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PREFACE

THIs book is intended primarily for students of engineering.
Its purpose is to provide a course in the principles of thermo-
dynamics that may serve as an adequate foundation for the
advanced study of heat engines. As indicated by the title,
emphasis is placed on the principles rather than on the appli-
cations of thermodynamics. In the chapters on.the technical
applications the underlying theory of various heat engines is
quite fully developed. The discussion, however, is restricted
to ideal cases, and questions that involve the design, operation,
or performance of heat engines are reserved for a second
volume.

The arrangement of the subject matter and the method of
presentation are the result of some twelve years’ experience in
teaching thermodynamics. Briefly, the arrangement is as fol-
lows: In the first six chapters, the fundamental laws are
developed and the general equations of thermodynamics are
derived. The laws of gases and gaseous mixtures are dis-
cussed in Chapters VII and VIII, and this discussion is fol-
lowed immediately by the technical applications in which
gaseous media play a part. A discussion of the properties
of saturated and superheated vapors is likewise followed by the
technical applications that involve vapor media.

Some of the features of the book to which attention may
be directed are the following :

1. The method of presenting the fundamental laws. In
this treatment I have followed very closely the development -
in Bryan’s thermodynamics. The second law is made identical

with the law of degradation of energy, the connection between
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derived. By this method of presentation, a definite concep-
tion of the meaning and scope of the second law is obtained,
and the difficulties that usually surround the definition of
eDtI‘Opy are removed.

2. The discussion of saturated and superheated vapors.
The experiments in the Munich laboratory and the rescarches
of Professor Marks and Dr. Davis have furnished new and
accurate data on the thermal properties of saturated and super-
heated steam. In Chapters X and XI a concise but fairly
complete account of these important researches is given. Ino-
blauch’s experiments on specific volumes have been correlated
with the experiments on specific heat by means of the Clausius
relation(‘g—"ﬂ> = —AT(a—ZU>

BP T or® 4
entropy, energy, and heat content of superheated steam are
thereby deduced. These results have not hitherto been pub-
lished.

3. The discussion of the flow of fluids and of throttling
processes. The applications of the throttling process are so
important from all points of view that a separate chapter is
devoted to them.

4. The treatment of gaseous mixtures, Chapter VIII. An
attempt is made to present in concise form the prineiples and
methods required in the aceurate analysis of the internal com-
bustion engine.

5. The note on the interpretation of differential expressions,
Art. 23. This important topic should be discussed fully in
calculus, but experience shows that students rarely have a
grasp of it. In thermodynamics the exact differential has
extensive applications; hence it seems desirable to include
a rather complete explanation of exact and inexact differentials
and their connection with thermodynamic magnitudes. A
thorough understanding of this article should enable the student

to pursue the subsequent mathematical discussions with intel-
ligence and ease.

and equations for the specific heat,
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The text is illustrated by numerous solved problems, and
exercises are given at the ends of the chapters and elsewhere.
Many of the exercises require only routine numerical solutions,
but others involve the development of principles.

References are given to the treatment of various topics in
standard works and to original articles. It is not expected
that undergraduate students will make extensive use of these
references, but it is hoped that instructors and advanced
students will find them helpful.

In writing this book I have consulted many of the standard
works on thermodynamics, and have made free use of whatever
material suited my purpose. I desire to acknowledge my
special indebtedness to the works of Bryan, Preston, Griffiths,
Zeuner, Chwolson, Weyrauch, and Lorenz, and to the papers
of Dr. H. N. Davis. To Mr. John A. Dent I am indebted
for assistance in the construction of the tables and in the
revision of the proof sheets. Mr. A. L. Schaller also gave
valuable assistance in getting the book through the press.

G. A. GOODENOUGH.
UrBANA, ILL., July, 1911,
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SYMBOLS

The following list gives the symbols used in this book. In

a magnitude is dependent upon the weight of the substance, the s
letter denotes the magnitude referred to unit weight, the capital letter
same magnitude referred to M units of weight. Thus g denotes the
absorbed by one pound of a substance, Q = Mg, the heat absorbed b;

pounds.
J,

A
M,

l,

T,

b

» ¥,
2

w U,
i I,
s S,

w,
e Q
k, H,

Joule’s equivalent.

reciprocal of Joule’s equivalent.

weight of system under consideration.

temperatnre on the F. or the C. scale.

absolute temperature.

pressure.

volume.

specific weight; also heat capacity.

intrinsic energy of a system.

heat content at constant pressure.

entropy.

external work.

heat absorbed by a system from external sources.

heat generated within a system by irreversible transformatio:
work into heat.

specific heat.

specific heat at constant volume.

specific heat at constant pressure.

ratio ¢,/ cqn

constant in the gas equation pv = BT.

universal gas constant.

exponent in equation for polytropic change, pV» =

molecular weight.

atomic weights.

heating value of a fuel mixture.

quality of a vapor mixture (p. 165).

heat of the liquid.

total heat of saturated vnpor.




SYMBOLS

specific volume of liquid and of vapor, respectively.
internal energy of liquid and of vapor, respectively.
entropy of liquid and of vapor, respectively.

heat content of liquid and of vapor, respectively.
specific heat of liquid and of vapor, respectively.
humidity.

velocity of flow.

acoustic velocity.

area of cross-section of channel.

work of overcoming frietion in the flow of fluids.
critical pressure (flow of fluids).

Joule-Thomson coefficient.

efficiency of a heat engine.

steam consumption per h.p.-hour.



PRINCIPLES OF THERMODYNAMICS

CHAPTER I
ENERGY

1. Scope of Thermodynamics. — In the most general sense,
thermodynamics is the science that deals with energy. Since
all natural phenomena, all physical processes, involve manifes-
tations of energy, it follows that thermodynamics is one of
the most fundamental and far-reaching of sciences. Thermo-
dynamics lies at the foundation of a large region of physics
and also of a large region of chemistry; and it stands in a
more or less intimate relation with other sciences.

In a more restricted sense, thermodynamics is that branch of
physics which deals specially with a form of energy called heat.
It deals with transformations of heat energy into other forms
of energy, develops the laws that govern such transformations,
and investigates the properties of the media by which the
transformations are effected. In technical thermodynamics the
general principles thus developed are applied to the problems
presented by the various heat motors.

In this volume the general principles of thermodynamics are
developed so far as is essential to give a firm foundation for the
technical applications in engineering practice. The scope of
the book does not permit a discussion of the methods of inves-
tigation that are employed so fruitfully in physies and chem-
istry.
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ing to rest, that is, in changing its state as rogards veloeity s
a body in an elevated position can do work in changing its
position; a heated metal rod is capable of doing mechanical
work when it contracts in cooling. In each case somo change
in the state of the body results in the doing of work; lience, in
each case the body in question possesses energy-

Energy, like motion, is purely relative. 1t is impossible to
give a numerical value to the energy of a system without
referring it to some standard system, whose euergy wo iy
arbitrarily assume to be zero. For example, the energy of the
water in an elevated reservoir is considered with reference to
the energy of an equal quantity at some chosen lowor level.
The kinetic energy of a body moving with a delinite velocity
is compared with that of a body at rest on the earth’s surface,
and having, therefore, zero velocity relative to the carth.  The
energy of a pound of steam is referred to that of pound of
water at the temperature of melting ice.

3. Mechanical Energy is that possessed by a body or system
due to the motion or position of the body or system relative to
some standard of reference. Mechanical kinetic encrgy is that
due to the motion of & body and is measured by the product
1 m?, where m denotes the mass of the body and v its velocity
relative to the reference system. It should be observed that
3 mv? is a scalar, not a vector, quantity and it must be considered
positive in sign. Hence, if a system consists of a number of
masses my, Mg, -+, m, moving with velocities vy, vy +ory v,
respectively, the total kinetic energy of the system is the sum

1 2
3 (2 +mgu? + - +m2) =1 Zad,

independently of the directions of the several velocitics.

The mechanical potential energy of a system is that due to
R | 3 oy 1

PR . Y . S
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4. Heat Energy. — Heat is the name given to an active agent
postulated to account for changes in temperature. It is ob-
served that when two bodies are placed in communication, the
temperature of the warmer falls, that of the colder rises, and the
change continues until the two bodies attain the same tempera-
ture. To account for this phenomenon we say that heat flows
from the hotter to the colder body. The fall of temperature of
one body is due to the loss of heat, while the rise in tempera-
ture of the other is due to the heat received by it. It is to be
noted that the change of temperature is the thing observed and
that the idea of heat is introduced to account for the change,
just as in dynamics the idea of force is introduced to account
for the observed motion of bodies. Whatever may be the
nature of heat, it is evidently something measurable, something
possessing the characteristics of quantity.

In the old caloric theory, heat was assumed to be an impon-
derable, all-pervading fluid which could pass from one body to
another and thus cause changes of temperature. The experi-
ments of Rumford (1798), Davy (1812), and Joule (1840)
shattered the caloric theory and established the modern me-
chanical theory, of which the following is a brief outline.

Heat may be generated by the expenditure of mechanical
work. Familiar examples are shown in the heating of journals
due to friction, the heating of air by compression, the develop-
ment of heat by impact, etc. Conversely, work may be ob-
tained by the expenditure of heat, as exemplified in the steam
engine and other heat motors. Joule’s experiments established
the fact that a definite relation exists between the heat gener-
ated and the work expended; thus to produce a unit of heat a
definite amount of work is required, no matter in what particu-
lar way the work is done. Heat and mechanical energy are
therefore equivalentin a certain sense. Either may be produced
at the expense of the other, and the ratio between the quantity of
one produced and the quantity of the other expended is always
the same. The conclusion is evident that heat is not a sub-

R . . N
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Heat energy, like mechanical energy, may he either of the
kinetic or the potential form. Denoting the mass .()f a mole-
cule by m and the velocity by v, the kinetic energy of the mole-
culeis & me? In a given system the diffevent moleeules are
movingﬂ with different velocities and in different dircetions ;
nevertheless, the summation

21 m?
extended to all the molecules of the system gives tho thermal
kinetic energy of the system. If we denote by ¢* the mean
square of the velocities of the molecules, we have
3 pmot=} MA

where M denotes the mass of the system. Considerations de-
rived from the kinetic theory of gases show that the tempera-
ture of the system is a function of ¢?; hence, since the kinetic
energy is directly proportional to ¢% it follows that the tempera-
tare of a system is a measure of its thermal kinclic energy.
Whenever the temperature of a body rises, we infer that the
kinetic energy has increased, and that the mean velocity of the
molecules is greater than before.

Potential thermal energy is due to the relative position of
the molecules of the system. The addition of heat to a body
usually results in the expansion of the body. The molecules
are moving with higher speeds than before the addition of heat,
and on the whole they are farther apart. To separate them
against their mutual attractions requires the expenditure of
work ; conversely, in coming back to the original conlignra-
tion the molecules will do worlk. Hence, the work expended
in separating the molecules is stored in the system as potential
energy. .

As long as the body remains in the same state of agaregation,
the potential energy it is capable of storing is small,  But il a
body changes its state of aggregation, it may, during the pro-
cess, store a large amount of potential energy. Cous

ider, Tor
example, the melting of jce.  Th ol o e e

N
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water. The heat is therefore stored as potential energy. In the
same manner when water is transformed into steam, work is
done in forcing apart the molecules against their colesive forces,
and this work is stored as potential energy.

5. Other Forms of Energy. — In addition to heat and mechani-
cal energy, there are other forms of energy that require consid-
eration. The energy stored in fuel or in explosives may be
considered potential chemical energy. Electrical energy is
exemplified in the electric current and in the electrostatic charge
in a condenser. Other forms of energy are due to wave motions
either in ordinary fluid media or in the ether. Sound, for
example, is a wave motion usually in air. Light and radiant
heat are wave motions in the ether.

The vibratory forms of energy are neither kinetic nor potential,
but rather periodic alternations between the two. To illustrate
this statement, let us consider the motion of a pendulum bob.
In its lowest position the bob lias zero potential energy and
maximum kinetic energy; as it rises its velocity decreases ;
therefore, its kinetic energy also decreases, while its potential
energy simultaneously increases and reaches a maximum at the
end of the swing when the kinetic energy is zero. This same
alternation from kinetic to potential and back occurs in vibrating
strings, water waves, and, in fact, in all wave motions.

6. Transformations of Energy.-— Attention has been called
to the generation of heat energy by the expenditure of mechani-
cal work. This isonly one ofa great number of energy changes
that are continually occurring. We see everywhere in every-
day life one kind of energy disappearing and another form
simultaneously appearing. In a power station, for example,
the potential energy stored in the coal is liberated and is used up
in adding heat energy to the water in the boiler. Part of this
heat energy disappears in the engine and its equivalent appears
as mechanical work. Finally, this work is expended in driving
a generator, and in place of it appears electric energy in the
form of the current in the circuit. We say in such cases that
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ing are a few familiar examples of energy transformations ;
=3

many others will occur to the reader.

Mechanical to heat: Compression of gases; friction; im-
pact.

Heat to mechanical : Steam engine; expansion and contric-
tion of bodies.

Mechanical to electrical : Dynamoj; electric machine.

Electrical to mechanical : Electric motor.

Heat to electrical : Thermopile.

Electrical to heat : Heating of conductors by current.

Chemical to electrical : Primary or secondary battery.

Electrical to chemical : Electrolysis.

Chemical to thermal : Combustion of fucl.

7. Conservation of Energy. — Experience points to a general
principle underlying all transformations of encrgy.

The total energy of an isolated system remaing constant and
cannot be inereased or diminished by any physical processes
whatever.

In other words, energy, like matter, can he neither created
nor destroyed ; whenever it apparently disappears it has heen
transformed into energy of another kind.

This principle of the conservation of energy was first, defi-
nitely stated by Dr. J. R. Meyer in 1842, and it soon received
confirmation from the experiments of Joule on the mechanical
equivalent of heat. The conservation law annot he proved
by mathematical methods. Like other general prineiples in

physics, it is founded upon experience and e

Xperiment,  So
far,

it has never been contradicted by experiment, and it may
be regarded as established as an exact law of nature.

A perpetual motion of the first cluss is one that
posedly give out energy continually without
expenditure of energy. That s,
nothing.

vould sup-
any corresponding
it would ereate energy from
A perpetual-motion engine would, therefore
an unlimited amount of work wi
supply of energy. Evidently sucl
conservation law

L oive ong
thout fuel or other external
h 2 machine would violate the
5 and the statement that perpetual motion of
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the first class is impossible is equivalent to the statement of the
conservation principle at the beginning of this article.

8. Degradation of Energy. — While one form of energy can
be transformed into any other form, all transformations are not
effected with equal ease. It is only too easy to transform
mechanical work into heat; in fact, it is one duty of the
engineer to prevent this transformation as far as possible.
Furthermore, of a given amount of work all of it can be trans-
formed into heat. The reverse transformation, on the other
hand, is not easy of accomplishmnent. Heat is not transformed
into work without effort, and of a given quantity of heat only a
part can be thus transformed, the remainder being inevitably
thrown away. All other forms of energy can, like mechanical
energy, be completely converted into heat. Electrical energy,
for example, in the form of a current, can be thus completely
transformed. Comparing mechanical and electrical energy, we
see that they stand on the same footing as regards transforma-
tion. In a perfect apparatus mechanical work can be com-
pletely converted into electrical energy, and, conversely, electric
energy can be completely converted into mechanical work.

We are thus led to a classification of energy ou the basis of
the possibility of complete conversion. Energy that is capable
of complete conversion, like mechanical and electrical energy,
we may call high-grade energy; while heat, which is not capable
of complete conversion, we may call low-grade energy.

There seems to be in nature a universal tendency for energy
to degenerate into a form less available for transformation.
Heat will flow from a body of higher temperature to one of
lower temperature with the result that a smaller fraction of it
is available for transformation into work. High-grade energy
tends to degenerate into low-grade heat energy. Thus work is
degraded into heat through friction, and electrical energy is
rendered unavailable when transformed into heat in the con-

ducting system Even when one form of high-grade enem) is
o FIRE NG DT L




substances, the ditference being due to the leal Quyelopea (b=
ing the reaction. As Guiffiths aptly says: * Each time we
alter our investment in energy, we have thus to pay a commis-
sion, and the tribute thus exacted can never he wholly recovered
by us and must be regarded, not as destroyed, but as throwu on
the waste-heap of the Universe.”

The terms degradation of energy, dissipation of energy, and
thermodynamic degeneration are applied by different writers to
this phenomenon that we have just deseribed.  We may for-
mally state the principle of degradation of encrgy as follows

Every natural process 18 accompanicd by @ cevtuin degradation
of energy or thermodynamic degeneration.

The principle of the degradation of encrgy denies the possi-
bility of perpetual motion of the second elass, which may he de-
seribed as follows : A mechanism with friction is inclosed in a
case through which no energy passes. Let the mechanism be
started in motion. Because of friction, work is converted into
heat, which remains in the system, since no energy pass
through the case. Suppose now that the lieat thus produced
can be transformed completely into work ; then the work may
be used again to overcome friction and the heat thus produced
can be again transformed into work. 'We then have a perpetual
motion in a mechanism with friction without the addition of
energy from an external source. Such a mechanism does nol
violate the conservation law, since no energy is created. It
however, is just as much of an absurdity as the perpetual motion
of the first-class because it violates the principle of degradation.

We shall discuss the degradation prineiple more at length in
a subsequent chapter. )

9. Units of Energy. — According to the conservation Taw,
the qu:.mtity of energy remains unchanged through all trans-
formations. Hence, a single unit is suflicient for .Llu-, measure-
ment of energy whatever its form may be. This unit is furnished
by the erg, the absolute unit of work in the C. G.

- S. system, or
by the joule, which is 107 ergs. ’

It would save much confusion
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and annoyance if a single unit, as the joule, were used for all
forms of energy. Unfortunately, however, the joule is ordina-
rily used in connection with electrical energy only, and other
units ave used for other forms of energy. The following are
the units generally employed.

For mechanical energy:

1. The foot-pound (or in the metric system, the kilogram-
meter). This is the unit ordinarily employed by
engineers.

2. The horsepower-hour, which is equal to 1,980,000 foot-
pounds. This unit is most convenient for ex-
pressing large quantities of work. It should be
noted that although the word ¢ hour * is included in
the name, the time element is in reality lacking,
and the horsepower-hour is a unit of work, not a
unit of power.

{ o .
For heat energy :

1. The British thermal unit (B. t.u.).
2. The calorie.

The accurate definition of these thermal units and the means
employed in establishing them demand special consideration.

10. Units of Heat.— Obviously heat may be measured by
observing the effects produced by it upon substances. Two of
the most marked effects are: (1) rise of temperature; (2)
change of state of aggregation, as in the melting of ice or
vaporization of water. Hence, we have two possible means of
establishing a unit of heat:

1. The heat required to raise a given mass of a selected
substance, as water, through a chosen range of temperature
may be taken as the unit.

2. The quantity of heat required to change the state of
aggregation of some substance, as, for example, to melt a given
weight of ice, may be taken as the unit.

o . - - e o 47 T .



90° C. on the same scale. This thermal unit is ealled the gram-
calorie, or the small calorie. If the weight of water is taken as
1 kilogram, the resulting unit is the kilogrmn-culnriu or largo
calorie. This is the unit employed by engineers.
The British thermal unit is defined as the heat required to
raise the temperature of 1 pound of water from 63° to Gt I
The method of establishing thermal units by the riso of tem-
perature of water is open to one gerious objection, namely :
The energy required to raise the temperaturo of water one
degree is quite different at different temperatures. Thus the
number of joules required to raise a given mass of water from
0° to 1° C. or from 997 to

1,008 100° C. iy considerably
1.006 larger than the munber
100 of joules required o
100 T raise the same mass from
o] J l — 4Q° to 41°C. The eurve,
I } g 40 ‘iﬂ E ST ig. 1, shows graphically

0.0 I Tl the enorgy ruquirnd per
0996 T rH '\ } } } { } 1 { 1 i degree riso of tempera-
Fre. 1. ture from 0° to 100 C.

It follows that we may
have a number of different thermal units depending upon the
temperature adopted in the definition. By many physicists
the 15°-calorie is used. This is the heat required to raise the
temperature of a gram of water from 141° C. to 15}° C. In
recent years there has been a tendency to unite on the so-
called mean calorie, which may be defined as the 4}y part of the
heat required to raise a gram of water from 0° C. to 100° €.
The 174°-calorie, as defined by Guiffiths, is practically cqual
to the mean calorie. Corresponding to the mean caloric is the
mean B.t.u., which is 745 of the heat required to raise the
Femperature of one pound of water from 82° to 212° . "This
is equal to the B. t. u. at 633°.

thu" uR;elations between E‘nergy Units, — The relation hetween
he joule, the absolute unit of energy, and any of the gravita-
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hour, is readily derived when the value of the constant g is
given. By international agreement g is taken as

980.665 - 39,174 &
sec. sec.
The second value is obtained by means of the conversion factor
1 om. = 0.3937 in.
Bearing in mind the definition of the erg, we have
1 kilogram-meter = 98066500 ergs
= 9.80665 joules.
Now making use of the relation 1 kg. = 2.204622 lb. and the
preceding relation between the units of length, we readily find
the relation
1 foot-pound = 1.8558 joules,
or 1 joule = 0.78756 foot-pound.

The numerical relation between the thermal unit and the
joule, that is, the number of joules in one gram-calorie, is called
the mechanical equivalent and is denoted by J. The determi-
nation of this constant has engaged the efforts of physicists
since 1843.* )

In this work two experimental methods have been chiefly
employed: (1) The direct method, in which mechanical energy
is transformed directly into heat. (2) The indirect method, in
which heat is produced by the expenditure of energy in some
form other than mechanical. Usually electrical energy is thus
transformed.

The earliest experiments were those of Joule (1843), using
the direct method. Work was expended in stirring water by
means of a revolving paddle. From the rise of temperature
of the known weight of water, the heat energy developed could
be expressed in thermal units; and a comparison of this quan-
tity with the measured quantity of work supplied gave imme-
diately the desired value of J.

Professor Rowland (1878-1879) used the same method, but
by driving the paddle wheel with a petroleum engine he was



to the water, and the influence of various corrections was cor-
respondingly decreased. Rowland’s results are justly given
great weight in deducing the finally accepted value of /.

Another result of the highest value is that [onnd by Rey-
nolds and Moorby (1897). The work of w 100 horsepower
engine was absorbed by a hydranlic brake.  Water entered
the brake at or near 0° C. and was run through it at n rate that,
caused it to emerge at a temperature of ahout 1007 C. In this
way the mechanical equivalent of the lieat required to ruise the
temperature of one pound of water from 0° to 1007 €1 was
determined.

Of the experiments by the indirect method those of Grifliths
(1893), Schuster and Gannon (1804), and Callendar and
Barnes (1899) deserve mention. In ench set of experiments
the heat developed by an electric enrrent was measnred and
compared with the electrical encrgy expended.

From a careful comparison of the results of the most trust-
worthy experiments, Griffiths las decided that the nost prob-
able value of Jis 4.184. That is, taking the 175° wram-calorie,

1 gram-calorie = 4.184 joules.
By the use of the necessary reduction factors, we obiain (he
following relations:

1 kg.-calorie = 426.65 kilogram-meters.
1B. . w. = 777.64 foot-pounds.

For ordinary caleulations, the values 427 and TT8, respeetively,
are sufficiently accurate.

) .In writing some of the general equations of thermodynamics
it is frequently convenient to use the reciprocal of o0 This is
denoted by the symbol 4 ; that is, A E:} Wo may regard oA
as the heat equivalent of work; thus

1ft-lb. = A B. t. u.

When the horsepower-hour is tuken as the unit of work, we
have

A = 1980000

T77.64

= 2546.2.
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Hence, 1 h.p.-hr. = 2546.2 B. t. u.,
a relation that is frequently useful.

EXERCISES

1. If the thermal unit is taken as the heat required to raise the tempera-
ture of 1 pound of water from 17° to 18° C., what is the value of J in foot-
pounds? e

2. In the combustion of a pound of coal 13,200 B.t.u. are liberated. If
T} per cent of this heat is transformed into work in an engine, what is the
<oal consumption per horsepower-hour ?

3. A gas engine is supplied with 11,200 B.t.u. per horsepower- ~hour.
Find the percentage of the heat supplied that is usefully employed. -+ :.

4. In a stean engine 193 B.t.u. of the heat brought into the cylinder
by each pound of steam is transformed mto WOI]\ Find the steamn con-
swmption per horsepower-hour. EEs

5. The metric horsepower is defined as 75 kilogram-meters of work per
second. Find the equivalent in kilogram-calories of a metric horsepower-
hour.

6. TFind the numerical relations between the following energy units :

(@) Joule and B.t.u.

(b) Joule and mefric h.p.-hr.
(¢) B.t.u. and kg.-meter
(«)) h.p.-minute and B.t.u.

7. A unit of power is the watt, which is defined as 1 joule per second.
1 kilowatt (kw.) is 1000 watts. Find the number of B.t. u. in a kw.-hr.;
the number of foot-pounds in a watt-hour.

8. A Diesel oil engine may under advantageous conditions transform as
high as 88 per cent of the heat supplied into work. If the combustion of a
pound of oil develops 18,000 B.t.u., what weight of oil isrequired per h.p.-hr.?
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CHAPTER II
CHANGE OF STATE. THERMAL CAPACITIES

12. State of a System. — A thermodynamic system may be
defined as a body or system of bodies capable of receiving and
giving out Leat or other forms of energy. In general, we shall
assume such a system at rest so that it has no appreciable ki-
netie energy due to velocity. As examples of thermodynamic
systems, we may mention the media used in heat motors : wa-
ter vapor, air, ammonia, ete.

We are frequently concerned with changes of state of systems,
for it is by such changes that a system can receive or give out
energy. Weassume ordinarily that the system isa homogeneous
substance of uniform density and temperature throughout ;
also that it is subjected to a uniform pressure. Such being the
case, the state of the substance is determined by the mass, tem-
perature, density, and external pressure. If we direct our
attention to some fixed guantity of the substance, say a unit
mass, we may substitute for the density its reciprocal, the vol-
ume of the unit mass; then the three determining quantities
are the temperature, volume, and pressure. These physical
quantities which serve to describe the state of a substance are
called the codrdinates of the substance.

In all cases, it is assumed that the pressure is uniform over
the surface of the substance in question and is normal to the
surface at every point; in other words, hydrostatic pressure.
We may consider this pressure in either of two aspects: it
may be viewed as the pressure on the substance exerted by some
external agent, or as the pressure exerted by the substance on
whatever bounds it. For the purpose of the engineer, the lat-
ter view is the most convenient, and we shall always consider the
pressure exerted by instead of on the substance. The pressure
is always stated as a specific pressure, that is, pressure per unit

15



pound per square foot.

The volume of a unit weight of the substance iy the speelfie
volume. Ordinarily volumes will be exprossed in cubic feet
and specific volumes incubic feet per pound.  As itis frequently
necessary to distinguish between the specific volume and the
volume of any given weight of the substance, we shall use » to
denote the former and V7 the latter. Thus, in general, » will
denote the volume of one pound of the substance, I”the volume
of M pounds ; hence

V=M.

This convention of small letters for symbols denoting (uanti-
ties per unit weight and capitals for (uantitics associated with
any other weight M will be followed throughout the book.
Thus ¢ will denote the heat applied to one pound of gas and ¢
the heat applied to M pounds, w the encrgy of a unit weight of
substance, U the energy of M units, cte.

As regards the third codrdinate, temperature, we shall -
cept for the present the scale of the air thermometer.  Later
the absolute or thermodynamic scale will De introdueed.
While the centigrade scale presents great advantages, the com-
mon use of the Fahrenheit scale in engincering practice compels
the adoption of that scale in this book.

13. Characteristic Equation. — In general, we may assume
the values of any two of the three cofirdinates p, o, 7, and
then the value of the third will depend upon values of these
1'swo. For example, let the system be one pound of airv inclosed
ina cylinder with a movable piston. By loading the piston wo
may keep the pressure at any desired value ; then hy the ad-
(h.t;wn of heat wé may raise the temperature to any predeter-
mined value. Thus we may fix p and 7' independently.  We
cannot, however, at the same time give the volume » any value
we please ; the volume will be uniguely determined by the
assume(} values of p and T, or in other words, o is & [unetion
:;feﬂ:a;ﬁi};enieﬂ; Vm"ifublesp and 7. . In a :\'i111i1:1:1' manner
will b the fgncl;imv as independent vm‘m.hlc,\'3 in whic o 7

u L, or we take v and Z'as independent and
P as the function depending on them.
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or written in the explicit form
p=f(, T). (2

The equation giving this relation is called the characteristic
equation of the substance. The form of the equation must be
determined by experiment.

For some substances more than one equation is required ; thus
for a mixture of saturated vapor and the liquid from which it
is formed, the pressure is a function of the temperature alone,
while the volume depends upon the temperature and a fourth
variable expressing the relative proportions of vapor and
liquid.

14. Equation of a Perfect Gas.— Experiments on the so-called
permanent gases have given us the laws of Charles and Boyle.
Assuming these to be fol-
lowed strictly, we may P
readily derive the charac-
teristic equation of a gas as
follows.

According to the law of
Charles, the increase of
pressure when the gas is
heated at constant volume is proportional to the increase of
temperature ; that is, .

p—po=F E—1t). @)
This equation defines, in fact, the scale of the constant volume
gas thermometer., Charles’ law is shown graphically in Fig. 2.
Point A represents the initial condition (pq, %), point B the
final condition (p,#). Then

OB =p—pp AC=t—1ty and

@t

oty |©

o
Fie. 2.

OB _DP=h

AC t—y,

According to Charles’ law, therefore, the points representing

the suceessive values of p and ¢, with v constant, lieona straight

line through the initial point 4, and the slope of this line is the
c

=k
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constant & Evidently % is independent of p and ¢ but it may
depend upon v; hence we write
k=f ().

Substituting this value of & in (1), we geb

p—=py=(t— ty) S ().
In this equation ¢ and ¢, are temperatures measnred from the
Fahrenheit zero ; that is, from the origin 0 (Fig. 2).  Lvidently
the difference ¢— ¢, is independent of the position ol the as-
sumed zero; hence we may write

p=py=(T= TS, ()
where 7'and 7} denote temperatures measured from some new
zero, assumed at pleasure. Leb us choose this new zero sneh
that T=0 when p=0. Thisis evidently equivalent to the
selection of a new origin 0' (Fig. 2) at the interseetion of the line
AB with the ¢-axis. If we now take the initial point A at ¢,
we have py =0, T =0, and (2) takes the form

p=Tf (),
whence pv="Tof(v). h
By hypothesis, the substance follows Boyle’s law; that is, the
product pv is constant when the temperature 7' is constant.
From (3), therefore, the factor uf (v) is a constant 3 and denot-
ing this constant by B we have
pv = BT, (€3

which is the characteristic equation desired.

The name perfect gas is applied to a hypothetical ideal gas
which strictly obeys Boyle’s law, and the internal energy of
which is all of the kinetic form, and, therefore, dependent. on
the temperature only. No actual gas precisely fulfills these
conditions ; but at ordinary temperatures, air, nitrogen, hydro-
gen, and oxygen so nearly meet the requirements that they
may be considered approximately perlect.

) 15. Absolute Temperature. — The zero of temperature defined
in the preceding article is called the absolute zero, and temperi-
tgres measured from it are called absolute temperatures. 'I'hc
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molecules on the containing walls.  When this pressure is zero,
we infer that molecular motion of translation has entirely ceased,
and this is, therefore, the condition at absolute zero.

The position of the absolute zero relative to the centigrade
zero may be determined approximately by experiments on a
nearly perfect gas, such as air. From Eq. (4), Art. 14, we
have, assuming that the volume remains constant,

p= BT,
pov = BT,
whence Bro £, @™
n I
— T, — T,
and Pa—Pi_Za— Ty 2
Py T ®

Let us take 77 as the temperature of melting ice, 7} that of
boiling water at atmospheric pressure. Regnault’s experi-
ments on the increase of pressure of air when heated at con-
stant volume gave the relation

P2t 100°C) o oo '
e POy = 113085, | ®

Since for the C. scale

T, — T, =100,
0.3665 p, _ 100
o —_—— T = 4
we have v T (€3]
100 oo er 5
whence T, = TI6EE "~ 72.85. [©)

That is, using air as the thermometric substance, the abso-
lute zero is 272.85°C. below the temperature of melting ice.
Other approximately perfect gases, as nitrogen, hydrogen, etc.,
give slightly different values for 7. The experiments of
Joule and Thomson indicate that for an ideal perfect gas, one
strictly obeying the law expressed by the equation pv = BT, the
value of 7} would be between 273.1 and 278.14. The corre-
sponding vnlm on the Fahrenheit scale may e taken as 491. 6;
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denote ordinary temperatures by ¢ and absolute temperatures
by T, we have

T =t+273.1, for the C. scale.

T'=t +459.6, for the I, scale.

16. Other Characteristic Equations. — T'he vijuation pn = B7
gives a close approximation to the changes of state of the more
permanent gases. Other gases, as, for example, carbonie acid,
which are in reality only slightly superheated vapors, show
marked deviations from the belavior of the ideally perfeet gas,
and this equation does not give even a rough approximation to
the actual facts.

On the basis of the kinetic theory of gases, van der Waals
has deduced a general characteristic equation applicable nat
ouly to the gaseous but to the liquid state as well. It has the
following form :

=——- H

in which B, a, and b are constants which depend upon the
nature of the substance.
An empirical equation for superheated steam is
PO+ =BT=p(L+m) M )
It will be observed that for large values of 7" and v, that. is,
when the gas is extremely rarified, the last term of Dhoth -
tions hecomes small  and
the resulting equation ap-
proaches more nearly the
cquation of the per

ol gras.

17. Characteristic ~ Sur-
faces. — The charactoristic
equation

d(py oy Ty=10,

3
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by its cotrdinates py, v, T, and this state is therefore repre-
sented by a point, on the surface. If the state changes, a
second point with cotrdinates p,, vy, Th, will represent the new
state. The succession of states between the initial and final
states will be represented by a succession of points on the
surface. The point representing the state we will call the
state-point. ‘Tlence, for any change of state there will be a
corresponding movement of the state-point.
The surface representing the equation
pv =BT

is shown in Tig. 8. For other characteristic equations the sur-
faces are of a less simple form.

18. Thermal Lines.— If we impose the restriction that during
a change of state the temperature of the substance shall remain
constant, the state-point will evidently move on the character-
istic surface parallel to the pu-plane. Such a change of state is
called isothermal, and the curve described by the state-point is
an isothermal curve or, briefly, an isotherm. By taking different
constant values for the temperature, we get a complete repre-
sentation of the characteristic equation. For the perfect gas,
the isotherms consist of a system of equilateral hyperbolas hav-
ing the general equation
pv = const. @®
The restriction may be imposed that the pressure of the sub-
stance shall remain constant during the change of state. The
state-point will in this case move parallel to the vZ-plane, and
the projection of the path on the pv-plane will be a straight line
parallel to OV, as AB (Fig. 4). The relation between volume
and temperature is found Dy

combining the equation l D
2



Substituting this value of p in the characteristic equation, we

have
_Bg

T

If the substance changes its statc at constant volume, the
state-point moves parallel to the pZ-planc, and the projection
of the path on the pr-plane is a line parallel to the p-axis, as
CD (Fig. 4). In the case of a perfect gas, the relation hetween
p and T for a change at constant volumo is

v (2)

p=-gT=/CT. ()

Lines of constant pressure are called isopiestic lines; lines of
constant volume, isometric lines.

Besides the cases just given, others are of frequent ocenr-
rence, and will be taken up in detail later. “Thus we may have
changes of state in which the encrgy of the system remains
constant; such changes are called isodynamic. Wo may also
have changes in which the system neither receives nor aives
out heat; such are called adiabatic.

19. Heat absorbed during a Change of State. — A change of
state of a system is generally accompanicd by the absorption
of heat from external sources.
If we denote by ¢ heat thus
absorbed per unit weight, we
may by giving ¢ proper signs
cover all possible cases s thus
+ ¢ indicates heat absorbed, — ¢
heat rejected; while if q=10,
we have the limiting adiabatic
change of state.

Fie. 5. The heat absorhed may be
determined [rom the changes in

two of the three variables P> vy ¢ that define the state of the
system. As we have seen, any pair may be selected as suits
our convenience. For example, let ¢ and v he taken as the
1nd§Pendent variables, and let the curve 4B (I

B

1. 5 renresent
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this curve to be replaced by the broken line PQR, then the
segment P represents an increment of volume Av with ¢
constant and the segment @2 an inerement of temperature
At with v constant. The rate of absorption of heat along PQ,
that iy, the heat absorbed per unit increase of volume, is given
by the derivative (?) , the subscript ¢ indicating that ¢ is held
v/t
constant during the process. If the rate of absorption be mul-

v
dently the heat absorbed during the change of state represented

by PQ. Similarly, the rate of absorption along QR is <‘-9-‘Z>,

tiplied by the change of volume v, the product (?) Av is evi-
¢ .

at
and the heat absorbed is the produect (g{) At. The heat ab-
sorbed during the change PQR is, therefore,'
- aee(8) 1
4= (30) a0+ (31) 20 ®

and the total heat absorbed along the broken path from A to
B is given by the summation

S0+ G ®
ot v, at

By taking the elements into which the curve is divided
smaller and smaller, the broken path may be made to approach
the actnal path between A and B. Therefore, passing to the
limit, we have instead of (1)

(% (2’1) dt 3

d“‘(a:;>¢dv+ ) ®

and for the heat absorbed during the change of state from 4
to B .

@ as@a]l o

7= oty [(31)): dv+(6t v ] ®

By choosing other pairs of variables as independent, other
equations similar to (3) may be obtained. Thus, taking ¢ and



or taking p and v as the independent variables, we have

=(% (ﬂ) dv. (15
% (6p>vdp+ . ,,‘ ’ )
From (5) and (6) equations corresponding to (h) may be
readily derived.

90, Thermal Capacity. Specific Heat. — Of the partial deriv-
atives introduced in the preceding article, two are ol special
importance, - namely, (‘Z(Q and ('?7> . Tu general, the heat

/v /)y
required to raise the temperature of a hody one degree nuder
given external conditions is called the thermal capacity of the
body for these conditions. Hence, if @ denotes the heat ah-
sorbed by a body during a rise of temperature front ¢y (o fy, the

quotient

gives the mean thermal capacity of the hody

2l
and the quotient

7 .
—_— = the mean thermal capacity
M, —t) -t e

of a unit weight. If the thermal capacity varies with the tem-
perature, then the limiting value of the quotient ».--{1-«, (hat
ty—1

. s d . .
is, the derivative ﬁg’ gives the instantancons value of the ther-
mal capacity. Accordingly, we recoguize in the derivative
%) the t i it woi

5), the thermal capacity per wnit weight of the body under
the condition that the volume remains constant; and in the

. s il
derivative <5%)p the thermal capacity with the pressure constant.

According to the definition of the thormal units ( Art. 10),
the thermal capacity of 1 gram of water at 17.5° (. is 1 calorie
axlfl‘ that of one pound of water at 63.5° I*. is 1 . . u. ’

The 'speciﬁc heat of a substance at a given temperature ¢ is
the ratio of the thermal capacity of tho substance at this tem-
perature to the thermal capacity of an equal mass of water at

some chosen standard temperaturc. II we {ake 17.5° (.
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mal capacity per unit weight, then the specific heat ¢ is given
Dy the relation
¢ = Y:(of subtance)
Yarg(of water)”

But for water qyp5=1cal. It follows that the specific heat at

the temperature ¢ is numerically equal to the thermal capacity

of unit weight at the smne temperature ; thus at 100° C. the

thermal capacity of a gram of water is found to be 1.005 cal.,

and the specific heat T 1,005 cal. 1.005. On account
Vs 1 cal.

of this numerical equality, we may consider that the derivative

g;f represents the specific hieat, as well as the thermal capacity.

It is to bo noted, however, that a specific heat is merely a ratio,
an abstract number, and it is determined by a comparison of
quantities of heat. The deter-
mination of thermal capacity, ¢
on the other hand, involves
energy mcasurenents.

The specific heat of a sub-
stance may be represented geo-
metrically, as shown in Fig. 6.
Starting from some initial state, 0
let the rise of temperature be
taken as abscissa and the heat added to the substance as
ordinate. The resulting curve OM will represent the equation

q=7@,

and the slope of the curve at any point, as P, will give the de-

M

Fra. 6.

rivative -'gg, or the specific heat at the temperature corvespond-
t

ing to 2. With constant specific heat the curve OM is a
straight line; if the specilic heat increases with the tempera-
ture, the curve is convex to the t-axis.

The heat applied to a substance, as will be shown presently,
may have other effeets than raising the temperature. The



temperature; hence, the value of the specific heat will depend
upon the conditions under which the heat is absorbed. [T tho
substance is in the solid or in the liquid form, the s secilie eats are
practically equal. Tor substances in the gascous form, however,
the specific heat may have any value from — oc 10 - %, depending
upon the external conditions under which the heat is supplied.

91. Latent Heat. —If the heat added to a substance and the
temperature be plotted as in Fig. 6, it may happen that ab cer-
tain temperatures the curve Iag discontinuition.  For exanple,
Tet heat be applied to ice
at 0° 1. The curve is
practieally a straight line
until the temperature 327
is veached, hut at this
point considerable heat is
added without any change
in temperature.  During
this addition of heat, rep-
resented by the vertieal

Fre. T segment A8 (Fig. 7), the
» state of aggregation
changes from solid to liquid. As the water receives heat ils
temperature rises, as indicated by B¢, until the temperature
212°F. is reached (assuming atmospheric pressure), where the
temperature again remains constant dnring the addition of a
considerable quantity of heat, and the state of ageregation again
cha.nges, this time from the liquid to the q:n‘s-.u;nls.. The Twnl.
that is thus added to (or abstracted from)  substanee during
a f:hange of Vsmte of aggregation is called latent heat. As
pointed out in Art. 4, substantially all of the lutent heat is
stored in the system in the form of potential energy.

: d
The specific heat a% becomes infinite during the changes

1i?caf{jfi by AB and (D, since ¢ = constaut. The volume of
substance changes, however, and the rate at which heat is

PETAN
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is a thermal capacity called the latent heat of expansion and
denoted by 7. If the pressure also changes, we have in the

I d .
derivative (;1’1))1 the heat added per unit change of pressure.
(

This thermal capacity is called the latent heat of pressure varia-
tion, and is denoted by I,

22. Relations between Thermal Capacities. — Introducing the
symbols ¢, ¢, &, and I, in equations (3) and (5) of Art. 19, we
have

dy=1ldv + ¢,dT, @
dy=1,dp+ ¢, dT. @)
By means of the characteristic equation of the substance,
namely,
v=7(T; p), ®
various relations between the thermal capacities may be de-
rived.  Some ol the most useful are the following.
From (3) we obtain by differentiation,

Ju v
o= O g O gy, «“
dv 61’dT+6) . 1))
which substituted in (1) gives
v v
Cdg=1,— g — T 5
dg lvapdp+<«v+luaT> ®)
Comparing (2) and (5), we have
v
=19 6
=12 ®
¢ —o, =122 0
LAY 4
In the same way, substituting

dp =g{1’,'d1'+giu”dv

in (2), and comparing the resulting equation with @), we
obtain

)
L=15 ®



ing thermal capacities when any one is given hy direel. expert-
ment, provided the characteristic equation of the substanee is

N v dp .
known, so that the derivatives 77 01,1,, i, can be determined.

For a perfect gas, as an example, ¢, is known from experiment
.G . .
and the ratio 2 has also been detormined.  From the equation
ey
of the gas pv= BT, we have the partial derivatives

& _B o _B
AT Pl ar v’
hence from (7) and (9)

B )
o= s=liorl,= CETOR (10
and l,= —:Z,(L'I, —e). (1

23. ?nterpretaﬁon of Differential Expressions. — In thermo-
dynamics we frequently meet with expressions of the form

Mdz + Ny

composed of two terms, of which cach is the differentinl of a
variable multiplied by a coefficient. The two cocllicients may
be eous.tants or functions of the two variables involved. The
proper interpretation of differentials of this form is likely to
prgsent difficulties to the student; we shall, therefore, devole
this article to a discussion of such expressions, their properties
and. their physical interpretations. ’
.Let us consider firsg how such differential expressions may
arise.  Suppose we have given the characteristic equation of Q

substance in the form :
p=Ff(nt); (h

by differentiati n rding to t ell-k n N

y atl ¥ N {

Tns . on according to the w nown methods of cal-
enlus, we obtain the relation

_op —
dp= dv+ - dt, @)

¢



= Mdv + Ndt, 3)
where M— > and V= a]t}
In Art. 19 we derived an equation of similar form, namely,
dg= 1 Liw+ E’th, @

which may likewise be written in the form

dg = M'dv + N'dt. 5)
The second membersof (3) and (5) are differential expressions
of the form Mz + Ndy, which we have under consideration.
Eq. (3) was produced from a known functional relation be-
tween p, », and ¢, while Eq. (5) was derived directly from
physical considerations by assuming increments Av and At of
the independent variables and deducing from them the quantity
of heat Ag that must necessarily be absorbed. No relation
between g, v, and ¢ was given or assumed; in fact, it is known
that no such relation exists; that is, ¢ cannot be expressed as a
function of the variables » and ¢.

Let us see what is implied by the existence or non-existence
of a functional relation between ¢, v, and ¢ Referring to
Fig. 5, let A and B denote the initial and final states of the
system.  Since p is a funetion of v and ¢ [p=F(» )], the
pressures ab A and B are determined by the values of 7'and »
at those points; thus for a perfect gas, p; = B7 and p,= BT,

”

Ilence, the change of pressure p, — p, in passing from 4 tO B
is fixed by the 1)6i11ts A and B alone and is independent of the
path between them. Similarly, if there is a functional rela-
tion between ¢, v, and ¢, that is, if ¢ = ¢ (v, ¢), we shall have at
A, qy=¢(vp t), at B, qy=¢ (v t,). Therefore, the heat
absorbed in pussilm from A to B will be

=6y t) —p(op 1), O]
and this will be dotummed by the points 4 and B alone. On

the other hand, if the heat absorbed by the system depel}ds
upon the path between A and B, there can be no relation
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g=¢(» 1) As a matter of fact, the heat absorbed is different
for different paths between the same initinl and final states
hence it is not possible to express ¢ in terms of v and £,

The conclusions just given may be stated in general terms ay
follows. Given an expression of tho form

" du= Mdx + Ny, (M)

where the coefficients M and IV are functions of 2 and g, there
may or may not exist a funcional relation hetween wand the
variables zand . If wisa function of wand y, say w . F(rop),
then the change in % depends only on the initial and final
values of z and y and isindependent of the path.  This change
is found from (T) by integration; thus

Uy — Uy = j::'clu = ﬂ'y’:’ (Md+ Ndy). (R)

In this integration no relation between @ and g is requived, for
since Mdz + Ndy arises from differentiting the funetion
¢ (z, y), the integral must be ¢ (z, ). In this case Mele - Nly
is said to be an exact differential.

As an example, consider the equation

du= ydx+ady.
Sinee ydz + zdy is produced by the differentintion of the prod-
uct ¢y, we have the relation
u=zy+ C,

whence Ty = Uy = Tylfy — X4¥ 5
The change of % is represented Dy the shaded area (Fig. ¥),
and is evidently not dependent
upon the path between the points
[CYARINEEIOR

If, however, no funetional rela-
tion exists between w and the
variables @ ad g, then M +
Nily is said to be an inexact
di.fferential. In this case o valne




sumed ; in other words, the value of u depends upon the path
between the initial and final points. For example, let
du = ydx — 2 zdy

and let the initial and final points be respectively (0, 1) and
(2, 2). No function of z and y can be found which upon
differentiation will produce this differential. If we choose as
the path between the end points the straight line y =4z+1,
we have (sinee dy =} d),

%= f;[(é- v+ 1)de — zdz] =1.
1f we take as the path the parabola y =} 2% + 1, we have

w="[(} 2+ 1 — 2] = 0.
The dependence of the value of » upon the path assumed is
evident.

The test for an exact differential is simple. If the differential
du= Mdx + Ny is exact, then u must be a function of z and g,
say f(2, y). By differentiation, we have
_Ou du

du = E do + @ dy.
Hence M and NV must be, respectively, the partial derivatives
9 ng 2. By a well-known theorem of calculus, we have
O dy
2(%)_ 2 (o)
oy\oz)  dx\dy)’
that is, M _ N )
dy  ow

If relation (9) is satisfled, the differential is exact; otherwise,
it is inexact.

As an example, we have from the differential ydz — 2 zdy,
a_y o
dy o
shown in the preceding discussion.

In thermodynamics we meet with certain functions that de-
pend only upon the coérdinates p, v, T of the substance under
consideration. IFrom purely physical considerations the energy

= —2; therefore, the differential is inexact, as was
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(See Art. 26.) Hence if u is exprossed in terms of two
these cobrdinates as independent variables, thus,

du = Midv + NaT,

we know at once that du is exact and we can write
2 .
51 du=u, — uy =f vy Ty) =S (v ).

Furthermore, from the test for an exact differentinl we must
have the relation

By making use of this test when the differentinl is known to
be exact, many useful relations are deduced.

We have also magnitudes that depend upon the coirdinates
and also upon the method of variation ; that i, upon the path.
The heat ¢ absorbed by a system in changing state is one of
these. If again we choose v and Z"as the independent variables,
we may write

dg=M'dv+ N'dT;

but since dg is not exact, we cannot write
a
fldg=g0— 0

EXERCISES

1. Regnault’s experiments on the heating of cortain liquids are ex-
pressed by the following equations : )
Ether 9= 0529 ¢+ 0.000206 2, —20° to 4 30" (.
Chloroform 32 £+ 0.0000507 £2, — 30° to - GOP (.
Carbon disulphide g = 0.235 ¢+ 0.0000815 2, — 30" to - 10" ('
Aleohol g=0.5476 ¢ + 0.001122 2+ 0.0000022 £ =28 o A 66 L

Fro_m Fhese equations derive expressions for the specifie heat, and Tor
each liquid find the specific heat at 20° C.
- 2‘;1 Fn‘rlom the data of Ex. 1, ind the mean heat capaeity of efher hofween
and 30°C.  Also the méan heat capacity of aleohiol hetween 0 and 30° (',

3. If the thermal capacity of a substance

. ab temperabure ¢ is given by
the relation emperatiure ¢ is given by

y=a+ b+t
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4. Iu the investigation of the properties of gases, it is convenient to
draw the isothermals (T = const.) on a plane having the pressure p as the
axis of abscissay and the product pv as the axis of ovdinates. Show that
the isothermals of a perfect gas are straight lines parallel to the p-axis.

5. Show on the pu-p plane the general form of an isothermal of super-
heated steamn, the characteristic equation being
m
=

As an approximate equation for superheated steam, the form
P +¢)=BT,
has beeu suggested by Tumlirtz. Show the form of the isothermal when
this equation is used.

P+ =BT - p(l + ap)

6. Derive relations between ¢, ¢y, I, and 1, similar to those given by
Eq. (10) and (11) of Art. 22, using van der Waal’s equation
_ BT a

v—b v

P

as the characteristic equation of the gas.
7. For a perfect gas, as will be shown subsequently, the thermal capacity
Lis Ap(.L =1). Show that ¢, — ¢, = 4B; also that Iy =—duv.
8. Test the following differentials for exactness:
(@) wvdp + npdv.
(@) vdp + npv=dv.

daT 1
() np(n+ 1) <1 + gp) Tari T (n ;'," ) 1 + ap)dp.

9. Find the function w = f(p, T) which produces the differential (c)
of Ex. 8.
10. The differential [¢'(1 — )+ ¢"x] d’TT+ -%dx, which appears in the

discussion of vapors, is known to be exact. ¢’ and ¢’ may be taken as con-
stants, while » is a fnuction of 7. Apply the test for exuctness and thereby

e i T,
deduce the relation CmC=arT

11. For perfect gases, dg =c, AT + Apdv. (See Ex. 7, and A'rt. .’.’2:)
Making use of the characteristic equation pv = BT, show that while dg is

not an exact differential, ’%” is an exact differential.
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CHAPTER III
THE FIRST LAW OF THERMODYNAMICS

24. Statement of the First Law. — The first law of Thermo-
dynamics relates to the conversion of heat into worlk, and merely
applies the principle of conservation of energy to that process.
It may be formally stated as follows: When work is ezpended
in producing heat, the quantity of heat generated is proportional to
the work done, and conversely, when heat is employed to do work, a
quantity of heat precisely equivalent to the work done disappears.

If we denote by @ the heat converted into work and by W the
work thus obtained, we have, therefore, as symbolic statements
of the first law,

W=J@QorQ=AW.

25. Effects of Heat. — When a thermodynamic system, as a
given weight of gas or a mixture of saturated vapor and liquid,
undergoes a change of state, it in general receives or gives out
energy either in the form of heat or in the form of mechanical
work. These energy changes must, of course, conform to the
conservation law. Suppose in the first place that the system is
subjected to a uniform external pressure and that during the
change of state the volume is decreased. Mechanical work is
thereby done upon the system, or in other words, the system
receives energy in the form of work. At the same time heat
may be absorbed by the system from some external source.
Denoting by AW the work received and by A the heat
absorbed, the increment AU of the intrinsic emergy of the
system is given by the relation

AU = JAQ + AT. @
Ordinarily we take the work done by the system in expanding
as posmve H hence the work done on the system during com-

a AN 2 1 a1 P
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that is, the increase of energy of the system is equal to the
energy received in the form of heat less the energy given to
the surrounding systems in the form of work. We may also
write (2) in the form

JAQ =AU + AW, h

and interpret the relation as follows. The heat absorbed hy a
substance is expended in two ways: (1) in inereasing the
intrinsic energy of the substance ; (2) in the performance of
external work.

Equation (3) is the energy equation in ity most, general form.
Any one of the three terms may be positive or negative.  Wo
consider AQ positive when the system absorbs heat, negative
when it gives out heat ; as hefore stated, A W i positive when
work is done &y the system, negative when work is done on the
system ; AUis positive when the internal energy is inereased,
negative when the energy is deercased during the change of
state.

26. The Intrinsic Energy. — The increase A7 of the intrinsic
energy is, in general, separable into two parts: (1) The in-
crease of kinetic energy indicated by a rise of temporatire of
the systen.  As we have seen, this is duo to an inerease in the
velocity of the molecules of the systeni. (2) The increase of
potential energy arising from the inerease of volume of the
system. To separate the molecules against their mutnal attrac-
tions, or to break up the molecular structure, as is done in
changing the state of aggregation, requires work, and this
worrk is stored in the system as potential energy.

The energy U contained in a body depends upon the state
of the body only, and the change of energy die to o change
of' state depends upon the initial and final  states only.  In
Fl_g- 9, let A represent the initial, and /2 the final state, Iho
point B indicates a definite state of the body ws regards pres-
sure, volume, and temperature. Now the temperature indi-
cated by B fixes the kinetic encrg

1 . gy and the volume at B
etermines the potential enerev  TTom s 11 1o 1 1 4 1
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to B. Whether we pass by the B

path m or the path n, we have the m

same volume and temperature at B

and therefore the same total energy.

Since U is thus a function of the

coordinates only, it follows that 4T

is always an exact differential.
Choosing 7' and v as the inde- Fia. 9.

pendent variables of the system,

we may express U as a function of these variables. We have,

therefore, U f(T v), '

whence d U_. dT’+ dv.

The term g_TZZ dT is the increment of energy due to the in-

1S

crease of temperature d7. The factor(;—g is the rate at which
the energy changes with the temperature when the volume
remains constant. Ience Z—%dT is the change of energy due
merely to the rise of temperature, that is, it is the change
of kinetic energy. The term %dv is the change of energy

due merely to the change of volume with the temperature
constant ; it is, therefore, the work done against molecular
attractions, the work that is stored as potential energy. For
a substance in which there are no internal forces between
the molecules, the energy is independent of the volume, that
is, 9% = 0, and therefore the term %—g—-dv is zero.

27. The External Work. — In nearly all cases dealt with in
applied thermodynamics, the external work AW is the work
done by the system in expanding against a uniform normal
pressure. A general expression for the external work may
be deduced as follows. Let AF denote an elementary area
on the surface inclosing the system and suppose that during
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normal pressure per unit area, the work done aguinst this
pressure is for this one element
pATs. (H
When all the elements of the surface aro taken, the expres-
sion for the work is
AW=pisAl. (2)
But evidently if & be taken sufliciently small, Ty AF is the
increase of volume A7 ": lience we may write
AW=pal] (5)
from which we have .
r 2 r
W=3pAT={ "pdl h
for a change of volume from 77 to T7,.

The external worl for a given change of state is represented
graphically by the area between the projection of the path
of the state-point on the pP-plane and the T=axis. Thus in
Fig. 10, let the variation of pressure and volume he represented
by the curve ABj; this is the projection on the p I=plane of the
actual path of the state-point on the churacteristic surlace.
The area A ABB; under AB is clearly given by the integral

2
N,
le pAV= fv‘pr.” s
hence, it represents the work done by the system in passing from
the initial to the final state according o the given law.

» The general energy  equa-
" tion (3), Art. 25, may now he
written in the form

JAQ=AU+pAIT (H)
or using the differentinl nota-

2 . tion, in the form
E JIQ=dU+pd]"  (6)
For a unit weight of the sub-

stance, we have
Jdy=dw+pde.  (Ha)




by the subscruipts 1and 2, respectivgly, weﬁlrlarwe
fav=10,- 1,
whence JQ=U,— U, + j;zp av @

It should be noted carefully that since the energy U depends
only upon the state of the system and not upon the process of
passing from the initial to the final state, the change of energy
may be written at once as the difference U, — U;. The external
work

W= (pav

is evidently dependent upon the path of the state-point between
the initial and final states. See Fig. 10. Hence the sum of
the change of energy and external work, that is, the heat added
to the system, must also depend upon the path. It follows
that d@ is not an exact differential, and we cannot write

5‘1de= Qz - Qr

In other words, we cannot properly speak of the heat in a
a body in the state 1 or the state 2; we can speak only of the
heat ¢mparted to the body during the change of state with the
reservation, stated or implied, that the quantity thus imparted
depends upon the way in which the state is changed. For con-
venience we shall denote by @,, the heat imparied to the sys-
tem in passing from state 1 to state 2; and likewise by Wy, the
corresponding external work done by the system.

29. Energy Equation applied to a Cycle Process. — Let a sys-
tem starting from an initial state pass through a series of pro-
cesses and finally return to the initial state. The path of the
state-point on the characteristic surface is a closed curve in
space and the projection of the path on the p P-plane is a closed
plane curve. See Fig. 11. Let A represent the initial state;
then in passing from 4 to B the external work done by the
system is

ﬂ“"p dV (along path m),
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which is represented by area A, dmBBy, while in pussing from
B back to A along path n the external work is

Va I
f‘,b pdV=— f‘,:p a1 (along path 2),

and this is represented by area By BudA;. Ilence the net

external work done by the system is represented by the area
inclosed Dby tho curve of the
cycle.

Since the cunergy (7 of the
system depends upon the state
only, the change of energy for
the cyele iy

U,l —Uy=0,
v and the energy equation re-
duces to

|
B

Fic, 11

JQ=TW.
That is, for a closed cycle of processes, the heat imparted to the
system is the equivalent of the ewternal work, and hoth are repre-
sented graphically by the area of the cyclo on the pI=plane.

30. Adiabatic Processes. — When a system in changing its
state has no thermal communication with other hodies and
therefore neither absorbs nor gives out heat, the change of
state is said to be adiabatic. In general, adiubatic changes are
possible only when the system is inclosed in a non-conducting
e.nvelope. Rapid changes of state are approximately adiabatie,
since time is required for conduction or radiation ol heat; thns
the alternate expansion and contraction of air during the pas-
sage of sound waves is nearly adiabatic; the flow of a
vapor through an orifice is Practically an adiabatic proc

For an adiabatic change, the term o @ of tho energy equation
reduces to zero, and we have, consequently,

0=T,~ U, + W,
or W =U,- U, (O
Pur%ng an adiabatic change, therefore.

as or

thie external wearle dome
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The projection on the pP-plane of the path of the state-point
uring an adiabatic change gives the adiabatic curve. See Fig.
2. The area A;ABB, represents the work Wy, of the system
nd from (1) it represents also the decrease of the intrinsic
nergy in passing from state 1
epresented by A to state 2
epresented by B. Making
se of this principle, we can
rrive at a graphical represen-
ation of the intrinsic energy
f a system. Suppose the
diabatic expansion to be con-
inued indefinitely; the adia-
atic curve AB will then Fra. 12,
pproach the V-axis as an
symptote, and the work of the expanding system will be
epresented by the area 4,4 oo between the ordinate 4,4, the
xis OV, and the curve extended indefinitely. The area A4 oo
epresents also the change of energy resulting from the expan-
ion. Hence if we assume that the final energy is zero, we have
U, — 0=area 44,

) ' or Ul=areaA1Aoo=5,,lpdV-

It is instructive to compare
the adiabatic curve with the
isothermal. =~ When the two
curves are projected on the
¥ pV-plane, the adiabatic is the
| steeper. See Fig. 13. This
Alm 15 By follows from the fact that dur-

o ing adiabatic expansion the
nergy decreases and as a result the temperature falls; hence

r

)
|
|
|
1
i
I
I
1
1
L
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On the other hand, the avea under the indelinitely extended
isothermal is infinite.

31. Isodynamic Changes. — If the intrinsic cnergy of thoe
system remains unchanged during a change of state, the change
is called isodynamic or isoemergic. In this case the energy
equation reduces to the form "

IO = Wm=fl,\ Pl
For perfect gases, the isodynamic curve is also the isothermal,
but for other substances this is not the case.

32. Graphical Representa-
tions. — The three magnitudes
IQugy Uy — Uy and W, enter-
ing into the energy equation
can bo represented graphically
by arcas on the p[=-plane.
Suppose the change ol stale
o o represented by the curve
m between the initial point .
and final point 2 (Fig. 11).
Let adiabatic lines be drawn
through A awd £ and ex-
tended indefinitely; then from preceding considerations we have

Wy = area A, ABB,,
Uy =area 4,4 oo,
U, =area BB o .
Hence, JQ,, = Uy~ U+ W
=ares A ABB) +aren BB o —area syl
=area ABw.
T]mt'is, the heat imparted is represented on the p “plane by the
aretlz ineluded between the path and two indefindtely eatended wdin-
batics drawn through the initial and final points, respeetively.

T%lrough the initial point A let an isodynamic he drawn,
cutting BB, in the point ¢, and through ¢ let the indefinitely
extende.d adiabatic C'oo be drawn. Then the energy ol the
system in state C'is equal to Uy, and, therefore,

p— — .

D
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It should be noted that the » R
area representing U, — U] is -
not influenced by the path m.
A second graphical repre- A
seutation is shown in Fig. 15. i\\
Through the initial point 4 !
an isodynamic line is drawn,
and through the final point B

\g\
|
an adiabatic is drawn, the two

I
I
|
!
]
!
: 1
. c . PR . Ly
lines intersecting at point C. 0 4 B, 2

We lave then, denoting the Fic. 15.
energy in the state ¢'by Uy,
Uy= Uy

U,— U, = U,~ Uy=area BBCQC,
Wi, = avea A;ABB,,
JQyy = Wiy + U,— Uy =area A, ABCC,.
As before, the change of energy is independent of the path m,
while both the external work and the heat imparted depend
upon the form of .

EXERCISES

1. Show that the energy equation may be written in the form

Jig = (aﬁ—) AT + [(a”) +p ],

Ju

and that consequently the derivative ( T) must be equal to Je,.

2. If the energy of a substance is independent of the volume, show that
the energy equation reduces to the form
Jdg = Jeld T + pdv.
3. Using the method of graphical representation, show by areas Qi
U:— Uy, and Wiz («) for a change at constant pressure, (b) for a change af
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7. Apply the general energy equation o the process of changing iee ;
32° F. to water. What is the effect of greatly inereasing the pressure o
the ice during the process?
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CHAPTER IV
THE SECOND LAW OF THERMODYNAMICS

33. Introductory Statement. — While the first law of thermo-
ynamics gives a relation that must be satisfied during any
ange of state of a system, and of itself leads to many useful
sults, it is nob suflicient to set at rest all questions that may
ise In counection with energy transformations. It gives no
dications of the direction of a physical process ; it imposes no
nditions upon the transformations of energy from one form to
rother except that there shall be no loss, and thus gives no in-
ication of the possibilities of complete transformation of dif-
rent forms; it furnishes no clue to the availability of energy
r transformation under given circumstances. To settle these
nestions a second principle is required. This principle, called
1e second law of thermodynamics, has been stated in many ways.
1 effect, iowever, it is the principle of degradation of energy,
st as the first law is the principle of the conservation of
wergy.

There are conceivable processes which, while satisfying the
quirements of the first law, are declared to be impossible be-
wse of the vestrictions of the second law. As a single ex-
nple, it is conceivable that an engine might be devised that
ould deliver work without the expenditure of fuel, mevely by
sing the heat stored in the atmosphere; in fact, such a device
1s been several times proposed. The first law would not be
olated by such a process, for there would be transformation,
ot creation of energy; in other words, such an engine would
ot be a perpetual motion of the first class. Experience shows,
owever, that a process of this character, while not violating
1e conservation law, is nevertheless impossible. The statement



34. Availability of Energy. In Art. 8 way noted the distine-
tion between various forms of energy with respect to the pos-
sibility of complete conversion. We ghall now consider the
point somewhat in detail.

Mechanical and electrical energy stand on the same footing
as regards possibility of conversion; cither can be completely
transformed into the other in theory, and nearly so in practice.
Either mechanical or electrical energy ean be completely trans-
formed into heat. On the other hand, cxpericnce shows that
heat energy is not capable of complete conversion into maechan-
ical work, and to get even a part of heat energy transformed
into mechanical energy, certain comditions must bo satisfied.
As a first condition, there must be two bodies of different tem-
perature; it is impossible to derive work from the heat of w body
unless there is available a second body of lower temperature.
Suppose we have then a source & at temporatire 7' wied w re-
frigerator B at lower temperaturo Zh; how iy it possible to
derive mechanical work from a quantity of heat energy @) stored
in §? If the bodies Sand R are placed in contact, the heat
@, will simply flow from § to R and no work will be obtained.
Hence, as a second condition, the systems §aml 72 mnst be kept
apart and a third system M mmust be used to convey energy.
This third system is the working fluid or medium. In the steam
plant, for example, the boiler furnace is the souree &, the con-
denser is the refrigerator R at a lower temperature, and the
steam is the medium or working fluid M. The medium A
is placed in contact with § and receives from it heat @3 it then
by an appropriate change of state (expansion) gives up energy in
the form .of work, and delivers to R a quantity of heat @y
smaller _thﬂﬂ @y the difference @, — @, being the heat trans-
forme(.i into work. The details of this process will be given in
following articles, where it will be shown that in no other way
can a larger fraction of the heat be transformed into work.

TlTe part of the heat @ that can be thus transformed into work,
that is, Q‘.—_ @y s the available part of Q5 and thopart @, that
must be rejected to the refrigerator B, and which is of no further
L o N 0O — 0



cal work. In general, the term availability signifies the fraction
of the energy of a given system in a given state that can be
transformed into mechanical work.

In Art. 8 attention was called to the apparent tendency of
energy to degenerate into less available forms. We have now
to investigate this point somewhat closely in connection with
reversible and irreversible changes of state.

35. Reversibility. —The processes described in thermo-
dynamics are either reversible or irreversible. A process is
said to be reversible when the following conditions are fulfilled :

1. When the direction of the process is reversed, the system
taking part in the process can assume in inverse order the
states traversed in the direct process.

2. The external actions are the same for the direct and re-
versed processes or differ by an infinitesimal amount only.

3. Not only the system undergoing the change but all con-
nected systems can be restored to initial conditions.

A process which fails
to meet these require-
ments in any particular
is an irreversible pro-
cess. The following
examples illustrate the
above definitions. P

(1) Suppose a con-
fined gas to act on a
piston, as in the steam
or gas engine. See
Fig. 16. If A is the B’
piston area, the pres- B
sure acting on the face v
of the piston is pA4,
and for equilibrium
this pressure must be equal to the force F. If now we assume
the force pA slightly greater than Z, the piston will move
slowly to the right and the confined gas will assume a succes-

FiG. 16.
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sion of states indicated by the curve AB. If at the state /3
the motion is arrested and F is made infinitesimally greater
than pA for all positions of the piston, the series of states from
Bto A will be retraced and the system (the confined gas in
this case) will be brought back to its original state withont
leaving changes in outside bodies. The reversed process is
accomplished by an infinitely small modification of the external
force F. The process is therefore reversible.

(2) Let the force F he vremoved entirely.  Then the piston
will move suddenly and the confined gas will he thrown into
commotion. When the gas finally atlaing a stale of thermal
equilibrium with the volume ¥, that state will he represented
by some point as B'.  No path can be drawu between A and B
because during the passage from A to B’ tho gas is not in
thermal equilibrium, and its state at any instant cannot, there-
fore, be determined. Evidently, therefore, the gas cannot he
returned to state A by reversing in all particulirs the divect
change from 4 to B'. It can be returned to state A, however,
in the following manner : A foree F, slightly greater than py
is applied to the piston and the gas is thus compressed slowly,
the successive states being indicated by the curve B, sy
Then the gas in the state A’ is cooled ab the constant volume
V; until the original state 4 is attained. The restoration of
the gas to its initial state has, however, left changes in other
bodies or systems. Thus the work of compression from /3 to
A_’ must be furnished from one external body, and the heat
given up by the cooling from A’ to A must b absorbed by
another external body. The free expansion of the gas is,
therefore, an irreversible process.

It is easy to see that the flow of a fuid through an orifice
from a region of high pressure to region of low
esssantla,lly equivalent to the irreversible expansion just de-
scm}{ed.‘ Such cases are of frequent ocenrrence in technical
applications of thermodynamics. The flow of Tiguid ammonia
thm}‘gl‘ the expansion valve of the refrigerating machine nuy
be cited as an example. ) ’

20N N .

pressure is
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and bearing due to the conversion into heat of the work of
overcoming friction. A complete reversal of this process would
involve turning the shaft in the opposite direction by cooling
the bearing.

(4) The conduction of heat from one body to another is an
irreversible process. There must be a temperature difference
to produce the flow of lieat, and heat of itself will not flow in
the reverse direction; that is, from the colder to the hotter
body. If, however, we talke the temperature difference A7 in-
definitely small and let the transfer take place very slowly, the
process can be reversed by changing the sign of A7. Hence
we can conceive of reversible flow as the ideal limiting condi-
tion of the actual irreversible flow.

Strictly speaking, there are no reversible changes in nature.
‘We must consider reversibility as an ideal limiting condition
that may be approached but not actually attained when the
processes ave conducted very slowly.

36. General Statement of the Second Law.— According to
the first law, the total quantity of energy in a system of bodies
cannot be increased or decreased by any change, reversible or
irreversible, that may occur within the system. It is not, how-
ever, the fotal energy, but the available energy of the system
that is of importance; and experience shows that a change
within the system usually results in a change in the availability
of the energy of the system.

It may be considered as almost self-evident that no change
of a system which will take place of itself can increase the
available energy of the system. On the other hand, experience
teaches that all actual changes involve loss of availability. Con-
sider, for example, the flow of heat from a body of temperature
T, to another at temperature T,. For the flow to occur of it-
self we must have 7}, > 75, and as a result of the process there
is a loss of availability. To produce an inerease of availability
would require 7, to be greater than 7} ; in that case, however,
the process would not be possible. In the limiting reversible
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of energy, are based entirely on experience:

1. No change in a system of bodies that can take place of self
can increase the available eneryy of the system.

II. An irreversible change causes a loss of availability.

111, A reversible ehange does not affect the anilability.

These statements may be regarded as fundamental natural
laws underlying all physical and chemical changes. Tho second
and third together constitute the law of degradation of enevgy.
The first may be taken as a general statemont of the second law
of thermodynamics.

By considering special processes the general statement of the
second law here given may be thrown into special Torms.  Thus
if heat could of itself pass from a body of lower to a body of
- higher temperature, the result of the process would he an in-
" crease of available energy, a result that is impossiblo according
to our first statement. We have, therefore, Clausing form of
the second law, viz :

It is impossible for a self-acting mackine wwaided by any cater-
nal agency to convey heat from one bady to wnother af higher
temperature.

Again, if we consider the increase of available ene
would result from deriving work dircetly from the L
atmosphere, we are led to Kelvin’s statement, nimely :

1t s dmpossible by means of inanimate material wyeney to derive
mechanical effect from any portion of matter by cooling it below the
temperature of surrounding oljects.

'In order to estimate the available energy of a system in a
given state, or the loss of available energy when the system
undergoes an irreversible change, it is nee y to know the
most efficient means of transforming heat into meehanical work
under given conditions, This knowledge is Turnished by a
study of the ideal processes first deseribed by Carnot in 1824,

roy that
ol the

37. Carnot’s Cycle. —Suppose that the conditions stated in
Art. 34 are farnished ; that is, let there De a source of heat S
at temperature 7}, a refrigerator R at a lower temperature 7

7
2



ART. 37]

CARNOTS CYCLE ol

and an intermediate system, the working fluid or medium A7
The medium we may assume to be inclosed in a cylinder

provided with a piston (Fig. 18).

Let the medium initially in a state represented by B (Fig. 17),
at the temperature 7' of the reservoir &, expand adiabatically

until its temperature falls to 7},
the temperature of body R.
By this expansion the second
state O is reached, and the
work done by the medium is
represented by the area B.BC(C).
The expansion is assumed to
proceed slowly so that the pres-
sures on the two faces of the
piston are sensibly equal, and
the process is, therefore, re-
versible. The cylinder is now

4

placed in contact with R so that heat can flow from M to R,
and the medium is compressed. The work represented by the
area ¢, CDD; is done on the medium, and heat @, passes from

TFig. 18.

the medium to the refriger-
ator. The process is again
assumed to be so slow as to
be reversible. From the
state D the medium is now
compressed adiabatically,
the cylinder being removed
from R until its tempera-
ture again becomes T}, that
ofthesource 8. During this
third process work repre-
sented by the area D} DAA,
is done on the fluid. Finally,
the cylinder is placed in
contact with & and the

fluid is allowed to expand at the constant temperature T
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temperature is kept constant Dy the flow of heat ¢ from
§to M.

The area ABCD inclosed by the four curves ol the cycle
represents the mechanical work gained; thal is, the exeess of
work done by the medium over that done on the medinm.
Denoting this by W, we have from the first Taw,

(@ =@y =4W

The efficiency of the cycle is the ratio of the work gained {o
the heat supplied from the source S,  Denoting the elliciency
by 7, we have
AW
=0

Since all the processes of the Carnot cycle are reversible, it
is evident that they may be traversed in reverse order.  Thus
starting from B, the fluid is compressed isothermally from /2 to
A and gives up heat @, to §; from A to D it expands adiabal-
ically, from D to €' it expands at the constant temperature 7,
and in so doing receives heat @, from 12 finally it is com-
pressed adiabatically from ' to the initial state 8. Tn this case
the work Wrepresented by area ABCD is done on the fuid I/,
heat’ @, is taken from the refrigerator B, and the sum @, 4 A W
= @, is delivered to the source §. This ideal reversed engine
is the basis of our modern refrigerating machines.

3?. Carnot’s Principle. — The cfficiency of Ciwnot’s ideal
engine evidently depends upon the temperatures 7' and 7Ty ol
th.e source and refrigerator, respectively. The question al onee
arises whether the efficiency depends also upon the properties
of the substance M used as a working fluid.  The answer is
contained in Carnot’s principle, namel y:

OF all engines working between the same souree and the same

rqfrlgercftor, n0 engine can have an efficiency greater than that of
a reversible engine.




efiicient than a reversible engine 5 working between the same
temperatures, then 4 and B can be coupled together in such a
way as to produce available energy without a compensating loss
of availability.

Suppose the two engines 4 and B (Fig. 19) to take equal
quantities of heat @; from the source when running direct.
Then, since by hypothesis 4 is the more efficient,

Wo> W,
and

Q< QP
Now let engine B be run reversed. It will take heat Q,% from
R and deliver @ to 8. If A4 and B are coupled together, 4
will run B reversed and deliver
in addition the work W, — Wj.
The source is unaffected since it
simultaneously receives heat @
and gives up heat @;. The re-
frigerator, however, loses the
heat @,” — @,*, which is the
equivalent of the work W,— Wj
gained. We have, therefore, an
arrangement by which unavail- ®
able energy in the form of heat
in the reservoir is transformed Fro. 19,
into mechanical work. In other
words, by a self-acting process the available energy of the
system of bodies 8, R, A, and B is increased. According to
the second law (Art. 36), such a result is impossible ; if such
a result were possible, power in any quantity could be obtained
from the heat stored in the atmosphere without consumption of
fuel.

The assumption that engine A is more efficient than the
reversible engine B leads to a result that experience has shown
to be impossible. We conclude, therefore, that the assumption
is not admissible and that engine 4 cannot be more efficient
than engine B. But if engine 4 is also reversible, B cannot
be more offcient than 4 and it follows that all reversible
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engines between the same source and the same refrigerator are
equally efficient.

39. Determination of the Eficiency. — Since tho efliciency of
the reversible Carnot engine is independont of the propertios of
the medium and depends upon the temperatures ol source and
refrigerator only, we have

AW Q — Q) ,
== S M
whence %: 1—g=TF(T), Ty)s )
1
that is, the quotient %1 is some frmetion of tho temperatures
1

T, and T, The form of this function iy required.

So far, we have considered temperatures as given by a mer-
cury or air thermometer. The different temporatures of a
series of bodies are indicated by sets of numbers which may
denote (1) the different lengths of a column of merdury or
(2) the different pressures of a mass of confined gas,  These
sets may or may not precisely agrec. Now there are other
ways in which such a set of numbers may be chosen.  Suppose
we take several sources of heat Sy, Sy, Ny, -+, S, whose tem-
peratures are ty, &y, tg, +++y 1, a8 delined by the mereury or guas
scale, and let

G >t >t > >t
If we use S as a source and S as a refrigerator, a reversible
engine will take @ from ) and deliver @, o 8,. Since the
bodies /S, and S, have definite temperatures 7y and T, what-

P

ever the scale adopted, the function F(7T, 7;) has some deli-
. Y

nite value; ‘therefore, from (2) the fraction i"" must have a
v

definite value, and consequently @, s oue and only one value.
If A?YZ is used as a source and Sy as a refrigerator, a second
engine taking @, from §, will give up @y to Sy and so on.
Starting with @, we thus obtain a determinate sct of values

U
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Jere we have a set of numbers suitable to define a scale of
emperature. Starting with the heat @, taken from the source
Sy, to each source there corresponds a number indicating the
eat that would be rejected to it if it were used as a refrigerator
n connection with S;. If we choose these numbers to define a
lew scale, then denoting the new temperatures by

T, T Ty - T
ve have

Ty =kQp Ty=lkQy Ty=kQy - T,=kQ,
vhence follows

Q] QZ Q
Xl Y2 T, 4
4,71, T, @
eturning now to the quotient <2, we have at once
g q @
S_T
Q-

ience, using this new scale, the efficiency of the Carnot engine
J
—1-%_1 0 :
n=1 o= 1 Uik )
nd the form of the function is determined.

The scale of temperatures arrived at from the investigation
f Carnot’s cycle was first proposed by Lord Kelvin in 1848,
nd is known as the absolute scale because it is independent of
he property of any substance. The scale is simply such that
ny two temperatures on it are proportional to the quantities
f heat absorbed and rejected by a reversible Carnot engine
vorking between these temperatures.

If in (6) we make @,=0, n=1 and 7, =0. If we con-
eive a temperature lower than the zero on the absolute scale,

hat is, if we assume a negative value for 7}, then

P . . e a
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be shown subsequently that this absolute zero is precisely the
same as that derived from the reduction in pressure of a perfect
gas, and that the new scale coincides with thab of o ther-
mometer using a perfect gas as a {luid.

40. Available Energy and Waste. — Carnot’s ideal eyele gives
us & means of measuring the available energy of w systent al
the waste due to an irreversiblo chango of state.  Suppose that
a quantity of heat AQ is absorbed by the system al a tempera-
ture T, and that we wish to find the part of this heat that can
possibly be transformed into work.  As we have seen, no deviee
can transform a larger portion of AQ into work than the ideal
Carnot engine. If 7§ is the lowest temperature that can be

m
obtained for a refrigerator, the fraction -1771, T
transformed into work by a Carnot engine, and this is, therefore,
the availability of AQ under the given conditions.  The avail-
able part of AQ is, therefore,

ag Iz ag (1- )

) R T
and the waste is  AQ Ef")‘

of A can be

The temperature T}, cannot be lower than that of surrounding
objects, é.e. the atmosphere; * for even if a refrigerator conld
‘Pe found with a temperature lower than that of the atmosphere,
it could not be maintained in that state. Henee, the tempera-
ture of the atmosphere imposes o natural limitation on the av
ability of heat in the performance of work.

ail-

ExAMPLE. I'f the absolute temperature of asource is 1000° B, and that, of
the atmosphere is 520°, the available energy is
1000 — 520
T 0.48 of the total energy,
4Tl’nc‘.refore, for every 1000 B. t. . received from the souree
80 B:t. u. can by any meaus whatever be
least 520 B. t. w. must be rendered unavailable.

not more than

sformed into work, and at

* Possibly under special conditions
manently below that of the atmos
or of one of the great lakes.

a refrigerator whose temperature is per-
phere may exist ; e.q. the water of the ocean



assoclated with certain important 1r'reversiole processes.

(1) Conduction of Heat.— Suppose a quantity of heat @ to
pass by conduction from a source at a temperature 7 to
another at lower temperature 7. At the original temperature
the available energy was

(-g)e =

The same quantity of heat in the second source has the avail-

able energy
T,
1-7% -
( A
The available energy is, therefore, decreased by the quantity

5_5=T[,Q_2].-:: e
Q[Tz 1 ! T ) i

and the unavailable energy is increased by an equal amount.

(2) Irreversible’ Conversion of Work into Heat.— A common
irreversible process is the conversion of work into heat in the
" interior of a system through the agency of friction. Examples
are found in the flow of steam through nozzles and blades, and
in the frietional losses due to internal whirls and eddies in
fluids. Heat thus produced we shall denote by the symbol H,
reserving @ to denote heat brought into the system from outside.

If now within the system the small quantity of heat AH is
generated while the system remains at the temperature 7 the
part of AH that is available is

T-T, _n
agfzho AH(I 2

where, as usual, 7, denotes the lowest available temperature.
Of the work JAH expended in producing the heat A, the

part JAII(I - %)

may therefore be recovered in the form of work. The re-
mainder

~ T ooag Lo rAE
JAH -~ JAH(I T)-JAHT =

is rendered unavailable.
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To obtain the total increase of unavailable energy, when the
quantity of heat H is generated, the temperature of the system
varying in the meantime, we sum the element of the type just
obtained. Thus if the temperature rises [rom 7% to 2 during
the process, we have for the total waste

V.Y/ g
JT, lim > _.//.‘,.fr‘ -

(8) Free expansion of a yas. — The waste due to free expan-
sion, as deseribed in Art. 35, may he determined by retnrning
the gas to its initial state and obscrving the changes left in
outside bodies.

The compression indicated, by B'A" (Fig. 16) requires that
work W represented by avea B'A’" A;B;, be supplicd Irom an
outside body S, Another outside hody Ay must receive from
the gas heat @ equivalent to the work W. The gas, the
the system S, has the same available encrgy as ab livst, heing
restored to its initial condition; system S, has lost available
energy W=J@; and system /Sy has received energy 7@ of
which only part is available.  On the whole, therefore, there is
an increase of unavailable energy. The loss of availability due
to the original irreversible expansion of the gas (system ) is
repaired in this system, but an equal loss is hrought abont in
sysbems S, and ;. It can be shown that the waste thus in-
curred is given by an expression of the form 7/, I ":[(;)

41. Entropy. — The expressions for the increase of unavail-
tmble energy derived under various conditions are alike in hav-
ing Ti, the lowest temperature available for a refrigerator, as a
factor. I!; appears, therefore, that the unavailable cnergy
changes with 7); the lower Tj ean be taken, the smaller the
waste and the larger the fraction of the heat supplied that can
be transformed into work. ’

The other factor in the expression must necessarily, for the

sake of consistent units, have the form -Q’ or f a0, this
7] /lY



measure of the change in the unavailable energy of the system ;
an increase of entropy involves an increase of unavailable
energy, and vice versa. We may formally define entropy as
follows :

If, from any cause whatever, the unavailable energy of a system
1s inereased and if the increase be divided by T, ihe lowest tem-
perature available for o cold body, the quotient ts the increase of
entropy of the system.

This definition requires close examination to obviate possible
misconception. The “system” spoken of may be either a
single substance, as the medium employed in a heat motor, or
it may be all the bodies taking part in the process. Now, ac-
cording as we take one or the other of these viewpoints we get
a particular notion of the significance of the term entropy.

To illustrate this point, let us consider a simple example.
Suppose we have a fluid medium M and a source of heat S, as
described in connection with the Carnot engine. We may
direct our attention either to the system MM alone or to the sys-
tem M+ § composed of the medium and source. Let both M
and § be at the temperature 7" and suppose that at this tem-
perature heat @ is transferred from §to M. This is the ideal
reversible transfer assumed in the description of the Carnot
engine. In receiving @ the system M has its available energy

increased by @ (1 — —:—I'TD> and its unavailable energy increased by
QZ" To-%, hence by the definition just given the entropy of
system M is increased by g At the same time system § lms
lost the energy @ and, therefore, the unavailable energy Q

hence the entropy of S is decreased by % It follows that the

change of entropy of the system M+ S is zero. As the result
of the reversible transfer of heat from § to M there is no
change in the unavailable energy of the large system 8 + M and
no change in the entropy of this system. Suppose now that sys-
tem MM is again at temperature 7} but that system S has a higher
temperature 7", as must be the case in any actual transfer



60 THE SECOND LAW OF THERMODYNAMICS [eiar.1v

of heat. If now heat @ passes from & to AL the unavail-

able energy of M s increased by @ ?{, as before, and the increase

of entropy of system M is % The system S has, however,

Vi

lost the unavailable energy Q—,Z['-;;, and its entropy has decreased

Q~ The system § 4 A has had its unavailable energy in-

Q ) i .

cxeased by the amount 0,5, z:‘;—- ]’(ir ,I(‘,'l). I'he irree-
versible transfer has therefore resulted ina net loss of available
energy of this amount, and this degradation is accompanied hy
Q
7
two systems may be applied to any number of systems.

‘When we apply the notion of increase of entropy to the sys-
tem composed of all the bodies involved in a process, in other
words, an isolated system, we are led to the conception that
the increase of entropy measures the degradation of energy in-
cident to the process. If we combine this notion with that
expressed by the second law, we wrrive at the Tollowing im-
portant principles :

. Q o .
an inerease of entropy YL'— The result here obtained for

1. Any process that can proceed of itself is accompanied by an

tnerease of the entropy of the system of bodies involved in the
process.

o o . .
2. The direction of o process, physical or chemiical, that vecurs

of ttself is such as will bring about an inerease of entropy in the
system.

These principles lie at the foundation of the application of
thermodynamics to chemistry.

42. Second Definition of Entropy —-W]nlu Lhu uuu ('])lmn of
entronv as the fartar +1int v mn ey ...
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unavailable energy of this single systeminvolves an increase in

the eutropy of the system, but, as we have seen, degradation

does not necessarily follow, for the increase of unavailable

energy of M may be compensated by an equal loss in some

other system taking part in the process.

We now iuquire by what means the unavailable energy of
the single system under consideration can be increased. There
are at least three ways that are suggested from the previous
discussion of available energy (Art. 40).

(1) If energy is added to the system in the form of heat, the
total energy of the system is increased, and consequently the
unavailable energy is increased. If the heat AQ is thus added
when the temperature of the system is 7} the resulting inerease
of unavailable energy is

aQh=n52
If, as is gencrally the case, the temperature rises as heat is
added, we shall have for the increase

j‘” rlQ _ uf dQ,

(2) The wnavailable energy may be increased by the con-
version of work into heat through internal friction. As shown
in Art. 40 (2), the increase of unavailable energy from this
cause is

T fﬂtz [

lv

(8) If the parts of the system are not at the same tempera-
ture, there will be an irreversible flow of heat from one part of
the system to another, and this will increase the unavailable
cnergy. We may remove this source of unavailable energy by
assuming that the system is at all times of uniform temperature
throughout, an assumption that is usually justifiable.

Neglecting this third effect, we have for the increase of un-
available energy from state 1 to state 2,
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whence by definition, the increase of entropy is
LdQ Rl
-f 7 ¥ + n T

Now while the actual chango of the system from state 1 1o state
2 may, and usually does, involve frictional effeets, we can con-
ceive of a hypothetical change in which these internal irreversi-
ble effects are entirely absent and in which the inerease of
unavailable energy is due entirely to the addition to the system
of heat from some external source. Denoting by ), the heat
thus added, we have for the increase of entropy involved in
this particular process the integral

d@Q,

i

The important question now arises: Dooes the inercase of en-
tropy of the single system under consideration depend only
upon the initial and final states or upon the path conneeting
the states? It is easily shown that the incroase of entropy,
like the increase of energy, depends upon the initial wnd final
states only. For thé change of energy is independent of the
path; therefore, the change of the unavailable part of the en-
ergy, as determined by the constant temperature 7} and the
temperatures ) and T}, at the initial and final states, is also
independent of the path; therefore the change of cutropy,
which is the change of unavailable encrgy divided by 7, is
also independent of the path. It follows that the integral

Tde l
5; o bes the same value whether taken along the path r
(Fig. 20) or any other reversible path /. We may write, there-
fore, 40
frir=5,—,
r T 2o
w]hfire 8 denotes a function of the coirdinates of tho system
which may be termed the entropy of the system. We have,
then, the following definition :
The change of entropy of a system corresponding to a change

of the sustem From state 1 4 otris © 2o 27 3o se o o oo Tad )
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According to this more restricted conception, the entropy of
a system, like the energy, pressure, or temperature, is a magni-
tude determined by the state of the system, and change of en-
tropy has no necessary connection with degradation of energy.

It should be noted that entropy as thus defined is like energy
purely relative. We are never concerned with the absolute
value of the entropy of a system in a given state; what is
desired is the change of entropy associated with a given change
of state. For convenience of calculation we assume the zero
of entropy to be the entropy of a system in some specified state.
Thus, in dealing with vapors we assume the zero of entropy to
be the entropy of a unit weight of liguid at 0° C.

43. The Imequality of Clausius. —If an actual irreversible
change Dbe represented by the path 7, Fig. 20 (assuming it to
be possible to give such a repre-
sentation), a correct value of the P B

change cannot be obtained from
the integral _5' 'd(”)' taken along

the path 4. Tor as we have scen 4 "

8=, = f“’@"+z
7y

where ¥ is the increase of en- Fia. 20.

tropy due to the internal irre-

versible changes. For the actual irreversible change we have,
therefore,

8> f dQ,
This is the inequality of Clausius.

44. Summary. — To present the important principles of this
chapter in concise form and in logical order the following sum-
mary is added.

1. Experience shows that heat emergy is not completely
transformable into mechanical work. The ratio of the energy



2. Experience further shows that an irreversible  process
always decreases the availability of a system.

3. The second law of thermodynamics asserts that the avadl-
able energy of an isolated system cannot be inercased by any
process that takes place of itself.

4. To gain a means of measuring availability the ideal Carnot
engine is introduced. By the aid of the second Taw it is shown
that no engine working between the same temperature limits
can have an efliciency greater than the Carnot engine, and as a
consequence, that the efficiency of this engine is a function of
the temperature limits only.

5. By the introduction of Kelvin’s absolute scale of tempera-
ture the efficiency of the Carnot engine is found to be given by
the fraction L%

1

. N . LA .
6. Having the efficiency fraction L—T——I-'ﬂ, the available part
1
of a given quantity of heat @ at temperature 7' is found to be

T . 7]
Q<1 — ﬁ’) and the unavailable part, @ 752

7. By special examples of irreversible processes it is found
that the expression for the loss of available energy in sueh pro-
cesses has the general form 252—2”-, or T}, j,]’l(t)

1 1Q .. - .
8. The factorz% or jii— which multiplied by 7}, gives the

i 0=

increase of unavailable energy is called the dnerease of entropy
of the system.

) 9. Two conceptions of entropy are possible: («) If atten-
Fxon be directed to all the bodies involved in a process, the
increase of entropy of the whole system of hodies measures the
degl:adation of energy resulting from the process. (4) I al-
tention be directed to a single Dbody, as a medium used in a heat
motor, the entropy of this simple system is merely a function
of the cotrdinates of the system.

10. The change of entropy of a simple system is given hy
e eTedO . N - :
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the initial and final states. The value of this integral is inde-
pendent of the path.
11. For an irreversible change of state the change of entropy

is greater than le’%(‘—?.
A

45. Boltzmann's Interpretation of the Second Law.— A very clear insight
into the real physical meaning of natural irreversible processes and of the
second law of thermodynamies is afforded by the researches of Boltzinann
and Planck. In this article it is possible to give merely a brief outline of
Boltzmanu’s contribution; for a complete exposition the reader is referred
to Professor Klein’s adwmirable book, The Physical Significance of Entropy.*

According to the molecular theory, the ultinate particles of matter are
in o state of incessant motion, the character of the motion depending npon
the state of aggregation, — solid, liquid, or gaseous. In a gas it is assumed
that a particle has a free path and moves along a straight line until it col-
lides with another particle or with a restraining surface, as the wall of the
containing vessel. To the motion of particles as to the motion of masses
we may apply the conception of constraint or control. Thus, in the wave
motions that characterize sound, the motion of the particles that constitute
the mediums is in some degree controlled or ordered. The molecular
motion that constitutes heat is, on the other hand, wholly uncontrolled and
disordered. For any given particle of a gas all directions of motion are
equally possible and, therefore, equally probable; and the direction of
motion and velocity of any particle is independent of the inotions of other
particles. Tn a volume of gas particles will be moving in all directions
with all possible velocities. Ilowever, becanse of the great nwmber of par-
ticles even in a small volume, the values of magnitudes that depend upon
the moleenlar motion, such as pressure and temperature, remain constant
notwithstanding the haphazard character of the molecular motion.

According to Boltzmann, there is apparently a universal tendency
toward the disordered motion that characterizes heat. A motion that is
in any degree ordered or controlled tends to become disordered. Thus, as
sound waves die out the uniform motion of the particles in the wave
changes to disordered motion, and the energy of sound is transformed into
heat energy. The relative motion of two bodies in contact is retarded by
friction, and the worlk of overcoming friction is transformed into heat; that
is, the constrained motion of the particles in the mass gradually changes
to the disordered motion of heat. Since the energy of disordered molecular
motion is necessarily less available for direction into any required channel
than the energy of constrained or controlled motion, it follows that a change

from a less probable state of coutrolled motion to a more probable state of
e Y et 8 antar avaltlahle eneroyv

AtamiT T .



L A4l PWEUMLE e T

to & condition of less available energy. IIence, the statement of the natural
tendency toward disordered motion 38 in reality a broad statement of the
second law of thermodynamics.

From the preceding considerations a physical interpretation of entropy
is readily deduced. A system of itsell passes from a less probable to a
more probable state; that is, toa state of more disordered woleenlar motion.
The entropy of the system during the change musb inerease. Therefore,
the entropy of the system may be associated with the probability of the
state of the system. From the laws of probability, Plu as shown that
the entropy is proportional to the logarithm of the pre y ol thes

The following quotations from Prof. Klein’s book indicate in somo degren
the significance of this conception of entropy.

« Growth of entropy is o passage from a somewhal regulated fo a lesy
regulated state.”

« Entropy is a universal measure of the disorder in the mass points of a
system.”

" « Entropy is a universal measure of tho spontaneity with which o sy
acts when it is free to change.”

«Growth of entropy is a passage from a concentraled to a distribnied
condition of energy; energy originally concentrated varionsly in the
is finally scattered uniformly in said systew. In this aggregato usp
a passage from variety to uniformity.”

EXERCISES

1. If a source of heat has an absolute temporatura of 1400° 1%, and the
lowest available temperature is 525° I%, what fraction of the heat drawn
from the source is available ?

2. Ina boiler 10,000 B. . u. pass from the hot gases of the furnace, the
temperature of which is 2500° I., throngh tho boiler shell into water ab a
temperature of 330° F. If the Jowest available temperalire s 807 I, find
the loss of available energy.

3. S%m\v how the result of Lx. 2 suggests the superior efficicney of the
gas engine compared with the steam engine.

f. Point out the loss of available energy when lieat flows from steam in a
radu.ztor at a temperature of 225° into a room at T0°. Devise a system ol
heating that would obviate this loss.

5. A mass of water‘ weighing 60 1b. at a temperature of 707 I is chnrned
by a paddle wheel until the temperature rises to 120°  find the inerease of
antlropy, and the loss of available energy. Take the specilic heat of water
asl.

6. In the demonstration of Carnot’s principle, Art. 38, as

i sume the two
engines A and B to do the same work V.

Then show thal if envine A
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CHAPTER V
TEMPERATURE ENTROPY REPRESENTATION

46, Entropy as a Cobrdinate.— It was shown in Art. 42 that
the entropy of a system measured from an arbitrary zero is
dependent only upon the state of the system; that is, the
entropy is a function of the codrdinates of the system. 1t
follows that the entropy itself may Dbe included among the
codrdinates used to define a system. We have, therefore, five
codrdinates, namely, p, v, T, u, and 8, that may ho thus used.
From these five, ten pairs may be selected, and the change of
state of a system may be represented by ten different curves on
ten different planes. Of these possible graphical representa-
tions two are of special importance: (1) representation on the
pV-plane, because the area between the curve and =axis repre-
sents the external work done by the system; (2) representa-
tion on the 7'S-plane, because with certain restrictions the arca
under the curve represents the heat absorbed by the system
from external sources. Graphical representations on the pl=
plane have been considered in Art. 82. This chapter will be
devoted chiefly to representations on the 7/S-plane.

From the second definition of entropy, we have

S—Sl=frﬂ @M

noq’

from which relation we obtain at once the differential forms

i
a8 = ‘7? @
and Td8=dQ. o

Let the curve AR (T 91N Toa 41 ootle a1




But from (3) this integral is the heat @, absorbed by the
system from external sources during the change of state. It
follows that the area between B
the curve AB and the axis 08 7
represents graphically the heat
absorbed along the path AB.

One most important restriction
must, however, be observed. In
defining entropy by means of
equation (1) it was expressly
stated that the change of state ©
must not involve any internal
irreversible effects. If such effects are present, the equation
for the change of entropy is

Sz - Sx = ,‘Z@T? +3, (€3]

|
i
1
i
1
1
1
1
{
i
|
|
1
|
1

[ IR

" ) B
Fie. 21.

where 2 denotes the increase of entropy due to internal
processes, conduction between the parts of the system, trans-
. nd
formation of work into heat through friction, ete., and fT‘ TQ
is the increase of entropy due to the absorption of heat from
external bodies. From (4) it follows that in this case

7,dQ y
fT‘ 7 < 8, — S,

whence Q< Tds, [©)

or the heat absorbed from outside is less than the area between
the T'S-curve and the S-axis. 7T'his area therefore may be taken
as representing the heat absorbed by the system when, and only
when, the change of state involves no irreversible effects. Neglect
of this restriction has led to many errors.

47. Isothermals and Adiabatics. — If the temperature of the
system remains constant during the change of state, the
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In this case we have merely to dlvule the heat added to the
system (assuming, of course, that the change of state is revers-

ible) by the constant temperi-
¢ ture 7% and the quotient is the
0 J: chango of entropy.

If tho state point passes Trom
B to A, that is, so as 1o de-
crease  the entropy, the area
Ay ABBy represents heat  re-
jected by the system to outside
I Dodics.

For an adiabatic change of
state, 4@ = 03 hence from (1) i, =5 and the wdiabutic line
on the Z'Splane, if the change of state involves no irreversible
effects, is a straight line parallel to the Z-axis, as (/D) (Fig. 22).
If the state-point moves from €'to D, indicating o deerease of tom-
perature, external work is done by the system, and the change
of state is an adiabatic expansion. 1f tho point moves upward
from D to ' the change of state is an adinbatic compression.

T

48. The Curve of Heating and Cooling. — Irom the equation

= dy
a1’
which defines the specific Licat of a substance, we have
dg = cdT. Q)
Substituting this expression for dy in (1), Art. -6, we aet for a
reversible process
Toedl
s—g=| — . 2
1 f’.‘ Vi ( )

1£ the specific heat ¢ is constant during the change of state,
we have for the change of entropy of unit weight of the sub-
stance

iﬂ—:clo z

7 d Se T}‘ (3)




For the weight 14,

§— 8, = Mlog, L. Ga)

1
If, however, ¢ is variable, it can usually be expressed as a func-
tion of the temperature ; that is, we can write
¢ =f(T),
T

whence = le f-(TTﬂ' 65
The integration can Dbe effected when the function f(T) is

known.

Lxamrre. Leb the specific heat of a substance be given by the relation
c=a+bt=a+b(T - 459.0);
we have then

. AT 7,
sy — 81 = (a — 450.6 s 2
w—s=(n 4)9>Z:)frl 7 +1,le[12'
= (« - 459.61) log, £+ b(T, — T)).
1

The general form of the curve that represents Eq. (3)
is shown in Fig. 23. This curve
represents the ordinary pro-
cess of heating a body or sub-
stance, as the healing of water
in o boiler or metal in a furnace.
It is called by some writers the
polytropic curve. The subtan-
gent of the curve is constant
and numerically equal to the % "
specific heat. Thus from the 0 £ £

Fic. 23,
figure we have

T

EF = EP cot ¢
ds _dg
= Td—T-— 7= c.
Tt follows that the smaller the value of ¢, the greater the slope

of the curve.

The isothermal and adiabatic curves (Fig. 22) mey be con-

ey e Yt o T analine etirve Kor
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Fig. 24,
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Cases may arise in which the
slope of the Z'S-curve is nega-
tive, as shown in Fig. 24 In
such cases abstraction of heat iy
accompanied by a rise in tem-
perature or vice versa.  lvidently

the specilic hcnt'vj',;, must be

negative, as iy indicated  geo-
metrically by the negative sub-

tangent. Examples will be shown in the compression of air
in the ordinary air ecompressor, and in the expansion of dry
saturated steam with the provision that it remains dry during

the expansion.

49. Cycle Processes. — Since any reversible process may be
shown by a curve in 7'S-coirdinates, it follows that a series

of such processes forming a
closed cycle may he repre-
sented by a closed figure on
the 7'S-plane. In Fig. 25 is
shown such a cycle composed
of two polytropics AB and
DE, an isothermal B(, and
two adiabatics 0D and E4.
In any such cycle the area
“included by the cycle repre-
sents the net heat added to
(or abstracted from) the work-

ing fluid during the cycle process.

T
7 ¢
’ /D
B
|
|
i
|
: g
BN i (2

Fia. 26,

Assuming the cycle to be

traversed in the clockwise sense, we have

Qu=area A, ABB,
Q. =area B/ BOC,,

ch =0,



= Voo + Yoo + Yoa + Qoo+ Wea = A, d.BB) + B BOC, — C(\DEA,

=ABCDE.
the eycle is traversed in the counterclockwise sense, we have
idently Q@ =—area ABCDE.

1t from the first law, @ is the heat transformed into work;
nce for the direct cycle
area ABODE =Q= AW,
d for the reversed cycle
arca ABCDE=— Q=— AW.
This reasoning evidently holds for any number of processes,
d thercfore for a reversible
sed eycle of any form. Thus
* the cycle shown in Fig. 26,
 have
area = Q=A4W,
arca F=— Q=—AW,

ording as the cycle is traversed
the clockwise or counter clock- o
e sense. Fra. 26
[n later developments it will
quently be necessary to show cycle processes on the ZS-plane.
0. The Rectangular Cycle. When the curves representing
 four processes of the Carnot cycle are transferred to the

T'S-plane, the cycle becomes the
7 simple rectangle ABCD, Fig. 2T.

T

4 B The area A, ABB, represents the

heat @, absorbed by the medium
D, T C from the source during the iso-
5 thermal expansion 4B, and the area

B,CDA,, the heat @, rejected to the

S refrigerator during the isothermal

compression CD. The lines BC

and DA represent, respectively, the

Y =% adiabatic expansion and the adia-
Frc. 27. batic compression.
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From the geometry of the figure, we have
G="10%— 8),
Q= T,(8%— 8,
AW= @ — Q= (L1 — Ty) (S — Sps
whence AW _T-1h
& 7
as already deduced in Art. 3.

When the cycle is traversed in the counterclockwise sense,
the heat @, is received by the medium from the cold hody during
the isothermal expansion D, and the larger amount of heat 0y
is rejected to the hot body dwring isothermal compression S8
The difference @, — @; = — AW represented by the eycle arca
is the work that must be done on the medium, amd must there-
fore be furnished from external sources.

The reversed heat engine may be used cither as a refrigerating
machine or as a warming machine. In the first case the s
to be cooled acts as the source and delivers the heat @, = area
ADCB, to the medium. In the second caso the space to bo
warmed receives the heat @) =aren B BAA; [rom the mediun,

51. Internal Frictional Processes. — Relerring to Art. -k2, the
inerease of entropy when heat is generated in the interior of a
system is seen to be

ndQ | TdIl
8§, — 8 = (L L. 1
=5, L‘T“LT,T Q)
If @ =0, that is, if no heat enters the system from ontside
sources, the increase of entropy is
hdH
8= 8= == 2
2 j n T’ - @
and is due entirely to the generation of heat in the interior of
the system. If it be assumed that this process is steady, so that
t}le .system ab every instant is approximately in thermal equi-
librium, the usual graphical representation may be applied to
(2), and the area under the 7'S-curve will in this case repre-
sent not the heat bromnoht $1vFa 41ve cocd oo Teoot 21 - 1. 7




int A (Fig. 28) has its pressure decreased in passing along the
wale, and as a result tho temperature likewise falls. The

reess is adiabatic, that is, no heat

received from external bodies;
nce, if there were mo internal
ction, the drop in temperature
uld be indicated by a motion of
y state-point along A4, But
rle is expended in overcoming
» friction bLetweon the fluid and
ezdo wall.  This work is neces-
ily transformed into heat, which
retained by the fluid. It follows

A
B
g
A B,
F16. 28.

it there is an increase of entropy, as indicated by the curve 4B.
om (2) the heat generated is represented by the area A ABB,.

52. Cycles with Irreversible Adiabatics. — In certain cases the
sed eycle of operations of a heat motor may contain an adia-
tic irreversible process, the irreversibility arising either from
ernal generation of heat or from the free expansion or wire-

wing of the working fluid.

B
4=\
\
\
\\
\
: c
e
N P
Tia. 29.

Even if it is possible to draw
a T'S-curve representing such
a process, the area under that
curve does not represent the
heat entering the system from
an external source. Hence
some care is required to inter-
pret properly the graphical
representations of cycles with
such irreversible parts.

In the eycle shown in Fig. 29,
suppose the process BC to be
an irreversible adiabatic, the

1er parts of the cycle being reversible. Since AB is revers-
¢, the heat absorbed in passing from A to B is represented by
> area A, ABB,. Likewise area C;C'DA, represents the heat
ected Dy the system in changing state from C'to D. The
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process DA is adiabatic, hence @ =0; and by hypothesis
Q,.=0. The value of =@ for the cyclo iy, thercefore,
Qu + Qea = avca A ABBy —wren ( LoD
= area ABED —aven By
The energy equation applies to any process, reversible or
jrreversible.  Therelore for this
D cycle, as for those previously
congidered, we have
~0 W=dQ=J(Qu+ Qu)-
It appears, therefore, that the
work derived is Jess by the arca
B,ECC, than it would have
been if the reversible adiabatic
o, oS BE had been followed.
Fia. 2. - For the reversed cyecle
(Fig. 30) we lave as the
work required from external sources
W=J(Qua + @) = —arcn D] DAA + aren .Iflli(’l)‘
= —arca B BUDAA.
Comparing this eycle with the cycle ABCT having the revers-
ible adiabatic AZ, it is seen that the heat absorbed from the
cold body is smaller by the heat represeuted by the area
A,EBB,, while the work required to drive the machine is
greater by an equal amount. In cvery case the irreversible
process results in a reduction of the useful effect.

53. Heat Content. — Since the quantities p, v, 7} u, and s are
function of the state of a system only, it follows that any com-
bination of these quantities is likewise a function of the state
only. For example, let

i= Au+pv); M
I=A(U+p]fi); 1 @)
F=Au~— Ts; )
@ = Adu—Ts+ Ape. )

Mhanm & T avd B oo e, ey o e
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entials, and are used in certain applications of thermo-
namics to physics and chemistry. The function I has use-
| applications in technical thermodynamies.
To gain a physical meaning for the function Z let us consider
> process of lieating a substance at constant pressure. If T,
, and p; denote the initial emergy, volume, and pressure,
pectively, and U, V;, and p, the final values of the same
srdinates, we have from the energy equation

=AU, — U+ W)

=AU, = Ui+ p(1% = V)]

AU, ~ U, + (gl — VD], since py = py
[AT,+ p 1) = AU+ p07)]
=1I,~I.

I

Il

at is, the change in I is equal to the heat added to the sys-
n during a change of state at constant pressure. For this
won I iy called the heat con-
t of the system at constant I
essure, or, more briefly, the
cat content.”

[n some subsequent investiga- 4 ¢
ns, especially those relating to
» flow of fluids, it will be con-
ient to use I and S as the in-
sendent variables and to repre-
t changes of state by curves on s
 Z8-plane.  The great advantage Fie. 31.

the IS-representation over the

Lrepresentation lies in the fact that in the former quantities
heat are represented by linear segments, while in the latter,
we have seen, they ave represented by areas. A reversible
abatic on the JSplane is o vertical line, as BC (Fig. 31).
t in this diagram segment B (' represents a quantity of heat
tead of a change of temperature.

B




2. Assuming that the specific heat of water s constant, e 1, plot ou
cross-section paper the I'S-curve representing the heating of water from
32° to 212°

3. Langen’s formula for the specific heab of ('O, ab vonstant pressure iy
¢, = 0195+ 0.000068 ¢, Iind the ine
at constant pressure from 500° to 2000 I

so of entropy when CO, is heated
also the heat absorbed.

4. A direct motor operates on o rectangular eycle bebween temperature
limits Ty = 840° and T, = 600° and receives from the sonvee 200 By Gow per
minnte. Find the efficiency, and the work dune per minute.

5. A reversed motor, rectangular eyele, operafes hetween temperature
limits of 10° and 130°% and recvives 600 Bt w. per minutn from the cold
body. Find the heat rejected to the hot body, and the horsepower reguired
to drive the motor.

6. A direct motor, rectangular cyele, vpernting between femperatares
T, = 900° and T, = 680, takes 1000 B. t. w. from ahoiler. The heat v jeeted
is delivered to a building for heating purposes. This divect wotor drives
a reversed motor which operates on n rectangular eyele hetween tempera-
tures Ty = 460° (temperature of outside atmosphere) wd 7% - 600 The
reversed motor takes heat from the atmosphere and rejects heat fo the
building. Find the total heat delivered to the building per 1000 B. L
taken from the boiler.

7. In the vaporization of water at atmospherie pressure, the temperature
remains constant at 212° ., and 970.4 B. & w. aro required for the proe
Find the increase of entropy.

N

8. TheVexpression for the energy U for a given weight of a permanent
D
gasis p 7+ Uy where & and U are constants.  Derive an expression for
the heat content 7 of the gas.

9. .Combine the energy equation dQ = AdU + A pd V7 with the defining
equation I =A(U + p¥) and show that ¢I = dQ + A1%dp.
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CHAPTER VI
GENERAL EQUATIONS OF THERMODYNAMICS

54. Fundamental Differentials. —The introduction of the
entropy s and the functions ¢, ¥, and ® (Art. 52) permits the
derivation of a large number of relations between various
thermodynamic magnitudes. While the number of formulas
that can be thus derived is almost unlimited, we shall intro-
duce in the present chapter only those that will prove useful
in the subsequent study of the properties of various heat media.
In this article we shall by simple transformations express the
differentials of %, ¢, #, and @ in terms of the dleerentla,ls of the
variables p, », 7, and s.

‘We have to start with the fundamental energy equation

= A(du + pdv), @
and for a reversible process the relation

dg = Tds. @)
Combining (1) and (2), we obtain

du =§—ds — pdv, ©)]

an equation that gives w as a function of the independent varia-
bles s and v.
From the defining equation

1= A(u+ pv)
we have
di = Adu + Ad (pv)
= Adu + Apdv + Avdp.

Introducing the expression for Adu given by (8), we get
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Here ¢ is given as a function of s and p as independent
variables.
Likewise, from the relation

F=Au— Ts,
dF = Adu — Tds — sdT;
whence from (3)
— dF =sdT + Apdo. (B
Finally, from the defining relation
D = Au + Apv — Ts,
AP = Adu + Ad(pv) — d(Ts)
= Tds — Apdv + Apdv + Avdp— Tds — sdT’;
or dP = Avdp — sdT. (6)

Now since the functions u, 7, F, and ® depend on the state
only, their differentials are exact; hence the second members
of (3), (4), (5), and (6) are all exact differentials.

Certain results can be deduced at once from the differential
equations (3)-(6). For example, from (6), if a system changes
state reversibly under constant pressure and at constant tem-
perature, the function ® remains constant. Again from (5), if
a change of state occurs at constant temperature, the external
work done is equal to the decrease of the function #. These
results are important in the application of thermodynamics to
chemistry.

55. The Thermodynamic Relations. — The fact that the dif-
ferentials in (8), (4), (5), and (6) of the last article are exact
gives a means of deriving four important relations. In (3)
we have u expressed as a function of the variables s and v;
that is,

u=Jf(s ),
whence du = du ds + du dv.
ds v

Comparing this symbolic equation with (8), it appears that



au\as)  9s\ov)’

ithatis, Aav( )—_( F28

o (o)== @

The subscripts denote the variables held constant during the
differentiations indicated.

Relation (A) may be expressed in words as follows: The
rate of increase of temperature with respect to the volume
along an isentropic is equal to A times the rate of decrease of
the pressure with respect to the entropy along a constant vol-
ume curve. That is, if the reversible change of state be repre-
sented by curves, — one on the 7%-plane, another on the ps-plane,
—the slope of the second curve at a point representing a given
state is — A times the slope of the first curve at the point that
represents the same state.

In (4) we have s and p as the independent variables; and
since d¢ is exact, the necessary condition of exactness gives

3 i
(D=4 (4,

. (D42

That is, the rate of increase of temperature with respect to the
pressure in adiabatic change is A times the rate of increase of
volume with respect to the entropy in a constant-pressure
change.

Since in (5) dF is an exact differential, we have

A _6J1> . C
<8v>r A(E)T v ©
From (6), likewise, we obtain

as v

(&).= -4, <D>

The relations given by (A), (B), (C), and (D) are known
as Maxwell’s thermodynamic relations. They hold for all
G



(C) and (D) by means of the relation dg = '-;,é’;, are uselul:

3\ — 4p(02 (¢4
(w)f‘“ (a’l’)u’ @
‘l’l) — ,,(gn) . T
(ﬂp T AT T/ an

56. General Differential Equations. — From the thermo-
dynamic relations certain useful general equations are atb once
deduced. Asin Art. 19, we may write

(1 g4 (%
dg= (a 1> fu'+<op) o,
dg= Ql) T (@1)
g (a 1), 40+ (50)
according as 7' and v or Z'and p are taken as the independent

i y i AN ¥ c ot _—
variables. Now replacing (3%’),, and (b ’Zl;>,, by ¢, and e, re-
spectively, and (6_(1) and (ﬂ by the expressions given in

v/ p W)

(0" and (D"), these equations hecome, respectively,

dg=cdT + A1’<f’f’> v, )
1)

dg=c,dT— AT(ﬂi) ap. an
),

Eliminating d7 between (I) and (II), a third cquation having
P and v as the variables is obtained. Thus

dg= %A_ch [:c“ (%),, dv + Cv((;]:)'>l, (71,} (111
Two other important equations may be derived from (1) and
(II). Since from the energy equation
du = Jdg — pdo,
we have from (1)

_ 8
du= Jc.,cl£"+[1’(;a 7;) - p}ru ; av




di=c,dT~ A[T(;-;,) - v]dp. 4%

The general equations (I)~(V) hold for reversible changes
 state. The partial derivatives involved may be found from
he characteristic equation of the substance under investi-
tion.

As an application of (IV), we may derive expressions for the
1ange of energy (a) of a gas that follows the law pv = BT';
) of a gas that obeys van der Waals’ equation

<p+%z>(v—b)=3ﬂ

(a) From the characteristic equation pv = BT} we have

() -2

a7T), w
ence
du= qudT+(¥ - p) v
=Je,dT,
nd uz—u1=chudT

=Je,(Ty— 1),
ssuming e, to be a constant.
(0) From van der Waals’ equation, we have

(ﬁﬂ) - B
ar), v—2b
; N _plaBL_,_a
hence [T<6T),, _p:] Py b e
rom (IV), we have, therefore,
du=Je,dT+ % dv,
v

‘hence, assuming again that e, is constant,

ty =y = Jo (T 1)+ (2 - 1)
v Y



It appears, therefore, that if & gas follows the law po = BT, the
energy is a function of the temperature only, while if it follows
van der Waals’ law, the energy depends upon the temperature
and volume; in other words, the gas posscsses both kinetic
and potential energy.

57. Additional Thermodynamic Formulas. — Ior certain in-
vestigations of imperfect gases, especially the superheted
vapors, certain formulas involving the specific heats e, and
¢, are useful. The most important of these are (V1), (VII),
and (VIII) following.

Since du is an exact differentiul, we obtain, npon applying
the criterion of exactness to (IV),

d d ap
Iege)y="2| (L)~
a7 61’[1<0.’l’>u [’]‘

e, P ap )
-l (s
W)y EYE w+ 1), \oT/,
whence <%> = ”(ﬂ).
" a0 ).~ AL \a7m), b
In a similar manner, since di is exact, we have from (V)
de ) A%
) = _AT<__) . /11
(ap . ), VD)

Equations (VI‘) and (VII) may be used to show the depend-
ence of the specific heats ¢, and ¢, upon the pressure and vol-
ume. 82For example, if a gas follows the cquation pv= B71 we

v de,
find = 0, whence from (VII) (J]:’) =0, and it follows that
r
¢, does not depend upon the pressure, though it may vary with

92
the temperature. Also 671}';:. 0, whenco it follows that ¢, does

not vary with the volume. The student may show that the
secom.i result follows from van der Waals’ equation or from any
equation in which p and 7' appear in the first degree only.
If, however, we take the characteristic equation )

s an



hich applies to superheated steam, we obtain

% n+1
=t D (14 ap),
hence (%) Amn(n+ (A + ap)
3}’ T+l
tegrating this with 7' constant, we have
_Amn(n+1)

iﬁ.ﬁ_‘po- +g]’>+¢(T),

here ¢p( 1), an arbitrary function of 7, is the constant of inte-
ation. In this case it is seen that ¢, is a function of both 7'

d p.
An expression for ¢,— ¢, is obtained as follows : Writing the
tropy s as a function of p and », we have

ds ds
=—dp+—dv.
ds o Ip + P
his, combined with the familiar equation
Adu = Tds — Apdv,
ves the equation Adu = Tg—; dp + (T% — Ap)dv.
nce du is an exact differential, we have
d ds d
L% = 215 4p);
8’u<T6p> Bp( v p)s

3T 3s Tazs _0Tds o %

o 13, v @ dvdp - 5;5 apav ’
aTads 9T ds _
rence = —% 22 % —A. 1
enee o dp dp v @
om the definition of specific heat, we have
=0 _
ar d l’

d if we express both s and 7' as functions of p and v, this re-
tion becomes

i S A— 2
7T , a7 , @



B
v [©))
e, =T U
N
Likewise, when » is constant we have
9
e,=1T (;lf[’-, h
ap
Combining (3) and (4), we obtain
98 s (f? Tas_aT 0:1)
_ W ap | Napan aw ap . 1)
R T v
v ap o ap
Making use of (1), we get finally
—ey= A" O VI
% =47 araT ¢ )

ExameLe.  For the characteristic equation pr = BT, wo have
B B op_ B
aT p’ 9T v
Therefore, from 3),
21
comoy=ABL_ g BT _ 0
v F2

That is, the difference G = ¢ I8 constant even if ¢, and ¢, vary with tho

temperature.
Taking Zeuner’s equation for superheated steam, viz:
pv =BT — Cpny
we have ﬂ:é, 9B,
T p’ 9T nCpn=1 44’
whence C—c,=AB BT BT

———=AB
nCp™ + pv (n-1

YO BT
In this case, therefore, the difference ¢y

— ¢ varies with 7" and p.
By various substitutions and transformations we could add
‘almost indeﬁnitely to this list of thermodynamic formulas.

However, the eight formulas (D~(VIIT) are suflicient for the
investication of neaslo 11 ... o~ TS e BT -
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apter 7" must necessarily denote the temperature defined by
e Kelvin absolute scale. The coincidence of this scale with
e perfect gas scale will be shown in the next chapter.

58. Equilibrium. — For irreversible processes the equations of Art. 54
18t be replaced by inequalities. Since for an irreversible process,

dg < Tds, ()]
- (3), (1), (5), and (6) of Art. 54 become, respectively,
Adu < Tds — Apdv, @)
di< Tis + Avdp, 3)
— dF >sd T + Apdv, “)
d® < Avdp — sdT. )

From the inequalities (4), (5), and (1) the following conclusions are at
ce apparent :

1. If the temperature and volume of a system remain constant, then from
), dI' < 0. That is, /I7 must be negative, and any change in the system
15t result in a decrease of the function F.

2. If the temperature and pressure remain constant, as in fusion and
porization, then from (5), d® < 0. Hence any change in the system must
such as to decrease the function ®.

3. If the systemn be isolated, ¢ = 0, and from (1), ds>0. Hence in an
lated system any change must result in an increase of entropy.

The conditions of equilibrium are readily deduced from these conclusions.
ider the condition of constant 7" and v, change is possible so long as F
1 decrease.  When F becomes a minimum, no further change is possible
d the system is in stable equilibrium. Likewise, with 7" and p constant,
ble equilibrium is attained when the function @ is 2 minimum.

The functions 7 and @ are evidently analogous to the potential function
in mechanics. A mechanical system is in a state of equilibrium when
> potential energy is a minimum, and similarly a thermodynamic system
in equilibrium when either the function 7 or the function & is a minimum.
r this reason I and ¢ are called thermodynamic potentials.

By the use of thermodynamic potentials, problems relating to fusion,
porization, solution, cheinical equilibrium, etc., are attacked and solved.

EXERCISES
1. From (V) derive an expression for the change of the heat content ¢
en a gas following the law pv = BT changes state.
2. If the gas obeys van der Waal’s law, find an expression for the
ange of the heat content i.
3. Apply equations (II), (IV), and (V) to the characteristic equation
superheated steam,
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4. Callendar has proposed for superheated steam the equation
273
plv—0) =BT~ Cp( T ) .

Apply (VII) to this equation and show that ¢ is a function of p and 7'

5. Give geometrical interpretations of the thermodynamic relations
(C) and (D).

6. From (I) and (II) derive expressions for dq and also for S 1. 7 for a

gas following the law pv = BT. Show that the expressions for —% are
integrable, while those for dq are not.

7. Derive (VI) and (VII) by the following method: Divide both mem-
bers of (I) and (IT) by 7, and knowing that %:1: ds is exact, apply the

criterion of exactness to the resulting differentials.
8. Deduce the following relation between the specific heats and the
functions F and ®:
%P
(@ e = — Taﬂ, ®) o= TgT2
9. Using temperature-entropy co¢rdinates, deduce a system of graphical
representation for the three magnitudes Q, U, — Uy, and W that appear in
the energy equation.
Suggestion. Through the point representing one state draw an iso-
dynamic, through the other point a constant volume curve.
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CHAPTER VII
PROPERTIES OF GASES

59. The Permanent Gases. — The term *permanent gas”
survives from an earlier period, when it was applied to a series
of gaseous substances which supposedly could not by any
means be changed into the liquid or solid state. The recent
experimental researches of Pictet and Cailletet, of Wroblewski,
Olszowski, and others have shown that, in this sense of the
term, there are no permanent gases. At sufficiently low tem-
peratures all known gases can be reduced to the liquid state.
The following are the temperatures of liquefaction of the more
common gases at atmospheric pressure :

Atmosphericaiv . . . . . . —192.2°C.
Nitrogen . . . . . . . . . =1931°C.
Oxygen . . . . . . . . . —1825°C.
Hydrogen . . . . . . . . —225°C.
Helium . . . . . . . . . —2063.9°C

It appears, therefore, that the so-called permanent gases are
in reality superheated vapors far removed from temperature of
condensation. We shall understand the term ¢ permanent gas
to mean, therefore, a gas that is liquefied with difficulty and
that obeys very closely the Boyle-Gay Lussac law. Gases that
show considerable deviations from this law because they lie
relatively near the condensation limit will be known as super-
heated vapors.

60. Experimental Laws. — The permanent gases, at the pres-
sures usually employed, obey quite exactly the laws of Boyle
and Charles, namely :

1. Boyle’s Law. At constant temperature, the volume of a
arven weiaht of vas varies inversely as the nressure.



4. vialles Law. 17 oess v mr e - o
sure of & gas is proportional to the change of temperature.

By the combination of these laws the characteristic equation
pv=BT is deduced. (See Art. 14) In this equation T'
denotes absolute temperature on the scale of the gas ther-
mometer, and not necessarily temperature on the Kelvin
absolute scale.

The classic experiment of Joule showed that permanent gases
obey very nearly a third law, namely :

3. Joule’s Law. The intrinsic energy of @ permanent gas is
independent of the volume of the gas and depends upon the temper-
ature only. In other words, the intrinsic energy of a gas is all
the kinetic form. ‘

Joule established this law by the following experiment. Two
vessels, a and b, Fig. 32, connected by a tube were immersed in
a bath of water. In one vessel air was compressed to a pres-
sure of 22 atmospheres, the other
vessel was exhausted. The tem-
perature of the water was taken
by a very sensitive thermometer.
A stopcock ¢ in the connecting
tube was then opened, permit-
ting the air to rush from a to
b, and after equilibrium was es-
tablished the temperature of the
water was again read. No change of temperature could be
detected.

From the conditions of the experiment no work external to
the vessels @ and & was done by the gas; and since the water
remained at the same temperature, no heat passed into the gas
from the water. Consequently, the internal energy of the air
was the same after the expansion into the vessel & as before.
NO\V if the increase of volume had required the expenditure of
mt(?rnal work, ¢.e. work to force the molecules apart against
their mut}lal attractions, that work must necessarily have come
from the internal kinetic energy of the gas, and as a rvesult the
temperature would have been lowered. As the temperature
remained constant, it is to be inferred that no such internal




WOLAR AWAS 1O IILEW. A gas 1ds, Llielelole, DO appreclable 1ter-
nal potential energy ; its energy is entirely kinetic and depends
upon the temperature only.

Joule’s law may be expressed symbolically by the relations :

w=£t), 2_2‘ =0.

The more accurate porous-plug experiments of Joule and
Lord Kelvin showed that all gases deviate more or less from
Joule’s law. In the case of the so-called permanent gases, air,
hydrogen, etc., the deviation was slight though measurable ; but
with the gases more easily liquefied, the deviations were more
marked. The explanation of these deviations is not difficult
when the true nature of a gas is considered. Presumably
the molecules of a gas act on each other with certain forces, the
magnitudes of which depend upon the distances between the
molecules. When the gas is highly rarefied, that is, when it is
far removed from the liquid state, the molecular forces are van-
ishingly small; but when the gas is brought nearer the liquid
state by increasing the pressure and lowering the temperature,
the molecules are brought closer together and the molecular
forces are no longer negligible. The gas in this state possesses
appreciable potential energy and the deviation from Joule’s
law is considerable.

61. Comparison of Temperature Scales.— Joule’s law furnishes
a means of comparing the two temperature scales that have
been introduced: the scale of the gas thermometer and the
Kelvin absolute scale.

Since the intrinsic energy u is, in general, a function of 7'and
v, we may write the symbolic equation

o au
—dT+ cl 1
du = T v. @

But from the general equation (IV), Art. 56,

du = Je dt-{—[T(gZ,) —-p:|dv [©)



p“aring (“1)7and (2), we obtain
du o _ 0])) .
= Teyy Z=T() —p. 3
™ (oz'u F ®
For a gas that obeys Joule’s law %75 = 0, whence from (3)
v

Equation (4) is, however, precisely the cquation that expresses
Charles’ law when 7' is taken as the absolute temperature on
the scale of the constant volume gas thermometer. Thus, if
the change of pressure is proportional to the change of tem-
perature when the volume remains constant, we have, taking py ~
as the pressure at 0° C.,

%:Z":t—ia=% (see Fig. 2);
that is, p_p.
da. T

It follows that the value of 7'is the same whether taken
on the Kelvin absolute scale or on the scale of a constant-
volume gas thermometer, provided the gas strictly obeys the
laws of Boyle and Joule. The fact that any actual gas, as
air or nitrogen, does mot obey these laws exactly makes
the scale of the actual gas thermometer deviate slightly from
the scale of the ideal Kelvin thermometer. From the povous-
plug experiments of Joule and Kelvin, Rowland has made a

comparison between the Kelvin scale and the scale of the air
thermometer.

6?. Numerical Value of B. — The value of the constant B for
a given gas can be determined from the values of P, v, and ' be-
longing to some definite state. The specific weights of various

gases a atmospheric pressure and at a temperature of 0° C.
are given as follows:



Atmospheric air . . . . . 0.08071 lb. per cubic foot.

Nitrogen . . . . . . . 0.07829 Ib. per cubic foot.
Oxygen . . . . . . . . 0.089221b. per cubic foot.
Hydrogen . . . . . . . 0.005611b. per cubic foot.
Carbonic acid . . . . . . 0.12268 Ib. per cubic foot.

A pressure of one atmosphere, 760 mm. of mercury, is 10,333 kg.
per square meter = 14.6967 1b. per square inch = 2116.32 1b.
per square foot. Taking as 491.6 the value of 7' on the F.
scale corresponding to 0° C., we have for air

Bom_p __ 2632 g

In metric units the corresponding caleulation gives

_ 1033 g0
MBI x1.293
The values of B for other gases may be found in the same way
by inserting the proper values of the specific weight 4.

63. Forms of the Characteristic Equation. — In the character-
istic equation as usually written,

pv= BT, @

v denotes the volume of unit weight of gas. It is convenient
to extend the equation to apply to any weight. Letting M
denote the weight of the gas, we have for the volume ¥ of M
1b. (or kg.), V' = M, whence instead of (1) we may write:
pV =MBT. (2
This equation is useful in the solution of problems in which
three of the four quantities, p, v, 7, and M, are given and the
fourth is required.
Exampre. Find the pressure when 0.6 1b. of air at a temperature of

70° F. occupies a volume of 3.5 cu. ft.
From (2)

p= MBT _ 06 x 53.34 ; . 70 +459.6) _ 4543.7 1b. per square foot
.5

Vv

= 33.83 1b. per square inch.



advantageous in the solution of problems that involve tw
states of the gas. If (py, Vi 14) and (py, Vo T) are the tw
states in question, then
Vi psVs. (3
T 2
With this equation any consistent system of units may be use

ExaMpLE. Air at a pressure of 14.7 lb. per square inch and having
temperature of 60° F. is compressed from a volume of 4 cu. {t. to a volun
of 1.35 cu. ft. and the final pressure is 55 Ib. per square inch. The fin
temperature is to be found.

From (3) we have
147 x4 _ 55x 135

60 + 450.6 1, + 459.6”
‘whence 1, = 196.5° I,

EXERCISES

1. Find values of B for nitrogen, oxygen, and hydrogen.

2. Establish a relation between the density of a gas and the valuc of t]
constant B for that gas.

3. Find the volume of 13 Ib. of air at a pressure of 85 1b. per square inc
and a temperature of 72° C.

4. If the air in Ex. 3 expands to a volume of 30 cu. fi. and the fin
pressure is 20 1b. per square inch, what is the final temperature ?

5. What weight of hydrogen at atmospheric pressure and a temperatu
of 70° F. will be required to fill a balloon having a capacity of 12,000 cu. ft

6. A gas tank contains 2.1 1b. of oxygen at a pressure of 120 Ib. p
square inch and at a temperature of 60° F. The pressure in the tank shou
not exceed 300 1b. per square inch and the temperature may rise to 100°
Find the weight of oxygen that may safely be added to the contents of t]
tank.

64. General Equations for Gases. — The general equatior
deduced in Chapter VI take simple forms when applied 1
perfect gases. From the characteristic equation

pv=BT
we obtain by differentiation

G- Go-T ¢



ANLLOAUCIDE LHESE values ol e derivatlves 1n the general
equations (I)-(V) and (VIII), the following equations are
obtained :

dg=cdT+ AB L iy, )
T
r
dg=rc,dT — AB > dp, (I a)
dg= A_Bc (c Zvdv +e, Zrdp) (11 o)
du=dJe,dT, IV a)
di = c,dT, Va)
¢p—c,=AB. (VI a)

The first two equations may be still further reduced by
means of the characteristic equation to the forms

dy = c,dT + Apdy, [€%))

dg = c,dT — Avdp A1)

%2 of the two specific heats is usually denoted by

The ratio -2

k. The introduction of this ratio reduces (III a) to the sim-
pler form,

dg= /'A—1 [kpdy + vdp]. (111 B)
=

Equation (IV a) simply expresses symbolically Joule’s law
that the change of energy of a gas is proportional to the change
in temperature. Equation (I &) follows independently from
(IV a) and the energy equation; thus

dg = Adu + Apdv
= ¢,d T+ Apdv, since AJ=1.

EXERCISES
1. Deduce (VIII a) from (I b), (I13), and the characteristic equation.
. Derive (V @) from (IV a) and the equation pv = BT\
3. From (I @), (II e), and (III @) derive expressions for
- (2.
s= (2

From (I110) deduce the equation of the adiabatic curve in pv-codrdis

N

4
nates.
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5. From (I @) derive the equation of an adiabatic in T'v-cobrdinates.

6. Using the method of graphical representation explained in Art. 82,
show a graphical representation of equation (10).

65. Specific Heat of Gases. —If a gas obeys the law pv = BT,
- the specific heat of the gas must be independent of the pressure
and also independent of the volume. This principle was shown
in Art. 57. The specific heat (¢, or ¢,) may, however, vary
with the temperature, and the results of recent accurate experi-
ments over a wide range of temperature show that such a vari-
ation exists. As a general rule, the law of variation is
expressed by a linear equation; thus

¢, = a + bt,

¢, =a'+ 0t
‘When the range of temperature is large, as in the internal
combustion motor, the variation of specific heat with tempera-
ture must be taken into account. In the greater number of
problems that arise in the technical applications of gaseous
media it may be assumed with sufficient accuracy that the
specific heat has a mean constant value.

For air the value of ¢, as determined by Regnault, is 0.2375
from 0° to 200° C. Recent experiments by Swann give the
following values :

0.24178 at 20° C.
0.24301 at 100° C.
In ordinary calculations we may take ¢, = 0.24.

The value of ¢, for carbon dioxide (CO,) is usually given as
0.2012, Swann found the values

0.20202 at 20° C.,
0.22121 at 100° C.

The value of ¢, for other gases for temperatures between 0°

and 200° C. may be taken as follows:
Hydrogen . . . . 8.4240
Nitrogen . . . . 0.2438



Values of the ratio k=';’l’~ have been determined by various

experimental methods. For air the results obtained range from
k=1.89to £ =1.42. From the experimental evidence it seems
probable that the true value lies between 1.40 and 1.405. In
calculations that involve this constant, we shall take the value
1.4 as convenient and sufficiently accurate. For air, there-
fore, ¢, = 0.24 - 1.4 = 0.171.

The values of % and of ¢, for other gases may be taken as
follows :

k C
Hydrogen . . . . . 14 2.446
Nitrogen . . . . . 14 0.174
Oxygen e e 14 0.155
Carbon dioxide . . . 1.3 0.162
Carbon monoxide . . 1.4 0.178
Ammonia . . . . . 1.32 0.387

If in equation (VIII a), ¢, is replaced by ;E, the result is the
i
relation
k-1
k
Each of the four magnitudes ¢,, &, 4, and B have been deter-
mined experimentally, and this equation serves as a check.

= AB.

p

66. Intrinsic Energy. — An expression for the intrinsic
energy of a gas is obtained by integrating (IV a). Thus

u =ch,,dT= Je, T+ ug, @

if ¢, is assumed to be constant. The constant of integration
%, is evidently the energy of a unit weight of gas at absolute
zero. Since, however, we are not concerned with the absolute
value of the energy, but the change of emergy for a given
change of state, the constant u, drops out of consideration
when differences are taken, and we need make no assumption
as to its value. Hence, if (py, vy, 74) and (@, vy Tj) ave the
codrdinate of the initial and final states, we have

uy— uy = Je, (T — Tp). @
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This formula gives the change of energy per unit weight of
gas. For a weight M the formula becomes
U, — Uy =JIMe,(Ty— T (&)

A clear understanding of the physical meaning of formula
(2) is of such importance that it is desirable to give a second
method of derivation, one based directly upon Joule’s law.

According to Joule’s law the energy of a unit weight of gas
is dependent on the temperature only. Ience, if 7}, Fig. 33,
is an isothermal, the energy
of the gas in the state 4 is
the same as in the state D;
likewise, the energy of the
gas at all points on the iso-
thermal Tj is the same. It
follows that the change of
energy in passing from tem-
perature 7 to temperature T},

Fra. 33. is the same, whether the path
is AB, AC, or DE.

Since the energy is directly proportional to the temperature,
the change of energy is directly proportional to the change of
temperature. Hence

wy—uy=a(Ty— Tp), ®
in which « denotes a proportionality-factor. To determine the
factor @, we choose some particular path between the isother-
mals 7} and 7, (Fig. 88). As we have seen, if this constant
is established for one path it holds good for every other path.
The most convenient path for this purpose is a constant volume
line, as AC. The heat required for a rise in temperature from

T, to Ty is

1 2 912=00(T2— Tl)'
Since in the constant volume change, the external work is zero,
we have from the general energy equation

g = vy —uy.
Comparing these equations. we have



A P TR J0LUUIC Change ol energy in terms of p and 7 may
be derived from (3). Multiplying and dividing the second
member by B,

Upy— Uy = ALE (MBT, — MBT,)

Cy
o~ G"<P2Vz 2V

Vy — p, 77
P2 /cz— ]171 1, (5

In(5) V; and V] denote the final and initial volumes, respec-
tively, of the weight of gas under consideration; consequently
it is not necessary to find the weight / in order to caleulate the
change of energy. It is to be noted, however, that in using
(5) pressures must be taken in pounds per square foot.

Examprr. Find the change of energy when 8.2 cu. ft. of air having a
pressure of 20 1. per square inch is compressed to a pressure of 55 lb. per
square inch and a volume of 3.72 cu. ft.

Using the value & = 1.40,

U, - U, = 144 x Mﬁ’)sz = 14,616 ft,, Ib.

67. Heat Content. —The change in heat content correspond-
ing to change of state of a gas is readily derived from the
general equation (V ).

Thus, i={edl=c,T+1, @
ad i, (T — ). ©)
Introducing the factor AB in the second member of (2),

G— i = fii%(BTz_ BT))

EZJ
Cp— Gy

=4

(Pa¥s— P1¥1)
— A (=) ®
= A7 (Pe¥— P10

For a weight of gas 2, (2) and (3) become, respectively,
I,— I = Me,(Ty — T, )



and J;—L=Ak%i(ﬁan“]’1m)- )

68. Entropy. — Expressions for the change of entropy are
casily derived from the general equations Ia), (ILa), and
(I11q). Dividing both members of these equations by 7, we
have

d ar dv
ds=Tq=ch+AB—v—, @
dg_ dr_ , odp )
ds_—T—c”—T_ ABP, @)
dv dp
ols=o,,7+ 01,7. 3
Hence for a change of state from (py, v;, 17) t0 (Pg v To)s
3, — 8 = ¢, log, % + AB log, Z—z [€))
1 1
T P
= ¢, log, 72— AB log 2 [©)
» o8 Vi gZ”1
2 Pa
= ¢, log,-2 + ¢, log, £2. 6)
» 083, 8 P (

These formule give the change of entropy per unit weight

of gas. For any other weight M, the change of entropy is

M (s,—s,). Equations (4), (5), and (6) are in reality identi- °
cal. Each can be derived from either of the other two by

means of the relations pv = BT} ¢, — ¢, = AB. In the solution

of a problem, the equation should be chosen that leads most

directly to the desired result.

EXERCISES

1. From (4), (8), and (6) deduce expressions for the change of entropy
corresponding to the following changes of state : (a) isothermal, (#) at con-
stant volume, (¢) at constant pressure.

2. By making s, — s, = 0 in (4), (5), and (6), deduce relations between
Tand v, T and p, and p and v for an adiabatic change of state.
69. Constant Volume and Constant Pressure Changes. —In

heating a gas at constant volume the external work is zero.
Hence,

Q=A4A(U,— U)) = Me,(T, — T))- @
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e(Ty— T < (T, — 1o,
that is, area 4;ABB; <area A;ACC,.

70. Isothermal Change of State.—If 7' is made constant in
the equation p V'= MBT, the resulting equation

pV'=p,V; = constant @

is the equation of the isothermal curve in p V-coirdinates. This
curve is an equilateral hyperbola. The external work for a
change from state 1 to state 2 is given by the general formula

v, ’
W= | pdV. @

Using (1) to eliminate p, we have

" dv - 775
Wu=p 71 fvl 7=P1T’1 log, ?ﬁ:

= MBT log, ;—:2 3
For the change of energy, !

Uy— Uy=JMe, (T,— T;) = 0; ©)

hence i
Qo =AWy, = Ap, 7, log, T,—Z’ ®

and 0 4 1

_g_%u_4p7 7 7

8y = 8y = == og, 7= ABMlog, l_ff (6)

Since in isothermal expansion the work done is wholly sup-
plied by the heat absorbed from external sources, it follows that
if the expansion is continued indefinitely, the work that may be
obtained is infinite. This is also shown by (8), thus:

w gV
nhf Sr=mh loge%=w.

71. _Adiabatic Change of State. —To derive the pv-equation of
an adiabatic change of state, we may use the general differen-



prad A Raiiiis bty it vods Vallablits. 111€ mOoSt con-~
venient form of this equation is (111 @),

dq—

- (vdp + kpdv). @

During an adiabatic process no heat is suppiied to or ab-
stracted from the system; hence in (1) dg =0, and therefore

vdp + kpdv = 0. )
Separating the variables,
dp 4 kv kdv =0,
r
whence log.p+%& log, v=log C,
or pri=C. 3

The relation between temperature and volume or between
temperature and pressure is readily derived by combining (3)
and the general equation pv = BZ. Thus from

pi=0C
pv= BT,
we get by the elimination of p,
vi= BC;' ;
that is, Tv*~'= const. )
Similarly, by the elimination of v, we obtain
px«-l B T
A=1
that is, %ﬁ— = const. ®)

If we choose some initial state, p;, v5, 7}, the constants in
(4) and (5) are determined, and the equations may be written
in the homogeneous forms

r =<ﬁ>’°“, ®

o Tl v
k-1
I_ (ﬁ) * m
T P1



Since in an adiabatic change the heat @ is zero, the energy
equation gives

Wy== (U~ Up="Uy~
whence using the general expression for the change of energy,

W= = 2ls. ®

By means of the equation
nVt=pl

the final volume ¥ may be eliminated from (8). The result-
ing equation is -
_mn"n [1_(&)T . c
W= P31 (L2 ©)

ExamprLe. An air compressor compresses adiabatically 1.2 cu. ft. of free
air (i.e. air at atmospheric pressure, 14.7 Ib. per square inch) to a pressure
of 70 Ib. per square inch. Find the work of compression; also the final
temperature if the initial tempevature is 60° F. h

For the final volume, we have

1
147\
b =12({==) =0. . ft.
Ve ( 70) 0.396 cu. £t
The work of compression is

PVi—p,Va _ 144(147 x 1.2 — 70 x 0. 3936) _
k-1 0.4

— 3568 ft.-Ib.

The initial temperature being 60° + 459.6° = 519.6° absolute, we have for
the final temperature
0.4

T, = 5196 (;%’7)“: 8116 abs.,
‘whence tp = 352° F.

72. Polytropic Change of State. — The changes of state con-
sidered in the preceding sections are special cases of the more
general change of state defined by the equation



By glving n special values we get the constant volume, constant
pressure, and other familiar changes of state. Thus:

for n=0, pv°=-const., ¢.e. p= const.

1
for n = oo, p=v = const., v = const.
forn=1, pv=const., isothermal.
forn =%, pv*=const., adiabatic.

The curve on the p V-plane that represents Eq. (1) is called
by Zeuner the polytropic curve.

By combining (1) with the characteristic equation p V'=MBT,
as in Art. 71, the following relations are readily derived

o5 - (2)* ®
T <V P1
For the external work done by a gas expanding according to
the law pV*™=p, V" = const,

from the volume V] to the volume 7, we have
v ndV
Wy = jV,PUlV=P1 Vx"j-y, e
TV — e
=pV [—2T_'n1—“]

=zo_zlg_:nL1V1. ®

The change of energy, as in every change of state, is
. T
U,— U, =L ]iv:fil;l. @
Hence, from the energy equation, we have for the heat absorbed
by the gas during expansion

Vo= Vi mVa—m W
TQu=T,— U+ Wy =P22="111 +Ba—ho,

or Jng=<]c__+)—£_T)(P2V}—P1V1)- - ®

Comparing (8), (4)', and (5) we note that the common factor
(p,V, — p, V;) occurs in the second member of each expression.



A
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useful relations:

W _ k=1 8
A w— ®

wW_k-1
LA T
JQ k—n' ™
JQ _k=n 3
U,-U, 1—n ®

These may be combined in the one expression

W:Uy— U;:dQ=k—-1:1—n:k—n [©))

Exampre. Let a gas expand according to the law
pV2 =const.
Taking & = 1.4, we have
W:Up—U1:JQ=04:~-02:02=2:—1:1;
that is, the external work is double the equivalent of the heat absorbed by
the gas and also double the decrease of energy.

73. Specific Heat in Polytropic Changes.— From Eq. (5),
Art. T2, an expression for @, in terms of the initial and final
temperatures of the gas may be readily derived. Since

pVi=MBT,, and p,V, = MBT,,
(5) becomes

_MABk—n,, _
Qu=YAB bon iy gy,
4B
But e
w k_l C‘U!
hence, Qm:ﬂ[c,,]{_ “(Ty- T). @

We have, in general,
Cu=Me(T,~ Ty). (&)

whelje ¢ denotes the specific heat for the change of state under
consideration. Comparing (1) and (2), it appears that

c=ck——n

"1—an' . ©

Hence, for the polytropic change of state, the specific heat s con-
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stant (assuming ¢, to be constant) and its value depends on the
value of n in the equation p 7" = const.

It is instructive to observe from (8) the variation of ¢ as n
is given different values. For n=0, ¢=ke, = » and the
change of state is repre-
sented by the constant- o\ @
pressure line aa, IFig. 385, r
86. Form=1,¢= oo,and
the change of state is iso-
thermal (line 8). If n=1%,
then ¢=0, and the ex-
pansion is adiabatic (line
d). TFor values of n lying Y
between 1 and %, the value n=co N
of ¢ as given by (3) is 7
evidently negative; that
is, for any cwve lying Fia. 3.
between the isothermal &
and adiabatic d, rise of temperature accompanies abstraction of
heat, and vice versa. This is shown by the curve e.

It will be observed that

7l in passing through the
region between curves «
and b, n increases from 0
to 1 and ¢ increases from ¢,
to oo ; then as n keeps on
increasing from 1 to %, ¢
changes sign at curve b by
passing through oo, and
increases from — oo to 0.
As 7 increases from n=~F%
to m= 4 oo, ¢ increases
from ¢=0 to ¢=c¢,; and
Frc. 36. for n= o, the constant
volume case, ¢ becomes ¢,.
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74. Determination of n. — It is frequently desirable in experi-
mental investigation to fit a curve determined experimentally
—as, for example, the compression curve of the indicator
diagram of the air compressor— by a theoretical curve having
the general equation pP"=c. To find the value of the
exponent n we assume two points on the curve and measure to
any convenient scale py, p, V3, and V5. Then since

v =p0"

_log p, —log p; 1
"= logV, —log ¥y ™

ExaMpLE. In a test of an air compressor the following data were
determined from the indicator diagram:

we have

At the beginning of compression,  p, = 14.5 Ib. per square inch.
¥, =256 cu. ft.
At the end of compression, P2 =08.7 1b. per square inch.
Vo= 0.77 cu. ft.
Assuming that the compression follows the law p 7" = const., we have
for the value of the exponent
log 68.7 — log 14.5
= =1.32.
"= log 2.56 ~ log 017

The work of compression is

Wi = Plez = V) _144(68.7x 04770 -3)1;5 % 256) _ _ 7100 gb.A1b.

The increase of intrinsic energy is

Us-U,= psz:: ]rvl _144(68.7 x 0.7;4_ 145 % 2.56) _ 5650 g1,

and the heat absorbed is

_ 5680 —7100 _
Qe g = 1.83 B.t. u.
The Pegabiv_e sign indicates that heat is given np by the air during com-
pression ;.ﬂns is always the case with a water-jacketed cylinder.

If the initial temperature of the air is 60° ¥., or 519.6° absolute, the final
temperature is

2

= 519.6 (298

5610 _ 63,9,




EXERCISES

1. A curve whose equation is p¥" = C is passed through the points
p =40, V, =6 and p, = 16, V, = 12.5. Find the value of n.

2. Air changes state according to the law p¥" = C. Find the value of
n for which the decrease of energy is one half of the external work; also the
value of n for which the heat abstracted is one thixd of the increase of energy.

8. If 32,000 ft.-lb. are expended in compressing air according to the
law p V% = const., find the heat abstracted, and the change of energy.

4. In heating air at constant pressure 35 B.t.u. are absorbed. Find
the increase of energy and the external work.

5. A mass of air at a pressure of 60 Ib. per square inch absolute has a
volume of 12 cu. ft. The air expands to a volume of 20 cu. ft. Find the
external work and change of energy: (a) when the expansion is isothermal;
(b) when the expansion is adiabatic; (¢) when the air expands at constant
pressure.

6. If the initial temperature of the air in Ex. 5 is 62° I, what is the
weight? Find the heat added and the change of entropy for each of the
three cases.

7. Find the specific heat of air when expanding according to the law
pvt® = const. If daring the expansion the temperature falls from 90° F. to
—10° F., what is the change of entropy?

8. Find the latent heat of expansion of air at atmospheric pressure and
at a temperature of 32° F.

9. The volume of a fire balloon is 120 cu. ft. The air inside has a
temperature of 280° F., and the temperature of the surrounding air is 70° F.
Find the weight required to prevent the balloon from ascending, including
the weight of the balloon itself.

10. A tank having a volume of 35 cu. ft. contains air compressed to
90 1b. per square inch absolute. The temperature is 70° F. Some of the
air is permitted to escape, and the pressure in the tank is then found to be
63 1b. per square inch and the temperature 67° F. What volume will be
occupied by the air removed from the tank at atmospheric pressure and at
T0°F.?

11. Air in expanding isothermally at a temperature of 130° F. absorbs
35 B.t.n.  Find the heat that must be absorbed by the same weight of air
at constant pressure to give the same change of entropy.

12. Air in the initial state has a volume of 8 cu. ft. at a pressure of
75 1b. per square inch. TIn the final state the volume is 18 cu. ft. and the
pressure is 38 Ib. per square inch. Fiud: (a) the change of energy; (b) the
change in the heat content; (¢) the change of entropy.

13. TFind the work required to compress 30 cu. ft. of free air to a pressure
of 65 Ib. per square inch, gauge according to the law pod = const. Find the
heat abhstracrted Ao AP ression .



recourse to general equations.

SuecEsTIoN. Let oue pound of gas he heated through the temperature
range T, — T, (a) at constant volume, (}) at constant pressure. Find an
expression for the excess of heat required for the second case and then
malke use of the energy equation.

15. Suppose the specific heat of a gas to be given by the linear relation
¢y = a + bt. Deduce relations between p, », and 1" for an adiabatic change.

SuGeEsTION. Use the general equation dg = ¢yd T + A pdv and the char-
acteristic equation py = BT
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CHAPTER VIII
GASEOUS MIXTURES AND COMPOUNDS. COMBUSTION

75. Preliminary Statement. —In the preceding chapter we
discussed the properties of simple gases with the implied
assumption that chemical action was excluded. For many
technical applications a knowledge of such properties is suffi-
cient for the consideration of all questions that arise. On the
other hand, investigations of the greatest importance, those
relating to internal combustion motor, have to deal with
gaseous substances that enter into chemical combination and
(after combustion) with mixtures of inert gases. In the
present chapter, therefore, we shall consider some of the pro-
perties of gaseous compounds as dependent on chemical com-
position, and also the properties of mixtures of gases.

76. Atomic and Molecular Weights. — Let F), Ej, etc. denote
different chemical elements and ay, a, ete. their corresponding
atomic weights. Then if n,, ny, etc. denote the number of atoms
of B, B, etc. entering into a molecule of a given combination,
the molecular weight of the compound is

M = 1y + Mgy + - et = D na. @

For the elements that enter into subsequent discussions the
atomic weights (veferred to the value 16 for oxygen) are as
follows :

APPROXIMATE
Exact VALUE INTEGRAL VALUE

Hydrogen . . . . . . . . 1008

Oxygen . . . . . . . . . 16.000 16
Nitrogen . . . . . . . . 14040 14
Carbon . . . . . . . . . 12.000 12

Sulphur . . . . . . . . . 382.060 32
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practical purposes, in view of unavoidable errors in experi-

mental results.
Using these values, we have as the molecular weights of cer-

tain important substances the following :

Water H,0 m=2x 14+1x16=18
Carbon monoxide CO 1x124+1x16=28
Carbon dioxide CO, I1x124+2x16=44
Ammonia NH, 1x144+8x 1=1T7
Methane CH, 1x1244%x 1=16
Nitrogen N, 2x14=28
Hydrogen H, 2x 1=

The composition by weight of a compound is readily deter-
mined from the value of #, @, and m. Thus in a unit weight
(pound) of compound there is

"% 1h. of element B, i
e -
2% 1. of element J,, etc. ‘.
m 7

For example, CO, is composed by weight of % carbon and
4% oxygen, NHy is composed by weight of 14 mtxo%n and %
hydrogen.

77. Relations between Gas Constants. — If in the character-
istic equation pv= BT, which holds approximately for any

gaseous substance (mixture or compound), we replace v by i
b

we have
By= @

s

Here y denotes the weight of unit volume of the gas. From
this relation it is seen that for a chosen standaxd pressure and
temperature, for example, atmospheric pressure and 0°C., the
product By is the same for all gases. But since the specific
weight ¢ of a gas is directly proportional to the molecular
weight m, it follows that the product Bm is likewise the same



Ior all gases. Denotuing this product 5m by K, we have for
the characteristic equation of any gas

2B
pv==T. @)
From (1) we obtain the relation
R=Bn=U2; 3
VT ®

hence the numerical value of R can be found when the values
of m and v are accurately known for any one gas. From Mor-
ley’s accurate experiments, we have for oxygen vy = 0.089222 Ib.
per cubic foot at atmospheric pressure and 32°F.; and for
oxygen m=32. Inserting these numerical values in (3), we
obtain
2116.8 x 32

0.089222 x 491.6
The constant R is called the universal gas constant. From if
he characteristic constant B of any gas can be determined at
nce from the molecular weight. Thus for carbonic acid we

R= = 1544.

:’/LW

B= 1244 35.00.

~ X3t From the general formula

[N ¢, —c¢,=AB (O}
for the difference between the specific heats of a gas, we have
AR _ 1544 1 _ 1.9855 5

oy, = Al 154 1 _1.05% ®

m  T77.64m m

This relation gives a ready method of calculating one specific
heat from the other when the molecular weight m is known.

Thus for CO,, ¢,—c,= 13855 0.0451, and if ¢, = 0.2020, we

P

have ¢, = 0.2020 — 0.0451 = 0.1569.

It is convenient to express the specific weight o and the
specific volume v of a gas in terms of the molecular weight m.
These constants are referred to standard conditions, namely,
atmospheric pressure and a temperature of 32°F. From (3)

=L 6
we have v =g ®



whence 1nserving tle Nuinelitdl VAilbs, j=— ss2¥5 27— =775
T=491.6,

= 0.002788 m. ()
For the normal specific volume, we have
b1 BT ©®
Yy pm
or = M (0)

m

From the preceding relations, the following values are readily
found for the constants of certain gases.

K
X
=
Ny

Volume per|
Charactor- | Differenco | Weliht por | 75,0,

Moleenlar | gt [ of Spocifie | cubic foot atl ¢ gyo

Gas Chewleall “Woight | Gonstant | tens | B2 P and | sy

Symbol g Atmospherie[*" AoS

n B ey | Prossure | phaesre

| Oxygen . . . .| 0, |32 48.249 | 0.0621 | 0.089222 | 11.208
| Hydrogen . . .| Hp 2.016 | 765.86 | 0.0849 | 0.005621 | 177.9
. | Nitrogen . . .| N, |28.08 54.985 | 0.0707 | 0.07829 12.773
-| Carbon dioxide . | COz | 44 35.09 | 0.0451 | 0.12268 8.151
Carbon monoxide | CO | 28 55.142 | 0.0709 | 0.078028 | 12.81
Methane . . .| CH, | 16.032 | 96.314 | 0.1238 | 0.04470 237
Ethylene . . .| C,II, | 28.032 [ 55.079 | 0.0708 | 0.078036 | 12.79%
Air e —_ 53.3¢ | 0.0686 | 0.08071 12.39

PRI

78. Mixtures of Gases. Dalton’s Law. — A mixture of several
gases that have no chemical action on each other obeys very
closely the following law first stated by Dalton :

The pressure of the gaseous mizture upon the walls of the con-
taining vessel 18 the sum of the pressures that the constituent gases
would exert if each occupied the vessel separately.

Like Boyle’s law, Dalton’s law is obeyed strictly by mix-
tures of ideal perfect gases only. Mixtures of actual gases show
deviations from the law, these being greater with gases most
easily liquefied. For the purpose of technical thermodynamics,
however, it is permissible to assume the validity of Dalton’s
law even in the case of a mixture of vapors.

Let 7 denote the volume of a given mixture, My, My, My, . - -
the weights of the constituent gases, and By, By, By, . . . the
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constants for those constituents; then the partial pressures ot
the constituents, that is, the pressures they would exert sepa-
rately if ocoupying the volume V; are:
M B,T M,B,T M,B,T
= 1Vl s Po= "ZVL’ Ps= 3[73 LI @

According to Dalton’s law the pressure p of the mixture is
P=p1tpetpat o = %—(11{131“'1”—232‘*'%334' =) (@

TFurthermore, if M is the weight of the mixture,

M=M + M,+ My+ - =ZM, ®)
Let us now introduce a magnitude B,, defined by the equation
MB,,= M\B, + M,B, + MyB;+ - ; )

then (2) takes the form
pV=MB,T. (b)
The constant B,, may be regarded as the characteristic con-
stant of the mixture. It is obtained from (4), which may be
written in the more convenient form
T M.B;
B, ="—, 6
o ®
The partial pressures may readily be expressed in terms of
the pressure of the mixture. Thus combining (1) and (5),
we obtain

n_MB p, M,B,
7 =B 3 =B etc. ()

Exampre. A fuel gas has the composition by weight given below. The
value of the constant B,, for this gas is found as indicated by the following
al‘rangement :

CONSTITUENTS Weienr B MB
fala™ 004 an N9 1 4026
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Since M =1 and 3 MB = 103.24, we have
B, =103.24.
The apparent molecular weight of the mixture is
m =8~ 14.06,
and the weight per cubic foot under standard conditions is, therefore,
v = 0.002788 x 14.96 = 0.0417 Ib.

79. Volume Relations. — Let V3, V3, V3, -+, denote the vol-
ume that would be occupied at pressure p and temperature 7'
by several gaseous constituents; then if Bj, By, By, ---, denote
the characteristic constants of these gases, we have

pHi= MBI, pVy= BT pVy= MBS, . (1)
If now the gases be mixed, keeping the same pressure and
temperature, the mixture will occupy the volume

V=", + V+ Vy+ -y @
and its weight will be necessarily
M= M+ M+ My o ®

Taking B, as the characteristic constant of the mixture, we
have
pV=MB,T. (€3}
Comparing (1) and (4), we obtain the relations
n_MB, V7, _MB,

VTHB, VT MB," ®
It will be seen that the volume ratios given by (5) are equal
to the pressure ratios given by (7) of Art. 78.
If i denotes the weight of a unit volume (1 cu. ft.) of gas,
then

1 M .
===, 6
=057 O]
For the several constituents of a mixture, we have, therefore,
M=, Vi My =y Vp My =43V =+ M

and for the mixture
Ar -



Similarly, we have for the specific volume of the mixture

V_1
”=]T[=1TI(”1M-1+02M'2+1’31M3+ =) (9

Since «y=10.002788 m = km (see Art. T7), we have from (7)
My =lkm, V3, My= kmy Vyy -y

and M=M,+ M+ ... =kZmV,
efor M_mV My mV,
Therefore, ﬁ_m,-ﬁ_m, (10)

If further we denote by m,, the quotient '—y/;l, we have from (8)
= Tlfzm,. V. an

The constant m,, we may regard as the apparent molecular
weight of the mixture, and from it we may determine the con-
stants B,, ¢,— ¢,, v, and v of the mixture.

Equations (10) and (11) are useful in the investigation of a
mixture when the composition by volume is given. The follow-
ing example shows the method of procedure.

ExaMPLE. A producer gas has the composition by volume given below.
Required the composition by weight and the constants of the mixture.

CoNSTITURNTS Vorune V' m mv VmV
=V

Heo o« o o o o o . . 008 2 0.16 0.008
co . ... ... .02 28 6.16 0.2308
CHy . . . . . . . . 0024 16 0.384 0.0144
CO: . . . . . . . . 0066 44 2.904 0.1088
Ne . ... ....06 28 1708 064
1.000 26.688 1.000

According to (10) the last column gives the composition by weight. The
constant m,, is 26.688; hence we have

= 0165338 — 57.85. y = 0.002788 x 26.688 = 0.07441.
ex 358.65
1.9855 =20000 1844,
& = 0y = i = 00744, V=56 658

80. Combustion: Fuels.—The elements that chiefly combine
with oxygen to produce reactions characterized by the evolution
i Toot ars hodemncarn and carhon Combonnds that are made



up largely of these elements are Iuels; IOT examnple, ievhane
CH,, benzol CgH,, alcohol G,HgO. The product of complete
combustion of hydrogen is H,O, water; that of complete com-
bustion of carbon is CO,, carbon dioxide. Sulphur is a possible
constituent of fuels, and the product of combustion is SO,, sul-
phur dioxide.

Chemical reactions are, in general, characterized by the evo-
lution or absorption of heat. The union of a combustible with
oxygen is accompanied by the evolution of a cousiderable
quantity of heat, and the heat evolved by the combustion of a
unit weight of the combustible is called the heating value of
the combustible. The heating value of hydrogen alone or car-
bon alone must be determined by experiment, but the heating
value of a compound of C and H may be calculated, at least
approximately.

Hydrogen and compounds containing hydrogen have two
heating values, called respectively the higher and the lower.
This arises from the fact that the product H,0 may be cither
water or steam. If the temperature after combustion is above
212°, the product exists as vapor, and the heat necessary to
keep it in the vapor form is not set free; hence, we have the
lower heating value. If, however, the vapor condenses, the
heat of vaporization is recovered, and we have the higher heating
value.

The heating values of various fuels are given in the follow-
ing table.

B. 7 u. vER Pounn B, roar per Cuniel
Furn Foor ar 32° 1%,
igh Low Low
Hydrogen . . . .| H, 62100 52230 204
Carbon . . . . .| C, 14600 14600 —
Carbon monoxide . { CO 4380 4350 312
Methane . . . .| CH, 23842 21385 956
Ethylene . . . .| C,H, 21429 20025 1563
Acetylene . . . .| CpI, 21429 20673 1499

The heating value of a fuel mixture is determined from the
heating values of the separate constituents. Denotine bv M.
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M, -+, the weights of the constituents, by Hj, H,, Hy, -, the
corresponding heating values per pound, and by H,, the heat-
ing value of the mixture, we have

Qo+ My Myt o) o= M, + My 4 M+ e,

_ 2 MH,

whence H,
" M

@
By a similar procedure the heating value per cubic foot may
be obtained when the composition by volume is given.

Exampre. Required the lower heating value of the producer gas de-
scribed in the example of Art. 79.
For the heating value per pound we have

n T i
Heo o . . . . . . 0.006 52230 313.38
co . . . .. .. 02308 4380 1010.9
CHy . . . . . . . 00144 21385 307.94

SMH =1632.2
Since 2 = 1, we have I1,, = S MH = 1632.2 B. t. u. per lb.

The heating value per cubic foot (at 32° F. and atmospheric pressure) is
evidently the product
Iy = 1632.2 x 0.07441 =121.5 B. t. u.

Or from the composition, we have

v H va
He o o o 0 0 0 . . 008 204 23.52
co . ... 022 342 75.24
CHy . . . . . . . 0024 956 22.94

121.7 B.t.u. per cu. ft.

The difference in the two results is due to approximations in the calculation,
and is of no importance.

81. Air required for Combustion and Products of Combustion.
—The oxygen required for the complete combustion of a given
fuel is determined from the equation of the reaction. For
example, the combustion of methane, CHy, is given by the

equation
CH,+20,=C0,+2 H,0;
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and two molecules of H,0. Since by Avogadro's law the
volumes are proportional to the numbers of molecules enter-
ing into the equation, we may also read the preceding chemical
equation as follows : two volumes of oxygen combine with one
volume of CH,, producing one volume of CO, and two volumes
of H,0.

Taking the molecular weights of the four gases into con-
sideration, we may write the equation

164+2x82=444+2x18.

From this it appears that one pound of CH, requires for com-
plete combustion $#=4 lb. of oxygen and the products are
44 =2.751b. of CO, and 4§ =2.25 1b. of IL,0.

Since oxygen is 23 per cent of air by weight, the weight of
air required for the complete combustion of one pound of CIT,

is 0;423 =17.41b. The volume of air required for the burning
of one cubic foot of CH, is 2 _9.52 cu. ft.

0.21

We may generalize the process illustrated by the preceding
example as follows :

Let the gaseous fuel have the composition C, H,,0,, and let
ay, a5, az denote the atomic weights of C, H, and O, respectively.
Then the molecular weight of the fuel in question is

M= 00+ ANy + AgNg.
The equation of the reaction may be written
C,H,,0,,+ 20, = yCO, + 11,0,

where #, y, and 2z indicate the number of molecules of the
respective substances. Comparing the two members of the
equation, we find

y="np
=1
z2=} ny,
ng+22=2y+2,
whenee 10D 00 4 om N o 11 oy
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for aleohol C,HO, 2=24§ —1=38, y =2, and z =8, showing
that for the combustion of one cubic foot of aleohol vapor,
3 cu. ft. of oxygen are required, and the resulting products are
2 cu. ft. of CO, and 3 cu. ft. of H,O.

To get the relations between the weights of the substances
under consideration we must introduce the molecular weights
in the reaction equation. Thus we obtain

m+2 agr=y(a; + 2 a3) + 2 (2 ay + ag),
from which follow the ratios :
¢ _ weight of oxvgen _ 2 a

= TEIgS OF OXVRON _ 25T _I5(9
@ T \veight of fuel =@yt imy— )

‘e weight of CO2 y(ay + 2 ag) M 9
¥ = Seight of fuel m (205

1 = weight of H,O _ ﬁ@zm)= W) )
? weight of fuel m 2 m( dy -+ dg)

If we make use of the integral values of the atomic weights,
namely, a;=12, a,=1, a;= 16, we have for the complete com-
bustion of one pound of the combustible :

#' = oxygen required = :76 (2 ny+ }my— mg) 1b. s
y'= CO, produced = 44 :-;1 b
= H,0 produced = Q;ln? 1b.

Taking alcohol, C,HO, for example, we have
ny =2, ny =6, ns=1 m=2x 12+ 6 x 1+ 16 =46, whence
=382 x2+%x 6—1)=2.08T;

_46
g =22 _1913;
16
1-9%6_ 4974,
= 5 .

The weight of air required per pound of alcohol is



and the weight of nitrogen appearing among the products of
combustion is, therefore, 9.075 — 2.087 = 6.988 1b.

If a gaseous fuel is a mixture of several combustible con-
stituents, the values of 2/, 7', and 2’ may be found for the indi-
vidual constituents separately. Then if M, My, My, ---, are the
weights of the constituents respectively, we have

g IME L 3MY SN

7S M
ExampLe. For the prod gas heretofore investigated, we have the
following values:
xr o v o P uy' s
H, 0.006 8 0 9 0.048 0 0.054
[¢1¢] 0.2308 0.571 1.571 0 0.1318 0.3626 (1]
co, 0.0144 4 275 225 0.0576 0.0396 0.0321
CO, 0.1088 0 1 0 0 0.1088 0
N, 064 0 0 0 0 o0
1.00 0.2374 0.511 0.0864

One pound of the gas requires 0.2374 1b. of oxygen for complete combustion.

The weight of air required is, therefore, 0.2374 + 0.23 = 1.032 1., and this

air brings with it 1.032 — 0.2374 = 0.7946 1b. of nitrogen. We have then the
+ following balance:

CoNSTITUENTS Pronuors
Fuel gas 1.00 1b. Co, 0.511 Ib.,
At 1032 H.0 0.0364
2,082 1b. No o 0.64+0.7916 = 14316

1b.
Taking the composition by volume, the following results are found:

v o y 5 Yio vy 3
H, 0.08 05 0 1 0.04 0 0.08
co 0.92 0.5 1 0 0.11 0.92 0
CH, 0.024 2 1 2 0.048 0.024 0.048
€O, 0.066 0 1 0 0 0.066 0
N, 061 0 0 0 0 0 0
1.00 0.198 031 0.1258

S.ince 0.198 cu. £t. of oxygen is required per cubic foot of gas, the volume of
air required is 0.198 + 0.21 = 0.943 cu. ft., and the volume of nitrogen corre-
sponding is 0.943 — 0.198 = 0.745 cu. ft., which is added to the 0.61 cu. ft. in
the fuel gas. The volume of gas and air before combustion is 1 + 0.043 =
1.943 cu. ft. pand the volume of the products is 0.31 + 0.128 + 0.61 + 0.745

4 e




82. Specific Heat of Gaseous Products. —In deducing the
special equations for gases we assumed that the specific heat
of any gas remains constant at all pressures and temperatures.
In many technical applications this assumption is sufficiently
near the truth and is justified by the simplicity of the analysis
based upon it ; but when a very wide range of temperature is
encountered, as in the case of the internal combustion motor, the
assumption of constant specific heat is no longer permissible.

The gaseous products that come under consideration may be
separated into two classes. (1) The simple or diatomic gases,
as nitrogen, oxygen, air, etc.; (2) the compounds, like carbon
dioxide (CO,) and steam (I,0), which may be regarded as
superheated vapors rather than as gases. For the products in
the first group, the law pv = BT holds quite exactly, and, there-
fore (see Art. 5T), the specific heat must be independent of the
pressure, but may vary with the temperature. The substances
in the second group, which are comparatively near the liquid
state, do not follow the gas law closely, and for these the
specific heat may vary with the pressure as well as with the
temperature. The character of the variation of the specific heat
of steam is shown in Fig. 71, Art. 183. At the lower tempera-
tures the specific heat increases with the pressure, but as the tem-
perature rises the influence of the pressure becomes negligible
and the specific heat rises with the temperature. It is probuble
that the specific heat of CO, varies in somewhat the same manner.

Experiments on the specific heats of various gases show that
in general the specific heat rises with the temperature, and that
the law governing the variation is expressed sufficiently well
by the simple linear equation

¢c=a+ bt

The formulas, as usually stated, give molecular specific heats,
the molecular specific heat being numerically equal to the
thermal capacity of a weight of the substance expressed by the
molecular weight. Thus, since the molecular weight of carbon
monoxide (CO) is 28, the molecular specific heat of CO is
numerically equal to the thermal capacity of 28 pounds of CO.
We mav denote molecular specific heat by the product me. It
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gases are quite ditferent, the molecular speclﬁc heats ave sub-
stantially identical.

The results of Langen’s experiments are glven by the follow-
ing formulas, in which ¢ denotes temperature in degrees C.

For all simple gases

me, = 4.8 + 0.0012 ¢. @
For carbon dioxide

me, = 6.7 + 0.0052 ¢. (&)
For water vapor

me, = 5.9 + 0.0043 ¢. @)

Dividing by the appropriate value of the molecular weight m,
the heat capacity of a gas per unit weight is readily found.
Thus for oxygen m = 82, and from (1) we have

¢, =0.15 + 0.0000875 ¢;
for CO,, m = 44, and from (2) we obtain
¢, =0.1523 + 0.0001182 ¢.

Formulas (1), (2), and (8) give molecular specific heats at
constant volume. From the relation m(e,— ¢,)=1.9855 (see
Art. TT), we have approximately me,=me, + 2. Therefore,
from the preceding equations we obtain corresponding equa-
tions for ¢, namely :

me, = 6.8+ 0.0012 ¢; 1)
me, = 8.7+ 0.0052 ¢; )
me,="T.9+0.0043 ¢, ©)

For temperatures F. the preceding formulas become respec-
tively:
1. For simple gases
o= %(4.77 +0.000667 ¢)

1 m
= —-(4.48.+0.000667 7)

o= 71—n(6.75 +0.000667 £)

1 ®
=2-(6:46+0.000667 )



. Mor carbon dioxide

¢,=0.15 + 0.000066 ¢ }

= 0.12 4 0.000066 7 @

¢, =0.195 + 0.000066 ¢
= 0.165 -+ 0.000066 11} : an

8. For superheated water vapor
¢,= 0.324 4-0.000133 ¢

=0.263 —-:j 0.000133 T} an
¢, =0.485+0.000133 ¢ } 12

=0.374 +0.000133 7

83. Specific Heat of a Gaseous Mixture. —Let M, M, ---
respectively, denote the weights of the constituents of a mix-
ture and ¢,, ¢, the corresponding specific heats. It is
assumed that for a given temperature rise each constituent
requires the same quantity of heat when mixed with other
constituents as it would if separated from them. Hence, the
heat @ required for a temperature change 7, — 7} is

Q@=Mye, (T, — T+ Moe, (T, — Ty)+ -
But we have also
Q=Me (T, - 1),

where M= M, + M, + -+, and ¢, denotes the specific heat of
the mixture. Combining these expressions, we obtain

Me,=Myc, + Mo, +
_3Me, .

or o ="3F @
Likewise, = 2%017. (2

Examrre. Find the specific heat ¢, of a mixture of 11b. of the pro-
ducer gas described in the example of Art. 79 and 1.25 Ib. of air, which is
about 20 per cent in excess of the air required for complete combustion.
Find also the specific heat c, of the products of combustion.

Of the 1.25 Ib. of air furnished 0.2875 1b. is oxygen and 0.9625 lb. is
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For an adiabatic change dq=0; hence from (1), we have

e, dT= — Apdy,
or (a+0T)AT=— ABT. )
From (4) we obtain upon integration
alog, B2 4 5(T, — T))=ABlog,". 1)
T Y
From the characteristic equation pv=BT, we have L =£2”2,
V.
therefore (5) becomes e
a 1og,£2 24 b(T,~ T,)=AB Iog,
or alog,p—+b(]’2— ’_7'1)=(AB+a)logeZ—1. ®
1 2

Finally, if in (5) we substitute for 1 its equivalent ':lﬂ“, we
Y2 Loy

obtain
T ; T
log, 22 + b(T,— T,) = ABlog, X2 — 4 Blog, 22;
a Og‘T,+ (L,—1T) 08! A OgnT

whence ABlog,Pr = (a+ AB) log, 5' +B(T—T). (D)
For the external wofli of adiabatic expansion, we have
W=Uy;— Uy=JM(, edT
= JMjT'f* (a+bTHdT
= TM [a(Ty~ T +2(T2~ TD]. ®

Equations (5), (6), and (7) are readily applied when the
initial and final temperatures are given. When, however,
the final temperature is required, the equation in 7' is tran-
scendental and its solution requires a process of successive
approximations. The illustrative example of the following
article shows the method of procedure.

85. Temperature of Combustion.— A close analysis of the pro-
cess of burning a fuel gas under given conditions involves com-
plicated equations, especially when the specific heat is taken as
variable. The temperature and pressure at the end of the pro-
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least approximately, by a simple method.

Let 7} denote the temperature of the gaseous mixture at the
beginning of combustion and 7, the desired final temperature ;
H the lower heating value of the fuel per pound, and M the
combined weight of one pound of fuel and of the air furnished
for combustion (M is evidently also the weight of the products
of combustion). It is assumed that the combustion is complete,
and that the heat H is all expended in raising the temperature
of the products from 7 to T;. As a matter of fact, the com-
position of the mixture during the combustion process is con-
tinually changing, but as the specific heat changes but little, it
is considered permissible to base the calculation on the final
products alone. We have then

H=Mj:’ (a+3THdT, @

where a + 87 is the expression for the variable specific heat of
the products. From (1) we obtain upon integration

(- Ty + 51 =1L @

from which 7, may be calculated.

Exampce.  The mixture of producer gas and air in the example of
Art. 83 is compressed adiabatically from an initial pressnre of 14.7 Ib. per
square inch to a pressure of 150 lb. per square inch absolute. The initial
temperature is 530° absolute. The mixture is then burned at constant
volume and the products of combustion expand adiabatically to the initial
volume. Required the temperature and pressure after compression, after
combustion, and after expansion. Also the work of compression and the
work of expansion.

The characteristic constants of the fuel mixture and of the mixture of
the products, respectively, are first required. For the fuel mixture we have

an B nr
Hy . v . o o . . 0006 765.86 459516
coO ... .. . 0238 55.142 12.72677
CH, . . . . . . 00144 96.314 1.38692
CO, . 9 3.81779
Ne . . .o .. 54.985 88.11346G
O . . . .. 48.249 1

B =124512
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For the fuel mixture, the expression for the specific heat is

¢, = 0.1618 + 0.00002643 7.
‘We have, therefore, from (7), Art. 84
0.23206 log,? 0.07116 log. 22 "0 — 0.00002643 (T, — Th).

To solve this equation for T, let us assume as a first approximation
Ty — 7, =500. Then

Ty _ 016529 — 0.013215
1 2ot = 0.652
og 023205 6528,
and =2=1.921.
1) T]
Therefore, T> = 1.921 x 530 = 1018.1,
and T, — T, =488.1.

As a second approximation, we assume T — T = 490. We obtain

T, _ 0.16529 — 0.012951
log, L2 = 016529 — 0.012951 _ ) 6559,
8T, 0.23296

I 1.9231, T, =1.9231 x 530 =1019.2,
. 1
T,— T, = 489.2.
As the assumed value of T> — T is so nearly attained, we may take the
value T = 1020 as sufficiently exact.
The ratio of initial and final volumes is now readily found from the

relation ety
T1 T2
Thus, _p T 147 1020 _ g7

V, P Ty 150 " 580
For the external work required to compress one pound of the mixture, we

have

W=7 (01618 + 0.00002643 T)dT = 69460 f5.Ib.

If T denotes the temperature after combustion, we have from (2), taking
¢, = 0.1544 + 0.00008753 7' for the products of combustion,

9
0.1544( T — 1020) +9ﬁ’°2i"7@(nz - 10202)=%25‘—*;

whence T3 = 3949°.

To find the pressure p;, we must take account of the change of composi-
tion during combustion. For the initial state, p, V' = 55.34 T, at the end of
combustion p3 ¥ = 51.50 T5. Hence, we have

Ts 5150 _ 3949 51. 50_5404117 er sq. in.
Py =po - 5oy = 150 X 1035 % G5aa per sq:
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For the adiabatic expansion, the ratio of volumes is the same as for the
adiabatic compression. That is, ZB =0.1887.
From (5) Art. 84, we have
a log,%z (T — T)+ AB logﬂ%’i,

which may be written in the form
b
" .3026

Inserting the known values AB = 0.06621, « = 0.1544, b = 0.00003753,

log T, = log Ta+ABlog 7 (T3~ T)).

Ty = 3949,% = 0.1887, we geb
4

log Ty = 3.7028 — 0.0001056 7',.

This equation may be solved
graphically, as shown in Fig. 37. As
the value of 7, evidently lies between
2500° and 3000° we plot the curves

y=log T,
and 7= 8.7028 — 0.0001056 7',
between these limits. The intersec-
tion gives the desired value,
T, = 2649°,
The external work of expansion is

W= o (01544-40.00003753 T)AT
=287,940 £t.1b.

EXERCISES

The following are the compositions by volume of two gases, one a rich
natural gas, the other a blast furnace gas:

NATURAL GAs (Indinna) BrAst FurNAor Gas
H, . . ..o .. 00 o, . . . . . . . 005
CoO. . . . . .. 0007 co. . ... . .027

CH, . . . . . . 0931 CH. . . . . 0015



‘Work the following examples for each of these gases:
1. Find the composition by weight.
2. Find the heating value:

(a) per cubic foot under standard conditions;
() per pound.

3. Calculate the constants By, y, v, and c,—c,.

4. Find the volume of air required for the combustion of one cubic

5. Find the weight of air required for the combustion of one pound.

6. Find the products of combustion, by weight.

7. Find the specific heat ¢, of a mixture of the gas with air, the weight
of air being 15 per cent in excess of that required for complete combustion.

8. Find c, for the products of combustion, assuming that 15 per cent
excess of air is used.

9. Find the constants B,, y, and v of the mixture of Ex. 7; also of the
products of combnstion.

10. The mixture of Ex. 7 is compressed adiabatically from a pressure of
14.7 1b. per square inch to a pressure of 120 Ib. per square inch in the
case of the natural gas and to a pressure of 175 Ib. per square inch in the
case of the blast furnace gas. The initial temperature in each case is 80° F.
Find the temperature at the end of compression in each case.

11. Find the work of adiabatic compression.

12. Find the ratio of initial to final volume.

13. If at the end of adiabatic compression the mixture is ignited and
burns at constant volume, find the temperature at the end of the process,
assuming that no heat is lost by radiation.

14. After combustion the products expand adiabatically to the initial
volume. Calculate the final temperatures.

15. Find the work of adiabatic expansion.

16. Assume that the adiabatic compression follows the law p V" = const.
Find the values of n. Find also the values of n for the adiabatic expansion.

REFERENCES
Gas MIXTURES
Preston : Theory of Heat, 350.
Bryan: Thermodynamics, 121.

Zeuner: Techunical Thermodynamics (Klein) 1, 107.
Wevranch : Crundriss der Wirme-Theorie 1. 137, 140.



Fuers. ComsustioN. HEATING VALULS

Levin: Modern Gas Engine and Gas Producer, 80.

Carpenter and Diederichs : Internal Combustion Engines, 129,
Zeuner : Technical Thermodynamics 1, 405, 416.

Weyrauch: Grundriss der Wiirme-Theorie, 216, 255.

Jones: The Gas Engine, 293.

Poole: The Calorific Power of Fuels.

In the field of thermochemistry reference may be made to the exter
sive researches of Favre and Silbermann, Berthelot, and J. Thomsen. T
tables of heating values see Landolt and Bérnstein: Physik.-chemisch
Tabellen.

VariaBLE SpeciFic IEAT or GAsks

Mallard and Le Chatelier: Annales des Mines 4. 1883.
Vieille: Comptes rendus 96, 1358. 1883.

Langen: Zeit. des Verein. dentsch. Ing. 47, 622. 1903.
Haber: Thermodynamics of Technical Gas Reactions, 208.
Clerk : Gas, Petrol, and Oil Engines, 341, 361.

Zeuner: Technical Thermodynamies 1, 146,

Carpenter and Diederichs : Internal Combustion Engines, 220.

THERMODYNAMICS OF COMBUSTION

Zeuner: Technical Thermodynamies 1, 423, 428.
Lorenz: Technische Wirmelehre, 392.
Stodola: Zeit. des Verein. deutsch. Ing. 42, 1045, 1086. 1898.



CHAPTER IX
TECHNICAL APPLICATIONS. GASEOUS MEDIA

86. Cycle Processes. — In any heat motor, heat is conveyed
from the source of supply to the motor by some medium, which
thus simply acts as a vehicle or carrier. In practically all
cases the medium is in the liquid or gaseous state, though a
motor with a solid medium is easily conceivable. The perform-
ance of work is brought about by a change in the specific
volume of the medium due to the heat received from the source.
By a proper arrangement of working cylinder and movable pis-
ton this change of volume is utilized in overcoming external
resistances. (In the steam turbine another principle is em-
ployed.) The medium must pass through a series of changes
of state and return eventually to its initial state, the series of
changes thus forming a closed cyele. To use a crude illustra-
tion, the medium taking its load of heat from the source at high
temperature, delivering that heat to the working cylinder and
to the cold body (condenser) and returning to the source for
another supply may be compared with an elevator taking
freight from an upper story to a lower level and returning
empty for another load.

Where the medium is expensive it is used over and over,and
thus passes through a true closed cycle. Examples are seen in
the ammonia refrigerating machine and in the engines and
boilers of ocean steamers, in which fresh water must be used.
In such cases we may speak of the motor as a closed motor.
If the medium, on the other hand, is inexpensive or available in
large quantities, as air or water, open motors are quite generally
used. In these the working fluid is discharged into the atmos-
phere and a fresh supply is taken from the source of supply.
Even in this case the medium mav pass throuch a closed cycle,



but all the changes of state are not completed in the organs of
the motor.

In this chapter we shall take up the analysis of several cycles
that are of importance in the technical applications of gaseous
media. In general, we shall assume ideal conditions, which
cannot be attained in actual heat motors. However, the con-
clusions deduced from the analysis of such ideal cycles are
usually valid for the modified actual cycles; furthermore, the
ideal cycle furnishes a standard by which to measure the effi-
ciency of the actual cycle.

87. The Carnot Cycle. — Although the Carnot cyele is of no
practical importance, it possesses the greatest interest from a
theoretical point of view. Hence an analysis of it is included.

Referring to Fig. 18, the heat absorbed from the source dur-
ing the isothermal expansion 4B is given by the equation

"
Qain=Ap,V, log, =L, 7 @
and the heat rejected to the refrigerator is
v
Qu=4p.7. log T2 @

c

The heat transformed into worlk is, therefore,
AW=Qu+ Qu= <paV log, 7% V —p. Ve log, ,r> ©))

Since in the state 4 the temperature is 77, we have

PpoVe=MBT,, (€2
and likewise p.V.= MBT,. [©))
Furthermore, for the adiabatic BC' we have the relation

A
Lo} T2 1y
(I’b) 7 (ﬁ)
and for the adiabatic DA the relation
AT U -
<?é) -3 M
From (6) and (T) we have
V._ T

—S=_2 ®
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Introducing in (8) the results given by (4), (5), and (8), we
obtain

W=MB(T;— Ty) log, %; ©)
whence ¢
AW MB(T,— T,) loge V 7 - T
K 7 T, an
MBT, log, 7 1

This expression for the efficiency is identical with that deduced
from the Kelvin absolute scale of temperature. We have in
Eq. (10) a proof, therefore, that the Kelvin absolute scale coin-
cides with the perfect gas scale.

88. Conditions of Maximum Efficiency. — On the Z7'S-plane
the Carnot cycle is the simple
rectangle ABCD (Tig. 38), hav- 7| a—Z—5
ing the isothermals AB and CD /
at the temperatures 7 and 7, of / T
the source and refrigerator, respec-
tively.  This geometrical rep-
resentation affords an intuitive
insight into the property of maxi-
~ mum efficiency. Between the
same isothermals let us assume
some other form of cycle, as the o
trapezoidal cycle ZBCOD. Forthe © 4 % B
rectangular cycle the efficiency is Fig. 3.

B

heat transformed into work _ area ABCD
heat supplied Tarea A ABB

For the trapezoidal cycle, likewise, the efficiency is

area DEBC
area A, DEBB,

DEBC _ ABCD-— AED < ABCD |

But A4,DEBE, A ABB,— AED ~ A4 ABEB’




that any eycle lying wholly within the rectangular ecyele ABCD
has a smaller efficiency than the rectangular cycle.

With a given source and refrigerator, the conditions of maxi-
mum efficiency, which may be approached but never actually
attained, are the following :

1. The medium must receive heat from the source at the
temperature of the source. No heat must be received at lower
temperature.

2. The medium must reject heat to the refrigerator at the
temperature of the refrigerator.

8. Provided the medium, source, and refrigerator are the
only bodies involved in the transfer of heat, it follows from 1
and 2 that the intermediate processes must be adiabatic, as any
departure from the adiabatic would mean passage of heat to

or from some body at a tem-
7 4 B perature different from either
the source or refrigerator.

89. Isoadiabatic Cycles.—Tet

a cycle be formed with the iso-

thermals AB and CD as in the

Carnot eycle, but with the

adiabatics replaced Dby similar

curves BC and AD (Fig. 39);

that is, curve BC is simply

p/ oy s curve DA shifted horizontally

Fra. 39. a distance AB. Then AB=

DC, as in the Carnot cycle. 1f

the cyele is traversed in the clockwise sense, the heat entering
the medium is

=]
Q

[ T

Qua+ Qu = avea D, DAA, 4 aren A,ABB,,
while the heat rejected by the medium is
@+ Qu=area B BCC, +area C,CDD,.
The heat transformed into work is the same as in the Carnot

cycle, for the area of the figure ABCD is equal to that of the

Vo P



D, DAA, is taken from the source of heat, the efficiency of the
cycle is

_ _ heat transformed _  area ABCD

~ heat taken from source area D;DABB,’

and this is manifestly smaller than the efficiency of the Carnot
cycle. Let it be observed, however, that

e = Q>

that is, area B)BCC) = area D, DAA,.
If the heat rejected by the medium during the process B('
could be stored instead of thrown away, then this heat might
be used again during the process D4, thus saving the source
the heat @,. In this case we should have the following series
of steps :

1. Medium absorbs heat @, from source.

2. Medium rejects heat @, which is stored.

8. Medium rejects heat @, to refrigerator.

4. Medium absorbs the heat @ (= @,) stored during
step 2.

Since in this case the source furnishes only the heat @, the
efficiency is

area ABCD

area 4, ABB;’
which is the same as that of the Carnot cycle. A cycle in
which the adiabatics of the Carnot cycle are replaced by similar
curves, along which the interchanges of heat are balanced, is
called an isoadiabatic cycle. Any such cycle has the same ideal
efficiency as the Carnot cycle.

90. Classification of Air Engines. — Heat notors that employ
air or some other practically perfect gas as a working fluid may
be divided into two chief classes: (1) Motors in which the fur-
nace is exterior to the working cylinder, so that the medium is
heated by conduction through metal walls. (2) Motors in which
the medium is heated directly in the working cylinder by the
combustion of some gaseous or liquid fuel. These are called
internal combustion motors.

We mav make a second division based on the manner in
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which the working fluid is used. In the closed-cycle type of
motor, the same mass of air is used over and over again, fresh
air being supplied merely to replace leakage losses. In the
open-cycle type a fresh charge of air is drawn in at each stroke,
and after passing through its cycle is discharged again into the
atmosphere.

Air motors of the first class, namely, those with the furnace
exterior to the working cylinder, are usually designated as hot-
air engines. Motors of this class are no longer constructed
except in small sizes for pumping and domestic purposes ; they
are, however, of historical interest, and besides they furnish in-
structive illustrations of the application of the regenerative
principle. We shall, therefore, describe briefly the two leading
types of hot-air engines and give an analysis of the cycles.

91. Stirling’s Engine.—The engine designed by Robert
Stirling in 1816, and bearing his name, is of the external fur-
nace closed-cycle type.
The general features of
the engine are shown in
Fig. 40. A displacer
piston @ works in a cyl-
inder . DBetween ¢ and
an outer cylinder D is
placed a regenerator RR,
made of thin metal plates
or wire gauze. At the
upper end of the cylinder
is a refrigerator M, com-
posed of a pipe coil throngh
which cold water is made
to circulate. At the lower

Fia. 40. end is the fire F. The
piston @ is filled with some
non-conducting material. The working cylinder 4 has free

communication with the dxsplacer cvlmdel In the actual
Aanoine thars avwa foon - .

. . v



piston P to be at the beginning of its upward stroke and the
displacer piston at the bottom of its cylinder. The air is,
therefore, all in the upper part of the cylinder in contact with
the refrigerator, and its state may Dbe represented by the point
D (Fig.39). Now let the displacer piston be moved suddenly to
the upper end of its cylinder. The air is forced through R
and the perforations in €' into the lower end of the cylinder.
The air remains at constant volume, since the piston P has not
yet moved, and has received heat in passing through R. Hence
the change of state is a heating at constant volume represented
by DA in the diagram. The air now receives heat from the
furnace and expands at constant temperature during the up-
ward working stroke of piston P, This process is represented
by AB. When the piston P reaches the upper end of its
stroke, the displacer piston @ is suddenly moved to the bottom
of the cylinder, thus forcing the air back through R into the
refrigerator M. This again is a constant volume change and is
represented by BC. Lastly, during the return stroke the air is
compressed isothermally, as represented by CD, and heat is re-
jected to the refrigerator.

The ideal cycle is seen to be an isoadiabatic cycle with
the adiabatics of the Carnot cycle replaced by constant-volume
curves. The cycle given by the actual engine deviates consid-
erably from the ideal cycle on account of the large clearance
necessary between the two cylinders.

A double acting Stirling engine of 50 i.h.p. was used for
some years at the Dundee foundry, but was eventually aban-
doned because of the failure of the regenerators. This
engine had an efficiency of 0.3 and consumed 1.7 lb. of coal
per i.h. p. '

92. Ericsson’s Air Engine.—The Swedish engineer Ericsson
made several attempts to design hot-air engines of considerable
power. His large engines proved failures, however, because of
their enormous bulk and the rapid deterioration of the regener-
ators. The engines for the 2200-ton vessel Eriesson had four
single-acting working cylinders 14 ft. in diameter and 6 ft.



stroke and ran at 9 r.p.m. They developed 300 h.p. with a
fuel consumption of 1.87 1b. of coal per h.p.-hour.

The working of the Ericsson engine was substantially as fol-
lows: A pump compressed air at atmospheric temperature into
a receiver, whence it passed through the regenerator into a
working cylinder. The pump was water-jacketed so as to act
as a refrigerator. During the passage through the regenerator
the air was heated at constant pressure. After the air was cut
off in the working cylinder, it expanded isothermally, the nec-
essary heat being furnished
by a furnace external to the
R . working cylinder.  On the
return stroke the air was dis-
charged througlh the regener-
ator at constant pressure.

The p P-diagram is shown

P

7 ¢ B in Fig. 41.  The pump cycle
” is DCFE, the motor cycle
o Fra. 41, EABF. The operations are

as follows:

(1) Compression in pump from € to D, heat abstracted by
pump water-jacket. (2) Discharge from pump to regencrator,
represented by DE. (8) Suction of air into working cylin-
der represented by HA. (4) Isothermal expansion from 4 to
B, during which air receives heat from furnace. (5) Dis-
charge of air, represented by BF. (6) Suction of air into pump,
represented by FC.

Deducting the work of the pump from that of the motor, the
effective work is given by the dingram ABCD composed of the
two isothermals and two constant-pressure lines.

!?3, Analysis of Cycles.—The ideal cyeles of the Stirling and
Ericsson engines are isoadiabatic cycles. In the Stirling cycle
th&.z constant-volume lines DA and BC' (Fig. 39) replace the
adiabatics of the Carnot cycle. Using the 7'S-plane we Lave

7
Qu = Ap, 7, log, % = ABT\M log

A Ar. - TN

Ty
oy
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Q= Ap,V, log, 7‘: = — AMBT, log, A
Qda = ]m'u(Tl - Tz)
AW = Qu+ Qe+ Qo+ Qu

= AMB i:Tl log, % — T, log, %}
a d

But since V,= V;and ¥, = ¥},
AW = AMB (T, ~ T,) log, 1.
The heat @, is taken from a regenerator, and therefore the

heat @, alone is supplied from the source; hence the efficiency
is

For the Eriesson cycle DA and B( are constant-pressure
lines and the analysis is essentially the same except that ¢, is
replaced by c,.

94. Heating by Internal Combustion.* — While the hot-air
engine with exterior furnace should apparently be an efficient
heat motor, experience has proved the contrary. The difficulty
lies in the slow rate of absorption of heat by any gas. Even
with high furnace temperatures and comparatively large heat-
ing surfaces it has been found impossible to get a high tempera-
ture in the working medium. Furthermore, if the air could be
effectively heated, the metal surfaces separating the furnace from
the hot medium would be destroyed; hence, while high tempera-
ture of air is necessary for high efficiency, low temperature is
necessary to secure the durability of the metal.

These contradictory conditions are completely obviated by
the method of heating by internal combustion. The rapid
chemical action supported by the medium itself makes possible
the rapid heating of large quantities of air to a very high
temperature. The medium and the furnace being within the
ovlinder +ha amntar anfanre of +he metal walle can be kent at



low temperature by a water jacket, and consequently the inner
surface can be exposed to the high temperature desired without
danger of destruction. Furthermore, the low conductivity
of gases becomes lere an advantage as it prevents a rapid flow
of heat from the medium to the cylinder walls. The low gas
temperature of the hot-air engine results in a small effective
pressure and makes the engine very bulky for the power
obtained. The high temperature possible in the internal
combustion motor, on the other hand, permits high effective
pressures, and therefore gives a relatively small bulk per
horsepower.

95. The Otto Cycle.— The cycle of the well-known Oftto
gas engine has five operations as follows :

1. The explosive mixture
7 B is drawn into the cylinder.
Represented by ED, Fig. 42.

2. The mixture is com-
pressed, as represented by
DA.

3. The charge is igmited,
causing a rise of temperature
and pressure, asshown by 4 B.
. 4. The gases in the cyl-

Frc. 42. inder expand adiabatically as

: L shown by BC.

5. The burned gases are expelled in part.  Represented
by DE.

. In the case of the four-cycle Otto engine, each of the opera-
tions 1, 2, 4, and 5 occupies one stroke of thie piston, while
f)peration 3 occurs at the beginning of a stroke. The cyecle
is completed in four strokes, whence the term four-cycle.

It is customary in the analysis of gas-engine cycles to
assume in the first instance that the medium is pure air
throughout the cycle and that the air receives during the
process AB an amount of heat equal to that developed by the

combustion of the fuel in the actual cycle. This assumed ideal
evela Ja poforrad Fm ome il o s . .Y




ART. 95] THE OTTO CYCLE 143

On the T'S-plane, the ideal cycle has the form shown in
Fig. 43, AB and COD being constant volume curves. The
medium in the state repre-
sented by point 4 is heated at ¥ B
constant volume, as shown by
the curve AB. For this pro-
cess we have (assuming that e,

is constant) (¢}
Qu = Me (T, — T,),
Wu=0. A

For the adiabatic expansion

represented by BC, D;
Ge=0 o | 5
b o 7
W, Mli_ Tie. 43.

For the cooling at constant volume, represented by CD, we
have  Qu=Me,(T,— 1) = — Me,(T. — Ty,

Wea=0.
Finally the medium is compressed adiabatically from D to A4,
and for this change of state

Qua=0,

A ATNA
Waa ]

The heat changed into work is

Qo + Qoo+ Qoa + Qua) = Mo, [ (T, — T) — (T, - TD]. @
The work of the cycle is
W W Wat Wost W= (BImp V) = (peVepal) (g

It is easily shown that these results are identical.
The efficiency is
W _Je[(T,—T) —(T,—T)]

7= —
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This expression for 5 may be simplified as follows: From
Fig. 43 we have
Sy S 8, — Sy = Mz, log, 2 7=, 1%‘5
y I r,_Ti_T.— 1&

T—__ =l = .
hence, =7 O [T LT T~ 1,

T

Therefore, n=1-— “Tf
ol (€))

—1-L

or n=4= v

a

Tt appears, therefore, that the Otto cycle has the same efficiency
as a Carnot cycle having the extreme temperatures 7;, and 7,
or the extreme temperatures 7; and T} of the adiabatics, but a
smaller efficiency than a Carnot cycle having T, and Ty as
extreme temperature limits.

The expression for the ideal efficiency may be written in
another convenient form. Since the curve DA represents an
adiabatic process, we have

Ti_ '.,>‘ ! ( ﬂ:z) 9 s
T,
whence n=1— (:;)k !
’ Ay ®
or p=1 _<l’_d> ¢
P

It appears from the last expression that the higher the com-
Ppression pressure p,, the greater the ideal efficicney.

. 7
If the ratio of volumes % be denoted by 7, we have for the
f

ideal efficiency the expression
1
g=1- el @)

Examrre. If the air is compressed from 147 1b. to 45 Ib., the ideal

0.4



The temperature and pressure represented by the point B
are readily calculated for this ideal case. Let g, denote the
heat absorbed per pound of air during the process AB; then

=0T~ To);

whence % = 0_717 +1. [©)
Since Vo= T
we have %: = % = 1_7‘;&:1" ®

The value of ¢, for a given fuel depends upon the heating
value of the fuel and the weight of air required for the com-
bustion of a unit weight of the fuel.

96. The Joule or Brayton Cycle. — In the Otto type of motor,
the fuel gas is mixed with air previous to compression, and
when the mixture is ignited the combustion is so rapid as
to produce an explosion; the heat is supplied, therefore, at
practically constant volume. Another type of motor was first
suggested by Joule and was developed in working form by
Brayton (1872). In the Brayton engine the mixture of air
and gas was compressed into a reservoir to a pressure of per-
haps 60 1b. per square inch and from the reservoir flowed into
the working cylinder, where it was ignited by a flame. A wire
gauze diaphragm was used to prevent the flame from striking
back into the reservoir. The mixture was thus burned quietly
in the working cylinder during about one half the stroke of
the piston, and by proper regulation of the admission valve the
rate of combustion was so regulated as to give practically con-
stant pressure during the period of admission. The ideal
cycle of operations is as follows:

1. Charge drawn into compressor cylinder, ED (Fig. 44).

2. Adiabatic compression, DA.

L
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3. Expulsion at constant pressure from compressor, AF;
simultaneous admission to motor cylinder, FB. The charge
during the passage from

n. .
74 B compressor to motor is
heated at constant pres-
sure and the volume is
thereby increased as in-
dicated by AB.
4. Adiabatic expansion,
E)| yi} o B(, after cut off.
5. Expulsion of burned
0 v

gases, CL.

The area EDAF repre-
sents the negative work of the compressor, the area FBCH
the work obtained from the motor; henee, avea ABCD repre-
sents the net available work.

On the I'S-plane, the ideal Joule cycle has the same form as
the Otto cycle (Fig. 48). The cwrves AB and CD, however,
represent, respectively, heating and cooling at constant pressure.
‘We have, therefore,

Fig. 44,

Qﬂb:Mcﬂ(%— T.), (@)
Qa= Mz, (T, — To), (@)
W= Qu+ Qu=DMe,(T,— T, + Ty— T,), (©))]
1 L-=-T,_4_T._4_ 1T,
n=1 T =1 =17 )
Also, fp” D1 *)

97. The Diesel Cycle.— The principle of gradual and quiet
combustion as opposed to explosion was seized upon by Diesel
in the design of the Diesel motor. In this motor air without
fuel is compressed in the working cylinder to a pressure ap-
proximating 500 Ib. per square inch. The temperature at the end
of compressmn 1s consequently lugher than the mmmon Lempem-

T L



capallt at placuiCally CONSLANnt &
pressure, or if desired, with
falling pressure and nearly
constant temperature. As in
the Brayton engine, govern-
ing is effected by cutting off
the fuel injection earlier or
later.
The ideal cycle of the Diesel
engine is shown in Fig. 45. It Fia. 45.
resembles the Otto cycle except
that the process 4B in this case represents a constant pressure
rather than a constant volume combustion. It was the original
7 aim of Diesel so to regulate the
7| injection of fuel that a short
period of combustion AM
would be followed by isother-
mal expansion M, the fuel
being cut off at the point V.
On the 7'S-plane the ideal
Diesel cycle is shown in
Fig. 46, in which AB is a-
constant-pressure curve and
[ CD a constant-volume curve.
Fia. 46. ‘We have then
Qu = Me, (T, — T0), @
Qe = Me, r,—- Ta)a @
W= JM [ey(Ty— 1) — ¢, (T.— TD], ®
. _o(L,-T) — ¢, (T~ T = _1(Tc— Td>'
= (T —1T,) R Ab Sy Y
If the cycle includes an isothermal process, as MV, we have
Qun = Me, (T — T0), ®
Qu= AMBI, log, V2, ®
Qunt Qont Qo 7,1, O
Qe+ T KT~ 1)+ (e =DTlog. 77

and =
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98. Comparison of Cycles. — The three principal cycles are
shown superimposed in Fig. 47. The minimum temperature
at D and maximum temperature at B are the same for all

three. With this assumption
| B it is seen that the Brayton
cycle A'BC'D has the largest
area, the Otto cycle ABCD,
o the smallest. Ilence, Detween
the same temperature limits
and with the same maximum
pressure p,, the Brayton cycle
is the most eflicient, the Otto
cycle the least efficient. Com-
paring the maximum volumes,
Fic. 47. it is seen that the Otto and
Diesel cycles have the same
maximum volumes V,, while the Brayton cycle requires a
greater volume, as indicated by the point ¢'. The Diesel
cycle, therefore, combines the advantages of the high efficiency
of the Brayton cycle due to the high compression pressure
and the smaller cylinder volume of the Otto cycle.

\§

w

99. Closer Analysis of the Otto Cycle.—In the preceding
analysis of gas-engine cycles two assumptions have been made :
(1) That the medium employed has throughout the cycle the
properties of air. (2) That the specific heat of the medium is
constant. While the approximate analyses based on these
assumptions are of value in giving the essential characteristics
of the various cycles, and an idea of their relative efficiencies,
they give misleading notions regarding the absolute magnitudes
of those efficiencies. To obtain the true value of the maximnm
possible efficiency of a gas-engine cycle, it is necessary to talke
account of the properties of the fuel mixture entering the cylin-
der and of the mixture of the products of combustion after the
fuel is burned. Making use of the principles and methods
laid down in Chapter VIII, we may tlms mﬂ\e an wccunte

PR Y R T R I -



nished by the example of Art. 85, shows such an analysis for
the Otto cycle.

ExamprE. Determine the ideal efficiency of an Otto cycle in which the
compression, combustion, and expansion follow the course described in the
example of Art. 85. Compare this efficiency with the “air standard”
efficiency under the same conditions.

In the example quoted, the work of adiabatic compression was found to
be 69,460 ft.-1b., the work of expansion 287,940 ft.-lb. These results refer
to 1 1b. of the fuel mixture. The heating value of the fuel per pound was
found to be 1632.2 B. t. u.; hence the heating value per pound of fuel mix-
ture is 1632.2 + =725.4 B.t.u. The net work derived from the cycle
per pound of mixture is 287,940 — 69,460 = 218,480 ft.-Ib. Therefore, the
efficiency is

218480
== =0.387.
J x 7254

The “air standard ” efficiency depends upon the ratio of initial and final

volumes, which ratio was found to be [72 = 0.1887. Hence, for this efficiency
1

we have 7 =1~ 0.1887" = 0.487.

The discrepancy between the two efficiencies is in a large measure due to
the assumption of constant specific heat in the analysis of Art. 95.

100. Air Refrigeration. — The term refrigeration is applied
to the process of keeping a body permanently at a temperature
lower than that of surrounding bodies. Since heat naturally
flows from the surroundings to the body at lower temperature,
this heat must be continually removed if the body is to remain
permanently at its lower temperature. Hence a refrigerating
machine has the office of removing heat from a body of low
temperature and depositing it in some other convenient body
of higher temperature.

The operation of a refrigerating machine is thus precisely
the reverse of the operation of the direct-heat motor; and if
the cycle of a heat motor be traversed in the reverse direc-
tion, it will give a possible cycle for a refrigerating machine.
When air is used as a medium for refrigeration, the reversed
Joule cycle is employed. Fig. 48 shows diagrammatically the
arrangement of the refrigerating machine, Fig. 49 the ideal
pV-diagram, and Fig. 50 the 7'S-diagram. Air in the state 4
in the cold room is drawn into the compressor ¢ and is com-
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pressed adiabatically as indicated by AB. It then passes into
the cooling coils, about which cold water circulates, and is
cooled at constant pressure, as indicated by BC. In the state
¢ the air passes
L= into the expansion
cylinder ¢ and ig
permitted to ex-
pand adiabatically
down to the pres-
sure in the cold
room, Z.e. atmos-
pheric  pressure.
The final state is
represented by
point D. Finally the air absorbs heat from the cold room, and
its temperature rises to the original value 7,. Referring to
Fig. 49, the actual compression diagram is ABFE, while the
diagram FODE taken clockwise is the diagram of the expan-
sion cylinder. The net work done on the air is, therefore,
given by the diagram ABCD.

The Allen dense-air machine has a closed cycle and the air
is always under a pressure much higher than that of the atmos-
phere. Thus the pressure DA (Fig. 49) is perhaps 40 to 60,
and the upper pressure, say
200 Ib. per square inch. The |
air, after expanding to the g B
lower pressure, is led through
coils immersed in brine and
absorbs heat from the brine.

In the following analysis of

Cold

Room

Fia. 48.

the air-refrigerating machine iD ;A
. . 1

we shall assume ideal condi- ! iy

. . o v

tions. In the actual machine Fro. 49.

these conditions are to some
PR R R £ o 2 | s o) .
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minute, and M the weight of air ; B
circulated per minute.  Then
since in passing through the cold
body the temperature of the air is 0
raised from 7 to 7}, (Fig. 50), we 4
have

]

Q=Mey(T,—~T,). (D)
Let p, denote the suction pres-
sure of the compressor cycle
(atmospheric  pressure, in the
case of the open cycle) and p,
the pressure at the end of com-
pression ; then, assuming adiabatic compression, we have

1
ﬂ:(&) £ @
To \py

and if the pressure at cut-off in the expansion cylinder is also
pq (as in the ideal case), we have also

[S]
S
W

Fig. 50.

I._ <&>L;1 ®)
To \py ’

T,_ 1,

whence o7 @
The work required per minute is

area ABCD T,— T,
= =JQL 4, 5
V=T e C0dB, 97T, ®

and the heat rejected to the cooling water, represented by the
area B,BCC, (Fig. 50), is

0=0+T=0l ®

The compressor cylinder draws in per minute M pounds of air
having the pressure p, and temperature 7, Denoting by IV
the number of working strokes per minute and by ¥, the volume
displaced bv the commnressor niston. we have for the ideal case
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o MBT,
)
Npy
Likewise, the volume ¥, of the expansion cylinder is given by
the relation

I/:_

_ MBI, (®)

ExampLe. An airrefrigerating machine is to abstract 600 B.t.u. per
minute from a cold chamber. The pressure in the cold room is 14.7 1b. per
square inch, and the air is compressed adiabatically to G5 1b. per square inch
absolute. The temperature in the cold room is 36° I and the air leaves the
cooling coils at 80° F. The machine makes 120 working strokes per minute.
Required the ideal horsepower required to drive the machine, and the volumes
of the compression and expansion cylinders.

The first step is the determination of the temperature 7 at the end of
expansion. From the relation

k=1
Ty \P1
we have T,= 539_0( 4

From (1) we obtain for the weight of air that must be circulated per minute

M=—22 - (00 =172 1
o To—Ty) = 03II056 —gozgy — L2

The work required per minute is

W= JQT-';—Td= 778 x 600 x f’i‘:’}__” = 216,950 £t Ib.,
d

and the horsepower under these ideal conditions is therefore

246950
33000

For the volume of the compressor cylinder, we have

v, = 1752 x 53.34 x 495.6 _
©7 120 X 147 x 144

and for the volume of the expansion eylinder

=175,

1.82 en. ft.,

- T, 352.9
Ve=V.22=1 paclay
e=Ver 8 x 056 1.30 cu. ft.



Ly i mining, tunneiing, and metallurgical processes.
mpression of air may be effected by rotary fans and
3 or by piston compressors. In the piston compressor,
tmospheric pressure is drawn into a cylinder through in-
ves and is then compressed upon the return stroke of the

‘When the desired pressure is attained, the outlet valves
med and the air is discharged into a receiver. The ideal
or diagram of an air
ssor has, therefore, the
hown in Fig. 61. The ¢ 2
1 represents the drawing
¢ air ; the curve AB rep-
- the compression from
wer pressure p; to the

r

r pressure p,; and BC D —4
mts the expulsion of the 4 -
the higher pressure. It R *

be noted that the curve
presents a change of state, while lines D4 and B(C
nt merely change of locality ; thus B( represents the
> of the air (in the same state) from the compressor
v to the receiver.
7} denote the volume denoted by point A4, and V, the
» after compression ; then the work of compression (area
By s W, = nhn "]’_212

@T T -1
ng that the compression curve follows the law pV*=const.
1k of expulsion (represented by area B, B ('0) is evidently

Wi =—pVo .
» work done by the air during the intake (area ODAA,) is
Waa = Py Vl'

the total work represented by the area of the diagram
) is T .
W= P—lVl_Z{sz +p V= pT:

n

= ;L—n—_l (V1= p2V2)- @



1
n

n=n(5), ®
whence combining (1) and (2) we get
n=1
o e
=ity (3) } 2

a formula that does not contain the final volume 77,

For the temperature at the
end of compression we have the
usual formula

T pol

/)

71
L _ (ﬁz) g )
L \m
The action of the air com-
pressor may be studied advanta-
geously by means of the Z78-
diagram. Let the point 4 (Iig.
52) represent the state of the
air at the beginning of com-
pression, and suppose that AB
s Tepresents the compression pro-
Fio. 52 A7 cess. Through B a line repre-
senting the constant pressure
Py is drawn, intersecting at F an isothermal through A. It
can be shown that the area 4, ABFF, vepresents the work W
given by (1). Denoting by T, the final temperature corre-
sponding to point B, we have

ares A ABB, = Mo, "= i” (1~ 1,
n —

S
by
!
bl

area B\BFF, = Mc, (T, — 1),

area A, ABFF, = M( YA
! 1 & cvn -1/

: =M;f*1(%~%)(7'1— /iy

(AT Y)

1 n ¢, p Cﬂ — v,
= T BB, - MBT)

1 .
== (V. —p10). 5




102. Water-jacketing. — Unless some provision is made for
withdrawing heat during the compression, the temperature will
rise according to the adiabatic law. Ordinarily the energy
stored in the air due to its increase of temperature, that is, the

enersy U, — Uy= Me, (T, ~ 1),

is never utilized because during the transmission of the air
through the mains heat is lost by radiation and the temperature
falls to the initial value. Hence
a rise in the temperature during
compression indicates a useless , _FBE
expenditure of work. The water
jacket prevents in some degree
this rise in temperature and
decreases the work required for
compression. The curve AE P
(TFig. 53) represents adiabatic o F— v
compression. If the compres-
sion could be made isothermal, the curve would be AZF, less
steep than AZ, and the work of the engine would be reduced
per stroke by the area AEF. The water jacket gives the curve
AB lying between AF and AF, and the shaded area represents
the saving in work. Because of the water jacket the value of
the exponent n in the equation p ™= const. lies somewhere
between 1 and 1.40. Under usual working conditions, n is
about 1.3.

For any value of » the relation between the heat abstracted,
work done, and change of energy is given by the proportion

JQ: (U= U): W=(k—n): (1—n): (k—1).
This applies only to the compression AB not to the expulsion
of the air represented by BC.
The influence of the water jacket is shown more clearly by
the 7'S-diagram, Fig. 52. The vertical line 4 & indicates adia-
batic compression from p, to p,, the horizontal line AF, isother-

2
R
”'o,,%




mal compression, and the intermediate Curve .0, COmpPLossion
according to the law p ™= const., with n between 1 and 1.4.
The area A,ABB, represents the heat abstracted from the air
during compression, and the aren AEB represents the work
saved by the use of the jacket. A more efficient jacket would
give a compression curve with its extremity lying nearer the
point 7. In the case of the isothermal compression represented
by AF, the area A, AFF, represents the heat absorbed from the
air and also the work done on the air. These must necessarily
be equivalent, since there is no change in the internal energy.

103. Compound Compression. — The excess of work required
by the increase of temperature during compression may be obvi-
ated in some measure by
dividing the compression
into two or more stages.
Air is compressed from
the initial pressure p; to
an intermediate pressure
py it is then passed
through a cooler where
the temperature (and con-
sequently the volume) is
reduced, and finally it is
compressed from p' to the desired pressure p,. In Fig. 54,
DA represents the entrance of air into the cylinder, and 4@,
which lies between the adiabatic AF and the isothermal AZF),
the compression in the first eylinder. From G to H the air is
cooled at constant pressure in the intercooler. The curve HL
shows the compression in the second cylinder, and the line
L( the expulsion into the receiver. In a single cylinder the
diagram would be ABCD; hence compounding saves the work
indicated by the area BGHL.

The saving is shown even more clearly if we use the Z7I5-
plane (Fig. 55). During the first compression AG the heat
represented by the area A;AG @, is absorbed Ly the water
jacket. Then the heat GyGHH, is abstracted by the inter-
cooler. During the second compression the heat H. HILL. is

Fic. 54
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abstracted by the water jacket, B
and finally the heat IL,LFF,
is radiated from the receiver
and main. As shown in the
preceding article, the area b
A AGHLFF, gives the work
of the compressor. Evidently
area BGHL represents the
work saved by compounding.

If we take (8) of Art. 101,
we find for the work done in Fro. 55.
the first cylinder

W

G 4

21
n N
W= n_1]’1V1[1“ (%1) ],

and for the work done in the second cylinder

=1
I N A
e V[l <p’> }
where 7/ is the volume indicated by point H (Fig. 54).
But since point H is on the isothermal AF, we have
PV =pTy

and, therefore,
a-—1

n T
S

The total work is, consequently,

n-1 pu

n n NES
1n+1ﬁ=n_1p”q[z_<%> —<%> } M

The work required is numerically a minimum when the

P




is variable. Using the ordinary method of the calculus, we
find that this expression is a maximum when
?'="pmpe @
Equation (2) is useful in proportioning the cylinders of & com-
pound compressor.
Referring to Fig. 55, we have

n=1 n-1

Zz__ l’_’ T' »T_l_:[_l__<}7z W
—T;—(Pl> ’ "l—'ll"‘— 1)I>

With the condition expressed by (2) we have

21 o -1

(-3~ ()

and likewise,

n-1 n-1

Toe _ ( pf T_ AN
@-Gm -G
Hence, T=1;
that is, for a minimum work of compression the points Gt and.L

should lie on the same temperature level. The sanie statement
applies to three-stage compression.

104. Compressed-air Engines. — Compressed air may be used
as a working fluid in a motor in substantially the same way
as steam. In fact, comprossed air
has in some instances been used
in ordinary stean engines. The
indicator diagram for the motor
should approach the form shown
in Fig. 56. With clearance and
compression, A'Z' will replace
V. AE. The work per stroke is
readily caleulated in ecither case.
The expansion curve B(' may be taken as an adiabatic.

Fro. 56.

105. TS-diagram of Combined Compressor and Engine. — The
T8-diagram shows clearly the losses in a compressed-air system
and the affante Af et LT 5 I

L N
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losses. In the following discussion we shall take up first an
ideal case and afterwards several modifications that may be
made.

In Fig. 57, m represents the compressor diagram, n the
motor diagram, both without clearance. Air in the state repre-
sented by point 4 is
taken into the com- ? B » 9
pressor at atmos-
pheric pressure and
temperature.  The m \ o Ny
compression, as- A D
sumed here to be y v
adiabatic, is repre- Fra. 57,
sented on the Z7'S-
plane by the vertical line AB (Fig. 58). The expulsion of
the air into the receiver and thence into the main is merely a
change of locality und does not itself involve any change of
state; hLence, it is not represented on the Z7'S-plane. However,
the passage of the air along the main is usually accompanied
by a cooling, and this is represented by BC (Fig. 68), the final
point (' representing the state of the air at the beginning of
expansion in the motor. The adiabatic expansion to atmos-
pheric pressure in the motor is

7 % represented by CD. This is
T accompanied by a drop in tem-
c perature which is given by the
A equation
| e
P I _ (%) L.
T, 4

The air discharged from the motor

o ® in the state D is now heated at

. 5. the constant pressure of the atmos-

phere until it regains its original temperature T,. Thisheating
is represented by DA.

The complete process is a cycle of four distinet operations,

. D Y T & S




what does the area AL CL 0L the CyCle represent — someting
useful or something wasteful ?

To answer this question let us
recur to the original energy equation

JQ="U,— U + W,

and apply it to the air which passes through the cycle process

just described. We have

Work done on air = area of diagram m = — W,.

Work done by air

Total work

Heat absorbed by air

Heat rejected by air
Total heat put into system
Change of energy

J X area ABCD =W, — W,;

Hence,

I

area of diagram n =+ W,.
W, — W

area under DA.

area under BC.

— area ABCD.
U,-U,=0.

that is, the area ABCD represents the difference between the
work done by the compressor and the work delivered by the

the air before it enters the motor.

motor. Consequently it
represents a waste, which
is to be avoided as far as
possible.

Various modifications
of the simple cycle of
Fig. 58 are shown in
Fig. 59. The effect of
using a water jacket is
shown at (a). The
shaded area represents
the saving.

Figure 59 (0) shows
the effect of reheating

In the main the air cools,

as indicated by BC, but in passing through the reheater it is
heated again at constant pressure, and the state point retraces
its path, say to D. Then follows adiabatic expansion D.J, and

constant-pressure heatine EFA

Thic reheatine caves worlk
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D to the right of B, in which case the waste would become
zero or even negative. The area CDEF does not, however,
represent clear gain, as account must be taken of the heat
expended in the process CD.

In Fig. 59 (¢) is shown the effect of compound compression,
and in Fig. 59 (d) the effect of compound compression with
a compound motor. In each case the shaded area represents
the saving.

It would not be difficult to represent also the loss of pressure
in the main due to friction.

EXERCISES

1. Find the efficiency of a Stirling hot-air engine working under ideal
conditions between the temperatures 1340° F. and 140° F. Find the weight
of air that must be circulated per minute per horsepower.

2. Au air compressor with 18 in. by 24 in. cylinder makes 140 working
strokes per minute and compresses the air to a pressure of 52 Ib. per square
inch, gauge. Assuming that there is no clearance, find the net horsepower
required to drive the compressor. Take the equation of the compression
curve as p V43 = const.

3. If 200 cu. ft. of air at 14.7 Ib. is compressed to a pressure of 90 1b. per
square inch, gauge, find the saving in the work of compression and expulsion
by the use of a water jacket that reduces the exponent n from 1.4 to 1.27.

4. Find the efficiency of the ideal Otto cycle (air standard) when the
compression is carried to 120 1b. per square inch absolute.

5. Draw a curve showing the relation between the efficiency of the Otto
cycle and the compression pressure. Take values of p from 40 to 200 lb.
per square inch.

6. An air-refrigerating machine takes air from the cold chamber at a
pressure of 40 1b. per square inch and a temperature of 20° F., and com-
presses it adiabatically to a pressure of 200 lb. per square inch. The air
is then cooled at this pressure to 80° F. and expanded adiabatically to
40 1b. per square inch, whence it passes into the coils in the cold chamber.
The machine is required to abstract 45,000 B. t. u. per hour from the cold
room. (a) Find the net horsepower required to drive the machine. (3) If
the machine makes 80 working strokes per minute, find the necessary
cylinder volumes.

7. Air is to be compressed from 14.7 Ib. per square inch to 300 Ib. per
square inch absolute. If a compound compressor is used, find the interme-
diate pressure that should be chosen.



8. In Ex. 7, the compression in each cylinder rfollows the law p V¢ =
sonst. Find the saving in work effected by compounding, expressed in per
ent of the work required of a single cylinder.

9. Using the results of Ex. 10-15 of Chapter VIII, find the efficiencies of
the Otto cycle with the natural gas and the blast furnace gas, respectively,
under the conditions stated. Compare these efficiencies with corresponding
air standard efficiencies.

10. On the 7'S-plane draw accurately an ideal Diesel cycle from the fol-
owing data: Adiabatic compression of air from 14.7 to 500 1b. per square
nch absolute; heating at constant pressure to a temperature of 2200° F.;
wdiabatic expansion to initial volume; cooling at constant volume to initial
tate. Calculate the ideal efficiency of the cycle.

11. Modify the Diesel cycle of the preceding example by stopping the
onstant-pressure heating at 1600° F. and continuing with an isothermal
xpansion (as shown by MN, Fig. 46). Caleulate the efficiency of this
modified cycle.

12. The ideal Lenoir cycle has three operations, as follows: heating of air
1t constant volume, adiabatic expansion to initial pressure (atmospheric), and
ooling at constant pressure. Show the cycle on p¥- and T'S-planes, and
lerive an expression for its efficiency.

13. Let the expansion in the Otto cycle be continued to atmospheric
oressure. Show the resulting cycle on p¥- and T'S-planes and derive an
xpression for the efficiency.
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CHAPTER X
SATURATED VAPORS

106. The Process of Vaporization. — The term vaporization
may refer either (1) to the slow and quiet formation of vapor
at the free surface of a liquid or (2) to the formation of vapor
by ebullition. In the latter case, heat being applied to the
liquid, the temperature rises until at a definite point vapor
bubbles begin to form on the wallsof the containing vessel and
within the liquid itself. These rise to the liquid surface, and
breaking, discharge the vapor contained in them. The liquid,
meanwhile, is in a state of violent agitation. If this process
takes place in an inclosed space —as a cylinder fitted with a
movable piston —so arranged that the pressure may be kept
constant while the inclosed volume may change, the following
phenomena are observed:

1. With a given constant pressure, the temperature remains
constant during the process; and the greater the assumed pres-
sure, the higher the temperature of vaporization. The tempera-
ture here referred to is that of the vapor above the liquid. Asa
matter of fact, the temperature of the liquid itself is slightly
greater than that of the vapor, but the difference is small and
negligible.

2. At a given pressure a unit weight of vapor assumes a
definite volume, that is, the vapor has a definite density;
and if the pressure is changed, the density of the vapor changes
correspondingly. The density (or the specific volume) of a
vapor is, therefore, a function of the pressure.

3. If the process of vaporization is continued at constant
pressure until all the liquid has been changed to vapor, then if
heat be still added to the vapor alone, the temperature will rise
and the specific volume will increase; that is, the density will
decrease.

164
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sponding to the pressure at which the process is carried on is
the saturation temperature. If no liquid is present, and through
absorption of heat the temperature of the vapor rises above the
saturation temperature, the vapor is said to be superheated.
The difference between the temperature of the vapor and the
saturation temperature is called the degree of superheat.

The process just described may be represented graphically
on the pV-plane. See Fig. 60. Consider a unit weight of
liquid subjected to a pressure p represented by the ordinate of
the line A’ A" ; and let the
volume of the liquid (de-
noted by ") be represented o

\B"

p

by A'. As vaporization
proceeds at this constant
pressure, the volume of
the mixture of liquid and 4 o 4"
vapor increases, and the
point representing the
state of the mixture moves
along the line A’A"”. The
point A" represents the Fia. 60.

volume v of the saturated

vapor at the completion of vaporization; therefore, the
segment A’A" represents the increase of volume v — '
Any point between A’ and A", as M, represents the state
of a mixture of liquid and vapor, and the position of the
point depends on the ratio of the weight of the vapor to
the weight of the mixture. Denoting this ratio by =, we have

j’A”’ whence it appears that at A/, =0, while at 4",
z=1. This ratio = is often called the quality of mixture.

If the mixture is subjected to higher pressure during vapor-
ization, the state-point will move along some other line, as B'B".
Thespecific volume indicated by B is smaller than that indicated
by A”. The curve ", giving the specific volumes of the satu-



A

rated vapor for different pressures, is called the saturation curve;
while the curve v/, giving the corresponding liquid volume, is
the liquid curve. These curves v/, v" are in a sense boundary
curves. Between them lies the region of liquid and vapor
mixtures, and to the right of »' is the region of superheated
vapor. Any point in this latter region, as I, represents a state
of the superheated vapor.

107. Functional Relations. Characteristic Surfaces. — For a
mixture of liquid and saturated vapor, the functional relations
connecting the codrdinates p, v, and ¢ are essentially different
from the relation for a permanent gas. As explained in the
preceding article, the temperature of the mixture depends
upon the pressure only, and we cannot, as in the case of a
gas, give p and ¢ any values we choose. The volume of a unit
weight of the mixture depends (1) upon the specific volume
of the vapor for the given pressure and (2) upon the quality
z. Hence we have for a mixture the following fuuctwnal

relations :
t:f(p), 01‘10=F(t)7 (1)
v=2¢ (p, z). @

With superheated steamn, as with gases, p and ¢ may be
varied independently, and consequently the functional relation
between p, », and ¢ has the general form

¥(ps v )=0. )]

The characteristic surface of a
saturated vapor is shown in Iig. 61.
It is a cylindrical surface S whose
generating elements cut the pt-plane
in the curve p=F(¢). These ele-
ments are limited by the two space
carves o' and o, which when pro-
jected on the pv-plane give the
curves o', o' of Fig. 60. The space
curve o' is the intersection of the

Y ) i . -




4U0. keélation between rressure and lemperature. — lhe rela-
tion p= F(t) between the pressure p and temperature ¢ of a
saturated vapor must be determined by experiment. To Reg-
nault are due the experimental data for a large number of
vapors. Further experiments on water vapor have been made
by Ramsey and Young, by Battelli, and very recently by Hol-
born and Henning. These last-mentioned experiments were
made with the greatest accuracy and with all the refinements
of modern apparatus; they may, therefore, be regarded as
furnishing the most reliable data at present available on the
pressure and temperature of saturated water vapor. Experi-
ments on other saturated vapors of technical importance, carbon
dioxide, sulphur dioxide, ammonia, ete., have been made by
Amagat, Pictet, Cailletet, Dieterici, and others. It is likely,
however, that further experiments must be made before the
data for these vapors are as reliable as those for water vapor.
If the experimentally determined values of p and ¢ be plotted,
they will give the curve whose equation is p = f(¢) (Fig. 61).
To express this relation many formulas have been proposed,
some purely empirical, some having a more or less rational
basis. A few of these formulas are the following :
1. Biot’s Formula. — As used by Regnault, Biot’s equation
has the form
: log p = a — ba* + ¢, (@S]
where n=t—C. .
Thisformulais purely empirical. Having five constants, the curve
may be made to pass through five experimentally determined
points; hence, the formula may be made to fit the experimental
values very closely throughout a considerable range. The follow-
ing are the values of the constants as given by Prof. Peabody :

For Stean FRoM 32° To 212° F., p For STEAM Frox 212° To 425° F., p
1N Pounps PER SQUARE INcm. 1N Pouxps vER Square INcu.
a = 8.125906 a = 3.743976
log b = 0.611740 . log b = 0.412002
log ¢ = 8.13204 — 10 log ¢ = 7.74168 — 10
log = 9.998181 — 10 log « = 9.998562 — 10
log 8=10.0038134 log B = 0.0042454

n=t—32 n=t— 212



2. Rankine’s Formula. — Rankine proposed an equation of

the form B 0 .
1ogp=A+E,+7m, @

in which 7' denotes the absolute temperature. This formula
has been much used in calculating steam tables, especially in
England. Having but three constants, it is not as accurate
as the Biot formula. The following are the values for the
constants, when p is taken in pounds per square inch, and
T=t+460:

A =6.1007; B =~ 2719.8; ¢ = 400125.

3. The Dupré-Hertz formula has the form

logp=a——blog1’—-§—" (©))
This equation has been derived rationally by Gibbs, Bertrand,
and others, and gives, with a proper choice of constants, results
that agree well with experiment. Using the results of Reg-
nault’s experiments, Bertrand found the following values of the
constant for various vapors (metric units).

a b c
Water . . . . . . . 17.44324 3.8682 2795.0
Ether. . . . . . . . 1342311 1.9787 1729.97
Alcobol . . . . . . . 21.44687 4.2248 2734.8
Chloroform . . . . . . 19.29793 3.9158 2179.1
Sulphur dioxide . . . . 16.99036 3.2198 1604.8
Ammonia . . . . . . 13.87156 1.8726 1449.8
Carbon dioxide . . . . 6.41443 — 0.4186 819.77
Sulphur . . . . . . . 19.1074 3.4048 4684.5
4. Bertrand’s Formulas. — Bertrand has suggested two equa-
tions, namely : e
=k 4
F (7 + a)f ™
T— 0"
and = ( ) . 5
r=k(5 ®

The latter may be written in the more convenient form

10,9,‘p=logk—nlug_T_. 1))




Bertrand’s second formula (6) has the advantage over the
others suggested of lending itself to quick and easy computa-
tion. Furthermore, although it has but three constants, it
gives results that agree remarkably well with the experiments
of Holborn and Henning on water vapor. The constants are
as follows (English units):

T'=t+ 459.6

n = 50.
Frox 32° — 00° F. Frox 90° — 257° F. Frox 238° — 420° F,
b =140.1 b=141.43 b =140.8

log k= 6.23167 log k= 6.30217 logk = 6.27756

The agreement between observed and calculated values is
shown in the following table. The maximum difference is
one tenth of one per cent.

PressuRe 1 Mot oF MERGURY
TENPERATURE, C. -
Bertrand’s Formuln//o /"/Q’ /}Im’i;‘rl;l:’ég‘{;‘l‘eﬂnf{“g
0 4.577 4.579
10 9.208 9.205
20 17.511 17.51
30 31.682 3171
40 55.121 55.18
50 92.325 92.30
60 149.21 149.19
70 233.55 233.53
80 354.97 355.1
90 525.64 525.8
100 760 760
110 1075.2 1074.5
120 1489.7 1488.9
130 2025.2 2025.6
140 2708.3 2709.5
150 3566.7 3568.7
160 4631.1 4633
170 5935.2 5937
180 7515 7514
190 9409.1 9404
200 11658 11647




5. Muarks Equation. — Professor IMarks has deduced an
equation that gives with remarkable accuracy the relation
Detween p and 7' throughout the range 32° ¥. to 706.1°F., the
latter temperature being the critical temperature, as established
by the recent experiments of Holborn and Baumann. The
form of the equation is

log p=a —_,%— o+ e m
The constants have the following values: a =10.516354,0 =
4878.71, ¢ = 0.00405096, ¢ = 0.00000139296+.

109. Expression for %-——In the Clapeyron-Clausius formula

for the specific volume of a saturated vapor, the derivative 0252

[
is required. An expression for this derivative is obtained Dy
differentiating any one of the equations (1) to (T) of Art. 108.
Thus from (6),

dp _ <1 _l>__"b£_.
a - "N\T—8 T)TTT-0) @

whence
Iow—ﬂd =log nb + log p —log 7' —1 T—b
S it g g P g og ( )

Values of %1; are readily calculated since the terms log T}

log (7' —b), and log p appear in the calculation of p from ().

110. Energy Equation applied to the Vaporization Process. —
It is customary in estimating the energy, entropy, heat content,
etc., of a saturated vapor to assume liquid at 82° F. (0°C.) as a
datum from which to start. Thus the energy of a pound of
steam is assumed to be the energy above that of a pound of
water at 32° F.

Suppose that a pound of liquid at 82° is heated until its
temperature reaches the boiling point corresponding to the
pressure to which the liquid is subjected. The heat roquired
is given by the equation

t
q’ = ch’dt’ (1)
where ¢’ denotes the snecific heat of the lLiauid. This process
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s represented on the Z'S-plane by a curve 44’ (Fig. 62).
[he ordinate OA represents the initial absolute temperature
2 4 459.6 = 491.6, the ordinate 4,4’ the temperature of va-
orization given by the relation ¢ = f(p), and the area 04A'A;
he heat ¢’ absorbed by the liquid. This heat ¢ is called the
leat of the liquid.*

When the temperature of vaporization is reached, the liquid
egins to change to vapor, the temperature remaining constant
luring the process. A definite quantity of heat, dependent
ipon the pressure, is required to change the liquid completely
nto vapor. This is called the

ieat of vaporization and is de- s H ”1
1oted by the symbol . In Fig. B 5
2, the passage of the state- p x [,

oint from A’ to A" represents

he vaporization, and the heat

-~ is represented by the area 4

4,4’A"A,. TFor a higher pres-

ure the curve AB' represents

he heating of the liquid and

he line B'B'’ the vaporization.
During the heating of the o BALE,

iquid the change in volume is Fic. 62,

ery small and may be neg-

ected ; hence, the external work done is negligible also, and

ubstantially all of the heat ¢’ goes to increase the energy of

he liquid. During the vaporization, however, the volume

hanges from »' (volume of 1 1b. of liquid) to »" (volume of

1b. of saturated vapor). Since the pressure remains constant,

he external work that must be done to provide for the increase

f volume is L=pQ" —v"). @

\ccording to the energy equation, the heat » added during
aporization is used in increasing the energy of the system and

[ S




is the heat required to increase the energy of the unit weight
of substance when it changes from liquid to vapor. This heat
is denoted by p and is called the internal latent heat. Since
during the vaporization the temperature is constant, there is no
change of kinetic energy; it follows that p is expended in in-
creasing the potential energy of the system. The heat equiva-
lent of the external work, namely, Ap (v'/ — '), is called the
external latent heat, and for convenience may be denoted by -

We have then r=p+ @

The total heat of the saturated vapor is evidently the sum of
the heat of the liquid and the heat of vaporization. Thus,

¢'=q +m
or "'=q¢ +p+. )
Comparing (5) with the general energy equation, it is evident

that the sum ¢’ + p gives the increase of energy of the saturated
vapor over the energy of the liquid at 32° K. Denoting this

1"
by «", we have Au' =g +p. (6

If the vaporization is not completed, the result is a mixture
!

of saturated vapor and liquid of quality = (m = % , as indi-

cated by the point M (Fig. 60 and 62). In this case the heat
required to vaporize the part z is 2» heat units and the total
heat of the mixture, which may be denoted by g, is given by

=g +ar
=q +ap+ Y. (@)
The energy of the mixture (per unit weight) above the energy
of water at 82° F. is, therefore, given by the relation

Au,=q' +zp, ()]
and the external work done is
L,=Jwy. ©)

If heat is added at constant pressure, after the vaporization is
completed, the vapor will be superheated. The state-point will
move alono the curve A (T ARN and +ha hoat » 7F #1)



epresented by the area 4,4" EE, will be added. Here ¢, de-
otes the mean specific heat of the superheated vapor, ¢, the
inal temperature, and ¢ the saturation temperature correspond-
ng to the pressure p. The total heat corresponding to the
oint & and represented by the area 0AA' A" EE, 0 is, therefore,

q€=q,+r+cp (t.—1t"). 10

f v, denotes the final volume, and u, the energy above liquid
t 32° F., then the external work for the entire process is

L=p@,—v), an
Au,=q,— Ap (v,—v"). (12)
111. Heat Content of a Saturated Vapor.— By definition we
ave for the heat content of a unit weight of saturated vapor
=A@ +pu") =g + p+ Apv". (1)
ince the total heat is
¢'=q'+p+Ap ('~ @
; appears that ¢/ is larger than ¢/ by the value of the term
ipv’.  As o', the specific volume of water, is small compared
ith o'/, the term Apv’ may be neglected except for very high
ressures, and ¢ and " may be considered equal.
In most of the older steam tables values of ¢ were given;

1 the more recent tables, the values of ¢’ instead of ¢ are
sually tabulated.

nd, therefore,

112. Thermal Properties of Water Vapor. — From the relation
qfl o q/ + 7,

,appears that if any two of the three magnitudes ¢", ¢/, » are de-
srmined by experiment, the third may be found by a combina-
on of those two. Various experiments have been made to
etermine each of these magnitudes for the range of temperature
rdinarily employed, and as a result several empirical formulas
ave been deduced. Naturally the greatest amount of attention
as been given to water vapor, and we may consider the proper-
es of this medium as quite accurately known at the present
me. Ammonia, sulphur dioxide, and other vapors have not
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are as yet only imperfectly known.

In the sections immediately following we shall give briefly the
results of the latest and most accurate experiments on water
vapor.

113. Heat of the Liquid. — Denoting ¢/ the specific heat of
water, the heat of the liquid above 32° F. is given by the re-

lation 9’= _s;ic'dt' (1)

If the specific heat ¢’ were constant at all temperatures, this
equation would reduce to the simple form ¢/ = ¢'(t — 82). As
a matter of fact, however, ¢/ is not constant, and its variation
with the temperature must be known before (1) can be used to
calculate ¢’. Between 0° C. and 100° C. (32°-212° F.) the
experiments of Dr. Barnes may be regarded as the most trust-
worthy. Taking ¢ =1 at a temperature of 17.5° C., the fol-
lowing values are given by Griffiths as representing the results
obtained by Barnes.

TEMPERATURE TEMPERATURE
SrrorFio eaT Seporrte Uear

c. F. c. F.

0 32 1.0083 55 131 0.9981

5 41 1.0054 GO 140 0.9987
10 50 1.0027 65 149 0.9993
15 59 1.0007 70 158 1.0000
20 68 0.9992 % 167 1.0007
25 7 0.9978 80 176 1.0015
30 86 0.9975 85 185 1.0023
35 95 0.9974 90 194 1.0081
40 104 0.9973 95 203 1.0040
45 113 0.9974 100 212 1.0051
50 122 0.9977

These values are shown graphically in Fig. 63. From them
values of ¢’ may be obtained by means of relation (1).

In the actual caleulation of the tabular values of ¢/, the fol-
lowing method may be used advantageously. Since the specific
heat ¢’ does not differ greatly from 1, let

d=1 +7c,
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where % is a small correction term. Then for ¢’ we have
¢ = {,cdt =t~ 32+ (' kds.

If now values of % are plotted as ordinates with correspond-
ing temperatures as abscissas, the values of the integral 5kdt
may easily be determined by graphical integration.

For temperatures above 212° F. the only available experi-
ments giving the heat of
the liquid are those of 1.8
Regnault and Dieterici. g\
The results of these ex-
periments are somewhat
discordant and unsatis-
factory. Fortunately, R AT 40°) P Ti%0°
we have for the range 099 ——
212° to 400° F. reliable o0
formulas for the total Fic. 63.
heat ¢” and the latent
heat , and we may therefore determine ¢’ from the relation

¢=q"—r

114. Latent Heat of Vaporization. — The latent heat of water
vapor for the range 0° to 180° C. (32°-356° F.) has been accu-
rately determined by direct experiment. The results of the
experiments of Dieterici at 0° C., Griffiths at 80° and 40° C,,
Smith over the range 14°-40° C., and Henning over the range
30°-180° C. show a remarkable agreement, all of the values
lying on, or very near, a smooth curve. The observed values
are given in the third column of the following table. As the
thermal units employed by the different investigators were not
precisely the same, all values have been reduced to a common
unit, the joule.

It is readily found that a second-degree equation satis-
factorily represents the relation between 7 and ¢. Taking = in
lowing equation gives the values in the fourth
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LATENT HEAT OF WATER, IN JOULES

Latest 1nAaT
TEMPERA= DIFFERENOE
TURE, C. Prr Crnr

Observed Calculated
Disterici . . . - - - 0 24038 | 24958 | —0.08
.. 3000 | 24203 | 2430.8 | —0.06
Grifiths . 4015 | 24036 | 24075 | —0.16
13.05 | 24676 | 24663 | +0.05 .
. 21.17 2451.2 2450.5 +0.03 ‘;\’
Smith 2806 | 24350 | 24352 | —0.01 ?
3980 | 2058 | 24083 | — 010 N
Q
3012 | 24048 | 24306 | — o024 %
Hemning, to1e | osy | 2 | - 00k ¥
it Series . 6485 | 93430 | 23477 | —0.20
734 | es13n | 28160 | —0.10
8920 | 22856 | 22846 | 005 %)
10050 | 29542 | 92540 | +0.01

102.34 2248.7 2249.2 —0.02 %i
Henning, 120.78 2200.2 2197.2 + 0.14
Second Serfes . . . | 140.97 21342 2137.6 —0.16
160.56 2077.0 2077.2 —0.01

180.72 2018.6 2012.3 +0.31

The differences between the observed values and those calcu-
lated from this formula are shown in the last column.

The mean calorie is equivalent to 4.184 joules ; hence, divid-
ing the constants of Eq. (1) by 4.184, the resulting equation
gives 7 in calories. This equation is readily changed to give
rin B. t.u. with ¢ in degrees F. 'We thus obtain finally

7= 970.4 — 0.655 (£ — 212) — 0.00045 (¢t — 212)% (2

This formula may be accepted as giving quite accurately the
latent heat from 82° F. to perhaps 400° F.*



115. Total Heat. Heat Content. —For the temperature range
32° to 212° I. the total heat ¢''is obtained from the relation
¢"=¢'+r. As has been shown, values of ¢’ and of » can be
accurately determined for this range. For temperatures be-
tween 212° and 400°, we are indebted to Dr. H. N. Davis for
the derivation of a formula for the heat content of saturated
vapor of water. The earlier experiments of Regnault led to
the formula ¢" =1091.7 4 0.305 (¢t — 32),
which has been extensively used in the calculation of tabu-
lar values. By making use of the throttling experiments of
Grindley, Griessmann, and Peake, Dr. Davis* has shown that
Regnault’s linear equation is incorrect, and that a second-degree
equation of the form

¢"=a+b(t—212) +c(t—212)%

may be adopted. Dr. Davis obtains for the heat content ¢
the formula

@ =1150.4 + 0.8745 (¢ — 212) — 0.00055 (t — 212)2.  (8)
From this formula the total heat ¢" is readily determined from
the relation ¢" =4 — Apev'. It is found, however, that slight
changes in the constants are desirable in view of Henning’s sub-
sequent experiments on latent heat. The modified formula

¢''=1150.4 4 0.85(¢ — 212) — 0.000833 (¢ —212)?  (4)
may be accepted as giving with reasonable accuracy values of
¢ for the range 212° to 400° F.

116. Specific Volume of Steam. — The specific volume o" of
a saturated vapor at various pressures may be determined
experimentally. For water vapor accurate measurements of
v for temperatures between 100° and 180° C. have been made
by Knoblauch, Linde, and Klebe. It is possible, however, to
calculate the volume v from the general equations of thermo-
dynamics; and the agreement between the calculated values
and those determined by experiment serves as a valuable check
critical temperature, 689° F. At the higher temperatures it doubtless gives more
accurate values than the second-degree formula. See Proceedings of the Amer.
Acad. of Arts and Sciences 45, 284.

* Trans. Am. Soc. of Mech. Engs. 30, 1419, 1908. See Art. 104 for a dis-
euscion of the methad amnlaved in the derivation of formula (3).



on the accuracy with which the factors entering into the theo-
retical formula have been determined.
The general equation (Art. 56)

dg=cdT+ AT(%’—Z) 2o 1o
applies to any reversible process. Let us apply it to the pro-

cess of changing a liquid to saturated vapor at a given constant
temperature. For a saturated vapor, the partial derivative

(%%) is simply the derivative %7%, and this is a constant for any
v

given temperature (Art. 107). Hence, for the process in ques-
tion, we have (since d7"= 0)

- 9{2 V Jy = C_ZE " _ gy, 9
q'AToltfwd’U ATdt('u v") @)
But in this case ¢ is the heat of vaporization »; hence we have
Mg 1 _Jr 1 3
VTATH T Tap ®
dt dt

This is the Clapeyron-Clausius formula for the increase of vol-
ume during vaporization.

Having for any temperature the derivative %l? (Art. 109)

and the latent heat r, the change of volume »" — ¢ is readily
calculated. The following table shows a comparison between
the values of o determined experimentally by Knoblauch,
Linde, and Klebe, and those calculated by Henning from the
Clapeyron equation, using the values of r determined from his
own experiments. The third line gives values of v calculated
from the characteristic equation of superheated steam. (See
Art. 132.)

Srrairio VoL, Ou, Mprses vre Ko

100° 120° 140° 160° 180°C.

Experimental . . . .| 1674 | 0.8022 | 0.5001 | 0.3073 | 0.1043

Henning . . . . . . 1.673 | 0.8912 | 0.5078 | 0.3071 | 0.1947

From the equation for
superheated steam . . 1.673 | 0.8915 | 0.5084 | 0.3071 | 0.1945
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The relation between the pressure and specific volume v of
saturated steam may be represented approximately by an equa-
tion of the form pn=C, )

Zeuner, from the values of »" given in the older steam tables,
deduced the value n=1.0646. Taking the more accurate
values of v given in the later steam tables, we find

n=1.0631, C'=484.2.

117. Entropy of Liquid and of Vapor. — During the process
of heating the liquid from its initial temperature to the tem-
perature of vaporization the entropy of the.liquid increases.
Thus, referring to Fig. 62, if the initial temperature be 32° F.,
denoted by point 4, and if the temperature be raised to that
denoted by A/, the increase of entropy of the liquid is repre-
sented by OA,, the heat of the liquid by area 0AA'A;.

Since dg’ = ¢/dT, we have as a general expression for the
entropy & of the liquid corresponding to a temperature 7}

T dq’ T C’dT
/ — — —_—
§= f«m.e T Jme T @

If the specific heat ¢’ is given as a function of 7} the inte-
gration is readily effected. In the case of water, where the
specific heat varies somewhat irregularly, as shown by the
table of Art. 115, the following expedient may be used. Put
¢ =1+ k; then % is a small correction term that is negative
between 63° and 150° F. and positive elsewhere. From (1) we
have, therefore,

aT | ckdT
= (= ==, 2
=7+ . @
The first term is readily calculated and the small correction
term may be found by graphical integration. This method was
used in calculating the values of ¢’ in table L.

The increase of entropy during vaporization, represented by
A'A" (Fig. 62), is evidently the quotient % Hence the en-
tropy of the saturated vapor in the state A'' is



For a mixture of quality =, as represented by the point M, the
entropy is

s=a'+%. 105

118. Steam Tables. — The various properties of saturated
steam considered in the preceding articles are tabulated for
the range of pressure and temperature used in ordinary tech-
nical applications. Many such tabulations have appeared.
The older tables based largely upon Regnault’s data are now
known to be inaccurate to a degree that renders them value-
less. The recent tables of Marks and Davis* and of Peabody,t
however, embody the latest and most accurate 1ese’uches on
saturated steam.

Table I at the end of the book has been caleulated from
the formulas derived in Arts. 108-116. The values differ but
little from those obtained by Marks and Davis. The first col-
umn gives the pressures in inches of mercury up to atmospheric
pressure, and in pounds per square inch above atmospheric
pressure; the second column contains the corresponding
temperatures. Columns 8 and 4 give the heat content of the
liquid and saturated vapor, respectively. The values in col-
umn 3 may be taken also as the heat of the liquid ¢/; similarly,
column 4 may be considered as giving the total heat ¢/’ of the
saturated vapor. As we have seen, the difference between ¢
and ¢” is negligible except at high pressures.

119. Properties of Saturated Ammonia. — Several tables of
the properties of saturated vapor of ammonia have been pub-
lished. Among these may be mentioned those of Wood, Pea-
body, Zeuner, and Dieterici. The values given by the different
tables are very discordant, as they ave for the most part obtained
by theoretical deductions based on meager experimental data.
For temperatures above 82° F. the values obtained by Dieterici
as the result of direct experiment are most worthy of confidence.

Dieterici determined experimentally the specific volume "
of the saturated vapor for the temperature range 0° to 40° C.

* Marks and Davis, Steam Tables and Diagrams, Longmans, 1008.



(82° to 104° F.) and also for the same range the specific heat ¢’
of the liguid ammonia. The formula deduced by Dieterici for
specific heat is, for the Fahrenheit scale,

¢ =1.118 + 0.001156 (¢t — 32). (¢))

From this formula, the heat of the liquid ¢’ and the entropy of
the liquid &' are readily calculated by means of the relations

¢ T dT
I — 'dt, /= 1L
7 fazc ¢ jmf.s T

The relation between pressure and temperature is given by
the experiments of Regnault. The results of these experiments
are expressed quite accurately by Bertrand’s formula

log p = 5.87895 — 50 log Flsﬁ

Above 82° having Dieterici’s experimental values of v/ and

@

from (2) the derivative %v’ we may find the latent heat 7 from

the Clapeyron-Clausius formula
r= A" —) Tg_g,. (See Art. 116 (3)

For temperatures below 32° we have neither »" nor r given
experimentally ; hence for this region values of various prop-
erties can only be determined by extrapolation, and the ac-
curacy of the results thus obtained is by no means assured. In
calculating the values of table III the following method was
used. The valnes of » for temperatures above 82° were calcu-
lated by means of (3). It was found that these values may be
represented quite accurately by the equation

log r = 1.7920 + 0.4 log (266 — ), [©))
in which 266° is the critical temperature of ammonia. (See p.
176, footnote.) Formula (4) was assumed to hold for the range
82° to — 30°; and from the values of  thus obtained values of
" were calculated by means of the Clapeyron relation (3).

120. Other Saturated Vapors. — Several saturated vapors in
addition to the vapors of water and ammonia have important
technical applications. Sulphur dioxide and carbon dioxide in



particular are used as media for refrigerating machines. The
properties of the former fluid have been investigated by Cailletet
and Mathias, those of the latter by Amagat and Mollier. The
results of these investigations are embodied in tables.*

The properties of several vapors of minor importance have
also been tabulated, the data being furnished for the most part
by Regnault. These include ether, chloroform, carbon bisul-
phide, carbon tetrachloride, aceton, and vapor of alcohol.f

121. Liquid and Saturation Curves.—If for various tem-
peratures the corresponding values of 8', the entropy of the
liquid, be laid off as abscisswm, the result is a curve ¢, Fig. 62.
This is called the liquid curve. If, likewise, values of

"n— g _,__&'7’_
be laid off as abscissw, a second curve s is obtained. This
is called the saturation curve.

As already stated (Art. 106), any point between the curves '
and s" represents a mixture of liquid and vapor, the ratio = de-
pending upon the position of the point. It is possible, there-
fore, to draw between the curves s’ and 8" a series of constant-z
lines. Each of the horizontal segments A'A", B'B", ete., is
divided into a convenient number (say 10) of equal parts and
corresponding points are joined by curves. The successive
curves, therefore, are the loci of points for which == 0.1,
z=10.2, etc.

The form of the saturation curve has an important relation
to the behavior of a saturated vapor. For nearly all vapors,
the curve has the general form shown in Fig. 62; that is, the
entropy s" decreases with rising temperature. In the case of
ether vapor, however, the entropy increases with rising tem-
perature and the curve has, therefore, the same general direc-
tion as the liquid curve ¢'.

122. Specific Heat of a Saturated Vapor. — Referring to the
saturation curve of Fig. 62, suppose the state-point to move

* For tables of the propertiesof saturated vapor of SOy and CO; in English
units, see Zeuner’s Technical Thermod; ics, Klein’s translation, Part IL

t See Peabody’s Steam and Entropy Tablcs, or Zeuner's Technical Thermo-
Avmrrnenine DPasd 1T
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from A" to B”. This represents a rise of temperature of the
saturated vapor during which the vapor remains in the satu-
rated condition. The process must evidently be accompanied
by the withdrawal of heat represented by the area 4,4"B''B, ;
and the reverse process, fall in temperature from B to 4", is
accompanied by the addition of heat represented by the same
area. It appears, therefore, that along the saturation curve

the ratio % is negative (except in the case of ether); that is,
the specific heat of a saturated vapor is, in general, negative.

An expression for the specific heat ¢ of the saturated vapor
may be obtained as follows. The entropy of the saturated
vapor is given by the equation

o=+ s @

hence the change of entropy corresponding to a change of
temperature is obtained by differentiating (1), thus

a' = a5+ (7). @
But ds' = #, (3)
and similarly for the saturation curve,

as' =1L, ®

Substituting these values ds’ and ds” in (2), the result is

¢ —”+TddT<T>

or c”=c’+5—§,—%. ®)
But since ¢/ = dT’ (5) may be written

o= ag' + "') r
dT T
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¢ = a+ b(t —212) — et — 212)%;

whence )

49 5 _ 9 0(t—212),

a7 e( )
where b =10.85 and ¢ = 0.000333.

At 212°, we have, for example,

970.4

/= 0.85— 2 = 0.85 — —mm

@=08-7 212+ 459.6

123. General Equation for Vapor Mixtures. — Let heat be

added to a unit weight of mixture of liquid and saturated

vapor, of which the part z is vapor and the part 1—z is

liquid. In general, the temperature 7' and quality @ will

change; hence the heat added is the sum of two quantities:

(1) the heat required to increase the temperature with z

remaining constant; (2) the heat required to increase z with

the temperature constant. The first is evidently ¢/ (1 — z)dT
+¢"zdT; and the second is rdz ; hence we have

dg=c'(1 —2)dT+ ¢"2dT +rdz @

ag the general differential equation for the heat added to a

mixture.

From (1) the general expression for the change of entropy
of a mixture is given by

= —1.095.

dg_Jd(A—2) +'z
ds=2_cl- 2
A 7 7 sl At/ WA dx @)
The fact that ds is an exact differential lends at once to the
relation ,
HEEEOITE NS ®
dz| T v 9T\T)s
whence d—d b (l)
vy aT\7/
dr _r
or =l 4 & T 4
d=et = @

the relation that was obtained in Art. 122.



1<%, Variation of x during Adiabatic Changes. — Let the point
A" (Fig. 64) represent the state of saturated vapor as regards
pressure and temperature. Adiabatic expansion will then be
represented by a vertical line A" Z, the final point Z being at
lower temperature. Adiabatic compression will be shown by a
vertical line A"G. With a saturation curve of the form
shown, it appears that during adiabatic expansion some of the
vapor .condenses, while adiabatic compression results in super-
heating. If the state-point is originally at M so that = is some-
what less than 1 (say 0.7 or 0.8),

. . . . d
then adiabatic expansion is ac- -

N A T n
companied by a decrease in z, ) ‘7‘[7/ " \m 4"
adiabatic compression by an in- / \‘
crease of z. / \

. B/ I \ B?
If the saturation curve slopes 7 7 NZARN

in the other direction, as in the
case of ether, the conditions just
stated will, of course, be reversed.
Adiabatic expansion of the
liquid is represented by the line
A'F ; evidently some of the © —_— e
liquid is vaporized during the
process. If the mixture is originally mostly liquid, as indicated
by a point IV near the curve §', then adiabatic expansion results
in an increase of , adiabatic compression in a decrease of z.
For a given pressure there is some value of & for which an
indefinitely small adiabatic change produces no change in z;
in other words, at this point the constant-z curve has a vertical
tangent. TFor this point we have evidently dg=0 and dz=0,
and the general equation (1), Art. 128, becomes

[l —2)+"2]dT=0, @
J
whence zi 1= :'—,,’ @
cl
or TEI ®

The locus of the points determined by (8) is a curve n (Fig. 64),



ag=rax; (%)
that is, all the heat entering the mixture is expended in vapor-
izing the liguid. The zero curve is of little practical importance.
The change of the quality # during the adiabatic expansion
of a mixture is readily calculated by means of the entropy
equation. In the initial state, the entropy of the mixture is

31=31 + l, -,
and in the final state it is

8, =23, + —%2
But for an adiabatic change s,=s,; therefore, we have the
relation 8 +—11,—1—s2 +%7—;2, (©))

in which =, is the only unknown quantity.

125. Special Curves on the TS-plane.— The region between
the liquid and saturation curves may be covered with series of
curves in such a way that the position of the point represent-
ing a mixture indicates at onece the various properties of the
mixture.

In the first place, horizontal lines intercepted between the
curves §' and s" are lines of constant temperature, also lines of
constant pressure ; while vertical lines are lines of constant
entropy.

Lines of constant quality, y, 2, 2, . . . may be drawn as
explained in Art. 121.

Curves of constant volume may be drawn as follows: The
volume of a unit weight of mixture whose quality is = is given
by the equation

v=2z(v" =)+, @
r
whence r= 1% @

Suppose that the curve for some definite volume (say v =5 cu.
ft.) is to be located. For dlﬂelent pressures py, Pg, Pgr - - -
the saturation volumes v,", v,", 4", . . . are known from the



vables. oSubstituting successively tnese values of ¢" 1 (2),
values of z, as @, %, %G . . . corresponding to the pressures
P> Py» Py - - - Will be found. The value of v' may be taken
as constant for all pressures. The value of 2, locates a definite
point on the p, line, that of z, a point on the p, line, etc. The
locus of these points is evidently a curve, any point of which
represents a mixture having the given volume v; hence it is a
constant-volume curve.

In a similar manner curves of constant energy % may be
located. Since

w=gq'+azp, )]
—
we have =2 p g, @
For given pressures py, pg, « « -
u—gq u—gq
zy = y =—=, ete.
T T

Values of ¢’ and p for different pressure are given in the table,
and therefore for a given u, values of 2, @, . . . are readily

calculated. These locate points on the corresponding p-lines,
and the locus of the points is
the desired constant-u curve. iy

By the same process may be
drawn curves of constant total
heat,

s - 57

¢ = ¢'+ ar = const.

U= const.

or curves of constant heat
content

. @=const.

%=1 4+ 2r = const.

In Fig. 65, the various curves
are shown drawn through the © Frc. 65
same point P. From the general
course of the curves the behavior of the mixture during a
given change of state may be traced. Thus: (1) If a mixture
expands adiabatically, v increases but p, 7, u, and ¢ decrease.
The quality ¢ decreases as long as the state-point lies to the
right of the zero curve. (2) If a mixture expands isody-
namically (%= const.), v, s, and z increase, p, 7, and ¢ decrease.




for water vapor, taking values of s' and s from the steam table. Then
draw the curves v = 2, » = 10, v = 40 cu. ft. Also draw the curves u = 600
B. t. u., u =800 B. t. u.

126. Special Changes of State.— Certain of the curves de-
seribed in preceding articles represent important changes of
state of the mixture of saturated vapor and liquid. The prin-
cipal relations governing some of these changes will be de-
veloped in this article. It is assumed that the system remains
a mixture during the change, that is, that the path of the state-
point is limited by the curves ¢ and s".

(a) Isothermal, or Constant Pressure, C'hange of State. — Let
z; denote the initial quality, #, the final quality. Then the
initial volume is

vy =z,(v" =)+
and the final volume is
vp =z, (v — V) + o',

The change in volume is therefore

vy — vy = (2 — 2) (W' = v"), (O]

and the external work is
W=plop—v)=pQ"— ) (2, — 2. @

The change of energy is
Uy — Uy = Jp(Zy — 2y), ()

and the heat absorbed is
g=r(z— 2. &

These equations refer to a unit weight of mixture.
EXAAMPLE. At a pressure of 140 Ib., absolute, the volume of one pound
of a mixture of steam and water is increased by 0.8 cu. ft. The change of

mown_ 08 ;9 o
ool = 3199 — 0.017 — 0.2514. The external work is

140 x 144 x 0.8 = 16,128 ft.-1b.

The increase of energy is Jp(z2 — 2,) = 778 x 786.1 x 0.2514 = 153850 ft.-1b.;
and the heat absorbed is r (22 — z)) = 869 x 0.2514 = 218.5 B. t. u.

quality is




0) Change of Otate av Constant Volume. — Since the volumes
); and v, are equal, we have

2 (0" =) =20 — '), ®
vhere v, and v,/ are the saturation volumes corresponding to
he pressures p; and p,, respectively. From (5) the quality =,

n the final state may be determined. The external work Wis
ero ; hence we have for the heat absorbed

g=Au—up) = (g5 +2p3) — (@) —21p1) ©
*ExamrrLE. A poundof a mixture of steamn and water at 120 Ib. pressure,
juality 0.8, is cooled at constant volume to a pressure of 4 in. of mercury.
Required the final quality and the heat taken from the mixture.
From (5)
_a(v —v) _0.8(3.724 — 0.017) _ v
=Sy T8 0.0167.

z2

Therefore
¢ =311.9 + 0.8 x 795.8 — (93.4 + 0.0167 x 959.5)= 839.2 B. t. u.

(¢) Adiabatic Change of State. For a reversible adiabatic
change the entropy of the mixture remains constant; hence we
have

s+ T =gt 4 Tl 1)
U A N A

from which equation the final quality @, can be found. Having
5, the final volume v, per unit weight is

V= zz(vz”—v’) +o. ®

Since the heat added is zero, the external work is equal to the
decrease in the intrinsic energy of the mixture. That is,

W=y —uy=J[ (g1 +2101) — (@' + 2] ®

Exampre. Three cubic feet of a mixture of steam and water, quality
0.89, and having a pressure of 80 1b. per square inch, absolute, expands
adiabatically to a pressure of 5 in. Hg. The final quality, final volume,
and the external work are required.

From the steam tables we find the following values:

q r . ry ?"' ol
For p = 80 Ib. 231.8 819.6 0.4533 1.1667 5.464
For p = 5 in. Hg. 101.7 953.7 0.1850 17170 143.2



The weight of the mixture 18

M= 8 = 3 = 0.6167 Ib.
(=) ¥ 0.80(5404 — 0.017) + 0017

From (7), the quality z, in the second state is given by the relation
0.4533 + 0.89 x 1.1667 = 0.1880 + 1.7170 z,,

whence 2, = 0.759.
The volume in the second state, neglecting the insignificant volume of the
liquid, is
V, = 0.6167 x 0.759 x 143.2 = 67.02 cu. ft.
Finally, the external work is
W =778 x 0.6167 [(281.8 + 0.89 x 819.6) — (101.7 + 0.759.x 953.7)] = 89,086
fh.-lb.

(d) Isodynamic Change of State. If the energy of the mix-

ture remains constant, we have

Uy = Uy
or 01 +21p1= ¢ + 2oy 10
From (10) the final value of z is determined, and the final
volume is then found from (8).
For the isodynamic change, the heat added to the mixture is
evidently equal to the external work. There is no simple way
of finding the work. As an approximation, an exponential

curve
Pyt = pot 11)
may be passed through the points p,, v;, and p,, v,, and the
value of n can be found. This curve will approximate to the
true isodynamic on the pv-plane, and the external work will
then be approximately .
W=0l Do, 12
po az

In practice the isodynamic of vapor mixtures is of little
importance.

127. Approximate Equation for the Adiabatic of a Vapor Mix-
ture. — In certain investigations, especially those relating to the
flow of steam, it is convenient to represent the relation between
p and v during an adiabatic change by an equation of the form

oV = (. fa))



rT. 127] APPROXIMATE EQUATIQN OF ADIABATIC 191

'he value of the exponent » is not constant, but varies with the
iitial pressure, the initial quality, and also with the final
ressure ; and at best the equation is an approximation.
ankine assumed for n the value %L for all initial conditions.
euner, neglecting the influence of initial pressure, gave the
ormula =1.085 + 0.1z 1))
Ir. E. H. Stone,* using the tables of Marks and Davis, has
erived the relation

n =1.059 — 0.000815 p + (0.0706 + 0.000376 p)z.  (3)

The following table gives values of » calculated from (8).

nitial INrTIAL Pressure IN PouNDs Per SQUARE INcn, ABsoLUTE
duuli-

ty 20 | 40 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240

1.131{1.132 | 1.133 [ 1.134 | 1.136 | 1.137 | 1.138 | 1.139 | 1.141 | 1.142 | 1.143 | 1.145
1.127 [1.128 | 1.128 | 1.130 [ 1.131 | 1.131 | 1.132 | 1.133 | 1.134 | 1.135 | 1.136 | 1.137
1.123 { 1,123 | 1.124 [ 1.124 [ 1.125 | 1.125 | 1.126 | 1.126 { 1.127 [ 1.127 { 1.128 | 1.129
1.119 | 1.119 | 1.119 | 1.119 [ 1.120 | 1.120  1.120 | 1.120 | 1.120 | 1.120 | 1.120 | 1.121
1.115 | 1.115 | 1.114 | 1.114 | 1.114 | 1.114 [ 1.113 | 1.113 | 1.113 | 1.113 | 1.112 | 1.112
1.111 | 1.110 | 1.110 | 1.109 | 1,109 | 1.108 | 1.107 | 1.106 | 1.106 | 1.105 | 1.104 | 1.104
1.108 | 1.106 | 1.105 | 1.104 | 1.103 | 1.102 | 1.101 | 1.100 | 1.099 | 1.008 | 1.097 | 1.09%
1.104 | 1.102 | 1.101 | 1.099 | 1.098 | 1.096 | 1.095 | 1.093 | 1.092 | 1.091 | 1.089 | 1.088
1.100 | 1.098 | 1.096 | 1.094 | 1.093 | 1.091 | 1.089 | 1.087 | 1.085 | 1.083 | 1.081 | 1.080
1.096 | 1.093 | 1.092 | 1.089 | 1.087 | 1.085 | 1.083 | 1.080 | 1.078 { 1.076 | 1.074 | 1.072
1.092 | 1.089 | 1.087 | 1.084 | 1.082 | 1.079 | 1.077 | 1.074 | 1.071 | 1.069 | 1.066 | 1.064

Having the initial values p;, V7, and z;, and the final pressure
» the final volume ¥ is found approximately from (1), the
ppropriate value of n being taken from the table. The exter-
al work is found approximately by the usual formula for the
hange represented by (1), namely,

W=171V1" 2 Vs, 1))
n—1

ExampLE. Taking the data of the example of Art. 126 (c), we have
QN T — 2 — N RO whanea o — 1192 The final pressure is 5 in. He.



and W =144 x —— _0“‘;‘2'3" —

Comparing these results with the results obtained by the exact method,
it appears that the volume V), is about 0.36 per cent smaller and the work
W about 0.13 per cent smaller. Hence the approximation is sufficiently
close for all practical purposes.

= 00,/ % 1h.-1D.

EXERCISES

1. From Bertrand's equation calculate the pressure of steam corre-
sponding to the following temperatures: 60° 250° 400° I,

2. Tind the values of the derivative (—lﬁ for the same terperatures.
L

3. Using the results of Ex. 1 and 2, find the specific volumes for the
given temperatures.

4. Find (a) the latent heat, (b) the total heat of saturated steam, at a
temperature of 324° I*.

5. Calculate the latent heat of steam, (a) by the quadratic formula (2),
Art. 114; () by the exponential formula (see footnote, p. 176) for the tem-
peratures 220° F. and 380° F. Compare the results.

In the following examples take required values from the steam table,
p. 315. ’

6. Find the entropy, energy, heat content, and volume of 4.5 Ib. of a
mixture of steam and water at a pressure of 120 1b. per square inch, quality
0.87.

7. Find the quality and volume of the mixture after adiabatic expan-
sion to a pressure of 16 Ib. per square inch.

8. Find the external work of the expansion.

9. Using the data of the preceding examples, calculate the volume and
work by means of the approximate exponential equation p¥™" = C.

10. A mixture, initial quality 0.97, expands adiabatically in a 12 in. by
12 in. cylinder from a pressure of 100 1b. per square inch, gange, to a pressure
of 10 1b. per square inch, gauge. Find the point of cut-off.

11. The volume of 6.3 Ib. of mixture at a pressure of 140 1b. per square
inch is 17.2 cu. ft. Tind the quality of the mixture; also the eutropy
and energy of the mixture.

12. The mixture in Ex. 11 is cooled at constant volume to a pressure of
20 Ib. per square inch. Find the final value of z and the heat abstracted.

13. At a pressure of 180 Ib. per square inch the volume of 2 1b. of a
mixture of steam and water is increased by 0.9 cu. ft. Find the increase of
quality, increase of energy, heat added, and external work.

14. A mixture of steam and water, quality 0.85, at a pressure of 18 lb.
per square inch, is compressed adiabatically, TFind the pressure at which



ne water 13 compleiely vaporized. Ll also tac WOIK Ol Compression
per pound of mixture.

15. Steam at a pressure of 80 lb. per square inch expands, remaining sat-
urated watil the pressure drops to 50 lb. per square inch. Find approxi-
mately the heat that must be added to keep the steam in the saturated
condition.

16. Water at a temperature of 352° F. and under the corresponding
pressure expands adiabatically until the pressure drops to 30 Ib. per square
inch. Find the per cent of water vaporized during the process. Find the
work of expansion per pound of water.

17. Two vessels, one containing M, Ib. of mixture at a pressure p, and
quality zi, the other M, lb. at a pressure p, and quality z,, are placed in
communication. No heat enters or leaves while the contents of the vessels
are mixing. Derive equations by means of which the final pressure p; and
final quality z3 may be calculated.

18. Let 1 1b. of mixture at a pressure of 20 lb. per square inch, quality
0.96, enter a condenser which contains 20 lb. of mixture at a pressure of 3 in.
Hg., quality 0.05. Assuming that no heat leaves the condenser during the
process, find the pressure and quality after mixing.
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CHAPTER XI
SUPERHEATED VAPORS

128. General Characteristics of Superheated Vapors. — The
nature of a superheated vapor has been indicated in Axt. 106,
describing the process of vaporization. So long as a vapor is
in immediate contact with the liquid from which it is formed it
remains saturated, and its temperature is fixed by the pressure
according to the relation t=f(p). When vaporization is com-
pleted, or when the saturated vapor is removed from contact
with the liquid, further addition of heat at constant pressure
results in a rise in temperature. If ¢, denotes the saturation
temperature given by ¢ = f(p) and ¢ the temperature after su-
perheating, the difference ¢ — ¢, is the degree of superheat. Thus
for steam at a pressure of 120 Ib. per square inch, ¢, = 841.83°F';
hence if at this pressure the steam has a temperature of 460°,
the degree of superheat is 460° — 341.3° = 118.7°.

As soon, therefore, as a vapor passes into the superheated
state, the character of the relation between the codrdinates p, v,
and ¢ changes. The temperature is freed from the rigid con-
nection with the pressure that obtains in the saturated state,
and p and ¢ may be varied independently. The volume v of
the superheated vapor depends upon both p and ¢ thus taken as
independent variables ; that is,

v=4(p:®), @
as in the case of a perfect gas. The form of the characteristic
equation (1) for a superbeated vapor is, however, less simple
than that of the gas equation pv = BT.

The state described by the term *superheated vapor” lies
between two limiting states; the saturated vapor on the ome
hand, and the perfect gas, obeying the laws of Boyle and Joule,
on the other. The characteristic equation therefore should

196



be of such form as to reduce to the equation of the perfect
gas, as the upper limit is approached and to give the proper
values of p, v, and ¢ of saturated vapor when the lower limit
is reached. In the case of compound substances like water
or ammonia, however, one disturbing element is introduced
at very high temperatures. The vapor may to some extent
dissociate ; thus steam may in part split up into its components
hydrogen and oxygen, ammonia into nitrogen and hydrogen.
Nernst has found for example that at a pressure of one atmos-
phere 3.4 per cent of water vapor is dissociated at a temperature
of 2500° C. Manifestly the existence of dissociation must in-
fluence the relation between the variables p,v, and ¢. However,
at the temperatures and pressures with which we are concerned
in the technical applications of thermodynamics, the amount of
dissociation is entirely negligible, and the characteristic equation
may be assumed to hold for all temperatures within the range
of ordinary practice.

129. Critical States. — The region between the limit curves
o, o (Fig. 60) ov ¢, '/ (Fig. 62) is the region of mixtures of
saturated vapor and liquid.
The fact that these two curves
approach each other as the tem-
perature is increased suggests
that a temperature may be
reached above which it is im-
possible for a mixture of liquid
and vapor to exist. Let it be
assumed that the two limit
curves merge into each other
at the point H (Fig. 66), and 0 Fro. 6. ’
thus constitute a single curve,
of which the liquid and saturation curves, as we have previously
called them, are merely two branches. The significance of this
assumption may be gathered from the following considerations.

Let superheated vapor in the initial state represented by
point A (Fig. 66 and 67) be compressed isothermally. Under
usual conditions. the pressure will rise until it reaches the pres-




sure of saturated vapor corresponding to the given constant
temperature ¢, and the state of the vapor will then be represented
by point B on the saturation curve. Further compression at
constant temperature results in condensation of the saturated
vapor, as indicated by the line BC. If the liquid be compressed
isothermally, the volume will be
decreased slightly as the pres-
sure rises, and the process will
D B 4  be represented by curve CD.
The isothermal has therefore
b7e B three distinct parts: along AB
4 s the fluid is superheated vapor,
along BC a mixture, and along
COD aliquid. If the initial tem-
perature be taken at a higher
s value ¢, the result will be similar
except that the segment B’ ¢ will
be shorter. If the limit curves
meet at point H, it is evident that the temperature may be
chosen so high that this horizontal segment of the isothermal
disappears; in other words, the isothermal lies entirely outside
of the single limit curve.

In Fig. 66 the segment B( represents the difference v’ — o'
between the volume »" of saturated vapor and the volume ' of
the liquid ; and in Fig. 67, the area B;BCC) represents the la-
tent heat  of vaporization. For the isothermal ¢, that passes
through H, the segment B( reduces to zero; hence, for this
temperature and all higher temperatures, we have

T q

4 (/l 1
Fi16. 67,

I 4y

v — o =0, o0r 0" =7,
and r=0.

The second result also follows from the first when we consider
the Clapeyron equation
ol — o = 57 r _1_
T dp.
ar
The experiments of Andrews show that the condition just
dezerihed mav he anf11allo attaimad  TTon 2omdT coe T £ oos iy



GOAAE as deiclmined by Ahdlews are shown in fig. 8. Ior
t =18.1° and 21.5°C. the horizontal segments corresponding
to condensation are

clearly marked. For 110
¢=31.1° the horizontal *™
segment disappearsand
there is merely a point
of inflexion in the

|
\
\
AN
curve. At 48.1° the \ 5.
NS

point of inflexion dis-

appeared, and the iso- ¥
thermal has the general
form of the isothermal
for a perfect gas. \

The temperature ¢, (Lo
was called by Andrews
the critical tempera-
ture. It has a definite % Br

value for any liquid.
The pressure p, and
volume v, indicated by the point H are called respectively the
critical pressure and critical volume. Values of ¢, and p, for
various substances are given in the following table:

Fia. 68.

SussTANCE te, DEcures C. Pe, ATMOSPHERES
Water . . . . . . . .. 365.0 * 200.5
Ammonia . . . . . . . . 130.0 115.0
Ether . . . Ce e e 197.0 35.77
Sulphur dwmde e e e e 1554 78.9
Carbon dioxide . . . . . . 30.92 7.0
Carbon dzsulphlde e e e e 217.7 78.1
Nitrogen . . e e —146.0 385.0
Oxygen . . . . . . . . . —118.0 50.0
Hydrogen . . . . . . . . —220.0 20.0
Aie oo L0000 —140.0 30.0

* According to the recent experiments of Holborn and Baumann, the critical
temperature of water is 706.1° F (374.5° C) and the critical pressure is 3200 1b.
per square inch. See article by Prof. Marks, Jour. A. S. M. E., Vol. 33, p. 563.



Although at sufficiently high pressure the fluid may be in the
liquid state, the closest observation fails to show where the
gaseous state ceases and the liquid state begins. As stated by
Andrews, the gaseous and liquid states are to be regarded as
widely separated forms of the same state of aggregation.

It has been proposed to make the critical temperature the
basis of a distinction between gases and vapors. Thus, air,
nitrogen, oxygen, nitric oxide, ete., whose critical temperatures
are far below ordinary temperature, are designated as gases,
while steam, chloroform, ether, ete., whose critical temperatures
are above ordinary temperature are designated as vapors.

The determination of the critical values t,, p,, and v, by ther-
modynamic prineiples is a problem of great theoretical interest,
but lies beyond the scope of this book.

130. Equations of van der Waals and Clausius. — Many
attempts have been made to deduce rationally a single charac-
teristic equation, which with appropriate change of constants
will represent the properties of various fluids in all states from
the gaseous condition above the critical temperature to the
liquid condition. Such a general equation is that of van der
Waals, namely,

BT ¢

)
v—a ?

@

which was deduced from certain considerations derived from
the kinetic theory of gases. As van der Waals’ equation does
not accurately represent the results of Andrew’s experiments
on carbon dioxide, Clausius suggested a modification of the
last term of the equation and ultimately arrived at an equation

p=

of the form
=BT _ f(I) :
p=— oo @

where f( ') is a funetion of the absolute temperature that takes
the value 1 at the critical temperature.



The equations of van der Waals and Clausius are constructed
vith special reference to the behavior of fluids in the vicinity
f the critical state; hence they apply more particularly to
uch fluids as carbon dioxide, the critical temperature of which
s within the range of temperature encountered in the practical
pplications of heat media. The critical temperatures of most
mportant fluids, as water, ammonia, and sulphur dioxide are,
owever, far above the ordinary range, and for these media
he general equations do not give as good results as certain
urely empirical equations deduced from experiments covering
y relatively small region. For some fluids, notably ammonia,
here is unfortunately a lack of experimental data; for the
nost important fluid, water, we have, however, reliable data
'urnished by the recent experiments at Munich.

131. Experiments of Knoblauch, Linde, and Klebe.—The
oxperiments made at the Munich laboratory were so con-
lucted that three important
relations could be obtained
simultaneously.  These
were :

1. Relation between pres-
sure  and  temperature of
saturated steam.

2. Relation between spe-
cific volume and temperature
of saturated steam.

3. Relation between pres-

m—-
sure and  temperature of "
superheated steam with the ne~

P To Manometer|~|
volume remaining constant. ~=———

The experiment covered
the range 100° to 180° C.
The apparatus employed is Frc. 69.
shown  diagrammatically in '

Fig. 69. An iron vessel a contains a smaller glass vessel & to
which is attached a olass tube ¢. A similar glass tube d leads




a vtube J leading 1o a merculy IallOetot. —oLoalil 15 AL OMULEE
into vessel @ from a boiler, and suitable provision is made for
returning the condensed steam to the boiler.

A given weight of water is put into the glass vessel & and
is evaporated gradually by the heat absorbed from the steam
sarrounding it. As long as vessel b contains a saturated mix-
ture, the pressure within & must be the same as that within a,
since the temperature is the same throughout. Ilence the
mercury levels m, m in tubes ¢ and d will be at the same height.
When the water in & is all vaporized and the pressure and
temperature of the steam in a is further increased, the steam
in b becomes superheated. While
the temperature is still the same in
vessels a and b, the pressures in the
two vessels are not equal. This
may be shown by the Z%-diagram
(Fig. 70). Let point 4 on the
saturation curve s” denote the state
of the steam in vessel & just at the
end of vaporization; it also repre-
sents the state of the saturated
steam in the outer vessel a. As
the temperature rises from ¢; to ¢, the state of the steam
in @ changes as represented by the curve AC; that is, the
steam in 4 is saturated at the pressure p,. The apparatus
is so manipulated, however, that the mercury level m in tube ¢
is held constant, thus keeping a constant volume of steam in
vessel 5. The point representing the state of the steam in &
moves along the constant volume curve AB in the superheated
region, and the final pressure 5 given by the point B is smaller
than the pressure p, of the saturated steam in @. As a result
the mercury level in the tube d will be depressed to the
level m. A comparison of the mercury level in the manometer
with the level m gives the relation between the pressure and
temperature of superheated steam at the given constant
volume v; and a comparison with the level = gives the

relation between the pressure and temperature of saturated
steam.

Jia. 70,
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132. Equations for Superheated Steam.— To represent the
esults of the Munich experiments, Linde deduced the empiri-
al equation

pv=BT—p(l+ ap) [C(zé—?)" - _D:I. @
n metric units with p in kilogram per square meter, the con-
tants have the following values :

B =47.10 ¢'=10.031 n=3.
a = 0.0000002 D =0.0052

Vith English units and pressures in pounds per square tnch, the
quation becomes :

pv = 0.5962 T — p (1 + 0.0014 p) (@%@ - 0.0833)- ®

Che form of Eq. (1) is such as to make it inconvenient for
he purpose of computation; and the constant D in the last
erm leads to complication in the working out of a general
heory. A modified form of the equation, namely,

v+c=%1—(1+ap);"—ln 3)
s free from these objections and with constants properly chosen
epresents the results of the Munich experiments as accurately
s Linde’s equation. The constants are as follows:

Mzrrio Unirs Evoussn Usims
B =47.113 B =85.87, p in pounds per square foot
=0.5963, p in pounds per square inch
ogm = 11.19839 logm = 13.67938
n=>5 n=>5
¢ =0.0055 . ¢=0.088
a = 0.00000085  a = 0.0006, » in pounds per square inch.
The final equation with constants inserted is therefore
47795 x 100 5

. A AOO n rFOaLoO Vil 1 0 0 O00E A



An equation of the simple form

BT
V4= 5
®

has been proposed by Tumlirz on the strength of Battelli’s
experiments. Linde has shown that this equation may be made
to represent with fair accuracy the results of the Munich ex-
periments. For English units and with p in pounds per square
inch, the equation becomes

v +0.256 = 0.5962 L. )
r

For moderate pressure this formula is quite accurate, but at
high pressures and superheat the volumes given by it are con-
siderably smaller than those indicated by the experiments.

Two other characteristic equations deserve mention. For
many years Zeuner’s empirical equation

pv =BT - Cp* )

has been extensively used. The results of the Munich experi-
ments have shown that the form of this equation is defective,
and that it cannot accurately represent the behavior of super-
heated steam over a wide range. Callendar, from certain theo-
retical considerations, has deduced the equation,

BT 273\
u-b=7_oo( T) ®
which in form resembles Eq. (3), but lacks the factor p in the

last term.  While this equation is somewhat simpler than
Eq. (3), it is less accurate.

133. Specific Heat of Superheated Steam. — The experimental
evidence on the specific heat of superheated steam may be clas-
sified as follows :

1. The carly experiments of Regnault at a pressure of one
atmosphere and at temperatures relatively close to
saturation.

2. The experiments of Mallard and Le Chatelier, Langen,
and others at very hich temperatures.



3. The experiments of Holborn and Henning at atmospheric
pressure and at temperatures varying from 110° to
1400° C.

4. Recent experiments with steam at various pressures and
with temperatures close to the saturation limit. Of
these, the experiments of Knoblauch and Jakob are
considered the most reliable.

Regnault concluded from his experiments that at a pressure
f one atmosphere the specific heat of superheated steam has
he constant value 0.48 for all temperatures. This value has
een largely used for all temperatures and for all pressures as
rell.

Experiments by Mallard and Le Chatelier and by Langen at
igh temperatures agree in making the specific heat a linear
unction of the temperature. Thus, according to Langen,

¢, = 0.439 + 0.000239 ¢, @

rhere ¢ is the temperature on the C. scale.
The earlier experiments of Holborn and Henning at much
ower temperatures than those of Langen lead to the formula

¢y = 0.446 + 0.0000856 ¢. @

“his is again a linear relation, but the coefficient of ¢ is smaller
han that in Langen’s formula. Equations (1) and (2) show
hat the specific heat varies with the temperature at least, and
hat the convenient assumption of the constant value 0.48 is
ot permissible.

Finally, the experiments of Knoblauch and Mollier show con-
lusively that ¢, depends also upon the pressure. In these
xperiments, steam was run through a first superheater in
vhich all traces of moisture were removed. It was then run
hrough a second superheater consisting of coils immersed in
n oil bath. The heat was applied by means of an electric
urrent and could be measured quite accurately, and a com-
arison of the heat supplied with the rise of the temperature of
he steam gave a means of calculating the mean specific heat over
he temperature range involved. Experiments were conducted
L canrae of 9 A £ and 8 ko per square centimeter. The
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results are shown by the points in Fig. T1. From these
results the following conclusions may be drawn: (1) The
specific heat varies with the pressure, being higher the higher
the pressure atb the same temperature. (2) With the pressure
constant, the specific heat falls gradually from the saturation
limit, reaches a minimum value, and then rises again.

Starting with the characteristic equation (38), Art. 182, it is
possible to deduce a general equation for the specific heat ¢,
that will give results substantially in accord with the experi-
mental results of Knoblauch and Mollier. For this purpose we
make use of the general relation '

(%%) = _ATM_,z (Art. 5T). @
From the characteristic equation,
vhe=Zlran T, @
r i
we obtain by successive differentiation
Tt gL+ ), ®

8% mn(n 41 .
=00 (1 4 ap). ®)

Substituting in (3), the result is

de, Amn(n +1
(), = "2+ ap). ™
Taking T’ as constant and integrating (7) with p as the in-
dependent variable, the result is
_4 1
’""QS::" ) p(l + %p>+ const. of integration.

Now since T’ was taken as constant, the constant of integration
may be some function of 7'; hence we may write

(D) + A’”"<”—“2p(1 + gp). ®

e+
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high temperatures ¢, is given by an equation of the form
,=a+b0T;
hence we are justified in assuming that
¢ (1) = o+ BT,
where « and B are constants to be determined from experi-
mental evidence. Equation (8) thus becomes
Amn(n+1 a
6y=a+ BT+ %p(1+§p>. ®
This is the general equation for the specific heat of superheated
steam at constant pressure.

It may be seen at once that this equation gives results agree-
ing in a general way with those of Knoblauch and Mollier. At
a given temperature 7' the specific heat increases with the pres-
sure; furthermore for a given pressure, ¢, has a minimum value
as appears by equating to zero the derivative

de, Amn(n + 1)? ( a
2=fB T ) p(1 4 Zp).
ap= A a1+ )

The following values of the constants have been found to
make Eq. (9) fit fairly well the experimental results of Knob-
lauch and Mollier :

«=0.367
B =10.00018 for the C. scale.
B=10.0001 for the F. scale

Replacing the product Amn(n+1) by a single constant C,
we have as the final formula for the specific heat

¢p=0.867 + 0.0001 7'+ p(1 + 0.0003 p) % (10)

where log ('=14.42408 (pressure in pounds per square inch).

Figure 71 shows the curves representing this formula for the
pressures of the Knoblauch and Mollier experiments. The
agreement between the points and curves is satisfactory, con-
sidering the difficulty of the experiments. In Fig. 72 the
¢p-curves for various pressures in pounds per square inch are
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134, Mean Specific Heat. — Formula (10), Axt. 133, gives
he specific heat at a given pressure and temperature. Ior
ome purposes it is desirable to have the mean specific heat be-
ween two temperatures, the pressure remaining constant.
"his is readily calculated by the mean value theorem; thus
enoting by (¢,). the mean specific heat, we have

e, dT
(Dp)m jr“___l ll : (1)

Jsing the general expression for ¢, we lave, therefore,
Amn(n+1 3
("'zz)m T .l'f ‘: +,8T+——~Wl—)—-[)<1+§p>:lclfp
=a+ 9 (T 1+ L)

1
Ampu+ (14 ) i)
el 2

+ - @

The calculation, while straightforward is rather long, and if
p-curves are available, it is usually preferable to determine
he mean ¢, by Simpson’s rule or by the planimeter.

Curves of mean specific heat are shown in Fig. 78. For any
egree of superheat the mean specific heat between the satura-
lon state and the given state is given by the ordinate corre-
ponding to the given degree of superheat and the given
ressure. For example, at a pressure of 150 Ib. per square
nch the mean specific heat for 240° superheat is 0.529.

135. Heat Content. Total Heat. — Having a formula for the
pecific heat at constant pressure, equations for the heat con-
ent and the intrinsic energy of a unit weight of superheated
beam at a given pressure and temperature are readily derived.
‘or this purpose the general equation

dg= — ‘7_7’\ 't. 5 1
=, dT AT(BT ) dp (e Art. 54 (1)
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1= A(u+pv),

we have di=A[du+d(pv)],
or di = dg + Avdp. @
Hence, ma.kmg use of (1),

di=c,dT— A(f—l— o)ip. ®
From the characteristic equation we have

v

ﬁ“;"'n(l'i-ap) _[wn—l’

whence Tg%— v=_n+1)1+ ap) = +o.

Introducing in (8) this expression for 7' 6_;' — v and the general
expression for ¢, the result is
ar

= (a+BTYAT + Amn (n + 1)p<1 + 01;) A

Am(n+1
- -(1—1 (L+ap) dp — Acdp. ®
Since ¢ depends upon the state of the subtance only, the second
member of (4) must be an exact differential. The integral is
readily found to be
i= aT+’8T2 At 1)p(1+ ”pb;— Aeptip (5
The constant of integration 4, is determined by applying
Eq. (5) to the saturation state. Ior a given pressure and cor-
responding saturation temperature the second member of (5)
exclusive of ¢ can be calculated. The first member is the
value of ¢ for the assumed pressure as given in the steam table.
Hence ¢, is found by subtraction. By this method the mean
value 4= 886.7 is obtained.
Introducing known constants, Eq. (5) becomes

§=T(0.367 +0.00005 ) ~ p (1+0.0003 )55
~0.0168p +886.7. ©)



Here log ('=18.72511 when p is taken in pounds per square
inch.

The total heat of a unit weight of superheated vapor is the
heat required to raise the tem-
perature of the liquid to the
boiling point at the given con-
stant pressure, evaporate it, and
then superheat it, still at con-
stant pressure, to the tempera-
ture under consideration. On , &
the Z'S-plane, the process is
shown by the line ABCD (Fig.
T4). The area 0ABCC; rep-
resents the total heat of the
saturated vapor, which has ' bt
been denoted by ¢”. The area
C,CDD, represents the heat added to superheat the vapor.
This heat is evidently given by the integral

fo,dT = jLaJ, 5T+.T%p(1 +gp>}z:ﬂ
taken between the saturation temperature 7', at point C and
the final temperature 7' at point D. This integral is, in fact,
the product (¢,).(Z— T.), where (¢,). is the mean specific
heat for the temperature range 7'— 7,. The total heat of a
unit weight of superheated steam is given therefore by the

expression 4= ¢" +(e)n(T — T )

The term (¢,).(T— T.) is easily found from the mean
specific heat curves (Fig. 78), and ¢”(=1") is given in the
steam table. Hence with the aid of the curves, an approxi-
mate value for the heat content may be calculated.

D
T|

]

ExampLe. Find the heat content of one pound of steam at a pressure
of 150 1b. per square inch superheated 200°.

From the steam table /(= ¢'/) for this pressure is 1194.6 B.t.u.; and
from Fig. 73 the mean specific heat from saturation to 200° superbeat is
0.534.

Hence i = 1194.6 + 200 x 0.534 = 1301.4 B.t. u.
The vactilt atvan ko farmnla 7Y 1= 12017 B £ 1.
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136. Intrinsic Energy. — IFor the intrinsic emergy we have

from the defining equation 7= A(u + pv),
Au=1— Apv. @D

Using the expressions for ¢ and v heretofore derived, we obtain
the equation

Au=T(ut}BT—AB) —Am”[n+ (n— 1)ng+ W@

7
This expression gives the intrinsic energy in B.t.u. of a unit

weight of superheated steam. Introducing the proper constants,
we have, when p is taken in pounds per square inch,

Au=T(0.2566+0.00005 7y — %(1%.0002;};) +886.7, (3)

where log ('=13.64593.

The intrinsic energy may also be found quite exactly by
the following method. For the given pressure p the energy
of one pound of saturated steam is

Au' =g +p,

and the increase of energy due to the superheat is
b P :
JredT = (e)u(T — 1),

where (¢,), denotes the mean specific heat at constant volume.
The difference (¢,), — (¢,)n Varies somewhat with the pressure
and superheat, but 0.13 may be taken as a mean value. Ience
the energy of one pound of superheated steam is given by the
equation

Au=q +p+ [(¢)n— 0.18](T — T). ©))

Values of ¢’ and p are given in the steam table and the
proper value of (¢,),, may be found from the curves of Fig. 73.

Examrre. Find the intrinsic energy of one pound of steam at a pres-



137. Entropy. — From the general equation

dg= dT-AT(f?E) )
7=2% BTde

re have

d ar L]
ds=% = ¢ %2 _ (~> X
§= =60y A o7 pdp (€))
ntroducing in this equation the expressions previously derived
or ¢, and (aﬂ:}) (see Art. 133), the result is

b4

ds= (%+ 5>dT+ Amap(n+1) (1 + g;;) ar _AB‘?;:L

Tn+2
— (L + ap)dp. )

"his is necessarily an exact differential since s is a function of
he state only. The integral is found to be

s=alog, T+ BT—ABlog,p— Anp(l " %p>Tlm+ o (3
nserting the known constants and passing to common loga-
ithms, (3) becomes

s=0.8451 log T+ 0.0001 7'— 0.2542 log p
o
— p(1+0.0008 p) 7 — 0.3964. ®

n using (4), p is taken in pounds per square inch, and
og C'=18.64593. The constant 0.3964 is determined by
assing to the saturation limit, as was done in finding the
ralue of 7y

Equation (4) gives the entropy of one pound of superheated
team at any given pressure and temperature.

The entropy may also be found as follows. Let the point D
Fig. T4) represent the state of the fluid and assume CD
o be a constant pressure line cutting the saturation curve
t ¢, Then OC; gives the entropy s of saturated steam
4 the same mhressure as the superheated steam, and €Dy
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1. Constant Pressure. Let superheated steam change state
- constant pressure from an initial temperature ¢, to a final
mperature ,. For the heat added we have

—iy— i, =a(Ty— T + 5 (1p— 1)

— Amp (n+1)<1+2p><11,,, %) @

he external work is given by the relation

1 1
W=pCta = o) =B = T)=mp (L4 ap)| 7o-7:] - @
2 1

he change of energy may be found from the energy equation
Uy —uy =Jg— W,

- independently by calculating from the general formula the

lergies in the initial and final states.

The change of entropy may be obtained, likewise, from the
neral equation for entropy or from the relation

d
—n=f %77; amg,% + BT~ T
1 1
— Amnp(l + 2};)(1””_1 T1"+1>. 3

The preceding equations apply to a unit weight of the
1id.

2. Constant Volume. If T) and T, denote, as before, the
itial and final temperatires, respectively, we have from the
aracteristic equation

BT, m y
v+e=—"—"2— 1+ ap)7m ®
Pa ( D) T,

om which p, may be found. Having T}, p;, and T}, p, the
itial and final values of the energy and entropy may be de-
rmined from the general formulas. Since the external work
zero, the heat added is equal to the increase of energy.

8. Isothermal Exvansion. Let the initial and final pressures
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characteristic equation. For the change of entropy per unit
weight we have from the general equation for entropy

A a a
1= ABlog 1+ f:'ﬁ?[pl( +2p)-n1 +Ep2ﬂ. ®

The heat added during the expansion per unit weight is
therefore

q="T(s,—3) =ABT 1ag,1"_1

A_Zm[:]’l (1 + opl> Pa (1 + %Pz):l' ®)

For the external work, taking dv from the characteristic equa-
tion, we have

»

=BTlog b+ (o2 2. ©)
The change of energy may be found by combining (6) and (T)
or from the general equation of energy. It is found to be

=20 =p) + 5= D2 -pD ] ®

It should be noted that in the case of superheated steam con-
stant temperature does not, as with perfect gases, indicate con-
stant intrinsic energy.

4. Adiabatic Change of State. Tor an adiabatic change the
entropy remains constant; hence, for the relation between the
final pressure p, and temperature Zj, we have from the general
equation for entropy

«log, T, + BT, — AB log,, — Aup,(1 +2p2>[ﬂ“ o
where ('is a constant determined from the initial state. The

pressure p, is generally given; therefore, we have the tran-
scendental equation

“10g61'2+ﬂT2"P2(1+%P2>%= C+ ABlog,p,= (', (9



Having the 1nitial and final values of p and 7 the initial and
nal values u; and u, of the intrinsic energy may be calculated.
'he external work per unit weight is then

W=1uy — u, [¢))

In problems connected with the flow of steam the change of
eat content resulting from an adiabatic expansion is required.
his difference is found by calculating from the general equation
or the heat content the initial and final values ¢, and 4,

If the adiabatic expansion is carried far enough, the expansion
ne, as DE (Fig. T4), will cross the saturation curve s”, and the
tate-point will enter the region between the curves s’ and s'.
"his means that at the end of the expansion the fluid is a mix-
ure of liquid and vapor. The investigation of this case presents
o difficulties. The entropy and energy at the initial point D
re calculated from the general equation. Knowing the pressure
or the final state &, the quality = is readily determined from
he equation

5= szf+”%’, 1
2
vhere s; denotes the entropy in the initial state. Having z, the
nergy in the final state is calculated from the equation

uy = J (g5 + zpy)- 12)
[hen the external work per unit weight is given by the equation
W=y —uy =y — (g + py)- as

ExaMpLE. Steam at a pressure of 150 lb. per square inch absolute and
uperheated 100° F. expands adiabatically to a pressure of 5 in. of mercury.
Required the final condition of the fluid and the external work per pound;
lso the pressure at which the steam becomes saturated.

From the general equation the entropy in the initial state is found to be
.6346. From the steam table we obtain for the final pressure s’ = 0.1880,
= 1.7170 ; hence
r 1.6346 = 0.1880 + 1.7170 z,
T z = 0.8425.

n the initial state the energy in B.t. u. is
-
Ay = 918.1(0.2566 -+ 0.00005 x 918.1) _;igl(;

=1153.9 B. t. u.

(1 +0.00024 x 150) + 886.7



1n the nnal state the energy 18
Aus = g5 + maps = 101.7 + 0.8425 x 958.7 = 905.2.
Hence, the external work per pound of steam is
W = u — ug = 778(1153.9 — 905.2) = 193,490 ft.-1b.

The initial entropy 1.6346 is the entropy of saturated steam at a pressure of
66.6 Ib. per square inch. Ience the steam becomes saturated at this pressure.

139. Approximate Equations for Adiabatic Change of State. —
Exact calculations that involve adiabatic changes of superheated
steam are tedious on account of the transcendental form of the
.equation for entropy; and it is therefore desirable to introduce
simplifying approximations, provided the results obtained by
them are sufficiently accurate. An investigation of a number
of cases covering the range of values ordinarily used in the
technical applications of superheated steam shows that a set of
equations similar in form to the equations for a perfect gas
may be obtained, and that the error involved in using these
approximate equations does not in general exceed one or two
per cent.

The relation between pressure and volume during an adiabatic
change may be represented approximately by the equation

p (v + ¢)* = const. €5}
The value of ¢ is taken the same as in formula (4), Art. 131,
namely, ¢ = 0.088.

The value of n probably varies slightly with the initial pres-
sure and with the degree of superheat ; however, it appears that
the value n = 1.81 gives quite accurate results for the range of
pressure and superheat found in practice. If now we take the
approximate characteristic equation

p(v+c¢) =BT, (Art. 132) (€2
we get by combining (1) and (2),

LS|

c
=gr - 3

Ty (p\"
or TF(E : @



W= j v = _.}’1(”1+°')—}£z(.1’2+”). ®)
P

(ot

Given the initial state of the fluid, the volume in the final
ate may be found from (1), the final temperature from (4),
nd the external work from (5).

Examree. A pound of superheated steam at a pressure of 200 1b. per
uare inch and superheated 200° expands adiabatically to a pressure of
) Ib. per square inch. Required the final condition and the external work.

The initial volume is found to be 2.973 cu. ft., and the initial entropy
6657. Using the formula for s (Axt. 187), the final temperature is found
7 trial to be 752.5° absolute; and taking this value of 7%, the exact value
the final volume is found to be 8.681 cu. ft.

From (3), Art. 136, the energy in the initial state is found to be 1200.57
t.u., that in the final state 1098.82 B.t.u.; hence the external work is
8 (1200.57 — 1098.82) = 79,262 ft.-b.

Taking the approximate formulas, we have

1
Rl 10
et o= (o4 ) (P;)n (2973 + 0.088) (-5%‘))1.",: 8.810;

hence vz = 8.519 — 0. 088 = 8.731 cu. ft.

n-1

To=Th ( P ) = 10414 ( 300) = 749.5°.

=l o) —palate)  d4 : (200 x 3,061 50 8.519) = 79,550 ftIb.

n —

It will be seen that for practxcal purposes the results obtained from the
proximate equations are satisfactory as regards acenracy.

140. Tables and Diagrams for Superheated Steam. — The lead-
g properties of superheated steam — volume, entropy, and
tal heat — for various pressures and degrees of superheat
wve been calculated and tabulated by Marks and Davis and
> Peabody. The values in the Marks and Davis tables are
rived from specific heat curves that differ somewhat from the
rves of Fig. 72, and they therefore differ from the values
tained from the equations of Arts. 185-137. However,
roughout the range of ordinary practice, the difference does
t exceed one half of one per cent.

The Marks and Davis tables are accompanied by graphical
arts that may be used to great advantage in the approximate
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lution of numerical problems. The principal chart has the
eat content ¢ as ordinate and the entropy ¢ as abseissa. The
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turated steam at various pressures. The region above this
rve is the region of superheat, and the lines running approxi-
ately parallel to the saturation curve are lines of constant
gree of superheat. Below the saturation curve is the region
wet steam, and the lines running parallel to the saturation
rve are lines of constant quality. The lines that cross the
turation curve obliquely are lines of constant pressure.

The first conception of the heat content-entropy chart is
1e to Dr. R. Mollier of Dresden, hence we shall refer to it as
e Mollier chart. In addition to the chart published by
arks and Davis, one is contained in Stodola’s Steam Turbines
d one in Thomas’ Steam Turbines. In the light of the
cently acquired knowledge of the properties of saturated and
iperheated steam, the Marks and Davis chart must be regarded
 the most accurate.

The Mollier chart may be used for the approximate solution
' many problems that involve the properties of saturated and
iperheated steam, and it is specially valuable in problems on
e flow of steam. The following examples illustrate some of
e uses of the chart :

Ex. 1. Steam ata pressure of 150 Ib. per square inch superheated 200° F.
pands adiabatically to a pressure of 3 Ib. per square inch.

The point representing the initial condition lies at the intersection of the
nstant-pressure line marked 150 and the line of 200° superheat. Locating
is point on the chart, it is found at the intersection of the lines ¢ =1300
id s=1.687. The heat content and entropy in the initial state are thus
termined. The line s = 1.687 intersects the constant-pressure curve p =3
\ the line i = 1002; hence the heat content after adiabatic expansion is
02 B.t.u. The quality in the final state is found to be 0.88.

Ex. 2. When steam is wire-drawn by flowing through a valve from a
gion of higher pressure p, to a region of lower pressure px, the heat content
mains constant. Steam at a pressure of 200 Ib. per square inch and
1ality 0.95 flows into the atmosphere; required the final coudition of the
eam.

Drawing a line of constant-heat content from the initial point to the
irve p = 14.7, it is found that the final point lies above the saturation curve
1d that the steam is superheated about 12° at exit. The entropy increases
om s = 1.498 to s = 1.766.

141 Superheated Ammonia and Sulphur Dioxide. — Experi-
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other than that of water is very scant, and our knowledge of
such properties is accordingly imperfect. For superheated
ammonia Ledoux has proposed the characteristic equation

pv=BI— Cpm @
and this form has been accepted by Peabody, who derives the
following values of the constants (inglish units) :

B=99, (=T10, m=1}.

For sulphur dioxide Peabody uses the same equation with the
constants:
B=26.4, (=184, m=0.22.

According to Regnault the specific heat of superheated ammo-
nia has the constant value 0.52. It is very likely that this
specific heat is no more constant than that of superheated
steam and that it varies with pressure and temperature. How-
ever, experimental evidence on this point is lacking. Lorenz
finds that for superheated sulphur dioxide ¢, = 0.329.

The problem that most frequently arises in connection with
the use of these fluids as refrigerating media is the determi-
nation of the state of the superheated vapor after adiabatic
compression. It may be assumed that the relation between
pressures and temperatures for an adiabatic change follows
approximately the law for perfect gases, namely:

n-1
5-()" :
(1’1 P . @
n—1

n
in (2) is equal to the exponent m in the characteristic equation
(1). Hence, using the values of m assumed by Peabody, we
have:

Zeuner found that for superheated steam the exponent

For ammonia e=———=——— =1.333,



LULALEL VapOLl.  LEL A (Llg. 1b) Iepleselt the 1nitial stave,
1d B the final state after adiabatic compression. EA4 and
B are constant-pressure curves. Denoting by 7,/ the satura-
on temperature - correspond-
g to the pressure p,, the
crease of entropy from E

T BT,

) 4 is ¢, log,%l,, and the
tal entropy in the state 4 is

S'1” + Cp IOge%’]; N

ikewise, the entropy in the
ate B is

T,
" 2
8!+ ey lo . 0 N
2 » 08 T,” FiG. 76.

ince AB is an adiabatic, the entropies at 4 and B are equal,
1d therefore

T T,
o + ¢, log, b= + ¢, log, 72 ®

1 this equation s, s,”, 7}/, and 7" are tabular values corre-
onding to the given pressures p; and p,, and Tj is given.
ence, T}, is the only unknown quantity.

EXERCISES

1. Caleulate by Eq. (2), (4), and (6), respectively, of Art. 132 the vol-
ne of one pound of superheated steam at a pressure of 180 Ib. per square
ch and a temperature of 430° F. Compare the results.

2. If the products pv are plotted as ordinates with the pressures p as
scissas, show the general form of the isothermals 7'= C when Eq. (3),
rt. 182 is used; when Eq. (6) is used.

3. For ammonia, Peabody gives the following equations for the latent
at of vaporization: r = 540 — 0.8 (¢—32). If at the critical temperature
— 0, find ¢, for ammonia by means of this formula and compare with the
lue of ¢, given in Art. 129. Explain the discrepancy.

4. Following the method of Art. 133, deduce an equation for c,, using
e approximate equation (5), Art. 132; also using Callendar’s equation (8).

5. By means of Eq. (3), Art. 132, calculate the specific volume of satu-
ted steam at the following pressures : 5 in. Hg., 20, 50, 150 lb. per square
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pare the results with the values of v” given in the table.

6. Calculate the mean specific heat of superheated steam at a pressure
of 140 Ib. per square inch between saturation and 250° superheat. Compare
the result with the curves of Fig. 73.

7. Using the mean specific heat curves, Fig. 73, find the heat content
and energy of one pound of superheated steam at a pressure of 85 Ib. per
square inch and a temperature of 430°T.

8. A pound of saturated steam at a pressure of 120 1b. per square inch
is superheated at constant pressure to a temperature of 386°F. Tind the
heat added, the external work, and the increase of energy.

9. The steam after superheating expands adiabatically until it again be-
comes saturated. Find the pressure at the end of expansion and the
external work.

10. The following empirical equation has been proposed for the value
of ¢, very close to the saturation limit:

(Co)mt = 0.41 +

_c

(ORI

in which ¢, is the critical temperature, 689° F,, and ¢, is the saturation tem-
pevature corresponding to an assumed pressure. Using the cnrves of
Fig. 72, calculate the value C for several assumed pressures, and thus test
the validity of the formula for these curves.

11. The following equation has also Leen proposed for the value of ¢,
at saturation : (¢p)emt =a + U, Test this equation, and if it holds good
within reasonable limits determine the constants @ and b.

12. In the initial state 6.4 cu. ft. of superheated steam has a temperature
of 420°F. and is at a pressure of 160 lb. per square inch. By the approxi-
mate equations of Art. 139 find the temperature and volume after adiabatic
expansion to a pressure of 80 1b. per squave inch; also the work of expansion.

13. Assume for the initial state of superheated steam p, =80 Ib. per
square inch, v; = 20 cu. ft., f;, =350°F. Plot the successive pressures and
volumes for an isothermal expansion to a pressure of 80 Ib. per square inch.
Compare the expansion curve with the isothermal of air under the same
conditions.

14. With the data of Ex. 13 find the external work, heat added, and
change of energy (a) for the superheated steam; (1) for air.
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CHAPTER XII
MIXTURES OF GASES AND VAPORS

142. Moisture in the Atmosphere.— Because of evaporation
of water from the earth’s surface, atmospheric air always con-
tains a certain amount of water vapor mixed with it. The
weight of the vapor relative to the weight of the air is slight
even when the vapor is saturated. Nevertheless, the moisture
in air influences in a considerable degreo the performance of
air compressors, air refrigerating machines, and internal com-
bustion motors ; and in an accurate investigation of these ma-
chines the medium must be considered not dry aiv but rather a
mixture of air and vapor. The study of air and vapor mixtures
is also important in meteorology and especially in problems
relating to heating and ventilation. Finally, it has been pro-
posed to use a mixture of air with high-pressure steam as the
working medium for heat engines, and the analysis of the action
of an engine working under this condition demands a special
investigation of air and steam mixtures.

Experiment has shown that Dalton’s law holds good within
permissible limits for a mixture of gas and vapor. The gas has
the pressure p’ that it would have if the vapor were not present,
and the vapor has the pressure p” that it would have if the gas
were not present. The pressure of the mixture is

p=p'+p". @
If the vapor is saturated, the temperature ¢ of the mixture must
be the saturation temperature corresponding to the pressure
p". If the temperature is higher than this, the vapor must be
superheated.

The water vapor in the atmosphere is usnally superheated.

Let point 4, Fig. 77, represent the state of the vapor, and let
AB be a constant Dressire cnrve omttine Fha cofqrntinn p11pve
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6 B. Further, let m denote the weight per cubic foot of the
apor in the state 4, and my, the weight per cubic foot of satu-
tted vapor at the same temperature, that is, in the state C.

he ratio 2 is called the humidity of the air under the given

onditions. If the mixture of air and vapor is cooled at constant
ressure, the vapor will follow the
ath AB and at B it will become 7|
wurated.  Upon further cooling
ome of the vapor will condense.
‘he temperature 7, at which con-
ensation begins is called the dew
oint corresponding to the state 4.
The humidity may be expressed
pproximately in terms of pressures.
et p, denote the pressure of the
apor in the state A and p,” the Fre. T7.

ressure of saturated vapor at the

ume temperature, hence in the state represented by €. At the
w pressures under consideration we may assume that the vapor
llows the gas law p¥'= MBT. Hence, taking V'=1, we have

pd" =p" =mBI,
nd p.=mBT.
herefore, denoting the humidity by ¢, we have
_m_p 9
¢ = my _Pc”. (")

'hat is, the humidity is the ratio of the pressure corresponding
> the dew point to the saturation pressure corresponding to
1e temperature of the mixture.

For investigations that involve hygrometric conditions, the
ata ordinarily required may be found in table II, page 319.



(0" the savuration pressure 13, lrom uable 11, U.{20 NCHes Ol 11§,
while at 52° the saturation pressure is 0.3905 inches of Ilg. The humidity
is therefore

= 03905 _ 509,
0738

If the air were saturated at 70° it would contain 8.017 grains of vapor per
cubic foot. Hence with 52.9 per cent humidity the weight of vapor per
cubic foot is

8.017 x 0.520 = 4.241 grains.

Examprr 2. Atmospheric air has a temperature of 90° F. and a humidity
of 80 per cent. It is required that air be furnished to a building at 70° I
and with 40 per cent humidity.

From table II, the pressure of saturated vapor at 70° is 0.738 inches
of Hg; hence from (2) the pressure corresponding to the dew point is
040 x 0.738 = 0.2952 inches of Ig, and the dew point is 44.5° Tu the initial
state one cubic foot of air containg 0.80 x 14.85 = 11.88 grains of vapor.
The air is cooled to 44.5° by proper refrigerating apparatus and in this state
contains 3.39 x %’gﬁﬁ—w = 3.11 grains, the difference 11.85 — 3.11 = 8.77
grains being condensed. The air freed from the condensed vapor is now
heated to the required temperature, 70°.

143. Constants for Moist Air. — The constants B, ¢, ¢,
etc., given in Chapter VII apply only to dry air. For air
containing water vapor the constants must be changed some-
what, the magnitude of the change depending, of course, upon
the relative weight of vapor present.

An expression for the constant B of the mixture may be
obtained by the following method. Let the volume ¥~ contain
My Ib. of air at the pressure p' and M, 1b. of water vapor at
the pressure p”. Then assuming that the gas law may be
applied to the vapor, we have

PV =2MBT, @
PV =MB,T, @

M, B, 3
Z7 ®

whence

=

M,
Let ﬁ=l| and =2=¢; then from (3)

&

1"

=ez=

@

P P



ez r_ 1
142’ ‘p—-p1+ez ®
dding the members of (1) and (2), we obtain
pV =M B+ M,B)T
=M B (1+e)T

MB
S AR B AL O

he constant B, of the mixture is, however, given by the
Juation

hence P'=p

PV'= (M, + M)B,T. )
(ence, comparing (6) and (T), we have

Bo=B,—h_(14m=B Lt (g

1M+ I, 1142

Taking the molecular weight of water vapor as 18, we have

1543

=——"= 2,
B, s 85.7

B, 85.72
d =2= =161
! *=B, 5334

Lxampre. Find the value of B for air at 90° F. completely saturated
th water vapor. The pressure of the mixture is 14.7 Ib. per square inch.
From the table the pressure p/ of the vapor is 0.691 Ib. per square inch;
erefore the pressure p’ of the air is 14.7 — 0.691 = 14.009 Ib. per square

147 _0.0493
ch. rrom(5),1+ez_l£, 2005 = 10498, ez = 0.0493, aud 2=~y

1.0493
1.0306
The specific heat of the mixture is found by applying the
w deduced in Art. 83. If ¢/ and ¢,” denote respectively
e specific heats of the air and steam, then the specific heat of
e mixture is given by the equation

! "

e, = e + 20 | ©)

1+2
Exampere. Taking ¢, for air as 0.24, and for steam at 90° as 0.43, the
cific heat of the mixture given in the preceding example is

0.24 + 0.0306 x 043 — 0.2456.
1 + 0.0308

0.0306. Therefore, B, = 53.34 x = 5431,



144. Mixture of Wet Steam and Air. —In a given volume 7
let there be M, 1b. of air and M b. of saturated vapor mixture
of quality . The absolute temperature of the entire mixture
is T, and the total pressure p. The pressure p is the sum of
the partial pressures p' and p” of the air and steam, respec-
tively. This follows from Dalton’s law, which whithin reason-
able limits holds good for the case under consideration. We
have then

P =p @
»'V=M,BT, @
V=M, (o' — ') +'1, ®

where, as usual, v" and o' denote, respectively, the specific
volumes of steam and water at the saturation temperature 7.

The energy of the mixture is the sum of the energies of the
two constituents; hence, we have

AU = Me, T+ My(q+2p) + Uy ®
Likewise, the entropy of the mixture is

§ = Mo, log, T+ (e og. VI+ My ¢ + )45, (5)

By means of these equations various changes of state may be
investigated.

145. Isothermal Change of State. — Since 7' remains constant,
we have from (4)
AU, — U) = Myp(zy— ;) a
and from (5) oY )

8, — 8, = M,AB1log, % + M=) (D

Hence, the heat added is given by the equation
Q="1T(S,—8) = JIIIABTlog,lI::Z My (ay—2).  (3)
1
The external work is

W=TQ— (U~ T = M'IBTlog,,% + My (r= ) (2 — 2)

= py V1 log. l,;z +2,"(Va = 7)) @



Vy= Mp[2y(0" —o") + '],

- neglecting the small water volume »/,

Vy=Mozp", ®
hile in the initial state
Vy= My, ()
ence, combining (5) and (6),
V.
= Tf:xl. )

From (T) it appears that isothermal expansion is accompanied
~an increase of the quality w, that is, by evaporation, while
thermal compression involves condensation.

146. Adiabatic Change of State. — In the case of an adiabatic
ange the final total pressure p, is usually given. Assuming
at the steam in the mixture does not become superheated,
e final temperature 7}, of the mixture must be the saturation
nperature corresponding to the partial pressure p,” of the
am. The determination of the final state of the mixture
rolves the determination of two unknown quantities ; namely,
> partial pressure p,” and the quality =z, of the saturated
por. Hence two relations are required. One is given by
> condition that the entropy of the mixture shall remain
1stant during the change, the other by the condition that
> final volume ¥, may be considered as occupied by each
1stituent of the mixture independently of the other.

[n the application of the first condition it is convenient to
> an expression for the entropy of the mixture of a form
ferent from that given by (5), Art. 144. In terms of the
nperature and pressure, the entropy of a unit weight of air
yiven by the expression

s=c,log, T'— ABlog, p+ 8
1ce for the mixture we have

S= M, (c,log, T— AB log, p') + 1112(3' + E;,) 8 M
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As the constant /S, disappears when the difference of entropy
between two states is taken, it may be ignored in the calculation.
Let S, denote the entropy in the initial state. Then since
the entropy remains constant, we have
8= M,(c, og, T, — AB log, p;) + M8/ +57)- ()
2
In Eq. (2), 8), M;, M, and the coefficients ¢, and AB are
known, as is the final total pressure p,. The partial pressures
o and p,", the quality ,, and temperature 7} are unknown.
However, 7, depends upon p,”, and p,’ is found from the
relation p,' + p,” = p, when p,” is determined. Denoting the
final volume by V;, we have

V= J_‘f;ﬂ'z = Myp,,
2

y
ot »
M, py'vy
Inserting this expression for 2, in (2), we have finally
8= 2;(e,log, T, ~ ABlog. ) + M (s + 70 B2} (4
M, py'ey"

In this equation p,’ is the only unknown. The solution is
most easily effected by assuming several values of p,” and
calculating for these the values of the second member. These
calculated values are then plotted as ordinates with the corre-
sponding values of p,” as abscissas and the intersection of the
curve thus obtained with the line .S, = const. gives the desired
value of p,".

whence 2,

The external work of expansion or compression is equal to
the change of energy. Ience, using the general expression
for the energy of the mixture, we have

AW = Mye, (T, — T) + M, (1 — 2 + %oy — 2a2)- )

]:?XA!\IPLE, In a compressor cylinder suppose water to be injected at the
beginning of compression in such a mauner that the weight of water and
water vapor is just equal to the weight of the air. Let the pressure of the
mixture be normal atmospheric pressure 20.92 in. of mercury, and let the
temperature be 79.1° F. The mixture is compressed to a pressure of 120 1b.
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ing to 79.1° is 1 in. g, hence the partial pressure of the air is 28.92 in. Hg.
The initial quality z; is found fromn the relation
vy = MaBTy
'
M BT 53.34 x 538.7
h = MBT
Wwhenee TS My pyin - 38.92 x 04912 x 144 % 650.7
The factor 0.4912 x 144 is used to reduce pressure in inches of mercury to
pounds per square foot.
For the entropy of the mixture we obtain from (1) (neglecting the con-
stant Sp)
= 0.24 log, 538.7 — 0.0686 log, (28.02 x 0.4912) +0.0916+ 0.0214 x 1.9482
= 1.4587.

Since the ratio of the final to the initial pressure of the mixture is —— 4 7 =82,

= Mz,

=0.0214.

we assume that the pressure p.” of the vapor after compression will be
approximately 8 times the initial pressure p;". Hence we assume p./' =7,
8, and 9 in. of mercury, respectively, and calculate the corresponding values
of the second member of (2). Some of the details of the calculation are
given.

From Steam TABLE

,,1 '

lo T, sy T2 "
7 843 11657 16O 6065 02007 10111 1044
8 .92 11608 152.3 6119 02186 1007.9 9218 | Data
9 441 11550 1571 6167 02265 1005.0 S2.57
PG log T, ABlog py! Pff“,, s

2 T2

7 1.5378 0.3264 0.0308 1.4519
8 1.5400 0.3262 0.0349 14673 | Results
9 1.5418 0.3259 0.0390 14814

The pressure p.!/ that gives the value S = 1.4587 lies between 7 and 8 in. Hg
and by the graphical method or by interpolation we find p./ = 7.44 in. Hg,
or py'" = 3.65 lb. per square inch. Therefore ps’ =120 — 3.65 = 116.35 Ib.
per square inch. From the steam table the following values are found for
the pressure py// = 7.44 in. Hg: t, = 149.3, T2 = 608.9, g2/ = 117.3, 72 = 1000.4,
p2=942.8, vy// =09. The final quality is

BT, 53.34 x 6089

= = 2334 X 6089 _  91958.
Jug’ 116.35 x 144 x 99
P

The external work per pound of air is

W=7[017(149.3 - 79.1) + 117.3 — 47.2 4 0.0214 x 989.8 — 0.01958 x 942.8]
= (1566 1. Ib.
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The volume of the mixture at the end of compression is

x 608.9
.35 X 1dd

=1.0836 cu. ft.,

and the work of expulsion is therefore
1.9386 x 120 x 144 = 33498 ft. 1b.
Hence, the work of compression and expulsion iy 95064 ft. Ib.
The effect of injecting water into a compressor eylinder may be shown
by a comparison of the result just obtained with the work of compressing
and expelling 1 b. of dry air under the same conditions.

5234 X BIBT_ 1.
1 x BI85 574 o ft.
Ta7 x 14a = 1AL eu. 1t

The final volume after adiabatic compression to 120 1b. per square inch is

The initial volume of 1 Ib of air is

1
1357 (1—5 )"" =13.0206 cu. f.
120

The work of compression is

1_0"_;?(14.7 x 13.574 — 120 x 3.0206) = 59044 ft. Ib.,

the work of expulsion is 3.0206 x 120 x 144 = 52350 ft. Ib., and the sum is
111394 ft. 1b. The effect of water injection iy therefore to reduce the
volume and temperature at the end of compression and the work of com-
pression and expulsion. The reduction of work in this case iy about 17
per cent.

147. Mixture of Air with High-pressure Steam. — In the pre-
ceding articles, we have dealt with mixtures of steam and air
in which the pressure of the vapor content was small. The
suggestion has been made that a mixture of air at relatively
high temperature and pressure mixed with steam either super-
heated, saturated, or with a slight amount of moisture be used
as a medium for heat engines. An analysis of the action of
such a medium in a motor demands in the first place a discussion
of the process of mixing, afterwards a discussion of the change
of state of the mixture.

Let M, Ib. of air compressed to a pressure p, and having a
temperature 7} be mixed with M, Ib. of wet steam having a
nressure 7. and cnalitv o+ The +tomvaratinera 7T of +he oteam



o the air into a receiver which contains steam, or vice versa.
nce under these conditions the pressure of the mixture can-
t be raised above the pressure of the constituents, the volume
the mixture cannot be taken as the original volume ¥, of
e air. We assume, on the other hand, that the conditions
e such that the volume of the resulting mixture is the sum
the volumes of the constituents; that is,

V=7 +7, ()
s a second condition, the internal energy of the mixture is

ual to the sum of the energies of the constitutents; hence
e have the equation of condition

U=+ T, ®
Let 7' denote the temperature after mixing p' the partial pres-
re of the air and p” the partial pressure of the steam. Then,
ovided the steam does not become superheated, the tempera-
re 7' must be the saturation temperature corresponding to the
essure p'’.
The following relations are readily obtained.

7= Eh. ®
Py
Vo= My [ay(o = o) + 0],

- since the quality =, is nearly 1,

7= Mz ®
v=2LBT_ oy, ®)
P

here z denotes the quality after mixing, and »" is the specific
lume of steam corresponding to the pressure p".

U, =M, T - ©
U, = My(g) + 2p5)- M
U= My, T+ Mp(q' +2p)- ®

rom (2) we have
MeT v Mo +20) = MeT + M(q, + 2,05) (©))
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=BT pp . 0
Py
Having V7 calculated from (10), we obtain from (5)
v
= Wy an

and this expression for z substituted in (9) gives finally

15,T+M<q +M u> Mye, Ty + My( gy’ + app)- 1z)

In (12) the second member is known from the initial condi-
tions. In the first member ¢/, p, and v are dependent on 7';
hence 7' is the one unknown. As usual, the solution is ob-
tained by taking various values of 7"and plotting the resulting
values of the first member of (12).

Examere. Let 11b. of wet steam, quality 0.85, at a pressure of 200 Ib.
per square inch, be mixed with 2 Ib. of air at a pressure of 220 Ib. per
square inch and a temperature of 400°. Required the condition of the
mixture.

From the data given, the following values are readily found:

V1 =2.895 cu. ft.; Vo=1.948 cu. ft.; V =2.895 + 1.948 = 4.843 cu. ft.

U=Ui+ Ug_1°738B tou.

Equation (12) becomes
034 T + ¢ + 4.843 L = 1273.8.
v

We now assume for p" the values 50, 75, and 100 lb. per square inch;
from the tables we find the corresponding values of ¢/, p, v/, and 7', and
calculate the values of the first member. The results are:

For P"= 50, 981 B.t.u
p'= 75, 12223 B.t.u.
p" =100, 1451 B.t.u.

Plotting these results, we find p”” = 81 Ib. per square inch very nearly. The
temperature of the mixture is therefore 313° F. and the quality of the
steam is z = 45843 0.897. (5.4 is the specific volume v corresponding to

a pressure of 81 Ib.) The partial pressure p’ of the air is found from
(5) to be 180 Ib. per square inch. Ience the pressure of the mixture is
130 + 81 = 211 Ib. per square inch.
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vered, the pressure takes a value between p; and p;, and the quality of
> steam is increased.

If the steam is initially superheated, the preceding equations
ust be modified by inserting for ¥, and U, the appropriate
pressions for the volume and energy, respectively, of super-
ated steam. To reduce as far as possible the complication
the formulas we shall take the approximate equation (5),
't. 182, for the volume. We have then

Vam My = (25— o). as
P

1e constant B is written with a prime merely to distinguish
from the constant for air. The intrinsic energy of the steam
given by Eq. (2), Art. 136. This equation can be simplified
th a small sacrifice of accuracy by dropping the term con-
ining a. The modified equation then takes the form

Au=T(e+ FT) — %‘_; +886.7, s

which e = 0.2566, f = 0.00005, and log ('=13.64593.

From (6) and (14) the energies of the constituents before
ixing can be calculated, and the sum of these gives the
ergy U of the mixture. We have then as one equation of
ndition

Mye, T+ M[T(e+ FT) — 91%"+ 886.7] = AU.  (15)

nce p” and 7' are here independent, there are two unknowns
d a second condition is required. From (3) and (13) the
itial volumes V; and ¥, are found and the sum gives the
lume 7~ of the mixture. Then

vy
V= Mz<?,~—0>,

B'T a8

om (15) and (16) the unknowns p" and 7' can be found.
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Examere. Let 5 1b. of air at 60° F. be compressed adiabatically from
atmospheric pressure to a pressure of 200 Ib. per square inch and mixed
with 1 1b. of steam at 200 1b. per square inch superheated 100° The con-
dition of the mixture is required.

The temperature of the air after compression

1

200 \ 140
= 510.6 (2990} ~1095°.
T) = 5196 (14.7) 5

The saturation temperature of steam at 200 Ib. per square inch is 381.8° I¥;
hence T, = 381.8 + 100 + 459.6 = 941.4°. The energy of the air is

5% 0.17 x 1095 = 930.75 B. t. w.
and that of the steam is, from (14),

941.4 (02566 + 0.00005 x 941.4) — 05%01% 4+ 886.7 = 1160.6 B. t.u.

Hence AU, + Uz)= AU =930.75 + 1160.6 = 2091.35. B. t. u.
We have then from (15).
0.85 7'+ T(0.2566 + 0.00005 T') — Cf?” = 1204.65.
To derive an expression for the partial pressure p/' the total volume V must
be found. Before mixing, the volume of the air is

MBT, _5x 5334 x 1095
V=222 2002 2 0 = 10. . 1t.,
L T4k x 00 = 1044 en £t

and the volume of the steam is

Vo BT, _ 05062 x 0414 _
P2 200

Hence V=10.14 + 2.55 = 12.69 cu. ft.

0.256 = 2.55 cu. ft.

After mixing the superheated steam at the partial pressure p" and tem-
perature 7" oceupies this volume; hence, we have (since Ma=1)

BT - 0.5062 T i
Ve 12,69 +0.256

Introducing this expression for p” in the term %,that term becomes

=

n
%, where log C'=12.30919. The equation in 7T then becomes

1.1066 7 + 0.00005 7'% — % =1204.65.



T 1.1066 T 0.00005 T2 z Sum

T4
1000 1106.6 50. 2.04 1154.56
1050 1161.93 55.13 1.68 1215.38
1100 1217.26 60.5 1.39 1276.37

By interpolation it is readily found that 7'=1041°. The pressure of the
am is
— 0.5962 x 1041

Topdg = F1-94 Ib. per square inch,

pll
ile the pressure of the air is

- 53.3¢ x 1041 x §
144 x 12.69

erefore p=p'+p" =199.9 Ib. per square inch.

? =151.93 1b. per square inch.

The total pressure p should evidently be 200 lb. per square inch; hence
: result may be regarded as a check on the calculation.

Having now the initial condition of the mixture, the condi-
n after adiabatic expansion to any assumed lower pressure
d the work of expansion may be found by the methods of
6. 146.

The discussions of Arts. 146 and 147 furnish the necessary
uations for the analysis of the action of a motor that uses a
xture of air and steam as its working fluid.

EXERCISES
1. Find the humidity and the weight of vapor per cubic foot when the
1perature is 85° and the dew point is 70°
2. The humidity is 0.60 when the atmospheric temperature is 74° F.
1d the dew point.
3. Find the value of B for air at 80° with 70 per cent humidity. Find
o the specified heat ¢, of the mixture.
4. A mixture of air and wet steam has a volume of 8 cu. ft. and the
perature is 240° F.  The weight of the air present is 1 Ib., that of the
am and water 0.4 1b. Find the partial pressures of the air and vapor, the
al pressure of the mixture, and the quality of the steam.
5. Let the mixture in Ex.4 expand isothermally to a volume of 5 cu. ft.
id the external work, the heat added, the change of entropy, and the
mnge of energy.
6. Let the mixture expand adiabatically to a volume of 5 cu. ft. Find
condition of the mixture after expansion. and the external work.



7. Let 1 1b. of steam, quality 0.87, at a pressure of 150 1b. per square
inch, be mixed with 4 1b. of air at a pressure of 160 1. per square inch and
a temperature of 840° F. Find the coudition of the mixture.

8. Let the mixture in Ex. 7 expand adiabatically to a pressure of 40 Ib.
per square inch. Determine the final state of the mixture and calculate the
work of expansion.

9. Let 1 Ib. of steam at a pressure of 150 Ib. per square inch and super-
heated 140° be mixed with 6 1b. of air at a pressure of 160 1b. per square
inch and a temperature of 340° F. Find the condition of the mixture.

10. Let the mixture in Ex. 9 expand adiabatically until the pressure
drops to 14.7 Ib. per square inch. Required the final state of the mixture
and the work of expansion.
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CHAPTEER XIT
‘THE FLOW OF FLUIDS " "'

148. Preliminary Statement. — Under the title “flow of
fluids ” are included all motions of fluids that progress continu-
ously in one direction, as distinguished from the oscillating
motions that characterize waves of various kinds. Important
examples of the flow of elastic fluids are the following : (1) The
flow in long pipes or mains, as in the transmission of illuminat-
ing gas or of compressed air. (2) The flow through moving
channels, as in the centrifugal fan. (8) The flow through
orifices and tubes or nozzles. The recent development of the
steam turbine has made especially important a study of the last
case, namely, the flow of steam through orifices and nozzles,
and it is with this problem that we shall be chiefly concerned
in the present chapter.

Of the early investigators in the field under discussion,
mention may be made of Daniel Bernoulli (1738), Navier (1829),
and of de Saint Venant and Wantzel (1839). The latter de-
duced the rational formulas that to-day lie at the foundation of
the theory of flow; they further stated correctly conditions for
maximum discharge, and advanced certain hypotheses regard-
ing the pressure in the flowing jet which were at the time dis-
puted but which have since been proved valid.

Extensive and important experiments on the flow of air were
made by Weisbach (1855), Zeuner (1871), Fleigner (1874 and
1877), and Hirn (1844). These served to verify theory and
afforded data for the determination of friction coefficients. In
1897 Zeuner made another series of experiments on the flow of
air through well-rounded orifices.

Experiments on the flow of steam were made by Napier
(1866), Zeuner (1870), Rosenhain (1900), Ratean (1900),
Gutermuth and Blaess (1902, 1904).

243
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flow of fluids through simple orifices or through short con-
vergent tubes. The more complicated relations between veloc-
ity, pressure, and sectional aren that obtain for flow through
relatively long diverging nozzles have been investigated experi-
mentally by Stodola, while the theory has been developed by
H. Lorenz and Prandtl. The flow of steam through turbine
nozzles has also been discussed by Zeuner.

149. Assumptions. —In order to simplify the analysis of
fuid flow and render possible the derivation of fundamental
equations, certain assumptions and hypotheses must necessarily
be made.

1. Tt is assamed that the fluid particles move in non-inter-
seeting curves — stream lines — which in the case of a prismatic

channel may be considered paral-
- 1ol to the axis of the channel.
~ We may imagine surfaces
- stretehed across the channel, as

F, F, B, cte., Kig. 78, to which
the stream lines are normal. These are tho cross seetions
of the channel. They are not necessarily plane surfaces, but
they may usually be so asswmed with suflicient accuracy.

9. The fluid, being elastic, is assumed to fill the channel
completely. From this assumption follows the equation of con-
tinuity, namely :

¥ F_E"

Fi1a. 78.

Fw= My, @

in which F denotes the area of cross section, w the mean veloc-
ity of flow across the section, M the weight of fluid passing in
a unit of time, and v the specific volume.

3. Tt is assumed that the motion is steady. The variables
p, v, T giving the state of the fluid and also the mean velocity
w remain constant at any cross seetion I3 in other words, these
variables are independent of the time and depend only upon the
position of the cross section.

15(?. Fundamental Equations. — The general theory of flow of
elastic fluids is based upon two fundamental equations, which
e Aavived hv annlvine the bprincivle of conservation of



energy to an elementary mass of fluid moving in the tube or
channel.

Let w, denote the velocity with which the fluid crosses a
section %, of a horizontal tube, Fig. 79, and w the velocity at
some second section F. A unit weight of the fluid at section

2
F, has the kinetic energy of motion ;”_‘1? due to the velocity w, ;
hence if u, is the intrinsic energy of the fluid at this section, the
2
total energy is u1+3—fq. Likewise, the energy of a unit weight
2
of fluid at section F is u + 211)} In general, the total energy at

section ¥ is different from that at section ¥, and the change of
energy between the sections must arise: (1) from energy
entering or leaving the fluid in

the form of heat during the L‘F\L
passage from F to F; (2) from ;_*’“‘1 —-w
work done on or by the fluid.

The heat entering the fluid per
unit of weight between the two
sections we will denote by g. Evidently work must be done
against the frictional resistance between the fluid and tube ; let
this work per unit weight of fluid be denoted by z. The heat
equivalent Az necessarily enters the flowing fluid along with
the heat ¢ from the outside. Aside from the friction work, the
only source of external work is at the sections #; and F. As
a unit weight of fluid passes section F}, a unit weight also passes
section #. Denoting by p, and v, the pressure and specific
volume, respectively, at Fy, the work done on a unit weight of
fluid in forcing it across section F) is the product pv; ; simi-
larly, the product pv gives the work done by a unit weight of
fluid at section # on the fluid preceding it. For each unit
weight flowing the net work received at the section F; and F is,
therefore, Py, — po.

Fia. 79.

Equating the change of energy between F; and ¥ to the energy
received from external sources, we obtain

<u+2l:>—(u1+;£§)==7(9+‘4z) — 2+ P~ P



2 _ g2
or %: T+ (uy + pyoy) — (u + po). [€))

This is the first fundamental equation.
It will be observed that the friction work z drops out of the
equation; the effect of friction is to alter the distribution

2
. . . w .
between internal energy w and kinetic energy ;— at section £,
<
leaving the sum total unchanged. 4
Differentiation of (1) gives

“"% + du+ d(pv) = Jdg, @

a form of the fundamental equation that is useful in subsequent
analysis.

Equation (1), as is apparent, takes aceount only of initial
conditions at section J; and final conditions at scetion F, and
gives no information of anything that occurs between these
sections. A second fundamental cquation taking account of
internal phenomena between the two sections is derived as fol-
lows. Consider a lamina of the fluid moving along the channel.
This element receives from external sources the heat dg and
also the heat Adz, the equivalent of the work done against
frictional resistances. Independently of its motion, the lamina
of fluid may increase in volume and thereby do external work
against the surrounding fluid, and its internal energy may
increase. According to the first law we have, therefore,

J(dq + Adz)= du+ pdv. (3)
The first member represents the energy entering the lamina
during the passage from F, to F, dw is the increase of cnergy,
and pdv the external work done. Combining (3) with (2), we
get

3”% +odp + dze =0, (€>)
whence by integration we obtain

w?— 2

= - (m vdp — 2. (5)
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The fundamental equations (1) and (5), or the equivalent dif-
ferential equations (2) and (4), are perfectly general and hold
equally well for gases, vapors, and liquids.

151. Special Forms of the Fundamental Equation. — In nearly
all cases of flow the heat entering or leaving the fluid is so
small as to be negligible, and we may, therefore, assume that
g=0. The sum u + pv will be recognized as the work equiva-
lent of the heat content ¢; that is,

u+pv=4dJi. (See Art. 52.)
Equation (1) of Art. 150 may, therefore, be written in the form

e RRE{CEDS (e)
For a perfect gas

X k

= = 2
Ji=utpy == ®

whence,
w—w?_ k
—ﬁl = I;_i_l (py21—po)- ©)

If the fluid is a mixture of liquid and saturated vapor, the
heat content ¢ is practically equal to the total heat. (See
Art. 86.) Hence we may put

i=gq +ar, (©]
and (1) becomes
2 _ g2
7£“2-WL =J[g +a2— (¢ +21)] ®)
g
For a superheated vapor, the general form (1) is used, the
values of ¢, and ¢ being calculated from formula (6), Art. 135.

Equations (8) and (5) being derived from the first funda-
mental equation hold equally well for frictionless flow and for
flow with friction.

152. Graphical Representation. — A. consideration of the
fundamental equations developed in Art. 150 leads to seve.ra.l
convenient and instructive graphical representations, in thc{h



p-axis is given by

f:- vdp = — _5;: vdp.

D 2 B In the case of frictionless
. flow, however, the second
° Yra, 80. fundamental equation [(5),
Art. 1507 becomes
M =—(" vdp. (1)
2 g my

Hence for frictionless flow, the increase of kinetic energy is
given by the area between the p-axis and the curve representing
the expansion.

2. If the flowing fluid is a saturated vapor of given quality,
the representation just given applies but the equation of the
expansion line 48 must he
expressed in the form por=
const. It is, therefore, more 1 { A
convenient to use the tem- ¢ =
perature 7'and entropy & as
codrdinates. If the flow is
frictionless and adiabatic, B

. /i
the expansion curve 4B is
the vertical isentropic, Fig.
81. The area OHCAA, rep-
resents the total heat of the
mixture in the initial state 4, )
and the area OHDBA, the o s 4
total heat in the final state B ; o
hence the difference of these areas, namely, the avea ABDC,
represents the difference ¢’ + 2,7, — (¢’ + =), and from (5),

’

A

=]



Art. 151, this area, therefore, represents the increase of energy

w—w?,
2g

If the initial point is at A’ in the superheated region, we
have

i, =area OHCAA'A/,
i=area OHDB'A/,
iy —t=area A/ B'DCAA'".

3. The work z expended in overcoming friction may be
shown on either the pv- or the Z'S-plane. When friction is
taken into account, the heat Az, the equivalent of the friction
work z, reénters the fluid, and consequently the heat content ¢
and the volume v are both greater at the lower pressure p
than they would be were there no friction. Hence the expan-
sion curve AB’', Fig. 82 and 88, for flow with friction must
lie to the right of the curve AB for flow without frietion.
This statement applies to both figures.

Let %, denote the heat content in the initial state 4, ¢ the
heat content in the state B, and ¢’ the heat content in the final
state B' when friction enters into consideration. Then

i >4,
‘whence
Gy —i <i—1.
It follows from (1) Art. 151, that the change of kinetic energy

2 _ 2 . . w?— w2
———= for flow with friction is less than the change —QTQ—J-

in the case of frictionless flow. Friction, therefore, causes a
loss of kinetic energy given by the relation
w? —w'? v
—T——=J(z’—z). @
=9
On the 7'S-plane, Fig. 83, this loss is represented by the area
ABB'B/; for
i' =area OHDB'B/,
i=area OHDBA,,
3 —i=area A, BB'B.'.
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fluid ; heuce as explamed in Art. 50, the increase of umopy
is Af 22 and the area A, AB'B/ undor the curve AB' repre-

sents (m heat units) the friction work 2.

On the pv-plane let a constant % line be drawn from point B’
Fig. 82, cutting the frictionless expansion line in the point G-
Then since the heat content
7 is the same at G- as at B,
the difference 4, — ¢ in pass-
ing from A4 to /' along the
actual curve is the same as
in passing from A to G along
G the ideal frictionless expan-
4 sion curve A3, But the
y change of 7 Detween the
10, 82, states represented by points
A and @&, which in work
units represents the increase of kinetic cnergy between 4

and @, is given by the area AG-FC. Ilence we have:

r
Y A

by

For frictionless flow, ——l area ABDC.
2y

For the actual flow, 1—0-)_—“]1: =area AGEC.
2y
Hence the loss of kinetic energy due to friction is given by the

area BDEG.
From the fundamental equation (5), Art. 150, we have

2= ["oap— =L, ®
» 2y

in which the integral refers to the actual expansion curve.

Referring to Fig. 82, fﬂlvdp is given by the arca AB'DC
»
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while the change of energy for the actual flow is, as just shown,
given by the area AGEC; hence the difference, the area

AB'DE @A, represents the work
of friction 2.

The friction work 2z (area
A, AB'B/, Fig. 83) is greater
than the loss of kinetic energy
(area A;BB'B;"). The reason
for this les in the fact that
part of the heat Az entering
the moving fluid is capable of
being transformed back into
mechanical energy. As shown
in Chapter IV, the loss of
available energy, represented

e

0 57 s
Fic. 83.

by area A, BB'B/, is the increase of entropy multiplied by the

lower temperature.

The triangular area ABB' represents,

therefore, the part of the friction work that is recovered.
4. The most convenient graphical representation for practi-
cal purposes is obtained by taking the heat content 7 and entropy

i

Q
Fic. 84,

s as coordinates. On this ¢s-
plane a series of constant pres-
sure lines are drawn, Fig. 84;
then a vertical segment 4B
represents a frictionless adia-
batic change from pressure p,
to a lower pressure p, while a
curve AB' between the same
pressure limits represents an
expansion with increasing en-
tropy, that is, ome with fric-
tion. The segment AB, there-

2 g2
fore, represents the increase of jet energy 7—”—2;“11- without

2oy 2 .
friction, the segment A&, the smaller increase Z—U———‘—wAL with

2q



whilch the pressure 1s p, through an orifice or sbort tube, Xig.
85, into a region in which exists a pressure p, lower than p,.
If we take the section F) in the reservoir, the velocity w;, will
be small and may be assumed to be zero. The second section
F will be taken at the end of the tube, and
the pressure at this section will be denoted
by p. Assuming the flow to be frictionless
and adiabatic, we have, since w; =0,

= p‘vdp. @
»

The law of the expansion is given by the
equation

pyt=pvt @
where for air n=#%, while for saturated or
superheated vapor it has a value depending on the conditions
existing. In any case, n can be determined, at least approxi-
mately. Making use of (2) to evaluate the definite integral
of (1), we get s

n—1
wﬁ _ n _ p > n
E—m]’ﬂ’l[l <E ] (C))
If F denotes the area of the orifice or tube, and M the

weight of fluid discharged per second, the law of continuity is
expressed by the equation

My = Fuw, (€3]
whence eliminating w between (3) and (1), we obtain
F n =
M= 7\/291011)1”_1[1—(%) ] ®

From (2), we have

o=l

which substituted in (5) gives

w=rfit (-2 o
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If now various values be assigned to the lower pressure p
and the values of w and M be found from (3) and (6), respec-
tively, the relations be-
tween p, w, and M will be
as shown in Fig. 86. The
initial pressure p, is rep-
resented by the ordinate
0@, the lower pressure p
by the ordinate OH, and
the curve AB represents
the change of state of the
moving fluid starting from
the initial state 4. The ¢
shaded area G-ABH rep- Fig. 8.

resents the integral f ” vdp and, therefore, the kinetic energy
»

2|

2
of the jet %at the section #. The abscissa HF represents
the velocity w found from the equation

w=V2g X area GABH (in ft. 1b.),

while the abscissa HD represents to some chosen scale the
weight of fluid discharged per second, as found from (4) or
directly from (6). Inspection of (6) shows that the discharge
M reduces to zero when p=p, and also when p=0. It fol-
lows that the curve G-DO must have the general form shown
in the figure and that the discharge / must have a maximum
value for some value of p between p =0 and p=p, Let
this value of p be denoted by p,. Evidently from (6), Mis a

maximum when
2 241
<£>1z_ (ﬁ) n
Py P

is & maximum. Placing the first derivative of this expression

- o _ I < _



This ratio is called the critical ratio, and p,, is called the critical
value of the lower pressure p. For air, taking n= % = 1.4, this
ratio is 0.5288 or approximately 0.58; for saturated or slightly
wet steam, taking n = 1.135, the ratio is 0.5744.

The question now arises as to the relation between the pres-
sure p in the jet at section F and the pressure p, of the region
into which the jet discharges. If it be assumed that p and p,
are always equal, then p = 0 when p, =0, and from (6) M= 0.
This can only mean that no fluid can be discharged into a perfect
vacuum, a result manifestly absurd. It follows that under
certain conditions, p must be different from p,. Saint Venant

AN

and Wantzel, to whom equations (3) and (6) are due, asserted
that the discharge into a vacuum must be a maximum and
advanced the hypothesis that for all values of p, lower than the
critical pressure p,, the discharge is the same. We have, there-
fore, two distinet cases: (1) If p, is greater than p,, the pres-
sure p in the jet takes the value p,, and w and M are found from
(3) and (6), respectively. (2) If p,is equal to or less than
Pn the pressure p assumes the constant value p,, given by (7),
and the velocity and discharge remain the same for all values
of p, between p, = p,, and p, = 0.

The hypothesis of Saint Venant has been fully confirmed by
the experiments of Fleigner, Zeuner, and Gutermuth. Figure 87
shows the results of Gutermuth’s experiments on the flow of
ateam throuch a short tube with rounded entrance. usine dif-

Fic. 87.



ferent initial pressures p;. In each case the discharge becomes
constant when the lower pressure reaches a definite value p,.

154. Formulas for Discharge. — Since for all values of p,less
than p,, the discharge remains constant and the pressure at the
plane of the orifice or tube takes the value p,, we may obtain

the maximum velocity and discharge by substituting for g— in
1

9\
+1> . The

(8) and (6) of Art. 153 the critical value (n
resulting equations are :

w=" 29#?1”17 @

1 —
_ 2 \#-1 n Py
and M_F<n+1) \]29n+1;:. @

These equations give w and M for p, < p,.; if p, > p,, the ratio
% must be substituted for 2 in the original equations.
1

1
By easy transformations (1) and (2) may be given simpler
forms. The following are some of the well-known formulas
that have been thus derived.
1. Fliegner’s Equation for Air. From the general equation

pyvy= BT,

which applies to the air in the reservoir from which the flow
proceeds, we have

s

2
1. P,
7

v, BT,

Substituting this expression for —f_l in (2), and taking n="%,
1

the result is
1
2 NF[ 2gk P op
= ()" [man) ®

Inserting the numerical values of % and B for air, we get in
English units

M= 0.5317:%. )
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This is the equation given by Fliegner as representing the re-
sults of his experiments on the flow of air from a reservoir into
the atmosphere. It holds good when the pressure in the reser-
voir is greater than twice the pressure of the atmosphere.
When the pressure in the reservoir is less than twice the at-
mosphere pressure the following empirical equation is given by
Fliegner: T
M= 1.061*\/1”"72\,17%. ®

2. Grashof’s Bguation for Steam. In formula (2), 7y and v,
refer to the fluid in the reservoir, If this fluid is saturated
steam, then p; and v, are connected by an approximate relation

ppyt= G, (©)
in which for English units, m = 1.0631 and ('= 144 x 484.2,
From (6) we readily obtain .

2
\/’7,_'1__1,‘ m
It

%

and substituting this in (2), the resulting equation is

1
T ntl
M=( il) \/ 2 (©)
" (n+1) 0
If now we take for steam the value 7 =1.185, (T) reduces to
the simple form M = 0.01911 Fpost, ®

In this formula, 7 is taken in square feet and p in pounds per
square foot. When the area is taken in square inches and the
pressure in pounds per square inch, (8) becomes

M = 0.0165 Fpoor, (©)
This formula is applicable for values of Dy below the critical
back pressure p,,.

3. Rateaw's Formula. Rateau has modified the Grashof
formula and gives the following as more nearly agreeing with
the results of his experiments :

o ) 2/
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4. Napier's equations. The following simple, though some-
what inaccurate, equations based upon the experiments of
Mr. R. D. Napier, are due to Rankine.

When the pressure in the reservoir exceeds § of the back
pressure

by
M= 7%”; an

when it is less than § of the back pressure

M= __.‘ 3(1’1 2) . (12)

2p,

Examrre. Find the discharge in pounds per minute of saturated steam
at 100 1b. pressure (absolute) through an orifice having an area of 0.4 sq. in.
The back pressure is less than the critical pressure, 57 1b. per square inch.

1. By Grashof’s formula
M =60 x 0.0165 x 0.4 x 100097 = 34.493 1b.
2. By Rateau’s formula
60 x 0.4 x 100
M="="""""" (16.367 —~ 0.96 x 2) = 34.673 Ib.
1060 (16. 96 x 2) b.
3. By Napier’s formula

M= 9-4;%) x 60 = 34.286 1b.

4. The discharge may be found from the two fundamental formulas

w= Vgl (i, — i) = 228.TVi, — 5,
and =1
v

The critical pressure p,, is 57.44 1b. per square inch. From the steam table
(or more counveniently, and with sufficient accuracy, from the is-chart)
we find:

i1 (for 100 1b.) = 11865 B.t.u.

im (for 57.44 1b.) = 1142.7 B.t. u.
Zm = 0.964.
VU = Ty (O’ = v') + v/ = 7.07 cu. .

Then w = 223.7V1186.5 — 1142.7 = 1480 ft. per second,

1480
— = 34.89 1
and M= 60Xl44x"07 4.9 1h.
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in the medium is given by the relation

w = Vgkpv. (See any textbook in Physies). [€5)
If we denote by p,, the critical back pressure, we have
E
= (2
Lo (erD) ®
which combined with the adiabatic equation
I (ﬁ)k
. Py \vm)’ @
gives
1
n (2
U (k +1 * (4)
Combining (2) and (4), we have
B ORI N 5
Patn 2 ®

The velocity through the orifice is

p k
w =\/2gk 1 P1Yss
and by the use of (5) this becomes

W ="VghPp V- (6)
Comparing (6) with (1), it appears that the mazimum velocity
of flow from a short convergent tube is the same as the velocity of
sound tn the fluid in the state it has at the critical section.
This result is due to Holtzmann (1861).

156. The de Laval Nozzle. — The character of the flow through
a simple orifice depends largely upon the pressure p, in the
region into which the jet passes. There are two cases to be
discussed :

1. When p, is equal to or greater than the critical pressure

P given by the ratio
k

]’m 2 k=1
A (m) )

© 2. When p, is less than p,,.
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In the first case the Pressure at th
as we have seen, takes the value p, of the surrounding region,
and, therefore, the jet experiences no change
of pressure as it Passes into the region beyond
the nozzle. There is 1o tendency, consequently,
for the jet to spread laterally, and for some
distance beyond the orifice it will have Ppracti-
cally constant cross section, Furthermore, since
there is no drop in Dressure along the axis of
the jet, the velocity remains practically con-
stant at successive cross sections,
This velocity is given by @,
Art. 151,
In the second case the pres-
Py Sure at section a takes the critical value Pmy Which
p is greater than the pressure of the swrroundings,
" Asa result of the pressure difference Pm— py, the
jet will expand laterally, as shown in Fig. 89,
i, o Furthermore, along the axis of the jet the pres.
’ sure drops continuously from its initial value p,,
ntil at some distance from the orifice it attains the pressure
- Hence, due to this Pressure drop, the velocity of the jet in
e direction of the axis will increase
 suceessive sections are passed. The
itial velocity at section g is

€ cross section g, Fig. 88,

Wy =V GIPmtm,

at is, the acoustic velocity.

The lateral spreading of the jet may
prevented by adding to the orifice
Toperly proportional tube, as shown
Fig. 90. The orifice and tube to-
her constitute a de Laval nozzle. The tube must diverge
a8 t0 permit the expansion of the fluid required by the drop
bressure from p, at section ¢ to Ps at section 8. The area
the end section & depends upon the final pressure p,. At
flon a the jet has the acoustic velocity w, as if the added

Fre. 9.



its velocity increases and at the end section b takes the value
w, given by the relation

“ﬁz’;g_wz = I(im— ). Ieh)

The general character of the flow through the de Laval
nozzle may be seen from the following analysis.

Assuming frictionless adiabatic flow, the fundamental equa-
tions (6) and (T7), Art. 150, become, respectively,

du + pdv =0, @
wdw
— = — vdp. 3
7 p @

We have also the equation of continuity
Fuw = My, (O))

from which by differentiation we obtain

dw , dF _ dv
W TFTY ®
For perfect gases,
pv
YSECIT
while for superheated or saturated vapors,
—_PY
“=a-i
Therefore, (2) becomes
d( pv
% + pdv =0,
or Epdv + vdp =0, )
whence L] =— dp,
v kp
Combining this relation with (5), we obtain
dw dF  dp
vt T =" )

Now from (3),
dw =& dp;

w w2



hence (7) becomes

1 !L) 1
(kp 2)ip + 3 dF = 0. ®
By introducing the equation for the acoustic velocity
wi = kypo, ®
(8) may be readily reduced to the form
1dp kw?* 1 dF
Pl T @—wpFds an

The variable  may be used to denote the distance of a nozzle
* section from some fixed origin, Fig. 90. For vapors, & may be
replaced by n.

The nozzle has two distinet parts: the rounded orifice ex-
tending from O to 4, Fig. 91, and the diverging tube extend-
tive 9. ig negative for this -2

ing from 4 to B. As the
cross sections decrease in
area from O to A, the deriva-
L
dz
part; for the diverging part T —
drops continuously from O \
to B as shown by the curve
of pressure; hence g—‘: is Fria. 91.

7
|

from A to B, %’ is positive;

] i

for the throat 4 it has the
value zero. The pressure

————,
<D

\—r
N

negative throughout. Referring to (10) we have the following
results :

2
For orifice 04, dF —2 is —3 il S —; w< W,
ola; wz—w2
2
For tube 4B, %ﬁ;' is +3 % is —3 wzki” 318 +5 w>w,

For throat 4,



Hence the velocity steadily increases until at the throat it
attains the acoustic velocity; then in the diverging tube it
further increases. Inspection of (10) shows that divergence is
necessary if the velocity w is to exceed the acoustic velocity .

157. Friction in nozzles. In the case of flow through a simple
orifice or through a short convergent tube with rounded en-
trance, the friction between the jet and orifice, or tube, is sinall
and scarcely demands attention. With the divergent de Laval
nozzle, on the contrary, the friction may be considerable and
must be taken into account. As explained in Art. 162, the

2
effect of friction is to produce a decrease in the jet emergy 2%;

at the end section. Referring back to Fig. 83, suppose 4 to
denote the initial state of the fluid entering the nozzle, B’ the
final state at exit, and B the final state that would have been
attained with frictionless flow; then the area .4;BB'B;' repre-
sents the increase in the final heat content 4, due to friction and
it likewise represents the decrease in jet energy at exit.

Let 4;, 4,, and 4,/ denote, respectively, the heat content of the
fluid in the states represented by the points 4, B, and B'.
Without friction, we have

w,? .
2; =J (i — 1),
while with friction
wh? .
5? = J(ll - 12’).
The loss of kinetic energy due to friction is, therefore,
w2 wh? . .
§;_2_2“/=J(12' — )

It is customary to take as a friction coefficient the ratio of the
loss of energy to the kinetic energy without friction. Denoting
this ratio by y we have, therefore,

2 _ 2 s __ 7
y="2"" b Th w

2 A

w, 3 — 1



whence
w,! .
§?—q=J(1—?/)(‘1‘72)- @

The experiments that have been made on the flow of steam
through nozzles indicate that the value of y may lie between
0.08 and 0.20.

ExaMpLE. Steam in the dry saturated state flows from a boiler in which
the pressure is 120 lb. per square inch absolute into a turbine cell in which
the pressure is 85 1b. absolute. A de Laval nozzle is used, and the value of
yis 0.12. TFind the velocity of the jet, and the loss of kinetic energy; also
the final quality of the steam.

For the given initial state, ¢ = 1190.1 B.t.u. At the end of adiabatic ex-
pausion to the lower pressure, 2 is found to be 0.925, and 4; is found to be
1095.8 B.t.u. The exit velocity on the assumption of frictionless flow is,
therefore,

w = 223.7V1100.1 — 1095.8 = 2172 ft. per second,
while the actual velocity is
w' =223.7+/(1 — 0.12) (1190.1 — 1095.8) = 2038 ft. per second.

The loss of kinetic energy is,

0.12 x 778 x 94.3 = 8804 ft.-Ib.,
orin B.t. .,
0.12 x 94.3 = 11.3 B.t. u.

This heat is represented by the rectangle 41BB'By’, Fig. 83. Hence, for the
quality ;' in the actual final condition B', we have

o 2Gi—i) _ 113 _ (0.
T = d3sa = 001

and, therefore, zo’ = 0.925 + 0.012 = 0.937.

The effects of friction are: (1) to decrease the velocity of
flow at a given section; (2) to increase the specific volume v
of the fluid passing the section. The latter effect is seen in
the case of steam in the increased quality or increased degree
of superheat due to the heat generated through friction reénter-
ing the moving fluid. From the equation of continuity

F= M%, ®)

it appears that the effect of friction is to increase the numera-
tor » and decrease the denominator o of the fraction of the



second member ; hence for a given discharge M, the cross sec-
tion ' must be larger the greater the friction, that is, for the
same lower pressure p,.

The effect of friction may be viewed from another aspect.
In Fig. 92, let the curve CMAE represent the pressures along
the axis of a de Laval nozzle on the assumption of no friction.
This curve is readily found for a given value of p, by finding

for various lower pressures p
P E’Jr__j'-’ the proper cross section. F by
means of the two equations,

2 Gy —4), and F=202.
P B e 29 N1 T w
Let A be a point on the pres-
sure curve obtained in this
I's manner. If nmow friction is
taken into account, the sec-
tion F' associated with the
lower pressure p has a larger
area than the section # calcu-
i EZ’  lated on the assumption of

no friction ; therefore, the

point A4 is shifted by friction
to a new position A’ underneath the new section #'. Similarly
the end section ¥, must be increased in area to F,/, and the
point & on the frictionless pressure curve is shifted to a new
position B'. The effect of friction, therefore, is to raise the
pressure curve as a whole, that is, to increase the pressure at
any point in the axis of the nozzle.

Fie. 92.

158. Design of Nozzles. — The data required in the design of
a nozzle are the initial and final pressures, the weight of steam
that must be delivered per hour or per minute, and the coef-
ficient y. Two cross section areas must be calculated, that at
the throat, and that at the end of the nozzle. The following
example illustrates the method.

ExampLE. Required the dimension of a nozzle to deliver 450 Ib. of

steam per hour, initially dry and saturated, with an initial pressure of 175
T Alendidtn avmd €oal vrmnccttira ~F 12 Th ohenlirdan T ot ar D192



The critical pressure in the throat is 175 x 0.57 = 100 lb. approx. Then
r frictionless adiabatic flow
i, = 1196.4 B. t.1,,
i (at throat) = gn' + Zmrm = 298.1 + 0.962 x 888.4 = 1152.9,
ig = g4 + @ar2 = 181.1 + 0.863 x 969.7 = 1017.5,
iy — i = 43.5; 4 — iz = 1780,
nce the throat is near the entrance, the effect of friction between entrance
d throat is practically negligible ; hence the velocity at the throat is
Wy = 223.7V43.5 = 1475 ft. per second.
wking account of the loss of energy (y = 0.13), the velocity of exit is
wy = 223.7V0.87 x 178.9 = 2791 ft. per second.
1e quality of steam at the throat was found to be 0.962, and that at exit,
thout friction, 0.863. Because of friction, the quality at exit is increased
' the amount 178.9 x 0.13 + 969.7 = 0.024, thus giving a final quality

363 + 0.024 = 0.887. Neglecting the volume v’ of a unit weight of water,
1ce z is large, the specific volumes at throat and exit are respectively

4.42 x 0.962 = 4.252 cu. ft.

d 26.23 x 0.887 = 23.26 cu. ft.
'om‘the equation of continuity Fw = Muv, we have, since
= 6042060 = 0.125 1b. per second,
0.125 x 4.252
== =2 = 0.0 . ft.
™ 1475 0036 sq. ft.

= 0.0519 sq. in.
the area of the cross section at the throat. The area at exit is

7= %{’ngﬁ 0.001042 sq. £t = 0.15 5q. in.

the cross section of the nozzle is made circular, the diameters at throat
d exit are respectively

=0.251 in., dg = 0.437 in.;
d taking the taper of the nozzle as 1 to 10, the length of the conical part

10(0.437 — 0.257) = 1.8 in.

EXERCISES

1. Find the weight of air discharged per minute through an orifice

inch in diameter from a resewoxr in w]uch the pressure is maintained at
S ST L IR % M T, A




Rt . D e
orifice having an area of 0.4 sq. in. into & region in which the pressure is
55 1b. per square inch. Find (a) the velocity; () the weight discharged
per minute. Compare the results obtained by using Grashof’s, Napier’s,
and Rateau’s formulas, respectively.

3. If in Ex. 2 the back pressure is 80 Ib. per square inch, what is the
weight discharged? Assume the steam to e initially dry and saturated.

4. Tf for superheated steam the exponent n in the adiabatic equation

),
pum = const. is taken as 1.30, find the critical ratio j}—m .
1

5. A de Laval nozzle is required to deliver 630 1. of steam per hour.
The steamn is initially dry and saturated at a pressure of 110 1b. per square
inch and the final pressure is 8 in. of merenry. Find the necessary areas of
the throat section and end section of the nozzle, assuming frictionless flow.

6. In Ex. 5 find the areas of the two sections when the loss of kinetic
energy is 0.15 of the available energy.

7. Find the avea of an orifice that will discharge 1000 1b. of dry steam
per hour, the initial pressure being 150 1b. per square inch and the back
pressure 105 1b. per square inch.

8. In an injector, steam flows through a diverging nozzle into a combin-
ing chamber in which a partial vacumm is maintained, due to the coudensa-
tion of the steam in a jet of water. If the initial pressure is 80 1b. per
square inch and the pressure in the combining chumber is 8 1b. per square
inch, find the velocity of the steam jet. Assume y = 0.08.

9. Steam at 160 Ib. pressure superheated 100° flows through a nozzle
into a turbine cell in which the pressure is 70 Ib per square inch. Find the
area of the throat of the nozzle for a discharge of 36 1b. per minute,

10. Let steam at 160 Ib. pressure, superheated 100°, expand adiabatically
without frietion. Take values of the back pressure py as abscissas, and plot
curves showing (a) the available drop in heat content @ — @x; () the veloe-
ity of the jet; (c¢) the area of cross section required for a discharge of one
pound per second.

SuacestioN. Tind # for the following pressures: 140, 120, 100, 80,
60, 40, 20, 10, 5 Ib. per square inch. Then find w from the formula
w = 2237V, — i3, and the cross section from the equation of continuity.

11. Steam at 160 Ib. presswre superheated 100° is discharged into a
region in which the pressure is pg through an orifice having an area of
0.25 sq. in.  Talke the values of ps given in Ex. 10 and plot a curve showing
the weight discharged for different values of pu.

12. Show that if the loss of kinetic energy is y per cent of the available

energy, the decrease in the velocity of the jet is approximately § y per cent
of the ideal velocity.
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CHAPTER XIV
THROTTLING PROCESSES

159. Wiredrawing. — The flow of a fluid from a region of
higher pressure into a region of much lower pressure through
a valve or constricted passage gives rise to the phenomenon
known as wiredrawing or throttling. ~ Examples are seen in the
passage of steam through pressure-reducing valves, in the
throttling calorimeter, in the passage of ammonia through the

expansion valve in a refrigerating
2y
=™ A

machine, and in the flow through
Fia. 93.

ports and valves in the ordinary
steam engine. Wire-drawing is
evidently an irreversible process,
and as such, is always accompanied by a loss of available
energy.

The fluid in the region of higher pressure is moving with a
velocity wy, Fig. 98. As it passes through the orifice into the
region of lower pressure p,, the velocity increases to w, ac-
cording to the general equation for flow, viz:

wyt— wy? ..

22g L=J (G- ) @
The increased velocity is not maintained, however, because the
energy of the jet is dissipated as the fluid passing through the
orifice enters and mixes with the fluid in the second region.

2 _ .2

Eddies are produced, and the increase of energy ﬁle is re-
turned to the fluid in the form of heat generated through in-
ternal friction. Utimately, the velocity w, is sensibly equal to
the original velocity w;; therefore from (1), we obtain

By = Ty (2)
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as the general equation for a wiredrawing process. The
initial and final points lie, therefore, on a curve of constant heat
content.

160. Loss due to Throttling. — Let steam in the initial state
denoted by point 4, Fig. 94, be throttled to a lower pressure,
the final state being denoted by
point B on the constant-i curve
AB. Also let T, denote the
lowest available temperature.
The increase of entropy during
the change AB is represented
by A;Bj, and this increase multi-
plied by the lowest available
temperature T; gives the loss of
available energy. Evidently this
loss is represented by the area
AI‘D C’.Bl. Fie. %4,

Examrie. In a steam engine the pressure is reduced by a throttling
valve from 160 1b. per square inch to 90 Ib. per square inch absolute. The
initial quality is = 0.99 and the absolute back pressure is 4 in. of mercury
Required the loss of available energy per pound of steam.

From the steam table the initial heat content is 1187.2 B.t.u. At a pres
sure of 90 1b. the heat content of saturated steam is 1184.5 B.t. u., therefor:
in the second state the steam is superheated. As the degree of superheat i
evidently small, it may be determined with sufficient accuracy from the
curves of mean specific heat. At a pressure of 90 lb. the mean specific hea
1187.2 — 11845 5

0.55
The entropy in the second state is the sum of the entropy at saturation
1.6107 for a pressure of 90 lb., and the entropy due to superheat, which i
approximately.

near saturation is 0.55; hence the superheat is ,nearly

T,+5 785
a8 _y, , 785 _ 0.0035.
A2 = 0.55 log, £22 = 0.00

Hence, s3 = 1.6107 + 0.0035 = 1.6142. The entropy in the initial stafe

0.55 log,




replaced by a conespondmg revels1ble change wmh the con(h—
tion that the heat content ¢ remains constant. The general

equation

di = Tds + Avdp,
then becomes,

0 = Tds 4 Avdp,

and approximately we have, therefore,
Av
As=—~=—-Ap, 1
§ 7 AP @

in which As is the increase of entropy corresponding to the
change of pressure Ap. Since Ap is intrinsically negative, it
follows that As must be positive. Equation (1) may be
written in the more convenient form

As=—— =& @
For perfect gases (2) reduces to the simple form
As=—4BL ]” )

For steam having the quality z, we ha.ve

v=z(@" —v)+7,

and Apv= Apz(v" —v") + Apv';
or neglecting the small specific volume o' of the water,
Apv = 2.
Eq. (2) therefore takes the form
2y A
As=— % _]72 . @

Mean values for p, T} and - should be taken.

Exasrre. If in passing into the engine cylinder the pressure of steam
is reduced by wiredrawing from 125 Ib. to 120 lb. per square inch, what is
the loss of available energy ?- The initial value of z is 0.98 and the pressure
at exhaust is 16 1b. per square inch.

Taking the two pressures 125 and 120, the following mean values are
found from the table :

p=1225 T = 8024, y = 825. Also,Ap= — 5.



— J.JY X Os.09 v
Hence, As= —e0id X 5= 0.00398.

For T, we take the temperature corresponding to the 16 1b., namely, 675.9°.
Therefore the loss of available energy is

675.9 x 0.00898 = 2.7 B. t. u. approx.

161. The Throttling Calorimeter.— A valuable application
of the throttling process is seen in the calorimeter devised by
Professor Peabody for determining the quality of steam. In
the operation of the calorimeter steam from the main is led
into a small vessel in which the pressure is maintained at a
value slightly above atmospheric pressure. The steam is thus
wiredrawn in passing through the valve in the pipe that con-
nects the main and the vessel. For successful operation the
amount of moisture in the steam must be small so that, as the
result of throttling, the steam in the vessel is superheated.

In Fig. 94, let point A represent the state of the steam in
the main and point B the observed state of the steam in the
calorimeter ; then

ta=1g (1)
But

ta=1 +ary, @
where ¢, and 7, refer to the pressure p; in the main;
and ip="5" + ¢(t' — &), ®

where ¢,/ is the observed temperature of the steam in the
calorimeter, ¢, is the saturation temperaturg corresponding to
the pressure p, in the calorimeter, 4,” is the saturation heat
content corresponding to the pressure p,, and ¢, is the mean
specific heat of superheated steam for the temperature range
t,/ —t,, Combining the preceding equations, we obtain
B et —t)— 4
et @
Exampre. The initial pressure of the steam is 140 Ib. per square inch,
the observed pressure in the calorimeter 17 Ib. per square inch, and the
temperature in the calorimeter 258° F. Required the initial quality.
The temperature of saturated steam at 17 1b. pressure is 219.4° F.; hence
the steam in the calorimeter is superheated 258 — 219.4 = 38.6°. From the
curves of mean specific heat the value 0.477 is found for the pressure 17 lb.



and the degree of surperheat in question ; and from the steam table we have
iy = 1153, i)' = 824.2, , = 869. Hence,
1153 + 0.477 x 38.6 — 324.2
e = 0.975.

The Mollier chart, Fig. 75, may be used conveniently in the
solution of problems that involve the throttling of steam.
Since the heat content remains constant during a throttling
process, the points representing the initial and final states lie
on the same horizontal line. In the preceding example the
final point is located from the observed superheat 38.6° and
the observed pressure 17 lb. in the calorimeter. A horizontal
line drawn through this point intersects the constant pressure
line p =140 1b., and from this point of intersection the quality
z = 0.975 is read directly.

162. The Expansion Valve.— In the compression refrigerat-
ing machine the working fluid after compression is condensed
and the liquid under the higher pres-

7 7 sure p; is permitted to flow through
the so-called expansion valve into coils

in which exists a much lower pressure

» B, Py Let point 4, Fig. 95, on the liquid
E curve represent the initial state of the
liquid. The point that represents the

final state must lie at the intersection

of a constant -¢ curve through 4 and

0 2, B, S line of constant pressure p,. Evidently
Fre. 95. we have
= '[1,1
and = ig’ + 2,7y
where z, denotes the quality of the mixture in the final state.
Therefore 4y =4, + 2y &)
=y
or Ty = 5 2

The increase of entropy (represented by 4,B)) is
As= s, +————~sl, [©))



and the loss of refrigerating effect due to the expansion valve,
which is represented by the area 4, GBB,, is

TAs = 27, — Ty(s,! —83)
=i =4 = T(s/ —5).  (4)
The following equalities between the areas of Fig. 95 are
evident : area OFAA, =area OEFBB,,
area FGFA =area A;G@BB,.

163. Throttling Curves. — If steam initially dry and saturated
be wiredrawn by passing it through a small orifice into a region
of lower pressure, then, as has been shown, it will be super-
beated in its final state.

If the lower pressure p, 1
is varied, the tempera- /
ture ¢ will also vary, g5 =
and the successive values /
of p, and ¢, will be rep-
resented by a series of
points lying on a curve.
By taking various initial

pressures a series of such 4

curves may be obtained.
Sets of throttling curves 1

o

N

Temperature F,

5

for water vapor have 50 T00 70 A
been obtained by Grind- Pressure, Ib. per sq. in.
ley, Griessmann, Peake, Fra. %.

and Dodge. The curves deduced from Peake’s experiments
are shown in Fig. 96. Abscissas represent pressures, ordinates,
temperatures. The curve from which the throttling curves
start is the curve ¢ =f(p) that represents the relation between
the pressure and temperature of saturated steam.

It was the original purpose of Grindley, Griessmann, and
Peake to make use of the throttling curves in finding the
specific heat of superheated steam. The theory upon which
this determination rests is simple. From Eq. (4), Art. 161, we
readily obtain i b — i

1N\



The temperature difference t,’— ¢, for any lower pressure p, is
the vertical segment between the throttling curve and the satu-
ration curve and is given directly by the experiment. Hence if
the initial quality # is known, and if 4" and 4," are accurately
given by the steam tables, the mean value of ¢, is readily cal-
culated. The results obtained were, however, discordant and
of no value. The form of Eq. (1) is such that a slight error
in any of the terms of the numerator of the fraction produces
a large error in the calculated value of c,.

The impossibility of deriving consistent values of ¢, by the
method just described led to the belief that Regnault’s formula
for the total heat of saturated steam, hitherto regarded as
authoritative, must be incorrect. The experiments of Kno-
blauch and Jakob on the specific heat having appeared,
Dr. H. N. Davis of Harvard University discerned the possibility
of reversing the method and deriving by it a new formula for
total heat.

164. The Davis Formula for Heat Content. — The method
employed by Dr. Davis in deriving from the throttling curves
a formula for the heat content of
steam may be described as follows:
Let AD, Fig. 97, be one of the
series of throttling curves, and
AD' the saturation curve. The
heat content is constant along the
throttling curve, that is

’iA =i,, ='ig= ete.

Fra. OT. Let p, be the lower pressure cor-
responding to the points B, B,
and let At denote the temperature difference indicated by the
segment B'B. If the steam were made to pass from the satura-
tion state B’ to the superheated state B at the constant pres-
sure p,, the heat absorbed during the process would be c,A¢,
¢, denoting the mean specific heat between B'and B. It follows
that
13— 15 = ¢, AL,
that is, T4 — 15 =C, At.
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In a similar manner the diffevences ¢, — ¢, t, — 7, etc. are ob-
tained. The result is a relation between the heat content of
saturated steam at the original pressure p, (state A) and the
values of the saturation heat content for various lower pressures.

The temperatures corresponding

to these pressures are now laid D B 4 .
off on an arbitrarily chosen line & B’
MN, Fig. 98, and from the points D

4, B', (', etc., the segments

BB =1y — iy, O'C" =1, ~1g,

ete. are laid off. A curve

through the points 4, B", ¢", 0 ¢

D", ete. is an isolated segment of Fic. %8,

the curve giving the relation between the heat content ¢ and the

temperature t. Necessarily only relative values are thus obtained.
From the individual throttling curves Dr. Davis thus obtained

twenty-four overlapping segments of the it-curve, and by

properly coordinating these segments he obtained finally a

smooth curve covering the range 212° to 400° F. The curve

was found to be represented by the second degree equation

i=a+ 0.8745(¢ — 212) — 0.00055 (¢t — 212)?%;
and from the experiments of Henning and Joly on the latent

heat of steam at 212° F., the value of the constant ¢ was found
to be 1150.4.

165. The Joule-Thomson Effect. — The classical porous plug
experiments of Joule and Lord Kelvin were undertaken for the
purpose of estimating the deviation of certain actual gases from
the ideal perfect gas. The gases tested were forced through a
porous plug and the temperatures on the two sides of the plug
were accurately determined. In the case of hydrogen the tem-
perature after passing through the plug was slightly higher
than on the high pressure side ; air, nitrogen, oxygen, and car-
bon dioxide showed a drop of temperature.

E L IR I P I T T LT S R Y Y R
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For an ideal perfect gas,

Uy = Je, T+ ug, and pv = BT;
hence, (Je,+ B)Ty =(Je,+ B)T}
or I =T,

It follows that a perfect gas would show no change of tempera-
ture in passing through the plug, and that the change of temper-
ature observed in the actual gas is, in a way, a measure of the
degree of imperfection of the gas. The results of the experi-
ments have been used to reduce the temperature scale of the
air thermometer to the Kelvin absolute scale.

The ratio of the observed drop in temperature to the drop in

pressure, that is, the ratio %1—’, is called the Joule-Thomson

coefficient and is denoted by u. According to the experiments
of Joule and Kelvin u varies inversely as the square of the
absolute temperature. That is,

=g @

It may be assumed that this relation holds good for air, nitro-
gen, and other so-called permanent gases within the region of
ordinary observation and experiment. At very low tempera-
tures it seems probable that u varies with the pressure as well
as with the temperature.

An expression for u in the case of superheated steam can
readily be derived from the formula for the heat content, namely:

imal 3R ATCED (18N e
g I vd 21’ P T Y

Since ¢ is constant in a throttling process, we may define the
Joule-Thomson coefficient more accurately as the derivative

( %%v) From calculus, we have
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and from the definition of the heat content 7,

i,
T ™
T _1la
H
ence o= (8p> o
or " =—|:M(1 + ap)+c:]. @
c]) Tﬂ

The following table coutains values of u calculated from
Eq. (.

Pressure
Lu. rer | 250° F,

3000 8500 400° 4500 5000 5500 600°
8q. In.

15 0.668 | 0492 | 0.369 | 0.282 | 0.220 | 0.176 | 0.143 | 0.119
100 0.327 | 0.261 | 0.208 | 0.169 | 0.140 | 0.118
300 0.191 | 0.162 | 0.188 | 0.118

It will be observed that the value of w varies with the pres-
sure; however, as the temperature rises, the influence of
pressure decreases; hence for gases far removed from the satu-
ration limit, such as were used in the porous plug experiments,
it seems probable that u is a function of the temperature only,
as found by Joule and Kelvin.

Dr. Davis has deduced from the throttling experiments of
Grindley, Griessmann, Peake, and Dodge values of u for super-
heated steam.* These were found by direct measurement of
the mean slopes of the throttling curves. The values thus
obtained agree very closely with those calculated from (2) and
shown in the preceding table.

166. Characteristic Equation of the Permanent Gases. — From the cooling
effect shown in the Joule-Thomson’s experiments for all gases except hydrogen,
it appears that those gases do not follow precisely the law expressed by the

equation pv = BT. By making use of the relation u= % it is possible to

derive a characteristic equation that represents more nearly the behavior of



olnce the neat content z 18 constant auring a varottling pmcess, the gen-
eral equation
v

di=c,dT— 4 (Tﬁ-u)dp

takes the form

c,,%ﬂ(T;’; )- ®

Differentiating both members of (1) with respect to 7, we obtain

arlo )= 4G T )

0%
=AT—. 2
i @
But we have
ar_ &
dp k=g
and from the general thermodynamic relations, '
ards__(l). o
a7 ap

Substituting these expressions in (2), we obtain
de,

=2\ =0,

aT<°" T‘) +(ap)T g

ac,,) (8:,) 2 acy _

—-==2=0,
(Gp tm T2\oT /A &)
This is a partial differential equation, the general solution of which is the
equation

whence

¢y = T(T* = 3 ap). @
Here ¢ denotes an arbitrary function which must be determined from
physical considerations. Since at high temperatures ¢, for permanent gases
is given by the linear relation ¢, = a + 5T, we have from (4),

a+bT= T2¢(TB),
whence (1% =

Tz T’
e b
(s —sap)t  (T3-3ap)t
Since the term 3 ap is small in comparison with the term 7°% we have
approximately
-2 2
(T2~ 3Bap) o= T-2(1 +-1fo£)

and (T8 — 3 ap)= )

(Ts-aap)%ﬂ-x(uzﬁ).
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Introducing these expressions in (5) and substituting the resulting expres-
sion for ¢(7'8 — 3 ap) in (4), we obtain finally

c,:a(1+%—f—‘§)+b7‘(1 +%)
=a+bT+27‘2‘2(2Ta+b)- ®)

It appears from (6) that the specific heat of the permanent gases varies
with the pressure and temperature. At very high temperatures the term
containing p is small and the specific heat is given simply by a + b7'; at
low temperatures, however, this terin becomes appreciable and the specific
heat increases with the pressure. The specific heat curves have, therefore,
somewhat the form shown in Fig. 71.

From (6), we have by differentiation

% dc, o (2a
~ar = (), = m(F+ ).

/\/C (/ P __« (2_“+b).

AT\ T

Integrating, we obtain

d_af2a 10 )
== (2 =4 = . T
E A(3TB+QT2 +f(p) Q)
Introducing in (1) the expression for g—;, given by (7), we obtain after
reduction .

Y fpy - [le 1, api2a ) 8

7=/ 4 3T+2b+Tﬂ(T+b]' ®
To determine the function f(p), we assume that the perfect gas equation
pv= BT holds when 7' is very large. Hence f(p) =3 ,and (8) becomes

P

9
=BT -22 §%+%b+’,§§(‘1‘,‘+ b)] )

Since the last term in the bracket is very small, it may be neglected, and (9)
may be written

—pr-(le 11,) 10
po= BT~ (35+5Y)- an
The equation given by Joule and Thomson, namely,

w=BT -2 an

3T



Joule-Thomson effect has been employed by Linde in a very
ingenious machine for the liquefaction of gases. A diagram-
matic sketch of the
machine is shown in
Fig. 99. Air (or any
other gas that is to
be liquefied) is com-
pressed to a pressure
of about 65 atmos-
pheres and is dis-
charged into a pipe
leading to the cham-
ber e¢. A current of
cold water in the
vessel b cools the air
during its passage
from the compressor
to the receiving cham-
ber. From c¢ the air
passes through a valve
v into a vessel d, in which a pressure of about 22 atmospheres
is maintained. As a result of the throttling the temperature
of the air is lowered. Thus, if p; is the pressure in the chamber
¢ and p, the pressure in the vessel d, the drop in temperature is

Fi6. 99,

'3

b—ty= T;ﬁ (py—po)- @

The air now passes from vessel d at temperature ¢; into the
space enclosing the chamber ¢ and thence back to the compressor.
In passing back, the air absorbs heat from the air in ¢, and the
temperature rises from ¢; to the final temperature ¢, which is
nearly the same as the initial temperature ¢;. Due to this
cooling, the air in ¢ arrives at the valve » with a temperature
which becomes lower and lower as the process continues. As
the temperature £, sinks the temperature #; also sinks, but as
shown by (1), ¢, sinks more rapidly than ¢,. Ultimately, the
value of ¢; drops below the critical temperature of the gas,
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CHAPTER XV
TECHNICAL APPLICATIONS, VAPOR MEDIA

THE StEAM ENGINE

168. The Carnot Cycle for Saturated Vapors. — Since the
constant pressure line of a saturated vapor is also an iso-
thermal, three of the processes of the Carnot cycle are ap-
proximately attainable in a vapor motor, namely: isothermal
expansion, adiabatic expansion, and isothermal compression.
The adiabatic compression might also be accomplished by a
proper arrangement of the organs of the motor, though in
practice this is never attempted. Hence, the Carnot cycle is

o pn B S o v
Fic. 100. Fic. 101.

discussed in connection with vapor motors merely for the pur-
pose of furnishing an ideal standard by which to compare the
cycles actually used.

The Carnot cycle on the 7'S-plane and p V-planes, respec-
tively, is shown in Fig. 100 and 101. The isothermal expan-
sion AB occurs in the boiler, the adiabatic expansion B( in the
engine cylinder, the isothermal compression CD in the con-
denser. To effect the adiabatic compression DA, the mixture

of liquid and vapor in the state D would have to be compressed
Y



adlabatiCally 1N a Separate Cyilnder and deliverea to the boiler
in the state represented by point 4.
The heat received from the boiler per unit weight of fluid is

¢y =nr(z—=,); (area A, ABB) (¢b)
that rejected to the condenser is
gy =ry(z,—22); (area B{CDA,) (&)

and the heat transformed into work, represented by the cycle
area, is

T, — T,
AW=q— = 1T1 21y( — 20)- ©)
The efficiency is
= -1
n == )

and the weight of fluid used per horsepower-hour is
Ne 2546 _ 2546 T ) &
=0 n@—2z) -1
If point A4 lies on the liquid line ¢’ and point B on the satu-
ration curve 8", then z,=0, ,=1, and (3) and (5) become,
respectively,

T, — T,
AW=gq —g,=7 IT 2, (€D
2546 T !
= i, l
o ry I—1T, 9

ExampLE. Let the upper and lower pressures be respectively 125 Ib.
per square inch absolute, and 4 in. of mercury. Then from the steam table
Ty =804, T = 585.1, r; = 875.8 B.t.u. From (4), the efficiency is

804 70585.1 — 097

The heat transformed into work is 875.8 x 0.272 =238.2 B.t.u., and the

2546 _ 107 1, per h. p.-hour.

it tion is
steam consump 1 1 9389

169. The Rankine Cycle.—In the actual engine the iso-
thermal compression is continued until the vapor is entirely
condensed, thus locating the point D on the liquid curve ¢,
Fig. 102. The liquid is then forced into the boiler by a pump
and is there heated to the boilino temnerature #.. This heat-



v ME aEoiiiuit vllab WU yyiEuol das U0 Clbdldlive, VLo o pr -
diagram necessarily takes the form shown in Fig. 108.

0Dy 4; B; S o v
F1a. 102. F1c. 103.

The heat supplied from the boiler per pound of steam is in
this case

=0t ga=q' — @ + s @
and the heat rejected to the condenser is
Qo = T (€))
Hence, the heat transformed into work is
B~ %= — % %= ©)
and the efficiency of the cycle is
=q1_%=1_ 9% . 4
K % 9’ — 0 + 71 ®

It is evident that this efficiency is less than that of the Carnot
cycle.
The steam consumption per h. p.-hour is

2546 2546

N= = —. 5)
G—% U T T ¢
The quality at point C'is determined from the relation
fp T g Tl 6
8+ T, 8y + T, Q)

ExampLe. — Using the data of the example of the last article, determine
the efficiency and steam consumption of an engine running in a Rankine
cycle with dry steam.



end of adiabatic expansion is

- 04957 — 0.1739 + 1.0893 _ g0,

1.7497
The available heat is
315.2 — 93.4 + 875.8 — 0.806 x 1023.7 = 272.4 B.t. u.;
while the heat supplied in the boiler is
315.2 — 93.4 + 875.8 = 1097.6 B. t. u.
Hence the efficiency is
= 2724 _ (9 243,

1097.6
which may be compared with the efficiency 0.272 of the Carnot cycle under
similar conditions.

The steam consumption is

N= "046

=9.35 Ib. per h. p.-hour,

170. Rankine’s Cycle with Superheated Steam. — If super-
heated steam is used, the Rankine cycle has the form shown in
Fig. 104. The heat ¢, supplied
from the source is increased by
the heat represented by the area
ByBEE,, which comes from the
superheater; and the heat avail-
able for transformation into work
is increased by the amount repre-
sented by the area FBEC. Evi-
dently the efficiency of the ideal
cycle is increased by the use of
superheated steam, but the in-

0D, B, S crease is small. The advantage of
Fra. 104, superheated steam lies in another
direction.

It T, denote the temperature of the superheated steam (i.e.
at pomt E), the heat required for the superheating process BE

is 5' ¢,dT where ¢, is the specific heat of superheated steam.



for ¢, givgn by qu. (9), Art. 133. '1‘1;@ the Tle;zt represented
by the area D,DABEE, is given by the expression

7, '
G=q — o +r+ an epd T, @

T,
However, as has been shown, the sum ¢’ +rl+fT°c,,dT is
: :

practically equal to the heat content of the steam in the state Z.
Hence we may write
@ =t—q @
and caleulate 4, from the general formula (5) Art. 135.
If the point ('at the end of adiabatic expansion lies in the
saturated region, as is usually the case, we have, as in the first
case, Gy = Ty

The heat transformed into work is, therefore,

GG =% — 5| — 7T 3
and the efficiency is
p=1-_T2% . [6))
o= 2

The value of z, is determined from the relation
2,7,
s, =38, + ~1—'j, [©))

where ¢ is the entropy for the state Z, and is calculated from
the general equation (3), Art. 137.

Exampre. — Find the efficiency of the Rankine cycle, using the data of
the previous examples, but assuming the steam to be superheated to 1000°
absolute.

From (6), Art. 135, the heat content of the superheated steam is
i=1000(0.367 + 0.00005 x 1000) — 125(1+-0.0008 x 125) 10?)'05 —0.0163 x 125

+ 886.7 = 1294.8 B.t. u.;

and from (4), Art. 187, the entropy is
s = 0.8451 log 1000 + 0.0001 x 1000 — 0.2542 log 125

— 125(1 + 0.0003 x 125) 10%'0"'- 0.3964 = 1.7002,




_ 17002 — 0.1739 _ ( oo
T LT = 0872

Heat supplied = i — ¢/ = 1294.8 — 93.4 = 1201.4 B. t. u.
Heat rejected = rpz, = 1023.7 x 0.872 = 892.7 B. t. u.

Available heat = 1201.4 — 892.7 = 308.7 B. t. u.

308.7

12014
2546 _

308.7

Hence Zg

Efficiency = = 0.257.

Steam consumption = 8.25 1b. per h. p.-hour.

171. Incomplete Expansion. —Because of the very large
specific volume of saturated steam at low pressures, it is usu-
ally impracticable to continue the adiabatic expansion down
to the lower pressure p,. The exhaust valve opens and re-
leases the steam at a pressure somewhat higher than p,. The
passage of the steam from the cylinder is an irreversible pro-
cess in the nature of a free expansion and is indicated on the
pV-diagram by the drop in pressure EF (Fig. 106). The

4 p:

\\}c
+

14

k4
[N

0D, B

F1a. 105. Fra. 106.
actual process may be replaced by an assumed reversible pro-
cess, cooling at constant volume. On the Z7'S-diagram the
cooling is represented by a constant volume line EF (Fig.
105) drawn as described in Art. 125.

Evidently this “ cutting off the toe” of the diagram results
in a decrease in the ideal efficiency, but it is justified by the
smaller cylinder volume required (DF instead of D(C) and by
other considerations.

Denoting by p; the pressure at E, the end of adiabatic
expansion, we have:



41741 42 T Toh 1T N
Heat rejected by medium
9= Qer + 9sa
= U, — Up+ Ty
=(q5' +zp) — (' +2py) + 21y @
Heat transformed into work
01— ¢= g1+ — (g5 +2pg) —2,(ra—py)- 3
The qualities z, and 2, are found from the equations

[T W k| 4
9t T, 95 + 7, @
and :
Z,(vg" — v3) = 5, (%" — vy, ®)

If the steam is admitted throughout the stroke without cut-
off, the adiabatic expansion is lacking, and the diagram takes
the form ABG.D (Figs. 105 and 106). The equations for this
case are readily derived from the preceding equations by

makin,
aking P3=pPp Te= T

172. Effect of changing the Limiting Pressures. —If the
upper pressure p; be raised to p,’ while the lower pressure p,
is kept the same, the effect is to
increase both ¢, the heat absorbed,
and gy — g, the available heat, by
an amount represented by the area
AA'B'B (Fig. 107). Evidently
the ideal efficiency is thus in-
creased. If p, be lowered to p,,
keeping p, the same, g, is decreased
and ¢; — ¢, increased without any
change in g¢,. For the ideal
Rankine cycle the increase of avail-
able heat would be that represented Fie. 107
by the area D'DCC'. For the
modified cycle with incomplete expansion, however, the in-
crease is represented by the relatively small area D/ DFF'.

g

[~



We may draw the conclusion that in the actual steam engine
the limitation imposed by the cylinder volume prevents us
from realizing much improvement in efficiency by lowering the
back pressure p,. Herein lies one important difference be-
tween the steam engine and steam turbine. With the turbine,
as will be shown, a lowering of the condenser pressure results
in a marked increase of efficiency.

173. Imperfections of the Actual Cycle. — In the discussion of
the ideal Rankine cycle the following conditions are assumed :

1. That the wall of the cylinder and piston are non-conduct-
ing, so that the expansion after cut-off is truly adiabatic.

2. Instantaneous action of valves and ample port area so
that free expansion or wiredrawing of the steam may not occur.

3. No clearance.

In the actual engine none of these conditions is fulfilled. The
metal of the cylinder and piston conducts heat and there is,
consequently, a more or less active interchange of heat, between
metal and working fluid, thus making adiabatic expansion im-
possible. The cylinder must have clearance, and the effect of
the cushion steam has to be considered. The valves do not act
instantly and a certain amount of wiredrawing is inevitable.
It follows that the cycle of the actual engine deviates in many
ways from the ideal Rankine cycle, and that the actual efficiency
must be considerably less than the ideal efficiency. We must
regard the Rankine cycle as an ideal standard unattainable in
practice but approximated to more and more closely as the im-
perfections here noted are gradually eliminated or reduced in
magnitude.

The effects of some of these imperfections may be shown
quite clearly by diagrams on the 7'S-plane.

In Fig. 108 is shown the cycle of a non-condensing steam
engine. Thefeed water enters the boiler in the state represented
by point G and is changed into dry saturated steam at boiler
pressure, represented by point B. When this dry steam is
transferred to the engine cylinder, which has been cooled to
the temperature of the exhaust steam, it is partly condensed,

and +ha afate Af +hae miviiire 11 +hae avliindar at+ 11+ ~F o ranra



sented by point L. 1he nheat thus absorbed by the cylinder
walls is represented by the area B;BCC). CD represents the
adiabatic expansion, D the assumed constant-volume cooling
of the steam, and EF the condensation of the steam at the tem-
perature corresponding to the back pressure, which is slightly
above atmospheric pressure. To close the cycle, the water at
the temperature represented by # :
(somewhat above 212°) must be
cooled to the original tempera-
ture of the feed water; this
process is represented by FG-

The heat supplied is repre-
sented by the area GG ABB,
the heat transformed into work
by the area FACDE. It will
be observed that two segments
of the cycle, namely, G'F and
OB, arve traversed twice, and the
effect is a serious loss of effi-
ciency. The loss due to starting the cycle at point G instead
of at point F may be obviated to a large extent by the use of a
feed water heater. The heat rejected in the exhaust is used to
heat the feed water to a temperature represented by point H,
which is only a little lower than the temperature of the ex-
haust. The area G'G-HH, represents the saving in the heat
that must be supplied. The loss due to cylinder condensation,
which is shown by the segment BC, cannot be wholly obviated ;
it may be reduced, however, by superheating and jacketing.

Losses due to wiredrawing and clearance are not shown on
the diagram. The drop of pressure in the steam main and in
the ports may be taken into account roughly by drawing a line
A'C'" somewhat below the line AB, which represents full boiler
pressure.

B

K

[}

O G H ¢, B
Fie. 108.

174. Efficiency Standards. The ratio of the heat transformed
into useful work to the total heat supplied is usually termed the
thermal efficiency of the engine. The thermal efficiency, how-
ever, does not give a useful criterion of the good or bad qualities



of an engine for the reason that it does not take account of the
conditions under which the engine works. It has become cus-
tomary, therefore, in estimating engine performance to malke
use of certain other ratios.
Let ¢ = heat supplied to the engine per pound of steam,
¢z= heat transformed into work by an engine working
in an ideal Rankine cycle (Art. 169),
¢. = heat transformed into work by actual engine under
the same conditions,
W, = work equivalent of heat g,, the indicated work,
W, = the work obtained at the brake.

We have then

g = %" = thermal efficiency of ideal Rankine engine,

Ny = qq = thermal efficiency of actual engine,
7= % =1 = efficiency ratio (based on mchca.ted work),
R
AW"—b-l ffici tio (based L at
I = —qE— = brake elliciency TIa 10 ( ase on Wwor. a’
brake),
N = Eﬁ = mechanical efficiency.

The ratios n; and 7, are sometimes called the potential efficiencies
of the engine, the first the indicated potential efficiency, the
second the brake potential efficiency. When the term efficiency
is used without qualification it usually means the efficiency ratio
or potential efficiency rather than the thermal efficiency.

It is clear that the useful criterion of the performance of an
engine is the ratio . We have

Mo =i X Nme

Of the heat ¢ supplied, only the heat ¢ could be trans-
formed into work by the ideal engine using the Rankine cycle ;
hence the heat g5 rather than the total heat g should be charged

to the engine. The ratio n; = ?—“ is a measure of the extent to



which the engine transforms into work the heat g that may
possibly be thus transformed; it may be called the cylinder
efficiency. The ratio 5,, measures the mechanical perfection of
the engine. Hence, the product n; X 7,, measures the perform-
ance of the engine both from the thermodynamic and the
mechanical standpoints.

The efficiencies 7; and 7, may be given other equivalent defi-
nitions that are frequently useful.

Let IV, = steam consumption of ideal Rankine engine per
h. p.-hour.
NV, = steam consumption per h.p.-hour of actual engine.
NN, = steam consumption per b.h.p.-hour of actual
engine.
N = %1:7 M = yl\}'f

ExaMPLE. An actual engine operating under the conditions defined in
the example of Art. 169 shows a steam consumption of 14.1 lb. per i.h.p.~
hour and 18 Ib. per b.h.p-hour. Since for the ideal engine the steam
consumption is 9.35 Ib. per h. p.-hour, we have

9.35
13

Then

9.35

. =052
Kb vE] >

=0.663, and 7, =
EXERCISES
In Ex. 1 to 5 find the heat transformed into work, efficiency, and steam
consumption per h.p.-hour.
1. Carnot cycle, p; = 110 Ib., p, = 15 1b. absolute, z, = 0.85.
2, Rankine cycle, same data as in Ex. 1.
3. Rankine eycle, p, = 110 1b., p, = 5 in. of mercury, steam superheated
to 450° F.
4. Rankine cycle p, = 110 lb., p» = 15 1b., 2, = 0.85 and adiabatic ex-
pansion carried to 27 1b. per square inch.
5. Data the same as Ex. 4 except that steam is not cut off.
6. Let py be fixed at 5 in. of mercury. Take z, =1 and draw a curve
showing the relation between » and p1. Rankine’s cycle.
7. Taking the data of Ex. 2, find the inerease of available heat and effi-
ciency when a condenser is attached and ps is lowered to 5 in. of mercury.
8. Malke the same calculation for the cycle with incorplete expansion,

T A oA o Y VT4
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0.85. If the heat transformed into work by the ideal Rankine engine is
190 B.t. u. per pound, what is the steamn cousumplion of the actual engine
per b.h. p.-hour?

10. The steam couswmption of a Rankine engine is 9.2 1b. per h.p.-
hour, and the efficiency ratio z; is 0.70. Find the heat transformed into
work by the actual engine per pound of steam,

U

Tue StrAM TURBING

175. Comparison of the Steam Turbine and Reciprocating En-
gine. —The essential distinction Dbetween the two types of
vapor motors — turbines and reciprocating engines —lies in
the method of utilizing the available energy of the working
fluid. In the reciprocating engine this cuergy is at once util-
ized in doing work on a moving piston ; in thoe turbine there is
an intermediate transformation, the available energy heing first
transformed into the energy of a moving jet or stream, which is
then utilized in producing motion in the rotating element of the
motor. .

While the turbine suffers from the disadvantage of an added
energy transformation with its accompanying loss of efficiency,
it has a compensating advantage mechanically. With any
motor the work must finally appear in the rotation of a shaft.
Hence, intermediate mechanism must be employed to transform
the reciprocating motion of the piston to the rotation required.
Lvidently this is not the case with the turbine, which is thus
from the point of view of kinematics a mnch move simple ma-
chine than the reciprocating engine. Many attempts have been
made to construct a motor (the so-called rotary engine) in
which both the intermediate mechanism of the reciprocating en-
gine and the intermediate energy transformation of the turbine
should be obviated. These attempts have uniformly resulted
in failure.

With ideal conditions it is easily shown that the two methods
of working produce the same available work and, therefore,
give the same efficiency with the same initial and final con-
ditions. Thus the Rankine ideal cycle, Fig. 102, gives the
maximum available work per nound of steam of a reciprocatino
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engine with the pressures p, and p, It likewise gives (Art.
152) the kinetic energy per pound of steam of a jet flowing
without friction from a region in which the pressure is p, into

2
a region in which it is p,. Hence if this kinetic energy ;”—g

is wholly transformed into work, the work of the turbine per
unit weight of fluid is precisely equal to that of the reciprocat-
ing engine. Under ideal conditions, therefore, neither type of
motor has an advantage over the other in point of efficiency.

Under actual conditions, however, there may be a consider-
able difference between the efficiencies of the two types. Each
type has imperfections and losses peculiar to itself. The re-
ciprocating engine has large losses from cylinder condensation ;
the turbine, from friction between the moving fluid and the
passages through which it flows. It is a question which set of
losses may be most reduced by careful design.

Aside from the question of economy, the turbine has certain
advantages over the reciprocating engine in the matters of
weight, cost, and durability (associated with certain disadvan-
tages) and these have been sufficient to cause the use of tur-
bines rather than reciprocating engines in many new power
plants and also in some of the recently built steamships.

176. Classification of Steam Turbines. — Steam turbines may
be divided broadly into two classes in some degree analogous
to the impulse water wheel and the water tur-
bine, respectively. In the first class, of which
the de Laval turbine may be taken as typical,
steam expands in a nozzle until the pressure
reaches the pressure of the region in which the
turbine wheel rotates. The jet issuing from
the nozzle is then directed against the buckets
of the turbine wheel, Fig. 109, and the impulse
of the jet produces rotation. It will be noted
that with this type of turbine only a part of the

Tenlate ave £1lad writh cdamie md arcr tmctarnt oxeorn F covraral
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The pressure of the steam is reduced during the
T passage through the blades both in the guide and
turbine wheels. In the turbine of the first type all
the available internal energy of the steam is trans-
formed into kinetic energy of motion before the
steam enters the turbine wheel, while in the turbine
of the second type part of the internal energy is
transformed into work during the passage of the
fluid through the wheel.

s m The terms #mpulse and reaction have been used
Fie. 110.  to designate turbines of the first and second class,
respectively. Since, however, impulse and reaction
are both present in each type, these terms are somewhat mis-
leading, and the more suitable terms veloeity and pressure have
been proposed. Thus a de Laval turbine is a velocity turbine ;

a Parsons turbine is a pressure turbine.

177. Compounding. — The high velocity of a steam jet result-
ing from a considerable drop of pressure renders necessary
some method of compounding in order that the peripheral
speed of the turbine wheels may be kept within reasonable
limits without reducing the efficiency of the turbine. With
velocity turbines three methods of compounding are employed.

1. Pressure Compounding. The total drop of pressure p; — py
may be divided among several wheels, thus reducing the jet
velocity at each wheel. If, for example, the change of heat
content is 7;—4, and the expansion takes place in a single
nozzle, the ideal velocity of the jet is w=VIgI(¢; — )3
if, however, 4; — 4, is divided equally among = wheels, the jet

velocity is reduced to w = \/g%{ (4, —1,). The general arrange-

ment of a turbine with several pressure stages is shown in
Fig. 111. Steam passes successively through orifices my, mp,
ete. in partitions &, by, etc., which divide the interior of the



passing through the orifice m, the pres-
sure drops from p, to py; as a result
the velocity is again increased and the
jet passes through the second wheel.
The pressure and velocity changes are
shown roughly in the diagram at the
bottom of the figure.

The method of compounding here
described is called pressure compound-
ing. Each drop in pressure constitutes
a pressure stage.

2. Velocity Compounding. The steam
may be expanded in a single stage to
the back pressure p,, thus giving arela-
tively high velocity ; and the jet may
then be made to pass through a suc-
cession of moving wheels alternating

|

5
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with fixed guides.
Fig. 112. The jet passes into the first moving wheel, where
it loses part of its absolute velocity, as indicated by the

=

This system is shown diagrammatically in

velocity curve w. It then passes through
the fixed guide g; with practically con-
stant velocity and has its direction
changed so as to be effective on enter-
ing the second moving wheel. Here
the velocity is again reduced and the
decrease of kinetic energy appears as

25:52 work done on the wheel. This process
2 : ~ may be again repeated, if desired, by
~ ~ adding a second guide and a third wheel.
N However, the work obtainable from a

Y “ wheel is small after the second moving
m:;. e, wheel is passed, and a third wheel is

not usually employed.

8. Combination of Pressure and Velocity Compounding. Bvi-
dently the two methods of compounding may be combined in a



1ve sets OI nozzles aelivering steam Lo a COTrrespolding number
of wheels running in separate chambers, and each wheel has
two sets of blades separated by guide vanes.
Pressure turbines are always of the multiple pressure-stage
type, and the number of stages is large. The arrangement is
that shown in Fig. 113.
t A T The steam flows through
= alternate guides and moving
blades, its pressure falling
gradually as indicated by
the curve pp. The absolute
velocity of flow increases
through the fixed blades
and decreases in the moving
blades as indicated by the
velocity curve ww.  This
72 curve, it will be observed,
rises as the pressure falls
much as if the turbine were
a large diverging mnozzle.
The  steam velocity with
this type of turbine is, however, relatively low even in the
last stages.
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178. Work of a Jet.— While the problems relating to the
impulse and reaction of fluid jets belong to hydraulies, it is
desirable to introduce here a brief discussion of the general case
of the impulse of a jet on a moving vane.

Let the curved blade have the velocity ¢ in the duectmn in-
dicated, Fig. 114, and let =, denote the velocity of a jet directed
against the blade. The velocity w, is resolved into two compo-
nents, one equal to ¢, the velocity of the blade, the other, there-
fore, the velocity a, of the jet relative to the blade. The angle
of the blade and the velocity ¢ should be so adjusted that the
direction of a; is tangent to the edge of the blade at entrance.



The jet leaves the blade with a relative velocity a, equal in
magnitude to a;, neglecting friction, but of less wagnitude if
friction is taken into account. This velocity a, combined with
the velocity ¢ of the blade gives the absolute exit velocity w,.
It is convenient to draw all the velocities from one point O as
shown in the velocity diagram.

The absolute entrance and exit velocities w; and w, may be
resolved into components w,' and w,’ in the direction of the
motion of the vane
and w,” and w,” at
right angles to this
direction, that is,
parallel to the axis of
the wheel that carries
the vane. These
latter may be termed
the azial components,
the former the pe-
ripheral components.
The driving impulse
of the jet depends Fic. 114,
upon the change in
the peripheral component only. To deduce an expression for
the impulse we proceed as follows :

Let Am denote the mass of fluid flowing past a given cross
section in the time A¢; then the stream of fluid in contact
with the blade may be considered as made up of a number of
mass elements Am, and in the time element At one mass cle-
ment enters the vane with a peripheral velocity w,’ and another
leaves it with a peripheral velocity w,’. The effect is the same
as if a single element Am by contact with the blade had its
velocity decreased from w,’ to w,’ in the time A¢. From the

fundamental principle of mechanics, the force required to pro-
[
duce the acceleration %*Atﬂ is
I !
p=antiwl, @




Am; an equal an Opposite 1016 15, Lhelelolc, LS 1puist 0L
Am on the vane.
If M denotes the weight of steam flowing per second, then

am=2, At, and we have for the force exerted by the jet on
4

the vane in the direction of the velocity ¢,
p= ! — ). @

Evidently this equation holds equally well when the weight M
flowing from the nozzle is divided among several moving vanes.

The product pe of the peripheral force and peripheral veloc-
ity of vane gives the work per second; therefore,

work per second = Z‘? (wy —wy), )
and
work per pound of fluid =§(w1’ —wy). [©))

When, as is usually the case, the direction of w,’ is opposite
to that of w/, the sign of w,’ must be considered negative and
the algebraic difference w,’ —w,’ in (2), (8), and (4) becomes
the arithmetic sum ;' + w,'.

179. Single-stage Velocity Turbine. —In analyzing the action
of the single-stage velocity turbine, it is convenient to start
5 o with an ideal frictionless tur-
P N bine and then take up the
w: ¢e  case of the actual turbine.
Let the jet emerge from
the nozzle with the velocity
w,, Fig. 115, at an angle «
with the plane of the wheel. Combining w, with ¢, the periph-
eral velocity of the blade, the velocity «; of the jet relative
to the blade is obtained. The angle 8 between the direction
of @, and the plane of the wheel determines the angle of the
blade at entrance. If the blade is symmetrical, the exit relative
velocity a, makes the same angle @ with the plane of the wheel,
and since the frictionless case is assumed, a, = a,. Combining
a; and ¢, the result is the absolute exit velocity w,.

4 T T C
Fig. 115,




2
The energy of the jet with the velocity w; is % per pound

2
of medium flowing; and the jet at exit has the energy gl
“9

The work absorbed by the wheel per unit weight of steam in
this ideal frictionless case is, therefore,
2 2

]V: Wy* — Wy , (1)

29

and the ideal efficiency is
w2 — wy?

n= —1‘—2—2~ @

2wy

From the triangle OA4E, Fig. 115, we have

wo? = w + (2 ¢)2 — 2w (2¢) cos e 3)
whence wyE— wy? = +(w, ¢ cos & — ¢2). )

Combining (2) and (4), we get,
n=4£(cosu—i). T ()
w; w,,
Equation (5) shows that the efficiency is greater the smaller
the angle «; and that with a given constant angle «, the effi-

ciency depends upon the ratio -=. It is readily found that n
Wy
takes its maximum value #,,,, = cos? ¢ when the ratio 1% takes
1
the value § cos a.
As an example, let @ = 20°, whence cos « =0.9397 and cos®«=0.883. If
w = 3600 ft. per second, then to get the maximum efficiency 0.883, the ratio
£ must be % cos & = 0.47, whence ¢ = 0.47 x 3600 = 1692 ft. per second, a
w1 2
value too high for safety. If ¢ be given the permissible value 1200 ft. per
second, we have S= 1, and n=4x ;:(0.9397 — 0.3333) = 0.809.
w, o .

In the actual turbine, friction in the nozzle and blades reduces
the efficiency considerably below the value given by (5). The

veloeity diagram with friction is shown in Fig. 116. The ideal
LR, D, B
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velocity a,, as before. The exit relative velocity a, is smaller
than @, because of friction
in the blades, and as a
result the absolute exit ve-
locity w, is smaller than in
the ideal case.

The work per pound of
steam may be found from -
the velocity diagram either by calculation or by direct measure-
ment. Having the components w,’ and w,/, the work per
pound of steam is given by the expression

Fre. 116.

W= 2w =y ©®

This work may be compared with the work obtained from the
ideal frictionless turbine given by (1) or with the energy of

2
the jet per pound of steam, namely, Z’—"g

180. Multiple-stage Velocity Turbine. — In the Rateau turbine
and in others of similar construction, the principle of pressure
compounding is employed. The turbine consists essentially
of several de Laval turbines in series, running in separate cham-
bers. See Fig. 111. The action of this type of turbine is con-
veniently studied in connection with a Mollier diagram, Fig. 117,

Let the initial state of the steam entering the turbine
at the pressure p; be that indicated by the point 4. If p,
is the pressure in the first chamber, a frictionless adiabatic
expansion from p, to p, is represented by AB, and the
decrease in the heat content 4 —i, is represented by the
length of the segment AB. TUnder ideal conditions, this
drop in the heat content would all be transformed into
kinetic energy of the jet of steam flowing into the chamber,
and this in turn would be given up to the wheel. Actu-
ally, however, friction losses are encountered and the jet
has an exit velocity w, thereby carrying away the kinetic

2
energy Z—”g The velocity diagram for the single wheel under



consideration is similar to that shown in Fig. 116. The work
lost in overcoming friction in the nozzles and blades and the
w,?
2y
a small fraction that is radiated, is expended in further super-
heating (or raising the quality of) the steam. Hence, instead
of the final state B, we have a final state (' on the same con-
stant-pressure curve. Referring to Fig. 117, A" represents

exit energy are transformed into heat, and this heat, except

Fic. 117,

the part of the heat drop that is utilized by the wheel, while
C'B represents the part that is rendered unavailable by internal
losses of various kinds.

The steam in the state ¢ flows into the second chamber where
the pressure is p;. Frictionless adiabatic expansion would give
the second state D, but the actual state is represented by the
point E. Again C'E' represents the effective drop of heat con-
teut in this stage, while E'D represents the part of the drop
going back into the steam.

The same process is repeated in succeeding stages until
finally the steam drops to condenser pressure in the last stage.
The final state is represented by the point K and the curve
AEK represents the change of state of the steam during its
passage through the turbine. The final state under ideal fric-
tionless conditions is represented by point M. The segment

AN represents the ideal heat drop, which, as has been shown, is
o119 +4 +ha awvailahla hoaat ~f 41 na Pavlrivm avalas Tha camm ol



AN represents the heat drop utilized. The ratio ::;é_ de-

pends upon the magnitude of the internal losses, such as friction
in nozzles and blades, leakage from stage to stage, windage,
exit velocity, etc. Roughly, this ratio may lie between 0.50
and 0.80.

181. Turbine with both Pressure and Velocity Stages. —In
certain turbines, notably the Curtis turbine, velocity compound-
ing is employed. There are relatively few (three to seven)
pressure stages,
but in each cham-
ber there are two
or three rows of
moving blades at-
tached to the

Fra. 118. wheel rim and
these are sepa-
rated by alternate rows of guide blades, as shown in Fig. 112.

The velocity diagram for a single pressure stage with two
velocity stages is shown in Fig. 118. The velocities in relation
to the successive sets of blades are shown in Fig. 119. The jet
emerges from the nozzle with an absolute velocity w,;, which is
smaller than the ideal w),
because of friction in the
nozzle. Combining w; with
the peripheral velocity ¢ of
the first moving blade m,, the
result is the velocity a; of
jet relative to blade ;. The
angle ¢ between @, and the
plane of rotation is the proper Fia. 119,
entrance angle of the blade
my. The exit relative velocity @y, which is smaller than a,
due to friction in the blade, is combined with the velocity ¢,
giving the absolute exit velocity w, which makes the angle 8
with the plane of rotation. The jet enters the stationary
guide blade s with the velocity w, and emerges with a smaller




blade m,  Combination of w; with ¢ gives the relative
velocity a, and the entrance angle v for the blade m,. The
exit velocity @, is determined from ag and the friction in the
blade, and by combining a, and ¢, the absolute exit velocity w,
is obtained.

In the diagram, Fig. 119, the blades have been taken as
symmetrical. Sometimes, however, the exit angles of the last
sets of blades are made smaller than the entrance angles. The
diagram can easily be modified to suit this condition.

The work per pound of steam for this wheel is readily deter-
mined from the velocity diagram. From the first set of blades

m, the work <(w,' — w,’) and from the second set of blades m,
g

the work £ (w,' — w,') is obtained. Hence the total work per
g
pound of steam is

W=§(w1’ —wy + wy —w/). (@Y

Care must be taken that w,’ and w,’ be given their proper alge-
braic signs.

The state of the fluid as it passes through the turbine may
be shown by the Mollier diagram precisely similar to that
shown in Fig. 117. Starting with an initial state indicated by
point 4, the available drop from the initial pressure p; to the
pressure p, in the first chamber is represented by AB. The
heat utilized in useful work W as given by (1) is represented
by AC'. Hence projecting € horizontally to C'on the line of
constant pressure p,, we get the state of the steam as it enters
the second stage nozzles.

182. Pressure Turbine. —In the pressure type of turbine
there is always a large number of stages, the guide blades and
moving blades alternating in close succession. The fact that
the pressure falls continuously, both through the guide blades
and the moving blades, makes the velocity diagram essentially
Qifferent from that of the velocity turbine. Referring to Fig. 120,
let w; denote the absolute velocity of the steam entering the



stationary blade §p, allld Wy LUGC abLsOIULC CALL VE10ULLy. 4L LLGlT
were no, change of pressure, w, would be smaller than w,; be-
cause of friction; but the drop in pressure Ap causes a decrease
in heat content A¢, and as a result, there
is an increase of velocity given by the
relation . .
”22_9_”’1 =J(1 — A

Thus the exit velocity w, is greater than
the entrance velocity w;. Combining w,
with ¢, the velocity of the moving blade,
we obtain a, the velocity of entrance
relative to the moving blade. Now the
pressure drops through the moving
blades also; hence as a result the velocity of exit a, is greater
than a, just as w,, is greater than w;. Combining a, with ¢,
the result is w;, the absolute velocity of entrance into the
next row of fixed blades.

The work done in any single stage, consisting of one set of
stationary blades and one set of moving blades, is obtained from
the velocity diagram for that stage in the usual way. Thus,
if we have the diagram shown in
Fig. 120 for a particular stage,
the work per pound of steam ag e
for that stage is given by the
product

Fia. 120.

é(“”z —w'p.

If the fixed and moving blades
have the same entrance angles
and exit angles, it may be as-
sumed that the velocity diagram .
has the symmetrical form shown in Fig. 121; that is, w, =g,
and w, = a,. In this case, the work may be obtained by a simple
graphical construction. Using point B as a center and with a
radius B4 let a circular arc ADC be described and from Z let
a perpendicular be dropped cutting this arcin D. Denoting the
length ED by %, we have

D ¢
Fie. 121.



B=AEx EG=c(w, —w").
It follows that the work per pound of steam is given by the
2
expression % provided % is measured to the same scale as the

velocity vectors w,, w,.

183. Influence of High Vacuum. — In Art. 172 it was pointed
out that the reciprocating engine is unable to take advantage
of a very low back pressure for the reason that the cylinder
volume cannot be made sufficiently large to permit the expan-
sion of the steam to the condenser pressure. No such restriction
applies to the steam turbine. The blades in the final stages
may be made long enough to pass the required volume of steam
at the lowest pressures obtainable. The advantage of the tur-
bine in this respect is shown graphically in Fig. 107. Since
the eylinder volume of the reciprocating engine is limited to
the volume indicated by the point &, the effect of lowering the
back pressure from p, to p,’ is the addition of the area D' DIFF'
to the area of the original cycle. The turbine, however, can
accomodate volumes indicated by points ¢ and C"; hence if the
pressure is lowered from p, to p,’, the arca of the ideal cycle is
increased by the area D'DCC". It is evident, therefore, that
high vacuum is much more effective in the case of the steam
turbine than in the case of the reciprocating engine.

The superior efficiency of the steam turbine at low pressures
and the ability of the turbine to make effective use of high
vacuum has led to the introduction of the low-pressure turbine
in combination with the reciprocating engine. The engine
takes steam at boiler pressure and exhausts into the turbine at
about atmospheric pressure. In general, the combination is
more efficient than either the engine alone or the turbine alone
using the entire range of pressure.

EXERCISES

1. In a single-stage velocity turbine the jet emerges from the nozzle with
a velocity of 3150 ft. per second and the direction of the jet makes an angle
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that will give maximwn efficiency. -(b) Find the efficiency if the circum-
ferential velocity is 1100 ft. per second.

2. Find the work per pound of steam in case (b) of Ex. 1.

3. Using the data of Ex. 1 and 2 assume that the exit relative velocity is
reduced 10 per cent by friction in the blades. Draw a velocity diagram and
by measurement or calculation find the work done per pound of steam.
Compare this result with that found for the ideal frictionless case.

4. A reciprocating engine receives steam at a pressure of 160 1b. per
square inch, superheated 120°. The steam expands adiabatically to a pres-
sure of 16 in. of mercury and is then discharged into a low pressure turbine
where it expands adiabatically to a pressure of 2 in. of mercury. Find the
percentage by which the efficiency is increased by the addition of the tur-
bine. Assume ideal conditions.

5. A turbine of the Curtis type has three pressure stages. The initial
pressure is 140 lb. with the steam superheated 120°F., and the condenser
pressure is 3 in. of mercury. The loss of energy due to friction, etc., is 30
per cent of the total available energy. (a) Find the condition of the steam
entering the condenser. () Find the consumption per h.p.-hour. (c)
Determine the intermediate pressures in the cells on the assumption that the
work developed in each stage shall be approximately the same.

REFIGERATION WITH VAPOR MEDIA

184. Compression Refrigerating Machines. — The essential
organs of a compression machine using vapor as a medium
are shown in Fig.
122. The action of
the machine may be
studied to advan-
tage in connection
with the 7'S-dia-
gram, Fig. 128.
The medium is
drawn into the
compressor cylinder
through the suction
pipe from the coils
in the brine tank.
It may be assumed that the medium entering is in the saturated

state at the temperature 7}, which may be taken equal to the
e D

—

Condenser

Expansion

F1c. 122.
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Kig. lad.  Lhe vapor is compressed adiabatically to a final
pressure p,, which is determined by the upper temperature 7T},
that may be obtained with the cooling water available. The
adiabatic compression is represented by BC. The superheated
vapor in the state € is discharged into the coils of the cooler
or condenser, where heat is abstracted from it. The coils are
surrounded by cold water which
flows continuously. First the
gas is cooled to the state of
saturation; this process is rep- 7 ol 2 D |
resented by the curve OD, and
the heat abstracted by the area e/Fl4 T
C,CDD;. Then heat is further Eg
removed at the constant tem- m|
perature T}, (and pressure p,)
and the vapor condenses. At
the end of the process, the
medium is liquid and its state
is represented by the point &
on the liquid curve.

Tt should be noted that there are two parts of the fluid circuit :
one including the discharge pipe and coils at the higher pres-
sure p,, and one including the brine coils and the suction pipe
at the lower pressure p;. These are separated by a valve called
the expansion valve. The liquid in the state represented by
point & is allowed to trickle through the valve into the region
of lower pressure. The result of this irreversible free expan-
sion is to bring the medium to a new state represented by point
A. In this state the medium, which is chiefly liquid with a small
percentage of vapor, passes into the coils in the brine tank or
in the room to be cooled. The temperature of the brine being
higher than that of the medium, heat is absorbed by the medinm,
and the liquid vaporizes at constant pressure. This process is
represented by the line AB and the heat absorbed from the
surrounding brine by the area 4;ABC,.

The position of the point 4 is determined as follows: The
passage of the liquid through the expansion valve is a case of
throttline or wiredrawine of the character discussed in Art. 162.

c
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Hence, the heat content at A must be equal to the heat content
at B, that is,

¢=q1+2any
Graphically, the area OHGAA, is equal to the area OHEE,; or
taking away the common area OH G-FE,, the rectangle B\ FAA,
is equal to the triangle GEF. (See Art. 162).

Since the throttling process represented by KA is assumed to
be adiabatic, the work that must be done on the medium is the
difference between @, the heat absorbed, and @,, theheatrejected
to the condenser. We have then

Q, = area C;CDEE,,
Q, = area A;ABC,,
W = area C;CDEE, — area A ABC,
avea BOCDEE A\ AB
= area BODEGB.

If the expansion valve be replaced by an expansion cylinder,
permitting a reversible aciabatic expansion from p, to p,, as in-
dicated by the line EF, we have

@y, = area C,CDEE,,

Q, = area B FBC,,

W = area BCDEFB.
The effect of using the expansion valve rather than the expansion
cylinder is thus to decrease the heat removed by the area B, FA A,
and to increase the work done by an equivalent amount.

185. Vapors used in Refrigeration. —The three vapors that are
used to any extent as refrigerating media are ammonia, sulphur
dioxide, and carbon dioxide. Of these, ammonia is used almost
exclusively in America and largely in Europe. The other two
are used to a small extent chiefly in Europe.

Tle choice of vapor to be used depends chiefly upon two things:
(1) The suction and discharge pressures that must be employed
to give proper lower and upper temperatures 7} and 7,. The
lower temperature must be such as to keep the proper temperature
in the brine or the space to be kept cool, while the upper
temnerature is fixed bv the temperature of the cooline water



ailable.  (2) The volume of the medium required for a given
wunt of refrigeration.  This determines the bulk of the
whine.

1 the upper temperature be taken as 68° F. (7} = 528) and
¢ Tower temperature as 14° I., the pressures and the volume
tios Tor the threo vapors mentioned ave about as follows:

Nils 80, €0,

jon pressure, 1, per sq. in. 41.5 14.75 385
seharge pressiure, 1, per sq. in 124 47.61 826
lunie, taking that of COy a8 1 4.4 12 1

It appears that carbon dioxide requires for proper working
ry high pressures, so high, in fact, as to be practically prohib-
ve excepl in machines of small size. With sulphur dioxide
¢ pressures are low, but the necessary volume of medium is
oh, hoing nearly three times that required by ammonia and
relve tinmes that required by carbon dioxide. With ammonia,
s prosstres aro reasonable and the volume of medium is not
cessive; lienee from these considerations, ammonia is seen to

' most advantageous.
From the point of view of economy, ammonia and sulphur
oxide are about equal.  Carbon dioxide shows a somewhat
wller efliciency than the others under similar conditions be-
use, on aceount of the small latent heat of carbon dioxide, the
sses (ue to superheating and the passage through the expan-
m valve are o Jarger per cent of the total effect.
186. Calculation of a Vapor Machine.—The following analysis
plies to the ideal eycle shown in Iig. 128. Denoting by T.
¢ temperatire at the end of compression indicated by the
int ¢, the heat that must be removed per minute from the
perheated vapor to bring it to the saturation state (the heat
presented by the area ¢;CDD)) is
-M‘-'p(ﬂ - Tz)’

Cwhich e, denotes the specific heat of superhfaated vapor, and
/, the weight of the medinm required per minute. The he:.Lt
jected by the vapor during condensation (area D'rDE—E_'l) is
[r,. 1lence the heat rejected by the medium per minute Is

L mNT [€))




Denoting by =z, the quality of the mixture of liquid and vapor
in the state represented by point A, we have for the heat ab-
sorbed by the medium from the brine or cold room (repre-
sented by the area 4, 4BC))

@y = Mr,(1 —=2y). @)
But area OHGFAA, = area OHEE,, t}lat is,
o+ =g @
whence combining (3) and (2),
Q=M(ry— ' +9)=MU(g," — g:)- (€}

The work required per minute is, therefore,
W=J(—Q)=TM[g" —q" + e)(T.— T, (5)
and the net horsepower required to drive the machine is,

_TI8M ey - ;
H=oarir e’ — 0" + (L.~ 1] ©

Combining (6) and (4), we have
_ 1718 @ilgy" — "+ e (1= T5) ] 7
= 33000(g,"— g, ) : ™
To the horsepower thus calculated should be added perhaps
10 to 20 per cent to allow for imperfections of the cycle, and to
the gross horsepower must be added 10 to 20 per cent to allow
for the friction of the mechanism.

Assuming the vapor entering the compressor to be dry and
saturated, as indicated by point :B, Fig. 123, the volume of
vapor entering the compressor per stroke is

My,"
V=5 ®
where v, is the specific volume of vapor at the pressure p,
and IV the number of working strokes per minute. If the
medium enters the compressor as a mixture of quality =, as in-
dicated by point M, then approximately

n
7= Mot ©

The net cylinder volume as determined by (8) or (9) must



The weight of cooling water required per minute is readily
found from (1) when the initial and final temperatures of the
water are fixed. Denoting this weight by G and the initial and
final temperatures by ¢ and ¢, respectively, we have

G — 1) = M [ry+ ¢y (T.— TP]- (10)

To determine the value of @, from (1) the temperature 7T, at
the end of compression must be obtained. For adiabatic.com-
pression 7, may be found by the following method. Referring
to Fig. 123, the decrease of entropy in passing from Cto D is
the same as passing from B to D. If ¢, the specific heat along
curve OD, is assumed to be constant, we have

T,
s, —~ 8, = ¢, log, 7;-

But 8 — 8= 31I -+ ',IT-— SZ -+ ‘_,ZT>
7, 7,
hence logeT =s/ + T _ (3'2 + 1_2'2> an

Since ¢,y Ty, Ty sy Sy 7y, and 7, ave kmown quantities, 7, is
easily calculated.

Examrre. Required the dimensions and the horsepower of an ammonia
refrigerating machine that is to abstract 15,000 B.t.u. per minute from a
cold chamber which is to be kept at a temperature of 30° F. The tempera-
ture of the ammonia in the condenser may be taken as 85° F. and that of
the ammonia in the brine coils 20° F. Assume one double-acting com-
pressor making 75 1. p. m.

From the table of the properties of saturated ammonia, we have the fol-
lowing values corresponding to #; = 20° and & = 85°:

= 47.46 1b. per square inch, r1 = 560 B.t.u., ¢/ =~ 13 B. t.u,
¢ =547 B.tow., sy =—0.027, % =1.168, »/ = 6.01 cu. ft.,
1
p2 = 166.8 Ib. per square inch, e = 496 B.t.u., ¢’ =01 B.t.u,

@ =557 Bu, s =0118, f2=0010, v’ =178,
2



end of compression, we have, from (11),

0.51log, ‘_44 — 0.027 + 1.168 — (0.118 + 0.910)= 0.113,
whence log T, = log 544.6 + 0.4343 x ﬂlf?’ = 2.83231,
T, = 679.7,
and t, = 679.7 — 459.6 = 220.1° F.
The weight of ammonia that must be circulated per minute is, from (4),
M=% - 15000 _ 55641,

0/ — g BT — 61

The net horsepower is, from (6),

778 x 30.86 -

140 X 9200 - 0.51(2 - =

33000 [557 — 547 + 0.51(220.1 — 86)]= 574
Adding 15 per cent for cycle imperfections, the compressor will requir
about 66 horsepower. The steam engine required to drive the compressc
should develop, say, 80 horsepower.
The volume of the compressor cylinder is, from (8),
. = 30.86 x 6.01
¢ 2% 75

Adding 15 per cent for clearance, ete., the required volume is 1.43 cu. f
This is given by a stroke of 20 in. and a cylinder diameter of 124 in.

=124 cu. ft.



TABLE I

PROPERTIES OF SATURATED STEAM

S Heat CoNTENT Latent Hear Entrory
Do TeMp. Vorume
A v OF ONE
£85 Faun. - of Vapor- Pounp
g2 of Liquid| of Vapor | Total | Internal |of Liquid| °}, 8P | of Vapor
o e r s r 1
P i ) 7 I3 T § v
05| 58.81 | 26.9 | 1087.1 | 1060.2 | 1002.9 2.0431 | 2.0063 | 1259.3
10| 79.12 | 47.2 | 1096.7 | 1049.5 | 989.8 1.9482 | 2.0398 | 656.7
15| 91.90 | 59.9 | 1102.5 | 1042.6 | 9822 1.8905 | 2.0055 | 443.0
20| 101.27 | 69.2 | 1106.6 | 1037.4 | 975.9 1.8497 | 1.9814 | 338.3
2.5 | 108.81 | 76.7 | 1109.9 | 1033.2 | 970.8 1.8178 | 1.9629 | 274.3
3.0 | 11515 | 83.1 | 1112.7 | 1029.6 | 966.5 1.7915 | 1.9476 | 231.2
35 (120.63 | 83.5 | 1115.0 | 1026.5 | 962.8 1.7692 | 19348 | 200.1
40 | 12548 | 934 | 1117.1 | 1023.7 | 959.5 1.7497 | 10236 | 176.6
45 | 129.85 | 97.7 | 1118.9 | 10212 | 956.5 17325 | 19138 | 158.1
5.0 | 133.81 | 101.7 | 1120.6 | 101810 | 953.7 17170 | 19050 | 143.2
6 | 140.83 | 108.7 | 1123.4 | 1014.7 | 948.8 1.6901 | 1.8898 | 120.7
7 | 146.90 | 114.8 | 1125.9 | 1011.1 | 944.7 1.6672 | 1.8769 | 104.4
8 |152.28 |120.2 | 11280 | 1007.9 | 940.9 1.6473 | 1.8659 | ~92.2
9 |157.12 | 125.0 | 1130.0 | 1005.0 | 937.5 1.6206 | 1.8561 | $2.6
10 | 161.52 |120.4 | 11317 | 1002:3 | 934.3 1.6138 | 1.8474 | 74.8
11 | 16557 |133.4 | 1133.3 | 999.9 | 931.5 1.5094 | 1.8395 | 68.38
12 |169.31 |137.2 | 11347 | 997.6 | 928.8 1.5862 | 1:8322 | 63.03
13 | 172.80 | 140.6 | 1136.0 | 995.4 | 926.3 1.5739 | 1:8254 | 58.48
14 | 176.07 | 1439 | 1137.3 | 9934 | 924.0 1.5627 | 18105 | 54.55
15 |179.16 |147.0 | 11385 | 991.5 | 921.8 1.5522 | 1.8138 | 51.13
16 | 182.08 | 150.0 | 1139.6 | 989.6 | 919.6 1.5423 | 1.8085 | 48.11
17 | 184.84 | 152.7 | 1140.6 | 987.9 | 917.6 1.5330 | 1.8035 | 45.46
18 | 187.47 | 155.4 | 1141.6 | 986.2 | 915.7 1.5242 | 17988 | 43.00
19 | 189.99 | 157.9 | 11425 | 984.6 | 913.8 1.5158 | 1.7943 | 40.96
20 |192.38 |160.3 | 1143.4 | 983.1 | 9121 1.5079 | 1.7901 | 39.04
21 | 194.69 |162.6 | 1144.2'| 981.6 1.5008 | 1.7 37.29
22 | 196.91 |164.8 | 1145.0 | 980.2 35.68
23 | 199.04 |167.0 | 1145.8 | 978.8 34.22
24 | 201.10 |169.0 | 11465 | 977.5 32.88
25 | 203.09 | 1710 | 1147.2 | 976.2 31.65
26 | 205.01 |173.0 | 1147.9 | 974.9 30.52
27 | 206.87 |174.9 | 1148.6 | 9737 29.46
28 | 208.68 |176.7 | 1149.2 | 972.5 2847
29 | 21043 |178.4 | 11498 | 971.4 27.55
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2008
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SO0

303.0
308,09
$01L.9
3058
B06.8

307.7
S08.6G
)5

317.2

33077
pay|
3335

Thoar Conpse

274,
280.0
280.9
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K

288.7

200.3

201.0
| 2035
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2006
301.0

306

305.3
306.7
308.0
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Lre
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1N

Larene Hrar

Totnl

9122
9115

910.7
‘H(H)

H07.8

Q07,1
9061

005.0)

0023
901,06
HO1.0

900.3

| 805.6

INrrory

Intornal | of Liquid

h
827.7

M)\ ()

806.8

804.6
803.4
8023
801.1
800.0
700.0
707.9
TO6.8

Vapori-
zation

a

of Vapor

§

4316
4330

4344
Kt

4372
AR5
4308

/1](')2
4474

. .4486

4498
45107
4523
4533
4 5l

4578
4600
4622

4642
4663
AGS3
4703
4723
4742
4761
4779
4797
4815
4533

4\()7
4884
4901

4917
4033
4049
4965
4980

1.2156
1.2128
1.2101
1.2074
1.2047

1.2021
1.1995
1.1969
1.1944
1.1920

1.1895
1.1871
1.1847
1.1823
1.1800

1.1777
1.1755
1.1732

1.1667
1.1625
1.1584
1.1543
1.1503

1. 146.)

1.1282
1.1248
1.1214
1.1181
1.1149

1.1117
1.1085
1.1054
1.1024
1.0994

1.0965
1.0936
1.0907
1.0879
1.0851

1.6429
1.6416
1.6403
1.6390
1.6378

1.6262

1.6251
1.6241
1.6230
1.6220
1.6210
1.6200
1.6181
1.6162
1.6143
1.6125

1.6107

1.5964

1.5950
1.5935
1.5921
1.5908
1.5895

1.5882

1.5831

Voruue




Hrar ConrrNT La Tear
Temr. or
Fau. - 8 - Pousn
of Liquid | of Vapor | Total | Internal | of Liquid of Vapor 1
P i it o r P) o o o

130 347.4 | 3182 [ 11917 | 873.5 | 790.8 | 4995
132 348.6 | 319.4 | 1192.0 | 872.6 | 780.9 | 5010
134 340.7 | 320.6 | 1192.3 | STL.7 | 7880 | 5025
136 350.8 | 3218 | 1192.6 | 870.8 | 788.0 5030
138 352.0 | 323.0 | 1192.9 | 869.9 | 787.0 | 5051

140 353.1 | 324.2 | 1193.2| 869.0 | 786.1 | 5068 | 10693 !
142 354.2 | 3253 1 1103.5 \hN 2| 7852 | H0S2 | LOGHS
144 356.3 | 320.5 | 1193.8 7. 5006 | 106G \
146 3504 | 327.6 | 1194.0 S0 LOGTD
148 357.4 | 328.7 | 1194.3 5123 | LOGIS

160 3585 | 320.8 | 1194 h
160 363.6 | 3
170 3685 | 3402
180 373.1 | 345.0
190 377.6 0.6

200 1200.3 d
210 1201.3 .\ l" ‘) D968 |
220 1202.2 | 839, LSS ‘
230 1203.0

240 1203.9

260 401.0 12007

260 404.5 12055 &

270 407.8 1206.2 | 8219 10
280 4111 | 38L7 | 1206.9 %22 2 O3 ~
290 414.3 | 3881 1 1207.6 | 819.5 RIAYE

300 417.4 | 3913 | 1208.3 | 817.0 | 7315 | 6863 | 0315




Prorerrigs

Primson

Lh, per
Sl Ine

»

O.0885
00960
134

)
01781
0. I‘)l\

0.

0.837
0.800
0.916

Tnehies
ol Hg,

0.1802
0.1955
02116
0.2201
02478

0.2677

0.5508
0.6005
.0

0.789
0814
()‘)().5

l 020

LOOS
1171
1248

1

1415
1.506
1.602
1.704
1812
1.025

TABLE II

or SATURATED STEAM BELOW 212° F,

Weianr ullj r Cusic
t‘;r(v,: ‘{I\(‘i‘n::) - 'gi);:; LA';E:I;T ’g:;;:
(CU L) | poynds | Grains *

,v” b — qn 7 t
3288 | 0.000304 10737 | 32
3047 | 0.000328 10727 | 3¢
9826 | 0:000354 10717 | 36
223 | 0.000381 1070.8 | 38
2437 | 0.000410 1069.8 | 40
2965 | 0.000442 10688 | 42
2107 | 0.000475 1067.7 | 44
1061 | 0.000510 10607 | 46
1827 | 0.000547 1065.7 | 48
1703 | 0.000587 10647 | 50

1587 | 0.000630 1063.7 | 52
TIS3 | 0.000674 1062.7 | b4
1385 | 0.000722 10616 | 86
1204 | 0.000773 1060.6 gg
1210 | 0.000827 1059.6
1132 | 0.000883 10585 | 62
1060 | 0:000043 1057.2 gg

093 | 0001007 10§2.4 68

0.001074 10321.3 @

3| 0.001145 1054.

s20 | 0.001220 %ggg.g ;E

770 | 0.001300 10522 | 14

723 | 0001883 10512 | 16

680 | 0.001471 101 | 78

G390 | 0.001564 o)

6014 | 0.001663 }832'8 82

0.001768 10469 | %6
0.001879 148 | 82
0.001997 lost | &
0.002121 o
0.002253 }8%2 o
0.002301 14l | 3
n.()()gggg 109021 o
‘m 8| 0.0026¢ : 100
35000 | 0.002850 1038.1




PRESSURE

WEIGHT OF UNE LUBIC
Foor

'VoLumE oF
TEeMP. One P ToTAL Larent | 1
TAHR, gg: F:.t !ncﬁ‘z of (‘gn. %gﬁu Pounds Grains Hear BAT ¥
t P — ol v — q" T
102 1.004 2.044 331.4 | 0.003017 | 21.12 1107.0 | 1037.0
104 1.066 2.171 313.2 | 0.003193 | 22.35 1107.9 | 1035.9
106 1.131 2.303 296.2 | 0.003376 | 23.63 1108.7 | 1034.8
108 1.199 2.441 280.4 | 0.003566 | 24.96 1109.6 | 1033.7
110 1.271 2.588 265.6 | 0.003765 | 26.36 1110.5 | 1032.5
120 1.689 3.439 2034 | 0.004916 | 34.42 1114.8 | 1026.9 | :
130 2.219 4.518 157.5 | 0.00635 44.45 1119.0 | 1021.1 | °
140 2.885 5.874 123.1 | 0.00812 56.86 1123.1 | 1015.2 | :
150 | 3.714 7.56 97.2 | 0.01029 72.0 1127.1 | 1009.3 | :
160 4.737 9.64 774 | 0.01293 90.5 1131.1 | 1003.2 | :
170 5.988 | 12.19 62.09 | 0.01611 | 112.7 1135.0 997.1 | :
180 7.506 | 15.28 50.23 | 0.01991 | 139.4 1138.8 990.9 | :
190 9.335 | 90.01 40.94 | 0.02443 | 171.0 1142.5 984.6 | -
200 | 11.523 | 23.46 33.60 | 0.02976 | 208.3 1146.2 978.2 | !
210 | 14.122 | 28.75 27.77 | 0.03601 | 252.1 1149.7 971.7 | !
212 | 14.697 | 29.92 26.75 | 0.03738 | 261.7 1150.4 970.4 | !
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Absolute scale, Kelvin's, 55.
temperature, 18.
zero, 18.
Acoustic velocity, 257.
Adiabatic change, defined, 40.
expansion of gas, 103.
of vapor mixture, 185, 189.
of superheated steam, 218.
irreversible, 75.
of air and steam mixture, 233.
of superheated steam, approximation
to, 220.
of vapor mixture, approximation to,
190.

on T'S-plane, 70.
with variable specific heat, 126.
Air and steam, mixturc of, 232, 236.
compression, 152,
engine cycles, analysis of, 140.
engines, classification of, 137.
moist, constants for, 230.
moisture in, 228.
refrigeration, 149.
required for combustion, 119.
Allen dense-air refrigerating machine,
150.
Ammonia, saturated, 180.
superheated, 223.
Andrews’ experiments, 198.
Atomic weights, 111.
Awvailability of encrgy, 46.
Available encrgy of a system, 56.

Bertrand's formulas, 168.

Biot's formula, 167.

Boltzmann’s interpretation of the second
law, 65.

Boyle’s law, 89.

Brayton cycle, 145.

Callendar’s cquation for superheated
steam, 204.
Calorimeter, throttling, 271.
Calorie theory, 3.
Carbon dioxide, saturated, 182.
Carnot cycle, 50, 134.
for saturated vapors, 283.
on TS-plane, 73.
engine, efficiency of, 54.

Carnot's principle, 52.
Characteristic equation, 16.
of gases, 93, 277.

surface, 20.
Charles’ law, 90.
Chemical energy, 5.
Clapeyron-Clausius formula, 178,
Clausius’ equation, 200.

inequality of, 63.

statement of the second law, 50.
Combustion, 117.

air required for, 119.

produets of, 119.

temperature of, 127,
Compound compression of air, 156.
Compounding of steam turbines, 296.
Compressed air, 152.

engines, 158.

Compression, compound, 156.

refrigerating machine, 308.
Conduction of heat, waste in, 57.
Conservation of energy, 6.
Constant energy curve of mixture, 187.
Constant volume curve, I
Continuity, equation of, 244.
Cobrdinates defining state of system, 15.
Critieal states, 197.

temperature, volume, and pressure, 199.
Cycle, Cornot, 50, 134.

Diesel, 146.

Joule, 145.

Lenoir, 162.

Otto, 142.

processes, 72, 133.

Rankine, 284.

rectangular, 73.
Cycles, isoadiabatic, 136.

of actual steam engine, 290.

of air engines, analysis of, 140.

of gas engines, comparison of, 148.

with irreversible adiabatics, 75.
Cylinder cfficiency, 293.
Curtis type of steam turbine, 304.
Curve, constant volume, of steam, 186.

of heating and cooling, 70.

polytropie, 71.

saturation, 166, 182.
Curves, specific heat, superheated steam,

209, 211.
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Dalton's law, 114, 228.

Davis formula for heat content, 177, 274.

Degradation of energy, 7.

Degree of superheat, 165, 196.

De Laval nozzle, 258.

Derivative %v 170.

Design of nozzles, 264.

Dicesel eycle, 146.

Differential cquations of thermodynam-

ics, 82,

expressions, interpretation of, 28.
inexact, 30.

Differentials of w, ¢, ' and ®, 79 .

Dissociation, 197.

Dupré-Hertz formula, 168. |

Efficiency, conditions of maximum, 135.
cylinder, 293.
of Carnot engine, 54.
potential, 292.
ratio, 292.
thermal, 291.
standards, 291.
Electrical energy, 5.
Energy, availability of, 46.
chemieal, 5.
conservation of, 6.
degradation of, 7.
dissipation of, 8.
electrical, 5.
Energy equation, 36.
applied to eycle process, 39.
applied to vaporization, 170.
integration of, 38.
Encrgy, heat, 3.
high grade, and low grade, 7.
mechanical, 2.
of gases, 97.
of saturated vapor, 172.
of superheated steam, 214.
relativity of, 2.
transformations of, 5.
units of, 8.
units, relations between, 10.
Engine, compressed air, 158.
Ericsson’s, 139.
Stirling'’s, 138.
Engines, gas, 142.
hot-air, 138.
steam, 283.
Entropy, as a codrdinate, 68.
first definition of, 59.
of gases, 100.
of liquid, 179.
of superheated steam, 215.

INDEX

Equation of Clausius, 200.
of perfect gas, 17.
of van der Waals, 20, 200.
of vapor mixture, 184.
Equations for gases, 94.
for discharge of air and steam, 255.
for superheated steam, 203.
general, of thermodynamics, 79.
Equilibrium of thermodynamics systems,
87.

Ericsson’s air engine, 139.

Exact differentials, 30.

Expansion of gases, adiabatic, 103,
at constant pressure, 101.
isothermal, 102.

Expansion valve, 272, 309.

Exponent n, determination of, 108,

External work of a system, 37.

First law of thermodynamics, 35.
Fliegner's equations for flow of air, 255.
Flow of air, equations for, 255.
Flow of fluids, assumptions, 244.
cxperiments on, 243, 254.
formulas for discharge, 255
fundamental equations, 244.
graphical representation, 247.
through orifices, 252.
Flow of steam, Grashof’s equation, 256.
teau’s equation, 256.
Napier’s equation, 257.
Free expansion of gases, 58.
Friction in nozzles, 262.
Frictional processes, 74.
Fuels, 118.

Gas, characteristic equation of, 93, 277.
constant B, value of, 92
constant, universal, 113.
constants, relations between, 112.
free expansion of, 58.
permanent, 89.
Gas-engine cycles, comparison of, 148,
Gases, entropy of, 100.
general equations for, 94.
heat content of, 99.
intrinsic energy of, 97.
laws of, 89.
mixtures of, 114.
specific heat of, 96, 124.
Graphieal representation of energy equa-
tion, 43.
of flow of fluids, 247.
Grashof’s equation, flow of steam, 256.



@b COLLCNY O1 gases, Uy,
of saturated vapor, 173, 177.
of superheated steam, 210,
at, clfects of, 35,
atent, 26.
mechanical equivalent of, 11.
mechanieal theory of, 3.
of liquid, 171, 174,
of vaporization, 171, 175.

spee 24,

botal, 172, 177, 213.

anits of, 9.

ating of air by internal combustion,
141,

ting value of fucls, 118.

nning’s formula for latent heat, 176,

Iborn and Henning's experiments,
205,

t-air engines, 138,
unidity, 229.

rquality of Clausius, 63.
ombustion, heating by, 141.
¢ energy, 306,
of gascs, 97.
of superheated steam, 214,
of vapors, 172,
eversible adinbatics, 75.
processes, 4
waste in, 57,
cycles, 136,
dynamic change of vapor, 190.
processes, 42,
lines, 22,
piestic lines, 22.
thermal, definition of, 21.
sxpansion of gases, 102,
of superheated steam, 217,
of vapor mixture, 188,
on T'S-plane, 70.
>f steam and air mixture, 232,

;, work of, 208.

ale’s cycle, 145.

xperiments, 11,

aw, 90.

1le-Thomson cocfficient, 276.
effect, 275.

lvin's absolute scale, 55.

statement of the second law, 50.
oblauch’s experiments, 201.

oblauch and Jukob's cxperiments, 205.

ngen's cquations for specific heat, 124,
205.
tent heat, 26.

external, 172.
Henning's formula for, 176.

Latent heat, internal, 172,

of expansion, 27.

of pressure variation, 27.

of vaporization, 171, 175.
Laws of gases, 89.
Lenoir cycle, 162.
Linde’s process for liquefaction, 280.
Liquefaction of gases, 280.
Liquid curve, 166.

Mallard and Le Chatelier's cxperiments,
205.

Marks' formula, 170.
Maxwell's thermodynamic relations, 80
Mean specific heat, 210.
Mechanical energy, units of, 9.
Mechanical equivalent of heat, 11,
theory of heat, 3.
Mixture of gases and vapors, 228,
of gases, specific heat of, 125.
of steam and air, 232, 236.
Moist air, constants for, 230.
Moisture in atmosphere, 228.
Molccular specific heat, 123.
weights, 111.
Mollier’s chart, 223.
use in flow of fluids, 251.
use in steam turbines, 302.
Munich experiments, 201.

Napier's equations, flow of steam, 257.
Nozzle, De Laval, 258.
Nozzles, design of, 264,

friction in, 262.

Otto cycle, 142, 148.

Peake's throttling curves, 273.
Perfect gas, definition of, 18.
equation of, 17.
Permancnt gas, cxplanation of term,
89.

Perpetual motion of first class, 6.
of second class, 8.

Polytropic change of state, 104.
changes, specific heat in, 106.
curve, 71.

Potential efficiency, 292.
thermodynamic, 77, 87.

Pressure and temperature, relation be-

tween, 167.

Pressure compounding, 296.
critical, 199.
turbines, action of, 298, 305.

Products of combustion, 119.

Quality of mixture, 165.
variation of, 185.



's cycle, 284.
effect of changing pressure,
289.

incomplete expansion, 288.
with superheated steam,
286.

a, 168.

formula, flow of stcam, 286.
ar eycle, 73.

\ting machine, analysis of, 311.
ition, air, 149.

used in, 310.

apor media, 308.

| heat engine, 74.

le processes, 47.

3 and Moorby's experiments, 12,
's experiments, 11.

ngine, 294.

nant’s hypothesis, 254.
d vapor, 165.
energy of, 172.
entropy of, 179.
heat content of, 173, 177,
latent heat of, 171, 175.
specific heat of, 182.
surface representing, 166.
total heat of, 172, 177.
a curve, 166, 182,
rature, 165.
w of thermodynamies, 50.
ann’s interpretation of, 65.
cat, 24.
curves, 209, 211.
in polytropic changes, 106.
Langen'’s formulas for, 124.
mean, 210.
heat, molecular, 123.
of gaseous mixture, 125.
of gaseous products, 123.
of gases, 96.
of saturated vapor, 182.
of superheated steam, 204, 273.
volume of vapors, 177.
1d air, mixture of, 232, 236.
| temperature of, 199.
> volume of, 177.
180.
] properties of, 173.
eat of, 172, 177.
rhine, 294.
classification of, 295.
compared with reciprocating
engine 294,
compounding, 296.
Curtis type, 304.
impulse and reaction, 296.
influence of high vacuum, 307.
low pressure, 307.

Steam turbine multiple stage, 302.
pressure type, 298, 305.
single stage, 300.
velocity and pressure, 296.
Stirling’s engine, 138.
Sulphur dioxide, saturated, 182.
superheated, 223.
Superheat, degree of, 165, 196.
Superheated ammonia, 223.
Superheated steam, 165, 196.
changes of state, 216.
energy of, 214.
entropy of, 215.
equations for, 203.
heat content of, 210.
specific heat of, 204, 273.
tables and diagrams, 221.
total heat of, 213.
Superheated sulphur dioxide, 223.
vapor, characteristics of, 196.
Surface, characteristic, 20.
representing saturated vapor, 166
System, defined, 15.
state of, 15.

Temperature, absolute, 18.
and pressure, rclation between, 167.
critical, 199.
Kelvin scale of, 55.
Temperature of combustion, 127.
saturation, 165.
scales, comparison of, 91.
Temperature entropy representation, 68.
Thermal capacities, relation between, 27.
capacity defined, 24.
efficiency, 291.
encrgy, 4.
lines, 21.
properties of steam, 173.
Thermodynamic degeneration, 8.
potentials, 77, 87.
relations, 80.
Thermodynamics, first law of, 35.
general equations of, 84.
scope of, 1.
second law of, 50.
Throttling calorimeter, 271.
curves, 273.
loss due to, 269.
processes, 268.
Total heat of saturated vapor, 172, 177.
of superheated steam, 213.
Transformations of energy, 5.
Tumlirtz equation for superheated steam,
204.
Turbine, steam, sce Steam turbine.

Units of energy, 8.
of heat, 9.
Universal gas constant, 113.



uum, influence of, on steam turbine,
307.

- der Waals' equation, 20, 200.

or, cnergy of, 172.

ropy of, 179.

cat content of, 173, 177.

tent heat of, 171, 175.

or mixture, adiabatic expansion of,
189.

mstant volume change, 189.

rves on T'S-planc, 186.

d equation of, 184.

odynamic of, 190.

othiermal expansion of, 188.

or refrigerating machine, 311.

iperheated, 196.

tal heat of, 172, 177.

orization, heat of, 171, 175.

‘Vaporization, proeess of, 164.
‘Vapors used in refrigeration, 310.
Velocity compounding, 297.
Volume, eritical, 199.

specific, of vapor, 177.

‘Waste in irreversible processes, 57.
‘Water, critical temperature of, 199.
jacketing, 155.
vapor, thermal properties of, 173.
‘Wiredrawing, 268.
‘Work, eonversion of, into heat, 57.
external, of expansion, 87.
of a jet, 208.

Zero curve, 186.
Zeuner's equation for superheated steam,
204.




