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PREFACE

THE present volume is an account of the analytic principles of

the theory of curves, ofthe rational functions belonging thereto

and of the integrals of these functions, with a brief account of the

methods, by loops and by Riemann surfaces, for dealing with the

periods of these integrals. But the theory of correspondence, and

some necessary references to involutions in a plane, find themselves

in the succeeding volume, wdiich is mainly devoted to the theory of

surfaces.

It is perhaps desirable to explain the origin of these volumes. In

the last fifty years a remarkable advance has been made in the

theory of surfaces, and of algebraic loci in general; the English

reader may find a description of the nature of this in a Presidential

Address to the London Mathematical Society given in November

1912 {Proceedings, Vol. xii). But attempts, since the War, to ex-

pound these new results have continually shewn the necessity for a

precise appreciation of the ideas out of which this advance has de-

veloped ; in mathematics it is not sufficient to know the enunciation

of a result; it is necessary to understand the proof. These two

volumes have grown up in the attempt to meet this need. The

further need of a volume explaining the applications of topo-

logical theory, especially to the periods of the integrals belonging

to the higher loci, may, I hope, appeal to another. The volumes are

necessarily very incomplete in their inclusion of detail, as the

specialist in any branch will easily find; their object is to lay the

foundations for a more detailed study.

The pursuit of the analytical principles has a fascination in

itself; but since, for reasons of space, these volumes are so largely

devoted to this, I may be allowed to add another remark. The

study of the fundamental notions of geometry is not itselfgeometry

;

this is more an Art than a Science, and requires the constant play

of an agile imagination, and a delight in exploring the relations of
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geometrical figures ; only so do the exact ideas find their value. As

when, upon a landscape of rugged hill and ruffled water, there

breaks the morning sun, scattering the clouds, and anon bathing

the whole in a glory of contrasting colour. If these volumes should

help to increase the number of those to whom the comparison does

not seem an exaggeration, they will have been worth the making.

To the University Press very special acknowledgments are due,

for the care, and speed, with which the volumes have been printed.

H. F. B.

29 Aususl, 1933.
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CHAPTER I

INTRODUCTORY ACCOUNT OF RATIONAL
AND ELLIPTIC CURVES

The present volumes v, \i arc an introduction to the more im-

portant of the algebraical and functional relations which are

necessary for a clear and precise understanding of the principles of

algebraic geometry. These relations are as the bones of the structure,

to be clothed finally with a body of purely geometrical doctrine.

For the expression of these relations we make free use of coordi-

nates, of which the justification has been examined in Vols, i and ii.

With their use we can define an algebraic construct (curve, surface,

manifold, etc.) as the aggregate of points whose coordinates satisfy

a set of algebraic equations, taken with points (limiting points, and
other) which it may be necessary conventionally to add thereto.

And, it is to be understood that all coordinates, and parameters,

that enter in the equations employed, are capable of complex
values ; in particular, an aggregate will be said to be of dimension,

or freedom, r, or simply to be oo'', when it depends on the values

of r parameters not restricted to real values. In the elementary

geometry two figures, or two manifolds, are regarded as essentially

identical when they are projectively related to one another, that

is (as we have seen) transformable into one another by equations

which are linear in the (homogeneous) coordinates; in general

algebraic geometry, two manifolds are regarded as essentially

identical when the coordinates of the points of either are expressible

as rational algebraic functions of the coordinates of the points of the

other, whether linear functions or not.

The simplest algebraic construct from this point of view is then a

line, which may be regarded as the locus of a point identified by one
parameter fixing the position of the point upon the line. But the

points of a conic, of which one point is known, are equally expres-

sible in terms of a parameter, by taking the intersection of the conic

with a variable line drawn through the known point. Or again, a

plane cubic curve with a double point of known coordinates, is like-

wise the locus of a point whose coordinates are rational in one

parameter, the intersection of the curve with a variable line through

the double point. More generally, there is an unlimited family of

curves with the property that the coordinates of any point of the

curve are expressible as rational functions of a parameter; and this

parameter can be chosen so that, conversely, it is a rational function

of the coordinates of the point of the curve with which it is associated.
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It will be seen, moreover, though this is a subsidiary property at the

present stage, that, in the rational functions of the parameter which
express the coordinates of a point of the curve, the coefficients which
enter may be taken to be rational in the coefficients of the equations

by which the curve is given and in the coordinates of one point of

the curve; this is illustrated by the case of a conic. Regarding the

variable parameter as representing a point of a line, such a curve as

we have spoken of is therefore in (1, 1) birational correspondence
with the line. Such a curve is called a rational curve. In the present

chapter we give some fundamental properties of such curves, partly

to illustrate general ideas, and partly because these properties

should be known. And we treat also, for the same reasons, of curves

which, in order of formal difficulty, next follow, those called Elliptic

Curves.

Linear series on a line. One fundamental notion, which can be
stated for a line, and has application not only to rational curves but
to algebraic curves in general, is that of a series of sets of'points, and,

in particular, of a linear series. If a general point of a line be given
by a parameter 0, a set of n points will be given by an equation
6"- + flj^"-! 4- ... + «„= 0, with given coefficients «!,..., a„ . These
coefficients in turn may depend on other parameters ^, t;, ..., so

that when these vary the coefficients vary, and consequently the

original set of n points of the line also varies, and gives rise to a

series of sets, of each n points. The coefficients a-y, ..., «„ may be
rational functions oi ^, tj, ..., all of these being capable of inde-

pendent variation; then we have a rational series of sets of n points

on the line. As a particular case of this, the coefficients a^, ..., a„

may be linear (fractional) functions of ^, tj, .,., all with the same
denominator, of the forms ai= Ujju, where u=p^+ qrj+ ...,

Ui=Pi^+qiV+---> (i=l, ...,w), where p,g, ..., Pi, gi, ... are con-

stants. Then the sets on the line are given by ud'^+ u-^d^^~'^ + . . . -h w^= 0,

and hence by |t7 + '^F+ ... = 0, where C/= 2j6'» + pi^"-i-^ ...,

V= (/^" -h 5'i^"~^ + . .
. ; these U, V, ... are then definite polynomials

of order n in 0. Such a series is called a linear series of sets of points

on the line. But in regard to the polynomials JJ, V, ... two facts

must be clear. It may happen that they all vanish for a certain

number, say k, of definite values of 6; then, as ^, rj, ... vary, the sets

of the series consist of n— k variable points, and of k points common
to all the sets, these being fixed. Further, it may happen that

U, V, ... are not linearly independent, but connected by one or

more linear equations, with constant coefficients, satisfied identically

for all values of 6 ; and this will always happen if the number, say

r+1, of the polynomials U, V, ... is greater than n+1. When the

r+1 polynomials U, V, ... are linearly independent, we can
obviously determine a set of the linear series, of which r points have
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arbitrarily assigned positions, the other points of the set being

thereby determined ; in this case we speak of the series as being of

freedom (or dimension) r, or as being oo'". And we may speak of

n — k as the gi'ade of the series, this being the number of points which
vary when ^, t], ... vary. It is obviously necessary that the freedom
be not greater than the grade. In particular cases it is convenient

to consider linear series of which all the sets have a certain number
of fixed common points, and it may be convenient to modify the

definition of grade accordingly.

A scries of sets of points on the line which is not linear, nor

rational, may be algebraical in a more general sense. This will be so

if the coefficients a^, ..., a„, in the equation which determines the

})oints of a set, be algebraic functions, of one or more parameters

^,77, ..., of such character as not to be capable of being expressed

as rational functions of other parameters. The simplest case of this

is when they are algebraic functions of one parameter, ^. This

means, in the first instance, that each coefficient, a,, satisfies an
(irreducible) algebraic equation with coefficients which are rational

in ^; in this case, however, it can be shewn that a single algebraic

function of ^ can be chosen, say a, such that all the coefficients

«i , . .
.

, cf„ are expressible rationally in terms of ^ and o, say

ai = ipi{^, a); this can be done so that the aggregate of values of all

these coefficients, each determined by its own equation in terms of ^,

is obtained by taking «j = i/fi(|, o), and allowing |, a to take all

possible simultaneous values consistent with the algebraic equation

by which a is determined from |. We may thus define an algebraic

series of sets of points, upon the line, as that given by an equation
^" + Si/(j(^, a)^"-*' = 0, wherein u, ^ have all values which satisfy a

definite (irreducible) polynomial equation /(ct, ^) = 0. And we may
similarly have an algebraic series of sets depending on r parameters

^1 , . . . , ^r , wherein each coefficient a, , of the determining equation,

is rationally expressible in terms of 1^ , . . . , ^^ ^"<i ^ further variable

a, satisfying a rational polynomial equation, say/ (a, ^^, ...,|^) = 0,

all values of ct and ^^ , . .
. , ^^ which satisfy this equation being taken

;

it can be shewn that this covers all cases of an algebraic series.

A general linear series of sets of n points, in which the freedom is

also n, is that expressed by the original equation ^" + 2aj-^"-*= 0, in

which all the coefficients vary independently of one another. Every
algebraic series of sets of n points evidently consists of sets selected

from this general series; it may belong to a linear series, of freedom

less than )i, arising by imposing linear restriction of the values

allowed to %, ..., «„ in the general linear series spoken of.

In an algebraic series of freedom 1, there will generally be more
than one set which contains a particular point of the line; for an
equation Q^-\-Y4ipi{^, o)9^^-' = will generally be satisfied, with the
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same 6^, by several pairs (^j, a-j), {^^.^ ^2)? ••• satisfying the funda-

mental equation /((T, ^) = 0. The number of such sets is called the

index of the series. This is evidently equal to the number of zeros

of the rational function, for the curve/ (a, ^) = 0, which is expressed

by ^Q" + Si/';(|, ct)^q"~*. From this it can be proved that the index

cannot be 1 unless the curve /(a, |) = is rational. And then, for

the index to be 1, each of the rational functions ijji{$, a) must be

expressible as a fractional linear function of the parameter by which
the curve /(ct, |) = is expressed, with a denominator the same for

all. In other words, an algebraic series on the line, of freedom 1 and
of index 1, must be given by an equation of the form X(f>+ iiifi=0,

where
(f),

ip are definite polynomials in the parameter d of the line,

and A, /a are independently variable. IVIore generally, in an algebraic

series of freedom r, on a line, there is generally more than one set of

the series of which r points are assigned; when the series is linear

there is only one such set.

A familiar application of these ideas arises in the definition of

a rational curve. Suppose that the coordinates of any point of a

given curve are expressible rationally in terms of a parameter, d,

whose variation gives all the points of the curve. For example, for

the curve whose equation is x^-\-y'^= z^, we may take x=\ — d'^,

y=2d^, s=l + ^^; then d''^= yl{x+ z), and to each point of the curve

correspond two points of the line on which d is represented. We thus

have, on the line, an algebraic series of sets of two points, of index 1
;

but these sets belong to a linear series, expressed by A+;u.^^= 0,

where A, /x are variable. The coordinates of a point of the curve are

then expressible rationally in terms of the single parameter A//x;

and this is a representative parameter, as having only one value

for a point of the curve, —yl{x+ z). Such a parameter can always

be chosen to express a rational curve, as we have indicated. (Cf.

Vol. II, p. 136.)

Rational curves. Consider now a plane curve, of which the

ratios of the coordinates x, y, z of a point, are expressible rationally

in terms of a parameter, 9, so chosen that only one value of this

belongs to any general point of the curve. Thus, if p denote a factor

of proportionality, we may say that each of px, py, pz is equal to a
polynomial in 6; let one at least of these polynomials be of order n
(in general, all of this order) ; then n is the number of values of 9 for

which an arbitrary linear form ax+ by+ cz vanishes, namely the

number of points of the curve on an arbitrary line, or the 07-der of

the curve. For illustration, suppose n = S; and imagine the plane

{x, y, z) to be in space, wherein the coordinates are X, Y, Z, T. To
compare now with the equations px=fi, py=f2, p^—f-s for the plane

cubic curve, take in the space {X, Y, Z, T) the curve expressed

by GX=fi, aY=f2, aZ=f^, aT=f^, where /4 is an arbitrary cubic
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polynomial, such that no identity Afi+ 8/0+ 0/^+0/^= holds, for

values of .^, B, C, D independent of ^; this is possible since evidently
no identity ^/l + ^/o + ^/s= holds, or the points of the plane cubic
would be in a line. The curve in space is likewise a cubic curve,
having three points in a plane. Since now any point 6, or {x, y, z),

of the plane cubic curve is associated with the point 6, or {X, F, Z, T),

of the cubic curve in space by the equations Xjx= Yly= Zlz, we
have the conclusion that any rational cubic curve in a plane may be
regarded as the pi'ojection, from a point, of a rational cubic curve in

space. Similarly, supj)ose we have a rational quartic curve in a
plane, given by equations px=^^, py=<f>2, pz=<f>^, where ^j, (f)^, (f>3

are linearly independent quartic polynomials in a parameter 6 ; and
suppose the plane to lie in a fourfold space of (homogeneous)
coordinates A', 1', Z, T, U. Take two other, arbitrary, quartic poly-

nomials in 6, namely ^4, ^5, and consider the rational curve, in

this fourfold space, which is given by crA'=<^j, crY =
(f)^,

ctZ=^3,
aT= 04, aU=(f)^, it being understood that no identity

holds, for constant values of A, B, C, D, E. This new curve is related

to the given quartic by the equations A/a?= F/i/= Z/s ; and, in

space of four dimensions, the three equations A= 0, 1^= 0, Z=
represent a line. Hence we say, a rational plane quartic curve may
be looked upon as arising by projection //'o//? a Hue, from a rational

curve in space of four dimensions; this curve is also of order 4,

since, with a, b, c, d, e arbitrary, the equation

aX+ bY + cZ+ clT+ eU =

is satisfied by 4 values of 9. A rational quartic curve in space of

three dimensions is similarly derivable from a rational quartic

curve in four dimensions, by taking only one additional coordinate,

the derivation in this case being by projection from a point.

In general, a rational curve in space of r dimensions, where the

homogeneous coordinates are Xq , x^, . . . , Xj. , is given by equations

pXf=f-, in which the functions /^ are polynomials in a parameter, 6.

One at least of these polynomials must be of order as great as /%

since otherwise constants a^, ..., «,. can be found to render the

equation llaifi= identically true; in which case there exist one or

more linear equations I!rt;cC; = connecting the coordinates of a

point of the curve, which then lies in space of less than r dimensions.

On the other hand, if one (or all) of the polynomials/, is of order

greater than r, the curve may be regarded as derived by projection

from a rational curve lying in space of more than r dimensions, in

the manner we have illustrated. We may then suppose that these

polynomials are of order r, and are linearly independent. The order

of the curve represented by the equations, being, by definition, the
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number of points lying on a general prime of the space, whose

equation is of the form He1X^= 0, is then r. Conversely, any alge-

braic curve of order r, lying in space of r dimensions, is rational ; for

a variable prime, drawn through (r— 1 ) fixed points of the curve,

meets the curve in one further point; and this point is identified by
the single parameter which fixes the particular prime; moreover, by
supposing the (/"— 1) points to coincide at one point of the curve, Ave

see that the only irrationality entering into the rational expression

of the points of the curve, beyond those which determine the curve,

is that of the coordinates of some particular point of the curve.

We see then that all rational curves are reducible to curves of

order r, in space of r dimensions. Such a curve is called a rational

normal curve ; it is given, so far, by equations of the form px^ =/,

,

where the (? + 1) polynomials/^ are linearly independent; by taking

suitable linear functions of Xq, ...,.!>, say I,,, ...,^^, it is thus

capable of being expressed by ^Jd''=$J6''-^= ... = i~ll. Moreover,

we see that we can pass from any rational curve of order r, in space

of r dimensions, to any other such curve, by linear transformation

of the coordinates. Upon such a curve there can be no point such

that the value of the parameter 9 appropriate to this point occurs as

a multiple root in the equation, of order r, which gives the inter-

sections of the curve with a general prime of the space; for such a

prime can be put through r— 1 arbitrary other points of the curve,

beside this one. In other words, the curve has no multiple point.

But a rational plane curve, of order greater than 2, must needs

have multiple points. We prove in fact that a rational plane curve

of order n has |(ti — l)(n — 2) double points, or multiple points

equivalent to as many double points; and, conversely, that an
algebraic plane curve of order n with |(n— l)(n— 2) double points,

is necessarily rational. To prove the former, assume the curve

given by an equation/ {x, y, ~) = 0. and to have 8 nodes, and k cusps.

We prove § + k= | (n —l){n — 2). The equation of the tangent of the

curve, at an ordinary point {x, y, z), being known, the t tangent

lines of the curve, from an arbitrary point (^, -q, l), touch the curve

at the ordinary intersections of the curve with the curve of order

(n— 1) given by $dfldx+ r)dfldy+ ^dfjdz= 0; but it is easy to prove

that this curve has 2 intersections with the original curve at a node,

and has 3 intersections at a cusp. Thus we have / + 28 + 3k:= n (n — 1 ).

On the other hand, assuming the expression of the coordinates of a

point of the curve in terms of a parameter, 6, if we join (^, r], ^) to

an arbitrary point (x^, y^, z-^) of the curve, for which the value of the

parameter is d^, the parameters of the remaining (n — 1) inter-

sections of the joining line, with the curve, are given by the equa-

tion ^{yzi-yiz) + rj{zx\-zix)+ i{xy^-Xiy) = 0; if herein, x, y, z and

Xi,yi, Cj are replaced by their values in terms of 6 and d^ , respec-
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lively, and the result divided by d— 6i, there remains an equation

{d,di) = 0, of order )i—\ in regard both to 9 and 6^, and sym-
metrical in regard to these. There are therefore 2(« — 1) values of 6^

for which the points (0), (di) coincide, given by the equation

{di,di) = 0, which, for a general position of {$, r], Q, will be of
aggregate order 2(n — 1) in 9^^. Such coincidences arise, however,
only in two ways, if we assume that the curve has no multiple
points beside nodes and cusps: (i) when {9i) is a point of the curve
at which the tangent line passes through (|, i], t,); (ii) when (9^) is a
cusp. Thus we infer that t+ K = 2{n — 1). From the former equation
obtained we therefore have 8+ k= h{n—l){n — 2). The corre-

sponding equation when the ciu've has higher singularities requires

an appropriate definition of 8 and k, into which we do not enter now.
To prove the converse result, that a plane curve of order n, whose

only multiple points are nodes and cusps, whose aggregate number
is l{n — l){n — 2), can have the coordinates of its points expressed
rationally by a reversible parameter, we shew that such a curve can
be changed, by transformations which are rational in the co-

ordinates, and also rational in the coefficients in the given equation
of the curve, either to a straight line, or to a conic. For this, con-

sider, in conjunction with the given curve/, of order n, the most
general plane curve if/, of order n — 2, which passes through each of

the |(/i — l)(/i — 2) double points of/. The number of terms in the
equation of the general plane curve of order n — 2 is |n(n — 1); for

this to contain a double point of / one linear condition must be
imposed upon the coefficients in ip. The form of under considera-

tion will thus contain hi{n—l) — ^{n—l){n— 2), or n—1, homo-
geneously entering arbitrary coefficients, or jnoi-e ifthe h {n— 1) {n— 2)

conditions for the double points are not independent; thus the

curve ip will have an equation of the form

where iJjq, ..., 4'n-2 > ^i » ^2 ' • • • ^^'^ definite polynomials of order n — 2

in the coordinates, linearly independent of one another upon the

curve/ and \, A^, ..., A„_2, /x^, /xg, ... are arbitrary. As the double
points of / are the common solutions of three rational equations

dfldx= 0, cfjdy= 0, dfldz= 0, symmetrical functions of the coordi-

nates of all these points are expressible rationally by the coefficients

in the equation of /, and therefore the coefficients in the poly-

nomials ifjQ, ..., </'„_2> Vi, ... are rational in the coefficients in/ The
curve ifi will have intersections with / not at the double points, of

number 7i{n— 2) — {n — l){n — 2), or n — 2; the number of coefficients

left arbitrary in i/f cannot therefore be enough to enable us to

prescribe a particular ijj having, other than at the double points,

more than n — 2 intersections with the given curve/; thus the terms
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^i^'i + i^^^2+ ••• ^^^ unnecessary; and the double points of / do

furnish indepAident conditions for 0. Moreover, the curves

)/ro
= 0, .... i/'„_2=0 cannot have common zeros on the curve/, other

than at the double points of/, because the number of intersections

remaining would then be less than the number which can be

prescribed arbitrarily by proper choice of A^,, ... , A„_2- In particular

^Ao » • • • ' '/'n-2 have no common factor.

We remark in passing that we can now at once see that the

coordinates of a point of the curve /are expressible rationally by a

parameter, if the coordinates of some arbitrarily taken point of this

curve be assumed known. For, if, first, ?i — 3 arbitrary points be

taken on / the curves through these points and through the

double points will, by what we have seen, have an equation of the

form Qu — v = ^, where u, v are definite polynomials in x, y, z, in-

volving the coordinates of the n — 3 points taken, and 6 is variable.

The combination of this equation with the equation of/will lead to

the coordinates of the only remaining intersection of this curve with

/ expressed rationally in terms of 6. If we now suppose the n— 3

arbitrarily taken fixed points of / to be made to coincide at one

point of/ we thus have an expression rational in 9, and in the

coordinates of one point of/; and 9 is conversely rational in the

coordinates of the point Avhich it represents, being equal to vju.

But we may proceed by a succession of steps, from the general

equation of i/» invohnng n — 1 homogeneous parameters A^, A^, ...,

A„_2. Take (/t — 4) arbitrary points of the plane, whose coordinates

may then be reckoned rational. The curves ip passing through these

will then have an equation of the form Co^'o+ Ci^\ + C2^'2= ^- ^^'here

^'q,M-\,Y2 are definite linear functions of ip^, ...,t/(„_2? likewise,

therefore, rational in the coefficients in/; while Cq, Cj, Cg are arbi-

trary. Take now ^, -q, ^, so that 1/^0=17/^1=^/^2; then, as

(.r, y, z) describes the curve / the point of which |. rj. t, are the

coordinates will describe another curve, cf). The order of this curve

(f),
equal to the number of zeros of a general form u^+ vr] + iv^= 0,

on
(f),

is equal to the number of variable zeros of w^'o+ '^'^1+ ^''"^2 o^

/ other than the common zeros of To , T^ , T2 at the double points

of/ namely is ^i — 2 in general, that is, when the double points are

distinct. To any ordinary point of/ will correspond a single point of

^; to a node of /will in general correspond two points of </>, each

obtained by one of the modes of approach on/to this double point;

but these will be fixed points on (/>. To a general point of
(f),

say

(|. 7], ^), there will, by the construction, correspond a point

(cT, y, z) of the curve/; but there will not correspond two points. For
equations of the form

Wo{x\ y', z')IY,{x, y, z) = W,{x', y', z')IW^{x, y, z)

=Y,{x',2/,z')IY,{x,y,z)



Rational and ellijytic curves 9

would involve that every curve c^\-{-c^i+ c^^= Q which passes

throug^h the point {x, y, z) of/ passes likewise through {x', y', z'); it

is not true that every curve of order n — 2, through the double

points of/, which is drawn through a general point of / Ukewise

passes through another point of/ determined thereby, since, as we
have seen, such a curve ijj involves a number n — 2 of arbitrary

parameters equal to the number of its unassigned intersections with

/; we may therefore assume, if the /i — 4 fixed points of the plane are

taken with sufficient generality, that the same is true of the system
Cq^'q+ ^'i^ 1+ ^2^ 2= ^- ^Vhcrefore, the two equations

^/%=V^l=^/^'2.

taken with/=0, lead, for a general point (^, -q, t,) of the curve
<f>,

to

a single point {x, y, z) of/ This point may be determined by rational

processes of elimination; so that the ratios of x, y, z are not only

rational in (|, r], ^), but equally rational in the coefficients in

Wq, ^\, ^2' ^^^ hence also in the coefficients in/
We have thus found a new curve

(f>,
of points (^, -q, ^), of order m

say, where m is in general n — 2, which is wholly in birational cor-

respondence with / We have seen above, in passing, that the

coordinates of the points of/ are expressible rationally in terms of a

reversible parameter (the expressions involving the coordinates of a

point of/); the points of ^ are therefore expressible rationally by a

parameter. From this, by what was proved above, it follows that
<f)

has the equivalent of ^{m — l){m — 2), in general ^(n — 3)(n — 4)

double points. If we assume that these are distinct, the same pro-

cess can be applied to as was applied to /; it can be placed in

(1, 1) birational correspondence with a curve of order /i — 4; and the

argument can be repeated, until finally we reach either a line (when
n is odd), or a conic. The coordinates of the points of a conic can be
expressed rationally in terms of a parameter and the coordinates of

one particular point arbitrarily taken on the conic ; the coordinates

of the points of a line are wholly I'ational in terms of a parameter.

The conclusion which has been stated thus follows in general. But
the reasoning assumes that at each stage the curve obtained has

distinct nodes or cusps. This condition is evidently unnecessary

when, for instance, there arises, instead, a ^-ple point with separated

tangents; for by prescribing the reducing curve to have there a

(A-— l)-ple point, equivalent to |/t(/i — 1) conditions, we thereby

prescribe k{li—l) intersections, or twice the number of conditions;

the multiple point thus has just the effect of hk{k — l) separated

double points. The examination of the corresponding necessary

modification of the reasoning in more complicated cases must be

omitted at this stage. Another possibility may be illustrated by
considering the simple case where the process is applied to reduce a
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curve of order k which has a general (A;— l)-ple point 0. The
reducing curves would then be taken to be curves of order A—

2

with a (A'— 2)-ple point at the given multiple point 0; these

reducing curves would then consist of A'— 2 lines through this point,

and the system w^o+y^i + t«^2= would consist of two variable

lines through 0, together with (A; — 4) fixed lines through 0. The
process thus reduces the given curve to the conic ^t,— ri^ = 0, which

is rational without the assignment of any point thereon. The original

curve is in fact obviously rational, being met in one variable point

by a variable line through 0, even when A; is even. The proof that

essentially no other case needs remark must be omitted here.

Greatest possible number of double points of a plane curve.

It is natural to suppose, since the condition for a curve of order n
to be rational has been shewn to be the possession of | {n — 1) (;i — 2)

double points, in general, that this is the maximum number possible.

We prove now definitely that this is so. More generally, for an
irreducible curve of order n with multiple points, of which the

general one is of multiplicity denoted by A" (varying from point to

point), we prove that \Yjk{k—\)^\{n—\){n — 2). This inequality

we prove in the equivalent form

n{n-\)^Y.k{k-l)^-l{n-l){n + 2)-VLk{k-\).

For the curve /= 0, of order n, it can easily be proved that the

so-called first polar curve, whose equation is

^dfldx^-r,dfldy-\-idfldz= 0,

has A; (A'— 1) intersections with/=0 at an ordinary ^•-ple point of/;

it may have more when the tangents at the multiple point are not

distinct (for instance, at a cusp there are 3 intersections). As the

total number of intersections is n{n — \), we infer that

SA-(A--l)^n(n-l),

so that we have |(n— l)(n + 2) — |SA;(A:— 1) ^n— 1, and, for n>\,
the number, say |, occurring on the left is positive. Now consider

the most general curve of order n—\, prescribed to have a (A;— l)-ple

point at every A;-ple point of the curve/. If these conditions at the

multiple points are independent, the curve will have ^+ 1 homo-
geneously entering arbitrary coefficients ; for a curve of order m has

|m(7?i+ 3) + 1 homogeneously entering coefficients, and, for a curve

to have an A-ple point at a given point requires ^}i{h-\- 1) conditions.

Thus such curve of order n—\ has always at least ^+1 homo-
geneous coefficients, and, by choice of these, can be made to pass

through at least ^ other points of the curve /. By being made to

have a (A;— l)-ple point at a A'-ple point of/, a number of inter-

sections at least A:(A; — 1) is secured; but it may happen, for special

kinds of the multiple point, that there are more than this. Thus the
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curve of order n — \ has in all at least ^+ S/r(/t — 1) intersections; its

total number is however n {n — 1), which is thus equal to or greater

than f+ S/t(A' — 1). And this is the fact we set out to prove.

The application of the result is most generally to the case when
every one of the k-\Ac points has distinct tangents ; but it may be

noticed that the argument does not require this. And further, when
^SA:(^'— 1)= J(/t — !)(«— 2), the argument shews (a) that, for

curves of order n—\, the conditions of having a (/t — l)-ple point at

every /t-ple point are independent, {b) that the number of other

intersections of such curve with/is precisely equal to the number of

disposable coeflicients in such curve, so that all these other inter-

sections can be taken arbitrarily, (c) that all the A;-ple points of/ are
such that the ciu've of order n — \ prescribed to have thereat a

(A' — l)-ple point has just A-(/i-— 1) intersections with /at this point,

and no more. The whole argument, however, as in previous cases,

assumes that /is an irreducible curve; otherwise the curve of order

n— 1, by containing a part of this, may have infinity, and not

n{n — l), as the greatest possible number of its intersections with/.

Elliptic curves . Having proved that J (w— 1 )
{n — 2 ) is the greatest

possible nvuuber of double points for an irreducible curve of order n,

and considered the case when this is the actual number, we consider

now the case of a curve with \{n — \){n— 2) — l double points

(w> 2). We prove that such a curve is birationally equivalent with

a plane cubic curve.

Let a general curve, t/r, of order n— 2 be described through the

\{n--l){n— 2) — \ double points of the given curve/; this will have
n{n— 2) — {n. — \){n — 2)-\-2, or n further intersections, and its

equation, containing at least hi{n—\) — \{n—\){n — 2) + l, or n

arbitrary coefficients, will be of the form

where i/^q , . .
.

, ijJn-\ , U^, U^, ... are definite polynomials of order

71 — 2, linearly independent on the given curve, and the terms in

U^, U^, ... may be omitted if the double points of / furnish inde-

pendent conditions for the curve of order n— 2 described through

them. In fact there are not more than n terms in )/r; for, if so, take

a form of i/( involving n+1 terms (say ii,^= p,^= ... = 0); and then,

that particular ijj which further passes through n — 1 prescribed

general points of /; this will have an equation of the form
u-\-vd— 0, where u, v are definite, and 6 is variable, and this ifj will

have one further intersection with/ There is then a correspondence

between this point, and the value of 9, either determining the other

;

by elimination it then follows that the coordinates of this point are

rational functions of d. But this is not the case, or the curve/would
have \{n — \){n — 2) double points. We may thus suppose, in the
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equation of 0, that /i.i= /Li2= ... = 0. Further, it is not the case that

if )/» be made to pass through an arbitrary general point of/, it will

necessarily pass through a further point of / determined by the

first point; for, by suitable choice of the ratios of A,,, ..,, A„_], the

curve (/( can be made to pass through n— 1 arbitrary points of/, and
if each of these determined another point of/ lying on 0, we should

thus have 2 (/i — 1) intersections, which is greater than the number 71,

of intersections of with /which are not at the double points of/,

if n>2.
Now, of such curves ifj, consider those which have n — 3 pre-

scribed general points of intersection with the curve /; such curves

will have 3 further intersections with/ and will have an equation of

the form c^q-\-c^-^^-\-c^2= 0, where Cq, q, c^ are variable. Such a

curve can, by proper choice of the ratios of Cq , c^ , Cg , be made to pass

through two arbitrary points of /; thus, the assignment of one
arbitrary point of such a curve, upon / does not involve another

intersection determined by the former. Hence, if we put

the point (^, -q, ^), as {x, y, z) describes/ describes another curve,

to any point of which corresponds conversely only a single point of

/; this curve, in other words, is birationally equivalent with/ The
order of this curve is 3, unless ^q,^i,^2 hf^^ve a common inter-

section with /in addition to the /t— 3 prescribed intersections of i/r;

as this curve cannot be a conic or a line, not being rational, the order

is therefore really 3. This shews that the curve / is birationally

equivalent with a cubic curve, as stated. The equations of trans-

formation, however, involve the coordinates of the n — 3 points

through which ^ was made to go ; by taking these points to coincide

at one point, the equations of transformation become rational in the

original coefficients of/ and the coordinates of one arbitrary point

thereon.

The simplest example of this argument is that of a quartic curve

with two double points. Conies through these, and one further

arbitrary point of the quartic curve, suffice to transform this curve

into a cubic curve. If the two double points, and the third given

point, be the vertices of the triangle of reference for {x, y, z), the

transformation is effectively ^x= r]y= ^z, as is easy to see. But we
may take another point of view, which is suggestive of generalisa-

tion. With a, h as constants and m^, i\ as homogeneous of order 1 in

y, z only, and Wg homogeneously quadratic in y, z, the equation of

the quartic curve may be taken to be

ax'^ + xhij^ + xhi2+ xyzvi + hy'^z^= 0,

(the double points being at the vertices {y), (s)). The curve is there-

fore the projection, on to the original plane, of the curve of inter-
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section of two quadric surfaces; namely the projection, from

(0, 0, 0, 1), of the intersection of the two quadric surfaces w'hose

equations are xt — yz= Q and ax'^^-xu^ + U2+tt\-\-ht^=i). The cubic

curve, to which the plane quart ic curve is transformable, may be

taken to be the projection of the quartic curve in the space

{x, y, z, t), from any point of itself. The plane quartic curve is not

transformable into a cubic curve with equations rational only in the

coefficients in the equation of the quartic curve.

Returning to the plane curve of order n, with |(u— !)(/« — 2) —

1

double points, if the equation of the general curve of order h — 2

through these double points be written as before in the form

Aoi/'o+ ••• + '^n-i'/'w-i=0» ^^^^^ 'f we take

•Ao ^1 '" "An-i'

and regard (^q, ... , |„_i) as coordinates of a point in space [/i — 1]. of

n — 1 dimensions, we may shew that as {x, y, z) describes the curve

/, the point {^q, ... , f„_i) describes a curve in the space [n—1] which

is in birational (1,1) correspondence with/. The order of this curve,

defined as the number of its intersections with a general prime

locus of this space, given by an equation of the form

is ri. Conversely, a curve of order n, in space [w— 1], is necessarily

either rational, or in (1, 1) birational correspondence with a plane

cubic curve (without double point). This we see by projecting the

curve, in the space [n—1], on to a plane, by means of variable

spaces [n — 3] drawn through n — 3 fixed arbitrary points of the

curve. The projection is a cubic curve.

Curves which are in (1, 1) birational correspondence with a non-

singular plane cubic curve are generally called Elliptic. They are

evidently distinct from rational curves. But whereas any two

rational curves, being in (1, 1) correspondence with a line, are in

(1,1) correspondence with one another, and, in that sense, essentially

identical, it is not the case that any two elliptic curves, though they

have the same character, are in such (1, 1) correspondence. There

belongs in fact to an elliptic curve a single numerical constant,

called its modulus; and only when the moduli of two elliptic curves

are the same are they essentially identical in the sense explained.

To make these statements quite clear, it is desirable to have a

detailed theory of a plane cubic curve; and to this end it is proper

to reduce its equation to as simple form as possible. The equation of

a general plane cubic curve contains 10 homogeneous coefficients,

and so depends on 9 constants. The general linear homogeneous
transformation in a plane contains 8 constants ; it is to be expected
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therefore that the equation of a plane cubic curve may be reduced,

by hnear transformation only, to contain only one constant. It may
in fact be reduced to the form |^+ ')7^+ ^^+ 6/x^7j^= 0, involving the

constant /x. But the nature of the irrationalities, in the original

coefficients, involved in this reduction, is not thereby made clear.

In fact this form is easily deduced when the points of inflexion of

the cva-ve are known. Such an inflexion would be obtainable by
substituting, in the original general equation, for s, an expression

mx+ 7iy, and expressing the conditions, for m and n, that the

resulting cubic equation for xjy should have three equal roots. The
examination shews that we are thus led to require the solution of an

equation of order 9. The theory of the solution of this equation is

indeed interesting. But we shall not enter into it here. Instead, we
shew how, by a birational transformation which is not linear in the

original coordinates, we can reduce the equation of the cubic curve

to the form Y^Z= 4^X'^— g2XZ^—gsZ^, by equations rational in the

original coefficients and the coordinates of one point assumed to be

given (arbitrarily) on the curve. It is easy to see that this equation

essentially depends only on the one modulus g^^lgs^- A knowledge of

the curve given by this equation then enables us to determine all

the properties of the original curve.

If the equation of the cubic curve be given in general form, and

the coordinates of a point thereon, we can determine, rationally,

the coordinates of the point Q where the tangent line at O meets the

curve attain. By a linear transformation we can then take O for the

point {y) of a triangle of reference, and Q for the point (x). Take

now an arbitrary line through for a=0, and an arbitrary line

through Q for y= 0. The equation of the cubic curve thus takes a

form 2yz^+ ax^y+ bx^- + (^^y^^+ (^^^^^+ ^^"y+fiW= ^> ^= ^ being the

tangent at {y). It is assumed here that is not a point of inflexion

(the case when this is so is dealt with below); also it is assumed that

the curve is irreducible and has no double point ; in particular there

is no double point at O or ^ and the coefficients c and a do not

vanish. The general conic through the point Q, or (x), and through

the two points, other than 0, in which x= meets the curve, has

then an equation l{2}z^+ cy^+ eyz) + hxy+ kxz = 0, where /, h, k are

arbitrary; and such conic has three other intersections with the

curve, of which two may be arbitrarily assigned by choice of

I, h, k. As in the preceding cases, we define new (non-homogeneous)

coordinates by the ratios of the coefficients of /, h, k, putting

i— ylz, ri
= {pz^+ cy^+ eyz)jxz. Considering these as rational func-

tions on the curve, | becomes infinite to the second order at O, and

has for zeros the two points, other than Q, where y= meets the

curve, while rj becomes infinite to the third order at O, and vanishes

at the three points constituted by Q, and the two points, not on
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x= 0, where the hnes joining Q to the intersections of the curve with

X = meet the curve again. For the reverse transformation we then

have xjz= {p + e$+c^~)lr], y/z = ^. If now we make the hncar

transformation to coordinates ^^ , rj^ which is expressed by
— |^= r/c'^+i(ae + />c — 1/2), rjjac=f^+ 2r] + d, it is easy to verify

that the equation of the curve is the same as
•>?i^

= J^^i^— ^2^i"~^3'
where, in terms of the three constants given by u= ae-{-bc — \f'^,

v = he+ ap—\clf, zi' = bp — ^d'^, the vahies of g2, g^ are given by
^g2=^u^— acv, lg^= 4jU^ — ^acuv+ a^c'hv. As the coefficient ac is

not zero, ^ and 17 are reversely expressible in terms of ^^ and tj^.

The construction for the line y = fails if the point O be a point of

inflexion. In this case, it is easy to see that if a variable line

through O meet the curve again in H and K, the locus of the

harmonic conjugate of O in regard to H and /v is a line. If this line

be taken for y= 0, and a suitable line through O be taken for «= 0,

it is at once verified that the equation is reducible, by linear trans-

formation only, to the form obtained in general.

Combining the result now obtained, with what was proved above,

Ave can assert that a plane curve of order n, with |(n — l)(/i — 2) — 1

double points, can be birationally reduced to have its equation in

the form '>?^= i|^— ^2^~'^3» the necessary equations being rational

in the coefficients of the given curve and the coordinates of an
arbitrary point thereon. This enables us to specify in detail the

difference between a rational curve and the curves now under con-

sideration. A rational curve has its coordinates reversibly expres-

sible by a parameter 9; this statement may be modified by saying

that its coordinates are reversibly expressible by singly periodic

functions (trigonometrical functions) of an argument u; for we have

only to take u so that tan|M= ^, or cosw=(l — ^'^)/(l + ^-),

smii= 2dl{l + d-), leading to 6= sinul{l + cosu); then to any point

of the curve corresponds a definite value of sinw and cosw, and
hence a definite value of u, save for multiples of 27r ; while conversely

any value of u gives a definite point of the curve. For the curve of

order n with |(«— l)(n— 2) — 1 double points, there is an analogous

reversible expression of the coordinates of a point of the curve by
single-valued functions of an argument u, the functions namely
which are called elliptic functions. These differ however from the

trigonometrical functions in having two periods (whose ratio is not

real), say il and Q.'
; to any value of u belongs a definite point of the

curve ; to any point of the curve belongs a definite value of u save

for an additive term kQ. + k'Q.', in which A: and k' are integers. We
refer to books dealing with these elliptic functions for the establish-

ment of their properties; but the theory, in its simplest form, is

directly associated with the equation -r]'^= H^ — g2$ — gi which we
have obtained, it being assumed that this curve has no double
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point. (The condition for this curve to have a double point is easily

verified to be ^3'"= (^^2)^-) ^o much of the elements of the theory as

will indicate the connexion with the equation to which we have
reduced the cubic curve may be curtly stated. Let two values of
the argument u whose difference is of the form AQ + A-'Q', in which
A" and A' are integers, be called equivalent. Any of the elliptic

functions considered is expressible, in the neighbourhood of any
finite value, u^ , of the argument, in the form

Ar {u- Mo)-"*'- +... + A^{u- UQ)-"h +B+ Bi{u- Mo) + Bo {u- Wo)'+ • . •

,

in which m^, /»,_i, ..., m^ are positive integers with

nij. > //?^_i > . . . > /»! > 0, and A^., ...,Ay,B,B^, ...

are constants, in which there is a converging infinite series of
positive integer powers of u — Uq, and a finite number of negative

integer powers. It is only for a finite number of non-equivalent
values of the particular argument Uq that these negative powers of

u — Uq are actually present in the expansion ; when they are present,

the argument u^ is called a pole of the function, and the integer m,.

is called the order of the pole. The sum of the orders of the poles

actually existing, at non-equivalent values of n^ , is called the oj^der

of the function. For such a function there is also a number of non-
equivalent values of the argument for which the function vanishes,

the zeros of the function, and the sum of the orders of vanishing at

all the non-equivalent zeros is equal to the order of the function.

More generally, if A be any arbitrary value, and ^ denote the

function, the sum of the orders of vanishing of
(f>
— A at all non-

equivalent values of the argument is equal to the order of the
function

<f).
We may agree to say that if the difference

(f)
—A

vanishes to order m for a particular value of the argument, then
<f>

takes the value A for this argument m times. With this phraseology

there is the further property, that the sum of the non-equivalent

values of the argument u at which the function takes any specified

value. A, is independent of A, being the same as when A is

infinite. There exists no such function whose order is less than 2;

there exists, however, a function with simple poles for two arbitrary

non-equivalent values of the argument, and no other non-equivalent

poles ; and there exists a function with a pole of the second order for

an arbitrary value of the argument, whose only other poles are for

equivalent values of the argument. This latter function, suitably

specialised, is the simplest doubly periodic, or elliptic, function.

The pole being taken to be at u — 0, the function can in fact be

chosen to have an expression, in the neighbourhood of this value, of

the form u~'^ -\- A{u^ -\- A^tt'^+ ... , where only even powers of u arise,

and there is no term independent of u. This function being denoted
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by
\f
(u), it can be shewn that its differential coefficient, jf>'(u), is

connected with it by an equation of the form

where g2, g^ are definite functions of the periods Q, Q'. It can
further be shewn that every elhptic function, having the character

we have described, which has the periods Q, Q', can be expressed as

a rational function of {f){u) and ^j' {u). Thus the points of the cubic

curve above obtained can be expressed, in the form ^=ip{u),

7]= —if)'{ii), in terms of ii, the value of u which belongs to any
point of the curve being given by the equation

u=\ —,
JiLv) V

wherein the general value of the integral, for all possible paths of

integration, is of the form u+ kQ. + k'Q,', in which k, k' are integers.

Many of the geometrical properties of a cubic curve, and, more
generally, of any curve which is birationally represented by this

cubic curve, become very simple with the help of the ideas which we
have sketched. For instance, consider the intersections of the cubic

curve with a general plane curve of order m, whose equation we may
represent by/(|, 7j) = 0. These intersections correspond to the non-

equivalent values of the argument u for which the doubly periodic

function /(i^JM, —<^'u) vanishes. If the term in ry"^ is present in

f {^, rj), this function has a pole of order Sm at u= 0, and no other

non-equivalent pole, since ^j' (u) has a pole of order 3 at u= 0, and
no other non-equivalent pole, while ^J{u) has a pole of order 2 at

11= 0, and no other non-equivalent pole. Hence, by what we have

said, the function /((^jm, —^/u) vanishes for 3m non-equivalent

values of u, say u^ , . .
.

, Wg^ , and the sum t/^ -I- ... 4- ttsm ? save for an

additive term kQ + k'Q.', in which /»•, k' are integers, is equal to the

sum of the values of u at the non-equivalent poles of the function,

that is, equal to zero. Conversely, it can be shewn that, if 3ni—l
arbitrary points be taken on the cubic curve, then a curve of order

in can be put through these, and is thereby determined, so far as its

intersections with the cubic curve are concerned, the argument of its

remaining intersection being given by the equation remarked.

Of the intersections with a given rational curve, however, of

another curve, all can be arbitrarily assigned. For a given curve

which is neither rational, nor elliptic, it will be seen, in what follows,

that more than one of its intersections with another curve are deter-

mined by the others ; the number of such intersections determined

by the others will be seen to be a distinguishing mark of the

character of the oriven curve.



18 Chapter 1

Exainples of the properties of elliptic curves. 1 . All plane cubic
curves which pass through 8 of the nine intersections of two given cubic
curves L^ = 0, T' = 0, pass through their remaining intersection. In fact
these cubics all have an equation of the form L"+AT' = 0. We have re-

marked above on the general case of the intersection of a given cubic
curve with curves of order m. A particular consequence is that, if three
lines meet a given cubic curve respectively in P. Q, R, in P'

,
Q'. R', and

in P", Q", R", and PP'P" be in hne and QQ'Q" be in line, then also RR'R"
are in line.

2. If the tangent line of the cubic cur\ef {x,y,z) — 0, at a point (x, y, z),

meet the curve again in (^, tj, l,), we have ^df/dx + r]dfidy+L,dJ'dz = 0.

Regarding (f, rj, Q as given, and (x, y, z) as current coordinates, this

equation represents a conic, called the polar conic of (^, ??, I) : it can easily
be shewn to touch the cubic curve at (^, 77, Q; thus it has 4. other inter-

sections with the curve; so that 4 tangents can be drawn to the curve
from any point of itself. We have seen that the coordinates of the points
of the cubic curve can be represented by elliptic functions of an argument
u, in such a way that the three values of u at the intersections of the
curv'e with a line, have a sum which vanishes, or has a form hQ. + k'Q',

where k, k' are integers, €1, Q.' being the periods of the functions. In
particular, if the tangent of the curve, at a point u, meet the curve again
in V, we have 2u + v = k£l + k'0.'. When v is given, this leads only to
4 non-equivalent values of u, namely —\v, —^{v + Q.), —\{v + 0.'),

— h{v + D. + Q.')-, these give the 4 points of contact of tangents to the
curve from the point v. Denote these points in order by A, B, C, D;
then AB meets the curve again in the point v + \0., and CD meets the
curve again in the point r + ^fi + D', which is equivalent to v + hO., and
is the same as the former point. Similarly AC, BD meet on the curve,
in the point v + \0.' , and AD, BC meet on the cur^•e, in the point
v + \(Vl + O.'). And the tangents of the curve at the four points v, v + |n,
t' + ^Q', v + ^{D, + £i.') all meet the curve again in the same point, whose
argument is — 2r.

3. Let X, Y, T be three coUinear points of the cubic curve, and Z be
the point of contact of any one of the four tangents which can be drawn
to the curve from T. From what is remarked (and proved algebraically)

in Ex. 1 , it follows that if an arbitrary line from A' meet the curve again
in P and P', and ZP, ZP' meet the curve again respectively in Q and Q',

then Q, Q' are in Une with Y. The line YQQ' is thus determined alge-

braically and unambiguously from the line XPP', and conversely. The
pencil of all lines XPP' through A' is thus projectively related to the
pencil of corresponding lines YQQ'. The locus of the point of intersection
of XPP' and YQQ' can in fact be shewn to be a conic which touches
XZ, YZ respectively at A' and Y, and passes through the points of con-
tact of the four tangents of the curve which can be drawn from Z.
A particular consequence is that the pencil of four tangents of the curve
from any point X lying thereon is related to the pencil of four tangents
from any other point Y. We may in particular suppose i' to be one of
the inflexions of the curve, and then that the equation of the curve is

reduced (by linear transformation), as is explained above, to the form
y-z = 4x^ — g2xz^ — g^z^, (y) being the inflexion Y, and c: = the inflexional

tangent. Then the pencil of the 4 tangents from Y is that given by the
values of x/z which satisfy the quartic equation 4x^z—g2xz^ — g^z'^ = 0.

Assuming algebraic properties, the quadratic and cubic invariants of
this equation are g^ and g^ and the cross ratio of its roots satisfies a sextic

equation whose coefficients are rational in g^l^z'- This ratio is the absolute
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invariant of the elliptic functions in terms of which the curve is ex-
pressible; and the necessary atid sullicient condition for two cubic ciu'ves

to be birationally transfoiinable into one another is that this invariant
have the same value for both curves.

4. Tlie followino- fundamental so-called theorem of coresiduation for
a cubic curve follows at once from the result stated above in regard to
the sum of the elliptic arguments of the intersections of any curve with
a given cubic curve: let (.J), (P) be two sets of points of the cubic curve,
forming together the complete intersection of this ciu've with another
curve; let {A), (Q) be likewise, together, the complete intersection of the
cubic curve with another curve of the same order as before. The sets

(P), (Q) are each said to be residual to (A), and corcsidual with one
another. Now draw any other curve, of sufficiently high order, through
the points (P), its residual set of intersections with the cubic curve
being {B). Then the theorem is that the sets (Q), (B) form together the
complete intersection of the cubic curve with another curve. Stated
brieliy, of two coresidual sets, on the cubic ciu've, either is the residual
of an arbitrary residual of the other. Algebraically, there exists a function,
rational in the coordinates by which the cubic curve is expressed, which,
considered on the curve, has the set (P) for its zeros, and the set (Q) for

its poles (or infinities).

5. By eliminating ij between the equation of a general cubic curve,
and the equation of a line ly = ^ix + z, and expressing that the resulting
cubic equation in x/z has three equal roots, we may prove that the deter-
mination of the inflexions of the cubic curve depends upon an equation
of order 9. There are thus 9 inflexions, and, when the coeiricients in the
equation of the cubic curve are real, it appears at once that at least one
of these inflexions is real. Assuming one inflexion known, the equation
of the curve is at once reducible, as we have seen, to the form

y^z= x^ + axz^ + bz^.

Taking this form, prove that the conditions for ly— (mX + z to be an
inflexional tangent are a''A'- + A(3i';u- — 4^/^) + /x'- = 0, 3aA- — GA/x— /i* = 0,

where X — l'^. Putting c for rt'V27ii-, using instead of /x the value = ^a/bfj.,

and py}ttm<y f (d) = S9^ — 28^ + 6cd'' — (icd + c — c'-, prove that the conditions
are equivatent to/(5) = 0, X = 2(e- + cy-/b9-f'{d), where f'(0)^df/d 9. The
form f (6) is one for which the quadratic invariant vanishes. When c is

real the equation f {d) = has two real, and two imaginary roots, as
we may verify, using {9—\)f'{d) —f (9) + (39- — 6 + c)-. A corresponding

inflexion is then given by x/z — frf'{9)/54b{9- + c)^, yX^= fxx + z. Thus,
through any inflexion of the curve there can be drawn four straight lines

each of which contains two further inflexions; and if the original inflexion

be real, and a, b be real, two of these lines are real, and two are conjugate
imaginaries; of the real lines, one contains two real inflexions beside the
original, and the other contains two conjugate imaginary inflexions (the
signs off'{9) being opposite for the two real roots of/ {9}, as is easy to see).

Let A, B, C be the real inflexions on the first line, and APP' the second
real line containing the tw'o conjugate imaginary inflexions P and P';
through B there will similarly be a real line BQQ', containing the two
conjugate imaginary inflexions Q, Q', which will therefore be, one on each
of the two conjugate imaginary lines through A ; through C there will

similarly pass a real line CRR' , with the imaginary inflexion 7?, say, on
AQ. and the imaginary inflexion R' on AQ'. The three real lines APP',
BQQ', CRR' thus contain all the nine inflexions, each line containing one
real, and two conjugate imaginary inflexions. But the line joining any
two inflexions whatever contains a third inflexion. This follows from the
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remark made in Ex. 1. Here, to use the equations, we may prove this
anew. Let ;: = be the Hne joining two inflexions, P = 0, Q = being the
inflexional tangents at these ; the equation of the cubic curve is expressible
by the vanishing of a homogeneous cubic polynomial in ;::, P, Q, and here
this reduces to the single term z^ both when P = and when Q = 0. The
equation of the curve is thus of the form z^ + PQ{aP + bQ + cz) — 0, where
a, b, c are constants. There is thus a third inflexion on ~ = 0, given by
aP + bQ = 0. Now write this equation more symmetrically in the form
z^ + PQR = 0, and take the constants /, m, n, k, and the linear functions
of P, Q, z denoted by X and Y, in such a way that IP +mQ + nR = Skz,
and also IP =X + Y + kz, ruQ = coX + io'~Y + kz, nR = co-X + coY + kz,

where aj = exp(27r//3); and then take Z = {lmn + k^)3z, ix — k/{lmn + k^)K
Then the equation of the cubic curve takes the form

A'3 + ra + Z3 - 'SfxXYZ = 0.

Each of the lines X= 0, Y — 0, Z — contains three inflexions, and, in

particular, the inflexional tangents at the three inflexions on Z — are

X+Y+i^Z-0, coX + CO-Y+ nZ = 0, co'-X + ojy + /xZ = 0. We thus see that
any two inflexions determine a triangle whose sides contain all the nine
inflexions, and that there are four lines through any inflexion each con-
taining two others. The inflexions thus lie, by threes, on twelve lines;

and there are four triangles for each of which the sides contain all the
inflexions. Beside XYZ — 0, found above, it is easy to see that the other
three triangles are (A' + Y + Z)

(

coX + co'Y + Z){ co-X + cuY + Z) = 0, and
the two whose equations are obtainable from this last by replacing A' by
u)X and by w'-X respectively, where C(j = exp(27ri73).

The number and configuration of the inflexions may also be obtained
by using the representation in terms of elliptic functions. The argument, m,
of such a point, is such that Su = kQ. + k'iy, where k and A:' are integers.

The inflexions have thus the nine nonrcquivalent arguments ^kQ. + ^k'Q.',

where k = 0, 1,2 and A;' = 0, 1, 2.

The inflexions are the intersections of the cubic curve/= with another
cubic curve, commonly called the Hessian of the original, whose equation
is obtained by equating to zero the three-rowed determinant whose
general element is/,_,, in which/ii = 8-//9tr-,/i2 = 9-//5ii'5^, etc. The Hessian
is a covariant of the cubic form, giving the same curve if formed, by the
same rule, from any linear transformation of the original equation of the
cubic.

Of the three methods of considering the inflexions here suggested, the
first, by direct algebra, requires modification when the cubic curve has
a double point; the second, by elliptic functions, is inapplicable; but the
third may be used. The Hessian of a cubic curve which has a double
point, is a cubic curve also with a double point whereat the tangents are
the same as for the original curve—the other three intersections give the
only existing inflexions, three in mmiber, which are in line. The inflexions
of xfjz + u (x, y) = lie on 22 + dhi/dxdy = 0.

In the direct algebraic consideration, we have assumed one of the
inflexions to be known. It is, however, the case that the equation of the
ninth order on which the determination of the inflexions depends is one
which is capable of algebraic solution. This can be seen from what has
been proved if avc add thereto the facts (a) that the Hessian of a given
general cubic curve has its inflexions at the inflexions of the given cubic
and (6) that every cubic curve through the inflexions of a given general
cubic curve has likewise its inflexions at these points; these follow by
remarking that the Hessian of a cubic curve given by y'-z + {x, 2)3 = is

given by y-L + [x, z]^ — 0, where L is of the form ^^o; -|- qz. F'rom this it
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follows, if/= 0, H = be a general cubic curve and its Hessian respectively,
tliat the Hessian of a curve A/+ nil = 0, passin<i' throu<)h the intersections
or/=(). // = has an ecjuation A7+ fj.'H — 0, where then A', ft' arc poly-
nomials in A,

fj.,
of the third order, as we see by considcrin<>' the deter-

niinantal formation of the Hessian. A triangle containing the nine
inflexions of /:=0, as passing through the intersections with II — 0, has
an equation A/+ jxH = 0; and the Hessian of the cubic curve constituted
by three lines consists of these lines, as we see at once; thus, when
A/+ nll = is a triangle, A/n' — A'/n = 0. This leads to four values of A//x.

We have seen, however, that there are just four triangles containing the
inflexions. Whence the condition that the Hessian of A/+ fiH = coincides

with this is a sufficient as well as necessary condition that A/+ fj.II —
should be a triangle. The cubic polynomials A', n' in A, ft can be computed
by using a particular form of/, for example the form i/'Z + {x, ~);j. Whence
the (piartic equation A/^' — AV = is known in terms of g^ and ^3, which
are the invariants of the form /, as may be proved. Whence, given / in

its general form, and solving a quartic equation whose coefficients are

functions of the invariants of /, we can determine the triangles each
containing the nine inflexions. Moreover, the formation of the Hessian
of a general cubic, the formation of the Hessian of A/+ /x//, and the
expression of the conditions that this Hessian agrees with A/+ ixH, are
direct algebraic problems, from which, by elimination, the quartic
equation A/x' — AV = can be formed without knowledge of the invariants
of/. When finally we have a cubic form which is known to be a triangle,

the vertices of this triangle are obtainable by solving the algebraic

problem of finding the three common points of three conies, known to

have three points in common (these conies being the first polars of the

cubic). Thence the sides of two such triangles are known, and the in-

flexions of the original cubic are the intersections of these sides. Full

consideration of the cubic form may be found in Clebsch-Lindemann-
Benoist, Legons sur la Geomctrie, 11, Paris, 1880. That the equation of the
ninth degree on which the inflexions depend can be solved algebraically

is a consequence, however, of the relation of three roots of this equation
which follows from the fact that the line joining two of the inflexions

contains a third. For this see Weber, Algebra, 11, 1896, p. 322. Also,

Dickson, Linear Groups, 1901. p. 77; Steiner, Werke, 11, p. 435; Netto,
Comhinatorik, 1901, p. 202.

6. A problem for the cubic curve, suggested by the use of the elliptic

functions, is that of finding a point on the curve such that the conic

described to have there 5 intersections may have its sixth intersection

also there. Of these points, called sextactic points, there are 27, lying in

threes upon 9 lines, a set of 3 being the points of contact of the three

tangents to the curve from an inflexion (other than the inflexion itself).

The elliptic argument of a sextactic point is in fact clearly given by

u = lkO. + lk'Q.', k = 0, 1, ...,5; k' = 0, 1, ...,5,

wiiere simultaneously even values of k, k' are to be excluded. The re-

maining 36 — 9 or 27 possibilities are in 9 such sets of three as

i(2/i + 3)Q + P'n', pr) + i(2/*' + 3)i^', H2/« + 3)a+M2/*' + 3)f2',

^,/j' = 0,1,2.

More generally, it may easily be proved that if the tangent at a point A
of the cubic curve meet the curve again in B, and the tangent at B meet
the curve again in C, and the chord AC meet the curve again in P, then
the conic with five intersections at A contains P.

Cf. Cayley, Papers, iv, p. 227; v, p. 221, For the application of general
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methods to determine the sextaetic points of a general curve, see Segre,

Ann. d. M(it. xxii, 1894, p. 90 and Enriques-Chisini, Teoria geometrica,

I, p. 277: II, p. 289.

7. A fundamental theorem is that the triads of points in which an
arbitrary line meets a cubic curve, and its Hessian, are apolar to one
another. It can be proved at once by verifying that the two curves

x^ + y^ + z^ = 0, xyz = are met in apolar triads by an arbitrary line, and
then noticing that the Hessian of the general cubic curve expressed by
3,3 _^ y3 + ~3 _ Sfixyz = has an equation of the form x^ + y^ + z^ — Six^xyz — 0.

If two binary cubics be symbolically expressed by aj^, b/, the con-

dition that they should be apolar is symbolically expressed by (^6)^ = 0;
when this is so, if p, q, r be the roots of «/ — 0, we not only have (ipOg a^= ,

but also bpbgbj.=^0. From this it follows that, if//, /*/ be the symbolical
forms of a ternary cubic and its Hessian, and (n^, u^, "3) be arbitrary,

we have {fhu)^ = (): and if (x), (y), (z) be the three points of intersection

of the line Uy. — ^ with the cubic curve f/ — 0, we have f^fyfz = ^ and
h^.hyh. = 0. Another form of the theorem is that, if (x), (y) be any two
points of the cubic curve, we \\a\e f/f^Jh-^-hy—J^Jy^Ihjiy-.

8. It may be proved, if (c) be an arbitrary point, and (cxdx) denote
the three-rowed determinant whose rows are (q, 03,^3), (a^i, rCg, a^a),

(dxi, dx^, dxs), that the integral

fix)
{cxdx)lf,%

J (y)

. , , f^^ di , r-^-

with also u= I , u =
I

J (() V J a

w
(y)

which is independent of (c), is finite for all positions of (.r), (y) upon the
cubic curve /p^ = 0, along which it is taken. And then that the elliptic

function p{iv), defined to have the periods obtained from this integral,

is given by

3 (Cxijr Piw)^ {fjyfcf + 2///c • ///c -fJc'-Ui -fyfe' -fyf^'-

In particular, taking

and also

(c) = (0, 1 , 0), i= xjx^ , v = - ^J^z »
^'=

1/1/^3 '
'?' = - yzlyz .

-,
(^) v' J (^') 1

'

(f, -q, 1) and (^', 17', 1) being points of// = 0, the integral w is u — u', and
the formula for p{zv) becomes iO{u-u') + i + ^'-Hv + v'fi^- H'^'

leading when i', -q are infinite to p(?/) = f.

The general formula for ^{w) was given by G. Pick, Math. Annul.
xxviii, 1887, p. 309. It can, however, also be shewn that

In the quotient hy-fijfy^f^., if we regard (y) as a fixed point of the
cubic curve, the denominator, /^^^y^, regarded as a function of (cT), vanishes
to the second order at (y); and the numerator hy-hj^ vanishes at the

tangential point of (y), where the tangent of the cubic at (y) meets the
curve again. Thus this quotient, regarded as an algebraic function of (x)

on the cubic curve, has only the pole (y), of the second order. Considering

the value of the function when (x) is near to (y), it may be verified that

its infinite part is {u — u')~'-, and that {n — n'y-hy-hjfy-f^. is of the form
1 + H, where H vanishes to the fourth order when (.r) approaches to (y).

Hence the identity P {u - zi') = hy-hJf,//.,. follows from the theory of the
function ^J. An algebraic proof of this, and other formulae of this
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character, will be found in Halphen, Fonctions elliptiques, 2'"<' partie,

Chap. XI. 1888, p. 433, etc.

9. li
<f>
— {), 4) = Q be two independent cubic curves through 8 arbitrary-

points, the sextic curves, with these 8 points as double points, whose
number should be ^7.8 — 24, or 4, are given by an ecpiation

where a. h, b. c are variable parameters, and L^ = is a particular sextic

curve with these double points. These sextic curves meet the cubic ^ =
in 18 — IG or 2 further points, determining thereon oo^ sets of pairs of
points given by 6iA- + cU = 0. These ])airs are then determinable by a
variable line passing through a fixed point of the cubic curve <^ = 0, and
there are 4 points of this curve at which the points of a pair coincide;

one of these is however the ninth intersection of the curves i/j and 4>, the
pair given by bili'- + cU = coinciding when c = 0. Let iJj'^

— eU — O be one
of the three other curves bip'- + cU = whose two remaining intersections
with 6 = coincide, say in A. Then there are cc^ sextic curves, given by
the equation A^- + i/r- — eL' = 0, in which A is variable, which have 9 double
points, consisting of A and the original 8 points. By what is proved in

this chapter, for curves of order n with i(n — l){n — 2) — l double points,

all these curves are elliptic. More generally, it can be proved in a similar
way. that it is possible to have cc^ curves, of order Sn. all having 9 mul-
tiple points, not double points but multiple points of order n. And these
will be elliptic curves, since |(3/? — 1)(3/* — 2) — v|»(n — 1) = 1. This cir-

cumstance was remarked bv Halphen, Bull. d. I. Soc. Math. d. France,
X, 1882, p. 162.



CHAPTER II

THE ELIMINATION OF THE MULTIPLE
POINTS OF A PLANE CURVE

As a large part of the difficulty of the theory of curves depends
upon the possible intricacy of their multiple points, it seems de-

sirable to shew at once, with the most elementary considerations,

that any plane curve is in (1, 1) birational correspondence with a

curve, in space of three or more dimensions, which is without
multiple points. Some of the ideas involved have already been met
with in Chap, i ; but the present chapter is designed to be complete
in itself.

Consider a given plane curve / {x, y, z) = 0. of order fi, with any
multiple points; the curve is supposed to be irreducible, that is, the
polynomial f{d\ y, z) cannot be written as the product of other
polynomials also rational in x, y, z. A curve whose equation is of

the form Ao^o+ Ai0i+ ... + A,.^,.= 0, wherein ^(,= 0, ..., ^,,= are

definite curves of the same order, which may have common points,

upon/= 0, or elsewhere in the plane, determines, by its intersections

with/= 0, a set of points thereon. Of these points, some may be the
same for all values of the parametric coefficients A^, ..., A^, being
common intersections with/=0 of all the curves ^o= 0, ..., 0^=0?
the others will, in general, vary when these coefficients vary. It is

naturally assumed that there exists no identical linear homogeneous
relation, with constant coefficients, connecting the polynomials

<f>Q, ... , ^^; it is also assumed that there is no such relation which is

true in virtue of/= 0, as would be the case if there were an identity
of the form c^^o+ . . . + c^^^= ijjf, in which c^, ... , c,. are constants, and

is a polynomial in x, y, z. Thus we say that
<f>Q, ...,

(f>^
are as-

sumed to be linearly independent upon/=0. Then we say that, as

Afl, ..., A^ vary, the curve \^q+ ... + Ar^y=0 cuts upon/=0 a linear

series of sets of points offreedom r; the number of points of a set

which vary when \, ... , A^ vary is called the grade of the series, and
will be denoted by n; as, by proper choice of Aq, .... A,., a set of the
series can be found including r arbitrary points of/=0, it is clear

that n ^ r.

There are two properties of such a linear system in regard to

which it is desirable to be clear. First, there may exist, on/=0, a
batch of, say, s points, of definite positions, such that the curves of

the linear system A^(f)f,+ ... + X,.(f)^=0 which are made, by suitable

limitation of A^ , . .
. , A^ , to pass through some number less than s of

the points of this batch, necessarily pass through the other points;
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a simple illustration is that of a double point of/= 0, with distinct

tangents, so that we can distinguish the two points of the curve

which coincide thereat; the curves of the linear system passing

through one of these points necessarily passes through the other.

In general, to make a curve of the linear system pass through a

point of /=0 not common to all of
</>o
= 0, ... , ^,.= 0. we must

prescribe one linear relation connecting \,...,X/, a batch of .9

points of the kind under consideration is one which imposes less

than s conditions for the curves of the linear system which are to

contain the jioints of this batch. Such a batch is sometimes spoken
of as neutral. The other possible property spoken of, refers to a

batch of points on/=0 of which one point is arbitrary thereon; it

may be that the curves of the linear sj-stem which are made to pass

through any arbitrary point of/=0 necessarily then pass through
other points, which vary when the first point is varied. A simple

illustration is that of the linear system of lines (of freedom 1) which
pass through a fixed point ; any such line, made to pass through an
arbitrary point of the curve /= 0. necessarily passes through the

other intersections of this line with the curve. We say, of a linear

system A^^q+ . . . + A^^,.= 0, that it is stiff, when any curve of it which
passes through a general point of /= 0, then necessarily passes

through other, say (k — l), points of/=0, determined by the first

point, and variable with it. As a curve of the system can be put
through r points of/=0, each eligible arbitrarily, independently of

the others, the value of k must be such that kr ^n. A linear system
which is not stiff may be called pliable; the series determined on
/= by this system is most often said to be simple.

We now consider linear systems contained in the given system;
such a system is given by ^1^1/;^+ ... + ^ ifj =0, with p+1, <r+l,
homogeneously entering parameters jjlq, ..., fx. , wherein iJjq, ..., ^
are definite linear functions of (/>„ , 0j , . . .

, </>,. with constant co-

efficients, which are linearly independent of one another. For
instance all the curves of the original system which pass through an
assigned point form such a contained system, with p = r—\. What
we are interested in here is the possibility of such contained systems
for which there is a lessening of the grade, or number of variable

intersections with/=0, which is at least tivice the lessening of the

freedom. This arises, for instance, if there be a double point of

/=0 which is not a common zero of ^q, ... , ^^, when we form, from
the original system, the system of freedom r— 1, of which all curves

pass through this double point; the new system has a grade which is

less by two, at least, than that of the original. If we denote n — r by
s, and call it momentarily, the sequence, and also introduce s — r, or

n — 2r, and call it the ejjiciencjj of the system, what we are interested

in here is whether the given system contains another system whose
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efficiency is less than, or at most equal to its own. We may
momentarily say that a system containing such another system is

capable of reduction.

We can shew that a linear system of freedom ;• ^ 2 which is pliable,

or cuts on/=0 a linear series which is simple, and is not capable of

reduction, enables vis to put the curve /=0 into (1, 1) birational

correspondence with another curve, in space of r dimensions, which
has no multiple point. For perfect clearness we shall make the

assumption, fully justified independently in a following chapter,

that in every possible method of approach along the algebraic

curve /= 0, to a simple or multiple point of this curve, the co-

ordinates of the approaching point may be given by converging
series of a parameter vanishing at the multiple point. Let the

linear system be given as before by \^q+ ...+ A^(/>^= 0, and consider

the point (^q, ..., ^^), in space [r], of dimension r, which is given

by |o/^o=^i/^i= ••• = ^r/^r; ^s {x,y,z) describes /=0, this point

describes a curve in the space [r] ; for any general (simple) point of

/=0, this point (^) is definite; for any point of/=0 at which all of

^Q, ... ,
(f>y.

vanish, the values of ^q : ^^ : ... : |^,. are to be found by a

limiting process, from the expansions of x, y, z referred to ; and when
the point of/= is a multiple point there will correspond in general

several points {^), each found from an appropriate expansion.

Conversely, to any point {$) of the new curve, corresponds the

point {x, y, z) of/= from which it arose, but there corresponds no
other point {x',y',z') of/=0, unless, w^hen 0/ denotes what ^^
becomes when x', y', z' are put for x, y, z, we have

these equations would involve, however, that any curve

which passes through the point (.r, y, z) necessarily passes also

through the point (c^', y', z'). This possibility is expressly excluded,

for an arbitrary point {x, y, z), by the hypothesis that the linear

system is pliable. It is not excluded thereby for definite fixed

positions of {x, y, z), which might then give rise to points (^) through
which several branches of the curve in the space [?] would pass. We
deal with this below. The algebraic equations ^o/</>o= ... = ^y/0,.5

f{x, y, ~) = 0, thus lead only to one set of values for {x, y, z), in

terms of (^q, ..., f^), for general values of these latter; and these,

being obtainable by rational processes, must be capable of rational

(necessarily homogeneous) expression in terms of ^q, ,..,^^. The
new curve is thus in (1, 1) birational correspondence with/=0. The
new curve, however, can have no multiple point, namely cannot

have a point such that the general prime of the space [r], given by
an equation, Cq^q+ ... + c,.^,.= 0, which is made to pass through this
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point, has a number of other intersections, with the curve, less by 2,

or more, than the number of intersections of a general prime (the

order of the curve). Tliis order is clearly the number of intersections,

with/= 0, of the curve \(J)q+ . . . + X,.^,.= 0, which are not common to

all of (f>Q=0, ...,
(f>r
= 0, that is, to the grade n of the series on/=0

determined by this system. If the new ciu've, in [r], had a multiple

point, this system would contain another, of one freedom less, and
of grade at least two less—and this we have excluded by the

hypothesis that the system is not capable of reduction.

Passing now to the consideration of the reduction of the given

linear system, of grade n and freedom r, suppose it contains

another system, of grade n^ and freedom r^, (with r^O'), with not

greater efficiency than itself, namely ni — 2)\ ^ n — 2r, the conditions

1 ^
^'i ^ »i being satisfied. Suppose this new system likewise con-

tains a further system of grade ng and freedom rg! with

r2<i\, /?2-2r2^ni— 2/1, l^n^tu;

and so on. Each system is contained in the preceding, and, there-

fore, in the original system. There must be a final system beyond
which reduction cannot go, either because a further step would lead

to increased efficiency (as would be the case, for example, if a

lessening of one in the freedom led only to a lessening of one in the

grade, v—l — 2{p—l) being equal to v— 2/3+1), or because the

freedom, having sunk to 1, cannot be further lessened, and still

leave a variable system. Let this final system be of freedom / and
grade n', with l^r' ^n' and n' — 2/ ^ ... ^n^— 2ri^n— 2r. When
/ ^ 2, this final system is pliable, since else, taking the system con-

tained therein of which all the curves pass through a definite point

of/=0, we should have a new system, of freedom at least 1, with

grade at least two less than n'. Thus, when / ^ 2, the final system
can be used to put/=0 into (1, 1) birational correspondence with a

curve, in space [/], having no multiple points. But r' ^2r— n+ s\

where s' = n' — r' is the sequence of the final system ; thus r' ^ 2 when
6'^2, provided 2r— n^O. We prove below that if s' = or 5' = 1,

the curve /= has a special character, being either rational (for

6' = 0), or of a kind called hyperelliptic. But whatever he s' C^ 0), we
have r'^2 \i2r-n^2.
And we can always take the original system so that 2r— /i^2.

For let the system be given by the most general polynomial of order

A' , where N> ^i — 3, in which [x is the order of the curve/= 0. Such
a polynomial U has J(.V+1) (A^ + 2) variable coefficients, entering

homogeneously; w'hen N ^ fj.,
this polynomial vanishes on/=0 at

the same points as a polynomial U — nf, where u is any homogeneous
polynomial of order X — fx, containing therefore

i(A'-/^+l)(A^-/. + 2)
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homogeneous coefRcients; these can be used to reduce to zero so

many of the coefficients in t/— uf, or a fewer number if the Unear
equations necessary for this be not independent. Thus t/= cuts

on /= a series whose freedom r is such that

r^ iA^(A^+ 3)-i(A^-^+l)(.V-^+ 2),

and this, in terms of the grade n{ = Nn), is the same as

Since {N - fjL+l){N - [x + 2) = 0, when N=^~l, or N=fi-2, this

is true also for .V>/x — 3, even if iV</x. For N=^ — S, with
n = jx{^ — 3), the corresponding formula is r= « — J (/j, — 1 )

(/x — 2) + 1.

For N=ii—\, the formula gives 2r—n^ 2(/x— 1), which is ^ 2 if

/u. ^ 2 ; for greater values of N, the value of 2r— n is still greater.

For iV=ju,— 2, the formula gives 2r—n^^— 2, which is ^2 if

/i ^ 4. Thus certainly if /x ^ 4, the curve/= can be put into (1, 1)

birational correspondence with a curve having no multiple points,

in space of sufficiently high dimensions, the initial system of curves

being of order ^ /x— 2. For N= fi — 3, the formula gives 2r — n = 0,

and we must have, for the final system in the preceding process of

reduction, s' ^ 2. This is so, we have said, and now prove, unless

f— be a rational or hyperelliptic curve.

When, for the final system, s', =n' — r' = 0, r'^1, consider the

curves of the final system put through r' — 1 points, arbitrarily

fixed on/=0; as the process of possible reduction has terminated,

these particular curves will give, on /= 0, a series of grade 1 and
freedom 1; these curves will be given by an equation u— vd= 0,

where u, v are definite polynomials, and d is variable, and each
curve has one variable intersection with /= 0. The coordinates of

this variable point are then obtainable, by rational processes, as

rational functions of 6; conversely any value of 6 determines such
an intersection ; and the curve is therefore rational. Similarly when,
in the final system, n' — r'= 1, we can obtain an co^ system of curves

u— vd= having tzvo variable intersections with/=0. The ratios of

the coordinates of these intersections are then obtainable as roots

of a quadratic equation whose coefficients are rational in 9 ; thus the

coordinates of a general point of /=0 are expressible as rational

functions of two variables 0, 9, of which ^'^ may be taken to be a

polynomial in 9; while, conversely, 9,
<f)

are expressible rationally

by the coordinates of the point of the curve. It is such a curve
which is known as hyperelliptic; in particular it may be elliptic

(though the other word was originally introduced to express the

distinction).

Remark. In passing we may refer to a question which naturally

arises, whether the contemplated reduction is obtained by utilising,

at any stage of the process, the fact that the linear system to be
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reduced is stiff, determining on f= a series which is not simple.

The answer is immediate in case, for the original system, N > yu—'i,

and therefore '2r— ii^2. For this involves

2r' -n'^...^ 2/i
- //^ ^ 2r- n

;

and we have remarked that, for a system of grade v and freedom p
to be stiff, we must have 2p—v^0. In this case, therefore, neither

the original system, nor any contained system obtained in the

method of reduction, is stiff. If for the original system N=iJ. — S

and 2r—n = 0, the answer to the question appears implicitly in

subsequent more detailed theory; but the case of a rational or

hyperelliptic curve evidently stands ajiart from the general case.

Suppose then that we have placed the original curve /=0 in

(1,1) birational correspondence with a curve m\ having no multiple

points, in space [/•'], starting with polynomials of order
'^fj.

— S in

general, but with polynomials, of order >/a— 3 when the curve is

rational or hyperelliptic. We proceed to deduce that when r' > 2 we
can obtain a (1, 1) birational representation by means of a curve

without multiple points in ordinary space of three dimensions, and
also such a representation by a plane curve having no other multiple

points than double points with distinct tangents. The first state-

ment is proven when r' = 3; suppose then r'>3. The points of the

chords and tangents of a curve W in space [r'J form a locus, il/g, of

3 dimensions, there being co- chords of the curve (including tan-

gents), and 00^ points on each chord, at most. In a space of /
dimensions, a space of r' — 4 dimensions, say a [r' — 4], the inter-

section of four primes of the space (cf. the general explanation in

Vol. I of the writer's Principles of Geometry), can be chosen to have
no point in common with 3/3; in general, two spaces [p], [q], in [r],

meet in a point only ii p + q^ r. Take now an arbitrary threefold

space [3], say S, in the space [r'], and join the chosen [/•' — 4] to any
point F of the curve W, by means of a space [/' — 3]. This will meet
the space .S" in a point, P', which we speak of as obtained from P by
projection from the chosen [r' — 4]. As P describes the curve ^ we
thus obtain a curve ^', in the space S, described by the point P'.

Conversely, there are not two points P, Q, of the curve ^, thus

giving rise to the same point P'ofW ; for, if so, the chord PQ, which
lies in a definite [r' — 3] through the chosen [r' — 4], would meet this

[/' — 4], while we have supposed this space to be so chosen as not to

contain any point of any chord or tangent of ^. There is thus a

definite (1, 1) correspondence between the two curves ^, ^'; and
as W is without multiple points, so also is ^'. From the nature of

the process, this correspondence may be expressed by rational

equations, the coordinates of a point of either curve being rational

in the coordinates of the point of the other curve to which it
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corresponds. Proceeding now further to place the curve W in

correspondence with a plane curve, we assume that this curve, in

space [3], has oo'^ trisecants, that is chords meeting the curve in

three points, which then form a ruled surface; further we assume
that there are oo^ chords of M^'', likewise forming a ruled surface,

each chord having the property that the tangents of the curve, at

the two ends of the chord, intersect one another; finally there are
00^ tangents of the curve, also forming a surface. We can then
find points of the space in which ^'' lies which do not lie on
any one of these three surfaces. Let be such a point, and m
be a general plane. Then the curve ^' projects from O into a

curve ^" of the plane vi; this curve 4^" will be without cusps

(which would arise if were on a tangent of ^'), and will be with-

out multiple points of the third or higher order (which would arise

if O were on a trisecant or a line meeting W in more than three

points). There may, and there will in general be double points of the

curve ^'", corresponding to the finite number of (bisecant) chords of

W which pass through 0; but as O is not on a chord of 4^"' whereat
the tangents at the two ends intersect one another, the tangents at

such a double point of the curve ^" will be distinct. Thus, to any
general point of ^' will correspond a single point of M:*'", and con-

versely; but a double point of ^F", which may be reached along

either branch of the curve passing through it, will correspond to

two points of 4''. Thus again the coordinates of a point of either

curve are rational functions of the coordinates of the point of the
other to which it corresponds; but the coordinates of a point of
^' are (ratios of) four polynomials, in the coordinates for T",
having the property that two at least of these polynomials vanish at

any double point of ^", so that their ratio may be capable of taking

tAvo values as we approach the double point of 4'". By use of the

preceding transformation to 4r'', we can thus obtain a direct (1, 1)

birational transformation between ^" and the original curve/=0;
and in particular, the passage which we have made from the curve

^ to ^" in two steps, a projection from a [/•' — 4], and a projection

from a point O, may be made in one step, by projection from a
suitably chosen space [^' — 3],

Remark. It Avill appear, from the greater detail of a subsequent
chapter, that the linear system by which, after reduction, we pass to

the curve ^\ can be so taken that in the final system with which we
make the transformation from /= to W , say /x^ i/t,,+ . . . + fi^ ' 'Ar '= »

(r'>2) three of the polynomials i/r, say (/»„, )/»!, i/*.,, are of the forms

xifj, yifj, zifj, where x,y,z are the coordinates in /=0. The corre-

sponding coordinates ^q, ^j, ^g of tlie space [r'j have then the ratios

of X, y, z. In this case the transformation from/=0 to ^ is a pro-

jection on to the original i:)lanc from the space ['"' — 3] for which
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^^— — ^^ = ^.^. Thus any })lane curve /=0, however intricate its

multiple j)()ints may be. may he reyarcled as a projection, from a

curve having no nmltiple [)oints, l>'ing' in higher space (or is in

(1, 1) correspondence with a plane curve having no nmltii)le

points, if r' = 2).

For the preceding theory cf. Albanese, Rend. Lincei, xxxiii,

1924, pp. 13, 14; also Severi, Trattato di geoni. alg. i, 1, 1927,

p. 75. A valuable history is given on pp. 832-5 of the same volume.

Ex. 1. As a very simple application of the theory of tliis chapter we
may take a plane (luintie eur\e with -S douhle points, and consider the
system of all conies in the plane. By the process of redaction explained
these lead to the contained system of conies through the douhle points,
for which )i' — -i, r' — '2. This is not further reducible, and leads to the
transformation of the quintic curve to a plane quartie curve having no
midtiple points.

If however we take a plane quintic curve with 4 double j^oints, the
system of conies through these has n' — 2, r' — l. The curve is therefore
hyperelliptic, and cannot be transformed to a curve without multiple
points with this system of conies. In this ease we may take the cubic
curves through the 4 double points, for which n' = 7, r' — 5; this system
appears not to be further reducible in the sense of the text, and leads to
a birational representation of the cur\'e by a curve of order 7 in space of
5 dimensions, not having multiple points. Rut this curve can be jjrojected

from a line into a curve in ordinary space, and if the line be taken to be
a general chord of this curve, this curve in [S] will be of order 5. It can
be obtained directlj- from the original plane curve by considering cubic
curves through the 4 double points and two arbitrary general points of
the curve; the system of these cubic curves is of freedom 3 and grade 5

;

we can indeed consider cubic curves through the double points of the
original curve and 3 arbitrary general points of the curve, forming a
system of freedom 2 and grade 4, and so transform the original cur\-e

to a plane quartie eur\e; but this will have one double point, being
obtained by projection of the quintic curve in [3] from a point of itself,

and it can be shewn that there is one trisecant of the quintic curve
through any point of itself. In fact it will appear that the quintic curve
in [3] is the residual intersection of a quadric surface with a cubic surface
containing one generator of the quadric, and the generator of the quadric
surface of the same system through any point of the quintic curve is a
trisecant. It will also appear that the septimie curve in [5] is the residual

intersection of a rational ruled quartie surface with a quadric containing
one generator of this.

Ex. 2. A more particular example, having however an intrinsic interest,

is the curve z{x'^ — y^z)^ — 9x^y* — 0. The system

X,xij^ + X,zy^ + X,{x^-ifz):^()

effects a birational transformation to the curve

3«A'"
(
Y + Z)- - Y^Z*" = 0,

the equations X/xy^ - Y/zy^ = Z/{x^ - y'^z)

leading to x/X'' iY + Z} = 9y/ YZ- = z/XY ( Y + Z)

,

but this system is reducible in the sense of the text, containing the
system iJi.^^xy^ + fx^i^i;'^ — y' ~) — ^ of grade n^ = S, for which 2i\ — ni= — l is

greater than 2.2 — 9 or —5, of the original system. The new curve, in

X, Y, Z, has accordingly nndtiple points.
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If however we take the system

\xHf + \x\x' - ifz) + %\%j{x^ - ifz) = 0,

putting ^/A'2 (/3 = r]/x{x* - ifz) = ^/%(«* - J/32),

which lead to x/r]ir,^- eO = ^y/i{v'- e'^) = z/$r,H,

we obtain a birational correspondence with the curve, without multiple

points, 3-^^^+ ^^3 _ 1^3-0. If we put ^=^i, v=<^Vi^ ^=-^"^^1, with
0,7 = 3", the last assumes a symmetric form Vi'^i^+ ^ih^ + hvi"^-^- For
properties of this curve, the reader may consult Klein-Fricke, Modul-
functionen, i, 1890, p. 702, and also the writer's Multiply-periodic

Functions, Cambridge, 1907, p. 269.

Ex. 3. We may employ the case of Ex. 2 to illustrate the expansion

of the branches of a curve near a multiple point which has been referred

to in the text. For the curve 3-«ry^-^+ ^- >?3 = 0, when /, = t?/3, is suffi-

ciently small, it can be proved that l = '6^t^ -^^t^'^ + ^^1^"^ - ... , and hence,

for the curve (.c* — j/^)^ — 9iT^i/* = 0, when x, y are sufficiently small,

xz=t^ — Qt^^..., y = t^ — S'-t^^ Denoting the left side of the equation of

this curve by f{x, y), we may shew that, if ^ denote a general sextic

polynomial in x, y, 1, the number of linearly independent conditions for

the coefRcients of </> in order that the quotient <f)X/df/dy may vanish as

we approach x = = y along the curve /=0, is 21.

Cf. Cayley, Papers, v, p. 524. and C. A. Scott, Amer. J. of Maths.

XV, 1892, p. 318.

Ex. 4. It will appear subsequently that, for a curve of order n which

is not hyperelliptic or rational, and has only double points, the final

reduced system, when we start with polynomials of order /x-3, is that

determined by the curves of this order, passing through the double

points; and that, for this system, the efficiency, n'-2r' vanishes. Any
system contained in this final system has efficiency greater than zero

(Clifford's theorem).
Ex. 5. If the fundamental curve be y'"-{x, y)^, a quartic with a self

contact at x — Q, y — 0, it can be shewn that the system of conies is

reducible, in the sense of the text, to conies touching the quartic curve

at X = 0, ^ = 0, given by i/ + {x, y)^ = 0. We therefore make a transforma-

tion to a space [3], by means of

y «•' xy y"-'

whereby the plane is transformed to the quadric cone in this space

{x^, yo^Vi^Vi) which is expressed by

<j> d-^ d \

(where e = x/y, ^ = 1/?/). The original curve, given by f- = (^, 1)4, is

represented by the intersection of this cone with the quadric surface

XQ^ = {yQ,y^,yi)2, the multiple point being replaced by the two simple

points where this quadric meets the line {x^ , y^), or y^ = y2- 0. The original

curve is obtainable by projection, of the curve on the cone, from the

point ^-0 = 0, yi = 0, ^2 = 0- From an arbitrary point of the space

(ajj,, t/o, </i, y/2) the curve on the cone is projected into a plane quartic

curve with two double points.

Ex. 6. More generally, it will appear subsequently that the most
general plane hyperelliptic curve can be given by an equation
yip = {x, y)2p+2 ; and that, if we begin with a general polynomial of order

M-2, that IS 2p, and effect the possible reduction explained in this
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chapter (due in fact to the character of the nuiltiplc point at ci' = 0, .7 = 0),
then the final system obtained is expressed by an ecpiation of the form
y'Cf, ^)j,_i + Gi',}/)2p==0, where (d', ?/)^,_i, (.r, /y).^, are homogeneous poly-
nomials of the orders indicated, with arbitrary coellicients. In accordance
with the text we therefore make a transformation to a space Yip\, with
coordinates Xq, ..., Xj^_i , y^, ..., y^p » L>y means of the equations

^0 _ '^'i _ _ '^p-i _ Z/o^ _ Ux _ _ Uiv

I'utting x/y= 9 and ly— 4>, these arc the same as

^e^-1 p^-- "' ^ d-^ Q-P-^ "' 1 '

and represent in fact a rational ruled surface of order 3p — 1 obtained
by joining every point in turn of the normal rational curve of order p — \

in space {.i'q, ... , .t'j,_i) to the corresponding point (given by the same value
of 6) of the normal rational curve of order 'Ip in space

(.(/o, ... , */2„). This
surface is the representative of the original plane. The cm-ve of this plane
corresponds to an equation

(f,'
— {d, 1)2^+2' '^'^d its transformation on the

ruled surface is the intersection of this with the quadric cone expressed
by an equation 't'%_i = (^p_i , */^ , ...,y2p)^. This quadric has, as base or
vertex, the space [2^^ — 3 j on which all the coordinates except .I'y , . .

.

,

a'j,_2, */o, ... , i/p_2 are zero. The multiple point of the original plane curve
is represented by the two simple points in which the curve on the ruled
•surface meets the generator d==cc. This is the generator joining the
vertices {Xq), (y^) of the coordinate system, which lie respectively on the
two rational curves spoken of; this generator lies on the base—or vertex

—

of the quadric cone specified. It can be shewn that this generator counts
2^^ — 2 times in the intersection of the quadric cone with the ruled surface,
the remaining intersection, of order -ip, being the transformation of the
original curve. The original curve can be recovered by projection of the
curve on the ruled surface, from any one of j) spaces [3^9 — 3] such as

^.'^ = 0, y^+i^O, */^+i+, = 0, {i = 0,...,p-l).

In particular, we may take x^) — 0, yj, = 0, yp_^.i
— 0, which contains, as its

intersection with the ruled surface, the generator O — O, taken p — 1 times
over, accounting therefore for 2p — 2 intersections with the curve of
order 4/>, which thus projects into the original curve, of order 2p + 2,

And the generator 8— x) meets the space Xq = 0, y^ — 0, yp_^_i
= 0, in the

point (^0)' so that the two intersections of the curve with the generator
^=00 project into the one multiple point in the plane, at x^O, y — 0.

More generally, in space [n—p], with n^ 2p + 2, a quadric containing
n — 2p — 2 generators of a rational ruled surface of order {n—p — 1) meets
this ruled surface further in a hyperelliptic curve of order n (Segre,

Math. Ann. xxx, 1887, p. 203). This is easily proved by combining equa-
tions Xg;(f>d'^ — ...—Xj^^/<j) — yQ/9i^=...=y!l with the equation of a general
quadric in the coordinates (x^, ... , o;^, ^u, ... , y ).

It may be proved however that a hyperelliptic curve is equivalent
with a curve of order ^j + 3 on a quadric surface in ordinary space, obtained
as the residual intersection with a surface of order p + 1 passing through
jJ — 1 generators of the cpiadric, of the same system ; this is without
singularities. Or may be represented by a plane curve of order p + 2
having a single jf^-fold multiple point of distinct tangents.
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Ex. 7. For the curve expressed by y^ + y'-ix, y).2 + y{x, y)i + {x, ?/)g = 0,

if we begin with polynomials of order 3, we can shew that the final

reduced system is given bj^ y[y + i^, y)2] = 0. Putting then

^o/y= yJ^^ = yi '^y = yJy-^

it is easily proved that the curve is transformed into the intersection of
a quadric cone, in the space (.i'o» 2/o> Z/i^ ^2)5 expressed by «/o?/2 — ?/i^ =
with a general cubic surface of that space. The multiple point at the
origin is transformed into the three intersections of the surface with the
generator

«/i
= 0, ^2 = of the quadric cone. At these points, as at the

three intersections of the curve with any generator of the cone, the
tangent lines of the curve are in one plane. The original curve can be
obtained again by projection of the space curve from a point of this

generator. Bj' projection from a point of the space curve, there is ob-
tained a plane quintic curve having one point of self contact. By
projection from a general point of the threefold space there is obtained
a plane sextic curve with 6 double points.



CHAPTER III

THE BRANCHES OF AN ALGEBRAIC CURVE;
THE ORDER OF A RATIONAL FUNCTION;

ABEL'S THEOREM

Introductory explanation. The present chapter deals with
important fundamental conceptions in the theory of algebraic

curves and functions, and, for greater precision, some familiarity

with the elements of the theory of functions is assumed.
The preceding cha})ter incidentally brings out the want of

definiteness in regarding a curve as defined by its points, each given

by one set of values of the coordinates; for we have seen that a
multiple point may be replaced, on another curve which is in (1, 1)

birational correspondence with it, by several distinct points. In the

present chapter we are led to consider a point of a curve as belonging

to a definite range of points, lying on, and forming all the points of a

so-called branch of the curve. For clearness, a point so considered,

in association with a branch of the curve to which it belongs, will be
called a place. A point may belong to several branches, but when
this is so it is accidental, the distinction of the branches being the

essential fact. The point of view which is reached will ultimately be
found to be of great importance.

The fundamental curve considered, with its equation expressed

by non-homogeneous coordinates, f{x, y) = 0, may be spoken of as

containing; (i), points for which both x and y are finite; (ii), points

for which x is finite, but y is infinite; (iii), points for which x is

infinite, but y is finite; (iv), points for which both x and y are

infinite, li f{x, y) = be regarded as arising from an equation

F {Xq, Xi, X2) = 0, homogeneous in Xq, x^, X2, by putting x= XqJX2,

y= Xilx2, then points (i) are those for which x^ is not zero; points

(ii) are those for which ^'3= and Xq= 0; points (iii) are those for

which cr2= and x^^O; while points (iv) are those for which ^'2=0

but neither Xq nor x^ vanishes. We may therefore deal with points

(ii) by putting tj = Ijy, and considering the equation f{x, 7]~^) = 0, in

X and 7]; with points (iii) by putting ^=ljx, and considering the

equation / (|^~^, y) = 0, in ^ and y; and with points (iv) by putting

$=llx, 7]=lly, and considering the equation /(|~^, 7j~^) = 0, in ^
and rj.

If x= a,y= b be a point of the curve, so that /(a, b) = 0, where
a, b are finite, it will be proved that there are points of the curve

given by x= a+ t'', y—b + bit + bot-+..., for all sufficiently small,

3-2
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real, and complex, values of the parameter t, where the second

expression is a power series, converging for such values of t, and ; is

a positive integer, and this in such a way that the value of t thus

leading to any point (^r, y) of the curve, sufficiently near to {a, b), is

unique. Save for a finite number of values of a and b, this number r

is unity, and the expression for i/ is a power series in x— a ; otherwise,

as we see by replacing t by cot, where a} = exp{27Tilr), the expression

gives r values of y, corresponding to a single value of x; these

values however can be continuously changed into one another by
continuous variation of t, and form a cycle. The points {x, y) so

obtained, for all sufficiently small values of t, are the points of a

branch of the curve which are in the neighbourhood of {a, b). The
branch does not cease to exist when t is so large that the power
series for y fails to converge, but may be continued, by starting

afresh from a new origin lying on the branch, instead of {a, b). It

will further be proved that all values of x, y satisfying the equation

f{x, y) — 0, in which x is sufficiently near to a, are given by a finite

number of pairs of expressions, for x and y, of the same form as the

pair above taken, the sum of the values of r which arise in all these

pairs being n, the order in which y enters into the equation

f(^x, y) = 0. For points of the categories (ii), (iii), (iv), named above,

there are similar pairs of expressions, respectively for {x, tj),

i^, lA (^, i)-

Two simple examples may be given, to explain these statements:

(fl) For the curve represented by xy^= {x—\Y, when x is near to

1 , we find at once, with a'= 1 + f^, that y= t^ — \t^ {- ^f -{- . . ., the two
existing values of y being both included in this by change of t into

— /; we say then that at x=\, y= there is only one place. When
X is near to 0, by x= t^ and r) = lly, we find -q = it^+ ^itj^+ —it-^ + . . .

,

there being again only one place. When x is infinite, and therefore

also y is infinite, putting x=\j^, y=\j-r], and ^— t^, there are two
expansions of -q when | is small,

^ = ^2+|«2'+¥V+--- ^= -(^2+1^2'+%'+ •••),

which do not pass continuously into one another by continuous

variation of t^] they do not belong to a single cycle, and there are

tico places, at this single point of the curve.

{b) For the curve represented by x^y^={x—\Y, when x is in-

finite y is finite, and we put only ^=1/^^, and thence y'^=(\ — ^)^;

near |= there are two distinct expansions for y, and there are two
places as this point of the curve.

Weierstrass's preparatory theorem. To prove the general

result we enter into the proof of a theorem stated by Weierstrass

{Werke, ii, p. 135). Let AQ+ A^y+ A2y'"+ ... be a power series in y,

and Aq, Ai, A2, ...he power series in x, so that the whole is a power
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series in x and y, which is supposed to converge for all sufficiently-

small values of x and y. It is further supposed that the function

represented by this series vanishes for ^^= 0, /y= 0. It is necessary
then that ^Iq vanish for ir= 0; for the sake of generality it is sup-

posed that also A^, A^, ..., -^„-i vanish for .r= 0, but that A^ does
not. It is then proved that the given power series may be regarded
as a product wU, where U is a power series in x and y, converging
for sufficiently small values of these, but not vanishingfor x= 0, y= 0,

while tD is of the form td= y^+ 2hy^~^+ •••+Pni wherein j^i , Pa ' •••>Pn
are power series in x, converging for sufficiently small values of x,

and all vanishing for .r = 0. In the application of the theorem which
we make the power series is only a polynomial in ^r and y, namely
f{x,y), where f{x, y) = is the curve considered; and the conse-

quence of the theorem is that, in considering the small values of x
and y which satisfy the equation /(.r, y) = 0, where /(O, 0) = 0, it is

sufficient to consider only the factor m; the values ofy satisfying the

equation /(.r. y) = 0. which reduce to zero when .r = 0, are then n in

number, and given by ra = 0. The particular case when n=l, the

equation /(.r, y) = being then of the form

ax+ y+ {x, y)o 4- {x, ij)^+... = 0,

where (,r, y)^. is a homogeneous polynomial of order r in x and y, is

familiar; the only value of y satisfying this equation which reduces

to zero when x vanishes is given by a power series y= —ax-\- bx^+
In general, under the hypothesis made, the power series con-

sidered, which we may denote by/(.i', y), is of the form

f{x,y) = x{B,+ B,y+... + B,_,y--') + {C+ xB,)tr+ A,^^ij-+'+...,

where B^, B^, ..., 2?„, --i^+i, ... are converging power series in x,

but C is a non-vanishing constant. We denote f{0, y) by (/>, and

^—f{x, y) by xfj, so that i/r vanishes when x= 0, for all values of y.

The series ^ will be of the form ^ = Cy^+ Dy^^+^+ ..., in which
C, D, ... are constants, and C is not zero. It may be assumed, as

familiar, that the power series/ (a;, y), converging for all sufficiently

small values of x and y, by hypothesis, converges absolutely for

sufficiently small values of these, and, if necessary, may be re-

arranged; and, further, that, for a power series in y, converging for

all values near y= 0, which vanishes at ^= 0, there is a finite

neighbourhood of y= within which no other zero of the series

exists. Thus, denoting the absolute value of i/ by
| ?/ |, as usual, we

may suppose a (real positive) a chosen to satisfy the two conditions,

{a) that
(f)

does not vanish for 0<
| ?/ |^ a; {b) that f {x, y) con-

verges, if X be sufficiently small, for
\ y \<a. Here is a function of

y only, and i/j vanishes when x= for every (small) y; if, therefore,

we take .r small enough, and take care that y is not too small, we
can suppose iff less in absolute value than (/>. Precisely, a real
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positive number a^ exists, with ai^<a, and a real positive p, such
that, for \x\< p, and crj <

| ?/
1 < cr, we have

|
1
<

| ^ | . Whence, for a
definite value of ^r, since/(cr, y)= (f){\

—
il}j(f>), we have (putting/for

fdy~(f)dy dyx=iX\<f>)
'

here, since l/^=l/(C?/" + Z)i/"+^ +...), and {ijjl(f>)^ is expressible as a

series of positive and negative powers of y, converging, with the

definite x, for ai<\y\<cr, while the series SA~^(i/'/0)'^ is uniformly-

convergent, it follows, by a well-known theorem (Weierstrass,

Werke, ii, p. 205), that we can write the preceding equation in the

form Idf ld<f> d ^ ^ . .

fdy 4>dy a^^=_co ^

and, hence, in the form

where G (x) arises as a power series in x which vanishes fora;= 0,

and G{y) is a power series in y.

Now let the number of values of y, less than g in absolute value,

which, for the definite value of x chosen, are zeros of/(.r, y), be in;

asf{x, y) is a power series in y, this number is finite. Denote these

values ofy, not necessarily all different, hy y^, y^, ..., y^; then, also

for
I
?/ 1 < (T, the difference

13/ / 1 1

fdy \y-tji,
'" y-y,

is expressible as a power series in y; denote this by 0(?/). Thus,
taking a value of y greater than all oi y^^, ..., y^ in absolute value,

subject also to ai<\y\< a, we have

This must agree with the previous expression of f~^dfjdy in

powers of y; thus we have m=n, and yi-^--'-\-y,n—vG_^{x);
defining then m by ro =(^-?/i)...(?/ -?/„), =?/"+i?i^"-i+...+j9„,
and recalling an ordinary theorem of the theory of equations, we
infer t}\Sitp^-\-G_^{x) = 0, 2j92+i?iG-i(^) + 2G_2(a:) = 0, etc., whereby

Pi, P2, • • • are expressed as power series in x, vanishing for x = 0.

Also we have

fdy wdy '-" wdy ^"^ 8i/^=o /"'

taking then U so that the right side is u}~'^dwldy-\-U~'^dUldyy

namely

V=Ae^Y>\fG{y)dy- S G^{x)yA,
L'O )u=0 '^ J



Algehraicfunctionsfor the curve 39

where A is independent of y (for the definite value of x), we can

infer the equation /(.c, y) = mU. The form of U is

U= A{\, + X,y+ X,if +...),

in which A^, A^, Ag, ... arise as power series in x, of which Aq reduces

to unity for x= 0; comparing coefficients of y^ in the identity

A^+ A^y+ A2y^+...=A{p^+p„_^y+...+j)^y"--' + y^){?^+ X^tj+...),

we see that A is given by .4 = .4„ (A^+ X^jh+ • • • + KPn)~^ 5 thus ^ is a

power series in x, which reduces, when .r= 0, to the constant term C
in the power series .4„. For the values of x and y for which the two

series G{y) and S G {x)yf^ converge, the factor U does not vanish,

as its exponential form shews.

Ex. For the curve y'=zx* + 2Ax^y + Bx-y^ + 2Cxy^ + y*, prove that

u7 = [// - Ax^ - (AB + C)x^-.. .]- - [x'- + i {A-' + B)x' + . . .f.

The parametric expression of a branch of a curve. We con-

sider now, for small values of .r and ?/, the form of the solution of the

equation w{x, y) = 0, where w {x, y) = y''+lhy'''~'^+ •••+Vn^ wherein

Py, ..., Pn are power series in x, converging when x is sufficiently

small, all vanishing for x= 0. We suppose that w {x, y) is incapable

of being Avritten as a product

{ir+qiy"'-^+ •' + qJ{y''+riy''-^+ •.• + rf,),

in which g^ , . .
. , q,,^ , /'i, . .

.
, 7\ are converging power series in x (which,

as all the roots of m {x, ^/) = vanish when x= 0, would all vanish

for x= 0); for instance y^+ x is so incapable. Otherwise we should

deal with the factors separately.

Under this hypothesis, we shew that the n roots of w {x, y) =
form a single cycle, being all given by one converging series,

y= a-i^t+ a2t'"+ ... , in the parameter t, defined by x'^= t, by allowing

t to vary continuously in the neighbourhood of t= 0. Naturally,

complex values are allowed for t ; so that we can pass continuously

from t to et, where e = exp {27Tiln), and thence to e^t, and so on up to

e"-^ t, and thence back to t ; thereby we obtain n values of y corre-

sponding to any value of x which is near enough to x = to secure

the convergence of the series.

For definiteness, let the Resultant of two integral polynomials in

y, of respective degrees m and n, mean the determinant oi m+ n
rows ancl columns, whose rows consist first, for the first n rows, of

n repetitions of the coefficients in the first polynomial, beginning

in turn in the first, second, . .
.

, H-th columns, the remaining elements

being zeros, and then, for the remaining m rows, of yn repetitions of

the coefficients in the second polynomial, likewise beginning in turn

in the first, second, . . .
, m-ih columns, the other elements being zeros

;

for instance, for the polynomials aoy^+ a-^^y+ a^, b^y+ b^, the rows
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of the determinant would be in turn ciq , a^ , a^x h^, b^, ; 0, b^, b^.

Further, let the Discriminant of such a polynomial, of degree n in y,

made homogeneous in y and ;r by inserting proper powers of z, so

becoming u{y,z), mean the Resultant of du/dy and dujdz {z being

put equal to 1 after differentiation). The discriminant is a poly-

nomial homogeneously of degree 2(n — l) in the coefficients of the

original polynomial. Thus the discriminant of the polynomial in y
which we have denoted by w {a\ y) will be a homogeneous poly-

nomial of degree 2(»i — 1) in the coefficients 1, ^^i, ... , p„; it will thus

be capable of being written as a convergent power series in x, when
cc is sufficiently small. This discriminant of m (.r, y) we may denote

by A. In general, as is known, the vanishing of the resultant of two
polynomials in y is the necessary and sufficient condition that they

should have a common factor, linear in y, whose coefficients would
then be rational in the coefficients of the two polynomials ; and the

vanishing of the discriminant of a polynomial in y is the necessary

and sufficient condition that the polynomial contain as factor the

square of a linear polynomial in y, likewise having therefore co-

efficients rational in the coefficients of the polynomial. In our case,

as cj {x, y) is incapable of being written as a product of factors of its

own form, it cannot have such a square factor. Thus the dis-

criminant A does not vanish for all small values of x. But A vanishes

for .T= 0, for which w {x, y) reduces to ?/". Thus A is a power series

in X vanishing for 0^= 0; and, by a property of power series already

remarked, there is a neighbourhood of a:= within which no other

zeros of A are found. We suppose the (real and complex) values of x
represented on a Euclidean plane, in the familiar way; the neigh-

bourhood in question will then be defined by a circle whose centre

is the point ^r= 0. For clearness we may speak of the interior of this

circle as the domain of the origin, x= Q; it is supposed that this

circle is so taken that the series A, and all the series p^ , jjo, ... in m,

converge therein.

Now, let Xq be a value of x within this domain, not at a;= 0; and
let

?/o
be one of the n roots of zn {Xq, y) = 0. The polynomial of order

{n — \) in y, dw (x, y)ldy, or, say, Wy {x, y), will not vanish for

x= Xq, y= yo, since the two equations w {x^,
?/o)

= 0, m,/ {x^, yo) =
would involve that A was zero for x— Xq, which is contrary to the

definition of the domain. Next consider values x= Xq+ ^, y= yo+ V'

which are near, respectively, to ^Tq and ?/q, Xq+^ being within the

domain, and denote the values of dzn {x, y)jdx and dw {x, y)ldy, for

x= Xq, y= yQ, respectively by A and B. The substitution of these

values of x and y in w {x, y) then gives a result which, if ^, -q be

sufficiently small, can be arranged in the form, a power series in

^ and -q, A^+ Bt] + {^, >?)2+(|, 7^)3 -f-— It is then a simple apphca-

tion of the general result proved earlier that, since B is not zero,
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there is, for small ^, one and only one value of tj, satisfying the

equation w (.^0+ ^, i/Q+7^) = 0, which reduces to zero when |= 0, this

being expressible as a convergent power series in ^. AVe may denote

this solvition of xn {x, y) = 0, reducing to y^ when x ai)proaches cT^,

by ?/=?/o+ri(.r — .?'()) + Co (.r — .!'o)"+ H Vi ^^^ another root of

^ ('o- y) — ^' there will similarly be a unique solution of w {x, y) — ()

which reduces to y^ when x= Xq . likewise expressible by a convergent

power series in {x — Xq). Of the n series in x— Xq, so obtainable,

representing the 7i roots of w {x, y) = when x is near to Xq, let ?• be
the least radius of convergence. This number r is not zero; it varies

(presumably) as iVq varies in the domain, and may be regarded as a

real function of the real and imaginary parts of Xq. We desire to

prove that as Xq varies, this function r does not approach indefinitely

near to zero, but has a lower bound greater than zero. The definition

of r has assumed that Xq is not at x= 0; we suppose then a small

circle put about cr= 0, and suppose Xq to be without this. We like-

wise suppose another circle taken near to but within the original

circle bounding the domain, also with centre at x = 0. Then we
restrict .r^ to the annulus, lying within the domain, which is bounded
by these concentric circles.

We can then see that r varies continuously as Xq varies within the

domain. For, if cTq' be a point, within the annulus, in the immediate
neighbourhood of x^, while we could obtain the power series in

x— Xq, which give the roots of m {x, y) = when x is near to Xq,

directly from ro {x, y). as we obtained the power series in x— Xq, we
can also obtain them by the known process of analytical continua-

tion from the power series in x — Xq, previously obtained, provided

Xq be sufficiently near to Xq. Hence, from the method of this

continuation, if r' be the least radius of convergence for the n series

in x — Xq, we have r'^ r—\xQ—XQ\. If, however, |ci'o'
—

.TqI </, we
could equally begin with x^' instead of Xq, and obtain the power
series in x — Xq by continuation from those in x— x^; thus we equally

have /-^ ?•'—
I .^o^'^'o' I

' ^^^^ ^^^ inequalities

r-
I

Xq - Xq \^r%r+\ Xq- Xq
\

shew that r varies continuously with Xq. As a continuous function

of two real variables, in a limited domain, actually reaches its

lower bound, and r is not zero at any point within the annulus, it

follows that the lower bound of r is greater than zero. There exists

therefore a real positive number p, greater than zero, such that for

every point Xq, w'ithin the annulus, the radius of convergence of the

series in x— Xq, which represents any root of r?7(.ro, ?/) = 0, is greater

than p.

We start then with a particular Xq, within the annulus, and form
the series in x— Xq which represents the root of m {xq, y) = which
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reduces to iJq when x= Xq, where y^ is any of the n values satisfying

w {xq, ?/p) = 0. Then, within the circle of convergence of this series,

and within the annulus, we take a point cr^, and form the analytic

continuation of this particular series in powers of x— x^ . Since, for

this derived series, the radius of convergence is > p, we can, by
suitable choice of .r^ , near to the circumference of the circle of con-
vergence of the original series, secure that the circle of convergence
of the derived series in x — x^ contains a region lying outside the
original circle of convergence. In this region, and within the
annulus, we can take a point x^, and transform the series in x— x-^

into a series in x— x^, in such a way, by proper choice oi x^, that the
derived series in x— x^ contains a region outside the two former
circles of convergence. It is thus clear that the original series in

x— Xq can be continued completely round the origin x= 0, the
various centres x^ , x-^ , x^, •••, of the successive series, lying on a
curve enclosing x= 0, which, after a finite number of steps, again
reaches .Tq . We thus obtain another series in x — x^ ,

giving a root of

^ ('^0' ^) = 0, obtained, as explained, by continuation of the original

root, which was constructed to reduce to y^ for x= Xq . This second
root of w {Xq, y) = niay not reduce to y^, but to another root of

w (Xq , y) = 0, when x= Xq. In such case we again make the circuit

of x= 0, and find a third root of m {xq, y) = 0, as a power series in

x— Xq. As the number of roots of to {xq, y)= is finite, we must,
after, say /x circuits of x= 0, finally reach again the original root

which reduces to y^ for x= Xq .

We then take a variable t, similarly representable on a new plane
of complex variables, such that x= t^^. As t makes a circuit about
t= in its own plane, the point x will make a circuit about a;= in

the plane of x ; but an unclosed path for t, by which it changes to
fgiTTiiiJ.^ will correspond to a complete circuit for x ; and the complete
circuit of t, about ^= 0, will correspond to /x complete circuits by x,

described in succession. Thus, if, instead of cj (x, y) — 0, we con-
sider the equation w {tt^, y) — ^, the root of the equation C3(a^o» 2/) = ^
which we have discussed, which reproduces its value after /x circuits

about x= 0, will correspond to a root of 10(^0^, y) = 0, where XQ=tff^,

which reproduces itself by continuation, after one circuit of f = in

the plane of t. This root, being developable about every point of the
annulus in the ^-plane which corresponds to the annulus taken in the
a:-plane, as is clear from what has been said, is representable*, in a
form valid for the whole of the annulus in the ^plane, by a series

00

S Cj^t^. As, however, all the roots of m {x, y) = tend to zero when
h= — 00

X tends to zero, the series can only contain terms for which h > 0,

* Weierstrass, Werke, i, p. 51. For the history of Laurent's theorem, cf.

Mittag-Leffler, Acta Math, xxxix, 192.S, p. 34.
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and the root is representable over the whole of the ^annuhis by a
power series y= c^t-\-c^t^-\- Considering this root again in the
annulus in the .r-plane, we obtain fi— 1 roots, into which it can
successively be continued by circuit of .t'= 0, by replacing t in this

series successively by et, e^t, ..., e^~^/, where e = exp(27r//jLt).

If then these roots, regarded as depending on x, be denoted by
'r]i,...,r), the product {y— 'r}i)...{y — y]) will be of the form

y'^+(j[iy'^~^+ • + qa> where every coeflficient q, symmetrical in

x^'f^, ex^'f^, ..., e/^-i^'i/M, is expressible by integral powers only of x,

and arises as a power series; thus every coefficient g is a power series

in x; and, as all the roots of w {x, y) = vanish when .i'= 0, this

power series vanishes for.j' = 0. The function ,?/'^+'/i,(/'^~^+ •.. + </„ is

thus a factor of ra(.r, y), which, however, by hypothesis, has no such
factor, unless /i.= /?. Thus, this is the case, and all the roots of

To{x, y) = form a single cycle, and are all derivable from a single

series, y= Cit+ C2t^+ ..., where x= t^, by continuous variation of ^.

The proof of the statements made at starting is thus completed.

Supplementary remarks. The expression of the points of a

branch of a curve in terms of a parameter is ascribed to Puiseux
{Journ. de Math, xv, 1850). Some further remarks, without com-
plete proof, and suggestions for alternative methods of reaching the

result, may be made:
(a) In the expressions x= a+ V, y= b + Cj^t + C2t^+ ..., it is clear

from the proof we have given that, to any values of x, y, in sufficient

nearness to a, b, respectively, there corresponds only a single value

of /. And it is not necessary for this that the exponent of the lowest

power of t which is actually present in the series for y — b, should be
unity, or even be prime to the exponent r. For instance, for the

curve given by the equation x^— 2xy^+ y*—'imKv^y— ni\v^= 0,

there is only one place at x =0, y= 0, with a cycle of four values,

expressed by x^f^, y= t^-\-mt^; and t is actually given by

t= {-x+ y^-^ m\vHj)lmx {2y+ m\v^).

It is clear too that, instead of t, we may use any other parameter
T which is expressible by a convergent power series in /, of the form
T= At + Bt^+ ..., provided the coefficient A be not zero; then both
X and y appear as expressed by a power series in r.

(b) The number of pairs of values of a, b satisfying the equation

f{x, y) = for which, in the expression

x = a + t'', y= b + Cit + C2t'^+ ...,

the value of r is greater than unity, is necessarily finite. For all such

pairs equally satisfy the equation dfjdy= 0, and, by elimination of

y between this equation and the equation of the curve, only a finite

number of values of x arises. If we take account also, as is proper,

of the associated equations f{x, r]~^) = 0, /(|~^, y) = 0, f{i~^, r]-'^) = 0,
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as explained above, when this is necessary, the number of places for

which r > 1 is still finite. It is convenient to have a name for the

number r— 1, at any place, when it is not zero; it may perhaps, for

reasons which appear below, be called the ivinding index at the

place. The sum of the values of this index, for/(.r, y) = and the

associated equations such asf{x, ')7~^) = 0, etc., at the finite number
of places where this index is not zero, will be found to be of great

importance.

(c) The number of pairs of expressions

with ?•= 1 and r > 1, taken with the analogous expressions arising for

the associated equations such asf{x, 17"^) = 0, which are necessary,

in order to give every pair of values of x and y (or of (x, 17), {^, y),

(^5 v)) which satisfy the equation of the curve (or its associated

equations), is only finite. This may be seen by regarding the com-
plex variable x as represented upon a Riemann sphere (replacing

the plane on which x is represented); every one of the expressions in

question has then a region of existence on this sphere of which the

radius has a lower bound not infinitesimally small.

{d) Moreover, all the pairs of expressions such as those in (c),

which are necessary to represent all pairs of associated values of x
and y satisfying the equation of the curve, are derivable by analytic

continuation from any one such pair of expressions (provided we
may assume all the coefficients in this one expression to be known).
Thus any one such pair of expressions theoretically contains the

equation of the curve. For this however the condition that the

equation/ (iT, y) = Ois incapable of being obtained by multiplication

of other such equations, equally rational in .r and y, or, that the

curve /(a', y) = is irreducible, is fundamental.
(e) It may be proved directly that, for the neighbourhood of a

simple point {a, b, c, ...) on an algebraic curve in space in which
the (non-homogeneous) coordinates are x,y,z, ..., the values of

y — b,z— c, ... are expressible as converging power series in x— a

(if X be chosen appropriately among the coordinates). If therefore

we assume, from Chapter 11 above, that any given curve can be put

in (1, 1) birational correspondence with a non-singular curve, it

follows that any place of the given curve can be represented by
power series in a parameter; and further that, for this parameter

we may choose one which is rationally expressible by the co-

ordinates of the point of the given curve. This is evidently the

simplest way in which the general theorem may be reached. But
also, conversely, it appears at once on consideration that, in a

birational transformation between two curves, a branch of one

necessarily changes into a single branch of the other, and conse-
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quently a place oi' one into a single place of the other. Thus, in the

birational translbrniation of a ourv'c into one witliout multiple

points, the number of points of the latter curve which correspond to

a multiple point of the original, is the number of places which exist

at this nuiltiple point.

(/) But the object of representing the neighbourhood of a

particular multiple point of a plane curve by an aggregate of power
series would also be achieved if any transformation, birationally

reversible, were found which replaced this point by a number of

simple points on the transformed curve, even if thereby new
multiple points were introduced not corresponding to the neigh-

bourhood of the original multiple point. There exists an extensive

theory of this possibility, in which the transformations employed
are birational in the whole plane (so-called Cremona transforma-

tions); and this suffices to establish the general theorem referred to.

The theory was first elaborated in detail by Noether, using a
succession of quadratic transformations to build up the necessary

Cremona transformation. In regard to the theory in question,

which will not be fully treated in this volume, the reader may con-

sult: The Brill-Noether Bericht; Deut. Math. Ver. 1894, p. 377, etc.

(cf. Noether, Math. Aim. ix, 1876; and Segre, Ann. d. Mat. xxv,

1897, p. 1); also Segre and Castelnuovo, Atti... Torino, xxxvi, 1901,

pp. 645 and 861; and, thereto Alexander, Trans. Anier. Math. Soc.

XVII, 1916, p. 295; and further, the very full account in Enriques-

Chisini, Teoria geometrica, ii, with the bibliography, pp. 535 ff . As
a simple example of the application of the method we may quote
the case of the curve represented by y^P={x, y)2p+2> for which the

neighbourhood of lV= 0, y= niay be discussed by making the

transformation x= ^r)''~^, y= ^r)P, reversible by ^= xPjy^~'^ and
f] = ylx, whereby the curve becomes Tf— ^"{1, r])2p+2' with the two
branches of a double point at ^= 0, 77 = 0.

(g) It follows from the theory given here that the number of

jjlaces existing at a multiple point of a plane curve is the same as

the number of irreducible factors of the function denoted above, in

the text, by w {x, y). Indications of real value, giving also the

effective terms in the relative factor, to the first approximation, are

very easily found by use of Newton's polygon. As a simple example,
consider the curve represented by the equation

y^-\^lfu2\-^ju^+UQ= 0,

where u,. is homogeneous of order r in x and y. The Newton
polygon indicates at once that there are three (branches) places for

this curve at x = 0, y = 0, each given to the first approximation by
an equation of the form y=mx^; namely, there are three ordinary

branches with a common tangent. The multiple point is described



46 Chapter III

in the Noether theory, referred to under (/), as consisting of a

triple point, and a further triple point in the immediate neighbour-

hood of this. In regard to the use of Newton's polygon reference

may be made to a paper. Trans. Camh. Phil. Soc. xv. Part iv,

Oct. 1893, p. 403.

Ex. The transformation ^'.rJ/"~^ = tj/^" = ^/[z?/"~i + (a', ^)„] is uniquely
reversible, leading to 'i'/i'?''~^ = 2//'?" = 2/[^7j"-i — (|, t?),J. The curve
y^-^ + {x,y)y^ = Q has one place at x — Q, «/ = 0, representable by a pair

a;= <"~^, y = mV^ + ...; the curve is in (1, 1) correspondence with a curve
in space [/; + 1] obtainable by a prime section of the cone which joins an
arbitrary point, O, to the rational normal curve given by

the single place at a' = 0, y = corresponding to a simple point on the Une
joining O to the point = cc of the rational curve. Any two curves
oa;?/"~^-(-%" + c[::*/"~^ + (a', ?/)„] = 0, for different values of a, b, c, have,
beside a single variable intersection, common points at x — 0,y = which
are described in Noether's phraseology as consisting of a (/* — l)-ple

point, followed by (2« — 2) simple points, on a bi'anch of order (n — l),

in successive neighbourhoods (Segre, Atti. . .Torino, xxxvi, 1901). In
fact «2 = („_i)2 + 2;?-2 + l.

General theorem for infinities of a rational function. We
pass now to make application of the parametric expression we have
established, to the theory of the rational functions of x and y, these

variables being supposed to be connected by the equation of the

fundamental curve, f{x,y) = 0. These functions will be briefly

referred to as rational functions on the curve. For clearness, we
repeat that, in speaking of the places belonging to the equation

f[x, i/) = 0, we mean not only those for whose neighbourhood there

is an expression of the form x— a= t^, y— b= 0^1+ c.^f^+ . .
.

, but also

those, derived from the associated equations, for which, in this

expression, x— a is to be replaced by 1/^% or y— b replaced by l/y, or

both.

A function, explicitly rational in x and y (cf. the Note at the end
of the chapter), is expressible in the neighbourhood of any place

belonging to the curve f{x, y) = 0, after substitution for x and y of

the appropriate series in the parameter /, in the form t^P{t), where
P{t) denotes a power series in /, not vanishing when t is zero, and A is

an integer, which may be positive, zero, or negative. If A is positive,

the rational function is said to vanish to order A at this place ; if A is

negative, equal to — fx, the function is said to have a pole of order fi

at this place. In general A will be zero; it will indeed appear that

there is only a finite number of places for which A is > 0, and only a

finite number at which /u, > ; and that the sum of the values of A at

the former places (often called the number of zeros of the function)

is equal to the sum of the values of /x at the latter places (often

called the number of poles of the function). Either of these sums is

then called the order ofthe rationalfunction. Further, if the function
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be denoted by O, and C l)e an arbitrary constant, the difference

<I) — C, at a place which is not a jiolc of O, may vanish to a certain

order; lor brevity, this is ol'ten spoken of as the number of times for

which O is equal to C at this place. It will appear that the sum of

the numbers of times for which O is equal to C, at all the places

where this happens (including, if necessary, those for which x, or y,

is infinite), is equal to the order of the function O.

In order to prove these results, and others of still greater im-

portance, we proceed to prove a theorem which we express in the

form r-
^i^

(It ],-.-•

For the neighbourhood of any place satisfying / (.t, y) = Q we sup-

pose O expressed, in the manner explained, in terms of the para-

meter t, and the expression multiplied by dxjdt; where x = a-\-V\

y^b + Cit+ C2t^+ ..., this dxjdt will be r/'-^; but, wdiere \lx= t'\ and

y — h, or \ly, is c-^t-{-C2t^+ ..., this dxjdt will be— r^t'''^'^. In the

product (^ dxjdt, so formed, arranged as an ascending series in /,

there will be only a finite number of negative powers of f ; if the

power t~'^ occur, we take the coefficient of this. It will appear that

there is only a finite number of places where negative powers of t

arise, in this expansion of O dxjdt. The theorem expresses that the

sum of the coefficients of t~^, at all such places, is zero.

We first remark a corresponding, but much simpler, theorem, for

a rational function, ^, of a single independent variable x. For con-

venience we express this in the same form [(fidxjdt'\i--i-= Q. Any such

function, ^, is necessarily of the form
k

Ax"' -f-
5a;'"-i +... +MX+ N+Y. [P.^ {x- «,)-"<

x= l

+ Q, {x - a,)-«'+i+ ... + R, Cr- «,)-']>

w^here k is the number of places at which the function becomes

infinite. In the neighbourhood of a finite value of x, say x = c, we
can put x= c+ t, and expand the function in ascending powers of t.

For general values of c, no negative powers of t will arise; for

c = flj , there will be the negative powers P^ t^^H+ Q^ ^-"i+i -{ ...-\-R^ f^,

in which the coefficient of t-^ is Ri . In the neighbourhood of a?= oo,-

we can put x—ljt, and similarly develop the function in ascending

powers of t ; the result will again be a power series with the addition

of terms involving negative powers of t, the number of such

negative powers being only finite; in this case, if we multiply the

function by dxjdt, or — Ijt^, the coefficient of t'^ in the product will

be the negative of the coefficient of t in the function ^ itself, namely

will be —l^Ri. Thus, it appears that the sum of the coefficients of

t-^ in the expansions of the product ^dxjdt, for all the places where

this contains negative powers, is zero. This is what is expressed by
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the equation put down, for this case of a rational function of a single

variable.

Now take the theorem for the rational function <t) {x, ij), where

fi^x^ y) = 0. Consider a place at which x= a + t'', and y— b, or lly, is

a power series in t. Denoting the values of y, belonging to the cycle,

when X is near to a, by y^, ..., i/,., form the sum

^{x,y,)+... + (D{x,y,),

regarded as a fmiction of /. Each constituent of this sum is a series

of integral powers of t, with only a finite number of negative powers

;

if e denote exp(27ri/'')' the series are the same in the respective

quantities t, et, e'^t, ..., e''~^t. Thus the sum is a series of integral

powers of V or x— a. In this series, the coefficient of {x— a)~^, or

t-'\ if not zero, arises by equal contributions from each constituent

of the sum, and is thus equal to the coefficient of t~^ in the series of

powers of t given by O {x, y) rt'-^, or O {x, y) dx/dt, where y denotes

any one of ^^ , ..., yr- Next consider a place arising for an infinite

value of X, for the neighbourhood of which x — 1~^, the appropriate

corresponding values of y, as series in t, being y^^, ..., yjc (which may
become infinite for t= 0). The sum O {x, //i) + . . . + O {x, yj.) is then,

similarly, a series of integral ascending powers of x~'^, in which the

term in t^, or x~'^, if present, arises by equal contributions from each

constituent of the svun. This is then equal to the coefficient of t~^ in

O (.1', y)kt''^~^, where y denotes any one of y^, ..., y^.. The negative

coefficient of x~^ in the sum is thus equal to the coefficient of t~^ in

O {x,y)dxjdt.

Lastly consider, for any value of x, finite or infinite, the sum
4>{x) defined by (/.(.r) = (.r, ?/i)+ ... + (.r, ?/„), where y^,...,y^
are all the values of y satisfying the equation /(^i', y) = 0, for the

value of X taken. As a symmetrical function of these, (f){x) is

expressible as a rational function of x only. For a finite value of x,

say x= a, if the sum be regarded as an aggregate of partial sums,

each extended to all the values of y belonging to one place, and
forming a cycle, the coefficient of {x — a)~^ in the complete sum is,

by what we have shewn, equal to the sum of the coefficients of t^^ in

<[) {x, y) dx/dt, evaluated in turn at the various places arising for this

value of X, the symbol t denoting in turn the parameters at these

places. Likewise for infinite x; the negative coefficient of x~^ in

cf){x) is equal to the sum of the coefficients of t^^ in O {x, y)dxjdt, at

the various places arising for x—od. As the number of values of x,

giving contributions, when we are considering the function (f>{x), is

finite, it is clear that the number of places providing a term to be

taken into account is also finite for ^ {x, y) dxjdt. And, from the

theorem proved for <f>{x), the sum of the coefficients of t~^, at

this finite number of places, in the appropriate expressions for
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^{i\ ll)(lxldt, evidently vanishes. Which is the theorem to be

proved.

Order of a rational function on the curve. An immediate

corollary is the theorem jiistitying the definition of the order of

an algebraic function which we have given. Let ^' (.r. y) be any
rational function, and K any constant. Then the function

OGr, y) = ['y{x, y)-K]-^^^{^!'{x, y)-K],

where dldx means total differentiation, equal to

dldx+ {-dfldx^dfldy)dldy,

is a rational function. Also, at a place where T* {x, y) has a pole of

order ^, being expressible in the neighbourhood of this place in the

form T {x, y) = t-i^P{t), where P{t) is a power series not vanishing

for / = 0, the expression ^{x,y)dxldt, say (^ -K)-^d(^ -K)ldt,

has the form

^log(T-/^), or ^log[(P(0-i^/^)/>];

and in this, as the power series P{t) does not vanish for ^ = 0, the

coefficient of /~^ is — /x. Again, at a place where ^^ {x,y) —K
vanishes to order p, having an expression for the neighbourhood of

this place, if the parameter here be also denoted by t, which we may
write tPP{t), the coefficient oit~^ in d log (^ — K)jdt is p. Hence, by
the theorem [O {x, y)dxjdt\i-i = Q, we see that the sum of the values

of ju which arise, for all finite and infinite values of .r, is equal to the

sum of the values of p; and this, therefore, is the same for all values

of the constant K. This is the theorem in question, justifying the

definition of the order of the rational function ^ {x, y). That the

sum of these values of p is finite has been remarked ; it is obvious

also because the places where ^(a, ?/) = 0, subject to f{x, y) = 0,

are obtainable by algebraic elimination, say of y, from these two
equations, leading to an equation for x of finite order.

The theorem that a rational function assumes, onf{x, y) = 0, any
assigned value at a number of places which is independent of the

value, is, in its simpler cases at least, a well-known theorem for the

intersection of curves. If the explicit expression of the function be

u {x, y)lv {x, y), where u, v are polynomials, the theorem is that the

curve u {x, y) — Kv {x, y) = intersects /(.r, 2/) = in a number of

points which is independent of A' . But it is clear that this familiar

result may be difficult of interpretation when some of the intersec-

tions are at multiple points of /(.r, y) = 0, or if, at an intersection

which is ordinary on f{x, y) = 0, there is multiple contact. The
intersections at infinity present no special dilficulty if homogeneous
coordinates be employed. The computation of the exact number of
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intersections, in any case of difficulty, can only be made by some
method equivalent to that we have employed, with the precedent
expression of the places of the curve in terms of a representative
parameter.

Ex. 1. As a very simple illustration, suppose / (a;, i/) to be given by
/ {x, y) = y--4: {x - a) {x - b) {x -c). On the curve / (x, y) = there is then
a single place at each of x — a, x = b, x = c, x = <x), there being a cycle of
two values; for all other values of .r there are two places. Thus the
rational function x — m, for general values of the constant m, is infinite
to the second order at x = od, and vanishes to the first order at each of
the two places for which x = m. But these zeros coincide in one zero of
the second order if m = a, or h, or c. Or again, the rational function y is

infinite to the third order at the place given by a; =00, and vanishes to
the first order at each of the places given by x = a, or x — b, or x = c. Or,
further, if z be not a, nor b, nor c, and s be either of the two values for
which/ (2, s) — 0, the rational function, of x and y, (y + s)/{x — z), is infinite

to the first order at one (and only one) of the two places where x — z, and
is infinite to the first order at a; = co : its zeros are for the two values of
X satisfying the quadratic equation

[(^a:-a)ix-b){x-c)-iz-a){z-b){z-c)]/{x-z),

each of these values of x being associated with one of the two corre-
sponding values of y which satisfy the equation / (x, y) — 0. The function

(y + s)/{x — z) is thus of the second order.
Ex. 2. In further illustration of the order of a rational function, we

may prove that a curve for which there exists a rational function of
order 2 is of special character, being in fact hyperelliptic, see Chap. 11;

or is rational if there be a rational function of order 1 . It is clear that
if there exist a rational function of order 1 , the explicit expression of this
function being u(x, y), then the elimination of y from the two equations
u{x, y) = i,f {x, y) — 0, must lead to an equation for x, giving onlj^ one
value, and hence, as the process is rational, x may be expressed rationally
in terms of ^; and, similarly, so may y; and | by definition is rational in

X and y. This is the definition of a rational curve.

If there exists a rational function u{x, y), of order 2, the two equations
11 (x, y) — ^,f [x, y) = 0, in which ^ is a general value, must, on elimination
of y, lead to a quadratic equation x'- — 2xr + s=^0, where r and s are
rational in ^, unless the two places, where u{x, y) = f, have the same value
of X for all values of ^. If this exception arises, these two places cannot
also have the same value of y for all values of ^, because then, taking
Xq, yo arbitrarily, subject to/(a;o, i/p) = 0, the function u{x, y) — u(xQ, y^)
vanishes to the second order at the arbitrary place {x^, yj, and hence
the differential coefficient of u{x, y) vanishes at every place {Xq, y^), or

u{x, y) is a constant. Thus we can use, instead of x, a coordinate x + Xy,

where A is constant; and, that done, we can make the statement that
the elimination of y between u{x,y) — i, and f (x, y) = 0, leads to a
quadratic equation x'^ — 2xr + s = 0, in which r^ — s vanishes only for

particular values of f . Take now the rational function of x and y given
by 7] — x — r, the value of ^ in r being expressed by x and y. Then, when
i and 17 are given, we have an expression for x in terms of these, namely
x. = ri + r, with also -q- = r- — s, in which r- — s is rational in |. Further, if

(x^ , y^) be one of the two places where u {x, y) = ^, the equations u {x^ ,y) — ^,

f{Xi,y) = 0, must on elimination of x^, lead to y = y^. If Xi=ri + r, the

value of X at the other place at which 11 {x, y) — ^ must be X2— — r] + r;
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thus the equations u{T] + r, ij) = ^, f (rj + r, y) — lead to a rational ex-

pression of y in terms of ^ and 17. There exists therefore an equatitjn,

?;- = rational function of f, to which the original equation / (a;, y/) = is

birationally equivalent. If this equation be t?'" = />(^)/'/(0, in which

p{i), qiO ^rc polynomials, by taking i7i = t?</(*), we obtain ni' — Pi^)'jiO-
If the polynomial p{^)q(i) be of the first or second order, it is familiar

that i and t/^ can be rationally expressed by a proper rational function

of themselves, and hence the original curve / {x, y) — is rational ; if

p{^}qi^) be a cubic or quartic polynomial, the original curve is elliptic

(see Chap. i).

Ex. 3. More generally the following may also be stated, but without
complete proof at this stage. Let | and r; be two rational functions of

X and y for the curve / (x, y) — 0; let a be the order of ^. To any general
value (I there are a places o{ f {x, y) — at which $ = <i, and, save for a
finite number of values of a, these places will be different. Let ft^ , ...,b^

be the values of t] at these places. Then there are two possibilities ; either

these values b^, ..., 6^ are different from one another except for a finite

number of values of a; or, these values consist, for every value of a, of

q diiferent values, each repeated p times, where a=pq. In the former
case there is a relation connecting ^ and tj, rational in both, and irre-

ducible, of order cr in 77 ; in the latter case there is also such an irreducible

rational relation, but of order q in 77. In the former case, this relation

may be obtained by eliminating x, y between /(a;, ?/) = 0, u(x, y) — i,

v{x, y) = 7], where u, v represent the explicit forms of $ and rj ; in the latter

case, the corresponding result of the elimination appears as the p-th
power of the single irreducible relation connecting ^ and rj. In the former
case, the rational relation connecting | and -q may be regarded as that

of a curve in (1, 1) birational correspondence with /(.r, y/) = 0; in the
latter case, the new curve is such that to every point of it there corre-

spond p points of / {x, y) = 0; or, the new curve regarded as repeated

p times may be considered as in (1, 1) correspondence with the original.

The former case arises certainly if there be a single value of a for which
the values b^,b^, ...jb^ are all different.

Abel's theorem for a sum of algebraic integrals. We now
deduce, from our general theorem, another consequence of great

importance.

Let 0(a% y), ^{x, y) be two rational functions, on/(cr, y) = Q. If

C be a constant, the function W {x, y) — C has a definite number of

zeros, say m zeros, for every value of C. As C is taken differently,

the positions of these zeros onf{x, y) = change, and these zeros

may thus be regarded as depending on C. We shall suppose that

these zeros are all of the first order, for all the values of C which we
consider, and that none of them coincides with any of the places

where the expansion of ^{x, y)dxldt contains negative powers of t.

We shall also put

/= / ^{x,y)dx,
J(a)

the integral being extended along a continuous range, onf{x, y) = 0,

given by a variation of ti', and the consequent variation of an associ-

ated value of y satisfying /(^r, ?/) = 0, from a place (a), which is
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fixed, to the place {x). Further, denoting the m places where

^{x, y) = C by (Xj), ... ,
(x^), and the m places where T(«, y) has a

particular value C^ by (%), ... , (fl„i), it will be convenient to denote

the sum
/'' (^{x,y)dx+
Jiai)

+ / ^{x, y)dx
Jicim)

by a symbol, say S. Denoting O (x, y), T {x, y) by O, T, the function

\^{x, ?/) — C]~^O (cr, ?/) is a rational function, and, by what we have
proved, the equation expressed by

r J, d^-i

[Y-C^ dt\t-.

holds. This we can write in the form

1 \dl-

Y-C) dt

dl\ 1

dtJ'i'-CJt

in which the sum on the left refers to the )n places where^ {x, y) = C,

and only to these, and the sum on the right is for places where
dljdt contains negative powers of t. We have assumed that, for all

the values of C considered, these two sets of places are different.

For a point {Xi+dx^, y^+ dy^), near to a zero (a\, yi) of ^(o;, y) — C,

and on a particular branch of f{x, y) = issuing from {x^, y^), for

which the points are given in terms of the parameter t, the value of

T(a\ y), expressed in powers of t, will be C+ tA + ..., where A is

not zero because we have assumed that the zeros of ^(a^ y) — C are

simple for the values of C which we consider. We may denote this

value by C+dC, regarding a\- and ^^ as functions of C. The contri-

bution to the sum on the left side, corresponding to this zero, will

then be the value at {x^
, y^) of

1 dl dx; dl dx;

A dx. ' dt dx/ dC
and the whole value of the left side of the equation will be dl^ldC,

where S is defined above. On the right side, the places to be con-

sidered are those for which dljdt contains negative powers of t ; at

all of these, by hypothesis, ^{x,y) — C differs from zero, while

dlfdi does not depend on C. For the neighbourhood of such a place,

at whichY {x, y) is Wq , suppose, we have an expression of the form

1 d , ,,,, ^. d

^-C~dC= :^log(T- C) = j^[\ogC¥,-C) + Pt+ Qf'+

where P, Q, ... depend on C, and the series converges, uniformly

for C, when t is small enough. Here

\dtJW- C
d V/dl

Jt dCWdt
log(T-C)] .
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Thus, varying C from Cq to C, we have the equation

Here (^'— C)/(^— Cq) is a rational function, say Q{x,y), whose
zeros are the upper Umits {x-^, ... , (^r^) of the integrals on the left,

and whose poles are the lower limits, {a-^), ... , («,„) of these integrals;

the right side can then be written

;('5^)iog0(-,4_..

This is the result, equivalent to the famous theorem due to

Abel, at which we desired to arrive. A simple example will serve to

make the matter clear : Suppose the curve / {x, y) = is given by
y'^ — 4^x^+Sax+ b = 0; that the function (b{x,y) is xjy; and the

function Q{x, y) is {y— tnx— c)[{y — in^x — C(^), where m, c, ???o, Cq are

constants of general values. This function Q{x, y) evidently

vanishes at three places, say {Xy, y^), {x^, y^), {x^, y^). and has poles

at three places, say {xj^, y^^), {x^, y^), {x^, y^), so that the sum on
the left may be denoted by

l^^^^xdx f(-^i)xdx f'-^^^ xdx

.'(xiO) y J(xiO) y j(,x30) y

To evalviate the right side, notice that dl/dt, or y-'^xdxjdt, can only

have negative powers of t in its expansion when either y vanishes or

X becomes infinite. At a place, x= e, where y vanishes, the equation

f{x,y) = 0, of the form y-=4<{x— e){x-+ a'x+ b'), shews that the

two values of y form a cycle, and we must put x= e+ 1^, giving for y
a form y= 2t{A + Bt+ ...), so that no negative power of t arises in

y'^xdxjdt. At x=c£), the two values of y equally form a cycle, and
the appropriate expression is to be found by putting x= t~^, giving

y= -2^3 {1-at^ -...), and hence dlldt= t-^{l-at'^- ...). Also, if,

in 0, ={y— mx— c)j{y—mQX— CQ), we substitute x= t~'^, and

y=-1t-^{l-at'^-...),
we obtain

log0 = log(l + |mf+M3+...)/(l + i'«o^+*Co^^+...)»
= |(???.-?no)i+....

Wherefore [(f///df) log 0],-i= |(m — 7?io). The three equations

yi = mXi+ c give m =
{y-i^
— y^j{Xy~x^', thus finally the sum of the

three integrals is equal to M?/i-?/2)/G%-«2)-i(2/i"-2/2")/('^'i''-'^'2")-

It can be shewn, as will appear, that, except when the curve

f [x, y) = is rational, there are rational functions O {x, y), such that,

for the integral /= JO(.r, y)dx, there are no places at which dl/dt

contains negative powers of t. Then the right side, in our general

theorem, vanishes. The integral / is then spoken of as an every-
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where finite integral; and for every one such integral we have an
equation

/ ^{x,tj)dx+...+ ^{x,y)dx= 0,
J((n) ./(«m)

where (cfj), ..., (a^) are the places at which an arbitrary rational

function ^{x, y) takes any assigned value, for instance oo, and
{x-^, ..., (x^) are the places at which the same function takes any
other assigned value, for instance 0; the paths of integration are

defined by continuous variation of 4^(tr, y) from one of these values

to the other. It has been assumed for simplicity in the proof given

here that, for the range considered, no two of the places, at which
^{x, y) takes any of the values passed over, coincide with one
another ; but this appears evidently unnecessary for the final result

obtained. It should be remarked however that, if the path of
r(a;)

integration be not assigned, the integral $ {x, y) dx is not defi-

ha)
nitely determined by the extreme points («) and {x) ; it is ambiguous
by additive multiples of certain constants, the so-called periods of

the integral. The theory of such periods is considered in subsequent

chapters (v, vi).

It can also be shewn that there exists a rational function

<^{x,y) such that, for the integral I= l^{x,y)dx, there are two
places only at which dljdt contains negative powers of t, each of the

first order, so that the expansions at these places are of the forms

dIldt = at-'' + P{t), dIldt= ^t-^+ P^{t), where P{i), P^{t) denote

power series in the (unconnected) parameters t belonging to these

places. The theorem [0(a% y)dxjdt\i-\ = Q, or [dIldt\f-x — Q shews
then that jS= — a; so that, multiplying 0(a:, y) by a constant, we
may suppose a= 1, /3= — 1. It will be shewn later how to construct

such an integral, with its infinities at any two assigned places of

f{x, y) = 0. If O {x, y) be such that these infinities are at [z] and (c),

whereat we have respectively dIjdt= t~'^ + P(t), dlldt= —t~^+ Pi{t),

and © denote an arbitrary rational function with simple zeros at

(a\), ... , (a^)' ^^^ simple poles at («j), ... , (o„,), the general formula
leads to

f(.Xi) r(Xm)

(t>{x,y)dx+...+ <t^{x,ij)dx=log[Q{z)jQ{c)].
JUn) J(am)

In this formula it is assumed that the paths of the m places under
the integrals on the left do not pass through either of the places

(z), (c); but, further, an appropriate integral multiple of 27ri must

be added on the right. For the integral I O {x, y) dx, regarded as a
J(a)

function of [x), when {x) is near to {z), is of the form log t+ P{t).

It can also be shewn that there exists a rational function Q>{x, y),

so that for the resulting integral /= JO {x, y) dx, there is only one
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place, which may be arbitrarily taken, at which dljdt has negative

powers of t in its expansion, if this power be the second or a higher

power; in particular, for which dljdt = —t~^+ P{t).

The possibilities and relations of the algebraic integrals for an elliptic

curve (represented by a quartic plane curve with a point of self-contact)

were investigated, after Abel had given the general theorem obtained
above, by Legendre, whose work, extending over forty years, was
entirely algebraical. The classification of the algebraic integrals, for any
curve, by reference to the nature of their possible infinities, is essentially

due to Rieniann; the theory of the conduction of heat in a metal plate

depends on a potential function which may either have two logarithmic
infinities (for the case of a single source and a single sink) or one algebraic

infinity (for the case of a single doublet); the two possible kinds of
algebraic integrals with infinities which we have referred to above, have
analogous behaviour ; there is ground for believing that the analogy was
in Riemann's mind. The exact, and simple, treatment of the theory
which we have given (entirely different from Riemann's) is essentially

due to Weierstrass.

A very important character of a curve, indeed the most important,

is the number, 79. of algebraic integrals J 0^(41% y)dx existing for it

whicli are everywhere finite in the sense we have explained, under
the condition that there exists no linear equation, with constant

coefficients, c^, of the form CiOi(.r, y)+ ... + Cp^p{x, ?/) = 0, satisfied

in virtue oif{a\ y) — 0. To emphasise this character we remark as

follows: If an arbitrary rational function W{x, y), of order m, take

the same value at the places {x-^), ..., {x.„^) of f{x, y) = 0, and the

increments dx^ , ... , dx,^ refer to the passage to a consecutive set of

such places, for the same function ^{x, y), there exist, by what we
have proved, p equations O, {x^ , y^) di\+ . , . + O, {x^ , ^^) dx^ = ; it

will be proved later, however, that, conversely, the existence of

these }} eqviations, with the jJ definite functions Oj, is sufficient to

shew that there exists a rational function assuming the same value

at all of them. Thus the problem of integrating this set of p total

differential equations is that of finding the most general rational

function of order m belonging to the given curve f{x, y) = 0. It will

appear that when m > p the number of arbitrary constants entering

in the general integral of these equations is p.

Ex. 1. Suppose it be required to integrate the single differential

equation
[u (cri)]-3 dv^ + [u (Xo)]-^ dx^ + [m (^•3)]-^ dx^^Q,

where u [x) denotes a given cubic polynomial in x. It can be proved that,

for the cubic curve represented by the equation y^ — u{x) — Q, there is

one everywhere finite integral, namely [if'-dx, which is J[it(.c)]~td;c.

The problem of integrating this differential equation is therefore that
of finding the general rational fimetion of order 3 for this curve.
A particular function of order 8 is given by {y — mx — n)l{y — mQX — i^),

where m, n, w^, /?(, are constants; and the intersections {x^, i/i)> {x^,, 2/2),

('^3 5 ^3) of the cubic curve with any line are such that

2/1 ('^2 - '»?3) + Vz i^z -Xi)+ Z/3 ('^1 - ^i) = 0.
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This equation then is a particular integral of the given differential

equation. If u{x) = a + ^hx + ^cx^ + dx^, this equation, expressed in terms
of .Tj, a?,, A'3 only, which are the roots of an equation of the form
n {x) — {mx + /?)•'' = 0, is (a + hp^ + r/>2 + ffPzT — u (x^) u (x^) u (x^). where
p^ = Xi + X2 + x^, p2 = XoX^ + x^Xj^ + XiX2, p^^x^x^x^. It is not necessary,
however, that the points (x^, iji), (x^, ^2)- ('*'3- Va)' of the curve if = u{x),

which satisfy the differential equation, should lie in line. For if U = 0,

T'= represent two conies having three common intersections with the
curve, the latter meeting the curve also in (r/^), (a^), {(I3), while U =
meets the curve also in (x-^), (a'j), (x^), then U/V is a rational function of
third order with (x^), (x^), (x^) as its zeros. Conversely, it will be proved
in the next chapter that any rational function with given poles, (a^), (r/j),

(r/3), is capable of expression, with help of the equation of the given cubic
curve, in this form U/V. Thus, the most general set (x^, y^), {x^fjJz),

(ii'3 , 1/3) satisfying the differential equation are the intersections with the
given cubic curve of a conic having three fixed intersections therewith

;

of these three fixed points, however, two may be taken to be the same
for all sets (x^, y^), (x,, y^)^ {x^^ Vs)- and the coordinates of these may be
regarded as absolutely fixed, the single arbitrary constant of the general
integral of the differential equation being the position of the third base
point of the conies. This will be clearer after the discussion of coresidual
sets of points in the next chapter. The particular integral already found
arises when the third base point of the conies is in line with the two
absolutely fixed points. To express the general integral, suppose that the
cubic curve is met by a; = in iO,p), (0, ojp), (0, co^/j); then the general
conic through the two latter of these points has an equation

Ax^ + 2Hxy + 2Gx + y^ + yp + p- = 0.

The equation which expresses that this conic contains the four points
(x^, ?/i), (x^, y^, (x^, //s), {Xq, y„), of the cubic curve, is the general integral

in question, with OTq,?/^) as the arbitrary constant of integration. In
particular when (x^, y^^) = {Q,p), this integral, after removal of the factor

x^x^x^, reduces to the particular integral found above. For this example,
the reader may compare Cayley, Papers, xii, p. 30.

Ex. 2. The curve given by y^ — az^ + libz-x + Zczx'^ + dx^ has inflexions

at its three intersections with y — 0. If ez + x be any one of the linear

factors of the cubic pohTiomial on the right, prove that y{ez + x)~^ and
z{ez + x)~^ are rational functions, on the cubic curve, of orders respectively

2 and 3. Hence reduce the equation of the cubic curve, birationally, to
the form 7^-—^^ + m.

Ex. 3. If y'^ — 4'X^ + ax + h, shew that the general integral of the
differential equation y{-^dx^-\-y2~^dx2 + y^~'^dx^z:^0, is obtained by ex-

pressing that the conic Ax"^ + Bx + Cy +D = contains the four points

{x^,yi), {x2,y^, ('^a^l/s)? («o»?/o)' the last point furnishing the arbitrary
constant of integration. Obtain the particular integral when
0^o»?/o) = (co, CO).

Ex. 4. For the curve represented by y' = ii(x), where 2i{x) is a poly-
nomial in X of order 2p + l, having only simple roots, shew that the
complete integral of the p simultaneous differential equations

tjrW-^dx^ + -+y~l i^p~ \^'«p+ 1 = 0, (i = 1 , 2, . .
. , p),

is expressed by the p equations

F(a,)
Lr=l

= C,, {i = l,2,...,p),
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where F{&) denotes {Q-x^ ...{B-x^^^, and a^, ..., a,, are any p roots of

u{x), the Cj, ... , Cj, being the arbitrary constants of the integration. The
general everywhere finite integral for the given curve is in fact j<f>{x)d<x/y,

where ^ is an integral polynomial in x of order /^ — 1.

Ex. 5. The expression of the branches of a plane curve in terms of a

parameter, and the formula for Abel's theorem, may be extended to a

curve in space.
As a very simple example, prove that, for the quartic curve given by

the two equations ij'- — x{l —x), z- = x, wherein x is regarded as the inde-

pendent variable, there are: (i), four places on the curve for any value

of X other than x = 0, x = l, .r= x: (ii), two places for x = (where the

curve has a double point), expressed by the expansions

x^t-, ij = t{l-y- -...), z = t, and x^f-, !j= -t{l-U-- ...). z = t;

(iii), two places for x = l, expressed by the expansions

x^l+t'\ y = it + ..., z = l + U^ + ...,

and x-l + f-, y = it+..., z= -{1 + U- + ...);

(iv), two places for x = oo, expressed by

x = t-^, y = it-'^ + ..., z = t-^ and x = t--, y= -it-'- + ..., z = t-^.

Prove also that the integral I = ^ly~^z~^dx is such that dl/dt contains

a negative power of t on each of the two branches at x = 0, but not else-

whei-e : further that the sum of the two integrals /, taken from the two
places, other than x = 0, y = 0, 2 = 0, where the plane z + ax + by = meets
the curve, to the two places where z + Ax + By = meets it, is

log[il+B)il-b)/il-B){l+b)].
Verify the identity

f-ri dX A'2 dX
1 r/ ; , i \m/ , h , \\T , 4-m vf + / ^m a = ^^S [( -^ + -V - '^'i- )/ ( <^ - 'V + a'l- )] + const.,

where
<f>
= x^^ ( 1 — a'2)^ — tT./ {1—Xi)i.

Note as to definition of a rational function on the curve. We
have defined as a rational function on the curve f{x, y) = one
which is given expHcitly rationally in x and y. But, with the help of

a fundamental theorem for functions of one independent variable,

we can prove that if there be given a function R which has a

perfectly definite value for every point of the curve (including those

for which x, or y, is infinite), and on every branch at such point,

being expressible in terms of the parameter appropriate to the

branch, for the immediate neighbourhood of the origin of the

branch, in the form t^P{t), where P{t) is a power series in t not
vanishing for t = 0, and A is a finite integer, positive, zero, or

negative, then this function is expressible explicitly as a rational

function of x and y. In brief, the conditions are that the function be
single valued on the curve, and analytic with no discontinuities

other than poles. There is then a finite neighbourhood about every
pole within which the function is finite.

For first, for the values of x in the neighbourhood of a finite

value x= a, within which all the values of R are finite, save possibly
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at X= a itself, let y^^, yo, ..., i/n be the values of y satisfying

f(^x, y) = 0, not necessarily all different, and R^, . .
.

, i?„ be the values

of the function R at the places {x, y^), {x, y.^), ... ,
{x, y^). Consider

the sum yi^'Ri+ ... + yJ^Rn, where ^ is a positive integer. This is

the sum of portions, such as yi^R^+ ...+y/R^, where y^, ...,yr
belong to a cycle, there being a single place, on the curve/ {x, y) — 0,

for which x= a, in the neighbourhood of which the values of x, y are

given by x= a-\-V, yi = h-\-c^t-\-C2t'^-\- ..,, for i=l, 2, ...,r. The
portion yx^Ri+ . . . + yr^Rr is thence expressible by a series in t,

involving only integer powers, and only a finite number of negative

powers. As, however, yi,...,y^ and the values t, et, ..., e^~^t,

(where e= exp(277-i7r)) enter symmetrically in this partial sum, the

series will only involve the powers of V, namely will be a series in

integer powers of x— a, with a finite number of negative powers.

The whole sum y^^Ri + . . . + ynRn is thence a function of tr, ex-

pressible by series of integer powers about every finite value of x,

single valued, and having no singularities other than poles. For the

neighbourhood of x=co, by a similar argument, this same sum is

single valued, and has no singularity other than perhaps a pole.

Hence by the theory of fimctions of a single variable, this sum has

only a finite number of poles, and is a rational function of x. Thus
we may put yiRx-\- ... + yn^Rn= Uk{x). From the equations of this

form for k= 0, 1, ..., n — 1, we can express R^ as MJA, where A is

the determinant of n rows whose general row is y^^', y^, . . . , yj^, and

Mx is the determinant obtainable from A by replacing the first

column by Uq{x), lJy{x), ... , C7„_i(.r). Put in the form M^A/A', the

denominator may be expressed as a rational function of x only, and
MjA as a rational function of y^^ and x. This rational expression of

2?! by X and y^ , involves the like expression of R by x and y, which
we desired to establish.



CHAPTER IV

THE GENUS OF A CURVE. FUNDAMENTALS
OF THE THEORY OF LINEAR SERIES

Main objects of the chapter. The present chapter has the main
purposes of estabUshing the definition of that most important

number called the genus of a curve, which is invariant in all

birational transformations of the curve; and of obtaining the

fundamental results of the theory of linear series of sets of points

upon the curve. Both these are intimately related to the theory of

the rational functions existing on the curve, and to the theory of

the algebraic integrals belonging thereto, especially the so-called

everywhere finite integrals. But it is desired that the account given

shall be logically sovmd, shall be brief, and shall be simple; these

conditions seem best satisfied by employing, together, ideas from
several different modes of approach, due mainly to Abel, Riemann,
Weierstrass, and Brill and Noether. A further method, developed

by Kronecker and by Dedekind, in extension of the arithmetical

theory of integer numbers, is explained at length in a subsequent

chapter (vii). Unless the contrary is stated, the curve considered is

supposed to be a plane curve.

We distinguish provisionally between what we may call the

integral genus, and the arithmetical genus; the former is easy to

explain in general, the latter can be computed for a curve of

sufficient simplicity; it is part of our task to shew that these are

the same.

As regards the former, it has already been remarked that, if the

fundamental curve /(.r, y) = be not rational, there exists at least

one algebraic integral attached thereto, ^R{x, y)dx, where R{.v, y)
is rational in x and y, which is everywhere finite on the curve. It is

clear that if the given curve be transformed birationally into another
curve, such an integral gives rise to an algebraic integral for the

other curve, likewise finite everywhere on this. The number of such
integrals, jRi{x, y)dx, for which there exists no linear equation

ItXiKjix, y) = 0, with constant coefficients A,-, is thus the same for

two curves which are in (1, 1) birational correspondence. It is this

number which is the integral genus. For a rational curve this

number is zero, everj^ integral jr{t)dt, in which r{t) is a rational

function of t, becoming infinite for a finite or infinite value of t; for

an elliptic curve this number is imity.

This definition suggests at once the enquiry, in fact begun by
Abel in his great paper Memoire sur une propriete generale d'une
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classe ires etendue de fonctions transcendantes (1826, cf. Oeuvres

completes), as to the behaviour, at infinity and at the multiple points

of the curve /(.r, y) = 0, necessary for the function R{x, y) in order

that the integral should be everywhere finite; and this enquiry is

intimately related with the further one of the behaviour of the

polynomials which form the numerator and denominator in the

expression of a rational function, at the multiple points of a curve,

in order that the function should be quite general. It has been seen

that it may be possible to transform the given curve birationally so

that a multiple point is replaced by several points of the new curve

;

it appears probable then that a rational function belonging to the

curve should assume different values at these ; this can only happen
when, in the expression of the function by the coordinates on the

original curve, both the denominator and numerator vanish at the

multiple point of the original curve. The different values of the

function thereat may then be obtainable by a limiting process,

approaching the multiple point on the different branches of which

it is the origin. For the sake of brevity, we answer this enquiry by
defining what is meant by saying that a polynomial, in the co-

ordinates, is adjoint at a multiple point of the given curve/ {x, y) = 0;

then we shew that any rational function is expressible as a quotient

of two such adjoint polynomials. The definition we give covers all

cases; later we shall see that for simple multiple points it can be

replaced by an easy geometrical definition.

In order that it may be clear that the definition is not limited to

points of the curve of which the coordinates are finite, we suppose

the curve first given in homogeneous coordinates iTq, i\, x^, say

F{xq, Xi, 0:2) = 0, of order n. If, beside (cVq, x^, x^), the consecutive

point {xQ+dxQ, Xi+ dx^, X2+ dx2) also belong to the curve, we have

the two equations FQdxQ+ Fj^dXi+ F2dx2= 0, XoFq+ XiFj^+ X2F^= 0,

where

F,= ldFldx,;

and hence

(.i\ dx2- X2 dx^)IFo= (a'2 dxQ- X(, dx^JlF^= {xq dx^- x^ dxQ)IF2

,

so that, if Cq, Ci, Cg be quite arbitrary, each of these fractions is

equal to (c, x, dx)IF^-'^Fc, where (c, x, dx) denotes the determinant

whose rows are {cq, c-i^, c^, {x^, x-^, x^, {dx^, dx-^^, dx.^, and the

ordinary symbolical notation is used, F [Xq , a\ , X2) being written

F/. We say now that any integral form ^{xQ,Xy,X2), homo-
geneously of order m in Xq, x^, x^, is adjoint to F when the curve

T = intersects i^= in such a way that the differential

Y.{cxdx)jF^^-'-F,
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is everywhere finite. In other words, ^ must vanish appropriately

at the zeros of F^'^F^ upon F= 0, in so far as these are not com-
pensated by the zeros of {cd'dx).

To see the meaning of this, consider first a point of the curve
i^= at which the coordinate a'g does not vanish. The quotient

X2~^"^~'^+^^^" .{cxcLv)IFy."-~^Fc is a functional differential, unaltered

by replacing Xq, x\, x^ by any constant multiples of themselves.

Herein put x= XqIx2, y= Xilx2, and take Cq= 0, 03= 0; denote ^^2"'"^

by ipix, y), or ifj, and x^-'^F hyf{x, y), so that nFj'-'^F^ is x^^'-^dfjdy,

or, say, x^~'^f'{y). Save for the factor n, the differential is then

ijjdxlf' {y), and the meaning is that, in the neighbourhood of any
point for Avhich x is finite, given by such a pair of fornuilae as

x=a-\-V', y— h = c-yt+ C2t'^+ ... (as in the preceding chapter), the
expression [tpif {y)]dxjdt, written as an ascending series of powers of

t, must contain no negative powers of t, this being so for every
branch of the curve having origin at the point, (a, b). As dxjdt= rt''~'^,

this is exactly the same as saying that {x — a)iljjf'{y) must vanish at

every finite place for which x= a.

Consider next a point at which a'2= 0- If also Xq= 0, we can choose
a constant A so that d'o— A^r^ does not vanish, and then use
Xq = Xq— Xr^ , Cq =Cq— Aci instead of Xq and Cq ; we suppose then Xq

is not zero. Then the quotient .ro-'™-''+^'T.(c.iY/ci')/i^/-^i^c is a
functional differential. Herein put ^= X2JXf^, t] = XiJXq, and take
Cq= 0, C2=0; denote.rQ-^T by ipj^{$, tj), or i/j^, and Xq-^'F by/j(|^, 77), so

that nF^^'-'^F^ is x^'^-'^df^jd-qjov, say, .?o'^-Vi'(^)- Save for the factor

n, the differential is then — ^id^jj\' {iq), and the meaning is that, for

every place in the neighbourhood of |= 0, given by such a pair of
expansions as ^= V,r] — b= c^t-\-C2t'^-\-... (as in the preceding
chapter), the expression of [^ilfi{'q)]d^ldt as an ascending series

in t must contain no negative powers; or, what is the same, that

^^lifiiv) ii^ust vanish. Still supposing x^ not zero, the equation

./i(^» '^) = is derived directly from/(A', y) — by ^= x-'^, rj = yx-^,

which lead to x-^'^-''+^^ ipdxjf {y)= -ip^d^jf^' {-q); thus the condition
of adjointness for x=aj is that the differential on the left here must
be finite. The case of a point for which Xo = and .{'0= 0, of which we
have evaded the detailed consideration, arises, for the non-homo-
geneous equation /(ci', y) = 0, when x= 0, y=oo.
The quotient {x— a)ijj{x,y)lf'{y) certainly vanishes, and the

condition of adjointness is nugatory, at every finite value of x,

unless /'(?/) = 0. The condition is thus effective only, (i), at a point
of the curve /(tr, y) = at which x is finite but y is infinite, namely
for a value of x which reduces to zero the coeflicient of the highest
power of y, when this power is not y"^. We can easily evade this by
writing for x, in the equation, x+ hy, where h is a constant; and may
thus suppose the term ?/" to be present; or (ii), whenf'{y) = for a
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finite value of x. This happens, as we see by eliminating y between
/' i.y) = t> and/(tr, y) = 0, only for a finite number of values of x. The
equation/' (?/) = expresses that two, or more, of the n values of y
corresponding to the same value of x coincide.

It is easy to give a geometrical interpretation in the simplest

cases. For instance, if at x= 0, y= there be a multiple point of

order k, with distinct tangents; so that the terms of lowest order

mf{x, y) = are of order k, having k distinct linear factors, which,

first, we suppose to be all of the form y — mx : then in/' {y), the terms
of lowest order are of order k—1, and it is sufficient that the terms
of lowest order in ifj should equally be of order k—l, namely, that

i/(= should have a multiple point of order A — 1 at cr= 0, y = 0. In

this case the quotient ipjf (y) is finite on all branches oif{x, y) =
as we approach the origin. If, however, next, one of the tangents of

f{x,y) = be x= 0, and along the corresponding branch, to the

first approximation, x oc y^, it is still true that the condition of

xifjjf {y) vanishing is satisfied if i/(= have a multiple point of order

A; — 1 at the origin. Another simple case is that of an ordinary cusp

;

when the equation of the curve near the origin, (.r, y)^ denoting a

homogeneous polynomial in x, y of order r, is y'^+{x, y)^+ ... = 0, the

term in x^ being present; in this case/' (y), to the first approxima-

tion, oc x^, and it is sufficient that tplx^ should vanish, or that the

curve ifj
= should pass through the cusp.

Ex. 1. When in f (x, y) = 0, the terms of lowest order are of the form
y^+y{x,y)2+yi^'y)3+---+yi'^'y)r-2+i'^>y)r+-" with r>3, the term
in yx- being present, prove that there are two branches of the curve at

the origin, but it is sufficient for adjointness that the curve i/' = should
pass through the origin with ^ = for tangent.
Ex. 2. When in f{x, y) = 0, the terms of lowest order are of the form

x + x (x, y)i + X (x, y)2 + ...+x {x, y)^_^ + {x, y)^+ ..., with r > 2, the term
in yx being present, it is not necessary for adjointness that i/( = should pass
through the origin, though/' {y) there vanishes.

Ex.^. For the sextic curA'e y^ + y'~{x,y)2-\-y{x,y)i + {x,y)^ — Q, the
condition of adjointness of </' = 0, at the origin, is that i/( = should have
a self-contact, with y — Oa.% the tangent.

Further, it is capable of proof, though we do not enter into this in

detail at this stage, that the conditions of adjointness of a poly-

nomial ip, at a multiple point of the curve / {x, y) — 0, are those

which we should employ in carrying out the process of reduction

described in Chap, ii, so far as this reduction is made possible by
the existence of the multiple point. Consider the case of a multiple

point off{x, y) = 0, of multiplicity k, with k distinct tangents. In

order that ip= should have there a multiple point of order A, it

is necessary to impose JA(A+1) linear conditions for ijj; by this

we secure AA* intersections of ip=0 with/=0; the condition that

this should be at least twice the number of conditions, is that
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A/i' ^ A (A+ 1 ), or A ^ ^ — 1 ; and we have shewn that for i/r= to be ad-

joint at this point, we have X= k—l. It is an incidental consequence

of the theory that a polynomial satisfying the conditions of

adjointness wherever, onf{x, ^/) = 0, they are effective, cannot be
further reduced in the sense of Chap. ir.

Expression of rational function by adjoint polynomials.
Now let R{iV, y) be any rational function for the curve, of order n,

f{x,ij) = Q; and suppose, (a), that the term in y^ is present in

f{x,y), a substitution of the form x+ hy for x being made, if

necessary, to secure this; {b), that the terms of order n inf{x, y) are

the product of n distinct linear factors, as may be secured by a

suitable (fractional) linear substitution for x and y. Further, suppose

that the poles of the function R are all at places for which x is finite,

as can also be secured in a similar way. Next choose a polynomial

ils{x, y) quite arbitrarily subject to the condition that the product

7?0 is finite at all the poles of i2; or that vanishes onf{x, y) = 0, at

any pole of R, to an order at least equal to the order of this pole, and
subject further to the condition that ip is adjoint at all the places of

f{x,y) = 0, arising for finite values of x, at which /'(i/) vanishes,

where/' {y) = cfjcy. For a place at which x= a, the second condition

is that {x— a)4ijf'{y) shall vanish at this place. If it happen that

R {x, y) becomes infinite at a place where f'{y) = 0, the two condi-

tions for ifj are understood to require that {x— a)Ril}lf'{y) shall

vanish at this place. By taking xfj of sufficiently high order, the

conditions can be satisfied. Consider then the value, onf{x, y) = 0,

of the sum

g {d-yi)-.-{G-yn)
Tyj

R{x,yi)i/j{x,y,)

i=i d-Vi
^

f'iVi)

where M is the product of all the different factors x— a at all the

finite values of x for which/' {y) = 0, ^ is an undetermined quantity,

and, for a general value of x, the y^, ...,yn are the n values of y
Avhich satisfy /(.r, y) = 0, all of which, by the hypothesis, are finite.

This sum, from its symmetry in regard to y^, ... ,y^,\s expressible

as a rational function of x only ; and it can only become infinite, for

a finite value of .r, when/'(?/j) vanishes, or R{x, y^) becomes infinite.

By the conditions for i/r, MR^jf {y) vanishes for every such value of

.r. The sum is therefore a rational function of x with no poles for

finite values of x, and is therefore a polynomial in x; moreover it

vanishes for all the values of x which make M= 0, so that it divides

by M. Thus, onf{x, y) = 0, it is capable of the form

iM{e^'-^u^+e''-^u^+...+iij,

where t/^ , Wg , . .
.

, ^t„ are integral polynomials in x. If we now put y^
for d, and divide by M, since /{y^} = {y^ — yo) ... {yi

— yn), we obtain
R{^>^, yi) = {yi'^~^Ui + yi^~'-Uo+ ... + Un)lip{x, y;^), and in this we may
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put y for Ui . Hence it is proved that any rational function R, for

the curve f{i\ y) = 0, is expressible as the quotient of two poly-

nomials of which the denominator is an arbitrary adjoint poly-

nomial tp chosen to vanish at the poles of R, so that Rilt is finite at

such a pole, or, if such a pole be also a point, -svith x = a, for which

f'{y) vanishes, chosen to compensate this zero, so that

{x-a)Ri.lf'{y)

vanishes. The numerator polynomial must needs vanish at all the

zeros of the denominator which are not poles of the function, and

thus in particular must also be adjoint; and since the function

is taken here not to have a pole for infinite values of x, the order

of the numerator polynomial will not be higher than that of the

denominator.

We have defined adjointness with use of homogeneous variables;

thus the references to infinite values of x in this enunciation can

easily be eliminated.

Expression of most general everywhere finite integral.

Before applving the preceding result to discuss further the properties

of rational functions, we apply an almost identical reasoning to prove

that all the everywhere finite integrals belonging to the curve

f(^x, y) = can be expressed in the form j (j)dxlf'{y), where (/. is an

integral polynomial of suitably limited order. Suppose, first, as

before, that the equation / {x, y) = is taken so that y becomes

infinite only when x is infinite, and that all the places arising for

a;= 00 are distinct; let u denote any everywhere finite integral; then

diildx is a rational function only becoming infinite, for finite x, at

a place where the parametric expression of the form x= a+ t^y

y = b+Cit + C2t'^+ ..., has r>0; at such a place

duldx=-t-^'-^^dujdt,

and dujdt is finite; thus {x-a)duldx vanishes. Hence if M denote

the product of all the different factors x— a so arising, and {dujdx)i

denote the value of duldx for y= yi, we have, as above, the equation

S
1 d-yi \dxJi

and can infer an equation of the form duldx= (?/«-^ it^+ . . . + uJlf (y).

At any one of the places arising for x=(X>, however, we have x = t-'^,

y= mt-^ +...; thus dujdx vanishes to the second order. From this it

appears that the aggregate order of the polynomial y''-^Ui+ ... + w,,

in X and y does not exceed n-3. The deduction shews that this

polynomial is adjoint at all places where f'{y) = 0. Conversely, any

such adjoint polynomial, of aggregate order ii-3, is easily seen to

give rise to an everywhere finite integral.
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And as before, the references to infinite values of x are easily

eliminated, the everywhere fniite integrals belonging to the curve

F {Xq, ci'i, cr2) = being given by
J</>

(.Jq, x^, Xo){cx(Ix)IFJ^''^F^, where

(f)
{X(^, x\, x^) is an everywhere adjoint polynomial homogeneously

of order n — S. The number we have defined as the integral genus is

thus the number of undetermined coellicients in such an every-

where adjoint polynomial.

Equivalent or coresidual sets of points on the curve. We
now introduce another technical term, and say that two sets, each of

//; places, on the curve/(.r, //) = (). are equivalent, or coresidual, when
there exists a rational function for this curve, say A' {x, y), which
has one value, say A, at the places of one of these sets (and not else-

where), and has another value, say B, at the places of the other set

(and not elsewhere). As we may consider the rational function

[/v(cr, y) — A]j[K{x, y) — B], we see that this is the same as saying

that two sets of places are coresidual when they constitute respec-

tively the zeros and poles of the same rational function. Hence, the

most general set, N, of places coresidual with a given set D, is

obtained by finding the most general rational function of which the

places of the latter set, D, are the poles, and taking the zeros, N, of

this function. By what we have proved above, this is done by first

taking a perfectly arbitrary adjoint polynomial (D) which vanishes

in the places of the set D; this polynomial {D) will in general vanish,

on/(.r, y) = 0, at places other than those of the set D, say in places

of a set O, which is then said to constitute a set residual to D. The
formation of the rational function is then to be completed by finding

the most general adjoint polynomial, (A'^), vanishing in the set 0, in

each case to the same order as does (D), which is of the same order

as (D). The rational function is then given by (A')/(D). In general

the polynomial {X) is not completely determined by the conditions

imposed upon it, but the most general rational function with given

poles contains a number of linearly entering arbitrary coefficients.

The statements made seem easiest of application if we think of

the curve /(.r, y) = as given by*the homogeneous equation

F {Xq , Xi , X2) = ;

then the conditions of adjointness are effective only at the zeros of

the polar F^'^-'^-F^ which are independent of the arbitrary point

{Cq, Ci, Cg), that is, at the multiple points of the curve; they require

the adjoint curve to have a certain multi[)licity at such a point; in

general the set O spoken of will consist of the residual intersections

of the curve (D)=^(), other than tliosc w'hich this has at the multiple

points of F = 0.

Complete linear series of sets of points on the curve.
Now suppose there are (r+1) homogeneously entering arbitrary
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coefficients in the numerator polynomial {N). Then the sets of places

determined on the curve F— Ohy {N) = 0, other than those required

by the conditions of adjointness (at the multiple points of the

curve), and other than the set which are also zeros of (Z)) = 0, are

said to form, on F= 0, a linear series of sets of places, of freedom r;

one such set exists for every definite set of ratios of the undeter-

mined coefficients in (A^); thus one such set, of the linear series of

sets coresidual with the given zeros of (D), exists with arbitrary

positions for r places of the set. This number r is necessarily less than

the whole number, m, of zeros of (Z)). Further, we may form a

partial series, of sets each of m places, of freedom less than r,

defined by the zeros (other than at the multiple points of F— 0) of a

polynomial found from (A') by assigning definite values (say zero)

to some of the undetermined coefficients therein. But the series of

sets of )n places which we have found is said to be complete, because,

by the manner of its construction, it is not contained in any other

series, of sets of the same number, m, of places, having freedom

greater than r. It may be remarked that among the sets of this

complete series, the set of zeros of (D) occurs, one of the curves

(A") = through the points O being evidently {D) = 0. We may say

then that a complete serieS^ of sets of coresidual places is uniquely

determined by any one of its sets, which may be taken arbitrarily.

Ex. 1. Consider a plane quartic curve with two double points, and the
set D determined by the intersections of the curve with a line u ; coresidual

sets of four points, forming a series offreedom 2, are evidently obtained
by the intersections of the curve with a variable line v. But the complete
series is to be obtained by taking an adjoint curve through the points of

the set II, meeting the quartic again in a set O, and then taking the most
general adjoint curve of the same order through the points of the set O.

If, for instance, we take the adjoint conic through the set u, which breaks
up into the line u and the line joining the double points, in which case

there exists no residual set O, then the most general adjoint conic is

conditioned only by passing through the double points, and determines
on the quartic curve a coresidual series of sets of four points offreedom 3.

Likewise if we take an adjoint cubic curve through the original set tt,

the residual set O consists of four points lying on a particular conic

through the double points ; the series of coresidual sets is then determined
by cubic curves through the double points and the four points O, and is

of freedom 3 (since the equation of a cubic curve contains ten terms).

If, however, upon the original quartic curve with two double points

we start with a set of 4 points which do not lie on a conic containing the
double points of the curve, we determine a residual set O of four points

by a cubic curve through the double points and the original set of 4 points

;

and the coresidual series, of sets of 4 points, is obtained by cubic curves

through the double points and the set O. This series is likewise of

freedom 3, but it is distinct from the series found before ; it cannot contain

a set of 4 points which lie on a line unless there is a conic through the

set O and the double points, which is not generally the case.

Ex. 2. Prove that on a plane quartic curve with one double point,
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the complete series of sets coresidual with a set of four collinear points
of the curve is oiven l)y the intersections of the curve with a variable
line. Examine whether this series is distinct from that of points coresidual
with four general points.

Theorem of coresiduation. The theorem we have proved, that

in tlic exi)ressioii of a rational I'unction the denominator polynomial
is arbitrary, so long as it is adjoint and vanishes at the poles of the

function, is a remarkable result, and leads to an important geo-

metrical property, namely: Supjiose there be, upon the curve

f {d\ //) = 0. two sets N, D, of the same number of places, which have
the same residual set of places O, so that there is an adjoint curve
ip= whose aggregate set of intersections with/=0, other than at

the multiple points, consists of the sets 0, D; and, also, another

adjoint curve ^= 0, of the same order as i/'=0, whose aggregate set

of intersections, other than at the multiple points, consists of the

sets 0, A". Let then any other adjoint curve i/j' = be taken, which
has the same intersections D with/=() as has ifj

— O; let its residual

set of intersections with/=0, other than at the multiple points, be
0' ; then there exists an adjoint curve ^' = 0, of the same order as

0' = 0, whose aggregate intersections, other than the multiple points,

consist of the sets O', N together. This is called the theorem of
coresiduation. It is sometimes important to bear in mind that in

this theorem there may be points which are common to the sets

N and D.

The equality of the ratios ^/i/( and (j)'/'p', which holds in virtue of

/ (x, y) = 0, must involve a polynomial identity of the form ^lA' = ^V + df,

where 6 is equally a polynomial in the coordinates. In a later chapter
a theorem of Xoether's, in regard to the expression of the equation of a
curve which passes through the common points of two given curves, will

be considered (Chap, viii), which can be used to furnish an alternative

proof of the theorem of coresiduation. The method we have followed has
a wide bearing; it is used in the exposition of Galois' theory of the
invariants of a group of permutations of the roots of an algebraic equation
(cf. Kronecker, Werke, ii, p. 202).

Sum and difference of complete linear series . The sets of a

linear series are given by the intersections with/= of the curves of

a system with equation \(f)Q-\- Xy(j)y-{- ... + Xj.(f),.= 0, wherein Aq, ..., A,,

are variable parameters, and </>q, ... , ^^ ^^'^ definite polynomials not

connected, in virtue of/=0, by any linear equation with constant

coefficients. The places of a set of this series are the intersections,

with/=0, other than those which are independent of A^, ...,A,.,

namely, other than those common to all of (/>q=0, ..., (/>,.= ()

(among which are the intersections at the multiple points). It is

sometimes convenient however to adjoin, to the variable sets thus

defined, certain of the intersections which are not variable. If a

particular set of the series is denoted by A, it is usual to denote by
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\
A

I

the complete series determined thereby. If \B\ be another

complete series, given by a system Aoi/'o+ ••• + K^s— ^' there exists a

further complete series \A + B\, defined by the aggregate of a set A
taken with a set B. This contains all sets given by the system

llXjj(f>iiljj— 0, but may contain also other sets not so given. Con-
versely, given two complete series \C\, \A\, it may be that there

are sets of
|
C

|
which contain all the places of a particular set A^ of

\A\; if \C\, of freedom k, be given by /xo&q+ ... + /Xfct^fc= 0, the

curves of
|
C

|
which contain the places Aq will be obtained by

imposing proper linear conditions vipon /x,, , . . . , jj.^. These curves

define a complete system \C— Aq\, which can be shewn, utilising

the theorem of coresiduation proved above, to be equally definable

from any other set of \A\ instead of A^ . The resulting series is

therefore denoted by
|
C—^

|
. If this be denoted by \B\, we have

I
C I =

I

^ + J3 1 . It is clear that these notions, of the sum or difference

of two linear series, can be explained in another way, speaking of

the product or quotient of two rational functions belonging to the

curve/= 0.

Riemann-Roch formula for linear series, and for rational

functions. There exists an important relation connecting the

freedom of a linear series, upon a curve of given genus, with the
number of places in a set of the series, which we develop in con-

nexion with a numerical definition of the genus ; such a definition is

possible when the fundamental curve F= has no multiple points

other than those with distinct tangents. The genus defined by the

number of everywhere finite integrals belonging to the curve, has

been proved (p. 65) to be the same as the number of linearly

independent curves of order w— 3 (if w be the order of F= 0) which
are everywhere adjoint to F= 0; but, even when F= has the

simple form referred to, this is not final without an examination of

whether the conditions of adjointness at all the multiple points of

F= are linearly independent. We proceed then with care.

Let F=Ohe a curve of order n, zvhich at every multiple point, say

of multijjlicity k, has k distinct tangents. We define the number P by
the equation P= |(n— 1 )

(;i— 2) — h^k {k — 1 ), where the summation
extends to all the multiple points. It has already been shewn
(Chap. I, p. 10) that this number is not negative.

Now consider a curve, = 0, of order m, subject to no conditions

other than of having a (^'— 1 )-ple point at every k-ple point oi F=0;
it is clearly possible to construct such a curve if m be great enough.

Let A^ be the whole number of intersections of i/f= with F= other

than these prescribed ones, and R+ 1 the number of homogeneously
entering coefficients which remain arbitrary in ijj after satisfying

the conditions. We cannot obtain R by adding the number of con-

ditions imposed upon ip at the separate multiple points, because we
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do not know that these conditions are Unearly independent for a

given limited vakie of the order m of ijj. When the R ratios, of tlie

variable coelficicnts in ip, vary, some, possibly all. of the N inter-

sections of i/( = with F= will also vary; a very particular instance

when this is not so is when i/r is a line through the two double points

of a quintic curve—the remaining intersection is then fixed; but
such a thing is possible with R > 0. As before we call R the freedom
of the series determined on 7^= by the curves i/r= when the

R+l coefTicicnts vary ; and we call N the complete grade of the
series, even when some of the N intersections are fixed.

Suppose first m'^ n, and that F (.r^, ^r^, x^) contains the term in

Xo"; regai'ding F and i/j as polynomials in x^^ we can write, if </( be a

general polynomial of order ni,

i/j = F{cx2^-^+ Uj^X2'^-^-^+ ... + ?/,„_J + y,„-„+rr2"-i + . . . + tv„

,

where ii^, ... , r^ are polynomials in Xq, x^, and c is a constant. The
intersections of i/f= with F = are therefore the same as the

intersections with F= of the curve i/'i = 0, where

In general tfj contains l{m+l) {m+ 2) coefficients, but ifj^ contains only

h{m+l){m+ 2) — h{m — n + l){m— n+ 2), or, say, p + 1 coefficients.

Conversely, i/r^ is a polynomial of order m. Whence, a general poly-

nomial of order m, with m^ n, contains, so far as its intersections

with F= are concerned, precisely p+1 homogeneously entering

arbitrary coefficients. Thus the number, R+l, of homogeneously
entering arbitrary coefficients in such a polynomial, when it is

further conditioned by having a (^— l)-ple point at every k-p\e

point of i^= (equivalent to hk{k — l) conditions, as we may see by
supposing the point to be at iio= 0, ci\= 0), is given by

R+l^l{m+l){m+ 2)-h{m-7i+l){m-7i+ 2)-^2^k{k-l);

here the right side is mn+l — ^{n—l){n — 2) — ^T,k{k — l); also we
have, by definition, N= mn— lLk\k — 1 ) ; thus, recalling the definition

of P, we have, for m ^ n, R^N — P.

Next suppose m < n, and write ni as n — 3 + a. Then, as before, we
have R+l^^{m+l){m + 2) — hllk{k—l), which is the same as

i?^ Ja(a+ 2n— 3) +P— 1; thus, if a be not negative (so that it is

0, or 1, or 2), 72 + 1 is certainly positive for P^l, n^S, and a curve

i/( = exists passing through the multiple points in the way pre-

scribed. In particular, ifa= 0, R^P—l. Also we have

N=mn-I.k{k-1),
wliich is equal to an + 2P— 2, and is not negative if P^l, a^O.
Thus 7? — .V ^ Ja (a — 3) — P+ 1 , Wherefore, when a = 0, namely for

curves i/r= of order n— 3, we have R>N — P. But, as

|-a(a-3) + l = 0,
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when a = l or 2, for curves j/(= of order m, greater than ;i— 3,

inchiding curves for which m '^ u, as we have seen above, our result

isR^N-P.
The sign of inequahty arises from the possibiUty that the hnear

conditions to be satisfied by the coefficients in 0, at the multiple

points of F=0, may not be linearly independent. The number of

such conditions depends however only on F = 0, and not on = 0;

and if the number of coefficients in ip be great enough, that is, if if; be

of sufficiently high order, these linear conditions must certainly be

linearly independent. Thus we may say:

For curves ifj=0 of sufficiently high order, we have R=N — P; for

curves ip=0 of less order, hut greater than n— S, we have R'^N — P;

finally, for curves iff= of order n — 3, zve have R>N — P.

Consider in particular the last case, m = /; — 3. Then N = 2P— 2,

and we have R>P — 2. We can prove in an instructive way that

R= P-1, as follows: Denote R+l by p, so that 29>P-1; say

p = P+€, with e ^ 0. Denote the general adjoint polynomial of order

where A^, .... A^ are arbitrary coefficients; the zeros on F= 0, other

than those prescribed at the multiple points, of any one of the

polynomials (j)^, ... ,
(f>p

are 2P— 2 in number. Further,

N-R= 2P-2-{p-l) =p-l-2€,

so that N —R<R if e > 0. Now, first, suppose that, save for the

prescribed points, there is on F= no zero common to all the

polynomials 0^, ..., (f>p.
Take R, or j:)— 1, arbitrary general points,

Mj , . . .
, Mp_i , on F= 0, and determine the particular curve

\^i+ ••• + ^p4>p= ^ which passes through these, say O; let its

remaining intersections with F=0, other than at the multiple

points, be A^, A2, ..., Ax^r- When e>0 we haveN —R<p — l, so

that, beside O, at least one other curve Ai</>i+ ... + Ap0^,= O,

linearly independent of O, can be drawn through the derived points

Ai, ..., Ax-R • We prove that any such curve, sayW= 0, necessarily

contains also the points 31^, ..., Mp.^; this we prove by shewing

that Y= contains Mp_-^, any one of M-,^, ..., Mp^^. To this end

remark, that there exists, for i^= 0, a rational function having

Mp_i as a pole of the first order, and having also A^, ... , Ax_r, or

some of these, as poles of the first order. For, since M^, ..., Mp_^
are arbitrary and general, we can suppose that the most general

curve Xi(f)^+ ... + Xp<f)p= through J/j, ... , 3/p_2, only, has an

equation of the form /xO + yui O^= 0, where O is as above, passing

through Ml . ..., Mp_i , and /x, /x^ are arbitrary parameters, and can

suppose that this curve does not pass through M p_y^ for all values of

IX, Hi, that is, that O^^O does not pass through Mp_i. Then the
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quotient (/aO + ;uiOi)/(I> is a rational function, for F = i), with M p^i
as pole, which has also for poles such of A^, ..., ,/_v_/{ as do not
happen to be zeros of O^. On the other hand, to form such a
rational function with pole at Mj,_i, and other poles occurring only
among J^, ..., Ax_i{, all of the first order, we may, by the theorem
of corcsiduation, proceed thus: draw through M „^i an arbitrary

line L = 0, meeting F= in ii — l other points (/?); draw through
A^, ...,Ay_R a general adjoint curve of order n — S, say T = 0,

meeting F= in remaining points (C); thus LT= is an adjoint
curve of order n— 2 containing the points Mp_^, A^, ..., Ax_ii,
witli resitlual intersection consisting of (/?), (C) together; then draw
an adjoint curve of order n — 2 through these points (B), {C); we
have proved that the function exists, so that such a curve is possible,

other than L^'= 0. This curve, taken as numerator, with W as

denominator, will express the most general rational function of the
description. But a curve of order n— 2 containing the n— 1 points

{B) will contain the line L as factor; the function will therefore have
for numerator a curve of order n — 3, and have 4^ for denominator.
The function has thus for poles only the zeros of ^F. But by hypo-
thesis it has Mp^i for pole. Whence ^F= 0, which is any curve

Xi(f)i+ ... + Xp(f)p= drawn through A^, ...,An-r, contains Mp_i;
and, therefore, contains all of M^^, M^, ..., Mj,_^. This, however, is

inconsistent with R>P—1, or e > 0, and shews that p = P, For the

2P— 2 points M^, ..., Mj,_i, Aj^, ..., A^_ji are determined by the

p—l perfectly arbitrary points My^ , . . . , Mj,_i ; while the points

Ai, ..., Ax-R , in number p—l — 2€, are not only fewer than p — 1 if

e > 0, but are, we may say, less general in character than 3/^ , . . .

,

3/p_i, as being derived from these, and not assigned arbitrarily. It

is therefore impossible that the whole 2P—2 points, which depend
upon p — l quite arbitrary general points, should be determined by
these fewer and less general points A^^, ... , Ay_p^, as they would be
if every curve Xi(f>i+ ... + Xp(f)p = 0, through these, also contained

3/^, ..., 3/j,_i. We can only conclude therefore that e = 0, and
p = P; in which case N —R= R, and the points Aj^, ... , A^^_ji are as

many as M^ , ..., Mp_^ . This conclusion is reached on the hypothesis

that the curves
(f>i
= 0, ... , ^p= have no common intersection with

F= 0, save at the multiple points. If there are such points, they will

be among the points A^, ..., Ax-r, the derived zeros of the curve

Ai^i+ ... + Ap(/>p = drawn through M^, ..., Mj,_i; say they are

Aj^, ..., A^.. These points can then be excluded from consideration,

the same argument proceeding with Aj^_^^, ..., A^-r instead of

A^, ...,Ax-R. The conclusion now will be that N — R — k=p — \,

leading to 2P=2p + k. This can only be consistent with ji^P, if

^j = P, e = (), and A=0.
The sign of inequality, for the freedom of adjoint curves of order
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71 — S, in the formula R^P — 1, is thus unnecessary; and the con-

ditions of adjointness, at the multiple points of jP= 0, for curves of

this order, are linearly independent. These conditions are therefore

independent for all adjoint curves of order vi^n — S. This is a

capital result. The formulae we found are thus replaced hy R= N—2}
for all adjoint curves of order >n — S. while for adjoint curves of

order ?? — 3 we have R=p — \. This is B = X — P-\-\ and replaces

R>X-P, because N= 2p-2, P=p^'.
The preceding argument is for curves of assigned order, inter-

secting the given curve F= 0, which are subject to no conditions

* Some remarks of importance may be placed in a footnote, so as not to

interrupt the general argument. («) The general adjoint curve of order n — 3,

Ai(^i + ... + Ap^P = 0, though not having zeros on F = 0, save at the multiple

points, which are common to ^^ = 0, ... , <^p = 0, may have such zeros elsewhere

in the plane. For example, for a plane sextic curve with 8 double points, the

adjoint cubic curves Aj^j + A^^., = all have a point in common ; unless the sextic

curve is further specialised this ninth point does not lie thereon, (b) The curves

Ai<^i + ... + Ap(^j, = may all have a common part; by the theorem of the text,

this part is then a curve intersecting 1^=0 only at its multiple points. For
instance, for the sextic curve given by an equation of the form

y3~3 ^ y2~2„^ + yzu^ + 1/g = 0,

where u^ is homogeneous of order i in y, x, the adjoint curves of order » — 3 have
an equation of the form y{yz 4- 1\) = 0, where v^ is homogeneous of order 2 in yand
X ; the partial curve ?/ = meets the sextic curve only at the multiple point x = 0,

2/ = 0. The linear series, of sets of 2/j — 2 points, with freedom 7> — 1 , is then given

by variable curves of order less than n — 3, constituting the pure, or reduced,

adjoint system. It may be shewn that, in any birational transformation of the

plane, the pure adjoint system is transformed into the pure adjoint system of

the curve into which the given curve is transformed. This is clear here from the

association with the everywhere finite algebraic integrals; a simple independent

proof is given by Bertini, Ann. d. Mat. xxii, 1894, p. 14. Conversely, it may
be shewn that, when the multiple points of the given curve F = are such that

it is possible to put through them a ciuve y, having no other intersections with

the given curve, then this curve y is part of the general adjoint curve of order

n — 3, provided the multiplicities of y at the multiple points of F = are such

as would constitute independent conditions in defining y (Castelnuovo, Memorie
Torino, xlii, 1892). For instance, for a sextic curve with, two triple points, the

variable part of the adjoint system of cubics is given by conies passing simply

through each triple point; but, for a sextic curve having six double points

which lie on a conic, the system of adjoint cubics has no common part,

(c) Reference may be made here to a general theorem for a linear system of

curves in a plane, Ao<^o + ••• + '^r^r
= 0, not necessarily adjoint to any given

curve, that if the variable part of every curve of the system is composite, the

general curve of the system is given by an equation of the form

ijt [ApM'" + A^M'-i v + ...+ A^u'"] = 0,

where m = 0, v = are curves of the same order (Bertini, Rend. Lombardo, xv>
1882 ; Liiroth, Math. Ann. xlii, XLiv ; 1893, 1 894). For the system consisting

of the adjoint curves of order « — 3 of a curve i^ = of order n, this happens
ifF = be hyperelliptic (see Chaps, ii, in, above), but only then. For instance,

for the curve expressed by y-"z^ = {y, x)^^^^' the adjoint system in question

is given by yP(y,
a;)p_i =0.
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save the conditions of adjointness at the multiple points of F = 0.

Now consider adjoint curves wliich, beside, are required to pass

through certain specified simple points of F= 0. Let the number of

these points be k, and let v, =N— k, be the number of remaining
intersections which are not assigned (other than at the multiple

points of F= 0). If the k prescribed ]:)oints give linearly independent
conditions for the coefTicients of tiie curve to be obtained, this curve
will define a linear series of freedom p = R — k; of this, however, we
cannot be sure imless the curve be of sufTicicntly high order; when
the conditions are not independent, we shall have p> R — k. Thus
we conclude that, for the linear series defined by adjoint curves
with prescribed fixed base points on F=0, we have, for the
freedom, p—v— p, for all curves of suflieiently high order; but for

curves of less order ( > w — 3 however), p^ v—p; and, for curves of

order n — 3, p^ v— ^j+1, that is p> v—}).

It can however be shewn, for adjoint curves of order > n — 3, with
k fixed base points, that, if these k points do not furnish independent
conditions, so that, for the linear series of sets of v points, of

freedom p, formed by the sets of residual intersections with F= 0,

we have p > v—jJ, then the points of any one of the sets of the linear

series lie upon an adjoint curve of order n — S; and that the series

can be given by variable adjoint curves of order n — S, with possibly

fixed prescribed base points; of these curves there will then be v

intersections not prescribed, and the general curve of the system
will contain p+1 homogeneously entering arbitrary coefficients.

This we proceed to prove. In saying that the k prescribed base
points for the adjoint curves in question are not independent, or

that some are determined by the others, we have not said that there

may not be other points of F = also necessarily lying on all the

adjoint curves through the k prescribed points. The linear system
of adjoint curves of the assigned order through the k prescribed

points, say (T), given by an equation AT + A1T1+ ... + A T =0,
may be such that there are, say, / points of F= 0, common to all the
curves ^^= 0, . .

. ,
^' = 0, in addition to the k prescribed base points.

Choose now p arbitrary general points of i^= 0, say M^ , . . . , M , and
let the definite curve (W) passing through these, and the k pre-

scribed base points, meet F= further in points A^,...,A^
(beside the multiple points of F= 0); the / common zeros of

^=0, ...,4^p = 0, if existent, will be among A^, ...,A^_. Since

v— p<2J, an adjoint curve of order 7t — 3, or several linearly inde-

pendent such curves, can be put through A^, .... A^, . We proceed
to prove that every such adjoint curve, of order n — 3, contains M ,

any one of M^, .... M^, and hence contains all of these. The argu-

ment is the same as one used above. As M^ , ..., M are inde])endcnt

points for curves Q¥), there are such curves, given, say, by
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/i.^+ /xi^\ = 0, containing only M^, ... , Mp_^, where /m, ^ are

arbitrary, and ^'= 0, suppose, is the (T) curve containing

M^,...,M, A^,...,A^_. Hence there is a rational function,

(/x^'+ fti^\)/^"' having ^l as pole, having beside, for poles, such of

the points from A^, ... , A^_p as are not common zeros of M^' and ^^.
By the theorem of coresiduation, however, such function must be
capable of expression by taking an arbitrary adjoint curve through
M , A^, ...,A^ , and then an adjoint curve of the same order

through the residual intersections (other than the multiple points)

of this ciu've with F — 0. Thus, draw a line L = through M ,

meeting F= in (/? — 1) points (B); and take an adjoint curve of

order n — S through A^, ...,A^_, say ^= 0, whose residual inter-

sections with F=0 are denoted by (C). The denominator in the

expression of the function may then be taken to be L<f>, the

numerator being found from an adjoint curve of order n— 2 con-

taining the sets {B), {€). Bvit such a curve, containing the (n — 1)

points {B) upon the line L = 0, is of the form Lifj= 0, where = is

an adjoint curve of order n — 3. The function is then ipjcf); and as it

has M as pole, the curve
(f)
= must pass through this point (and

the curve i/(= will not). Thus we see that an adjoint curve of order

71 — 3 contains all the points J/j, ... , M , A^, ... , A^ ; let ^ = be
such a curve, and the general adjoint curve e/f=0 be taken passing

through the residual intersections (other than the multiple points)

of = with F= 0; the function 0/0 must be the same, by the

theorem of coresiduation, save for a constant multiplier, as the

function (^)/4^, where ^"= is a particular curve of the original

system, containing M^, ..., M , A^, ..., A^_, and (^) = is the

general adjoint curve, of the same order as ^''= 0, formed, similarly

to = 0, from the residual set on ^ = 0. And as the common points,

other than the A' prescribed points, of all the curves T'= 0,^'"j^= 0, ...,

^' =0 are eliminated in considering the rational function (being

common to numerator and denominator), and are zeros of = 0,

they will also be zeros of = 0. Thus, the system = will have the

same fixed points as the system (T') = 0. In the argument given, we
have allowed, as possible, that there may be I points among
A^, .... A^_p which ai-e zeros of all the adjoint curves (T) = put
through the k points originally prescribed; if we denote v— / by m,
the function (M^'")/^'' will be of the m-Xh order, and p will, afortiori, be
>m—j). But, conversely, if a function with m given poles have a

number p+ 1 of homogeneously entering arbitrary coefficients in its

expression, where p>m—p, the function can be expressed as a

quotient of adjoint polynomials of order 7i — S; for we can suppose
the / points spoken of to be included among the A* prescribed points,

and then apply the preceding argument. From this investigation

we conclude:
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(a) Tl/at a linear series ofsets of v points, obtained bij general variable

adjoint eiirves of order >n — 3, passing through certain jyrescribed

points ofF= 0, lias a freedom p given by p= v—p, unless every one of
the sets of v points lies entirely upon an adjoint curveofordern— S;and

(b) For a series (fseis ofvpoinfs, determined bygeneraladjointcnrves

of order n — S, ci:hich pass through k prescribed points, not necessarily

all independent, thefreedom p is such that p > v—p. There maybe points

common to all the sets of v points of the series, and, hence, common to

all the adjoint curves of order » — 3 through the k prescribed points.

A linear series of sets of v points in which all the v points of any
set lie upon an adjoint curve of order ;i— 3 is said to be special. Such
a series can, by what we have proved, be determined by the free

intersections, with F = 0, of a system of adjoint curves of order

n — 3, in general with prescribed fixed points, say k in number. We
proceed to prove that, if the mnnber of linearly independent
adjoint curves of order n — 3, conditioned only by their adjointness,

which pass through the points of any set of the series be p' + 1, then
the freedom of the series is given hy p = v—p + p' + 1. This formula
then gives definiteness to the resvdt (b) above, and may be under-
stood also to contain the result («), with p' + l = 0.

Take the particular set of the series which contains p independent
general points of F= 0, say J/^, ..., J/ • let A^^, ...,A^_ be the

other points of this set. In the first place define p' + 1 as the number
of linearly independent adjoint curves of order n— 3, conditioned
only by their adjointness, which contain A^^, ..., A ; as v— p<p
such curves exist. We have proved that all these curves pass

through M^, .... M . We clearly have p'+1^2) — {v — p), the sign

of inequality being unnecessary if the points A^^, ..., A^,_ furnish

independent conditions for such curves. These p'+ 1 adjoint curves

of order n — S, which contain all of M^^, ... , M , A^, ..., A ,

define a new linear series of sets of v' points, where v' = 2p — 2—v,
which is of freedom p'. It follows from the theorem of corcsiduation

that this new series is complete, namely that there is no series of

sets of v' points, of freedom greater than p', which contains all the
sets of this series. Likewise, the whole original complete series of

freedom p, of sets of v points, is determined by all the adjoint curves
of order n — 3 which can be drawn through any one of the sets of /
residual points. These two complete series are thus reciprocal; and
the number of linearly independent adjoint curves of order n — 3,

conditioned only by their adjointness, which pass through the

particular set of / residual points which we select, is p+1. Thus,
beside p' +l'^p — {v— p), we also have p+1'^ p — {v' — p'). Since

v' + v = 2p — 2, these lead to the two equations

p = j^— j9+p' + l, p'=/_^j_^p_l_l.
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A particular consequence, also, is that the v — p points A^, ... , A^,_p

used in the argument furnish independent conditions for adjoint

curves of order n — 3, conditioned only by their adjointness, which
pass through them. In the nature of the case, and it must be borne

in mind, the equation p=v— jj + p' + l is proved on the hypothesis

that the linear series is complete.

We have introduced the theory of linear series by considering the

numerator polynomial of a rational function with given poles, the

freedom of the series depending on the number of arbitrary con-

stants in the function ; and we have obtained a relation connecting

the freedom of the series with the number of points in a set of the

series. But the order of a rational function may prove less than was
intended owing to undesigned coincidences in the zeros of the

numerator and denominator. It is necessary then to examine
whether the relation found for a complete linear series is the

same as that between the number of constants in the ex-

pression of a rational function of given poles, and the order of this

function.

Consider a linear series, of sets of v points, of freedom p, given by
a system of adjoint curves of order n — S, A^ + Ai^i+ ... + A^^^ = 0,

having k prescribed common zeros (other than at the multiple

points of the given curve ^^= 0); and suppose that all of ^= 0,

01= 0, ..., ^- = 0, have, beside, I common zeros on F= 0. Then the

quotient (A0+ ... + A ^ )/0 is a rational function of order Vq=v— 1,

having poles only at the unprescribed zeros of ^ = other than these

/ common zeros. By what we have proved, the number, p+1, of

the homogeneously entering arbitrary coefficients in the function is

given hy p= Vq—p + p' + 1 + 1, where p' + 1 is the number of linearly

independent adjoint curves, of order n— 3, otherwise unconditioned,

which pass through the points of a set of the linear series. We have
shewn that if the particular curve A0+ ... + A (/> =0 which passes

through p independent general points of F= 0, il/^, ..., M , have
for its remaining zeros (other than the multiple points, and the A-

prescribed points) the set A^, ... , A^, , then the adjoint curves of

order n — 3 which pass through A^, ... , A^ , and are otherwise un-

conditioned, all pass through M^, ...,M , and that A^, ...,A

furnish independent conditions for these curves. Among A^, ...,

A^_ will be found the I undesigned common zeros spoken of, say

these are A^, ..., Ai; and, from the independence of ^i, ..., A^_p,

there will be p +1 + 1 linearly independent adjoint curves of order

n — 3, otherwise unconditioned, which pass through ^4^^^, ..., A^_p.

These p -\-\-\-l curves will all contain M^ . ..., M^ . The proof of this

is the same as the proof of the former statement, and depends on
the fact that there exists a rational function having M for pole and
having its other poles among the points Ai^^, ... , A^,_p. Thus there
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are p'+l + l adjoint curves of order n — 3, otherwise unrestricted,

passing through M^, ..., M^, Ai^^, ... , A^_p. Put now

Po' + l = p'+H-/;
then we have the eonckision tliat a rational i'unction ol' order v^ con-

tains />+ 1 homogeneously arbitrary constants, where p=Vo—p+Po+ 1

,

and pQ+l is the number of adjoint curves of order n— 3, other-

wise unconditioned, which pass through the points which are the

poles of the function. The same result can be proved to hold for a

rational function expressible as the quotient of adjoint ])olynomials

of order > ;t— 3, the number Pq +1 being replaced by zero.

Ex. 1. A linear series of sets of points being said to be simple when it

is not the ease that every set which contains an arbitrary general point
of the given curve necessarily contains one or more points of the curve,
prove that a simple series which is special, that is, determined by adjoint
curves of order n — 3, which has freedom p, is such that any p points of
a set of the series suUices to individualise the set (cf. Bertini, Ann. Mat.
XXII, 1894, p. 25). Thus, if the number of points in a set be v, every v — p
points of a set are independent conditions for adjoint curves of order
n-3.

Ex. 2. The series, of freedom p — \, with 'Ip — 2 points in a set, which
is determined by unconditioned adjoint eiu'ves of order n — 3, is always
simple, unless the given curve J^ = be hyperelliptie. This series is called

the canonical series on F — Q. The theorem is proved below (p. 80).

In the preceding theory the number p was effectively defined

as the number of linearly independent everywhere finite algebraic

integrals belonging to the given curve F= 0; for it was shewn
previously that these integrals are those of the form fipdxlf' (y) (or

the equivalent of this in homogeneous variables), in which ip= is

an adjoint curve of order /i — 3. It has now been shewn, when the

multiple points of the curve are of the simplest kind, /c-ple points

with k distinct tangents, in which case the condition of adjointness

for another curve is the possession of a (A^- l)-ple point at such a
multiple point, that the conditions of adjointness at all the multiple

points, for curves of order n — 3, or more, are independent; and
accordingly that the value of ^j in this case is given by

i(n-l)(;i-2)-iSA;(A;-l).

Further, arguing with this simple case in view, we have found a

relation connecting the- number of points in a set of a linear series

and the freedom of the series, and, correspondingly, a relation con-

necting the order of a rational function belonging to the given curve

and the number of constants left arbitrary in such a function when
the poles of the function are given. It is clear, how^ever, when two
curves are in (1, 1) birational correspondence, that not only do
everywhere finite integrals associated therewith transform into such

integrals, but also rational functions and linear series; in the latter

cases the number of arbitrary constants, or the freedom of the



78 Chcqjter IV

linear series, is unaltered by such transformation ; so also is the order

of a rational function, and likewise, with due consideration of fixed

points of a linear series which may undesignedly become merged
with a multiple point of a transformed curve, is the number of

points in a set of a linear series. Thus we may say that the equation

p= i,—p-\-p'-\- 1, as applied to a linear series or a rational function,

with inclusion of the case when p' + 1 = 0, is universally true, p being

defined by the number of everywhere finite integrals, and computed,

for instance, from a simple transformed equation. This relation is

known as the Riemann-Roch theorem, having been given, in its

application to rational functions, by Riemann, with neglect of the

possibility expressed by the term p' + l, which was supplied by
Roch. The interpretation in terms of linear series was given by
Brill and Noether. While, in Riemann's theory, rational functions

are built up from algebraic integrals having algebraic infinities (as

is explained in Chap, vi below), in Brill and Noether the theorem of

coresiduation is based on a theorem for the general curve of

assigned order which passes through the common points of two
given curves. (Riemann, Ges. Werke, 1876, p. 100, etc.; Roch,

Crelle, lxiv, 1864, p. 372; Brill u. Noether, Math. Ann. vii, 1873,

p. 269. For an elementary exposition of Riemann's theory, see

C. Neumann, Riemann^s TJieorie, 1884; for the transition to the

geometrical theory, see Clebsch u. Gordan, Abelsche Functionen,

1866; for a comprehensive history, Brill u. Noether, Entzvicklung

der Theorie der algebraischen Functionen, Deutsch. Math. Ver.

Bericht, in, 1894, pp. 109-566.)

Applications of the Riemann-Roch formula. Wenow develop

in turn various consequences of the theory which has been esta-

blished. Most often we denote by r the freedom of a linear series of

sets of points upon the given fundamental curve, and by n the

number of points in a set of the series ; when it is necessary to refer

to the order of the fundamental curve, a symbol different from n

will be employed, say N ; the adjoint curves of order iV — 3 will

often be called simply ^-curves. The series itself will often be

denoted* by ^/*. There may be points common to every set of the

linear series (beside the multiple points of the fundamental curve);

to allow for this we may speak of n as the complete grade of the

series, denoting the number of points of a set which actually vary

from set to set as the grade. When every set of the series consists of

points which lie upon a ^-curve, so that r>n—p, the series is called

a special series; the series of sets of 2p — 2 points, of freedom p—\,
which is determined by the complete series of ^-curves, is called

* The established notation is «„'', wliich however conflicts with tlie equaUy
estabHshed notation wliereby a manifold of order n and dimension r is denoted
by M-.



Linear series on the curve 79

the canonical series; the Ricmann-lloch theorem, which we now
write in the form r=n—p + r'+l, enables us to prove easily that

the canonical series is the only existing series ^"/^V- This series is

very fundamental, the canonical series of any curve changing into

the canonical series of any other curve obtained from the former by

(1, 1) birational transformation. We have proved in the foregoing

that, a
(l>i
= i), ..., (f)p

= be linearly independent ^-curves, there is

no point of the fundamental curve common to all these; thus, a

rational function expressed by (A^</>i+ ... + A^^p)/^,: is of order

2p — 2 for general values of the constants A^, ... , Aj,; or, we may say,

the canonical series has no 'fixed' points. The theory has been

developed on the hypothesis that the fundamental curve is not

rational ; when this is so, however, we have j) = 0, and there exists

no canonical series, while for every linear series r=n (as we have

seen in earlier chapters). Conversely, it is easy to see that the

existence of a series g/ involves that the curve is rational. Upon
such a curve there exist series g^ ; there also exist series of sets of

2 points of freedom 1 (quadratic involutions), but such a series is

not complete, being contained in a series of sets of 2 points of which

both are arbitrary. When p = \, there exists one everywhere finite

integral, but the canonical series has no freedom, the existing

^-curve having no intersections with the fundamental curve other

than at the multiple points (for instance, for a plane quartic curve

with two double points, the (/)-curve is the line joining these).

Upon a curve for which p=\ there exist complete series g{^ (for

instance, upon a plane cubic curve, the lines drawn through a fixed

point of the curve determine such a series); likewise upon a curve

for which p = 2, there exists one complete series g-^, the canonical

series (for instance, upon a plane curve of order ni with a single

(m — 2)-ple point, this series is given by the lines drawn through this

point). In general, however, iovp> 2, the existence of a linear series

of sets of two points with freedom 1, involves that the fundamental

curve is not the most general curve of its genus ; it involves the exist-

ence of a rational function of order 2 ; and we have shewn (Chap, iii,

p. 50) that then the fundamental curve is hyperelliptic, and can

be birationally transformed to a simple form. The Riemann-Roch
theorem, applied to a complete series g-^ on a curve of genus p, giving

\ = 2—p + r' +\, shews that p—\oi the ^-curves pass through every

set of the series g-^, namely that every 0-curve through one point

of this necessarily contains the other. For a curve which is not

hyperelliptic, the canonical series is simple, that is, it is not the

case that every 0-curve, otherwise unconditioned, which is made
to pass through an arbitrary general point of the fundamental curve,

necessarily passes then through one or more other points of the curve,

determined by the arbitrary point. For suppose it possible that every
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^-curve through an arbitrary point contained in consequence (/li — 1)

others ; such a curve can be put through {p—\) perfectly general in-

dependent points, and would therefore contain (^— l)(p— 1) others,

or, in all, ^{p — \) points of the fundamental curve. But a ^-curve
has only 2jJ — 2 zeros; thus /it, if > 1, is 2. Suppose this is so. Then
the (^-curves through {p — 2) arbitrary general points (which are

expressible in the form /x^+/xi^i = 0, where
(f), (^^ are definite and

fj., fj^ are arbitrary constants) will contain p — 2 other definite

points ; the curves /x^ -f /^i ^i= have therefore two intersections

with the fundamental curve variable with /x and
fj,^.

There exists

therefore a rational function, expressible in the form
</>i/</>,

which is

of the second order. The fundamental curve is therefore hyper-

elliptic. Suppose now that the fundamental curve is not hyper-

elliptic. Then the canonical series is not only simple, as we have
just proved, but is further incapable of being reduced, in the

sense of Chap, ii; namely, it is not possible, by considering the

^-curves with k prescribed zeros, to obtain a linear series of sets of

V points, with freedom p, for which v — 2p is less than the value

[2p — 2 — 2{p—l), or] zero, arising for the original canonical series

defined by the ^-curves without prescribed zeros. The ^-curves

through k general prescribed points may, let us suppose, all pass

through / other points determined by the A; points (beside the

multiple points of the curve F= 0); these curves will then determine

a linear series of sets of 2p — 2 — k — l, say v, variable points, with
freedom p—p — l — k. We can prove that, when the curve is not

hyperelliptic, and k > 0, we always have, for such a special series,

v>2p; that is k > I. This result, in the form v ^ 2p, is usually called

Clifford's theorem (see Chfford, Math. Papers, 1882, p. 329, where
general results are assumed which are obtained here much later).

The argument is one we have employed before: when the series

g " is established, a particular set is identified by assigning p
points thereof, namely, of the (/>-curves conditioned by the fixed

points belonging to all of them, there is one, determined by p points,

which contains all the points of a set. On the other hand, we have
shewn above that ^-curves conditioned only by their adjointness

which pass through v— p arbitrary points of a set of the series like-

wise contain all the points of the set. These unconditioned 0-curves

must evidently require at least as many conditions, in order that

they may contain all the points of a set of the series, as are required

by the conditioned ^-curves. Thus v— p^p. This argument is

under the hypothesis that the series g^^ is complete; the result

holds a fortiori for a series g^^ contained therein with a<p. That
the series ^ ", obtained as described, is in fact complete is easily

proved. From the fact that the canonical series g''^^^" is simple,
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it follows, as in Chap, it, above, that, with coordinates {^^, ... , ^^J,

of a space of ;j — 1 dimensions [jj— 1 j, the equations ^1/^1= ... = ipl<j>p

transform the original iwn-hypcrelliptic curve F= 0, with a (1, 1)

birational correspondence, into a curve of order 2p — 2 in this

space. And from the inequality v^2p, for any series g^^ contained

in the canonical scries, it follows that the curve so obtained is

without multiple points. Moreover this curve is not the projection

of another curve of the same order, in a space of dimension

p + q—1, >p — l; for such a curve, being in (1, 1) correspondence

with this, and therefore with the original curve, would have the

coordinates of a point expressible by equations

where u, ip^, ..., ipg are polynomials in the coordinates of the

original plane ; the canonical series on the original curve would then

be incomplete, being contained in a series of sets of 2j9 — 2 points, of

freedom p + q—1, given by an equation

the zeros of u, on the original curve F= 0, being also zeros of all of

ip^, ... , i/jg. This is contrary to what we have proved. The curve, of

order 2p — 2, in space of dimension p — 1, thus obtained as repre-

sentative of any non-hyperelliptic curve, is called the canonical

curve; and (like any other curve with the same property) is said to

be normal in the space [p — 1] because it cannot be obtained by
projection from another curve of the same order in space of higher

dimension. This curve has the great simplicity that the canonical

series thereon, that is the series of sets corresponding to the

canonical sets of the original curve, are determined by its inter-

sections with the prime spaces of the space [p—1], given by linear

equations Ai^i+ •• -1-Ap|p= 0; and thence, any special series con-

tained in the canonical series, is given by its intersections with
primes passing through fixed points of the canonical curve. In
particular, consider a special series g^ ; we have shewn that all the

points of a set of this series lie on unconditioned c^i-curves passing

through any v— p points of the set. In the space [p—1], this number
of points of the canonical curve determine a linear space [v— p — 1].

The sets of the series g^^ on the canonical curve thus lie each in such
a space. For instance, for _p= 1, there is a canonical curve of order

6 lying in ordinary space; and thereon there is a special series g-^ of

which the sets lie upon trisecant lines of the curve; it will appear in

fact that the curve is the complete intersection of a cubic surface

and a quadric surface; the trisecants in question are one system of

generators of the quadric surface (and there is another g-^). If we
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now assume that, for a curve c'^, of order m, in space of k dimensions
[A], a space of dimension s — 1, put through s arbitrary points of
the curve, has no further intersections with the curve, unless s= k,

and the space is a prime (for instance, a curve, not lying in a plane,
cannot be such that every chord is a trisecant), then we can infer

that Clifford's theorem v'^2p, for a special series g^, can be
replaced by v>2p, except when p=p — l, v= 2p — 2, the special

series being then the whole canonical series. For when v— p= p, a
set of the series g^^ being determined by p quite arbitrary points of
the canonical curve, a space [v— p—1] put through v — p quite
arbitrary points will wholly contain a set of g^^, and will thus meet
the curve again. By the assumption made, this is so only when
V— p — p=2) — 1.

Remark I. A prime through a set of a special series g^^, on the
canonical curve, meets the curve again in a set of v points
{v =2p — 2 — v), determining a complementary special series g /
where p=v—jj> + p' + l, so that v' — 2p' =v— 2p; and any set of this

complementary series lies in a space \y' — p —1]. The two spaces

\y— p—l\, [v' — p' — 1], containing complementary sets, as they both
lie in a prime [p — 2], meet one another in a space of dimension
V— p — 1 + v' — p' — 1 — (p — 2), which is a [v— 2p—\\ or [/ — 2p' — 1].

When p > and p' > 0, this space is not coextensive either with the
[v — p—1] or the [v' — p' — 1]. For instance when 2^ = 4, two com-
plementary sets of the two series g-^ lie in generators of opposite

systems of a quadric surface. These have a point in common (not

lying on the canonical curve).

Remark II . If p — 3 arbitrary points be taken on the canonical

curve, the space [p — 4] determined thereby does not meet the curve

further. By means of the oo^ spaces [p — 3] through this jj; — 4], the

canonical curve can be projected into a plane curve of order -p+l.

Any curve of genus jp, which is not hyperelliptic, can thus be trans-

formed birationally into a plane curve of order p+\ (with appro-

priate multiple points). It has already been remarked that a

hyperelliptic curve of genus p can be represented by a plane curve

of order 2?+ 2 (with one ^-ple multiple point).

Remark III. It was proved above that unless a curve be hyper-

elliptic there exists no rational function of order 2. There exists,

however, always a rational function of order 2? + 1, with its jDoles at

quite arbitrary places, as is easy to see. And this is the lowest order

for which a rational function can always be constructed with quite

arbitrary poles. For particular positions of the poles, a rational

function may be constructed of order \p-\-l, or ^{p-i-l)-^-!

(according as p) is even or odd); and this is the absolutely lowest

order for a rational function unless the curve be in some way less

general than the most general curve of genus p. This will be proved.



Linear series on the curve 83

Remark IV. We have proved that the canonical series g^^~''
is

simple, and not further reducible in the sense of Chap. ii. We can
prove that the same is true of any series g^!^ in which n>2p (so that

this series is not special) ; by such a series then the curve can be put
in (1, 1) birational correspondence with a curve of order n, in

space [?•], which is normal in this space if the series g/^ is complete,

as we suppose. As the series is not special we have r=n~p; thus

11 > 2p is the same as n < '2r. That the series is simple, follows

because, if every set containing an arbitrary point of the funda-

mental curve contained yi—l other points of this curve, we could,

by taking r arbitrary points, find a set of the series containing /xr

points, so that fir^n, and this, by n<2r, involves fi—1. Again
there are no points of the curve F= common to all the sets of ii

points of the series ; for if there were only n— l variable points in

these sets, then n— l<n<2r, shewing (by Clifford's theorem) that

the series ^"~ , of these sets of variable points, is not special; so that

r=n — l—p, or ^= 0. Lastly, if we fix a single point, and consider
ji—k
v-rthe residual series g^^ \ then k=l; for, if k^2, the condition

n<2r involves n — k<2{r—l), and the series g^_ ^ (by Clifford's

theorem) is not special, so that r—l = n — k—p. Hence, as in

Chap. II, if the system of curves determining the series be

Aq i/'o+ . . . + A;, i/f;.= 0,

the equations ^olipo= ...^^.j-jifj^ define a (1, 1) birational transforma-

tion to a non-singular curve. This argument holds if the original

curve be hyperelliptic. By projection on to a plane, from r — 2

general points of this curve in [/•], we thus obtain a plane curve of

order J9 + 2 in (1, 1) correspondence with the original.

Proof of a formula for the genus in terms of the branch
points. Jacobian series of a linear series. There is a very
important formula, illustrating the relation between the theory of

linear series, and the functional point of view, which seems to find

its appropriate place here. The formula is moreover often of

practical use for determining the genus of a given curve.

Let ^ be any rational function upon the fundamental curve, say
of order m. At a place of the curve where ^ has a finite value, say a,

the expression of f, in terms of the usual local parameter t, may be
of the form $= cc+ a.iP'+ (X2t^'^^+ ..., where a^ is not zero. At a place

where ^ is infinite, with local parameter Iq , the expression may be of

the form ^-^ = k-^Q^o+ k.^to"'^^ + ..., where k^ is not zero. We have then
the formula 'L(r—l) + 1j{rQ—l) — 2)n+ 2p — 2, where jj is the genus
of the fundamental curve, and the summation extends to all places

of this at which r> 1, or /o> 1.

6-2
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To illustrate, first, the geometrical meaning of this result, suppose

that every r which is > 1 is 2 ; and let the expression of ^ as a
quotient of adjoint polynomials be ^= ^jip. Consider the linear

series of sets of m variable points on the fundamental curve given

by -9-— Ai/»=0, as A varies. For any set of this series, corresponding

to a definite value of A, there may be one or more coincidences of 2

of the m points of the set, the curve ^— A^= having (in general)

contact with the fundamental curve at such a coincidence. The
aggregate of the points, on the fundamental curve, at which such
coincidences occur, in all the sets of the linear series, is called the

Jacohian set of the series, and the formula states that the number
of points in this set is 2?7i+ 2p — 2. It will in fact be proved that the

Jacobian set, on the fundamental curve, is equivalent with, or

coresidual to, a set constituted by the sum of two sets of the linear

series, and a set of the canonical series. Converseh', this fact enables

us to define the canonical series when we have determined the

Jacobian set of any given linear series of freedom 1, on the funda-

mental curve, and the complete series defined by this set. For if

this complete series be given by the system of adjoint curves,

'^0^0+ '^!^!+ ••• = ^5 the curves of this system which pass through
the points of any two sets of the given series (or pass doubly through
the points of one such set) have, for their residual intersections with

the fundamental curve, the (complete) canonical series.

For instance, if the fundamental curve have for multiple points

only nodal double points, the complete series on this curve

determined by the points of contact of tangents to the curve from
an arbitrary point, O, of the plane, is given by the intersections,

other than at the nodes, of a linear system of curves all passing

through the nodes. The curves of this system which contain the

intersections of the curve with two arbitrary lines through 0, have,

as residual intersection, the sets of the canonical series. ^Vhen the

curve has cusps, as well as nodes, the Jacobian set of the series

determined by lines through 0, will include the cusps. In this case,

the system of curves employed must not only be adjoint at each

cusp (or pass simply through this), but must have 3 intersections,

namely touch the cuspidal tangent.

To prove the theorem in general, let u be any everywhere finite

integral of the fundamental curve. Then dujd^ is a rational function,

and, by what was shewn as to the construction of u, this function

has a canonical set of the fundamental curve as part of the set of its

zeros. Its only other zeros arise when | is infinite; at a place where,

in the notation above, ^= Ai-^/o~'"<)+ ... , we have, effectively,

dujd^— —k^rf^-^tjo+^dujdtf,, so that there is a zero of order ^o-l- 1. The
poles of diijd^ arise only from places whereat, in the notation above,

^=a + ai^' + ..., with r>l; this form gives in fact, effectively,
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duld^={ra.yV~^)~'^duldt, or a pole of dujd^ of order r— 1. As the

number of zeros of the rational function dujd^ is equal to the number
of poles, and a canonical set consists of 2p — 2 simple points, we thus

have l](r— l) = E(rQ+l) + 2j:? — 2. By hypothesis | is of order m, so

that 2/o='''- Hence we obtain the formula originally stated

S(r — l) + Il('o— l) = 2"* + 2i?
— 2. If K denote a canonical set on

the fundamental ciu've, C denote a set where the function ^ has a

given arbitrary value, and J denote a set of places whose orders are

given, each with its appropriate multiplicity, by the terms of

S (r — 1 ) + S {/-^— 1 ), and the sign = denote that two sets of places are

corcsidual or equivalent, the proof we have given establishes that

K+ 2C= J. The set J is the aggregate of all coincidences in the sets

given by |= constant (including ^= co), a coincidence of r points of

a set being regarded as r—l coincidences ; or J is the generalised

form of the Jacobian set.

It may be remarked here that if, from any linear series g/^ with
r>l, defined by a system of curves Ai/»+ Ai)/'i+ ... + A,.i/r^=0, we
choose a series of freedom 1, which is given, with variable /a, and
fixed a, ...,ar,h, ...,b,., by curves «(/<+ ... + a,.i{jj.+ [x{bilj+ ... + b,.ifj^) — 0,

and take the Jacobian set of this series ^g^", then all the Jaco-

bian sets so obtained by different choice of a, ..., a^ , b, ..., b^

are equivalent with one another, or belong to the same linear series.

In fact the Jacobian set of a series given by curves ^ — A</(= is at

once seen to be found from the intersections of the fundamental
curve F= Q with the curve expressed by the vanishing of the

Jacobian determinant of the three polynomials &, ijj, F (other than
at the multiple points of i^= 0); and if in this determinant d-, ip are

replaced respectively by cn(f+ ... + «,.(/»,. and Z>i/f+ ... + b^ifj,., the curve
expressed by the vanishing of the determinant is one of a linear

system of curves, in which the part of the variable parameters is

played by binary determinants of the form a^bg— ttgb^.

When the curve F= has only multiple points with distinct

tangents, it is easy to prove directly that the intersections with
F= 0, other than at the base points common to all curves ^ — Xip— O,

of the curve represented by the vanishing of the Jacobian deter-

minant {^i, ip2, F^), are in number 2//t + 2jj — 2, where m is the

number of intersections, other than at the base points, of any curve
of the system %- — Xifj=0 with F= 0. For let F= be of order A^
and ^ = 0, = of order M, and have, beside a (A; — l)-ple point at

every ^--ple point of F= 0, a number q of simple intersections with
F = 0. It is eas}' to prove that, at a A-ple point of F= 0, the curve
represented by the vanishing of the Jacobian determinant has a
nmltiple point of order 3A; — 4, with k tangents coinciding with those

of F= 0, and has therefore 3k{k—l) intersections with F= 0; and
that this curve has two intersections with F= at each of the q
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simple base points of i> — Ai/i . The determinant is of order 271/+ A^ — 3.

Thus the number of intersections, not at the multiple points, or

common points of 0-= 0, ip= or F= 0, is

N (23/ + .V - 3) - Silk (^• - 1 ) - 2q.

This, however, is 2m+ 2p — 2, because 7n= A^M — 1ik{k—l) — q,

2} = l{X-l){N-2)-h'Zk{k-l).

Ecc. 1. Supposing F= A\athout multiple points, the degree in the
coefficients of a curve = 0, of order M, of the function whose vanishing
expresses that = touches F = (the tact invariant), is A'^(2M+ iV— 3).

And, if these cur\'es be written symbohcally as jP^^ = 0, 0^,^ = 0, and
M^= be an arbitrary line, this tact invariant is the product of the values,
at all the NM intersections of these curves, of the expression

(F0M)i^/'-10^^-lK.

For a line to touch /' = is a condition of degree N{N — \) in the coeffi-

cients of the line, and degree 2{N —\) in the coefficients of jP = 0.

Ex.2. The relation ll{r — l) + lL(r^-\) = 2m + 2p-2 is often con-
venient for computing the genus of a curve whose equation is given.
For instance, Avhen the equation of the curve is of the form

ym = {x - a^y^K ..{x- aj^f^",

the rational function x is of order m, and the values of r — 1, /"q — 1 are
obtained by considering only the places for which a; = Oj , ..., x = aj^,x — (X).

For example, the cur\'e represented by 7/^° = x{x — o)* {x — bf is of genus 2.

Note I. The existence of a rational function with assigned
poles. Weierstrass's gap theorem. It seems worth while to

give greater definiteness to some of the results of this chapter by
reconsidering them in connexion with the question whether, given

a set of points on the fundamental curve F= 0, there exists a
rational function having every one of these as a pole of the first

order.

It was shewn that if T^ , . . .
, Tj. be points lying on a ^-curve (an

adjoint curve of order N— 3, if A^ be the order of F= 0), then it is

impossible to construct a rational function having Tj. as an actual

pole of the first order, with its other poles lying among T^, ..., Tj^_^

,

unless it is the case that every ^-curve passing through T^, ..., Tj._^

also passes* through T^. Thus, where there are ^-curves through
Tj , . . .

, Tx._i which do not contain T^ , the linear series defined by
Tj , . , . , T'fc_i , Tfc is such that T^ belongs to every set of the series.

When A: < ^9 — 1 a ^-curve can always be put through Tj , .... T,.;

but the remark remains equally true for A;=p, ..., 2p — 2, if

* The argument, depending on the theorem of coresiduation, proceeded by
the attempt to construct a function of the form ipJL(p, where L = is a hne
through Tj. . The deduced theorem of Riemann-Roch shews that the freedom
k—p + r' + l, of the sets coresidual with Tj, ... , Tj., can only be as great as 1,

when, with k^p, we have r' + 1> p — k, shewing that the k points are not
independent conditions for unconditioned ^-curves.
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Tj , . . . , 7\. lie on a (/>-curve. If ^j = 0, , . . ,
(f)p
= denote independent

^-curves, the condition that the ^-curves containing T^, ..., Tj^_^,

which we now denote by (c^), ... , (cj._i), should contain (c^), or T^^, is

the existence of the p equations

<^i(CA) = ^l'^/(^l)+-" + /^A-l<^i(Ci-i), i=\, ...,p,

where /nj, ... , /li;^_i are certain constants, the same for all values of i.

For k<p+l, these equations are necessary for the existence of a
rational function having (c^) as a simple pole with its other poles

among (c^), ..., (cj._i). For k=p-\-\ a rational function can be con-

structed with [cj.) as pole and its other poles among (q), ..., {c^._^)

(a function with p-\-\ arbitrary poles, by the formula p=v—p,
always exists, of the form A+ /x^, where A, fx are arbitrary constants)

;

and, for k=p + l, values of /x^, ... , fi,._i can be fovmd to satisfy the

p equations whatever (c^), .... (cj._i), (c^) be, it being understood, in

both these statements, that (cj), ... , (cj._i) do not themselves lie on a

^-curve. Similarly for /v>^ + l. Now suppose we construct an
array of p rows and k columns, in which the elements of the .vth

column are (f>i{Cg), 02(^s)» •••' ^»(<^s)' Then, without further state-

ment as to the value of k, we may express our conclusion by saying

that a necessary condition for the existence of a rational function

having (c^) as pole, with its other poles among (c^), ... , (cj._i), is that

the A'th column of this array should be linearly expressible in terms
of the other columns. The converse of this result is true in the form

:

If the Ath column of this array is expressible linearly by certain of

the other preceding columns, so that there exist the p equations

where (c,„), (Cf), ... ,
(c^) are certain points from (q), ... , (cj._i), taken

for convenience in their natural order, and A^^, A^, ..., Ag are con-

stants, all different fro7n zero, having the same values for all values

of *', then there exists a rational function having (c^) and (c„J,

(Cj), ... , {Cg) as actual poles of the first order, and no other poles. It

is understood that the columns containing (c,„), (c^), ...,(c,) are

linearly independent; otherwise the equations put down could be
expressed without one or more of these.

When the number, say q, of the points (c„j), (c^), ..., (c^), which
precede (c^), is at most p—1, we can determine p — q ^-curves

passing through these q points—these points furnishing independent
conditions for (jy-cuvves because the columns (c,„), (c^), ..., (c^), of

the array, are independent by hypothesis. In virtue ofthe equations,

all these p — q ^-curves pass through (c^.), and 2^~<i is the total

number of linearly independent (^-curves passing through the q+l
points. Thus the linear series of sets of g -|- 1 points determined by
the set (c^), (C(), ..., (cj, (Cfc) has freedom q+1-p+p-q, or 1.

There is, therefore, just one rational function having these ^-f-l
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points as poles of the first order; and the function is actually infinite

at every one of these q+l points—for, if the function were infinite

only at some of these, the </>-curve drawn through all but one of this

partial set would pass through this one, and the linear equations

put down would involve less than the q+l points.

When the number of points (c„J, (c^), ..., (Cg) is jJ, there is no
(;A-curve passing through these points, since this would involve a
linear equation connecting the p corresponding columns of the
array. The linear series determined by (c^), (Cj), ..., (Cg), (cj.) thus
has freedom q+l—p, or 1, and there is one rational function with
these as poles; the function is actually infinite at every one of these,

for the same reason as before.

When we take more than p columns (c„J, ..., (Cg), we cannot
maintain the hypothesis that the columns are independent, any

p + 1 columns being necessarily connected linearly. But we have
the result : If p +f points be given, there being no rational function

having simple poles chosen from the first ^j points (and no other

poles), then there are/ rational functions, all having actual poles of

the first order at the first ^j points, having respectively each a single

pole at one of the other /points. The sum of these functions, each
multiplied by an arbitrary constant, is a function effectively in-

finite at each of these / points, with also poles among the p first

points. This function contains 1+/ homogeneously entering

arbitrary constants.

This result can be stated differently: As the j9 ^-curves

(l)^{x) = 0, ..., (f)j,{x) = 0, do not all vanish for any point (^r), on the

fundamental curve F = 0, other than at the multiple points, as we
have proved, and the ratios of the functions <l>x{x), ..., (I>p{x) have
definite values at any point {x) of F= 0, these functions can be
regarded as the homogeneous coordinates of a point in space

[p— 1], of 29 — 1 dimensions. Any set of points (q), ..., (c^), of the

curve F= 0, thus give rise to points, say Q, ..., C\, in this space

|j9 — 1]. The expression of the column (c^^) in terms of the columns
(c^), (c<), ..., (Cj) involves that the linear space determined by
C^, Ct, ..., Cg contains the point C^. (cf. p. 79 preceding). When
F= is hyperelliptic, the points C„j, C^, ... lie on a rational curve;

of the two points of 2^= corresponding to any one of these, only

one is represented by a column in the array.

There are theorems, analogous to those preceding, which relate

to rational functions having their poles all at one place of the curve

F= 0, this being a multiple pole. A function, when expressed by the

local parameter for the neighbourhood of the place where it is

infinite, contains negative powers, Aj.t~^+ Aj._it-^'^^+...+Ait~'^;

when we say that the function is infinite to order r, we mean that

the coefficient A^ is not zero, but we make no statement in regard to
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the coefficients A^^^ , . .
.

, ^i . Consider now rational functions having

(multiple) poles only at one place {x) of the curve. If %, ..., Up

denote linearly independent everywhere finite integrals, and t the

parameter for the neighbourhood of {x), we can consider the

limiting values of clujdt, ...,dujdt. at (x); these we denote by

Qi(cr), ..., 0.p{x); similarly the limiting values of dO-^'dt, ..., dClpldt

may be denoted by Q.^' (x), ..., Q./ix). We then form an array of

p rows, in which the elements of the first column consist of

Q.i{x), ...,Q.p{x), the elements of the second column consist of

Qi'(.r), ..., D.j/{x). and so on. From what has been said above, we
can infer, by a limiting process, that the necessary and sufficient

condition that there should exist a rational function, infinite only

at the place {x), of order q+1, is that the {q+ l)th column of this

array should be linearly dependent upon all, or some, of the pre-

ceding columns. If this dependence does not require all the pre-

ceding columns, this will be because there exists a function, infinite

only at (x), of lower than the (5'+ l)th order; the expression of the

function of order q+1, in the neighbourhood of (x), will then not

involve all the negative powers f-'^, t-'^^''-, ... , t-^, of order less than

t- '^-^. If no one of the first p columns of the array depends on those

preceding, in whole or in part, then the {p+l )th column depends on

these 2^ columns (the array having only p rows) and involves them
all. In this case there is no function, of the kind considered, of any
of the first p orders, bvit there is a function of order }i + l; this

indeed is the case for a general position of (x). We have proved that

all the functions Q.i{x), ... , Q.p{x) do not vanish, at any place {x); it

may in fact be proved that all the functions Q.j' (x), ...,Q.p{x),

equally, do not vanish at any place {x); or in general, not all the

functions Qi<*^'(.r), ... , Qp'*^'(.r). Hence we may regard the elements

of any column of the array as the homogeneous coordinates of a

point in space [jJ— 1]. Clearly not all the indefinite number of

points representing the columns of the array can lie in the same
prime of this space, since this would mean the existence of an

expression C-^Q.i{x)+ ... + CpQ.p{x) which is constant. There must
therefore be, in this indefinite series of points, just jy points which

are independent, and suffice to determine the space, while all the

others depend on these p. There exists therefore a rational function,

infinite only at the place (x), of every order except p orders. This

result, called Weierstrass's gap theorem, is found in Weierstrass,

Math. Werke, iv, p. 225. See also Band 11, p. 235.

That there should exist a rational function, infinite only at (.1),

of less order than p + \, evidently involves that the determinant

formed from the first p colunms of the array, is zero; and clearly

this is so only for a limited number of places {x). It can be shewn

that this number is at most [p — \)p{p-\-\), but the places need not
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be all distinct. For p > 1, however, there are at least 2jj + 2 distinct

places ; there are more unless the fundamental curve be hyperelliptic

(Hurwitz, Math. Annal. xli, 1893, p. 409; an exposition will be
found in the writer's AheVs Theorem, pp. 41, 90). Geometrically,
these exceptional places, for which there exists a rational function
of order less than p + 1, are characterised by the existence of a
^-curve vanishing thereat to the pth order (so having only p —

2

other zeros, at most). For instance, for the curve of genus 2 repre-

sented by y'^z^= {x,z\, it may be proved that the (^-curves are
z^{x,z\= 0, and there are 6 cases where {x,z\ has a zero of the second
order, namely when it is one of the (supposed different) factors of

{x, z\ . Here 6 = 2j9 + 2 = (p — 1 )p (^ + 1 ) . For the general plane
curve of order 4 (genus 3), the ^-cvirves are the lines of the plane,

and the points in question are the 24, = (j3— l)p(p + l), inflexions.

But, for example, for the particular quartic curve represented by
aj*+ 1/^+ 2^= 0, the number of such points which are distinct is

12, =2p + 6. In general, it can be proved, for ^j>3, that the
number of distinct points of the kind is

^27^ + 6 + 8 {jJ - 3)/(7j2_ Qp ^ 4)

(see Segre, Rend. Lincei, viii, 1899, p. 89; and Berzolari, Enzykl.
Math. 11I2, 3, p. 436). When the fundamental curve is not hyper-
elliptic, and is representable by a canonical curve of order 2j9 — 2 in

space |j)— 1] (see p. 81 preceding), the points in question, on this

canonical curve, are those at which a prime has p coincident inter-

sections therewith. For instance, on the complete intersection of

a quadric and cubic surface, in ordinary space (j9 = 4), there are

{2J — l)p{p+l), =60, points, at which the osculating plane of the

curve has 4 coincident intersections. More generally, upon any
curve of genus j), a set of a linear series g/^ exists having r points

coincident at one point of the curve. It will be proved later that
there are {i'+l){n+pr— r) positions of this point for which one of

the n— r remaining points of the set coincides with this point. For
n = 2p — 2, r=p — l, this number is {p> — l)p{p+l).

Ex. Prove that for a hyperelliptic curve whose genus p is odd, there
exists no rational function of order p.

Note II. On the theory of special sets, and an extension
of Clifford's theorem, in the case when the fundamental
curve is general for its genus. By a special set of points, as

has been explained, is meant a set lying on an adjoint curve of

order N— S, if A^ be the order of the fundamental curve, or, as we
say, on a ^-curve. It is understood that the points of the set are

generally not at the multiple points of the fundamental curve.

When this curve is not a plane curve, a special set is one whose
points form part of a canonical set thereon. We have seen that in
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any set of a linear series ^/*, consisting of coresidual special sets,

of freedom r, with n points in a set, there are n— r points giving

independent conditions for unconditioned (/i-curves passing through
them, and that all such ^-curves contain the remaining r points of

the set. Thus, denoting the points of such a set by {(i^), ..., (a„),

and forming the matrix oi p rows and n columns, in which thejth
column consists of </>i(a;), ..., <f>p{aj), the values of a set of inde-

pendent ^-polynomials at («_,), this matrix must be of rank n — r.

The series g^^ being complete, and r=n—p + r' +\, this, with
appropriate notation, is the same as saying that every one of

the r(/-}-l) determinants, expressed, for k=\, 2, ..., r'-fl and
CT=1, ,.., /•, by

9n-r+k{^l)' •••5 9n-r+k{(^n-r)> 4'n-r+k{('n-r+a)

must vanish ; this is only equivalent to saying that there are r' + 1

^-curves containing («i), ..., (a„). When these r{/ + l) conditions

connecting the points (r/^), ... , (a„) are independent, we can take
n— r{r' + l) arbitrary points of the fundamental curve, and thence
determine r(r'-fl) others, so that just r' + l ^-curves contain the

n points, where r is determined from n and / by r=n—p+ r'+ 1.

When one such set of n points is found, it determines a series g^'^, of

which any particular set is fixed by r points of it. This number,
defining a particular set of an established series, cannot, clearly, be
greater than the number, n— r{r' + l), of arbitrary points of the

curve, from which the initial set of n points is found. Thus we have
n—r{r' + l)'^r, or p'^{r+l){r' + l), or n— r'^rpl{r+l), which,

unless r is as great as ^ — 1, involves Clifford's equation w— 2r>0.
Since the initial set of n points has n— r{r' + 1) arbitrary points, the

series gr"' of which, in every set, r points are arbitrary, depends only

on n— r (r' + l) — r, that is, p — {r+l) (r' + 1 )
parameters.

The preceding determination of a special series ^/ from
n— r{r'+ l) arbitrary points of the curve, can be stated more
geometrically in terms of the canonical curve of order 2p — 2 in

space [p—l], which is applicable because it is assumed that the

curve is general for its genus, and in particular is not hyperelliptic.

Two facts are then to be used; (i), that in a space [,s'], of s dimensions,

a space [A;] depends on {k + l){s — k) constants (as, for instance, a line

in ordinary space depends on 4 constants); (ii), that the number of

conditions for a space [k], in a space [s], to meet a given curve of

this space, is *— /»:— 1. The problem of a special series g/* on the
canonical curve, is that of finding a set of n points on this curve

lying in r'+l, or jj — n + r, primes of the space [p—l], namely lying
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in a space [/2 — r— 1]. In the space [p — 1], spaces [n — r— 1] depend
on parameters whose number is [n ~r)\jp — \ — {n — r— 1 )], or

nr' + n — r{r' + 1);

for such a space to meet the canonical curve it must satisfy

p—l — {n — 7-), or r' conditions for each meeting; to meet the curve
n times, if all the meetings are independent, it must satisfy nr'

conditions. Thus spaces [n — r—1], meeting the canonical curve in

n points, if these require independent conditions, depend on
w— r (?•' + !) constants. As the position of a point on the canonical

curve depends on one parameter, we infer that, of the n intersections,

n — r{/ + l) may be taken arbitrarily.

Consider for example a ^j", for which r'+l=p+l — n, and
n— r'^rpl{r+l), that is n^l + ^p. Taking n — r {/+!), or

271— (p+l) arbitrary points of the curve, the other ^ + 1 — ??^ points

of a set can be determined so that ^j + 1 — /i (;i-polynomials vanish in

all the points of the set. The set of ^j + 1 — n supplementary points is

not unique; it was found by Brill indeed {Math. Ann. xxxvi, 1890,

p. 354) that, to put with the set of 2n — {p+l) arbitrary points, this

supplementarv set of p+1 — n points can be taken in

ways, where /x is the greatest integer in l{p+l — 7i). When n has its

least value, which is 1 + hp when p is even, the number of quite

arbitrary points of the set being 1, this number is -
( )

; or when n

has its least value for jj odd which is l + l{p + l), the number of

arbitrary points of the set being 2, this number is
( )

. Thus

on a curve which is general for its genus, there exists a special linear

series, of freedom 1, of sets of 1 + l^j, or l + Kp + l) points, but not
less. Thus the sets of this series can have no point in common, and
these numbers are the least order of existing rational function on
the curve, and, of such function, respectively 1 or 2 poles may be
taken arbitrarily. We may consider some simple illustrations:

(a) On a plane quartic curve {p = S), there exists a rational function

of 3 poles, of which 2 may be taken arbitrarily, the other being
either of the two remaining intersections, with the curve, of the line

joining these two; (b) On the curve of intersection of a quadric and
a cubic surface (2^ = 4), there exist two series gj^, a single point of a
set being arbitrary, the other two points of the set being on one of

the two generators of the quadric which pass through this point;

(c) On the canonical curve of order 8 and genus 5 in space [4], which
we may denote by ^c^[4], there exists a series gj^, of which a set is
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determined by taking two arbitrary points of the curve, and
drawing a plane through these to meet the curve in 2 other points,

which, by the formula quoted, is possible in I j or 5 ways. And

in aggregate there are oo'^ such series g^, where r =2? — (^"+ 1 )
{r' + 1 ),

namely oo^ such series. That there are 5 planes through two arbitrary

points of the curve each meeting the curve again in 2 points, is

obvious directly by remarking that, by planes through the 2

arbitrary points, the curve is projected into a plane scxtic curve,

which, being of genus 5, has 5 double points. We may obtain a set

of 4 points on this scxtic lying on (r'+ 1 = )2 adjoint cubic curves,

of which two points A, B are arbitrary, by describing cubics

through the 5 double points, the points A, B of the curve, and a

further point P of the curve, and choosing P so that the further

intersection of these cubics also lies on the scxtic curve. Particular

series g-^^ on the sextic are obtained by the lines through any one of

the double points, or by the conies through any 4 of the double
points. As examples of the general theorem for series g{^ when n has

not its least value, we may instance a ^i^~^; iip — 5 arbitrary points

be taken, 3 others can be associated with them in \p{p — ^){p — o)

ways, thus making a set of j9 — 2 points through which 3 ^-curves

pass. Or a g]^~^; if ^j
— 3 arbitrary points be taken, 2 others can be

associated with them in \p{p — ^) ways, thus making a set oi p — \

points through which there pass 2 ^-curves.

More generally, to find a set of n points lying on 3 (^-curves,

defining then a series g^^ in which r=n—p+ 3, we may take

?i — 3(n—p + 3), or 3p — 9 — 2n points arbitrarily; but this number
must be ^n—p + 3, namely n ^f.{p — 3). Considering the canonical

curve in space [p — 1], through the n points so determined, which lie

in a space [p — 4], can be put spaces [p — S], by means of which the

curve can be projected birationally into a plane curve of genus p
and order 2;^ — 2 — w; this order is then ^ |(p + 3). Considering in

turn the cases in which p is of the forms 3m, 3t!7+ 1, 3C3+ 2, we find

that the order of the plane curve is in all cases ^p+ 2 — m, namely

p + 2 — [pl3], where [p/3] is the integer part of p/3. In all cases

f(p + 3) is greater than l + |j9; but p + 2 — m is less than p when
p^9. The case when n=p — 3 may be regarded as included in this

result; by projection of the canonical curve from p — 3 arbitrary

points thereon, we have a representation of the curve as a plane

curve of order p+ 1, with the equivalent of Ipij^ — S) double points

(as found above, in discussing series gi^'~^}. A corollary may be

noted: In order that a plane curve of order n should represent a

curve general for its genus, it must have multiple points equivalent

to at least Kii— 2)(w— 4) double points (for instance, a plane

quintic curve is incompetent to represent a general curve of genus 6,
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V

when it is without a multiple point ; or a general curve of genus 5,

when it has one double point. When it has two double points it may
represent a curve of genus 4; it is then obtainable by projection of

the canonical sextic curve).

Some further indications of general theorems find their proper
place here:

(a) As we know the number of coefficients entering into the plane
curve of order n' , OT2p — 2 — n, which we have just obtained by pro-

jection of the canonical curve, from the points of a special set g/^

thereon, we can form an estimate of the number of fixed constants,

or moduli, on which a general curve of genus j) depends. The special

set on the canonical curve was found from k, =3p — 9 — 2w,

arbitrary points, and there are oo'" coresidual sets, where r= n—p-\-Z.
Thus the series g/ depends on k — r, or 4p — 3/i— 12 constants. The
plane curve of order n' has |/i'(7i' + 3) coefficients, of which 8 are

disposable by suitable linear transformation of the coordinates in

the plane ; this plane curve has the equivalent of \ {n' — 1) (/i' — 2) —p
double points, of which the existence by itself of any one would
impose one condition for the coefficients of the curve. There are then
at least W {n' -^Q)-S-[l{n' -\){n' -2)-p], or Zn'+p-Q inde-

pendent constants ; of which, however, we can dispose of 4p — 3n— 12

by suitable choice of the set of points of the canonical curve from
which we project. There remain then, at least,

Zn'^p - 9 - (4p - 3/i - 12)

absolute constants, namely 3p — 3, for the general curve of genus p.
This provisional reasoning, however, (1) is only for curves general

for their genus, and, in particular, excludes the case of hyperelliptic

curves ; thus it supposes p > 2, though it happens that 3 is the right

number of constants, in this case, for a general curve represented by
y^z^={x, z)q, being the number of independent cross ratios of the

roots of the sextic {x, z\; (2) supposes that, for a general curve, the
existence of d double points requires d conditions for the constants of

the curve; (3) supposes that the curve has no birational transforma-

tions into itself involving an arbitrary parameter ; such a transfor-

mation would involve a lessening of the number of constants upon
which a series g^'^ depends. It will in fact be proved below that no
such transformations exist for _p>l. For p= there are such
transformations depending on 3 parameters; for p=l, there is a
transformation depending on one parameter. The number 3^ — 3

was found by Riemann (1857, Werke, Theorie der AbeVschen
Fctnen, § 12), who estimates the total number of constants in a
rational function of order m as 2m—p+l, since if its ?/i poles be
assigned there are further m—p + 1 constants; and, then, regarding

the curve as represented by an equation F{7], |) = 0, proves that
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there are 2m-{-2p — '2, brandlings of tj as a funetion of | (as above,

p. 8-i). There are then 27n-\-2'p — 2 — {2m—p-\-\) of these which
cannot be arbitrarily assigned by suitable choice of ^. Recent
criticisms of the argument for the number 3j9 — 3 will be found in

Severi-Loirier, Alg. Geo)n. Leipzig, 1921, pp. 321, 394; and in

Enriques-Chisini, Teoria geu)n. iii, Bologna, 1924, pp. 112, 359.

Ex. Consider the curve y'^z^ + y-z-U2 + yzUi + UQ = 0, where u^ is homo-
geneous of order m in x and z. Let {a, b, c) be any point of this curve.

Shew tliat by tlie transformation obtained by putting ^, -q, [, proportional
respectively to zc{xc — Z(i), zc{yc — zh), {xc — za)'-, of which the reverse

forms give x, y, z proportional respectively to ^(^rt+^c), i'b + 7]^c, ^-c,

the curve is changed to a quintic curve with a point of self-contact, whose
equation, with a further suitable change, of the form, ?; = t^^ + A^, may be
taken to be rj^-^i,- + rii-lv2 + ri^v^+ lio^ — O, where v^, iv^ are homogeneous
in I, C, of order i. For the sextic and quintic, respectively, the
^-polynomials are of the forms z[yz + {x, z)^], 7]^^ + {^, C)2- A (f>-ci\rve

which touches the fundamental curve at each of its intersections is given,

in these cases respectively, by z(x— fj-zy^ — O, (^— ct^)^ = 0, where /x, a are
arbitrary- constants; namely there are oo^ such ^-curves. Hence, by a
theory which cannot be given liere, the curves each depend, not on 3p — 3
or 9, but on 8 moduli (cf. the writer's Abel's Theorem, 1897, pp. 270, 94).

There are, as in general, 2^~i(2*' — 1) or 120, other ^-curves having
contact with the fundamental curve at all their intersections therewith.
(For an elementary geometrical theory, in this case, cf. W. P. Milne,
Proc. Lond. Math. Soc. xxv, 1926, p. 174.)

It may happen that there are oo- (or more) such particular contact
^-curves ; for instance for a general plane quintic curve, every line of the
plane, repeated, is such a curve, and the aggregate is oo^. In this case
the number 2^~i(2*' — 1), of proper contact ^-curves, or 2016, is reduced
to 2015, in accordance with the general theory (cf. W. P. Milne, Journ.
Lond. Math. Soc. ii, 1927, p. 79, for this particular case). In the notation
of the general theory referred to, the two exceptional ^-systems are asso-

ciated I'cspectively with an even and an odd characteristic.

{b) Another question is what is the number of constants upon
w^iich a general curve of order n and genus p normal in space [/•]

depends. Thus, though all rational curves are birationally equi-

valent, a conic in ordinary space depends on 8 constants (for

example, a single conic exists which meets an arbitrary line and also

seven other lines which meet this, and do not meet one another);

and, more generally, the rational curve of order r in space [r\

depends on (r— l)(r-f3) constants, as we shall see. While the

canonical curve of order 2^ — 2 in space |jJ — 1] depends on
{p—l){p + -i) constants (for instance, a plane quartic curve on 14;

and the intersection of a quadric surface and a cubic surface on
9 + (19 — 4), or 24 constants). It can be proved that the number in

general is {r+l)[n— r— rpl{r+l)] + {r+iy^ — l + Sp — 3, the first

term being the number t, —p — {r+l){r' + 1), of constants upon
which a complete series gj.'^, where r= n—2) + r' + l, depends
(r > 0; p. 91); the second term, the number of constants in a general
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linear transformation of coordinates in space [r] ; and the last term,

the number of absolute constants of the class of all birationally

equivalent curves of genus p; namely is n (r + 1) — {r — S) {p — 1).

If the series of prime sections of the curve be of deficiency h, and
specialness r' + 1, the number {u — r) (r + 1) — rp must be diminished by
h{r' ^ 1); e.g. the octavic curve of genus 5, intersection (save for two
skew conies) of a cubic and quartic, depends on 31 constants. ^Vhen tlie

curve is not general, this number may be negative and need increase

(p. 91). Examples are, the plane quintic curve {}) = G), depending on
3n + p — 1 constants ; the space septimic (j> = 6), partial intersection of a
quadric and quartic, depending on 4m; and the space octavic {p = 9),

complete intersection of a quadric and quartic, depending on 4n + 1. In
general, a complete intersection on a quadric depends on 2n + jJ + S
constants (« > 4). See Xoether, Berlin. Abh. 1882, pp. 18, 58.

As to surfaces, a Veronese quartic surface, in space [5], depends on
27 constants, and can be put through 9 points of its space ; a Del-Pezzo
surface, of order r, in space [r], depends on r- + 10. Cf. Room, Proc.
Camb. Phil. Soc. xxvii, 1931, p. 518. In general, see Castelnuovo-
Enriques, Enzykl. Math, iii, C. 66, p. 713.

(c) It was proved by Noether that the canonical curve of order

22? — 2 in space oip—1 dimensions lies on ^{p — 2){p — Q) quadrics

(an exposition, of the proof, for quadrics, and manifolds of higher

dimension, will be found in the writer's AheVs Theorem, Cambridge,

1897, p. 155). For general values oip, these quadrics have no other

common intersection than the canonical curve, unless the canonical

curve possesses a special series g-^ {p > 4), in which case the quadrics

intersect in a rational ruled surface of order p — 2. But, in parti-

cular for p = 6, if the canonical curve contain a special series g^,
being the representative of a plane quintic curve, the quadrics

intersect in a Veronese surface (Enriques, Rend—Bologna, xxiii,

4 May 1919).

For a curve of order n and genus p, in space [r], when r=n—p,
if also |r(r— 1)—29>0, it can be shewn that the curve lies on

|r(r— 1)— _p quadrics at least.

{(l) We have seen that a set of a special series g/, on the canonical

curve, lies on a space [n— r—l], the sets of the complementary

series g^'^', where n'= 2p — 2 — n, and r=n—p + r' + l, lying similarly

each on a [n' — r' — 1]. Supposing r' ^ r, it can be shewn that all the

spaces [/I — r— 1] generate a manifold of dimension n—1, and order

It' + 1 \

I
)

, which likewise can be defined from the spaces [w' — r' — l\.

If T, given hyp — {r-\-\) {/ + 1 ) be ^ 1 , all the spaces of this manifold

contain a space [t— 1]; and the locus of these spaces [r— 1], for all

the 00"^ series g/', is a manifold of dimension 2t— 1. The theorem

arises very naturally from the expression of the everywhere finite

integrals given in Chap, vii following, to which we refer.
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Ex. 1. Suppose p — iS. In general, by the preceding theory, there exist,

on the canonical curve of order 10, in space [5], five special series rt^*, any
such series being established by taking an arbitrary point on the curve,
and thence determining three other points, so that the 4 points lie on
a plane. The curve can be represented on a plane by a sextic curve, with
4 nodes, obtainable by projecting the canonical curve from a set of
4 coplanar points thereof. The ^-curves of the plane sextic, 6 in number,
proportional to cooi'dinates in the space [.5J, not only transform the sextic
curve into the canonical curve, but transform the plane into a rational
surface in the space [5], containing the canonical curve, which is of order 5,
because two of the (/p-curves in the plane have 5 intersections (other than
the 4 nodes). This is called a Del-Pezzo surface. The fi\e series g^* on the
plane sextic are obtained, either by lines through a node, or by conies
through the 4 nodes : in each case the determining curves meet a (^-curve
(which is represented on the surface by a prime section) in two variable
points. Thus there are 5 systems of conies on the Del-Pezzo surface, one
conic of each systcni through an arbitrary point of the surface, the planes
of the conies meeting the canonical curve in sets g-^. The complementary
series to the g^ is a g^, of which the sets lie in spaces [8J, or solids; any
set of ^2** lies with any set of the complementary a^^ in a prime, or space [4],
so that the plane of the latter meets the solid of the former in a line. To
establish a series g^^ we may take «' — r'(r + l), with n' — Q, r' = 2, r=l,
that is two arbitrary points of the canonical curve, and find thence
4 points of the cur\e lying in a solid with the 2 arbitrary points. In the
plane representation, the five series g^ are given, either by a conic
through 3 of the nodes of the plane sextic curve, or by a line of the plane,
and in every case the determining curve meets an adjoint cubic curve
in the plane (which represents a prime section of the Del-Pezzo surface)
in 8 points ; thus the rational cubic curve through the points of a set of
a gj^, in the solid containing this set, is one of a system of cubic curves
lying on the Del-Pezzo surface, of which one curve can be put through
2 arbitrary points of the surface. Further, in the plane any curve
determining a set of a series g^ meets any curve determining a set of the
complementary ^2^ in two points; thus on the Del-Pezzo surface, any
conic, of either system, meets any cubic curve, of the complementary
s^'stem, in two points.

Besides the g-^ or g-J^'-, on the canonical curve, there are series g-^ or

gi^~^, of which each set lies in a solid, a set being obtainable by taking
/> — 3, or 3, arbitrary points of the curve, and determining the other 2,

so that the five lie in a solid, which is possible in i/>(/> — 3), or 9, ways.
In the plane representation, we take three arbitrary points of the plane
sextic curve, A, B, C, and a further point P so that the remaining
intersection Q of the two adjoint cubic curves through A, B, C, P may
also lie on the sextic curve. The complementary series of a gj^ is likewise
a g^^. Bej'ond these series, and the canonical series gi^", and the gj*, g^
discussed, there appear to be no special series on the canonical curve,
when this is perfectly general.

But when the curve is particular there may be other series. Consider
plane sextic curves, (o) which have 4 nodes of which 3 are in line;

(6) which have a triple point and a single double node; (c) which have
4 nodes all in a line. In case (a), the line has no further intersection with
the sextic curve, but the 3 nodes are not independent conditions for the
line (cf. footnote, p. 72, under {b)) ; the six adjoint cubic curves contain 5
consisting of the line and an arbitrary conic through the fourth node;
two such conies have 3 further intersections. Thus it may be proved that
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the Del-Pezzo surface has a node, and hes on 5 quadries jDassing through
this; the canonical cur\e hes also on another quadric not containing the
node. There are now 4 special series gj^, two of the 5 generally existing

coinciding with one another. In case (b), the adjoint cubics have one
fixed double j^oint, and one simple base i)oint, and the Del-Pezzo surface
degenerates, containing as part a rational ruled quartic surface, which
lies on all quadries containing the canonical curve. This ciuve has now
a gj^ (corresponding to lines in the plane through the triple point), of
which the coniplenientarj' series, ^3", is determined by primes through
any generator, containing one set of gj^ ; the sets of g^' lie on rational

cubic curves. The ruled surface contains xi^ conies, each of which contains
a set of a g^-^ lying on the canonical curve ; any prime through such a conic
meets the surface beside in two generatoi's. In case (c), where the 4 nodes
of the plane sextic are in line, the sextic curve now contains this line,

and the adjoint cubic curves break up into this line and a variable conic.

The Del-Pezzo surface is again degenerate, consisting of a Veronese
surface, of order 4, and a plane meeting this in a conic. The canonical
curve is obtained by the intersection of the Veronese surface with a cubic
primal passing through a conic of the surface; and now contains a g2^,

corresponding to the intersections of the jjlane quintic curve with a
variable line. The six quadries containing the canonical curve contain
also the Veronese surface (cf. (c), p. 96 above).

Ex. 2. The reader may similarly consider the particular cases for 7; — 7,

taking a plane septimic curve with 8 double points as representative
curve.

Ex. 3. By remark (rf) above, p. 96, the 00^ spaces [^{p — 1)] containing
the sets of one series g^^ on the canonical curve of odd genus p, Avhere

n — l + ^{p + l), meet in a point, generating a cone of order 2(7^ — 1).

There are oc^ such series, and the locus of this point is a cur\e ; D. ^V.

Babbage {Proc. Camh. Phil. Soc. xxviii, 1982, p. 426) finds for ^^==5

that this curve is of genus 6 and order 10.

Ex. 4. On a non-singular plane curve of order )i there is a special series
^j"~i determined by lines through a fixed point O of the curve. The com-
plementary series consists of sets obtained by adjoining O to the set of

intersections of the fundamental curve with a general curve of order n — 4.

Ex. 5. A plane curve of order n with less than 11 — 2 double points

(p > ^(n — 2) (n — 3)) is unobtainable by projection from a curve of order n
in higher space; namely is a normal curve. But a curve of order /* with
more than ^(« — 2){« — 3) double points (/^<h — 2) can always be so

obtained. When p — n — 2, a complete series g^^ is obtainable by variable
adjoint curves of order n — 2 through 2p — 2 (or 2n — 6) arbitrary fixed

points ; this series agrees with that determined by the lines of the plane
when the 2p — 2 fixed points are a canonical set.

The enumerative problem of finding the number of curves satisfying

a number of conditions equal to that of the constants on which such a
curve depends arises below (Vol. vi, Chap. 11). For a geometrical dis-

cussion of this problem for conies (and quadries) see Ursell, Proc. Loud.
Math. Soc. XXX, 1929, p. 322. P^or rational cubics see Todd, Proc. Royal
Soc. A, cxxxi, 1931. For a rational quartic curve in space [4], see White,
Jonrn. Lond. Math. Soc. iv, 1929; Welchman, Proc. Camb. Phil. Soc.

xxviii, 1932; Todd, Proc. Camb. Phil. Soc. xxvi, 1930, p. 332; Babbage,
Journ. Lond. Math. Soc. viii, 1933.
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Note III. On the points common to two plane curves.

The Gayley-Bacharach theorem. It is a familiar fact, which

attracted attention very early in the study of plane curves, that, of

the )un connuon points of two curves of orders in and n, which have

no multiple points, not all can be arbitrarily assigned. When
m ^ //, the equation of the curve of order m can be so modified, with

the help of the equation of the other curve, as to contain only

mn-\{n-\){n-2)

assignable coefficients, so far as its intersections with the curve of

less order are concerned. Thus we can assume (what is a particular

case of the subsequently proved Riemann-Roch theorem) that,

among the mn intersections, there are i(H— l)(/i — 2) such that all

curves of order m{^n) drawn through the others, pass through

these.

Assuming this, we can prove that, in order that mn given points

should be the intersections of two cur^-es of orders m and n, with

m>n, the coordinates of the mn points must be connected by
wn— 3«+l conditions; when m = n, they must be connected by
'n^— 3n+ 2 conditions (e.g. 6 points, to be the common points of a

conic and a cubic curve, must satisfy one condition ; 9 points, to be

common to two cubic curves, must have their coordinates subject

to two conditions). To formulate the proof we mentally divide the

mn points, when )n>n, into three sets: A, of ^n{n + S) points;

B, of mn-[hn{n + S) + ^{n-l){n-2)] points; C, of l{n-l){n-2)
points. We can suppose the points A taken arbitrarily, and there-

fore of sufficient generality to determine a curve, /= 0, of order n,

passing through them. That the points B should lie on this curve

/=0 requires mn—ln{n+ 3) — l{n—l){n — 2) conditions connecting

the coordinates of the points A + B, whose aggregate number is

?/?n — i(n — !)(« — 2). This number is less than the number,

lni{ni + 3), of arbitrary points through which a curve of order )n can

be described, being less than this by l{m — n + l){m— n+2). We
put then a curve, ^= 0, of order m, through the points A + B; that

its remaining |(n — l)(n — 2) intersections with/=0 should agree

with the points C requires {n—l){n — 2) conditions connecting the

coordinates of the points A +B+ C. The total number of conditions

required is thus mn-ln{n+ 3)-^{n-l){n-2) + {n-l){n-2).
This is the number mn— 3n + l enunciated. The number of points

in the set B is, we easily see, {m — n)n—l, and the set B does not

exist unless m > n. Indeed, when m = n, there remain, after taking

the set A, of hn{n + 3) points, only J(n-l)(n-2)- 1 of the given

71- points. In this case, therefore, we begin by selecting hi{n + 3) — 1

arbitrary points; the l{n — l){n — 2) remaining intersections of the

two curves, of order n, which can be put through the selected points,

7-2
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must agree with the ^{n — \){n — 2) remaming given points. This
requires n-— ^n-\-2 conditions connecting the coordinates of the

given points, as was said.

Relations among the mn intersections of two curves were investi-

gated by Jacobi {Werke, iii, pp. 285, 610); these can be used to

prove Abel's Theorem (Chap, iii, above), as in Clebsch-Gordan,

Ahelsche Fctnen, 1866, p. 44. Proof of Jacobi's relations (for

functions of any number of variables) is given in Netto's Algebra,

II, 1900, p. 165, with references to Kronecker. See also Harnack,
Math. Ann. ix, 1876, p. 371, who obtains the results in the

following form (likewise capable of extension to any number of

variables): let/=0, = be two curves, of orders n and m, and
u= an arbitrary line ; also, the coordinates being x, y, z, let J be
the Jacobian determinant d{f, cf), ti)jd{x, y, z). Then, if ^ be any
polynomial, homogeneously of order ni+n — 3, the sum of the

values of the fraction u^jj, at all the mn common points of the

curves, is zero. For the hvo given curves, whose coefficients enter

into these equations, this gives, in general, ^{m+n—l){ni+n— 2)

relations.

We now proceed to consider the conditions to be satisfied by a
general curve, ip— O, of order r (without nmltiple points), in order

that it may pass through the inn points common to two given

curves,/=0, of order n, and ^ = 0, of order ni, also without multiple

points. We put r= m+ n— 3 — a., taking a= when r'^m+ n— 3, and
suppose r^m, r^n. We prove that, when r> ni+ n— 3, the 7nn

common points of/=0, </) = give independent conditions for the

curve i/(= 0, of order ;•, to pass through these points; but that, when
r^m + n — 3, these )nn points give only /»«— .|(a+l)(a + 2) inde-

pendent conditions; in this latter case there are in fact

mn- h{oi+l){a. + 2)

points, among the inn, such that curves = through these

necessarily contain the others*.

The results we reach are, in part, contained in a much more general
theorem, which will be considered in some detail in Chap, viii, below.
For the sake of clearness we enunciate this general theorem: In space
[s], of s dimensions, consider the manifold which is the intersection of

* In particular, curves of order m + n — 3 through all but one of the inter-

sections of two given irreducible curves of orders n and m necessarily contain

the remaining intersection. This is in accordance with the identity

^{m + n - l)(m + « - 2) = mn - 1 + ^{m - l){m -2) + ^{n- l)(n - 2).

It may be compared with the known result that, for a non-degenerate curve of

order tji + n, ha\'ing double points, these double points give independent
conditions for curves of order 7n + n — 3 required to pass through them. For
the general case of the adjoint ^-curves of a degenerate curve, see Noether,
Acta Math, vni, 1886, p. 161.
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h priinals, cacli given by t!ie vanishing of a single polynomial homogeneous
in the s + l homogeneous coordinates; suppose that this manifold of
intersection has no nuiltiple i)art of dimension s — )t. Let the orders of

the intersecting primals be //j , //o . . .
.

, '';, . Then the nimiber of indejjendent
linear conditions for the coellicients of a jirimal of order p. in order that
it may contain the manifold of intersection, is obtainable as the coelficient

of /P in the ascending expansion of the function

(1 _/«,)(! -/»o)...(l _,„;,) (1_/)S+1.

This number is called the j^ostulation of the manifold for i:>rimals of
order p. The proof of the statement may be found in Bertini. Geom. d.

Iperspnzi, 1907, p. 263: with which cf. F. S. ]Macaulay, Modular Sifstemfi,

( ambridge Tracts, No. 1!). 1 !)!(). p. 0.5. If we apply this general theorem
to the case now under consideration, for which s = 2, and the manifold of

intersection is that of two cur\es of orders n, m, whose common points are

simple, the postulation of these mn common points, for a curve of order r,

is the coedicient of t' in the ascending expansion of (1 —t")(l — <'")(! — t)~^,

namely, is ( r + 2)., — ( r — m + 2)o — (r — n + 2)2 + (r — m —n + 2)^ , with the
omission of any binomial coeilicient, (A + 2)2, of these for which A<().

Whence for r> m + «, all these terms enter, and it is easy to verify that
their sum is mn; for r> m, r^ », but r<m + n, the postulation is, thus,
uin — i{r — m —n + l)(r — m — 71 + 2), which remains equal to mn for

r = 771 + 71 — 1 or m + « — 2 : for r = m + /? — 3 — a, with a^ 0, the postulation
is mn — ^{ix + l){ot. + 2). These results are in accordance with the theorem,
also part of the general theorem referred to, that when = passes
through all the (simple) intersections of/= 0, ^ = 0, there exist two cui"ves

/' = 0.
<l>'
= 0, of appropriate orders, such that we have an identity

'P^rf+<f>'<f>.

In the present note we prove a more detailed theorem: For
V^n, i-'^m, r= ni+ n— 3 — a., with a^O, the curves ^= 0, of order r,

jnit through mn— |(a+l)(a+ 2) of the intersections of two non-

singular curves f=0, 4> = 0, of orders n, m, with simple intersections,

have a freedom i-\-\ + \{r—n){r— n-\-Q) + \{r—m){r—m-{-3), that is

are, in tale, i + {r—n-\-2\-\-{r— m-\-^)o, where i is the number of

linearly independent curves of order a containing the |(a+l)(a+ 2)

excepted intersections {in general no curves of order a can be put

through this number of points): and further that the curves i}j= 0, so

described, ivillpass through these excepted points if made to contain i of

them, suitably chosen {nhen i< |(a+l)(a+ 2)). The

w/i-|(a+l)(a + 2)

chosen points are thus equivalent only to mn—l{a.+ l){'x + 2) — i

independent points as conditions for curves of order r put through

them; and the choice of i further independent points, among the

|(a+ l)(a+ 2) excepted points, makes the number of conditions, in

all, equal to ??in— i(a+ l)(a + 2); thus, curves i/f=0, of order r, put

through mn— |(a+l)(a + 2) points, of the intersections of /=0,
(j) = 0, which provide independent conditions, pass through the

remaining intersections. Obviously, the i + {r—n + 2)2+{r— m + 2)o

curves through the ?nn — J(a+l)(a + 2) selected points may contain,
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necessarily, some of the i (a + 1 ) (a+ 2) remaining points, as we shall

illustrate by examples. The theory we give was initiated by Cayley

{Papers, i. 1843. p. 27), and developed by Bacharach {Math. Ann.
XXVI, 1886. pp. 275-99); it serves as an application of the general

theory of this chapter. From this theory we assume two lemmas:

(1), Among the intersections of a curve j =0, of order n, which may
have multiple points, with an adjoint curve of order /u,, let there be

a set oi p points (not at the multiple points) which lie on h adjoint

curves ^, of order n — 3; denote by H a set of h points suitably

chosen from these p points, and by K the remaining p — h points of

these; also denote by M the intersections (other than the multiple

points) of the curve of order ju, with /= other than the p points

H + K. Then every adjoint curve of order ju, through the sets

M, H contains the set K (the set H +K defines a series g,^^).

(2), An adjoint curve of order /x. with jx > n, put through n/x— jj +

1

of the intersections of/= with a particular adjoint curve of order
fj,

(other than the multiple points), contains /=0 entirely, if these

nfx—p+l points are independent conditions for such adjoint

curves. Here j) as usual denotes the genus of/= 0.

Now consider the whole set of intersections, with/= 0, of order n,

beside those at the multiple points, of an adjoint curve of order m
(which we may denote by c'"), in which /?; > n — 3. These points are

of number n {m — n + 3) + '2p — 2. Divide this set into two sets : one

set A, and a remainder set B; this latter consisting of /3 points,

where

^=p-[kn-U{k + 'd)l =\{s+\){s+ 2)-[\{n-\){n-2)-pl

in which k is any number > and < n — 3, small enough to make
jS^ 0, and s—n— 3 — k. It is easy to see that the two forms of ^ are

equal, and, from the second form, one more than the number of

independent points through which we could put an adjoint curve,

c% of order s, if the multiple points of/=0 were independent con-

ditions for this c^. Take, further, a set Aq, of lk{k + S) points of

/= 0, so chosen as to be independent conditions for non-adjoint

curves of order k put through them; let a» = be the curve, c^,

through Aq-, denote the residual intersections of c(j = with/=0 by
Bq, so that Bq is of kn— lk{k + 3), ov p — ^ points.

The composite set B+ Bq consists then oi p points. The set B^ is

of number kn—lk{k+ 3), which is greater than the number,

lk{k+ 3), of independent points through which a non-adjoint curve

of order k could be drawn, because ^</i — 3; and the number of

points in fi^ is k{n-3)-l{k-l){k-2) + l, or k{n-3)-q+l,
where q is the genus of the curve a; = 0. Thus, by lemma 2, all curves

of order n — 3 through the set Bq contain w = as a part, provided

these points give independent conditions on ct> = for curves of order
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n — 3 not necessarily adjoint to/= 0. The result certainly follows for

^' = l, or A'= 2, the number of jioints being then >/r(// — 3).

Now denote by i( ^ 0) the number of curves, c% of order ,s% adjoint

to/= 0, if any, which can be drawn through the set B {0<s<n — 3),

If = be such a ciu've. the ciu've w\jj= Q is a curve, adjoint to/= 0,

of order ;/ — 3, through the p points B + Bq, and there are i such
curves at least, since there are i curv^es ip — O. Let i+j be the total

nmnber of curves of order n — S, adjoint to/=0, through the set

B+ Bq. Certainly j = when A;=l, or k = 2, and more generally

when the jj — /3 points Bq are independent for curves of order n— S,

as we have remarked. Tliis is ensured if, but does not require* that,

the p — ^ ])oints B^ should be independent for curves of order /i —

3

adjoint to/=0; and this sullicient condition is satisfied if there are

no other sets of p — /S points of/=0 which are coresidual with the

set 2?q; this again is true if /=0 have no multiple points, since

the jk{k+ 3) points Aq are supposed independent for curves of

order k.

The sets A + A^, B+ B^, together, form the complete intersection,

with/=0, of a composite adjoint curve of order m + k, consisting of

the adjoint curve of order in through A + B, together with the non-

adjoint curve co = 0; and the set B+ B^ consists of p points, and lies

on i+j adjoint ^-curves of /=0. Wherefore (see lemma 1), the

general adjoint curve of order in+ k, put through the set A+Aq,
gives onf— a series of freedom i+j; and this curve will contain all

the points B + B^ if made to contain i +j of them which give inde-

pendent conditions (when i+j<^). Now, the set Aq gave inde-

pendent conditions for non-adjoint curves of order k; thus it like-

wise gives independent conditions for curves of order m+ k adjoint

to/= 0. Wherefore, discarding the set Aq , we infer that a curve of

order m+ k, adjoint to/=0, which contains all but ^ of the inter-

sections with/=0 of an adjoint curve of order m (namely, passes

through the set A) has, on/=0, a freedom i+j+\k{k + S). Here i

is the number of curves of order .s', adjoint to/=0, which pass

through these ^ remaining intersections {s = n — 3 — k), and i+j
is the number of adjoint curves of order n — 3, passing through the

p points constituted by these /3 remaining intersections, and through

jj — ^ points of/= 0, which are residual, by a non-adjoint curve tu =
of order k, to Ik {k+ 3) arbitrary general points of/= 0. If we denote

m + k by r, so that s=in+ n — 3 — r, and recognise that the absolute

* For a plane scxtic curve /= 0, with p = i, having its six double points on

a conic, taking A; = l, and lience j3 = 0, a set Aq, of 2 points, gives 4 coUinear

points Bq, which are independent for general cubic curves, but equivalent

only to 3 for cubic curves adjoint to/=0. Thus, here also, j=0, the adjoint

cubics through Bq reducing to the line and the conic containing the six double

points (i = l).
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freedom, in the plane, of curves of order r, > n — S, is greater than the

freedom on/=0 by |(r— w) (r— ?i+ 3) + l, we reach the conchision

that the tale of the curves of order r, adjoint to/= 0, under considera-

tion, is i+j + {r— in+ 2)2+{r— )i + 2)2. We have stated the proof

subjectto7i — 3< m<r<m + n — 3. When/=0 has no multiple points,

we have proved that j = 0; in this case also ^= |(.s+l){,s + 2). We
can apparently allow the possibility s= 0{k= n — 3, ^=1), and hence

r=m + 7i — 3; and also the possibility A;= 0, with r= m; and remove
the condition vi>n— 3. Then the conditions are n^r,m^r,
r^m + n — 3, and we obtain the result as stated above, when/=0
has no multiple points.

But though, when i > 0, it does not follow that non-singular

curves of order r, put through any mn — ^ intersections of the non-

singular curves of orders n and m, necessarily pass through all the

other jS points, unless put also through i independent points of

these, it may well be that there are some of the /3 points through

which they do all pass. Namely, going back to the argument, the

linear series of sets of p points determined on /=0 by the set

B-\-Bq, which is special since />0, may have points common to all

sets of the series. It may be, in particular, that, among the ^ points

B there are jSj points, such that curves of order n — 3 through these

)Sj points (otherwise unrestricted, /= being now without multiple

points), and through the set Bq. do not necessarily pass throvigh the

remaining ^ — ^i points of B, these latter furnishing exactly ^— ^y

conditions for curves of order n — 3 through Bq and the set of ^^
points. We have remarked (/= being non-singular) that curves of

order n— 3 through the set B^ contain the curve a> = 0. Hence, the

possibility is that, among the ^ points, there are ^^ points such that

curves of order s through these do not necessarily pass through the

remaining ^— ^i points of B. If this is so, the series determined by
curves of order m + k through the set A + A^ has ^— ^i points of B
common to all sets of the series (p. 87 preceding); and this would
be so if curves of order m + k, through the point A only, had this

character. From the arbitrariness of the set A^, we shall assume
that the converse is true, namely that, under the assumed property

of the set B, with regard to curves of order s through them, all

curves of order m + k, through the set A only, necessarily contain

the fi
— ^i points of the set B.

For example (Bacharach, loc. cit. p. 284) let n = Q, m = 7, k=l;
consider curves of order 8, through a set A of 36 points, common to

curves of orders 6 and 7, when these curves are such that the remaining

6 intersections, forming the set B, have 5 points lying in a line. The
conies through these 5 points are 3 in number, and do not neces-

sarily contain the sixth point. Hence: Curves of order 8, through

the 36 points A, and through two arbitrary points, Aq, of the sextic
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curve, will determine, on this curve, the linear series defined by the

10 jioints which consist of B and the \ remaining intersections, /?„,

with the sextie, of the line through ,/q. These octavic curves will all

pass through the sixth point of the set B (other than the 5 collinear

points) ; we assume that octavic curves, through the set A only, have
the same property. More generally, if. among the J (.9+ l)(.s + 2)

points B, there be .s-t- /+ 1 in line (/> 0), curves of order s through
these collinear points consist of this line, and an arbitrary curve
of order .s — 1, not necessarily containing the \s{s-\-\) — i points

remaining from the set B. Or, if, of the

|( /» + /?-/•- 1 ) (//( + n -r-2)
excepted intersections of the given curves /=0, ^ = 0, there be
i-\-m+n — r — '2 which are collinear (/>0), then curves of order r

through the )nii — \{m-\-n — r—\){)n + n — r — 2) specified inter-

sections, all pass through the |(//? + ;z — r— 2)(m+ /? — r— 3) — z non-
collinear remaining points of the excepted intersections. These
points lie on, at least, i curves* of order m-\- n — r—\^.

We also include the following example of the application of the

principles developed in this chapter. Let n, h, p be jjositive integers,

such that p<n-S, l<h<hi{n+ 3), hp{p-S)<h-l^p{p + 3). Thus
the number q, given by q= h+ up— h{p+l){p+2), is >^p{p + 3) and
>p{n — 3), while also n~ — q>\n{n-\-3) — ]i; for these involve, respec-

tively, only h-l + p{n-3-p)>0. h> h{p-'l){p-2), and

{n-p-l){n-p-2)>0.

Nozv siqjjJose that, of the n^ intersections oftivo non-singular curves

of order n, there are q jioints, forming a set Q, which lie on a curve of
order p, itself not passing througJi any of the n-— q other common
IJoints. If, from these other n^ — q jioints, zee choose a set B, of
hi{n+ 3) — h points, ivhich give independent conditions for curves of
order 7i passing through them, then, cdl curves of order n through these

points B, joass of themselves through the set, R, of

i{n-p-l){n-p-2)

points which, -witJi B, make up the set ofn^— q points ; and these points

R do not lie on a curve of order n—p — 3. Also, the remaining q inter-

sections ofany tzco of the go'' curves, of order n, -which pass through the

points B-^R, lie upon a curve of order p.

For, by the theorem just proved, the curves of order n + p put
through all but a set R of h{n — p—'l){n — p — 2) points, among the

intersections of two curves of order n, have absolute freedom

* The general question is: In what way must J(s + l)(6 + 2) points of a curve
of order s be situated, in order to contain among them the maximum number
which is possible, of points which do not lie necessarily on curves of order s put
through the others? Cf. also Bacharach. loc. cil. p. 287.
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? + l + p(p+ 3), where i is the number of curves of order n — p — S

which pass through the set R. Suppose that a set, Q, of q, or

h+ np-h{p+l)ip + 2)

points, among the points through which the curves of order n + p
are put, he upon a curve of order p, which does not contain any of

the other n~ — q intersections of the two curves of order n. Consider,

on one of the two curves of order n, say/=0, the series of sets of

points coresidual Avith the q-\r\{n — p — \){n — p — 2) points Q-\-R;

the number of points in the set Q+ R is also h + ln{n — 3), and the

freedom of the series in question is thence

h + hn{n-3)-h{n-l){n-2)+j,

where j is the number of curves of order n— S which pass through

the set Q+ i? ; in virtue of g- > {n — S)p, remarked above*, such curves

of order n — 3, containing the q points Q, must contain entirely the

curve of order p; thus, j is the number, say i, of curves of order

n — 3 — p which contain the set R. Wherefore, the freedom, on

/=0, of the series defined by the set Q+ R is h — l + i; this series is

given, however, by curves of order n through the remaining points,

B, of intersection of the two curves of order », whose number is

^n{n+ S) — Ji. These points are therefore equivalent only to

in{n + S) — h — i independent points for curves of order n, such

curves through them having an equation of the form

We have, however, supposed these points to be independent for

curves of order n; thus i = 0, there are no curves of order n — p — 3

through the points R, and all curves of order n + p through the

points B, and through the q points Q, pass through the points R.

The freedom of these curves isl + p{p + 3), which we have supposed

^ }/ : among such curves will therefore be the composite curves con-

sisting of the curve of order p through the points Q, taken with the

h+ 1 curves of order n through the hi {n + 3) — h independent points

B. Thus, all these curves of order n pass through the points R.

Now, again on /= 0, consider the freedom of the linear series

defined by the set, Q, of q points. We have proved that a curve of

order n — 3 through the points of this set contains, as part, the

curve of order p on which the set lies ; the number of such curves of

order n — 3 is thus |(n — p— l){/i— p — 2), and the freedom of the

series on /= defined by these points is thus

h+np-h_{p+l){p + 2)-h{n-\){n-2) + \{n-p-l){n-p-%
which is h — \, the same as the freedom on/=0 of the series deter-

* The condition ry> (« — 3)p— J(p — l)(p — 2) is equivalent only to h>Q; so

that the condition h> l(p—\){p — 2) is unnecessary when the points Q are

independent for curves of order /* — 3 through the set R.
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mined by curves of order n through the points B; l:)y what has been
proved, this should l)c so. But, by the theorem of eoresiduation, the
series can also be obtained by drawing curves of order p through the
further intersections, with/=0, of the curve of order p which con-
tains the defining set Q. If these residual points give indeix-ndent
conditions for curves of order p, the freedom of this system of

curves of order p is

lp{p^n)-{np-{h + np-\{p + \){p + 2)]).

which again is h—\. Wherefore, any curve of order }i through the
set B (and, therefore, through the set B+ R) meets /=0 in points
lying on a curve of order p. This proves the result enunciated,

f=0 being any one of the oo'' curves in question.

Ex. 1. If // — 1 of the n- intersections of two non-singular plane curves
of order n lie in line, then all curves of order n through ^ (^n — I) (n + 4-)

independent points, chosen from the other intersections, pass through
the remaining ^(n — 2)(n — 3) of these n'- — )i + l points; and these latter
do not lie on a curve of order n — 4. Further any two ciu'ves of order n
through the }i'- — n + l points have their remaining intersections in line.

(This is the case when p = l, fi = 2. Cf. Zeuthen, Leltrbuch d. abzdhl. Geom.
1914, p. 241; White, Proc. Camb. Phil. Soc. xxii, 1924, p. 5.)

Ex. 2. Prove, for r=l, and r = 2, the following result (Bacharach,
loc. cit. p. 292; after Olivier, Crelle, lxx, 1869, p. 159): If curves t7= (),

T' = 0, Tr=:0, of order n, have in common a set, O , of n~ — i (n — r) (n — r + S)

points, and U' — O be the curve of order n — r through the set. A, of re-

maining intersections of V= 0, W = 0, supposed to give i{n — r)(n — r + S)
independent conditions for U' = 0; with a similar statement for V' =
through the remaining common points B of W= 0, U — O, and for IF'^O
from L' =0, I" = 0; then prove that the curves Z7' = 0, V' = 0, W' — O have
in common a set, O'. of i{n — r)(n — Sr + 3) points ; and, that the remaining
intersections. A', of T'' = 0, 11" = 0. in number l(n — r){)i + r — S), lie on
the curve U — O, with a similar statement for Tr' = and U' = 0, and for
U' = (i, V' = 0. There are thus 8 sets of points, indicated by O (U, V, W),
A (V, V, W), ..., A' {U, T", W), ..., O' (V, J\ ]]"): all intersections
of every two of the curves enter in this enumeration, except those
forming the three sets U=U' = 0, F=1'' = 0, Tr=Tr' = 0. The theorem
may be considered in connexion with an identity of the form
UU' +VV'+WW' = 0, which can be set up by remarking that the
composite curve UU' = Q contains all the common points of V — 0, Tr = 0.

Note IV. On canonical forms for the equation of a mani-
fold, or an aggregate of manifolds. It was proved in Chap, ii

that the equation of a general plane cubic curve can be supposed
to be of the form X^+Y^+ Z^ + 3mXYZ= 0, where X, F, Z are

linear in the original coordinates; this is in accord with the fact

that X, Y, Z together involve 9 coefficients, which, with m, are

of the same number, 10, as in a general cubic curve. The properties

of the curve are investigated very easily with this equation.

Similarly many properties of a cubic surface become clear when it

is known that its equation may be expressed by the vanishing of the
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sum of the cubes of five linear functions of the coordinates (which
involve together the same number, 20, of constants as in the
general equation). Conversely, however, it is not certain that a

specified form of equation which appears to involve the right

number of coefficients, is as general as the equation which it is

sought to represent; for instance, the sum of 5 fourth powers of

linear functions of the three coordinates in a plane involves 15 co-

efficients, which is the same as the number in the equation of a

general plane quartic curve ; in fact, however, if the sum of 5 fourth

powers be arranged in powers of the coordinates, the fifteen

coefficients are not independent functions, and the quartic curve
so obtained is not the general plane quartic curve. Or again, in

space of three dimensions, 5 linear functions ii^, ..., u^ involve 15

ratios of their coefficients, and three sums of squares of these, say

thus involve in all 27 ratios of the coefficients involved, which is the

same nvunber as enter in the equations of 3 quadric surfaces. But
it is not the case that 3 given quadric surfaces can have their

equations put into these forms. On the other hand, four given

qviadric surfaces can have their equations arranged as sums of

squares of the same six linear functions (involving 38 coefficients,

instead of the necessarv 36) (cf. Terracini, Ann. d. Mat. xxiv, 1915,

pp. Iff.).

Some reference to the literature dealing with these questions may
be added here. Let two homogeneous polynomials of order n in

r+l variables x^, ...,av, say (f){xQ, ..., x^),f{xQ, ...,x^), be called

conjugate when one (and therefore the other) of the two constants

<^ (^0 ' ^1 ' • y ' ir) /('^o , -', a;^), f{$o, ...,^r) <l> ('^fl , ", av) vanishes,

where ^, is the operator djdxi. Each form, if general, involves

(w+ r, r) coefficients. Let F be a specified form of order n in the

same variables involving this number of constants, c^, c-^, Let
dFjdCi be denoted by F^{Xq, ...,Xf). Then it can be shewn, by
examining the determinantal condition for the

(
n + r, r) co-

efficients in F to be independent, that the necessary and sufficient

condition that this form F should be possible for/, is that it should

be impossible for a form ^ of order n to exist which is conjugate to

all the {n+ 7', r) forms F^. In particular when, as is often the case,

r+l of the parameters c, enter in F only in a linear function

y, =CqXq+ ... + c^Xj., which enters in F, part of the condition ex-

pressed is that dFjdy be conjugate to all the first polars d^jdx^, ...,

d(f>ldXr, of the form ^. And a particular case of this arises when F is

of the form y^' + F-^, where F^ does not contain c^, ... , c^; then, this

part of the condition, exhausting the reference to Cq, ... , c^, is that

^= should have a double point at the point whose coordinates are
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(Oq , Cj , . .
.

, (v)- Ii^ particular, il' (/• + 1
)-i

(/^ + r, r) be an integer, say h,

then / can be expressed as a siun of h /^th powers of linear forms

provided h points [c^, ..., c^.) exist for which there is no manifold

<f)
= 0, of order u, having these as double points. For example, con-

sidering the converse theorem, however 5 points be taken in a

plane, a (degenerate) quartic curve exists having these as double

points; thus a ternary quartic cannot be expressed as a sum of five

fourth powers of linear forms. Again, a cubic primal in space of

four dimensions contains 35 terms, and the sum of the cubes of

seven linear forms contains the same number; but if seven points be

taken, the cubic primal defined by the chords of the rational

quartic curve through these points has a double point at all of them.

Thus a cubic primal in space [4] cannot be expressed as a sum of

seven cubes. Rex'ersely, a binary form of odd order 2k— 1 can be

expressed as a sum of k powers, there being no binary form of order

2A;— 1 with k double factors. Likewise a plane quintic curve can be

expressed as a sum of seven fifth powers; for seven points can be

taken (three in a line) which cannot be the double points of a

quintic curve; and a cubic surface can be expressed by the sum of

five cubics, since a cubic surface cannot have five general nodes.

For these considerations see Lasker, Math. Ann. lviii, 1904, p. 434,

and Wakeford, Proc. Lond. Math. Soc. xviii, 1920, p. 403. More
recently, J. Bronowski {Proc. Camb. Phil. Soc. xxix, 1933, pp. 69,

245) has remarked that the possibility of the expression of a

primal of order n by h powers of linear forms is that r primals of

order n having nodes at h—1 given points should have further free

intersections; for instance, two plane curves of order n with

^{n+l){n+ 2) — l nodes (when this is integral) have ^(n — 2)(/i — 4)

further intersections ; this vanishes only when n= 2 or w = 4 ; thus

a curve of order 3k ±1, unless A; = l, is expressible by a sum of

^[3k'^ + 3k+ 1 + {2k + 1)] powers. The question of the expression as

a sum of powers of linear forms has been developed fi'om another

point of view ; for instance, the inq^ossibility of expressing a conic

as a sum of two squares is equivalent with the impossibility of

drawing a chord to a Veronese surface in space of 5 dimensions

(given by coordinates f^, t]'^, i,~, ^C» i^> l^> where ^, -q, t, are arbitrary)

from an arbitrary point of this space.

Cf. Palatini, Atti... Torino, xxxviii, 1902, p. 43; Rend. Lincei, xii,

1903, p. 378; Atti... Torino, xliv, 1909, p. 362; and Terracini, Rend.
Palermo, xxxi, 1911, p. 392; and Seorza, Rend. Palermo, xxv, 1908,

p. 193, and xxvii, 1909, p. 148.

Ex. 1. Let ^, 7], L,, T and to be linear functions of the coordinates

{x, y, z, t) in ordinary space, <j>{^, -q, ^, t) a cubic polynomial of any
specified form such that the conditions that the first polars of this,

regarded as a polynomial in x, y, z, t, should be conjugate to the first

polars of a given cubic polynomial / {x, y, z, t), give sixteen independent
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conditions for the coefficients in |, rj, C, t; and let iJj{x, y. z, t) be a given
quadric polj'nomial. Then / {.v, y, z, t) can be written in the form

^(^j ^) ii '^)+ '»Ji/'('i'. y, ^' t). For instance </>(|, 77, C, t) may be

but not f-7? + 7?'-^+ T"'^-

Ex. 2. A general plane-curve of order n can have its equation expressed
by the vanishing of a symmetrical determinant of n rows and columns,
in Avhich every element is linear in the coordinates. If ^, 77, I, be linear

in the coordinates, a conic and a plane cubic curve are respectively given
by the vanishing of the discriminants of the two quadric forms, in ti, v,

and in «, r, iv, iii'~ + 2L,uv + -qv'-, in{^H'- + r]V'-+ ^u:'-) + 2(^viv + r]Vi-u+ i,iiv);

and the result for a plane quartic was obtained bj- Hesse, Crelle, xlix,
1855, p. 243.

A direct proof is suggested by A. C. Dixon, Proc. Camh. Pliil. Soc. xi,

1902, pp. 350, 351; and xii, 1904, pp. 449-53. Let i\^ = be one of the
qqw-1 curves of order n — 1 which touch the given curve. /= 0, in hi {» — i)

points ; denote the most general curve of order » — 1 which passes through
the points of contact by Ajj;jj + A2U12+ •• + '^h'^'i?(

= 0- There exist then
identities of the form 'c\,,.i\g — Vii^v.,.g +fiVj.^ , from which the polynomials 1',.^

{r, s — '2, ... , n) may be determined. It can then be proved that the minor
of iVs in the determinant of n rows and columns

|
i\g

\

is of the form/"~-^,,^

,

wherein /S,., will be linear in the coordinates; and then that the given
curve /=0 is given by

| ^,,,| =0.

Ex. 3. Using t^ , or a-^ , for a homogeneous polynomial of order i in x
and z, shew that a ternary quartic in x, y, z, is capable of the form

f — {y + v^) 4> + i'2"' where ^ is a cubic. Hence shew that the quartic
surface zH- — f is tiirationally equivalent to a cubic] surface. Shew also

that the sextic curve discussed on p. 95 above is capable of the form
i/r = (yz + li-'a) (y^z- + yzv^ + i:;4) -j- (yzvi + t'3)^ ; thence prove that the
sextic surface zH- = li is birationally reducible to the quartic surface

zH'^ — f cited.



CHAPTER V

THE PERIODS OF ALGEBRAIC INTEGRALS.
LOOPS IN A PLANE. RIEMANN SURFACES

As has been indicated, at the present stage of the tlieory of

algebraic geometry, many results find their clearest statement in

connexion with the theory of algebraic integrals; just as the first

exhaustive investigation of the genus of an algebraic curve was in

fact by Abel, for the theory of algebraic integrals {Oeuvres, 1881,

p. 145). And, notwithstanding the initial feeling which may arise,

of the incongruity of the two theories, the geometrical reader will

find it desirable to have an understanding of the main results of the

latter theory. We therefore give now an account, with the objects,

(i) of shewing how to determine the number of periods of an
algebraic integral; (ii) of explaining the conception and use of the

so-called Riemann surface; (iii) of making connexion with an
arithmetic theory of plane curves. All these are helpful towards an
extension of the theory of curves to the theory of surfaces ; in par-

ticular, the geometrical aspect of the theory of Riemann surfaces is

intimately related with a wide theory. Analysis Situs, or Topology,

which promises to give a descriptive alternative to much involved

computation. It must be understood that what we give is, in the

space we allot to it, necessarily very incomplete. It will be sufficient

if it indicate clearly the nature and bearings of the ideas involved

;

detailed developments will be found in many other places.

Meaning and number of periods. We suppose the independent

complex variable x to be represented, in the known way, upon a

Euclidean plane, regarded as closed at infinity by the single point

w=co, like a sphere. Then, taking three simple examples, it is a

familiar fact that the integrals

... f-^dx ....
f-

dx ... A- dx

are not determined by the assignment of their limits of integration.

Each is indeterminate by the addition of a certain constant, and
therefore by any integer nmltiple of this constant. Denoting any
value of either integral by I, and any integer by k, the general

values of the integrals are, respectively, I+ 27rik, I+ kn, I + 2nk.

The respective additive constants, 'Ini, tt, 277, are obtainable, in

the several cases, by a circuit of the upper limit {x), respec-

tively round ^ = 0, round one of the points x= ±i, and round
both the points x— ±1. There is an ob%'ious difference between the
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case (iii), and the eases (i), (ii), in that the integral (iii) does not
become infinite as x approaches to + 1 or — 1, while the integral (i)

becomes infinite when x approaches to .i'= 0, and (ii) wiien x
approaches to +i or —i; another difference is that the subject of

integration in (iii) is ambiguous in sign. Now consider an integral

,. . [^ dx

.'o [(l-a;2)(l-eV^)]^

where e is a constant, which we may take to be real and positive and
< 1 ; this is a generalisation of (iii), but, unlike (iii), does not become
infinite for x= oo. Let {x, y) denote any point of the curve whose
equation is y'^={\ — x'^){\ — e'^x'^); then we may understand (iv) to

denote the integral
^^ ^^ j

Ao, 1)2/'

taken by a path of pairs of associated complex values of x and y, all

representing points of the quartic curve, from the point x= 0, y=\y
to the general point given by the upper limit. Two such paths of

integration, extended over a continuum of possibly complex points

belonging to the curve, from the same initial point to the same final

point, may not lead to the same value of the integral. But the

difference between the values obtained by two such paths is evi-

dently equal to what is found by taking the integral over a certain

closed path; that, namely, which begins from the lower limit, passes

by one of these paths to the upper limit, and then returns to the

lower limit by a path which is the reverse of the second of the two
paths referred to. The determination of the complete aggregate of

values of which the integral is capable, for given positions of the

lower and upper limits, thus requires an examination of the values

obtainable by all possible closed paths of integration, of which
every point (possibly complex) belongs to the curve.

More generally, \etf{x, y) = represent any curve; let R{x, y) be
any rational function of x and y, supposed to be associated so as to

satisfy the equation of the curve; let (a), {x) denote a fixed and a
variable point of the curve, respectively. We may then similarly

I

(X)

consider the integral R {x, y) dx, of which the path of integration is

J (a)

by points of the curve. If this integral become logarithmically

infinite for some positions of the upper limit {x), a closed path about
such a point leads to a value for the integral which does not vanish,

as in the simple cases (i), (ii), considered at first, wherein the subject

of integration was a single-valued function of x only. Suppose that

R{x, y) is such that there are no such points of logarithmic infinity;

there may still be closed paths, as in the case (iv) considered above,

for which the value of the integral is not zero, arising from the
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circumstance that A*(.r, y) is not a single-valued function ol" x only.

We prove in fact that, if p be the genus of the curve f{x, y) = 0,

the general value of the integral, when there are no logarithmic

infinities, is of the form I + iiiiD.i+ ... + m2p^2p^ where / is a parti-

cular value, Qi, ...,Q.2j, are certain constants, the periods; de-

pending upon/(cr, y) and R{x, y), and Wj, ..., >»2d ^^^ integers; by
proper choice of the path these integers may be chosen at will.

\Vhen the function R{x, y) is such that the integral has logarithmic

infinities, its general value will involve also a sum of integral

multiples of constants obtained by circuit of these infinities.

Of this fundamental theorem we consider two methods of proof,

the former of a natural and elementary kind, by means of the theory

of loops, the latter with the help of a so-called Riemann surface,

constructed to represent the (complex and real) points of the curve

/(,r, y) = 0. Although the latter is finally of much greater import-

ance, it may at first seem artificial; and our exposition, making
appeal, for the sake of brevity, to intuitive notions of topology, is

not final.

The method of loops in a plane. For the first method, we
suppose (what is shewn in Chap, ii not to be an essential limitation)

that the curve represented by the equation /(a% ?/) = has no

multiple points other than double points at which the tangents are

distinct; further, the equation being of order m in x and y, we
svippose that the terms of order m have m distinct factors, and that

the tangents of the curve having equations of the form .e= constant,

all touch the curve at simple points, and each only once. The values

of X for which two values of y are equal are then to be found from

f{x, y) = 0, dfjdy=0. Among these are the values for the double

points, say of number 8 ; the other solutions correspond to points

of contact of tangents of the curve with equation of the form

cr= constant. The number of these latter, say w, is given by
iv = m{m—\) — 2h, which is iv = 2m + 2p — 2, since, as we have seen

(Chap. IV, p. 77), p = \{m—V){m— 2) — h. Regarding the complex

value X as represented upon a plane, for a general value x= a there

will be m values of y, say h^, ...,&«; and the values of y, satisfying

the equation /(cr, ?/) = 0, which are in the neighbourhood of the

value y= bi, will be given, when x is sufficiently near to a, by an

expression of ?/— b^ as a power series in x— a. By continuation of the

power series the complete range of values of y satisfying the equa-

tion, as X varies, can be computed from the equation itself, unless we
come to a value of x for which two of the m values of y are equal.

If this be a double point, [^x^, y^), at which, then, by what has been

supposed, neither tangent of the curve has an equation of the form

.r= constant, there will be two expansions, corresponding to the two
branches of the curve, both of ?/— //q in powers of x— x^; the values
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of y to be associated with .r, as this passes through x = 1q, are thus

determined by the values with which the path approaches this

point. But two values of y become equal also at a point x = Xq,

y= yQ, when there is a tangent of the curve given by x= d'Q; the two
values of y for a value of x in the neighbourhood of Xq, are then
given by two power series expressing y — yo in powers of (x — Xq)^,

wherein the coefficients of even powers of {x— Xq)^ are the same,

but the coefficients of odd powers of (x — Xq)^ differ in sign. Either

series is then obtainable from the other by a circuit of the complex
variable ^r round the point Xq of the representing plane. It is the

possibility of this which explains, when we are considering an
algebraic integral ^R{x, y)dx, the existence of closed circuits of

integration which give non-vanishing values of the integral, other

than those arising from points of logarithmic infinity of the integral.

In what follows immediately, we exclude the consideration of

points of logarithmic infinity of the integral ; and we assume that a

closed path of integration for x gives a zero value for the integral

unless the path surrounds points, by circuit of which a value of y is

changed into another value of y (of the kind considered above).

To illustrate the ideas consider first the integral x^~'^dxjy,
J (a)

wherein y^={x— Cj^)...{x— C2p+2)-> ^lie roots c^, ..., Cgp+a being all

different, and the value of x at the lower limit (a) not being one of

these, while i is one of 1, 2, ..., p; thus (jJ^ 1) the integral does not

become infinite for ir=co. The relation between x and y does not

satisfy all the limitations which we have supposed above to hold in

general; but this is immaterial for our purpose. A simple closed

circuit by x round any one of the so-called branch points given by

a:= Ci, ..., a'= C2j,+2» starting with a pair of values XQ,yQ for x,y,

evidently leads to the values Xq, —y^. Suppose the value x= a

to be arbitrary ; consider closed paths of integration for a , each of

which begins at a; = a, with one of the two values of y corresponding

thereto from the equation of the curve, either y= h or y= —b; then

proceeds to the neighbourhood of one of the 2p + 2 branch points

;

makes a circuit about this, which we think of as lying in the im-

mediate neighbourhood of the branch point, but described in either

direction of circulation about this point ; and then comes back to

a;= a along the path of approach. Such a path we call a loop. It is

supposed that to the value of x belonging to any point of the path

there is associated the value of y arising continuously, from the

initial value, by means of the equation of the curve. The 2p + 2

possible loops will be considered in a definite order; and it is sup-

posed that no two of them have a point of intersection other than

the initial point x= a. If we describe first the loop (q), and then

the loop (cg), the result of the first is to lead from the values {a, b),
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for X and y, to the values {a, —h); and the result of the second,

beginning with (a, —b), is to lead back to {a, b). The value obtained

for the integral J.r'~^f/.r/^ round this pair of loops, by what we have
assumed, is independent of the position of .v= a, and the same as

would be obtained by any closed path passing once round the points

(q), (Cg) but including no other branch points, with a proper initial

value for y. The contribution to the value of the integral which
arises by the part of a single loop which is in the immediate neigh-

bourhood of a branch point is zero; the effect of this small part

is to change the sign of y. The value obtained for the integral by
a closed path passing once round the two branch points is not

zero, being, as we easily see, the same save for sign, as twice the

integral taken by a simple path from (q, 0) to (cg, 0). Now con-

sider any closed circuit which, beginning at x= a with the value

y = b, comes back to .v= a zvith the same value y= b. Such a circuit,

in virtue of the principle we have assumed, must give the same
value for the integral as a composite circuit, of the kind we may
denote by /»i(Ci)+ ... + w?2j,+2(c2p+2), wherein (cj denotes the circuit

of the loop defined by c^, and w^, ..., wi2j,+2 are integers; but,

in order that, as we have postulated, the final value of y in the

circuit may agree with the initial value, the sum of these integers

must be even (including zero). It can then be easily seen, if (q, C2)

denote such a simple composite circuit about the branch points

Ci, C2 as we have described, in a specified order, beginning and ending

with the values a, b for x and y, that the general composite circuit

spoken of is equivalent to a circuit which may be expressed in the

form /xi (Ci , C2) + jtia (^2 ' ^3) + • • • + /^2p+i (<^2p+i ' ^25+2)' wherein /x^ , . . .

,

P-2V+1 ^^^ ^l-^o integers (not necessarily of zero or even sum). In

particular, a circuit of this form is that in which every one of

/xj, ..., /xgp+i is 1; this circuit is evidently equivalent, so far as the

value which it gives for the integral is concerned, to a single circuit

round cr=oo, which would give zero for the value of the integral

(there being no branch point at x= 00). Thus, so far as the value of

the integral is concerned, any composite circuit which begins and
ends with the same pair of associated values for x, y, may be sup-

])osed to have the form ^^(q, f2)+ i'2(^2- ''3)+ ••• + '^2p(^2p' '^2p+i)»

where v,= /Zj — /X2j,^i; and this involves only 2j9 circuits (c^, c^+i).

We thus reach the conclusion that the general value of the integral

x^~^dxly is of the form / + v^Q.^ + . . . + vopO^p , where / is the value
J («)

of the integral for a particular path arbitrarily chosen, Q.i, ..., Q.2i>

are definite constants, and vj, ..., V2p are integers. Conversely, by
proper choice of path from (a) to (x), we can suppose v^, ..., v.^p to

have any assigned integer values. The number of periods of an
algebraic integral was known to Galois, who refers to Jacobi and

8-2
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Abel; see his letter to Aiiguste Chevalier, 29 ]May 1832 (Q^uvres

mothematiques d'Evariste Galois..., with an introduction by
M. Emile Picard, Paris, 1897, pp. ix, 30).

Consider now more generally the integral Ji?(.r, y)cLv, supposed
to have no logarithmic infinities, the fundamental equation

f{x, y) = being simplified as above, so that there are 2m+ 2p — 2

simple branch points, all arising for finite values of x. Every one of

these has the property that, w^hen x makes a circuit about it in its

immediate neighbourhood, a particular pair of the )n roots y of the

equation /(a, ?/) = are changed either into the other, the other

m — 2 roots being unaffected. Suppose that these branch points are

considered in a definite order, and a loop, as explained, put about
each, all these loops having the same arbitrary initial point, x= a,

and no two intersecting except at x= a. Denote the values of y
satisfying the equation/ {a, y) = 0, supposed different, hy y^, ...,y^,

in any definite order. Every one of the loops must then be
associable wdth a symbol of two numbers chosen from 1, 2, ... , m,

say (a, ^), or (^, a); the meaning being that, if we start from x— a
with one of the two values y^, yg for y, and follow the value of y,

with the help of the equation /(>r, y) — 0, round the loop, we shall

arrive back at x= a with the other of these two values ; the direction

in which the loop is described is in fact indifferent. If we follow the

same loop with an initial value of y other than y^ or yg, the final

value of y will be the same as the initial value. There may be
several branch points associated with the same symbol (a, ^) ; but the

whole set of numbers 1, 2, ..., m must occur if we consider the

binary symbols for all the loops; and, more generally, it must be
possible, starting at x=a with any assigned value of y, say y^, to

make a selection from the loops, so that the circuit of these selected

loops, in a proper order, will lead, from the initial value y— y^ to

any other assigned value, y= yj, as final value. For, otherwise,

there will be a set of values of y, chosen from y^, ..., y^, but not

including all these, which are interchanged among themselves by
every possible combination of the loops; and this will involve, it is

easy to see, that the polynomial in y, f{x, y), can be written as the

product of two, or more, polynomials in y all with coefficients

rational in x. We assume that this is not so, the curve /(a', y) =
being irreducible.

Not every one of the possible hm{m—l) binary symbols, obtain-

able by taking two numbers from 1, 2, ... , m, will occur, in general,

among the binary symbols associated with the loops as originally

drawn. But, by suitable combinations of the loops as drawn, we
can obtain interchanges among y^^, ..., y^ other than those arising

for these single loops; and it will be convenient to denote such a

combination of single loops which, for instance, interchanges yg and

y , by (P, y), or (y, ^). Consider in particular the combination
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(a, y)(a, |S)(a, y). where (a, /3), (a, y) are among the original single

loops. By the loop (a, y), the roots {i/o^, jj^, l/y)
fvre ehanged,

respectively, to (l/y, I/b^ Ua)'^ ^Y the loop (a, ^) these are then
changed, respectively, to {y^, y^, yg); and
then, finally, these are changed, respec-

tively, by the loop (a, y), to {y^,ijy,yQ);

the composite loop thus interchanges yg
and y^ , but leaves y^ unaltered ; it may
then be denoted by (^. y), or (y, ^). As
indicated by the diagram, the composite
loop, deformed so as to include self de-

structive portions (indicated by the dotted
lines), may be regarded as a loop to enclose

the branch point (a, ^) which approaches this by a detour about the
branch ])oint (a, y). If we interchange ^ and y we may prove in

the same way that (a, j8)(a, y)(a, /3) = (/3, y); and the two results

(since the repetition of a loop gives no change in the initial value

of y) may both be expressed by

(a,^)(a,y) = (a,y)(/3,y) = (^,y)(a,^);

or, in words, by saying that the order of two succeeding symbols
(a, ^) (a, y), which have a common number, a, may be altered, by
carrying either symbol, unchanged, over the other; if the symbol,

over which this transference is made, be modified, by changing the

number in it which is common to the two symbols, into the other

number w'hich enters in the transferred symbol; thus in the first

equation which is written, (a, y) is carried over (a, j8), being put to

the left, with the simultaneous change of (a, j8) to (y, j8). In

applying this, we may for clearness refer to it as the rule of trans-

ference. It is clear, on the other hand, that a succession of two
symbols (a, ^), (y, 8), which have no number in common, has the

same effect as the same two symbols in the other order (y, 8),

(a, j3), the values of z/ interchanged by one symbol not being affected

by the other; we may suppose this remark included in the rule.

Now write down the whole aggregate of the original zv binary

symbols, one for each of the zv branch points, in order, as they arise

from the loops as originally drawn, the symbols written to the right

referring to operations carried out first. We desire to shew that, by
the rule of transference, the aggregate of operations given thereby

can be so modified as to be expressible by the aggregate

(m-1, m)(m-l, m)....(3, J.)(3, 4)(2, 3)(2, 3)(1, 2)...(1, 2),

where there are; first, 2p + 2 symbols (1,2); then, two symbols

(2,3); then, two symbols (3,4), and so on; and, finally, two
symbols {m—l,m); in all 2p + 2 + 2{)n — 2) symbols. For this, we
use the principles: {a), the effect of the whole sequence of zo loops,

upon any one of the values of y, must be to change this into itself,
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the whole sequence being clearly equivalent to a circuit about
x= oc, at which, by hypothesis, there is no branch point; (6), by a
suitable selection from the loops it must be possible to change any
root y^ to any other root yj, as already remarked. And we use
certain rules, which are consequences of the rule of transference;

these, for clearness, may be stated: (i), a pair of consecutive sym-
bols (representative of different loops but) containing the same two
numbers, may be simultaneously carried over another symbol
immediately consecutive to, or preceding, this pair, without change
of the numbers of this symbol; for example (a, y)(a, /3){a, ^) may be
replaced by (a, j8)(a, ^)(a, y), transferring (a, j8) over (a, y), and
then (a. |8) over the changed value of (a, y), which is (j8, y); (ii), in a

set of three consecutive symbols such as those just considered,

where two consecutive symbols involving the same numbers are

preceded (or followed) by a symbol containing a number which
occurs in the two like symbols, this number may be replaced, in both
the like symbols, by the other number of the single (preceding, or

following) symbol, without change in the order of the three

symbols ; for instance (a, y )
(a, j8) (a, ^) is the same as (a, y) (/S, y) (^, y)

;

for the former has been seen to be the same as (a, j8)(a, /3)(a, y), and
in this (a, y) may be carried over both the symbols (a, ^) in turn; we
may call this the rule of attraction; (iii), in a sequence of three pairs

of symbols, such as (y, S)(y, S) (^, y) (^, y) (a, j8) (a, /3), in which the

first pair of symbols involve the same numbers a, j8, the second pair

involve the same numbers ^, y, of which one (j8) occurs in the

symbols of the first pair, and the third pair also involve the same
numbers y, 8, of which one (y) has occurred in the second but not
in the first pair, we may replace the numbers a, ^, y, 8 by a, y, ^, 8,

namely the composite symbol is the same as

(A8)(AS)(i8,y)(Ay)(a,y)(a,y).

This may be proved by two applications of the rule of attraction

;

it may be called the rule of permutation of numbers.

With these rules, suppose, in the sequence of iv binary symbols to

be considered, that the first symbol, that written on the right, is

(a, /S). Regarding the sequence of symbols from right to left, we
may come to other symbols (a, j8), and these may all be carried over
intervening symbols, in turn, and placed to follow the first symbol,

at its left. We thus have a batch of symbols (a, j8) at the right. W^e
may suppose the number of these symbols is even. For suppose it is

odd; then the effect, upon y^, of this batch of symbols, is to change
it into yp; but, as, by principle (a), the complete sequence of the w
symbols must change y^ into itself, as we survey the whole sequence

to the left of the batch of symbols (a, ^), we must come to a symbol
involving the number /3 (and not (a, /3)), say the symbol (^8, y); let
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this be carried over, so as to follow immediately to the left of the

batch of symbols (a, ^) ; so far, then, ij^ would be changed to y ; thus,

as we survey the whole sequence further, from right to left, we must
find a symbol involving y, say (y, S); let this be carried over any
intervening symbols to follow immediately on (^, y). Proceeding
thus, the sequence must be replaceable by one of the form
...(a, A) (A, /c)...{8, y){y, ^)(/S, a)...(|8, a), with other of the re sym-
bols to the left of (a, A). But now we can carry the batch (A, k)...

(y, ^) over the symbol (a, A), until this follows the last (a, ^), where
it will appear in the form (a, j8). We then have, for the whole
sequence, a form ... (A, k) . . . (8, y ) (y, ^) (a, ^) (^, a) . . . (j8, a), with an
even number of symbols (a, ^8) on the right. Arguing in the manner
thvis indicated, we can finally reach the conclusion that the whole
sequence of iv symbols can be replaced by \p, ct][/x, p] ... [/S. y][a,/3],

wherein each such parenthesis as [a, jSJ means a sequence of an even
number of symbols (a, j8), and one number of this parenthesis occurs

in the following parenthesis, until we come to the penultimate
parenthesis [fx, p\, of which the number p occurs in the last

parenthesis [p, ct].

But herein, by repeated use of the rule of attraction (ii), we can
modify the parentheses until each of them, except the first (written

at the right) contains only two binary symbols. For instance,

(p, (j){p, o-)(p, ct)(/x, p) is first, by the application of this rule to the

three symbols [p, (j){p, a){[x, p), the same as (p, u){p., a){pL, a){ix, p),

and then, by the application of this rule to the three symbols

(p, ct)(ju., a)(p., ct), the same as (p, ct)(p,, p)(p,, p)(/x. p); whereby, if

[p, ct] contains more than two symbols, two of them are transformed
to symbols (p., p), which may be included in the parenthesis [/x, p].

Thereby, the sequence of symbols is reduced to consist, first, of a

parenthesis of 2p+ 2 symbols all of the same form, followed by
m — 2 parentheses each of two like symbols, each parenthesis

(except the last) being described by two numbers of which one
occurs in the preceding. The numbers occurring must, by principle

(b), consist of the numbers 1, 2, ... , m, in some order. We can then
use the rule of permutation of numbers, (iii), or, more simply, can
rename the roots i/i, so as finally to obtain the sequence stated

[m-1, mj...[3, 4][2, 3][1,2].

For this theorv, and more detail, see Severi, Algebraisclie Geometrie,
Leipzig, 1921, pp. 205-210; Liiroth, Math. Ann. iv, 1871, p. 181;
Clebsch, Math. Ann. vi, 1873, p. 210; Bertini. Reud. Lined, in, 1894,
p. 106; Clebsch u. Gordan, Abelsche Functnen, Leipzig, 1806, pp. 80-90;
Weierstrass, IVerke, iv, 1902, p. 329.

Now consider the application of this sequence of loops to the

proof of the number of periods of an algebraic integral. First take
the case when the sequence consists only of the 2p + 2 symbols
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(12) (12) ... (12) (12). A form of the equation / (a% y) = for which

this is the case is y-—{x, 1)2^+2? where (.r, 1)2^+2; ^ polynomial of

2p + 2 different linear factors, can be denoted by ?/ot<-^...i<p, where

Ui= {x— ai){x— Cj). We have already remarked that every circuit

about the branch points which leads to the same value of y as that

with which we start out, may be regarded as equivalent to an
aggregate, with integer coefficients, of 2jj circuits, each definable by
a pair of loops, which we may denote by a^ = {a^ , c^), ^^ = (q , 02), ...,

cci={ai, Ci), K = {Ci, «i+i), ..., aj,= (rtp, Cp), pp = {Cj,, c). The circuit is

thus also equivalent to an aggregate, with integer coefficients, of the

following 2]} aggregates, built up from the preceding pairs of loops,

a„ Bi = ^i^2"-i8,; ; a„ B, = ^,...i3,: ;

these 2p circuits are those represented in the diagram.

The periods of any integral SR{x, y)cLv, which is without log-

arithmic infinities, may be taken to be the values obtained by
integration round these circuits.

Next, take the case when there are three values of y, and the

loops enclosing the branch places have been reduced to the 2p + 4i

represented by (23) (23) (12) ... (12). Then an integral, whose closed

path of integration starts with the value y^ for y, and finishes with
the same, can only give a value which is not zero if the path enclose

both the branch points defining the two loops (23) ; but even such a

path is ineffective, since it can clearly be deformed, over the two
branch points (12), until it is a circuit round x= 00, which is not a

branch point. An integral path, beginning with y^, which encloses

both the branch points defining the two loops (23), gives in fact the

same value as an integral path beginning with y^ which encloses

both these points, described in the opposite direction; this is clear

if we replace the closed path by two open paths, passing from one
of the two branch places to the other, remembering that the con-

tribution to the integral due to the portion of a loop immediately
near a branch place is zero. Thus a closed integration with the

initial value y^, about the two branch points defining the two loops
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(23), can be deformed to be round x= oo, and gives rise to no period.

For paths whicli give non-vanishing periods, there remain tlicn only

paths beginning with the vahies y-^ or y^ , enclosing the whole or part

of the 2j9 + 2 branch places (12). Of these, a path enclosing all the

2p + 2 points can effectively, we have seen, be deformed, over the

branch points (23), to a })ath round .i'=oo. We are thus fmally

reduced to a path such as was considered when onl\' the branch

points (12) were present; so that the number of periods is still 2p.

Consider next the case of 2p + Q branch places, given by the

scheme (34) (34) (23) (23) (12) ... (12). As before, a path enclosing

the two branch points (34), which begins with either of the values

i!/4 or ^3, leads to no period; and effectively such a path needs con-

sideration only when the initial value is 1/4. A path, with initial

value y^, which encloses the four branch points (34) (34) (23) (23)

may be deformed to be about x= 00, and is also ineffective; a path,

with initial value y^, enclosing only (23) (23) is thus reducible to one
enclosing only (34) (34), and is equally ineffective. Similar remarks
hold, for circuit of the branch points (34) (34) (23) (23), when the

initial value is y^ . We are thus reduced as before to 2p circuits about
the branch points (12).

And the general case can be treated in the same way, beginning

always with the branch points denoted by the symbols at the left of

the scheme. The general conclusion is that there are 2p periods,

obtainable by circuits of the branch points (12), with y^ or y^ as

initial values.

Riemann surfaces. We pass now to a method of representing

the corresponding values of x and y which satisfy the (irreducible)

equation / [x, y) = 0, which adds greatly to clearness of thought. It

is in intimate connexion with what has been said, but differs from
it by employing, not one plane for the values of x only, but super-

posed planes with the points of which are associated the values of y
as well as of x.

Consider first, as a simple example, the function y= x^, or the

equation y^= x, in particular for values of x near to x= Q. The
values of x being represented upon a plane, there are two values of y
for any small value of x ; but a circuit by x about x= changes one
of these continuously into the other. Now suppose, in order to

convey the idea, we have two equal circular pieces of paper, one
laid over the other, both with their centres at x= Q, say at the

point O; let them both be cut, from the centre 0, along overlying

radii, so that the radius, OA, of the upper sheet, is replaced by two
edges of the cut, say OA and OA', while the underlying radius, OB,
of the lower sheet, is replaced by the edges OB, OB' of the cut in the

lower sheet, OB lying beneath OA, and OB' beneath OA' ; next, let

the edge OA, of the upper sheet, be joined to the edge OB', of the
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lower sheet, say by sticking paper; and suppose that it is possible,

simultaneously, to join the edge OB, which lies underneath OA, to

the edge OA' of the upper sheet, by sticking

paper passing through the other sticking paper
without any connexion therewith (except at O).

Then a circuit of the whole circumference of the
upper sheet, beginning at A' and ending at A,
may be followed without break of continuity by
a circuit of the whole circumference of the lower
sheet, beginning at B' and ending at B, from which we can pass

without break to A'. Two sheets, so supposed to cross, without
connexion (save at one point 0), evidently furnish a representation

of the values of .i- about .r = 0. there being a complete (1, 1) cor-

respondence between the points of the two sheets, and the values

assumed by y in the neighbourhood of x = 0.

Consider next, for example, the function y = [x{x—l)]-, or the

equation y^= x{x—l), there being now hvo branch points, one at

X = 0, the other at x= 1 ; the factor {x — 1 )* is single valued for values

of X in the immediate neighbourhood of x= 0, and the factor x^ is

single valued for values of .r in the immediate neighbourhood of

x=l. This time, imagine two pieces of paper, one laid over the

other, to cover a portion of the plane of x which contains x= and
x=l; let a slit be cut in the upper sheet from .x= to ^r= 1, and an
underlying slit be cut in the lower sheet between the same two
points; then, let one edge of the slit in the upper sheet be supposed
joined to the edge, of the lower sheet, which lies underneath the

other edge of the slit in the upper sheet; and, likewise, the other

edge, of the slit in the upper sheet, be joined to the still free edge of

the slit in the lower sheet, with the supposition, however, that the

two joins can maintain their several identities though inter-

penetrating. Two such sheets will obviously serve to represent the

values of y = x^{x~l)i in the portion of the plane of x above which
the sheets are laid. In this example, we may suppose the two sheets

to be each continued to infinity without further intersection, each

being closed as if laid over the surface of a sphere. Then we shall

have a representation, for all finite and infinite values of x, of the

values of y satisfying the equation y^ = x{x—l), by a two-sheeted

surface, having two branch points, between which is a cross line.

In the previous example, y^= x, such a representation is also

obtained by supposing a branch point at a:;= oo, in addition to that

at x= 0, there being a cross line, at which the two sheets cross,

extending from x= to a:= oo.

The preceding ideas have a simple application to the representa-

tion of the values of y given by the equation y'= UQU^...Uj,, where

Ui = {x— ai){x— c j), all the 2p-\-2 values a^, c^ being different. For
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this, it is evidently only necessary to think of a two-sheeted surface,

with a cross line between the two branch points a, c, a cross line

between the two branch points a^, q, and, in general, a cross line

between Ui and c^-; to every pair of values {x, y), satisfying the

equation, corresponds a point of this surface, and conversely, the

pairs (a', ij), (.r, —y) being represented by the points in the two
sheets which lie over the point representing x in the plane below.

Instead, then, of a closed curve of integration on the plane of x,

which so passes round the critical values of x as to finish with the

same value of y as the initial value, we shall consider, on the two-
sheeted surface, a closed curve which finishes, in the same sheet, at its

initial point. A period of an integral jR{x, y)dx, which has no
logarithmic infinities, will be the result of integration along such a

closed ciu've, unless this gives a zero value. This value will be zero

for a small closed curve, lying wholly in one sheet of the surface, in

the immediate neighbourhood of a point (as follows from Cauchy's

theorem for a single-valued function of a complex variable) ; it will

also be zero for a curve enclosing a region of the double surface

which is capable of being divided into cells bounded by such small

closed curves. Thus the value of the integral, taken round any
closed curve on the double surface, may be the sum of the values

obtained by integration round several other closed curves. The
problem then immediately arises, of finding, if possible, a funda-

mental set of closed curves on the double surface, such that the

integral, taken round any closed curve whatever, is expressible in

terms of the values obtained by integration round the fundamental
curves. If this can be done, the values of the integral taken round
these fundamental curves will be the periods of the integral. The
introduction of the multiple-sheeted surface, though simplifying

very much the representation of the values of y belonging to a given

X, thus raises a new problem, of the topology, or connectivity, of

this surface, to be solved independently of the particular integral

under consideration. And it is convenient to regard this problem
as different from that of the number of independent loops in the

plane x, which we have dealt with, though this may furnish sug-

gestions. Consider for example, first, the simple case of the two-
sheeted surface associated with the equation

^2= (^x- a) {x- c) {x- fli) {x- fi).

Let an oval cut be made in the upper sheet, enclosing the branch
points Ci, a^; and let another oval cut be made, from a point on one
side of the first oval cut, to the point immediately opposite on the

other side, this second cut passing over both the cross lines, so as to

lie partly in the lower sheet (as indicated by the dotted lines in the

diagram). Then any closed path of integration on the two-sheeted
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surface may be shewn to be equivalent to the repetition, a certain

number of times, of integration ^-rrr--^
along one side of the former oval

cut (along APB, in the diagram),

taken with the repetition, a

certain number of times, of in-

tegration along one side of the

latter cut (along CQB, in the diagram). Thus, as was found by the

method of loops, there are two periods. The double-sheeted surface,

in this case, so far as its topology is concerned, is like the surface of

an anchor ring ; on this, two independent closed circuits can be made,
one through the hole, the other round the hole. Or, it is like the

surface of a solid constituted by a sphere with a handle attached.

More generally, it may be shewn that the two-sheeted surface

associated with the equation ?/-= UqU^ . . . Wj, , where m, = {x— a^) {x — Cj)

is, in its topology, like the surface of the solid formed by a sphere

with p independent handles.

A general equation / (^r. y) = Q, with m values for y, simplified as

explained above, so that the loops to the critical points on the plane

of X may be given by a scheme (p. 117, above)

(m-1, m){m-\, m)...{2, 3)(2, 3)(1, 2)...(1, 2),

in which there are 2^4-2 symbols (1, 2), may similarly be repre-

sented by a surface of m sheets, consisting of, (i), two sheets, (1) and

(2), connected by p-{-\ cross lines, with a branch point at both ends

of each cross line; (ii), a sheet (3), connected by a single cross line

with the sheet (2); (iii), a sheet (4), connected by a single cross line

with the sheet (3); and so on, until we come to the last sheet {m),

connected only, by a single cross line, with the preceding sheet

{m — 1 ). Analogously then to the reduction of the loops in the plane

of X, above given, it may be shewn, first, that the presence of the

sheet {m) adds nothing to the possibility of drawing independent

circuits of integration on the surface, circuits thereon being re-

ducible to circuits on the sheet {m—\); then, that circuits on the

sheet (m — 1) may similarly be reduced to circuits on the sheet

(/H — 2), and so on. Till, finally, it appears that effectively all period

circuits are obtainable by consideration of the sheets (1) and (2); if

any periods exist, these sheets are connected by at least two cross

lines (j9>0). The system of independent period circuits is thus of

the same character as for the two-sheeted surface considered above.

Topology of a general Riemann surface. It appears

desirable to sketch the relations of what precedes, which is based

directly on the fundamental algebraic equation, with a very interest-

ing wider theory; it will be necessary, however, to assume as in-

tuitive many properties that require detailed consideration.
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We consider, then, a surface which we suppose to he entirely in

the finite part of space. It consists of real points, some called

interior points, and others not interior points; the aggregate of the

latter points consitutes the boundary; we shall suppose here that

the boundary consists of one or more closed curves, of finite

number. An interior point is one which is an interior point of a

single small region, of which every point is a point of the surface,

having the property that the points of this small region are in

(1, 1) continuous correspondence wnth the points of a simple closed

area in a plane; this may. for instance, be a triangle, and in any case

has a definite boundary curve to which there corresponds (con-

tinuously) a single boundary curve of the region of the surface. The
correspondence is to be such that, to any sequence of points of

either region which has a limiting point belonging to the region,

there corresponds a sequence of points of the other region, with a

limiting point corresponding to the former. Later on it is assumed
that the correspondence is such that the points of the region con-

sidered on the surface correspond to the values of one branch of an
algebraic function of the complex variable which is represented by
the points of the plane region. The definition does not, for example,
allow the vertex of a double cone to be an interior point of a small

region of the surface of the cone, but does allow a branch point of a

two-sheeted surface, such as we have described, to be such an
interior point; though, in this latter case, the boundary curve of the

small region on the surface winds twice round the point. The small

region of the surface may be called a cell; and, with a definite

direction of circulation assigned round its boundary curve, it may
be called an oriented cell. Two oriented cells on the surface may be
said to be adjacent when they have no interior point in common, but
a portion of the boundary curve of one coincides with a portion of

the boundary curve of the other, and these two portions are

described in opposite directions by the orientations of the two cells.

Two oriented cells may be called adjacent, however, also when
the common portion of their boundary curves consists only of

discrete points (the cells having no interior points in common). We
may then have on the surface an aggregate of oriented cells of

which each is adjacent to one or more of the cells of the aggregate,

and in such a way that the portions of boundary curves, of cells of

the aggregate, which belong each only to one cell, form together one
or more continuous closed curves, each with a definite direction of

description. The simplest case is that of a single simple closed curve
forming the boundary of a region entirely filled with adjacent cells,

the single closed curve having a definite direction of description

which, over every portion, agrees with that of the cell whose
boundary curve contains this portion. If C be such a single simple
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closed curve, we denote its bounding character, which we have
described, by writing C ~ 0. And, if the boundary of an aggregate

of adjacent cells consist of two simple closed curves, each with a

definite direction of description, in consonance with that of the

portions of boundary of cells from which the closed curve is made
up (as explained), these curves being A and B, then we write

A + B~0; or, if we assign to B the opposite direction, denoting it

then by Bj^, we write A~B^. We shall assume that the whole
surface under consideration may be regarded as an aggregate of

adjacent cells, and that the portions of boundary curves which are

not common to two adjacent cells, form (one or more) boundary
curves, each with a definite direction of description, which, for

every portion of such a boundary curve, is that derived from the

orientation of the cell to which this portion belongs ; and further,

that such a boundary curve does not cross itself or any other

boundary curve. This assumption involves not only that the surface

is of one piece, but also that it is consistently orientable (sometimes
described as one-sided). A closed surface is one for which no
boundary curve exists. It will be understood that the relation

expressed by C ~ may be established by infinitely many different

ways of dividing the surface into cells. This relation holds when the

closed curve C can be continuously deformed (remaining on the

surface) into a small closed curve lying entirely in the immediate
neighbourhood of a single point of the surface, but this is not a

necessary condition for C — 0.

It may be worth while to make this last remark clear by considering
a simple concrete case. Consider a conical hill, of which the whole surface

is accessible, including the summit. Evidently a circuit round the base
of the hill is ~0, for it can be continuously deformed, up the surface of
the hill, to vanish about a point at the siunmit. But now suppose a
tunnel, of circular section, is cut through the hill (from one side of the
hill to the other), and the surface of this tunnel (including its roof) is

added to the outside surface of the hill. The circuit round the base of
the hill (below the tunnel level) cannot now be continuously deformed
(remaining on the surface of the hill) to a closed curve at the summit.
But it is still ~0. For let ^, B be points of the circuit at the base, on
opposite sides of the hill, and let ASB be a path from A up one side of
the hill, to the summit S, and down by the other side to B; denote the
same path described in the opposite direction by BSA. The points A, B,
of the circuit at the base, divide this into two portions, which we may
distinguish by taking a point P in one and a point Q in the other, so that
APBSA is a closed circuit, and BQASB is also a closed circuit ; the circuit

APBSA is deformable, on the surface of the hill, into a circuit A about
one entrance to the tunnel; and the circuit BQASB is deformable into

a circuit /i, about the other entrance, in both cases with retention of the
direction of description of the circuits. It is easy to see that, if A, /x be
deformed to coincide along a section of the surface of the tunnel in its

interior, they will, along this section, be described in opposite directions.

Thus the surface of the hill bounded by the circuit APBQA at its base.
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can be divided into adjacent reijions, such that the common portion of
the boundary of any two adjacent regions is, as belonging to the two
regions, oppositely directed. So that APBQA is ~0.

Consider now such a surface as we have described, with or without
boundary curves. It may be that every closed curve drawn thereon
is ~ ; this is the case for instance for the complete surface of a
sphere, as also for a portion of the surface of a sphere bounded by
any simple closed curve drawn thereon. But, on the cvu'ved surface

of a right circular cylinder, bounded by the circumferences of the
two Hat ends, closed curves can be drawn, encircling the cylinder,

which, not utilising the two bounding circumferences, are not ~ 0.

In this case we remark, (i), that if one such closed curve be drawn,
say C, any other such curve is ~ C; (ii), that, if the surface be cut

along a generator, from the circumference at one end to the circum-
ference at the other end (an operation which does not separate the
surface into two pieces), then, on the mutilated surface, every closed

curve is ~ 0. In what follows we shall assume that, on the surface

which we consider, it is possible to find a finite number of simple
closed curves Q, Cg , . . . , C^, such that every other closed curve is

~ a linear aggregate of these curves, each described a certain

number of times; or, in symbols, that, for every closed curve C on
the surface, there is a set of positive or negative integers, m^, ... , m^,
such that C ~ m^Ci + . . . + tHj.Cj. ; the number r, taken as small as may
be possible by proper choice of C\, ..., CV, will be called, for the
present, the rank of the surface. We shall consider how the rank
may be modified by the introduction of cuts in the surface, this

being, in many cases, a simple way of computing r. The final object

is, for the case of a surface which represents the pairs {x, y) satis-

fying an algebraic equation, /(^r, ^/) = 0, to make a connexion be-

tw'een the number r, which gives the number of periods of an
algebraic integral associated with this equation, and the genus p of

the equation.

The operations of cutting the surface which we employ may be

:

(i), the making of an infinitesimally small hole, say a pinhole,

whereby the surface acquires a pinhole boundary besides those it

may have had ; the hole may be extended to a slit, or be of finite

size, so that it does not interfere with other cuts made in the
surface; (ii), the making of a cut from a point of a boundary curve
to another point of the same, or a different, boundary curve; w^hen
the cut, beginning at a point of a boundary curve, has been
partially made, the two edges may be counted as new boundary
curves, and the cut, instead of ending on a new boundary curve,

may end at one edge of the portion of the cut already made. Such
a cut is often called a cross-cut (Querschnitt); we shall call it a
traverse; (iii), the making of a (infinitesimal) pinhole, followed by a
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traverse which begins and ends at the boundary of the pinhole ; the

total cut so obtained will be called an oval cut ; it is sometimes called

a loojj cut.

We now develop in order a set of twelve results, for which,

throughout, we make appeal to intuitive conceptions

:

I. A surface with two, or more, simple closed boundary curves,

which do not meet, must have r > 0. For, make a traverse from a

point of one boundary curve to a point of another boundary curve.

We can evidently pass, on the surface, from a point on one side of

this cut to the opposite point on the other side; for instance by
following one of the two boundary curves ; it appears clear, there-

fore, that on the original surface, before the cut is made, a closed

curve can be drawn which does not constitute by itself the complete

boundary of a portion of the surface.

II. If a surface having only one simple closed boundary curve

have r> 0, it is possible to make thereon an oval cut, and it is also

possible thereon to make a traverse, without dissevering the sur-

face into two or more separate pieces. For suppose an oval cut to

be possible, and to be made, which does dissever the surface; the

number of pieces must then be two, one bounded by the original

boundary curve of the surface taken with one edge of the oval cut,

the other bounded by the other edge of the oval cut ; this latter then

shews how to draw on the original surface a closed curve forming by
itself the complete boundary of a portion of the surface. Thus, if

every oval cut, made on the original surface, dissevered the surface,

every closed curve on the original surface would be ^ ; and this is

contrary to r > 0. We can thus make, on the original surface, an oval

cut which does not dissever the surface. And this oval cut, with a

traverse joining one edge of it to the original boundary line of the

surface, constitutes a (looped) traverse which does not dissever the

surface.

III. It follows from I and II that a surface with a boundary

curve (or curves) which is dissevered into separate pieces by every

traverse must have r= 0. This is a consequence of I for a surface

with two or more boundary curves, and of II for a surface with only

one boundary curve. It is also true that a surface without boundary

which is dissevered by every oval cut must have r— 0.

IV. For a surface without boundary, the introduction of a pin-

hole boundary does not alter the value of r. We shall therefore

suppose all the surfaces which we consider to have such a boundary,

if they have no other. For a surface with one or more boundary

curves, the making of a new pinhole boundary increases the value

of r by unity.

V. If a surface have r= 0, it follows from I that it cannot have

more than one simple boundary curve; and it follows also from
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r = that every oval cut, as also every traverse, dissevers the sur-

face. For a surface with r > 0, having one or more simple boundary
curves, a traverse, which does not dissever the surface, diminishes

r by unity. Such a traverse, in fact, destroys the possibility of com-
pleting, into a closed curve, a path which passes, on the surface,

from a point on one edge of the traverse into the opposite point of

the other edge.

VI. It follows from IV and V that, on a surface with one or more
boundary curves, an oval cut, which does not dissever the surface,

does not alter the value of r. For such an oval cut may be obtained

by making a pinhole boundary, and then a traverse beginning and
ending thereat. As said in V, the possibility of such an oval cut

involves r > 0. The boundary curve assumed (when there is but
one) may be only a pinhole bovmdary, of which the oval cut must
then be independent. For a surface without boundary the theorem
is not true, as we see for instance by considering the surface of an
anchor ring.

VII. If a traverse dissever a surface of rank r into two portions,

of respective ranks r^ and r^, then r= i\^-r2. The possibility of a
traverse involves that the given surface has at least one boundary
curve. To prove this theorem, let r^ closed curves be taken on one
portion of the dissevered surface, and r^ closed curves on the other

portion, in terms of which all closed curves, of the two portions

respectively, can be represented with the connexion ~, as in the

definition of the rank. Then we assert that the aggregate of these

i\ -{-
/'a

curves would, on the original surface before the traverse was
made, be a system in terms of which every closed curve of the
surface could be represented; and that there is no aggregate of
curves consisting of multiples of curves from the system of 1\ curves,

taken with multiples of curves from the system of r^ curves, which,
on the original surface, is ~ 0. The former assertion is equivalent

with r^r^ + rg. In regard to this, it is evidently true that closed

curves lying entirely in one of the two portions of the surface are

representable by aggregates of curves from the r-^+ r^ curves; but
also, a closed curve of the original surface, which crosses the track
along which the traverse is subsequently made, can be replaced by
an aggregate of curves each lying entirely in one of the two portions

of the surface, namely by adding, thereto, parts lying along the
track of the traverse, to be described twice over, in opposite direc-

tions. The second assertion, equivalent to r'^r^+ r^, is that the
**!+ ^2 curves cannot be replaced by a smaller system after removal
of the traverse. Now, by hypothesis, the traverse dissevers the
surface, and thus renders impossible any path on the surface con-
necting a point of one of the i\ curves with a point of any one of the
rg curves; if then a certain aggregate of curves from the r^ curves.
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with a certain aggregate of curves from the r^ curves, forms the

complete boundary of a portion, a, of the original surface, there

must be points of the traverse lying in this portion a. But, from such

a point, a traverse cannot pass to the boundary of the original sur-

face, without passing over the boundary of the portion a; this

boundary is made up, however, of curves from the )\ + r2 curves, and
these are supposed so drawn that none of them meets the traverse.

There is thus no aggregate of curves, from the r^+ r^ curves, which
is ~ 0; which is the second assertion. If there were a less number
than i\+ r2 curves, on the original surface, in terms of which the

7*1+ ?2 specified curves could be expressed, with the connexion ~,
these specified curves would be connected in the way now proved
impossible.

VIII. If an oval cut dissever a surface of rank r, with one or

more boundary curves, into two pieces of ranks i\ and r^, then

r+ 1 = r-L+ rg . For, to make the oval cut, we first introduce a pin-

hole boundary, thereby increasing the rank to r+1 (by IV), and
afterwards make a traverse beginning and ending at this point, in

this case a dissevering traverse.

IX. From VII and VIII we infer that, if a surface of rank r, with

one or more boundary curves, be dissevered into two portions, of

respective ranks 7\ and 7-2, by means either of a traverse, or of an

oval cut, then r—l = q+ {7\ — 1 ) -1- (rg— 1 ), where g= 1 in the case of a

traverse, but q= Oin the case of an oval cut. If, for a surface with a

boundary, for which r>0, a traverse be made which does not dis-

sever the surface, the rank, r^ , of the surface with this traverse, is

given (V) hy ri= r—l; this result is included in the formula we have

given if we put g=l and omit the term r^—l. If an oval cut be

made which does not dissever the surface, we have (by VI) ri= r,

likewise obtainable from the formula by putting q= 0, and omitting

X. Hence we can infer, by induction, that if, on a surface of rank

r, with one or more boundary curves, there be made q traverses, and

also oval cuts of any number (including none), and the result be an

aggregate of distinct pieces, with respective ranks
/"i

, 7-2 , . . . , then

r-l = g+ 2(r,-l).
i

This is a capital result.

XI. A particular theorem, useful to us, is that, for a surface with

only a single pinhole boundary, the rank r is even. Suppose r > 0.

We can then (by II) make a non-dissevering traverse, beginning and

ending at the point boundary, so obtaining (by V) a surface of rank

r— 1 . As this has two boundary curves, the edges of the cut, it

follows (by I) that ?- 1 > 0. Hence (by III) we can further make a

non-dissevering traverse, passing from one edge to the other of the
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first traverse, thereby obtaining (by V) a surface of rank r— 2, with
only one boundary curve, constituted by the edges of the two
traverses. If r— 2 > 0, we can proceed
as before, using the single boundary
curve as we did the point boundary;
then, with two additional traverses,

we obtain a surface of one boundary
with rank r— 4. The process can be
continued if r— 4 > 0. If r were odd, we
should reach a single surface of rank vniity with one boundary curve,

reducible, by a single traverse, to a single surface of zero rank,

with two boundary curves; and (by I) such a surface does not
exist. Thus ;• is even ; and the process stops with a surface of zero

rank, with one boundary curve, after \r pairs of traverses have
been made. The operation is illustrated by the diagram, where
the dotted lines are to indicate the absence of intersection of the
traverses.

XII. Now consider a surface constructed to represent the pairs

of values of x, y which satisfy an irreducible algebraic equation

f {x, y) = 0, consisting of tn sheets laid over the surface of a sphere,

connected together at branch points. We need not limit ourselves to

the hypothesis of merely simple branch points, in which only two
sheets of the surface wind into one another, such as we have de-

scribed in detail; it is clearly possible, in a similar way, to represent

the k values of y, = x^, where h = Ijk, when x is small, by means of

k sheets, winding into one another about x= 0, having {k—1) cross

lines through this point, over which every sheet preserves its identity.

We may then suppose the general branch jDoint, of the surface under
consideration, to involve k^ sheets, passing into one another over
A'; — 1 passage lines, each of which is a passage line, or cross line, at

some other branch point. We assume that the surface can be con-

structed, to represent the m values of y satisfying / (a;, ^) = 0, and
satisfies the conditions we have explained. It will be closed ; but we
take an arbitrary pinhole boundary. Putting

Wi= ki—1 for each branch point, and tt' = 2zf;,

w'e prove that the rank of the surface is given

by r = iv — 2m + 2. We can suppose that there

are two polar regions, within which no two of

the m sheets are connected by branch points.

By cutting through all the m sheets, say along

arctic and antarctic circles, we can separate

these polar regions from the rest of the surface, leaving m pieces

about each pole. Supposing the i)inhole boundary to be, in one of

the m sheets, in one of the (in all) '2)n closed cuts thus made, these

cuts constitute one traverse and 2in — 1 oval cuts. We can suppose,

9-2
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by slight deformation if necessary, that no branch point of the

surface Hes immediately under another branch point ; and then, if s

be the number of branch points, we can make s cuttings, through
all the sheets, along meridian curves, from arctic circle to antarctic

circle, so separating the branch points, any one of which now lies, in

one of the m sheets, between two meridian curves. This is equi-

valent to making ms further traverses on the surface. Between
two such cuttings along meridian curves, enclosing a branch point
connecting say k^ sheets, there will be, beside m — k^ simple pieces,

all separate, and each of zero rank, a single piece consisting of ki

sheets connected at a branch point; and this single piece also has
r= 0. The total number of pieces, after the cutting, is

a, =2m+ 'L{m — ki+l), or 2m + sm — zv;

the total number of traverses is q, =l + ms; and every piece is of

zero rank. Whence, by the formula r—l = q+ 'L{7'^ — l), we have
r— 1 = 1 + ms — a, =w — 2m +1; as was said.

This simple proof of the value of r is due to Carl Neumann
{Riemann's Theorie, Leipzig, 1884, p. 169). Riemann's own proof

{Ges. Werke, 1876, p. 107) is by a contour integration round the

boundary of the surface, after it has been dissected, as explained

above, by r traverses, into a single surface with zero rank. The result

is of importance to us, as establishing the connexion between r, and
the genus, p, of the algebraic equation / (a:, ?/) = 0. For we have
previously shewn (Chap, iv, p. 83) that w= 2m-\-2jp — 2. Wherefore
r=2p. This shews that the number of periods of an algebraic

integral, associated with / {x, y) = 0, which has no logarithmic

infinities (which, by the definition, is r), is equal to 2p, as was
previously proved in a different way, under the hypothesis of

simple branch points.

Curve systems on a surface. We proceed now to indicate how
the preceding theory of the topology of a Riemann surface is con-

nected with another theory which goes back to Euler and Moebius.

Consider in space a set of points, a^ in number, and a set of lines, aj

in number, each joining one of the points to another, no two of the

lines having an intersection which is not one of the points. We may,
in many ways, consider the lines, each used only once, as forming,

properly grouped, a set of closed circuits, each wuth a certain

number of diagonals, joining pairs of (the given) points on the

circuit, this being so done that any of the circuits is connected, to

other of the circuits, by one or more of the given lines. The given

lines are thus distributed into, portions of circuits, diagonals, and

joins of circuits. If any of the points is then common to, say, *

circuits, we suppose it replaced by s points, of which one is con-
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nected to the 5—1 others by newly introduced hnes ; this introduces

changes in the nvunbers aQ and a^ , as well as new Hnes of the third

of the three categories spoken of. After this modification, denote

1 — a^+ ai by k. Then the sum of the numbers of hnes which are

either diagonals or joins of circuits is /c— 1; for the contribution to

a^— ao by each polygonal circuit is zero, there being as many points

as lines entering in the circuit, and each diagonal and each join

means a contribution of unity to a^, with no addition to ao-

Next consider a closed surface, with one pinhole boundary, dis-

sected, as we have described, by q traverses and any number of oval

cuts, into pieces of I'cspective ranks r^ . Suppose that, on the un-

dissected surface, in place of these traverses and oval cuts, we draw-

lines. The points of intersection of these lines, and the lines them-
selves, then form such a system as we have described; in this

system the oval cuts, and the first traverse which was possible

(beginning and ending at the point boundary) are represented by
polygonal circuits, but the other traverses are represented either by
diagonal lines or by joins of circuits. Thus the numbers q and k are

the same. If we denote by a^ the number of pieces into which the

surface was dissected, there will be ol^ regions on the undisseeted

surface on which the lines are drawn, with the property that we
cannot pass, on this surface, from the interior of one of these regions

to the interior of any other, without crossing one of the lines; we
call this the number o^ faces. The formula r—\ = q+ H (r, — 1) thus

gives, for the rank of the closed surface with one point boundary,

r=l + l — ao+ ai + 2/', — ag, which is ?-= 2 — (ag— ai-fa2) + Srj-. Of
this result a very simple example is given by Euler's well-

known formula for the surface of a polyhedron, which has a^

vertices, a^ edges, and ag faces, where every face has zero rank, and
the whole surface of the polyhedron has zero rank (Sr; = 0, r= 0);

the formula then becomes a,,— ai + a2=2.

We may illustrate the results of this chapter by some simple ex-
amples.

Ex. 1. If, in the curved portion of the surface of a right circular

cylinder, we cut a hole, the remaining part of this curved portion may
be dissected into a single piece by two traverses joining the hole to the
circumferences of the two ends. For this piece we have r^ = 0. Putting
g = 2 in the formula r—l—q + 'E(r^ — l), we have r — 1 = 2 — 1 ; thus r= 2,

for the curved portion in which the hole exists. It is indeed easy to see

that, if we draw two closed curves on this surface, one encircling the
hole, the other encircling the cylinder (not intersecting the former), then
any other closed cur\'e on the surface forms by itself, or with one, or both,
of these, the complete boundary of a j^art of the surface.

Ex. 2. The part of a plane which is interior to a circle but exterior

to A' other circles which lie inside the first (not intersecting this or one
another) has, likewise, r = /i.
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Ex. 3. The surface, of one piece, with one boundary line, and one

portion overlying another, illustrated in the diagram, is reduced to a

single piece of rank zero by two traverses (such as those dotted in the
diagram). Thus r= 2.

Ex. 4. The surface of the convex solid formed by cementing one face
ABC, of a pjTamid ABCD, to the larger face PQR of another pyramid,
has evidently the connectivity of the complete surface of a circular
cylinder, including its ends (or of the surface of a sphere), namely r = 0.

If the lines be drawn on the surface of the cylinder which correspond to
the edges in the duplicate pyramid, we may employ the formula
r = 2 — (kq— «! + a2) + Srj, with a,, = 8, ai = 12, 0.2 = 7, r^ = except for the
curved portion of the surface of the cylinder which has rank unity ; and
this also gives r= 0.

Ex. 5. For the surface of the solid which is formed by joining each of
n spheres (lying externally to one another) to the other n — 1, by thin
circular cylinders (each cylinder meeting in closed curves the two spheres
which it joins), we may find the rank by dissection. If we make a cutting
along each of the n{n — l) closed curves in which the cylinders meet the
spheres, there will result n spheres, each with « — 1 holes, together with
the curved surfaces of ln{n — 1) cylinders. For each such sphere we have
r, = ri — 2, and for each such curved cylindrical surface we have r, = l.

The cuttings (if the pinhole boundary be properly taken) consist of one
traverse, and n{n — l) — l oval cuts. Thus, by r— 1 =</+ S(r, — 1), we
have r-l = l+?2(n-2-l) + i«(«-l)(l-l), or r= («-l)(n-2). In
particular, for n = 2 the surface is similar to the surface of a sphere ; for

n = 3 it is similar to the surface of an anchor ring.

Ex. 6. We have shewn how a Riemann surface can be dissected to a
single piece of zero rank. Hence, on the undissected surface a system of

.b, bp

Cz Cp-i

lines can be drawn consisting of p couplets linked in order hy p — 1 other
lines, a couplet consisting of two simple closed curves with one inter-
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section. For this system of lines we have ixQ = j) + 2{p — \), =3p — 2;

ai = [3 + 4(;9-2) + 3]+^-l, =5p-3, since the first and last couplets

have 3 edges, the intervening couplets have each 4 edges, and the linking

lines are p — \ in number; and passage remains possible on the surface

between any two points, or a2=l. Thus we have, in agreement with
r = 2 — ( ay — a^ + Kg) + I^Tj , the result a„ — aj + aj = 2 — r = 2 — 2p.

Ex. 7. Similarly a system of lines on the Neumann model, considered

in XII above, is indicated by the cuttings, for which ctQ = 2ms,
a^ = 2ms + ms, aj = 2m + sm — w; and these give a^ — a^ + otj = 2m — w, which
is also 2 — 2p.
As is briefly noticed in Vol. vi (in connexion with the so-called Zeuthen-

Segre invariant /) the expression aQ— a^-t- ag is capable of wide generali-

sation. It is clear from what is said here that, if the value of this be
proved to be independent of the system of lines on the Riemann surface

by which it is defined, it can be made the basis of the determination of

the number of periods of the algebraic integrals.



CHAPTER YI

THE VARIOUS KINDS OF ALGEBRAIC
INTEGRALS. RELATIONS AMONG PERIODS

The present chapter is in the nature of a Note, collecting together
briefly details in regard to the characters of the various kinds of

algebraic integrals which present themselves for a fundamental
algebraic equation / (.r, y) — 0.

From the point of view in which the equation / {x, y) = is

regarded as representing a plane curve, in the case in which this

curve has no multiple points other than double points with distinct

tangents, and the lines x = 0,y= are in general positions with
respect to this curve, we have shewn that, if p be the number of

everywhere finite algebraic integrals belonging to the curve, then p
is also the number of adjoint polynomials of order m — 3 (if m be the
order of the curve) ; and further that these polynomials have each
2|? — 2 zeros on the curve (other than at the multiple points), no one
of which is common to all of them. Also that the number of tangents
which can be drawn to the curve from an arbitrary point is

2m + 2p — 2. We have also shewn that the theory, for a curve whose
multiple points have any complexity, can be reduced to this case,

by birational ^transformation, which will leave the value of p, as

defined, unaffected. We have then shewn, for the simple case, by
means of the formula w= 2m+ 2]) — 2, using loops of integration,

that a general algebraic integral without logarithmic infinities,

associated with the curve, has 2p linearly independent periods ; and
we have obtained this same result by use of the Riemann surface.

It is very desirable that the notions associated with the theory of

the Riemann surface should be familiar; and we regard this point of

view as always in the background. But the algebraic theory of the

algebraic integrals owes very much to Weierstrass, whose lectures

{Ges. Werke, iv) should be consulted. When the Riemann surface

has been dissected by the loop pairs ai,bi, ...,aj,,bp, and the
linking cuts Cj, ..., Cj,_i, as described above (Chap, v), it is simply
connected, any closed curve theorem being reducible to a point

boundary. On this surface then (as follows from Cauchy's theorem
for the contour integral of a single-valued function of a complex
variable) every algebraic integral, associated with it, which is

without logarithmic infinities, is determined by its initial and final

points of integration alone. An algebraic integral having also

logarithmic infinities, say at (zj), ..., (zj.), may also be rendered
dependent only on the limits of its integration, namely by intro-



Kinds of algebraic integrals. Periods 1*37

ducing further cuttings of the surface along curves joining

(%), ... , (Zfc) to an arbitrary point of the surface (or in simpler ways,

as will be seen).

Consider any algebraic integral ^Rdx, where R is rational in the

X, y, which are throughout connected by the rational (irreducible)

equation/ (a', y) = 0. For the neighbourhood of a place at which the

local parameter is /, substitution for x and y gives to the expression

Rdxjdt a form

„ dx M N A „ „, ^^
** = <K+F + - + T +

^+"'+"'°+--

where /i, v, ..., in finite number, are positive integers, for which
/i>v >...>!, and p,cr,..., in indefinite number, are likewise

positive numbers (p<ct <...). The integral jRdx, regarded as a

function of its upper limit {x, y), is thus infinite at the place in

question like -3//(/Li-l)^/^-i-iV/(v-l )/"-!- ... + ^4 log/, in which
A log t is the logarithmic part, and the other parts may be described

as algebraic. We can, however, shew how to construct integrals of

the following kinds: (1). An integral which has no place of algebraic

infinity (so that the coefficients M, N, .

.

. are absent in the expansion

about every place), but has a logarithmic infinity at each of two
arbitrary places (and not elsewhere). The coefficients A which arise

for these two places are then (Chap, iii, p. 47) equal and of opposite

sign. If the two places be denoted by (^) and (y), and, by division

by the constant A, the integral be taken so that the multiplier of

the logarithmic term at (^) is +1, and at (y) is —1, such integral,

integrated from the place (a) to the place (x), will be denoted by

P/
, and called an elementary integral of the third kind. (2), An

integral which has no place of logarithmic infinity, but is alge-

braically infinite at one arbitrary place, the infinite term in the

expansion of the integral, in terms of the parameter, for the neigh-

bourhood of this place, being — 1~^, there being no negative powers
of t of higher than the first order. If this place be (^), and the

integral be taken from (a) to (x), such integral will be denoted by
E^'°-, and called an elementary integral of the second kind. (3). We
have shewn (Chap, iv, p. 64) how to construct everywhere finite

integrals. \i p such integrals, linearly independent of one another,

taken from (a) to {x), be denoted by u-^'*^, ..., w/-'', the definitions

of P^'" and £^^'« are equally satisfied by P^'"-t- U, Ef'''-\- V, where

U, V denote linear aggregates of Uj^'"; ..., uj^'°' with constant
coefficients. Conversely, if P, P' be any two functions satisfying

the definition of Pt'", with the same limits, and infinities, and

multipliers, the difference P' — P is necessarily an everywhere finite

algebraic integral, and is thus a linear aggregate such as f/ or F;
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and the similar remark is possible for the difference of two ele-

mentary integrals E^^'^, with the same pole.

From the integral Er^'^ can be formed, by differentiation in regard

to I, an integral which is algebraically infinite, at

the place (^) only, to any integral order. For, let

(x) and (^') be places, both in the neighbourhood
of (C)—on a branch of the curve, of which (^) is the

centre—in the range for which the local parameter
for (l) is valid; let the passage from (^) to {,v) be by
the value t, and from {I) to (^') by the parameter t.

AVe can then suppose (x) so near to (^') that we pass from the latter

to the former by a paraineter t' equal to /— r. Because (x) is in the

neighbourhood of both (^) and (^'), we have expressions of the forms

Ef''^=-t-^ +M+ Nt+..., Ef'''=-f-^+ M' + Nr+...,

leading to

Er/'''-Ef'^=-{t-r)-^ + t--^ + M' + Nr+...-{M+ Nt+...);

if we now suppose (^') to approach to (0, so that t remains constant

but T diminishes in absolute value, this difference is expressible as a

power series in r, of the form —Tt~^ — TH~^+... + co, where cu will

ultimately remain finite when (x), later, approaches to (t,). It

follows then that, as t vanishes, the hmit of {E^-^'°'— Ef'^)lT is an
algebraic integral, with (x) as variable place, which becomes
infinite, when {x) approaches to (^), only like —t~^. This limit we
denote by D^E^'^. We shall see (in the next chapter) how to obtain

an explicit expression of this, from the expression of Ej^'°', by
differentiation under an integral sign. Precisely similar reasoning

shews that we can obtain, as Dj^-'^E^''^, an algebraic integral, in

{x), which becomes infinite only when {x) approaches to ({), like

— {k—l)llt^. And similar reasoning shews that we may obtain

Ef'"', by differentiation in regard to I, from P^'", namely that

E^'^'^= D^P^'", where the differentiation is in regard to the para-

meter at (^).

It is easy to form an explicit expression for the integral P^' ^, and

convenient to explain the process by regarding the fundamental
equation as representing a curve. First, suppose (C) and (y) to be

ordinary simple points of this curve, not branch places ; let the line

joining these points meet the curve again in the (generally) simple

points Ai, ...,Ajn_2. The general adjoint curve of order m —

2

drawn through the points A^^, . . .
, A^_2 has other intersections with

the curve, beside those at the multiple points, whose number is

2^ — 2-fm— (?/i— 2), or 2p; and this curve contains, homogeneously,

2p—p + l, orp + l arbitrary coefficients; this follows from Chap, iv,



Kinds of algebraic integrals. Periods 139

p, 78. If L = be the equation of the Hne joining the points {t) and

(y), and
<f)
be the general adjoint polynomial of order ?», — 3 (con-

taining p arbitrary homogeneous coeffieients), it follows that the

adjoint curve in question, through A^, ..., A,n_^, has the equation

L(f>-\-cU = 0, where c is an arbitrary constant, and [7= is a parti-

cular curve satisfying the conditions. Consider now the algebraic

integral l{L<f>-\-cU)dxlLf' {y); by the conditions of adjointness

satisfied by L^ + cL7= 0, this integral is everywhere finite save at the

points {I) and (y), the other zeros of L = being compensated by
zeros of L(f) + cU. At (C) and (y), the integrand having a pole of the

first order, the integral is logarithmically infinite ; and the constant

c can be chosen so that the multiplier of the logarithm is + 1 at (^)

;

it is therefore — 1 at (y), as we have shewn. We see that the integral

is of the form jcUdxILf {y) + j(f)clxlf{x), of which the second part

gives the addition we have found above, of p everywhere finite

integrals, to a general integral Pf". When (t,), (y) are any two

distinct places of the curve, a precisely similar construction can be

made, if an appropriate birational transformation of the curve be

first introduced. In the simple case (and therefore in general) the

integral Ef''^ can be constructed in like manner, if for L = we take

the tangent of the curve at the point {Q.

Now consider any algebraic integral jR{x, y)dx whatever. It is

clear, if the places at which this integral has algebraic infinities be

places (^), and the places where it has logarithmic infinities be

places (^)—both kinds of infinity may enter at the same place—and,

if (y) be an arbitrary place, that we can form an algebraic integral

of the form

-rR{x,y)dx+ I.[AEf'^+ A^D^Ef'^+... + Aj,_^D^^-^Ef''']
Ja I

wherein A, A^, ..., A^._^, B are appropriate constants, which be-

comes infinite, if at all, only at the single place (y). This, however,

it does not do, since the sum of the values of the constants B, at the

places where ^R{x, y)dx has logarithmic infinities, is necessarily

zero (Chap, iii, p. 47). This integral then must be an aggregate of

everywhere finite integrals. In other words, the given integral

jB{x, y)dx is expressible as an aggregate, (i), of integrals P/ y, as

many as the number of places {t) at which jR{x, y)dx has logarith-

mic infinities, the place (y) being arbitrary; (ii), of integrals E^^''" and
their derived integrals Di^~'^E^^'"; (iii), of integrals which are every-

where finite. The aggregate (ii), however, can be much simplified; it

can be shewn that, if (c^), (Ca), ..., (Cp) be quite arbitrary general
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places of the curve, the aggregate (ii) can be replaced by the sum
of an appropriate rational function and a linear aggregate

wherein A^, ... , A^ do not depend on (a ) ; or, alternatively, if (c) be a
quite arbitrary place, the aggregate (ii) can be replaced by the sum
of an appropriate rational function and a linear aggregate

AiE/'« + A2Z),£;,^'«+... + ApD/-i^/'°,

"vvhere A^, ... , A^ are independent of (x). This is easy to prove; it will

be sufficient to take the former statement: Let (2) be any place;

there exists (Chap, iv, p. 78) an unique rational function of [x),

having poles of the first order at (q), ... , (Cp) and (z), with coefficient

of t~^, in the expansion of this function in terms of the parameter t

for (2), when {x) is near to (2), equal to — 1, which also vanishes at

a further arbitrary place (a). Denote this rational function by
W{x, a; 2, Cj, ,.., Cp). From this function, by differentiation with
respect to the parameter t at (2), we can form a rational function of

(x), with poles of the first order at (c^), ... , (c^), and a pole at (2) of

order k; denote this function by D^^'^W; its single infinite term in

its expansion near (2) will be — {k— 1)1 It^. With the integral

Ji?(.r, y)dx we can then form an aggregate of the form

- fR{x, tj) dx+ H [AY {X, a; f , c„ ..., c,,)

.a ^

+ A^D^Y{x,a;^,C:„...,Cp)+... + A,_^D^^-W{x,a;i,c„...,Cp)l

wherein A, ... , Aj._i are appropriate constants, which has poles only
at (Ci), ..., (Cp), beside possessing the logarithmic infinities which
jR{x, y)dx may have. This aggregate is then of the form

AiE,^^'«+... + A^E,/.« + SBP^;j; + /xi«/.«+.. . + /.,,«/.«,

where A^ , . .
. , A^, , 7?, /xj , . . . ,

/x^ are certain constants, the summation
extends to all the logarithmic infinities oi. lR{x, y)dx, and u^^''^, .,.,

Wp^'" are independent everywhere finite integrals. And this is

equivalent to the statement we have made. The second statement
follows similarly, the places (q), (Co), ..., (c^,) being all at one
place (c).

It appears from the results we have found that the nature of the
infinities and the periods, of any algebraic integral, can be studied

by considering integrals P^' " , and a sum of integrals of the form

AiS,^^'«+ ... + A^£,/'«+ ^iV-'«+ ... + /x,,M/.°, where (y),and (q), ...,

(Cj,) are arbitrary places of the fundamental curve. The number
2p, of constant multipliers, in the last integral sum, is the same
as the number of periods previously found for an algebraic in-

tegral without logarithmic infinities. Some detailed formulae for

an integral sum of this form are given in the next chapter. In
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addition now to the reductions thus found by algebraic methods,

we consider further simphfications which can be made if the

integrals are considered on a Riemann surface upon which the

dissection, which reduces the surface to a simply connected surface,

is supposed to he given. This dissection is along p pairs of oval loops,

a^, bi, ..., Qp, bp, linked by cuts c^, Co, ... , Cp_i. We suppose a

definite direction attached to each of %, b^, ..., Op, bp, and speak,

correspondingly, of the positive or left edge, and of the negative or

right edge, of each cut; and zee suppose that the positive direction of

the loop bi issues from the left edge of the cut a^

.

If P, P' be points, opposite to one another,

respectively on the right and left edges of any
cut «,, the element of an algebraic integral

\R{a\ y)dx, in passing from P' to a consecutive

point Q' of the same edge, is the same as in

passing from P to the consecutive point Q,
opposite to Q', of the other edge; hence it can

be shewn that the value at P', of the integral

jR{x, y)dx, which is a single-valued function of its upper limit

on the dissected surface, exceeds the value of this integral at

P by a quantity which is independent of the position of P on
the cut. This quantity may then be defined as that obtained for

the integral by a circuit of the positive edge of the cut b^ . in the

negative direction (from A to A' in the diagram). This quantity will

be called a period, and denoted by O, . Similarly a positive circuit

of the positive edge of the cut a,- gives a period Q,/; this is the

quantity by which the value of the integral at any point on the

positive edge of the cut b^ exceeds its value at the opposite point, on
the right edge of this cut. From any point L, on the positive edge
of the cut a^ , we can make a complete circuit of the edges of the cuts

flj, bi, describing in all a path which (reading from left to right) may
be represented by a^biaf^bi^^, until we reach a point M, just before

L. Thus, though the cut c^ is necessary to render the surface simply
connected, the values of the algebraic integral at two points

opposite to one another on the two edges of this cut are the same.
Consider, now, p linearly independent everywhere finite integrals

Wi*' ",..., Mj,^'°; then, at first without reference to the precise

dissection of the Riemann surface we have explained, take 2p
independent closed circuits on the surface, and denote the periods

of the integral uf-'^ for these by Q,^ , . . . , Q,^ , Q'^^ , . .
.

, Q\p . Then in

the array, oip rows and 2p columns h,
| Q^^ , . .

. , O^p , Cl'n

,

^'ip\ »

there is certainly one determinant of jj rows and columns which is

not zero. Otherwise the rows, in the array, would not be linearly

independent, and there would exist an integral Xjiij^'"+ ... + XpUp^'"^,

in which A^, ... , A,, are constants, which is single valued on the un-
dissected Riemann surface, as originally constructed to represent
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the equation /(.r, «/) = 0. This function, of {x), would have the
analytical character, of expression by powers of the parameter t

belonging to the neighbourhood of any point of the surface; and
would hence, by the argument previously given (Chap, iii, p. 57),

be expressible rationally by x and y. There exists, however, no
rational function without infinities; thus this function is a constant;

as it is zero when {x) is at (a), it is always zero. This, however,

is contrary to the fact that the p integrals Ui^''"' are linearly inde-

pendent. Suppose now that Q,^ ^. is the constant by which the value

of «/'" at a point on the left edge of the oval cut a^., used for dis-

secting the Riemann surface, exceeds the value of Wj-^-* at the

opposite point of the right edge of this oval cut a^. (equal to the

value obtained for i<j^'" by negative circuit of {x) about the loop 6^.).

We can then shew in particular that the determinant formed by the

first 2^ columns, in the period-array set down, is not zero. For let

U+ iV be any everywhere finite integral, in which U, V are real

functions (of the ^, ^^ , 17, -q^, when a;= | -f i|i , ?/= tj + i-q-^} ; and let the

period of U + iV at the oval cut a^ (by which the left-edge value

exceeds the right-edge value) be A^+iB^, Avhere A^, B^ are real;

and let the period of U + iV at the oval cut b^ (by which the left-edge

value exceeds the right-edge value) be AJ-\-iBJ, where AJ,BJ
are real. If we take the integral J UdV along the complete closed

circuit a^b^a^^^b^-^ before described, the value obtained is

A^BJ —AJ B^; and the complete circuit of the single boundary of

the simply connected Riemann surface obtained by the dissection

«i , 61 , . .
.

, ttj, , 6j, , Ci , . .
.

, Cp_i gives the value S {A^BJ-AJ B^), the

summation being for a from 1 to j^- By a well-known theorem,

however, ii x=$+iii, this contour integral, which is

is equal to the double integral

which is JJ(f7|F^^— C7|jF|)c?^rf^i, where U^^dUjdi, etc., extended

over the whole Riemann surface bounded by the single contour. In

virtue of the well-known equations U^= F^i, t^|i= ~ ^^^» tliis is the

same as ll{V^^-\-V^^)d^dli. This, however, is definitely greater

than zero unless Ut, Vt^ are both everywhere zero, which would

involve Vt = Q, Vt^ = 0, and hence that the integral U+ iV was a

constant. A first, important, conclusion, when U+ iV is not con-

stant, is, therefore, that l^iA^BJ — A^'BJ>0. This inequality

shews that there is no everywhere finite integral for which the

periods .-^1 -t- iJSi , ..., A^+ iB^, at the oval cuts «i, ..., a^, are all

zero ; nor, indeed, any such integral for which the periods Aj^ + iBy ,
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..., Aj,' + iBp, at the associated oval cuts b^, ...,bj, are all zero.

And a consequence is that, in the period-array of j) rows and 2p
colvnnns which we have considered, the determinant of the first

p columns, referring to the cuts a^, is other than zero, as also that

of the last p columns ; for otherwise, we could form an everywhere
finite integral for which every one of A^, B^ was zero. Hence it is

possible, by taking suitable linear functions of m/'<*, ..., u/''^, to

find p everywhere finite integrals, Ui^'«, ..., f/'", for which the
period-array, respectively at the oval cuts a^, and the oval cuts b^,

has the form (with^j rows and 2/; columns) t';|€ji, ...,€ij,, Tj^, ...,Tj-^|,

where €^=1, €ij{j =}= i) = 0. When this is done, the determinant of

the last ]) columns is symmetrical in form, namely t,^-= r^-, , as we
now proceed to prove. The integrals r^^'", ... , i;/'", evidently unique
when the dissection of the Riemann surface is given, are called the

normal elementary integrals of the first kind. For the proof, consider

first any two algebraic integrals whatever, say 1^'°-, J'^'"-, and denote
the periods of the former at the oval cuts ai, ... , Uj,, b^, ..., bp

respectively by Q^, ... , Q^,, Q/, ... , Q/, the similar periods of J-^'«

being Oi, ...,0^, <^i, ..., O^'. Then take the integral J/^'«rfJJ^.«

round the complete contour of the simply connected Riemann
surface obtained by the 2p+p — 1 cuttings a-^^, ..., a^, b^, ..., b^,

Ci, ... , Cj,_i. It is easy to prove as before that the value obtained is

E(n<,(D^'-Q^'0<,), whereas 1, ... , p. As I^'^'dJ^'^/dx is an analytical

single-valued function of the complex variable x, on the dissected

Riemann surface, it follows, by Cauchy's theorem, that the value
of the contour integral is equal to the sum of the values obtained by
taking the same integral round the points of the Riemann surface,

if any exist, for which the integral is infinite. If, in particular,
/^'«, J^'" are the two normal elementary integrals of the first kind,

u,^'" and u/'«, so that 0.^= except for Q, = l, and Oj^= save for

O,- = 1 , while n„' = T,,,, O^' = Tj^ , then, as S (Q^^J _ t}^' O^) = 0, we
have Tji-Tij= 0.

The same argument establishes another important result: As
before, let P^' " denote the elementary integral of the third kind,

with logarithmic infinities at (^) and (y); denote the negative of the
period of this integral at the oval cut a^ by A . Then the integral

Pf "-f Ai([;i^-"-h... + Aj,i'/'" has zero periods at every one of the

p oval cuts % , . .
. , « J, . There cannot be two algebraic integrals, both

logarithmically infinite, as described, at (^) and (y), without periods
at the oval cuts a^, .... a^, and both vanishing for {x) = {a), since
their difference would lie an everywhere finite integral with zero
periods at tliese cuts, and hence would be a constant, equal then to
zero. Thus this integral is unique when the oval cuts are given. We
shall constantly denote it by 11^'", and call it an elementary normal



144 ChaiJter VI

integral of the third kind. By the argument above, we can prove
that the periods of this integral at the oval cuts b^, •,bp are

2TTivi^''^, •••' ^rriv^^''^. For, in the integral considered above, take
jx,a— ^^x,a^ and J^'°=n^'"; then every one of the periods Q.^ of

i)^x,a js 2ero except Q.^, which is 1 ; and all the periods ^^ of 11^'" are

zero; the contour integral thus gives only the result O^', the period

of nf'" at the oval cut b„ . We consider then the values obtained by

taking the integral round its two points of infinity,

Avhich are at (^) and (y). If t be the parameter
for the neighbourhood of (t,), the essential part

of the integral jv^^'"-dll^'^' for this neighbourhood

is lv^''^dtjt, and, with a change of sign, the

essential part at (y) is of similar form. The value obtained for the

two infinities is thus ^wivj"'*'. Thus <^^ = 2TTivJ'^y, as was said.

Ex. By applying the contour integration \IdJ, considered above, to
the case when I is the elementary normal integral of the third kind with
its infinities at {x) and {a), and J is the elementary normal integral of
the third kind with its infinities at {z) and {c), prove the identity

z,c x,a

The integral 11^'" may be used to give a brief proof of a theorem,

which we may call the converse of AheVs theorem. By the direct

theorem, if (Zj), ..., {zj.) be the zeros, and (c^), ..., (c;,) be the poles

of any definite rational function associated with the fundamental

equation /(a;, y), and %^'", ..., w/'** be linearly independent every-

where finite integrals, each of the ]3 expressions u^i''^i--\- ...\-u^^k'<^ic

is a sum of integral multiples of the periods of the integral u^'"-,

wherein the 2p integer multipliers are the same for all the p values

of a. On the Riemann surface, dissected by the 1p oval cuts a^, b^,

each term Wg^^i'^'i is quite definite, independently of the path of

integration from (c,) to (z,). Thus, taking the elementary normal

integrals of the first kind, we may suppose that y^^i'^^i + . . . + v^H''^/^- is

equal to m^+ m^ t^i+ • • • + ^^
p'
t^^ , for a = 1, ...,p, wherein w^ , . .

.

,

nip, m^, ...,mp' are definite integers. Conversely, if (zj, ..., (z^)

and (cj), ..., (Cfc) be two sets of each A- places, for which, on the

dissected Riemann surface, these p equations hold, then there

exists a rational function having (Zj), ..., (sj.) as zeros, and

(Cj), ... , (Cfc) as poles. For consider the function exp (^), or e^, where

<i= n"^'" +... + !!"''" -277i(mi'Ui'^'«+... + mj,'t;/'«). This function is~
2i,Cx Zk,Ck

analytical on the Riemann surface, being expressible in the neigh-

bourhood of any point for which the parameter is t, by a series of

integral powers of t. It is single valued on the dissected surface. It
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is in fact single valued il" the dissection is not made; for its value at

any point of the left edge of the oval cut a is obtained from its

value at the opposite point of the right edge by multiplication with
e^, where ju. = — 27Tim^', so that ei^=l; and, for two points opposite
to one anotheron the edges ofthe oval cut b , the corresponding nudti-

plieris e^'' , where / = 277i(cyi-'=i+ ... + ry/.'«A-m/Ti^- ...-m/Tj,^);
namely, by the assumption made at starting, ^' = 2TTim (since

T^p= Tp^) ; thus also e^' = 1 . Except at one of the places {z-^), {c^), ...,

{~fc)» (^fc)' the expression of the function is by a power series in the
parameter i; at (s^), for example, beside a power series, the function (^

contains a term log^, and the function e'f' vanishes to the first order.

Likewise it vanishes to the first order at (22), ... ,
{Zj^), and has poles at

(Ci), ..., (Cfc). Thus, by a proposition proved (p. 57) above, e'f' is a
rational function of (x), with the specilied zeros, and poles; as was
to be proved.

Ex. 1. By applying the contour theorem for ^UdV, as in the text,
where U + iV denotes an integral of the first kind njV{''"' + ... + npVj,'^>^,

in which n.^,...,iij, are real, prove tliat, if t^^,
j3
=

Pa. 8 + *°'a,j3' where
p^ ^ and CT^ o are real, tlien the quadratic form in //^ , . .

. , Up , 22 a^^ g n no,

is definite and positive, for all real values of iij^, ... , h^.
Ex. 2. Denoting the quadratic form SS t^, g «a"^ '^y ^'*'' ^^^^ ^^e linear

form i;M^»^by«//, where a, j3 = l, ...,p, and making a summation with
only integer values of //^ , . . . , n^ , each extending from — x> to + x , it can
be proved from Ex. l,that the series Sexp(aj), where cj — 'lTTiun + iTrTn'^,

is absolutely convergent, and thus expresses an integral function of the
independent variables u^, ... , u^ .

Ex. 3. If in the function ©(u^, ..., Up), of Ex. 2, we replace u^ by
I'cj'^''* + A-j^ , where r^-''" is the normal elementary integral, it can be shewn,
for general values of k\, ..., k^ , that the function of {x) so obtained
vanishes for p positions of (x), depending on kj^, k^, ..., k^.

Ex. A-. If «/''*,..., Mj,^'** denote any p linearly independent every-
where finite integrals, it can be shewn, for specified places (Cj), ..., (c^)

and specified values of A'^ , . . . , A-^ , that the p equations

U^^uC,+ ...+u^z,„c„ = k^, (a = l,
...,pl,

can be satisfied by proper choice of the places {z^), ..., {Zp). This is a
familiar result when j9 = 1, the coordinates of tlie place (z^) being elliptic

functions of A^. In general, the rational symmetric functions of the
coordinates of the places (z^), ..., {z^) are single-valued analytical func-
tions of A\, ..., kp. In the elliptic case, in accordance with the two-period
ambiguity of the integral 11^'", the elliptic functions have two periods;
in the general case the functions are similarlj' unaltered when each of
A'l, ...,kp is increased by an appropriate constant, and there are 2p sets

of such simultaneous increments which leave the functions iuialtere(l. For
particular values of k^, ..., k^, the functions are indeterminate, and the
places (Zi), ..., {Zp) have not a definite set of positions.

Ex. 5. The functions solving the so-called inversion problem, expressed
by the equations in the previous example, can be expressed in terms of
such functions as the theta functions referred to in Exx. 2, 3.

Ex. 6. The general theory of (meromorphie) functions of p variables
which are unaltered when the variables arc increased sinuiltaneously by the



146 Chapter VI

elements of any one of 2p (or fewer) columns of periods, is of great im-
portance. A preliminary study of the possible reduction of the array of
periods adds to the simplicity of the theory.

For the content of Exx. 1-4 here the reader may be referred to the
author's AbeVs Theorem (Cambridge, 1897); and for Exx. 5, 6 to the
author's Multiply-periodic Functions (Cambridge, 1907) ; for the reduction
of the array of periods, referred to in Ex. 6, a somewhat different formula-
tion is found in Severi, Rend. Palermo, xxi, 1906, '"Intorno al teorema
d' Abel sulle superflcie. . .". Krazer, Lclirbuch cler Thetafunctionen
(Leipzig, 1903), should also be consulted.



CHAPTER VII

THE MODULAR EXPRESSION OF RATIONAL
FUNCTIONS AND INTEGRALS

The present chapter is concerned with a theory of the rational

functions and integrals, associated with an (irreducible) algebraic

curve f{x,y) = 0, which began with the arithmetical work of

Kronecker and Dedekind* for the theory of integer numbers.

Developed in detail the theory gives an alternative to much of what
has preceded ; what is given here however seems a desirable, if not a

necessary, accompaniment of what has already been proved.

We have explained what is meant by a rational function be-

longing to the curve /(cT, y) = 0; to fix the ideas we recall certain

properties of a general kind for such functions. It was seen that, as

a rule, there exists no rational function of the first, nor of the

second order; there is thus, in general, a least order for which there

exists a rational function, associated with the curve. But we cannot

expect to be able to construct a function of this least order with its

poles taken arbitrarily on the curve; for instance, when the

equation / {x, y) = is of the form y- — u= 0, where w is a poly-

nomial in X, though there exists a function, of the form (a; — a)~^,

with two poles, these must be at places for which x has the same
value. There is thus another least number, say k, such that, what-

ever k places be taken, a rational function exists with poles, all of the

first order, at these k places, or at places chosen from these. Such
function will be actually infinite, indeed, at every one of the k places

taken; for if, for all sets of A; places taken, the function had not

k poles from among them, then k has not been taken as small as

possible. From these considerations we conclude that, ifk^ , A'2 , . . . , A:^

be m positive integers, zvhose sum is large enough, a rational function

can be constructed whose poles are multiple, and at m given arbitrary

places, the function being infinite to order k^, or less, at the first place

;

to order A-g, or less, at the second place; and so on. Such a function will

not always be actually of the assigned orders of infinity A'^ , A'2 , . . ., A-,„

,

at these places; for example, for the equation y^—u = 0, where w is a

polynomial in x of order 2j(j + 2, with unrepeated linear factors,

though, as a rule, a function can be constructed with p-\-\ arbitrary

poles, we cannot construct a function with a pole of order p at a

place x= a,y= b, on the curve, and a pole of the order 1 at the

conjugate place x = a, y= -b; as the reader may prove {p>l).

Modular expression of a rational function. Now let z

denote a rational function which has a pole of the first order at

* Kronecker, Crelle, xci, xcn, 1882, Werke, Bd. n. Dedekind u. Weber,

-Crelle, xcn.
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each of m places, A^, ..., A„^, and is not else infinite. Consider the

aggregate of rational functions existing, which have poles only at

these m places, of any possible orders. Denote by {i\, r^, ..., r,„)

such a function, actually infinite at these places respectively to

orders i\, .... /•,„; these numbers we call, for the present, the indices

of the function. It is evidently possible to subtract from this

function such a rational polynomial in z, of order r^, that the

diffei-ence is not infinite at A„i; for by hypothesis z is infinite at A„^

only to the first order. Thus, save for polynomials in z, it is sufficient

to consider, among the aggregate of functions {)\, r^, ..., r„j), only

those for which the m-th index, ;•„,, is zero. Considering then the

other indices r^, r2, ... , ',„_!, in order, there will be one (or more) of

these which is greater than the others, and, if there are several with

this greatest value, there will be one, with this value, which occurs

first ; say this is r^ ; thus we have r^ < r^ , r^ < r
^ , . .

. , r,_i < r^ , but

^j^^i+i' ^i^^'i+2' •••» ^i^^m-i' {l^i^m—1); when this is so, let

the function (r^, fg, ... , r,„_i, 0) be said to be of the i-th class, and to

be of dimension r^ .

Since it is only when the aggregate order of infinity of a function

is great enough, that the function can be constructed with pre-

scribed orders of infinity at prescribed places, it is clear that, for all

functions of the i-th class (not mere constants), there is a least

dimension occurring among such functions of the i-th class as

actually exist. Take now any function of the i-th class which has this

least dimension; say this function is

where "•' *^' '"' *'~^' '" *'+i' "' '^'«-i' /'

Si < Ti , S2<)'i, . • . , Si_i < )'i ; I'i ^ Sij^i , . . . , Tj ^ *m-l '•> 't > ^?

(i=l, 2, ...,m-l);

we may speak of this function as the chosen reduced function of the

i-th class. If we denote any other existing function (with m-t\\

index equal to zero) which is of the i-th class by

where
••• > ^i-n "'i^ ^i+i^ •••> *-*m-i' 0),

S-^ <Ri, So,<Ri, ..., Si_^ < R^ ; Ri ^ Si^-^ , ..., R/^ ^m-i ' ^t ^ '« j

(i = l, ..., m-1),

then, by choosing the constant A suitably, in the difference

AZ i I

(5j^ 5 ^2 ' • • • ' ^i'-l » ^'i ' "^i+1 5 • • • J ^m—1 ' ")>

we can secure that, in the function given by this difference, say

(-'l' -'2' •••' ^ i-\ ' ^i ' -' ;' +1 ' • • • » -' m-X ' "^i ~ ' ! /'

we have i?/ < Ri, and also that any of the earlier indices Ty^, where
A: < i, which certainly does not exceed the greater of Sj. and
R^ — {i\ — Sj^), is less than R^; while anyone of the later indices Tj,
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where / > i, which certainly does not exceed the greater of Sj^ and
Ri — {ri — s,), is at most as great as /?,. Thus, in this difference, all

the first i indices are less than R,, and the succeeding indices do not
exceed Rf. Then further, forming the difference

(-* 1 » -12' • • • ' ^ i-X^ Ri i -* ?+! » •••> -' m-l ' -''
/
~

^' i) ~ V'^ 1 iRi-ri '

where the polynomial in z, denoted by {z, l)Ei-ri^ of order R^ — r^,

is to be chosen so that this is a function,

with last index zero, we see that the index R/', which does not
exceed the greater of R/ and R, — r^ , is < R^ ; further that Sj.', when
k<i, not exceeding the greater of Tj. and Rf — r^, is KRf, and that

Sj', for l>i, not exceeding the greater of T^ and R^ — Vi, does not

exceed Rf. The formation of this last difference is unnecessary if

Ri = /•, . In any case, employing the process which is expressed by

= A2«i-'-« (*!,..., 5,_i , V/ , 5,-+i , . . . , 5^_i , 0) + {Z, 1 )^ ._^
.^^+ (*S'i', ..., »S"j_i, i?/', *S",-+i, ..,, »S^'^_i, 0),

we obtain a function, (»Sy, ^Sg', ..., 'S",_i, i2/', *S",_,_i, ..., S\.,^_i, 0), of

one of two kinds; (i), in which the greatest index is Rj, but, if so,

this does not occur in the first i positions, or (ii), in Avhich the greatest

index is < R/ . In other words, this function obtained, is either of

higher class, without change of dimension, or is of less dimension,

than the function (»S'i, .... 6'j_i, Rj, S^j^^, ..., 'S'^-x, 0) from Avhich it

was obtained. There is, however, an upper bound for the class,

namely m — 1 ; and there is a lower bovmd for the dimension of a

function of specified class. Therefore, if we denote by h^ the chosen

reduced function of class i, (s^, ..., Sj_i, 7\, Sj^^, ..., s^^^i, 0), for

i—1, .,,, (w — 1), and apply the above process of reduction con-

tinually, we shall be able to express any rational function whose
poles are all at the places Aj^, ..,, A.„,, in the form

(2, l)o+(2, l)i/ii+... + (2, l)„,-i/V-l'

wherein (z, 1),- is a polynomial in 2; and this in such a way that no
term arises in this expression, of the form z°^ho, whose dimension is

higher than that of the function given by this expression.

Fundamental integral functions. Now suppose that, in the

fundamental irreducible algebraic equation /(cT, y) = 0, the highest

aggregate order in x and y is ti, and that the term in y^ is actually

present. As has been remarked, this can always be secured by a
preliminary substitution for x, of the form x+ hy. Then y becomes
infinite only for infmite values of x, and may be spoken of as an
integral function of x. Suppose further that, for a: =00, there are

n distinct places, there being no cycle of two, or more, of the n
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values of y (or, in another description, no branch place for x= cc).

This also is easily secured, as we see by considering the homogeneous
equation F {xq , a^^ , a?2) = corresponding to/ {x, y) = 0, and changing,

if necessary, the line denoted by a?o= ; for the equation / {x, y) =
this conies to using functions of the forms x{ax+ by+ c)~''-,

y{ax+ by+ c)~^ in place of x and y.

Then, we apply the preceding theory, of rational functions with
poles at iti given places, to the case when the function z, there

spoken of, is the function x (and thus m=n), and the chosen funda-

mental reduced functions are integral functions, becoming infinite

only for a:= oo. These we denote hy g^, ... , gn-i', and the theorem
proved is that any integral rational function, that is one having
poles for a;= 00 only, is expressible in the form

where Uq, ...,w„_i are polynomials in x. The dimension of the

function g/ will be denoted by ct, + 1 ; this is the least positive integer

such that x~^'^i'^^^gi is not infinite at any of the n places for which
x=co. This number is not zero, or the function gj, having then no
infinities, would be a constant; thus ct/^O. The sum of the n—\
numbers cr, will be denoted by p (it being proved below that this

notation is consistent with previous uses of p); the sum of the

dimensions of ^^ , . .
. , g^-x is thus p + /? — 1

.

From these integral functions g-^, ..., gn_i, we can obtain such a
set of functions hy, ..., /i„_i as is given by the general theorem above
for the case when z= {x — a)~^, where a is any general constant. For
let /?^= (iT— o)~'*^i+^'^j, so that h^ is infinite only when a^= a, or 2= oo,

using z for {x— a)~'^. Let H be any rational function which is infinite

only when x= a, or z=qd, and let cr+l be its dimension, so that

{x— a)"+^H is infinite only when x=aD, and o-+l is the least

positive integer for which this is so. Then we have an expression

lx— a)°'+'^H= UQ+ Uig-i^+... + Un-ign-i, wlierc Uq, ...,m„_i are poly-

nomials in X. Let the orders of these polynomials be, respectively,

ro, r^, ...,r„_i; then the fact that there occurs no term, in this

expression, on the right, which is of higher dimension than that of

the function {x— aY^'^H, involves that r, + o-, + 1^ cr+l. The ex-

pression is, however, the same as

H= z<^+i Wo + • • • + 2*"+^
^i

2-""'+^* hi+...,

while Ui can be written as z~'^it\, where v^ is a polynomial in z of
order r^. As a+1 — r, — (o-, + l), which we may denote by t^, is not
negative, the product z^iv^, or w,, say, is a polynomial in z; th~us we
have an expression J^= Wq+ . . . + tt', /i, + . . ., for any rational function

H which is infinite only when 2=00, in terms of the functions h^',

and it is easy to see that the dimension of h^, in terms of z, is

aj+l; and that no term occurs, in this expression, on the right,
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having dimension higher than that of //. Conversely, given a set of

functions, h^, ..., /?„_i, appro])riate, in accordance with the general

theorem, for the expression of rational fiuictions which are infinite

only when x= a, we can similarly deduce a set, g^, ... , gn-i, appro-
priate for the expression of all integral functions.

Important properties of the fundamental integral

functions. There are certain important properties of the integral

functions g^, ..., ^,j_i which we now develop:

{a) There can be no identity of the form

where L/q, ..., Un-i ^^'^ rational functions of x only. For as

y,y^, ... ,
y^~^ are integral functions of cr, each is expressible linearly

byj?i5 ••• ' ^n-i' with coefficients which are polynomials in x; if there

were such a linear equation connecting g^, ..., g^_^ as we have
spoken of, then all of y, y^, . . . , i/"~^ would be expressible linearly by
at most w — 2 of the functions ^^ , . . , , g^_i , with coefficients rational

in X only. There would thus be a linear relation connecting

y, ..., y"~^ with coefficients rational in ^r. This is contrary to the

hypothesis that the original equation, /(ti?, y) = 0, is irreducible.

{b) Consider a value x= c, for which all the n places oif{x, y) =
are distinct ; at one of these n places let ^^= a^

, ^^= ^g , . . . , gn-i= «„-! 5

at another of these let g^= &i , ^2= ^2 ' •••> Sn-i= ^«-i •
^Ve prove that

not all the n — 1 differences aj^— b^, ag— ^2' •••» ^w-i~"^«-i ^^'^ zero.

For choose the constants A^, A2, ..., A„_i so that the function

X^igi— ai)+ ... + X„_i{gn_i — Qn-i), which vanishes at one of the two
places spoken of, vanishes also at the n — 2 places for which x — c,

other than these two places. Then, if all the differences a^ — b^, ...,

a„_i— 6„_i were zero, the function

[Ai(gi-«i)+... + A„_i(^„_i-«,_i)]/(.t'-c)

would not become infinite at any of the n places for which x= c; it

would thus be an integral function, and, therefore, expressible

linearly in terms of ^1, ...,gn-i with coefficients which are poly-

nomials in X. We should then have such an identity connecting

gi, ..., gn-i as was shewn impossible in (a).

(c) The result (&) is a particvdar case of a much more general

proposition, to which we now proceed. Consider a finite value of x,

x= c, for which the n corresponding values of y, to take the most
general possibility, form several cycles, there being one cycle of r

values, ?/'^', ... ,
y*'"', then another cycle of 5 values, and so on. There

will then be one place expressed by a pair of equations of the forms

x — c^f. y= A + Alt+ ..., in terms of the local parameter t ; then

another place expressed by a pair of equations of the forms

x— c= ti% y= B+ Biti+ B2ti^+ ...; and so on. For the first place,
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let the corresponding values, for any one, gj., of the functions

^15 •••
J j?n-i> "^ the neighbourhood of the place, be given by

g.
(D —

fl,;,+ «,.'/+i«,"/H..., ^A<°" = %.+ «a\+*«7/V+-'
where k=\, ..., (« — 1), a = 2, 3, ..., r, and f^^ is e*-^/, Avith

e = exp {^rrijr).

For the second place there will be corresj^onding expressions, with

hj^, b}/, ... in place of O;.., o^.', ..., and s in place of r; and so on for all

the places occurring for x= c. The theorem to be proved is that a

certain determinant Aq , of n rows and columns, formed from the

coefficients a^., a;,', ...

determinant is

^n= 1,

0,

0,

in these expansions, is not zero. This

w,
«2

1,
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would then exist an identity sueh as is proved impossible in {a).

Particular consequences of this theorem are, first, the theorem (6),

that if there be no branch place for a;= c, not every one of the ( /i — 1

)

differences ay— h-^,CL^— \, ..., a„_i — b„_i vanishes; second, that in

the expansions of the ('? — !) integral functions gj. {k=l, ..., n — 1)

at the first branch place considered at x= c, the coefficients of /"'

cannot vanish in all these functions, for any /« such that 0< m< r;

since otherwise the determinant Aq would have a row of vanishing

elements 0, ai'"*', ag*"*', ..., a _ . Thus, for general values of

A, Ai . .... A„ _i , the expansion of the function A+ A^ ^^ + . . . + A„ _i^„ _i

,

in terms of the parameter t, at a branch place of f[x,y) = Q

(occurring for a finite value oi x, in whose neighbourhood x= c-'rV,

with y of the form d-\-d^t+ ...) contains all powers of f from t to V'-'^.

Employing the same notation, we can deduce, from the non-
vanishing of the determinant of constants, A^, a general functional

theorem. It is con^'enient to formulate this as an identity con-

necting matrices. Consider a general (finite) value of x for which the
corresponding n places of/(.r, y) = are distinct, let ^,/i',

...,gf.^"^

denote the values of the integral function gj. at these n places.

Denote by G the matrix of n rows and columns whose i-th. row con-

sists of the elements l,^/*^^2**^ "•'§ _-,'^ it is a consequence of

what we have shewn that the determinant of this matrix would only

vanish if there were branch places for this value of x. Denote also

by G the matrix formed from G by transposition of rows and
columns. Then the product matrix GG has for elements in its first

row, n, Si, ..., s„_i, where Sj^=gk^'^^ + ...+g,P^\ and for elements in

its i-th row, s,_i, 5;_i,i, .... 5,_i.7,_i, where

r. — (J (1) (1) 4- _u rt Oi) (n)
^h.k— gfi gk +---+g}t gk 5

SO that Sf^ ,.= §1. 7,
. Each of these elements is the sum of the n con-

jugate values, for the same value of x, of a function which only
becomes infinite when x=aD: thus each element is expressible as a
polynomial in x only. The determinant of the matrix GG is thus also

a polynomial in x. One consequence of the theorem we shall obtain
is that, corresponding to a place where there is a branching of index
r (about which the expressions for x and y are of the forms x — c^f,
y= B+ B^t+ .... in terms of tlie parameter at the place), there is a
factor of the determinant of GG equal to {x — cY''^. By what was
proved above there is no such vanishing factor in this determinant
unless there is a branch jDlace. It will follow, then,_that the order of

the polynomial in x given by the determinant of GG, is the sum of

the various values of r— 1 at all the existing branch places occurring

for finite values of x. Consider such a branch place, of index r; put
€ = exp(277i/r); let M^ denote the determinant, of s rows and
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columns, whose (A, /M)-th element is e^, where ct=(A- 1)(/m-1),
namely

M,= 1,

1,

1,
^2(s-l)

-(S-l)2

denote the cofactor of the p-th element of the last column of this

determinant by H^^, and put Kg ^= 11^ JM^. We evidently have
Hg g = Mg_^, and, hence. Kg g= Mg_JMg. By these definitions, the
following sum, of s terms,

vanishes for p<s, and is unity when p = s. Consider the expansion
of the function gj^ at the branch place of index r, namely

gk^^^ = a„+ a,,'t+la„"t^+...,

and the other expansions wlien t is replaced by et, eH,

the forms

g^a) = a,+ a,'e^-H+ "^e^(^-^H-'+..., (A=2,

we infer that

Ks,lg.^'^ + Kg,,g,^-'^+...+Kg^gg,^^^:

, €'-H, of

s, s^r);

where Ak^^\ yij.<^+^', ... , are proper constants. Now, recall the form
of the matrix G, and the first r rows of this, which, in a general

column, contain g^^'^K gk^^K ••, gk^^^- By what we have remarked, if

we nudtiply the first two rows of this matrix G respectively by A'g
j

and A'2 2? ^nfl add the results to form a new second row, this

(taking 5 = 2 in what was remarked) will consist of elements

0, ^a^'t+ {t% -i^'-zi+i^' -J
a'„_i^ +(/-),

where (f^) denotes, in every case, a power series beginning with a
term in t^. Similarly, taking s = S, if we multi]3ly the first three rows
of G respectively by Ag^, A3 2, A'gg, and add the results to form a
new third row, the elements of this row will be

0, ^(h"f^+{t^) 0\"2a,"t- + {t') ^a"„_,f'+{n

where {t^) denotes, in every case, a power series beginning with a
term in t^. The process may be continued, the last operation being
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for s = r, and we consider all the first /• rows of the matrix G. We
may repeat these statements in matrix form by writing

^2.1' ^2,2' •

^3,1' ^:?,2- ^3

A',

= /I,

0,

,(1)

'1 '

,(2)

'1 '

.('•)

i + (0

(r-l)

lO' .«'-i+(n,

(r-l)

'«-l ,r-i+(n.
(/•-I)!- '^'^' •••' (r-1)!'

where the first matrix on the left has r rows and columns, with
zeros to the right of the diagonal, the second matrix on the left

consists of the first /• rows of the matrix G, having r rows and n
columns, as has also the matrix on the right. This latter matrix
can be written as the product of the diagonal matrix of r rows and
columns whose diagonal elements are \,t,t^,...,t''''^, multiplied

into a matrix of r rows and n columns, w^hich does not vanish when
t = 0, but reduces to the first r rows occurring in the determinant Aq
above, namely as

'1, «!+(/) , ..., «„_i+(0
t

t^

lO,

,('-1)

+{t).
{r- D! + (0.

where the unmarked elements of the multiplying matrix are zeros.

If there be, for the same value of x, another branch place, with a

cycle of i\ values of ij, an exactly similar reduction can be carried

out for the i\ rows of G which follow the first r rows; therein, the

appropriate local parameter being t^, we should use e], = exp(27ri/ri)

instead of e, and in place of coefficients a^, a^.', a^ , ..., we should
have coefficients h^, 6^', h^'

,

And so for all other branch places

which occur for the same value of x. The final result will be an
equation in matrices, which we write KG = SA, and now explain:

Every one of A', 8, A is a matrix of n rows and columns, as is G. The
matrix K has, in the first r rows, non-vanishing elements only in the

first r columns, these forming the matrix of /• rows and columns,
with numerical elements A^,, which has been made explicit above;
in the 7\ rows of AT which follow the first r rows, K has elements only
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in the )\ columns Avhich follow the r-th column, these being formed
from e^ just as the elements in the first r rows and columns were
formed from e; succeeding rows of iv similarly break up into batches,

corresponding to the other branch places which occur for the value

of a^ considered, there being zero elements in the first r+i\ columns,
in the first r+ r^+ rg columns, and so on. The matrix S is the simple

diagonal matrix, whose non-vanishing elements, all in the diagonal,

are 1, /, .... t'-'^, 1, Z^, ... ,
^i"^? ^*c-, in order. Last, the matrix A is

one of which every element is a power series, these being series in t

in the first r rows, series in t^ in the succeeding i\ rows, and so on

;

and, what is important, these series are such that when all of

t, ti, ... are made to vanish, the elements of A reduce to those of the

determinant Aq. It was proved that the determinant Aq is not zero.

Further, in discussing the first r rows of the matrix K, we remarked
an equation which was written Kg g= Mg_JMg; it follows that the

determinant of the matrix K is the product

3I^\{MJM^ (3i,_i/3i,).(3A<^')-i.(M,(i)AWi))....

\ n— 1' n
where Mj*!*, Mg*^', ... are formed from e^ just as were M^, Mg, ...,

from e, and so for succeeding factors. Whence the determinant of

the matrix K is [3i,.M,/i' ...]-i.

Many consequences follow from the equation KG=hA, as will be
seen. One consequence, already remarked, relates to the deter-

minant of the matrix G. When x is near to the value x= c for which
the branch places are those discussed, it follows from KG — hA that

the determinant of G is the product of a factor which does not
vanish when x= c by the factor fi+2+- ••+(r-i)

.
^i+2+...+(ri-i) ^ which

is /4'('-i)/ji'i<'i-i) We have spoken of the determinant of the
matrix GG; this is the square of the determinant of G. It is a
polynomial in x, having, we see, the factor (a; — c)<'""^'+''"i~^'+". We
denote the polynomial in x, which is the determinant of GG, by A;
for every finite value of x, we have separated A into a vanishing

factor, and a non-vanishing factor; we thus see that, save for a

constant, A is the product of all factors {x— a)^~^, arising for values

a;= G at which there is a branch place of index k, there being repeti-

tions of the factor x— a, with appropriate exponents, when several

branch places occur for the same value x— a. Now put tt' = S (r— 1 ),

the summation extending to all existing branch places (since we
have arranged that there shall be no branch places for x= oo); then

A is a polynomial in x of order w. We have seen, however, (p. 150

above), that we may write G in the form ir'^i+^*+<*^2+i)+"ff, where
H is a matrix, of n rows and columns, with i-th row consisting of

1, hi^^\ ..., h*^ , in M'hich /i5= a;~'°'-+^>^s, and h^ is a function

becoming infinite only for x= (this being the definition of h^
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previously employed), and we ean suppose x= chosen so that no
branch place arises for .r= 0. Then, by what has been proved here
for G, it follows that the determinant of the matrix // does not
vanish for x=ao . Wherefore, A is a polynomial in x which becomes
infinite for x= oo to order 2 (cri+l + erg+! + •••)» that is, to order

2p-{-2n — 2, lip, as above, be defined as a^+ ...-^-a^-i- Ii^ other

words, the polynomial A is of this order. Thus we have the equation

xv= 2n-\-2p — 2.. It is not, in fact, necessary to choose aj= oo so that

no branch places occiu' for this value. By a similar argument it may
be shewn that, if IF denote the sum (r— \) -\- {7\— \) + ... , extended
to all the branch places at ir= oo, of respective indices r, 1\, ... , then
the order of the polynomial A is 2n + 2p — 2 — W. Thus already it is

shewn, if we recur to a result previously found (Chap, iv, p. 83, cf.

Chap. V, p. 131), that/; as defined here agrees with p as used before;

but we shall continue to suppose p defined as here.

The importance of the matrix G, or of the polynomial A, may be
brought out by brief reference to some of its properties. Let

77i, ..., 7y„ be any n integral functions whatever, subject to the con-

dition that there exists (in virtue of the fundamental equation

/ {x, y) = 0) no identity L\r]i+ ... + 11^7]^ = 0, in which L\, ..., C/„ are

polynomials in x. Denoting by 7j;.<^', ... , Tyt*"' the n conjugate values

of T^fc, for a general finite value of x, we may consider the square of

the determinant, of n rows and columns, whose general row is

^1**'' ^2*'*' •••' Vn^^- Each of the functions tj^., by the properties of

the fundamental integral functions gi,-",gn-i> i^ expressible

linearly in terms of these latter, with coefficients which are poly-

nomials in X (that is homogeneously in terms of 1, gi, •',gn-i)-
Hence it follows that the square of the determinant

|
tj^'*'

|
is of the

form V"^A, where A is as before, and V is a polynomial in x. It is

usual to call the square of the determinant
|
tj^*''

|
the discriminant

of the system {rji, ... , 17^); it appears then that A, which is a poly-

nomial in X, is the highest common factor of the discriminants of all

possible systems of n linearly independent integral functions. In

general, though, when u^, ..., w„ are polynomials in x, any function

%^i+ ••• '^^nVn is an integral function, it is not conversely the case

that every integral function can be so expressed; there may exist

integral functions whose expression in terms of rj^, ..., -q^ is oi the

form {uir]i+ ... + w„77„)/Z), where D, like u^, ... , u^, is a polynomial

in X. It can be shewn that the only polynomials D that can arise in

this way, as denominators in the expression of integral functions by
means of r]^, ..., r/„, are factors of the particular polynomial V,

whose square arises in the equation just given for the discriminant

The functions reciprocal to the fundamental integral

functions. We proceed now to build up, from the fundamental
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integral functions gi, ..., gn-i > ^ set of n important rational functions,

whicli will be denoted by y^, y^, ..., y„-i- We recall the expression

of the polynomial A as a determinant whose elements are the

polynomials in x which we denoted by Sj^., Sjj {sQ= n); consider the

minors of this determinant, which may be briefly represented by
such notations as dAjdSf; and dAjdSij. These are polynomials in x;

the function 3A/35j.+giC'A/35;t i+ ...+^„_i9A/35;r. „_j is thus an
integral function; it is this function, divided by A, which is the

function yj, . By what has been proved in regard to A, this function,

for finite values of x, is only infinite at branch places. To find the

character of this infinity, and to make clear the simplicity of the

matter, it will be best to approach the definition of y;^ in another

way, then shewn to be equivalent to that just given. For this we
define a matrix F, of n rows and columns, of which the general row

is represented by yo*'*, yi'\ •••>
y''_i»

^^^ prove that the elements

of a column of this, y^;*^', y^'K ..., 7//'*', are the n conjugate values

of a single function y^ , for all the places corresponding to a general

finite value of x. The definition in question is that F is the inverse of

the matrix obtaiiied from G by transposition of its rows and
columns, or T = {G)~'^. This definition is equivalent to F"^ = G, and,

therefore, equivalent to either of the t^'o equations F6'= 1, Gr = 1.

From the former of these we have TGG = G, so that T=^G{GG)~^,
and GG is the matrix whose general element is s^j, with SQQ = n,

Sq j = Sj, Si.j= Sj^i, {i,j= 0, 1, ...,n—l), which we met with earlier

(p. 153); from this, combining the i-th. row of G with the (A-4- l)-th

column of {GG)~^, Ave obtain the element y^^.'*' in the form

where M^. y^
is A~"^3A/85;^. ,j, 3/;^= A~^9A/3s;i.; these are rational in

X only; for the n values of i, therefore, the elements y;^^*' are the

conjugate values of the function y^ defined as at first. We have
assumed the well-known result that the {i,j) element of the inverse

of a matrix (o^ _,)
is obtained by dividing the cofactor of Uj ,, in the

determinant of {ciij), by this clet_erminant itself.

Remark. The definition TG = \ is equivalent with the w^

equations such as

yo"' + yi^''^^i"' + - + y;^'i^5;;i^ = i,

yo''' + yi*''^i<^' + .- + y;:li^l'li
= o,

for i,j=l, ..., n, i 4=J. These we may abbreviate by

yo+yi^i+-" + yn-iton-i=i' yo+yi^i'+ ••• + yn-i^'«-i=o,

for a value of x for which there is no branch place. And if y, y' be

such that/(a;, 2/) = 0, /(a-, i/') = 0, the same or different, and /'(?/)
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denote dfjdy, these abbreviated equations are included in the

formal equation

7o+ Yigi +- + Yn-ig'n-i = lirny'^y [f{x, y')-f{x, y)]l{y' - y)f' (y).

Hence it may be seen that the function y,c is of the form ^klf iv)^

where ifj^., or i/'fc(i/, x), is a polynomial in x and y. And, when the

integral functions g^, ...,gn-i, say g^{y, x), ...,gn-i{y, ^v), are given
in explicit form, each as a quotient of a polynomial in x and y
divided by a polynomial in x only, the polynomial t/j^. {y, x), and
hence y/., is determined by the equation

My> '^)+My, ^^')gi{y\ ^^)+ •' + 4'n-i{y, x)g,,_^{y', x)

={f{'^^y')-f{x^yMy'-y\

regarded as an identity in y and y'. All the polynomials ifj^{y, x),

and the numerator polynomials in g^ {y, x), are understood
to be reduced hy f{x, y) = 0, so as not to involve any power of y
higher than the (n— l)-th. For a particular instance, if gi, ... , g^-i
were y, y^, ..., y^~^, the polynomials ifj^, ..., xfj,^_^ would be the

coefficients of the powers of y' in [f{x, y')—f{x, y)]!{y' — y), that is,

ipi^. would be the coetlicient of {y')'^, and of order n — l — k in y.

The preceding definition of the matrix F, if we use the equation,

proved above, KG— 8A, enables us to determine the maximum
possible orders of infinity of the rational functions y^ at a branch
place; we have seen that (for finite values of x) these functions are

only infinite at a brancli_plac£. For this equation gives G-^ = ^S,
^vllile 8 = 8, and hence {K)-^{G)-'^ = 8-Hj.)-^, so that T, equal to

(G')"^, is equal to KS~^{A)~^^ Herein K is a matrix of constant
numerical quantities, and {A)~^, the inverse of a matrix. A, of

which the determinant does not vanish at a branch place, as we
have seen, is likewise of non-vanishing determinant at the branch
place. But 8~^ is the diagonal matrix whose elements are 1, t~^, ...

,

^-(/-i)^
1, t^-^, ..., /jL~''i~^', etc., wherein t,tj^, ... are the local para-

meters for the places arising for the value of x under consideration,

these being branch places of respective indices r, )\, Thus it is

clear that, at the first of these branch places, no one of the functions

yo' 71' •••' Yn-i becomes infinite to order higher than the (;•— l)-th;

and so, then, for any other branch place.

This statement is for a finite value of x; we can easily deduce the

corresponding fact for :c=co. For this, we consider the rational

functions, denoted as before by h^, ..., h^_i, in terms of which all

rational functions, which are infinite only for a finite value of x, say
x= c, can be linearly expressed. We can suppose c taken so that

there are no branch places for x= c. From these functions

hi,...,h„_i we can deduce functions '^q,^^^, ...,'^,i_-^^, just as

yo» 7i' "•> y>i-i "^vere deduced from g^, ... , ^„_i; as will appear, these
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functions are very simply connected with y,, , . . . , y„_i . Putting 2 for

{x— c)~^, the behaviour of ^0 , '^^ , . .
.

, ^„_x for s= follows from what
has been found for yo' Vi' •••' 7n-i ^^^ ^^^Y fii^ite value of x; but
2=0 when a;=cx3; thus the behaviour of y^, ..., y„_;^ for a;=GO is

easily found. In fact, we have seen above that h^.= g^.{x— c)~'-'^i<^'^''

;

hence, if the matrix H be that defined from h^, ... , h,^_^ just as was
G from g^, .•,gn-i> namely to have for its i-th row the elements

1, /ij''', Ag**', ..., fe^*^^ 5 we have H= GCj, where C is 'the diagonal

matrix whose elements in turn are 1, (a?— c)"*'^i+^*, (tC — c)~*°^2+^', ...,

(<r— c)~''^»-i+^*. If then the matrix be expressed in terms of the

functions ^q, "^^j, ... , ^„_i, to be defined, jus^as F was expressed in

terms of the functions y^, y^, ..., y„_i , so that the i-th row of is

V^','^/'', •••'K-i'
^^^^^ Q = {Hy\ we have = (G)-iC-i=rC-i,

and C~^ is the diagonal matrix whose elements are 1, (a?— c)'^i+^, ...,

{x— c)'^n~i+^. Hence we infer that ^o= 7o ^^^^^^=(3;— c)'^/.+iyj., for

A;=l, ...,n—l. The equation y,^= z'^i^~^^'^k shews that if, near a
place for which 2= 0, and z= t'', the function ^;;. be infinite like
^-(r-i)^ then yj. vanishes to order ro-fc+ 1, which is > even if ct;.= 0;

for greater ease of statement we have supposed that for x= od (or

2= 0), there are no branch places, and then the conclusion is that

y^ vanishes, for aj= 00, to order 0-^+1 at least. For y^ (which is ^g),

the statement is that, at a branch place at x=co, of index r, the

function y^ is not infinite to order greater than r— 1 ; and is finite if

there be no such branch place.

General modular form of the everywhere finite integrals.

The reason for introducing the functions yj, is that they enable us to

express the everywhere finite integrals in a simple explicit forni.

Suppose that J? [x, y), or J?, is such a rational function of,^; and y,

subject to the fundamental eqviation / (cT, ^) = 0, that the product

Rdxjdt, for the neighbourhood of every place (including places at

a;=GO), when expressed by powers of the parameter t apjsropriate

to that place, involves no negative powers of t. If R be infinite at a

place, for which x is finite, which is a branch place of index r, this

involves that R cannot be there infinite to order greater than r— 1.

Let gj^ be any one of the integral functions ^1, ...,^,i_i, and, as

before, let ^fc*^^ ...j^a;'"' be the conjugate values of gj^ for any
general finite value of x; and similarly R'^'^\ ..., i?'"' be the con-

jugate values, thereat, of the rational function R {x, y). Then the

sum i2'^'gfc'^' + ... + jB'"*gfc^"' is expressible as a rational fvmction of

X only ; and this sum can only be infinite for a finite value of x if

R {x, y) be infinite for this value; and, moreover, by the property

of R, if such infinity arise for a branch place of index r, the sum can

be infinite there at most to order r— 1. Thus, if H denote the pro-

duct of the factors x— c, extended to all different finite values of c

for which branch places exist, the product [/^'i'^,/^' + . . . -f R^"^gu^"^] n
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is a rational function of x only, not becoming infinite for any finite

value of X, and indeed xanishing for every value c of a; for wliieh

branch places exist. Thus it is a polynomial in x which divides by
n ; we denote it by ty\.ll, so that I]^ is a polynomial in x. Hence,
with the usual notation, by which the n linear functions

(for /=1, ..., n) are represented by a{x-^, ...,ir„), where a is the

matrix (a,j), we have, if we recall the definition of the matrix G, the

equation G(i?<i', ..., i?<">) = (t^o, •••. t/„-i); and hence, from rG=l,
we have (/?<i',

..., i^'"*) = r(ro, ..., t/„_i). This is the same as

n {x, y)= Uoyo+ t^iyi+ ••• + t/„_i7„_i, where U^, ..., [/„_i are poly-

nomials in X only. Conversely, if we take any rational function of

this form, since no one of yQ , y^ , . .
. , Yn-i is infinite at a branch place

of index r, occurring for a finite value of x, to higher than the

(r— l)-tli order, this form ensures that Rdxidt is finite for the

neighbourhood of every finite value of x. To examine, however, the

implication of the condition that Rdxjdt is finite also for x=aD, we
proceed as before. We put («— c)~^ = z, where c may be chosen so

that no branch places occur for x= c, and discuss Rdxjdt, as a

function of ;:;, for 2;= 0. Let vIq, 7ni, ..., m^-i be the respective

orders of the polynomials in x, Uq, ..., U^-i ',
put V^ = z^i Ui , or

{x— c)~'^iUi, so that Fj is a polynomial in z of order m,. Also, as

above, let yk= z"'-"^^'^k> Yo^^o- Then the preceding form for R,

obtained by considering finite values of x, leads, if we introduce

ctq, = -1, to

the condition for Rdxjdt, at x=co, requires then, as a necessary

and sufficient condition, in order that the right side should, for

2 = 0, have the form, as a function of z, above found for Rdxjdt for

finite values of x, that z°i-'^~'^^i F, should be a polynomial in z. This

is satisfied if, and only if, Fq be identically zero, and mj^CT^ — 1.

Thus we have proved that there exist everywhere finite integrals,

namely \[{x, 1 f^-^ y^+ . • . + (a:, 1 yn-x-'^ y„_j] dx, where {x, 1 )
*^ is a poly-

nomial in X of order k, and t^^ CTj-; and no others. When CTj = 0, the

corresponding term is absent. The number of homogeneously

entering arbitrary coefficients in the most general everywhere finite

integral is therefore CTi+... + a„_i, the number we denoted by p.

Such integrals do not exist for p = Q. This is a second verification

that J), as defined here, is the same as jj of the earlier chapters. The
intimate connexion thus established between the everywhere finite

integrals, and the fundamental integral functions g^, ...,g„-i, is

most striking.
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Use of the reciprocal functions for algebraic integrals in
general. A particular combination. The functions y^, y^, ...,

yn-\, with the integral functions g^, ....g„_j^, can also be used to

give detailed expressions for rational functions of assigned poles,

and for the algebraic integrals which have infinities. To this end,

denoting by {x) and (|) any two places of/(.r, ^) = 0, we study the

character of the expression following, which we constantly denote
by {x, i), namely

{^> = Wo (^) + ri (^^0^1 (I) + • • • + Yn-i {x)gn-im {x- $)-' dxidt,

where yk{x) denotes the value of the function y^ at the place (x),

and gjci^) the value of the integral function g^. at the place (|). This
expression is explicitly a rational function of (^). Its value at a

place (x) is contemplated as derived by a limiting process ; if (xq) be
this place, regarded as the origin of a particular branch, or element,

which is given in terms of the parameter t for this branch by forms
x— Xq= V, y— yQ= power series in t, or forms derived from these by
putting x-^ in place of a:— a^^, or y-^ in place oiy— yQ, or both, then
these forms are to be substituted for x and y in (x, $) ; and the limit

found as t vanishes. The notation has already been used. In the
first place, we study (x, ^) regarded as depending on a variable

position of (x), for a definite position of (|); afterwards we regard

(x) as definite, and study {x, |) as a rational function of {^). We
recall that, if (x) be one of the places corresponding to a finite value

of X, this being such that the n corresponding places are distinct,

there being no branch place, and, if (a:*^>) be another of these n
places, then (p. 158 above)

yo(«) + yi(«)^i(a^)+-" + y«-i(^)^«-i(^r) = i,

yo(a;) + yi(^)^i(a:'i')+... + y»_i(«)^„_i(^<i') = 0.

Also, if (x) be in the neighbourhood of a finite place (^), so that none
of j§i(0' '•> gn-iiO is infinite, and this be a branch place of index r,

there being expressions x — ^^f, y— 'q^ power series in /, then, as

before, we write g^. (x) = a j.+ Uj^'t + 1 a^'t^+ We can associate with
(x) the (r— 1) other places, (a?'^'), ..., (a^""'), which, when t= 0, all

coincide with (x) at (^), and correspondingly denote (x) by (x^^^), so

that we have gjc{x^^^) = ajc+ a,/tj+ ha/ti^+ ..., in which 1^= €^~H,

with €= exp(277-t7r); it will be sufficient also to use yk{x)g^{x') as an
abbreviation for yo{x)^-y^{x)gi{x')-\- ... + y^_^{x)g„_^{x'). Then, by
what is recalled above, we have, assuming for simplicity that the

other n — r places conjugate to (^) are simple, the r equations

yic{oc)gM^') = ^, y,(a:)^,(A'<2)) = 0, ..., y,(cr)^,(.T<'-') = 0;

hence, if A be any positive integer.
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substituting the expansions in powers of t, this is the same as

vM
r-l

where, in virtue of S e*'" = r or 0, according as the integer m
( =

divides by >', or does not, we easily see that px= 1, Px+r= l- ••• > the
other p's being zero. Hence we have

(2;-)
]=7..

yk {^) [«fc' ^+:(r+1)!

and so on, the general equation being

r+i +

-p+
(r+i)

-t'-+' + H
Now let (x) approach to (^). We have shewn that none of the

functions yidx) contains any higher negative power of t than t~^^~'^K

Hence we infer that the limits respectively of yfc(a;)afc, yj^{x)ak',

11 1
yj^{x)aj.'\ ..., are , -t~", -2t~-, — With a notation previously

employed (p. 138), this is the same as saying that, if (|) be a brancli

place of index r, the limits, respectively, as (x) approaches to (^), of

the functions

yo{^) + yi{^)Si{0+"' + yn-i{x)gn-i{i),

yi{!^)DgAi)+-- + yn-i{x)Dgn-x{0>

y^{x)D%{0+ ...+y^_,{x)D-^g,_,{^), etc.,

112.
are , ~t~^, -t~'^, and so on, the second, third, ... of these becoming

infinite; here Dgk{i), D^gy.{^), ... are the values of the differential

coefficients, in regard to t, for <= 0. The second, third, ... results will

be useful below; the first shews that, as {x) approaches to (|), the

limit of {x, I), wherein we put x—^= V, dxjdt=rt''~^, is t'^. Namely
{x, $) has a pole of the first order at (^), with multiplier (residue)

equal to 1.

Next suppose that beside the branch place at {$), of index r, there

is, among the n — r conjugate places (that is, for the same value of |,

if the place (^) have x=^, y= r}), another branch place (l^) of index

t\. We consider the limit of {x, ^i) as (x) approaches, not to (^i), but

to (I). Corresponding to the place {x), in the neighbourhood of (^),

there will be, near the place (1^), arising for the same value of x,

places for which the values of ^ may be denoted by a;'^>, a;'^', ..,, a:'''i',

and the value of | by $i, so that numerically x^^^ = x, ^i= $, and, if

we put a:'i'-|i= /i'-i, we have </i = r. Using (j?(i>),
(.c'->), ... for
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places near to {^^, we can put gj.{x'''^'>) = hj. + h^'t-i^+\hj."t-^+ ...,

gk{^^^^) = bk+ bk'^iii+lbk"^i'k^+---^ where ei=exp(27ri/ri). As the

place {x) does not coincide with any of the places in the neighbour-

hood of (li), here denoted by (x^^^), ..,, (a?*''i*), we may suppose the
equations denoted by yi.{x)g;.{x^^^) = 0, to hold, namely

yM[bk+ bk^r\+hh"^i-''-''h'+-] = 0;

adding these r^ equations we obtain

rki^) \bk "(^'^'''^' + (2^!'^-'"^'''^^"+---] = ''

and therein we can replace t/i by f. Also, when (x) approaches to

{$), the function yki^) can have no higher negative power of t than
^-(r-i)^ Thus we infer that yf.{x)bj^= in the limit; and this is what
is expressed by saying that yk{'^)§k{^i) vanishes as {x) approaches to

(^). Hence also, y]c{'^)gk{0 vanishes as (x) approaches to (^i);

namely, expressed in powers of t^ , it must contain at least the first

power of ti as factor. When this is so, however, {x—^)~'^dxjdt is

infinite only as r^ti^^. We conclude, therefore, that {x, $) remains
finite as (x) approaches to (|i), notwithstanding the vanishing

denominator x— ^.

We can now specify the character of the expression {x, ^), given by

{x, = [yo{x) + yMgi{0+ ' + yn-Mgn-i{0]{'«-0-^dxldt,

regarded as depending on {x), for all finite positions of (x), the place

(^) being a given finite place. The expression can become infinite

only on account of the vanishing of a;— ^, or on account of infinities

of the functions yo{x), yi{x), ... , yn-ii^)- These latter are, at most,

to order r— 1, at a branch place of index r, and are therefore in-

effective, on account of the factor dxfdt. The conclusion then is that

only at the single place (^) can there be infinity, the function {x, $)

being there infinite like t~^, if t is the parameter for the neighbour-

hood of (I).

When (x) is at infinity, it follows from what we have proved in

regard to the everywhere finite integrals, that each of the products

yj^{x)dxjdt, ... , y^_^{x)dxldt remains finite. It is also the case that,

if Wg denote a quadratic polynomial in x, the function yQ{x)u2~^dxldt

remains finite; for, by the substitution x==c+ z~^, previously

employed, this takes the form —z'^'^QV2~^.z~^dzldt, where, if

u^={x, 1 )2 , then I'g= ( 1 » 2)2 , '^o being the function for x= c previously

used; and this is finite for 2= 0, V2 not vanishing.

We can thus state the important result: If (c) be any finite place,

other than the finite place (|), the difference (^r, ^) — {x, c) is not

infinite for any position of {x), finite or infinite, other than the two
places (I) and (c); and the integral, in regard to {x),

j[{x,i)-{x,c)]dt.
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where t is the parameter for {x), has no infinities except at (^) and

(c), being infinite at these respectively hke log /^ and — log/o» if

t^ , Iq be the respective parameters for the neighbourhoods of these

places. An integral, in {x), of this behaviour, can be constructed

when (I), or (c), is at infinity. It will be sufficient, however, to

obtain this by first transforming the infinite places in question to

finite places, the resulting changes of the functions gj^{^) being

simple, as has been explained (p. 160). The discussion of (a', |) when

(I) is at infinity arises below.

It may be remarked, as an incidental consequence of the fact that

the limit of yo(a?) + yi(a;)^i(^)+ ... + y„_i(a;)^„_i(^), when {x) ap-

proaches to the branch place (|), of index r, is 1/r, that not all of

yo(.c), Yiix), ... , y„_i(cr) can vanish at the same j^lace. (Cf. p. 71.)

It may also be stated to follow, without great difficulty, from the

character we have found for the integral

rU)
]dt.f'''[(x,0-{x,c)]i

J(a)

that the integral, in regard to (x),

J(a) ^

dt

is infinite only at the (finite) place (^), and then has a pole of the

first order, becoming infinite like — t^-'^, where t^ is the local para-

meter for the neighbourhood of the place (|). In this, the notation

D^ scarcely needs explanation: When {$) is not a branch place, and
the function is not infinite at {i), D^ means djd^; in general, when (|)

is a branch place, we take (|') in its neighbourhood, and express

{x, I') in powers of the parameter for the neighbourhood of (|); then

D^ means that we take the coefficient of the first positive power of

this parameter. The notation has already been employed several

times. More generally, an algebraic integral, having only an

algebraic infinity, at the branch place {$), of index r, being there

infinite like -[Aj^tf'^+ ... + Ar_itf^''-'^^ + Artf''], is given by

rA, /%(a:, 0{x-$)-^dx+ l^''\x-^)-^ Up [x, $)dx,
J(a) J(a)

where U=^A,D^+...+ ^^^A,_,Df--^ + -^^^A,Df,

and p{x, |) = yo(^r)+.-. + yn-i('^).i?n-i(^)-

Another use of this combination to build a fundamental
rational function. We now consider the character of the rational

function of (|) given by {x, |), for finite positions of (x). The
function being, save for (a? — 1)~^, linear in the integral functions of

(I), 1, j^i (I), ... , gn-iii), can only become infinite, for finite positions

of (^), when ^= x. It follows from what has preceded that such
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infinity only arises when the place (^) approaches the place (a;); and
that, if tj. denote the parameter for the neighbourhood of the place

{x), equal to |^— a: when {x) is not a branch place, then, when {$) is

near to {x), this infinity is that of — t^"'^. Another proof of this is

indicated below. More intricate is the behaviour of {x, ^) when (|)

passes to infinity: Introduce the definition

u\ ' = x"'-'^yJx)dx;

if, as before, ct, + 1 is the dimension of the function gi{x), this is an
everywhere finite integral for integer positive values of 7n such
that m < Oj, as was proved; consider then the function G,^{^), of (|),

for a definite (x), given by

GjAi) = t'g, ii) du,^ Jdt+ i-^g, (a du,, Jdt +...

+ t''^gdOduj,^Jdt;

this is equal to

namely
-yA^)gA^)[l-{xlir^]{x-0-'dxldt

Hence we can write

{X, i) = [y,{x) + I.y,{x)g,{$){^rlirq{x-i)~^dxldt- ^±'G,{i);
k A-= 1

here, since ^~"^^^^'^fc(^) is finite when (^) is at infinity, the first part

on the right is finite when (^) is at infinity. Thus the poles of {x, ^),

as a rational function of (^), which arise at infinity, are given bv the
n-l

expression — 2 Gk{$).
A = l

The alternative proof of the nature of the infinity of {x, |), as a
function of (^), when i= x, which has been referred to, is, in outline,

as follows: When (^) is approaching to the branch place (x), of index
r, for the neighbourhood of which the parameter is denoted by t, the
function yo{x) + yi{x)gj^{i)+ ... + y^_^{x)g^_^{i) can, by what has
preceded, be expressed as C//Z), where U, D are certain deter-

minants ; these we put down, supposing (x) to be not at first actually

at the branch place, but to be given by a parameter t^ , appropriate

to this branch place, using e for exp(27ri7r); namely U is

U=\ 1, g{t) , ..

h g{^'-%),

wherein g{i) denotes a power series of the form a + o't+^a"t^+ ...

,

and g{€\) denotes what this becomes when €% is substituted for t;
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and D denotes what this becomes when t^ is put for t. As we have

previously seen, the determinant D may be reduced by taking the

determinant M,, of s rows and cohmms, of which the general

(A, /Lt)-th element is e''^-^'
"^-i'

; denoting the quotient of the cofactor

of €<"'-!> <»-i', in this, by M^ itself, by Kg^„^; then forming the array

1

K.2,1' K.

K r,\ > -^r.S Kr,

and operating on the first r rows of D as if we were multiplying D by
the matrix indicated by this array. When this is done, a factor

/q^^... V"^ can be removed, and we are able to infer that

where Ay is a determinant which, for 1^= 0, would become the

determinant A^ considered above (p. 152), there proved not to

vanish. A similar process is applicable to the 2nd, 3rd, ...,r-th

rows of the determinant U. For this, we begin with the deter-

minant of 5— 1 rows and columns which is the minor, save for sign,

of the (1, s)-th element of 3/,; denoting this determinant by Ng, we
reach the equation L' =xV,Jo^<''-i"'"-2*^2' where A^ is the deter-

minant
1, g{t) , ... I;

0, a'+... , ..

A,=

0, -f ...,
(r-2)!

if then, in A^, we put ^0= 0) and then subtract the 2nd, 3rd, ... , r-th

rows, respectively multiplied by 1, ^, ..., P'-^, all from the first row,

we obtain (after placing the resulting first row into the r-th row),

the result A2= {- ly-H'-'^Aj^ .

We can, however, see at once, by adding all the rows of M^ to

the first row, and then dividing the rows by powers of e, that

Mr= rN r-''^''-'^^
; and this identity is obtainable also by proving that

the inverse of the matrix of which M^ is the determinant is ;—^ times

the matrix obtainable from M^ by changing e into e~^, while

{ — ly-'^NrlMj. is the (r. l)-th element of this inverse matrix. Thus
finally, the value of t//Z) is to be obtained from

UlD
_{-iy

(^'-VV-^)(-i)'- or -{tItoY-';

and hence {x, |), or {XJjD){x— ^)-'^dxjdt, as (^) approaches to {x), is

obtainable from - (f/^)'""^ .
1%^'^

. {x— ^)-^
; or, now supposing (x) to be
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actually at the branch place, from V~'^{x— ^)~'^. Thus, finally,

{x, ^)= —t-^, which is the result we obtained otherwise above. A
similar investigation may be made for the approach of (|) to a

place, other than {x), for which x has the same value as at {x).

We pass now to exhibit the use of the rational function of (^)

denoted by {x, ^), For this, we write {x) in place of (|), and,
denoting by (z) an arbitrary finite place, we consider the rational

function of (x), {z, x).

The differential coefficient of the general everywhere finite

integral, which we have proved to have the form

S {x, iyk-^g,,{x)dxjdt,

contains p homogeneously entering coefficients. It is thus possible

to choose J} places, say (c^), .,., (c^,), of such generality that this

differential coefficient does not vanish in all of these ; and to choose
one such differential coefficient uniquely by the conditions that it

vanishes in all of (c^), ..., (Cp) except (c,), but reduces to unity at

(Cj). So chosen, let it be denoted by cOi{x); and let the corresponding

integral, I oji{x)dt, be denoted by F^*^'". Then consider the

rational function of (x) given by {z, x) — X^{ci, x)— ... — X^iCj,, x),

where A^, ..., A^ are independent of (x). By what has been proved
in this chapter, the poles of this function, for finite positions of {x),

occur only at (2), (c^), ..., (Cj,), the infinite parts of the function at

these places being, respectively, —t^-^, Xj^t^^-^, ..., Xptc^''^, where
tz,t^^, . .

.
, tf are the local parameters for the neighbourhoods of

these places respectively. If, for brevity, we write, temporarily,

^k,m{^) = ^^'^~^yk{^)dxldt, the infinite part of the function

(z, x)-Xi{Ci, x)~...- X.p{Cp, x),

when (x) is at infinity, is, by what we have proved,

-T{x,z)+ S T{x,c^),
k=l

where T {x, z) denotes
71-1

S [«-V/ (^) /^,-,l (~) + • • • + ^-'''gi (X) f^i. a, (2)],
i=l '

and T{x, c^) is obtained from this by jiutting {c^) for (2); namely,
this infinite part is

n—

1

<Ti

i=l mi=l

We can choose A^, ..., A^,, independent of (x), so that this infinite

part vanishes; we recall that no rational functions of x only,

Uq{x), ..., Un-i{x), exist, other than all zero, for which there is

an identity U^ (x) + L\ (cr)^i (a-) + , . . + t/„_i {x)gn-i (x) = ; thus, the
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necessary, and obviously sufficient, conditions for A^, ... , A^ ai-e tliat

every one of the coefficients /x,,„,j(:;)- A^/x, ,„.(ci)- ... - Ap/Lt, ,„.(c,,)

sliould vanish, these conditions, since ctj+ ...-\-a,^_^ = p, being inde-

pendent. Now, in fact, the equations

are true; for the left side, regarded as a function of {2), is the

differential coefficient of an everywhei*e finite integral, but vanishes

when (;::) is at any one of the p independent places (c^), ... ,
[c^); it is

thus identically zero. Tims the values of X^, ..., A^, are a»i(s;), ...,

a)j,(s). We thus have the conclusion that the rational function of {x)

given by (z, x) — a)i{z){Ci, x)— ... — o)p{z){Cp, x), is not infinite when
(x) is at infinity, but is infinite to the first order at each of the ^4-

1

general places (2), (q), ..., (Cp), with respective infinite parts,

— t2~^, co^{z)tcj~^, ..., o)p{z)tp ~'^. This function we shall denote by
i/j{x, z; q, ... , Cp), or, more often simply by {x, z). It is a function

of fimdamental importance; and, in case the original curve

f{x, y) = have a simple form, it is easy to form the explicit expres-

sion of the function without recurring to the integral functions

gi{x), ... , gn-ii'^) which we have employed; or conversely, from such

an explicit expression, we can deduce the particular differentials

coi{z), ... , iOj,{z), by considering the poles (c^), ... , (Cp). In regard to

the places (c^), ..., (Cp) we may add the remark: These places were
chosen so that there is no everywhere finite integral whose dif-

ferential coefficient vanishes at all of them; there can, also, be no
rational function having poles of the first order at each of these j)

places, and no other infinity. For if U{x) were such a function, with
infinite parts «iffj~^, ..., ciptc ~^ at these places, and F/*\ as before,

,u-)

be the integral I a)j{x)dt, the application of the general theorem

proved (Chap, iii, p. 47), expressed by [U{x)dVi^^^ldt]t-i = 0, would
give the equation ai(Di{ci)+ ... + apCJi{Cp) = 0, for all thep values of

i; and hence a,.= {k=l, ... , p). The function ifj{x, z) is infinite at

(z), as well as at (q), ..., (c^).

Application to the general theory of rational functions . The
Riemann-Roch theorem. We proceed now, independently of

what has been said previously, to consider the expression of any
rational function, of {x), as a linear aggregate of functions ip{x, z),

with different positions of (2), but always the same places (c^), . . . , {Cp).

In the first instance we suppose that all the poles of the function to

be expressed are of the first order. Let this function have for poles

the places (2^), ..., {z„,), supposed all different from (c^), ..., (Cp), its

infinite parts at these places being respectively A\<,j~^, ..., k,J.^^~^.

If R{x) denote the function, the aggregate

R (x) + k^ip {x,z^)+... + k,J {x, 2,

J
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is a rational function of {x), with no poles at {z^), ... ,
(z,„), and poles

only at (c^), ..., (Cj,). By the remark just made, it is therefore an
absolute constant, say A;. By employing once more the theorem
\R\x)dVi'^''jdi\f-i = Q, or by putting down the infinite parts of

ijj {x, Zj), ..., iff {x, z„i) at the place (c,), (fi-om the explicit form of

4' (^5 ^r) given above), w^e see, as R{x) is not infinite at (c,), that the

coefficients (residues) k^, ...,k^, at the poles of any existing

rational function R {x), must satisfy the p equations

for r=l, ...,p; and, conversely that, if k^^, ...,k^ satisfy these

equations, then there exists a rational function with (%), ... , (2^) as

its poles, of the first order, with the respective infinite parts

k^tz~^, ..., kmt:„~^- Hence we can deduce a theorem considered

before (p. 78) under the name of the Riemann-Roch theorem for

functions. For the p linear conditions for k^, ..., k„^ may not be

linearly independent, there being equations of the form

satisfied for every one of the positions {Zy), ..., (:;:,„) of (z); suppose

that this is so for r' + 1 sets of values of c^, ... , c^, where r' + 1 ^ 0,

Then the p linear equations for k^, . .
.

, k^ are equivalent to

p — {r' + l), and can be satisfied with m—p+ r' + l of k^, ...,k^

taken arbitrarily, the other p — {r' + l) oi k^, ..., k^ being deter-

minate in terms of these. In other words, as the rational function

contains a single additive arbitrary constant, k, we can say: //
places (Zj), ..., (z„,) be such that there are (r' + l) differential co-

efficients of everyivhere finite integrals which vanish in all these places,

then a rational function can be constructed having these places as poles

of the first order, and no other poles, and this function contains a
number, r+1, of homogeneously entering arbitrary constants, given by

r=m — p-\- r' + 1 {provided this r ^ 1 ). In particular, when r' + 1 = 0,

and ni = p-\-\, we have r=l. The separate functions which thus

arise {r in number, beside a constant), each multiplied by an
arbitrary constant, are not necessarily, or generally, every one of

them infinite in all the m places {z^), ... ,
(z^); it is possible, however,

to choose from {z-^, ..., (z^), a set of m — r places, say (z^), . . . , {z^_r),

such that, for every one of the remaining r places, say (2'), there

exists a set of {m— r) coefficients, A^, ... , A^_^, some of which may
be zero, such that the p equations

A^O)i{z^)-^...-\-A,,,_rOii{z^_r)-iOi{z')

are satisfied {i=\, ...,p); there exists then a definite rational

function, actually infinite at (2'), and infinite at such of (2^), ...,

(^TO-r) as really enter in these p equations. The general function

obtained is the sum of the r definite functions so existing, each
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multiplied by an arbitrary constant, with the addition of a further

arbitrary constant; tlie general function is actually infinite at

every one of the r places {z'); but there may be places among
(zj), (~„i_)) at which it is not infinite.

As a simple example of this condition, suppose that m =p + 1 , and that

(Si), ..., (z^) consist of a place (2^+1) of general position, together with

p places (^i), ..., (Zp) connected by the y? equations

^lWf(2i) + ...+^p_iajj(2p_i)-a>,(z^) = 0, (/ = 1, ...,/?),

in which no one of -Jj. ... , ^j,_i is zero; there is then a function

Aicui(:;) + ... + Xpa>p{z) which vanishes in all the p places (Sj), ... , {z^), but
not in (Zp^i). Then r' + l=0, and the formula r=m—p gives r—\. The
set of independent places (Sj), ...,(s,„_r), spoken of above, must then
consist of (Sj), ... , {Zp_^) and (Zj,^^), but the A^ of the general formulation
is zero. There is then a rational function with (r,), ... , (Sj,_i), (Sp) as actual
poles, but no function with all the given (/> + l) places as poles (cf.

Chap. IV, p. 86).

Ex. 1. I3y considering the rational function expressible by the fraction

whose numerator is the differential coefficient of the general everywhere
finite integral, and denominator is the differential coefficient of a par-

ticular one such integral, prove that such a differential coefficient has
2p — 2 zeros (we have seen. p. 165 above, that there is no zero common to
all the p differential coefficients).

Ex. 2. The theorem obtained before (Chap, vi, p. 144), and called the
converse of Abel's theorem, may also be proved here, under a certain

hmiting hypothesis. With the notation used, of F^^." for an everywhere
finite integral (p. 168), suppose that (r/j), ..., {(t^) and (2^), ..., (z^), are

places such that the p equations F/i'^'i + . . . + V^^m'^'m = hold, the sign =
indicating the possible presence of a linear aggregate of the 2p periods
of the integral F^ , wherein the multipliers of these periods are the same
for all the p equations; make the hypothesis that in the immediate
neighbourhoods of (Sj ),..., (z„j), respectively, there are other places

(Zj'),..., (2,,/) also satisfying these equations, {a^), ...,{a„^) remaining
unaltered. Then, for proper values of the differentials of the parameters
t^, .•• ,t^ appropriate respectively for the neighbourhoods of (zj, ... , (z^),

we have the p equations io/{Zi).dti+ ... + w^{z„^).dt^^ = 0. Hence, if

/x^, ..., fi,„ be finite numbers which are in the ratios oi dt^, ... , (//,„, and
/* be a constant, the rational function ft + ^l^>p{x, Zj) + ... + ij-.^^ipix, z„,) has

(Zi), ... , (z^) for poles of the first order, and no other poles. The theorem
receives another proof below.

Explicit form of relation for interchange of argument
and parameter. We add now some detailed investigations wliich

furnish in particular; (i). a theorem, in explicit algebraic form, for

the interchange of the limits and the infinities in an algebraic

integral which has two logarithmic infinities. This was one of the

achievements of the early theory in the elliptic case {p = l); and,

for Riemann's transccndentally defined integral 0^"^ , is true in the

form n^'^ =11^'^, (cf. p. 144, Chap, vi above); (ii), also in explicit

algebraic form, a function which may serve as a prime function for

rational functions of a; and 7j (subject tof{x, y) = 0), enabling us to
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express such a function in factors, each factor vanishing to the first

order in one of the poles, or in one of the zeros, of the rational

function. The former theorem goes back to Abel (for the hyper-
elliptic case, cf. (Euvres, 1881, i, p. 49) and to Weierstrass; the prime
function to Kronecker (in an entirely different way) and Weierstrass

(cf. Weierstrass, Werke, iv, p. 253).

Consider the rational function of (z) which is given by

R{z) = ^{z,O^J{z,x),

where (x), (|) are two arbitrary places; and apply to this the

fundamental theorem [R{z)dzldt]f-i= 0, which we may express here

by [i/f(2, ^)dip{z, x)ldt]t-i= 0, the parameter t being that by which

(2) is expressed in the neighbourhood of a place considered.

Infinities arise only when (z) is at (^), or at {x), or at one of the

places (cj), ... ,
{Cp) which were used in the definition of the function

ip{z, ^) or ip{z, x). To express the result of the theorem we use a

notation, already several times employed, of which we repeat the

definition here: If, for a rational function R{z), with or without a

pole at a place (c), we form the expansion, for the neighbourhood of

(c), in terms of the parameter t appropriate to this neighbourhood,
the coefficient of t in this expansion is denoted by Df.R{c). Thence;
(a), when (2) is near to (^), the expansions of i(j{z, ^), ifj{z, x) give

,p{z,$)=-t-^+ P{t),difj{z,x)ldt= D^4,{^,x) + P^{t),wheveP{t),P^{t)

are power series; and the contribution to the summation involved

in the theorem is — Z)* (|, a;) ; {b), when (z) is near to (x), the

corresponding expansions give ijj {z, $) = iff{x, ^) + tD^. xp{x, ^) + . .
.

,

dilt{z, x)jdt= t~'^-\-P-^^{t); and the resulting contribution is D^iIj{x, $);

when (2) is near to (c,), we have

iJj{z,x) = t-^oji{x) +N+ tD,.ilj{Ci,x)+...,

where M, N are independent of t, and the corresponding contribu-

tion in the theorem is a)i{^)Dg.ijj{Ci,x) — oji{x)D(..ip{ci,^); thus,

altogether, the theorem gives

-Z)^<A(^, x) + D,,p{x, i)+ _f [co,{0D,,4,{c,, X)

-a;,(a:)D,,0(c,,|)] = O.

We can express this result in terms of functions {z, a) defined above,

p. 162. For we have iplx, ^) — {^, x) — 'Za}}.{^){ci;, x), and hence
k

D^ip{x, ^) = D^{$, x)-E (xj !,{$). D^{Ck, x); in particular
k

Z>,.0(c,,|) = i>,^(^,c,)- i w,M)Dc,{cu,cd,
' '

k=\ *
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where, in Dc.{c^., Cg), for k = i, Dc.{Ci,Ci) must be remembered to

mean the vahie of Z)^(c,, .r) for (a?) = (c,). Thus we obtain the
formuhi, which we can express in four ways:

(I) The expression

D^{x, a + S cu,(^)[Z>,,(^, c,)-D^{c,, ^)]-SS a>,(^)c.,(aZ)c,(c,,c,),
A; k i

where k=l, ...,p and i=l, ..., p, is unaltered by the interchange
of (x) and {$).

(II) Putting

Ave have

fix)
(III) If,asbefore,weput£/'"= / Z),(cr,s)rfi^, and integrate the

J{a)

result in (I) in regard to (x), we have

E^-.-= ^c.,{i)E,^-,-+ ^{x, $)-4'{a, |)-Sr;/.«t7,/.

Here the function E^^'"' does not depend on (c^), ... , (Cp). The right

side, as a function of (x), becomes infinite when ifj{x, |) becomes
infinite, or when one of £'c^^'" becomes infinite, and these do not
depend on (|). Thus E^^'" becomes infinite at (^) like i/»(a;, $), namely
like —ti~^, and only then. This property of E^'''^ can be established

directly, and hence the equation (III) deduced, as remarked below.

(IV) If, as before, we define P^' ^ as / [(a:*, 2) — (.r, A')]^/^,, then, by

integration, in regard to (^), of the result in (III), we obtain a result

which expresses that the function

p^'«+2f/.«{£^/.^-[(c,,2)-(c,,a:)]}-i:::f,-.«f/.^-z>,.(c,,c,)

is unaltered when we interchange the places {x), (a) respectively

with the places (2), (k). Here the summation in regard toj and i is

from 1 to p. This is then the generalisation of the formula in the
theory of elliptic functions known as the interchange of the

argument and parameter.

The direct investigation of the character of the function Et^'^, referred
to under (III), and the consequent direct proof of (III) is as follows: The
expression Dt{x, ^)dx/dt is Hdxjdt, where

H= {x-^)-^i:yi{x)D.gi{^) + [y,{x) + Y,y,{x)g,{0'\DAx-^)-^;
i i

now, first, when (|) is not a branch place, we have Digf(^) = the differential

coefficient g/(^), and y,(a;) = y,(0 + (^— ^)y,'(^)» ^^ (*) approaches to (^);
while, from the fundamental relation yQ{x) + 'E.y-{x)g^{x} = l, we have
yoiO + ^yi'{OgiiO = -^ydOgi'iO- Thus we see at once that Hdx/dt,
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when {x) approaches to (|), is the same as (x — ^)~^, and the integral

^Dt{x, ^)dx becomes infinite hke — (a;— |)~^; and has no other infinity.

Next, when (^) is a branch place of index r, and (^j) is within the neigh-
bourhood of this, the expansion

(.r - fi)-i = (.T - ^ - r)-i = {X - 0-1 [1 + {X - 0-1 /'•+...]

contains no term in /, and Dt{x — ^)~^ = 0; also lLy^{x-^)Dtgi{i), which in

a previously used notation (p. 152) is 'Ly^{x)a/, was proved to be given

by.-ri. Thus, for D^{x, ^)dx/dt the infinite part is irl.r^r^'-l or r-;

and hence the integral £'/'.'^ is infinite hke — f~i; and, as before, has no
other infinity.

Now, from the character of the rational fimction of (x) given by
tli{x, i), which was defined as {i, x) — 'La),^{i){ci^, x), we see that the

k
difference E^'^''^ — ipix, $), as a function of (a;), has poles only at (q), ... , (c^)

;

at these also it is infinite, respectively, like — aj^(0<c ~^' ••• '
~ ^])i^)tc

~^-

^Vhence, the function of (x) defined by ^ "

K{x) = Ef,<^-^co^{i)E,^^><^-mx, i)-<P{a, 0]

has no infinities. But dK/dx is a rational function of (x). Thus K{x) is an
everywhere finite integral, and we may hence write

^
fc

* k

where Aj. does not depend on (x). Differentiating this equation in regard
to (x), and then putting (x) at (c,), we find the result given in (III).

Weierstrass's prime function for algebraic functions. We
now proceed to another result. The function P^'" is the integral in

regard to (x), of a function wdiich is rational in (z). We consider now
the integral as a function of (z). If {a), {k) denote arbitrary places,

and we put

Ul'l= r\{x-z)-^-{x-k)-^]dx,

and recall that yo (2) + Sy, (2)^,(2) = !, and yo(^") + Sy,(A:)^,(A;) = l,

we can put p^'^= U^'"+ V, where
' Z, K Z, K

V= i^''\F{x,z)-F{x,k)]dx,
.'(«)

and F{x, z), F{x, k) denote functions given by

(x-z) F[x, 2) = yo(a;)-yo(2) + S {yAx)-y,{z)]g,{z),

{x-k)F{x,k) = y,{x)-y,{k) + i:{y,{x)-y,{k)]g,{k).

The subject of integration in F remains finite when {x), in the course

of integration, passes through the place {z); when x approaches 2,

but {x) does not approach (2), we know that P^' " remains finite. We

infer, then, that P*^' ", regarded as a function of (2), is single valued

except when (2) approaches the path of integration from (a) to {x).
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This path we may regard as a barrier for the variation of (2); the

function of {z) gi^'cn by P '
^^

will have different values at opposite

points on the two sides of this barrier; in fact, as U '^. is equal to

log [l^x-z){x-k)-^l{a-z){a-k)-^],

these values differ by 277-i (cf. Weierstrass, Werke, iv, ]). 37!)). We
now interchange the places {x), {a) respectively witli (::), (k), and
infer that the integral

which is P^; ^^ - 2 F/. '^ [(c, , x) - (c, , a)],

regarded as a function of {x), is single valued, save for additive

integer multiples of 277?"; also, by its definition, or by the equation (IV)

obtained above, this function is infinite when (x) is at {z) like log t^,,

and when (x) is at {k) like — log t,^, and also has a pole of the first

order at each of the places (c^), ...,{Cp), but is not otherwise

infinite. Hence it follows that the fiuiction of (x) defined by

E {X, a; z, k) = exp {P'^^-I^V,^-'^ [(c,, x)- (c,, a)]}

has the following properties

:

(i), It is a single-valued function of (x), it being understood that

the path of integration for (2), from (k) to (2), does not pass through

the place (x); (ii), The function vanishes to the first order when {x)

is at (2), and has a pole of the first order when (x) is at {k), being

capable of expression by integral powers of the local parameter

thereat; (iii). At each of the places (q), ... , (c^) the function has an
essential singularity.

Now let (2i), ... , (2„,) be the zeros, and {ti), .... {t,„) be the poles of

a rational function R{x), all these being of the first order. Then the

quotient

Q, = E{x,a; z^, k) ...E{x, a; z,„, k)IE{x, a; t^, k) ...E{x, a; t,„, k)

is equal to exp
(
W), where

r=l ' 1=1 r=l

but, by Abel's theorem, if the paths of integration in the integrals
rn

Vi^'-Jr be properlv chosen, we can suppose that S Fj^'--''- vanishes,
r=l

for each of the jj values of i; wiiile also (see Chap. in, p. 5i) we have
^ Z- fr

^ P,:a=^og[R{x)IR{a)].
r=l

Thus it appears that R{x)jR{a) is expressed by the quotient Q
above, in which there is a factor corresponding to every zero and
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pole. (Cf. Weierstrass, Werke, iv, p. 384. The function il){x, x') is

essentially that Avhich Weierstrass denotes by H {x, y; x', y'); v. loc.

cit. p. 73. For the factors that may arise when the paths of integra-

tion involved are arbitrary, v. loc. cit. pp. 367, 390). Conversely,

suppose that {z^), ... , (2„J and (<i), ... ,
{t^) are such places that, with

proper jaaths of integration, we have the p equations SF^^'->''-= 0,
r

for i=\, .",p. Then the quotient which, for brevity, we have
denoted by Q, has {zj), ..., (z,„) for zeros of the first order, has

(t^), ... ,
{t„^) for poles of the first order, and is analytic in (x), being

expressible in the neighbourhood of any place by a series of integral

powers of the appropriate parameter t. By the definition

E{x, a; z, A:) = exp {P^'^-SF,-.n(c,, x)-iCi, «)]},

the quotient has, when (x) is near to (c^), an essential singularity

depending on exp {tg~^'LV^^r,trj, which, however, in virtue of the
r

p equations assumed, is ineffective. The quotient is thus a rational

function of (x). This furnishes another proof of the converse of

Abel's theorem (cf. Weierstrass, Werke, iv, p. 418). The proof

originally given here, by use of Riemann's elementary normal in-

tegral of the third kind (Chap, vi, p. 144), was based on a knowledge
of the periods of this function. By what we have proved here in

regard to the function P '

, regarded as a function of {x), the periods

of the integral P^'j. , as a function of {x), save for additive multiples

of 27ri when (x) makes a circuit about (z), or {k), can be found from
equation (IV) above.

On the whole then, it appears sufficiently that the theory of this

chapter can be made the complete basis of a theory of the linear

series upon the curve f{x, y) = 0, and of the algebraic integrals

associated therewith; but, in order that all the algebraic formulae

should be explicitly realisable, it is necessary that the fundamental
integral functions g^^, ... , ^„_i should be explicitly known. To deter-

mine these is a problem entirely representative of the problem
which presents itself in the earlier geometrical theory, of deter-

mining explicitly the conditions of adjointness of a polynomial at a

singular point of whatever intricacy. For a summary of a pro-

cedure for determining ^j , ...,gn-\, derived from Hensel, reference

may be made to the writer's AheVs Theorem, Cambridge, 1897,

pp. 105-112. A systematic introduction to the theory is given in a

volume, Theorie der algebraischen Functionen, u.s.w., by Hensel u.

Landsberg, Leipzig, 1902, pp. 1-702: and for other points reference

may be made to the Enzyk. d. Math. Wiss. Bd. ii, 3. 5. That the

theory may be developed parallel with Weierstrass's earlier theory

(but with greater explicitness when g^, .•.,gn-\ have been com-
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puted) is sufficiently indicated here. For an alternative method of

dealing with the fundamental difficulty of the nmltiple points, the

papers of J. C. Fields, of which the first is Theory of the algebraic

functions of a complex variable, Berlin, Mayer u. Miiller, 1906,

pp. 1-186, may be consulted.

Some indications of the many applications of the theory of this chapter
may be added:

Ex. 1 . For the case when the fundamental equation is .7- — {x, 1 )2p+2 = O5

it is easy to prove that any rational function which becomes infinite only

for x= 30 can be expressed as u+vij, where u, v are polynomials in x.

Thus the integral function g^ is ij, for which o^—p. The equations

yo + yii/ = l' yo-yi// = (p. 158) determine y^ = l, yi = l/2.y. The every-

where finite inteorals are thus J(,c, 1)^ j^(Lt/2y. Also, the function {x, i)

(of p. 162) is o-iven by (y + r])[2i/{x - i)]-^dx/dt, if (|, i?) be the place

(i). This case is characterised by the existence of a rational function of

order 2.

Ex. 2. If there exist a rational fimetion of order 3, say x, and the

fundamental algebraic equation /(a', y/) = contain y^, as highest power
of y, the fundamental integral functions gj , gg will be such that the in-

tegral functions gig2, gi~, gz" are expressible in the respective forms
^' + igi + "g2^ J^i + i'igi + «i^2' ^2 + ^2gi + ^'2g2^ where w^, n^, i\ are poly-

nomials in ,1' ; herein the dimensions of v and u will not be greater

respectively than those of g^ and g^; thus, using g^ — u, g^ — v in place of

^1, g^, respectively, we can suppose ^1^2 = ^- Forming, from these ex-

pressions, the forms for gi-g^ and g^g^- (since an identity U + Vg^ + Wg^ —
is impossible, wherein IJ, V, W are polynomials in x), we can infer

w = 11^112, Wi= — UjV2, tt'2 = — Mg'^'i . Thence, also forming g^^, we deduce

gi^ — '^hgi' + "I'^'agi - "i'"2 = : or, if we use y for gjii-^ , the fundamental
equation may be taken to be u^y'^ — i\y'- + i^y— Mj = ; the two fundamental
integral functions are then gi = Uiy and ^2 = "2^^- Also, in the most
general case, from. gj^^ = 7Ji\ + t\gi + Uig2, etc., we infer that the dimensions
of Ui , U2 . Vi , V2 , in terms of a^ , ctj ? ^re respectively, 2cti — ctj + 1 , 2ff2 — 0^1 + 15

CTi + 1, aj+l. The maximum possible number of arbitrary coefficients

(moduli), in the fundamental equation, if we use one constant as a
multiplier for y, and three constants in a linear transformation of x, is,

therefore, found to be 2(cri + ctj) + 1, or 2p + 1. For the hyperelliptic case

the number was 2p — l; for the case of the fundamental equation most
general for its genus it was 3p — 3 (p. 94 above); in the general case,

a rational function can be found (p. 92 above) of order l + lp, or

l + HP + l): and the least value of p for which this is >3 is ;> = 5; the
existence of a rational function of order 3 involves 3p — 3 — (2/:» + l) or

/> — 4 conditions for the general moduli. Passing now to the computation
of the functions y^, y^, y^, conjugate to the integral functions I, gi, gz,
we find from ro + rigi + 72^2 = 1 » ro + Yigi +r2g2=^^Yn + Yigi" + Yzgi"^^
(see p. 158 above) that yo = {Uiy^-i\y)lf(y). yi = y/f'{y), Y2 = '^lf'iy)^

where /(.c, //) = "i»/'*
— Uj ?/- + r2.(f/— 1/2 ; and hence that the expression {x, i)

is capable of the form {1I2— "J2)[('^— 0(?y — ^)/'(.'/)J~^^'^A^'' where (|, 7;) is

the place (|), and ojj is the polynomial Mj when x is f. We return to this

case again in Ex. .5, to introduce a general theorem.
Ex. 3. Prove that a general plane cpiartic curve can be transformed

so as to be represented by an equation y^ + my'- + yxn + x-v — 0, where
m is a constant, and u, v are respectively quadratic and cubic poly-
nomials. Prove that, for this equation, gi = y and g2 = y{y + ^ti)lx.
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with CTi = 1 , 02 — 2.; and that the functions yo , yi , yg are respectively

given by

{if + mij + xu)IS'{y), y/f'iy), x/f'{y).

Ex. 4. For the equation of a general quartic curve with a double point

at (0, 0), namely (y, x)i + {y, x)3 + {y, x)2 = 0, obtain the integral functions

gi, g2, §3, the values of oj^, a^, a^, and the functions y^, y^, y^, y^.

Ex. 5. Suggested by the everywhere finite integral, for the equation

in Ex. 2, which is \[{x, \y^~^y + {x, lf-~^]dx/f'(y), consider the curve of

order 2p — 2, in space [p — 1], in which the coordinates are

which is given by

^o/yx'''-^ = ^Jyx-'-^ = ... = |^^_^/// = V'^'*"^-! = Wa;^^-2 = ... = r,^^_^/i.

This is the canonical curve considered in an earlier chapter (p. 81 above).
Evidently it lies on the rational ruled surface obtained by joining the

general point (d'^'^~^, 0'^'-~^,
..., 1) of the rational normal curve of order

a^ — l in space do, ii, ..., ^j^^_j), to the corresponding point (e*^^"^, ...,d,l)

of the rational normal curve of order a^—l in space {-qQ, ..., tj^ _^); this

surface is of order p — 2, and every generator contains three points of the
curve (corresponding to the three values of y in the equations deter-

mining the curve). The canonical curve lies on the iip — 2){p — 3) quadrics
expressed by ^j/f,+i=... = T?j/7;,_^i=... {i = 0, ..., ai-2;j = 0, ..., 0^-2),
which, however, do not determine this curve, since they all contain the
ruled surface ; the curve may in fact be determined on the surface as the
residual intersection of this with a cubic primal described through p — 4
generators. (Cf. p. 96 above.) [It will in fact be proved later that an
algebraic curve on a ruled surface of order n^ , whose prime section is of

genus Pj^, which meets each generator k times, and is of order v, has a
genus 7T such that k{2pi — 2) = 2TT — 2 — {2v — 7iik)(k — l}; if herein we put
n^ =p — 2, pi = 0, k = S, v = 2p — 2, we find 7T = p.]

Ex. 6. A series g^^ is found in the general case where the everywhere

finite integral is of the form J[(«, lf'-~'^yi + ... + {x, lfn-i-'^y^_^]dx; for

simplicity of statement, we assume every one of o-i — 1 , . . . , a^_i — 1 is ^0,
and that n^ p. The canonical curve lies then in a space [p — 1] wherein
the coordinates are $o, ..., i„^_i; Vo^ •••' V-i' "•' ^o» •••> L,,_j- 1 , and is

given by

^o/yi^'''~ ^ = • • • = ^a,- i/ri = vo/y^'''''' = • •
•

= ^7(72- i/y2 = • • • = yy„_i^'°'«-i~ 1 = . .
.
= C^ _^_ i/Yn-l •

Evidently the curve lies on the manifold which is the locus of the space
[n — 2] which joins the corresponding points

[d'''-\...,e,i], [d'''-\...,d,i],..., [e''n-i-\...,e,i],

of n — 1 rational normal curves lying respectively in the spaces

(lo» •••' ^ai-i)' (%'•••' v-i^' •••' (^o> •••' ^^_^_i);

and the canonical curve is met by each of the spaces [n — 2] in n points,

corresponding to the possible values of y in the functions yj , yj , ... which
enter in the definitions of ^q > ^i ' The order of the manifold is S ( a^ — 1 ),

or p — n + 1. We may prove this ab initio by remarking that, as the mani-
fold is of dimension m — 1, the order is the number of the spaces [« — 2],
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each determined by one value of 6, which meet (n — 1) given primes of

the space [p — 1] ; the vahies of d are those wliich satisfy n — 1 equations,

each of the form Xi{d, 1)^^_ ^ + . . . + K-\i^^ ^)a _ i
= ^' in which Ai , . .

. , A„_i

are the same in all, and the coellicients in the polynomials {d, l)(,._i are

given, and different. By elimination of Ai,...,A„_i this leads to an
equation of order p — n + \ for G. As follows from the equations

^ilii+i = rij!-qj^^ = ... = l,^!lj,^i, where there are j)-n + \ fractions, the

manifold (or scroll) of order n — \, lies on h{p — n + \){p — n) quadrics;

as is known, the canonical curve lies on |(/; — 2)(p — ,'3) quadrics; thus,

beside those containing the scroll, there is a number \{n — '6){2p — 'l — n)

remaining; this vanislies when /? = 3, as in Ex. 5.

[It may be remarked that if in space [rj we have a scroll of x^ spaces

[s], of genus Pi,oi order n^, forming thus a manifold iVf«^+i 5 ^^^ thereon

a curve of order v and genus tt, meeting each generating {s\ in A" points

;

then the number of generating spaces, 2y, wiiich touch the curve is given
by 2y — 2TT — 2 — k(2pi — 2), and the number of generating spaces, d, in

which s + 1 of the A' points of the curve lying therein lie on a space [s — 1]

is given by d-v{k—l, sj-n^ik, s + l)-ij(k-2, s — 1), when {h, I) means
hi/II (h — 1)1; and we have

M2p,-2) = 2.-2-||^){(. + l).-.,A-} + ^-^|^^.
This agrees with our case it ni=p — n + l, s = n — 2, k= n, v= 2p — 2,TT= p,

Pi = (i, y —p — l + n, d= 0. For this formula, and references, see Segre,

Enzykl. Math. Wiss. in, C. 7, p. 954.]

Ex. 7. It is assumed in Ex. 6 that every one of cr^ — 1, ... , a^_^ — \ >0.
For an indication of other possibilities we may take the general plane
curve of order n without multiple points (which, for n > 4, is not general

of its genus). For this case, a fundamental set of integral functions is

given by y, y-, ...,</"~\ and we have a^ = 0, ct2 = 1, ..., cr„_i = /i — 2. The
scroll in question is then that generated by spaces [n — 3], through a
point, wiiich contain corresponding points of a line, a conic, . . . , a rational

normal curve of order }i — 3. Another case is that of the general curve
of genus 5, for which again aj^ = l. The scroll is that of planes, through
a point in space [4], which contain corresponding points of two lines,

pointwise related.

Ex. 8. The matter may be dealt with from the theory of special series

considered abov'e (p. 96). We limit ourselves to the consideration of com-
plete series (in the first case of Ex. 7, the series g^^ obtained is not com-
plete), and to the general case, when the curve is general of its genus. As a
simple case consider, for /} = 5,on the canonical curve of order 8 in space [4],

which is the complete intersection of three quadrics, the series g^^, in

which the sets lie on quadrisecant planes of the curve. The complementary
series is then also a g^*. There are through any set A^ of the series two
linearly independent primes of the space [4], determining, suppose, the
complementary sets Jl^', A^' on the canonical curve; through A^' there

are two linearly independent primes, one of which, we may suppose, has

Ai for its residual intersection with the curv^e, the other having a second
set, A^, of the original series g^;^. If the primes {A^, A^'), {A^, A^) be

,^^ = 0, <^2 = 0' and the primes (A^, A^'), (A^, A^') be i/ti = 0, i/'2 = 0, the
series g^* is determined as well by the primes Xi(f>i + X^^^ — ^^ as by the
primes /ai'Ai+ m2'A2 = '^ i"^ which A^, Xo, ni, /X2 are parameters, and we can
suppose i/fj, i/<2 multiplied by such constants that /xj = Ai, fj.^

— X2. Both
the sets A^^, A^, as well as all other coresidual sets of the series gj* = 0,
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thus lie on the quadric 4>i4'2— 4'i}l'i — ^^ which contains the plane 4>]^ — Q,

tpi = containing the set A^ , and the plane
(t>2
— 0, 1A2 = containing the

set A2, and similarly the planes of all the sets of the linear series, as well

as the planes of aU the sets of the complementary series. This quadric is

a cone, whose vertex, O, is the point of intersection ^j= ^2= "Ai^ "AzJ this

point O is determined by the particular series ^1* considered. There are «^
such series ; and a particular set of a particular series is determinable by
taking two points P, Q of the canonical curve, and determining a plane
through PQ ha\ing two other intersections with the curve ; then Q may
be regarded as varying from set to set of the same series, and P as
determining the particular series. There is thus a correspondence between
the canonical curve, regarded as the locus of P, and the curve which is

the locus of the points O determined by all the series g^*. When O is given
there are 4 points P, since O lies on a quadrisecant plane of the canonical
curve; and when P is given there are 5 positions of O, since 5 quadri-
secant planes can be drawn through a given chord; if we assume there
are no coincidences in either case, this establishes that the locus of O is

a curve of genus 6 (see Vol. vi, Chap. i). That it is of order 10 follows

since O is the locus of the vertices of quadric cones containing the com-
plete intersection of three quadrics, say U = 0, V = 0, TF^O; and is

therefore the locus for which all determinants of order 3 in the matrix of

3 rows and 5 columns, whose general column is dU/d.r^, dV/dx.^, dW/dx^,
simultaneously vanish. (Cf. p. 110, Ex. 2, above.)
Ex. 9. Now consider more generally a complete special series g^!^, on

the canonical curve in space [f — 1], the complementary series being a

gr>^', when n' — 2p — 2 — n and r' given by r= n—p + r' + l. The sets A-^,

A2, ... of the series g^" are the residual sets of intersections, of the canonical
curve, with primes passing through the space \ii' — r' — 1] which contains

any set A/ of the series of sets A-^^, A^', ... of the complementary series

gf,^'. We may denote the prime which contains the set A^ of g/*, and the
set Aj' of jg^,"', by [r, j'] = 0. The general prime through A/ is then of the
form Ao[l,/] + Ai [2, /] + ... + A^[r -t-l,j']=:0 and we can, choosing a
suitable constant multiplier for every prime [?',/], suppose that the
multiphers Aq , . .

. , \ are independent of j. By similar reasoning for the
complementary series, it is sufficient to consider only the sets Aj for

which j—\,2,...,r' + \. Suppose r':$^r; then eliminating Ag , . .
. , A^ from

every r+1 of these equations, we see that all the spaces [n — r— 1],

containing the sets A^, ...,^^_^i, and hence, also, those containing all

the sets A^ of g,.", lie on the manifold which reduces to zero every deter-

minant of (r-h 1) rows and columns in the matrix, of r + 1 rows and r' + 1

columns,

[1,1'], [1,2'], ..., [l,r' + l] 11.

[r+1,1'], [r + 1, 2'], ..., [r+l,r' + l]||

By an algebraical theorem considered below (in Vol. vi) this mani-
fold is of dimension n — 1, and of order (r' + l, r), where (p, q) is used
for p\lq\{p — q)\. The manifold evidently contains the space [r — 1],

where T—p — {r + l){r' + \), through which every one of the primes

[i,J']=;0 passes, if t^I; it was shewn (p. 91) that, in general, t^O.
The spaces [n' — r' — \], containing the sets A/ of g^ " , which lie in primes

jU(,[i, 1] + ... + /^^[i, r' + l] = 0, also contain this space [t — 1]. As there

are x^ series g^", the spaces [t— 1] describe a manifold of dimension 2t— 1.

The general condition r^O is not necessary for the existence of the

manifold ; for instance, when the canonical curve is that for the general
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plane quintic curve, the planes which contain the sets of the series g^
generate a luanifold of order 8 and dimension 4, the locus of the planes
of the conies lying on a Veronese surface in space [5J (which represents
the plane of the quintic curve). The theory applies in particular to the
series ^j" where n = \ + ^p, or n = l + h{i) + \), giving respectively t =
and T = 1 ; in the latter case the manifold is a cone, whose vertex describes
a curve.

Ex. 10. Interesting applications of the theory of this chapter arise when,
for the curve /(cC, v/) = 0, we consider rational functions whose poles are
all at one place. The equation may then be transformed to an equation
F{^, '?) = 0, where ^ is the function whose pole at this place has the lowest
possible order, say (i ; and rj is the function whose pole has the next lower
possible order, r, which is prime to (i. Cf. Weierstrass, Werke, ii, p. 235
(and the writer's AbcVs Theorem, pp. 34., 93, 99).



CHAPTER VIII

ENUMERATIVE PROPERTIES OF CURVES

Part I. General formulae. In ordinary space of three

dimensions, an algebraic surface is the locus represented by a single

polynomial equation, F{x, y, z, t) = 0, homogeneous in the co-

ordinates X, y, z, t. It is generally intended that the polynomial F is

incapable of being written as the product of other polynomials, and
the surface is then said to be irreducible. The order of the surface is

the number of its intersections with an arbitrary line, and is the

order of the polynomial F in x, y, z, t. Unless the contrary is stated

we shall suppose the plane t— Oto have no special relation with the

surface, and shall often replace < bv 1, and represent the equation
hyF{x.y,z) = 0.

An algebraic curve is most naturally regarded as the intersection

of algebraic surfaces; two such surfaces meet in a curve. But it is

not true conversely that any given algebraic curve is the complete

intersection of two surfaces ; a familiar example to the contrary is

the rational cubic curve, which is the part intersection of two
quadric surfaces having, beside, a line in common. Nor indeed is it

clear that three algebraic surfaces can be drawn through a given

curve so as to have this as their only common part ; they may have,

beside, points in common; in fact it will be seen below that a curve

may be such that no three surfaces can be drawn through this

which do not have also points in common not lying on this curve.

But/owr surfaces can be drawn through a curve to have no common
curve or point, beside the given curve ; and this in infinitely many
ways; it is sufficient to take the cones projecting the curve from four

points of general position*.

The indeterminateness of the definition of an algebraic curve, as

the intersection of surfaces, suggests that it may be desirable to

define such a curve in another way. We take the definition as

follows: An algebraic curve is a locus of which the (non-homo-
geneous) coordinates of a point, x, y, z, are rational fvmctions of two
parameters ^, rj, which are not independent, but are connected by a

* It is similarly true that any algebraic construct, lying in space of

r dimensions, may be regarded as the complete intersection of (r + 1) primals
(loci represented each by a single polynomial equation in the r + 1 homogeneous
coordinates). This remark seems to have been first made by Kronecker, Werke,
II, 1881, p. 280. A geometrical exposition is given by Segre, "Introduzione. . .",

Ami. d. Mat. xxii, 1894, p. 47. An account of Kronecker's point of view is

given in the writer's Multiply-Periodic Fiinctions (Cambridge, 1907), p. 273;
a much more exhaustive account by Molk, Acta Math, vi, 1885, p. 159.
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rational polynomial irreducible equation /(^, 77) = 0; these para-

meters being both expressible rationally in terms of the coordinates,

X, y, z, of the corresponding point of the curve. That is, we have
equations of the forms x=U{^, rj), y=V{^,r]), z=W{$, t]),

f{$, rj) = 0; ^— u{x, y, z), t] = v{x, y, z), where U, V, W, u, v denote
rational functions, and /(^, 7;) is a rational polynomial. By this

definition an algebraic curve in space is in (1, 1) birational corre-

spondence with the in-educible plane curve expressed by/(^, 17) = 0.

That a curve as so defined may be given by the intersection of

surfaces is clear enough ; a formal proof that a curve defined by the

intersection of surfaces is capable of tlie defhiition we have given, is

contained in the literatiu'c referred to in the footnote preceding.

From the definition, from what is known for a plane ciu'vc, it

appears that all points {x, y, z) of the space curve, which are in the

neighbourhood of any point {xq, y^, Zq) of the curve, belong to one
of a finite number of branches ; the points of a branch are given, in

terms of a parameter t, by equations of the forms

x-Xo= Aj^t+ A2t^+..., y-yo^B^t + B2t-+...,

in which the parameter t is such that its value is unique for every
point {x, y, z) of the branch in the neighbourhood of {x^, y^, Zq); and
the series convei'ge for all sufiiciently small values of t. The state-

ment is made supposing all of x^^ , y^, z^ to be finite, but can easily

be modified to cover all cases. Consider now one of these branches

in the neighbourhood of {xq, y^, z^), writing, for brevity, x, y, z in

place of x— XQ,y— yQ,z— ZQ. Suppose that not every one of

A^, Bi, Ci is zero, and, in particular, that A^ is not zero. Using then,

instead of the coordinates y, z, the coordinates y — B^Aj~^x and
z — C-i^A^~'^x, the expressions take forms

x= A^t+ A2t^+..., y^Q2t^ + Qst^+..., z= Rof- + Rst^+ ...;

suppose here that Q^ is not zero; then, using, instead of z, the

coordinate z— R^i^^'^y^ ^^^^ expressions are reduced to the fox'ms

x= A^t^A^t^+..., y = Q2t^+ Q^fi+..., z= H^i^+ H^t''+ ....

For a branch expressed by three such equations, we can define a

certain line, called the tangent line of the branch, and a certain plane,

called the osculating plane of the branch, at the point considered.

First, it is obvious that any plane through the point, of equation

px+ qy+ >'z = 0, meets the branch in one point there ; for the power
series equation in t

p{A^t+ A^f'+...) + q{q.t^ + Q^t^+...) + r{H^t^+ H,t^+...) =
has f = as a simple root. If, however, jj — 0, the root ^ = is double,

and every plane qy + rz = meets the branch in two points coin-

ciding at the origin considered. Thus the line y — 0, z = meets the
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branch twice at the origin. It is this line which is called the
tangent line at the point. Again, if both jj and q be zero, the root

i= is triple, and the plane 2 = meets the branch in three points

coinciding at the origin. It is this plane which is called the osculating

plane of the branch. It is easy to shew further that, if the origin be

0, and A, B be two other points of the branch, in the neighbourhood
of 0, the line OA tends to the tangent line as A tends to O, and the

plane OAB tends to the osculating plane as A, B tend both to 0;
and that the plane containing the tangent line and the point A,
tends to the osculating plane as A tends to 0.

More generally, a branch of the curve may be representable, by
proper choice of coordinates, by three equations of the forms

where the integers Z, m, n, which are all positive or zero, are such
that l^m^n and none of a^, b^, c^ is zero. Unless /, ?n, 7i are all

zero, in which case these expressions reduce to those considered

above, the names tangent line and osculating plane (for y= = z,

and 2= 0) are not strictly applicable in the preceding sense at the

origin. But they are applicable at a point (t) near the origin, and
may be obtained, if we wish, by waiting t+T for t in these power
series, and rearranging the series in powers of t. It is more con-

venient to use differential coefficients. Suppose for example we
seek the osculating plane at the point (t) ; let the equation of this

plane be written X'r) + y^+ z+co = 0; substitute for x, y, z the above
power series in t, and determine ^, t], a» from the resulting equation

and the two equations x'-rj + y^^+ z' = 0, x"'r] + y"^+z" = 0, where
x' = dxldt, x" = d^xldt^, etc. If X, Y, Z denote the minors of x, y, z

in the determinant A, given by

X
, y , z

x'
, y', z'

X", y", z"

the result is ^= YjZ, 7] = X/Z, o)= - l^jZ.

Now introduce numbers /', m', n' given by V = n — m, m' = n— l,

n' — n, which lead to l=n' — m', m = n' — l', n = n'; then /', w', n' are

positive or zero, and such that /' ^ m' ^ n', while the expressions for

$, 7], oj in terms of t may be written ^= a/t'''+^ + .... 7] = by'P"'+'^+ ...,

o) = c^ /«'+3+ . . . , where

Ci (n + 3)(m- + 2) ci (« + 3)(r + l)

6i(7n + 2)(w'- /' + !)' "1 «^(/+i)(„,'_r+i)'

""^ ""^ (/+l)(m + 2)'
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and the reverse formulae are of precisely similar forms, namely

_ _ c/ (n' + 3)(m+ 2
) _ c/ (w' + 3)(/+l)

"1 ^1 (r + l)(m' + 2)'

and, as none of n^, h^, q is zero (or infinite), also none of a^ , h^ , c^'

is zero or infinite.

A branch of a curve for which the three indices I, m, n are all

zero may be called an ordinary branch, the name being justified

because, as will sufficientl}^ appear, the number of branches of an
algebraic cvirve which are not ordinary is necessarily finite; it is for

such a branch that we have defined the tangent line and the

osculating plane. A branch which is not ordinary at the origin (or

centre) of its coordinates, above denoted by x = 0, y= 0, z = 0, is

ordinary at points in the immediate neighbourhood of its origin.

The expressions we have just found serve to emphasize the

duality which exists for a curve, regarded as defined by its points,

and as defined by its osculating planes. An algebraic curve is a
locus of points defined by the continuous variation of a parameter;

we may dually consider an aggregate of planes similarly defined by
a parameter. Just then as a curve has chords, each defined by two
points of the curve; and the limit of a chord, when one end is the

origin of an ordinary branch of the curve, and the other end tends

to this, is the definite line called the tangent line ; so, the aggregate

of planes has axes, each defined by the intersection of two of the

planes; and there is a similar limit theorem. Similarly, as the

osculating plane of the curve is obtainable by passing to a limit,

with three points of which one is the centre of an ordinary branch,

so, a point is obtained from three planes of the aggregate of planes;

and the locus of such points is exactly a curve as originally con-

sidered. When the algebraic aggregate of planes is regarded as

defining a developable surface (of which the planes are the tangent
planes), the curve obtained is that which is called the cuspidal edge

(or the edge of regression) of this surface ; any algebraic curve is thus

the cuspidal edge of the developable surface formed by its own
osculating planes ; and the tangent line of the curve is the ultimate

position of the line of intersection of two consecutive planes of the

developable surface (the generating line of the developable).

Further, we notice that, in the formulae above, an ordinary

branch, for which all the indices I, m, n are zero, gives expressions

for I, 7), CO for which all the indices I', m', n' are zero, and con-

versely. Points which are origins of branches which are not
ordinary are thus exceptional as well from the dual as from the

original point of view.
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Of branches which are not ordinary we shall generally consider

only three kinds

:

(i) Those for which l—O, >n = 0, n=l. Here the expressions of

the coordinates, in terms of the parameter, are of the forms
a:= aj^t+ ..., y— \t'^-{-..., z= c-J!^+ ..., and the difference from the

ordinary case is that the plane 2= has/owr, not three, intersections

with the branch at the origin. The origin may therefore be called a
point at which there is a branch of stationary osculating plane. The
origin itself may perhaps be called a stall. The total number of such
branches for the whole curve (which, as we have said, is finite for

an algebraic curve) will finally be denoted by k' . In the dual
formulae, for the osculating plane at a point of the branch in the

neighbourhood of the origin, the indices /', m' , n' are given by
r,—n — m, =1, m', =n— l, =1, n',=n, =1.

(ii) The second kind of branch which we commonly recognise,

which is not ordinary, is that for which 1=1, m=l, n = l. Here the

expressions for the coordinates are of the forms x= ait'^+...,

y= h^t^-^ ..., z= c-^t^-\- ..., and the striking difference from the

ordinary case lies in the fact that every plane through the origin

meets the branch in two points at the origin, and every plane,

qy-\-rz= Q, through the line y= = z, meets the branch in three

points at the origin. While, in the ordinary case, yjx'^ has a definite

limit at the origin, it is here y^jx^ which becomes definite. This is

similar to the behaviour of a plane curve at an ordinary cusp; thus

we shall also say here that the branch has a cusp, or stationary point,

at the origin. This case is evidently dual to the case (i); the total

number of branches of the curve which have a cusp will finally be
denoted by k.

(iii) Last, we may consider branches for which the indices are

given by 1= 0, m = \, n = l; these give also /' = 0, m' = l, n' = l, and
the singularity is dual to itself. The expressions for the coordinates

are of the forms x = ait-\- .... y= h^t^-{- ..., z= c-yt^+ ...; in this case,

a general plane through the origin meets the branch in only one
point at the origin, but any plane through the line ^= 0, z= meets
the branch in three points coincident at the origin. This is analogous

to a point of inflexion on a plane curve; we shall therefore say that

the branch has an inflexion, or stationary tangent line; and we shall

denote the whole number of such branches, arising for the curve, by i.

Ex. 1. If for a branch of a plane curve, with expressions in terms of
a parameter t given by

X - ai«'+i + . . . , y = 6if"+- + . .
.

,

/, 7/1 5= 0, Z ^ m,

the tangent line at a point in the neighbourhood of the origin be written
px + y + q = 0, prove that

2? = Oj'<''+i + ..., (/ = 6^'<™'+- + ... , with r = m — /, m' = m,

b,ni + 2 b/m' + 2 .
, , I' + l

where a, ^-^^ -^--, «, = --\ -p^, b, =b, ^-^ ,

and /', m' ^0, V ^ m'.
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Thus, just as / + 1 is the number of points of the branch which he on
an arbitrary hne ])assin<> tliroufjh the origin x = ^, .V

= 0, so Z' + l is the
number of tanoent lines of the branch which pass throu<>h an arbitrary

point lyin<>- on the hne /? = (). 7 = 0. that is, the hne ?y = 0. And, as m + 2

is the number of points of the branch (at / = ()) lying on the line ,V
= 0,

so w*' + 2 (e(}ual to /« + 2) is the number of tangents of the branch con-

tainino- the point </=:(), that is the point .»• = (), ]i
— ^.

Similar remarks may be made, from the formulae of the text, for the
osculatino- plane of the cur\e in space. Cf. Halphen, Bull. Soc. Math. d.

France, vi, 1878, p. 10.

Ex. 2. The line-coordinates of the tangent line, at the point (0^ of the
branch of the curve in space expressed by x = rt<'+^ + . .

. , y = t<"'+'- + . . .

,

z = c<"+^ + . . . , if the line-coordinates be computed from

X: fi'.v.X': fi':v' = x' :y':z': yz' — y'z : zx' — z'x : xy' — x'y,

where x' = dx/dt, y' = dy/dt, z' = dz/dt, are, in order, only the first terms
being \\Titten, for A, fi, v, {l + l)a, {m + 2)bt"'-^+\ (n + S)ct''-^+\ and, for

A', /, /, 6c(??-m + l)^*"+"-'+^ -cain-l + 2)t''+\ ab{m-l + l)t"'+^.

When / = these approach to the values (1, 0, 0, 0, 0, 0), which we may
regard as the line-coordinates of the tangent line of the branch. The
points of the branch at which the tangent line meets this particular

tangent line are given by the vanishing of a power series in t of which
the first term (that in A') is 6c(n,-/rt4-l)P'+"~'+*. Thus we say that the
number of tangent lines of the branch, "consecutive with" the tangent
at the origin, which meet this tangent, is m + n — l + 4, which is also

m' + n' — Z' -f- 4. In particular for an ordinary branch this number is 4.

The number of such tangents which pass through the origin is to be
found by considering the equations A' = 0, /u^' = 0, v' — 0, and is the highest

power of t entering as factor in all these; this, as we see at once, is m-(-2.

In particular, for a stationary point, for which l =m = n = l, this is 3.

The nimiber of such tangents which lie in the plane z = 0, is similarly

found from A' = 0, /x' = 0, ^ = 0, and is n — l + 2 or m' + 2. In particular

for a stall, where there is a stationary osculating plane, for which / = 0,

m = 0, n=\, this is also 3.

It may be remarked that an algebraic curve is completely

determinate by the power series which express x, y, z on any one

branch, all other points and the branches thereat being deducible

by '"analytical continuation" from these power series. This is a

result following from the corresponding theorem for a Riemann
surface (above, p. 144).

We assume now that a general plane meets the algebraic curve in

a definite number of points, which we call the order of the curve.

This result may be rigorously deduced from the definition we have
adopted for the curve; it is the same as saying that, for the curve

/(^, •17) = 0, the rational function pU{^, r)) + qV{^, r]) + rW{^, 'r}) + s

has a definite number of zeros, independent of precise values of the

ratios of p, q,r,s; naturally the number of intersections of the

plane with the curve at points which are not ordinary must be
properly estimated. Dually, with a similar proper interpretation of

the phrase, there is a definite number of osculating planes of the

curve passing through an arbitrary general point. This we call the



188 Chajyter VIII

class of the curve. We shall denote the order of the curve by n, and
its class by n' . Further, the curve has oo^ tangent lines, and for a
tangent line to meet a given line is one condition ; thus an arbitrary

general line is met by a definite number of tangent lines of the
curve; this we call the rank of the curve, and denote by r. The
number of tangent lines of the curve which meet a line of special

position may of course be different; in particular, from Ex. 2 above,
the number of other tangent lines which meet the tangent line of

the curve at an ordinary point is r— 4 (if r ^ 4). Likewise, the curve
has 00^ chords, and for a line to pass through a given point two
conditions must be satisfied; thus, through an arbitrary general

point of the space, there will pass a definite number of chords of

the curve; the tangents of the curve generate a locus consisting of
00^ points, a surface; and the arbitrary general point will not lie

upon a definite surface. Thus the chords of the curve from an
arbitrary general point will be proper chords, having two points of

intersection with the curve which are distinct; the number of such
chords we denote by h ; it is sometimes spoken of as the number of

apparent double j^oints of the curve. Dually, we denote by h' the
number of lines of intersection of two distinct osculating planes of

the curve, or, as before, the number of axes of the curve, which lie

in an arbitrary general plane. Another characteristic of the curve
arises from what we may call the nodal curve of the given curve.

As we have remarked, a tangent of the curve is met by a certain

number of other tangents; the points of intersection generate

another curve, which is what we call the nodal curve. The charac-

teristic in question is the order of this nodal curve; it is the number
of points, in an arbitrary general plane, at which two distinct

tangents of the original curve intersect one another. This number we
denote by v. Dually, we denote by v' the number of planes, through
an arbitrary general point, which contain two distinct intersecting

tangent lines of the original curve; this is the number of planes

through the point which touch the curve at two points, say, the

number of bitangent planes of the curve through the point. The
bitangent planes of a curve are, clearly enough, the tangent planes

of a developable surface, upon which the original curve is a cuspidal

curve, and the nodal curve, of the original curve, is a double curve;

we may call this the bitangent developable of the original curve; it is

to be distinguished from the developable surface of which the

tangent planes are the osculating planes of the original curve,

sometimes called the osculating developable of the original

curve. The curve order, n, is different from the branch index, n.

For simplicity of reference we tabulate the notations thus

introduced: n is the order, r is the rank, n' is the class;

K is the number of branches of the curve with cusps, or stationary
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points, where the expressions in terms of a parameter have the

forms X= at^+ . .
. , y = bt^+ ..., z= ct'^+ ..., the indiees /, m, n of the

general description being all eqnal to 1

;

k' is the number of braneiies with stationary osculating plane,

the number of stalls, Avhere the expressions have forms x= at+ ...,

y=ht^+ ..., z= ct'^+ ..., the indices I, m, n having the respective

values 0, 0, 1

;

i is the number of inflexions, with expressions of the forms

x= at+..., y= ht^-\- ..., z= ct'^-\- ..., for which l,m,n have the

respective values 0, 1, 1. In all these it is supposed that none of the

coefficients a, b, c is zero, and it is provisionally assumed that

K, K, i are all finite

;

h is the number of chords of the ciu've through an arbitrary

general point, and, dually, h' is the number of axes of the curve

lying in an arbitrary general plane;

V is the order of the nodal curve, the locus of points of intersection

of two distinct tangents of the original curve; and, dually, v' is the

number of planes through an arbitrary general point which contain

two distinct tangents of the original curve.

Evidently, on a curve which is general, regarded as a locus of

points—there being oo^ points of the curve, and the condition for

an osculating plane to be stationary being one-fold—there will as a

rule be points of stationary osculating plane, namely k' will not

vanish. Similarly k will not as a rule be zero for a curve which is

general when regarded as an envelope of osculating planes. But, in

either case, it is exceptional for i not to be zero; for the condition

for a third consecutive point of the curve to lie in the tangent line

is two-fold.

We may also allow for the possibility of actual double points of

the curve, where the curve crosses itself. Such a point will not

generally exist (as requiring 3 conditions to be satisfied by 2 para-

meters); but we shall be concerned below with curves which arise as

the intersection of surfaces, and where two such surfaces touch
their curve of intersection has a double point. The number of such

actual double points for the curve will be denoted by S. Dually, 8

will denote the number of planes which are osculating planes of the

curve at two distinct points. Further, the number of still less

probable lines which are tangent to the curve at two distinct points

will be denoted by t.

Recall now, that, for a plane algebraic curve, of order N, class A^',

and genus P, whose singularities consist of YJ double points, K cusps,

T double tangents, and / points of inflexion, we have

D=\N{N-'7) + N'-^{P-\), K^2N-N' + 2P-2,
T= IN' (iV - 7) + .V - 3 (P- 1 ), / = 2.V' - .Y + 2P - 2.
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These equations lead to

N' =N{N-\)-2D-2K, N= N'{N' -1)-2T -Si,

I-K= S{N'-N),

P=l{N-l){N-2)-D-K, =l{N'-l){N'-2)-T-I.
We use these equations for a plane curve, to make inferences for

the curve in space, first projecting this from an arbitrary general

point upon an arbitrary general plane, and then by considering,

upon an arbitrary general i3lane, the locus of the point in which this

plane is met by the tangents of the given curve.

When we project the given curve in space on to a plane, we
obviously obtain a curve of order N, = n, and of class N', = r. It

is also easy to see that we obtain cusps of the plane curve from the

stationary points of the curve in space, or that K= k. Again, when
an osculating plane of the space curve, at an ordinary point of this,

passes through the point of projection, we very clearly obtain a

point of inflexion on the plane curve; the three coinciding inter-

sections of the space curve with the osculating plane, project into

three coinciding intersections of the plane curve with a tangent line.

We also obtain a point of inflexion of the plane curve from any
existing inflexion of the space curve. Thus we have I = n' + i.

Likewise, we evidently have a double point on the plane curve for

every chord of the space curve which passes through the centre of

projection; so that, allowing for actual double points of the space

curve, we have D — h+ S. It is also clear that the number of double

tangents T, of the plane curve, is T = v' +t.
Next, consider the plane curve, in an arbitrary general plane,

which is the locus of the point in which the tangent line, of the

curve in space, meets this plane. The order, A^, of the plane curve,

is evidently the rank, r, of the space curve. The tangent line of the

plane curve, obtainable as the limit of a chord, arises from an
oscvdating plane of the space curve, this containing two coincident

tangent lines ; thus the class A^', of the plane curve, is given hyN' — n'.

At a point where the space curve meets the plane of the section,

supposed to be an ordinary point of the space curve, two, ultimately

coinciding, tangent lines of the space curve will give the same point

of the plane curve; this point will thus be a stationary point (cusp)

of the plane curve. There will likewise be a cusp on the plane curve

arising from the stationary character of the tangent line at any of the

existing i inflexions of the space curve. Wherefore K = n-\-i. It may
be seen, further, that a point of the space curve which is the origin

of a branch with a stationary osculating plane (a stall on the space

curve) gives rise to an inflexion on the plane curve, so that I = k'.

Also, it is clear that there is a double point of the plane curve at

every point where the nodal curve of the space curve meets the
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plane of section—and further, also at the intersection of this plane

with any actual double tangent line of the space curve; hence

D=v+T. Finally, for the double tangents of the plane curve, we
have, easily, T= /i' + 8'.

Tabulating these statements, supposing that we have enumerated

all the possibilities, we have, for the two plane curves considered,

obtained by projection and section:
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all the equations found, and in particular the four forms for p, can
be deduced from these seven equations. From these equations also

the five. following equations can be deduced:

n' + 2k+ 1 = 3 {n -\-2p- 2), n + 2k' + / = 3 (// + 2p - 2),

3/c+ 2/ + k' = 4(w + 3^-3), /c+2^ + 3/c' = -4(/^' + 3jJ-3),
/c+ 2/+/<' = 2(r+4j9-4).

Connexion of previous results -with general principles.
It is an interesting fact that these five equations, and the first three
of the preceding seven equations (those which do not involve
V, v', h or h'), are all illustrations of a single principle. This we pro-
pose to exjDlain now, with the warning to the reader that the ideas
involved are somewhat less elementary than those so far used in

this chapter. We deal first wdth the second and third of the first

seven equations (those giving k and k') and the first four of the last

five equations; then, in a still less elementary way, with the two
remaining equations, namely with the two n-\-i-\-n' = 2{r-\-p—\),
K + 2/+/c' = 2(r+4jj-4).

Referring to Chap, iv, preceding, for the ideas involved, suppose
that on a plane curve, of genus p, given by an equation /(^, 7^) = 0,

we have a linear series of sets of points, of freedom s; that is, a series

of sets given by the intersections of the curve with a system of
variable curves whose equation is

in which
(f), (f)^,

.... 0, are definite rational polynomials, linearly inde-

pendent on/(^, 7j) = 0; in addition to possible fixed intersections,

common to all of (j){^, 'r]) = 0, ..., (f>g{$, r)) = 0, f{i,rj) — 0, these

curves have a number, say m, of intersections with /(^, 7;) = 0,

which vary when A, A^, ..., A^ vary. There exists then a set of the

series of which s points are arbitrarily chosen on f{$, 7]) = 0. In
particular, there exists a set with s points all coincident at any
arbitrary general point, P, of/(^, r]) = 0; as P takes its possible oo^

positions on this curve, the remaining m — s points of the set vary
also ; that one of these m — s points should coincide with P is one
condition. Thus there is a finite number of positions of P at which
there fall (5+1) coincident points of a set of the linear series. The
principle which we assume is that the number of such (5+l)-fold

points is (5+l)[7?? + 5(p— 1)]. It is understood that, in this total,

special points of coincidence may need to be counted more than
once; the difficulty in the application of the principle lies, in fact,

most often, in this circumstance. The formula is applicable for a

partial series, of freedom Sj, where Si<s, chosen from the given

linear series, given, say, by a system A^+ Aj ^i+ ... + A,j<^sj = 0, and
gives the number of (5i+l)-fold coincidences contained in this

partial series ; in particular the principle has already been employed
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for a pencil (s^^ 1), in connexion with the definition of the genus i^

(Chap. IV, p. 84). The proof of the formula is a simple application

of a formula of coincidence for correspondence of points on a curve.

For clearness we refer to a following chapter (Vol. vi, Chap, i) for

this proof; other proofs may be given (cf. Segre, Ann. d. Mat. xxii,

1894, p. 85).

Precisely the same principle can be employed for an algebraic

curve in space of any number, say r, of dimensions. Such a cur\'e is,

by definition, as in the case of a curve in space of three dimensions,

in (1, 1) birational correspondence wdth a plane algebraic curve. On
such a curve, in space in which the homogeneous coordinates arc

Xq, x-^, ..., Xr, a linear series of sets of points is given by the inter-

sections of the curve with a linear system of loci expressed by a

single equation A^+ Ai^i+ ... + As(^s= 0, wherein ^, ..., 0^ are

definite homogeneous polynomials of the same order in the co-

ordinates Xq, ..., Xr, and A, A^, ..., A^ are variable parameters. Such

a system evidently leads to a linear series on the representative

plane curve, and conversely. And, if we define the genus of the

space curve as that of the representative plane curve, the same
formula remains valid as in the case of the plane curve; more
properly, as, in the (1, 1) correspondence, coincidences correspond to

coincidences, the formula itself defines the genus.

Of this principle, the formula r+ K= 2{n+p—l), for the curve of

order n and genus j), iu the space of three dimensions, is an obvious

application. We have only to consider the linear series, of sets of n
points, of freedom 1, cut upon the curve by variable planes drawn
through an arbitrary general line of the space. Whenever a tangent

line of the curve meets this arbitrary axis, there is a coincidence of

two of the intersections of the curve with a plane through the axis

;

and there is a coincidence also for a plane, through the axis, which
contains a cusp of the curve. It is assumed that these two cases

exhaust all the coincidences which are possible.

The formula r+ k' = 2{n' +p — l) is the dual of the other, or may
be similarly obtained. More generally, representing branches of the

curve as before, at points which are not ordinary, by series of the

forms X= af'+^+ ..., y= ht"^^'^+ . . . , z= ct^^^+ . .
.

, the same principle

leads to the result r-f- A=2(n+p — 1), where A is the sum of all not-

zero values of the index / which arise (the genus p being appro-

priately defined).

Likewise we can obtain the formula n' + 2K-\-i = S{n + 2p — 2);

for this we consider the series, of sets of n points, of freedom 2, on
the curve, which is obtained by variable planes drawn through an
arbitrary general point, 0. It is only necessary to shew that the

left side of the equation is the number of planes through meeting

the curve in sets of which three points coincide. Of such planes,

BGv 13
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there are clearly n' osculating planes; and there are i planes, each
joining to a tangent line at a point of inflexion of the curve. To
complete the formula it must be shewn that the plane joining O to

the tangent line at a cusp of the curve counts doubly, as a plane
with three coincident intersections; this is most clearly seen by
considering the number of three-fold intersections with the curve, of

planes from O, which arise for a branch a;= af*+i + . .
.

, 1/= ht"^+' + ...,

2= cf*-"+3+— This number is found to be l+ m. Thus, if A, )m denote
respectively the sum of all values of I and m which are not zero,

arising at all points of the curve, the complete formula is

n' + A+/x= 3(n + 2p-2);

this includes the original form. For the proof see below, Ex. 5. The
dual formula w + 2/c' + i = 3(n' + 2j:> — 2) may be treated in a similar

way.
Now take the formula 3K+ 2i + /<' = 4(w + 3j9 — 3). Consider the

linear series, of freedom 3, of sets of n points, on the curve, deter-

mined by a general plane of the space. The right side of the equation
gives, by the principle enunciated, the number of such planes

meeting the curve in four coincident points. The stationary

osculating planes of the curve, in number k, are evidently such
planes; but to complete the formula it is necessary to shew, (a), that

through an inflexion of the curve there is one such plane which
counts twice, and, (6), that through a cusp there is such a plane

counting three times. More generally, in terms of the indices /, m, n
for branches of the curve which are not ordinary, the formula to be

proved is S (Z+ m+/i) = 4(iV+ 32? — 3), where N is the order of the

curve, and the summation extends to every branch of the curve for

which I, m, n are not all zero. For the proof, in this general form,

which includes the simpler case, see Ex. 5 below. The dual formula

for K+2i+ 3k' needs no independent treatment.

We pass now to the other two formulae referred to, namely
7i+ i + n' = 2(r+ 2J— 1), K + 2i + K' = 2(r+ 4jp — 4). These we interpret

as applications of the fact that a line in space of three dimensions

can be represented by a point in space of five dimensions, lying on a

quadric, Q, of that space {Principles of Geometry, Vol. iv, pp. 40 ff.).

The tangents of the original curve will thus be represented by the

points of an algebraic curve lying on O. The order of this curve,

which is equal to the number of its intersections with a general

prime (or flat four-fold space) of the five-fold space [5], and there-

fore equal to the number of its intersections with a general tangent

prime of Q., is equal to the number of tangent lines of the original

curve which meet a general line of the three-fold space [3] ; thus the

curve on D. will be of order r. We have defined the genus of a curve

in any space as that of a plane curve with which it is in (1, 1)
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birational correspondence, incidentally assuming that two plane

curves in such correspondence have the same genus, as is known.
Whence, the curve on £i, being in (1, 1) correspondence with the

tangents of the original curve, and hence with the curve itself, will

be of genus p. For the representation upon the quadric Q. a point

of the original space is regarded as determined by the oo'^ lines of

that space which pass through it; and a (line) coordinate of one of

these lines is a linear function of the corresponding line coordinates

of three of these lines, of general position; that is, there are six

equations of the form A= a/i + Wo+ c/3. with a, h, c the same in all.

Thus, as the coordinates of a point of the quadric Q are the line

coordinates of the line, in the original space, which it represents, it

follows that a point of the original space is represented, in the

space [5], by a plane, of which every point lies on the quadric Q.
In particular, the lines through a point of the original curve contain

a flat pencil of lines, lying in the osculating plane of the curve at

this point, of which pencil the tangent line of the curve is one line.

Also, a pencil of lines of the original space is represented, in the

space [5], by the points of a line lying on Q; and, two consecutive

tangents of the original curve ultimately belong to the pencil in the

osculating plane which they define. Thus, the tangent line of the

curve on Q, at any point of this, lies entirely on the quadric Q., in

the plane on Q. which represents a point of the original curve. There
are, in fact, two systems of planes lying entirely on H, one system,

which we denote as a-planes, representing the points of the original

space ; but, by similar reasoning, the planes of the original space are

also represented by planes on Q, say ^-planes; and, through the

tangent line of the curve on £}, passes, not only the a-plane repre-

senting a point of the original curve, but also the /3-plane repre-

senting the osculating plane of this curve at this point. Indeed,

through any line lying entirely on Q. (which represents a pencil of

lines of the original space), there passes a single a-plane and a single

j3-plane; and these two planes together are the complete inter-

section of n with a flat three-fold space, or solid, of the space [5]

—

this solid being the intersection of the polar primes, in regard to Q.,

of any two points of the line. Consider now the meaning, for the

curve on il, of the order, n, of the original curve: An arbitrary

plane, of the space [3] of this curve, which meets this curve in n
points, is represented by a j3-plane on Q. ; the condition for a point

of the original space to lie on a given plane, is that the a-plane on £1

which represents the point should meet in a line the ^-planc which
represents the plane; in general, the a-planes through the tangent
lines of the curve on Q. will not meet an arbitrary ^-planc; but there

are just n tangent lines for which the corresponding a-plane meets
an arbitrary j3-plane (and therefore meets this plane in a line, as we

13-2
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easily see. In general an a-plane of Q. does not meet a j8-plane;

when they do meet, they meet in a line). Thus n is the number of

tangent lines of the curve on Q. which meet an arbitrary j8-plane.

Similarly the class, n', of the original curve, is the number of tangent
lines of the curve on Q. which meet an arbitrary a-plane. If then we
take an a-plane and a ^-plane which have a line in common, n -f n'

will be the number of intersections, of tangent lines of the curve on
Q., with the solid which is defined by these two planes. Assume now
that this is the same as the number of intersections of tangent lines,

of the curve on Q, with any general solid of the space [5] ; through a
solid, in space [5], there passes a pencil (an oo^ aggregate) of primes
(spaces of four dimensions); each of these meets the curve on O. in

r points; and, in the series of oo^ sets of r points on the curve, there

are, by the principle we have already used, 2{r-\-jp — \) sets for each
of which two of the r points coincide. Such a coincidence arises

when a tangent line, of the curve on Q, meets the solid which is the

base of the pencil of primes; and there are w-f- n' such cases, as we
have seen. Such a coincidence, however, can arise in another way:
namely, an inflexion of the original curve, where there is a stationary

tangent, gives rise to a stationary point of the representative curve
on Q; and the prime joining this point to the base of the pencil of

primes meets the curve on O in a set of which two points coincide

at this stationary point. Thus, with the hypothesis that we have
enumerated all cases of such coincidence, we have

w-f n' + i = 2(r+p— 1),

which is the first of the two equations we desired to interpret.

We proceed now to the other equation referred to. We have repre-

sented the tangent lines of a curve in ordinary space by the points

of a curve on the quadric Q. in space [5]. More generally, any
algebraic system of oo^ lines in ordinary space, in (1, 1) correspond-

ence with the points of an algebraic curve, say the generators of a
ruled surface, may be represented by the points of a curve on Q..

This will be more general than the curve we have so far considered,

its tangent lines not lying on Q ; the condition that this should be so

is that every consecutive two of the system of lines in ordinary

space, with which we begin, should intersect one another, or that

the ruled surface should be a developable surface. In the general

case there will be a certain finite number of the tangent lines of the

curve on Q which lie wholly thereon. In the special case we have
taken above, of a curve on Q. of which every tangent line lies on Q,
the osculating planes of the curve will not generally lie on Q; but
there will be a certain finite number of these osculating planes

which do. The curve being of order r and genus p, this number in

fact is 2{r-\-4:p — ^) — 2K, where K denotes the number of cusps of
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tlie curve. The curve being derived as before from a curve in space

[3], we have already remarked tiiat iv = /, where i is the number of

inflexions of the original curve. For the proof of this number cf.

Ex. 3, below. Consider now what character of the original curve
gives rise to the property that the osculating plane of the repre-

sentative curve lies entirely on Q. This requires that all points of

the plane, determined by three points of the curve which are

tending to coincidence, should lie on Q.; there must then be three

consecutive tangents of the original curve ultimately passing through
the same point of this curve, or else three such tangents ultimately

lying in the same osculating plane of this curve. The former arises

for a cusp of the original curve, the latter for a stationary osculating

plane. Thus we reach the interpretation of the equation

K+K' = 2(r+4;j-4)-2i

which we desired.

Ex. 1. For a so-called rational curve, whose points have coordinates
x:y:z:l=u:v:w: CO, wherein u, v, w, co are general polynomials of order n
in a parameter 6 (which is thus conversely expressible as a rational
function of re, y, z), prove, (i), that the line coordinates of the tangent line

involve 6 to order 2{n — l); (ii), that the equation of the osculating plane
involves 6 to order 3{n — 2) ;

(iii), that there is no point of the curve such
that every plane through this meets the curve doubly thereat. Whence,
for this curve, n — n, r = 2(n — 1), n' = 3{n — 2), k — 0, S = 0, and, from
T+ K — 2{n+j} — l), also p = 0. Hence infer

i = 0, k'=:4(«-3), v + T^2{n-l)(n-3), / + t = 2(«-2)(?i-3),

/* = i(n- l)(w- 2), h'+8' = ^{9n~ - 53n + 80).

In particular, for n = 3, since t=8' = 0, as is obvious geometrically,
we have r= 4, ?i' = 3, K = S = i= v— v' = 0, h = l = h'; and for n = 4>,

assuming t = 0, the equation 8' = being again obvious, r= 6, n' = 6,

K=b = i-0, v = 6, v' = -i, h-3, h'^Cj.

Ex. 2. We have deduced from Pliieker's formulae for a plane curve
the formulae for a space curve, by projection from a general point and
section by a general plane. The characters of the plane curve are modified
if either the point of projection, or the plane of section, be specially chosen.
Prove the following results (cf. Cayley, Papers, viii, p. 81) for the curve
obtained by projection when the centre of projection has the respective
positions stated, and the dual results for the curve obtained by section
by the planes respectively stated:

For the curve obtained by projection

Order Class Double points
With the vertex of projection (N) (N') (D)

General ... ... ... ?t r h + 6

On a tangent of the curve ... ti r — 1 /« — 1 + 8

On the curve ... ... ... n — 1 r— 2 h— n + 2 + 8

At a double point of the curve n — 2 r— 4 /* — 2/? + 5 + 8

At a cusp ... n — 2 r— 3 h — 2n + G + 8

On an inflexional tangent ... n r— 2 /« — 2 + 8

At a point of inflexion ... w — 1 r— 3 h— n + 1 + 6
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For the curve obtained by projection (cont.)

With the vertex of projection

General
On a tangent of the curve
On the curve ...

At a double point of the curv
At a cusp
On an inflexional tangent
At a point of inflexion

Cusps
(K)

K

K+1

K-1
K + 2
K+1

Double tangents
(T)

v' + T

v'— r + -l + T

/-2r+ 8 + T

v' — 4r + 20 + T

v'-3r + 13 + T

v'-2r+ 9 + T

/-.Sr + l-i + T

Inflexions
(I)

ii' + i

n' — 2 +

1

n' - 3 + i

n' - 6 +

1

«' — 4 + i

n' — 4 + t

n' — 5 + 1

For the curve obtained by section

With plane of section

General
Containing a tangent
An osculating plane
Touching curve at two points
A stationary osculating plane
Containing an inflexional tangent
Osculating curve at an inflexion

With plane of section

General
Containing a tangent
An osculating plane
Touching curve at two points

A stationary osculating plane
Containing an inflexional tangent
Osculating curve at an inflexion

Order
(iV)

r

r-1
r-2
r-4
r-3
r-2
r-3

Cusps

n + i

n — 2 + i

71-3 + i

n-6 + i

n — 4 + i

n — 4 + i

n — 5 + i

Class

{N')

n'

n'

n' — \

n'-2
n' - 2

n'

n' —1

Double points

v + r

V— r+ 44-T
i'-2r+ 8 + T

v - 4r + 20 + T

v-3r+13 + T

v-2r+ 9 + T

v-3r+14 + T

Double Inflexions

tangents (T) (/)

h' + h' K

//-1 + S' k' + 1

h' — n' + 2 + S' K

A'-2??' + 5 + S' K

h' - 2n' + 6 + S' k'-\
h' -2 + 8' k' + 2

h'- w' + l + S' k' + 1

Ex. 3. Prove that if, for a curve of order n and genus jj, with k cusps,

lying on a quadric locus Q. in space of any number of dimensions, it be
the case that the tangent lines of the curve, the osculating planes, the
osculating solids, and so on, and finally the osculating (/*- l)-folds, all

lie entirely on Q., then the number of the osculating /i-folds of the curve
which lie on Cl, is 2[n + 2h{p — \)\ — 2K. The formula holds for h = l, in

which only the curve and not all its tangent lines, lie on £1. A proof will

be found in the Proceedings of the Edinburgh Math. Soc. Vol. i (2nd
series), 1927, p. 19.

Ex. 4. In the text, beside ordinary points and double points, we have
considered in detail only singular points which are cusps, or inflexions,

or stalls. This makes easier the application of the ordinary Pliicker

formulae for a plane curve, to obtain the equations for a curve in space.

But it is more fundamental to employ the general formulae for a branch
of the curve, whether in a plane or in space. If we slightly change the
notation, and write the expressions for a branch of the space curve in

the forms x = «i<'i+i + . .
. , y = a^t'^^^ + ..., z = a.j'-s+^ + ..., Avith l^', l^', l^' in

the dual formulae for the osculating plane, we shall have, instead of
K, i , k', respectively, 2 Zj , S (/j — ^i), or SI (l^' — li), and 2 //, or S (Z3 — l^), where
the summations extend to all branches of the curve in space for which
these are not zero. For a cusp, inflexion or stall these give respectively

a contribution of unity. The formula for a space curve, r + 2 /^ = 2n + 2/j — 2,
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would then follow, as in the text, from the formula for a plane curve,
N' + 'Lli = 2n + 2p — 2. The generalised form of the plane curve formula
2A' + / = 3(» + 2/7-2) would be S(/, + /2) = 3(// + 2/>-2), where l^, l^ refer
to this curve ; this leads, as in the text, to the formula

«' + S(/i + Z2) = 3(n + 2p-2)
for a space curve which projects into the plane curve.

Ex. 5. It is proper, however, to obtain the formulae directly for the
curve in space ; ancl, as this is almost as simple for the case of an al<>ebraic

curve in space of any number, say r, dimensions, as for a curve in ordinary
space, for brevity's sake, we pass at once to this case. Let non-
homogeneous coordinates in the space be denoted by Xy, X2,...,x,.,
these being chosen so that the points of a particular branch of the curve
are given by

a'l = aith+^ + ..., a-a = r/j^'^-^' + . . .

,

, x^- aj}r+r + _ _ ^

in terms of a parameter t, where ly^l^^...^lj.. That is, by proper choice
of the coordinates, about the origin, (0, 0, ... , 0), of the branch, there is

a line, p^, through the origin, given by the equations X2 = 0= ... = Xr;
then a plane, pg ' through the line p^ , given by the equations x^ = 0— ...—x^;
and, in general, a space /), , of s dimensions, given by the equations
Xg^i — Q=...=Xr, which contains the space Pg-y. Further, every prime
(or space of r— 1 dimensions) passing through the origin, not containing
the line p^ , has l^ + l coincident intersections Avith the branch at the
origin; then, every prime through the line p^, but not containing the
plane p^ , has Zg + 2 coincident intersections with the branch at the origin

;

and so on. At an ordinary point of the curve, where every one of Zj , ..., Ij.

is zero, the line p^ is the tangent line, the plane p^ the osculating plane,
and so on; and, in general, we may speak of p^ as the tangent line, p^ as
the osculating plane, and so on, with Pg as the osculating [s] space.
We denote then by n the order of the curve, the total number of

intersections of the curve with an arbitrary general prime, by p the genus
of the curve. The x^ lines p^ will generate a surface, V^ ; the order of this
surface we denote by n^ . Thus n^ is the number of lines Pi which meet an
arbitrary general space [r — 2], of r — 2 dimensions; and nj is also the
number of primes, through an arbitrary general space [r— 2], for which
the n intersections with the curve have a coincidence of two, lying on
a tangent line p^ ; but when the point of contact of this line p^ is not
ordinary, and this line p^ has Z2 + 2 coincident intersections with the
curve, we must count the corresponding branch as furnishing Z2+ 1 such
two-fold coincidences. In this general case also, as any line through the
origin of the branch has Zj^ -|- 1 coincident intersections with the branch
at the origin, the line p^ is multiple on the surface V^, with multiplicity
Z2 — Zi -f 1. We speak of the number n^ as the first rank of the curve. If we
consider the series of »i sets of n points on the curve, obtained by the
primes through a fixed arbitrary space [r — 2], there is, by a formula
which has been quoted, a number, given by 2n + 2p — 2, of coincidences
of two of the points of a set. These coincidences include those, already
explained, in number «^, whose position on the curve depends on the
particular space [r — 2] chosen for base of the pencil of primes. The
number 2n + 2p — 2 will, however, also include a contribution Zj for every
branch of the curve for which li> 0; for an arbitrary prime through the
origin of such a branch has Zj -|- 1 intersections coinciding at this origin.
Thus we have the formula m^ -t- S Zj = 2« + 2/> — 2. More generally, the
osculating spaces Pg at all branches of the curve generate a locus Vg_^_i

,

of dimension s-i-1; the order of this locus we denote by n^. Thus iig is
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the number of spaces Pg which meet an arbitrary space [r— s— 1], of
r — s—\ dimensions ; and n^ is also the number of primes, drawn through
a general space [r — s— 1], of which the /( intersections with the curve
have a coincidence, on a branch of the curve, of (s + 1) points lying on
a space Pg. As the primes tlirougli a space [r — s — 1] are a linear system
of freedom s, such a prime can be put through s coincident points of a />,

,

which, being given by Xg^-^ = . . . = ,r^ = o. contains
/,_^i + s + 1 coincident

points of the branch. Of the primes through the space [r — s — 1] there
are, however, in general, others, having (s+1) coincident intersections
with the curve, on branches whose position on the curve does not depend
on the particular [r — s — 1] chosen. For, consider a general branch of the
curve; and the condition that it be possible, from among the primes
passing through a given space {r— s — \], to take a prime, through the
origin of this branch and s other neighbouring points of this branch ; if

such space be determined by r — s points with coordinates, relatively to
the origin of the branch considered, given by ^j^. , . . . , f^fc

(^i^ = s + 1 > ••, t),

the condition in question is that the determinant, of r rows and columns,

^1 » 5 '^V

^1 J 5 '^V

'Y, (S-1) ,, (s-1)

^Ifc » ' ^r

where {x-^, ..., ^v) denotes a point of the branch in the neighbourhood of

the origin, and (in the first rows) a?^^^^ denotes d xjdr, should, on
substitution of the power series in t for x^, ... , x^, be divisible by t^+^.

It is easy to see that this determinant divides by ti^ with /u = /^ + . . . + Z^ + s

;

thus, when lj^ + ... + lg—l, there is just one such prime, with an (s + 1 )-fold
intersection ; and, when Z^ + . . . + Z^> 1 , we reckon the branch as furnishing
Zi + ... + Zj such (s+ l)-fold intersections. Thus, by the general formula of
coincidences quoted in the text, we infer the result

n, + S(Zi + ... + Z,) = (s + l)[n + s(p-l)],

the summation extending to all branches of the curve. In particular, the
(r — l)-th rank, most often called the class of the curve, is given by

n,_i + S(Zi+...+Z,_i) = r[n + (r-l)(;j-l)],

these equal numbers being the number of osculating primes of the curve
which pass through an arbitrary general point of the space. The same
argument proves that 'L{1^ + ... + l^) = ir+l)[n + r{p — l)], these being
the number of stalls of the curve, namely the number of branches where
an osculating prime contains (r + 1 ) coincident points of the branch, or
is stationary (for which l^ + ...+l^ = l), together with contributions for
other branches at which Zi + ... +Z^> 1.

The reader may consult Veronese, Math. Annal. xix, 1882, pp. 161 ff.,

and Segre, Ann. d. Mat. xxii, 1894, pp. 86-8, where a proof of the
formula for «, , by induction, from the two cases of n^ and /jj? will be
found. The set of formulae can be built up, either from such as

^k + K- »fc-i = n-2k + 2kp, k=l, ...,r,

with nQ = n, n^ — 0, where Xj^ denotes the sum of the values of Z^ for all

branches of the curv^e ; or from such as

and either of these may be obtained directly.
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Ex. 6. In order to call attention to the relation of the results of the

last example to the well-known theory of Weierstrassian points on a curve
(see Chap, iv, p. 90; also the writer's AbeVs Theorem (1897), pp. 34-46,

and i^p. 90 ff.). we may briefly consider the case of the canonical curve,

of order 'Ip — 2, in space [p — 1 j. where the (non-homooeneous) coordinates

are a\, ...,Xp_i. By applyin<>- Clifford's theorem (above, p. 82) to the

linear series, of sets of 2]> — 2 — (/,+ s) i)oints, which is determined by the
a^p-s-i primes passing tlirouoii the osculating space Pg^i, at a general

branch of the curve, we see that Z, <.v; in particular /i
= 0, and the curve

has no branch at which the origin is not simple. By the Riemann-Roch
theorem, we find that the l^ + s intersections of ;>,_j with the branch
determine a linear series of coresidual sets which has freedom /, ; there

is thus a rational function, on the curve, which has a (/jg + .s)-fold pole

at the origin of the branch and no other pole : and in this function there

enter Ig arbitrary constants (beside the additive constant). Further, in

this ease, with r = /? — l, the number (r— l)[n + r(p — l)] is (p — l)p{p + l),

and this is the sum of the values of 1-^ + ... + 1^ for all branches of the
curve: hence, as Ig<s, the number of points of the curve which are not
ordinary is certainly > 2/> + 2. Also, the least value which 1^ + ...+1^ can
have, at a point which is not ordinary, arises when lj^ = l.^ = ... — I,._^ =
and /r (i.e. lp_i) = l; there is then a stall, the osculating prime Xp_i =
having p coincident intersections with the branch at the origin. If all

the not-ordinary points of the curve are stalls, their number is

ip — 1)/'(P + 1)' ^'^d the s-thrank of the curve is ng = (p — 1) (s + 1) (s + 2)

;

in particular the class (i.e. the rank n^^^) i^ Pip — ^)^' The simplest case

is that of the general plane quartic curve {p = S). The case p = 4 arises

by the intersection of a general quadric surface and a general cubic
surface in ordinary space; the sextic curve is then of rank 18, of class 36,

and has 60 stalls, where the osculating plane meets the curve in four
coincident points.

Part II. Curves -which are the complete intersection of

two surfaces. It appears necessary to deal in some detail with the

case of a curve in ordinary space, which is the complete intersection

of two algebraic surfaces. We denote the orders of these surfaces by
m and M, so that the order of the curve is given by n= mM.
Further, we suppose the number, k, of stationary points, and the

number, i, of stationary tangents, to be given. We have expressed

all the characters of the curve in terms of four of these, for instance

n, n' , r, p; if we assume a knowledge of /?, k and i, it will be sutfi-

cient to find one other character, and the rest, of those we have
recognised, can then be computed. We put down the formulae with

the inclusion of the number, 8, of actual double points, and of, r,

actual double tangents, of the curve; it is well known that, where
two surfaces touch, at ordinary points of the surfaces, their curve

of intersection has a double point; we shall suppose the double

points of the curve considered to arise in this way, and similarly the

cusps to arise from such contacts, at which the two directions of the

curve of intersection coincide ; in the most general case 8, k, i and
T are all zero.

We can give a direct deduction either of h, or r, or n'; of these the
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first involves perhaps the most elementary considerations. We give,

however, also a direct deduction of r, to illustrate a method of

subsequent importance; and also an indication of the direct

deduction of n'

.

We prove that h=\mM{m — \){M—\), assuming the following

theorem of elementary algebra : Let

/= a„ A'^+ (m, 1 ) fli A*"-!+ {m, 2)a^ A™-^+ . . . + a,„

,

be two polynomials in the variable A, of respective orders m and M,
written with binomial coefficients (m, 1), (m, 2), etc. Waiting,

momentarily, also p^ for the coefficient (m, *)aj, and Pj for {M,j)Aj,
denote by A^ the determinant, of m +M— 2k rows and columns.

Po>
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equations of the surfaces, for x, y, z, t respectively, the vahies

X$+x, Xr) + y, A^+ ;:;, Xr+ t. We thus obtain, for the determination

of the intersections of the Hne, joining (^) and {x), with the surfaces,

the equations

A'«/|-+ {m, 1 ) A'»-i/^—1/,+ . . . +//' = 0,

these, as polynomials in A, are of the forms considered above, with

ai=f^'^~^fx^, Aj= F^^^-^FJ, so that a^, Aj are of respective orders i

and J in {x, y, z, t).

The condition that the line joining (^) to {x) sliould meet the two
surfaces in the same point, is that these two equations in A should

have a common root. This, however, is that {x) should satisfy the

equation Ao= 0, Now, when {x) are current coordinates, the

equation Ao= represents a cone, wdth vertex at (|); for if, in

(A^+ a:, ..., Xr+t), we put {x+O^, ...,t + dr) for {x, ...,t), this will

be equivalent to considering the equations in A which, in the

notation used above, are

_do A"^+ (m, 1 ) dj A"*-! + . . . + a,, = 0,

A,X''+{M,l)A^X''-^+... + A,j = 0,

these being what are obtained from the original two by putting

A+0 in place of A; the equation, Ao= 0, obtained from these two
equations in A, is, however, we have said, the same as Ao= 0, what-
ever 9 may be. Wherefore, Ao= 0, as an equation in {x), represents

the cone joining (|) to the curve of intersection of the two surfaces.

As this equation is, we easily see, isobaric in regard to the suffixes

in flj-, Aj, and contains the term Uq'^Am'^, it is of order mM in {x).

By a similar argument, the equation Ai = represents a cone, with
vertex (|), of order (m— 1)(3/— 1). The lines common to Ao = 0,

Ai= are thence the lines from (^) which have two intersections

with the curve of intersection of the surfaces; these lines are then
the double lines of the cone Aq= 0, and their number is

imM(m-l)(M-l).
If the two surfaces have a point of contact, the cone Aq= will

have a double generator through this point. But, unless the

common tangent plane of the two surfaces, at this point, pass

through the point (^), this generator, having a simple intersection

with each surface at this point, will not meet the common curve of

the surfaces in a further point, and will not lie on Ai= 0. Thus, no
correction of the number ^mM{m — l){M—l) arises for double
points (or cusps) of the curve arising from contacts of the two
surfaces; we have agreed not to consider other possible double
points of the curve (as for instance when one surface passes through
an actual conical point of the other surface). Hence we have

h=imM{m-l){M-l).
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Ex. 1. For the quadric surfaces /^.^ = o, F^- = Q, the equation Ai = is

/^^/l^ 1=0,

and represents the plane through (^), drawn to the hne of intersection
of the polar planes of (|) in regard to the quadric surfaces. This plane
meets the quadric surfaces in two conies, in regard to which the polar
lines of (^) are the same line: two of the common chords of these conies
intersect in (|), these being the two chords of the quartic curve, of inter-

section of the two quadric surfaces, which can be drawn from (^). These
lines are also the generators through (^) of a particular quadric surface,

/^- + A'Fj.'- = 0, which passes through (|).

Ex. 2. As an example of the algebraical theorem which has been used,
the reader may prove that, if /=rtA^ + 6A + c, F =pX^ + qX^ + r\ + s, while
the constants P, Q, ...,B are so chosen that

{PX^ + QX + R)f+{A\ + B)F^\,
then, with A^ as before,

A, B, =-AiS
0, A, B
P, Q, R

this being an identity not requiring Ao = 0.

Ex. 3. As a further example, prove that the invariant A;^, of the two
polynomials of orders m and M in A,

(PoA™-^ + ...+i?^_i)(A-0), (V^-i + ... + 9j,_a)(A-e),

when multiplied by a certain determinant whose elements depend only
on d, is equal to the invariant A,,_^, of the polynomials, of orders m—

1

and M - 1 , PoX""^ + . . . +p„,_i , QoX''-^+•+ Qm-i •

Note. That the chords from an arbitrary point to the complete curve
intersection of two surfaces of orders rn and M, meet this curve on a
surface of order (m — l)(iVi — 1), is proved in Salmon, Geoni. of Three
Dimensions (1882, p. 331). That the chords lie on a cone of this order,
was proved by Valentiner, Acta Math, ii, 1883, p. 191 ; and by Noether,
Berlin. Abh. 1882, p. 27. A converse theorem was given by Halphen,
J. d. VEcole polyt. lii, 1883, p. 106, namely: If, for a curve in space, of
order inM, the chords from an arbitrary point lie on a cone of order
(m — l)(iV/— 1), and the curve itself does not lie on a surface of order less

than the lesser of m and M, then the curve is the complete intersection of
two surfaces of orders m and M.

Having obtained the formula h=lmM{ni—l){M—l), if we use

the formulae, previously found for an algebraic curve of order n,

n' + z = 3 (r— w) + K,

r= w(ri-l)-2/i-2S-3Ac,
^=i(n-l)(w-2)-;i-S-/c,

we can deduce, for the curve which is the complete intersection of

two surfaces of orders m and M, that n=mM and

n'+ i = SniM [m+ J/- 3) - 68 - 8/c,

r =mM {7n+M- 2) - 28 - 3/c,

p-l = |?n3i(m+ M-4)-8-/c,
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and thence, using the general formulae which express i, k , v+t,
v' +T, h+ 8. h' + 8' in terms of n, n', r, p, we infer

i = 0, k' = 2mM{3m+ 33/ - 10) - 3 (-iS + ok),

V +r =l/Lt2()U2-2p-4)+ipo2+ 48 + -V-/c,

v' + T = I fio{ix2-2p- 10) + hp2"+lOS+ -^-K+ ^mM,
/t' + 8' = |/x3(0/x3-12CT-22) + 2a2+ 228 + 28K+ fwM,

where, for brevity, [X2= niM{m +M — 2), fi^=mM{m +M — 'i),

P = 28 + 3k, ct= 38 + 4/c.

We next develop a direct verification of the formula

r= mM{m + M-2)-28-3k.

Denote the equations of the two surfaces now by u = 0, U = 0; let

A, fi be two arbitrary planes, say

Consider the locus of a point {x, y, z, t) whose polar planes, taken in

regard to the two surfaces, meet in a line which intersects the line

(A, fi). The equation of this locus is {u, U, A, [x) = 0, where

{U, U, A, ix)= III , W2 , «3 ' ^4

*^1J ^2' ^3' ^4

«! , 5i , Ci , rfi

<^2 >
t>2

' ^2 ' ^2

Ui denoting dujdx, etc. This surface is of order m+M — 2. A
point common to the surfaces w= 0, U= 0, at which both these

have definite, different, tangent planes, will be on the surface

(w, U, A, /x) = if, and only if, the tangent line of the curve {u, U),

at this point, meets the line (A, /x). Thus, if the surfaces w= 0, U —
have ordinary points with different tangent planes at all points of

the curve {u, U), then this curve is of rank mM{rn+M— 2). The
determinant (w, U, A, /u,) vanishes, however, at any point where the

surfaces u=0, U= touch, and the tangent lines (or line) of the

curve (m, C7), at such a contact, do not, as a rule, meet the chosen

line (A, /x). It can be proved that the tangent plane of the surface

(w, U, A, /i) = 0, at such a contact, is definite in general, and meets

both branches of the curve (w, U) at this point, when these are

distinct, in a single point; but contains the tangent line of the

curve {u, U) at this point, when this curve has a cusp. Such a con-

tact thus diminishes the previous expression for the rank of the

curve {u, U) by 2, or by 3, in these two cases. Thus we reach the

result above given for the rank, r, of the curve, if we consider, as

we have agreed to do, only double points or cusps of the curve
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(w, Jj) which arise at simple contacts of the surfaces. It may be
shewn, however, that double points of the curve (w, U) which arise

by simple passage of, say, w= 0, through a conical node of U= 0,

may be supposed to be included in the formula.

It is important to notice also, that, if the curve of intersection of

the surfaces m= 0, U = break up into two curves, one of order %,
with 81 double points and k^ cusps, at ordinary contacts of u— 0,

U= 0, the other similarly with n2, 8^, Kg, these curves having t

points of intersection at ordinary contacts of the surfaces, then the

rank of one curve (nj) is given by ri=ni{m+M — 2) — 28i — 3Ki— t;

the proof is precisely as in the simpler case above.

We now indicate a direct verification of the equation

n' + i= 3mM{m+ M-3)-68-8K,
arising from a formula given by Hesse for the equation of the

osculating plane at an ordinary point [x, y, z, t) of the curve {u, U).

Using {x', y', z', f) for current coordinates, the equation of this

osculating plane is

CO {x' Ui + y'U2+ z' U^ + 1' U^) = Q. [x'ui + y'u^+ z'u^+ t'u^,

where, as before, u-i_=dujdx, etc., and cu denotes the determinant

Mil,
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because UidxIdO+ tiodyldd+ u^dzjdd vanishes on the curve. And a

similar replacement is possible also for O. Wherefore, the plane

given by the equation, wliich obviously contains the tangent line of

the curve {u, U), contains also the point

/d'^x d-y d'h

\W' dd^' W
and is therefore the osculating plane.

Now, in the original form, the function w is a polynomial of order

3(w— 2) + 2(iV/— 1) in x, y, z, t; the whole equation is thus of order

3{m+M — 3) in {x, y, z, t). The ordinary points of the curve {u, U)
for which the osculating plane passes through an arbitrary point

{x', y', z', t'), are thus upon a surface of this order; the number of

such points is thus 3mM {m+M — S), save for a correction for points

of the curve which are not ordinary. To complete the verification of

the formula under discussion it must be shewn that this correction

is one at an inflexion of the curve (w, U), six at a double point, and
eight at a cusp.

To examine the case of a double point or cusp arising from a simple
contact of the surfaces u — 0, (7 = 0, we may take non-homogeneous
coordinates x, y, z, with origin at the point of contact, so that the
equations of the surfaces are

u = z + h {ax- + 2hxy + by-) + gxz +fyz + icz- + . . . = 0,

U = z + ^iAx^- + 2Hxy + By') + Gxz + Fyz + iCz-+...=^0;

then, in the equation of the osculating plane (with {x', y', z') as current
coordinates), namely

oj[{x' -x)U^ + {y' -y)U^ + {z' -z)U^]
= O [(*•' - x) Uy + iy' - y) u^ + {z' - z) ii^]

,

the terms of the lowest order in x, y, z are those multiplying z', and
therein the lowest terms are

A = {a-A)P + {b-B)m' + ic-C)n^
+ 2 (/- F) mn + 2(g- G) nl + 2{h- II) Im,

where I= u^U^ — Ug U^
> ^^ = '^3 ^'^i

~ *'i ^3 ? ^^ — ^h ^2 ~ "2 '-'^i
•

For a contact of the surfaces in which the curve (m, U) has two branches,
if we choose the axes so that the tangent line of one branch is 2; = 0, ?/ = 0,
we shall have A = a, and this branch will be given, in terms of a para-
meter 6, by expressions of the forms x—d, y — qd'' + ... , z = rd' +
Along this branch, then, I, m, n are respectively proportional to 6, 6'^, 9^,

and the terms of lowest order in A are the terms in In, Im, which are
proportional to d'-K The surface arising from the equation of the osculating
plane thus meets this branch in three coincident points at the origin;
and meets the curve in all in six points.

\Vhen, however, the curve has a cusp, the branch of the curve is given
by expressions of the forms x=d'-, y = q6^+ ... , z=:rd^+ ..., and /, m, n
are ultimately proportional, respectively, to 6^, 9^, 9^. In this ease we
have h —H beside a = A. The lowest terms in A are the terms in m- and
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nl, which are proportional to 6^; thus there are now eight intersections

with the curve at the origin.

A similar examination may be made for an inflexion of the curve ; it

is obvious however that the plane joining (x', y', z', t') to the inflexional

tangent has three intersections with the curve at the inflexion ; thus this

point counts once. The formula ?*' + i = 3/nM(m +M — 3) — 68 — 8/c is thus
verified, when only double points and cusps which arise from simple
contacts of the two surfaces are taken into account.

Ex. Prove that the osculating plane at {x, y, z, t) on the curve of
intersection of the quadric surfaces whose equations are

ax'^ + hy'^- + C2'2 + df^ = 0, Ax''^ + By'- + Cz'^ + Dt'^ = 0,

is expressed by

I'mnx^x' + m'nly^y' + n'lmz^z' + I'm'n'fH' = 0,

where l= bC— cB, l' = dA — aD, etc.

Part III. Curves which are the partial intersection of two
surfaces. Consider now the case when the two surfaces u= 0,

U = 0, meet in a curve of order n^ , itself irreducible and simple on
both surfaces, this being only part of the intersection, the residual

part being another curve, of order ti^ , also irreducible and simple on
both surfaces.

We can put down equations by which, when the characters of the

first curve {n^) are known, and the surfaces do not touch at points

of the second curve (wg), the characters of this second curve can be

found, as well as the number of intersections of the second curve

with the first. Let the usual numbers for the two curves be

rj, 8i, KTi, ..., and rg, Sg' '<'25 •••' ^'^'^ the number of their inter-

sections be t. We clearly have 11^ + 712= mM, and it has already been

remarked (p. 206), considering the surface (w, U, A, ju.) = 0, that

ri= Wi(m + M-2)-28i-3Ki-<, r2= n^{m+ M-2)-2h^-ZK^-L

By a general property of curves, given in Part i, we have, however,

^1+ Ki= 2Wi+ 2j:>i
- 2, /a+ k,= 2n^+ 2p^- 2,

/ll+iJl+8l+Ki=|(Wi-l)(Wi-2), /?2+P2+S2+'<2=i("2-l)("2-2);

thus we have

t= nj^{m+ M-nj_-l) + 2hi, =Wi(w+ M-4)-28i-2ki-(2|?i-2),

with precisely similar forms for t in terms of Wg, h^, 83, K2, p^- Com-
paring the two forms of t we deduce

h-h^=l{n2-ni){m-l){M-l),
r2-ri=(«2-ni)(m+ M-2)-(282+3><2-28i-3Ki),

P2+82+/C2-(2?i+Si+Ki) = |(/«2-Wi)(m + 3/--t),

and, for the second curve to be entirely known when the first is

known, the values of 83 and k^ are required.
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The equations also give* the results

h^ + lu-V n^iu-t=hnM{m-\){M -\),

Pi+lh+t-\ = 1 + \mM{m +M - 4) - (S^ + k^ + 8,+ /cg).

Of these equations the former is obvious direetly if we reeall what
was found above (p. 203) for the cones A,, and A^; the cone A^ is

formed by the lines from an arbitrary point (^, r], t„ t) to the points

of the curve (or curves) of intersection of the surfaces u= 0, C7 = 0,

and the cone A^ by the lines from (^. 77, ^, t) upon each of which two
of the intersections with u = i) coincide with two of the intersections

with f/= 0. The argument used does not assume that the curve

(m, U) is irreducible, and is applicable to the ease now under con-

sideration. Upon the cone Aj will be the h^ proper chords from

{^, 7], ^, t) to the first curve (/Jj), also the h^ proper chords to the

second curve («2); but there will also be upon the cone Aj the lines

from (^, 17, ^, t) which meet both (/i^) and (n^) in two different

points, whose number is n^n^ — t (the cones joining (|) to the curves

being of orders n^ and n^). Thus the former of the tAvo equations is

clear; it may if desired be replaced by the two equations

nin^-t=n^{m-\){M-\)-2h^ = n2{m-\){M-\)-2h^.

The preceding formulae have been obtained, for simplicity, with

the supposition that the curve {n^) is irreducible. With suitable

modifications this condition may be omitted.

Ex. 1. Suppose that, through the curve {n^), a further surface, of
order k is drawn; if the curve {n^) is not degenerate, it will be met by this

surface in points, not on («j), whose number is kn^ — t. Various forms for

this are
kn^- 1 =mMk - n^ {m +M+ fc - 4) + 2p^ -2 + 2\ + 2k^,

= mMk - n-^ (m +M + k- 2) + r^ + 2Si + 8 k^
,

= mMk - Hi (jti +M + A;) + «i (/?! + 1 ) - 2/^1

.

* For any two curves, not assumed to form together the complete inter-

section of two surfaces, it may be proved, by elementary algebra, that the

equations
ih = Hni-'^)ini-2)-h,-[8, + i^s,(s,-l)],

/^2 = H"2-l)(«2-2)-/'o-[82 + iSs2(62-l)],

p = K«l+ "2-l)("l + «2-2)-(/*i+/i2 + ^-)-[Sl+S2 + 5S{Si-h6-2)(Si+S2-l)],

"i"2 = t + k + ll S1S2

,

lead to p=p.y+p2 + t — l,

as the expression for the genus of a curve which breaks up into two curves with

t intersections. Notice that there is no term, in the definition of p, corre-

sponding to these intersections. Cf. Picard et Simart, Fonctions algib. 11, p. 106.

See Ex. 11, p. 215, below.

And it can be shewn that a rational curve of order r, in space of r dimensions,

taken with p chords of this curve, is a possible form of the degeneration of a

curve of order r + p, of genus p. Cf. Enriques e Chisini, Teoria gcomctrica, lu,

p. 396. For the connexion of this result with the theory of connected polygons

of lines, see Severi, Geom. Algeb. 1921, p. 37.3 (Anhang G).

These various results, though not arising directly from the text, will be of

subsequent interest.

BGV 14
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Taking the last form we may say: If three surfaces, of orders m, M, k,

have common a curve of order n, with h apparent double points, this
curve absorbs a number n{in +M + k — )i — l) + 2h of the mMk points
generally common to three surfaces of these orders. This is often called
the point equivalence of the curve for these surfaces; it depends, we see,

only upon the sum of the orders of these surfaces ; and it is assumed that
these surfaces have no further common curve.

It may be proved that the formula for the point equivalence of the
curve (n) remains true when this curve is itself an aggregate of two curves
(kj), (v^), so that n^v^+vj, provided h be replaced by the number of
chords to this composite curve from an arbitrary point, that is by
T?i + 7/2+ ''i''2~ "^j where r^^, t?2 are the numbers of apparent double points
for the component curves, and t the number of their intersections.
Putting

a^tn +M+ k, i3i=vi2+vi-2T7i, 132= v+v2-2t,2, ^^2=^1+^2 + '^^^

this is the same as saying that the equivalences of the curves (vj), (v^),

(*'i+ ^2) ^re respectively v^ct— /S^, v^a— J82, {vj^+ V2)a— p^^'

Ex.2. The formula t = n{?n +M — n — l) + 2h, for the number of
contacts, on a given curve {n, h), of two surfaces m = 0, 17 = 0, drawn
through this curve, can be obtained very simply in the case when the
curve is the complete intersection of two surfaces 11^ = 0, Uq = and it is

assumed that «, U are capable of the forms

u — Auq + BUq, U— Cuq + DUq,
in which A, B, C, D are polynomials (Salmon, Higher Algebra, 1885,
p. 297, where the so-called rank is what we have denoted by
r + 2n + 2S + 3/<:).

For then, the complete intersection of M = 0, t7= consists, beside the
given curve {Uq, Uq), of a part lying on the surface

\A, B
I

C, D
if Uq, Uq be of orders w,,, M^, this surface is of order m — m^ +M— Mf^,
and meets the given curve, which is of order w, —ni^MQ, in

w(M + m) — «(?«(, + Mo) points; as // = JmyMo(mQ — l)(Mo— 1), this is the
same as n(M + m) — n(n + \) + 2h.

Hence, also, a third surface, of order k, through the curve [uq, U„),

intersects the residual curve (u, U) — {Uq, Uq), which is of order
niM— niQMo, in a number of points, not on (Uq, Uq), given by

A;(niM- moM^)) - wioMo («* +M- nio - Mq),

which, as before, is mMk— n (m +M + k) + n (n + 1) — 2h.

Ex. 3. If, in space of four dimensions, there be drawn, through a curve
of order n, three primals of orders m, M, N, and these intersect in a
further curve, this last intersects the former in 71(771 +M + N) — ^ points,

where /S depends only on the original curve. This can be easily proved,
in Salmon's manner, in the case where the original curve is the complete
intersection of three primals in terms of which the primals (in), (M), (N)
are linearly expressible. It will be proved below (in Vol. vi), that, when
the original curve is without multiple points, the value of ^ is 37i + r,

where r, the rank of the curve, is the number of its tangent lines which
meet an arbitrary plane. It follows at once that the point equivalence
of the given curve for four primals, of orders 771, M, N, k, passing through
it, is na— j3, where a = 7n +M +N + k. It can be shewn, as in Ex. 1, that
this formula for the point equivalence remains valid when the original

= 0:
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curve is composite, if for j3 we put the sum of the values of j3 for the
separate components increased by twice the total number of intersections
of the components. It follows easily also that, if the curves (n, v) and
(«', v') be, together, the complete intersection of the three primals
(/«), (M), (iV), then n{m +M + >J)-'.,in-r = n'(m -\-M-{-y)-'^n' -r'.

Ex. 4. As a consequence of Ex. 8, prove that, if ten lines in space of
four dimensions have in all fifteen intersections, the point efpiivalence
of these lines, for four cubic primals drawn through them, is <K). Deduce
from this that the number of quadric surfaces, in space of three dimen-
sions, which pass through 5 given points and touch 4 given planes is 21
(Salmon, loc. cit.).

Ex. 5. It has been stated, at the beginning of this chapter, that there
exist curves in space of three dimensions, such that no set of three
surfaces exists, passing through the curve, without residual point inter-

sections. We give two examples, one due to Vahlen (Crelle, cviii, 1891,
p. 346), of a rational quintic curve, the other, given by Enriques-Chisini
(Teorid geometrica, iii, p. 515), of a quintic curve of genus 1. A quintic
curve is evidently not the complete intersection of two surfaces.
A rational quintic curve is in fact obtained by the residual intersection

with a quadric surface of a quartic surface drawn through three skew
generators of the quadric surface ; but this curve has an infinite number
of quadrisecants, or transversals meeting it in four points (generators of
the quadric surface). There exists, however, a rational quintic curve with
only one quadrisecant, and it is this curve which we proceed to consider.
It may be defined as the residual intersection of two cubic surfaces which
are dra\\Ti through a rational cubic curve and through a Une which does
not meet the cubic curve. For, a cubic surface contains such a rational
cubic curve if it contain ten points of this curve, and contains a line if

it contain four points of this line; and a cubic surface has twenty coeffi-

cients in its equation ; we infer then that there are six linearly independent
cubic surfaces through the cubic curve and the line. Take two of these
cubic surfaces, and the quintic curve which is their remaining intersection.

To see that this curve is rational, remark that an arbitrary plane through
the line meets these two cubic surfaces, further, in conies, with four
intersections, not generally on the line; and of these three are on the
cubic curve ; so that an arbitrary plane through the line gives one point
on the quintic curve; and conversely. The curv^e is thus expressible by
the parameter which determines the plane. Also, the quintic curve meets
the line in four points, these, with the point of the curve on a plane
through the line, being the five intersections with the plane. The quintic
curve does not lie on a quadric surface, since, else, the quadrisecant of
the curve would lie thereon, and, therefore, all other generators of the
quadric surface of the same system would be quadrisecants of the curve
(as we easily see) ; these generators, and hence the quadric surface, would
then be upon every cubic surface containing the curve. Further, the
curve will have no other quadrisecant, since this would also lie on all

cubic surfaces containing the curve.
The quintic curve has a rank r given by r — 2n + 2p — 2, or 8; and the

chords from an arbitrary point are in number given by
/i = i(»-l)(»-2) = 6.

Thus the point equivalence of the curve for surfaces of order m, M, k,

passing through it, is 5a— p, where a = tn +M + k, and p = r + 2n,
= n(n + l} — 2fi, =18. As the curve does not lie on a quadric surface,

we can suppose m = A + 3, iV/=^ + 3, k=v + S, where A, n, v are not
negative; the point equivalence is thus a{\+ ij.+ v) + 27. If the three

14-2



212 Chapter VIII

surfaces have no further common curve, they intersect then in

(A + 3)(m + 3)(v + 3)-5(A+^+v)-27
further points ; this is easily seen to be

A/xi' + 3(/i»'+ vA + A/i) + 4(A+ 11+ v),

and can only be zero if A, /i, v be all zero. While, in this case, the three
cubic surfaces would have further points in common, since they would
all contain the quadrisecant of the curve.

It is not possible then to put three surfaces through the rational quintic

curve considered, which shall have no further points in common.
Next consider the quintic curve which is the residual intersection of

two cubic surfaces drawn through a rational quartic curve. The formula
j)^ — p^ = ^{n^ — n-^){m +M — 4i) shews that this quintic curve is of genus 1.

Hence it can be proved that this curve does not lie on a quadric surface,

on which existing quintic curves are either rational or of genus 2 (see

below, Ex. 7). But three surfaces of orders A + 3, /^ + 3, v + 3 passing
through the quintic curve, if without further common curve, intersect

further, we easily see, in (A + 3)(/Lt + 3)(v + 3) — 5(A+ /x+ v) — 25 points,

which is A^v + 3(/Ltv+ i'A + A/x) + 4(A+ ^+ i') + 2, and is at least 2. It is

not possible then to put three surfaces through this elliptic quintic curve
to have no further common points.

Ex. 6. Prove that the rational quintic curve of the last Ex., the
residual intersection of two cubic surfaces passing through a line and a
rational cubic curve, beside meeting the line in 4 points, meets the cubic
curve in 8 points. For these three curves, the numbers of chords through an
arbitrary point are, respectively, h^ = (for the line), 11^= 1 (for the cubic
curve), and h^ — ^{5 — \){o — 2) (for the quintic curve), or /ij = 6. The
orders are n^ = 1 , n^ — 3, n^ = 5. The numbers of intersections of pairs of the
curves are ^23 = 8, /g^ = 4, 1^2 = 0- Hence we have an example of the formula

/*! + ;?2 + /«3 + «2«3 + ^3^1 + "1^2 - ^23 " ^31 " hz= l^^ (»* +M- 2)

,

(for w =M = 3), which generalises the formula proved in the text for

two curves (see below, Ex. 11).

Ex. 7. We may enumerate the simpler cases of existing curves

:

A general cubic curve, in space of three dimensions, is the residual
intersection of two quadric surfaces having a common generator, in

infinitely many ways; and the curve is rational.

A quartic curve is either, (i), the intersection of two general quadric
surfaces ; it is then of genus 1 , and meets every generator of any quadric
surface, containing the curve, in two points; or, (ii), the intersection of
two quadric surfaces which have a point of contact ; then the curve has
a double point, and is rational; or, (iii), the residual intersection with a
quadric surface of a cubic surface containing two skew generators of the
quadric surface ; then the curve is rational. Either of the rational quartic
curves is obtainable by projection from a rational quartic curve in space
of four dimensions.

For quintic curves, two rational curves have been spoken of in Ex. 5

;

and also a curve of genus 1, the residual intersection of two cubic sur-

faces through a rational (non-singular) quartic curve. For this last case,

prove that the quartic and quintic curves meet in 10 points; and that
the quadric surface described through 9 of these points contains the
quartic curve entirely, thus meeting the quintic curve further only in

the tenth point. A quintic curve of genus 2 is obtainable as the residual
intersection of a quadric surface with a cubic surface drawn through one
of its generators. Prove that there are no other (non-singular) quintie
curves, not lying in a plane.
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It will be proved below (Part vi, p. 234) that, in space of three dimensions,
no aloebraic curve of order n exists with genus greater than \{n — 'lY
or \{n — \){n — ?t), according as n is even or odd. Furtlicr, Noether has
proved that, upon a given surface, the greatest genus possible, for curves
of given order, arises for curves which, if not complete intersections of
this surface with other surfaces, are part of a complete intersection of
wliich the other part (possibly composite) lies in a j^lane. When n is odd,
there exists a curve upon a cpiadric surface meeting iill generators of one
system in ^(» — 1) points, and all generators of the other system in
i(/i + l) points, and this curve has the genus \{n — \){n — '^)\ when n is

even, there exists a curve of genus \{n — 'l)' upon a (piadric surface,
meeting every generator in hi points (see the following example).
Conversely, a curve of order //, in space of three dimensions, with the
maximimi possible genus, necessarily lies on a quadric surface. For
curves of order n on a cubic surface, however, the maxinumi possible
genus is i(» — !)(/« — 2), or |V(/j'- — 3» + 6), according to the form of «.

An enumeration of existing curves is given to a high order by Noether
("Zur Grundlegung u.s.w."), Bcrl. Abh. 1882 (also, Crelle's Journ. xciii,

1882). To order 6 an enumeration is given in Pascal's Repertoriiun, ii, 2
(Leipzig, 1922), p. 932. See also Halphen, J. ecole polift. lAi, 1882; and
Valentiner, Acta Math, ii, 1883.

Ex. 8. Consider algebraic curves lying on a quadric surface. Such a
curve meets all generators of the surface of one system («) in the same
number of points, say in a points, and all generators of the other system
{b) also in the same number, say |3, of points, the order of the curve being
a + /3. This is easily seen by considering the intersections of the curve
with a general plane through a generator. Suppose a ^ /3 ; then the sur-

faces of lowest order, other than the quadric surface, which contain the
curve, are of order a ; these are surfaces containing a — /3 of the {a)

generators of the surface. The general surface of order a through a — /3

such generators, gives a system of '"coresidual" curves on the quadric
surface, all of order a; each of these curves meets every {a) generator in

a points, and every (6) generator in /3 points. A definite curve of the
system is determined by the prescription of passing through a+ /3+ 5c/3

given points of the quadric surface ; a surface of order a passes through
the curve and a— /3 {a) generators, arbitrarily chosen. More generally,

it may be shewn that, in the equation of a surface of order m, so far as

its intersection with the quadric surface is concerned, there are effectively

(m + 1)'- homogeneous coefficients; thus a surface of order a, through
a — /3 {a) generators, gives a residual curve of intersection, with the quadric
surface, which is determined by (a + 1)' — 1 — (oc + l)(a— j8), or a+^+aj3
points. A particular curve, of the system of coresidual curves of order

a+ j3 spoken of, is constituted by j8 generators of the (a) system, together
with a generators of the (6) system; thus the curves of the system may be
said to be = ^u + at', where u, v denote generators respectively of the

{a) system and the (6) system ; we may also speak of a curve of the system
as an (a, jS) curve. The genus, p, of the curves of the system is given by
p = (a — l)(/3 — 1), as may be proved, for example, by projecting the curve
into a plane curve with an a-fold and a /3-fold multiple point. \Vith this

system of curves is associated another system, called the adjoint si/stcni

of this; this is the (a -2, i3-2) system; the curves of the adjoint systeni

cut, upon a curve of the original system, a series of points, of freedom

p — 1, of which every set consists of 2/} — 2 points. Any curve of the

system (a, /3) meets any curve of the system (a', j8') in a^'4-a'j3 points,

as we may see, for example, by taking curves consisting of sets of
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generators; in particular this is 2p — 2 when a'=a — 2, j3'=j8 — 2; and a
curve of the system (a — 2, |8 — 2) can be described through

(«-2 + l)(|8-2 + l)-l,

or jj — \ arbitrary points. Thus, on any curve of the (a, j3) system, the
complete canonical series is determined by the curves of the adjoint
system. Further, two curves of the (a, /3) system cut in 2a^ points; and,
when /3 = 2, these curves are hyperelliptic. And, it may be noticed, in
anticipation of a general result which we reach later, the freedom,
a + ^+a^. of the system of (a. j8) curves, is n—p + \, where n, =2aj3, is

the number of intersections of any two curves of the system.
For curves on quadric surfaces see Halphen, Bull. Soc. Math. d. France,

I, 1872, p. 19,

E,r. 9. A theory almost as simple holds for curves upon a cubic surface.

But the expression of a system of coresidual curves thereon is not by two
elements (as the generators, u, i' in the preceding example), but by seven
elements, consisting of six skew lines of the surface, together with one
rational cubic curve thereon which does not meet any of the six lines.

The expression is then of the form Xu — AjO^ — ... — Agrtg j where u denotes
the cubic curve, a^, ... , Og denote the lines, and A, A^, ... , Ag are integers.
Two curves of this system intersect in n points given by

n = X^ — Xj^ — ... — X^^;

any curve of the system is of order m given by m = 3A — A^ — . . . — Ag , and
of genus p given hy p — 1 + ^{n — m), while any particular curve of the
system is determined by passing through r points, given by r= Kti + vi),

which isn—p + 1. More generally, two curves, respectively of the systems
(A, Aj , . . , , Ag) and (A', A/, , .

.
, Ag'), intersect in a number of points given by

AA' — AjAj'— ... — AgAg'. For the system (A — 3, Aj — 1, ,.. , Ag — 1), the freedom
r', given by i{n' + m'), is easily seen to be |(« —m) or p — 1, while a curve
of this system meets a curve of the original system in 2/? — 2 points. This
system is the adjoint system of the original, determining the complete
canonical series on any curve of the original system.

Proofs of these statements are easily obtained by considering the
familiar representation of the cubic surface upon a plane, whereon cubic
curves through six fundamental points represent the plane sections of
the cubic surface, and the lines represent rational cubic curves on the
cubic surface. Or, arguing directly on the cubic surface, a surface of
order r, so far as its intersection with the cubic surface is concerned, may
be proved to have, in its equation, a number of homogeneous coefficients
given by | (3r- + 3r + 2) ; while, through any curve of order m lying on the
cubic surface, there can be drawn a surface whose order is the greatest
integer in 2w/3. For this, and the preceding example, a note in the Proc.
Lond. Math. Soc. xi, 1912, pp. 286, 290, may be consulted.

Ex. 10. Any curve in space of three dimensions may be defined as the
partial intersection of a cone, of equation f{x, y, t) = 0, and a surface
with equation of the form Z(i>{x, y, t) = >p(x, y, t), where/, 4>, </r are homo-
geneous in X, y, t. The cone (i>(x, y,t) — may be taken arbitrarily, save
that it must contain the chords of the curve drawn from the (general)
point (0,0, 1,0). The common generators of the cones f{x,y,t) = 0,

<f)(x, y, t) = 0, together with the curve, are the complete intersection of
the cone f(x,y,t) — with the surface z<^(x, y, t) — ip{x, y, t) — 0. In
general, the curve not passing through (0, 0, 1 , 0), the common generators
of/= 0, ^ = will also lie on the cone = 0. The surface z</i — i/i = 0, having
a point at (0, 0, 1,0) of multiplicity one less than its order, was called
by Cayley a Monoid {Papers, \, 1802, p. 8).



Enumerative properties of curves 215

Ex. 11. As has already been indicated in a simple example (Ex. 6,

p. 212), the fornnila /i^ + fu + n^n^ — t — ^niMim +M — 2) can be extended
to the case when the curve («, U) breaks up into any number of curves,
its general form being 'Lfij + 1,njHj — '^tjj = hnM{ni +M — 2), where i, j
refer to any two different component cm-vcs, these having t/j intersections

;

the direct proof for two curves ai)phes to the general case.

For two component curves, the formula (p. 209)

i?i + ;>2 + Si + -^i + §2 + <C2 + < - 1 = 1 + AmM (
m +M- 4)

is at once deducible from the formula above for h^ + h^, using

P\ — ^'("i ~ 1 )("i — 2) — /*! — §1 — /cj , etc. This formula may be expressed by
sajnng that, if, on a surface of order »/, one surface of order M cuts an
irreducible curve of genus p, with 8 double points and k cusps, and another
surface, also of order M, cuts a couple of irreducible curves of genera

py, P2, with respectively S^, k-j and 8^, k^ multiple points, and t inter-

sections, then p — 1 + 8+ /c = Pi — 1 + §1+ /C1+P2 — 1 + ^2+ ATg + i; and, as we
see, if, instead of two irreducible curves, we have several, the second
member is to be replaced by !](/>, — 1 + 8, + K-J + S/^,.

In view of subsequent dcNclopments we consider this further, assuming
also a familiarity with the notion of the completeness of a linear series

upon a curve in space, which follows from its (1, 1) correspondence with
a plane curve, for which the notion has been explained (p. 66, above).
Suppose that the surfaces u = 0, U = 0, drawn through the irreducible

curve (»i), intersect again, not in a single irreducible curve of order (Mj),

as on p. 208 above, but in an aggregate of curves, all irreducible, of orders

//2(, with multiple points (Sj^, k^i); we may put /?2 = ^("2!)- Let the com-
ponent curve (n^i) meet the curve {n^) in t^ points, and meet the curve

(»2j) in tjj points. Using r,, , /^j, , Pzi for the curve (n^j), as were r^, h^, />2

for the curve (n^), we prove, as in the simple case,

r,, = »2,(m +M - 2) - 282, - Sk^, - /, - S/,,.

,

j

^2; +P2i + hi + xzi = ii'hi - 1) (»2i - 2).

and hence i = S /^ = S [/?2, (m +M - 2) - 282^ - 3^2, - r^j] - 2S <,;

,

which is the same as

»2(m +M - 4) - (2j«2 - 2 + 2S2 + 2/C2),

if we put 7^2 - 1 + ^2 + '<^2 = ^iP2i - 1 + hi + ^a) + ^ hi

•

Also we have, from the preceding equations,

H2, ( "* +M- 4) = 2 82,- + 2 ^2,- + ti + ^ tij + 2j)2i
- 2.

j

Consider now the number of conditions in order that a surface of order

w + 3/— 4 should contain all the component curves {n^i). Such a surface

will contain the multiple points of each separate component, and its

intersections with the other components. We therefore consider first the

surfaces of order m +M — 4 through the multiple points of all the com-
ponents and through the mutual intersections. Upon the single curve
(/igj) such surfaces will have free intersections of number

«2,-(m +M - 4) - 282, - 2 ^2, - 2 /,,.

,

i

which is the same as /j + 2y^j — 2. Thus, if we suppose ^j> 0, the series

determined by these surfaces upon the curve («2,) is not special, though
it may be incomplete; the freedom of this series is then of the form
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tj+P2i — 2 — Cj, with Ci>0' and the number of conditions for one of the
surfaces of order m +M — 4, under consideration, to contain the curve

{n2i) is one more than this freedom. The number of conditions for a surface

of order m+M — 4 to contain all the component curves {n^/) is thus, if

we allow for the possibilitv that the separate conditions are not in-

dependent, S/,j + i:(S2, + /^2/)-« + ^('i +2^2,-1)-^. with e^O, ^5=0; and
this, with the notation employed above, is t+p.^ — l + B^+K^—o, where
a ( = €+ ^) is ^0. The number of surfaces of order m +M — 4 containing
the aggregate of component curves (/?2/) ^^ then obtained by subtracting
this number from {?n +M — 1, 3).

E.r. 12. It may be proved that an algebraic curve of order v, without
multiple points, lying on a ruled surface of order n (or on a cone, but not
through the vertex), and meeting every generator of the surface in

k points, touches (k — l){2v — kn) generators, and has a genus n given by
27r — 2 = /i(2p — 2)-|-(A — l)(2i' — /?A'), where p is the genus of the plane
section of the ruled surface. This will be proved below (Vol. vi), as

a simple application of the theory of correspondence ; but a proof of the
expression for tt can be given which is an application of the ideas we
have illustrated in Exx. 8, 9, in dealing with the curves lying on a quadric
or a cubic surface. For it can be shewn that such a curve can be regarded
as coresidual with an aggregate representable by kP + {v — nk) G, where
P denotes a plane section of the surface, and G a generator. Assuming
this fact, it follows that two curves {k, v), (A', v') intersect in a number
of points given by

kk' {P , P) -{-[k' {v - nk) + k{v' -nk'y\{P, G) + {v - nk){v' - nk')(G, G),

where (P, P), the number of intersections of two plane sections of the
surface, is n, and (P, G), the number of intersections of a plane section

-with, a generator, is 1 , while, similarly, {G, G) — 0, The number in question
is thus kv' + k'v — nkk' ; for example, for a quadric surface, putting fc=a,
v= a+ |3, in the notation used in Ex. 8, this gives the number, a^' + a'jS,

there found.
Applying now the formula, for the genus of a composite curve, given

above in Ex. 11, namely 1 + S(pj — 1) + 2/,^, the genus of the composite
component kP is l + k{j) — \) + hnk{k — \), the genus of the composite
component {v — nk)G is 1 + (r — hA)( — 1), and there is a contribution to
the genus of the whole curve AP + ( v — /?A) G arising from the intersections

of A"P and
(
v — nk) G, which is A( r — nk) : the genus of a curve A'P + {v — nk) G,

by the application of the same formula, is thus

77 = 1 + A-(p - 1) + ink{k -l)-{v- nk) + k{v- nk),

so that we have 27r — 2 = A'(2^ — 2) + (A- — 1) (2v — nk), as was stated above.
In connexion with this Ex. the reader may consult Severi, Mem. Torino,
Liv, 1903, p. 23.

Two remarks may be added. (1), The formula for the number of
intersections of the curves (A", v), (A', v'), on the ruled surface, would give,

if there existed a curve with A' — — '2, v' = 2p — 2 — n, the value 2?? — 2 — A^,

where N, equal to 2kv — nk'-, is the number of intersections of two curves
of the system (A% v). Let this number A' be called the grade of the system
{k, v); for the plane sections, (1, n), its value is n. Further let 27r — 2 — A^

be called the canonical number of the curves of the system (A;, v). Then
the result is that the canonical number of any curve of a system is equal
to the number of intersections of the curve vnXh a certain fictitious curve
for which A;' — — 2; the order of this fictitious curve (as of any curve on
the surface) is equal to the number of its intersections with a plane
section, equal then to the canonical number, 2p — 2 — n, of the plane
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sections. The value of k' is the canonical number of a generator. Also,
the canonical number of a curve (A'l + k, , vj + v^) is the simi of the canonical
numbers of the curves (A'j, \\) and (A^, v^. The second remark, (2), is that
the above formula for -n, in terms of v and A', holds cfjually when the ruled

surface is in space of any number of dimensions, and also holds when the
curve (v, A) has double points, in number d, if we replace 2tt — 2 by
27r — 2 + 2f/ (in case the surface be in space of four dimensions, however,
such double points of the curve as arise at the so-called accidental double
points of the surface (see below. Chap, iv in Vol. vi) are not to be included
in d).

Part IV. Linear series upon a curve in space. It is clear,

from the definition we have adopted for an algebraic curve, that

there is a correspondence between the sets of a linear series, on the

curve, and the sets of a linear series on a corresponding plane curve.

In this statement it is to be understood that the linear series on the

curve is determined by a linear system of surfaces, given by an
equation of the form A0 + AiOj-t- ... + A,.Or=0, in which A, ..., A^

are variable parameters; the surfaces = 0, ... , 0^=0 are supposed
to be linearly independent on the curve, and may have intersections

W'ith the curve which are common to all. The linear series on the

plane curve is similarly determined by a system of curves with an
equation of the form A^+ A^ ^i + . . . + A,. (/>^= 0. The substitution, in

either of these equations, for the coordinates entering therein, of

the values of these coordinates in terms of the coordinates appro-

priate to the other curve, leads from this equation to the other. The
freedom, r, of the two corresponding series, is thus the same; and,

from the (1, 1) correspondence between the points of the curves,

the number of points wdiich vary with the parameters A, ..., A,., in

the sets of one series, is the same as for the other; this is the number
called the grade of the series.

There is therefore (from the theory developed for a plane curve

in Chap, iv), upon an algebraic curve in space whose genus is j), a
canonical series, of sets of 2j9 — 2 points, with freedom 2)—\; and the

Riemann-Roch theorem, for complete series, wdiich gives the

freedom of the series in terms of the grade and the degree of special-

ness, holds also for non-plane curves. But there remain questions

needing discussion, in regard to the completeness of the series

determined on the space curve by surfaces whose construction is

prescribed.

A simple example may illustrate this: On the rational quartic curve
which is the intersection of two quadric surfaces having a point of contact,
a series of sets, of each four points, of freedom 3, is obtained by the
intersections of the curve with variable planes. A series of sets, of each
four points, is also obtained by the intersections of the curve with variable
quadric surfaces prescribed to pass through the doid)le point, O, of the
curve, and also to pass through two arbitrary fixed points, A, B, of the
curve; of such quadric surfaces there are seven which are linearly in-
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dependent, of which two may be taken to be surfaces wholly containing
the curve. Thus, these quadric surfaces determine a linear series of sets,

of each four variable points, on the curve ; and the freedom of this series

is 4. This series contains the previous series ; namely of the five linearly
independent quadric surfaces through O, A, B, there are four which
break up into the plane OAB and a general plane. Thus, on the quartic
curve, the series determined by arbitrary plane sections is not complete,
being contained in another linear series of the same grade whose freedom
is greater. For the rational quartic curve which is the residual inter-

section of a quadric surface with a cubic surface, we similarly have a
linear series, of freedom 3. of sets of 4 points, obtained by plane sections;
but this is contained in a series of freedom 4, also of grade 4, obtainable
by the intersections with cubic surfaces drawn through the two generators.

It seems on the whole to be briefest and clearest to enunciate and
prove immediately the following general theorem*, which covers

many cases : let C be a given algebraic curve ; through this curve let

two surfaces F= 0, <!> = 0, of orders m and M, be put, so that the

curve is simple on both these surfaces. These surfaces may intersect

in further curves; to make an inclusive statement, suppose that

such a further curve, Cj, of intersection of 7^ = and = 0, is

ji-fold on F=0 andjg-fold on = 0; and also that a A'^-fold conical

point, P^., oi F= 0, is a A'g'fo^d conical point on = 0, though this

will be of importance only when this point is on the curve C. Con-
sider now surfaces, of given order, passing through all such common
curves Cjof F— 0, = other than C, these surfaces being such that

every such curve Cj is
(j\ +Jg

— 1 )-fold thereon, and also such that

they meet every branch of the curve C which passes throvigh a

common multiple point P^. of F= 0, = in (fci + A^g— 2) points,

beside containing every point where the surfaces F= 0, = touch
one another. The theorem is that, for every order for which such

surfaces are possible, these surfaces determine a complete series on
the curve C. In particular, there are surfaces with the specified

behaviour which are of order m + 3i — 4 ; and these cut on the curve

C (of genus j^) the complete canonical series, of freedom p—l, of

sets of 22? — 2 points.

As an illustration of the theorem, suppose C is the complete inter-

section of two non-singular surfaces, being simple on both. Then
the surfaces of given order through the points of contact of these

two surfaces (the double points and cusps of the given curve) cut a

complete series on the curve; in particular there are such surfaces,

of order m + 31— 4, determining the canonical series. That the

surfaces of order m + 3/— 4 give a series of sets of 2j9 — 2 points, was
already clear from the formula found above

2;? - 2 = )nM (m + Ji - 4) - 28 - 2/c

;

but, that these surfaces give a series of freedom p—l is a new fact.

* A particular consequence is proved independently below (p. 227).
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To prove this independently we should require to evaluate tlie

number of surfaces of order m-\-M — -\< which contain the curve, and
to consider whether the multiple points of the curve present

independent conditions for surfaces of this order not containing

the curve. Or (see below, p. 227) to invoke the Riemann-Roch
theorem. The ocueral tlieorem, liowever. gives also the striking

result that a complete scries is obtained l)y surfaces of any order,

however low, which can be put through the nudtiple points of the

curve. For a simple instance, on the quartic cur\^e of intersection

of two quadrie surfaces which touch in one point, a complete series

is obtained by the planes through this point ; or, more generally, on
the complete intersection of two non-singular surfaces which have
no point of contact, supposed a simple curve on both surfaces, the

series, of freedom 3, determined by arbitrary planes, is complete.

This result leads to the conclusion that the curve is normal in the

space of three dimensions, that is, cannot be obtained by projection

of a curve, of the same order, existing in higher space. It will

be found indeed, speaking in general terms, that any manifold,

in space of any dimensions, which is a complete intersection,

and without multiple parts of dimension one less than its own, is

likewise normal (Severi, "Su alcune questioni di postulazione ",

Rend. Palermo, xvii, 1903, § 2).

The general theorem we have stated is given by Noether, Math.
Annal. viii, 1875 {Zur Theorie des eind. Entspr. alg. Geb. § 7). We
give Noether's proof:

Preliminary theorem. Any surfaceT= 0, which passes through
the complete intersection of two surfaces i*'= 0, O = 0, in such a way
that every component curve of this intersection which is J^-fold on
F= andj2-fold on = is (j^+jo— l)-fold on ^= 0, is expressible

by taking W = AF+ B^, where A, B are suitable polynomials in the

coordinates. The condition for ^' = is that, on a general plane, it

shall cut a curve having a (ji+j2~ l)"Plc point at eveiy common
point of the sections of 2^= 0, O = by this plane, where these curves

have respectively a jVple and a j^'P^^ point. No condition for the

behaviour of ^^= at isolated multiple points of the curve {F, O) is

postulated. The reader may prefer to pass over the proof of this

preliminary theorem (pp. 220-24), to its application for the proof

of Noether's general theorem (pp. 224-26).

We first prove* that if /=0, = be two curves in a plane,

* The theorem which we prove for plane curves is sufficient for the purpose

to which we apply it, the section of a (itfure in space by an arbitrary plane. For
the case when tlie common multiple points (/, ^) are of more intricate kind,

reference may be made to Severi, Algebr. Gcnm. (Leipzig, 1021), p. 110; and
for the general theorem in higher space, to Bertini, Gcom. d. iperspazi, 1907,

pp. 202 ff. A further list of authorities is given below (p. 224).
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respectively of orders 711, n, and with respectively an h-io\d and a
A'-fold point at an intersection, so that hk intersections of the curves
are absorbed at this point, and lLhk= mn, then any cvu-ve i/(= in

the plane, which has a (/i + A'—
1) point at such intersection, is given

by taking ifj=i{f+ vcf), where ii, v are suitable polynomials. And this

we first prove under the hypothesis that the order A^, of the curve
0=0, is so high, that the prescribed conditions at the common
points of/= 0,

<f>
= are all linearly independent for the equation of

i/j= 0; the number of these conditions is then ll{h+ k, 2), that is

h^{h+ k){h+ k—l). In this case the most general curve =
satisfying these conditions contains (N + 2, 2) — 'L{h+ k, 2) homo-
geneovisly entering independent coefficients. To shew then that the

form uf+V(f) is general enough for the representation of any curve
ip, it is sufficient to shew that, with general curves w= 0, v= 0, of

respective orders N — 7n, N—ti, chosen to have respectively a
(/t — l)-ple and a (/i— l)-ple multiple point at the general inter-

section (/, </)) spoken of, for all such intersections, the polynomial

uf+V(f) contains as many as (A^ + 2, 2) — X{h+ k, 2) homogeneously
entering arbitrary coefficients*. Now, the form u, after the pre-

scribed conditions are satisfied, will contain {N — 7n+ 2, 2) — S(^, 2)

arbitrary homogeneous coefficients; or more if the conditions at the

intersections (/, (f>)
are not independent. Similarly v will contain

{N-n+ 2, 2)-'Z{h, 2), at least. The aggregate uf-\-v<f) will thence
contain a number of homogeneous arbitrary coefficients equal to the

sum of the two preceding numbers, diminished by the number of

terms which can enter simultaneously in w/and vj). But, assuming
that /, (f)

have no common factor, an identity Uj.f=Vi<f), where

Ml , Vi denote respectively aggregates of terms in u and v, requires

that Vi divides by /, and hence N — n^ m. Conversely, if iV ^ m+ n,

by taking i\ = wf, and hence v of the form v^+ wf, where the terms
Vq

<f>
are independent of the terms uf, and m; is a general polynomial,

of order N—tn — n, the possible reduction does arise; in this case

the form uf+vcf) contains, at least, a number of arbitrary homo-

* That is, we assume that two hnear systems of hnearly independent curves,

Aot7o + ••• + '^r^r = 0, fioVg + ... +1-1J^s = 0, are identical if they are of the same
order, have the same base points (simple or multiple), and the same freedoms
(i.e., if r = .s). In the application made the parameters /xq, ... , m., on the rioht

are the coefficients entering in the polynomials u and v. We could also consider

the theorem by analysing both sides of the equation into the individual mono-
mials a'*y'~*^ which enter; the coefficients on the right would then be linear

functions of the coefficients in the polynomials ti and v (the coefficients in these

linear functions being taken from the given coefficients in/ and
(f>).

When N is

so small {N<m + n) that no identity Uif+t\<j) = is possible, these linear func-

tions are independent; and so the identity ip = uf+V(j> would follow, for proper
values of u and v, from shewing that the prescribed conditions for u, v and tp,

at the intersections of/=0,
(f>
= 0, involved that the two sides of the equation

contained the same monomials. Similarly in general.
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geneous coefficients given by

(iV-m+ 2, 2) + (xV-^i + 2, 2)-(iV-m-/J + 2, 2)-S(/<, 2)-S(/.-,2).

Remarking then the identities

(A^ +2,2)- (iV - m + 2, 2) - (.V-n + 2, 2) + (.V - m - n + 2, 2) = mn,
{h + k,2)-ih,2)-{k,2) = lik,

and recaUing the hypothesis 'Lhk= mn, the conclusion is that the

form uf+v<j} contains enough arbitrary coeflicients to represent the

form ijj, however general the latter may be, subject to the conditions

it is to satisfy. Such general ifj will be a linear aggregate of particular

forms ift satisfying these conditions, and these pai'ticular forms will

occur in uf+ vcf), each multiplied by an arbitrary coefficient. Thus
any particular form i(j, for which the curve ip= has the prescribed

nudtiple points, is expressible in the form uf+vcf), with u, v as

particular curves of the prescribed behaviour.

This is on the hypothesis that ifj is of sufficiently high order. We
can, however, deduce from this that the expression in question

equally holds whatever be the order of iff, provided this has the

prescribed behaviour at the multiple points (/, </>). For assume that

it has been proved that all curves of order M which have a

{h + k— l)-ple point at a point which is h-p\e for/=0 and A'-ple for

)/»= are expressible in the form ii(f)+ vip=^0. Let ip= Obe any curve
of order M—1 with the like behaviour at every common point

(/, <f)),
and ^=0 be an arbitrary line. Then the composite curve

l,ip= is of order M, and has the like behaviour. By linear change
of coordinates, let all the curves be expressed homogeneously in

terms of x, y, ^; and denote I by z; in the changed coordinates

denote /, ^, ip by fi{x, y, z), <f>i{x, y, z), iffiix, y, z). Then, by the

assumption made,

2<Ai(a;, y, z) = u{x, y, z)f^{x, y, z) + v{x, y, z)<f>i{x, y, z),

with proper polynomials u and v. Hence we have the identity

u{x, y, 0)/i(a?, y, 0) + v{x, y, O)0i(a;, y, 0) = 0,

and we can suppose that the general line 2= has been chosen so

thatfi{x, y, 0), (f>i{x, y, 0) have no common factor. Thus we can infer

that u{x, y, 0) = d{x, y) (f>i{x, y, 0), where 6{x, y) is a homogeneous
polynomial in x and y; and hence

u{x, y, z) = e{x, y)(l>i{x, y, z) + zu-i^{x, y, z),

where u^ is a polynomial homogeneous in x, y, z. With this, the

equation
2)/'i

= w/i + y^i takes the form ziffi — {9^i + zuy)fi+ v<l)i,

which is z{ilji— Uifi) = {dfi + v)<f)i; and, from this identity it follows

that >pi
— Uifi divides by <^i, or we have an equation fpi= Uifi+ Vi<f>i,

where v^ is a homogeneous polynomial. We can now return to the

original variables x, y, z, and lience have an expression for ip, in
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terms of/ and 0, of the form specified, though is only of order

M— 1. The reduction can be continued in the same way, to any
form xjj, whatever its order, which satisfies the condition at the

intersections (/, <j)).

There are remarks, not of importance for our immediate purpose,
which may usefully be made here. It follows from what is proved that,

for any value of A', the nvmiber of independent conditions which are
Involved, for a (ternary) form </f of order iV, in order that the curve i/i =
should have a multiple point of order h + k—1 at every (/*, A") common
point of the curves /=0, ^ = (supposed to be multiple points of the
most general kind), is given by

{N + 2, 2) - (.V

-

m + 2, 2) - {N - n + 2, 2) + (
A' - m - n + 2,2)

+ S(/*,2) + S(A-,2),

where m, n are the orders of/=0, </> = 0; for this is equal to the number
of terms in a general polynomial i/<, less the number of independent terms
in the form uf+ v

<f>.
In this statement, however, the term {N — m — n + 2, 2)

is to be omitted if N<m + n, as we see by recalling the enumeration
above made of the terms in uf+v<j); this term vanishes identically if

N=^m + n—\, or N—m + n — 2. Thus, recalling an identity remarked
above, the number of conditions in question is {h + k,2) when
N>m.-\-n — 'i; and, for values of N of the form A^ =m + n — 3 — g, the
number is {h + k, '2) — {q + 2, 2). We may easily see that in all cases the
number is a+y, where a denotes S(/?, 2) + i;(A', 2), and y denotes the
coefficient of t^ in the expansion, in ascending powers of t, of
(1— f")(l — <")(! — 0~^' ^Ve may call this number the postidation of the
(h, A) base points for curves of order A^ In particular, if mn points in

a plane be the complete intersection of two curves of orders m and n, all

curves of order ?/i + 7i — 3 — q, through mn — (q + 2, 2) of these intersections,

pass through the remaining {q + 2, 2) intersections, in general {q being
not greater than the less of m — 3 and n — S). A more exact statement
has already been given (Chap, iv. Note III, On the Cayley-Bacharach
theorem). A particular consequence is, that curves of order m + n — 4!

passing through all but 3 of the tnn intersections of two general curves
of orders m and n, pass, as a rule, through these 3 also (but, when these
3 are coUinear, it is necessary also to prescribe that the curve of order
m + n — 4 passes through one of them).

Ex. We have (pp. 218, 219) deduced from Noether's theorem two
results, (a), that on the complete intersection of two non-singular surfaces
of orders 7n and n, which do not touch (the curve of intersection being
simple on both surfaces), general surfaces of order m + « — 4 give the
canonical linear series of freedom p — 1; (b) that the series cut on the
curve by arbitrary planes is complete. It may be interesting to see how
the result (b) follows from (a), in virtue of the resiUt just obtained, for

plane curves of order 7n + » — 4 through the complete intersection of two
curves of orders m and //. In fact, by the Riemann-Roch theorem for

the curve of order ?nn, the complete series on the space curve, which
contains the sets of mn intersections by general planes of the space, has
a freedom mn —p + i, where i is the number of canonical sets on the space
curve which contain the intersections by an arbitrary plane. By the
result (a), this nmnber (i) is the number of surfaces of order 7n + n — 4
(not containing the space curve) which pass through the 7un plane inter-

sections. The conditions for such a surface to contain these 7>in points
are the conditions for the curve of order m + 7i — 4, which is the plane
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section of the surface, to contain these mn points, whose number, by
what is proved above, is mn — 'i. Now all possible surfaces of order
»< + ?( — 4 may be re<>arded as made up of two linear agf^regatcs, those
which wholly contain the space curve, and those which (lo not: the num-
ber in the latter aogreyate is one more than the freedom of the series cut
on the space curve by surfaces of order /// + n — V, namely is p. ^^'hence,

the munber of surfaces of order /« + /^ — 4, not containin<f the space curve,
which contain the lun intersections with a plane, is j) — {nin — li). If we
put this for i in the formula mn —p + i, we obtain 3 as the freedom of the
complete series, on the space curve, defined by the plane sections; which
is the freedom of the system of planes.

From the theorem now proved for curves in a plane, we can pass

to the theorem for surfaces which we have called the preliminary

theorem (p. 219). The })roof depends on the obvious remark that, of

surfaces (^'*), through the intersection of the given surfaces (F), (O),

having the specified relation to these on every arbitrary general

plane section, there is a least j^ossible order. For instance, as an
extreme case, there is nojDlane, containing the common curve of {F)

and (O) with the appropriate multiplicity, even if this common curve

is wholly plane ; for this curve, as coinciding with the plane section

of the surface {F), which is of order m, must be 3/-fold on {F), in

order that it may be of the order niM ; and must similarly be of multi-

plicity m on (O); and it is not then (/n +M— l)-fold on the plane.

Let <= be an arbitrary general plane; change the coordinates,

by linear transformation, so that the surfaces are represented in

terms of the homogeneous coordinates x, y, z, t. We can then
suppose that F=f+tfi, O=<^ + /0i,

^''=
ifj+ tipi, where/, (/>, ifj are

homogeneous in x, y, z only. In vix-tue of the supposed relation of

(T) to {F) and (O), we can then suppose, from the theorem proved
above for plane curves, that iff= uf+vcf), where u, v are polynomials

in X, y, z only. Whence^= w/+ v^ + tifj^^ uF+ yO + f (i/f^— uf^ — v<f>i),

which we may write in the form W — {uF + v^) = tm'i, where T^ is a
homogeneous polynomial in x, y, z, t.

Assuming that the curves (w), (r), on the perfectly general plane

/= 0, have the multiplicities (j2~l)' (ii~l)' I'cspectively, at every

typical common point (./i,.^) ot the curves (/), (0), it follows, from
the last equation, that, at every common point of (F), (O) on t = 0,

the section of (4^i) by this plane has the behaviour specified for (T)
in the theorem under proof.

Whence, applying to (^F^) the argument used for (^F), we infer an
equation Wi — {UiF + Vi'^) = tW2, where (H'2) is a surface whose
section by f = has the specified relation to the sections of [F) and
(O). This, however, leads to Y= {u + tUi)F+{v + tVy)^ + t^^2, and
a similar process can be continued. But the surfaces (^F^), (To), ...

are of diminishing order, and all in tlie specified relation to (F) and
(O). Therefore, by the remark made at starting, there is some stage



224 Chapter VIII

at which the corresponding surface (T"^) is absent, so that we finally

have an equation of the form ^^ = AF-\-B<^, where A, B are poly-

nomials; and this is the preliminary theorem required.

It is important to remark that the argument does not require the

assumption that the surface (T) is irreducible.

The proposition we have obtained belongs to a theory which has a wide
literature. We may make reference to Gergonne's Annates, xvii, 1827,

p. 214; Jacobi, Ges. Werke, in, p. 292; Noether, Math. Ann. vi, 1872,

p. 358 ; ibid, viii, 1875, § 8 ; ibid, xl, 1891, p. 140 ; C. A. Scott, Math. Ann.
Lii, 1899, p. 593; Severi, J?^Hrf. Lincei, xi, 1902; Rend. Palermo, xvii,

1903; Atti. . . Torino, xli, 1906; Bertini, Geom. d. iperspazi, 1907, p. 268;
Picard-Simart, Fond, algeb. ii (Paris, 1906), p. 17; Enriqiies-Chisini,

Teoria geom€trica,\i\, p. 530; Castelnuovo-Enriques, £n2i/A'. d. math. Wiss.
Ill, C, p. 645.

Having considered the preliminary theorem (p. 219), we pass noAv

to the proof of the general theorem enunciated on p. 218. Through
a given curve, C, are put two surfaces F^, F^, of orders A^^ , iVg » upon
each of which C is simple. We consider a surface, S, passing through

the residual curve intersection of F^

and F^, so as to have any part of this,

which is a curve Cj, of multiplicity ji

on F^ and ja on Fg, as a (ji+i2~ l)"Ple

curve; and, also, so as to meet any
branch of C containing a common
multiple point of F^ and F^ , A-^-ple on

F^ and Ayple on F^, in (A:i+ A'2— 1)

points coincident thereat; the surface

S, moreover, containing every point of contact of F^ and F^ . We are

to shew, first, that the series, cut on C by the general surface S of

this behaviour, is independent of the surfaces F^ , F^ which are used.

Describe, passing simply through C, another surface, F^, of order

A^3, to contain, beside C, all the residual curves of intersection, Q,
of F^ and F^, this curve C, being Jg-foId on F^. The surface F^ may
have further undesigned curves of intersection with the surface Fo ;

denote these by C. It is supposed that C is simple on F^ and F^.

Consider the surface SF^, composed of the surface S spoken of

together with F^, in relation to the two surfaces F^ and F^; passing

simply through C, and, with multiplicity at leastji+jg— 1, through

every other curve Cj common to i^j and F^, this surface is capable

of expression in the form SF^= TF^+ AF^ , where T, A are poly-

nomials. This equation shews, if a be the order of S, that T is of

order o- -f A^g— A^j , so that if a= A^i -|- A'^g— *' ^ is of order N^+ N^— 4t',

and shews that T= passes through the general curve Cj with

multiplicity j, -|-jg— 1 -\-j^ —ji , or j^ +jz— 1 ; and, further, that T =
passes through the curve (or curves) C which are common to F2

and F2 but are not on F^ ; also T= passes through the points of
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contact of F^ and F^ . Also, at any multiple k^-iold point of i^g which

is A-g-fold on F^ (ana A^-fold on F^), any branch of C, which passes

through it, meets SF^ in {k\ + k2—'2 + k^) points, and 7^\ in k^ points,

and so meets 2' = in (/rg+ A'g— 2) points.

On the whole, then, T = is defined for the curve C, witli the help

of the surfaces F2 and F^ through the curve, just as .S' was defined

with the help of the surfaces F^ and Fo .

We can, however, prove that the surfaces S and T have the

same intersections with the curve C. For this curve lies on the

surface Fo, whereon, by the preceding identity, we have the

identity SF^^TF^ . This shews, as the svu'faee F^ wholly contains C,

that the intersections of the surface T with the curve C lie on the

surface S; and, also, as F^^ contains C, that the intersections of the

surface S with the curve C lie on the surface T.

The definition of the series on the curve C by the surfaces S, with

the use of the surfaces F^ and F2 , can thus be modified by the sub-

stitution, for Fj^, of any other surface F^, (which we have chosen,

however, in the argument, so general as to have with F^, outside

the curves [F^, F2), only simple intersections); and it has been

shewn that if ^S" is of order iVj+ -Vg~ 4' then T is of order A^'g 4- A^3— 4.

Thus, for Fi and Fo, any two general surfaces through C can be

chosen. In particular, we can (as already remarked, Ex. 10, p. 214)

suppose these svirfaces to be K and L, where K is a cone projecting

C from a suitably general point, and L is a surface, of order m, say,

having a (iti — l)-fold point at this point of projection; the equatioHS

of these can be supposed to be

K ^Jn {^i ,
X2

,
X^) = 0, Iv = t^oj m-1 1*^! > '^2 ' ^s) '^Jm ('^1 » '^2 ' '^s)

~ ^•

Beside C, these surfaces intersect in the lines common to the cones

y^j = 0,/,„_i= 0, and, if (1, 0, 0, 0) be a general point, not lying on tlie

curve C, such a line must equally lie on the cone /,„ = 0, being

r-fold for this if r-fold for/^_i = 0. The surfaces S will then be sur-

faces
<f),

cones of vertex (1, 0, 0, 0), passing (q+ r—l) times through
every gf-fold line of/„ which is r-fold for/^_i; so that, from what
was proved above,

(f>
is of the form Bfn + Af^_i, Avhere B, A are

homogeneous in x^, x^-, x<^. In particular when, in the notation

used above, the surface S was of order A^^+ iVg— 4, the cone

^ will be of order m-|-n— 4; and its intersections with the cone

/„, other than those on/^_i, will be on A, which is then of order

m-i-?i — 4 — (m — 1), or n — 3; a g'-fold generator of/„ which is r-fold

for /,„_!, is (5-— l)-fold for this cone .J = 0. The curve C is the

complete intersection of the cone/„ and the monoid L, other than
the generators {fn,fm-i)^ ^^''t^ ^^ "^^t by ^ on the cone A. A (7-fold

generator of /„ arises from a q-fokl chord of C, drawn from (1, 0,

0, 0); and, in order that there may be q distinct points of C on this

B G V 15
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generator, /„,_i must, we know from the theory of plane curves,

have this generator as (5'— l)-fold at least. If tlie curve C has an
actual g-fold point, this will give a g-fold generator of/„ , which need
not be on/^_i (or/„,), but will equally be (g— l)-fold on the cone A.
We thus see that the series on the curve C obtained by the

surfaces S, described, as explained, through the residual inter-

section of two arbitrary surfaces F^, t\ which are put simply
through C, is the series which projects, from an arbitrary general
point, into the series obtained, on the projection of C, by adjoint

curves of this projection (see Chap, iv, preceding, p. 60), and this,

by the theory of the plane curve, is a complete series. In particular,

the series by surfaces S of order N-i_-\-N^— ^, is the series projecting

into that obtained on the plane curve by adjoint curves of order
n — 3; as this latter is the canonical series, the series on C by the

surfaces .S' of order N-^^ + N^— ^ is equally the canonical series. The
series by surfaces S which are of order greater than N-^+ iVg — 4 will

project into series given by plane curves adjoint to the projection of

C, of appropriately higher order. If there are surfaces of order less

than A^+ iVg""^ which contain the residual curves Cj (or when C is

a complete intersection), then there exist adjoint curves of order
less than n — Q for the projection. Conversely, any complete series

on the plane curve corresponds to a series on the curve C obtainable

by the rule; for we may take, for the surfaces F^, F2, the cone/„ and
the monoid ^o/w-i+Zto* This completes the proof.

A very suggestive proof that if the surface ;S', in the general

theorem, give a complete series on the curve C when the surfaces

S are of sufficiently high order, then the same is true for existing

surfaces S of lower order, is given by Severi, Rend. Lincei, xii,

1903, Sulla deficienza della serie. . .No. 2.

Ex. 1. Prove that the \mM{m — l){M — \) chords from an arbitrary

general point to the curve of intersection of two surfaces of orders ni and
M, lie, with inM coplanar points of this curve, upon 4 + \mM(m +M — 6)

linearly independent cones of order mM — 3, whose vertex is at the point.

Ex. 2. Prove that if the nmk intersections of three surfaces/^ 0, ^ = 0,

(/. = 0, of orders m, n, k, are all simple, then any surface through these

points has an equation of the form uf+v<j) + wili = 0, where u, v, w are

polynomials. Further, that the postulation of these points, for a surface

of order N, is the coefficient of t^ in the expansion, in ascending powers
of t, of the function (1 -<'")(! -P)(l -<^)(1 -0~*, and* is mnk only if

N> m + n + k — 4.

Another proof of the determination of the canonical series

on a curve in space. It has been proved that when two curves,

* Ifa = 2(»;^-l),ra = n/!i.,itmaybeprovedthat(l-r'i)...(l-r'.s)(l-/)-''-i
k=l k=l

is of the form u+zcfil — 0~^, where u is an integral polynomial, with positive

integer coefficients, of order a — 1.
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Ci, of order n^, and C2, of order m,, are, together, the complete
intersection of two non-singular surfaces, of orders m and M, being

simple on both these, and the only double points of Cj or Cg are

simple contacts of the two surfaces, then the canonical series on C^

is given by the surfaces of order m+M — 4: through Co which contain

the double points of C^. Wc gi\'e now another proof of this result,

depending on the Ricmann-Roch theorem for the curve C^ , whose
validity is a consequence of the (1,1) correspondence between this

curve and a plane curve. Like the foregoing proof it may be
assigned to Noether, whose great paper, of 1882, employs this

(1, 1) correspondence throughout.

After the detailed considerations of Ex. 11 (p. 215) preceding, it

will be unnecessary to suppose that the curve Q is irreducible ; but

we assume, as in Ex. 11, that every component of Cg has actual

intersections with C^.

Denoting the surfaces through C^ which intersect further in C,,

by i^ = 0, = 0, we have proved (p. 219) tJiat all surfaces of order

7?t4-3/— 4, containing both Q and Co, have an equation of the form
AF+B^ = 0; the nvmiber of such surfaces (with A^=m+ 3/ — 4) is

thus {N-7n + 3, 3) + (A^-M + 3, 3), which is the same as

(iV+ 3, 3) +{N-m-M+ 3, 3)-[NmM-hmM{tn+ M--i)],

or, for N= m + M-4<, is {m+ M-1, 3)-l-hnM{m, + M-4-).
Now consider the surfaces of order m + 3/ — 4 containing Co,

which also contain the multiple points of the curve C^ . The surfaces

of this order, conditioned only by containing Cg, are proved in

Ex. 11 to be, in number, (m + J/— 1, 3) — ^—jja+l"^, — K:2+ cr,

where ct ^ 0. From the equation

2j:>i
- 2 = »! (m +M - 4) - 28i - 2ki- i

it follows, when the further condition of containing the multiple

points of Ci is imposed, that there arises on C^ a linear series of

2pj^— 2 points in each set. We prove that the freedom of this series

is pi—l — ai, with o-j^^O: first, if the series be not special, and be
complete, it will have a freedom ^jj^

— 2, and will have a less freedom
if incomplete; and, if the series be special, it will have a freedom

jJi—l, if complete (a set of 2^^— 2 points not belonging to two
canonical sets), but a less freedom if incomplete. Thus, the surfaces

of order m +M — 4^, which contain the curve Cg and the multiple

points of Ci, will contain the curve C^ entirely if put through other

Pi — oi points of this curve, of general position. If the number of

conditions, for surfaces of order ?n+M— 4 containing Cg, that they

should pass through the multiple points of C^, be denoted by
Si+Ki— ju., with /x^O, it follows then, that the number of surfaces

of order ni +M — 4> containing both curves C^ and C^, is

[(m+ Ji- l,3)-^-2J2+ 1-82- Ko+a]-[29i-(Ti]-[8i+Ki-/x].

15-2
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We found, however, that

thus, the number of surfaces of order w+ iVf— 4 containing both
curves Q, C^, is (m+ M-1, 3)-l-imM(m+ 3/-4) + CT+CTi+/x;

comparing this with the number of such curves which we remarked
above, based on the expression AF+ B<^, we infer, therefore, that

a= CTi = /x=0.

The argument itself proves that the surfaces of order /?? + 3/—

4

through the curve C^, even when put through the multiple points of

Cj, do not necessarily all contain the curve C^, for general values

of Pi-
From, CTi = it follows that the surfaces of order m+M— 4,

through Cg and the multiple points of C^, cut, on this curve Q, a
complete special series, of sets of 2p^ — 2 points, with freedom

Pj— 1, the canonical series. This is the main theorem we set out to

prove.

It is also clear that surfaces of order m+M — 4, conditioned only
by passing through the multiple points of C^ , and the t intersections

of this curve with C^, cut on Q a series of the same grade (2^^ — 2) as

if they entirely contained the curve C^ , with freedom certainly not
less than in that hypothesis (that is not less ihanpi — 1 ). Hence these

surfaces do in fact give on Q the same series as that obtained by
surfaces wholly containing C2 . For, if this series were not special

its freedom would at most he pi— 2; and, being thence special, its

freedom is at most Pi — l, so that it coincides with the canonical

series obtained by surfaces wholly containing Cg.

From CT=0, it follows that the numbers ^, used in the argument
of Ex. 11 above (p. 215) are all zero. Thus, surfaces of order

m+M— 4-, drawn through the multiple points of all the components
of the curve Cg, when this is composite, and through the mutual
intersections of these components (but not their intersections with
Cj), cut a complete series on each component, this freedom, in the

notation of that example, being p2i — 2 + ti. In particular, when C^
is irreducible, surfaces of order m+M — 4, through the multiple

points of Cg, cut on C2 a complete series of freedom p2— 2 + t. From
this result, proved when C^ is irreducible, we infer, by parity of

reasoning, that surfaces of order m+M — 4, through the multiple

points of Ci , cut on Q a series of freedom pi — 2 + t—X, this series

being complete, and A zero, when C2 is irreducible. From this we
can prove that, for surfaces of order m+M — 4 through the multiple

points of Cj, the t intersections with Cg furnish only t—\ — X

independent conditions, for surfaces of this description to contain

them. For denote the number of these conditions by ^; we have
shewn that surfaces of order m+M — 4, through the multiple points
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of Cj, cut on this curve a series of freedom pi — 2 + t—\; those

through the multiple points and the t intersections thus cut a series

of freedom pi — 2 + t—\ — ^; but we have shewn that the freedom of

this series is Pi — 1. Wherefore ^= ^ — 1 — A, where A is zero when Co is

irreducible, but otherwise is an integer ^ 0.

But, supposing Cg is composite, we can go further. Consider the

linear aggregate, D., of surfaces of order yn+M — i, which pass

through the multiple points of C^ and tlu'ough the multiple points of

all the components of Cg, which pass also through all the inter-

sections of the components of C.^ with C^ and with one another.

These surfaces cvit on C^ a linear series, of the same grade, 2p^— 2,

as if they contained the curves Cg entirely, and of freedom not less

than the freedom, Pi — l, which would then exist. This series on Q
is thus special (not being of freedom equal to or less than p^ — 2),

and is also complete (or its freedom Avould be less thanpi— 1). Thus
these surfaces Q. cut the complete canonical series on Q. Hence, by
parity of argument, these surfaces cut the complete canonical series

on every component of Cg.

Further, of the linear aggregate of surfaces Q, those which do not

contain the curve Q must be j^i in number (in order to cut thereon

a series of freedom Pi—l); and this is in fact the same number as of

surfaces D, not containing C^, which contain all the curves Co, as

Avas shewn. While, similar remarks may be made in regard to any one

component of C^ as are here made in regard to Q . Form then, from

O, the aggregate of the surfaces which contain Co but do not contain

Ci ; let this be Q^ . Form also the aggregate of those which contain

Ci and also every component of Cg except the curve (wgj); denote

this by Qgi' the number of surfaces in Qg* being (we have seen) p2i.

By the definition, no surface of Qg/ is the same as any surface of Q.^ ,

or the same as any surface of Qg; • Finally, form the aggregate Qq of

all surfaces Q which contain both C^ and Cg ; the surfaces of Qq , we
have seen, are of number, say P, given by

P= {m+M-l,3)-l-^mM{m+M-^).
We have then pi+ Spgj+ i' linearly independent surfaces of the

aggregate Q. These are in fact the whole aggregate. For, if there

were in Q., for instance, a svirface not containing either the curve

{rioi), or the curve (wgy), which is not a linear aggregate of the

surfaces already described, such surface would give on the curve

(rigi)—as also on (ng;)—a set belonging to the canonical series on

(Wgi), in addition to those already obtained, contrary to the fact

proved that these define the complete canonical series on (^2,).

Recurring however to Ex. 11 (p. 215), of which we have continued

the notation, we have

p^+ i:p,,+ P = {m +M -1, 3)-[S,+ K, + I.{8o^+ KoJ + ^t^ + I^t^j-s],
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where s denotes the number of component curves in Cg. As the
first member, we have proved, is the number of linearly independent
surfaces of the aggregate Q., n^e infer, that the number of independent

conditionsfor a surface of order w? +M— 4 to belong to the aggregate Q.,

that is, to contain all the multiple points of C^ and Cg, and to jjass

through all the intersections of the s + \ curves involved in C^ and Cg, is

Sj + Ki + S (82;+ K^j) + "Ltj + Ijtjj — s. From this it follows that, if the

conditions of passing through all the multiple points are inde-

pendent, then the conditions, for the surfaces of order m +M— Ai,

passing through these multiple points, to pass throvigh the Sf, 4-Sfj,;

intersections, are not independent, having a defect equal to or

less than the total number of curves into which the coniplete inter-

section of the two surfaces (F), (O) breaks up. We have already

remarked that this is so when s= 1

.

Ex. 1. In illustration of this theory when C^ is irreducible, we consider
two quintic curves, of genus 2, forming together the complete inter-

section of a quadric surface and a quintic surface.

Take a quadric surface and put through one generator of this a cubic
surface. The remaining intersection is a quintic curve, C\, for which
Wj — 5, and p^ — 2, the quintic curve being met in two points by a variable
plane through the generator. Through C\ put a quintic surface, giving,
jby its remaining intersection with the quadric surface, another quintic
curve, Cj , for which also, we easily find, jh = 2, having with C^ a number,
t, of intersections given by t = 13. The curves Q , C^ meet the generators
of the two systems, of the quadric surface, in, respectively, 2 and 3, and
in 3 and 2 points.

Now take 12 of the intersections of the two curves Q, C^; let O denote
one of these; from O take the generator of the quadric surface which
meets the curve Q in two points A^ , B^ beside O ; similarly let the other
generator through O meet C^ in A^ and B^, beside O. By what we have
proved (the curves Cj^, C^ being supposed without multiple points), cubic
surfaces (of order m +M — 4 for m — 2, M = 5) cut on C\ a linear series of
sets of 15 points with freedom p^ — '2 + t, or 13; so that a cubic surface
drawn through 14 independent points of the curve C\ entirely contains
the curve. Consider then cubic surfaces through the 12 chosen inter-

sections, and through A^ and B^; assuming these conditions to be in-

dependent, these cubic surfaces ^vill contain the curve C\ ; and they Mill

contain 20 — 14, or 6, undetermined homogeneous coefficients. They wiU
thus be given by an equation {a-iX + h{y + CiZ + d-^t)Q, + XJ\+^-i}V-^^ — 0,
where x, y, z, t are the coordinates, Q = is the quadric surface on which
the curves Q, Cg lie, V^ = 0, TFi = are definite cubic surfaces through
the curve C\ , and Ui , fe^ , c^ , r/j , A^ , y^^ are undetermined constants. In the
same way, the cubic surfaces through the 12 chosen intersections of the
two curves C^, C^, and through the points A^, B^, will be given by an
equation (a^x + fej?/ + ^^z^^ + ^20^ + ^2^ 2 + /^2^^ 2 = 0, where V2 = 0, W^ = are
definite cubic surfaces containing the curve C^.

Whence, the general cubic surface through the 12 chosen intersections,

which is of 8 members, has an equation of the form

{Lv + nnj + nz + kt) Q + \l\ + niW-^ + X^V^ + /ujTFa = 0,

where every member belongs to a surface containing one, or both, of the
two curves. All these cubic surfaces contain the 13th intersection of

Ci and Cg.
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Ex. 2. Consider next the case in which the curve Co is coni]:)osed of
three skew Hnes: and the curve Cj is the sextic intersection of two cubic
surfaces through the hnes. For the conventional genus of C^ (see Ex. 11,

p. 215), the forniuhi />2~ 1 = ^(/'2( ~ 1) + -^'/j gives p2 = — 2, while, from

<= W2(w + Af-»2-l) + 2/«2, =;3(3 + 3-4) + (}, =12,

and t = «i(?n +M - 4) - (2;>i
- 2),

we have Pi = l. Thus the sextic curve is of genus 1, and meets each of the
three lines in 4 points, as is also easily seen by considering sections on an
arl)itrary plane through one of the three hnes.
For quadric surfaces (of order tn +M — 4), required to pass through the

12 intersections of the four curves which are the complete intersection

of the two cubic surfaces, these 12 points are eciuivalent only to 9 con-
ditions; and these quadric surfaces (one in niunber) cut the canonical
series (of zero grade) on each of the four curves.

In this case, general quadric surfaces cut on the sextic curve, C^,

a series of sets of 12 points, of freedom 9 (there being no quadric surface
through this curve). The complete series of sets of 12 points on Cj has
freedom 11, and is determinable by quartic surfaces through the three
lines, as we have proved; there are 85 — 15, or 20 such quartic surfaces;

of these there are 8, with equation of the form AF + B^ = 0, where (F),

(<I>) are the two cubic surfaces and (A), (B) are planes, which contain the
sextic curve; the remaining 12 give the complete series in question.

Among such quartic surfaces are the 10 which decompose into the quadric
surface containing the three lines, together with another quadric surface.

Ex. 3. Next, let C^ consist of a conic and a line not meeting this, while

Cj is the remaining sextic intersection of two cubic surfaces drawn througli

these. Then we find Q to be of genus 2, being met by the conic in 6 points,

and by the line in 4 points.

By the result of the text, the 10 intersections furnish 8 independent
conditions for quadric surfaces (of order m+M — 4-) required to pass
through them: and this is directly obvious. These quadric surfaces

contain both the conic and the line, and break up into the plane of the
conic, and a variable plane through the line, which determines the
canonical series on the sextic curve.

Part V. Connexion with the theory of algebraic functions.

Consider, as before, an irreducible curve C^, simple on each of

two surfaces of orders m and J/, whose further intersection is a

curve C^, not necessarily irreducible, there being no multiple points

for either curve, other than contacts of the two surfaces. We have
proved that surfaces of given order which pass through C2, and
through the multiple points of C^

,
give a complete linear series on C^

.

Such a series, we know, from the theory of linear series on a plane

curve, is determined by one of its sets. Hence, we see that, if any
number of simple points, say (D), be taken arbitrarily on the curve

Ci, and a surface (8), of any sufficient order, be put through these

points, through the multiple points of C^, and through the curve

Cg, and, if the set of remaining intersections of this surface (8) with

Cj be denoted by (B), then, the most general surface (v), of the same
order, put through (B), the multiple points of Cj, and througli the

curve Cg, will give, as its remaining intersection with Q, the most
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general set (iV) of the linear series determined by the set {D) on C^.

And, the equations of these surfaces being (8) = 0, (v) = 0, where

(8), (v) are homogeneous polynomials in the coordinates, the most
general rational function, on the curve C^, which has the set {D) as

simple poles, will be given by the fraction (v)/(S), where {v) will

involve a number, given by the Riemann-Roch theorem, of linearly

entering arbitrary coefficients.

We also have the geometrical theorem that, if two particular

surfaces (v) = 0, (8) = 0, of the same order, through the multiple

points of Cj and through the curve Q, have, for simple inter-

sections with Cj, respectively the sets {D), {B) and (iV), {B), of

which (B) is a common part; and, if any other surface (8') be drawn,
containing the curve Cg and the multiple points of C^, through the

set (iV), and if this meet the curve Cj further in a set of points {B'),

then there is a surface (v'), through C, and the multiple points of

Ci , whose further intersection with the curve C^ consists of the sets

(A") and {B'). This geometrical theorem is equivalent to saying that,

on the curve C^, the rational function (v)/(8) is expressible also in

the form (v')/(8'). Hence the polynomial (v)(8') — (v')(8) vanishes

on the curve Q , that is, as a consequence of the equations u = 0,

[7= of the two surfaces which contain Q . By hypothesis, all the

four polynomials (v), ... vanish on the curve C^.

We now apply these functional ideas to form an algebraic integral,

on the curve Q, which is everywhere finite thereon. This gives an
interpretation of the formula we have found for the genus of this

curve.

Let X= aiX+biy+ CiZ + dit, ix = aoX+ ... + d2t be two arbitrary

linear functions, and {u, U, A, jx), as before, be the Jacobian of these

and of the two surfaces w= 0, JJ= which meet in the curves Q and
Cg . Also let^= be the equation of any surface of order m+M— 4,

drawn through the multiple points of the curves C^ and Cg, and
through the intersections of the component curves of Cg with Q and
with one another. We have proved that the aggregate of these

surfaces cuts the canonical series on C^, and on each component of

C2 . Now consider the integral

{u, U, A, fx)

whose definition, as we have given it, is symmetrical in regard to

the (say 5+1) curves forming the complete intersection of w = 0,

t7 = 0. We consider this integral on Q.
As {u, U, A, fi) is of order m +M— 2, the integral is functional,

that is, homogeneous of zero order in the current coordinates

X, y, z, t. The form (w, U, A, /la), we have seen, vanishes, at a node
of the curve Q, once on each branch, and three times at a cusp;
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moreover, it vanishes at all points of the curve whereat the

tangent line meets the line (A, yi). Using ^ as a parameter for the

expression of the eoordinates on the eurve, we shall shew that

XdfjLJdd— iJidXIdd vanishes once at each cusp, and also vanishes at

the points of the curve whereat the tangent meets the line (A, (m).

The polynomial 4' vanishes once on each branch of the curve C^ at

a node, and twice at each cusp. This shews that the integral is

everywhere finite on the curve.

The zeros of {u, U, A, /x) at non-singular points of the curve C^

are what are known as the Jacobian points of the linear series deter-

mined on the curve by variable planes through the line (A, ^); and
what we have stated is thus in agreement with the known fact that

the Jacobian set, of a linear series of freedom 1, on a curve, is

equivalent (coresidual) with a set of the canonical series together

with two sets of the linear series.

The verification that XdjjLJdd— iidXjdO vanishes at the cusps of

the curve, and also at the points whereat the tangent line meets the

line (A, ju) is simple. This fvmction is a svuu of terms such as

{ai^b2 — a2bj){xdyldd — ydcvjdd), {C]^d2— Co,d-^){zdtldd — tdzldd); and it

can be proved at once that the integral is unaltered in form by a

linear transformation of coordinates. We can thus suppose /=1,
and take, for the neighbourhood of a cusp, x=d^, y= bd^+...,

z — c9^+ ...; then the binary determinants in

X , y , z , t

dxjdd, dyidd, dzjdO, dtjde

0'-, be^+... , c9^+... , 1

29, Sb9~+..., -^€9^+...,

all vanish for ^= 0.

Further, the integral is independent of the particular line (A, fi)

chosen. For, in virtue of the equations u = 0, U= 0, we have, at any
point of the curve, the five equalities

xdyld9-ydxld9_ _ zdtld9-tdzjd9

Mg U^ — u^Ug '" Ui U2 — u^Ui
'

where u^=cujcx, etc. Thus the integral may be replaced by

^W {xdyld9-ydxld9)
^^Q

and, at a point of the curve whereat the tangent line meets the line

x= 0, y= 0, the expression xdyld9 — ydxld9 vanishes.

By the argument, this same integral gives the everywhere finite

integrals on every component curve of the intersection of u= 0,

U= 0. The method, moreover, as we shall illustrate below, is

applicable to curves in space of more than three dimensions.

or
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Part VI. The greatest genus possible for a curve of given
order, in space of any number of dimensions. In the

previous discussion of the hnear series on a cvirve, the curve has

been defined by the surfaces which pass through it. We may how-
ever seek to formulate results for a curve of which only the order

and genus are given; and, if the curve be in space of dimension

greater than 3, this is often more convenient. Castelnuovo has

obtained some remarkable theorems from this point of view, which
we proceed to state in part, with proof of some of these, referring

the reader to the original paper for further detail {Rend. Palermo,

VII, 1893 :
" Sui multipli di una serie lineare. . .una curva algebrica ").

We consider an algebraical curve of order n, and genus -p, lying in

a space of r (and not fewer) dimensions; in particular, r may be 3.

We denote by a the greatest integer contained in the fraction

(w — 2 ) /
( r— 1 ) , namely

/n — 2\ « — 2— e

"=^(7^)' =^^' -=0.1' -'('-2);

then we define tt by

^^a[n-r-\{a-\){r-\)l =1 f'l^lfi) («-;+ 1 + e).

where e is such that (« — 2— e)/(/'— 1) is an integer. One of the

principal results obtained is that p ^ tt.

Considering the linear series cut on the curve by unconditioned

general primals of order m, it is proved that, for m ^ u, this series

is not special (namely its sets are not sets of 2p — 2 points belonging

to the canonical series, nor contained in such sets). For m<a, no
statement is made ; it may be that a special series is not obtainable

by unconditioned primals of any order. Thus, for m^ a, if the series

be complete, its freedom will be vin—p. When the series is not
complete, the incompleteness does not increase with m', but,

after m has reached a certain value (depending on the multiple

points which the curve may have), the incompleteness remains

constant as m increases; in fact, for 'm> cr-^ir—jp, the freedom is

mn—p — d, where d does not depend on m. This number d is such
that 'L{S{ — l)^d^7T—p, where s^ is the multiplicity of a general

multiple point of the curve.

A corollary is that, when j^ reaches its extreme, or p = tt, the

curve is without multiple points, and primals of order a, or more,

cut a complete non-special series upon the curve.

The extreme v is reached by p for curves of three kinds

:

(1) When n= r+ p<2r, in which case o-=l. Then complete non-

special series are cut upon the curve by primes of the space (and by
primals of all orders).

(2) When ti = 2r=2p — 2, in which case a= 2, and the curve is
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canonical (see Chap, iv, p. 81). Then quadrics, and primals of

hifjher order, give complete non-special series on the curve; bnt the

primes of the space give com]ilete special series.

(3) The curves without multiple points for which n > 2r, which lie

on a rational ruled* surface of order r — 1 , and cut every generator of

this in cr^ + 1 points, where ct^ is the greatest integer in (» — 1 )/(r — 1 )

;

thus <Ti= CT unless (n — l)/(r— 1) is an integer, but then a-^= a+\.
For curves in space of three dimensions, the value of tt is

^(n— 2)2 or J(;i— l)(n— 3), according as n is even or odd; on such a

curve, surfaces of order one less than the greatest integer in \n give

a non-special series, not necessarily complete; but svu-faces of order

"^ E {l^n) + TT— jp give a series whose incompleteness, which does

not exceed 7T—p, is independent of the order of the surface.

Castelnuovo also proves that, for curves without multiple points,

in space of any dimensions, the primals of order n — 2, or more, cut

a complete non-special series on the curve ; and further, if there be

multiple points of which a general multiplicity is s^, primals (of

order ^ n — 2) passing s^—l times through every such multiple

point, have the same property. When the curve is not rational this

remains true with n— 3 instead of n— 2. The proof is by projection

on to a plane ; and the condition for the primals determining the

series, in more precise terms, is that they must meet each branch

of the given curve, at a multiple point, as does an adjoint curve of

the plane curve. For primals of oi-der A-
( ^ w— 2), so passing through

the multiple points, the freedom of the series which they determine

on the curve is therefore nk— lis ({8^ — 1)—p. Wherefore, the

freedom of the series cut on the curve, by primals of order k not

passing through the multiple points, is wA; — S5^(s, — 1) — p-f- v^.,

where v^ is the number of independent conditions for the primals to

pass through the multiple points.

For instance, consider a curve in ordinary space which has triple

points; and first suppose that the three tangents at a particular

triple point are not coplanar. For a surface to meet each of the

three branches of the curve at this point in two points, it is necessary

for the surface to have a double point, which is 4 conditions for the

surface; the contribution to the number llSi{Si—l) — v,. from such a

triple point is therefore 2. When however we consider a triple

point of which the three tangents are in a plane, two intersections

of the surface with each branch are secured by supposing the siu'faee

to touch the plane, which is only 3 conditions ; and the contribution

to T.Si{Si--l) — vj. is then 3. Thus, the freedom of the series on the

* It was proved by Segre that rational ruled surfaces of order r — 1 necessarily

lie in space of r or lower dimensions, but in the latter case are obtainable by
projection from such surfaces in space of r dimensions. Such surfaces are

therefore said to be normal in a space [r].
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curve, cut by unrestricted surfaces of order k, is nk—p — 2t^ — St2,

where t^ is the number of general triple points, and t^ of coplanar
triple points; and the number of surfaces of order k containing the
curve is (A;+ 3, 3) — {kn—p— 2tj^— 3t2+ !)• This number, in the form
{k+3, S) — vi.— {kn — fx—p + l), where ju,= I!s,(5j— 1), we may also

reach by considering surfaces through the multiple points, in

number {k+ 3, 3) — v,., which have /x intersections in all at these
multiple points.

Consider now the proof of the extreme v which has been stated
for the genus of a curve of order n. A lemma derived from the
theory of special series is required : If a linear series, gji^, of sets of
N points, of freedom R, not necessarily a complete series, be
special, and we take a particular set of another series g^", in which
n < jf?, then a set of g^-^ which contains n — r of the points of the
chosen set of ^,.", contains all the n points of this set; in other words,
a set of gr^ furnishes at most n — r conditions for a set of g^^ which
is to contain it. For, first, from n ^ R, there are sets of g^^ con-
taining any given set of g/^, so that, as gj{^' is a special series, so is

gj.'^. If this latter be contained in the complete special series g J^, we
have p = n — {p — i), where i is the specialness of a set of ^ ", or ^,.",

namely the number of unrestricted canonical sets (of 2p — 2 points)

of which this set of ^/' forms part; as there are p independent
canonical sets, the set oig^^ furnishes j:? — i, ovn— p, conditions for a
canonical set which is to contain it; if r= /) — 8, the number n— pis,

n— r— 8, which is at most n — r. Now the sets of gji^\ which is a
special series, are presumably more restricted than the sets of the

complete canonical series; and the necessary conditions for the

more restricted sets to contain a set of g/^ are evidently not more,
but may well be less, than for the general canonical sets. Thus, the

number of conditions for a set of the special series gjf^ to contain a
particular set of ^^^ is at most n — r. This is the lemma in question.

The argument may be stated in terms of the canonical curve, in

space [p— 1], as in Chap, iv preceding: The linear space which
determines a set of g^^', contains the linear space which determines

a set of g./^, if it contains points of the latter sjjace sufficient to

determine this.

Consider now the sets of n points, of the curve under considera-

tion, determined by primes of the space [r] in which the curve lies

;

these are sets of a linear series g/^. And consider the linear series, of

sets of kn points, cut upon the curve by unrestricted primals of

order k; these sets belong to a linear series gn'^. Let v,. be the

number, taken as small as possible, of points of a prime section of

the series g/^, such that any set, of the series cut on the curve by the

primals of order k, which contains any chosen vj. points of a prime
section, contains all the n points of this section. It is possible then
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to find vj.— \ points, of the prime set, sueh that a primal of order k

containing these, does not necessarily contain all the n points of this

set. This number v^ is such that v^.^ A;(r— 1)+ 1, if the number on
the right is less than n, namely if k<{n — \)j{r—\). For, if

A'(r— 1)+ 1 < n, we can choose, from the n points of a prime set, a

number k, of sets of each r— 1 points, still leaving at least 2 points

of the set unchosen; and tlic A- primes, each determined by one of

these sets of / — 1 points, form together a degenerate primal of order

k which does not contain the whole set of n points, in general. Thus,

at least k{r—\) + \ points of the prime set are necessary in order

that a primal, of order k, passing through them, should entirely

contain the set. Next, let r^. be the freedom of the series cut on the

curve by primals of order k (not necessarily a com]ilete linear

series). Then the series cut on the curve by primals of order k which
contain the points of a given prime section, will have freedom
r^— vj. ; such primals may break up into the prime containing the

base points, taken with a general primal of order k—\, or may have
greater freedom than in that case ; hence rj.— v^. ^ ry._^ , or

t'k— fT^^i^v^, which, if k<{n—\)j{r—l), involves, we have seen,

?"fc
— r;._i^ A{;'— 1)+1. We may put down this inequality for con-

stantly diminishing values of A% until we come to

^•2-'"i^2(r-l) + l, and 7\, =r, =(r-l)+l;

hence, by addition,

r^.^|(;--l)A(A+l) + A, A<(n-l)/(r-l).

The greatest integer less than (?i— l)/(r— 1) is evidently

^ = ^(731)' =
,._i

> 6 = 0, 1,..., (,--2),

and as this is ^ ( n — r)l{r— 1 ), we have r^^ ^ ct (r — 1 ) + 1 , ^n — r+1.
This number is >n — r; hence, recurring to the lemma with M'hich

we began, we infer that the sets of the series g^
<^" are not special.

Wherefore r^= an —p — d, where d is the incompleteness of this

series, which is ^0. This shews then that p^on — r^. We found
however that r^^ ^ |(r— 1 ) o- (a+ 1 ) + cr. Therefore p^ir, where

Tr= an-[l{r-l)a{a+l) + a], = a[n - r- ^{r-l){(j-l)].

This is the result we desired to prove. For the other results we
have quoted we refer to Castelnuovo's paper.

Ex. 1. The formula given above in Ex. 12, p. 216, leads, for a curve
of order n, on a rational ruled surface of order r—1, which cuts each
generator in k points, to the genus TT — {k—l)[n — r—i{r—l){k — 2)];
this has the same value when k is replaced by h, given by

h + k-l = 2{n-l)/{r-l).

Ex. 2. For a curve *'c'+^[r], of order n, equal to r + p, of genus p. lying
in space of r dimensions, prove that, if jx^r {r—1), the curve lies on
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\r{r—\)—p quadrics at least. And if the curve lies on exactly |r(r — l)— 2?

quadrics, then a complete series is determined on the curve by the
quadrics of the space [r].

On the sextic curve of genus 3 in space of three dimensions, obtained
as the remaining intersection of a quadric surface with a quartic surface
through 2 skew generators, the planes of the space, as also the cubic
surfaces, cut a complete series; but quadric surfaces cut a series of
incompleteness 1.

Ex. 3. For the canonical curve, of order 2p — 2 and genus j) in space
of /> — 1 dimensions, say the curve ^c-^~'-[p — \\, we have a, equal to the
greatest integer in (2j9 — 4)/(/) — 2), equal to 2, and

^=^[„_r_J(r-l)(a-l)] = 2[p-l-i(;>-2)]=p.

On this curve quadrics cut a non-special complete series, of freedom
'2{2p — '2)—p, or 3j> — 4. The number of quadrics containing the curve is

therefore lp{p + \) — {^p — '6), or |(p — 2)(p — 3). The number of primals
of order /a containing the curve is (/li>1), {p — l + ^i, )u) — (2ja— 1)(/? — 1)
(Noether, Math. Annal. xvii, 1880, p. 263, and Math. Annal. xxvi,
1886, p. 143. Expounded in the writer's AheVs Theorem, 1897, p. 154).

The curve is the complete intersection of the |(p — 2)(p — 3) quadrics,
for general values otj), unless the curve contain a special linear series g^;
but for p = Q, if the curve contain a series g^, there is also a residual

intersection. See pp. 96, 178, above (Enriques-Chisini, iii, p. 106, or
Rend.. . .Bologna, xxiii, 1919). When the curve has a series g^, the
quadrics have, as residual intersection, a rational ruled surface of order

p — 2; when (for p — d) there is a g^^, all the quadrics contain a Veronese
surface in addition to the curve.

Ex. 4. For quintic curves in ordinary space, ti — 5, r = 3, the integer

E[{n — 2)/{r—l)] is 1, and unconditioned surfaces of every order cut a
non-special series upon the curve.

Ex. 5. In space [4], the value of the extreme genus n, for curves of
order n, is |(n — 2)(w — 3), or ^{n — l){n — 4>), according to the form of n
{mod. 3). For example, when n = 6, the greatest possible genus is 2.

But in space [5], for n=^G, the greatest genus is 1.

Ex. 6. In our derivation of the canonical series upon a curve Q, lying

on the surfaces u = 0, U = 0, by means of surfaces, ^, of order m +M — 4,

passing through the residual intersection C^ of U — 0, JJ = 0, or through
the t intersections of Cj with C\, we have not imposed the natural
condition that u — Q, U — should be the surfaces of least order containing
the curve; nor have we explicitly supposed that the surfaces ^P are
irreducible.

Consider, for instance, the sextic curve of genus 4 which is the com-
plete intersection of a quadric surface u = 0, and a cubic surface 17 = 0.

There are 5 linearly independent cubic surfaces through this curve, with
equation of the form (ax + by + cz + dt)u+U = 0. Take two of these u' = 0,

U' = 0, where u' = xu+U, U' — yu+U. These meet further in a plane
elliptic cubic curve, Cj, with equations x — y — 0, U=^0, which meets the
sextic curve, Q, in six points lying on the conic x — y — 0, u = 0. The
surfaces of order 3 + 3 — 4, that is the quadric surfaces through the curve
6*2 , break up into the plane x — y = and an arbitrary plane determining
the canonical series on C\. The quadric surfaces through the six points

(C\, f2) are given by an equation ^' — 0, where, with arbitrary parameters

p, q, r, s, k, '^' =^{x — y){j)x + qy + rz + st) + ku, and the surfaces ^l'' =
likewise determine the canonical series on the curve C^. Putting
-ir' — (x — y) ^ + ku, we can easily verify that, on the curve C\, we have
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•^'Ku', V, A, /x) = ^/(//, V, A, fj), so that the everywhere finite integrals

on Ci can be determined by use of u' = 0, U' = 0.

Ex. 7. The everywhere finite integrals on the eurve ^<'*[4], of order 8
and genus 5, wliieh is the complete intersection of three quadrics in space
of four dimensions, say u = 0, U = 0, F= 0, are giv^en by

J>(Arf|Li- /udA)/(?«, U, V, A, ix),

where A, ^t are arbitrary hnear forms, and the denominator is the Jacobian
determinant of 5 rows and coliunns.

Ex. 8. Consider the rational ruled cubic surface in space of four
dimensions, which is obtainable by joining corresponding points of a
conic and a line not meeting the conic. The curve which is the intersection
of this surface with a general quadric is a sextic, of genus 2, meeting any
conic of the ruled siu-face in 4 points. Thus primes through this conic
meet the curve in the pairs of i)oip.ts of the canonical series on this curve
-c®; these pairs are therefore the intersections of the curve with the
generators. If a general (piadric be drawn through one of these pairs, to
meet the curve in 10 other points, the general quadric through these
10 points will also determine the canonical series on the curve. The curve
in fact lies on 4 quadrics, and the 10 points furnish 15 — 4 — 2, or 9,

independent conditions for quadrics through them.
Now consider the canonical curve of order 10, and genus 6, in space

of 5 dimensions, say ''c^'*[5]. It is the intersection of a general quadric
with a Del Pezzo surface -i/r' (Bath, Proc. Camb. Phil. Soc. xxiv, 1928,
p. 208). It can be shewn that three general quadrics (of the 5, linearly

independent, which contain the surface), drawn through the Del Pezzo
surface, meet again in a surface lying wholly in a space [4], namely in

a ruled cubic surface therein ; we have only to consider the section of the
figure by a prime, or linear [4] space. Hence, four quadrics through the
V^°[5] meet again in a -c'^[4], meeting the former curve in 10 coprimal
points. And, the canonical series on the *'c^*'[5], which (as it is a canonical
curve) is given by the primes of the space [5], may also be given by the
primals of order (2 + 2 + 2 + 2 — 6), that is, by the quadrics, passing through
these 10 intersections. The ^c^°[5] lies on 6 quadrics, and the 10 points
are equivalent only to 21-6-6, or 9, conditions for quadrics passing
through them.

If SI/ = be the general quadric through these 10 points, the everywhere
finite integrals on the V[5] are given by

J^I'(Arf^-/xf^A)/(J<, U, F, ir, A,/x),

where the denominator denotes the Jacobian of two arbitrary primes,
A,

fj.,
and the four quadrics from which the 10 base points of ^ are deter-

mined. This integral also gives the everjnvhere finite integrals on the
residual curve -c*[4].

Ex. 9. A general theorem (Severi, Rend. Palermo, xvii, 1903, § 3) is

that, if, through an irreducible curve C\ , in space [r], of order «^ and genus

Pi, without multiple points, there be drawn (r— 1) primals, of orders
Wj, ?«2 5 ••• » "'r-i' rneeting again in an irreducible non-singular curve C^,
then the canonical series g^ _i-^i~^ on Q is determined by primals through

C'g, of order k — '2, where k is the sum of the r— 1 numbers /«, — 1; the
whole number of linearb/ independent such primals is thus the sum of Pi
and the number of such primals which also contain Q. Thus primals of
order >A; — 2, through Cg, cut a non-special scries on C\.

A slightly more general theorem would however seem to be true:
namely, that primals of order k — 2, through the points of intersection of
the curves C\ and Cj, determine the canonical series on both C\ and Cg

;
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and, further, if ^ = be the general primal of this character, while
M^ = 0, . .

. , M;._i = are the primals whose complete intersection consists
of the curves Q and C\, then the everj^where finite integrals of both
curves are given by the formula /^(ArfyLt — /idA)/(iti, Mj, ... , Wr_i, A, /it),

where the notation is as before.

As in the case of ordinary space, the t intersections of Q and C^ are
equivalent only to f — 1 conditions for the primals Sk, of order k — 'l,

required to pass through them. This follows from the fact that the
postulation, x(^— 2), of the complete intersection (C^ + Cg) of Wj^ = 0, ...,

«r-i==0, for primals of order A — 2, is such that x\^ — '2.)—p-^-\-iy^-\-t — \,

where p^ is the genus of C^. If n,^ be the order of t\, we have, in fact,

i = n^k - (2«i + 2pi - 2) = n^k - ('Zri^ + 2p^ - 2),

and x(^' — 2) = l + iwi ... m^_i(/i; — 2).

The number x{k — 2) is the coefficient of .r^'~^ in the ascending expansion
of (1 — a;™i)...(l — a;™r-i)(l — .r)~'"~^ More generally, the postulation of the
complete intersection of /* primals, of orders w?^, ... , /?*/j, this intersection

being supposed to be without multiple parts, for primals of order I, is the
coefficient of «' in the ascending expansion of

( 1 - a;'»i ) . . . ( 1 - a;'»A)( 1 - a;)-*"-!.

It appears probable that the formula given above for the everywhere
finite integrals remains valid, as in ordinary space, when the curve Cg is

reducible, provided ^ = be put through the mutual intersections of its

components, as well as through their intersections with C^.

Ex. 10. In particular, for the canonical curve ^c-P~'-[p — 1], it appears
that the everywhere finite integrals are given by

J^(Arf/Li- /xdA)/(Mi, ...,Up_2, A, /i),

where i/i = 0, ...,Mj,_2 = are p — 2 of the ^{p — 2){p — S) quadrics con-

taining the curve {p> 4), and ^ = is a primal of order ja — 4 passing

through the 2(p — l){p — 5) intersections of the canonical curve with the
residual intersection of m^ = 0, . . . , Mp_2 = 0. In fact, by a result quoted
above (Ex. 3) there are {2p — 9){p — l) primals of order /> — 4 which do
not contain the curve. (Cf. Klein, Math. Annal. xxxvi, 1889, § 3.)

The theorem assumes that the canonical curve can be defined as the
complete intersection of quadrics (cf. Ex. 3).

Ex. 11. When, for p = Q, there exists, on the canonical curve, a g^^,

this curve is the intersection of a Veronese surface with a cubic primal

drawn through one of the conies of the surface. Obtain an expression for

the everywhere finite integrals in this case.

Ex. 12. Prove Noether's theorem that, on any surface in ordinary

space, the greatest genus, for curves of given order, arises for curves

which form a complete section of the surface when taken with the whole,

or part, of a plane section of the surface (Noether, '"Grundziige, u.s.w.",

Berlin. Abh. 1882, § 6).

Ex. 13. The order of an irreducible algebraic curve which lies in a
space of r dimensions (and not in space of lower dimensions) must be

greater than r— 1. If it have the order r, it is a rational curve, without
multiple points. If it have the order r + 1 , it is elliptic or rational ; in the

latter case, the series cut upon the curve by primes of the space is incom-

plete, being contained in a series given by primals with equation of the

form u ( Aoa;o + X^x-^ + ... + A^^) + C/ = 0, where Xq,x^, ..., x^ are the co-

ordinates, u and U are polynomials in these, and Ay, ... , A^ are variable
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parameters. The curve is then obtainable by pi-ojection from a curve of
order r + 1 in space [r +1], for which the coordinates of a point are given by

Xo - Xl _ _ Xr _ Vr+l

A curve of order «, in any space, which is not a projection of a curve of
oi'der ti in higlier space, is said to be nornxil in its own space.

Prove that a plane curve, of order 7i, with double points, is normal in

the plane when the niunber of its double points is less than n — 2, or its

genus exceeds i(/i — 2)(h — 8); but is not normal when the number of its

double points exceeds h{n — 2){n — S), or its genus is less than n — 2.

Consider the case when the genus is n — 2.

Ex. 14. For an irreducible algebraic manifold of dimension A', lying in

space [r], but not in lower space, we may speak of r — k as the coniph'-

rtientary dinienfiion of the nxni ifold. The order, ;/ , of the manifold is the num-
ber of its intersections with a linear space [r — A]. It can be shewn that the
order of the manifold nuist exceed the complementary dimension of the
manifold. For any n points lie in a space of dimension <7i; and a space
[r — A] thus meets the manifold in points lying in a space of dimension p
with p<7i and p^r — k. If we assume that there is a space for which
p = r — k, we thus have r— k<n. Thus, in particular, the order of a surface
must be at least r — 1 ; it can be shewn that, when the order of the surface
is r— 1, the surface is a rational ruled surface (normal in the space), there
being one exception to this, however, namely when r = 5, and the surface
is the Veronese surface. In general, a manifold of dimension k and order
r — k + \ can be regarded as the aggregate of oo^ linear spaces each of
dimension A — 1, there being again an exception to this, namely when
A' = r — 3 and the manifold is a cone projecting the Veronese surface from
a linear space [r — 6] (or the Veronese surface itself). For these results,

cf. Clifford, Collected Papers, p. 305; Del Pezzo, Rend. Palermo, i, 1887,

p. 241 (proving that a surface of order r in space [r] is rational); and
Bertini, Geoni. d. iperspazi, 1907, p. 193.

i6
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of multiple points, 157; prime func-

tion for algebraic functions, 172;
algebraic definition of a manifold,

182; elimination from two binary
forms, 202

Lasker, criterion for a canonical form,
109

Laurent's theorem, history of, 42
Lindemann, edition of Clebsch"s lec-

tures, 21
Linear series, 24, 59; complete, 65;
sum and diflerence, 67; notation
for, 78; on a curve in space, 217

Loops on a plane, for periods of alge-

braic integrals. 111, 113; loo[) cut
on a Riemaim smface, 128

Liiroth, on method of loojjs for

periods, 119; redueibility of linear

systems, 72

Macaulay, postulation of a manifold,
101

Manifold, expressed by intersection

of primals, 182
Milne, on contact adjoint curves, 95
Mittag-Leffler, history of Laurent's

theorem, 42
Modular theory of rational functions

and integrals, 147
Moduli of a curve, in general, 94
Moebius, curve system on a surface,

132
Molk, exposition of Kronecker's

methods, 182
Monogeneity of algebraic function, 44
Multiple points, elimination of, 24;
maximum number for plane curve
of given order, 10; minimum num-
ber for curve of general moduli, 93

Netto, equation for inflexions of plane
cubic curve, 21 ; on an algebraic

theorem, 202
Neumann, on Riemann's theorv, 78,

132
Neutral set of points, 25
Ne%\i;on's polygon for the analysis of

a multiple point, 46
Noether, procedure for description of

a multiple point, 45, 46; theorem
for plane curves, for theorem of

coresiduation, 67; and Brill, funda-

mental paper on theory of linear

series, 78; Report on algebraic

functions, 78; on number of con-

ditions a curve can satisfy, 96; on
composite curves, 100; and Severi

and Bertini, theorem for postula-

tion of a manifold, 101; chords to

curve of intersection of two sur-
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faces, 204, 219, 224; memoir on
theory of curves, 213; theorem for

canonical series on a curve, 218;
greatest genus of a curve on a
surface, 240

Normal curve defined, 81 ; conditions

for, 98

Olivier, theorem for the intersection

of curves, 107
Order of a rational function on a

curv'e, 46, 49
Oriented cell on a Riemann surface,

12.5

Oval cut on a Riemann surface, 123,
128

Palatini, on canonical forms, 109
Parametric representation of a branch

of a curve, 39; deducible from non-
singular space representation, 44

Pascal's Repertnrium, article by
Berzolari, 213

Periodic function, multiply, 146
Periods of algebraic integrals. 111,

136, 141 ; for everj^'where finite in-

tegrals, array of, 141
Pezzo, Del, surface defined, 97, men-

tioned, 96, 98; paper referred to,

241

Picard-Simart, genus of a composite
curve, 209, 215

Pick, covariant form for elliptic in-

tegral, 22
Pinhole boundary, on a Riemann sur-

face, 127
Place, a point of a curve as centre of

a branch, 35
Pliable linear system of curves, de-

fining a simple linear series, 25
Postulation of a manifold for primals,

101

Prime function, Weierstrass's, for al-

gebraic functions, 174
Puiseux, expression of branch of

curve by a parameter, 43
Pure adjoint system of a curve, 72

Quadrics containing the canonical
curve, 96, 238

Quartic plane curv^e, 13, 177

Rank, in topological theory of a sur-

face, 127

Rational curve, 2, 5, 6, 7, 8, 13, 79,
197

Rational function, order of, 46, 49;
fundamental theorem for residues

of, 47 ; explicit expression of, 57 ; by
adjoint polynomials, 63; minimum
order of, 82, 92; condition for poles

of, 86; expression by integrals, 139;
fundamental integral, 140; expres-

sion, modular, 147
Rational series of sets of points, 2

Reciprocal functions from funda-

mental integral functions, 157, 164,

169
Reduction of linear system by con-

tained system, 26, 29, 30
Riemann surface, 121 ; topology of,

124, 134; fundamental formula,

132; example, 134
Riemann-Roch formula, for series and

functions, 68, 78, 170; Riemann on
moduli, 94; normal elementary in-

tegrals, 143; relations for periods,

145
Roch, with Riemann, formula, 68, 78,

170
Room, number of conditions which a

Veronese, or a Del Pezzo svirface,

can satisfy, 96

Salmon-Cayley, formulae for a curve

in ordinary space, 191 ; deduced
from general principles, 192

Salmon, chords to curve of intersec-

tion of two surfaces, 204; equiva-

lence of a curve of intersection, 210
Scheibner, elimination from two

binary forms, 202
Scorza, on canonical forms, 109
Scott, reduction of a certain curve, 32

Segre, sextactic points, 22; represen-

tation of a hyperelliptic curve on a
ruled surface, 33; on Noether reduc-

tion of a multiple point, 45, 46; on
minimum number of Weierstrass

points, 90; Segre and Zeuthen, in-

variant of a surface, 135; relation

for a curve lying on a scroll, 179;

algebraic definition of a manifold,

182; formulae for curve in higher

space, 200; on space in which
rational ruled surface is normal, 235

Series, linear, on a curve in space, 217
Severi, treatise on algebraic geometry

(1927), 31 ; Severi-Loffler, Algebraic
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geometry (1921), on nunibcr of
moduli of a curve, 95; on loops for

periods of iil<febraic integral, 119;
on reduction of period system for

multiply-periodic function, 140;
degenerate forms of a general curve,

209; completeness of series on curve
intersection, 220; canonical series

on a curve in space, 219, 239
Sextactic points on plane cubic

curve, 21

Simple linear series, 77, 83, 79
Special set and linear series on a curve,

77, 78, 81, 90, 92, 96, 97, 180, 236,

177, 238
Stall, point of stationary osculating

plane of a curve, 186
Stationary point (cusp) of a curve,

186
Steiner, inflexions of a plane cubic

curve, 21

Stifl' linear system of curves defining

a non-simple linear series, 25
Sum of two complete linear series, 67
Surfaces, Riemann, 121 ; topology of,

124, 134; fundamental formula,

130; example, 134
System of curves, topological charac-

"^ters, 132

Tact invariant of a curve, 86
Terracini, canonical forms for equa-

tion of quadrics, 108, 109
Theta function, construction of, 145;

zeros of Riemann's, 145
Todd, cubic curves satisfying twelve

conditions, 98; rational quartic

curves, 98
Topology of a Riemann surface, 124;

fundamental formula, 130

Transformation of a curve by a linear

system, 26, 29, 83, 93 ; of non-hyper-
elliptie curve, 82

Traverse, on a Riemann surface, 127

Ursell, conies and quadrics satisfying

eight and nine conditions, 98

Valilen, curve requiring four surfaces

for its definition, 211
Valentiner, memoir on curves in

space, 213 ; chords to curve of inter-

section of two surfaces, 204
Veronese, formulae for curve in

higher space, 200; Veronese sur-

face, 96, 98

Wakeford, a criterion for a canonical
form, 109

Weber, inflexions of a plane cubic
curve, 21 ; modular treatment of
algebraic functions, 147

Weierstrass, preparatory theorem, 36;
on Laurent's theorem, 42; gap
theorem, 86, 89; on periods of alge-

braic integrals, 119; prime function

for algebraic functions, 174; nor-

mal form for a plane curve, 181

;

Weierstrass points on a curve in

higher space, 201
Welchman, rational quartic curve, 98
White, on rational quartic curve, 98;

a theorem for plane curves, 107
Winding index at a branch place, 44,

83, 156

Zeuthen, Text-book on enumerative
geometry, the postulation of a par-

ticular set of points, 107; Zeuthen-
Segre invariant, 135; and Cayley,

formulae for curve in space, 197
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