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PREFACE

THIS book is intended primarily for students of engineering.
Its purpose is to provide a course in the principles of thermo-

dynamics that may serve as an adequate foundation for the

advanced study of heat engines. As indicated by the title,

emphasis is placed on the principles rather than on the appli-

cations of thermodynamics. In the chapters on. the technical

applications the underlying theory of various heat engines is

quite fully developed. The discussion, however, is restricted

to ideal cases, and questions that involve the design, operation,

or performance of heat engines are reserved for a second

volume.

The arrangement of the subject matter and the method of

presentation are the result of some twelve years' experience in

teaching thermodynamics. Briefly, the arrangement is as fol-

lows : In the first six chapters, the fundamental laws are

developed and the general equations of thermodynamics are

derived. The laws of gases and gaseous mixtures are dis-

cussed in Chapters VII and VIII, and this discussion is fol-

lowed immediately by the technical applications in which

gaseous media play a part. A discussion of the properties

of saturated and superheated vapors is likewise followed by the

technical applications that involve vapor media.

Some of the features of the book to which attention may
be directed are the following :

1. The method of presenting the fundamental laws. In

this treatment I have followed very closely the development
in.Bryan's thermodynamics. The second law is made identical

with the law of degradation of energy, the connection between
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derived. By this method of presentation, a definite concep-
tion of the meaning and scope of the second law is obtained,

and the difficulties that usually surround the definition of

entropy are removed.

2. The discussion of saturated and superheated vapors.
The experiments in the Munich laboratory and the researches

of Professor Marks and Dr. Davis have furnished now and
accurate data on the thermal properties of saturated and super-
heated steam. In Chapters X and XI a concise but fairly

complete account of these important researches is given. Kno-
blauch's experiments on specific volumes have been correlated

with the experiments on specific heat by means of the Cluusius

relation(^A = - AT(~\ and equations for the specific heat,
\opj T \oj_ jp

entropy, energy, and heat content of superheated steam arc

thereby deduced. These results have not hitherto been pub-
lished.

3. The discussion of the flow of fluids and of throttling
processes. The applications of the throttling process are so

important from all points of view that a separate chapter is

devoted to them.

4. The treatment of gaseous mixtures, Chapter VIII. An
attempt is made to present in concise form the principles and
methods required in the accurate analysis of the internal com-
bustion engine.

5. The note on the interpretation of differential expressions,
Art. 23. This important topic should be discussed fully in
calculus, but experience shows that students rarely have a
grasp of it. In thermodynamics the exact differential has
extensive applications; hence it seems desirable to include
a rather complete explanation of exact and inexact differentialsand their connection with thermodynamic magnitudes. A

f this article should ">aWB the student
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The text is illustrated by numerous solved problems, and

exercises are given at the ends of the chapters and elsewhere.

Many of the exercises require only routine numerical solutions,

but others involve the development of principles.

References are given to the treatment of various topics in

standard works and to original articles. It is not expected
that undergraduate students will make extensive use of these

references, but it is hoped that instructors and advanced

students will find them helpful.

In writing this book I have consulted many of the standard

works on thermodynamics, and have made free use of whatever

material suited my purpose. I desire to acknowledge my
special indebtedness to the works of Bryan, Preston, Griffiths,

Zeuner, Chwolson, Weyrauch, and Lorenz, and to the papers
of Dr. H. N. Davis. To Mr. John A. Dent I am indebted

for assistance in the construction of the tables and in the

revision of the proof sheets. Mr. A. L. Schaller also gave
valuable assistance in getting the book through the press.

G. A. GOODENOUGH.
URBANA, ILL., July, 1911.
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SYMBOLS

NOTE. The following list gives the symbols used in this book. In

a magnitude is dependent upon the "weight of the substance, the si

letter denotes the magnitude referred to unit weight, the capital letter

same magnitude referred to M units of weight. Thus q denotes the ]

absorbed by one pound of a substance, Q = Mq, the heat absorbed b;

pounds.

J, Joule's equivalent.

A, reciprocal of Joule's equivalent.

M, weight of system under consideration.

t, temperature on the F. or the C. scale.

T, absolute temperature.

p, pressure.

v, V, volume.

y, specific weight ;
also heat capacity.

u, U, intrinsic energy of a system,

z, 7, heat content at constant pressure.

s, S, entropy.

W, external work.

q, Q, heat absorbed by a system from external sources.

h, fl, heat generated within a system by irreversible transformatioj

work into heat.

c, specific heat.

c v , specific heat at constant volume.

cp , specific heat at constant pressure.

k, ratio cp/cv .

B, constant in the gas equation pv = BT.

R, universal gas constant.

n, exponent in equation for polytropic change, p Vn = C.

m, molecular weight,

oi, 03..., atomic weights.

Hm , heating value of a fuel mixture.

x, quality of a vapor mixture (p. 165).

q',
heat of the liquid.

q", total heat of saturated vapor.



iv SYMBOLS

v', v", specific volume of liquid and of vapor, respectively,

w', u", internal energy of liquid and of vapor, respectively.

s', s", entropy of liquid and of vapor, respectively.

i', i", beat content of liquid and of vapor, respectively.

c', c", specific heat of liquid and of vapor, respectively.

<, humidity.

w, velocity of flow.

we ,
acoustic velocity.

J1

,
area of cross-section of channel.

z, work of overcoming friction in the flow of fluids.

pm,
critical pressure (flow of fluids).

/JL,
Joule-Thomson coefficient.

77, efficiency of a heat engine.

N, steam consumption per h.p.-hour.



PRINCIPLES OF THERMODYNAMICS

CHAPTER I

ENERGY

1. Scope of Thermodynamics. In the most general sense,

thermodynamics is the science that deals with energy. Since

all natural phenomena, all physical processes, involve manifes-

tations of energy, it follows that thermodynamics is one of

the most fundamental and far-reaching of sciences. Thermo-

dynamics lies at the foundation of a large region of physics

and also of a large region of chemistry ; and it stands in a

more or less intimate relation with other sciences.

In a more restricted sense, thermodynamics is that branch of

physics which deals specially with a form of energy called heat.

It deals with transformations of heat energy into other forms

of energy, develops the laws that govern such transformations,

and investigates the properties of the media by which the

transformations are effected. In technical thermodynamics the

general principles thus developed are applied to the problems

presented by the various heat motors.

In this volume the general principles of thermodynamics are

developed so far as is essential to give a firm foundation for the

technical applications in engineering practice. The scope of

the book does not permit a discussion of the methods of inves-

tigation that are employed so fruitfully in physics and chem-

istry.
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ing to rest, that is, in changing its state as regards velocity;

a body in an elevated position can do work in changing ii

position; a heated metal rod is capable of doing mechanical

work when it contracts in cooling. In each case sonic change,

in the state of the body results in the doing of work ; hence, in

each case the body in question possesses energy.

Energy, like motion, is purely relative. It is impossible to

give' a numerical value to the energy of a system without

referring it to some standard system, whose energy we
^niay

arbitrarily assume to be zero. For example, the energy of the

waterman elevated reservoir is considered with re Terence to

the energy of an equal quantity at some chosen lower level.

The kinetic energy of a body moving with a definite velocity

is compared with that of a body at rest on the earth's .surface,,

and having, therefore, zero velocity relative to the earth. The

energy of a pound of steam is referred to that of a pound of

water at the temperature of melting ice.

3. Mechanical Energy is that possessed by a body or system

due to the motion or position of the body or system relative to

some standard of reference. Mechanical kinetic energy is thai

due to the motion of a body and is measured by the product

\ mv\ where m denotes the mass of the body and v its velocity

relative to the reference system. It should be observed that

2 mv
z
is a scalar, not a vector, quantity and it must be considered

positive in sign. Hence, if a system consists of a number of

masses m
15

ra
2 , ,

mn moving with velocities vv v
z , , v,n

respectively, the total kinetic energy of the system is the sum

-| (ra^
2 + w

2
v
2
2
4- ... + mn y,

2
) = |

Swy2
,

independently of the directions of the several velocities.

The mechanical potential energy of a system is that due to
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4. Heat Energy. Heat is tlie name given to an active agent

postulated to account for changes in temperature. It is ob-

served that when two bodies are placed in communication, the

temperature of the warmer falls, that of the colder rises, and the

change continues until the two bodies attain the same tempera-
ture. To account for this phenomenon we say that heat flows

from the hotter to the colder body. The fall of temperature of

one body is due to the loss of heat, while the rise in tempera-
ture of the other is due to the heat received by it. It is to be

noted that the change of temperature is the thing observed and

that the idea of heat is introduced to account for the change,

just as in dynamics the idea of force is introduced to account

for the observed motion of bodies. Whatever may be the

nature of heat, it is evidently something measurable, something

possessing the characteristics of quantity.

In the old caloric theory, heat was assumed to be an impon-

derable, all-pervading fluid which could pass from one body to

another and thus cause changes of temperature. The experi-

ments of Rumford (1798), Davy (1812), and Joule (1840)
shattered the caloric theory and established the modern me-

chanical theory, of which the following is a brief outline.

Heat may be generated by the expenditure of mechanical

work. Familiar examples are shown in the heating of journals

due to friction, the heating of air by compression, the develop-

ment of heat by impact, etc. Conversely, work may be ob-

tained by the expenditure of heat, as exemplified in the steam

engine and other heat motors. Joule's experiments established

the fact that a definite relation exists between the heat gener-

ated and the work expended ; thus to produce a unit of heat a

definite amount of work is required, no matter in what particu-

lar way the work is done. Heat and mechanical energy are

therefore equivalent in a certain sense. Either may be produced
at the expense of the other, and the ratio between the quantity of

one produced and the quantity of the other expended is always
the same. The conclusion is evident that heat is not a sub-
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Heat energy, like mechanical energy, may bo either of tlm

kinetic or the potential form. Denoting the mass of si mole-

cule by m and the velocity by v, the kinetic energy of the mole-

cule is I- mvz
. In a given system the different molecules are

moving" with different velocities and in different directions ;

nevertheless, the summation

2
-|
mvz

extended to all the molecules of the system gives the thermal

kinetic energy of the system. If we denote by c2 the mean

square of the velocities of the molecules, we have

where M denotes the mass of the system. Considerations de-

rived from the kinetic theory of gases show that the lempera-
ture of the system is a function of 6

>2
; hence, since the kinetic,

energy is directly proportional to 6'
2
,
it follows that the tempera-

ture of a system is a measure of its thermal kinetie energy.
Whenever the temperature of a body rises, wo infer that, the

kinetic energy has increased, and that the mean velocity of the

molecules is greater than before.

Potential thermal energy is due to the relative position of

the molecules of the system. The addition of heat to a body
usually results in the expansion of the body. The molecules
are moving with higher speeds than before the addition of heat,
and on the whole they are farther apart. To separate them
against their mutual attractions requires the expenditure of

work; conversely, in coming back to the original configura-
tion the molecules will do work. Hence, the work expended
in separating the molecules is stored in the system as potential
energy.

As long as the body remains in the same state of aggregation,
the potential energy it is capable of storing is small.

^

lint if a

body changes its state of aggregation, it may, during the pro-
cess, store a large amount of potential energy. Consider, for
example, the melting- of ice. To nimn ^-
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water. The heat is therefore stored as potential energy. In the

same manner when water is transformed into steam, work is

done in forcing apart the molecules against their cohesive forces,

and this work is stored as potential energy.

5. Other Forms of Energy. In addition to heat and mechani-

cal energy, there are other forms of energy that require consid-

eration. The energy stored in fuel or in explosives may be

considered potential chemical energy. Electrical energy is

exemplified in the electric current and in the electrostatic charge
in a condenser. Other forms of energy are due to wave motions

either in ordinary fluid media or in the ether. Sound, for

example, is a wave motion usually in air. Light and radiant

heat are wave motions in the ether.

The vibratory forms of energy are neither kinetic nor potential,

but rather periodic alternations between the two. To illustrate

this statement, let us consider the motion of a pendulum bob.

In its lowest position the bob has zero potential energy and

maximum kinetic energy ; as it rises its velocity decreases ;

therefore, its kinetic energy also decreases, while its potential

energy simultaneously increases and reaches a maximum at the

end of the swing when the kinetic energy is zero. This same

alternation from kinetic to potential and back occurs in vibrating

strings, water waves, and, in fact, in all wave motions.

6. Transformations of Energy. Attention has been called

to the generation of heat energy by the expenditure of mechani-

cal work. This is only one of a great number of energy changes
that are continually occurring. We see everywhere in every-

day life one kind of energy disappearing and another form

simultaneously appearing. In a power station, for example,

the potential energy stored in the coal is liberated and is used up
in adding heat energy to the water in the boiler. Part of this

heat energy disappears in the engine and its equivalent appears

as mechanical work. Finally, this work is expended in driving

a generator, and in place of it appears electric energy in the

form of the current in the circuit. We say in such cases that
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ing are a few familiar examples of energy transformations ;

many others will occur to the reader.

Mechanical to heat : Compression of gases ; friction; im-

pact.

Heat to mechanical : Steam engine ; expansion and contrac-

tion of bodies.

Mechanical to electrical : Dynamo ; electric machine.

Electrical to mechanical : Electric motor.

Heat to electrical : Thermopile.

Electrical to heat : Heating of conductors by current.

Chemical to electrical : Primary or secondary battery.
Electrical to chemical : Electrolysis.

Chemical to thermal : Combustion of fuel.

7. Conservation of Energy. Experience points to a general.

principle underlying all transformations of energy.
The total energy of an isolated system remains constant and

cannot be increased or diminished ly any phi/xi.aal prwxm'x
whatever.

In other words, energy, like matter, can be neither created
nor destroyed ; whenever it apparently disappears it has been
transformed into energy of another kind.

This principle of the conservation of energy was lirst defi-

nitely stated by Dr. J. R. Meyer in 1842, and 'it soon received
confirmation from the experiments of Joule on the mechanical
equivalent of heat. The conservation law cannot be proved
by mathematical methods. Like other general principles in

physics, it is founded upon experience and experiment. So
far, it has never been contradicted by experiment, and it may
be regarded as established as an exact law of nature.
A perpetual motion of the first class is one that would sup-

posedly give out energy continually without any corresponding
expenditure of energy. That is, it would create enerU from
nothing.

^

A perpetual-motion engine would, therefore, <n've out
an unlimited amount of work without fuel or other external
supply of

energy. Evidently such a machine would violate theconserve law ; and the statement that perpetual motion of
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the first class is impossible is equivalent to the statement of the

conservation principle at the beginning of this article.

8. Degradation of Energy. While one form of energy can

be transformed into any other form, all transformations are not

effected with equal ease. It is only too easy to transform

mechanical work into heat ; in fact, it is one duty of the

engineer to prevent this transformation as far as possible.

Furthermore, of a given amount of work all of it can be trans-

formed into heat. The reverse transformation, on the other

hand, is not easy of accomplishment. Heat is not transformed

into work without effort, and of a given quantity of heat only a

part can be thus transformed, the remainder being inevitably

thrown away. All other forms of energy can, like mechanical

energy, be completely converted into heat. Electrical energy,
for example, in the form of a current, can be thus completely
transformed. Comparing mechanical and electrical energy, we
see that they stand on the same footing as regards transforma-

tion. In a perfect apparatus mechanical work can be com-

pletely converted into electrical energy, and, conversely, electric

energy can be completely converted into mechanical work.

We are thus led to a classification of energy on the basis of

the possibility of complete conversion. Energy that is capable

of complete conversion, like mechanical and electrical energy,

we may call high-grade energy; while heat, which is not capable

of complete conversion, we may call low-grade energy.

There seems to be in nature a universal tendency for energy

to degenerate into a form less available for transformation.

Heat will flow from a body of higher temperature to one of

lower temperature with the result that a smaller fraction of it

is available for transformation into work. High-grade energy

tends to degenerate into low-grade heat energy. Thus work is

degraded into heat through friction, and electrical energy is

rendered unavailable when transformed- into heat in the con-

ducting system. Even when one form of high-grade energy is



substances, the difference being due to tJio Jioat developed dur-

ing the reaction. As Griffiths aptly says: "Each time we.

alter our investment in energy, we have thus to pay a commis-

sion, and the tribute thus exacted can never bo wholly recovered

by us and must be regarded, not as destroyed, but us tin-own on

the waste-heap of the Universe."

The terms degradation of energy, dissipation of energy, and

thermodynamic degeneration are applied by different/ writers to

this phenomenon that we have just described. We may for-

mally state the principle of degradation of energy as follows :

Every natural process is accompanied ly a certain rfi't/i'ddiitinn.

of energy or tliermodynamic degeneration.

The principle of the degradation of energy denies the. possi-

bility of perpetual motion of the second class, which may be de-

scribed as follows : A mechanism with friction is inclosed in a

case through which no energy passes. Let the mechanism be

started in motion. Because of friction, work is converted into

heat, which remains in the system, since no energy passes

through the case. Suppose now that the heat thus produced
can be transformed completely into work

; then the work may
be used again to overcome friction and the heat thus produeed
can be again transformed into work. "We then have a perpetual
motion in a mechanism with friction without the addition of

energy from an external source. Such a mechanism does not
violate the conservation law, since no energy is created. It,

however, is just as much of an absurdity as the perpetual mot ion
of the first-class because it violates the principle of degradat ion.

We shall discuss the degradation principle more at length in
a subsequent chapter.

9. Units of Energy. According to the conservation law,
the quantity of energy remains unchanged through all trans-
formations. Hence, a single unit is sufficient for the measure-
ment of energy whatever its form may be. This unit is furnished
by the erg, the absolute unit of work in the C. G. S. system, or
by the joule, which is 10* ergs. It would save much confusion
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arid annoyance if a single unit, as the joule, were used for all

forms of energy. Unfortunately, however, the joule is ordina-

rily used in connection with electrical energy only, and other

units are used for other forms of energy. The following are

the units generally employed.

For mechanical energy:

1. The foot-pound (or in the metric system, the kilogram-

meter). This is the unit ordinarily employed by

engineers.

2. The horsepower-hour, which is equal to 1,980,000 foot-

pounds. This unit is most convenient for ex-

pressing large quantities of work. It should be

noted that although the word " hour "
is included in

the name, the time element is in reality lacking,

and the horsepower-hour is a unit of work, not a

unit of power.

For heat energy :

1. The British thermal unit (B. t . u.).

2. The calorie.

The accurate definition of these thermal units and the means

employed in establishing them demand special consideration.

10. Units of Heat. Obviously heat may be measured by

observing the effects produced by it upon substances. Two of

the most marked effects are : (1) rise of temperature ; (2)

change of state of aggregation, as in the melting of ice or

vaporization of water. Hence, we have two possible means of

establishing a unit of heat :

1. The heat required to raise a given mass of a selected

substance, as water, through a chosen range of temperature

may be taken as the unit.

2. The quantity of heat required to change the state of

aggregation of some substance, as, for example, to melt a given

weight of ice, may be taken as the unit.



20 G on the same scale. This thermal unit is called tho ffram-

calorie, or the small calorie. If the weight of water in taken an

1 kilogram, the resulting unit is the kilogram-calorie
or largo

calorie. This is the unit employed by engineers.
^

The British thermal unit is defined as t/w heat
rjur.'d

to

raise the temperature of 1 pound of water from l>3 to C>4'
J

/*'.

The method of establishing thermal units by tho rise <>i tem-

perature of water is open to one serious objection, namely :

The energy required to raise the temperature of water one

degree is quite different at different temperatures. Thu^
the,

number of ioules required to raise a given mass of water from

0tol0. or from !>'.)" to

100 C. is considerably

larger than the immbc.r

of joules required to

raise tho same mass from

40 to 41 C. The curve.,

Fig. 1, shows graphically

the energy required per

degree riso of tempera-

ture from to 100" (I

It follows that we may
have a number of different thermal units depending upon tho

temperature adopted in the definition. By many physicists

the 15-calorie is used. This is the heat required to raise the

temperature of a gram of water from
14-|-

C. to If)! C. In

recent years there has been a tendency to unite on the so-

called mean calorie, which may be denned as the -^
-

ff part, of the

heat required to raise a gram of water from (J. to 100" (1.

The 17|--calorie, as denned by Griffiths, is practically equal
to the mean calorie. Corresponding to the mean caloric, is the

mean B.t. u., which is T 7 of the heat required to raise the

temperature of one pound of water from 32 to 212 F. This
is equal to the B. t. u. at

63-|-.

FIG. 1,

11. Relations between Energy Units. The relation lwtwo.au.

the joule, the absolute unit of energy, and any of the grswita-



ART. 11] RELATIONS BETWEEN ENERGY UNITS H

hour, is readily derived when the value of the constant g is

given. By international agreement g is taken as

980.665 = 32.174^-
sec

The second value is obtained by means of the conversion factor

1cm. = 0.3937 in.

Bearing in mind the definition of the erg, we have

1 kilogram-meter = 98066500 ergs
= 9.80665 joules.

Now making use of the relation 1 kg. = 2.204622 Ib. and the

preceding relation between the units of length, we readily find

the relation

1 foot-pound = 1.3558 joules,

or 1 joule =0.73756 foot-pound.

The numerical relation between the thermal unit and the

joule, that is, the number of joules in one gram-calorie, is called

the mechanical equivalent and is denoted by J. The determi-

nation of this constant has engaged the efforts of physicists
since 1843.*

In this work two experimental methods have been chiefly

employed : (1) The direct method, in which mechanical energy
is transformed directly into heat. (2) The indirect method, in

which heat is produced by the expenditure of energy in some

form other than mechanical. Usually electrical energy is thus

transformed.

The earliest experiments were those of Joule (1843), using

the direct method. Work was expended in stirring water by
means of a revolving paddle. From the rise of temperature

of the known weight of water, the heat energy developed could

be expressed in thermal units; and a comparison of this quan-

tity with the measured quantity of work supplied gave imme-

diately the desired value of J.

Professor Rowland (1878-1879) used the same method, but

by driving- the paddle wheel with a petroleum engine he was



to the water, and the influence of various corrections was cor-

respondingly decreased. Rowland's results are justly tfivcm

great weight in deducing the finally accepted value of '/.

Another result of the highest value in that [omul by Rey-

nolds and Moorby (1897). The work, of a 100 horsepower

engine was absorbed by a hydraulic brake. Water entered

the brake at or near C. and was run through it at a rale that,

caused it to emerge at a temperature of about 1.00" ( . In this

way the mechanical equivalent of the heat required to raise (lie.

temperature of one pound of water from O
u

to 100" (!. was

determined.

Of the experiments by the indirect method those of ( irifliths

(1893), Schuster and Gannon (1H!)4), and dallendar and

Barnes (1899) deserve mention. In each set of experiments
the heat developed by an electric current was measured and

compared with the electrical energy expended.
From a careful comparison of the results of the most trust-

worthy experiments, Griffiths has decided that the, most prob-
able value of Jia 4.184. That is, taking the 17r ^ram-ealorie,

1 gram-calorie = 4.184 joules.

By the use of the necessary reduction factors, we, obtain (he

following relations :

1 kg. -calorie = 426.65 kilogram-meters.
1 B. t. u. = 777.64 foot-pounds.

For ordinary calculations, the values 427 and 77S, respectively,
are

sufficiently accurate.

In writing some of the general equations of thennodynamies
it is frequently convenient to use the reciprocal of J.

'

This is

denoted by the symbol A ; that is, A =X We may re-ard ,1

as the heat equivalent of work; thus

1 ft.-lb. = A B. t. u.

When the horsepower-hour is taken as the unit of work, we
have

As 1980000
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Hence, 1 h.p.-hr. = 2546.2 B. t..u.,

a relation that is frequently useful.

EXERCISES

1. If the thermal unit is taken as the heat required to raise the tempera-
ture of 1 pound of water from 17 to 18 C., what is the value of / in foot-

pounds? '-'.',' '.<."'

J
''-

2. In the combustion of a pound of coal 13,200 B. t. u. are liberated. If

Y| per cent of this heat is transformed into work in an engine, what is the

coal consumption per horsepower-hour?

3. A gas engine is supplied with 11,200 B.t. u. per horsepower-hour.
Find the percentage of the heat supplied that is usefully employed.

--
-
: ?

4. In a steam engine 193 B. t. u. of the heat brought into the cylinder

by each pound of steam is transformed into work. Find the steam con-

sumption per horsepower-hour. /.'. /

5. The metric horsepower is denned as 75 kilogram-meters of work per
second. Find the equivalent in kilogram-calories of a metric horsepower-
hour.

6. Find the numerical relations between the following energy unite :

() Joule and B.t. u.

(1>) Joule and metric h.p.-hr.

(c) B. t. u. and kg.-meter

(rf) h.p.-minute and B.t.u.

7. A unit of power is the watt, which is defined as 1 joule per second.

1 kilowatt (lew.) is 1000 watts. Find the number of B. t. u. in a kw.-hr.
;

the number of foot-pounds in a watt-hour.

8. A Diesel oil engine may under advantageous conditions transform as

high as 38 per cent of the heat supplied into work. If the combustion of a

pound of oil develops 18,000 B.t.u., what weight of oil is required per h.p.-hr.?
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CHAPTER II

CHANGE OF STATE. THERMAL CAPACITIES

12. State of a System. A thermodynamic system, may be

defined as a body or system of bodies capable of receiving and

giving out heat or other forms of energy. In general, we shall

assume such a system at rest so that it has no appreciable ki-

netic energy due to velocity. As examples of thermodynamic

systems, we may mention the media used in heat motors : wa-

ter vapor, air, ammonia, etc.

We are frequently concerned with changes of state of systems,
for it is by such changes that a system can receive or give out

energy. We assume ordinarily that the system is a homogeneous
substance of uniform density and temperature throughout ;

also that it is subjected to a uniform pressure. Such being the

case, the state of the substance is determined by the mass, tem-

perature, density, and external pressure. If we direct our

attention to some fixed quantity of the substance, say a unit

mass, we may substitute for the density its reciprocal, the vol-

ume of the unit mass ; then the three determining quantities

are the temperature, volume, and pressure. These physical

quantities which serve to describe the state of a substance are

called the coordinates of the substance.

In all cases, it is assumed that the pressure is uniform over

the surface of the substance in question and is normal to the

surface at every point ;
in other words, hydrostatic pressure.

We may consider this pressure in either of two aspects : it

may be viewed as the pressure on the substance exerted by some

external agent, or as the pressure exerted ly the substance on

whatever bounds it. For the purpose of the engineer, the lat-

ter view is the most convenient, and we shall always consider the

pressure exerted by instead of on the substance. The pressure

is always stated as a specific pressure, that is, pressure per unit

15



pound per square foot.

The volume of a unit weight of the substance is the
spi'nifit:

volume. Ordinarily volumes will bo expressed in cubic, feet,

and specific volumes in cubic feet per pound. As it is frequently

necessary to distinguish between the specific volume, and the

volume of any given weight of the substance, wo shall use v to

denote the former and V the latter. Thus, in general, v will

denote the volume of one pound of the substance, l

r
the. volume

of M pounds ;
hence

F= Mv.

This convention of small letters for symbols denoting quanti-

ties per unit weight and capitals for quantities associated with

any other weight M will be followed throughout, the book.

Thus q will denote the heat applied to one pound of gas and Q
the heat applied to M pounds, u the energy of a unit- weight of

substance, 7" the energy of M units, etc.

As regards the third coordinate, temperature, wo shall ac-

cept for the present the scale of the air thermometer. Later

the absolute or thermodynamic scale will be introduced.

While the centigrade scale presents great advantages, tins com-

mon use of the Fahrenheit scale in engineering practice, compels
the adoption of that scale in this book.

13. Characteristic Equation. In general, we may assume
the values of any two of the three coordinates p< v, T, and
then the value of the third will depend upon values of these

two. For example, let the system be one pound of air inclosed
in a cylinder with a movable piston. By loading the piston wo
may keep the pressure at any desired value

;
then by the ad-

dition of heat we may raise the temperature to any predeter-
mined value. Thus we may fix p and T independently. Wo
cannot, however, at the same time give the volume v any value
we please ; the volume will be uniquely determined by the
assumed values of p and T, or in other words, v is a function
of the independent variables p and T. In a similar manner
we may take p and v as independent variables, in which ease T
will be the function, or we take v and T as independent and
p as the function depending on them.



or written in the explicit form

p -.f ^ JT\ ^2\

The equation giving this relation is called the characteristic

equation of the substance. The form of the equation must be

determined by experiment.
For some substances more than one equation is required ; thus

for a mixture of saturated vapor and the liquid from which it

is formed, the pressure is a function of the temperature alone,

while the volume depends upon the temperature and a fourth

variable expressing the relative proportions of vapor and

liquid.

14. Equation of a Perfect Gas. Experiments on the so-called

permanent gases have given us the laws of Charles and Boyle.

Assuming these to be fol-

lowed strictly, we may
readily derive the charac-

teristic equation of a gas as

follows.

According to the law of

Charles, the increase of

pressure when the gas is

heated at constant volume is proportional to the increase of

temperature ; that is,

FIG.

This equation defines, in fact, the scale of the constant volume

gas thermometer. Charles' law is shown graphically in Fig. 2.

Point A represents the initial condition (p , ), point JB the

final condition (jp, ). Then

According to Charles' law, therefore, the points representing

the successive values of p and t, with v constant, lie on a straight

line through the initial point A, and the slope of this line is the
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constant k. Evidently k is independent of p and t, but it may

depend upoiifl;
hence we write

A-/00.

Substituting this value of k in (1), wo got

p -^ =C*-V) /(.<>)

In this equation t and i are temperatures measured from Urn

Fahrenheit zero ;
that is, from the origin (Fig. 2 ). Evidently

the difference t-t
Q

is independent of the position of the as-

sumed zero ;
hence we may write

where ^and T^ denote temperatures measured from some. new

zero, assumed at pleasure. Let us choose this new xen> siicli

that T when p = 0. This is evidently equivalent to the

selection of a new origin 0' (Fig. 2) at the intersee.tion of the line.

AB with the i-axis. If we now take the, initial point A at 0' ,

we have pQ
= 0, TQ

= 0, and (2) takes the form

whence pv=Tvf(v~). (V, ;

By hypothesis, the substance follows Boyle's law; that is, the

product pv is constant when the temperature T is eonslaut.

From (3), therefore, the factor vf(v) is a constant ; and denot-

ing this constant by B we have

which is the characteristic equation desired.

The name perfect gas is applied to a hypothetical ideal gas
which strictly obeys Boyle's law, and the internal energy of

which is all of the kinetic form, and, therefore, dependent on
the temperature only. No actual gas precisely fulfills these

conditions; but at ordinary temperatures, air, nitrogen, hydro-
gen, and oxygen so nearly meet the requirements that 'they
may be considered approximately perfect.

15. Absolute Temperature. The zero of temperature defined
in the preceding article is called the absolute zero, ami tempera-
tures measured from it are called absolute temperatures. The
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molecules on the containing walls. When this pressure is zero,

we infer that molecular motion of translation has entirely ceased,

and this is, therefore, the condition at absolute zero.

The position of the absolute zero relative to the centigrade
zero may be determined approximately by experiments on a

nearly perfect gas, such as air. From Eq. (4), Art. 14, we

have, assuming that the volume remains constant,

whence
Pi

~
Pi _ 2

~"

t m \^J
Pi -'I

Let "us take 2j as the temperature of melting ice, Tz
that of

boiling water at atmospheric pressure. llegnault's experi-

ments on the increase of pressure of air when heated at con-

stant volume gave the relation

.)
)

Since for the C. scale

7^-^
O.SOGGp, 100

we have ----- = -m >

whence ^ =-- = 272.85. (5)
O.oubo

That is, using air as the thermometric substance, the abso-

lute zero is 272. 85 C. below the temperature of melting ice.

Other approximately perfect gases, as nitrogen, hydrogen, etc.,

give slightly different values for Tr The experiments of

Joule and Thomson indicate that for an ideal perfect gas, one

strictly obeying the law expressed by the equation pv = BT, the

value of TI would be between 273.1 and 273.14. The corre-

sponding value on the Fahrenheit scale may be taken as 491.6 ;
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denote ordinary temperatures by t and absolute temperatures

by T, we have

T- 1 + 273.1, for the C. scale.

T=t + 459.0, for the K. .scale.

16. Other Characteristic Equations. The equation jn>
= 7/7"

gives a close approximation to the changes of state of the. more

permanent gases. Other gases, as, for example, carbonic, acid,

which are in reality only slightly superheated vapors, show

marked deviations from the behavior of the ideally perfect gas,

and this equation does not give even a rough approximation to

the actual facts.

On the basis of the kinetic theory of gases, van der Wauls

has deduced a general characteristic equation applicable not

only to the gaseous but to the liquid state as well. It has the

following form :

BT a
r

v-l> v^

in which J9, a, and I are constants which depend it]
ton the

nature of the substance.

An empirical equation for superheated steam is

'

~.l '
rjln

V
~ '

It will be observed that for large values of T and ?>, that, is,

when the gas is extremely ratified, the hist term of both equa-
tions becomes small and
the resulting equation ap-

proaches more nearly the

equation of the perfect gas.

17. Characteristic Sur-

faces. The characteristic.

V equation
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by its coordinates p^ vv T, and this state is therefore repre-

sented by a point, on the surface. If the state changes, a

second point with coordinates pv i>
2 , 5^, will represent the new

state. The succession of states between the initial and final

states will be represented by a succession of points on the

surface. The point representing the state we will call the

state-point. 'Hence, for any change of state there will be a

corresponding movement of the state-point.

The surface representing the equation

is shown in Fig. 3. For other characteristic equations the sur-

faces are of a less simple form.

18. Thermal Lines. If we impose the restriction that during
a change of state the temperature of the substance shall remain

constant, the state-point will evidently move on the character-

istic surface parallel to the jt?u-plane. Such a change of state is

called isothermal, and the curve described by the state-point is

an isothermal curve or, briefly, an. isotherm. By taking different

constant values for the temperature, we get a complete repre-

sentation of the characteristic equation. For the perfect gas,

the isotherms consist of a system of equilateral hyperbolas hav-

ing the general equation

pv const. (1)

The restriction may be imposed that the pressure of the sub-

stance shall remain constant during the change of state. The

state-point will in this case move parallel to the v27
-plane, and

the projection of the path on the jp-plane will be a straight line

parallel to 0V, as AB (Fig. 4). The relation between volume

and temperature is found l>y

combining the equation
p

D



Substituting this value of p in the characteristic, equation, wo

have

" ' '

If the substance changes its state at constant volume, the

state-point moves parallel to the jp^P-phuie, and the projection

of the path on the pv-plnno is a line parallel to the p-axis, as

CD (Fig. 4). In the case of a perfect gas, the relation between

p and T for a change at constant volume is

.
.

o

Lines of constant pressure are called isopiestic linns
;

lines of

constant volume, isometric lines.

Besides the cases just given, others aro of frequent occur-

rence, and will be taken up in detail later. Thus we may have

changes of state in which the energy of the system remains

constant; such changes are called isodynamic. Wo may also

have changes in which the system neither receives nor gives
out heat

; such are called adiabatic.

19. Heat absorbed during a Change of State. A change of

state of a system is generally accompanied by the absorption
of heut from external sources.

If we denote by q beat thus

absorbed pur unit, weight, we

may by giving r/ proper signs
cover all possible cases ; thus

+ q indicates heat absorbed, q
heat rejected; while if y 0,

we have the limiting adiabatle

change of state.

The heat absorbed may be

determined from the changes in
two of the three variables

j>, t,, t that define the state of the
system. As we have seen, any pair may be selected as suits
our convenience. For example, let t and be talcen as the
independent variables, and let the curve AB f Ki-. frt irnresent

FIG. 5.
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this curve to be replaced by the broken line PQR, then the

segment PQ represents an increment of volume Av with t

constant and the segment QR an increment of temperature
A with v constant. The rate of absorption of heat along PQ,
that is, the heat absorbed per unit increase of volume, is given

by the derivative
(

-
j ,

the subscript t indicating that t is held
\dv/t

constant during the process. If the rate of absorption be mul-

tiplied by the change of volume v, the product (-) Av is evi-
\dvjt

dently the heat absorbed during the change of state represented

(-

\

) '

dtj-u

and the heat absorbed is the product (
---

)
A. The heat ab-1

\dtjv
t

sorbed during the change PQR is, therefore,

(1)^ J
Jvjt \dtjv

and the total heat absorbed along the broken path from A to

B is given by the summation

)At, + f??)A<|. (2)

By taking the elements into which the curve is divided

smaller and smaller, the broken path may be made to approach
1

the actual path between A and B. Therefore, passing to the

limit, \ve have instead of (1)

, (3)

and for the heat absorbed during the change of state from A

By choosing other pairs of variables as independent, other

equations similar to (3) may be obtained. Thus, taking t and



or taking p and v as the independent variables, we have

dp

From (5) and (6) equations corresponding to (!) may bo

readily derived.

20. Thermal Capacity. Specific Heat. Of tho partial deriv-

atives introduced in the preceding article, two are of special

importance, -namely, (^] and (

(

^) . In general, the heat

\vtjv \vtjp

required to raise the temperature of a body one, degree under

given external conditions is called the thermal capacity. of the.

body for these conditions. Hence, if Q denotes the boat, ab-

sorbed by a body during a rise of temperature from t
t
lo /

2 , the

quotient
-

gives the mean thermal capacity of the, body ;

^~ tl O 7
and the quotient

-- = -
,
tho moan thermal capacity1

of a unit weight. If the thermal capacity varies with tbo tem-

perature, then the limiting value of the quotient ---, Miat

^ ~~
*i

is, the derivative -J, gives the instantaneous value of (bo (her-
Ctu

mal capacity. Accordingly, we recognixo in the', derivative

-2]
the thermal capacity per unit weight of the body under

Bt/v

the condition that the volume remains constant; and in the

derivative f -2
)

the thermal capacity with tho pressure, constant.
\ot /p

According to the definition of the thermal units (Art. 10),
the thermal capacity of 1 gram of water at 17.5 (1. is 1 calorie,
and that of one pound of water at 63.5 F. is 1 P>. t. u.

The specific heat of a substance at a given temperature t is

the ratio of the thermal capacity of the subsisting at this tem-

perature to the thermal capacity of an equal muss of water at
some chosen standard temperature. If we take, 1T.;V ('.



j. JUUIUVJ.V.UJL.U

mal capacity per unit weight, then the specific heat c is given
by the relation

__ 7,(of subtance)

7ir.fi(of water)
'

But for water y17-6
= 1. cal. It follows that the specific heat at

the temperature t is numerically equal to the thermal capacity
of unit weight at the -same temperature ; thus at 100 C. the

thermal capacity of a gram of water is found to be 1.005 cal.,

1.005. On account
7l7.fi

and the specific heat is
1-^- = ?

05 1 '

.

of this numerical equality, we may consider that the derivative

~jf
represents the specific heat, as well as the thermal capacity.

It is to bo noted, however, that a specific heat is merely a ratio,

an abstract number, and it is determined by a comparison of

quantities of heat. The deter-

mination of thermal capacity,
q

on the other hand, involves

energy measurements.

The specific heat of a sub-

stance may be represented geo-

metrically, as shown in Fig. (5.

Starting from some initial state,

let the rise of temperature be

taken as abscissa and the heat added to the substance as

ordinate. The resulting curve OMvfill represent the equation

and the slope of the curve at any point, as P, will give the de-

rivative --2, or the specific heat at the temperature correspond-
ttv

ing to P. With constant specific heat the curve OM is a

straight line
;

if the specific heat increases with the tempera-

ture, the curve is convex to the t-axis.

The heat applied to a substance, as will be shown presently,

may have other effects than raising the temperature. The



tain temperatures the curve

temperature; hence, the value of the speeiho heal *i 1 dp,

upon the conditions under which the heat is
absorbed

I! tho

substance is in the solid or in the liquid form, the, HJ .or,! he i.'ut s are,

practically equal. For substances in the jy.isc.nus
bn-m however,

the specific
heat may have any value from - cc to + oc, depen.lmg

upon the external conditions under which the heat is supplied.

21. Latent Heat. If the heat added to a substaneo and the

temperature be plotted as in Fig. 0, it may happen that, at, cer-

tain tarrmflratures the curve has discontinuities. Knr example,

lut boat 1m applied to iei

at F. Tbe e.urve is

praetieally a st.raighl, lim-

until tliu temptTaUuv. .''-'

is reaclu-d, but. at, tbis

point considerable bea.t is

added witliout any cban.^e

in ti',inporal.ure. During

this addition of ben,t, rcp-

resontod l>y Ibe. vi'i'tical

sogiuont AB (\
f
\\r. 7), the

state oi
r

ji^Ljru^sil ion

changes from solid to liquid. As tlu; watcn.- receives beat its

temperature rises, as indicated by BC, until tbc temperature
212 F. is reached (assuming atmospheric pressure), \vhere the

temperature again remains constant during the, addition of a

considerable quantity of heat, and the state of aggregation again

changes, this time from the liquid to the gaseous. The beat,

that is thus added to (or abstracted from) a substanee during
a change of state of aggregation is called latent heat. As

pointed out in Art. 4, substantially all of the. latent, heat is

stored in the system in the form of potential energy.

The specific heat -=i becomes infinite during the changes

indicated by AB and CD, since t- constant. The volume of

the substance changes, however, and the rate at which heat is

FIG. 7.
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is a thermal capacity called thu latent heat of expansion and

denoted by 1 . If tlie pressure also changes, we have in the

derivative
( )

the heat added per unit change of pressure.

Tli is thermal capacity is called the latent heat of pressure varia-

tion, and is demoted by lp .

22. Relations between Thermal Capacities. Introducing the

symbols cv , c^,
Zv ,

and lp in equations (8) and (5) of Art. 19, we

have

dq = l
vdv + cvdT, (1)

dy = l
ltdp + ovdT. (2)

liy means of the characteristic equation of the substance,

namely,
v =/(?, (3)

various relations between the thermal capacities may be de-

rived. Some" of the most useful are the following.

From (3) we obtain by differentiation,

which substituted in (1) gives

.^=i,|^+(,
+
z,||)dr,

(5)

Comparing (2) and (5), we have

dv "

In the same way, siibstituting

in (2), and comparing the resulting equation with (1), we

obtain

7 _ 7
5

, (8)~



ing thermal capacities when any one is given }'
dircd, <'.XJ><M'I-

ment, provided the characteristic equation, of the substance is

known, so that the derivatives -^ ^ etc., can be determined.

For a perfect gas, as an example, ts
p

is known from experiment

and the ratio - has also been (letormimul. From the equation
c

of the gas pv = BT, we have the partial derivatives

8v _B dp _ It

Tf~~p* 52 r"V ;

hence from (7) and (9)

_ 7
^

7 ?'
'

- . "\

Vp
C =

(>v~~ 5
01> ^

'

It^'P '*"' '

and l
v =-V(cit

-cv}.

23. Interpretation of Diiferential Expressions. In thcnno-

dynamics we frecjuently meet with exjtressions of tin; form

Mdx 4- Ntly

composed of two terms, of which eacli is tin? diffcnMitial of a

variable multiplied by a coefficient. The two c.o(>nic.ir.nis may
be constants or functions of the two vavitibh-.s iuvolvud. Th
proper interpretation of differentials of this form is likely to

present difficulties to the student; we shall, lln'ivfori>, dnvott-
this article to a discussion of such expressions, their projierties,
and their physical interpretations.

Let us consider first how such differential cxprossions may
arise. Suppose we have given the characteristic equation of a
substance in the form

jp=/0>, 0; (i)

by differentiation according to the well-known methods of cal-

cnlus, we obtain the relation



(3)

where M= ^, and JV=^.
aw' d

In Art. 19 we derived an equation of similar form, namely,

dq^dv+^dt, (4)i dv dt
^ J

which may likewise be written in the form

dq = M'dv + N'dt. (5)

The second members of (3) and (5) are differential expressions
of the form Mdx + Ndy, which we have under consideration.

Kq. (3) was produced from a known functional relation be-

tween
p-> V, and i, while Eq. (5) was derived directly from

physical considerations by assuming increments AV and A of

the independent variables and deducing from them the quantity
of heat A<7 that must necessarily be absorbed. No relation

between
y, v, and t was given or assumed; in fact, it is known

that no such relation exists
;
that is, q cannot be expressed as a

function of the variables v and t.

Let us see what is implied by the existence or non-existence

of a functional relation between q, v, and t. Referring to

Fig. 5, let A and B denote the initial and final states of the

system. Since p is a function of v and t \_p=*f(y, t)~\, the

pressures at A and B are determined by the values of T and v

BT BT
at those points ; thus for a perfect gas, p = * and pz

= a
.

v
i

v
z

Hence, the change of pressure p2 pl
in passing from A to B

is fixed by the points A and B alone and is independent of the

path between them. Similarly, if there is a functional rela-

tion between
q, v, and t, that is, if q = (v, ), we shall have at

A, ft
= 0(vii *i)'

afc -#' (72
= <^( t;

2'
f
a)- Therefore, the heat

absorbed in passing from A to B will be

<?2
-

<li
= $ (V2> ^2)

~
< 0>i *i)> (6)

and this will be determined by the points A and B alone. On
the other hand, if the heat absorbed by the system depends

upon the path between A and B, there can be no relation



g
=

</>(v, ).
As a matter of fact, the heat absorbed i different

for different paths between the same initial and iimil wtaU'H
;

hence it is not possible to express q in terms of v and C.

The conclusions just given may be stated in gonural toriiw a.s

follows. Given an expression of tho form

du = (7)

where the coefficients M and TV are funotioiiH of x and //, there

mayor may not exist a functional relation between /. and the

variables x and y.
If u is a function of -x and

//, say it .

/''('% //),

then the change in u depends only on the initial and iinal

values of x and y and is independent of tho path. This

is found from (7) by integration ;
thus

In this integration no relation between x and ?/ is required, for

since Mdx+'Ndy arises from differentiating the function

cf> (a, y), the integral must be
(/> (#, ?/). In this ease ^l/f/.c -f N<ltj

is said to be an exact differential.

As an example, consider the equation

du = ydx -f- inly.

Since ydx + xdy is produced by the differentiation of the prod-
uct xy, we have the relation

u = xy + (7,

whence u
z u^

= #
2y2 r.-y.,.

The change of u is represented by the -shaded area ( Fitf . K),

and is evid(uitly not. dep(Mident,

upon the path betwirn t.be points

If, however, no functional rela-

tion exists between u and tin 1

variables a: and
//,

then J/r/.r +
TV}?// is said to be an inexact

differential. In this ease a value



sinned ; in other words, the value of u depends upon the path
between the initial and final points. For example, let

du = ydx 2 xdy
and let the initial and final points be respectively (0, 1) and

(2, 2). No function of x and y can be found which upon
differentiation will produce this differential. If we choose as

the path between the end points the straight line y = %x + l,

we have (since dy = \ d.ti),

u =
j" [(J x 4- 1 )dx xdx] = 1.

If we take as the path the parabola y = | x2
4- 1, we have

u = f ["(-I x2 + T)dx xz
dx~] ~ 0.

The dependence of the value of u upon the path assumed is

evident.

The test for an exact differential is simple. If the differential

du = Mdx -f Ndy is exact, then u must be a function of x and y,

say /(a;, v/). .By differentiation, we have

j du -, . du ^au = ax H ay.
dx dy

y

Hence M and ^V" must be, respectively, the partial derivatives

O9/ O9/__ and - By a well-known theorem of calculus, we have
ox dy

d_(?u
dy\dx

thatiS)
y
dy dx

If relation (9) is satisfied, the differential is exact ; otherwise,

it is inexact.

As an example, we have from the differential ydx 2 xdy,

= 1, = 2
; therefore, the differential is inexact, as was

dy dx

shown in the preceding discussion.

In thermodynamics we meet with certain functions that de-

pend only upon the coordinates p, v, T of the substance under

consideration. From purely physical considerations the energy



(See Art. 26.) Hence if u is expressed in terms of two of

these coordinates as independent variables, thus,

we know at once that du is exact and we can write

f'A* = >-! =/02 < zi) -/O'n Zi ')

'i

Furthermore, from the test for an exact differential wo must

have the relation

T dv

By making use of this test when the differential IH known to

be exact, many useful relations are deduced.

We have also magnitudes that depend upon tho ootirdinatcs

and also upon the method of variation ;
that in, upon tho path.

The heat q absorbed by a system in changing Htato is one of

these. If again we choose v and T as the independent variables,

we may write

but since dq is not exact, we cannot write

EXERCISES

1. Regnault's experiments on the heating of cm-tain liquids are ex-

pressed by the following equations :

Ether
q
= 0.529 t + 0.000200 *

a
,
- 20 to + :)" ( '.

Chloroform q
= 0.232 t + 0.0000507 t'\

- '.W> to -I- (it) (!.

Carbon disulphide q= 0.235 t + 0.0000815 t",
- :}()" to -|- !()" ('.

Alcohol
q = 0.5476 1 + 0.001122 /

a+ 0.0000022 /",
~ 2:5" to + lili

'

(
1

.

From these equations derive expressions for tho Hpciniu; huat, and for
each liquid find the specific heat at 20 C.

2. From the data of Ex.1, find the mean heat oapai-ily of i>iln>r IH-IWIMMI
and 30 C. Also the mean heat capacity of alcohol bct/woon ()" and rIV ('.

3. If the thermal capacity of a substance at temp>ratun>. / is given by
the relation

y = a + U + ct~,
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4. In the investigation of the properties of gases, it is convenient to
draw the isothermal* (T = const.) on a plane having the pressure p as the

axis^
of abscissas and the product pv as the axis of ordinates. Show that

the isothermals of a perfect gas are straight lines parallel to the jo-axis.

5. Show on the po-p plane the general form of an. isothermal of super-
heated steam, the characteristic equation being

As an approximate equation for superheated steam, the form

p(v + c)=BT,
has been suggested by Tumlirtz. Show the form of the isothermal when
this equation is used.

6. Derive relations between c
in cm lp , and lv , similar to those given by

Eq. (10) and (11) of Art. 22, using van der Waal's equation

v b v2

as the characteristic equation of the gas.

7. For a perfect gas, as will be shown subsequently, the thermal capacity
lv is Ap(A .J-).

Show that cp
- cv = AB ;

also that l
}>
= - Av.

B. Test the following differentials for exactness :

() vilp + npdv,

(J>)
vndp + n])v

n-ldv.

(0 x +

9. Find the function u f{p, T) which produces the differential (c)
of Ex. 8.

10. The differential [c'(l
- x)+ c"x] ^- + dx, which appears in the

discussion of vapors, is known to be exact, c' and c" may be taken as con-

stants, while r is a function of T. Apply the test for exactness and thereby

deduce the relation c" c' = -^ ?-

11. For perfect gases, dq - cvdT + Apdn. (See Ex. 7, and Art. 22.)

Making use of the characteristic equation pv = BT, show that while dq is

not an exact differential, is an exact differential.
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CHAPTER III

THE FIRST LAW OF THERMODYNAMICS

24. Statement of the First Law. The first law of Thermo-

dynamics relates to the conversion of heat into work, and merely

applies the principle of conservation of energy to that process.

It may be formally stated as follows : When work is expended
in producing heat, the quantity of heat generated is proportional to

the work done, and conversely, when heat is employed to do work, a

quantity of heat precisely equivalent to the work done disappears.

If we denote by Q the heat converted into work and by "FT the

work thus obtained, we have, therefore, as symbolic statements

of the first law,
Tf= JQ, or Q = AW.

25. Effects of Heat. When a thermodynamic system, as a

given weight of gas or a mixture of saturated vapor and liquid,

undergoes a change of state, it in general receives or gives out

energy either in the form of heat or in the form of mechanical

work. These energy changes must, of course, conform to the

conservation law. Suppose in the first place that the system is

subjected to a uniform external pressure and that during the

change of state the volume is decreased. Mechanical work is

thereby done upon the system, or in other words, the system
receives energy in the form of work. At the same time heat

may be absorbed by the system from some external source.

Denoting by ATT the work received and by AQ the heat

absorbed, the increment AZ7 of the intrinsic energy of the

system is given by the relation

AZ7= J&Q + ATT. (1)

Ordinarily we take the work done by the system in expanding
as positive ; hence the work done on the system during com-

_r .
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that is, the increase of energy of the system is equal to tho

energy received in the form of heat less tho energy tfivi'ii to

the surrounding systems in the form of work. Wo may also

write (2) in the form

and interpret the relation as follows. The heat absorbed by a

substance is expended in two ways : (1) in increasing the

intrinsic energy of the substance ; (2) iu tho performance of

external work.

Equation (3) is the energy equation in its most Amoral form.

Any one of the three terms may bo positivo or negative. Wo
consider A Q positive when the system absorbs boat., negative
when it gives out heat ; as before stated, A IK is positivo when
work is done by the system, negative whon work is done, on (lio

system; A U is positive when the internal energy is increased,

negative when the energy is decreased during tho change of

state.

26. The Intrinsic Energy. Tho increase A //"of I ho in( rinsio,

energy is, in general, separable into two parts: (1) Tho in-

crease of kinetic energy indicated by a riso of temperature of

the system. As we have seen, this is duo to an increase in tho

velocity of the molecules of the system. (l2) Tin; increase of

potential energy arising from the inorcaso of volumo of tho,

system. To separate the molecules against their mutual at trac-

tions, or to break up the molecular structure, as is dono in

changing the state of aggregation, requires work, and this
work is stored in the system as potential energy.
The energy U contained in a body depends' upon the state

of the body only, and the change of energy duo to a change
of state depends upon the initial and. final' states only. hi

Fig. 9, let A represent the initial, and ./>' tho tiual state'. The
point B indicates a definite state of the body as regards pres-
sure, volume, and temperature. Now the, 'temperature indi-
cated by B fixes the kinetic energy and Uo volume at P>
determines the potential em>r< r-T,m,,,, +1,., i;,,.,i <..*..i .........^
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to B. Whether we pass by the

path m or the path n, we have the

same volume and temperature at B
and therefore the same total energy.
Since V is thus a function of the

coordinates only, it follows that d II

is always an exact differential.

Choosing T and v as the hide- FlG 9

pendent variables of the system,

we may express U as a function of these variables. We have,

therefore, ?7

whence dU= --dT
'

+ dv.
dT dv

The term ~^,dT is the increment of energy due to the in-

r) TT
crease of temperature d T. The factor is the rate at which

the energy changes with the temperature when the volume
n Try

remains constant. Hence ^dT is the change of energy due

merely to the rise of temperature, that is, it is the change
\ 7"7"

of kinetic energy. The term - dv is the change of energy
dv

due merely to the change of volume with the temperature

constant ; it is, therefore, the work done against molecular

attractions, the work that is stored as potential energy. For

a substance in which there are no internal forces between

the molecules, the energy is independent of the volume, that

is,
~~ = 0, and therefore the term dv is zero.
dv dv

27. The External Work. In nearly all cases dealt with in

applied thermodynamics, the external work ATT is the work

done by the system in expanding against a uniform normal

pressure. A general expression for the external work may
be deduced as follows. Let AJP denote an elementary area

on the surface inclosing the system and suppose that during
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normal pressure per unit area, the work donu against this

pressure is for this one element

p&F-s.
)

When all the elements of tlie surface tiro lukim, HIM OXJMVS-

sion for the work is

But evidently if 8 he taken sui'iiciontly small, A/'' is (In;

increase of volume AF"; hence we may writo

A If=^ A I

7

; (-)

from which we have

for a change of volume from V
l
to J T

2
.

The external work for a given change of staio is n^ircscnUMl

graphically by the area between the projuc.tinn of the. initli

of the state-point on the j;F-plane and tin; F"-uxis. Thus in

Fig. 10, let the variation of pressure and volume lx^ rcjircscnl-i'd

by the curve AJB; this is the projection on tlm p f-plaiu-. of tho

actual path of the state-point on tho oharautnrislic, surl'ac.o.

The area A^BB^ under AB is clearly given by tho inU^nil

hence, it represents the work done by tho system in passing from

the initial to the final state according to the in von law.n o

Tlio gonoral onorgy oqna-

A tion (8), Art. U5, may now bo

written in tho form

or using tlio dilToroiitial nota-

tion, in tlii! form
B

PIG. 10.

98

__v
For a unit weight of tho sub-

fil
stance, Ave havo

Jdq = du + pdt'. (V> a)



by the subscripts 1 and 2, respectively, we have

whence JQ = Z7
2
- ^ + $p dF (1)

It should be noted carefully that since the energy U depends
only upon the state of the system and not upon the process of

passing from the initial to the final state, the change of energy
may be written at once as the difference U

2 Ur The external

work

is evidently dependent upon the path of the state-point between
the initial and final states. See Fig. 10. Hence the sum of

the change of energy and external work, that is, the heat added

to the system, must also depend upon the path. It follows

that dQ is not an exact differential, and we cannot write

In other words, we cannot properly speak of the heat in a

a body in the state 1 or the state 2
; we can speak only of the

heat imparted to the body during the change of state with the

reservation, stated or implied, that the quantity thus imparted

depends upon the way in which the state is changed. For con-

venience we shall denote by $12
the heat imparted to the sys-

tem in passing from state 1 to state 2
;
and likewise by Wlz

the

corresponding external work done by the system.

29. Energy Equation applied to a Cycle Process. Let a sys-

tem starting from an initial state pass through a series of pro-

cesses and finally return to the initial state. The path of the

state-point on the characteristic surface is a closed curve in

space and the projection of the path on the p Fplane is a closed

plane curve. See Fig. 11. Let A represent the initial state;

then in passing from A to B the external work done by the

system is

'

p dV (along path m),
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which is represented by area A^AmSS^ while in passing from

B back to A along path n the external work is

f "0 dV= L p dV (along path ?<.)J Pj
J " ' O

and this is represented by area B-^BnAA^ Hene.e tlie net

external work done by the system is represented by the area

inclosed by tho eurve of the

cycle.

Since tho energy I.' of tho

system depends upon the state

only, the change of energy for

the cycle is

/,-/,= <>,

y and the energy equation ro-
^

-,.,"

01
duces to

FIG. 11.

That is, for a closed cycle, of processes, the heat imparted to thr.

system is the equivalent of the external work, and both are repre-
sented graphically by the area of the cycle on the ^r-plane.

30. Adiabatic Processes. When a system in changing its

state has no thermal communication with other bodies and
therefore neither absorbs nor gives out heat, tho change of
state is said to be adiabatic. In general, adiabatie. ehangos arc.

possible only when the system is inclosed in a non-oon<imaing
envelope. Rapid changes of state are approximately adiabatie,
since time is required for conduction or radiation of heat

; thus
the alternate expansion and contraction of air during the pas-
sage of sound waves is nearly adiabatic; the flow of a gas or
vapor through can orifice is

practically an adiabatic process.
Jor an adiabatic change, the term JQ of tho energy equation

reduces to zero, and we have, consequently,

During an adiabatic change, therefore, tho extern,! wnrt ,!,,
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B

The projection on the pT^plane of the path of the state-point

.uring an adiabatic change gives the adiabatic curve. See Fig.

.2. The area A
1
ABB

1 represents the work TF12 of the system
,nd from (1) it represents also the decrease of the intrinsic

nergy in passing from state 1

epresented by A to state 2

epresented by B. Making
ise of this principle, we can

rrive at a graphical represen-
ation of the intrinsic energy
if a system. Suppose the

.diabatic expansion to be con-

inued indefinitely; the adia-

'atic curve AB will then FIG. 12.

pproach the F^axis as an

symptote, and the work of the expanding system will be

epresented by the area A^A oo between the ordinate AA, the

xis OF", and the curve extended indefinitely. The area A^Aca
epresents also the change of energy resulting from the expan-

ion. Hence if we assume that the final energy is zero, we have

i
= area A^A oo,

\ areaA
1
A oo = (

y p d V.

It is instructive to compare
the adiabatic curve with the

isothermal. When the two

curves are projected on the

pF~-plane, the adiabatic is the

steeper. See Fig. 13. This

follows from the fact that dur-

ing adiabatic expansion the

nergy decreases and as a result the temperature falls ;
hence

or

FIG. 13.
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On the other hand, the area under the indefinitely extended

isothermal is infinite.

31. Isodynamic Changes. If tho intrinsic, energy of tho

system remains unchanged during a change, of slate, the change
is called isodynamic or isoenergic. In this case the energy

equation reduces to the form

For perfect gases, the isodynamic curve is also tho isothermal,
but for other substances this is not tho case.

32. Graphical Representa-
tions. The throe magnitudes

JQiv <r/
2 ^r :U1( ^

'^1-2
l>11 ^ !1'-

ing into the energy equation
can bo represented graphically

by areas on the p\ '-plant!.

Suppose tho change of state

to bo represented by tho curve;

m between the initial point, A

Y and final point H (Kig. M ).

FIG. u.

,

'idiabatiu lines be drawn

through A and /i siinl ex-
tended

indefinitely; then from preceding considerations we have
F

12
= area

= area <x>

Hence, JQ12
= U

z
- ^ + F

12

= area A
lABBl + area B,B oo - area A,A= area AB oo .

That is, the heat imparted is represented on the. p}"-pl<m<> 1, t/,<>
area included between the path and two twfc/to/// m.,.,,,!,,?. ',H,
latics drawn through the initial and final pointy rmn^hchi
Ihrough the initial point A let an Lsodynamie be, drawn,

cutting BB,m the point 0, and through let tlio i,ldi,,it,lyextended adiabafao (7=o be drawn. Then the energy ra
of tho

system m state is equal to U and, therefore,

'
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It should be noted that the p

area representing U
z L\ is

not influenced by the path m.

A second graphical repre-

sentation is shown in Fig. 15.

Through the initial point A
an isodynamic line is drawn,
and through the linal point B
an adiabatic is drawn, the two

lines intersecting at point (7.

We have then, denoting the

energy in the' state C by ?7
3 ,

A -B,

FIG. 15.

L y

2
-

^
=

z
-

z
= area

Wlz
= area A^ABBV

JQV1
= Wlz + t/2

-
/!
= area

As before, the change of energy is independent of the path w,

while botli the external work and the heat imparted depend

upon the form of m.

EXERCISES

1. Show that the energy equation may be written in the form

and that consequently the derivative
( ^ )

must be equal to Jcv .

2. If the energy of a substance is independent of the volume, show that

the energy equation reduces to the form

Jdq = JcvdT+pdv.

3. Using the method of graphical representation, show by areas Qi,

U'2 - Ui, and Ww () for a change at constant pressure, (b) for a change at
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7. Apply the general energy equation to the. procenn of changing ice ;

32 F. to water. What is the effect of greatly incroaidng the pro.s.snrc. o

the ice during the process 'I
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THE SECOND LAW OF THERMODYNAMICS

33. Introductory Statement. While the first law of tliermo-

ynamics gives a relation that must be satisfied during any
iiange of state of a system, and of itself leads to many useful

isults, it is not sufficient to set at rest all questions that may
rise in connection with energy transformations. It gives no

idications of the direction of a physical process ; it imposes no

mditions upon the transformations of energy from one form to

lother except that there shall be no loss, and thus gives no in-

ication of the possibilities of complete transformation of dif-

>rent forms; it furnishes no clue to the availability of energy
>r transformation under given circumstances. To settle these

uestioiis a second principle is required. This principle, called

le second law of thermodynamics, has been stated in many ways.
i effect, however, it is the principle of degradation of energy,

ist as the first law is the principle of the conservation of

There are conceivable processes which, while satisfying the

jqiurements of the first law, are declared to be impossible be-

mse of the restrictions of the second law. As a single ex-

mple, it is conceivable that an engine might be devised that

mild deliver work without the expenditure of fuel, merely by

sing the heat stored in the atmosphere; in fact, such a device

as been several times proposed. The first law would not be

iolated by such a process, for there would be transformation,

ot creation of energy; in other words, such an engine would

ot be a perpetual motion of the first class. Experience shows,

owever, that a process of this character, while not violating

le conservation law, is nevertheless impossible. The statement



34. Availability of Energy. In Art. 8 was noted the (list/mo-

tion between various forms of energy with respect to the pos-

sibility of complete conversion. Wo shall now consider the

point somewhat in detail.

Mechanical and electrical energy stand on the same footing

as regards possibility of conversion; either can be completely

transformed into the other in theory, and nearly so in practice.

Either mechanical or electrical energy can bo completely trans-

formed into heat. On the other hand, experience shows that

heat energy is not capable of complete conversion into mechan-

ical work, and to get even a part of heat energy transformed

into mechanical energy, certain conditions must bo satisfied.

As a first condition, there must bo two bodies of different, tem-

perature; it is impossible to derive work from the heal of a body

unless there is available a second body of lower temperature.

Suppose we have then a source 8 at temperature T
{
and a re-

frigerator R at lower temperature .7!
2 ; how is it possible to

derive mechanical work from a quantity of heat energy Q
{

stored

in SI If the bodies $ and R are placed in contact., the heat

Q will simply flow from S to R and no work will bo obtained.

Hence, as a second condition, the systems *S
r and H must be kept

apart and a third system M must be nsed to convey energy.
This third system is the working fluid or medium. In the steam

plant, for example, the boiler furnace is the source /S
Y

, the con-

denser is the refrigerator R at a lower temperature, and the

steam is the medium or working fluid M. The medium M
is placed in contact with S and receives from it heat Q^ it then

by an appropriate change of state (expansion) gives up energy in

the form .of work, and delivers to R a quantity of heat $2 ,

smaller than Qv the difference Ql
- Qz being tho heat trans-

formed into work. The details of this process will be given in

following articles, where it will be shown that in no other way
can a larger fraction of the heat be transformed into work.
The part of the heat Ql

that can be thus transformed into work,
that is, Ql -Q yt

is the available part of Q^ and the purl $2
that

must be rejected to the refrigerator R, and which is of no further

.._. ,-,

'

~ -. . . a. ~ o.



cal work. In general, the term availability signifies the fraction

of the energy of a given system in a given state that can be

transformed into mechanical work.

In Art. 8 attention was called to the apparent tendency of

energy to degenerate into less available forms. We have now
to investigate this point somewhat closely in connection with

reversible and irreversible changes of state.

35. Reversibility. The processes described in thermo-

dynamics are either reversible or irreversible. A process is

said to be reversible when the following conditions are fulfilled :

1. When the direction of the process is reversed, the system

taking part in the process can assume in inverse order the

states traversed in the direct process.

2. The external actions are the same for the direct and re-

versed processes or differ by an infinitesimal amount only.

3. Not only the system undergoing the change but all con-

nected systems can be restored to initial conditions.

A process which fails

to meet these require-

ments in any particular

is an irreversible pro-

cess. The following

examples illustrate the

above definitions.

(1) Suppose a con-

fined gas to act on a

piston, as in the steam

or gas engine. See

Fig. 16. If A is the

piston area, the pres-

sure acting on the face

of the piston is pA,
and for equilibrium

this pressure must be equal to the force F. If now we assume

the force pA slightly greater than F, the piston will move

slowly to the right and the confined gas will assume a succes-
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sion of states indicated by the curve All, It at the slate .#

the motion is arrested and I7

is made infinitesimally greater

than pA for all positions of the piston, the .scries of status from

B to A will be retraced and the system (tin
1
, confined gas in

this case) will be brought back to its original state without

leaving changes in outside bodies. The reversed process is

accomplished by an infinitely small modification of tins external

force F. The process is therefore reversible.

(2) Let the force F be removed entirely. Thou the piston

will move suddenly and the confined gas will bo thrown into

commotion. When the gas finally attains a stato of thermal

equilibrium with the volume F"
2 , that state will be represented

by some point as B 1

. No path can be drawn between A and Jl'

because during the passage from A to Ji' the gas is not in

thermal equilibrium, and its state at any instant cannot, there-

fore, be determined. Evidently, therefore, the gas cannot be

returned to state A by reversing in all particulars the direct

change from A to B'. It can be returned to stato A, however,
in the following manner : A force F, slightly greater than ;;A,
is applied to the piston and the gas is thus compressed slowly,
the successive states being indicated by the enrve II'A', say.
Then the gas in the state A' is cooled at the, constant volnmo
V

l
until the original state A is attained. The restoration of

the^gas
to its initial state has, however, left changes in other

bodies or systems. Thus the work of compression from tt
1 to

A' must be furnished from one external body, and the heat
given up by the cooling from A' to A must bo absorbed by
another external body. The free expansion of tho gas is,

therefore, an irreversible process.
It is easy to see that the flow of a fluid through ,-,n online

trom a region of high pressure to a region of low pressure is

essentially equivalent to the irreversible expansion just de-
scribed. Such cases are of frequent occurrence in t'eehnical
applications of thermodynamics. The flow of liquid aunnonia
through the expansion valve of the

refrigerating machine maybe cited as an example.
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and bearing due to the conversion into heat of the work of

overcoming friction. A complete reversal of this process would

involve turning the shaft in the opposite direction by cooling
the bearing.

(4) The conduction of heat from one body to another is an

irreversible process. There must be a temperature difference

to produce the flow of heat, and heat of itself will not flow in

the reverse direction ;
that is, from the colder to the hotter

body. If, however, we take the temperature difference AT in-

definitely small and let the transfer take place very slowly, the

process can be reversed by changing the sign of A 21 Hence

we can conceive of reversible flow as the ideal limiting condi-

tion of the actual irreversible flow.

Strictly speaking, there are no reversible changes in nature.

We must consider reversibility as an ideal limiting condition

that may be approached but not actually attained when the

processes are conducted very slowly.

36. General Statement of the Second Law. According to

the first law, the total quantity of energy in a system of bodies

cannot be increased or decreased by any change, reversible or

irreversible, that may occur within the system. It is not, how-

ever, the total energy, but the available energy of the system

that is of importance ;
and experience shows that a change

within the system usually results in a change in the availability

of the energy of the system.
It may be considered as almost self-evident that no change

of a system which will take place of itself can increase the

available energy of the system. On the other hand, experience

teaches that all actual changes involve loss of availability. Con-

sider, for example, the flow of heat from a body of temperature

Tv to another at temperature T
2

. For the flow to occur of it-

self we must have 5\ > T^ and as a result of the process there

is a loss of availability. To produce an increase of availability

would require T2
to be greater than 2j ;

in that case, however,

the process would not be possible. In the limiting reversible



of energy, are based 'entirely on experience:

I. No change in a system of bodies that nan take, plane of ifxe/f

can increase the available energy of the xi/nl.c.m.

II. An irreversible change causes a low of anai/a!>t'!itt/.

III. A reversible change doe's not affwt, the. ai>aitat>ility.

These statements may be regarded as fundamental natural

laws underlying all physical and chemical changes, The seeond

and third together constitute the law of degradation of ene.rgy.

The first may be taken as a general statement of the .second law

of thermodynamics.

By considering special processes the general statement of tin;

second law here given may be thrown into special forms. Tims
if heat could of itself pass from a body of lower to a body of

higher temperature, the result of the process would be. an in-

crease of available energy, a result that is impossible according
to our first statement. We have, therefore, Clausius' form of

the second law, viz :

It is impossible for a self-acting machine, unaided I
if any e.rler-

nal agency to convey heat from one body to another at hi<//ier

temperature.

Again, if we consider the increase of available, unorgy thai,

would result from deriving work directly from the heat of tbo

atmosphere, we are led to Kelvin's statement, namely :

It is impossible by means of inanimate 'material agency to derive
mechanical e/ect from any portion of matter bt/ e.ooUng it below th,:

temperature of surrounding objects.
In order to estimate the available energy ,,f a system in a

given state, or the loss of available energy when the system
undergoes an irreversible change, it is necessary to know tbo
most efficient means of

transforming heat into mechanical work
under glven conditions. This knowledge is furnished by a

study of the ideal processes first described by Oarnot in mi.
37 Carnot's Cycle. -Suppose that the conditions stilted in

Art. 34 are furnished
; that is, let there be a source of beat fi

at temperature ^, a refrigerator R at a lower temperature Tv



ART. 37] CARNOT'S CYCLE

A l 01

FIG. 17.

and an intermediate system, the working fluid or medium M.

The medium we may assume to be inclosed in a cylinder

provided with a piston (Fig. 18).

Let the medium initially in a state represented by B (Fig. 17),

at the temperature T of the reservoir $, expand adiabatically

until its temperature falls to Tv
the temperature of body R.

By this expansion the second

state Q is reached, and the

work done by the medium is

represented by the area S
1
SOOr

The expansion is assumed to

proceed slowly so that the pres-

sures on the two faces of the

piston are sensibly equal, and

the process is, therefore, re-

versible. The cylinder is now

placed in contact with R so that heat can flow from Jf.to R,

and the medium is compressed. The work represented by the

area C
l
QDD

l
is done on the medium, and heat Q2 passes from

the medium to the refriger-

ator. The process is again
assumed to be so slow as to

be reversible. From the

state D the medium is now

compressed adiabatically,

the cylinder being removed

from R until its tempera-
ture again becomes Tv that

of the source 8. During this

third process work repre-

sented by the area D^DAA^
is done on the fluid. Finally,

rjG 18
the cylinder is placed in

contact with S and the

fluid is allowed to expand at the constant temperature T
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temperature is kept constant by the flow of heat ^ from

StoM.
The area ABGD inclosed by tho four curvo.s of the, cycle

represents the mechanical work gained; that is, the excess of

work done by the medium over that done on tho medium.

Denoting this by W, we have from the first, law,

The efficiency of the cycle is the ratio of tho work gained to

the heat supplied from the source ti. Denoting thu elliciency

by 97, we have

QI ^i

Since all the processes of the Carnot cycle arc revorsiblo, it

is evident that they may be traversed in reverse order. Thus

starting from B, the fluid is compressed isothermal ly from Ji to

A and gives up heat Q1
to S; from A to .D it expands udiabal-

ically, from D to (7 it expands at the constant temperature 7!>

and in so doing receives heat Q2
from Ji ; limilly it is com-

pressed adiabatically from Q to the initial state. H. In this ease

the work TF represented by area ABCD is done nn tin; lluid ,17,

heat Qz is taken from the refrigerator 7, and the sum Qz -\- A \V
= Q1

is delivered to the source 8. This ideal reversed, engine
is the basis of our modern refrigerating machines.

38. Carnot's Principle. The efficiency of Carnot's ideal

engine evidently depends upon the temperatures 7 r

,
and

r

l\ of
the source and refrigerator, respectively. Thu question at once,
arises whether the

efficiency depends also upon thu properties
of the substance M used as a working iluid. The answer is

contained in Carnot's principle, namely :

Of all engines working between the mme sour*: nnJ tlir n<inn>

refrigerator, no engine can have an efficiency </r<>at<'r than Unit of
a reversible engine.

In other words, all reversible engines working Ix-tweei. tins
same temperature limits T, and 2!, have the same efficiency;
that is. the o-ffimo, ^.3 7 , ",. .-, , . . ._



emcient than, a reversible engine B working between the same

temperatures, then A and B can be coupled together in such a

way as to produce available energy without a compensating loss

of availability.

Suppose the two engines A and B (Fig. 19) to take equal

quantities of heat Q^ from the source when running direct.

Then, since by hypothesis A is the more efficient,

and

Now let engine B be run reversed. It will take heat QZ
B from

R and deliver Q1
to S. If A and B are coupled together, A

will run B reversed and deliver

in addition the work WA WB .

The source is unaffected since it

simultaneously receives heat Ql

and gives up heat Qr The re-

frigerator, however, loses the

heat Qz
a QZ

A
, which is the

equivalent of the work WA WB

gained. We have, therefore, an

arrangement by which unavail-

able energy in the form of heat

in the reservoir is transformed

into mechanical work. In other

words, by a self-acting process the available energy of the

system of bodies $, R, A, and B is increased. According to

the second law (Art. 36), such a result is impossible ; if such

a result were possible, power in any quantity could be obtained

from the heat stored in the atmosphere without consumption of

fuel.

The assumption that engine A is more efficient than the

reversible engine B leads to a result that experience has shown

to be impossible. We conclude, therefore, that the assumption

is not admissible and that engine A cannot be more efficient

than engine B. But if engine A is also reversible, B cannot

he morfi p.ffimfint than A. and it follows that all reversible

FIG. 19.
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engines between the same source and the same refrigerator are

equally efficient.

39. Determination of the Efficiency. Since the omoieney of

the reversible Carnot engine is independent of the properties of

the medium and depends upon the temperatures of .source and

refrigerator only, we have

i_7"_? =/ ( 7\, 7 !
2 ) , )

I <i/i

whence = 1 -
iy

==
JF(2i, 2^) ; (-)

that is, the quotient ~f is some function of iho temperatures
Vi

2\ and T^. The form of this function in required.

So far, we have considered temperatures as given by a mer-

cury or air thermometer. The different temperatures of a

series of bodies are indicated by sets of numbers which may
denote (1) the different lengths of a column of mercury or

(2) the different pressures of a mass of confined gas. These

sets may or may not precisely agree. Now there are other

ways in which such a set of numbers may be chosen. Suppose
we take several sources of heat /S^ Mv >S'

3 , , *S', ( ,
whoso tem-

peratures are t^ 2 , 8 , ,
tM as defined by the mercury or gas

scale, and let

*i>*a>8 >>*,.
If we use S

l
as a source and S

z
as a refrigerator, a reversible

engine will take Q^ from S
l
and deliver ^ to /S'

2
. vSinuo the

bodies S
1
and

2̂ have definite temperatures T
L
and 7!,, what-

ever the scale adopted, the function .F(TV 2!2) lias some defi-

nite value; therefore, from (2) the fraction ^ must have a

Vi
definite value, and consequently @a has one and only one value.

If
2̂

is used as a source and S
9
as a refrigerator, a second

engine taking Qz from #
2 will give up Qz

to N
3 , and so on.

Starting with Qv we thus obtain a determinate set of values
O n f} Qfn TrrVvi <-,!-> ,^,,.,4. JJICIl J.I 1 .
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rlere we have a set of numbers suitable to define a scale of

leruperature. Starting with the heat Q1
taken from the source

1,
to each source there corresponds a number indicating the

leat that would be rejected to it if it were used as a refrigerator
n connection with Sv If we choose these numbers to define a

iew scale, then denoting the new temperatures by
T T7 T T
-*!' -t-y *& '

'i J-ni

ve have

T^kQv T
2
= kQ T

3
= kQB , ..., Tn

= kQn ,

vhence follows

<?i_02_ -&L mm r/j

' "

rn
'

\ )
Li J-z -'n

Returning now to the quotient ~, we have at once

lence, using this new scale, the efficiency of the Carnot engine
s

uid the form of the function is determined.

The scale of temperatures arrived at from the investigation
)f Caruot's cycle was first proposed by Lord Kelvin in 1848,

i/nd is known as the absolute scale because it is independent of

he property of any substance. The scale is simply such that

my two temperatures on it are proportional to the quantities

)f heat absorbed and rejected by a reversible Carnot engine

vorking between these temperatures.
If in (5) we make Qz

= 0, tj
= 1 and T

z
= 0. If we con-

leive a temperature lower than the zero on the absolute scale,

T T
hat is, if we assume a negative value for jT2 , then ~ -> 1,



be shown subsequently that tins absolute zero is precisely the

same as that derived from the reduction in pressure, of ;i perfect

gas, and that the new scale coincides with Hint of a ther-

mometer using a perfect gas as a iluid.

40. Available Energy and Waste. Caruot\s ideal eyele gives

us a means of measuring the available energy of a system and

the waste due to an irreversible change of state. Suppose, that,

a quantity of heat A$ is absorbed by the system at a. tempera-

ture T, and that we wish to find the part of this heat, that can

possibly be transformed into work. As we have seen, no device.

can transform a larger portion of A Q into work than the ideal

Carnot engine. If T
Q

is the lowest temperature that, can be

T 7
r

obtained for a refrigerator, the fraction -
'"

of A^> can be

transformed into work by a Carnot engine, and this is, then-fore,

the availability of A$ under the given conditions. The avail-

able part of A$ is, therefore,

T T / f
fr

* " /

I
-

T
and the waste is A Q -^

.

The temperature TQ
cannot be lower than that of surrounding

objects, i.e. the atmosphere;* for even if a refrigerator could
be found with a temperature lower than that of the, atmosphere,
it could not be maintained in that state. Ilene.e, the tempera-
ture of the atmosphere imposes a -natural limitation on the avail-

ability of heat in the performance of work.

EXAMPLE. If the absolute temperature of aourc is 1 ()<)()" F. and llisii, of
the atmosphere is 520, the available energy in

1000 - 520 n . ,= 0.48 of the. total i>ncr'y.

Therefore, for every 1000 B. t. u. received from tlu> source i.>t, more Lluui
480B.t.u. can by any means whatever bo transformed into wurk, and at
least 520 B. t. u. must be rendered unavailable

*
Possibly under special conditions a refrigerator whoso t.-mpcratun'. is p,-r-

mnently Mow that of the atmosphere may exist; ,,/. the water of the. o,,an
or of one of the great lakes.



associated with certain important irreversible processes.

(1) Conduction of Heat, Suppose a quantity of heat Q to

pass by conduction from a source at a temperature T to

another at lower temperature Tz
. At the original temperature

the available energy was

The same quantity of heat in the second source has the avail-

able energy

The available energy is, therefore, decreased by the quantity

and the unavailable energy is increased by an equal amount.

(2) Irreversible Conversion of Work into Heat. A common
irreversible process is the conversion of Avork into heat in the

interior of a system through the agency of friction. Examples
are found in the flow of steam through nozzles and blades, and

in the Motional losses due to internal whirls and eddies in

fluids. Heat thus produced we shall denote by the symbol H,

reserving Q to denote heat brought into the system from outside.

If now within the system the small quantity of heat A.H" is

generated while the system remains at the temperature T, the

part of AJ^Tthat is available is

rrr rn / rn

A TT J-~

where, as usual, T denotes the lowest available temperature.

Of the work Jb.II expended in producing the heat A//, the

part

may therefore be recovered in the form of work. The re-

mainder

is rendered unavailable.
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To obtain the total increase of unavailable energy, when tho

quantity of heat .fiTis generated, the temperature of the. system

varying in the meantime, we sum the element of tin 1
, type just

obtained. Thus if the temperature risen from T
t
to

'1\ during

the process, we have for the total waste

(3) Free expansion of a {/as. The waste due, to free expan-

sion, as described in Art. 85, may be determined by returning

the gas to its initial state and observing the changes left in

outside bodies.

The compression indicated, by B'A' (Fig. 1(5') requires that

work W, represented by area B'A' A^v lie supplied from an

outside body $2
. Another outside body /V.,

must receive from

the gas heat Q equivalent to the work W. The gas, the

the system Sv has the same available energy as at first,, being
restored to its initial condition; system A'

2
has lost available

energy W=JQ; and system ;S'
3
has received energy JQ of

which only part is available. On the whole, therefore, there is

an increase of unavailable energy. The loss of availability duo
to the original irreversible expansion of the ga.s (system A'j) is

repaired in this system, but an equal loss is brought about in

systems Sz
and Sy It can be shown that the, waste thus in-

curred is given by an expression of the form
7|, f'//|-

/ /

41. Entropy. The expressions for the increase of unavail-
able energy derived under various conditions are alike in hav-

ing TV the lowest temperature available for a refrigerator, as a
factor. It appears, therefore, that the unavailable, energy
changes with T ; the lower T

()
can be taken, the, smaller the

waste and the larger the fraction of the heat supplied that can
be transformed into work.
The other factor in the expression must necessarily, for the

sake of consistent units, have the form Q or J "^. To this



measure of the change in the unavailable energy of the system ;

an increase of entropy involves an increase of unavailable

energy, and vice versa. We may formally define entropy as

follows :

If, from any cause whatever, the unavailable energy of a system
is increased and if the increase be divided by T^ the lowest tem-

perature available for a cold body, the quotient is the increase of

entropy of the system.

This definition requires close examination to obviate possible

misconception. The "
system

"
spoken of may be either a

single substance, as the medium employed in a heat motor, or

it may be all the bodies taking part in the process. Now, ac-

cording as we take one or the other of these viewpoints we get
a particular notion of the significance of the term entropy.
To illustrate this point, let us consider a simple example.

Suppose we have a fluid medium M and a source of heat S, as

described in connection with the Carnot engine. We may
direct our attention either to the system M alone or to the sys-

tem M+ 8 composed of the medium and source. Let both M
and S be at the temperature T and suppose that at this tem-

perature heat Q is transferred from S to M. This is the ideal

reversible transfer assumed in the description of the Carnot

engine. In receiving Q the system M has its available energy
f T\

increased by Q 1 1 -9
j
and its unavailable energy increased by

T Q \ J

Q~m = ^oTjfr; hence by the definition just given the entropy of

.system M is increased by j,"
At the same time system S has

lost the energy Q and, therefore, the unavailable energy Q
~

;

hence the entropy of S is decreased by ~ It follows that the

change of entropy of the system M+ S is zero. As the result

of the reversible transfer of heat from 8 to M there is no

change in the unavailable energy of the large system S +Mand

no change in the entropy of this system. Suppose now that sys-

tem M. is again at temperature T, but that system S has a higher

temperature T', as must be the case in any actual transfer
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of heat. If now heat Q passes from /S
y

to M, the unavail-

able energy ofMis increased by <??},
as before, and tho increase

of entropy of system M is ~ The system H has, however,

m
lost the unavailable energy (?-J,

and its entropy has decreased

by -- The system tf +M has had its unavailable energy in-

creased by tlie amount
(?-|

-
(?|j

=
^|

-
-^)-

The irre-

versible transfer has therefore resulted in a not loss of available

energy of this amount, and this degradation is accompanied by

an increase of entropy r̂

-~ The result hero obtained for

two systems may be applied to any number of systems.

When we apply the notion of increase of entropy to tin; sys-

tem composed of all the bodies involved in a process, in other

words, an isolated system, we are led to the conception (hat

the increase of entropy measures the degradation of energy in-

cident to the process. If we combine this notion with that

expressed by the second law, we arrive at the following im-

portant principles :

1. Any process that can proceed of itself IK cteeoinpanii'd hi/ an

increase of the entropy of the system of bodies involved in (he.

process.

2. The direction of a process, physianl or eJievu'ral, tJnit own)'*

of itself is such as will bring about an increase, of entropy in the

system.

These principles lie at the foundation of the application of

thermodynamics to chemistry.

42. Second Definition of Entropy. While the conception of

entronv as thp. ffl.nf-.nr f-.lmt w,n^-,,.,,
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unavailable energy of this single system^involves an increase in

the entropy of the system^ but, as we have seen, degradation
does not necessarily follow, for the increase of unavailable

energy of M may be compensated by an equal loss in some
other system taking part in the process.

We now inquire by what means the unavailable energy of

the single system under consideration can be increased. There

are at least three ways that are suggested from the previous
discussion of available energy (Art. 40).

(1) If energy is added to the system in the form of heat, the

total energy of the system is increased, and consequently the

unavailable energy is increased. If the heat A Q is thus added

when the temperature of the system is T, the resulting increase

of unavailable energy is

If, as is generally the case, the temperature rises as heat is

added, we shall have for the increase

-*. /
r
'*2

", T'

(2) The unavailable energy may be increased by the con-

version of work into heat through internal friction. As shown

in Art. 40 (2), the increase of unavailable energy from this

cause is

(3) If the parts of the system are not at the same tempera-

ture, there will be an irreversible flow of heat from one part of

the system to another, and this will increase the unavailable

energy. We may remove this source of unavailable energy by

assuming that the system is at all times of uniform temperature

throughout, an assumption that is usually justifiable.

Neglecting this third effect, we have for the increase of un-

available energy from state 1 to state 2,
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whence by definition, the increase of entropy ia

Now while the actual change of the system from state 1 to state

2 may, and usually does, involve Motional effects, wo can r.nn-

ceive of a hypothetical change in which thesis internal irroversi-

ble effects are entirely absent and in which the, increase, of

unavailable energy is due entirely to the addition to the system

of heat from some external source. Denoting by Qr tho heat

thus added, we have for the increase of entropy involved in

this particular process the integral

The important question now arises: Does tho increase of en-

tropy of the single system under consideration depend only

upon the initial and final states or upon the path connecting

the states? It is easily shown that the increase of entropy,

like the increase of energy, depends upon the initial and final

states only. For the change of energy is independent of the

path; therefore, the change of the unavailable- part of the en-

ergy, as determined by the constant temperature 7 r and the

temperatures 2\ and Tz
at the initial and final states, is also

independent of the path; therefore the change of entropy,
which is the change of unavailable energy divided by .7

r

, is

also independent of the path. It follows that the integral
T 3 r\

J
-~ has the same value whether taken along the path r

(Fig. 20) or any other reversible path r' . We may write, there-

fore,

where S denotes a function of the coordinates of tho system
which, may be termed the entropy of the system. We have,
then, the following definition :

The change of entropy of a system correspond!,/!*/ to a clianye

of the system from state. 1 tn st.nto 9 ,
f

o *7, ,1,, /;,,.;/ ,;/,,,.,, 7 C'^'J^'
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According to this more restricted conception, the entropy of

a system, like the energy, pressure, or temperature, is a magni-
tude determined by the state of the system, and change of en-

tropy has no necessary connection with degradation of energy.
It should be noted that entropy as thus denned is like energy

purely relative. We are never concerned with the absolute

value of the entropy of a system in a given state ; what is

desired is the change of entropy associated with a given change
of state. For convenience of calculation we assume the zero

of entropy to be the entropy of a system in some specified state.

Thus, in dealing with vapors we assume the zero of entropy to

be the entropy of a unit weight of liquid at C.

43. The Inequality of Clausius. If an actual irreversible

change be represented by the path i, Fig. 20 (assuming it to

be possible to give such a repre-

sentation), a correct value of the

change cannot be obtained from
.. y, .7 Q

the integral (
'-77-

taken along

the path i. For as we have seen

a f
T
* 'I*

"i=J '

7,7
T. -L

-V

FIG. 20.where 2 is the increase of en-

tropy due to the internal irre-

versible changes. For the actual irreversible change we have,

therefore,

This is the inequality of Clausius.

44. Summary. To present the important principles of this

chapter in concise form and in logical order the following sum-

mary is added.

1. Experience shows that heat energy is not completely

transformable into mechanical work. The ratio of the energy



2. Experience further shows that an irreversible process

always decreases the availability of a system.

3. The second law of thermodynamics asserts that tho avail-

able energy of an isolated system cannot be increased by any

process that takes place of itself.

4. To gain a means'of measuring availability the ideal ( -arnot

engine is introduced. By the aid of the second law it is shown

that no engine working between the same temperature limits

can have an efficiency greater than tho Carnot engine, and as a

consequence, that the efficiency of this engine is a function of

the temperature limits only.

5. By the introduction of Kelvin's absolute scale of tempera-

ture the efficiency of the Carnot engine is found to be given by

T T
the fraction -1 2

.

T T
6. Having the efficiency fraction 1 2, the available part

A
of a given quantity of heat Q at temperature T is found to bo

$(l o]
an(i the unavailable part, Q^

7. By special examples of irreversible processes it is found

that the expression for the loss of available energy in such pro-

cesses has the general form ^T)- or
7\ }

(

'

'^
.

8. The factor V-i or
j"^.

which multiplied by 7', gives tho

increase of unavailable energy is called the incrcttM of cut ><>]> >/

of the system.

9. Two conceptions of entropy are possible: (a) If atten-

tion be directed to all the bodies involved in a process, the

increase of entropy of the whole system of bodies measures tho

degradation of energy resulting from the process. (/>) If at-

tention be directed to a single body, as a medium used in a heat

motor, the entropy of this simple system is merely a function
of the coordinates of the system.

10. The change of entropy of a simple system is given by
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tlie initial and final states. The value of this integral is inde-

pendent of the path.
11. For an irreversible change of state the change of entropy

r 2'

2 dO
is greater than \ %-.

J
y\

T

45- Boltzmann's Interpretation of the Second Law. A very clear insight
into the real physical meaning of natural irreversible processes and of the

second law of thermodynamics is afforded by the researches of Boltzmann
and Planck. In this article it is possible to give merely a brief outline of

Boltzmanu's contribution
;
for a complete exposition the reader is referred

to Professor Klein's admirable book, The Physical Significance of Entropy.*

According to the molecular theory, the ultimate particles of matter are

in a state of incessant motion, the character of the motion depending upon
the state of aggregation, solid, liquid, or gaseous. In a gas it is assumed
that a particle has a free path and moves along a straight line until it col-

lides with another particle or with a restraining surface, as the wall of the

containing vessel. To the motion of particles as to the motion of masses

we may apply the conception of constraint or control. Thus, in the wave

motions that characterize sound, the motion of the particles that constitute

the mediums is in some degree controlled or ordered. The molecular

motion that constitutes heat is, on the other hand, wholly uncontrolled and

disordered. For any given particle of a gas all directions of motion are

equally possible and, therefore, equally probable; and the direction of

motion and velocity of any particle is independent of the motions of other

particles. In a volume of gas particles will be moving in all directions

with all possible velocities. However, because of the great number of par-

ticles even in a small volume, the values of magnitudes that depend upon
the molecular motion, such as pressure and temperature, remain constant

notwithstanding the haphazard character of the molecular motion.

According to Boltzmann, there is apparently a universal tendency

toward the disordered motion that characterizes heat. A motion that is

in any degree ordered or controlled tends to become disordered. Thus, as

sound waves die out the uniform motion of the particles in the wave

changes to disordered motion, and the energy of sound is transformed into

heat energy. The relative motion of two bodies in contact is retarded by

friction, and the work of overcoming friction is transformed into heat; that

is, the constrained motion of the particles in the mass gradually changes

to the disordered motion of heat. Since the energy of disordered molecular

motion is necessarily less available for direction into any required channel

than the energy of constrained or controlled motion, it follows that a change

from a less probable state of controlled motion to a more probable state of

/3ic.m..3ni.n>3 if.rvJ-i/i-.-. ; ,-.!-> r,-,-.,^ ,./-.iv^ a nnnrli firm nf (TVOflt.PV El.Vni1il.hlft fillftrCW



to a condition of less available energy. II<mce, the statement of the. nal ural

tendency toward disordered motion is iu reality a broad statement <l the

second law of thermodynamics.

From the preceding considerations a physical interprelation of entropy

is readily deduced. A system of itself passes from a less probable, to a

more probable state
;
that is, to a state of mure disordered moleeular motion.

The entropy of the system during the change must, inornaso.
^Therefore,

the entropy of the system may bo associated with the. probability of tins

state of the system. From the laws of probability, 1'lanek has shown that

the entropy is proportional to the logarithm of the probability of th .slate.

The following quotations from Prof. Klein's book indicate in some degree,

the significance of this conception of entropy.
" Growth of entropy is a passage from a somewhat regulated to a less

regulated state."

"Entropy is a universal measure of the disonli'r in the mass points of a

system."

"Entropy is a universal measure of tho spontaneity wit.li whie.h a system

acts when it is free to change."

"Growth of entropy is a passage from a concentrated (.<> a disl.ribul.cil

condition of energy; energy originally concentrated variously in t.lm system

is finally scattered uniformly in said system. In this aggregate aspect, it is

a passage from variety to uniformity."

EXERCISES

1. If a source of heat has an absolute tomporaturo of MOO" F. and tho

lowest available temperature is 525 F., what fraction of tho beat drawn

from the source is available ?

2. In a boiler 10,000 B. t. n. pass from the hot gases of the. fnrnat'e, tin;

temperature of which is 2500 F., through the boiler shell into water at a

temperature of 330 F. If the lowest available temperature is 80" F., iind

the loss of available energy.

3. Show how the result of Ex. 2 suggests tho superior dlhuency of the

gas engine compared with the steam engine.

4. Point out the loss of available energy when heat Hows from steam in a

radiator at a temperature of 225 into a room at 70". J)evisu a system of

heating that would obviate this loss.

5. A mass of water weighing 60 Ib. at a temperature of 70" F. is churned

by a paddle wheel until the temperature rises to 120. Find the increase, of

entropy, and the loss of available energy. Take the spec.itu- heat of water
as 1.

6. In the demonstration of Garnet's principle, Art. 158, ;iKsnme the two

engines A and B to do the same work W. Then show that if. emrine A



ART. 45] LITERATURE ON THE SECOND LAW 67

REFERENCES

REVERSIBLE AND IRREVERSIBLE PROCESSES

Planck : Treatise on Thermodynamics, Ogg's trans., 82.

Bryan : Thermodynamics, 34, 40.

Klein : Physical Significance of Entropy, 29.

Chwolsou : Lehrbuch der Physik 3, 443.

Parker : Elementary Thermodynamics, 105.

THIS SECOND LAW. ENTROPY

Sudi Carnot: Reflections on the Motive Power of Heat. Translated by
Tlrarston.

Claxisius : Mechanical Theory of Heat.

Rankine: Phil. Mag. (4) 4. 1852.

Thomson : Phil. Mag. (4) 4. 1852.

Franklin : Phys. Rev. 30, 770. 1910.

Lorenz : Teehnische Warmelehre, 104.

Chwoison : Lehrbuch der Physik 3, 485, 497.

Bryan : Thermodynamics, 43, 57.

Preston : Theory of Heat, 025.

Klein : Physical Significance of Entropy.

Magie : The Second Law of Thermodynamics (contains Garnet's " Reflec-

tions" and the discussions of Clausius and Thomson).
Planck: Treatise on Thermodynamics (Ogg), 86.

Parker : Elementary Thermodynamics, 104.



CHAPTER V

TEMPERATURE ENTROPY REPRESENTATION

46. Entropy as a Coordinate. It was shown in Art. -12 that

the entropy of a system measured from an arbitrary /ero is

dependent only upon the state of the system ;
that, in, tho

entropy is a function of the coordinates of the system. It

follows that the entropy itself may bo included amon^ tho

coordinates used to define a system. We have, therefore, live

coordinates, namely, p, v, T, u, and 8, that may bo thus used.

From these five, ten pairs may be selected, and the change of

state of a system may be represented by ten different curves on

ten different planes. Of these possible graphical representa-
tions two are of special importance : (1) representation on tho

jpF-plane, because the area between the curve and /'-axis repre-
sents the external work done by the system; (

L

2) representa-
tion on the T$-plane, because with certain restrictions tho area

under the curve represents the heat absorbed, by the system
from external sources. Graphical representations on the, ^f-
plane have been considered in Art. 82. This chapter will be
devoted chiefly to representations on the 2W-plano.
From the second definition of entropy, we have

-%> CO
-

I J^

from which relation we obtain at once the differential forms

and TdS=dQ.
Let the curve ATt



But from (3) this integral is the heat Qlz absorbed by the

system from external sources during the change of state. It

follows that the area between
T

the curve AB and the axis OS

represents graphically the heat

absorbed along the path AB.
One most important restriction

must, however, be observed. In

defining entropy by means of

equation (1) it was expressly

stated that the change of state ^ J?i

must not involve any internal

irreversible effects. If such effects are present, the equation

for the change of entropy is

where S denotes the increase of entropy due to internal

processes, conduction between the parts of the system, trans-

C TtdO
formation of work into heat through friction, etc., and

Jr
-

is the increase of entropy due to the absorption of heat from

external bodies. From (4) it follows that in this case

whence

* a _ a
~

* v

dQ<TdS, (5)

or the heat absorbed from outside is less than the area between

the 2W-curve and the #-axis. This area therefore may be taken

as representing the heat absorbed by the system when, and only

when, the change of state involves no irreversible effects. Neglect

of this restriction has led to many errors.

47. Isothermals and Adiabatics. If the temperature of the

system remains constant during the change of state, the
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**~

D

A'
FIG. 22.

In this case we have merely to divide the heat added to the

system (assuming, of course, that the change of state is revers-

ible) by the constant tempera-
ture T, and the quotient is the

change of entropy.

If the state point passes from

B to A, that is, so as to de-

crease the entropy, the area

A-^ABB^ represents heat re-

jected by the system to outside

bodies.

For an adiabatie change of

state, dQ = ;
hence from (1) $,

=
h\ and tlio adiabatie line

on the 5W-plane, if the change of .state involves no irreversible

effects, is a straight line parallel to the .'/-axis, as (.11) ( Kig. IW).
If the state-point moves from Oio D, indicating a decrease of tem-

perature, external work is done by the system, and tlio ehange
of state is an adiabatie expansion. If tlio point moves upward
from D to (7 the change of state is an adiabatie compression.

48. The Curve of Heating and Cooling. From the equation

do
G = *-

,

which defines the specific heat of a substance, we have

(1)

Substituting this expression for
ity in (1), Art. 4(1, we got for a

reversible process

.

T
If the specific heat c is constant during tlio change of state,

we have for the change of entropy of unit weight of the sub-
stance



For the weight If,

(3 a)

If, however, c is variable, it can usually be expressed as a func-

tion of the temperature ;
that is, we can write

whence
T, . T (4)

The integration can be effected when the function /(2
1

) is

known.

EXAMPLK. Let tho specific heat o'f a substance be given by the relation

c = a + W = a + &(r-450.G);
wo have then

r T <1T rT
sa
- 8 L

= (a
- 4-59.0 b) i

- ~~- + I \ dT
J r

t
1 J

?*[

=
(

- 459.0 6) log, ^ +b(Ts
- J

1

,).

^i

The general form of the curve that represents Eq. (3)

is shown in Fig. 28. This curve

represents the ordinary pro-

cess of heating* a body or sub-

stance, as the healing of water

iu a boiler or metal in a furnace.

It is called by some writers the

polytropic curve. The subtan-

gent of the curve is constant

and numerically equal to the

specific heat. Thus from the
F E

FIG. 23.

figure we have

~~
~d^~ dT

It follows that the smaller the value of c, the greater the slope

of the curve.

The isothermal and adiabatic curves (Fig. 22) ms?y be con-

. ^f 4-T->^ V,/->n'f-i-nn. oi-irl nnnil nor miTVP.. T^OT
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Cases may arise in which tluj

slope of the 2/S'-ourvo is nega-

tive, as sliown in Fig. 24. In

such cases abstraction of lioat i.s

accompanied by a rise in tem-

perature or vine ve-rxa. Evidently

the speciJic heat
ff1

niu.st bo
it ,L

negative, as is indicated geo-

metrically by tho negative sub-

tangent. Examples will be shown in the compression of air

in the ordinary air compressor, and in the expansion of dry
saturated steam with the provision that it remains dry during
the expansion.

:iy bo

series

49. Cycle Processes. Since any reversible process m
sliown by a curve in ^-coordinates, it follows that a

of such processes forming a

closed cycle may be repre-

sented by a closed figure on

the 2E-plane. In Fig. 25 is

shown such a cycle composed
of two polytropics AB and

DE, an isothermal J3C, and

two adiabatics CD and HA.
In any such cycle the area

included by the cycle repre-
sents the net heat added to

(or abstracted from) the work-

ing fluid during the cycle process. Assuming the cycle to bo
traversed in the clockwise sense, we have

ab
= area

Qbc
= area

1
BOOV



= ABODE.
the cycle is traversed in the counterclockwise sense, we have

it from the first law, Q is the heat transformed into work;
nee for the direct cycle

area ASODE= Q = AW,
d for the reversed cycle

area ABODE= -Q**-AW.
This reasoning evidently holds for any number of processes,
d therefore for a reversible

>sed cycle of any form. Thus
? the cycle shown in Fig. 26,

> have

area F= Q = AW,
area F=- =

3ording as the cycle is traversed

the clockwise or counter clock-

se sense.
-

FlG _ 2(1>

tn later developments it will

quently be necessary to show cycle processes on the iZW-plane.

)0. The Rectangular Cycle. When the curves representing
s four processes of the Carnot cycle are transferred to the

2%'-plane, the cycle becomes the

simple rectangle ABQD, Fig. 27.

The area A^ABB^ represents the

heat Q1
absorbed by the medium

from the source during the iso-

thermal expansion AB, and the area

B^CDAy the heat Qz rejected to the

refrigerator during the isothermal

compression CD. The lines BO
and DA represent, respectively, the

adiabatic expansion and the adia-

FIG. 27. batic compression.

Tn

B
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From the geometry of the figure, we have

A IV T-,- T,,

whence f]
= ^ ~ ~rn "

as already deduced in Art. 89.

When the cycle is traversed in the counterclockwise souse,

the heat Q2
is received by the medium from the cold body during

the isothermal expansion J9(7, and the larger amount of beat Q t

is rejected to the hot body during isothermal compression JiA.

The difference $2 ^ == J. T7 represented Kv ^ 10 t!y^ u ari!Jl

is the work that must be done on the medium, and must there-

fore be furnished from external sources.

The reversed heat engine may be used either as a rof rigerating

machine or as a warming machine. In the lirst case Uie space,

to be cooled acts as the source and delivers then heat Qz
= area

A
1
DCB

1
to the medium. In the second case the space, to bo

warmed receives the heat Q1
= area B

l
BAA

l
from the medium.

51. Internal Frictional Processes. Referring to Art. 4U, the

increase of entropy when heat is generated in the interior of a

system is seen to be

2 1
~

^
j\ ~T Jr ~T

r
'

If $=0, that is, if no heat enters the system from outside

sources, the increase of entropy is

and is due entirely to the generation of beat in the interior of

the system. If it be assumed that this process is steady, so that
the system at every instant is approximately in thermal equi-
librium, the usual graphical representation may be applied to

(2), and the area under the 2^-curve will in this ease repre-
sent not the hfifl.t bvnno-ht. infn +!IQ c.irfi 1^,^- 4.1,., 1 4. 77
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FIG. 28.

int A (Fig. 28) lias its pressure decreased in passing along the

zzle, and as a result the temperature likewise falls. The
Dceas is adiabatic, that is, no heat

received from external bodies;

nee, if there were no internal

ction, the drop in temperature
iuld be indicated by a motion of

3 state-point along AAr But

irk is expended in overcoming
3 friction between the fluid and

rale wall. This work is neces-

:ily transformed into heat, which

retained by the fluid. It follows

it there is an increase of entropy, as indicated by the curve AB.

om (2) the heat generated is represented by the area A
1
AS r

52. Cycles with Irreversible Adiabatics. In certain cases the

>sed cycle of operations of a heat motor may contain an adia-

tic irreversible process, the irreversibility arising either from

:ernal generation of heat or from the free expansion or wire-

awing of the working fluid. Even if it is possible to draw

a T&curve representing such

a process, the area under that

curve does not represent the

heat entering the system from

an external source. Hence

some care is required to inter-

pret properly the graphical

representations of cycles with

such irreversible parts.

In the cycle shown in Fig. 29,

suppose the process SO to be
FlG> 29 '

an irreversible adiabatic, the

ler parts of the cycle being reversible. Since AB is revers-

.e, the heat absorbed in passing from A to B is represented by

3 area A
1ABBr Likewise area C

1
ODA

1 represents the heat

lected by the system in changing state from to D. The
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process DA is adiabatic, hence $llB Oj and by hypothesis

= 0. The value of 2# for the cycle is, therein,

V((6 ~i~ VJ " ^'
1

'

1
r T7 r/r

= area ABKD - area /^M- ( r

The energy equation applies to any process, reversible or

irreversible. Therefore for this

cycle, as for those previously

considered, we have

FIG. 30.

It appears, therefore, that, the

work derived is less by tho area

B-lKOOi
than il, would have

been il: tho reversible adiabalie

.3 BE had been followed.

For the reversed, cycle

(Fig. r'50)
we have as the

work required from external sources

W=J(Qaa+ Q^ = ~ aron DVDAA 1 + area ./^/iOf^

Comparing this cycle with the cycle A.E<JD having the re.vers-

ible adiabatic AZ7, it is seen that the heat absorbed from the

cold body is smaller by the heat represented by the area

A^EBBy while the work required to drive the machine is

greater by an equal amount. In every case tho irreversible

process results in a reduction of the useful effect.

53. Heat Content. Since the quantities p, 7', .7
r

, H, and s are,

function of the state of a system only, it follows that any com-

bination of these quantities is likewise a function of the state

only. For example, let

(V)
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tentials, and are used in certain, applications of thermo-

namics to physics and chemistry. The function I has use-

L applications in technical thermodynamics.
To gain a physical meaning for the function I, let us consider

3 process of heating a substance at constant pressure. If t/p

,
and pl

denote the initial energy, volume, and pressure,

jpectively, and 72, Vy and pz
the final values of the same

jrdinates, we have from the energy equation

since pz
= p1

= A[Uz
~C7

l

tat is, the change in I is equal to the heat added to the sys-

n during a change of state at constant pressure. For this

ison I is called the heat con-

it of the system at constant I

essure, or, more briefly, the

ieat content."

In some subsequent investiga-

ns, especially those relating to

3 How of fluids, it will be con-

:iient to use / and S as the in-

pendent variables and to repre-

it changes of state by curves on
Q

.

i /xS-plane. The great advantage
the /^-representation over the

'-representation lies in the fact that in the former quantities

heat are represented by linear segments, while in the latter,

we have seen, they are represented by areas. A reversible

.abatic on the J&plane is a vertical line, as BQ (Fig. 31).

t in this diagram segment BO represents a quantity of heat

tead of a change of temperature,,

FIG. 31.



2. Assuming that the specific heat of water is constant, c 1, plot uu

cross-section paper the rS-cuwo reproHonting the heating tif water from

32 to 212.

3. Langen's formula for the .specific heat of CO., ut constant pressure in

c = 0.195 4- 0.000066 t. Find tlm increase, of entropy when CO., is healed

a^t constant pressure from 500 to 2000 F.
;
aim) tlm heat, absorbed.

4. A direct motor operates on a rectangular cycle between temperature,

limits ^=840 and T
z
= 000 and reeeivos from the. source 'J(K) 15. t,. u. per

minute. Find the efficiency, and the work don<>, per ininuti 1
.

5. A reversed motor, rectangular cycle., operates between temperature

limits of 10 and 130, and receives liOO It. t. u. per minnln from the cold

body. Find the heat rejected to the hot body, and the. horsepower required

to drive the motor.

6. A direct motor, rectangular cycle, operating between temperatures

2\ = 900 and T2
= 080, takes 1000 B. t. u. from a boiler. The heat rejected

is delivered to a building for heating purposes. This direct, motor driven

a reversed motor which operates on a ra'.tangnlar cycle between tempera-

tures r4
= 460 (temperature of outside, atmosphere) and

7'.,
: <>00. The

reversed motor takes heat from tho atmosphere and rejects heat io the.

building. Find the total heat delivered to tho building pur 1000 It. t. u.

taken from the boiler.

7. In the vaporization of water at atmospheric pressure, the. temperature
remains constant at 212 F., and 970.d B. t. vt. arc required for the process.

Find the increase of entropy.

8. The expression for the energy U for a given weight of a permanent
pV

gas is _ |
+ Um where k and U are constants. Derive an expression for

the heat content I of the gas.

9. Combine the energy equation dQ = AdU + AjxlV \\illi tho deiining

equation I = A ( U +p 7) and show that dI = dQ + A } 'dp.
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CHAPTER YI

GENERAL EQUATIONS OF THERMODYNAMICS

54. Fundamental Differentials. The introduction of the

entropy s and the functions i, F, and $ (Art. 52) permits the

derivation of a large number of relations between various

thermodynamic magnitudes. While the number of formulas

that can be thus derived is almost unlimited, we shall intro-

duce in the present chapter only those that will prove useful

in the subsequent study of the properties of various heat media.

In this article we shall by simple transformations express the

differentials of u, i, F, and <J> in terms of the differentials of the

variables jp, v, T, and s.

We have to start with the fundamental energy equation

dq = A(du + pdv), (1)

and for a reversible process the relation

dq=Tds. (2)

Combining (1) and (2), we obtain

T
du = ds~-pdv, (3)A

an equation that gives u as a function of the independent varia-

bles s and v.

From the defining equation

we have
di = Adu + Ad (pv)

= Adu + Apdv + Avdp.

Introducing the expression for Adu given by (8), we get
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Here i is given as a function of s and^> as independent
variables.

Likewise, from the relation

I=Au- Ts,

dF'= Adu - Tds - sdT';

whence from (3)

- dF= sdT+ Apdv. (5)

Finally, from the defining relation

<E> = Au + Apv Ts,

d$> = Adu + Ad(pv) - d(Ts^)

= Tds Apdv + Apdv + Avdp - Tds sdT;

or d = Avdp - sdT. (6)

Now since the functions w, i, JF, and <& depend on the state

only, their differentials are exact ; hence the second members

of (3), (4), (5), and (6) are all exact differentials.

Certain results can be deduced at once from the differential

equations (3)-(6). For example, from (6), if a system changes
state reversibly under constant pressure and at constant tem-

perature, the function $ remains constant. Again from (5), if

a change of state occurs at constant temperature, the external

work clone is equal to the decrease of the function F. These

results are important in the application of thermodynamics to

chemistry.

55. The Thermodynamic Relations. The fact that the dif-

ferentials in (3), (4), (5), and (6) of the last article are exact

gives a means of deriving four important relations. In (3)
we have u expressed as a function of the variables s and v;

that is,

M =/(*> v),

whence du = ds+~dv.
ds 3v

Comparing this symbolic equation with (3), it appears that



dv\dsj Bs\dv)'

that is,
Adv^ J

r)8

(If) =-*() (A)

The subscripts denote the variables held constant during the

differentiations indicated.

Relation (A) may be expressed in words as follows : The
rate of increase of temperature with respect to the volume

along an isentropic is equal to A times the rate of decrease of

the pressure with respect to the entropy along a constant vol-

ume curve. That is, if the reversible change of state be repre-
sented by curves, one on the 2Vplane, another on the jps-plane,

the slope of the second curve at a point representing a given
state is A times the slope of the first curve at the point that

represents the same state.

In (4) we have s and p as the independent variables ; and

since di is exact, the necessary condition of exactness gives

dp

dp. \dsp

That is, the rate of increase of temperature with respect to the

pressure in adiabatic change is A times the rate of increase of

volume with respect to the entropy in a constant-pressure

change.
Since in (5) dF is an exact differential, we have

From (6), likewise, we obtain

The relations given by (A), (B), (C), and (D) are known
as Maxwell's thermodynamic relations. They hold for all



(C) and (D) by means of the relation Us = ~

\,
aro usolul :

(CV)

dpT \<Y/'v

56. General Differential Equations. From tho thenno-

dynamic relations certain useful general equations arc at oneo

deduced. As in Art. 19, we may write

according as T and v or 27 and ^ are taken a.s tho indopondont

variables. Now replacing (-^-\ and
("--^ ^)}

r
'' ml. (

'

; ,i
r -

\o- yj, yd /.
y^;

spectively, and (~2 )
and (-2 ) by tho exprcission.s i^ivon in

VSu/y \dpjy
((7') and (i>') 5 these equations become, rospectivoly,

\dv, (I)

Eliminating dT between (I) and (II), a third equation having
p and v as the variables is obtained. Thus

Two other important equations may be derived from (I) and
(II). Since from the energy equation

du = Jdq pdv,
we have from (I)



di = cpdT- A - tjp. (V)

The general equations (I)-(V) hold for reversible changes
I state. The partial derivatives involved may be found from

he characteristic equation of the substance under investi-

ation.

As an application of (IV), we may derive expressions for the

lange of energy (a) of a gas that follows the law pv = BT ;

b")
of a gas that obeys van der Waals' equation

ence

(a) From the characteristic equation pv J3T, we have

*\ =*.
dT)v v

'

/"ftrji

du = JcvdT+(^--
\ v

= JcvdT,

rid u
z

u
1
=

=

ssuming cv to be a constant.

(5) From van der Waals' equation, we have

B
dTjv v-b'

, r^rf dP\'henoe ^^
'rom (IV), we have, therefore,

du = Jc,dT+dv,
v2

rhence, assuming again that cv is constant,



It appears, therefore, that if a gas follows the law jw = IW\ the

energy is a function of the temperature only, while ii il. follows

van der Waals' law, the energy depends upon the temperature

and volume; in other words, the gun possesses 1)uth kinetie

and potential energy. .

57. Additional Thermodynamic Formulas. For certain in-

vestigations of imperfect gases, especially the superheated

vapors, certain formulas involving the specific. heals <> and

cv are useful. The most important of these urn (VI;, (VII),

and (VIII) following.

Since du is an exact differential, wo obtain, upon applying

the criterion of exactness to (IV),

whence = A (VI)
\dvJ T \dT*J v

In a similar manner, since di is exact, we have from (V)

Equations (VI) and (VII) may be used to show tho depend-
ence of the specific heats cv and cv upon tho pressure and vol-

ume. For example, if a gas follows the equation pv BT we

find - = 0, whence from (VII)
<1

\ = 0, and it follows that

dpji'
cp does not depend upon the pressure, though it may vary with

the temperature. Also _JL=: 0, whence it follows that ev does
9T*

not vary with the volume. The student may show that the

second result follows from van der Waals' equation or from any
equation in which p and T appear in the first degree only.

If, however, we take the characteristic equation



hich applies to superheated steam, we obtain

hence (?**} - A <n + V)(l +
\ap/r Tn+1

itegrating this with 27 constant, we have

here 0(27), an arbitrary function of T, is the constant of inte-

ation. In this case it is seen that cp is a function of both T
Lcl p.
An expression for cp cv is obtained as follows : Writing the

itropy s as a function of p and v, we have

d8 = dp + ~dv.
dp dv

bis, combined with the familiar equation

Adu = Tds Apdv,
3o flo

ves the equation Adu = T dp + (T-- Ap~)dv.

nee du is an exact differential, we have

L(T?\=*-(T&
dv\ dp} dp\ dv

at is,
dv dp dvdp dp dv dpdv

, dTds dTds A f^tience ----- = A. (1)
dv dp dp dv

:om the definition of specific heat, we have

G= ^-=T^
dT dT"

.d if we express both s and T as functions of p and v, this re-

fcion becomes

^-dp+^dv
Q ~T dp dV_ (2)*-*

dT 7 ,
dT J

' ^ }



If p is constant, c= cv and dp = ; lunico wo huvu from
(^'2 i

1

cv ~TlJL.
~dt>

Likewise, when v is constant we; have

00

c ~ (4)

Combining (3) and (4), we obtain

dv dp t

Making use of (1), we get finally

cn o

EXAMPLE. For the character! stio uquatiou;> = 7J7', \vn huvo

= ~ dlL = Ji

dT p' dT~'v'

Therefore, from
(8),

cp
-

Cv =A^r ==AB .BT =
pv p v

That is the difference
Cp
-

Cv is constant (JV(,U jf an(1 ith t ,

temperature.

Taking Zeuuer's equation for superlieatod atoani, vi/,:

pv = BT~ Cp",

we have j?l _ ^
Jg. .B_

32
1

j' 32
7

nC>''-HV
whence cp

- cv = ^5 ^H__ _
y| ^ JIT __

n Cp
n + pv

(n
_ 1 )c yl ^. 7/7"

In this case, therefore, the difference c,
- cv varies with 7' and p.

By
varies

substitutions and transformations wo c,mld add

Sr md"finitely to this "at of thermodynamic fc.rnmlas.
However the eight formulas

(I)-(VIII) arc suflioiont fop the
mvestifirationof nnnriwon -^.i... ,-,



.apter T must necessarily denote the temperature defined by
e Kelvin absolute scale. The coincidence of this scale with

e perfect gas scale will be shown in the next chapter.

58- Equilibrium. For irreversible processes the equations of Art. 54

ist be replaced by inequalities. Since for an irreversible process,

dq<Tds, (])

[. (3), (4), (5), and (6) of Art. 54 become, respectively,

Adu<Tds -
Apdv, (2)

di < Tds + Avdp, (3)

-dF>sdT + Apdu, (4)

d$<Avdp-sdT. (5)

From the inequalities (4), (5), and (1) the following conclusions are at

ce apparent :

1. If the temperature and volume of a system remain constant, then from

), rZZ'
T

<0. That is, tJF must be negative, and any change in the system,

ist result in a decrease of the function F.

2. If the temperature and pressure remain constant, as in fusion, and

porization, theii from (5), d$ < 0. Hence any change in the system must

such as to decrease the function cfr,

3. If the system be isolated, q
= 0, and from (1), tfs>0. Hence in an

dated system any change must result in an increase of entropy.

The conditions of equilibrium are readily deduced from these conclusions,

ider the condition of constant T and v, change is possible so long as F
a decrease. When F becomes a minimum, no further change is possible

d the system is in stable equilibrium. Likewise, with T and p constant,

ible equilibrium is attained when the function $ is a minimum.

The fiinctions F and $ are evidently analogous to the potential function

in mechanics. A mechanical system is in a state of equilibrium when

3 potential energy is a minimum, and similarly a thermodynamic system

in equilibrium when either the function F or the function $ is a minimum.

>r this reason F and <$ are called thermodynamic potentials.

By the use of thermodynamic potentials, problems relating to fusion,

porization, solution, chemical equilibrium, etc., are attacked and solved.

EXERCISES

1. From (V) derive an expression for the change of the heat content i

len a gas following the law/w = BT changes state.

2. If the gas obeys van der Waal's law, find an expression for the

ange of the heat content i.

3. Apply equations (II), (IV), and (V) to the characteristic equation

superheated steam,
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4. Callendar has proposed for superheated steam the equation

Apply (VII) to this equation and show that c is a function of p and T.

5. Give geometrical interpretations of the thermodynamic relations

(C) and (D).

6. From (I) and (II) derive expressions for dq and also for y for a

gas following the law pv
- BT. Show that the expressions for ^ are

iutegrable, while those for dq are not.

7. Derive (VI) and (VII) by the following method: Divide both mem-

bers of (I) and (II) by T, and knowing that ^ = ds is exact, apply the

criterion of exactness to the resulting differentials.

8. Deduce the following relation between the specific heats and the

functions F and

r -v rr&F n\
(a) c.= -r_; (6) c,=

9. Using temperature-entropy coordinates, deduce a system of graphical

representation for the three magnitudes Q, U2 Uv and W that appear in

the energy equation.

Suggestion. Through the point representing one state draw an iso-

dynamic, through the other point a constant volume curve.
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CHAPTER VII

PROPERTIES OF GASES

59. The Permanent Gases. The term "permanent gas"
survives from an earlier period, when it was applied to a series

of gaseous substances which supposedly could not by any
means be changed into the liquid or solid state. The recent

experimental researches of Pictet and Cailletet, of Wroblewski,

Olszowski, and others have shown that, in this sense of the

term, there are no permanent gases. At sufficiently low tem-

peratures all known gases can be reduced to the liquid state.

The following are the temperatures of liquefaction of the more

common gases at atmospheric pressure :

Atmospheric air - 192.2 C.

Nitrogen
- 193.1 C.

Oxygen - 182.5 C.

Hydrogen - 252.5 C.

Helium -263.9C.

It appears, therefore, that the so-called permanent gases are

in reality superheated vapors far removed from temperature of

condensation. We shall understand the term "
permanent gas

"

to mean, therefore, a gas that is liquefied with difficulty and

that obeys very closely the Boyle-Gay Lussac law. Gases that

show considerable deviations from this law because they lie

relatively near the condensation limit will be known as super-

heated vapors.

60. Experimental Laws. The permanent gases, at the pres-

sures usually employed, obey quite exactly the laws of Boyle

and Charles, namely :

1. Boyle's Law. At constant temperature, the volume of a

given weiaht of aas varies inversely as the pressure.



z. v/nanes

sure, of a gas is proportional
to the change of temperature.

By the combination of these laws the characteristic equation

pv = BT is deduced. (See Art. 14.) In this equation T

denotes absolute temperature on the scale 'of the gas ^ther-

mometer, and not necessarily temperature on the Kelvin

absolute scale.

The classic experiment of Joule showed that permanent gases

obey very nearly a third law, namely :

3. Joule's Law. The intrinsic energy of a permanent gas is

independent of the volume of the gas and depends upon the temper-

ature only. In other words, the intrinsic energy of a gas is all

the kinetic form.

Joule established this law by the following experiment. Two

vessels, a and 6, Fig. 32, connected by a tube were immersed in

a bath of water. In one vessel air was compressed to a pres-

sure of 22 atmospheres, the other

vessel was exhausted. The tem-

perature of the water was taken

by a very sensitive thermometer.

A stopcock G in the connecting

tube was then opened, permit-

ting the air to rush from a to

J, and after equilibrium was es-

tablished the temperature of the

No change of temperature could be

FIG. 32.

water was again read,

detected.

From the conditions of the experiment no work external to

the vessels a and 6 was done by the gas ; and since the water

remained at the same temperature, no heat passed into the gas

from the water. Consequently, the internal energy of the air

was the same after the expansion into the vessel 5 as before.

Now if the increase of volume had required the expenditure of

internal work, i.e. work to force the molecules apart against
their mutual attractions, that work must necessarily have come
from the internal kinetic energy of the gas, and as a result the

temperature would have been lowered. As the temperature
remained constant, it is to be inferred that no such internal



was required. .a. gas nas, uiereiore, no appreciaoie inter-

nal potential energy ; its energy is entirely kinetic and depends

upon the temperature only.

Joule's law may be expressed symbolically by the relations :

The more accurate porous-plug experiments of Joule and

Lord Kelvin showed that all gases deviate more or less from

Joule's law. In the case of the so-called permanent gases, air,

hydrogen, etc., the deviation was slight though measurable ; but

with the gases more easily liquefied, the deviations were more

marked. The explanation of these deviations is not difficult

when the true nature of a gas is considered. Presumably
the molecules of a gas act on each other with certain forces, the

magnitudes of which depend upon the distances between the

molecules. When the gas is highly rarefied, that is, when it is

far removed from the liquid state, the molecular forces are van-

ish.in.gly small ; but when the gas is brought nearer the liquid

state by increasing the pressure and lowering the temperature,
the molecules are brought closer together and the molecular

forces are no longer negligible. The gas in this state possesses

appreciable potential energy and the deviation from Joule's

law is considerable.

61 . Comparison of Temperature Scales. Joule's law furnishes

a means of comparing the two temperature scales that have

been introduced: the scale of the gas thermometer and the

Kelvin absolute scale.

Since the intrinsic energy u is, in general, a function of T and

v, we may write the symbolic equation

CD

But from the general equation (IV), Art. 56,

&\
-p~}dv (2)

d-J J



paring (1) and (2), we obtain

For a gas that obeys Joule's law -- = 0, wlienco from (H)&
<3u

=. (4)
'A y

^ ;

Equation (4) is, however, precisely the equation that expresses

Charles' law when T is taken as the absolute temperature on

the scale of the constant volume gas thermometer. Thus, if

the change of pressure is proportional to the change of tem-

perature when the volume remains constant, we have, taking jw

as the pressure at C.,

1=1-

It follows that the value of T is the same whether taken

on the Kelvin absolute scale or on the scale of a constant-

volume gas thermometer, provided the gas strictly obeys the

laws of Boyle and Joule. The fact that any actual gas, as

air or nitrogen, does not obey these laws exactly makes
the scale of the actual gas thermometer deviate slightly from
the scale of the ideal Kelvin thermometer. From the porous-

plug experiments of Joule and Kelvin, Rowland has made a

comparison between the Kelvin scale and the scale of the air

thermometer.

62. Numerical Value of B. The value of the constant B for

a given gas can be determined from the values of p, v, and T be-

longing to some definite state. The specific weights of various

gases at atmospheric pressure and at a temperature of C.
are given as follows :



Atmospheric air ...... 0.08071 Ib. per cubic foot.

Nitrogen ....... O.OT829 Ib. per cubic foot.

Oxygen ........ 0.08922 Ib. per cubic foot.

Hydrogen ....... 0.00561 Ib. per cubic foot.

Carbonic acid ...... 0.12268 Ib. per cubic foot.

A pressure of one atmosphere, 760 mm. of mercury, is 10,333 kg.

per square meter = 14.6967 Ib. per square inch =2116. 32 Ib.

per square foot. Taking as 491.6 the value of T on the F.

scale corresponding to C., we have for air

2116 - 32 =5334
T <yT 0.08071x491.6

In metric units the corresponding calculation gives

7? = 10333 __ 9Q 9g
273.1 x 1.293

' '

The values of B for other gases may be found in the same way
by inserting the proper values of the specific weight 7.

63. Forms of the Characteristic Equation. In the character-

istic equation as usually written,

(1)

v denotes the volume of unit weight of gas. It is convenient

to extend the equation to apply to any weight. Letting M
denote the weight of the gas, we have for the volume F~of M
Ib. (or kg.), V= Mv, whence instead of (1) we may write :

pV=MBT. (2)

This equation is useful in the solution of problems in which

three of the four quantities, p, v, T, and M, are given and the

fourth is required.

EXAMPLE. Find the pressure when 0.6 Ib. of air at a temperature of

70 F. occupies a volume of 3.5 cu. ft.

From (2)

p = MBI = 0.6 x 58.34 x (70 + 469.6) = 484g>7 ^ per square feot
V o.o

= 33.63 Ib. r>er sauare inch.



advantageous in the solution of problems that involve tw

states of the gas. If (pv Fr T and (>3 , F^, T^) are the tw

states in question, then

~~m~~ ~~T~

With this equation any consistent, system of units may be usec

EXAMPLE. Air at a pressure of 14.7 Ib. per square inch and having

temperature of 60 F. is compressed from a volume of 4 cu. ft. to a volun

of 1.35 cu. ft. and the final pressure is 55 Ib. per square inch. The fun

temperature is to be found.

From (3) we have
14.7 x 4 _55x 1.35

60 + 459.6 t
2 + 459.6'

whence t
2
= 196.5 F.

EXERCISES

1. Find values of B for nitrogen, oxygen, and hydrogen.

2. Establish a relation between the density of a gas and the value of tl

constant B for that gas.

3. Find the volume of 13 Ib. of air at a pressure of 85 Ib. per square inc

and a temperature of 72 C.

4. If the air in Ex. 3 expands to a volume of 30 cu. ft. and the fin

pressure is 20 Ib. per square inch, what is the final temperature ?

5. What weight of hydrogen at atmospheric pressure and a teinperatu
of 70 F. will be required to fill a balloon having a capacity of 12,000 cu. ft

6. A gas tank contains 2.1 Ib. of oxygen at a pressure of 120 Ib. p
square inch and at a temperature of 60 F. The pressure in the tank shou
not exceed 300 Ib. per square inch and the temperature may rise to 100 !

Find the weight of oxygen that may safely be added to the contents of tl

tank.

64. General Equations for Gases. The general equatioi
deduced in Chapter VI take simple forms when applied 1

perfect gases. From the characteristic equation

we obtain by differentiation

JTh



introducing tnese values or tue derivatives in the general

equations (I)-(V) and (VIII), the following equations are

obtained :

da = cvdT + AS -
dv, (Id)

< v
y

dq = cpdT-AB- dp, (II a)
P

, AB ( T 7 ,

T , ^ ,TTT ,

dq = GP dv + GV dp , (III a)
cp -ov \ v p

*
J

du= J<jvdT, (IV a)

di = C],dT, (Yd)

cp ~cv
= AB. (VIII a)

The first two equations may be still further reduced by
means of the characteristic equation to the forms

dq = cvdT 4- Apdv, (I 5)

dq=cpdT-Avdp (115)

The ratio ^ of tlie two specific heats is usually denoted by
cv

k. The introduction of this ratio reduces (III a) to the sim-

pler form,

dq = -A. [kpdv + vdp] . (Ill 5)
K JL

Equation (IV a) simply expresses symbolically Joule's law

that the change of energy of a gas is proportional to the change
in temperature. Equation (I 5) follows independently from

(IV a) and the energy equation ;
thus

dq = Adu + Apdv
= cvdT+ Apdv, since AJ 1.

EXERCISES

1. Deduce (VIII a) from (I 6), (II 5), and the characteristic equation.

2. Derive (V ) from (IV a) and the equation jw = BT.

3. From (I ), (II a), and (III n) derive expressions for

-If-
4i From (III&) deduce the equation of the adiabatic curve in _pu-coordi

nates.



93 PROPERTIES OF GASES [CHAP, vn

5. From (I a) derive the equation of an adiabatic in TV-coordinates.

6. Using the method of graphical representation explained in Art. 32,

show a graphical representation of equation (I fc).

65. Specific Heat of Gases. If a gas obeys the law pv = BT,

the specific heat of the gas must be independent of the pressure

and also independent of the volume. This principle was shown

in Art. 57. The specific heat (cp or cw) may, however, vary

with the temperature, and the results of recent accurate experi-

ments over a wide range of temperature show that such a vari-

ation exists. As a general rule, the law of variation is

expressed by a linear equation ; thus

cv = a + bt,

Cp
= a' + bt.

When the range of temperature is large, as in the internal

combustion motor, the variation of specific heat with tempera-
ture must be taken into account. In the greater number of

problems that arise in the technical applications of gaseous
media it may be assumed with sufficient accuracy that the

specific heat has a mean constant value.

For air the value of cp, as determined by Regnault, is 0.2375

from to 200 C. Recent experiments by Swann give the

following values :

0.24173 at 20 C.

0.24301 at 100 C.

In ordinary calculations we may take cp
= 0.24.

The value of ep for carbon dioxide (CO 2) is usually given as

0.2012. Swann found the values

0.20202 at 20 C.,

0.22121 at 100 C.

The value of ep for other gases for temperatures between
and 200 C. may be taken as follows:

Hydrogen .... 3.424-0

Nitrogen .... 0.2438



Values of the ratio k = - have been determined by various
c*

experimental methods. For air the results obtained range from

k = 1.39 'to Tc = 1.42. From the experimental evidence it seems

probable that the true value lies between 1.40 and 1.405. In

calculations that involve this constant, we shall take the value

1.4 as convenient and sufficiently accurate. For air, there-

fore, ^=0.24-1.4 = 0.171.

The values of k and of <? for other gases may be taken as

follows :

k Co

Hydrogen ..... 1.4 2.446

Nitrogen ..... 1.4 0.174

Oxygen ..... 1.4 0.155

Carbon dioxide ... 1.3 0.162

Carbon monoxide . . 1.4 0,173

Ammonia ..... 1.32 0.387

If in equation (VIII #), cv is replaced by -A the result is the
k

relation

,,*=!- A3.

Each of the four magnitudes <?p , &, A, and B have been deter-

mined experimentally, and this equation serves as a check.

66. Intrinsic Energy. An expression for the intrinsic

energy of a gas is obtained by integrating (IV a). Thus

O , (1)

if cv is assumed to be constant. The constant of integration

U
Q is evidently the energy of a unit weight of gas at absolute

zero. Since, however, we are not concerned with the absolute

value of the energy, but the change of energy for a given

change of state, the constant M
O drops out of consideration

when differences are taken, and we need make no assumption

as to its value. Hence, if (^ vv T^) and
(jt?2 , vv T^) are the

coordinate of the initial and final states, we have

tt-M^Jb.CTa-Zi). (2)
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This formula gives the change of energy per unit weight of

gas. For a weight M the formula becomes

Uz-U^JMc^-TJ. (3)

A clear understanding of the physical meaning of formula

(2) is of such importance that it is desirable to give a second

method of derivation, one based directly upon Joule's law.

According to Joule's law the energy of a unit weight of gas

is dependent on the temperature only. Hence, if Tv Fig. 33,

is an isothermal, the energy
of the gas in the state A is

the same as in the state D;
likewise, the energy of the

gas at all points on the iso-

thermal Ta is the

FIG. 33.

same. It

follows that the change of

energy in passing from tem-

perature jPj
to temperature T^

is the same, whether the path
is AJB, AC, orDJS.

Since the energy is directly proportional to the temperature,
the change of energy is directly proportional to the change of

temperature. Hence

Uz-u^a^-TJ, (4)

in which a denotes a proportionality-factor. To determine the

factor a, we choose some particular path between the isother-

rnals T and T
z (Fig. 33). As we have seen, if this constant

is established for one path it holds good for every other path.
The most convenient path for this purpose is a constant volume
line, as A 0. The heat required for a rise in temperature from

V'Ziis fca^CZi-Zi)-
Since in the constant volume change, the external work is zero,
we have from the general energy equation

Comparing these equations, we have



A loimuia lor tne cnange ot energy in terms of p and Fmay
be derived from (3). Multiplying and dividing the second
member by JB,

k-l ' W
In (5) Kj and V

l
denote the final and initial volumes, respec-

tively, of the weight of gas under consideration; consequently
it is not necessary to find the weightM in order to calculate the

change of energy. It is to be noted, however, that in using
(5) pressures must be taken in pounds per square foot.
EXAMPLK. Find the change of energy when 8.2 cu. ft. of air having a

pressure of 20 Ib. per square inch is compressed to a pressure of 55 Ib. per
square inch and a volume of 3.72 cu. ft.

Using the value k = 1.40,

55x3.72-20x8.2-U == 144 x

67. Heat Content. The change in heat content correspond-

ing to change of state of a gas is readily derived from the

general equation (Va).

Thus, i = cvdT= cpT+ i
, (1)

and
2 j

= cp (Tz T-^)
. (2)

Introducing the factor AB in the second member of (2),

For a weight of gas M, (2) and (3) become, respectively,

IZ-I^MC^-TJ, (4)



and ^-Ji-^^r
68. Entropy. Expressions for the change of entropy are

easily derived from the general equations (la), (II a), and

(Ilia). Dividing both members of these equations by T, we

have

dq dT^-^

(2)' ^ }

dv dp ,-QN
ds = cP~+ c

-f'
<3)

Hence for a change of state from (pr vv T{) to (p2, va ,
T

2),

s
2
-

j
= e, loge^ + J.5 log, ^ (4)

gc (5)
^i Pi

8=8
c, log.^+ c.loge

|s.
(6)

These formulae give the change of entropy per unit weight

of gas. For any other weight M, the change of entropy is

M (s2 Sj). Equations (4), (5), and (6) are in reality identi-

cal. Each can be derived from either of the other two by
means of the relations pv = BT, cp cv = AB. In. the solution

of a problem, the equation should be chosen that leads most

directly to the desired result.

EXERCISES

1. From (4), (o), and (6) deduce expressions for the change of entropy

corresponding to the following changes of state : (a) isothermal, (b) tit con-

stant volume, (c) at constant pressure.

2. By making s
2 s

l
= in (4), (5), and (6), deduce relations between

Tand v, T and;;, and p and v for an adiabatic change of state.

69. Constant Volume and Constant Pressure Changes. In

heating a gas at constant volume the external work is zero.

Hence,

Q = A( U,
- Uj = Mov(T2 - zy. (1)



(2)

\i fin" g,4'-5 is hi'utt-tl at constant prewsure, the external

si

iruf ul<lrt in,

nf rniTjiy is, us in all canon, given by the

-, given by the relation

C
r
>)

ha\r IHM-U writtmi tlin

f entropy in

limiM c~> nntl (7) may
In* ilrnvril ilirt't'lly

from

^jKM'ul fipiutiuiiH
for *n-

, Art. iJS.

f I'ljitnijf.s uf state just

Irrnl art- n-pn'sruti'il
on

fW-jilaiu' by curvi'S of tbe

al form sbmvn in Ki.u
r

. &l*

rurvi' ,4/^. wliicli rcp-

Is tbe const ant, volume (>

,n\ is MrquT ihsin the

'

(6)

FIG. 34.



that is, area A
1
ABB

l < area

70. Isothermal Change of State. If T is made constant in

the equation pV=MB T, the resulting equation

P ^'
r

Pi Vi = constant (1)

is the equation of the isothermal curve in p F'-coordinates. This

curve is an equilateral hyperbola. The external work for a

change from state 1 to state 2 is given by the general formula

(2)

Using (1) to eliminate p, we have

(3)

For the change of energy,

Z7
2
- U^JMc^T^- TJ = 0; (4)

hence
Tr

^12=^^12 =^1^^-^, (5)
and l

'i

Since in isothermal expansion the work done is wholly sup-
plied by the heat absorbed from external sources, it follows that
if the expansion is continued

indefinitely, the work that may be
obtained is infinite. This is also shown by (3), thus :

JL

71. Adiabatic Change of State. To derive the ^-equation of
an adiabatic change of state, we may use the general differen-



nun o^ucnuui.1. uujuumumg p uuu v as variaoies. me most con-

venient form of this equation is (III a),

j_
dq=

j
T (ydp + /qpcfo) . (1)

During an adiabatic process no heat is supplied to or ab-

stracted from the system ; hence in (1) dq 0, and therefore

vdp + kpdv = 0. (2)

Separating the variables,

<3/p_
Jcdv __ ^

P v
~

'

whence loge jt? + Tc loge v = log (7,

or
jpy*

= (7. (3)

The relation between temperature and volume or between

temperature and pressure is readily derived by combining (3)
and the general equation pv = BT. Thus from

pv* = C,

pv = BT,

we get by the elimination of p,

*-!_ .

that is, 2V-1= const. (4)

Similarly, by the elimination of v, we obtain

TDk
,*-! _ - mk .

p --gJ.
,

x--i

7}
k

that is,
- = const. (5)

If we choose some initial state, pv vv Tr the constants in

(4) and (5) are determined, and the equations may be written

in the homogeneous forms

37

k-l



Since in an adiabatic change the heat Q is zero, the energy

equation gives

whence using the general expression for the change of energy,

By means of the equation

the final volume Vz may be eliminated from (8). The result-

ing equation is

EXAMPLE. An air compressor compresses adiabatically 1.2 cu. ft. of free

air (i.e. air at atmospheric pressure, 14.7 Ib. per square inch) to a pressure
of 70 Ib. per square inch. Find the work of compression; also the final

temperature if the initial temperature is 60 F. K . .

For the final volume, we have

F2 = 1.2 j~ = 0.3936 cu. ft.

The work of compression is

piVi-p,V2 _ 144(14.7 x 1.2 - 70 x 0.3036) _ o ri, Q *.
k-l 04

~ ~

The initial temperature being 60 + 459.6 = 519.6 absolute,, we have for
the final temperature

0.4

T2 = 519.6(~Y= 811.6 abs.,

whence z2 = 352 F.

72. Poiytropic Change of State. The changes of state con-
sidered in the preceding sections are special cases of the more
general change of state defined by the equation



By giving n special values we get the constant volume, constant

pressure, and other familiar changes of state. Thus :

for n = 0, pv = const., i.e. p = const,

for n = co, p^v = const., v = const.

for n = 1, pv = const., isothermal,

for n = 7c, pv
h = const., adiabatic.

The curve on the p F~-plane that represents Eq. (1) is called

by Zeuner the polytropic curve.

By combining (1) with the characteristic equation^?VMBT,
as in Art. 71, the following relations are readily derived

For the external work done by a gas expanding according to

the law pVn
pl V{

1

const.,

from the volume
FJ-

to the volume Vv we have

-tfPl *

The change of energy, as in every change of state, is

77 - IT -P* V<i
~~
Pi T/

i (^Uz Ul k^T~ w
Hence, from the energy equation, we have for the heat absorbed

by the gas during expansion

JO -U-U + W</Vi2 u
z 1/1+ WM K 1 L n

or J01n =
- -

Comparing (3), (4), and (5) we note that the common factor

(poV* p,V-,} occurs in the second member of each expression.



useful relations :

W =^1 (6)
C-ZT 1n ^

These may be combined in the one expression

W:UZ
- U

l :JQ=7c-l:l-n:Jc-n. (9)

EXAMPLE. Let a gas expand according to the law

j) F1>2 = const.

Taking k 1.4, we have

that is, the external work is double the equivalent of the beat absorbed by
the gas and also double the decrease of energy.

73. Specific Heat in Polytropic Changes. From Eq. (5),

Art. 72, an expression for Qlz
in terms of the initial and final

temperatures of the gas may be readily derived. Since

(5) becomes

hence, Q^ =McJ^(T2
- T^. (1)

J- - 7i

We have, in general,

Qu=Me(T,-T1 '). (2)

where c denotes the specific heat for the change of state under
consideration. Comparing (1) and (2), it appears that

Hence, for the polytropic change of state, the specific heat is con-
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stant (assuming cv to be constant) and its value depends on the

value of n in the equation pV
n

const.

It is instructive to observe from (3) the variation of c as n

For ra = 0, c = kcv
= and the

P

FIG. 35.

is given different values.

change of state is repre-
sented by the constant-

pressure line a, Fig. 35,

36. For n = 1, c = oo, and

the change of state is iso-

thermal (line 5). If n = 7c,

then c = 0, and the ex-

pansion is adiabatic (line

cT). For values of n lying
between 1 and 7c, the value

of c as given by (3) is

evidently negative ; that

is, for any curve lying
between the isothermal b

and adiabatic d, rise of temperature accompanies abstraction of

heat, and vice versa. This is shown by the curve c.

It will be observed that

in passing through the

region between curves a

and 5, n increases from

to 1 and c increases from cp

to oo ; then as n keeps on

increasing from 1 to k, c

changes sign at curve b by

passing through oo, and

increases from oo to 0.

As n increases from n = k

to n = + co, c increases

from c = to <?=<?; and

for n oo, the constant

volume case, c becomes cv .

T

O -S

FIG. 36.
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74. Determination of n. It is frequently desirable in experi-

mental investigation to fit a curve determined experimentally

_
aSj for example, the compression curve of the indicator

diagram of the air compressor by a theoretical curve having

the general equation pVn =c. To find the value of the

exponent n we assume two points on the curve and measure to

any convenient scale pv pv Vv and Vv Then since

wehave =*r g
. CO

log F!
-

log F2

EXAMPLE. In a test of an air compressor the following data were

determined from the indicator diagram :

At the beginning of compression, p = 14.5 Ib. per square inch.

^ = 2.50 cu. ft.

At the end of compression, jo2
= G8.7 Ib. per square inch.

Fa = 0.77 cu. ft.

Assuming that the compression follows the law p V
n

const., we have

for the value of the exponent

ff= log 68.7 -log 1*.5 = 132
log 2.56 - log 0.77

The work of compression is

0.77-15.5x2.56)
1 n

The increase of intrinsic energy is

" 14 -5 x 2.56) f b
k 1 0.4

and the heat absorbed is

-5680-7100, .

^12--^g
- = - l.od B. t. u.

The negative sign indicates that heat is given up by the air during com-
pression ;

this is always the case with a water-jacketed cylinder.
If the initial temperature of the air is 00 F., or 519.6 absolute, the final

temperature is



EXERCISES

1. A curve whose equation is pVn = C is passed through the points

Pi = 40, F! = 6 and
jt?2
= 16, F2

= 12.5. Find the value of n.

2. Air changes state according to the law pVn
C. Find the value of

n for which the decrease of energy is one half of the external work; also the

value of n for which the heat abstracted is one third of the increase of energy.
3. If 32,000 ft.-lb. are expended in compressing air according to the

law^F1 -28 = const., find the heat abstracted, and the change of energy.

4. In heating air at constant pressure 35 B. t. u. are absorbed. Find
the increase of energy and the external work.

5. A mass of air at a pressure of 60 Ib. per square inch absolute has a

volume of 12 cu. ft. The air expands to a volume of 20 cu. ft. Find the

external work and change of energy : (a) when the expansion is isothermal
;

(&) when the expansion is adiabatic
; (c) when the air expands at constant

pressure.

6. If the initial temperature of the air in Ex. 5 is 62 F., what is the

weight? Find the heat added and the change of entropy for each of the

three cases.

7. Find the specific heat of air when expanding according to the law

pvi.25 = const. If during the expansion the temperature falls from 90 F. to

10 F., what is the change of entropy?
8. Find the latent heat of expansion of air at atmospheric pressure and

at a temperature of 32 F.

9. The volume of a fire balloon is 120 cu. ft. The air inside has a

temperature of 280 F., and the temperature of the surrounding air is 70 F.

Find the weight required to prevent the balloon from ascending, including
the weight of the balloon itself.

10. A tank having a volume of 35 cu. ft. contains air compressed to

90 Ib. per square inch absolute. The temperature is 70 F. Some of the

air is permitted to escape, and the pressure in the tank is then found to be

63 Ib. per square inch and the temperature 67 F. What volume will be

occupied by the air removed from the tank at atmospheric pressure and at

70 F. V

11. Air in expanding isothermally at a temperature of 130 F. absorbs

35 B. t. u. Find the heat that must be absorbed by the same weight of air

at constant pressure to give the same change of entropy.

12. Air in the initial state has a volume of 8 cu. ft. at a pressure of

75 Ib. per square inch. In the final state the volume is 18 cu. ft. and the

pressure is 38 Ib. per square inch. Find: () the change of energy; (b) the

change in the heat content ; (c) the change of entropy.

13. Find the work required to compress 30 cu. ft. of free air to a pressure

of 65 Ib. per square inch, gauge according to the lawpw
1 -3 = const. Find the

heat n.lisf.ra.fltprl rlnvino- nnmnrfissinri.



recourse to general equations.

SUGGESTION. Let one pound of gas be heated through the temperature

range T
2
- T

l (a) at constant volume, (/;)
at constant pressure. Find an

expression for the excess of heat required for the second case and then

make use of the energy equation.

15. Suppose the specific heat of a gas to be given by the linear relation

cv = a + bt. Deduce relations between p, v, and T for an adiabatic change.

SUGGESTION. Use the general equation dq = c vdT + Ajxlv and the char-

acteristic equation pv = BT.
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CHAPTER VIII

GASEOUS MIXTURES AND COMPOUNDS. COMBUSTION

75. Preliminary Statement. In the preceding chapter we
discussed the properties of simple gases with the implied

assumption that chemical action was excluded. For many
technical applications a knowledge of such properties is suffi-

cient for the consideration of all questions that arise. On the

other hand, investigations of the greatest importance, those

relating to internal combustion motor, have to deal with

gaseous substances that enter into chemical combination and

(after combustion) with mixtures of inert gases. In the

present chapter, therefore, we shall consider some of the pro-

perties of gaseous compounds as dependent on chemical com-

position, and also the properties of mixtures of gases.

76. Atomic and Molecular Weights. Let Uv E^, etc. denote

different chemical elements and ar a
2 ,

etc. their corresponding
atomic weights. Then if n^ w

2 , etc. denote the number of atoms

of JEr jKj, etc. entering into a molecule of a given combination,

the molecular weight of the compound is

m = n^ + n
z
a
z + etc. =

"^na. (1)

For the elements that enter into subsequent discussions the

atomic weights (referred to the value 16 for oxygen) are as

follows :

APPROXIMATE

EXACT VALUE INTEGRAL VALUE

Hydrogen 1.008 1

Oxygen 16.000 16

Nitrogen . 14.040 14

Carbon 12.000 12

Sulphur 32.060 32



Tlie approximate uj.tegj.tn
vo.uuo ,^ **** *j ~------

practical purposes, in view of unavoidable errors in experi-

mental results.

Using these values, we have as the molecular weights of cer-

tain important substances the following :

Water H
2

m=2x 1 + 1x16 = 18

Carbon monoxide CO 1 x 12 + 1 x 16 = 28

Carbon dioxide C02
1 x 12 + 2 x 16 = 44

Ammonia NH
8

1 x 14 + 3 x 1 = 17

Methane CH4
Ixl2 + 4x 1 = 16

Nitrogen N
2

2x14 = 28

Hydrogen H
2

2x1 = 2

The composition by weight of a compound is readily deter-

mined from the value of , a, and m. Thus in a unit weight

(pound) of compound there is

Ml Ib. of element _EL
m

lb. of element Ev etc.
m

For example, C02 is composed by weight of
-|

carbon anct

If oxygen, NH3
is composed by weight of \$ nitrogen and -^

hydrogen.

77. Relations between Gas Constants. If in the character-

istic equation pv = BT, which holds approximately for any

gaseous substance (mixture or compound), we replace v by -

we have ^

Here 7 denotes the weight of unit volume of the gas. From
this relation it is seen that for a chosen standard pressure and

temperature, for example, atmospheric pressure and 0C., the

product By is the same for all gases. But since the specific

weight 7 of a gas is directly proportional to the molecular

weight m, it follows that the product Bm is likewise the same



tor all gases. Denoting this product Bm by JK, we have for

the characteristic equation of any gas

pv = ~T. (2)f m ^ '

From (1) we obtain the relation

&; (3)

hence the numerical value of R can be found when the values

of m and 7 are accurately known for any one gas. From Mor-

ley's accurate experiments, we have for oxygen 7 = 0.089222 Ib.

per cubic foot at atmospheric pressure and 32 F.
;
and for

oxygen m = 32. Inserting these numerical values in (3), we
obtain

2116.3x32
0.089222x491.6

The constant R is called the universal gas constant. From it

ffche characteristic constant B of any gas can be determined at

pnce from the molecular weight. Thus for carbonic acid we

Ijiave

=1^ = 35.09.
j*i 4:4

^ From the general formula

[ CV -C. = AB (4)

for the difference between the specific heats of a gas, we have

AR 1544 1 1.9855 ,^/ __i ft ^^_^^. r - _,J_ -.- I > I

p v
~~

m
~
777.64m m

' W
This relation gives a ready method of calculating one specific

heat from the other when the molecular weight m is known.

Thus for C0
2 , Cp

- c,= i^^ = 0.0451, and if e,
= 0.2020, we

have cv = 0.2020 - 0.0451 = 0.1569.

It is convenient to express the specific weight 7 and the

specific volume v of a gas in terms of the molecular weight m.

These constants are referred to standard conditions, namely,

atmospheric pressure and a temperature of 32 F. From (3)

we have 7 = JLw, (6)



whence inserting tne numerical viuuea, jj
**

!F=491 6

7 = 0.002788 w.

For the normal specific volume, we have

v==
l = OTl.

7 p m

358.65
or v =

in

(7)

(8)

(9)

From the preceding relations, the following values are readily

found for the constants of certain gases.

78. Mixtures of Gases. Dalton's Law. A mixture of several

gases that have no chemical action on each other obeys very

closely the following law first stated by Dalton :

The pressiire of the gaseous mixture upon the walls of the con-

taining vessel is the sum of the pressures that the constituent gases

would exert if each occupied the vessel separately.

Like Boyle's law, Dalton's law is obeyed strictly by mix-

tures of ideal perfect gases only. Mixtures of actual gases show

deviations from the law, these being greater with gases most

easily liquefied. For the purpose of technical thermodynamics,
however, it is permissible to assume the validity of Dalton's

law even in the case of a mixture of vapors.
Let F denote the volume of a given mixture, Mv Mz , M& . .

the weights of the constituent gases, and J9
2 ,

J5
3 ,

the
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constants for those constituents ; then the partial pressures of

the constituents, that is, the pressures they would exert sepa-

rately if occupying the volume V-, are :

B8m l i
IY\ __& " m _ " " /I 1

Pi y iPi
'

~Y '"3 Y '
'"

^ -1

According to Dalton's law the pressure p of the mixture is

P=Pi+Pi+ PB+ -' = ~
r(.M1B1+M2 2+M3

S3+ -). (2)

Furthermore, if Mis the weight of the mixture,

(3)

Let us now introduce a magnitude Bm defined by the equation

MBm =M& + M,BZ + Jf
8
J5

8+; (4)

then (2) takes the form

pir=MBm F. (5)

The constant Bm may be regarded as the characteristic con-

stant of the mixture. It is obtained from (4), which may be

written in the more convenient form

5m= (6)

The partial pressures may readily be expressed in terms of

the pressure of the mixture. Thus combining (1) and (5),

we obtain

, etc. (7)' ^
EXAMPLE. A fuel gas has the composition by weight given below. The

value of the constant Bm for this gas is found as indicated by the following

arrangement :

CONSTITUENTS WEIGHT
r,nn ....... 0.04-



Since M= 1 and 2MB = 103.24, we have

Bm = 103.24.

The apparent molecular weight of the mixture is

1544 1/( nrm=
ios^r 1U)G>

and the weight per cubic foot under standard conditions is, therefore,

y = 0.002788 x 14.90 = 0.0417 Ib.

79. Volume Relations. Let Vv F
2 , F3 , ,

denote the vol-

ume that would be occupied at pressure p and temperature T

by several gaseous constituents; then if B^ B^ J9
3 , -, denote

the characteristic constants of these gases, we have

pV,= M&T, pV, =MZ
B

Z T, pVs
=M

Z
B

Z T, .... (1)

If now the gases be mixed, keeping the same pressure and

temperature, the mixture will occupy the volume

F-F
1 +Fa+F8 +-, (2)

and its weight will be necessarily

M=Mi + Mt +M% +.~ (3)

Taking Bm as the characteristic constant of the mixture, we
have

pV=MBm T. (4)

Comparing (1) and (4), we obtain the relations

V
1_M1B, 3_J^ _
V~ MBj V~MBm

'
1

" ^ }

It will be seen that the volume ratios given by (5) are equal
to the pressure ratios given by (7) of Art. 78.

If 7 denotes the weight of a unit volume (1 cu. ft.) of gas,

then

1 M xnx
7 = - =y (6)

For the several constituents of a mixture, we have, therefore,

M
l
=

7lVv M, = 72F2 ,
M

z
=

73F3 ,
.

.., (7)

and for the mixture



Similarly, we have for the specific volume of the mixture

Since 7 = 0.002788 m = km (see Art. 77), we have from (7)

and M M + M,+ -.

m j;
- m

i I ., W9 ,

Therefore, -^ = =-*-_*= ,
_1 = 2_A

(10)
J(K? STO^ jf Sm^JY

If further we denote by wro the quotient ^, we have from (8)
/c

imm =
-y2.m

i
Vi

. (11)

The constant wm we maj7
"

regard as the apparent molecular

weight of the mixture, and from it we may determine the con-

stants Bm, cp <?, 7, and v of the mixture.

Equations (10) and (11) are useful in the investigation of a

mixture when the composition by volume is given. The follow-

ing example shows the method of procedure.

EXAMPLE. A producer gas has the composition by volume given below.

.Required the composition by weight and the constants of the mixture.

1.000 26.688 1.000

According to (10) the last column gives the composition by weight. The

constant mm is 26.688; hence we have

= 57.85. v = 0.002788 x 26.688 = 0.07441.
'

26.688

1.9855pv 2688

80. Combustion : Fuels. The elements that chiefly combine

with oxygen to produce reactions characterized by the evolution

rvf Tioof QVQ T-nrrJy^rrcm onrl n.a.rlnrm . rinmnrmnrls that are made



up largely ot these elements are lueis; ror example, metnane

CH
4,

benzol C
6
H

6 , alcohol C
2
H

6
0. The product of complete

combustion of hydrogen is H
20, water ; that of complete com-

bustion of carbon is C02 ,
carbon dioxide. Sulphur is a possible

constituent of fuels, and the product of combustion is SO
2 , sul-

phur dioxide.

Chemical reactions are, in general, characterized by the evo-

lution or absorption of heat. The union of a combustible with

oxygen is accompanied by the evolution of a considerable

quantity of heat, and the heat evolved by the combustion of a

unit weight of the combustible is called the heating value of

the combustible. The heating value of hydrogen alone or car-

bon alone must be determined by experiment, but the heating
value of a compound of C and H may be calculated, at least

approximately.

Hydrogen and compounds containing hydrogen have two

heating values, called respectively the higher and the lower.

This arises from the fact that the product H2O may be either

water or steam. If the temperature after combustion is above

212, the product exists as vapor, and the heat necessary to

keep it in the vapor form is not set free
; hence, we have the

lower heating value. If, however, the vapor condenses, the

heat of vaporization is recovered, and we have the higher heating
value.

The heating values of various fuels are given in the follow-

ing table.

The heating value of a fuel mixture is determined from the

heating values of the separate constituents. Denoting bv M,.
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My ,
the weights of the constituents, by Hv jET

2 , H^ , the

corresponding heating values per pound, and by Hm the heat-

ing value of the mixture, we have

whence Hm = . (1)

By a similar procedure the heating value per cubic foot may
be obtained when the composition by volume is given.

EXAMPLE. Required the lower heating value of the producer gas de-

scribed in the example of Art. 79.

For the heating value per pound we have

Jf IT MIT
Ha ........ 0.006 52230 313.38

CO ....... 0.2308 4380 1010.9

CH4 ....... 0.0144 21385 307.94

2MH = 1632.2

Since M = 1, we have // = 5MH = 1632.2 B. t. u. per Ib.

The heating value per cubic foot (at 32 F. and atmospheric pressure) is

evidently the product

IImj = 1632.2 x 0.07441 = 121.5 B. t. u.

Or from the composition, we have

121.7 B. t. u. per cu. ft.

The difference in the two results is due to approximations in the calculation,

and is of no importance.

81. Air required for Combustion and Products of Combustion.

The oxygen required for the complete combustion of a given

fuel is determined from the equation of the reaction. For

example, the combustion of methane, CH
4 , is given by the

equation
CH

4 + 2
2
= C02 + 2 H

2 ;
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and two molecules of H
2
O. Since by Avogaclro's law the

volumes are proportional to the numbers of molecules enter-

ing into the equation, we may also read the preceding chemical

equation as follows : two volumes of oxygen combine with one

volume of CH4, producing one volume of C02 and two volumes

of H
20.

Taking the molecular weights of the four gases into con-

sideration, we may write the equation

16 + 2x32 = 44 + 2x18.

From this it appears that one pound of CH4 requires for com-

plete combustion f f = 4 Ib. of oxygen and the products are

if = 2.75 Ib. of CO2
and ff = 2.25 Ib. of H

2
O.

Since oxygen is 23 per cent of air by weight, the weight of

air required for the complete combustion of one pound of CJT
4

4.

is = IT. 4 Ib. The volume of air required for the burning

2
of one cubic foot of CBL is ^ = 9.52 cu. ft.

4
0.21

We may generalize the process illustrated by the preceding

example as follows :

Let the gaseous fuel have the composition C
ni
H

Ba
On,,

and let

!, 2 , 3 denote the atomic weights of C, H, and 0, respectively.
Then the molecular weight of the fuel in question is

m = a
1
?i

1 + a
z
nz + a

3
n
3

.

The equation of the reaction may be written

where $, ?/, and z indicate the number of molecules of the

respective substances. Comparing the two members of the

equation, we find

whfinp.fi
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for alcohol C
2
H

6O, x = 2 + | = 3, y = 2, and g = 3, showing
that for the combustion of one cubic foot of alcohol vapor,
3 cu. ft. of oxygen are required, and the resulting products are

2 cu. ft. of CO2 and 3 cu. ft. of H
20.

To get the relations between the weights of the substances

under consideration we must introduce the molecular weights
in the reaction equation. Thus we obtain

m + 2 a
B
x = y(ai + 2

3) + z (2 a
2 + a

3),

from which follow the ratios :

, weight of oxvgen 2 ax ,
, -, Nx -- -1+111 = = -3(2 n1 +l~nz-nB) ;

weight of fuel m m

i weight of OCX, yCa-, + 2 a^) n, , . .

y = .^ a = &^LZ: az _ _i
(a + 2 a ) ;

weight of fuel m m

g
; _ weight of H2O _ g(2 a2 + 8) _ M

2 XQ g + a ).

weight of fuel m 2m 2 3

If we make use of the integral values of the atomic weights,

namely, ^= 12, a
2
= 1, a

s
= 16, we have for the complete com-

bustion of one pound of the combustible :

w /*

x' = oxygen required = (2 n^ + -|-w2
ns) lb. ;

y' = C02 produced = 44 ^1 Ib. ;

wi

' = HoO produced = 9^ Ib.
2 ^ m

Taking alcohol, C
2
H

60, for example, we have

!
= 2, Wjj

= 6, TC
S
= 1, w = 2 x 12 + 6 x 1 + 16 = 46, whence

x' = -||(2 x 2 + i- x 6 - 1) = 2.08T;

,
44 x 2 1 Q1 o .=-- =1.913;

= 1.174.
46

The weight of air required per pound of alcohol is



and the weight of nitrogen appearing among the products of

combustion is, therefore, 9.075 - 2.087 = 6.988 Ib.

If a gaseous fuel is a mixture of several combustible con-

stituents, the values of x\ y
!

,
and z' may be found for the indi-

vidual constituents separately. Then if M-^ MvMz , -, are the

weights of the constituents respectively, we have

, y ,___.
at' __*/__,_ fy' -

' y ~ '
__M '

~ M ' M
EXAMPLE. For the producer gas heretofore investigated, we have the

following values :

One pound of the gas requires 0.2374 Ib. of oxygen for complete combustion.
The weight of air required is, therefore, 0.2374 -f- 0.23 = 1.032 Ib., and this

air brings with it 1.032 - 0.2374 = 0.7940 Ib. of nitrogen. We have then the

following balance :

CONSTITUENTS PRODUCTS

Fuel gas 1.00 Ib. C0
2 0.511 Ib.

Air 1.0^2 H,Q 0.08(54

2.032 Ib. No 0.64 + 0.7040 = l.ljWn.
(W2 Ib.

Taking the composition by volume, the following results are found :

Since 0.198 cu. ft. of oxygen is required per cubic foot of gas, the volume of
air required is 0.198 -*- 0.21 = 0.943 cu. ft., and the volume of nitrogen corre-

sponding is 0.943 - 0.198 = 0.745 cu. ft., which is added to the O.(il cu. ft. in
the fuel gas. The volume of gas and air before combustion is 1 + 0.943 =
1.943 cu. ft., and the volume of the products is 0.31 + 0.128 + 0.01 + 0.745



82. Specific Heat of Gaseous Products. In deducing the

special equations for gases we assumed that the specific heat

of any gas remains constant at all pressures and temperatures.
In many technical applications this assumption is sufficiently

near the truth and is justified by the simplicity of the analysis

based upon it ; but when a very wide range of temperature is

encountered, as in the case of the internal combustion motor, the

assumption of constant specific heat is no longer permissible.

The gaseous products that come under consideration may be

separated into two classes. (1) The simple or diatomic gases,

as nitrogen, oxygen, air, etc.
; (2) the compounds, like carbon

dioxide (CO 2) and steam (H20), which may be regarded as

superheated vapors rather than as gases. For the products in

the first group, the law pv = BT holds quite exactly, and, there-

fore (see Art. 57), the specific heat must be independent of the

pressure, but may vary with the temperature. The substances

in the second group, which are comparatively near the liquid

state, do not follow the gas law closely, and for these the

specific heat may vary with the pressure as well as with the

temperature. The character of the variation of the specific heat

of steam is shown in Fig. 71, Art. 133. At the lower tempera-

tures the specific heat increases with the pressure, but as the tem-

perature rises the influence of the pressure becomes negligible

and the specific heat rises with the temperature. It is probable

that the specific heat of CO
2
varies in somewhat the same manner.

Experiments on the specific heats of various gases show that

in general the specific heat rises with the temperature, and that

the law governing the variation is expressed sufficiently well

by the simple linear equation

G = a -f- bt.

The formulas, as usually stated, give molecular specific heats,

the molecular specific heat being numerically equal to the

thermal capacity of a weight of the substance expressed by the

molecular weight. Thus, since the molecular weight of carbon

monoxide (CO) is 28, the molecular specific heat of CO is

numerically equal to the thermal capacity of 28 pounds of CO.

We mav denote molecular specific heat bv the product me. It



gases are quite different, the molecular specific heats are sub-

stantially identical.

The results of Langen's experiments are given by the follow-

ing formulas, in which * denotes temperature in degrees C.

For all simple gases

me,** 4. 8 + 0.0012*. (1)

For carbon dioxide

we, = 6. 7 + 0.0052*. (2)

For water vapor
we, = 5.9 + 0.0043*. (3)

Dividing by the appropriate value of the molecular weight m,

the heat capacity of a gas per unit weight is readily found.

Thus for oxygen m = 32, and from (1) we have

c,= 0.15 + 0.0000375*;

for C02,
m = 44, and from (2) we obtain

cw 0.1523 + 0.0001182*.

Formulas (1), (2), and (3) give molecular specific heats at

constant volume. From the relation m(cp <?)= 1. 1)855 (see

Art. 77), we have approximately mcp = mcv + 2. Therefore,

from the preceding equations we obtain corresponding equa-
tions for Op, namely :

mcp = 6.8 + 0.0012 *; (4)

; (5)

CO
For temperatures F. the preceding formulas become respec-

tively:

1. For simple gases

<? = - (4. 77 + 0.000667*)

= -(4.48 + 0.00066720m

< = 1(6.75 + 0.0006670m '

= 1(6.46 + 0.000667 T\
m J



2. 1< or carbon dioxide

c,= 0.15 + 0.000066*
= 0.12 + 0.000066 I7

.

cp
= 0.195 + 0.000066

= 0.165 + 0.000066.^1' ^ ^

3. For superheated water vapor

cv = 0.324 + 0.000133S

= 0.263 + 0.000133 T

cp
= 0.435 + 0.000133S

= 0.374 + 0.000133^]

83. Specific Heat of a Gaseous Mixture. Let M^ Mz ,

respectively, denote the weights of the constituents of a mix-

ture and e
Vi,

<?
V2, , the corresponding specific heats. It is

assumed that for a given temperature rise each constituent

requires the same quantity of heat when mixed with other

constituents as it would if separated from them. Hence, the

heat Q required for a temperature change Tz T^ is

But we have also

where M=M
1 -{-Mz + ,

and cv denotes the specific heat of

the mixture. Combining these expressions, we obtain

__or cv

TM
Likewise, cp

= -.,

EXAMPLE. Find the specific heat cv of a mixture of 1 Ib. of the pro-

ducer gas described in the example of Art. 79 and 1.25 Ib. of air, which, is

about 20 per cent in excess of the air required for complete combustion.

Find also the specific heat cv of the products of combustion.

Of the 1.25 Ib. of air furnished 0.2875 Ib. is oxygen and 0.9625 Ib. is
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For an adiabatic change dq = ; hence from (T), we have

cvdT= Apdv,

or
v

From (4) we obtain upon integration

. (5)M z

From the characteristic equation pv=BT, we have 2 =-^2,
^i

therefore (5) becomes

or alog. + J(2',-y1)= (^5 + a)log.-. (6)
jrl "2

Finally, if in (5) we substitute for -1 its equivalent ^-
2

,
we

, .

v
z

obtain

. a .
-

.

Pl
T

whence

For the external work of adiabatic expansion, we have

TF=.Z7 _ TJ

. (8)

Equations (5), (6), and (7) are readily applied when the

initial and final temperatures are given. When, however,
the final temperature is required, the equation in T is tran-

scendental and its solution requires a process of successive

approximations. The illustrative example of the following

article shows the method of procedure.

85. Temperature of Combustion. A close analysis of' the pro--

cess of burning a fuel gas under given conditions involves com-

plicated equations, especially when the specific heat is taken as

variable. The temperature and pressure at the end of the pro-



cess are the results usually uesireu,

least approximately, by a simple method.

Let ^ denote the temperature of the gaseous mixture at the

beginning of combustion and Tz
the desired final temperature ;

H the lower heating value of the fuel per pound, and M the

combined weight of one pound of fuel and of the air furnished

for combustion (M is evidently also the weight of the products

of combustion). It is assumed that the combustion is complete,

and that the heat His all expended in raising the temperature

of the products from ^ to Tv As a matter of fact, the com-

position of the mixture during the combustion process is con-

tinually changing, but as the specific heat changes but little, it

is considered permissible to base the calculation on the final

products alone. We have then

H=M(
T

\a + bT)dT, (1)
Tl

where a + bT is the expression for the variable specific heat of

the products. From (1) we obtain upon integration

from which T
z may be calculated.

EXAMPLE. The mixture of producer gas and air in the example of

Art. 83 is compressed adiabatically from an initial pressure of 14.7 Ib. pel-

square inch to a pressure of 150 Ib. per square inch absolute. The initial

temperature is 530 absolute. The mixture is then burned at constant

volume and the products of combustion expand adiabatically to the initial

volume. Required the temperature and pressure after compression, after

combustion, and after expansion. Also the work of compression, and the

work of expansion.

The characteristic constants of the fuel mixture and of the mixture of

the products, respectively, are first required. Tor the fuel mixture we have

M i) j//;

H2 ....... 0.006 765.86 4.5!);-)! (5

CO ...... 0.2308 55.142 12.72077

CH
4
...... 0.0144 90.31-1 1.3861)2

C02 ...... 0.1088 85.00 3.81770

N2 ....... 1.6025 54.985 88.11340

2 ....... 0.2875 48.249 13.8715!)

2.25 124,512

B = 124.512 -s. 2.25 = 55.34
;
AB = 0.07116.



.r or me mixture 01 products, we ODtain JJ 51.50; AB 0.06621.

For the fuel mixture, the expression for the specific heat is

cv = 0.1618 + 0.00002643 T.

We have, therefore, from (7), Art. 84

0.23296 loge^= 0.07116 log^ - 0.00002643 (Tz
-

Ti).
i

|
JLur. I

To solve this equation for T2 let us assume as a first approximation
T2

-
I\ = 500. Then

l
T* = 0.16529 -O.ni3215 =0h
2\ 0.2329(3

and -^=1.921.

Therefore, T2 = 1.921 x 530 = 1018.1,

and r2
- 7

7

1
= 488.1.

As a second approximation, we assume Tz T
l
= 490. We obtain

T, 0.16529-0.012951 = Ot6539

^^ 0.23296

^ = 1.9231, Tz = 1.9231 x 530 = 1019.2,

TI

T2
- T

v
= 489.2.

As the assumed value of T2
-

T\ is so nearly attained, we may take the

value Tz = 1020 as sufficiently exact.

The ratio of initial and final volumes is now readily found from the

relation

Thus, V
l p2 Ti 150 530

For the external work required to compress one pound of the mixture, we

have

W= J
.

1

(0.1618 + 0.00002643 T)dT - 69460 ft.-lb.

If Ts denotes the temperature after combustion, we have from (2), taking

cv = 0.1544 + 0.00003753 T for the products of combustion,

8
.- 1020") =

whence Tz = 3949.

To find the pressure j> 3 ,
we must take account of the change of composi-

tion during combustion. For the initial state, p2V = 55.34 T2 ,
at the end of

combustion ps V = 51.50 T3 . Hence, we have
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For the adiabatic expansion, the ratio of volumes is the same as for the

adiabatic compression. That is, r =0.1887.

From (5) Art. 84, we have

which may be written in the form

Inserting the known values AB = 0.06021, a = 0.1544, 6 = 0.00003753,

Ts = 3949,^ = 0.1887, we get

log 7*4 = 3.7028 - 0.000105(5 Tv

This equation may be .solved

graphically, as shown in Fig. 37. As
the value of

!T, evidently lies between

2500 and 3000 we plot the curves

3.45

3.44

8.42

3.41

25X)

3.40 /
2600 2700

FIG. 37.

2800

?/
= ^g T,

and y = 3.7028 - 0.0001056 T^

between these limits. The intersec-

tion gives the desired value,

T = 2049.

The external work of expansion is

/ row

W=J\ (0.1544+ 0.00003753 T)dTJwa ^ '

=287,940 ft.-lb.

EXERCISES

The following are the compositions by volume of two gases, one a rich

natural gas, the other a blast furnace gas :

NATURAL GAS (Indiana)

H2 0.02

CO 0.007

CH, 0.931

BLAST FURNAOM GAS

II
Z

0.05

CO 0.27

CH 0.015



Work the following examples for each of these gases :

1. Find the composition, by weight.

2. Find the heating value :

(a) per cubic foot under standard conditions;

(6) per pound.

3. Calculate the constants Bm , y, v, and cp cv .

4. Find the volume of air required for the combustion of one cubic

foot.

5. Find the weight of air required for the combustion of one pound.

6. Find the products of combustion, by weight.

7. Find the specific heat c,, of a mixture of the gas with air, the weight
of air being 15 per cent in excess of that required for complete combustion.

8. Find cv for the products of combustion, assuming that 15 per cent

excess of air is used.

9. Find the constants Bm, y, and v of the mixture of Ex. 7; also of the

products of combustion.

10. The mixtiire of Ex. 7 is compressed adiabatically from a pressure of

14.7 Ib. per square inch to a pressure of 120 Ib. per square inch in the

case of the natural gas and to a pi-essure of 175 Ib. per square inch in the

case of the blast furnace gas. The initial temperature in each case is 80 F.

Find the temperature at the end of compression in each case.

11. Find the work of adiabatic compression.

12. Find the ratio of initial to final volume.

13. If at the end of adiabatic compression the mixture is ignited and

burns at constant volume, find the temperature at the end of the process,

assuming that no heat is lost by radiation.

14. After combustion the products expand adiabatically to the initial

volume. Calculate the final temperatures.

15. Find the work of adiabatic expansion.

16. Assume that the adiabatic compression follows the law p 7" = const.

Find the values of n. Find also the values of n for the adiabatic expansion.
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CHAPTER IX

TECHNICAL APPLICATIONS. GASEOUS MEDIA

86. Cycle Processes. In any heat motor, heat is conveyed
from the source of supply to the motor by some medium, which

thus simply acts as a vehicle or carrier. In practically all

cases the medium is in the liquid or gaseous state, though a

motor with a solid medium is easily conceivable. The perform-
ance of work is brought about by a change in the specific

volume of the medium due to the heat received from the source.

By a proper arrangement of working cylinder and movable pis-

ton this change of volume is utilized in overcoming external

resistances. (In the steam turbine another principle is em-

ployed.) The medium must pass through a series of changes
of state and return eventually to its initial state, the series of

changes thus forming a closed cycle. To use a crude illustra-

tion, the medium taking its load of heat from the source at high

temperature, delivering that heat to the working cylinder and

to the cold body (condenser) and returning to the source for

another supply may be compared with an elevator taking

freight from an upper story to a lower level and returning

empty for another load.

Where the medium is expensive it is used over and over, and

thus passes through a true closed cycle. Examples are seen in

the ammonia refrigerating machine and in the engines and

boilers of ocean steamers, in which fresh water must be used.

In such cases we may speak of the motor as a closed motor.

If the medium, on the other hand, is inexpensive or available in

large quantities, as air or water, open motors are quite generally

used. In these the working fluid is discharged into the atmos-

phere and a fresh supply is taken from the source of supply.

Even in this case the medium mav pass through a closed cycle,



but all the changes of state are not completed in the organs of

the motor.

In this chapter we shall take up the analysis of several cycles

that are of importance in the technical applications of gaseous

media. In general, we shall assume ideal conditions, which

cannot be attained in actual heat motors. However, the con-

clusions deduced from the analysis of such ideal cycles are

usually valid for the modified actual cycles ; furthermore, the

ideal cycle furnishes a standard by which to measure the effi-

ciency of the actual cycle.

87. The Carnot Cycle. Although the Carnot cycle is of no

practical importance, it possesses the greatest interest from a

theoretical point of view. Hence an analysis of it is included.

Referring to Fig. 18, the heat absorbed from the source dur-

ing the isothermal expansion AB is given by the equation

a loge , (1)
'a

and the heat rejected to the refrigerator is

77"

, = Av V loo- -LA (v\Vcd -"-jfc ' c lube rr " \^}
' c

The heat transformed into work is, therefore,

AW= Qa(i + Qcd
=
A(PUVa log fi -p

-
p.Vc log. IT). (3)

\ ' a I <;/

Since in the state A the temperature is Tv we have

para
= MBTv (4)

and likewise pcVc
= MBT

2
.

(."> )

Furthermore, for the adiabatic BO we have the relation

and for the adiabatic DA the relation

~~

T'

K K
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Introducing in (3) the results given by (4), (5), and (8), we
obtain

whence

AW
Q tab

(9)

(10)

f n

This expression for the efficiency is identical with that deduced

from the Kelvin absolute scale of temperature. We have in

Eq. (10) a proof, therefore, that the Kelvin absolute scale coin-

cides with the perfect gas scale.

E

D

r,

88. Conditions of Maximum Efficiency. On the SW-plane
the Carnot cycle is the simple

rectangle ABCD (Fig. 38), hav-

ing the isothermals AB and CD
at the temperatures T-^

and T
2 of

the source and refrigerator, respec-

tively. This geometrical rep-

resentation affords an intuitive

insight into the property of maxi-

mum efficiency. Between the

same isothermals let us assume

some other form of cycle, as the

trapezoidal cycle EB CD, For the

rectangular cycle the efficiency is

heat transformed into work_ area ABCD
heat supplied area A

1
ABB

1

For the trapezoidal cycle, likewise, the efficiency is

area DEBC

A, #1

FIG. 38.

But
DEBC

area A
l
DEBB

l

ABCD-AED
~~

A^ABB^ - AED
ABCD



that any cycle lying wholly within the rectangular cyle ABCD
has a smaller efficiency than the rectangular cycle.

With a given source and refrigerator, the conditions of maxi-

mum efficiency, which may be approached but never actually

attained, are the following :

1. The medium must receive heat from the source at the

temperature of the source. No heat must be received at lower

temperature.
2. The medium must reject heat to the refrigerator at the

temperature of the refrigerator.

3. Provided the medium, source, and refrigerator are the

only bodies involved in the transfer of heat, it follows from 1

and 2 that the intermediate processes must be adiabatic, as any
departure from the adiabatic would mean passage of heat to

or from some body at a tem-

perature different from either

the source or refrigerator.

89 . Isoadiabatic Cycles . Let

a cycle be formed with the iso-

thermals AB and CD as in the

Carnot cycle, but with the

adiabatics replaced by similar

curves BC and AD (Fig. 39) ;

that is, curve BC is simply

-^r ^ g s curve DA shifted horizontally

FIG. 39. a distance AB. Then AB =
DC, as in the Carnot cycle. If

the cycle is traversed in the clockwise sense, the heat entering
the medium is

Qda +Qab = area D
1DAA1 + area

while the heat rejected by the medium is

Qbc + Qcd = area B^BCCl + area
1
CDDr

The heat transformed into work is the same as in the Carnot
cycle, for the area of the figure ABCD is equal to that of the
r>. j. j. i ^T . ,. ., _

"



D
1
DAA

1
is taken from the source of heat, the efficiency of the

cycle is

_ heat transformed __ area ABQD
heat taken from source

~~

area D
l
DABB

l

'

and this is manifestly smaller than the efficiency of the Carnot

cycle. Let it be observed, however, that

V&c Qdal

that is, area B
l
BOO

l
= area D^AA^

If the heat rejected by the medium during the process BO
could be stored instead of thrown away, then this heat might
be used again during the process DA, thus saving the source

the heat Qda . In this case we should have the following series

of steps :

1. Medium absorbs heat Q^ from source.

2. Medium rejects heat Qbe , which is stored.

3. Medium rejects heat Qcd to refrigerator.
4. Medium absorbs the heat Qda (= QbJ) stored during

step 2.

Since in this case the source furnishes only the heat Q&, the

efficiency is

area ABCD
77

area

which is the same as that of the Carnot cycle. A cycle in

which the adiabatics of the Carnot cycle are replaced by similar

curves, along which the interchanges of heat are balanced, is

called an isoadiabatic cycle. Any such cycle has the same ideal

efficiency as the Carnot cycle.

90. Classification of Air Engines. Heat motors that employ
air or some other practically perfect gas as a working fluid may
be divided into two chief classes : (1) Motors in which the fur-

nace is exterior to the working cylinder, so that the medium is

heated by conduction through metal walls. (2) Motors in which

the medium is heated directly in the working cylinder by the

combustion of some gaseous or liquid fuel. These are called

internal combustion motors.

We mav make a, second division based on the manner in



which the working fluid is used. In the closed-cycle type of

motor, the same mass of air is used over and over again, fresh

air being supplied merely to replace leakage losses. In the

open-cycle type a fresh charge of air is drawn in at each stroke,

and after passing through its cycle is discharged again into the

atmosphere.
Air motors of the first class, namely, those with the furnace

exterior to the working cylinder, are usually designated as hot-

air engines. Motors of this class are no longer constructed

except in small sizes for pumping and domestic purposes ; they

are, however, of historical interest, and besides they furnish in-

structive illustrations of the application of the regenerative

principle. We shall, therefore, describe briefly the two leading

types of hot-air engines and give an analysis of the cycles.

91. Stirling's Engine. The engine designed by Robert

Stirling in 1816, and bearing his name, is of the external fur-

nace closed-cycle type.
The general features of

the engine are shown in

IP Fig. 4-0. A displacer

piston Q works in a cyl-

inder Q. Between and

an outer cylinder D is

placed a regenerator RR,
made of thin metal plates

or wire gauze. At the

upper end of the cylinder
is a refrigerator M, com-

posed of a pipe coil through
which cold water is made
to circulate. At the lower

FIG. 40. end is the lire F. The

piston Q is filled with some

non-conducting material. The working cylinder A has free

communication with the displacer cylinder. In the actual



piston P to be at the beginning of its upward stroke and the

displacer piston at the bottom of its cylinder. The air is,

therefore, all in the upper part of the cylinder in contact with

the refrigerator, and its state may be represented by the point
D (Fig. 39). Now let the displacer piston be moved suddenly to

the upper end of its cylinder. The air is forced through JK

and the perforations in O into the lower end of the cylinder.

The air remains at constant volume, since the piston P has not

yet moved, and has received heat in passing through R. Hence

the change of state is a heating at constant volume represented

by DA in the diagram. The air now receives heat from the

furnace and expands at constant temperature during the up-

ward working stroke of piston P, This process is represented

by AB. When the piston P reaches the upper end of its

stroke, the displacer piston Q is suddenly moved to the bottom

of the cylinder, thus forcing the air back through R into the

refrigerator M. This again is a constant volume change and is

represented by BO. Lastly, during the return stroke the air is

compressed isothermally, as represented by (7Z>, and heat is re-

jected to the refrigerator.

The ideal cycle is seen to be an isoadiabatic cycle with

the adiabatics of the Carnot cycle replaced by constant-volume

curves. The cycle given by the actual engine deviates consid-

erably from the ideal cycle on account of the large clearance

necessary between the two cylinders.

A double acting Stirling engine of 50 i. h. p. was used for

some years at the Dundee foundry, but was eventually aban-

d.oned because of the failure of the regenerators. This

engine had an efficiency of 0.3 and consumed 1.7 Ib. of coal

per i. h. p.

92. Ericsson's Air Engine. The Swedish engineer Ericsson

made several attempts to design hot-air engines of considerable

power. His large engines proved failures, however, because of

their enormous bulk and the rapid deterioration of the regener-

ators. The engines for" the 2200-ton vessel Ericsson had four

single-acting working cylinders 14 ft. in diameter and 6 ft.



stroke and ran at 9 r.p.m. They developed 300 li.p. with a

fuel consumption of 1.87 Ib. of coal per h.p.-hour.

The working of the Ericsson engine was substantially as fol-

lows : A pump compressed air at atmospheric temperature into

a receiver, whence it passed through the regenerator into a

working cylinder. The pump was water-jacketed so as to act

as a refrigerator. During the passage through the regenerator
the air was heated at constant pressure. After the air was cut

off in the working cylinder, it expanded isotherimilly, the nec-

essary heat being furnished

by a furnace external to the

working cylinder. On the

return stroke the air was dis-

charged through the regener-
ator at constant pressure.

The p /^diagram is shown
in Fig. 41. The pump cycle
is DCJ?E, the motor cycle

JEAJBF. The operations are

as follows:

(1) Compression in pump from to D, heat abstracted by
pump water-jacket. (2) Discharge from pump to regenerator,

represented by DE. (3) Suction of air into working cylin-
der represented by EA. (4) Isothermal expansion from A to

J9, during which air receives heat from furnace. (5) Dis-

charge of air, represented by BF. (G) Suction of air into pump,
represented by FO.

Deducting the work of the pump from that of the motor, the

effective work is given by the diagram AB CD composed of the

two isothermals and two constant-pressure lines.

93. Analysis of Cycles. The ideal cycles of the Stirling and
Ericsson engines are isoadiabatic cycles. In the Stirling cycle
the constant-volume lines DA and BO (Fig. 39) replace the

adiabatics of the Carnot cycle. Using the iW-plane we have

Q* = ApaVa loge ^ = ABTJf log. !J
' o I' a

n 7I/T, / m m \
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Qcd
= ApcVc log, -p

= - AMBT
Z log, |f

But since Fa
= Vd and Fc

= F6 ,

The heat ^ is taken from a regenerator, and therefore the

heat Qa alone is supplied from the source ; hence the efficiency
s

"
ft*

"
*i

'

For the Ericsson cycle Z>J. and .#(7 are constant-pressure
lines and the analysis is essentially the same except that cv is

replaced by cp .

94. Heating by Internal Combustion.* While the hot-air

engine with exterior furnace should apparently be an efficient

heat motor, experience has proved the contrary. The difficulty

lies in the slow rate of absorption of heat by any gas. Even

with high furnace temperatures and comparatively large heat-

ing surfaces it has been found impossible to get a high tempera-
ture in the working medium. Furthermore, if the air could be

effectively heated, the metal surfaces separating the furnace from

the hot medium would be destroyed; hence, while high tempera-

ture of air is necessary for high efficiency, low temperature is

necessary to secure the durability of the metal.

These contradictory conditions are completely obviated by
the method of heating by internal combustion. The rapid

chemical action supported by the medium itself makes possible

the rapid heating of large quantities of air to a very high

temperature. The medium and the furnace being within the

t.>io nn-t-o-p onvFunA rvf t.Tip. mftta.l walls can be keT)t at



low temperature by a water jacket, and consequently the inner

surface can be exposed to the high temperature desired without

danger of destruction. .Furthermore, the low conductivity
of gases becomes here an advantage as it prevents a rapid flow

of heat from the medium to the cylinder walls. The low gas

temperature of the hot-air engine results in a small effective

pressure and makes the engine very bulky for the power
obtained. The high temperature possible in the internal

combustion motor, on the other hand, permits high effective

pressures, and therefore gives a relatively small bulk per

horsepower.

95. The Otto Cycle. The cycle of the well-known Otto

gas engine has five operations as follows :

1. The explosive mixture

is drawn into tho cylinder.

Represented by HI), Fig. 42.

2. The mixture is com-

pressed, as represented by
DA.

3. The charge is ignited,

causing a rise of temperature
and pressure, as shown by AB.

4. The gases in the cyl-

FIG. 42. inder expand adiabatically as

shown by BQ.
5. The burned gases are expelled in part. Represented

by DE.

In the case of the four-cycle Otto engine, each of the opera-
tions 1, 2, 4, and 5 occupies one stroke of the piston, while
operation 3 occurs at the beginning of a stroke. The cycle
is completed in four strokes, whence the term four-cycle.

It is customary in the analysis of gas-engine cycles to
assume in the first instance that the medium is pure air

throughout the cycle and that the air receives during the
process AB an amount of heat equal to that developed by the
combustion of the fuel in the actual cycle. This assumed ideal
CVfilfi is rpfprrorl f V-T, , _._ , _
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On the Titf-plane, the ideal cycle has the form shown in

Fig. 43, AS and CD being constant volume curves. The
medium in the state repre-
sented by point A is heated at

constant volume, as shown by
the curve AB. For this pro-
cess we have (assuming that cv

is constant)

For the adiabatic expansion

represented by BO,

W -~

For the cooling at constant volume, represented by (7.Z), we

have Qcd
= Jfc,(Td - Tc ) = -

Finally the medium is compressed adiabatically from D to J.,

and for this change of state

W -
rr

7 -
K 1

The heat changed into work is

(1)

The work of the cycle is

Wbc+ Wcd+ W^
It is easily shown that these results are identical.

The efficiency is

/



TJBJUJlJNUJAJj ArrJUJLOA A

This expression for rj may be simplified as follows : From

Fig. 43 we have

Sb
- Sa=S. -Sd

= Mcv log. ?
= Mcv log. ',

,

hence,

Therefore,

rn T TJt c ^v,
L c _ -*rf-- or _

,

J. a -*& x a

or

It appears, therefore, that the Otto cycle has the same efficiency

as a Carnot cycle having the extreme temperatures Ta and Td
or the extreme temperatures Tb and T of the adiabatics, but a

smaller efficiency than a Carnot cycle having Tb and Td as

extreme temperature limits.

The expression for the ideal efficiency may be written in

another convenient form. Since the curve DA represents an

adiabatic process, we have

whence

1-1,

or

(5)

It appears from the last expression that the higher the com-

pression pressure^, the greater the ideal efficiency.

If the ratio of volumes -~ be denoted by r* we have for the
T'* a

ideal efficiency the expression
11 1

(6)

EXAMPLE. If the air is compressed from 14.7 Ib. to 45 ll>., the ideal



The temperature and pressure represented by the point B
are readily calculated for this ideal case. Let ql denote the

heat absorbed per pound of air during the process AB; then

whence ^A + l. (7)
-* a Cv-*-a

Since F.= F6,

The value of ql
for a given fuel depends upon the heating

value of the fuel and the weight of air required for the com-

bustion of a unit weight of the fuel.

96. The Joule or Brayton Cycle. In the Otto type of motor,

the fuel gas is mixed with air previous to compression, and

when the mixture is ignited the combustion is so rapid as

to produce an explosion; the heat is supplied, therefore, at

practically constant volume. Another type of motor was first

suggested by Joule and was developed in working form by

Brayton (1872). In the Brayton engine the mixture of air

and gas was compressed into a reservoir to a pressure of per-

haps 60 Ib. per square inch and from the reservoir flowed into

the working cylinder, where it was ignited by a flame. A wire

gauze diaphragm was used to prevent the flame from striking

back into the reservoir. The mixture was thus burned quietly

in the working cylinder during about one half the stroke of

the piston, and by proper regulation of the admission valve the

rate of combustion was so regulated as to give practically con-

stant pressure during the period of admission. The ideal

cycle of operations is as follows:

1. Charge drawn, into compressor cylinder, ED (Fig. 44).

2. Adiabatic compression, DA.
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3. Expulsion at constant pressure from compressor, AF;

simultaneous admission to motor cylinder, FB, The charge

during the passage from

compressor to motor is

heated at constant pres-

sure and the volume is

thereby increased as in-

dicated by AB,
4. Adiabatic expansion,

BC, after cut off.

5. Expulsion of burned

T , A , gases, OE.
FIG. 44. b '

The area JEDAF repre-

sents the negative work of the compressor, the area FBQJH
the work obtained from the motor ; hence, area ABCD repre-

sents the net available work.

On the T/S'-plane, the ideal Joule cycle has the same form as

the Otto cycle (Fig. 43). The curves AB and (72), however,

represent, respectively, heating and cooling at constant pressure.

We have, therefore,

= Qab + Qcd
=

.,__?''
\ T:

Also, ~ = .

0)
(2)

(3)

(5)

97. The Diesel Cycle. The principle of gradual and quiet
combustion as opposed to explosion was seized upon by Diesel

in the design of the Diesel motor. In this motor air without
fuel is compressed in the working cylinder to a pressure ap-

proximating 500 Ib. per square inch. The temperature at the end
of compression is consequently higher than the ignition tempera-



FIG. 45.

expand at practically constant

pressure, or if desired, with

falling pressure and nearly
constant temperature. As in

the Brayton engine, govern-

ing is effected by cutting off

the fuel injection earlier or

later.

The ideal cycle of the Diesel o

engine is shown in Fig. 45. It

resembles the Otto cycle except
that the process AS in this case represents a constant pressure

rather than a constant volume combustion. It was the original

aim of Diesel so to regulate the

injection of fuel that a short

period of combustion AM
would be followed by isother-

mal expansion Jf-ZV, the fuel

being cut off at the point N.

On the 2!$-plane the ideal

Diesel cycle is shown in

Fig. 46, in which AB is a

constant-pressure curve and

CD a constant-volume curve.

We have then

(1)

(2)
'

(3)

FIG. 46.

cp (Tb -Ta)

If the cycle includes an isothermal process, as MN, we have

Qam = Mcp(Tm - Ta}, (5)

V,
f~\ A ]\/rj2 fT* Inrr . -_
*Vmn == jti.JLrj.JL> J- m. J-U^P tr 1<,*, o* Y^

?n+ <?,and
77
= -^ :=1

(6)

a)



FIG. 47.

98. Comparison of Cycles. The three principal cycles are

shown superimposed in Fig. 47. The minimum temperature

at J) and maximum temperature at B are the same for all

three. With this assumption
it is seen that the Brayton

cycle A'BC'D has the largest

area, the Otto cycle ABGD,
the smallest. Hence, between

the same temperature limits

and with the same maximum

pressure jp6 ,
the Brayton cycle

is the most efficient, the Otto

cycle the least efficient. Com-

$ paring the maximum volumes,

it is seen that the Otto and

Diesel cycles have the same

maximum volumes V& while the Brayton cycle requires a

greater volume, as indicated by the point O1

'. The Diesel

cycle, therefore, combines the advantages of the high efficiency

of the Brayton cycle due to the high compression pressure
and the smaller cylinder volume of the Otto cycle.

99. Closer Analysis of the Otto Cycle. In the preceding

analysis of gas-engine cycles two assumptions have been made :

(1) That the medium employed has throughout the cycle the

properties of air. (2) That the specific heat of the medium is

constant. While the approximate analyses based on these

assumptions are of value in giving the essential characteristics

of the various cycles, and an idea of their relative efficiencies,

they give misleading notions regarding the absolute magnitudes
of those efficiencies. To obtain the true value of the maximum
possible efficiency of a gas-engine cycle, it is necessary to take

account of the properties of the fuel mixture entering the cylin-
der and of the mixture of the products of combustion after the

fuel is burned. Making use of the principles and methods
laid down in Chapter VIII, we may thus make an accurate



nislied by the example of Art. 85, shows such an analysis for

the Otto cycle.

EXAMPLE. Determine the ideal efficiency of an Otto cycle in which the

compression, combustion, and expansion follow the course described in the

example of Art. 85. Compare this efficiency with the "air standard"

efficiency under the same conditions.

In the example quoted, the work of adiabatic compression was found to

be 69,460 ft.-lb., the work of expansion 287,940 ft.-lb. These results refer

to 1 Ib. of the fuel mixture. The heating value of the fuel per pound was
found to be 1632.2 B. t. u.

;
hence the heating value per pound of fuel mix-

ture is 1632.2 - 2.25 = 725.4 B. t. u. The net work derived from the cycle

per pound of mixture is 287,940 - 69,460 = 218,480 ft.-lb. Therefore, the

efficiency is

Q.387.
J x 72o.4

The "air standard" efficiency depends upon the ratio of initial and final

Vz
volumes, which ratio was found to be =- = 0.1887. Hence, for this efficiency

1
i

we have
-rj
= 1 - 0.1887-* = 0.487.

The discrepancy between the two efficiencies is in a large measure due to

the assumption of constant specific heat in. the analysis of Art. 95.

100. Air Refrigeration. The term refrigeration is applied

to the process of keeping a body permanently at a temperature
lower than that of surrounding bodies. Since heat naturally

flows from the surroundings to the body at lower temperature,

this heat must be continually removed if the body is to remain

permanently at its lower temperature. Hence a refrigerating

machine has the office of removing heat from a body of low

temperature and depositing it in some other convenient body
of higher temperature.
The operation of a refrigerating machine is thus precisely

the reverse of the operation of the direct-heat motor ; and if

the cycle of a heat motor be traversed in the reverse direc-

tion, it will give a possible cycle for a refrigerating machine.

When air is used as a medium for refrigeration, the reversed

Joule cycle is employed. Fig. 48 shows diagrammatically the

arrangement of the refrigerating machine, Fig. 49 the ideal

j? ^diagram, and Fig. 50 the ^-diagram. Air in the state A
in the cold room is drawn into the compressor c and is com-
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pressed adiabatically as indicated by AB. It then passes into

the cooling coils, about which cold water circulates, and is

cooled at constant pressure, as indicated by BO. In the state

the

FIG. 48.

air passes

into the expansion

cylinder e and is

permitted to ex-

pand adiabatically

down to the pres-

sure in the cold

room, i.e. atmos-

pheric pressure.

The final state is

represented by
point D. Finally the air absorbs heat from the cold room, and

its temperature rises to the original value Ta . Referring to

Fig. 49, the actual compression diagram is ABFE, while the

diagram JFCDJE taken clockwise is the diagram of the expan-
sion cylinder. The net work done on the air is, therefore,

given by the diagram ABOD.
The Allen dense-air machine has a closed cycle and the air

is always under a pressure much higher than that of the atmos-

phere. Thus the pressure DA (Fig. 49) is perhaps 40 to t>0,

and the upper pressure, say
200 Ib. per square inch. The

air, after expanding to the

lower pressure, is led through
coils immersed in brine and

absorbs heat from the brine.

In the following analysis of

the air-refrigerating machine
E

we shall assume ideal condi-

tions. In the actual machine
"

JTIO . 49.

these conditions are to some
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minute, and M the weight of air

circulated per minute. Then
since in passing through the cold

body the temperature of the air is

raised from Td to Ta (Fig. 50), we
have

Q = Mcp(Ta -T^. (1)

Let
p-L denote the suction pres-

sure of the compressor cycle

(atmospheric pressure, in the

case of the open cycle) and pz

the pressure at the end of com-

pression ; then, assuming adiabatic compression, we have

FIG. 50.

~T
~~

( ~rT I
' (Q

a \Jf'l /

and if the pressure at cut-off in the expansion cylinder is also

pz (as in the ideal case), we have also

(3)

(4)

(5)

$\)

whence _ = .

The work required per minute is

rn m
rn J-b~ -La" ~ " v "

area O
l
DAB

l

* Ta

'

and the heat rejected to the cooling water, represented by the

area B
l
BGO

l (Fig. 50), is

W T/,

The compressor cylinder draws in per minute Mpounds of air

having the pressure pl
and temperature Ta , Denoting by N

the number of working strokes per minute and by Vc the volume

displaced bv the comnressor mston. we have for the ideal case
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or

Likewise, the volume Ve
of the expansion cylinder is given by

the relation

EXAMPLE. An air-refrigerating machine is to abstract GOO B. t. u. per

minute from a cold chamber. The pressure in the cold room is 14.7 Ib. per

square inch, and the air is compressed acliabatically to 05 Ib. per square inch

absolute. The temperature in the cold room is 30 F. and the air leaves the

cooling coils at 80 F. The machine makes 120 working strokes per minute.

Kequired the ideal horsepower required to drive the machine, and the volumes

of the compression and expansion cylinders.

The first step is the determination of the temperature Td at the end of

expansion. From the relation

0.4

we have Td = 539.0
(iM )

" = 352.9.

From (1) we obtain for the weight of air that must be circulated per minute

M = Q _^__ = 17r,'Ml,
cP(Ta -Td) 0.24(405.0

-
352.9)

The work required per minute is

W = JQ
T"~ Td = 778 x GOO x

5:j9 -6 ~ 352 -<} = 240,950 ft. Ib.
,Td 352.9

' '

and the horsepower under these ideal conditions is therefore

246950 _ 7 P

33000
''

For the volume of the compressor cylitider, we have

v 17.52 x 53.34 x 495.0 . U0 ..

Fc=
120x14.7x144

= Lb2c" ft->

and for the volume of the expansion cylinder



ny in mining, tunneling, ana metallurgical processes,

impression of air may be effected by rotary fans and
s or by piston compressors. In the piston compressor,

itmospheric pressure is drawn into a cj'linder through, in-

ves and is then compressed upon the return stroke of the

When the desired pressure is attained, the outlet valves

sued and the air is discharged into a receiver. The ideal

or diagram of an air
p

;ssor has, therefore, the

hown in Fig. 51. The c

4. represents the drawing
le air ; the curve AB rep-

i the compression from

wer pressure p1
to the

sr pressure jt?2 ; and BO D
jnts the expulsion of the _

the higher pressure. It FlG> 51 _

be noted that the curve

ipresents a change of state, while lines DA and BO
nit merely change of locality ; thus BQ represents the

D of the air (in the same state} from the compressor
31* to the receiver.

V^ denote the volume denoted by point A, and V2 the

} after compression ; then the work of compression (area
B is

'"* n-l
ng that the compression curve follows the lawpVn= const.

)rk of expulsion (represented by area B^BOO) is evidently

3 work done by the air during the intake (area ODAA^) is

the total work represented by the area of the diagram

n (1)



1V V I I

2
~

xW '

whence combining (1) and (2) we get

(2)

(3)

a formula that does not contain the final volume Yv
For the temperature at the

end of compression we have the

usual formula

(4)

The action of the air com-

pressor may be studied advanta-

geously by means of the T8-

diagram. Let the point A (Fig.

52) represent the state of the

air at the beginning of com-

pression, and suppose that AB
represents the compression pro-
cess. Through B a line repre-

senting the constant pressure
pz is drawn, intersecting at F an isothermal through A. It

can be shown that the area A
l
ABFF

l represents the work W
given by (1). Denoting by T

2
the final temperature corre-

sponding to point B, we have

area A
l
ABS

l
= Mov

^- (T2
-

TJ,

FJG> 52>

area Mc

area A
lABFFl

=

n c ~
n 1

1 n

B



102. Water-jacketing. Unless some provision is made for

withdrawing heat during the compression, the temperature will

rise according to the adiabatic law. Ordinarily the energy
stored in the air due to its increase of temperature, that is, the

energy U
2
- U,= Mc^T.-T^

is never utilized because during the transmission of the air

through the mains heat is lost by radiation and the temperature
falls to the initial value. Hence
a rise in the temperature during

compression indicates a useless

expenditure of work. The water

jacket prevents in some degree
this rise in temperature and

decreases the work required for

compression. The curve AE
(Fig. 53) represents adiabatic

. -TP ,

compression. If the compres-
sion could be made isothermal, the curve would be AF, less

steep than AE, and the work of the engine would be reduced

per stroke by the area AEF. The water jacket gives the curve

AS lying between AE and AF, and the shaded area represents

the saving in work. Because of the water jacket the value of

the exponent n in the equation pVn = const, lies somewhere

between 1 and 1.40. Under usual working conditions, n is

about 1.8.

For any value of n the relation between the heat abstracted,

work done, and change of energy is given by the proportion

JQ:(U2
-

ZTj) : TF= (k - n) : (1
- n) : (k - 1).

This applies only to the compression AB not to the expulsion

of the air represented by B 0.

The influence of the water jacket is shown more clearly by
the ^-diagram, Fig. 52. The vertical line AE indicates adia-

batic compression from pl
to

jp2 ,
the horizontal line AF, isother-



mal compression, and the intermediate curve .&., compression

according to the law p Vn
const., with n between 1 and 1.4.

The area A-^ABB^ represents the heat abstracted from the air

during compression, and the area AEB represents the work

saved by the use of the jacket. A more efficient jacket would

give a compression curve with its extremity lying nearer the

point F. In the case of the isothermal compression represented

by AF, the area A
l
AFF

l represents the heat absorbed from the

air and also the work done on the air. These must necessarily

be equivalent, since there is no change in the internal energy.

103. Compound Compression. The excess of work required

by the increase of temperature during compression may be obvi-

ated in some measure by

dividing the compression
into two or more stages.

Air is compressed from

the initial pressure p 1
to

an intermediate pressure

p', it is then passed

through a cooler where

the temperature (and con-

sequently the volume) is

FlGt 54'

reduced, and finally it is

compressed from p' to the desired pressure pT In Fig. 54,

DA represents the entrance of air into the cylinder, and A 6r,

which lies between the adiabatic AE and the isothermal AF,
the compression in the first cylinder. From Gr to Jt the air is

cooled at constant pressure in the intercooler. The curve HL
shows the compression in the second cylinder, and the line

LQ the expulsion into the receiver. In a single cylinder the

diagram would be ABQD ; hence compounding saves the work
indicated by the area B CrHL.

The saving is shown even more clearly if we use the TS-

plane (Fig. 55). During the first compression AGr the heat

represented by the area A
1
AGrGr

1
is absorbed by the water

jacket. Then the heat G-^GrHH^ is abstracted by the inter-

cooler. During the second compression the heat HMLL, is
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abstracted by the water jacket,

and finally the heat

is radiated from the receiver

and main. As shown in the

preceding article, the area

A
l
AG-HLFFl gives the work

of the compressor. Evidently
area BGrSL represents the

work saved by compounding.
If we take (3) of Art. 101,

we find for the work done in

the first cylinder

FIG. 55.

and for the work done in the second cylinder

n-l

n p

-i S

where V is the volume indicated by point H (Fig. 54).

But since point .ffis on the isothermal AF> we have

and, therefore,
n-l

P

The total work is, consequently,
n-l

l\ n

(1)

The work required is numerically a minimum when the



is variable. Using the ordinary method of the calculus, we

find that this expression is a maximum when

P
1 =

Equation (2) is useful in proportioning the cylinders of a com

pound compressor.

Referring to Fig. 55, we have

With the condition expressed by (2) we have

n-l n1

and likewise,
n-l n~l

\PiPzJ \Pi,

Hence, T
l
= T

a ;

that is, for a minimum work of compression the points G- and L
should lie on the same temperature level. The same statement

applies to three-stage compression.

104. Compressed-air Engines. Compressed air may be used
as a working fluid in a motor in substantially the same way

as steam. In fact, compressed air

has in some instances been used

in ordinary steam engines. The
indicator diagram for the motor

should approach the form shown
in Fig. 50. With clearance and

compression, A. 1
12' will replace

FlG 56
AE. The work per stroke is

readily calculated in either case.

The expansion curve BO may be taken as an adiabatic.

105. TS-diagram of Combined Compressor and Engine. The
2W-diagram shows clearly the losses in a compressed-air system



losses. In the following discussion we shall take up first an

ideal case and afterwards several modifications that may be

made.

In Fig. 57, m represents the compressor diagram, n the

motor diagram, both without clearance. Air in the state repre-
sented by point A is

taken into the com-

pressor at atmos-

pheric pressure and

temperature. The

compression, a s-

sumed here to be

adiabatic, is repre-

sented on the TS-

plane by the vertical line AB (Fig. 58). The expulsion of

the air into the receiver and thence into the main is merely a

change of locality and does not itself involve any change of

state ; hence, it is not represented on the ^fW-plane. However,
the passage of the air along the main is usually accompanied

by a cooling, and this is represented by BQ (Fig. 58), the final

point representing the state of the air at the beginning of

expansion in the motor. The adiabatic expansion to atmos-

pheric pressure in the motor is

represented by CD. This is

accompanied by a drop in tem-

perature which is given by the

equation
k-l

A-

T

FIG. 58.

The air discharged from the motor

in the state D is now heated at

the constant pressure of the atmos-

phere until it regains its original temperature Ta . This heating

is represented by DA.
The complete process is a cycle of four distinct operations,

L ^ ,-,,, ,, . (-l-.r.-f-



what does the area AJUJJU ot tne cycle represent sometnmg
useful or something wasteful ? To answer this question let us

recur to the original energy equation

JQ = Z7
2
-

Z/i + W,

and apply it to the air which passes through the cycle process

just described. We have

Work done on air = area of diagram m = Wm .

Work done by air = area of diagram n + Wn .

Total work = Wn
- Wm .

Heat absorbed by air = area under DA.

Heat rejected by air = area under SO.

Total heat put into system = area ABQD.

Change of energy = Ua Ua 0.

Hence, j x^ AB Q]) =^ _ ^
that is, the area ABQD represents the difference between the

work done by the compressor and the work delivered by the

motor. Consequently it

represents a waste, which

is to be avoided as far as

possible.

Various modifications

of the simple cycle of

Fig. 58 are shown in

Fig. 59. The effect of

using a water jacket is

shown at (a). The
shaded area represents
the saving.

Figure 59 (7>) shows

the effect of reheating
the air before it enters the motor. In the main the air cools,

as indicated by BO, but in passing through the reheater it is

heated again at constant pressure, and the state point retraces

its path, say to D. Then follows adiabatic expansion DE, and
constant-pressure heatins- EA. This rpVmntincr RH.VPR work

B

(d)

FIG. 59.



vy LUC area \JJJJUM. xo wuuiu ue pussiiuie TO carry
D to the right of B, in which case the waste would "become

zero or even negative. The area CDJ3]? does not, however,

represent clear gain, as account must be taken of the heat

expended in the process CD.

In Fig. 59 (c) is shown the effect of compound compression,
and in Fig. 59 (c?) the effect of compound compression with

a compound motor. In each case the shaded area represents
the saving.

It would not be difficult to represent also the loss of pressure
in the main due to friction.

EXERCISES

1. Find the efficiency of a Stirling hot-air engine "working under ideal

conditions between the temperatures 1340 F. and 140 F. Find the weight
of air that must be circulated per minute per horsepower.

2. An air compressor with 18 in. by 24 in. cylinder makes 140 working
strokes per minute and compresses the air to a pressure of 52 Ib. per square

inch, gauge. Assuming that there is no clearance, find the net horsepower

required to drive the compressor. Take the equation of the compression
curve as p V1 -3 = const.

3. If 200 cu. ft. of air at 14.7 Ib. is compressed to a pressure of 90 Ib. per

square inch, gauge, find the saving in the work of compression and expulsion

by the use of a water jacket that reduces the exponent n from 1.4 to 1.27.

4. Find the efficiency of the ideal Otto cycle (air standard) when the

compression is carried to 120 Ib. per square inch absolute.

5. Draw a cxirve showing the relation between the efficiency of the Otto

cycle and the compression pressure. Take values of p from 40 to 200 Ib.

per square inch.

6. An air-refrigerating machine takes air from the cold chamber at a

pressure of 40 Ib. per square inch and a temperature of 20 F., and com-

presses it adiabatically to a pressure of 200 Ib. per square inch. The air

is then cooled at this pressure to 80 F. and expanded adiabatically to

40 Ib. per square inch, whence it passes into the coils in the cold chamber.

The machine is required to abstract 45,000 B. t. u. per hour from the cold

room, (a) Find the net horsepower required to drive the machine. () If

the machine makes 80 working strokes per minute, find the necessary

cylinder volumes.

7. Air is to be compressed from 14.7 Ib. per square inch to 300 Ib. per

square inch absolute. If a compound compressor is used, find the interme-

diate pressure that should be chosen.



8. In Ex. 7, the compression in each cylinder follows the law p F1 -3 =
;onst. Find the saving in work effected by compounding, expressed in per

uent of the work required of a single cylinder.

9. Using the results of Ex. 10-15 of Chapter VIII, find the efficiencies of

the Otto cycle with the natural gas and the blast furnace gas, respectively,

under the conditions stated. Compare these efficiencies with corresponding

air standard efficiencies.

10. On the TS-plane draw accurately an ideal Diesel cycle from the fol-

lowing data: Adiabatic compression of air from 14.7 to 500 Ib. per square

inch absolute ; heating at constant pressure to a temperature of 2200 F.
;

idiabatic expansion to initial volume ; cooling at constant volume to initial

state. Calculate the ideal efficiency of the cycle.

11. Modify the Diesel cycle of the preceding example by stopping the

jonstant-pressure heating at 1600 F. and continuing with an isothermal

jxpansion (as shown by MN, Fig. 40). Calculate the efficiency of this

modified cycle.

12. The ideal Lenoir cycle has three operations, as follows : heating of air

it constant volume, adiabatic expansion to initial pressure (atmospheric), and

jooling at constant pressure. Show the cycle on pV- and TS-planes, and
lerive an expression for its efficiency.

13. Let the expansion in the Otto cycle be continued to atmospheric

pressure. Show the resulting cycle on pV- and T'S-planes and derive an

jxpression for the efficiency.
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CHAPTER X

SATURATED VAPORS

106. The Process of Vaporization. The term vaporization

may refer either (1) to the slow and quiet formation of vapor

at the free surface of a liquid or (2) to the formation of vapor

by ebullition. In the latter case, heat being applied to the

liquid, the temperature rises until at a definite point vapor

bubbles begin to form on the walls of the containing vessel and

within the liquid itself. These rise to the liquid surface, and

breaking, discharge the vapor contained in them. The liquid,

meanwhile, is in a state of violent agitation. If this process

takes place in an inclosed space as a cylinder fitted with a

movable piston so arranged that the pressure maybe kept

constant while the inclosed volume may change, the following

phenomena are observed:

1. With a given constant pressure, the temperature remains

constant during the process ;
and the greater the assumed pres-

sure, the higher the temperature of vaporization. The tempera-
ture here referred to is that of the vapor above the liquid. As a

matter of fact, the temperature of the liquid itself is slightly

greater than that of the vapor, but the difference is small and

negligible.

2. At a given pressure a unit weight of vapor assumes a

definite volume, that is, the vapor has a definite density;
and if the pressure is changed, the density of the vapor changes

correspondingly. The density (or the specific volume) of a

vapor is, therefore, a function of the pressure.
3. If the process of vaporization is continued at constant

pressure until all the liquid has been changed to vapor, then if

heat be still added to the vapor alone, the temperature will rise

and the specific volume will increase ; that is, the density will

decrease.

164
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sponding to the pressure at which the process is carried on is

the saturation temperature. If no liquid is present, and through

absorption of heat the temperature of the vapor rises above the

saturation temperature, the vapor is said to be superheated.

The difference between the temperature of the vapor and the

saturation temperature is called the degree of superheat.

The process just described may be represented graphically
on the jt?F"-plane. See Fig. 60. Consider a unit weight of

liquid subjected to a pressure p represented by the ordinate of

the line A'A 1 '

; and let the

volume of the liquid (de-
p

noted by ') be represented

by A'. As vaporization

proceeds at this constant

pressure, the volume of

the mixture of liquid and

vapor increases, and the

point representing the

state of the mixture moves

along the line A'A" . The

point A'r

represents the

volume v" of the saturated

vapor at the completion

segment A'A" represents

FIG. 60.

of vaporization ; therefore, the

the increase of volume v" v'.

Any point between A' and A'\ as M, represents the state

of a mixture of liquid and vapor, and the position of the

point depends on the ratio of the weight of the vapor to

the weight of the mixture. Denoting this ratio by x, we have

x
f n ,

whence it appears that at A', 3 = 0, while at A",

3 = 1. This ratio x is often called the quality of mixture.

If the mixture is subjected to higher pressure during vapor-

ization, the state-point will move along some other line, as B'B".

The specific volume indicated byB" is smallerthan that indicated

by A". The curve v", giving the specific volumes of the satu-



rated vapor for different pressures, is called the saturation curve ;

while the curve v\ giving the corresponding liquid volume, is

the liquid curve. These curves v', v" are in a sense boundary
curves. Between them lies the region of liquid and vapor

mixtures, and to the right of v" is the region of superheated

vapor. Any point in this latter region, as -Z7, represents a state

of the superheated vapor.

107. Functional Relations. Characteristic Surfaces. For a

mixture of liquid and saturated vapor, the functional relations

connecting the coordinates jp, v, and t are essentially different

from the relation for a permanent gas. As explained in the

preceding article, the temperature of the mixture depends

upon the pressure only, and we cannot, as in the case of a

gas, give p and t any values we choose. The volume of a unit

weight of the mixture depends (1) upon the specific volume
of the vapor for the given pressure and (2) upon the quality
x. Hence we have for a mixture the following functional

relations :

* = /GO, orp = ^(0, (1)

v= (f}(p,x'). (2)

With superheated steam, as with gases, p and t may be

varied independently, and consequently the functional relation

between p, v, and t has the general form

, ,
= 0. (3)

The characteristic surface of a

saturated vapor is shown in Fig. 61.

It is a cylindrical surface iS whose

generating elements cut the pi-plane
in the curve p = F(t')> These ele-

t ments are limited by the two space
curves v

f and v", which when pro-

jected on the jw-plane give the

curves v', v" of Fig. 60. The space
curve v" is the intersection of the



iuo. Relation oetween Pressure and Temperature. The rela-

tion p = ]?() between the pressure p and temperature t of a

saturated vapor must be determined by experiment. To Reg-
nault are due the experimental data for a large number of

vapors. Further experiments on water vapor have been made

by Ramsey and Young, by Battelli, and very recently by Hoi-

born and Henning. These last-mentioned experiments were

made with the greatest accuracy and with all the refinements

of modern apparatus; they may, therefore, be regarded as

furnishing the most reliable data at present available on the

pressure and temperature of saturated water vapor. Experi-
ments on other saturated vapors of technical importance, carbon

dioxide, sulphur dioxide, ammonia, etc., have been made by

Amagat, Pictet, Cailletet, Dieterici, and others. It is likely,

however, that further experiments must be made before the

data for these vapors are as reliable as those for water vapor.

If the experimentally determined values of p and t be plotted,

they will give the curve whose equation is p = f(t) (Fig. 61),

To express this relation many formulas have been proposed,

some purely empirical, some having a more or less rational

basis. A few of these formulas are the following :

1. Siot's Formula. As used by Regnault, Biot's equation

has the form

log p = a ban + c/3
n

, (1)

where n = t C.

This formula is purely empirical. Having five constants, the curve

may be made to pass through five experimentally determined

points.; hence, the formula may be made to fit the experimental

values very closely throughout a considerable range. The follow-

ing are the values of the constants as given by Prof. Peabody :

FOR STEAM FROM 32 TO 212 F., p FOR STEAM FROM 212" TO 428 F., p
IN POUNDS PER SQUARE INCH. IN POUNDS PER S<JUAUE Iscu.

a =3.125906 a = 3.743976

log b == 0.611740 log 5 = 0.412002

log c = 8.13204 - 10 log c = 7.74168 - 10

log a = 9.998181 - 10 log a = 9.998562 - 10

log /3 = 0.0038134 log/3= 0.0042454

n = t - 32 n = t-212



2. Rankings Formula. Rankine proposed an equation of

the form 7? ,7

log^=JL + |+^2
, (2)

in which T denotes the absolute temperature. This formula

has been much used in calculating steam tables, especially in

England. Having but three constants, it is not as accurate

as the Biot formula. The following are the values for the

constants, when p is taken in pounds per square inch, and

.4 = 6.1007; B = -2719.8; (7=400125.

3. The Dupr-Hertz formula has the form

a-blogT~ (3)

This equation has been derived rationally by Gibbs, Bertrand,

and others, and gives, with a proper choice of constants, results

that agree well with experiment. Using the results of Reg-
nault's experiments, Bertrand found the following values of the

constant for various vapors (metric units).ale
Water 17.44324 3.8682 2795.0

Ether 13.42311 1.9787 1729.97

Alcohol 21.44687 4.2248 2734.8

Chloroform 19.29793 3.9158 2179.1

Sulphur dioxide .... 16.99036 3.2198 1604.8

Ammonia 13.37156 1.8726 1449.8

Carbon dioxide .... 6.41443 - 0.4186 819.77

Sulphur 19.1074 3.4048 4684.5

4. Bertrand's Formulas. Bertrand has suggested two equa-
tions, namely : ,* Wo.- 7- ^ eo

and
p^k^T-iy. (5)

The latter may be written in the more convenient form

log p = log k n log (6)



Bertrand's second formula (6) has the advantage over the

others suggested of lending itself to quick and easy computa-
tion. Furthermore, although it has but three constants, it

gives results that agree remarkably well with the experiments
of Holborn and Henning on water vapor. The constants are

as follows (English units) :

T=t + 459.6

n = 50.

FROM 32 - 90 F. FROM 00 - 23T F. FROM 238 420 F.

6 = 140.1 6 = 141.43 6 = 140.8

log&= 6.23167 log& = 6.30217 log 7c = 6.27756

The agreement between observed and calculated values is

shown in the following table. The maximum difference is

one tenth of one per cent.



5. Marks' Equation. Professor Marks nas deduced an

equation that gives with remarkable accuracy the relation

between |?
and ^throughout the range 32 F. to 706.1 F., the

latter temperature being the critical temperature, as established

by the recent experiments of Holbom and Baumami. The

form, of the equation is

log p = a -t-cT+eT*. (7)

The constants have the following values: a = 10.515354, 1

4873.71, c = 0.00405096, e = 0.000001392964.

109. Expression for ^- In the Clapeyron-Clausius formula
dt

/Jin

for the specific volume of a saturated vapor, the derivative -_-
dt

is required. An expression for this derivative is obtained by

differentiating any one of the equations (1) to (7) of Art. 108.

Thus from (6),

dp _ ( 1 1 \ _ nip .
, -i N

dt
~ np\T^b

~
Tj

~
T(T -b)'

^ )

whence

log
& = log nb + logp

-
log T - log (S

7-
5).

dt

Values of -^ are readily calculated since the terms log T,
dt

log (_T 5), and log p appear in the calculation of p from (6).

110. Energy Equation applied to the Vaporization Process.

It is customary in estimating the energy, entropy, heat content,

etc., of a saturated vapor to assume liquid at 32 F. (0C.) as a

datum from which to start. Thus the energy of a pound of

steam is assumed to be the energy above that of a pound of

"water at 32 F.

Suppose that a pound of liquid at 32 is heated until its

temperature reaches the boiling point corresponding to the

pressure to which the liquid is subjected. The heat required
is given by the equation

where c' denotes the specific heat of the liauid. This process
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s represented on the ^fitf-plane by a curve AA' (Fig. 62).
Che ordinate OA represents the initial absolute temperature
52 + 459.6 = 491.6, the ordinate A^A! the temperature of va-

)orization given by the relation =
/(j?), and the area OAA'A

l

,he heat q' absorbed by the liquid. This heat
q' is called the

ieat of the liquid.*

When the temperature of vaporization is reached, the liquid

)egins to change to vapor, the temperature remaining constant

luring the process. A definite quantity of heat, dependent

ipon the pressure, is required to change the liquid completely
nto vapor. This is called the

ieat of vaporization and is de-

loted by the symbol r. In Fig.

52, the passage of the state-

)oint from A' to A" represents
;he vaporization, and the heat

is represented by the area

^A'A'Ay For a higher pres-

iure the curve AB' represents

.he heating of the liquid and

ihe line B'B" the vaporization.

During the heating of the

iquid the change in volume is

small and may be neg-

A'f-
M

A1B1 MT
FIG. 62.

ected
; hence, the external work done is negligible also, and

ubstantially all of the heat q
f

goes to increase the energy of

he liquid. During the vaporization, however, the volume

ihanges from v' (volume of 1 Ib. of liquid) to v" (volume of

. Ib. of saturated vapor). Since the pressure remains constant,

he external work that must be done to provide for the increase

>f volume is If =p(v" - v')- (2)

According to the energy equation, the heat r added during

vaporization is used in increasing the energy of the system and



is the heat required to increase the energy of the unit weight

of substance when it changes from liquid to vapor. This heat

is denoted by p and is called the internal latent heat. Since

during the vaporization the temperature is constant, there is no

change of kinetic energy ;
it follows that p is expended in in-

creasing the potential energy of the system. The heat equiva-

lent of the external work, namely, Ap (y" v'), is called the

external latent heat, and for convenience may be denoted by ^.

We have then . . ^.N
r = p + -^. (4)

The total heat of the saturated vapor is evidently the sum of

the heat of the liquid and the heat of vaporization. Thus,

q"
=

q' + r,

or q"
=

q' + p + "f (5)

Comparing (5) with the general energy equation, it is evident

that the sum q' + p gives the increase of energy of the saturated

vapor over the energy of the liquid at 32 F. Denoting this

by w", we have , ,
, ,.J Au" = q' +p. (6)

If the vaporization is not completed, the result is a mixture
/ A'M\

of saturated vapor and liquid of qviality x f x =
),

as indi-
\ A A j

cated by the point M (Fig. 60 and 62). In this case the heat

required to vaporize the part x is xr heat units and the total

heat of the mixture, which may be denoted by qx , is given by

qx = q' + xr

=
q

f + xp + x-^r. (7)

The energy of the mixture (per unit weight) above the energy
of water at 32 F. is, therefore, given by the relation

Aux
=

q' + zp, (8)

and the external work done is

Lx
= Jx^. (9)

If heat is added at constant pressure, after the vaporization is

completed, the vapor will be superheated. The state-point will

thft P.nrvP 4"7fJ Cff\rr d.8"\ nnrl +.1-.0 liocif. /> ft f.
n

~\



epresented by the area A
2A"

'

EE^ will be added. Here cp de-

lotes the mean specific heat of the superheated vapor, te the

inal temperature, and t" the saturation temperature correspond-

ng to the pressure p. The total heat corresponding to the

)oini E and represented by the area OAAA'EE-^ is, therefore,

qe =q'+r + cp (te -t"). (10)

f ve denotes the final volume, and ue the energy above liquid
,t 32 F., then the external work for the entire process is

L=p(y e -v<-), (11)
,nd, therefore,

Au>. = qe -Ap (ye -v'). (12)

111. Heat Content of a Saturated Vapor. By definition we
iave for the heat content of a unit weight of saturated vapor

i" = A(u" +pv"~) = q' + p + Apv". (1)

iince the total heat is

<?
=

q' + p + Ap(v"-^ (2)

; appears that i" is larger than q" by the value of the term

\.pv'. As v', the specific volume of water, is small compared
,dth v", the term Apv' may be neglected except for very high

ressures, and q" and i" may be considered equal.

In most of the older steam tables values of q" were given ;

i the more recent tables, the values of i" instead of q" are

.sually tabulated.

112. Thermal Properties of Water Vapor. From the relation

q"
=

q' + r,

-> appears that if any two of the three magnitudes q", q',
r are de-

srmined by experiment, the third may be found by a combina-

ion of those two. Various experiments have been made to

etermine each of these magnitudes for the range of temperature

rdinarily employed, and as a result several empirical formulas

ave been deduced. Naturally the greatest amount of attention

as been given to water vapor, and we may consider the proper-

ies of this medium as quite accurately known at the present

ime. Ammonia, sulphur dioxide, and other vapors have not



UtitJUL BUUUJ.CU Wltii UHC aclillC cmAM. UJJL&J.J.

are as yet only imperfectly known.

In the sections immediately following we shall give briefly the

results of the latest and most accurate experiments on water

vapor.

113. Heat of the Liquid. Denoting c
r the specific heat of

water, the heat of the liquid above 32 F. is given by the re-

IatioQ
j--/*. CD

If the specific heat c' were constant at all temperatures, this

equation would reduce to the simple form q'
= c'(t 32). As

a matter of fact, however, c' is not constant, and its variation

with the temperature must be known before (1) can be used to

calculate
q'.

Between C. and 100 C. (32-212 F.) the

experiments of Dr. Barnes may be regarded as the most trust-

worthy. Taking c' 1 at a temperature of 17.5 C., the fol-

lowing values are given by Griffiths as representing the results

obtained by Barnes.

These values are shown graphically in Fig. 63. From them
values of

q' may be obtained by means of relation (1).
In the actual calculation of the tabular values of

q', the fol-

lowing method may be used advantageously. Since the specific
heat c' does not differ greatly from 1, let

c'= 1 + &,
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FIG. 63.

where k is a small correction term. Then for q' we have

q'
= f c'dt = t - 32 + f kdt.1 JM J32

If now values of Jc are plotted as ordinates with correspond-

ing temperatures as abscissas, the values of the integral (kdt

may easily be determined by graphical integration.

For temperatures above 212 F. the only available experi-

ments giving the heat of

the liquid are those of

Regnault and Dieterici.

The results of these ex-

periments are somewhat

discordant and unsatis-

factory. Fortunately,
we have for the range
212 to 400 F. reliable

formulas for the total

heat q" and the latent

heat r, and we may therefore determine q'
from the relation

q'
=

q" r.

114. Latent Heat of Vaporization. The latent heat of water

vapor for the range to 180 C. (32-356 F.) has been accu-

rately determined by direct experiment. The results of the

experiments of Dieterici at C., Griffiths at 30 and 40 C.,

Smith over the range 14-40 C., and Henning over the range

30-180 C. show a remarkable agreement, all of the values

lying on, or very near, a smooth curve. The observed values

are given in the third column of the following table. As the

thermal units employed by the different investigators were not

precisely the same, all values have been reduced to a common

unit, the joule.

It is readily found that a second-degree equation satis-

factorily represents the relation between r and t. Taking r in

joules, the following equation gives the values in the fourth



176 SATURATED VAPORS [CHAP, x

LATENT HEAT OF WATER, IN JOULES

The differences between the observed values and those calcu-

lated from this formula are shown in the last column.

The mean calorie is equivalent to 4.184 joules ; hence, divid-

ing the constants of Eq. (1) by 4.184, the resulting equation

gives r in calories. This equation is readily changed to give

r in B. t.u. with t in degrees F. We thus obtain finally

r = 970.4 - 0.655 (*
-

212)
- 0.00045 (t

- 212)
2

. (2)

This formula may be accepted as giving quite accurately the

latent heat from 32 F. to perhaps 400 F.*



115. Total Heat. Heat Content. For the temperature range
32 to 212 F. the total- heat q" is obtained from the relation

q" = q' + r. As has been shown, values of
q' and of r can be

accurately determined for this range. For temperatures be-

tween 212 and 400, we are indebted to Dr. H. N. Davis for

the derivation of a formula for the heat content of saturated

vapor of water. The earlier experiments of Regnault led to

the formula
q
n ^ 1091 . 7 + 0>305 ^ __ 33^

which has been extensively used in the calculation of tabu-

lar values. By making use of the throttling experiments of

Grindley, Griessmann, and Peake, Dr. Davis* has shown that

Regnault's linear equation is incorrect, and that a second-degree

equation of the form

q" = a + b (t
- 212) + e (t

- 212)
2

may be adopted. Dr. Davis obtains for the heat content i"

the formula

i" = 1150.4 + 0.3745(15- 212) - 0. 00055 (t - 212)
2

. (3)

From this formula the total heat q" is readily determined from

the relation q"
= i" Apv' . It is found, however, that slight

changes in the constants are desirable in view of Henning's sub-

sequent experiments on latent heat. The modified formula

i" = 1150.4 + 0.35 (t
-

212)
- 0.000333 (t

-
212)

2
(4)

may be accepted as giving with reasonable accuracy values of

i" for the range 212 to 400 F.

116. Specific Volume of Steam. The specific volumes" of

a saturated vapor at various pressures may be determined

experimentally. For water vapor accurate measurements of

v" for temperatures between 100 and 180 C. have been made

by Knoblauch, Linde, and Klebe. It is possible, however, to

calculate the volume v" from the general equations of thermo-

dynamics ; and the agreement between the calculated values

and those determined by experiment serves as a valuable check

critical temperature, 689 F. At the higher temperatures it doubtless gives more

accurate values than the second-degree formula. See Proceedings of the Amer.

Acad. of Arts and Sciences 45, 284.

* Trans. Am. Soc. of Mecli. Engs. 30, 1419, 1908. See Art. 104 for a dis-

cussion of thfi inRf-.bnrl mrmlnvfirl in t.hfi rlflviva.tion of formula (3}.



on the accuracy with which the factors entering into the theo-

retical formula have been determined.

The general equation (Art. 56)

do cvdT-\- AT( --
)
dv (1)

\dtjv

applies to any reversible process. Let us apply it to the pro-

cess of changing a liquid to saturated vapor at a given constant

temperature. For a saturated vapor, the partial derivative

is simply the derivative
-|-,

and this is a constant for any
dtjv

" "
dt

given temperature (Art. 10T). Hence, for the process in ques-

tion, we have (since dT 0)

(2)

But in this case q is the heat of vaporization r ; hence we have

..
,

r 1 Jr 1 .ox
1)" v' = -- --.. {&)

dt dt

This is the Clapeyron-Clausius formula for the increase of vol-

ume during vaporization.

Having for any temperature the derivative --
(Art. 109)

and the latent heat r, the change of volume v" v' is readily
calculated. The following table shows a comparison between

the values of v" determined experimentally by Knoblauch,

Linde, and Klebe, and those calculated by Henning from the

Clapeyron equation, using the values of r determined from his

own experiments. The third line gives values of v" calculated

from the characteristic equation of superheated steam. (See
Art. 132.)
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The relation between the pressure and specific volume v" of

saturated steam may be represented approximately by an equa-
tion of the form // _. 0- ,^
Zeuner, from the values of v" given in the older steam tables,

deduced the value n = 1.0646. Taking the more accurate

values of v" given in the later steam tables, we find

91 = 1.0631, (7=484.2.

117. Entropy of Liquid and of Vapor. During the process
of heating the liquid from its initial temperature to the tem-

perature of vaporization the entropy of the. liquid increases.

Thus, referring to Fig. 62, if the initial temperature be 32 F.,

denoted by point -4, and if the temperature be raised to that

denoted by A', the increase of entropy of the liquid is repre-

sented by OA}, the heat of the liquid by area OAA'AV
Since dq'

= c'dT, we have as a general expression for the

entropy s
1 of the liquid corresponding to a temperature T,

- c
T
^L- C

T m
J 491.6 T

~
J 491-6 T

If the specific heat c' is given as a function of T, the inte-

gration is readily effected. In the case of water, where the

specific heat varies somewhat irregularly, as shown by the

table of Art. 115, the following expedient may be used. Put

c' = 1 + k
;
then k is a small correction term that is negative

between 63 and 150 F. and positive elsewhere. From (1) we

have, therefore,

The first term is readily calculated and the small correction

term may be found by graphical integration. This method was

used in calculating the values of s' in table I.

The increase of entropy during vaporization, represented by
v

A'A!' (Fig. 62), is evidently the quotient -= Hence the en-

tropy of the saturated vapor in the state A" is



For a mixture of quality x, as represented by tlie point M, the

entropy is

= *'+ f. (4)

118. Steam Tables. The various properties of saturated

steam considered in the preceding articles are tabulated for

the range of pressure and temperature used in ordinary tech-

nical applications. Many such tabulations have appeared.

The older tables based largely upon Regnault's data are now
known to be inaccurate to a degree that renders them value-

less. The recent tables of Marks and Davis * and of Peabody, f

however, embody the latest and most accurate researches on

saturated steam.

Table I at the end of the book has been calculated from

the formulas derived in Arts. 108-116. The values differ but

little from those obtained by Marks and Davis. The first col-

umn gives the pressures in inches of mercury up to atmospheric

pressure, and in pounds per square inch above atmospheric

pressure ; the second column contains the corresponding

temperatures. Columns 3 and 4 give the heat content of the

liquid and saturated vapor, respectively. The values in col-

umn 3 may be taken also as the heat of the liquid q' ; similarly,

column 4 may be considered as giving the total heat q" of the

saturated vapor. As we have seen, the difference between i"

and q" is negligible except at high pressures.

119. Properties of Saturated Ammonia. Several tables of

the properties of saturated vapor of ammonia have been pub-
lished. Among these may be mentioned those of Wood, Pea-

body, Zeuner, and Dieterici. The values given by the different

tables are very discordant, as they are for the most part obtained

by theoretical deductions based on meager experimental data.

For temperatures above 32 F. the values obtained by Dieterici

as the result of direct experiment are most worthy of confidence.

Dieterici determined experimentally the specific volume v"

of the saturated vapor for the temperature range to 40 C.

* Marks and Davis, Steam Tables and Diagrams, Longmans, 1908.



(32 to 104 F.) and also for the same range the specific heat c
f

of the liquid ammonia. The formula deduced by Dieterici for

specific heat is, for the Fahrenheit scale,

c' = 1.118 + 0.001156 (t
-

32). (1)

From this formula, the heat of the liquid q
r and the entropy of

the liquid s' are readily calculated by means of the relations

/ 1 / 7 r /* / 0> X
q'
= I c at, s' = ( c'--

J
32 Jfi>l.G T

The relation between pressure and temperature is given by
the experiments of Regnault. The results of these experiments
are expressed quite accurately by Bertrand's formula

log p = 5.87395 - 50 log m
T
QA

. (2)

Above 32, having Dieterici's experimental values of v" and

from (2) the derivative -. we
dT

the Clapeyron-Clausius formula

from (2) the derivative JL we may find the latent heat r from
Ct ~L

r = A(v"-v'~)T. (See Art. 116.) (3)
Gv JL

For temperatures below 32 we have neither v" nor r given

experimentally; hence for this region values of various prop-

erties can only be determined by extrapolation, and the ac-

curacy of the results thus obtained is by no means assured. In

calculating the values of table III the following method was

used. The values of r for temperatures above 32 were calcu-

lated by means of (3). It was found that these values may be

represented quite accurately by the equation

log r = 1.7920 + 0.4 log (266
-

), (4)

in which 266 is the critical temperature of ammonia. (See p.

176, footnote.) Formula (4) was assumed to hold for the range

32 to 30
; and from the values of r thus obtained values of

v" were calculated by means of the Clapeyron relation (3).

120. Other Saturated Vapors. Several saturated vapors in

addition to the vapors of water and ammonia have important

technical aDplications. Sulphur dioxide and carbon dioxide in



particular are used as media for refrigerating machines. The

properties of the former fluid have been investigated by Cailletet

and Mathias, those of the latter by Amagat and M oilier. The

results of these investigations are embodied in tables.*

The properties of several vapors of minor importance have

also been tabulated, the data being furnished for the most part

by Regnault. These include ether, chloroform, carbon bisul-

phide, carbon tetrachloride, aceton, and vapor of alcohol, f

121. Liquid and Saturation Curves. If for various tem-

peratures the corresponding values of s', the entropy of the

liquid, be laid off as abscisses, the result is a curve s', Fig. 62.

This is called the liquid curve. If, likewise, values of

be laid off as abscissa;, a second curve s'
f

is obtained. This

is called the saturation curve.

As already stated (Art. 106), any point between the curves s'

and s" represents a mixture of liquid and vapor, the ratio x de-

pending upon the position of the point. It is possible, there-

fore, to draw between the curves s' and s" a series of constant-a;

lines. Each of the horizontal segments A'A", B'B", etc., is

divided into a convenient number (say 10) of equal parts and

corresponding points are joined by curves. The successive

curves, therefore, are the loci of points for which x = 0.1,

#=0.2, etc.

The form of the saturation curve has an important relation

to the behavior of a saturated vapor. For nearly all vapors,
the curve has the general form shown in Fig. 62

; that is, the

entropy s" decreases with rising temperature. In the case of

ether vapor, however, the entropy increases with rising tem-

perature and the curve has, therefore, the same general direc-

tion as the liquid curve s'.

122. Specific Heat of a Saturated Vapor. Keferring to the

saturation curve of Fig. 62, suppose the state-point to move
* For tables of the properties of saturated vapor of S02 and C0 2 in English

units, see Zeuner's Technical Thermodynamics, Klein's translation, Part II.

t See Peabody's Steam and Entropy Tables, or Zeuner's Technical Thermo-
"
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from A" to B"'. This represents a rise of temperature of the

saturated vapor during which the vapor remains in the satu-

rated condition. The process must evidently be accompanied

by the withdrawal of heat represented by the area A^Al'IP'S^ ;

and the reverse process, fall in temperature from B" to A", is

accompanied by the addition of heat represented by the same

area. It appears, therefore, that along the saturation curve

the ratio -^ is negative (except in the case of ether) ; that is,
ZA

the specific heat of a saturated vapor is, in general, negative.

An expression for the specific heat c" of the saturated vapor

may be obtained as follows. The entropy of the saturated

vapor is given by the equation

hence the change of entropy corresponding to a change of

temperature is obtained by differentiating (1), thus

(2)

But <fo' =
^fr

< 3)

and similarly for the saturation curve,

*" =^. (4)

Substituting these values ds' and ds" in (2), the result is

' m "> j_1
dT\T

] '

But since c' =
-T|J, (5) may be written

^d(q'+r*) r
c ~

dT T
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,
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2
" = a + 6(<

-
212)

- c(t - 212)
2

;

whence

where 5 = 0.35 and c = 0.000333.

At 212, we have, for example,

r 970-4

T 212 + 459.6

123. General Equation for Vapor Mixtures. Let heat be

added to a unit weight of mixture of liquid and saturated

vapor, of which the part x is vapor and the part 1 x is

liquid. In general, the temperature T and quality x will

change ; hence the heat added is the sum of two quantities :

(1) the heat required to increase the temperature with x

remaining constant; (2) the heat required to increase x with

the temperature constant. The first is evidently c'(l x~)dT

-\-c"xdT; and the second is rdx ; hence we have

dq = c'(l - x)dT+ c"xdT + rdx (1)

as the general differential equation for the heat added to a

mixture.

From (1) the general expression for the change of entropy
of a mixture is given by

7 dq c'fl x^ -4- c"x im , rj /-o\rts=x-! = _A t 2T -f_ (&. C2)M/J.
( _ \^ J

The fact that ds is an exact differential leads at once to the

rekti n
arV(i-*) + tf

dx\_ T
whence

c = c _.,dT T
the relation that was obtained in Art. 122.
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124. Variation of x during Adiabatic Changes. Let the point
A" (Fig. 64) represent the state of saturated vapor as regards

pressure and temperature. Adiabatic expansion will then be

represented by a vertical line A" E, the final point H being at

lower temperature. Adiabatic compression will be shown by a

vertical line A" Gr. With a saturation curve of the form

shown, it appears that during adiabatic expansion some of the

vapor .condenses, while adiabatic compression results in super-

heating. If the state-point is originally at M so that x is some-

what less than 1 (say O.T or 0.8),

then adiabatic expansion is ac-

companied by a decrease in #,

adiabatic compression by an in-

crease of x.

If the saturation curve slopes

in the other direction, as in the

case of ether, the conditions just

stated will, of course, be reversed.

Adiabatic expansion of the

liquid is represented by the line

A'F ; evidently some of the

liquid is vaporized during the

process. If the mixture is originally mostly liquid, as indicated

by a point .ZVnear the curve *', then adiabatic expansion results

in an increase of #, adiabatic compression in a decrease of x.

For a given pressure there is some value of x for which an

indefinitely small adiabatic change produces no change in x ;

in other words, at this point the constant-a? curve has a vertical

tangent. For this point we have evidently dq = and dx 0,

and the general equation (1), Art. 123, becomes

FIG. 64.

whence

or x =
c'-c"'

(1)

(2)

(3)

The locus of the points determined by (3) is a curve n (Fig. 64),



dq = rax ; (4)

that is, all the heat entering the mixture is expended in vapor-

izing the liquid. The zero curve is of little practical importance.

The change of the quality x during the adiabatic expansion

of a' mixture is readily calculated by means of the entropy

equation. In the initial state, the entropy of the mixture is

and in the final state it is

z

But for an adiabatic change s2
= s

1 ; therefore, we have the

relation s/ + -^ = s
2

' +
'-j^-

2
, (5)

in which #
2
is the only unknown quantity.

125. Special Curves on the TS-plane. The region between

the liquid and saturation curves may be covered with series of

curves in such a way that the position of the point represent-

ing a mixture indicates at once the various properties of the

mixture.

In the first place, horizontal lines intercepted between the

curves s' and s" are lines of constant temperature, also lines of

constant pressure ; while vertical lines are lines of constant

entropy.

Lines of constant quality, zv #
2 ,
#
3,

. . . may be drawn as

explained in Art. 121.

Curves of constant volume may be drawn as follows : The
volume of a unit weight of mixture whose quality is x is given

by the equation
v = x(v" v'} + v', (1)

whence x- V ~ v

V V

Suppose that the curve for some definite volume (say v 5 cu.

ft.) is to be located. For different pressures p^ pv py . . .

the saturation volumes
v/', v/, v

a",
. . . are known from the



tables, substituting successively these values of v" in (2),

values of #, as xv xv a;
8,

. . . corresponding to the pressures

Pv> Pv> P& ' w^ be f und. The value of v' may be taken

as constant for all pressures. The value of x
l
locates a definite

point on the pl line, that of x
2
a point on the pz line, etc. The

locus of these points is evidently a curve, any point of which

represents a mixture having the given volume v
; hence it is a

constant-volume curve.

In a similar manner curves of constant energy u may be

located. Since u = q'+xp, (3)

u q'we have x = . (4)
P

For given pressures pv p2 ,
. . .

f f

ry *! fv* _ *% 0,4-p
JU-\ '

3
*Vn ^ uUV_/

Pi Pz

Values of q' and p for different pressure are given in the table,

and therefore for a given w, values of xv #
2, . . . are readily

calculated. These locate points on the corresponding ^>-lii

.and the locus of the points is

the desired constant-w curve. T

By the same process may be

drawn curves of constant total

heat,

q = q' -f- xr const.

or curves of constant heat

content

i = i' -\-xr- const.

In Fig. 65, the various curves

are shown drawn through the ~
FlG G5

same point P. From the general
course of the curves the behavior of the mixture during a

given change of state may be traced. Thus : (1) If a mixture

expands adiabatically, v increases but p, T, u, and i decrease.

The quality x decreases as long as the state-point lies to the

right of the zero curve.
'

(2) If a mixture expands isody-

namicallv (u= const.), v, s, and x increase, p, T, and i decrease.



for water vapor, taking values of s' and s" from the steam table. Then

draw the curves v = 2, v = 10, v - 40 cu. ft. Also draw the curves u = 600

B. t. u., M = 800 B. t. u.

126. Special Changes of State. Certain of the curves de-

scribed in preceding articles represent important changes of

state of the mixture of saturated vapor and liquid. The prin-

cipal relations governing some of these changes will be de-

veloped in this article. It is assumed that the system remains

a mixture during the change, that is, that the path of the state-

point is limited by the curves s' and s".

(a) Isothermal, or Constant Pressure, Change of State. Let

x
1
denote the initial quality, xz the final quality. Then the

initial volume is

and the final volume is

/ n t~\ i t

1)n = Xn(V V ) + V .

The change in volume is therefore

v v = (x x'}(v"v'') 00
and the external work is

The change of energy is

and the heat absorbed is

q^rtxt-xj. (4)

These equations refer to a unit weight of mixture.

EXAMPLE. At a pressure of 140 lb., absolute, the volume of one pound
of a mixture of steam and water is increased by 0.8 cu. ft. The change of

quality is 2L = = 0.2514. The external work is

140 x 144 x 0.8 = 16,128 ft.-lb.

The increase of energy is Jp(xz - xj = 778 x 786.1 x 0.2514 = 153850 ft.-lb. ;

and the heat absorbed is r (xz
- xj = 869 x 0.2514 = 218.5 B. t. u.



(6) (Jliange oj /state at Constant Volume. Since the volumes
>
l
and v% are equal, we have

*i(V'-"0=z2(< -<;'), (5)

ivhere v^" and v
z
" are the saturation volumes corresponding to

ihe pressures p- and p^ respectively. From (5) the quality x
z

.n the final state may be determined. The external work TTis

Hero ; hence we have for the heat absorbed

-
(?/

- x
lPl) . (6)

' EXAMPLE. A pound of a mixture of steain and water at 120 Ib. pressure,

quality 0.8, is cooled at constant volume to a pressure of 4 in. of mercury.

Required the final quality and the heat taken from the mixture.

From (5)

^ =*,-* >

) = 0.8(3.724-0.017) = ^
v2
" - v' 176.6

rherefore

q = 311.9 + 0.8 x 795.8 - (93.4 + 0.0167 x 959.5) = 839.2 B. t. u.

(c) Adiabatio Change of State. For a reversible adiabatic

change the entropy of the mixture remains constant ; hence we

have

'i' + %L =
'*' + *> CO

-L\ J-2,

from which equation the final quality z
2
can be found. Having

z;
2,

the final volume v
2 per unit weight is

v = z-
2<>2"-^)+^. (8)

Since the heat added is zero, the external work is equal to the

decrease in the intrinsic energy of the mixture. That is,

(9)

EXAMPLE. Three cubic feet of a mixture of steam and water, quality

0.89, and having a pressure of 80 Ib. per square inch, absolute, expands

adiabatically to a pressure of 5 in. Hg. The final quality, final volume,

and the external work are required.

From the steam tables we find the following values :

fl P . T

For^SOlb. 281.8 819.6 0.4533 1.1667 5.464

Forp = 5in. Hg. 101.7 953.7 0.1SSO 1.7170 143.2



The weight of the mixture is

M - 3 = = 0.6167 Ib.m ~
Xi ( v

_
') +

'

0.89(5.464
- 0.017) + 0.017

From (7), the quality x2 in the second state is given by the relation

0.4533 + 0.89 x 1.1667 = 0.1880 + 1.7170 x
a ,

whence x
%
= 0.759.

The volume in the second state, neglecting the insignificant volume of the

liquid, is

V2
= 0.6167 x 0.759 x 143.2 = 67.02 cu. ft.

Finally, the external work is

W = 778 x 0.6167 [(281.8 + 0.89 x 819.6)
-

(101.7 + 0.759. x 953.7)] = 89,080

ft.-lb.

(dT) Isodynamic Change of State. If the energy of the mix-

ture remains constant, we have

Wj
= Up

or ft' + xlPl = qj + x
zp2 . (10)

From (10) the final value of x is determined, and the final

volume is then found from (8).

For the isodynamic change, the heat added to the mixture is

evidently equal to the external work. There is no simple way
of finding the work. As an approximation, an exponential
curve

p1
v
1

n
=pv

n
(11)

may be passed through the points p^ v^ and
j?2, v2, and the

value of n can be found. This curve will approximate to the

true isodynamic on the j?v-plane, and the external work will

then be approximately

ytrivi~P2v
<2 (12^)

n-l
' ^ J

In practice the isodynamic of vapor mixtures is of little

importance.

127. Approximate Equation for the Adiabatic of a Vapor Mix-

ture. In certain investigations, especially those relating to the

flow of steam, it is convenient to represent the relation between

p and v during an adiabatic change by an equation of the form
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?he value of the exponent n is not constant, but varies with the

litial pressure, the initial quality, and also with the final

ressure ; and at best the equation is an approximation,
tankine assumed for n the value !- for all initial conditions.a

ieuner, neglecting the influence of initial pressure, gave the

ormula n = 1.035 + 0.1 x. (2)

Ir. E. H. Stone,* using the tables of Marks and Davis, has

.erived the relation

n = 1.059 - 0.000315 p + (0.0706 + 0.000376^>. (3)

The following table gives values of n calculated from (3).

Having the initial values pv Vv and x# and the final pressure

>

2 ,
the final volume V2

is found approximately from (1), the

ppropriate value of n being taken from the table. The exter-

lal work is found approximately by the usual formula for the

hange represented by (1), namely,

w= (4)
n

EXAMPLE. Taking the data of the example of Art. 126 (c), we have

_ on T7 a . n so lionpp 1.193. The final tiressure is 5 in. Hff.



and W = 144 x = 88 OT4 b"lb '

Comparing these results with the results obtained by the exact method,

it appears that the volume F2
is about 0.36 per cent smaller and the work

W about 0.13 per cent smaller. Hence the approximation is sufficiently

close for all practical purposes.

EXERCISES

1. From Bertrand's equation calculate the pressure of steam corre-

sponding to the following temperatures : 60, 250, 400 F.

2. Find the values of the derivative
(-P for the same temperatures.
at

3. Using the results of Ex. 1 and 2, find the specific volumes for the

given temperatures.

4. Find (a) the latent heat, (&) the total heat of saturated steam, at a

temperature of 324 F.

5. Calculate the latent heat of steam, (a) by the quadratic formula (2),

Art. 114; (b) by the exponential formula (see footnote, p. 170) for the tem-

peratures 220 F. and 380 F. Compare the results.

In the following examples take required values from the steam table,

p. 315.

6. Find the entropy, energy, heat content, and volume of 4.5 Ib. of a

mixture of steam and water at a pressure of 120 11). per square inch, quality

0.87.

7. Find the quality and volume of the mixture after adiabatic expan-
sion to a pressure of 16 Ib. per square inch.

8. Find the external work of the expansion.

9. Using the data of the preceding examples, calculate the volume and

work by means of the approximate exponential equation p V
n = C.

10. A mixture, initial quality 0.97, expands adiabatically in a 12 in. by
12 in. cylinder from a pressure of 100 Ib. per square inch, gauge, to a pressure
of 10 Ib. per square inch, gauge. Find the point of cut-off.

11. The volume of 6.3 Ib. of mixture at a pressure of 140 Ib. per square
inch is 17.2 cu. ft. Find the quality of the mixture ; also the entropy
and energy of the mixture.

12. The mixture in Ex. 11 is cooled at constant volume to a pressure of

20 Ib. per square inch. Find the final value of x and the heat abstracted.

13. At a pressure of 180 Ib. per square inch the volume of 2 Ib. of a

mixture of steam and water is increased by 0.9 cu. ft. Find the increase of

quality, increase of energy, heat added, and external work.

14. A mixture of steam and water, quality 0.85, at a pressure of 18 Ib.

per square inch, is compressed adiabatically. Find the pressure at which



tne water is completely vaporized, .eina aiso tne woric 01 compression,

per pound of mixture.

15. Steam at a pressure of 80 Ib. per square inch expands, remaining sat-

urated until the pressure drops to 50 Ib. per square inch. Find approxi-

mately the heat that must be added to keep the steam in the saturated

condition.

16. Water at a temperature of 352 F. and under the corresponding

pressure expands adiabatically until the pressure drops to 30 Ib. per square

inch. Find the per cent of water vaporized during the process. Find the

work of expansion per pound of water.

17. Two vessels, one containing Mt
Ib. of mixture at a pressure p 1

and

quality x\, the other M2
Ib. at a pressure p and quality x

2,
are placed in

communication. No heat enters or leaves while the contents of the vessels

are mixing. Derive equations by means of which the final pressure ps and

final quality xs may be calculated.

18. Let 1 Ib. of mixture at a pressure of 20 Ib. per square inch, quality

0.96, enter a condenser which contains 20 Ib. of mixture at a pressure of 3 in.

Hg., quality 0.05. Assuming that no heat leaves the condenser during the

process, find the pressure and quality after mixing.
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CHAPTER XI

SUPERHEATED VAPORS

128. General Characteristics of Superheated Vapors. The

nature of a superheated vapor has been indicated in Art. 106,

describing the process of vaporization. So long as a vapor is

in immediate contact with the liquid from which it is formed it

remains saturated, and its temperature is fixed by the pressure

according to the relation t = /"(#>). When vaporization is com-

pleted, or when the saturated vapor is removed from contact

with the liquid, further addition of heat at constant pressure
results in a rise in temperature. If ts denotes the saturation

temperature given by tt =/Q?) and t the temperature after su-

perheating, the difference t t
s is the degree of superheat. Thus

for steam at a pressure of 120 Ib. per square inch, ts
= 341.3^;

hence if at this pressure the steam has a temperature of 460,
the degree of superheat is 460 - 341.3 = 118.7.

As soon, therefore, as a vapor passes into the superheated

state, the character of the relation between the coordinates p, v,

and t changes. The temperature is freed from the rigid con-

nection with the pressure that obtains in the saturated state,

and p and t may be varied independent!}' . The volume v of

the superheated vapor depends upon both p and t thus taken as

independent variables
; that is,

as in the case of a perfect gas. The form of the characteristic

equation (1) for a superheated vapor is, however, less simple
than that of the gas equation pv = BT.
The state described by the term "

superheated vapor
"

lies

between two limiting states ; the saturated vapor on the one

hand, and the perfect gas, obeying the laws of Boyle and Joule,

on the other. The characteristic equation therefore should

196



be of such form as to reduce to the equation of the perfect

gas, as the upper limit is approached and to give the proper
values of p, v, and t of saturated vapor when the lower limit

is reached. In the case of compound substances like water

or ammonia, however, one disturbing element is introduced

at very high temperatures. The vapor may to some extent

dissociate ; thus steam may in part split up into its components

hydrogen and oxygen, ammonia into nitrogen and hydrogen.
Nernst has found for example that at a pressure of one atmos-

phere 3.4 per cent of water vapor is dissociated at a temperature
of 2500 C. Manifestly the existence of dissociation must in-

fluence the relation between the variables p, i>, and t. However,
at the temperatures and pressures with which we are concerned

in the technical applications of thermodynamics, the amount of

dissociation is entirely negligible, and the characteristic equation

may be assumed to hold for all temperatures within the range
of ordinary practice.

129. Critical States. The region between the limit curves

v', v" (Fig. 60) or s', s" (Fig. 62) is the region of mixtures of

saturated vapor and liquid.

The fact that these two curves

approach each other as the tem-

perature is increased suggests
that a temperature may be

reached above which it is im-

possible for a mixture of liquid

and vapor to exist. Let it be

assumed that the two limit

curves merge into each other

at the point S (Fig. 66), and 0'

thus constitute a single curve,

of which the liquid and saturation curves, as we have previously

called them, are merely two branches. The significance of this

assumption may be gathered from the following considerations.

Let superheated vapor in the initial state represented by

point A (Fig. 66 and 67) be compressed isothermally. Under

usual conditions, the pressure will rise until it reaches the pres-

FIG. 6(3.



sure of saturated vapor corresponding to the given constant

temperature *, and the state of the vapor will then be represented

by point B on the saturation curve. Further compression at

constant temperature results in condensation of the saturated

vapor, as indicated by the line B 0. If the liquid be compressed

isothennally, the volume will be

decreased slightly as the pres-

sure rises, and the process will

, / \B' A> be represented by curve CD.
'

\ The isothermal has therefore

three distinct parts : along AB
the. fluid is superheated vapor,

along BO a mixture, and along

QD a liquid. If the initial tem-

perature be taken at a higher
-I 1 s value ', the result will be similar

FIQ 67

l

except that the segment B' O' will

be shorter. If the limit curves

meet at point IT, it is evident that the temperature may be

chosen so high that this horizontal segment of the isothermal

disappears ; in other words, the isothermal lies entirely outside

of the single limit curve.

In Fig. 66 the segment BO represents the difference v" v'

between the volume v" of saturated vapor and the volume v 1 of

the liquid; and in Fig. 67, the area B
1
B00

1 represents the la-

tent heat r of vaporization. For the isothermal ta that passes

through J?, the segment BO reduces to zero; hence, for this

temperature and all higher temperatures, we have

v" v' = 0, or v" =
i>',

and r = 0.

The second result also follows from the first when we consider

the Clapeyron equation

v - v ' = Jr ^L
Tdp.
dT

The experiments of Andrews show that the condition just



dioxide as determined oy Andrews are snown in Jfig. t>o. Jb or

t= 13.1 and 21. 5 C. the horizontal segments corresponding
to condensation are

clearly marked. For

*= 31.1 the horizontal

segment disappears and

there is merely a point
of inflexion in the

curve. At 48.1 the

point of inflexion dis-

appeared, and the iso-

thermal has the general
form of the isothermal

for a perfect gas.

The temperature tc

was called by Andrews
the critical tempera-
ture. It has a definite

value for any liquid.

The pressure p c
and

volume vc indicated by the point S are called respectively the

critical pressure and critical volume. Values of tc and pc for

various substances are given in the following table:

50

FIG. 68.

* According to the recent experiments of Holborn and Baumann, the critical

temperature of water is 706.1 F (374.5 C) and the critical pressure is 3200 11).

per square inch. See article by Prof. Marks, Jour. A. S. M. E., Vol. 33, p. 563.



Although at sufficiently high pressure the fluid may be in the

liquid state, the closest observation fails to show where the

gaseous state ceases and the liquid state begins. As stated by
Andrews, the gaseous and liquid states are to be regarded as

widely separated forms of the same state of aggregation.
It has been proposed to make the critical temperature the

basis of a distinction between gases and vapors. Thus, air,

nitrogen, oxygen, nitric oxide, etc., whose critical temperatures
are far below ordinary temperature, are designated as gases,

while steam, chloroform, ether, etc., whose critical temperatures
are above ordinary temperature are designated as vapors.
The determination of the critical values c , pc ,

and vc by ther-

modynamic principles is a problem of great theoretical interest,

but lies beyond the scope of this book.

130. Equations of van der Waals and Clausius. Many
attempts have been made to deduce rationally a single charac-

teristic equation, which with appropriate change of constants

will represent the properties of various fluids in all states from
the gaseous condition above the critical temperature to the

liquid condition. Such a general equation is that of van der

Waals, namely,

v - a v

which was deduced from certain considerations derived from
the kinetic theory of gases. As van der Waals' equation does
not accurately represent the results of Andrew's experiments
on carbon dioxide, Clausius suggested a modification of the
last term of the equation and ultimately arrived at an equation
of the form

where /( 2") is a function of the absolute temperature that takes
the value 1 at the critical temperature.



The equations of van der Waals and Clausius are constructed

with special reference to the behavior of fluids in the vicinity

>f the critical state ; hence they apply more particularly to

such fluids as carbon dioxide, the critical temperature of which

.s within the range of temperature encountered in the practical

implications of heat media. The critical temperatures of most

mportant fluids, as water, ammonia, and sulphur dioxide are,

lowever, far above the ordinary range, and for these media

ihe general equations do not give as good results as certain

purely empirical equations deduced from experiments covering
i relatively small region. For some fluids, notably ammonia,
:here is unfortunately a lack of experimental data; for the

.nost important fluid, water, we have, however, reliable data

tarnished by the recent experiments at Munich.

131. Experiments of Knoblauch, Linde, and Klebe. The

sxperiments made at the Munich laboratory were so con-

iucted that three important
relations could be obtained

simultaneously. These

were :

1. Relation between pres-

sure and temperature of

saturated steam.

2. Relation between spe-

sific volume and temperature
of saturated steam.

3. Relation between pres-

sure and temperature of

superheated steam with the

volume remaining constant.

The experiment covered

the range 100 to 180 C.

The apparatus employed is

shown diagrammatically in

Fig. 69. An iron vessel a contains a smaller glass vessel 5 to

which is attached a glass tube c. A similar glass tube d leads
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a tube/ leading to a mercury manometer, oteam is mi/ruuuoeu.

into vessel a from a boiler, and suitable provision is made for

returning the condensed steam to the boiler.

A given weight of water is put into the glass vessel b and

is evaporated gradually by the heat absorbed from the steam

surrounding it. As long as vessel b contains a saturated mix-

ture, the pressure within b must be the same as that within a,

since the temperature is the same throughout. Hence the

mercury levels m, m in tubes o and d will be at the same height.

When the water in b is all vaporized and the pressure and

temperature of the steam in a is further increased, the steam

in b becomes superheated. While

the temperature is still the same in

vessels a and 5, the pressures in the

two vessels are not equal. This

may be shown by the ^-diagram

(Fig. 70). Let point A on the

saturation curve s" denote the state

of the steam in vessel b just at the

end of vaporization ; it also repre-

sents the state of the saturated

steam in the outer vessel a. As

the temperature rises from ^ to t
z

the state of the steam

in a changes as represented by the curve A
-,

that is, the

steam in a is saturated at the pressure pv The apparatus
is so manipulated, however, that the mercury level m in tube o

is held constant, thus keeping a constant volume of steam in

vessel b. The point representing the state of the steam in b

moves along the constant volume curve AS in the superheated

region, and the final pressure p3 given by the point JS is smaller

than the pressure p2
of the saturated steam in a. As a result

the mercury level in the tube d will be depressed to the

level n. A comparison of the mercury level in the manometer
with the level m gives the relation between the pressure and

temperature of superheated steam at the given constant

volume v\ and a comparison witli the level n gives the

relation between the pressure and temperature of saturated

steam.

L
FiG. 70.
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132. Equations for Superheated Steam. To represent the

esults of the Munich experiments, Linde deduced the empiri-
al equation

- JZ>. (1)

n metric units with p in kilogram per square meter, the con-

tants have the following values :

J5 = 47.10 tf= 0.031 =3.

a = 0.0000002 D= 0.0052

English units and pressures in pounds per square inch, the

iquation becomes :

pv = 0.5962 T-p(l + 0.0014^?)
A5030

^
000 _ o.0833\ (2)

Fhe form of Eq. (1) is such as to make it inconvenient for

he purpose of computation ; and the constant D in the last

,erm leads to complication in the working out of a general

heory. A modified form of the equation, namely,

* + ' = -(l+*)fi (3 )

s free from these objections and with constants properly chosen

epresents the results of the Munich experiments as accurately

is Linde's equation. The constants are as follows :

METRIC UNITS ENGLISH UNITS

B = 47.113 B 85.87, p in pounds per square foot

= 0.5963, p in pounds per square inch

,ogm = 11.19839 log TO = 13.67938

n = 5 n = 5

c = 0.0055 . c- 0.088

a = 0.00000085 a = 0.0006, p in pounds per square inch.

Fhe final equation with constants inserted is therefore

T f-i . A nnnfl m\ 47795 x 10
_

SA-*.



An equation o tne simple lorm

v + c=^- (5)
P

has been proposed by Tumlirz on the strength of Battelli's

experiments. Lincle has shown that this equation may be made

to represent with fair accuracy the results of the Munich ex-

periments. For English units and with p in pounds per square

inch, the equation becomes

v + 0.256 = 0.5962. (G)

For moderate pressure this formula is quite accurate, but at

high pressures and superheat the volumes given by it are con-

siderably smaller than those indicated by the experiments.
Two other characteristic equations deserve mention. For

many years Zeuner's empirical equation

pv = BT- Cp
n

(7)

has been extensively used. The results of the Munich experi-

ments have shown that the form of this equation is defective,

and that it cannot accurately represent the behavior of super-
heated steam over a wide range. Callendar, from certain theo-

retical considerations, has deduced the equation,

which in form resembles Eq. (3), but lacks the factor p in the

last term. While this equation is somewhat simpler than

Eq. (3), it is less accurate.

133. Specific Heat of Superheated Steam. The experimental
evidence on the specific heat of superheated steam may be clas-

sified as follows :

1. The early experiments of Regnault at a pressure of one

atmosphere and at temperatures relatively close to

saturation.

2. The experiments of Mallard and Le Chatelier, Langen,
and others at very high temperatures.



3. The experiments of Holborn and Henning at atmospheric

pressure and at temperatures varying from. 110 to

1400 0.

4. Recent experiments with steam at various pressures and

with temperatures close to the saturation limit. Of

these, the experiments of Knoblauch and Jakob are

considered the most reliable.

Regnault concluded from his experiments that at a pressure
f one atmosphere the specific heat of superheated steam has

he constant value 0.48 for all temperatures. This value has

een largely used for all temperatures and for all pressures as

rail.

Experiments by Mallard and Le Chatelier and by Langen at

igh temperatures agree in making the specific heat a linear

auction of the temperature. Thus, according to Langen,

cp
= 0.439 + 0. 000239 t, (1)

rhere t is the temperature on the C. scale.

The earlier experiments of Holborn and Henuing at much

Dwer temperatures than those of Langen lead to the formula

cp
= 0.446 + 0.0000856 t. (2)

?his is again a linear relation, but the coefficient of t is smaller

han that in Langen's formula. Equations (1) and (2) show

hat the specific heat varies with the temperature at least, and

hat the convenient assumption of the constant value 0.48 is

Lot permissible.

Finally, the experiments of Knoblauch and Mollier show con-

lusively that cp depends also upon the pressure. In these

experiments, steam was run through a first superheater in

diich all traces of moisture were removed. It was then run

hrough a second superheater consisting of coils immersed in

m oil bath. The heat was applied by means of an electric

lurrent and could be measured quite accurately, and a com-

>arison of the heat supplied with the rise of the temperature of

lie steam gave a means of calculating the mean specific heat over

.he temperature range involved. Experiments were conducted

ii, -m-Assm-As of 9, 4. fi. a.nrl 8 ICQ-. TtBT sauare centimeter. The
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results are shown by the points in Fig. 71. From these

results the following conclusions may be drawn : (1) The

specific heat varies with the pressure, being higher the higher

the pressure at the same temperature. (2) With the pressure

constant, the specific heat falls gradually from the saturation

limit, reaches a minimum value, and then rises again.

Starting with the characteristic equation (3), Art. 132, it is

possible to deduce a general equation for the specific heat cp

that will give results substantially in accord with the experi-

mental results of Knoblauch and Mollier. For this purpose we

make use of the general relation

From the characteristic equation,

BT ^
00

in x '
-* s

'J.

we obtain by successive differentiation

dv B mn ,

.

C1 + op). (6)

Substituting in (3), the result is

dcp \ Amn(n""

Talcing T as constant and integrating (7) with p as the in-

dependent variable, the result is

Amn(n + 1) / a \
,

, , .
J

C
P
=-

jrs+i -p(^ + nP )+ const, of integration.

Now since T was taken as constant, the constant of integration

may be some function of T; hence we may write

(8)



60 160 240 480 5603SO 400

Temperature
le groups of points represent the results of experiments at 2, 4, 6, and 8 kg. per sq. cm.

respectively, beginning with the lowest group.

FIG. 71.



increased. From JLangen s experiments, it is seen tnat at very

high, temperatures c
p

is given by an equation of the form

hence we are justified in assuming that

where and /3 are constants to be determined from experi-

mental evidence. Equation (8) thus becomes

0)

This is the general equation for the specific heat of superheated

steam at constant pressure.

It may be seen at once that this equation gives results agree-

ing in a general way with those of Knoblauch and Mollier. At

a given temperature T the specific heat increases with the pres-

sure ; furthermore for a given pressure, cp has a minimum value

as appears by equating to zero the derivative

a rn ' Wn+Z

The following values of the constants have been found to

make Eq. (9) fit fairly well the experimental results of Knob-

lauch and Mollier :

a = 0.367

/3
= 0.00018 for the C. scale.

/3
= 0.0001 for the F. scale

Replacing the product Amn(n + 1) by a single constant (7,

we have as the final formula for the specific heat

cp
= 0.367 + 0.0001 T+p(l + 0.0003 j?) ~, (10)

where log (7=14.42408 (pressure in pounds per square inch).

Figure 71 shows the curves representing this formula for the

pressures of the Knoblauch and Mollier experiments. The

agreement between the points and curves is satisfactory, con-

sidering the difficulty of the experiments. In Fig. 72 the

<?p-curves for various pressures in pounds per square inch are
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134. Mean Specific Heat. Formula (10), Art. 133, gives

he specific heat at a given pressure and temperature. For

ome purposes it is desirable to have the mean specific heat be-

ween two temperatures, the pressure remaining constant.

?his is readily calculated by the mean value theorem ; thus

Lenoting by (cp~)m the mean specific heat, we have

\.
c
p)m~~7jn rfi" ^ J

J
2 -M

Jsing the general expression for cp , we have, therefore,

/ N 1 f^f , 0/77, Amn(n-}-V) ( .,
,
a'

(2)

The calculation, while straightforward is rather long, and if

^-curves are available, it is usually preferable to determine

he mean cp by Simpson's rule or by the planimeter.
Curves of mean specific heat are shown in Fig. 73. For any

degree of superheat the mean specific heat between the satura-

ion state and the given state is given by the ordinate corre-

ponding to the given degree of superheat and the given
iressure. For example, at a pressure of 150 Ib. per square
ach the mean specific heat for 240 superheat is 0.529.

135. Heat Content. Total Heat. Having a formula for the

pecific heat at constant pressure, equations for the heat con-

ent and the intrinsic energy of a unit weight of superheated
team at a given pressure and temperature are readily derived.

for this purpose the general equation

dq = cpdT- AT dp (see Art. 54) (1)



^

300 400

Superheat, Deg. F.
500 GOO



i=A(u+pv^
we have di = A [du +
or di = dq + Avdp. (2)

Hence, making use of (1),

From the characteristic equation we have

dv _ B n 4- ^
TO^___- + rc( a

P)7jwi

whence T -7^ v = (w + 1) (1 + ap') 7
~~ + c.

Introducing in (3) this expression for T - v and the general

expression for cp,
the result is

Since z depends upon the state of the subtance only, the second

member of (4) must be an exact differential. The integral is

readily found to be

i
Q

. (5)

The constant of integration i
Q

is determined by applying

Eq. (5) to the saturation state. For a given pressure and cor-

responding saturation temperature the second member of (5)
exclusive of can be calculated. The first member is the

value of i for the assumed pressure as given in the steam table.

Hence i
Q

is found by subtraction. By this method the mean
value i =886.7 is obtained.

Introducing known constants, Eq. (5) becomes

i = ^(0.367 + 0.00005 T) - p (1 + 0.0003^)^

-0.0163^ + 886.7.

'

(6)



Here log (7= 13.72511 when p is taken in pounds per square
inch.

The total heat of a unit weight of superheated vapor is the

heat required to raise the tem-

perature of the liquid to the

boiling point at the given con-

stant pressure, evaporate it, and

then superheat it, still at con-

stant pressure, to the tempera-
ture under consideration. On
the ^ZW-plane, the process is

shown by the line ABCD (Fig.

74). The area OABCOl rep-

resents the total heat of the

saturated vapor, which has

been denoted by q" , The area

A

FIG. 74.

represents the heat added to superheat the vapor.

This heat is evidently given by the integral

taken between the saturation temperature T8 at point and

the final temperature T at point D. This integral is, in fact,

the product (cp) OT(2
7 Ta ~),

where (ep)w is the mean specific

heat for the temperature range T Tt
. The total heat of a

unit weight of superheated steam is given therefore by the

expression q= <? +(c,^T - Tj. (7)

The term (cp^)m(T Ts) is easily found from the mean

specific heat curves (Fig. 73), and gr"(=i") is given in the

steam table. Hence with the aid of the curves, an approxi-

mate value for the heat content may be calculated.

EXAMPLE. Find the heat content of one pound of steam at a pressure

of 150 Ib. per square inch superheated 200.

From the steam table t"(= <?") for this pressure is 1194.6 B.tu.; and

from Fig. 73 the mean specific heat from saturation to 200 superheat is

0.534.

Hence i = 1194.6 + 200 x 0.534 = 1301.4 B. t. u.

Thp roc-lllf. rnirar. K,T -frvTTYiTila. f(\\ il 1 2f)1 .7 "R. t. 11.
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136. Intrinsic Energy. For the intrinsic energy we have

from the defining equation i = A(u + pv),

Au = i Apv. (1)

Using the expressions for i and v heretofore derived, we obtain

the equation

* . (2)

This expression gives the intrinsic energy in B. t. u. of a unit

weight of superheated steam. Introducing the proper constants,

we have, when p is taken in pounds per square inch,

AM = 2T

(0.2566 + 0.00005 T^~ -(1+ 0.00024 p) + 886. 7, (3)

where log (7=13.64593.

The intrinsic energy may also be found quite exactly by
the following method. For the given pressure p the energy
of one pound of saturated steam is

Au" = q' + p,

and the increase of energy due to the superheat is

where (c^)m denotes the mean specific heat at constant volume.
The difference (c^)m (cv)m varies somewhat with the pressure
and superheat, but 0.13 may be taken as a mean value. Hence
the energy of one pound of superheated steam is given by the

equation
AU =q'+p + [(*,)

- 0.13](^- ra). (4)

Values of q' and p are given in the steam table and the

proper value of (cp)m may be found from the curves of Fig. 73.

EXAMPLE. Find the intrinsic energy of one pound of steam at a pres-



137. Entropy. From the general equation

ntroducing in this equation the expressions previously derived

or cp and
( ^) (see Art. 133), the result is

\dJTJp

ds = + dT+ Amnp(-
n +

["his is necessarily an exact differential since s is a function of

he state only. The integral is found to be

+ir (3)

nserting the known constants and passing to common loga-

ithms, (3) becomes

s = 0.8451 log T+ 0.0001 T- 0.2542 logp

0.0003^)
-

6

- 0.3964. (4)

11 using (4), p is taken in pounds per square inch, and

og (7=13.64593. The constant 0.3964 is determined by

>assing to the saturation limit, as was done in finding the

ralue of .

Equation (4) gives the entropy of one pound of superheated

iteam at any given pressure and temperature.

The entropy may also be found as follows. Let the point D

'Fig. 74) represent the state of the fluid and assume CD

;o be a constant pressure line cutting the saturation curve

it 0. Then OO1 gives the entropy s" of saturated steam

it the same pressure as the superheated steam, and
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1. Constant Pressure. Let superheated stearn change state

i constant pressure from an initial temperature ^ to a final

mperature t
z

. For the heat added we have

- Amp (n + 1) (l
+^V-L _ 1 \ (1)

\ it j \jt 2 J-i J

he external work is given by the relation

W=p(vz -vJ=B(T,-TJ-mp (I + ap) [~-L
_ 1 1

(2)
L-f-z -L

l J

he change of energy may be found from the energy equation

u
z u-j,

= Jq W,

1

independently by calculating from the general formula the

lergies in the initial and final states.

The change of entropy may be obtained, likewise, from the

3neral equation for entropy or from the relation

/Q-N
(3)

The preceding equations apply to a unit weight of the

lid.

2. Constant Volume. If T and T
2 denote, as before, the

itial and final temperatures, respectively, we have from the

laracteristic equation

l + (4)

om which pz may be found. Having Tv pv and Tz , pv the

itial and final values of the energy and entropy may be de-

rmined from the general formulas. Since the external work

zero, the heat added is equal to the increase of energy.

3. Isothermal Expansion. Let the initial and final pressures



characteristic equation. For the change of entropy per unit

weight we have from the general equation for entropy

(6)

The heat added during the expansion per unit weight is

therefore

For the external work, taking dv from the characteristic equa-

tion, we have

fl + S!L(fl*-pf). (7)
Pz *

The change of energy may be found by combining (6) and (7)

or from the general equation of energy. It is found to be

% - % =
|{0>i -JPa) + f (

-
1) Oi2 -

?)] (8)

It should be noted that in the case of superheated steam con-

stant temperature does not, as with perfect gases, indicate con-

stant intrinsic energy.
4. Adiabatic Change of State. For an adiabatic change the

entropy remains constant ; hence, for the relation between the

final pressure pz
and temperature Tz, we have from the general

equation for entropy

where is a constant determined from the initial state. The

pressure p2
is generally given ; therefore, we have the tran-

scendental equation

z =C', (9)



Having the initial and final values of p and T, the initial and

nal values u^ and w2 of the intrinsic energy may be calculated,

'he external work per unit weight is then

W=u
l

u
z

. (10)

In problems connected with the flow of steam the change of

.eat content resulting from an adiabatic expansion is required.

?his difference is found by calculating from the general equation

or the heat content the initial and final values i
t
and z

2
.

If the adiabatic expansion is carried far enough, the expansion

Ine, as >JE (Fig. 74), will cross the saturation curve s", and the

tate-point will enter the region between the curves s' and s".

lliis means that at the end of the expansion the fluid is a mix-

ure of liquid and vapor. The investigation of this case presents

to difficulties. The entropy and energy at the initial point D
,re calculated from the general equation. Knowing the pressure

or the final state JS, the quality x is readily determined from

he equation
xrn

vhere s denotes the entropy in the initial state. Having x, the

snergy in the final state is calculated from the equation

u
2
= J^' + z/>2). (12)

Flien the external work per unit weight is given by the equation

(13)

EXAMPLE. Steam at a pressure of 150 Ib. per square inch absolute and

superheated 100 F. expands adiabatically to a pressure of 5 in. of mercury.

Required the final condition of the fluid and the external work per pound;

ilso the pressure at which the steam becomes saturated.

From the general equation the entropy in the initial state is found to be

L.6346. From the steam table we obtain for the final pressure s' = 0.1880,

-= 1.7170; hence
T 1.6346 = 0.1880 + 1.7170 x,

)r x = 0.8425.

[n the initial state the energy in B. t. u. is

4wi = 918.1(0.2566 + 0.00005 x 918.1)
-

JfjrrgC
1 + 0-00024 x 150) + 880.7

= 1153.9 B. t. u.



In tne janal state tne energy is

Auz - qz
' + x2p2 = 101.7 + 0.8425 x 953.7 = 905.2.

Hence, the external work per pound of steam is

W= MI - Ma = 778(1153.9
-

905.2) = 193,4-90 ffc.-lb.

The initial entropy 1.6346 is the entropy of saturated steam at a pressure of

66.6 Ib. per square inch. Hence the steam becomes saturated at this pressure.

139. Approximate Equations for Adiabatic Change of State.

Exact calculations that involve adiabatic changes of superheated
steam are tedious on account of the transcendental form of the

.equation for entropy ; and it is therefore desirable to introduce

simplifying approximations, provided the results obtained by
them are sufficiently accurate. An investigation of a number
of cases covering the range of values ordinarily used in the

technical applications of superheated steam shows that a set of

equations similar in form to the equations for a perfect gas

may be obtained, and that the error involved in using these

approximate equations does not in general exceed one or two

per cent.

The relation between pressure and volume during an adiabatic

change may be represented approximately by the equation

p (v + o)
n = const. (1)

The value of c is taken the same as in formula (4), Art. 131,

namely, c = 0.088.

The value of n probably varies slightly with the initial pres-
sure and with the degree of superheat ; however, it appears that

the value n 1.31 gives quite accurate results for the range of

pressure and superheat found in practice. If now we take the

approximate characteristic equation

p(y + c) = BT, (Art. 132) (2)

we get by combining (1) and (2),

or



Given the initial state of the fluid, the volume in the final

;ate may be found from (1), the final temperature from (4),
ad the external work from (5).

EXAMPLE. A pound of superheated steam at a pressure of 200 Ib. per
[uare inch and superheated 200 expands adiabatically to a pressure of

) Ib. per square inch. Kequired the final condition and the external work.

The initial volume is found to be 2.973 cu. ft., and the initial entropy
6657. Using the formula for s (Art. 137), the final temperature is found

r trial to be 752.5 absolute
;
and taking this value of T, the exact value

; the final volume is found to be 8.6S1 cu. ft.

From (3), Art. 136, the energy in the initial state is found to be 1200.57

. t. u., that in the final state 1098.82 B. t. u.
;
hence the external work is

'8 (1200.57
-

1098.82) = 79,262 ft.-lb.

Taking the approximate formulas, we have
i _i_

v2 + c = ( Vl + c) (
iV= (2.973 + 0.088) f?2V-

a = 8.819:
\2} 'i' \50 J

hence v2 = 8.819 - 0.088 = 8.731 cu. ft.

H4

It will be seen that for practical purposes the results obtained from the

iproximate equations are satisfactory as regards accuracy.

140. Tables and Diagrams for Superheated Steam. The lead-

g properties of superheated steam volume, entropy, and

tal heat for various pressures and degrees of superheat

ive been calculated and tabulated by Marks and Davis and
r Peabody. The values in the Marks and Davis tables are

srived from specific heat curves that differ somewhat from the

irves of Fig. 72, and they therefore differ from the values

itained from the equations of Arts. 135-137. However,

.roughout the range of ordinary practice, the difference does

t exceed one half of one per cent.

The Marks and Davis tables are accompanied by graphical

.arts that may be used to great advantage in the approximate
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jlution of numerical problems. The principal chart has the

eat content i as ordinate and the entropy s as abscissa. The



turated steam at various pressures. The region above this

irve is the region of superheat, and the lines running approxi-

ately parallel to the saturation curve are lines of constant

igree of superheat. Below the saturation curve is the region
wet steam, and the lines running parallel to the saturation

irve are lines of constant quality. The lines that cross the

ituration curve obliquely are lines of constant pressure.

The first conception of the heat content-entropy chart is

.ie to Dr. E. Mollier of Dresden, hence we shall refer to it as

ie Mollier chart. In addition to the chart published by
"arks and Davis, one is contained in Stodola's Steam Turbines

id one in Thomas' Steam Turbines. In the light of the

icently acquired knowledge of the properties of saturated and

iperheated steam, the Marks and Davis chart must be regarded
j the most accurate.

The Mollier chart may be used for the approximate solution

: many problems that involve the properties of saturated and

iperheated steam, and it is specially valuable in problems on

le flow of steam. The following examples illustrate some of

le uses of the chart :

Ex. 1. Steam at a pressure of 150 Ib. per square inch superheated 200 F.

rpands adiabatically to a pressure of 3 Ib. per square inch.

The point representing the initial condition lies at the intersection of the

instant-pressure line marked 150 and the line of 200 superheat. Locating

ds point on the chart, it is found at the intersection of the lines i 1300

id s = 1.087. The heat content and entropy in the initial state are thus

itermined. The line 5 = 1.687 intersects the constant-pressure curve p = 3

i the line i = 1002
;
hence the heat content after adiabatic expansion is

)02 B. t. u. The quality in the final state is found to be 0.88.

Ex. 2. When steam is wire-drawn by flowing through a valve from a

igiou of higher pressure j t to a region of lower pressure p, the heat content

mains constant. Steam at a pressure of 200 Ib. per square inch and

lality 0.95 flows into the atmosphere ; required the final condition of the

earn.

Dra-wing a line of constant-heat content from the initial point to the

irve p = 14.7, it is found that the final point lies above the saturation curve

id that the steam is superheated about 12 at exit. The entropy increases

om s = 1.498 to s = 1.766.

141. Sunftrheated Ammonia and Sulphur Dioxide. Experi-
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other than that of water is very scant, and our knowledge of

such properties is accordingly imperfect. For superheated

ammonia Ledoux has proposed the characteristic equation

pv = BT Qp
m

, (1)

and this form has been accepted by Peabody, who derives the

following values of the constants (English units) :

=99, (7=710, m = |.

For sulphur dioxide Peabody uses the same equation with the

constants :

5 = 26.4, (7=184, TO = 0.22.

According to Regnault the specific heat of superheated ammo-

nia has the constant value 0.52. It is very likely that this

specific heat is no more constant than that of superheated
steam and that it varies with pressure and temperature. How-

ever, experimental evidence on this point is lacking. Lorenz

finds that for superheated sulphur dioxide cv
= 0.329.

The problem that most frequently arises in connection with

the use of these fluids as refrigerating media is the determi-

nation of the state of the superheated vapor after adiabatic

compression. It may be assumed that the relation between

pressures and temperatures for an adiabatic change follows

approximately the law for perfect gases, namely:

. (2)

_ r
Zeuner found that for superheated steam the exponent

in (2) is equal to the exponent m in the characteristic equation

(1). Hence, using the values of m assumed by Peabody, we
have:

For ammonia n = - = = 1.333.
l_ m 1-Q.25

For sulphur dioxide n = = 1.282.



BT.

vapor, juet A. ^rig. 10; represent tne initial state,

id B the final state after adiabatic compression. EA and

'B are constant-pressure curves. Denoting by TJ the satura-

on temperature correspond-

ig to the pressure pr the

icrease of entropy from E
T

) A is Cploge^, and the

>tal entropy in the jstate A is

s/'-f-Cplog.^l.

ikewise, the entropy in the

;ate B is

T.
II

FIG. 76.

ince AB is an adiabatic, the entropies at A and B are equal,

id therefore

i this equation s/', s
2", 2V, and 3Y' ^re tabular values corre-

jonding to the given pressures p1
and

[ence, !T2 is the only unknown quantity.

and 2j is given.

EXERCISES

1. Calculate by Eq. (2), (4), and (6), respectively, of Art. 132 the vol-

ne of one pound of superheated steam at a pressure of 180 Ib. per square

.ch and a temperature of 430 F. Compare the results.

2. If the products pv are plotted as ordinates with the pressures p as

>scissas, show the general form of the isothermals T = C when Eq. (3),

rt. 132 is used ; when Eq. (6) is used.

3. For ammonia, Peabody gives the following equations for the latent

?at of vaporization : r = 540 0.8 (t 32) . If at the critical temperature

= 0, find tc for ammonia by means of this formula and compare with the

ilue of tc given in Art. 129. Explain the discrepancy.

4. Following the method of Art. 133, deduce an equation for cp , using

le approximate equation (5), Art. 132; also using Calendar's equation (8).

5. By means of Eq. (3), Art. 132, calculate the specific volume of satu-

,ted steam at the following pressures : 5 in. Hg., 20, 50, 150 Ib. per square



men. USB

pare the results with the values of v" given in the table.

6. Calculate the mean specific heat of superheated steam at a pressure

of 140 Ib. per square inch between saturation and 250 superheat. Compare

the result with the curves of Fig. 73.

7. Using the mean specific heat curves, Fig. 73, find the heat content

and energy of one pound of superheated steam at a pressure of 85 Ib. per

square inch and a temperature of 430 F.

8. A pound of saturated steam at a pressure of 120 Ib. per square inch

is superheated at constant pressure to a temperature of 386 F. Find the

heat added, the external work, and the increase of energy.

9. The steam after superheating expands adiabatically tmtil it again be-

comes saturated. Find the pressure at the end of expansion and the

external work.

10. The following empirical equation has been proposed for the value

of cp very close to the saturation limit :

^=.----,
(Jc la)

in which tc is the critical temperature, 689 F., and ta is the saturation tem-

perature corresponding to an assumed pressure. Using the curves of

Fig. 72, calculate the value C for several assumed pressures, and thus test

the validity of the formula for these curves.

11. The following equation has also been proposed for the value of cp

at saturation : (cp) Bat
= a + bts . Test this equation, and if it holds good

within reasonable limits determine the constants o and &.

12. In the initial state 6.4 cu. ft. of superheated steam has a temperature
of 420 F. and is at a pressure of 160 Ib. per square inch. By the approxi-
mate equations of Art. 139 find the temperature and volume after adiabatic

expansion to a pressure of 80 Ib. per square inch
;
also the work of expansion.

13. Assume for the initial state of superheated steam p^ = 80 Ib. per

square inch, v
:
= 20 cu. ft., ^ = 350 F. Plot the successive pressures and

volumes for an isothermal expansion to a pressure of 30 Ib. per square inch.

Compare the expansion curve with the isothermal of air under the same

conditions.

14. With the data of Ex. 13 find the external work, heat added, and

change of energy (a) for the superheated steam
; (fc)

for air.
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CHAPTER XII

MIXTURES OF GASES AND VAPORS

142. Moisture in the Atmosphere. Because of evaporation

of Welter from the earth's surface, atmospheric air always con-

tains a certain amount of water vapor mixed with it. The

weight of the vapor relative to the weight of the air is slight

even when the vapor is saturated. Nevertheless, the moisture

in air influences in a considerable degree the performance of

air compressors, air refrigerating machines, and internal com-

bustion motors ;
and in an accurate investigation of these ma-

chines the medium must be considered not dry air but rather a

mixture of air and vapor. The study of air and vapor mixtures

is also important in meteorology and especially in problems

relating to heating and ventilation. Finally, it has been pro-

posed to use a mixture of air with high-pressure steam as the

working medium for heat engines, and the analysis of the action

of an engine working under this condition demands a special

investigation of air and steam mixtures.

Experiment has shown that Dalton's law holds good within

permissible limits for a mixture of gas and vapor. The gas has

the pressure p' that it would have if the vapor were not present,
and the vapor has the pressure p" that it would have if the gas
were not present. The pressure of the mixture is

P=p'+p". (1)

If the vapor is saturated, the temperature t of the mixture must
be the saturation temperature corresponding to the pressure

p". If the temperature is higher than this, the vapor must be

superheated.

The water vapor in the atmosphere is usually superheated.
Let point A, Fig. 77, represent the state of the vapor, and let

A.B be a Constant DresSlirH P.nrvo nnt.-f-.inrr f.lm unfn vrH-irm p.nrvft
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b B. Further, let m denote the weight per cubic foot of the

apor in the state A, and m-^ the weight per cubic foot of satu-

xted vapor at the same temperature, that is, in the state 0.

'he ratio is called the humidity of the air under the given

onditions. If the mixture of air and vapor is cooled at constant

ressure, the vapor will follow the

ath AB and at B it will become

iturated. Upon further cooling
3me of the vapor will condense.

?he temperature T
Q

at which con-

ensation begins is called the dew
oint corresponding to the state A.

The humidity may be expressed

pproximately in terms of pressures.

<et pa
" denote the pressure of the

apor in the state A and pc
n the

ressure of saturated vapor at the

nine temperature, hence in the state represented by 0. At the

)w pressures under consideration we may assume that the vapor

allows the gas law pV MET. Hence, taking V- 1, we have

FIG. 77.

'herefore, denoting the humidity by <, we have

m ">"

p
(2)

'hat is, the humidity is the ratio of the pressure corresponding

D the dew point to the saturation pressure corresponding to

le temperature of the mixture.

For investigations that involve hygrometric conditions, the

ata ordinarily required may be found in table II, page 319.



At 70 the saturation pressure is, irom taoie JLI, U.MO incnes 01 ug,

while at 52 the saturation pressure is 0.13905 inches of Hg. The humidity

is therefore
03905 =v
0.738

If the air were saturated at 70, it would contain 8.017 grains of vapor per

cuhic foot. Hence with 52.9 per cent humidity the weight of vapor per

cubic foot is

8.017 x 0.529 = 4,211 grains.

EXAMPLE 2. Atmospheric air has a temperature of 90 F. and a humidity
of 80 per cent. It is required that air be furnished to a building at 70 F.

and with 40 per cent humidity.

From table II, the pressure of saturated vapor at 70 is 0.738 inches

of Hg; hence from (2) the pressure corresponding to the dew point is

0.40 x 0.738 = 0.2952 inches of Hg, and the dew point is 44.5. In the initial

state one cubic foot of air contains 0.80 x 14-.85 = 11.88 grains of vapor.

The air is cooled to 44.5 by proper refrigerating apparatus and in this state

contains 3.39 x
459 '6 + M ' 5 = 3.11 grains, the difference 11.88 - 3.11 = 8.77
459.6 + 90

grains being condensed. The air freed from the condensed vapor is now
heated to the required temperature, 70.

143. Constants for Moist Air. The constants B, cv , <?,

etc., given in Chapter VII apply only to dry air. For ail-

containing water vapor the constants must bo changed some-

what, the magnitude of the change depending, of course, upon
the relative weight of vapor present.
An expression for the constant B of the mixture may be

obtained by the following method. Let the volume V contain

M
1
Ib. of air at the pressure p' and M

z
Ib. of water vapor at

the pressure p". Then assuming that the gas law may be

applied to the vapor, we have

, (1)

(2)

Let
|Ta

=
3, and ^2

= e
; then from (3)

(4)



hence
*>"=.Pff^ ^f'

dding the members of (1) and (2), we obtain

'he constant m of the mixture is, however, given by the

^nation

pV=(M^M^Bm T. (7)

[ence, comparing (6) and (7), we have

Taking the molecular weight of water vapor as 18, we have

=85.72,

. j jD9 85. 1 2 1 PIld

'"^-so*-
1 -81 -

EXAMPLE. Find the value of B for air at 90 F. completely saturated

Lth water vapor. The pressure of the mixture is 14.7 Ib. per square inch.

From the table the pressure p" of the vapor is 0.691 Ib. per square inch
;

erefore the pressure p 1 of the air is 14.7 0.691 = 14.009 Ib. per square

ch. From (5), 1 + ez = = -^- = 1.0493, ez = 0.0493, and z =
'/) J.'x.UUty

1 D4.Q3
0.0306. Therefore, Bm = 53.34 x ~^ = 54.31.

l.OoOo

The specific heat of the mixture is found by applying the

w deduced in Art. 83. If cj and cp
" denote respectively

.e specific heats of the air and steam, then the specific heat of

.e mixture is given by the equation

EXAMPLE. Taking cp for air as 0.24, and for steam at 90 as 0.43, the

seine heat of the mixture given in the preceding example is

0.24 + 0.0306 x 0.43 _
1 4- 0.0306



144. Mixture of Wet Steam and Air. In a given volume V
let there be M Ib. of air and M

z
Ib. of saturated vapor mixture

of quality x. The absolute temperature of the entire mixture

is T, and the total pressure p. The pressure p is the sum of

the partial pressures p' and p" of the air and steam, respec-

tively. This follows from Dalton's law, which whithin reason-

able limits holds good for the case under consideration. We
have then

p' + p" = p, (1)

p'V^MJBT, C2)

F= Jf
2 [>(*/'

-
') + <], (3)

where, as usual, v'
r and v' denote, respectively, the specific

volumes of steam and water at the saturation temperature T.

The energy of the mixture is the sum of the energies of the

two constituents ; hence, we have

AU=MlCvT+Mz (j + xp) + Z7 . (4)

Likewise, the entropy of the mixture is

S =M
l [> log, T+ (c9

-O loge F] +Mz + + ff . (5)

By means of these equations various changes of state may be

investigated.

145. Isothermal Change of State. Since ^remains constant,
we have from (4)

A( Uz
-

Z7i)
= Mf(zt - xj, (1)

and from (5)

%-S^ M,AB loge^ + M2 Lfa - xj. (2)

Hence, the heat added is given by the equation

Q = T(SZ
- SJ = MtABTlog. -p

+ Jf
2r(^2

- ^. (3)

The external work is

(4)



1

neglecting the small water volume v',

VZ =

hile in the initial state

(6)

ence, combining (5) and (6),

_ JF

From (7) it appears that isothermal expansion is accompanied
r an increase of the quality #, that is, by evaporation, while

^thermal compression involves condensation.

146. Adiabatic Change of State. In the case of an adiabatic

ange the final total pressure j92
is usually given. Assuming

at the steam in the mixture does not become superheated,
e final temperature T

z
of the mixture must be the saturation

cnperature corresponding to the partial pressure p2
"

of the

jam. The determination of the final state of the mixture

solves the determination of two unknown quantities ; namely,
3 partial pressure p2

" and the quality #
2

of the saturated

por. Hence two relations are required. One is given by
3 condition that the entropy of the mixture shall remain

astant during the change, the other by the condition that

3 final volume Vz may be considered as occupied by each

istituent of the mixture independently of the other.

En the application of the first condition it is convenient to

3 an expression for the entropy of the mixture of a form

ferent from that given by (5), Art. 144. In terms of the

nperature and pressure, the entropy of a unit weight of air

^iven by the expression

s = cp log, T-AB logep + s ;

ice for the mixture we have

S=M, (cJoer, T-AB loer. '") + A
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As the constant $ disappears when the difference of entropy

between two states is taken, it may be ignored in the calculation.

Let 8} denote the entropy in the initial state. Then since

the entropy remains constant, we have

^ =M
l (cv logfl

T
z
- AB logaK) + JfV + (2)

\ j.% /

In Eq. (2), Sr Mv M.
2 ,

and the coefficients cv and AB are

known, as is the final total pressure pz
. The partial pressures

p2

r and pz",
the quality a;

2 ,
and temperature Tz are unknown.

However, T
z depends upon |?2", and pz

'
is found from the

relation pz + pz
" = p2

when pz
' f

is determined. Denoting the

final volume by Vv we have

whence W
Inserting this expression for x

z
in (2), we have finally

SMIo T-ABlo Mfs + -

(4)
\ Mz Pz V

2 /

In this equation pz is the only unknown. The solution is

most easily effected by assuming several values of pz
" and

calculating for these the values of the second member. These

calculated values are then plotted as ordinates with the corre-

sponding values of pz
" as abscissas and the intersection of the

curve thus obtained with the line ^ = const, gives the desired

value oipz
"'

The external work of expansion or compression is equal to

the change of energy. Hence, using the general expression
for the energy of the mixture, we have

(5)

EXAMPLE. In a compressor cylinder suppose water to be injected at the

beginning of compression in such a manner that the weight of water and
water vapor is just equal to the weight of the air. Let the pressure of the

mixture be normal atmospheric pressure 20.92 in. of mercury, and let the

temperature be 79.1 F. The mixture is compressed to a pressure of 120 Ib.



ing to 79.1 is 1 in. Pig, hence the partial pressure of the air is 28.92 in. Hg.
The initial quality x is found from the relation

whence 53 '34 x 538 '7 = 0.0214.M2pi'vi" 28.92 x 0.4912 x 144 x 656.7

The factor 0.4912 x 144 is used to reduce pressure in inches of mercury to

pounds per square foot.

For l.he entropy of the mixture we obtain from (1) (neglecting the con-

stant So)

Si = 0.24 loge 538.7 - 0.0686 loge (28.92 x 0.4912) +0.0916+ 0.0214 x 1.9482

= 1.4587.

Since the ratio of the final to the initial pressure of the mixture is =1 = 8.2,

we assume that the pressure pz" of the vapor after compression will be

approximately 8 times the initial pressure pi". Hence we assume p 2
"

7,

8, and 9 in. of mercury, respectively, and calculate the corresponding values

of the second member of (2). Some of the details of the calculation are

given.

FROM STEAM TABLE

pa ABlog

1.5378

1.5400

1.5418

0.3264

0.3262

0.3259

0.0308

0.0349

0.0390

1.4519 1

1.4673 I Results

1.4814
J

The pressure p2
" that gives the value S = 1.4587 lies between 7 and 8 in. Hg

and by the graphical method or by interpolation we find p2
" = 7.44 in. Hg,

or 2>a"
= 3.65 Ib. per square inch. Therefore p2

' = 120 - 3.65 = 116.35 Ib.

per square inch. From the steam table the following values are found for

the pressure pa
" = 7.44 in. Hg : t = 149.3, T2 = 608.9. qj = 117.3, r2 = 1000.4,

p2 = 942.8, v2" = 99. The final quality is

53.34 x 608.9

p2'v2
" 116.35 x 144 x 99

The external work per pound of air is

W= ,7[0.17(149.3
- 79.1) + 117.3 - 47.2 + 0.0214 x 989.8 - 0.01958 x 942.8]

= 61566 ft. Ib.
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The volume of the mixture at the end of compression is

V = * = 6*8421608.0 = 1<08ao cu< ft

pa
' 110.85 x 144

and the work of expulsion is therefore

1.9380 x 120 x 144 = 33408 ft. Ib.

Hence, the work of compression and expulsion is 950(5'! ft. Ib.

The effect of injecting water into a compressor cylinder may be shown

by a comparison of the result just obtained with the work of compressing

and expelling 1 Ib. of dry air under the same conditions.

The initial volume of 1 Ib of air is
f-
= la -C74 cu - fti -

The final volume after adiabatic compression to 120 Ib. per squaro inch is

JL

13.574 (^pY'
4

= 3.0290 cu. ft.

\ .l^U /

The work of compression is

,7 x 13.574 - 120 x 3.0290) = 59044 ft. Ib.,

the work of expulsion is 3.0290 x 120 x 144 = 52350 ft. Ib., and the sum is

111394 ft. Ib. The effect of water injection is therefore to reduce the

volume and temperature at the end of compression and the work of com-

pression and expulsion. The reduction of work in this case is about 17

per cent.

147. Mixture of Air with High-pressure Steam. In the pre-

ceding articles, we have dealt with mixtures of steam and air

in which the pressure of the vapor content was small. The

suggestion has been made that a mixture of air at relatively

high temperature and pressure mixed with steam either super-

heated, saturated, or with a slight amount of moisture be used

as a medium for heat engines. An analysis of the action of

such a medium in a motor demands in the first place a discussion

of the process of mixing, afterwards a discussion of the change
of state of the mixture.

Let M^ Ib. of air compressed to a pressure pl
and having a

temperature T^ be mixed with M
z Ib. of wet steam having a

pressure w~ and miali-hv 1- Tl-io fomT\ovof.iivo T1 nf



g the air into a receiver which contains steam, or vice versa.

nee under these conditions the pressure of the mixture can-

it be raised above the pressure of the constituents, the volume

the mixture cannot be taken as the original volume V
l
of

e air. We assume, on the other hand, that the conditions

e such that the volume of the resulting mixture is the sum
the volumes of the constituents ; that is,

F=F1+ F2 . (1)

s a second condition, the internal energy of the mixture is

Tial to the sum of the energies of the constitutents ; hence

e have the equation of condition

U=Ul+ Ur (2)

Let T denote the temperature after mixing p' the partial pres-

.re of the air and p" the partial pressure of the steam. Then,

ovided the steam does not become superheated, the tempera-

.re T must be the saturation temperature corresponding to the

essurep".
The following relations are readily obtained.

(3)

1 since the quality x
2 is nearly 1,

(4)

(5)

here x denotes the quality after mixing, and v" is the specific

)lume of steam corresponding to the pressure//'.

(6)

z (q
! + xp). (8)

com (2) we have

= M,en T, +MM + a;2P2). (9)



(10)
Pi

Having V calculated from (10), we obtain from (5)

and this expression for x substituted in (0) gives finally

(12)

In (12) the second member is known from the initial condi-

tions. In the first member
q', p, and v" are dependent on T \

hence T is the one unknown. As usual, tho solution is ob-

tained by taking various values of T and plotting the resulting

values of the first member of (12).

EXAMPLE. Let 1 Ib. of wefc steam, quality 0.85, at a pressure of 200 Ib.

per square inch, be mixed with 2 Ib. of air at a pressure of 220 Ib. per

square inch and a temperature of 400. Required the condition of the

mixture.

From the data given, the following values are readily found :

Vi = 2.895 cu. ft.
;
Vz = 1.948 cu. ft.

;
V = 2.81)5 + 1.948 = 4.843 cu. ft.

U=Ui+U>2 = 1273.8 B. t. u.

Equation (12) becomes

0.34 T + q' + 4.843^ = 1273.8.
v"

We now assume for p" the values 50, 75, and 100 Ib. per square inch;
from the tables we find the corresponding values of q', p, v", and T, and

calculate the values of the first member. The results are :

For /'= 50, OSlB.tu.

p"= 75, 1 222.3 B. t.u.

p" = 100, 1451 B. t. u.

Plotting these results, we find p" = 81 Ib. per square inch very nearly. The

temperature of the mixture is therefore 313 F. and the quality of the

4 843
steam is x =~ = 0.897. (5.4 is the specific volume v" corresponding to

a pressure of 81 Ib.) The partial pressure p' of the air is found from

(5) to be 130 Ib. per square inch. Hence the pressure of the mixture is

130 + 81 = 211 Ib. per square inch.



JLU is seen mia,\j, tis L.UW IBSUIL UL mixing, trie temperature is considerably
vered, the pressure takes a value between pi and

jo2 ,
and the quality of

3 steam is increased.

If the steam is initially superheated, the preceding equations
list be modified by inserting for V2 arid V

z
the appropriate

:pressions for the volume and energy, respectively, of super-
ated steam. To reduce as far as possible the complication
the formulas we shall take the approximate equation (5),

L-t. 132, for the volume. We have then

F2
=M

z
v
z
=M

2(^ - A (13)

ae constant B is written with a prime merely to distinguish
from the constant for air. The intrinsic energy of the steam

given by Eq. (2), Art. 136. This equation can be simplified

ith a small sacrifice of accuracy by dropping the term con-

ining a. The modified equation then takes the form

Au = !F(e + fT) -& + 886.7, (14)

which e = 0.2566, /= 0.00005, and log 0= 13.64593.

From (6) and (14) the energies of the constituents before

ixing can be calculated, and the sum of these gives the

Lergy If of the mixture. We have then as one equation of

>nditioii

+ fT) - + 886.7] =AU. (15)

nee p" and T are here independent, there are two unknowns

id a second condition is required. From (3) and (13) the

itial volumes V^ and V2
are found and the sum gives the

>lume V of the mixture. Then

.P'-

P" = ~V

Jf2

:om (15) and (16) the unknowns p" and STcan be found.
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EXAMPLE. Let 5 Ib. of air at 60 F. be compressed adiabatically from

atmospheric pressure to a pressure of 200 Ib. per square inch and mixed

with 1 Ib. of steam at 200 Ib. per square inch superheated 100. The con-

dition of the mixture is required.

The temperature of the air after compression

^=519.6(^)^=1095.

The saturation temperature of steam at 200 Ib. per square inch is 381.8 F
;

hence Tz = 381.8 + 100 + 459.0 = 941.4. The energy of the air is

5 x 0.17 x 1095 = 930.75 B. t. u.

and that of the steam is, from (14),

941.4 (0.2566 + 0.00005 x 941.4)- C-^- + 880.7 = 1100.0 B. t. u.
v '

941.4 5

Hence A (Ul + Z72) = A U = 030.75 + 11GO.O = 2001.35. B. t. u.

We have then from (15).

0.85 T + 7X0.2566 + 0.00005 T)-Q~ = 1204.65.

To derive an expression for the partial pressure p" the total volume V must

be found. Before mixing, the volume of the air is

v MZ. = 5x63.34x1095 =
1

p l
144x200

'

and the volume of the steam is

0-5062 x 941.4- _
pz 200

Hence V= 10.14 + 2.55 = 12.09 cu. ft.

After mixing the superheated steam at the partial pressure p" and tem-

perature T occupies this volume
; hence, we have (since M% = 1)

_ B'T 0.5062 T
V+c 12.69 + 0.256

Introducing this expression for p" in the term ~~-, that term becomes

C 1

, where log C' - 12.30919. The equation in T then becomes

1.1066 T + 0.00005 Tz - - = 1204.65.



T 1.1060 T 0.00005 T* - Sum
JT4

J"'1"

1000 1106.6 50. 2.04 1154.56

1050 1161.93 55.13 1.68 1215.38

1100 1217.26 60.5 1.39 1276.37

By interpolation it is readily found that T= 1041. The pressure of the

:am is

0.5962 x 1041 Afr nA ,, . ,

p -
TTTai
- = 47.94 Ib. per square inch,

lile the pressure of the air is

. 53.34x1041x5 ,_, no ..

P' 777 77
= 151.93 Ib. per square inch.

terefore p =p' + p" = 199.9 Ib. per square inch.

The total pressure p should evidently be 200 Ib. per square inch
; hence

} result may be regarded as a check on the calculation.

Having now the initial condition of the mixture, the condi-

>n after adiabatic expansion to any assumed lower pressure
d the work of expansion may be found by the methods of

?t. 146.

The discussions of Arts. 146 and 14T furnish the necessary

uations for the analysis of the action of a motor that uses a

.xture of air and steam as its working fluid.

EXERCISES

1. Find the humidity and the weight of vapor per cubic foot when the

nperature is 85 and the dew point is 70.

2. The humidity is 0.60 when the atmospheric temperature is 74 F.

id the dew point.

3. Find the value of B for air at 80 with 70 per cent humidity. Fiud

the specified heat cp of the mixture.

4. A mixture of air and wet steam has a volume of 3 cu. ft. and the

nperature is 240 F. The weight of the air present is 1 Ib., that of the

am and water 0.4 Ib. Find the partial pressures of the air and vapor, the

al pressure of the mixture, and the quality of the steam.

5. Let the mixture in Ex. 4 expand isothermally to a volume of 5 cu. ft.

id the external work, the heat added, the change of entropy, and the

inge of energy.

6. Let the mixture expand adiabatically to a volume of 5 cu. ft. Find

1 condition of the mixture after expansion, and the external work.



7. Let 1 Ib. of steam, quality 0.87, at a pressure of 150 Ib. per square

inch, be mixed with 4 Ib. of air at a pressure of 100 Ib. per square inch and

a temperature of 340 F. Find the condition of the mixture.

8. Let the mixture in Ex. 7 expand adiabatically to a pressure of 40 Ib.

per square inch. Determine the final state of tho mixture and calculate the

work of expansion.

9. Let 1 Ib. of steam at a pressure of 150 Ib. per squaro inch and super-

heated 140 be mixed with 6 Ib. of air at a pressure of 100 11). per square

inch and a temperature of 340 F. Find the condition o the mixture.

10. Let the mixture in Ex. 9 expand adiabatically until the pressure

drops to 14.7 Ib. per square inch. Required the final state of the mixture

and the work of expansion.
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CHAPTER XIII

THE FLOW OF FLUIDS f>
"

'

148. Preliminary Statement. Under the title " flow of

fluids
"
are included all motions of fluids that progress continu-

ously in one direction, as distinguished from the oscillating

motions that characterize waves of various kinds. Important

examples of the flow of elastic fluids are the following : (1) The
flow in long pipes or mains, as in the transmission of illuminat-

ing gas or of compressed air. (2) The flow through moving
channels, as in the centrifugal fan. (3) The flow through
orifices and tubes or nozzles. The recent development of the

steam turbine has made especially important a study of the last

case, namely, the flow of steam through orifices and nozzles,

and it is with this problem that we shall be chiefly concerned

in the present chapter.

Of the early investigators in the field under discussion,

mention may be made of Daniel Bernoulli (1738), Navier (1829),
and of de Saint Venant and Wantzel (1839). The latter de-

duced the rational formulas that to-day lie at the foundation of

the theory of flow
; they further stated correctly conditions for

maximum discharge, and advanced certain hypotheses regard-

ing the pressure in the flowing jet which were at the time dis-

puted but which have since been proved valid.

Extensive and important experiments on the flow of air were

made by Weisbach (1855), Zeuiier (1871), Fleigner (1874 and

1877), and Him (1844). These served to verify theory and

afforded data for the determination of friction coefficients. In

1897 Zeuner made another series of experiments on the flow of

air through well-rounded orifices.

Experiments on the flow of steam were made by Napier

(1866), Zeuner (1870), Rosenhain (1900), Rateau (1900),

Gutermuth and Blaess (1902, 1904).
243



Most of the experimental
worK nere notcu .^, - ^

flow of fluids through simple orifices or through short con-

vergent tubes. The more complicated relations between veloc-

ity, pressure, and sectional area that obtain for How through

relatively long diverging nozzles have been investigated experi-

mentally by Stodola, while the theory has been developed by

H. Lorenz and Prandtl. The flow of steam through turbine

nozzles has also been discussed by Zeuner.

149 Assumptions. -In order to simplify tlio analysis of

fluid flow and render possible the derivation of fundamental

equations, certain assumptions and hypotheses must necessarily

be made.

1. It is assumed that the fluid particles move in non-inter-

secting curves stream lines which in the case of a prismatic

channel may be considered paral-

^^rp^rrrrr:p^&r3?- lul to tlxo tlxi 'S f th clianne1 '

-"i^ir^^^^^tt We mav imagine surfaces
'-^^^

' r '"

'-^^^C^- stretched across the channel, as

FlG> 78 '

JF, .F', I", etc., Fig. 78, to which

the stream lines are normal. These are the cross sections

of the channel. They are not necessarily plane surfaces, but

they may usually be so assumed with sufficient accuracy.

2. The fluid, being elastic, is assumed to fill the channel

completely. From this assumption follows the equation of con-

tinuity, namely :

in which I denotes the area of cross section, w the mean veloc-

ity of flow across the section, M the weight of fluid passing
in

a unit of time, and v the specific volume.

3. It is assumed that the motion is steady. The variables

p, v, T giving the state of the fluid and also the mean velocity

w remain constant at any cross section J? ;
in other words, these

variables are independent of the time and depend only upon the

position of the cross section.

150. Fundamental Equations. The general theory of flow of

elastic fluids is based upon two fundamental equations^which
MTP. dp.rived hv aDDlvinsr the mlneii)le of conservation of



energy to an elementary mass of fluid moving in the tube or

channel.

Let w
l
denote the velocity with which the fluid crosses a

section F of a horizontal tube, Fig. 79, and w the velocity at

some second section F. A unit weight of the fluid at section
an 2

F
l
has the kinetic energy of motion ^- due to the velocity w^ ;

hence if u is the intrinsic energy of the fluid at this section, the
nn 2

total energy is w
x+ ~. Likewise, the energy of a unit weight

w2

of fluid at section F is u -f- -. In general, the total energy at

^9
section F is different from that at section F

l
and the change of

energy between the sections must arise : (1) from energy

entering or leaving the fluid in
. .

the form of heat during the -

passage from F to F \ (2) from
\

work done on or by the fluid.

The heat entering the fluid per
unit of weight between the two

sections we will denote by q. Evidently work must be done

against the frictional resistance between the fluid and tube ; let

this work per unit weight of fluid be denoted by z. The heat

equivalent Az necessarily enters the flowing fluid along with

the heat q from the outside. Aside from the friction work, the

only source of external work is at the sections F and F. As

a unit weight of fluid passes section Fv a unit weight also passes

section F. Denoting by pl
and v

1
the pressure and specific

volume, respectively, at F-^ the work done on a unit weight of

fluid in forcing it across section J^ is the product p^ ;
simi-

larly, the product pv gives the work done ~by a unit weight of

fluid at section F on the fluid preceding it. For each unit

weight flowing the net work received at the section F
l
and F is,

therefore,

Equating the change of energy betweenF
l
and F to the energy

received from external sources, we obtain

7T-
" U

2 n

2\

^ )=z a J



or G)

This is the first fundamental equation.

It will be observed that the friction work z drops out of the

equation; the effect of friction is to alter the distribution

7/1**

between internal energy u and kinetic energy
- at section jP,
.t-j f/

leaving the sum total unchanged.

Differentiation of (1) gives

^ + du + d(pv-)
= Jdq, (2)

u/

a form of the fundamental equation that is useful in subsequent

analysis.

Equation (1), as is apparent, takes account only of initial

conditions at section jf\ and final conditions at section _F, and

gives no information of anything that occurs between these

sections. A second fundamental equation taking account of

internal phenomena between the two sections is derived as fol-

lows. Consider a lamina of the fluid moving along the channel.

This element receives from external sources the heat dq and

also the heat Adz, the equivalent of the work done against

frictional resistances. Independently of its motion, the lamina

of fluid may increase in volume and thereby do external work

against the surrounding fluid, and its internal energy may
increase. According to the first law we have, therefore,

J(dq + Adz)= du + p dv . (3)

The first member represents the energy entering the lamina

during the passage from J^ to F, du is the increase of energy,
and pdv the external work done. Combining (3) with (2), we

get
wdw 7 ,

, A si\- + vdp + dz = 0, (-i)

9

whence by integration we obtain
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The fundamental equations (1) and (5), or the equivalent dif-

ferential equations (2) and (4), are perfectly general and hold

equally well for gases, vapors, and liquids.

151. Special Forms of the Fundamental Equation. In nearly
all cases of flow the heat entering or leaving the fluid is so

small as to be negligible, and we may, therefore, assume that

q = 0. The sum u+pv will be recognized as the work equiva-

lent of the heat content i
; that is,

u +pv = Ji. (See Art. 52.)

Equation (1) of Art. 150 may, therefore, be written in the form

For a perfect gas

pv, (2)
K 1

whence,
.TON

(3)

If the fluid is a mixture of liquid and saturated vapor, the

heat content i is practically equal to the total heat. (See

Art. 86.) Hence we may put

i = q' + xr, (4)
and (1) becomes

^-JW +W-W + xrX. (5)

%g

For a superheated vapor, the general form (1) is used, the

values of ^ and i being calculated from formula (6), Art. 135.

Equations (3) and (5) being derived from the first funda-

mental equation hold equally well for frictionless flow and for

flow with friction.

152. Graphical Representation. A consideration of the

fundamental equations developed in Art. 150 leads to several

convenient and instructive graphical representations, in which



jp-axis is given by

In the case of frictionless

flow, however, the second

FlGr 80> fundamental equation [(5),

Art. 150] becomes

(i)

Hence for frictionless flow, the increase of kinetic energy is

given by the area between the jp-axis and the. curve representing
the expansion.

2. If the flowing fluid is a saturated vapor of given quality,
the representation just given applies but the equation of the

expansion line AS must be

expressed in the form pv
n

const. It is, therefore, more
convenient to use the tem-

perature T and entropy S as

coordinates. If the flow is

frictionless and adiabatic,

the expansion curve AB is

the vertical isentropic, Fig.
81. The area OHCAA^ rep-
resents the total heat of the

mixture in the initial state A,

FIG. 81.

A*and the area OHDBA
l the

total heat in the final state B
;

hence the difference of these areas, namely, the area ABDC,
represents the difference q^ + x^ -

(</ + ar), and from (5),



Art. 151, this area, therefore, represents the increase of energy

If the initial point is at A' in the superheated region, we
have

^ = area OJETOAA'A^
i = area OSDB'A^

\
- i = area A'B'D OAA'.

3. The work z expended in overcoming friction may be

shown on either the pv- or the ^ZW-plane. When friction is

taken into account, the heat Az, the equivalent of the friction

work z, reenters the fluid, and consequently.the heat content i

and the volume v are both greater at the lower pressure p
than they would be were there no friction. Hence the expan-
sion curve AB'

, Fig. 82 and 83, for flow with friction must

lie to the right of the curve AS for flow without friction.

This statement applies to both figures.

Let ij
denote the heat content in the initial state JL, i the

heat content in the state B, and i' the heat content in the final

state B' when friction enters into consideration. Then

i' > *,

whence

^ i' < *! i'

It follows from (1) Art. 151, that the change of kinetic energy
01)

^2
_ an 2-1- for flow with friction is less than the change

2<7
*

in the case of frictionless flow. Friction, therefore, causes a

loss of kinetic energy given by the relation

2 w'2
Tr .,

.N /-ON-~ = J(* -0- (2)

On the ^W-plane, Fig. 83, this loss is represented by the area

A.BB'B'; for

i' = area OHDB'-/,
i = area OHDBAV

;'-&'= area A.BB'BJ.



fluid
;
hence as explained in Art. 50, the increase of entropy

is jf '*:, and the area A^B'BJ under the curve AB repre-

sents (in heat units) the friction work z.

On the jpf-plane let a constant i line be drawn from point B',

Fig. 82, cutting the frictionless expansion line in the point Cr.

Then since the heat content

i' is the same at Gr as at B f

,

the difference i
1

i' in pass-

ing from A to B' along the

actual curve is the same as

in passing from A to Gr along
the ideal frictionless expan-
sion curve AB. .Hut the

change of i between the

mo. 82. states represented by points

A and Gr, which in work
units represents the increase of kinetic energy between A
and Cr, is given by the area AGf-.EO. Hence we have :

For frictionless flow,

For the actual flow,

= area ARDO.

. n -f-fsy1- = area A GrJEC.

Hence the loss of kinetic energy due to friction is given by the

area BDEG-.
From the fundamental equation (5), Art. 150, we have

CPl
j w2 Wi 2

/Q-N
z=\ vdp L, (3)JP 2(/

in which the integral refers to the actual expansion curve.

Referring to Fig. 82,
V

\dp is given by the area AB'DC
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T

,Z
\

FIG. 83.

while the change of energy for the actual flow is, as just shown,

given by the area AGrECi hence the difference, the area

AB'DEG-A, represents the work
of friction z.

The friction work z (area

A-iAB'B-l, Fig. 83) is greater
than the loss of kinetic energy

(area A1
BS'B

1
1

').
The reason

for this lies in the fact that

part of the heat Az entering
the moving fluid is capable of

being transformed back into

mechanical energy. As shown or

in Chapter IY, the loss of

available energy, represented

by area A^B'B^, is the increase of entropy multiplied by the

lower temperature. The triangular area ABB' represents,

therefore, the part of the friction work that is recovered.

4. The most convenient graphical representation for practi-

cal purposes is obtained by taking the heat content i and entropy
s as coordinates. On this is-

plane a series of constant pres-

sure lines are drawn, Fig. 84;

then a vertical segment AB
represents a Motionless adia-

batic change from pressure p l

to a lower pressure jp,
while a

curve AB' between the same

pressure limits represents an

expansion with increasing en-

tropy, that is, one with fric-

tion. The segment AB, there-

of
2 w, z

..-i ,

without

o'

FIG. 84.

fore, represents the increase of jet energy

friction, the segment AG-, the smaller increase with



which the pressure is p^ through an orifice or short tube, Jbig.

85, into a region in which exists a pressure p2
lower than pv

If we take the section Fl
in the reservoir, the velocity wl

will

be small and may be assumed to be zero. The second section

F will be taken at the end of the tube, and
the pressure at this section will be denoted

by p. Assuming the flow to be frictionless

and adiabatic, we have, since w^ = 0,

FIG. 85.

The law of the expansion is given by the

equation
m V n= pyn C2^\

where for air n = k, while for saturated or

superheated vapor it has a value depending on the conditions

existing. In any case, n can be determined, at least approxi-

mately. Making use of (2) to evaluate the definite integral
of (1), we get n_j

w
n -

p\ I
'

plj J

If F denotes the area of the orifice or tube, and M the

weight of fluid discharged per second, the law of continuity is

expressed by the equation
Mo = Fw, (4)

whence eliminating w between (3) and (4), we obtain

71-1

From (2), we have

w r / n \ n n
-\ 1 - (^_l ^ \p^J J

(5)

\P
which substituted in (5) gives
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If now various values be assigned to the lower pressure p
and the values of w and M be found from (3) and (6), respec-

tively, the relations be-

tween p, w, and M will be

as shown in Fig. 86. The
*^11P!WS\
^^I^P^initial pressure p1

is rep

resented by the ordinate n

OQ-, the lower pressure p
by the ordinate OH, and

the curve AS represents
the change of state of the

moving fluid starting from

the initial state A. The

shaded area G-ABff rep-

*
FlG - 86<

/PI
resents the integral J vdp and, therefore, the kinetic energy

w
of the jet at the section J?. The abscissa HE represents

*ff

the velocity w found from the equation

w = V2 g x area &ABH (in ft. lb.),

while the abscissa HD represents to some chosen scale the

weight of fluid discharged per second, as found from (4) or

directly from (6). Inspection of (6) shows that the dischargeM reduces to zero when p=p-^ and also when p = 0. It fol-

lows that the curve CrDO must have the general form shown
in the figure and that the discharge JjTinust have a maximum
value for some value of p between p = and p pz

. Let

this value of p be denoted by pm. Evidently from (6), M is a

maximum when
2 nl

is a maximum. Placing the first derivative of this expression
r>



This ratio is called the critical ratio, and^ is called the critical

value of the lower pressure p. For air, taking n = Tc 1.4, this

ratio is 0.5283 or approximately 0.53 ; for saturated or slightly

wet steam, taking n= 1.135, the ratio is 0.5744.

The question now arises as to the relation between the pres-

sure p in the jet at section F and the pressure pz
of the region

into which the jet discharges. If it be assumed that p and p2

are always equal, then p = when pz
= 0, and from (6) M= 0.

This can only mean that no fluid can be discharged into a perfect

vacuum, a result manifestly absurd. It follows that under

certain conditions, p must be different from pz
. Saint Venant

o.i 0.3 0.5

FIG. 87.

0.9

and Wantzel, to whom equations (3) and (6) are due, asserted

that the discharge into a vacuum must be a maximum and
advanced the hypothesis that for all values of p% lower than the

critical pressure pm the discharge is the same. We have, there-

fore, two distinct cases : (1) If p% is greater than pm, the pres-

sure p in the jet takes the valuep2 , and w andMare found from.

(3) and (6), respectively. (2) If p2
is equal to or less than

pm the pressure p assumes the constant value pm given by (7),
and the velocity and discharge remain the same for all values

of pz
between p2 =pm and pz

= 0.

The hypothesis of Saint Venant has been fully confirmed by
the experiments of Fleigner, Zeuner, and G-utermuth. Figure 87

shows the results of Gutermuth's experiments on the flow of

steam through a short tube with rounded entrance, usinp- dif-



ferent initial pressures pr In each case the discharge becomes

constant when the lower pressure reaches a definite value pm .

154. Formulas for Discharge. Since for all values of pz
less

than pm the discharge remains constant and the pressure at the

plane of the orifice or tube takes the value pm ,
we may obtain

P
the maximum velocity and discharge by substituting for in

_n_
Pi

(3) and (6) of Art. 153 the critical value
(
-^f

1

. The
U- 4.' \+ V

resulting equations are :

and *_ ,-. (2)
\n+\J

* n + 1
V-L

^ '

These equations give w and Jf for pz <pm i if
jp2 >pm the ratio

must be substituted for in the original equations.
Pi Pi

By easy transformations (1) and (2) may be given simpler

forms. The following are some of the well-known formulas

that have been thus derived.

1. Fliegners Equationfor Air. From the general equation

which applies to the air in the reservoir from which the flow

proceeds, we have

Substituting this expression for ^J in (2), and taking n*=lc,
v
i

the result is

Inserting the numerical values of k and B for air, we get in

English units

J!f= 0.53 ^^i=. (4)v y



x'^vv VX '

JJX.U11JS [CHAP. Xlli

This is the equation given by Fliegner as
representing the re-

suits of his experiments on the flow of air from a reservoir into
the atmosphere. It holds good when the pressure in the reser-
voir is greater than twice the pressure of the atmosphereWhen the pressure in the reservoir is less than twice the at-

* f 110Wing emPirical equation is given by

J.

2. Grashofs Equationfor Steam. In formula (2), Pl and v
refer to the fluid in the reservoir. If this fluidSs seated
steam, then^ and

v, are connected by an approximate relation

in which for English units, m = 1.0631 and (7= 144 x 484 2From (6) we readily obtain
b4 ' 2 '

m+i

Pl =
Q~bn

and
substituting this in (2), the

resulting equation is

If now we take for steam the value n = 1.135, (7) reduces tothe simple form ^ w auuces to
1 m

^=0.01911^0.97.
In this formula, F is taken in square feet and in pound, npr
square foot. When the area is taken in square^iX atd thepressure in pounds per square inch, (8) becomes

^"=0.0165^0-97.
This formula is applicable for values of p9 below the criH^T
backpressure^.

^nwoai

3. Rateau^K T^nvmiiJ^ r>_j. i TO-I
modified the Grashof

the results of his experiments :
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4. Napier's equations. The following simple, though some-

what inaccurate, equations based upon the experiments of

Mr. R. D. Napier, are due to Rankine.

When the pressure in the reservoir exceeds of the back

pressure

when it is less than of the back pressure

~
42

EXAMPLE. Find the discharge in pounds per minute of saturated steam

at 100 Ib. pressure (absolute) through, an orifice having an area of 0.4 sq. in.

The back pressure is less than the critical pressure, 57 Ib. per square inch.

1. By Grashof s formula

M = 60 x 0.0165 x 0.4 x lOO -^ = 34.493 Ib.

2. By Kateau's formula

6 X X 10
(16-367

- 0.96 x 2) = 34.673 Ib.

3. By Napier's formula

M = '4 * 10
x 60 = 34.286 Ib.

4. The discharge may be found from the two fundamental formulas

to = VSflr/ (ij
- fa) = 223.7V^ - ig,

and M=^.
v

The critical pressure pm is 57.44 Ib. per square inch. From the steam table

(or more conveniently, and with sufficient accuracy, from the is-chart)

we find :

ii (for 100 Ib.) = 1186.5 B. t. u.

im (for 57.44 Ib.) = 1142.7 B. t. u.

xm = 0.964.

t'm = arm Om" - v') + / = 7.07 cu. ft.

Then w = 223.7VI 186.5 - 1142.7 = 1480 ft. per second,

0.4 1480

144 7.07
and M = 60 xM x ^2 - 34.89 Ib.
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cv

in the medium is given by the relation

w = -\Jgkpv. (See any textbook in Physics). (1)

If we denote by pm the critical back pressure, we have
k

(2)
pm __f 2 V-i

which combined with the adiabatic equation

a-

ft VW* C8)

gives

w / 2 \*=I

^1=(__) . (4)
Vm \k + 1J

^ J

Combining (2) and (4), we have

W," 2

The velocity through the orifice is

and by the use of (5) this becomes

w = -Vgkpmvm . (6)

Comparing (6) with (1), it appears that the maximum velocity

of flow from a short convergent tube is the same as the velocity of

sound in the fluid in the state it has at the critical section.

This result is due to Holtzmann (1861).

156. The de Laval Nozzle. The character of the flow through
a simple orifice depends largely upon the pressure jt?2 in the

region into which the jet passes. There are two cases to be

discussed :

1. When^?2
is equal to or greater than the critical pressure

pm given by the ratio

pm _f 2 Y&
Pi \k -I- 1

2, When p2
is less than pm .



In the first case the pressure a f
as wo have seen, takes'
and

therefore, the jet

the

for

Fig. 88,

jet, the

,
,,

constant cross section. Furthermore
8

.

e> -. dAio u.

remains
practically con-

stant at successive cross sections.
Ihis

velocity is giveu by m
Art. 151.

W '

In the second case the pres-
sure at section a takes the critical v
is greater than the pressure of the sunAs a result of the pressure difference -
jet will expand laterally, as shown Fig
furthermore, along the axis of the jet the

the

89.

i successive sections are passed.
itial

velocity at section a is

FIG. 90.

at is, the acoustic
velocity.

The lateral
spreading of the jet may

prevented by adding to the orifice

)roperly proportional tube, as shown
Fig. 90. The orifice and tube to-

^er
constitute a de Laval nozzle.

Pressurr/
6XPanSi0n f the

pressuie from^ at section to ^2 at section 3. The areatne end section 5 depends upon the final pressure Pv Ataon a the jet has the acoustic velocity w3 as if the added

The tube must diverge



its velocity increases and at the end section b takes the value

w
2 given by the relation

2W. T/ N x-i N- = J(lm -^z). (1)

The general character of the flow through the de Laval

nozzle may be seen from the following analysis.

Assuming frictionless adiabatic flow, the fundamental equa-
tions (6) and (7), Art. 150, become, respectively,

du+pdv = Q, (2)

wdw j ^ON
.- =

vdp. (3)
&

We have also the equation of continuity

Fw = Mv, (4)

from which by differentiation we obtain

dw^ dF__dv _
+ IT- .

W
For perfect gases,

pv
ni -f _,%
~A;-1'

while for superheated or saturated vapors,

nl
Therefore, (2) becomes

or Jcpdv + vdp = 0, (6)

, dv dpwhence ___..
v Icp

Combining this relation with (5), we obtain

dw dF dp __

^r +T +^- u - w
Now from (3),

W



hence (7) becomes

p w/ F

By introducing the equation for the acoustic velocity

w? = kffpv,

(8) may be readily reduced to the form

ld
p==

kw2 I dF
pdx~~ w2 w 2 F Ax

(8)

(9)

(10)

The variable x may be used to denote the distance of a nozzle

section from some fixed origin, Fig. 90. For vapors, k may be

replaced by n.

The nozzle has two distinct parts: the rounded orifice ex-

tending from to A, Fig. 91, and the diverging tube extend-

ing from A to B. As the

cross sections decrease in

area from to A, the deriva-

tive is negative for this
dx

part ; for the diverging part
(JF

from A to J5, is positive;
dx

for the throat A it has the

value zero. The pressure

drops continuously from

to B as shown by the curve _:

, dp . FIG. 91.
of pressure ; hence - is

negative throughout. Referring to (10) we have the following

results :

For orifice OA, is ;
-- is ;

dx dx

For tube AB, ~ is + ; ^ is - ;

dx dx

kwz

is ; w < iva .

is -f \ w>wa .

rl V
For throat A, ~ =

;

kw2

-= co ; w =='



Hence the velocity steadily increases until at the throat it

attains the acoustic velocity; then in the diverging tube it

further increases. Inspection of (10) shows that divergence is

necessary if the velocity w is to exceed the acoustic velocity ws .

157. Friction in nozzles. In the case of flow through a simple

orifice or through a short convergent tube with rounded en-

trance, the friction between the jet and orifice, or tube, is small

and scarcely demands attention. With the divergent de Laval

nozzle, on the contrary, the friction may be considerable and

must be taken into account. As explained in Art. 152, the

*iJ)

effect of friction is to produce a decrease in the jet energy
^9

at the end section. Referring back to Fig. 83, suppose A to

denote the initial state of the fluid entering the nozzle, B' the

final state at exit, and B the final state that would have been

attained with frictionless flow ; then the area A-jBB'B^' repre-

sents the increase in the final heat content i
z
due to friction and

it likewise represents the decrease in jet energy at exit.

Let
ij,

z
2 , and i

z
'

denote, respectively, the heat content of the

fluid in the states represented by the points A, B, and B'.

Without friction, we have

2
y*2 ....

while with friction

The loss of kinetic energy due to friction is, therefore,

It is customary to take as a friction coefficient the ratio of the

loss of energy to the kinetic energy without friction. Denoting
this ratio by y we have, therefore,



whence
' -- (2)

The experiments that have been made on the flow of steam

through nozzles indicate that the value of y may lie between

0.08 and 0.20.

EXAMPLE. Steam in the dry saturated state flows from a boiler in -which

the pressure is 120 Ib. per square inch absolute into a turbine cell in which

the pressure is 35 Ib. absolute. A de Laval nozzle is used, and the value of

y is 0.12. Find the velocity of the jet, and the loss of kinetic energy ;
also

the final quality of the steam.

For the given initial state, i 1190.1 B. t. u. At the end of adiabatic ex-

pansion to the lower pressure, xz is found to be 0.925, and ia is found to be

1095.8 B. t. u. The exit velocity on the assumption of frictionless flow is,

therefore,

w = 223.7V1190.1 - 1095.8 = 2172 ft. per second,

while the actual velocity is

w' = 223.7V(l - 0.12) (1190.1
-

1095.8) = 2038 ft. per second.

The loss of kinetic energy is,

0.12 x 778 x 94.3 = 8804 ft.-lb.,

or in B. t. u.,

0.12 x 94.3 = ll.SB.t.u.

This heat is represented by the rectangle A\BB'Bi!, Fig. 83. Hence, for the

quality x>z in the actual final condition J3', we have

xj - X2 = ?/0'i
-

*'Q = HA = 0>012
rz 938.4

and, therefore, xj = 0.925 + 0.012 = 0.937.

The effects of friction are : (1) to decrease the velocity of

flow at a given section ; (2) to increase the specific volume v

of the fluid passing the section. The latter effect is seen in

the case of steam in the increased quality or increased degree
of superheat due to the heat generated through friction reenter-

ing the moving fluid. From the equation of continuity

F=M~, (3)w

it appears that the effect of friction is to increase the numera-

tor v and decrease the denominator w of the fraction of the



second member ; hence for a given discharge M> the cross sec-

tion F must be larger the greater the friction, that is, for the

same lower pressure p2
.

The effect of friction may be viewed from another aspect.

In Fig. 92, let the curve OMAE represent the pressures along
the axis of a de Laval nozzle on the assumption of no friction.

This curve is readily found for a given value of p1 by finding
for various lower pressures^?

-%_ J?> the proper cross section F by
means of the two equations,

T Mo

FIG. 92.

Ag w
Let A be a point on the pres-

sure curve obtained in this

manner. If- now friction is

taken into account, the sec-

tion I" associated with the

lower pressure p has a larger
area than the section F calcu-

lated on the assumption of

no friction ; therefore, the

point A is shifted by friction

to a new position A' underneath the new section F' . Similarly

the end section Fe must be increased in area to JFJ, and the

point E on the frictionless pressure curve is shifted to a new

position U1
. The effect of friction, therefore, is to raise the

pressure curve as a whole, that is, to increase the pressure at

any point in the axis of the nozzle.

158. Design of Nozzles. The data required in the design of

a nozzle are the initial and final pressures, the weight of steam

that must be delivered per hour or per minute, and the coef-

ficient y. Two cross section areas must be calculated, that at

the throat, and that at the end of the nozzle. The following

example illustrates the method.

EXAMPLE. Kequired the dimension of a nozzle to deliver 450 Ib. of

steam per hour, initially dry and saturated, with an initial pressure of 175
TU nVici/^1 4-n n-nA -fi v n 1 -rvwcic<n l*k /-x-p 1ft 1V\ Q V\D<-*1 Tt + l T" !*- II f} 1Q



The critical pressure in the throat is 175 x 0.57 = 100 Ib. approx. Then
r frictionless adiabatic flow

t,
= 1196.4 B. t. Ti.,

im (at throat) = qm
' + xmrm = 298.1 + 0.962 x 888.4 = 1152.9,

a = ^2' + Wz = 181.1 + 0.863 x 909.7 = 1017.5,

^ - im - 43.5
; i,

-
12 = 178.9.

nee the throat is near the entrance, the effect of friction between entrance

id throat is practically negligible ;
hence the velocity at the throat is

wm = 223.7 V41T5 = 1475 ft. per second,

iking account of the loss of energy (37
=

0.13), the velocity of exit is

w2 = 223.7 V0.87 x 178.9 = 2791 ft. per second.

ae quality of steam at the throat was found to be 0.962, and that at exit,

ithout friction, 0.863. Because of friction, the quality at exit is increased
' the amount 178.9 x 0.13 * 969.7 = 0.024, thus giving a final quality
363 + 0.024 = 0.887. Neglecting the volume v' of a unit weight of water,

ice x is large, the specific volumes at throat and exit are respectively

4.42 x 0.962 = 4.252 cu. ft.

:d 26.23 x 0.887 = 23.26 cu. ft.

om the equation of continuity Fw = Mv, we have, since

M = 45 = 0.125 Ib. per second,
60 x 60

i '

Fm = -125 >< 4.252 _ aoo036 sq> ftf

= 0.0519 sq. in.

the area of the cross section at the throat. The area at exit is

Fz = 0-125 x 23.26 _ 0>001042 sq. f t-
_ alg sq> in>

w i J J.

the cross section of the nozzle is made circular, the diameters at throat

d exit are respectively

dm = 0.251 in., da = 0.437 in.
;

d taking the taper of the nozzle as 1 to 10, the length, of the conical part

10(0.437
-

0.257) = 1.8 in.

EXERCISES

1. .Find the weight of air discharged per minute through an orifice

inch in diameter from a reservoir in which the pressure is maintained at



orifice having an area of 0.4 sq. in. into a region in which the pressure is

55 Ib. per square inch. Find (a) the velocity; (b) the weight discharged

per minute. Compare the results obtained by using Grashof's, Napier's,

and Rateau's formulas, respectively.

3. If in Ex. 2 the back pressure is 80 Ib. per square inch, what in the

weight discharged? Assume the steam to be initially dry and saturated.

4. If for superheated steam the exponent n in the adiabatic equation
Pm

pv
n = const, is taken as 1.30, find the critical ratio

5. A de Laval nozzle is required to deliver 080 Ib. of steam per hour.

The steam is initially dry and saturated at a pressure of 110 Ib. per square

inch and the final pressure is 8 in. of mercury. Find the necessary areas of

the throat section and end section of the nozzle, assuming frictionless ilow.

6. In Ex. 5 find the areas of the two sections when the loss of kinetic

energy is 0.15 of the available energy.

7. Find the area of an orifice that will discharge 1000 Ib. of dry steam

per hour, the initial pressure being 150 Ib. per square inch and the back

pressure 105 Ib. per square inch.

8. In an injector, steam flows through a diverging nozzle into a combin-

ing chamber in which a partial vacuum is maintained, due to the condensa-

tion of the steam in a jet of water. If the initial pressure is 80 Ib. per

square inch and the pressure in the combining chamber is 8 Ib. per square

inch, find the velocity of the steam jet. Assume y = 0.08.

9. Steam at 160 Ib. pressure superheated 100 flows through a nozzle

into a turbine cell in which the pressure is 70 Ib per .square inch. Find the

area of the throat of the nozzle for a discharge of 36 Ib. per minute.

10. Let steam at 1GO Ib. pressure, superheated 100, expand adiabatically

without friction. Take values of the back pressure p% as abscissas, and plot

curves showing (a) the available drop in heat content i\ i
; (?) the veloc-

ity of the jet ; (c) the area of cross section required for a discharge of one

pound per second.

SUGGESTION. Find iz for the following pressures: 140, 120, 100, 80,

60, 40, 20, 10, 5 Ib. per square inch. Then find w from the formula

V} 223.7 Vt'i
- iz ,

and the cross section from the equation of continuity.

11. Steam at 160 Ib. pressure superheated 100 is discharged into a

region in which the pressure is p through an orifice having an area of

0.25 sq. in. Take the values of p2 given in Ex. 10 and plot a curve showing
the weight discharged for different values of p.

12. Show that if the loss of kinetic energy is y per cent of the available

energy, the decrease in the velocity of the jet is approximately \y per cent

of the ideal velocity.
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CHAPTER XIV

THROTTLING PROCESSES

159. Wiredrawing. The flow of a fluid from a region of

higher pressure into a region of much lower pressure through
a valve or constricted passage gives rise to the phenomenon
known as wiredrawing or throttling.

'

Examples are seen in the

passage of steam through pressure-reducing valves, in the

throttling calorimeter, in the passage of ammonia through the

expansion valve in a refrigerating

machine, and in the flow through

ports and valves in the ordinary
'

steam engine. Wire-drawing is
FIG. 93. . ,

&
. ., .

&

evidently an irreversible process,

and as such, is always accompanied by a loss of available

energy.
The fluid in the region of higher pressure is moving with a

velocity w^ Fig. 93. As it passes through the orifice into the

region of lower pressure jt?2 , the velocity increases to w2 ac-

cording to the general equation for flow, viz :

!lfi!..JXh-S>- (1)

The increased velocity is not maintained, however, because the

energy of the jet is dissipated as the fluid passing through the

orifice enters and mixes with the fluid in the second region.
9/J

2 ___ nn 2

Eddies are produced, and the increase of energy ^ - is re-

turned to the fluid in the form of heat generated through in-

ternal friction. Utimately, the velocity wz
is sensibly equal to

the original velocity w1 ; therefore from (1), we obtain

L = L, (2)
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as the general equation for a wiredrawing process. The
initial and final points lie, therefore, on a curve of constant heat

content.

160. Loss due to Throttling. Let steam in the initial state

denoted by point A, Fig. 94, be throttled to a lower pressure,

the final state being denoted by
point B on the constant-z curve

AB. Also let TQ denote the

lowest available temperature.
The increase of entropy during
the change AB is represented

by A-iB-p and this increase multi-

plied by the lowest available

temperature 2* gives the loss of

available energy. Evidently this

loss is represented by the area

EXAMPLE. In a steam engine the pressure is reduced by a throttling

"valve from 160 Ib. per square inch to 90 Ib. per square inch absolute. The

initial quality is x 0.99 and the absolute back pressure is 4 in. of mercury

Required the loss of available energy per pound of steam.

From the steam table the initial heat content is 1187.2 B. t. u. At a pres-

sure of 90 Ib. the heat content of saturated steam is 1184.5 B. t. u., therefor*

in the second state the steam is superheated. As the degree of superheat ii

evidently small, it may be determined -with sufficient accuracy from th(

curves of mean specific heat. At a pressure of 90 Ib. the mean specific heai

near saturation is 0.55
;
hence the superheat is

1187.2 - 1184.5

0.55
= 5, nearly

The entropy in the second state is the sum of the entropy at saturation

1.6107 for a pressure of 90 Ib., and the entropy due to superheat, "which is

approximately.

0.55 loge
LJ? = 0.55 log, f

= 0.0035.

Hence, .93
= 1.6107 + 0.0035 = 1.6142. The entropy in the initial state



replaced by a corresponding reversible change with the condi-

tion that the heat content i remains constant. The general

equation
di = Tds + Avdp,

then becomes,
= Tds + Avdp,

and approximately we have, therefore,

AS =-^, (1)

in which As is the increase of entropy corresponding to the

change of pressure Ap. Since Ajp is intrinsically negative, it

follows that As must be positive. Equation (1) may be

written in the more convenient form

For perfect gases (2) reduces to the simple form

For steam having the quality x, we have

i} = x(v" v'~) -f t/,

and Apv Apx(v" v'~) -f Apv' ;

or neglecting the small specific volume v
r of the water,

Apv = x-fy.

Eq. (2) therefore takes the form

Aff- (4)

Mean values for p, T, and -^ should be taken.

EXAMPLE. If in passing into the engine cylinder the pressure of steam

is reduced by wii'edrawing from 125 Ib. to 120 Ib. per square inch, what is

the loss of available energy ? The initial value of x is 0.98 and the pressure
at exhaust is 16 Ib. per square inch.

Taking the two pressures 125 and 120, the following mean values are

fouud from the table :

p = 122.5, T = 802.4, if,
= 82.5. Also, Ap = - 5-



Hence, A5 = x = 0.00398.

For T we take the temperature corresponding to the 16 Ib., namely, 675.9.

Therefore the loss of available energy is

6.75.9 x 0.00398 = 2.7 B. t. u. approx.

161. The Throttling Calorimeter. A valuable application

of the throttling process is seen in the calorimeter devised by
Professor Peabody for determining the quality of steam. In

the operation of the calorimeter steam from the main is led

into a small vessel in which the pressure is maintained at a

value slightly above atmospheric pressure. The steam is thus

wiredrawn in passing through the valve in the pipe that con-

nects the main and the vessel. For successful operation the

amount of moisture in the steam must be small so that, as the

result of throttling, the steam in the vessel is superheated.

In Fig. 94, let point A represent the state of the steam in

the main and point B the observed state of the steam, in the

calorimeter ; then
iA = is . (1)

But
iA = zy + xrv (2)

where ij and
r-^

refer to the pressure p1
in the main ;

and ijB
= h" + c

P (t'Z
'~t

z), (3)

where t
2
f

is the observed temperature of the steam in the

calorimeter, t
z

is the saturation temperature corresponding to

the pressure pz
in the calorimeter, i

z
"

is the saturation heat

content corresponding to the pressure pz ,
and c

p is the mean

specific heat of superheated steam for the temperature range
t
2

'

2
. Combining the preceding equations, we obtain

EXAMPLE. The initial pressure of the steam is 140 Ib. per square inch,

the observed pressure in the calorimeter 17 Ib. per square inch, and the

temperature in the calorimeter 258 F. Required the initial quality.

The temperature of saturated steam at 17 Ib. pressure is 219.4 F.
;
hence

the steam in the calorimeter is superheated 258 219.4 = 38.6. From the

curves of mean specific heat the value 0.477 is found for the pressure 17 Ib.



and the degree of surperheat in question ;
and from the steam table we have

t,"
= 1153, ijf

= 324.2, n = 869. Hence,

1153 + 0.477 x 38.6 - 324.2 n Q7 -
x = __ _ 0.975.

The Mollier chart, Fig. 75, may be used conveniently in the

solution of problems that involve the throttling of steam.

Since the heat content remains constant during a throttling

process, the points representing the initial and final states lie

on the same horizontal line. In the preceding example the

final point is located from the observed superheat 38.6 and

the observed pressure 17 Ib. in the calorimeter. A horizontal

line drawn through this point intersects the constant pressure

line p = 140 Ib., and from this point of intersection the quality

x = 0.975 is read directly.

162. The Expansion Valve. In the compression refrigerat-

ing machine the working fluid after compression is condensed

and the liquid under the higher pres-

sure p is permitted to flow through
the so-called expansion valve into coils

in which exists a much lower pressure

pv Let point A, Fig. 95, on the liquid
curve represent the initial state of the

liquid. The point that represents the

final state must lie at the intersection

of a constant -i curve through A and
-S line of constant pressure pz

. Evidently
we have

and ib
= i

2

' + #
2
r
2 ,

where x% denotes the quality of the mixture in the final state.

Therefore r _ t ,

1 2 ^ t2'2'

l-i la

or (2)

The increase of entropy (represented by s

(3)



and the loss of refrigerating effect due to the expansion valve,

which is represented by the area A
t G-BBV is

-h'-h'-W -,')- (4)

The following equalities between the areas of Fig. 95 are

evident :

area
^
= area

area F6rA = area

163. Throttling Curves. If steam initially dry and saturated

be wiredrawn by passing it through a small orifice into a region
of lower pressure, then, as has been shown, it will be super-
heated in its final state.

If the lower pressure pz

is varied, the tempera-

400,

350

soo

S50

200 50 100 150

Pressure, Ib. per sq. in.

FIG. 96.

ture t
z

will also vary,
and the successive values

of p% and t
2
will be rep-

resented by a series of

points lying on a curve.

By taking various initial

pressures a series of such

curves may be obtained.

Sets of throttling curves

for water vapor have

been obtained by Grind-

ley, Griessmann, Peake,

and Dodge. The curves deduced from Peake's experiments
are shown in Fig. 96. Abscissas represent pressures, ordinates,

temperatures. The curve from which the throttling curves

start is the curve t=f(p~) that represents the relation between

the pressure and temperature of saturated steam.

It was the original purpose of Grindley, Griessmann, and

Peake to make use of the throttling curves in finding the

specific heat of superheated steam. The theory upon which

this determination rests is simple. From Eq. (4), Art. 161, we

readily obtain .
/

.

,/

*i ~r ^i^i ?2 /-IN



The temperature difference t
z
'

2
for any lower pressure pz

is

the vertical segment between the throttling curve and the satu-

ration curve and is given directly by the experiment. Hence if

the initial quality x is known, and if i^'
and z*

2
" are accurately

given by the steam tables, the mean value of cp is readily cal-

culated. The results obtained were, however, discordant and

of no value. The form of Eq. (1) is such that a slight error

in any of the terms of the numerator of the fraction produces
a large error in the calculated value of cp .

The impossibility of deriving consistent values of op by the

method just described led to the belief that Regnault's formula

for the total heat of saturated steam, hitherto regarded as

authoritative, must be incorrect. The experiments of Kno-

blauch and Jakob on the specific heat having appeared,

Dr. H. N. Davis of Harvard University discerned the possibility

of reversing the method and deriving by it a new formula for

total heat.

164. The Davis Formula for Heat Content. The method

employed by Dr. Davis in deriving from the throttling curves

a formula for the heat content of

steam may be described as follows :

Let AD, Fig. 97, be one of the

series of throttling curves, and

AD' the saturation curve. The
heat content is constant along the

throttling curve, that is

p
FIG. 97. Let p2 be the lower pressure cor-

responding to the points B, J5',

and let A* denote the temperature difference indicated by the

segment B'B. If the steam were made to pass from the satura-

tion state B' to the superheated state B at the constant pres-

sure >

2 ,
the heat absorbed during the process would be cpAi,

cp denoting the mean specific heat between B' and B. It follows

that

*J3 IB>
~ CP A,

that is, IA ia, = c- A.
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In a similar manner the differences iA i cr) iA iDl ,
etc. are ob-

tained. The result is a relation between the heat content of

saturated steam at the original pressure p l (state A) and the

values of the saturation heat content for various lower pressures.
The temperatures corresponding
.to these pressures are now laid

off on an arbitrarily chosen line

MN, Fig. 98, and from the points

A, J5', (7', etc., the segments

etc. are laid off. A curve

through the points A, Bn
', <7;

, o
[

D", etc. is an isolated segment of
* 10 ' y8 '

the curve giving the relation between the heat content i and the

temperature t. Necessarily only relative values are thus obtained.

From the individual throttling curves Dr. Davis thus obtained

twenty-four overlapping segments of the it-curve, and by

properly coordinating these segments he obtained finally a

smooth curve covering the range 212 to 400 F. The curve

was found to be represented by the second degree equation

i=a + 0.3745(^-212) -0.00055 (-212) 2
;

and from the experiments of Henning and Joly on the latent

heat of steam at 212 F., the value of the constant a was found

to be 1150.4.

165. The Joule-Thomson Effect. The classical porous plug

experiments of Joule and Lord Kelvin were undertaken for the

purpose of estimating the deviation of certain actual gases from

the ideal perfect gas. The gases tested were forced through a

porous plug and the temperatures on the two sides of the plug
were accurately determined. In the case of hydrogen the tem-

perature after passing through the plug was slightly higher
than on the high pressure side ; air, nitrogen, oxygen, and car-

bon dioxide showed a drop of temperature.
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For an ideal perfect gas,

MJ = Jc^jf. Up and pv = BT'}

hence, (Jcv + )^ = (Jb, + JB) !Fa

or ^1=^2-

It follows that a perfect gas would show no change of tempera-
ture in passing through the plug, and that the change of temper-
ature observed in the actual gas is, in a way, a measure of the

degree of imperfection of the gas. The results of the experi-

ments have been used to reduce the temperature scale of the

air thermometer to the Kelvin absolute scale.

The ratio of the observed drop in temperature to the drop in

pressure, that is, the ratio , is called the Joule-Thomson

coefficient and is denoted by /*. According to the experiments
of Joule and Kelvin

//,
varies inversely as the square of the

absolute temperature. That is,

It may be assumed that this relation holds good for air, nitro-

gen, and other so-called permanent gases within the region of

ordinary observation and experiment. At very low tempera-
tures it seems probable that p varies with the pressure as well

as with the temperature.
An expression for p in the case of superheated steam can

readily be derived from the formula for the heat content, namely:

Since i is constant in a throttling process, we may define the

Joule-Thomson coefficient more accurately as the derivative

fdT\
{

]
. From calculus, we have
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and from the definition of the heat content i,

277

Hence

dT *'

dp ji e
f

or

The following table contains values of

Eq. (2).

(2)

calculated from

It will be observed that the value of
/j, varies with the pres-

sure ; however, as the temperature rises, the influence of

pressure decreases ; hence for gases far removed from the satu-

ration limit, such as were used in the porous plug experiments,
it seems probable that p is a function of the temperature only,

as found by Joule and Kelvin.

Dr. Davis has deduced from, the throttling experiments of

Grindley, Griessmann, Peake, and Dodge values of p for super-
heated steam.* These were found by direct measurement of

the mean slopes of the throttling curves. The values thus

obtained agree very closely with those calculated from (2) and

shown in the preceding table.

166. Characteristic Equation of the Permanent Gases. From the cooling

effect shown in the Joule-Thomson's experiments for all gases except hydrogen,
it appears that those gases do not follow precisely the law expressed by the

equation pv = BT. By making use of the relation
/*.
=~ it is possible to

derive a characteristic equation that represents more nearly the behavior of



bince the heat content i is constant during a throttling process, the gen-
eral equation

di = c dT

takes the form

c
<*T = A(T^-V\ 0)*
dp V dT I

Differentiating both members of (1) with respect to T, we obtain

dT \
r
~dp 1

~ y
\dT dT2 ~dT>

=AT. (2)H HF$i

But we have

_ .

dp I 2

and from the general thermodynamic relations, \

p T

Substituting these expressions in (2), we obtain

3

whence

This is a partial differential equation, the general solution of which is the

equation
cp = T*<t>(T*-3ap). (4)

Here ^> denotes an arbitrary function which must be determined from

physical considerations. Since at high temperatures cp for permanent gases
is given by the linear relation cp

= a + bT, we have from (4),

whence (j>(T
3
) =

-J-+ j,,

and

Since the term 3 otp is small in comparison with the term T 3
,
we have

approximately
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Introducing these expressions in (5) and substituting the resulting expres-

sion for <f>(T
8 3 op) in (4), we obtain finally

(6)

It appears from (6) that the specific heat of the permanent gases varies

with the pressure and temperature. At very high temperatures the term

containing/) is small and the specific heat is given simply by a + bT; at

low temperatures, however, this term becomes appreciable and the specific

heat increases with the pressure. The specific heat curves have, therefore,

somewhat the form shown in Fig. 71.

From (6), we have by differentiation

_ AT 9'_~ _ /2a ,\

~**A~r ''

Integrating, we obtain

(7)Vy

Introducing in (1) the expression for -^ given by (7), we obtain after
dJ-

reduction

To determine the function /O), we assume that the perfect gas equation

pv = BT holds when T is very large. Hence f(p) = ,
and (8) becomes

Since the last term in the bracket is very small, it may be neglected, and (9)

may be written

The equation given by Joule and Thomson, namely ,

(ID



Joule-Thomson effect has been employed by Linde in a very

ingenious machine for the liquefaction of gases. A diagram-
matic sketch of the

machine is shown in

Fig. 99. Air (or any
other gas that is to

be liquefied) is com-

pressed to a pressure

of about 65 atmos-

pheres and is dis-

charged into a pipe

leading to the cham-

ber c. A current of

cold water in the

vessel b cools the air

during its passage
from the compressor
to the receiving cham-

ber. From c the air

passes through a valve

v into a vessel d, in which a pressure of about 22 atmospheres
is maintained. As a result of the throttling the temperature
of the air is lowered. Thus, if p1 is the pressure in the chamber

c and j92
the pressure in the vessel cZ, the drop in temperature is

(1)

The air now passes from vessel d at temperature t
8 into the

space enclosing the chamber c and thence back to the compressor.

In passing back, the air absorbs heat from the air in c, and the

temperature rises from t
B
to the final temperature 4, which is

nearly the same as the initial temperature tv Due to this

cooling, the air in c arrives at the valve v with a temperature t
z,

which becomes lower and lower as the process continues. As
the temperature 2

sinks the temperature 3
also sinks, but as

shown by (1), t% sinks more rapidly than t
z

. Ultimately, the

value of t
3 drops below the critical temperature of the gas,

FIG. 99.
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CHAPTER XY

TECHNICAL APPLICATIONS, VAPOR MEDIA

THE STEAM ENGINE

168. The Carnot Cycle for Saturated Vapors. Since the

constant pressure line of a saturated vapor is also an iso-

thermal, three of the processes of the Carnot cycle are ap-

proximately attainable in a vapor motor, namely: isothermal

expansion, adiabatic expansion, and isothermal compression.
The adiabatic compression might also be accomplished by a

proper arrangement of the organs of the motor, though in

practice this is never attempted. Hence, the Carnot cycle is

D
\

-s o

FIG. 100. FIG. 101.

discussed in connection with vapor motors merely for the pur-

pose of furnishing an ideal standard by which to compare the

cycles actually used.

The Carnot cycle on the T/S-plane and p F-planes, respec-

tively, is shown in Fig. 100 and 101. The isothermal expan-

sion AB occurs in the boiler, the adiabatic expansion BO in the

engine cylinder, the isothermal compression CD in the con-

denser. To effect the adiabatic compression DA, the mixture

of liquid and vapor in the state D would have to be compressed



aaiabaticaily in a separate cylinder ana delivered to tne Doiier

in the state represented by point A.

The heat received from the boiler per unit weight of fluid is

2i
= ri(xt>

x<d (area A-^B-^i) 00
that rejected to the condenser is

fe
= r

t(xa
- xd} ; (area S1 QDA^) (2)

and the heat transformed into work, represented by the cycle

area, is

AW=q,- & =5^^ -
xj. (3)

*!
The efficiency is

and the weight of fluid used per horsepower-hour is

2546 2546 g,

?i-?. nc^-^yj-r,- v -1

If point J. lies on the liquid line s' and point on the satu-

ration curve s", then xa =0, #6
= 1, and (3) and (5) become,

respectively,

2546
IV _

EXAMPLE. Let the upper and lower pressures "be respectively 125 Ib.

per square inch absolute, and 4 in. of mercury. Then from the steam table

TI = 804, Tz = 585.1, n = 875.8 B.tu. From (4), the efficiency is

804 - 585.1

804
= 0.272.

The heat transformed into work is 875.8x0.272 = 238.2 B.t.u., and the

2546

238.2
steam consumption is

'

= 10.7 Ib. per h. p.-hour.r
9:-*R.9

-1 r

169. The Rankine Cycle. In the actual engine the iso-

thermal compression is continued until the vapor is entirely

condensed, thus locating the point D on the liquid curve s',

Fig. 102, The liquid is then forced into the boiler by a pump
and is there heated to the boiline1 temnerature -. This heat-
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diagram necessarily takes the form shown in Fig. 103.

D

O Dl

B\

FIG. 102. FIG. 103.

The heat supplied from the boiler per pound of steam is in

this case

(1)

(2)

(3)

and the heat rejected to the condenser is

Hence, the heat transformed into work is

and the efficiency of the cycle is

77
=

gi
(4)

It is evident that this efficiency is less than that of the Carnot

cycle.

The steam, consumption per h. p.-hour is

,r 2546 2546
(5)

(6)

EXAMPLE. Using the data of the example of the last article, determine

the efficiency and steam consumption of an engine running in a Rankine

cycle with dry steam.

The quality at point C is determined from the relation



end of adiabatic expansion is

_ 0.4957 - 0.1739 + 1.0893 _
*' ~

L7497
~

The available heat is

315.2 - 93.4 + 875.8 - 0.806 x 1023.7 = 272.4 B. t. u. ;

while the heat supplied in the boiler is

315.2 - 93.4 + 875.8 = 1097.6 B.t. u.

Hence the efficiency is

= i = 0.248,7
1097.6

which may be compared with the efficiency 0.272 of the Carnot cycle under

similar conditions.

The steam consumption is

2o46

272.4

170. Rankine's Cycle with Superheated Steam. If super-
heated steam is used, the Rankine cycle has the form shown in

Fig. 104. The heat ql supplied
from the source is increased by
the heat represented by the area

B^BEEy which comes from the

superheater; and the heat avail-

able for transformation into work
is increased by the amount repre-
sented by the area FBEO. Evi-

dently the efficiency of the ideal

cycle is increased by the use of

superheated steam, but the in-
~s crease is small. The advantage of

FIG. 104. superheated steam lies in another

direction.

If Te denote the temperature of the superheated steam (i.e.

at point E\ the heat required for the superheating process BE
is i opdT where cp is the specific heat of superheated steam.



for cp given by Eq. (9), Art. 133. Then the heat represented

by the area D^DA'BEE^ is given by the expression

2i
= ft'-fc

/ +''i+Vz r
. (1)

m

However, as has been shown, the sum 5'/+r1 + ( cpdT is

practically equal to the heat content of the steam in the state E.
Hence we may write

n ,*
i /-n\

zl (J2 \^J

and calculate ie from the general formula (5) Art. 135.

If the point O at the end of adiabatic expansion lies in the

saturated region, as is usually the case, we have, as in the first

case,
g<2
= r

z
xc .

The heat transformed into work is, therefore,

and the efficiency is

'?
=
l-T^r

-

(4)

The value of xc is determined from the relation

where s is the entropy for the state J, and is calculated from

the general equation (3), Art. 137.

EXAMPLE. Find the efficiency of the Ranldne cycle, using the data of

the previous examples, but assuming the steam to be superheated to 1000

absolute.

From (6), Art. 135, the heat content of the superheated steam is

i = 1000(0.367 + 0.00005 x 1000)
- 125(1 + 0.0003 x 125)

-- -0.0163 x 125

+ 886.7 = 1294.8 B. t. u.
;

and from (4), Art. 137, the entropy is

s = 0.8451 log 1000 + 0.0001 x 1000 - 0.2542 log 125

-
125(1 + 0.0003 x 125)r~ -396i = L7002 -



Hence -=
1.7497

Heat supplied = i - qz
> = 1294.8 - 93.4 = 1201.4 B. t. u.

Heat rejected = rzxc = 1023.7 x 0.872 = 892.7 B. t. u.

Available heat = 1201.4 - 892.7 = 308.7 B. t. u.

Efficiency = ^=0.257.

Steam consumption = = 8.25 Ib. per h. p.-hour.
308.7

171. Incomplete Expansion. Because of the very large

specific volume of saturated steam at low pressures, it is usu-

ally impracticable to continue the adiabatic expansion down
to the lower pressure pz

. The exhaust valve opens and re-

leases the steam at a pressure somewhat higher than p2
. The

passage of the steam from the cylinder is an irreversible pro-

cess in the nature of a free expansion and is indicated on the

pF-diagram by the drop in pressure EF (Fig. 106). The

O D, F, Bi

FIG. 105.

F

FIG. 106.

actual process may be replaced by an assumed reversible pro-

cess, cooling at constant volume. On the 5W-diagrain the

cooling is represented by a constant volume line EF (Fig.

105) drawn as described in Art. 125.

Evidently this "
cutting off the toe

"
of the diagram results

in a decrease in the ideal efficiency, but it is justified by the

smaller cylinder volume required (JDF instead of DC*) and by
other considerations.

Denoting by p3
the pressure at E, the end of adiabatic

expansion, we have:



*' 1'

Heat rejected by medium

Heat transformed into work

Si
-

ft
=

?i'+Vi~ (&'+^s) - s/fo
~

Pa)

The qualities xe and xf are found from the equations

and

(2)

(3)

(4)

If the steam is admitted throughout the stroke without cut-

off, the adiabatic expansion is lacking, and the diagram takes

the form ABGrJ) (Figs. 105 and 106). The equations for this

case are readily derived from the preceding equations by

172. Effect of changing the Limiting Pressures. If the

upper pressure p1
be raised to p-^ while the lower pressure pz

is kept the same, the effect is to

increase both qv the heat absorbed,

and q qz, the available heat, by
an amount represented by the area

AAIB'B (Fig. 107). Evidently
the ideal efficiency is thus in-

creased. If pz
be lowered to p%,

keeping pl
the same, qz is decreased

and q1 q% increased without any

change in qr For the ideal

Rankine cycle the increase of avail-

able heat would be that represented FIG. 107.

by the area D'DCC'. For the

modified cycle with incomplete expansion, however, the in-

crease is represented by the relatively small area



We may draw the conclusion that in the actual steam engine
the limitation imposed by the cylinder volume prevents us

from realizing much improvement in efficiency by lowering the

back pressure pv Herein lies one important difference be-

tween the steam, engine and steam turbine. With the turbine,

as will be shown, a lowering of the condenser pressure results

in a marked increase of efficiency.

173. Imperfections of the Actual Cycle. In the discussion of

the ideal Rankine cycle the following conditions are assumed:

1. That the wall of the cylinder and piston are non-conduct-

ing, so that the expansion after cut-off is truly adiabatic.

2. Instantaneous action of valves and ample port area so

that free expansion or wiredrawing of the steam may not occur.

3. No clearance.

In the actual engine none of these conditions is fulfilled. The
metal of the cylinder and piston conducts heat and there is,

consequently, a more or less active interchange of heat, between

metal and working fluid, thus making adiabatic expansion im-

possible. The cylinder must have clearance, and the effect of

the cushion steam has to be considered. The valves do not act

instantly and a certain amount of wiredrawing is inevitable.

It follows that the cycle of the actual engine deviates in many
ways from the ideal Rankine cycle, and that the actual efficiency

must be considerably less than the ideal efficiency. We must

regard the Rankine cycle as an ideal standard unattainable in

practice but approximated to more and more closely as -the im-

perfections here noted are gradually eliminated or reduced in

magnitude.
The effects of some of these imperfections may be shown

quite clearly by diagrams on the T$-plane.
In Fig. 108 is shown the cycle of a non-condensing steam

engine. The feed water enters the boiler in the state represented

by point 6r and is changed into dry saturated steam at boiler

pressure, represented by point B. When this dry steam is

transferred to the engine cylinder, which has been cooled to

the temperature of the exhaust steam, it is partly condensed,
OY-I^ 4-Tia efa-f-a rv-F fVio mivHi r>a in fVio oirlivirl ov o4: mik-riff ia T-e>T->va_



sentea 07 point (J. me neat trnis aosorDeci by tne cylinder
walls is represented by the area

1
BOO

1
. CD represents the

adiabatic expansion, DE the assumed constant-volume cooling
of the steam, and JEF the condensation of the steam at the tem-

perature corresponding to the back pressure, which is slightly

above atmospheric pressure. To close the cycle, the water at

the temperature represented byF
(somewhat above 212) must be

cooled to the original tempera-
ture of the feed water ; this

process is represented by FG-.

The heat supplied is repre-

sented by the area G-^G-ABB-^
the heat transformed into work

by the area FAODE. It will

be observed that two segments
of the cycle, namely, G-F and

CB, are traversed twice, and the

effect is a serious loss of effi-

ciency. The loss due to starting the cycle at point G- instead

of at point F may be obviated to a large extent by the use of a

feed water heater. The heat rejected in the exhaust is used to

heat the feed water to a temperature represented by point If,

which is only a little lower than the temperature of the ex-

haust. The area Cr-^G-H^ represents the saving in the heat

that must be supplied. The loss due to cylinder condensation,

which is shown by the segment BO, cannot be wholly obviated ;

it may be reduced, however, by superheating and jacketing.

Losses due to wiredrawing and clearance are not shown on

the diagram. The drop of pressure in the steam main and in

the ports may be taken into account roughly by drawing a line

A'O' somewhat below the line AB, which represents full boiler

pressure.

174. Efficiency Standards. The ratio of the heat transformed

into useful work to the total heat supplied is usually termed the

thermal efficiency of the engine. The thermal efficiency, how-

ever, does not give a useful criterion of the good or bad qualities



of an. engine for the reason that it does not take account of the

conditions under which the engine works. It has become cus-

tomary, therefore, in estimating engine performance to make

use of certain other ratios.

Let q = heat supplied to the engine per pound of steam,

qR= heat 'transformed into work by an engine working
in an ideal Rankine cycle (Art. 169),

qa = heat transformed into work by actual engine under

the same conditions,

Wa
= work equivalent of heat qa ,

the indicated work,

Wb
= the work obtained at the brake.

We have then

r]R = = thermal efficiency of ideal Rankine engine,

?7a
= = thermal efficiency of actual engine,

3

77 Q
77.- = = = efficiency ratio (based on indicated work),

VR ?.R

_ = brake efficiency ratio (based on work at

9.R , , ,

brake),

r)m - mechanical efficiency.
WA

The ratios ??,
and % are sometimes called the potential efficiencies

of the engine, the first the indicated potential efficiency, the

second the brake potential efficiency. When the term efficiency

is used without qualification it usually means the efficiency ratio

or potential efficiency rather than the thermal efficiency.

It is clear that the useful criterion of the performance of an

engine is the ratio ??6 . We have

% =
i?i X t]m .

Of the heat q supplied, only the heat qR could be trans-

formed into work by the ideal engine using the Rankine cycle ;

hence the heat qR rather than the total heat q should be charged

to the engine. The ratio T?,-
= is a measure of the extent to



which the engine transforms into work the heat qR that may
possibly be thus transformed ; it may be called the cylinder

efficiency. The ratio
-r)m measures the mechanical perfection of

the engine. Hence, the product ^ x rjm measures the perform-
ance of the engine both from the thermodynarnic and the

mechanical standpoints.

The efficiencies ??< and % may be given, other equivalent defi-

nitions that are frequently useful.

Let NR = steam consumption of ideal Rankine engine per
h. p.-hour.

Na steam consumption per h.p.-hour of actual engine.

Nb
= steam consumption per b. h. p.-hour of actual

engine.

&R NRIhen ^, % = ^-
EXAMPLE. An actual engine operating under the conditions denned in

the example of Art. 169 shows a steam consumption of 14. 1 lb. per i. h.p.-

hour and 18 lb. per b. h. p.-hour. Since for the ideal engine the steam

consumption is 9.35 lb. per h. p.-hour, we have

17,-
=
||f= 0.663, and ^ =^ = 0.52.

EXERCISES

In Ex. 1 to 5 find the heat transformed into work, efficiency, and steam

consumption per h. p.-hour.

1. Carnot cycle, p^
= 110 lb., p2

= 15 lb. absolute, xb
= 0.85.

2. Rankine cycle, same data as in Ex. 1.

3. Rankine cycle, p l
= 110 lb., p2 5 in. of mercury, steam superheated

to 450 F.

4. Rankine cycle p^ = 110 lb., p z = 15 lb., xb
= 0.85 and adiabatic ex-

pansion carried to 27 lb. per square inch.

5. Data the same as Ex. 4 except that steam is not cut off.

6. Let
jt?2 be fixed at 5 in. of mercury. Take xb

= 1 and draw a curve

showing the relation between
17
and p\. Rankine's cycle.

7. Taking the data of Ex. 2, find the increase of available heat and effi-

ciency when a condenser is attached and p^ is lowered to o in. of mercury.

8. Make the same calculation for the cycle with incomplete expansion,
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0.85. If the heat transformed into work by the ideal Rankine engine is

190 B. t. u. per pound, what is the steam consumption of the actual engine

per b. h. p.-hour?

10. The steam consumption of a Rankine engine is 9.2 11). per h. p.-

hour, and the efficiency ratio
77,-

is 0.70. Find the heat transformed into

work by the actual engine per poxmd of steam.

THE STEAM TURBINE

175. Comparison of the Steam Turbine and Reciprocating En-

gine. The essential distinction between the two types of'

vapor motors turbines and reciprocating- engines lies in

the method of utilizing the available energy of the working-

fluid. In the reciprocating engine this energy is at once util-

ized in doing work on a moving piston ;
in the turbine there is

an intermediate transformation, the available energy being first

transformed into the energy of a moving jet or stream, which is

then utilized in producing motion in the rotating element of the

motor.

While the turbine suffers from the disadvantage of an added

en-ergy transformation with its accompanying loss of efficiency,

it has a compensating advantage mechanically. With any
motor the work must finally appear in the rotation of a shaft.

Hence, intermediate mechanism must be employed to transform

the reciprocating motion of the piston to the rotation required.

Evidently this is not the case with the turbine, which is thus

from the point of view of kinematics a much more simple ma-

chine than the reciprocating engine. Many attempts have been

made to construct a motor (the so-called rotary engine) in

which both the intermediate mechanism of the reciprocating en-

gine and the intermediate energy transformation of the turbine

should be obviated. These attempts have uniformly resulted

in failure.

With ideal conditions it is easily shown that the two methods
of working produce the same available work and, therefore,

give the same efficiency with the same initial and final con-

ditions. Thus the Rankine ideal cycle, Fig. 102, gives the

maximum available work per pound of steam of a reciprocating
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engine with the pressures p- and jP2 . It likewise gives (Art.

152) the kinetic energy per pound of steam of a jet flowing
without friction from a region in which the pressure is p1

into
o

a region in which it is p2
. Hence if this kinetic energy -

g
is wholly transformed into work, the work of the turbine per
unit weight of fluid is precisely equal to that of the reciprocat-

ing engine. Under ideal conditions, therefore, neither type of

motor has an advantage over the other in point of efficiency.

Under actual conditions, however, there may be a consider-

able difference between the efficiencies of the two types. Each

type has imperfections and losses peculiar to itself. The re-

ciprocating engine has large losses from cylinder condensation ;

the turbine, from friction between the moving fluid and the

passages through which it flows. It is a question which set of

losses may be most reduced by careful design.
Aside from the question of economy, the turbine has certain

advantages over the reciprocating engine in the matters of

weight, cost, and durability (associated with certain disadvan-

tages) and these have been sufficient to cause the use of tur-

bines rather than reciprocating engines in many new power
plants and also in some of the recently built steamships.

176. Classification of Steam Turbines. Steam turbines may
be divided broadly into two classes in some degree analogous
to the impulse water wheel and the water tur-

bine, respectively. In the first class, of which
the de Laval turbine may be taken as typical,

steam expands in a nozzle until the pressure
reaches the pressure of the region in which the

turbine wheel rotates. The jet issuing from

the nozzle is then directed against the buckets

of the turbine wheel, Fig. 109, and the impulse
of the iet produces rotation. It will be noted

that with this type of turbine only a part of the
r*n rC\r}4-c* r ri -fill arl TIT-T -f-T~ o4-an v*-* n 4- o-rtr i -ri o4-o r^-f- atran 1 T



The pressure of the steam is reduced during the

I passage through the blades both in the guide and

turbine wheels. In the turbine of the first type all

the available internal energy of the steam is trans-

formed into kinetic energy of motion before the

steam enters the turbine wheel, while in the turbine

of the second type part of the internal energy is

transformed into work during the passage of the

fluid through the wheel.

The terms impulse and reaction have been used

FIG. no. to designate turbines of the first and second class,

respectively. Since, however, impulse and reaction

are both present in each type, these terms are somewhat mis-

leading, and the more suitable terms velocity and pressure have

been proposed. Tims a de Laval turbine is a velocity turbine ;

a Parsons turbine is a pressure turbine.

177. Compounding. The high velocity of a steam jet result-

ing from a considerable drop of pressure renders necessary

some method of compounding in order that the peripheral

speed of the turbine wheels may be kept within reasonable

limits without reducing the efficiency of the turbine. With

velocity turbines three methods of compounding are employed.
1. Pressure Compounding. The total drop of pressure jt^ pz

may be divided among several wheels, thus reducing the jet

velocity at each wheel. If, for example, the change of heat

content is % 2 and the expansion takes place in a single

nozzle, the ideal velocity of the jet is w = V2 gJ^ ^'
2) ;

if, however, ^ i
z

is divided equally among n wheels, the jet

velocity is reduced to w = \'
^~-

(^ i'
2) . The general arrange-

ment of a turbine with several pressure stages is shown in

Fig. 111. Steam passes successively through orifices mv w
2 ,

etc. in partitions 5r 5
2, etc., which divide the interior of the



FIG. 111.

passing through the orifice m
z the pres-

sure drops from p2 to ps ; as a result

the velocity is again increased and the

jet passes through the second wheel.

The pressure and velocity changes are

shown roughly in the diagram at the

bottom of the figure.

The method of compounding here

described is called pressure compound-

ing. Each drop in pressure constitutes

a pressure stage.

2. Velocity Compounding. The steam

may be expanded in a single stage to

the back pressure p2 ,
thus giving a rela-

tively high velocity ; and the jet may
then be made to pass through a suc-

cession of moving wheels alternating
with fixed guides. This system is shown diagrammatically in

Fig. 112. The jet passes into the first moving wheel, where

it loses part of its absolute velocity, as indicated by the

velocity curve w. It then passes through
the fixed guide g1

with practically con-

stant velocity and has its direction

changed so as to be effective on enter-

ing the second moving wheel. Here

the velocity is< again reduced and the

decrease of kinetic energy appears as

work done on the wheel. This process

may be again repeated, if desired, by

adding a second guide and a third wheel.

However, the work obtainable from a

wheel is small after the second moving
wheel is passed, and a third wheel is

not usually employed.
3. Combination of Pressure and Velocity Compounding. Evi-

dently the two methods of compounding may be combined in a

FIG. 112.



live sets oi nozzles delivering steam to a corresponding numoer

of wheels running in separate cliambers, and each wheel has

two sets of blades separated by guide vanes.

Pressure turbines are always of the multiple pressure-stage

type, and the number of stages is large. The arrangement is

that shown in Fig. 113.

The steam flows through
alternate guides and moving
blades, its pressure falling

gradually as indicated by
the curve pp. The absolute

velocity of flow increases

through the fixed blades

and decreases in the moving
blades as indicated by the

velocity curve ww. This

curve, it will be observed,

rises as the pressure falls

much as if the turbine were
i a large diverging nozzle.

The
.

steam velocity with

this type of turbine is, however, relatively low even in the

last stages.

178. Work of a Jet. While the problems relating to the

impulse and reaction of fluid jets belong to hydraulics, it is

desirable to introduce here a brief discussion of the general case

of the impulse of a jet on a moving vane.

Let the curved blade have the velocity c in the direction in-

dicated, Fig. 114, and let w- denote the velocity of a jet directed

against the blade. The velocity w^ is resolved into two compo-
nents, one equal to c, the velocity of the blade, the other, there-

fore, the velocity a-^
of the jet relative to the blade. The angle

of the blade and the velocity c should be so adjusted that the

direction of a is tanent to the ede of the blade at entrance.



The jet leaves the blade with a relative velocity a
z equal in

magnitude to a^ neglecting friction, but of less magnitude if

friction is taken into account. This velocity a
2 combined with

the velocity c of the blade gives the absolute exit velocity w2
.

It is convenient to draw all the velocities from one point as

shown in the velocity diagram.
The absolute entrance and exit velocities w

l
and w

2 may be

resolved into components w-[ and w
z
' in the direction of the

motion of the vane

and w-J1 and w9
" at

I M

right angles to this

direction, that is,

parallel to the axis of

the wheel that carries

the vane. These
latter may be termed

the axial components,
the former the pe-

ripheral components.
The driving impulse
of the jet depends

upon the change in

the peripheral component only. To deduce an expression for

the impulse we proceed as follows :

Let Am denote the mass of fluid flowing past a given cross

.section in the time At
;
then the stream of fluid in contact

with the blade may be considered as made up of a number of

mass elements Am, and in the time element At one mass ele-

ment enters the vane with a peripheral velocity w-^ and another

leaves it with a peripheral velocity wz'. The effect is the same

as if a single element Am by contact with the blade had its

velocity decreased from 10^ to wz
' in the time At. From the

fundamental principle of mechanics, the force required to pro-

duce the acceleration

FIG. 114.

At

Am

is

W-,

At
(1)



; an equal ana opposite xorce is, tnereiore, wie impulse or

Am on the vane.

If M denotes the weight of steam flowing per second, then

Aw = At, and we have for the force exerted by the jet on
9

the vane in the direction of the velocity 0,

= C '->'") (2*)

Evidently this equation holds equally well when the weight M
flowing from the nozzle is divided among several moving vanes.

The product pc of the peripheral force and peripheral veloc-

ity of vane gives the work per second ; therefore,

work per second = -
(w^ w

2'), (3)
y

and

work per pound of fluid = - (w/ w
2')- 00

y

When, as is usually the case, the direction of w2
r
is opposite

to that of w^, the sign of w
2
' must be considered negative and

the algebraic difference tv^ w2 in (2), (3), and (4) becomes

the arithmetic sum w-/ + w2
'.

179. Single-stage Velocity Turbine. In analyzing the action

of the single-stage velocity turbine, it is convenient to start

with an ideal frictionless tur-

bine and then take up the

case of the actual turbine.

Let the jet emerge from

the nozzle with the velocity
wv Fig. 115, at an angle a

with the plane of the wheel. Combining w1
with <?, the periph-

eral velocity of the blade, the velocity ^ of the jet relative

to the blade is obtained. The angle /3 between the direction

of &J and the plane of the wheel determines the angle of the

blade at entrance. If the blade is symmetrical, the exit relative

velocity a
2 makes the same angle /3 with the plane of the wheel,

and since the frictionless case is assumed, a
z
= ar Combining

2
and <?, the result is the absolute exit velocity wz

.



an 2

The energy of the jet with the velocity w^ is -i-
per pound

rt/j
2

oi medium flowing; and the jet at exit has the energy -^-.^9
The work absorbed by the wheel per unit weight of steam in

this ideal frictionless case is, therefore,

W= W? ~ W
*\ (1)

2
ff

and the ideal efficiency is

(2)w 2
i

From the triangle OAE, Fig. 115, we have

W2
2 =w

1
2 + (2c)

2 -2w
1(2c) cos a; (3)

whence w-f m
2
2 = ^(w^ c cos a c

2
). (4)

Combining (2) and (4), we get,

--\ '

(5)
l

iv\J

Equation (5) shows that the efficiency is greater the smaller

the angle oc
;
and that with a given constant angle ,

the effi-

ciency depends upon the ratio . It is readily found that
vj

W-^
rt

takes its maximum value ??max = cos2 when the ratio takes
w

l

the value
|-
cos a.

As an example, let K = 20, whence cos a =0.9397 and cos2 = 0.883. If

w = 3600 ft. per second, then to get the nmximnm efficiency 0.883, the ratio

must be - cos a = 0.47, whence c = 0.47 x 3600 = 1692 ft. per second, a
wi 2

value too high for safety. If c be given the permissible value 1200 ft. per

second, we have =
J, and

77
= 4 x -

(0.9397
-

0.3333) = 0.809.

zi>j
o 3 .

In the actual turbine, friction in the nozzle and blades reduces

the efficiency considerably below the value given by (5). The

velocity diagram with friction is shown in Fig. 116. The ideal
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velocity av as before. The exit relative velocity a
z
is smaller

than
G&!

because of friction

in the blades, and as a

result the absolute exit ve-

locity w% is smaller than in

the ideal case.

The work per pound of
4- ^ f 1steam may be found from

the velocity diagram either by calculation or by direct measure-

ment. Having the components wj and wj, the work per

pound of steam is given by the expression

\s

(6)

This work may be compared with the work obtained from the

ideal Motionless turbine given by (1) or with the energy of

Alt 2

the jet per pound of steam, namely,
~

.

* 9

180. Multiple-stage Velocity Turbine. In the Rateau turbine

and in others of similar construction, the principle of pressure

compounding is employed. The turbine consists essentially

of several de Laval turbines in series, running in separate cham-

bers. See Fig. 111. The action of this type of turbine is con-

veniently studied in connection with a Mollier diagram, Fig. 117.

Let the initial state of the steam entering the turbine

at the pressure p1
be that indicated by the point A. If p2

is the pressure in the first chamber, a Motionless adiabatic

expansion from p^ to pz is represented by AB, and the

decrease in the heat content ^ 2
is represented by the

length of the segment AB. Under ideal conditions, this

drop in the heat content would all be transformed into

kinetic energy of the jet of steam flowing into the chamber,
and this in turn would be given up to the wheel. Actu-

ally, however, friction losses are encountered and the jet

has an exit velocity w
z, thereby carrying away the kinetic

an A

energy -. The velocity diagram for the single wheel under



consideration is similar to that shown in Fig. 116. The work
lost in overcoming friction in the nozzles and blades and the

nn

exit energy ^- are transformed into heat, and this heat, except
^9

a small fraction that is radiated, is expended in further super-

heating (or raising the quality of) the steam. Hence, instead

of the final state B, we have a final state on the same con-

stant-pressure curve. Referring to Fig. 117, AC' represents

FIG. 117.

the part of the heat drop that is utilized by the wheel, while

O'B represents the part that is rendered unavailable by internal

losses of various kinds.

The steam in the state flows into the second chamber where

the pressure is py Frictionless adiabatic expansion would give
the second state D, but the actual state is represented by the

point E. Again CE' represents the effective drop of heat con-

tent in this stage, while E'D represents the part of the drop

going back into the steam.

The same process is repeated in succeeding stages until

finally the steam drops to condenser pressure in the last stage.

The final state is represented by the point K, and the curve

AEK represents the change of state of the steam during its

passage through the turbine. The final state under ideal fric-

tionless conditions is represented by point M, The segment
AM represents the ideal heat drop, which, as has been shown, is



AN represents the heat drop utilized. The ratio AM de-

pends upon the magnitude of the internal losses, such as friction

in nozzles and blades, leakage from stage to stage, windage,
exit velocity, etc. Roughly, this ratio may lie between 0.50

and 0.80.

181. Turbine with both Pressure and Velocity Stages. In

certain turbines, notably the Curtis turbine, velocity compound-

ing is employed. There are relatively few (three to seven)

pressure stages,
but in each cham-

ber there are two
or three rows of

moving blades at-

tached to the

FIG . us. wheel rim and
these are sepa-

rated by alternate rows of guide blades, as shown in Fig. 112.

The velocity diagram for a single pressure stage with two

velocity stages is shown in Fig. 118. The velocities in relation

to the successive sets of blades are shown in Fig. 119. The jet

emerges from the nozzle with an absolute velocity wv which is

smaller than the ideal W
Q

because of friction in the

nozzle. Combining w
1
with

the peripheral velocity c of

the first moving blade mp the

result is the velocity a-^
of

jet relative to blade mv The

angle a between a^ and the

plane of rotation is the proper
entrance angle of the blade

mv The exit relative velocity 2, which is smaller than av
due to friction in the blade, is combined with the velocity c,

giving the absolute exit velocity w2
which makes the angle /3

with the plane of rotation. The jet enters the stationary

guide blade s with the velocity wz and emerges with a smaller

FIG. 119.



blade mv Combination of w3 -with c gives the relative

velocity az and the entrance angle y for the blade m
z

. The

exit velocity 4
is determined from a

s
and the friction in the

blade, and by combining a
4
and c, the absolute exit velocity w4

is obtained.

In the diagram, Fig. 119, the blades have been taken as

symmetrical. Sometimes, however, the exit angles of the last

sets of blades are made smaller than the entrance angles. The

diagram can easily be modified to suit this condition.

The work per pound of steam for this wheel is readily deter-

mined from the velocity diagram. From the first set of blades

m
1
the work -(w-^ w

z '~)
and from the second set of blades m

2

i/

the work - (wJ w /) is obtained. Hence the total work per
9

pound of steam is

W= c- (w/
-< + wj -O . (1)

9

Care must be taken that wz
' and w/ be given their proper alge-

braic signs.

The state of the fluid as it passes through the turbine may
be shown by the Mollier diagram precisely similar to that

shown in Fig. 117. Starting with an initial state indicated by

point .A, the available drop from the initial pressure p to the

pressure pz in the first chamber is represented by AB. The

heat utilized in useful work Tfas given by (1) is represented

by AC'. Hence projecting C' horizontally to on the line of

constant pressure pv we get the state of the steam as it enters

the second stage nozzles.

182. Pressure Turbine. In the pressure type of turbine

there is always a large number of stages, the guide blades and

moving blades alternating in close succession. The fact that

the pressure falls continuously, both through the guide blades

and the moving blades, makes the velocity diagram essentially

different from that of the velocity turbine, lieferring to Fig. 120,

let w
l
denote the absolute velocity of the steam entering the



stationary Diaae S
1?
ana wz tne aosoiute exit veiocicy. JLI unere

were no, change of pressure, wz would be smaller than wl be-

cause of friction ;
but the drop in pressure Ajt? causes a decrease

in heat content Ai, and as a result, there

is an increase of velocity given by the

relation

FIG. 120.

Thus the exit velocity w2
is greater than

the entrance velocity w^. Combining w
z

with c, the velocity of the moving blade,

we obtain 2 , the velocity of entrance

relative to the moving blade. Now the

pressure drops through the moving
blades also ; hence as a result the velocity of exit a

z
is greater

than av just as e#
2 , is greater than w. Combining a

z
with

(?,

the result is
zv^,

the absolute velocity of entrance into the

next row of fixed blades.

The work done in any single stage, consisting of one set of

stationary blades and one set of moving blades, is obtained from

the velocity diagram for that stage in the usual way. Thus,
if we have the diagram shown in

Fig. 120 for a particular stage,

the work per pound of steam

for that stage is given by the

product
G
-(w' z -w'J.
u

If the fixed and moving blades

have the same entrance angles

and exit angles, it may be as-

sumed that the velocity diagram
has the symmetrical form shown in Fig. 121 ; that is, w^ = j

and w
2

a
z

. In this case, the work may be obtained by a simple

graphical construction. Using point B as a center and with a

radius BA let a circular arc ADC be described and from ^let
a perpendicular be dropped cutting this arc in _D. Denoting the

length JED by h, we have

G
FIG. 121.



It follows that the work per pound of steain is given by the

h2

expression provided h is measured to the same scale as the
y

velocity vectors wv wz
.

183. Influence of High Vacuum. In Art. 172 it was pointed
out that the reciprocating engine is unable to take advantage
of a very low back pressure for the reason that the cylinder
volume cannot be made sufficiently large to permit the expan-
sion of the steam to the condenser pressure. No such restriction

applies to the steam turbine. The blades in the final stages

may be made long enough to pass the required volume of steain

at the lowest pressures obtainable. The advantage of the tur-

bine in this respect is shown graphically in Fig. 107. Since

the cylinder volume of the reciprocating engine is limited to

the volume indicated by the point _Z?, the effect of lowering the

back pressure from p2
to pz

'
is the addition of the area D'DFF'

to the area of the original cycle. The turbine, however, can

accomodate volumes indicated by points and 0'
;
hence if the

pressure is lowered from p2
to p2 ', the area of the ideal cycle is

increased by the area D'DCG1

. It is evident, therefore, that

high vacuum is much more effective in the case of the steam

turbine than in the case of the reciprocating engine.

The superior efficiency of the steain turbine at low pressures
and the ability of the turbine to make effective use of high
vacuum has led to the introduction of the low-pressure turbine

in combination with the reciprocating engine. The engine
takes steam at boiler pressure and exhausts into the turbine at

about atmospheric pressure. In general, the combination is

more efficient than either the engine alone or the turbine alone

using the entire range of pressure.

EXERCISES

1. In a single-stage velocity turbine the jet emerges from the nozzle -with

a velocity of 3150 ft. per second and the direction of the jet makes an angle



that will give maximum efficiency, (b) Find the efficiency if the circum-

ferential velocity is 1100 ft. per second.

2. Find the work per pound of steam in case (b) of Ex. 1.

3. Using the data of Ex. 1 and 2 assume that the exit relative velocity is

reduced 10 per cent by friction in the blades. Draw a velocity diagram and

by measurement or calculation find the work done per pound of steam,

Compare this result with that found for the ideal frictionless case.

4. A reciprocating engine receives steam at a pressure of 160 Ib. per

square inch, superheated 120. The steam expands adiabatically to a pres-

sure of 16 in. of mercury and is then discharged into a low pressure turbine

where it expands adiabatically to a pressure of 2 in. of mercury. Find the

percentage by which the efficiency is increased by the addition of the tur-

bine. Assume ideal conditions.

5. A turbine of the Curtis type has three pressure stages. The initial

pressure is 140 Ib. with the steam superheated 120 F., and the condenser

pressure is 3 in. of mercury, The loss of energy due to friction, etc., is 30

per cent of the total available energy, (a) Find the condition of the steam

entering the condenser. (&) Find the consumption per h. p.-hour. (c)
Determine the intermediate pressures in the cells on the assumption that the

work developed in each stage shall be approximately the same.

REFIGERATION WITH VAPOE MEDIA

184. Compression Refrigerating Machines. The essential

organs of a compression machine using vapor as a medium
are shown in Fig.
122. The action of

the machine may be

studied to advan-

tage in connection

with the ^-dia-

gram, Fig. 123.

The medium is

drawn into the

compressor cylinder

through the suction

pipe from the coils

in the brine tank.

It may be assumed that the medium entering is in the saturated

state at the temperature T^ which may be taken equal to the
i f -P 4-1 "K >* Tl "4-4-" 4-11 "j. 7~>

Expansion
Vulvo

FIG. 122.



M

Jbig. 126. Ihe vapor is compressed adiabatically to a final

pressure pz , which is determined by the upper temperature T
z

that may be obtained with the cooling water available. The
adiabatic compression is represented by B Q, The superheated

vapor in the state (7 is discharged into the coils of the cooler

or condenser, where heat is abstracted from it. The coils are

surrounded by cold water which

flows continuously. First the

gas is cooled to the state of

saturation ; this process is rep- T E{ ^ YD .i

resented by the curve CD, and

the heat abstracted by the area r/j\A_Tl

CiCDDv Then heat is further

removed at the constant tern- II\

perature T
z (and pressure p%)

and the vapor condenses. At
the end of the process, the

medium is liquid and its state -

is represented by the point E Fl{} 123>

on the liquid curve.

It should be noted that there are two parts of the fluid circuit :

one including the discharge pipe and coils at the higher pres-

sure pz , and one including the brine coils and the suction pipe

at the lower pressure pr These are separated by a valve called

the expansion valve. The liquid in the state represented by

point H is allowed to trickle through the valve into the region

of lower pressure. The result of this irreversible free expan-

sion is to bring the medium to a new state represented by point

A. In this state the medium, which is chiefly liquid with a small

percentage of vapor, passes into the coils in the brine tank or

in the room to be cooled. The temperature of the brine being

higher than that of the medium, heat is absorbed by the medium,

and the liquid vaporizes at constant pressure. This process is

represented by the line AB and the heat absorbed from the

surrounding brine by the area Al
ABQr

The position of the point A is determined as follows : The

passage of the liquid through the expansion valve is a case of

throttline- or wiredrawing of the character discussed in Art. 162.



Hence, the heat content at A must be equal to the heat content

at E, that is,

^2
= ^i + ^ r

i

Graphically, the area OHG-AAl
is equal to the area OHEE^, or

taking away the common area OHG-FE^ the rectangle El
FAA

l

is equal to the triangle G-EI. (See Art. 162).

Since the throttling process represented by EA is assumed to

be adiabatic, the work that must be done 011 the medium is the

difference between Q^ the heat absorbed, and Qz , the heat rejected

to the condenser. We have then

Q1
= area

W = area O
1
ODEE1

- area A
1
AB0

1

If the expansion valve be replaced by an expansion cylinder,

permitting a reversible adiabatic expansion from pz
to pv as in-

dicated by the line JEF, we have

= area

W= area BCDEFB.

The effect of using the expansion valve rather than the expansion

cylinder is thus to decrease the heat removed by the area E-^FAA-^
and to increase the work done by an equivalent amount.

185. Vapors used in Refrigeration. The three vapors that are

used to any extent as refrigerating media are ammonia, sulphur

dioxide, and carbon dioxide. Of these, ammonia is used almost

exclusively in America and largely in Europe. The other two

are used to a small extent chiefly in Europe.
The choice of vapor to be used depends chiefly upon two things :

(1) The suction and discharge pressures that must be employed
to give proper lower and upper temperatures T^ and T

z
. The

lower temperature must be such as to keep the proper temperature
in the brine or the space to be kept cool, while the upper
temnerature is fixed bv the temoerature of the ooolino-



ailable. (2) The volume of the medium required for a given
louiit of refrigeration. This determines the bulk of the

iichine.

If the upper temperature be taken as 68 F. (Tz = 528) and

13 lower temperature as 14 F., the pressures and the volume

lion for tlio three vapors mentioned are about as follows:

Nils SO. COj

ol.ion proHHuni, 11). pur sq. in. 41.5 14.75 385

s<:]i:ir^(! pressure, II). per sq. in. 124 47.61 826

>lumi!, taking Uuiti of (.X)
3
an 1 4.4 12 1

It appears that carbon dioxide requires for proper -working

!iy high pressures, so high, in fact, as to be practically prohib-

ve except in maehines of small size. With sulphur dioxide

e pressures are low, but the necessary volume of medium is

gh, being nearly three times that required by ammonia and

,'elvo times that required by carbon dioxide. With ammonia,

c pressures are reasonable and the volume of medium is not

:<:essive; hence from these considerations, ammonia is seen to

! most advantageous.
From the point of view of economy, ammonia and sulphur

oxide are about equal. Carbon dioxide shows a somewhat

Killer el'l'ieiem:/ than the others under similar conditions be-

,use, on account of the small latent heat of carbon dioxide, the

sses due to superheating and the passage through the expan-

jn valve are a larger per cent of the total effect.

186. Calculation of a Vapor Machine. The following analysis

>plies to the ideal, cycle shown in Fig. 123. Denoting by T

ie temperature at the end of compression indicated by the

>int (7, the heat that must be removed per minute from the

iperheated vapor to bring it to the saturation state (the heat

presented by the area O^DD^ is

v .

i Avlm-.li *
p denotes the specific heat of superheated vapor, and

E the weight of the medium required per
minute^

i he heat

ejected by the vapor during condensation (area 1)^^)
is

fr
a

. Hence the heat rejected by the medium per minute is

^ -*rr , .. rrn _ TV1. (1)



Denoting by x
l
the quality of the mixture of liquid and vapor

in the state represented by point A, we have for the heat ab-

sorbed by the medium from the brine or cold room (repre-

sented by the area A-^ABO-^)

Q^Mr^l-xJ. (2)

But area OHGf-AA^ area OHEUV that is,

2i' + r
i
x
i
= &' ; (3)

whence combining (3) and (2),

Q,
=M^ -

qj + ft ')
= M(qi

-
2a'). 00

The work required per minute is, therefore,

TT= JX<?a -0i) = ^[2a"-<?i" + 'p(^- 2*)], (5)

and the net horsepower required to drive the machine is,

Combining (6) and (4), we have

778^[^-^+ gp(re2
83000(?1

"-
2a')

'

.

^ }

To the horsepower thus calculated should be added perhaps
10 to 20 per cent to allow for imperfections of the cycle, and to

the gross horsepower must be added 10 to 20 per cent to allow

for the friction of the mechanism.

Assuming the vapor entering the compressor to be dry and

saturated, as indicated by point 33, Fig. 123, the volume of

vapor entering the compressor per stroke is

Mv "
V _1_ /^v c ft- (0)

where v^' is the specific volume of vapor at the pressure p l

and N the number of working strokes per minute. If the

medium enters the compressor as a mixture of quality xm as in-

dicated by point M, then approximately

The net cylinder volume as determined by (8^ or (9) must



JL

The weight of cooling water required per minute is readily

found from (1) when the initial and final temperatures of the

water are fixed. Denoting this weight by Cr and the initial and

final temperatures by t" and t\ respectively, we have

<?(*"
- O =M fa + cp (T -

5i)]. (10)

To determine the value of Qz
from (1) the temperature Tc at

the end of compression must be obtained. For adiabatic .com-

pression Tc may be found by the following method. Eeferring
to Fig. 123, the decrease of entropy in passing from to D is

the same as passing from B to D. If ep,
the specific heat along

curve CD, is assumed to be constant, we have

T

UUt Sjj Sd S-[
-\- -fif i "2 ' rn

-LI \ J-
2 .

hence cp log e
- = s^ -f

~

Since <?p , 2j, jP2 , s/, s
2 ,

r
15
and r

2
are known quantities, ^ is

easily calculated.

EXAMPLE. Required the dimensions and the horsepower of an ammonia

refrigerating machine that is to abstract 15,000 B. t. u. per minute from a

cold chamber which is to be kept at a temperature of 30 3?. The tempera-
ture of the ammonia in the condenser may be taken as 85 F. and that of

the ammonia in the brine coils 20 F. Assume one double-acting com-

pressor making 75 r. p. m.

From the table of the properties of saturated ammonia, we have the fol-

lowing values corresponding to ti
= 20 and fe = 85 :

pi = 47.46 Ib. per square inch, ri = 500 B. t. u., q\
= 13 B. t. u.,

ji" = 547 B. t. u., si' = - 0.027, -g-
= 1.168, v{' = 6.01 cu. ft.,

-M.

pz = 166.8 Ib. per square inch, r2 = 496 B.t. u., qz
' = 01 B. fc.u.,

0," = 557 B.t.u., s2
' = 0.118, ^.= 0.910, t?2

" = 1.78.



end of compression, we have, from (11),

0.51 loge p-^4 =
- 0.027 + 1.168 - (0.118 + 0.910)= 0.113,

whence log Tc
= log 544.6 + 0.4343 x9^ = 2.83231,

T = 679.7,

and 4 = 679.7 - 459.6 = 220.1 F.

The weight of ammonia that must be circulated per minxtte is, from (4),

isooo

o47 - 61

The net horsepower is, from (6),

778 x 80.86 r

33000
_ 547 0<51(22o.l

_
85)] = 57.4.V ^

Adding 15 per cent for cycle imperfections, the compressor will requii

about 66 horsepower. The steam engine required to drive the compressc

should develop, say, 80 horsepower.

The volume of the compressor cylinder is, from (S),

30.86 x 6.01 = mcu . ft .

2 x 75

Adding 15 per cent for clearance, etc., the required volume is 1.43 cu. f

This is given by a stroke of 20 in. and a cylinder diameter of 12 in.



TABLE I

PROPERTIES OF SATURATED STEAM









TABLE II

tt OF SATURATED STEAM BELOW 212 F.
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Absolute scale, Kelvin's, 55.

temperature, 18.

zero, 18.

Acoustic velocity, 257.

Adiabatic change, defined, 40.

expansion of gas, 103.

of vapor mixture, 185, 189.

of superheated steam, 218.

irreversible, 75.

of air and steam mixture, 233.

of superheated steam, approximation
to, 220.

of vapor mixture, approximation to,

190.

on TS-plane, 70.

with variable specific heat, 126.

Air and steam, mixture of, 232, 236.

compression, 152.

engine cycles, analysis of, 140.

engines, classification of, 137.

moist, constants for, 230.

moisture in, 228.

refrigeration, 149.

required for combustion, 119.

Allen dense-air refrigerating machine,
150.

Ammonia, saturated, 180.

superheated, 223.

Andrews' experiments, 198.

Atomic weights, 111.

Availability of energy, 46.

Available energy of a system, 56.

Bertrand's formulas, 168.

Biot's formula, 167.

Boltzmann's interpretation of the second

law, 65.

Boyle's law, 89.

Brayton cycle, 145.

Callendar's equation for superheated
steam, 204.

Calorimeter, throttling, 271.

Caloric theory, 3.

Carbon dioxide, saturated, 182.

Carnot cycle, 50, 134.

for saturated vapors, 283.

on TS-plane, 73.

engine, efficiency of, 54.

Carnot's principle, 52.

Characteristic equation, 16.

of gases, 93, 277.

surface, 20.

Charles' law, 90.

Chemical energy, 5.

Clapeyron-Clausius formula, 178.

Clausius' equation, 200.

inequality of, 63.

statement of the second law, 50.

Combustion, 117.

air required for, 119.

products of, 119.

temperature of, 127.

Compound compression of air, 156.

Compounding of steam turbines, 296.

Compressed air, 152.

engines, 158.

Compression, compound, 156.

refrigerating machine, 308.

Conduction of heat, waste in, 57.

Conservation of energy, 6.

Constant energy curve of mixture, 187.

Constant volume curve, 186.

Continuity, equation of, 244.

Coordinates defining state of system, 15.

Critical states, 197.

temperature, volume, and pressure, 199.

Cycle, Carnot, 50, 134.

Diesel, 146.

Joule, 145.

Lenoir, 162.

Otto, 142.

processes, 72, 133.

Rankine, 284.

rectangular, 73.

Cycles, isoadiabatic, 136.

of actual steam engine, 290.

of air engines, analysis of, 140.

of gas engines, comparison of, 148.

with irreversible adiabatics, 75.

Cylinder efficiency, 293.

Curtis type of steam turbine, 304.

Curve, constant volume, of steam, 186.

of heating and cooling, 70.

polytropic, 71.

saturation, 166, 182.

Curves, specific heat, superheated steam,

209, 211.
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Dalton's law, 114, 228.

Davis formula for heat content, 177, 274.

Degradation of energy, 7.

Degree of superheat, 165, 196.

De Laval nozzle, 258.

Derivative ^- 170.

Design of nozzles, 264.

Diesel cycle, 146.

Differential equations of thermodynam-
ics, 82, 84.

expressions, interpretation of, 28.

inexact, 30.

Differentials of u, i, F and $, 79 .

Dissociation, 197.

Dupre-Hertz formula, 168.

Efficiency, conditions of maximum, 135.

cylinder, 293.

of Carnot engine, 54.

potential, 292.

ratio, 292.

thermal, 291.

standards, 291.

Electrical energy, 5.

Energy, availability of, 46.

chemical, 5.

conservation of, 6.

degradation of, 7.

dissipation of, 8.

electrical, 5.

Energy equation, 36.

applied to cycle process, 39.

applied to vaporization, 170.

integration of, 38.

Energy, heat, 3.

high grade, and low grade, 7.

mechanical, 2.

of gases, 97.

of saturated vapor, 172.

of superheated steam, 214.

relativity of, 2.

transformations of, 5.

units of, 8.

units, relations between, 10.

Engine, compressed air, 158.

Ericsson's, 139.

Stirling's, 138.

Engines, gas, 142.

hot-air, 138.

steam, 283.

Entropy, as a coordinate, 68.

first definition of, 59.

of gases, 100.

of liquid, 179.

of superheated steam, 215.

Equation of Clausius, 200.
of perfect gas, 17.

of van der Waals, 20, 200.
of vapor mixture, 184.

Equations for gases, 94.

for discharge of air and steam, 255.
for superheated steam, 203.

general, of thermodynamics, 79.

Equilibrium of thermodynamics systems,
87.

Ericsson's air engine, 139.

Exact differentials, 30.

Expansion of gases, adiabatic, 103.
at constant pressure, 101.

isothermal, 102.

Expansion valve, 272, 309.

Exponent n, determination of, 108.
External work of a system, 37.

First law of thermodynamics, 35.

Fliegner's equations for flow of air, 255.
Flow of air, equations for, 255.

Flow of fluids, assumptions, 244.

experiments on, 243, 254.
formulas for discharge, 255
fundamental equations, 244.

graphical representation, 247.

through orifices, 252.

Flow of steam, Grashof's equation, 256.
Rateau's equation, 256.

Napier's equation, 257.
Free expansion of gases, 58.

Friction in nozzles, 262.

Frictional processes, 74.

Fuels, 118.

Gas, characteristic equation of, 93, 277.
constant B, value of, 92.

constant, universal, 113.

constants, relations between, 112.
free expansion of, 58.

permanent, 89.

Gas-engine cycles, comparison of, 148.

Gases, entropy of, 100.

general equations for, 94.

heat content of, 99.

intrinsic energy of, 97.

laws of, 89.

mixtures of, 114.

specific heat of, 96, 124.

Graphical representation of energy equa-
tion, 43.

of flow of fluids, 247.

Grashof's equation, flow of steam, 256.



iat content 01 gases, yy.

of saturated vapor, 173, 177.
of superheated steam, 210.

iat, effects of, 35.

Intent, 20.

mechanical equivalent of, 11.

mechanical theory of, 3.

af liquid, 171, 174.

sf vaporization, 171, 175.

specific, 24.

total, 172, 177, 213.

units of, 9.

jilting of air by internal combustion,
141.

sating value of fuels, 118.

inning's formula for latent heat, 176.

>lborn and Hcnning's experiments,
205.

>t-air engines, 138.

imidity, 229.

equality of Clausius, 63.

(xsrnul combustion, heating by, 141.

trinsic energy, 30.

of gases, 97.

of superheated steam, 214.

of vapors, 172.

evorsiblo adiabatics, 75.

processes, 47.

processes, waste in, 57.

Kidiabatic cycles, 130.

nlynamic change of vapor, 190.

processes, 42.

>rnetric lines, 22.

>piestio lines, 22.

>thermal, definition of, 21.

sxpansion of gases, 102.

of superheated steam, 217.

of vapor mixture, 188.

311 7Y>-plane, 70.

sf steam and air mixture, 232. '

i, work of, 298.

ulc's cycle, 145.

experiments, 11.

law, 90.

tile-Thomson coefficient, 276.

effect, 275.

ilvin's absolute scale, 55.

statement of the second law, 50.

loblauch's experiments, 201.

loblauch and Jakob's experiments, 205.

ngcn's equations for specific heat, 124,

205.

tent heat, 26.

external, 172.

Hemline's formula for, 176.

Latent heat, internal, 172.

of expansion, 27.

of pressure variation, 27.

of vaporization, 171, 175.

Lenoir cycle, 162.

Linde's process for liquefaction, 280.

Liquefaction of gases, 280.

Liquid curve, 166.

Mallard and Le Chatelier's experiments,
205.

Marks' formula, 170.

Maxwell's thermodynamic relations, SO
Mean specific heat, 210.

Mechanical energy, units of, 9.

Mechanical equivalent of heat, 11.

theory of heat, 3.

Mixture of gases and vapors, 228.

of gases, specific heat of, 125.

of steam and air, 232, 236.

Moist air, constants for, 230.

Moisture in atmosphere, 228.

Molecular specific heat, 123.

weights, 111.

Mollier's chart, 223.

use in flow of fluids, 251.

use in steam turbines, 302.

Munich experiments, 201.

Napier's equations, flow of steam, 257.

Nozzle, De Laval, 258.

Nozzles, design of, 264.

friction in, 262.

Otto cycle, 142, 148.

Peake's throttling curves, 273.

Perfect gas, definition of, 18.

equation of, 17.

Permanent gas, explanation of term,

89.

Perpetual motion of first class, 6.

of second class, 8.

Polytropic change of state, 104.

changes, specific heat in, 106.

curve, 71.

Potential efficiency, 292.

thermodynamic, 77, 87.

Pressure and temperature, relation be-

tween, 167.

Pressure compounding, 296.

critical, 199.

turbines, action of, 298, 305.

Products of combustion, 119.

Quality of mixture, 165.

variation of, 185.



's cycle, 284.

effect of changing pressure,

289.

incomplete expansion, 288.

with superheated steam,
286.

a, 168.

i formula, flow of steam, 286.

alar cycle, 73.

iting machine, analysis of, 311.

ition, air, 149.

i used in, 310.

apor media, 308.

I heat engine, 74.

le processes, 47.

3 and Moorby's experiments, 12.

.'a experiments, 11.

ingine, 294.

:nant's hypothesis, 254.

d vapor, 165.

energy of, 172.

entropy of, 179.

heat content of, 173, 177.

latent heat of, 171, 175.

specific heat of, 182.

surface representing, 166.

total heat of, 172, 177.

>n curve, 166, 182.

nature, 165.

iw of thermodynamics, 50.

tiann's interpretation of, 65.

ticat, 24.

curves, 209, 211.

in polytropic changes, 106.

Langen's formulas for, 124.

mean, 210.

heat, molecular, 123.

of gaseous mixture, 125.

of gaseous products, 123.

of gases, 96.

of saturated vapor, 182.

of superheated steam, 204, 273.

volume of vapors, 177.

id air, mixture of, 232, 236.
I temperature of, 199.

3 volume of, 177.

180.

il properties of, 173.

teat of, 172, 177.

irbine, 294.

classification of, 295.

compared with reciprocating

engine 294,

compounding, 296.

Curtis type, 304.

impulse and reaction, 296.

influence of high vacuum, 307.

low pressure, 307.

Steam turbine multiple stage, 302.

pressure type, 298, 305.

single stage, 300.

velocity and pressure, 296,

Stirling's engine, 138.

Sulphur dioxide, saturated, 182.

superheated, 223.

Superheat, degree of, 165, 196.

Superheated ammonia, 223.

Superheated steam, 165, 196.

changes of state, 216.

energy of, 214.

entropy of, 215.

equations for, 203.

heat content of, 210.

specific heat of, 204, 273.

tables and diagrams, 221.

total heat of, 213.

Superheated sulphur dioxide, 223.

vapor, characteristics of, 196.

Surface, characteristic, 20.

representing saturated vapor, 166

System, defined, 15.

state of, 15.

Temperature, absolute, 18.

and pressure, relation between, 167.

critical, 199.

Kelvin scale of, 55.

Temperature of combustion, 127.

saturation, 165.

scales, comparison of, 91.

Temperature entropy representation, 68.

Thermal capacities, relation between, 27.

capacity defined, 24.

efficiency, 291.

energy, 4.

lines, 21.

properties of steam, 173.

Thcrmodynamic degeneration, 8.

potentials, 77, 87.

relations, 80.

Thermodynamics, first law of, 35.

general equations of, 84.

scope of, 1.

second law of, 50.

Throttling calorimeter, 271.

curves, 273.

loss due to, 269.

processes, 268.

Total heat of saturated vapor, 172, 177.

of superheated steam, 213.

Transformations of energy, 5.

Tumlirtz equation for superheated steam,
204.

Turbine, steam, see Steam turbine.

Units of energy, 8.

of heat, 9.

Universal gas constant, 113.



uum, influence of, on steam turbine,
307.

i der Waals' equation, 20, 200.

ior, energy of, 172.

itropy of, 179.

[tit content of, 173, 177.

itent heat of, 171, 175.

ior mixture, acliabatic expansion of,

189.

instant volume change, 189.

jrvos on TiS-planc, 186.

cm-nil equation of, 184.

lodynamic of, 190.

lothurniiil expansion of, 188.

>or refrigerating machine, 311.

jporhotitcd, 196.

:>tal heat of, 172, 177.

)orization, heat of, 171, 175.

Vaporization, process of, 164.

Vapors used in refrigeration, 310.

Velocity compounding, 297.

Volume, critical, 199.

specific, of vapor, 177.

Waste in irreversible processes, 57.

Water, critical temperature of, 199.

jacketing, 155.

vapor, thermal properties of, 173.

Wiredrawing, 268.

Work, conversion of, into heat, 57.

external, of expansion, 37.

of a jet, 298.

Zero curve, 186.

Zeuner's equation for superheated steam,
204.


