Young, George Paxton Principles oif the solution of equations of the higher degrees

Q A 218 y_{68}

Vilgiced by he lifernet Archive 2007 with frialing from Wherosoz 5onporation

PRINCIPLES
 OF THE

 SOLUTION OF EQUATIONS

 SOLUTION OF EQUATIONS}

OF THE

HIGHER DEGREES, WITH APPLICATIONS.
by george paxton young, TORONTO, CANADA.
[Read before the Canadian Institute, Mareh 3rd, 1883].

TORONTO :
PRINTED BY ROWSELL \& HUTCHISON.

4

$$
y 68
$$

PRINCIPLES

OF THE

SOLU̇TION OF EQUATIONS OF THE HIGHER DEGREES,

WITH APPLICATIONS.

BY GEORGE PAXTON YOUNG, Toronto, Canada.

CONTENTS.

1. Conception of a simple state to which every algebraical expression can be reduced. $\$ 6$.
2. The unequal particular cognate forms of the generic expression under which a given simplified expression falls are the roots of a rational irreducible equation; and each of the unequal particular cognate forms occurs the same number of times in the series of the cognate forms. $\$ 9,17$.
3. Determination of the form which a rational function of the primitive $n^{\text {th }}$ root of unity ω_{1} and of other primitive roots of unity must have, in order that the substitution of any one of certain primitive n roots of unity, $\omega_{1}, \omega_{2}, \omega_{3}$, etc., for ω_{1} in the given function may leave the value of the function unaltered. Relation that must subsist among the roots ω_{1}, ω_{2}, etc., that satisfy such a condition. $\S 20$.
4. If a simplified expression which is the root of a rational irreducible equation of the $N^{\text {th }}$ degree involve a surd of the highest rank (§3) not a root of unity, whose index is $\frac{1}{m}$, the denominator of the index being a prime number, N is a multiple of m. But if the simplified root involve no surds that are not roots of unity, and if one of the surds involved in it be the primitive $n^{\text {th }}$ root of unity, N is a multiple of a measure of $n-1$. $\S 28$.
5. Two classes of solvable equations. $\S 30$.
6. The simplified root r_{1} of a rational irreducible equation $F(x)=0$ of the $m^{\text {th }}$ degree, m prime, which can be solved in algebraical functions, is of the form
$r_{1}=\frac{1}{m}\left(y+\Delta_{1}{ }^{\frac{1}{m}}+a_{1} \Delta_{1} \stackrel{2}{m}+b_{1} \Delta_{1}^{\frac{3}{m}}+\ldots+e_{1} \Delta_{1}^{\frac{m-2}{m}}+h_{1} \Delta_{1}^{\frac{m-1}{m}}\right) ;$
where g is rational, and a_{1}, b_{1}, etc., involve only surds subordinate to $\Delta_{1}{ }^{\frac{1}{m}} . \S 38,47$.
․ The equation $F(x)=0$ kas an auxiliary equation of the $(m-1)^{\text {th }}$ degree. $\$ 35,52$.
7. If the roots of the auxiliary be $\Delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{m-1}$, the $m-1$ expressions in each of the groups

$$
\begin{aligned}
& \Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \quad \frac{1}{\delta_{2}^{m}} \frac{1}{\delta_{m-2}^{m}}, \ldots, \quad \delta_{m-1}^{\frac{1}{m}} \Delta_{1}^{\frac{1}{m}}, \\
& \Delta_{1} \frac{2}{m} \frac{1}{\delta_{m-2}^{m}}, \quad \frac{2}{\delta_{2}^{m}} \frac{1}{\delta_{m-4}^{m}}, \ldots \ldots, \quad \frac{2}{\delta_{m-1}^{m}} \frac{1}{\delta_{2}^{m}}, \\
& \Delta_{1}^{m} \frac{3}{\delta_{m-3}^{m}}, \quad \frac{3}{\delta_{2}^{m}} \frac{1}{\delta_{m-6}^{m}}, \ldots, \quad \delta_{m-1}^{\frac{3}{m}} \frac{1}{\delta_{3}^{m}},
\end{aligned}
$$

and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. The $\frac{m-1}{\check{z}}$ terms

$$
\Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \quad \frac{1}{\delta_{2}^{m}} \frac{1}{\delta_{m-2}^{m}}, \ldots, \delta_{\frac{m-1}{2}}^{\frac{1}{\delta_{m+1}^{m}}} \frac{\frac{1}{\delta_{m}^{m}}}{\frac{1}{2}}
$$

are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree. S39, 44, 55.
9. Wider generalization. $\S 45,57$.
10. When the equation $F(x)=0$ is of the first class, the auxiliary equation of the $(m-1)^{\text {th }}$ degree is irreducible. §35. Also the roots of the auxiliery are rational functions of the primitive $m^{\text {th }}$ root of unity. $\S 36$. And, in the particular case when the equation $F(x)=0$ is the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation $. r^{n}-1=0$, each of the $\frac{m-1}{2}$ expressions,

$$
\Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \delta_{2}^{\frac{1}{m}} \frac{1}{\delta_{m-2}^{m}}, \delta c
$$

has the rational value n. $\S 41$. Numerical verification. $\S 42$.
11. Solution of the Gaussian. $\S 43$.
12. Analysis of solvable irreducible equations of the fifth degree. The auxiliary biquadratic either is irreducible, or has an irreducible sub-auxiliary of the second degree, or has all its roots rational. The three cases considered separately. Deduction of Abel's expression for the roots of a solvable quintic. §508-74.

PRINCIPLES.

§1. It will be understood that the surds appearing in the present paper have prime numbers for the denominators of their indices, unless where the contrary is expressly stated. Thus, $2^{\frac{1}{15}}$ may be regarded as $h^{\frac{1}{5}}$, a surd with the index $\frac{1}{5}, h$ being $2^{\frac{1}{3}}$. It will be understood also that no surd appears in the denominator of a fraction. For instance, instead of $\frac{2}{1+\sqrt{-3}}$ we should write $\frac{1-\sqrt{-3}}{2}$.
When a surd is spoken of as occurring in an algebraical expression, it may be present in more than one of its powers, and need not be present in the first.
§2. In such an expression as $\sqrt{ } 2+(1+\sqrt{ })^{\frac{3}{3}}, \sqrt{ } 2$ is subordinate to the principal surd $(1+\sqrt{ })^{\frac{1}{3}}$, the latter being the only principal surd in the expression.
§3. A surd that has no other surd subordinate to it may be said to be of the first rank; and the surd $h^{\frac{1}{c}}$, where h involves a surd of the ($a-1)^{\text {th }}$ rank, but none of a higher rank, may be said to be of the $a^{\text {th }}$ rank. In estimating the rank of a surd, the denominators of the indices of the surds concerned are always supposed to be prime numbers. Thus, $3^{\frac{d}{d}}$ is a surd of the second rank.
 surd may be arranged according to the powers of ${\int_{1}^{\frac{1}{m}}}_{1}$ lower than the $m^{\text {th }}$, thus,
$\frac{1}{m}\left(g_{1}+k_{1} \Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{2}{m}}+b_{1} \Delta_{1}^{\frac{3}{m}}+\ldots .+e_{1}{\frac{d_{1}}{m}}_{\frac{m-2}{m}}^{\Delta^{2}}+h_{1} \frac{d}{1}_{\frac{m-1}{m}}\right)$
where g_{1}, k_{1}, a_{1}, etc., are clear of $\frac{1}{J_{1}^{m}}$.
§5. If an algebrical expression r_{1}, arranged as in (1), be zero, while the coefficients g_{1}, k_{1}, etc., are not all zero, an equation

$$
\begin{equation*}
\omega J_{1}^{\frac{1}{m}}=l_{1} \tag{2}
\end{equation*}
$$

must subsist ; where ω is an $m^{\text {th }}$ root of unity; and l_{1} is an expression. involving only such surds exclusive of $\Delta_{1}^{\frac{1}{m}}$ as occur in r_{1}. For, let the first of the coefficients h_{1}, e_{1}, etc., proceeding in the order of the descending powers of $\int_{1}^{\frac{1}{m}}$, that is not zero, be n_{1}, the coefficient of $\int_{1}^{\frac{s}{m}}$. Then we may put

$$
m v_{1}=n_{1}\left\{f\left(\Delta_{1}^{\frac{1}{m}}\right)\right\}=n_{1} \frac{s}{d_{1}^{m}}+\text { etc. }=0
$$

Because $J_{1}^{\frac{1}{m}}$ is a root of each of the equations $f(x)=0$ and $x^{m}-\mathcal{J}_{1}=0, f(x)$ and $x^{m}-\Delta_{1}$ have a common measure. Let their H. C. M., involving only such surds as occur in $f(x)$ and $\left.x^{m}-\right\lrcorner_{1}$, be $\varphi(x)$. Then, because $\psi^{\prime}(x)$ is a measure of $x^{m}-\Delta_{1}$, the roots of the equation

$$
\varphi(x)=x^{c}+p_{1} x^{c-1}+p_{2} x^{c-2}+\text { etc. }=0
$$

are $\left.\lrcorner_{1}^{\frac{1}{m}}, \omega_{1} J_{1}^{\frac{1}{m}}, \omega_{2}\right\rfloor_{1}^{\frac{1}{m}}, \ldots, \omega_{c-1}{J_{1}^{m}}_{\frac{1}{m}}^{\text {; where }} \omega_{1}, \omega_{2}$, etc., are distinct primitive $m^{\text {th }}$ roots of unity. Therefore,

$$
J_{1}^{\frac{c}{m}}\left(\omega_{1} \omega_{2} \ldots\right)(-1)^{c}=p_{c}
$$

Now c is a whole number less than m but not zero ; and, by $\S 1, m$ is. prime. Therefore there are whole numbers n and h such that

$$
J_{1}^{\frac{c n}{m}}\left(\omega_{1} \omega_{2} \ldots\right)^{n}(-1)^{c n}=J_{1}^{\frac{1}{m}} S_{1}^{h}\left(\omega_{1} \omega_{2} . .\right)^{n}(-1)^{c n}=p_{c}^{n}
$$

Therefore, if $\left(\omega_{1} \omega_{2} \ldots\right)^{n}=\omega$, and $l_{1} d_{1}^{h}(-1)^{c n}=p_{c}^{n}, \omega J_{1}^{\frac{1}{m}}=l_{1}$.
S6. Let r_{i} be an algebraical expression in which no root of unity having a rational value occurs in the surd form $1^{\frac{1}{m}}$. Also let there be in r_{1} no surd $J^{\frac{1}{m}}{ }_{1}$ not a root of unity, such that

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{m}}=e_{1} \tag{3}
\end{equation*}
$$

where e_{1} is an expression involving no surds of so high a rank as $\Delta_{1}^{\frac{1}{m}}$ except such as either are roots of unity, or occur in r_{1} being at the same time distinct from $\Delta_{1}^{\frac{1}{m}}$. The expression r_{1} may then be said to have been simplified or to be in a simple state.
§7. Some illustrations of the definition in $\S 6$ may be given. The root $8^{\frac{1}{3}}$ cannot occur in a simplified expression r_{1}; for its value is $2 \omega, \omega$ being a third root of unity; but the equation $8^{\frac{1}{3}}=2 \omega$ is of the inadmissible type (3). Again, the root $\sqrt{ } 5$ cannot occur in a simplified expression ; for, ω_{1} being a primitive fifth root of unity, $\sqrt{ } 5=2\left(\omega_{1}+\omega_{1}^{4}\right)+1$; an equation of the type (3). Once more, a root of the cubic equation $x^{3}-3 x-4=0$, in the form $(2+\sqrt{ } 3)^{\frac{1}{3}}+(2-\sqrt{ } 3)^{\frac{1}{3}}$, is not in a simple state, because $(2-\sqrt{ } 3)^{\frac{2}{3}}=(2-\sqrt{ } 3)(2+\sqrt{ } 3)^{\frac{2}{3}}$.
§8. Let $\quad p_{1} \Delta_{1}^{\frac{m-1}{m}}+p_{2} \Delta_{1}^{\frac{m-1}{m}}+\ldots+p_{m}=0 ;$
where $\Delta_{1}^{\frac{1}{m}}$ is a surd occurring in a simplified expression r_{1}; and p_{1}, p_{2}, etc., involve no surds of so high a rank as ${\Delta_{1} \frac{1}{m}}^{\frac{1}{m}}$, except such as either are roots of unity, or occur in r_{1} being at the same time distinct from $\Delta_{1}^{\frac{1}{m}}$. The coefficients p_{1}, p_{2}, etc., must be zero separately. For, by $\S 5$, if they were not, we should have $\omega \Delta_{1}^{\frac{1}{m}}=l_{1}, \omega$ being an $m^{\text {th }}$ root of unity, and l_{1} involving only surds in (4) distinct from $\Delta_{1}^{\frac{1}{m}}$; an equation of the inadmissible type (3).
§9. The expression r_{1} being in a simple state, we may use R as a generic symbol to include the various particular expressions, say r_{1}, r_{2}, r_{3}, etc., obtained by assigning all their possible values to the surds involved in r_{1}, with the restriction that, where the base of a surd is unity, the rational value of the surd is not to be taken into account. These particular expressions, not necessarily all unequal, may be called the particular cognate forms of R. For instance, if $r_{1}=1^{\frac{1}{3}}, R$ has two particular cognate forms, the rational value of the
third root of unity not being counted. If $r_{1}=\left(1_{+}+\sqrt{ } 2\right)^{\frac{1}{3}}, R$ has: six particular cognate forms all unequal. Should $r_{1}=(2+\sqrt{ } 3)^{\frac{1}{3}}$ $+(2-\sqrt{ } 3)(2+\sqrt{2})^{3}, R$ has six particular cognate forms, but only three unequal, each of the unequal forms occurring twice.
§10. Proposition I. An algebraical expression r_{1} can always bebrought to a simple state.

For r_{1} may be cleared of all surds such as $1^{\frac{1}{m}}$ having a rational value. Suppose that r_{1} then involves a surd $\Delta_{1}^{\frac{1}{m}}$, not a root of unity, by means of which an equation such as (3) can be formed. Substitute for $d_{1}^{\frac{1}{m}}$ in r_{1} its value e_{1} as thus given. The result will be to elimi$\frac{1}{m}$
nate J_{1}^{m} from r_{1} without introducing into the expression any new surd as high in rank as $\Delta_{1}^{\frac{1}{m}}$, and at the same time not a root of unity. By continuing to make all the eliminations of this kind that are possible, we at last reach a point where no equation of the type (3) can any longer be formed. Then because, by the course that has been pursued, no roots of the form $1^{\frac{1}{m}}$ having a rational value have been left in r_{1}, r_{1} is in a simple state.
§11. It is known that, if N be any whole number, the equation whose roots are the primitive $N^{\text {th }}$ roots of unity is rational and irreducible.
§12. Let N be the continued product of the distinct prime numbers n, a, b, etc. Let ω_{1} be a primitive $n^{\text {th }}$ root of unity, θ_{1} a primitive $a^{\text {th }}$ root of unity, and so on. Let ω represent any one indifferently of the primitive $n^{\text {th }}$ roots of unity, θ any one indifferently of the primitive $a^{\text {th }}$ roots of unity, and so on. Let $f\left(\omega_{1}, \theta_{1}\right.$, etc., $)$ be a rational function of ω_{1}, θ_{1}, etc. Then a corollary from $\S 11$ is, that if $f\left(\omega_{1}, \theta_{1}\right.$, etc. $)=0, f(\omega, \theta$, etc. $)=0$. For t_{1} being a primitive $N^{\text {th }}$ root of unity, and t representing any one indifferently of the primitive $N^{\text {th }}$ roots of unity, we may put

$$
\begin{aligned}
f\left(\omega_{1}, 0_{1}, \text { etc. }\right) & =a_{1} t_{1}^{N-1}+a_{2} t_{1}^{N-2}+\text { etc. }=0, \\
\text { and } f(\omega, 0, \text { etc. }) & =a_{1} t^{N-1}+a_{2} t^{N-2}+\text { etc. }
\end{aligned}
$$

where the coefficients a_{1}, a_{2}, etc., are rational. Should these coefficients be all zero, $f(11, \theta$, etc. $)=0$. Should they not be all zero, let a_{r} be the first that is not zero. Then we may put

$$
f\left(\omega_{1}, \theta_{1}, \text { etc. }\right)=a_{r}\left\{\varphi\left(t_{1}\right)\right\}=a_{r} t_{1}^{N-r}+\text { etc. }=0 .
$$

Therefore, t_{1} is a root of the rational equation $\varphi(x)=0$, being at the same time a root of the rational (see §11) equation $\psi(x)=0$, whose roots are the primitive $N^{\text {th }}$ roots of unity. Hence $\psi(x)$ and $\varphi(x)$ have a common measure. But by $\S 11, \psi(x)$ is irreducible. Therefore it is a measure of $\varphi(x)$; and the roots of the equation $\psi(x)=0$ are roots of the equation $\varphi(x)=0$. Therefore,

$$
f(\omega, \theta, \text { etc. })=a_{r}\{\varphi(t)\}=0
$$

§13. Another corollary is, that if

$$
f\left(\omega_{1}, \theta_{1}, \text { etc. }\right)=h_{1} \omega_{1}^{n-1}+h_{2} \omega_{1}^{n-2}+\ldots+h_{n}=0
$$

where h_{1}, h_{2}, etc., are clear of ω_{1}, the coefficients h_{1}, h_{2}, etc., are all equal to one another. For, by $\S 12$, because $f\left(\omega_{1}, \theta_{1}\right.$, etc. $)=0$, $f\left(\omega, \theta_{1}\right.$, etc. $)=0 . \quad$ Therefore $\omega\left\{f\left(\omega, \theta_{1}\right.\right.$, etc. $\left.)\right\}=0 . \quad$ In $\omega\left\{f\left(\omega, \theta_{1}\right.\right.$, etc. $\left.)\right\}$ give ω successively its $n-1$ different values. Then, in addition,

$$
n h_{1}=h_{1}+h_{2}+\ldots+h_{n} . \quad \text { Similarly, } n h_{2}=h_{1}+h_{2}+\ldots+h_{n} \cdot . h_{1}=h_{2}
$$

In like manner all the terms h_{1}, h_{2}, etc., are equal to one another.
§14. Proposition II. If the simplified expression r_{1}, one of the particular cognate forms of R, be a root of the rational equation $F^{\prime}(x)=0$, all the particular cognate forms of R are roots of that equation.

For, let r_{2} be a particular cognate form of R. By $\S 12$, the law to be established holds when there are no surds in r_{1} that are not roots of unity. It will be kept in view that, according to $\$ 1$, when roots of unity are spoken of, such roots are meant as $1^{\frac{1}{m}}, m$ being a prime number. Assume the law to have been found good for all expressions that do not involve more than $n-1$ distinct surds that are nct roots of unity ; then, making the hypothesis that r_{1} involves not more than n distinct surds that are not roots of unity, the law can be shown still to hold ; in which case it must hold universally. For, let $\Delta_{1}^{\frac{1}{m}}$, not a root of unity, be a surd of the highest rank (see §3) in r_{1}. Then $F^{\prime}\left(r_{1}\right)$ may be taken to be the expression (1), and $F\left(r_{2}\right)$ to be the expression formed from (1) by selecting particular values of the surds involved under the restriction specified in $\S 9$. In passing from r_{1} to r_{2}, let $\Delta_{1}^{\frac{1}{m}}, a_{1}$, etc., become respectively $\Delta_{2}^{\frac{1}{m}}, a_{2}$, etc. Then

$$
\begin{aligned}
& \qquad m\left\{F\left(r_{1}\right)\right\}=h_{1} \Delta_{1}^{\frac{m-1}{m}}+e_{1} \Delta_{1}^{\frac{m-2}{m}}+\text { etc. }=0, \\
& \text { and } m\left\{F\left(r_{1}\right)\right\}=h_{2} \Delta_{\Omega}^{\frac{m-1}{m}}+e_{2} \Delta_{2}^{\frac{m-2}{m}}+\text { etc. }
\end{aligned}
$$

By $\leqslant \mathbb{S}$, because r_{1} is in a simple state, and $F\left(r_{1}\right)=0$, the coefficients
 therefore does not involve more than $n-1$ distinct surds that are not roots of unity. Therefore, on the assumption on which we are p:oceeding, because $h_{1}=0, h_{2}=0$. In like manner, $e_{2}=0$, and s) on. Therefore $F^{\prime}\left(r_{2}\right)=0$.
§15. Cor. Let the simplified expression r_{1} be the root of an equation $F^{\prime}(x)=0$ whose coefficients involve certain surds $z_{1}^{\frac{1}{n}}, u_{1}^{\frac{1}{s}}$, etc., that have the same determinate values in r_{1} as in $F^{\prime}(x)$. Then, if r_{2} be a particular cognate form of R in which the $\varepsilon_{1_{1}}^{\frac{1}{n}}, u_{1}^{\frac{1}{8}}$
 in r_{1}, r_{2} is a root of the equation $F^{\prime}(x)=0$. For, $F^{\prime}\left(r_{1}\right)=0$. Therefore, by the Proposition, $F(R)=0$. Let R, restricted by the condition that the surds ${z_{1}}^{\frac{1}{n}}, u_{1}{ }^{\frac{1}{8}}$, etc., retain the determinate values helonging to them in r_{1}, be R^{\prime}. Then $F\left(R^{\prime}\right)=0$. A particular case of this is $F^{\prime}\left(r_{2}\right)=0$. The corollary established simply means that
 in hand.
$\S 16$. The simplified expression r_{1} being one of the particular cognate forms of R, let $\quad r_{1}, r_{a}$, etc. be the entire series of the particular cognate forms of R, not necessarily urequal to one another. Then, if the equation whose loots are the terms in (5) be $X=0, X$ is rational. In like manner, if those particular cognate forms of R, not necessarily unequal, that are obtained when certain surds ${z_{1}}^{\frac{1}{n}}, u_{1}{ }^{\frac{1}{s}}$, etc., retain the determinate values belonging to them in r_{1}, be

$$
\begin{equation*}
r_{1}, r_{c} \text {, etc. } \tag{6}
\end{equation*}
$$

and if the equation whose roots are the terms in (6) be $X^{\prime}=0, X^{\prime}$ involves only surds found in the series $\frac{1}{z_{1}}, u_{1}^{\frac{1}{s}}$, etc. This is substantially proved by Legendre in his Théorie des Nombres, §487, third edition.
§17. Proposition III. The unequal particular cognate forms of R, the generic expression under which the simplified expression r_{1} falls, are the roots of a rational irreducible equation ; and each of the unequal particular cognate forms occurs the same number of times in the series of the cognate forms.

As in §16, let the entire series of the particular cognate forms of R be the terms in (5), the equation that has these terms for its roots being $X=0$. By $\S 16, X$ is rational. Should X not be irreducible, it has a rational irreducible factor, say $F^{\prime}(x)$, such that r_{1} is a root of the equation $F^{\prime}(x)=0$. By Prop. II., because r_{1} is in a simple state, all the terms in (5) are roots of the equation $F(x)=0$, while at the same time, because $F(x)$ is a factor of X, all the roots of the equation are terms in (5). And the equation $F(x)=0$, being irreducible, has no equal roots. Therefore its roots are the unequal terms in (5). Should $F^{\prime}(x)$ not be identical with X, put

$$
X=\{F(x)\}\{\varphi(x)\}
$$

Because X and $F(x)$ are rational, $\varphi(x)$ is rational. Then, since $\varphi(x)$ is a measure of X, and the equation $F(x)=0$ has for its its roots the unequal roots of the equation $X=0$, the equations $F^{\prime}(x)=0$ and $\varphi(x)=0$ have a root in common. Consequently, since $F(x)$ is irreducible, it is a measure of $\varphi(x)$. Therefore $\left\{F^{\prime}(x)\right\}^{2}$ is a measure of X. Going on in this way we ultimately get $X=\left\{F^{\prime}(x)\right\}^{N}$; which means that each of the particular cognate forms of R has its value repeated N times in the series of the particular cognate forms.
§18. Cor. 1. The series (6) consisting of those particular cognate forms of R in which certain surds $z_{1}^{\frac{1}{n}}, u_{1}{ }^{\frac{1}{s}}$, etc., retain the determinate values belonging to them in r_{1}, each of the unequal terms in (6) occurs the same number of times in (6) ; and the unequal terms in (6) are the roots of an irreducible equation whose coefficients involve only surds found in the series $z_{1}^{\frac{1}{n}}, u_{1}{ }^{\frac{1}{s}}$, etc. Should X^{\prime} not be irreducible, by which in such a case is meant incapable of being broken into lower factors involving only surds occurring in X^{\prime}, let it have the irreducible factor $X^{\prime \prime}$. That is to say, $X^{\prime \prime}$ involves only surds occurring in X^{\prime}, and has itself no lower factor involving only surds that occur in $X^{\prime \prime}$. We may take r_{1} to be a root of the equation $X^{\prime \prime}=0$. Then, by Cor. Prop. II., all the terms in (6) are roots of that equation, all the roots of the equation being at the same time terms in (6). And the equation $X^{\prime \prime}=0$ being irreducible, has no equal roots. Therefore its roots are the unequal terms in (6). Put
$X^{\prime}=\left(X^{\prime \prime}\right)\left(X^{\prime \prime \prime}\right)$. Then, by the line of reasoning followed in the Proposition, $X^{\prime \prime \prime}$ has a measure identical with $X^{\prime \prime}$. And so on. Ultimately $X^{\prime}=\left(X^{\prime \prime}\right)^{N}$.
§19. Cor. 2. If r_{2}, one of the particular cognate forms of R, be zero, all the particular cognate forms of R are zero. For, by the proposition, the particular cognate forms of R are the roots of a rational irreducible equation $F(x)=0$. And r_{2}, one of the roots of that equation, is zero, but the only rational irreducible equation that has zero for a root is $x=0$. Therefore $F^{\prime}(x)=x=0$. In fact, in the case supposed, the simplified expression r_{1} is zero, and R has noparticular cognate forms distinct from r_{1}.
§20. Proposition IV. Let N be the continued product of the distinct prime numbers n, a, etc. Let ω_{1} be a primitive $n^{\text {th }}$ root of unity, θ_{1} a primitive $a^{\text {th }}$ root of unity, and so on. Then if the equation

$$
F(x)=x^{d}+b_{1} x^{d-1}+b_{2} x^{d}-2+\text { etc. }=0
$$

be one in which the coefficients b_{1}, b_{2}, etc., are rational functions of ω_{1}, θ_{1}, etc., and if all the primitive $n^{\text {th }}$ roots of unity, which, when substituted for ω_{1} in $F(x)$, leave $F(x)$ unaltered, be

$$
\begin{equation*}
\omega_{1}, \omega_{2}, \ldots ., \omega_{s} \tag{7}
\end{equation*}
$$

the series (7) either consists of a single term or it is made up of a cycle of primitive $n^{\text {th }}$ roots of unity,

$$
\begin{equation*}
\omega_{1}, \omega_{1}^{\lambda}, \omega_{1}^{\lambda^{2}}, \ldots ., \omega_{1}^{\lambda^{8}-1} \tag{18}
\end{equation*}
$$

that is to say, no term in (8) after the first is equal to the first, but $\omega_{1}^{\lambda^{s}}=\omega_{1}$. Also, if (let it be kept in view that n is prime) the cycle that contains all the primitive $n^{\text {th }}$ roots of unity be

$$
\begin{equation*}
\omega_{1}, \omega_{1}^{\beta}, \omega_{1}^{\beta^{2}}, \ldots, \omega_{1}^{\beta^{n-2}} \tag{9}
\end{equation*}
$$

and if C_{1} be the sum of the terms in the cycle (8), the form of $F(x)$ is.

$$
\begin{align*}
F^{\prime}(x)= & x^{d}-\left(p_{1} C_{1}+p_{2} C_{2}+\ldots+p_{m} C_{m}\right) x^{d-1}+ \tag{10}\\
& \left(q_{1} C_{1}+q_{2} C_{2}+\text { etc. }\right) x^{d-2}+\text { etc. } .
\end{align*}
$$

where each of the expressions in the series C_{1}, C_{2}, C_{3}, etc., is what the immediately preceding term becomes by changing ω_{1} into
${ }_{\text {© }}^{1}{ }_{1}^{B}, C_{m}$ through this change becoming C_{1}; and p_{1}, p_{2}, q_{1}, etc., are clear of ω_{1}.

For, assuming that there is a term ω_{2} in (7) additional to ω_{1}, we may take ω_{2} to be the first term in (9) after ω_{1} that occurs in (7); and it may be considered to be $\omega_{1}^{\beta^{m}}$, which may be otherwise written ω_{1}^{λ}. Then, if $F(x)$ be written $\varphi\left(\omega_{1}\right)$, we have by hypothesis
$\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\lambda}\right) . \quad$ Therefore, by $\S 12$, changing ω_{1} into ${ }_{\omega_{1}^{\lambda}}^{\lambda}, \varphi\left(\omega_{1}^{\lambda}\right)=$ $\varphi\left(\omega_{1}^{\lambda^{2}}\right)$. Therefore $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\lambda^{2}}\right)$. And thus ultimately $\varphi\left(\omega_{1}\right)=$ $\varphi\left(\omega_{1}^{\lambda^{z}}\right)$, or $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{m z}}\right), z$ being any whole number positive or λ^{z} negative. But ω_{1} includes all the terms in (8). Therefore each of these terms is a term in (7). Suppose if possible that there is a term β^{h}
in (7), say $\omega_{1}^{\beta^{h}}$, which does not occur in (8). Then, just as we deduced $\varphi\left(\omega_{1}\right)=\bar{\varphi}\left(\omega_{1}^{\boldsymbol{\beta}^{m z}}\right)$ from the equation $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\boldsymbol{\beta}^{m}}\right)$, we can, because still farther $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{h}}\right)$, deduce $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{m z}+h u}\right)$. Because $\omega_{1}^{\beta^{h}}$ lies outside the cycle (8), h is not a multiple of m. And it is not less than m, because $\omega_{1}^{\beta^{m}}$ is the first term in (9) after ω_{1}, which, when substituted for ' ${ }_{1}$ in $\varphi\left(\omega_{1}\right)$, leaves $\varphi\left(\omega_{1}\right)$ unaltered. Therefore $h=q m+v$, where q and v are whole numbers, and v is less than m but not zero. Put
$z=-(h+q)$, and $u=m+1 . \cdot m z+h u=v . \cdot \varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{v}}\right) ;$
which, because v is less than m but not zero, and $\omega_{1}^{\boldsymbol{\beta}^{m}}$ is the first term in (9) after ω_{1} which, when substituted for ω_{1} in $\varphi\left(\omega_{1}\right)$, leaves $\varphi\left(\omega_{1}\right)$ unaltered, is impossible. Hence, no term in (7) lies outside the cycle (8), while it has also been shown that all the terms in (8) are terms in (7). Therefore the terms in (7) are identical with those constituting the cycle (8). We have now to determine the form of $F^{\prime}(x)$. The expressions, C_{1}, C_{2}, etc., taken together, are the sum of the terms in (9). Therefore $C_{1}+C_{2}+\ldots .+C_{m}=-1$.

Because (9) contains all the primitive $n^{\text {th }}$ roots of unity, we may put
$F(x)=x^{d}-\left\{p+\left(p+p_{1}\right) \omega_{1}+\left(p+p_{2}\right) \omega_{1}^{\beta}+\right.$ etc. $\} x^{d-1}+$ etc. $;(12)$ where p, p_{1}, etc., are clear of ω_{1}. But $F^{\prime}(x)$ remains unaltered when ω_{1} is changed into $\omega_{1}^{\beta^{m}}$. Therefore

$$
\begin{equation*}
F(x)=x^{d}-\left\{p+\left(p+p_{1}\right) \omega_{1}^{\beta^{m}}+\text { etc. }\right\} x^{d-1}+\text { etc. } \tag{13}
\end{equation*}
$$

Therefore, equating the coefficients of x^{d-1} in (12) and (13),

$$
\left(p-p_{1}\right)+\ldots+\left(p_{m+1}-p_{1}\right) \omega_{1}^{\boldsymbol{\beta}^{m}}+\text { etc. }=0
$$

Here, by $\S 13$, the coefficients of the different powers of ω_{I} have all the same value. And one of them, $p-p_{1}$, is zero Therefore
$p_{m+1}=p_{1} . \quad$ That is to sar, the coefficient of $\omega_{1}^{\beta^{m}}$ or $\omega_{1}^{\boldsymbol{\lambda}}$ is the same as that of ω_{1}. In like manner the coefficients of all the terms in (8) are the same. Therefore one group of the terms that together make up the coefficient of x^{d-1} in (12) is properly represented by $-\left(p+p_{1}\right) C_{1}$. In the same way another group is properly represented by $-\left(p+p_{2}\right) C_{2}$, and so on. Hence
$F(x)=x^{d}-\left\{p+\left(p+p_{1}\right) C_{1}+\left(p+p_{2}\right) C_{2}+\right.$ etc. $\} x^{d-1}+$ etc.
And by (11) this is equivalent to (10). The form of $F(x)$ has been deduced on the assumption that the series (7) contains more than one term ; but, should the series (7) consist of a single term, the result obtained would still hold good, only in that case each of the expressions C_{1}, C_{2}, etc., would be a primitive $n^{\text {th }}$ root of unity.
§21. A simplified expression will not cease to be in a simple state, if we suppose that any surd that can be eliminated from it, without the introduction of any new surd, has been eliminated.
$\S 22$. Proposition V. In the simplified expression r_{1}, one of the particular cognate forms of R, modified according to $\S 21$, let the surd $J_{1}^{\frac{1}{m}}$ of the highest rank be not a root (see $\S 1$) of unity. Then, if the particular cognate forms of R obtained by changing $\Delta_{1}^{\frac{1}{m}}$ in $r \cdot 1$ successively into the different $m^{\text {th }}$ roots of the determinate base Δ_{1}, be

$$
\begin{equation*}
r_{1}, r_{2}, \ldots, r_{m} \tag{14}
\end{equation*}
$$

these terms are all unequal.
For the terms in (14) are all the particular cognate forms of R obtained when we allow all the surds in r_{1} except $\Delta_{1}^{\frac{1}{m}}$ to retain the determinate values belonging to them in r_{1}. Therefore, by Cor.], Prop. III., each of the unequal terms in (14) has its value repeated the same number of times in that series. 'Let u be the number of the unequal terms in (14), and let each occur c times. Then $u c=m$. Suppose if possible that $u=1$. This means that all the terms in (14) are equal. Therefore, r_{1} being the expression (1),

$$
m r_{1}=r_{1}+r_{2}+\ldots+\text { etc. }=g_{1}
$$

Therefore the surd $\int_{1}^{\frac{1}{m}}$ can be eliminated from r_{1} without the introduction of any new surd ; which, by $\S 21$, is impossible. Therefore u is not unity. But, by $\S 1, m$ is a prime number. And $m=u c$. Therefore $c=1$ and $u=m$. This means that all the terms in (14) are unequal.
§23. Cor. 1. Let r_{a+1} be any one of the particular cognate forms of R; and let $\Delta_{a+1}^{\frac{1}{m}}, h_{a+1}$, etc., be respectively what $\Delta_{1}^{\frac{1}{m}}, h_{1}$, etc., becorne in passing from r_{1} to r_{a+1}. Also let the' m particular cognate forms of R, obtained by changing $\Delta_{a+1}^{\frac{1}{m}}$ in r_{a+1} successively into the different $m^{\text {th }}$ roots of Δ_{a+1}, be

$$
\begin{equation*}
r_{a+1}, r_{a+2}, \ldots, r_{a+n} \tag{15}
\end{equation*}
$$

 r_{1}, and r_{2} is what r_{1} becomes when $\Delta_{1}^{\frac{1}{m}}$ is changed into a surd whose value is $\omega_{1} \Delta_{1}^{\frac{1}{m}}$, ω_{1} being a primitive $m^{\text {th }}$ root of unity. the view may be taken that r_{2} involves no surds additional to those found in r_{1}, except the primitive $m^{\text {th }}$ root of unity ω_{1}. Therefore $r_{1}-r_{2}$ involves no surds distinct from primitive $m^{\text {th }}$ roots of unity that are not found in the simplified expression r_{1}. Therefore $r_{1}-r_{2}$ is in a simple state. Let r_{a+2} be what r_{a+1} becomes by changing $\Delta_{a+1}^{\frac{1}{m}}$ into $\omega_{1} \Delta_{a+1}^{\frac{1}{m}}$. Then $r_{a+1}-r_{a+2}$ is a particular cognate form of the generic expression under which the simplified expression $r_{1}-r_{2}$ falls. Therefore $r_{a+1}-r_{a+2}$ cannot be zero; for, if it were, $r_{1}-r_{2}$ would, by Cor. 2, Prop. IIi., be zero ; which, by the proposition, is impossible. Hence, the first two terms in (15) are unequal. In like manner all the terms in (15) are unequal.
§24. Cor. 2. Let $X_{1}=0$ be the equation whose roots are the terms in (14). When X_{1} is modified according to $\S 21$, it is, by $\S 16$, clear of the surd ${J_{1}}_{\frac{1}{m}}$. Should it involve any surds that are not roots of unity, take $z_{1}{ }^{\frac{1}{c}}$ a surd of the highest rank not a root of unity in X_{1}; and, when ${z_{1}^{c}}^{\frac{1}{c}}$ is changed successively into the different $c^{\text {th }}$ roots of the determinate base z_{1}, let

$$
\begin{equation*}
X_{1}, X_{\mathrm{i}}^{\prime}, X_{1}^{\prime \prime}, \ldots, X_{1}^{(c-1)} \tag{16}
\end{equation*}
$$

be respectively what X_{1} becomes. Any term in (16), as X_{1}, being selected, the m roots of the equation $X_{1}=0$ are unequal particular
cognate forms of R. For, $z_{2}^{\frac{1}{c}}$ being a $c^{\text {th }}$ root of z_{1} distinct from $\hat{z}_{1}{ }^{\frac{1}{c}}$, let r_{a+1} be what r_{1} becomes when $z_{1}^{\frac{1}{c}}$ becomes $z_{2}^{{ }^{c}}$; the expressions ${J_{1}}_{\frac{1}{m}}, h_{1}$, etc., at the same time becoming $\Delta_{a+1}^{\frac{1}{m}}, h_{a+1}$, etc. Then we may put

$$
\begin{equation*}
X_{1}=x^{m}+\left(b z_{1}^{\frac{c-1}{c}}+d z_{1}^{\frac{c-2}{c}}+\text { etc. }\right) x^{m-1}+\text { etc. } \tag{17}
\end{equation*}
$$

where b, d, etc., are clear of $z_{1}{ }^{\frac{1}{c}}$. Therefore, because r_{1} is a root of the equation $X_{1}=0$,

$$
\begin{aligned}
& \left\{\frac{1}{m}\left(h_{1} J_{1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m} \\
& +\left(b z_{1}^{\frac{c-1}{c}}+d z_{1}^{\frac{c-2}{c}}+\text { etc. }\right)\left\{\frac{1}{m}\left(h_{1} J_{1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m-1}+\text { etc. }=0
\end{aligned}
$$

All the surds in this equation occur in the simplitied expression r_{1}. Therefore, by Prop. 1I.,

$$
\begin{aligned}
& \left\{\frac{1}{m}\left(h^{a+1} J_{a+1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m} \\
& +\left(b z_{2}^{\frac{c-1}{c}}+d z_{2}^{\frac{c-2}{c}}+\text { etc }\right)\left\{\frac{1}{m}\left(h_{a+1} \Delta_{a+1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m-1}+\text { etc. }=0
\end{aligned}
$$

Therefore $\frac{1}{m}\left(h_{a+1} \frac{\frac{m-1}{m}}{4_{a+1}}+\right.$ etc. $)$ or r_{a+1} is a root of the equation

$$
\begin{equation*}
X_{1}^{\prime}=x^{m}+\left(b z_{2}^{\frac{c-1}{c}}+\text { etc. }\right) x^{m-1}+\text { etc. }=0 \tag{18}
\end{equation*}
$$

Therefore also, by Cor. Prop. II., all the terms in (15) are roots of that equation. And, by Cor. 1, the terms in (15) are all unequal.
Therefore the equation $X_{1}=0$ has m unequal particular cognate forms of R for its roots.
§25. Cor. 3. No two of the expressions in (16), as x_{1} and X_{1}, are identical with one another. For, in order that X_{1} and X_{1} might be identical, the coefficients of the several powers of x in X_{1} would need to be equal to those of the corresponding powers of x in X_{1}^{\prime}; but, if
one of the coefficients of X_{1} be selected in which $z_{1}{ }^{\frac{1}{c}}$ is present, this coefficient can be shown to be unequal to the corresponding coefficient in X_{1} in the same way in which the terms in (15) were proved to be all unequal.
§26. Cor. 4. Any two of the terms in (16), as X_{1} and X_{1}, being selected, the equations $X_{1}=0$ and $X_{1}=0$ have no root in common. For, suppose, if possible, that these equations have a root in common. Taking the forms of X_{1} and X_{1} in (17) and (18), since r_{1} is a root of the equation $X_{1}^{\prime}=0$,

$$
\begin{equation*}
r_{1}^{m}+\left(b z_{2}^{\frac{c-1}{c}}+\text { etc. }\right) r_{1}^{m-1}+\text { etc. }=0 \tag{19}
\end{equation*}
$$

All the surds in this equation except $z_{2}{ }^{\frac{1}{c}}$ occur in r_{1}. It is impossible that $z_{2}{ }^{\frac{1}{c}}$ can occur in r_{1}; for, $z_{1}{ }^{\frac{1}{c}}$ occurs in r_{1}; and $z_{2}{ }^{\frac{1}{c}}=\theta_{1} z_{1}{ }^{\frac{1}{c}}$, θ_{1} being a primitive $c^{\text {th }}$ root of unity ; but this equation, if both $z_{1}{ }^{\frac{1}{c}}$ and $z_{2}^{\frac{1}{c}}$ occurred in r_{1}, would be of the inadmissible type (3). Since $z_{2}^{\frac{1}{c}}$ does not occur in r_{1}, it is a principal (see $\S 2$) surd in (19). We may, therefore, keeping in view that r_{1} is the expression (1) in which $\Delta_{1}^{\frac{1}{m}}$ is a principal surd, arrange (19) thas,

$$
\varphi\left(\Delta_{1}^{\frac{1}{m}}\right)=\Delta_{1}^{\frac{m-1}{m}}\left(p_{1} z_{2}^{\frac{c-1}{c}}+p_{2} z_{2}^{\frac{c-2}{c}}+\text { etc. }\right)
$$

$$
\begin{equation*}
+\Delta_{1}^{\frac{m-2}{m}}\left(q_{1} z_{2}^{\frac{c-1}{c}}+q_{2} z_{2}^{\frac{c-2}{c}}+\text { etc. }\right)+\text { etc. }=0 \tag{20}
\end{equation*}
$$

where p_{1}, q_{1}, etc., are clear of $z_{2}^{\frac{1}{c}}$. Then, ω_{1} being a primitive $m^{\text {th }}$ root of unity such that, by changing $\Delta_{1}^{\frac{1}{m}}$ into the $m^{\text {th }}$ root of Δ_{1} whose value is $\omega_{1} \Delta_{1}^{\frac{1}{m}}, r_{1}$ becomes r_{2},

$$
\begin{align*}
& \left.\left.\varphi\left(\omega_{1}\right\lrcorner_{1}^{\frac{1}{m}}\right)=\omega_{1}^{m-1} \frac{{ }^{\frac{m-1}{m}} J_{1}^{\frac{c-1}{m}}\left(p_{1} z_{2}^{c}\right.}{c}+\text { etc. }\right) \\
& +\omega_{1}^{m-2} J_{1}^{\frac{m-1}{m}}\left(q_{1} z_{2}^{\frac{c-1}{c}}+\text { etc. }\right)+\text { etc. } \tag{21}
\end{align*}
$$

The coefficients of the several powers of $\Delta_{1}^{\frac{1}{m}}$ in $\varphi\left(\Delta_{1}^{\frac{1}{m}}\right)$ cannot be all zero ; for, if they were, we should have, from (21), $\varphi\left(\omega_{1} \Delta_{1}^{\frac{1}{m}}\right)=0$. This means that r_{2} is a root of the equation $X_{1}^{\prime}=0$. But in like manner all the terms in (14) would be roots of that equation, and X_{1} would be identical with X; which, by Cor. 3 , is impossible. Since the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ in $\varphi\left(\Delta_{1}^{\frac{1}{m}}\right.$ are not all zero, the equation (20) gives us, by $\S 5, \omega J_{1}^{\frac{1}{m}}=l_{1}, \omega$ being
 of ${\Delta_{1}}_{\frac{1}{m}}$. In l_{1} we may conceive $z_{2}{ }^{\frac{1}{c}}$ changed into $\theta_{1} z_{1}{ }^{\frac{1}{c}}$. Then $l_{\mathbf{r}}$ involves only surds distinct from $\Delta_{1}^{\frac{1}{m}}$, all of then except the primitive $c^{\text {th }}$ root of unity θ_{1} being surds that oczur in r_{1}. This makes the equation $\omega \Delta_{1}^{\frac{1}{m}}=l_{1}$ of the inadmissible type (3). Heuce the equations $X_{1}=0$ and $X_{1}=0$ have no root in common.
§27. Cor. 5. Let X_{2} be the continued product of the terms in (16). Then X_{2}, modified according to $\S 21$, is clear of $z_{1}^{\frac{1}{c}}$, in the same way in which X_{1} is clear of $\frac{1}{J_{1}^{m}}$. Also since, by Cor. 2, each of the equations $X_{1}=0, X_{1}=0$, etc., has m unequal particular cognate forms of R for its roots, and since, by Cor. 4 , no two of these equations have a root in common, the $m c$ roots of the equation $X_{2}=0$ are uneq:al particular cognate forms of R.
§28. Proposition VI. Let the simplified expression r_{1}, modified according to $\S 21$, be a root of the rational irreducible equation of the $N^{\text {th }}$ degree, $F^{\prime}(x)=0$. Then if $\Delta_{1}^{\frac{1}{m}}$, not a root of unity, be a surd of the highest rank in r_{1}, N is a multiple of m. But if r_{1} involve only surds that are roots of unity, one of them being the primitive $n^{\text {th }}$ root of unity, N is a multiple of a measure of $n-1$.

First. let ${J_{1}}_{\frac{1}{m}}^{\text {, not a root of unity, be a surd of the highest rank }}$ in r_{1}. Taking the expression (1) to be r_{1}, let X_{1} be formed as in $\S 24$, and let it be modified according to $\S 21$. It is clear of the surd $\Delta_{1}^{\frac{1}{m}}$. Should it involve a surd that is not a root of unity, let X_{2} be formed as in $\S 27$. Setting out from r_{1} we arrived by one step at X_{1}, an expression clear of $\Delta_{1}^{\frac{1}{m}}$, and such that the roots of the equation $X_{1}=0$ are unequal particular cognate forms of R. A second step brought us to X_{2}, an expression clear of the additional surd $z_{1}^{\frac{1}{c}}$, and such that the $m c$ roots of the equation $X_{2}=0$ are unequal particular cognate forms of R. Thus we can go on till, in the series X_{1}, X_{2}, etc., we reach a term X_{e} into which no surds enter that are not roots of unity, the $m c \ldots l$ roots of the equation $X_{e}=0$ being unequal particular cognate forms of R. Should X_{e} modified according to $\S 21$, not be rational, its form, by Prop. IV., putting d for $m c \ldots l$, is

$$
X_{e}=x_{d}-\left(p_{1} C_{1}+\ldots+p_{m} C_{m}\right) x^{d-1}+\left(q_{1} C_{1}+\ldots+q_{m} C_{m}\right) x^{d-2}+\text { etc. }
$$

where, one of the roots occurring in X_{e} being the primitive $n^{\text {th }}$ root of unity ω_{1}, the coefticients p_{1}, q_{1}, etc., are clear of ω_{1}; and C_{1} is the sum of the cycle of primitive $n^{\text {th }}$ roots of unity (8) containing \boldsymbol{s} or $\frac{n-1}{m}$ terms ; and, the cycle (9) containing all the primitive $n^{\text {th }}$ roots of unity, the change of ω_{1} into ω_{1}^{β} causes C_{1} to become $C_{2} \cdot$, and C_{2} to become C_{3}, and so on, C_{m} becoming C_{1}. As was explained at the close of $\S 20$, the cycle (8) may be reduced to a single term, which is then identical with C_{1}. It will also not be forgotten that the roots of unity such as the $n^{\text {th }}$ here spoken of are, according to $\S 1$, subject to the condition that the numbers such as n are prime. When C_{1} in X_{e} is changed successively into C_{1}, C_{2}, etc., let X_{e} become

$$
\begin{equation*}
X_{e}, X_{e}^{\prime}, X_{e}^{\prime \prime}, \ldots, X_{e}^{(m-1)} \tag{22}
\end{equation*}
$$

If X_{c+1} be the continued product of the terms in (22), the $d m$ roots of the equation $X_{e+1}=0$ can be shown to be unequal particular engnate forms of R. For, no two terms in (22) as X_{e} and X_{e} are irlentical ; because, if they were, X_{e} would remain unaltered by the change of ω_{1} into ω_{1}^{β}; which, by Prop. IV., because ω_{1}^{β} is not a te::m in the cycle (δ), is impossible. It follows that no two of the equations $X_{e}=0, X_{e}=0$, etc., have a root in common. For, if the equations $L_{e}=0$, and $X_{e}=0$ had a root in common, since X_{e} and X_{e} are not identical. X_{e} would have a lower measure involving only surds found i! X_{e}, because the surds in X_{e} are the same with those in X_{e}. Let $\varsigma(x)$ be this lower measure of X_{e}, and let r_{1} be a root of the equittion $\varphi(x)=0$. Then, by Cor. Prop. II., all the d roots of the equation $X_{\epsilon}=0$ are roots of the equation $\varphi(x)=0$; which is impossible. In the same way it can be proved that no equation in the series $X_{e}=0, X_{e}=0$, etc., has equal roots. Since no one of these equations has equal roots, and no two of them have a root in common, the $d m$ roots of the equation $X_{e+1}=0$ are unequal $\rho^{\text {ar- }}$ ticular cognate forms of R. Also X_{e+1}, modified according to $\S \ddot{ } \ddagger$, is clear of the primitive $n^{\text {th }}$ roots of mnity. Should $X_{e}+1$ not Le rational, we can deal with it as we did with X_{e}. Going on in this way, we ultimately reach a rational expression X_{z} such that the $1 / m \ldots g$ roots of the equation $X_{z}=0$ are unequal particular *ngnate forms of R. This equation must be identical with the equation $F^{\prime}(x)=0$ of which r_{1} is a root. For, by Prop. III., the equation $F(x)=0$ has for its roots the unequal particular cognate forms of R. Therefore, becanse the roots of the equation $X_{z}=0$ are all unequal and are at the same time particular cognate forms of R, X_{z} must be either a lower measure of $F(x)$ or identical with $F^{\prime}(x)$. But $F(x)$, leing irreducible, has no lower measure. Therefore X_{z} is identical with $F^{\prime}(x)$. Therefore, the equation $F^{\prime}(x)=0$ being the $N^{\text {th }}$ degree, $V=m c \ldots l m \ldots g$. Hence N is a multiple of m. This is the result arrived at when r_{1} involves a surd of the highest rank $\frac{1}{\Delta_{1}^{m}}$ not a root of unity. Should r_{1} involve no surds except roots (see $\$ 1$) of unity, we should then have set out from X_{e} regarded as identical with $x-r_{1}$. The result would have been $N=m \ldots g$. Therefore N is a multiple of m; and, because m is here the number of cycles of s terms each, that make up the series of the primitive $n^{\text {th }}$ roots of unity, $m s=n-1$. Therefore N is a multiple of a measure of $n-1$.
§29. Cor. Let N be a prime number. Then, if r_{1} involve a surd of the highest rank $\Delta_{1}^{\frac{1}{m}}$ not a root (see §l) of unity, $N=m$; for,
the series of integers m, c, etc., of which N is the continued product, is reduced to its first term. If r_{1} involve only surds that are roots of unity, $n-1$ is a multiple of N; for $N=m \ldots g$; therefore, because N is prime, it is equal to m; but $m s=n-1$; therefore $n-1=8 N$.

The Solvable Irreducible Equation of the $m^{\text {th }}$ Degree, m Prime.

§30. The pricciples that have been established may be illustrated by an examination of the solvable irreducible rational equation of the $m^{\text {th }}$ degree $F(x)=0, m$ being prime. Two cases may be distinguished, though it will be found that the roots can in the two cases be brought under a common form ; the one case being that in which the simplified root r_{1} is, and the other that in which it is not, a rational function of roots of unity, that is, according to $\S 1$, of roots of unity having the denominators of their indices prime numbers. The equation $F(x)=0$ may be said to be in the former case of the first class, and in the latter of the second class.

The Equation $F(x)=0$ of the First Class.

§31. In this case, by Cor. Prop. VI., r_{1} being modified according to §21, if one of the roots involved in r_{1} be the primitive $n^{\text {th }}$ root of unity $\omega_{1}, n-1$ is a multiple of m. Also the expression written X_{θ} in Prop. VI. is reduced to $x-r_{1}$, so that

$$
r_{1}=p_{1} C_{1}+p_{2} C_{2}+\ldots+p_{m} C_{m}
$$

The m roots of the equation $F(x)=0$ being r_{1}, r_{2}, etc, we must have

For, by Prop. II., because r_{1} is a root of the equation $F^{\prime}(x)=0$, all the expressions on the right of the equations (23) are roots of that equation. And no two of these expressions are equal to one another. For, take the first two. If these were equal, we should have $\left(p_{m}-p_{1}\right) C_{1}+\left(p_{1}-p_{2}\right) C_{2}+$ etc. $=0$. Therefore, by $\S 13$, each of the terms $p_{m}-p_{1}, p_{1}-p_{2}$, etc., is zero. This makes p_{1}, p_{2}, etc., all equal to one another. Therefore $r_{1}=-p_{1}$; so that the primitive $n^{\text {th }}$ root of unity is eliminated from r_{1}; which, by $\S 21$, is impossible. Hence the values of the m roots of the equation $F(x)=0$ are those given in (23).
§32. Let r_{1} be one of the particular cognate forms of the generic expression h under which the simplified expression r_{1} falls. Then, because, by Prop. II., all the particular cognate forms of R are roots of the equation $F(x)=0, r_{1}$ is equal to one of the m terms r_{1}, r_{2}, ete., say to r_{s}. I will now show that the changes of the surds involved that cause r_{1} to become r_{1}, whose value is r_{z}, cause r_{2} to receive the value r_{z+1}, and r_{3} to receive the value r_{z+2}, and so on. This may appear obvious on the face of the equations (23) ; but, to prevent misunderstanding, the steps of the deduction are given. Any changes made in r_{1} must transform C_{1} into C_{8}, one of the m terms C_{1}, C_{2}, etc. In passing from r_{1} to r_{1}, while C_{1} becomes C_{8}, let r_{2} become r_{2}, and p_{1} become p_{1}, and p_{2} become p_{2}, and so on. The change that causes C_{1} to become C_{s} transforms C_{2} into C_{s+1}, and C_{3} into C_{s+2}, and so on. Therefore, it being understood that l_{m+1}, C_{m+1}, etc., are the same as p_{1}, C_{1}, etc., respectively,

$$
\begin{aligned}
r_{1}^{\prime} & =p_{1}^{\prime} C_{s}+{ }_{2}^{\prime} C_{s+1}+\text { etc. } \\
\text { and } r_{2} & =p_{m}^{\prime} C_{s}+p_{1}^{\prime} C_{s+1}+\text { etc. } ;
\end{aligned}
$$

which may be otherwise written

$$
\left.\begin{array}{rl}
\prime \tag{24}\\
r_{1} & =\stackrel{\prime}{p_{m}+2-s} C_{1}+p_{m+3-s}^{\prime} C_{2}+\text { etc. }, \\
\prime \\
r_{2} & =p_{m+1-\delta}^{\prime} C_{1}+p_{m+2-8}^{\prime} C_{2}+\text { etc. }
\end{array}\right\}
$$

Therefore, form (24) and (23),

$$
C_{1}\left(p_{m+2-z}-p_{m+2-z}^{\prime}\right)+C_{2}\left(p_{m+3-z}-p_{m+3-8}^{\prime}\right)+\text { etc. }=0
$$

Therefore, by $\S 13, p_{m+2-s}=p_{m+2-z}, p_{m+3-s}=p_{m+3-z}$, etc.
Hence the second of the equations (24) becomes

$$
r_{2}=p_{m+1-z} C_{1}+p_{m+2-} C_{2}+\text { etc. }=r_{z+1}
$$

Thus r_{22} is transformed into r_{z+1}. In like manner r_{3} receives the value $r_{z}+2$, and so on.
§33. By Cor: Prop. VI., the primitive $n^{\text {th }}$ root of unity being one of those involved in $r_{1}, n-1$ is a multiple of m. In like manner, if the primitive $a^{\text {th }}$ root of unity be involved in $r_{1}, a-1$ is a mnltiple of m, and so on. Therefore, if t_{1} be the primitive $m^{\text {th }}$ root of unity, t_{1} is distinct from all the roots involved in r_{1}.
§34. From this it follows that, if the circle of roots r_{1}, r_{2}, \ldots, \boldsymbol{r}_{m}, be arranged, beginning with r_{c}, in the order r_{a}, r_{c+1}, r_{c+2}, etc., and again, beginning with r_{s}, in the order r_{s}, r_{s+1}, r_{s+2}, etc., and if, t_{1}^{a} being one of the primitive $m^{\text {th }}$ roots of unity,
$r_{c}+r_{c+1} t_{1}+r_{c+2} t_{1}^{2}+$ etc. $=r_{s}+r_{s+1} t_{1}^{a}+r_{s+2} t_{1}^{2 a}+$ etc.(25)
$r_{c}=r_{s}$. It is understood that in the series r_{c}, r_{c+1}, etc., when r_{m} is reached, the next in order is r_{1}, so that r_{m+1} is the same as r_{1}, and so on. In like manner r_{s+1} is the same as r_{1}, and so on. Since r_{1}, r_{2}, etc., do not involve the primitive $m^{\text {th }}$ root of unity t_{1}, we can, by $\S 12$, substitute for t_{1} in (25) successively the different primitive $m^{\text {th }}$ roots of unity. Let this be done. Then, by addition, $m r_{c}-\left(r_{1}+r_{2}+\right.$ etc. $)=m r_{s}-\left(r_{1}+r_{2}+\right.$ etc. $)$. Therefore $r_{c}=r_{s}$.

§35. Proposition VII. Putting

$$
\left.\begin{array}{rl}
\Delta_{1}^{\frac{1}{m}} & =r_{1}+t_{1} r_{2}+t_{1}^{2} r_{3}+\ldots+t_{1}^{m-1} r_{m} \tag{26}\\
\frac{1}{\frac{1}{m}} & =r_{1}+t_{1}^{2} r_{2}+t_{1}^{4} r_{3}+\ldots \ldots+t_{1}^{2(m-1)} r_{m} \\
\Delta_{2} \ldots \cdots \cdots+t_{1} r_{m} \\
\cdots \cdots \cdots \cdots
\end{array}\right\}
$$

the terms,

$$
\begin{equation*}
\Delta_{1}, \Delta_{2}, \Delta_{3}, \ldots, \Delta_{m-1} \tag{27}
\end{equation*}
$$

are the roots of a rational irreducible equation of the $(m-1)^{\text {th }}$ degree $\varphi(x)=0$, which may be said to be auxiliary to the equation $F^{\prime}(x)=0$.

For, let Δ be the generic expression of which Δ_{1} is a particular cognate form ; and let Δ^{\prime} denote any one indifferently of the $m-1$ particular cognate forms of Δ in (27). Because, by $\S 33$, the primitive $m^{\text {th }}$ root of unity does not enter into r_{1}, r_{2}, etc., no changes made in r_{1}, r_{2}, etc., affect t_{1}. Also, by $\S 32$, if r_{1} becomes r_{z}, r_{2} becomes r_{z+1}, r_{3} becomes r_{z+2}, and so on. Therefore the expression

$$
\left(r_{z}+t r_{z+1}+t^{2} r_{z+2}+\text { etc. }\right)^{m}
$$

contains all the particular cognate forms of Δ; where z may be any number in the series $1,2, \ldots, m-1$; and t denotes any one indifferently of the primitive $m^{\text {th }}$ roots of unity. But this is equal to

$$
\left\{t^{1-z}\left(r_{1}+t r_{2}+t^{\imath} r_{3}+\text { etc. }\right)_{i^{m}}^{m} \text { or } \Delta^{\prime} .\right.
$$

The conclusion established means that all the differences of value that can present themselves in the particular cognate forms of Δ must arise
from the different values of t that are taken in J^{\prime}, while the expressions r_{1}, r_{2}, etc., remain unaltered. And t has not more than $m-1$ values. Hence there are not more than $m-1$ unequal particular cognate forms of d. But the $m-1$ forms obtained by taking the different values of t in Δ^{\prime} are all unequal. For, selecting t_{1} and t_{1}^{a}, two distinct values of t, suppose if possible that

$$
\begin{aligned}
& \left(r_{1}+t_{1} r_{2}+\text { etc. }\right)^{m}=\left(r_{1}+t_{1}^{a} r_{2}+\text { etc. }\right)^{m} \\
& \quad . \cdot t_{1}^{s}\left(r_{1}+t_{1} r_{2}+\text { etc. }\right)=r_{1}+t_{1}^{a} r_{2}+\text { etc. }
\end{aligned}
$$

s being a whole number. This may be written

$$
\begin{equation*}
r_{m+1-s}+r_{m+2-s} t_{1}+\text { etc. }=r_{1}+t_{1}^{a} r_{2}+\text { etc. } \tag{28}
\end{equation*}
$$

Therefore, by $\S 34, r_{n+1-s}=r_{1}$. This means, since all the m terms r_{1}, r_{2}, etc., are unequal, that $s=0$. Hence (28) becomes

$$
r_{1}+r_{2} t_{1}+\text { etc. }=r_{1}+r_{2} t_{1}^{a}+\text { etc. }
$$

Therefore

$$
\begin{aligned}
r_{2}+r_{3} t_{1}^{a}+\text { etc. } & =r_{2} t_{1}^{1-a}+r_{3} t_{1}^{2-a}+\text { etc. } \\
& =r_{a+1}+r_{a+2} t_{1}+\text { etc. }
\end{aligned}
$$

Therefore, by $\S 35, r_{2}=r_{a+1}$. Therefore, because all the m terms r_{1}, r_{2}, etc., are unequal, $a=1$; which, because t_{1} and t_{1}^{a} were supposed to be distinct primitive $m^{\text {th }}$ roots of unity, is impossible. Therefore no two of the terms in (27) are equal to one another. And it has been proved that there is no particular cognate form of Δ which is not equal to a term in (27). Therefore the terms in (27) are the unequal particular cognate forms of Δ. Therefore, by Prop. III., they are the roots of a rational irreducible equation.
§36. Proposition VIII. The roots of the equation $\varphi(x)=0$ auxiliary (see $\S 35$) to $F(x)=0$ are rational functions of the primitive $m^{\text {th }}$ root of unity.

For, let the value of A_{1}, obtained from (26), and modified according to $\S 21$, be

$$
\lrcorner_{1}=k_{1}+k_{2} t_{1}+k_{3} t_{1}^{2}+\ldots+k_{m} t_{1}^{m-1}
$$

where k_{1}, k_{2}, etc., are clear of t_{1}. Suppose if possible that k_{1}, k_{2}, etc., are not rational. We may take the primitive $n^{\text {th }}$ root of unity ω_{1} to be present in these coefficients. But ω_{1} occurs in r_{1}, r_{2}, etc., and therefore also in Δ_{1}, only in the expressions C_{1}, C_{2}, etc. Therefore $\lrcorner_{1}=d_{1} C_{1}+\ldots+d_{m} C_{m}$; where d_{1}, etc., are clear of ω_{1}. The coefficients d_{1}, d_{2}, etc., cannot all be equal ; for this would make $\lrcorner_{1}=-d_{1}$; which, by $\S 21$, is impossible. Hence m unequal
values of the generic expression Δ are obtained by changing C_{1} suceessively into C_{1}, C_{2}, etc., namely,

$$
\begin{gathered}
d_{1} C_{1}+d_{2} C_{2}+\ldots+d_{m} C_{m} \\
d_{m} C_{1}+d_{1} C_{2}+\ldots \ldots+d_{m-1} C_{m} \\
\ldots \ldots \ldots m_{1} \\
d_{2} C_{1}+d_{3} C_{2}+\ldots \ldots+d_{1} C_{m}
\end{gathered}
$$

To show that these expressions are all unequal, take the first two. If these were equal, we should have

$$
\left(d_{m}-d_{1}\right) C_{1}+\left(d_{1}-d_{2}\right) C_{2}+\text { etc. }=0
$$

Therefore, by $\S 13, d_{m}-d_{1}=0, d_{1}-d_{2}=0$, and so on ; which, because d_{1}, d_{2}, etc., are not all equal to one another, is impossible. Since then Δ has at least m unequal particular cognate forms, Δ_{1} is, by Prop. III., the root of a rational irreducible equation of a degree not lower than the $m^{\text {th }}$; which, by Prop. VII., is impossible. Therefore k_{1}, k_{2}, etc., are rational. Hence each of the expressions in (27) is a rational function of t_{1},
§37. Cor. Any expression of the type $k_{1}+k_{2} t_{1}+k_{3} t_{1}^{2}+$ etc., which is such that all the unequal particular cognate forms of the generic expression under which it falls are obtained by substituting for t_{1} successively the different primitive $m^{\text {th }}$ roots of unity, while k_{1}, k_{2}, etc., remain unaltered, is a rational function of t_{1}. For, in the Proposition, Δ_{1} or $k_{1}+k_{2} t_{1}+$ etc. was shown to be a rational function of t_{1}, the conclusion being based on the circumstance that J_{1} satisfies the condition specified.
§38. Proposition IX. If g be the sum of the roots of the equation $F(x)=0$,

$$
\begin{gather*}
r_{2}=\frac{1}{m}\left(g+\Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{2}{m}}+b_{1} \Delta_{1}^{\frac{3}{m}}+\ldots\right. \\
\left.+e_{1} \Delta_{1}^{\frac{m-2}{m}}+h_{1} \Delta_{1}^{\frac{m-1}{m}}\right) \tag{29}
\end{gather*}
$$

For, z being one of the whole numbers, $1,2, \ldots, m-1$, put
$p_{z}=\left(r_{1}+t_{1}^{\varepsilon} r_{2}+t_{1}^{2 z} r_{3}+\right.$ etc. $)\left(r_{1}+t_{1} r_{2}+t_{1}^{2} r_{3}+\text { etc. }\right)^{-z}$. (30)
Multiply the first of its factors by t_{1}^{-z} and the second by t_{1}^{z}. Then
$p_{z}=\left(r_{2}+t_{1}^{z} r_{3}+t_{1}^{2 z} r_{4}+\right.$ etc. $)\left(r_{2}+t_{1} r_{3}+t_{1}^{2} r_{4}+\text { etc. }\right)^{-z}$.
Hence $p_{\boldsymbol{z}}$ does not alter its value when we change r_{1} into r_{2}, r_{2} into r_{3}, and so on. In like manner it does not alter its value when we
change r_{1} into r_{a}, r_{2} into r_{a+1}, and so on. Therefore, by $\S 33, p_{z}$ is not changed by any alterations that may be made in r_{1}, r_{2}, etc., while t_{1} remains unaltered. Consequently, if p_{z} be a particular cognate form of P, all the unequal particular cognate forms of P are obtained by substituting for t_{1} successively in p_{z} the different primitive $m^{\text {th }}$ roots of unity, while r_{1}, r_{2}, etc., remain unaltered. Therefore, by Cor., Prop. VIII., p_{z} is a rational function of t_{1}. When $z=2$, let $p_{z}=a_{1}$; when $z=3$, let $p_{z}=b_{1}$, and so on. Then, from
(26) and (30), $\Delta_{2}^{\frac{1}{m}}=a_{1} \Delta_{1}^{\frac{2}{m}}, \Delta_{3}^{\frac{1}{m}}=b_{1} \Delta_{1}^{\frac{3}{m}}$ and so on. But, from (27), since g is the sum of the roots of the equation $F(x)=0$,

$$
r_{1}=\frac{1}{m}\left(g+\Delta_{1}^{\frac{1}{m}}+\Delta_{2}^{\frac{1}{m}}+\ldots+\Delta_{m-1}^{\frac{1}{m}}\right) .
$$

By putting $a_{1} \Delta_{1}^{\frac{2}{m}}$ for $\Delta_{2}^{\frac{1}{m}}, b_{1} \Delta_{1}^{\frac{3}{m}}$ for $\Delta_{3}^{\frac{1}{m}}$ and so on, this becomes
(29). Because a_{1}, b_{1}, etc., are rational functious of t_{1}, while Δ_{1}, the root of a rational irreducible equation of the $(m-1)^{\text {th }}$ degree, is also a rational function of t_{1}, the coefficients a_{1}, b_{1}, etc., involve no surd that is not subordinate to $\Delta_{1}^{\frac{1}{m}}$.
§39. Proposition X. If the prime number m be odd, the expressions

$$
\begin{equation*}
J_{1}^{\frac{1}{J^{n}}} \Delta_{m-1}^{\frac{1}{m}}, \Delta_{2}^{\frac{1}{m}} \Delta_{m-2}^{\frac{1}{m}}, \ldots, \Delta_{\frac{m-1}{2}}^{\frac{1}{m}} \Delta_{\frac{m+2}{m}}^{\frac{1}{m}} \tag{32}
\end{equation*}
$$

are the ronts of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree.
By $\S 32$, when r_{1}, is charged into r_{z}, r_{2} becomes r_{z+1}, r_{3} becomes r_{z+2}, and so on. Hence the terms $r_{1} r_{2}, r_{2} r_{3}, \ldots r_{m} r_{1}$, form a cycle, the sum of the terms in which may be denoted by the symbol Σ_{2}^{1}. In like manner the sum of the terms in the cycle $r_{1} r_{3}, r_{2} r_{4}$, $\ldots, r_{m} r_{2}$, may be written Σ_{3}^{1}. And so on. In harmony with this notation, the sum of the m terms r_{1}^{2}, r_{2}^{2}, etc., may be written Σ_{1}^{1}. Now r_{1} can only be changed into one of the terms r_{1}, r_{2}, etc. ; and we have seen that, when it becomes r_{z}, r_{2} becomes $r_{z}+1$, and so on. Suct changes leave the cycle $r_{1} r_{2}, r_{2} r_{3}$, etc., as a whole unaltered.

Therefore, by Prop. III., Σ_{2}^{1} is the root of a simple equation, or has a rational value. In like manner each of the expressions

$$
\begin{equation*}
\Sigma_{1}^{1}, \Sigma_{2}^{1}, \Sigma_{3}^{1}, \ldots, \Sigma_{m}^{2} \tag{33}
\end{equation*}
$$

has a rational value. From (26), by actual multiplication,

$$
\Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}=\Sigma_{1}^{1}+\left(\Sigma_{2}^{1}\right) t_{1}+\left(\Sigma_{3}^{1}\right) t_{1}^{2}+\text { etc. }
$$

But $\Sigma_{2}^{1}, \Sigma_{3}^{1}$, etc., are respectively identical with $\Sigma_{m}^{1}, \Sigma_{m-1}^{1}$, etc. Therefore

$$
\Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}=\Sigma_{1}^{1}+\left(\Sigma_{12}^{1}\right)\left(t_{1}+t_{1}^{-1}\right)+\left(\Sigma_{3}^{1}\right)\left(t_{1}^{2}+t_{1}^{-2}\right)+\text { etc. }(34)
$$

Hence, since the terms in (33) are all rational, and since the terms in (32) are respectively what $\Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}$ becomes by changing t_{1} successively into the $\frac{m-1}{2}$ terms t_{1}, t_{1}^{2}, etc., the terms in (32) are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree.
$\S 40$. For the solution of the equation $x^{n}-1=0, n$ being a prime number such that m is a prime measure of $n-1$, it is necessary to obtain the solution of the equation of the $m^{\text {th }}$ degree which has for one of its roots the sum of the $\frac{n-1}{m}$ terms in a cycle of primitive $n^{\text {th }}$ roots of unity. This latter equation will be referred to as the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation

$$
x^{n}-1=0
$$

$\S \nmid 1$. Proposition XI. When the equation $F(x)=0$ is the reducing Gaussian (see §40) of the $m^{\text {th }}$ degree to the equation $x^{n}-1=0$, each of the $\frac{m-1}{2}$ expressions in (32) is equal to n.

Let the sum of the primitive $n^{\text {th }}$ roots of unity forming the cycle (8), which sum has in preceding sections been indicated by the symbol C_{1}, be the root r_{1} of the equation $F(x)=0$. This implies, since s is the number of the terms in (8), that $m s=n-1$. Let us reason first on the assumption that the cycle (8) is made up of pairs of reciprocal roots ω_{1} and ω_{1}^{-1}, and so on. Then, because the cycle consists of $\frac{s}{2}$ pairs of reciprocal roots, C_{1}^{2} or r_{1}^{2} is the sum of
s^{2} terms, each an $n^{\text {th }}$ root of unity. Among these unity occurs s times. Let ω_{1} occur h_{1} times; and let ω_{1}^{λ} the second term in (8), occur h^{\prime} times. Since ω_{1}^{λ} may be made the first term in the cycle (8), it must, under the new arrangement, present itself in the value of r_{1}^{2}, precisely where ω_{1} previously appeared. That is to say, $h^{\prime}=h_{1}$. In like manner each of the terms in (8) occurs exactly h_{1} times in the expression for r_{1}^{2}. The cycle (9) being that which contains all the primitive $n^{\text {th }}$ roots of unity, let us, adhering to the notation of previous sections, suppose that, when ω_{1} is changed into $\omega_{1}^{\beta}, C_{1}$ or r_{1} becomes C_{2} or r_{2}, C_{2} or r_{2} becomes C_{3} or r_{3}, and so on. On the same grounds on which every term in (8) occurs the same number of times in the value of r_{1}^{2}, each term in the cycle of terms whose sum is C_{2} occurs the same number of times; and so on. Therefore

$$
\begin{aligned}
& r_{1}^{2}=s+h_{1} C_{1}+h_{2} C_{2}+\ldots \ldots+h_{m} C_{m} \\
& r_{2}^{2}=s+h_{m} C_{1}+h_{1} C_{2}+\ldots \ldots+h_{m-1} C_{m} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+h_{1} C_{m} \\
& r_{i n}^{2}=s+h_{2} C_{1}+h_{3} C_{2}+\ldots \ldots+h_{1}
\end{aligned}
$$

Therefore, keeping in view (11), $\Sigma_{1}^{1}=m s-\left(h_{1}+h_{2}+\ldots+h_{m}\right)$. But $s^{2}-s$ is the number of the terms in the value of r_{1}^{2} which are primitive $n^{\text {th }}$ roots of unity. A nd this must be equal to

$$
s\left(h_{1}+\ldots+h_{m}\right)
$$

Therefore
$h_{1}+h_{2}+\ldots+h_{m}=s-1 . \cdot \Sigma_{1}^{1}=m s+1-s=n-s$.
Again, because r_{1} is made up of pairs of reciprocal roots, and because therefore unity does not occur among the s^{2} terms of which $r_{1} r_{2}$ is the sum,

$$
\begin{aligned}
& r_{1} r_{2}=k_{1} C_{1}+k_{2} C_{2}+\ldots \ldots+k_{m} C_{m} \\
& r_{2} r_{3}=k_{n} C_{1}+k_{1} C_{2}+\ldots \ldots+k_{m-1} C_{m} \\
& \cdots \cdots+\cdots \cdots \\
& r_{m} r_{1}=k_{2} C_{1}+k_{3} C_{2}+\ldots \ldots+k_{1} C_{m}
\end{aligned}
$$

where k_{1}, k_{2}, etc., are whole numbers whose sum is s. Therefore $\stackrel{\rightharpoonup}{2}_{2}^{1}=-s$. In like manner each of the terms in (33) except the first is equal to $-s$. Therefore (34) becomes

$$
J_{1}^{\frac{1}{m}} J_{m-1}^{\frac{1}{m}}=(n-s)-s\left(t_{1}+t_{1}^{2}+\text { etc. }\right)=n
$$

Let us reasun now on the assumption that the cycle (8) is not made up of pairs of reciprocal roots. It contains in that case no reciprocal roots. By the same reasoning as ahove we get $\Sigma_{1}^{1}=-s$. As regards the terms in (33) after the first, one of the terms C_{1}, C_{2}, etc., say C_{z}, must be such that the $n^{\text {th }}$ roots of unity of which it is the sum are reciprocals of those of which C_{1} is the sum. In passing from C_{1} to C_{z}, we change r_{1} into r_{z}. In fact, C_{1} being r_{1}, C_{z} is r_{z}. This being kept in view, we get, by the same reasoning as above, $\Sigma_{z}^{1}=n-s$. But, if any of the expressions C_{1}, C_{2}, etc., except C_{s} be selected, say C_{a}, none of the roots in (8) are reciprocals of any of those of which C_{a} is the sum. Therefore $\Sigma_{a}^{1}=-s$. Therefore, from (34)

$$
\begin{aligned}
& \Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}=-s+(n-s) t_{1}^{z-1} \\
& -s\left\{\left(t_{1}+t_{1}^{2}+\cdots+t_{1}^{m-1}\right)-t_{1}^{z-1}\right\}=n
\end{aligned}
$$

In like manner every one of the expressions in (34) can be shown to have the value n.
§42. Two numerical illustrations of the law established in the preceding section may be given. The reducing Gaussian equation of the third degree to the equation $x^{19}-1=0$ is $x^{y}-x^{2}-6 x-7=0$; which gives

$$
\begin{gathered}
r_{1}=\frac{1}{3}\left(-1+\Delta_{1}^{\frac{3}{3}}+\Delta_{2}^{\frac{3}{3}}\right), \\
2 \Delta_{1}=19(7+3 \sqrt{ } 3), \\
2 \Delta_{2}=19(7-3 \sqrt{ } 3), \\
\\
\quad \Delta_{1}^{\frac{3}{3}} \Delta_{2}^{\frac{3}{3}}=19 .
\end{gathered}
$$

The next example is taken from Lagrange's Theory of Algebraical Equations, Note XIV., $\S 30$. The Gaussian of the fifth degree to the equation $x^{11}-1=0$ is $x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1=0$; which gives

$$
\begin{aligned}
r_{1}= & \frac{1}{5}\left(-1+\Delta_{1}^{\frac{1}{5}}+\Delta_{2}^{\frac{1}{5}}+\Delta_{3}^{\frac{1}{5}}+\Delta_{4}^{\frac{1}{5}}\right) \\
4 \Delta_{1}= & 11(-89-25 \sqrt{ } 5+5 p-45 q) \\
4 \Delta_{2}= & 11(-89+25 \sqrt{ }-45 p-5 q) \\
4 \Delta_{4}= & 11(-89-25 \sqrt{ } 5-5 p+45 q) \\
4 \Delta_{3}= & 11(-89+25 \sqrt{ } 5+45 p+5 q) \\
& p=\sqrt{ }(-5-2 \sqrt{ } 5) \\
& q-\sqrt{ }(-5+2 \sqrt{ } 5) \\
& p q=-\sqrt{ }=1 \cdot \Delta_{1} \Delta_{4}=11^{5}
\end{aligned}
$$

§43. Proposition XII. To solve the Gaussian.

The path we have been following leads directly, assuming the primitive $m^{\text {th }}$ root of unity t_{1} to be known, to the solution of the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation $x^{n}-1=0$. For, as in $\S 41$, the roots of the Gaussian are C_{1}, C_{2}, etc. Therefore g, the sum of the roots, is -1 . Therefore

$$
\begin{equation*}
r_{1}=\frac{1}{m}\left(-1+\Delta_{1}^{\frac{1}{m}}+\Delta_{2}^{\frac{1}{m}}+\ldots+\Delta_{m-1}^{\frac{1}{m}}\right) \tag{35}
\end{equation*}
$$

By Prop. VIII., Δ_{1}, Δ_{2}, etc., are rational functions of t_{1}. Therefore

$$
\begin{align*}
& \Delta_{1}=k_{1}+k_{2} t_{1}+k_{3} t_{1}^{2}+\ldots+k_{m} t_{1}^{m-1} \\
& \Delta_{2}=k_{1}+k_{2} t_{1}^{2}+k_{3}{ }_{t_{1}}^{4}+\ldots+k_{m} t_{1}^{2(m-1)} \tag{36}\\
& \Delta_{m-1}=k_{1}+k_{2}{\overline{t_{1}}}^{-1}+k_{3}{\overline{t_{1}}}^{-2}+\ldots+k_{m} t_{1} ;
\end{align*}
$$

where k_{1}, k_{2}, etc., are rational. From the first of equations (26), putting C_{1} for r_{1}, C_{2} for r_{2}, and so on,

$$
\Delta_{1}=\left(C_{1}+t_{1} C_{2}+\text { etc. }\right)^{m}
$$

By actual involution this gives us k_{1}, k_{2}, etc., as determinate functions of C_{1}, C_{2}, etc., and therefore as known rational quantities. For instance take k_{1}. Being a determinate function of C_{1}, C_{2}, etc., we have

$$
k_{1}=q_{1}+q_{2} C_{1}+q_{3} C_{2}+\ldots+q_{m} C_{m-1}
$$

where q_{1}, q_{2}, etc., are known rational quantities. But, by $\S 13$, the rational coefficients $q_{1}-k_{1}, q_{2}$, etc., are all equal to one another. Therefore $k_{1}=q_{1}-q_{2}$. In like manner k_{2}, k_{3}, etc., are known. Therefore, from (36), Δ_{1}, Δ_{2}, etc., are known. Therefore, from (35), r_{1} is known.
§44. Proposition XIII. The law established in Prop. X falls under the following more general law. The $m-1$ expressions in each of the groups

$$
\left.\begin{array}{cccc}
\left(\Delta_{1}^{\frac{1}{m}}\right. & \Delta_{m-1}^{\frac{1}{m}}, & \left.\Delta_{2}^{\frac{1}{m}} \Delta_{m-2}^{\frac{1}{m}}, \ldots, \Delta_{m-1}^{\frac{1}{m}} \Delta_{1}^{\frac{1}{m}},\right) \tag{37}\\
\left(\Delta_{1}^{m}\right. & \Delta_{m-2}^{\frac{1}{m}}, & \Delta_{2}^{\frac{2}{m}} & \left.\Delta_{m-4}^{\frac{1}{m}}, \ldots, \Delta_{m-1}^{\frac{2}{m}} \Delta_{2}^{\frac{1}{m}},\right) \\
\left(\frac{3}{m}\right. & \Delta_{1}^{\frac{1}{m}} & \Delta_{m-3}^{\frac{3}{m}} & \left.\Delta_{2}^{\frac{1}{m}} \Delta_{m-6}^{\frac{1}{m}}, \ldots, \Delta_{m-1}^{\frac{3}{m}} \Delta_{3}^{\frac{1}{m}}:\right)
\end{array}\right\}
$$

and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree.

The $m-1$ terms in the first of the groups (37) are the $\frac{m-1}{2}$ terms in (32) each taken twice. Therefore, by Prop. X., the law enunciated in the present Proposition is established so far as this groupe is concerned. The general proof is as follows. By (30) in $\S 38$, taken in connection with (26), $p_{m-z} \Delta_{1}^{\frac{m-z}{m}}=\Delta_{m-z}^{\frac{1}{m}}$. Therefore $\Delta_{1}^{\frac{z}{m}} \Delta_{m-z}^{\frac{1}{m}}=p_{m-z} \Delta_{1}$. But, by $\S 38, p_{m-z}$ is a rational function of t_{1}; and, by Prop. VIII., Δ_{1} is a rational function of t_{1}. Therefore $\Delta_{1}^{\frac{z}{m}} \Delta_{m-s}^{\frac{1}{m}}$ is a rational function of t_{1}. Also from the manner in which p_{m-z} is formed, when t_{1} in $p_{m-2} \Delta_{1}$ is changed sucessively into $t_{1} t_{1}^{2}, \ldots, t_{1}^{m-1}$, the expression $\Delta_{1}^{\frac{z}{m}} \Delta_{-m-z}^{\frac{1}{m}}$ is changed successively into the $m-1$ terms of that one of the groups (37) whose first term is $\Delta_{1}^{\frac{z}{m}} \Delta_{m-z}^{\frac{1}{m}}$. Therefore the terms in that group are the roots of a rational equation.
§45. Cor. The law established in the Proposition may be brought under a yet wider generalization. The expression

$$
\begin{equation*}
\Delta_{1}^{\frac{a}{m}} \Delta_{2}^{\frac{b}{m}} \Delta_{3}^{\frac{c}{m}} \ldots \Delta_{m-1}^{\frac{s}{m}} \tag{38}
\end{equation*}
$$

is the root of a rational equation of the $(m-1)^{\text {th }}$ degree, if

$$
a+2 b+3 c+\ldots+(m-1) s=W m
$$

W being a whole number. For, by (30) in connection with (26), $\Delta_{2}^{\frac{1}{m}}=p_{2} \Delta_{1}^{\frac{2}{m}}, \Delta_{3}^{\frac{1}{m}}=p_{3} \Delta_{3}^{\frac{1}{m}}$, and so on. Therefore (38) has the value

$$
\left(p_{2}^{b} p_{p_{3}^{c}}^{c} \ldots\right) \frac{a+2 b+3 c+\ldots+(m-1) s}{\Delta_{1}} \text {, or }\left(\begin{array}{cc}
b & c \\
p_{2} & \left.p_{3} \ldots\right)
\end{array} \Delta_{1}^{W}\right.
$$

This is a rational function of t_{1}, and therefore the root of a rational equation of the $(m-1)^{\text {th }}$ degree.

The Equation $F^{\prime}(x)=0$ of the Second Class.

$\S 46$. We now suppose that the simplified root r_{1} of the rational irreducible equation $F^{\prime}(x)=0$ of the $m^{\text {th }}$ degree, m prime, involves, when modified according to $\S 21$, a principal surd not a root of unity. It must not be forgotten that, when we thus speak of roots of unity, we mean, according to $\S 1$, roots which have prime numbers for the denominators of their indices. In this case conclusions can be established similar to those reached in the case that has been considered. The root r_{1} is still of the form (29). The equation $F(x)=0$ has still an auxiliary of the $(m-1)^{\text {th }}$ degree, whose roots are the $m^{\text {th }}$ powers of the expressions

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{m}}, a_{1} \Delta_{1}^{\frac{2}{m}}, b_{1} \Delta_{1}^{\frac{3}{m}}, \ldots, e_{1} \Delta_{1}^{\frac{m-2}{m}}, h_{1} \Delta_{1}^{\frac{m-1}{m}} \tag{39}
\end{equation*}
$$

though the auxiliary here is not necessarily irreducible. Also, sub. stituting the expressions in (39) for $\Delta_{1}^{\frac{1}{m}} \Delta_{2}^{\frac{1}{m}}$, etc., in (37), the law of Proposition XIII. still holds, together with corollary in $\S 45$.
§47. By Cor. Prop. VI., the denominator of the index of a surd of the highest rank in r_{1} is m. Let $\Delta_{1}^{\frac{1}{m}}$ be such a surd. By $\S 21$, the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ in r_{1} cannot be all zero. We may take the coefficient of the first power to be distinct from zero and to be $\frac{1}{m}$ for, if it were $\frac{k_{1}}{m}$, we might substitute $s^{\frac{1}{m}}$ for $k_{1} \Delta_{1}^{\frac{1}{m}}$, and so eliminate ${\Delta_{1}}_{\frac{1}{m}}$ from r_{1}, introducing in its room the new surd $s^{\frac{1}{m}}$ with $\frac{1}{m}$ for the coefficient of its first power. We may then put $r_{1}=\frac{1}{m}\left(g+\Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{3}{m}}+\ldots+e_{1} \Delta_{1}^{\frac{m-2}{m}}+h_{1} \frac{1}{1}_{\frac{m-1}{m}}\right) ;$ where g, a_{1}, etc., are clear of ${\Delta_{1} \frac{1}{m}}^{\text {. When }}{\Delta_{1}^{\frac{1}{m}} \text { is changed succes- }}^{\text {a }}$ sively into $\Delta_{1}^{\frac{1}{m}}, t_{1}^{-1} \Delta_{1}^{\frac{1}{m}}, t_{1}^{-2} \frac{1}{\Delta_{1}^{m}}$, etc., let

$$
\begin{equation*}
r_{1}, r_{2}, \ldots . r_{m} \tag{41}
\end{equation*}
$$

be respectively what r_{1} becomes, t_{1} being a primitive $m^{\text {th }}$ root of unity. By Prop. VI., the terms in (41) are the roots of the equation $F(x)=0$. Taking r_{n}, any one of the particular cognate forms of R, let $\Delta_{n}^{\frac{1}{m}}, a_{n}$, etc., be respectively what $\Delta_{1}^{\frac{1}{m}}, a_{1}$, etc., become in passing from r_{1} to r_{n}; and when $\Delta_{n}^{\frac{1}{m}}$ is changed successively into the different $m^{\text {th }}$ roots of the determinate base Δ_{n}, let r_{n} become

$$
\begin{equation*}
r_{n}, r_{n}^{\prime}, r_{n}^{\prime \prime}, \ldots, r_{n}^{(m-1)} \tag{42}
\end{equation*}
$$

By Prop. II., the terms in (42) are ronts of the equation $F^{\prime}(x)=0$; and, by $\S 23$, they are all unequal. Therefore they are identical, in some order, with the terms in (41). Also, the sum of the terms in (41) is g. Therefore g is rational.
\$48. Proposition XIV. In r_{1}, as expressed in (40), $\Delta_{1}^{\frac{1}{m}}$ is the only principal (see §2) surd.

Suppose, if possible, that there is in r_{1} a principal surd $z_{1}{ }^{\frac{1}{c}}$ distinct
 in view that when, in such a case, we speak of roots of unity, the denominators of their indices are understood, according $\S 1$, to be prime numbers.) When $z_{1}^{\frac{1}{c}}$ is changed into $z_{2}^{\frac{1}{c}}$, one of the other $c^{\text {th }}$ roots of z_{1}, let r_{1}, a_{1}, etc., become respectively r_{1}, a_{1}, etc. Then

$$
\begin{equation*}
\stackrel{\prime}{m r_{1}},=g+\Delta_{1}^{\frac{1}{m}}+a_{1}^{\prime} \frac{2}{\Delta_{1}^{m}}+\text { etc } \tag{43}
\end{equation*}
$$

By Prop. LI., r_{1} is equal to a term in (41), say to r_{n}. And, by $\S 48$, putting t_{n-1} for t_{1}^{1-n},

$$
\begin{equation*}
m r_{n}=g+t_{n-1} \Delta_{1}^{\frac{1}{m}}+t_{n-1}^{2} a_{1} \Delta_{1}^{\frac{2}{m}}+\text { etc. } \tag{44}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{m}}\left(1-t_{n-1}\right)+\Delta_{1}^{\frac{2}{m}}\left(a_{1}^{\prime}-a_{1} t_{n-1}^{2}\right)+\text { etc. }=0 \tag{45}
\end{equation*}
$$

This equation involves no surds except those found in the simplified expressiou r_{1}, together with the primitive $m^{\text {th }}$ root of unity. Therefore the expression on the left of (45) is in a simple state. Therefore, by $\S 8$, the coefficients of the different powers of ${J_{1}^{\frac{1}{m}}}^{\text {are separately }}$ zero. Therefore $t_{n-1}=1, a_{1}=a_{1}, b_{1}=b_{1}$, and so on. But, as was shown in Prop. V., $z_{1}^{\frac{1}{c}}$ being a principal surd not a root of unity ince $\frac{1}{c}$ in the simplified expression a_{1}, a_{1} cannot be equal to a_{1} unless $z_{1}{ }^{c}$ can be eliminated from a_{1} without the introduction of any new surd. In like manner b_{1} cannot be equal to b_{1} unless $z_{1}{ }^{\frac{1}{c}}$ can be eliminated from b_{1}. And so on. Therefore, because $a_{1}=a_{1}$, and $b_{1}=b_{1}$, and so on, $z_{1}^{\frac{1}{c}}$ admits of being eliminated from r_{1} without the introduction of any new surd, which, by $\S 21$, is impossible. Next, let $z^{\frac{1}{c}}$
$z_{1}{ }^{c}$ be a root (see $\$ 1$) of unity, which may be otherwise written θ_{1}. Let the different primitive $c^{\text {th }}$ roots of unity be θ_{1}, θ_{2}, etc.; and, when θ_{1} is changed successively into θ_{1}, θ_{2}, etc., let r_{1} become successively r_{1}, r_{1}, etc. Suppose it possible that the $c-1$ terms r_{1}, r_{1}^{\prime}, etc., are all equal. Since $z_{1}{ }^{\frac{1}{c}}$ is a principal surd in r_{1}, we may put $r_{1}=h \theta_{1}^{c-1}+k \theta_{1}^{c-2}+\ldots+l$; where h, k, etc., are clear of θ_{1}. Therefore $(c-1) r_{1}=c l-(h+k+$ etc. $)$ Thus $\frac{1}{c}$
$z_{1}{ }^{c}$ may be eliminated from r_{1} without the introduction of any new surd ; which by $\S 21$ is impossible. Since then the terms r_{1}, r_{1}, etc., are not all equal, let r_{1} and r_{1} be unequal. Then r_{1} is equal to a term in (41) distinct from r_{1}, say to r_{n}. Expressing $m r_{1}$ and $m r_{n}$ as in (43) and (44), we deduce (45) ; which, as above, is impossible.
§49. Proposition XV. Taking $r_{1}, r_{n}, d_{n}^{\frac{1}{m}}$, etc., as in $\S 47$, an
equation

$$
\begin{equation*}
t \frac{\frac{1}{m}}{\Delta_{n}^{m}}=p \Delta_{1}^{\frac{c}{m}} \tag{46}
\end{equation*}
$$

can be formed; where t is an $m^{\text {th }}$ root of unity, and c is a whole number less than m but not zero, and p involves only surds subordinate (see §3) to $\Delta_{1}^{\frac{1}{m}}$ or $\Delta_{n}^{\frac{1}{m}}$

By $\S 47$, one of the terms in (42) is equal to r_{1}. For our argument it is immaterial which be selected. Let $r_{n}=r_{1}$. Therefore

$$
\begin{align*}
& \left(h_{n} \Delta_{n}^{\frac{m-1}{m}}+e_{n} \Delta_{n}^{\frac{m-2}{m}}+\ldots+d_{n}^{\frac{1}{m}}\right) \\
& -\left(h_{1} d_{1}^{\frac{m-1}{m}}+e_{1} d_{1}^{\frac{m-2}{m}}+\ldots+\Delta_{1}^{\frac{1}{m}}\right)=0 \tag{47}
\end{align*}
$$

The coefficients of the different powers of $\Delta_{n}^{\frac{1}{m}}$ here are not all zero, for the coefficient of the first power is unity. Therefore by $\S 5$, an equation $t \Delta_{n}^{\frac{1}{m}}=l_{1}$ subsists, t being an $m^{\text {th }}$ root of unity, and l_{1} involving only surds exclusive of $\Delta_{n}^{\frac{1}{m}}$ that occur in (47). By Prop. XIV., $\Delta_{1}^{\frac{1}{m}}$ is a surd of a higher rank (see §3) than any surd in (47) except $\Delta_{n}^{\frac{1}{m}}$. Therefore we may put

$$
l_{1}=d+d_{1}{d_{1}^{m}}_{d^{m}}+d_{2}{d_{1}}_{\frac{2}{m}}+\ldots+d_{m-1} \frac{m-1}{\Delta_{1}^{m}}
$$

where d, d_{1}, etc., involve only surds lower in rank than J_{1}^{m}. Then

$$
\begin{aligned}
& \Delta_{n}=l_{1}^{m}=\left(d+d_{1} d_{1}^{\frac{1}{m}}+\text { etc. }\right)^{m} \\
& =d^{\prime}+d_{1}^{\prime} d_{1}^{\frac{1}{m}}+d_{2}^{\prime} d_{1}^{\frac{2}{m}}+\text { etc. }
\end{aligned}
$$

where d^{\prime}, \dot{d}_{1}, etc., involve only surds lower in rank than $\Delta_{1}^{\frac{1}{m}} . \quad$ By $\S 8$, since ${\Delta_{1}}_{\frac{1}{m}}$ is a surd in the simplified expressions r_{1}, the coefficients $\dot{d}^{\prime}-J_{n}, \dot{d}_{1}^{\prime}$, etc., in the equation

$$
\left(d^{\prime}-\Delta_{n}\right)+d_{1}^{\prime} \Delta_{1}^{\frac{1}{m}}+d_{2}^{\prime} \Delta_{1}^{\frac{1}{m}}+\text { etc. }=0
$$

are separately zero. Therefore $\left(d+d_{1}{\Delta_{1}}^{\frac{1}{m}}+\text { etc. }\right)^{m}=\dot{d}$. And, t_{1} being a primitive $m^{\text {th }}$ root of unity,

$$
\left(d+d_{1} t_{1} \Delta_{1}^{\frac{1}{m}}+\text { etc. }\right)^{m}=d^{\prime}+d^{\prime} t_{1} \Delta_{1}^{\frac{1}{m}}+\text { etc. }=d^{\prime}
$$

Therefore,

$$
\left(d+d_{1} t_{1} \Delta_{1}^{\frac{1}{m}}+\text { etc. }\right)=t_{1}^{a}\left(d+d_{1}{d_{1}^{\frac{1}{m}}}^{\frac{1}{2}} d_{2}{\Delta_{1}^{m}}_{\frac{2}{m}}+\text { etc. }\right),
$$

t_{1}^{a} being one of the $m^{\text {th }}$ roots of unity. In the same way in which the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ in (48) are separately zero, each of the expressions $d\left(1-t_{1}^{a}\right), d_{1}\left(t_{1}-t_{1}^{a}\right)$, etc., must be zero. But not more than one of the $m-1$ factors, $t_{1}-t_{1}$, $t_{1}^{2}-t_{1}^{a}$, etc., can be zero. Therefore not more than one of the $m-1$ terms d_{1}, d_{2}, etc., is distinct from zero. Suppose if possible that all these terms are zero. Then $t \Delta_{n}^{\frac{1}{m}}=d$. Therefore the different powers of $\frac{1}{\Delta_{n}^{m}}$ can be expressed in terms of the surds involved in d and of the $m^{\text {th }}$ root of unity. Substitute for $\frac{1}{\Delta_{n}^{m}}, \Delta_{n}^{\frac{2}{m}}$ etc., in (47), their values thus obtained. Then (47) becomes

$$
\begin{equation*}
Q-\left(h_{1} \Delta_{1}^{\frac{m-1}{m}}+\ldots+\Delta_{1}^{\frac{1}{m}}\right)=0 \tag{49}
\end{equation*}
$$

where Q involves no surds, distinct from the primitive $m^{\text {th }}$ root of unity, that are not lower in rank than $\frac{1}{\Delta_{1}^{m}}$; which, because
 impcssible. Hence there must be one, while at the same there can be only one of the $m-1$ terms, d_{1}, d_{2}, etc., distinct from zero. Let
d_{c} be the term that is not zero. Then $t_{1}^{e}-t_{1}^{a}=0$. Therefore $1-t_{1}^{a}$ is not zero. Therefore $d=0$. Therefore, putting p for d_{c}, $t \Delta_{n}^{\frac{1}{m}}=p \Delta_{1}^{\frac{c}{m}}$.
§50. Cor. By the proposition, values of the different powers of $\Delta_{n}^{\frac{1}{m}}$ can be obtained as follows :

$$
\begin{equation*}
t \Delta_{n}^{\frac{1}{m}}=p \Delta_{1}^{\frac{c}{m}}, t^{2} \Delta_{n}^{\frac{2}{m}}=q \Delta_{1}^{\frac{s}{m}}, t^{3} \Delta_{n}^{\frac{3}{m}}=k \Delta_{1}^{\frac{z}{m}}, \text { etc. } \tag{50}
\end{equation*}
$$

where p, q, etc., involve only surds that occur in Δ_{1} or Δ_{n}; and c, s, z, etc., are whole numbers in the series $1,2, \ldots, m-1$. No two of the numbers c, s, etc., can be the same; for they are the products, with multiples of the prime number m left out, of the terms in the series $1,2, \ldots, m-1$, by the whole number c which is less than m. Therefore the series c, s, z, etc., is the series $1,2, \ldots, m-1$, in a certain order.
$\S 51$. Proposition XVI. If r_{n} be one of the particular cognate forms of R, the expressions

$$
\begin{equation*}
t \Delta_{n}^{\frac{1}{m}}, t^{2} a_{n} \Delta_{n}^{\frac{2}{m}}, \ldots, t^{m-2} e_{n} \Delta_{n}^{\frac{m-2}{m}}, t^{m-1} h_{n} \Delta_{n}^{\frac{m-1}{m}} \tag{51}
\end{equation*}
$$

are severally equal, in some order, to those in (39), t being one of the $m^{\text {th }}$ roots of unity.

By $\S 47$, one of the terms in (42) is equal to r_{1}. For our argument it is immaterial which be chosen. Let $r_{n}=r_{1}$. By Cor. Prop. XV., the equations (50) subsist. Substitute in (47) the values of the different powers of $\Delta_{n}^{\frac{1}{m}}$ so obtained. Then

$$
\begin{align*}
& \left(t-1 p \Delta_{1}^{\frac{c}{m}}+t^{2} q a_{n} \Delta_{1}^{\frac{\delta}{m}}+\text { etc. }\right) \\
& -\left(\Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{2}{m}}+\text { etc. }\right)=0 \tag{52}
\end{align*}
$$

By Cor. Prop. XV., the series $\Delta_{1}^{\frac{c}{m}}, \Delta_{1}^{\frac{s}{m}}$, etc., is identical, in some order, with the series $\Delta_{i}^{\frac{1}{m}}, \Delta_{1}^{\frac{2}{m}}$, etc. Also, by $\S 8$, siuce $\Delta_{1}^{\frac{1}{m}}$ is a
surd occurring in the simplified expression r_{1}, and since besides $\Delta_{1}^{\frac{1}{m}}$ there are in (52) no surds, distinct from the primitive $m^{\text {th }}$ "root of unity, that are not lower in rank than $\Delta_{1}^{\frac{1}{m}}$, if the equation (52) were arranged according to the powers of $\Delta_{1}^{\frac{1}{m}}$ lower than the $m^{\text {th }}$, the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ would be separately zero. Hence ${\Delta_{1}}^{\frac{1}{m}}$ is equal to that one of the expressions,

$$
\begin{equation*}
t^{-1} p \Delta_{1}^{\frac{c}{m}}, t^{-2} q a_{n} \Delta_{1}^{\frac{8}{m}}, \text { etc. } \tag{53}
\end{equation*}
$$

in which $\Delta_{1}^{\frac{1}{m}}$ is a factor. In like manner $a_{1} \Delta_{1}^{\frac{2}{m}}$ is equal to that one of the expressions (53) in which $\Delta_{1}^{\frac{2}{m}}$ is a factor. And so on. There fore the terms $\Delta_{1}^{\frac{1}{m}}, a_{1} \Delta_{1}^{\frac{2}{m}}$, etc., forming the series (39), are severally equal, in some order, to the terms in (53), which are those forming the series (51.)
§52. Proposition XVII. The equation $F(x)=0$ has a rational auxiliary (Compare Prop. VII.) equation $\varphi(x)=0$, whose roots are the $m^{\text {ch }}$ powers of the terms in (39).

Let the unequal particular cognate forms of the generic expression Δ under which the simplified expression Δ_{1} falls be

$$
\begin{equation*}
\Delta_{1}, \Delta_{2}, \ldots, \Delta_{c} \tag{54}
\end{equation*}
$$

By Prop. XVI., there is a value t of the $m^{\text {th }}$ root of unity for which the expressions

$$
\begin{equation*}
t \Delta_{2}^{-\frac{1}{m}}, t^{2} a_{2} \Delta_{2}^{\frac{2}{m}}, \ldots ., t^{m-2} e_{2} \Delta_{2}^{\frac{m-2}{m}}, t^{m-1} h_{2} \Delta_{2}^{\frac{m-1}{m}} \tag{55}
\end{equation*}
$$

are severally equal, in some order, to those in (39). Therefore Δ_{2} is equal to one of the terms

$$
\begin{equation*}
\lrcorner_{1}, \iota_{1}^{m} J_{1}^{2}, \ldots, e_{1}^{m} S_{1}^{m-2}, l_{1}^{m} \Delta_{1}^{m-1} \tag{56}
\end{equation*}
$$

In like manner each of the terms in (54) is equal to a term in (56). And, because the terms in (54) are unequal, they are severally equal to different terms in (56). By Prop. III., the terms in (54) are the roots of a rational irreducible equation, say $\psi_{1}(x)=0$. Rejecting from the series (56) the roots of the equation $\psi_{1}(x)=0$, certain of the remaining terms must in the same way be the roots of a rational irreducible equation $\psi_{2}(x)=0$. And so on. Ultimately, if $\varphi(x)$ be the continued product of the expressions $\psi_{1}(x), \psi_{2}(x)$, etc., the terms in (56) are the roots of the rational equation $\varphi(x)=0$.
§53. The equations $\psi_{1}(x)=0, \psi_{2}(x)=0$, etc., formed by means of the expressions $\psi_{1}(x)$, $\psi_{2}(x)$, etc., may be said to be sub-auxiliary to the equation $F(x)=0$. It will be observed that the subauxiliaries are all irreducible.
§54. Proposition XVIII. In passing from r_{1} to r_{n}, while Δ_{1} becomes Δ_{n}, the expressions a_{1}, b_{1}, which, by Prop. XIV., involve only surds occurring in $\Delta_{1^{\prime}}$, must severally receive determinate values, a_{n}, b_{n}, etc. In other words, a_{1} being a particular cognate form of A, there cannot, for the same value of Δ_{n}, be two particular cognate forms of A, as a_{n} and a_{N}, unequal to one another. And so in the case of b_{1}, e_{1}, etc.

For, just as each of the terms in (42) is equal to a term iu (41), there are primitive $m^{\text {th }}$ roots of unity τ and T such that the expressions

$$
\tau \Delta_{n}^{\frac{1}{m}}+\tau^{2} a_{n} \Delta_{n}^{\frac{2}{m}}+\text { etc. }, T \Delta_{N}^{\frac{1}{m}}+T^{2} a_{N} \Delta_{N}^{\frac{1}{m}}+\text { etc. }
$$

are equal to one another. Therefore, if $\Delta_{N}=\Delta_{n}$, in which case, by assigning suitable values to τ and $T, \Delta_{N}^{\frac{1}{m}}$ may be taken to be equal to $4_{n}^{\frac{1}{m}}$,

$$
\begin{equation*}
\Delta_{n}^{\frac{1}{m}}(\tau-T)+\Delta_{n}^{\frac{2}{m}}\left(a_{n} \tau^{2}-a_{N} T_{l}^{2}\right)+\text { etc. }=0 \tag{57}
\end{equation*}
$$

Suppose if possible that the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ in (57) are not all zero. Then, by $\S 5, t \Delta_{n}^{\frac{1}{m}}=l_{1} ; t$ being an $m^{\text {th }}$ root of unity; and l_{1} involving only surds of lower ranks than ${\Delta_{1}}_{\frac{1}{m}}^{l}$. Hence, by Prop. XV. and Cor. Prop. XV, $\Delta_{1}^{\frac{1}{m}}$ is a rational function of surds of lower ranks than $\Delta_{1}^{\frac{1}{m}}$ and of the
primitive $m^{\text {th }}$ root of unity ; which, by the definition in $\S 6$, is impossible. Since then the coefficients of the different powers of $d_{n}^{\frac{1}{m}}$ in (57) are separately zero, $\tau=T, a_{n} \tau^{2}=a_{N} T^{2}$, therefore $a_{n}=a_{N}$.
§5\%. Proposition XIX. Let the terms in (39) be written respectively

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{m}}, \frac{1}{\delta_{2}^{m}}, \frac{1}{\delta_{3}^{m}}, \ldots, \delta_{m-1}^{\frac{1}{m}} \tag{58}
\end{equation*}
$$

The symbols $\Delta_{1}, \delta_{2}, \delta_{8}$, etc., are employed instead of $\Delta_{1}, \Delta_{2}, \Delta_{3}$, etc., because this latter notation might suggest, what is not necessarily true, that the terms in (56) are all of them particular cognate forms of the generic expression under which Δ_{1} falls. Then (compare Prop. XIII.) the $m-1$ expressions in each of the groups
$\left.\begin{array}{l}\left(J_{1}^{m} \delta_{m-1}^{m}, \delta_{2}^{m} \frac{1}{\delta_{m-2}^{m}}, \delta_{3}^{m} \frac{1}{\delta_{m-3}^{m}}, \ldots, \delta_{m-1}^{\frac{1}{m}} \frac{1}{\delta_{1}^{m}},\right) \\ \left(J_{1}^{\frac{2}{m}} \delta_{m-2}^{\frac{1}{m}}, \frac{2}{\delta_{2}^{m}} \frac{1}{\delta_{m-4}^{m}}, \delta_{3}^{\frac{2}{m}} \frac{1}{\delta_{m-6}^{m}}, \ldots, \delta_{m-1}^{\frac{2}{m}} \frac{1}{\delta_{2}^{m}},\right) \\ \left(J_{1}^{\frac{3}{m}} \delta_{m-3}, \delta_{2}^{\frac{3}{m}} \frac{1}{\delta_{m-6}^{m}}, \delta_{3}^{\frac{3}{m}} \frac{1}{\delta_{m-9}^{m}}, \ldots, \delta_{m-1}^{\frac{3}{m}} \frac{1}{\delta_{3}^{m}},\right)\end{array}\right\}$
and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. Also (compare Prop. X.) the first $\frac{m-1}{2}$ terms in the first of the groups (59) are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree.

In the enunciation of the proposition the remark is made that the series (54) is not necessarily identical with the series

$$
\Delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{m-1}
$$

The former consists of the unequal particular cognate forms of Δ; the latter consists of the roots of the auxiliary equation $\varphi(x)=0$. These two series are identical only when the anxiliary is irreducible. To prove the first part of the proposition, take the terms forming the second of the groups (59). Because $i_{m-2}^{\frac{1}{m}}$ represents $e_{1} \Delta_{1}^{\frac{m-2}{m}}$,

$$
e_{1} \Delta_{1}={d_{1}}_{\frac{2}{m} \frac{1}{\delta_{m-}^{m}}}
$$

Let E be the generic symbol under which the simplified expression e_{1} talls. By Prop. XVIII., when Δ_{1} is changed successively into the c terms in (54), e_{1} receives successively the determinate values $e_{1}, e_{2}, \ldots, e_{c}$; and therefore $e_{1} \Delta_{1}$ receives successively the determinate values

$$
\begin{equation*}
e_{1} \Delta_{1}, e_{2} \Delta_{2}, \ldots, e_{c} \Delta_{c} . \tag{60}
\end{equation*}
$$

There is therefore no particular cognate form of $E \Delta$ that is not equal to a term in (60). By Prop. XVI. there is a value of the $m^{\text {th }}$ root of unity t for which the terms in (55) are severally equal, in some order, to those in (39). Let the term in (39) to which $t{\Delta_{2}^{\frac{1}{m}}}^{\frac{1}{2}}$ is equal be $q_{1} \Delta_{1}^{\frac{n}{m}}$ Then, applying the principle of Cor. Prop. XV., as in Prop. XVI., it follows that the term in (39) to which $t^{m-2} e_{2} \Delta_{2}^{\frac{m-2}{m}}$ in (55) is equal is $k_{1} \Delta_{1}^{\frac{M-2 n}{m}}, M$ being a multiple of m, and $M-2 n$ being less than m. Therefore $e_{2} \Delta_{2}$ is equal to $q_{1}^{2} k_{1} \Delta_{1}^{\frac{M}{m}}$, which is the product of two of the terms in (39) occuring respectively at equal distances from opposite extremities of the series. In other words, $e_{2} \Delta_{2}$ is equal to an expression $\delta_{m}^{\frac{2}{m}} \frac{1}{\delta_{m-2 n}}$ in the second of the groups (59). In like manner every term in (60) is equal to an expression in the second of the groups (59). Let the unequal terms in (60) be

$$
\begin{equation*}
e_{1} \Delta_{1}, \text { etc. } \tag{61}
\end{equation*}
$$

Then, by Prop. III., the terms in (61) are the roots of a rational irreducible equation, say $f_{1}(x)=0$. Rejecting these, which are distinct terms in the second of the groups (59), it can in like manner be shown that certain other terms in that group are the roots of a rational irreducible equation, say $f_{2}(x)=0$. And so on. Ultimately, if $f(x)$ be the continued product of the expressions $f_{1}(x)$, $f_{2}(x)$, etc., the terms forming the second of the groups (59) are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. The proof applies substantially to each of the other groups. To prove the second part, it is only necessary to observe that, in the first of the groups (59), the last term is identizal with the first, the last but one with the second, and so on.
§56. Cor. 1. The reasoning in the proposition proceeds on the assumption that the prime number m is odd. Should m be even, the series J_{1}, δ_{1}, etc., is reduced to its first term. The law may be considered even then to hold in the following form. The product $J_{1}^{\frac{1}{m}}{J_{1}}_{\frac{1}{m}}^{\text {is the root of a rational equation of the }(m-1)^{\text {th }} \text { degree, }}$ or is rational. For this product is Δ_{1}, which, by Prop. XVII., is the root of an equation of the $(m-1)^{\text {th }}$ degree.
§56. Cor. 2. I merely notice, without farther proof, that the generalization in $\$ 45$ in the case when the equation $F(x)=0$ is of the first (see $\oint 30$) class holds in the present case likewise.

Analysis of Solvable Equations of the Fifth Degree.

§58. Let the solvable irreducible equation of the $m^{\text {th }}$ degree, which we have been considering, be of the fifth degree. Then, by Prop. IX. and $\S 47$, whether the equation belongs to the first or to the second of the two classes that have been distinguished, assuming the sum of the roots g to be zero,

$$
\begin{equation*}
\left.r_{1}=\frac{1}{5}(\lrcorner_{1}^{\frac{1}{5}}+a_{1} J_{1}^{\frac{2}{5}}+e_{1} J_{1}^{\frac{3}{5}}+h_{1} J_{1}^{\frac{4}{5}}\right) \tag{62}
\end{equation*}
$$

though, when the equation is of the tirst class, the root, as thus presented, is not in a simple state.
§59. Proposition XX. If the auxiliary biquadratic has a rational root Δ_{1} not zero, all the roots of the auxiliary biquadratic are rational.

Because Δ_{1} is rational, the auxiliary biquadratic $\varphi(x)=0$ is not irreducible. Therefore, by Prop. VII., the equation $F^{\prime}(x)=0$ is of the second (see $\S 30$) class. Therefore, by Prop. XIV., $\lrcorner_{1}^{\frac{1}{5}}$ is the only principal surd in r_{1}. Consequently, because Δ_{1} is rational, a_{1}, e_{1} and h_{1} are rational. Therefore $\Delta_{1}, a_{1}^{5} \Delta_{1}^{2}, e_{1}^{5} J_{1}^{3}, h_{1}^{5} \Delta_{1}^{4}$, which are the roots of the auxiliary biquadratic, are rational.
§60. Proposition XXI. If the auxiliary biquadratic has a quadratic sub-auxiliary $\psi_{1}^{\prime \prime}(x)=0$ with the roots Δ_{1} and Δ_{2}, then $\Delta_{2}=h_{1}^{5} \Delta_{1}^{4}$, and $\Delta_{1}=h_{2}^{5} \Delta_{2}^{4}$; and $h_{1} \Delta_{1}$ is rational.

As in $\S 52, t$ being a certain fifth root of unity, each term in (55) is equal to a term in (39). The first term in (55) cannot be equal to the first in (39), for this would make $\Delta_{2}=\Delta_{1}$. Suppose if possible that the first in (55) is equal to the second in (39). Then, by equations (50), applied as in Prop. XVI.,

$$
\left.\begin{array}{rl}
t \Delta_{2}^{\frac{1}{5}} & =a_{1} \Delta_{1}^{\frac{2}{5}}, \\
t^{2} a_{2} \Delta_{2}^{\frac{2}{5}}=h_{1} \Delta_{1}^{\frac{4}{5}}, \\
t^{3} e_{2} \Delta_{2}^{\frac{3}{5}}=\Delta_{1}^{\frac{1}{3}}, & t^{4} h_{2} \Delta_{2}^{\frac{4}{5}}=e_{1} \Delta_{1}^{\frac{3}{5}}, \tag{63}\\
\text { therefore } \Delta_{2}=a_{1}^{5} \Delta_{1}^{2}, & a_{2}^{5} \Delta_{2}^{2}=h_{1}^{5} \Delta_{1}^{4}, \\
e_{2}^{5} \Delta_{2}^{3}=\Delta_{1}, & h_{2}^{5} \Delta_{2}^{4}=e_{1}^{5} \Delta_{1}^{3} .
\end{array}\right\}
$$

Now $a_{1}^{5} \Delta_{1}^{2}$, being equal to Δ_{2}, is a root of the equation $\xi_{1}^{\prime \prime}(x)=0$. And $a_{1}^{5} J_{1}^{2}$, involving only surds that occur in r_{1}, is in a simple state. Therefore, by Prop. III., $a_{2}^{5} J_{2}^{2}$ is a root of the equation $\psi_{1}(x)=0$. Therefore $h_{1}^{5} \Delta_{1}^{4}$, and therefore also $h_{2}^{5} \Delta_{2}^{4}$ or $e_{1}^{5} \Delta_{1}^{3}$, are roots of that equation. Hence all the terms

$$
\begin{equation*}
\Delta_{1}, a_{1}^{5} \Delta_{1}^{2}, e_{1}^{5} \Delta_{1}^{3}, h_{1}^{5} \Delta_{1}^{4}, \tag{64}
\end{equation*}
$$

are roots of the equation $\psi_{1}(x)=0$. But a_{1}, e_{1}, h_{1}, are all distinct from zero ; for, by (63), if one of them was zero, all would be zero, and therefore $\Delta_{1}^{\frac{1}{5}}$ would be zero ; which by $\S 6$, is impossible. From this it follows that no two terms in (64) are equal to one another ; for taking $a_{1}^{5} \Delta_{1}^{2}$ and $e_{1}^{5} \Delta_{1}^{3}$, if these were equal, we should have $e_{1} t^{\prime} \Delta_{1}^{\frac{1}{5}}=a_{1}, t^{\prime}$ being a fifth root of unity ; which ; which by $\S 8$, is impossible. This gives the equation $\psi^{\prime}(x)=0$ four unequal roots; which, beeause it is of the second degree, is impossible. Therefore the first term in (55) is not equal to the second in (39). In the same way it can be shown that it is not equal to the third. Therefore it must be equal to the fourth. In like manner the first in (39) is equal to the fourth in (55). Because then $t \Delta_{2}^{\frac{1}{8}}=h_{1} \Delta_{1}^{\frac{4}{5}}$, and $\Delta_{1}^{\frac{1}{5}}=t^{4} h_{2} \Delta_{2}^{\frac{4}{3}}, h_{2} \Delta_{2}=h_{1} \Delta_{1}$. But, just as it was proved in $\S 56$ that, the roots of the sub-auxiliary $\psi_{1}^{\prime \prime}(x)=0$ being the c terms Δ_{1}, Δ_{2}, etc., there is no particular cognate form of $\left.E\right\rfloor$ that is not a term in the series $e_{1} \Delta_{1}, e_{2} \Lambda_{2}, \ldots, e_{c} \Delta_{c}$, it follows that, if h_{1} be a particular cognate form of H, there is no particular cognate form of $H \Delta$ that is not equal to one of the terms $h_{1} \Delta_{1}$ and $h_{2} J_{2}$. Hence, since $h_{1} \Delta_{1}=h_{2} \Delta_{2}, H \Delta$ has no particular cognate form different in value from $h_{1} \Delta_{1}$. Therefore, by Prop. III., $h_{1} \Delta_{1}$ is rational.
§61. Proposition XXII. The auxiliary biquadratic $\varphi(x)=0$ either has all its roots rational, or has a sub-auxiliary (see $\S 53$) of the second degree, or is irreducible.

It will be kept in view that the sub-auxiliaries are, by the manner of their formation, irreducible. First, let the series (54), containing the roots of the sub-auxiliary $\xi^{\prime}(x)=0$ consist of a single term Δ_{1}. Then, by Prop. III., Δ_{1} is rational. Therefore, by Prop. XX., all the roots of the auxiliary are rational. Next, let the series (54) consist of the two terms Δ_{1} and Δ_{2}. By this very hypothesis, the auxiliary biquadratic has a quadratic sub-auxiliary. Lastly, let the series (54) contain more than two terms. Then it has the three terms $\Delta_{1}, \Delta_{2}, \Delta_{3}$. We have shown that these must be severally equal to terms in (64). Neither Δ_{2} nor Δ_{3} is equal to Δ_{1}. They cannot both be equal to $h_{1}^{5} \Delta_{1}^{2}$. Therefore one of them is equal to one of the terms $\iota_{1}^{5} \Delta_{1}^{2}, e_{1}^{5} \Delta_{1}^{3}$. But in $\$ 60$ it appeared that, if Δ_{2} be equal either to $a_{1}^{5} \Delta_{1}^{2}$ or to $e_{1}^{5} \Delta_{1}^{3}$, all the terms in (64) are roots of the irreducible equation of which Δ_{1} is a root. The same thing holds regarding J_{3}. Therefore, when the series (54) contains more than two terms, the irreducible equation which has Δ_{1} for one of its roots has the four unequal terms in (64) for roots; that is to say, the auxiliary biquadratic is irreducible.
§62. Let $5 u_{1}=\Delta_{1}^{\frac{1}{5}}, 5 u_{2}=a_{1} \Delta_{1}^{\frac{2}{5}}, 5 u_{3}=e_{1} \Delta_{1}^{\frac{3}{5}}, 5 u_{4}=h_{1} \Delta_{1}^{\frac{4}{5}}$; and, n being any whole number, let S_{n}^{r} denote the sum of the $n^{\text {th }}$ powers of the roots of the equation $F(x)=0$. Then
$S_{1}=0 ; S_{2}^{\prime}=10\left(u_{1} u_{4}+u_{2} u_{3}\right) ; S_{3}=15\left\{\Sigma\left(u_{1} u_{2}^{2}\right)\right\} ;$
$S_{4}^{\prime}=20\left\{\Sigma\left(u_{1}^{3} u_{2}\right)\right\}+30\left(u_{1}^{2} u_{4}^{2}+u_{2}^{2} u_{3}^{2}\right)+120 u_{1} u_{2} u_{3} u_{4}$;
$S_{5}=5\left\{\Sigma\left(u_{1}^{5}\right)\right\}+100\left\{\Sigma\left(u_{1}^{3} u_{3} u_{4}\right)\right\}+150\left\{\Sigma\left(u_{1} u_{3}^{2} u_{4}^{2}\right)\right.$;
where such an expression as $\Sigma\left(u_{1} u_{2}^{2}\right)$ means the sum of all such terms as $u_{1} u_{2}^{2}$; it being understood that, as any one term in the circle $u_{1}, u_{2}, u_{4}, u_{3}$, passes into the next, that next passes into its next, u_{3} passing into u_{1}.

The Roots of the Auxiliary Biquadratic all Rational.

$\$ 63$. Any rational values that may be assigned to d_{1}, a_{1}, e_{1}, and h_{1} in r_{1}, taken as in (62), make r_{1} the root of a rational equation of the fifth degree, for they render the values of S_{1}, S_{2}, etc., in $\S 62$, rational. In fact, $S_{1}=0,25 S_{2}=10 J_{1}\left(h_{1}+a_{1} e_{1}\right)$, and so on.

The Auxiliary Biquadratic with a Quadratic Suc-Auxiliary.

§64. Proposition XXIII. In order that r_{1}, taken as in (62), may be the root of an irreducible equation $F^{\prime}(x)=0$ of the fifth degree, whose auxiliary biquadratic has a quadratic sub-auxiliary, it must be of the form

$$
\begin{equation*}
r_{1}=\frac{1}{5}\left\{\left(\Delta_{1}^{\frac{1}{5}}+\Delta_{2}^{\frac{1}{5}}\right)+\left(a_{1} \Delta_{1}^{\frac{2}{5}}+a_{2} \Delta_{2}^{\frac{2}{5}}\right)\right\} ; \tag{65}
\end{equation*}
$$

where Δ_{1} and Δ_{2}, are the roots of the irreducible equation $\psi_{1}(x)=x^{2}-2{ }_{1} p x+q^{5}=0$; and $a_{1}=b+d \sqrt{ }\left(p^{2}-q^{5}\right)$, $a_{2}=b-d \sqrt{ }\left(p^{2}-q^{5}\right) ; p, b$ and d being rational ; and the roots $\Delta_{1}^{\frac{1}{5}}$ and $\Delta_{2}^{\frac{1}{5}}$ being so related that $\Delta_{1}^{\frac{1}{5}} \Delta_{2}^{\frac{1}{5}}=q$.

By Prop. VII., when a quintic equation is of the first (see §30) class, the auxiliary biquadratic is irreducible. Hence, in the case we are considering, the quintic is of the second class. The quadratic sub-auxiliary may be assumed to be $\psi_{1}(x)=x^{2}-2 p x+k=0$, p and k being rational. By Prop. XXI., the roots of the equation $\psi_{1}(x)=0$ are Δ_{1} and $h_{1}^{5} \Delta_{1}^{4}$. Therefore $k=\left(h_{1} \Delta_{1}\right)^{5}$; or, putting q for $h_{1} \Delta_{1}, k=q^{5}$. By the same proposition, $h_{1} \Delta_{1}$ is rational. Therefore q is rational. Hence $\psi_{1}(x)$ has the form specified in the enunciation of the proposition. Next, by Proposition XVI., there is a fifth root of unity t such that $t \Delta_{2}^{\frac{1}{5}}=h_{1} \Delta_{1}^{\frac{4}{5}}$. If we take t to be unity, which we may do by a suitable interpretation of the symbol $J_{2}^{\frac{1}{5}}, \Delta_{2}^{\frac{1}{5}}=h_{1} \Delta_{1}^{\frac{4}{5}}$. This implies that $e_{1} \Delta_{1}^{\frac{3}{5}}=a_{2} J_{2}^{\frac{2}{5}}, a_{2}$ being what a_{1} becomes in passing from Δ_{1} to Δ_{2}. Substituting these values of $e_{1} \Delta_{1}^{\frac{3}{5}}$ and $h_{1} \Delta_{1}^{\frac{4}{5}}$ in (62), we obtain the form of r_{1} in (65), while at the same time $\Delta_{1}^{\frac{1}{5}} \Delta_{2}^{\frac{1}{5}}=h_{1} \Delta_{1}=q$. The forms of a_{1} and a_{2} have to be more accurately determined. By Prop. XIV., $\Delta_{1}^{\frac{1}{5}}$ is the only principal surd that r_{1}, as presented in (62), contains. Therefore a_{1} involves no surd that does not occur in Δ_{1}; that is to say, $\checkmark\left(p^{2}-q^{5}\right)$ is the only surd in a_{1}. Hence we may put $a_{1}=b+d \sqrt{ }\left(p^{2}-q^{5}\right) ; b$ and d being rational. But a_{2} is what a_{1} becomes in passing from Δ_{1} to Δ_{2}. And Δ_{2} differs from Δ_{1} only in the sign of the root $\sqrt{ }\left(p^{2}-q^{5}\right)$. Therefore

$$
a_{2}=b-d \sqrt{ }\left(p^{2}-q^{5}\right) .
$$

$\S 65$. Any rational values that may be assigned to b, d, p and q in r_{1}, taken as in (65), make r_{i} the root of a rational equation of the
fifth degree; for they render the values of S_{1}, S_{2}, etc., in $\S 62$, rational. In fact, $S_{1}=0,25 S_{2}=10\left\{q+q^{2} b^{2}-q^{2} d^{2}\left(p^{2}-q^{5}\right)\right\}$, and so on.

The Auxiliary Biqadratic Irreducible.

§66. When the auxiliary biquadratic is irreducible, the unequal particular cognate forms of J are, by Prop. III., four in number, $\left.J_{1},\right\lrcorner_{2}, J_{3}, J_{4}$. As explained in $\S 55$, because the equation $\varphi(x)=0$ is irreducible, these terms are severaly identical with $\Delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$. Hence, putting $m=5$, the first two terms in the first of the groups (59) may be written in the notation of (37),

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{5}} S_{4}^{\frac{1}{5}}, \Delta_{2}^{\frac{1}{5}} \Delta_{3}^{\frac{1}{5}} \tag{66}
\end{equation*}
$$

and the second and third groups may be written

$$
\left.\left.\begin{array}{llllllll}
\left(J_{1}^{5}\right. & J_{3}^{\frac{1}{5}}, & J_{2}^{\frac{2}{5}} J_{1}^{\frac{1}{5}}, & J_{3}^{\frac{2}{5}} J_{4}^{\frac{1}{5}}, & J_{4}^{\frac{2}{6}} & J_{2}^{\frac{1}{5}} \tag{67}
\end{array}\right)\right\}
$$

$\S 67$. Proposition XXIV. The roots of the auxiliary biquadratic equation $\varphi(x)=0$ are of the forms

$$
\left.\begin{array}{l}
\Delta_{1}=m+n \sqrt{ } z+\sqrt{ } s, \Delta_{2}=m-n \sqrt{ } z+\sqrt{ } s_{1} \tag{68}\\
\left.\Delta_{4}=m+n \sqrt{ } z-\sqrt{ },\right\lrcorner_{3}=m-n \sqrt{ } z-\sqrt{ } s_{1}
\end{array}\right\}
$$

where $s=p+q \sqrt{ } z$, and $s_{1}=p-q \sqrt{ } z ; m, n, z, p$ and q being rational ; and the surd $\sqrt{ } s$ being irreducible.

By Propositions XIII. and XIX., the terms in (66) are the roots of a quadratic. Therefore $J_{1} J_{4}$ and $J_{2} J_{3}$ are the roots of a quadratic. Suppose if possible that $J_{1} J_{3}$ is the root of a quadratic. By Propositions IX. and XIX., $\mathcal{J}_{3}^{\frac{1}{5}}=e_{1} J_{1}^{\frac{3}{5}}$. Therefore $e_{1}^{5} J_{1}^{4}$ is the root of a quadratic. From this it follows (Prop. III.) that there are not more than two unequal terms in the series,

$$
\begin{equation*}
e_{1}^{5} \Delta_{1}^{4}, e_{2}^{5} J_{2}^{4}, e_{3}^{5} d_{3}^{4}, e_{4}^{5} d_{4}^{4} \tag{69}
\end{equation*}
$$

But suppose if possible that $e_{1}^{5} J_{1}^{4}=e_{2}^{s} \Delta_{2}^{4}$. Then, t being one of the fifth roots of unity, $t e_{1} d_{1}^{5^{\frac{5}{5}}}=e_{2} \Delta_{2}^{4}$ But, by Propositions IX. and XIX., $J_{2}^{\frac{1}{5}}=h_{1} J_{1}^{\frac{4}{5}}$. Therefore, $t e_{1} J_{1}^{5}=e_{2} h_{1}^{4} J_{1}^{3} J_{1}^{\frac{1}{5}}$. There-
fore, by $\S 8, e_{1}=0$. Therefore one of the roots of the auxiliary biquadratic is zero; which because the auxiliary biquadratic is assumed to be irreducible, is impossible. Therefore $e_{1}^{5} \Delta_{1}^{4}$ and $e_{2}^{5} J_{2}^{t}$ are unequal. In the same way all the terms in (69) can be shown to be unequal ; which, because it has been proved that there are not more than two unequal terms in (69), is impossible. Therefore $\Delta_{1} \Delta_{3}$ is not the root of a quadratic equation. Therefore the product of two of the roots, Δ_{1} and Δ_{4}, of the auxiliary biquadratic is the root of a quadratic equation, while the product of a different pair, Δ_{1} and J_{3}, is not the root of a quadratic. But the only forms which the roots of an irreducible biquadratic can assume consistently with these conditions are those given in (68).
§68. Proposition XXV. The surd $\sqrt{ } s_{1}$ can have its value expressed in terms of $\sqrt{ } s$ and $\sqrt{ } z$.

By Propositions XIII. and XIX, the terms of the first of the groups (67) are the roots of a biquadratic equation. Therefore their fifth powers

$$
\begin{equation*}
\Delta_{1}^{2} \Delta_{3}, \Delta_{2}^{2} \Delta_{1}, \Delta_{3}^{2} ป_{4}, \Delta_{4}^{2} \Delta_{2}, \tag{70}
\end{equation*}
$$

are the roots of a biquadratic. From the values of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and Δ_{4} in (68), the values of the terms in (70) may be expressed as follows:

$$
\begin{align*}
& \Delta_{1}^{2} \Delta_{3}=F+F_{1} \sqrt{ } z+\left(F_{2}+F_{3} \sqrt{ } z\right) \sqrt{ } \\
& \left.+\left(F_{4}+F_{5} \sqrt{ }\right) \sqrt{ } s_{1}+\left(F_{6}+F_{7} \sqrt{ }\right) \sqrt{ }\right) \sqrt{ } s_{1}, \\
& \mathrm{j}_{2}^{2} \Delta_{1}=F-F_{1} \sqrt{ } z+\left(F_{2}-F_{3} \sqrt{ } z\right) \sqrt{ } s_{1} \\
& -\left(F_{4}-F_{5} \sqrt{ } z\right) \sqrt{ } s-\left(F_{6}-F_{7} \sqrt{ } z\right) \sqrt{ } \sqrt{ } s_{1}, \tag{71}\\
& J_{4}^{2} d_{2}=F-F_{1} \sqrt{ } z-\left(F_{2}-F_{3} \sqrt{ } z\right) \sqrt{ } s_{1} \\
& +\left(F_{4}-F_{5} \sqrt{ } z\right) \sqrt{ } s-\left(F_{6}-H_{7} \sqrt{ } z\right) \sqrt{ } \sqrt{ } s_{1}, \\
& J_{3}^{2} J_{4}=F+F_{1} \sqrt{ } z-\left(F_{2}+F_{3} \sqrt{ } z\right) \sqrt{ } \\
& \left.-\left(F_{4}+F_{5} \sqrt{ } z\right) \sqrt{1}+\left(F_{\varepsilon}+F_{7} \sqrt{ } z\right) \sqrt{ } s \sqrt{ },\right)
\end{align*}
$$

where F, F_{1}, etc., are rational. Let $\Sigma\left(\Delta_{1}^{2} \Delta_{3}\right)$ be the sum of the four expressions in (70). Then, because these expressions are the roots of a biquadratic, $\Sigma\left(\Delta_{1}^{2} \Delta_{3}\right)$ or $4 F+4 F_{7} \sqrt{ } s \sqrt{ } s_{1}$, must be rational. Suppose if possible that $\sqrt{ } s_{1}$ cannot have its value expressed in terms of $\sqrt{ } s$ and $\sqrt{ } z$. Then, because $\sqrt{ } s \sqrt{ } s_{1}$ is not rational, $F_{7}=0$. By (68), this implies that $n=0$. Let

$$
\begin{aligned}
\left(\Delta_{1}^{2} \Delta_{3}\right)^{2} & =L+L_{1} \sqrt{ } z+\left(L_{2}+L_{3} \sqrt{ } z\right) \sqrt{ } s \\
& +\left(L_{4}+L_{5} \sqrt{ } z\right) \sqrt{ } s_{1}+\left(L_{6}+L_{7} \sqrt{ } z\right) \sqrt{ } \sqrt{ } s_{1}
\end{aligned}
$$

where L, L_{1}, etc., are rational. Then, as above, $L_{7}=0$. Keeping in view that $n=0$, this means that $m^{2} q=0$. But q is not zero, for this would make $\checkmark s=\sqrt{ } s_{1}$; which, because we are reasoning on the hypothesis that $\sqrt{ } s_{1}$ cannot have its value expressed in terms of $\sqrt{ } s$ and $\sqrt{ } z$, is impossible. Therefore m is zero. And it was shown that n is zero. Therefore $\lrcorner_{1}=\sqrt{ } s$, and $J_{3}=-\sqrt{ } s$. Therefore $\left.\Delta_{1}\right\lrcorner_{3}=-\sqrt{ }\left(p^{2}-q^{2} z\right)$; which, because it has been proved that $\left.\lrcorner_{1}\right\lrcorner_{3}$ is not the root of a quadratic equation, is impossible. Hence $\sqrt{ } s_{1}$ cannot but be a rational function of $\sqrt{ } s$ and $\sqrt{ } z$.
§69. Proposition XXVI. The form of s is

$$
\begin{equation*}
h\left(1+e^{2}\right)+h \sqrt{ }\left(1+e^{2}\right) \tag{72}
\end{equation*}
$$

h and e being rational, and $1+e^{2}$ being the value of z.
By Prop. XXV., $\sqrt{ } s_{1}=v+c \sqrt{ } s, v$ and c being rational functions of $\sqrt{ } z$. Therefore $s_{1}=v^{2}+c^{2} s+2 v c \sqrt{ } s$. By Prop. XXIV., $\sqrt{ } s$ is irreducible. Therefore $v c=0$. But c is not zero, for this would make $\sqrt{ } s_{1}=v$, and thus $\sqrt{ } s_{1}$ would be the root of a quadratic equation. Therefore $v=0$, and $\sqrt{ } s_{1}=c \sqrt{ }=$ $\left(c_{1}+c_{2} \sqrt{ } z\right) \sqrt{ }, c_{1}$ and c_{2} being rational. Therefore

$$
\begin{aligned}
\checkmark\left(8 s_{1}\right) & =\sqrt{ }\left(p^{2}-q^{2} z\right)=\left(c_{1}+c_{2} \sqrt{ } z\right)(p+q \sqrt{ } z) \\
& =\left(c_{1} p+c_{2} q z\right)+\sqrt{ } z\left(c_{1} q+c_{2} p\right)=p+Q \sqrt{ } z .
\end{aligned}
$$

Here, since $p^{2}-q^{2} z$ is rational, either $l^{\prime}=0$ or $Q=0$. As the latter of these alternatives would make $\sqrt{ }\left(p^{2}-q^{2} z\right)$ rational, and therefore would make $\sqrt{ }(p+q \sqrt{ })$ or $\sqrt{ } s$ reducible, it is inadmissible. Therefore $c_{1} p+c_{2} q z=0$, and

$$
\sqrt{ }\left(p^{2}-q^{2} z\right)=\left(c_{1} q+c_{2} p\right) \sqrt{ } z
$$

Now $q z$ is not not zero, for this would make $\sqrt{ }\left(s s_{1}\right)= \pm p$; which, because $\sqrt{ } s$ is irreducible, is impossible. Therefore $c_{2}=0$. But, by hypothesis, $c_{1}=0$; therefore $\sqrt{ } s_{1}$, which is equal to $\left(c_{1}+c_{2} \sqrt{ } z\right) \sqrt{ }$, is zero ; which is impossible. Hence c_{1} cannot be zero. We may therefore put $c e=1$, and $h\left(1+e^{2}\right)=p$. Then $s=p+q \sqrt{ }=h\left(1+e^{2}\right)+h \checkmark\left(1+e^{2}\right)$. Having obtained this form, we may consider \approx to be identical with $1+e^{2}$, q with h, and p with $h\left(1+e^{2}\right)$.
$\S 70$. The reasoning in the preceding section holds good whether the equation $F^{\prime}(x)=0$ be of the first (see $\S 30$) or of the second class. If we had had to deal simply with equations of the first class, the proof given would have been unnecessary, so far as the form of z is concerned ; because, in that case, by Prop. VIII., A_{1} is a rational function of the primitive fifth root of unity.
§71. Proposition XXVII. Under the conditions that have been established, the root r_{1} takes the form given without deduction in Crelle (Vol. V., p. 336) from the papers of A bel.

For, by Cor. Prop. XIII. (compare also Cor. 2, Prop. XIX.,) the expressions

$$
\begin{array}{cccccccc}
\Delta_{1}^{\frac{1}{5}} & \Delta_{3}^{\frac{2}{5}} & \Delta_{4}^{\frac{3}{6}} & \Delta_{2}^{\frac{3}{5}}, & \Delta_{2}^{\frac{1}{5}} & \Delta_{1}^{\frac{5}{5}} & \Delta_{3}^{\frac{3}{5}} & \Delta_{4}^{\frac{3}{5}}, \\
\Delta_{3}^{\frac{1}{5}} & \Delta_{4}^{2} & \Delta_{2}^{3} & \Delta_{1}^{3}, & \Delta_{4}^{\frac{1}{5}} & \Delta_{2}^{2} & \Delta_{1}^{\frac{3}{5}} & \Delta_{3}^{\frac{3}{5}} \tag{73}
\end{array}
$$

are the roots of a biquadratic equation. In the corollaries referred to, it is merely stated that each of the expressions in (73) is the root of a biquadratic ; but the principles of the propositions to which the corollaries are attached show that the four expressions must be the roots of the same biquadratic. Let the terms in (73) be denoted respectively by

$$
5 A_{1}^{-1}, \quad 5 A_{2}^{-1}, \quad 5 A_{3}^{-1}, \quad 5 A_{4}^{-1}
$$

Then $\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}} \Delta_{4}^{\frac{4}{5}} \Delta_{2}^{\frac{3}{5}}=\Delta_{4}^{\frac{1}{3}}\left(\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}} \Delta_{4}^{\frac{3}{5}} \Delta_{2}^{\frac{3}{5}}\right)$ is an identity. Therefore

$$
\begin{aligned}
& \frac{1}{5} \Delta_{4}^{\frac{1}{5}}=A_{1}\left(\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}} \Delta_{4}^{\frac{4}{5}} \Delta_{2}^{\frac{3}{5}}\right) . \quad \text { Similarly } \\
& \frac{1}{5} \Delta_{3}^{\frac{1}{5}}=A_{3}\left(\Delta_{3}^{\frac{1}{5}} \Delta_{4}^{2} \Delta_{2}^{\frac{4}{5}} \Delta_{1}^{\frac{3}{5}}\right) \\
& \frac{1}{5} \Delta_{2}^{\frac{1}{5}}=A_{2}\left(\Delta_{2}^{\frac{1}{5}} \Delta_{1}^{\frac{2}{5}} \Delta_{3}^{\frac{4}{5}} \Delta_{4}^{\frac{3}{5}}\right), \text { and } \\
& \frac{1}{5} \Delta_{1}^{\frac{1}{5}}=A_{1}\left(\Delta_{4}^{\frac{1}{5}} \Delta_{2}^{\frac{2}{5}} \Delta_{1}^{\frac{4}{5}} \Delta_{3}^{\frac{3}{5}}\right) .
\end{aligned}
$$

Substituting these values in (62), we get

$$
\left.\begin{array}{rl}
r_{1} & =A_{1}\left(\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}}\right. \\
\Delta_{4}^{\frac{4}{5}} & \left.\Delta_{2}^{\frac{3}{5}}\right)+A_{2}\left(\Delta_{2}^{\frac{1}{5}} \Delta_{1}^{\frac{2}{5}}\right. \tag{74}\\
\Delta_{3}^{\frac{4}{5}} & \left.\Delta_{4}^{\frac{3}{5}}\right) \\
& +A_{3}\left(\Delta_{3}^{\frac{1}{5}}\right. \\
\Delta_{4}^{\frac{2}{5}} & \Delta_{2}^{\frac{4}{3}}
\end{array} \Delta_{1}^{\frac{3}{5}}\right)+A_{4}\left(\Delta_{4}^{\frac{1}{5}} \Delta_{2}^{\frac{2}{5}} \Delta_{1}^{\frac{4}{5}} \Delta_{3}^{\frac{3}{5}}\right) .
$$

This, with immaterial differences in the subscripts, is Abel's expression; ouly we need to determine A_{1}, A_{2}, A_{3} and A_{4} more exactly. These terms are the reciprocals of the terms in (73) severally divided by 5 . Therefore they are the roots of a biquadratic. Also, no surds can appear in A_{1} except those that are present in $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and Δ_{4}. That is to say, A_{1} is a rational function of $\sqrt{ } s, \sqrt{ } s_{1}$ and $\sqrt{ } z$. But it was shown that $\sqrt{ } s_{1} \sqrt{ } s=h e \sqrt{ }$. Therefore A_{1} is a rational function of $\sqrt{ }$ and $\sqrt{ } z$. We may therefore put

$$
A_{1}=K+K^{\prime} د_{1}+K^{\prime \prime} \Delta_{4}+K^{\prime \prime \prime} \Delta_{1} \Delta_{4}
$$

$K, K^{\prime}, K^{\prime \prime}$ and $K^{\prime \prime \prime}$ being rational. But the terms A_{1}, A_{2}, A_{4}, A_{3} circulate with $\lrcorner_{1}, \Delta_{2}, \Delta_{4}, \Delta_{3}$. Therefore

$$
\begin{aligned}
& \left.\left.A_{2}=K+K^{\prime} J_{2}+K^{\prime \prime}\right\lrcorner_{3}+K^{\prime \prime \prime}\right\lrcorner_{2} \Delta_{3} \\
& \left.\left.\left.A_{4}=K+K^{\prime} J_{4}+K^{\prime \prime}\right\lrcorner_{1}+K^{\prime \prime \prime}\right\lrcorner_{1}\right\lrcorner_{4} \\
& \left.\left.\left.A_{3}=K+K^{\prime \prime}\right\lrcorner_{3}+K^{\prime \prime}\right\lrcorner_{2}+K^{\prime \prime \prime}\right\lrcorner_{2} J_{3}
\end{aligned}
$$

These are Abel's values.
$\S 72$. Keeping in view the values of Δ_{1}, Δ_{2}, etc., in (67), and also that $z=1+e^{2}$, and $\mathrm{s}=h z+h \sqrt{ } \approx$, any rational values that may be assigned to $m, n, e, h, K, K^{\prime}, K^{\prime \prime}$ and $K^{\prime \prime \prime}$ make r_{1}, as presented in (74), the root of an equation of the fifth degree. For, any rational values of m, n, etc., make the values of S_{1}, S_{2}, etc., in $\S 62$, rational.
$\S 73$. It may be noted that, not only is the expression for r_{1} in (74) the root of a quintic equation whose auxiliary biquadratic is irreducible, but on the understanding that the surds $\sqrt{ } s$ and $\sqrt{ } z$ in Δ_{1} may be reducible, the expression for r_{1} in (74) contains the roots both of all equations of the fifth degree whose auxiliary biquadratics have their roots rational, and of all that have quadratic subauxiliaries. It is unecessary to offer proof of this.
§74. The equation $x^{5}-10 x^{3}+5 x^{2}+10 x+1=0$ is an example of a solvable quintic with its auxiliary biquadratic irreducible. One of its roots is

$$
\omega^{\frac{1}{5}}+\omega \omega^{\frac{2}{5}}+\omega^{3} \omega^{\frac{3}{5}}+\omega^{4} \omega^{\frac{4}{5}}
$$

ω being a primitive fifth root of unity. It is obvious that this root satisfies all the conditions that have been pointed out in the preceding analysis as necessary. A root of an equation of the seventh degree of the same character is

$$
\omega^{\frac{1}{7}}+\omega^{4} \omega^{\frac{2}{7}}+\omega^{4} \omega^{\frac{3}{7}}+\omega^{2} \omega^{\frac{4}{7}}+\omega^{2} \omega^{\frac{5}{7}}+\omega^{6} \omega^{\frac{6}{7}}
$$

ω being a primitive seventh root of unity. The general form under which these instances fall can readily be found. Take the cycle that contains all the primitive $\left(m^{2}\right)^{\text {th }}$ roots of unity,

$$
\begin{equation*}
\theta, \theta^{\beta}, \theta^{\boldsymbol{\beta}^{2}}, \text { etc. } \tag{75}
\end{equation*}
$$

m being prime. The number of terms in the cycle is $(m-1)^{2}$. Let 0_{1} be the $(m+1)^{\text {th }}$ term in the cycle (75), 0_{2} the $(2 m+1)^{\text {th }}$ term, and so on. Then the root of an equation of the $m^{\text {th }}$ degree, including the instances above given, is

$$
r_{1}=\left(\theta+\theta^{-1}\right)+\left(\theta_{1}+\theta_{1}^{-1}\right)+\ldots+\left(\theta_{\frac{m-3}{2}}+\theta_{\frac{m-3}{2}}^{-1}\right)
$$

```
QA Young, George Paxton
218
Y68
```

```
        Principles of the solution
```

 Principles of the solution
 of equations of the higher
 of equations of the higher
 degrees
 degrees
 Physical \&
Applied Sci.

```

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY```

