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PRINCIPLES.

1. It will be understood that the surds appearing in the present

paper have prime numbers for the denominators of their indices,

i_

unless where the contrary is expressly stated. Thus, 215 may be
!_

1

regarded as A5
,
a surd with the index

J,
h being 2$ . It will be

understood also that no surd appears in the denominator of a fraction.

For instance, instead of - we should write --r~T^

When a surd is spoken of as occurring in an algebraical expression,
it may be present in more than one of its powers, and need not be

present in the first.

2. In such an expression as V 2 + (1 + V 2) , v/ 2 is subordi-

nate to the principal surd (1 + \/ 2) ,
the latter being the only prin-

cipal surd in the expression.

3. A surd that has no other surd subordinate to it may be said to
l

be of the first rank ; and the surd h c
,
where h involves a s\ird of the

(a l)
th rank, but none of a higher rank, may be said to be of the

ath rank. In estimating the rank of a surd, the denominators of the
indices of the surds concerned are always supposed to be prime
numbers. Thus, 3* is a surd of the second rank.

i

4. An algebraical expression in which A m
is a principal (see 2)

surd may be arranged according to the powers of J m
lower than the

mth
, thus,

where gi, k
lt ai, etc., are clear of



5. If an algebrical expression n, arranged as in (1), be zero, while-

the coefficients gi, k
t , etc., are not all zero, an equation

JL
wA = ^

^2)

must subsist
;
where to is an ?/i

th root of unity ; and l\ is an expression
_L

involving only such surds exclusive of . A m as occur in n . For, let

the first of the coefficients AI, ei, etc., proceeding in the order of the

descending powers of J m
,
that is not zero, be n\, the coefficient of

$

J w
. Then we may put

1 8

mn = ni{f( 4* )} m n\A + etc. - 0.

i

Because A is a root of each of the equations f (x)
= and

x1*
AI = Q,f(x) and xm Ji have a common measure. Let

their H. C. M., involving only such surds as occur in/(.r) and

xm Ji, be <p (x). Then, because
(/' (x) is a measure of xm Ji,

the roots of the equation

<p (x)
= x6 + pix

c ~ l + p-zx
6 - 2 * etc. =

J_ j_ _i_ JL_

are
Jj , w^

l
,
w2J

l ,...., <c i d
;
where wi, % etc., are dis-

tinct primitive mtb roots of unity. Therefore,

c

J* (o! W2 ..) (~ 1)
C = pc

Now c is a whole number less than m but not zero
; and, by 1, m is

prime. Therefore there are whole numbers n and h such that

en 1

1

A n ~^[~

Therefore, jf (^ w2 . .)
n =

tw, and l\ A^ ( l)
c/l p t

tu J = l\.

6. Let ri be an algebraical expression in which no root of unity

having a rational value occurs in the surd form 1"~. Also let there

be in r\ no surd J
"^not

a root of unity, such that



1

V - fi -

(3)

where e\ is an expression involving no surds of so high a rank as

Jj except such as either are roots of unity, or occur in TI being at

i

the same time distinct from J
J

. The expression TI may then be

said to have been simplified or to be in a simple state.

7. Some illustrations of the definition in 6 may be given. The
root 8i cannot occur in a simplified expression n ;

for its value is

2w, a> being a third root of unity ;
but the equation 8$ = 2w is of

the inadmissible type (3). Again, the root ^/5 cannot occur in a

simplified expression ; for, a>\ being a primitive fifth root of unity,
V5 = 2

(o>i
4- wj) + 1

;
an equation of the type (3). Once

more, a root of the cubic equation x3 3x 4 = 0, in the form

(2 + V 3) + (2
-

-x/ 3)4 ,
is not in a simple state, because

/t) i o\l /o /Q\ /O _i_ / Q\i
{A v"/ ~ '-^

ir **/'** /

ra 1 TO 1

8. Let j^i^i + pzA\ 4- . . + pm =
j (4)

i

where /J is a surd occurring in a simplified expression r\ ;
and JPI,

i

pz, etc., involve no surds of so high a rank as
A^ , except such as either

are roots of unity, or occur in r\ being at the same time distinct

from J
a

. The coefficients p\ t p^ etc., must be zero separately.
i

For, by 5, if they were not, we should have toA = ll}
a> being an

mih root of unity, and l\ involving only surds in (4) distinct from

Jj ; an equation of the inadmissible type (3).

9. The expression n being in a simple state, we may use R as a

generic symbol to include the various particular expressions, say
ri> r2> r3i etc., obtained by assigning all their possible values to the

surds involved in n, with the restriction that, where the base of a

surd is unity, the rational value of the surd is not to be taken into

account. These particular expressions, not necessarily all unequal,

may be called the particular cognate forms of R. For instance, if

TI = li R has two particular cognate forms, the rational value of the



third root of unity not being counted. If r\ =
(1 + V 2)*, R has

six particular cognate forms all unequal. Should TI =
(2 + V 3)4

+ (2 V 3) (2 + y 3)3, R has six particular cognate forms, but

oaly three unequal, each of the unequal forms occurring twice.

10. PROPOSITION I. An algebraical expression r\ can always be

brought to a simple state.

For 7*1 may be cleared of all surds such as 1 m
having a rational

value. Suppose that r\ then involves a surd A
,
not a root of unity,

by means of which an equation such as (3) can be formed. Substitute

for A in n its value e\ as thus given. The result will be to elimi-

i

nate A
I

from r\ without introducing into the expression any new
i

surd as high in rank as
A^ ,

and at the same time not a root of

unity. By continuing to make all the eliminations of this kind that

are possible, we at last reach a point where no equation of the type

(3) can any longer be formed. Then because, by the course that has
i

been pursued, no roots of the form 1 m
having a rational value have

been left in r\, ri is in a simple state.

11. It is known that, if N be any whole number, the equation
whose roots are the primitive Nih roots of unity is rational and
irreducible.

12. Let N be the continued product of the distinct prime numbers
n, a, 6, etc. Let MI be a primitive nth root of unity, 0\ a primitive
a1*1 root of unity, and so on. Let w represent any one indifferently
of the primitive nth roots of unity, any one indifferently of the

primitive ath roots of unity, and so on. Let/ (0*1, #1, etc.,) be a
rational function of w l} 0,, etc. Then a corollary from 11 is, that if

/("i, 0\, etc.)
= 0,/(w, 0, etc.) = 0. For t { being a primitive ^th

n>ot of unity, and t representing any one indifferently of the primitive
Afth roots of unity, we may put

/("i, #1, etc.)
= oi*?"

1
+ atii" + etc. = 0,

and/(/, 0, etc.) = atf*'
l
+ a2t*

' 2
+ etc.;

where the coefficients ai, a2, etc., are rational. Should these coeffi-

cient* be all zero,/(<y, 0, etc.)
= 0. Should they not be all zero, let

ar be the first that is not zero. Then we may put

\, etc.)
= ar { y (ti) }

= a rt?
~ r

+ etc. - 0.



Therefore, t\ is a root of the rational equation tp (x)
= 0, being at

the same time a root of the rational (see 11) equation ;// (x)
- 0,

whose roots are the primitive JVth roots of unity. Hence
i// (x) and

tp (x) have a common measure. But by 11, (p (x) is irreducible.

Therefore it is a measure of tp (x) ;
and the roots of the equation

$ (x)
= are roots of the equation tp (x)

= 0. Therefore,

f(w, 0, etc.)
= ar \?(t)\

= 0.

13. Another corollary is, that if

y*(w l) ^i> etc.)
= h\u)\ + h<2.(a\ 4- . . + hn = 0,

where hi, h%, etc., are clear of a>i, the coefficients hi, h% etc., are all

equal to one another. For, by 12, because f (0*1, 6\, etc.) = 0,

f(w, Oi, etc.)
= 0. Therefore <o

j
/(<*>, lt etc.) }

= 0. In

to kf(ta, ffi, etc.) | give w successively its n 1 different values.

Then, in addition,

Till = h^ + h
y
+ . . 4- AH. Similarly, nh h^ + h^ + . . + hn .

*

. h^
= A

2
.

In like manner all the terms hi, h%, etc., are equal to one another.

14. PROPOSITION II. If the simplified expression n, one of the

particular cognate forms of R, be a root of the rational equation
F (x)

= 0, all the particular cognate forms of R are roots of that

equation.

For, let r% be a particular cognate form of R. By 12, the law to-

be established holds when there are no surds in TI that are not roots

of unity. It will be kept in view that, according to 1, when roots

of unity are spoken of, such roots are meant as 1 m
,
m being a prime

number. Assume the law to have been found good for all expressions
that do not involve more than n - 1 distinct surds that are net roots

of unity ; then, making the hypothesis that r\ involves not more than

n distinct surds that are not roots of unity, the law can be shown

still to hold
;

in which case it must hold universally. For, let A T

not a root of unity, be a surd of the highest rank (see 3) in n
Then F (r\) may be taken to be the expression (1), and F (r-2)

to be

the expression formed from (1) by selecting particular values of the

surds involved under the restriction specified in 9. In passing from
i i

r\ to rz, let A
, a\, etc., become respectively A

,
a2 ,

etc. Then

m l m 2

m[F(r,}\ =h, A* 4- ei J
f

"

-f etc. = 0,

and mF T - = h A +62^ + etc.



By 8, because ri is in a simple state, and F (n) = 0, the coefficients

/*-, 6i, etc., are zero separately. But hi is clear of the surd J . It

therefore does not involve more than n 1 distinct surds that are

not roots of unity. Therefore, on the assumption on which we are

p-oceedinir, because 7ti = 0, li* 0. In like manner, e2 = 0, and
so on. Therefore F (r2) = 0.

15. Cor. Let the simplified expression r\ be the root of an

equation F (x)
= whose coefficients involve certain surds

i
__

z
, ?f., , etc., that have the same determinate values in n as in

F (x). Then, if TZ be a particular cognate form of R in which the

i i

surds x,
t
u

, etc., retain the determinate values belonging to them

in n, TI is a root of the equation F (x) = 0. For, F (r\)
= 0.

Therefore, by the Proposition, F (R) = 0. Let R, restricted by the
i _i_

condition that the surds z
l , u^ , etc., retain the determinate values

belonging to them in n, be R'. Then F (R') = 0. A particular case

of this is F
(r-i)

0. The corollary established simply means that

i i

the surds z ,u , etc., may be taken to be rational for the purpose

in hand.

16. The simplified expression r\ being one of the particular

cognate forms of R, let r\ t
ra,

etc.
(5)

be the entire series of the particular cognate forms of R, not

necessarily unequal to one another. Then, if the equation whose
roots are the terms in (5) be X 0, X is rational. In like manner,
if those particular cognate forms of R, not necessarily unequal, that

_1_ i

are obtained when certain surds z
l

,
^*

1
, etc., retain the determin-

ate values belonging to them in n, be

n, rf ,
etc. (6)

and if the equation whose roots nre the terms in (6) be X' = 0, X'
i i

involves only stirda found in the series z*
, u^

'

,
etc. This is sub-

stantially proved by Legendre in his Theorie des Nombres, 487, third
edition.
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17. PROPOSITION III. The unequal particular cognate forms of Jt,

the generic expression under which the simplified expression r\ falls,

are the roots of a rational irreducible equation ;
and each of the

unequal particular cognate forms occurs the same number of times in

the series of the cognate forms.

As in 16, let the entire series of the particular cognate forms of R
be the terms in (5), the equation that has these terms for its roots

being X = 0. By 16, X is rational. Should X not be irreducible,
it has a rational irreducible factor, say F (x), such that TI is a root of

the equation F (x)
= 0. By Prop. II., because rL is in a simple

state, all the terms in (5) are roots of the equation F (x)
= 0,

while at the same time, because F (x) is a factor of X, all the roots

of the equation are terms in (5). And the equation F (x)
= 0,

being irreducible, has no equal roots. Therefore its roots are the

unequal terms in (5). Should F (x) not be identical with X, put

X .,
{F(x)l j, (*)}.

Because X and F (x) are rational, <p (x) is rational. Then, since

<p (x) is a measure of X, and the equation F (x)
= has for its

its roots the unequal roots of the equation X = 0, the equations

^(a;) =0 and <p (x)
= have a root in common. Consequently,

since F (x) is irreducible, it is a measure of <p (x).
Therefore

^F(x)l
2 i$ a measure of X. Going on in this way we ultimately

get X =
j

F (x)
|

N
;
which means that each of the particular cognate

forms of R has its value repeated N times in the series of the particular

cognate forms.

18. Cor. 1. The series (6) consisting of those particular cognate

_i^ _i_

forms of R in which certain surds z ,u , etc., retain the deter-

minate values belonging to them in r\, each of the unequal terms in

(6) occurs the same number of times in (6) ;
and the unequal terms

in
(6) are the roots of an irreducible equation whose coefficients

i_
i

involve only surds found in the series z
,
u

,
etc. Should X' not

be irreducible, by which in such a case is meant incapable of being
broken into lower factors involving only surds occurring in X', let it

have the irreducible factor X". That is to say, X" involves only
surds occurring in X', and has itself no lower -factor involving only
surds that occur in X". We may take r\ to be a root of the equation
X" 0. Then, by Cor. Prop. II.

,
all the terms in (6) are roots of

that equation, all the roots of the equation being at the same time
terms in (6). And the equation X" = being irreducible, has no

equal roots. Therefore its roots are the unequal terms in (6).
Put

2
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X' = (X") (X"). Then, by the line of reasoning followed in the

Proposition, X1" has a measure identical with X". And so on.

Ultimately X' = (X")*
1
.

19. Cor. 2. If TZ, one of the particular cognate forms of R, be

zero, all the particular cognate forms of R are zero. For, by the

proposition, the particular cognate forms of R are the roots of a

rational irreducible equation F (x) 0. And r%, one of the roots of

that equation, is zero, but the only rational irreducible equation that

has zero for a root is x 0, Therefore F (x)
= x = 0. In fact, in

the case supposed, the simplified expression r\ is zero, and R has no

particular cognate forms distinct from r\.

20. PROPOSITION IV. Let N be the continued product of the

distinct prime numbers n, a, etc. Let w\ be a primitive nth root of

unity, 0\ a primitive ath root of unity, and so on. Then if the equation

F (x)
= xd 4- bix*

~ l + btf?
- 2

-h etc, =
>>e one in which the coefficients 61, 62, etc., are rational functions of

">! #i etc., and if all the primitive nih roots of unity, which, when
substituted for WL in F

(x), leave F (x) unaltered, be

^i j
w2 ,...., to, , (7)

the series (7) either consists of a single term or it is made up of a

cycle of primitive nth roots of unity,

that is to say, no term in (8) after the first is equal to the first, but

w] =
oij. Also, if (let it be kept in view that n is prime) the cycle

that contains all the primitive nlh roots of unity be

i , <*! , on ,
---- i n >

and if C\ be the sum of the terms in the cycle (8), the form of F (x) is

F (x)
= x* - faCi + p2C2 +....+ pmCm)

x* - 1 +
(q\Ci + q-iC* + etc.) a^-

2 + etc.

where each of the expressions in the series Ci, (7-2, Cs, etc., is what
the immediately preceding term becomes by changing wi into

t*\ , Cm through this change becoming C\ ;
and pi, p%, q\, etc., sire

clear of w\.

For, assuming that there is a term o>2 in (7) additional to i, we

may take o>2 to be the first term in (9) after o>i that occurs in (7) ;

/3
m

and it may be considered to be o^ ,
which may be otherwise written

<"i . Then, if F (x) be written <p (wi), we have by hypothesis
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<p (wi) = <p (MI ). Therefore, by 12, changing W A into wi , <p (wj )
A2 A2

<f> (<t)i ).
Therefore <p (w\)

=
<p (u>\ ).

And thus ultimately y (<DI)

\z B mz

<f> (a>i ),
or <p (MI)

=
<p (o>! ),

z being any whole number positive or

x
z

negative. But wi includes all the terms in
(8). Therefore each of

these terms is a term in (7). Suppose if possible that there is a term
*

in (7), say a>i ,
which does not occur in

(8). Then, just as we deduced
B mz fi

m
<P (

w
\)
= 9 (a*i )

from the equation <p (a>i)
=

<p (on ),
we can r

o h ninz -f- hu

because still farther <p (wi)
=

<p (^ ),
deduce <p (wi)

=
<p (o>i )..

0*
Because a>i lies outside the cycle (8), h is not a multiple of ra. And

B
m

it is not less than m, because wi is the first term in (9) after >i>

which, when substituted for ti in <p (wi), leaves <p (oi) unaltered.

Therefore h = qm + v, where q and v are whole numbers, and v is

less than m but not zero. Put

3*
==

(^-f-*?)) andw= m-f 1 . . mz-\-hu = v . . <pw\ =
<p

w i ;

Bm
which, because v is less than m but not zero, and wi is the first term
in (9) after &>i which, when substituted for io\ in y> (MI), leaves <p (CD\)

unaltered, is impossible. Hence, no term in (7) lies outside the cycle

(8), while it has also been shown that all the terms in (8) are terms
in (7). Therefore the terms in (7) are identical with those constituting
the cycle (8). We have now to determine the form of F (x). The

expressions, C\, Czt etc., taken together, are the sum of the terms in

(9). Therefore Ci + Cz -f . . . . + Cm = - 1. (11)
Because (9) contains all the primitive w

th roots of unity, we may put
rt

F(x) = x*-\p + (p+ Pl ) a,! + (p + ft) wl + etc.
j

where p, p\, etc., are clear of a*i. But F (x) remains unaltered when
p
m

MI is changed into o>i . Therefore

Bm
F(x) = xd {p + (p -f p$ w1 + etc. } xd ~ l

-f etc. (13)

Therefore, equating the coefficients of xd ~ 1 in (12) and (13),

Bm

(P Pi) + ---- + (Pm + i Pi) on + etc. = 0.

Here, by 13, the coefficients of the different powers of wj have all

the same value. And one of them, p pi, is zero Therefore
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m A

pm + j
=

pi. That is to say, the coefficient of n or w^ is the same

as that of w\. In like manner the coefficients of all the terms in (8)
are the same. Therefore one group of the terms that together make up
the coefficient of a^ - l in (1 2) is properly represented by (p -f- p\)C\.
In the same way another group is properly represented by (p -\- p^)G^
and so on. Hence

F(x) = * -
\p + (p -f j^) Ci + (p + P2) C2 + etc. l^-

1 + etc.

And by (11) this is equivalent to (10). The form of F (x) has been

deduced on the assumption that the series (7) contains more than one
term

; but, should the series (7) consist of a single term, the result

obtained would still hold good, only in that case each of the expressions

C\* @2> etc-> would be a primitive n
ih root of unity.

21. A simplified expression will not cease to be in a simple state,

if we suppose that any surd that can be eliminated from it, without
the introduction of any new surd, has been eliminated.

22. PROPOSITION Y. In the simplified expression n, one of the

particular cognate forms of R, modified according to 21, let the

surd
A^

of the highest rank be not a root (see 1) of unity. Then,
i

if the particular cognate forms of R obtained by changing A in H
successively into the different mth roots of the determinate base A\, be

n , 7*2 , ,rm , (14)

these terms are all unequal.

For the terms in (14) are all the particular cognate forms of R

obtained when we allow all the surds in r\ except A^
to retain the

determinate values belonging to them in r\. Therefore, by Oor. 1,

Prop. III., each of the unequal terms in (14) has its value repeated
the same number of times in that series. 'Let u be the number of
the unequal terms in (14), and let each occur c times. Then uc = m.

Suppose if possible that u = 1. This means that all the terms in

<14) are equal. Therefore, r\ being the expression (1),

mri = TI -f TI + -f etc. = g\.

i

Therefore the surd A can be eliminated from rx without the intro

duction of any new surd
; which, by 21, is impossible. Therefore u

is not unity. But, by 1, m is a prime number. And m = uc.

Therefore c = 1 and u = m. This means that all the terms in (14)
are unequal.
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23. Cor. 1. Let ra + i be anv one of the particular cognate forms
i j_

of R
;
and let J ha + i > etc., be respectively what A

, AI , etc.,

become in passing from r\ to ra + i . Also let the'w particular cognate-

forms of 7?, obtained by changing A in ra + i successively into tbe

different wth roots of Aa + i ,
be

ra + i ,
ra + 2 ,

---- , ra + m . (15)
i

These terms are all unequal. For, because A is a principal surd in

Tfl

r\ ,
and r% is what r\ becomes when J is changed into a surd whose

value is w\A , MI being a primitive mth root of unity, the view may
be taken that r-2 involves no surds additional to those found in r\ ,

except the primitive wth root of unity w-^ . Therefore r\ ?-2 involves

no surds distinct from primitive wth roots of unity that are not found

in the simplified expression r\ . Therefore r\ r-i is in a simple state.
i i

Let ra + 2 be what ra + \ becomes by changing A^
into w\A .

Then ra + i ra + 2 is a particular cognate form of the generic

expression under which the simplified expression r\ r% falls.

Therefore ra + i ra + 2 cannot be zero ; for, if it were, r\ r%

would, by Cor. 2, Prop. III., be zero
; which, by the proposition, is

impossible. Hence, the first two terms in (15) are unequal. In like

manner all the terms in (15) are unequal.

24. Cor. 2. Let X\ be the equation whose roots are the

terms in (14). When X\ is modified according to 21, it is, by 16,

clear of the surd
A^ . Should it involve any surds that are not

i

roots of unity, take z a surd of the highest rank not a root of

i

unity in X\ ; and, when z
l

is changed successively into the different

c.th roots of the determinate base z\ ,
let

-3Ti, X lt Xlt ....,Xi~
1

\ (16)
f

be respectively what X\ becomes. Any term in (16), as X\ , being

selected, the m roots of the equation ^Yi = are unequal particular
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cognate forms of R. For, z
g being a cth root of z\ distinct from

i i i

z ,
let ra + i be what r\ becomes when z becomes z

;
the ex-

i
j.

pressions A* , h\ , etc., at the same time becoming A
lt

ha + i, etc.

Then we may put
c 1 c 2

Xi = xm + (foj
c

4- di
c

4- etc.) xm ~ l
4- etc. ; (17)

i

where 6, </, etc., are clear of a . Therefore, because r\ is a root of

the equation Xi = 0,

1
** i

- (hiA 4- etc.)
( m i

c I c 2 -I m 1

-|- (bz~ 4- dz~^~ 4- etc.) (M~~ + etc.)
m ~ l

4- etc. = 0.

All the surds in this equation occur in the simplified expression r\ .

Therefore, by Prop. II;,

1
M-

- (A+'J "
4- etc.)

( m v
a +i

c 1 c 2

-f (bz~^~+ dz~*~+ etc) j

-
(Aa + iJ~^~H- etc.)\

m " 1
H-etc.=d,

2 2 ( m a + 1 J

c 1 c 2 -I m 1

I

Therefore m (ha + i^ a '7
j
4- etc.) or ra + 1 is a root ol the equation

c i

Xi = a?* 4- (ft*2 4- etc.) xm ~ l
4- etc. = 0. (18)

Therefore also, by Cor. Prop. II., all the terms in (15) are roots of

that equation. And, by Cor. 1, the terms in (15) are all unequal.

Therefore the equation X\ = hasm unequal particular cognate forms
of R for its roots.

25. Cor. 3. No two of the expressions in (16), as x\ and X\ ,
are

identical with one another. For, in order that X\ and X\ might be

identical, the coefficients of the several powers of x in X\ would need
t

to be equal to those of the corresponding powers of x in X\ ; but, if
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one of the coefficients of X\ be selected in which z is present, this

coefficient can be shown to be unequal to the corresponding coefficient

in Xi in the same way in which the terms in (15) were proved to be

all unequal.

26. Cor. 4. Any two of the terms in (16), as X\ and Xi , being

.selected, the equations X\ = and X\ = have no ,root in common.

For, suppose, if possible, that these equations have a root in common.

Taking the forms of X\ and Xi in (17) and (18), since r\ is a root of

the equation X\ = 0,

c i

r-\- (bz^ -f- etc.) r~ + etc. = 0. (19)

i

All the surds in this equation except z occur in r . It is impossible

_L i i i

that z can occur in r\ ; for, z occurs in r\ ;
and z = 0\z

i

61 being a primitive cth root of unity ;
but this equation, if both z

i

and z, occurred in n ,
would be of the inadmissible type (3).

i

Since z does not occur in r\ ,
it is a principal (see 2) surd in (19).

We may, therefore, keeping in view that r\ is the expression (1) in

which A is a principal surd, arrange (19) thus,

1 m l c l c 2

m 2 c l c 2

1

where p\ , q\ , etc., are clear of
z^

. Then, wi being a primitive
i

mth root of unity such that, by changing A^
into the mth root of J,

i

whose value is w\A , r\ becomes r% ,
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m 1 c 1

TO 2

-f etc.}

m I cl

'i

m
(<7i*2

C

+ etc-
) + etc-

The coefficients of the several powers of A
I

in <p (A } cannot be

all zero
; for, if they were, we should have, from (21), y (&\A )

= 0.

/

This means that r-2 is a root of the equation X\ = 0. But in like

manner all the terms in (14) would be roots of that equation, and

X\ would be identical with X
; which, by Cor. 3, is impossible.

i
_i

Since the coefficients of the different powers of A in <p (A are

i

not all zero, the equation (20) gives us, by 5, coA =
fa , o> being
i

an mth root of unity, and ^ involving only surds in y (
A )exclusive

i i _i_

of A .In li we may conceive z changed into O^z . Then l
t

i

involves only surds distinct from A
,
all of them except the primi-

tive th root of unity ^ being surds that occur in TI . This makes
i

the equation wA =
li of the inadmissible type (3). Hence the

equations X\ = and X\ = have no root in common.

27. Cor. 5. Let Xi be the continued product of the terms in (16).
i

Then A"2 ,
modified according to 21, is clear of

1
,

in the same
i

way in which X\ is clear of A
I

. Also since, by Cor. 2, each of the
/

equations X\ = 0, X\ = 0, etc., has m unequal particular cognate
forms of R for its roots, and since, by Cor. 4, no two of these equa-
tions have a root in common, the me roots of the equation JT2 =
are unequal particular cognate forms of R.
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28. PROPOSITION VI. Let the simplified expression n ,
modified

according to 21, be a root of the rational irreducible equation of the

,
F (x)

= 0. Then if
A^ ,

not a root of unity, be a surd

of the highest rank in r\ ,
N is a multiple of m. But if r\ involve

only surds that are roots of unity, one of them being the primitive
nth root of unity, N is a multiple of a measure of n 1 .

First, let J
i ,

not a root of unity, be a surd of the highest rank

in r\ . Taking the expression (1) to be TI ,
let Xi be formed as in

24, and let it be modified according to 21. It is clear of the

surd
A^

. Should it involve a surd that is not a root of unity, let

X-2 be formed as in 27. Setting out from TI we arrived by one step

at Xi ,
an expression clear of A

,
and such that the roots of the

equation X\ = are unequal particular cognate forms of R. A
second step brought us to X2 ,

an expression clear of the additional

surd z
,
and such that the me roots of the equation X% = are

unequal particular cognate forms of R. Thus we can go on till, in

the series X
, X% , etc., we reach a term Xe into which no surds

enter that are not roots of unity, the me . . . . / roots of the equationXe
= being unequal particular cognate forms of R. Should Xe

modified according to 21, not be rational, its form, by Prop. IV.,

putting d for me .... I, is

where, one of the roots occurring in Xe being the primitive ?^
th root

of unity cji . the coefficients pi , qi , etc., are clear of o>i ;
and Ci is

the sum of the cycle of primitive nth roots of unity (8) containing

s or - - terms ; and, the cycle (9) containing all the primitive

a

nth roots of unity, the change of &>i into mi causes G\ to become C-2 ,

and Cz to become Cz ,
and so on, Cm becoming C\ . As was explained

at the close of 20, the cycle (8) may be reduced to a single term,
which is then identical with C\ . It will also not be forgotten that

the roots of unity such as the nth here spoken of are, according to 1,

subject to the condition that the numbers such as n are prime. When
Ci in Xe is changed successively into C\ , 0% , etc., let Xe become

X X X X (m ~ l)
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; f A',. + ! be the continued product of the terms in (22), the dm roots

of the equation Xe + 1 = can be shown to be unequal particular

cognate forms of R. For, no two terms in (22) as Xe,
and Xe are

identical ; because, if they were, Xe would remain unaltered by the

change of w\ into w? ; which, by Prop. IV., because o>i is riot a te: m
i'.i the cycle (8),

is impossible. It follows that no two of the equations
/

A", = 0, Xe
= 0, etc., have a root in common. For, if the equations

r '

Xt
= 0, and Xe

= had a root in common, since Xe arid Xe are riot

iilentical, Xe would have a lower measure involving only surds found
/

iu X* ,
because the surds in Xe are the same with those in Xe . Let

ir (x) be this lower measure of Xe , and let TI be a root of the equa-
tion y (x)

= 0. Then, by Cor. Prop, II., all the d roots of the

equation Xt
= are roots of the equation <p (x)

=
;
which is

impossible. In the same way it can be proved that no equation in

the series Xe
= 0, Xe 0, etc., has equal roots. Since no one of

these equations has equal roots, and no two of them have a root in

common, the dm roots of the equation Xe + i = are unequal [ar-

ticular cognate forms of R. Also Xe + 1 . modified according to

21, is clear of the primitive nih roots of unity. Should Xe + 1 not

be rational, we can deal with it as we did with Xe . Going on in

this way, we ultimately reach a rational expression Xz such that the

<lm .... g roots of the equation Xz = are unequal particular

cognate forms of R. This equation must be identical with the equa-
tion F (x)

= of which r\ is a root. For, by Prop. III., the equation
F (x) =0 has for its roots the unequal particular cognate forms of R.

Therefore, because the roots of the equation Xz = are all unequal
and are at the same time particular cognate forms of R, Xz must be

Cither a lower measure of F (x) or identical with F (x).
But F (x),

being irreducible, has no lower measure. Therefore Xz is identical

\vith F(x). Therefore, the equation F (x)
= being the N tb

degree,
A' = me .... Im . . . . g. Hence JV is a multiple of m. This is the

result arrived at when r\ involves a surd of the highest rank A not

a root of unity. Should r\ involve no surds except roots (see 1) of

unity, we nhould then have set out from Xe regarded as identical with

x r\ . The result would have been N = m .... g. Therefore jV

is a multiple of m
; and, because m is here the number of cycles of s

terms each, that make up the series of the primitive n
ih roots of unity,

HIM = n 1. Therefore N is a multiple of a measure of n 1.

29. Cor. Let N be a prime number. Then, if ri involve a surd
i

< : the highest rank A not a root (see 1) of unity, N = m] for,
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the series of integers m, c, etc., of which JV is the continued product,
is reduced to its first term. If TI involve only surds that are roots of

unity, n 1 is a multiple of N
;

for N = m . . . . g therefore,
because JV is prime, it is equal to m

;
but ms = n 1

; therefore

n 1 = iff.

THE SOLVABLE IRREDUCIBLE EQUATION OF THE mth DEGREE, m PRIME.

30. The principles that have been established may be illustrated

by an examination of the solvable irreducible rational equation of the

mth
degree F (x)

= 0, m being prime. Two cases may be distinguished,

though it will be found that the roots can in the two cases be brought
tinder a common form

;
the one case being that in which the simplified

root TI is, and the other that in which it is not, a rational function of

roots of unity, that is, according to 1, of roots of unity having the

denominators of their indices prime numbers. The equation F (x)
=

may be said to be in the former case of the first class, and in the latter

of the second class.

THE EQUATION F(x) = OF THE FIRST CLASS.

31. In this case, by Cor. Prop. VI., r\ being modified according to

21, if one of the roots involved in r\ be the primitive nib root of

unity wi ,
n 1 is a multiple of m. Also the expression written

Xe in Prop. VI. is reduced to a? r\ ,
so that

The m roots of the equation F (x)
= being r\ , r% ,

etc
,
we must

have

.j_ .... _j- pmCm ,

rm= pi Ci +

For, by Prop. II., because TI is a root of the equation F (x)
= 0, all

the expressions on the right of the equations (23) are roots of that

equation. And no two of these expressions are equal to one another.

For, take the first two. If these were equal, we should have

(Pm Pi ) Oi -f (piP*) Q+ etc- = Therefore, by 13,

each of the terms pm p\ , p\ p>2 , etc., is zero. This makes

Pi > PI y
etc-> all equal to one another. Therefore r\ = pi ;

so

that the primitive n
th root of unity is eliminated from n ; which, by

21, is impossible. Hence the values of the m roots of the equation

^(a:) = are those given in (23).
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32. Let ri be one of the particular cognate forms of the generic

expression K under which the simplified expression r\ falls. Then,

because, by Prop. II., all the particular cognate forms of E are roots

of the equation F (x)
= 0, r\ is equal to one of the m terms TI , r^ ,

etc., say to rt . I will now show that the changes of the surds
/

involved that cause r\ to become TI ,
whose value is rz ,

cause r% to

receive the value rz + i ,
and r% to receive the value rg + x, and so on.

This may appear obvious on the face of the equations (23) ; but, to

prevent misunderstanding, the steps of the deduction are given. Any
changes made in TI must transform C\ into C8 ,

one of the m terms

C\ , C% ,
etc. In passing from r\ to TI ,

while Ci becomes Cs ,
let r

t

become ? ,
and p\ become p\ ,

and pz become p% ,
and so on. The

change that causes G\ to become Cs transforms C% into Cs + 1 ,
and

(7s into Ct + 2, and s on. Therefore, it being understood that

7> + 1 > Cm + i , etc., are the same as p\ , Ci , etc., respectively,

it i

n = Plct + p2C, + i -f etc.,it i

and r>2 = pmC,+ piC, + i+ etc. ;

which may be otherwise written

' ' '
^k

r\ = pm + 2-.Oi +pm + a-,Cz -f etc.,
(

' ' '

I

*2 = Pm +1 - * Ci + pm + Z-gCz + etc.

Therefore, form (24) and (23),

Cl(Pm + 2 s Pm + 2 -- ) -f ^2 (^m + 3 * Pm + 3 s) ~h e*c-= 0-

Therefore, by 13, pm + 2 _ , = pm + z- z ,pm + s- =
jpOT + 3 - ,

etc.

Hence the second of the equations (24) becomes

r-i = pm + i s Ci -f pm + 2 _ * (72 + etc. = rz + i.

Thus r-j is transformed into rz + i . In like manner r3 receives the
value rt + 2 ,

and so on.

33. By Cor. Prop. VI., the primitive ?i
th root of unity being one of

those involvnl in r t ,
n 1 is a multiple of m. In like manner, if

the primitive ath root of unity be involved in r\ ,
a 1 is a multiple

of ?/, and so on. Therefore, if t\ be the primitive mth root of unity,
*i is distinct from all the roots involved in n .
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34. From this it follows that, if the circle of roots TI ,
rz ,

. . . .,

rn ,
be arranged, beginning with rc ,

in the order rc , rc + i ,
rc + 2 ,

etc., and again, beginning with rs ,
in the order rs , rt + i }

rg + 2 , etc.,
and if, tf being one of the primitive mih roots of unity,

-f rc + 2 *! -f etc. = r, +,rt + i -f rt + 1 Q*+etc.(25)

rc = rs . It is understood that in the series rc , rc + 1 , etc., when rm
is reached, the next in order is n ,

so that rm + i is the same as TI ,

and so on. In like manner rg + 1 is the same as n ,
and so on. Since

ri , 7*2 , etc., do not involve the primitive mih root of unity t\ ,
we can,

by 12, substitute for t\ in (25) successively the different primitivemth roots of unity. Let this be done. Then, by addition,

*nre (n H- r2 + etc.)= mrg (n -f r2 + etc.). Therefore rc =rs .

35. PROPOSITION VII. Putting
i

~^T 2 w i

1 llv 7

1

IJT 2 4 2(m-l)
,

= n 4- ^2 -f x n + .

r
. . -f

<j
rm

-1 -2

(26)

the terms, A\ ,
J2 , ^3 ,

----
, 4-i , (27)

are the roots of a rational irreducible equation of the (m l)
th

degree
<p (x) = 0, which may be said to be auxiliary to the equation

F(x) = 0.

For, let A be the generic expression of which A\ is a particular

cognate form
;
and let A 1 denote any one indifferently of the m 1

particular cognate forms of A in (27). Because, by 33, the primitive
mth roo^ Of unity does not enter into r\ , r% , etc., no changes made
in r\ ,

r2 , etc., affect t\ . Also, by 32, if n becomes rz , r^ becomes
rz + i , r^ becomes rz + 2 ,

and so on. Therefore the expression

(r, + tre + l + Prz + i + etc.)"*,

contains all the particular cognate forms of A where z may be any
number in the series 1

,
2 ,...., m 1

;
and t denotes any one

indifferently of the primitive mth roots of unity. But this is equal to

\fl-* (ri + tr2 + *
2r3 + etc.)

:

.
m or A'.

The conclusion established means that all the differences of value that

can present themselves in the particular cognate forms of A must arise
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from the different values of t that are taken in J', while the expres-
sions 7*1 , r-j , etc., remain unaltered. And t has not more than m 1

values. Hence there are not more than m 1 unequal particular

cognate forms of J. But the m 1 forms obtained by taking the

different values of t in J' are all unequal. For, selecting t\ and t*
t

.

two distinct values of t, suppose if possible that

(ri 4 tir-z + etc.)"*
= (n + ?-2 + etc.)

.

'

t{ (rL 4- t^-2 4 etc.)
= n 4- t" r2 4- etc.,

3 being a whole number-. This may be written

rm + i- s 4- rm + 2 - s h 4- etc. = n 4 ft r2 4- etc. (28)

Therefore, by 34,rTO + i_ s
= r\ . This means, since all the m term*

TI , r% , etc., are unequal, that s = . Hence (28) becomes

ri 4- r-2 ti 4- etc. = n -f r2 # 4- etc.

Therefore

^2 4- 7*3 2? 4- e^c. = r2 1

~~ a
4- rs ^i

~~ a
4- etc.

= ra + i 4- ra + 2 t\ 4 etc.

Therefore, by 35, r-z = ra + i . Therefore, because all the m terrn&

7*1 , r-2 , etc., are unequal, a = 1
; which, because 1 and ti were

supposed to be distinct primitive mth roots of unity, is- impossible.
Therefore no two of the terms in (27) are equal to one Another. And
it has been proved that there is no particular cognate form of A which
is not equal to a term in (27). Therefore the terms in (27) are the

unequal particular cognate forms of A. Therefore, by Prop. III.,

they are the roots of a rational irreducible equation.

36. PROPOSITION VIII. The roots of the equation <p (x)
=

auxiliary (see 35) to / (x)
= are rational functions of the primi-

tive mth root of unity.

For, let the value of Ji ,
obtained from (26). and modified according

to 21, be

j x
= ki + fa ^ 4 h 4- .... 4 km <r

~
\

where k\ , Jc^ , etc., are clear of ti . Suppose if possible that fa ,
k->

,

etc., are not rational. We may take the primitive nib root of unity
wi to be present in these coefficients. But on occurs in rt ,

r-2 . etc.,

;inl therefore also in Ji , only in the expressions C\ , C% , etc.

Therefore Ji = d\ C\ 4- .... 4- dm Cm ;
where d\ , etc., are clear of

u>i . The coefficients d\ ,
d2 , etc., cannot all be equal ;

for this would
make Jj = d\ ; which, by 21, is impossible. Hence m unequal
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values of the generic expression J are obtained by changing C\ suc-

cess!\e\y into Ci , C% , etc., namely,

di C\ + d2 C2 + .... + dm Cm ,

dl C2 + .... -f- dm _ l Cm ,

To show that these expressions are all unequal, take the first two.

If these were equal, we should have

(dm d! ) Ci + (di
- d2 ) C* + etc. = .

Therefore, by 13, dm d\ = , d\ d2 = ,
and so on

; which,
because d\ ,

d2 , etc., are riot all equal to one another, is impossible.
Since then A has at least m unequal particular cognate forms, Ji is,

by Prop. III., the root of a rational irreducible equation of a degree
not lower than the mth

; which, by Prop. VII., is impossible.
Therefore ki ,

k2 , etc., are rational. Hence each of the expressions
in (27) is a rational function of t\ .

37. Cor. Any expression of the type k\ + k2 t\ -f- &3 ^T + etc.,

which is such that all the unequal particular cognate forms of the

generic expression under which it falls are obtained by substituting
for ti successively the different primitive mth roots of unity, while

ki , fa , etc., remain unaltered, is a rational function of ti . For, in

the Proposition, Ji or k\ + k-2 t\ -f etc - was shown to be a rational

function of t\ ,
the conclusion being based on the circumstance that

Ji satisfies the condition specified.

38. PROPOSITION IX. If g be the snm of the roots of the equation

F(x) = 0,
2 3

TO. 2 m I

+ V +**;<"")! (29)

For, z being one of the whole numbers, 1,2, .... ,
m 1, put

p, = (ri + t\ r2 + ffrz + etc.) (n + ti r2 + t\ r3 + etc.) - (30)

Multiply the first of its factors by tf
z
and the second by t{ . Then

pz
=

(r2 + t\ rz + tl
zn + etc.) (ra +^1^3 + *? r4 + etc.)~

z
. (31)

Hence p, does not alter its value when we change TI into r-2 ,
r2 into

r3 ,
and so on. In like manner it does not alter its value when we
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change n into ra ,
r-2 into ra + i ,

and so on. Therefore, by 33, pz is

not changed by any alterations that may be made in r
,
r2 , etc.,

while ti remains unaltered. Consequently, if pz be a particular

cognate form of P, all the unequal particular cognate forms of P are

obtained by substituting for t\ successively in pz the different primi-

tive 7Mth roots of unity, while TI ,
r2 , etc., remain unaltered. There-

fore, by Cor., Prop. VIII., pz is a rational function of h . When
z = 2, let pz = i ;

when z = 3, let /^ = 61 ,
and so on. Then, from

JL 2 i 3

m
(26) and (30),

J
g
=

i Jj ,
J
g
= 61 ^ and so on. But, from

(27), since g is the sum of the roots of the equation F (x) = ,

By putting a\ A
m

for A
m

, 61 A
m

for A
m

and so on, this becomes

(29). Because ai , fa , etc., are rational functions of t\ ,
while

Jj.
,
the

root of a rational irreducible equation of th^ (m l)
th

degree, is also

a rational function of t\ ,
the coefficients a\ , b\ , etc., involve no surd

that is not subordinate to A

39. PROPOSITION X. If the prime number m be odd, the

expressions

are the roots of a rational equation of the

By 32, when r\ ,
is charged into re ,

r2 becomes r, + i , rs becomes
r
*-f 2 and so on. Hence the terms r\.r<L ,

r2 7*3 ,
.... rmrx ,

form a

cycle, the sum of the terms in which may be denoted by the symbol

Sj. In like manner the sum of the terms in the cycle r\ r3 t r% r4 ,

....
,
rm r>i , may be written Sa. And so on. In harmony with

this notation, the sum of the m terms r\ ,
r2 , etc., may be written 2i .

Xow rj can only be changed into one of the terms r\ ,
r2 ,

etc.
;
and

we have seen that, when it becomes rt ,
r2 becomes rt + i ,

and so on.

Sucb changes leave the cycle r\ r% ,
r2 ra , etc., as a whole unaltered.
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Therefore, by Prop. III., ^2 is the root of a simple equation, or has a
rational value. In like manner each of the expressions

Si , S2 , Sj ,
. . . .

, m̂ , (33)

has a rational value. From (26), by actual multiplication,
i i

m in, \ i / 1 2

i i
== Si T (^2) ^i -j- (-' 3) ti 4~ etc.

But Sj , Ss, etc., are respectively identical with 2m , sL i > etc.

Therefore

J
i

m
J T-i = Si + (2a) (*i + C1

) 4- (2J)(*J 4- *F
2

)+etc.(34)

Hence, since the terms in (33) are all rational, and since the terms in
i i

(32) are respectively what A J becomes by changing t\ succes-

sively into the terms t\ , t\ , etc., the terms in (32) are the

(
m l\th

1 degree.

40. For the solution of the equation xn 1 =
,
n being a prime

number such that m is a prime measure of n 1
,

it is necessary to

obtain the solution of the equation of the mth
degree which has for

7? ^^ 1
one of its roots the sum of the - -terms in a cycle of primitivem
nih roots of unity. This latter equation will be referred to as the

reducing Gaussian equation of the mth
degree to the equation

41. PROPOSITION XL When the equation F (x)
= is the re-

ducing Gaussian (see 40) of the mth
degree to the equation

cc*
1 1 = 0, each of the -

expressions in (32) is equal to n.
2i

Let the sum of the primitive nth roots of unity forming the cycle

(8), which sum has in preceding sections been indicated by the

symbol C\ ,
be the root r\ of the equation F (x)

= . This implies,

since s is the number of the terms in
(8), that ms = n 1 . Let

us reason first on the assumption that the cycle (8) is made up of

pairs of reciprocal roots wi and o>i ,
and so on. Then, because the

cycle consists of pairs of reciprocal roots, C\ or r\ is the sum of



26

8* terms, each an ?t
th root of unity. Among these unity occurs &

times. Let o>i occur hi times
;
and let tui the second term in (8),

occur h' times. Since on may be made the first term in the cycle

(8), it must, under the new arrangement, present itself in the value

of r\ , precisely where on previously appeared. That is to say,

h' = hi . In like manner each of the terms in (8) occurs exactly

hi times in the expression for r\ . The cycle (9) being that which
contains all the primitive n

ih roots of unity, let us, adhering to the

notation of previous sections, suppose that, when oi is changed into
a

at i , Ci or 7*1 becomes Cz or r^ , C^ or r% becomes 3 or TS , and so on.

On the same grounds on which every term in (8) occurs the same

number of times in the value of 7*1 ,
each term in the cycle of terms

whose sum is (72 occurs the same number of times
;

and so on.

Therefore

r\ = s 4- Ai Ci 4- 7*2 Cz 4- .... + hmCm .

r\ = s 4- knCi -bhC*+ . . + /*ro-i Om ,

rfn = s 4- h2 Ci 4- 7i3 2 4- .... 4- Ai Cm-

Therefore, keeping in view (11), - 1
= ms (h\ -f A2 -f . . . . -f- hm),

But s2 s is the number of the terms in the value of r\ which are

primitive nth roots of unity. A nd this must be equal to

s (/M + .... + hm).

Therefore

hi -f- h2 + .... + hm = s 1 .

'

. 2\ = ms + I s = n s.

Again, because r\ IP made up of pairs of reciprocal roots, and because

therefore unity does not occur among the s2 terms of which ri '/*2is

the sum,

n r2 = ki Ci + fa C2 + - + km Cm ,

r2 ra = km d + A* C2 +....+ ^n-i Cm ,

where k\ , k% , etc., are whole numbers whose sum is s. Therefore

- 2 = s. In like manner each of the terms in (33) except the first

is equal to s . Therefore (34) becomes

i

'__
=

(74 s) s
(ti -\- t[ 4- etc.)

= n.

i
\_m . m
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Let us reasim now on the assumption that the cycle (8) is not made

up of pairs of reciprocal roots. It contains in that case no reciprocal

roots. By the same reasoning as al>ove we get 2\ = s. As re-

gards the terms in (33) after the first, one of the terms G\ , GI , etc.,

say CM ,
must be such that the n ih roots of unity of which it is the

sum are reciprocals of those of which C\ is the sum. In passing from

GI to Cg ,
we change r\ into ra . In fact, C\ being r\ ,

Cz is rz
This being kept in view, we get, by the same reasoning as above

2* = n s. But, if any of the expressions C\ , C% , etc., except
Ct be selected, say Ca ,

none of the roots in (8) are reciprocals of any

of those of which Ca is the sum. Therefore 2 a = s . Therefore,
from (34)

2 m -1 z 1 \

i 4- ^ +....+ \ )-tl \

= n .

In like manner every one of the expressions in (34) can be shown ta

have the value n.

42. Two numerical illustrations of the law established in the

preceding section may be given. The reducing Gaussian equation of

the third degree to the equation x
ig 1 = is x* x2 Qx 7=0

;.

which gives

n - J (- 1 + 4 -f- 4),

2Jx = 19 (7 + 3 V 3),

2J 2 = 19 (7
- 3 v/ 3),

A\ A\ = 19.

The next example is taken from Lagrange's Theory of Algebraical

Equations, Note XIV., 30. The Gaussian of the fifth degree to the

equation x11 - 1 = is x* + a4 - 4z3 - 3z2 + 3* + 1 = ;

which gives
-* x 4

n = H- 1 + Ji+ J 2 + 4?+ ^4)1

4 Ji = 11 (- 89 - 25 v/ 5 + 5p
-

45?),

4 J2 = 11
(

89 + 25 v/ 5 45/> 5q),

4 J4 = 11 (- 89 - 25 V 5 - 5p + 450),

4 J3 = 11 (- 89 + 25 v/ 5 + 45jt? + 50),

p = J (- 5 - 2 ^ 5),

?
- ^/ (- 5 -f 2 v/ 5),
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43. PROPOSITION XII. To solve the Gaussian.

The path we have been following leads directly, assuming the pri-

mitive mth root of unity t\ to be known, to the solution of the reducing
Gaussian equation of the mth

degree to the equation xn 1 =0.
For, as in 41, the roots of the Gaussian are C\ ,

<72 ,
etc. Therefore

gy
the sum of the roots, is 1. Therefore

m * 1 2 m 1
'*

\^*v

By Prop. VIII., A\ ,
J2 etc., are rational functions of t\ . Therefore

2 m 1

,

2 (m - 1)

-f ....
(36)

where ki ,
&2 , etc., are rational. From the first of equations (26).

putting Ci for TI ,
<72 for r-2 ,

and so on,

AI = (Ci + ti C2 + etc.)"
1

.

By actual involution this gives us k
, &2f, etc., as determinate functions

of C\ , Ci , etc., and therefore as known rational quantities. For
instance take k\ . Being a determinate function of C\ . Cz ,

etc..

we have

hi = (7i -f- 5*2 Oi -f- (73 C% -j- .... -f- ^TM, (7TO _ i )

where yi , q2 , etc,, are known rational quantities. But, by 13, the

rational coefficients q\ &i , q z , etc., are all equal to one another.

Therefore k\ = qi q2 . In like manner k2 , ^3 , etc., are known.

Therefore, from (36), A
,
A2 , etc., are known. Therefore, from

(35), TI is known.

44. PROPOSITION XIII. The law established in Prop. X falls

under the following more general law. The m 1 expressions in

each of the groups

JL _L i i _i_ _i_
<m *VB m n ti) jfi

A, )m- 1 "2 "m-2' "m-1
1 ^_ _J_ _2^ _JL

. 771 A 771 . 771

-

3

(37)

and so on, are the roots of a rational equation of the (m l)
tb

degree.
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The m 1 terms in the first of the groups (37) are the

terms in (32) each taken twice. Therefore, by Prop. X., the law-

enunciated iii the present Proposition is established so far as this

groupe is concerned. The general proof is as follows. By (30) in

TO Z

m m
38, taken in connection with (26), pm _ z A = A . There-

z 1

fore J
x

J
TO _ g

= pm z AI . But, by 38, pm _ z is a rational

function of t\ ; and, by Prop. VIII., Al is a rational function of t\ .

z J_

Therefore
A^ ^m _ z

'

1^ a rational function of t\ . Also from the

manner in which pm z ^ formed, when t\ in pm _ 2 AI is changed

_L_ _L
, 2 .m lii A TO

A
m

sucessively into ti t\ ,
. . . .

, t\ , the expression A
I

A
__ is

changed successively into the 7tt 1 terms of that one of the groups
_z_ 2-

(37) whose first term is J, A . Therefore the terms in that
v i i m z

<roup are the roots of a rational equation.

45. Cor. The law established in the Proposition may be brought
under a yet wider generalization. The expression

l 2 3 -m-l (38)

is the root of a rational equation of the (m l)
th

degree, if

a _f_ 26 -f 3c -t- ____ + (m 1) 8 = Wm
,

W being a whole number. For, by (30) in connection with (26) r

1 21 1

m
A = pz A

m
,
A = pB A

,
and so on. Therefore (38) has

the value

pzp ----
) 4 01> (P-2P3 " )

J i

This is a rational function of t\ ,
and therefore the root of a rational

equation of the (m l)
th

degree.
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THE EQUATION F(x) = OP THE SECOND CLASS.

46. We now suppose that the simplified root r\ of the rational

irreducible equation F (x) = of the mth
degree, m prime, involves,

when modified according to 21, a principal surd not a root of unity.
It must not be forgotten that, when we thus speak of roots of unity,
we mean, according to 1, roots which have prime numbers for the

denominators of their indices. In this case conclusions can be estab-

lished similar to those reached in the case that has been considered.

The root n is still of the form (29). The equation F (x)
= has

still an auxiliary of the (m l)
th

degree, whose roots are the mth

powers of the expressions

1 2 3 m 2 m l

. m . m m m m
J, , i \ > fc *! ,

----
, i AI , AI A

t , (39)

though the auxiliary here is not necessarily irreducible. Also, sub.

stituting the expressions in (39) for
A^

A
, etc., in (37), the law

of Proposition XIII. still holds, together with corollary in 45.

47. By Cor. Prop. VI., the denominator of the index of a surd of

i

the highest rank in r\ is m. Let A be such a surd. By 21, the

coefficients of the different powers of A in r\ cannot be all zero.

We may take the coefficient of the first power to be distinct from zero

1 k -L
and to be for. if it were -

. we might substitute s
m

for k\A
m

,m m '

i

i

and so eliminate A from TI , introducing in its room the new surd

s
m

with -^ for the coefficient of its first power. We may then put

1 3 m 2 m I

m ^** 1 1 1 i / > V /

where g , a\ , etc., are clear of A
I

. When A is changed succes-

i i i

sively into A
,

t~* A
, iT* A* , etc., let

n ,
r2 , rm , (41)
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be respectively what TI becomes, t\ being a primitive mih root of unity.
By Prop. VI., the terms in (41) are the roots of the equationF (x)

= 0. Taking rn , any one of the particular cognate forms of

J_ JL_

R, let A
n ,

an , etc.,be respectively what A
, ai , etc., become in pass-

m .

ing from 7*1 to rn ; and when A is changed successively into the

different mth roots of the determinate base An ,
let rn become

*,rl, rn) ....
, rJT-

1
'. (42)

By Prop. II., the terms in (42) are roots of the equation F (x)
=

;

and, by 23, they are all unequal. Therefore they are identical, in

some order, with the terms in (41). Also, the sum of the terms in

{41)is<7. Therefore g is rational.

48. PROPOSITION XIY. In r\ ,
as expressed in (40),

A
I

is the

only principal (see 2
)
surd.

i

Suppose, if possible, that there is in TI a principal surd z distinct

from A . And first, let z be not a root of unity. (It will be kept

in view that when, in such a case, we speak of roots of unity, the

denominators of their indices are understood, according 1, to be prime
i i

numbers.) When z is changed int<>z
2 ,

one of the other cth roots

of 21 ,
let TI . ai , etc., become respectively n , i ,

etc. Then

-^ , 4.
mn ,

= g + A + a\ A
I
+ etc (43)

By Prop. II., TI is equal to a term in (41), say to rn . And, by 48,

putting tn i for
t\

~ n
f

i 2

, m . 2 A _i f / A.A. ^

Therefore,

Al-^)*^-^ l)
+ et, = 0.

1 *
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This equation involves no surds except those found in the simplified

expression r\ , together with the primitive with root of unity. There-

fore the expression on the left of (45) is in a simple state. Therefore,

by 8, the coefficients of the different powers of J are separately
r t

zero. Therefore tn -\ = 1, a\ = i , &i = &i ,
and so on. But, a&

was shown in Prop. V., z^ being a principal surd not a root of unity

in the simplified expression a\ , a\ cannot be equal to a^ unless z

can be eliminated from % without the introduction of any new surd.
i

In like manner b\ cannot be equal to bi unless z can. be eliminated

from bi . And so on. Therefore, because i
= a\ ,

and &i = b\ ,

i

and so on, admits of being eliminated from 7*1 without the intro-

duction of any new surd, which, by 21, is impossible. Next, let

z
l

be a root (see 1) of unity, which may be otherwise written #1

Let the different primitive cth roots of unity be 0\ , 2 ,
etc.

; and,
when 6\ is changed successively into 0\ , 2 > etc., let n become suc-

cessively ri , TI, etc. Suppose it possible that the c 1 terms

ri >
ri > etc., are all equal. Since z is a principal surd in r\ ,

we

may put r\ = hO\ -f k0\

~
+ .... + l\ where 7i, /;, etc., are

clear of t . Therefore (c 1) n = d (h + k + etc.) Thus

2?
l may be eliminated from r\ without the introduction of any new

surd; which by 21 is impossible. Since then the terms r\ , r\ , etc.,

are not all equal, let r\ and r\ be unequal. Then i\ is equal to a term

in (41) distinct from r\ , say to rn . Expressing mr\ and mrn as in

(43) and (44), we deduce (45) ; which, as above, is impossible.

i

49. PROPOSITION XV. Taking TI ,
rn ,

A
, etc., as in 47, an

i c

equation t A = p A (46)
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can be formed
;
where t is an mih root of unity, and c is a whole

number less than m but not zero, and p involves only surds subordi-
i i

nate (see 3) to J or
J^

By 47, one of the terms in (42) is equal to TI . For our argument
it is immaterial which be selected. Let rn = r\ . Therefore

m 1 m 2 1

OT 2

-
(A, J

The coefficients of the different powers of A here are not all zero,

for the coefficient of the first power is unity. Therefore by 5, an

equation tA = ^ subsists, t being an mth root of unity, and l\ in-

i

volving only surds exclusive of A that occur in (47). By Prop.

i

XIV., J
t

m
is a surd of a higher rank (see 3) than any surd in (47)

j.

except J . Therefore we may put

i

where d, di , etc., involve only surds lower in rank than
-^

. Then

An = i
m = (d + di A + etc.)

m

= d + di *" + ^2 ^^ + etc.;

_i_

where d
, dit etc., involve only surds lower in rank than

A^
. By

i

8, since J
w

is a surd in the simplified expressions n ,
the coefficients

d J
/t , di , etc., in the equation

5
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i
'

i

(d
- JB ) + di A + d* A" + etc. = (48)

are separately zero. Therefore (d -\- d\ A^ + etc.)"*
= d . And,

t\ being a primitive wth root of unity,

i i

~~m
' ' ~T '

(d -f d\ ti A
I

-f etc.)
m = d -f d t\ A

I
-f ctc - = d .

Therefore,

_L i 2

(c? -f ^i h A -f etc.)
=

ti (d + di J
x

-f di J
T
+ etc.),

t\ being one of the mth roots of unity. In the same way in which

the coefficients of the different powers of A in (48) are separately

zero, each of the expressions d (1 ti ), d\ (t\ ti ), etc., must be

zero. But not more than one of the m 1 factors, t\ t\ ,

t\ t\ , etc., can be zero. Therefore not more than one of the

m 1 terms d\ , d-i , etc., is distinct from zero. Suppose if possible

that all these terms are zero. Then t A = d. Therefore the
H

i

different powers of A can be expressed in terms of the surds in-

volved in d and of the mth root of unity. Substitute for A
,
A

etc., in (47), their values thus obtained. Then (47) becomes

m-l

where Q involves no surds, distinct from the primitive mth root
i

of unity, that are not lower in rank than
A^ ; which, because

i

the coefficient of the first power of A
I

in (49) is not zero, is, by 8,

impossible. Hence there must be one, while at the same there can be

only one of the m 1 terms, d\ , d% , etc., distinct from zero. Let
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de be the term that is not zero. Then t{ t" = 0. Therefore
1 __

ft
is not zero. Therefore d = 0. Therefore, putting p for dc ,

n f 1

50. Cor. By the proposition, values of the different powers of

A can be obtained as follows ;
fl

_1
c 2

m , m _ , m
< J,

=
j, j;" ,

| J
B

- = j 4, , < <" = k 4-
, etc.; (50)

where p, q, etc., involve only surds that occur in A\ or An ;
and c, , *,

etc., are whole numbers in the series 1, 2, . . . .
,
m 1. No two of

the numbers c, 5, etc., can be the same
;
for they are the products,

with multiples of the prime number m left out, of the terms in the

series 1,2, . . . .
,
m 1, by the whole number c which is less than

m. Therefore the series c, s, z, etc., is the series 1, 2, . . . .
,
m 1,

in a certain order.

51. PROPOSITION XVI. If rn be one of the particular cognate
forms of M, the expressions

1 J2_ m 2 m 1

tA
n ,

t* an A^ ,...., t
m '

en A^ ,
t
m ~~ hn A^ , (51)

are severally equal, in some order, to those in (39), t being one of the

mth roots of unity.

By 47, one of the terms in (42) is equal to rj . For our argument
it is immaterial which be chosen. Let rn = r\ . By Cor. Prop.

XV, the equations (50) subsist. Substitute in (47) the values of the

different powers of jj*
so obtained. Then

c s

(t~
l p A + t~ 2

qctn
A + etc.)

1 2

By Cor. Prop. XV., the series A
,
A

, etc., is identical, in some

1 2

order, with the series A
,
A

,
etc. Also, by 8, since A* is a
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surd occurring in the simplified expression TI ,
and since besides

A^

there- are in (52) no surds, distinct from the primitive wth root of

unity, that are not lower in rank than A
I

,
if the equation (52)

i

were arranged according to the powers of A
I

lower than the mth
,

i

the coefficients of the different powers of
A^

would be separately
i

zero. Hence
A^

is equal to that one of the expressions,

c t

m . m
1

,etc. (53)

in which A is a factor. In like manner a\ A is equal to that one

2

of the expressions (53) in which A
I

is a factor. And so on. There

-L
2

fore the terms A
, a\ A

, etc., forming the series (39), are sever-

ally equal, in some order, to the terms in (53), which are those

forming the series (51.)

52. PROPOSITION XVII. The equation F (x)
= has a rational

auxiliary (Compare Prop. VII.) equation <p (x)
= 0, whose roots are

the 7/i
th

powers of the terms in (39).

Let the unequal particular cognate forms of the generic expression
A under which the simplified expression AI falls be

4 , At ,...., 4 . (54)

By Prop. XVI., there is a value t of the mih root of unity for

which the expressions

1 2 m 2 ml
t A

,
*2 a2 J

2

m
,...., *- e2 J

2

m
,
*-i h J

2

m
(55)

are severally equal, in some order, to those in (39). Therefore J 2 is

equal to one of the terms

m 2 m m 2 n* >w 1

J, , ! Ji .....,*] J, , h\ AI . (56)
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In like manner each of the terms in (54) is equal to a term in (56).

And, because the terms in (54) are unequal, they are severally equal
to different terms in (56). By Prop. III., the terms in (54) are the

roots of a rational irreducible equation, say <p\ (x)
= 0, Rejecting

from the series (56) the roots of the equation fa (x)
= 0, certain of

the remaining terms must in the same way be the roots of a rational

irreducible equation ^'2 (x)
= 0. And so on. Ultimately, if

<f> (x)

be the continued product of the expressions </n (x), fa (x), etc., the

terms in (56) are the roots of the rational equation <p (x)
= 0.

53. The equations fa (x)
=

0, fa (x)
= 0, etc., formed by means

of the expressions 4'\. (
x

), fa (#)> etc., may be said to be sub-auxiliary
to the equation F (x)

= 0. ]t will be observed that the sub-

auxiliaries are all irreducible.

54. PROPOSITION XVIII. In passing from r\ to rn ,
while J,

becomes An ,
the expressions a\ , bi , which, by Prop. XIV., involve

only surds occurring in AI ,
must severally receive determinate values,

an ,
bn ,

etc. In other words, a\ being a particular cognate form of

A, there cannot, for the same value of An ,
be two particular cognate

forms of A, as an and a$ , unequal to one another. And so in the

case of bi , e\ ,
etc.

For, just as each of the terms in (42) is equal to a terra iu (41),

there are primitive mth roots of unity r and ^such that the expressions

J_ JL L
T j

m
+ T2 an A

m
+etc., T A + T* aN A + etc.,

71 fl -" "

are equal to one another. Therefore, if AN = An ,
in which case, by

assigning suitable values to r and T, A
K may be taken to be

i

equal to A
,

_

jJ
r
(
T _ T) + A (an r* -aN T*) + etc. = 0. (57)

Suppose if possible that the coefficients of the different powers
i _L

of A in (57) are not all zero. Then, by 5, t A = h ',

t being

an mth root of unity ;
and l\ involving only surds of lower ranks

_i

than A . Hence, by Prop. XV. and Cor. Prop. XV ,
A is a

i

rational function of surds of lower ranks than J
m

and of the
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primitive mth root of unity; which, by the definition in 6, is

impossible. Since then the coefficients of the different powers

of J
n

in (57) are separately zero, r = T, an r2 =ay T*
,

therefore

55. PROPOSITION XIX. Let the terms in (39) be written

respectively

j_ _i_ _i_ _i_
A tn . m . m ^ m
\ ', ', ' "C-r (68)

The symbols 4 ,
<?
2 ,

<?
8 , etc., are employed instead of J, , J, ,

J
s , etc.,

because this latter notation might suggest, what is not necessarily

true, that the terms in (56) are all of them particular cognate forms
of the generic expression under which Ji falls. Then (compare Prop.

XIII.) the m I expressions in each of the groups

(59)

1 Q 1 ') 1o 3 1 o 1 o 1

m ~ m m mm m m I

I m m m m
J

nnd so on, are the roots of a rational equation of the (m l)
th

degree.

Also (compare Prop. X.) the first - terms in the first of the

(
m i\th

9 I

degree.

In the enunciation of the proposition the remark is made that the

series (54) is not necessarily identical with the series

^i , ^2 j ^3 , 3m i

The former consists of the unequal particular cognate forms of A
;
the

latter consists of the roots of the auxiliary equation <p (x)
= 0.

These two series are identical only when the auxiliary is irreducible.

To prove the first part of the proposition, take the terms forming the

second of the groups (59). Because oj'_ 2 represents

m 2



Let E be the generic symbol under which the simplified expression
e\ falls. By Prop. XVIIL, when AI is changed successively into

the c terms in (54), e\ receives successively the determinate values

e\ , 62 >
. . . .

,
ec ;

and therefore <?i Ji receives successively the

determinate values

<*i 4 ,
e-2 A 2 , ....,* J, . (60)

There is therefore no particular cognate form of EA that is not

equal to a term in (60). By Prop. XVI. there is a value of the mih

root of unity t for which the terms in (55) are severally equal, in

some order, to those in (39). Let the term in (39) to which t A

is equal be q\ A^ Then, applying the principle of Cor. Prop. XV.,
as in Prop. XVI., it follows that the term in (39) to which

m 2 M 2n

t
m~ 2

62 ^
2

in (55) is equal is ki A
,
M being a multiple of m,

and M 2n being less than m. Therefore e-i J 2 is equal to

q\ k\ A
,
which is the product of two of the terms in (39) occuring

respectively at equal distances from opposite extremities of the series.

JL 1

In other words, e^ A 2 is equal to an expression d $ in them m 2

second of the groups (59). In like manner every term in (60) is

equal to an expression in the second of the groups (59). Let the

unequal terms in (60) be

ei Al ,
etc. (61)

Then, by Prop. III., the terms in (61) are the roots of a rational

irreducible equation, say f\ (x)
= 0. Rejecting these, which are

distinct terms in the second of the groups (59), it can in like manner

be shown that certain other terms in that group are the roots of a

rational irreducible equation, say /2 (x)
= 0. And so on. Ulti-

mately, if / (x) be the continued product of the expressions /i (a;),

/2 (#)> etc., the terms forming the second of the groups (59) are the

roots of a rational equation of the (m l)
th

degree. The proof

applies substantially to each of the other groups. To prove the

second part, it is only necessary to observe that, in the first of the

groups (59), the last term is identi3al with the first, the last but one

with the second, and so on.



40

56. Cor. 1. The reasoning in the proposition proceeds on the

assumption that the prime number m is odd. Should m be even, the

series J| , <5i , etc., is reduced to its first term. The law may be

considered even then to hold in the following form. The product

m . m
A A is the i-oot of a rational equation of the (m l)

th
degree,

or is rational. For this product is A\ , which, by Prop. XVII., is

the root of an equation of the (m l)
th

degree.

56. Cor. 2. I merely notice, without farther proof, that the

generalization in 45 in the case when the equation F (x)
= is of

the first (see 30) class holds in the present case likewise.

ANALYSIS OF SOLVABLE EQUATIONS OF THE FIFTH DEGREE.

58. Let the solvable irreducible equation of the wth
degree, which

we have been considering, be of the fifth degree. Then, by Prop.
IX. and 47, whether the equation belongs to the first or to the

second of the two classes that have been distinguished, assuming the

sum of the roots g to be zero,

n = j (jf + ai j| + 6i J? + hi J?), (62)

though, when the equation is of the first class, the root, as thus

presented, is not in a simple state.

59. PROPOSITION XX. If the auxiliary biquadratic has a rational

root A\ not zero, all the roots of the auxiliary biquadratic are rational.

Because A\ is rational, the auxiliary biquadratic <f (x) =0 is not

irreducible. Therefore, by Prop. VII., the equation F (x)
= is of

the second (see 30) class. Therefore, by Prop. XIV., J! is the only

principal surd in r\ . Consequently, because A\ is rational,

ai , e\ and h\ are rational. Therefore AI , al A\ , e\ jf , h\ A\ ,

which are the roots of the auxiliary biquadratic, are rational.

60. PROPOSITION XXL If the auxiliary biquadratic has a qua-
dratic sub-auxiliary $\ (x)

= with the roots AI and J2 , then

J2 = hi J*, and A\ = hz ^2 >
and AI Ji is rational.

As in 52, t being a certain fifth root of unity, each term in (55) is

equal to a term in (39). The first term in (55) cannot be equal to

the first in (39), for this would make A 2 = AI . Suppose if possible
that the first in (55) is equal to the second iu (39). Then, bj
equations (50), applied as in Prop. XVI.,
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therefore J 2
-

i

,5 A 5 3

fl2 AZ = Ci Ji

(63)

5 2

Now ai AI , being equal to J 2 ,
is a root of the equation fa (x) 0.

And ai Jx , involving only surds that occur in n ,
is in a simple

state. Therefore, by Prop. III., al A.2 is a root of the equation

fa (x) 0. Therefore hi A 1 ,
and therefore also Aj A\ or el A] , are

roots of that equation. Hence all the terms

62 53 54
AI , a\. AI , tii AI , AI AI , (64)

are roots of the equation fa (x)
= 0. But i , e\ , AI ,

are all

distinct from zero; for, by (63), if one of them was zero, all would be

zero, and therefore A{ would be zero
;
which by 6, is impossible.

From this it follows that no two terms in (64) are equal to one

another
;
for taking a\ AI arid ei AI ,

if these were equal, we should
' i /

have e\ t AI ~ a\ ,
t being a fifth root of unity ;

which
;
which by

8, is impossible. This gives the equation fa (x)
= four unequal

roots
; which, because it is of the second degree, is impossible.

Therefore the first term in (55) is not equal to the second in (39).
In the same way it can be shown that it is not equal to the third.

Therefore it must be equal to the fourth. In like manner the first in

(39) is equal to the fourth in (55). Because then t J 2 = AI AI , and

AI = fi A2 A-2 ,
h2 A 2 = AI AI . But, just as it was proved in 56

that, the roots of the sub-auxiliary fa (x) being the c terms

AI ,
J 2 , etc., there is no particular cognate form of EA that is not a

term in the series e\_ AI ,
e2 /1 2 ,

. . . .
,

ec A c ,
it follows that, if

A-i be a particular cognate form of //, there is no particular cognate
form of HA that is not equal to one of the terms hi AI and h% J 2 .

Hence, since AI AI = A2 A% ,
HA has no particular cognate form

different in value from AI AI . Therefore, by Prop. III., AI J] is

rational.

6
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61. PROPOSITION XXII. The auxiliary biquadratic y (x)
=

either has all its roots rational, or has a sub-auxiliary (see 53) of the

second degree, or is irreducible.

It will be kept in view that the sub-auxiliaries are, by the manner
of their formation, irreducible. First, let the series (54), containing
the roots of the sub-auxiliary <}>\ (x)

= consist of a single term A\ .

Then, by Prop. III., A\ is rational. Therefore, by Prop. XX., all

the roots of the auxiliary are rational. Next, let the series (54)
consist of the two terms A\ and J 2

* By this very hypothesis, the

auxiliary biquadratic has a quadratic sub-auxiliary. Lastly, let the

series (54) contain more than two terms. Then it has the three terms

^i > ^2 j ^3 We have shown that these must be severally equal to

terms in (64). Neither A L nor A3 is equal to AI . They cannot

both be equal to h\ AI . Therefore one of them is equal to one of the

terms a\ A\ , e\ A\ . But in 60 it appeared that, if A% be equal

either to ci\ AI or to e[ A\ ,
all the terms in (64) are roots of the

irreducible equation of which A\ is a root. The same thing holds

regarding AQ . Therefore, when the series (54) contains moi'e than

two terms, the irreducible equation which has A\ for one of its roots

has the four unequal terms in (64) for roots
;
that is to say, the

auxiliary biquadratic is irreducible.

62. Let 5ui =
Jj ,

5u2 = i A\ ,
5u3 = e\ Af , 5ui = hi J? ;

and, n being any whole number, let Sn denote the sum of the wlh

powers of the roots of the equation F (x)
= 0. Then

Si =
;
S2

= 10 (ui u4 + u.2 3 ); 3 = 15
)
I

(Ul ul) |;

*S'4 = 20
{
J (MI u2 ) \ + 30 (u\ u\ -f u\ u\) + 120 m n2 uz m ;

S6 = 5
j
S (u\) \ + 100

] I(u\ u3 ut ) \
+ 150

{
S

(Ul ul ul] ;

where such an expression as T (u\ u%) means the sum of all such

terms as u\ u% ;
it being understood that, as any one term in the

circle u\ , uz , ^4 , u$ , passes into the next, that next passes into

its next, u$ passing into u\ .

THE ROOTS OF THE AUXILIARY BIQUADRATIC ALL RATIONAL.

63. Any rational values that may be assigned to J[ , a\ , e\ ,
and

hi in r\ ,
taken as in (62), make r\ the root of a rational equation of

the fifth degree, for they render the values of S\ , -$2 , etc., in 62,

rational. In fact, S\ -
0, 25 Si = 10 Ji (hi -f i e\ ),

and so on.
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THE AUXILIARY BIQUADRATIC WITH A QUADRATIC SUE-AUXILIARY.

64. PROPOSITION XXIII. In order that n ,
taken as in (62),

may be the root of an irreducible equation F (x) of the fifth

degree, whose auxiliary biquadratic has a quadratic sub-auxiliary, it

must be of the form

11
n = i |W + J 2 ) + (01 Ji + 02 J| ) }; (65)

where AI and J.j are the roots of the irreducible equation
<f>i (x)

= x* 2 ,px -+- (f = ;
and a\ = b -f d ^/ (p* g* ),

a2 = b d v/ ( p
2

q
5

) p, b and d being rational
;
and the

I i IT
roots AI and J 2 being so related that AI J 2 '= ^.

By Prop. VII., when a quintic equation is of the first (see 30)
class, the auxiliary biquadratic is irreducible. Hence, in the case

we are considering, the quintic is of the second class. The quadratic

sub-auxiliary may be assumed to be 4'i (
x

)
~ %z 2 px -\- k = 0,

p and k being rational. By Prop. XXI., the roots of the equation

0i (x) are AI and h\ AI . Therefore k =
(hi AI )

5
; or, putting

q for hi AI ,
k = q

5
. By the same proposition, hi AI is rational.

Therefore q is rational. Hence 4'i (
x) has the form specified in the

enunciation of the proposition. Next, by Proposition XVI., there is

a fifth root of unity t such that t A 2 = hi A{ . If we take t to be

unity, which we may do by a suitable interpretation of the symbol

J3 , J2 = hi AI . This implies that ei AI = a% J 2 ,
a2 being

what a\ becomes in passing from A\ to J 2 . Substituting these values

of e\ AI and hi AI in (62), we obtain the form of TI in (65), while at

i i

the same time AI A\ = hi AI q. The forms of ai and a2 have to

be more accurately determined. By Prop. XIV, Ji is the only

principal surd that r\ ,
as presented in (62), contains. Therefore

ai involves no surd that does not occur in AI ;
that is to say,

<,/ (p
2

q
5

)
is the only surd in ai . Hence we may put

ai = b -f d v/ (p
2

cf )'}
b and d being rational. But a2 is what

i becomes in passing from Ji to J 2 . And J 2 differs from Ji only

in the sign of the root ^ ( p
2

q' ).
Therefore

a .

2
= b d x/ ( p

2
q
b

).

65. Any rational values that may be assigned to b, d, p and q

in n ,
taken as in (65), make TI the root of a rational equation of the
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fifth degree ;
for they render the values of Si , #2 , etc., in 62,

rational. In fact, Si - 0, 25 S2
- 10 {q -f q* b2 q

2 d2
(p* q* )},

and so on.

THE AUXILIARY BIQADRATIC IRREDUCIBLE.

66. When the auxiliary biquadratic is irreducible, the unequal

particular cognate forms of J are, by Prop. III., four in number,
AI , AI ,

J3 , J4 . As explained in 55, because the equation

<p (x)
= is irreducible, these terms are severaly identical with

^i > ^2 } #3 > ^4 . Hence, putting in = 5, the first two terms in the

first of the groups (59) may be written in the notation of (37),

A\ 4i , 4 AJ (66)

and the second and third groups may be written

(Jf jf , A\ A\ , jf A\ , 4
, J J \ A Jk .1 /!

(Ai A t ,
J 2 ^4 , ^3 ^1 , ^

67. PROPOSITION XXIV. The roots of the auxiliary biquadratic

equation <p (x)
= are of the forms

Ji = m + n ^ z + </ 8, J 2 = w* n v/ * -f

J4 = m + n v/ a N/ *, Az = m n ^/ z

where s = p + q \/ * an(1 *i =
/> !7 \/ *

J w, w, a, p and y

being rational ;
and the surd v/ s being irreducible.

By Propositions XIII. and XIX., the terms in (66) are the roots

of a quadratic.
Therefore Ji A and Ja ^3 are the roots of a quad-

ratic. Suppose if possible that AI J3 is the root of a quadratic. By

Propositions IX. and XIX., Js = e\ J? . Therefore e\ AI is the

root of a quadratic.
From this it follows (Prop. III.) that there are

nob more than two unequal terms in the series,

5 .4 5 A 5 .4 6 <4 //j nx
ei AI ,

e2 J2 , es 4j , 64 ^4 (69)

But supi>ose if possible that e\ A\ = e\ A\. Then, t being one of the

fifth roots of unity, te\ A* = e A% But, by Propositions IX. and

XIX., J* = AI J? . Therefore, fei J? = e2 /*} J? ^i" - There-
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fore, by 8, ei == 0. Therefore one of the roots of the auxiliary

biquadratic is zero
;
which because the auxiliary' biquadratic is

assumed to be irreducible, is impossible. Therefore e\ A\ and e\ J*

are unequal. In the same way all the terms in (69) ran be shown to

be unequal ; which, because it has been proved that there are not more
than two unequal terms in (69), is impossible. Therefore Ji ^3 is not

the root of a quadratic equation. Therefore the product of two of the

roots, Ji and J4 ,
of the auxiliary biquadratic is the root of a quad-

ratic equation, while the product of a different pair, Ji and J3 ,
is not

the root of a quadratic. But the only torms which the roots of an
irreducible biquadratic can assume consistently with these conditions

are those given in (68).

68. PROPOSITION XXV. The surd ^/ s\ can have its value ex-

pressed in terms of ^/s and */z.

By Propositions XIII. and XIX, the terms of the first of the groups

(67) are the roots of a biquadratic equation. Therefore their fifth

powers

J* J 3 ,
J
2

2 Ji , 4 *4 , 4 ^2 , (70)

are the roots of a biquadratic. From the values of Ji , d% ,
J3 and

J 4 in (68), the values of the terms in (70) may be expressed as

follows :

where ^, ^ , etc., are rational. Let J(jf J 3 )
be the sum of the

four expressions in (70). Then, because these expressions are the

roots of a biquadratic, I
( J? J 3 )

or 4^ + 4*W \/ i must b^

rational. Suppose if possible that vAi cannot have its value expressed

in terms of ^/s and ^ z. Then, because x/s v/ i is not rational,

i 7̂
= 0. By (68),

this implies that n = 0. Let

(J? J 3 )
2 = ^ + A %/ ^ + (^2 + ^3 N/ ^) v/ s

-f (L4 + Z6 V/ ) N/ 81 + (^6 + ^7 V/ .*) V/
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where L, L\ , etc., are rational. Then, as above, LI = 0. Keeping
in view that n = 0, this means that m2

q = 0. But q is not zero,
for this would make y/ s = %/ *'i ; which, because we are reasoning
on the hypothesis that y/ s\ cannot have its value expressed in terms
of v/ s and ^/ z, is impossible. Therefore m is zero. And it was
shown that n is zero. Therefore Ji = \/ s, and Js = ^/ s.

Therefore A\ Js = v/ ( p
2

q
2
z) ; which, because it has been

proved that Ji Ja is not the root of a quadratic equation, is impossible.
Hence \/ s\ cannot but be a rational function of <*/ s and v/ .

69. PROPOSITION XXVI. The form of s is

h (1 + e2 ) + h </(l + e2
), (72)

h and e being rational, and 1 -f- e2 being the value of z.

By Prop. XXV., </ s\ = v - c *,/ s, v and c being rational

functions of x/ a. Therefore si = v2 -f c'
2 s -f- 2vc v/ . By Prop.

XXIV., v/ s is irreducible. Therefore vc = 0. But c is not zero,

for this would make / s\ = v, and thus v/ s^ would be the root of a

quadratic equation. Therefore v = 0, and *,/ s\ = c <</ s =
(ci -h <?2 \/ z) v/ 5, G! and C2 being rational. Therefore

^ ( 8S1 )
= v/ (F2 -

q* z)
= (d + c.2 ^z)(p + qS*)

=
(ci p + c-iqz) + <S z (ciq + cz p) = P + Q ^/ z.

Here, since p
2

<?

2 z is rational, either /' = or Q = 0. As the

latter of these alternatives would make v/ (p
2

?
2
*) rational, and

therefore would make v/ ( p + <? N/ *) or y/ s reducible, it is inad-

missible. Therefore GI p -|- ^2 <?
= 0, and

Now 0s is not not zero, for this would make */ (ssi )
= ^ p ; which,

because ^/ s is irreducible, is impossible. Therefore 02 = 0. But,

by hypothesis, ci = ;
therefore ^ s\ ,

which is equal to

(Cl _j_ c .

2 ^/ z
) 1/8, is zero

;
which is impossible. Hence ci cannot

be zero. We may therefore put ce = 1
,
and h (1 -f- ^2

)
=

p.

Then s = p + <J v/ = A (1 + e2
) -f A v/ (1 + e2 ) Having

obtained this form, we may consider z to be identical with 1 + e2 ,

with A, and /> with A (1 -j- e
2

).

70. The reasoning in the preceding section holds good whether

the equation F (x)
= be of the first (see 30) or of the second

class. If we had had to deal simply with equations of the first class,

the proof given would have been unnecessary, so far as the form of z

is concerned ; because, in that case, by Prop. VIII., Jj is a rational

function of the primitive fifth root of unity.
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71. PROPOSITION XXVII. Under the conditions that have been

established, the root r\ takes the form given without deduction in

Crelle (Vol. V., p. 336) from the papers of Abel.

For, by Cor. Prop. XIII. (compare also Cor. 2, Prop. XIX.,)
the expressions

AI AS A\ A% , jj AI AS A
,

1J533 11 2 3 3
A* A$ A 5 A~5 A~5> A* A^ A^ /*O\J3 J4 A-2 AI ,

J4 A.2 AI Az , (73)

are the roots of a biquadratic equation. In the corollaries referred

to, it is merely stated that each of the expressions in (73) is the root

of a biquadratic ;
but the principles of the propositions to which the

corollaries are attached show that the four expressions must be the

roots of the same biquadratic. Let the terms in (73) be denoted

respectively by

54- i, 54- !, 54 - l
,

54- l
.

Then J* Jj A\ j|
=

A\ (A\ AJ A\ JJ )
is an identity. Therefore

I A\ = A! (4 J* J* J* ) Similarly,

* 4 = ^ (4 4 4 4 )

i 4 = 4 2 (4 jf j| 4 )>
and

1 1 2 4 3

i jj
= A, (AI A; A\ AI ).

Substituting these values in (62), we get

1 2 43
},2 4

I
n = 4i (J!

5 4 4 ^2 ) + 4 2 (^2
5

^i 4 ^4 )

This, with immaterial differences in the subscripts, is Abel's expression;

only we need to determine AI ,
4 2 ,

4 3 and 44 more exactly. These

terms are the reciprocals of the terms in (73) severally divided by 5.

Therefore they are the roots of a biquadratic. Also, no surds can

appear in ^li except those that are present in AI ,
A 2 ,

As and J 4 .

That is to say, AI is a rational function of */ s. ^/ si and ^/ z. But

it was shown that ^ *i </ * = he */ z. Therefore AI is a rational

function of v/ s and v/ z. We may therefore put

A, = K 4- K f

J, -f K" J4 + K'" AI A4 ,
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A", A"', K" and K'" being rational. But the terms A\ ,
4 2 ,

^1 4 ,

A* circulate with J x ,
J 2 ,

J 4 ,
J 3 . Therefore

A 2 = K + A" J 2 4- K" J 3 4- A'"' J 2 J3 ,

4 4 = A' + K' J4 4- A'" J
l + A"" Ji J 4 ,

4 3 = A" 4- A" J3 4- Ar " J 2 4- AT"' Jo J 3 ,

These are Abel's values.

72. Keeping in view the values of A\ ,
J 2 , etc., in (67), and also

that z = 1 -f e2
,
and s = Az 4" ^ \/ > any rational values that may

be assigned to m, n, e, A, A", AT', A
r "

and A"'" make TI ,
as presented

in (74), the root of an equation of the fifth degree. For, any rational

values of m, n, etc., make the values of Si , $-2 , etc., in 62, rational.

73. It may be noted that, not only is the expression for r
t
in (74)

the root of a quintic equation whose auxiliary biquadratic is irre-

ducible, but on the understanding that the surds ^/ s and </ z in

Ji may be reducible, the expression for r\ in (74) contains the roots

both of all equations of the fifth degree whose auxiliary biquadratics
have their roots rational, and of all that have quadratic sub-

auxiliaries. It is unecessary to offer proof of this.

74. The equation or5 lOic8 4- bx1
4- lOa: 4- 1 = is an

example of a solvable quintic with its auxiliary biquadratic irre-

ducible. One of its roots is

i 2 s 4
5 _j 5 _[ 3 o | 4 o

w being a primitive fifth root of unity. It is obvious that this root

satisfies all the conditions that have been pointed out in the preceding

analysis as necessary. A root of an equation of the seventh decree
of the same character is

1 2
^ * 7

-j-

w being a primitive seventh root of unity. The general form under

which these instances fall can readily be found. Take the cycle that

contains all the primitive (m*)
th roots of unity,

0,0*, 0**, etc. (75)

m being prime. The number of terms in the cycle is (m I)
2

.

Let 0i be the (m 4- l)
lh term in the cycle (75), 2 the ('2m 4- l)

th

term, and so on. Then the root of an equation of the /.-/
lh

including the instances above given, is

ri = (0 4- 0- 1

) 4 (0i + o-i) 4- .... + (_ 3 + ""







Young, George Paxton

Principles of the solution
of equations of the higher
degrees

Physical &

Applied ScL

PLEASE DO NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY




