potential

of the Na(c), Na+
(aq) electrode. See G. N. Lewis and C. A. Kraus, /. Am. Chem.

Soc., 32, 1459-1468 (1910); G. N. Lewis and F. G. Keyes, ibid., 34, 119-122 (1912);

fine also Prob. 9-6.
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produced. The very generality of thermodynamic investigation, how-

ever, precludes the possibility of discovering by purely thermodynamic
means why sodium is so much more powerful a reducing agent than silver,

though it does provide a quantitative measure of their difference in reac-

tivity, as well as a correlation with other thermodynamic properties.

Nevertheless the question is well worth investigation for the insight it

may give into the relative importance of the various factors originating in

peculiarities of atomic or molecular structure that may influence thermo-

dynamic behavior.

Now, it is well known that the alkali metals tend to lose electrons rela-

tively easily, as compared with other metals, through various physical

TABLE 9-4. CONTACT POTENTIALS AND STANDARD ELECTRODE POTENTIALS

* Values for contact potentials from O. W. Richardson and K. T. Compton, Phil. Mag., (6) 24, 575-

594 (1912).

t Values for standard electrode potentials from W. M. Latimer, "The Oxidation States of the Ele-

ments and Their Potentials in Aqueous Solutions," Prentice-Hall, Inc., New York, 1938.

processes such as photoemission (as in the cesium phototube) and ther-

mally or electrically induced ionization in the gaseous state. It is there-

fore natural for us to attempt to correlate this fact, which is consistent

with the peculiar electronic structures of their atoms, with their extra-

ordinary chemical reactivity. It is, furthermore, a fact that when two
different metals whose surfaces are perfectly clean are brought in contact

in a vacuum, electrons flow from one into the other until a definite differ-

ence of potential is established between them, a difference which is addi-

tive and transitive for a series of metals and which follows approximately,

though not in exact detail, the familiar electromotive series. Table 9-4

presents observed contact potentials for various metals against platinum,
as determined by O. W. Richardson and K. T. Compton,

1
together for

comparison with the corresponding standard electrode potentials of the

1 O. W. Richardson and K. T. Compton, Phil. Mag., (6) 24, 576-594 (1912).
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metals against their ions in aqueous solutions relative to the standard

hydrogen electrode. It is surely significant that electrons tend to flow

spontaneously, for example, from metallic zinc into metallic copper, and

if we had further data on the relationships between Zn(c) and Zn++(aq),
and between Cu(c) and Cu+^aq), we should be able to correlate the

contact potential between Zn(c) and Cu(c) with the tendency for Zn(c)

to reduce Cu++(aq) in aqueous solution, the effect of the electrolyte

concentration being governed by the general way in which the thermody-
namic potentials of Cu+"f and Zn** in aqueous solution depend on the

concentration.

Data for attempting a partial approximate solution to this kind of

problem exist in the case of the halides of the univalent metals. The

problem centers around the ionization potential of the metal, a physical

property whose value may be derived from the spectrum, or may be meas-

ured directly by means of resonance potential measurements based on the

electrical conductivity of the vapor.
1

Thus, for sodium,

Na(g) = Na+(g) + e; / = 5.138 volts - 118.5 kcal (9-4-4)

This is a well-established property, determined in principle entirely by the

structure of the atom. Ionization potentials for several other elements

are given in Table 9-5; the first ionization potential represents the energy

required to remove a single electron from the neutral atom to form the ion

M+(g) ; the second ionization potential represents the energy required to

remove an electron from M+
(g) to form M4"l

"(g), etc. One will note the

characteristic periodic variation of the ionization potentials with the

atomic number, and the marked effect of closed electron "shells." The

energy required to remove an electron from Na(c) is rather different from

that of the process of Eq. (9-4-4), and is measured independently by
thermionic emission, photoelectric emission, and contact potential data;

but for the process, Eq. (9-4-1), with which we are presently concerned,
we are interested in the removal of the Na+ ion, as well as the electron,

from the metal electrode. In the process, Eq. (9-4-4), to which the ioniza-

tion potential refers, the electron appears in the free gaseous state,

whereas in a galvanic cell it might be liberated within the metallic elec-

trode; this distinction need not disturb us, however, as its effect cancels

out when one recombines data for one electrode with that for another in a

complete cell. Now, the sublimation energy of the metal is another well-

known property:

Na(c) = Na(g); Lcg
= 26.2 kcal (9-4-5)

1 For details, see, for example, M. N. Saha and N. K. Saha, "A Treatise on Modern

Physics," Chap. XIII, The Indian Press, Ltd., Allahabad, 1934.
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TABLE 9-5. IONIZATION POTENTIALS OF SELECTED CHEMICAL ELEMENTS*
(In volts)

* Values for elements 1 to 23 from C. E. Moore, Atomic Energy Levels, Vol. I, Nail. Bur. Standards
Circ. C467 (1949); values for the remainder from "Selected Values of Chemical Thermodynamic
Properties," National Bureau of Standards, Washington, D.C., as of March 31, 1950.
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The value cited refers to 0K, and has been derived by extrapolation from

high-temperaturfe vapor-pressure data, with the aid of spectroscopic data

for Na(g) and calorimetric heat-capacity data for Na(c).
1

Combining
with (9-4-4),

Na(c) Na+(g) + ^ AC7? = 144.7 kcal (9-4-6)

The problem now is to get Na+(g) into solution. Unfortunately, this

cannot be done without an accompanying anion.

The energy of the process

Na+(g) + Cl-(g) = NaCl(c) (9-4-7)

may be computed theoretically by the method of M. Born outlined in

Sec. 4-4; it represents the negative of the crystal lattice energy, and in the

simple Born-Land6 treatment, one needs to know only the crystal

geometry as established by X-ray analysis and the Born exponent, whose

value may be established from the compressibility. Typical results are

given in Table 4-6, but we shall use for (9-4-7), AC/S = -183.1 kcal, as

derived by J. E. Mayer and L. Helmholtz from a modification of the

original theory by M. Born and J. E. Mayer taking into account Van der

Waals' attraction energy between the ions and making use of an expo-

nential rather than an inverse nth power repulsive potential-energy func-

tion of the interionic distance. 2
Furthermore,, the total heat of solution

of NaCl(c) in water has been determined by ordinary thermochemical

means, leading to the conclusion (the volume change being negligible)

NaCl(c) = Na+(aq) + Cl-(aq); A 7 = 0.93 kcal (9-4-8)

This result refers to room temperature, whereas the other data refer to a

hypothetical temperature of 0K [where the distinction between AF and
AU for a process such as (9-4-1), whose volume change is negligible,

vanishes], but we shall overlook the small corrections to 298K. Thus,

adding (9-4-7) and (9-4-8) to (9-4-6),

Na(c) + Cl-(g) = Na+(aq) + e + Cl~(aq); AC7 -37.5 kcal

(9-4-9)

This is not quite what we want for computing E of the process (9-4-1),

since the energy of the process

Cl-(g) = Cl-(aq) (9-4-10)

1 K. K. Kelley, Contributions to the Data on Theoretical Metallurgy. III. The
Free Energies of Vaporization and Vapor Pressures of Inorganic Substances, U.S.

Bur. Mines Bull. 383, p. 96 (1935).
2 M. Born and J. E. Mayer, Z. Physik, 76, 1-18 (1932); J. E. Mayer and L. Helm-

holtz, ibid., 19-29.
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is included; this cannot be independently measured. We may suppose,

however, that the hydration energy of Cl~(g) is independent of the par-

ticular cation accompanying it, in the ultimately ideal dilute solution.

The value of E in Eq. (9-4-1) is relative anyhow, being based on the

arbitrary convention

J^H 2(g)
= H+(aq) + e; E m 0.000 (9-4-11)

Before continuing further, therefore, let us examine the results of the

same sequence of calculations applied to the chlorides of other univalent

metals, to see whether the calculated energies corresponding to the process

M(c) + Cl-(g) - M+(aq) + e + Cl-(aq)

are in proportion to the relative standard electrode potentials. The data

are summarized in Table 9-6. It is evident that the calculated energies

listed in the last column of the table bear indeed the correct approximate

relationships to each other. Thus, the difference between the values for

Na and Ag, 93.6 kcal/g-eq, or 4.06 volts, may be compared with the

actual difference, 3.51 volts, between the standard electrode potentials,

(9-4-1) and (9-4-2).

Table 9-6 is instructive in demonstrating the influence of the various

factors that contribute to the value of E. Thus, it is well known that

lithium has a higher standard electrode potential than any of the other

alkali metals, with the possible exception of cesium, notwithstanding the

fact that it has the highest ionization potential of the group, and might
therefore be expected to be the least active of the metals. One perceives

that its E value tends to be relatively high because of the relatively high
lattice energy and heat of solution of the salt, which overshadow the

effects of the relatively high ionization potential and sublimation energy;
the lattice energy and the heat of solution are no doubt large because of

the relatively small size of the Li+ ion, which permits relatively close

approach both of the accompanying anion in the crystal lattice, and of

oriented polar water molecules in solution. One perceives also that the

relatively "noble" character of Cu and Ag toward reactions in aqueous
solutions is as much a consequence of their high sublimation energies

(which are associated also with relatively high melting points and boiling

points), as of their relatively high ionization potentials. The relatively

endothermic character of the solution energy in the case of the silver

salts in water is a further important factor in depressing the standard

potential of the Ag(c),Ag+(aq) electrode below that of the Cu(c),Cu+(aq)
electrode.

Data are available by which we may standardize the energy values

given in the last column of Table 9-6 in terms of conventional E values
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with respect to the hydrogen electrode, though we must thereby forego

efforts to determine "absolute" energies of processes such as (9-4-1),

TABLE 9-6. ENERGY DATA FOR METAL CHLORIDES

(In kilocalories per gram-equivalent)

* Values forca from K. K. Kelley, U.S. Bur. Mines Bull. 383 (1935).

t Values for / from Table 9-5.

j Values for (A0o) e from J. E. Mayer and L. Helmholtz, Z. Physik, 75, 19-29 (1932); J. E. Mayer,
J. Chem. Phys., 1, 327-334 (1933); J. E. Mayer and R. B. Levy, ibid., 647-648.

Values for Q from "Selected Values of Chemical Thermodynamic Properties," National Bureau
of Standards, Washington, D.C., 1950.

(9-4-2), (9-4-10), and (9-4-11) itself. The energies represented in the

last column of Table 9-6 differ from the energies of the electrode processes

M(c) = M+(aq) +- e

by the energy of the process (9-4-10), which may be broken down as

follows:

iC! 2(g)
=

Cl(g)+-e =

= ^ = 28.6 kcal
Zi

(9-4-12)

= -
C1
= -85.8 kcal (9-4-13)

The dissociation energy D of the Cl 2 (g) molecule is known from a variety
of sources, including thermal equilibrium data at high temperatures and

also analysis of the molecular spectrum (see Sec. 10-5d). The electron

affinity of Cl(g), eci, has been established by the experimental work of

J. E. Mayer described in Sec. 4-4, as well as by inference from theoreti-

cally calculated lattice energies of ionic chlorides (Table 4-6). Both

experimental quantities given in (9-4-12) and (9-4-13) refer to 0K.
Thus, adding these terms to (9-4-9), we obtain

Na(c) + KCl 2(g)
= Na+(aq) + Cl-(aq) ;

AU = - 94.7 kcal (9-4-14)

This quantity would represent the difference between the Na(c), Na+(aq)
and the Cl~(aq), Cl2(g) standard electrode potentials at the hypothetical
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temperature 0K, except that the solution energy (9-4-8) refers to room

temperature. Let us in a similar manner add the quantity

Do/2 - coi = -57.2 kcal

to each of the energies in the last column of Table 9-6, and convert to

volts by dividing through by the conversion factor 23.06 kcal/volt g-eq,

as shown in the second and third columns of Table 9-7; we may then

derive conventional standard electrode potentials for the metals [based on

(9-4-11)] by adding algebraically the potential

Cl-(aq) = KCl 2(g) + e; E = -1.36 volts

whose experimental determination has been described in Sec. 9-2 [see Eq.

(9-2-52)]. The resulting calculated potentials are given in the fourth

column of Table 9-7, while the experimental values are given in the fifth

TABLE 9-7. CALCULATED STANDARD ELECTRODE POTENTIALS

column. One should note that the only actual emf data entering the

calculated potentials are those pertaining to the establishment of the

chlorine electrode potential. The terms lL g and I are properties solely

of the metal, the terms Do/2 and ec i are properties solely of chlorine,

while the term (A/S) C is a property of the chloride, i.e.
y
of both the metal

and chlorine in combination; the effect of the solvent enters through the

term Q, which of course is also a property of the particular chloride.

The calculated potentials show the proper order of magnitude, though the

values for Tl, Cu, and Ag are about 0.5 volt more negative than the

observed values. One should note in this connection that the theoretical

lattice energy of CuCl(c) is about 6 kcal smaller in magnitude than the

experimental value based on thermochemical data, a difference that has
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been interpreted to indicate a partially covalent character of the bonding

energy in this compound;
1 the thermochemical lattice energy, 221.9

kcal/g-eq, would yield a calculated value of E less negative by 0.26 volt

than the value given in Table 9-7.

Table 9-8 presents similar data for fluorides of divalent metals. These

results are surely indicative, considering the simplicity of the theoretical

treatment. Thus, one perceives that the effect of decreasing ionization

potential in the series Ca, Sr, and Ba is practically neutralized by the

effect of decreasing lattice energy of the salts, both effects resulting from

the increasing size of the cation; the net effect is a leveling of the standard

electrode potentials of the three metals in aqueous solution. In the case

TABLE 9-8. ENERGY DATA FOB METAL FLUORIDES*

* Values for (A#o)e from Table 4-8 and also from J. Sherman, Chem. Rev., 11, 153 (1932). Calculated

E values are based on the following:

F2(g) - 2F-(g); A*7o - -129.0 kcal

F-(aq) - #F*(g) + e; E - -2.87 volts

Note that for the divalent metals, j 2g-eq/mole.

of Mg, however, the cation has become so small that the fluoride crystal-

lizes in the rutile structure, with Mg4"* coordination number of only 6

instead of 8 as in the fluorite structure; the increase in lattice energy from

CaF2(c) to MgF2(c) therefore does not keep pace with the quite large

increase of ionization potential from Ca to Mg, and despite the relatively

exothermic solution energy of the magnesium salt, one finds a lower

standard electrode potential for Mg in aqueous solution than for Ca

(compare Li and Na in Tables 9-6 and 9-7). One also perceives that in

the case of Pb, whose ionization potential is actually slightly less than

that of Mg, the much lower standard electrode potential is associated

with the relatively low crystal lattice energy, a consequence of the large

1 J. E. Mayer and R. B. Levy, /. Chem. Phys., 1, 647-648 (1933).
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size of the Pb++ ion. On the other hand, the relatively low standard

electrode potential of Ni is as much a consequence of its high sublimation

energy (associated with high melting point and boiling point) as of its

relatively high ionization potential. The comparison between Cd and
Ni is interesting; both metals have practically identical ionization poten-

tials, but the much higher sublimation energy of Ni(c) is offset by the

relatively high lattice energy of its salt. This is a consequence of the

smaller size of the Ni++ ion, reflected also in the fact that NiF2 (c) crystal-

lizes in the rutile structure, which accommodates only 6 F~ ions about each

Ni++ ion, whereas CdF2(c) crystallizes in the fluorite structure, which

accommodates 8 F~ ions about each Cd++ ion.

It is interesting for us to examine the relative magnitudes of the factors

influencing the H 2 (g), H+(aq) standard electrode potential, although of

course we cannot calculate independently its absolute magnitude. The

following energies (0K) are involved:

MH 2(g)
= H(g); At/' = i^Do = 51.6 kcal (9-4-15)

H(g) = H+(g) + e; A [7?
= I = 313.5 kcal (9-4-16)

These may be combined with (9-4-12) and (9-4-13) to give

KH 2(g) + KCl 2(g)
= H+(g) + Cl-(g); At/S = 307.9 kcal (9-4-17)

Now, the energies of the processes

KH 2(g) + KCl2(g)
= HCl(g); At/' = -22.0 kcal

HCl(g) = H+(aq) + Cl~(aq); At/ = -17.4 kcal

are well known from thermochemical sources (the solution energy refers

to room temperature, however, whereas the other data refer to 0K).
Therefore we may infer for the process

H+(g) + Cl-(g) = H+(aq) + Cl-(aq) (9-4-18)

an energy of At/ = 347.3 kcal/g-eq. This quantity is much larger in

magnitude than the corresponding quantities for the other metal chlorides

listed in Table 9-6 [(At7) c Q], and we may therefore attribute most of

it to solvation energy of the H+ ion. This exceptionally large solvation

energy is apparently responsible for the fairly high effectiveness of H 2(g)

as a reducing agent toward substances in aqueous solution, particularly

under the influence of a catalytic agent that will accelerate the progress of

reaction (9-4-15); the large dissociation energy of the extremely stable

H 2(g) molecule and particularly the high ionization potential of the H(g)

atom, which is nearly twice that of the Ag(g) atom, tend to depress the

standard electrode potential.
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An attempt has been made to measure single electrode potentials, or

what amounts to the same thing, the free-energy changes of single elec-

trode processes such as (9-4-1), (9-4-2), (9-4-11), etc., by taking advantage
of the curious fact that the surface tension of mercury is sensitive to the

electric charge it bears. Thus, if one assumes that the surface tension is

a maximum when the mercury bears no charge, one may set up a galvanic

cell with one of the electrodes consisting of mercury making contact with

the electrolyte in a capillary tube so that its surface tension can be

observed; by applying such a difference of potential that the surface

tension of the mercury attains the maximum value, one may then assign

the entire potential difference to the process taking place at the other

electrode. Results so derived are discussed by W. M. Latimer;
1

thus,

with two mercury electrodes in an aqueous KC1 electrolyte saturated

with Hg2Cl 2 (c), the surface tension of the mercury in the capillary elec-

trode reaches a maximum when that electrode is made negative with

respect to the other by 0.56 volt. On the basis of this type of evidence,

one may separate the hydration energy (9-4-18) into approximately 260

kcal/g-eq for H+(g) and 90 kcal/g-eq for Cl"(g). The interpretation

of the behavior of the capillary electrometer is certainly open to question,

however, and one would like a sounder theoretical basis for its operation.

R. W. Gurney has given a stimulating discussion of electrode processes

from the point of view of the quantum theory of metallic and ionic struc-

tures. 2 One of the fundamental principles of quantum mechanics is that

no two electrons in a given system can be in identical states (a special case

of the general exclusion principle proposed by W. Pauli). Furthermore,

according to the statistical theory developed by E. Fermi and A. Sommer-

feld, the energy distribution of electrons in condensed phases (liquids or

solids) is such that at all temperatures from 0K to ordinary room tem-

perature, almost all the electrons remain in the states of lowest energy

open to them consistently with the exclusion principle.
3 Now, for the

electrons associated with a given atom, these states occur in groups or

bands of closely spaced energy, the bands themselves being relatively

widely separated. The states for an atom constituting part of a solid or

a liquid are comparable to those of an isolated gas atom or molecule, in so

far as one can identify such local states at all, but they are of course

modified by the presence of the neighboring atoms. The theory of

metallic conductors is that the highest occupied electronic states (prac-

tically all states of lower energy being completely filled by electrons) hap-
1
Latimer, op. cit., pp. 21-22.

2 R. W. Gurney, "Ions in Solution/' Cambridge University Press, New York, 1936.
8 E. Fermi, Z. Physik, 36, 902-912 (1926); A. Sommerfeld, ibid., 47, 1-32, 43-60

(1928); see Sec. 10-2.
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pen to lie within a band that includes some unoccupied states of but

slightly different (higher) energy; in a nonconductor, on the other hand, a

band has been completely filled, so that the next higher unoccupied states

lie in the next band at a considerably higher energy level. Thus, in the

metallic conductor, it is relatively easy for the outermost or so-called

valence electrons of the atoms to shift about within the metal; in fact, the

metal atoms are to a considerable extent bonded through sharing of these

overlapping electrons. In a nonconductor or dielectric, on the other

hand, ordinarily few electrons can get into the higher energy states

through which they must pass if they are to escape from one particular

atom or molecule with which they happen to be associated to another.

The distinction between conductors and dielectrics is thus regarded as

one of degree, rather than of kind.

When two different metals are brought into contact, if the highest

occupied energy level of the one metal happens to overlap unoccupied

energy levels of the other (as will generally be the case), electrons will

tend to flow from the first metal into the second until they fill up to equal
levels in both. This gives rise to a contact potential, which can be

directly measured, with results as shown in Table 9-4. Where sufficiently

precise data have been available, the contact potential between two

metals, which measures the energy required to transfer an electron from

one to the other, has been found to be approximately equal to the differ-

ence between their threshold voltages for photoelectronic emission; it

should also equal approximately the difference between the work func-

tions for thermionic emission, but it is generally difficult to measure these

quantities for a given pair of metals at the same temperature.
1

In Gurney's treatment, the metallic contact effect is considered to be a

primary factor in the mechanism of discharge of a galvanic cell. The
further processes whereby electrons are exchanged between the electrodes

and ions or molecules in solution are then treated in terms of the relative

energies of the atoms in the metal and their ions in solution, on the basis

of essentially the same type of data we have just been considering. The

stability of certain ions and the instability of others also calls for discus-

sion. For free gas atoms, the removal of each successive electron as the

atom is ionized calls for increasingly greater energy (Table 9-5). Thus,
in the case of Na(g), there is an extremely large difference between the

ionization potential of Na(g) and that of Na+(g), a difference inherent of

course in the peculiar structure of the sodium atom (and of the other

alkali metal atoms). We have no difficulty therefore in understanding

why Na+ and only Na+ exists in aqueous solution. It is not so obvious

J See K. T. Compton and I. Langmuir, Rev. Modern Phys., 2, 123-242 (1930);

S. Dushman, ibid., 381-476; J. A. Becker, ibid., 7, 95-128 (1935).
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why an ion such as Mg+, which can certainly exist in the gaseous state, as

does the molecule MgCl, does not exist in aqueous solution or in the crys-

talline state. The reason here is to be sought in the relationship between

the successive ionization potentials and those other factors that we have

seen may influence the relative energies of the various ions in solution;

for example, one may show that the lattice energy of such a hypothetical

crystalline compound as MgCl(c), based on reasonably assumed struc-

tures, would be much smaller per gram-equivalent than that of the actual

compound, MgC^Cc),
1 so that in spite of the higher ionization energy,

MgCl 2(c) is much more stable than MgCl(c). The stability of certain

ions in solution, particularly of the transitional elements, is no doubt

conditioned by the relative stability of the bond configurations that can

be set up between the metal ion and solvent molecules, or possibly other

ions or molecules that may be present in the solution. Pauling has

described, for example, in terms of available electronic orbitals why the

covalent octahedral complex ions of Co"1
"4"*" are far more stable than those

of Co*4
", whereas Co+^Caq) is much less stable than Co++(aq). 2

9-5. Overvoltage, A brief discussion is in order concerning the

nonreversible phenomenon of overvoltage.* If an electrolytic conductor

such as HCl(aq,lM) is electrolyzed between a reversible anode, such as

the Hg(l),Hg2Cl2 (c) electrode, and a reversible cathode, such as platinized

platinum saturated with H2(g), then a current begins to flow and hydro-

gen is evolved at the cathode, according to .the reaction

H+(aq) + = KH2(g),

just as soon as the applied potential difference exceeds even by a fraction

of a millivolt that of the corresponding galvanic cell, in this case, about

0.27 volt. The current and the corresponding rate of evolution of H2 (g)

increase with the applied potential difference approximately in proportion

to the excess of the applied potential difference over the reversible cell

potential difference. This excess, or net potential difference across the

electrodes, is called the overvoltage at which the electrochemical reaction

is being run.

Now, if other metallic electrodes are substituted for the platinized

platinum cathode, for example, bright platinum, copper, mercury, etc.,

1 H. G. Grimm and K. F. Herzfeld, Z.Pkysik, 19, 141-166 (1923) ;
recall also Prob.

4-24.
2 L. Pauling, "The Nature of the Chemical Bond/' pp. 93-95, Cornell University

Press, Ithaca, New York, 1939.
8 The reader will find excellent recent reviews of this subject in Faraday Society

Discussion, 1 (1947), and also by J. O'M. Bockris, Chem. Revs., 43, 525-577 (1948),

and by A. Hickling, Quart. Revs., 3, 95-125 (1949).
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then one finds that considerably higher overvoltages are required to pro-

duce the same current density (current per unit area of electrode surface),

or what amounts to the same thing, smaller currents and rates of reduc-

tion of H+(aq) are obtained at given overvoltage. Hydrogen overvol-

tages on a number of different metals at a current density of 0.001

amp/cm2 are given in Table 9-9. It should be noted that these data are

not perfectly reproducible, the values tending to increase with time of

polarization; there is no doubt, however, concerning the approximate
relative magnitudes.

TABLE 9-9. HYDBOGEN OVERVOLTAGES IN 1M HC1 AT 0.001 AMPERE PER SQUARE
CENTIMETER*

* A. Hickling, Quart. Revs., 3, 108 (1949).

The existence of hydrogen overvoltage is partly responsible for the fact

that we may readily plate by electrolysis from aqueous solution several

metals such as Ni and Cd whose reversible oxidation potentials are higher
than that of H2(g) without simultaneously reducing H+Caq).

1 Hydrogen
overvoltage accounts, moreover, for the fact that the "active" metal,

zinc, in the pure state is attacked quite slowly by dilute acids, whereas

evolution of hydrogen is promptly speeded up by the addition of a small

quantity of copper salt to the electrolyte; the hydrogen overvoltage on a

zinc cathode at 0.001 amp/cm2
is about 0.72 volt,

2 but copper, by
depositing on the zinc through ordinary chemical displacement, appar-

ently provides spots of lower hydrogen overvoltage. Amalgamation of

1 The reversible potential of the hydrogen electrode may be increased of course by
the use of alkaline solutions; for many of the metals this involves an increase in their

reversible potentials as well, through engagement of most of the metal ions in solution

as amphoteric anions, complex cyanides, etc.

2 "International Critical Tables," Vol. VI, p. 339, McGraw-Hill Book Company,
Inc., New York, 1929.
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the zinc surface with mercury, on the other hand, still further desensitizes

it to the action of dilute acids.

The slowness of the reduction of H+
(aq) on most metal surfaces must

be at least in part a consequence of the high potential of the intermediate

step

H+(aq) + e = H(g)

From the dissociation energy (9-4-15) of the H 2(g) molecule, we may cal-

culate as the theoretical reversible standard potential of the reaction

H(g) = H+(aq) + e\ E = 2.26 volts (9-4-19)

The subsequent process

2H(g) = Hi(g) (9-4-20)

makes up of course for this energy in the net electrode reaction, but it

would evidently take a considerably higher potential to reduce H+(aq) to

H(g) than to H 2 (g). Therefore, if there were any delay in the establish-

ment of equilibrium in the reaction (9-4-20), a potential significantly

higher than the equilibrium value might be required for the progress of

hydrogen evolution. It is noteworthy that platinized platinum, which

is an excellent general catalyst for hydrogenations and dehydrogenations,

apparently through accelerating the attainment of equilibrium in the

reaction (9-4-20), behaves practically reversibly toward the electrolytic

reduction of H+(aq).
While this theory is fairly satisfactory at high current densities, and

can be further developed along quantitative lines,
1
it fails to account for

the existence of finite limiting overvoltages at low current densities

approaching zero. Possibly gas polarization is responsible for the over-

voltage at low current densities. Thus, we noted in Eq. (6-66) how much

higher the pressure may be within a tiny gas bubble than within a gas

bubble of larger radius, as an effect of surface tension. The physical

formation of the initial gas bubbles may therefore require higher energy
than one would suppose from ordinary equilibrium measurements with

the reversible hydrogen electrode. In this connection, D. A. Maclnnes

and L. Adler made some extremely interesting observations with small

platinized platinum electrodes at low current densities. 2 As the over-

voltage was increased from zero, the current gradually increased, with no

1
See, for example, J. Tafel, Z. physik. Chem., 60, 641-712 (1905); G. N. Lewis and

R. F. Jackson, ibid., 66, 193-211 (1906); J. A. V. Butler, Trans. Faraday Soc., 19,

734-739 (1924); 28, 379-382 (1932); L. P. Hammett, ibid., 29, 770-775 (1933).
2 D. A. Maclnnes and L. Adler, /. Am. Chem. Soc., 41, 194-207 (1919) ;

see also

D. A. Maclnnes and A. W. Contieri, ibid., 2013-2019.
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observed evolution of gas, until an overvoltage of about 16 mv was

reached, whereupon gas bubbles appeared all over the electrode; as the

exciting current was then gradually decreased, the overvoltage decreased,

with decreasing evolution of gas, until at about 1.5 mv the potential was

observed to fluctuate by about 0.5 mv. The fluctuations coincided

with the cycle of growth of a single bubble of hydrogen, occurring always
at the same point on the electrode; just after the detachment of a bubble,

leaving a tiny nucleus, the potential was at its highest, decreasing grad-

ually as the new bubble grew in size. These experiments would indicate

that when the gas phase is not already present, a quite high degree of

supersaturation of hydrogen may develop in the electrolyte surrounding
the cathode; once gas bubbles have formed, the evolution of gas may then

proceed at much lower overvoltages, but since it takes a higher pressure

to develop a bubble of smaller radius, there remains an overvoltage vary-

ing with the bubble size. It is indeed remarkable in these experiments
that the potential over the entire electrode, even though the electrodes

were small, was apparently determined by a gas bubble located at a single

point on it. However, less energy is required to put more hydrogen into

the small bubble already present than to put it into a new bubble of

smaller radius
; therefore, at sufficiently low current densities, the bubble

already present apparently receives all the gas being generated, in much
the same manner by which a large crystal tends to grow through slow

evaporation of the saturated solution. The low hydrogen overvoltage at

low current densities on platinized platinum as compared with other

metals may be related to the ease with which hydrogen dissolves in

platinized platinum, whose surface may take up the gas readily from the

saturated aqueous solution. This explanation does not account for the

differences in limiting overvoltages at low current densities observed with

different metals.

Overvoltages have been measured also for anodic oxidation of Cl~(aq)

to Cl2(g), OH~(aq) to (Mg), and for many other electrode reactions,

including the depositions of metals from solutions of their salts. Really

large overvoltages, however, are practically always associated with the

evolution of some gas.
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MAC!NNES, D. A.: "The Principles of Electrochemistry," Reinhold Publishing

Corporation, New York, 1939.

Problems

9-1. The cell

(Pt) H 2(g)lHCl(0.1M)jHg2Cl 2 (c), Hg(l)

has been studied at high hydrogen pressures by W. R. Hainsworth, H. J. Rowley, and

D. A. Maclnnes [J. Am. Chem. Soc., 46, 1437-1443 (1924)], with the following (selected)

results at 25C:
p, atm

1.0

110.2

204.7

386.6

556.8

701.8

754.4

862.2

974.5

1035.2

#298,

0.3990

0.4596

0.4683

0.4784

0.4844

0.4891

0.4903

0.4932

0.4963

0.4975

The effect of pressure on all the reactants and products except H 2 (g) is small, and

tends to be compensating, though at the highest pressures, hydrogen is appreciably

soluble in the electrolyte. Plot E vs. log pv, taking v at each pressure from the gen-

eralized fugacity coefficient chart (Fig. 6-4), and test the validity of the theoretical

relationship between E and 4>H 2
in the form

ln*

(the first term on the right being constant, if we may disregard the effect of dissolved

hydrogen on 7 of IIC1).

9-2. E. Cohen and E. J. Joss [J. Am. Chem. Soc., 60, 727-733 (1928)] used the cell

Pb(c), PbI 2(c)|CaCl2-6H 20(l)]AgI(c), Ag(c)

to study the transition between Agl(c, ) (the form stable at room temperature) and

Agl(c, ft) (the high-temperature form). A typical set of results for one of the cells

tested follows:

Plot E vs. t, and from the discontinuity in slope determine the transition tempera-
ture. From the slope (dE/dT)p, on either side of the transition temperature, deter-
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mine A$ for the cell reaction above and below the transition point, and by difference

calculate AS and AH for the transition itself

Agl(c, )
- Agl(c, ft)

at the transition point.

9-3. The following (selected) results were obtained by W. R. Carmody [J. Am.
Chem. Soc., 61, 2905-2909 (1929)] for the cell

Pb(Hg)lPbCl 2(m)lAgCl(c), Ag(c)
at 25C:

m, moles/kg E, int volts

0.03905 (satd) 0.4842

0.01039 0.5205

0.00516 0.5419

0.00262 0.5639

0.001337 0.5870

0.0006197 0.6143

0.0002116 0.6537

In accordance with the theoretical equation (9-2-55) for this cell, plot

, A\ uIn 4 1 vs. mte
)

,
.

,
RTE + x- In m +^ ^

and determine E by extrapolation. Compare the limiting slope with that predicted

by the Debye-Htickel limiting law for a strong 1:2 electrolyte.

From the value of E, and the value of E for the saturated solution, calculate
7.$.

for

the saturated solution, and determine the standard free energy of solution of PbCl 2 :

4>pbci2(aq)
-

^Pbci2(cv Using the <' values for Pb++(aq) and Cl~(aq) given by Eqs.

(9-2-52) and (9-2-58), calculate the standard free energy of formation of PbCl 2 (c).

Express these results also in terms of the thermodynamic solubility product of PbCl 2 (c) .

9-4. (a) The cell

(Pt) H 2 (g, 1 atm)lHClO4 (m), Pb(aO4Mm)lFbO a (c), Pb(c)

has been studied by D. J. Brown and J. C. Zimmer [J. Am. Chem. Soc., 52, 1-6 (1930)]

and found to behave reversibly. They obtained the following results at 25C:

m, moles/kg E, int volts

0.100 1.432

0.025 1.417

0.0100 1.407

0.0025 1.389

0.0010 1.378

Write the cell reaction, express E as a function of the electrolyte concentration, and

by means of an appropriate extrapolation to zero electrolyte concentration determine

the standard emf
,
E.

(b) The standard enthalpy of formation of Pb02 (c) at 25C and 1 atm is 66,120

cal/mole, and its third-law entropy is 18.3 eu/mole. Using for Pb(c) the third-law

entropy, 15.49 eu/mole, and for 2 (g) the spectroscopically determined entropy,
49.003 eu/mole, calculate the standard free energy of formation of PbO2 (c), and com-

bining with the result of part (a) [using the F value for H2O(1) found in Appendix 2],

calculate a value for <pb++(aq) and compare with that given by Eq. (9-2-58).
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9-6. (a) A. W. Hutchison [/. Am. Chem. Soc., 69, 3051-3054 (1947)] has made
measurements at 25C with the cell

(Pt), H2 (g, 1 atm)lHC10 4(m), Mn(ClO4) 2(m)|MnO 2 (c), (Pt)

From the following results, using for each electrolyte the Debye-Hiickel approximation,

, 0.50912+3- VM
log 7 = ---

7=
-

1+2V0
calculate the standard potential of the Mn++

(aq), MnO2(c) electrode

Mn++(aq) + 2H 2O(1) = 4H+(aq) + MnO 2 (c) + 2e

moles/kg int volts

0.5000 1.234

0.2000 1.220

0.1000 1.209

0.0500 1.199

0.0250 1.191

0.0125 1.181

(b) The standard thermochemical enthalpy of formation of MnO 2 (c) is 124,500

cal/mole, and of Mn++(aq), 52,300 cal/mole. The third-law entropies of MnO 2 (c)

and Mn(c) are, respectively, 13.9 and 7.61 eu/mole at 25C; the entropy of O2 (g) at

25C is given in the preceding problem. Using this information with the result of

part (a) [together with thermodynamic data for H 20(l) found in Appendix 2], calculate

9-6. (a) The potential of the Cs(c), Cs+(aq) electrode has been investigated by
H. E. Bent, G. S. Forbes, and A. F. Forziati [/. Am. Chem. Soc., 61, 709-715 (1939)].

For the cell

Cs(c)lCsI in (CH 3) 2NH(l)|Cs(Hg)

they obtained the following at 25C: E = 1.119 int volt, with XCB = 0.2827 in the

amalgam. Using the same amalgam concentration, they then studied the cell

Cs(Hg)|CsOH(0.02109m in H 2O)|HgO(c), Hg(l)

obtaining at 25C a "best" value of 2.1058 int volts. Using for CsOH at the given
concentration the mean activity coefficient y = 0.877 [H. S. Harned and O. E.

Schupp, /. Am. Chem. Soc., 62, 3886-3900 (1930)], calculate E for the hypothetical
cell

Cs(c)lCsOH(aq, my - DlHgO(c), Hg(l) (I)

and using for the standard potential of the Hg(l), HgO(c), OH"(aq) electrode the

value 0.0976 int volt [compare cell (9-2-22)], calculate the standard potential of the

cesium electrode

Cs(c) - Cs+(aq) + e

(b) From measurements at other temperatures, they found as the mean temperature
coefficient of E for the hypothetical cell (I) (dE/dT) - -0.00128 int volt/deg.
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Calculate the standard enthalpy of the cell reaction, and using for HgO(c) the standard

enthalpy of formation, HJ98
= 21,680 cal/mole [compare Eq. (8-1-27) for formation

from Hg(g)], calculate the standard enthalpy of reaction between Cs(c) and H 20(l).

9-7. The following cell has been studied by H. S. Harned and H. R. Copson [J. Am.
Chem. Soc., 66, 2206-2215 (1933)]:

(Pt)H 2(g, 1 atm)|LiOH(0.01m), LiCl(m)|AgCl(c), Ag(c)

Write the cell reaction, and show that E may be represented by the formula

z
-

w
-

7
-

x
-

1 g-eq
w man- (7)LiOH

where E is the same as for the cell (9-2-35), and K% represents the thermodynamic ion

product of water. From the following experimental data at 25C, construct a graph
of E + (RT/l g-eq) In (mci-/m n-) vs. /* (

=m + 0.01 in this case, using molal in

place of molar concentration units), and determine by extrapolation to zero ionic

strength the value of E + 0.059161 pK. Using the value of E given in the text

(see Table 9-3), calculate pK^ and K&t 25C.

WLiCl, #298,

moles/kg int volts

0.01 1.04979

0.02 1.03175

0.05 1.00755

0.1 0.98883

0.2
'

0.96957

0.5 0.94277

1.0 0.91992

9-8. The ion product of water has been determined also by straightforward equilib-

rium measurements for the reaction

Br-(aq) - MHg 2Br 2(c) + OH~(aq) (I)

combined with the emf data

(Pt)H 2 (g, 1 aim)

(Pt)H 2 (g, 1 atm)
NaOH(aq)|HgO(c) Hg(l); #298

= 0.9255 int volt

HBr(aq)|Hg 2Br 2(c) Hg(l); #298
- 0.1396 int volt

[Y. Kobayashi and H. Wang, J. Sci. Hiroshima Univ., (A) 6, 71-82 (1934); R. H.

Gerke and J. R. Geddes, J. Phys. Chem., 31, 886-889 (1927)]. Thus, in a typical equi-

librium experiment, R. F. Newton and M. G. Bolinger [J. Am. Chem. Soc., 62, 921-925

(1930)] found that when a mixture of HgO(c), Hg 2Br 2 (c), and Hg(l) was agitated with

a solution of KBr at 25C, the solution upon analysis was found to contain 0.01370

mole OH~/liter and 0.0689 mole Br~/liter. Taking for KOH the mean ionic activity

coefficient 0.770 and for KBr, 0.791, as estimated from activity-coefficient data for the

pure electrolytes at the same total ionic strength (Landolt-Bornstein, "Physikalisch-

chemische Tabellen," 5th ed., Supplement IIIc, pp. 2147, 2149, 1936), calculate the

thermodynamic equilibrium constant and standard free-energy change of the reaction

(I), and combining with the standard free-energydata represented by the emf measure-

ments, calculate AFJ98 for the reaction
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H 20(l) - H+(aq) + OH-(aq)

Calculate accordingly the value of X: RT In K = -AF.
9-9. Given the value of K, the thermodynamic ion product of water, what further

information is needed in order to fix the entropy of OH~(aq) (relative to the third-law

convention)? Look up this information, and using the value of K derived in Prob.

9-7, calculate <7oH~(aq).

9-10. Calculate the standard electrode potential of the hydrogen electrode in basic

solution,

MH 2 (g) + OH-(aq) = H 2O(1) + e

from the ion product and the standard free energy of formation of H2O(1). Calculate

also the potential of the hydrogen electrode in neutral solution.

9-11. (a) The potential of the Cu(c), CuCl(c), Cl~(aq) electrode has been studied

by R. F. Nielsen and D. J. Brown [J. Am. Chem. Soc., 60, 9-19 (1928)] who used the

cell

(Pt)H 2(g)|HCl(w)|CuCl(c), Cu(Hg)

Write the cell reaction, and write an equation for the emf as a function of the electro-

lyte concentration and the hydrogen partial pressure. In typical measurements at

25C, they obtained the following results:

Taking y for HC1 from Fig. 7-19 (see also Table 9-3), calculate a value of E from

each result. Combining the average with the information,

Cu(Hg)|CuSO 4 (aq)|Cu(c); #298 = 0.0051 int volt

[M. Oka, Science Repts. Tohoku Imp. Univ., (1) 22, 288 (1933)], calculate the standard

electrode potential corresponding to the process

Cu(c) + Cl-(aq) = CuCl(c) + e

(6) Using the value of <ci-(aq) given by Eq. (9-2-47), calculate from the result of

part (a) the standard free energy of formation of CuCl(c) at 25C, and compare with

the value of 28,490 cal/mole derived by M. Watanabe (ibid., 423-435) from high-

temperature equilibrium measurements for the reduction of CuCl(c) by H 2(g).

9-12. (a) The equilibrium constant for the reaction

2Cu+(aq) - Cu++(aq) + Cu(c)

has been measured by E. Heinerth [Z. Elektrochem., 37, 61-76 (1931)] who determined

the concentrations of Cu 2SO 4 and CuSO4 in equilibrium with Cu(c) at various tem-

peratures. He found at 25C, Km = L190 X 106
,
the effects of the two activity
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coefficients apparently canceling. Using the Cu(c),Cu
+ "f

(aq) standard potential

given in Eq. (9-2-72), calculate the value of the Cu(c), Cu+(aq) standard potential

Cu(c) = Cu+ (aq) + e

(compare D. A. Maclnnes, "The Principles of Electrochemistry," pp. 286-287,
Reinhold Publishing Corporation, New York, 1939).

(&) Combining with the information derived in Prob. 9-11, calculate the thermody-
namic solubility product of CuCl(c) and the solubility of CuCl(c) in water, neglecting

hydrolysis of Cu+ and complex ion formation between Cu+ and Cl~ (which is no doubt

appreciable at high Cl~ concentrations).

9-13. (a) The emf of the normal Weston cell

Cd(Hg)|CdS0 4-%H 20(satd, in H2O)|Hg 2SO 4 (c), Hg(l)

is 1.0181 int volts at 25C. Using the standard electrode potentials

Cd(Hg) Cd++(aq) + 2e; #298
= 0.3516 int volt

2Hg(l) + SC>4(aq) = Hg2SO 4 (c) + 2e; # 98 0.6141 int volt

(D. A. Maclnnes, "The Principles of Electrochemistry," p. 201), calculate y of

CdSO4 in the saturated solution, whose concentration is 3.683m.

(6) The vapor pressure of water from the saturated solution at 25C is 21.17 mm
Hg. Calculate an2o, and using the result of part (a), calculate the standard free

energy of solution #cdso4(aq)
-

^cdso 4-^H 2o<c) corresponding to the process:

CdS0 4-MH 20(c) - CdS0 4(aq) + %H2O(1)

(c) The emf of the cell

Cd(c;|CdSO 4(aq,0.05m)|Cd(Hg)

was measured by W. G. Parks and V. K. LaMer [J. Am. Chem. Soc., 66, 90-91 (1934)]

who obtained 2^98 0.0505 int volt. Using the information given in part (a), calcu-

late <cd++(aq)> and fr m tne independently derived value of <so4-(aq) 177,340 cal/

mole [e.g., from (9-2-61), combined with thermal entropy and enthalpy data for

PbSO4 (c)], calculate the standard free energy of formation of CdS0 4'%H2O(c).

9-14. H. S. Earned and R. W. Ehlers [J. Am. Chem. Soc., 64, 1350-1357 (1932)] have

used the cell

CH 3COOH
(Pt)H 2 (g, 1 atm) CH 3COONa (tin)

NaCl (m8)

AgCl(c), Ag(c)

to measure the thermodynamic ionization constant of acetic acid. Write the equation
for the cell reaction, and show that

*

E = E i In I KM r^ v I

w>z (7;NAo J

where E is the same as for the cell (9-2-35). From the following data, construct a

graph of (
E H In - -

1 vs. /*, and by extrapolating to zero ionic strength,
\ ! g-eq ^2 /

determine the value of E* + 0.059161 pK^. Using the value of #|98 given in the text,

calculate the value of pK^ at 25C.
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9-16. From the following data obtained by L. F. Nims [/. Am. Chem. Soc., 66, 1946-

1951 (1933)] for the cell:

NaH 2PO4 (mi)

(Pt)H2 (g, 1 atm) Na 2HPO4

NaCl
AgCl(c), Ag(c)

the concentrations of the three salts being practically equal, determine the secondary
ionization constant of phosphoric acid. Show that a suitable extrapolating function,

taking advantage of the Debye-Hiickel limiting law, is

RT mmi ,
2.303 RT . /-& + i In = 2A V M

1 g-eq m2 1 g-eq

[compare Eqs. (7-4-28) and (7-4-31) and also Prob. 9-14], and plot this function
Ip/TT

against p to obtain in the zero-concentration limit, E ^ hi K^.
i g-eq

9-16. (a) N. Elliot and D. M. Yost [J. Am. Chem. Soc., 66, 1057-1060, 2797-2798

(1934)] measured the emfs at 25C of cells in liquid ammonia, of the type

Zn(c), ZnCl2*6NH 3(c)|NH4Cl(m in NH 3)|TlCl(c), Tl(c)

The actual cells contained amalgam electrodes, but the standard emf
,
corrected to the

pure metals from independent data, had the mean value E%9B 0.8293 int volt.

Write the cell reaction and calculate its standard free-energy change.

(6) From the following data for NH 8 (g) at 25C (Landolt-Bornstein,
"
Physikalisch-

chemische Tabellen," 5th ed., Supplement Ilia, p. 100, 1935), determine by graphical

integration the fugacity coefficient and fugacity at the vapor pressure, 9.895 atm, and

using for NH 3(g) FJ98 -3976 cal/mole (compare Sec. 8-1), calculate F298 for NH 3 (1)

under its own vapor pressure.
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(c) Using for TlCl(c) F|98
= 44,190 cal/mole, calculate from the results of parts

(a) and (b) the standard free energy of formation of ZnCl 2-6NH 3 (c) at 25C.

(d) In a subsequent investigation, C. S. Garner, E. W. Green, and D. M. Yost

[J. Am. Chem. Soc., 67, 2055-2058 (1935)] found for the cell

Zn(c), ZnCl 2-6NH 3(c)|NH4Cl(m in NH 3)|CdCl 2-6NH 3 (c), Cd(c)

the standard emf : E%n = 0.3605 int volt.

formation of CdCl2-6NH 3 (c).

9-17. The emf of the cell

Calculate the standard free energy of

(Pt)H 2(g)|H 2S0 4(min CH3OH)|Hg 2S0 4 (c), Hg(l)

has been measured at 25C by E. W. Kanning and M. G. Bowman [J. Am. Chem.

68, 2042-2046 (1946)] with the following results:

m, moles/kg CH 3OH
0.0006999

0.0011184

0.002412

0.005475

0.006778

0.008111

0.022385

0.043217

0.09688

0.24099

0.39613

0.46964

^2981 corrected to p
0.7289

0.7174

0.6996

0.6805

0.6756

0.6711

0.6509

0.6388

0.6249

0.6098

0.6032

0.6009

= 1

By plotting (E
f + 0.05916 log m - 0.05916 Ap^^/m) against m for the lower con-

centrations, where A = 1.99 for CH 8OH(1) (D = 31.5 at 25C), and Po - 0.787 kg/

liter, show that H 2SO 4 behaves as a strong 1 : 1 electrolyte in dilute solution in methanol,
and determine by extrapolation the value of EQ

. (Compare Table 9-3, but for this

cell reaction, j = 2 g-eq/mole H 2SO4.)

Comparing with E = 0.61515 int volt obtained by H. S. Harned and W. J. Hamer

[J. Am. Chem. /Soc., 67, 27-33 (1935)] for the corresponding cell in water, where H 2SO 4

behaves in dilute solution as a 2 : 1 electrolyte, calculate A/^g for the process

H 2SO 4(CH 3OH) - H 2SO 4 (aq)
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where the standard state of H2SO4 in CH aOH(l) is regarded as that of a hypothetical
ideal 1 : 1 electrolyte at 1m concentration, and the standard state of H 2SO4 in H 2O(1) is

regarded as that of a hypothetical ideal 2:1 electrolyte at 1m concentration. From
the fact that at m = 0.1 mole/kg in H 2O, the actual emf of the cell is 0.7371 int volt,

calculate also (by interpolation) the value of AF298 for the actual process

H2SO4 (0.1m in CH 8OH) - H 2SO 4(0.1m in H 2O)

(Kanning and Bowman found evidence that the 1 : 1 dissociation of H2S04 in CHsOH
is incomplete at the higher solute concentrations.)

9-18. The emf of the cell

(Pt)H 2(g)|H2S04(m in HAc)|Hg2S0 4 (c), Hg(l)

has been measured at concentrations between 0.002 and 0.87m by A. W. Hutchison

and G. C. Chandlee [J. Am. Chem. Soc., 63, 2881-2888 (1931)]. By interpolation of

their data, E^a 0.484 int volt at m = 0.1 mole/kg. Using the data for the corre-

sponding cell in water as solvent, given in the preceding problem, calculate the differ-

ence between the thermodynamic potential of H 2SO4 at 0,1m concentration in glacial

acetic acid and at O.lm concentration in H 2O. (Because of the low dielectric constant

of acetic acid, interionic attraction is relatively large at low ionic concentrations in this

medium, and it is not easy to determine E with precision; apparently H2SC>4 behaves

as a 1:1 electrolyte, but ionization is not necessarily complete; see V. K. LaMer and
W. C. Eichelberger [J. Am. Chem. Soc., 64, 2763-2766 (1932).]

9-19. The exact expression for the cation transference number at a particular con-

centration m2 from emf measurements on cells of the type (9-3-4), where mi is regarded
as constant for the series, has the form

where Et represents the emf of the given cell, with the liquid junction, and E represents

the emf of the corresponding cell (9-3-3), without the liquid junction, both Et arid E
being taken at the same value of m^. For convenience, this relationship may be put
in the equivalent form

== (^'A* 18 m*\
+ ~~

(dE/d log m2)

From the following selected data obtained for the cell (9-3-4) by T. Shedlovsky and

D. A. Maclnnes [J. Am. Chem. Soc., 58, 1970-1972 (1936)]:

m2 , moles/kg j&29s(with mi = 0.10048 mole/kg), int volts

0.0034572 0.136264

0.0052590 0.118815

0.07844 0.009948

0.10048 0.000000

calculate (Al$/A log m2) between the first and between the second pair of concentra-

tions, and using the data between 0.003215 and 0.005619m and between 0.05391 and

0.1238m from Table 9-3, calculate likewise (AJ/A log m 2). In this way, calculate

mean values of t+ between 0.003 and 0.006m and between 0.08 and 0.10m. (Still

greater precision in the "instantaneous " value of t+ could be obtained from a graphical

plot of Et vs. E, constructed on a large scale, but the moving-boundary method is

superior for the direct measurement of transference numbers.)
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9-20. The cmf of the cell

Zn(Hg)|ZnI 2(0.3m)||ZnI 2(m)|Zn(Hg)

has been measured at 25C by R. II. Stokes and B. J. Levien [J. Am. Chem. Soc., 68,

1852-1854 (1946)], who obtained for m = 0.1 mole/kg, E = -0.02689 int volt, and
for m = 1.0 mole/kg, E = +0.04090 int volt. They also measured y for aqueous
Znl2 solutions by means of an isopiestic vapor-pressure method (equilibration of the

vapor phase with standard sulfuric acid solutions having established vapor pressures),

with the following results:

m, moles/kg T
0.1 0.581

0.3 0.564

1.0 0.800

Calculate the mean value of t+ between 0.1 and 0.3m and between 0.3 and 1.0m con-

centrations. (They found that at concentrations greater than 1m, the value of t+

decreases abnormally rapidly with increasing concentration, becoming negative above

3.53m; this indicates complex-ion formation at the higher I" concentrations.)

9-21. (a) The entropy of KClO 3 (c) was found to be 34.17 eu/mole at 298.16K by
W. M. Latimer, P. W. Schutz, and J. F. G. Hicks [J. Am. Chem. Soc., 56, 88-89 (1934)]

from low-temperature thermal data. The standard enthalpy of solution at 298.16K
is 9,960 cal/mole, and the solubility is 0.715m, the activity coefficient in the saturated

solution having the estimated value 7 = 0.476 (by analogy with that of KNO 3).

Calculate AF and A for the process

KClO 3(c)
= KClO 3(aq)

and using for K+
(aq) the independently established value <rK+

(ftq)
= 24.5 eu/mole,

calculate the entropy of ClO^"(aq).

(6) The entropies of K(c), Cl 2 (g), and O 2 (g) are, respectively, 15.2, 53.286, and

49.003 eu/mole, and the enthalpy of formation of KClOs(c) is 93,500 cal/mole at

25C. Combining with the information given in part (a), calculate the standard free

energy of formation of KClO 3 (aq), and using for K+
(aq) the independently established

value
</>K+(aq)

= 67,466 cal/mole, calculate <cio a~(aq)- Combining with information

found in the text, calculate the standard oxidation potential of the ClOj(aq), Cl~(aq)

couple in acid and in basic solution

3H 2O(1) + Cl-(aq) = ClOj-(aq) + 6H+
(aq) + fo?

6OH~(aq) + Cl~(aq) = ClO^(aq) + 3H 2O(1) + 6e

9-22. From the standard electrode potentials

Mn++(aq) + 4H 2O(1) MnO^(aq) + 8H+(aq) + 50; E* - -1.52 volts

MnO 2 (c) + 2H 2O(1) MnO^(aq) + 4H+(aq) + 3c; E = -1.67 volts

(W. M. Latimer, "The Oxidation States of the Elements and Their Potentials in

Aqueous Solutions/' Prentice-Hall, Inc., New York, 1938), calculate the standard

oxidation potentials of the MnOi"(aq), Mn++
(aq) and the MnO;f(aq), MnOa(c)

couples in neutral solution, and also in OH~(aq) solution at unit activity. Calculate

also the standard oxidation potential in acid, neutral, and basic solution of the

MnO 2(c), Mn++
(aq) couple

Mn++(aq) + 2H 2O(1) - MnO 2(c) + 4H+(aq) + 2e
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9-23* Using the data in the preceding problem, calculate the thermodynamic equi-

librium constant for the reaction

3Mn++(aq) + 2MnO^(aq) + 2H 2O(1) = 5MnO 2 (c) + 4H+(aq)

and discuss the effect of pH on the equilibrium.

9-24. Calculate the approximate potential of a platinum electrode in a solution con-

taining 1m HC1O4 and 0.01m FeSOi, at the 50 per cent, the 99 per cent, the 99.9 per

cent, and the 100 per cent points as the solution is titrated with standardized

KMnC>4(aq). (Neglect the activity-coefficient effects, which would remain approxi-

mately constant during the titration, and neglect also the dilution effect of the added

reagent; HC1C>4 is an extremely slow oxidizing agent in 1m solution, and it does not

react with Fe++
;
it is a useful strong acid because of its relatively slight tendency to

form complex ions with the metal ions.) What would be the actual cell emfs if the

system were coupled with a saturated calomel reference electrode? What would be

the potential of the platinum electrode at the end point if the (final) concentration

of HC1O4 were O.lm instead of 1m?
9-26. The effect of a centrifugal field of force has been investigated by R. C. Tolman

[Proc. Am. Acad. Arts Sci., 46, 109-146 (1910); J. Am. Chem. Soc., 33, 121-147 (1911)].

Using the cell

(Pt)|I 2(0.01m); Lil(lm); I 2(0.01m)l(Pt)

(rz 29.5 cm) (n = 4.2 cm)

where n and r denote the distances of the electrodes from the axis of rotation, he

obtained the following results at different speeds of rotation, the leads from the cell

being taken through mercury contacts, so that the emf could be measured while the

cell was rotating :

v, rps E, volts

52.3 0.00323

56.2 0.00372

59.2 0.00416

63.8 0.00480

68.3 0.00551

72.4 0.00622

(the highest speed represents a force at the outer electrode equivalent to more than

6000 times ordinary gravity). The passage of 1$ of electricity through the cell is

equivalent to the following net change:

, at n) = M^O.Olm, at r2)

t+LH(lm, at r2)
= $+LiI(lm, at r\)

The centrifugal force per unit mass at the radius r having the well-known form

the thermodynamic potential of any component of the solution at given fixed tem-

perature therefore has the form

d<J>i
= Vidp 4ir*v2Mir dr

or since the hydrostatic pressure increases with r at the rate dp =* 47r*v*pr dr, where p is

the density of the solution

dr

P)(r\
-

r\)

Write the net free-energy change for the cell reaction, and show that E is given by the
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theoretical equation (to be expressed in consistent units)

JE = 2wW(rl -

where j = 1 g-eq = 96,485 coulombs. Calculate E/v2 at each of the given experi-

mental rotational speeds, and show that this quantity is actually constant for the cell.

From the mean value, calculate a value of t+, using the following information for the

particular solution: p = 1.096 g/cm 3
; v\JM\^ - 0.2376 cm3

/g; VIM/&UI = 0.2605

cm 3
/g, as determined by Tolman. [In time, the centrifugal force would presumably

set up an equilibrium concentration gradient throughout the cell, whereupon the emf
would become zero, the ultimate equilibrium state calling for constant thermodynamic
potential of each component throughout the system; for solutes of such low molecular

weights, however, equilibrium in this sense, between mechanical potential energy and

ordinary molecular thermal energy, would not be established for a long time under a

force of the magnitude described here. For a recent investigation of this problem, see

D. A. Maclnnes and B. R. Ray, J. Am. Chem. Soc., 71, 2987-2992 (1949).]

9-26. SrClofa) has the fluorite structure, and according to J. Sherman [Chem. Revs.,

11, 153 (1932)], its lattice energy is 491.8 kcal/mole. Using data found in the text,

calculate a theoretical value of the standard electrode potential of the Sr(c), Sr++(aq)

electrode, and compare with the observed value.

9-27. (a) The dissociation constant for the zinc-cyanide complex ion was measured

by H. Euler [Ber., 36, 3400-3406 (1903)] who obtained

Zn(CN)r(aq) = Zn++(aq) + 4CN~(aq); Km = 1.3 X 10~17

Calculate the standard potential of the zinc electrode in an alkaline cyanide solution:

Zn(c) + 4CN~(aq) Zn(CN) 4-(aq) + 2e

(b) What must be the least value of the hydrogen overvoltage on zinc so that Zn(c)

may be electroplated from a hypothetical ideal solution containing 1m CN~, 1m

Zii(CN)j", and 1m OH~, without simultaneous evolution of H 2 (g)?

9-28. The standard enthalpy of solution of Ca(c) in acid

Ca(c) + 2H+(aq) = Ca++(aq) + H 2 (g)

has the value AH 98
= 129.74 kcal. Using the standard entropy values given in

Appendix 2, calculate the corresponding standard entropy of the reaction, and calcu-

late therefrom the standard free-energy change. Use this result to calculate the

standard potential of the calcium electrode

Ca(c) = Ca++(aq) + 2e

(Compare W. M. Latimer, "The Oxidation States of the Elements and Their

Potentials in Aqueous Solutions,
"

p. 274, Prentice-Hall, Inc., New York, 1938.)

9-29. Using the free-energy data given in Appendix 2, calculate E at 25C for the

cell

Zn(c)lZnS0 4 (aq, m2)]Hg 2S04(c),Hg(l)

For ma = 1.000 mole/kg H 2O, the observed emf was found to be 1.4560 int volts

(K. Masaki and T. Ikkatai, as reported inLandolt-Bomstein, "Physikalisch-chemische

Tabellen," 5th ed., Supplement IIIc, p. 1850, 1936); calculate y for ZnSO4 at that

concentration.

9-30. From the entropy data given in Appendix 2, calculate the rate of change at

25C of E with temperature for the cell described in the preceding problem.



CHAPTER 10

STATISTICAL MOLECULAR THEORY OF THERMODYNAMICS

The three laws of thermodynamics and the system of relationships

logically implied by them contain no assumptions whatever concerning
the ultimate structure of matter, and consequently can by themselves

give no information on that subject. For example, equation-of-state and

heat-capacity data must be introduced into the theory as empirically

determined quantities, whose values cannot be deduced by purely thermo-

dynamic reasoning. Nevertheless, the molecular hypothesis, introduced

originally in chemistry by Amadeo Avogadro in 1811 and later applied by
S. Cannizzaro in 1860 with great success to account for the integral rela-

tionships implied by the laws of combining weights and combining vol-

umes in the case of gas reactions, provided a possible mechanical basis for

Joule's law in terms of molecular motion. R. J. E. Clausius and James
Clerk Maxwell were among the first to ascribe definite mechanical proper-
ties to the tiny molecules of a gas, so small as to be invisible, and thus to

lay the foundations of the kinetic theory of gases (about 1860). This

concept was brilliantly developed along statistical lines by Ludwig Boltz-

mann during the latter part of the nineteenth century. Boltzmann came

eventually to the conclusion that the thermal or internal energy of a mate-

rial substance consists of nothing more nor less than mechanical energy,
kinetic and potential, of the molecules or atoms of which the substance is

composed. This energy he supposed to differ from ordinary gross or

macroscopic mechanical energy in that the molecules, extremely tiny in

size and enormous in number, are moving in random directions, so that no

motion of the material substance is perceived by ordinary macroscopic
methods of investigation. Such an idea, expressed in general form, is of

course quite ancient in origin; but Boltzmann succeeded in deriving

quantitative conclusions, such as the correct equation of state of an ideal

gas and the correct value for the heat capacity of a monatomic gas.

Where Boltzmann's original theory failed, as in the formulas for the heat

capacities of diatomic and polyatomic gases, we have since found it neces-

sary to revise the mechanical principles (Newton's laws of motion) that

he naturally tried to apply.
The reality of molecular motion, a pure speculation during Boltzmann's

time (though it was supported indirectly by the observed broadening of

602
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spectral lines resulting from the Doppler effect), was first demonstrated

in J. Perrin's quantitative studies of Brownian motion beginning in 1908,

following up A. Einstein's theoretical treatment of this problem a few

years previously. Experiments with molecular beams, initiated by 0.

Stern in 1920, have since provided a direct means of measuring molecular

velocities and of confirming the velocity-distribution law predicted many
years earlier by Maxwell and by Boltzmann.

The quantum theory of atomic and molecular structure was proposed

originally by Niels Bohr in 1913, in order to account for the stability of

the electronic-nuclear model of the atom stemming from the work of E.

Rutherford and for the origin of the characteristic atomic and molecular

spectra. It was put on a rational though radically new mathematical

foundation in the form of quantum mechanics, beginning in 1926 with

the independent work of E. Schrodinger and W. Heisenberg. Quantum
mechanics has given us insight into the nature of the internal motions of

atoms and molecules, where classical mechanics has failed completely.

The thermodynamic methods stemming from Boltzmann's original treat-

ment have thereby become immensely more powerful, so that spectro-

scopic analyses of atomic and molecular structures have now become the

source of some of the most precise modern thermodynamic data. In

turn, data derived from purely thermodynamic sources may now be

applied to give us valuable information concerning molecular structure;

the existence of nuclear spin isomerism in the case of ortho- and para-

hydrogen, for example, was first indicated by the lack of agreement
between the observed heat capacity and the original theoretical calcula-

tions for H 2(g) at low temperatures.
Even more significant, however, from the general theoretical point of

view has been the interpretation in terms of statistical properties of a

many-molecule system of such thermodynamic concepts as temperature
and entropy. We suppose that a system consisting of an enormous num-
ber of molecules must have an enormous number of different detailed

states that pass for a given thermodynamic state, in view of the relative

coarseness of thermodynamic methods of investigation. The second law

of thermodynamics then turns out to be a statistical law, whose reliability

rests on the enormous sizes of the populations with which thermodynamics
is concerned. The thermodynamic equilibrium state corresponding to a

given set of externally imposed conditions is merely that apparent or

thermodynamically sensible state to which the greatest number of detailed

states corresponds, with a probability that becomes all but a certainty

when the detailed state is as complex as we have reason to believe it must
be for ordinary material systems, containing the order of 10 23 molecules

in random motion.
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The treatment of our subject falls into two general parts. First, there

is the development of the statistics of a material system having a complex

structure, from which we may derive statistical analogues of the funda-

mental thermodynamic relationships (Sec. 10-1), with particular applica-

tion to certain classes of systems (Sec. 10-2) ;
then comes the introduction

of specific mechanical properties for the constituent molecules, from

which, within certain limitations, the statistical laws permit us to calcu-

late the values of the thermodynamic properties (Sees. 10-3 to 10-5).

Within the range of this chapter, we cannot attempt a rigorous discussion

of the physics underlying the statistical method; such discussion comes

properly within the scope of statistical mechanics, for which a number of

excellent reference works are cited at the end of the chapter. We shall

confine ourselves here to the development in a reasonably logical order of

the fundamental principles used directly in chemical thermodynamic
calculations and their application to some of the simpler types of molecu-

lar systems. This necessarily brief treatment may well serve as an intro-

duction to further study of one of the most brilliant intellectual achieve-

ments in the entire realm of scientific thought.
10-1. The Gibbs Assembly. The most generally satisfactory approach

to the statistical problem is one conceived originally by J. Willard Gibbs. l

Let us imagine an assembly of a large number N of replicas of the system
in which we are interested, loosely coupled with constant total energy E.

In using the term "system" in this sense, we mean generally the entire

thermodynamic or macroscopic system, complete with all its constituent

parts; for example, the system might consist of a sample of nitrogen gas,

containing a specified number of molecules confined within a volume of

specified size, the same for all systems of the assembly during any given

investigation. The loose coupling implies that the systems are free to

exchange energy, without other specific effects on each other; for example 9

the cylinders containing the different samples of nitrogen gas might be

brought in thermal contact with each other, without mixing of their

material contents. In such circumstances, the behavior of any one sys-

tem will be the same as though it were in a "heat bath" or thermostat,

consisting of the other N 1 systems. Its energy and other properties

may fluctuate as it interacts with the other members of the assembly, but

so long as we provide that only thermal interchange takes place among
them, then the behavior of the individual system will be independent
of the nature of the heat bath and of the particular interchange mechanism,

1 J. Willard Gibbs,
"
Elementary Principles in Statistical Mechanics Developed

with Especial Reference to the Rational Foundation of Thermodynamics," Charles

Scribner's Sons, New York, 1902; reprinted in "The Collected Works of J. Willard

Gibbs," Vol. II, Longmans, Green & Co., Inc., New York, 1928,
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in accord with our experience in dealing with the behavior of ordinary
thermodynamic systems. In fact, we may suppose that the entire assem-

bly, which constitutes essentially an isolated supersystem, will tend
toward a state of thermodynamic equilibrium, whose attainment we may
hasten in principle by starting the systems off initially distributed with

respect to individual system energies according to the ultimate equilib-
rium law for the assembly which we now propose to investigate. It is our
basic premise that the statistics of such an assembly determines the

probability of our finding the actual system in any particular one of its

system states, when it is in thermal equilibrium with a thermostat of

specified temperature. Since there is no limit to the number of virtual

systems we may include in the assembly, the statistical treatment will

give us statistical results whose reliability may be made as high as we
please, within statistical limitations; we must necessarily abandon the

hopelessly complex task of following the behavior in molecular detail of

an individual material system.
We shall suppose that an individual system of the particular type under

consideration may exist in any one of a number of system states, which we
may enumerate; let the corresponding system energies be represented by
Ei y EI, Ea, . . .

, Ej, . . . .
l Then a particular state of the assembly will

be defined by a statement of the particular system state in which each
individual system happens to be (e.g., system 1 in system state #7, system
2 in system state Ei, system 3 in system state E^ . . .

, system N in sys-
tem state Ej). Now, in a strict quantum-mechanical sense, this state-

ment is meaningless. If the systems are allowed to interact with each

other, then the system states of the individual systems lose their identity,
and become merged in states that can be identified only as belonging to

the assembly as a whole. However, if the assumed interaction is suffi-

ciently weak (thermal contact among the systems might be maintained,
for example, by bathing them in an inert gas, serving merely as a con-
vective heat interchanger), then the situation we have assumed leads to

practically the same results as one would obtain by a more rigorous quan-
tum-mechanical treatment;

2 we shall suppose that no harm is done in the
1 Where several different system states happen to have the same energy (a so-called

degenerate energy value), we shall nevertheless consider them all to be numbered
serially, assigning them for the present different symbols to represent their equal
energy values, so that to each different state, there will correspond a different value
of the running integer j. The generalization for the case of a series of states whose
energies differ by continuous degrees is straightforward, the sums appearing in the

following argument being replaced by appropriate integrals, but in order to avoid

complicating the discussion, we shall not take this case into consideration specifically
at this point.

2 One might set up the assembly in rigorous terms by first examining the behavior
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present instance when we speak of localized system energies, whose sum

over all members of the assembly is equal to the fixed total assembly

energy E.

Let us proceed to classify the assembly states according to the numbers

of systems occupying the various system-energy levels. A particular

class of states is represented by the set of numbers, Ni, N%, Nz, . . .
,

NJ, . . . denoting, respectively, the numbers of systems occupying the

system states whose energy levels are represented by Ei, E^ E
Zj . . .

,

Ej, .... Each state of the assembly is included within some one of

the different classes corresponding to different sets of the numbers Ni, N*9

Ns, . . .
, NJ, . . . consistent with the general conditions

+ N* + Nz + + Nj + =
tf,

= N (10-1)

jEj = E (10-2)

The number of assembly states P belonging to the class (Ni }
AT2, Nz,

Nj9
. . .) is given by the well-known combination law

NIP =
Nil NJ Ntl

"

- Njl

We have introduced no restrictions whatever of a mechanical nature on

the system state that an individual system may occupy, except for the

automatic restriction implied by Eq. (10-2). We are supposing indeed

that at a given moment, individual members of the assembly may be

found occupying states of widely differing system energies, but we are

hopeful that the average system energy, E/N, when the assembly is at

equilibrium, may be identified with the system energy given by thermo-

dynamic measurements on the individual system in some corresponding

thermodynamic state. In fact, any system state whose energy is not so

large as to exceed the total energy E ascribed to the assembly is theoreti-

cally accessible at any time to any individual system, though as a result

of chance and the general limitations imposed by conditions (10-1) and

(10-2), some states may turn out to be more frequently or more densely

occupied than others; the determination of the relative frequencies or

probabilities of the various system states constitutes of course the key

of N completely independent systems, and then introducing the weak interaction

as a second-order perturbation of the first-order equations of motion forN independent

systems. Fundamental questions of this kind have been explored in advanced

theoretical treatises, such as that of J. von Neumann,
" Mathematische Grundlagen

der Quantenmechanik," Springer-Verlag, Berlin, 1932; reprinted by Dover Publica-

tions, Inc., New York, 1943.
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to the problem we have undertaken to solve. How then does chance

enter the picture? We make the fundamental statistical assumption that

each different assembly state is equally likely. This assumption is inher-

ently plausible, since if an individual system is capable of falling in any

system state accessible under the given conditions, then there is no

a priori reason why one particular disposition of individual systems among
the system states should be preferred over any other particular disposi-

tion; the greater likelihood of one system state over another is supposed to

be the result merely of statistical pressure, as we shall presently see. 1

In principle, we should be able to derive such a postulate from the

general mechanical laws governing the motion of the systems and the

assembly. In practice, however, even the three-body problem can be

solved only by means of approximation methods, and the mechanics of a

many-system assembly (or of a many-molecule system) is far too com-

plicated for its detailed state to be predicted from one moment to the

next. In abandoning any effort to plot the detailed state of the assembly

by making use of the established mechanical equations of motion (classical

or quantal, as the case may be), we require a statistical postulate to make

up for the deficiency in our state of knowledge. The essential correctness

of the postulate chosen is judged not so much by its inherent plausibility

as by the correctness of the statistical results that follow from it. The
statistical properties of the assembly are therefore to be derived by

averaging over all accessible assembly states, each different assembly state

(consisting of a detailed account of the particular system state each

individual system occupies) being counted as equally likely. The average

properties of a system in such an assembly are then taken in accordance

with the underlying philosophy of the Gibbs assembly to represent the

time-average behavior of the actual prototype system when in thermal

equilibrium with a large thermostat or heat bath.

The problem of .averaging over all accessible states of the assembly
when N is large (and one should bear in mind that since the assembly is

1 The situation is not unlike that encountered in the dealing of a poker hand, where

any combination of five particular cards is as likely as any other (assuming an honest

deal, unbiased by preceding runs). We recognize in poker certain conventional classes

of hands as having special values, and we may calculate the probabilities of their

occurrence (e.g., the probability of drawing three of a land) by straightforward

counting methods, counting the number of favorable combinations in relation to the

total number of different possible hands. If we should happen to hold three kings
and draw an additional card, then the chance of drawing the fourth king is precisely

the same as the chance of drawing any other particular card, such as the seven of

spades, but the chance of drawing the king is obviously different from the chance of

not drawing the king; there are many more unfavorable cards than the one favorable

card, although each individual card is equally likely.
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purely mentally conceived, one may always let N > > when necessary,

without having to worry about the expense of the project) has been solved

in an elegant manner by C. G. Darwin and R. H. Fowler. 1 It turns out

that as N is increased without limit, an extremely sharp maximum devel-

ops in P as a function of the numbers (Ni, N*, N*, . . .
, Nj . . .), so

that an overwhelming fraction of the total number of assembly states

comes to be included within classes whose numbers (Ni, JV2 , N* 9
. . .

,

JVy, . . .) differ but slightly from the set for whichP assumes its maximum

value, consistent with N and E. Therefore, average properties of the

assembly, or of systems as members of the assembly, may be computed
with insignificant error for most purposes on the assumption that the sys-

tems are distributed among the system states according to whatever set

of numbers (Ni, N?>, N$, . . .
, #/, . . .) gives rise to maximum P in

Eq. (10-3), subject to the conditions (10-1) and (10-2). The mathe-

matics for computing this distribution corresponding to maximum P is

relatively simple, whereas that of Darwin and Fowler for computing

directly the true average properties of the assembly is highly abstract.

Therefore we shall derive the conditions for maximum P, and thereafter

assume that assembly states differing significantly from the class of

assembly states corresponding to maximum P contribute inappreciably to

the average properties of the assembly. This procedure is legitimized

a posteriori by the results of the rigorous Darwin-Fowler treatment of the

problem.
We seek the set of numbers (Ni, N*, Ns, . . .

, Nj, . . .) that make P
a maximum, subject to conditions (10-1) and (10-2). Let &Ni, 8AT2 ,

SAf3,
. . .

, &Nj, . . . represent variations in the numbers Ni, N*,

JVa, . . .
, Nj, ,

introduced in order to test the behavior of P; then

conditions (10-1) and (10-2) may be put in the form

Nj = (10-4)

Ej &Nj = (10-5)

i C. G. Darwin and R. H. Fowler, Phil. Mag., (6) 44, 450-479, 823-842 (1922); R. H.

Fowler, ibid., 46, 1-33, 497-516 (1923). Their method constitutes the logical founda-

tion of the general treatise by R. H. Fowkr, "Statistical Mechanics/' 2d ed., Cam-

bridge University Press, New York, 1936. In order to follow the mathematics,
the student needs some familiarity with contour integration of functions of a complex

variable, as treated, for example, by N. W. McLachlan, "Complex Variable and

Operational Calculus with Technical Applications," Part I, The Macmillan Company,
New York, 1947. See also the lucid discussion of the method given by E. Schrodinger,
"Statistical Thermodynamics/' Chap. VI, Cambridge University Press, New York,
1946.
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Instead of seeking the maximum in P itself, it is more convenient mathe-

matically to seek the maximum in In P

In P = In N\ - In Njl (10-6)

for then we may introduce Stirling's approximation for the logarithms of

the large factorial numbers appearing in the theory
1

In N3'\
~ Nj In Nj - Nj (Nj large) (10-7)

In view of (10-7), Eq. (10-6) assumes the approximate form (exact in the

limit as N oo
)

InP = NlnN -^NjlnNj (10-8)

y

Therefore for maximum P or In P subject to the conditions (10-4) and

(10-5), we are to solve the equation

3 In P = - Y In Nj dNj = (E, N const) (10-9)

3

or

In Nj 5Nj = (E,N const) (10-10)

We may solve the system of simultaneous linear equations (10-10),

(10-4), and (10-5) most conveniently by means of Lagrange's method of

undetermined multipliers.
2 Let us multiply Eq. (10-4) by an arbitrary

constant A and Eq. (10-5) by another arbitrary constant 5, whose values

are subsequently to be determined, and then add the resulting equations

1 This approximation formula, which follows from the series expansion

)

when AT is sufficiently large, was published by James Stirling during the eighteenth

century. A rigorous proof is given by E. T. Whittaker and G. N. Watson, "A Course

in Modern Analysis," pp. 251-253, The Macmillan Company, New York, 1943 (see

also T. C. Fry, ''Probability and Its Engineering Uses," pp. 103-107, D. Van Nos-

trand Company, Inc., New York, 1928), but the reader may convince himself of the

accuracy of the approximation (10-7) by empirical test. One should recall in con-

nection with the use of the approximation (10-7) that the number of systems in the

assembly, and the proportional numbers of systems occupying the various system

states, may be made as large as one pleases. The Darwin-Fowler treatment does not

require the use of Stirling's approximation, but nevertheless calls for indefinitely

large N, or, more precisely, an indefinitely large number of different accessible assem-

bly states.
2 Compare the use of this method in Sec. 7-1.
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to (10-10) ;
we thus obtain

(A + BE + In NfiSNi = (10-11)

where the variations dNi, &Nz, 8Ns, . . .
, dNj, . . . are now freed from

restrictions, because the values of A and B may be adjusted so as to take

up the conditions imposed by Eqs. (10-4) and (10-5); i.e., in view of the

two conditions (10-4) and (10-5), we were free anyhow to assign arbitrary

values to all but two of the variations dNi, 5AT2, SNz, . . .
, SNj, . . .

,

seeking the conditions for maximumP by solving Eq. (10-11) accordingly;

while the remaining two variations, say dNi and 5AT2 ,
would then no

longer be arbitrary, but would have to satisfy Eqs. (10-4) and (10-5) in

relation to the other SAT/s, we still have at our disposal the two arbitrary

constants A and B to complete the solution of Eq. (10-11). Thus, if the

variations SNs, . . .
, SNj, . . . are to be regarded as entirely arbitrary,

and independent of each other, then Eq. (10-11) can be satisfied generally

only if their coefficients in that equation are each separately equal to zero:

A + BE; + In Nj =
(j = 3, 4, 5, . . .)

Equation (10-11) then reduces to

(A + BEi + In Ni)dNi + (A + BE* + In NJdN* =

and while the quantities SNi and 5AT2 are no longer arbitrary, but have to

be adjusted so that Eqs. (10-4) and (10-5) are satisfied, this equation may
finally be satisfied if the quantities A and B are so adjusted that the coeffi-

cients of SNi and 6JV2 likewise vanish; in principle, with two such condi-

tions and two adjustable parameters, the adjustment can always be made.

Thus, the general solution of Eq. (10-11), and of the simultaneous equa-
tions (10-4), (10-5), and (10-10), has the form

A + BE
3
- + In Nj =

(j
=

1, 2, 3, . . .
, j, . . .) (10-12)

In other words, the numbers of systems in the various system states

characteristic of the class of assembly states having maximum probability

are given by the formula

AT,
= C exp (-BES) (J

=
1, 2, 3, . . .

, j, . . .) (10-13)

where we have replaced A by an equivalent constant C ss exp (A).
We may readily eliminate C by the substitution of (10-13) back in

(10-1):

Y NJ = C y exp (BEj) = N
J 3
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Thus

N, = N*=**JL (j
-

1, 2, 3, . . .
, j, . . .) (10-14)

The average number of systems in the system-energy state Ej is evidently

given by the expression

AT-
Nt exp (-BEJ) ,

Mi =
-T7

= ^- (10-15)*
2p(-l,)

To speak more precisely, Eq. (10-15) represents the average number of

systems in the system-energy state Ej when the assembly as a whole is

in some one of the assembly states belonging to the class giving rise to

maximum P; but as we stated at the outset (without proof, relying on

the results of the more rigorous analysis of the problem by Darwin and

Fowler), this class turns out to include an overwhelmingly large fraction

of all the possible assembly states, when N is made sufficiently large.

We may therefore tentatively interpret Eq. (10-15) as representing the

frequency or probability with which an individual system of the given

type, in thermal equilibrium with a relatively large heat bath of specified

temperature, will be found in the particular system state Ej. Its average

energy, U = E/N, in these circumstances is represented in a similar

sense by the formula

exp (-**,)

The summation over system states

exp -

(10-16)

(10-17)

which recurs throughout our theory, is evidently a property of the par-

ticular type of system; it is known as the partition function or state sum

(German: Zustandsumme; hence the origin of the symbol Z) for the sys-

tem. We may thus rewrite Eqs. (10-15) and (10-17) in the compact
forms

(10-18)v= - exp -
JV, z exp (

u - *' exp <-
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where for short, we have introduced subscript Ej to indicate constant

Ei, E*, Ez, . . . , EJ-I, EJ+I, . . . except Ej itself in the partial deriva-

tive represented in Eq. (10-18), and subscript Ej to indicate that all Efs
are to be held constant in the partial derivative represented in Eq. (10-19).

Equation (10-16), or Eq. (10-19), presumably determines the value of

the parameter B in terms of the average system energy U. We may,
however, obtain insight into the physical significance of B more directly

by considering an assembly consisting of two different kinds of systems,

loosely coupled so that they may exchange energy, but having no other

explicit effect on each other's properties. The different pairs of systems
in such an assembly might represent, for example, a thermodynamic sys-

tem consisting of a sample of argon gas in contact with a sample of solid

copper (neglecting the effect of surface adsorption on the thermodynamic
properties of the copper), or a sample of nitrogen gas separated by a heat-

conducting partition from a sample of hydrogen gas; each pair of systems
in the assembly would represent the thermodynamic system in some one

of its detailed states, these detailed states (e.g., the positions, velocities,

energies, etc., of the argon molecules and the copper atoms, or of their

own constituent parts) being hidden by the relative coarseness of ordinary

thermodynamic methods of investigation. Let the system states of the

one kind of system be represented by the corresponding system-energy
values E{, E'^ E'B ,

. . .
, E(, . . .

,
and let the total number of systems of

this kind in the assembly be represented by Nf

]
let the system states of

the other kind of system be represented by the system-energy values

E", EX, E%, . . . , E", . . .
,
and let the total number of systems of the

second kind in the assembly be represented by N". By the hypothesis of

loose coupling (e.g., purely thermal interaction), we suppose that the

system states of the one type of system in the case under consideration are

not significantly disturbed by the interaction with the other type of sys-

tem, so that if an individual system of the one type is coupled with an

individual system of the other type, then the various possible energy
levels for the combined systems are given simply by the sums (E't + E")
for i = 1, 2, 3, . . .

, j = 1, 2, 3, . . .of the possible energy levels of the

separate systems, where E+ and E'/ are assumed to be quite independent
of each other. A detailed state of such an assembly is now given by a

specification of the particular system state occupied by each individual

system of both kinds, but the number of such assembly states belonging

to the class represented by the distribution N{, JV, N'B ,
. . .

, ATJ, . . .
,

N'i, N'2', N'J, . . .
, N", ... of the numbers of systems in the various

system states is given by the expression

Nf
! N" t^v
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since each different assembly state of the one kind of system may be com-
bined with each different assembly state of the other kind of system to

produce a distinct state of the combined assembly. The assembly is sub-

ject to the conditions
~
Nf

t
= N9

(10-21)

N'/
= N"

3

0{ + Y N'/E" = E (10-22)

T
As before, it turns out that an overwhelmingly large fraction of all the

assembly states consistent with (10-21) and (10-22) when N' and N" are

sufficiently large is included within classes for which N{ 9
Nf

^ N'Zj . . . ,

N'i, . . .
, N", NX, N", . . . , N", . . . differ inappreciably from the

set of values corresponding to maximum P. Solving for this condition by
the same method used previously, but taking cognizance of the fact that

while there are two independent material conditions, Eqs. (10-21), there

is but a single energy condition, Eq. (10-22), we obtain for the average
numbers of systems in the respective system states

~exp(-BE^ (i
=

1,2,3, . . .)

(10-23)

N" =
^7 exp (-BE

9

/) (j
=

1,2,3, . . .)

where Z' s Y exp (-BE$ and Z" = Y exp (-BE'/). In other words,
3

the systems tend to be distributed among their respective system states

on the average just as though they constituted two independent assem-

blies, but because of the single energy condition, Eq. (10-22), the value of

the parameter B is common to both distributions.

Now, when two different thermodynamic systems are actually brought
into loose coupling, so that they may exchange energy in thermal form

without otherwise interacting, the most characteristic feature of their

behavior is that they tend to reach a common temperature (compare Sec.

1-1). Temperature as a precise scientific concept is in fact founded on

this idea of ultimate thermal equilibrium, which underlies the use of

thermometers for the comparison of different temperatures. The fact

that the quantity B, which evidently governs in a general way the

statistical behavior of the system when it is loosely coupled to a thermo-

stat, is likewise the same for two different kinds of systems free to exchange
thermal energy suggests a functional relationship between B and the
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temperature. Furthermore, this relationship must necessarily be uni-

versal in character, since one may always select some particular kind of

system to serve as thermometer and U-meter; its B vs. T relationship,

once empirically established, would serve as the standard for other sys-

tems with which it might be brought to states of thermal equilibrium

(equal B and equal T).

The formal relationship between B and the thermodynamic tempera-
ture may be established by the examination of how a general thermody-
namic change of state may be interpreted in terms of the statistical

behavior of the corresponding Gibbs assembly. The absolute thermody-
namic temperature T has uniquely among all other conceivable tempera-
ture scales the property that when divided into the element of thermal

energy d'Qr absorbed by the system during any thermodynamically
reversible change of state, it yields the differential, dS, of a function (the

entropy) whose value depends solely on the state of the system. This

unique property of the Kelvin scale has of course given it immense prac-

tical advantages over other universal temperature scales, such, for exam-

ple, as might be based in principle on In T instead of T itself.
1

Now, we
are obviously going to interpret U, the mean system energy of the mem-
bers of the assembly, as represented by Eqs. (10-16) and (10-19), to be

identical with the thermodynamic internal energy of an individual sys-

tem in the condition of thermal equilibrium with a relatively large

thermostat (represented by the other members of the assembly), assuming
that we need not make correction for ordinary mechanical kinetic or

potential energy that the system may possess as a whole. How may we
establish statistical analogues of such thermodynamic quantities as d'Q
and d'TP? We may evidently write formally

U = Eftj (10-24)

whence corresponding to a general change of state influencing the average

energy of members of the assembly

dU = Y Ej dNj + Nj dEj (10-25)

We have supposed that the energy levels E\ 9 E^ E$, . . .
, Ej, . . . may

be identified as properties of the individual systems, the same for all mem-
bers of the assembly. Thus, we are to suppose that the changes dEi,

1 Temperature scales differing from the Kelvin scale merely by a constant propor-

tionality factor, depending on the arbitrary number of degrees assigned to the funda-

mental interval, belong of course to the same class; thus, the Rankine, or absolute

Fahrenheit, scale is equivalent to the Kelvin scale in this respect.
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, dEz, . . .
, dEj, . . . represented in the second term on the right

of Eq. (10-25) correspond to changes in the respective system-energy
levels affecting all the systems. If, for example, the individual system
were to consist of a sample of nitrogen gas, containing a specified mass or

number of molecules, then we might imagine each system to be equipped
with a piston by means of which its volume could be adjusted. As we
shall observe later, the energy levels open to a gas sample depend in

particular on its volume; therefore in setting up the assembly, we should

require that each identical sample be adjusted to the same volume, in

order that the statistical behavior of the assembly may represent correctly

the time-average behavior of an individual sample having that volume.

A change such as is represented by the second term on the right of

Eq. (10-25) would thus be effected by a change in the setting of each

piston, the setting being changed by the same amount throughout all

the systems of the assembly. Clearly, we may interpret this term as the

average work done on the members of the assembly during the change
under consideration:

(10-26)

This interpretation is quite general, and does not depend on the particular

form in which the energy is introduced. We are entitled to suppose,

however, that it takes energy introduced in nonthermal form, through the

agency of external forces acting on the system, to produce changes in its

system-energy levels.

Comparing Eq. (10-25) with the general thermodynamic equation

(2-20),

dU = d'Q - d'W

representing the first law of thermodynamics, we may evidently identify

the first term on the right of Eq. (10-25) with the average heat absorbed

by the members of the assembly during the change under consideration :

d'Qr
= EjdNj (10-27)

In other words, thermal energy is represented in statistical theory as

energy absorbed not in changing the properties of the individual system
but in changing the relative probabilities of its states, i.e., the relative

frequencies with which the system will be found in them under a given set

of conditions (given temperature and volume). We have expressed Eqs.

(10-26) and (10-27) as applicable to reversible changes of state, in view of

the fact that the theory of Eqs. (10-15) and (10-16) is presumably based
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on average or thermodynamic equilibrium states of the system under

statistical investigation.

If these analogies, tentatively advanced, are correct, then it should be

possible for us by dividing d'Qr by T to construct a perfect differential of

some statistical property of the assembly that will correspond to the

entropy of an individual system. According to Eqs. (10-26) and (10-18),

dU -
* = <W+̂ BT / j Bt *f

Now, Z is itseii a function of B and the JS/s, defined by Eq. (10-17); the

change of In Z with changes in these variables is given in general by

or, in view of Eq. (10-19),

Thus

^r = ^L + JL (UdB + d In Z)

Evidently, our objective of creating a perfect differential out of d'Qr/T
is attained if and only if B is inversely proportional to T,

B =
pp (10-28)

For if B satisfies (10-28) in relation to the absolute thermodynamic tem-

perature T, then

d'Qr _
T

The proportionality factor k is known as Boltzmann's constant; its magni-
tude depends merely on the relative numerical scale used for the measure-

ment of T, and may be determined by application of the theory to some

particular system whose properties have already been established in terms

of the thermodynamic temperature T. We shall later demonstrate by

applying the theory to a system consisting of an ideal gas [Eq. (10-73) or

(10-92)] that k is equal to the molal ideal-gas constant R divided by
Avogadro's number AT
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fc = ^ = (1.38048 + 0.00050) X 10~ 16
erg/deg (10-29)

JM o

We may therefore rewrite the fundamental equations (10-17), (10-18),

and (10-19) in the forms

3

We may furthermore identify the entropy function S with the expression

S =
j + k In Z (10-33)

We may obtain further insight into the statistical interpretation of the

entropy function by substituting back in the general formula (10-8) for

In P the numbers of systems occupying the various system-energy levels

Ei, E 2j #3, . . .
, Ej, . . . when the assembly as a whole is in one of the

assembly states corresponding to maximum P, as given by Eqs. (10-14)

[compare also Eq. (10-31) which gives the average numbers],

Ar i Ar- N In N - E\~
kf)

Multiplying through by k/N, and comparing with (10-33),

S = -~ln pmax (10-34)

The entropy of the system thus appears as a measure of how many differ-

ent assembly states, each supposed to be equally likely, correspond to the

class of assembly states giving rise to maximum P. We have already

noted (without proof) that this class includes an overwhelming fraction

of all the accessible assembly states consistent with E and N
9
when ^V is

sufficiently large. Therefore we may equally correctly state that the

entropy of the individual system is identified with a measure of the total

number of different assembly states accessible to the assembly under the

given set of conditions (fixed N and E). Now, each assembly state is
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made up from some particular combination of the various system states

the individual system may occupy under the given set of conditions

(given Tj as established by interaction with other members of the assem-

bly, or with a thermostat, and given values of the system-energy levels,

EI, EI, E$, . . .
, EJ, . . .). Evidently, the greater the range of states

that may be occupied simultaneously by members of the assembly (i.e.,

in view of our basic statistical premise, the greater the range of states

that may be covered in the course of time by an individual system, while

it is sensibly in the one particular thermodynamic equilibrium state), the

greater will be the number of different combinations giving rise to different

assembly states, and the greater according to Eq. (10-34) will then be the

entropy of the corresponding thermodynamic state, which the statistical

behavior of the assembly presumably represents. In this sense, the

entropy of the system measures the relative extent to which its detailed

states, hidden to ordinary thermodynamic investigation, are mixed up or

involved in the given thermodynamic state.

We may express (10-34) also in the equivalent form

S = -kj NjlnN,- (10-35)

where $, = Nj/N, given by Eq. (10-31), represents the average number
of systems in the system state j, when the assembly as a whole is in one

of the assembly states corresponding to maximum P. Applied to the

behavior of an individual system, we may interpret Nj as the probability

of the system state j, when the system is sensibly in a given thermody-
namic equilibrium state; we may suppose that this probability refers to

the time-average behavior of the system, as its detailed state undergoes

changes imperceptible to the relatively coarse methods of thermodynamic

investigation. Using probability Pj in this sense, we may express (10-35)

in the form

p, =
(10-35a)

Equations (10-33) and (10-35) could of course contain an arbitrary

additive integration constant, whose value, however, would necessarily be

independent of T and of EI, E^ Ez, . . .
, Ej, . . .

,
from the manner in

which these relationships were derived [B or T, and the quantities E^ E%,

EZ, . . .
, EJ, . . . having been treated as the variables in the initial

equation, Eq. (10-24)]. Since we are always concerned with entropy

differences between states of a thermodynamic system, the particular
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value assigned to this constant is immaterial, since it will drop out of any
self-consistent set of calculations based on Eq. (10-33) that may be sub-

jected to direct experimental verification. We have therefore assigned
it for convenience the value for any kind of system, and have left it out

of Eqs. (10-33) and (10-35a) altogether. This convention is equivalent,

however, to Planck's proposal to assign zero entropies to regular crystal-

line solids at T = on the basis of Nernst's empirical generalization

(8-3-16) ; i.e., having set the integration constant in (10-33) and (10-35a)

equal to zero, we may now prove that under certain general conditions,

these equations lead actually to a zero value of S as T > 0, thereby

establishing a logical foundation in statistical theory for the third law of

thermodynamics [Eq. (10-24) embodies the first law, and the identifica-

tion of the statistical quantity B with 1/kT in Eq. (10-28) has established

the second law]. Thus, suppose that under a given set of original condi-

tions, there are r system states of equal lowest energy
1

open to the system
as T > 0, but that a finite difference exists between their common energy
and the energy level associated with the next higher state or group of

states; note that this is essentially a quantum theoretical concept. Then
when T has become sufficiently small, the exponential factor exp(Ej/kT)
will become negligibly small for all states except the group of r lowest}

energy states, for each of which Pj will become equal to 1/r.
2 Thus

lim S = -}
T-+0 Z~f r

j~l
= k In r (10-36)

Now, S is an additive property of the system, and for a system consisting

of No molecules, its order of magnitude at ordinary temperatures is kNo

(i.e., R per mole). Therefore even if r were of order No, so that the sys-

tem had as many different states of the same lowest energy as it has

molecules, the value of k In No would be vanishingly small in comparison
with kNo (e.g., compare log 1023 with 1023

itself). Thus, if there is but a

single state of the system, or even a single distinguishable state per funda-

1 The lowest energy level open to the system may depend on circumstances. For

example, if one cools down a sample of silver and a sample of chlorine in chemically

equivalent proportions, separated from each other by a partition, then at 0K this

system may settle down into a " lowest" energy state different from that of a sample

consisting of the equivalent quantity of AgCl(c), which constitutes essentially a differ-

ent thermodynamic state of the same system. Under either set of conditions, how-

ever, the following argument shows that according to (10-33) or (10-35a), the entropy
has the same terminal value at T = 0.

2 This proposition may be demonstrated rigorously; see Schrodinger, op. cit.,

Chap. III.
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mental particle present, corresponding to the lowest energy level Into

which the system may pass as T 0, then 8 given by the statistical

formulas (10-33) or (10-35a) vanishes at T =
0, in agreement with the

empirical evidence summarized in the third law. If, however, each

individual molecule may assume either of two different configurations of

equal or practically equal energy, so that the system as a whole has 2N

distinguishable states of lowest equal energy, then lim S = kNQ In 2. In
JP-O

general, if there are g different molecule states of equal lowest energy,

then for a system of No independent molecules,

lim S = kNQ In g (10-37)

This consideration accounts for certain of the apparent exceptions to

Nernst's law, such as N2O, where apparently the linear but almost sym-
metrical NNO molecules retain random orientation in either of the two

positions: NNO or ONN throughout the crystal lattice as T >0. In

this case, the third-law entropy is about R In 2 (actually, 1.14 eu/mole)
lower than the value obtained by other experimental and theoretical

methods;
1
similarly, a randomness in the orientation of hydrogen bonds

in ice crystals has been assumed to account for the discrepancy in the

third-law entropy of water. 2 In these cases, the system at 0K is not

necessarily in the state of lowest energy it could conceivably get into,

which might be the state of perfect order for which S would be zero; but

the slowness with which diffusion and rearrangement of the molecules

takes place at the extremely low temperatures for which the small energy
differences among the different configurations would become significant

[according to the second of Eqs. (10-35a)], effectively freezes in the ran-

domness of orientation that occurs normally [because of the relatively

small magnitude of the energy differences among different configurations
in cases such as N2O(c) and ice] at higher temperatures. One sees there-

fore that the third law of thermodynamics lacks in practice, if not in

principle, the generality of the first and second laws; one must always

subject third-law entropies based on low-temperature thermal data to

independent experimental test, whether in the form of equilibrium meas-

urements involving the particular substance or in the form of calculations

based on its spectroscopic properties, as shown in Sec. 10-5.

In the case of an ideal solid solution, we may suppose that the lowest

energy state into which the crystal actually gets as it is cooled to zero (not

necessarily the lowest state into which it could conceivably get, if it were

not for the slowing down of processes such as diffusion under the influence

1 R. W. Blue and W. F. Giauque, J. Am. Ckem. Soc.. 67, 991-997 (1935).
2 L. Pauling, ibid., pp. 2680-2684.



STATISTICAL MOLECULAR THEORY OF THERMODYNAMICS 621

of gravity, and other processes which tend to differentiate among the

different kinds of particles) is one in which the randomness of distribution

of the different kinds of particles throughout the crystal lattice, charac-

teristic of higher temperatures, is retained. Therefore there will be as

many distinguishable states (distinguishable in principle, though indis-

tinguishable by the methods of thermodynamic investigation) belonging
to this lowest energy level as there are different ways of distributing Ni
identical particles of the one kind and #2 identical particles of the second

kind among the NQ = (Ni + Nz) lattice points, assuming that we are

concerned with a binary solution. Thus r = No\/Ni lATa!, and introduc-

ing Stirling's approximation for the logarithms of the large factorial num-
bers in (10-36),

lim 8 - k(N<> In NQ
- Ni In Ni - N* In AT2)

ar->o

= kNo(xi In xi + X* In z 2) (10-37a)

In view of (10-29), this result is identical with the ideal entropy of solution

at ordinary temperatures (7-3-32). The relation (10-37a) has been con-

firmed experimentally by E. D. Eastman and R. T. Milner, who showed

that a solid solution of AgCl and AgBr containing a;Agci = 0.27 had a

third-law entropy from low-temperature heat-capacity measurements 1.03

eu/mole lower than that found by means of emf measurements;1
if one

assumes for the solid solution

S Q
= -R(0.27 In 0.27 + 0.73 In 0.73) = 1.16 eu/mole

instead of zero, then the agreement between the two sets of data becomes

excellent.

It remains for us to show that the assembly states in which the indi-

vidual systems are distributed among system states in a manner differing

sign
:

Icantly from the law (10-31) characteristic of maximum P are rela-

tively insignificant in number, i.e., that the laws (10-30)-(10-34) represent

accurately the statistical properties of the assembly. As we have pre-

viously mentioned, this fact is confirmed most elegantly by means of the

rigorous treatment of average properties given by Darwin and Fowler.

However, we may readily prove that the maximum inP is indeed extremely

sharp when N is taken sufficiently large. Let us introduce in Eq. (10-8)

for In P the set of Nj values corresponding to maximum P [Eq. (10-14)],

and consider the effect of varying all the N/s slightly; the first-order

variation ofP or of InP of course vanishes, in view of condition (10-10) for

maximum P; let us, however, retain the second-order terms. Thus

InP - lnPm = -
J (Nj + SNj) In

3 3

* E. D. Eastman and R. T. Milner, J. Chem. Phys., 1, 444-456 (1933).
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where P represents the number of assembly states belonging to the varied

class, whose occupation numbers for the system states are represented by
Ni + 6Ni, N2 + 8N2, Ns + SAT3, ...,#,+ 8Nf,

. . .
, subject to the

condition Y dNj = 0. Taking this condition into consideration, and

3

using also Eq. (10-10),

Higher terms in the series are of order N$ (&Nj/Nj)*9
and may be neglected

for our immediate purpose. Let us consider, for example, a class of

assembly states for which each N$ differs from the "most probable
"

value, as given in Eq. (10-36), by at least the small amount 0.01 per

cent, so that (5Nj/Nj)
2 ^ 10~~8 for each value of j; then, according to

Eq. (10-38),

P N

Evidently, by taking N sufficiently large we may make P/Pmax as small as

we please; if, for example, we were to take N = 1010
, then, in the present

example, P/Pm*x < 2 X 10~22
. This represents a vanishingly small

probability for the varied class of assembly states, as compared with the

"most probable" class. In order to complete the argument, we should

want to sum expressions such as this over other classes of assembly states

differing from the most numerous class by other arbitrary small amounts,
but it is evident that an assembly containing a sufficiently large number
of systems can hardly ever get into a state in which the individual systems
are distributed among the system states in any other manner than that

described by Eq. (10-36), or its equivalent, Eq. (10-31). Therefore we

may regard Eqs. (10-30) to (10-33) as accurately describing the average

properties of a thermodynamic system in thermal equilibrium with a

constant-temperature heat bath. Equation (10-38) may be used for the

estimation of fluctuations from average behavior in real assemblies con-
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taining finite numbers of "systems/
1 such as the molecular assemblies

(actual gases) described in the following section.

It should be emphasized that the statistical method described in this

section is entirely general, and may be applied in principle to any kind of

system, however complex. In order for us to obtain practical results, of

course, it is necessary for us to be able to evaluate the system-energy
levels Ei, Ez, E$, . . .

, Ej, . . . . This may be done accurately only

for the simplest types of thermodynamic systems, such as the ideal gas,

as we shall observe in the following sections. If we can establish the

system-energy levels from some theoretical knowledge of the system's

structure, then we are in a position to evaluate the statistical function Z
[given by Eq. (10-30)], from which the other thermodynamic properties

of the system may be readily derived. One will note that, from Eq.

(10-33),

kTlnZ = -(17 - TS) = -A (10-39)

where A represents the Helmholtz free-energy function, introduced

originally by means of Eq. (5-49).

10-2. Statistics of the Ideal Gas. An ideal gas is itself apparently a

working model of an assembly of many loosely coupled identical systems,

i.e., the molecules comprising it. In real gases at finite pressures, the

coupling is presumably not so loose, the energy of a given molecule

depending to some extent on the relative locations of its neighbors.

While N is finite, so that fluctuations in the average behavior may
appear, it is so enormous for the quantities of gas ordinarily under con-

sideration that significant fluctuations may be observed only in minute

samples or in highly rarefied gases. If throughout the argument given

in the preceding section we regard the "systems" as gas molecules, and

the "assembly" as an actual sample of the gas, consisting of N molecules

exchanging energy by virtue of elastic collisions of relatively short dura-

tion (the precise mechanism being unimportant for our present purpose),

then we may obtain formally the following results:

where

(f is not to be confused with Z for the entire gas sample considered as a

thermodynamic system, such as we were discussing in the preceding sec-

tion) ; furthermore,
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In these equations, ey denotes a typical molecule-energy level for molecules

of the given type, Nj/N denotes the average fraction of all the molecules

in the particular molecule state / (what we may regard as the probability
of that state compared with all other states under the same general set of

conditions), and I denotes the average molecule energy. The thermody-
namic internal energy of the gas in this case is presumably given by

U = N* (10-43)

corresponding to the assembly energy E in the previous discussion. The

temperature of the gas enters the theory essentially in the same way as in

our discussion of the Gibbs assembly.

Equation (10-40) is known as Boltzmann's law. It was conceived

originally by Ludwig Boltzmann during the latter part of the nineteenth

century in terms of the concrete physical picture we have just presented,

prior to Gibbs' powerful generalization. While there is a formal resem-

blance between Eqs. (10-40) and (10-31), one should realize that in (10-40)

we are presumably discussing the distribution of actual molecules in an

actual sample of gas in some one of its thermodynamic equilibrium states,

whereas (10-31) represents abstractly the time-average behavior of an

entire thermodynamic system (e.g., the gas sample itself) as its detailed

internal state undergoes changes imperceptible by the relatively coarse-

grained methods of thermodynamic investigation, while it is apparently
in a stationary equilibrium state. The difference between the two points

of view is reflected in the difference between the thermodynamic inter-

pretations of Eqs. (10-42) and (10-32); the former gives the average

energy of a single molecule, whereas the latter gives directly the thermo-

dynamic internal energy of the entire thermodynamic system (which
itself is supposed to be an average of a system energy that may fluctuate

as the system interacts with a thermostatic heat bath). In order to pass
from Boltzmann's view to the thermodynamic properties of the gas, one

must introduce an additional hypothesis such as (10-43), which represents

the thermodynamic internal energy essentially as the sum of the individ-

ual molecule energies. In assigning individual molecule energies whose

possible values are constants throughout the gas, Boltzmann's theory is

necessarily confined to situations in which molecular interaction is weak,

e.g., as in a dilute gas; since the interaction between the systems of a Gibbs

assembly, however, is purely mentally conceived (though in principle not

beyond the scope of feasible experimentation), the application of Eqs.

(10-30) to (10-33) is entirely general, provided that we can evaluate in
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some way the system-energy levels Ei, E<z, E^ . . .
, Ej, ... of the

entire thermodynamic system. Boltzmann's theory suggests how in the

case of a dilute gas, at least, we may be able to calculate the thermody-
namic properties from a theoretical or empirical knowledge of the energy
levels ei, 2 , 3,

. . .
, e/, ... of the individual molecules, for example,

such as by Eqs. (10-42) and (10-43). Boltzmann's theory exploits the

molecular hypothesis by ascribing ordinary mechanical properties to the

molecules, thereby putting thermodynamics on a purely mechanical

foundation from the molecular point of view. At the time of its concep-

tion, Boltzmann's theory was a startlingly bold innovation, which met
with sharp criticism and considerable opposition; direct experimental
evidence for the reality of molecular motion came many years later.

If we push our analogies one step further, and attempt to write an

equation for the entropy of the gas, by analogy with Eq. (10-33), we
obtain

8 = ~ + Nk In (wrong equation!) (10-44)

At this point, trouble begins ;
for when we attempt to apply this equation,

using proper mechanical laws for evaluating the energy levels ei, 2,

3 ,
. . .

, cy, . . . which enter Eq. (10-41) for f (as we shall do in the

following sections), while we obtain the proper form for the dependence
of S on T and p [see Eqs. (6-39) and (6-41)], the results turn out to be

totally inconsistent with those derived experimentally on the basis of the

third law of thermodynamics (as described in Sec. 8-3). The source of

the difficulty is appreciated when one reviews the situation in the light of

concepts inherent in modern quantum theory. The molecular model of a

gas differs from a Gibbs assembly in at least one fundamental respect:

while the systems of a Gibbs assembly have been conceived as copies of

an ordinary macroscopic thermodynamic system, which may be enumer-

ated in principle so that a distinct state of the assembly is properly repre-

sented by a statement of the system state each individual system is in,

the analogous statement in the case of a molecular assembly is false. No
operation is at present known whereby on an atomic or a molecular scale

we can tag individual particles without disturbing them otherwise; there-

fore there is no way of distinguishing even in principle between two
"states" of a molecular assembly differing only by the interchange of

two identical molecules between molecule states. Quantum mechanics

has of course actually capitalized on this cardinal operational principle,

with results too well known to call for further comment at this point.

But when we speak of identical molecules in quantum-mechanical terms,

we really mean it; that is to say, the molecules under consideration are to

be regarded as completely indistinguishable from one another, in principle.
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We may rescue Boltzmann's theory satisfactorily for our present pur-

pose by returning to Gibb's general point of view, as represented by Eqs.

(10-30) to (10-33). Let us consider an assembly consisting of a huge
number of samples of the ideal gas under consideration, each containing

the same number of molecules N (we used this symbol in Sec. 10-1 to

denote the number of samples in the assembly, but let us disregard this

previous use, which we now no longer need). Now, in the case of an

ideal gas, we may presumably represent the energy Ej of the gas in any
one of its system states as the sum of the individual energies of the N
molecules (this would not be true of a real gas at finite pressure, where

mutual interaction energy represented by van der Waals' forces would

have to be taken into consideration; but we may always use standard

thermodynamic methods to correct our calculations later for deviations

from ideal-gas behavior). If we were to adopt the naive classical point

of view, we might write

EJ = e
7 + e" + c"

7 + + <*>
(10-45)

where '
denotes the energy of the first molecule, which might have any

one of the molecule-energy values i, 2, 3, ...,,-,..., e" denotes the

energy of the second, which might also have any one of the values ei, 2,

3, . . .
, ey, . . .

,
etc. A distinct state of the gas as a whole would then

be represented by a set of N particular values drawn from among 1, 2,

3, . . .
, y, . . . and assigned, respectively, to

7

, e", e
/7/

,
. . .

,
e (JV)

.

If it be assumed that any molecule can get into any molecule state, inde-

pendently of the molecule states occupied by the other molecules (and we
make this assumption warily, subject to further discussion later), then

the sum over system states, Z, given by Eq. (10-30) would assume the

form

- VVV
2/2/z/
a o c

where a = 1, 2, 3, . . .
, j,

b = 1, 2, 3, . . .
, j,

c - 1,2,3, ... ,j,

1, 2, 3, . . .
, j, . . .
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Substitution of this result in Eq. (10-33) leads of course to the wrong

entropy formula (10-44). We have, however, counted each permutation
of the molecule-energy values appearing in an equation of the form

(10-45), for a particular set of N such values, as constituting a separate

system state of the gas. In view of the indistinguishability of the mole-

cules, each set of N particular molecule-energy values (which in general

may possibly include duplications) may be permuted among the N mole-

cules without giving rise to a different state of the gas. In the formula for

Z given above, we have therefore counted the system states N\ too many
times. The correct expression for Z should thus have the form

Z = f
*

^ideal gas^ (10-46)

This amendment does not affect the formula for U [compare Eq. (10-32)

with Eqs. (10-42) and (10-43)], which involves only the derivative of In Z
with respect to 1/T; the factor \/N\ in that case disappears during the

differentiation. But it does affect the formula for S
9
which upon sub-

stitution of (10-46) in (10-33) and introduction of Stirling's approxima-
tion for In Nl assumes the form

8 = ~ + Nk In f
- Nk (In N -

1) (ideal gas) (10-47)

This equation, as we shall see later, gives theoretical results in excellent

agreement with experiment.

It is important that we understand clearly the relationship between

Eqs. (10-33) and (10-47). We have seen that Eq. (10-33), which pre-

sumably applies to any kind of thermodynamic system, in a thermody-
namic equilibrium state at any temperature, leads to a zero entropy at

T =
0, provided that the lowest energy level open to the system as a

whole is not highly degenerate. For ordinary material systems, the

energy level attained at T = belongs to some condensed state of the

system, i.e., the crystalline solid for most pure chemical substances. 1 It

is to the system in such a state that the limiting value, lim S = [described
zwo

more precisely by Eq. (10-36)], applies; this theoretical result is in agree-

ment (1) with Nernst's empirical law that entropy differences between

the various thermodynamic states of the system vanish at T = and

(2) with Planck's subsequent proposal to assign this common 0K
entropy the conventional value of zero in all cases where degeneracy does

not have to be taken into consideration [we have met the requirements of

1
Liquid helium-II, which comes into existence below 2.2K at atmospheric pres-

sure, is anomalous in this respect, and shows other associated remarkable properties.
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this convention, which contributes nothing essential to the physical con-

tent of Nernst's law, by setting the arbitrary integration constant that

might have appeared in Eq. (10-33) equal to zero]. Now, in Eq. (10-47),

we have applied Eq. (10-33) to a material system consisting of a dilute

gas, having introduced certain assumptions not implied by the general
statistical theory concerning the way in which the system energy depends
on properties of the constituent molecules. Equation (10-47) then per-

mits us to calculate S for the gas in any thermodynamic state from a

knowledge solely of the molecular-energy levels ci, c2,
c 3,

. . .
, c/, . . .

through Eq. (10-41) defining the quantity f ;
the value of U may also be

calculated for the gas from f by means of Eqs. (10-42) and (10-43).

Since in originally setting up Eq. (10-33), we provided by suitable adjust-

ment of the integration constant (i.e., by setting it equal to zero) that all

entropies should be based on the standard third-law convention, SQK =
for the system in any of its 0K (crystalline) states, therefore if Eq.

(10-47) is correct, it should give us directly entropy values for the gas in

agreement with those derived experimentally from heat-capacity and
heat-of-transition data by standard thermodynamic means based on the

third-law convention (Sec. 8-3).
1

Equation (10-47) contains terms depending on the thermodynamic
state of the gas (as we shall see more explicitly after we have actually

evaluated f) and also a constant term independent of the thermodynamic
state (including the last term on the right, which appeared when we

adopted the quantal conception of distinguishing the system states of a

molecular system, plus additional constants that appear later when we
evaluate f). The constant part of S in Eq. (10-47) is not to be regarded

merely as an integration constant in the ordinary sense; we settled the

question of the integration constant once and for all when we set it equal

to zero in Eq. (10-33). The constant appearing in Eq. (10-47) enters as

a term theoretically demanded by general statistical considerations in

order that entropy values computed for the gas, based on a certain

physical conception of its structure, should bear the proper numerical

relation to the entropy at 0K of the corresponding crystalline solid (i.e.,

in the standard third-law entropy reference state). If we know its value,

then we can compute, for example, the entire vapor-pressure curve for the

solid from purely thermal data (heat capacities and heat of sublimation),

without requiring a single equilibrium measurement. One of the most

brilliant achievements of quantum mechanics has been the correct

evaluation of this constant from general theoretical principles, as we shall

presently see.

1 Caution ! Equation (10-47) itself is not valid at temperatures approaching0K for

reasons that we shall presently explain.
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In deriving Eq. (10-46), we implicitly assumed that each molecule

could get into any molecule state independently of the molecule states

occupied by other molecules. At sufficiently high temperatures, where

it turns out that there are many more molecule states available consist-

ently with the total energy than there are molecules (as we shall confirm

later), this assumption turns out to be quite justified, and it has permitted
us to derive our theoretical equations, particularly the important equa-
tion (10-47), by quite simple mathematics. Even though we include

formally in the sum, Eq. (10-41), molecule states running up to indefi-

nitely high energies, no harm is done, because the factor kT appearing in

the denominator of each exponential term in the sum serves automatically

to cut down the effect on Z of all states with energy values much greater

than kT] for example, the term contributed to Z by a state for which

j > lOfcT is less than 0.00005, as compared with terms of order 1 con-

tributed by each low-energy state. At sufficiently low temperatures,

however, where kT gets to be of the order of the lowest molecule-energy

values, our assumption may break down, and with it, the validity of

formulas such as (10-40), (10-46), and (10-47). For when the total

energy is so low that most of the molecules are confined to the lowest

energy levels, then the energy required for a molecule to get from a lower

to a higher level may be not at all insignificant in comparison with the

average energy. This condition may therefore serve to limit the freedom

of access of the molecules to the higher states theoretically available to

them; i.e., a few molecules in the higher states may account for all the

energy, and thereby serve to block other molecules from entering higher
states. This is of course a purely quantal notion, for if the molecule

energies could vary by continuous degrees, then as the temperature fell,

the average energy could decrease indefinitely while individual molecules

could still have energies not specifically dependent on those of other mole-

cules; the molecules lose this freedom, however, under conditions such

that the only energy values open to them differ by amounts constituting

significant fractions of the total energy. Another kind of difficulty

arises for certain kinds of particles when at low temperatures their low

total energy confines them to the lowest particle states; for certain kinds

of particles (including electrons, in particular), the occupancy of a given
state excludes other particles from occupying the same state (W. Pauli's

exclusion principle).

The statistical problem may be treated generally in the following way:
Let Ni 9 #2, #3, . . .

,
N9 ,

. . . denote, respectively, the numbers of

molecules occupying the molecule-energy levels ei, e2,
c s, ...,...

for a given state of the gas. Then by the ideal-gas hypothesis, if we
assume no specific interaction between the particles, the corresponding
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energy level of the gas as a whole (the
"
system

"
in the sense of Sec. 10-1)

is given by

+ NM + AT3 3 + + AU +
Each different set of numbers Ni, N*, N*9

. . .
,
N8,

. . . gives rise to a

different state of the gas, but in view of the indistinguishability of the

molecules, a given set corresponds to but a single state of the gas. Sub-

stituting in Eq. (10-30),

ii + ^2c2+ Ar

3C3+ ' + #*.+
)]

(10-48)

This expression may be abbreviated to

Z = SZi">22
"2
23"'

' ' Zf* (10-49)

where

*. = expl-^l (10-50)

The sum in Eq. (10-48) or in Eq. (10-49), which represents an accurate

generalization of Eq. (10-46) presumably valid at any temperature, is to

be taken over all sets of numbers Ni, N%, Ns, . . .
,
N89 . . . satisfying

the condition

Ni + Nz + Nz + + N8 =N (10-51)

The Pauli exclusion case may be taken into consideration by the introduc-

tion of the further condition

N8
=

0, 1 (10-52a)

Otherwise, the N9 values may be regarded as unrestricted except for the

general condition (10-51); i.e.,

N9
=

0, 1, 2, 3, ... (10-52b)

The set of equations represented by Eqs. (10-49) to (10-52) is extremely

general, and it covers several other important classes of systems consisting

of loosely coupled particles besides ordinary material gases. Systems

satisfying condition (10-52a) are called Fermi-Dirac gases; their statistics

were developed originally by E. Fermi specifically to take account of

Pauli's empirical exclusion principle, but they were discovered inde-

pendently by P. A. M. Dirac from a somewhat more general point of view. 1

It appears in general that systems consisting of fundamental material

particles, such as electrons, protons, or neutrons, or of molecules contain-

1 E. Fermi, Z. Physik, 36, 902-912 (1926); P. A. M. Dirac, Proc. Roy. Soc. (London),

(A)112, 661-677 (1926).
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ing odd numbers offundamental particles (e.g., D atoms, but not D2 mole-

cules, H2 molecules, or II atoms), satisfy Fermi-Dirac statistics. Systems

satisfying condition (10-526) are called Bose-Einstein gases; their statistics

were developed originally by S. N. Bose, who succeeded in deriving

Planck's thermal radiation law by treating radiation as a "gas" consisting

of photons; the extension of the statistical treatment to material gases was

developed by A. Einstein. 1 It appears that systems consisting of photons

in particular, and of molecules containing even numbers of fundamental

particles, such as H2 molecules, He molecules, H atoms, etc., satisfy Bose-

Einstein statistics. There are general theoretical reasons in quantum
mechanics for the distinction between the two cases.

Equations (10-49) to (10-52) may be solved by application of the

so-called method of steepest descent, as shown by E. Schrodinger.
2 One

obtains as a result

In Z = -AT In C + In [1 + Ce-<'W] (ideal "gas") (10-53)

s

where the upper sign refers to the Bose-Einstein case and the lower sign

to the Fermi-Dirac case. The average numbers of "molecules" in the

various "molecule" states are given by

N8
=

1
---

(ideal "gas") (10-54)

^
e'kT + 1

where the quantity (7, which is a constant over the system (the "gas") in

a given thermodynamic state, is determined by the condition

N = 7 ----
(10-55)'

Equation (10-53) represents the generalization of Eq. (10-46), and Eq.

(10-54) represents the generalization of Boltzmann's law [Eq. (10-40)].

Evidently, Eq. (10-53) reduces to Eq. (10-46), and Eq. (10-54) reduces to

Eq. (10-40), whenever most of the molecules are in molecule states satis-

fying the condition

Ce-w*> l (10-56)

1 S. N. Bose, Z. Physik, 26, 178-181 (1924); A. Einstein, Sitzber. preuss. Akad.

Wiss., Physik.-math. Klasse, 261-267 (1924); 3-14 (1925).
2
Schrodinger, op. cit., Chap. VII; the mathematics is similar to that used by

Darwin and Fowler in their treatment of the statistical properties of the assembly in

general. For a quite different mathematical development of the statistics of Bose-

Einstein and Fermi-Dirac gases, see E. H. Kennard, "Kinetic Theory of Gases,"

Chap. X, McGraw-Hill Book Company, Inc., New York, 1938.
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For in that case, condition (10-55) reduces to

1) (10-57)

where f is defined as before, by Eq. (10-41).
l In the general case, how-

ever, we cannot solve Eq. (10-55) explicitly for C in terms of familiar

analytical functions of N and the quantities 68 ; instead, given the energy-
level values 1, 2, 3, ...,,... in particular cases, we are then

compelled to rely on approximation methods involving some degree of

complexity.
2

Fortunately for our present purpose, condition (10-56) turns out to

be satisfied by all known material gases at ordinary temperatures, as we
shall see in Sec. 10-4. Only helium and hydrogen remain gases under

ordinary pressures at temperatures sufficiently low so that deviation

from the "classical" Boltzmann distribution law (10-40) and the
"
semi-

classical
"
entropy law (10-47) has any chance of becoming detectable;

even in those cases, the predicted effect at the respective normal boiling

points of the liquids turns out to have the order of magnitude only of the

van der Waals deviation from ideal-gas behavior. We may therefore

proceed with confidence on the basis of Boltzmann's distribution law,

Eq. (10-40), as representing correctly the average distribution of the

molecules among molecule states in material gases, and Eqs. (10-42),

(10-43), and (10-47) as representing the statistical foundation of the

thermodynamic properties, in all ordinary applications except possibly

at the lowest attainable temperatures for those gases having the lowest

molecular weights.

The general statistical theory of the ideal "gas" represented by Eqs.

(10-53) to (10-55) has, however, met with conspicuous success in the cor-

1 The terms In (1 + Ce~^kT) in Eq. (10-53) then reduce approximately to T Ce~'*'kT }

upon the substitution of (10-57), the resulting expression for In Z then becomes the

same as that derived from (10-46) upon introduction of Stirling's approximation
for In Nl

2 See Schrodinger, op. cit., Chap. VIII; see also Kennard, loc. cit. Equation (10-55)

may be expanded in the form of the series

N . Cf [ 1 ~ y e-'</** + ? y -*/" I (10-55a)
L s Li f Lj J

8 8

Since each series of exponential terms is going to have the order of magnitude of f

itself, we can readily see that condition (10-57) will be met if C <C 1
;
this condition

in turn will follow if f/N ^> 1, which may be taken as equivalent to (10-56). We
shall show in Sec. 10-4 that this condition is in fact satisfied by all known material

gases at ordinary temperatures.
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relation of several diverse classes of problems where Boltzmann's law

fails. Three cases may be noted. As we have already indicated, S. N.

Bose, by treating thermal radiation within a hollow enclosure whose
walls are maintained at constant temperature as a photon "gas," suc-

ceeded in deriving Planck's black-body thermal radiation law in a most

elegant manner;
1 in this case, it is assumed that C = 1 and ,

= hfa in

Eq. (10-54), the upper (minus) sign applying. The condition (7=1
corresponds to the presence of an indefinite number of photons within

the enclosure, since it is supposed that the number may change by reac-

tion with the walls; h represents Planck's constant, and c the energy of

a photon corresponding to radiation of frequency v8 . Equation (10-54)

then represents the average numbers of photons corresponding to

radiation with various frequencies ? from which one may readily derive

Planck's law for the distribution of radiant energy with frequency.
2

The second important case treated successfully by the methods of quan-
tum statistics is that of the relatively dense electron "gas" in metals.

Although metals contain electrons more or less free to move independently

of each other, as shown by the electrical conductivity (and indirectly

by the related thermal conductivity), it is a well-known fact that these

"free" electrons contribute negligibly to the thermodynamic properties

at ordinary temperatures; the heat capacity of a metal, for example,
can be calculated accurately by theoretical methods (e.g., Debye's

method) that ignore completely the presence of the electrons. A. Som-
merfeld first solved this problem by treating the free electrons in a metal

as a Fermi-Dirac gas, which on account of the relatively small mass of

the electron and the high electron density in the metallic state turns out

to be in a highly degenerate state at ordinary temperatures; i.e., most of

the "free" electrons are in the lowest energy levels consistent with the

exclusion principle.
3 This first successful theory of the metallic state

has had far-reaching consequences in the development of the general

theory of the solid state. 4 The third case to which nonclassical statistics

has been applied is that of liquid helium-IL F. London has shown that

certain properties of this remarkable fluid are in agreement with what

one would expect of a Bose-Einstein gas in the completely degenerate
1
Bose, loc. cit.

2 See Shrodinger, op. cit., Chap. IX.
8 A. Sommerfeld, Z. Physik, 47, 1-32, 43-60 (1928). See also the reviews of the

theory by A. Sommerfeld and H. A. Bethe, Elektronentheorie der Metalle, "Hand-
buch der Physik," Vol. XXIV/2, Springer-Verlag, Berlin, 1933; K. K. Darrow, Rev.

Modern Phys., 1, 90-155 (1929); J. C. Slater, ibid., 6, 209-280 (1934).
4
See, for example, N. F. Mott and H. Jones,

"
Theory of the Properties of Metals

and Alloys," Oxford University Press, New York, 1936; F. Seitz, "The Modern

Theory of Solids," McGraw-Hill Book Company, Inc., New York, 1940.
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state; the strange behavior of such a "gas" (superfluidity, second sound,

etc.) apparently results from the presence of many molecules in the

ground state of zero translational velocity.
1 It has recently been shown

that liquid He 3
,
which should obey Fermi-Dirac rather than Bose-

Einstein statistics, fails to pass into a superfluid state at temperatures
down to 1.05K, well below the temperature of 2.19K at which He 4-!!

comes into existence at atmospheric pressure,
2 but it is still too soon for

anyone to know what the actual behavior of such a fluid is like. It is

beyond our present scope to discuss further the properties of these extra-

ordinarily interesting nonclassicai systems. The reader will find an

excellent account by J. E. Mayer and M. G. Mayer in their "Statistical

Mechanics." 3

We may recapitulate the results of this section for the thermodynamic

properties of ordinary material gases in the ideal-gas state by means of

the following formulas:

f s > e-v/kT (definition of f) (10-58)

;

U - $1 =
^- Y e;e-"/*

r = -R
I 4^V1 (internal energy relative

f ^--/ L*KV -* / J;
j

to hypothetical ideal-gas state at 0K) (10-59)

S = U ~ U" + R In f
- R(\n N<>

-
1) (entropy relative to

crystalline state at 0K) (10-60)

Equation (10-58) merely defines the molecular partition function f. In

Eq. (10-59) [compare Eqs. (10-42) and (10-43)], we have introduced

explicitly a term UQ to take account of the fact that the implied reference

base for energy calculations on the gas consists of the gas molecules in their

state of lowest energy; no account has previously been taken of sublima-

tion energy from the crystalline state (which obviously cannot be calcu-

lated purely from gas theory), nor of chemical reaction energy from possi-

ble constituents. On the other hand, the entropy value given by Eq.

(10-60) [compare Eq. (10-47)] refers for the reasons previously noted to

the standard third-law convention. To these equations, we may now add

the following:

1 F. London, Nature, 141, 643-644 (1938); J. Phys. Ckem., 43, 49-69 (1939). See

also L. Tisza, Compt. rend., 207, 1035-1037, 1186-1189 (1938).
2 D. W. Osborne, B. Wienstock, and B. M. Abraham, Phys. Rev., 76, 988 (1949).
3 J. E. Mayer and M. G. Mayer, "Statistical Mechanics," John Wiley & Sons, Inc.,

New York, 1940.
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(10-62)

We may derive a theoretical equation for the pressure of the gas by
introducing (10-46) in (10-39), and taking advantage of the general

thermodynamic relation (6-56),

We shall use this equation later to derive the ideal-gas equation of state

from purely mechanical principles; so far, the only physical assumption

concerning the nature of the gas has been that its molecules have inde-

pendent energy values. The generalization of (10-63) for a Bose-Ein-

stein gas or a Fermi-Dirac gas including the nonclassical temperature

range is obtained by substituting (10-53), in place of (10-46), in Eq. (10-39).

The following relations are also useful:

3 - HI = U - VI + RT (10-64)

Cp
= C + R (10-65)

P ~
T
Bl = g ~ R * - S = -fllnf + RlnNo (10-66)

Equation (10-64) merely represents the ideal-gas enthalpy, given in

general by // = U + pV = U + RT, in terms of the theoretical internal

energy determined by (10-59). The constant B% is of course the same as

UQ, and from the standpoint of statistical theory, must be regarded as

empirically determined, i.e., by standard thermochemical means; it is the

only arbitrary constant entering the statistical theory of the ideal gas.

Actually, its value is significant only in relation to a Aff for some chemi-

cal transformation or phase transition of the gas; A#S for the change in

question is then determined by comparing A# deduced from theory

according to Eqs. (10-59) and (10-64), involving the unknown constant,

A/7 or AC/S, with the experimental value of AJ? as determined by con-

ventional thermochemical methods at some one particular temperature

(e.g., the standard temperature: T = 298.16K). It is customary to

assign to each chemical element in whatever happens to be the stable

modification at 298.16K the value B% = UQ = O;
1

if that modification

1 "Selected Values of Chemical Thermodynamic Properties," National Bureau of

Standards, Washington, D.C., Dec. 31, 1947.
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happens itself to be the gas, then that value applies directly in Eq.

(10-64); if not, then HI for the gas [e.g., for I2(g)] must be established

essentially from a measurement of AH for the phase transition from the

standard form to the gas at some one temperature (as we shall see later)*

There is no conflict in assigning one and the same element, in a particular

allotropic modification, an arbitrary zero enthalpy at both 0K and

298.16K (and in fact, at all temperatures), since the "
absolute

" value of

H has significance only in relation to chemical or physical transformations

to other forms that may have a separate existence (stable, metastable, or

even hypothetical) at the same temperature and pressure. Any change
of H for the element in its standard allotropic modification with tem-

perature may therefore simply be cast into the change of H for its com-

pounds and other allotropic forms.

Equation (10-66) represents the simplest and most useful form in

which to cast free-energy data derived from statistical molecular sources.

Since, in general, F = H TS, the value assigned to F necessarily

involves the value assigned to the constant #g; Eq. (10-66) therefore per-

mits us to calculate F in relation to HQ directly in terms of the statistical

function f. The thermodynamic function (F H^/T is always used

in combination with similar functions for other substances for computing
standard free-energy changes of chemical transformations or phase transi-

tions, i.e., as a term in an expression of the form (AF AH^/T; there-

fore it does no harm that the H value [Eqs. (10-64) and (10-59)] and the

j value [Eq. (10-60)] implicitly entering its computation according to

Eq. (10-66) are based on two different reference states, because in view of

the third law, the A/SJJ value implied in the calculations vanishes, leaving

only the Afg value as an empirical constant for the reaction. In view of

Eq. (8-2-1), Eq. (10-66) leads to an elegant theoretical expression for

the thermodynamic equilibrium constant of a gas reaction:

A TTO <-

In KZ = - A In -
(gas reaction) (10-67)

For reactions involving liquid or solid substances with gases, the corre-

sponding (F HD/T values for the condensed phases cannot, of course,

be evaluated by the theoretical method for ideal gases outlined in this

section. Instead, we must use the thermodynamic formula

fj
s - s* (10-68)^ _

where, for a substance undergoing no phase transition between 0K
and T,
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fro __ fro i fT
^_o = I r-* jT

(10-69a)

(10-696)

The two integrals may be evaluated graphically from low-temperature

heat-capacity data, Eq. (10-69&) representing simply the conventional

third-law entropy at the temperature T (Sec. 8-3). The modification for

a substance that undergoes one or more phase transitions between 0K
and T is sufficiently obvious to call for no special comment.
One further point should be noted before we undertake the evaluation

of f . If the molecule-energy levels can be represented as sums of several

entirely independent contributing terms, then on account of the expo-
nential form in which ey enters f [Eq. (10-58)], f separates into a product
of several independent factors

; since, furthermore, the only form in which

f then enters any of the thermodynamic functions, Eqs. (10-59) to

(10-66), is as In f, each independent molecule-energy term therefore

contributes independently an additive term to each thermodynamic func-

tion. In particular, the energy of a free body (e.g., an ideal-gas molecule)

in either classical or quantum mechanics is always separable into a trans-

lational-energy term, corresponding to the motion of the center of mass,

plus an "internal-energy" term, corresponding to relative motion about

the center of mass (e.g., relative motions of the constituent atoms, or of

their fundamental particles).
1 Thus

9 = Mi + (.t) (10-70)

where any translational-energy value (e tr)i may combine with any

"internal-energy" value (cint)m to produce a characteristic energy level

for the molecule. Therefore
nerna-energy vaue cint

for the molecule. Therefore

I m
or

In f = In f <r + In flnt (10-71)

where

= V ertvw (10-71a)

(10-716)
m

1 The thermodynamic internal energy of the gas as a whole includes of course both

these forms of molecular energy.
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These equations may be substituted in any of the foregoing formulas for

the thermodynamic functions; we may therefore speak of the transla-

tional entropy, the translational heat capacity, etc., and later, when we
have analyzed int further, of the vibrational entropy, the rotational heat

capacity, etc., meaning by such an expression the additive term contributed

to the thermodynamic function by the corresponding form of molecular

motion. Since the internal motions of the molecules presumably depend
in no way on the volume, in a gas at ordinary pressures, we may put Eq.

(10-63) immediately in the form

(10-72)

10-3. Classical Mechanics of the Ideal Gas. So far, our discussion

has been almost purely statistical in nature. No mechanical properties

of the molecules have been introduced, except extremely general ones,

such as the concept of independent molecule energies in the ideal-gas

model and the quantum-mechanical method of distinguishing the different

states of a molecular system. In this section, we shall describe essen-

tially how Boltzmann treated the mechanical problem in the case of

translational motion according to Newton's classical equations of motion.

Classical mechanics broke down completely, of course, in the case of inter-

nal molecular motions, this collapse being one of the stimuli that led to

the creation of quantum mechanics. While the classical treatment of

translational molecular energy also has been superseded by the general

quantum-mechanical treatment to be described in Sec. 10-4, nevertheless

it retains considerable interest, and it leads to correct results in all

respects except those bearing on the entropy constant for an ideal gas

consistent with the third law of thermodynamics. It is indeed a remark-

able fact that the one point in the classical theory that gave rise to the

greatest conceptual difficulty turned out to foreshadow the third law,

whose experimental foundation was not established until after Boltz-

mann's death.

The major theoretical problem arising in the classical treatment of

translational molecular motion is how to define the molecule states in a

proper manner. As a consequence of Newton's general equations of

motion, we may express the energy of an independent molecule in the

form

r
=

,(*, y,z) + ~
(10-73)

where *p(x, y, z) denotes the mechanical potential energy, a function cvf

the coordinates (x, y, z) of the molecule's center of mass (e.g., as in
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a gravitational field), and p
2/2m =

(pi + py + pi)/2m denotes the

kinetic energy, represented as a function of the components of momentum :

px = mux, py
= muy , pz

= mi^. 1
If, however, the variables x, y, z, px,

Pvi Pv which describe the instantaneous state of motion, may assume any
of a continuous series of values, then the question arises how to convert

the sum represented in Eq. (10-71a) into an integral. This question, of

course, does not arise in quantum mechanics, as we shall see in Sec. 10-4.

Formally, we may proceed as follows:

=
r Ax Ay Az Apx Apy Ap,

S tr

Ax Ay Az Apx Apy Ap3
UU~' ;

where we have divided up the range of the variables x, y, z, px, py, pz into

little
"
equal" units of extension: s = Ax Ay Az Apx Apy Apz . If we may

now suppose that this element of "volume," s, in (z, y, z, px, py, pz)

"space" can be made sufficiently small so that throughout its extension,

when located at a given "point" (x, y, z, px, py, p^, the value of the func-

tion exp (etr/kT) will be sensibly constant, then we may replace the

sum in the numerator of Eq. (10-74) by an integral, taken over the entire

ranges of the variables accessible to the individual molecules:

1 f f C C f f .p(g,y t )+p/2m

r* = -
I I I I I I

e

"

"*r dxdydzdpx dpy dpz (10-75)

It is precisely at this point that the conceptual difficulty to which we have

previously referred arises, for we cannot actually pass to the limit s > 0,

without wrecking f tr ; yet there is no clue as to how small s ought to be,

if it is to remain finite. If we suppose that s can be taken as a sufficiently

small but arbitrary number, short of zero, then upon our examining the

thermodynamic formulas (10-59) to (10-66), it becomes clear that only

those involving the entropy [i.e., Eqs. (10-60) and (10-66)] are affected

by the precise value assigned to s, the effect there being the addition of a

constant of the form R In s to the value of S. The internal energy and

the heat-capacity functions, and also Eq. (10-72) for the pressure, involve

only derivatives of In f trj from which the value assigned to s disappears.

Obviously, however, we cannot reconcile such a haphazard procedure
with the great generality represented by the third law of thermodynamics,
which of course was unknown to Clausius, Boltzmann, Maxwell, and the

1 Compare Sec. 2-1. For reasons of symmetry, as represented by Sir William

Rowan Hamilton's generalization of the equations of motion, the coordinates and the

corresponding components of momenta are superior to the coordinates and the cor-

responding components of velocity as variables defining the state of motion. Equa-
tion (10-73) is of course a nonrelativistic expression for the translational energy,

which breaks down at extremely high velocities approaching the speed of light.
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other early investigators of statistical mechanics. After Nernst's estab-

lishment of the third law as an empirical principle, it became increasingly

clear that the quantity s had to have a universal value, imposed by nature.

This embarrassment disappears in the quantum-mechanical treatment of

translational energy (Sec. 10-4), where it turns out on the basis of general

theoretical principles that the translational-energy levels are discrete,

even though extremely closely spaced.

Let us proceed, however, along classical lines to evaluate the integral

appearing in Eq. (10-75). We shall suppose that we are dealing with a

situation in which cp(x, y, z) equals for all values of (x, y, z) falling

within the region containing the gas but assumes an extremely large

positive value for regions outside the container; this is merely a con-

venient mathematical device for keeping the gas within its container,

whose volume we shall represent by V. Then the exponential factor

e-*p(x,v,z)/kT in the integrand of Eq. (10-75) will equal 1 for all values of

(#, y, z) falling within the range represented by the volume V of the con-

tainer, and will equal for all values outside the container. 1 The
other factor of the integrand, e~pi/2lll*r

,
is independent of (x, y, z), and

hence we may integrate over all values of x, y, and z, obtaining the factor

V,*

v [~ /* r
f* =

/ / /
cr*

n'**T
dp, dpy dpz

s y - y- y - *

We may continue as follows:

V /"* T
00

/""
f tf

= -1 / e-P**/*rnkT fa I e-pv*/*nkT fa / ^
$ y _ a, y~ * y~ *

= - (2vmkT)H (10-76)
S

Let us introduce this result directly in Eq. (10-72) ;
we thus obtain

(10-77)

1 The thennodynamic equilibrium of a gas column in the earth's field of gravity
could be studied by letting ep = mgz everywhere within the container, where z is the

coordinate representing the altitude; similarly, by introducing for ep an appropriate
function of the intermolecular distance, we could at this point digress into the theory
of real gases subject to van der Waals' interaction.

2 No conceptual difficulty arises in our extending the ranges of integration of pXf py ,

and PM from > to + ,
because the integrand practically vanishes before the value

of p2
gets to be many times larger than 2mkT.
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Equation (10-77) represents the ideal-gas equation of state, which has

here been derived from straightforward statistical-mechanical principles.

This result illustrates the power of the statistical molecular approach; in

purely thermodynamic theory, the equation of state enters only as an

empirical or an assumed relationship, which cannot be deduced from

general theoretical principles. In deriving an equation such as (10-77),

it was of course necessary for us to create a molecular model that had

sufficiently simple properties; this has involved an attendant loss of

generality, and we find that the range of validity of Eq. (10-77) is con-

fined to the low-pressure ideal-gas region. Comparing Eq. (10-77) with

experiment, where p, V, and T are measured in conventional units, we
establish the relationship k = R/No, anticipated in Eq. (10-29).

Substituting Eq. (10-76) in Eq. (10-59), we may deduce for the transla-

tional contribution to the thermodynamic internal energy

(10-78)

Thus

(C^tr = HR (10-79)

These calculated expressions are in agreement with the well-known experi-

mental results for monatomic gases, where presumably all the molecular

energy at ordinary temperatures is in translational form. 1

Using on Eq. (10-40) similar reasoning to that advanced for Eq.

(10-74), we may derive laws for the distributions of molecular velocities

and kinetic energies. Thus, we may interpret the equation

= -

N f iT S

as representing the average fraction of the molecules having coordinates

in the range x to x + Ax, y to y + Ay, z to z + Az, and momentum compo-
nents in the range px to px + Apx, py to py + Apy , pz to pz + Apz . One
should note that since N is finite, though huge, this fraction may show

fluctuations, which may be investigated on the general basis of Eq.

(10-38). Substituting Eq. (10-76), going over to infinitesimal notation,

and integrating over (x, y, z),

N
This equation now represents the average fraction of the molecules with

1 At sufficiently high temperatures, electronic excitation may contribute signifi-

cantly to the thermodynamic properties.
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momentum components in the range px to px + dpx, py to pv + dpy, pz to

Pz + dpg,
without regard to spatial distribution (which tends on the aver-

age to be uniform, so long as *p
= everywhere within the container).

In order to obtain the average fraction, dN(p)/N with momentum in the

range p to p + dp without regard to direction, we may introduce the

polar transformation

dpx dpv dpz
= p

2 sin dp dO d<?

and integrate over the entire range to 2ir of the polar angle <p and over

the entire range to IT of the azimuthal angle 0, with the result

If we replace p by its equivalent, mu,

, (10-8,)

This famous law was first deduced in 1859 by J. C. Maxwell, from a less

general point of view than the one developed here. It received direct

experimental confirmation in the ingenious molecular beam experiments
initiated by O. Stern in 1920. l The corresponding equation for the dis-

tribution of molecular kinetic energy (*k mu2
/2) has the form

These molecular distribution equations have no particular bearing on the

thermodynamic properties of the gas, all of which represent average
molecular properties, but they constitute the foundation of the kinetic

theory of gases, and the collision theory of gas reactions.

10-4. Quantum Mechanics and Molecular Translational Energy.
Quantum mechanics arose mainly through the need to have a satisfactory

theory of atomic and molecular spectra. After the electron had been dis-

covered by J. J. Thomson in 1897 and the existence of atomic nuclei

demonstrated by E. Rutherford shortly thereafter, the nuclear theory of

the atom that was at once suggested called for a model fundamentally
unstable according to classical electrodynamics; an electron centrally
accelerated by a positively charged nucleus should emit radiation, accord-

1 O. Stern, Z. Physik, 2, 49-56 (1920); 3, 417-421. (1920). See also J. L. Costa,
H. D. Smyth, and K. T. Compton, Phys. Rev., 30, 349-353 (1923); I. F. Zartman,
ibid., 37, 383-389 (1931); C. C. Ko, J. Franklin Inst., 217, 173-199 (1934). Some of
this work has been reviewed by R. G. J. Eraser, "Molecular Rays," The Macmillan
Company, New York, 1932.
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ing to classical theory, thereby continually losing energy, and its ultimate

fate should be to spiral into the nucleus. At the same time, there is

nothing in classical theory to account for the wonderfully complex and
characteristic spectra that can be excited by appropriate methods in

gases, and for the even more remarkable series relationships discovered

among the observed spectral wavelengths of the simpler gases, such as in

the Balmer series and the Lyman series of the atomic hydrogen spectrum.
The problem was resolved by a radically new departure from classical

ideas proposed by Niels Bohr in 1913. Bohr proposed the following
scheme:

1. Each atomic or molecular system has a series of characteristic

stationary states in which it can remain indefinitely without emitting
radiation.

2. Radiation is emitted or absorbed when the system undergoes a

transition from one stationary state to another.

3. The frequency v of the radiation emitted or absorbed during a

transition between two states is proportional to the energy difference

between the states:

2
_

l
= hv (10-83)

Equation (10-83) was an adaptation of a principle that had been intro-

duced in 1900 by Max Planck in order to account for the spectral dis-

tribution of the thermal energy radiated by a hot body (which is quite

different from the characteristic line or band spectra that can be excited

in gases). Planck had had to assume that thermal energy radiated at a

given frequency came in discrete units or quanta, whose size was propor-
tional to the frequency; the proportionality constant h in (10-83) is

known as Planck's constant, and it has the experimentally established

value of (6.624 0.004) X 10~27
erg sec. Since in spectroscopy, one

generally measures directly the wavelength X rather than the frequency

(v
=

c/X, where c is the speed of light), Eq. (10-73) is commonly used in

the form

2
-

l
= hcv (10-84)

where v represents the wave number or reciprocal of the wavelength of the

radiation, v = 1/X; the universal constant, he, appearing in (10-84) has

the value (1.9857 0.0006) X 10- 16
ergcm; NQhc = 2.8585 0.0009 cal

cm/mole.

Each spectral line thus represents an energy difference between two

characteristic stationary states of the corresponding atomic or molecular

system. The absorption spectrum corresponds of course to transitions

from states of lower to states of higher energy, while the emission spectrum

corresponds to transitions from states of higher to states of lower energy.
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If conditions are such that it is feasible to observe either absorption or

emission over the same wavelength range, then the observed absorption

and emission lines coincide in wavelength; more generally, however,

absorption and emission data overlap or supplement each other. A low-

frequency line, such as may be observed in the microwave or in the infra-

red region corresponds to a transition between states differing relatively

slightly in energy (e.g., rotational-vibrational states of molecules) ;
a high-

frequency line, such as may appear in the visible or in the ultraviolet,

corresponds to a transition between states relatively far apart in energy

(electronic transitions of atoms and molecules), while lines in the X-ray

spectrum, which have extremely high frequencies, correspond to transi-

tions between states extremely far apart in energy (transitions involving

the innermost electrons of atoms). By intercomparing the spectral lines,

taking advantage of certain empirical selection rules which fortunately

restrict the numbers and types of transitions ordinarily observed, the

energies of the various states can be sorted out through direct application

of Eq. (10-84), and an energy-level diagram for the atom or molecule can

be constructed. With energies represented as term values, j/hc, in wave-

number units (cm""
1
), the difference between term values for two given

states represents directly the wave number of the spectral line correspond-

ing to a transition between the two states. For converting energies

expressed in term values to calories per mole, one may use the conversion

factor, Nohc = 2.8585 + 0.0009 cal/mole cm" 1
, previously given.

Without the help of a comprehensive theory of atomic and molecular

structure, the problem of unraveling the information furnished by the

spectra of even the simpler atoms and molecules would be a hopelessly

difficult task. Bohr's original theory was supplemented by certain more
or less empirical rules characterizing the stationary states. Beginning in

1925, however, a new mathematical technique known as quantum mechan-

ics was developed for coping with the problems presented by the dynamics
of submicroscopic particles. Two different logically equivalent systems
were worked out, one by W. Heisenberg known as matrix mechanics and
the other by E. Schrodinger known as wave mechanics. Quantum
mechanics has the logical status of a generalization of Newton's mechan-

ics, to which it reduces when the masses in the mechanical system are

sufficiently large.

In quantum mechanics, all attempt to define with precision the posi-

tions and momenta of the particles comprising an atomic or molecular

system is abandoned. There is a fundamental difficulty in the way of

applying classical concepts to particles of molecular and submolecular

size, first pointed out by Heisenberg; in observing the properties of par-
ticles this small, the observation itself may introduce a disturbance in the
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state of the system, so that while experiments can be designed that will

fix either the positions or the momenta in a given state, both cannot be

determined simultaneously with that exactness associated with the classi-

cal concept of a trajectory or orbit; therefore the classical concept of an

electron moving like a planet in a centrally accelerated orbit about the

nucleus is meaningless. If there are s constituent particles in the system,
then instead of having 3s pairs of coordinates and momenta, one solves

the quantum-mechanical equation of motion for a certain function

*(?i> ?2, . . .
, #3*, T) of the 3s coordinates, which is generally also an

explicit function of the time (in nonrelativistic treatment); ^ will also

depend on s different spin coordinates, one for each particle, but it can

generally be separated into a space-time factor and a spin factor; we shall

postpone for the present the consideration of the effect of electron and
nuclear spins. The value of this function * itself has no special signifi-

cance, but the square of
its_absolute magnitude 4hfr (in general, * may

assume complex values and ^ is taken to represent the function conjugate

complex to SI>) is interpreted as a probability distribution function, rep-

resenting the probability when the system is in a state of motion

represented by a particular function S of finding the coordinates lying

within the ranges qi to q\ + dqi, ?2 to q* + dq^ . . .
, gat to q^8 + dq^

during the time interval r to r + dr. We are using the notation q\,

92, . . .
, ?3 to denote generalized coordinates, three for each independent

constituent particle of the system; e.g., in Cartesian coordinates, q\, q%, q&

might represent, respectively, the x, y, z coordinates of one particle, #4, <?5,

#6 those of a second, etc.

In Schrodinger's formulation of quantum mechanics, the fundamental

equation of motion satisfied by St has the form

4?ri d*V^ 1 &7T2\ _ \7? ^ r"
1

LJ wii
*

h 2

*^

where mi denotes the mass of the ith particle, V? the Laplacian differential

operator for the ith particle, which in Cartesian coordinates has the form

dxf dy? dzj

and p is a function of the coordinates and possibly also of time, repre-

senting the potential energy of the system; in many applications, this can

be given the same functional form as in the corresponding classical prob-
lem (e.g., in the hydrogen-atom problem, where the system consists of two

charged particles, a proton and an electron, p is given simply by Cou-

lomb's law). It is assumed in (10-85) that the s particles are all inde-
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pendent, being coupled only through the common potential-energy term.

Equation (10-85) has the logical status of a pure postulate replacing

Newton's laws of motion; its justification rests in the fact that it correctly

represents the mechanical properties of an atomic or molecular system

using familiar potential-energy forms and with no other ad hoc assump-
tions aside from that of the physical interpretation of ^ itself. Because

Eq. (10-85) bears a formal resemblance, though not a very close one, to

the familiar wave equations of classical physics and because in solving it

we generally look for stationary solutions (corresponding to the stationary

states of the system) analogous to the standing-wave solutions of the

wave equations, Schrodinger's mechanics is often referred to as wave

mechanics, and Eq. (10-85) is called the wave equation (including the

time). The wavelike character of Eq. (10-85) is by no means without

real physical significance, for in the case of particles having tiny masses

and high energies, one is able to infer from (10-85) the wavelike character

of the state of motion that has become familiar to us in such experimental

forms as electron diffraction and interactions between material particles

and radiation generally.

Under certain conditions, Eq. (10-85) may have solutions of the form

92, . .
, ff*, T)

= t(q l9 ?2,
. . .

, q)F(r) (10-86)

that is to say, separable in the space and time variables. This is generally

possible only if cp does not depend explicitly on T. By substituting the

form (10-86) in (10-85) and separating the variables, one finds that solu-

tions of this form are possible when F(r) has the form

F(r) = exp ( - 2 - r
J

(10-87)

and $(qi, 92,..-, ?3) simultaneously satisfies the equation

(10
"88)

where c is a real constant (if it were complex, FF would not remain finite

for all values of T). In this case, S oscillates in value everywhere periodi-

cally with frequency e/7i, but since FF =
1, the physically significant

quantity is independent of T, and is in fact equal to the value of $$
satisfying (10-88). We therefore interpret such solutions to represent

stationary states of the system, as postulated by Bohr. For such solu-

tions, we need concern ourselves only with Eq. (10-88), which is in fact

commonly known as Schrodinger's wave equation, or amplitude equation.
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An equation of the form (10-88), when ^ is subjected to certain bound-

ary conditions, such as that it be single-valued, continuous, and finite for

all values open to the coordinates of the system (conditions required in

order that ^ should be capable of serving its stated purpose as a proba-

bility distribution function), admits of solutions generally only for certain

specific values of the parameter e. The problem is in this respect analo-

gous to the familiar problem of standing waves in a stretched elastic

string, subject to the boundary conditions that the amplitude of vibration

is zero at the two fixed ends; in that case, standing waves can exist only if

their wavelengths are integral submultiples of twice the length of the

string. The values of e for which Eq. (10-88) has proper solutions are

known as eigenvalues of c. They are taken to represent the various possi-

ble energy levels that the system can assume in stationary states; in some

cases, they may include a continuous range of values, but in others, all

the values may be discrete. Solutions ^(#1, #2, . . .
, ?3) satisfying

(10-88) for a given eigenvalue cn are known as eigenfunctions belonging
to the eigenvalue en . In general, different eigenfunctions are taken to

represent different stationary states or eigenstates of the system; i.e., if

fan represents an eigen-^ belonging to the eigenvalue cn,
then #,- #/n (a

function of the coordinates gi, #2, . . .
, <?3) represents the probability

when the system is in the particular stationary state represented by #/n

of finding the coordinates within the ranges qi to qi + dqi, q* to q% + dq^
. . .

, q^s to 3, + dqz*, the energy of the system in this state having the

definite value n . From the form of (10-88), the eigen-^'s are obviously
undetermined to the extent of arbitrary constant multipliers having the

character of integration constants; by convention, the absolute value of

each eigen-^ is adjusted to a scale on which

// /W' dqi dq* dq3,
= 1 (10-89)

where the integration extends over the entire range of the coordinates

open to the system; ^ is then said to be normalized, which merely means
that the probability of finding the coordinates anywhere at all is con-

ventionally taken as 1
;
the probability of finding them within a specified

finite range is then always represented by a fraction smaller than 1.

If to a given eigenvalue there corresponds only one normalized eigen-^,

then the energy level, or in this case state, represented by that eigenvalue
is said to be nondegenerate. If two or more different eigen-^'s belong to

a given eigenvalue en ,
then the corresponding energy level is said to be

degenerate. Let ^in , ^2n, ^3n, . . represent normalized eigen-^s

belonging to the eigenvalue en . Then since (10-88) is linear in ^, any
linear combination of eigen-^'s belonging to the eigenvalue n with
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arbitrary constant coefficients

t = Ci fa* + C2 fan + C3 t** + (10-90)

is also a solution of (10-88) (this can be seen by applying (10-88) term by

term), and is therefore also an eigen-^ belonging to the eigenvalue cn .

Such an eigen-^ would be interpreted to represent a state intermediate in

properties between the states represented by tin, tin, tan, .... Now,
eigenfunctions belonging to different eigenvalues may be shown to have a

property known as orthogonality: if fa and fa represent two such eigen-

functions, then

J7 JWv dqi dq* dq^s
=

Obviously, an eigenfunction cannot be represented as a linear combination

of the form (10-90) in terms of other eigenfunctions with respect to each

of which it is orthogonal, for taking // ftt dq\ dq$ dq^s would

then lead to the result 0. From among the eigen-^'s belonging to a com-

mon eigenvalue, however, one can always construct a set that are mutually

orthogonal, and such that all other eigen-^'s belonging to the same eigen-

value can be represented by means of such a linear combination in

terms of members of the set. The least number of mutually orthogonal or

so-called linearly independent eigenfunctions is known as the degree of

degeneracy of the corresponding energy level. The coefficients d, c2 ,

c3,
. . . in an expression such as (10-90) (if tin, fan, fan, . . . are

orthogonal normalized eigen-^'s, and if t is itself normalized, then it is

easy to show that cf + c| + c\ + =
1, so that each of the coeffi-

cients is a fractional number) denote the relative contributions of the

states represented by fan, fan , fan, ... to the intermediate state repre-

sented by f> that is to say, if one makes repeated observations of some

property G of the system, which has the definite value G\ when the system
is in the state represented by tin, G<* when the system is in the state repre-

sented by fan, GZ when the system is in the state represented by tsn, . . .
,

then if the system should be in the intermediate state represented by t,

one would obtain the result Gi in the fraction c\ of the observations, (?2 in

the fraction 02, #3 in the fraction c3, .... This idea of a system's exist-

ing in a state made up of contributions from other states having the same

energy is a purely quantum-mechanical concept, which has been of great

value in interpreting the behavior of many atomic and molecular systems.

The principal dynamic problem in Schrodinger's mechanics, then, is to

set up properly the potential energy p in Eq. (10-88) as a function of the

coordinates. The solution of (10-88) yields a set of eigenvalues of c or

energy levels, to each of which one or more linearly independent eigen-^'s

belong; these eigen-^'s represent the stationary states of the system, in
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the sense that \fy gives the system's coordinates in the form of a proba-

bility distribution function for the particular state represented by ^.

Heisenberg's formulation of quantum mechanics is rather more abstract.

In Heisenberg's method, each state of the system is represented by a vec-

torlike quantity ^; multiplying ^ by a constant factor is presumed not to

change the state that it represents, and thus one can always normalize ^

by dividing by its absolute magnitude (^ differs from an ordinary vector

in that it may assume complex values). Observable properties of the

system, such as its energy, are represented by linear operators which

transform the ^'s one into another. This principle corresponds to the

fact that in an atomic or molecular system, the taking of an observation

generally disturbs the state of the system under observation, because the

tools available (light quanta, electron beams, molecular beams, etc.)

cannot be much finer than the system itself. The linear operators have

the character known in the algebra of transformations as matrices; a

matrix is a set of numbers arranged in a particular way which defines how
each component of a vector or of another matrix on which the given

matrix operates is transformed (in general, each successive component is

transformed differently, but according to a definite law of matrix multi-

plication). It is assumed that if the operation of a matrix H representing

some particular observable, such as the energy, on a vector ^ representing

some particular state merely multiplies that vector by a number e, without

changing its components relatively to each other, so that symbolically

Hf = ^ (10-91)

then if one makes the observation corresponding to H on the system when
it is in the state represented by ^, one is sure to obtain the definite result

c; otherwise, the outcome of the observation is in general uncertain.

Values of e for which Eq. (10-91) is satisfied are called eigenvalues of the

observable H, and when H is the matrix operator corresponding to the

energy, these eigenvalues are taken to represent energy levels of the

stationary states. Values of ^ satisfying (10-91) for a given eigenvalue

cn are called eigen-^'s belonging to the eigenvalue en,
and they are then

supposed to represent the stationary states of the system. Heisenberg's

scheme includes certain general properties satisfied by the particular

operators representing the coordinates and the momenta of the system,

and the dynamic problem consists of setting up properly the matrix com-

ponents that are to represent the energy operator for a given dynamic

system. By the use of standard rules of matrix algebra, one then solves

(10-91) to find the eigenvalues of H and the corresponding eigenfunctions

representing the states.



650 PRINCIPLES OF CHEMICAL THERMODYNAMICS

For further discussion, the reader is referred to any of the standard

treatises on quantum mechanics. 1 It is sufficient for our present purpose

that we take for granted some of the results.

Now, for a free particle moving in a rectangular box whose edges are

a, 6, and c, the various energy levels are given by the expression

ft*
=

0, 1, 2, 3, . . .1111

"JMJ-" (UMI2)
nz

=
0, 1, 2, 3, . . .

These values are derived by solving Eq. (10-88) in the three coordinate

variables (x, y, z), with ep
= everywhere within the box but increasing

rapidly to an infinitely large value at the boundaries. 2 Each different

set of integers: (nx ,
ny ,

nz} represents a different possible state of transla-

tional motion, with kinetic energy represented by (10-92). For a com-

plex "particle" having a potential energy that depends on the relative

distances between its constituent particles, the equation of motion

(10-88) separates as in classical mechanics into an equation of motion for

the center of mass, behaving like a free particle with the entire mass con-

centrated in it, and an equation of relative motion of the constituent par-

ticles with respect to the center of mass. The energy is then the sum, as

represented in Eq. (10-70), of a translational-energy term, which may
assume any of the values such as are represented by Eq. (10-92), plus an

"internal-energy" term, whose general nature we shall consider later.

Thus, upon substitution of (10-92) in (10-71a),

A
2,

__* (nS nv* n^\
8

(10-93)

If any two of the edges of the container happen to have a common factor,

then some of the energy levels will be degenerate; for example, if a =
6,

then for each pair of different integers, nx and nyj there will exist two

different states belonging to the same energy (with the values of nx and
nv interchanged). We shall assume for mathematical convenience that

the edges are incommensurable, so that we do not have to take explicit

account of such degeneracy in the evaluation of (10-93) ;
this involves no

loss of generality, since we know that the thermodynamic properties of

the gas are not sensitive to the precise shape of the container. We may
then separate f ir into a product of three independent sums:

X L. Pauling and E. B. Wilson, "Introduction to Quantum Mechanics," McGraw-
Hill Book Company, Inc., New York, 1935; P. A. M. Dirac, "Quantum Mechanics,"
3d ed., Oxford University Press, New York, 1947.

2
Pauling and Wilson, op. cit., pp. 95-100.



STATISTICAL MOLECULAR THEORY OF THERMODYNAMICS 651

oo h* nx* h* ny
a * h* n*__ _

a* V 8mAj!T 6* V 8m&r c

L L
nx - ny - n* *

Now, the increment of the running integer as one proceeds from term to

term in each of these sums is 1; therefore the sums may be put in the

typical form

where An* = 1. In this sum, significant terms are present, even at low

values of T, up to values of nx enormously greater than Anx = 1
;
for the

factor h*/8mk y
with m of order 10"~24 g (the H atom having a mass of

1.6734 X 10~~24 g), is of order ICh 14 cm2
/deg, and if we are considering a

gas sample with a having the order 1 cm, then nx may run up to values of

order 10 6 even at T = 0.01K before the terms begin to decrease apprecia-

bly from 1. The series consists in other words of a huge number of 1's,

followed by terms gradually diminishing with increasing nx from 1 to O. 1

Therefore the sum may be computed with more than satisfactory pre-

cision as the integral

oo h* nx * h* nx*

SmkT a* / SmkT a*

e dnx

The other two factor sums in f tr may be evaluated similarly, leading

finally to the result

1 This statement does not necessarily imply that all such molecule states are actually

occupied at a given moment; there are in fact many more accessible translational-

energy states than there are molecules in a material gas at ordinary temperatures.
The statement merely implies that each state counted has a finite, even if relatively

minute, chance of being occupied. Nor does it imply that at low temperatures, the

value of ftr given by (10-93) necessarily gives correct thermodynamic results when
substituted in Eq. (10-46) for Z, on which the formulas (10-59) to (10-66) depend; the

value of Z for deriving exact thermodynamic formulas valid even at the lowest tem-

peratures is given by Eq. (10-53), where the quantity C is related to f by means of Eq.

(10-55a). The conditions under which Eq. (10-55a) reduces to (10-57), thereby

justifying our derivation of the thermodynamic formulas (10-59) to (10-66) and the

validity of Boltzmann's distribution law, we are about to examine [Eq. (10-96)1.
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<10-94)

Comparing with Eq. (10-76), we see that the quantum-mechanical treat-

ment has led to assignment of the definite value h* to the indefinite con-

stant s = Arc Ay Az Aps Apj, Apz appearing in Boltzmann's classical treat-

ment. One may easily verify that (10-94) leads to the ideal-gas equation

of state (10-77) and the classical value (10-78) for the translational

thermodynamic internal energy.

Before we proceed to evaluate the contribution of translational molecu-

lar motion to the entropy, let us test condition (10-56), or its equivalent,

(10-57), on which the validity of the "semiclassical
"

approximations

(10-46) and (10-47) depend. If we substitute the translational-energy

levels (10-92) in the sums over states appearing in Eq. (10-55a), we may
evaluate those sums in the same manner in which we have just evaluated

the sum [ tr itself. We obtain as a result

+ (10-95)

where the upper (+) sign refers to the Bose-Einstein case, and the lower

( ) sign to the Fermi-Dirac case. Now, for 1 mole of gas,

#0 = #0

rir v
.

Q
,

Thus, at 0C and 1 atm, with V = 22,400 cm 3
/mole for all known mate-

rial gases, No/tr ~ 3.2 X 10~ 5/M^; even for hydrogen, the material gas

having the smallest molecular weight, this number is only about 10~5
,
and

according to Eq. (10-95), C itself under this condition must have the

same order of magnitude. Therefore condition (10-57) is satisfied,

justifying rigorously our set of thermodynamic equations (10-58) to

(10-66). The only material gases for which there is any chance for C to

differ from N/[tr are hydrogen and helium at extremely low temperatures;

thus, for H 2 at its normal boiling point (20.4K), AT /f *r
~ 0.0074, while

for He at its normal boiling point (4.2K), NQ/[tr ~ 0.14; even under

these conditions, as previously mentioned, the expected effect on the

thermodynamic properties is hardly any greater than that of van der
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Waals' deviation from ideal-gas behavior. 1 The reason for Fermi-Dirac

degeneracy in the case of the electron "gas" in metals at ordinary tem-

peratures appears to be the relatively small value of the electron mass

(M = 0.00055 g/mole on the atomic-weight scale), combined with the

high electron density in metals (V~ 10 cm 3
/mole typically, on the

assumption that there is at least one "free" electron per atom) ;
the elec-

trons emitted thermally from a heated metal filament satisfy the Max-
well-Boltzmann velocity distribution law, as shown originally by experi-

ments of O. W. Richardson, a consequence no doubt of their much lower

density outside the metal. Likewise, Bose-Einstein degeneracy in

liquid He-II may be associated with the relatively high density of the

liquid as compared with the gaseous state, though in that case, the ideal-

gas theory undoubtedly has to be supplemented by the consideration of

intermolecular forces.

Let us now substitute Eq. (10-94) in Eq. (10-60) to obtain the formula

for the translational entropy of an ideal gas:

8* = R + # In

Replacing V by RT/p and rearranging terms,

S tr
=

|
72 In T - 72 hip + ^RlnM + R

[j
+ In^J^] (10-97)

Equation (10-97) is known as the Sackur-Tetrode equation;
2 the last term

in it represents a universal constant, which with the inclusion of a factor

to convert p from cgs to atmosphere units has the value 2.314 0.005

eu/mole.
3 Therefore the standard ideal-gas entropy contributed by

1 There is no point in considering lower temperatures, because the lower pressures

required in order to maintain the gaseous state below the normal boiling point result

in increase of the value of V in the denominator of Eq. (10-96) ;
both high gas density

and low temperature concurrently are required for the appearance of Bose-Einstein or

Fermi-Dirac degeneracy.
2 O. Sackur, "Nernst-Festschrift," pp. 405-423, W. Knapp, Halle, 1912; Ann.

Physik, 40, 67-86 (1913); H. Tetrode, ibid., 38, 434-442 (1912); 39, 255-256 (1912).

Tetrode was actually the first to succeed in deriving the correct value for the constant

appearing as the last term in the equation. The method of Sackur and Tetrode con-

sisted essentially of arbitrarily assuming Eq. (10-46) and then assigning to s in Eq.

(10-76) the value h3 on semiempirical grounds. They obviously did not have the

benefit of modern quantum mechanics, which has justified both steps on general

theoretical grounds, as part of a comprehensive system of atomic physics.
3 Based on the values of the natural constants given in Appendix 2, as adopted by

the National Bureau of Standards for
"
Selected Values of Chemical Thermodynamic

Properties," Dec. 31, 1947.
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molecular translational motion at p = 1 atm is given by the formula

In T + y*R In M - 2.314 eu/mole (10-97a)

In particular, at the standard reference temperature T = 298.16K,

(S?r) 298.16 = (6.864 log M + 25.992) eu/mole (10-97&)

In Table 10-1, ideal-gas entropy values calculated according to Eq.

(10-976) are compared with third-law entropy values determined accord-

ing to the method described in Sec. 8-3 from experimental heat-capacity
data for the solid, the liquid, and the gas, together with the latent heats

of fusion and vaporization at the respective transition points for the

monatomic gases: Ne, A, Kr, and Xe. For these gases, the contributions

of internal states of motion, such as of excited electronic states, are

entirely negligible at room temperature. The third-law results given in

TABLE 10-1. EXPERIMENTAL AND THEORETICAL ENTROPIES OF MONATOMIC GASES
AT 25C*

* Third-law entropies from the 1940 compilation by K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941).

the table pertain to an actual pressure of 1 atm; correction to the ideal-gas

state could be made by the method described in Sec. 6-2 [see, for example,

Eq. (6-45)], but it is insignificant in comparison with the experimental
error attending the third-law results. The agreement between the experi-

mental and the theoretically calculated values is as complete as could be

desired. The correct theoretical evaluation of the entropy constant

appearing in Eq. (10-97a) represents a brilliant achievement of the molec-

ular approach to thermodynamics.
We may now express our important thermodynamic functions for

gases in the hypothetical ideal-gas state at 1 atm in the general forms

8 -
~2

5

+ RT2 rflnjjnt

Tonp x ~\

7: / , IT7T
fint / AC^

dT T2
d(\/T)*

(10-98)

(10-98a)

(10-99)
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6int _

= 2.314 eu/mole + ^R\nM + ^R\nT + R\n f5at

+ RT^~ (10-100)

= 2.314 eu/mole +^R\nM + ~R\nT + R\n fint

p vA *

(10-100a)

= 7.282 cal/mole deg
-

| fi InM -
J 72 In T - R In fint

(10-101)

where fint is defined by Eq. (10-71), the summations being taken over all

molecular internal-energy states. It is evident that of all these functions,

the last one is the simplest to evaluate, since it involves only fint itself;

this is fortunate for chemical applications, since the free-energy function

is the thermodynamic function most directly related to the conventional

chemical equilibrium constant for reactions involving the gas.

We may list for convenience the following values of the natural con-

stants appearing in applications of these formulas:

72 = 1.98719 + 0.00013 cal/mole deg

Y^R = 4.9680 cal/mole deg
R In ( )

= 4.5757 (cal/mole deg) log ( )

In M = 6.8635 (cal/mole deg) log M
In T = 11.4392 (cal/mole deg) log T

In particular, at T = 298.16K,

1481.25 cal/mole

(C)tr = 4.9680 cal/mole deg

(S)tr = (25.992 + 6.8635 log M) eu/mole

/F--ffg\ = _
(21.024 + 6.8635 log M) cal/mole deg

10-6. Energy Levels from Spectroscopic Data. The "
internal-energy"

levels of gas molecules are revealed by analysis of their spectra, as we
have already observed in connection with Eq. (10-84). The possibility

of using such molecular data for the precise calculation of thermodynamic

properties was suggested originally by H. C. Urey, and also by R. C.
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Tolman and R. M. Badger.
1 The method has been described in detail by

W. F. Giauque, who first applied it correctly to the molecular spectrum
of hydrogen.

2 It has since become an invaluable source of thermody-
namic information. Part of its value rests in the possibility afforded for

the thermodynamic investigation of such ordinarily transient molecules

as OH(g), N(g), CN(g), Cu(g), etc., which may constitute intermediates

in gas reactions at high temperatures; such information is important in

the investigation of reaction mechanisms. Even for ordinary gases,

however, the precision of the data obtained from spectroscopic sources,

when properly interpreted, generally exceeds that of data derived by
conventional thermodynamic methods.

a. Electronic-energy Terms. We shall illustrate the method first by

applying it to a comparatively simple case, that of C(g). The lowest

energy levels (term values) of the C(g) atom, together with the number of

states (gi) belonging to each, are given in Table 10-2. 3 The term values

are taken by convention with respect to the lowest state of the C(g)

atom, to which therefore the value of H% applies; this thermochemical

constant, representing the hypothetical enthalpy of formation of C(g)

from C(graphite) at 0K, is not obtainable from purely statistical calcula-

tions. In the fifth column of Table 10-2, each term value has been

multiplied by the conversion factor

*? = 1.43847 0.00045 cm deg (10-102)

which converts them directly into c/fc values, expressed in degrees. The
number of states g* belonging to the energy level e is given according to

quantum theory by (2J + 1), where J represents the angular momentum
quantum number of the electronic system corresponding to the energy value

in question.
4 In the seventh, ninth, and eleventh columns of Table 10-2,

J H. C. Urey, J. Am. Chem. Soc., 45, 1445-1455 (1923); R. C. Tolman and R. M.

Badger, ibid., 2277-2285.
2 W. F. Giauque, J. Am. Chem. Soc., 62, 4808-4815, 4816-4831 (1930). Excellent

descriptions have been given also by K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941),

and by G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules/'

Chap. V, D. Van Nostrand Company, Inc., New York, 1945.
3 C. E. Moore, Atomic Energy Levels, Vol. I, Nail. Bur. Standards Giro. 467 (1949).
4 These states actually separate when the gas is in a magnetic or an electric field,

giving rise, respectively, to the Zeeman or the Stark splitting of the spectral lines

corresponding to transitions involving them. The number (2J + 1) (e.g., I when
/ =

0, 2 when / =
J^, 3 when / 1, etc.) then represents the number of different

orientations the angular momentum may assume with respect to the direction of the

field; J itself may assume integral or half-integral values, depending on the nature

of the state in question. For a general description of atomic-energy terms, the reader
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referring, respectively, to temperatures of 298.16, 2500, and 5000K, the

value of exp ( n/kT) for each energy level has therefore been counted gt

times. It is evident that even at 5000K, only the first six levels con-

tribute significantly to fint, while at 298.16K, only the first three, con-

stituting actually the components of a triplet ground state, are significant.

TABLE 10-2. ATOMIC-ENERGY LEVELS AND THERMODYNAMIC PROPERTIES OF C(g)

(At 298.16, 2500, and 5000K)

From the values of int calculated by the addition of the entries in the

respective columns, the values of (F H%)/T have been calculated at

the three temperatures according to Eq. (10-101). In the lower part of

Table 10-2, the values of (H - B$) for C(g) have also been calculated

at the three temperatures by means of Eq. (10-98a), the sum called for by
that equation being obtained at each temperature by multiplying the

is referred to G. Herzberg, "Atomic Spectra and Atomic Structure," 2d ed., Dover

Publications, Inc., New York, 1944.
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entries in the sixth, eighth, or tenth column by the corresponding entry
in the seventh, ninth, or eleventh column, respectively, and adding; this

operation is readily performed directly on a simple calculating machine.

The values of (F B$)/T for C(graphite) at the three temperatures,
obtained from the experimentally determined heat capacity by means of

Eqs. (10-68) and (10-69), are, respectively, -0.517, -6.39, and -10.02

cal/mole deg.
1

Comparing with the values for C(g) computed in Table

10-2, we obtain for the process

C(graphite) = C(g)
- 9.542 kcal
- 92.35 kcal

- 184.2 kcal

If we accept A. G. Gaydon's value of A# = 170.6 0.2 kcal/mole as

the zero-point heat of sublimation of graphite, then we obtain the follow-

ing values of AF:

C(graphite) = C(g); AF*98. 16
- 161.1 kcal

78.2 kcal

-13.6 kcal

Gaydon's value of A#S has been derived indirectly from the spectro-

scopically determined dissociation energy of C0(g), combined with its

standard enthalpy of formation. 2 There has been considerable con-

troversy concerning the heat of sublimation of carbon; the vapor pressure

is extremely difficult to measure precisely because of the unusually high

temperatures, and its interpretation is obscured by the presence of C 2 (g),

whose equilibrium conditions with C(g) have not until recently been

satisfactorily established. 3 If it were not for the known presence of C 2

molecules in the gas phase (detected spectroscopically), the above AF
values would give us the ideal-gas vapor pressure of graphite, through

Eq. (6-76). Conversely, a measurement of the vapor pressure at any one

temperature (e.g., measurement of the normal sublimation point) would

1 " Selected Values of Chemical Thermodynamic Properties," Series III, National

Bureau of Standards, Washington, D.C., June 30, 1948; the value at 5000K, which

is above the normal sublimation point of graphite, has been estimated by extrapola-
tion from data given in the table up to 4000K; results based on it should be regarded
as indicative only.

2 A. G. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," pp.

184-186, John Wiley & Sons, Inc., New York, 1947.
a See L. Brewer, P. W. Gilles, and F. A. Jenkins, J. Chem. Phys., 16, 797-807 (1948) ;

they report AHJ = 170.39 0.20 kcal/mole from vapor-pressure measurements

corrected for the presence of C 2(g); see also A. L. Marshall and F. J. Norton, /. Am.
Chem. Soc., 72, 2166-2171 (1950).
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enable us to calculate the value of A//JJ independently. This procedure

has in fact been applied to many other vaporization equilibria, where

either the vapor consists of a single species of molecule whose spectro-

scopic properties have been established or the equilibrium conditions

among the various species present are known.

6. Molecular Rotation. When we come to consider diatomic and

polyatomic molecules, the number of energy levels significant at ordinary

temperatures is enormously increased, because of the possibility of

molecular rotation and vibration. These energy levels lie much lower

than the energy levels associated with excited electronic states of atoms

and molecules; K. K. Kelley has given a sample calculation in the case of

CO(g) showing that at 298.16K no fewer than 40 rotational term values

have to be taken into consideration in order to fix the thermodynamic
functions with ordinary precision.

1
Fortunately, the calculations may

be made with quite satisfactory precision in many cases on the basis of

approximate theoretical equations based on quantum mechanics, which

call for only a general knowledge of the spectroscopic data. In the -first

place, we may usually ignore the effect at ordinary temperatures of

excited electronic states for the majority of diatomic and polyatomic

molecules, except for a very few that happen to have multiplet ground
states (e.g., NC>2, NOC1, C1O 2). The lowest excited electronic state in

most cases lies so far above the ground state that such terms give rise to

significant Boltzmann factors only at quite high temperatures. Further-

more, while the rotational and vibrational levels are coupled (a molecule

in a high rotational state is stretched, so to speak, by centrifugal force,

with a corresponding effect on the vibrational energy), relatively little

error is introduced in many cases if we neglect the interaction at ordinary

temperatures. Therefore we may write as an approximation

fint
^

Trot Tvibr

In f !Bt
= In frot + In fvibr (10-103)

where each term may be calculated separately by summing the Boltzmann

factors over the respective rotational- and vibrational-energy levels.

Now, for a diatomic molecule, or as it turns out, for a linear molecule in

general, the rotational-energy levels are given by the formula

rot
= K(K + 1) (K =

0, 1, 2, 3, . . .) (10-104)

if we assume as an approximation that the atoms are rigidly connected

(i.e.j if we ignore the effect of centrifugal stretching on the higher rota-

i K. K. Kelley, U.S. Bur. Mines Bull. 434, p. 14 (1941).
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tional levels). In this equation, 7 represents the moment of inertia, which

for a diatomic molecule has the form

mim2
r2

(diatomic molecule) (10-105).

mi + w2

where r represents the internuclear distance (the mean or equilibrium

value, about which vibration takes place), and Wi and ra 2 represent the

masses of the two atoms, which may be regarded as concentrated in the

two nuclei; for a linear molecule in general,

/ = miff + w2rf + (linear molecule) (10-105a)

where Wi denotes the mass and r\ the distance from the center of mass for

the first atom, m2 the mass and r2 the distance from the center of mass for

the second atom, etc.
; ri, r2,

. . . satisfy the condition

+ m2r2 + =0

The energy levels (10-104) each contain (2K +1) different rotational

states, and this of course has to be taken into consideration when one

sums over the rotational states. 1

It turns out according to quantum-mechanical theory that transitions

between rotational states associated with actual absorption or emission of

radiation are confined to those for which AK = + 1. Therefore the pure
rotational spectrum, if one exists, consists of a series of lines satisfying the

relationship

A rot
= Acr =

g^j (21C) (K -
1, 2, 3, . . .) (10-106)

i.e., lines equally spaced in frequency or wave number [compare Eq.

1 The levels given by (10-104) are derived when one solves the Schrodinger equation

(10-88) for a system of two "particles" (i.e., the nuclei of the two atoms), with cp a

function only of the interparticle distance; the equation separates into an equation of

motion for the center of mass, from which one derives the translational-energy levels

(10-92), and an equation for relative motion about the center of mass; if in this latter

equation, one treats r as fixed, then the equation may be solved with eigenvalues

having the form (10-104). More generally, when r is treated as a variable on which

cp depends, the equation yields combined rotational-vibrational energy levels. See

Pauling and Wilson, op. rit., Chap. X. The number K indicates the amount of

rotational angular momentum of the molecule, according to a form analogous to that

by which / in Table 10-2 represents the amount of electronic angular momentum
(which is zero for the majority of diatomic and polyatomic molecules in their ground
states at ordinary temperatures), and the (2K + 1) states corresponding to the

particular rotational-energy level represented by the quantum number K describe

different possible orientations of the rotational angular momentum with respect to an

arbitrary direction in space.
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(10-84)].
1 Since / is typically of order 1Q-40

g cm2
,
therefore Eq. (10-106)

places these lines at wave numbers of order 100 cm"" 1
,
or wavelengths of

order 0.01 cm, in the far infrared region of the spectrum. The pure rota-

tional absorption spectra of the hydrogen halides, corresponding to

transitions between rotational-energy levels unaccompanied by any

change in the vibrational state, were actually detected in this region by
M. Czerny, using a wire grating to diffract the transmitted radiation. 2

The lines observed in the case of HCl(g) are given in Table 10-3, together
with the assumed value of K

;
one will note that the value of K in Eq.

(10-106) represents the quantum number K of the upper rotational level

to which the molecule passes by the absorption of the given frequency of

radiation. The third column of Table 10-3 gives the value of v/2K, and

the last column, the mean value of / between the upper and lower states,

TABLE 10-3. ROTATIONAL SPECTRUM OF HCl(g)*

* M. Czerny, Z. Physik, 34, 227-244 (1925). The "lines" in the rotational spectrum are actually

narrow bands; the presence of the isotopic forms, HC1 38 and HC1 37
, whose moments of inertia are slightly

different, results in a broadening of the lines.

as given by Eq. (10-106); the rotational constant h/Sir^c has the value

(2.7986 + 0.0018) X 10~39
g cm. The slight increase observed in the

value of I with increasing K may be attributed to centrifugal stretching

1
According to general theory, a change of dipole moment is necessary in order that

the molecule absorb or emit radiation. Therefore homopolar molecules such as N2
and H 2 show no infrared absorption spectra. The conditions for Raman absorption
or emission call for a change in the polarizability of the molecule, but Raman spectra
are more generally used for the study of molecular vibrations. See G. Herzberg,
"Infrared and Raman Spectra of Polyatomic Molecules/' D. Van Nostrand Com-

pany, Inc., New York, 1945; G. R. Harrison, R. C. Lord, and J. R. Loofbourow,
"Practical Spectroscopy," Prentice-Hall, Inc., New York, 1948.

2 M. Czerny, Z. Physik, 34, 227-244 (1925); 44, 235-255 (1927); 46, 476-483 (1927).

The hydrogen halides were particularly favorable for this purpose, because of their

comparatively small moments of inertia resulting from the great disparity between

the masses of the two atoms. Modern microwave spectroscopy, at wavelengths of

order 1 cm, has made accessible the entire region just beyond the extreme range of

Czerny's measurements; see D. H. Whiffen, Quart. Revs., 4, 131-152 (1950).
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at the higher rotational-energy levels. In order to obtain 7 for the lowest

rotational state of the molecule, we may extrapolate to K = % thereby

obtaining /o = 2,686 X 10~ 40
g cm2

;
this spectroscopic result corresponds

to r = 1.285 X 10~8 cm as the mean internuclear distance. This exam-

ple shows how the value of / may be determined with high precision from

spectroscopic data, in a favorable case; if one can measure the inter-

nuclear distances independently, such as by electron diffraction for the

gas, or X-ray diffraction for the crystalline state (assuming no change on

vaporization), then one may compute I geometrically by means of Eq.

(10-105) or Eq. (10-105a). One may also determine I from independent

spectroscopic sources, such as the fine structure of the rotational-vibra-

tional absorption band, or of the electronic transition bands, correspond-

ing to simultaneous changes in the vibrational or the electronic-vibra-

tional states coupled with change in the rotational state.

It thus turns out that for molecules whose J values are at least as great

as that of HC1, the value of rot/kT is at most of order K(K + I)/!
7

,
and

therefore at ordinary and high temperatures, significant contributions are

made to frot by energy levels with K values extending beyond 20. While

we could evaluate frot precisely by introducing the actual rotational-energy

levels as established by detailed spectroscopic information such as is con-

tained in Table 10-3 (supplemented by additional information derived

from the rotational-vibrational absorption bands), or by actually sum-

ming the expression

frot
= T @K + l)e

-*(x+i)AV8v*r
(10-107)

we may derive an approximate expression quite satisfactory at 298.16K
and higher temperatures for all diatomic and linear polyatomic gases with

the exception of hydrogen, by means of the integral

(2K + l)<r<*"/8r./*D
*<-!> dK

since the increment by which K increases from term to term in the sum

(10-107) equals 1. Letting x = K(K + l)h*/8ir*IkT, and neglecting the

slight change of I with K,

(10-108)

An additional factor must be taken into consideration if the molecule

has symmetry, as in the case of N2 or C(>2. If the molecule has two or

more identical atoms whose positions are exactly interchanged by a rigid
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rotation to produce identical states, then only part of the rotational-

energy levels are occupied. For homopolar diatomic or for symmetric
linear molecules in general, there are two indistinguishable positions

assumed during the course of a single rotation, and it turns out in such

cases that either only the odd or only the even rotational levels are

occupied, depending on the nuclear spin (this situation is a general con-

sequence of Pauli's exclusion principle). At temperatures sufficiently

high so that Eq. (10-108) is a satisfactory approximation to Eq. (10-107),

it is evident that the odd and the even rotational levels contribute

approximately equally to frot. Therefore we may take account of this

effect of molecular symmetry by introducing into Eq. (10-108) for frot the

factor % in such cases, or in general, the factor 1/s, where s represents the

symmetry number; the symmetry number of the molecule is defined as the

number of indistinguishable positions into which the molecule can be

turned by simple rigid rotations (for example, s = 2 for N 2 , CC>2, and

C 2H 2 ,
but s = 1 for HC1, HD, and CO).

1
Thus, we may express Eq.

(10-108) in the form

frot
=

7-3
--

(linear molecules) (10-109)
fl S

For nonlinear molecules, the value of frot in the limiting case of suffi-

ciently high temperatures is given by the formula

&7r2frT 1

f* =
( ^T~ ) **ViJW* - (nonlinear molecules) (10-110)
\ ri / s

where 7i, 7 2 ,
and /a represent moments of inertia with respect to the three

principal axes of inertia. This equation embraces three cases: the spheri-

cal top molecule, where 7i = 72
= Is (e.g., CIU; in this particular exam-

1 E. B. Wilson, >Chem. Revs., 27, 17-38 (1940). Nuclear spin may introduce further

degeneracy in the rotational levels, but since each atomic nucleus apparently retains

its spin unchanged throughout all its chemical combinations, this effect cancels out

of all calculations of changes in the thermodynamic functions, except at extremely
low temperatures. It is therefore generally ignored in statistical calculations of

chemical thermodynamic properties. The case of H 2 (and also of D2) presents special

complications because of the existence of stable spin isomers, as shown originally by
D. M. Dennison, Proc. Roy. Soc. (London), (A)115, 483-486 (1027). Ordinary hydro-

gen is a mixture of % parahydrogen, in which the nuclear spins cancel (J8
=

0, the

hydrogen nucleus itself having spin: J8
=

/^), and % orthohydrogen, in which the

nuclear spins are parallel (j8
=

1, giving rise to 2y, + 1=3 nuclear spin states for

each molecular energy level). Parahydrogen can exist only in the even rotational

states, while orthohydrogen can exist only in the odd rotational states. The statisti-

cal calculations for hydrogen have been described by W. F. Giauque, J. Am. Chem.

Soc., 62, 4816-4831 (1930). A comprehensive treatment of the thermodynamic
properties of hydrogen in its various isotopic and ortho-para modifications has been

given by II. W. Wolley, R. B. Scott, and F. G. Brickwedde, /. Research Natl. Bur.

Standards, 41, 379-475 (1948).
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pie, the moment of inertia may be calculated by multiplying the mass of

each H atom by the square of its distance from the central C atom, and

adding, that is, / = 4mHrg_H ;
for this and other symmetric tetrahedral

molecules, s = 12) ;
the symmetric top molecule, where /i 5^ 72

= Is (e.g.,

the pyramidal molecule, NH 3,
where 5 = 3, and the planar molecule, BFs,

where s = 6) ;
and the asymmetric top molecule, where all three moments

H Cl

of inertia are different (e.g., H 2O, where s = 2, and C C
,

Cl Cl

where s = 1). Equation (10-110) is readily derived for the spherical

top molecule (with 7i = /2 = /a = I) from the quantum-mechanical

energy levels of the rigid spherical rotator by means of an integral approx-
imation similar to the one used in the derivation of Eq. (10-109); the

energy levels are given actually by the same formula (10-104) as for the

linear molecule, but the number of states belonging to each energy value

is given by (2K + I)
2 instead of by (2K + I).

1 The energy levels of the

symmetric top molecule are given by the formula

(n
"
r-il" vV * / + L2

07T L *1

where the degree of degeneracy of each energy level is given by (2K + 1),

but L may assume any of the (2K + 1) values, K, (K 1), . . .
,

1, 0, +1, . . .
, (K 1), K, each giving rise to a different energy

value under the given value of K] L. S. Kassel has given a series approxi-

mation for frot in this case, which reduces to Eq. (10-110) at sufficiently

high temperatures (73 in that equation being of course equal to /2) ;
for

most polyatomic molecules, actually, Eq. (10-110) is a fairly close

approximation even at quite low temperatures.
2 For the asymmetric

top molecule, the rotational-energy levels cannot be represented exactly

by means of an explicit formula, because the equations of motion are too

difficult; the generalization (10-110) is believed, however, to be a good

approximation for frot at ordinary and high temperatures.
3

1 Make the substitution x* = K(K + l)h*/&Tr*IkT in the integral expression for

frot,
and assume that for most of the significant values of K, one may make the

approximation (2K + 1)
~ 2

2 L. S. Kassel, /. Chem. Phys., 1, 576-585 (1933); Chem. Revs., 18, 277-313 (1936).

The derivation of the eigenvalues of the rigid symmetric top molecule is given by
Pauling and Wilson, op. cit., pp. 275-280.

8 See A. R. Gordon, /. Chem. Phys., 2, 65-72 (1934); see also G. Herzberg,
"
Infra-

red and Raman Spectra of Polyatomic Molecules," pp. 506-507, D. Van Nostrand

Company, Inc., New York, 1945.
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We may summarize the rotational contributions to the thermodynamic
functions [Eqs. (10-98) to (10-101)] in the form of the following table:

HTOt - RT

St - R + R In

LINEAR MOLECULES

+ R In - + R In T
8

- 177.671 eu/mole + R In - -f R In T
o

-Bin R In - - R In T
S

#rot -

(Cp)rot
-

-175.684 cal/mole deg -72 In - - R In T
s

NONLINEAR MOLECULES

(10-11 la)

(10-1 lib)

(10-1 lie)

(10-1 lid)

(10-1 12a)

(10-1126)

3 P4- 1

2
+

2 +i 1.2 + Bln

= 267.643 eu/mole + R In

s

ffllnr
Froi

~T~ 2 Z n* 82
-264.663 cal/mole deg -JK In

(/1/2/3)^ -
| R In T

S A (10-112d)

In particular, at T = 298.16K,

LINEAR MOLECULES NONLINEAR MOLECULES

t: 592.5 cal/mole 888.8 cal/mole

)rot: 1.987 cal/mole deg 2.981 cal/mole deg

t :

(
188.994 + 4.5757 log ?\ eu/mole

^284.628
+ 4.5757 log^^^\ eu/mole

%: (
- 187.007 - 4.5757 log -) cal/mole ( -281.648 - 4.5757 log

<lM
* \ s/ deg ^ s

cal/mole deg

The numerical constants in these equations apply with the moments of

inertia represented in g cm2
.

Introducing now for HCl(g) the value of 7 = 2.686 X 10~40
g cm2

derived from the rotational absorption spectrum, we obtain

R In I = -181.063 eu/mole

whence according to Eqs. (10-1 12c) and (10-1 12d) at T = 298.16K,

ot
= 7.930 eu/mole \

rot , , , , ,= ^5.943 cal/mole deg
HCl(g) at 298.16K*'
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One will note that according to the "high-temperature" approximations

represented by Eqs. (10-111) and (10-112), the rotational contributions

to H and C have the "classical" values corresponding to a quasi-con-

tinuous distribution of molecules among rotational states (compare Sec.

3-4); these values are independent of the particular internal structure

of the molecule, except in so far as a linear molecule has only two dimen-

sions of rotational motion (rotation about the line of centers being inhib-

ited by the exceedingly small moment of inertia about this axis), while a

nonlinear molecule has three.

c. Vibration of Diatomic Molecules. Molecules also show vibrational

motions. For most of the diatomic gases at ordinary and at low tempera-

tures, this motion may be treated with sufficient accuracy on the assump-
tion that it is simple harmonic in nature, i.e., that ep in the Schrodinger

equation (10-88) has the form

*
=

\ (r
-

ro)
2

where r represents the instantaneous distance and ro the equilibrium dis-

tance between the two nuclei and K represents a characteristic propor-

tionality factor for the molecule, known as the force constant; such a

potential-energy function is equivalent to a Hooke's law restoring force,

directly proportional in magnitude to the displacement: (r ro) (see

Sec. 2-1). In this case, the solution of Eq. (10-88) leads to the vibra-

tional-energy levels

evibr
= (n + Yz)hh (n = 0, 1, 2, 3, . . .) (10-113)

where ?
,
called the fundamental vibration frequency, is a constant for the

particular kind of molecule related to x by

- i r
"-2?\* (10_1U)

Equation (10-113) neglects the interaction between rotation and vibration

(i.e., the effect of centrifugal stretching at the higher rotational levels);

more serious, however, is the failure of the simple harmonic law, particu-

larly for the higher vibrational levels; these effects are usually not impor-
tant at ordinary temperatures, but they may have to be taken into

account in precise thermodynamic calculations at high temperatures.
1

irThe derivation of Eq. (10-113) in the case of the idealized simple harmonic

oscillator, without regard to rotation, is given by Pauling and Wilson, op. tit., pp. 67-

82; the general treatment of the rotation and vibration of diatomic molecules is given

by them in Chap. X. See also, G. Herzberg,
"
Molecular Spectra and Molecular

Structure. I. Spectra of Diatomic Molecules," 2d ed., D. Van Nostrand Company,
Inc., New York, 1950.
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Now, the selection rule for the absorption or emission of radiation dur-

ing a transition between states turns out to be An =
1, or 0. The

latter condition permits the existence of the pure rotational spectrum,

which as we have noted, may occur in the far infrared or the microwave

region. If it were not for simultaneous change in the rotational quantum
number K, we should thus expect the vibrational spectrum of a diatomic

molecule to consist of a single line [compare Eq. (10-83)]:

Acvibr = hvo = hp

with frequency equal to the fundamental vibration frequency. Actually,

however, AK is at the same time restricted to 1, Since the energy
difference between successive vibrational states of all diatomic molecules

is much greater than the energy differences between the lower rotational

levels, we therefore observe a relatively narrow rotational-vibrational

band, consisting of two series of approximately equally spaced lines on

either side of the fundamental vibration frequency. In the case of

HCl(g), this band is detected in the infrared absorption spectrum around

a wavelength of 3.46/x (v
= 2886 cm*" 1

).
1 The band components on the

high-frequency side (the so-called R branch) correspond to changes for

which An = 1 and AK = +1, while those on the low-frequency side (the

so-calledP branch) correspond to changes for which An = landAJf? = 1;

the central frequency itself is missing, in agreement with the selection

rules, which forbid transitions such that AK 7* 1 (&K would be for

the central frequency). The spacing of the components with respect to

frequency is essentially the same as one observes in the pure rotational

spectrum, and the fine structure of the rotational-vibrational band there-

fore yields the same information concerning the moment of inertia and
the rotational-energy levels in the case of a diatomic molecule as the pure
rotational spectrum, which for molecules whose moments of inertia

exceed those of the hydrogen halides occurs in the microwave spectral

region.

Vibration frequencies have been investigated extensively also by means
of Raman spectra.

2 These consist of lines or bands observed in light

scattered by the substance. The displacements from the exciting fre-

quency, which is usually in the visible region of the spectrum (e.g., one

of the prominent lines in the mercury spectrum), and therefore accessible

1 See Herzberg, "Molecular Spectra and Molecular Structure. I. Spectra of

Diatomic Molecules," pp. 53-57.
2 Discovered by the eminent Indian physicist, C. V. Raman, Indian J. Phys., 2,

387-398 (1928). For a general description of experimental methods and results,

see J. H. Hibben, "The Raman Effect and Its Chemical Applications," Reinhold

Publishing Corporation, New York, 1939; Harrison, Lord, and Loofbourow, op. cit.
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to an ordinary precise spectrograph with suitable adaptations, satisfy

Eq. (10-84), v in that equation representing the difference between the

exciting and the Raman line wave numbers, and 2 1 the corresponding
difference between the energy levels of the molecule for the transition

responsible for the particular Raman line. Thus, the Raman spectrum

gives essentially the same kind of information as the infrared spectrum,
with certain differences for polyatomic molecules resulting from a differ-

ence between the selection rules for the two types of interaction with

radiation. 1 For HCl(g), the displacement of the one observed Raman
line (it is actually a band, whose fine structure corresponds to simul-

taneous changes in n and K) in wave-number units is 2886 cm- 1

,
in agree-

ment with the wave number of the infrared absorption band. 2

Let us now construct fvibr for a diatomic molecule, using the simple
harmonic-law approximation (10-113) for the vibrational-energy levels.

Let us note at the outset that Eq. (10-113) implies a zero-point energy:

hvQ/2 per molecule in the lowest vibrational state (n = 0). It is cus-

tomary to refer the thermodynamic functions of the gas to this lowest

vibrational state (i.e., to include any zero-point energy by implication in

the term H$), and we shall therefore subtract out the zero-point energy
from the vibrational-energy value of each level. Since according to the

theory of the one-dimensional oscillator, each of the vibrational levels is

nondegenerate, we may form fvibr by means of the equation

(10-115)
n-0

where in accord with standard practice, we have replaced the fundamental

vibration frequency i>o by the corresponding wave number: j/ = ?o/c.

The sum in Eq. (10-115) is actually a simple power series of the form

1 Raman radiation calls for a change in the polarizability of the molecule during the

transition giving rise to the radiation; ordinary infrared absorption depends on a

change in the dipole moment. Homopolar diatomic molecules, such as N 2 and 62,

may show rotational-vibrational bands for transitions that involve a simultaneous

change in the electronic state, these normally occurring in the visible (or near infrared)

and ultraviolet region. For polyatomic molecules having certain types of symmetry,
certain Raman lines cannot appear in the infrared absorption spectrum, and vice

versa, certain infrared absorption lines cannot appear in the Raman spectrum ; there-

fore a comparison of the two spectra may serve to establish the symmetry, for exam-

ple, that CO2 is linear but SO 2 is not, that BF3 is planar, but NH3 pyramidal, etc.

See G. Herzberg,
" Infrared and Raman Spectra of Polyatomic Molecules," D. Van

Nostrand Company, Inc., New York, 1945.
2
Herzberg, "Molecular Spectra and Molecular Structure. I. Spectra of Diatomic

Molecules," p. 62.
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fvibr
= 1 + (<r*

which, since e~ftcyo/fcr invariably satisfies the condition of not exceeding 1,

represents the series expansion of the function

(10-116)

Since hcvQ/kT is quite evidently not small at ordinary temperatures,

judging by the value of VQ for HC1, we must not attempt to reduce the

sum appearing in Eq. (10-115) to an integral, according to the technique

that provided us with such an excellent approximation to ftr and such a

good approximation in most cases at ordinary temperatures to fro t. It

turns out that for many diatomic gases, most of the molecules at ordinary

temperatures are in the ground state of vibrational energy. This repre-

sents a distinctive feature of quantum mechanics, as contrasted with

classical mechanics, where if any vibrational-energy value were available

[instead of the restricted set of discrete values represented by Eq. (10-113)],

we should expect an equalization on the average between the vibrational

kinetic and potential energies and the energies located in other degrees of

freedom, including the translational and the rotational motions. Thus

In fvibr = - In (1
-

er**"**) (10-117)

We may now summarize the vibrational contributions to the thermo-

dynamic functions of a diatomic gas in the form of the following table

[bearing in mind Eqs. (10-98) to (10-101) and (10-103)]:

DIATOMIC MOLECULES

? X (L43847 0.00045 cm deg) (10-118)

(10-118o)

(10-1186)

(10-118c)

(10-11&0

The functions Rx 2
e*/ (e

x
I)

2
, Rx/(e*

-
1), and -12 In (1

-
er*) appear-

ing in these formulas are known as Einstein functions; their values have

been tabulated in terms of the variable x, and are given in Appendix 5.
1

1 They appeared originally in A. Einstein's theory of the heat capacity of solids,

Ann. Physikj 22, 180-190, 800 (1907). Einstein treated the monatomic crystalline

solid essentially as a system of N independent three-dimensional harmonic oscillators,

having the uniform fundamental frequency ?<>; with characteristic boldness, he applied
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Now, in the case of HCl(g), from the fundamental vibration frequency

PO = 2886.2 cm- 1
,
one obtains at 298.16K, v*/T = 9.68 cm^Vdeg.

Therefore one may conclude that at that temperature, the vibrational

contributions to the thermodynamic properties are altogether negligible.

This is in accord with the fact that the observed value of C, 6.96 cal/mole

TABLE 10-4. THERMODYNAMIC PROPERTIES OF HCl(g)*
I - 2.686 X 10-40

g cm 2

vo = 2886.2 cm-1

* Calculations based on rigid-rotator simple-harmonic-oscillator approximations.

deg at 298.16K, is entirely accounted for by the translational and rota-

tional terms (%R). Table 10-4 summarizes the thermodynamic proper-
ties computed at 298.16, 500, and 1000K according to the approximate
molecular theory represented by Eqs. (10-111) and (10-118). The

entropy calculated at 298.16K is in excellent agreement with the third-

Planck's quantum formula to the increments of energy between atomic vibrational

levels, and derived for the thermodynamic properties of the solid the formulas (10-118),
each multiplied by the factor 3 (because of the three-dimensional character of the

atomic vibrations in the crystal lattice). While Einstein's formulas were later super-
seded by those of Debye, this was the first application of quantum theory to material

substances, and represents a truly outstanding contribution by Einstein to modern
scientific thought. Planck had introduced his quantum idea originally (in 1900)
almost with reluctance, as an inexplicable hypothesis forced on him by the experi-
mental facts connected with the spectral distribution of black-body radiation only.
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law entropy: $293.16 44.5 + 0.15 eu/mole derived from low-tempera-
ture heat-capacity data. 1

In the case of Cl 2(g), thefundamental vibrationfrequency, VQ = 561 cm"" 1

,

is considerably lower than in the case of HCl(g), and molecular vibration

contributes significantly to the thermodynamic properties at 298.16K

(VO/T = 1.88). Precise calculation in this case calls for a consideration

TABLE 10-5. THERMODYNAMIC PROPERTIES OF Cl 2(g)*

7 = 115.2 X 10-40 gcm 2

Vo = 501 cm"1 (averages for isotopes)

* Calculations based on rigid-rotator simple-harmonic-oscillator approximations, using average

molecular properties for the isotopes C135C186 and C138C137 weighted according to natural iaotopic

distribution.

of the isotopic molecules, C1 35C1 35 and C1 35C1 37
,
of which the gas mainly

consists, but fairly precise results, at least as good as those obtained by
classical thermodynamic methods, may be derived by the use of average
molecular properties. Thus, using / = 115.2 X 10~40

g cm2
,
with s = 2,

we obtain the data presented in Table 10-5. 2 The third-law entropy

* W. F. Giauque and R. Wiebe, /. Am. Chem. Soc., 60, 101-122 (1928); the thermo-

dynamic properties at high temperatures have been calculated precisely from the

spectroscopically determined energy levels by W. F. Giauque and R. Overstreet,

ibid., 64, 1731-1744 (1932). F. D. Rossini et al. in
"
Selected Values of Chemical

Thermodynamic Properties," National Bureau of Standards, Washington, D.C.,
June 30, 1948, report >SJ98>16

= 44.617 eu/mole, from spectroscopic calculations based

on currently accepted values of the natural constants; the values of h and NQ in

particular were revised about 1941 [R. T. Birge, Rev. Modern Phys., 13, 233-239

(1941)]. The value in Table 10-4 is slightly higher because we have neglected the

increase of 7 with K, and have used the integral approximation (10-108) instead of the

actual sum (10-107) over rotational states.

2 M. Trautz and H. Ader, Z. Physik, 89, 15-23 (1934), have given the precise

calculation of CJ for the normal isotopic mixture; Giauque and Overstreet, loc. cit.,

have calculated the entropy and other thermodynamic properties; the value of

^298.16 53.286 eu/mole has been accepted in "Selected Values of Chemical Thermo-

dynamic Properties/' National Bureau of Standards, Washington, D.C., June 30,

1948. A table of molecular constants (fundamental vibration frequencies and

moments of inertia) for many kinds of molecules has been assembled by K. Wohl and

H. Zeise in Landolt-Bornstein,
"
Physikalisch-chemische Tabellen," 5th ed., Supple-

ment IIIc, pp. 2341-2364, 1936; one should multiply the moments of inertia, most of
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as determined by low-temperature heat-capacity measurements is

298.16
= 53.32 0.10 eu/mole.

1

In order to illustrate the determination of the constant HI in the case

of HCl(g) relative to the elements, let us use the spectroscopically deter-

mined values of (H H%) reported in "Selected Values of Chemical

Thermodynamic Properties":
2

HCl(g): (#298.16
- H$ = 2064.8 cal/mole

H 2(g) : (#298.16
~ #8) 2023.8 cal/mole

Cl 2(g): (#298.16
~ SQ) = 2193.9 cal/mole

Therefore for the reaction

}'2'H2(g) + KCl 2(g)
= HCl(g); A(ff|98. 16

- 5?) = -44.0 cal

This figure has been derived entirely from spectroscopic data for the

three gases, without the need for any thermal or low-temperature meas-

urements; it could have been obtained, with somewhat lower precision,

from low-temperature heat-capacity data and heat-of-transition measure-

ments for the three separate substances. Now, the heat of reaction has

been measured directly by F. D. Rossini, using an adiabatic flame calo-

rimeter;
3 he obtained the result: A# 98 . 16

= -22,063 12 cal. Thus

^H 2(g) + ^Cl 2(g)
= HCl(g); AffS = -22,063 cal + 44 cal

= -22,019 cal

which were derived from spectral frequencies by means of an equation such as (10-106),

by the factor 1.0118, in order to correct for revision in the value of h.

1 W. F. Giauque and T. M. Powell, J. Am. Chem. Soc., 61, 1970-1974 (1939). The
heat capacity of the gas cannot be measured with anything approaching the precision

of the statistical calculations, except with extraordinary experimental difficulty.

Therefore the procedure usually followed by Giauque and other investigators in this

field has been to measure the heat capacity of the solid and liquid up to the normal

boiling point, together with the latent heats of phase transitions. The third-law

entropy of the gas at the normal boiling point of the liquid, corrected to the ideal-gas

state, is then compared with the value calculated at that temperature from the

spectroscopic data. In this way, any discrepancy of theoretical origin may be

detected (e.g., random orientation of CO molecules in the crystalline state, affecting

the third-law entropy). The above third-law entropy of Cl2(g) at 298.16K thus

includes a term, 1.76 eu/mole, for the gas between the normal boiling point and

298.16K, actually based on the spectroscopic data; see Table 8-8, page 512.
2 "Selected Values of Chemical Thermodynamic Properties," National Bureau of

Standards, Washington, D.C., June 30, 1948. The approximate value for diatomic

molecules with sufficiently excited rotational motion, but negligible excitation of

vibrational motion, according to Eqs. (10-98) and (10-llla), would be %RT 2073.8

cal/mole at 298.16K. Because of the comparatively small moments of inertia of Ha
and HC1 molecules, this classical limit has not quite been reached by 298.16K; for

C12, however, the vibrational contribution is significant at that temperature.
8 F. D. Rossini, /. Research Nail. Bur. Standards, 9, 679-702 (1932).
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Had this piece of thermochemical information not been available, we
could have derived the value of A//Q alternatively from a single measure-

ment of AF or the equilibrium constant for the reaction at any one tem-

perature [compare Eq. (10-67)]. As it is, we may now proceed to calcu-

late AF at any temperature, using only the one calorimetric measurement
and spectroscopic data for the three gases. Thus, the spectroscopically

determined values of (F Hl}/T for the three gases, from precise evalu-

ations of fmt according to the actual rotational-vibrational energy levels

[Eq. (10-101)], are 1

HCl(g) :^^ = -37.692 cal/mole deg

-H
Hj(g): JJT^

- -24.423 cal/mole deg

Cl2(g):
F

y
g = -45.928 cal/mole deg

T = 298.16K

Therefore

~H2(g) + - Cl 2(g)
= HCl(g) ;

A
V

g
)

= -2.516 cal/mole deg22 \ 1 / 298.16

Introducing the thermochemically derived value of Affg given above,

4*198.16
= -22,019 cal - (2.516 X 298.16) cal

= -22,769 cal

This result represents the standard molal free energy of formation of

HCl(g) at 298.16K, and is of course equivalent to the thermodynamic

equilibrium constant for the gas reaction, in accordance with the general

relationship [Eq. (8-2-1)],

AF = -RT\nKQ
p

Extension of the calculations to higher temperatures, the value of A#;

being fixed, is straightforward in principle.
2 While the precise treatment

calls for introduction of the actual energy levels for the three kinds of

molecules, as derived from detailed spectroscopic analysis, the approxi-

mate treatment summarized in Eqs. (10-111) and (10-118) in many cases

gives results at least as precise as those obtainable from actual equilibrium

measurements, and is quite simple to apply.

1 "Selected Values of Chemical Thermodynamic Properties," National Bureau of

Standards, Washington, D.C., June 30, 1948.

2 This reaction has been analyzed in detail by Giauque and Overstreet, loc. cit.
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d. Dissociation Energies of Diatomic Molecules. The simple harmonic

law

*
= M*(r - r )

2
(10-119)

which led to the vibrational-energy levels represented by Eq. (10-113),

is a sufficiently accurate approximation for most purposes at ordinary

temperatures, but it is unsatisfactory in two respects: it fails to indicate

any state beyond which the molecule could be regarded as completely

dissociated, and furthermore, there is evidence from the electronic-vibra-

Q,
U>
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fn10

r-"5- Actual dissociation
rt
so energy of H2 (g)

(including zero-point

,.7 energy)

to
FIG. 10-1. Simple harmonic oscillator potential-energy function and vibrational-energy

levels, drawn approximately to scale for constants of the hydrogen molecule.

tional band spectra (corresponding to simultaneous changes in the elec-

tronic and in the vibrational states, so to speak) that the vibrational-

energy levels actually converge with increasing n. Thus, instead of single

bands corresponding to each electronic transition (the band structure con-

sisting of a group of closely spaced lines representing rotational transi-

tions), one observes sets of bands, which may appear in the near infrared,

visible, or ultraviolet spectral regions, whose wavelengths for the members

of a given set converge in the direction of high frequencies, leading ulti-

mately into a region of continuous absorption or emission. If the vibra-

tional levels were all equally spaced, as demanded by the simple harmonic
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oscillator model, then we should expect but a single band (with rotational

fine structure) corresponding to each different electronic transition, or at

most, a set of bands with frequencies some multiple of the fundamental

frequency.
1

It would lead us too far afield to consider the effect of anharmonicity on
the vibrational contributions to the thermodynamic functions, though
actually this is one of the more serious sources of error in the application

160 -

0.5r r (=0.740A)l.5r 2.0r aSr, 3.0r 3.5r 4.0r

FIG. 10-2. Morse potential-energy function and vibrational-energy levels, drawn approxi-
mately to scale for constants of the hydrogen molecule.

of Eqs. (10-118) at high temperatures; but the deviation from the simple
harmonic law does constitute an important means of establishing dis-

sociation energies from spectroscopic information. Let us therefore con-

sider this subject briefly, noting, however, that it has nothing to do with

lfrho selection rules for vibrational transitions accompanying electronic transi-

tions are not as restrictive as for pure rotational-vibrational transitions, but are

governed by the Franck-Condon principle [J. Franck, Trans. Faraday Soc., 21, 536-
542 (1926); E. U. Condon, Phys. Rev., 28, 1182-1201 (1926); 32, 858-872 (1928)].

See E. U. Condon and P. M. Morse, "Quantum Mechanics," Chap. V, McGraw-Hill
Book Company, Inc., New York, 1929.
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general statistical theory ;
for further details, the reader is referred to the

excellent monographs by Herzberg and by Gaydon.
1

Figure 10-1 illustrates the general form of the potential-energy curve

and energy levels for the simple harmonic oscillator [Eq. (10-119)]. A
better approximation to the actual situation is obtained in most cases by
means of a potential-energy function proposed by P. M. Morse:2

P
- D{1 -

e-(^o)}2 (10-120)

This function has the form shown in Fig. 10-2; with increasing r, p

approaches the value D, which therefore represents the difference between

the energy of the completely dissociated atoms and the energy minimum
for the molecule corresponding to r = r

;
in order to obtain the true dis-

sociation energy, one must subtract from D the zero-point energy in the

lowest actual vibrational state.

Now, if we substitute Eq. (10-120) in the Schrodinger equation (10-88)

for the two-body system, and solve for the eigenvalues, we obtain

*vib,
= too (n + -

(n + (n = 0, 1, 2, 3, . . .) (10-121)

neglecting higher terms representing the interaction between rotation and

vibration [the term identified as erot then has the same form (10-104) as

before].
3 The quantity ?o, which is identified as the fundamental vibra-

tion frequency, happens to be related to the constant a in Eq. (10-120) by

?o = o- \/ 2-D (
--

I, but this relationship is immaterial for our
2x \ \ m\mi )

*

present purpose, since we have no independent means of establishing the

value of a. The vibrational term values [compare Eq. (10-84)] may
therefore be put in the form

(" = 0,1,2,3, ...) (10-122)

An empirical relationship of this form is found actually to represent the

experimentally determined vibrational terms, as derived from electronic-

vibrational band sequences, with a fairly high degree of accuracy in many

1 G. Herzberg, "Molecular Spectra and Molecular Structure. I. Spectra of

Diatomic Molecules," 2<i ed., D. Van Nostrand Company, Inc., New York, 1950.

A. G. Gaydon, op. cit.

2 P. M. Morse, Phys. Rev., 34, 57-64 (1929).
a See Pauling and Wilson, op. cit., pp. 271-274.
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cases. In the case of H 2(g), for example, the vibrational term values are

represented by the following empirical formula: 1

^ = 4405.3 (n + - 125.3 (n + iY (10-123)

The coefficient Xo in the general empirical approximation of the form

(10-123)

~ = v, (n +
- Wo (n + g (10-124)

is called the anharmonicity coefficient; its magnitude measures the extent

to which the molecular vibration deviates from the simple harmonic law.

In general there is no direct connection between the magnitudes of VQ

and XQ.

Thus, comparing (10-124) with (10-122),

? =
-T- (10-125)

he 4z

In order to obtain the dissociation energy relatively to the ground state

of vibration (n =
0), we must subtract the zero-point energy, j/o/2 (in

wave-number units; the term xo^o/4 may be neglected by comparison);
thus

<1(M26>

Therefore from the experimentally established value of XQ, we may calcu-

late approximately the value of D
,
the dissociation energy of the diatomic

molecule. Ordinarily, we wish to determine the dissociation energy with

respect to the ground state of the atoms produced by the dissociation
;
in

some cases, there is evidence to show that one of the atoms, at least, is

produced in an electronically excited state; in such cases, Do given by
Eq. (10-126) has to be corrected by subtraction of the electronic energy
of the excited atom relative to its ground state.

Equation (10-125) may be derived from Eq. (10-124), considered as an

empirical relation, without reference to the Morse equation. The terms

given by (10-124) converge with increasing n, and we may equate D with

the value of vibr at the convergence limit. In a few cases, the band

sequence can be followed spectroscopically all the way up to the con-

vergence limit, or wave number (on the low-frequency side) marking the

beginning of continuous absorption or emission. More commonly, how-

ever, this region lies beyond the ordinary ultraviolet spectroscopic range.

1 Gaydon, op. eit., p. 78.
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If one has established a sufficient number of terms (corresponding to the

lower values of ri) to determine VQ and #o in Eq. (10-124) accurately, then,

as shown by Birge and Sponer, this equation may be used with fair

accuracy in many cases to extrapolate the data to the convergence limit. 1

Thus, the difference between successive terms, according to (10-124), is

given by

(Cvibr\

_
"to/ .

-
2a;o(n + 1)]

and therefore the value of n at the convergence limit, if Eq. (10-124) con-

tinues to apply, will be

.1-1
Substituting in (10-124), and neglecting rc vo/4 in comparison with

^o/4a:o, we obtain (10-125) as the value of e^br/hc at the convergence limit.

Let us substitute the data for H 2 , represented by the empirical equation

(10-123), in Eq. (10-126),

he

= 36,520 cm- 1

A more accurate extrapolation of the actual term values than is possible

with the "linear
"
equation (10-126) results in DQ/hc = 36,100 40 cm-1

.
2

In this case, the atoms produced by the dissociation as a consequence of

radiation absorbed at the convergence limit are certainly in their ground

states, inasmuch as the lowest electronically excited term of the H atom
lies 82,259 cm""1 above the ground level. Since Do includes no consider-

ation of translational terms, it therefore represents AH% for the dissocia-

tion reaction; using the conversion factor

NQhc = 2.8585 0.0009 (cal/mole)/cm-
1

to convert from wave-number units to calories per mole:

Hi(g) = 2H(g); A#? = 2.8585 X 36,100 cal

= 103,200 cal

1 R. T. Birge and H. Sponer, Phys. Rev., 28, 259-283 (1926). Instead of using Eq.
(10-124), which is equivalent to an assumed linear relationship between v\\>r/(n + %)
and (n + J^), one may use an actual graphical extrapolation to obtain D with higher

precision. For illustrations and criticism of the Birge-Sponer extrapolation, see

Gaydon, op. dt.
f Chap. V.

2
Gaydon, op. tit., p. 78.
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In this way, we obtain for H(g), 0% = 51,600 cal/mole. We may
find filos.ie ky making use of spectroscopically determined values of

(#208.16
"-" HQ) for H 2(g) and H(g), as previously shown; thus

H 2(g): (529 8.i6
~ #S) = 2023.8 cal/mole

H(g): (fl?98 . 16
- H) = %RT = 1481.2 cal/mole

KH 2(g)
= H(g); A(#?98 . 16

-
#?) = 469.3 cal

Therefore for H(g), H?98 . 16
= 52,070 cal/mole. The other thermody-

namic properties of H(g) are readily derived from the statistical theory of

the monatomic gas; electronic terms contribute negligibly until extremely

high temperatures are reached.

The greatest source of uncertainty in the calculation of dissociation

energies by the method just outlined, aside from general uncertainty
when a long extrapolation is required from the observed band sequence to

its convergence limit, is the identification of the electronic states of the

molecule and of the dissociated atoms, corresponding to the given band

system. The example we have given happens to be a relatively simple
one. Other cases may be far more complex; thus, for N 2, Gaydon has

reported a dissociation energy of 225.1 kcal, whereas during the same

year, the value accepted by F. D. Rossini and staff for "Selected Values

of Chemical Thermodynamic Properties
"

is 170.2 kcal;
1 there has been

considerable difficulty also in the analysis of the spectrum of CO. 2 How-

ever, the spectroscopic method has undoubtedly yielded data of consider-

able value, that would otherwise be all but inaccessible.

e. Vibrations of Polyatomic Molecules. The detailed internal motion

of a molecule consisting of more than two atoms is extremely complex,
but the molecular vibration may be resolved into a number of so-called

fundamental modes of vibration, such that the total vibrational energy

may be treated approximately as the sum of independent terms associated

with the various modes. 3 The fundamental frequencies, together with

various overtones and combinations, appear in the infrared absorption

and Raman spectra (under certain restrictive selection rules), which

constitute the most useful source of such information. In most cases,

we do not have to take into consideration electronic-energy terms except
at extremely high temperatures; information concerning electronically

excited states may be derived from the electronic-vibrational band

1 Gaydon, op. cit., Chap. IX; "Selected Values of Chemical Thermodynamic
Properties/' National Bureau of Standards, Washington, D.C., Dec. 31, 1947.

2
See, for example, G. Glockler, J. Chem. Phys., 18, 1517-1518 (1950).

8 See G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules,"

Chap. II, D. Van Nostrand Company, Inc., New York, 1945, for an excellent and

comprehensive treatment of this subject.
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spectra, but generally, the lowest electronically excited state lies well

above the excited vibrational states associated with the ground electronic

state.

We may assume to a first order of approximation that each fundamental

mode of vibration satisfies the simple harmonic law (10-113), with its own
characteristic frequency. Therefore the expression for the total vibra-

tional energy may be cast in the form

M =
0, 1, 2, 3, ...

vibr
=

(^3 "f" ]^)hCVl + (n% ~f" ;Hj)/&CJ'2 <n O 1 9 3
762

"

v/, A, A) O, . . .

r&3
=

0, 1, 2, 3, . . .

Thus

In fvibr
= - In (1

-
e-*c*/*r)

- In (1
- e-*

- In (1
~ e~hev*/kT

}
-

The thermodynamic functions contain an additive term of the form

(10-118) for each fundamental vibration frequency.

Now, the number of fundamental modes of vibration is determined by
the number of atoms in the molecule. Thus, if there are N atoms, then

it takes 37V coordinates to describe its complete state of motion (three for

each atom, neglecting the electronic structure). We are not interested,

however, in translational motion of the molecule as a whole, or in rota-

tion, which we have already considered separately. If we use three

coordinates to describe the motion of the center of mass, then three more
are sufficient to describe the rotational motion about the center of mass if

the molecule is not linear, or two if it is linear. This leaves 37V 6 or

37V 5, respectively, depending on whether the molecule is nonlinear or

linear, to describe the state of vibration
;
for example, in the case of a non-

linear triatomic molecule such as H 2O, the three vibrational coordinates

may be the three interatomic distances. There are thus 37V 6 funda-

mental vibration frequencies for molecules in general, or 37V 5 for

linear molecules. These may conveniently be represented as " stretch-

ing
"
frequencies and "bending" frequencies, the former corresponding to

oscillations in internuclear distances, and the latter to oscillations in bond

angles. The identification of the various fundamental frequencies is the

task of the spectroscopist.

In certain cases, there may be internal rotations, such as the relative

rotation of the CH3 and the OH groups about the C bond in

methanol. When this internal rotation is entirely free, then an additional

rotational term should be included in the rotational partition func-

tion, involving the moments of inertia of the rotating groups, and a corre-
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spending fundamental vibration frequency is omitted from the computa-
tion of In fvibr.

1 More generally, however, particularly in the hydrocarbon

chains, internal rotation is not free, but is more or less hindered.

This was shown in the case of ethane by J. D. Kemp and K. S. Pitzer, who
found a small but significant difference between the observed heat capac-

ity and the value calculated on the basis of free internal rotation. 2 Pitzer

treated this situation by introducing a potential-energy function depend-

ing on the angular displacement of the two groups in relation to each

other; this torsional type of internal motion gives rise to a rather compli-
cated expression for the partition function, which may be expressed as a

function of temperature in terms of a parameter, the so-called potential

barrier hindering free rotation. The potential barrier may be estimated

from theoretical principles, or from analogies with other similar structures,

or it may be obtained empirically from the difference between the observed

Cp vs. T curve and the curve calculated without taking the potential

barrier into consideration. Tables have been prepared from which accu-

rate corrections to the thermodynamic functions may be computed for this

effect. 3 It will serve our present purpose, however, to confine our atten-

tion to the simpler types of molecules, in which the complexities associated

with internal rotations do not occur. i

Now, in the case of the linear CO2(g) molecule, the fundamental vibra-

tion frequencies are represented in the following diagrams:
4

-O C O-> vi = 1337 cm""1

v* = 667 cm-1

vz = 2349 cm-1

The frequency v^ counts twice, since this bending displacement may take

place in two equivalent mutually perpendicular directions. The corre-

sponding contributions to the thermodynamic functions at 298.16K

[Eqs. (10-118)], together with the translational and rotational contribu-

1 M. L. Eidinoff and J. G. Aston, J. Chem. Phys., 3, 379-383 (1935). L. S. Kassel,

ibid., 4, 276-282, 436-441, 493-496 (1936), has prepared tables giving the contribu-

tions to the rotational partition function for free internal rotations in various types
of molecular structures.

2 J. D. Kemp and K. S. Pitzer, J. Chem. Phys., 4, 749 (1936); /. Am. Chem. Soc. 9

69, 276-279 (1937). See also G. B. Kistiakowsky, J. R. Lacher, and F. Stitt, /. Chem.

Phys., 7, 289-296 (1939).
' K. S. Pitzer, J. Chem. Phys., 6, 469-472 (1937); B. L. Crawford, ibid., 8, 273-281

(1940); K. S. Pitzer and W. D. Gwinn, ibid., 9, 485-486 (1941); B. L. Crawford and
E. B. Wilson, ibid., 323-329; D. Price, ibid., 807-815; 10, 80 (1942).

4 G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," p. 173.



682 PRINCIPLES OF CHEMICAL THERMODYNAMICS

tions (I - 71.87 X 10~40
g cm2

; s = 2), are presented in Table 10-6.

The entropy at 298.16K is in excellent agreement with the third-law

calorimetric value of S%9S.U = 51.1 0.1 eu/mole reported by K. K.

Kelley.
1

TABLE 10-6. TIIERMODYNAMIC PROPERTIES OP COz(g) AT 298.16K

TABLE 10-7. THERMODYNAMIC PROPERTIES OP H2CO(g) AT 298.16K

In Table 10-7, similar data are presented for H2CO(g). The formalde-

hyde molecule is supposed to consist of a planarY structure, with principal
moments of inertia: 7i = 2.977 X 10~40

g cm2
,
72

= 21.65 X 1Q-40
g cm2

,

IB = 24.62 X 10~40
g cm2

,
and 5 = 2. The smallest of these quantities

represents the moment of inertia about the C axis; the other two

*K. K. Kelley, U.S. Bur. Mines Bull. 434 (1941). The thermodynamic proper-
ties of CO2(g) at high temperatures have been computed by D. D. Wagman, J. E.

Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, /. Research Nail. Bur.

Standards, 34, 143-161 (1945).
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represent the moments of inertia about axes normal to the C axis, in

the plane of the molecule, and normal to the plane of the molecule,

respectively. The molecule has six fundamental vibration frequencies,
which have been identified approximately as follows: v\ and j>4 correspond,

respectively, to symmetrical and antisymmetrical stretching of the two
C H bond distances; *>2 corresponds to stretching of the C O bond; vs

corresponds to bending of the H C H angle; v& and v& correspond to

bending of the H C angle in the plane and normal to the plane of the

molecule, respectively.
1 The entropy of formaldehyde has apparently

never been measured by the third-law calorimetric method, but the spec-

troscopic method is more precise, and the calculated entropy is in excellent

agreement with chemical equilibrium data for this substance. 2

The HQ values of CC>2(g) and H2CO(g) may be readily established from

their standard enthalpies of formation at 25 C, based on their heats of

combustion; one has to know the (H$98.i6 HQ) values for the elements

as well; for the gases, O2 and H2,
these have been established from spectro-

scopic data, whereas for C (graphite), the value is known from heat-

capacity data extending down to temperatures below which the Debye
!T

3 law may be used for the extrapolation to 0K.
When exact spectroscopic data are lacking, but the general shape and

dimensions of the molecule are known, one may estimate the fundamental

vibration frequencies from characteristic group frequencies that are

apparently associated with the presence of certain groups of atoms in the

molecule. Herzberg has given a table of such group frequencies;
3 for

\
example, molecules containing the C=0 group generally show a funda-

/
mental vibration frequency of about 1700 cm"1 associated with bond

stretching of this group (compare vz in Table 10-7), and molecules con-

H
/

taining the ==C group generally show a fundamental vibration fre-

\
H

quency of about 1100 cm"" 1 associated with bending of the ==C H angle

(compare v$ and v& in Table 10-7). But when exact spectroscopic data

1 G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," pp.
300-301

;
the moments of inertia are given on p. 437.

8 G. S. Parks and H. M. Huffman, "The Free Energies of Some Organic Com-

pounds," Reinhold Publishing Corporation, New York, 1932, estimated $J98 51

eu/mole, by rough analogy between the structures of formaldehyde and ethylene.
8 G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," p. 195.
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are available, the spectroscopic method is far more precise than any other

method of establishing the thermodynamic properties of gases; it is essen-

tial, of course, that one have a correct interpretation of the spectroscopic

data; this depends on a knowledge of general quantum-mechanical princi-

ples, together with a certain insight, such as led to the concept of hindered

group rotations, in order to account successfully for the comparatively

small discrepancies that turned up in the thermodynamic properties of

ethane, etc.
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Problems

10-1. Show according to Eq. (10-82) that the average molecular translational

kinetic energy in a gas is %kT. (Multiply by *, and integrate from e*
= to >

;
the

definite integral involved is of a well-known form, and may be found in tables of inte-

grals, if you are not familiar with it.)

10-2. Calculate according to Eq. (10-92) the value of (nl + n\ + nj) corresponding

to the state of average molecular translational energy: %kT in a cube 1 cm on edge of

O 2 (g) at 298.16K.
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10-3. The lowest term values of the Na(g) atom are as follows:

(Transitions from the 2P^ and 2P^ levels to the ground level are responsible for the

well-known sodium D "line.") Calculate according to Boltzmann's law, Eq. (10-40),

the approximate fractions of the atoms in each of these excited energy levels hi sodium

vapor at 1000, 1500, and 2000K.
10-4. The third-law entropy of argon gas at its normal boiling point, 87.29 0.02K,

has recently been redetermined from low-temperature thermal data by K. Clusius and

A. Frank [Z. Elektroehem., 49, 308-309 (1943)], with the following result:

S 30.850 0.10 eu/mole

Calculate S at that temperature by the Sackur-Tetrode equation, Eq. (10-97o), and

compare with the experimental value.

10-6. (a) For Zn(c) at 298.16K,

S = 9.95 eu/mole and
8 -

J/g

T
4.52 cal/mole deg

from low-temperature heat-capacity data. Above 298.16K, the heat capacities of

the solid and the liquid are given by the empirical equations [K. K. Kelley, U.S. Bur.

Mines Bull. 371 (1934)]:

Zn(c): C = 5.25 + 2.70 X 10~3r
Zn(l): C;

= 7.59 + 0.55 X W~*T
(273-692.6K)

(692.6-1122K)

the latent heat of fusion at the normal melting point, 692.6K, being 1595 cal/mole.

Calculate the values of (H -
#J) and (F

- H)/T for the condensed phase, Zn(l),

at the normal boiling point, 1180K, where // still refers to Zn(c).

(b) Zn(g) has a single ground state, the lowest excited electronic term lying more
than 30,000 cm"1 above the ground level. Calculate the values of (H HJ) and

(F - HD/T for Zn(g) at 1180K.

(c) Assuming Zn(g) to satisfy the ideal-gas law, calculate AHJJ for the process

Zn(c) - Zn(g)

and also the latent heat of vaporization of Zn(l) at 1180K, where F n(n
= F

n(g) .

(d) From the preceding data, calculate (F - H)/T for Zn(g) at 298.16K, and

the standard free energy of formation of Zn(g) at that temperature.

10-6. The vapor pressure of beryllium has been measured between 1171 and 1552K

by R. B. Holden, R. Speiser, and H. L. Johnston [J. Am. Chem. Soc., 70, 3897-3899

(1948)], using both the rate of evaporation into a vacuum and the rate of effusion of

the saturated metal vapor through an orifice. The following table presents several
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typical results selected from their data, together with the values of (F H^/T for

Be(c) calculated by them from heat-capacity data by means of Eqs. (10-68) and

(10-69):

The ground state of Be(g) atoms is nondegenerate, and the lowest excited electronic

state (21,980 cm"1
) lies so far above the ground state that its contribution to the ther-

modynamic functions is negligible at the temperatures under consideration. Calculate

(F - HD/T for Be(g) at each of the above temperatures by means of Eq. (10-101)

(with fint = 1), and making use of the thermodynamic relationship AF/T = R In p,

calculate A/7J at each temperature for the process Be(c) = Be(g). Using the mean
value of AH% so obtained, calculate AH and AF at 298.16K, using for Be(c) the

following data: $98.16 2.28 eu/mole, and (#298.16 B%) = 0.47 kcal/mole.
10-7. The following spcctroscopically determined constants have been obtained for

the Na 2 (g) molecule (Landolt-Bornstein,
"
Physikalisch-chemische Tabellen," 5th ed.,

Supplement IIIc, p. 2349, 1936): I = 181.3 X 10~40
g cm 2

;
VQ = 158.5 cm- 1

. The
dissociation energy, also spectroscopically determined, is 17,800 cal/mole (A. G. Gay-
don, "Dissociation Energies of Diatomic Molecules," John Wiley & Sons, Inc., New
York, 1947). Calculate the equilibrium constant, 2, for the reaction

Na2(g) - 2Na(g)

at the normal boiling point of sodium, 1165K, and assuming the ideal-gas law, calcu-

late the fraction of the sodium vapor at 1 atm in the form of Na2(g) molecules. [From
the data for Na(g) given in Prob. 10-3, electronic excitation is negligible at the given

temperature, but fint = 2 for Na(g) on account of the spin of the odd electron.]

10-8. Using for H 2 (g), / = 0.4719 X 1Q-40 g cm 2 and VQ 4283 cm" 1
, together

with molecular constants for Cl 2 (g) and HCl(g) and the value of A# for the reaction

MH 2(g) + MCl2 (g) - HCl(g) given in the text, calculate &F/T for the reaction and
the per cent dissociation of HC1 at 1810K and 1 atm. [Compare with the value

given in the "International Critical Tables/
1
Vol. VII, p. 233, McGraw-Hill Book

Company, Inc., New York, 1930; compare also W. F. Giauque and R. Overstreet,
J. Am. Chem. Soc., 64, 1731-1744 (1932).]

10-9. (a) For I 2 (g), / = 750.2 X 10-40 g cm 2 and VQ = 214 cm~i. Calculate the

values of (77
-

77JJ), Q, S, and (F - H^/T at 0C, 25C, 50C and 1000K.
(b) At 50C, the vapor pressure of I 2 (c) is 2.154mm Hg [G. P. Baxter, C. H. Hickey,

and W. C. Holmes, ./. Am. Chem. Soc., 29, 127-136 (1907); G. P. Baxter and M. R.

Grose, ibid., 37, 1061-1072 (1915)]. Calculate (3 -
77jp

and (F - B)/T for I 2 (c)

at 50C, using the following data for I 2 (c) at 25C: (7/
-

fljj)
= 3182 cal/mole;

S = 27.9 eu/mole; C ~ 13.14 cal/mole deg. Calculate therefrom A7/ for the sub-

limation of iodine: I 2(c) = I 2(g).



STATISTICAL MOLECULAR THEORY OF THERMODYNAMICS 687

(c) From the foregoing results, calculate the standard enthalpy and free energy of

formation of I2(g) at 25C, and the vapor pressure of iodine at that temperature.

[Compare W. F. Giauque, J. Am. Chem. Soc., 53, 507-514 (1931), for a general treat-

ment of this problem.]
10-10. (a) The ground level of I(g) is a fourfold degenerate state,

2P^, and the

lowest excited electronic state is a twofold degenerate state,
2Pi/2 ,

with term value of

7598 cm-1
. Calculate the thermodynamic functions (H HJ) and (F - H%)/T for

I(g) at 298.16 and at 1000K.

(6) The vibrational terms of the I2(g) molecule are given accurately by the equation

enCcm-
1
)
= 214.26(n + M) ~ 0.592(n + H) 2

and it is believed that in the limit, the molecule dissociates into one normal 2P^ atom
and one electronically excited *P^ atom. Estimate the dissociation energy A#J for

the process Wg) = 21 (g). A more accurate measure may be obtained from the con-

vergence limit: 20,037 cm""1 of the visible absorption spectrum, corresponding also to

dissociation into 2P^ + 2
Pi^. Calculate AHJ from this experimental source. (Com-

pare A. G. Gaydon, "Dissociation Energies of Diatomic Molecules/' pp. 65-66,

John Wiley & Sons, Inc., New York, 1947.)

(c) Using the results of Prob. 10-9a, calculate &F/T for the dissociation reaction

I2(g) = 21 (g) at 298.16 and at 1000K, and compute the per cent dissociation at

1000K and 1 atm (assuming ideal-gas behavior). (Compare your &F/T value at

1000K with that computed from the empirical formula based on experimental equi-
librium measurements given in the "International Critical Tables," Vol. VII, p. 235,

McGraw-Hill Book Company, Inc., New York, 1930.)

10-11. The HCN(g) molecule is linear, and the following molecular constants have

been established by spectroscopy (G. Herzberg, "Infrared and Raman Spectra of

Polyatomic Molecules,
1 ' D. Van Nostrand Company, Inc., New York, 1945):

/ - 18.816 X 10~ 40
g cm 2

vi = 2089.0 cm" 1 (HC N stretching)

*>2 = 712.1 cm"1 (H C N bending; twofold degenerate)
j>3
- 3312.0 cm"1 (H C stretching)

Calculate 5 98il6 . [Compare W. F. Giauque and R. A. Ruehrwein, J. Am. Chem. Soc.,

61, 2626-2633 (1939), who also measured the heat capacity of HCN(c) and HCN(l)
at low temperatures; the third-law data are complicated by the presence of approxi-

mately 10 per cent dimer and smaller percentages of higher polymers in the vapor

phase at the normal boiling point, 298.80K.]
10-12. The BF3 (g) molecule is planar and symmetric, with s = 6. The B-F dis-

tance, according to electron diffraction measurements, is (1.30 0.02) X 10~8 cm
[H. A. L6vy and L. O. Brockway, J. Am. Chem. Soc., 69, 2085-2092 (1937)]. Calcu-

late the principal moments of inertia. (For this molecule, one principal axis passes

through the central B atom, normal to the plane of the molecule, and /i = 3raFrB_F>

the other two principal axes pass through the B atom in mutually perpendicular
directions in the plane of the molecule, and it is easy to show that /2 = /a = H^iO
The fundamental vibration frequencies, weighted in accordance with the normal

isotopic abundance of B 10 and B 11
,
have the values: v\ = 888, p2 = 697, v 8 (2) = 1456,

*4 (2) = 480.7 cm""1
,
the numbers in parentheses denoting degeneracies (for the signifi-

cance of these fundamental frequencies, see G. Herzberg,
" Infrared and Raman

Spectra of Polyatomic Molecules," p. 179, D. Van Nostrand Company, Inc., New
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York, 1945). Calculate the values of the thermodynamic functions (H HjJ),

C;, 3, and (F
- H^/T at 298.16 and at 1000K. [Compare H. M. Spencer,

J. Chem. Phys., 14, 729-732 (1946).]

10-13. In CO(g), the internuclear distance is 1.13 X 10~"8 cm, and the fundamental

vibration frequency is 2155 cm-1
. Calculate (H - HJ) and (P - H^/T at 298.16,

800, 1000, and 1500K.

Using for C(c, graphite), (3 - HI) - 251.6 cal/mole ("Selected Values of Chemi-

cal Thermodynamic Properties," Series III, National Bureau of Standards, Washing-

ton, D.C., Mar. 31, 1949), and for CO 2 (g) the value of (5 -
flj) given in Table 10-6,

at 298.16K, together with standard thermochemical data (Appendix 2), calculate

A//J for the producer gas reaction

C(c, graphite) + CO2(g) - 2CO(g)

Using the molecular constants for CO2(g) given in the text, and the following values

of (F HQ)/T for graphite, derived by means of Eqs. (10-68) and (10-69) from heat-

capacity data ("Selected Values of Chemical Thermodynamic Properties")>

T, K (F - HQ)/T for C(c, graphite),

cal/mole deg
800 -2.138
1000 -2.771
1500 -4.181

calculate the equilibrium ratio of pco to pco 2when CO 2 is passed over carbon (graphite)

at 800, 1000, and 1500K, at 1 atm total pressure. [Compare J. O. Clayton and W. F.

Giauque, J. Am. Chem. Soc., 54, 2610-2626 (1932).]

10-14. (a) For the CH 4(g) molecule, a spherical top, with 7 = 5.330 X 10~40 g cm 2
,

and s = 12, the following fundamental vibration frequencies have been assigned

(G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," D. Van
Nostrand Company, Inc., New York, 1945) :

v, cm""1 Number of Vibrations

1306 . 2 3 (H C H bending)
1526. 2 (H C H bending)
2914.2 1 (CH stretching)

3020 . 3 3 (CH stretching)

Calculate 8 at the normal boiling point, 111K. [A. Frank and K. Clusius, Z.

physik. Chem., (B)36, 291-300 (1937), obtained 36.53 0.10 eu/mole according to

the third law from low-temperature heat-capacity data.] Calculate also S at

298.16K.

(b) Using for C(c, graphite), (H
Q - HJ) = 251.6 cal/mole and for H2 (g), 2023.8

cal/mole at 298.16K ("Selected Values of Chemical Thermodynamic Properties/
1

Series III, National Bureau of Standards, Washington, D.C., March 31, 1949), and
F. D. Rossini's value of 212,790 cal/mole for the heat of combustion of CH4 (g)

[to CO 2 (g) and H 2O(1) at 298.16K], together with standard enthalpy data for CO 2 (g)

and H 2O(1) given in Appendix 2, calculate A#
jj
for the formation of CH 4 (g),

C(c, graphite) + 2H 2(g)
- CH 4(g)

and calculate the standard free energy of formation of CH 4(g), at 298.16K.

(c) Calculate AF /T for the decomposition of methane into its elements at 800K;
the necessary data for graphite are given in Prob, 10-13, and for hydrogen in Prob.
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10-8. Calculate the equilibrium percentage of decomposition, and the ratio of pna to

pen* at that temperature and 1 atm total pressure.

10-15. The following molecular constants have been determined for the symmetric-

top CH 3Cl(g) molecule:

7i 5.49 X 10-40 g cm 2
;

72 - /3
- 57.1 X 1Q-* g cm2

v* = 732.1 cm-1 ?6 (2) = 1015.0 cm- 1

v2 - 1354.9 cm"1
*>B (2)

= 1454.6 cm"1

PI = 2966.2 cm-1
i>4 (2) = 3041.8 cm-1

(for the significance of these frequencies, see G. Herzberg, "Infrared and Raman
Spectra for Polyatomic Molecules," p. 314, D. Van Nostrand Company, Inc., New
York, 1945). Calculate SiVie- [Compare G. II. Messerly and J. G. Aston, J. Am.
Chem. Soc., 62, 886-890 (1940), who derived 55.94 eu/mole by the third law from low-

temperature calorimetry.]

10-16. For the NH 3 (g) molecule, the following molecular constants have been deter-

mined by spectroscopic means:

/i = 4.44 X 10~40
g cm 2

;
72

= /3
= 2.816 X 10~40 g cm*

vi = 3335 cm-1
j>3 (2) = 3450 cm-*

j/2 = 948 cm"1 *4 (2) 1628 cm"1

(a) Calculate S at the normal boiling point, 239.68K. From low-temperature
thermal data, R. Overstreet and W. F. Giauque [J. Am. Chem. Soc., 69, 254-259 (1937)]

obtained for the liquid, at the normal boiling point, S = 20.78 cu/mole; they meas-

ured the latent heat of vaporization, and obtained 5581 cal/mole at that temperature

(compare Prob. 3-24). Calculate S for NH 3 (g) from the thermal data, correcting

from 1 atm to the ideal-gas state by means of Berthelot's equation of state (Prob. 6-10),

and compare with the spectroscopic value.

(6) Calculate j 98>16 for NH 3 (g), and using for H 2(g) the value <S 98. 16
= 31.211 eu/

mole and for N 2(g) the value $98.16
== 45.767 eu/mole (spectroscopically determined,

from "Selected Values of Chemical Thermodynamic Properties")* calculate A$J98. 16

for the formation of NH 3 (g) from its elements. Using the thermochemically deter-

mined value of A//!98<16 = 11.04 kcal, calculate AF 98 16,
and compare with the

value derived from high-temperature equilibrium measurements in Sec. 8-lc. [Com-
pare C. C. Stephenson and H. D. McMahon, J. Am. Chem. Soc., 61, 437-440 (1939).!

10-17. The acetylene molecule is linear; the CE=C distance is 1.203 X 10~8 cm,
and the C H distance is 1.060 X 10"8 cm, the symmetry number s being 2. Follow-

ing are the fundamental vibration frequencies :

(5 stands for a bending frequency, while s and a denote respectively, symmetric and

antisymmetric modes of vibration). Calculate the values of (H HJ), C, S, and
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(F - Sj)/Tat 298.16K. [Compare, D. D. Wagman, J. E. Kilpatrick, K. S. Pitzer,

and F. D. Rossini, J. Research Natl. Bur. Standards, 35, 467-496 (1946).]

From the standard heat of combustion at 25C, 310,615 cal/mole, together with

appropriate thermochemical data from Appendix 2, and the values of (H /?J) at

298.16K for C(c, graphite) and H2(g) given in Prob. 10-14, calculate &F for the

formation of C2H2(g) from its elements at 298.16K.
10-18. B. L. Crawford and R. G. Parr [J. Chem. Phys., 16, 233-236 (1948)] have

worked out a table based on the Einstein function, by means of which the contributions

of any vibrational frequency to the "best" (least squares) values of the constants in

the empirical equation

r
= ao + aiT +

for the vibrational heat capacity over the range 250 to 1500K may be determined.

These contributions to ao, 01, and a* are to be added for each fundamental vibration

frequency, account being taken of repeated contributions from degenerate frequencies.

There is finally to be added a constant term, %R ** 6.954 cal/mole deg for linear

molecules, or 4R = 7.948 cal/mole deg for nonlinear molecules, to give the correspond-

ing empirical equation for the total heat capacity, C, including translational and rota-

tional terms. By consulting their table in the reference cited, construct a heat-capac-

ity equation of the form C - a + bT + cT2
[Eq. (3-58)] for SO2 (g), using the funda-

mental vibration frequencies 525, 1152, 1361 cm""1 for this nonlinear molecule. Test

the equation at 1000K, where
CjJ

= 12.90 cal/mole deg, by direct spectroscopic com-

putation (D. M. Yost and H. Russell, "Systematic Inorganic Chemistry," p. 319,

Prentice-Hall, Inc., New York, 1944).

Carry out a similar construction for CO2 (g), using the fundamental vibration fre-

quencies given in the text.

10-19. Equations (10-100) and (10-101) may be applied to free electrons in the

solar and stellar atmospheres, as shown originally by M. N. Saha [Phil. Mag., (6) 40,

472-488, 809-824 (1920) ;
Proc. Roy. Soc. (London), (A)99, 135-152 (1921)]. One sub-

stitutes forM the electron mass on the atomic-weight scale, 5.485 X 10""4 g/mole, and

lets fint = 2 to take account of electron spin (two different spin states, with opposite

spin orientations, for each translational state). Boltzmann's statistics apparently

apply at the high temperatures and relatively low electron densities involved. Calcu-

late AF for the ionization reaction

Cafe) - Ca+(g) + efe)

at 6500K (the approximate temperature of the sun's chromosphere); the value of

AHl may be computed from the ionization potential, 6.111 volts. Note that the

neutral Cafe) atom has no net electron spin (therefore fiat
=

1), but that the Ca+(g)
ion has the same spin as the electron itself (therefore fint =2). Note also that the

terms contributed to A(F -
J?S)/!T by Cafe) and by Ca+(g) cancel, except for the

term R In 2 contributed by Ca+(g) through spin degeneracy.
From the value of &F/T = fi In K, calculate the percentage of ionization of

Cafe) at the given temperature, at pressures of 1 atm, 0.01 atm, and 0.0001 atm,

assuming that all the electron gas results from this process (this is not actually the

case, of course, in actual stellar atmospheres, but since the ratio of Ca to Ca+ can be

directly observed by means of the relative intensities of the corresponding spectral

lines, these calculations are of considerable value in the establishment of stellar condi-

tions; see M. N. Saha and N. K. Saha, "A Treatise on Modern Physics," pp. 628-656,
The Indian Press, Ltd., Allahabad, 1934).
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Carry out similar computations for the reaction

Na(g) = Na+(g) + e(g)

at '6500K. The ionization potential of Na(g) is 5.138 volts. Note that fint
= 2 for

Na(g) atoms, because of the spin of the odd electron, but fint
= 1 for Na+

(g) ions.

10-20. (a) The following molecular constants have been determined for the spectro-

scopically observed OH(g) molecule:

/ - 1.512 X 10-40 g cm 2
; v* = 3649 cm-1

The ground state (
2n^) is an electronic doublet (because of the odd electron), and

there is another low-lying electronic term C
2
!!^), also a doublet, whose term value is

140.3 cm"" 1
. These electronic contributions to the thermodynamic functions may be

treated as approximately independent of the rotational and vibrational contributions,

and may be simply added. Calculate accordingly the values of (H 8%) and

(F - BD/T at 298.16, 1000, and 2000K. Because of the relatively small moment
of inertia, and the correspondingly low degree of rotational excitation at 298.16K, the

rotational contributions calculated according to Eqs. (10-111) will be slightly too high
in magnitude, as compared with calculations based on the actual rotational-vibrational

energy levels. [Compare H. L. Johnston and D. H. Dawson, J. Am. Chem. Soc., 56,

2744-2753 (1933).]

(b) Calculate at 298.16, 1000, and 2000K, the enthalpies and the equilibrium con-

stants of the following reactions:

)
= OH(g)

H2(g) + OH(g) = H 20(g) + H(g)
2(g) + H(g) = OH(g) + 0(g)

H20(g) = OH(g)

using the following supplementary information ("Selected Values of Chemical Ther-

modynamic Properties," Series III, National Bureau of Standards, Washington,

D.C., March 3 1,1949):

The zero-point dissociation energy of O 2(g), from spectroscopic data, is 117.172

kcal/mole; that of OH(g) is 100.2 kcal/mole; that of H 2 (g) is given in the text. The
standard enthalpy of formation of H 2O(g) is given at 298.16K in Appendix 2.

10-21. (a) Using the data for formaldehyde in Table 10-7 and the standard entropy
values given in Appendix 2, calculate A$ at 298.16K for the hypothetical reaction

C0 2(g) + H aO(l) - H2CO(g) + 2(g) -
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From the heat of combustion of H 2CO(g) at 25C, 134,700 cal/mole, together with

appropriate thermochemical data from Appendix 2, calculate A# and AF for this

reaction at 298.16K.

(6) Formaldehyde in dilute aqueous solution apparently satisfies Henry's law, at

least up to #2 = 0.04, and the partial vapor pressure of H 2CO from a 1m solution is

0.000248 atm at 25C (G. S. Parks and H. M. Huffman, "Free Energies of Some

Organic Compounds," p. 158, Reinhold Publishing Corporation, New York, 1932).

Calculate the standard free-energy change for the process H2CO(g) = HaCCKaq), and

using the result of part (a), calculate A/^J98gl6 for the reaction

C02(g) + H 20(l) - H2CO(aq) + O.(g)

(c) Calculate the value of AF for the above reaction when pcot
= 0.0003 atm,

po 8
= 0.20 atm, and mnaco == 0.001 mole/kg. If the nonthermal energy required to

effect the transformation were in the form of radiation of wavelength 6750 A (the

absorption peak for chlorophyll), at least how many light quanta of energy NJii> per

mole would theoretically be required per mole of H 2CO?
10-22. Investigate the thermodynamic feasibility of the reaction

H 2(g) + C0(g) - H 2CO(g)

at 298.16, 500, and 1000K, using information given in this chapter and in preceding

problems.
10-23. The following data have been established for the five isomeric hexanes.

The enthalpies of isomerization given in the second column were determined by a rela-

tive heat-of-combustion method [E. J. R. Prosen and^F. D. Rossini, J. Research

Natl. Bur. Standards, 27, 289-310 (1941)], while the thermodynamic data for the pure
isomers given in the last four columns were obtained by a combination of spectro-

scopic information with third-law entropy data (to establish the potential barriers

hindering free rotation), summarized in Natl. Bur. Standards Circ. C461, pp. 194, 230

(1947).

Calculate the theoretical equilibrium composition of "hexane" in the ideal-gas

state at 298.16K and at 500K. Which is the most stable isomer at each of these

temperatures? Compare F. D. Rossini, E. J. R. Prosen, and K. S. Pitzer, J. Research

Natl. Bur. Standards, 27, 529-541 (1941); compare also the experimental study by
B. L. Evering and E. L. d'Ouville, J. Am. Chem. Soc., 71, 440-445 (1949)].



APPENDIX 1

MATHEMATICAL TECHNIQUE

The state of a homogeneous chemical substance ordinarily depends on at least two

independent variables, for example, temperature and pressure, and in special cases

may depend on additional variables, such as magnetic field strength, altitude, etc.

The state of a homogeneous substance of continuously variable composition (a solu-

tion) depends on one or more additional independent variables required to define the

composition. Since the fundamental laws of thermodynamics are general statements

concerning changes that may take place in the state of a thermodynamic system,
these laws applied to material systems are therefore expressible in the form of differ-

ential equations hi two or more independent variables. The discrete structure of

matter, which might conceivably interfere with the continuity of our functional

relationships, does not concern us in purely thermodynamic investigation, which is

confined to observations on macroscopic systems containing enormous numbers of

molecules.

When we are dealing with a continuous function f(x) of a single independent vari-

able x, then changes in this function with changes in the variable x may be represented
in terms of the derivative function/'(#), which if it exists, is defined by the relationship

(i)
AX >o Aa;

For a sufficiently small increment Ax in the variable x, at say the value x > the cor-

responding change in f(x) is given to a first order of approximation by the formula

A/=/'(* )A* (2)

so that if the value of /'(BO) were known, the value of A/ could be computed accord-

ingly. Since f'(x) itself varies in general with x, this approximation breaks down as

Ax increases in magnitude, but we may then invoke the methods of the integral cal-

culus, in the symbolic form

(3)

Provided that /'(a) is continuous and finite over the range x to x, this integral always

exists, and it defines the function /(x), though this function is not necessarily expres-

sible in terms of familiar algebraic or trigonometric forms. One may always evaluate

the integral function /(a?) between two specific values Xo and x of the independent

variable, given /'(x), by graphical or numerical integration, e.g., by means of a series

expansion of /'(x) integrated term by term. The Debye function D(d/T) presented
in Appendix 4 is an example of such a function of the variable 6/T, whose value has

been worked out by series expansion and integration, but the integral function may
be established in principle even for a quite arbitrary function /' (x), provided that it is

continuous and finite over the range of integration.
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Now, for a function /fa y) of two independent variables, x and y, the value of /

may vary with either variable independently of the other. We thus have two first

derivatives

df\ .. f(x + Ax, y) /fa y
-T- I = lim :

dx/v AS-+O &x

(:

df\ _ lim /fa y + AS/) -/fay)
dy/x AJ,-*Q

A2/

both of which in general are functions of both variables, x and y. The change of /
with small changes dx and dy in both variables may therefore be expressed formally,

to a first order of approximation, by

*-(*).

on the supposition that changes in the functions (df/dx) y and (df/dy) x themselves

become infinitesimals of order higher than that of dx and dy, when dx and dy become

sufficiently small.

Let f'v(x, y) and fx (x, y) denote, respectively, the two first derivatives defined by
Eqs. (4), the subscript denoting the variable held constant as each of these functions

is derived from f(x, y). Then for a finite change of the independent variables from

#o, 2/0, to x, y, we may represent the change of /(a:, y) in either of the equivalent forms

/fa 2/) -/fa>, 2/o)
-

/y(*, y^dx +
v
fx (x, y)dy (6a)

where the first integral is to be evaluated at Constant y yo and the second at con-

stant x
y
or

/fa y) -/(*>, 2/o)
=

f
X

fy (x, y)dx + f
y
f'x (xQ, y)dy (66)

JXQ jyQ

where the first integral is to be evaluated at constant y and the second at constant

x = XQ. For that matter, since the value of / depends only on the values of x and y
and not on how one gets from (XQ, yQ) to fa y), one may evaluate /fa y) f(x<>, y Q)

by integrating (5) along any convenient path connecting (XQ, 2/0) with (x, y) in the

X-Y plane, but the particular paths corresponding to Eqs. (6a) and (66) reduce the

general integral to a sum of two integrals each involving one of the two variables

separately. This procedure was followed, for example, when we set up U and H as

functions of T and p in Eqs. (3-33) and (3-47) for a homogeneous chemical substance

of fixed composition.

Given, however, the general form

dF - Lfa y)dx + M(x, y)dy (7)

where Z/fa y) and M(x, y) are arbitrary finite continuous functions of x and y, it

does not necessarily follow that a function F(x, y) exists, satisfying the relationship

(5), where Lfa y) may be identified with (dF/dx) v and M(x, y) with (dF/dy) x . A
pair of simple illustrations will make this clear. Thus, consider first the differential

equation

df - y dx + x dy (8)
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where by definition, (df/dx) y
= y and (df/dy) x = x. It is obvious by inspection in

this case that

df

Therefore / must have the form

/ = xy + const

i.e., it is a function of x and y, completely defined by Eq. (8) except for a constant of

integration independent of x and y. Consider on the other hand the differential

equation

d'F = y dx - x dy (9)

This equation, unlike (8), cannot be integrated unless one specifies how y is to vary
with X] in other words, the value of F(x, y) F(XQ, yo) is not determined solely by the

values of x and y for given XQ, 2/0, but depends on the particular curve y(x) in the

X-F plane by which one goes from (XQ , y Q) to (x, y). [Compare for example its value

along the curve y = #2 with its value along the straight line y =
a?, in going from the

origin (0, 0) to the point (1, 1), or compare its value between the same pair of points

along the path x =
0, y = to 1, followed by y * 1

9
x ** Qto I, with that along the

path y =
0, x =* to 1, followed by x =

1, y = to 1.]

The differential of a quantity such as / in Eq. (8) is called a perfect or complete

differential, corresponding to a definite function f(x, y) completely defined (except

for an integration constant) by the values of the independent variables
; according to

the first law of thermodynamics, dU and dH are such perfect differentials for changes
in the state of a thermodynamic system. A differential quantity d'F such as in Eq.
(9), on the other hand, is not a perfect differential, and the corresponding integral

quantity F is not determined solely by the initial and final values of the independent

variables; we have used the notation d' instead of d to indicate this condition, and

d'Q and d'W are examples drawn from thermodynamics of such quantities. In

inducing a change of state in a thermodynamic system, we have experimentally a

certain degree of choice whether to introduce or remove energy in thermal or in non-

thermal form, but we have no such choice concerning the net quantity of energy,
which is fixed by nature for a given change of state.

The general condition for a differential expression of the form of Eq (7) to be inte-

grable, independently of any imposed connection between the variables x and y, is

that

(f) -OS?) (io)
\ay / x \ <*x j y

In view of Eq. (5), this condition, attributed to L. Euler, is equivalent to

dxdy
"
dydx

(11 ^

which merely expresses the fact that if the value of F is determined completely by
the values of x and y (except for a constant independent of x and ?/), then the order

of differentiation with respect to the two variables is immaterial. In other words,
if there exists a function F(x, y) satisfying Eq. (7), then by supposition this function

satisfies in particular Eq. (6a), which we may rewrite in the form

/x
fy

L(x, y*)dx + / M(x, y)dy
co 7 l/o



696 PRINCIPLES OF CHEMICAL THERMODYNAMICS

Therefore

JL
dy\dx \dx

Since, however, according to Eq. (7) [compare also Eq. (5)1, M(x, y) = (dF/dy),
therefore Eq. (11) and its equivalent Eq. (10) follow. Thus, given a differential equa-
tion in the form of Eq. (7), and knowing that F is a function completely defined by the

values of the independent variables x and y (except possibly for an arbitrary additive

integration constant), we may immediately infer the relationship, Eq. (10). On the

other hand, a quantity F denned by a differential equation of the form, Eq. (7), where

L(x, y) and M(x, y) satisfy the relationship, Eq. (10), can be shown to be a function of

the variables x and y, independent of the manner in which x and y are interconnected

during a particular change, (x , 2/0) to (x, y).

When we have a differential quantity dF in the form of Eq. (7) not satisfying Eq.

(10), it may be possible for us to find an integrating factor, which when multiplied into

dF transforms this quantity into a perfect differential. Thus, it is obvious that if

we multiply d'F defined by Eq. (9) by the factor (l/xy), then the resulting expression

d'F 1 1 j i= a In x a In y
xy

is a perfect differential of the function In (x/y) + constant. Let {(x, y) represent an

integrating factor for the general differential expression (7); then, according to (10),

L dy
~

dx v

+L _ e
** + jf*

dy
^

dy
*

dx
^

dx

The integrating factor (x, y), if one exists, must satisfy the differential equation (12).

It is in such a sense that (l/T) is an integrating factor for d'Qr the differential element

of heat absorbed by a thermodynamic system during any reversible change of state;

this condition is implied by the second law of thermodynamics.
We may readily extend the treatment to functions of more than two independent

variables. Thus, let f(xi, xz ,
. . .

,
xc) represent a continuous function of the inde-

pendent variables Xi, x*, . . . , xc. Then to a first order of approximation for suffi-

ciently small changes dxi, dx*, . . .
,
dxc in the independent variables, provided that

all the first derivatives with respect to the different variables exist, the change in /
will be represented by the equation

dx2 + - - - + (-) dxe (13)
igi---- .*. X2/xi,xi..... x, \axcj Xl , X2..... *,_,

where

.(&\ (14)
\dxj

v '



MATHEMATICAL TECHNIQUE 697

for each pair of variables, a:,, Xj. On the other hand, given the differential form

dF Xi dxi + X2 dx* + + Xe dxe (15)

where Xi, Xz, . . .
,
Xe are functions of all c independent variables Xi, x2 ,

. . .
,
xe ,

then the condition that F represents some completely defined function F(x\, #2, . . .
,

xe) of the independent variables Xi 9 x*, . . . , xc (except for an arbitrary additive

integration constant independent of Xi, x*9 . . . , a?c) is that for each pair of variables

Xi, Xjl

(0 -
(ir) (1(1)

\ttXi / x \,X'i, . . . ,Xt_i.x+i, . . . ,XG \U,Xj / xi, xt, . . . ,x,-_i,x,-+i, . . . ,xe



APPENDIX 2

SELECTED VALUES OF
CHEMICAL THERMODYNAMIC PROPERTIES

The following table presents the standard enthalpy offormation H and free energy
of formation F, the standard entropy S

Q
relative to the Third Law convention, arid the

standard heat capacity at constant pressure C, for a number of chemical substances
at 25C. The H and F values refer to the chemical elements in the particular allo-

tropic forms stable at 25C and 1 atm. The data have been taken from the definitive

National Bureau of Standards compilation, "Selected Values of Chemical Thermo-
dynamic Properties/' as of March 31, 1950. These tables have been compiled by
F. D. Rossini, project director, assisted by D. D. Wagman, W. H. Evans, S. Levine,
and I. Jaffe. References to the original sources will be found in the tables when they
are ultimately published in bound form. The data here presented include but a small
fraction of the work contained in the original compilation, to which the reader is

referred for further information. The data are listed in the same order as in the origi-
nal compilation, where to eliminate duplication, the elements are taken up in a stand-
ard order by families, in general from right to left through the periodic table. One
should note that entropy values for ions in aqueous solutions have significance by
convention only in relation to balanced equations for complete ionic reactions, such
as, for example: Na(c) + H+(aq) = Na+(aq) + ^H2(g); while in this illustration

the standard entropy of H+
(aq) is taken conventionally to be zero, the entropy of

H 2 (g) [as well as that of Na(c)] is not zero.

Following the table, there is presented a list of accepted values of certain natural
constants and conversion factors adopted for the project by the National Bureau of

Standards, Dec. 31, 1947.
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THERMODYNAMIC PROPERTIES AT 298.16K
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THERMODTNAMIC PROPERTIES AT 298.16K. (Continued)

*From Selected Values of Properties of Hydrocarbons, Nail. Bur. Standards Circ. C461, (1947).
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THERMODYNAMIC PROPERTIES AT 298.16K. (Continued)
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THERMODYNAMIC PROPERTIES AT 298.16K. (Continued)
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THERMODYNAMIC PROPERTIES AT 298.16K. (Continued)
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THEHMODYNAMIC PROPEKTIES AT 298.16K. (Continued)
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NATURAL CONSTANTS AND CONVERSION FACTORS

Standard gravity:
International liter:

Standard atmosphere:

International volt:

International joule:

Thermochemical calorie:

Absolute ice point:

pV for ideal gas at 0C:
Ideal-gas constant:

Avogadros number:

Faraday constant:

Electron charge:

1 liter

1 atm

1 mm Hg
1 volt

1 joule

1 cal

T

R

Natural to common log:

e

Planck constant: h

Speed of light: c

Boltzmann constant: k

Relationship between energy and
wave number (Bohr's law) : N hc

MO In ( )

-In ( )

5 980.665 cm/sec 2

' 1000.028 0.004 cm8

1,013,250 dynes/cm2

1.033227 kg/cm2

i Keo atm
0.999670 0.000029 int volt

0.999835 0.000052 int joule
: 4.1840 joules

4.1833 int joules
. 0.0412917 0.0000020 liter atm
273.160 0.010K

' 22.4140 0.0004 liter atm/mole
8.31439 0.00034 joules/deg mole

1.98719 0.00013 cal/deg mole
: 0.0820544 0.0000034 liter atm/deg mole

(6.02283 0.0022) X 1028/mole
96485.3 10.0 coulombs/g-eq
23060.5 2.4 cal/volt g-eq
23068.1 2.4 cal/int volt g-eq

(1.60199 0.00060) X 10-19 coulomb

(4.80239 0.00180) X lO"10 esu

(6.6242 0.0044) X 10~27
erg sec

' (2.99776 0.00008) X 1010 cm/sec
= (1.38048 0.00050) X 1Q-" erg/deg

11.9600 0.0036 joule cm/mole
2.85851 0.0009 cal cm/mole
2.302585 log ( )

(4.57567 0.00030) log ( ) cal/deg mole

(1364.282 0.089) log ( ) cal/mole

(0.0591610 0.0000061) log ( ) volt g-
eq/mole



APPENDIX 3

EMPIRICAL HEAT-CAPACITY EQUATIONS*

* Selected from K. K. Kelley, Contributions to the Data on Theoretical Metallurgy. II. High-

temperature Specific-heat Equations for Inorganic Substances, U.S. Bur. Mines Bull. 371 (1934).
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APPENDIX 4

DEBYE FUNCTION D(8/T>*

(Based on R = 1.9872 cal/deg mole)

* From Landolt-Bornstein, "Physikalisch-chemische Tabellen," 5th ed., Supplement I, p. 705, 1927.

but corrected to the currently accepted value of R.

t For e/T ^ 16, D(0/T) - 7^? within 0.0001 cal/deg mole.
+ *
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APPENDIX 5

EINSTEIN FUNCTIONS

The following table was obtained by E. B. Wilson by interpolation from unpublished
calculations of H. L. Johnston, and has been corrected to the basis of current values

of the natural constants (essentially those of Appendix 2) by S. C. Schumann and

M. L. Schwartz. 1 In these tables,

x = 1.4385 ~

Rx*e*
"**) -

(e
* .

!)

v f \ - Rx*W -
(e

* _
1}

The contributions (in cal/deg mole) of a fundamental vibration frequency VQ (wavo
number in cm" 1

) to the heat capacity, enthalpy, free energy, and entropy, assuming
the simple harmonic law, are given by

,

(H
HQ\ _

-f-)n
" *

A more elaborate table has recently been published by H. L. Johnston, L. Savedoff,
and J. Belzer, Contributions to the Thermodynamic Functions by a Planck-Einstein

Oscillator in One Degree of Freedom, Office of Naval Research Pub. P-646 (1949), in

which the contributions to the thermodynamic functions are given at intervals of

0.001 in x between and 3, and at intervals of 0.01 between 3 and 15; a companion
table hi the same publication lists the contributions in terms of p /T instead of x itself

as variable, as in the table immediately following.

1 Reproduced with permission of the publisher from "A Treatise on Physical

Chemistry," H. S. Taylor and S. Glasstone, editors, 3d ed., Vol. I, pp. 655-658, D.
Van Nostrand Company, Inc., New York, 1942.
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APPENDIX 6

LIST OF SYMBOLS

In general, extensive properties are represented by italic capitals; the corresponding
molal properties for chemical substances are represented by the same symbols with bar

superscripts, e.gr., V for volume in general and V for molal volume. The corresponding
differential or partial molal properties for the components of a homogeneous mixture

are represented by small Greek letters, except for v representing partial molal volume.

In the follpwing table, the last column gives the equation or the page in which the

symbol is first introduced in the given sense.

Symbol

A
A
A

A
A
A'

A, B
A', B', C

A,B,C

oj

a2

a

a, b

English Letter Symbols

Quantity to Which Symbol Refers

Number of degrees assigned between steam point
and ice point on arbitrary temperature scale

Constant in Griineisen law

Madelung constant

Empirical constant in Rossini heat-capacity equa-
tion for electrolytes

Helmholtz free energy or maximum work function

Universal constant in Debye-Huckel limiting law

Modified Debye-Htickel constant for single elec-

trolyte of given charge type
Molal Curie constant

Van Laar constants for binary liquid solution

Constants in Young's vapor-pressure formula

Constants in Kirchhoff-Rankine vapor-pressure

equation
Constants in general empirical Evs.t relationship

for thermocouples
Constant in Debye T8

heat-capacity law at low

temperatures

Activity function, in general

Solvent activity, relative to pure solvent

Solute activity, based on ideal dilute solution be-

havior extrapolated to a?2 1

Solute activity, based on ideal dilute solution be-

havior extrapolated to mz * 1 mole/kg solvent

Solute activity, based on ideal dilute solution be-

havior extrapolated to C* = 1 mole/liter

Empirical constant in Morse equation

Empirical constants in total-radiation pyrometer
formula

713

Equation or

Page Number

(1-1)

(3-57)

(4-18)

(4-46)

(5-49)

(7-4-28)

(7-5-61)

(6-99)

(7-3-54)

(6-70a)

(6-73a)

(1-16)

(3-55)

(7-3-40)

(7-3-63)

(7-3-63)

(7-3-81)

(7-3-101)

(10-120)

p. 35
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English Letter Symbols

Symbol Quantity to Which Symbol Refers

a, b Van der Waals' constants

a, 6, c Constants in empirical thermocouple equation

a', 6', c
f

Constants in empirical thermocouple equation,

high-temperature range

a, 6, c Empirical constants in equation for mean specific

heat as function of t

a, &, c Constants in empirical heat-capacity equation

a', 6', c' Constants in Kelley's form of the empirical heat-

capacity equation
B Repulsive-energy constant in Born-Lande" theory
B Representing an extensive property, in general

B Universal constant in Debye-Htickel limiting law

C Number of components
C Heat capacity in general
Cv Heat capacity at constant volume
Cp Heat capacity at constant pressure

Cp Standard molal heat capacity at constant pressure

(1 atm; gases corrected to ideal-gas state)

C Parameter in quantum statistical distribution law

Cz Molar concentration (by volume)
Co Number of moles diffusing electrolyte, in discus-

sion of Donnan equilibrium
c Speed of light

c Specific heat in general
cp Specific heat at constant pressure

Ci, 2 First and second radiation constants

C2, c3 ,
. . . First, second, third, . . . virial coefficients

Cij C2, . . . Coefficients in a linear combination of eigenfunc-

tions

D Dissociation-energy constant in the Morse equa-
tion

Do Dissociation energy, relative to zero-point vibra-

tional energy
D Dielectric constant

d Differential sign

d' Sign representing incomplete differential (see Ap-

pendix 1)

di Mean ionic diameter in Debye-Hiickel limiting

law

E Electromotive force or potential difference

E Standard emf of a galvanic cell reaction

E Total energy of a Gibbs assembly
Ei Energy of an individual system of an assembly
Ee Electrostatic potential energy per mole for an

ionic crystal lattice

Er Repulsive lattice energy per mole
e Base of natural logarithms

Equation or

Page Number

(3-69)

d-17)

p. 30

p. 90

(3-58)

(3-59)

(4-19)

(4-44)

(7-4-32)

p. 73

(3-21)

(3-22)

(3-38)

p. 85

(10-53)

(7-3-96)

(7-7-5)

(10-84)

(2-17)

(3-50)

(1-19)

(6-18)

(10-90)

(10-120)

(10-126)

(6-104)

(2-22)

(7-4-32)

(1-16), (2-8)

(9-2-14)

(10-2)

(10-2)

(4-18)

(4-19)
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English Letter Symbols

Symbol Quantity to Which Symbol Refers

e Electron charge
8 Electric field strength
F Force

F Gibbs free-energy function

FT9 Standard molal free energy of a chemical sub-

stance

AF^ Standard free energy of a reaction

/ General function representing equation of state

/ Fugacity function

Faraday electrochemical constant

g Gravity acceleration (gQ
= standard gravity)

g Number of molecule states of lowest energy
H Enthalpy
HTB Standard molal enthalpy of a chemical substance

A//y Standard enthalpy of reaction

H Hamiltonian operator
h Height coordinate

h Planck's constant

5C Magnetic field strength
/ Current

/ Integral in Joule-Thomson theory
I lonization energy
7 Moment of inertia (/i, /2, /a represent moments

of inertia about principal axes)

J Thermal radiation flux, wavelength X to X + d\

./is Joule equivalent of the 15 calorie

J Molal intensity of magnetization

j Quantity of electricity accompanying electro-

chemical reaction

j Freezing-point depression variable

K Rotational quantum number
K' Molal distribution "constant" (K'o, ideal dilute-

solution value)
K" Molar concentration distribution "constant"

(K", ideal dilute-solution value)

K* Solubility product in terms of molar concentra-

tions

K, Thermodynamic molal solubility product constant

K" Thermodynamic molar solubility product con-

stant

Kp Equilibrium "constant" in terms of partial pres-
sures (K^, ideal-gas value)

Kv Fugacity coefficient factor

Kx Mole-fraction equilibrium "constant"
Km Equilibrium "constant" in terms of molalities

(K^, ideal dilute-solution value)

Ky Molal activity coefficient factor

Equation or

Page Number

(4-18)

(6-104)

(2-1)

(5-57)

(6-14)

p. 263, (8-1-6)

(3-D

(6-22)

(9-1-1)

p. 6

(10-37)

(3-35)

pp. 85, 139

(4-12)

(10-91)

p. 270

(10-83)

(6-93)

(2-8)

(3-74)

p. 154

(10-104)

(1-19)

(2-18)

(6-93)

(6-6)

(7-5-57)

(10-104)

(7-6-6)

(7-6-10)

(7-4-39)

(7-4-36)

(7-4-39)

(8-1-16)

(8-1-19)

(8-1-28)

(8-1-44)

(8-1-44)
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English Letter Symbols

Equation or

Symbol Quantity to Which Symbol Refers Page Number

Ko Equilibrium "constant "
in terms of molar concen- (8-1-35)

trations (Ket ideal dilute-solution value)

k Boltzmann's constant (10-28)

k Proportionality constant in dissipative force law p. 48

kt Henry's law constant, in terms of mole fraction (7-3-18)

ks Mole-fraction boiling-point elevation constant (7-5-16)

kB Molal boiling-point elevation constant (7-5-17)

kp Mole-fraction freezing-point depression constant (7-5-44)

k'F Molal freezing-point depression constant (7-5-46)

L Latent heat in general; Lp, molal latent heat of
, (3-28)

pressure variation

Ld Molal latent heat of fusion p. 86

L^ Molal latent heat of vaporization p. 86

Leg Molal latent heat of sublimation p. 154

LI 2 General latent heat of phase transition, phase 1 to (6-67)

phase 2

M Mass (2-1)

M Molecular weight, or formula weight p. 69

m Molecule mass (10-73)

m2 Solute molality (4^46), (7-3-77)

N Number of molecules (6-47), (10-40)

N Number of systems in an assembly (10-1)

No Avogadro's number (4-18)

n Number of moles p. 69

n Born exponent (4-19)

n Vibrational quantum number (10-113)

nx ,
nv ,

nt Translational quantum numbers (10-93)

P Applied pressure (as distinguished from equilib- (7-5-21)

rium vapor pressure)
P Number of phases (7-6-1)

P Number of assembly states corresponding to a par- (10-3)

ticular macroscopic equilibrium state

P/ Probability of a system's being in system state j (10-35a)

P Molal polarizability (6-104)

p Pressure, in general p. 9, (3-1)

p Momentum (10-73)

PC Critical pressure pp. 122, 234

Pi Vapor pressure of pure component 1 (7-3-14)

Q Quantity of heat (2-14)

Qr Quantity of heat received during a reversible (5-14)

change of state

Standard heat of reaction pp. 132, (4-12)

Heat of solution (Q, limiting value per mole of (4-26)

solute in an infinitely large number of moles of

the given solvent)

Qd Heat of dilution (4-32)

q Quantity of electricity (2-8)
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English Letter Symbols

Equation or

Page Number

(10-89)

d-6)

(2-9)

Symbol Quantity to Which Symbol Refers
r

i, #2, . . . Generalized coordinates

R Ideal-gas constant

R Electric resistance

Rt Thermometer resistance (JBo, A, J5, C, constants (1-10)
in empirical equation relating R t to t)

R Tube radius in capillarity theory p. 270

Uo Number of moles of nondiffusing electrolyte in dis- (7-7-5)

cussion of Donnan equilibrium
r Reading of a thermometric property (1-1)

r Radius of curvature of a surface bounding two (6-89)

phases (n, r^ principal radii of curvature for

nonspherical surface)

r Number of lowest system-energy levels (10-36)

r Equilibrium internuclear distance in a diatomic (10-105)

molecule

r Equilibrium interionic distance in ionic crystal (4-18)

lattice

r Radius vector denoting position with respect to (2-1)

arbitrary origin
S Entropy (5-21)

s Unit of phase space in classical statistics (10-75)
s Symmetry number (10-109)
T Absolute (thermodynamic) temperature (To, abso- (1-3)

lute ice point)
Tc Critical temperature pp. 112, 234

&Ts Boiling-point elevation (TB , boiling point of pure (7-5-13)

solvent)

A7V Freezing-point depression (TF , freezing point of (7-5-40)

pure solvent)

t Ordinary (thermodynamic) temperature (1-2)

+, <_ Transference numbers (9-3-5)

U Internal energy (2-21)

u Velocity (2-3)

u Sound velocity in a particular medium (3-52)

V Volume (1-2)

V Molal volume pp. 11, 69, (3-2)

V Potential energy (2-5)

v Partial molal volume (7-1-24)

v Variance (7-6-4); see also p. 70
W Work (2-4)W Work exclusive of mechanical work of expansion (3-17)

Wr Work done by a system during a reversible change (5-11)

of state (or reversible cycle of changes)
X Molal magnetic susceptibility (6-94)

x Mole fraction (4-43)

x General variable, as in Debye function (3-54)

x, y, z Cartesian coordinates of a point mass (2-2)
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English Letter Symbols

Symbol Quantity to Which Symbol Refers

XQ Anharmonicity coefficient

y Mole fraction, particularly in gas phase
Z Assembly partition function

z Altitude coordinate

z Compressibility factor

z+, z~ Number of charge units on cation, anion

Equation or

Page Number

(10-124)

(7-2-1)

(10-17)

p. 46

(6-20)

(4-18)

Greek Letter Symbols

Symbol Quantity to Which Symbol Refers

a Coefficient of cubical expansion

Degree of ionization

Empirical constant in Van Dusen equation

ft Coefficient of compressibility

ft, 2 Representing partial molal properties in general
T Mean specific heat

7 Heat-capacity ratio (CP/CV)

7 Surface or interfacial tension

y Mole-fraction activity coefficient relative to pure

(liquid) component
7f Mole-fraction activity coefficient of solute relative

to ideal dilute solution

72 Molal activity coefficient of solute relative to ideal

dilute solution

7" Molar concentration activity coefficient of solute

relative to ideal dilute solution

7^ Mean ionic activity coefficient (molal)

7* Mean ionic activity coefficient (molar concentra-

tion)

A Fundamental interval of a particular thermometer

A Change in general with change of state

8 Constant in Callendar equation
d Correction term in Joule-Thomson coefficient

method for absolute ice-point determination

d Freezing-point depression variable

Total thermal-radiation flux

c Total energy
Electron affinity

Molecule energy

f Partial molal compressibility factor

{+, f_, f Number of cations, number of anions, total num-
ber of ions, corresponding to electrolyte formula

f Molecular partition function

i) Partial molal enthalpy
9 A thermodynamic temperature scale in general

Angle, in general

Equation or

Page Number

(3-4)

(8-1-39)

(1-15)

(3-5)

(4-44)

(2-14)

(3-51)

(6-84)

(7-3-47)

(7-3-66)

(7-3-82)

(7-3-102)

(7-4-22)

(7-4-31)

(1-D

(2-21)

(1-12)

(3-75)

(7-5-62)

(1-18)

(2-7)

p. 154

(10-40)

(7-2-13)

(7-4-11)

(10-41)

(4-33)

(5-15)

p. 45



Symbol

6

H

X
X

Xi

\ci

p

pi

<l>c

02

0"

LIST OF SYMBOLS

Greek Letter Symbols

Quantity to Which Symbol Refers

Characteristic temperature in the Debye heat-

capacity theory

Representing a temperature scale generally de-

fined

Freezing-point depression variable

Force constant

Wavelength

Representing an arbitrary multiplier

Partial molal latent heat of vaporization
Partial molal latent heat of fusion

Joule-Thomson coefficient

Ionic strength

Fugacity coefficient

Frequency of radiation

Wave number
Fundamental vibration frequency
Wave number corresponding to fundamental vi-

bration frequency
Kelvin's "first" temperature scale

Osmotic pressure

Density

Density of pure solvent

Summation sign
Stefan-Boltzmann constant

Surface or interfacial area

Partial molal entropy
Time
Partial molal internal energy

Apparent molal enthalpy in solution ($, limiting

value in ideal dilute solution)

Apparent molal heat capacity in solution (3>c ,

limiting value in ideal dilute solution)

Apparent molal volume in solution (&v , limiting

value in ideal dilute solution)

Thermodynamic potential, or partial molal free

energy

Thermodynamic potential of solute in hypotheti-
cal ideal dilute solution extrapolated to x% = 1

Thermodynamic potential of solute in hypotheti-
cal ideal dilute solution at w2

= 1 mole/kg
solvent

Thermodynamic potential of solute in hypotheti-

cal ideal dilute solution at C% = 1 mole/liter

General wave function, including time

Wave function (amplitude)
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Equation or

Page Number

(3-54)

(5-14)

(7-5-48)

(10-114)

(1-19)

p. 76, (7-1-19)

(7-5-10)

(7-5-47)

(3-64)

(7-4-28)

(6-23)

(10-83)

(10-84)

(10-113)

(10-115)

(5-18)

(7-5-22)

(3-52)

(7-3-98)

(10-1)

(1-18)

(6-84)

(7-1-23)

(2-1)

(3-13)

(4-27)

(4-46)

(7-3-92)

(7-1-2)

(7-3-16)

(7-3-79)

(7-3-99)

(10-85)

(10-86)





ANSWERS TO PROBLEMS

Chapter 1

1-1. 1945.4F; 2405.1R. 1-3. +5.7 dcg. 1-4. 0.36602; 0.36618. 1-6. +0.037C.
1-6. t' = 421.42C; 5 = 1.5130 deg; 203.17C. 1-7. 3.5577 ohm.
1-8. ft

= 0.0571 deg; -78.74C. 1-10. 0.0026 dcg. 1-11. 5760K. 1-14. 1958K.
1-15. 1862K.

Chapter 2

2-1. 49,000 joules. 2-2. 0.447 joules/kg; 0.945 m/sec.
2-3. 1380 X 106

dynes/cm'; 290 g. 2-5. 500 joules/kg; 0.12 deg; 283,000 kw;
510,000 kw. 2-6. 64.8 m. 2-7. 2.45 deg. 2-8. 269C. 2-9. 0.1001 cal/g deg.

2-10. 15.51C. 2-11. 0.58 kw; 116 kg/hr (including water diverted into boiler).

2-12. 60.5 joules/sec; 69.1 sec; 1.01 amp, 0.595 ohm. 2-14. 40.52 cal/g; 499.25 cal.

2-16. 0.00098 cal/g; 75.00 cal/g. 2-16. 262 m.
2-17. -8.196 X 10~12

erg, -117,980 cal/mole; 1.293, 1.456.

Chapter 3

3-1. 36.26 X lO-^deg-^at -200C. 3-2. +2.47 liters; -0.90 liter; 23.7C;
+ 148 cal/mole. 3-8. 0.0177 cal; 1352 cal/mole. 3-9. 149 cal; 661 cal/mole.

3-10. -0.0337 cal/mole atm; -3.33 cal; 0.185 deg. 3-11. 0.202 cal/mole deg.

3-14. 4482 cal/mole.

3-16. 7161 cal/mole for O 2(g); 6764 cal/mole for CO(g); 10,690 cal/mole for CO 2(g).

3-17. cp - 11.41 + 0.001447
7 - 1.825 X lO6^-2

(cal/mole deg).

3-30. 92 atm; 76 atm; 40 atm; 4.7 atm. 3-31. 285C; 24.8.

3-32. 420 cal; 377 cal; 87C.

Chapter 4

4-1. -22,060.6 cal/mole; +2.8 cal/mole correction to 25C. 4-2. -57,325 cal.

4-3. A# = -285.80 kcal/mole at 298.16K; (# 98.i 6)wc(o)
- -3.92 0.9 kcal/mole.

4-4. (#298 . l6)NaBH4 (c)
^ ""44.03 0.07 kcal/mole (except for experimental error in the

#3BO 3(aqj enthalpy of formation). 4-6. 14.83 kcal/mole; 5.68 kcal.

4-7. -1766 cal. 4-8. 2230 Btu; 302.5 Btu [both for H 2O(1) as product].

4-9. Standard enthalpies of formation: 3CaO-B 2O 3, 817.7 kcal/mole;
2CaOB 2O s , -651.5 kcal/mole; CaO-B2O8 ,

-483.3 kcal/mole;
CaO-2B 2O 3 , -798.8 kcal/mole. 4-10. -3992 cal; -4105 cal.

4-13. -26,415.7 30.7 cal/mole; 9838 cal; 41,220 cal. 4-14. 32,459 cal; 0.344:1.

4-15. 21,690 cal; -23,450 cal; 486 cal correction to 50 atm.

4-16. -754.48 0.38 kcal; -754.64 0.38 kcal; (17.88 1.48) s kcal.

4-17. 2320K (except for possible error in extrapolation of the CO 2 (g) heat-capacity

equation). 4-20. A#J - -760.84 kcal/mole; (tf 8 . 16)c8H8 (g)
" +17.31 kcal/mole.

4-26. At w2 = 0.01 mole/kg, n HI -0.0043 kcal/mole,

772
- HI - -17.935 kcal/mole; at 35% HC1, 9l

- H\ - -0.88 kcal/mole,

ris
- SJ

- -11.10 kcal/mole. 4-28. -89.66 kcal; -95.14 kcal.

4-29. 10.83 kcal; 32 deg.

721



722 PRINCIPLES OF CHEMICAL THERMODYNAMICS

Chapter 5

5-1. -0.010 cal/sec. 6-2. 26.1%; 82.9%. 6-3. 52.7%; 20.1%. 6-4. 57.0 kcal;

280.2 kcal; 4.92 vs. 5.53 6-6. 160 kcal.

6-7. AS - -5.094 cal/mole dcg; Q/T = -5.190 cal/inole deg.

5-12. 97.3 kcal; 7.4 eu for cell, 322 eu for water; 3.2% for energy withdrawn with-

out lowering the water's temperature significantly; otherwise 1.3% net.

Chapter 6

6-1. 1250 cal. 6-2. 497 cal; 1.55 eu; -0.218 cal/mole deg.

6-3. -7.55 cal/mole deg. 6-4. 0.9919.

6-6. At 0C, ?iatm = 0.9887, *>iOatm = 0.9034.

6-7. 11,490 cal/mole to 5000 atm; 21,530 cal/mole to 10,000 atm. 6-9. 0.9589.

6-13. 8.94 kcal/mole, 29.98 eu/mole; A/S = 26.48 eu, AF = 1.05 kcal.

6-14. log p = -328427-1 - 0.826 log T + 7.495.

6-15. ( C0)8ooK = 51.15 kcal/mole;

log p = -11.879(1000/T) + 2 log (1000/T) + 8.125.

6-18. 60 cal/g; 150% increase; 20% further increase; 3%"wet."
6-19. 0r.P - <?) - -Bin p - (eA/T<+*)p.

Chapter 7

7-5. 254 cal/mole; (<CH,OH
- <cH aoH(aq))

= - 1364 cal/mole,

(0H2o - FS 2oa) )
= -62 cal/mole. 7-6. At XCB* = 0.20,

AF -
(AF)ideai = _177.1 cal/mole. 7-7. +2.71 deg. 7-9. A 1

= 0.52, A 2
= 1.10.

7-11. ^NHsCaq)
"~ ^NH 8(g)

= 2411 cal/mole [assuming NH 3 (g) is ideal at 1 atm].

7-12. At 25C, 4H 2s(aq)
- *H 2s(g)

= *349 cal/mole. 7-13. </>'Br2<aq)
= 967 cal/mole.

7-16. 457,140 cal/mole (i.e., 3620 cal/mole - 8F 2O(i)).
7-16. 508,510 cal/mole

(i.e., -1702 cal/mole - 9FS2O(1)).

7-17. 0.598; -1248 cal/mole. 7-21. At m2 = 9.990 mole/kg,

#2 - ^Hci(g)
= 3071 cal/mole, -y

= 10.90; at m2 = 0.1 mole/kg,

PHCI = 2.31 X 10~6 mm Hg. 7-22. 0.9839 at O.lm; 0.9743 at 0.2m; 0.9533 at 0.5m.

7-23. 0.633; 1994 cal/mole. 7-24. 0.777; 3563 cal/mole.

Chapter 8

8-1. A/?!98. 16
= 3930 cal. 8-2. 4710 cal; 0.0716 atm. 8-3. At 420.9C

Aff = 22,450 cal. 8-4. Cu 4SO 4-5H 2O(c) at pH2o ^ 0.0105 atm;
CuSO4-3H2O(c) at 0.0105 atm ^ pH2o ^ 0.0058 atm;
CuSO4-H2O(c) at 0.0058 atm ^ pH2o ^ 0.0000203 atm;
CuSO4 (c) at pH2o g 0.0000203 atm. 8-6. AF = 5500 cal; AJ^ 27,600 cal;

AS - 74.1 eu. 8-6. AF = 7010 cal; A# = 30,580 cal; AS = 79.1 eu;

Pn 2o - 0.081 atm. 8-7. A# = -1270 cal; AF298.i 6
= -1790; AS 98. 16

= 1.74 eu.

8-9. At 900K, AF = 3360 cal, A# = 22,600 cal; at 298.16K, AH = 23,490 cal,

AF = 16,770 cal, AS = 22.53 eu. 8-10. (a) 5560 cal, 6040 cal; (6) 3510 cal, 5760 cal.

8-12. At298.16K, A# = 12,890 cal, AF -
5980jcal, A/S = 23.2 eu. 8-13. 0.1882;

4785 cal, -19,910 cal, -24.70 eu. 8-14. For Sn(l,c),

S?ooo
~

#298.16
= 6430 cal/mole, 5?000

- ^98>16
= 11.57 eu/mole;

for SnO(c), /fooo
-

ff?98.ie
= 8248 cal/mole, ^oo - S?98.i6

= 31.92 eu/mole.
8-15. At 1000K, AF = -11,360 cal, Aff = -11,900 cal, A^ = -0.54 eu.

8-16. pco = 578 atm (ideal-gas value); pH 2o/pn 2
- 221; p0z = 3.7 X 10"" 16 atm.

8-19. At 250C and 100 atm, Kp = 0.00445 atm"2
(for Kv

- 0.521); 79% conversion.
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8-20. log Ke
- -4.374; 4>'c (Hco g> 2<aq)

= -350,630 cal/mole.

8-23. </4o4-<q>
~ *HBo 4-c*q>

= 2611 cal/mole;
7
?so4-(aq>

"~
17nso4-<aq) 2229 cal/mole [this quantity changes rapidly with T,

indicating a relatively large difference between the ionic heat capacities of HSOj"(aq)
and SOj-(aq)]. 8-24. (a) -9320 cal/mole, -6510 cal/mole, 29.41 eu/mole;

(b) 4140 cal/mole, 2960 cal/mole, 15.02 eu/mole.
8-26. S = 44.06 eu/mole at 239.7K and 1 atm; /S 98>16

= 45.94 eu/mole.
8-27. (a) 41.41 eu/mole; (6) 64,42 eu/mole (correction for nonideality =
+0.04 eu/mole).
8-28. -79,634 cal/mole; -109.056 eu/mole; -47,118 cal/mole.

Chapter 9

9-2. 146.7C; 3.02 eu/mole; 1270 cal/mole. 9-3. 0.3426 int volt;

0.408; 4>pbci 2(aQ>

-
^Pbci 2(0

= 6536 cal/mole. 9-4. 1.467 int volts.

9-6. 1.230 int volts; -55,140 cal/mole; 17.1 eu/mole.
9-6. For Cs(c) = Cs+(aq) + e, E = 2.923 hit volts; for cell reaction,

AH = -156,900 cal (for j = 2 g-eq); for Cs(c) + H 2O(1) = CsOH(aq) + )H 2 (g),

A# = -55,130 cal. 9-11. -0.134 volt. 9-12. -0.519 volt; K'8 = 3.1 X 10~7
.

9-13. (a) 0.0353; (&) 153,770 cal/mole; (c) -18,550 cal/mole, -349,660 cal/mole.

9-16. (a) -38,260 cal [per mole of ZnCl2-6NH 3(c) formed]; (6) -2674 cal/mole;

(c) -142,680 cal/mole; (d) -126,050 cal/mole. 9-17. 0.5392 int volt.

9-18. 11,670 cal/mole. 9-21. (a) 38.8 eu/mole; (b) </>cio-(aq)
= 560 cal/mole [see,

however, A. R. Olson, J. Am. Chem. Soc., 42, 896-904 (1920), who reported -1374

cal/mole on the basis of equilibrium data for the reaction between Cl2(aq) and H 2O(1)

at 90C; the temperature coefficient for the equilibrium constant of this reaction is

rather large and uncertain in magnitude, but on the other hand, there is some doubt

concerning the enthalpy of formation of KClOs(c); see also G. N. Lewis and M.

RandallJ"
"
Thermodynamics and the Free Energy of Chemical Substances," pp.

508-510, McGraw-Hill Book Company, Inc., New York, 1923].

Chapter 10

10-3. At 1500K, 9.5 X 10- in 3p *Py 19.0 X 10~6 in 3p 2
P^, 2 X 10~9 in 4s 2%.

10-6. (a) 9489 cal/mole, -14.01 cal/mole deg; (b) 5862 cal/mole,

40.318 cal/mole deg; (c) A#JJ = 31,050 cal/mole, A#?180
= 27,420 cal/mole;

(d) F|n(g)
= 22,680 cal/mole. 10-6. AtfJ = 76,560 cal/mole;

A#?98 16
= 77,570 cal/mole, AF|98 16

= 66,500 cal/mole. 10-7. K - 5.55 atm.

10-8. AF/T = -14.022 cal/deg. 10-9. (a) At 25C,
(H - fi) 2412 cal/mole, (F - HQ )/T = -54.162 cal/mole deg;

at 50C, (8 - HI) = 2632 cal/mole, (F - H Q)/T = -54.815 cal/mole deg;

(b) A#J = 15,620 cal/mole. 10-10. (a) At 298.16K, 1481 cal/mole,

-38.216 cal/mole deg; at 1000K, 4968 cal/mole, -44.228 cal/mole deg;

(b) HI = 35,550 cal. 10-11. 48.20 eu/mole. 10-19. For Ca, &F - 31,830 cal,

28.0% ionized at 1 atm [no account has been taken of equilibria with excited electronic

states of Ca(g) ;
this will tend to reduce the fraction of the total calcium in the ionized

state]; for Na, AF - 27,370 cal.
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Acetic acid, ionization, 493-497, 595

vapor density, 519

vapor pressure, 519

Acetone, and carbon disulfide, 333, 342,

367

and chloroform, 333, 337n., 339, 342

activity coefficients, 366

standard free energy of solution, 348

Acetylene, compressibility, 287

enthalpy of formation, 147

heat of combustion, 690

spectroscopic data, 689

Activity, 362-364, 373, 379, 389, 401-

403

Activity coefficient, 236n., 363-391, 402-

415

from emf, 545-550, 560, 601

from freezing-point depression, 441-

450

mean ionic, 402-415

referred to ideal dilute solution, molal,

379-388, 502

molar concentration, 389-390

mole-fraction, 374-378

referred to pure components, 364r-372

from vapor pressure data, 380-383,

404, 468

Adiabatic change, 4, 63-64

in gases, 117-120

reversible, 246

Air, critical temperature, Boyle point,

and inversion point, 112

Joule-Thomson coefficient, 109

pressure effect on internal energy, 105n.

Alkali halides, lattice energies and enthal-

pies of formation, 157

partial molal heat capacities, 179

Alkali hydrides, lattice energies, 157

Alumel, 30

Aluminum, heat capacity, 100

Aluminum nitrate, solubility, 467

Amagat's law, 311-317, 321-322, 330-

331, 484

Ammonia, compressibility, 235, 597

distribution between CHC1* and H 2O,
458-459

enthalpy of formation, 187, 487

enthalpy of ionization, 190

entropy, 513, 518, 527, 689

equilibrium, with H 2 and N 2 , 482-488,
513-514

with AgBr in aqueous solution, 497-

499

proton affinity, 187

spectroscopic data, 689

standard free energy of formation, 488,

500, 514, 689

of solution, 465, 502

thermal properties, 127, 227, 487

Ammonium bromide and chloride, lattice

energies, 187

Ammonium hydrogen selenide, dissocia-

tion equilibrium, 517

Ampere, 50-52

Anharmonicity coefficient, 677

Antimony point, 40

Argon, critical point, Boyle point, and

inversion point, 112

entropy, 654, 685

and ethylene, 312-315, 324-331

and helium, hydrogen, oxygen, 317w.

Joule-Thomson coefficient, 109

Arrhenius' ionization theory, 387, 397-

400, 408, 428, 493

(See also Electrolytes)

Austenite, equilibrium with CO-CO2 gas

mixtures, 522

Available energy (see Energy, available)

Avogadro's hypothesis, 11, 602

Avogadro's number, 151, 152n., 616

Azeotropic mixtures, 341, 344, 369, 464-

465

725
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B

Band theory in solids, 584-585

Barium hydroxide, solubility, 467

Benzene, boiling point and heat of vapor-

ization, 258, 464

and chlorobenzene, 332

entropy and heat capacity, 527

hydrogenation, enthalpy of, 149

resonance energy, 148-150

and toluene, 332

Benzyl alcohol, dehydrogenation equi-

librium, 521

, Berthelot's equation, 122, 288

Beryllium, vapor pressure, 685-686

Birge-Sponer extrapolation, 678

Black body, 33

equivalent temperature, 35

radiation laws, 34, 36

Bohr's postulates, 643-644

Boiling-point elevation, 428-432, 470

Boltzmann's constant, 246, 616-617, 641

Boltzmann's law, 624, 631-632, 651n.,

685, 690

departure from, 652-653

Bond energies, 143-159

of covalent bonds, 144-150

of ionic crystals, 151-159

and resonance energy, 148-150

Boric acid, heat of formation in solution,

183

Boric oxide, enthalpies of formation and

solution, 184

Born-Haber cycle, 154-156

Boron trifluoride, spectroscopic data, 687

Bose-Einstein statistics, 631-634, 652-

653

Boyle point, 111-112, 122, 233, 314, 316,

485

Boyle's law, 9, 12, 111-112, 236

British thermal unit, 55, 64

Bromine, distribution between CCU and
H 2O, 466

electron affinity, 156-157

Bubble pressure, 269-270

and hydrogen overvoltage, 588-589

and superheating of liquids, 276

Butadiene, enthalpy of hydrogenation,
186

n-Butane, heat capacity, 123

7i-Butane, and isobutane, enthalpies of

formation, 147

equilibrium, 528

Butenes, enthalpies of formation and

hydrogenation, 147-148, 186

C

Cadmium chloride, activity coefficient,

405, 413

compound with ammonia, 497

Cadmium sulfate, standard free energy
of formation, 595

Calcium, thermal ionization equilibrium,

690

Calcium borates, enthalpies of formation

and solution, 184

Calcium carbonate, dissociation equilib-

rium, 475-480, 513

entropy, 513

equilibrium with carbonic acid, 525

standard free energy of formation, 525

Calcium ferrocyanide, osmotic pressure,

435

Calcium hydroxide, dissociation equilib-

rium, 517

Calcium oxide, enthalpy of formation,

184

entropy, 513

heat-capacity equation, 478

lattice energy, 158

Calcium sulfate, dissociation pressures of

hydrates, 516

enthalpies of solution and hydration,

185

Callendar's equation of state, 130

Calomel, reaction with silver, 474, 536-

538

thermodynamic properties, 541

Calomel electrode, 536

standard potential, 552

as standard reference electrode, 565-

567, 569-570

Calomel electrode couple, with chlorine

electrode, 538-541

with silver chloride electrode, 534, 536-

538

Calorie, 55, 58-60

thermochemical, definition of, 59, 531

Calorimetry, 58-60
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Calorimetry, adiabatic, 89, 134-135

bomb, 133-135, 137n.

ice, 90n.

reaction, 133-135

specific heat, 88-92

Capillary electrometer, 584

Capillary rise, 270-272

Carbon, enthalpy of combustion (graph-

ite), 183, 185

enthalpy of formation of diamond, 142

heat capacity (diamond), 100

sublimation energy, 145-146, 658

thermodynamic properties of gas from

spectroscopic data, 656-659

Carbon dioxide, compressibility, 235, 288

enthalpy of solution, 190

entropy, 513

fundamental vibration frequencies, 681

heat capacity, 94, 478, 682

Joule-Thomson coefficient, 109

thermodynamic properties, 682

Carbon dilsulfide and acetone (see Ace-

tone)

Carbon monoxide, compressibility, 121

enthalpy of combustion, 185

equilibrium, with graphite and C(>2,

523, 688

with water vapor, 523

and hydrogen, 312-315

spectroscopic data, 688

thermal expansion, 10, 121

Carbon tetrachloride, boiling point, 291

thermal expansion and compressibility,

120

Carbonic acid, enthalpies of neutraliza-

tion and ionization, 189

ionization constants, 526

standard free energy of formation in

solution, 525

Carnot's cycle, 199-202, 250

Carnot's principle, 203-207, 214

Centrifugal force emf, 600

Characteristic temperature, 99-102

Chemical equilibrium, 473-529

Chlorate ion, thermodynamic properties,

599

Chloride ion, enthalpy of formation, 181

entropy and standard free energy of

formation in solution, 551

(See also Hydrogen chloride)

Chlorine, dissociation energy, 145, 154,
580

electron affinity, 155-157, 580

spectroscopic constants and thermo-

dynamic properties, 671

third-law entropy, 510-512

Chlorine electrode, 538-541, 552, 581

Chlorite ion, thermochemical properties,

190

Chlorobenzene and benzene (see Benzene)
Chloroform and acetone (see Acetone)
Chrome alum, magnetic susceptibility,

279, 281

Chromel-alumel thermocouple, 29-31

Clapeyron-Clausius equation, 253, 301w.,

477, 492

Classical mechanics of ideal gas, 638-642

Colligative properties, 422-450

Components, number of, 73-75, 295, 298-

299, 450

Compressibility, coefficient of, 70-72

ideal-gas, 104

Compressibility factor, 233-235, 311-

315, 323-328

partial molal, 323

Concentration cells, with liquid junc-

tions, 558-561

without liquid junctions, 546-558

Conservation of energy (see Energy, con-

servation of)

Conservative system, 44r-47

Constantan, 29

Constants and conversion factors, 705

Contact potential, 575-576, 585

Cooling, by adiabatic demagnetization,

280-284

by adiabatic expansion, 118-119

Copper, heat capacity, 100, 124-125

equilibrium with Cu+ and Cu++
,
594

thermal expansion and compressibility,

124

Copper (I) chloride, thermodynamic

properties, 594-595

Copper (II) bromide, dissociation pres-

sure, 518

Copper (II) sulfate, dissociation pressures

of hydrates, 517

Copper-constantan thermocouple, 29, 31

Copper-zinc couple, 555-557

(See also Daniell's cell)
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Corresponding states, and compressibil-

ity factors, 234-235

and fugacity coefficients, 238-240, 484-

485

Coulomb (quantity of electricity), 50-52,
530-531

Coulomb's law, 47, 67, 152-153, 408

Coulometer, 52

Critical temperature, 112, 122, 234-235,
239-240

relation to boiling point, 260

Curie's law, 280

Current, electric, 49-52

Cyanamide, heat of combustion, 184

Cyanogen, thermochemical properties,

187

Cyclohexadiene and cyclohexcne, en-

thalpies of hydrogenation, 149

D

Dalton's law, 310-317, 321-322

Darnell's cell, 196-199, 226, 555-557

Darwin-Fowler method, 608, 609n., 621

Debye's heat-capacity function, 99-100,

508,707

Debye's heat-capacity theory, 98-103

Debye's T1
law, 102, 126, 284, 508

Debye-Httckel theory, 404-412

applications of, 419-422, 426, 447-448,

470-471, 49fr-499, 548-549, 591-

592, 596-597

Depolarizer, 551

Deuterium, heat of combustion, 184

Dialyzing membrane, 459

Diamagnetism, 277-280

Diamond (see Carbon)
Dielectric constant, 47, 285-286, 407

Differential function of several variables,

693-697

perfect, 63, 695

Dissociation energy, 154

from spectroscopic data, 674r-679

Dissociation pressure, 476-482, 49O-492

Distribution equilibrium, 454-459

Donnan equilibrium, 459-463

membrane potential, 564-565

Drop-weight theory, 272-273

Duhem-Margules equation, 338

Dyne, 48

E

Einstein functions, 669, 708-712

Electric polarization, 284-286

Electric resistance (see Resistance, elec-

. trie)

Electric standards and units, 51-52, 531

Electricity, quantity of, 49

Electrode cells, 536-546

Electrode potential, standard, 551-552,

575, 582, 584

of alkali metals, 556n., 573n., 581,

592

of cadmium, 582, 595

of calcium, 582, 601

of calomel electrode, 552, 565-567

of cerium (III) cerium (IV), 571

of cesium, 581, 592

of chlorine, 552, 581

of copper, 556, 581-582, 595

of hydrogen, 550, 552

of iron (II) iron (III), 570-572

of lead, 553-582, 591

of lead dioxide, 591

of lead sulfate, 554

of lithium, 581

of manganese dioxide, 592, 599

of mercury (II) oxide, 593

of silver, 574, 581

of sodium, 573-575, 581

of strontium, 582, 601

of thallium, 581

theoretical calculation of, 572-586

of zinc, 556

Electrolytes, boiling-point elevation, 431-

432, 470

Debye-Huckel theory, 404-412

enthalpy, 159-176, 178-181, 420-422

free energy and thermodynamic poten-

tial, 391-422

freezing-point depression, 446-450

heat capacity, 177-179

ionic properties, 178-181, 398-401, 503

mean ionic activity coefficient, 401-

415, 545-550, 560

osmotic pressure, 437, 471

solubility product, 415-420

vapor-pressure depression, 426-428

Electromotive force (emf), 49-50, 197-

198, 532-534
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Electromotive force, (emf), thermo-

couple, 28-32

(See also Galvanic cells)

Electron affinity, 155-159

Electron charge, 152n.

Electrons, equilibrium with gas ions, 690

Electrostatic potential energy, 47

Elements, enthalpy of formation as mon-
atomic gases, 145

ionization potentials, 577

Emissivity, spectral, 43

Energy, 44-52

available, 192-199, 215-217, 225, 244-

246

(See also Free energy)

conservation of, 44, 60-63

dissipation of, 47-49, 50-52

electric, 49-52, 58-60, 531

free (see Free energy)
internal (see Internal Energy)

molecular, 637, 659

kinetic, 44-49

of molecular motion, 602, 638-642

nuclear, 61-62

potential, 44-49, 152-153, 638, 645, 648

of centrifugal force, 600

Morse function for, 675-676

of simple harmonic oscillator, 666,

674

thermal (see Heat; Thermal radiation)

total, 44-49

units of, 48-52, 58-60, 64, 82n., 531,

541, 643

Energy levels, 605, 614, 623

electronic, 656-657, 659, 685

molecular, 623-625, 637, 643, 647

rotational, 659-662, 664

from spectroscopic sources, 655-684

term values of, 644

translational, 650

vibrational, 666, 674-677, 680

relative probabilities of, 611, 618

Energy quanta, 643

Enthalpy, 82-87

apparent molal, 163-166, 383

of formation, 85, 139-143, 507n.

of aliphatic hydrocarbons, 147

of elements as monatomic gases, 145

of selected chemical substances, 698-

704

Enthalpy, of formation, in solution,

164-165

and free energy, 225, 231

as function, of entropy and pressure,

247

of temperature, and pressure, 84,

108, 119-120, 123

and volume, 248-249
of ideal gas, 104

and Joule-Thomson coefficient, 108

partial molal, 166-177, 307-308
in ideal dilute solution, 349-350, 370,

420-422

of reaction, 136-139, 500
from emf data, 536, 538, 541

from equilibrium data, 474, 477-479,
486-488

of solution, 159-181

from spectroscopic data, 635, 641, 654,

656-684

Entropy, 208-211

of a chemical substance, 240-243, 288,

504, 507-511

table of selected values, 698-704

and equilibrium criteria, 211-222

of ideal monatomic gas from statistics,

653-654

of ideal solution, 31&-321, 356-358,
620-621

ionic, 514-516, 573

of ionic crystalline compounds, 528

and irreversibility, 214-218, 221, 243-

246, 356-358

partial molal, 307, 504r-505

of phase transitions, 253, 258-260

and probability, 243-246, 356-358,

617-620

of reaction, 504-516

from emf data, 536-537, 541-542,

544

(See also Third law of thermodynam-
ics)

in statistical thermodynamics, 617,

634, 641, 654, 680-684

temperature and pressure effects on,

240-243, 504

of thermal exchange, 215-217

units, 211

of vaporization, 258-260
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Equilibrium, of a chemical reaction, 473-

529

heterogeneous, 450-459

metastable (see Metastable equilib-

rium)
between phases, 300-305

thermodynamic criteria of, 211-227

(See also Donnan equilibrium)

Equilibrium constant, thermodynamic,

486, 499, 512

from emf data, 557, 572, 574

from statistical thermodynamics, 636

(See also Free energy of reaction,

standard)

Erg, 48

Escaping tendency, 306n.

Ethane, enthalpy, of combustion, 183

of formation, 147

Ethyl acetate, azeotrope with ethyl

alcohol, 465

hydrolysis equilibrium,
r
492-493

Ethyl alcohol, freezing-point depression

in aqueous solution, 469

(See also Ethyl acetate)

Ethyl chloride, heat capacity and latent

heat of fusion, 131

Joule-Thomson coefficient, 109

latent heat of vaporization, 288

Ethylene, and argon (see Argon)

enthalpy, of formation, 147

of hydrogenation, 139-140, 183

heat of combustion, 183

heat capacity, 94, 97

Euler's criterion, 71, 87-88, 230, 248,

279-280, 306-307, 695-697

Eutectic mixture, 453

Expansion (see Thermal expansion)
Extensive property, 68, 176, 294, 296

Faraday, 530-531

Faraday's electrochemical law, 52, 226-

227, 530-533

Fermi-Dirac statistics, 630-634, 652-653

First law of thermodynamics, 44, 60-65,

141, 203, 247

statistical interpretation, 602, 614

Flame temperature, 186

Fluorine, electron affinity, 155, 157, 159

Fluorine, lattice energies of fluorides, 159

application to theory of electrode

potentials, 582

Force, 44-49

Force constant, 666

Free energy, 222-227, 299

of a chemical substance, 229-240

and equilibrium criteria, 224

of formation, 231-232, 499-503, 507n.

of selected chemical substances, 698-

704

in solution, 382, 502-503

and irrevcrsibility, 225-227

partial molal (see Thermodynamic
potentials)

of phase transitions, 252, 257, 262-264

of reaction, 473-499

standard, and equilibrium constant,

475-476, 480, 482, 486-490, 492-

499, 512

and standard electrode potentials,

552

temperature and pressure effects on,

474^-480, 486-491

of solution, 299-306, 317-318, 355-358

from spectroscopic data, 635, 641, 654,

680-684

temperature and pressure effects on,

229-232

Free expansion, 105, 243-246

Freezing-point depression, 437-450

Fugacity, 236

Fugacity coefficient, 236-240, 257, 288,

475-476

in gas mixtures, 322, 331, 482-486

G

Gadolinium sulfate, adiabatic demagnet-
ization of, 282, 284

Galvanic cell reaction, 534

Galvanic cells, 530-601

centrifugal force effect, 600

electrode composition effect, 544r-546

electrolyte concentration effect, 547-

550, 556, 558-561, 565-572

electromotive force, 532-534

standard, 537, 543, 550, 556

and equilibrium constant, 557,

572, 574
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Galvanic cells, enthalpy of reaction in,

136, 166, 533, 536

entropy of reaction in, 536

free energy of reaction in, 533-536

general thermodynamic theory, 530-

536

liquid-junction potential, 535n., 561-

568

with liquid junctions, 558-572

without liquid junctions, 536-558

maximum work, 196-199, 533

pressure effect on emf, 536, 538, 540-

541, 543, 547, 590

sign convention, 534

temperature effect on emf, 536-537,

541, 544

terminology, 530-533

Gas, ideal (see Ideal gas)

Gas reactions, equilibrium in, 482-492,

636

Gases, critical temperature, Boyle point,

and inversion point, 112

entropy, 242-243

free energy, 233-240

fugacity coefficient, 239-240

heat capacity, 94

maximum work of expansion, 194-196,
199-202

mixtures of (see Solutions, gas)

sound velocity in, 91

thermal behavior, 104-120

thermal expansion, 10

Gibbs' assembly, 604-623

Gibbs' free energy (see Free energy)
Gibbs' paradox, 319-321

Gibbs-Duhem equation, 77, 168-169, 297,

337, 362

applications, 322, 347, 353, 376, 380,

392, 403, 421, 441

Gibbs-Helmholtz equation, 536

Gibbs-Poynting equation, 261

Gold and silver activity coefficients, 371-

372, 544-546

Gold point, 40

Graphite (see Carbon)

Gravity, potential energy of, 46-47, 65,

600, 640

Grtineisen's law, 102

H

Heat, 52-56

at constant pressure, 82

at constant volume, 79

of dilution, 165-166

latent (see Latent heat)
mechanical equivalent of, 56-60

molecular conception of, 60-61, 602,

615

of neutralization and ionization, 180,

189-190, 497

quantity of, 53

of reaction, 132-138

(See also Enthalpy of reaction)

of solution, 159-165

(See also Enthalpy of solution)

units of measurement, 55-56, 59-60

Heat capacity, 54-56, 87-104, 241

at constant pressure, 80, 83

at constant volume, 79-80

of crystalline solids, 98-103

data, 94, 103-104, 698-704, 706

Debye theory, 99-103

difference, 83, 92, 123

empirical equations for, 103, 706

from spectroscopic data, 690

of gases, 91-98

mean, 90

measurement of, 88-92

partial molal, 176-179

pressure effect on, 87-88, 127-128

ratio, 91-94

theoretical treatment of, 92-103, 635

from spectroscopic data, 635, 641,

654, 680-684

Heat engine, 192-205, 250-252

thermodynamic efficiency, 201

Helium, critical temperature, Boyle

point, and inversion point, 112

heat capacity, 94, 108

Joule-Thomson coefficient, 109

liquefaction of 115, 119

pressure effect on enthalpy, 108

statistical degeneracy at low tempera-

tures, 627n., 633, 652

thermal expansion, 10, 42

thermometry, 22-23, 28

Helmholtz's free energy (maximum work) ,

222-223
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Helmholtz's free energy (maximum work),
statistical analogue of, 623

Henry's law, 348, 365, 373-377, 380, 384-

385

Hess's law, 135-137

Heterogeneous equilibrium, 450-459

Heterogeneous substance, 77

internal energy of, 77-78

n-Hexane, isomerization equilibrium, 692

pressure effect on heat capacity, 128

High polymer, 357n., 437, 459

Hydrocarbons, aliphatic, enthalpy of

formation, 147

entropy, 529

Hydrogen, and carbon monoxide (see

Carbon monoxide)

compressibility, 235, 312

critical temperature, Boyle point, and
inversion point, 112

dissociation energy, 145, 677-679

electron affinity, 157

enthalpy, of combustion, 140, 183, 185

relative, 522, 691

entropy, 513, 522

heat capacity, 91, 94, 96, 487

Joule-Thomson coefficient, 109

liquefaction of, 115

and nitrogen, 312-314, 324-327, 330

nuclear spin isomerism (orthohydrogen
and parahydrogen), 97, 603, 663n.

overvoltage, 587

sound velocity in, 129

thermal expansion, 10, 42

thermodynamic properties, 663n.

thermometry, 22

Hydrogen chloride, activity coefficient,

405, 469, 547-550

concentration cell, 559-561

dissociation equilibrium, 686

enthalpy of formation, 180, 182, 672

in aqueous solution, 180

entropy in aqueous solution, 551

free energy of formation, 673

in aqueous solution, 550

heat, of neutralization, 189

of solution, 162

heat capacity in aqueous solution, 178-

179

liquid-junction potential against KC1,
561-564

Hydrogen chloride, partial molal en-

thalpy, 469

rotational spectrum and moment of

inertia, 661-S62

thermodynamic properties from spec-

troscopic data, 665, 670-673
transference numbers, 559-560, 598

vibrational absorption band and Ra-
man spectrum, 667-668

Hydrogen cyanide, spectroscopic data,
687

Hydrogen electrode, 542-543

pH measurement with, 565-568

standard potential, 550, 552, 583

Hydrogen electrode couple, with lead sul-

fate electrode, 554-555

with mercury (II) oxide electrode, 542-

544

with silver chloride electrode, 546-552,
558

Hydrogen ion, conventional standard

properties, 180-181, 401, 505, 552,

583

Hydrogen selenide, entropy, 518

Hydrogen sulfidc, solubility and enthalpy
of solution, 466

standard free energy of solution, 384

thermodynamics of ionization, 526

Hydroxide ion, enthalpy of formation in

solution, 181

entropy in aqueous solution, 594

Hydroxyl molecule, spectroscopic data

and thermodynamic properties, 691

Ice calorimeter, 90n.

Ice point, 6

absolute, 10, 211

from Joule-Thomson effect, lln., 112-

115

Ideal gas, classical mechanics of, 638-642

enthalpy, 104

entropy, 242

entropy constant, 625-628, 653-654

equation of state, 12, 71, 104, 209

statistical derivation, 635, 638, 640-

641

free energy, 233

heat capacity, 92, 104
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Ideal gas, quantum mechanics of, 650-

655

statistical theory of, 623-638

Ideal gas constant, 11-12

relation to Boltzmann's constant, 616,

641

Ideal gas reference state, enthalpy correc-

tion to, 85, 104, 123, 238

entropy correction to, 209, 211, 242,

288

free-energy correction to, 233, 238

heat-capacity correction to, 88, 127,

128, 243

Ideal solution (see Solutions, liquid)

Integrating factor, 208, 696

temperature as (see Temperature, ther-

modynamic)
Intensive property, 68-69, 296

Interfacial tension (see Surface tension)

Internal energy, 62-65

of a chemical substance, 72-73

of a gas, 104-105

as heat function at constant volume,
78-82

of a heterogeneous substance, 77-78

molal, 73

in molecular statistics, 614, 617, 624,

634

partial molal, 76-77, 296

of reaction, 136-139

of a solution, 73, 75-78, 294-297

specific, 72

temperature and pressure effects on, 81

and thermodynamic change in general,

220-222, 247

units of measurement, 64

Inversion (see Joule-Thomson effect)

lodate ion, thermodynamic properties,

514-515

Iodine, distribution between 82 and

H2O, 457-458

electron affinity, 156-157

electronic energy levels and molecular

dissociation, 687

enthalpy of solution, 190

spectroscopic molecular properties and

vapor pressure, 686

Iodine bromide, dissociation equilibrium,

518

Ion product of water, 593

Ionic strength, 406-407
lonization constant, from emf, 595-596

thermodynamic, 494-497

lonization potential, 154-159, 576-577,
585

Ions in solution (see Electrolytes)

Iron, equilibrium of dissolved carbon with

CO and CO2 ,
523

Iron (II) iron (III) oxidation potential,

570-572

Iron (III) oxide, enthalpy and heat capac-

ity, 124

Iron (III) sulfate, dissociation pressure,

520

Iron-constantan thermocouple, 29, 31

Irreversible change, 200-203, 212-227,

244-246, 356-358, 535, 564

Isolated system, 4

thermodynamic change and equilib-

rium in, 214-219

Isoprene, thermochemical properties and

polymerization of, 186-187

Isothermal change, 5, 250

in gases, 116-117

work of, 222-227

Joule (unit of energy), 49-50, 58-60, 531

Joule's experiment (free expansion), 105,

194, 243-246, 318

Joule's law, 58-61, 79n., 192, 602

relation to Hess's law, 136

Joule-Thomson effect, 105-116, 250

and absolute ice-point determination,

lln., 112-115

coefficient of, 106-115, 128-129

cooling of gases by, 115-116

inversion of, 109-112

K

Kelvin's first temperature scale, 207

Kelvin's temperature scale (see Tempera-
ture scale, Kelvin's)

Kilocalorie, 55, 60

Kirchhoff-Rankine equation, 256

Kirchhoff's law, 138, 477-479, 487, 500

Konowalow's rule, 341, 344
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Lagrange's method of undetermined mul-

tipliers, 303, 609

Lanthanum chloride, activity coefficient,

405

Laplace's equation of capillarity, 269

Latent heat, 56

partial molal, 344, 438

of phase transitions, 56, 86-87, 89-90,

253-260, 510

or pressure variation, 80-81, 230, 241

Lattice energy, 151-159, 578-583

Lead, heat capacity, 100

Lead chloride, standard free energy of

formation and solubility product,

591

Lead dioxide, enthalpy of formation, 189

Lead electrode, standard potential and

free energy of formation of Pb++

(aq), 553, 582, 591

Lead electrode couple, with silver chlo-

ride electrode, 553-554, 591

with two-phase amalgam, 553

Lead storage cell, enthalpy of reaction,

173-174, 189

Lead sulfate, enthalpy of formation, 189

solubility product, 554

Liquid-junction potential, 535n., 561-568

Lithium chloride, activity coefficient, 405,

468

heat capacity in aqueous solution, 179

lattice energy and enthalpy of forma-

tion, 157-158

Lithium iodide, transference numbers
from centrifugal emf, 600

M

Madelung's constant, 151-152

Magnesium chloride, enthalpy of forma-

tion, 188

hypothetical compound MgCl, 159,

187, 586

Magnetic susceptibility, 279-284

Magnetization, energy of, 277-284

low temperatures attained by, 41, 280-

284

Mass-action law, 473, 482-486, 492-499,
502

Maximum work (see Helmholtz's free

energy; Thermodynamic reversibil-

ity)

Maxwell's equations, 230, 248

Maxwell-Boltzmann velocity distribution

law, 603, 653

Membrane potential, 564-565

Mercury, thermodynamics of vaporiza-

tion, 289

Mercury (I) chloride (see Calomel)

Mercury (I) sulfate electrode, 554n.

in acetic acid, 598

in methanol, 597

Mercury (II) oxide, dissociation equilib-

rium, 489-492

equilibrium with Hg(l), H 2O(1), and

Br~(aq), 593

Mercury (II) oxide electrode, 542-544,
593

Metastable equilibrium, 219-220, 504

Methane, compressibility, 235

enthalpy of formation, 145, 147

heat capacity and Joule-Thomson coef-

ficient, 128

spectroscopic data and thermodynamic

properties, 688

Methanol, entropy, 525

equilibrium with H2 and CO, 524

heat capacity, 186, 524

thermal expansion and compressibility,

121

thermochemical properties, 132, 137,

185, 524

thermodynamics- of vaporization, 289

and water, 332, 340, 464

Methyl amine, density at 0C, 288

Methyl chloride, enthalpy of formation,

187

spectroscopic data and entropy, 689

Metric units, 48n.

Molal equilibrium constant, 496-499, 502

Molal property, 69

Molality, 171n., 378

Molar concentration equilibrium con-

stant, 494-496

Molarity, 388

Mole, 69

Mole fraction, 172, 297, 310, 334, 337-348

Mole-fraction equilibrium constant, 492-

493



INDEX 735

Molecular motion, 602-603, 638-642

Mollier diagram, 249-252, 290

Moment of inertia, 660-664

Monatomic gas, entropy of, 653-654

Morse's potential-energy function, 675-

677

N

Naphthalene, solubility, 359

Nernst's heat theorem, 507, 619, 627

(See also Third law of thermodynamics)
Newton (unit of force), 48

Newton's laws of motion, 44-46, 602, 638

Nickel oxide, reduction equilibrium with

CO, 522

Nitrogen, compressibility, 234-235

critical temperature, Boyle point, and
inversion point, 112

entropy, 513

heat capacity, 94, 114, 286, 487

and hydrogen (see Hydrogen)
inversion curve, 110

Joule-Thomson coefficient, 107-110,

114, 129

and oxygen, liquid solutions of, 334

pressure effect on enthalpy, 108-109

on entropy and free energy, 238, 243,

286

thermal expansion, 10, 234

thermometry, 22

Nonconservative force, 47-49

Nuclear-spin degeneracy, 663n.

O

OH molecule (see Hydroxyl molecule)

Ohm (unit of resistance), 51-52

Ohm's law, 50-52, 532

Open systems, 219n.

Osmosis and osmotic pressure, 432-437,

462-463, 471, 472

Ostwald's dilution law, 495

Overvoltage, 586-589

Oxidation potential, 552

(See also Electrode potential)

Oxidation-reduction titration, 572, 600

Oxides, lattice energies and enthalpies of

formation, 158

Oxygen, electron affinity, 155, 158

Oxygen, heat capacity, 94-95

Joule-Thomson coefficient, 109

and nitrogen (see Nitrogen)

pressure effect on internal energy, 105n.

Oxygen point, 40

Palladium melting-point, 22

Paramagnetism, 277-284

Partial molal property, 76, 176

(See also specific corresponding prop-

erties)

Partial pressure, Amagat, 311-313

Dalton, 310-312

formal, 321-322

Partial vapor pressure, 334

(See also Vapor pressure)

Partition function, molecular, 623, 627-

628, 634, 637

rotational, 662-663

translational, 640, 650-652

vibrational, 668-669, 680

of a thermodynamic system, 611-617

Pauli's exclusion principle, 629-630, 663

n-Pentane, compressibility of liquid, 287

enthalpy of formation, 147

thermometry, 19-20

Perchloric acid, vapor pressure of aqueous

solutions, 467

Perfect differential, 63, 695

pH, with hydrogen electrode, 565-568

with quinhydrone electrode, 569-570

standardization of scale, 568

Phase rule, 452

Phase transition, 86-87

enthalpy of, 86-87, 257-258

equilibrium of, 252-262

standard free energy of, 252, 257, 262-

264

Phosphoric acid, secondary ionization,

596

Planck's constant, 633, 643

Planck's thermal-radiation law, 36, 633

Platinum resistance thermometer, 24r-28

Platinum-rhodium thermocouple, 30-31

Polarization, electric (see Electric polar-

ization)

electrode, 534

Polyisobutylene, osmotic pressure, 472
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Potassium chlorate, freezing-point de-

pression, 469

Potassium chloride, activity coefficient,

405, 446-449, 467-468, 471

entropy, 528

heat capacity, 126

in aqueous solution, 179

liquid-junction potential against HC1,
561-564

osmotic pressure, 471

thermal expansion and compressibility,

127

thermodynamic potential in aqueous

solution, 393-395

vapor pressures, of aqueous solutions,

394

of solid and liquid, 289-290

Potassium cyanide, lattice constant and

enthalpy of formation, 187

Potassium ferrocyanide, Donnan equilib-

rium, 462

Potassium iodate, entropy and standard

free energy of solution, 514-515

Potassium perchlorate, freezing-point

depression, 470

Potassium sulfate, boiling-point eleva-

tion, 470

Potential, thermodynamic (see Thermo-

dynamic potential)

Potential difference, 49-50, 531-532

(See also Electromotive force)

Potential energy (see Energy, potential)

Pound-mole, 69n.

Power, 64n., 66

Pressure, 9-13, 69-71

effect on thermodynamic properties

(see specific corresponding proper-

ties)

hydrostatic, effect on thermodynamic
potentials and equilibrium, 451n.

osmotic (see Osmosis and osmotic pres-

sure)

standard atmospheric, 6

(See also Vapor pressure)

Probability and thermodynamics, 244r-

246, 356-358, 545, 611, 618-621

Producer-gas equilibrium, 523

Propane, enthalpy of formation, 147

heat of combustion, 184

w-Propanol and water, 341

n-Propanol and water, activity coef-

ficients, 367, 375, 442-445

azeotrope, 464

Pseudocritical constants, 316

Pyridine and water, 333

Pyrometer (see Thermometry, radiation)

Q

Quantum mechanics, 603, 605, 642-650

Quantum statistics, 625-634

Quinhydrone electrode, 569-570

R

Radiation (see Thermal radiation)

Raman spectrum, 661n., 667-668, 679

Ramsay-Young rule, 258-259

Rankine's cycle, 250-251, 290

Rankine's temperature scale (see Tem-

perature scale, Rankine)
Raoult's law, 163, 345-354, 364, 369, 376-

377, 385-387, 425

deviation from, 332-333, 351-353

for electrolytes, 396-397, 426-428

generalized thermodynamic form, 346,

350, 364, 373, 390, 492, 545

Reduced temperature and pressure (see

Corresponding states)

Refrigerating engine, 204, 228

Resistance, electric, 5O-52, 68n., 531

Resistance thermometry, 24-28

Resonance energy, 148-150

Reversible process (see Thermodynamic
reversibility)

Ring-balance theory, 273-275

Rotational energy of gas molecules, 659-

666

and heat capacity, 92-93, 96-98, 665

and general thermodynamic proper-

ties, 665

internal, 680

hindered, 681

Rotational-vibrational absorption, 667

and energy levels, 659, 660n., 666-667

Rubber hydrocarbon, heat of combus-

tion, 186

S

Sackur-Tetrode equation, 653, 685

Schrodinger's equation, 645-646
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Second law of thermodynamics, 192, 199-

211, 217-218, 245-247, 503-504

and molecular statistics, 603-623

Selenides, lattice energies and enthalpies

of formation, 158

Semipermcablc membrane, gas mixtures,

309-310

liquid solutions (osmosis), 432-433, 437

(See also Donnan equilibrium)

Silver, activity coefficient in gold, 371-

372, 544-546

entropy, 510

Gruneisen constant, 102

heat capacity, 100, 125

reaction with calomel, 474, 534, 536-

538

thermal expansion and compressibility,

120, 125

Silver acetate solubility, 472

Silver-ammonia complex ion, 497-499

Silver chloride, heat capacity and third-

law entropy, 508-510

reaction with mercury, 474, 536-538

solubility in electrolytes, 417-420

thermodynamic properties, 512, 542

Silver chloride electrode, 536-537

standard potential, 552

Silver chloride electrode couple, with

calomel electrode, 534, 536-538

in methanol, 538

with chlorine electrode, 542

with hydrogen electrode, 546-552, 558

with lead chloride electrode, 553-554

Silver iodide, transition point, 590

Silver point, 40

Simple harmonic oscillator, 666-667, 674

anharmonicity correction, 676-677

Sodium, electronic energy levels, 685

enthalpy of ionization in aqueous solu-

tion, 181

heat of reaction with water, 190

heat capacity, 100

spectroscopic data for Na 2 (g), and

equilibrium with Na(g), 686

thermal ionization equilibrium, 691

Sodium bicarbonate dissociation equilib-

rium, 518

Sodium borohydride, standard enthalpy
of formation, 183

Sodium chloride, activity coefficient, 405

Sodium chloride, enthalpy of formation in

solution, 183

and sodium bromide, enthalpies of

solid solutions, 188

Sodium chlorite, enthalpy of reaction

with I~(aq), 190

Sodium hydroxide, heat capacity in

aqueous solution, 179, 190

Sodium sulfate, activity coefficient, 405

dissociation equilibrium of decahy-

drate, 474-475, 480-482

Solubility, ideal solute, 358-360

Solubility product, 415-420, 472

from emf, 554-555, 591

Solutions, gas, 309-331

internal energy and general thermo-

dynamic state, 73-77

liquid, boiling point and composition,

343-345, 360-361

boiling-point elevation, 428-432

colligative properties, 422-450

enthalpy and thermal behavior, 159-

176

freezing-point depression, 360, 437-

450

general thermodynamic theory of,

331-332

ideal concentrated, 351, 354-361

(See also Raoult's law)
ideal dilute, 164-166, 345-354, 378,

389-390

(See also Henry's law; Raoult's

law)
molecular weights in, 387, 395n., 425

nonidcal, 361-391

osmotic pressure, 432-437

regular, 358

standard states in, 385

vapor pressures and activities, 364

and activity coefficients, 365, 380-

383, 404, 468

and composition, 332-342, 345-

348, 353

vapor-pressure depression, 423-428

(See also Electrolytes)

number of components, 73-75, 295,

298-299, 450

solid, 371-372

thermal properties, 159-181

thermodynamics of, 292-472
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Solutions, variance of, 73-75, 450

Sound velocity in gases, 91, 129-130

Specific heat, 79

(See also Heat capacity)
Standard electrode potential (see Elec-

trode potential, standard)

State, equation of, 70-72

ideal-gas, 12, 71, 104, 209

virial form, 233

standard, 81, 85-86, 231, 507n., 635

in solution, 385, 393n., 401, 496,

550

thermodynamic, 62, 68-78, 247

Statistical mechanics, 604, 684

Statistical molecular thermodynamics,
602-692

Statistics of ideal gas, 623-638

Steam (see Water)
Steam point, 6, 16, 40

Stefan-Boltzmann radiation law, 34, 291

Stirling's approximation, 356, 609, 621

Sucrose, activity coefficient and standard

free energy of solution, 381-384

osmotic pressure, 435

Sulfur, electron affinity, 155, 158

entropy, 526

heat capacity, 262

rhombic-monoclinic transition, 252-

254, 262-263

Sulfur point, 40

Sulfur trioxide, equilibrium with SO2 and
O2 ,

519

heat capacity of gas, 520

partial molal enthalpy in aqueous solu-

tion, 175-177

Sulfuric acid, activity coefficient, 405,

412-413

heat of solution and partial molal

enthalpy, 161, 169-177

secondary ionization, 413, 526

specific heat, 189

thermodynamic potential in methanol

and acetic acid, 597-598

Sun, ionization equilibrium in solar

atmosphere, 690

surface temperature and solar energy,

41, 43, 61-62

Surface energy, 72n., 78, 264r-266

Surface tension, 264-276

and electric charge, 584

Surface tension, and pressure in small

bubbles, 275-276, 588-589

Symmetry number, 663

Temperature, 1-41, 205-211

apparent (on linear scales), 7-8

high, 22, 30, 38, 41

ideal-gas, 9

low, 23, 28, 32, 39, 41, 281-284

statistical analogue, 614-616

thermodynamic, 12, 205-211, 283-284

as integrating factor of reversible

heat, 208-210, 614-616

Temperature equality and thermal equi-

librium, 2-6, 53, 215-217, 451

statistical analogue, 613

Temperature scale, absolute, 10, 12-14,

206-211

Celsius', 7

Fahrenheit's, 7

general principles of, 6-14

ice-point and steam-point, 6, 16, 40

ideal-gas, 9-11

International, 38-41

Kelvin's, 11, 208-211, 614

mercury-in-glass, 8

platinum resistance, 8, 26

Rankine's, 11, 211, 614n.

Reaumur's, 7

thermodynamic, 12, 205-211

at low temperatures, 283-284

triple point of water as primary fixed

point on, 6n.

Tetrafluoroethylene, heat of chlorination,

182

Thallium amalgam electrode, 546

Thallium chloride, standard free energy
of formation, 597

Thallium halides, entropy, 528

Thermal analysis, 454

Thermal conduction, 2

Thermal convection, 3

Thermal equilibrium (see Temperature

equality)

Thermal expansion, coefficient of, 70-72,

81, 104, 230

of gases, 10, 104
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Thermal radiation, 3, 32-38, 633

thermodynamics of, 291

Thermocell, 533n.

Thermochemistry, 132-182

Thermodynamic potential, 293-309

and chemical reaction, 473

in electrolyte solutions, 391-420, 547

in gas mixtures, 309-310, 317, 321-331

in liquid solutions, 331-391

Thermodynamic properties, from molecu-
lar statistics, 634-635, 641, 654, 656-

684

of selected substances, 698-704

Thermodynamic relationships, 247-252

Thermodynamic reversibility, 192-199,
535

Thermodynamic temperature (see Tem-

perature, thermodynamic)

Thermometry, choice of fundamental in-

terval, 6-7, 13

gas, 19-24

general principles of, 1-14

liquid-in-glass, 14-20

radiation, 32-38, 43

resistance, 24-28, 42

thermocouple, 28, 32, 43

Thermopile, 32

Third law of thermodynamics, 506-516,

536-538, 541, 573-574, 682

exceptions to, 516, 620, 672n.

statistical basis of, 618-621, 627-628

application to ideal gas, 640, 654

Tin, equilibrium with water vapor, 521-

522

Tin (II) oxide, reduction equilibrium with

H 2 ,
522

Titanium tetrachloride, effect on boiling

point of CC14 ,
361

Toluene and benzene (see Benzene)
Transference cell, 558-561

Transference numbers, 535n., 559-563,
598-600

Translational kinetic energy, and heat

capacity, 92, 641

and thermodynamic functions, 641,

653-655

Triple point of water, 6n., 211

Trouton's rule, 259-260, 291

Tungsten and tungsten carbide enthal-

pies of combustion, 182-183

U

Uncertainty principle, 644-645

Urea, thermochemical properties, 528

van der Waals' effects, 110-111, 632,
640n.

and Boyle point, 111

in gas mixtures, 313-316

and inversion of Joule-Thomson effect,

110-111

and lattice energies, 156, 578

in liquid solutions, 352-353

and surface tension, 266-267

van der Waals' equation of state, 71, 110-

111

Van Laar's equations, 368-370

Vanadium oxides, thermodynamic prop-
erties of, 520-521

van't Hoff's law, 474, 477, 486-488, 493,

497, 500, 505

van't Hoff's osmotic pressure equation,

436-437

Vapor pressure, 254-264

isopiestic method, 468

pressure effect on, 260-262

small bubbles and droplets, 275-276

of solutions, 332-348, 353, 423-428

Variance, 70-74, 252, 293, 391, 450-454

Vibrational energy, 666-669

and heat capacity, 93-98, 669

and fundamental modes of vibration,

679-684

and fundamental vibration frequency,

666-671, 676

group frequencies, 683

and thermodynamic functions, 669,

680-684

Virial coefficients, 233, 237-238, 242

Volt, 50-52, 531

Volume, partial molal, 191, 307, 323, 350

W
Washburn's experiment, 105n.

Water, Callendar's equation of state

(steam), 130

fugacity coefficient and relative en-

tropy of steam according to, 290-

291
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Water, compressibility factorand fugacity
coefficient at normal boiling point,

263

dielectric constant, 407n.

enthalpy of formation, 140, 142, 181

entropy, 522, 620

free energy of formation, 544

ionization, enthalpy of, 180, 189

ion product, 593

latent heats of fusion and vaporization,

86, 256

Mollier diagram, 249

pressure effect, on free energy, 232

on vapor pressure, 262

specific heat, 55-56

surface tension, 265

thermal expansion and compressibility,

71-72

transition, ice I-ice III, 254

triple point, 6n.

vapor-pressure equation, 256

vaporization, standard free energy of,

263

Water-gas equilibrium, 523

Wave number, 643

Weston cell, 51-52, 532, 595

Wien's thermal radiation law, 36, 43

Work, 45, 48-49, 531-533, 615

of expansion, 78, 117-119

Work, and second law of thermodynamics,
192-227

Young's modulus, 71

Young's vapor-pressure equation, 255

Z

Zeroth law of thermodynamics, 2n.

Zinc, vapor pressure and molecular sta-

tistics, 685

Zinc chloride, compound with ammonia,
596-597

Zinc cyanide complex ion equilibrium,
601

Zinc electrode, standard potential, 556

Zinc electrode couple, with copper elec-

trode, 555-557

(See also DanielFs cell)

with mercury (I) sulfate electrode, 601

Zinc iodide transference numbers, 599

Zinc oxide, heat capacity and relative

enthalpy, 124

Zinc sulfate, activity coefficient by emf,
601

Zinc sulfide, thermodynamic properties,

527


















