
UC-NRLF,

QA
Z61
M33

jM*B 531 b77

THE PRINCIPLES

OP

ELLIPTIC AND HYPERBOLIC
ANALYSIS

BY

ALEXANDER MACFARLANE, M.A., D.Sc, LL.D.

Fellow of the Koyal Society of Edinburgh
;
Professor ok Physics

IN THE ITnIVERSJTY OF TfXAS

>>«<€

J. S. CUSHING & CO., PRINTERS

BOSTON, MASS., U.S.A.



GIFT OF





GIFT or

u^







'V OF THR ">o

UHIVBRSrTT;





THE PRINCIPLES

OP

ELLIPTIC AND HYPERBOLIC
ANALYSIS

BY

ALEXANDER MACFARLANE, M.A., D.Sc, LL.D.

Fellow of the Koyal Society of Edinburgh
; Professor of Physics

IN THE University of Texas

fTJSIVBESIT

3»i<

J. S. GUSHING & CO., PRINTERS

BOSTON, MASS., U.S.A.



M33

Copyright, 1894,

By ALEXANDER MACFARLANE.



THE PRINCIPLES OF ELLIPTIC AND
HYPERBOLIC ANALYSIS.

[Abstract read before the Mathematical Congress at Chicago,

August 24, 1893.*]

Ix several papers recently published, entitled ''Principles of

the Algebra of Physics,"
" The Imaginary of Algebra," and '' The

Fundamental Theorems of Analysis generalized for Space," I have

considered the principles of vector analysis ;
and also the princi-

ples of versor analysis, the versor being circular, logarithmic, or

equilateral-hyperbolic. In the present paper, I propose to con-

sider the versor part of space analysis more fully, and to extend

the investigation to elliptic and hyperbolic versors. The order

of the investigation is as follows : The fundamental theorem of

trigonometry is investigated for the sphere, the ellipsoid of revo-

lution, and the general ellipsoid ;
then for the equilateral hyper-

boloid of two sheets, the equilateral hyperboloid of one sheet,

and the general hyperboloid. Subsequently, the principles arrived

at are applied to find the complete form of other theorems in

spherical trigonometry, and to deduce the generalized theorems

for the ellipsoid and the hyperboloid. At the end, the analogues

of the rotation theorem are deduced.

FUNDAMENTAL THEOREM FOR THE SPHERE.

Let a^ and jB^ denote any two spherical versors
;
their planes

will intersect in the axis which is perpendicular to a and (S, and

* Jan. 8, 1894. I have rewritten and extended the original paper so as to

include the trigonometry of the general ellipsoid and hyperboloid. At the

time of reading the paper, I had discovered how to make this extension, but

had not had time to work it out.
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2 PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS.

Which we denote by ^. Let OFA (Fig. 1) represent < and
OAQ represent ^^; then OPQ, the third side of the spherical tri-

angle, represents the product a^yg*.

To prove that

a^(B^ = cos ^ cos 5 - sin^ sin5 cos aft

-f Jcos5sin^.«+ cos^sin^.yg_sin^sinJBsina^.cc/8jl

The first part of this proposition, namely, that

cos a^ft^ = cos ^ cos ^ - sinA sin B cos aft,

is equivalent to the well-known fundamental theorem of Spherical

Trigonometry ;
the only difference is,

that a;8 denotes, not the angle included

by the sides, but the angle between
the planes; or, to speak more accu-

rately, the angle between the axes a
and

ft. It is more difficult to prove the

complementary proposition, namely,
that

Sin a''ft^= cos -B sin^ . a -f- cosA sinB -

ft

— sinA sin B sin aft
•

aft,

for it is necessary to prove, not only that the magnitude of the
right-hand member is equal to Vl^^^'^^^^-, but also that its

'

direction coincides with the axis normal to the plane of OPQAt page 7 of "Fundamental Theorems,'^ I have proved the above
statement as regards the magnitude, but I was then unable to
give a general proof as regards the axis. Now, however, I am
able to supply a general proof, and it will be found of the highest
importance in the further development of the analysis.

/r/f \ ^^ '" *^^ "''^'^^ ^"'^ ^^ < ^^^ ^e the terminal line
of

ft^', let OF be drawn equal to

cos5sin^.«4-cos^sini?.^_sin^sinZ?sin«^.«^;
it is required to prove that OF is perpendicular to OF and to

Now, OP=a-^^ = (cosA-smA.J).o^
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Similarly, OQ^^^a^ = (cos B -\- sin B- I3^)'ap

= G0sB'aP + smB'(3^ a^.

By a^ ap is meant the axis which is perpendicular to a and
(3,

after it is rotated by a quadrant round a. In Fig. 2, let OA and

OB represent a and jS, any two axes

drawn from 0, then a(3 is drawn from

O upwards, normal to the plane of the
w

paper. Hence a^ a^ is OL, which is

of unit length, and drawn in the plane

of the paper, perpendicular to a. It

is required to find the components of

OL along a and
/8.

Draw LN par-

allel to /8, and LM parallel to a.

Kow OM or NL is
-.

•

13, and

OiV^ is
cos aft

sin a/?

• a
; hence,

sin ajS

I —5 cos a3

sm afS sin aft
/3-

Similarly, /3' «/S
= -/3"/8«

I^_ cosojS
/8 + a.

sin a(3
' '

sina^

Consequently, the three lines expressed in terms of the axes a,

p, and a^, are

OR = cos jB sin^ . a -f cos A sinB •

(3
— sin A sin Bsina^-a^-,

0P = - sin A

OQ = sin B

COS al3

sin ap
1

ct -f sin^
sina^

• TtCos aB-a — smB ^
sm a/3

(3 -^ cos A •

a/3 ;

/3-\-cosB'ap.
sin«^

Hence cos (01^) (OP)
= - cos J5 sin^^^^^i^ - ^-^^

ysm a^ sm a^J

cos A sinA sinb[^-^^ ^
y sin aft sin «y8

sm
«iS)

= 0.

Similarly, it may be shown that cos(OR){OQ) — 0y hence OR
has the direction of the normal to the plane of OPQ.
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To find the general expression for a spherical versor, when refer-

ence is made to a principal axis.

Let OA represent the principal axis (Fig. 3), and let it be

denoted by a. Any versor OPA, which passes through the prin-

cipal axis, may be denoted by /8", where ^ denotes a unit axis

perpendicular to a. Similarly, OAQ, another versor passing

through the principal axis, may be denoted by y", where y denotes

a unit axis perpendicular to a. The product versor OPQ is circu-

lar, but it will not, in general, pass through OA ;
let it be denoted

by ^^. Now

^^ = ^7"
= cos u cos V — sin ?f sin v cos ^y

-f Jcos-u sinw-^4- coswsiny-y — sinwsinvsiujSy ./Syj

We observe that the directed sine may be broken up into

two components, namely, cos v sin u- /S -\- cos u sin v •

y, which is

perpendicular to the principal axis, and — sin u sin v sin jSy jSy^

which has the direction of the

negative of the principal axis, for

py=a.
Draw OS to represent the first

component cosvsinii' (3, OT to

represent the second component

cosiisin'y-y, and OU to represent

the third component —cosugosv

sinpya. Draw OV, the resultant

of the first two, and OR, the re-

sultant of all three. The plane
of OA and OV passes through

OR, which is normal to the plane

OPQ ;
hence these planes cut at right angles in a line OX

;
and

the angle between OA and OX is equal to that between OV and

OR, for OF is perpendicular to OA, and OR to OX. Let <^

denote the angle AOX, then

cos <f» = "V^^QS^'?; sin^u+ cos^u sin^u -f- 2 cos ^ cos v sin u sin v cos /8y

and

sin <^

Vl— (cos u cos V— sin u sin v cos /8y )

'

sin ?^ sin'?; sin /8y

Vl— (cos I* cosy — sin w sin V cos ^y)^
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Figure 4 represents a section through the plane of OA and V.

Let XM be drawn from X perpendicular to OA-, it is equal in

magnitude to sin <^ ;
and OM is equal in

magnitude to cos
<f>.

Hence the axis $ has the form

cos <^
• € — sin

<f>
'

a,

where c denotes a unit axis perpendicular

to a. And

^^ == cos -f sin ^(cos <{>
• e — sin

<f>
> a)^

is determined by the equations,

cos 6 = cos u cos V — sinu sin v cos jSy, (1)

sin sin <^
= sin u sin v sin f3y, (2)

sin cos cf>-e
= cos v sin u- ^ -\- cos it sin v •

y. (3)

The unit axis e may be expressed in terms of two axes p and y,

which are at right angles to one another and to a, and the angle

which c makes with
/3. Hence the more general expression for

any spherical versor is

$^ = eosO -{- smO\cos <fi{cos ij/
' p -{ sini/^-y)

— sin<^.ap.

We observe that the line OX is the principal axis of the

product versor POQ.

To Jind the product of two spherical versors of the general form

given above.

The two factor versors may be expressed by
IT

^" = cos u -\- sin u (cos <^
•

/?
— sin <^

• «) ^,

IT

and rf
= cos v + sin v (cos <^'- y

— sin <^'- a) ^,

where /S and y denote any unit axes perpendicular to a. The

product has the form

^"'= cosiC'H- sin i(; (cos <f>"-y— sin <^"- a) .

Since
^"t^''

= cos it cos v — sin w sin v cos It; — ff

+ jcosvsinzt'^-f-coswsin'u-T;
— sin?t sini; sin^>;.4^r;P,

'$>" Oif
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and cos ^rj
= cos <^ cos <^' cos (By -\- sin <^ sin

<}>',

and Sin $r}
= cos <^ cos <l>'

sin /3y
•

/3y

—
(cos <^ sin <f>''l3a-{- cos <^' sin <^

•

ay),

therefore cos iv = cos u cos v

— sin u sin v(cos <^ cos <^' cos /8y+ sin <^ sin <^'), (1)

sin w sin <f>"
= cos u sin v sin <^' -f cos ?; sin u sin <^

+ sin u sin 2? cos <^ cos <f>'
sin /8y, (2)

sinwcos<^"-€ = cos w sin V cos c^'-y ^-cosv sin?^cos<^-/S

4- sinw sin -y (cos <^ sin <^'- /8a+ cos <^' sin <^. ay). (3)

From equation (1) we obtain tv, then from (2) we obtain <f>", and

finally from (3) we obtain c.

When the factor versors are restricted to one plane, the axes

coincide
;
that is, r}

= t The above formula then becomes

^9+0'
_ gQg ^ cos 0'— sin sin 6'

-h (cos ^ sin ^'+ cos & sin^) {cos <^
•

j8
— sin

<j5)

•

aj ,

which is the fundamental theorem for trigonometry in any

plane.

When the axes are coplanar with the initial line, we have y
identical with p, but <^', in general, different from <^. The theo-

rem then becomes

^Y =cos^cos^'-sin^sin^'cos((j!)'-<^)

+ \ (cos 6 sin^' cos <^'+cos^' sin ^ cos <^)
• ^

+ sin^sin^'sin(<^'-<^).j8a

—
(cos ^ sin ^' sin <^'+ cos ^' sin ^ cos <^)

• ap.

If, in addition, the middle term of the sine vanishes, the axis

of the product will also be in the same plane with the other axes

and the initial line.

To prove that the sum of the squares of the three components of
the product of two general spherical versors is unity.

For shortness, let a; = cos ^, y = sin cos <^, z = sin ^ sin <^ ;

if' = cos 6\ y' = sin 0' cos
<f>',

z' = sin 0' sin <^'. Then
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cos^^" = {xx'
—

yy' COS fty
—

zz'y

= x^x'
^ + y-y'

^

cos^ySy + zh' ^ — 2 xx'yy' cos ^y — 2 xx'zz'

+ 2 yy'zz' cos Py,

(sill 0" cos <!>"• €y=\xy' 'y + x'y'l3-{- yz' -^a — zy'-ya]^
—

a^2/'2 + a;'y + 2/"2;'^+2!^2/'"+ ^^x'yy' cos (Sy+2 xyy'z' cos y^a
—

2yz'x'y' cos/8y«
—

2yzy'z' cos (3a
•

ya,

(siii^"siii<^")2 =ja;2;'+x'2; + ?/2/'sin^yP

= xh''^ + 2;^a;'^ + 2/-?/'^ sin-ySy + 2 it'a;'2;2;'+ 2
iC2/2/'2!'

sin )8y

-\-2x'yy'z siii/3y.

The sum of tlie square terms is
(x'^ -\- y'^ -\- z^) {x'^ -{- y'^ -{- z'^) ,

that is, 1
;
and the sum of the product terms reduces to

2yy'zz' (cos fty
— cos /3a

•

ya) + 2 xyy'z' (cosy 13a -\- sin/8y)

— 2 yz'x'y' (cos /3ya— sin^y).

Now, p and y both being perpendicular to a, cosySy = cos /3a
•

ya,

and sin^y = — cosy/3ot
= cos/3ya. Hence the sum of the product

terms vanishes.

FUNDAMENTAL THEOREM FOR THE ELLIPSOID
OF REVOLUTION.

Imagine a circle APB (Fig. 5) to be projected on the plane
of AQB, by means of lines drawn from the points of the

circle, perpendicular to the plane,

as PQ from P; the projection
of the circle is an ellipse, hav-

ing the initial line for semi-major
axis. Let A. denote the axis of

the circle, and ft that of the

plane ;
all lines perpendicular to

the initial line are in the pro-

jected figure, diminished by the

ratio cos\/3, while all lines parallel

to the initial line remain unal-

tered. Any area A in the circle will be changed into A cos \/3

in the ellipse ;
and this is true whatever the form of the area.

For shortness, cos A/3 will be denoted by k.

Fig. 5.
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The projecting lines, instead of being drawn perpendicular to

the plane of projection, may be drawn perpendicular to the plane
of the circle; the ratio of projection then becomes secAyS, which

may likewise be denoted by k, but k is then always greater than

unity. The figure obtained is an ellipse, having the initial line

for semi-minor axis. By the revolution of the former ellipse

round the initial line we obtain a prolate ellipsoid ; by the revo-

lution of the latter, an oblate ellipsoid.

The Fundamental Equation of Elliptic Trigonometry.

The elliptic versor is expressed by OP (Fig. 6), and

The problem is, to find the correct analytical expressions for

these three terms. If by w we denote the ratio of twice the area

of the sector AOP to the square on

OA, then,

OM u—— = cos-
OA k

and —— = Zcsin
OA k

Hence, if ^ denote a unit axis nor-

mal to the plane of the ellipse, the

equation may be written

Fig. 6.
(fc/S)" COS- + sm-'

k k
{m

But we observe that it is much simpler to define u as the ratio of

twice the area of AOP to the rectangle formed by OA and OB,
the semi-axes

;
for then we have

{kp)
" = cos u -\-Qmu' {kp) ^.

We attach the A; to the axis rather than to the ratio, because in

forming a product of versors it does not enter as an ordinary

multiplier. When the elliptic sector does not start from the

principal axis, the element u must still be taken as the ratio of

twice the area of the sector to the rectangle formed by the axes.

The index f is due to the rectangular nature of the components ;

it expresses the circular versor between OA and MP. When
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oblique components are used, the index is then w, the angle of

the obliquity. This is proved in Fundamental Theorems, page 10.

To find the product of two elliptic versors which are in one plane

passiyig through the principal axis.

Let the two versors be represented by OQA and OAP (Fig. 6);

then their product is represented by OQP. Let p denote a unit

axis normal to the plane ;
the former versor may be denoted by

ikfiy, and the latter by {Ivfiy. Then

(fe/8)"(A;^)''
=

{cos'M + sin?^.(A;/?)^i Jcosv + sin v.(fe/3)^J

= cosw cos-y-f COS?* sin?; •

(A:/8)^4-cos'y sinw -(A:/?)^
TT IT

+ sint*sin?;.(A;y8)^(A;y8) .

Now {kPY{kpY^{kl^Y+'
= eos(u -\-v) + sin{u-{-v)'{kfS)^

= cos ii cos V — sin u sin v
TT

+ (cos u sin V + cos v sin u) •

{k/3) ^.

Hence {k/BY (kfSy = ft''
= - 1. From this we infer that A: is

such a multiplier that it does not affect the terms of the cosine.

To find the ^woduct of two elliptic versors which intersect iii the

principal axis of the ellipsoid of revolution.

Let —— OA and —— OQ (Fig. 7) represent the two versors
;

O-t (JA
their axes are ft and y, respectively, each being perpendicular to

a, the direction of the principal

axis OA. Let u denote the ratio

of twice the area of OPA to the

rectangle formed by the semi-axes _r'

of its ellipse, and v the ratio of

twice the area of OAQ to the rec-

tangle formed by the semi-axes of

its ellipse. The versors are denoted

by {kftY and (fey)". Now

(kfty = cos u+ sin u •

(kft) ^,
TT

and (kyY —cosv-\-siTiv-{ky)^,
n

therefore {kftyikyY = cosit cosv + cos v sinu •

{kft)
TT a: ^

-f cos?^ sinv •(A:y)^-f sin?* ^\\\v-{kfty{ky).
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By means of the principle that the first power of k is k, we see

that the second and third terms contribute

k (cos V sin 11-/3 + cos usinv- y)

to the Sine component. It remains to determine the meaning of

the fourth term, that is, the values of the coefficients x and y in

the equation

{kl3)
^
(ky)

^ = a; cos /3y -h 2/ sin /3y
•

ySy^.

From the form of the product of two coplanar versors (page 9),

it appears that x is — 1
;
the value of y appears to be either — k^

or —1.

On the former hypothesis the directed sine OB would be

A:cos'y sinu- jS + kcosu sinv-y
— A:^sin^t sin -u sin ;8y a.

xr

Now OF = cos u -a — k sin u -/S^jSy,

n
and OQ = cosv-a-j-ksmv- y^/3y ;

consequently cos ( OB) ( OP) = - A:^ cos v sin^u f^^l&L _ S21&L

7 9 • • /C0S-y8y 1
, o— k- cos u sm w smv

f

—f^ h sm By
\siir^y sm/Jy

which vanishes, as before (page 3) . Similarly cos ( OB) {0Q) = 0.

Hence the above expression gives the direction of the normal to

the plane of the product versor. But suppose that —- OA and

-—— OQ are quadrantal elliptic versors, then gosu = cos v = 0, and

sin u = sin v = 1
; consequently the cosine of the product would

then be — cos ^y and the sine of the product — k^ sin^y • a . But
it is evident that in this case the product versor is circular,

namely, — (cos/8y + sinySy
•

a^). Hence it appears that F cannot

enter as a factor of the third term of the Sine.

On the other hypothesis the directed sine is

k{cosvsmU' 13 + coswsini;-y)
— sin % sin v sin^ya.

This expression satisfies the test of becoming circular under

the conditions mentioned
;
but its direction is not normal to the
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plane of the product versor. How then, is its direction related

to that plane ? It will be found that it has the direction of the

conjugate axis to the plane. Draw OV (Fig. 8), to represent

k (cos V sin u •

/? + cos usinv-y), the component perpendicular to

the principal axis OA, and OU' in the direction opposite to the

principal axis to represent — sinw sinv smjSy, also OU" to repre-

sent the same quantity multiplied by k^
;
and draw OR' and OR,

the two resultants. The plane through OA and OV will cut

the ellipsoid in a principal ellipse AXB, and as it passes through
the normal OR it will cut the plane of the product ellipse at

right angles ;
let OX denote the line of intersection. Draw XA'

parallel to OA and XD the tangent at X, and let denote the

circular versor between AO and OX. Now

tan^ =^^=^OM OV
k sinu sinv sin^y

Vcos^v sm^u + cos^i* sin^v + 2 cos u cosv sin u sinv cos /3y

but tanA'XD = -k^ cotan $

_ _ k^GOs^v sin^it-f cosV sin^^+ 2 cos u cost; sinu sin'?; cos /?y
siiiu sin'y sin^y

= cotan VOR' = tan ^Oi^'.

Thus the direction of OR' is that of the conjugate axis of the

plane of the product versor.

Let <l> denote the ratio of twice the area of AOX to the square
of OA

;
it is equal to the angle which OX made with OA before

the contraction. The direction of the axis was then cos <^ along
OB, and sin<^ along OA'

; by the contraction, cos<;^ has been
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changed into k cos <^ ;
hence the axis of the ellipsoid, along the

direction of OR', is A; cos <^
• c — sin <^

•

a, where e denotes a unit

axis in the direction of OB.

The magnitude of the product versor is determined by the

cosine function,
cosw cos-y — smu sinv cosjSy.

Suppose that an elliptic sector OXZ (Fig. 7), having the area of

the third side of the ellipsoidal triangle, starts from the semi-

major axis OX, and let OY and OZ be the rectangular projec-

tions of the bounding radius vector OZ. As the small ellipse

OPQ is derived from a principal ellipse by diminishing all lines

parallel to OX in the ratio of OX to OA, that is, in the ratio of

Vcos^<^ + k- sin^^ to 1, while the transverse lines remain unal-

tered; the ratio of OF to OX is equal to the corresponding ratio

in the principal ellipse ;
hence the ratio of OY to OX is equal to

cos u cos V — sin u sin v cos jSy.

Let tv denote the ratio of twice the sector OPQ to the rectangle

formed by OX and the minor semi-axis of the ellipse OPQ ;
this

ratio is equal to the ratio of twice the corresponding circular sec-

tor to the square of OA. By the corresponding circular sector is

meant that circular sector from which the elliptic sector was

formed by contraction along the two axes. Also, let $ denote

the elliptic axis, cos
cfj

> ke — sin
<f)

- a. The product versor then

takes the form
n

^"^ = GOSw +sinw(cos<^-A:£
—

sin<^««)^,

the quantities iv, (f>,
and e being determined by

cos ic = cos u cos V — sin u sin v cos )8y, (1 )

sm.» =
^'" "^^°^"^"^y

(2)
Vl — cos^w

— CQS'^sini^-^ + cos^ sini;'Y .o\

sinw cos <^

Consequently we have for the elliptic axis OP,

^_ k{Gosv sinu- (^-{- cosi^sin^-y) — sinu sinv sin fSy a

Vl — cosho



PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS. 13

The locus of the poles of the several elliptic areas is the original

ellipsoid.

To find the product of two ellipsoidal versors of the above general

form.

The two factor versors are expressed by
n

^« = cos?^+ sinw(cos<^-A;y8— sin<^-«)^,

and yf
= cos v + sin v (cos cf>' -ky

— sin <^'
•

«)
^

;

it is required to show that their product has the form
rr

^" = cos 10 + sinw(cos(^"-A:e
—

sin(^"-a) ^.

We have

i"7f
= (gosu + sin?/-^^) (cosv + sinv-r;^)

= cosw cosv — sini^ sin v cos^ry
n

+ \cosu sin -u-
77 + cos'U sinit-^ — sin it sin 1; Sin ^7; p.

The problem is reduced to finding the value of cos ^7;
and

Sin ^7;.
Now $rj

means the elliptic versor between the elliptic

axes
cos (ft-k/^

— sin <^
• a and cos

cf>' -ky
— sin

<f>'
• a.

To find them, we apply the following principle :

Restore the elliptic axes to their spherical originals, find the

versor between these unit axes according to the ordinary rule,

and reduce its axes back to the ellipsoidal form. Applied to the

above, the rule means : suppose k = 1, form the cosine and the

directed Sine, and introduce k as a multiplier of those components
of the directed Sine which are perpendicular to a. Hence

cos $ri
= cos <^ cos <^' cos I3y + sin ^ sin <^',

and Sin $r]
= cos <^ cos <l>'

sin fty
• a

—
k(cos(fiSm<f>'

'

fta-\-sincf}GOS(f>' -ay).

If we express Sin It; as sin^Ty^/;, what must ^77 now mean?
Its length is not unity, nor is it normal to the plane of | and

7;.

It means

cos <^ cos <^^ sin/?y« — k(cos<f> sm<f)'
• (3a + sin<^ cos<^^- oty) ,

that is, the elliptic axis conjugate to the plane of $ and
-q.
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Hence

cosw=cos?^cos?;— sini^ sinv(cos<^ cos<^'cos/3y+ sin<^ sin<^'), (1)

sinw sin <^" = cos u sin v sin <^' + cos v sin u sin <^

+ sin u sin v cos <^ cos <^' sin fBy, (2)

sin w sin <j)" 'c = cos i^ sin-y cos <^'
•

y + cos v sin u cos
</>

•

(i

+ sinwsinv(cos<^sin<^'')8a+ cos<j!>'sin(^«ay). (3)

FUNDAMENTAL THEOREM FOR THE GENERAL
ELLIPSOID.

To find the product of tivo ellipsoidal versors vjhose axes have the

same directions as the minor axes of the ellipsoid.

In the general ellipsoid there are three principal axes mutually
rectangular ;

in Fig. 9 they are represented by OA, OB, 00. We
shall suppose the greatest semi-axis to be taken as the initial line,

but either of the others might be chosen.

Let unit axes along OA, OB, and 00 be

denoted by a, (B, y, respectively ;
let k^ de-

note the ratio of OB to OA, and k that of

00 to OA. A versor POA in the plane
COA is expressed by {k^Y, while a versor

AOQ in the plane of ^0-B is expressed by

(Zj'y)"; u denoting the ratio of twice POA
to the rectangle COA, and v that of twice AOQ to the rectangle

AOB.

Now (A:^)"(A:'y)'=Scosw + sinw.(ifcy8)^Hcos'y-f sinv-(A;'y)|^

= COS w COS V -f cos-v sinu' (k^)^

+ COS u sin V •

{k'y)
^
-f sin u sin^? • (k^)

^

(k'y) ^.

The fourth term, as it involves two axes which are at right

angles, can contribute nothing to the cosine
;

the cosine is

cos w cosv. The second and third terms contribute kcosv sinu- /3

-f k' cos usinv-y to the directed Sine
;

while the fourth con-

tributes either — kk' sinu sin-y • a or — sin?^ sin v • a.

It may be shown, in the same manner as before (page 2), that

k cos V sin u- 13 + k' cos it sin 'y • y
— kk' sin u sin v • a

Fig. 9.
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is perpendicular to both OP and OQ, hence has the direction of

the normal to their plane ; and, by the principle stated at page

13, it is seen that

fccosv sini6-/8 + fc'cosi^ sin-y-y
— Sinwsinv.«

is the axis conjugate to the plane of POQ.
Let a plane pass through the principal axis and the perpen-

dicular component k cos v sin U' f3 -\- k' cos u sin v-y; as it passes

through the normal to the plane POQ it must cut that plane at

right angles, and OX, the line of intersection, is the principal

axis of the ellipse PQ. Let <^ denote the elliptic ratio of AOX,
and

ij/
the angle between jS and cos v sin u- (3 -{ cos u sin v •

y, and w
the ratio of twice the elliptic versor POQ to the rectangle of the

semi-axes of its ellipse; then the product versor takes the form

$'" = cosw + sinz(;Jcos<^(A;cosj//-/5 + A;'sini/^- y)
—

sin<^
•

«J ^.

For cos 10 = cos w cos v, (1)

sinw sin
<f>
= sin u sin v, (2)

sinw cos <^ cos
j/a
= cos v sin u, (3)

sinwcos<^ sin»/^
= cosi^ sinv. (4)

To find the product of two ellipsoidal versors of the above form.

Let the one versor be ^", where

$ = cos <^ (A; cos ij/

' ^ -]- k' sinij/
'

y)
— sin

cf>
•

a,

and let the other be
ry'',

where

77
= cos<^'(A:cosj/''-y8-}- A;' sin»//'-y)

—
sin<^'- «; .

it is required to show that ^V has the form C% where

^ = cos 0"(A: cos
ij/"

'

(3 -{- k' sin
\p -y)

— sin <^"
• a.

Since ^""rf
= cos u cos v — sin u sin v cos ^-q

-f- J
cos 'y sin ?^

•

^ -f cos 1^ sin 'y .

r;
— sin u sin v Sin

^7; J ^,

the problem reduces to finding cos ^77
and Sin^i;. By ^rj

is meant

the elliptic angle between the elliptic axes ^ and -q ;
the ratio of

the sector
^-q

to the rectangle of its ellipse is the same as the

ratio of the sector of the primitives of i and -q
to 1. Hence the

cosine is obtained by supposing k and A:' to be one, and the Sine is
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obtained by the same method, and then reducing by k the compo-
nent having the axis /?, and by k' the component having the

axis y. We obtain

cos ^7)
= cos <^ cos <^' cos {xp

—
i//') + sin <^ sin <f>\

and Sin ^-q
= cos <^ cos <^' sin

(i//
—

i//' )
• «

-f k\(io^<ji cosj/Asin<^'— cos<^'cosj/^'sin<^)-y

— k (cos (^ sin
\p
sin <^'

— cos <^' sin i//'
sin <^)

•

/?.

Hence cos w
= cos w COS V— sin i^ sin v

J
cos <^ cos <^' cos (i//

—
»//') + sin <^ sin cf>'\,(l)

sinK;cos<^"cosj/A"

= cos u sin V cos <^' cos i//' -\-
cos v sin z* cos <^ cos \}/

-f sini*sinv(cos<^sini/^sin<^'
—

cos<^'sinj/A'sin<^)j (2)

siniycos<^"sinj//"

= cos u sin V cos <^' sin ij/' + cos v sin u cos <^ sin
i(/

— sin I* sin v (cos <j!)
cos

«/^
sin

</>'
— cos <^' cos i/a'

sin
</>) , (3)

sin2(;sin<^" = cosw sin-u sin</)' + cosv sin w sin <^

— sin u sin v cos <^ cos <^' sin (i//
—

i//')
. (4)

The elliptic axis is given in magnitude and direction by

^^^-^^2 The locus of these axes is an ellipsoid derived
Vl — COS^^ry

from the original ellipsoid by interchanging the ratios k and k\

FUNDAMENTAL THEOREM FOR THE EQUILAT-
ERAL HYPERBOLOID OF T^WO SHEETS.

In order to distinguish readily the equilateral from the general

hyperbola, it is desirable to have a single term for the equilateral

hyperbola. The term exdrcle, with the corresponding adjective

excircular, have been introduced by Mr. Hayward, in his "Algebra
of Coplanar Vectors." These terms are brief and suggestive, for

the equilateral hyperbola is the analogue of the circle. If we
consider the sphere, we find that its hyperbolic analogue consists

of three sheets. Two of these are similar, the one being merely
the negative of the other with respect to the centre, and are

classed together as the equilateral hyperboloid of two sheets
;
the
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third is called the equilateral hyperboloid of one sheet. For

brevity we propose to call these the exsphere of two sheets, and the

exsphere of 07ie sheet, the two together being called the exsphere.

In treating of the exsphere of two sheets, we shall generally

consider the positive sheet.

To find the expression for an exspherical versor, the plane of which

passes through the principal axis.

Let OA (Fig. 10) be the principal axis of an equilateral hyper-

boloid of two sheets, QAP a section through OA, AOP the sector

of a versor in that plane, and PM
perpendicular to OA. The versor is

denoted by -^ OP, or (OA){OP),OA
if OA is of unit length. Now

-^ 0P= -^ (OJf+ MP)OA OA^
^ ^

OA ^ OA

The problem is to find the proper

analytical expression for this equa-

tion. Let ^ denote a unit axis

normal to the plane of QAP, and

u the ratio of twice the area of the

sector AOP to the square of OA,
or rather to the area of the rec-

tangle AOB, and let i denote V— 1.

starting line is indifferent, is expressed by

^'"
= cos m + sm m .

y8^

= cosh u + i sinh u- ^^.

OM • MP fWe observe that coshu = -—-, and smhu = ——, and that /5

expresses the circular versor between OA and MP. What is the

geometrical meaning of the i? It expresses the fact that coshw

and sinh?* are related, not by the condition

cosh'^w 4- ^mh^u = 1,

but by the condition cosh^w — sinh^w = 1.

The above equation, if the
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With this notation, we can deduce readily from any spherical

theorem the corresponding exspherical theorem.

A plausible hypothesis is that the i before sinh u may be con-

sidered as an index f to be given to the axis
(i, making

y8'"
= cosh u -\- sinh w •

^'^ ;

but this would leave out entirely the axis of the plane, for the

equation would reduce to

yS*"
= cosh it — sinhw.

The quantity here denoted by i is the scalar V— 1, while the

index f expresses the vector V— 1.

The series for e'" is wholly scalar; but the series for e'"-^^

breaks up into a scalar and a vector part.

In specifying an exspherical versor, it is necessary to give not

only the ratio and the perpendicular axis of the plane, but also

the principal axis of the versor. This is the reason why the

spherical versor has to be treated with reference to a principal

axis, in order to obtain theorems which can be translated into

theorems for the exspherical versor.

To find the product of two coplanar exspherical versors, when the

common plane passes through the principal axis.

Suppose the versors shifted without change of area until the

line of meeting coincides with the principal axis. Let QOA
(Fig. 10) be denoted by /?"', and ^OP by yS""", expressions which

are independent of the shifting. Then
K

^'* = coshw + isinhu' /3'^,

^"^
= cosh V + i sinh v -

(3 ;

therefore ^8*"^'"
= (cosh ic + i sinh u- p^) (cosh v + sinh v- 13 )

n
= cosh?^cosh'V^-^(coshwsinhv^-cosh^'sinh^^)•^^

-f i^ sinh u sinh v -

J3'' \

but i^ = —
,
and

/J""
= —

;
hence

piuj^iv
_

(,Qg]^ ^^ cosh V + sinhw sinh v
IT

+ i{q,o^\\u sinhv -f- coshr sinhw)-/8^.

Hence ^"^'^ = ^«(«+'').
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Suppose that the sector QOP is shifted without change of area

till it starts from OA, and becomes AOR. Then

= coshu cosh V 4- sinh u sinh v,OA '

and = cosh u sinh v -j- cosh v sinh u.
OA

To find the product of two diplanar exspherical versors when the

X>lane of each passes through the principal axis.

Let the two versors POA and AOQ (Fig. 11) be denoted by /J""

and y% the axes f3 and y being each perpendicular to the princi-

pal axis a. Then

yg^y = (cos iu + sin iu- (S^) (cos iv + sin iv-y^)

= cosm cosiv — sinm sinw cos^y

+ \
cos iv sinm •

;8+ cosm sin iv • y
— sin iu sin I'v sin^y

• «^ .

But cos iu = coshii, and sin iu — i sinh w, therefore,

^uyv
_ cosh It cosh'U + sinhw sinhv cos^y,

TT

+ 1
J
cosh v sinh It •

/? + coshw sinhv ^y— i sinh it sinhv sin^Sy
•

ctp.

Hence coshjS'^y'"
= cosh?^ coshv + sinhw sinli-u cos/3y

and Sinh
jS^'^y'"

= cosh v sinh u-fS -{- cosh u sinh v • y
— i sinh ii sinh v sin^y a.

By expanding, it may be shown that

(cosh^"y-)2- (Sinh/3V)' = 1^

or (cos^'VO^ +(Sin^*V'')^ = 1-

The function Sinh is the same as Sin, only an i has been

dropped from all the terms of the latter. The product versor

is also represented by a sector of an excircle of unit semi-axis.

The first and second components of the excircular Sine are per-

pendicular to the principal axis
;
hence their resultant,

cosh V sinh w •

/8 + cosh u sinh v •

y,

is also perpendicular to the principal axis. Let it be represented

by OF (Fig. 11). The diificulty consists in finding the true

direction of the third component, — isinhw sinh-u sin^Sy a. At
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page 53 of The Imaginary of Algebra, I suggested the following
construction :

With V as centre, and radius equal to sinh w sinh v sin ySy,

describe a circle in the plane of OA and OV, and draw OS Or OS^

a tangent to this circle.

But another hypothesis presents itself; namely, to make the

same construction as in the case of the sphere.

Draw OU" opposite to OA, and equal to sinh w sinh ?; sin ^y ;

and find OR, the resultant of OF and OU. We shall show that

OR satisfies the condition of being normal to the plane POQ,
while OS or OS^ does not.

The reasoning at page 2 applies to give the expression for

the vectors OP and OQ. Hence the expressions for the three

vectors Oi2, OP, OQ, are

OR = cosh V sinh u- ^ -{- cosh u sinh v-y — sinh u sinh v sin /3y
•

fty,

0P = - sinhu^-^^'B + sinhw -;-i— • y + cosht^ .^,sm Py sm I3y

OQ = — sinhv 3 — sinh v ^^^-^ • y + cosh v • By.
sin^y

^
sin^y

^ ^^

It follows, as there, that

cos{OR)(OP) = 0, and cos (OR) (OQ) = 0.

Hence OR is normal to the plane POQ, and OS is not.

The function of the i before the third component of the Sine

is to indicate that the magnitude of the Sine is not -\/0V^ + VR^
but -VOV'- VRK This gives
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sinh^^Y

/{cosh^v sinh^w + cosh^w sinh^-y + 2 cosh u coshv sinh u sinhtj cos/37
— sinh^M sinh2i> sin2/37}

= \/(coshwcosh'y + sinh m sinhv cos ^37)^

OR
The expression gives the excircular axis both

in magnitude and direction. The plane of OA and OV cuts the

exsphere in an excircle, and as it passes through the normal OR,
it must cut the plane POQ at right angles. Let OX be the line

of intersection (Fig. 12). Draw XM perpendicular to OA-^

draw XD a tangent to the excircle at X, and XA' parallel to

OA, and OR' the reflection of OR with respect to OV. Let <^

denote the excircular angle of AOX; that is, the ratio of twice

the area of AOX to the square of OA.

As OR is normal to the plane POQ, it is perpendicular to OX;
but OF is perpendicular to OA; therefore the angle AOX is

equal to the angle VOR. Also as the angle AOR' is the com-

plement of i^'OF and A'XD the complement of AOX, the line

OR' is parallel to the tangent XD.

OV
Hence cosh (h

— —^
-.

OA VOV'-VR'

4
and

cosh^i? sinh%-|-cosh-?^ sinh^'U+ 2coshi^ cosh i; sinh u sinh?; cos/8y

(coshw coshv + sinhw sinhv eosfSyy
— 1

MX VR
sinh <^

=
OA ^OV'-VR'

sinh u sinh v sin (3y

V (cosh u cosh V + sinh u sinh v cos /3y )
^ — 1

(f^^ir Tar
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The above analysis shows that the product versor of POQ
may be specified by three elements : first, c a unit axis drawn

perpendicular to OA in the plane of OA and the normal to the

plane of POQ', second, <f)
the excircular angle of AOX determined

by OA and OX drawn at right angles to the normal in the plane

of OA and the normal
; third, w the versor of a unit excircle

determined by the conditions of passing through the points P
and Q and having its vertex on the line OX.

When u and v are equal, half of the line joining PQ is the

sinh of half of the versor of the product. Let y denote the sinh

of each of the factor versors, then it is easy to see from geomet-
rical considerations (v. The Imaginary of Algebra, page 53), that

w
sinh- =— 2/ Vl + cos fSy

therefore
cosh^

=— V2 + 2/'(l +cos/^y)
'

But it is also evident that the distance from O to the mid-

point of PQ is

4/(l-COS/3y) + 2(/ + l)

^2(l + C0S/8y)-f2

The excess of this distance over cosh— gives the distance by
z

which the axis has been displaced along OX.
Hence the product versor may be expressed by an excircular

axis and an excircular versor as i''", Avhere

$ = cosh <f>-€
— i sinh cfya.

To determine these quantities, we have, as in the case of the

sphere, the three equations

coshw = cosh u cosh v -{- sinh u sinh v cos f3y, (
1 )

sinhw cosh<^ = sinlut sinh v sinfty, (2)

sinhw sinh <^
• e = cosh v sinh w •

y8 + cosh u sinh v •

y. (3)

The axis e may be expressed in terms of two axes ft and y

forming with a a set of mutually rectangular axes, and the angle

if/
which it makes with

jS', so that for the excircular axis we
have

^=cosh<^(cosj/A.^H-sini/^.y)
—

?'sinh<^-«.
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In the above investigation it is assumed that the magnitude
of the perpendicular component of the Sine is necessarily greater

than the component parallel to the principal axis. This means

that

cosIi^t; sinh^w + cosh^w sinh-v + 2 cosh u cosh v sinh u sinh v cos /8y

is necessarily greater than sinh^i^ sinh^v sin^/Jy.

Let sinySy = 1
;
then cos/3y = ;

and we have to compare

cosh^'y sinh^w + cosh^w sinh^v with sinhV sinh^v.

Now each term on the left is greater than the term on the right ;

therefore their sum must be greater, for each term is the square of

a real quantity. Next let sin^y = 0; then cos/?y = l; the for-

mer term becomes a complete square while the latter is
;
hence

the former must always be greater than the latter.

To find the product of two exspherical versors of the general kind.

The two versors are expressed by
K.

^"* = cosh u-\-i sinh u (cosh (ft- fS
— i sinh (jy-a)^,

IT

and
7)'"
= cosh v -]-i sinh v (cosh (f>' -y

— i sinh
(f>'

- a)^ ;

it is required to show that their product has the form

^'"'
=: coshw -h i sinh to (cosh <f>" -e — i sinh <^"

•

«) ^.

We have ^'" = coshtt + i sinhu -^^

and
7)'"
= cosh v-{-i sinh v-r}^,

therefore

^U^iV
_ (,Qg]^ ^ (,Qg]^ ^ _J_ g^J^]^ ^ gj J^]^ ^ gQg ^^

TT

-f i
\
cosh u sinh V'r)-{- cosh v sinh U'i—i sinh u sinh v sin $rj

•

^r; j

•

It remains to determine cos irj and Sin
^rj.

Since ^ = cosh <f)- (3
— i sinh <^

•

a,

and
r;
= cosh

<f>' -y
— i sinh <^'

•

a,

and as we have seen that the i is merely scalar, and does not

affect the direction, we conclude that
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COS $ri
= cosh <^ cosh <^' cos (3y

— sinh <^ sinh (f>',

Singly = cosh<^ cosh<^' sin^y • a

— I (cosh <^ sinh <^'
•

|S« + cosh <^' sinh <^ -ay).

Substituting these values of cos irj
and Sin

Iry,
we obtain

coshz<; = coshi^ cosh-u

+ sinh u sinh -y (cosh <^ cosh <^' cos ;8y— sinh <j«)
sinh <^'), (1)

sinhwj sinh<^" = cosh?^ sinhv sinh<^'+ cosh-u sinh w sinh <^

4- sinh u sinh v cosh <^ cosh <^
'

sin jSy, (2)

sinh to cosh<^"- e = cosh w sinh v cosh <^'« y+ cosh v sinh w cosh<^ •

fS

— sinh w sinh V (cosh <^ sinh <^'- j8a4- cosh <^' sinh </)• ay).(3)

Let us consider, more minutely, the above equations

cos $rj
= cosh <^ cosh <^' cos /8y

— sinh <^ sinh cfi',

and Singly = cosh <^ cosh <^' sin /8y. a

— i (cosh <^ sinh 4>''f3a-\- cosh <^' sinh <^
•

ay) .

If we square these functions, we find

(cos ^77)^
= cosh^c^ cosh^<^' cos^^y + sinh^<^ sinh2<^'

— 2 cosh <^ cosh (^' sinh <^ sinh </)'
cos ySy,

(Sin^>;)2
= cosh^c^ cosh^c^' sin^ySy

— cosh^ sinh^c^'
—

cosh^<^' sinh^<^

— 2 cosh <^ cosh <f>'
sinh

<f>
sinh <^' cos (ia ay ;

but cos /8a ay = — cos/8y, and cosh^ = 1 + sinh^, therefore,

As the symbol i does not affect the geometrical composition,
Sin ^7; must be normal to the plane of $ and rj; hence, if we

analyze it into sin
It; -^r;, we must have sin|7;

=Vl— (cosl^?;)^,

and^- Sinl.;

V1-(C0S|t;)^

Consider the special case, when y = (3.
Then

Gosir) = COsh<^ cosh <;/)'— sinh <^ sinh <^',

and Sin^T; = — i(cosh <f>
sinh <^'

— cosh
(f>'

sinh <^) f3a.
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Hence It; becomes an excircular versor. Consider next the special

case where y is perpendicular to
yS.

Then

cos ^77
= ~ sinh <^ sinh <f>',

and Sin^r; = cosh <^ cosh <^'- aH-t(cosh<^ sinh <^'-y4-cosh<^'sinh<^.y8).

It appears that the locus of the poles of all the axes is the

equilateral hyperboloid of one sheet, (v. page 27.)

FUNDAMENTAL THEOREM FOR THE EQUILAT-
ERAL HYPERBOLOID OF ONE SHEET.

To find the product of a circular and an excircular versor, when

they have a common plane.

K MLA
Fia. 13.

Let AOP represent a circular, and POQ an excircular, versor

(Fig. 13) ;
and let them be denoted by (S^ and /5'^ We have

l^upv ^ i^ui-iv
^ (cos w + sin w .

(3^) (cosh'y + i sinh v •

fS^)

= cos u cosh V — i sin u sinh v

4- (coshv sin?^ + icosu sinhv)-^^.

What is the meaning of the i which occurs in these scalar func-

tions ? Is the magnitude of the cosine

or IS it

V (cos w cosh 1;)^— (sin^^sinhi?)^,

cos u cosh V — sinu sinh v ?
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At page 48 of Definitions of the Trigonometric Functions, I show-

that

cos(w + iv) = -—^, and sin(w -f- iv) = -—
^j

and that the ordinary proof for the cosine and the sine of the

sum of two angles gives

OK^ OM ON MP NQ .

OA OA OP OA OP '

that is, cos {u -j- iv)
= cos u cosh v — sin u sinh v,

, KQ^MP ON OMNQ .^^
OA OA OP OA OP'

that is, sin {u -\- iv) = sin u cosh v + cos u sinh v.

What, then, is the function of the i? It shows that if you
form the two squares, taking account of it, their sum will be

equal to unity. Also, in forming the products of versors, it must
be taken into account. When it is preserved, the rules for cir-

cular versors apply without change to excircular versors.

Here we have the true geometric meaning of a bi-versor, and

consequently of a hi-quaternion ; for the latter is only the former

multiplied by a line.

As a special case, let «^ = ^ ;
we then have

Li

j8^

*"= — i sinh v -f cosh v-fi^ \

this versor evidently refers to the conjugate hyperbola.

Again, let % = tt
;
we have

^TT+i.
= — (cosh V + % sinh-v • ^),

which refers to the opposite hyperbola.

In the following table, the related excircular versors are placed
in the same line with their circular analogues, and the diagram

(Fig. 14) shows the related versors graphically.
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Circular.
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Fig. 15.

,f+iu

To jind the product of tico versors of the equilateral hyperholoid

of one sheet, when each passes through the principal axis of the

hyperholoid.

Let P be a point on the excircle of one sheet (Fig. 15), OP its

radius
J
draw OB equal to OA, in the plane of OA and 0P\ AB

is joined by a quadrant of a cir-

cle, and BOP by a sector of an

excircle. Let u denote the ratio

of twice the area of the sector

POB to the square of OA
; ^ is

the ratio of twice the area of

BOA to the square of OA.
Hence if /8 is a unit axis per-

pendicular to OB and OA, the

expression for the versor POA
is/S^^*". Similarly, the expression for the versor AOQ is yi+'^

Now )8^"^"*y^^"'
=

(
—isinhw+ cosh i^-j8^)(— ^sinh'y-^ cosh -u-y^)

= — (sinhw sinhv -f- cosh?^ cosh-u cos^Sy)

—
f i(cosh2t sinhv •

jB -\- coshv sinh?i •

y) -f cosh?^ cosht? sin^y • a^.

Now the magnitude of coshw sinhv •/? -f cosh'y sinhi^«y may be

greater or less than cosh ?^ cosh v sin ^y. If it is greater, then

the directed sine may be thrown into the form

—
i{ (cosh It sinhv-ySH- coshv sinhw-y)

— tcoshw coshv sin^y -aj,

consequently, the ratio is excircular, and the axis excircular;

hence the product takes the form

—
^*"', where ^ = cosh cfy-e

— i sinh
(ft

-a.

But if coshw cosh V sin /3y is the greater, the directed sine

takes the form

—
jcoshit coshv sin(Sy a -\- 1 (cosh u sinh'y-;8 4- cosh 2; sinhw-y) j.

The ratio of the product is circular, but the axis is excircular.

Let w denote the ratio
;
the axis has the form cosh <^

• «— i sinh<^-e,

so that the product is of the form

—
^"' = — cos^t7 — sin

!(;(cosh <^
• a — i sinh<^ •

e)^.
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In the former case, the locus of the poles of the axes is the

exsphere of one sheet; in the latter, the opposite sheet of the

exsphere of two sheets.

To find the product of two general versors of the equilateral hyper-

holoid of one sheet.

The one versor may be represented by

where a? — y'^ -\-z^ = 1, and /8 is perpendicular to a. Similarly,

the other versor may be represented by

where «'- —
2/'^ 4- 2;'^ = 1, and y is perpendicular to a.

The cosine of the product is

xx' H- yy^ cos ^y — 2:2!',

and the Sine of the product is

i{xy^
'

y + x'y
•

ft) + (xz' + x'z -\- yy' sinySy)
• a.

As before, if (xy'y-{-(x'yy-\-2xx'yy'Gosfty is greater than

{xz' + x'z + yy' sin (SyY, the ratio of the product is excircular
;
but

if less, it is circular. In the former case the axis is an axis

of the exsphere of one sheet, in the latter it is an axis of the

exsphere of two sheets.

To find the product of two versors which pass through the prin-

cipal axis, when the one belongs to the exsphere of two sheets, the other

to the exsphere of one sheet.

Let the former versor be denoted by j8^", and the latter by

yf+ff. Then

"y^ = (cosh w+ i sinhw •

l3^){
— i sinh-y+coshv •

y^)

= — I (cosh w sinh-y -f- sinhw cosh'j; cos^y)
n

+ 5
cosh u cosh v-y -\- sinh u sinh v-fS

— i sinh u cosh v sin j3y
-

a\ '\

As the magnitude of cosh?^ cosh v-yH- sinh w sinh v-yS is by

reasoning similar to that at page 23 seen to be greater than

sinh w cosh v sin ^y, we see that the axis is excircular; and the

i before the scalar term shows that the ratio is excircular. From
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comparison of the table, page 27, we see that the product versor

has the form

^^^""j where $ — cosh <j>'€
— i sinh

<j>
•

«,

the equations being

sinh 10 = cosh u sinh v + sinh u cosh v cos /3y, (1 )

coshw sinh <^
= cosh u sinh v + sinh ?* cosh v cos

jSy, (2)

coshw cosh <ji'€
= cosh i* cosh v •

y + sinh u sinh v •

)8. (3)

FUNDAMENTAL THEOREM FOR THE
HYPBRBOLOID.

The theorems for the hyperboloid are obtained from the theo-

rems for the exsphere in the same manner as the theorems for the

ellipsoid are deduced from those for the sphere.

Two general versors for the hyperboloid of two sheets are

expressed by ^'" and >;% where

^ = cosh<^ (cosi// -kp -\- sinj/^ -^V)
~

^' sinh<^ •

a,

and
-q
= cosh

<j!>' (cos j/a'- fc/3 + sin
i//'- h'y)

— i sinh <^'- a.

Now I*" ry*"
= (cosh u + i sinh u-^^) (cosh v + i sinh v -

rf^)

= cosh u cosh v + sinh u sinh ^' cos ^77

H-5i(coshv sinhw.^H- cosh M sinh v.'>7) + sinh i* sinh v Sin|>;| .

The problem is reduced to finding the versor
$r}. We apply the

same principle as that employed in finding the versor between

two elliptic axes (page 13), namely: Restore the axes to their

excircular primitives, find the versor between these excircular

axes (page 23), and change its axis according to the ratios of the

contraction of the hyperboloid. This gives

cos irj
= cosh <^ cosh <f>'\GOs{\f/

—
\p') \

— sinh <^ sinh <^',

Sin ^-q
= cosh <^ cosh <^' sin

{ifz
—

ij/')
-a

— I (cosh <^ sinh <f>' sinxf/— cosh <f>'
sinh <^ sin if/') -k/B

4- i(cosh <^ sinh <^' cos i/^— cosh <^' sinh <^ cos ij/')
•

k'y.

In this manner, each theorem proved for the exsphere may be

generalized for the hyperboloid.
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DB MOIVRE'S THEOREM.

To find any integral power of a versor.

Let n denote any integral nnmber. For the general spherical

versor we have (^")''=^*'", because the axes of the factor versors

are all the same. Hence

cosnu-\- sin nil- ^"^

= (cos?* + sinw'^ )**

= cos^'u + n cos^^^i* sinw . ^^ -\
—^— ^ cos**"^!* sin^w •

^''+,

from which it follows that

cos nu = cos"it — ^^ ^^
~—- cos "~^m sinV + ,

and sin nu = n cos"~^w sin u — ^^—~
^^
———- eos'^'hi sin^u + .

Similarly for the exspherical versor (^'")", as the axes are all

the same (^")" = ^*'*'',
and

cosh72i^ + i sinhnw • ^^ = (cosh?^ + i sinh w • | )'*

= cosh"w +iii cosh**"^?^ sinh U'$^ -\
—^^ -f cosh'*~^w sinh-w •$''+',

Zi I

therefore

coshnw = cosh^w + ^^^~ ^ cosh''~^i^ sinh^t* +,
2!

and sinh wit = n cosh'*~^t* sinhi* + n\^n— )\n— ) qq^x-z^^y^u-\-.

The only difference in the case of the general ellipsoidal versor

is that u is measured elliptically and ^ is an ellipsoidal axis.

So for the general hyperboloidal versor, u is measured hyper-

bolically and ^ is a hyperboloidal axis.
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To find any integral root of a versor.

Consider first the case of an ellipsoidal versor. If ii is defined

as the ratio of twice the sector to the rectangle formed by the

semi-axes, it cannot be greater than 27r. Then (|")" is unambigu-
u

ously equal to ^. Hence

cos- + sin-.|^ = (cos?* 4- sinw.p)«.n n ^ ^

If cos u is not less than sin u, then

u u "^ 1 « L
cos- + sin -.^^ = (cos%)" \1 + tanw.|^(«

= {co^uY
-j

1+ -tan I* • ^2 + _L__Ztan2w -^ -\-
[ ;

therefore

cos ^ = (COS I.)U 1+ i^^i^tan^..

_(n-l)(2n-l)(3»-l)^^^, I

. . u . xM^^ (n-l)(27?-l)^ , >and sm- = (cosw)n { -tan it — ^^ ^V^— ^tan^i< + )-
-

n ^ ^
(n n^Sl >

But if sin u is not less than cos n, we have the complementary
series

« i J5L _^ i
|" = (sintt)"pJl-|-cotw.^ ^J«.

Consider next the case of a hyperboloidal versor. A versor for

the hyperboloid of two sheets is denoted by ^'". Now
1 '-'* IT 1

(^«)" = ^" = Jcoshtt + isinhw.pi"
i ir i

= (cosh?*)";i + i tanhw . P J%

for coshw is always greater than sinhii
;
therefore

cosh^ = (coshw)^ 1 1- ^^f^ltanh^wn ( 71^ 2 !

71*4! )
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(n-l)(2n-l)and sinh- = (coshw)'* \ -tanhi* —
n^Sl

tanh^w+ I'

But a versor for the hyperboloid of one sheet is expressed by

^^-^*". Now

(p+»")n ^ p '» =
5

_ ^ sinh w + coshw .

PJ**

= (cosh uyi^""[l-i tanhu-f^} %

which is expanded as before.

POLAR THEOREM.

To deduce in the trigonometry of the sphere the polar theorem,

corresponding to the fundamental theorem.

The cosine theorem, which is the fundamental theorem of

spherical trigonometry, expresses the side of a spherical triangle

in terms of the opposite sides and their included angle. In

treatises on spherical trigonometry, it is shown how to deduce

from the cosine theorem a polar or supple- _
mental theorem which expresses an angle

in terms of the other two angles and the

opposite side. It is our object to find the

polar theorem corresponding to the com-

plete fundamental theorem.

Let the versors of the three sides of the

spherical triangle (Fig. 16), taken the same

way round, be denoted by |% rf*, ^"y where

$, rj, l are unit axes, and a, b, c denote the

ratio of twice the area of the sector to the area

of the rectangle formed by the semi-axes of its circle (which, in

this case, is simply the square of the radius). The angles in-

cluded by the sides are usually denominated A, B, (7, respectively,

but what it is necessary to consider in view of further generali-

zation is the angles between the planes, or rather the versors

between the axes. These in accordance with our notation are

denoted by r^t,, ^^, and
^yj respectively ;

the axes of these versors,

which are also of unit length, are denoted by i;^, ^|, and
I17,

Fig. 16.
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respectively, and they correspond to the poles of the corners of

the triangle as indicated by the figure.

The fundamental theorem is

^"r;*
= cos a cos b — sin a sin b cos $rf

n

4- [cos6 sina-^ + cosa sin6->;
— sina sin6 sin^iy.^ryp ;

but as ^^ is taken in the opposite direction, we have

^^ = cos a cos b — sin a sin b cos irj

+ I

— Gosb sina-^— cosa sin 6 •

>y+ sin a sin6 sin^iy -^r/p.

The polar theorem is obtained by changing each side into the

supplement of the corresponding angle and the angle into the

supplement of the corresponding side. Hence

cos (tt
—

irj)
= C0S(7r

—
y}^) COS (tt— ^^)

—
sin(7r

—
rjC) sin(7r

—
^^) C0S(7r

—
c) ;

that is, cos ^t;
= — cos r}^ cos ^$

— sin
rj^ sin ^$ cos c.

When A, B, C, are used to denote the external angles between

the sides, the above equation is written

cos C= — cosA cosB — sinA sinB cos c.

Apply the same rule of change to the Sine part, and we obtain

Sin(7r-^>y) = -COS(7r-^^) Sin(7r-r;0 -COS(7r->70 Sin(7r-^^)

+ sin(7r
—

r)^) sin(7r
—

^i) sine • ^ ;

that is, Sin ^t;
= cos ^i Sin rj^+ cos rjC Sin ^|+ sin r)^ sin ^$ sin c •

^.

To deduce the polar theorem for the ellipsoid.

Let ^*, if, t," denote the three versors of the original ellipsoidal

triangle taken the same way round; then the corresponding
versors of the polar triangle are

i;^, t,^, and ^rj.
The third versor

of the original triangle is given in terms of the other two by the

theorem

^'^
= cos a cos b — sin a sin b cos ^rj

TT

-f [

— cos6 sina- ^ — cosa ^iwb-r) + sina sin6 Sin^iy^.
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The third versor of the polar triangle is obtained in terms of

the other two by changing each versor into the supplement of its

corresponding versor
;
hence

cos $r}
= — cos r}^ COS ^$ — sin ri^ sin ^$ cos c,

and Sin^i; = cos^^ Sinr;^ + cos
rj^ Sin^^ + smrjt sin^^ Sin^'.

In form it is the same as for the sphere ;
the only difference is

in the expressions for the ellipsoidal axes i, r), C, and the manner

of deducing the cosine and Sine of the versor between two such

axes. (See page 13.) The polar ellipsoid is not identical with

the original ellipsoid; the ratios of the two minor axes are

interchanged.

To deduce the polar theorem for the exsphere of two sheets.

Let $'% rf^, l'" denote the versors for the three sides of a triangle

of the exsphere of two sheets, taken in the same order round.

The axes i, rj, ^ have their poles on the exsphere of two sheets

(page 23) ;
it is required to deduce the theorem for that polar

triangle. For the original triangle, we have

^'« = cos ia cos ib — sin ia sin ib cos ir)

IT

+ \

— COS ib sin ia-i— cos ia sin ib"q-\- sin ia sin ib Sin ^>; J
^.

By changing each versor into the supplement of the correspond-

ing versor, we obtain

^>y
= —cosr;^ cos^l — siui;^ sin^^ coshc

rr

+ \(iOS^^ Sin?;^+cos?y^ Sin^l-f I sin^^^ sin^l sinhc • ^p.

The above cosine equation has a marked resemblance to the

fundamental equation of non-euclidean geometry (see Dr. Giin-

ther's Hyperbelfunctionen, pages 306 and 322). It is true that 77^

and ^$ are not simple circular versors, but the functions are cos

and sin in a generalized sense. I venture the opinion that non-

euclidean geometry is nothing but trigonometry on the exsphere ;

and that the so-called elliptic and hyperbolic geometries are iden-

tical with the ellipsoidal and hyperboloidal trigonometry developed
in this paper.
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To deduce the general polar theorem for the exsphere.

Let $", rf, C denote the three sides of an exspherical triangle ;

the axes ^, rj, ^ are exspherical, but the ratios a, b, c may be cir-

cular or excircular, or be compounded of tt or f and an excircular

ratio. For the original triangle, we have

^' = cos a cos b — sin a sin b cos iri

-1- J— cosa sin6-^— cosa sin6.7;+ sina sin6 Sin|?yj ,

and for the polar triangle,

^>y
= — cos ry^ cos ^^

— sin r;^ sin ^^ cos c

+ 1
cos C$ Sin r]^+ cos

rj^
Sin ^^+ sin

rjC sin ^^ Sin ^^p.

Here the functions cos and sin are used in their most general

meaning.

SINE THEOREM.

To prove that if $'^, rf, ^ denote the three versors of a spherical

triangle, then

sin rj^ _ sin^l^ _ sin ^7;

sin a sin 6 sine

We have cose = cos a cos 6 — sin a sin& cos
^77,

and sinc-^ = — cos 6 sin a •^— cos a sin 6 •

77+ sin a sin & sin ^17 •|>7.

By squaring the second equation, we obtain

sin^ c = cos^ b sin^a+ cos^ a sin^ b 4- sin^ a sin^ b sin^ irj

-f 2 cos a cos b sin a sin b cos $ri ;

then, by substituting for cos $r) from the first equation, and reduc-

ing, we obtain

sin a sin b sin $r)
= Vl— cos^ a— cos'^ 6— cos^ c+ 2 cos a cos b cos c.

Hence sin|2 ^ sin^ _ sin^^^
sin c sin a sin b

This theorem is also true for an ellipsoid of revolution, for then

sina sin6sin^>7 = A; Vl — cos^a— cos^6— cos^c+2cosacos6cosc.
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To find the analogue for the exsphere of the sine theorem.

Let $, rj, ^ denote exspherical axes, and a, b, c versors which

may be circular, or excircular, or both combined. Then, with the

general meaning of the sin and cos functions,

sin a sin 6 sin ^iy
= Vl — cos^ a— cos^ 6— cos^ c+2 cosa cos 6 cos c.

Hence sinj, ^ sin^^ ^ sin||
sine sin a sin 6

We have seen that, if a and b are both simply excircular, it

does not follow that c is (page 28).

SUM AND DIFFERENCE THEOREMS.

The reciprocal of a given versor.

By the reciprocal of a given versor is meant the versor of

equal index but of opposite axis. Let ^" denote the given

spherical versor; its reciprocal is (— |)". But it may be shown

that^" = (-^)^ For
TT

^-'* = cos(— i*) + sin(— w) .^^

= cosu — sinu' i^
n

= cos u + sin u* (
—

^)
^

= (-«".

Similarly the reciprocal of an exspherical versor ^*" is (— 0*"
or ^~'", and

^-iu
_ coshw — i sinhw • | .

The reciprocal of an ellipsoidal versor ^" is also ^~", the only
difference being that | is no longer a spherical, but an ellipsoidal

axis. So for the hyperboloidal versor.

To find the analogues of the sum and difference theorems of

plane trigonometry.

At page 45 of " The Imaginary of Algebra," I have shown how
to generalize for the sphere the following well-known theorems

in plane trigonometry, namely,

cos (A-{- B)-\- cos(A— B)= 2 cos^ cos B,

cos (A -\- B) — GOs{A — B) = — 2 sinA sin B,
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sin(^ + -B) + sin(^ — B) = 2cos5 sin^,

sin(J.-f B)— sin(^ — B)= 2 cosA siiiB,

and cos (7 + COS Z> =
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EXPONENTIAL THEOREM.

To find the exponential series for an ellipsoidal versor.

In the expression |" for a spherical versor, the u and i are truly

related as index to base, for log^ = ^l log^^ = u .

^^, and therefore

^ = e"'^^. Consequently

2! ^4!

*{'-f,-f,-}-^'

In the case of the spherical versor, ^ = cos
<j^

•

/?
— sin <^

•

ce, or

cos <^ (cos j/^

•

/? + sin
j/^

•

y)
— sin <^

•

a, where a, (3, y are unit axes

mutually rectangular.

The expansion for the ellipsoidal versor ^ differs only in the

way in which u is measured, and in the expression for ^, which is

now GOS<f>-k^
—

sin<^.a, or cos<^(cosj/'- A;y8+ smKf/'Jc'y)
— sin </>•«.

To find the exponential series for a hyperholoidal versor.

The expression for a versor on the exsphere of two sheets is

^\ Kow

ir
.

ii:=1+—+ — +
2! 4!

The expression for a mixed exspherical versor is ^"'*"''. Now

tu-\-iV __ g(M+it)).ff

= i+(„ + fo).^i+(!L±M!.f. + Oi±M!./i +

2!
"^

4!

,
(

,

. (u-{-ivY ,
) A
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Both the cosine and the sine break up into two components, the

one independent of t, and the other involving i. Here we have

the sine and the cosine of the ordinary complex quantity.

As the ratio of a hyperboloidal versor may be circular or excir-

cular, or both combined, the general versor may be expressed by
^*, where a is as general as stated. Then

2! 4!

To find the exponential series for the product of two ellipsoidal

versors.

In the paper on The Fundamental Theorems of Analysis Gener-

alized for Space I have shown that if ^" and rf denote any two

spherical versors, then

^ry" = e"-^^+''"''^

.^\ _1_ J- /^o,-i^_L^,-^2\2 I

1
/„, . t'i ! ... _2\3.

where the powers of the binomial are expanded according to the

binomial theorem, but subject to the special proviso that the order

of the axes |, -q
must be preserved in all the axial terms. Thus

^rf^l-^U^e^V'-q^

o !

4- etc.

= l — — \u^-\-2uV COS^r; + ^^5
Zi I

4- — S^t'* + 4w^u cos ^7/ -f 6wV+4wv^cos|?;4-'u^i

— etc.

(1)
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+
I
^ _

|.^
(3i^2^ + v') + etc.

I
.

-n^ (3)

-j_
j
_J_ 2 uv + -^ (4 w^^ + 4

i^v"^)
- etc.

|
sin ^>;

•

?^^. (4)

In the case of the sphere

^ = cos <f>' p — sin <^
•

a,

and
7]
= cos

<f>' -y
— sin

<;t'
• a

;

consequently cos ^>y
= cos

</>
cos <^' cos fSy + sin <^ sin

<j>',
and

Sin It;
= cos

cj>
cos <^' sin jSy-a

—
(cos <^ sin

cf>'
-

13a -\- cos <^' sin <^
•

ay ) .

For the ellipsoid of revolution the expansion is obtained by

introducing ellipsoidal axes $ and tj ;
and the corresponding theo-

rems for the hyperboloid are obtained by changing the axes and

indices into hyperboloid axes and indices.

To find the exponential series for the product of two hyperboloidal

versors.

Let i and
rj

denote any two hyperboloidal axes, and u and v

general hyperboloidal ratios (p. 40) . Then the product is

The form of the theorem is the same as before.

LOGARITHMIC VERSORS.

In the paper on The Fundamental Theore^ns of Analysis Gen-

eralized for Space, page 16, I have shown that when the index of

a, in e"^*^, is generalized, we obtain the expression for the versor



42 PKINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS.

corresponding to a sector of a logarithmic spiral. Let w denote

the general angle, and a^ the generalized versor
;
then

= 1 + ^ cos w H —
1

-^ h etc.

( . .

,

A^sm2w
,
J.^sin3w

, ^. ^ ) f
4-

I
^ sinw H — h ~ + etc

nA COS w aA sin w . a^

V
It is there shown that w is the constant angle between the radius,

vector and the tangent, or rather that it is the constant difference

between the circular versor from the principal axis to the tan-

gent, and that from the principal axis to the radius vector. It is

also shown that A sinw gives the ratio of twice the area of the

corresponding circular sector to the square of the radius, while

A cosw gives the logarithm of the ratio of the radius vector to

the principal axis.

I have there called such a logarithmic versor, when multiplied

by a length, a quinternion. In his Synopsis der Hoheren Mathe-

matik, Mr. Hagen has pointed out that the proper classical word

is quinion. A quaternion means a ratio of three elements mul-

tiplied by a length ; therefore, a ratio involving an additional

element when multiplied by a length, is a quinion.

In the paper on The Imaginary of Algebra, an excircular ana-

logue is deduced, namely, af^ = e^*'"", but there are in reality

three, according to whether A or w, or both, are affected by the

To deduce the four forms of logarithmic versor.

First: circular-circular. Let ^" denote a general spherical

versor, then

dM __ /3»*|^ ^ pu COS tv+u Bin w^ 2

==l +
^^««4.|!^2._^|!^^3.^etc.

Here w denotes the constant difference between the versor from

the principal axis to the tangent and that from the principal

axis to the radius vector.
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Second: circular-excircular. Let iw denote the constant dif-

ference between the excircular versor from the principal axis to

the tangent, and that from the principal axis to the radius

vector; then

2 3

= 1 -t- wcosh^y-^-— cosh2io + — cosh Sty +
2 ! 3 !

-\-i^u sinhw -f— sinh2w +^ sinhSw; + |
• ^^.

Third : excircular-circular. Let ^'" denote a general exspherical

versor
;

it is equal to e***"^^, and here f denotes the constant sum
,

of the circular versors above mentioned. Let that constant sum

be any other circular versor w. Then

IT

tiu __ piu -I'" __ piu
cos w+iu sin w •

^'2

= l + ^^.^- + iM.^^2._^i|I^^3. + etc.
^ ! ol

2! 4!

= 1 — — cos 2 w + — COS 4 w — etc.

i-i -lu cos 10 cos 3w-\- etc. >-

+ |_^sin2«; + ^sin4w;-|-|^(2! 4! )

+ i
]
w sin w —^ sin 3 w + etc. > • $^.

Here both the cosine and the sine consists of a real and an ap-

parently imaginary part. The geometrical meaning has already

been explained (page 25).
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Fourth : excircular-excircular. Let iw denote the constant sum
of the excircular versors mentioned in the second case. Then

tiu __ giM
•

f*'" __ gtMCOshw-Msinhtc
•

^^

= 1 + fo . i" +^ • e" +^ • e'" +

= 1 - ^(oosh 2W + i sinh 2«) •

i^) +

4- m(cosh w + i sinhw • ^) —

= 1 — —- cosh 2 w + ^ cosh 4 w —

\-i\n cosh w —— cosh ^w -\- )

—
-j

w sinh w —— sinh 3^4- ^-
• ^^

-\-^\-~ sinh 2 w + f- sinh 4t(; - |
• ^^.

To find the product of two logarithmic versors of the most general
kind.

Let ^ and
r}

denote general axes, and u, w, v, t general ratios
;

that is, each may be a sum of a circular and an excircular ratio.

Then $1 and
rjt

each denote a general logarithmic versor. Then

The powers of the binomial are formed according to the same
rule as before. (Fundamental Theorems, page 18.)

COMPOSITION OP ROTATIONS.

To find the resultant of two elliptic rotations round axes which

pass through a common point.

Two circular rotations are compounded by the principle that

the product of the half rotations is half of the resultant rotation.



PRINCIPLES OF ELLIPTIC AND HYPERBOLIC ANALYSIS. 45

Let any two circular rotations be denoted by ^" and rf, and

their resultant by I'* x ry ;
then

= \ COS - COS sm - sm - cos ^w

+
/'cos^sin I

• ^ + cos
I sin^

.

,;
- sin

| sin|
Sin^^V

|-

'•

Let a; = cos - cos - — sm - sin - cos
^rj,

2 2 2^
2/
= Vl — a^,

COS- sin-'|4-cos-sin-«w — sm- sm- ISm^w
2 2 2 2^ 22 \

then ^« X •»?"
= a;2 -

2/2 + 2a;2/
•

^^.

The elliptic generalization is obtained by generalizing the axes

i and
rj
and finding cos^ry and Sin^iy, as at page 15.

To find the resultant of two hyperbolic rotations round axes which

pass through a common point.

Let ^"^ and rf" denote two exspherical rotations which have a

common principal axis
;
let their resultant be denoted by ^*" x ly*".

By analogy we deduce that

iu iv

= \ cosh ^ cosh - + sinh - sinh - cos in
( 2 2 2 2'

+ /cosh I sinh ^
• ^ + cosh- sinh^ -rj-i sinh^ sinh | Sin irj^ I \

\ 2 2 2 2 2 2 J )

Let X = cosh ^ cosh | + sinh ^ sinh ^ cos ^.

cosh- sinh- • ^+cosh- sinh- > n—i sinh- sinh- Sin ^77

^_ 2 2 2 2
' 22'

Then p X ^ = a^ + 2/' + 2
a;2/

•

^^.
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Suppose a fluid to move round the axis i, each particle describ-

ing a hyperbolic angle u, and then round the axis
17 by a hyper-

bolic angle v, the principal axes of the two motions coinciding ;

the resultant gives the angle, the plane, and the principal axes of

the equivalent single motion of the same kind. The axis of that

motion does not pass through the intersection of the axes of the

components.
A more general result is obtained by supposing the ratios to

be complex; the theorem is then expressed by the spherical

theorem taken in a generalized sense, just as in ordinary algebra
a; may be positive or negative.

To find the effect of an elliptic rotation on a line.

The effect of a circular rotation ^" upon a unit axis p, is given

by the equation

^"p = cos^/o
• ^ + sin?* Sin^/o + cos w Sin(Sin^/o)^.

{Principles of the Algebra of Physics, page 100.)

It was shown by Cayley that the effect of ^" upon p is given

by the Sine of the product ^
'^

p^ $^. For by the expansion of

(cos^_sin|.,y(coB|
+

sin|.,^)

the directed sine is found to be

cos^- .

p + sin^^cos ^p
• ^ + cos^ sin| Sin ip

-
sin^^ Sin(Sin^p)^.

But cos^^. p = cos^l cos^p . ^ + cos2|Sin(Sin ^p)|,

therefore the directed sine is

cos ^p
• ^ -I- sin w Sin ip + cos u Sin (Sin ip) |.

To generalize for an elliptic rotation we substitute the more

general value of i and form cos |p, Sin^p, and Sin (Sin ^p)^, accord-

ing to the rules stated at page 15. For example, let

^ = fc cos <^
• ^ — sin <^

•

a,

p = sin ^ •

y + cos ^ • a
;
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then

cos $p = cos sin 6 cos fty
— sin

<^
cos 0,

Sin^p = cos <^ sin ^ sin/3y
• a + A:(cos<^cos0- /Set

—
sin</)sin^.ay).

To find the effect of a hyperbolic rotation on a line.

Consider the simplest exspherical analogue of the spherical

theorem of the preceding article
;

it is

pp = cos^/o
• ^ + i sinhw Sin^p -|- coshi* Sin (Sin ^/o)^.

But ^ is now an excircular axis of the form

^ = cosh <f>' /3
— i sinh <^

• a.

Let, as before, p = sin ^ • y 4- cos^ • a
;

then cos^/o = cosh<^ sin^ cos^y
— i sinh <^ cos ^,

Sin ip = cosh <^ sin ^ sin )8y
• a + cosh <^ cos 6- fia— i sinh <^ sin ^ •

ay,

Sin (Sin ^p)^

= cosh^ <^ sin 6 sin /3y
•

«y8 + cosh^ <^ cos ^ • ct — sinh^ <^ sin ^ • y

— i cosh <^ sinh <^ cos O-ft—i cosh
<;^
sinh <^ sin B sin ayfi

• a.

The effect of a hyperbolic rotation is obtained by taking the

more general value of ^ and applying the hyperbolic rules of

multiplication.
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