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PREFACE.

The greater part of the following Work was

drawn up by the Author, when engaged in a public

situation in the University, chiefly for the benefit of his

own pupils. Under the hope that it may be useful to

othfers, he has endeavoured to render it as complete as

the nature of his plan appeared to admit ; and he now
submits it to the judgment of the public.

Should this Book fall into the hands of any who
have made considerable advances in pure Mathematics,

they will perhaps find little to repay the labour of

perusal. Few however of those, who have entered

upon mathematical studies during their residence in the

University, continue the pursuit after their first degree ;

and far the greater part are contented with such a

portion of analytical knowledge, as may suffice to

illustrate the chief propositions in Newton's Principia,
It is for this class of students that the following
Treatise is intended; and if it be found useful by
them, the object of publication is answered.

In preparing these sheets for the Press, the Author

proposed to himself two rules, from which he has not

intentionally deviated in a single instance.
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PREFACE.

The first rule was, to illustrate every thing in the

simplest and most conspicuous manner.

Many are deterred from the study of Fluxions by
the apparent abstruseness and difficulty of the science :

and of those, who by the system of University Lectures

are induced to undertake it, comparatively few have

resolution to proceed. It is highly important that every

help should be afforded; and in this, as well as in

every other, department of literature, those persons

are well employed, who by facilitating the attainment

of knowledge increase the number of students, and thus

add to the general stock of intellectual improvement.

In pursuance of this plan, the Author has on most

occasions begun with the simplest instance of the

application of fluxional principles, and has then pro-
ceeded to the more general cases. The custom of

deducing conclusions in particular instances from

general expressions, however useful in practice, does

not furnish the mode, by which Fluxions can be made

easy to a beginner. He should be led on by degrees
from the most familiar to the general propositions.

Every step will thus be intelligible ; and he will have

the double advantage of increasing his knowledge, and

at the same time of improving by the best exercise

his intellectual powers.

For it must not be forgotten, that one of the great

benefits to be derived from mathematical studies is the

discipline of the mind. The mere knowledge of certain

truths is, to the great body of literary men, a matter

only of secondary importance, when compared with

the advantages, whic^h result from the exercise of the
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understanding, and the improvement of the reasoning

faculty. The Elements of Euclid have in this view-

been justly considered as of singular excellence. Their

peculiar value arises in a great measure from the

perspicuity of every part. The chain of reasoning is

preserved entire
;

and the reader proceeds from step

to step with the argument fully before him, and with

an evidence of its truth which cannot be doubted.

It were to be wished, that all elementary books

might, as far as possible, be composed upon this

principle. Abstruseness is never to be affected for its

own sake ; and it scarcely can be affected by those, who

regard the benefit of others as the end of their labour.

The method of Fluxions rests upon a principle

purely analytical ; namely, the theory of limiting ratios
;

and the subject may therefore be considered as one of

pure mathematics, without any regard to ideas of time

and velocity. But the usual manner of treating it

is to employ considerations resulting from the theory
of motion. This was the plan of Sir Isaac Newton in

first delivering the principles of the method; and it

is adopted in the follow^ing Work, from the belief, that

it is well adapted for illustration, and calculated to give
the greatest facilities to the Student.

The second rule, which has been observed in this

Treatise, was to introduce every subject which an

ordinary student is likely to require.

With this intention, the Author has freely availed

himself of former publications. While he has carefully

avoided every thing abstruse, and which did not seem
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to fall within his plan, he has introduced, as he

believes, many articles, which were not easily accessible,

on account of the scarcity of the works which con-

tained them. Some of the Propositions of Cotes and

De Moivre are in frequent use; but their works are

not always to be procured.

The arrangement will be found to differ in some

respects from that of former publications, which are

of a similar nature ; and it has been a principal object
to reduce, as much as possible, the whole to system,

and to preserve distinctness in the several parts.

Of the manner, in which this attempt has been

executed, it is for others to decide.

The Author's acknowledgments are due to the

Syndics of the University Press, for the assistance

afforded to him in the publication of this Work.

A Table of Errata is subjoined. It is hoped that

any other errors, which may occur, are not material;

and that they are not more numerous than in such

a case may be expected on a first impression.

East-India College, Herts.

Oct. 17, 1810.



The Reader is desired to make the following

Corrections.

Page 7. line 3. Insert 2xx'^x\
34. Figure, m is in En produced.
44. line 9 from the bottom, for PFHR, read PFpr.
52. 19. for "

.*. a quadrant/' read "
.'. the arc of a quadrant.'

54. F is omitted in Fig. 1.

66. 4th and 5th lines from bottom, for SA, read Sa.

83. line 2. for TRS, read YRS.
102. 12. for

"
circle," read " center."

112, 14. for BCR, redd BSR.

xx 'Vux—x^
115. 4 from bottom, for x x Vox— j:% read

"

120. 4 from bottom, for x-\-a x '/^2ax-\-x^, read x-\-a-\- \/2a*+a:*

122. 4. for y, read —y.
J 40. 3. for ,43424968, read ,43429448.

142. 4. for air, read ex.,

145. JB is omitted in the Figure.

155. 2. for =, read oc.

174. 6 from bottom, after
"
\/JC*-i-£C%" insert "where BC

is the semi-minor axis."

184. 2. for SFr, read 8FR, SPr. ^

8nd '^'

194. 2 from bottom, after T= ===-
, read xe"^.

3 X >>/'^ma

203. bottom line, for f—c, read c—y.

215. line 6. for x=o, read a;=0.

219. line 1 from bottom, for ..,.

—
;^,

read =::— xj^^.

222. 6 and 7. for " x + " and " -^ «*+/* read " * x " and

T T
229. bottom line, for -

, read —
.

4 4

232. lines, for " 70," read " 74."

233. bottom line, for 2"a:, read 2"~*«;.

257. lines 6 and 13. for
" Art. 129," read "Art. 135."

lb. line 12. for 2^, read 2^.

258. lines 4 and 5. Insert "2" in the denominator of the third term

of the series.
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Page 269. line 12. for — , read ^° m
272. 5. for 1+t. read 1+a".

XX
,

Xx
274. 10. for "

, read -t r^.

Vl-x' 1~*

275. lines 5, 6 and 7. Multiply 3 into the numerator of the third

term of the series.

285. last line but one. for na:y, read x'ly".

lb. last line, read Ttax**"*"'.

288. line 2. denominator, for af", read x".

294.. 1. for " chord," read " cord."
'

2ry , 2ry
336. II. for - =, read

351. 6. denominator, forw— 2», read ».2n.

352. 6. for ar^x, read x^'x.

352. Figure, omit the tangent PL.

359. line 15. for5P»-5F% read V'^P^^^SF*.



FLUXIONS,

Chap. I.

TO FIND THE FLUXIONS OF QUANTITIES.

Art. (1.) Quantities of all kinds are here considered as

produced by motion. Thus, if a point a b

A be conceived to move in the direction

AB^ it will trace out the line AB. If ^fi move parallel to

itself, it will trace out a parallelogram,

as ABCD. If this parallelogram be sup-

posed to move in a direction perpendicular
to it's plane, it will generate a paralle-

lepiped, as AGFB. Hence solids are

conceived to be generated by the motion

of surfaces; surfaces by the motion of

lines; and lines by the motion of

points.

(2.) The quantity which is thus generated is called the

Jluent, or th^Jlowing quantity.

(3.) The fluxion of a quantity at any point of time is it's

increment or decrement, taken proportional to the velocity

with which the quantity flows at that time.

Cor. a constant quantity has no fluxion,

B
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(4.) The velocities by which these quantities are produced
may be either uniform or

variable. If the velocities of ^ b

two pointsA andC be uniform,

and in the ratio of 1 : 2, the
^ ——

hues AB and CD, described

in the same time, will be in the same ratio of 1 : 2
; and

in this case the line CD is said ioflow with twice the velocity
of AB ; the increase of CD in a given titne is double of
the increase of AB in the same time, or the fluxion of CD :

the fluxion of JB :: 2 : 1. And in general, if the uniform

velocity of the point A : the uniform velocity of the point
C :: m '. n, the corresponding increments of AB and CD will

be in the same ratio; that is, the fluxion oi AB : the fluxion

of CD :: m : n or :: velocity of A : velocity of C.

If the lines AB and CD are described with variable velo-

cities, their corresponding p r
increments are no longer

'^ ' '

proportional to the velo-
^ , ^

cities, and therefore can- ^ ^ ^

not represent the fluxions. The velocity of a body at any point
of it's motion is represented by the space, which would be

described in a given time with the velocity at that point con-

tinued uniform. Let E and i^be two contemporaneous positions

of A and C; let EG and JW represent two spaces, which A
and C would describe in the same time, if the velocities at E and

at F were continued uniformly ; and let EB and FD be the

spaces which they actually describe by the variable velocities.

The parts GB and HD are produced by accelerations which had
no existence at E and F, and are not described uniformly ;

whereas EG and FH are proportional to the velocities at E
and F, and are described in the same time. Hence the fluxion

of AE : fluxion of CF :: EG : FH.

(5.) This reasoning may be illustrated by the doctrine of

falling bodies. If a body descend by the force of gravity for 2'',

it describes a space in the 2d second of 48 feet, nearly;
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this may be divided into two parts ; of which 32 feet are

described by the velocity acquired at the end of the 1st

second, and l6 by the acceleration of gravity. If then we
should assume 48 as the measure of the velocity in the 2d

second, the conclusion would be erroneous. Suppose a body
to fall for 10", the space described in the 11th second may
be thus represented.

The velocity acquired in 10'', omitting fractions, = 320 feet ;

or the space described in the 11th second by peet.

that uniform velocity =320
The space in the 11th second, by gravity . . . = l6

.*. the whole space, from both causes . . . . =336

On this division of the spaces depends the whole method of

fluxions.

(6.) When a quantity increases with a velocity which

continually varies, the quantity, which measures the fluxion,

is a limit between the preceding and succeeding increments,
• and is ultimately* equal to either of them.

1. Let the point A move on the straight line AB with

a velocity perpetually
'

J , nn A F C B E D
mcreasmg. Let Cxs .

, ,

represent the space

described in a given time before A arrives at B ; and let

BD be the space described in the same time afterwards ; both

by the variable velocity. Suppose BE to be the space which

* The word uUimately is intended to denote that particular instant, when

the time is diminished sine limite. Sir Isaac Newton thus describes ultimate

velocity and ultimate ratios :
" Per velocitatem ultimam intelligi earn, qua

corpus movetur, neque antequam attingit locum ultimum et motus cessat,

neque postea, sed tunc cum attingit ;
id est, illam ipsam velocitatem quacum

corpus attingit locum ultimum, et quacum motus cessat. Et similiter per

ultimam rationem quantitatum evanescentium, intelligendam esse rationem

quantitatum, non antequam evanescunt, non postea, sed quacum evanescunt."

Scholium Sect, Primae.
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the point A would describe in the same time, with the

velocity at J5 continued uniform ; and in the line BA take

IRF = BE. Then, since the velocity of A is perpetually

increasing, BE is less than BD, and greater than BC; but

BE measures the fluxion ; therefore the quantity which

measures the fluxion is in this case greater than the pre-

ceding, and less than the succeeding increment.

Next, let the time of describing CB or BD be assumed

extremely small ; the difference between BF and BC, or

between BE and BD, will ultimately be less than any

assignable magnitude. For ED is described by an acceleration,

which was nothing at B ; and BE is described by an uniform

finite velocity ; therefore, by diminishing the time sine limite,

ED is indefinitely diminished with respect to BE, and EC
with respect to BF; or BE is ultimately equal to BD, and

BC to BF; that is, the quantity which measures the fluxion

is a limit between the increments, and ultimately equal either

to the preceding or succeeding increment.

2. Let AB be traced out by a velocity perpetually retarded.

In this case, BC, the
,. .

, A C F B D E
precedmg mcrement,
is greater than BF
or BE, and BD is less ;

the reasoning and the conclusion are

the same as before.

Cor. 1. If one quantity, as AB, increase uniformly, and

another, as CD, increase with ^ ^
an accelerated or retarded

'

velocity ; the fluxion ofAB :

fluxion of CD :: increment of
^ ^

AB in a given time : limit between the corresponding in-

crements of CD.

Cor. 2. Hence the fluxion of a quantity must have these

two properties. 1 . It must be a limit between the preceding

and succeeding increments. 2. It must be proportional to the

increment of a quantity, which flows uniformly.
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(7.) In the preceding demonstration we have reasoned upon
the hypothesis, that if the time be indefinitely small, T>E

vanishes in respect of 3E. This may be illustrated in the

following manner. Suppose a projectile to be discharged

in a direction GH perpendicular to the horizon, and

with a velocity of 1000 feet in a second, the force of

gravity being considered as uniform, and the resistance

of the air omitted. Take GL= 1000 feet, LM= 16^-^;

then, at the end of 1", the body would be found at M,
and LM : LG :: 16 : 1000 nearly :: 2 : 125. Next,

take GiV=500 feet, and NO= A feet. Then, in half a

second, while the body would uniformly describe GN,
gravity would draw it through NO ; therefore'it will be

found at O; and AO : NG :: 4 : 500 :: 1 : 125.

Next, take GP = 100 ; then Pv, the space by

gravity in
jq",

or whilst the body with an uniform motion

would describe 100 feet, = ^ of a foot ; therefore in this

case Pv : PG :: - : 100 :: 4 : 2500 :: 1 : 625. If we

take the one thousandth part of a second, Pv : PG ::

1 : 62,500, nearly ; so that in every case, as the time is

diminished, the space through which gravity would draw the

body bears a less ratio to the space described in that same time

by the uniform finite velocity. And if the time be assumed

indefinitely small, Pv will ultimately become evanescent in

respect of PG.

(8.) The first letters of the alphabet, a, b, c, dy &c. are gene-

rally assumed to represent invariable quantities ; the last letters,

as w, X, y, %. such as are variable.
. . .A B C

The fluxion of a simple quantity x

is denoted by a point over the letter,

as X, Thus, if JIB is equal to x, BC, the fluxion of AB, = x,

(9.) If the fluxion of x be expressed by x, the fluxion of ax

will be ax.

For if X increase uniformly, ax will also increase uniformly.
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and its velocity of increase will be a times greater than that of

X, that is, it will = ax. Let ABCD be a parallelogram,

of which the side AD remains '[ ^

constant, while AB flows uniformly.

BCFE will represent its fluxion.

Let AD = «, AB = x, BE = x ;

then ABCD = ax, and BCFE=
ax.

(10.) If two quantities have to each other a given ratio, their

fluxions are in the same given ratio.

Let X '. y '.'. a '. h,

then hx~ay\ .*, bx= ay',

.*. X : y :: a : b.

(11.) The fluxion of a ± x is rt i*.

Let AB, a constant line, = a, ii
^

CD, a variable line, =x. ^
27

The line AB does not affect the increase or decrease of x ;

so that the variation of AB+CD is the same as the variation

of CD alone ; that is, the fluxion of ad= x = d=x.

Cor. Constant quantities, connected with variable ones by
the sign + or —

, disappear when the fluxion is taken.

(12.) If any numerical or algebraical quantity x be supposed
to increase uniformly, the squares of the succeeding quantities

will increase with velocities continually accelerated.

Let the numbers 6, 6, 7> 8, 9j 10, be assumed, which

increase uniformly, as the several diflferences = 1 . Their squares

are 25, 36, 49, 64, 81, 100, of which the several differences

are 11, 13, 15, 17, 19 J therefore the numbers do not increase

uniformly.

In general, let x represent any algebraical quantity, and x'

it*s increment ; then the present and succeeding values are

X, x + x', x-{-2x', x-\-3xf, &c. ; and the present and succeeding

values of the squares are x^, xi-x'V} x-{-2x^\^, x+sF]^, &c.
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The increments are obtained by subtracting in this case

each preceding value from that which follows it ; therefore the

increments are, 2xx' + 3x'\ 2xx'+5x'' &c. ; that is, if the

quantities themselves increase with an uniform velocity, their

squares increase with a velocity perpetually accelerated. The

same reasoning is true of the higher powers.

Cor. It is manifest, that if 2xx were equal to the difference

between these several squares, their velocity of increase would be

uniform ;
so that the parts xf\ 3x'\ 5x'\ &c. are the effects of

acceleration ;
whence (by Art. 3. and 4.) these quantities, which

involve the powers of x', are to be omitted in taking the fluxions.

F IK
(13.) To find the fluxion of x\

Let JB = x; JBCD = x'; let JE
and AF each = the increment of

x = x'; and let EGHD, FKMD
represent the preceding and suc-

ceeding values of ABCD. Then

the gnomon APH^ or the prece-

ding increment, = AP-\-BH- BG
=.2xx' — x''^\ and the succeeding increment, FLC= 2xx' \- x'^ .

Now the limit between these is 2xx\ or ultimately 2xx\ .'. the

fluxion of x^ =2xx.

The same result is obtained by the following process.

Let X - x\ X, and x + x', represent the preceding, present, and

succeeding values of x. Their squares are

o
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rectangles will represent the preceding and succeeding values

of ABCD.
The preceding increment = the gnomon ALG=AL+BG — BF,

or . . . = ... yx! -\-x^ -y'x' \

and the succeeding increment —HB-\'BK-\-lB,
or . . . = ... yx' ^xy'-\-y'x' \

and the limit between them is yx'-\-xy', or the fluxion is

yx-\-xy.

The same result may be obtained in the following manner.

X -\-y\

*= j;* + ^xy -k-y^.

. .

~
. > th^nx-^-yY= %'"', :. the fluxion of x+yY = ^he

.*. x+y =^z
^

^

fluxionofz*= 2;2i, or= l2 x x+yy. x+y = 2xx-\-2xy+2yx+2yy;
but the fluxion of x+yY= the fluxion oi x^+ 2xy+y''= 2xx+
the fluxion of 2xy + 2yy ;

.*. 2xx+ 2xy-\- 2yx-^ 2yy = 2xx+ the fluxion of 2xy + 2yy ;

.*. 2xy + 2yx = the fluxion of 2xy, or = 2 x fluxion of xy ;

.*. xy-^ yx= the fluxion of xy.
Rule. The fluxion of the product of two flowing quantities

is equal to the sum of the product of each quantity and the

fluxion of the other.

(15.) In this Article, x and y are both supposed to increase ;

for X and y are both assumed positive.
But if one of them, as x,

decrease, whilst the other continues to increase, the fluxion

is xy
—
yx.

Let ABCD be a parallelogram,
of which the side AB increases, and

AD decreases, with an uniform ve-

locity ; take AB =y, AD -x, BG 1^ H
C O=y, DE — x; and by this variation ^1———•

of the sides, let ABCD be changed
into AEHG. The fluxion of ABCD =BH- EC=BO - EO
^xy - xxy -\-y

—xy-yx-xy =
ultimately, xy—yx.

Hence, to express the rate at which any quantity increases,

the fluxion of the part which increases must be written with the

sign -}- , and that which decreases with the sign
-

.
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If a negative quantity increase, it must be considered as

a decreasing positive quantity, and its fluxion is — .

(16.) To find the fluxion of xi/z.

Let xy = v\ then xyz = vz ; .*. the fluxion of
jcijz

= fluxion of vz

r^vz-[-zv; but V::zxy-\-yx, .*. the fluxion of xt/z=xyz-\-zxy

•\-zyx.

Rule. Hence the fluxion of the product of any number of

flowing quantities is obtained by taking the sum of the products,

which arise from multiplying together the fluxion of each quan-

tity, and the product of all the others.

(17.) To find the fluxion of any power of a simple quantity xf.

Let X - x\ x^ and x+x', be the preceding, present, and succeed-

ing values of x. Then the corresponding values of xf are,

n - \

X - x^\ ", ov xf -nx^'^x'+n .—Y- xf"'x"-- &c.

x"j or xf.

and x-\-x']% or xf -\-nx''-'x' -^-n .

—r- xf-'x"-+ &c.

w — 1

/. the preceding increment —nx^'^x'—n, xf~'^x'^-\- &c.

n— \
the succeeding = nx^'^x' -\-n . xf'^x''^— &c.

and the limit —nxf'^x', or the fluxion =nx"~^x.

In this case, n may be either positive or negative, a whole

number or a fraction.

(18.) To find the fluxion of any power of a compound quan-
p

tity,
as a"' -{-x'"Y.

Let a'"+ x'"\'^ =y, ,\ a^'+zC" =3/%
•r —t

maf~'x= - xy y,

p mx"' ^x p mx"'~\v
y =- X —5

=
7.

^
P 1—

p mx"'~^x _p^p^
mx"'-'x ^p ^ ,/j^«-.^x a"'+xi '"'.
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p

that is, the fluxion of a'" -{- oc"'\'>
=^- x mx'"-'x x a"'+a;'"\^ .

7
In cases of this kind a"'-\-x'" is called the root^ and the

fluxion of this root is moc'"~'x.

Rule. Hence the fluxion of any power of a flowing

quantity, whether simple or compound, is found by multiplying

together the index, the next inferior power, and the fluxion of

the root.

(19.) To find the fluxion of a fraction, as -
.

J? ...
Let ~ = z, .'. X = yZy .*. x — y%-\- zy, .*. y% = x — zy=

xy yx-xy . yx — xy ti . • ^1 n • c^X- -^ ='1 i .'.%—^ -—iL^ But z = the fluxion of -,
y y y y

.*. the fluxion of " = ^——.
y y

Hence the Rule. From the fluxion of the numerator, multi-

plied into the denominator, subtract the fluxion of the denomi-

nator multiplied into the numerator, and divide by the square

of the denominator.

(20.) Examples of the diflferent Rules.

Ex. 1 . The fluxion of x^ = Sx'^x.

Ex. 2. The fluxion of x^ = Qx^x.

Ex. 3. The fluxion of a-j-J = 6x x a-\^ .

! ^^^ _________
Ex.4. The fluxion of 2ax - x] = Aax— Axxx lax- x^.

Ex. 5. The fluxion of a' -
x^^" = - x —2xx x a^ - x\ =

5
'

5 X a^-x\
'^

*

Ex. 6. The fluxion of ax""-^-hx^^-a^ = 2>axx
^bx^x

6cx^x X ax' + bx^ — cx*\ .
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Ex. 7. The fluxion of x^y'^
= 3jc\v x 3/* + 4y^i/ x a?

—
32/*Jp"x+ 4a?^ X 3/^y .

Ex. 8. The fluxion of x'y' z^=2fz^xd;+ 3x''z^fy+^
x

Ex.9. The fluxion of xx a'+x"] = x xaT-f^^ + 3xx x

a'^+xf] XX— a'x + x'x + 3x'x x «H^^ = d'x -t- Ax'x x

a'-\-x^.

Ex. 10. The fluxion oi x'-^y\ x x'-y^= 3xx-\-3yy x

;^T
— .f

.
Sxx - Syy ,' A

x'-]-y']
X x'-y] H —^^ X ^^^ X F+Tl .

Ex. 11. The fluxion of a^+^ x b'^y"]
= xx xaFT^ x

b' - y\
- 3yy X a%fF] x b^ - f\ = _ f.

-

'a-^xX

3yy X cF+x^x b^—y'Y-

Ex.12. The fluxion of ^ = ?^iii^-=-Mii£: =

ly'^xx
-

Ix^if

T^ ^rr^ifl- /.I O- %x^x - 6x^x - 6x
Ex. 13. Ihe fluxion oi -r- = jr

— = n— — —
7 •

X^ X^^ X x^

Ex. 14. Ihe fluxion of —: =
X X af+^

•

Ex. 15. The fluxion of^ = ^-.V x ^'-3^^^>< ^-"^ =

^'i? — xr^y
— 3x^x+ 3yx\v 3yx''x

— 2x^x— x^y

x'

Ex. 16. The fluxion of ==Y' = fluxion of a? x a-\-x\ =
a+xy

XX a-\-x\~^ — 5x X a-^x\
~^

x x = ax-{-xx— 5xx x a+x] =
ax - 4xx
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Ex. 17. The fluxion of x/ t — M^ ^
x 6 + yl

* =
b \-y

— s-X % ^_l ,1 ^_3
fix a-}- oil

^^ X ^+3/1 2_i^xa4-^P X 6 + ?/]
^ =

X

I i
I

2 xa + cT)^ x^>+3/| 2xb-^y\

Ex. 18. The fluxion of ^^' + ^
'^

= fluxion of "^4^^

x^^-^-^ =^ X ^M^ ^
x"^N^"^ - ^ ylFTy^'^

L Sx'^x 2yyxa^-\-x^Y
X a^+x^Y = - '

- "
2 xa'-\-x'\

^
X a* +3/^]

'

3 x «*+3/V

Ex. IQ. The fluxion of >•
, orof a;— 1 x 2:c — a;*]

< =

i?x2j? — a;* xx — xxx~l x
± '

^3 3

2x-xy 2x - x^]^ 2x-xY

Ex. 20. The fluxion of - ^^±4^ =
"^

,
.

Ex.21. The fluxion of
^

a'^X X^ X y/ft*
- X*

Ex. 22. The fluxion of „ T ' = ^^

r —-^-i
Ex.23. The fluxion of y ,,

= fluxion of y^ xy'-^-b']

-
1
-

yi/ X y^ 2y^y+ 2b^yy
-
y^y _ y^y + 2&'yy= 2yyxy^+¥\ ___^
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Chap. IL

ON THE maxima AND MINIMA QF QUANTITIES.

(21.) Xhe fluxion of a quantity, when it is a maximum
or minimum, =0.

Let two points, m and n, begin to move on the straight line

AB at the same time ; m from the

point C with a given uniform velo- i—i 1 1

city, and n from A with a velocity

less than that of m at the commencement of the motion, but

which is continually increasing. Let D be the point, in which

the velocity of n equals that of w ; it is evident that the di-

stance nm is perpetually increasing till n arrives at Z), and then

n begins to overtake m, ov nm decreases. At D therefore the

distance between n and m neither increases nor decreases ; and

consequently its fluxion = 0. But in this case w m is a maxi-

mum ; hence the fluxion of a quantity, when it is a maximum,
= 0.

Next, let the velocity of n at first, be greater than that of m
at first, but perpetually decrease ; n m continually decreases, till

the velocity of n is equal to that of m, and afterwards it increases.

Let Z) be the point, in which the velocity of n is equal to that

of m, ; here then nm \% neither increasing nor decreasing ;

therefore its fluxion is nothing ; but here tz m is a minimum ;

consequently the fluxion of a quantity, which is a minimum, = O.

(22.) If a quantity be a maximum or a minimum, any power
or root of that quantity is a maximum or a minimum ; for the

increase or decrease of the power or root will depend upon the

increase or decrease of the original quantity.

In the same manner any constant multiple, or part of the

original quantity, is at the same time a maximum or minimum.
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(23.) Examples.

Ex. 1. To find the greatest ordinate in a given circle.

Let AM = x; JB= 2a; BM =

2a~x; then MP' = 2ax - ^' a maxi-

mum ; /. 2ax- 2xx= 0, and x=:a;

that is, if C be the centre, and

CD be drawn perpendicular to AB,
it is the ordinate required.

Ex. 2. To divide a given line AB into two parts x and
3/,

so

that the rectangle oci/ may be a maximum.

Let AC=X', CB = i/; AB=a; then ^ c b

x+i/ = a, and x-\-2/ = 0; ,*. x=—i/;
also xy is a maximum ; .*, x^ +3/<^

= 0,

or substituting —i/ for x,
— xx+ i/x

=
; hence x=.y, or AB

must be bisected in C
Cor. Hence to divide a quantity a into three parts x, y, and z,

so that their continued product may be a maximum, the parts

must be equal. For if x be assumed constant, the product z/;s,

and therefore xy% is a maximum, when y = z\ if
3/

be assumed

constant, the product is a maximum, when x= z ; if 2 be con-

stant, X must equal y. And in the same manner, into whatever

number of parts a given line is divided, they are all equal, when

their continued product is a maximum.

Ex. 3. To divide a given line AB into two parts x and
3^,

so that c^ x.y" may be a maximum.

Let AB = a ;
AC=^x ; CB =y. Then x-ry = «, and x— -y.

Also x"" y.y" is a maximum ; hence mxf"~^ i x 3/"+ ny''~^y x xT

= 0. Divide both sides by af"~^ y^~^, then myx+nxy= 0; for x

write —y; .*. nxy = myy, and x '. y v. m \ n.

Cor. If it be required to divide the given line into three parts

X, y, and z, so that x"" xy" xz^ may be a maximum ; it will

follow by the reasoning in the last Cor. that x : y :: M : n, or
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y =— ; 2ii\ax '. z :: m : pi .•.%= ^—: hence, sincea?+ V+ ^ = «,m ^ m .7 • J

, ^
nx px - ma ^^rwe have x \ f-

—= a. and x = . We may proceedmm m -\-n ^p •' *^

in the: same manner, whatever be the number of unknown

quantities.

Ex. 4. To divide a given hne AB into two parts, x and y,

X 1/

so that - + - may be a minimum.
y X '

X 11 .

As before, x-\-y — a, and x— —y\ also - +^ is a minimum ;

y X

xy-yx ^ yx-xy ^ yy-\-xu xy-{-yy ,

y X y^ X

• /• . ^1- ^ • xy-\-yy yy-\-xy 11,
writmg

- ^ for ^; that is, ^'^'^
= ^'^

^
'

; .*. -^
= — and

?/ a? y X

x—y, or the hne must be bisected.

Ex. 5. To find the fraction, which shall exceed its cube

by the greatest quantity possible.

Let the required fraction =-x\ then a;-a;Ms a maximum;'

.'. X — 3x*x= 0, and x = —=- .

Ex. 6. To inscribe the greatest rectangle in a given triangle,

ABC.

Draw AD perpendicular to BC, take AD= a,

BC=b, AI=Xj EF=y; then, by similar

triangles,

,
bx „- . .—>_

a : :: X :y= — ;

^ G d h

bx -

/. the rectangle EGHF= — x a-x is a maximum; .*. ax— x*° a

a
IS a maximum ; ,\ x=: ~,
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Ex. 7. To inscribe the greatest rectangle in a given ellipse

ABN.
Let CM=x; PMthe ordinate =3/;

p b d

then, if AC the semi-major axis = a,

and^C the semi-minor = h, the rect- ^/

angle PJ5;FZ)= 2x - x v/a X

X 2x ; .*. j: X \/«^— ^% or its square
a

aV— a?*, is a maximum ; .*. the fluxion = 0, and a:= ~~7= .

x/2
Ex. 8. To inscribe the greatest rectangle in a given parabola

ABC.
Draw the axis AD\ let AI=x, IF

=3/, AD = h\ latus rectum = c ; then

FI= s/cx; .'. the rectangle ^J/f

= 2\/cj?xi— ^; .*. hx^ — x^ is a

maximum
; its fluxion = 0, and x= ~

.

Ex. 9. Given the radius of a circle to determine the arc, when

the rectangle under the sine and cosine is a maximum.
Let the radius =r, and the cosine = a?; then the sine =

\/r" - x^ ; .*. by the problem xx s/V-x"^ is a maximum;
r

hence the fluxion of x^ xr^ — x* = O, and x = —7= .

v/2
Ex. 10. To determine in an ellipse,

at what point the angle

contained, between the tangent and distance, is a minimum.

Let S and H be the foci of the

ellipse, P the point required, PI'
a tangent, SV perpendicular to PV,
and SPV the least angle. Its sine

is a minimum. Let x= the sine

to radius 1 ; then 1 : x :: SP : SV;
sr 1

x = BC>.s/^ a mmi-SP SP ^ HP"^ s/W^^^P
mum; .'. SP x HP is a maximum; and since SP +HP=
AM, in this case SP = HP-, and the point P is at the extremity
of the minor axis.
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Ex. 11. Of all right-angled plane triangles having the same

given hypothenuse, to find that whose area is greatest.

Let JB= a, BC=x; then AC= s/a'-x'. ^
Now the area of the triangle ABC
BCxJC XX s/a' - x'

, or x'^x a"- X is

a maximum; .*. the fluxion of a^x' — x*, or

a
2a'xx— 4x^x= ; hence a" = 2x% and x= —7=^ .

\/2

Ex. 12. Of all right-angled triangles having the same area, to

find that in which the sum of the sides BC, CA is a minimum.

Let the area = a, BC=x; then, since BCx AC=2a,
.^ la 2« . . . , . laxAC = —

; .'. x-\ is a minimum; hence x = 0,XX x"

and :c= v/2a.

Ex. 13. To find the value of x and y in the equation oF+^
= aV, when 2^ is a maximum.

Extract the square root; then
x''-\-y''=::ax', .*. 2xx-\-'2yy

= ax ; but y, and consequently 2yy = 0, when
3/

is a maximum ;

.*. 2xx= ax, and x=: -. To find t/, we have ^y^=— •

.•.3/ = -, and 3/= -.

(24.) To determine when the equation x'^ — 90?'+ 24a? - 1 6 =
becomes a maximum or minimum.

Assume the fluxion =0; then 3x''x— l8xx-\-24x= ; or

3x X x^-6x+ 8 = 0.

Now the roots of this quadratic equation are 2 and 4 ;

,'. 3xx x— 2x a: — 4=0.
To ascertain which of these roots gives a maximum, and

which a minimum; find whether the value of the fluxion just

before it =0, be positive or negative. If it be positive, the

quantity is increasing, and the next root gives a maximum ; if

negative, it is decreasing, and the next root gives a minimum.
D
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In this instance, if x be assumed positive, and x less than 2,

the value of 3d;xx-2xx— 4 is positive; .*. this root gives

x^— gx''+24x
— l6 a maximum. If .r be assumed greater than 2,

but less than 4, 3i x a: - 2 x J? - 4 is negative ; .*. this root gives

the original equation a minimum.

(25.) The meaning of the assertion, that if x= 2 it gives the

equation a maximum, and if it= 4 a minimum, is, that x^ — ^x^-^-

24x— l6 increases till x = 2, and then decreases till a? = 4; not

that it is the greatest possible when .t= 2, nor the least possible

when x=:4. For if quantities less than 2 be successively sub-

stituted for Xj as

I
J

. _ - _ _ r 1 - 9 + 24 -
l6, or 0,

O V the results are < ~
l^j

~l&c. 3 - - - - - ( - 1-9 -24- l6, or-50 &c.

that is, it will go on decreasing, sine limite.

And if quantities greater than 4 be substituted successively

for X, as

5
-J

_ _ - - - A- 125-225 + 120- l6, or 4,

the results are -? 216-324 + 144- 1 6, or 20,_____ ( 343-441 + 168- l6, or 54;

that is, it will go on increasing, sine limite.

7&C. )

(26.) In this case we have supposed x to increase, and therefore

that X is positive. If a? be a decreasing quantity, its fluxion is

negative. Suppose x to decrease till it becomes equal to 4 ; here

3ix:c-2. X- 4 is negative, while x is greater than 4 ; therefore,

when x= 4, the original quantity x^ - dx'' + 24x- 16 is a mi-

nimum. If X be assumed greater than 2, and less than 4, then

3xx X- 2 .x~4 is positive ; therefore the root 2 gives x^ - 9j?'

+ 24:c — 16 a maximum. These results are exactly the same

with those obtained by the first method.

(27.) When two or an even number of the roots of the

resulting equation are equal, they shew neither a maximum nor

a minimum.

It follows from the preceding articles, that when the fluxion of

the given quantity is of the same denomination with regard to
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positive and negative, before and after it becomes equal to

nothing, it does not indicate either a maximum or minimum.

Now this occurs, when two roots of the fluxional equation are

equal. For, let the given quantity be 3x* - 3 2x^ + 1 20jo* - 1 92j: ;

of which the fluxion is 1 2x^x - qGx^x + 240xx— 192i ;

or, 1 2i X x^ - 8^*+ 20j? - 1 6 ;

or, 12ix^-2x^— 2x0^— 4.

Let X be positive;, then before x = 2 this fluxion is negative;

and if:c be greater than 2, and less than 4, it is still negative; there-

fore the root 2 does not give a minimum. But as the fluxion

changes from - to + , while x increases from a quantity less than

4, to a quantity greater than 4, this root 4 gives 3x* '-32x^ +
120x*— 1920: a minimum; and it then begins to increase.

In the same manner, if the fluxional equation has 4 equal

roots, as x xx — axx —axx — axx—axx- 2a, or any even

number, the fluxion is of the same denomination with respect

to + and —
, both before and after x becomes equal to a ; and

therefore the equal roots neither indicate a maximum nor a

minimum.

(28.) The number of maxima or minima which a flowing

quantity admits, is equal to the number of unequal roots in the

fluxional equation.

Let 3x* — 28ax^-\-84a^x^— 96a^x+ 48b* = be an equation,

in which it is required to determine the different values of x,

when the expression becomes a maximum or minimum. Put

the fluxion = ;

/. 12x'x'-84ax''x-\-l68a'xx-96a\i= 0;

or, 1 2^ X ^' — 7<w?*+ 1 4a^x— 8a'= ;

or, 12x X X — a X X - 2a X X - 4a.

If a; be assumed less than a, the result is -
,
or the root a

indicates a minimum ; if a? be greater than a, but less than 2a,

the result is + ; and the root 2a denotes a maximum, &c.; there-

fore when all the roots are unequal, the proposition
is true.

And if the fluxional equation have an odd number of equal

roots, as i X oc-a x x-ax x-a xx-2a, when x is less than a.
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the result is+ ; when greater than «, but less than 2a, it is —
;

therefore one root a gives a maximum, and 2a a minimum;

the product of a;— a X ^ -- a determines nothing; hence univer-

sally, there are as many maxima and minima, as unequal roots,

in the given equation.

When all the roots are impossible in the fluxional equation,

as no possible value oi x can give a result= 0, the quantity must

either increase or decrease perpetually, and therefore cannot

admit a maximum or minimum.

(29.) Every quantity which admits a maximum or minimum

is of a compound nature ; one part of it must increase, while

another decreases, and according to the increase or decrease it

approaches a maximum or a minimum. Thus, in Ex. 1. Art. 23,

we have two quantities, 2ax and —
x^-, \i x increases, 2ax also

increases ; but x" increases at the same time ; therefore the

expression ^ax—x" partly increases, and partly diminishes;

this quantity, then, is in a state to admit a maximum or a

minimum.

i
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Chap. III.

THE METHOD OF DRAWING TANGENTS TO CURVES.

(30.) J.F a straight line as BC move on the line AC in

a direction always parallel to itself, and jiC and CB increase

uniformly, the locus of the point B will be a straight line ; and

the motion of B in that straight line will be uniform.

Let BC come into the position DJE.

Then, since AC and CB begin their mo-

tion together, and have an uniform in-

crease, the ratio of AC : CB is con-

stant; that is, AC : CB :: AE : ED,
or ACB and AED are similar triangles ;

.' .ABD is a straight line. Also the motion

in that line is uniform ; for, since CB and

ED are parallel, AC : CE :: AB : BD, and alternately

AC : AB :: CE : BD; but AC is to AB in a constant

ratio ; .'. CE : BD in a constant ratio ; and the motion in the

direction AE is uniform; .*. the motion in the direction AD
is uniform.

Cor. 1 . If the motion in the direction AC be uniform, but

that in the direction CB not uniform, the point B will trace

out a curve. The same construction remaining, let CB increase

with an accelerated velocity; then BG being drawn parallel

to CE, BG and GD would represent the uniform con-

temporaneous increments of AC, and CB ; but if CB increase

with an accelerated velocity whilst the velocity of C is uniform,

BG and some line GF greater than GD will represent the

corresponding increments ; in this case, a curve BF is described

convex to the line AE. By the same reasoning, if the incre-

ment of CB is perpetually retarded, whilst that of AC remains
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uniform, the point B will trace out a curve, which is concave to

the line AE.
Cor. 2. If AC increase with an uniform velocity, but the in-

crease of CB is not uniform, the curve BFis not described with
an uniform motion.

(31.) To draw a tangent to any algebraic curve.

Let AM represent the abscissa, and MP the ordinate of an

algebraic curve convex to the axis AF. Take Mc and Mb on

AT b M c

each side of PM, and equal to each other ; and draw bt and cv

parallel to PM, meeting the curve in x and v, and a line tPr

parallel to AF in t and r. Let Mb, and Mc, or Pt and Pr

represent the uniform increase of the abscissa AM in a given
time. Then since EPV is convex to the axis, MP increases

with an accelerated velocity; .*. the fluxion oiAM : the fluxion

ofMP :: Pr : a quantity less than rv. Take rs equal to this

quantity; join Ps, and produce it both ways; this line is a tan-

gent, that is, every part of it falls below the curve. For since

by equal triangles Ptd, Prs, rs = td; .'. td is the fluxion of the

ordinate at P. But the fluxion ofAM : the fluxion ofMP ::

Pr ov Pt : a quantity greater than the preceding increment tx ;

.*. td is greater than tx, and d is below the curve.

Next, suppose the curve to be concave to the axis AF.

The same construction remaining, since the increase of MP is

\
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Pr : a quantity greater than rv\ take r^ equal to this quantity;

join sP, and produce it; this Hne is a tangent at P, or falls

wholly above the curve. For, by equal and similar triangles, Prs,

Ptd, td= rs, or = the fluxion of the ordinate at P.

But the fluxion ofAM: the fluxion ofMP y.PtorPr : a quan-

tity less than tx; .'. td is less than tv, or d is above the curve.

In both these cases, \{ AM=x, PM—y; Mc=x, ^A*=yj we
have rs : rP or Mc :: PM : MT by similar triangles ;.

ory : i :: ?/ : the subtangent MT= ~~.

Hence in any algebraic curve, to which it is required to draw

a tangent at any point P, find from the equation to the curve

the value of ~-
; take 3IT equal to this expression, join TPj

and produce it. TP is the tangent required.

Examples.

(32.) Ex. 1. To draw a tangent to the common parabola.

Let JP be the parabola, A3I the

axis, and P the point at which the

tangent is to be drawn. Take AM=: x,

PM=:y, the principal latus rectum

= a; then
y''
— ax\

X Iv .vx Iv" 2ax
^^

y a y a a

that is, MT the subtangent = twice the abscissa MA. Hence,

to draw a tangent at P, let fall the ordinate PM, and in AM
produced, take MT=2MA, and join TP, TP is the

tangent.

Ex. 2. In general, to draw a tangent to any parabola of

which the equation is (f'^x^y".
,n— i

Here a"-'x=ny''-'y ; .'. r = -4=r 5 •*• ^^^ or ^
wj/* ficC

~
X

-^- = — = nx the subtangent.
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Cor. If w = 2 it becomes the common parabola; and MT= 2x

as before.

Ex. 3. To draw a tangent to the circle at a given point P.

Let fall the ordinatePM on the

diameter JD. Let AM=x;
PM=^yi AD^2a\ then y'^
2ax—x'', :. lyy =2ax-2xx;

if
a^x y

X- = ^a^-^\ Take MT=
a — x a — x

to this quantity, and join TP ; TP is the tangent.

Ex. 4. To draw a tangent to the ellipse ABD at any point P.

Let AC=a, CB=b, where AC and CB are the semi-axes;

AM=x, PM=y;
then, by the property of the

ellipse, AMxMD : MP' ::

AC : BC% or 0? X 2«^ : /

:: a' : b^; .'. v'=- x 2ax - x' 5

•
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Cor. 2. If ^ be greater than «, and less than 2a,

is negative ; or the sub-tangent hes the contrary way.

25

2ax - x^

a — x

Ex. 5. To draw a tangent to the hyperbola AP, whose major
axis is AD, and minor 2BC.

Let AC=a; CB = b; A3I=x; MP=y,

By the nature of the hyperbola,

AM X MD : MP^ :: AC* : CB' ;

or, X X 2a+x : ?/" :: a^ : b* ;

. . i/
= — X 2ax -f- x' ;a

•*• 23/^^
=

-7 X 2ax+ 2xx = — X a + x X 2x; .

; :.MT0V^~=:: ^
y ^

y
X 2«x+ a'*

X a + x — X a-^x

(33.) Def. If PA^ be drawn perpen-
dicular to PT, meeting the axis in A",

PA^is called the normal, and M/Vthe
sub-normal.

A M N

To determine their values, we have TM : MP :: MP : MN;
or — : 1/ :: y : J/A' the sub-normal = '^.

y X
E
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Also, NP- = N3P + MP^^ 'f + y = y-^^^ ;

.-. NP the normal = .V
x N/.>-+.y'

X

(34.)
Examples.

Ex. 1 . To find the value of the normal and sub-normal in

the common parabola.

Here w^ = ax\ .*. 2^/^
= ax, and — = - the sub-normal;

Also, 2'= — ; ..y X -J*—
- ^ ^

^4^y -^ ^
4*

.-. the normal PiV = v/JH^-

Ex. 2. To find the value of the sub-normal in the ellipse

and hyperbola.
V" r

In the ellipse, / = - x 2ax - x ;

h
.-. yy

— ^^x ax -
XX',

a

and ^=-rx a- x = the sub-normal.
X a

In the hyperbola, it = - x a-\rX.
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Chap. IV.

TO DRAW ASYMPTOTES TO CURVES.

(35.) Def. An asymptote to a curve is a straight line cut-

ting the axis at a finite distance, which continually approaches
the curve, and arrives nearer than by any assignable difference,

but never meets it, though indefinitely produced.

Let AP represent a curve, which admits an asymptote Cx ;

this line is conceived to be a tangent to the curve, or the limit

to whicb the tangent approaches at an infinite distance. Take
AM =.r, MP—y ; let MP produced meet the asymptote in A"",

and draw AR perpendicular to AM, and PT a tangent at P.

From the nature of the curve proposed, find the value of '-7- =

- ^1 X.MT the sub-tangent; hence AT may be found =

Imagme x to become infinite, and T \.o move on to C; if ^Cbe
finite, the curve admits an asymptote. Next, find the ratio of

TM : MP when x is infinite ; that is, Lx being supposed an

ordinate at an infinite distance, the ratio oi CL -. Lx; then, by
similar

triangles, CLx, CAR, CL : Lx :: CA : A R; of

which proportion the three first terms are known, and therefore

AR can be determined. Join CR, and produce it indefinitely.
CR is the asymptote required.

(36.) Examples.

Ex. 1. To draw an asymptote to the common hyperbola.

(See the preceding Figure.)

By Art. 33. Ex. 5. MT = ??i±-'H*i .-. Al = ^^tf! _ ^
a-^x a-j-x
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(IX . • • QX= —"-—
. Let X become infinite; ^T ultimately = — = a =

a+x "^ X
AC. Now if X is infinite, TM^ which then becomes TL, =

— = j:; and MP. or - x s/ lax-^-x"^, which in that case = Lx
X a

= —
; .*. since CL : Lx :: CA : AR,

a

X :
~

'.: a : AR ; .-. AR = b.
a

Hence, from A draw AR perpendicular to CA, and equal

to b. Take the centre C; join CR, and produce it indefinitely.

CRx is the asymptote.

Ex. 2. Let the equation to the curve be
i/^
= ax*+x^.

Here 3yV =2axx + 3a?':r; .*.— =
-,
= ~^^

if 1ax-\-?,x* 1ax-\-2iX^

= MT. Hence AT = ?^^1±^J - x = ""^^

,
. Let jc

2aa?+3x' 2aa:+3a?'

become infinite, CL — —
r^

= j?; Lx = \/ax'-\-x^ = x; AC

= — = -. Therefore, since CL : Lx :: C^ : AR ; a? : x ::
-

Hence, draw AR perpendicular to AC, and —AC=~, and

join CR. CR produced indefinitely will be the asymptote.
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Chap. V.

ON THE METHOD OF FINDING FLUENTS.

(37.) Jl>y the direct method of fluxions, we are taught how
to find a fluxion from a fluent. The object of the inverse

method, which is deduced from the former, is to find the fluent

from the fluxion. In the former case, general rules are proposed,

which are easy in the application ; but it is frequently difficult

to determine the fluent of a given fluxion, and in some cases

even impossible ; for it is obvious, that certain fluxions may be

of such a nature as could not result from taking the fluxion of

any fluent whatever. Rules can only be proposed for finding
the fluents of those fluxions, whose forms prove them to have

been deduced from some fluents.

(38.) To find the fluent of any power of a simple quantity
which is multipHed by the fluxion of that quantity.

The fluxion of x* is Ax^oc ; .*. the fluent of Ax'^i; is x\

The fluxion of x^ is 6j?Vt ; ,*. the fluent of 6x^x is x^.

And, in general, the fluxion of x" is wx"~'i; .*. the fluent of

nxf"x is xf.

Hence, to find the fluent, we have the following

Rule. Divide by the fluxion of the root, add 1 to the index,

and divide by the index thus increased.

Examples.

Ex. 1. The fluent of lO.r'i = --^1^- = x'\

Ex. 2. The fluent of 40x\i - 8.t'.

Ex. 3. The fluent of 3x'x = ~.
8

8
J,

Ex. 4. The fluent of 5.i".t = ^ = -^.
5 S
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«

Ex. 5. The fluent of —^
^^

Sx" 3

4x^
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Ex. 5. To find the fluent of a -f .1 1
• x x.

Since x" —\, this is the same as IT^^* x x^±; and the index

of :r without the vinculum is one less than the index of a: under

the vinculum ; therefore the Rule applies, and the fluent =

a + x\ xj^ a -toe] , ,

:
—-— = —r

—
. Jn the same manner,X X 5 5

Ex. 6. The fluent of 9 ?/ + 4a] xy = ~ x 93/+ 4a] .

27

(40.) If all the quantities under the vinculum be variable, and

the quantity without be in any given ratio to the fluxion of the

root, the fluent may be found as before.

Ex.1. Let x' +3/M X 6'a:'i' 4- 6?/y be the fluxion, whose fluent

is required; the root is x^+y"", and its fluxion =
Q,xx-{-2yy;

/. the fluent = -^^ -t ^ =
1
^ ^-^y] -

2xx •+• 2yy x 4 '*

Ex. 2. The fluent of^M^/T^^ x 8x'x+l2y'y-\- iGz'z =

x' +y + z^Y X 8j?\f+ 1 2y\i/ + 1 b'z^i _ x*-\-y'^ +zV x 4

4x'x+ 6y^y 4- SzH : x 4.

~
3

2
Ex.3. The fluent of a'x^-\-x*\ x 2a"xx-\-4x^x = - x

a^x -i-x*

TO FIND FLUENTS BY LOGARITHMS.

(41.) Let t^ be any number, and x its logarithm ; then if j? in-

crease uniformly, or in arithmetic progression, by the nature of

logarithms y increases in geometric ; but if quantities increase in

geometric progression, their diflfcrences or increments are pro-

portional to the quantities themselves ; that is, ultimately, y '^ y,

and - is constant ; but x is constant, .*.
— oc xi and if m be

y y



32 TO FIND FLUENTS
ifiij

assumed of a proper magnitude, x — —^
; or the fluxion of any

logarithm is equal to some constant quantity multiplied into the

fluxion of the number, and this product divided by the number
itself.

This quantity m is called the modulus of the system.

If m = 1, i^ = -5 an equation which may be deduced from

the hyperbola ; hence these logarithms are called hyperbolic.

Cor. If j? = the hyperbolic logarithm of y, i'= -
; and con-

"if

versely, if i== -, a?= hyp. log. ofy. Now y may represent any

compound number, and y the fluxion of that number; hence, if

any fluxional expression consist of the fluxion of a quantity

divided by that quantity itself, the fluent will be the hyperbolic

logarithm of the quantity.

(42.) Examples.

Ex. 1. The fluent of = hyp. log. l+x.

Ex. 2. The fluent of
.^

= hyp. log. a'-{-x\
til -^ JL

Ex. 3. The fluent of
, .

' =
-x

x fluent of -—- = - x
a +x' 3 a^-i-x^ 3

hyp. log. a^-{-x\
„n-lXX I r. /. nx" X 1

Ex. 4. The fluent of -——
;:
= - x fluent of = - X

a" + x" n a"+^" n

hyp. log. a"+ a^".

Ex. 5. The fluent of -^-i = A^ent of
^J

x -^ = ""-

' +
>-- 4+^

X hyp. log. ^
4- y\

(43.) In these and similar cases, the application of the Rule is

obvious ; but as these instances do not often occur, it is generally

neces<;ary, in fluxional expressions which admit fluents by loga-

rithms, to use one of the following forms.
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X
Form I. The fluent of y

^_^^^
= hyp. log. x+\/jo^dza':

Let \/^jc^d=:d' = v, then x'-=i=a'=.v% 2indxd;=vv;

,\ x : V :: V : X,

X X I *Z7 X
and i : x+ V :: v : v-^x; .*.

- = —-—
, or ~7=f==, =

Iq— 5 .-. the fluent of
^-^^-^-.

= hyp. log. x+v= hyp. log.

X
Form 1L The fluent of == is the hyp. log. of

^x"±2ax -^^ ^

xziza + s/x'±:2ax.

Let y/x^±z2ax = v\ then x'±2aa?+a'' = ij'-f«% anda?d=a =
vv X V

s/v' 4- a' ; .-. i- = .

.^ .^ , and . ^^ _ .

/. the fluent of >
,

= = fluent of —7== — hvn loo*

v+\/v^+ a^ = hyp. log. of j?±a-f ^V±2ajr.

Form IIL The fluent of -^^ is the hyp. log. of ^^.

Assume ^ + -^ = -2^; then
^'^-^-+Ba+ B. ^

a-\-x a-x a-x a'-x"

r Aa + Bxl

-, OT <-{-Ba- AxV =0; hence, equating the homolo-
a - X - la

gous terms, Bx— Ax= 0; .'.B = A\
also, Aa+Ba-2a~0, or 2Aa = 2a\ .-. A—\, and 5=1;

2ax X X X ~x— 1 X , and the fluentd'-xi' a-\-x a-x a-{-x a-x
a+x= hyp. log. a-\-x- hyp. log. a-x= hyp. log. a-x

2ax , , x-aIn the same manner the fluent of = hyp. loff -^ -
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Form IV. The fluent of

s/cC + x' — a

2ax

Xs/ (f + X
* is the hyp. log, of

\/a' + x'+ a

Let \/d'-^oc' — v; then a' -f- a?' = i?* ; and X3c — vv\

2av 2ai 2a'u

2ax

cw

X'
or

x\/ a' + X'
and the fluent of

2ax

x\/ a'-\-x''

hyp. log.
—-— =r hyp. log. of —

2ax

x^ a' - x"
= hyp. log.

In the same manner, the fluent of

a— \/ a' — xi'

a + y/a'-x''

These are the principal forms of fluxions, whose fluents may
be found by a table of hyperbolic logarithms. This table may
be supplied by a table of the common form ; for the hyberbolic

logarithm of any number : the common log. :: 1 : ?n the

modulus of the common system. This subject is more fully

explained under the Article Logarithms.

(44.) To find fluents by means of circular arcs.

Let AB be a circular arc, whose center

is C; BD the right sine, AT the

tangent, CT the secant ; let Bn, nm

represent the fluxion of AD and BD ;

then Bm is the fluxion of the arc.

For Bn and nm being described uni-

formly, Bm is described uniformly, and

is in the direction of a tangent at B ;

also, since the arc is described by a

velocity either continually accelerated or continually retarded,

J5m is a limit between the increments. Conceive Bn and nm
to be very small. Join Cm, and let it meet AT produced
in F; draw TG perpendicular to CF. Assume CA= a, AD=x,
AB = z, DB=y, AT=f, CT=s, Bn = x, nm=

i/, Bm= z;

and since ultimately the fluxion = the increment, TF=t, and

GF-s.
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Case I. To find the fluxion of a circular arc in terms of the

right sine.

By the similar triangles Bmn, CBD,
Bm : mn :: CB : CD

.——
, ay

ov z '.

if
v. a '. s/a'-f% .*. z=

^^/V^
*

Case II. To find the fluxion of a circular arc in terms of the

versed sine.

By the same triangles,

Bm : Bn :: CB : BD
or z : X :: a : y/2ax — x'\

ax
.*. 2 =

\/2ax — X*
'

Case III. To find the fluxion of a circular arc in terms of

the tangent.

By the similar triangles CBm, CTG,

Bm : TG :: CB : CT. And by similar triangles FTG, ^CT,
. AC : CT;

: JCxCB : Cr; or

: a" : a'+t';

TG : TF
/. Bm : TF

z : /

.
• _ ^"'^

Case IV. To find the fluxion of a circular arc in terms of

the secant.

By the same triangles,

Bm : TG :: CB : CT
TG : GF :: CA : AT;

.-. Bm : GF :: ACx BC : ATx CT; or

z : i :: a' : ^s'-^a'xS;
. a^s

AX s/s^- a'
*

These are the four principal forms. But it may be useful to

add another.
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Case V. To find the fluxion of a circular arc in terms of

the cosine.

In this case let CD = x, Bn— — x\ for as the arc increases

CD diminishes ; and BD= s/ a" — x*.

Hence, by similar triangles,

Bm : Bn :: CB : BD ,

ov z : —X :'. a : s/d' — x:^;

— ax

v/a - X

Cor. 1. The fluent of . ; =2;= a circular arc, whose

radius is «, and sine y.

ax
Cor. 2. The fluent of ,-

= is a circular arc, of radius a,
s/lax-x'

' '

and versed sine x.

Cor. 3. The fluent of ——- is a circular arc, whose radius
a + 1^

is a, and tangent t.

Cor. 4. Theflui

radius is a, and secant s.

Cor. 4. The fluent of .- is a circular arc, whose
sx \/s'-a

— ax
Cor. 5. The fluent of —^ ^

is a circular arc, whose

radius is a, and cosine x.

(45.) Hence, since the circumferences of circles and cor-

responding arcs are as their radii, if we know the length of an

arc to any one radius, we may find it for any other. Let A—
the length of an arc to radius 1 ; required to find the length of

an arc subtending the same angle to radius a ; the proportion is

1 '. a '.'. A : the arc required =ax A. Thus, if the length of

an arc of 30° to radius- 1 =0,5235987, the length of the cor-

responding arc to radius a — ax 0,523598/.
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ON THE CORRECTION OF FLiJENTS.

(46.) The fluxion of x is i- ; and the fluxion of xzha is x,

whatever be the value of the constant part a, and whatever its

sign. Under different circumstances, therefore, the fluent

of X may be either x, or x±:a. So that though a fluent can

only have one fluxion, yet a fluxion, in different cases, may
have different fluents ; and this must be detei-mined from the

nature of the problem. First, take the fluent according to the

rules, and observe whether this fluent becomes equal to nothing,
or to some determined value, when the nature of the problem

requires that it should; if it do, no constant quantity is to be

annexed to it ; if not, some constant quantity must be added

or subtracted to make it =0, or to give it the value required.
This is called the correction of a fluent. Instances will be given
in the following sections.
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CriAP. VI.

ON THE AREAS QF CURVES.

(47.) X HE fluxion of the area of an algebraic curve is equal
to the rectangle contained by the ordinate and the fluxion of

the abscissa.

Let AMP be any curvilinear area, generated by the unifornri

h M c b M c

motion of the ordinate PM. Take Mb and Mc on each side

of MP, and equal to each other ; and let tPr, parallel to AF,
meet hx and cv, which are drawn parallel to MP, in t and r.

Then, since the abscissa AM is supposed to flow uniformly, if

the ordinate MP be conceived to increase, either of the equal

parallelograms PthM, PrcM, is greater than the preceding
increment PxbM, and less than the succeeding PvcM. Also,

since PM=rc, the rectangle PMcr increases or decreases

according to the increase or decrease of MC; therefore PMcr
is the fluxion of the area AMP. Hence, if AM=x, PM^y,
the fluxion of the area APM=yx.

Examples.

(48.) Ex. 1. To find the area of a triangle ABC.

Draw AD perpendicular, and EF parallel to

BC. LetAD= a, BC=b, AG=x, EF=y;
then, by similar triangles, a : b :: x : y ;

,. y = —-
; .'. yx, the fluxion of the
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area = — , and the fluent = — = ^-^
; that is, the area

a 2a 2

BCxDA

,»+i

ABC=
^

Ex. 2. To find the area of the common parabola APM.

The equation \s ax-y^i .'.ax= 2yy ; .
•
. ?/i

= ^^

?0, and the fluent =^ =to =
d OCt Oil

^^^ ^ ^ = ?
vo., or the area AMP = |

3a S'^
' 3

2AMx MP, = - of the circumscribing rectangle AMPB.
3

Ex. 3. In general, to find the area of any parabola.

The general equation is a"''x= 7/';

.'. a"~' x = nif^'yi .". yx= „_, ; and tne fluent = .

ny" X 1/ na"~\vxy nxxy n
— ' —'-— = -==. = ' = X the cncum-
w+ !.«"-' n+l.a"-^ w+1 n-\-\

scribing rectangle.

2
Cor. Ifw = 2, the area = - of this rectangle, as before.

Ex. 4. To compare the areas of two parabolas described oh

the same axis, whose latera recta are L and /.

Let AP and Ap be the parabolas ; AM the ^
common axis. Then the fluxion of AMP :

the fluxion of AMp :: MP xx : Mj)xx
:: MP : Mpi

but LxAM^MP'; .. s/LxAM=MP;
and s/lxAM=Mp\ .-. the fluxion of AMP : the fluxion of

AMp :: s/l^^AM: ^l x AM :: v/i^: x/I But quantities,

whose fluxions are in constant ratio, are themselves in the same

constant ratio; .'.the area^MP : the area ^^J/;? :: \/~L : s/^-

Ex. 5. To compare the area of an ellipse, whose major axis

is 2a, and minor 2&, with the area of a circle, whose diameter is

the major axis of the ellipse.
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Let APD be the circle, ApD
the elhpse, AM an abscissa com-

mon to both, PM and pM the

corresponding ordinates, CB half

the minor axis of the ellipse, and

CE the radius of the circle = CA.

Then the fluxion of AMP : the

fluxion of AMp :: MP : Mp :: CE : CB (by the nature

of the ellipse) :: CA : CB :: 2CA : 2CB.

:: the major axis : the minor,
which is a given ratio;

.'. the 7ire2iAMP : \he 2ive2iAMp :: the major axis : the minor;

and ACE : ACB, or the whole area of the circle : the whole

area of the ellipse :: the major : the minor.

(49.) The same proposition may be easily proved by means

of the following Lemma. (See the Figure above.)

If APD be a circle, AD the diameters 2a, and PM an

ordinate, the area AMP = the fluent of ix v/2ax-a;'. For

PM or y = >y2ax - a?'
; .'.yx or the fluxion of the area AMP

— iy. x/StfX-aj"; .-. the area AMP itself = the fluent of

X X ^ 2ax - x\

Hence, to find the area of an ellipse, whose major axis is 2a

and minor 2&, in terms of the area of a circle whose diameter

~2a.

In the ellipse, y= - x s/^2ax
- x^ ; .*. yx or the fluxion of

Cl
J

the area AMp (See Fig. to Ex. 5.)
= - x i x y2ax-'X'; .*. the

fluent or area AMp= - x the fluent of i x y/2ax-x'=:^ ~ x^ a a

the circular areaAMP, and the whole area of the ellipse ABD =c

^ X the area of the circle AED ; therefore,
a

the area of the ellipse ; area of the circle on major axis :: b : a,

or :; the minor axis : the major.
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MD

Ex. 6. Let DEF be an hyperbola, of which the asymptotes

are CM and CN; to find the area EGHF comprehended

between two ordinates EG, FH.

Let CG = a, GE = b, GH=x,
HF=i/; then, by the nature of the

hyperbola, CGxGE=:CHx HF, or

- ab
ax b = a+ x xy\ :, y a + j?'

and

yx
ab X X

a-\-x
; .'. the fluent =iab x hyp. c-

G H N

log. a+ .r4- cor.

Let the area =0, x= 0; cor. = — ab X hyp. log. a;

/. the correct area EGHF=ab x hyp. log.
a+x

Cor. If CG and G^each = l,yx= -——
; and the fluent =

hyp. log. 1 -[-X 4- cor. = hyp. log. l-{-x- hyp. log. 1 ; but hyp.

log. of 1 = ; .-. EGFH- hyp. log. \+x ; or the areaEGHF
is the hyperbolic logarithm of the abscissa j the modulus

here = 1 .

Ex. 7. To find the area of a cycloid.

Let CAL be a cycloid, AD ^ ^^

the axis, ABD the genera-

ting circle, AF a tangent at

the vertex, CF parallel to

AD. Take any point P in c d i^

the arc, and draw PM perpendicular to AM. Then the fluxion

of the external SivedL AMP z=PM x the fluxion of A3I. Let
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of the area APM or PMx the fluxion of AM= , =
s/ 2ax — X

2ax—x* J .

^ ^ /c^ I =^x V 2ax-a?'; but i'x v/2rtj?-:c^ (Art. 49.)
'

y/2ax- X \ xj y

= tlie fluxion of JEB ; .*, the fluxion ofAPM- the fluxion

of AEB; and these two areas begin together; .*. APM=
ABE; and the whole external area ACF= the semicircle

ABD; for the same reason, ALR = the other semicircle;

•*. the whole area, without the cycloid,
= the generating circle ;

but the parallelogram CFRL= CL x DA = the circumference

X the diameter = 4 generating circles; .*. the area of the

cycloid = 3 generating circles.

Ex. 8. To find the area of a curve, whose equation is

ax
^~

x/ax - x"
'

axx
Here yx= -

; whose fluent is (Fluent 23.) a x a cir-

cular arc of radius | a, and versed sine x — ax y/ax — x", which
vanishes when x= ; and if x= a, it becomes a x the semi-

circumference, whose radius = | a = the area of two circles of

radius = f a.

Ex. 9. The area of a curve equals n times its circumscribing

rectangle ; required the equation.

Here the fluent of yx— n x yx\ .*. yx =nyx-\-nxy ;

.'. I -7ix yxz=nxy; .*. 1 — «x,-=wx-; and 1 — wxhyp.

log. x = ?i X hyp. log. y ; or x'~" oc y",

2
In the common parabola, w= -

; .*. x^ oc
y''^,

or x o^ y%o

and ax=y'' the equation.

Ex. 10. Required the nature of a curve whose area = hyp.

a + x
Jog. .^ a-x
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Here the fluent of yx — hyp. log.
' = hyp. log. « + j? -

hyp. log. a-x;
X

.
X 2ax . 2a ,

•*• y^= ITTZ. + ::
= 'I i ' aiid y = -^ the equation.«+j? a~x a-x ^ a—x ^

Ex. 1 1 . Required the nature of the curve,

the square of whose ordinate BC is a mean

proportional between some constant quantity

a", and the curvilinear area ABC.

By the problem,
the fluent of t/i : y' ::

3^' : «*;

.-. a' X the fluent of yx=^i/* oc a't/x= 4y^y; .-. «'i= 4^'^,

anda'x = -^; .\ x oc y\
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cHAP. VII.

TO FIND THE CONTENTS OF SOLIDS.

(50.) Xjet P^F represent a solid, .which is conceived to

be generated by a circle, beginning

its motion at A, and perpetually

changing its '^magnitude, while its

centre moves uniformly on the line

AM. Let PRF denote the position

of this circle, corresponding to the

ordinate PM of the curve AP.

Through P and F draw two hues,

tPr, eFp, parallel to AC\ take Mb — Mc, and through b and c

draw two lines parallel to PF, meeting tPr, eFg, in t, e, r and p.

Conceive circles to be described on the diameters te, xd, vg and

rp. Then the cylinder PrpF = PteF; and PrpF is less than

PvgF; and its equal PteF is greater than PxdF; that is,

the cylinder PrpF is greater than the preceding, and less than

the succeeding increment of the solid. Also, since PF is

constant in the cylinder PFpr, the increase or decrease of this

cylinder will vary as the increase or decrease of MC; but AM
flows uniformly, .'. the cylinder PFHR is the fluxion of the

solid PAF.
LetAM==x; PM=y\ MC=x; then, if ;?

= 3. 14159, &c.

the area of a circle, whose radius is 1, the content of this cylinder,

or the fluxion of the solid =2?j/*i.

Cor. Whatever be the form of the generating plane, as a

triangle, a square, a parallelogram, &c. the fluxion of the solid

will be equal to the product of this area and the fluxion of the

abscissa.
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(51.)
Examples.

Ex. 1. Let ABE be the solid generated by the revolution of

the common parabola about its axis. ^

Here i/^
= ax; .'. py'^ot—paxx, and the

fluent or content
yax + connect. ; leta? = 0;

then the content = 0, .*. C=0; or the con-

pax^ pax XX p^' x x .... , ,

tent=i—= ^—-—
=-^

—
; that is, the

,
/ c Am? ^^' x^<^'

whole content oi ABU, =p x
ji

Cor. Since ^ x BO x ^C=the content of the circumscribing

cylinder, the paraboloid
= half the circumscribing cylinder.

Ex. 2. Let ABE, be the solid, generated by the revolution

of any parabola about its axis.

In thiscase, a^-'x^y" ; .*. a"-^x-nif^^y ; .. py'x~ -

„_^ ,

tip^
+2

and the fluent or content = =f= tTi -f- correction . B ut if w= 0,
w + 2 X a

- npxf^
the content =0, .*. cor. = 0; .*. the content = :=—:? =

w + S.a""^

_npy"-^'y

npy"" X ;/ npa!' 'xy __
n

X py^x.

n

n+2
X the content

w+ 2.a"-' w4-2.a"-*
"+ 2

Cor. The content of ABE in this case

of the circumscribing cylinder.

If /I = 2, the paraboloid = ^ the cylinder as before.

Ex. 3 . To find the content of a sphere.
Let the radius = a, the versed sine = x, and the right sine y ; then
the equation is

y'-
= 2ax - x\ .-. py'x=p x 2axx-^x'x ; and the

x^
fluent =/? X ao;* - -+cor. Let x = 0; then the sphere = 0;

.*. cor. = ; and the fluent =jo x a:i7* - -
; let x = 2a\ then the

o

whole content = » x 4a' ^ =J^
3 3

*
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Cor. The content of a cylinder circumscribing the sphere

=^0" X 2a==2/?a'; therefore,

the sphere : its circumscribing cyhnder ::
—- : 2pa ,

:: 2 : 3.

Ex. 4. To find the content of a spheroid generated by the

revolution of a semi-ellipse about the axis major.

b'
^-

Here v = -, x 2ax — x ;

.'."py X— *-^ X laxx— x x ;

.*. by the last case, the content of

the section corresponding to the abscissa x=- X ax

4pb'aj)h^ 4ci^
cor. = ; and the content of the whole spheroid =^— x •—^

a' 3 3

Cor. 1. If the ellipse revolve round the minor instead of the

major axis, since the same property of the curve obtains in each

case, the content of the spheroid thus generated = -^—
. Hence

the solid generated round the major : the solid generated round

the minor :: f^ :
1^ :: ft : « :: BC : C^.

3 3

Ai ^ o- 4pb*a Apa^b Apa^h 4pa^ . ...
Cor. 2. Since -^— : -^— :: J-

:
-^—

; /. the solid
3 ; 3 3 3

generated round the minor is a mean proportional between the

solid generated round the major and the sphere, whose diameter

is equal to the major axis.

Ex. 5. To find the content of an hyperboloid.

Let BAE (See the Figure in the preceding page) represent

a hyperboloid, whose major axis = 2a, minor = 2ft, AM = x.

pb'MP =2/, AC= e, then y*=z—^x 2ax+ x'j .'. py^x=~ x 2axx+x'Xy
d Ob
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and the fluent ^— X ax'' -{
—

, which needs no correction ; or
a' 3

the whole content =^ xae^A— .

a o

Cor. The content of a cylinder, the radius of whose base is

PM, and altitude AM^v x PM' x AM=^ x 2a?+^; /. the
a

content of the hyperboloid of the altitude x : the content of

a cylinder of the same base and altitude :: «!?'' + - : 2aa:'-f--*"'-

Let X be very small, and this becomes the ratio of ax* : 2ax', or

of 1 : 2, which is the ratio in the paraboloid.

Ex. 6. To find the content of a cone ABC.

Let AD the axis = a, DC=h, AG a

= x, GF=y. Then ^= — ; :. py'^x

'pJy'x'^X
•'—

r-3 and the fluent =^-^-^, which
a 3a,'

a

pb^x^

needs no correction. Let j;= a; then

the content of the whole cone =

—~= i of a cylinder of the same base ^

and altitude.

Ex. 7. To find the content of the solid called The Groin,
which is generated by a variable square, mnpq, moving parallel

to itself, the section GAK through the middle of the opposite
sides being semi-circular.

Let AH=a; AF=x',

FI=y ; then y — V^ax— x"

by the nature of the circle ;

:.2yz=2 X y2ax~x"; .\the

area of the generating plane

mnpq, which answers to jo^'

in the other cases, = 4 x

2ax - x" \ hence py^x = ^axx - 4x*x ; and the fluent = 4axi'
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\- correction, and the con'ection = 0. Let x = a; then the
3

whole sohd BAD = 4«' - —- = —-.

Ex. 8. To find the content of a pyramid, the section of

which parallel to the base is any given figure.
^

Let EFG be a section parallel to the base ;

draw ^//iC perpendicular to the plane BDC,

cutting EFG in /; join KD, FT; then ^'^

the area of the base BDC : the area of

EFG :: DC : FG' :: AD' : AF' :: AK' b ^
: AF; hence if ^ = the area of the base, AK=a, AI=:x, the

generating area, EFG = —-r ; .*. py'^x
———

; and the fluent =

, which needs no correction. Let x = a\ then the content of

the whole figure
=—

:;
— =

4^
the content of a prismatic figure of

the same base and altitude.
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Chap. VIII.

ON THE LENGTHS OF CURVES.

(52.) Def. a curve is described by the motion of a point

which is continually changing its direction.

Cor. 1 . If MPN be a tangent to the

curve AB at P, the direction in which the

describing point moves, when at P, is in the

tangent PN,

Cor. 2. Its direction at' any other points, E and F, is not in

the line PN, but in tangents drawn to the curve at E and F,

(53.) If the point do not continually change its direction,

but move, by a sudden change at

P, from the curve AP, to describe

PB^ there may be two tangents at

the point P, PM and PN. This

is not a curve of " continued cur-

vature," but is, as it were, broken

at P. Newton's expression,
" Curvatura continual'* (Sect. 1 .

Lemma 6.) is applicable to those curves alone, which are de-

scribed by the motion of a point continually changing its

direction.

(54.) To find the length of a curve, which is referred to

an axis.

Suppose AP the curve, AM the axis ;

hxy PM, cv, three equidistant ordinates.

Let dPs be a tangent at P, meeting hx and cv

produced in d and s. Then the direction of

the point P, which describes the curve, when
the ordinate is in the position MP, is in the tangent Ps,

H

b Me
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Suppose the ordinate PM, and the abscissa AM, to flow uni-

formly for a small space, and their fluxions to be Mc and rs ;

then, by Art. 44, Ps is the fluxion of AP. Let AP = z,

AM=x, MP=
ij, Pr:=d:, rs = y; then z =^¥+^.

(55.) Examples.

Ex. 1. To find the length of a semicubical parabola.

The equation is ax^-y^-, /. x^^^, and i= ^fc^; /. i'+v'

=
-tr+^

=
4a - hence^=^^^+3^^ =^^^lx^;

the fluent of which, by Art. 39, = P-^ + ^^
l^ + ^orr. Let the

Aat
arc 1=0; theny=:0; .. 0= r + ^J •*• C=0~

2'ja'- 27«^

w; uieii y=:L»;.'.u=
~

2'Ja^ 27
.'. the whole length, thus corrected, =

9y+M\ 8a

2^a^ 27
*

Ex. 2. To find the length of a common parabola.

Here ax= y\ and i = £^ ; /. x'-\-y'= i^' + y'= tEl .

1

xj,'. LetB = '; thenl=i,; .-. i-^ + i xy- = C +
*\^..

T

... ^=:
^nLl^LlE^

of which -the fluent, (Fluent 58.) =

2^
^ y'-^byf + I 6 X hyp. log. 3/ +^y*-\-h' + corr. Let

the curve =0, then ?/
= 0; .-. = fix hyp. log. b + C, and

/^ 1C = —
I Z» X hyp. log. b; .*. the whole corrected length = — x

y*TbY]^ + ibx hyp. log. ^T^yp+T' -
f ^ x hyp. log. b =



LENGTHS OF CURVES. 51

i X p+Uy^" + ihx hyp. log.ij+^f-^b'- hyp. log. b =

1 _. .

, , , J/+x// + ^^

^ X3/'+%1 + l^' X hyp. log. ^
.

Instead of reasoning in all cases from the expression i =

^'F~T~p, it is sometimes useful to adopt other methods,

according to the nature of the curve. Some instances are given

in the following Examples.

Ex. 3. To find the length of the cycloid JBC.

Take BD = a, BE=x, BG _b
= z, GH in the direction of

a tangent at G= x ;
draw

i///^ parallel
to GE, and let

EK=x. Then, by similar ^ ^^^"^^ \.

triangles, BEF, GIH, BE : BF :: GI : GH; or, since BF=
, ,

aJx
, _,

^DBx BE= ^ax, x : aJ x^ :: i : z ; .\ z= -f = ci'x ^i,

and z = 2d^ x"^ + correction. Let x= 0, z = 0, .*. C =0; and

z = 2a^x^; that is, BG = 2BF; .-. BJ= 2BD, and the whole

arc of the cycloid ABC= 4BD.

Ex. 4. To find the length of a circular arc, by summing the

four first terms of the series, which expresses the length of the

arc in terms of the tangent.

Here, according to the notation in Art. 44, « = \ .^ ; or, if

• t^i tH t*i
aV be actually divided by «*+ '% ^= ^ T -\ r 5 + &c.-;

(JL (JL €L

1^ t^ f
.». zz=t H i 4- &c., which needs no correction.

3a 5 a* 7«

Let the arc be 45% then t=:a; .*. an arc of 45® = a —

- + r + &c. ; or, if we take four terms, the arc =
3 5 7

a X 1 --+--:; =
; and, if for a we write -

, d beinsj3^0 7 105 2' ^
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1 X 6.2831804
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38d
the diameter, the arc of 45°= ; .*. the whole circum-

105

ference = ———
; or, the circumference : the diameter :: 3 : 1

nearly.

Cor. 1 . If we assume z an arc of 30", and a=l, then f = —~
V 3

= 0.5773502; if this value be substituted for t, and twelve terms

of the series be taken, z the arc of 30° = 0.5235987. Multiply
this by 12 ; then the whole circumference = 6.2831804, where

radius is 1 ; but the circumferences of circles are as their radii ;

.*. if the diameter be assumed = 1, or radius = |, the whole

circumference in this case =3.141590, &c.

^ c- xi p •
1 radius x circumference

Cor. 2. 55mce the area ot a circle =

/, the area of a circle, whose radius is 1, =

3.14159, &c.

Ex. 5. Compare the circumference of a circle with its

diameter, by summing the four first terms of a series expressing
the length of a circular arc in terms of the sine.

ail

Here, according to the notation, (Art. 44.) i:= - --J===^ of

which the fluent = v+ -—-, + - /, , + 7r~-I-^6 + &c.^ 2.3a^ 2.4.5a* 2.4.6.7a

(Fluent 93.) Let
3/
= a, the arc = a quadrant; .-. a qua-

1 3 15
drant =ax : 1 + ^+ — H—^ * o^j ^7 adding the three first

terms together, and dividing the numerator and denominator of

149 5
the first by 2, and of the last by 3, it = a x :

-— + -—- =

2161 .1 u 1
• f 8644 .„ d

a X —^
—

; .*. the whole circumierence = a x
^. ; or, it a = -

,

1d80 1d80 2

d being the diameter, it = —^ —
; .*. the circumference

: the diameter :: 4322 : 168O nearly. If a greater number

of terms were taken, the approximation would be more correct.
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(56.) Nearly in the same manner, an approximation may be

made to the value of the circumference in terms of the diameter,

by taking the sum of a few of the first terms of the several

series which express the length of a circular arc, in terms of

the cosine, versed sine, or secant. The expression for z in

terms of the cosine is ;2= ^ ,
= -ix 1—-

; for the
s/a ~ X a\

'

. . ax ax a^x
versed sme, z = = =

_ ^ 4.
= —;= x

s/lax — x^ / X^
y/2axx 1

2ax
v/2j?

1- —
2ax

as a's a'
; and for the secant 2= y . =— x 1

* X s/s' - a" s" s"

The part, which is in the form of a residual, is to be expanded

by the binomial theorem, as in the last case, and the fluent of

each term to be taken separately.
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Chap. IX.

TO FIND THE SURFACES OF SOLIDS.

(57-) XjET BAC represent a solid generated

by the circle PF, as in Art. 50. The surface

of the solid is generated by the circumference

of that circle. Hence the fluxion of the

surface will equal the circumference of PP
multiplied by the velocity of the point P,
or equal the circumference PF multiplied

by the fluxion of AP, Let PM=y, AP= z,

^ = 3.14159, &c. the circumference of a circle whose diameter

is 1 ; then the fluxion of the surface = 2pi/z.

(58.) Examples.

Ex. 1 . To find the surface of a sphere ABP.
Let EP, FD be two ordi nates, PD
a tangent at P, PH perpendicular to

TD. Then if CP = a/AE = x, AP= z,

EP=zy, PH=oc, PD=zz, by similar

triangles PHD, CPE, z : i :i a :
7/ ;

.. 2p7/z, the fluxion of the surface =
2pax; and the fluent =2paX'{- cor-

rection. Let x = 0, the surface = o,

and the correction = ; .-.the surface = 2
jt?
ax. Assume

x= 2a; then the whole surface = 4p a' = the area of four great
circles.

Cor. The surface MAP oc x.

Ex. 2. To find the surface of the solid generated by the

revolution of the common parabola about its axis.

Here ax=
i/^;

4y^ -}- a' X y'

X 2yy and x^= 4y'y^

z = yx s/TjfTa'

., 47/y .,

a' ^

hence, 2pyz —
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2p.V.yv/4.y'+ «-
^ ^„j ^h^ fl„^„j ^ 2p.# X 4y'+«-r ^

8yyx ->ia

i-—TT^ + correction. Let the surface =0, ^= 0; .'. the

correction = — ^7^ ; ,*. the corrected surface = y-,
•

6 6a

pa

Ex. 3. To find the surface of a cone.

Let AC=s, AF=%, FG^y, CD==h,
FH=z, Hl—y\ then, by similar

triangles, FHI, ACD, z : y :: s : b;

su
:. z= -f ',

and the fluxion of the
b

surface, or ^pyz
2ps

^yy- The

fluent = -7- X -
, and the corr. =0. ^

b 2

Let y= b; then the whole surface = 2psb = psb— 2pbx -
2b

^ ^2
= the circumference of the base x | the side AC.

Ex. 4. To find the surface generated by the revolution of

the cycloid ^fiC about its base DC.

Let AD = a, AF=^x, AB = z, BE=y, a

= a-3c; then AG= a^x^; AB = 2a^x^', p

/. z = d^x ^x; :, 2py% = 2p x a~x x

a^x~^x = 2pa\v'^x~2pa^x^x; and the ^

-Ar^r,^^^ ^pa^^^fluent =Apd^x^ —
3

+ correction, and the correction =0;
> 3

:. the surface generated by AB = Ape?x^ pa_x_ ^ ^^^ x — n\

then the whole surface = Apd^ ^ = _pa_
^

3. 3

Ex. 5. To find the surface of the figure called The Groin.

(Vide Art. 51. Ex. 7.)
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Let AH=ajAF=a;,IF=i/, AI=z; then, since z : i :: a :

<——.—— cue ——.^———
iy) s/^ax-x\ z= /

-

i i also, 2FI = 2x J2ax- x'
',

V 2ax— x

,\ 2py in the other cases =8 x y/2ax-x'' in this case ; hence

,
^ ax

2pi/z = 8 X Aj2ax- x^ X —/ =:8ax: and the fluent =^^ ^
^2ax-x^

8a x-^ the correction, but the correction =0; .*. the surface

corresponding to the abscissa /4F=8ax. Let x = a, then the

whole surface =8a\
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HAP . X.

ON THE CENTER OF GRAVITY.

Lemma.

By Mechanics, if A, B, C, &c.

be any number of bodies, whose

center of gravity is G ; and Aa, Bb,

Cc, Ggf be drawn perpendicular to

a plane PQ ; then the Hne Gg =
Ax Ja-\-Bx Bh-{-Cx Cc+ &c.

A+B+C+ &c.

G

A B

The truth of this Proposition is assumed in the following

articles.

Proposition.

(59.) To find the center of gravity of a body taken as an area,

solid, curve line, or surface.

Let MAN be the body, AF its

axis ; draw KAL, BEC perpendi-
cular to AF. Then, since AF is the

axis, the figure will balance round it,

or the center of gravity is in AF.
Conceive the body to be composed
of an indefinite number of particles,

and multiply each particle by its M F
distance from KL. Then, by the lemma, if G be the center of

gravity, AG is equal to the sum of all these products, divided

by all the particles, or by the body itself. The sum of all these

products is found by taking the fluxion of the sum in the first
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instance, and then the fluent. Hence, if i represent the fluxion

of the body at the distance x from KL. AG= -,
—

75 jr-. .
•^ the fluent of s

(60.) To find the center of gravity of an area.

In this case, the fluxion of the nume-

« • Ar^ the fluent of Q,yxx
rator = 2ya:a?; .\A(jr=

,
—

^
—^—

the fluent 01 2yx
the fluent of yxx"
the fluent oi yx

'

(61.) To find the center of gravity of a sohd. (See the

Figure in Art. 59.)

TT jr — *^^ fluent of py'^x x x _ the fluent of y^xx
""

the fluent of py^'x
~

the fluent oiy^'x
'

(62.) To find the center of gravity of a curve fine. (See

the Figure in Art. 60.)

In this case, the fluxion of the numerator =x%; and the fluxion

K A
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Now AF : AL :: AI : AH,

or, a : c

59

:: X : v = —\ .'.v ^ --, and
3/
=

a o,

_ ^ cjc bx
fluent — X — X a?

—
, . . ^cr -

^^i^j^gig ^^(nr 3 ^a ^ triangle

cbx x^ =
, for the

whole triangle,

cb X a'

Sa^x —
2

2a

T

Ex. 2. To find the center of gravity of the common parabola,

BAC.

Here 3/*
= ao? ; .*. 3/

= «^x^ ; .* •

fluent 3/a:i

fluent 1/x

fluent a/^x^x

fluent a^x^x 5

2

5

-a^#

Ex. 3. To find the center of gravity
of any parabola.

fluent yxx
fluent yx

Here 3/"
= a""' x

-,
.*. 3/

= « " ^" J ^"^^

fluent a»a?"i_ n
^

fluent w x^x
= V±1JL£=:AG,

2«+i ''iii 2/1+1

Ex. 4. To find the center of gravity of a semi-circle.

I^t FE in this case = x, DE = y,

FD = r ; then x"" + y''
= r^ ; ,\ xx =

fluent yxx fluent — y^y d
^•^ ' "

fluent
3/ i?

fluent ^i;

= — r^T^Vv. • Now when the distance
area DEFB

of the center of gravity from BC=0, DE coincides with BF;

.\ FG=:
3 X area

p f^ F F ; or, for the whole semicircle =

SxAFB . Corol. ^G =r— SxAFB*
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Ex. 5. To find the center of pravity of the segment of a circle

BAC.
Take F the center ; join BCy and

draw FA perpendicular to BC; the

Center of gravity is in FA. Let

FE=x, ED=y, MB= b; then, by

the corr. —
3 y'

the last case. FG=: -. ^^^^^ z'
the area BMED

/. FG for the whole segment =

h^-y^
3 X the area BMED *

^3

3 X the area BMA '

Ex. 6. To find the center of gravity of the solid generated

by the revolution of the common parabola about its axis.

TT , the fluent of y'^xd; a
Here y'-^ax; :, -.—3 ^ '\. =

•^ the fluent of y'-x

the fluent of ax'^x the fluent of x'^x

the fluent of axx
~~

the fluent oixx~
2x' 2x j^

Ex. 7. To find the center of gravity of any paraboloid.

T 4. „ n-i ^ f7 a ^^ I , fluent of ?/''a?i'

Lety''= a'' 'x; .'.y = a" x" ; .'.y^ = a " x" ; and ^j :^—-

fluent or y^x

fluent of a "
a;" x

1 -+2
- + IX"

ZH —2 2

fluent of a " x"x 2 -+«
- +2xx"

_ n-\-2.x

2n + 2

Ex. 8. To find the center of gravity of a cone

By similar triangles, AED, AFC, AF
: FC :: AE : ED. Or, if AF=a,

and FC=b, a : b :: x : y = and
a

f =
b'x' the fluent of y^xx

the fluent of y^'x

~~

the fluent oi ~x^x
^u ijX ax A f^

'b'

~
4^

"^ T -'^^'
the fluent of — x^x

a
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Ex. 9. To find the center of gravity of a hemisphere.

Let BAC (See the second Figure in the preceding page)

represent a hemisphere ; here ?/'
= 2ax — x" ; /. the fluent of

y^xx=^ the fluent of 2ax''x-x^x = — —; and the fluent

o ,. ^u a *. c n • a- »
^^

.
the fluent of w'ii

of vx= the nuentoi 2axX'- XX=ax- —
; ,;-.—5 —

..•^ .^ 3 the fluent of y^x

=:l i-. Let^=^F=a; then^G=^ i- =ii-

ax-'-l^' a'-\a? la?

6a

Ex. 10. To find the center of gravity of a hemispheroid.

Let BAC (See the second Figure in p. 57.) represent a

hemispheroid; then ?/'
=— x 2ax-x" ; Z. the fluent of i/^xx=

5" 2ax^ x^— X the fluent of 2ax^x - a^x- —
,
x -—

-~j and the fluent
a^ a o 4

h^ no ~-— h* x^
of v'i = •— X the fluent of 2axx-x^x=i -- x ax* :

3

the fluent ot y^xx a* 3 4 . , , ,

/. IT—-5 , f ,. = -71 i
—

; whence by the last
the fluent 01 y x b x^ ^

^ X ax*- —
a"- 3

•P Ary 5^
case, if x= a, A(jr= —

o

Cor. 1. Since b is not found in the expression
—

, the
8

distance of the center of gravity from A in ail hemispheroid*

round the same major axis is the same.

' Cor. 2, In the same manner, if BAC be an hyperboloid,
5* 8ax-{-3x'-

and y*= —2 X 2ax-^x*, AG= 12a + 4x * *^^^ ^^^ ^^ AF=C,

12a + 4C
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Ex. 11. To find the center of gravity of the arc of a

semi-circle.

LetFE=x,BD= z,FD= r; then

% : -y :: r : x; (Art. 44.)

/. -ry — xz\

jPfy _ fluent of
j?i__ fluent of — r^

— ry
-njj + the corr. ; and if FG= o,y = r BD

T>rkj for the arc of the quadrant ; and the same is true for

the other side; .-. FG~

Cor. AG = r

BDA for the ?irc of the semi-circle.

BDA'

Ex. 12. To find the center of gravity of any arc AEC of

a circle.

Take S the center ; and draw SDE perpen-
dicular to the chord AC\ the center of gravity G
is in that line. Let^D = 5, SE= r, SB = x,

BM=y, AM= z. Then xz=-ry-y :, the

fluent of xz= —ry-\- the corr. =rb- ry : and

^^ the fluent of xz rh — ry ,.SG= =
-jjf^i

or takmg

the whole arc AE, and therefore y = Oj SG =
rxb SExAD

, , ,
.

1 ,, . x,^
; and the same conclusion holds for EC;AE AE

:, SG for the whole arc AEC= SE xAD SEx AC
AE AEC

Ex. 13. To find the center of gravity of the sector of

a circle.

Let S be the center of the

circle ; Mm the chord of the arc

MAm; *S'>^ perpendicular to il/m;

QDq an arc at any distance SD ;

Qq its chord. Take MAm= Cj

SM=r, Mm= a, SQ=x, QDq = vi then r : x :: a : Qq=
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—
; /. yxx, in the preceding cases, corresponds in this instance

. , ax . ax^x ci ry the fluent of yxx
with — X XX = ; .\ iS ix = -r—5 :;

—
r .
— =

the fluent 01 y a?

; and for the whole sector =

r r
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Chap, XL
ON THE CENTERS OF GYRATION, OSCILLATION,

AND PERCUSSION.

Proposition.

(65.) Xf jP represent any moving force acting at a distance

SD from the axis Sy and a body B revolve round the axis by
the action of P, the same angular velocity will be produced in

BxSB'
a given time, it a weight = SD

Let M and m represent two

moving forces acting at B and

at Z) ; f^ and v the velocities ; and

B and x the quantities of matter

at these points. Then since Moc

Q, X y, we have — = — x —
;

be placed in D,

m X V

B M V ,^hence — = — x ^y. JNow since
X m y

the effects are the same, we have by the leverMi m :: SD : SB\
1/ SD=

-^Tn I also, since the angular velocities of B and D arem
the same, the linear velocities are directly as the distances ; or

V SD B SD SD
SB' ^^^^^^' '^-SB'' SB'

BxSB' '

or j? =

F : V :: SB : SD; . . ^

SD'

Cor. Since the accelerating force oc as the moving force

divided by the quantity of matter, the accelerating force upon D
P

, p ^ ^/)»
oc as ^ X ^B"^ oc ——-——

; and the same is true for anvnum-

ber of bodies. The inertia of P is here not taken into account.
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ON THE CENTER OF GYRATION.

(66.) Def. The center of gyration of a body, or system of

bodies, is that point into which, if the whole mass were collected,

a given force as P applied at a given distance from the axis of

suspension, would produce the same angular velocity in the same

time, as if the bodies were disposed at their respective distances.

(67.)
Proposition.

To find the center of gyration of any body, or system of

bodies, revolving round an axis of motion, which passes through S.

n

Let J, B, C, &c. be the bodies,

or the particles of which the body

is composed; P the given force

applied at Z); R the center of

gyi-ation.
Then the force which

accelerates D, whilst these bodies

are at their respective distances, =

(by Cor. Art. 65.)
PxSD

Next,
AxSJ'-\-BxSB'-^CxSC^-\-kc.'

let the whole mass be collected in R ; the accelerating force

PxSD' „ . „ , L
upon U = — —- . But smce P, and the

A + B-[-C+ kc. X SR"^

angular velocity of Z), are by supposition the same in both cases, the

absolute velocity of X) is the same, and .*. the accelerating force

upon JLi must be the same; that is, -^—^7-7;
—=-—^-j^

— =
^ ' Jx SJ'+Bx SB'+Scc.

PxSD'
_ /AxSJ'+BxSB' + Cx SC'T .̂

J^B-j-C+kc. X SR'' "^^-y A-\-B+ C+&cc.

Cor. If s be the fluxion of the body at the distance x from

1 • c^n A / the fluent of jc'^s

the axis, JSR=y .
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ON THE CENTER OF PERCUSSION.

(68.) Def. The center of percussion is that point in the

axis of a vibrating body, at which, if stopt by an immoveable

obstacle, it would rest in equilibrio, without inclining to

either side.

(6g.) Proposition.

To find the center of percussion of any body or system of

bodies.

Let RTy represent a section of

the body formed by a plane passing

through the center of gi-avity G, and

perpendicular to the axis of suspen-

sion passing through S. Let O be

the center of percussion ; suppose the

whole body to be projected ortho-

graphically upon the plane RFT,
the center of gravity will remain the

same, and the angular motion will

not be affected. Let A, B, C, &c.

represent particles of the body RFT; join SA, SB^ SC, and

draw Aa, Bb, Cc, perpendicular to these lines, meeting the

axis of the body in a, h, and c ; and let fall AE, BF, CL,

perpendicular to ST, The instant O is stopped, the particle A
will endeavour to proceed in the direction Aa, with a force

proportional to Ax SA; and this force : its force in the

direction AE, to turn the body round O :: Aa : AE ; hence,

, ^ .
,, ^. ,. ,^ AxSAxAE AxSAxSE

the eiiect m the direction AE = r = ^7—4Aa SA
(by similar triangles) =Ax SE ; and its effect to produce

angular motion round =Ax SE x aO=A x SE x SO — SA—
AxSExSO--AxSExSA = AxSExSO-Ax SA\

In the same manner, the effect of B and C, from which the

perpendiculars cut the axis in F and L, on the other side

ofO==BxSB-BxSFxSO; and C x SC- Cx SL x SO;
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and since these forces balance each other round O, we have

JxSExSO''JxSJ^ = BxSB^-BxSFxSO+CxSC*
-CxSLxSO; .-. A X SE+B x SF+Cx SL+ &c. xSO =

JxSJ' +BxSB'-hCx SC + &c. ; or, by the nature of the

center of gravity, J+B-^C+ &c. x SG x SO =JxSA'^+B
^^ AxSA'+ BxSB'^-CxSC-\- &c.

xSB^-^CxSO^ &c.; :.S0^
^ -Z ^\ ^7T—

ON THE CENTER OF OSCILLATION.

(70.) Def. The center of oscillation is that point in a body,

or system of bodies, into which, if the whole mass were collected,

it would vibrate through a given angle by the force of gravity

in the same time as before.

(71.) Proposition.

To find the center of oscillation.

Let LMN represent a body pro-

jected upon a plane, which is per-

pendicular to the axis of suspension

passing through S. Let SGO be

the axis of the body at some period

of its vibration, G the center of

gravity, and O the center of

oscillation. Draw SDF perpen-

dicular to the horizon ; with aS* as

a center, and SG, SO, as radii,

describe the circular arcs GD, OF;
draw DE, FH, perpendicular to

SO. Let Gv be a line parallel to SF, and draw vt perpendicular

to SO ; join the point S, and the particles A, B, C, of the

body. Now the moving force upon G, whilst the particles are

in the position A, B, C, &c. : the whole weight of the body
:i tv '. Gv :: DE : SD-, ,*, the moving force upon G=
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DE
A-\-B-]rC-\- &c. X

-^jT c7> J ^"<i ^^^ force will, in a given

time, produce the same velocity, if A, B, C, &c. be removed,

and the masses
1 ^^^ \. &c. be placed m G.

Hence, the accelerating force upon G in this case =

^4-5+ 6'+ &c. xDExSG
AxSA'+BxSB'--{-CxSC'+ &c.

*

Next, suppose the particles collected in O ; the accelerating ,

HF^+^+ C+&c. x^, ^^ j^^
^^'^^''^= A + B+C^Scc. =SF = ^' ^y''^'^'''

triangles; and the force which accelerates O : that which

accelerates G :: SO : SG; .*. the force which in this case

DE
accelerates G= -^^ . But in both instances the force at G

must be the same ; for then, in both cases, the point G will

describe a small arc, and equal successive small arcs, and

consequently the whole arc GD in the same time. Hence,

A +B+C+kc xDExSG DE
, ^^A X SA' -h BxSB^+C X SC + &c.

"
SO '

AxSA'^BxSB'-irCxSC'^hc.

A-\-B+C-\-kc.xSG

Cor. 1. If i be the fluxion of the body at the distance x

_
,

. c^^ the fluent of x^s
from the axis, >SU= -n

—
;

—
i urr- •

the body x Sijr

Cor. 2. The distance of the center of oscillation from the

axis of motion, is the same as the distance of the center of

percussion.

A X SA-\-B X SB'-i-Cx SC'-{- &c.
Cor. 3. SOxSGzz A+B+ C+6ic.

Cor. 4. If R represent the center of gyration,

SG : SR :: SR : SO.
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For (Art. 67.) SR = ___^___ .

and SO x SG — the same quantity (by the last Cor.
;) .-. SO x

SG = SR^; and SG : SR :: SR : SO.

(72.) Proposition.

'If the distance of the center of gravity and the axis of motion

be increased, the distance of the center of gravity, and the

center of oscillation, will be diminished in the same proportion.

Let A, B, C, &c. be particles of

the body, S the point of suspension,

G the center of gravity,
and O of

oscillation; join SJ, SB, SC, and

GA, GB, GC; draw Ja, Bh, Cc,

perpendicular to SO. Then,

SA^ = SG' + GA"^ + 2SG X Ga

SB^ = SG' -{- GB^ + 2SG X Gb

SC* = SG'+ GC' - 2SGx Gc;

.'. AxSA'-^BxSB'+CxSC'-^-kc. = A +B+ C+kc.
xSG'+AxGA'^Bx GB' +CxGC'+kc. +Ax2SGx
Ga+B X 2SG X Gb-Cx 2SG x Gc. But, by the nature of

the center ofgravity, A x 2SG x Ga-\-B x 2SG xGb-Cx 2SG
X Gc=:0; divide the whole by A-^B-^C+kc. x SG ; then,

AxSA' + BxSB'-^CxSC^-hkc. _ A-\-B-^C-{-kc. x SG'
A +B + C+kc. xSG

~
A + B + C-hkc. x SG

Ax GA' + n xGB' + CxGC* -{- &CC. ^^ ^^J
; or, so = SG 4-A+ B + C+kc.xSG

AxGA' +BxGB-^Cx GC'^kc. , ^^ ^^ ^^
; here, SO — SG, or GO

A+B+C+kc.xSG
AxGA+BxGB+CxGC* + kc.

,, ,
• ^^ l= = ——

; that IS, GOoc ,A+B+C+kc.xSG SG
for the numerator, and the other part of the denominator in the

same body, or system of bodies, is a constant quantity.

Cor. 1 . SG x GO is a constant quantity.
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Cor. 2. If O be made the point of suspension, the point S

will be the center of oscillation ; or the center of oscillation, and

the point of suspension, are convertible.

(73.) Examples.

Ex. 1. Let the straight line SA revolve about S; to find

O the center of gyration .

SO =\/
= SA.

the fluent of

SA
x;'i_./SA' _ SA

3SA-'^3'
^^^" ^

o .

Ex. 2. To find O the center of gyration of a circle, which

revolves in its own plane about a center C.

Let Ce the radius of a concentric

circle =x, CA=r; then px* = the

area of the inner circle, and 2pxx its

_ . ^r\ A /the fluentof2» 07^ i-

fluxion ; /. CO=y —^

px^

£-— = —7— when x— r.

2px' sj2

Cor. The same conclusion is true for a cylinder revolving

about its axis, since it is true for every section parallel to the end.

Ex. 3. To find O the center of gyration of a sphere ABR,
revolving about its diameter RT.
Draw CA perpendicular, and KB parallel to RT. Then KB=z

^r^-x'i and the surface of the cylinder generated by the

revolution of BL about RT—2 x >/r'-a;'x 2px', .*. the

numerator of the expression for CO becomes — the fluent of

r^y^ + -/Apx^x X >y/r'
—

a;% whose fluent (Fluent 75.) = 4j!?
x —

+ the corr. Let x= ; then y — v', .*. the corr. of the fluent =s

2 1 1 8 or'

Apy.
— r^ - -

r'y^ +-?/*= (when x= r, and y= O) ^ ; and
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« 1 1
4»r^

the content of the sphere =: -^

rxy-.
~~3

• o

(74.) Case 1.

Ex. 4. Let SC be a straight Hne of uniform

density suspended at one of its extremities S. To find

the center of oscillation.

Let O be the center of oscillation, and SP a variable

rr^i c<r\ the fluent of x's the fluent of cc'x

part =x. lhenoC/= =
^

XX - —
2 2

— - X, ov for the whole line = .

3 3

Ex. 5. To find the same, the density of the line being

supposed to vary ^ from the point of suspension.

1

the fluent of x~"'^^x
In this case, SO—

the fluent of x^x x —

the fluent of —-
x""

2 - w

3^w X x^ for the whole line
1-n
3-n

the fluent of :c~"+'x

SC.

(75.) Case 2.

Ex. 6. Let AB be a line vibrating lengthways in a vertical

plane about S, having its two extremes A and B equidistant

from the point of suspension. To find the center of oscillation.

Draw SF perpendicular to AB ;

let SF=a, FG-x, and join SG.

F is the center of gravity of the

Hne; then, taking FM=FG, we

have SO

a^x +

ax

2 X fluent of i- X a''+x'

2xx a

^x^ ^^^ FB^
oa ooJf
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(76.) Case. 3.

Ex. 7- i^et ANMhe a circle vibrating in a vertical plane.

Let a diameter MCN cut a con-

centric circle in D and B. Assume

SC=a,CB = x,CN=r. Then SD'

-^SB^ = 2SC'-h2CB'; .-. the sum

of the products of two particles at D
and Bj and the square of their dis-

tances from S = a'-\-x'' X the two par-

ticles ; hence that expression for the

whole circumference = «^ + o?"^ x 2pjc=

fluent of jc'^s

2pa^x + 2px^ ; /. SO —

a X -\

2
,

X^=
1
— =a^

ax 2a

fluent of j?V _2px fluent of a'xx + x^x

fluent of a:i p x ax^

for the whole circle «4- 2a

Cor. If the point of suspension S be in the circumference

of this circle, SO = /' + -
; CO= -

; and conversely, if O

be made the point of suspension, where CO — -
,
the center of

oscillation will be in the circumference. ^Art. 72. Cor. 2.)

{"11)

*

Case 4.

Ex. 8. Let ANM represent the circumference of a circle

vibrating in a vertical plane.

By the last Case, the numerator of the expression for SO, or,

as it is sometimes called, the force of the fluxion ofthe circle BDE,
or of an annulus, whose breadth is x— 2pa''xx-\-2px^x\ divide

this quantity by i", and there remains the force of the circum-

ference BDE = 2pa'xi-2px^ ; hence, SO in this case =

:
—i— i- =a-\ , or lor the whole circle

the cn-cumterence 2px x a a

=a+
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Case 5.

73

Ex. 9. Let AHBE be a circle, having its plane always per-

pendicular to the axis of suspension SG.

The point G being the center of

the circle, let AB be the diameter

parallel to the axis of motion RS
-,

draw EF parallel to AB, GP per-

pendicular to EFf and join SP.

Take GB = r, GP = x, SG = a;

then EF= 2^r' - x\ and *S0 =

fluent of 1x X ^r''
- x'' x a' + x^ _

area of semi-circle x a

the fluent of A.a'x sjr"-x^ -\-Ax''x ^r"- -0^'
__

area of circle x a
~

R S

^l_ IT
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Let S be the point of suspension,

SA= d, AP = x, PN=i/; then 5'0=

the fluent of 2z/i' x d+ xY

the fluent of 2yxx
fluent of yi x d-\-x

fluent of yx

the fluent ofyxx d-\-xY

the fluent ofyxx d-{-x

_p .
, ^, • ^ f.

• #^ the fluent of yx'^x
If ^ be the point or suspension, AO= —,—tx f^

—
:- •^ ^ the iiuent oi yxx

To apply these expressions to any particular curve, the value

of y must be expressed in terms of x from the nature of the

curve, and the fluent can be found.

Ex. 11. Let the curve be the common parabola, and S the

point of suspension.

fluent of a^x^x x d+ x{^

fluent of a^x^x x d-\-x

fluent of a^d'x'^x-\- 2 daJx^x + a^x^x 5 ^'^^+ -^
d x x"" -\- :jx^

The equation is
y''
= axi ,\ SO

2,3 2 =

^dx^+ rx^fluent of aJdx^x+a^x^x

5 J?

If £?=o, or the point of suspension be A, AO — -~-
.

(8 1 .)
If A be taken for the point of suspension, the value ofAO

. , • 11.1 • fluent of yx''x . • ^^
is determined by the expression

-^

—
y^
—-

; and since Aix

can be found, GO may be determined. Now SG varies as

7=77" ,• hence, if o be the center of oscillation, corresponding to
GO
the point of suspension S, we have AG : SG ::

-pjj
: •t't- »

AGx GO
from which Go— rr^ ; and therefore So may be found.
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If SG=g, JG = a, AO = v, and GO = v-a', then Go =

, and So—g-{ =a^ .

Ex. 12. To find the center of oscillation of the common

parabola, when A is the point of suspension.
2 ?

.^ fluent of w^'a^ fluent of a^x'^'a? 7 _ 5a?

Here AU = -5
—r ^ = 7; ^

—
;

—~ =
^""r 7f

•

fluent ot i/xx fluent of a^x^'x ~x^ '

Now to determine So for some other point of suspension S ;

let SA= d, A0= — =v, AG= ~ =a (Art. 64, Ex. 2.) ;

7 5

.-. GO = ^O - ^G= ^ - 5^ . Then, since SGxGo =
7 5

An nr^ n AG x GO T "" T
^

'^
, ^AG X GO, or Go = ^ = —

, we have ojO

3x 5x 3x

3 T 5 7
~

"5"= d-^ ^-^
-\ , which, reduced, gives the same

D J I
" "^

fl-\
5

result as in Ex. 11.

Ex. 13. Let EAD represent any parabola, whose equation is

a"~^ y = x", and the point of suspension A. (Seethe Figure

in the preceding page.)

v^ fluent of v-3?''-^ fluent of jf+*i w+ 2
Here AO=^^ —-^—r- = 5 n ^ ., .

= —7-5 x x.
fluent of ya^^'

fluent ot a; +'a: n+ 3

If « = -
,

it becomes the common parabola ; and AO --

^
AL

as before.

If S be the point of suspension, SO may be found from the

. fluent ofv^x^Sl\» x
fluent ofx''xxd'+2dx+x*

expression ==^ (Art. 80.) = — *

fluent of ?/i x d-{-x fluent of x'^x x d-{-x

n-\-2 . n+3. d' + n-\-l . w + 3. 2rfa?4-w+ 1 . wH-2.^' ,

= —
; or by

n + 2 .ni-3 .d-{-n-[-l .n-\-3.oo

the method given in Art. 81.
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Ex. 14. Let AED be an isosceles

triangle, suspended at A.

Take AP = x, MN=y_, AL ==a,ED= b;

^rU^^ ^/i_ the fluent of i/x'x .men j±u — -7-
— — — = (sincethe iluent 01 yxx \

— \^\ the fluent of x^x 3x
a / the fluent of x'x

~ T ~

If S be the point of suspension, So =
the fluent of

J+g^x.yi
the fluent of d-\-x.yx

6d' + 8dx + 3x'

6dr{-4x

before.

; which, when d=zo, becomes
'— as
4

(82.) Case 8.

Let the proposed figure be an area EJD vibrating edgeways,
so that the motion of the axis is in the plane of the curve.

(See the Figure in the opposite page.)

The sum of the products of each particle of the line MN,
and the square of its distance from Sj SP'' x P/V+ =

(Ex. 6.) d+xV xy-\rlf; .'. taking the area AMN, S0 =
the fluent of d+xT x yi+ ly^x

,

—
T" ^ -. —

} whence, substituting for ?/
the fluent of d-{-x.yx

^ J

its value in any curve in terms of ^, SO may be found.

If d=zo, or A be the point of suspension, AO=
the fluent of yx''x-{- ^y^x

the fluent of yxx

Ex. 1 5 . In the common parabola, suspended at ^, y' = aa? ;
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the fluent of a^jc*d;+ ^a^x^x -x' + -rrax^

the fluent of c^x^x
2 i

t 1

- AL-{- -
fl, for the whole area.

Ex. l6. In any parabola, whose equation is a'"^y=zx*,

the fluent of

A0=

x"'^^x 1 a^^"i

the fluent of
x^+'x

0?"+^ 1 xP''+'

w+2 w + 2 J?— X x+ -_
——T X

a' w-f 2

71+3 9n+ 3 a-

Ex. 17. In an isosceles triangle, 7/
: x :: b : a; .'. A0=^

the fluent of - x'i'+ - x —x^x

the fluent of - x-'x
a

y= &, =-a+

3 1 o'j?
= T^+ 7

—Ts whena:= a, and

4a

(83.) Case 9.

Let EAD represent a curve line

vibrating flatways.

Since each particle of the line MN
moves as with a radius SP, if the fluxion

fluent oi d+ xX x z
of AM=z, S0=

fluent oi d-\-x x z

Hence, if z can be expressed in terms of x, SO can be found.

. . „ fluent of I'^'^z

If ^ be the pomt of suspension, d—o, and AU=
^

—
r-
—~

.

Ex. 18. Let AED be an isosceles triangle ; s one side, and
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a the perpendicular, the point of suspension being A, Then

^i 1 ^r\ the fluent of ^'^c 2 >,
2 = — ; and AO= -;

—3 ^—r = o AL.a the fluent 01 xoc ^

Ex. 19' To find the center of osciUation of any given arc of

a circle MNQ, the point of suspension being in the center of

the circle.

Let G be the center of gravity of the arc,

^/Qitschord. Then50= f^'^"^^^^^^^^

SlY'

SG SN

SG X arc MNQ
SN^ SNxMQ
jmj ^ MNQ '

MNQ
Art. 64, Ex. 12.) = SNxMNQMQ

(84.) Case ID.

Let EAD be a curve line vibrating edgeways.

If S be the point of suspension, the radius of the circle in which

% moves =v c^+a^l'+y" ; .*. SO =
fluent of z X d-\- xV-{-y''z

fluent oi d-^-x x z

Ti* .# i_ xL •
4. c ' ^r\ fluent of ^'i+w'z

If^ be the point 01 suspension, AU =. —^ —-^— .

fluent of xz

Ex. 20. Let the figure be an isosceles triangle, whose altitude

a -
a'

sx

is a, and & = | the base. Then z= — ; y"*
= —-

. r , sx h X
fluent of a? X

1
-

a a

fluent of

3a

sxx

a

I ,,b'x'

x^
2

—
(ifa:

= a) ^a +

(85.) Case 1 1 .

Let the figure AEF be a solid, generated by the rotation of

the surface EAF about its axis AL, having its base HH parallel

to the axis of motion BC.
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B S CTake the circle 3INf whose plane

is parallel
to HH, It appears, by

Ex. 9, that the sum of the products

of each particle
of the circle MN^

and the square of its distance from

the axis, =SP'+{ PN' x the circle

MN = d+x]
'

+
^3/'

X P^" ; hence.

pi/^i X di-xY + -y" is the fluxion of ^

the sum of these products; and S0=
fluent of

jtw/"
X d+x\i:-\- -rVy^x

the fluent ofy x d+ oc\^X'\- iV*^

fluent ofpy^x x d-^x

the fluent of ^*i x d-\-x

If the point of suspension be at the vertex \^, d= o, and

the fluent of y^x^x-h ^y*'x

the fluent of y^xx

Ex. 21. Let the solid be a cone, and S the point of

suspension.

Take JL = a, LF^ b ; then a : h

hx .(. b
:: X : V, .*.«/=

— =m:r, it - =m.^ ' ^ a a

Hence, the fluxion of the numerator,

which =y''i X </+xl + -y*x, becomes

nex^x xd'-{-2dx+ x''+ - m*x*x, and

the fluent = —-— + --r— + —r—

m*x*Tit Ol •
*

4- . Also the fluent of the denommator y^xxd-\-x=

, , . , . ^n^'dx^
,
m'^x* ^^

the fluent of nCdx'^x + m'^x'x = —~— + -^; .*. «SU=
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20 20d'-\-30dx+ 1 2.37^ 4-3mV
~~i , 7 3 ,

] TV 20c?4- 1 5x

by multiplying the whole of the numerator and denominator <

by 6o, and dividing by m^x^ ; which for the whole cone =
20d' + 30da'{'l2a^-^3h^

20£?+15a

Cor. 1. If d=o, or A he the point of suspension, AO —

ba

Cor. 2. If a cone be suspended by the vertex, and the center

of oscillation be in the base, a~h. For in this case, =
5a

a ; /. 4a' + 6' = 5a', and a= 6, a property of the right cone.

Ex. 22. Let AEFhe a paraboloid, suspended at S.

Since^'= ax,SO in this case :

fluent oiaxx xd'-\- 2dx + oj' + -aVi

fluent of axx x d-\-x

\ad'x^+\ad^+ \ax'+ ^-aV ed'+ Sdx+Zx'+ax

-adx'-^- ^ax^
6d-{-4x

If d= o, JO=

3

3x-\-a

Ex. 23. Let the solid be a sphere, to find AO and So,

In this case it is most convenient to

determine the value of AOj and to

deduce SO from it by Art. 70.

Sincey = 2rx - x", AO=p x fluent of

2rx - x' X x^x+ ^
X 4rV -

4rx^-{-x^ x x

sphere x AG
3

r''x'x+rx^x- ra:*x

= p X fluent of
; .^, •'• =^

sphere x Aix



CENTER OF OSCILLATION. 81
^ 1 3 .

^
4

3
S

p X
4pr^

(when a: = 2r)

28

15

X r

2r

^ /yA

7r

Hence, GO = —-
; .*. if o be the center of oscillation,

5

con-esponding to the point of suspension S, since SG x Go=
It 1rAGx GO (Art. 72.); .'. d+rx Go = rx ~ = -r-; .*. Go=
5 5

2r'

5 X d-{-r
; .*. So = d-\-r-{-

2r*

6 X d'\-r

lfSA=:r,So =2r+— = 2r+ -
lOr ^

5

llr

Ex. 24. Let the solid be a cylinder, and aS the pointof suspension.

b-'d:xd'-\-2dx-\-x^-\- -b*d:

Here v is constant =b; /. -SO =
Ifxxd+x

fluent of 6/'i+ 2^a?i+ a?'i'+ 76'i <^*^+ rfj;'+
^5

J:;'+ l^'-^

fluent of dx+xx

Let d=o; AO=
j^'+j**

dx-\- ^*

J?

_ ?f 4.
^*~

3 2x'

(86.) Case 12.

Let EAF be the superficies
of a solid generated by the

revolution of EAF round its axis; to find the center of
*

oscillation of the superficies.

By Ex. 10. the force of the peri-

phery of a circle MN= 2pr x a* + -r"

R s c

= 2py X dTxX + iy ; therefore the

fluxion of the force of the su-

perficies
= 2pyzx d-{-xX

•\--y''',

/. 2py%xd+xV-\- \f
fluent of 2py%xd'\-x

N
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If d=o, J0=
the fluent of i/x''z+ ^y^z

the fluent of xyz

Ex. 25. Let EJFhe a cone.

If JE = s, AL=^a, EL = b, AM=z,
sx

z \ X '.'. s '. a \ ,\ z = — = mx
a

if - =m ;
and x '. y :: a i h \ »'. y=:

— = nx, if - = w ; hence S O —
a a

f. nx X mx X d^-\-'2idx-\-x''-\- ^
ti'x'

f. nx X mx X d-fx

/. d'xx-\-2dx''x+x'x+ Irfx'x \d'x'^ \dx'+ ja?*+ \ifx'

f. dxx+x'x

— for the whole cone,

-dx^+ -x"

l2d'-\-l6da+ 6a''-{-3b'

I2d~{-8a

Let d=o; then AO— -
6a^-\-3¥

8a

^^Ex. 26. Let EAF he the superficies of a sphere.

Here z : x :: r : y; .\yz = rx. Hence, if ^ be the point

of suspension, AO —
fluent of rx^x+ -

ry'^x

; since ^^ = 2r.x' — x"
fluent oi rxx

fluent of rx'x-\-r'*xx— - rx^x fluent of -
rx''x-\-r''xx

fluent of rxx

Irx'-^'^r^x'

rx

1.'

fluent o{ rxx

br=
(if x —

Q,7'-)
for the whole sphere
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Case 13.

83

Let the figure EAF be a solid, but its axis parallel to the

axis of motion TRS.

Take RP==a, AP^x, PM^y ; then, by

Ex. 7, the force of the particles in the circle

MN = a'-{' \y"xpy''-'>
- ^O for this solid

the fluent of a' + ^ y"" y- P V" ^

~
solid X a

the fluent of py^xxa' + ^P^*^
= a +

the fluent of py^i x a

the fluent of xy*!i'

a X the fluent of ?/\r

Ex. 27. Let EAF he the segment of a sphere, of radius r.

Let y'
= 2rx-x\ and y* =:4r*x'- 4rx' + x' ; /. SO = a +

fluent of 2r'*x'x- 2rx^x+ ^x*x

a X fluent of 2 rxx - x'x
--=a +

fr'x- Lr^'+±a;'

ax r~ -X

2r'
If x-r^ then /So for the hemisphere = «H ; and the

ba
same expression is true for the sphere.

Ex. 28. Let EAF be a paraboloid, whose equation is

y — ex.

the fluent of - &x^x

SO — a
\ a \
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Ex. 29. Let EAF be any paraboloid, whose equation is

Here y" = 37=2, and y' = -^j^rr,',
•*. 5" O = a 4-

f-\
X4«4.i

C*""

'- ^2»^
:« +

8w+ 2 c*"-* J?
5«

X
2?i+I

2«+l 8w+2 acr"
'^

2??4-l

8w4-2.«
x^

If w = -
, it is the common parabola ; and SO= « -|-

•—
,

as before.

Ex. 30. If the figure be a cone.

Let AL = Cy LE — b; y : x :: b : c;

.\y= — = mx if w= -; .*. SO=:a+
c c

y.
- m*x*x

y—^-^ =a-\
a X J' m X X ]

S R

10
m X

=a+~x
3«

— for the whole cone.
a

Ex. 31. In the cylinder 3/
is constant, and SO=a+ '^

.

(88.) Case. 14.

Let EAF represent a superficies, with its axis parallel to the

axis of motion. (See the Figure in p. 83.)

By Ex. 8. the force of the circumference of a circle vibrating

in this manner, =2pa^y-[-2py^; .*. the fluxion of the force of

this superficies = 2pa'y + 2vif x ^ ; /. SO = ^-^—i^—^-——4^^
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=za-\-
^ '

•; ; whence, by substituting for % in terms of v,

SO may be found.

Ex. 32. Let EAF be a spherical superficies.

rx
li X = the versed sine, and y the ordinate, i = — j .*. SO=

y

/iPxrx
1 ,

/• ^ r . rx- -x^

^
a-K j.rx ax /. x a

2r^
If x-r, or 2r, SO = a-)r —-.
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Chap. XII.

ON SECOND, THIRD, &c. FLUXIONS.

(89.) Xhe fluxion of a variable quantity has been con-

sidered as its rate of increase or decrease ; hence, if that increase

or decrease be uniform, the fluxion continues the same. But

if the rate of increase or decrease be variable, its measure will

also be variable ; and will itself have a certain rate of increase

or decrease. The measure of this rate will be its fluxion ; that

is, the fluxion of the fluxion, or the second fluxion of the

variable quantity. If this second fluxion be also variable, the

measure of its rate of variation will be the third fluxion of the

original quantity; and so on, till some fluxion becomes constant ;

then it will have no more. These different orders of fluxions,

it is plain, are similar in their nature to the first fluxions ; for

they are such, in fact, to the quantities from which they are

deduced ; and their fluents are the fluxions which immediately

precede them. The first fluxion of x being denoted by x, the

second fluxion is denoted by x, the third by x, &c.

(90.)
Examples.

Ex. 1. The fluxion of j?" is 2.ri; if x increase with an

uniform velocity, x is constant; but x being variable, 2x admits

a fluxion 2x ; and the second fluxion is 2i\ But if x do not

increase uniformly, x is not always the same ; hence, it admits

a fluxion as x ; so that the second fluxion of x'' is 2xx-\-2x'-.

If X be variable, we have a third fluxion, 2xx-\-2xX'{'4xx=

2xx-{-6xx. Should x be variable, it admits a fourth; 2xx-^

2 XX + Qx''-\- 6x'x', and thus we may proceed till some one

fluxion is constant.
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(91.) A simple quantity af, where n is an affirmative whole

number, has n fluxions, if x be constant.

For the first fluxion is nx^'^x ; and x being constant ;
-

the second n.n-\ . x"~^x' ;

the third - - - - - n.n- I .n- 2 . x^'^x^ ;

the n'^ - - - - - n .n—l « — w+l. x^x", which

is constant.

Ex. 2. To find the third fluxion of ax*-\-bi/^.

The first fluxion = 4ax^x-\-3hy^y, where j?, i, y, and y,

are all, by hypothesis, variable; .*. the second fluxion =
I2ax''x^-i-4ax^x + 6byy^ -\'3by*y ; and for the same reason the

third fluxion ~ 24axx^ + 24ax^xx-{-12ax^xx+4ax^x-{-6hy^

+ 1 2hyyy -i-Gbyyy+Sby^y = 24axx^+36ax^xx + 4ax^x-{-6by''-{'

I8byyy + 3byj.

Ex. 3. To find the second fluxion of x^y^.

The first fluxion = 3x^xy^-{-2x^yy ; hence, the second fluxion

= Gxx'^y'+ Sx^xyy + 3x^y^x+6x*xyy -\-2x^y'' + 2x^yy = Gxx'^y^

+ 1 2x^xyy + 3x^y''x-{-2x^y^+ 2x^yy.

Ex. 4. To find the second fluxion of x"" y".

The first fluxion = fnx^'^xy" -\-ny"~^yxf" ; and the second fluxion

=m .m~ \ . xf"~'^x'y" + mxf'^xy" -\-mn3(f"~\iy''~^y -{-n.n— 1 .if~'

ifsf + ny^'-'yoif" +m ny"~ 'yx"" 'i.
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Chap. XIII.

ON THE POINT OF CONTRARY FLEXURE OF A CURVE.

Def. Xf a curve be in one part concave and in another

convex to its axis, the point where it changes from concave

to convex, or from convex to concave is the point of contrary

flexure.

(92.) The abscissa being supposed to flow uniformly, it

appears by Cor. Art. 30, that whilst the fluxion of the ordinate

decreases the curve is concave, when it increases convex to

the axis ; therefore in the limit between the two, at the

extremity of the concave part, the fluxion of the ordinate

neither increases nor decreases, and here it is a minimum ;

therefore its fluxion or —^ = 0.

In the same manner if the curve changes from convex to

concave, at the limiting point, the fluxion of
3/

is a maximum ;

or +jr
= 0.

We have here considered AB the abscissa, and PB the

ordinate. From A, draw AM perpen-

dicular to AB, and let AM be con-

sidered as the abscissa, and MP the

ordinate to AR as an axis ; then at P,
the point of contrary flexure x = ;

its sign being positive, when the curve

is convex to the axis, and negative,
when it is concave.

(93.) Hence the Rule. To determine the point of contrary

flexure, take the fluxion of the equation; suppose i or y
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constant; take the fluxion again; make
)'

or x= Oi and the

value o{ X ov y may be found.

And to determine, whether the part of the curve between two

given points be convex or concave to the axis, observe whether

the value of the expression for y be positive or negative ; if

positive, the curve is convex ; if negative, concave ; the whole

curve being supposed to be on one side of the axis.

(94.) Examples.

Ex. 1. Let the equation to the curve hey^ax+ hoc^—cx^*

Here y — ax -{• 2bxx-3cx^Xf if i=l 3

= a + 2bx — Sex'' ;

:. y — 2bx -6cxx; makey=0*

then, 6ex = 2b, and x =i yr- = — = the value of .t

at the point of contrary flexure.

Ex. 2. Let the equation he y = x + SGx'' 4- 2x^ — x*,

y = X + 'i^2xx-\- 6x^x —
4x^x, if i = 1 ;

= 1 + T2X 4- Qx' - 4x^ ;

:. y = T2x {- \2xx-\2x^x; makej'rsO;
/. O = 72 + 12a?- 12J7';

hence, a?" — x = 6;

1 25
/. x" — X -{ - =z —

, and x — 3, the positive value.

If X be assumed less than 3 in the equation 72-r 12:c— 12af

which is the value of
jy,

the result is positive ; if ^
greater than 3, the result

is negative ;
if therefore ^

AB = 3, and -BCbe drawn perpendicular to AB, from A to C
the curve is convex to the axis, and afterwards concave.

Ex. 3. Let y — x*~ 12:i' + 48x^~64x, to find the point

of contrary flexure.
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Here
if
— 4x^ - 36 x^ + qGx -64, if i = 1 ;

/. y = 12x^-72x + 96;

Let y = 0; then x^-6x -{- 8 = 0/ or a:— 2 . a; - 4 = ;

.-. y = 0, when X — 2, and 4.

If J? be less than 2, y is positive, or the curve is convex to

its axis ; if a; be greater than 2, and less than 4, y is negative,

and the curve is concave ; if a; be greater than 4, convex.

Ex. 4. In general, let the equation be a*i/
= 3x^ — 35a3c*+

I40a'x'-240a'x^-y a^y=\bx'- \40ax^ + 420a'x' - 4^0a'x, if

i"=l ; .-. a'y~60x'''420ax'' + 840a^j;- 480aM

Let y = O; then this expression = O ; or, dividing by 60,

O = x'-'Jax' 4- \4a'x^Sa? ;

or, = 0? — a X x—2a x x— 4a; therefore the curve has

three points of contrary flexure corresponding to the value of x,

as it c= a, or 2a, or 4a.

Let X be less than a; y \s negative, or the curve concave.

If a: be greater than a but less than 2«, y is positive, or

the curve convex.

If j: be greater than 2a but less than 4a, the curve is

concave.

(95.) If the equation which expresses the value of
j'

have

two equal roots, then y does not change its sign in passing

through O ; therefore the point determined by assuming 7=0,

is not a point of contrary flexure. This will happen when

the equation has. an even number of equal roots. (Art. 27.)
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Chap. XIV.

ON THE RADIUS OF CURVATURE.

SECTION I.

Proposition.

(96.) J-N the common parabola, if the abscissa be perpen-

dicular, and the ordinate parallel to the axis, the part of the

subsequent ordinate intercepted between the curve and the

tangent, or the deflection from the tangent, is equal to half the

second fluxion of the ordinate.

Let AKhe^ the abscissa, and ARO the axis of the parabola;

ahy lo, nid, three equidistant

ordinates ; join ad, and at a

and o, draw tangents ab, oe;

draw as, ot, parallel to Am ;

then as, ot, may represent the

fluxions of the abscissa, and sh,

te, those of the ordinate. Now

by the nature of the parabola,

Ih bisects ad, and bo ~ oh;

also oe is parallel to hd ; therefore ho = de, and consequently
bo= de; or the deflections from the tangent are uniform. But

these deflections, bo and de, are produced by accelerations of

velocity, which were nothing at a and o; therefore 2Z>o and

2de will represent the spaces that would be described by the

uniform rate of increase, whilst bo or de is described, or they

represent the fluxions of sb and te; that is, bo or de = - the

fluxion of ^ or = "
y.

Cor. If bo, and de, be considered as produced by accele-

rating forces, which were nothing at a and 0, and act in the
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directions of the ordinates, those accelerating forces must in

the parabola be uniform,

(97.) Proposition.

In any algebraic curve, the deflexion from the tangent is

ultimately equal to half the second fluxion of the ordinate.

In the parabola this accurately obtains, and will obtain in all

curves, where the accelerating force, as in the last Corollary,

can be considered as constant. By Art. 7-? if the time be

indefinitely diminished, the space described by a variable

velocity which was nothing at first, vanishes in respect of the

space described by an uniform velocity ; and in the same

manner the deflection from the tangent caused by a variable

force, which was nothing at a, vanishes in respect of bo

described by the constant force, when the time is diminished

in infinitum ; that is, in any algebraic curve, the deflection

from the tangent ultimately equals half the second fluxion

of the ordinate.

(98.) Proposition.

If two algebraic curves have the same fluxions of the abscissa

and ordinate, they will have the same tangent ; and if the

second fluxion of the ordinate be the same in both cases, they
will have the same curvature.

The first part of this Proposition is evident from Art. 30., and

the second is immediately deducible from the last Proposition.

(99.) Definition.

Let AB be any curve ; BED
a circle, touching the curve in

B ; draw the ordinate BF ;

then AF flowing uniformly, if

the second fluxion of the or-

dinate BF be the same both

in the circle and the curve,

BED is called the Circle of

Curvature.
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(100.) Proposition.

To find the radius of curvature in any algebraic curve, in

terms of the fluxions of the arc, of the ordinate, and the abscissa ;

the fluxion of the abscissa being constant.

Let MAD be the circle of curvature, touching the curve

at M; AP the abscissa; MP, NL,
two ordinates ; C the center, and

MCD the diameter of the circle ;

produce MP to E, and join DE.
Let AP = x, MP = y, MN = z,

SN=i/, and ON= ^-y; pin MO,
MF. Then, by similar triangles,

NOM, NMF, NO : NM :: MN :

NF or (Art. 97.) -i_y : i :: i :

Now when O and M nearly coincide, NF
-2^

ultimately
= ME ; and, by similar triangles, NMS, DME,

NM : MS :: DM : ME
or z X DM :. DM= and CM the

-oJ opy

-%'
radius of curvature = —rrr- ; x being constant.

xy
°

(101.) Nearly in the same manner, by taking AT as the

abscissa perpendicular to AP, and TM as the ordinate, the

z^
radius of curvature = -rn ; for ^ is uniform by supposition,

yx
and the second fluxion of x is positive, on account of the

convexity of the curve.

(102.) In general, when x and y are both variable, the

z'
radius of curvature =

yx — xy
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Let AMN be any algebraic curve, and let MC and rC be

two lines indefinitely near each other,

and perpendicular to tangents at M
and R. Suppose these two lines to

meet in C; C is the center of the

circle of curvature. Draw CF parallel

to the abscissa AL, AF and MLE
perpendicular ; and take AL = x,

ML==y, ME^v, MS=x, MN=z,
SN=2/. Then, by similar triangles, MSN, CME, MS :

SN'.'.ME '.EC^oxx'.y-.'.v'.EC^^-', :. FC=x + '$.
X X

Now for the two radii CM, CR, the line FCmay be considered

. „ ' ' vy-\-vy .x — vyx
as constant ; .*. its fluxion = O ; or a? H— =^-7^

i^— = O ;

X

X^ + VT^X

M
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V4.r4-fl ^—-—- : ,*. the radius of curvature = —rr.

Ax -ocy

4x-\-a

Ax

a^ _ 4x-\-aY

4x^ 2y/a

Cor. Let ^ = ; then the radius of curvature at the

a
vertex = -

.

Ex. 2. To find the radius of curvature in any parabola,

whose equation is a"~'^x=
i/'.

If
i/

be assumed constant and =1, the radius of curvature

^ Now x= -|=r ; ••• ^= ^n-.
• Also x'-^y'=

_^ J

In—2 *,a„, 2»—!i _i_ ^ 'in—iY

X a"

radius of curvature =

z^ = n^y'^-'K a'
Jin—i ; and the

1 ^^ey^=^T^^
,'Zn—'Z

n.n-\,y''-^

Cor. At the vertex y-Q\ if /. w be any number except 2,

the radius of curvature is either nothing or infinite. If w= 2,

a

2"
1 a'

the radius of curvature =
^.

^
J77

Ex. 3. To find the radius of curvature of the common cycloid.

Let JBG be the cy-

cloid ;
MC the radius of

curvature at M, which is

to be found; BD the

axis, BOD the generating
^

circle, ML an ordinate

parallel to the axis, and

MT a line drawn parallel

to the base AD. Join

BO, DO. Take JL^x,
AM=z, ML=DT=y,

i DB =a,MN=z,MS=x,
and NS =

if. Suppose
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x=l. The radius of curvature in this case = —r .

-y

Now, by similar triangles, MSN, BOT, DTO, z : x :: BO
a

y
OT :: DO : DT :: ^ay : y :: ^a : ^y; /. i= ^

and i* = ~. Again, by the same triangles, x : y :: OT
y^

: TB :: BT : TO :: y : sjay-f t: / : sja^y, .% y^

Sj —\ and y = the fluxion of a-iiV y. y~^= , \i^ y
^'^

yTX a-y\

-\yx'^ -\yy -\(^y ^\yy -\^y

y^xa- yY «/^ x a - i/)^ t/^ x ^a-y
_ I

2 Ja-y -a
^

z' a^ 2y' ^

,
X y- ^ =

; .. ——rr. = ^ X -^ — 2a^y^
y^x^a-y y^ ^^ -xy yi

a if

= iBO,

Cor. Let y = a\ then -R5, the radius of curvature at the

vertex, = iBB.

Ex. 4. To find the chord of curvature in the cycloid at M.

Produce MR to V\ take MV= aDO, and draw VP perpen-
dicular to ML produced. MP is the chord required. And

by Art. 103. MP = ^. =2x -x -^ = 4?/ = 4ML.
•^

-j/ y a ^
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SECTION II.

ON THE EVOLUTES OF CURVES.

(105.) Def. a curve PCR is

said to be the evolute of another curve

AMT, when it is of such a nature

that if a thread MCR wrapped round

PCR were disengaged from it by
some power at 7J/, whilst the thread

remained stretched^ the pointM would

trace out the given curve AMT.

Cor. 1. CM is the radius of curvature at the point M, and

C is the center of curvature.

Cor. 2. If A be the vertex of the curve, and AP the radius

of curvature at the vertex, the evolute PCR will leave the axis

APD at P , and since APC= CM, the curve line CP, which

is the length of the evolute, = CM— AP,

Cor. 3. The same construction remaining as in Art. 102, if

PH be drawn perpendicular to FC, and CD to AD, PH ou

CD will represent the ordinate of the curve PCR, and PD or

HC the abscissa ; hence, to determine the nature of the evolute,

we must find PH and HC.

Cor. 4. Since PH=ME -ML, and HC=AD -AP, the

following lines are to be found by the nature of the curve ; viz.

ME, AP, and AD, or its equal AL+ LD, or AL + EC.

(106.) Hence the Rule.

Having obtained the value of CM from one of the expressions

for the radius of curvature, make x or y — 0\ this will determine
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AP the radius of curvature at the vertex. From CM take

AP ; the remainder is CP the length of the evolute. Then find

EL and CE from the nature of the curve, and the equation of

the evolute will be determined.

(107.) Proposition.

To deduce a fluxional expression for LE and CE^ in terms

of the fluxion of the abscissa, of the ordinate, and of the curve.

By Art. 103, ME= -Xr. = -^, if i=: 1 ; .-. LE, which =—
xy y

ME^ML, =
-^ -y.

Also, by similar triangles, MNS, CME,

MN : NS :: CM : CE-, or

z : y
"

. cE^ y^
- xy

-
xy

or.r, if x=l, CE=^.
-y

(108.) Examples,

Ex. 1 . To find the evolute of the common parabola, and ta

determine its length.

Let AMT represent a parabola. Then (Art. 104. Ex. 1.)

CmJ^, and^P=^; /. CP=^^^-« = the

length of the evolute.

Also ME^~=i^ X 1^ (Art. 104. Ex. 1.)
=—y 4X or

1£1±^; :.LE or PH = ME-ML=.^^£±:^-^ =

Ax'^-^ax^
-a^a?^= 1^, the ordinate of the evolute.
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Again, JD =JL-\-LD =x-\-EC = x-{- -^^ =x-\ ^ x

4x-\-a 4x^ ,. ^ .
. Ax-\-a „ , i „^-

,
X —r (Art. 104.) =x-\ — = 3a7+ -a; .*. HC=

4x a^
^ ' 2 2

AD- AP= 3x, the abscissa of the evolute. Hence the square

of the ordinate oc the cube of the abscissa, and the evolute

is the semi-cubical parabola.

Ex. 2. To find the evolute of the common cycloid, and its

length.

By Art. 104. Ex. 3., the ^

radius of curvature = 2DO
in that figure; .*. at the

vertex ^, it = O ; and if R
be the center of curvature

at the vertex B, RB=2BD
= arc AB ; but RB =
RCA; .'. RCA=AB; and

the evolute RCA is a cycloid similar and equal to AB.
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Chap. XV.

ON SPIRALS.

(109.) Definition.

Xf a line of indefinite

length SA revolve about S,

and a point P move in it

continually from S, the

point P will trace out a

spiral ; S is called the cen-

ter, and SP the distance.

(110.) Proposition .

To draw a tangent to a spiral at the point P.

In the revolution of SP round *S', the point P has two motions ;

one in a direction perpendicular to SP, and the other in the

direction of SP. Let Pc, and cb represent two small spaces,

conceived to be described in these two directions, with the

velocities at P continued uniform
; join Pb. This case, there-

fore, coincides with that in Art. 44. ; Pc represents the fluxion

of the abscissa, and cb of the ordinate ; hence, Pb is the

fluxion of the curve, and Pb produced is a tangent at the point

P ; draw SZ perpendicular to SP, meeting bP produced in Z ;

SZ is called the sub-tangent, and its value is to be determined

in each case from the nature of the curve.

Let SP=y, bc=y\ then, by similar triangles, SPZ, Pbc,

be : cP :: SP ; SZ',

cP xy
or, y : cP :: y : SZ; .'. SZ=

y
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(111.) Proposition.

The same construction re-

maining,

If a circle ARx be described

with a given radius SA=:a, and

if AR = Xy and Rx = x, then SZ

_ }t^~
ay

'

Join-Sc; then, by similar triangles, Phc, SPZ^

he : cP

cP : Rx

,\ be : Rx

ov, y : X

/. SZ

SP : SZ
SP : SR

: SP' : SRxSZ;
: f : a x SZ.

(112.) To find the areas of
spirals.

Let the spiral SfP be conceived to

be described by the uniform angular
motion of SP ; and suppose Sf and
Sb to be two distances near SP,
which make equal angles with it.

With 5 as a center, and SP as radius,

describe the circular arc DPe. Then
SPe being equal to SPe, is greater
than the preceding increment SPf of the area, and less than
the succeeding; also, since SP revolves uniformly, SPe is

uniformly described; .-. SPe is the fluxion of the area SfP.

Now if the arc DP= x, and SP=
i/, the sector SPc='—;

.\ the fluxion of 5/i>= ^H
.
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(113.) If hPy be a tangent at P, and PSh a very small

angle, and Sy be drawn perpendicular to

Py, the triangles Pch, SPy are ultimately

similar, and ch=y ; /. Pc : cb :: Sy : Py ;

or, if Sy — p, and Py =
t,

pyX '. y V. p X =

And ^ , or the fluxion of the area, =?!^ .

(114.) Again, by similar triangles, Pch, SPy,

Pc : Pb :: Sy : SP ;

yoc _ pz
or. X P !/i

and the fluxion of the area = ^-—
.

2

(115.) If with /S' as a circle, and SA= a as radius, a circle

be described cutting SP, SC, in R and a; ; and AR = i£> ;

the fluxion of the area = -—
. (See the first Figure m the

preceding page.)

For Pc : Rx :: SP : SR;
or, X : w :: y : a;

V iJb vX v' '^
.% X = -—

; and ^— , or the fluxion of the area = ^-- .

a 2
' 2a

Any of these expressions may be adopted to find the area.

(
1 1 6.) Proposition.

To find the length of spirals. (See the Figure in Art. 113.)

Let SP be a spiral curve described by the uniform revolution

of the distance SP, whilst the point P moves continually from S.

Draw Pc perpendicular to SP, and cb parallel to it; and let

Pc, cb represent the uniform velocities of SP and the point P;

join Pb, then Ph is in the direction of a tangent at P,

and is the fluxion of the curve. Draw Sy perpendicular

to the tangent; then, by similar triangles, Pbc, SPy,

Pb : he :: SP : Py
yy

y :: y : t, .-. « = ^ .or, z

i
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(117.)
Proposition.

To find the point of contrary flexure.

Let C be the point of contrary flexure;

suppose the curve convex from A to C, and

concave afterward toward S. Draw Sy per-

pendicular to the tangent Ay. Then, while

A approaches C, Sy is increasing ; after that

time it decreases to S. Hence, if the fluxion

of the perpendicular be assumed = O, it will

determine the point of contrary flexure,

(118.) Proposition.

To find an expression for the radius, and chord of curvature,

in spiral curves.

Let PFMbe the circle, and PCM
the diameter of curvature ; S the center

of the spiral, and C that of the circle.

Draw Sy perpendicular to the tangent

Py, SR perpendicular to PM, and

join SC, Let SP = x, Sy =RP =;?,

CP= r ; then, by Euclid,

Sa=CP' + PS'-2CPxPR
= r'' + x'' —2rp;

Now SC may be considered as invariable for this circle ;

xx
.'. its fluxion =0 ; hence, = 2^?^- 2riy, and r = —r = CP.

Next, to find the chord, produce PS to f^; and join MF'.

Then, by similar triangles, SPy, MPf^j

SP : Sy :: MP : PF;

or, X : p ::
—r- : PF = ~— = the chord of curvature.

P P

(119.) Examples.

Ex. 1. To find the radius, and chord of curvature of

the
parabola, considered as a spiral.
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XX
Here »' = d^ ; /. Ipp = ax, and —r- =

p y^

^x X = -~ = the radius of curvature.
a a-

, i 2jo 2j»i 4p' 4aj?
^ ,.u u JAlso 7 = -=*-

; .*. -^ = —1- = = 40? : or the chordpa p a a

= ASP,

Ex. 2. Let the elHpse be considered as a spiral ; to find the

chord of curvature passing through the focus.

Let AC = a, SP = x, Sy =
p-,

CB = h, HP= v;
U XX •?-»

then, p^ = J by Conic Sections ;

"'

^vx—b^xv . "\ A c
.*. 2pp = •

; but X + V

= 2« ; .'. x= —V ; hence, 2pp =
&' X v-^x . X _ 2a}fx

,
X ^pv" , 2px Ap^v __

v" i;' p 2ah^' p 2ab'

Axh'xv 2SPxHP 2CD'
, ^x.. ,

F7 , where CD is the conjugate2ab' AC
diameter to CJP.

AC

Ex. 3. To find the chord of curvature of the spiral, whose

ax
equation is » = —

v ,

\/a'-^x'

Here p = ax x a' + x"]"^ - xx x ax x a' + ^'|
"^ =

a'i + ax^x-ax"x a'x , , , ^
; .*. the chord ot curvature,

or

oH^
2/?a? _ 2x X a:' -f- j?""

a' + a?^r

(120.) Proposition.

To determine the evolutes of spiral curves.

Let SrP represent ^ny spiral curve; CP the radius of
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curvature at the point P ; S the pole of

the spiral ; Sy perpendicular to a tangent

at P, and SR perpendicular to CP. Join

SCy and let CT be the evolute ; then, by

Art. 118, CP — -^ ; and CP corrected,
P

if necessary, gives the length of the

evolute. Next, find CR =CP-PR the

tangent of the evolute ; then, CS its ordinate, which =

^ CR' + RS\ From these two, the nature of the curve will

be known.

ON THE INVOLUTE OF A CIRCLE.

(121.) Definition. \

The involute AB of a circle is described by the extremity

JB of a string unwinding itself from the circumference of

a circle JEC.
B B

Cor. 1. A small arc at B may be considered as a circular

arc, whose radius is CB ; and CB is therefore perpendicular

to the curve or to the tangent By.

Cor. 2. If SY be drawn perpendicular to By^ and SC be

joined, BCSy is a parallelogram^ and By = SC, the radius

of the circle.
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(122.) Problems.

Prob. 1. To find the area of the involute.

Let SB =
y. By = SC=r, Sy = g; then, Sy = ^y" - r* ;

.-. the fluxion of the area, or^ (Art. 113.) = V.y
-r^

^VV .

and the fluent = -—
r? V cor. .

or

Let y — SA — r ; then the area = O ; therefore cor. =
;

y^
- r" f S\P

,'. the corrected fluent or the area SAB = '—
71 =

^-^^
.

^D r^i?^ CBxSC CEA X SC
Cor. Since CB = CEA, =

, or

the area of the triangle SCB = the sector ASC; hence the

area ASCB - the triangle SCB = the area ASCB - the

sector ASC ; that is, the area ASB = the area AECB ;

Sy'
consequently the area AECB =

^^p
•

Prob. 2. To find the length of the involute.

Here 2 = ^ = -^
; :. z = ^ {- cor.; but when y = r,

y'-r' Sy^
z = 0; .-. cor. fluent =

:-^-
= ^ -

ON THE SPIRAL OF ARCHIMEDES.

B

(123.) Def. If with aS" as a pole,

a spiral
SEP be described of such

a nature, that the distance SP always

bears a given ratio to the arc AB of

a given circle, whose center is S, SEP
is called the Spiral of Archimedes.
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(124.) Problems.

Pros. 1. To draw a tangent to this spiral.

Let PZ represent the tangent at P,
SZ the sub-tangent; SY^ a perpen-
dicular on PZ. Then if AB = x,

SP =
i/,

SA= a, SZ=^ (Art. ill.) ;

but here x : y v. c i d, 2. given ratio ;

cy ^^ w' cy cy"

a at/ a ad

y ad
V- , if — be assumed = h.
b c

Pros. 2. To find the length of the tangent PZ.

PZ^ = SP^ + SZ^ = ^' -f.

|]
=

y~^:^^-pX;
therefore PZ =

b
•

Prob. 3. To find PY,

We have ZP : PS :: PS : PV;
by

Prob. 4. To find the perpendicular SV.

By similar triangles, SPY, SPZ.

PZ : SZ :: SP : ^^F;

or, fx^FIT? :|'
:: «/ : '^^=

Prob. 5. To find its area.

One expression for the fluxion of the area is -—
(Art. 115.)^ a

where w is the fluxion of a circular arc of radius a, or in this

v*x
<jase the fluxion of AB ; .*. here the expression is ^— .
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Now, X :
1/ :: c : d; .'. X = %;a

/. the fluxion of the area = £ ^ ^ = S^^ =^ .

2a d 2ad 2b

/. the fluent = g-. ; cor. =0 ; and the area = ^ .

off 6o

Prob. 6. To find its length.

By Art. Il6. z = ^ ; in this case, f = ,
^

; .-. i =

:^--^;/^'

+
3/-^l2LV^-^ ,hose fluent (/. 58.) =

ixV,M^P7+ifexhyp.Iog.^^^^^^

Prob. 7- To find the radius of curvature, or the length of

the evolute.

By Art. 1 1 8, the radius of curvature = -r , where x = SP ;

1^

that is, in this case it =^ . Now p = f
n/TTf'

••^-

^ ^
f -

(Art. 30. Ex. 23.) ; hence, the radius of cur-

————«
^

vature, or ^ = ^
,

, ,
- + cor. Let v = 0, this ex-

p y^+ 2h' ^ '

pression
= -

; .% cor. = — ; that is, the radius of curvature,

or the length of the evolute reckoned from the vertex, =;

y^ + h^t _ b

y" + 2b' 2
'
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ON THE LOGARITHMIC SPIRAL,

(125.) Def. Let ABD be a circle described with a given
radius SA\ then, as the arc AB of that circle increases in

c D

arithmetic progression, if the distance SP increase in geo-

metric, the point P will trace out the logarithmic spiral.

Cor. I. Let SP, SQ, SR be assumed indefinitely near

each other, and equidistant, so that the arc BC = CD.
Draw PT, QV, perpendicular to SQ,, SR. Then, since

SP : SO, :: ^Q : SR, dividendo SP : QT :: ^Q : RF,
or QT oc SP. That is, if SP =

i/; since QT ultimately

becomes i/, 3^
oc

t/.

Cor. 2. The distance SP being supposed to revolve

PT
uniformly round S, the angle PSQ is constant, or -^p

is a constant quantity ; hence, PT oc SP oc QT.

(126.) Problems.

Prob. 1. To draw a tangent to the logarithmic spiral at

any point P.

PTx V
The subtangent SZ=—^ (Art. 110.) Now PT : QT



110 LOGARITHMIC SPIRAL.

{y) in a given ratio, :: a : b; /. SZ= ~. Hence, draw SZ

perpendicular to SP, and equal to
-j- ; join ZP ; it is the

tangent required.

CLV
Cor. 1. SP : SZ ::

1/
:
-~ :: b : a, a. given ratio;

.*. the triangle SPZ is always similar to itself in the same spiral,

and SPZ is a constant angle.

Cor. 2. If St/ be drawn perpendicular to PZ, the ratios of

SP : St/, of SP : Py, and of Sy : Py, are given.

Prob. 2. To find the area contained between two rays,

SP and SM.

The fluxion of a spiral area = -^ ; in this case, p : t m

a given ratio, :: a : b; .*. the fluxion of the area = -^ ; and

the fluent = -X + cor.; let SP=SM=d; then the area =

~ X iF^' ; or the area SPM= f, x SP-SM*,
4b ^ ^b

Cor. 1. The area contained between SP and SM oc

SP'-SM\

Cor. 2. lfSM=0, or the whole spiral
area be found between

SP and the pole 5, it = ~ x 5P^= -^ x SP^= (since

Sy : Py :: SZ : SP)^ x SP^=^^^ ^ half the

area of the triangle SPZ.

Prob. 3. To find its length.

The fluxion of the length = '^ . In this case, y : t in a. con-

t/ tn J . mi/ my
stant ratio, :: m : n; .'.

- = —
,
and z= -^ ; .-. s;= -^ +
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cor. Let SP =SM=d; then PM = ^ x SP-SM^~
n Py

xSP-SM.
Cor. 1. The arc PM oc SP-SM.

SP^
Cor. 2. The whole arc to the pole S= -^— =

(since

ZP : SP :: SP : Py) the tangent ZP.

Prob. 4. To find the radius and chord of curvature.

By Art. 118., the radius of curvature = -r-, where SP= x:
P

that is, in this case, where SP —y, it =^ . But y : jo, in

y m , yif my ,a given ratio, :: w : r ; .•. '2. == _ and ^ — —^; or the
p r p r

J. ^ ^ my. SP
mdius oi curvature = -, .

r

Again, by Art. 118., the chord of curvature =: -~; in this;

p
2vy _,

case = -~-
. But since y \ p v. m -. v, ''• y '• p ''- y '. p,

and ^- =^ '

hence, the chord of curvature =2»x - =2«/ =
p P

^
p ^

aSP.

Prob. 5. To determine the evolute CT.

By the nature of the evolute, CP the

radius of curvature = CT; and CP =

^^—-
(by the last Prob.), or CP :

SP :: m : r. But SP : PR or Sy ::

m : r; .-. CP : SP :: SP : PR;
hence (EucHd, B. vi.) the triangles CPS,

SPR are similar ; .*. PSC is a right angle, and the angle SCP
= the angle SPy ; and SC : CP in the given ratio of Py to SP,

Therefore the evolute CT is a logarithmic spiral similar to SvP,

Cor. a line SC drawn from S perpendicular to SP passes

through C, the center of curvature.
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Chap. XVI.

ON THE CONCHOID OF NICOMEDES.

(127.) Def. Let cm
be a line of indefinite length,

given in position ; if about

some point B taken with-

out it, an indefinite line

BR revolve, cutting CM
in V, and vR be always
taken of the same length,
the point R will trace out

the conchoid.

(128.) Problems.

Prob. 1. To find the equation.

Draw BCA and RN perpendicular to CM, and RS perpen-
dicular to AB. Take BC=a, CA=vR= b, CN=x, NR = i/;

then, by similar triangles, BCR, vRA\

BS : SR :: RN : Nv, or a + y : x :: y : Nv= -^^
;

and vW = vN-' ^NR\ or J' = ^»+ -^!^; /. ^q:^*x^>' =•^ a -\-y
^

a-\-y\ X
3/' + x'y\ or a-\-y\ x b^-y"-

—
j?' t/% the equation.

Prob. 2. To draw a tangent to the conchoid.

Since by the equation xy = a+yx Ajb''-y*\ ,'. xy-\-yx=

yx^b^-f- '^ •^; .-. yx^yxrjb'-y'- ^' Zj/

s/b'-y-" s/^^-y''
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-xy= (since^= ^—^ ~)yxs/^ "V '
Jjrrp

a-\-yx^b'-y'xy , ,
. y'-\-ab'— =- = by reduction —

. .

•

x v ;

y yx^b^-y'
^

hence the subtangent, or '2^ = ~—
, , a negative

quantity ; therefore the tangent and the vertex are on contrary

sides of the ordinate, and the value' of the subtangent, thus

. . ab'-\-f
taken, is Jl i .

yx^b'-f

\^

Prob. 3. To find the area.

By the preceding problem, yx = -—
~^~-^
— ~=M=:^ =

yx^b'-f ys/b^-y'
-y^y ab^u . . „

. i ,

. j'^ ; and the area or r. yx= corr. ^ ~b

X a circular arc of radius b, and sine y -j-
~—~ ~

(Fluent 15.)
- — X hyp. log.

^""^
{^^"-^^ (Art. 43). Now

2
b-k-^b'-y"-

the area =0, when y ~ b\ therefore the area ARNC =

{^ b X a. circular arc of radius b, and sine b, or) ib x

arc of a quad.
— arc whose rad. is b and sine y + ' ~ '—

ab h-Jh'-if
" X hyp. loff. 7—

—
/ .,

•

Prob. 4. To find the content of the solid generated by the

revolution of the conchoid about its axis CM.

— V^y ab^il „ . ,1
Since yx=:

"
'- / ; .*. py x, or the

yx^b'-y' yx^b'-f
iP ii CLu if

fluxion of the content = — p x : y
^

-\ ===r ; and
Jb'-y^ sjb'-y^

R
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2 X If — vA
^

/—
the content itself = cor. + j?

x -^^— + py" x v b'—y^

(/*; 17.) -pah X a circular arc of radius b and sine z/ (Art. 44.)

let y = h, the content = ; therefore the correct fluent is pab x

the arc of a quadrant
— arc of radius b and sine 2/ -|- :f^

x

i'-yi^ + 7^3/*
X \/^*~:y% the content of the solid generated

by the revolution of ARNC about CA^. Let 3/
=

;
then we

get the content of the whole solid when its axis is infinite

2j)b^

T
2b—

pah X the arc of a quadrant + ~- =ph'- x -;?« + —

Prob. 5. To find the point of contrary flexure.

Since yx = - '^

,,, ^ xy; :. a; == ^
--^-—j=====.^ x y.

yxjb'-y' fx^b^-y^
•

. ,
" 2b*a-b'y'-3b'ay' ^

Assume y constant or = 1 ; then, x = 7^-
—- =

;

b'f-y' X ^b'-f
,\ 2h*a - 3h'ay'

- b^ = O, or y' + Say'
- 2ab'' - 0, an

equation from which the value of
3/,

and therefore of or, may
be determined.

ON THE CISSOID OF DIOCLES.

(129.) Let AB be the diameter of

a semi-circle ACB, D and M two

points in it equally distant from B and

A ; from D and 31 draw DC, MP,

perpendicular to AB; and join AC,

cutting 3IP in P. The point P
traces out the Cissoid.
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Cor. BL drawn perpendicular to AB is an asymptote
to the curve AP.

(130.) Problems.

Prob. 1 . To find the equation to the cissoid of Diodes.

By the properties of the circle, AD x DB = DC^ ; but

AD X DB = AM X MB ; .-. AM x MB = DC\ Also

AM : MP :: (AD) MB : DC; .-. DC = ^^^ij^^^i
,

AM '

^^, MP^ X MB' . MP' X MB"^
••• ^^ =

^T^a ; consequently -^j^^
=

AMx MB; :. MP' x MB =: AM' ; that is, if AB = a,

AM = X, MP = y, y"-
X a — x = x\

Prob. 2. To draw a tangent to the cissoid.

1 he equation is y^
—

; ,% 2yy = ^ "^
_.

"-^
a-x\

sub-
?tax'-3x' + x" X X

^
X

_^ lyx a-o^ yx
oT-Tl y ^^ax'-lx'^ y

_ 2 y' X a-xX _ 13(? x a-x ^ 2i; x a-x
angen _

3^^i_2^3
~

3ax*-2a;»
~

3a— 2a?
*

Prob. 3. To find the area.

c- -^ . s^x x^x
,amce y = — . ; .'. yx = •

. = . =: , whose
^a-x

'

t^a
— X A^ax — x''

3a

T
sine x—x x sjax-x"^—

— x t^ax
— x* ; which vanishes

fluent ( f. 23.) = — x a circular arc of radius = - a, and versed

3 a
when 0?= ; and when x = a, it = '— x the arc of a semi-

4

circle; .*. for both sides of the axis it = — x the arc of
2

a semi-circle = three generating circles.
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Prob. 4. To find the content of the solid generated by the

rotation of the cissoid about its axis AB.

The f. 'pxfx — J.
^-—— = -

~^y?
-

-c^]pax^
- pax + pa? x

hyp. log. a- X (Fluent 3.)

ON THE LOGARITHMIC CURVE.

(131.) Definition.

If on the indefinite line AL, the

parts AB, BC, CD, DE, &c. be

taken equal to each other, and

ordinates AF, BG, CH, &c. be

drawn perpendicular to AL, and R p a b c de
in geometrical progression, the curve FHK, which passes

through all their extremities, is called the Logarithmic Curve.

Cor. The axis LA produced, is an asymptote to the curve ;

for since the terms of a decreasing geometric series never

become accurately equal to nothing, a distant ordinate, as OP,
never is accurately equal to nothing, though it decreases

sine liTfiite.

(132.) Problems.

Prob. l . To find the equation to this curve.

By the nature of logarithms, any abscissa AD is the logarithm

of the ordinate DI, in a system which depends upon the

magnitude, of AF, and BG ;
the pait AB being given. Let

AB — \, the logarithm of BG\ then if BG = a, AD = x,

DI=^y,
1 : X :: log. of a : log. of

3/ ; but 1 = log. of a; :. x— log.

of y\ that is, ^ x 1, ov xx log. of a, =
log, oi y ; .*. y^a"

the equation.
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Prob. 2. Tp draw a tangent to the logarithmic curve.

y yxLet !/=:«'; ,'.\o^.y — xy. log. a; and - = ix log. «; .•.'-r- =
y y

1= , = a constant quantity.
log. a ~v J

Cor. 1. If ' =m, ~- =m; and yx— mi/, which may

be taken as another equation to the curve.

Cor. 2. In any system, where x is the logarithm of y to

a modulus m, x = mx'~ (Art. 41.); hence, in the logarithmic

curve, the sub-tangent is the modulus of the system.

(133.) Proposition.

If two ordinates in one logarithmic curve be in the same

ratio with two ordinates in another, the abscissas are as the

sub-tangents.

Let AE, ae be the abscissas, ET and ei the sub-tangents,

KE, ID in one curve, and ke, id in the other, ordinates

indefinitely near to each other, and in a given ratio ;

Then KE : ID :: ke : id, by supposition ;

.-. KE I KR :: ke i kr, ov y x y y. Y i t-,

.*. - =
-r?^; but xz=m x'^ ; .'. x m one case : X in the other

y y
Y

:: m X -
: 71/x 4? •• ^ *• ^j »"<! x ; X v. m '. M, or

y ^
AE : ae :: TE : te.
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Prob. 3. To find the area included between any two given

ordinates, as J5G, EK.

Smce yx— my; ,\J\yx
—
my-\~Qorv.

Let the area = O, when y =BG —a-,

then the area included between BG and

EK= my — ma =m x EK- BG.

Cor. 1. If BG go off ad hifinitum, and become evanescent,

the whole area included between the asymptote ER and the

curve = m X EK = sub-tangent x KE = twice the triangle

EKT.

Cor. 2. In the same logarithmic curve, the area included

between any two ordinates : the area included between any
other two :: the difference of the two first : the difference of

the two last.

Cor. 3. The whole area included from KE between the

asymptote and the curve varies as KE,

Prob. 4. To find the content of the solid generated by the

revolution of the area BGKE about its axis BE.

Since yx=: my ; .'.f. py'^x =f. mpyy =mp — + corr. But

the content =0, \f y
—BG — a\ :. the content corrected =

—^
xy'

— a"; and the content included between BG and EK

=^ X KE-BG\
^

I

Cor. 1. Suppose GB to go off ad infinitum; then the

content of the whole solid generated by the revolution of the

infinitely extended area KPRE about its axis, = — x KE''

tit • . . 1= — x the area of a circle, whose radius is KE= - the content
2 2

of a cylinder whose altitude is the sub-tangent, and radius of

the base equal to the ordinate of the curve.
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Cor. 2. The solid generated by the revolution of BGKE=
I the cylinder, whose altitude is the sub-tangent, and base the

difference of the circles, whose radii are EK and BG.

Cor. 3. The content of the infinitely extended solid varies

as KE"", where the sub-tangent is the same.

Prob. 5. To find the length of the logarithmic curve

included between any two ordinates GB, KE.

Here % -. y :: KT : KE :: ^ rrC
-\-y''

: y; therefore z =

if
X ^m-+y' . .^^ ^ g^^ « or ^G = ^licTy'+ ? x hyp.y -^

log. ^. Jm -^a^ X hyp. loj^.
^

.
,

corrected for the value of y= ci'

Prob. 6. To find the surface of the solid generated by the

revolution of any part KG of the logarithmic curve about

its axis.

By the last Example, z =^-—— "^-^i /. ^pyz, the

fluxion of the surface, = 2p x y y. ^rrC -\-y\ of which the

fluent, (by ^.58.) when properly corrected, =p x ^y^-^ni'if

-p X ^ a^^Dtar-^pm^ x hyp. log.
-—^

.

---- = the surface

required ; the values of a and m being the same as before.

ON THE CATENARY.

(134.) To find the curve, into which a flexible chain of

uniform density and thickness would form itself, if suffered to

hang freely from two points, A and B.
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Let ADB be the curve, D the a

lowest point; draw the axis DC
perpendicular to the horizon ; l6t

Htj Fo, be two ordinates, ^* a tan-

gent at t, and tr parallel to CD.

Now the chain having assumed this

form, it is immaterial whether the

part Dt he considered as flexible or rigid. On the last sup-

position, it is kept at rest by three forces ; by BD m the

direction De or sF, by At in the direction ts, and by its

gravity in the direction rt
', therefore, by Mechanics, these

forces are as the sides of the triangle str. Let the tension of

BD = a, Dt = z, DH=x, Ht =y\ then a : z y. i/
'. cc\

.*. ax — zy, and y^ =
ax

.'. i*, or x''-\-y^, =i*H-
a'x'

hence, zz =^ z^+ a' x i ;

+ cor. Let x— O^ z — 0\

x=
; and x = y/z''+ d'

^z'+ a'

cor. =— «; .'. x= \/ z''-{-d'
— a;

,'. a-\-x = ^z^ + a% and x^-{-2ax=z\ the equation to the

curv^e.

Cor. Since y =

{x+ a X >sj2ax-\-x^.)

ax ax

->/ '2ax-\-x-
; yz=z ax hyperb. log.

Problems.

Prob. 1. To draw a tangent to the catenary.

By the nature of the curve, ax = zy; .*. r = -
; .

yxz_ y X s/2ax-\-x^ _ the sub-tangent.

y
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Prob. 2. To find its area. (See the preceding Figure.)

By the equation, zi/ = ax;

s;*^*
= a"i* = a*x %'-if^a^%^-a^i/%

.-. z^+a^/ = a'z*,

or a + ^* X ^*= a*i*;

or ay -^-xy
= a%\

.*. xy^ the fluxion of the external area DTB^ =az — ay \ and

the area BI>T— az - ay, and cor. = O ; .• . DMT= xy-a%-\-ay

z=za-{-x X y - a^J1ax-\-x^.

Prob. 3. To find the content of the soUd generated by the

revolution of the catenary about its axis.

The fluent oi py^x=py^x— f. 2pxyy\ and the fluent of

2py X xy= the fluent of Ipayz— the fluent of Ipayy ; since^

by the last Article, xy = az — ay\

••• /• '^V^yy^f' 2payz-pay^',

and
/'. 2payz— 2payz -

f. 2pazy ;

= 2payz— 2pa^x, by writing for zif

its equal ax ; .'. the content = py''x-\-pay^
-
2payz-\-2pa'x,

which needs no correction.

Prob. 4. To find the surface of the solid generated by the

revolution of the catenary.

The fluent of 2pyz — 2pyz-f. 2pzy. But zy^ax\

.*. the fluent =2pyz -
2paXt which needs no conection.

Prob. 5. To find the radius of curvature of the catenary.

z^

By Art. 100., the radius of curvature = —u, when x is
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ax-\-xx

constant,
and = 1. Now z = ^2ax+x^; :. z==

^^^^q:^
«+ ^

. . .^3_
~^+^' Also ^=

""^

^
. .

i?
_ ^ j^

^ "*" ^
-

^ ; /. the radius of cui-vature

^2ax-rx' 2ax+x'\

a4-x\^ a-\-x

axa-^x ^

Cor. At the vertex, where x= O, the radius of curvature = a.
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Chap. XVII.

ON THE ATTRACTIONS OF BODIES.

(135.) Problems.

Prob. 1. Xo determine the attraction of a corpuscle P
towards a right line AB^ in a direction perpendicular to that

line ;
the attracting force of each particle being supposed to vary

inversely as the square of the distance.

Let PA perpendicular to A B = a; AC, a variable part

o^AB, =X', then PC=:>/aH^. Now, since

the force of attraction varies as
. ,

the force

dist.)

which draws P toward C may be represented

by -nTT^ ' But the force of attraction toward

C : that toward A by resolution of force :: PC
: PA :: >/a' + a?' : a ; therefore the force of attraction toward

A for one particle C = . And if the number of

attracting particles at the distance x = x, the attraction from

these particles will be x times as great ; hence the fluxion of

CLX • X
the attraction to AC=. —

; and its fluent, or

is the attraction to AC-, and the attraction of P to the whole
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Prob. 2. To find the attraction of a line PA to AB ; PA
being perpendicular to AB, and the force of each particle

1

varying as

dist.l

Let AB= a, AD a variable part of AP = x; join BD.
Then, by the last Case, the attraction of

a corpuscle D to AB-=.
X X xy/a'+jc'

There-

fore the fluxion of this attraction =
ax

xx^a'-\-x''
and the fluent, or the attraction itself, = | hyp.

log.
s/a" ^x"" — a

+ corr. (Art. 43.) = | hyp. log.
>/«'+ a^'— a

^ya'+x'^-^a

tu 1 , J. . , , BP - BA-
I hyp. log.

—
, when x=PA = i hyp. log. ^p ^ j^j

-

I hyp. log.
—
Jd 3 ^" infinite quantity.

Prob. 3. Let C be the center of a circle ABE, and a

corpuscle P be situate in the line PC perpendicular to its plane ;

it is required to determine the attraction of P to the circle, the

force of each particle varying as
-jr^

.
,

Let PC=a, PD = x; then CD= s/x''
- a\ and the force

of attraction of P to D being

represented by -jjjy, , that in the

PC
direction PC =

jjjj^ (Art. 135.

Prob. 1.) Nowif/7 = 3. 14159 &c.

the area of a circle wliose radius

is 1, the area of the circle of ra-

dius CD = p X x^ — a^; and its

fluxion = 2pxx ; hence the flux-

ion of the attraction of P toward the circle = — x 2pxx =
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2pax"'x ; whose fluent = 2pa x 1- cor. =: 2pa x — -^ X ^ a X

a . PC= 2p X 1— = for the whole circle 2p x I — r—-. .

X tA

Cor. The force of attraction of P to the whole circle

PC
vanes as 1 — ^z—. .PA

Prob. 4. To determine the same, when the force of

attraction varies as D\ .

Here, as before, 2pxx is the fluxion of the variable circle,

and - X af or ax"~^ represents the force of a particle 2>, in

the direction PC ; hence, the fluxion of the attraction to the

circle = 2pax'' x ; and the fluent = 2pa x + cor. =

x"+' — a"+'^ . . a x""*"^ — a""^"^

2pa X , which varies as , or varies for^ w + 1
'

91+ 1
'

,, , ,
.

,
PC X P^''+'-.PC«+2

the whole circle as .

Cor. 1. If the diameter of the circle be increased in

infinitum, and w be a negative number greater than 1, the

.. .•
• PC

.

1 1 ^attraction vanes as —
-p-j^, + p /->«-» ? ^^ ^^

'pThT-z ? because

the first term vanishes.

Cor. 2. If the radius of the circle be infinite, and the

force vary as — , the attraction varies as -nT^ 5 ^^ is constant,

whatever be the length of PC.

Prob. 5. Let P represent a corpuscle placed in the vertex

of a cone PAB ; to determine the attraction to the cone by

a force varying as
j^,

.
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The attraction to the circle DEF varies as 1 -

since -p^ m the cone is a constant

quantity, the attraction to every section

parallel to the base is the same ; hence,

the whole attraction to the cone varies as

Te
1 — ^fTH X the number of sections, or asPF

PE
and

PC

Cor. For similar cones, the attraction is as the height.

Prob. 6. The law of the force remaining the same, to find

the attraction of a cylinder ABCD upon a corpuscle P situated

in its axis produced.

Let PM = X, MF = a, and PF = ^aF+F.
PM

The attraction to the circle EMF'is as 1 —

or as 1 — x

attraction is proportional to x —

PF '

.*. the fluxion of the

;
and

4
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let CED be a section of the

sphere perpendicular
to AB.

Take AF = a, PF = h,

PA = c= b-a, PE=y,
PC=c-\-x\ then, AE=^

y-Cy 2ind EB = 2a- y + c.

Now AE X EB = EC^ =

PC'-PE^ ; that is, y-c
X 2a-«/ + c= c + jcY -

^' ; from which equation y =
2ac + 2c' + 2ca; + a;" .. .

,

. 2bc -{- 2cx + x"

(since b = a -{- c)
= , .

2bc + 2cx + j:'

2a + 2c

Hence the attraction to the circle is as 1

2ax~ x^
or as

bxc -^ X

2b X c + X

; and the fluxion of the attraction to the

sphere is proportional to -—===== x y, that is, to

c -^ X .X
or to

b X c -^ X

2axx — x'^ot

b X c -\- X

ax^

; whose fluent = 3*^

b
> - -

^r

which needs no correction. Let a; =^ 2 a ; then the attraction

4 a' /*'a'
to the whole sphere is as

^j- , or varies as j-o u

Cor. 1. If the corpuscle be at the surface of the sphere,

or if ft be any multiple of a, the attraction varies as a.

Cor. 2. Since the contents of spheres vary as a', the

attraction varies as the content divided by the square of the

distance from the center ; and is the same as if all the matter

of the sphere were collected into the center.

Prob. 8. To find the attraction of a particle P towards

a plane LloO infinitely extended, the force of each particle

varying inversely as the dist.) .
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Case 1.

Let MHM represent a section of the infinite plane per-

pendicular to PHK; the attraction

to the plane MHM, considered as

circular, is as
-pjf^zi,

or '\{PH=x, as

L M o

P^

X;jzi; .*. the fluxion of the attraction is

X
as ——

-: ; and the fluent = c6r.
x''~-

1 1

H

I m

1

n ~ 6 . x"~'^

becomes infinite, it =

1
varies as

n - 3 .PG"-' n-3.PH'-'
1

when PH

n 3.PG
;

or the whole attraction

PG"-'
'

Case 2.

If P be placed within the plane, and PH be taken =
PG, the particle P will be equally

attracted each way towards the

planes bounded by LGl, MHm,
or they will destroy the eflfect of

each other ; hence, P may be

considered as attracted only by
the infinite plane MHmoKO ;

and the attraction to this plane by

the last Case, is as njv^ ? or as "

p^,.^_j
•

Cor. 1. If w = 3, the fluent fails ;
for the fluxion of

, . . X
the attraction is as -

.

X

Cor. 2. If the plane be finite, but PG extremely small,

if compared with PH, the force of attraction is still pro-

portional to pQ^ .
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Def. An oblong spheroid is generated by the revolution

of an ellipse round its major axis.

Prob. 9. A particle of matter is placed in the pole A of

an oblong spheroid, whose major axis : minor :: 1 : 1 - w,

where n is very small ; it is required to compare the attraction

of this particle to the center of the spheroid, with its attraction

to the center of the sphere described round the axis major,

the force of each particle varying as
-j^

.

Let AE= x ; then, DE^l-nx ^2x-x'' by the property

of the ellipse ; /. AD"^= x''-{- l-n\
*

X 2x - x^ = x'' + I - 2n -\- ri^ X

2x -x"- = X + 1 — 2W X 2x— x^,

tC being omitted as indefinitely

small, = x^ -^^ 2x — x^ — Anx -{•

2nx^ = 2x- 4nx '\- 2nx'' ; .'.AD

= sj 2x— Anx + 2nxi\ Hence the attractive force to the

X
circle, whose diameter is 2DE, = 1 —

,

j^ 2x— Anx + 2nx'

and the fluxion of the attraction of the spheroid is proportional

XX
to ^-

^/2J:— 4wa? 4- 2
; therefore the attraction itself is

nx

2^zr"^
as the fluent of this quantity, or proportional to x 7-

—

2^nx^
,

nx^
/ /J ^, \ u- u 1—

1 \ji' 91-) which needs no correction. Let
6 5x2^

a?= 2 ; then the attraction to the whole spheroid is proportional

^ ^ A An An ... . 2 8w An
to 2 ----- H , which varies as , or as 1 .

3 3 5 3 15
^

5

If w = 0, the spheroid becomes a sphere ; hence, the

attraction of this spheroid on a particle at A ; the attraction

of the sphere described round AM on the same particle

An
*i 1

•
1

5

z'
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Def. An oblate or compressed spheroid is generated by
the revolution of an ellipse round the minor axis.

Prob. 10. A particle is placed in the pole B of an oblate

spheroid, whose minor axis : major :: 1 : 1+w, where n is

very small ; it is required to compare the attraction of this

particle toward the center of the spheroid, with its attraction

toward the center of the sphere described round its minor axis,

the force of each particle varying as -^ .

The ratio of the major to the

minor axis is in reality the same

in this case as in the last ; for 1 : j

l — n:: l-\-n : I - n^ or 1, since

n" is extremely small.

Let BE = x; then, DE' = 1 + wl
' x 2x - x' by the

property of the ellipse; .*. BD^=x^ -f l-j-wl* x 2j? X' =

a?' + 1 + 2« + >i* X 2x-x^ = x^ + 1 -{ 2ti X 2x - X* =
J?" + 2zc 4- 4nx-2nx*-x^ = 2x + 4nx—2nx^ ; /. BD =

s/2x + 4nx— 2nx'' ; and the attraction to the circle DEF
, , X
is as 1 =======; ; .*. the fluxion of the attraction

^2x-^4nX'-2nx''
XX

to the spheroid varies as i — :=
, and the

^ 2x -^ 4nx-'2nx'

a .. fj3^^\ 2^^^ nxf
,
2^nx^ , .

, ,

fluent = {ji. 92.) X
1 , which needs no

^ 5x2^ 3

correction. Let a?= 2 ; then the attraction to the whole spheroid

4 4n 4n 2 8n , . , . 4n
IS as 2 — — — -— + -;:;-, or as -

-\
—-

, which varies as 1 H .

3 5 o 3 15 5

If w= 0, the spheroid becomes a sphere round the axis minor;

hence, the attraction of the oblate spheroid on a particle at B :

attraction of the sphere described round the axis minor on the

4 n
same particle :: 1 + -:r- : 1.
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Cor. 1. Since these spheroids, by supposition, approach

nearly to spheres, they may, without sensible error, be assumed

for spheres containing the same quantity of matter ; and their

attractions, coeteris paribus, will be proportional to their quan-
tities of matter. But (Art. 51. Ex. 4. Cor. 2.) the oblong

spheroid : the oblate :: the oblate : the circumscribed sphere ;

hence, the attraction of the oblong spheroid on a particle at

A : the attraction of the oblate on the same particle ;: the

attraction of the oblate : the attraction of the circumscribed

sphere upon it. Therefore, the attraction of the oblate spheroid

on a particle at A : the attraction of the circumscribed sphere

on the same particle :: >y/
the attraction of the oblong spheroid

: ^ the attraction of the circumscribed sphere :: ^1 — An

2n
"IT

1.

Cor. 2. By help of the preceding Propositions, since the

Earth is an oblate spheroid, we can determine the ratio of its

polar and equatorial diameters.

Let ABL represent the earth ; AC and BC the equatorial

and polar semi-diameters. Then

by the preceding Cases, the attrac-

tion of the compressed spheroid

on a particle at B : the attraction

of the inscribed sphere upon the

.
,

4n
same particle :: l-\ : 1.

5

The attraction of the inscribed sphere on a particle at B :

the attraction of the circumscribed sphere on the same at the

surface, or 2± A, :: 1 : l+w. (Chap. xvii. Prob. 7. Cor. 1.)

The attraction of the circumscribed sphere on a particle at A
: the attraction of the compressed spheroid on an equal particle

2n

Tat A 1 : 1 --r-

Therefore the attraction of the compressed spheroid on
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a particle at B : the attraction of the same spheroid on an equal
4 7?. Sfl

particle at ^ :: 1 + —- : 1 4 .

o o

Now these attractions must be proportional to the weights
of equal quantities of matter at those points ; and if the

particles are not equal, their weights are as the weights of

equal particles, and their magnitudes jointly. Hence, if the

axes are in the ratio of l~n : 1, and particles be taken

proportional to the axes in each, we have, the weight of

1 — n particles on the spheroid at B : the weight of a particle

at A A 77 .. ,—
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Chap. XVIII.

ONLOGARITHMS.

(136.) XXLL numbers in arithmetic may be expressed by
the powers of 10. Thus, if i?= 10, R*= 100, &c. ; the number

5364 = 5R' + 3R' + 6R-\r 4. A mixed number, as 45.678 =
4R + 5/2** + 6R~' + 7^2"' + SR-\ Vulgar fractions, when
transformed into decimals, may be expressed in the same way.

Thus, £ or its equal .666 &c. = 6R-' + 6R'-^+6R-^^8cc.

We may also express all numbers, as near as we please,

by a single power of any positive number whatever, except

unity. Let the numbers 2 and 10 be taken for examples ;

then 1, 2, 3, &c. may be expressed by the powers of these

numbers. Thus, 1 = 2" 1 = 10°

2 = 2V 2 = io'"°«

3 ^ 2'-^^*^^ &c. 3 = io-*"i«

4=2^ &c.

&c. 10 = 10*.

Hence, if r be assumed some determinate number, n an

indefinite positive number, some other number N may always
be found such that r^= n. In every case of this kind, A^is

called the Logarithm of n ; the logarithms, which are derived

by giving a determinate value to r, constitute a system of

logarithms, and r is the base of that system.

Cor. If e represent a number, whose logarithm is 1, and

X be the logarithm of some other number as b, e* = h,

(137.) In every system of logarithms, the logarithm of 1

must = 0. For if r^= w, and n be assumed = 1, A^must
=

; for r" = 1 .
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In every system the logarithm of the base is unity. For let

r= n; then N must be unity.

The logarithms of any two given numbers have the same
ratio in every system . For let r^= n, and r^ = b; then r^^= n^,

and r^^ = i^ ; /. n^=
^»~^, and n= b^. Now r is not found in

N
B

this equation; therefore the value of
-^ depends only on the

numbers n and h.

In every system the base of which is greater than unity,
the logarithm of a whole or mixed number is positive.

If not, let n — r~^, that is =-^; then since —
^ is a proper

fraction, n must be a fraction ; which is impossible, for n is by
hypothesis greater than unity; therefore n = r^.

In every system where the base is greater than unity, the

logarithm of a proper fraction is negative.

If not, let n = r^, where N is positive; since r^ is

greater than 1, w is greater than 1 ; but it is by hypothesis
a proper fraction, which is impossible ; therefore n = r~^,

(138.) Logarithms are also considered as measures of ratios.

Thus the ratio of 81 to 3, may be considered as made up of the

ratios of 81 to 27, of 2/ to 9, and of 9 to 3 ; which three ratios

are equal to each other, and the ratio of 81 to 3 is said to be

triple the ratio of 9 to 3. In the same manner, the ratio of

100 to 1 is twice the ratio of 10 to 1 ; of 1000 to 1, three times

that ratio, &c. And if the numbers A, B, C, D, are continued

proportional, the ratio of A : B being equal to that of

B : C, &c., then the ratio of A : Z) is considered as made

up of three equal ratios. Hence, ratios may be compared in

respect to magnitude ; thus, if two ratios can be resolved, one

into 5 equal ratios, and the other into 8 of the same ratio, the

magnitude of one ratio : the magnitude of the other

:: 3 : 8.
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In Briggs' system, the measure of the ratio of 10 : 1, or

the logarithm of 10 is unity. Napier took the number

2.718282; hence, in the two systems, the logarithms of the

ratios are expressed by different numbers. In a given system,
the measure of the same ratio is obviously the same ; of double

the ratio, the measure is double, &c. A ratio of equality has

no magnitude ; for it has no effect in addition or subtraction ;

a ratio majoris incequalitatis compounded with another increases

it ; a ratio minoris incequalitatis diminishes it. If then the

measure of the ratio which a greater term bears to a less be

positive, the measure of the ratio which a less term bears to

a greater is negative ; and the measure of a ratio of

equality = 0.

When this expression, the logarithm of 1+^, is used, it

it denotes the measure of the ratio of 1 +x : 1. The logarithm
A

of "5 ,
is the excess of the logarithm of ^ : 1 above that of

B : 1, or is the measure of the ratio of ^ : B.

(139.) These being the principles which apply to loga-
rithms in general, the following Propositions are intended to

sliew the rules by which the logarithm corresponding to any
number, or the number corresponding to any logarithm, may
be deduced, the one from the other. The quantity m is

called the modulus (Art. 41.) ; it is the measure of some given
ratio imm. , and serves as a standard to which other measures

may be referred.

(140.) Problems.

Prob. 1 . A number being given, it is required to determine

its logarithm.

Let 1 -f ^be the number, y its logarithm, and m the modulus ;

then (Art. 41.) ^ ==—--= mx x-aix -{- x^x~ x^x+ &cc. by

actual division ; .*. ^ = mxa?--a?'+-ar'-^a?*+ &c., which
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needs no correction ; because, if .r =: 0, y = ; for the number

l-\-x becomes 1, and the logarithm of 1 is 0.

(141.) This proposition is the same with the first in

Cotes' Hai'^monia Mensurarum. In the following illustration,

AB is assumed = 1, BC — x, and m the modulus; BP is

a variable part of BC^ and PQ = x.

To find the measure of any proposed ratio.

Let it be required to determine the measure of the ratio between

^Cand AB (of \+x : l).

Let the difference jBC be con- a • 2 ^ ?
, c

ceived to be divided into in-

numerable very small parts as PQ (x) ; then the ratio between

AC and AB will be divided into as many very small ratios

between AQ and AP ; and if the magnitude of the ratio

between AQ and AP be given, by division the ratio of PQ :

AP is also given, and therefore the given magnitude of the

ratio between AQ and AP, may be expressed by the given

PQ X
quantity -j^ (that is, ^= , if w=: 1). If AP remain the

Ait 1 -j-^

same, and PQ be supposed to be increased or diminished in

any proportion, the ratio of AQ to AP will be increased or

diminished in the same proportion ; thus, if PQ be doubled,

tripled, &c., or if its value be changed to one half, or three

halves of its former value, the ratio will become the duplicate

or triplicate, the sub-duplicate or sub-triplicate; it may
PQ

therefore be still expressed by the quantity —j-p {i.
e. if 1-^x

be invariable, and x be doubled, tripled, &c., ^ will be doubled,

tripled, &c.) ; or, if we take some constant quantity m, the

measure of the ratio between AQ and AP will be expressed

by the fraction —j^— (if= Y This measure will have

different magnitudes, and will be accommodated to different

systems, according to the value of the assumed quantity fn,
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which may hence be called the modulus of the system. Now,

since the sum of all the ratios between JQ and AP is equal

to the proposed ratio of AC : AB, so the sum of all the

m X PQ.
measures —-j^

—
(to be found by the known methods) will be

equal to the measure required ; or,y—f- — my.x-
-^x^

-f &c.

Cor. 1. The measure of any given ratio as H-.r : 1, where

X is given, is as the modulus (m) of the system.

Cor. 2. Since the logarithm of 2 in the common system, is

,3010300; and its logarithm in the hyperbolic is ,69314/2,

we have ,6931472 : ,3010300 :: 1 (the modulus in the hyper-

bolic system) : ?«, the modulus in the common system ;

.. m- ,43424948.

Cor. 3. Since the hyperbolic logarithm : the common

logarithm :: 1 : m (,43424 &c.), the hyperbolic logarithm

the common logarithm j ^, 1 -^i= : and the common logarithm =

m X the hyperbolic.

Cor. 4. Since m may be assumed of any value, we may,
to the same number, have as many different systems of loga-

rithms as we please.

Cor, 5. Since y the measure of the given ratio \-\-x : 1

varies as the modulus m, — is constant. That ratio whosem
measure is m, is called by Cotes the Modular Ratio.

(142.) By Article 140, y = mxx- ^^'+^a:'- \x*+kc.

Now the smaller x is assumed, the quicker will this series

converge. If a = 1, y = m x \ -
^ + i - ^

-|- &c. = the

logarithm of 2 in a system whose modulus is m. If m=l,

3/
= 1 —

2 + 5
-

:j_
+ &c. = the hyperbolic logarithm of 2.

u
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(143.)
'

Prob. 2.

To determine the measure of the ratio between z+x and

z-x, where z is a. constant and x a variable quantity; or to find

the logarithm of .

Let y be the measure required, m the modulus ; then
;y
=

2'^'*' - X X X X X X nm X
;
= 2w X = 2m X :

- + -r + -r + &c. ;z^-x' x' z z^ z^
z

z

JO T**^ 1^
.% the measure y = 2mx : -+_ + _-i-&c. Cotes,

Schol. 1 .

Cor. 1. If the sum of two quantities is z, and their

difference x. and we assume 27fefx ~ =Ay Ax — = B.
z z'

'
z"

Cx"= C, —r =J^i &c., the measure of the ratio of the former
z"-

quantity to the latter
=A-{-\B->r-^C-\- \D+ &c.

Cor. 2. If « = 1, 3/
= 2m X a: + ^^' + 3

a?* + &c. = the

1 -^x
measure of the ratio of \+x : I — x, or the logarithm of

to a modulus m.

Cor. 3. If m also =1, ^ = 2 x a?+ -a7'+ -a;*+ &c. = the

hyperbolic logarithm of . Let oc= ~, then = 2 ;

and y the hyperbolic logarithm of 2 =2x :

3 + 3 ^^33 + 5
^

r^ + &c., of which the value deduced from the first 7 terms

of the series = 0,6931472. This series converges much

quicker than that contained in Art. 142.
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(144.) Prob. 3.

Given a logarithm, to find its number.

7)1X
Let 1+Jche the number, and

i/
its logarithm ; then ;y

=:
-737 5

.*. i) -\- xif — mx, and
ij -\- xi/

— mx = 0. Assume a series

ay -f bi/'' -h cy^ + rf^*+ Slc.=x; then x = ai/ + ihyy + Scy'y + &c.
;

.*. by substituting in the equation y-\-xy~ mx = 0, these values

of X and of i?, we have y -{- a y y -\- by'' y + &c.l _
— may- 2mbyy — Smcy'^y

— &c. 3

hence, 1 - ma = 0, or a = —
; a — 2mfe = 0, ov b = =

^
. m 2m

-—
-\ b-3mc — 0, and c= —-—- &c. ; :, a?= —\- -^^ +

—I—5 + &c., and 1 +x= 1 + ^ + -^ 4. -#—3 + &e. =
2.3.m^ m 2m' 2.3.m^

the number whose logarithm is y.

Cor. If m = 1, we obtain the number whose hyperbolic

logarithm is y ; it = 1 +y -I-
^ + -^ + &c.

(145.) Prob. 4.

To find the modular ratio.

By the last Proposition, the number whose logarithm is y =

\ -V
'•—V -^ 4 '—r 4- &c. ; or y is the measure of the ratiom 2m^ 2.3.m' ^

of this number to 1. Now the modular ratio is that ratio of

which the modulus is the measure ; if then m = t/, m will be the

measure of this ratio, and the ratio itself becomes the modular

ratio ; that is, the modular ratio is the ratio of 1 + 1 + - +I 1 2 '

2 . 3

+ &c. : 1 ; and therefore is the same for every system of

logarithms, being independent both of m and y.

(146.) By summing the series, it appears that this modular

ratio is that of 2,7182818 &c. : 1. In Napier's system,
where the modulus is 1, the logarithm of 2,7182818 is 1.
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The measure of this same ratio will be the modulus in any other

system ; the measure of that ratio in Briggs' system (where
the logarithm of 10=1), is ,43424968, the modulus of his

system.

(147.) In Art. 140. we assumed y the measure of the ratio

of \->rX : 1, or the logarithm of \-\-x. If y be the logarithm

of ,
or —

3/
the logarithm of X-x, then —^=

1 X 1 X

and y— _ =m x : x-\-xx-\-x x-^x^x-V &c. ; and 7/
= mx :

fv^ o^3 /v»4
tA, \Xf \A/ Q

a;+ - + j+ -+ &c.

(148.) In the same manner, if in Art. 144. we take y the

logarithm of , y-xy—mx = 0; and by assuming

x — ay-\- hy^ + cy^ + &c. as before, we get I - x~\ — — +

2m' 2.57?i'
+ &c.

Cor. 1. The modular ratio in this case = the ratio of 1

I 1_
2
~

2.3
1 -

7 + 5
-
^-^ + ^^-^ ^^ ^f 1 '• '3678794 &c

Cor. 2. Since 1 + i + I + -J- + &c. : 1 :: i? + - +^^2.3 1

1- + : /?, if — be assumed = A. — —B-, — = C;22.3 1 2 3

C— =D, &c. af? infinitum, and ^9 be put equal to /2 +^+^ +

C+i)+ &c. the modular ratio will be that of -S* : R.

Or, since 1 : 1 — 7 + + &c. :: S : S~ — +

'

1- &c. ad infinitum, \i — =A, -- =B, - = C, &c.
2 2.3 ^

1 2 3

and iJ be taken equal to S—A+B- C-f- &c. ad infinitum,

the modular ratio is that of -^ : i?. By the preceding cases,

this ratio equal that of 2,7182818 &c. : 1, or of 1 :

,3678794, &c.
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Chap. XIX.

ON THE MAXIMA AND MINIMA OF CURVES.

(149.) Proposition.

-Lo find the nature of curves in which some conditions

being invariable, others become the greatest or the least

possible.

The method of solving problems of this kind, will appear
best by an example.

(150.) Examples.

Ex. 1. Given the length of a curve, to find the area

a maximum.

It is evident, that by merely putting the fluent of yx
a maximum, no solution can be obtained ; for no limitation is

expressed, and the fluent will admit of increase without limit.

But as the length is given, the
J', z, so far as concerns the

J'. 1/z, is a given quantity; therefore the fluent of yi^ rfc

y. z must also be a maximum ; or, to render the terms

homogeneous, that they may admit of comparison, f.yxdt.
f. az must be a maximum.

Now, if for every individual value of y, this flowing

quantity be constantly a maximum, the whole fluent will be

so ; but for every such individual value of y, the flowing

quantity is yi' ±: az. Hence, the nature of the curve will

be determined by ascertaining, what relations of i and z will

render yx ± az 3. maximum, for any given value of ?/ ; or the

fluxion of yx d= az must = 0, whilst 1/ is constant; and this

must be the case for every successive value ofy throughout ;

so that in each limiting portion of the area, for every value
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of y the ratio of x and % must be such, as to make yx ±z a%

a maximum.

/. y'x±az = 0; but i' =
^r' + i' ; .*. iz = ix, and ij =

—^ ; .*. yx — =F —r- J
and yz = ^ ax. But from the nature

% %

of the problem, y z must be positive ; and therefore the true

result IS, yz = ax.

Now in the circle, a :
.y :: z : x; :. ax = yz. Hence,

the circle is the curve required ; in which the length being

given, the area is a maximum.

The same mode of reasoning may be adopted in the

following cases. Hence the Rule.

(151.) \i A and B denote any functions of a? and ?/, and

X = ^c" ± y^j where c is constant, the expression Ax ± By
is a maximum or minimum, when Ay = =f Bx, or the

functions of x and y are reciprocal.

Ex. 2. To determine the nature of a curve line, which

generates a surface
; so that the surface being given, the solid

may be a maximum.

Here the f, of 2pyz or of ^i is given, and y. y^x is

a maximum ; hence, the f. ayz ±f. y'^x is a maximum ;

/. ayx =
y'^z^

OY ax = yz, a property of the circle; and

the solid is a sphere.

Ex. 3. To determine the nature of the generating curve,

that the solid being given, the surface may be a minimum.

Here f. y'-x is given, and f. ayz is a minimum ;

/. y'z = ayx, and yz = ax, a property of the circle.

Ex. 4. Given the length of the arc ; to determine the nature

of the curve, so that the solid may be a maximum.

Here f. yx is a maximum, and f. z or of a^z is given ;

/. f. y'^x d=f. a^z is a maximum, and y^z = a^x, the equation

to the curve.
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Since z = >/i' + ^% ^i^* + 2^*^'
= a* x*, and .f =

—
T^-*^
—

, an equation in terms of x and «/•

Ex. 5 . To find the nature of the curve which generates the

solid of least resistance, when moving in a fluid, in the direction

of its axis ;
its greatest ordinate AB, and length DE, being

given.

ii DH = X, HF=i/, and FC=z, the resistance on CjP

^?r yyiii c< ^~4- X z, the fluent of which
z' z'

is a minimum. Also, the^*. ax is given;

yy a minimum ;

ifx

:, f.
~ X z dz f. ax is

J z^
^

VV^ ...
hence, *—• x o^ = a x;, the equation to

the curve.

Cor. The curve cannot meet the axis, for y =

CF*
« X ttttt. rT- » where the numerator is greater than the

CM^ X Fm ^

denominator ; and therefore y is greater than a.

Ex. 6. Given the area of the generating plane, and the

greatest ordinate ; to find the curve which generates the

solid of least resistance.

Here f. ayx is given, whilst /. -^ x z is a minimum ;

.*. /*. ~- X z:^ f. ayx is a minimum ; hence, ayz = -—- x i,
yw

y'xand a = ^ , the equation to the curve.

li^x
Cor. Since ^-r- is constant, the angle contained between

the tangent FC and Fm is invariable ; hence, the solid is

either a cone, or the frustum of a cone.
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Ex. 7- To find the same, when the greatest ordinate and

content are given.

Here
j. —^ x i is a minimum^ and f, y^x is given ; or

making the terms of the same dimensions, f.
-—- x z ±.

ayy y
f. y^ot is a minimum ; hence, '.' x oc

~
y'^z ; and a =

% 1J X

the equation to the curve. The fluent is found in Ex. 20.,

on Fluxional Equations.

Ex. 8. To determine the nature of a curve ADK, down

which a body will descend from ^ to iC in the shortest time

possible ; the points A and K being given, and the velocity

varying as the m* power of the ordinate.

z
Since t oc where z is the fluxion

Nowof the curve, if ?/ = DE. t oc —

the points A and K are given ; therefore

a minimum. Hence, by the Rule, t/'"i
= a'^x, the equation

to the curve.

Cor. 1 . If the velocity oc as the square root of the ordinate,

m = -, and y^z = a^x, which is a property of the cycloid.

For IH ; IL :: CE : ED :: CA : AE a G B

:: -v/T^ : ^AD
or, z '. X :: >/a : ^y ;

/. y^ z — a^ X.

Cor. 2. U m = I, ax = yzj which is the property of the
circle.

Ex. 9. To determine the nature of the curve, down which
a body will descend from an horizontal line AL to a vertical
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line LK, in the ieast time possible; the area being given,

and the vetocity varying as the m^^ power of the ordinate.

Here the f. of i/x is given j and since t oc ^ oc -—^^

.

— IS a minimum ; or /.
— ± /. ^^^ is a minimum ;

ym J ym J ^n-Yi.

.. ^~ = -~
, or «/'"+' z = a'""'''i, the equation to the curve.

a y

Cor. 1. Let m = ; then y% — ax, which is an equation

to the circle. Here the velocity is uniform.

Cor. 2. Let w = -
, or the body fall by gravity ; then.

y^ z = a^x ; .'. y^ x jf + y^ = a^af ; and by reduction

X = -
J -

, the equation to the curve.

v^' -
y'

Ex. 10. A body moving uniformly from one given point

A to another B, is impelled by a force tending to C, which

ex: ——^ J where CD is any variable intermediate distance ;

to determine the curve, so that its whole action upon the body,

or F X t, may be a minimum.

Let DCF be a small angle, Dn = x, CD = y, FD
Then, since the body moves uniformly,

z • z
T, which be — oc i ; .'. F X T ^ -:V y

" is the measure

of the angle ACB, and is therefore given ;

hence, f.
— ± f.

— is a minimum ;
or

J y '^ ay

— = ~; , and yz — ax, a property of the circle, whose

diameter is a.
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For if CA be a diameter, CB and

CF two chords indefinitely near, and

FD perpendicular to CB, the tri-

angles FBD, BAC, are similar ; and i? ^ ,

BF : FD :: CA : CB, or ^^

z : X :: a : y \ ,\ yz = ax.

Ex. 11. To determine the curve, in which a body will

move from a given point A to another B in the least time

possible ; the velocity being supposed to vary as CD"".

Here y. /, or /I -
,

or
f.

—
^^

is a minimum ; and the

f. YTj\ 3 ^^
/*•

"
' ^^ given ; that is, multiplying the quantities h

and a'" into the denominators of these expressions to make them

homogeneous, f.
j—j^

± f. -^- = a minimum ; hence,

by'" z= a^yx, or hy"'^'z = a"' x, the equation to the curve.

Cor. 1. If ABC be the curve, CB and

CF be assumed indefinitely near, and Cy be

drawn perpendicular on the tangent By ; since

X _ oy
%
"

a
,

Fd Cy Cywe have 777, or 7^^ or —^
FB CB y

K^ , and Q, = %
Cor. 2. If m = O, or the velocity be constant, Cy = h, and

the body describes a right line.

Cor. 3. li m = \, Cy = ^', ov CB i Cy :: a I h

a given ratio, and the curve is the logarithmic spiral.

a'
Cor. 4. If m = 2, the curve is a circle ; for here j- x
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X z=: 1/z ; its diameter is
j- , and its circumference passes

through C.

Ex. 12. Given CJ, CB, and the length of

the curve ADF; to find its nature, so that

the area may be a maximum.

Ihe fluxion of the area = =
2

^-—
; and y. i, or of az, is given ; .*. f. yx

Ji c

=fcy. ai is a maximum. Hence, yz = ax; and the curve

is a circle, whose diameter is a.
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Chap. XX.

ON THE APPLICATION OF FLUXIONS TO THE MOTIONS OF
BODIES AFFECTED BY CENTRIPETAL FORCES.

SECTION I.

(152.) Proposition.

Xo deduce a fluxional expression, for the variation of

the force in any given curve, considered as a spiral.

If S be the center of force corresponding to any orbit JlB^

Pv the chord of curvature at P, and Sy y
a perpendicular upon the tangent Py, the

force by which a body would revolve in the

orbit AB varies as

*Sy xPv (Newton,

Sect. 2. Prop. 6.)

Let SP = X, Sy =
j» ; then Pv

.'. by substitution F

(Art. 118.) ;

ex:

^ X

1 p

(153.) Examples.

Ex. 1. To find the law of the force, by which a body

may be made to describe an ellipse round the center.

Let AC the semi-axis major = a, ^'"'----^.^ .y

CB the semi-axis minor = h, CP ^
= X, CD the semi-conjugate = y, ^

and Cy the perpendicular on the

tangent = PF = p.
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Then, by the nature of the curve, PF' x CD' =AO x BC\

— =
;^, ; .'.

- ~ varies as i/y. Also o^' -f^' = a' + fe';

—
, varies as xx, and -^ varies as 07, or the

p' a" b' p

.'. xx=-yy;

force varies as the distance from the center. ^af'Tfff

Cor. If the elHpse be changed into a parabola by the in-

definite production of the axis major, then at any finite distance

from the vertex A, x is infinite ; hence in this case the force is

constant, and may be conceived to act in a direction parallel to

the axis.

Ex. 2. To find the law of the force, by which a body may
be made to describe an hyperbola ; the center of force being in

the center of the figure.

Here P F' x CD^-CA' x CB\
. -V1 v'

or -- = -4t , .. —Y vanes as yy,

and -^— oc —^ . Also x" - if-
v^x Xp'x

P
a* — Z»'; ,*. xx = yy; /. ~r vanes^•^

p^x
as — x; or the force is repulsive,

and proportional to the distance from

the center.

Ex. 3. To find the law of the force in a parabola round

the focus S.

Let SP=x, Sy=p, SA= a; then p*= ax, or varies as x.

I . I , p X p . Jt-
-- IS as -

, and —, as — ; /. -4-: vanes as
p' X p^ X p^x

-—
, or the force is inversely as SP\

X''
^
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Ex. 4. To find the same in an
ellipse round the focus.

Let AC=a, CB = h, SP= x, Sy=p, HP= v. Then, by

Conic Sections, Su'=^-^; /. 1^ V
' "

p'

varies as -
, and —£- is as .

^ p^ x' ^
But x + v=2a, .', v= -x; and

~p—1— vanes as
XX -{- vx

^ p
X' p^x

X -i~ V 2 (1 1

vanes as —— , or as —^ . Hence the force is as -—pr- .
x" ^P

Ex. 5. To find the same in an hyperbola round the

focus.

b'x 1

3
Assuming as before, »' = —

; .'.
-- varies as -

, and —
V p^ X p

VX— XV
vanes as

x^
. But V — x =

H a, and v =x', .*.
—f is as

XX - VX
. V -- X

"T^ > or as -^x -^;
. V ' v—x 2a
/. -jT vanes as —3-, or as --

;

p JO of-
'

x"-

that is, the force varies
inversely

as SP\

Ex. 6. To find the same, if the center of force be situate

in the pole of a logarithmic spiral.

Here SP : St/ :: a : b, or a? varies as p;

therefore — varies as -^, and -f^as i; or the
P X p^x x^

force varies inversely as SP\
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Ex. 7' If the center of force be situated in a point S,

which is not the center of the circle ; to find the law of the

force.

Suppose the body at P ; join PS, and produce it to v;

draw vA Si diameter, Pi/ a tangent,

and Si/ a perpendicular on the tan-

gent ; join AP» Let Av = a, SP= x,

Sy=p.

By similar triangles, AvP, SPy,
SP : Sy :: Av : Pv; :. Sy varies

as SP X Pv, or p varies as xx -4- ;

P
. P̂ varies as x, and -^ as ^ x

X p^x
I

; or the force varies as
1

X' X Pv' ' ^ *"'^^ '"""'^ "'^

SP' X Pv'
'

Cor. If the point S coincide with v, or the center of force

be in the circumference, F oc ——-
.

Pv^

Ex. 8. To find the law of the force^, by which a body may
describe the semi-circle APB, the force acting in parallel lines,

and i^erpendicular to AB.

Draw PM perpendicular to AB, and suppose it produced

indefinitely to *S'; draw PV a

tangent, and let SY be conceived

perpendicular to PV\ join CP.

Then, by similar triangles, CPM,
SPY, SP' : SY' :: CP' :

P3P; .-. SY' varies as PM',
since S P' is infinite; or, if

SY=p, and PM=2/, ioc i;

•*• .
°*^ ^ ; but ii = the fluxion

p y
^



152 CENTRIPETAL FORCES.

of SP = i; .*. -—-7 varies as --
, or the force varies as -Kirr .

p'x y^ P3P

Ex. 9. Let APB be a cycloid, and the force act in parallel

lines perpendicular to the base AB.

Let V be the vertex, and FDC the generating circle. Then

oc

if PDE be drawn parallel to JB, and DF, DC, be joined,

SP : Sr :: CF : CD :: ,/CF : y/CJE; .-. SF oc ^CE

^ y ; hence — oc -
, and £- oc ^ oc - • ,-,JLqc — . and

the force oc ~^,

Ex. 10. To find the law of the force in a spiral, whose
(IX

equation is p= — .

H^re ~ oc
^

—
; .-. ^ _£- ex:

^
1.— oc

p X p^ X*

2a'xx ^1 r pi— —
; .*. '^the torce, or -J-r, oc— .

X* p'x 07*

Ex. 1 1 . Let the curve be the involute of a circle, and the

center of force in the center of the circle ; to find the law.

\
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Take SP=^x, %=j»; then, by the

nature of the curve, Py = r, and p =

: ; and ~ oc
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If X decrease as the velocity increases, z= - Fx. If x increases

with the increase of velocity, i= -|- Fx ; and v = a^ 4mz =^4m
X sff' Fx.

(156.) Proposition.

Let T = the time in which a body acquires the velocity v,

when urged by the constant force F\ then v — 2inFT\ .'. for

Tx F
a small element of time as T, v — 2mFT. But ^S" or x = ;'

2

' ~*~ X ,

.*. T=
—pr-

. If X increase with the increase of the time, 2^=

——
; if X decrease as the time increases, 2'= -tt- .

V '

/^

(157.) Examples.

Ex. 1 . Suppose the force to vary as the distance]
"~^

from the

center; to find the variation of the velocity.

— x"
Here vi; oc —Fi oc — x*-'i; ,-. v" oc . 4- corr. Let

n

v= 0, when x=za\ then v' oc «" - x", and v oc ^ a" - xf.

Ex, 2. To find the variation of the time.

, ^
Here T oc — , and the fluent gives the variation of T:

^a"-x''
but this fluent can only be found in particular cases.

Ex. 3. Let the force vary tj^j where X) is the distance

from the center ; to find the variation of the velocity.

— .f 1
Here w oc -—-

; .-. v" oc \- corr. Let v = 0, when x= a',
x"^' nx"

'

, , 1 1 «"-.r" . / d'-jf*
then t? oc -~ oc —-—

; .-. r oc v —- .
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Ex. 4. To find the variation of the time.

«

Here T =
~ ^ "^

. ; of which the fluent must be found in

particular cases.

A

Ex. 5. To find the actual velocity acquired by

a body in falling through a space AB, when urged by

a constant force F, situated in the point C.

Let AC = a, and x = any variable distance ; then

vv = - 2mFxj and — = — 2mFx+ corr. When v — 0,

x — a\ .'. v' = 4:mF X. a- Xy 3ind v= \/4mF x a — x.

Cor. The velocity acquired through AB oc ^AB.

Ex. 6. To find the time of falling.

Here I = -rr = / p^
—

/—
= -

/ ri

•"
•*' x « - ^1 ^

'^
^y 4mJt'XA^a^x ^4mb

2 -.^ ^
.'. T= — xa-x] + corr. ; and when ^= a^ T=0;^mF

.-. corr. = O. Hence, T = \/—- xa-lcV *

mF '

Cor. The time oc jAB.

Ex. 7- Let a body fall from rest at A, when urged by
a force situated in C, which varies directly as the distance; to

fiijd the velocity acquired through AB.

Let the force at some point M= F; then, if CM~ r, and x =
Fx

any variable distance, r i x :: F '. the force at J5 = -—
;
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2mF . ,

.*, v'Urr — X XX, and V
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2mF
X -{• corr. = 2mF

X a' — x'i .'. the velocity = \/
2mF

X aJo" x\

Cor. 1. If with Cas a center, and CA radius, the quadrant
of a circle be described, and BD be drawn per-

pendicular to AC, the velocity at B oc BD,
oc the right sine of a circular arc, whose radius

is the greatest distance from which the body

begins to fall, and versed sine is the space

through which it has descended.

Cor. 2. The velocity acquired at B : that acquired at

C :: BD : CE :: BD .CD.

Cor. 3. Since the force in a cycloid varies as the distance

of the pendulum from the lowest point, y

if a pendulum be conceived to revolve in

a semi-cycloid, CL = the line CA, and

the magnitude of the force at L = that at

A, its motion will correspond with that of

a body descending through AC \ and if

Ch = CB, the velocity of the pendulum at h must be as the

right sine of a circular arc, whose radius = CL, and versed sine

= the space Lh.

Ex. 8. The same things remaining, let it be required to

find the time.

Here T V'r=\f-
— X

2mF sj a' - x"
W 2 m Fa"

r -^X' 2m.fja^— X

= a, a

Case 5.)

-yr-r X a circular arc, whose radius

= a, and cosine x= \/ L__ x the arc AD, (Art. 44.,2m Fa' ^
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Cor. 1. The time oc as the arc AD i and T, AB : T,

AC :: AD : AE.

73(1
Cor. 2. Since the arc of the quadrant AE = ^~—

, where

p = 3.14159, &c. 5 the actual time of descent from A to C
V

Cor. 3. In this expression a is not found ; hence, when
the force varies as the distance from the lowest point, the times

of descent from all altitudes to that point are the same, whether

the bodies descend in straight lines, or in curves.

Cor. 4. The time of descent from ^ to C = half the

time in which a pendulum, whose length is r, would oscillate

by the action of the constant force F.

Ex. 9. Let the force vary inversely as the distance from

C, and be repulsive ;
to find the velocity acquired through

a given space AB^ and the time of describing it.

Let the force at some point F — F; then if CD = x^

Cr =: r, the force at Z> =— , and vy = H ;

X X

.'. v" = 4mFr X hyp. log, x+ corr. Let CA = a,

the velocity being nothing at A ; then v =

J4mFr X hyp. log.
-
a

F

c

Also y = + = - '

• ^ - X — - r^ ; and
f^ J AmFr * / , , X^ V hyp- log-

-

^iffifi
II IM^ T = X : lav^ + --—-

-j- &c., where
sj Ambr 3.1

V = hyp. log. of
^ [fi. 130.)

Ex. 10. Let the force vary as - from C; to find the
distJ

velocity and time.
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Here the force at a variable distance x
Fr*

X'
.*. vv

X 11
- 2mFr'' X -1 , and i?' = 4mFr^ - _ - when corrected,

X X a

^ ,
a — X A /TmFr' \ /a - ^

ax X

Also r= — =
^-i;^'^7Jr5-^i^)rjp^

— ^j?

; and T-V~. : ^ax - x"

^Jax-x""
"

"' 4mFr

— a circular arc of radius - a and versed sine x ^

(Jl. 23.) ; that is, if upon AC as a diameter a ^'

semi-circle be described, and the ordinate BE be

drawn, the time through AB = W —^^ x :

4mrr'

BE- CDE-\-con. = \/—^, x : BE- CDE + CDA =^ AmFr'

AmFr^
BE + ^^.

\/:
^«

Cor, 1 . The velocity at J5 oc \/ -j—
—-—

; or in different

parts of the same descent ^ CB

Cor. 2. The velocity acquired in falling to the center isi

infinite.

Cor. 3. The time down AB oc the arc + the sine.

Cor. 4. If />
= the circumference of a circle, whose

diameter is 1,
-— = ADC, the semi-circumference to a

diameter a ;
and the whole time of descent from A to C ~

a^

4r
^
^7}iF'
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Cor. 5. If Q represent the length of a quadrant. R the

radius of the circle, and the force oc -—
, the time of descent

through the first half of a straight line toward the center

: the time through the remaining half : : Q -{- R : Q~R.

Bisect AC in F, and draw FH perpendicular to AC;
then, T down AF : T, down AC :: AH + HF : ADC;
.-. T, AF : T, FC :: AH + HF : ADC-AH~HF

:: Q + R : Q-R.

Ex. 1 1 . Let the force tending to C vary inversely as the

cube of the distance ;
to find the velocity and time.

Fr^ ^
In this case, the force at a variable distance jo — •— .

.*. vv
X 1

2mFr^ X —
;; .'. v* = 2mFr^ X -: + corr.

X^ X ^B

2 2 ^» ^a
2m Fr" X —^ -=2m Fr' x —3—- ; .',v= J2 m Fr"

X a' ax ^

ax

Also 2 =

V«' - *'.

^2mFr^ ^a'-x'
; and T =

mJ2mFt^

Cor. 1. With C as a center, and Ca — CA as radius

describe a circle aDE. Take ah =
AB; draw bD perpendicular to aC,
and let aT be the tangent of aD.
Then Cb : bD :: Ca : aT, or x :

>/ a' ^ x' :: a : aT; ,\ a T o^

sfa^ - x"
; but V

; .*. the
X X

velocity acquired through AB oc as the

tangent of a circular arc, whose radius
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is CA, and versed sine the space through which the body has

descended.

Cor. 2. The velocity acquired at C is infinite.

Cor. 3. The time through AB oc Dh oc the right sine of

of the arc, whose versed sine is the space described.

Ex. 12. If the force oc Z)"-', required an expression for

the whole time of descent to the center.

In this case, the force at a distance jc = —
^j^r" ;

2mF „ . . , , 4mF

A

.E

a
:, vv= —z— X x"~\i ; and v* = ~- x a"— a:";

. / AmF /

^ nr ^

Hence 2' = —• = V ";
—

r^ x
,

= V ":
—

t^. x

X "\~'^ _. „ * / nrV-X X I
-;;

= (by the Binomial Theorem) V ^jji^a"

"" •
~

^"^
"
2^

~
2 . 4 . a^"

"
2. 4. 6. a'"

~
' '*• ^ =

\/ X • —J? — iizzzzi:; — — — &C.^ 4m Fa"
'

2 .n-\-l .a" 2 . 4. 2?ii-l .a^"

-f- corr. Now when T=0, x = a; and when the body reaches

the center, all the terms which contain x must vanish ;

_.rjir"-' «"+'
therefore the whole time = \/ —— x \ a-\-

4mFap

2 . 4 .2n-^l .a^" 4niF

3
+ zzzzz

—
«^ + &c.

2 .4 .2W+1 ,a ^

2.
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Cor. The whole time oc -^^^ .

Examples.

1. Let the force be constant; n-l=0; /. » = l, and

T oc ^ a.

2. Let F oc the distance :n-l = l; .*. n = 2;

•'• ^ «^
-^^ 1, or is constant from all altitudes.

3. Let i?' oc —-; n_ 1 = _ 2 ; .. n =± - 1 ; and T
oc a .

Ex. 13. If the attractive force in C vary as
7^?^? ^"d a body

be projected from B in the direction BA, with a given velocity ;

required to find the height to which it will rise. (See the

Figure in the preceding page.)

Let CA the height required = p, CB = r, CE a variable

distance = x\ let c = the velocity of projection, and v the

velocity at E. Let the force 2A.B = F. Then the force at ^ =

^^' ••^'^ =
^;^r--;

and i,'==__,^ + corr.

When v = c, x = r; .-. z;*-c* = i^Zll!! _ ^^-^^
Let

nx" n

r = 0, or the body arrive 2XA\x =/?, and c =
w np"

.'. np^c' = AmFrp" - 4 mFi''''^\ Hence, p" x 4mFr— nc^=s

r, «4., 4mFr
'^ 4mFr-nc^\
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SECTION III.

(158.) Proposition.

If a body describe any curve round a center of force, the

velocity at any point varies inversely as the perpendicular drawn

from that center upon the tangent.

Let C be the center of force ; AB, BE, ED, small parts

of the curve described in equal successive

portions of time. On Ey, a tangent at E,

draw the perpendicular Cy ; then CED
may be considered as a small rectilinear

triangle, and its area CED oc DE x Cy ;

C P D
:. DE oc -~~-

. But the arc DE
^y

. . .

described in a small given time is pro-

portional to the velocity at E ; and (by Newton, Prop. 1
.)

all the areas ACB, BCE, ECD, &c. described round C, dato

tempore, are equal ; .\v oc — .

(159.) Proposition.

Let C represent a center of force, and suppose one body to

describe round that center a curve VIK, whilst another descends

in a right line by the action of the same force toward C; if their

velocities are equal in one instance, when at equal distances

from C, in the curve and the straight line, they will be equal

at all other equal distances.

Let IK represent a small part of the curve ; with C as

a center, and radii CI, CK, describe the cir-

cular arcs ID, KE ; draw NT perpendicular

to IK ; and suppose that the velocity of the

body descending from A to C, when at D, to

equal the velocity in the curve at /. Let

DE or IN represent the force at D or /

toward the center ;
IT will represent that part

of it which impels the body in the curve.

Now the times in which DE and IK are
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described^ since the velocities are equal at X) and 1, will be

proportional to DE and IK ; and the increment of the velocity

is as the force and the increment of the time, or v oc F x T\

But F in the curve : F in the line :: IT : DE,
and T in the curve through IK : T through DE :: IK : DE.

Hence (Fx t or) v in the curve : (J'.xi)oi'v in the line :: JTx IK : DE''

But since INK is a right angle, ITx IK=DE'; .-. the

increments of velocity through IK and DE are equal. In

the same manner, the corresponding increments, and therefore

the whole velocities at equal distances, will continue to be

equal.

Cor. 1. If the body at D projected upward with the

velocity at D would ascend to A before it loses all its velocity,
the body at /, projected from / in the direction CI produced,
would rise to a distance equal to CA.

Cor. 2. Hence, since vv oc

expression obtains in the curve.

Fx in the line, the same

(i6o.) Proposition.

If a body revolve uniformly in a circle round the center C,
the velocity of the body is equal to that which it would

acquire by falling through one-fourth of the diameter, when

urged by the constant force in the circumference.

Take AD a tangent at A, very small. Draw DB parallel to

AC, and BE perpendicular to it; and

suppose Ax to be the space through which

a body must fall to acquire the velocity

at A. Now whilst the body describes

AB with an uniform
velocity, another

would fall through DB by the constant

force at A, and would afterwards describe

2DB in the same time with the
velocity

at B continued uniform. Hence, the
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vel. of the body at A : vel. acquired thro' DB :: AB : 2DB
and vel. thro' DB : vel. acquired thro' Ax :: ^'DB : >,/Ax;

.'. vel. at A : vel. acquired through Ax :: AB : 2^DBx Ax;

.*. by the hypothesis AB = 2 x ^DB x Ax,

^ . AB' AB' AF
and Ax=

Anji
~
T~Jp

~
"T" » °^ ^ body must fall

AF
through a space = —- when urged by the constant force at A,

to acquire the velocity in the circle.

Cor. 1. Ifm=l6— , and r = radius, the velocity at

A = \/ — »J 2mr = the space uniformly described

in \", the force at A being assumed = 1 .

Cor. 2. If c= the circumference of a circle to the radius r,

and /?
= 3.14159 &c. = the circumference of a circle to the

diameter 1 , c = 2 p r ; hence, to find the whole time of

revolution, we have mJ 2mr : 2/7r :: \" : T" \

2 p v / 2 r
/. the time = / t=p x V/

^2mr
^ ^ m

In the following Problems, the velocities are determined

from the equation % — ^±z Fx. It might have been applied in

the cases preceding, but it was thought expedient to give

Examples of both methods.

Examples.

Ex. 1. To find how far a body must fall externally to

acquire the velocity in a circle, the force varying directly as the

distance from the center.

Let P be the point from which the body must fall, CB any
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variable distance
; suppose the force at

J = l, and CA = a, CP= p, CB = x.

X
The force at B= -; .*. if z represent the

space through which the body must fall

by the constant force at A to acquire the

proper velocity, z = , and z =
Ct Jl Ci

+ corr. Let 2 = 0, V= ; :. x = cP =p ;

J)'
"~ x''

hence, z= ; and when x~cA. or
2a

the body comes to A,

ic=i!l--. But^=- (by Art. 160.) i

hence, p^
= 2d', and p or c P = a x a^2.

PL
2a

Ex. 2. To find how far a body must fall internally to

acquire the velocity in a circle, the force varying directly as

the distance from the center.

Suppose P the point to which it must descend, and let CB = x

a variable distance. The force at jB = -
;

a

z =
— XX

and z
-X'

+ corr.
a ' 2a

Let x= a; then v = 0, and therefore z = O.

2a^

and when x=Pf or the body comes down

Hence, C = — = -
;

2a 2

a
z = ~

2

a p-to P, SI = - -
2 2a

But z=^-\ .-. - = - - --, and ^a a _a
2' 2

"
2 2a

that is, j9=:0 ; .*. the body must fall to the center.

2a
= 0,

Ex. 3. To find how far a body must fall externally to

acquire the velocity in a circle, the force varying ^.
— from the

center.



166 CENTRIPETAL FORCES.

The force at B-=z -
; .*. z= , and s= — ax hyp. log.

P
X + corr. = a X hyp. log.

-
,
when the body comes to fl =

a X hyp. log. I ; .'.

^
=a x hyp. log. |;

.-. hyp. log. ^
=

5
•

Lete= 2. 71 828 &c. = the humber, whose hyperbolic loga-

rithm is 1 ; then (Art. 136. Cor.) e^= -
; .-. p = a x e"" =cP.

a

Ex. 4. To find the same internally.

The force at B within the circle = -
; ,\^z = . and

X X

z= —ax hyp. log. x+ corr. =ax hyp. log.
-
(when the body

comes to P) ax hyp. log.
-

; that is,
- = a x hyp. log.

-
.

Hence, assuming e as before, p = — =cP.

Ex. 5. To find how far a body must fall externally to

acquire the velocity in a circle, if the ^

force vaiy as j^ from the center.

The force at JB = —
; .*. z = - —^,X X

and % = . When the body comes
X p

''

to ^, it —a ; that is,
-

a^ a r» «
,•,—=-; .'. p or cF = 2a.
p 2

a'
a - —;

P

Ex. 6. To find the same internally.

The force at 5 = «' . ax ,-
; :. z= , and

x" X'
'

jt = . Let the body come to P,
X a

, a a
and - = -

2 p
2a

T'

a;
a^ 3 a ,

'

.
— = —

, and p =
p 2

' ^
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Ex. 7. To find the same externally, if the force oc ~ .

The force at 5 = —
; :. z = r > ^^^ ^ =

WZ-'
""

TTT* * ^^»
X x^ 2x 2p

, , , n a a a^ ^
a? .

when the body comes to i', « = ;;
~ ;m » '' P =

t: » o^" the
•^ 3 2 2p O

body must fall from infinity to acquire the velocity

at ^.

Ex. 8. To find the same internally.

The force at J5 = — ; :. z r- , and z = —-j
- -

. Let
x^ X^ 2x 2

the body come to P, then - =— - -
; .*.

- =
;> x a, and

a
^ =
Vf

Ex. 9. To find how far a body must fall externally to

acquire the velocity in a circle, the force varying as t^tv

from the center.

«"+ '
«"+ 'i' «"+*

The force at 5 = -^^ ; .-. z— - —^^^ , and ;j; = —~-
07"+' x^+' nx"^

—-
; or, when the body comes to -^,

- = : .*. =
w/?"

^ '
2 n .

np"" np""

a X 2-n , 4V~2
, and » = a X V •

Ex. If n =-. 1, F oc ~
,
and p = 2a^ as before.

1 /2
If n = 2, F oc --

,
and p — ax V -=an infinite quantity.

Ex. 10. How far must a body fall
internally, to acquire the

velocity in a circle, the force varying ir^rr •
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,«+i

Here z r-rr- , and z =— . When the body

„ a «"+'
comes to jP,

- = —-
'
2 np"

, or
a n^-l

</-

np

71+2 .a

2n
a X

2-\-n

Ex. If w=-3. Foe dist. and» = ax ? =0,
01

If M = l, p=-~y and Foe
^^.

as before.

If w = 2, /?
= a X V ^ , andF D

If the force vary as 0"'% general expressions may be

deduced in the same manner.

The distance p, if the body fall externally to acquire the

/ 2 -\-n

velocity in a circle, = a x V If it fall internally,

p = ax V -y-.

In all these cases, we have considered the force situated in

C as attractive. If the force be repulsive, the same reasoning

may be adopted to find the velocities and times of bodies

ascending; only in this case, 2vv= +4mFd;y andz=-fFr,
for the velocity increases with the increase of x.

(l6l.) Lemma.

The space through which a body must fall to acquire the

velocity in any curve at any point P, is

equal to rth the chord of curvature at that

point; the force of acceleration being equal >

to the force at P.

Let PJ^ be the chord of curvature passing

through S the center of force; PQ a small

arc, PR a tangent at P, QR parallel to PF,
and QE parallel to PR. Then, if Pa? be

I
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the space through which the body falls by the constant force

at P to acquire the velocity at P, by the same process as in

Art. 160. we have the

vel. with which PQ, is described : vel. acquired thro' RQ :: PQ : ^RQ,
and vel. acquired through RQ : vel. through Px :: \/RQ : \/7x;

.'. vel. with which PQ is described : vel. thro' Px :: PQ : Q.s/ RQxPx;
.'. since the first velocity

= the second by hypothesis, PQ =

PQ^ pj/^
2^RQx Pjc; or Px = —Fw> = -—-•

Cor. If the accelerating force be the same in two cases, the velo-

city
oc the ,y/ chord of curvature ; if the force be not the same,

the velocity
©c as the ^ F x chord of curvature.

Ex. 11. How far must a body fall externally to acquire the

velocity at any point P in the parabola,

F varymg -^^
.

Let c= the chord of curvature =4SP,
SM=p, SB = x, ^i> = «.

The force at 5 = -—
, if the force at

X

„ . a'x . a" a"P = 1 ; ,; z = , and z= ;X X p
C CL' Ci^

:. when the body comes to P, - or a = « - —
; .*.

— = 0,•^ 4 V V
or p is infinite.

Ex. 12. How far must a body fall internally, the force

varying -^ ,
to acquire the velocity in a parabola.

cCX a'' a'
Here z = -

~-^; ,\ z = — + corr. = a, and when
tV iJL lA^

C CL^
the body comes to M, ~ or a = — — a ;•^

4 V

.*. 2p = a, and p— -
.

' A A
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Ex. 13. How far must a body fall externally to acquire

the velocity in an ellipse ; the force tending to the focus, and

1

varying -^ .

Let M be the point from which the body must fall ; assume

AN=2a, SM=p, SB = x, SP = d,

and PH—v. Then, if the force

d'
at P=l, the force at B = —

:

X

d\v , d^ d'
/. z= -, and z = —

;

X* / X p
and when the body comes to P,
c d^ .

•- = d — —
. Now if CD be the semi-conjugate diameter to

the distance CP, the chord of curvature passing through 5'=

2CD' 2SPxHP ,^ r^ .
,

c SPxHP dxv
^~AC

= AC (^y ^""^^^) ' •••

-4

= ~-^C- = -^'
dxv , d'' d' 2ad~ dv ,

.*. =a—— ; .*. — =
; or 2axd — px2a — v

2a p p 2a

=pxd; ,'.p = 2a,ovSM^2JC=SP +HP; .•.MP = HP.

Cor. 1 . Since in whatever part of the orbit P is assumed,

the line SM always = 2a ; if with aS* as a center, and a radius =

ANj a circle be described, a body descending from any point

in the circumference of that circle, in a line MPS directly

toward S, acquires a velocity at P equal to the velocity of

a body revolving in the ellipse.

Cor. 2. A body projected from P in the direction SPM,
with the velocity in the ellipse at P, will just rise to the cir-

cumference of that circle before it loses all its velocity.

Cor. 3. If BC be the semi-minor axis, and a circle be

described with the center Sy and radius SB, the velocity of
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a body revolving in that circle is equal to the velocity in the

ellipse at B. For a body must

fall through MB = HB = SB to

acquire the velocity in the ellipse

at B; and (Art. 160. Ex 5.) it falls

through the same space to acquire

the velocity in the circle, whose

radius is SB.

Ex. 14. How far must a body fall internally to acquire the

velocity in the ellipse at P, under the same circumstances ?

Suppose it must fall to M. Let SM—p, the force at J5 =

d' . -d'x ,
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Ex. 15. How far must a body fall externally to acquire

the velocity in an hyperbola ; the force tending to the focus,

and varying D'
The same suppositions being made as before, the force

at ij = —-; .'. z = ; and
X X p

Q
when the body comes to P, - =

J d^ .1 .
• dxv J

d"-

a — —
; that is, = a — — ;

p 2a p

<?'__, dxv
'

p 2a

dx. — d

d X 2a - V

2a P

2a

-2 a. That is, if

PS be produced to M, and SAI be taken = 2 a, the body by

ascending from M to an infinite distance, the force being con-

sidered repulsive, and then descending by the attractive force

to P, will acquire the velocity at P in the curve.

Ex. l6. How far must a body fall internally to acquire the

velocity in the hyperbola at P, the force varying -jy^
?

rf' d""

The force at JB= — ; .'. z= d; and when the bodv
X X

T., c dxv d*
comes to M, - or -—— = —

'4 2a p

d 2a-i-vxd
d\ .-. — = , or p =

p 2a ^

dxv HPxSP
2a+v 2a+v 2a-\-v JN+HP'
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Cor. If in PH produced, HL be taken = AN, SL be

joined, and HM drawn parallel to it, it cuts off from PS a part

PM through which a body must fall to acquire the velocity in

the hyperbola at P.

Proposition.

CorollaTy to the Three last Cases.

A body is projected at a given angle, with a given velocity,

and at the distance SP from the center of force ; to determine

the curve in which it will move, the force in S varying -^pi
.

1. Let the velocity be equal to that acquired in falling

through a finite distance MP. Let

Pi/ be the direction of projection ;

produce yP to 2;
; join SP. Make

the angle zPH equal to yPS; take

PH=PM; and with S, H as foci,

and SP +PH as major axis, describe

an ellipse. That ellipse is the curve

required.

2. Let the velocity equal that acquired in falling from an

infinite distance to P, and Py the di-

rection of projection. Join SP ;
make

the angle MPy equal the angle SPy.
Take PM—SP^ and draw ML perpen-

dicular to PM\ then with aS* as focus,

and ML directrix, describe a parabola.

That parabola is the curve required.

3. Let the velocity equal that acquired b}' ascending from

some point C to infinity by a repulsive force, and then descending^
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by the attractive force to P. Let

Pi/ be the direction of projection ;

make the angle yPH = the angle

yPC; draw CyH perpendicular to

Py\ then with S and H as foci,

and an axis majorAB = SC, describe

the hyperbola PA, concave toward

the center of force. This hyperbola

is the curve required.

Ex. 17. How far must a body fall externally to acquire
the velocity in an ellipse, the center of force being in the center

of the ellipse?

Here the force varies directly as the distance from the

center

and z =

the force at jB = -

~ xx
d

-x'

2d

d'

+

p^ X
corr. = —,

— —7. Let the body
'2d 2d •'

T» 1
c p* d

come to P, then - = ^ - -
;

2d

or 1^' = £. _ ^; ... cD' = / - d% and // = cD' + cP' ;

2d 2d 2 r > 1 t ,

/. p= ^ cD^+cP\

Cor. 1. If with C as a center, and a radius = ^cD''-\-cP*,

or ^Ac'--{-Bc'' a circle be described, a body descending from

any point in the circumference of that circle in a line MPc,
will acquire at P the velocity in the ellipse at that point.

Cor. 2. Since with the same variation of the force a body

falls externally through, a space = cPx s/~^i to acquire the

velocity in a circle of radius cP (Art. 160. Ex. 1.), the velocity
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in this circle and in the ellipse at P will be equal, when

^ cD'-\-cP' = cP X ^y 2f or when cD = c P.

Ex. 18. How far must a body fall internally, under the same

circumstances, to acquire the velocity in the ellipse at P ?

The force at 5 = -,,
d
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Ex. 20. A body revolves in the hyperbola AP by a re-

pulsive force varying as the

distance, of which the cen-

ter is in the center of the

hyperbola. To find how
far it must rise from P,
in the direction CP M^
to acquire the velocity in

the hyperbola at P.

XX X- d'
Here z= +Fx= -y; .-. z~ ~j -,; that is, when the

a . 2d 2d

cD^ p" — d^

body comes to M, -—
j-
—

i ; .'.
p''
= cD^-\-d% and p =

^cD'^cP' =cM.

Ex. 21. The same supposition being made; to find from

what point M a body must rise to P, to acquire the velocity in

the hyperbola at P.

X' P'XX
Here z= -y, and z—

,
—

, .

d 2d 2d

Let the body come to P, then z =

d'~f
2d

or
2d

d'-f
2d' P =

^cP'~cD'^cM,

Cor. If cP = cDj or the hyperbola be rectangular,

c^/=0.

Ex. 22. To determine the orbit described by a body, if

projected from A in a direction perpendicular to AC, with

such a velocity as would be destroyed by descending to the

center C; the force being repulsive, and varying directly as the

distance from C
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Suppose a body to ascend from A in the line CAG with the

velocity in the curve at the pointA ; then,

by Art. 159., the velocities in the curve

and the line are equal at all other equal
distances from the center of force. Now
in the line, vvocFiocxx; /. v^ocx'', and

voca?, for the fluent needs no correction.

Hence, if CP:=x, the velocity in the

curve at P oc as CP. But if Ci/ be a perpendicular on the

tangent Pi/, the velocity at P oc as
-p:;- (Art. 158.) ; .*. CP

oc as j^ ,
which is a property of the rectangular hyperbola.

Ex. 23. Universally, the force varying as ^... ; to find how
1

far a body must fall externally, to acquire the velocity in any
curve at a given point P.

LetM be the point required ; take SM—p, SB a variable

distance =x, SP —
d, and c = the chord of

curvature at P. Then the force at P being
, , . -d"+'d; d"+' d"+'

assumed =1, z--

Xnf I
z =

nxf np
1 c d d"^^

or, when the body comes to P, -. =
4 n np"

d"+'

np"

d— ".nc
4

n
and p =

dx d"

\/d-l
SM.

nc

Examples.

1. Suppose the curve a circle, and P oc distance ; c=2d,

andn=-2; :, SM = d x d'^ x .JdTd = ^^L^^/IE
_- ^s/d""

= dx^y 2.

2. Let F oc —
, the curve being a circle ; here «+ 1 = 2 ;

/. »=il, and SM= -^ =2^.

2

BB
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3. Let Foc~, w + l=3; /. «= 2, and SM=: —JL.
= an infinite quantity.

4. If the curve be a logarithmic spiral, c=2d; and the Foe
1 ^ ^, d X d^ ' n •

-jpi
.*• oiWr = = an mnnite quantity.

5. In a parabola, c = 4d; and F oc -^ , or w = 1 ;

.*. S3I = ~r~i = an infinite quantity.

6. If the curve be a circle, and the center of force in the

circumference, or Foe— , w+ l=5; .'./« = 4, and c= rf;

hence, SM = -
^
— = an infinite quantity.

f^d-d

Ex. 24. The force varying as
-ryir+i

' ^^ ^"^ ^^^^ ?^^ ^ body

must fall internally, to acquire the velocity in any curve at

a given point B.
— d"^Kv d"^^ d

Here % = —r-^ ; .% z= —
; or, when the body

X + nx n •'

,, c d"^' d ^d"-^^
d-{-~^nc

comes to M. - =—
-„

- -
; and —„

=
4 np" n np" n

d X d" cTif
.'. p= .

= <SM.

yd+^nc
Examples.

Ex. 1 . Suppose the curve a circle, and that the force varies as

the distance; c = 2d, and w4-l= - 1 ; .'. n=~2; and p =

dx d
^
X s/d-d = 0, or the body falls to the center.

2. Let Foe -y^, 71+1 =2; .'. «=1, and p = —

2d ^+2
«>
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4. In the logarithmic spiral, c = 2c/; and F oc
-^;

^
(Z X mJII d

:. w = 2, and p= — =
—7=^

.

^d-\-d y/2

5. In the parabola, F varies as
-^ ; .•.« = !, and c = 4</ ;

rf^ rf

''• P- d+d~ 2'

6. In a circle, which has the center of force in the circum-

,
-

,
dx d^

ference, w+l=5; .'. n = 4, and c= ri; hence, jo
=

^d-^-d

SECTION IV.

(162.) Proposition.

To compare the velocity in a curve at any point with the

velocity in a circle at the same distance from the center of

force.

The velocity in the curve at P, is equal to that which a body
would acquire in falling through one-fourth

of the chord of curvature at that point, if

urged by the constant force at P ; and the

velocity in the circle at P is equal to that

acquired through one-fourth of its diameter

by the same force ; hence, f^' varies as

the chords of curvature; or F''' in the curve

at P : F' in the circle SP ::^ : 2x
P
X p
X

'

p'
(Art. 118.)
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Examples.

Ex. 1. To compare the velocity in a logarithmic spiral with

the velocity in a circle at the same distance SP.

Here x : p :: a : b; .'. x : p :: i : p, and - =^;^ X p
hence the velocity in the spiral is equal to that in a circle at

the same distance.

Ex. 2. To compare the same in a parabola.

In this case, p^=ax; .'. 2pp = ax; also x = ~

—^ = —
; .*. y^ in the parabola : V in the circle :: ~£-

ap" p
^

p

I *- :: 2 : 1 ; and F' in the parabola : P^ in the circle at the

same distance :: ^2 : 1.

Ex.3. To compare the same in an ellipse round the focus.

Here Sy'=zBC'x ~; or, \i AC= a, BC=h, p'= -^^;
.*xx^ ^ a —~ oc

2ab\i b^x
.'. 2pp

2ax

2a - x\
2a - X

p" X 2ax
Henee.

X X 2a — X X X 2a — X

X p 2a — X- =^ X ;X p a

10 Ofl X P
.\ V^ in the ellipse at P : V' in the circle SP ::

^ x — :
-

;^ pap
:: HP : AC.,

and F in the ellipse at P : F in the circle SP :: ^HP : ^AC
Cor. The velocity at B in the ellipse is equal to the velocity

in a circle whose radius is SB,

In this and some other cases, it is more convenient to deter-

mine the ratio of the velocities by comparing the chords of

curvature. For V"" varies as the chord of curvature^ when the

accelerating force is the same. (Art. l6l. Cor.)
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In the two following Propositions, the velocities are compared

by determining their actual values.

M
Ex. 4. To compare the velocity acquired by . js

a body in falling from a given point M through

a finite distance MP, with the velocity of a body

in a circle at the distance S P, the force

varying as ^^.

Let SP = d, and the force at P = 1 ; SM=p, SB a variable

distance —x. Then the force at B =z —-_; .«. ^= f

, d"+' d"+' d''+'x : »"-a^"
and z = —~ ^= ^ . But F' = 4m%inx" np" np"x"

-i//*^,

.'. ^' at P, where x = d, —4md x : r- .

np"

Also f^- in a circle at the distance S P = 4 m x - -

2
'

.-. vel. of body falling at P : vel. in cir. SP "\/
"^^^"^f ~ ^'

. \/l^
np"

' ^
3

Cor. 1 . When the velocity of the falling body is equal to the

velocity in a circle at that distance, p"
— d" = —^

, and p may

be found; thus, if the force oc --—
, since n—l, p=:2d.

Cor. 2. If F oc ^ ,

vel. of body falling in P : vel. in circle SP :: ^Jp-d : v -^

:: sfMP'. .JjMS.
(Newton, Sect. 7. Prop. 33.)



182 CENTRIPETAL FORCES.

Ex. 5. The force varying according to the same law; to

compare the velocity of a hody falling from an infinite distance

to a given point P, with the velocity in a circle at the

distance SP.

By proceeding as in the last case, z = —— , and the cor-

rection = ; /. when the body comes down to P, z= -
^

hence, vel. of the falling body at P : vel. in cir. SP

Examples.

Ex. 1 . Let F oc —
, n=l ; therefore the

vel. from infinity : vel. in a circle SP :: \/2^ : 1,

as in the parabola.

Ex.2. Let F oc~
y w = 2; therefore the velocity from

infinity is equal to the velocity in a circle SP, as in the loga-

rithmic spiral.

Cor. 1. If the ratio of the velocity acquired from infinity

at P to that in a circle be given :: c : 1, the law of the force

maybe found. For c : 1 :: >/2 : >/?z; .*. w-}-l = —^— .

Cor. 2. If a body be projected from P in the direction PM,
with a velocity which is to the velocity in a circle at P ::

aJ 2 : A^^, it will go off ad hvfinituin ; and this is the least

velocity with which it can be projected, so that it may never

return.

Cor. 3. Since F^' oc as the chord of curvature when the

force is the same, we can compare the chord of curvature of the
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curve described by a body projected perpendicularly at P;
its velocity being that acquired from infinity, with the given

distance SP.

For 2 : n :: the chord of curvature required : 2SP;
4SP

therefore the chord of curvature = .

n

Thus, ifw-{-l=2, w = l, and the chord = 4SP ; or the

curve is a parabola.

Cor. 4. If the force vary inversely as the cube of the

distance, w = 2 ; and a body projected at P, in a direction

perpendicular to SP with the velocity acquired from infinity,

will in this case describe a circle. If the force vary in a higher

inverse ratio than
yy^ ,

2 is less than n ; hence, the velocity

of the body is less than that in a circle at the same distance ;

but /^* oc PJT^ where the force is given. Hence, the chord

of curvature of the curve described is less than that of a circle,

whose radius is SP ; and the body will describe an orbit interior

to the circle, and at last fall into the center. If the force vary

in a less inverse ratio than -^ ,
2 is greater than w, or the

velocity of the body is greater than that in a circle of radius

SP ; therefore, since ^' oc PV, the chord of curvature of the

curve described is greater than the diameter of the circle ; hence,

the body will describe an orbit exterior to the circle, and at

length go off to infinity. The two following Problems are

connected with this subject.

(163.) Prob. 1.

If the force vary as j^ from the center, where n is greater

than 3, and a body be projected from f^ in a direction perpen-
dicular to the line SV^ with the velocity acquired in falling

from an infinite distance, it is required to find after how many
revolutions it will fall into the center.
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Let VPp be the curve described; VRr a circle, whose

radius is SV; SP?' two lines
^

drawn from S indefinitely near to

each other. Draw the tangent

Pi/, Si/ perpendicular to it, and

px perpendicular to SP. Take

SP = X, SV= r. Then in the curve

(Art. 159.) i^i; oc - Fxoc —_ .

.. V oc —-— and the cor-
X

rection vanishes. But, by Art. 158. ^ oc
inversely as the

perpendicular.

Hence, ^' at F : F' at P :: a^«-' : r""' :: Sy' : SF' ;

,«—3

^V-s^^^-i
. Now, by similar triangles, Ppx, SPy,

Px : px :: Py : Sy ;

and px : i?r :: ^SP : SR-, v

.-. Px : Rr :: SP x Py : SyxSR; or, if FjR= «,

ti—1 «—5

— rx '
cT — rx **

i?

^-^/."-^'-j;''-' ^r"-'-^"-'
; whose fluent

(y*. 48.)

or s = -—---—;^ X a circular arc of radius = r *
, and cosine

n-3.r -

a?
*

, which needs no correction. Let x= 0, and /- = 1 ;

,
2 1^2 circumference

then s = ~ X a quadrant = -—- x =

T, ; that is, the body describes rr revolutions,2n-6 ' ^ 2n-b
before it falls into the center.

Cor. If n=:4^ the body falls into the center after half

a revolution.
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(164.) Prob. 2.

1

185

If the force oc —1^ from the center, where n is greater than 1

and less than 3, and a body be projected as in the last case ; to

find after how maijy revolutions it will go off ad hifinitum.

In this case, cc is positive ; and by reasoning in the same

manner as before, Rr or z ^

' r J rx ^ i
IS lound = ;

and the fluent {/. 48.) =
X 2r .

,

:;=:; X a Circular

n — 3 . r

arc of radius = r *
, and

n—3

cosine x *
, which needs no

correction. When /• is unity, and x is infinite (or when the

n — 3
cosine =0, since n is less than 3, and therefore negative).

it = X a quadrant = 7^ revolutions.^ 6-2nn

Cor. If n=l, 6- 2n
= -

,
or the body goes off ad inf.

after - of a revolution. This must be considered as the limit,

or the least angle at which the body can go oflf ad infinitum ;

for 71 cannot be assumed accurately =1, since in this case

/•
— X

the /.
—~ cannot be taken by the common method.

SECTION V.

(165.) Proposition.

If a body describe a curve, when urged by a force acting in

the direction of the ordinates, that force is proportional to the

second fluxion of the ordinate.

c c



f
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UJM=x, AC~a, PM=y,

187

.% y= a- XX XX 2ax — x^

= a — XX 2ax— x^

J •• . ;; ^-^ a-xX . 2ax - x'i-a-x\
^na y= —xx 2ax—x\ - —

: x x= -
2aa?— xi^ 2ax- J?!'^

— a' 1= —r- ; therefore the force oc -^ . The same conclusion

is deduced from the expression —-. Art. 153. Ex. 8.
Jl X

Ex. 4. Let the curve be a parabola, and the force act

as before.

Ill I s

In the parabola, y = a^x^, oc x^ i '* y °^ x"^-, ,\ -yocx"^

oc -—
; or the force oc ._.

.

2/ y

Ex. 5. Let the curve be an ellipse.

Here y=i
- x ^ 2ax- x" oc j^ 2ax— x'

-, hence, the reasoning

and the conclusion is the same as in the circle, and the force

oc
y

Ex. 6. Let the curve be an hyperbola.

Here y=.
- x i^2ax+ x' oc aJ 2ax -^ x" ; and ^ oc a-\-xx

-v-^ .. 2ax +x*-a+ x]' J
• . I

2ax-{-x\ ; ,'.yoc
—

; ; and -yoc
2ax^\-F\ 2ax-^x''\

oc

y'

Ex. 7- Let the curve be a common cycloid f^DC, and the

force act in the direction of the ordinates, parallel to the axis.
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Let DE^ and PL, be two ordinates indefinitely near to each

other ; draw DM parallel to CA, meeting
^

the axis in M, and the generating circle

in R\ join f^R, AR, and let CE= x,

ED—y^ Dn = x, Pn=y; and AF=2a.

Then, by similar triangles, PDn, RVM,
X '. y '.: RM : MF :: AM : MR :: y : -^ 2ay-y';

sJ 2 a y— w'

^
y

-""yy n.,. ^_ yy

y^ ay —yy x y —y x 2 ay — ?/'

yW^^^y-y"
But i=

's/^ay-y

fx ^2ay-y-
-ax

y
; and

-y oc — or the force oc —
y y

(166.)

SECTION VI.

Proposition.

To find the forces, by which bodies may be made to

perform isochronous oscillations in curve lines, when the force

tends to a center.

Let A T represent a pendulum, C the center of force, and R
the lowest point in the curve. By a

Art. 157. Ex. 8. Cor. 3., if the

force acting upon T in a tangential

direction be proportional to TR,

the oscillations will be isochronous.

Join CT; draw Ty a tangent to

the curve; take Ty= TR, and

from V let yz be drawn perpen-

dicular to T y. Then, if Tz

represent the force tending to C,

the oscillations will be isochronous.
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Take CP very near CT, and draw Px perpendicular to CT,

Let RT=zz, CT= x, Tz = F, TP =z, Tx = ±. Then, by
similar triangles, F : the tangential force T

1/
:: i x:

:.F =
the tangential force x ^ zz

X X

Examples.

Ex. 1. Let the force vary as the distance; then zz varies as

xi ; /. x' varies as x', and z varies as x, or the curve is the

logarithmic spiral.

Ex. 2. Required the law of the force

tending to S, which will make the involute

of a circle the isochronous curve.

Here z i x v. ST : Ty :: x : v,

z X . zz zx ^ _,
.. - = -

, and —r= — —F', .-. Fx r
X r XT

= zxx\ or, jfi^ required : the arc :: the

distance ST : the radius of the circle.

(167.) Proposition.

To find an expression for the force necessary to make any
curve isochronous, when it acts in parallel lines.

Let it act in lines parallel to AR. Draw Py a tangent

equal to PRy yZ perpendicular to Py, and

let it meet PZ drawn in the direction of

the force in Z. Then, making the same

assumption as before,

F : the tangential force :: PZ : Py
::PT: Px:: z : x;

j^ the tangential force x z ZZ

X X
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Examples.

Ex. 1 . Let the force be constant. Then —:- varies as 1 ,

and X varies as z"", a property of the common cycloid.

Ex. 2. Let TJR be a circular arc; to find the law. The force

required : the tangential force :: z : x :: r : sine ; or, if the

tangential force be represented by the arc, and gravity by the

radius of the circle, F ; gravity :: arc : sine,

Ex. 3. Let the curve be the catenary, and the force act in

a direction parallel to the axis.

In this curve, 2' = 2«a;+j7'; .'. zz =ax+xx. Hence JP, or

-T- =^ a -\- X ; therefore this force : gravity :: a + x : a.
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Chap. XXI.

ON THE MOTION OF BODIES IN RESISTING MEDIUMS.

(168.) Xn estimating the effects of fluids upon the motion

of bodies, the retardation may be conceived to vary according
to any law of the velocity. Thus, in the second Book of the

Principia, Sect. 1., it is supposed to be proportional to the

velocity itself; and any other power might be assumed at

pleasure. But it appears by experiment, that the resistance

opposed to a given plane surface varies nearly as ^^ ; so that

every other law of variation is to be considered rather as a

mathematical hypothesis, than as founded upon fact. We are

not sufficiently acquainted with the nature of fluids, to ascertain

precisely in what manner they act. Hence, in demonstrating
the theory. Sir I. Newton has introduced the following
conditions. (Lib. II. Prop. 40., &c.)

1 . That the particles of the fluid, in which the body moves,

are perfectly non-elastic, and

2. That the fluid is infinitely compressed.

The first property belongs to mercury and water, and, pro-

vided the bodies move slowly, even to air; for the particles

may then be considered as sliding away after impact, without

adhesion to the body. If the particles were elastic, an additional

resistance would be produced by the rebound.

The second supposition is not strictly true of any fluid. If

a body move in a medium with considerable velocity, the parts

left by it, as it advances, will not immediately be filled ; and an

additional resistance will arise from this cause. Thus, if its

velocity in air be greater than that with which air rushes into

an exhausted receiver, a vacuum will be left behind. Where

the velocity is considerably greater, the air is condensed before
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the body, and, in proportion to the compression, exerts a force

of elasticity against it. But in experiments where the velocity is

slow, the second condition may be admitted without sensible

error.

It is therefore assumed, that no resistance is opposed to the

moving body, except that which arises from the inertia of the

particles displaced ; the effects of elasticity, tenacity, and friction,

if any friction exist, in philosophical experiments on air, water,

and mercury, being scarcely perceptible.

(169.) It is found by experiment, that the resistance

opposed to a plane surface moving in a fluid, in a direction

perpendicular to the plane, is equal to the weight of a column

of the fluid, whose base is the area of the plane, and height the

space through which a body must fall by gravity to acquire

its velocity. Therefore, if ^ = the area of the plane sur-

face, and z '— the height from which a body must fall

to acquire its velocity, the resistance =^x 2? ; the density of

the medium being assumed = 1 . The same reasoning is true

for a cylinder moving in a fluid, in the direction of its axis ;

the curved surface, which is in the direction of its motion,

being supposed to have no tendency to accelerate or retard the

particles of the fluid. Hence, if </= the diameter of its base,

Z7) d^
the resistance opposed to it = ~— .

(170.) Now in fluids indefinitely compressed, the resistance

on this cylinder : that on a globe of the same diameter :: 2 : 1 ;

therefore the resitance on a globe moving with the same velocity

zpd^
~~8~'

(171.) The same distinction is to be noticed between

resisting and retarding forces, which exists between moving and

accelerating forces. The resistance opposed to a body moving
in a fluid is proportional to the quantity of motion destroyed

in a given time ; whereas, the retarding force is measured by
the velocity destroyed in that time, or it is proportional to the

resistance divided by the quantity of matter.
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For the sake of perspicuity, this distinction is observed in the

two following Sections.

(172.) Hence, if w = the density of a globe, whose diameter

is d, or —TT— its quantity of matter, and the specific gravity

of* the fluid be 1, the retardme; force = \^
•— ^ = ?;°

d> b 4nd

or, in terms of the velocity, since f^''z=47nz, the retarding force

3v'

iSmnd

It was thought expedient to give examples of both methods

of calculation in the following Propositions.

SECTION I.

(173.) Proposition.

The force of resistance, which is opposed to a sphere, moving
in a fluid with any given velocity, is to the force which would

destroy the sphere's whole motion, in the same time, in which
• • • 8
it describes uniformly

-
parts of its diameter, as the density of

the fluid to the density of the sphere. (Newton, Lib. II.

Prop. 38.)

Let M represent the resisting or moving force, which would

destroy the sphere's motion in the specified time. Let Q denote

the quantity of matter in the sphere, /^ its velocity, and d the

diameter ; and suppose the specific gravity of the sphere is to

that of the fluid as n to 1. Then, since a body will describe

Sd—
by an uniform velocity /^', in the same time that it describes

4d M—- when retarded by a constant force -^ ? which destroys that

velocity, we have f^ = 4mx
-^

x -—
. Uut ^'' = 4mz,

according to the notation of the preceding Chapter ; therefore

D D
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4m X -7^ X —- = 4mz, and M = —-j- . Now Q = ^-^— ;

vz J 4a o

JS^ 2? C?
'

7i

therefore 3/= -^— . But the resisting force opposed to the

sphere = -~-
(Art. 170.) ; and this is to -—— :: 1 : n,o 8

or as the specific gravity of the fluid to that of the sphere.

(174.) Proposition.

Let a sphere of given diameter be projected in a resisting

medium^ whose specific gravity is to that of the sphere as 1 : n.

Having given the velocity of projection at the point A, to find

the velocity of the sphere at any given point C.

3z
Let AC=x, CD= d;; then, since the retarding force = ——-7

(Art. 172.), z= - ' -•
.-. - = ^; and the hyp.^ ' " 4nd" z 4nd ^^

3x
log. z+ corr. =

-, + corr. When x — 0, let z — a\

z 3 X
then the hyp. log. - = j. Hence, if e =2.71828

•^* ^ a 4nd

&c., the number, whose hyperbolic logarithm is 1, we

have - =e*"''; .-. 2 = axe''"''; and the velocity at C =

J

D

^
>y/ 4mz = -^'^—

5

ma

pSnii

Cor. If the spaces be taken in arithmetic progression, the

velocities are in inverse geometric.

(175.) Proposition.

To find the time of describing AC.

x axe end 8nd
Here T, which = — = —p=r ,

and T=
; + corr

f^ ;J 4ma 3 x ^4ma
sz H iid

Let T=0, then 07 = 0; .'. e«"''= e'=l. Hence, T=
3 x sj 4ma

IE

X e'"" - 1 .

I
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(
1 16.) Proposition.

If the retarding force, opposed to a sphere projected with

a velocity c in a resisting medium, vary as the velocity, the

diminution of velocity is proportional to the space described.

(Newton, Lib. II. Prop. 1.)

Let r (^= -^ -7, Art.
172.^ represent the retarding force

corresponding to the velocity c, and v be any variable velocity ;

1
• rv rv . , ^ ,.

t.

then, smce c : v :: r :
—

; .*.
— is the retardmg lorce cor-

o ffiy

responding to the velocity v. Hence, vv= — 2mFx—

X vx; .*. i- = —
, and x + corr. oc corr. — v ; but if

2mr
x = 0, v = c. Hence, x oc c — v ; or the space described varies

as the velocity lost.

(177-) Proposition.

If the retarding force vary as in the last case, and times be

taken in arithmetic progression, the velocities at the beginning
of those times are in geometric progression. (Newton, Lib. II.

Prop. 2.)

The same assumption being made, x— ; and T= tf

— c v c=
7; X ; .*. T= - X hyp. log. v 4- corr. Let T= ;2mr V 2mr .'r & •

c c
then v = c. Hence, T = -—- x hyp. log.

-
; or T oc hyp.

log- I

If, therefore, the times be taken in arithmetic progression,

the logarithms of the velocities are in arithmetic progression,
c

and -
, or i; itself, in geometric progression.
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Cor. The spaces AB, BC, CD, &c. described in equal

successive times, are in geometric progression. For, if c, j

d, e, jf,
&c. be the velocities at the beginnings of those

times, they are by the Proposition in geometric pro-

gression. Hence also their differences, c- dj d— e, e—f,

&c. are in geometric. But by the last Proposition, the

spaces AB, BC, CD, &c. are proportional to these

differences ; therefore these spaces are in geometric pro-

gression.

The Corollary may be illustrated by the following process.

Since i= , x = x c — v ; that is, the first x or AB
2mr 2mr

X c — a. Agam, smce jo = x corr. —
v, assume

2mr ^ 2mr
c

x=AB; then v = d; .'. x-AB, or BC= xd-e. In

the same manner, CD=z x e—f-, that is, the spaces AB,

BC, CD, &c. are proportional to c—d, d'-e, e—f, &c., or

they are in geometric progression.

(178.) Proposition.

If the retarding force vary as the vel.l ', and times be taken

in geometric progression increasing, the velocities at the

beginning of those several times are in the same geometric

progression inverse ; and the spaces described in these times are

in arithmetic progression. (Newton, Lib. II. Prop. 5.)

Here c* : v^ v. r '. —7- = the retarding force corresponding

- - . TT • 2mr „. . c'
to the velocity v. Hence, vv= j- x v xi .'. x= —

c* 2mr
*l}

— c^ c' c
X ~

, and x= x hyp. log. v-\- corr. = x hyp. loff. -
.

V 2mr *'' ° 2mr -^^ ^ v
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Also T = - = - -^ X -^ , and T= ^
x + corr. =

2nir
X - - -

. That is, if for v we write d, e, f, &c., the

time through the first space AB (Fig. Art. 177.) = x

i--; T,BC=^~ X l-ly,T,CD =^ x\.- -,&c.;
a c 2mr e a 2mr j e

1 1

therefore, since the times are m geometric progression, -%

and ~ —
-li &c. are also; /.-,-%, -, &c. are in geometric

progression : that is, the velocities at the beginning of the

several times are inversely in the same geometric progression
as the times.

c" c
Also X = X hyp. log. -

; .*. the spaces in these times
2fnr •' ^ ^ V

are in arithmetic progression.

This Proposition coincides in part with Art. 174.

(179.) Proposition.

Let a sphere be projected, as in the former cases, in

a resisting medium, whose retarding force varies as the vel.l" ;

to find the velocity acquired through a given space, and the

time of describing it.

TV
Here c" : v"" :: r : -^ , the retarding force corresponding

^ ^1 1 -^ TT • 2mr . , 1 2mr
to the velocity v. Hence, vv= x v"x

-,
let t = —-

.

then vv=—j— ; .*. ±— - bv^~"v ; and x= h corr.
o 2~n

Let x — 0\ then v = c. and x=. x c^~"-u*"^; /. v =2-n

bc~~" - 2 — n .x^~"
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Also i = - = = - bv-"v ; /. T= —
\- corr. ;

V V I —n
r

and the correct time = x c'~" — 1?^~".
\ —n

Cor. 1 . To find the space described before the velocity is

wholly destroyed, assume v=iO \ then x = x c^~^.

Cor. 2. The time, which elapses before the velocity is

wholly destroyed = x c^~".

Cor. 3. If n= 2, it coincides with Art. 178.

(180.) Proposition.

If the retarding forces vary as vel. fj and times be taken

proportional to the first velocities directly, and the first re-

tarding forces inversely, the velocities lost will be proportional

to the whole, and the spaces described will be proportional to

the times and the first velocities jointly. (Newton, Lib. II.

Prop. 7.)

rv'
The retarding force corresponding to the velocity v = -7- ;

:. w = - ——-
; and x = - —

. Hence, T = - = — —
; >& rv V rv

and T = — + corr. = = - x . But by the
rv rv r r v

Proposition, T oc -
; .\ v oc c-v, and c-vozc, or the

velocity lost is proportional to the whole ; and it is evident

also that c oc v.

Again, T = -
; .'. x= v x T oc c x T; ,\ x oc c x T.° V
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SECTION II.

(181.) In the last Section, the bodies were supposed to be

influenced by no forces except those of projection and resistance ;

in which case the velocity is continually retarded. In this Sec-

tion they are supposed to be acted upon by gravity, or by some

force tending to a center. This combined with the resistance

may produce either an accelerated, or a retarded, or even

a uniform velocity. The forces are supposed to act in the

direction of the body's first motion, and the motion is

consequently rectilinear.

(182.) Proposition.

Let a spherical body descend in a fluid from rest by the

action of gravity, and let the specific gravity of the sphere be

to that of the fluid as /?. : 1 ; to find the greatest velocity
which the sphere can acquire.

The same assumption being made, as in Art. 172., the

diflference of the weights of the
sphere

and an equal bulk of

the fluid, or the absolute force of the body's descent = ^—^ —

'—-
;

this is the same, whatever be the velocity of the globe,

the 'fluid being infinitely compressed. Now, let z be the space
due to the velocity at any point of the descent

; the resistance

opposed on this account = J-—
(Art. 170.) ; .*. the whole

resistance ^Vj^_P^_ypd^ j,.^.^^ ^^^ ^^ p^ ^,^^

mass moved, and the accelerating force = 1 - —_
; but

n And '

when the velocity is a maximum, the accelerating force =
;

. 1
^ ^^

/^ tr 4i X n - 1 ,
• . 1 - - — —-J = 0. Jtience, z — —

; andn 4nd '
.j

/- \/l6md X n — i
V. = ^ 4?nz = V ,
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(183.) Proposition.

The greatest velocity which can be acquired by a spherical

body descending in a fluid, is equal to that which the body
would acquire in vacuo by its comparative gravity in falling

4d
through a space, which is to — :: the density of the sphere :

the density of the fluid. (Newton, Lib. II. Prop. 38. Cor. 2.)

For take :<:: i^ ::» : 1 ; then, to =^ . Also P-tlt -
3 3 6

-'-^ , divided by ^-^- or 1 - -
,
or = the force of the

o "^ D n n

sphere's acceleration in the fluid, or the force of its com-

parative gravity. And the velocity acquired through by

the action of this force in vacuo = y x —

x/-
\ijmd X n—\

3

(184.) Proposition.

. Let a spherical body descend in a fluid from rest, and let

the specific gravity of the body be to that of the fluid as

n to 1 ;
to find the velocity at any point of the descent.

1 2iZ
By Art. 182, the accelerating force = 1 ^—.

; hence,
•^ ^ n 4na

if a; = the space described, z = i — - — ^^ .

; /, —_ =
* n And And

— — — ——____ and -—
. = - - X hyp. log.And- Ad— ^z Ad X n—l-3z And -i

•'* ^

4d.7i- 1- 3z + corr. Now let x = O, then s = ; .'. c = 1.

X hyp. log. Ad.n— 1 ; consequently
—

-^
= —

^ x hyp. log.

:— — . Let e = the number whose hyp. log. is 1 ;

Ad .n — l

XL T^, Ad.n- l-3z 3z Ad
then e*"'^ = = 1

^ .^ ^', z =: ~ x
Ad , n- 1 Ad . n—l 3
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~.l-e^'; and the velocity, or ^Amz = \/
^^md.n--\

X V 1 -e*"".

Cor. If X be increased 52we Umife, e *"^ will be a quantity

indefinitely small ; and the ultimate velocity of the sphere will

/l6mdxn-l as in Art. 182.
3

(185.) Proposition.

If a spherical body of given diameter be immersed in a fluid,

and its specific gravity be indefinitely less than that of the

fluid, the velocity of ascent will be uniform, and equal to that

which a heavy body would acquire in falling from rest through

- of the diameter by the action of gravity.

Suppose the sphere to have ascended from rest through
a space = x, and let z be the space due to the velocity at that

point ; then, if 7i = the specific gravity of the sphere, its

weight =
. ,

and the resistance to its motion arising from

zpd^
the velocity

= —^-—
; /. the whole resistance opposed to the

sphere s ascent =
^—7^

h -'-r- • But its force of ascent is

the weight of a quantity of fluid equal in magnitude to the
7) d'^

sphere, and this weight =^-77-, the specific gravity being 1.

Hence the force of the sphere's ascent = ^, l—r, 5^ .
•

6 6 8
*

divide this by the sphere's weight, and we get the
accelerating

force = i_i-Jl^
= i- i5_, fori vanishes in respect of

the other terms. Hence, i= - — ^^

=, and = ^

n And And 4d-3z'
X 1

______—
-5 = - - X hyp. log. of 4d-3z + corr. Let x = 0,And

:0! .'- rnrr. = - hvn. Inoc Ad' •
.

And
\z

Ad~ '

E E

then z = 0', .'. corr. = ~
hyp. log. Ad; .-. j^ == -

5
x hyp.

, 4d-3z
log.
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Hence, assuming e as before, the number whose hyperbolic

1 vu •
, u 4d ~ 3z ^ „ 3x .

logarithm is 1, we have j
= e*""* =0, for y is^ 4d 'And

Arl

indefinitely great j /. s; = -7- ; and the velocity at this point3

which is the same with that acquired
= sjAmz — y —

,

3

by gravity through — .

As this reasoning is equally true for all points of the ascent,

the velocity of the body is uniform.

Cor. Spherical bodies without weight, of different diameters,

ascend in fluids with uniform velocities, which vary as the

square root of the diameters.

(186.) Proposition.

Let a body descend or be projected in a resisting medium

directly toward a center of force, and be attracted by a constant

force toward the center ; to find the greatest velocity which it

can acquire, the retarding force of the medium being supposed
to vary as the velocity.

Let F represent the constant force ; r = the retarding force

corresponding to the velocity c, and v any variable velocity.
TV

Then the retarding force corresponding to v =. —
; .*. the

TV
whole force of acceleration toward the center = F . But

c

when the velocity is a maximum, the force of acceleration = ;

T^ TV
,

cF
.'. Jt =

, and V = — .

C T

Cor. The greatest velocity v : the velocity c :: F : the

resistance r corresponding to c: (Newton, Lib. II. Prop. 3.

Cor. 1.)

(I87.)
' Proposition.

Let a body descend or be projected in a resisting medium

under the same circumstances as in the last case, toward the

center of force. To find the space and time corresponding to

any velocity. (Newton, Lib. IL Prop. 3.)

I



ON RESISTING MEDIUMS. 203

The accelerating force upon the descending body, by the last

Proposition, =i^- — —F—av, where a= -, Hence, if a? be

the space described, w = 2mxxF—av; ,\ x =
vv

2m X F— av

Let — =b\ then x —
F « imaxh'V 2m«

2max V
a

vv .1 bv . , 1
X : V -{- -J v=: X : 1

- V , and x= — x :

o — v 2ma o — v 2ma
— hx hyp. log. h ~v - v-{- corr. Let x — 0\ then, if the

body descend from rest, v = 0; and x corrected = x :^ 2ma

hyp. log. -7 X V. But if it be projected, let the

velocity of projection
= c ; then x = x hyp. log. t

1

H X c~v.
2 ma

Also, t=
^
=

^^Y=' ••• ^= -
T^T^

X hyp- log.^ 2max b — v 2 ma
b-v •{ corr. ; therefore, if the body descend from rest, the

1
i

correct time = x hyp. log. -r . If it be projected2ma -^^ ° o— v ^ '^

1 b — c
with the velocity c, T = x hyp. log;, -z .

•^ 2ma -^^ ^ b~v

(188.) Proposition.

The same supposition remaining, let the body be projected

directly from the center of force. To find the space and

time corresponding to any velocity.

7* V
In this case, the force of retardation =F -\ , and vv=

c

^ . r, 'i^V . -rf . 1 -vv
-2mxxr-\ = - 2mxx r-4-aVy and x= x -r^

c 2m F+av
1 — vv 1 • 1 1 r» • • h= •-—- x -; ; and, as m the last rroposition, x=2ma b+ v r ^ 2ma

, , b+v 1
X hyp. log. J— 1- X v - c.''^ °

b-j-c
' 2ma
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Also T = - = X r:
; ,\ T = X hyp. log.

V 2ma b-tv 2ma "^ ^ °

b + v -{ X hyp. log. b-{- c = x hyp. log. .—— .

2ma -^^ ^ 2ma ^^ ^ b + v

(I89.) Proposition.

Let a body descend or be projected toward a center as

before, the retarding force of the medium varying as the square

of the velocity. To find the greatest velocity which the body
can acquire.

The retarding force corresponding to the velocity v is in

this case ——
; .*. the whole force of acceleration =F .

But when the velocity is a maximum, this force = ; .'. v = c

T
r'

Cor. 1. F : c :: ^T : ^/rT (Newton, Lib. IL Prop. 8.

Cor. 3.)

3 c'
Cor. 2. Since r= —7; -, (Art. 172.), if F represent the

Ibmna ^ ^

fi — \

comparative gravity of the body, or =
, v = c x

^/n-l ^
l6mnd ^ \/ iGmdx ^^; and this Proposition

w 3 c* 3

coincides with Art. 182.

(19O-) Proposition.

Let a body be projected in a resisting medium directly towards

a center of force under the same supposition as in the last case.

To find the space and time corresponding to any velocity.

The accelerating force in this case corresponding to the

velocity v = F
j-
= F - aw' , if a = ~

; .\ vv = 2mx x
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VV 1 vv
F - av' ; and i = ^ = - x jr ; , where

F 1

fe' = —
; .-. J? = X hvp. log. h^ - v' + corr. When

a 4ma -^ ^ °

1 . . b' - c'

X = O, let V = c ; .'. X = x hyp. log. rr-
•,

.

Also T = - =
. ; .'. T = 7 X hyp. log.V 2ma X b"-

- v^ 4mab -^^ ^

^-t-^ + corr. When T = O, let v = c; .; T= ~i-y x- :

b - V 4mab

hyp- log. y^ -
hyp. log. ^-—̂ .

If the body descend from rest, in correcting the fluents,

V must be assumed = O.

(191.) The first part of this Proposition will coincide with

Art. 184, by taking the fluent without correction, and sub-

stituting the proper values for a and b, and F and 7\

Thus, X = X 7- ; .'. X = — ~ X hyp. log.2ma b" — V 47na •'^ °

'fc'— i;' + corr. Let x = O, and v = O, or the body descend by

the force Fy its comparative gravity ; then, x = — -—- x
Tc i§HjL

If — t;"

hyp. log.
—

-r— . Hence, if e be the number whose hyperbolic

b^ — v^

logarithm is 1, we have e"*'""' = —rj— .

r 3c* 1 3
Now for a write -

, or -^ % x -: (Art. 172.)j or --^ ;

c' iSmnd c'
^ lomnd

n — 1 F
for F write , and for b^ the fraction - ; then v" will =

n a

iGrndx"^ xl-e^; andi; =^ \/ ^lUl^lILzl ^ sj\ -. ^^
o

(192.) Proposition.

The same supposition remaining, let the body be projected

directly frorn the center of force. To find the space and time

corresponding to any velocity.
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The retarding force in this case =F+ — , and vv=z - 2mx
c'

X JP+^ = -2mxxFTav'; :, i?= - JL x
^""

X

c 2 m F+av^
vv . 1

,

^7-;
—

'. '>
and x= - X hyp. log. &"+?;' + corr. =2ma b^-{-v 4ma "^^ ° ^

-^^^
X hyp. log. y—, , where c is the velocity of projection.

Also, ^ = - = - X T~-— ; /. r= -
j-^

X a cir-
V 2ma b -{-V 2mab

cular arc, whose radius is ft, and tangent v+ corr. Let this arc

= N. Now if T=0, i; = c. Let the arc, whose radius is b, and

tangent c= 71/ ; then T corrected = —i-r- y.M-N.
2mab''

Cor. 1 . To find the greatest height to which the body will

1 fe'^ + c'

rise, take i; = O ; then x = x hyp. log.
—

j-
— = by sub-4ma •' ^ ° b -^

stitutmg the values of a and 5', as in the Proposition,

X hyp. log.
—
p-

.

Cor. 2. To find the time, in which the body will lose all

its velocity, assume v = O; then the arc N '= O ; /. T =
1

2mab^
xM,

Cor. 3. Since the time in which the body loses its whole

velocity varies as M, it varies as bx M; or as the sector of

a circle, whose radius is b, and tangent c. (Newton, Lib. II.

Prop. 9.)

Cor. 4. And the time in which the velocity is diminished

by the quantity c-v varies as M- N, or as bx M- iV; that

is, it is proportional to the diflference of two sectors, whose

tangents are c and v, to the same given radius b.

(193.) Proposition.

The same supposition being made, if spaces be taken in

arithmetic progression, the whole force which accelerates or
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retards, according as the body descends or ascends, will be in

geometric progression. (Newton, Lib. II. Prop. 8.)

1. By Art. 190, if the body be projected downward

1 ¥ -c" . .

with a velocity c, x= x hyp. log. -n j ; if it descend
•^ 4ma •'^ ° -V

1 h^ . .

from rest, x — x hyp. log. -r . In either case, if x

be in arithmetic progression, the fractional part of the expression

is in geometric. Hence, since the numerator is constant,

fe*- v\ or ?;% or F- av"". or its equal F ; the whole
a c

force of acceleration is also in geometric progression.

2. Let the body be projected from the center, or ascend.

1 b^ -A- c^

Here (by Art. 192.) x= x hyp. log;, of 7-——;; therefore,^ -^ ^ 4ma ''^ °
-i-v

F rv'
if X be in arithmetic progression, ¥ + v^, or \- v", or F-\ j-,

the whole of the retarding force is in geometric progression.

(194.) Proposition.

In general, let a body be projected with a given velocity in

a resisting medium directly to, or directly from, a center of force;

and let it be attracted by a constant force to that center. To
find the space and time corresponding to any velocity, the

retarding force being supposed to vary as the vel.i".

1. If the body descend, the whole force of acceleration

= jt ; .*. vv = 2inx x r ^^ and x —
2m X F

c"

Also, T = - =
. .

V rv"
2m X F

c"

2. If the body ascend, the whole force of retardation =
rv" • Tv" — vv

F-\—~\ and vy = - 2mx x F-\—^, and x=i
^ C

« J. ,

rv"
2m X F-\
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X
Also. T = - = V

2mx F+—r-
c

The fluents must be found for the particular cases.

(195.) These expressions may be applied to the descent of

bodies in resisting mediums at the surface of the earth, by substi-

w— 1

tuting for F the fraction , which represents the force of its

comparative gravity. An instance of this is given in Art. 1 89.

SECTION III.

(196.) Proposition.

To determine the resistance of a medium, by which a body

when impelled by a given force F, acting in parallel lines, may
describe a given curve.

Let ABE be the given curve; BS the direction of the

force at B. Draw BP perpendicular
to

BS, meeting the axis JS, or some given

line parallel
to BS, in P. Take BQ =

s =i the chord of curvature at B. Let

AP = x, BD =
ot, AB = z, BC=z; and

draw DR perpendicular to BC.

Now a body must fall through |th of the chord of curvature

by the constant force F, to acquire the velocity in the curve,

whether it moves in vacuo, or in a
resisting medium. For the

resistance has no effect in causing the body to deviate from the

tangent ; it only retards its motion in such a manner, that it

may always bear a just proportion to the given force F. Hence,
. niFs

v — sj 'i-rtiFs, and i)— ,
.^

=the whole increase of velocity

in the direction BC, in the time of describing BC, or in
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z
a time = -

. Also, the increase in the direction BS by the
V

force F in that time = 2ml't=
; and this increase

j^2mFs
: the increase of velocity in the direction BC from that cause

:: BD : BR :: BC : BD :: % : x; /. the increase in the

2mFz X 2mFx
direction BC= , ^ x r = /-

—
rrl hence, the eftect

Fs — 2Fx
of the resistance = m x —

-,

—-, the difference of these

s^2mFs
increments; or the decrement of velocity arising from the

resistance = —m x— •

. Therefore, since F oc the incre-

^2mFs
ment or decrement of velocity generated in a given time,

^ Fs-2Fx 2mFz
the resistance : the rorce r :: -mx — . : .

^2mFs ^2mFs
J 2^

::
—-—

: 1, by omitting the
JiZ

negative sign, which denotes a retarding force,

(197.) To obtain an expression in terms of the abscissa

z*
and the curve. Let

1/
— PB; then z'' = x^-^^\ and $=-7r

X

(Art. 101.) =—7~- \ therefore, if
;^ be assumed constant,X

2xx' — x'-\-y''xx 2xx''-z'x , 5-2x zx
s = TT^ = ^, ; hence, ——- == - --^^ .

^ X' 2z 2x'

zx
Therefore, the resistance : the force F :: —::- : 1, the negative

2X'
' °

sign being omitted as before.

(198.) Proposition.

To determine the resistance by which a body may describe

any given curve about a center of force.

In this case, F is considered as variable. Hence, by making
the same supposition as before, since t;= y/2mFs, v^m x

. F F
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—z==i = the whole increase of velocity in a tangential

s/2mFs

direction, during the time —.- „ . Also, the increase in®
^2mFs

2mFx
the same direction by the force F in the same time = . =^ )^

y/2mFs
as before; or if SB—w, since i=:— w, this increase =-

-^L=^ ; therefore the decrement of velocity, arising from the

^2mFs
Fs-{-sF+2Fw , ,, . .

^ ,.

resistance, = - m x —y===— ;
and this resistance : the

^2mFs
F5 +sF+2Fw 2mF% Fs+sFa-2F'W

force F :: mx , ^ — :
—

. ^ *••• r^v

: 1, the negative sign being again omitted.

Cor If the force act in parallel lines, or aS" be at an

infinite distance, F is constant, and F= ; therefore, in this

„ Fsi-2Fw ,
i + 2w

case, the resistance : /< :: —
^j^
—

: 1 ::

—j^
—

: 1 ::

"Ll—^ : 1, the same proportion which was found in Art. 196.
2z

^

(199.) Examples.

Ex. 1. Let the curve be the common parabola, and the

force act in lines parallel to AS.

Here ax = f ; .*. ax = 2yy\ and^ it" = 2^* = 2, if y be

assumed constant, and = 1. Hence, :v = ; also, z =

or the resistance is nothing.

Ex. 2. Let the curve be any parabola, whose equation is

^n-i^-.^/", the force acting in parallel lines as before.
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TT . wv V -1 f " n.n~\ . if^y^ , ...

Here x— _, ; therefore, x= —^—^-^ and x
a a

n . n—l . n~ 2 . .y"~'.v^
Also, z

n'y'"-^ + a- y.y

therefore if y = i, the resistance, or
%x

2 if'

n-2
2n ,n — \

—:

;

1-
, F being assumed =1.

Cor. 1 . If w= 2, the resistance = 0.

Cor. 2. If w be greater than 1, but less than 2, the

expression becomes negative ; or the medium propels the body,

instead of retarding it.

Cor. 3. If w = 1, the expression becomes negative, and

infinite ; that is, the propelling force of the medium is infinite,

and the body moves in a right line.

Ex. 3. Let the curve be a cycloid, and the force act in

lines parallel to the axis AM.

Let AM - a. The per-

pendicular jBQ = - * ; there-

fore X = —
2^i ^"^ i = —

Also, %', x'.'.AN '. AP :: AM : AN :: ^AH : ^AP
n^X

:: a^ : x^; ,\ i=
, ; hence the resistance, or

X

S- 2x

2z
'

2A]V
~AW

Ax 4i _^ _ _ 2^^ = _ 2 \/^^ _"
2i- T ^

?^"""7 ""^ Awr
2AN
—j-Mj )

the negative sign being omitted, and the force of

gravity being assumed = 1. The velocity ozy/BCl,
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Ex. 4. Let the curve be a quadrant of a circle, the foice

as before.

Take AE^x, AC=a, BQ= s; then

, s - 2x 3i
s = a~ x; .*. s= —X, and :

— = — —
: .

2z 2%

But i : i :: BE : 5C; /. - 2? = -

tynf-i i or changing the sign, the resistance

=
-rwf^) gravity being assumed =1.

Cor. 1 . At A, BE vanishes ; therefore the resistance = O.

At C, BE — BC; and the resistance : gravity:: 3 : 2. When
3BE= 2BC, the resistance = 1, = gravity.

Cor. 2. The velocity at 5 oc aJBQ, ; also the resistance

varies as BE. Hence, if the resistance be supposed to vary as

V* X the density of the medium, BE oc BQ x the density ;

^ c .y. A . .ly ^E BE AT
therefore, the density at ii C5c —^ ex: -— oc -—

,
oc the tangent

of the arc AB. (Newton, Lib. IL Prop. 10.)

Ex. 6. Let the force tend to the center of a logarithmic

spiral,
and vary as the dist. 1".

Here i^ oc w;"; /. JF" oc nw'"'^W'^ and the expression

-^—=r: for the resistance, since s = w. becomes
2Fz

w''w-[-nWw-\'2w"w n-\-3 w t» ,
•

"
;;
—

r- = —
::
— ^ ~^ • -^'Ut w : z m a. constant

2w''z 2 z

1 w a . \ • /. 1

ratio, :: « : ; /. -r = 7 ; and the expression for the resistance

is —-— X 7 J the force tending to S being assumed = 1 .

Cor. 1. If w= —
3, or the force varies inversely as the cube

of the distance, the resistance = 0.
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Cor. 2. If w be a greater negative number than 3, the

medium propels the body.

Cor. 3. If for F we substitute w", then the resistance : the

force w" :: . x 7 : 1 ; therefore the resistance =
^

, .
^

. . , .... .....
^

X 7 X w .

Cor. 4. Since the velocity
oc js/Fs, or as ti;

*
, and the

density of the medium varies as the resistance divided by the

w" 1

square of the velocity ; the density in this case oc ——p oc —
;

therefore, conversely, if the density of the medium c»c —
, the

body may describe the logarithmic spiral, whatever be the

value of n. (Newton, Lib. II. Prop. 16.)

Cor. 5. If w= -
2, then the force varies as —; or jP varies

as the square of the density. (Newton, Lib. II. Prop. 15.)
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Chap. XXIL

FLUENTS.

SECTION I.

(200.) JVxETHODS have been already proposed for finding,

in certain cases, the fluent from the fluxion. The following

Chapter is intended to furnish a variety of Examples, vrith Rules

to facilitate the operation.

Rule. The fluents of such fluxions as are of the form

, , -731-; > v»^here w is a whole positive number; and

those of the form -.

—
, where r is a whole positive number,

may be found by dividing the numerator by the denominator

in an inverted order.

(201.) Fluent 1.

XX
1. To find the fluent of .

a?+a) XX (x
xx + ax

ax

X +a.

Hence, the fluent is x-ax hyp. log. a-\-x.

2. In the same manner, the fluent of = -x-ax
a — x

hyp. log. a — X,

XX
3. The fluent of =x-\-ax hyp. log. x-a.X "^ a
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(202.) Fluent 2.

1. The fluent of —— = - -ax+ a^x hyp. log. a-\-x.

XX X
2. The fluent of = - — - a^ - a' x hyp. log. a-x.a— X 2 .< m o

j-'i X*
3. The fluent of —— = ~- -^-ax-^-a^x hyp. log. x-a.

(203.)
Fluent 3.

7) X^X
The fluent of = the fluent of

/> x : -x^x-axx- a^xa-x
a'x px^ pax a , , u 1

«
1

A = -^ ^ P^^ + P« X nyp. log. ; the
a-x 3 2 J 1 o a-x

last term being corrected by making x= a. This fluent occurs

in the problem for finding the content of the solid, generated

by the revolution of the cissoid of Diodes about its axis.

(204.)
Fluent 4.

1. To find the fluent of
, where m is a whole

positive number.

x-a^ x'^x (or-' x + a x'"~^x+ &c.

x"'x-ax"'~^x

ax"'~^x, &c.

Continue the division, till the index of x in the remainder =
;

there are then m terms in the quotient, the last of which is

a"*X
a'^'i, and the remainder = . Hence, the whole fluent

3C '~~ CL

= 1 H &c. 4- a*" X hyp. log. x-a.m m- 1

xf'*ot
2. The series is the same for the fluent of

, but
• x-\-a

the signs of the terms are alternately + and -
.

x^X
3. The fluent of is found by dividing the numerator

by
- x-f a; and the signs of the terms are all negative.
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3. The fluent of -r-^— , determined in the same manner,
X — a

has all the terms positive ; the remainder is —- x hyp. log.

X- a

(207.) Fluent 7.

1. To find the fluent of
a'+x'

The numerator divided by the denominator in an inverted

order, gives xx r—^ ; and the fluent = — - — x hyp.^ o a' -\-x 22*^
log. a^H-x\

x^x x' a'
2. The fluent of — =- — --- x hyp. log. a' - x\

d'-x" 2 2 ^r &

iX ia7 i4/ U'

3. The fluent of -^^ = V + 9
^ ^^P- ^^S* ^^-^'-

4. In the same manner- the fluents of „ , , , , , , &c.

can be found.

(208.) Fluents.

1. To find the fluent of -, where m is an odd number.
a-i-x

The numerator divided by the denominator x"" + a" gives

x'"-^x-a'x"^x+fl*x"'-^x- &c. d=a"^^xx, the number of terms

171 — 1 • ft'"
—
^XX

being , and the remainder =f -^ ; so that the fluent

. x"^^ a'x'^-^ ^ a'^-'x" ,, .
, a'"-^

IS — + occ, ± . q= the remamderm- 1 m-3 '
2 2

X hyp. log. a'+o;'.

rp^ rp

2. The fluent of -——- is obtained in the same manner;
a* — J?

but the signs are all negative, and the remainder is

X hyp. log. a' ~ x^.

G G
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3. The fluent of —; has all the signs positive, and the

a7»—1
remainder is —-— x hyp. log. a?" - a'.

(209.) Fluent 9.

1 . To find the fluent of -^ , where r is a whole positive

number.

Divide the numerator by the denominator ; the quotient is

^r«»-«.-i^_|.^m^r«*-2m-ij^^^2«»^rm-3m-ij^_^^^^ Let the divisiou

be continued for some number of terms as p ; then the last

term is a"*^P-^a?"'*"P^^i, and the remainder is ^ ~—
;

oc — a

if the variable part of this remainder were ^_ ^ , the fluent

could be found, and it is evident that the division may be

continued till it is. Assume, therefore, rm-pm- 1 =m— 1 ;

then p = r—\, or the number of terms in the quotient is r- 1.

Hence, the last term is a'"^''~^a?"*~^i, and the remainder is

; therefore the required fluent = V-

3^ — ar rm — m

-j -j. &c., H \- the remainder
rm—2m rm — 3m ni

X hyp. log. sT - dr.

2. The fluent of is found in the same manner. In

this case, the terms are alternately positive and negative ; in

other respects the fluents are the same.

_.rm—1^
3. The fluent of -^^ has all its terms negative.

4. The fluent of —-jr^i ^^y of 7 x is the

I
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a
same with the preceding, ^ being substituted in the result

for a'", and the whole series multiplied by the fraction ^ •

(210.) Fluent 10.

1. To find the fluent of
.
.^ x yy.

, . cyy — ry^y t-v • i •

This quantity
= , ^ -

. Divide, m an inverted order,

hf+ c)
-

ri/'i/+ cyy(ZiyL

rcyy
-ryy—p

hc-^-rc yy
b

^
bf + c'

Hence the required fluent = f.
—7^ + /".

—7— x v ^^
— ry^ bc+ rc j -, „ c

2. If the fluxion be ^— x yy, c= ar*, and b— a-r;
ar'+a-r.y^

therefore, the fluent is — "^ + x hyp. log. 3/' +
2 X a — r a — rY

ar*

3. The fluent of '"'tT^ = -^=+ i^^ x hyp.
ar'+ a-l-r.y* 2.a+ r a+rl"

log. w*H .^ ^ ^ a+r
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SECTION II.

Rule. Many fluents may be found by dividing the given
fluxion into two parts, and considering it as a rectangle. For,

since the fluxion of xy — xy-\-yx, the fluent oi xy = xy —f. yx.
In these cases, the variable quantity without the vinculum, is

divisible by the fluxion of that under the vinculum.

(211.) Fluent 11.

To find the fluent of - x^xx. ^a"— x^.

Let ,^a^ — a?' X — xx =y, and x'^z-, then the given fluxion

= zy; and its fluent = zy —f.y%= — x a' - x^Y "^
5
^ /• ^^

—2 ^^ ^ ""I ll-^ ,

2 —^ nl- x'-xa'-x^]

3 15 3

2 a' -2 J?' -^ -^-j 3a?'+ 2a^ -^ r>4-— X a'-x^ = X a^ - a?*
I

.

JO 1 o

(212.) Fluent 12.

Required the fluent of

^a + x

This =xxx a-{-x\ \ Let a-\'x\ ^xx = y; then ^^ = the

proposed fluxion ; and the fluent = xy - f. y x = a + xY

y, 2x- f. a-{-xV X 2x= a-\-xr x 2x- - x a+xY = a + xV

X 2X
i;

= —^
3 3

(213.) Fluent 13.

1. Required the fluent of

Ja+fx"
Assume J+JW]^ ^ 3d'-'x=

ij,
and boif^z. Then the fluent

of %yz=zy-f.yz = hx''x ^xa+fx'f- ^,
x f. a ->rfxfj

X nx--'x=^xa+fx'\ x of - —-^ x a +/af ] .
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By the same Rule,

2. The fluent of . = a" - x'^Y x
'

; here assume
^a^ — x"- 3

3. The flaent of^1^ =t±^^^^ .

Here assume a' - x\ ^x -xx=y, andx*= 2.

>n4l

4. The fluent of a + cz']' x dz '""'
;2 = dx a-^- cz"] ^

nc

cz

m+ 2 m + l.m+ 2

dz" = x.

Assume a-\-cz"\ x z" '

z — y, and

SECTION III.

ON COMPARISON OF FLUENTS.

This is the method of deducing one fluent from another.

It is not easy to lay down rules which will answer in every
case where this method may be applied ; but the general prin-

ciple may be explained in the following manner.

Rule. Assume some quantity in the form of a rectangle =|7;

and of such a nature, that one part of its fluxion may be the

fluxion of some known fluent, (as A) ; and the other part the

fluxion (iV),
whose fluent is required. Put this equal to p ;

then since N = ^pdzj, N itself =d=pzhA.

The most general method of making this assumption, and

which obtains in many of the following fluents, is this. Divide

the quantity without the vinculum, by the fluxion of the

quantity under the vinculum ; omit the constant quantities, and

put this quotient
= p, having first increased the index of the

whole quantity under the vinculum by 1 ; and proceed in the

manner stated above. In other cases the method will best

appear by the Examples.
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(214.) Fluent 14.

Given the fluent of ,f (Fluent 43.) ; required the

fluent of

Assume x x »/a*+a?' =p ; .\xx ^a'+ ^' + '

. , =^3 ;

f^ a, -T X

or, multiplying the numerator and denominator of the first part

d^x -^x^x-\-x'-x .
x^ X p

hy^a^+x% we have —j=^ = r^ :.

;^===£-
^1= ; andthefluent =^^ _/ ,-^^==f±xAl±£l

-
2
«'+ iiyp- log- ^+ V«*+^'-

(215.)
Fluent 15.

1 . Given the fluent of (Fluent 44.) ; required the

V a' - x'

fluent of

Assume x x ^a' — x^ =p ; then, by taking the fluxion of this

x'^x a^x p
rectangle and reducmg; it,

—
, = — .

—
;; ; and the^ ^ '

^a'-x" 2>y^rr^ 2'

required fluent = i a x a circular arc of radius a, and sine

XXmJo'— X*
a?—

2

This fluent is used in finding the area of the conchoid of

Nicomedes.

x^x
2. By a similar process, the fluent of .

^

Ki^
OCT— ffl

r"" +
I

«' X hyp. log. X + sJlF^\

= X X

(2l6.) Fluent i6.

1. Given the fluent of , *!

^
-•
(J) ; to find the f ,~
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Assume x^ x x/«' +x^=p; then, by taking the fluxion and

OC*X ^ 3^a X J^

reducing the expression, we have ..
^ ^

— ^^ 2
—

'

.'. the required fluent =a?'x -^^^— -— x A.

x^x •

2. In the same manner, if the fluent of •
..

^ ; (B) be
^/ ct — X

- „ „ x^'i 3a' „ a?' X >Ja^-^
given, the fluent oi / = — x o .^ '

^a'-x^ 4 4

o;^^

3. If the fluent of .

^ (C) be given, the fluent of
/v/ cC ""a

^^^ 07' X V X* - a* 3a' ^
...

= ^ + —- X C.

4. And it is evident, that the fluents of

—
. .

,
where n is an even number, may be determined by^ x^-:zci'

knowing the fluent of the fluxion, which immediately precedes
it in that series; and substituting J9 as before.* Thus, if the fluent

of = i> be given, the
jr.

.

-.= ^

xja^ + x""
' ^

tJa^-^-x"^ n

— < X B.
n

(217.) Fluent 17.

1 . Given the fluent of xx x \/cF+o? {D) ; to find the fluent

x^x
of -7=3- where the index of x is an odd number.
^d' + x'

x^x
Assume X* X s/a^ + x^=:p; then 2a?ix Aya*+x'+ /^

>ya*+ar*

=^. In this instance it is not necessary to reduce the first

x^x
part, as in the former cases ; for we have at once . = p

— 2Jt); /. the required fluent =/?~2Z) =^*X V"* + **"'

2Di where D= —1— '
.
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x^x
2. In the same manner^ the fluent of = aD—

>s/a:
— x'

X* X ^a'-x', where D=f. xx x ^a^-x^ = - ^JHf! '

.

This fluent is used in finding the content of the solid

generated by the revolution of the conchoid about its axis.

x^x
3. And the fluent of .

'

. =x'x Jx'-a^— ^B, where
^x^-d'-

B= f. xx'K A^x*
— a* = —^— '

.

(218.) Fluent 18.

1. Given the fluent of "
.

, (E) ; to find f.
-

,

'^
-

.

s/a^-\-x^^
' "^

^a^-^rx'

Assume sf'y. >sJcC-\-x'=^p\ then, by taking the fluxion and

x^x

s^ X aJu^' + x^ 4a' ^

reducing it,
'

i
\_

• = c
—

• -; and the required fluent =

/y>5 y* 'vO'T*

2. Thus also, the fluent of , , ,
and of

y
"

,

may be found.

x'x
,
J^i?

3. In the same manner, the fluent of . . , . ,- ,

&c. — . may be determined, where n is an odd number,

by knowing the fluent of the fluxion, which immediately pre-

xT-'^x

cedes it in that series. Thus, if the fluent of
,

=^E
j^a^ + x^

, .
.1 ^ . r

^"-^ ^"-'xV«' + ^' w-1 .a*
be given, the fluent ot , o

= -—

i
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(219.)
Fluent 19.

X
1 . Given the fluent of .. (jP) ; to find the fluent of

^ a-\-x

XX

^a-\-x

ax •{-XX
Let X X sfcL+x — p ; then —

,

= p ; and

mJa+x \/~a-\-x
2 .

= -^ ~
; and the fluent = -^ — x F =

^ s/ a + X 3 6

2x X ^Ja-\-x la ^i

3 3
^

XX
2. In the same manner we can find the fluent of

A^a-x
and the fluent of -

A^x-a

(220.) Fluent 20.

XX '

1 Given the fluent of (G); required the fluent of

js/a+x
x''x

s/a-\-x

Assume x^ x j^a+x=p; then, taking the fluxion and

,
. .^ x^x 2p 4axx . , -

reducmg it,
—

. = -^
. ; and the fluent =

2x' / 4a X G— x^a+x ^_.

2. In the same manner, if the fluent of — «=^=r: (G) be

given, the fluent of — = x af X sj a -{• x —
i>J a -\- X 2W+1

2wfl ^
X Gr.

2W+1

3. Thus also, the fluent of may be found in terms

A^a-^x
of p, and the fluent, which precedes it, in the series.

H H
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XX

\/x~a
4. The fluent of -^^, by this method, = ^^^^^"^

4a X y/x~- a
+

3
•

Lemma.

If AB be a quadrant, and C the center of the circle, whose

radius is «, and versed sine x, the right sine b

DE=^2ax-x\ Hence, the fluxion of the

area AED= oc x sj 2ax- x^-, and the area AED
= the fluent of xx ^ 2ax — x"".

(221.) Fluent 21.

Given the fluent of x x >/ Q,ax - x' (H) ; required the fluent

of XX X A^2ax- x\

Assume 2ax-x*\ =p; then - x 2ax—2xx x >,j2ax— x*

.= p; or, 3 ax x ^2ax-x''-3xx x ^2ax-x''=p ; ,'. xx x

^2ax- x' = ax H— ^; and the required fluent = ax /T-

2ajr-^"
3

'

(222.) Fluent 22.

1. Given the fluent of xxx ^2ax-x' (/) ; required the

fluent of x^x x j^ 2ax — x"".

Assume x x 2ax- x'^Y=p ; then, by taking the fluxion arid

reducing it as before, 5a I— Ax"x x ^ 2 ax — x;'^ =:p ; therefore

5 a X X 2 ax ~~ X\
the fluent of x'^xx ^2ax— x'=^— x / —.

4 4

2. In the same manner the series may be continued ; and

if the fluent of x*'~''x x ^^ 2ax- x' (/) be given, the fluent

_________ s
'

r „. /-Ti : 2n+l xaT-x"-' x2ax-x'r
of xfx X <>J 2ax-x — -— ^

.^ w -H 2
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(323.) Fluent 23.

X
1. Given the fluent of - (K Art. 43.); required

the fluent of —
.

. ^— , ax+xx .

' XX
Assume ^2ax+x^=p; then -

=p; .V . =:
^2ax-\-x' ^2ax-\'X*

=p-aK; and the required fluent = ^J2ax \- x'' - a x K.

XX
2. Thus also, if the fluent of be given, the fluent

^2ax-\-x'
X?X - I

of — may be found, by assummg xx mJ 2ax-\-x'^=p,
Mj^ax-yx"-

and so on to any fluxion of this form. If the fluent of

a?"~'i XA^2ax-\-x' {^K)
be given, by assuming a?"" x ^2 ax + j?*

=1?, we have the fluent of = = —
^2ax-\-x'

^

2 n - 1 . a _-
X K.

n
X

3. In the same way the fluent of -
(Art. 43.) being

^ ^^/x^-2ax
' XX

given, the fluent of — may be found ; and the series

As/x'- 2 ax

may be continued to

aJx^— 2 ax

x^~^x
4. If the fluent of — (AT) be given, by assuming

^x'^-2ax

x"'' X ^/ x"* - 2 ax =
JO, the fluent of =

V ^* ~ 2 ax
af"^ X i^x'-2ax 2n-\.a ^— h X A.

n n

5. The fluent of -
being given (Art. 44.), that

^j 2i ax — X

m XX XX Q XX ii'i
oi . =) . = , &c., = may be obtamed

^2ax-'X^ ^2aX'~x^ >/2aa?-a?*

by the same method of continuation.
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The fluent of - found by this method = a circular

^ax — x"^

arc of radius | a, and versed sine x, —s/ax — x^.

x^~^x
6. If the fluent of , - (K) be given, and x""^ x

^1ax-x^
x'x an -I

fjaax^x^ = p, the fluent of ,

- = x aK -r-

a?""'x sjlax — x^

n

7. The fluent of ——=:=. by this method = — x a cir-

^ax-x^ 4

v \t /. 1 fix " X
cular arc of radius | a. and versed sine x ^-

T
— X A^ax — x'*. This fluent is used in finding the area of

the cissoid.

8. Thus also the fluent of xx^/x — a being given, the

fluent of XX x \/^ - a, x^i X s/^ — ^t &c., x^i- x \/x — a can

be found.

if the fluent of af'^xx ^x-a (K) be given, by assuming
__—_ ' —_____

of X a^—a)^ = p, the fluent of x"i x i^x-a is found =

ax''y.x-aV 2rna ^

9. And, given the fluxion of xxx-a]"", the fluent of

XXX X- api the fluent of x^xxx-af, &c., x'^xxx^-a]"' may
be found.

10. If. the fluent of x""-' x x x - aY (K) be given, by

assuming x"" x. x - a\""*'^ z=p, the fluent of x'^xxx^-ar will be

^ J zjf XX- a\"''^^+naK
lound = ,
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11. By the same mode of continuation, the fluent of a?"ix

aJcT^Ic, and of x^'x x a i, x\ may be found.

Lemma.

If GP= x, and GE= r, EF=2x

^r* _ x^ ; and the fluxion of the area

ABFE = EFx the fluxion of G P

~2xx^r'-x\
Cor. The fluent of 2x x >/r'

— x' =
the area ABFE.

(224.) Fluent 24.

Given the fluent of i x -^/r'
- x' {A,) to find the fluent of

x'xx s/r^
— x''.

Assume x x r" — x^^S^ =p ; then x x r* — x''Y
~ Sx*x x ^J r' - x^

=
'p ; that, is r'i - 4x*i x ^/r'

- j^= p ; ,\ x'xx ^r" - ^' = —
XmJi^ -x^-L ; and the fluent = -—^

. When x = O,
4 4

p = Oi .'.no correction is wanted. Also, when j?= r, />
= 0;

.-. the whole fluent between the values of J7= and x = r, is

---- = -- X I the semi-circle BCA = rr. x the area of the whole
4 4 lO

circle =
T^^P^"^'

where J9
= 3 . 1 4 1 59, &c.

Cor. 1 . Hence, between similar values of jr, the fluent of

,. f*
4x*i X vr*— X* = — xpr*.

Cor. 2. Between the same values of a:, the fluent of 4a'i x

A^r*-x*+ 4x'x X s/r"
- x'' = 2a'' x the area of the semi-circle

ACB, + — X »r* = o* + -- X pr\4 "* 4
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This fluent occurs in Ex. 9. Chap. xi. where it is required
to find the center of oscillation of a circle.

(225.) Fluent 25.

Given the fluent of j?*i; x ^r'— x" {B); to find the fluent

Assume x^ x ?"^ — x^Y = P ; then 3a?*i x r*-zr* x ^r* - x^ -

3a;* ix v^r^-a?" =p, or 3r*^ - 6 C = p, /, C=
^^

' =

3r'^-i?»xr'-a?^r .

6

In the same manner if the fluent of 3f-^x x ^r^ - x"- (D) be

given, where n is even, the fluent of ^"i x >y/r*
- x^ can

be found by assuming x ""' x r* - a?*]^ = /? ; the fluent =
n— Lr"" D—p

w+ 2

Cor. Hence the fluent of i x /•*—
j?*!"^,

or the fluent of r* x
'

^*
X ^r'-x^-f. x'x X ^r^-x"- = r* x area AGPE —^^

TirediAGPE -^
/ =— x area^GPJ^H

4 4 4

This fluent is used in Cotes' Problems, to compare the mo-

mentum of a sphere and circumscribing cyUnder revolving

round a common axis.

(226.) Fluent 26.

1. Given the flufent oi xx x x/a*+^ (L); to find the

fluent otx^x x s/d^+x":

Assume x^ x a*+a?*l^ =
J»; .*. 2j:i x «^+ a;'' x a^o^+x*

+ 3x'x X >s/a*+ a?* = p 5 .-. 2 a* L + 2 a?^i x ^a' + x* +

Sx'i X A^a'-x'^zp; /. a^^i x ^7F+¥ = ^^^^^r ; and the

required fluent = —! ,



FLUENTS. 231

2. In the same manner the fluent of J?' i x sja^ rt «*, x' x x

^ a^ ± X*, &c. may be found by means of the fluent which

precedes it in that series.

(227.) Fluent 27.

1. In general, given the fluent of j?"""* i x ^a*+P, {M)\

to find the fluent of a?" i x ^/a*^-a?^ where n is an odd

number.

Assume a?""' x 0*+^'' = p, then w- 1 .^""^i- x a'-^-x* x

.ya*+ a?* +3:ifi x >/a*+J?* = p, or /i- l.aW+ w+ 2X jfi

/-TT-. •
fi ^u fl 4r -A ^"~' X «'+ a7"r - w - 1 .«=»J/^ a^-\-x^ =p, & the fluent required = — —_.

.

2. The fluent of x"xx ^x* i a* may be found from similar

data.

(228.) Fluent 28.

Given the fluent of a-^-cz") x dz'^'z (L) ; to find the fluent

oia+ cz")"'xdz'^~'z{M).

Assume a
H-c^"!"'"^'

x dzn =p ;
thenm+ 1 x ncz"^' z x o+c?)'"

X dz" + ndz~^ z x a+c;s"p+' =
;>,

or m+ 1 .ncdz^''~^ z x

^+7?!"* + ndaz"-'z x'a+ cz^"* + w^cis^n-, ^ ^-^^p^^ _^.
that is, by collecting the quantities m+2 x nc M+naL = p ;

p-naL
'

. , „ a+ cjzT'*"'x ^^^^
/. ilf = =====—

; or the required fluent = =
m-\-2.nc W+ 2.WC

a oTci^'""^' X d

(229.) Fluent 29.

Given the fluent of a+c^;")*" X dz "^"-^ z {M) ; required the

jBuent of ^+7i^" x dz '"-' z (N).

Assume a+ cz'K"'^^ x dz'^'* == p; then by taking the fluxion

and reducing it, as in the last case, we get m + 3xncx iV=p
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p- 2anM
'-2anM\ ,\ N, or the fluent required, =

?w+3 .wc
^m4l

a+cz^ xdz^"* la== - =— X M,
m+3.nc m+ 3.c

In the same manner the series of fluents may be continued

to a+ cz^
I
X dz''"~^ z, where r is a whole number.

For another method of finding this fluent, see Ex. 70, under

Transformations.

(230.) Fluent 30.

Given the fluent of a+ cz"\ x z'^-'z (P); to find the fluent

of a+ cz^'f X z'^+^'-'z (Q).

.m+i
Assume a + cz""] x z"^ =: p ; .*. m + 1 . ncz'^'z x

1//*

' " —
fji

X z"^ -{- nr X a + cz"" x a + cz"] x z''"-'z = p ;

that is, m + 1 . wc . Q + narP -f nrcQ = p m + r + 1 . nc
\m+l

^ . Ti A a + cz^'i X z'^-narPQ = p-narP; .*. Ci = —
.

wi + r + I .nc

(231.) Fluent 31.

Given the fluent of P as before; to find the fluent of

a + cz'^r X z'"-"-'z (R).

Assume a + ex") x z''""^ - p ', .'. m + 1 .ncz^-'i x

a-^-cz^f X ^'"~" + rn-n . z''''-"-^z x a+7z^ x a+cz"]""= p ;

that is, m + 1 . ncP + rn — n . a x R + rn — n . cP = p;

p — m+ r . ncP
or, m+ r .ncx P+ r— I .naR = p; .*. R =

r— 1 .na
m+t

a 4- cz"] X z''''~" — m-^r . ncP

r— 1 . na
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(232.) Fluent 32.

Given the fluent of a + c;z"l X z'^'-'^'z {S) ; to find the

m+l
fluent of a + cz"\ . x z'-'^-'z (T).

^Wl+l

Assume a + cz''\ x z''''=p; then m + 1 .ncz'^'^z x
»m+l

a + cz"\ X z"^ + nrz'^''-^zx a-{-cz"\ =p ; or, m-\- 1 .ncx
'

. • ^ «-m4-l.wc*S'_a+cj2''| x z''''--m-{-l.ncS

(233.)
Fluent 33.

Given the fluent of a + c;s"f x ^'^'-'x (F) ; to find the

fluent of a + c^-^p"' x z^-'z {W).

Assume a+ cs"| X z"'~"=j»; .\ mcwz''-*z x a + cs;") x

^m-n _^ fn^n . 2"^"""'^ X o^PT^'" = p ; or, menW+ rn- n

r> . ,,^ p — rn~n.y a+ cz" xz^''~'^ — rn-^n.V
men men

(234.) Fluent 34.

Given the fluent of a+ cz^'T^' xz'^-'z {X)\ to find the

fluent of a^cz^T^\ ;s-+"-z (F).

Assume a + ca"") x «*" =
j» ; /. w + 2 . wc2"~'2 X

^wt-r 1 ———_ ^m+ 1

« + C2"| . X z"^ + r/2«"*-'i X a + C5;" X a + cz")
= ^ ;

or, m + 2 . wcJr+ rwaX+ rwcK= p; /. m + r + 2 . wc x

p-rnaX «+ c2"l x z'^^'— rnaX
Y~p — rnaXy .*. Jr=: — = •

^
m+r-t-2.wc m+r+2.wc

(235.) Fluent 35.

Given the fluent of a + c^^f x ;s^'*-'i (Z) ; to find the

fluent of a + cz'X'" x ^^'^-''-'z (J).

|:.
Assume a + ex"!*" x «'""" =;? ; /, mwcz^'^z x a"+Ti^"*~'

,
I I
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ra—1

^ z^-r^ ^ rn - n X z'"''~^~^z x a ->r cz"" x a + cz"\

=: p; or, mncZ + rw - n . aA -{ rn - n . cZ = p; :, A =

p — m-i-r— I .ncZ a + cz" x z'^"'^—m+ r— I .ncZ

rn — n .a r—l.na

(236.) Fluent 36.

Given the fluent of a+ cz"] x z^'z (B) ; to find the fluent

of a + c2;"f X z'^^'z {C).

Assume a + cz"] x z^-^^=zpi then taking the fluxions,

m+l .nc. C+r + 1 . aJ5+r+l . cC=: p; ,\ mw+ w-fr+ l

p — r + I .aB
X cC =z p - r + I , aB; :, C =

mn + n -^ r -^ 1 . c

a + CZ") x2:''+'-r + 1 .a5

(237.) Fluent 37.

Given the fluent of 'oTcFT x z''+"z (C) ; to find the fluent

of a+czi xz'z{D).
jn+l . .

Assume a + cz""] x js'"^' = p; then m -{- I . 71cC 4-

\m+i ^ ^^___

~TT ri • . r* « + c;£''l x ;z^' - m+ 1 . WcC
r+l.D=p; .\D=—

^^-j-^^

.

(238.) V Fluent 38.

Given the fluent of a-\-cz^\ x z^'z {A) ; to find the fluent

of oTci^'" X -"^"^ {B), and of o+Ti^""^' x z^'z (C),

Assume a H- c«"l X s'+ =
;?; then w-f 1 . ncz''-^"'z x

«+ CZ""] + r -f 1 . ^'"z X a-\-cz"\ =p; or, m + 1 . ncB +

r+ 1 . C=p ; .*. B = ^--^^^ .

7/1 + 1 . WC
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Also, Cz^z'^zx a+c;s»r"*"' = az'zx a +czT + cz'^'^z x

^ sm i tS t, C-aA Tj p-r+l.C
a+c^ =aA-{-cBi :, B=z Hence^^= =

c m+ 1 .nc

C—aA
; :. p-r+l ,C =m-\-l.nC-m+\ .naA', ,\ C —

p-^m-\-l .naA „^, „ C—aA p+ m+l.naA
. Whence B — =

r+l+mn+n c r+l+mw+wxc
aA

Cor. By increasing m each time by 1, and r by n, the

fluent may be continued as far as we please.

SECTION IV.

ON THE TRANSFORMATION OF FLUXIONS.

Rule I. Many fluxions which are not of the common

form, in Art. 39., may be reduced to that form by a transposi-

tion of the variable quantity, and the fluents found by that

Rule.

(239.) Fluent 39.

To find the fluent of
X

x^x ^a*- X*

Since a* - a:*= x' x a*^-* - 1 ; .*. »/a*-a?»=xx v^a*a;-*- 1 ;

r» onf*

hence
,

=
,

= x^H x a'x'* - lV; and
x'x^a'-x* ^a'x-*-!

'

the fluent = ll^^Elt ^ ^ ^^\— 2 a* arx

In the same manner the fluent of
X

x*x -v/«*+*'

a^x
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(240.) Fluent 40.

To find the fluent of

aF+x^r'

ax
Since a' + zr* = a?* x a'x-'' + i ; /. ,4- = ax-^x x

o^F^+Ti X
a^x'^^+l] ; and the fluent =

« ax^a^'-hx^'
This fluent is used in Prop. 1., Art. 135., on the Attraction

of Bodies.

The fluent of
a^ - a?*l ax>/a* — .r*

And by the same process, if a=l, we have the fluents of

JO 00 J o ^
^ = —

. , and ot
.

-» = — .

(241.) Fluent 41.

To find the fluent of
^"^""'^

Since a + c;^" = ;s" x a2;~"4-c; /. „/aTc¥= z^ x v^a2;-"+ c,

and the given fluxion = %-"''% x a;j;~"+ c]

"^

; and the fluent

2 V«+^^
na

^2
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Rule II. If the index of the variable quantity without the

vinculum increased by 1 be some aliquot part of the cor-

responding index under the vinculum, substitute for that

power of the variable quantity, which is obtained by dividing

the index under the vinculum by the number which expresses

the aliquot part.

(243.)

'

Fluent 43.

XX
1. To find the fluent of

v«*-^
1 1%

Let y = x*, and a*=6*; then the given fluxion = — '^
,

and the fluent = —
7- x circular arc of radius h, and sine y.

XX
2. In the same manner the fluent of —

,
= | hvp. loer.

yjr^¥Ty.

3. And the fluent of . - | hyp. log. y+\/y*-ft*.
\/ OCT — CI

(244.) Fluent 44.

To find the fluent of

-n—I

2* i

^ C"±:

n n in-I 2X
1. Assume c^=a\ and%^=a?; then s* z= — , and the

2 .

- n—I .

" <^

fluxion
^

is transformed into ; of which

2 .

the fluent is - x hyp. log, a:+ V^*+'^''
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. n—1

2. The fluxion ______ may be transformed by the same

2 .
'

- X X

process into • == — x —;== ; whose fluent =

— X a circular arc, whose radius = a, and sine = x.

(245.) We have in these cases supposed the quantity in the

denominator to be aflfected by a radical ; the same method will

apply where the radical is not found.

1. Thus the fluent of -~^ = ^ x hyp. log. .^,
where y=x^, and b= a*.

XX 1 . «
2. The fluent of -: r = —7^ X a circular arc of radius o.

a*+a^ 20*
and tangent y.

(246.) Fluent 45.

3. The fluent of ^"^ ~ - ^-- '- ^^^

-n—I
,

1. To find the fluent of
c" + 5;"

n n

Let c*=a, z^ =x; then the given fluxion becomes ^
2

X -r-—-; and the fluent = —- x a circular

arc of radius «, and tangent x.

i„-i.

2. To find the fluent of — -.

2
This may be transformed in the same manner into - x

-r
i , or — X -z r ; whose fluent = — x hyp. log.a~x 9ia a—x na ""^ °

a+ x

a — X
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If the variable quantity under the radical have a coefficient,

bring it without the radical.

(247.) Fluent 46.

•rn—1 .

Z Z
Required the fluent of — . /

This =
, . Let - = 0* and ;z* = a? ; then the

v/?-
- '

c

2 i? 2
fluxion becomes —; x . -

; and the fluent = —-

X hyp. log. X -\- ij h" -V x"" .

2 % 2
In the same manner the fluent of —==1 = x

^ a — cz^ nbc^

a circular arc of radius b, and sine x.

(248.) Fluent 47.

1. To find the fluent of

This = / . Let z^ = x, then z = x« and

^ X c^ X V - + 2"
c

s

2 --I . z 2 x" i 2i
«r=- X a?" X ;.*.-=- X —5— =

n , z n y,
nx

:-^\/f^«
c

2x' /.«fl ,A 2^ 1

0^^=*')-
wc^a?V - -r a;

c

^
. ^5

"
7ic^ X Xi^lf + ^* nhc^

., ; whose fluent = --—7 x hyp. log. .,
—-

x^b^+x^ nbc^ ^^ ^
^s/¥Toc'-\-b
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-p: X hyp. log.
^ ^_

~ ^̂
. When a is negative

the fluent fails, for —— is impossible.

2. By the same substitution the fluxion of , may
Zsjcz^ — a

2 }fx 2
be reduced to --—

,
x — , ; whose fluent = ——7 x

a circular arc of radius h, and secant x.

% 1
3. And the fluent of -=== =z 7 x hyp. log.

b + ^b'-x'
'

(249.) Fluent 48.

Tl—5

* rx~^i
To find the fluent of

1. Let JT"-' = 2', or 2 = a?
«

; then z = ——^ x .r
^ i ;

2z "^z^.
. .

2ri •

, .'.
-—n=-x

*
i; hence the given fluxion = / ,^.

_ 9*» ^=? • -2r
X

~' ^
; and the fluent =

.^. ___^__ "—a '
J ' ———

w-3xr~ V^"~'-^' w-3xr
X a circular arc of radius r 2

,
and cosme z ; or j? « .

n—5 ,

-rx-rx
2. In the' same manner the fluent of

2

_j_2r . .

" ^^
.

-

^3^ X a circular arc of radius r ^
, and cosine x ^

.

—3 r"~'

n—3 n—3

n-3 .r '^

These fluents are used in Art. l63. and l64. Sect. 4.

Chap. XX.

Rule 3. When the power or powers of the variable

quantity without the radical are mostly in the denominator, it

may be useful to substitute for the reciprocal of the quantity.
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(250.) Fluent 49.

z
Required the fluent of , .

Let X = "
, then — i = -

; and the given fluxion =
1 /» 'y Tp

; whose fluent
- jc —XX 1 .

- hxx

(251.) Fluent 50.

z
To find the fluent of

z^z' + az

T «.
1 ^u 1 J . ^ .r 2

Let 2 = -
; then, x = - and -a?X2= -5OV — =-;

X % Z X z

and the given fluxion =
,

= ,- =z (if b = -
)

xx/j:,^ ^s/^ + ax ^ a^

X-' X

-Vx

s/h + x
; and the fluent = - 2V x \/h \-x.

(252.) Fluent 51.

By a similar substitution, and the application of the Rule

in Sect. 2. Art. 211., the fluents of the following fluxions may
be found.

1. The fluent of
7

= V+^'' x
^^^"^^

.

2. The fluent of ^^^f^ = ^^^"^^^
x ^±^

x^ 15a'* x^

3. The fluent of
X -a^-\-2x^

X' X oM^^ a^x^a^-{-x*

4. The fluent of —
, &c. &c.

x''xd'+x'\''

K K
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(253.) Fluent 52.

To find the fluent of
a+a?r X ^Jd'—x'

'

1 . X
Let ----- =^; .-. -y = :=—^ ; and a+x = 1 ; .-. a; =

^""^-V; .-. the fluxion = -^^E^ = =4_
2a

which is of the same form with Fluent 19.

(254.) Fluent 53.

To find the fluent of
zz

a-\-z\' X ^a^+ az+z'
'

1 at ^ — ^
4^u

or -ax a-x^^ ^ T. ^ ' then z = = « x ; .\ z =
a •{• z X X

a'x . a'x X a - X /-r . a-
-^ '»

^^ =
^5

; V« + ttz -f- z* = - X

'sfa^
— ax + 0?' ; .-. the given fluxion =

^— «.rx

a* X »J a'-— ax \- x^
'

of which the fluent is found in Fluents 82, 83.

In some cases it is useful to substitute not for the reciprocal
of the denominator, but for the denominator itself.

(255.) Fluent 54.

To find the fluent of -
^ ——

.

x~p\^

Let x-p = z; X = z -\- p, and x = z; hence the given

fluxion = ^-- + Lpi + Mi ^ ^..jr^^^j^ i)L^i+li =
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1

—-; whose fluent is L x hyp. log. z— = Lx hyp. log.

b
x—p —

x—p

(256.) Fluent 55.

azz — Saz^z
I To find the fluent of ,,

—
.

Let 1 + z^ = X', then z^ = x — I, and z* = a?' — 2a? + 1 ;

.*. 2';s = ; also z% = "
',
and 1 + zM =^73; .-, the

2 2 2

1 . 3a . 3a .

-aj7 — — xa;a7 + -rxa? „ . „ .

^ . 2 2 2 2aa? 3aar
given fluxion = — = —r — —

r- :^
a?' a?' 2x*

'

J ^1 n . 3a a 3a a
and the fluent =

^.
=

2x X' 2xl-^z' r+i^*

Rule 4. The given fluxion may frequently be reduced to

a better form by actual multiplication or division.

(257.) Fluent 56.

x"^X / . XX
The fluent of .. = .

, ar being multiplied both
sJa-\-x A^ax-^x'

into the numerator and denominator; and the fluent (Ex. 23.)

= *yiaxTx^ -
^a X hyp. log. x -{ 1- ^x^+ ax .

(258.) Fluent 57.

The fluent of — = --
,
which corresponds

>y/a + a; >^aa? + a?*

with Fluent 23.

(259.) Fluent 58.

1 . The fluent of i x vx' =i= a' = the fluent of
X X db ax

K,K 2
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the fluent of the first part is given in Fluent 14., and of the

last in Art. 43.

2. The fluents of ^*i- x ^a" zt x*, &c. ; xf x x ^a' =fc x^,

where n is an even number may be found in the same way.

3. The fluent of ^
""

^/ ^ ^
^

by this method = 1 x
•' b

/ : ,, H 7
— = r X : ^^^ — -

I o' X hyp. log.

y-\-^¥Tp+b^ X hyp. log. y+s/b'+y' =^ x ^y'+by +

fix hyp. log. 3/ + >/6'+3/\ This fluent is used in finding
the length of the common parabola, Ex. 2. Art. 55 ; of the

Spiral of Archimedes, Prob. 6. Art. 124; and of the Surface

of a Solid generated by the revolution of the logarithmic

curve about its axis. Art. 133. Prob. 6.

(260.) Fluent 5^.

The fluent of ^'<V^^^+^ = J^JS^ + ^£f£= ,

X ^2ax+ x^ ^2ax+ x

for which see Art. 43., and Fluent 23.

^, i ^u a 4. ed;y^2ax-x* , x x >>Jx"-— 2ax
1 hus also the fluents 01 — and ot

x X

by Fluent 23.

(261.) Fluent 60.

1. The fluent of ^-s/a'-^^' ^ f-^i_ _^^ ^

This fluent is used in finding the length of the logarithmic

curve. Art. 133. Prob. 5.

2. Ihe fluent ot — /—. i
—

/ , ,

X
_ sjX

- or xxt^x—ar
= ^x^ — a' — a circular arc of radius a, and secant x.
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(262.) Fluent 61.

(jlit I OLOC

The fluent of —
. =-

';' —ax hyp. log.
x^X^a + x ^ax-irx"

"^ ^ *

a
oc-\-— + ^x^'+ ax.

Rule 5. The given fluxion may frequently be reduced to

a better form, by the addition and subtraction of another

quantity, or by dividing it into other parts.

(263.) Fluent 62.

To find the fluent of , .

XX . XX . . ax ^, /» XX
1. =x-\ —• -x= x

;

—
; ,\ the r.——- =x-a x

a+x a-{-x a-\-x ^ a-{-x

hyp. log. a-\-x.

JO JO _ JO JO • iL iX/ • /^ ti/ JL

2.
a — X

XX . ux . /» u;x= x + -x^ X', .*. 7". = -x — axa-x a~x ^ a-x

3.

hyp. log. a - X.

XX , ,
XX . ,

^
ax _r oHx

X- a
.,x-\

— j7 = ^H ; .•. t. =.X'\-axX - a x-a J X — a

hyp. log. x — a.

(264.) . Fluent 63.

x^x
To find the fluent of '~t~,

—-
.

a^X^''

JL JL ^ ill tA/ «^ a JO

1. -r-,
—

i =^+-T~,—i
-i-x J—

—-; and the fluent =
a^+x^ a^-\-x^ a^+ x^

X ~'d circular arc of radius a, and tangent x.

x*x a
2. In the same manner, the fluent -^ ;

= - x hyp. log.
lit

"— JO ^

a-x
— x.

3. And the fluent =x+ - x hyp. log.
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(265.) Fluent 64.

To find the fluent
x^dj

•i-x^'a'Tx

x^x _ . x^x ._ . a'xx
^ ^ x^x

a! ', 5
— XX-x" 5 '. ^

~' XX—XX~~ — -I ,', /• —
a*+a?* a'+x* a*+a;* *y a'^x*

2 2
^ ^^yp-i<^g- «'+^*-

/X^X
T* /7*— in the same manner = — x hvD.a-x 2 2 ^^

log. a* — a?*.

^' ^""^f' ^^3^
=

2
+

2
"^ ^^'P- ^''^' ^'"''*^-

(266.) Fluent 65.

To find the fluent of - x .

X I— X

rr.1
• i X-2XX

.
2xx X—2XX 2x

1 . 1 his = = ———r- H = I i.-. +
X— X^ X-X^ X-X^ X — X^ \—X*

and the fluent = hyp. log. ^ - a?* - 2 x hyp. log. 1 — x= hyp.

log. x-x'^— hyp. log. 1 — a?l*.

- X = hvD. l0£?.

^
X l-{-x

^^ °

x-^-x^— hyp. log. 1 +a:p.

(26;.) Fluent QQ.

To find the fluent of 1^V2«^+ ^'
_

X

j^jg __
^^'^^

I xx^ ax-^xx
oc X ^2ax + x^ sj2ax + x'

~~

J2ax +zr'
«a?

^2aa?+ zc'
' ^'^^ *^^ ^"^"^ = s/^dx + a?» + « x hyp. log, of

^+ «+ >s/2aa?+a?" (Art. 43).

For another method, see Fluent 59.
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(268.) Fluent 67.

The fluent of y''^ x ./F:^= / -M^ = / i^fc^i^* sjay-y^ -^ \/<^y-y*

+ f^
— '^ — ^ay—y^ + a circular arc of radius \ a,

^'^ay-y^-
and versed sine y,

(269.) Fluent 68.

The fluent of ^ x \^ =/.-^ =/. -jM=
^

sI ^y-y ^
sj ay -y^

a circular arc of radius | a, and versed sine y.

(270.) Fluent 69.

rp, ^ ^ ^ a:^i /»|ai+.ri n lax
1 he fluent ot - — r. —^

- —
/. : =

^ax-^x"
*^

^ax-\-x^
^

js/ax+x"-

^ax+x^— fax hyp. log. x+ - + »Jx^+ax.

(271.) Fluent 70.

e fluent of
,, .

. = /. 7 x —
;

=
(if c= -j- ), 7

/cx-\-xx—
ex 1 ^ . _c ex 1 u 1

—
7~^2 =r 7 X f.X— f. —7— = 7 X J?— C X hyp. log. C-\'X

c-\-x b ^ '^ c-^i

1 a^ ^ t
a^

j^

XX- ^X hyp. log. j+x.

(272.) Fluent 71.

X — XX y XX
1. The fluent of

^
•- =f,-±-^ + /.

2j?-x*|^ 2 a? — a:*r 2j:-a?*]^
' _______ _ '. .^________^ _ 3 I

f. i— xi" X 2.r-a;*)
^ + x^'i x 2a?""* - 1

1
^= -

2j?-a?*]
"^

+
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1 - 1 ^^ _ 1 X

2x~^ -if sj^x-x^ fjl-x sjlx-x" ^ 'ix— x''

X- 1

^2x — x^

2. In the same manner, the fluent of
JC

2x-{-xT

y/ax-^x"- y/2x-^x* ^2x+x^

3 . _ 1 . I .

3. The fluent of /'^ =
/.

^
+ f.

^

^x -la *^

mJx^— I ao;*
-^ ^x—la

=:: - X ^x^-lax^ + - X y/~x^^Ja.

Rule 6. When the given fluxion is affected by two diflTerent

surds, and the ratipnal quantity without the vinculum is in

a given ratio to the fluxion of the variable quantity under it,

it may be useful to substitute for one of the surds.

(273.) Fluent 72.

Tofindthefluentof ''^''^'''"^'

Assume x= \/z^-¥\ .' . x"^= z^— h"^ \ and xxz=.zz. Also

-.J»-a;*=-;z'; .'. a"- - b^ - xl" = a" - z\ or if c=' = «=-fe%

t^c*- x^= ^a'^— z^l therefore the fluxion = xx ^ c -x
X

>» ^ _ -».»-;.

= jc X >kJ c^ — x^ — —z==z ; whose fluent is found in Art. 44.

sJc^-X'
and Fluent 15. The same Rule may be applied in cases like

the following.

i^l"^-) Fluent "JS,

To find the fluent of ^^^/^^-^*
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1. Let b* + z'^ = x*; then zz=:xx. Also ^a*-z* =

sj a^+ b' — x^^^c^ -
x", if c* = a*4-i*; therefore the given

X X ^ \/ C — X iX' X x/ ('
— "^ 1 n i J— i — 2L

; whose nuent W|p>fluxion
X

B.. lA = f X hyp. log. '-^44 + ^^^\
2 C-\-^C -X

2. The fluent of .

^
is found m the same

^C'-z'

manner. If x be assumed = ^c'*- z*, the

fluent will be found = — a circular area BCED

whose radius is ^Jb^-^-c'^, and cosine x. \A

(275.) Fluent 74.

Nearly in the same manner we may find the fluent of

a-{-cz"\'"x dz'^'^z, where the index of z without the vinculum,
increased by unity, is some multiple of the index of z under
the vinculum.

J(J d rj, /y]'^

Let a+ c%" = 0? ; then z"" =
; and z''" = !-

; .-. rnz''''~^z

=
-^

; ^nd z'" 'z= -^^ xx-a] xi; orifr-1nc
d

s, dz"" '%=.-— X X- aV X i = (by the binomial theorem,)
n(f

—
;:
X xf- sax'-' \-s .

—-— a^x'-'- &c. Now for dz"""""^
nc 2

substitute this quantity, and x"^ for a+cz"]"", and the given

fluxion will become — x cifx x x' — sax'^'+s .
—^ a^o;'"' - &c.

ncf 2 T

= —
; X x'"'-'x ~ sax""-'-'x + s.- a^x'"-^'--'x- &c. Hencenc

h L
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the fluent = —
^ x :

—
;

—
f-

nc" m + * -f 1 m + s m-^-s-^l
&c.

On this Fluent it is useful to observe.

1. The series, arising from the expansion of x- ciW will

terminate, if r, and consequently s, be a whole positive

number ; therefore if m be a positive whole number, or

a positive or negative fraction, the fluent can be found.

2. If r be a positive whole number, and m a negative

whole number greater than a+Ij or r, the fluent can be

found.

3. But if m be a negative whole number equal to or less

than r, the fluxion of one of the terms becomes -
, which is

X

found not by the common forms, but by logarithms.

4. By Reduction, the original fluxion becomes az'^-^-Ci^x

j^^+7.«-i^. therefore if m and r be both fractions, but/w + r

a negative whole number, the fluent can be found by trans-

forming the fluxion as before. The series will always terminate,

and the fluent of each term may be obtained by the common
method.

(276.) Fluent 75.

If « = r% r=: — 1, w = 2, m — l, d=l, and r=2, this fluxion

becomes z^zx xj r'^
- z^. To find the fluent, let ^r*— %*=?^;

then z* = r^ - y% and 2;^= ?-^ - 2ry+y ; /. z^z = -
r'^yy -\-y^y ;

and z^zy^ >sl
r"- - ;s'= - Vy^y +y^y ; whose fluent = - - r^^

I 2 f^
-wS. Now when 2 = 0, suppose y = r\ the cor. = ; and
^ 15 *

2 y5
the whole corrected fluent, when 2 = r (ory = 0), is . This

fluent is used in finding the center of gyration of a sphere. For

another method, see Fluent 11.
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Rule 7. A trinomial may be reduced to a binomial, by sub-

stituting for the variable quantity and half the coefficient of the

middle term with its proper sign,

(277.) Fluent 76.

Required the fluent of

^b'-{-cz-\-z''

Let j? = 24-|c; then j^' = 2;*+c2+ j^C; /. j?'+ 6'- — =

z*+cz + b^', that is, if a'^zb^---, the given fluxion =
4

; and the fluent = hyp. log. x+ ^/a'-{-x\
x/a'+ a?'

(278.) Fluent 77.

Required the fluent of

z*'~'z b
This = '

. Assume z"-{ =a;;

s/cx V - + — + %'"^
. c c

then «*+ ^ +^ =^-. and \/."+*-^+ ? = \/^'+?-*!,
c 4c ^

c c c 4c
1% *

z=zJlF±d'-\ if ^'= --^, and - =s;"-'2; therefore the

•i" 1

given fluxion = —-= ; whose fluent = —7= x
n^cx. ^x'ztzd'- n^ c

hyp. log. ^ +^x^-±^d^.

(279.) Fluent 78.

Required the fluent of i X ^ a-\-bz-\-cz^.

Assume 2+ —- =a;; then by the last case the fluxion may
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be reduced to the form i: x -y/c x ^ju^+ct^ ; whose fluent is

found in Art. 259. Fluent 58.

(280.) Fluent 79.

Required the fluent of z"'"z x s/ a-\'hz"-\'Cz'"'.

Assume z" -\-
— rzx\ .'. z^~^z= -

; and z^^ A 1

2c n c
^

4c'

= .r* ; .-. \/z"'+ — + ^ =./F±d\ when d=d'== - - ^
;^

^ ^ _ <^ 4C'

and the given fluxion = ''•—— ————
, whose fluent is

found in Fluent 58.

(281.) Fluent 80.

Required the fluent of —
.

, „ .

—-
.

Assume ^''-^ =x; then the fluxion may be reduced to
^ c

the form ==: , and the fluent found as before.

ncxoo^=^d*

(282.) Fluent 81.

To find the fluent of
x^ -axi-b'

Let X
'

=z; then x — z, and x"" - ax+ — =2'; /. x'^ ^
4

fl^4-& = 2;* + &- — =
(^if

e* = 5 - -} ;s*±e*, according as e*

is positive or negative ; that is, according as the two values of

(J f* ^
X are impossible, or possible.

Also cxx -dx= czz-]— dz ;

C% ^ "4- ~ ac d yc %
therefore the given fluxion is transformed into ^° z ±ze

P ^ % I 77? K~
(if lac-d = 7n)

— —
; and the fluent =|cx hyp. log.
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m
z^ dtz e^' -\-

— X a circular arc, of radius e and tangent
e

z, if e^ be positive; and if e* be negative, the last part =
mz m 2ez i •. a .

• ^ i i= X —
1 , and its fluent is — — x nyp. log.-s'-e' 2e e'-z^' 2e

e+ z

e- z
Let the fluent of this second part = A; then the

whole required fluent is |cx hyp. log. z^±:e'-\-A.

(283.) Fluent 82.

To find the fluent of

Assume x - - — y \ then, as before, ^x^ - ao; + a" =

a*
Also jc*=^*+fl3/H ; :. xx^yy \- \ay\ and the given

fluxion = —^=~= I
—7=zz==; and the fluent =

\/7+^+ i« X hyp. log. of 3/+ \/^r^.

(284.) Fluent 83.

In the same manner the fluent of may be

/>/a*-aa7+j?*
a .

resolved into — . ,
—

.
' '

, and — ,

A / ^ 3a' . / ^ 3a" , / 3^

of which the first is known by Fluent 14.; the second =

a x \/ V* H ^
'> ^"<i t^^^ third = —- x hyp. log. of y -j-

. /~T 3a*
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Rule 8. If the fluxional quantity without the trinomial be

not properly related to the fluxion of the highest power of the

variable quantity in it, after substitution the binomial may be

expanded, and the fluent of each term taken separately. If the

series terminates, the whole fluent is obtained ; if not, this is

only an approximation to its value.

(285.) Fluent 84.

Required the fluent of ; .^
a'{-bz-\-cz'

Let 2 H — x\ then z^x^ and z'^z^x- —-
!• . Also

2c 2c

2*H 1-
- =:x^±:d'', if zizd^ = , and the fluxion =

c c c 4c

h
XXX——-

2c—
^
—

Tj
—

; where m being by supposition an affirmative

p«
integer, x must be expanded, and the fluent of each

Ji C'

term be taken by continuation.

This is of the same form with the 4th of De Moivre's,

Coroll. 1.

(286.)
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(287.) Fluent 86.

Required the fluent of —
.

, „ ,^ a+ bz -{-icz""
'

Let z^'^y, then z^=y\ and %^~'^z= -—
—-, the denomi-

nator becomes a -\- hy -\- cy*, and the whole fluxion =

-
; in which r—\ being assumed an aflirmative

a-^hy-\-cy

integer, the fluent can be found by Fluent 84.

(288.) Fluent 87.

To find the fluent of
a+ i%"+ cz***

y yLet %"= -; then z-"*-if\ and ^-""-'2= - ^—'L
, Also

y n

h c
the denominator = a+ - H—-; and the whole fluxion = —

y y
1 r+, .

n^^y y—
;
—

-J , whose fluent can be found by Fluent 84.
ay +by + c -'

This and the last are of a form similar to the 12th of

De Moivre's.

(289.) Fluent 88.

z^ z
To find the fluent of —

. , m being an integer.
•

^a-i-bz + cz"
^ ^

Assume 5r4--- = :c; then i = i, and 2'"= a;---
; and the

2 c 2 c,

whole may be reduced to the form 2ci
; whose

fluent may be found by expanding the binomial.
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(290.) Fluent 89.

z-'"z
1 . To find the fluent of

y/a-\-bz + cz''

Let ZSS-, then z~"'zzy'^, and z= —~; hence the

fluxion becomes, by the same methods, = —
^

^ ^^-
t

whose fluent may be found by the last.

z'^'^^z
2. The fluent of may be found in the

sJa-{-bz''+cz''

same manner, by assuming i/
= z",

3. And that of —_

'

, by taking 2"=- .

(291.) Fluent 90.

,
b

1 . Fcr the fluent of z^'z xs/a-fbz+ cz"; take « +'^
= -^ »

it may be thus reduced to the form 3?-—- y x x ^ c x

s/x^ + d^, the fluent of which is found by expanding x-~

2. For the fluent of z-"^zx sj CL-Vbz-\rCz\ assume s;=-

the given fluxion •=. -yy"^-^ x sjaf-^by-^c, whose fluent

is found by the last case.

3. For that of z"^-' z x sj a-^bz" -^^ cz"^ take z'also =
y.

4. And for that of 5;-^"~'i ^~a+bz''+cz'^, let «" = i
.

(292.) Fluent 91.

To find the fluent of

/y/2.T?— 4nx-i-2nx'*



FLUENTS. 257

This^ixix 2jo- 4nx-i-2nx^\~^. Assume 2j?= a, 4wa?- 2wa?'

m— 1

=rfe; then since a- bT ^oT -ma'^^h+m. O^-^h^-^kc,

by substituting for a, h and m their values, 2j? — 4wj7+ 2w^'
|

«

= —^ + + &c. ; and the fluxion = —7- A r~

2^ 2^ 2^ 2^ 2^

;- + &c. ; whose fluent = —z 1 r+«'^-
2^ -^35x2^
This fluent is used in Art. 129. Prob. 9. in the Attraction

of Bodies.

(293.) Fluent 92.

XX
To find the fluent of -—

^J 2x-\-Anx— 2nx^

Assume a=2a'; h = 4nX'-' 2nx^ \ then since a+ 6)

""

7)1 "~ 1

^aJ^ '\-md!^~^h-\-m. a'"~*i'+&c. by substituting as

•.__ 1 X d

in the last case, we have xx x 2x-\-4nx- 2nx*\
^ = —p

nx^x nx^x
.

„
i ^1 ii ^ S^o?'^

.
w^^

-^ 1- &c ; and the fluent =
1

2" 2^
^ 5x2^

2'wa:'
+ &C.

3

This fluent is used in Art. I29. Prob. 10. on the Attraction

of Bodies. In both these cases, if n be very small, the suc-

ceeding terms vanish, and the whole fluent is expressed by
the three first terms of the series.

(294.) Fluent 93.

To find the fluent of .

- in a series.

M M
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In cases of this kind, no substitution is necessary.

T » a 3 \ y* . «.^For a* - ?/* = a' X 1 - ^ ; . . , = .V

1-C ; which, expanded by the series a-bY', =y x : 1

+ fi +S + ^'=- =J' + fl + l^* +&C.; and the fluent

This fluent is used in Art. 55. Ex. 5.

(295.) Rule 9. When the denominator is a rational tri-

nomial or multinomial, the best way of proceeding in general

is to resolve the given fraction into binomial ones, by assuming
the denominator = 0, and finding its roots.

(296.) Fluent 94.

To find the fluent of —
y .

X -hax+b

Let x^-\-ax-\-h = 0; then the roots are - |a-\/~-i,
4

and - - + \/ b. I^t these quantities
= p and q ; then

2 A

x—p X x— q = x^ -{- ax + b.

Let then^ +-A.= _^__L__; then ^iii^+5li^
x-p x-q x--\-tLT+b x-pxx-q

= T ; hence, the numerators being equal as well as

x^-\-ax+b
' ^ ^

the denominators, we have Ax —
Aq"^

+ Bx -Bp> = 0;

.*. Ax + Bx= 0, and A = - B; also - Aq - Bp =1; or,

since A= ~ B, Ap - An = 1 ; :. A =
, and B = i' ^ ^ p—q q-p
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Ax Bx ot , X
since 1-

= -r —7-, we have
x-p x-q x' + ax-^b' p-qxx-pXX 1

+ = = — ^ r ; and the fluent =
q-p y^ x-q x^ + ax-^h' p-q

1

hyp. log. X-P + ^3^
X hyp. log. x-q.

(297.) The quantities A, B, &c. may be determined more

easily, by substituting one of its roots for x after the multipU-

cation, in which case most of the terms will vanish. '

Thus, let p, q, r, &c. be roots of the equation x"— Pxf'~^

h K
+ &c., to resolve the fraction —-—„ „_. . ^

— into 1-' xT-Fx" '+&C. x-p

+ H &c.
x—q X— r

Reduce the fractions to a common denominator ; then the

denominators on both sides of this equation will be equal, and

the sum of the numerators will = I. That is, K x x—q x

x-r X &c. + L X x-p X ^-r x &c. +M x x-p x x-q
X &c. = 1. Now as this is true for every value of x, let

x=p ; then x-p =0; ,\ K x p-q x p— r x &c. = 1, and

K =
:

. Next let x = q; then x— q= 0,
p — q X p-r X &c.

aiid Lxq-pxq-rx &c. = 1 : .*. L = —== —
;

q-px q-^rx &c.
and in the same manner the other numerators may be

determined.

(298.) Fluent 95.

To find the fluent of
x^-\-ax*-{-bx+ c'

K T
Assume », o, and r, the roots ; and let -f 4.

x—p x~q
M 1

, rr 1 r
; then K = — -

; L =x-r x^ -^ ax^ -\- bx -\' c'' p^qx p — r
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==—== ; M = == ; and the eiven fluxion =
q-p X q~r r-p x r-q

^

Kx^x Lx^ot Afx'^'x

Z
—

Z'^Z
—

"^"^Z
—

Z ' °f which the fluents, by actual division,

are Kx j -^Kpx + Kp' x hyp. log. ^T^ + Lx j -\-Lqx +

W X hyp. log. x-q-^M X — + Mrx + Mr' x hyp. log.

^*
x-r =z K+ L + Mx J- + Kp + Lq -^ Mr X ^ + Ay x

hyp. log. ~x-p + Lq"" X hyp. log. x- q + Mr^ x hyp. log.

X — r,

(299) Fluent 96.

To find the fluent of -j
—p n-i , 0^ j ^ being a whole

positive number, and the roots of the denominator p, q, r, &c.

This fluxion may be resolved, like the last, into the following

Kcd^x Lotf'x

quantities ; 1 h &c. ; where K, L, &c. may beX "~p i37
"~ M '

determined as before, and the fluents may be found in each

case by actual division. The first fluent =
f-
—i

m m— 1

+ &c. -f- Kp'^ X hyp. log. x^p; in like manner the fluents

of the other quantities are found. The sum of all these is

_^ x""

the fluent required; and it = K -\- L + &c. x — +

Kp + Lq-^ &c. X + &c. + Kp^ X hyp. log. x^p ^

Lq^ X hyp. log. x — q-\- &c.

To determine when any of these coefficients become equal

to nothing, Vide Dr. Waring's Medit. Algeh. in the Ad-

denda.
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(300.) If two roots, as p and q, are equal, one of the

quantities must have a quadratic divisor x — p\ .

1 Lx-\-M N
^ ,

Let -J o
,

7 = ,2 + ; reduce them
x^ — ax^ + bx — c -j._ J,)

x-r
to a common denominator, and equate the numerators ;

then Lx'^ — Lrx

+ Nx"" + Mx
- 2Npx -

hence, L + iV=0; M-Lr-2A> = 0; -i>/r+ A>*- 1 =0 ;

/. L = - iV; M = —^
; /. —^ \- Nr-2]Slp=0',

1 1 2 2? — 7'

/. N = .a ; L = — ^a ; M — -a . Hence the
p — i'\

-" ^ ~ Fi p — r]

X
jn,

Lxx 4- ^i Nx

L, 3Iy and A^ are found. And this fluent = L x hyp. log.

J?—p iiji + Nx hyp. log. a?-r. (Fluent 54.)
vL

"" 1/

(301.) If some of the roots
jo, q, r, &c. be impossible, the

fractions, in which the impossible roots are contained, must be

incorporated in pairs ; and then the impossible quantities will

disappear. For if d= a + ^ - 6% and dta— y/ - b"" be the

root? of an equation of two dimensions, since they enter by

pairs, the equation itself is xip- a— >J—b* x a?=pa4-v— 6%
or X* =F 2aj7 + a" + 6^ = ; where the imaginary quantities

are not found.

(302.) Fluent 97.

XX
Let the proposed fraction be -r- —

; , and let two^ ^
x^-{-ax*-\-bx-{-c

roots, p and q, of the cubic equation be impossible.

L M N 1

Assume + + = -5— ;-—7—;

—
, and

x—p x — q x—r x^ -h ax* + bx -{• c

incorporate the two first ; then we have the given fluxion =
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L -^ M X XX -Lq + Mp X X Nx
^ ^ .==— f- J where the impossible

x^—p-{- qxx+pq ^ ^

parts vanish, as will appear by substituting a + >/ - 6^ and

a-A^ — b"^ forp and q. The fluent of the first part is found

by the method of Fluent 94. ; and the fluent of the last is

N X hyp. log. x — r.

(303.) Fluent 98.

In general, to find the fluent of
x^- ax+h

'

1 K
If the roots be both possible, resolve r into

x^ — ax-\-b x—p
.

^ A ^u a • ^^^
.

^^"'^
H ; and the given fluxion = A , whose
^-q x—p X -

q
fluents have already been found.

But if the roots be impossible, divide x^x by x^ — ax + h,

until the remainder becomes cxx — dx^ c and d being the

coefficients, which arise from the division ; let the quotient

be x^-^i + ax'^'x + ^^h . x'^-'x + &c. + f*^^"^^, ; and
x^^ax + b

^u a ^ •^'"~'
,
a^*"-^

,
a'-i.V-'

, c ,
/. cxx— dx

the fluent = + H — h &c. + r. — r-m-l m-2 m— 3 ^ x"- - ax-\-b'

or + f c X hyp. log. z^d^ie'-^A. (Fluent 81.)

(304.) Rule 10. When the denominator of the fluxion is of

the form x •\- a] x x-^b) , the given fraction must be resolved

L M N
into others of the form ^ + .m-i + .„^ + &c.

^ + «| x-{-a\ x-[-a\

P Q B
+ + .^_, + n^ + &c-j» respectively continued

x + b\ x+ b] x + b\

to m and n quantities,

1 L
(305.) Lemma. To resolve .^ , .„ into ^,a

x-\-a\ X x-\-b\ X + a]M
+ v>;,-i + &c.
x^a\
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Reduce the fractions to a common denominator, and suppose

the numerators on each side equal ; then L x ^+ ^1'* -\- M x

xTbT X x + a +N X x + bX X x + al* + &c. -{- P x x + a^ +
Q X x + a\ X x + b + Rx x-^af x x + b\^ + &c. = 1 » Call

this equation A. Now assume x + a = O; then x =z — a,

and all those terms, into which x + a enters, =
; ,\ L x

>„ 1

b-a\ =1, and L = , _ i»
. Take the fluxion of the equation

A, and divide by x; then nLx x + bf^ +nMx x + bf'^ x

x + a -{ M X x + b\

"

+ &c. = O. Let x = -
a, and we have

wL X b^af + Mx fe-ar= 0; .*. M= ^I^L_ = ==—^ .

ft
— a — a]

Continue to take the fluxion of the last equation, making
x + a = 0, and the values of N, &c. will be determined.

Again, assume x-{-b = 0, and P will be found = -
,„ ;

a — b\

take the fluxion, and again assume x + />> = ; then Q =

>„;+! , and so on for 12, 5, &c,
a- b\

(306.) Fluent 99.

x^x
To find the fluent of

X + aV X -r + i]

"

L i3?^iC JrlxfX
By the last Article, the given fluxion = -^ +

Px'''x Q,x^x
+ &c. + •——

-,^„ + n 1 + &c. Assume x + a = z; then
a? + fc) ^c-fTj

. rxi ^^+^ J r- .
^'•.

• -:?l£!f--rv ^--^'"^
V ^'^+^ = 2 — a , and x x= z x z ~ a\> • • —

;

—^m —^^ '——
i

'

.

' x+ a] z"'

r— 1
= by actual expansion, L x : 2''""'%- ra%'^'"~'% + ^.—7^-

xa'«''~'"~'% - &c. tor + 1 terms. The fluent of every term

in this series can be found by the common method, except
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that where the index of is is -
1, which involves the logarithm

of z. In the same manner the fluents of the other series can

be determined, and their sum is the fluent required.

SECTION V.

(307.) The sixteen following Fluents are taken from De
Moivre's Miscellanea Analyiica, lib. iii.

Fluent 100. (De Momre \.)

To find the fluent of (A), where a is less than

1, or the roots of the denominator impossible.

Let «;= ;s + a; then 1 +2«% + 2;* = v'-a* + 1 = ** + v*j if

v 1

!-«* = **; and %=V\ .\ the given fluxion =
JT^.

= ~

and the fluent = — x a circular arc of
s^ + v"- s

radius s, and tangent v; or of radius =>/l -«?% and tangent

z+a.

Hence this construction :

With Cas center, and CE=l as radius, describe the semi-

circle EDF. Take CJ= %, and CB
on the other side of C=a; draw the

ordinate BD; with D as center, and

/)5 radius, describe a circular arc BGH;
then BA= z+ a=zv; and DB = s =

V 1 - «• ; .*. the fluent =
jj^,

x the arc BH.

^

(308.) The fluent of 7 is found by taking z-a
1 — 2a z -j- z

= V ; and it = ~ x a circular arc of radius s, and tangent

z— a.
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Here take CA=z, CB = a on the

same side of C, and draw the ordinate

BD; join DC, DA; then the fluent

z
(309.) The fluent of -^ j, where a is less than 1.

may be found in the same manner by assuming
- + a = v ;

for in this case r* + 2arz + 2' = r* x ^"^ + ?;* ; and z =^ rv i

VU 1 S'^'U

:, the given fluxion = == = —5 x -——
-; and the

fluent = -—J X a circular arc of radius s = s/ 1 - a*, and tangent

z- +a.
r

(310.) And the fluent of —
:

—
-, where a is less

than 1, may be found by taking
- -« = ?;.

Fluent 101. {De Moivre 2.)

(311.) To find the fluent of
;

—- (B), where a is
1 +2az+ z^ ^ ''

less than 1 .

Let v — z-^-a; then the denominator =*'+i;*j also z^=
v^ - lav + a*; :. zz — vi) - av \ and the given fluxion =
vv - av a
y, .a ; and the fluent = J hyp. log. a-^+v* 5

X a circular

arc of radius s, and tangent v = hyp. log. ^s* ^v"* - ~ x arc

BH (Fig. to Fluent 100.) = hyp. log. of AD -
-jy^ x arc

(312.) The fluent of -— -—
^

is found by assuming

z — a=:v.

.N N



266 FLUENTS.

(313.) The fluent of ~— -, where a is less than 1,^ ^
r^ + 2arz + z^

'

z
may be found by assuming -+« = !;;

z z z
And of —— , by taking a — v.

Fluent 102. (De Moivre 3.)

(314.) To find the fluent of (C), where a is

less than 1.

Divide the numerator by the denominator in an inverted

order.

z'^ •\-2az + \)z'z{z

z^z-it^azz + z

— 2azz — z

.. C= z - : ; and the fluent or C—
H-2a2 + %' l+^az+z"

Fluent 103. {De Moivre 4.)

(315.) To find the fluent of — (D), a being less

than 1.

Divide, as before, in an inverted order; then the given

_ . . Q.az'^z zz
fluxion = zz - ——— —- -

, . ^ ;

—
5 ;

l+2az + z'' l-\-2az-\-z^

or D - zz - 2aC — B
; .*.

Z) =- - 2aC - B.
z

In the same manner the series might be continued to any

power of z.

(31 6.) Cor. l. Hence, if a be less than 1, and m any

whole positive number, we can determine the fluent of

z^'z

l+2az-{-z^'
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Divide the numerator by the denominator in an inverted

C Z Z "^ 6 Z
order, till the remainder becomes ± ——

;

—
-„ , c and e

'
1 + 2az -{• z^

being the coefficients ; then the given fluxion = z^'^z —

aaz'^-'z + 2bz""*z— &c. =t —
, ^'~ .

—
I ; and the required

1 + 2az -{- z
*

fluent = ~ ^=^^^— + &c. =t cB d= eJ.
m—3 m— 4

(317.) Cor. 2. If a be less than 1, and m be a positive

fraction, the fluent of —-——-—7 can be found.
1 ~j~ ^CiZ ~\~ z

Let m = -
, a fraction in its lowest terms ; then, if t; = z^,

V

d ,

v^z^z" i also z = v*; ,'. z= tv*~^v, and z'^v"^-, hence the

given fluxion = ~,—-, . But (by Prob. 77.) the fraction

; -T is divisible into component parts of this form

P — QV
^ \^ ;; therefore this fluxion is reducible to the form
l-Sau + v'

~—
-^
——- — —i—r

, of which the fluents are known
\^2bv+v^ l-2fev +v"
by the last Corollary; for here h is less than 1, and d and t

are whole numbers.

Fluent 104. (De Moivre 5.)

(318.) To find the fluent of I
'^

, (£), a being less

than unity.

Divide the numerator by the denominator in the natural

order; then J^ =---—-———-,- -—— ;

—-= ~-2aA-B;
z l+2a2;+^' \ + 2az+ z^ z

and the fluent = hyp. log. of z — 2aA — B.

N N 2
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Fluent 105. (De Moivre 6.)

(319.) To find the fluent of
; (F), a being less
z *z

-\-2az+
than unity.

Divide as before; then F= — —2aE-A', arid the fluent
z

= 2aE-A.
z

Fluent 106. {De Moivre 7.)

(320.) To find the fluent of ^^ (G), a beine less

than unity.

By division, this fluxion = z"'i— 2aF- E j .'. the fluent

G= — —5 ~2aF~E; and the fluents may be continued to

any power.

(321.) Cor. 1. If m be any whole number, the fluent of

z~^z
can be found by the same method.

lH-2a%H-2*
-^

Or if V = -
, it can be transformed into the fluxion —

z

J of which the fluent is known by Art. 31 6.
l+2ai;+ v*

(322.) Cor. 2. And if m be a fraction, and a less than 1,

the fluent can be found by the method adopted in Art. 31 7.

Fluent 107. (De Moivre 8.)

(323.) The fluent of : , where a is greater than 1,^ ^
l-\-2az-\-z^

^

is of the same form with Fluent 94, and found in the same

manner.
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FluENT 108.
(
Z)e Moivre

9^.}

z z
(324.) To find the flueut of •

, n beine a who'le
^ ^

\-\-mz
^

positive number.

Divide the numerator by the denominator in an inverted

2" z"-^ z"
order ; then the fluent = ===

-\ = — &c.mn Tti'xn—l m^xn— 2

(n) =t: ^^ X hyp. log. 1 -hmz.

This is similar to Fluent 4.

Fluent 109. (De Moivre 10.)

z~^z
(325.) The fluent of —-— is found by dividing in the

.... 1 m
natural order ; and it = — . 4- — &c. (n)w- 1 .2;"-* n'-2 .z^~*

^ '

•±1 nf^^ X hyp. log. 1 -^-mz.

Fluent 110. {Be Moivre W^
d

z^z

+mz(326.) To find the fluent of -

Take3/=mz|'; .'. mz—y^\ also;s« = .^, and 2 ' = -^

.-. -—j— xz*z=
jjfj '-, and z'z=~-^ '^

,^f ; but

1 +m2= 1 +y J .*. the given fluxion is equal to ^^^^
t^Ty

n being substituted for d'\'t— 1. Now by Prob. 80. and 81.

1

— ——r, &c., where t is even, and a is less than 1 ;

\-2ay-Vy'''

can be resolved into quadratic divisors of the form
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therefore the resulting fluxions in this case will be of the form

——- X •^ '

-,
—^ , whose fluents can be found by the

preceding Cases.

V
If t is odd, the first divisor is of the form -~-—

, and the
1 z*zy

first resulting fluxion is •—rxr x , whose fluent can be

m '
*

' c'

found.
d

(327.) In the same manner the fluent of can be
^ * '

1 ~ mz
found by the resolutions in Prob. 78. and 'J^.

Fluent 111. {De Moivre 12.)

z"^z

(328.) To find the fluent of . ^ „^^ ,
where / is less

than unity.

By Prob. *J^. -j-^ ^ can be resolved into quadratic
1

,
Jit z -f- z

TO ~~ Q Z
divisors of the form —\,

^
.

—
r, where a is less than 1 ;

1 - 2az-\-z^

,\ by multiplying z'^z into these divisors, the resulting fluxions

DZ^Z Z^ Z
will be of the form r- , of which the fluents are

1 - 2az+z^

known by the preceding Cases, whatever be the value of w.

z"''z

(329.) If the given fluxion be
^^^l^-n_^^-^n

> multiply

both the numerator and the denominator by %-", and the fluxion

will become —x r-z , whose fluent can be found.
;s-"+2/2"-4-l

Fluent 112. (De Moivre 13.)

(330.) To find the fluent of

d

ztz
n 2n

1 dz 2lzp -{-ZP
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Take z%=y\ /. %i =yP, and z~ = y^'^p ; hence —^

X s;«';z = dp + tpy'^^-^^P-^i/j and s* z = tpx y^P-^*^^y. Again,
JL n

2^ = y ; .*. zp = y" ; hence the given fluxion becomes =

id=2ly'"dzy^'''
' ^^^^^^ ^"^"^ ^^ known by the preceding

Cases.

Fluent 113. {De Moivre 14.)

(331.) To find the fluent of
^"^

1 =h Z"

By Prob. 78, 79, 80, and 81, the quantity j^
can

1 —L. Z

be resolved into divisors, either all trinomials of the form

, where a is less than unity ; or into divisors*
1 -2az+z

partly trinomial and partly binomial, of the form ^
^ , or

-—-
; z'^z IS to be multiplied into these divisors, and the

fluents can be found as before.

z"''z

(332.) The fluent of can be found in the same
j.n _^_ ^n

manner by the resolution of .

Fluent 114. (De Moivre 15.)

greater than 1

(333.) To find the fluent of -. s-, where / is
l + 2/a"+ z*"'

TO+l
Let2'* = j:; then 2^"=^*; also x = a?»; /. 2'"+^=a?~,

m—n+l
'

v> r '^

X n T
' y\ OC X

and z'^z = ; /. the given fluxion =—^i-^ .^ ^
1 + 2lx-\-x*



27^ FLUENTS.

where r = ^""^"^ ^

; let ^——. be resolved, as in

A B
Fluent 94, into and ; then the original fluxion is

'

x-p x-q
transformed into two others, whose fluents can be found.

Fluent 115. {De Moivre l6.)

(334.) To find the fluent of
Y^^i^rj^,

where /=1;

or given the fluent of —^
— = p, to find the fluent of

z"'z

a
*

1 zi= z"y

Divide the numerator and denominator by z^" ; then the

fluxion =
"^

"^ .
=

.
, X z—^'.

2-"± ll Z-''zi= l\

^—«—1^
To find the fluent of this quantity, let —

. '='^j ^^^

Z-"d!=l\'

2"-"+^=^; then, since the fluent of yx=yx-f. xij, the fluent

m-w+1 2"-"^ 3;'^"+^

2:-"zfc 1 ?ix:2;~"±l

771
— W + 1

-
X/?.

« X 1 ± ^'^

SECTION VI.

(335.) On the Fluxions of Quantities which have a variable

Index; and on the Fluents of Quantities which involve Quan-

tities and their Logarithms, Ar'cs and their Sines, 8^c.

Examples.

(336.) Ex. 1. To find the fluxion of xK

Assume x^ = v\ then yx hyp. log. x = hyp. log. v ; .'. yy.

hyp. log. ^ + ^ = ^ ; :, v^vy X hyp. log. x +^= x^y

X hyp. log, x+yx^'^X'
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Cor. If ^ be constant, x = O; and the fluxion = x^y X

hyp. log. x.

(337.) Ex. 2. The fluxion of a^-[-z'f = a'+s^' x 2 x

hyp. log, a'+ %' + ;3 X «'+%')'* X 22? z. This appears by sub-

stituting for X and its fluxion, in the last Case, the quantity

a" 4-^* and its fluxion.

(338.) Ex. 3. To find the fluxion of jo^\

Let j?^ = r ; then x^ ^v" ; assume if = w; /.by Art. 336.

W=zifz X hyp. log. V + zv'~^v ; but v = xi^ ; .*. substitute for

V and its fluxion, as found in Art. 336., and we have w =
Z 2—1

x^ i X hyp. log. x^ + zx?' X : x^y x hyp. log. x +3/^^" i =
z z—l z—1

xi^ z X hyp. log. xi^-i-zx^ x?y x hyp. log. x-\-yz3(? x? x.

The quantity xi^ means the z power of xi^. If it denoted

the y^ power of x, we must have assumed the index yf — v.

In the same manner the fluxion may be found for any number
of quantities.

(339.) Fluent 116.

To find the fluent of zyy^ where « is a circular arc of

radius 1, and sine y.

The fluent = ^ ~ / ^ x i = 1^ -
/•. -^^ -1— =

2 7-2 2^2
^T:r^.

_ - 4 X a circular arc of radius 1, and sine v-^-UJL^L}. U-
2

^ ^
^

(Fluent 15.) -

•

(340.) Fluent II7.

To find the fluent of '^'^
, where z is the arc of a circle,

and y the sine.

yii • •

Let —~~-— = v ; then the given fluxion ^ zv, and the

Vl-3/*
fluent = zv-f, vz— -z X ^l-y"^ -{-f. ^l-y' x z. Now

o
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%=—-M==z to radius 1 ; ,\ \/l-y'Xz=:v; and the whole

fluent zzz-zx^l-y"" +y.

(341.) Fluent 118.

zi
To find the fluent of , where % is a circular arc of

radius 1, and tangent t.

i n zi
Here z— . ,.x \ hence, by the Rule, p. 220, f.

1 +f
\-\-t

(Fluent 40.) -7z===. X

J, ti
__

zt 1

TJ-^ s/i+t^ x/T+F*
zx

(342.) The fluent of , where ;2 is a circular arc of

zx
radius 1 , and sine x, by a similar process,

= .

(343.) Fluent II9.

zx
To find the fluent of , where z = 2i circular arc

^x-sc'Y

of radius 1, and versed sine x.

Here z = ^
. Let 3

= y ; then zy =
\/ 2x — X 2x — x'*Y

^^
; and f. zy = zy

-
f. yz = ^ ^f~^ (Fluent 71.)

2x-x'^\^ s/^^-^

/ ^-1 ^ ZXX~l _j.
xx-x zxx-l

>y/2a?-J?' J2X-X'- j2x-3^^"^^
^

>j2x-x^
x-xx zxx- \-

/*.
- 1 X = — . + hyp. log. J 2x- X*,^ 2X-X* J2X-X^

^V ^ SI
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(344.) Fluent 120.

To find the fluent of z'lfy, where % is the arc of a circle,

and y the sine.

This fluent = ^^ - f. -^^ x z ; but ^ = /'^

_ I

= y X 1 - "^
' = (by the binomial theorem) ^ x : 1 +

•2—:Z + &c. And the whole fluent = -^—— x :
~

8r* w + 1 w+ 1 w + 2

+ =L + r=^r + &C.
w + 4.2r' 7z+6.8r^

(345.) Fluent 121.

To find the fluent of z^y, where z = the arc of a circle, and

y the corresponding sine.

Let T = the radius, and x the cosine ; then, by Art. 44,

ry= xzj and yz= —rx.

Assume v= z^i then, since the fluent of vy= vy-f. yv,
we have the fluent of z"y = zy -f. y x nz'^'^z ; but yz=^rx;
:, the second part =-^f. nrz"-'x; and the fluent of this

part
= nz^'^rx -/. n.n-1 , rxz'^'^z ; and since xz = ry, the

fluent of the last term = - w .n- 1 . z'^-^r'y + &c. Hence the

required fluent = z^'y-^-n^'Wx-n . n— 1
.z'^-^r^y

- &c.

(346.) The same fluent may be found in the following
manner :

Assume t/x : «z"+ fez"~' + C2;'*~^+ &c. —f.z''y\
then^x : a;s"+ 5«''-'4-C5;''-^4- &c.

^

+ wai/is"-'i +«- 1 .hyz'^^'z-^r &c. |
~^'^'

Multiply ^ into each term of the first series, transpose ^y,
and equate the correspondmg coefllicients ; then ay-y= 0,

by-^-nayz^O, cy+n-l .byz=zOj Sac; hence a = l, by =
002



^76 FLUENTS.

— nay%—-'nyz — nrx', ,*. by
—
nrx, and o=

, cy

rx
^n~l .hyzz=—n.n-lx -^ x yz= -^n.n- I .r*y ; ,\ c

rx— n,n—\. r*j &c. ; and the fluent = y x : «" + nz"-~^
—-

- w . 92- 1 ^s'^V* - &c. =iz"y-\-n z^'-^rx - n . n- 1 z^-^ry
- &c.

as before.

(347.) Fluent 122.

To find the fluent of z^w, where ii? is the versed sine,

corresponding to the arc z.

If X be the cosine, z"w = - z'^x. To find the fluent of

—
2;"i, assume xx : atz"-l- fe;s"~^ + c^**-^ + &c. = the fluent;

take the fluxion, and proceed as before ; the required fluent

will be = —xz^'+nrz^'^y-^n . w - 1 . r^z"~^x - &c.

(348.) Fluent 123.

To find the fluent of zt"tf where « is a circular arc of radius

r, and tangent t.

z t""^^ /» ^"'"'

The fluent, by Sect. II., = —
/. —;

— x z. Now z=z

vH
"- -T (Art. 44.) ; therefore the second term of the fluent =

This admits of two cases :

1 . Suppose w to be an odd number ; divide the numerator

of this fraction by the denominator in an inverted order, as in

Fluents 6 and 8, the result is x : ^-V - rH'^^t +w + 1

fA^n-b^ _ ^^ ^4_ ^j^g remainder -r—-r; ; the number of terms in
r +t

w+1
the quotient is -^,— , and the remainder is positive or negative



FLUENTS. 277

according as is even or odd. Hence the whole fluent =

X :
- — h &c. =b r"~^ X a circular arc

w+1 w+1 n n - 2

of radius r, and tangent t.

2. Let n be an even number ; the number of terms in the

Tl . /? V^tt
quotient will be -

, and the remainder ^J* , the sign

of the remainder being + or —
, according as - is even or odd.

r*+ ^'

= r" X hyp. log. sj r^ + t^'

(349.) Fluent 124.

To find the fluent of vxx, where t; = hyp. log. x-\-/^x*-\-a*,

X
—jz==L ; and the fluent of vxx, byIn this case 7)=

I nn'i^

Sect. II. Art. 211, =_ -
f. - x v, or - f.2^2 ^ V^M^*

hence, by Fluent 14, the whole fluent of vxx = Jx

xx^/x^+a* + J a' X hyp. log. a?+ \/**+ a*.

(350.) Fluent 125.

To find the fluent of ^^'i, where z = hyp. log. x.

This = s"^ — f. X X nz'^'^z ; or since % = -
, it =; z"x —^ x'

f. nz'^^x = z"x - nz^~^x + w .n— 1 . ^"~^J7 — &c., where the

law of continuation is manifest.

(351.) Fluent 126.

To find the fluent of , where z is the hyp. log. of

2x-{-x*Y

l+-»H-\/2j:+a?*.
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x ., a?4-l
Here i= ^ : ; let .y= , ; then i^= -

,

^ix^x" sjlx^-x'
^' 2x+x^ ^2X+ X^

hyp. log. j>/2xTx^,

(352.) Fluent 127.

zx
To find the fluent of

'

,
where sj = hyp. log.

1 + x^\'^

x+s/'TT^.
T* OC JO

Here z =
.

; also if =
i/, then

3/
=

Z X /^ X X
(Fluent 40.) ; /. the fluent = . -J- ,

x .

za? /^ XX zx .

(353.) Fluent 128.

To find the fluent of
3 , where z = hyp. log. .

Here z = -5 ; and if
if
-

, 3/
=

,

(Fluent 40.) ; /. /. zy = ,- -J. ;
7 = ,

-

!SJ7— 2

(354.) Fluent 129.

To find the fluent of x hyp. log. x.
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By Sect. II. fluent = hyp. log. j--^
X hyp. log. x -f-^

X hyp. log.
—i—

. Now since the fluxion of the hyp. log. of

—1— = -^ ^x^-xx^-x'x 4- &c. ; the hyp. log.
-—- =x-\-

1 - X l-X A— -^

X" X^ ^ /- i , , 1 r- XX X'X- + - + &c. ; /./ - X hypjog.-^ =/. x+ - + -

+ &c. ; hence the whole fluent required
= hyp. log.

-—-

i.
~~ X

Cb X
X hyp. log. x — x—-——»— &c.

(355.) Fluent 130,

X
To find the fluent of

V hyp. log. ^

X
Let hyp. log. of - = v ; then if e be the number, whose

X
hyp. log. is unity,

- = e".

Al « J ^ • u ^ ^^^
Also x = ae'^; and - —V, hence

X
\/hyp. log. I

V«

Now by Cor. to Art. 144, e'' = 1 + v + L + JL. 4. &c. j

/. —~ =av^v-\-av^v-] 1-
-—- + &c.; /. the fluent

^^ 2 2.3

• J « -^ .

^av""
,

2at;^
, ^

required = 2a i; ^ — + 1- &c.
3 5.2

(356.) Fluent 131.

Tq find the fluent of vx"x, where v = hyp. log.
-

.
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Here v z=. — . Also if xTx = w, since the f. vw^vw —

/. wv, we have the f, vjo^x= /! x v. Now

v=— ; /. the last term = + / . .==—= t. == ,. ;

hence the whole = +
n + l

X'
,n+l

w+1
,*

*

(357.) Fluent 132.

To find the fluent of vx^Jcy where v = hyp. log. l —x.

vx"'^^ _/» x"'^^v

This, by the method of Sect. II., = / . . Now
•^ w + 1 «^

n-\- 1

V= ; .*. the second term = h x / . ; or, byl-x n-\-l
"^

1 -X -^

actual division, = ——— x : -x^x-aT'^x — &c. to w + 1
91 ~r JL

terms, and the remainder is + ; /, the whole fluent =
1 — X

~^-\-i 1 /r**"^* x^
X : 4- h &c. to » + l terms, + hyp. los:.

l-x.

(358.)
' Fluent 133.

By the same process the fluent of vx^x, where v= hyp. log.

4- X :
1 + &c. to w+ 1 terms,

l-x n+l n+1 w+1 n

(359.) Fluent 134.

And if V = I hyp. log.
--—

,
the fluent of vx"x =

1 JO /•
1

*•

1 X'^
.

X"
J X :

1 H 1- &c. -{- I hyp. log. 1 - x"*,^
n-\-l n ^ n-2 n- 4.

^ ^^ ^

1 4-.r
if n be an even number ; or -- 1 hyp. log. , if « be odd.
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If w be an even number, n-\-l is odd, and the number of

terms in the quotient is -
(Fluent 8.) If n be odd, n + 1

is even, and the number of terms is •

(Fluent 6).

(360.) Fluent 135.

To find the fluent of 7^3^'^x, where % — hyp. log. x.

Assume the fluent = a?"x : az'"+ 52'"~^+ c;s'"~* + &c. ; then

waf-'ix : ass'^+ ia'"-* +c;s'"~^+ &c."

+ may^'z^'-^z +w-1 . ij?"%"-'.is + &c

'

t = z'^x^-'x.

Transpose z^'xT'^Xt and equate the corresponding terms ; then

wai-— ^= 0; nhx -^- maxz=:0\ ncx + m— 1 . hxz = 0, &c. ;

It ni „ . X m.m—lo tt/.«=-; b = -', tor z= -; c= —
, &c. Hence

the fluent = :r" x : r— + 5— &c., and

the law of continuation is evident.

(361.) Fluent 136.

By the same process the fluent of s'"a?"'~'i", where z = hyp.

log.
—

X, may be found ; the result is the same.

(362.) Fluent 137.

If in Fluent 135. w= 2, and w = 1, the fluxion becomes

z^Xy where z = hyp. log. x. This is found immediately by

Sect. II. = z'^x-f. 2xzz — z*x-f. 2zx, since 2= - = «*j?— 22j?

+f. 2xz = z''x— 2zx + 2x.

(363.) Fluent 138.

To find the fluent of Q^x^'x.

Assume the fluent = Q^ x ax'' + ix""' + ca;"~* + &c., where

a, &, c, &c. are constant ; then, if m = hyp. log. Q, we have

p p
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(by Art. 336.) wiQ^i x : ax" + bx""-' + cx""^ + &c.") ^, „ .

Q'i X : nax^'^ +w~ 1 . o . x"
* + &C.3

/, if both sides of the equation be divided by QfXj and x" be

t/ansposed, max''-[-mbx''~^ -i-mcx^~'- + &c.^ ^
— 0?" + nax""-^ +n- 1 . &t''~' + &c. 3

~

Equate the coefficients of the corresponding terms ; then

ma— 1=0, mb + na=Oj mc+n-l.b=zO; hence a = — ,m
- na n n—\.bn.n—\o ^1J= = r, c= =

;
—

, &c. ; A them rnr m m^

fluent = Q"" X :
—r- + z &c., and them mr nv

law of continuation is evident;

The same result would be obtained by assuming Q'x = y,

and x?^= %, and finding the fluent by the Rule in Sect. II.
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Chap. XXIII.

ON FLUXIONAL EQUATIONS.

(364.) Xhe object of this Chapter is, to shew the method

of deducing from a fluxional equation the equation of the

fluents, which may be called the primitive equation.

The fluxional equation, which expresses the value of 7,

deduced from a primitive, involving y and x, is an equation
of the first order ; from this may be derived another, involving

~i
,
this is of the second order ; and a similar mode of definition

x^

may be used in the successive fluxions.

(365.) An equation is said to be homogeneous, when the

sum of the exponents of the variable quantities x and y is the

same in each term ; as in the equation,

axx + hyx + dxy + cyy
—

O,

or ax-\-hyy.x-^dx-\-cyy.y — 0.

(366.) The simplest case of fluxional equations is that in

which the equation contains only one of the variable quantities

with its fluxion in each term ; here the fluent of each term

must be taken separately.

Examples.

Ex. 1. Let ax^x= y^y\ then — = —
.^ ^ 3 4

X'
Ex. 2. Let a^y^x = ay, or x'^x = ay~'^y ; then

,n+l

n -f 1

ay^"^
X—m'

r p 2
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11.x. 3. X- ~7= +
^tjT^ -ryy- ^by-\-cy ; that is, x =

2i*c 3
. 3y*?/ . . ,- 4h'c y'

"

Ex. 4. Given . = =— .
; to find the nature

of the curve, x and y being supposed to vanish together.

__ 1 ax 1 hif , , . ,Here - x .
- = r x .

^
-

; /. by taking the
« ^2ax-x^ » Jh'-y^

^ ^

fluents,
- X a circular arc of radius a, and versed sine x^ -r
a b

X an arc of radius ft, and sine y, .*. an arc, whose radius

X
is 1, and versed sine -

,
= an arc whose radius is 1, and sine

a

'•-. But since these radii are equal, and their arcs equal, the

sines must be equal. Now the sine of an arc, whose radius

is 1, and versed sine -, =v5f£zZ; /. ^^I^EZ =f ;

^ a a "

and yz= -- y, ^2ax- x'^, an equation to the ellipse.

(367.) The preceding rules will sometimes apply when two

or more variable quantities are involved in the equation.

Ex. 5. If v =y^z^x -{-2xz^yy + 3xy'^z^Zj then v = xy^z^.

• X XXI
Ex. 6. \i Vzz ^, then, by reducing the two terms

• yX ^ xxi
on the right to a common denominator, v = ' —^

, and

X
V— -.

I
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(368.) In some cases the quantities and their fluxions are

so involved, that these methods cannot be apphed. The

equations of this class are not reducible to any general form ;

but the variable quantities may frequently be separated by some

of the following rules.

(369.) Rule 1. Substitute for the sum of the two variable

quantities, for the sum of their squares, for their products, &c.

Ex.7. Let a'oc=:x-\-y\ x y.

Assume x-\-y — Z', then x-\-y = z, and x — %-y\ /.by

substitution, d^z — a^y = z*y, and y = -j ,
whose fluent is

known by Art. 44.

Ex. 8. Let xy+yx x V a* -x^ =
,

•

^^Ty^^
Assume xy— z, and a?*+y* = v; then xy-\-yx= z, and

v . I 'o

xx+yyzz: -', :, zx^a'^-z^ =-—7, the fluents of which

are known.

(370.) Rule 2. Multiply or divide the given equation by
some function of the unknown quantities, so as to bring it to

a form which i& known.

JEx. 9. Let myx + nyx = O.

Divide the terms by xy; then
1

—^ =0: .\ mx
X y

hyp. log. a?+wx hyp. log. ?/= some given quantity =c.

Ex. 10. Let - + ^ =
X y y'^

Multiply the equation by nxfy''', then ny''x'"''x+ naf*y'''^^y

^nax'^^x; and by taking the fluent, nx"i/''= ; and

if no correction be wanted, y"^
= ax,n+\

m +n+l
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Ex.11. Let ^ + ^-^-^^

Multiply by x^i/'' ; then pxF~^x xy'' -{-of x ry'^'^y — ^ •

The fluent of the first part is x^y^ ; and since y^ — \^ the fluent

X,?n+p+I
of the second part = ; therefore, if there be no

correction, ^' =
,TO+1

m-\-p+ 1 X a

_^ ^ ^
ax hy cz

Ex. 12. Let h — - — =0.
X y %

Multiply by -~ ;
then the resulting fluxion is ^-^

+ -^—^ ^ =
; and the fluent is -^21. = A.^

z" z'+' z"

The same method may be applied to fluxional equations of

higher orders.

Ex.13. Let x-xz^=:bz^.

Here z is not found ; therefore in deducing the fluxional

equation, z must have been supposed constant Multiply by

x; then x'x — jcxz^=bxz' ; and as z is constant, the fluent is

— - ~r- = bxz^ ; therefore z = , , ,
and z = hyp. log.2 2 ^2bx + x^

b+x-\-^2bx-{-x''.

(371.) Rule 3. It is sometimes useful to substitute for

one of the unknown quantities the sum of the other, and a new

variable quantity.

Ex. 14. Let az^zx-xx.

Assume z = a-{-x-i-v; then z =x+v -^ .\ by substituting

for 2 and z, wehave ax+avrzax+xx+ vx — xx, or av= vx;

(I'D

,\ X = ^, and x= a x hyp. log. v. Hence 2 = a-l-v + « x

hyp. log. ?;. Substitute for v its value, z-a — x, and x= ax

hyp. log. z — a — x.
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(372.) Rule 4. Substitute for one fluxion or for one

unknown quantity, the product of the other and some new

variable quantity. This mode of substitution may be adopted
in homogeneous equations.

Ex. 15. Let the equation be - — - =~—
.

y X ay

Assume y — zx\ then y-=:zx-\-xz. Hence, by substitution,

%X-\-XZ X x^x z x^x
;:;

" — —ttj ^r - =—
7--; .*. azz = xx; and if nozx X az^x' z az'x^

correction be wanted, a?' = a;s*= -^ , and x^ — ay^,

Ex.16. \^\.xx-\-ayx-^yy
— Q.

Assume y — zx\ .*. y-=.zx-\r3cz. Hence, by substitution,

XX + azxx + z'xx + x'zi — Q ; or jcix 1 +a^ + 5$'= — x^zz ;

, whose fluent is known by Fluent 101.
X \-\-az-\'^

Ex. 17. To find the fluent of axx-\-hyx-\-dxy-\-eyy — ^.

Let y=izx\ then y — zx-\-xz\ therefore, by substitution,

axx + hzxx + dzxx \- dx'z + ez'^xx 4- ex^zz = 0. Assume

X
c=:b + d; then xx x ai-cz-{-ez' + dz+ezzx x' = 0, or —

X

dz-^-ezz

a + cz-f-ez'

The fluent of the first part = hyp. log. of x ; and that of the

second is found by Fluents 100. and 101.

Ex.18, het xy-yx =xx y/x'-{-y\

Assume y==zx; then, by substituting for y and y, zxx+
x^z~zxx=xx ^/jf+zV, or x^z = xx X ^l+z' ; therefore

z X

Z^-qT^
- ~

; and hyp. log. z+^l+z'= hyp. log. ,r.
,

Ex.19. Let^- -^^i?-^
X y ay"'
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Assume y = zx; then ^ —zx+xz. Hence, by substi-

X zx+ xz x'^x z af'x ,, .
. „ ,.

tution,
^— =———

, or — = ———
; that is, -z"~'z' X zx az^'x'^ z az^'x""

= ; .*. Cor. = =: ; but z=~; /. by^ ^ ax m— n-\-\ ^

substitution, Cor. — '— = "
•

n ax m — n-\-l

(373.) Rule 5. If only one of the variable quantities be

found in the equation, substitute for one fluxion the product of

the other, and some new variable quantity.

Ex. 20. Let ax^^ =y x i'+^i *.

Let x — zy\ then azif^ =y x z'-jf- -f if^ —yy^xz'^-\'V\ ;

az az-Saz'^z
,', y= , ; hence y— — .,3

—
; therefore x or Zi/=^

i^+n
'^

z'+iY
^

azz —3azH
, „ , t^, 3a

, whose fluent or aj, byrluent55, =
2'+ll^ 2x1+2*

a

l-\-z'\

1
Ex. 21. Let - -

x' +if y
Here x is constant. Assume y = Zx. Then y = zx ;

hence, by substitution, — ~ — -p
—

r ; .*.
— zx x f. zx^ X- + z^x^ ,f.zx

"^

= i' + z'i*. or —
f. zx = — .

^ "^^

. Take the fluxion ;

l-^-z'xzx Z 3ZZ , , ,
then -zx-izx ; .'.

- =
^ ; and hyp. log.

Z 2» 1 ~r"Xj

i + Cor. = - X hyp. log. l+z*.

Since z or x must enter into every term, let Z be corrected

by taking it = ax, a given quantity ; then hyp. log.
—

: =

I X hyp. log. rr^; .-. ^ = rri^*, and ai==^ :

I
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.-. sri or y = ; hence (Fluent 40.) x - —--;==

1 ^+ Cor., and 7/= - , + Cor.

Ex. 22. Let 3/^'i= «i^ 4- 2a i'y' 4- «:y^.

Take zp = x ; then ?/2y* = ajs"^^^ + laz^if' + o^"* ;

.*. 3/
= a^' + 2a5; + -, andy = 3a5;';z+2ai—j . Now x= %y\

/. x — ^az^z-^2azz , and x— + az^ -ax hyp.

log. ;s.

X may be found in terms of y, by obtaining the value of %

from the equation y — az^-{-2az-\- ~
, and substituting it in the

3(iz*

equation x — j-ax' -ax hyp. log. 2.

Ex.23. Let:. = ^+^^' + ^4&c.
Assume x := zy ; then, by substitution, x = zy + azy

+ fe5;y + &c.

In this equation, for zy write v; then a? = v+ av'+6i;^

+ &c. ; .: X or zi/ = V i- 2avv + Shv'v + &c. ; that is,

vif-^ =i; + 2ari; + 3&z;*'z; + &c. ; .-. hyp. log. y z=. hyp. log. v+

3hv^
2av -I f- &c.

2

(3/4.) Rule 6. Take the fluxion of the given equation, one

of the fluxions being supposed constant.

Ex. 24. Let the equation be «/ + -^.—— z=x- '—
.

X y
Make x constant, and take the fluxion ; then y +

ay — xy-yx . . yvx-if-x ,. a — x yyx^J. ^—^-_ -X + -^ -^
. /^ ; .-. y X —r— = ^^, and

X y
^ X if

a a
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— =
; hence y~^ii = a— d

"^
x i; therefore 2?/^=r —

y a-x ^ ^ ^

2 xa— a?)"*".

Ex. 25. The equation
—r^— = jr + ^ ^, solved in

the same manner, gives 2x^ = 2 x 0+^^^.

Ex. 26. Let yijx
—

xij^ = ai'.

Take i constant; then i/^x {- yyx — xy^
—
2xyy := O, or

jp 2y ,
,

.

yyx=2xyy ; /. yj? = 2^x, or - = —^
; hence hyp. log. x —

2x hyp. log. y, and ax =3/*.

(375.) Rule 7- The equation may sometimes be brought

to a better form by completing the square and extracting the

root.

Ex. 27. Let
if-

=: xy- x^x*.

X^ X^ X J

Hence ^f*
- ijr+~ = 7"

- ^i* ; /. y-- = iix v 4— •**;

.% y= - =fc i X ^i -
of; and «/= - =*= the area GPEA,

where GP = x, and G£ = i. (Fig. p. 229.)

Ex. 28. Let the equation be x^x^-\-xyxy = a^if'.

Complete the square ; then x'x^ + xxyif + "^-j-
= a^y^ -h

^i^-^
; therefore, by extracting the square root, xx-\-'-^:=y y.

4 2

ya. + i,'=-|xV4aM-y'
= ^^^H-^^; the

fluents of which are known by Art. 43. and 214.

(376.) Prob. To transform a fluxional equation of the

second order, containing two variable quantities x and y, of

which X flows uniformly into another in which y shall flow

uniformly, or
if
be constant.
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Let Mj4 be a curve, whose abscissa j4P flows with a uniform

velocity; let AP=^x, Pp=oc, PM=y, ^^
and 2mf—y. Next, suppose y to flow

uniformly; ]et Mh=y ; then /ierri, and

2me= x. Now by similar triangles, Mhe,

fme, eh{x) : hM {y) :: 2em {x) : 2m/ j ^ ^

(—j'); .'.y=
— ^, which, being substituted for

j^*
in the

original equation, will give another equation in which y is

constant,

(377.) The same proposition may be thus demonstrated:

Let y = a+ hx+coc^ + da^ + &c. ; then •? =6 + 2cx+

S^/jr' + &c.

Assume i constant, and take the fluxion ; then -: = 2cx +

6dxx + &c.

Next make y constant, and take the fluxion ; then ~ ~
= 2cx + 6dxx + &c. ; .*. "^ , when x is constant, = — ~- ;

when y is constant, or y, = ~ —-,

X X

y'x

(378.) Rule 8. Any fluxional equation of the second order,

containing only x and y, in which x is constant, may be trans-

formed into another in which y is constant, by substituting for

y the fraction - ^-r- .' X

Ex. 29. Let oty
— xy- ay ^ = o.

In this case, since x is not found, x is constant. Substitute

according to the Rule for y ; then iy + J?X ~ + ax ^.

^^ = 0, or i^ •{ XX -\- ax 7^ = ; the fluent = xx -{- ax
b



292 FLUXTONAL EQUATIONS.

- ~r } which must be equal to some constant quantity. Now

since x ov y must be found in every term of the first fluxion

of the equation, the constant quantity must be of the form

,1 ... a?'?/ . . . 2hxx
,

2ahx
cy; .\ tdike xx-{'ax —= 0/; then y= —, + —; -,^ 2b ^ ' ^

2bc-\-x' 26c+x'

and^ = i X hyp. log. 2bc-\-x^-\— xa circular arc, whose radius

is >sj2bc, and tangent x,

(379-) This equation may also be solved in the following
manner :

Multiply it by the fraction -rr ; the result is
"^

.^
—^ —

y y

-rr- r- =0 ; and the fluent —r H—r
—
—7 = some constant

y o y y ^b

x^y
'2b

X 11

quantity = c; .' , xx •\- ax ^ = cy, the same as in the

last case.

(380.) The most general method is that of an infinite series,

which is to be used when other artifices fail.

Rule 9. For the quantity whose value is to be found,

assume a series involving the powers of the other with unknown

coefficients ; substitute this series and its fluxions for their

values in the given equation, and equate the coefficients of

the corresponding terms.

TttX

(381.) Ex.30. Let =y, ov mx-y-xy — O.

Assume the series, and follow the process adopted in

Art. 144 ; a: = -^ + —, + &c.m 2mr

Ex. 31 . Let yx^ + mxy - m*y = 0.

In this case x is constant. Assume x=l, and let y = ax

'\-bx'' + cx^+dx*+ kc; then y = a-{-2bx-\'3cx*+ 4dx^ + Sec,



f +
kc.^

p" + &c.> =0.
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andj/ = 2i>+ 2 . 3 . CO?+ 3 . 4 . rfx*+ &c. ; hence, by substitution

in the original equation,
ax + bx" + &C.

-^Tna+ 2mbx -^ 3mcx^

— 2m''b - 2 . Srn'cx -3.4. rn^dx^ -

Hence ma— 2m'i = 0, a + 2mb - 2 .3 .nfc- 0, b-{-3mc-

7 m« a 2a o

3.4. nt'd = O, &c. ; :. b = -—
,
= -—

,
c=

^ ,
&c. ;' 2m 2m 2 . 3 . m*

••• ^ = «^ +^ + ?7^^ +&c.=.ax:^ + ^+ ^-^
+ &c.

(382.) Ex.32. Let jnx^x+ i/x
— n^= 0.

Assume i/
= ax^+ bx* + cx^ + &c. ; .*. i/

= 3ax^x + 4&a?'i

4-5cx^i + &c. And by substitution in the given equation,

mx^x+ ax^x+ bx'^x + &c.^
— 3nax^x-Anbx?x-bncxf^x — hc.^

Hence m-3wa= 0, a— 4w& = 0, Z>- 5wc= 0, &c. ; .*. a =
m
3n'am b m ^ mx"

b= — = , c = — = —-
, &c. ; .'. y= — h

4n 3.4.71*' 5» 3.4.5«' ^ 3n

mx*
.

mx^
, g^ + &c..

3 . 4 . JT' 3 . 4 . 5 . w^

If in this equation we had assumed y=Ax -\- Bx^ + Cx^

4- &c., it would have appeared that A = O, and B= ; so

that a regular series beginning with x is not always required.

The principal difficulty is to determine, what kind of series

with respect to the indices ought to be taken, that no super-

fluous terms may be admitted. As the subject is curious rather

than useful, the Reader is referred to Simpson's Fluxions,

p. 296. Second Edition.
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Chap. XXIV.

SECT. I.

PROBLEMS.

Pros. 1.

Xwo weights are connected by a chord going over a single

fixed pulley; to determine their ratio, so that one shall

generate the greatest quantity of motion possible in the other

in a given time.

Let P be the greater weight, and y the less; then the

P~v
accelerating force =

-^
——

; /. the momentum of y mtk
xJ

oc -75
—^ X V, which is a maximum by the Problem ; hence the

fluxion of —^
—^ =0, ox Py— 2yyy.P+y-yx Py-y*=0,

or P—2y X P->ry= Py-y'' \ .'. y^+2Py= P* ; and by solving

the quadratic, y = Py. ^2 - 1 .

P '. y y. \ '. V^-1.

Pros. 2.

Materials are to be raised to a given height by means of

a given weight hanging over a single fixed pulley? What

weight must be raised each time, so that the greatest possible

quantity may be raised in a given time ?
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Let t represent the whole time, n the time of one ascent,

5 the given space; then S:=mn'xF', .*. " =V ~ji5
^^t

~ = the number of ascents ; /. this number - tx\/ -~rr .

n *^

Also, if P be the given power, and x the weight raised each

P— JO / Ytl /P ~ OC

time, F= pTT' •'• ^^ number = ^ X V
-^,

x V p+^J
/ TYt /P X

and the whole weight raised = ^ x V If
X V p .

x a; oc

A/ X X, which by the Problem is a maximum. Hence^ p^-x
^

Pt^ __ jr>3 ^ ^ , ,

its square —p is a maximum, and its fluxion =0 ; that is,

2Pxx ~ 3x^x X P-{-x-xx Px""— x^ — 0, from which equation

,_PxV5-l
2

*

Prob. 3.

A body falls from ^ to 5 by the force of gravity, and then

rolls uniformly on a given horizontal line BC with the velocity

acquired; to find AB, so that the time of falling down AB
added to the time of describing BC may be a minimum.

Let AB = x, BC=b, m = 16-^ feet. The time down AB=

\/ — , and the velocity acquired =^ 4mx.

Also, since the velocity in BC is uniform,

. , ^^ BC b ..

the time of describing 5C= = . r^ V ^4mx;

.-. by the Problem, \/ — + . is a minimum, or x"^ +m ^ Amx

f) T
—^ X U JC b

-^-^ is a minimum ; hence —-=. = 0, and x = -
,

2 2s/x 4x-^ 2

.jy BC
or AB =

B
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Prob. 4.

From what height above C must a perfectly elastic ball

be suffered to descend by giavity, so that it may impinge

upon A, and return to the given point C, in the least time

possible ?

Let B be the point required; take BC=x, AC=ai then

the time through BA= \/ ; time through BC= ^
m

^ m the time down CA, or the time of rising

through AC after impact, = — .— '^—
. Hence

the whole time of falling through BA and returning to

^ 2^ a 4- X- Jx . . „ i- ^
C = —^ 7=—-—

, a mmimum. Hence
-y/m

' *

^a + X 2^x

= 0, and X is found = -
.

Prob. 5.

Given two perfectly elastic bodies A and B
;

to find an

intermediate elastic body x of such magnitude, that the motion

communicated from A to B through x may be a maximum.

Let a = the velocity communicated to A, w the velocity

communicated to x, and b that communicated to B ; then,

by mechanics,

A -{• X : 2A ;: a : IV

X -\- B : 2x :: w : b ;

.-. A + x^ x + B : 4Ax :: a : b, or

A-\-x-{- +B : 4A :: a : b,
' X

'^w the two mean terms are constant ; therefore the first

varies inversely as the fourth ; but the fourth is a maximum ;

therefore the first is a minimum. Hence, by taking the
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fluxion, X-
ABoc

X
0; .*. x^ = AB, and A : x :: x : B, or j;

is a mean proportional between A and B.

Cor. If A impinge upon x at rest, x upon 3/, y upon 2, &c.

and z upon JB, the motion communicated to 5 is a maximum,
when the several bodies interposed are geometric means between

the first and the last.

Prob. 6.

Given two sides of a triangle ; required the third, so that

a body may fall down it by the force of gravity in the least

time possible.

Let AB, BC he the two given sides, of which the greater

AB is drawn parallel to the horizon ; j^^

with 5 as a center, and the less side

BC as a. radius, describe the circular

arc CM, From A draw AF per-

pendicular to AB, and make AF=
BC; join FB, Make the angle FBC

equal to the angle BFA; produce

BC and FA till they meet in D, and

join AC; CA is the line required.

For if BC be produced to Z>, since DF= DB, and AF~
CB; therefore DA=:DC; and a circle described, with the

center D and radius DA, will touch CM in C. Hence, by
mechanics, the time down CA is less than the time down any
other line PA drawn from A to the circumference CM,

Prob. 7,

Given the base of an inclined plane; required its height,
so that the time down the plane may be a minimum.

R R
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Let the base = h, the height = x ; then the length =

f^a^-^x^ ; but the time oc — c>c _— .
^.^

-r—_—.

^H ^x ^x
or is a minimum. Hence 2x*x- a^x— x''x = O, and

X

x= a, or the height = the base.

Prob. 8.

Given the length of an inchned plane ; to find its height

when the horizontal velocity of a body, after descending down

its length, is a maximum.

Let JB be the plane ; produce AB to E, and draw ED
perpendicular to the base CB produced.

Take AB = a, AC = x: then BC =

^a* — x". Now the velocity through AB
—^Amx, if ?w=l6— ; and this velocity

: the horizontal velocity :: BE : BI>
:: BA : BC
V, a \ sj a^ — xf",

:, the horizontal velocity oc >Jlc y. x/a'-a?% a maximum.
Hence cC'x — x? is a maximum, and c^x — ^x^x — O, and x —

—p, or AB : AC :: ^3 : 1.

If the base be given to find the height, it will be found in

the same manner that BC= CA.

Prob. 9.

Given the height of an inclined plane ; required its length,

so that a given power acting upon a given weight, in a

direction parallel to the plane, may draw it up in the least

time possible.

Let a = the height, x = the length, P the power, and ff^

the weight. The tendency of W down the plane is equal to

I
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,
and the accelerating force =—

p^j/f^ ~R+lVxx'

S XX P+Wxx V

but r*= —r^; /. T^ in this case = — -='" "^^^^
^^, .. X .» ..... v^aov. _

^ ^ ^^__ ^^
0?"

^,^ „^ is a minimum ; /. 2xx x Px- fVa-Px^x^O ; and
Px— fra

Px-2alV, or P : ^ :: 2a : a; :: twice the height ; length.

Prob. 10.

A body is projected from a given point, with a given

velocity; to find the angle of elevation, when the horizontal

range is a maximum.

Let X = the versed sine of twice the angle of elevation ;

2r = the parameter. The amplitude oc sine of twice the angle

of elevation oc ^ 2rx - x" ; .*. by the Prob. >j2rx-x?', or

2rx-x^, is a maximum; hence 2ri:= 2^i', and j;=r, or the

angle of projection is 45°.

Prob. 11.

The same supposition being made, it is required to determine

the angle of elevation, that the area of the parabola described

may be a maximum.

2
The area of the parabola = - x base x altitude oc base x

altitude oc sine x versed sine of twice the angle of elevation oc

,J 2rx
— x^ X x\ .'. sj 2rx

— x?" x x, or its square 2rx'^ — x*,

is a maximum; hence Qroc^x- 4x^x=iOf and a;= — = versed

sine of twice the angle of elevation.

Prob. 12.

The same things being given, it is required to determine

the angle of elevation, when the sum of the amplitude and

altitude is a maximum.
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Ill this case, since the altitude = -
,
we have - + x/ 2rx - ar*

A. , A. ^

X rx — XX
a maximum ; .*.-:+ . —

^ V 2rx - X*
O ; hence sj2rx- dc^

or— r, and x is found in a quadratic equation = r x

= the versed sine of twice the angle of elevation.

x/i7±l
n/i7

PROB. 13.

A body is projected with a given velocity from the top of

a given tower ; required the direction of projection, that it may
fall at the greatest distance possible from the bottom.

Let AB the tower = «; suppose the body to be projected

in the direction A F, and to fall at D. Let

DC parallel to AF meet AB produced in

C, and draw AE parallel to BD meeting
the perpendicular DF in E. Take FE
or BC=x, and p the parameter of the

parabola. Then px AC = CD*, or p x

oTx = CD"; and DB^ = DC-CB^ =

p X a + x— af^ ; therefore pxa -i- x-x^ is

a maximum ; and px — 2xx, or x =: ~
.

Hence, in the right-angled triangle AFE,
which is similar and equal to DBC, AF
and FE are known, from which the angle of elevation FAE

may be found.

Prob. 14.

To deduce a general expression for the time of emptying

a vessel through an orifice in the bottom*

i
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Let JEB represent the vessel, C the orifice, CD the

perpendicular altitude, and EHF
the descending surface of the fluid.

Take z to represent this surface, n

the orifice, w= 32g feet, and x =

CG, the height of the fluid at any

point of its descent. Then the

velocity of efflux is ^qual to that which a heavy body would

acquire in falling through
-

; .*. the velocity of efflux =

^mx. But by hydrostatical principles, as the area of the

surface : area of the orifice :: the velocity at the orifice : the

velocity of the descending surface ; that is.

z '. n V, sjmx : velocity at the surface =
wx mx

— zx
... T—

UsJmx
the time required.

; the fluent of which, when corrected, gives

PROB. 15.

1. To find the time in which a given cyHnder will empty
itself by an orifice in the base.

Here z the descending surface is constant ;

and if CD = h, and p =i 3.14159, z ^ ph* i

let BA^a, then T = —^.^=^=:
^ ^ ;

n^Jmx Wa/ m
pff" . 2pJf-

,\ T = .— X - 2x^ + corr. = —j^ x
Ha^m Tiy/m

fflT _ jjT
. and the whole time = ^ph'a^

In the same manner the time of emptying any prismatic

vessel may be determined.
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Prob. i6.

2. To find the time of emptying a hemisphere by a hole

in the vertex.

Let ACB represent a hemisphere (See first Fig. in pre-

ceding page). Let DA = a, CG — x-, then the descending
— p ^axoc — x'x

surface = » x GF*=:p x 2ax - a;* ; and T= 7= X
^

ny/m x"

-P
nx/m

X 2ax^x - x^x ; ,*. T= ~P 4ax^ 2x-^ .—
7= X —— + corr.

rii^m 3 5

P
Leta:= a, T=0; /. r=-^x— - — ^ ^ ,.

n^Jm 3 5 w>y^w

^ - _ . Let a?= ; then the whole time = ^

r— '

3 5 Ibn^m

Prob. 17.

3. To find the same, the orifice being made in the base

of the hemisphere.

Let CF=x; then FE^ = a^-ar*; /. p x FE"" or 2 =

j?xa*-a;*; .% r= —7= X
x^

= —^ X a^x'^x - x^x ; and T =

~^r— X 2a'x^ - ££!+ C; that is,

/^ Sa'^ 2ar^T= -^ X : 2a^-_-2a'a?^-±i-; .'. the whole time =
riy/m 5 5

8pa^

bn*Jm
Cor. If equal hemispheres are emptied by orifices in the

vertex and the base, the time in the first case : the time in

the last :: — :
-

15 5
,

:: 7 : 12.
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PROB. 18.

4. A sphere ABF being filled with a fluid, it is required

to compare the times of emptying the upper and lower

hemispheres by an orifice at the bottom D,

Let DI=xi then, if KA=za, K being the center, z =

-P
p X 2ax — x^; therefore T= /

— XVn^/ m
2ax^jc — x^x, and T-

P 4 ax^ 2x^
7= X

n^m 3 5 c

+ corr. Now if T= 0, x= 2a; .*. T=

P_^ .^
4xax2a) 2x2a\^ _

n^m
'

3 5

P AcLX'^ 2x^=^ X —— - —-- ; or the whole time of emptyingn^m 3 5

Pa^ l6xs/~2

n^m 13
, since x vanishes.

Again, if a? = a, we get the time of emptying the lower

va7 14
hemisphere = p^ x -rr . Hence the time of emptying the

l6v^2-14 pa^~~' ^ '—-—
upper part = '"^

~^

"
x '\— ; .*. the time of emptying^

15

the upper part : time of emptying the lower ::
.. 1^n/^-14 14

15
*

15"

:: 8>/2-7 : 7.

Prob. 19.

5. Let the vessel be a paraboloid, and the orifice in the

vertex.
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Let c = the latus rectum ; then, if DE = x, FE* = ex,

• —pC OCX

andz=7?ca:; .*. T= ^=r x ^

— pc
X x^i"; .'. T

. /S 1
—

. ,
— X

n sj ni 3

+ corr. Let x =DC= a ; then T— ;

.•. the whole time =—;= x — .

risjm 3

Prob. 20.

6. Let the vessel be a paraboloid, and the orifice in the

base.

Let CE=x, DE=:a—x; .-.pcxa-x-z;

ax — XX —
pc

x^

- X ax~^x — x^Xy

— pc I OrT
and T = —^ x 2ax^ - '^^ + corr.

risjm 3

Now if j: = a, 7"= ; hence the whole

IpC 4«T
time of emptymff = -=z x .^^ ^ n^m 3

Cor. If the paraboloids in the last Examples are equal, the

time of emptying the former : time of emptying the latter

2 4
**

3
*

3

:: 1 t 2.

Prob. 21.

7. Let ADB be a cone, and the orifice in the vertex.

Let DC=a, CB = h, DG= x, GF ^

hx
y\ then y — —

, and % or py"^
—

a

a
a^ris/m

z=z X x^x'f and the
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2a^ _ 2p}f-a^

~5~
whole time of emptying = j=r x

Cor. The time of emptying a cone at the vertex : time of

2
emptying a cylinder of the same base and altitude ::

-
: 2 ;:

1 : 5. (SeeProb. 15.)

Prob. 22.

8. To find the time when the orifice is in the base.

Here let CG = x ; .*. DG=a~x ; d

then z or p x 3/*
=

pb

X a'—2ax-\-Jc'^

X a^x~^x— 2ax^x-\-x^x\

16 wi'o^
and the whole time = tt x

15

Cor. If the cones be equal in the two last cases, the

time of emptying the former : time of emptying the latter

2 16
**

5
*

15

'A 2^ '.^.

Prob. 23.

Let CAD represent a plane figure or a solid, generated by
the revolution of CAD about its axis AK. It is required to

compare the resistance of the curve line CAD, and of the

surface of the solid, with the resistance on the base CD ; the

plane figure or solid being supposed to move in a fluid in

the direction of its axis.

Take FE a small arc ; draw FH,
EGf perpendicular to CD, and FQ,

EPj perpendicular to AK. Let AQ
=

j?, QF=i/, AF-z; then ultimately

FE= z, FR=:x, and ER=y. Let

Let LF represent the force of one

particle of water ; draw LM perpen-

dicular to a tangent FM, and MN to

s s
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LF\ then, if this particle struck the base perpendicularly at

H, it would be wholly effective ; but its force on the curve

at F is diminished in the ratio of LF to LN, or of LF* :

LM^l that is, oi FE' : ER\ or of i* : y*.

Now let CAD be considered first as a plane surface. The
number of particles which strike upon FE and HG is the

same, and it varies as GH or y. But the whole effect is as

the number of particles x the force of each ; .-. the effect or

the resistance on FE : resistance on GH :: '^^
: v :: —

' y ••
'^T17^

' y^ °^ •• "^"^
'

y'^ •*• ^^ ^^^^^ resistance

y^

on the curve CAD : that on the base CD :: J^.
-

.
-

: f.y.

y

In the next place, suppose the figure to be a solid, generated

ty the revolution of CAD about its axis. In this case, the

number of particles striking on the annulus, formed by the

revolution of the part GH, is proportional to that annulus, or

to the product of GH and the circumference described by H\
that is, it varies as ^pyy, or as yy. Hence, since the resistance

is proportional to the number of particles x the force of each,

J' iT'f-yythe resistance on the surface : that on the base :: /. ^^ : f.

yji^ /> . .f-yy4^ yy r- .

Prob. 24.

1. To compare the resistance upon the sides of an isosceles

triangle or prismatic solid CAD, moving in the direction of

a perpendicular AK, with that on the base.
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Here if ^C=*. CK=h, FQ^y, FE= z, ER=i/, i* : if

s' : i* ; .*. since the resistance on the ^

sides : that on the base ''J-''^ '' f'V

(Prob. 23), it is
•.:/.'^'

'

f^y
" ^' :

A* :: KC^ : CA\

Cor. If CAD be a right angle, and therefore ACK=4b°,
the resistance on the sides : that on the base :: 1 : 2.

Prob. 25.

2. Let CAD be a semi-circle moving in the direction KA.

ay
Here i =

ija
r= (Art. 44.); .*. %"•

'-t
. Now the

resistance on CAD : the resistance on CD ::JN*^ '"f-y*

.3 K, /»* -jj*

.-. in this case, they are v.f.
^ ""

^
^

: f.y v.f,
"'^J ^

u y u.

'fy " y- ^^'' y '• (i^2/
= «) «-| : a " 2 : 3.

Prob. 26.

3. Let CAD represent a cone.

Here if 07^=6/ and AC=s, ^=- ;

.'. since res. on surface : res. on base ::

•a 'J' yy, we have, res. on surface
|

I res. on base ::/. yyx-:f.yy :: i> : ** ^
:: C/^" . CA\

Cor. 1. If C^D be a right angle, the former resistance :

the latter :: 1 : 2.
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Cor. 2. If a right-angled cone and cylinder, whose bases

are the same, move in the same fluid in the direction of their

axes, and the resistance upon the cone — resistance on the

cylinder ; then the velocity of the cone : velocity of the

cylinder :: ^2 : 1. For let f^ represent the velocity of the

cone, and v of the cylinder; then, since by the last Cor.

when the velocities are the same, the resistances are as 6' : **,

and that, cseteris paribus, the resistance varies as the square

of the velocity; .•. in this case, resistance on cone : resistance

on the cylinder :: F^b' : wV j whence F'b^ = f^V, and

F : V :: s : b :: >/2 : 1.

PROU. 27.

4. To compare the resistances upon a globe and cylinder

of equal diameters, moving with equal velocities in the

direction of the axis of the cylinder.

In general, the fluxion of the resistance on the solid : the

fluxion of that on the base ::
—-

: yy, smce z*= , , ^
z '^'^

OL —y

(Art. 44.) :; ^.
^^

: yy,

;: yy — ^~~ : yy\ •*. the whole resistance on the
(X

y* y* 2/*

globe ; that on the cylinder ••

'j
""

^»
*

'j
» ^^ y^f'f

''

2a* -a* «*
:
-

:: 1:2.
4 2

Prob. 28.

5. Let the solid be the common paraboloid moving in the

direction of its axis.

Here 2/' = aa?; .*. i= -^, and %.^
= -^ -, hence, since

"^ a
if

a

resistance on solid : resistance on the base v.J, -"-—
'- J-yy,

1 + n
y
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they are v.f-
•^•^^,

'Jf.yy ::

|-
x hyp. log. ^ +2/* :

'1

(Art. 42. Ex. 5.) :: — X hyp. log.
— + i/* : t/'.

Prob. 29.

6. A solid, generated by the revolution of the common

cycloid about its base, moves in a fluid in the direction of its

base ; to compare the resistance against this solid with that

against its circumscribing cylinder.

Let FA=2a, BC=x, CD=y\ then x : y :: Dn : np
:: MN : NF :: ^~AN : sf^^, ov

^ _ y
X' : y^ ;: y : 1a-y\

hence resistance on solid : resistance on

the cylinder :: J.
yy

1 + y
•' /. yy

•'

2a -y

resistance on the solid : resistance on the cylinder :: 2a* "

~-
: 2a' :: 1:3.

o

Prob. 30.
ii

7. Let CAD be a spheroid, whose center

is K, moving in the direction of the major
K

axis KA ; to compare the resistances as

before.

Let AQ^x, KQ^u, QF=:^y ; then, if AK^a, and the

latus rectum = 2r, by a property of conic secftions, a* - w» :
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y*- :: a \ r\ :, a* — i^ =—
, and u = \/ a" ^, and

— ayy . ...
u — -—

y
' ' =

; but since u -{ x = a, 14= — x ; »\ x=

r\/a' - "-£
^ r

ayy , i* aV «v* ,

^f===, and — = „ ^
^

i
= ——-

^, and

rxVa^-^
^ ^ ^

1+- = 1 + —^-ii
—

-^

= ;i- ^ ; therefore -^^ =
^' ar^ - ry ar^ - ry^ or_

f
- X 2/^, whose liuent (by rluent 10.)

=
ar^+a — r.y'' 2xa — r

^(^""r^ . , - «r'
+ .

^
,a X hvp. loff. 2/*H

= ^ ; .'. resistance against
a — r]

Jr b i; fi_j,

the spheroid : resistance on the cyhnder :: A :
'^

:: 2A : ?/*.

Prob. 31.

8. If the figure be an hyperboloid, by conic sections,

u^-a- : y^ :: a : r; and in this case, ^^^«+ ry-
xj^^

!*•»/* I r^«

whose fluent = —^- + .a x hyp. log. «/' + =B
r + a r + a\

•'^ ^ ^ r + a

(Fluent. 10.) ; /. resistance against the soHd : resistance on

the cyhnder :: 2B : y*.

Prob. 32.

9. To determine the frustum CDEF of a triangular prism,
of a given base CF, and altitude BA, which, moving in a

medium in the direction of its length BA, shall be resisted

the least |im possible.
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Let CH drawn parallel to AB meet ED produced in Hi
on HC describe a semi-circle, meeting h q c

DC in P ; join HP, and draw PQ per-

pendicular to HC, and PR to DH Then

the resistance to DC, which varies as the

number of particles x the force of each,

varies as
DHx DH' DHx DR'

or as
DC' ' "* ""

DP' '

but DH : DP :: DP : DR, since the

angle DPH k a right angle; /. DH : DR :: DH' : DP',

or DP' : Di^; .•.!)/? =
DP'

or the resistance

to DC varies as Z)jR; and the resistance to AD and DC
varies as ^D -f DR. Now this is a minimum when DR is

a minimum, or when RH is a maximum ; but RH= PQ,
and PQ is a maximum (Art. 23. Ex.2.) when CQ=^QH;
that is, when DCH or DCB = 45°.

Cor. In this case BC is supposed to be greater than BA ;

if not, the whole prism will be less resisted than any frustum

CDEF of a greater prism.

Prob. 33.

10. To determine that frustum of a cone of a given base

and altitude, which, moving in the direction of its axis, shall

be less resisted than any other^

Let HBEI be the required frustum, and HA I the

complete cone. Then, by Prob. 26, the

resistance on the surface AH : that on

the base HI :: HG' : AH' ; .*. if the

resistance on the base = 1, that on the

HG'
surface =

AH''

Also, since the resistance varies as the number of particles

into the ^orce of each, the resistance on the base HI : that
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on the base SE :: HG^ : BC\ the force of each being the

same when the velocity is the same ; .*. the resistance on the

base BE =
-fjjyi

=
'jxj^ ' ^"^ *^^ resistance on the base

BE : that on the surface BAE y. AB^ : BC^ ; therefore

the resistance on the surface BAE = -rn^ x -r-rr- = v. tt •

i/G* AH^ AH'
Hence the resistance on the surface of the frustum BHIE=
HG'^BC' ,

. ,^ . AB^-hHG'-BC^
jTTt ; and the whole resistance =

jTt^
"

AC'+ HG'
AH* '

Let AG =zx, CG= a, HG=zb; then AH^ = b^+ x'
-,
and

, .^ ^ - a r+ fc* x""- 2ax + a'+ b'-
,

a^ - 2ax
the resistance = L^—- = n~n = 1 H r-m- '

1 • 1 . • . - 2ax X ar^' + i^+ Sj-i X 2ax-cC
which IS a minimum ; .*. . '——L—^

=
; hence a;* + i* = 2j?* — ax ; .'. oc^— ax = b^, and ^ = —

Cor. The Thirty second Problem might be solved by the

same process;
the only difference is, that the resistance on

the base CF in that Problem : that on DE :: CB : DA ;

LA BC*
and the expression, which is a minimum, =

j-^
+

-j-^^
x

I _ l^
,
BA and CD being produced to meet in L, or

LB

t:A + ~!zlx^—\ which, according to the same substitution,
LB LO LB

varies as '^""^ H ;
—y^ ; and the fluxion of this quantity

X x^ + rx

being put = 0, gives x = h, or the angle DCB = 45°, as

before.
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Prob. 34,

To find at what angle the wind must act upon the sails

of a mill, so that its effect to produce
motion may be a

maximum.

Let X = the cosine of the angle ;
then if r = radius, the

sine = >y/r*
- a:* ; but the effect by hydrostatics varies as

X X r^-x" ; or r'x - x' is a maximum ; hence r'x- ^x'x = 0,

V
and X— —7=. , the cosine of 54°. 44'.

Prob. 35.

Let the triangle ABC be immersed in a fluid, so that its

base may be level with the surface ;
to find where a line T>E

must be drawn parallel to the base, so that the pressure upon

it may be a maximum.

Draw CF perpendicular to JB; let AB = a, CF= b,

FG^x; then CF : CG :: AB : DF,

or b : b-x DE, =ax
b — X

Now

the pressure varies as the surface pressed

into the depth of the center of gravity;

.*. the pressure in this case varies as 6-^
X X oe: bx' x% a maximum ; hence bx -

b

2'
2XX — 0, and x

Prob. 36.

If a semicircle ACB be immersed vertically in a fluid,

with its diameter contiguous to the surface ; to find on which

of the chords parallel to AB there is the greatest pressure,

the density of the fluid being supposed to vary as the depth,

T T
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Let CD—x, CE— r; then the pressure on FE varies as

FE X depth x density oc 2>Jr^— oe-

X a?*, a maximum ; hence the fluxion

of r*a:* -. ^^ = O, or 4r* o^x= Qx^x ; .*.

r X \/!.

- If ^GjB be a parabola, on the same supposition, x — — ,

h being assumed = CG.

PROB. 37.

Let AGB represent a hemisphere ; to find the section FE
parallel to the surface, on which the pressure is a maximum,
the density of the fluid being as the rii^ power of the depth.

The area of the section FE varies as 2/^, or as r^ — x^ \ hence

the pressure varies as r* - a;* x jc x a?'' ; that is, r^x^"^^ — o^""^ is

a maximum 5 hence w -f 1 .r^x'^x = w + 3 .x^'^*x, and x =

w+ 3
X r.

Pros. 38.

\ A cubic inch of metal, whose specific gravity is to that of

water :: m -. 1, is formed into a hollow cone, and immersed

with its vertex downward ; it is required to find the ratio of

the exterior diameter of its base to the altitude, when the

surface immersed is a minimum.

Let r = the radius BC of the base, DB the altitude = x,

DG the altitude to which it is immersed

= 2, j)
= 3.14159, &c. Then, by similar ^^

r z
triangles,

x : r :: z :
— — GF; and

the content of the conical part EDF=
GD py» = the bulk of

water displaced ; and the weight of the
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water displaced,
or ^^ x 1, =tm%\, the weight of the

cubic inch of metal; .-. 2: =V— x x^. Also, since the

surface of a cone = ^ the circumference of the base multiplied

into the slant side, the surface of JDC = pr x ^r'-\-x^;

but similar surfaces are as the squares of corresponding sides ;

/. X' : z' :: pr x ^^^M^ :
~

>
the surface

immersed ; which, by substitution, = prx^f' + x^ ^
3m^

X* pr*

X x^, a minimum by the Problem ; or -^—
;

is a minimum ;

and the fluxion being put = 0', a?= r x a^,

Prob. 39.

A cylinder of oak is immersed in water till its top is just

level with the surface, and then is suffered to ascend ; it is

required to determine the greatest altitude to which it will

rise, the velocity which it has then acquired, and the time of

its ascent.

Let h = the height, and a the base of the cylinder, and

suppose the specific gravity of oak : that of water :: n : 1.

Let X be any variable altitude through which the cylinder has

ascended, and /=
l6jz

feet. Then the moving force by which

the cylinder endeavours to descend = h x a x n, and the

force of the water upwards tD prevent it = h-x x a x 1;

/. the whole moving force upon the cylinder
= li—xxa-h

X ax n = ah-ax — hi< ax n = l -n .ha-~ax—mha- ax,

by substituting m for 1 — w, — a x mh - x. Hence the

. „ axmh — x mh-x ^^ .„

acceleratms: force = -j
= 7— . Now if v represent° hx axn nh

the velocity of the cylinder after it has rjsen through a space
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t;»=s=
.T, vv =:dz 2lFx=s:i m this case, ^ly • r—-•.

*27W W T* — T*^ F fi I -

2/ X --—
^-j
—^

5 and V —\/ —r y. J2mhx~ x". And when
nh nh

the cylinder has acquired its greatest ascent, t; = 0, or

i^y 2mAx- j:* = 0; /. a? = 2wA := the part of the cylinder

extant.

* X /nh, ^
To find the time, we have T=z - = v —r

mhx
^\A^

h

2l7ifh'' ^Imhx'-x''

V

and T=^/;

2/ sj '^nihx — x^

n
,
—T X ^ ; where

^ =3 a circular arc of radius m/i, and versed sine x^ which

needs no correction.

PROB. 40.

Let Q, be an object placed beyond the principal focus i^

of a convex lens; to find its position when its distance Q,q
from its image 5-

is a minimum.

Let QEz^x, FE^a\
then QF : Q,E :: aE : Qy,
or x—a : x \\ x \ Qq = q
a?"

'
, which is a minimum ; .*.

X ~ a

2xx X .r a-^x^x = O; that is, 2x^x — Zaxx-^x^x =5 0; .*»

x=r2a, or QE = 2EF, and QF^FE.

Pros. 41.

If a person view himself in a concave reflector, his image
decreases from the reflector to the principal focus, and then

increases in going from it.

Let E be the center, and

*t the principal focus of the

Concave refl-ector AC. Let

pq be the image of PQ,-, the

apparent magnitude of PQt

t<> an ey^ situated at Q. is
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|i-. Take ET^TCzza, QC=x, PQ=zM; then TQ :

TE V. TE ,Tq^~ ^ ~^', ,',Cq=Tq-TC=~^^ TQ a—x ^ ^ a-x
ax , ^ .ax 2ax-x'

^j^^ ^^^^^ p^ ,

ax Ma

a= -—-, and Qq — x-i-

pq :: QC : qC :: 0? :
—— t: a— :c : a;

,
. . pq Ma

,'. the apparent magnitude or -—^
oc

1

pq a — x

a~ X

whose fluxion =

Qq a~ X 2ax- x^
OC

2x X X - a
which is

2ax-x''
""^"^ '

2ax-x"^^ 2a x -x'^"^'

negative, while x is less than a, or QC less than TC ; hence

the apparent magnitude is at that time decreasing. But when

X is greater than a, or QC greater than TC, the expression

for the fluxion of the apparent magnitude becomes positive,

and the magnitude of the image increases.

Pros. 42.

If the eye and an object be both fixed, and a concave lens

be moved from the object toward the eye, the apparent

magnitude of the object will decrease to the middle point,
and then begin to increase. Required a proof.

Let ABDC be the lens, O the place of the eye, F the

principal focus of rays coming
in a contrary direction, PQ
the object, and pq the image.

The angle, under which pq
appears to the eye at O, varies

as ^—k' Assume QO = 2a.
qO

EE^Py QE= x, andjPQ = iT/.

Then, since QF : FE :: QE : Eq, Eq = QE X FE
QT

px
p-^-x

Also QF : QE :: QE : Qq; .-. Qq =
^,QF
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p+ x

id

Mxp

; hence Oq=iOQ.— Q.q — 2a-
2a^^^ax~3^

p + x p-\-x

And PQ (M) : pq :: QE : qE :: x : -^^
; .-. pq =

p+x
. Hence the apparent magnitude, or the angle qop,

pq Mp P+xwhich varies as ~^, varies as -—*— X
qO p + x 2ap-\-2ax— x'^

2ap+ 2ax — x^
. The fluxion of this quantity is

2xxx- a

2ap+2ax - 3c^\

which is negative, while x is less than «, but positive, when
X becomes greater ; that is, the apparent magmitude decreases

to the middle point, and afterwards increases.

PROB. 43.

To find the position of Venus when brightest. 1
Let E be the Earth, S the Sun, and V Venus ; join

SV, SE, EF, and produce EVto A,

making VA = VS ; with ^ as a center

and VS radius describe the circular arc

SA, and draw SB perpendicular to

EA. Then SEF is the angle of elon-

gation, SVA the exterior angle, VB
its cosine, and BA its versed sine to the

radius SV. Take SE = a, EV=x,
VB=y, SV=h. Then the visible

illumined part
oa BA c^h-y \ and the

brightness oc —-^
,
<^ -r

-
'-; j which

by the Problem is a maximum, ^oyt SE'^EV"" ->rSV*^
a" - h' - zc'

2EV.xVB, or a" = x'^-h'-\-2xxy; 2x

(if m*=a'-5')
wr — x*

2x
.*. by substituting for y, we have
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1^'"~2jF~
'"^^^"^""^ 5 that IS,

— IS a maximum ;

hence 2hi-\-2xx x ^x^-Gx'x x 2bx-7ri' + x' = 0; or if we
divide by 2x'^x, it may be reduced to this form

; —a?'- 4hx-\~
3m*= 0; .-. x^+ Ahx = 3m% from which equation ^= - 2Z>+
V^4^>*+ 3w" = - 2b ^^Sa' -f b\ Hence the three sides of
the triangle SEF are known, to find the angle of elongation
SEF, which is equal to 39°. 44'.

Prob. 44.

To find the position of Mars when least bright.

Let E represent the Earth, S the Sun, M Mars at the
time required. Join SE,
SM, EM; and supposeEM to be produced to Z),

makingMD = MS. With M
as a center and MS radius

describe the circle ASF; draw
SB perpendicular to DE.
Then SEM is the angle of

elongation, and SMD the
exterior angle of

elongation,
whose versed sine is DB. Take

ES==a, MS=b, EM=x, MB^y; then the brightness

^~^' ^"^ ^S^^EM^ + MS^^2EMx MB, or a'«

.^-,b^^2xy; .^^=*!:l^^^?!±£: ifm^-b^^a^.2x 2x 5 " '"^ — y " >

.-. the brightness oc i + ^^!±f_' ^bx + m'+ x^ ,. , .

^^ ^r^ ^^5
' which IS

a minimum. And the fluxion 2bx + 2:ri x 207^ - 6*«ix
2A.r+ m'-h^^ = 0, from which equation ^ may be found = ^

2b-h^4b*-3m^=z - 2^» +^6*+3a\
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Prob. 45.

The Sun being supposed to move uniformly in the ecliptic ;

to find when that part of the equation of time, which arises

from the obliquity of the ecliptic, is a maximum.

Let QQ represent the equinoctial, EL the ecliptic, A the

first point of Aries, PLQ the

solstitial colure. Then at A the

Sun's longitude and right ascension

are equal ;
and they are again equal

when the Sun is at L ; but at any
intermediate point, as B, PBG
being a declination circle, the lon-

gitude AB is greater than the

right ascension AG; it appears,

therefore, that from ^ to a certain

point the longitude increases faster than the right ascension,

and from that point to L the right ascension increases faster

than the longitude ; hence the equation is a maximum,
when the daily increment of right ascension is equal to the

daily increment of longitude. At that time let the Sun be

at B, and let BD be the increment of longitude, and GH of

right ascension, in one day. Draw the circle of declination

PDHj and the small arc BF parallel to GH.

Now GH : BF :: r : cos. BG,
and BF : BD :: S, BDF : r (since the triangle BDF
— is extremely «mall) ;

.-. GH : BD :: S, BDF : cos. BG :: S, ABG : cos. BG,
and GH:= BD by hypoth. ; .-. S, ABG = cos. BG. But by

Napier's Rules, r x cos. L, BAG = S, ABG x cos. BG\
that is, r x cos. BAG = cos.] BG\ hence r : cos. BG ::

cos. BG : cos. BAG ; or the equation is a maximum, when

the cosine of declination is a meau proportional between

radius and the cosine of the obliquity of the ecliptic.
The

longitude at that time = 46°, 1 4',
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'ROB.46.

To find when that part of the equation of time is a

maximum, which arises from the unequal angular motion of

the Sun in the ecliptic.

Let MDA represent the ecliptic, MSA its major axis,

and S the Earth in one of its foci.

With ^ as a center, and SD a mean

proportional between the semi-axes ot

ADM as radius, describe the circle

DEF. The area of this circle is equal

to that of the ellipse ; .'. if a body be

conceived to revolve in this circle with

the Sun's mean angular velocity, its

periodic time will equal that of the Sun

in the ecliptic ;
for the areas described

in the two cases dato tempore are the

same. Let this imaginary body be

conceived to set off from B at the same

time that the Sun begins its motion from the higher apse at

M. The Sun's velocity atM is less than the mean ; therefore

the angle BSG described by the body in some given time

is greater than BSH described by the Sun in the same time ;

and their difference, or the equation, will continue to increase

till the angular velocity of the Sun is equal to that of the

body ; hence the equation at that point is a maximum. Now
the angular velocity varies as the area described in a given

time directly, and the square of the distance inversely ; .*.

since the area described in a given time is the same in both

cases, when the angular velocities are equal, the distances are

equal ; or the equation is a maximum when the Sun is at D.

The absolute equation from both these causes is a maximum

about the first of November.

u y
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Prob. 47.

To a pendulum SA of a given length, suspended at S,

a given weight n is affixed at ^ ; to find where another

weight must be fixed, so that it may vibrate in the least time

possible.

Let F be the point required, and O the center of oscillation ;

then the pendulum itself being considered as of no ^

weiffht, if SA = a, and SF = jc, SO = —'-

° ' na + mx

(Art. 71-) Now the time of oscillation oc ^SO; .'.

fid* -i-fflOC^

since the time is a minimum, is a minimum ;na -f mx
and its fluxion, that is, 2mxx x na -\- mx — mx x

na^ \-mx^ = 0, or 2nax + 2mx'^=^na^ -{ mx^ ; .*. x'+
^nax no"

1 r. .1 •
, ,. a .= '

; and from this quadratic x= — v ^/^

^=SF.m

nl A

Prob. 48.

Let AB represent a straight lever moveable round an

horizontal axis of motion, which passes through S\ suppose
a weight q to be affixed to the extremity of the shorter arm

SA^ and a power 7? at the extremity of the longer SB ;

Required the ratio of the arms, when the effect of f to turn

the system at the first instant of motion is a maximum, the

inertia of the lever not being considered.

\j^\. SA= x, SB — a. The moving force of
7? =jo ; but the

weight q would balance a power at

„ q%AS <7^ . -u • A 7^ BB= - „o = -^
; .. the moving ^

BS a

f 4.- T> 9^ pa-qx
rorce acting; on B=p— ^— = -—.^ ^ a a
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x4.lso the inertia or mass is obtained by supposing the bodies

/?
and

5^
to be removed, and a weight =/> + ^-^ , or ^—

placed at -B (Art. 65.) ; hence the force, which accelerates i5

at the first instant of motion, = ^—-^ r"? which is in this

case a maximum ;

^•. —qxxpa^-\-qx^—2qxoty.pa-qx = 0,

or pa^-\-qx''-\-2pax—2qx^=:0;

and by solving the quadratic, x = ~ ^^-^^ ~—

Prob. 4^.

Let the arms of the lever ^-S^ be given, and a given power

p be affixed at B ; required the weight y suspended at A,
so that its momentum in a small given time may be a max-

imum, the inertia of the lever not being considered. (See

preceding Fig.)

Let SB= a, SA= h ; then the moving force at B, as before,

yxh pa-yh , ., •

4- .

^* pa^+yh*=p = ^~; and the mertia =» + 2/X -r=^- -^—
;^ a a ^ ^

a^ a^

,\ the accelerating force upon B at first = — '-^-r- x a.^ ^
pa^-^yb""

Now the force which accelerates B : that which accelerates

A :: SB : SA :: a : b; .*. the force which accelerates A=
pa — yb J ... .

, ,
.—

a j^ X ; and this varies as the velocity ; hence,, at the

commencement of the motion, the momentum oc '-—^.—-i- .

pa'-+ b'y \
a maximum ; ,'. pay- 2byy x pa" -!- h^y

-
b^y xpay- by^

— O ;

hence, dividing by y, and multiplying the quantities, b'^y^+

2pd*by=p''a\ and y = ^ x sjab -{- a" -^ ^.



324 PROBLEJVIS.

Pros. 50.

Given the radii SA, SB of a wheel and axle, and let

a given weight p, applied at the circumference of the wheel,

raise a weight y applied at the circumference of the axle ;

to find y when the momentum communicated to it in a given
time is a maximum, the inertia of the wheel and axle not

being considered.

Let SA^a, SB=zb; then the moving force upon A=
yb

^ - —-
; and the mass supposed to be

V b^
collected 2itA=p + -L^ therefore the

accelerating force at ^ = ^^ -^ _

pa* -\- yb^
X a ; hence the

accelerating force at

n pa-yb
pa' + yb'

-
^ ' •*• momentum

pay- y^b

pa'+yb^
'

communicated to y

maximum; and the fluxion =0, or pay— 2byy x pa^+yb""

-b^yxpay — y^b = 0; whence, dividing by y, and multiplying
the quantities ¥y^-^2pa'by = p^a^, the same equation as in

the last case
; and y=:^ x ^ab-\- a^ -^ .

«

PROB. 51.

Given two weights p and q, acting, as in the former case,

at A and B, and the radius SB of the axle ; to find the radius

of the wheel, so that ji may draw up q through a given space

in the least time possible, the inertia of the wheel and axle not

being considered.

Let-S'JB= fe, SA=x\ then the accelerating force upon q^

by the preceding Problem, = ^^~^ ^v-
• Now *S' oc Fx T* ;*^ °

px^+ qb^
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therefore T* oc —
, when S is given ; hence, since the time is

a miuimum, the reciprocal of the force, or

a minimum ; .*. its fluxion =0 ;

px- qbxb
IS

hence ipxxy.px- qh-pxy.p3c^+ qb^
= 0;

.'. 2px*—2qhx'-px^-qb'' = 0,

or px^- 2qhx = qb^,

. .
• 1 1

. qb + sjq^b^-^vqb"
from the solution of which quadratic x — ^—^

—

SECTION II.

PROB. 52.

To inscribe the greatest cylinder in a given sphere.

Let ABED be the cyhnder ; CB = r,

CF^x, BF=^i/. Then f = r^-x';

and the content = 2px r^x - x:\ a max-

imum ; .*. r'i = 3ar*i', and^ =
n/3-

Prob. 53.

To inscribe the greatest cone in a given sphere.

Let HAB be the cone required. Then, since the content

of a cone = j of a cylinder of the same base and altitude,

TJF
(Art. 51. Ex.6.) the content of HAB =p x FB^ x —- .

Let CH=r, HF-x ; then BF' = 2rx - x^ ; therefore p x
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> is a maximum; hence 2rx^-x^ is a maximum,a

4r
and 4rxx = 3x^x ; .*. a? = —-

.

PROB. 54.

To inscribe the greatest cylinder in a given spheroid, the

axis of the cyhnder being supposed to coincide with the axis

of the spheroid.

Let a = the semi-major axis, b the semi-minor, 7/
the

ordinate, and x that part of the axis intercepted between the

J*
ordinate and the center. Then ?/* = ~xa^ — x*; .*, /??/' x 2x,

2ph^
the content, = —~ x a^x-x\ a maximum; .*. «*i= 3j?*i.

and X
V3-

Prob. 55.

To inscribe the greatest cone in a given spheroid, its vertex

coinciding with the extremity of the major axis.

Let the part of the axis intercepted between the vertex of

the cone and its base =x\ then y^-^x 2ax-x^: and the
a'

content of the cone = ~r X 2ax^-x', a maximum ; therefore

4a
4axx = 3x*x, and x = — .

3

Prob. 56.

To inscribe the greatest cyUnder in a given paraboloid
CAF.

I
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Let BIGD be the cylinder ; AH=
X, AE = b, HI = y, and the latus

rectum = c. Then y'^
= ex ; .*. the

content, ov py' x HE, = pcxx b-x,
a maximum ; hence bx = 2xx, and x =

b

2'

Prob. 57.

To inscribe the greatest cyhnder in a given cone.

Let JF=x, FE=y, JG = a, GB:=b;
bx

then v= — ; therefore the content of the^ a

plf
cylinder, or py^ x FG, —~- xx'^x a-x,

a maximum; hence aoc^ — x^ is a max-

imum, and 2,axx = 3arx, or a? = --
.

327

Prob. 58.

Find that point in the side of the triangle ABC, from which,

if perpendiculars be drawn to the other two sides, their product

may be a maximum.

Let D be the point required ; draw

DE perpendicular to CB, and DF to

AB ;
also from A and C draw AL and

CG perpendicular to CB and AB. Then

by similar triangles, ADF, ACfr, and

CDE, CAL,
AD : DF :: AC : CG
CD : DE :: CA : AL

:. ADxDC : DFxDE :: AC^ : CGxAL.
Now as the last two terms are constant in the same

triangle,

DFx DE oc AD X DC, and is therefore a maximum when
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AD X DC is a maximum ; that is, when AD =DC (Art. 23.

Ex. 2.) ; hence AC must be bisected in D, and D is the

point required.

This Figure answers for an acute-angled triangle ; the

process is nearly the same for a right and obtuse-angled

triangle.

Prob. 59.

From a given cone ABC, to cut the greatest parabola DEF.

Let BC be that diameter of the base which is perpendicular

ioEF. Tzk^CG^x, CB = b, BA^a;
then, by the property of the circle, EG—

y/BG X GC = w b -XXX = sjhx- x^ ;

/. EF=2x^bx-x\ Also CB : BA

:: CG : GD, or b : a :: x : GD^ ~;

2 cix
,\ the area of the parabola EDF= ~ x—
X 2 X i^bx — x^ (Art. 48. Ex. 2.), which varies as a? x /Jbx — x',

a maximum; hence its square bx^ — x^ is a maximum, and

its fluxion =0 ;

To. ,. ,
36

3bx^x:=4x X, and ^7= — .

4

Prob. 60.

The distance of the center of gravity from the vertex of

a solid, formed by the revolution of a superficies of the

parabolic kind, is
g

of its axis ; required the nature of the

generating curve.

The fluent of|^ = Ix. (Art. 61.)

Assume an equation (f~^x =3/"; then y^ — a » x^, and

2n—2 2

f. y'^xx f. oT^x" X

^' -^
J. a " x"x

n-\- 2 ?^
- X X "

n n + 2

2w + 2 '42 2w H- 2
xo?

X Xj or
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-^?-t^=-; .-. 8714-16 = 14«+14, and 6n = 2, andw=-;
2n-{-2 8 **

2 1

.*. the equation is *= a^3/^, ora?'= a'y.

In the common parabola,
-——- = -; .*. 3» + 6 = 4w+4,

andw= 2; .*. aa:=^% the equation.

Prob. 6i.

Required to find the nature of the curve, in which the

sub-tangent : the sub-normal :: rii^af' : 3/'.

By the Problem, '^ : ^ :: mV : 3/* ;

/. i* : ^* :: m^x^ : 1/% and ot : y :: mx : y;

.'.
- = —^

, and hyp. log. x =m x hyp. log. y; /. ^ ©c
3/**,

and cr~^x^y^, the equation.

Prob. 62.

Required the equation to a curve, whose sub-tangent = w
times its abscissa.

Here ~- = nx; .*.
- = w x -

, and hyp. log;, x = n x

hyp. log. 3/ ; .-. xocy"^, ov a^~^x=y^.

If w = 2, ax^y"*^ the equation to the parabola.

Prob. Q^.

To find the nature of the curve, whose tangent is a given

quantity.

I^t x = the abscissa, and y the ordinate ; let the tangent

Z/X l/'^X^

= b ; then, since the sub-tangent = ~f we have '^-^^ -\- y^

= ¥', .*. y'-xx'+y'= h'y\ ov y^z'-h^y" \ .-.%-—, and

zoc bx hyp. log. y; or az = bx hyp. log. y, the equation.

, X X
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Prob. 64.

To determine the law of the weights, which press upon
each particle of a perfectly flexible line, so that it shall form

a curve whose equation is a^x—y^.

Let jyAG represent the curve, AM its axis, and A the

lowest point. Draw EH, BC, two

ordinates to the axis, indefinitely

near each other ; let CF be drawn

perpendicular to EH, and AL be

a tangent at A. Then AC being

considered as inflexible, after it has

assumed the proper situation, it is

kept at rest by three forces ; at ^ by the action of AD in

the direction AL-, at C by the part of the line CG in a

tangential direction, and by the pressure in the direction FCi

hence, if the eflfect of AD^b, AB = x, BC=y,

y : X :: h : pressure; .*. x-=^
Pry. if

but by the nature of the curve, smce a^x =3/*, i^ = -—-

——M. z= -^-^ , and the pressure r

Prob. 65.

Let AP be the abscissa of any curve, PMNQ an ordinate

revolving about the fixed point P, and cutting the curve in as

many points as it has dimensions ; My, Nx, and Qw, being

drawn tangents to the curve in M, N, and Q ; it is required

to find the sum of the reciprocal sub-tangents p-
+
"p
—

*" p~ •

Let the equation to the curve be y^'-afx + b' X t/""' -f-

cV + d'x + e'' X ^"-*- &c. + px''
-

qx""-' + rx""^ - &c. =
;
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let a, b, c be the values of
7/ corresponding to AP or x, the

abscissa ; then, since

the last ternfi is the

product of all the roots

with their signs chang- ^^
ed, axbx c X &c. =px'^ p-

—
qx""'^ + &c. ; hence

a be, &c. + bac, &c. + cab, &c. = npx"~^x
— n— 1 .qx^~"x

4- &c. ; .-. dividing the former part of the equation by a x b

X c X &c., and the latter by px''
—

qx''~^ + &c,, we have,

« & (^ ,0 _ ripx^^'Ki- n- 1 .
qx''~"\v-{-

&c.

a 5
"^

c
^* ""

px^'-qx^-' + kc.
'

1 ah c
, a w»j?"~'- w— 1 .oj?""^ + &c.

hence, — + , h&c. = -^ ^—
7.
—

;ax bx ex px""
-

qx^~^ -\- kc.

. ^. 1.1 1 o w»a?"~^- w— 1 .«.t"~"+ &c.
that IS, 7T-+^5- +^7-+ &c. = — ,,_! , ^

=
jPy Px Pw px^'

—
qx''

^ + &c.

nx"-^ - n-\ .
- a?*-*+ &c.
P

V

Cor. Since the roots of the equation o^ -^ a?"~^ + &c. = O,

are AB, AC, AD, &c., the coefficients of this equation are

constant ; also x is constant, because P is a fixed point by the

nx"^^ - w - 1 . ^a;"-^ + &c.

hypothesis ; .-. ^ is constant ; that

V
is, the sum of the reciprocal sub -

tangents is a constant

quantity.

Prob. ^^,

In the same curve, to find the sum of the sub-normals.

If p and q be the coefficients of the second and third terms

of an equation, the sum of the squares of the roots =
jp'
— So ;
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hence, on the supposition in the last Problem, a'4-i'+c*4-&^c.

= a'x + &'f
— 2cV + 2d'x + 2e'. Take the fluxion ; then

aa hh cc
aa + hh-\-cc=a'xy.a'x-\-h' -2c'xx+d'cc', /. -^ -\

—- + ~ =XXX
d^x + a'b — 2c'X + d ;

that is, since the sub-normal = —^ »

X

where x is the abscissa and y the ordinate, in this case the

sum of the sub-normals = a"'x+db - 2c'x + d.

PROB. Q'f.

To draw a tangent to an
ellipse, so that the triangle con-

tained under this tangent, and the major and minor semi-axes

produced, may be a minimum.

Let ABM be the ellipse, C the center. Let P be the

point through which the

tangent must be drawn ;

join CP \ draw PN per-

pendicular to AC, and let

the tangent at P meet the

two axes produced in O
and T. Take AC = a,

CB = h, CN = X ; then

PN= -XaJo'-x^, and CT= — by conic sections; ,\ NT
a ^ X ''

(f a^ — x^= ^ = ; and by similar triangles, TNP, TCO,X X

TN : AP :t TC : CO, or

ah

a' - X'

X

CO ; therefore CO x CT, or

:
- X Ja^-x^ ::

^
:

a ^ X

,
is

^a' — x'
' '

XX y/ a''-x

a minimum ; hence x x >/a*
-

x*, or a*a?* - x*, is a maximum j

/. 2a^xx-4x^x= 0, and a;'= —7=.
J2
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Cor. Since
^=7f' ^«(=vfe)=''^^''

CO

and

: bx

^^2" :: 1 : 2 ; .'. TP : TO :: 1 : 2, or the tangent TO is

bisected in P. The same is true for any oval figure.

PROB. 68.

The greatest parallelogram that can be inscribed in a curve

ABC concave to its axis, and the least triangle that can be

described about it will be when the sub-tangent ET is equal

to the base BE of the parallelogram, or half the base of the

triangle.

By Art. 23, the greatest paral-

lelogram which can be inscribed in

the triangle BTG, has its base BE
= ^ BT. Now a greater parallelo-

gram cannot be inscribed in the

curve than in the circumscribing

triangle; therefore BEDK is the

greatest parallelogram which can be

inscribed in the cuitc.

Also if TG be bisected in Z), where it touches the curve,

BTG is the least triangle ; if not, let BtH be less, and suppose
tH to cut TG m M, and to touch the curve in F. Then,
since DG = DT, MG is greater than MT; and Mt being
less than MT, and consequently less than MG, must be much
less than MH. Hence, since the vertical angles at M are

equal, the triangle HMG, which we have added to the original

triangle, is greater than TMt, which we have taken away ;

that is, the triangle BHt is greater than BGT.
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The same kind of proof may be extended to any rectilinear

figure, which circumscribes an oval ; for the other sides being

supposed constant, the figure is always the least when the

remaining side is bisected in the point of contact.

Prob. 69.

To find that point P in an ellipse, to which if a tangent
be drawn, the part Py, intercepted between the point P and

the perpendicular Cy drawn from the center upon the tangent,

may be a maximum.

Draw the conjugate diameter CD, and draw PF perpen-

dicular to it. Let Cy^=:p, PC=:x,

AC= a, BC, the semi-minor, = h.

Then CD"" + {CP') x' = a' -h b' ;

.'. CD''=^a'+ b'--x'. Now CDx
PF, or CDy^ Cy, =axbi .-. CD'

hence = a* + 6* X'

a'b' a^b'

P

a'b'' X 2xx
whose fluxion = ; .*. 2xx - ^^ = ; .*. a' + fe* - ^*\

= a'6% and «*+&*- ar' = aft; that is, CD^ +x^-x'^ = JCx
CB; .-. AC : CD :: CD : CB; hence x is known, and

therefore the point P,

Prob. 70.

To find the area of the parabola, considered as a spiral.

Let PQ represent the fluxion of the curve,

Sy a perpendicular on the tangent at P ;

join SP, SQ, and draw QT perpendicular to

SP. Then, if SJ= a, and SP= x, Sy=

A^ax, PT=x, and SQP is the fluxion of

SP X QT
the area SAQ. Now SPQ = and QT : TP
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or i :: Sy or f^Jax : Py or >>J 3if-
— ax; .'. QT=

\/x^ — ax

a^x orXX
= — . ; and the fluxion of the area = — .

, and
s/x-a 2sjx-a

/a^ 1xy,\fx-a 4a x sjx — a ,-_,,
.
=- X :

^^
+ \ (Fluent 19.) = the

area SAP ; the corr. = 0.

ON MERCATOR's PROJECTION OF THE SPHERE.

Lemma.

The length of a degree of latitude at any place is to the

length of a degree of longitude there as radius to the cosine

of latitude.

Let P represent the pole, and C the center of the earth ;

AH the equator, AB the length of a degree

,
of longitude at the equator ; PDA, PEB,
two meridians ; from F draw in the planes

PAC, PBC, the lines FD, FE parallel to

AC, BC. The included arc DE is part of

a small circle parallel to AB, and measures

a degree in longitude at D. Now by similar

sectors ACB, DFE
; AB : BE :: AC : DF; or, since

AB = the length of a degree of latitude at any place D, the

length of a degree of latitude : the length of a degree of

longitude :: radius : cosine of latitude.

In Mercator's Projection, the sphere is projected upon a

plane, P is at an infinite distance, and the meridians PA and

PB are parallel. Hence, in all latitudes DE is the same ;

therefore to preserve the just ratio between a degree of latitude

and longitude in the projection, the degrees of latitude must
increase in receding from the equator, according to the pro-

portion in the Lemma.
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Prob. 71-

In this projection, to find the length of an arc of the

meridian corresponding to any given latitude.

Let PCp be the axis of the earth, AC the equator, D
some point in the meridian PA ;

draw

DF perpendicular to Pp, and join Dp,
DC. Then, if ^C=r, AD = x, CF
=

1/,
and the length of the projection of

AD on the plane =z, we have by the

Lemma, z : x :: r : sj r^ -y' ; .'. %=

But (by Art. 44.) i =

r^v

r-_

r iry
,
and 2 = - X

r-\-y
hyp. log. (Art. 43.) + corr. = r x hyp. log

,
Jr^y

+ corr. But DF : Fp :: r : tan. of the angle FDp, that is,

^r'--y' : r^-y :: r : 7', FDp -,
.'. the tangent of FDp,

or co-tan. of FpA or of i DCP, the co-lat. =rx V ^'
hence V ^ = CO-tan. of I the co-lat.

,
and z = r X hyp.

1^.
co-tan, of I co-lat.

^ ^ ^,^^ ^j^^^^ ^^^^ ^^^ ^^_^^^

of -I-
the co-lat. is the co-tan. of 45°, and equals r ; hence

C =- r X hyp. log.
- = O ; therefore z = r x hyp. log.

co-tan. of f co-lat.

Prob. '^2,

Given the arc of a circle, to find its sine and cosine.
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Let BD the given arc n z, DE its sine =3/, CE its cosine

= X. Then, by the nature of the

circle, z :
— x v. r : y; therefore

— rx
y= Now to the cosine CE

we have two values of z, BD and BF,
which are equal to each other, but

they must have different signs ; if

z=ia, % - « =
; if 2 = —

«, ;2 + « = 0,

and the quadratic resulting fi-om these two is z^ — a* = 0.

The same reasoning holds for any other corresponding values

of z ; hence the equation, whose roots are the several values

of z, will contain only its even powers ; also, if CE=CB = r,

z = 0', therefore if CEhe assumed in a series in terms of z,

the first term will be r, and the succeeding terms will contain

the even powers of z.

Let x^^r-^-az'+hz^-^-cz^-^- &c.

then x=Q,azz-{-4hz^z-\-6cz^z-{- &c.

= —) — — 2arz — 4brz^-'6crz^— &c.

and y = — 2arz - 3 . 4ft r2*2— 5 .Qcrz'^Z'-' &c.

But, in a circle, z : y v. r \ x\ :, xz-ry=.0%

hence rz -\- az^z + hz'^z + &c.

+ 2ar*i+ 3.4.ftr*2: + 5.6.crVi+ &c.
::}

=0.

Therefore, by equating the coefficients of the corresponding
terms,

1

a— -r -{- 2«r* =0;

fl+3.46r* = 0; .*. h=

b + 5.6cr^ — ;

2r

1

3.4.r^

b

2.3.4r3

I

2.3.4.5.6r^
, &c.;

whence, by substituting for a, b, &c., their values in the

Y Y
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assumed equation, ^=r-^ + ^^j^
-

^j^^j^^ + ^^'>

Prob. 73

To sum the series n+~a+^ + &c. ad inf.

z z
In the last Problem, if r = l, y=:%-—— + -&c.;

let ?/ = 0; then ;2 +—^ &c. =0, in which one root
-^ 2.3 2.3.4.5

«
2 = 0; hence, dividing by s, i- — + ^y^ - &c. = O.

Since 2/
= 0, if C = the semi-circumference, the other values

of z are iC, 2C, 3C, &c. - iC, — 2C, —3(7, &c., each series

ad inf. Let v= -; then 1- ^ , ^ + ^_ ^ .
- &c. =0;

z 2.3.V 2.3.4.5.2;^

or, multiplying by v",

"- 5^ +
23:1:5

- ^"^^ = »'

in which n values of y = 0; and the other values are —^,

^, ^, &c. adinf, and
-±^, -±, -^, &c. ad inf.

Now the surh of the squares of the roots of this equation =

p'^
—
2q; here, as the second term is wanting, p= 0, and q=

—
; .'./>'- 27 = -

; that is, since the squares of —^, —r^,

&c. are the same as the squares of —
, ^; &c., rrp^10 20 10

"^
¥C'''^¥C~'

+ &c. adinf. =-; .-. _+- + - + &c. ad
inf.]

-£.~
6

'
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Cor. 1. In the same manner the sums of any of the even

powers of the reciprocals of the natural numbers may be

found. Instead of finding the value of p^-2qy take the

algebraic expression required in that particular case. The

sum of the reciprocals of the odd powers cannot be determined

by this method, as the odd powers of the negative roots destroy

the odd powers of the positive.

Cor. 2. Since l + i^ + i-,
+ - + &c.=-^.

that is,
-^
+

3-.
+^ +&C. + -X p+5; +3i

+ &c. =
-^,

1 1

+ i +i- ^.&C. + —+--+&C. =
6

1 1 1 1

X 1 1
.

. 1 C* C*
or

r,43-,
+
^.+&c.

+ ^,x-^
=~;

1 1 1 _ £* £'__£
/. -+3a+7»+^^-- 6 ""24"" 8

•

In the same manner the sum of the reciprocals of all the even

powers of 1, 3, 5, 7> &c. may be found.

Prob. 7-*'

To compare the momenta of a sphere and its circumscribed

cylinder, whilst they revolve round a common axis.

Let AEBC be the quadrant of a circle, whose semi-diameter

is CA or CB. Complete the square ACBD ;

draw any line GEF parallel to AC, cutting

AD, BC, in G and F, and the quadrantile

arc in E. Join EC. Now let the segments

AEFC of the quadrant, and AGFC of the,

square, revolve about the axis CF, and generate

segments of the sphere and circumscribed cylinder. Take

CF=Xy FE=y, CA= r. Then, the momenta being as the

quantities of matter and the velocity jointly, the momentum
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of the spherical segment AEFC : the momentum of the

cyHndrical segment AGFC :: f. y^x : f. r^x.

t: f. X X v" - x^Y : f, r^x

:: f. r^x x >/r*
— x'' -f. x'x x pJ r' — x^ : f. r^x.

Now the /. Vx X sjr^
- x" = r* x area A CFE ; and /. x*x x

7>
r* X area ACFE -x X r' - x^

X* (Fluent 24) ; .*.

the third term in this proportion
=- r* x area CFEA +

XX r ^^' Let a? = r; and we have, the momentum

3r'
of the sphere : the momentum of the cyhnder ::

quadrant AEBC : r*; or (if Q= the arc of the quadrant)

::
— X Q : r*
8

:: 3Q : 8r.

SECTION III.

PROB. 75.

To resolve v^"^2xv'' -{ I =z into its quadratic divisors,

X being equal to or less than unity.

Let AB and AK be two circular arcs, which are to each

other as 1 1 tz; let AB = z, AK= n

OB=l, OE the cosine of AB=^y, ^
and OL the cosine ofAK—x. Then

% -

X

(Art. 44), and w z = F

X ny

and multiplying each denominator by
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nx hyp. log. 1/ + s/y'
- 1 (Art. 43) ;

hence x -\r ^/x"-—! =

3/ +^^^- 1 1 , by the nature of logarithms.

Now let ?; = ?/ + >//- 1 ; :. v-y = s/y* -\, andv*-2?^w

j^y^=y^-\r, .'. v^-'2yv + 1^0. Also ?;" = i/ + V?/'-ll
= a: + ^/^^^; .-. v^-x= J'^f^, and v^'^- 2xu« + 1 =0,

the given equation ;
and since v is the same in both equations,

one quadratic divisor '\'& v* - 2yv-\-\=0.

Now X is not only the cosine of AK, but of 360 + AK, of

AK
2 X 36o-\-AKy &c. ; •'.

3/
is not only the cosine of

, but

^3Q0^-AK . 2x360 + ^A: . r^ ,1 ^1
of , or , &c. Call these cosmes a,

n n

b, c, &c. ; then v""" -2xv''+l = v^ - 2av+l x v^ - 2bv-\-l x

v"- 2cv-{- 1 X &c.

There can only be n different values of y ; for after taking
AK 360 +AK . , .

.„n arcs, , , &c., the same cosmes will recur.
n n

Cor. 1. If ^J^ be taken equal to the whole or to half of the

circumference, the equation is v^" =;= 2^"+ 1 = O, and its square
root is v" q= 1 = 0. But every equation, which is a square, has

another root equal to each of its roots ; therefore the roots of

t?** q: 1=0 are found in the same manner.

Cor. 2 The quadratic divisor* of v'"- 2a?r^i>"4-r''* = are

found in the same way ; for this equation is merely the

equation v^" — 2a?v"+l =0, having its roots multiplied by r.

Hence, multiply the roots of the above quadratic divisors by
r, and we have ?;*- 3arv + r' = 0, v* — 2hrv-\-r^=:0j &c. for

the required divisors.
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Prob. '^6.

To demonstrate Cotes' Properties of the Circle.

1 . If any point P be taken in the radius of a circle AO
or the radius produced, and the circumference be divided into

n equal parts in B, C, D, &c. ; then JO" - PO", or PO'*-

AO'^^ X PB, PCxPDx &c.

c

By Prob. 7^, the quadratic divisors of v^*'^2xv'' + 1 =
V* 2av + l, v'^^2bv + 1, &c. Assume a point P in the

radius, and draw PB to the circumference
; let v = JPO,

y=: OE, and the radius = 1. Then BO^z= 0P*-\-PB'+ 20P
BP' = l*-v»-

AK
xPE, or V ^^v"" -\- BP^ -{ 2vxt/-vi

Also 1/
is the cosine of2v X y-v = v" — 2?/v + 1

^A'+ 360 AK-^- 2 X 360

n

n , &c., whose cosines are a, i, c, &c..

and V*- 2av + 1 x v* - 2iv + 1 x &c. = v"" - 2a? v'* + 1. Let

C
AK~ih& whole circumference C; then these arcs are - ,

iC "iC 1* 2*'' 3'**

r}::
,
_

, &c., or — 5
—

,
—

, &c. parts of the circumference ;

n n n n n

that is, if the circumference be divided into n equal parts in

B, C, D, &c., the cosines of AB, AC, AD, &c. are g, b
, c,

&c. and:r= l. Hence PB^= v" - 2av-{-\, PC' = v^-2bv-\-l,

&c. ; .-. PB^xPC^ X PD^ X &c. = v'"- 2^^^ + 1, and PB
X PC X PD X &c. = u"- 1% or r-v" = PC-AO'', or

AO"" - PO'', according as P is without or within the circle.

I
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Second Property.

If the whole circumference be divided into 2w equal parts

in b, c, d, &c., then J(r+ PO''=:Pb x Pc x Pdx &c.

By the preceding case, if P be taken, for example, within

the circle, J(r'-PO'" = Pb x PB x Pcx PCx Pd x PD
x&c; hut AO''-PO" =PBxPCxPDx &c.;

ACr-PO'" _ PbxPBx Pc X PCx PdxPDx &c.
*'• AO'^-PO^

~ PBxPCxPDxkc. '

or AO''+ PO'' = Pb X PcxPdx &c.

Cor. 1 . If w be an even number, each semi-circle is

equally divided ; hence, in the equation, l"" - v"" =^ v"- - 2av-{-l

X s/v*
- 2bv + 1 X &c. one value of y is +1, and another - 1 ;

therefore r-v"" =1 -v x ^v^-2av-\-l x ^v^-2bv-^l x &c.

l+v. But each PB has a PH in the other semi-circle

corresponding to it ; therefore I'* — i;" = l— i;*x 1 — 2av + «;* x
n

l — 2bv-{-v^X &c. to - terms. This is the method of finding
2 o

the n roots of 1 ; two roots are in this case +1 and -
1,

1 obtained by solving the quadratic 1— v*, and all the others
*

obtained from the remaining quadratics are impossible.

Cor. 2. If w be an odd number, none of the points of

I
section will fall on the extremity of the semi-circle, and

n
>

^ /? ^ f*
I I therefore no cosine can equal - 1

; but the cosine of ,
^ n

or of 36o°, =1; .*. here V—v"= l — v x 1 - 2av + v"- x

*'
I - 2bv-\-v''x &c. —r— terms. In this case, one value of v

in the equation 1"— «;" = 0, is 1 ; the other roots are im-

possible.

CoR. 3. By the second property, l" + v" = ;y/l
- 2av-\-v*yt

t \J \ — 2bv-^v'x &c. to w terms. Let n be- even ; here, as
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in the former case, to every Ph in one semi-circle there is

a correspondent Pa in the other; but no point of section

falls on the extremity of the semi-circle; therefore V-\-v^=.

——————— —^———____ fi

l—2av-\-v^><. 1 — 26iJ4-t;*x &c. to - terms. By solving these

quadratic divisors of l"-f v" = 0, we obtain the n roots of -
1,

and they are all impossible when n is even.

Cor. 4. Let n be odd. Since the arcs on each side of

A are equal, and no point of section fell upon the extremity

of the semi-circle in the last Corollary, one arc will now be

a semi-circle, and one value of v~~\\ hence P-j-v^^H-f
n-\-\ ^ , ..

X \-2av-^v'-y. \-.2bv-\-v'x &c. -7— terms. In this case,

therefore, one root of the equation l"-|-t;" = is —
1, and the

rest are impossible.

Prob. 77*

To resolve --—-—
, x being less than 1, into its

quadratic divisors.

, 1 A B C , ^

Let ~, =
1 -\ V &c. J then

v^"— Ixv"^-M m — v p — v q
— v

Axp — v X q-v X &c. -\-B X m — v X q
— v X &c. + C x m — v

X p — V X &c. = 1. Substitute m for v; then A =

r= = —
. Substitute p for v; then B =

p — m X q
— m x &c.

1 —
;
—

. Now as z;^"~2j?v'* -f- l=m^v x p — v
m—px q—p X &c.

X &c., take the fluxion on each side, and divide by v ; then

— 2nv^"~^ + 2nxv"~^ = 7n~v x p-v x &c. -\-p
— v x q-v x &c.

Hence, if m be written for v, —2nm^"~^ + 2nxm"~^=p — mx
1

q —mx &c. ; but A = ==—=—
;;

—
; therefore A =

p-mx q~m X &c.
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— • and B = -z
——

^:t-j«
2nxm,''~^ - 2nm^''~' 2nxr)i" - 2nm^"

'

2nxY - 2«/>'

or ^= -L X ^-^ , and 5= — X / ,„
. But by

supposition, m^' - 2xni" + I = ; ,\ xmT— m^ = 1 - xntt.

Hence A = — x —^^ , and B = — x -—
^^—p, . Now

2n 1 - xm" 2?z 1 - xp'^

A B pA-\-mB-A-{-B X V , , « ,8
+ = -——r=r—^ ; and 1 - 2av 4- «^%

a quadratic divisor of 1 - 2^v"+ i?-", is equal to m— i; xp-v;

therefore m» = l, and m-{-p = 2a; and we have + ——•

^ ' ^ m—VD — v

pA+mB-A+Bxv T., I.- i. ^u •

* 1 w=
;

—
;

—
r . Ihe obiect then is to calculate

pA-\-7nB and A+ B. Now pA= — x —^—-
, or = —^ 2n I — xm" 2n

1 11
; andwi5 =— x ; therefore vA-r77iB =i-xm" 2 II 1—0'//

1 1.1 1 2 — a?x m^-f-w"— X : H = —^ X
2/2 1 —xm!' 1 -

.!/»" 2n
^ _ ^ „~r» ^^„ _|_ ^^^^^^»

But m^''-2^m"+ 1=0; .-. m"-2.r+-!- =0: also»"= — ;

wt"
^

7n"-

1 2 — ^v* 1
,\ fn^-{-p"— 2x; hence pA-\-77iB= — x ——T = - x^ ^

2/2 l-2x' + x' n

X—X^ I . . .1 7W 1 T» 1= -. Again, A= — x
:; -, and /J =r — x

l—x* 71
"^ 2n l—xm" 2n

. n ; :. A + B = — X :
-——- + —-— = (since

l-ocp"" 2)1 l-xm" l-xp"
^

mp^l) — X :
' 1

. Now m'' -f »" =
-*^

I - X . 771"" -^ p"" + X^ . 77iy

2x, where x is the cosine of an arc, which is to the arc whose

cosine is a :: n : 1; for the same reason m""' +/»""' = 2 e,

where e is the cosine of an arc, which is to the arc whose

cosine is a :: w— 1 ; 1; therefore, since m+p= 2aj A+B
1 2a-2xe 1 2a-2^e _- A B= TT-
^

;
—

ttt:
—

I
= — X —

,^ j.~ • Hence + ±i
2n 1 - 2x + X 2n l—x^ tn—vp — v

z z
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1 a — xe I a— oce— X V ; X V
n n— nx" ^^ c ^ ^ n — nx^ .

\-2av-\-v^
'

v^"— 2xv'^-l\ l~2av+v^
\ h-xf .

_ id- X V
^

^-^^^ + &c. ; where f is found from b in the same

manner that e is obtained from a.

Cor. If X be negative, the quantity to be resolved is

1 a-\-xe 1 h+xf- — XV — —, X V
1 . n n—nx

.
n n—nx

, o
It = -^ —T- + ~ -,—r-r- + &c.

v^ + 2xv"-^\* l—2av-\-v'- l-2bv+ v'^

In the same way -^ may be resolved ; or it may be

done by the following method :

Prob. 78.

To resolve into its quadratic divisors, where n is
I —V

even.

By Cor. 1 . Prob, 76, l-v'' = 1 ~v^ x 1 - 2av + v"" x

1 — 2bv -\- v'' X &c. to - terms ; therefore their hyperbolic

logarithms are equal, or hyp. log. 1 - z;" = hyp. log. 1 — i)* +

hyp. log. 1 — 2av + v^ + hyp. log. 1 - 2bv-\-v'^ + &c. ; therefore

the fluxions on each side are equal ; or,

-nv"~^v_ -2vv -2av + 2vv --2bv-\-2vV . n.
1-v- l-i;* l-2av + v' l-2bv+ v'

' to - terms.

Divide by
-

, and

— nv"^ — 2v'^ ~2av-\-2v'^ ~2bv-\-2v'* /n^
— v,uv + :^v ~

'JOV-f-'JV^ xwx

l—2av-{'V' 1 —2bv + v^ \2/
*1- v" 1-v'

Subtract each side from n, viz. the first from w, and each

term on the other side from 2, so that the whole may be sub-

2 \( fi

tracted from "- or n ; hence,
2 '
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n 2 2-2av
.

2 — 2bv ^ /w\_ _L _L . _i_ 5r,c I - 1

l^v" 1-v' l-2av + v^ l-2hv-\-v^ '\2y'

2 2 2av 2 _2hv
1 n

,

n n 71 n ,04.
••. !_?;'» l—v'' l-2bv + v'' l-2bv-^v'

- terms.
2

Cor. In the same manner ~
j^ may be resolved, where n is

an even number.

Prob. '^^.

To resolve into its quadratic divisors, where n is odd.

By Cor. 2. Prob. 76, in this case 1— v"=l-vxl — 2ai; + v*

X 1 -261^+ ?;'' X &c. to—-— terms; /. hyp. log. 1-1;" =

hyp. log. 1 — V + hyp. log. 1 — 2av + v' + hyp. log. 1 — 2bv-\-v'

) ; therefore their fluxions are equal, or

— 7iv"~''z;_ —v-2av-\-2vv—2b'v+2vVo /w+ i\

\-v 1 -2av-Yv'- 1 ~2bv-\-v'- ^'\r~2~)'1 -v"

'y

Divide each side by
-

; then.V

— 2av + 2v^ —2bv-]-2v^ /n + \-nv^ -V —2av + 2\f — 26i;H-2t;* ^w + 1\

1 —v^
~

1 -V "^
1 -2av-{-vi^ 1 -2bv-\-v^ \ 2 )

'

Subtract each side from n ; viz. the first from w, the first term

n— 1

of the other side from 1, and the remainmg terms each

^1 1

from 2 ; so that the whole may be subtracted from 1 -\

X 2, or w ; and the result is

\-v^ \-v l-2av+v* l-'2bv+v'
^

\ 2 /'
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1 2 _2av 2 2hv

1 n
,

n n n n „ /n + 1 \
.*.

,
=

j- ; + &C. ( 1 ,

111 the same maimer may be resolved, where n is

an odd number.

Prob. 80.

To resolve into its quadratic divisors, where n is

even.

By Cor. 3 . Prob. 7^^ in this case,

n
l"-|-i;"= 1 - 2av + v* X I --2bv + v* x 1 - 2cv + v'' x &c. - terms;

then, by the same process as in Prob. 78, we get,

2 2av
'

2 2hv

1 n n n n
'

.
,

n
,= r H —,

—
;

—- 4- &c. to - terms.
l+y" \ — 2av-\-v'' \-2hv^v' p

Prob. 81.

To resolve into its quadratic divisors, where n is

odd.

By Prob. 76. Cor. 4, in this case,

; ^ w+1
'

l"-}-?;"=l+i;x 1 -2ai;+i;*x 1 - 20i;+v'' x &c. —^ terms;

then, by the same process as in Prob. 79? we get,

1 2 2av 2 _ 2hv

1 la an n n w + 1
.

+ -—
. . + 1

—
./... , ...

+ &c. -^ terms.
1+v'' 1 +v''" 1 — 2at; + i?'' 1 - 26f+t;''

In the same manner — may be resolved.
r -ff •

Prob. 82.

Given' the sine of an arc, to find the sine of n times that

arc*
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If AB-z, AK=nz, OE=y, and OL the cosine of AK
=.xi then, by Prob. "Jb^ the radius

being 1, we have x + /^ x^ — I — ^^^

y +Vy-l' J or ^-)-V'*'-l=^"+

w i/"
' X >/</*

- 1 + w .

w — 1

y

n — 1 7? - 2 n_3

y^
- 1 + 72.— —- X y""

' X

fj if"
— 1 x^/*— 1 + &c. This equation consists of quantities,

part of which is possible and part impossible ; hence the

possible and impossible parts on each side are respectively

equal. Therefore, taking the impossible parts, we have

J¥~^\ = ny"^-^ X s/if- 1 + n.-^—^ . '^-^ x y"-'
71—1 n — 2

~2 3
X

>Jy^ -Ixy'-l + &c. Multiply both sides by ^ - 1 ; then

;^1 -x^ = ny""-^ x.^l-y^ + n.—^ x -^j— xy"~' x \/l-y'3

X ?/-l + &c. = (if * = s/^-y' or ^s'^y^- 1) ny^'-'s-

n.
n—l n- 2 „_

^n-3^3 ^ gjc., which is the sine of AK, n times
2 3

the arc AB,
Prob. 83.

Given the sine of an arc, to find the sine of an n^ part of

j;hat arc.

By the same notation, since x + ^/x^- 1 — y+ siy^- l] »

/. y + sJY^ = a:+v^-ir = ^" +

\—n \—1n

X XX » xo?*— H--X —-—
2n n 2n

n I — 2n
X

!=? /
a? " X ^ x""— 1

I—3n

1

3/1
X 07 " Vo;*- 1 X

3?*
- 1 + &c. Make the impossible parts equal ; multiply by

>y^, and let S=s/^—^''y the sine of ^A'; then ^l-y'
1—a

x~^S I .i—n.l—2n
n.2n .3n

XX* S^-{- &c., the sine of AB.
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PrOb. 84.

Given the sine or cosine of an arc^ to find the cosine of

n times that arc ; or given the cosine of AB^ to find that

of^A".

Assume the possible parts of the equation in Prob. 82.

72— 1

equal ; then x = i/" + w .
——-

.2/""^ x 3/'— 1 + &c. = y^^n.

VI 1

3/"-
V + &c., the cosme of AK.

Prob. 85.

Given the sine or cosine of an arc, to find the cosine of

an w"' part of that arc ; or given the cosine of AK, to find

that of AB.

Make the possible parts of the equation in Prob. 83. equal ;

i 1 1 -n 1^22
then y = x"" -\

— x x a;
" x ^' — 1 + &c., or

"^ n 2n

^ 1 —n ^^"

y :=: x^ — ——— X a?
"

aS* + &c., the cosine of AB.^ n .2n

Prob. 86.

Given the sine or cosine, and therefore the tangent of an

arc, to find the tangent of n times that arc.

Let t= the tangent of AB ; then, by trigonometry, t =

y

(by Probs. 82. and 84.)

— to radius 1 ; therefore the tangent of AK = —-—^—• =
»' COS. A J\.

w - 1 n-2
ny ^s — n. •

2/" V 4- &c.

fi 1

y^^n. .z/'^-V + &c.

= (dividing both the numerator and denominator by ?/")
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lis n-l n-2 s^ o .
n-l n-2^„ .

n. . .--+&C, nt-n. • r^ + &c.
If 2 3

i/^
2 3

•

2 y- 2

PROB. 87.

Given the same, to find the tangent of an n* part of the

arc.

In the same manner as before, by Probs. 83. and 85, the

3C"S \.\-n.\-1n lz±?o, „

« .„ sme ot ^zi n n.2n.3n
tangent ot AB— ^ir —-° cos. AB

or X ^ » ^* + &c.
n . 2n

S 1 . 1 w . 1 - 2n S'_ X — + &c.
/]• -J- u .t\

^^ n.2n.3n x^
..p ^,= (dividmg by x') =z ~
(it i be

1-71 aS\ p
1 X —+ &c.

n.2n or

T l.l-n,1^ 2n—
;:: ^ X T^i- &c.

1 ..r^v *^ ^- 2^2 .3w
the tangent of AK

)
= =

,

n — 2n

Cor. And since the secant of an arc = —
.

—
, if the

cosnie

sine or cosine, and therefore the secant, of an arc be given,
we can find the secant of n times that arc or of an /*"' part
of it.

SECTION IV.

Prob. 88.

- Required the quantity of matter in a sphere, whose density
varies as the w* power of tlie distance from the center.
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Let d = the density of the sphere at the surface, r = the

radius, x — any variable distance from the center, j)
= the

area of a circle whose radius is 1. Then the surface of a

sphere, whose radius is x, =4px^; and since r" : x** :: d :

dx"
density at the distance Xj this density

= —^ ; therefore the

dx^
fluxion of the quantity of matter = 4px^x x —^ , and the

Apdx""^^ ,
. ^ •

, , ,

content = : or the quantity of matter m the whole
w + 3 . r"

^ ^

- 4pdr^

Cor. 1. The quantities of matter in two spheres, whose

densities are equal at the surface, and vary according to the

same law of the distance from the center, are as the cubes of

the radii.

Cor. 2. If ?i= 0, or the density is constant, the content

4pdr^

Cor. 3. If two equal spheres have the same density at

the surface, and the density of one be constant, whilst that of

the other varies as the distance from the center.

The content of the former : that of the latter ;: ~ : —
3 4

:: 4:3.
Cor. 4. If the density of a globe vary as the rf' power of

the distance from the center, and the density of its circum-

scribing cylinder be uniformly the same with that of the surface

of the globe. The content of the globe : content of the

4f)dr^

cylinder ::
- ^

: 2pdr^

:: 2 : « + 3.

Cor. 5. If the quantity of matter in a sphere be eqilal

to that of its circumscribing cyhnder, the density of the
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cylinder being uniformly the same with that of the surface of

the sphere, the law of the density may be determined.

For
n-i-3

= 2pdr' ; /. 2 = w-f3, and w= -
1, or the

density varies inversely as the distance from the center.

Prob. 89.

If a body descend by gravity down the quadrant of a circle

AC, the radius JB being parallel to the horizon; to find

where the velocity in the direction BC is a maximum.

Let ML=y, BL-r, AL~z\ then the velocity at Loc

^MLo^ s/~y; and the velocity in the cui-ve : ^^^ ^

velocity in the direction BC :: LT : vT,

{TN being drawn parallel and near to ML,

and Lv perpendicular,) or :: LB : BM :: r :

^r^-'if- ',
.-. the velocity in the direction BC

oc '^LHJLzlL a maximum; hence r^y-if is a maximum ;

r

r
its fluxion = 0, and y = —7= .

Prob. 90.

To find the same, if a body descend down the arc of

a cycloid.

The same assumption being made, velocity in the direction

LT : velocity in the direction BC :: LT
vT; by similar triangles, v. RC . CS ^ ^^ B

: BC : CR :: ^BC^ : V^^; that is,

: A^a : ,Ja — y ; hence the velocity in

the direction BC varies as
^ ^ ^

^

>>/a

3 a
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maximum; therefore the fluxion of ay — y' — Q^ or ^yij^ay,
a

2

,
a

and y— -
.

Prob. 91.

To find where a body, moving on the convex side of a

cycloid VPA, will fly off", its motion being supposed to begin
from the point C.

After leaving the cycloid, the body will describe a parabola,

and its horizontal velocity

will therefore be constant ;

hence the fluxion of the

velocity in a horizontal di-

rection, at the point where

the body leaves the curve,

must = O. Suppose that

point to be P ; let FjD = «, VO = d, VN^x-, then VG^
aJ ax, and GN=:^ax — x\ Now the velocity at P = that

acquired in falling through ON or x-d, = w 4mxx-d,

where m = l6~ feet. And this velocity (v 4 m x x—d) :

horizontal velocity :: Pr : sr :: f^G : GN
:: A^ax : ^ax-x";

.: the horizontal velocity =
^4m ^ F:^^^ax-x^ ^ ^^

\J ax
oc fjx — d% ^Ja — X, whose fluxion =0; /, the fluxion of

X- dy^a — x— 0, or xx a — x — xxx—d=:0; /. a— x— x—d,
, a + d

and X = .

CoR. If the body be just put in motion from ^ dz=o.
a

and X— -
; or the body will leave the cycloid at a point

determined by drawing the ordinate NP from the center of

the generating circle.
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PROB. 92.

A body begins to roll from A on the quadrant of a circle

with the velocity acquired by falling through LA ;
to determine

the point where it will fly off from the curve.

Let LA= d, AE=:x, AC— a-, then the velocity in the

curve at P, as before, =:V 4m x d + x\ and ^

V 4m X d-^x : horizontal velocity :: Ps : rs

:: PC ; CE,
:: a : a-x;
.*. the horizontal velocity oc >s/d-\-x x a—x,
whose fluxion, when the body leaves the curve,

=
; and x will be found = .

AC
Cor. 1. If AL =

, AE= 0, and the body moves in

the direction of a tangent at A. If AL be greater than f AC,
X is negative, or the Problem impossible.

AC
Cor. 2. If AL = 0, AE— ; but in this case the body

must be supposed to be just set in motion at A, or it would

have no tendency to roll on the arc, a tangent at A being

parallel to the horizon.

Prob. 93.

Required that point in a parabola, \\liere the linear velocity

increases or decreases the fastest.

Let AP be the parabola, S the focus, PY a tangent at P ;

join SP, and draw SY perpendicular to the ^^——-

tangent. Now the increment of the velocity d/^^-^y^/^
varies as the force x the increment of the

){ /
time ; therefore, dato tempore, the increment / \/
of velocity varies as the force, and is a max-

imum when the tangential force is the greatest.
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But the force in the direction PS : force in direction PK
:: SP : PV; therefore, since the force in the direction PS

1 . p y
^^SP' tangential force in the direction PY^ ~~±,

which in this case is a maximum. Let SJ= a, SP= x;

fK^r, r»v r~l >J x^ - ax x^-ax x-athen PY^^x'-ax', /.
'^^^

, or —^^, or —^ ,

is a maximum; hence x^x-bx^x + bax*x=iO\ .'. x-^.
4

Prob. 94.

Required that point in a parabola, where the angular velocity-

increases or decreases the fastest.

Draw SQ indefinitely near SP, and Q T perpendicular to

QT
rt; the angular velocity varies as -^-^i

> iSP

therefore the angular velocity itself is a y
QT .

maximum, when -rrrr is a maximum. But

the increment of the angular velocity varies

. increment of Q T*
, , • ^ y-^m

as the —
^-7j , and the mcrement 01 U i varies as

the force in the direction QT; therefore the increment of

, , .^ . . , force in direction QT
angular velocity is a maximum when ^^
is a maximum.

Now force in direction SP : force in direction PY :: SP : PY,

and f. in direct. PY : f. in direct. QT :: PQ : QT or :: SP : SY;

.-. f. in direct. SP : f. in direct. QT :: SP' : SYx PY;
r ' J- J.' r\rr< SYx PY . this force

.*. iorce in direction Ql oc ——
; and -—

^7^^
— oc

o i^* ISP

SYx PY ,, .—
^7J5
—

, which IS a maximum,
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Let SA = a,SP = xi then SY^sfax, and Pr^^Jx^-ax-,

. J'ttx^\/^^-a^ ^r \/^-^ or -"/ , is a maximum ;

hence x x — Sx x-\- 8ax''x= 0, and j: = —-
.

The same principle might be adopted in the two following

Propositions; but it is more convenient to use a different

method.

Prob. 95.

Required that point in an ellipse,
where the linear velocity

increases or decreases the fastest.

Take P some point in the ellipse,
whose foci are S, H-,

join SP, HP, and draw SY per-

pendicular to a tangent at P. Let
^i-^yr-

SP = Xf HP = v, the semi-major

axis = a, and semi-minor = b. Now ^j

the linear velocity oc -p- oc V/ -
,

•^ iSY X

from the nature of the ellipse ; .*.

vx-xv
the fluxion of the Hnear velocity oc —=: ; but a:+v = 2a,

x^vx

or 1)= — i ; /. the fluxion of the linear velocity oc .—
Xy/vx

X

!oc
—

j==i . But the area SPQ described, dato tempore, round
x^vx

S is constant in the same curve (Newton, Prop. 1.) ;
therefore

SP X QT is equal to a constant quantity ; and

PT : QT :: PY : SY, or

± : QT :: V^^HZf ; b x s/^ , by the nature of the

K
/) 7" XX

I .ellipse; /. QT =:
'

: /. SP x Qroc--=^,
i >Jvx-b' AJvx—b*-
i .

•
^

t 1) T U^
which is constant, or oc i ; and if oc ^1

; hence the
x
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expression
—r= oc :ii —

^ ^ which is a maximum ; that

XaJvx jj* X V^J?^

1)^ fe* . 1 &'
is, -J- is a maximum, or — ; therefore, taking the

1/ Xr X 'VX

a .
— 4x^x b* X 5x*xv -\- x^v , „

fluxion, j
— + r—r^ = 0; therefore

X V X
— 4v^x^x + 5b''x^vx -\- b^x^v .... .

r-vo — =
; omit the denominator, and

V X

for V write -i; then bb'^x^v- b^x^- 4v^x^ = 0; that is,

bb^v - A^'x - 4v*a:= 0. For x write 2a— v ;

then 5i*«;+ i't)-2ai*+ 4t;'-8au*= 0,

or 4t;3+ Gb'^v ~ 8av- - 2ab^= 0j

or 2v' — 4at;*+ 3i-t;— ab* =0,

a cubic equation, in which there will be only one possible

value of V.

Prob. 96.

Required that point in an
ellipse, where the angular velocity

increases or decreases the fastest. (See preceding Fig.)

Draw SQ indefinitely near, and QT perpendicular to SP,

the area described dato tempore

dist.
3,The angular velocity varies as

oc __
,

since the area dato tempore is constant, oc — ;

» J X X

XX X
hence the fluxion of the angular velocity oc __. oc —. But

js/vx-b^ X >Jvx-b^ 1 • u • •

X oc ~
; ,% -- oc

, which is a maximum,X a^ xf'

and its fluxion =0 ;
that is, ,

— Ax^x x aJvx- b^
2x ^vx-b*

_ . .
, .

. v— xxxy-xf^
= 0. ant x-\-V=iO, and^=-'Z;; .*. , , =Ax^x^

2^vx-b*

A^vx
- h"

; hence -^' = 7^'^-- 8 6=*. Now for v write 2a— x,
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and X will be found = ————r- • The other value
o

of X is of no use ; for it is a quantity greater than x ever can

be in the ellipse.

pROB. 97.

To find the point, where the paracentric velocity of a body

revolving in any curve is a maximum.

Let PR be the curve, S the center of force, PV a tangent

at P, and SY perpendicular to it. Take

PQ, a small arc in the curve, and QT per-

pendicular to SP. Then the velocity in the

curve : paracentric velocity :: QP : PT
:: SP ; PF;

,, ,
. , vel. in curve x PY

.'. the paracentric vel. = ^^

«
"VF VP v^^^

^^^^ velocity in the curve

/SP^ — SY'^V ^p ^ ^yy
' Hence, in the case required, this expression,

SP^-SY^ .

or Its square -^p^
—

\F*'
'^ ^ maximum.

Examples.

Ex. 1 . Let the curve be a parabola.

Here if ^P=^, SY^=ax, and ^-H^, or ^-^, is a
ax X X'' x^

'

maximum; /. x^x-2xx x x-a =0; .-. x = 2x-2a, and
.r= 2a= I the latus rectum.

Ex. 2. Let the curve be an
ellipse. (Fig. Prob. 95.)

IfSP= X, HP=v,AC^ a, and the semi-minor axis = b ; then

Sr'= ^, and SP^-Sr'= x'-^ = ^i£sz££^ ,„d SP'V V V -
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2a—XXX- b^ 2ax-x^—¥ 2ax-b^ , l- u •

oc . oc 1, which IS a
X' X" X*

maximum; and 2ax*x— 2xxx2ax— b'^ = 0, or aa: = 2aj?— &*;

ft*
, .

/, j:= — = I the latus rectum.

Prob. 98.

To determine the nature of the curve, down which a body
must descend after its fall through a given space by the action

of a constant force, so that it may, in the direction of its first

descent, describe equal spaces in equal times.

Let the space DA through which the body falls =a, and

suppose AFC to be the curve required;

take FG a small arc, and on DJ produced

draw FN', GL, CB perpendiculars,
and

let F^be parallel to AB. Take AN=:x,

AF=z, FN=y; then FG = z, FH=x, ^fj.

HG=y. Now the velocity in the curve

at F= that through DN, and therefore

varies as mJ a-\-X', and the velocity in the

direction FH is constant by supposition, and equal to that

acquired down DA\

,\ z : i :: ^a+x : ^a, or %' : i* :: a-\-x : a;

that is, i*+y' : i" :: a-\-x : a, and ^' : i* :: a? : a;

,',
if

; X :: x^ : a^, and a7y^x^x\ .*. opy — 11Z-.\

or ^-^ =a?', and the curve is the semi-cubical parabola.

Cor. The latus rectum oC this semi-cubical parabola

4
'
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Prob. 99.

A body describes a cui-ve, whose equation is a'^'^y^x'', by
a force acting in parallel lines, and in the direction of the

ordinates ; required the variation of the velocity.

I By Art. 161. v"" oc Fx PFoc -yx -~t: (Art. 103.) oc z\

Now 3/= ^^; /. ^'=~ X a;--i^ and z^ = x^+y^^

7i^x^"~'+a"'-^xd;^
; :, voc sj n^x""-'' + a*"-^

Prob. 100.

To determine the curve, in which a body revolving by
a force, which acts in lines perpendicular to the axis, shall

approach to or leave the axis with a velocity always proportional

to the ordinates.

Let NJT be the curve. Ax the axis, LN and xi/ ordinates ;

let AL = x, LN=i/. Then i is constant,

and by the Problem ^ oc
3/ ; .*.

'- is

constant, or ~ ex: x, a property of the ^
y

logarithmic curve. (Art. 132.)

Prob. 101.

A body is projected with a given velocity from A, in a

direction AP parallel to the plane VQ, ; to find the curve

described by the body, the attractive force of each particle

being supposed constant.

Let AQ. be the curve described ; assume AV perpendicular

to the plane =«, VD a variable distance =:c, DE an ordinate

=y, EF— -X, FG—y^ and let the uniform velocity in the

3 B
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direction AP= b. Then, if v represent the velocity at E
in the direction Af^, i;*!; oc — Fx ; .*. v'oc —x
4- Gorr., and i)* oc a - x ; /. f oc ^a- x =
«?T X ^a- X. But the velocities are as the

spaces described uniformly dato tempore ; .*.

— i '. y :: d^ x ^a— x : ft; therefore 3/= —

, and
7/
= -—r X ^a~x; that is,d^ X s/a-x'

"^
d^-

the curve ^Q is a parabola, whose vertex is A, and principal

latus rectum =
4ft'

Cor. This corresponds with the motion of a body projected

at the earth's surface, where rf= 4 m, and the latus rectum =

—
, m being: 1 G-rx feet,m ° i2

Prob. 102.

Conversely, a body projected in a direction AP parallel ta

the plane f^Q, whose particles attract it according to a certain

law, describes a parabola AQ; required the law of the force.

Let p = the parameter of the parabola ; then pxa^x= i/* ;

/
=

, .
-^T"^

,\ y
—
\/p X a- X y and y= / ; .*. y : —x :: |» :V

jtf
X a — x

^px a- X. But y : —x :: the uniform velocity {b) in the

direction AP : the velocity (f^) at E ;

.*. b : V :: ^p : s/pxa-x;

Ijence v oc sja — x, and v^ oc a— x; .'. vv oc — x. But

vv (X. — Fx, where F is the accelerating force
; .-.

— Fx <x

—
i", and F ex. 1, or is constant.

Prob. 103.

A body is projected with a given velocity from ^ in a

direction AP parallel to the plane f^Q; to find the curve
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described by the body, the attractive force of each particle

varying inversely as the dist.
|

. (See preceding Fig.)

Let ^Q be the curve described, and assume as before;

then, if v represent the velocity at any distance x from the

jp J

plane in the direction AV, vv cc —Fx oc —r-; .*. z;' cc —^ X^ X

z
^ —TT" > ^^^ ^ °^ • ^^^ *^^ velocity oc space

Ct (Z X X

/ a* — X*

uniformly described dato tempore; .*. - i -.y-.'.dy.
~

: h ;

OC

the factor d being assumed in the third term to make that

term of the same dimensions with the fourth ; hence y =
hxx h .

, . 1
.— —

.
, and V— -jY. iJ a''— x?. which is the property

dx^nf^"-
^ d ^ r r J

of an ellipse; therefore the curve ^^Q is an ellipse, whose

fiemi-major is AV—a, and semi-minor axis ^Q= -7- .

Cor. 1 . If b = d, the curve is a circle.

Cor. 2. If the force be repulsive, it may be shewn in

the same manner, that the curve is an hyperbola, whose center

h I
is V, and vertex A ; for in this case y= t x V x' — a*.

Prob. 104.

Conversely, a body projected in a direction AP parallel

to the plane VQ.^ whose particles attract it according to a

certain law, describes an ellipse AQ,\ required the law of

the force.

Here if c = the semi-minor, and a the semi-major axis

the ellipse, 3^
= - x Va'--^; •*• ^ =

^
^
Z/^^'
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,'. y i —ct :: ex : a'X.^a^
— x^. But y : ^x :: the uniform

velocity in the direction AP (b) : the velocity towards the

plane at E (v) ; ,\ b :v :: ex : a x s/ a'— x'' ; .% v oc

1^ a^" x^

X
' and v* oc

a* -X*

X*

TT * JliCl XX X
Hence w oc — —— oc ;

of' x"

but if i^ represent the accelerating force, vv o: — Fx; .*. —Fx

oc
5 , and jPoc -—

.

x^ x^

PROB. 105.

To find the time of vibration of a pendulum in the arc of

a circle.

Let D be the point from which the pendulum CD begins

its vibrations, and from any point F
in the arc DA draw FG parallel to

the horizon, meeting the vertical line

CA in G. Let CA=a, AG = x,

AE = b, and AF= z. Then z =
(IX

zr:; and since the velocity
tjlax-x^
zt F =. w 4m X b — x, we have T=

^ \/4mxb-xx^^^^-^"'
1 ax

,
whose

1
~x]~^

^2a — x' 2a

1 + +
3.3b'

^Am ^bx-x'^Xs/^a— x

fluent or T, found by expanding

Psja
the binomial theorem, = + . x . ^^ ^ ^ ^ . ,—

=,,

^Sm 2.2.2a
2.2.4.4.2a\

+ &C., where JO
= the circumference of a circle to the diameter 1 ;

therefore the whole time of vibration, which is double of this,

b 3.3Z>"
+— X : 1 -I- ,

,

2m 2.2.2a
2.2.4.4.2al*

+ &C.
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Cor. The time of descent down the diameter, or the chord

AD, = V ~
; hence, if the arc in which the pendulum^ m

vibrates be very small, or h evanescent, we have, time down

arc or i time of vibration : time down the chord :: - X
^ 2

\/— : v — :: » : 4 :: the circumference of a circle :
^ 2m ^ m
four times its diameter.

Prob. 1o6.

To find the time in which a body will fall by gravity down

the arc of a semi-cycloid.

Let AB = a, AC=x, AE = z; then AD-sJ~ax, and

AE= 2^ax\ therefore the
r_ b i,

fluxion of the arc = a^x'^oc.

Also BC= a-x; .-. if m =

l6~2 feet, velocity at ^ =

s/Amx a- XX .'. T—

,', (Art. 44.) T=

-S — OJX '^x 2x

\/4mxa-x \/ 4ma ^ax-x"'
-2

ij Anna
X a circular arc of radius J a, and

versed sine x + corr. when x — a, T=0; .*. T=
^Ama

a circular arc of radius \ a, and versed sine a ; the remainder

2

vanishing, when a?;=0, = - - x | circumference = time
sj Ama

from L to A\ therefore the time from L to R =
tjAma
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... 2 pa .„
X f circumference = .—- X -r-^ if /)

= 3.14159, &c. =
sjma -^

px\/l.m Now the time down the axis ^ m therefore

time of vibration : time down axis ^ ^ m m ^

:: circumference of a circle : its diameter.

Prob. 107.

If a chain of uniform density be hung over a fixed pulley,
and the parts of the chain be unequal, the heavier will descend ;

given the length of the chain, and the parts of it on each side

at the commencement of the motion, to find the time in which

it will leave the pulley.

Let AG, BM be the parts of the chain on each

the pulley at the beginning of the motion.

Draw GF parallel to the horizon ; then the

moving force with which M begins to descend

is the part FM. Let M descend to O, and

take Gm =MO ; the moving force then =
nO=FM+ 2MO. Let L= the whole length

of the chain, and the force of gravity upon it

= 1 ; then, if FM= 2a, and MO= x, no = 2a

+ 2Xj and the accelerating force =
j
—

.

Let z = the space through which a body would

fell! by gravity to acquire the velocity at O ;

side of

then z =
2ax + 2xx

and z = Hax-^x"^
velocity at O

(=:^4mz, if m=l6— feet) =\/~ x ^2ax + x\ Hence

r=\/^><
X

4m ^2ax+af^
,
and T ^ 4m

X hyp. log. a+x-{-
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>sjlax+x^ + corr. Let T=0, x — 0, and corr. = — \/ —- X
4m

hyp. log. a; .-. r=: V ^ X hyp. log. ^
-.

Now when the chain quits the pulley, x=i ^ L — a\ .'. the

whole time = \/~ x hyp. log.
i 1-+^aL- 2a'-\- ^ L- af

^Am

Prob. 108.

Suppose a weight, suspended by a cord passing over a

fixed pulley, to be uniformly drawn up ; required the number
of vibrations which the weight would make before it reaches

the pulley.

Leta= the distance of the weight from the pulley at the

beginning of its motion, x= any variable distance ascended,
and v= the space through which it is uniformly drawn up in

1"; w=l6j2 feet; then the length of the pendulum at the

distance a; = a — 0? : therefore, time of oscillation : \/ ::^ 2m
circumference of a circle : diameter ; therefore the time of one

. Cx sJcL-x
oscillation = —-

j^r ; hence the number of oscillations

X
in a time = -, or the fluxion of tlie number of oscillations

V '

D X -v/ 2m X X
whilst the weight ascends through the space x, — .-^

Cx Vx ^a—x

— ^—7?
— ^ —

I ? whose fluent, when x — a, is

Cx V ^ a — X

-T^
—

r-^ = the number of vibrations made by the
C X A' ,

-'

pendulum.
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Cor. The number of vibrations, made by this pendulum,

= twice the number made in the same time, viz. -, by

a common pendukim, whose length is a.

Prob. 109.

Let KLNM represent a cylindrical tube, whose arms KL
and NM are perpendicular, and LN parallel to the horizon ;

suppose it to be partly filled with water, and the surface of

the water, when quiescent, to coincide with AB and CD
;

let AB be depressed to EF, and CD raised equally to GHy
draw IR in the other arm parallel to LN, and at the same

height with GH-, then, the pressure being removed, Gi/will

descend, and EF ascend. Required the time in which EF
will rise to its greatest altitude IR.

Draw 6'T' in MN at the same altitude with EF, and

parallel to LN. Let GC=a; then GS
— 2a, and the force with which the

upper surface endeavours to descend =
a column of the fluid, whose altitude is

Q,a. Let the axis of the tube = L, and

the force with which gravity would ac-

celerate the fluid, if unconfined, = 1 ;

then the column GS : the whole weight

of the fluid :: 2a : L; .*. the force of

K M

N

la
this column = -=- . Let GH descend to xy, and put Gx

2a— 2x— X ; tlien the accelerating force = hence, if z be

the space through which a body would fall by gravity to

, , .
, . 2ax—2xx , 2ax^x^

acquire the velocity sA xy, z= == , and %= f j
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^ = ^= \/^x ;/ . ; andT=\/^Hence T — - — v — ^ t-z ^' ""^ v .i^^a

a circular arc of radius a, and versed sine x, which needs no

correction; /. the whole time of ascent to IR, when x=2a,

X T the circumference of a circle of radius a =
4m a*

is \/

V^.^P^ (ifp = 3.14159,&c.) =px\/-~.

Cor. 1. The time of one descent of the fluid from GH
to ST is equal to the time in which a pendulum would vibrate,

whose length is half the length of the tube's axis.

Cor. 2. Since HD does not enter into the expression,

whatever be the altitude of GH, the whole time of descent

will be the same.

Cor. 3. The velocity of the descending surface is accele-

rated to CD, and then retarded to ST, where it =0.

Prob. 110.

Let the arms of the tube be inclined to the horizontal part

LN in any given angles, and let AB he depressed as before

to EF; to find the time, in which, if the pressure were

removed, EF would rise to its greatest altitude IR.

Let AI or AE, which are equal to HD and D7\ =a\

p = the sine of the

angle KLN, q = the

sine of the angle

MAX, to a radius 1 .

Let L = the length

of the whole canal,

and the force with

which gravity would

accelerate the fluid if unconfined = 1. Then the force, by
which the column HD endeavours to descend at first =:

3 c
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HD X the sine of HNL AE x sine of KLN
+ ~ =HD X q +p

= ax q+p= the weight of the two columns HD and AE
in a perpendicular direction. Hence the accelerating force

d X O A- T)

at H=
j
—L.

; and when the surfece GH has descended

to xi/, if HF = X, the accelerating force on xy = ax j
—

q + V a- X . q+ p , .^ ,
. ,

XX ^-T— = p—-
; and if z represent the space through

which a body must fall freely by gravity to acquire the velocity

ax — xdxq + p ,
2ax - x^ x q-{-v ,

at xy, z =
J
—-—-

, and z =
j
—-——

; hence

the velocity at ?/= V ^—^ x Am x sj2ax-x\ Now t^
1L

X
; /. in this case, T= \/ ^ , .^ Am X q-^J>

"^ ^ 2ax
~

; /. in this case, T= \/ x f. —j===. , and

'=\/-
2^

= X a circular arc of radius a, and versed
4ma X q +p

sine X, which needs no correction. Let x = 2a; then the

/ FL
whole time = \/ . x ^ the circumference of a

4ma' X q -\- p

circle of radius a = \r ==x Pa (if P = 3.1 4 159, &c.)
4m a^ X q +p

= Px\/^-
2mxq-\-p

Cor. 1 . If KL and MN are perpendicular to the horizon.

v^.or p and q each = 1, T=Px V — , as before.

Cor. 2. The time of one descent of the surface from GH
to ST, or ascent from EF to IR, is equal to the time in

which a pendulum would vibrate, whose length is .
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Cor. 3. When the angles at L and N each equal 30°,

then p and q each = | ; and tlie length of a pendulum^ which

would vibrate in the same time, = L.

Prdb. 111.

The force of gravity being supposed constant, to find

the density of the air at any altitude above the surface of the

earth.

Let r= the radius of the earth, .r = any variable distance

from the center above the surface, v — the density of the air

at that point, the density at the surface being assumed = 1 ;

h= the height of an homogeneous atmosphere. Now since

the compressive force of tlie air is proportional to its density,
the fluxion of the compressive force is to the fluxion of the

density as the compressive force to the density ; and in this

case, since the force is constant, the fluxion of the compressive

force is as the density and the fluxion of the altitude ; hence

h : \ '.: vx '. —V
', .*.-/« x -

=.oc, and —hx hyp. log. v-{-

corr. = 07+ corr., or Ax hyp. log.
- =jc- r.

Cor. 1. If 0?, and therefore x—r, be assumed in arithmetic

progression, the hyp. log. of - is in arithmetic progression,

and - in geometric ; that is, the densities of the air are in

geometric progression.

Cor. 1. If AB represent the density of

the air at the earth's surface, and j^H

be drawn perpendicular to yiB, and any

ordinates, as FG, be taken proportional

to the density at F, the curve BGI thus

traced out is the logarithmic curve.

/ H
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For x-r cc Iwp. log. -, or AF varies inversely as the

logarithm of the density ; hence, if j4F increases in arithmetic

progression, FG decreases in geometric, a property of the

logarithmic curve. (Art. 131.)

Cor. 2. Let h= the height of a homogeneous atmosphere,
in which the density throughout is the same with the density

at A; the pressure at A is the same, whether we take the

homogeneous atmosphere, or that whose density is represented

by the varying line FG. Hence // x AB = the area ARIH
=ABxAC (Art. 133. Prob. 3. Cor. 1.) ; .-. h =AC = the

sub-tangent, or the modulus of this system of logarithms is

the height of an homogeneous atmosphere. (Art. 132. Prob. 2.

Cor. 2.) Cotes' Harm. Mens. Prop. 5. Scholium.

Prob. 112.

The force of gravity varying inversely as the square of the

distance from the center of the earth ; to find the density of

the air at any altitude above the surface.

r*
The force of gravity at any distance x = —^ . Now the

compressive force of the air varies as its density ; and the

fluxion of the compressive force is proportional to the force

of gravity, the density and the fluxion of the altitude ; hence,

on the same assumption as in the last Problem,

vr^x •
1 V r^x

h : I :: —j- : -V ; .-. hx - - = —-,
X* V x^

r* . 1

and - ^ X hyp. log. v= + corr. ; that is, h x hyp. log.
—

X V

r~
X

'

r^
CoR. 1. If a? increase in musical progression,

— is in

arithmetic ; hence the hyp. log. of the densities decreases in

arithmetic progression, and the densities themselves in geo-

metric.
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COTES' SOLUTION. HARMONIA MENSURARUM.

Prop. 5. Scholium.

Let S be the center of the earth, AB its surface. Assume

Sf : SA :: SJ : SF, and draw the

ordinate J'g proportional to the density

at F; the curve Bgn traced out by the

point g will be the logarithmic curve,

but in an inverted position. For let

AFhe increased by the small line FM;
take Sm : SA v. SA : SM, and assume

mn, an ordinate proportional to the

density at M. Then, since SmxSM
= SA' = Sfx SF, we have Sm : Sf ::

SF : SM; and dividendo, Sf-Sm :

SM - SF : SM; alternando,

FM :: Sf : SM :: Sf : SF ::

. FMx SA^
.'.fm=

Sf
fm

SA"- : SF'
SF'

hence

fm xfg varies as the fluxion of the distance x the force of

gravity at F x the density, or the area fgnm varies as the

pressure at Jf^; and the sum of all the similar areas below

fg varies as the sum of the pressures above F, or varies as

the density fg. In the same manner the sum of all the

areas below mn varies as mn; hence their difference, or the

are^Lfgnm, ocfg-nm; that is, fg x fm oc fg— mn; .-.

if fg-y, and fm— x, and fg - mn =
ij, y x i oc y, or i oc

—
, a property of the logarithmic curve. This curve is the

same with that in the last Proposition; for the ordinates

very near AB, and at very small equal intervals, are in each

case equal ; hence, in both cases, the curvature, the inclination

of the tangent at B^ and the value of the sub-tangent, are

the same.



374 PROBLEMS.

Prob. 113.

w"*The force of gravity being supposed to vary as the

power of the distance from the center of the earth, and the

compressive force of the air to be proportional to its density ;

to find the density of the air at any altitude above the surface.

Here the force of gravity, at a distance x from the center,

= — ; therefore, on the same assumption as in the preceding

case, h : I :: —--
: —V; .*. —nx~= ——

, and — /^ x

hvp. loff. V+ corr. = '— + ccrr. Now if j? = r, v — \ %^^ ^ n+ l.r^

1 ^«+l_^n+i
therefore h x hyp. log.

- =
n+l .r"

Cor. 1. If the force be constant, « = 0, and h x hyp. log.

— zzx—r^ as in Prob. 111.

Cor. 2. If the force ©c -~ from the center, ii= -2, and

1 V
h X hyp. log.

- oc 1 — -
, as in Prob. 112.

COTES' SOLUTION.

Let S be the center of the earth, A a point on its surface,

SAF2 a hne drawn from the center to the top of the atmo-

sphere ;
and let it be required to find the ratio of the density

in A to the density in F, the force of gravity varying as SF".

Let SF= X, d=: the density at A, and 'V the density at F;

then, since the compressive force varies as the density, the

fluxion of the density is as the fluxion of the compressive
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x"x. Let AC he the height offorce, or 'Z; oc vx"x, and oc
V

an homogeneous atmosphere ; that is, of an

atmosphere, whose density throughout is the

same with the density at A ;
then AC : the

height of the mercury in a barometer at A ::

the density of mercury : the density of the

air at A ; and if F be conceived to approach
toward A, the altitude of the mercury in the

barometer at A : its altitude at F :: AC :

FC. Hence the density of the air (d) at A
: its density (v) at F :: AC : FC ; .'. d-v
ovv : doTV :: AF or x : AC; whence, in

Since then,
this case, ACx - = i =r —-^ .

V SA""

c

\F

J'2

X^Xwherever F be assumed, - oc x^x^ AC x'"~ will =

all cases, whatever be the position of F.

in

Examples.

1
Ex. 1 . Let the force vary as -~ from the center.

Here w= -
1, and ACx - =SAx -; .-. AC x hyp. log.

V + corr. - SA X hyp. log. x -}- corr. ; that is, since v is

negative when x is positive, and the density a.t A= dj

AC X hyp. log.
- -SAx hyp. log. -,

or the measure of the ratios between the densities d and v
to the modulus AC - the measure of the ratios between
SF and SA to the modulus SA.

Ex. 2. Let the force of gravity oc Z)" from the center.

In this case, by taking and correcting the fluents.
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d 1 jc''"'"'AC X hyp. loo;.
- = X : -rr-j SA,

the measure of the ratio between the densities d and v to the

modulus AC.

Assume SA, SF, SFl, SF2, in geometric progression

increasing ; and SF, SA, Sf2, Sfs, in the same progression

decreasing ; and let the force of gravity vary as
-pr^

; the

measure of the ratio between the densities at A and F to the

modulus AC) or AC X hyp. log.
- =4 SA— J v^*

Now since SF : SA :: SA : Sf2,

and SA : Sf2 (or SF : SA) :: Sf2 : SfS,

we have, by the first proportion,

SF : Sf2 :: SF' : SA' ;

and by the second, Sf2 : Sf3 :: SF : SA ;

: .'. SF : Sf3 :: SF' : ^^3.

SA^ SA'

henceSf3=-^^,
and i SA- ij^ = i SA^^ Sf3 = i Afs ;

,'. ACx hyp. log.
- = ^ Af3. In the same manner, if the

force of gravity
cc
-^,

AC x hyp. log.
- =Af2; if gravity

be uniform, it -AF; if gravity vary directly as the distance,

it^^AFl; if gravity vary as D\ \t=^-AF% and so on

in infinitum.
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